From ee3d0d98e19f1d8177d85af1866fd0ee431fe9ea Mon Sep 17 00:00:00 2001 From: Jules Laplace Date: Sun, 25 Nov 2018 22:19:15 +0100 Subject: moving stuff --- scraper/reports/all_institutions.csv | 1499 + scraper/reports/all_institutions_sorted.csv | 1745 + scraper/reports/doi_domains.html | 1 + scraper/reports/doi_institutions.csv | 2171 + scraper/reports/doi_institutions.html | 1 + scraper/reports/doi_institutions_geocoded.csv | 1443 + scraper/reports/doi_institutions_unattributed.csv | 406 + scraper/reports/doi_institutions_unknown.csv | 865 + scraper/reports/doi_institutions_unknown.html | 1 + scraper/reports/first_pages.html | 48171 +++++++++++++++++++ scraper/reports/institution_names-1.csv | 714 + scraper/reports/institution_names-2.csv | 714 + scraper/reports/institution_names-3.csv | 712 + scraper/reports/institution_names-4.csv | 711 + scraper/reports/institution_names.csv | 3563 ++ scraper/reports/institutions.html | 1 + scraper/reports/institutions_found.csv | 1042 + scraper/reports/institutions_found/found-1.csv | 479 + scraper/reports/institutions_found/found-2.csv | 510 + scraper/reports/institutions_found/found-3.csv | 811 + scraper/reports/institutions_found/found-4.csv | 896 + scraper/reports/institutions_missing.html | 11693 +++++ scraper/reports/institutions_not_found.csv | 1773 + .../reports/institutions_not_found/not-found-1.csv | 845 + .../reports/institutions_not_found/not-found-2.csv | 876 + .../reports/institutions_not_found/not-found-3.csv | 1373 + .../reports/institutions_not_found/not-found-4.csv | 1439 + scraper/reports/leaflet.arc.js | 2 + scraper/reports/leaflet.bezier.js | 254 + scraper/reports/map.js | 92 + scraper/reports/misc/all_doi-1.csv | 749 + scraper/reports/misc/all_doi-2.csv | 749 + scraper/reports/misc/all_doi-3.csv | 749 + scraper/reports/misc/all_doi-4.csv | 748 + scraper/reports/misc/all_doi.csv | 2995 ++ scraper/reports/misc/db_paper_doi.csv | 1928 + scraper/reports/misc/db_paper_pdf-1.csv | 1639 + scraper/reports/misc/db_paper_pdf-2.csv | 1639 + scraper/reports/misc/db_paper_pdf-3.csv | 1639 + scraper/reports/misc/db_paper_pdf.csv | 4917 ++ scraper/reports/misc/db_paper_pdf_list.csv | 7615 +++ scraper/reports/misc/missing-1.csv | 817 + scraper/reports/misc/missing-2.csv | 817 + scraper/reports/misc/missing-3.csv | 815 + scraper/reports/misc/missing.csv | 2449 + scraper/reports/misc/raw_paper_doi.csv | 1067 + scraper/reports/misc/raw_paper_pdf.csv | 1354 + scraper/reports/misc/raw_paper_pdf_list.csv | 2434 + scraper/reports/pdf_institutions_deduped.csv | 1676 + scraper/reports/pdf_unknown_bigrams.html | 1 + scraper/reports/pdf_unknown_terms.html | 1 + scraper/reports/pdf_unknown_trigram.html | 1 + scraper/reports/reddot.png | Bin 0 -> 1102 bytes scraper/reports/report_coverage.html | 1 + scraper/reports/report_index.html | 1 + scraper/reports/reports.css | 18 + scraper/reports/snap.svg-min.js | 21 + scraper/reports/stats/empty_papers.csv | 579 + scraper/reports/stats/geocoded_papers.csv | 4537 ++ scraper/reports/stats/no_separator_papers.csv | 344 + scraper/reports/stats/unknown_papers.csv | 17632 +++++++ 61 files changed, 144735 insertions(+) create mode 100644 scraper/reports/all_institutions.csv create mode 100644 scraper/reports/all_institutions_sorted.csv create mode 100644 scraper/reports/doi_domains.html create mode 100644 scraper/reports/doi_institutions.csv create mode 100644 scraper/reports/doi_institutions.html create mode 100644 scraper/reports/doi_institutions_geocoded.csv create mode 100644 scraper/reports/doi_institutions_unattributed.csv create mode 100644 scraper/reports/doi_institutions_unknown.csv create mode 100644 scraper/reports/doi_institutions_unknown.html create mode 100644 scraper/reports/first_pages.html create mode 100644 scraper/reports/institution_names-1.csv create mode 100644 scraper/reports/institution_names-2.csv create mode 100644 scraper/reports/institution_names-3.csv create mode 100644 scraper/reports/institution_names-4.csv create mode 100644 scraper/reports/institution_names.csv create mode 100644 scraper/reports/institutions.html create mode 100644 scraper/reports/institutions_found.csv create mode 100644 scraper/reports/institutions_found/found-1.csv create mode 100644 scraper/reports/institutions_found/found-2.csv create mode 100644 scraper/reports/institutions_found/found-3.csv create mode 100644 scraper/reports/institutions_found/found-4.csv create mode 100644 scraper/reports/institutions_missing.html create mode 100644 scraper/reports/institutions_not_found.csv create mode 100644 scraper/reports/institutions_not_found/not-found-1.csv create mode 100644 scraper/reports/institutions_not_found/not-found-2.csv create mode 100644 scraper/reports/institutions_not_found/not-found-3.csv create mode 100644 scraper/reports/institutions_not_found/not-found-4.csv create mode 100644 scraper/reports/leaflet.arc.js create mode 100644 scraper/reports/leaflet.bezier.js create mode 100644 scraper/reports/map.js create mode 100644 scraper/reports/misc/all_doi-1.csv create mode 100644 scraper/reports/misc/all_doi-2.csv create mode 100644 scraper/reports/misc/all_doi-3.csv create mode 100644 scraper/reports/misc/all_doi-4.csv create mode 100644 scraper/reports/misc/all_doi.csv create mode 100644 scraper/reports/misc/db_paper_doi.csv create mode 100644 scraper/reports/misc/db_paper_pdf-1.csv create mode 100644 scraper/reports/misc/db_paper_pdf-2.csv create mode 100644 scraper/reports/misc/db_paper_pdf-3.csv create mode 100644 scraper/reports/misc/db_paper_pdf.csv create mode 100644 scraper/reports/misc/db_paper_pdf_list.csv create mode 100644 scraper/reports/misc/missing-1.csv create mode 100644 scraper/reports/misc/missing-2.csv create mode 100644 scraper/reports/misc/missing-3.csv create mode 100644 scraper/reports/misc/missing.csv create mode 100644 scraper/reports/misc/raw_paper_doi.csv create mode 100644 scraper/reports/misc/raw_paper_pdf.csv create mode 100644 scraper/reports/misc/raw_paper_pdf_list.csv create mode 100644 scraper/reports/pdf_institutions_deduped.csv create mode 100644 scraper/reports/pdf_unknown_bigrams.html create mode 100644 scraper/reports/pdf_unknown_terms.html create mode 100644 scraper/reports/pdf_unknown_trigram.html create mode 100644 scraper/reports/reddot.png create mode 100644 scraper/reports/report_coverage.html create mode 100644 scraper/reports/report_index.html create mode 100644 scraper/reports/reports.css create mode 100755 scraper/reports/snap.svg-min.js create mode 100644 scraper/reports/stats/empty_papers.csv create mode 100644 scraper/reports/stats/geocoded_papers.csv create mode 100644 scraper/reports/stats/no_separator_papers.csv create mode 100644 scraper/reports/stats/unknown_papers.csv (limited to 'scraper/reports') diff --git a/scraper/reports/all_institutions.csv b/scraper/reports/all_institutions.csv new file mode 100644 index 00000000..7ff27b0d --- /dev/null +++ b/scraper/reports/all_institutions.csv @@ -0,0 +1,1499 @@ +"University of Delaware, USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA" +AALTO UNIVERSITY,60.18558755,24.824273298775,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi" +"AGH University of Science and Technology, Kraków, Poland",50.0657033,19.9189586670586,"AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP" +AI Institute,-34.6102167,-58.3752244291708,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina" +ALICE Institute,-8.82143045,13.2347076178375,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola" +ARISTOTLE UNIVERSITY OF THESSALONIKI,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aalborg University, Denmark",57.01590275,9.97532826658991,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark" +"Aalto University, Finland",60.18558755,24.824273298775,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi" +"Aberystwyth University, UK",52.4107358,-4.05295500914411,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK" +"Ahmedabad University, Gujarat, India 380009",23.0378743,72.5518004573221,"School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India" +Ajou Univ.,37.2830003,127.045484689222,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국" +Ajou University,37.2830003,127.045484689222,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국" +Akita Prefectural University,39.8011499,140.045911602376,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本" +"Akita Prefectural University, Yurihonjo, Japan",39.39325745,140.073500465928,"秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本" +Akita University,39.7278142,140.133225661449,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本" +"Akita University, Akita, Japan",39.7291921,140.136565773585,"秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本" +"Alexandria University, Alexandria, Egypt",31.21051105,29.9131456239399,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر" +"Alibaba Group, Hangzhou, China",30.2810654,120.021390874339,"Alibaba Group, 五常街道, 余杭区 (Yuhang), 杭州市 Hangzhou, 浙江省, 中国" +"Amazon, Berkshire, U.K.",51.43522855,-1.07155123817349,"Amazon Logistics, Exeter Road, Theale, West Berkshire, South East, England, RG7 4PL, UK" +"American University, Washington, DC, USA",38.93804505,-77.0893922365193,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA" +Amherst College,42.37289,-72.518814,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA" +Amirkabir University of Technology,35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"Amirkabir University of Technology, Tehran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"Amirkabir University of Technology, Tehran, Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"Amity University Uttar Pradesh, Noida",28.54322285,77.3327482973395,"Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India" +"Amity University, Lucknow, India",26.85095965,81.0495096452828,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India" +"Anhui Polytechnic University, Wuhu, China",31.34185955,118.407397117034,"安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国" +"Anhui University, Hefei, China",31.76909325,117.17795091346,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国" +Anna University,13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +"Anna University Chennai, India",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +"Anna University, Chennai",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +Aristotle University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aristotle University of Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aristotle University of Thessaloniki, Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +Arizona State University,33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"Arizona State University, Tempe, AZ, USA",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia",3.0552109,101.7005831,"Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia" +"Assiut University, Asyut, Egypt",27.18794105,31.1700949818453,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر" +"Aston University, Birmingham, U.K.",52.48620785,-1.88849915088515,"Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK" +Australia,-24.7761086,134.755,Australia +Australian Institute of Sport,-35.24737535,149.104454269689,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"Australian National University, Canberra",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Australian National University, Canberra, ACT 0200, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Azad University, Qazvin, Iran",36.3173432,50.0367286,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎" +B.S. University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +Bahcesehir University,41.02451875,28.9769795349346,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye" +"Bahcesehir University, Istanbul, Turkey",41.02451875,28.9769795349346,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye" +Banaras Hindu University,25.2662887,82.9927969,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India" +Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India" +"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India",14.4443949,75.9027655185535,"Bapuji Institute of Engineering and Technology, 2nd Cross Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Bas kent University,52.08340265,5.14828494152362,"University College Utrecht 'Babel', 7, Campusplein, Utrecht, Nederland, 3584 ED, Nederland" +Beckman Institute,40.11571585,-88.2275077179639,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA" +Beihang University,39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +"Beihang University, Beijing 100191, China",39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +"Beihang University, Beijing, China",39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +"Beijing Institute of Technology University, P. R. China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +"Beijing Institute of Technology, Beijing 100081 CHINA",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +"Beijing Institute of Technology, Beijing, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +"Beijing Institute of Technology, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"Beijing Jiaotong University, Beijing, 100044, China",39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"Beijing Normal University, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国" +"Beijing Union University, 100101, China",39.9890068,116.420677175386,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国" +Beijing University of Posts and Telecommunications,39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Posts and Telecommunications, Beijing",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Posts and Telecommunications, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Technology, Beijing 100022, China",39.87391435,116.477222846574,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国" +"Beijing, China",39.906217,116.3912757,"北京市, 东城区, 北京市, 100010, 中国" +"Beijing, Haidian, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国" +"Benha University, Egypt",30.0818727,31.2445484105016,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر" +"Bharathidasan University, Trichy, India",10.7778845,78.6966319,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India" +Bielefeld University,52.0280421,8.51148270115395,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland" +"Bilkent University, 06800 Cankaya, Turkey",39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"Binghamton University, Binghamton, NY",42.0958077,-75.9145568939543,"Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA" +"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye" +"Bogazici University, Turkey",41.08327335,29.0503931951846,"Boğaziçi Üniversitesi Güney Yerleşkesi, Sehitlikdergahı Sokağı, Beşiktaş, İstanbul, Marmara Bölgesi, 33345, Türkiye" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +Boston University,42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +"Boston University, Boston, MA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +"Boston University, USA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +Bournemouth University,50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +"Bournemouth University, UK",50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +Brown University,41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +"Brown University, Providence Rhode Island, 02912, USA",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +"Brown University, Providence, RI",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +"Brown University, United States",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +Brunel University,51.53255315,-0.473993562050575,"Brunel University London, The Strip, Hillingdon, London, Greater London, England, UB8 3PH, UK" +CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +CARNEGIE MELLON UNIVERSITY,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +COLUMBIA UNIVERSITY,40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +COMSATS Institute of Information Technology,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +"COMSATS Institute of Information Technology, Lahore 54000, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +"COMSATS Institute of Information Technology, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +CUNY City College,45.5546608,5.4065255,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France" +California Institute of Technology,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, Pasadena, CA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, Pasadena, CA, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, Pasadena, California, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"Callaghan, NSW 2308, Australia",-32.8892352,151.6998983,"Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia" +Cambridge Research Laboratory,52.17333465,0.149899463173698,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK" +Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK" +"Capital Normal University, 100048, China",39.92864575,116.30104052087,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国" +Cardi University,10.6435074,-61.4022996445292,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +Carleton University,45.3860843,-75.6953926739404,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada" +Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +"Carnegie Mellon University Pittsburgh, PA - 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA, 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, USA",37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +"Central Tehran Branch, Azad University",35.753318,51.370631,"دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ‏ایران‎" +Central Washington University,47.00646895,-120.53673039883,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA" +"Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain",41.5007811,2.11143663166357,"Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España" +"Chang Gung University, Taoyuan, Taiwan",25.030438,121.390095126629,"長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣" +Charles Sturt University,-35.0636071,147.3552234,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia" +China,35.000074,104.999927,中国 +"China University of Mining and Technology, Xuzhou, China",34.2152538,117.1398541,"China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国" +Chinese Academy of Sciences,40.0044795,116.370238,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国" +"Chinese Academy of Sciences, Beijing",40.0044795,116.370238,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国" +"Chinese Academy of Sciences, China",40.0044795,116.370238,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国" +"Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh",22.46221665,91.9694226317318,"Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ" +"Chonbuk National University, Jeonju-si",35.84658875,127.135013303058,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국" +"Chongqing University of Posts and Telecommunications, Chongqing, China",29.5357046,106.604824742826,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国" +"Chongqing University, China",29.5084174,106.578585515028,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国" +"Chongqing University, Chongqing, China",29.5084174,106.578585515028,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国" +Chosun University,35.1441031,126.9257858,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국" +"Chu Hai College of Higher Education, Hong Kong",22.3760643,113.987153890134,"珠海學院 Chu Hai College of Higher Education, 80, 青盈路 Tsing Ying Road, 嘉和里 Ka Wo Lei, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国" +"Chu Hai College of Higher Education, Tsuen Wan, Hong Kong",22.375601,113.987140797925,"珠海學院, 80, 青山公路-青山灣段 Castle Peak Road – Castle Peak Bay, 良田村 Leung Tin Tsuen, 青山灣 Castle Peak Bay, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国" +Chubu University,35.2742655,137.013278412463,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本" +"Chulalongkorn University Bangkok, Thailand",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย" +"Chulalongkorn University, Bangkok",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +"Chung-Ang University, Seoul, South Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Chungnam National University,36.37029045,127.347804575184,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국" +City University of Hong Kong,22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +"City University of Hong Kong, Hong Kong",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +"City University of Hong Kong, Kowloon, Hong Kong",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +Clemson University,34.66869155,-82.837434756078,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA" +"Clemson University, Clemson, SC",34.67871075,-82.8346790794026,"E-06 Parking, Parkway Drive, Pickens County, South Carolina, SC, USA" +Coburg University,50.26506145,10.9519648264628,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland" +"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA" +"College Park, MD",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, MD 20742 USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, Maryland",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, United States",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +College of Computer and Information Science,42.3192923,-83.2343465549018,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA" +College of Computing,-6.1992922,39.3081862,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania" +College of Electrical and Information Engineering,42.0049791,21.40834315,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија" +"College of Engineering Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India" +College of Engineering and Computer Science,25.7589624,-80.3738881489383,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA" +"College of Engineering, Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India" +College of Informatics,14.6173885,121.101327315511,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines" +Colorado State University,40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA" +"Colorado State University, Fort Collins",40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA" +"Colorado State University, Fort Collins, Colorado, USA",40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"Columbia University, New York",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"Columbia University, New York, NY",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, New York, NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, New York, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, United States",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Communication University of China, Beijing, China",39.91199955,116.551891408714,"中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国" +"Computer Science, Loughborough University, Loughborough, UK",52.7663577,-1.2292461,"Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK" +Concordia University,45.57022705,-122.637093463826,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA" +"Concordia University, Canada",45.4955911,-73.5775043,"FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada" +"Concordia University, Montreal, QC, Canada",45.4955911,-73.5775043,"FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Cornell University, Ithaca, NY, USA",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Cornell University, USA",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +Courant Institute,40.7286994,-73.9957151,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +Courant Institute of Mathematical Sciences,40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"Courant Institute of Mathematical Sciences, New York, NY",40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"Curtin University, Perth WA 6102, Australia",-32.00686365,115.89691775,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia" +"Curtin University, Perth WA, Australia",-32.00319745,115.891774804686,"A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia" +"Curtin University, Perth, Australia",-32.00574155,115.892864389257,"Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia" +"Curtin University, Perth, Western Australia 6012",-32.00319745,115.891774804686,"A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia" +Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +"Cyprus University of Technology, Cyprus",34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +DUBLIN CITY UNIVERSITY,53.38522185,-6.25740874081493,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland" +Dalian University of Technology,38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dalian University of Technology, Dalian, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dalian University of Technology, Dalian, Liaoning, 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea",37.3219575,127.1250723,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국" +"Dankook University, Yongin, South Korea",37.3219575,127.1250723,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +"Dartmouth College, NH 03755 USA",43.7070046,-72.2869048,"Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA" +"Deakin University, Geelong, VIC 3216, Australia",-38.19928505,144.303652287331,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia" +Delft University of Technology,51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +"Delft University of Technology, Mekelweg 4, Netherlands",51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +"Delft University of Technology, The Netherlands",51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +Democritus University of Thrace,40.84941785,25.8344493892098,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα" +"Dermalog Identification Systems GmbH, Hamburg, Germany",53.5722826,9.9947826,"DERMALOG Identification Systems GmbH, 120, Mittelweg, Rotherbaum, Eimsbüttel, Hamburg, 20148, Deutschland" +"Deutsche Welle, Bonn, Germany",50.7171497,7.12825184326238,"DW, Gronau, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Dhaka University,23.7317915,90.3805625,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ" +"Disney Research, CH",47.3804685,8.5430355,"Disney Research Zürich, 48, Stampfenbachstrasse, Unterstrass, Kreis 6, Zürich, Bezirk Zürich, Zürich, 8006, Schweiz/Suisse/Svizzera/Svizra" +"Donghua University, China",31.2061939,121.410471009388,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +Dr. Babasaheb Ambedkar Marathwada University,19.8960918,75.3089470267316,"Boys Hostel No. 3, Shantipura road, Cantonment, Bidri workshop, Aurangabad, Maharashtra, 431004, India" +Drexel University,39.9574,-75.1902670552555,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA" +Duke University,35.9990522,-78.9290629011139,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA" +East China Normal University,31.2284923,121.402113889769,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国" +Eastern Mediterranean University,35.14479945,33.90492318497,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs" +Eastern University,40.0505672,-75.3710932636663,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA" +"Ecole Centrale de Lyon, Lyon, 69134, France",45.7833631,4.76877035614228,"EC de Lyon, 36, Avenue Guy de Collongue, Écully, Lyon, Métropole de Lyon, Circonscription départementale du Rhône, Auvergne-Rhône-Alpes, France métropolitaine, 69134, France" +Edge Hill University,53.5582155,-2.86904651022128,"Edge Hill University, St Helens Road, West Lancashire, Lancs, North West England, England, L39 4QP, UK" +"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland" +"Electrical Engineering, University of",47.6532412,-122.3061707,"Electrical Engineering, 185, Loading Dock, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA" +Electrical and Computer Engineering,33.5866784,-101.875392037548,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA" +Elon University,36.1017956,-79.501733,"Amphitheater, North Antioch Avenue, Elon, Alamance County, North Carolina, 27244, USA" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +FL,27.7567667,-81.4639835,"Florida, USA" +"Facebook Inc., San Francisco, CA, USA",37.4828007,-122.150711572363,"Facebook Inc., San Francisco Bay Trail, Menlo Park, San Mateo County, California, 94025-1246, USA" +"Facebook, Singapore",1.3170417,103.8321041,"Ewe Boon back lane, between Palm Spring, City Towers and Wing On Life Garden, Farrer Park Gardens, Novena, Singapore, Central, 259803, Singapore" +"Feng Chia University, Taichung, Taiwan",24.18005755,120.648360719503,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣" +"Ferdowsi University of Mashhad, Mashhad, Iran",36.3076616,59.5269051097667,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎" +Firat University,39.7275037,39.4712703382844,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye" +"Florida Institute Of Technology, Melbourne Fl",28.0642296,-80.6230097241205,"Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA" +"Florida Institute of Technology, Melbourne, USA",28.0642296,-80.6230097241205,"Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +"Florida International University, Miami, FL",25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +"Florida State University, Tallahassee, FL 32306, USA",30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +"Fordham University, New York, 10023, USA",40.7710604,-73.9852807046561,"Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA" +"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎" +Fraser University,44.9689836,-93.2094162948556,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA" +Fudan University,31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +GE Global Research,42.8298248,-73.8771938492793,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA" +GE Global Research Center,42.8298248,-73.8771938492793,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA" +"GIPSA-Lab, Grenoble, France",45.1929245,5.7661983,"GIPSA-lab, 11, Rue des Mathématiques, Médiat Rhône-Alpes, Saint-Martin-d'Hères, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38400, France" +Gdansk University of Technology,54.37086525,18.6171601574695,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP" +George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"George Mason University, Fairfax Virginia, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"George Mason University, Fairfax, VA 22030",38.8345539,-77.3152142,"George Mason University, University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA" +"George Mason University, Fairfax, VA, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +Georgia Institute of Technology,33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA" +"Georgia Institute of Technology, Atlanta, 30332-0250, USA",33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA" +"Georgia Institute of Technology, Atlanta, Georgia, USA",33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA" +"Georgia Southern University, Statesboro, USA",32.42143805,-81.7845052864662,"Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA" +Glyndwr University,53.05373795,-3.00482075353073,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK" +"Golden, CO, USA",39.755543,-105.2210997,"Golden, Jefferson County, Colorado, USA" +Graz University of Technology,47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich" +"Graz University of Technology, Austria",47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich" +Griffith University,-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia" +"Griffith University, Australia",-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia" +"Griffith University, Brisbane",-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia" +"Griffith University, Nathan, QLD, Australia",-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia" +Guangdong Medical College,23.1294489,113.343761097683,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国" +"Guangdong University of Technology, China",23.1353836,113.294704958268,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国" +"Guangzhou University, Guangzhou, China",23.04436505,113.366684576444,"广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +"Guilin University of Electronic Technology Guangxi Guilin, China",25.2873992,110.332427699352,"桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国" +Hacettepe University,39.86742125,32.7351907206768,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +Halmstad University,56.66340325,12.8792972689712,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige" +"Halmstad University, Halmstad, Sweden",56.66340325,12.8792972689712,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige" +"Hangzhou Dianzi University, Hangzhou, China",30.3125525,120.3430946,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam" +Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국" +"Harbin Engineering University, Harbin, Heilongjiang, 150001, China",45.77445695,126.676849168143,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +Harbin Institute of Technology,45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Harbin Institute of Technology, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Harbin Institute of Technology, China, 150001",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Harbin Institute of Technology, Harbin 150001, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Harbin Institute of Technology, Harbin, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +Harbin Institute of Technology;Shenzhen University,22.5895016,113.965710495775,"哈工大(深圳), 平山一路, 深圳大学城, 珠光村, 南山区, 深圳市, 广东省, 518000, 中国" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, Cambridge",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, Cambridge, MA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, Cambridge, MA 02138",42.36300645,-71.1245674978516,"Harvard University, Rotterdam Street, North Brighton, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, Cambridge, MA, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +Harvard and Massachusetts Institute,42.5268445,-71.6525446,"Massachusetts Correctional Institute Shirley Minimum Security Library, Harvard Road, Shaker Village, Shirley, Middlesex County, Massachusetts, 01464, USA" +"Hebei, China",39.0000001,116.0,"河北省, 中国" +"Hefei University of Technology, Hefei, Anhui, 230601, China",31.846918,117.290533667908,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国" +"Hefei University of Technology, Hefei, China",31.846918,117.290533667908,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国" +"Hengyang Normal University, Hengyang, China",26.8661136,112.620921219792,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国" +Heriot-Watt University,55.91029135,-3.32345776559167,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK" +"Hiroshima University, Japan",34.4019766,132.7123195,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本" +HoHai University,32.05765485,118.755000398628,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国" +"Hofstra University, Hempstead, NY 11549",40.71703345,-73.599835005538,"Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA" +Hong Kong Baptist University,22.3874201,114.2082222,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国" +"Hong Kong Baptist University, Hong Kong",22.3874201,114.2082222,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国" +Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"Hong Kong University of Science and Technology, Hong Kong",22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"Howard University, Washington DC",38.921525,-77.019535656678,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA" +"Huaqiao University, Xiamen, China",24.6004712,118.0816574,"华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国" +Huazhong University of,22.53367445,113.917874206261,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国" +Huazhong University of Science and Technology,30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国" +"Huazhong University of Science and Technology, Wuhan, China",30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国" +"Huazhong University of Science and Technology, Wuhan, China 430074",30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国" +"Humboldt-University, Berlin, Germany",52.51875685,13.3935604936378,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland" +Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国" +"IBM Almaden Research Center, San Jose CA",37.21095605,-121.807486683178,"IBM Almaden Research Center, San José, Santa Clara County, California, USA" +IBM Research,35.9042272,-78.8556576330566,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA" +"IBM Research, USA",35.9042272,-78.8556576330566,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA" +IBM Thomas J. Watson Research Center,41.21002475,-73.8040705573196,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA" +IDIAP RESEARCH INSTITUTE,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +IDIAP Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"IDIAP, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +IIIT-Delhi,28.54632595,77.2732550434418,"IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India" +"IIIT-Delhi, India",28.54632595,77.2732550434418,"IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India" +"IIT Guwahati, Guwahati, India",26.19247875,91.6946356873113,"Indian Institute of Technology Guwahati - IIT Guwahati, NH27, Amingaon, Guwahati, Kamrup, Assam, 781015, India" +IMPERIAL COLLEGE,39.9458551,116.406973072869,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国" +"INRIA Grenoble Rhone-Alpes, FRANCE",45.2182986,5.80703193086113,"INRIA, 655, Avenue de l'Europe, Innovallée Montbonnot, Montbonnot-Saint-Martin, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38330, France" +Idiap Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Idiap Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Illinois Institute of Technology,41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +"Illinois Institute of Technology, Chicago, Illinois, USA",41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +Imperial College London,51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, London, U.K.",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, U.K",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, U.K.",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, United Kingdom",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College, London, UK",51.5004171,-0.1782711,"Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK" +India,22.3511148,78.6677428,India +Indian Institute of Science,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +Indian Institute of Science Bangalore,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +Indian Institute of Technology,28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India" +"Indian Institute of Technology Delhi, New Delhi, India",28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India" +Indian Institute of Technology Kanpur,26.513188,80.2365194538339,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India" +"Indian Institute of Technology Kanpur, Kanpur, India",26.513188,80.2365194538339,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India" +"Indian Institute of Technology, Roorkee",29.8662461,77.8958708109136,"Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India" +Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA" +Indiana University Bloomington,39.17720475,-86.5154003022128,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA" +"Industrial Technology Research Institute, Hsinchu, Taiwan",24.7741756,121.045092787653,"工研院, 195, 中興路四段, 頭重里, 竹東鎮, 新竹縣, 31040, 臺灣" +Information Technologies Institute,33.5934539,130.3557837,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +"Information, Keio University",35.5416969,139.6347184,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本" +Institute,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Institute for Advanced,38.7468877,139.824707282407,"Institute for Advanced Biosciences, 鶴岡市, 山形県, 東北地方, 日本" +Institute for Communication Systems,51.2433692,-0.593220895014599,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK" +Institute for System Programming,55.7449881,37.6645042069876,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Institute of Automation,54.1720834,12.0790983,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland" +Institute of Communications Engineering,54.1718573,12.0784417,"Institut für Nachrichtentechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland" +Institute of Computer Science,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +Institute of Computing,43.47878995,-80.5548480959375,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada" +Institute of Computing Technology,34.6988529,135.1936779,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本" +Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India" +Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija" +"Institute of Engineering and Management, Kolkata, India",22.57423855,88.4337303,"Institute of Engineering and Management, Block -EP, Ring Road, GP Block, Kolkata, Twenty-four Parganas, West Bengal, 700091, India" +Institute of Industrial Science,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣" +Institute of Information Technology,23.7289899,90.3982682,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +Institute of Media Innovation,1.3433937,103.6793303,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore" +Institute of Road and,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland" +International Institute of Information Technology,17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +"International Institute of Information Technology (IIIT) Hyderabad, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +"International Institute of Information Technology, Hyderabad, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +"International Institute of Information Technology, Hyderabad, Telangana, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +International University of,11.5744201,104.8775841,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រ​កម្ពុជា" +Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +"Iowa State University, Ames, IA, USA",42.02791015,-93.6446441473745,"Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA" +Iran,32.9407495,52.9471344,‏ایران‎ +Islamic Azad University,34.8452999,48.5596212013643,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎" +Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية" +Istanbul Technical University,41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Istanbul Technical University (ITU), Turkey",41.10539,29.0213673,"ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Istanbul Technical University, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +Istanbul University,41.0132424,28.9637609,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye" +"Istanbul University, Istanbul, Turkey",41.0132424,28.9637609,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye" +Jacobs University,53.4129148,-2.96897915394896,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK" +Jadavpur University,22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India" +"Jadavpur University, India",22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India" +Jahangirnagar University,23.883312,90.2693921,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +"Jaipur, Rajasthan, India",26.916194,75.820349,"Jaipur, Rajasthan, 302001, India" +Japan,36.5748441,139.2394179,日本 +Japan Advanced Institute of Science and Technology,36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本" +"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan",36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本" +Jaypee Institute of Information Technology,28.6300443,77.3720823,"Jaypee Institute of Information Technology, Noida, A-10, National Highway 24 Bypass, Asha Pushp Vihar, Kaushambi, Ghaziabad, Uttar Pradesh, 201001, India" +"Jiangnan University Jiangsu Wuxi, PR China",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国" +"Jiangnan University, Jiangsu Wuxi, PR China",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国" +"Jiangnan University, Wuxi",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国" +"Jiangsu University of Science and Technology, Zhenjiang, China",32.198055,119.4632679083,"江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国" +"Jiangsu University, ZhenJiang, Jiangsu, 212013, P. R. China",32.20302965,119.509683619281,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国" +"Jiangsu University, Zhenjiang, China",32.20302965,119.509683619281,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国" +"Jilin University, China",22.053565,113.39913285497,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国" +"Joint Research Institute, Foshan, China",22.83388935,113.285418245471,"广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国" +"Jordan University of Science and Technology, Irbid, Jordan",32.49566485,35.9916071719283,"Jordan University of Science and Technology, شارع الأردن, إربد‎, إربد, الأردن" +"K.N. Toosi University of Technology, Tehran, Iran",35.76427925,51.409702762313,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎" +"KAIST, Daejeon, Korea",36.3646244,127.352251416793,"궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국" +"KAIST, Korea",36.3646244,127.352251416793,"궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국" +"KTH Royal Institute of Technology, Stockholm",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige" +"KTH Royal Institute of Technology, 100 44 Stockholm, Sweden",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige" +"KTH Royal Institute of Technology, Stockholm, Sweden",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige" +Karlsruhe Institute of,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Karlsruhe Institute of Technology (KIT), Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Karlsruhe Institute of Technology, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Karlsruhe Institute of Technology, Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"Keio University, Yokohama 223-8522, Japan",35.55536215,139.654582444136,"慶應義塾大学 (矢上キャンパス), 理工坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-8522, 日本" +Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"Kent State University, Kent, Ohio, USA",41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"Khalifa University, Abu Dhabi, United Arab Emirates",24.4469025,54.3942563,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة" +"Khon Kaen University, Khon Kaen, 40002, Thailand",16.46007565,102.812117979662,"มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية" +King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +"King Saud University, Riyadh",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"King Saud University, Riyadh 11543, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +Kingston University,51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK" +"Kingston University, UK",51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +"Kobe University, Japan",34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +"Kogakuin University, Tokyo, Japan",35.6902784,139.695400958171,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本" +"Kookmin University, Seoul, Korea",37.6107554,126.9946635,"국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국" +Korea Advanced Institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +"Korea Advanced Institute of Science and Technology, Daejeon, Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +"Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +"Korea Advanced Institute of Science and Technology, Daejeon, South Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +"Korea Advanced Institute of Science and Technology, Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +Korea Advanced institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +"Korea University, Seoul, South Korea",37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +"Kumamoto University, Kumamoto, Japan",32.8164178,130.727039687562,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本" +"Kurukshetra University, Kurukshetra",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India" +"Kurukshetra University, Kurukshetra, India",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India" +"Kyoto University, Kyoto, Japan",35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +Kyung Hee University,32.8536333,-117.2035286,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA" +"Kyung Hee University, Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국" +"Kyung Hee University, Seoul, South Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국" +"Kyung Hee University, South Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국" +"Kyung Hee University, Yongin, South Korea",37.24244405,127.080937489679,"경희대학교 국제캠퍼스, 서천동로21번길, 서천동, 기흥구, 용인시, 경기, 17108, 대한민국" +Kyushu University,33.59914655,130.223598480987,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +"Lancaster University, Lancaster, UK",54.00975365,-2.78757490881378,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK" +"Lehigh University, Bethlehem, PA 18015, USA",40.6068028,-75.3782488,"Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA" +Liverpool John Moores University,53.4050747,-2.97030028586709,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK" +Lomonosov Moscow State University,55.70229715,37.5317977694291,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ" +"London, United Kingdom",51.5073219,-0.1276474,"London, Greater London, England, SW1A 2DU, UK" +Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA" +"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige" +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India",13.0309553,77.5648559396817,"M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +METs Institute of Engineering,28.2140454,83.9607104993073,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल" +"MO, USA",38.7604815,-92.5617875,"Missouri, USA" +"MPI Informatics, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +MULTIMEDIA UNIVERSITY,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +Maastricht University,50.8336712,5.71589,"UNS60, Professor Ten Hoorlaan, Randwyck, Maastricht, Limburg, Nederland, 6229EV, Nederland" +"Maastricht University, Maastricht, Netherlands",50.8444528,5.6884711,"University College Maastricht, 4, Zwingelput, Jekerkwartier, Maastricht, Limburg, Nederland, 6211KH, Nederland" +Macau University of Science and,22.3358031,114.265903983304,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +Macau University of Science and Technology,22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +"Manchester University, UK",53.47020165,-2.23932183309859,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK" +"Mangalore University, India",12.81608485,74.9244927772961,"Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India" +"Manonmaniam Sundaranar University, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +"Manonmaniam Sundaranar University, Tirunelveli",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +"Manonmaniam Sundaranar University, Tirunelveli, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +Marquette University,43.03889625,-87.9315544990507,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA" +"Massachusetts General Hospital, Boston, MA, USA",42.36291795,-71.0687374226199,"Mass General, 55, Fruit Street, Downtown Crossing, Beacon Hill, Boston, Suffolk County, Massachusetts, 02114, USA" +Massachusetts Institute,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Massachusetts Institute of Technology (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA",42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Math Institute,43.65879595,-79.3975504060101,"Fields Institute for Research in Math Science, 222, College Street, Kensington Market, Old Toronto, Toronto, Ontario, M5T 3A1, Canada" +Max Planck Institute for Biological Cybernetics,48.5369125,9.05922532743396,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland" +Max Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +"Max Planck Institute for Informatics, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +"Max Planck Institute for Informatics, Saarbrucken, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +Max-Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +McGill University,45.5039761,-73.5749687,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada" +"McGill University, Montreal, Canada",45.50691775,-73.5791162596496,"McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada" +McGovern Institute,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +McGovern Institute for Brain Research,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +McMaster University,43.26336945,-79.9180968401692,"McMaster University, Westdale, Hamilton, Ontario, Canada" +Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本" +"Memorial University of Newfoundland, Canada",47.5727251,-52.7330544350478,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada" +"Memorial University of Newfoundland, Saint John's, NL, Canada",47.5727251,-52.7330544350478,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada" +Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, E. Lansing, MI 48823, USA",42.7337998,-84.4804243,"Dero Fixit Bike Station, Grand River Avenue, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing, 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing, MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing, MI 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, United States of America",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Microsoft Res. Asia, Beijing, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国" +Microsoft Research,52.19495145,0.135010835076038,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK" +"Microsoft Research Asia, Beijing, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国" +"Microsoft Research Asia, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国" +"Microsoft Research, Beijing, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国" +"Microsoft, Bellevue, WA, USA",47.6164826,-122.2008506,"Microsoft, 10455, Northeast 8th Street, Bellevue, King County, Washington, 98004-5002, USA" +"Microsoft, Redmond, WA",47.6592914,-122.140633217997,"Microsoft Cafe RedW-F, Bridle Crest Trail, Microsoft Redwest Campus, Redmond, King County, Washington, W LAKE SAMMAMISH PKWY NE, USA" +Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Middlesex University London, London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Middlesex University London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Middlesex University, London",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +Monash University,-37.78397455,144.958674326093,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia" +"Monash University Malaysia, Bandar Sunway, Malaysia",3.06405715,101.6005974,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia" +"Monash University, Caulfield East, Australia",-37.8774135,145.044982494489,"Monash University (Caulfield campus), Queens Avenue, Caulfield East, City of Glen Eira, Victoria, 3163, Australia" +"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia" +"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ" +Muhlenberg College,40.5967637,-75.5124062,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA" +Multimedia University,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +"Multimedia University, Cyberjaya, Malaysia",2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국" +"NCCU, USA",44.2962202,-84.7116495,"nccu, South Reserve Road, Houghton Lake, Roscommon County, Michigan, 48629, USA" +"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"Nagoya University, Japan",43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"Nanjing Normal University, China",32.1066811,118.90863080932,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国" +"Nanjing Normal University, Nanjing, China",32.1066811,118.90863080932,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国" +"Nanjing University of Aeronautics and Astronautics, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"Nanjing University of Aeronautics and Astronautics, Nanjing, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +"Nanjing University of Information Science and Technology, Nanjing, China",32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +Nanjing University of Science and Technology,32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +"Nanjing University of Science and Technology, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +"Nanjing University of Science and Technology, Nanjing, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +"Nanjing University, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Nanjing University, Nanjing 210023, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Nanjing University, Nanjing 210093, P.R.China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Nantong University, Nantong, China",31.9747463,120.907792637552,"南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Nanyang Technological University, Singapore 639798",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Nanyang Technological University, Singapore 639798, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Nanyang Technological University, Singapore, 639798",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Nanyang Technological University, Singapore, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"National Central University, Taoyuan County, Taiwan",24.96841805,121.191396961005,"NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣" +National Cheng Kung University,22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +"National Cheng Kung University, Tainan, Taiwan",22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +"National Chiao Tung University, Hsinchu, Taiwan",24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣" +"National Chiao Tung University, Taiwan",24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣" +National Chiao-Tung University,24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣" +"National Chung Cheng University, Chiayi, Taiwan",23.56306355,120.475105312324,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣" +"National Chung Hsing University, Taichung",24.12084345,120.675711652432,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣" +"National Chung Hsing University, Taiwan",24.12084345,120.675711652432,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +National Institute of Standards and Technology,39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA" +"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA",39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +National Institute of Technology Rourkela,22.2501589,84.9066855698087,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India" +"National Institute of Technology, Durgapur, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India" +"National Institute of Technology, Durgapur, West Bengal, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India" +"National Institute of Technology, Rourkela (Odisha), India",22.2501589,84.9066855698087,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India" +National Institutes of Health,39.00041165,-77.1032777503325,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA" +"National Institutes of Health, Bethesda, Maryland 20892",39.00041165,-77.1032777503325,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣" +"National Taichung University of science and Technology, Taichung",24.15031065,120.683255008879,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +"National Taipei University of Technology, Taipei, Taiwan",25.04306355,121.534687724212,"NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣" +National Taiwan Normal University,25.00823205,121.535771533186,"師大分部, 88, 汀州路四段, 萬年里, 文山區, 臺北市, 11677, 臺灣" +National Taiwan University,25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +National Taiwan University of Science and Technology,25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"National Taiwan University of Science and Technology, Taipei 10607, Taiwan",25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"National Taiwan University of Science and Technology, Taipei, Taiwan",25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"National Taiwan University, 10647, Taipei, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +"National Taiwan University, Taipei, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +"National Taiwan University, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +National Technical University of Athens,37.98782705,23.7317973260904,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα" +"National Tsing Hua University, Hsinchu, Taiwan",24.7925484,120.9951183,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣" +"National Tsing Hua University, Taiwan",24.7925484,120.9951183,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣" +National University,14.6042947,120.994285201104,"National University, M.F. Jocson, Royal Plaza, Sampaloc, Fourth District, Manila, Metro Manila, 1008, Philippines" +National University of Defense Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +"National University of Defense Technology, Changsha 410073, China",28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +"National University of Defense Technology, Changsha, China",28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +National University of Defense and Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +"National University of Ireland Galway, Galway, Ireland",53.27639715,-9.05829960688327,"National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland" +"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland" +"National University of Kaohsiung, 811 Kaohsiung, Taiwan",22.73424255,120.283497550993,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣" +National University of Science and Technology,33.6450855,72.9915892221655,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +National University of Singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"National University of Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"National University of Singapore, Singapore 117576",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"National University of Singapore, Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +National University of Technology Technology,33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +National University of singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"Naval Research Laboratory, Washington DC",38.8231381,-77.0178902,"Naval Research Laboratory Post Office, 4555, Overlook Avenue Southwest, Washington, D.C., 20375, USA" +"Nazarbayev University, Astana, Kazakhstan",51.0902854,71.3972526281434,"Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан" +"Neurological Institute, USA",40.84211085,-73.9428460313244,"Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA" +New Jersey Institute of Technology,40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +"New Jersey Institute of Technology, Newark , NJ, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +"New Jersey Institute of Technology, Newark, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +"New Jersey Institute of Technology, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +"New Jersey Institute of Technology, University Heights Newark, NJ 07102 USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +"New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"Newcastle University, Newcastle upon Tyne",54.98023235,-1.61452627035949,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK" +"Normal University, Kunming, China",25.0580509,102.6955241,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国" +"North Acton, London",51.52344665,-0.259735350000002,"North Acton, Victoria Road, Acton, London Borough of Ealing, London, Greater London, England, W3 6UP, UK" +North Carolina Central University,35.97320905,-78.897550537484,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA" +"North Carolina State University, Raleigh, United States of America",35.77184965,-78.6740869545263,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA" +"North China Electric Power University, Baoding, China",38.8760446,115.4973873,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国" +"North Dakota State University, Fargo, ND 58108-6050, USA",46.897155,-96.8182760282419,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA" +Northeastern University,42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, Boston, MA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, Boston, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, Boston, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, Boston, USA, 02115",42.34255795,-71.0905490240477,"Northeastern University, Public Alley 807, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +Northumbria University,55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK" +"Northumbria University, Newcastle Upon Tyne, Tyne and Wear",55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK" +"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK",54.9781026,-1.6067699,"Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK" +"Northumbria University, Newcastle upon Tyne, U.K.",55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK" +Northwestern Polytechnical University,34.2469152,108.910619816771,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国" +"Northwestern Polytechnical University, Xian 710072, Shaanxi, China",34.2469152,108.910619816771,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国" +"Northwestern Polytechnical University, Xi’an, China",34.2469152,108.910619816771,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国" +Northwestern University,42.0551164,-87.6758111348217,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA" +"Northwestern University, Evanston, IL, USA",42.0551164,-87.6758111348217,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA" +Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +"Nottingham Trent University, Nottingham, UK",52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +"Nottingham University Hospital, Nottingham, UK",52.9434967,-1.18631123153121,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK" +OF PRINCETON UNIVERSITY,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +OF STANFORD UNIVERSITY,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Oak Ridge National Laboratory, USA",35.93006535,-84.3124003215133,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA" +Oakland University,42.66663325,-83.2065575175658,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA" +"Ocean University of China, Qingdao, China",36.16161795,120.493552763931,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国" +Okayama University,34.6893393,133.9222272,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本" +"Okayama University, Okayama, Japan",34.6893393,133.9222272,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本" +"Oklahoma State University, Stillwater, OK, USA",36.1244756,-97.050043825,"Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA" +"Old Dominion University, Norfolk, VA 23529, USA",36.885682,-76.3076857937011,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA" +"Old Dominion University, Norfolk, VA, 23529",36.885682,-76.3076857937011,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA" +Open University of Israel,32.77824165,34.9956567288188,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל" +"Orange Labs, R&D, Meylan, France",45.21011775,5.79551075456301,"Orange Labs, 28, Chemin du Vieux Chêne, Inovallée Meylan, Le Mas du Bruchet, Meylan, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38240, France" +Oregon State University,45.5198289,-122.677979643331,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA" +"Osaka university, Japan",34.80809035,135.45785218408,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本" +Otto von Guericke University,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +Oxford University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK" +"Oxford University, UK",51.7488051,-1.23874457456279,"James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK" +"PA, 15213, USA",44.289627,-70.042577,"Pa, North Monmouth, Kennebec County, Maine, 04265, USA" +"POSTECH, Pohang, South Korea, 37673",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국" +"PSG College of Technology, Coimbatore, Tamil Nadu, India",11.0246833,77.0028424564731,"PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +Peking University,39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +"Peking University, Beijing",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +"Peking University, Beijing 100871, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +"Peking University, Beijing, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +Pennsylvania,40.9699889,-77.7278831,"Pennsylvania, USA" +"Perth, Western Australia 6012",-31.9527121,115.8604796,"Perth, Western Australia, 6000, Australia" +"Philipps-Universität Marburg, D-35032, Germany",50.8142701,8.771435,"FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland" +"Pittsburgh Univ., PA, USA",40.4462779,-79.9637743112056,"WQEX-TV (Pittsburgh);WQED-TV (Pittsburgh);WQED-FM (Pittsburgh);WINP-TV (Pittsburgh);WEPA-CD (Pittsburgh), 3801, University Drive, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA" +Plymouth University,50.3755269,-4.13937687442817,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +Pohang University of Science and Technology,36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국" +"Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국" +"Pohang University of Science and Technology (POSTECH), South Korea",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국" +"Pohang University of Science and Technology, Pohang, Korea",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국" +"Politecnico di Torino, Italy",45.0636974,7.65752730185847,"Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia" +"Politecnico di Torino, Torino, Italy",45.0636974,7.65752730185847,"Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia" +Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +Pondicherry Engineering College,12.0148693,79.8480910431981,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India" +Pontificia Universidad Catolica de Chile,-33.41916095,-70.6178224038096,"Pontificia Universidad Católica de Chile - Campus Lo Contador, 1916, El Comendador, Pedro de Valdivia Norte, Providencia, Provincia de Santiago, Región Metropolitana de Santiago, 7500000, Chile" +Portland State University,45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA" +"Portland State University, USA",45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA" +Portugal,40.033265,-7.8896263,Portugal +Poznan University of Technology,52.4004837,16.9515808278647,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP" +Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Princeton University, Princeton, NJ, USA",40.34725815,-74.6513455119257,"Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA" +"Princeton University, Princeton, New Jersey, USA",40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Pune Institute of Computer Technology, Pune, ( India",18.4575638,73.8507352,"Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +Purdue University,40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, IN 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, IN, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, IN. 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, Indiana, 47906, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Qatar University, Doha, Qatar",25.37461295,51.4898035392337,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎" +"Qatar University, Qatar",25.37461295,51.4898035392337,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎" +"Quanzhou Normal University, Quanzhou, China",24.87147415,118.667386868962,"泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国" +Queen Mary University,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +Queen Mary University of London,51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Queen Mary University of London, London",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Queen Mary University of London, London E1 4NS, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Queen Mary University of London, London, U.K.",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Queensland University of Technology (QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Queensland University of Technology, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Queensland University of Technology, Brisbane, QLD, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"R V College of Engineering, Bangalore, India",12.9231039,77.5006395299617,"R. V. College of Engineering, Bangalore-Mysore Road, Kengeri, Rajarajeshwari Nagar Zone, Bengaluru, Bangalore Urban, Karnataka, 560059, India" +"RMIT University, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"RMIT University, Melbourne, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"RMIT University, Melbourne, VIC, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"RMIT University, Vietnam",10.72991265,106.693208239997,"RMIT University Vietnam - Saigon South Campus, 702, Nguyễn Văn Linh, Khu 3 - Khu Đại học, Phường Tân Phong, Quận 7, Tp HCM, 756604, Việt Nam" +RWTH Aachen University,50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland" +"RWTH Aachen University, Aachen, Germany",50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland" +Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India" +"Rajasthan, India",26.8105777,73.7684549,"Rajasthan, India" +Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Rensselaer Polytechnic Institute, Troy, NY 12180, USA",42.73280325,-73.6622354488153,"Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +Research Center,24.7261991,46.6365468966391,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +"RheinAhrCampus der Hochschule Koblenz, Remagen, Germany",50.5722562,7.25318610053143,"RheinAhrCampus, 2, Joseph-Rovan-Allee, Remagen, Landkreis Ahrweiler, Rheinland-Pfalz, 53424, Deutschland" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"Rice University, Houston, TX, 77005, USA",29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"Rio de Janeiro State University, Brazil",-22.91117105,-43.2357797110467,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil" +"Ritsumeikan University, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本" +"Ritsumeikan University, Kyoto, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本" +"Ritsumeikan, University",49.26007165,-123.253442836235,"Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +Rochester Institute of Technology,43.08250655,-77.6712166264273,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA" +Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA" +"Rowan University, Glassboro, NJ- 08028",39.7082432,-75.1170342529732,"Wellness Center (Winans Hall), Mullica Hill Road, Beau Rivage, Glassboro, Gloucester County, New Jersey, 08028:08062, USA" +Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA" +Ruhr University Bochum,51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +Rutgers University,40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +"Rutgers University, New Brunswick, NJ",40.50007595,-74.4457915242934,"Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA" +"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA" +"Rutgers University, Piscataway",40.52251655,-74.4373851411688,"James Dickson Carr Library, 75, Avenue E, Piscataway Township, Middlesex County, New Jersey, 08854-8040, USA" +"Rutgers University, Piscataway NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, Piscataway, NJ",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, Piscataway, NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, Piscataway, NJ, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, Piscataway, New Jersey 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, USA",40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +"Ryerson University, Canada",43.65815275,-79.3790801045263,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada" +"Ryerson University, Toronto, ON, Canada",43.65815275,-79.3790801045263,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada" +"SASTRA University, Thanjavur, Tamil Nadu, India",10.9628655,79.3853065130097,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India" +SIMON FRASER UNIVERSITY,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +"SRI International, Menlo Park, USA",37.4585796,-122.17560525105,"SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA" +SUNY Buffalo,42.9336278,-78.8839447903448,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA" +Sabanci University,40.8927159,29.3786332263582,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye" +Sakarya University,40.76433515,30.3940787517111,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye" +"San Jose State University, San Jose, CA",37.3351908,-121.881260081527,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +Santa Fe Institute,35.7002878,-105.908648471331,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA" +"School, The University of Sydney, Sydney, NSW, Australia",-33.8893229,151.180068,"Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia" +"Science, University of Amsterdam",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"Selçuk University, Konya, Turkey",38.02420685,32.5057052418378,"Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye" +Semarang State University,-7.00349485,110.417749486905,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia" +"Semnan University, Semnan, Iran",35.6037444,53.434458770112,"دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ‏ایران‎" +Seoul Nat'l Univ.,37.481223,126.9527151,"서울대입구, 지하 1822, 남부순환로, 중앙동, 봉천동, 관악구, 서울특별시, 08787, 대한민국" +Seoul National University,37.26728,126.9841151,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국" +"Seoul National University, Korea",37.26728,126.9841151,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국" +"Seoul National University, Seoul, Korea",37.46685,126.94892,"서울대학교, 1, 관악로, 서림동, 신림동, 관악구, 서울특별시, 08825, 대한민국" +Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎" +Shandong University of Science and Technology,36.00146435,120.116240565627,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国" +"Shandong University, Shandong, China",36.3693473,120.673818,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国" +"Shanghai Institute of Technology, Shanghai, China",31.1678395,121.417382632476,"上海应用技术大学, 康健路, 长桥, 徐汇区, 上海市, 200233, 中国" +Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Shanghai Jiao Tong University, People's Republic of China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +"Shanghai Jiao Tong University, Shanghai, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +Shanghai University,31.32235655,121.384009410929,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国" +"Shanghai University, Shanghai, China",31.32235655,121.384009410929,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国" +Shanghai university,31.32235655,121.384009410929,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"Sharif University of Technology, Tehran. Iran",35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +Shenzhen Institutes of Advanced Technology,22.59805605,113.985337841399,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国" +"Shenzhen University, Shenzhen China",22.53521465,113.931591101679,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国" +"Shenzhen University, Shenzhen, China",22.53521465,113.931591101679,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国" +"Shibaura Institute of Technology, Tokyo, Japan",35.66053325,139.795031213151,"芝浦工業大学 豊洲キャンパス, 晴海通り, 豊洲2, 豊洲, 富岡一丁目, 江東区, 東京都, 関東地方, 135-6001, 日本" +Shiraz University,29.6385474,52.5245706,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎" +"Sichuan Univ., Chengdu",30.642769,104.067511751425,"四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国" +Simon Fraser University,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +Singapore,1.3408528,103.878446863736,"Singapore, Southeast, Singapore" +"Singapore Management University, Singapore",1.29500195,103.849092139632,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore" +"Singapore University of Technology and Design, Singapore",1.340216,103.965089,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore" +Sinhgad College of,19.0993293,74.7691424,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India" +"Soochow University, Suzhou, China",31.3070951,120.635739868117,"苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国" +"South China Normal University, Guangzhou, China",23.143197,113.34009651145,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国" +South China University of China,23.0490047,113.3971571,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +South China University of Technology,23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +"South China University of Technology, China",23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +"South China University of Technology, Guangzhou, China",23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +"South China University of Technology, Guangzhou, Guangdong, China",23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +South College Road,39.2715228,-76.6936807,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA" +"South East European University, Tetovo, Macedonia",41.98676415,20.9625451620439,"Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија" +"Southeast University, Nanjing, China",32.0575279,118.786822520439,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国" +Southwest Jiaotong University,30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Southwest University, Chongqing 400715, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Southwest University, Chongqing, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +Stanford University,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, CA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, CA, United States",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, Stanford, California",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"State University of New York Polytechnic Institute, Utica, New York",43.13800205,-75.2294359077068,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA" +State University of New York at Binghamton,42.08779975,-75.9706606561486,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA" +"State University of New York at Binghamton, USA",42.08779975,-75.9706606561486,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA" +State University of New York at Buffalo,42.95485245,-78.8178238693065,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA" +"Statistics, University of",32.0731522,72.6814703364947,"Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, ‏پاکستان‎" +Stevens Institute of Technology,40.742252,-74.0270949,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA" +"Stevens Institute of Technology, Hoboken, New Jersey, 07030",40.7451724,-74.027314,"Stevens Institute of Technology, Hudson Street, Hoboken, Hudson County, New Jersey, 07030, USA" +Stony Brook University,40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +Stony Brook University Hospital,40.90826665,-73.1152089127966,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, NY, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, Stony Brook NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, Stony Brook, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, Stony Brook, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Sun Yat-Sen University, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Sun Yat-Sen University, GuangZhou, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Sun Yat-Sen University, Guangzhou, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Sun Yat-Sen University, Guangzhou, P.R. China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +Sun Yat-sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Sun Yat-sen University, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Sun Yat-sen University, Guangzhou, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +SungKyunKwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +Sungkyunkwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +"Sungkyunkwan University, Suwon, Republic of Korea",37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +Swansea University,51.6091578,-3.97934429228629,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK" +"Swansea University, Swansea, UK",51.6091578,-3.97934429228629,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK" +Swiss Federal Institute of Technology,47.3764534,8.54770931489751,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra" +THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +THE UNIVERSITY OF CHICAGO,41.78468745,-87.6007493265106,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA" +"TU Darmstadt, D-64283, Germany",49.8754648,8.6594332,"Institut für Psychologie, 10, Alexanderstraße, Darmstadt-Mitte, Darmstadt, Regierungsbezirk Darmstadt, Hessen, 64283, Deutschland" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"Tafresh University, Tafresh, Iran",34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"Tamkang University, Taipei, Taiwan",25.17500615,121.450767514156,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣" +Tampere University of Technology,61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Tampere University of Technology, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Tampere University of Technology, Tampere 33720, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"Technicolor, France",48.831533,2.28066282926829,"Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France" +"Technicolor, Paris, France",48.831533,2.28066282926829,"Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France" +Technion,32.774576,35.0236399,"טכניון, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל" +Technion Israel Institute of Technology,32.7767536,35.0241452903301,"הטכניון - מכון טכנולוגי לישראל, דוד רוז, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל" +"Technological University, Davanagere, Karnataka, India",14.4525199,75.9179512,"UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India" +"Teesside University, Middlesbrough, UK",54.5703695,-1.23509661862823,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK" +"Teesside University, UK",54.5703695,-1.23509661862823,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK" +Tel Aviv University,32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +"Tel-Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Temple University,39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA" +"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +"Temple University, Philadelphia, PA, 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +"Temple University, Philadelphia, PA, USA",39.981188,-75.1562826952332,"Temple University, Beasley's Walk, Stanton, Philadelphia, Philadelphia County, Pennsylvania, 19132:19133, USA" +"Temple University, Philadelphia, USA",39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA" +"Texas A&M University, College Station, TX, USA",30.6108365,-96.3521280026443,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA" +Thapar University,30.35566105,76.3658164148513,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India" +The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"The American University in Cairo, Egypt",30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +The Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"The Australian National University, Canberra, ACT, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"The Australian National University, Canberra, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +The Chinese University of Hong Kong,22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"The Chinese University of Hong Kong, China",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"The Chinese University of Hong Kong, Hong Kong",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"The Chinese University of Hong Kong, Hong Kong, China",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"The Chinese University of Hong Kong, New Territories, Hong Kong",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +The City College and the Graduate Center,37.76799565,-122.400099572569,"Graduate Center, 184, Hooper Street, Mission Bay, SF, California, 94158, USA" +"The City College of New York, New York, NY 10031, USA",40.81819805,-73.9510089793336,"CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA" +The City University of New York,40.8722825,-73.8948917141949,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA" +The Education University of Hong Kong,22.46935655,114.19474193618,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国" +The Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +"The Hebrew University of Jerusalem, Israel",31.7918555,35.244723,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל" +The Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"The Hong Kong Polytechnic University, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"The Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"The Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"The Hong Kong Polytechnic University, Kowloon, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +The Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"The Hong Kong University of Science and Technology, Hong Kong",22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India" +"The Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +The Ohio State University,40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +"The Ohio State University, Columbus, OH, USA",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +"The Ohio State University, OH",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +The Open University of Israel,32.77824165,34.9956567288188,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל" +The Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +The State University of New Jersey,40.51865195,-74.4409980124119,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"The State University of New York at Buffalo, New York, USA",42.95485245,-78.8178238693065,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA" +"The Univ of Hong Kong, China",22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国" +"The University of Adelaide, Adelaide, SA, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"The University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +The University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +The University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"The University of Edinburgh, Edinburgh, U.K.",55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"The University of Electro-Communications, JAPAN",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"The University of Electro-Communications, Japan",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"The University of Electro-Communications, Tokyo",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +The University of Hong Kong,22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国" +The University of Manchester,53.46600455,-2.23300880782987,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK" +The University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"The University of New South Wales, Australia",-33.91758275,151.231240246527,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia" +The University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +"The University of Newcastle, Callaghan 2308, Australia",-32.8930923,151.705656,"University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia" +The University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +"The University of North Carolina at Charlotte, USA",35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +"The University of North Carolina, Chapel Hill",35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA" +The University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"The University of Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +The University of Queensland,-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +"The University of Queensland, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +"The University of Queensland, Brisbane, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +"The University of Queensland, QLD 4072, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +"The University of Sheffield, Sheffield, U.K.",53.3815248,-1.480681425,"University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK" +The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"The University of Sydney, NSW 2006, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"The University of Sydney, Sydney, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"The University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +The University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +The University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +The University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +"The University of Texas at Austin Austin, Texas, USA",30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +"The University of Texas at Dallas, Richardson, TX",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA" +"The University of Texas at San Antonio, San Antonio, TX, USA",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA" +"The University of Tokushima, Japan",34.0788068,134.558981,"大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +The University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia" +"The University of Western Australia, Crawley, WA, Australia",-31.98027975,115.818084637301,"University of Western Australia (Crawley Campus), 35, Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia" +The University of York,53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"The University of York, Heslington, York YO10 5DD, United Kingdom",53.94830175,-1.05154975017361,"Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK" +"The University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"The University of York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +The University of the Humanities,47.9218937,106.919552402206,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс" +The Weizmann Institute of,31.904187,34.807378,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל" +The Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל" +"Tianjin University, 300072, China",36.20304395,117.058421125807,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国" +"Tianjin University, China",38.99224515,117.306075265115,"Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国" +"Tianjin University, Tianjin, China",38.99224515,117.306075265115,"Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国" +"Tohoku University, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本" +"Tohoku University, Sendai, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本" +Tokyo Denki University,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +Tokyo Institute of Technology,35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +"Tokyo Institute of Technology, Japan",35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +"Tokyo Institute of Technology, Kanagawa, Japan",35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +Tokyo Metropolitan University,35.6200925,139.38296706394,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本" +Tomsk Polytechnic University,56.46255985,84.955654946724,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ" +Tongji University,31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +"Tongji University, Shanghai 201804, China",31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +"Tongji University, Shanghai, China",31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +Toyota Research Institute,37.40253645,-122.116551067984,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA" +"Toyota Technological Institute (Chicago, US",41.7847112,-87.5926056707507,"Toyota Technological Institute, 6045, South Kenwood Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA" +Tsinghua University,40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, P.R. China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing, 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing, P. R. China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing,China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"UC Merced, USA",37.302827,-120.484819845561,"UC Merced Venture Lab, 1735, M Street, Merced, Merced County, California, 95340, USA" +UIUC,40.04650815,-88.2619752357129,"UIUC Golf Course, Hartwell Drive, Savoy, Champaign County, Illinois, 61874, USA" +"UNCW, USA",34.16271505,-78.1162477961939,"Uncw- Ecological Botanical Gardens, Henrytown, Brunswick County, North Carolina, USA" +UNIVERSITY IN PRAGUE,50.0714761,14.4542642,"Business Institut EDU, Kodaňská, Vršovice, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 10100, Česko" +UNIVERSITY OF CALIFORNIA,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"UNIVERSITY OF CALIFORNIA, BERKELEY",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"UNIVERSITY OF CALIFORNIA, SAN DIEGO",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +UNIVERSITY OF TARTU,58.38131405,26.7207808104523,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti" +UNIVERSITY OF WISCONSIN MADISON,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland" +Universidad Autonoma de Madrid,40.48256135,-3.69060789542556,"Facultad de Medicina de la Universidad Autónoma de Madrid, Calle de Arturo Duperier, Fuencarral, Fuencarral-El Pardo, Madrid, Área metropolitana de Madrid y Corredor del Henares, Comunidad de Madrid, 28001, España" +"Universidad Tecnica Federico Santa Maria, Valparaiso, Chile",-33.0362526,-71.595382,"Universidad Técnica Federico Santa María, Condominio Esmeralda, Valparaíso, Provincia de Valparaíso, V Región de Valparaíso, 2390382, Chile" +"Universitat Oberta de Catalunya, Barcelona, Spain",41.40657415,2.1945341,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España" +"Universitat Pompeu Fabra, Barcelona, Spain",41.39044285,2.18891949251166,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España" +"Universitat de València, Valencia, Spain",39.47787665,-0.342577110177694,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España" +"Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia",4.3830464,100.970015404936,"UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia" +University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University (ITU,55.65965525,12.5910768893446,"IT-Universitetet i København, Emil Holms Kanal, Christianshavn, København, Københavns Kommune, Region Hovedstaden, 1424, Danmark" +"University City Blvd., Charlotte, NC",35.312224,-80.7084736,"University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +University College London,51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"University College London, London WC1N 3BG, United Kingdom",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"University College London, London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"University College London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +University Drive,-21.1753214,149.1432747,"University Drive, Ooralea, Mackay, QLD, 4740, Australia" +"University Drive, Fairfax, VA 22030-4444, USA",38.835411,-77.316447,"University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA" +University Institute of Engineering and Technology,26.9302879,80.9278433,"Maharishi University Of Information Technology, NH230, Jankipuram, Lucknow, Uttar Pradesh, 226021, India" +"University Library, Singapore",1.30604775,103.7728987705,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore" +University Of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"University POLITEHNICA Timisoara, Timisoara, 300223, Romania",45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"University Politehnica of Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University of,29.3758342,71.7528712910287,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, ‏پاکستان‎" +University of Aberdeen,57.1646143,-2.10186013407315,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK" +University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK" +University of Adelaide,-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University of Adelaide, SA, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University of Agder, Kristiansand, Norway",58.16308805,8.00144965545071,"UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge" +"University of Aizu, Japan",37.5236728,139.938072464124,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本" +"University of Akron, Akron",41.0789035,-81.5197127229943,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA" +"University of Alberta, Edmonton, Canada",53.5238572,-113.522826652346,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada" +University of Amsterdam,52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, the Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +University of Arizona,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA" +University of Barcelona,41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"University of Basel, Switzerland",47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +University of Bath,51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"University of Bath, Bath, Somerset, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"University of Bath, Bath, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +University of Birmingham,52.45044325,-1.93196134052244,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK" +University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +University of Brescia,37.7689374,-87.1113859,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA" +University of Bridgeport,41.1664858,-73.1920564,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA" +University of Bristol,51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK" +"University of Bristol, Bristol, BS8 1UB, UK",51.4562363,-2.602779,"University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK" +"University of Bristol, Bristol, UK",51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK" +University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"University of British Columbia, Canada",49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"University of British Columbia, Vancouver, Canada",49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +University of Buffalo,40.7021766,-99.0985061173294,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA" +University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +"University of Calgary, Calgary, Alberta, Canada",51.0784038,-114.1287077,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada" +University of California,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +University of California Davis,38.5336349,-121.790772639747,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA" +University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California San Diego, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California San Diego, United States of America",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"University of California, Berkeley, Berkeley CA 94720, USA",37.8756681,-122.257979979865,"Goldman School of Public Policy, Hearst Avenue, Northside, Berkeley, Alameda County, California, 94720, USA" +"University of California, Irvine",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +"University of California, Merced",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +"University of California, Merced, CA 95344, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +"University of California, Merced, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +"University of California, Riverside",33.98071305,-117.332610354677,"University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA" +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +"University of California, Riverside, California 92521, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +"University of California, Riverside, Riverside CA, California 92521 United States",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, San Diego, CA, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, San Diego, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, Santa Barbara",34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"University of Cambridge, United Kingdom",52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +University of Campinas,-27.5953995,-48.6154218,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil" +University of Campinas (Unicamp,-22.8224781,-47.0642599309425,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"University of Canterbury, New Zealand",-43.5240528,172.580306253669,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa" +University of Cape Town,-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +"University of Cape Town, South Africa",-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Central Florida, Orlando",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"University of Central Florida, Orlando, 32816, United States of America",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"University of Central Florida, Orlando, FL, USA",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"University of Central Florida, Orlando, USA",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Central Punjab, Pakistan",31.4466149,74.2679762,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎" +University of Chinese Academy of Sciences,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +University of Chinese Academy of Sciences (UCAS,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal" +University of Colorado Colorado Springs,38.8920756,-104.797163894584,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA" +"University of Colorado Denver, Denver, CO, USA",39.74287785,-105.005963984841,"University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA" +"University of Colorado, Boulder",40.01407945,-105.266959437621,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA" +University of Connecticut,41.8093779,-72.2536414,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA" +University of Copenhagen,55.6801502,12.5723270014063,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark" +"University of Crete, Crete, 73100, Greece",35.3713024,24.4754408,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα" +"University of Dammam, Saudi Arabia",26.39793625,50.1980792430511,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +"University of Dayton, Dayton, OH, USA",39.738444,-84.1791874663107,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA" +"University of Dayton, Ohio, USA",39.738444,-84.1791874663107,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA" +"University of Delaware, Newark, 19716, USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA" +"University of Delaware, Newark, DE, USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA" +"University of Delaware, Newark, DE. USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA" +"University of Denver, Denver, CO",39.6766541,-104.962203,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA" +University of Dhaka,23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +"University of Dhaka, Bangladesh",23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +"University of Dschang, Cameroon",5.4409448,10.0712056113589,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun" +University of Dundee,56.45796755,-2.98214831353755,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK" +"University of East Anglia, Norwich, U.K.",52.6221571,1.2409136,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK" +University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +"University of Edinburgh, Edinburgh, UK",55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +University of Engineering and Technology,31.6914689,74.2465617,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, ‏پاکستان‎" +University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +"University of Exeter, UK",50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +University of Florida,29.6328784,-82.3490133048243,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA" +"University of Florida, Gainesville, FL",29.6328784,-82.3490133048243,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA" +"University of Florida, Gainesville, FL, 32611, USA",29.6447739,-82.3575193392276,"University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA" +University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland" +University of Geneva,42.57054745,-88.5557862661765,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA" +University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK" +University of Groningen,53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"University of Groningen, Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"University of Gujrat, Pakistan",32.63744845,74.1617455759799,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎" +"University of Haifa, Haifa, Israel",32.76162915,35.0198630428453,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל" +"University of Hawaii, Manoa, Honolulu, HI, 96822",21.2982795,-157.818692295846,"University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA" +"University of Hong Kong, China",22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国" +University of Houston,29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +"University of Houston, Houston, TX 77204, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +"University of Houston, Houston, TX, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +University of Iceland,64.137274,-21.9456145356869,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland" +University of Illinois,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois Urbana Champaign,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +"University of Illinois at Chicago, Chicago, IL",41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +University of Illinois at Urbana,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at Urbana Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana Champaign, Urbana",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA",40.1066501,-88.2240260725426,"University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, Urbana, IL",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, Urbana, IL, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana—Champaign, Champaign, IL, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois, Urbana-Champaign",40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Information,34.17980475,-117.325843648456,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA" +"University of Ioannina, 45110, Greece",39.6162306,20.8396301098796,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα" +"University of Ioannina, Ioannina, Greece",39.6162306,20.8396301098796,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα" +University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA" +"University of Karlsruhe, Germany",49.00664235,8.39405151637065,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland" +"University of Kent, Canterbury, U.K.",51.2975344,1.0729616473445,"University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"University of Kentucky, USA",38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +University of Leeds,53.80387185,-1.55245712031677,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK" +"University of Lincoln, U. K.",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +"University of Lincoln, U.K",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +"University of Lincoln, UK",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +University of Liverpool,53.406179,-2.96670818619252,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK" +"University of Liverpool, Liverpool, U.K.",53.406179,-2.96670818619252,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK" +University of Ljubljana,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija" +University of Ljubljana Faculty,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija" +"University of Ljubljana, Ljubljana, Slovenia",46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija" +University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK" +"University of Louisville, Louisville, KY 40292 USA",38.2167565,-85.7572502291168,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA" +"University of Macau, Taipa, Macau",22.1240187,113.545109009671,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国" +"University of Malaya, 50603 Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia" +"University of Malaya, Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia" +University of Malta,35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta" +"University of Malta, Msida, Malta",35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta" +"University of Manchester, Manchester, U.K.",53.46600455,-2.23300880782987,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +University of Maryland College Park,38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA" +"University of Maryland, College Park, MD, USA",39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"University of Maryland-College Park, USA",38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Massachusetts - Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Massachusetts Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Massachusetts Amherst, Amherst MA, 01003",42.3919154,-72.5270705589714,"Murray D. Lincoln Campus Center, 1, Campus Center Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Massachusetts Dartmouth, Dartmouth, MA, USA",41.62772475,-71.0072450098225,"University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA" +"University of Massachusetts, Amherst",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Massachusetts, Amherst, MA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Memphis,35.1189387,-89.9372195996589,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"University of Miami, Coral Gables, FL",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"University of Miami, USA",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +University of Michigan,42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor, MI 48109 USA",42.2808797,-83.7357152493893,"Power Center for the Performing Arts, 121, Fletcher Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor, MI, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann, Arbor, MI USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +University of Milan,38.6796662,-90.3262816,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA" +University of Minnesota,44.97308605,-93.2370881262941,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA" +"University of Missouri, Columbia, MO",38.926761,-92.2919378337447,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA" +University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA" +"University of Nevada, Reno, Reno, NV, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA" +"University of Nevada, Reno, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA" +"University of New South Wales, Sydney, NSW, Australia",-33.91758275,151.231240246527,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +"University of Newcastle, Newcastle, Australia",-32.9276256,151.77133087091,"University of Newcastle, Christie Street, Newcastle, Newcastle-Maitland, Newcastle, NSW, 2300, Australia" +University of North Carolina,35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA" +University of North Carolina Wilmington,34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA" +"University of North Carolina Wilmington, USA",34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA" +"University of North Carolina Wilmington, Wilmington, NC, USA",34.2377352,-77.92673494788,"Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA" +"University of North Carolina Wilmington, Wilmington, United States",34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA" +University of North Carolina at Chapel Hill,35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of North Carolina at Chapel Hill, Chapel Hill, NC, USA",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of North Carolina at Chapel Hill, NC, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of North Carolina at Chapel Hill, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +"University of North Carolina at Wilmington, USA",34.2249827,-77.8690774374448,"University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA" +University of North Texas,33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA" +"University of North Texas, Denton, Texas, USA",33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA" +University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"University of Northern British Columbia, Canada",53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"University of Northern British Columbia, Prince George, Canada",53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"University of Notre Dame, Notre Dame, IN, USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"University of Notre Dame, USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"University of Notre Dame. Notre Dame, IN 46556.USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +University of Oradea,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +"University of Oslo, Oslo, Norway",59.93891665,10.7217076488427,"UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge" +University of Ottawa,45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"University of Ottawa, Ottawa, On, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +University of Oulu,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +"University of Oulu, Finland",65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +University of Oxford,51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Oxford, Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Oxford, UK",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Patras, Greece",38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +University of Pennsylvania,39.9492344,-75.191989851901,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA" +"University of Pennsylvania, Philadelphia, PA",39.95455675,-75.2029503620423,"40th Street Parking Lot, Walnut Street, Southwest Schuylkill, Philadelphia, Philadelphia County, Pennsylvania, 19104-1469, USA" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"University of Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +"University of Peshawar, Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +University of Piraeus,37.94173275,23.6530326182197,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα" +"University of Pisa, Pisa, Italy",43.7201299,10.4078976,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia" +University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Pittsburgh, PA 15213, USA",40.4444651,-79.9532347,"Nationality Rooms, 4200, Omicron Delta Kappa Walk, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA" +"University of Pittsburgh, PA, 15260, USA",40.4437547,-79.9529557,"Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA" +"University of Pittsburgh, PA, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Pittsburgh, Pittsburgh",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Pittsburgh, Pittsburgh PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Pittsburgh, Pittsburgh, PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Pittsburgh, Pittsburgh, PA , USA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Pittsburgh, Pittsburgh, PA 15260, USA",40.4437547,-79.9529557,"Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA" +"University of Pittsburgh, Pittsburgh, PA, USA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +"University of Portsmouth, United Kingdom",50.79805775,-1.09834911234691,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK" +University of Posts and Telecommunications,32.11527165,118.925956600436,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国" +"University of Queensland, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +"University of Queensland, St Lucia, QLD, Australia",-27.497151,153.0117305,"Anthropology Museum, Chancellors Place, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +University of Rochester,43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +"University of Rochester, NY 14627, USA",43.1242954,-77.6288352530005,"Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA" +"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +"University of Salzburg, Austria",47.79475945,13.0541752486067,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich" +University of Science and,5.35755715,100.303850375,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia" +University of Science and Technology of China,31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei, Anhui, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei, Anhui, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"University of South Carolina, Columbia, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +"University of South Florida, Tampa, Florida 33620",28.0599999,-82.4138361902512,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA" +University of Southampton,50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +"University of Southampton, SO17 1BJ, UK",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +"University of Southampton, Southampton, U.K.",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +"University of Southampton, United Kingdom",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +"University of Southern California, Los Angeles, CA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +"University of Southern California, Los Angeles, CA 90089, USA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +"University of Southern California, Los Angeles, USA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +"University of St Andrews, United Kingdom",56.3411984,-2.7930938,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK" +University of Stuttgart,48.9095338,9.1831892,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland" +University of Surrey,51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"University of Surrey, Guildford, Surrey GU2 7XH, UK",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"University of Surrey, Guildford, Surrey, GU2 7XH, UK",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"University of Surrey, United Kingdom",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"University of Sydney, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"University of Sydney, Sydney, NSW, Australia",-33.88578245,151.182068591379,"Sand Roll House, Parramatta Road, Camperdown, Sydney, NSW, 2050, Australia" +"University of Tabriz, Tabriz, Iran",38.0612553,46.3298484,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎" +University of Tampere,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +University of Technology Sydney,-33.8809651,151.201072985483,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology Sydney, New South Wales, Australia",-33.8809651,151.201072985483,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology Sydney, Sydney, NSW, Australia",-33.8830909,151.20217235558,"University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology Sydney, Ultimo, NSW, Australia",-33.8830909,151.20217235558,"University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology, Baghdad, Iraq",33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +"University of Technology, Sydney",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology, Sydney, NSW, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology, Sydney, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +University of Texas at Arlington,32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, Arlington, TX",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, Arlington, Texas 76019, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +"University of Texas at Dallas, Richardson, 75080, USA",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA" +University of Texas at San Antonio,29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA" +"University of Texas at San Antonio, 78249, USA",29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA" +"University of Texas at San Antonio, San Antonio, TX",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA" +"University of Texas at San Antonio, San Antonio, TX, USA",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA" +"University of Texas at San Antonio, San Antonio, Texas",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA" +"University of Texas at San Antonio, San Antonio, United States",29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA" +"University of Texas, Austin, TX 78712-1188, USA",30.284458,-97.7342106,"University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA" +"University of Texas, San Antonio, TX, USA",30.284458,-97.7342106,"University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +University of Toronto,43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada" +"University of Toronto Toronto, Canada",43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada" +"University of Toronto, Toronto, ON, Canada",43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada" +University of Toulouse,30.1781816,-93.2360581,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA" +University of Trento,46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +"University of Trento, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +"University of Trento, Trento, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +"University of Trento, Trento, TN, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +University of Tsukuba,36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +"University of Tsukuba, Japan",36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +University of Twente,52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"University of Twente, Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"University of Twente, The Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +University of Venezia,45.4312742,12.3265377,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia" +"University of Vermont, 33 Colchester Avenue, Burlington",44.48116865,-73.2002178989123,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA" +"University of Vienna, Austria",48.2131302,16.3606865338016,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich" +University of Virginia,38.0353682,-78.5035322,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA" +"University of Virginia, Charlottesville, VA",38.0410576,-78.5054996018357,"University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA" +University of Warwick,52.3793131,-1.5604252,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK" +"University of Warwick, Coventry, U.K.",52.3793131,-1.5604252,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"University of Washington, Seattle, WA 98195, United States",47.6547795,-122.305818,"University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"University of Washington, Seattle, WA, USA",47.65249975,-122.2998748,"University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA" +University of Waterloo,43.47061295,-80.5472473165632,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada" +University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia" +"University of Windsor, Canada",42.30791465,-83.0717691461703,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada" +"University of Windsor, Canada N9B 3P4",42.30791465,-83.0717691461703,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada" +"University of Windsor, Ontario, Canada",42.30791465,-83.0717691461703,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +University of Wisconsin - Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +University of Wisconsin-Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"University of Wisconsin-Madison, Madison, WI, USA",43.0705257,-89.4059387,"UW Geology Museum, 1215, West Dayton Street, South Campus, Madison, Dane County, Wisconsin, 53715, USA" +University of Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +"University of Wollongong, Wollongong, Australia",-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +"University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"University of York, York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"University of York, York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"University of Zurich, Zurich, Switzerland",47.4968476,8.72981767380829,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra" +"University of telecommunications and post, Sofia, Bulgaria",42.6560524,23.3476108351659,"Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия" +"University of the Basque Country, San Sebastian, Spain",43.30927695,-2.01066784661227,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España" +University of the Western Cape,-33.9327762,18.6291540714825,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa" +University of the Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +"University of the Witwatersrand, Johannesburg, South Africa",-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +"University, China",22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"University, Guangzhou, China",23.1314851,113.2852239,"中山大学第一课室, 74号大院, 中山二路, 马棚岗, 农林街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国" +"University, Hong Kong",54.0856448,13.389089,"Hong-Kong, Feldstraße, Greifswald, Südliche Mühlenvorstadt, Greifswald, Vorpommern-Greifswald, Mecklenburg-Vorpommern, 17489, Deutschland" +"University, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"University, USA",25.7147949,-80.276947,"University, South Dixie Highway, Coral Gables, Miami-Dade County, Florida, 33124-6310, USA" +"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国" +"Università degli Studi di Milano, Italy",45.47567215,9.23336232066359,"Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia" +Università di Salerno Italy,40.7646949,14.7889151,"Università, Autostrada del Mediterraneo, Fisciano, SA, CAM, 84084, Italia" +Université du Québec à Chicoutimi (UQAC),48.4200469,-71.0525344,"Université du Québec à Chicoutimi (UQAC), Chicoutimi, Ville de Saguenay, Saguenay - Lac-Saint-Jean, Québec, G7H 2B1, Canada" +Ural Federal University (UrFU,56.8435083,60.6454805,"УрФУ, улица Гагарина, Эврика, Втузгородок, Кировский район, Екатеринбург, городской округ Екатеринбург, Свердловская область, Уральский федеральный округ, 620062, РФ" +"Urmia University, Urmia, Iran",37.52914535,45.0488607694682,"دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ‏ایران‎" +"Ursinus College, Collegeville, PA",40.1917705,-75.4568484,"Ursinus College, East Main Street, Collegeville, Montgomery County, Pennsylvania, 19426, USA" +"Utah State University, Logan UT",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA" +"Utah State University, Logan, UT 84322-4205, USA",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA" +"Varendra University, Rajshahi, Bangladesh",24.3643231,88.6333105,"department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ" +Victoria University of Wellington,-41.29052775,174.768469187426,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa" +Vienna University of Technology,48.19853965,16.3698616762866,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich" +"Vignan University, Andhra Pradesh, India",16.2329008,80.5475018,"Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India" +Villanova University,40.0367774,-75.342023320028,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA" +"Virginia Commonwealth University, Richmond, VA, USA",37.548215,-77.4530642444471,"Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA" +Virginia Polytechnic Institute and State University,37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +"Virginia Polytechnic Institute and State University, Blacksburg",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +"Virginia Polytechnic Institute and State University, Blacksburg, Virginia",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +Virginia Tech Carilion Research Institute,37.2579548,-79.9423329131356,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA" +"Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany",53.599482,9.93353435970931,"Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland" +Vrije Universiteit Brussel,50.8411007,4.32377555279953,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien" +"Vrije Universiteit Brussel, 1050 Brussels, Belgium",50.8223021,4.3967361,"Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien" +"Vulcan Inc, Seattle, WA 98104",47.5980546,-122.3284865,"Vulcan Inc., 505, Downtown Seattle Transit Tunnel, Seattle Downtown, International District/Chinatown, Seattle, King County, Washington, 98191, USA" +"WVU, USA",39.6349398,-79.9570056423469,"Stansbury Hall (WVU), Caperton Trail, Brewer Hill, Star City, Monongalia County, West Virginia, 26504, USA" +"Walt Disney Imagineering, USA",34.1619174,-118.28837020278,"Walt Disney Imagineering, 1401, Flower Street, Grand Central Creative Campus, Glendale, Los Angeles County, California, 91201, USA" +Warsaw University of Technology,52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +"Waseda University, Kitakyushu, Japan 808-0135",33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +"Washington University, St. Louis, MO, USA",38.6480445,-90.3099667,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA" +Wayne State University,42.357757,-83.0628671134125,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA" +"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +"Wayne State University, Detroit, MI, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל" +"Weizmann Institute of Science, Rehovot, 76100, Israel",31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל" +West Virginia University,39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown, WV",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown, WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown, WV, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +Western Kentucky University,36.9845317,-86.4576443016944,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA" +"Western Sydney University, Parramatta, NSW 2150, Australia",-33.8160848,151.00560034186,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia" +Wolfson College,51.7711076,-1.25361700492597,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK" +"Wuhan University of Technology, Wuhan, China",30.60903415,114.351428398184,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国" +Xerox Research Center,43.5129109,-79.6664076152913,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada" +"Xi'an Jiaotong University, Xi'an, China",34.2474949,108.978987508847,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国" +Xiamen University,24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +"Xiamen University, Xiamen 361005, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +"Xiamen University, Xiamen, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +"Xiamen University, Xiamen, Fujian, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +"Xiamen University, Xiamen, P. R. China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +"Xiangtan University, Xiangtan, China",27.88707585,112.857109176016,"湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国" +Xidian University,34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +"Xidian University, Xi an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +"Xidian University, Xi'an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +"Xidian University, Xi’an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA" +Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA" +Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ" +Yeungnam University,35.8365403,128.7534309,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국" +"Yonsei University, 50 Yonsei-ro, SEOUL, Republic of Korea",37.5600406,126.9369248,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국" +"Yonsei University, 50 Yonsei-ro, Seodaemun-gu, SEOUL, Republic of Korea",37.5600406,126.9369248,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국" +York University,43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"York University, Toronto",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"York University, Toronto, Canada",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"Yunnan University, Kunming, P. R. China",25.05703205,102.700275254918,"云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国" +Zaragoza University,41.6406218,-0.900793992168927,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España" +"Zhejiang Normal University, Jinhua, China",29.13646725,119.637686517179,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国" +Zhejiang University,30.19331415,120.119308216677,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国" +Zhejiang University of Technology,30.2931534,120.1620458,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国" +"Zhejiang University of Technology, Hangzhou, China",30.2931534,120.1620458,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国" +"Zhejiang University, Hangzhou, China",30.19331415,120.119308216677,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国" +"Zhengzhou University, China",34.8088168,113.5352664,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国" +"Zhengzhou University, Zhengzhou, Henan 450052, China",34.8088168,113.5352664,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国" +a The University of Nottingham Malaysia Campus,2.9438432,101.8736196,"The University of Nottingham Malaysia Campus, Jalan Broga, Bandar Rinching, Semenyih, Selangor, 43500, Malaysia" +any other University,53.8012316,-1.5476213,"Northern Film School, Millennium Square, Steander, Woodhouse, Leeds, Yorkshire and the Humber, England, LS1 3DW, UK" +college of Engineering,13.0110912,80.2354520862161,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +of bilkent university,39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +of the University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +the Chinese University of Hong Kong,22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"the Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"the University of Queensland, Brisbane, Qld, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA" +"university, Shiraz, Iran",29.6284395,52.5181728343761,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ‏ایران‎" +y National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +"École Polytechnique Fédérale de Lausanne (EPFL), Switzerland",46.5184121,6.5684654,"Bibliothèque de l'EPFL, Route des Noyerettes, Ecublens, District de l'Ouest lausannois, Vaud, 1024, Schweiz/Suisse/Svizzera/Svizra" diff --git a/scraper/reports/all_institutions_sorted.csv b/scraper/reports/all_institutions_sorted.csv new file mode 100644 index 00000000..67604598 --- /dev/null +++ b/scraper/reports/all_institutions_sorted.csv @@ -0,0 +1,1745 @@ +AALTO UNIVERSITY,AALTO UNIVERSITY,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775 +AGH University of Science and Technology,AGH University of Science and Technology,"AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP",50.0657033,19.9189586670586 +AGH University of Science and Technology,"AGH University of Science and Technology, Kraków, Poland","AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP",50.0657033,19.9189586670586 +AI Institute,AI Institute,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina",-34.6102167,-58.3752244291708 +ALICE Institute,ALICE Institute,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola",-8.82143045,13.2347076178375 +ARISTOTLE UNIVERSITY OF THESSALONIKI,ARISTOTLE UNIVERSITY OF THESSALONIKI,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532826658991 +Aalborg University,"Aalborg University, Denmark","AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532826658991 +Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775 +Aalto University,"Aalto University, Finland","Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775 +Aberystwyth University,Aberystwyth University,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.4107358,-4.05295500914411 +Aberystwyth University,"Aberystwyth University, UK","Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.4107358,-4.05295500914411 +Ahmedabad University,Ahmedabad University,"School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India",23.0378743,72.5518004573221 +Ahmedabad University,"Ahmedabad University, Gujarat, India 380009","School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India",23.0378743,72.5518004573221 +Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.2830003,127.045484689222 +Akita Prefectural University,Akita Prefectural University,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本",39.8011499,140.045911602376 +Akita Prefectural University,"Akita Prefectural University, Yurihonjo, Japan","秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本",39.39325745,140.073500465928 +Akita University,Akita University,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本",39.7278142,140.133225661449 +Akita University,"Akita University, Akita, Japan","秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本",39.7291921,140.136565773585 +Alexandria University,Alexandria University,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.9131456239399 +Alexandria University,"Alexandria University, Alexandria, Egypt","جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.9131456239399 +"Alibaba Group, Hangzhou, China","Alibaba Group, Hangzhou, China","Alibaba Group, 五常街道, 余杭区 (Yuhang), 杭州市 Hangzhou, 浙江省, 中国",30.2810654,120.021390874339 +"Amazon, Berkshire, U.K.","Amazon, Berkshire, U.K.","Amazon Logistics, Exeter Road, Theale, West Berkshire, South East, England, RG7 4PL, UK",51.43522855,-1.07155123817349 +American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.0893922365193 +American University,"American University, Washington, DC, USA","American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.0893922365193 +Amherst College,Amherst College,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA",42.37289,-72.518814 +Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.704514,51.4097205774739 +Amirkabir University of Technology,"Amirkabir University of Technology, Tehran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.704514,51.4097205774739 +Amirkabir University of Technology,"Amirkabir University of Technology, Tehran, Iran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.704514,51.4097205774739 +Amirkabir University of Technology,"Amirkabir University of Technology, Tehran. Iran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.704514,51.4097205774739 +Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828 +Amity University,"Amity University, Lucknow, India","Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828 +Amity University Uttar Pradesh,Amity University Uttar Pradesh,"Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India",28.54322285,77.3327482973395 +Amity University Uttar Pradesh,"Amity University Uttar Pradesh, Noida","Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India",28.54322285,77.3327482973395 +Anhui Polytechnic University,Anhui Polytechnic University,"安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.34185955,118.407397117034 +Anhui Polytechnic University,"Anhui Polytechnic University, Wuhu, China","安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.34185955,118.407397117034 +Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091346 +Anhui University,"Anhui University, Hefei, China","安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091346 +Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736 +Anna University,"Anna University, Chennai","Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736 +Anna University Chennai,Anna University Chennai,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736 +Anna University Chennai,"Anna University Chennai, India","Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736 +Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +Aristotle University of Thessaloniki GR,Aristotle University of Thessaloniki GR,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996 +Arizona State University,"Arizona State University, AZ, USA","Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996 +Arizona State University,"Arizona State University, Tempe AZ","Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA",33.4206602,-111.932634924965 +Arizona State University,"Arizona State University, Tempe, AZ, USA","Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA",33.4206602,-111.932634924965 +Asia Pacific University of Technology and Innovation,Asia Pacific University of Technology and Innovation,"Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia",3.0552109,101.7005831 +Asia Pacific University of Technology and Innovation,"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia","Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia",3.0552109,101.7005831 +Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.1700949818453 +Assiut University,"Assiut University, Asyut, Egypt","Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.1700949818453 +Aston University,Aston University,"Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK",52.48620785,-1.88849915088515 +Aston University,"Aston University, Birmingham, U.K.","Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK",52.48620785,-1.88849915088515 +Australian Institute of Sport,Australian Institute of Sport,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.24737535,149.104454269689 +Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654 +Australian National University,"Australian National University, Canberra","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324 +Australian National University,"Australian National University, Canberra, ACT 0200, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324 +Azad University,Azad University,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎",36.3173432,50.0367286 +Azad University,"Azad University, Qazvin, Iran","پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎",36.3173432,50.0367286 +Azad University,"Central Tehran Branch, Azad University","دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ‏ایران‎",35.753318,51.370631 +B.S. University of Central Florida,B.S. University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395 +Bahcesehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.9769795349346 +Bahcesehir University,"Bahcesehir University, Istanbul, Turkey","BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.9769795349346 +Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.2662887,82.9927969 +Bangalore Institute of Technology,Bangalore Institute of Technology,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India",12.9551259,77.5741985 +"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India","Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India","Bapuji Institute of Engineering and Technology, 2nd Cross Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4443949,75.9027655185535 +Bar Ilan University,Bar Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.8433433861531 +Bar Ilan University,"Bar Ilan University, Israel","אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.8433433861531 +Bas kent University,Bas kent University,"University College Utrecht 'Babel', 7, Campusplein, Utrecht, Nederland, 3584 ED, Nederland",52.08340265,5.14828494152362 +Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639 +Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788 +Beihang University,"Beihang University, Beijing 100191, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788 +Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788 +Beijing Institute of Technology University,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455 +Beijing Institute of Technology University,"Beijing Institute of Technology University, P. R. China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455 +"Beijing Institute of Technology, Beijing 100081 CHINA","Beijing Institute of Technology, Beijing 100081 CHINA","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455 +"Beijing Institute of Technology, Beijing, China","Beijing Institute of Technology, Beijing, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455 +"Beijing Institute of Technology, China","Beijing Institute of Technology, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455 +Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844 +Beijing Jiaotong University,"Beijing Jiaotong University, Beijing, 100044, China","北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844 +Beijing Normal University,Beijing Normal University,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.359704380265 +Beijing Normal University,"Beijing Normal University, China","北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.359704380265 +Beijing Union University,Beijing Union University,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.9890068,116.420677175386 +Beijing Union University,"Beijing Union University, 100101, China","北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.9890068,116.420677175386 +Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, P.R. China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403 +Beijing University of Technology,Beijing University of Technology,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.477222846574 +Beijing University of Technology,"Beijing University of Technology, Beijing 100022, China","北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.477222846574 +"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757 +"Beijing, Haidian, China","Beijing, Haidian, China","北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.359704380265 +Benha University,Benha University,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.0818727,31.2445484105016 +Benha University,"Benha University, Egypt","كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.0818727,31.2445484105016 +Bharathidasan University,Bharathidasan University,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.7778845,78.6966319 +Bharathidasan University,"Bharathidasan University, Trichy, India","Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.7778845,78.6966319 +Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.0280421,8.51148270115395 +Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323 +Bilkent University,"Bilkent University, 06800 Cankaya, Turkey","Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323 +Binghamton University,Binghamton University,"Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.0958077,-75.9145568939543 +Binghamton University,"Binghamton University, Binghamton, NY","Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.0958077,-75.9145568939543 +Bogazici University,Bogazici University,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.0868841,29.0441316722649 +Bogazici University,"Bogazici University, Bebek","Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.0868841,29.0441316722649 +Bogazici University,"Bogazici University, Turkey","Boğaziçi Üniversitesi Güney Yerleşkesi, Sehitlikdergahı Sokağı, Beşiktaş, İstanbul, Marmara Bölgesi, 33345, Türkiye",41.08327335,29.0503931951846 +Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3354481,-71.1681386402306 +"Boston College, USA","Boston College, USA","Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3354481,-71.1681386402306 +Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395 +Boston University,"Boston University, Boston, MA","BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395 +Boston University,"Boston University, USA","BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395 +Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589 +Bournemouth University,"Bournemouth University, UK","Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589 +Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107 +Brown University,"Brown University, Providence Rhode Island, 02912, USA","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107 +Brown University,"Brown University, Providence, RI","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107 +Brown University,"Brown University, United States","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107 +Brunel University,Brunel University,"Brunel University London, The Strip, Hillingdon, London, Greater London, England, UB8 3PH, UK",51.53255315,-0.473993562050575 +CALIFORNIA INSTITUTE OF TECHNOLOGY,CALIFORNIA INSTITUTE OF TECHNOLOGY,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116 +CARNEGIE MELLON UNIVERSITY,CARNEGIE MELLON UNIVERSITY,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858 +COLUMBIA UNIVERSITY,COLUMBIA UNIVERSITY,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +COMSATS Institute of Information Technology,COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.4006332,74.2137296 +"COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎",33.65010145,73.1551494914791 +"COMSATS Institute of Information Technology, Lahore 54000, Pakistan","COMSATS Institute of Information Technology, Lahore 54000, Pakistan","COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.4006332,74.2137296 +"COMSATS Institute of Information Technology, Pakistan","COMSATS Institute of Information Technology, Pakistan","COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.4006332,74.2137296 +CUNY City College,CUNY City College,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France",45.5546608,5.4065255 +California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116 +"California Institute of Technology, Pasadena, CA","California Institute of Technology, Pasadena, CA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116 +"California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116 +"California Institute of Technology, Pasadena, California, USA","California Institute of Technology, Pasadena, California, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116 +"California Institute of Technology, USA","California Institute of Technology, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116 +"Callaghan, NSW 2308, Australia","Callaghan, NSW 2308, Australia","Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia",-32.8892352,151.6998983 +Cambridge Research Laboratory,Cambridge Research Laboratory,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK",52.17333465,0.149899463173698 +Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.7944026,-1.0971748 +Capital Normal University,Capital Normal University,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.92864575,116.30104052087 +Capital Normal University,"Capital Normal University, 100048, China","首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.92864575,116.30104052087 +Cardi University,Cardi University,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago",10.6435074,-61.4022996445292 +Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907 +Cardiff University,"Cardiff University, UK","Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907 +Carleton University,Carleton University,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada",45.3860843,-75.6953926739404 +Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University,"Carnegie Mellon University, USA","Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858 +Carnegie Mellon University Pittsburgh,Carnegie Mellon University Pittsburgh,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University Pittsburgh,"Carnegie Mellon University Pittsburgh, PA - 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Carnegie Mellon University Pittsburgh,"Carnegie Mellon University Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225 +Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673039883 +Chang Gung University,Chang Gung University,"長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣",25.030438,121.390095126629 +Chang Gung University,"Chang Gung University, Taoyuan, Taiwan","長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣",25.030438,121.390095126629 +Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.0636071,147.3552234 +China University of Mining and Technology,China University of Mining and Technology,"China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.2152538,117.1398541 +China University of Mining and Technology,"China University of Mining and Technology, Xuzhou, China","China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.2152538,117.1398541 +Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238 +"Chinese Academy of Sciences, Beijing","Chinese Academy of Sciences, Beijing","中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238 +"Chinese Academy of Sciences, China","Chinese Academy of Sciences, China","中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238 +Chittagong University of Engineering and Technology,Chittagong University of Engineering and Technology,"Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ",22.46221665,91.9694226317318 +Chittagong University of Engineering and Technology,"Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh","Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ",22.46221665,91.9694226317318 +Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058 +Chonbuk National University,"Chonbuk National University, Jeonju-si","전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058 +Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028 +Chongqing University,"Chongqing University, China","重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028 +Chongqing University,"Chongqing University, Chongqing, China","重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028 +Chongqing University of Posts and Telecommunications,Chongqing University of Posts and Telecommunications,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.5357046,106.604824742826 +Chongqing University of Posts and Telecommunications,"Chongqing University of Posts and Telecommunications, Chongqing, China","重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.5357046,106.604824742826 +Chosun University,Chosun University,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국",35.1441031,126.9257858 +"Chu Hai College of Higher Education, Hong Kong","Chu Hai College of Higher Education, Hong Kong","珠海學院 Chu Hai College of Higher Education, 80, 青盈路 Tsing Ying Road, 嘉和里 Ka Wo Lei, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国",22.3760643,113.987153890134 +"Chu Hai College of Higher Education, Tsuen Wan, Hong Kong","Chu Hai College of Higher Education, Tsuen Wan, Hong Kong","珠海學院, 80, 青山公路-青山灣段 Castle Peak Road – Castle Peak Bay, 良田村 Leung Tin Tsuen, 青山灣 Castle Peak Bay, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国",22.375601,113.987140797925 +Chubu University,Chubu University,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本",35.2742655,137.013278412463 +Chulalongkorn University,Chulalongkorn University,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091 +Chulalongkorn University,"Chulalongkorn University, Bangkok","จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091 +Chulalongkorn University Bangkok,Chulalongkorn University Bangkok,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091 +Chulalongkorn University Bangkok,"Chulalongkorn University Bangkok, Thailand","จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091 +Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619 +Chung-Ang University,"Chung-Ang University, Seoul, Korea","중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619 +Chung-Ang University,"Chung-Ang University, Seoul, South Korea","중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619 +Chungnam National University,Chungnam National University,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국",36.37029045,127.347804575184 +City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423 +City University of Hong Kong,"City University of Hong Kong, Hong Kong","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423 +City University of Hong Kong,"City University of Hong Kong, Hong Kong, China","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423 +City University of Hong Kong,"City University of Hong Kong, Kowloon, Hong Kong","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423 +Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.837434756078 +Clemson University,"Clemson University, Clemson, SC","E-06 Parking, Parkway Drive, Pickens County, South Carolina, SC, USA",34.67871075,-82.8346790794026 +Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.9519648264628 +"College Heights Blvd, Bowling Green, KY","College Heights Blvd, Bowling Green, KY","College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA",36.9881671,-86.4542111 +"College Park, MD","College Park, MD","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189 +"College Park, MD 20742 USA","College Park, MD 20742 USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189 +"College Park, MD, 20740, USA","College Park, MD, 20740, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189 +"College Park, Maryland","College Park, Maryland","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189 +"College Park, USA","College Park, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189 +"College Park, United States","College Park, United States","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189 +College of Computer and Information Science,College of Computer and Information Science,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA",42.3192923,-83.2343465549018 +College of Computing,College of Computing,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania",-6.1992922,39.3081862 +College of Electrical and Information Engineering,College of Electrical and Information Engineering,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија",42.0049791,21.40834315 +"College of Engineering Pune, India","College of Engineering Pune, India","College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India",18.52930005,73.8568253702551 +College of Engineering and Computer Science,College of Engineering and Computer Science,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA",25.7589624,-80.3738881489383 +"College of Engineering, Pune, India","College of Engineering, Pune, India","College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India",18.52930005,73.8568253702551 +College of Informatics,College of Informatics,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines",14.6173885,121.101327315511 +Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269 +Colorado State University,"Colorado State University, Fort Collins","Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269 +Colorado State University,"Colorado State University, Fort Collins, Colorado, USA","Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269 +Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +Columbia University,"Columbia University, New York","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +Columbia University,"Columbia University, New York NY 10027, USA","Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.81779415,-73.9578531933627 +Columbia University,"Columbia University, New York, NY","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +Columbia University,"Columbia University, New York, NY 10027, USA","Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.81779415,-73.9578531933627 +Columbia University,"Columbia University, New York, NY, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +Columbia University,"Columbia University, New York, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +Columbia University,"Columbia University, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +Columbia University,"Columbia University, United States","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772 +Columbia University in the City of New York,Columbia University in the City of New York,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.8071772,-73.9625279772072 +Communication University of China,Communication University of China,"中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.91199955,116.551891408714 +Communication University of China,"Communication University of China, Beijing, China","中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.91199955,116.551891408714 +Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826 +Concordia University,"Concordia University, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.4955911,-73.5775043 +Concordia University,"Concordia University, Montreal, QC, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.4955911,-73.5775043 +Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428 +Cornell University,"Cornell University, Ithaca, NY, USA","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428 +Cornell University,"Cornell University, Ithaca, New York","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428 +Cornell University,"Cornell University, USA","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428 +Courant Institute,Courant Institute,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286994,-73.9957151 +Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286484,-73.9956863 +"Courant Institute of Mathematical Sciences, New York, NY","Courant Institute of Mathematical Sciences, New York, NY","Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286484,-73.9956863 +Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775 +Curtin University,"Curtin University, Perth WA 6102, Australia","Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775 +Curtin University,"Curtin University, Perth WA, Australia","A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia",-32.00319745,115.891774804686 +Curtin University,"Curtin University, Perth, Australia","Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia",-32.00574155,115.892864389257 +Curtin University,"Curtin University, Perth, Western Australia 6012","A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia",-32.00319745,115.891774804686 +Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.0457764820597 +Cyprus University of Technology,"Cyprus University of Technology, Cyprus","Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.0457764820597 +Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.0764296,14.418023122743 +DIT UNIVERSITY,DIT UNIVERSITY,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.3983396,78.0753455 +DIT UNIVERSITY,"DIT UNIVERSITY, DEHRADUN","DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.3983396,78.0753455 +DUBLIN CITY UNIVERSITY,DUBLIN CITY UNIVERSITY,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland",53.38522185,-6.25740874081493 +Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755 +Dalian University of Technology,"Dalian University of Technology, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755 +Dalian University of Technology,"Dalian University of Technology, Dalian 116024, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755 +Dalian University of Technology,"Dalian University of Technology, Dalian, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755 +Dalian University of Technology,"Dalian University of Technology, Dalian, Liaoning, 116024, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755 +Dankook University,Dankook University,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3219575,127.1250723 +Dankook University,"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea","단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3219575,127.1250723 +Dankook University,"Dankook University, Yongin, South Korea","단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3219575,127.1250723 +Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909 +"Dartmouth College, NH 03755 USA","Dartmouth College, NH 03755 USA","Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA",43.7070046,-72.2869048 +Deakin University,Deakin University,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.19928505,144.303652287331 +Deakin University,"Deakin University, Geelong, VIC 3216, Australia","Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.19928505,144.303652287331 +Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404 +Delft University of Technology,"Delft University of Technology, Mekelweg 4, Netherlands","TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404 +Delft University of Technology,"Delft University of Technology, The Netherlands","TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404 +Democritus University of Thrace,Democritus University of Thrace,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα",40.84941785,25.8344493892098 +"Dermalog Identification Systems GmbH, Hamburg, Germany","Dermalog Identification Systems GmbH, Hamburg, Germany","DERMALOG Identification Systems GmbH, 120, Mittelweg, Rotherbaum, Eimsbüttel, Hamburg, 20148, Deutschland",53.5722826,9.9947826 +"Deutsche Welle, Bonn, Germany","Deutsche Welle, Bonn, Germany","DW, Gronau, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7171497,7.12825184326238 +Dhaka University,Dhaka University,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ",23.7317915,90.3805625 +"Disney Research, CH","Disney Research, CH","Disney Research Zürich, 48, Stampfenbachstrasse, Unterstrass, Kreis 6, Zürich, Bezirk Zürich, Zürich, 8006, Schweiz/Suisse/Svizzera/Svizra",47.3804685,8.5430355 +Donghua University,Donghua University,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.2061939,121.410471009388 +Donghua University,"Donghua University, China","东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.2061939,121.410471009388 +Dr. B. C. Roy Engineering College,Dr. B. C. Roy Engineering College,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India",23.54409755,87.342697070434 +Dr. Babasaheb Ambedkar Marathwada University,Dr. Babasaheb Ambedkar Marathwada University,"Boys Hostel No. 3, Shantipura road, Cantonment, Bidri workshop, Aurangabad, Maharashtra, 431004, India",19.8960918,75.3089470267316 +Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9574,-75.1902670552555 +Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139 +East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769 +Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318497 +Eastern University,Eastern University,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA",40.0505672,-75.3710932636663 +"Ecole Centrale de Lyon, Lyon, 69134, France","Ecole Centrale de Lyon, Lyon, 69134, France","EC de Lyon, 36, Avenue Guy de Collongue, Écully, Lyon, Métropole de Lyon, Circonscription départementale du Rhône, Auvergne-Rhône-Alpes, France métropolitaine, 69134, France",45.7833631,4.76877035614228 +Edge Hill University,Edge Hill University,"Edge Hill University, St Helens Road, West Lancashire, Lancs, North West England, England, L39 4QP, UK",53.5582155,-2.86904651022128 +Eindhoven University of Technology,Eindhoven University of Technology,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4486602,5.49039956550805 +Eindhoven University of Technology,"Eindhoven University of Technology, The Netherlands","Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4486602,5.49039956550805 +Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548 +Elon University,Elon University,"Amphitheater, North Antioch Avenue, Elon, Alamance County, North Carolina, 27244, USA",36.1017956,-79.501733 +Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.7487516,30.4765307102195 +"Facebook Inc., San Francisco, CA, USA","Facebook Inc., San Francisco, CA, USA","Facebook Inc., San Francisco Bay Trail, Menlo Park, San Mateo County, California, 94025-1246, USA",37.4828007,-122.150711572363 +"Facebook, Singapore","Facebook, Singapore","Ewe Boon back lane, between Palm Spring, City Towers and Wing On Life Garden, Farrer Park Gardens, Novena, Singapore, Central, 259803, Singapore",1.3170417,103.8321041 +Feng Chia University,Feng Chia University,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.18005755,120.648360719503 +Feng Chia University,"Feng Chia University, Taichung, Taiwan","逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.18005755,120.648360719503 +Ferdowsi University of Mashhad,Ferdowsi University of Mashhad,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎",36.3076616,59.5269051097667 +Ferdowsi University of Mashhad,"Ferdowsi University of Mashhad, Mashhad, Iran","دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎",36.3076616,59.5269051097667 +Firat University,Firat University,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye",39.7275037,39.4712703382844 +"Florida Institute Of Technology, Melbourne Fl","Florida Institute Of Technology, Melbourne Fl","Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA",28.0642296,-80.6230097241205 +"Florida Institute of Technology, Melbourne, USA","Florida Institute of Technology, Melbourne, USA","Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA",28.0642296,-80.6230097241205 +Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807 +Florida International University,"Florida International University, Miami, FL","FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807 +Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626 +Florida State University,"Florida State University, Tallahassee, FL 32306, USA","Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626 +Fordham University,Fordham University,"Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA",40.7710604,-73.9852807046561 +Fordham University,"Fordham University, New York, 10023, USA","Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA",40.7710604,-73.9852807046561 +Foundation University Rawalpindi Campus,Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎",33.5609504,73.0712596618793 +Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Pakistan","Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎",33.5609504,73.0712596618793 +Fraser University,Fraser University,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA",44.9689836,-93.2094162948556 +Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435 +Fudan University,"Fudan University, Shanghai, China","复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435 +GE Global Research,GE Global Research,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8298248,-73.8771938492793 +GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8298248,-73.8771938492793 +"GIPSA-Lab, Grenoble, France","GIPSA-Lab, Grenoble, France","GIPSA-lab, 11, Rue des Mathématiques, Médiat Rhône-Alpes, Saint-Martin-d'Hères, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38400, France",45.1929245,5.7661983 +Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.6171601574695 +George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912 +George Mason University,"George Mason University, Fairfax Virginia, USA","George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912 +George Mason University,"George Mason University, Fairfax, VA 22030","George Mason University, University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA",38.8345539,-77.3152142 +George Mason University,"George Mason University, Fairfax, VA, USA","George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912 +Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158 +"Georgia Institute of Technology, Atlanta, 30332-0250, USA","Georgia Institute of Technology, Atlanta, 30332-0250, USA","Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158 +"Georgia Institute of Technology, Atlanta, Georgia, USA","Georgia Institute of Technology, Atlanta, Georgia, USA","Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158 +Georgia Southern University,Georgia Southern University,"Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA",32.42143805,-81.7845052864662 +Georgia Southern University,"Georgia Southern University, Statesboro, USA","Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA",32.42143805,-81.7845052864662 +Glyndwr University,Glyndwr University,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK",53.05373795,-3.00482075353073 +"Golden, CO, USA","Golden, CO, USA","Golden, Jefferson County, Colorado, USA",39.755543,-105.2210997 +Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136 +Graz University of Technology,"Graz University of Technology, Austria","TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136 +Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641 +Griffith University,"Griffith University, Australia","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641 +Griffith University,"Griffith University, Brisbane","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641 +Griffith University,"Griffith University, Nathan, QLD, Australia","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641 +Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.1294489,113.343761097683 +Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268 +Guangdong University of Technology,"Guangdong University of Technology, China","广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268 +Guangzhou University,Guangzhou University,"广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04436505,113.366684576444 +Guangzhou University,"Guangzhou University, Guangzhou, China","广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04436505,113.366684576444 +Guilin University of Electronic Technology Guangxi Guilin,Guilin University of Electronic Technology Guangxi Guilin,"桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.2873992,110.332427699352 +Guilin University of Electronic Technology Guangxi Guilin,"Guilin University of Electronic Technology Guangxi Guilin, China","桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.2873992,110.332427699352 +Hacettepe University,Hacettepe University,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.86742125,32.7351907206768 +Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.8792972689712 +Halmstad University,"Halmstad University, Halmstad, Sweden","Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.8792972689712 +Hangzhou Dianzi University,Hangzhou Dianzi University,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.3125525,120.3430946 +Hangzhou Dianzi University,"Hangzhou Dianzi University, Hangzhou, China","杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.3125525,120.3430946 +Hankuk University of Foreign Studies,Hankuk University of Foreign Studies,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.5953979,127.0630499 +Hankuk University of Foreign Studies,"Hankuk University of Foreign Studies, South Korea","외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.5953979,127.0630499 +Hanoi University of Science and Technology,Hanoi University of Science and Technology,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam",21.003952,105.843601832826 +Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.5557271,127.0436642 +Harbin Engineering University,Harbin Engineering University,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.77445695,126.676849168143 +Harbin Engineering University,"Harbin Engineering University, Harbin, Heilongjiang, 150001, China","哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.77445695,126.676849168143 +Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394 +"Harbin Institute of Technology, China","Harbin Institute of Technology, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394 +"Harbin Institute of Technology, China, 150001","Harbin Institute of Technology, China, 150001","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394 +"Harbin Institute of Technology, Harbin 150001, China","Harbin Institute of Technology, Harbin 150001, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394 +"Harbin Institute of Technology, Harbin, China","Harbin Institute of Technology, Harbin, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394 +Harbin Institute of Technology;Shenzhen University,Harbin Institute of Technology;Shenzhen University,"哈工大(深圳), 平山一路, 深圳大学城, 珠光村, 南山区, 深圳市, 广东省, 518000, 中国",22.5895016,113.965710495775 +Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448 +Harvard University,"Harvard University, Cambridge","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448 +Harvard University,"Harvard University, Cambridge, MA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448 +Harvard University,"Harvard University, Cambridge, MA 02138","Harvard University, Rotterdam Street, North Brighton, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36300645,-71.1245674978516 +Harvard University,"Harvard University, Cambridge, MA, USA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448 +Harvard University,"Harvard University, USA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448 +Harvard and Massachusetts Institute,Harvard and Massachusetts Institute,"Massachusetts Correctional Institute Shirley Minimum Security Library, Harvard Road, Shaker Village, Shirley, Middlesex County, Massachusetts, 01464, USA",42.5268445,-71.6525446 +"Hebei, China","Hebei, China","河北省, 中国",39.0000001,116.0 +Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908 +Hefei University of Technology,"Hefei University of Technology, Hefei, Anhui, 230601, China","合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908 +Hefei University of Technology,"Hefei University of Technology, Hefei, China","合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908 +Hengyang Normal University,Hengyang Normal University,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.8661136,112.620921219792 +Hengyang Normal University,"Hengyang Normal University, Hengyang, China","衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.8661136,112.620921219792 +Heriot-Watt University,Heriot-Watt University,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK",55.91029135,-3.32345776559167 +Hiroshima University,Hiroshima University,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4019766,132.7123195 +Hiroshima University,"Hiroshima University, Japan","Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4019766,132.7123195 +HoHai University,HoHai University,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国",32.05765485,118.755000398628 +Hofstra University,Hofstra University,"Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA",40.71703345,-73.599835005538 +Hofstra University,"Hofstra University, Hempstead, NY 11549","Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA",40.71703345,-73.599835005538 +Hong Kong Baptist University,Hong Kong Baptist University,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.3874201,114.2082222 +Hong Kong Baptist University,"Hong Kong Baptist University, Hong Kong","香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.3874201,114.2082222 +Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +Hong Kong Polytechnic University,"Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +Hong Kong Polytechnic University,"Hong Kong Polytechnic University, Hong Kong, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337 +Hong Kong University of Science and Technology,"Hong Kong University of Science and Technology, Hong Kong","香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337 +Howard University,Howard University,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.921525,-77.019535656678 +Howard University,"Howard University, Washington DC","Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.921525,-77.019535656678 +Huaqiao University,Huaqiao University,"华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国",24.6004712,118.0816574 +Huaqiao University,"Huaqiao University, Xiamen, China","华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国",24.6004712,118.0816574 +Huazhong University of,Huazhong University of,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国",22.53367445,113.917874206261 +Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881 +Huazhong University of Science and Technology,"Huazhong University of Science and Technology, Wuhan, China","华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881 +Huazhong University of Science and Technology,"Huazhong University of Science and Technology, Wuhan, China 430074","华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881 +Humboldt-University,Humboldt-University,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.51875685,13.3935604936378 +Humboldt-University,"Humboldt-University, Berlin, Germany","Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.51875685,13.3935604936378 +Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.628506656425 +"IBM Almaden Research Center, San Jose CA","IBM Almaden Research Center, San Jose CA","IBM Almaden Research Center, San José, Santa Clara County, California, USA",37.21095605,-121.807486683178 +IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566 +"IBM Research, USA","IBM Research, USA","IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566 +IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.8040705573196 +IDIAP RESEARCH INSTITUTE,IDIAP RESEARCH INSTITUTE,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408 +IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408 +"IDIAP Research Institute, Martigny, Switzerland","IDIAP Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408 +"IDIAP, Martigny, Switzerland","IDIAP, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408 +"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418 +"IIT Guwahati, Guwahati, India","IIT Guwahati, Guwahati, India","Indian Institute of Technology Guwahati - IIT Guwahati, NH27, Amingaon, Guwahati, Kamrup, Assam, 781015, India",26.19247875,91.6946356873113 +IMPERIAL COLLEGE,IMPERIAL COLLEGE,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国",39.9458551,116.406973072869 +"INRIA Grenoble Rhone-Alpes, FRANCE","INRIA Grenoble Rhone-Alpes, FRANCE","INRIA, 655, Avenue de l'Europe, Innovallée Montbonnot, Montbonnot-Saint-Martin, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38330, France",45.2182986,5.80703193086113 +Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408 +"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408 +"Idiap Research Institute, Switzerland","Idiap Research Institute, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408 +Illinois Institute of Technology,Illinois Institute of Technology,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8361963,-87.6265591274291 +"Illinois Institute of Technology, Chicago, Illinois, USA","Illinois Institute of Technology, Chicago, Illinois, USA","Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8361963,-87.6265591274291 +Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072 +"Imperial College London, London, U.K.","Imperial College London, London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072 +"Imperial College London, London, UK","Imperial College London, London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072 +"Imperial College London, U.K","Imperial College London, U.K","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072 +"Imperial College London, U.K.","Imperial College London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072 +"Imperial College London, UK","Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072 +"Imperial College London, United Kingdom","Imperial College London, United Kingdom","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072 +"Imperial College, London, UK","Imperial College, London, UK","Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK",51.5004171,-0.1782711 +Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811 +Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811 +"Indian Institute of Science, India","Indian Institute of Science, India","IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811 +Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001 +"Indian Institute of Technology Delhi, New Delhi, India","Indian Institute of Technology Delhi, New Delhi, India","Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001 +Indian Institute of Technology Kanpur,Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.513188,80.2365194538339 +"Indian Institute of Technology Kanpur, Kanpur, India","Indian Institute of Technology Kanpur, Kanpur, India","Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.513188,80.2365194538339 +"Indian Institute of Technology, Roorkee","Indian Institute of Technology, Roorkee","Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India",29.8662461,77.8958708109136 +Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.8795690544362 +Indiana University Bloomington,Indiana University Bloomington,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA",39.17720475,-86.5154003022128 +"Industrial Technology Research Institute, Hsinchu, Taiwan","Industrial Technology Research Institute, Hsinchu, Taiwan","工研院, 195, 中興路四段, 頭重里, 竹東鎮, 新竹縣, 31040, 臺灣",24.7741756,121.045092787653 +Information Technologies Institute,Information Technologies Institute,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本",33.5934539,130.3557837 +Information Technology University (ITU),Information Technology University (ITU),"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎",31.4760299,74.3427526 +Information Technology University (ITU),"Information Technology University (ITU), Punjab, Lahore, Pakistan","Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎",31.4760299,74.3427526 +Institute for Advanced,Institute for Advanced,"Institute for Advanced Biosciences, 鶴岡市, 山形県, 東北地方, 日本",38.7468877,139.824707282407 +Institute for Communication Systems,Institute for Communication Systems,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK",51.2433692,-0.593220895014599 +Institute for System Programming,Institute for System Programming,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ",55.7449881,37.6645042069876 +Institute of,Institute of,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665 +Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983 +Institute of Communications Engineering,Institute of Communications Engineering,"Institut für Nachrichtentechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1718573,12.0784417 +Institute of Computer Science,Institute of Computer Science,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221 +Institute of Computer Science III,Institute of Computer Science III,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221 +Institute of Computing,Institute of Computing,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada",43.47878995,-80.5548480959375 +Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779 +Institute of Digital Media,Institute of Digital Media,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India",20.28907925,85.84232125 +Institute of Electronics and Computer Science,Institute of Electronics and Computer Science,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija",56.97734805,24.1951425550775 +"Institute of Engineering and Management, Kolkata, India","Institute of Engineering and Management, Kolkata, India","Institute of Engineering and Management, Block -EP, Ring Road, GP Block, Kolkata, Twenty-four Parganas, West Bengal, 700091, India",22.57423855,88.4337303 +Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658 +Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755 +Institute of Information Technology,Institute of Information Technology,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7289899,90.3982682 +Institute of Media Innovation,Institute of Media Innovation,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore",1.3433937,103.6793303 +Institute of Road and,Institute of Road and,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665 +Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.8338371,10.7035939 +International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447 +"International Institute of Information Technology (IIIT) Hyderabad, India","International Institute of Information Technology (IIIT) Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447 +"International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447 +"International Institute of Information Technology, Hyderabad, Telangana, India","International Institute of Information Technology, Hyderabad, Telangana, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447 +International University of,International University of,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រ​កម្ពុជា",11.5744201,104.8775841 +Ionian University,Ionian University,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469 +Iowa State University,Iowa State University,"Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA",42.02791015,-93.6446441473745 +Iowa State University,"Iowa State University, Ames, IA, USA","Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA",42.02791015,-93.6446441473745 +Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.8452999,48.5596212013643 +Islamic University of Gaza - Palestine,Islamic University of Gaza - Palestine,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية",31.51368535,34.4401934143135 +Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943 +Istanbul Technical University,"Istanbul Technical University, Istanbul, 34469, TURKEY","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943 +Istanbul Technical University,"Istanbul Technical University, Istanbul, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943 +Istanbul Technical University,"Istanbul Technical University, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943 +Istanbul Technical University (ITU),Istanbul Technical University (ITU),"ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye",41.10539,29.0213673 +Istanbul Technical University (ITU),"Istanbul Technical University (ITU), Turkey","ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye",41.10539,29.0213673 +Istanbul University,Istanbul University,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.0132424,28.9637609 +Istanbul University,"Istanbul University, Istanbul, Turkey","İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.0132424,28.9637609 +Jacobs University,Jacobs University,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK",53.4129148,-2.96897915394896 +Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334 +Jadavpur University,"Jadavpur University, India","Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334 +Jahangirnagar University,Jahangirnagar University,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.883312,90.2693921 +Jahangirnagar University,"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh","Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.88277575,90.2671009927283 +"Jaipur, Rajasthan, India","Jaipur, Rajasthan, India","Jaipur, Rajasthan, 302001, India",26.916194,75.820349 +Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587 +"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan","Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan","JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587 +Jaypee Institute of Information Technology,Jaypee Institute of Information Technology,"Jaypee Institute of Information Technology, Noida, A-10, National Highway 24 Bypass, Asha Pushp Vihar, Kaushambi, Ghaziabad, Uttar Pradesh, 201001, India",28.6300443,77.3720823 +Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581 +Jiangnan University,"Jiangnan University, Jiangsu Wuxi, PR China","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581 +Jiangnan University,"Jiangnan University, Wuxi","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581 +Jiangnan University Jiangsu Wuxi,Jiangnan University Jiangsu Wuxi,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581 +Jiangnan University Jiangsu Wuxi,"Jiangnan University Jiangsu Wuxi, PR China","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581 +Jiangsu University,Jiangsu University,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.509683619281 +Jiangsu University,"Jiangsu University, ZhenJiang, Jiangsu, 212013, P. R. China","江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.509683619281 +Jiangsu University,"Jiangsu University, Zhenjiang, China","江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.509683619281 +Jiangsu University of Science and Technology,Jiangsu University of Science and Technology,"江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.198055,119.4632679083 +Jiangsu University of Science and Technology,"Jiangsu University of Science and Technology, Zhenjiang, China","江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.198055,119.4632679083 +Jilin University,Jilin University,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.053565,113.39913285497 +Jilin University,"Jilin University, China","吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.053565,113.39913285497 +"Joint Research Institute, Foshan, China","Joint Research Institute, Foshan, China","广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国",22.83388935,113.285418245471 +Jordan University of Science and Technology,Jordan University of Science and Technology,"Jordan University of Science and Technology, شارع الأردن, إربد‎, إربد, الأردن",32.49566485,35.9916071719283 +Jordan University of Science and Technology,"Jordan University of Science and Technology, Irbid, Jordan","Jordan University of Science and Technology, شارع الأردن, إربد‎, إربد, الأردن",32.49566485,35.9916071719283 +K.N. Toosi University of Technology,K.N. Toosi University of Technology,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎",35.76427925,51.409702762313 +K.N. Toosi University of Technology,"K.N. Toosi University of Technology, Tehran, Iran","دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎",35.76427925,51.409702762313 +"KAIST, Daejeon, Korea","KAIST, Daejeon, Korea","궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국",36.3646244,127.352251416793 +"KAIST, Korea","KAIST, Korea","궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국",36.3646244,127.352251416793 +"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.0706321329842 +"KTH Royal Institute of Technology, 100 44 Stockholm, Sweden","KTH Royal Institute of Technology, 100 44 Stockholm, Sweden","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.0706321329842 +"KTH Royal Institute of Technology, Stockholm, Sweden","KTH Royal Institute of Technology, Stockholm, Sweden","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.0706321329842 +Karlsruhe Institute of,Karlsruhe Institute of,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876 +Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876 +"Karlsruhe Institute of Technology (KIT), Germany","Karlsruhe Institute of Technology (KIT), Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876 +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876 +"Karlsruhe Institute of Technology, Germany","Karlsruhe Institute of Technology, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876 +"Karlsruhe Institute of Technology, Karlsruhe, Germany","Karlsruhe Institute of Technology, Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876 +Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.8830686,4.7019503 +Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5416969,139.6347184 +Keio University,"Information, Keio University","綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5416969,139.6347184 +Keio University,"Keio University, Yokohama 223-8522, Japan","慶應義塾大学 (矢上キャンパス), 理工坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-8522, 日本",35.55536215,139.654582444136 +Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1443525,-81.3398283284572 +Kent State University,"Kent State University, Kent, Ohio, USA","Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1443525,-81.3398283284572 +Khalifa University,Khalifa University,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.4469025,54.3942563 +Khalifa University,"Khalifa University, Abu Dhabi, United Arab Emirates","Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.4469025,54.3942563 +Khon Kaen University,Khon Kaen University,"มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.46007565,102.812117979662 +Khon Kaen University,"Khon Kaen University, Khon Kaen, 40002, Thailand","มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.46007565,102.812117979662 +King Abdullah University of Science and Technology 4700,King Abdullah University of Science and Technology 4700,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.31055485,39.1051548637793 +King Abdullah University of Science and Technology 4700,"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia","KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.31055485,39.1051548637793 +King Faisal University,King Faisal University,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.397778,50.183056 +King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456 +King Saud University,"King Saud University, Riyadh","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456 +King Saud University,"King Saud University, Riyadh 11543, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456 +King Saud University,"King Saud University, Riyadh, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456 +Kingston University,Kingston University,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4293086,-0.2684044 +Kingston University,"Kingston University, UK","Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4293086,-0.2684044 +Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686 +Kobe University,"Kobe University, Japan","神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686 +Kogakuin University,Kogakuin University,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.6902784,139.695400958171 +Kogakuin University,"Kogakuin University, Tokyo, Japan","工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.6902784,139.695400958171 +Kookmin University,Kookmin University,"국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국",37.6107554,126.9946635 +Kookmin University,"Kookmin University, Seoul, Korea","국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국",37.6107554,126.9946635 +Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151 +"Korea Advanced Institute of Science and Technology, Daejeon, Korea","Korea Advanced Institute of Science and Technology, Daejeon, Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151 +"Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea","Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151 +"Korea Advanced Institute of Science and Technology, Daejeon, South Korea","Korea Advanced Institute of Science and Technology, Daejeon, South Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151 +"Korea Advanced Institute of Science and Technology, Korea","Korea Advanced Institute of Science and Technology, Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151 +Korea Advanced institute of Science and Technology,Korea Advanced institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151 +Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318 +Korea University,"Korea University, Seoul, South Korea","고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318 +Kumamoto University,Kumamoto University,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.8164178,130.727039687562 +Kumamoto University,"Kumamoto University, Kumamoto, Japan","熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.8164178,130.727039687562 +Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532 +Kurukshetra University,"Kurukshetra University, Kurukshetra","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532 +Kurukshetra University,"Kurukshetra University, Kurukshetra, India","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532 +Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193 +Kyoto University,"Kyoto University, Kyoto, Japan","京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193 +Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286 +Kyung Hee University,"Kyung Hee University, Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.5948716,127.0530887 +Kyung Hee University,"Kyung Hee University, Seoul, South Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.5948716,127.0530887 +Kyung Hee University,"Kyung Hee University, South Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.5948716,127.0530887 +Kyung Hee University,"Kyung Hee University, Yongin, South Korea","경희대학교 국제캠퍼스, 서천동로21번길, 서천동, 기흥구, 용인시, 경기, 17108, 대한민국",37.24244405,127.080937489679 +Kyushu University,Kyushu University,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本",33.59914655,130.223598480987 +La Trobe University,La Trobe University,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.7784754,144.298047 +La Trobe University,"La Trobe University, Australia","La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.7784754,144.298047 +Lancaster University,Lancaster University,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.00975365,-2.78757490881378 +Lancaster University,"Lancaster University, Lancaster, UK","Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.00975365,-2.78757490881378 +Lehigh University,Lehigh University,"Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA",40.6068028,-75.3782488 +Lehigh University,"Lehigh University, Bethlehem, PA 18015, USA","Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA",40.6068028,-75.3782488 +Liverpool John Moores University,Liverpool John Moores University,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK",53.4050747,-2.97030028586709 +Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.5317977694291 +"London, United Kingdom","London, United Kingdom","London, Greater London, England, SW1A 2DU, UK",51.5073219,-0.1276474 +Loughborough University,Loughborough University,"Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK",52.7663577,-1.2292461 +Loughborough University,"Computer Science, Loughborough University, Loughborough, UK","Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK",52.7663577,-1.2292461 +Louisiana State University,Louisiana State University,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA",30.40550035,-91.1862047410405 +Lund University,Lund University,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7039571,13.1902011 +Lund University,"Lund University, Lund, Sweden","TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7039571,13.1902011 +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India","M S Ramaiah Institute of Technology, Bangalore, Karnataka, India","M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India",13.0309553,77.5648559396817 +MASSACHUSETTS INSTITUTE OF TECHNOLOGY,MASSACHUSETTS INSTITUTE OF TECHNOLOGY,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393 +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393 +METs Institute of Engineering,METs Institute of Engineering,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल",28.2140454,83.9607104993073 +"MPI Informatics, Germany","MPI Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431 +MULTIMEDIA UNIVERSITY,MULTIMEDIA UNIVERSITY,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536 +Maastricht University,Maastricht University,"UNS60, Professor Ten Hoorlaan, Randwyck, Maastricht, Limburg, Nederland, 6229EV, Nederland",50.8336712,5.71589 +Maastricht University,"Maastricht University, Maastricht, Netherlands","University College Maastricht, 4, Zwingelput, Jekerkwartier, Maastricht, Limburg, Nederland, 6211KH, Nederland",50.8444528,5.6884711 +Macau University of Science and,Macau University of Science and,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3358031,114.265903983304 +Macau University of Science and Technology,Macau University of Science and Technology,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.568032061523 +Macau University of Science and Technology,"Macau University of Science and Technology, Macau","Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.568032061523 +Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.856208183836 +Manchester University,Manchester University,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.47020165,-2.23932183309859 +Manchester University,"Manchester University, UK","Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.47020165,-2.23932183309859 +Mangalore University,Mangalore University,"Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India",12.81608485,74.9244927772961 +Mangalore University,"Mangalore University, India","Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India",12.81608485,74.9244927772961 +Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813 +Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, India","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813 +Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tirunelveli","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813 +Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tirunelveli, India","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813 +Marquette University,Marquette University,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA",43.03889625,-87.9315544990507 +"Massachusetts General Hospital, Boston, MA, USA","Massachusetts General Hospital, Boston, MA, USA","Mass General, 55, Fruit Street, Downtown Crossing, Beacon Hill, Boston, Suffolk County, Massachusetts, 02114, USA",42.36291795,-71.0687374226199 +Massachusetts Institute,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393 +Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393 +Massachusetts Institute of Technology (MIT,Massachusetts Institute of Technology (MIT,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393 +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA","Massachusetts Institute of Technology, Cambridge, MA 02139, USA","MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393 +Math Institute,Math Institute,"Fields Institute for Research in Math Science, 222, College Street, Kensington Market, Old Toronto, Toronto, Ontario, M5T 3A1, Canada",43.65879595,-79.3975504060101 +Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.5369125,9.05922532743396 +Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431 +"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431 +"Max Planck Institute for Informatics, Saarbrucken, Germany","Max Planck Institute for Informatics, Saarbrucken, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431 +Max-Planck Institute for Informatics,Max-Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431 +McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687 +McGill University,"McGill University, Montreal, Canada","McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada",45.50691775,-73.5791162596496 +McGovern Institute,McGovern Institute,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481 +McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481 +McMaster University,McMaster University,"McMaster University, Westdale, Hamilton, Ontario, Canada",43.26336945,-79.9180968401692 +Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.6975029,139.761391749285 +Memorial University of Newfoundland,Memorial University of Newfoundland,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.5727251,-52.7330544350478 +Memorial University of Newfoundland,"Memorial University of Newfoundland, Canada","Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.5727251,-52.7330544350478 +Memorial University of Newfoundland,"Memorial University of Newfoundland, Saint John's, NL, Canada","Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.5727251,-52.7330544350478 +Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, E. Lansing, MI 48823, USA","Dero Fixit Bike Station, Grand River Avenue, East Lansing, Ingham County, Michigan, 48824, USA",42.7337998,-84.4804243 +Michigan State University,"Michigan State University, East Lansing 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, East Lansing MI","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, East Lansing, 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, East Lansing, MI","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, East Lansing, MI 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, East Lansing, MI, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +Michigan State University,"Michigan State University, United States of America","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052 +"Microsoft Res. Asia, Beijing, China","Microsoft Res. Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565 +Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038 +"Microsoft Research Asia, Beijing, China","Microsoft Research Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565 +"Microsoft Research Asia, China","Microsoft Research Asia, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565 +"Microsoft Research, Beijing, China","Microsoft Research, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565 +"Microsoft, Bellevue, WA, USA","Microsoft, Bellevue, WA, USA","Microsoft, 10455, Northeast 8th Street, Bellevue, King County, Washington, 98004-5002, USA",47.6164826,-122.2008506 +"Microsoft, Redmond, WA","Microsoft, Redmond, WA","Microsoft Cafe RedW-F, Bridle Crest Trail, Microsoft Redwest Campus, Redmond, King County, Washington, W LAKE SAMMAMISH PKWY NE, USA",47.6592914,-122.140633217997 +Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.7855350558467 +Middlebury College,Middlebury College,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA",44.0090777,-73.1767946 +Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029 +Middlesex University,"Middlesex University, London","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029 +Middlesex University London,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029 +Middlesex University London,"Middlesex University London, London, UK","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029 +Middlesex University London,"Middlesex University London, UK","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029 +Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.958674326093 +Monash University,"Monash University, Caulfield East, Australia","Monash University (Caulfield campus), Queens Avenue, Caulfield East, City of Glen Eira, Victoria, 3163, Australia",-37.8774135,145.044982494489 +Monash University,"Monash University, Victoria, Australia","Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia",-37.9011951,145.130584919767 +Monash University Malaysia,Monash University Malaysia,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.06405715,101.6005974 +Monash University Malaysia,"Monash University Malaysia, Bandar Sunway, Malaysia","Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.06405715,101.6005974 +"Moscow Institute of Physics and Technology, Russia","Moscow Institute of Physics and Technology, Russia","МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ",55.929035,37.5186680829482 +Muhlenberg College,Muhlenberg College,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA",40.5967637,-75.5124062 +Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536 +Multimedia University,"Multimedia University, Cyberjaya, Malaysia","Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536 +Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.2381023,127.1903431 +Nagaoka University of Technology,Nagaoka University of Technology,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本",37.42354445,138.77807276029 +Nagaoka University of Technology,"Nagaoka University of Technology, Japan","長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本",37.42354445,138.77807276029 +Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225282 +Nagoya University,"Nagoya University, Japan","SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225282 +Nanjing Normal University,Nanjing Normal University,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1066811,118.90863080932 +Nanjing Normal University,"Nanjing Normal University, China","南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1066811,118.90863080932 +Nanjing Normal University,"Nanjing Normal University, Nanjing, China","南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1066811,118.90863080932 +Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078 +Nanjing University,"Nanjing University, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078 +Nanjing University,"Nanjing University, Nanjing 210023, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078 +Nanjing University,"Nanjing University, Nanjing 210093, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078 +Nanjing University,"Nanjing University, Nanjing 210093, P.R.China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078 +Nanjing University of Aeronautics and Astronautics,Nanjing University of Aeronautics and Astronautics,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686 +Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686 +Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686 +Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, Nanjing, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686 +Nanjing University of Information Science and Technology,Nanjing University of Information Science and Technology,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2068102,118.718472893883 +Nanjing University of Information Science and Technology,"Nanjing University of Information Science and Technology, Nanjing, China","南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2068102,118.718472893883 +Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792 +Nanjing University of Science and Technology,"Nanjing University of Science and Technology, China","南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792 +Nanjing University of Science and Technology,"Nanjing University of Science and Technology, Nanjing, China","南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792 +Nantong University,Nantong University,"南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国",31.9747463,120.907792637552 +Nantong University,"Nantong University, Nantong, China","南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国",31.9747463,120.907792637552 +Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +Nanyang Technological University,"Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +Nanyang Technological University,"Nanyang Technological University, Singapore 639798","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +Nanyang Technological University,"Nanyang Technological University, Singapore 639798, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +Nanyang Technological University,"Nanyang Technological University, Singapore, 639798","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +Nanyang Technological University,"Nanyang Technological University, Singapore, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +National Central University,National Central University,"NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣",24.96841805,121.191396961005 +National Central University,"National Central University, Taoyuan County, Taiwan","NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣",24.96841805,121.191396961005 +National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909 +National Cheng Kung University,"National Cheng Kung University, Tainan, Taiwan","成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909 +National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807 +National Chiao Tung University,"National Chiao Tung University, Hsinchu, Taiwan","NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807 +National Chiao Tung University,"National Chiao Tung University, Taiwan","NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807 +National Chiao-Tung University,National Chiao-Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807 +National Chung Cheng University,National Chung Cheng University,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.56306355,120.475105312324 +National Chung Cheng University,"National Chung Cheng University, Chiayi, Taiwan","國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.56306355,120.475105312324 +National Chung Hsing University,National Chung Hsing University,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.12084345,120.675711652432 +National Chung Hsing University,"National Chung Hsing University, Taichung","國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.12084345,120.675711652432 +National Chung Hsing University,"National Chung Hsing University, Taiwan","國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.12084345,120.675711652432 +National Institute of Advanced Industrial Science and Technology,National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658 +National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515 +"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA","National Institute of Standards and Technology, Gaithersburg, MD 20899, USA","National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515 +National Institute of Technology Karnataka,National Institute of Technology Karnataka,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India",13.01119095,74.7949882494716 +National Institute of Technology Rourkela,National Institute of Technology Rourkela,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.2501589,84.9066855698087 +"National Institute of Technology, Durgapur, India","National Institute of Technology, Durgapur, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.54869625,87.291057119111 +"National Institute of Technology, Durgapur, West Bengal, India","National Institute of Technology, Durgapur, West Bengal, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.54869625,87.291057119111 +"National Institute of Technology, Rourkela (Odisha), India","National Institute of Technology, Rourkela (Odisha), India","National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.2501589,84.9066855698087 +National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.1032777503325 +"National Institutes of Health, Bethesda, Maryland 20892","National Institutes of Health, Bethesda, Maryland 20892","NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.1032777503325 +National Sun Yat Sen University,National Sun Yat Sen University,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣",22.62794005,120.266318480249 +National Sun Yat Sen University,"National Sun Yat Sen University, 804 Kaohsiung, Taiwan","國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣",22.62794005,120.266318480249 +National Taichung University of science and Technology,National Taichung University of science and Technology,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.15031065,120.683255008879 +National Taichung University of science and Technology,"National Taichung University of science and Technology, Taichung","臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.15031065,120.683255008879 +National Taipei University,National Taipei University,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣",24.94314825,121.368629787836 +National Taipei University of Technology,National Taipei University of Technology,"NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣",25.04306355,121.534687724212 +National Taipei University of Technology,"National Taipei University of Technology, Taipei, Taiwan","NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣",25.04306355,121.534687724212 +National Taiwan Normal University,National Taiwan Normal University,"師大分部, 88, 汀州路四段, 萬年里, 文山區, 臺北市, 11677, 臺灣",25.00823205,121.535771533186 +National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773 +National Taiwan University,"National Taiwan University, 10647, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773 +National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773 +National Taiwan University,"National Taiwan University, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773 +National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138 +National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei 10607, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138 +National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138 +National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.7317973260904 +National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183 +National Tsing Hua University,"National Tsing Hua University, Hsinchu, Taiwan","國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183 +National Tsing Hua University,"National Tsing Hua University, Taiwan","國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183 +National University,National University,"National University, M.F. Jocson, Royal Plaza, Sampaloc, Fourth District, Manila, Metro Manila, 1008, Philippines",14.6042947,120.994285201104 +National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032 +National University of Defense Technology,"National University of Defense Technology, Changsha 410073, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032 +National University of Defense Technology,"National University of Defense Technology, Changsha, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032 +National University of Defense and Technology,National University of Defense and Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032 +National University of Ireland Galway,National University of Ireland Galway,"National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland",53.27639715,-9.05829960688327 +National University of Ireland Galway,"National University of Ireland Galway, Galway, Ireland","National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland",53.27639715,-9.05829960688327 +National University of Ireland Maynooth,National University of Ireland Maynooth,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.3846975,-6.60039458177959 +National University of Ireland Maynooth,"National University of Ireland Maynooth, Co. Kildare, Ireland","National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.3846975,-6.60039458177959 +National University of Kaohsiung,National University of Kaohsiung,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.283497550993 +National University of Kaohsiung,"National University of Kaohsiung, 811 Kaohsiung, Taiwan","國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.283497550993 +National University of Science and Technology,National University of Science and Technology,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.6450855,72.9915892221655 +National University of Sciences and Technology (NUST),National University of Sciences and Technology (NUST),"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.644347,72.9885079 +National University of Sciences and Technology (NUST),"National University of Sciences and Technology (NUST), Islamabad, Pakistan","National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.644347,72.9885079 +National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848 +National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848 +National University of Singapore,"National University of Singapore, Singapore 117576","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848 +National University of Singapore,"National University of Singapore, Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848 +National University of Technology Technology,National University of Technology Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368 +National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848 +"Naval Research Laboratory, Washington DC","Naval Research Laboratory, Washington DC","Naval Research Laboratory Post Office, 4555, Overlook Avenue Southwest, Washington, D.C., 20375, USA",38.8231381,-77.0178902 +Nazarbayev University,Nazarbayev University,"Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.0902854,71.3972526281434 +Nazarbayev University,"Nazarbayev University, Astana, Kazakhstan","Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.0902854,71.3972526281434 +"Neurological Institute, USA","Neurological Institute, USA","Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA",40.84211085,-73.9428460313244 +New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +"New Jersey Institute of Technology, Newark , NJ, USA","New Jersey Institute of Technology, Newark , NJ, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +"New Jersey Institute of Technology, Newark, USA","New Jersey Institute of Technology, Newark, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +"New Jersey Institute of Technology, USA","New Jersey Institute of Technology, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.9962539360963 +Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627035949 +Newcastle University,"Newcastle University, Newcastle upon Tyne","Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627035949 +Normal University,Normal University,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.0580509,102.6955241 +Normal University,"Normal University, Kunming, China","云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.0580509,102.6955241 +"North Acton, London","North Acton, London","North Acton, Victoria Road, Acton, London Borough of Ealing, London, Greater London, England, W3 6UP, UK",51.52344665,-0.259735350000002 +North Carolina Central University,North Carolina Central University,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA",35.97320905,-78.897550537484 +North Carolina State University,North Carolina State University,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.6740869545263 +North Carolina State University,"North Carolina State University, Raleigh, United States of America","North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.6740869545263 +North China Electric Power University,North China Electric Power University,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.8760446,115.4973873 +North China Electric Power University,"North China Electric Power University, Baoding, China","华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.8760446,115.4973873 +North Dakota State University,North Dakota State University,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.897155,-96.8182760282419 +North Dakota State University,"North Dakota State University, Fargo, ND 58108-6050, USA","North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.897155,-96.8182760282419 +Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284 +Northeastern University,"Northeastern University, Boston, MA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284 +Northeastern University,"Northeastern University, Boston, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284 +Northeastern University,"Northeastern University, Boston, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284 +Northeastern University,"Northeastern University, Boston, USA, 02115","Northeastern University, Public Alley 807, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.34255795,-71.0905490240477 +Northeastern University,"Northeastern University, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284 +Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026 +Northumbria University,"Northumbria University, Newcastle Upon Tyne, Tyne and Wear","Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026 +Northumbria University,"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK","Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK",54.9781026,-1.6067699 +Northumbria University,"Northumbria University, Newcastle upon Tyne, U.K.","Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026 +Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771 +Northwestern Polytechnical University,"Northwestern Polytechnical University, Xian 710072, Shaanxi, China","西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771 +Northwestern Polytechnical University,"Northwestern Polytechnical University, Xi’an, China","西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771 +Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217 +Northwestern University,"Northwestern University, Evanston, IL, USA","Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217 +Nottingham Trent University,Nottingham Trent University,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.9577322,-1.15617099267709 +Nottingham Trent University,"Nottingham Trent University, Nottingham, UK","Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.9577322,-1.15617099267709 +Nottingham University Hospital,Nottingham University Hospital,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.9434967,-1.18631123153121 +Nottingham University Hospital,"Nottingham University Hospital, Nottingham, UK","Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.9434967,-1.18631123153121 +OF PRINCETON UNIVERSITY,OF PRINCETON UNIVERSITY,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325 +OF STANFORD UNIVERSITY,OF STANFORD UNIVERSITY,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983 +"Oak Ridge National Laboratory, USA","Oak Ridge National Laboratory, USA","Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.3124003215133 +Oakland University,Oakland University,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA",42.66663325,-83.2065575175658 +Ocean University of China,Ocean University of China,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.16161795,120.493552763931 +Ocean University of China,"Ocean University of China, Qingdao, China","中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.16161795,120.493552763931 +Okayama University,Okayama University,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.6893393,133.9222272 +Okayama University,"Okayama University, Okayama, Japan","岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.6893393,133.9222272 +Oklahoma State University,Oklahoma State University,"Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA",36.1244756,-97.050043825 +Oklahoma State University,"Oklahoma State University, Stillwater, OK, USA","Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA",36.1244756,-97.050043825 +Old Dominion University,Old Dominion University,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.885682,-76.3076857937011 +Old Dominion University,"Old Dominion University, Norfolk, VA 23529, USA","Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.885682,-76.3076857937011 +Old Dominion University,"Old Dominion University, Norfolk, VA, 23529","Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.885682,-76.3076857937011 +Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188 +"Orange Labs, R&D, Meylan, France","Orange Labs, R&D, Meylan, France","Orange Labs, 28, Chemin du Vieux Chêne, Inovallée Meylan, Le Mas du Bruchet, Meylan, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38240, France",45.21011775,5.79551075456301 +Oregon State University,Oregon State University,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA",45.5198289,-122.677979643331 +Osaka university,Osaka university,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218408 +Osaka university,"Osaka university, Japan","大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218408 +Otto von Guericke University,Otto von Guericke University,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.6447124822347 +Otto-von-Guericke University Magdeburg,Otto-von-Guericke University Magdeburg,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.6447124822347 +Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597 +Oxford Brookes University,"Oxford Brookes University, Oxford, United Kingdom","Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597 +Oxford University,Oxford University,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK",51.7520849,-1.25166460220888 +Oxford University,"Oxford University, UK","James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK",51.7488051,-1.23874457456279 +"PA, 15213, USA","PA, 15213, USA","Pa, North Monmouth, Kennebec County, Maine, 04265, USA",44.289627,-70.042577 +"POSTECH, Pohang, South Korea, 37673","POSTECH, Pohang, South Korea, 37673","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352 +"PSG College of Technology, Coimbatore, Tamil Nadu, India","PSG College of Technology, Coimbatore, Tamil Nadu, India","PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India",11.0246833,77.0028424564731 +Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219 +Peking University,"Peking University, Beijing","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219 +Peking University,"Peking University, Beijing 100871, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219 +Peking University,"Peking University, Beijing, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219 +Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831 +"Perth, Western Australia 6012","Perth, Western Australia 6012","Perth, Western Australia, 6000, Australia",-31.9527121,115.8604796 +Philipps-Universität Marburg,Philipps-Universität Marburg,"FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland",50.8142701,8.771435 +Philipps-Universität Marburg,"Philipps-Universität Marburg, D-35032, Germany","FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland",50.8142701,8.771435 +"Pittsburgh Univ., PA, USA","Pittsburgh Univ., PA, USA","WQEX-TV (Pittsburgh);WQED-TV (Pittsburgh);WQED-FM (Pittsburgh);WINP-TV (Pittsburgh);WEPA-CD (Pittsburgh), 3801, University Drive, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4462779,-79.9637743112056 +Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3755269,-4.13937687442817 +Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352 +Pohang University of Science and Technology,"Pohang University of Science and Technology, Pohang, Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352 +Pohang University of Science and Technology (POSTECH),Pohang University of Science and Technology (POSTECH),"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352 +Pohang University of Science and Technology (POSTECH),"Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352 +Pohang University of Science and Technology (POSTECH),"Pohang University of Science and Technology (POSTECH), South Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352 +"Politecnico di Torino, Italy","Politecnico di Torino, Italy","Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia",45.0636974,7.65752730185847 +"Politecnico di Torino, Torino, Italy","Politecnico di Torino, Torino, Italy","Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia",45.0636974,7.65752730185847 +Politehnica University of Timisoara,Politehnica University of Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.746189,21.2275507517647 +Pondicherry Engineering College,Pondicherry Engineering College,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India",12.0148693,79.8480910431981 +Pontificia Universidad Catolica de Chile,Pontificia Universidad Catolica de Chile,"Pontificia Universidad Católica de Chile - Campus Lo Contador, 1916, El Comendador, Pedro de Valdivia Norte, Providencia, Provincia de Santiago, Región Metropolitana de Santiago, 7500000, Chile",-33.41916095,-70.6178224038096 +Portland State University,Portland State University,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.684929993829 +Portland State University,"Portland State University, USA","Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.684929993829 +Poznan University of Technology,Poznan University of Technology,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP",52.4004837,16.9515808278647 +Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325 +Princeton University,"Princeton University, Princeton, NJ, USA","Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA",40.34725815,-74.6513455119257 +Princeton University,"Princeton University, Princeton, New Jersey, USA","Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325 +"Pune Institute of Computer Technology, Pune, ( India","Pune Institute of Computer Technology, Pune, ( India","Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India",18.4575638,73.8507352 +Punjabi University Patiala,Punjabi University Patiala,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India",30.3568981,76.4551272 +Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845 +Purdue University,"Purdue University, West Lafayette, IN 47907, USA","Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4262569,-86.9157551 +Purdue University,"Purdue University, West Lafayette, IN, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845 +Purdue University,"Purdue University, West Lafayette, IN. 47907, USA","Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4262569,-86.9157551 +Purdue University,"Purdue University, West Lafayette, Indiana, 47906, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845 +Qatar University,Qatar University,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎",25.37461295,51.4898035392337 +Qatar University,"Qatar University, Doha, Qatar","Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎",25.37461295,51.4898035392337 +Qatar University,"Qatar University, Qatar","Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎",25.37461295,51.4898035392337 +Quanzhou Normal University,Quanzhou Normal University,"泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国",24.87147415,118.667386868962 +Quanzhou Normal University,"Quanzhou Normal University, Quanzhou, China","泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国",24.87147415,118.667386868962 +Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.0570222,21.922709 +Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624 +Queen Mary University of London,"Queen Mary University of London, London","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624 +Queen Mary University of London,"Queen Mary University of London, London E1 4NS, UK","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624 +Queen Mary University of London,"Queen Mary University of London, London, U.K.","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624 +Queen Mary University of London,"Queen Mary University of London, UK","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624 +Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129 +Queensland University of Technology,"Queensland University of Technology, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129 +Queensland University of Technology,"Queensland University of Technology, Brisbane, QLD, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129 +Queensland University of Technology (QUT,Queensland University of Technology (QUT,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.4770485,153.028373791304 +Queensland University of Technology(QUT,Queensland University of Technology(QUT,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.4770485,153.028373791304 +"R V College of Engineering, Bangalore, India","R V College of Engineering, Bangalore, India","R. V. College of Engineering, Bangalore-Mysore Road, Kengeri, Rajarajeshwari Nagar Zone, Bengaluru, Bangalore Urban, Karnataka, 560059, India",12.9231039,77.5006395299617 +RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875 +RMIT University,"RMIT University, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875 +RMIT University,"RMIT University, Melbourne, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875 +RMIT University,"RMIT University, Melbourne, VIC, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875 +RMIT University,"RMIT University, Vietnam","RMIT University Vietnam - Saigon South Campus, 702, Nguyễn Văn Linh, Khu 3 - Khu Đại học, Phường Tân Phong, Quận 7, Tp HCM, 756604, Việt Nam",10.72991265,106.693208239997 +RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292 +RWTH Aachen University,"RWTH Aachen University, Aachen, Germany","RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292 +Raipur institute of technology,Raipur institute of technology,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India",21.2262243,81.8013664 +"Rajasthan, India","Rajasthan, India","Rajasthan, India",26.8105777,73.7684549 +Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135 +"Rensselaer Polytechnic Institute, Troy, NY 12180, USA","Rensselaer Polytechnic Institute, Troy, NY 12180, USA","Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.73280325,-73.6622354488153 +"Rensselaer Polytechnic Institute, USA","Rensselaer Polytechnic Institute, USA","Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135 +Research Center,Research Center,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية",24.7261991,46.6365468966391 +Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682403998887 +"RheinAhrCampus der Hochschule Koblenz, Remagen, Germany","RheinAhrCampus der Hochschule Koblenz, Remagen, Germany","RheinAhrCampus, 2, Joseph-Rovan-Allee, Remagen, Landkreis Ahrweiler, Rheinland-Pfalz, 53424, Deutschland",50.5722562,7.25318610053143 +Rheinische-Friedrich-Wilhelms University,Rheinische-Friedrich-Wilhelms University,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465 +Rheinische-Friedrich-Wilhelms University,"Rheinische-Friedrich-Wilhelms University, Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465 +Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379 +Rice University,"Rice University, Houston, TX, 77005, USA","Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379 +Rio de Janeiro State University,Rio de Janeiro State University,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.91117105,-43.2357797110467 +Rio de Janeiro State University,"Rio de Janeiro State University, Brazil","UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.91117105,-43.2357797110467 +Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154 +Ritsumeikan University,"Ritsumeikan University, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154 +Ritsumeikan University,"Ritsumeikan University, Kyoto, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154 +Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059 +Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273 +Rowan University,Rowan University,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA",39.7103526,-75.1193266647699 +Rowan University,"Rowan University, Glassboro, NJ- 08028","Wellness Center (Winans Hall), Mullica Hill Road, Beau Rivage, Glassboro, Gloucester County, New Jersey, 08028:08062, USA",39.7082432,-75.1170342529732 +Rowland Institute,Rowland Institute,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA",42.3639862,-71.0778293 +Ruhr University Bochum,Ruhr University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078 +Ruhr-University Bochum,Ruhr-University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078 +Ruhr-University Bochum,"Ruhr-University Bochum, Germany","RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078 +Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404 +Rutgers University,"Rutgers University, New Brunswick, NJ","Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA",40.50007595,-74.4457915242934 +Rutgers University,"Rutgers University, Newark, NJ, USA","Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA",40.7417586,-74.1750462269524 +Rutgers University,"Rutgers University, Piscataway","James Dickson Carr Library, 75, Avenue E, Piscataway Township, Middlesex County, New Jersey, 08854-8040, USA",40.52251655,-74.4373851411688 +Rutgers University,"Rutgers University, Piscataway NJ 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975 +Rutgers University,"Rutgers University, Piscataway, NJ","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975 +Rutgers University,"Rutgers University, Piscataway, NJ 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975 +Rutgers University,"Rutgers University, Piscataway, NJ, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975 +Rutgers University,"Rutgers University, Piscataway, New Jersey 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975 +Rutgers University,"Rutgers University, USA","Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404 +Ryerson University,Ryerson University,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263 +Ryerson University,"Ryerson University, Canada","Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263 +Ryerson University,"Ryerson University, Toronto, ON, Canada","Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263 +SASTRA University,SASTRA University,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",10.9628655,79.3853065130097 +SASTRA University,"SASTRA University, Thanjavur, Tamil Nadu, India","SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",10.9628655,79.3853065130097 +SIMON FRASER UNIVERSITY,SIMON FRASER UNIVERSITY,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103 +"SRI International, Menlo Park, USA","SRI International, Menlo Park, USA","SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA",37.4585796,-122.17560525105 +SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.9336278,-78.8839447903448 +Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.8927159,29.3786332263582 +Sakarya University,Sakarya University,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye",40.76433515,30.3940787517111 +San Jose State University,San Jose State University,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.3351908,-121.881260081527 +San Jose State University,"San Jose State University, San Jose, CA","SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.3351908,-121.881260081527 +Santa Clara University,Santa Clara University,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.34820285,-121.935635412063 +Santa Clara University,"Santa Clara University, Santa Clara, CA. 95053, USA","Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.34820285,-121.935635412063 +Santa Fe Institute,Santa Fe Institute,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA",35.7002878,-105.908648471331 +Selçuk University,Selçuk University,"Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye",38.02420685,32.5057052418378 +Selçuk University,"Selçuk University, Konya, Turkey","Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye",38.02420685,32.5057052418378 +Semarang State University,Semarang State University,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia",-7.00349485,110.417749486905 +Semnan University,Semnan University,"دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ‏ایران‎",35.6037444,53.434458770112 +Semnan University,"Semnan University, Semnan, Iran","دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ‏ایران‎",35.6037444,53.434458770112 +Seoul Nat'l Univ.,Seoul Nat'l Univ.,"서울대입구, 지하 1822, 남부순환로, 중앙동, 봉천동, 관악구, 서울특별시, 08787, 대한민국",37.481223,126.9527151 +Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151 +Seoul National University,"Seoul National University, Korea","서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151 +Seoul National University,"Seoul National University, Seoul, Korea","서울대학교, 1, 관악로, 서림동, 신림동, 관악구, 서울특별시, 08825, 대한민국",37.46685,126.94892 +Shaheed Zulfikar Ali Bhutto Institute of,Shaheed Zulfikar Ali Bhutto Institute of,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎",24.8186587,67.0316585 +Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818 +Shandong University,"Shandong University, Shandong, China","山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818 +Shandong University of Science and Technology,Shandong University of Science and Technology,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国",36.00146435,120.116240565627 +"Shanghai Institute of Technology, Shanghai, China","Shanghai Institute of Technology, Shanghai, China","上海应用技术大学, 康健路, 长桥, 徐汇区, 上海市, 200233, 中国",31.1678395,121.417382632476 +Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, People's Republic of China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai 200240, China","上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国",31.02775885,121.432219256081 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai, China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373 +Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929 +Shanghai University,"Shanghai University, Shanghai, China","上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929 +Shanghai university,Shanghai university,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929 +Sharda University,Sharda University,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.4737512,77.4836148 +Sharda University,"Sharda University, Greater Noida, India","Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.4737512,77.4836148 +Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.7036227,51.351250969544 +Sharif University of Technology,"Sharif University of Technology, Tehran. Iran","دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.7036227,51.351250969544 +Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399 +Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679 +Shenzhen University,"Shenzhen University, Shenzhen China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679 +Shenzhen University,"Shenzhen University, Shenzhen, China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679 +"Shibaura Institute of Technology, Tokyo, Japan","Shibaura Institute of Technology, Tokyo, Japan","芝浦工業大学 豊洲キャンパス, 晴海通り, 豊洲2, 豊洲, 富岡一丁目, 江東区, 東京都, 関東地方, 135-6001, 日本",35.66053325,139.795031213151 +Shiraz University,Shiraz University,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎",29.6385474,52.5245706 +"Sichuan Univ., Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.642769,104.067511751425 +Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103 +Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.849092139632 +Singapore Management University,"Singapore Management University, Singapore","Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.849092139632 +Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.340216,103.965089 +Singapore University of Technology and Design,"Singapore University of Technology and Design, Singapore","Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.340216,103.965089 +Sinhgad College of,Sinhgad College of,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India",19.0993293,74.7691424 +Soochow University,Soochow University,"苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国",31.3070951,120.635739868117 +Soochow University,"Soochow University, Suzhou, China","苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国",31.3070951,120.635739868117 +South China Normal University,South China Normal University,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.143197,113.34009651145 +South China Normal University,"South China Normal University, Guangzhou, China","华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.143197,113.34009651145 +South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0490047,113.3971571 +South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836 +South China University of Technology,"South China University of Technology, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836 +South China University of Technology,"South China University of Technology, Guangzhou, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836 +South China University of Technology,"South China University of Technology, Guangzhou, Guangdong, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836 +South College Road,South College Road,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA",39.2715228,-76.6936807 +South East European University,South East European University,"Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија",41.98676415,20.9625451620439 +South East European University,"South East European University, Tetovo, Macedonia","Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија",41.98676415,20.9625451620439 +Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439 +Southeast University,"Southeast University, Nanjing, China","SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439 +Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811 +Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811 +Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, P.R. China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811 +Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445 +Southwest University,"Southwest University, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445 +Southwest University,"Southwest University, Chongqing 400715, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445 +Southwest University,"Southwest University, Chongqing, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445 +"Sri krishna College of Technology, Coimbatore, India","Sri krishna College of Technology, Coimbatore, India","Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India",10.925861,76.9224672855261 +Stamford University Bangladesh,Stamford University Bangladesh,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7448166,90.4084351355108 +Stamford University Bangladesh,"Stamford University Bangladesh, Dhaka-1209, Bangladesh","Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7448166,90.4084351355108 +Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983 +Stanford University,"Stanford University, CA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983 +Stanford University,"Stanford University, CA, United States","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983 +Stanford University,"Stanford University, Stanford, CA, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983 +Stanford University,"Stanford University, Stanford, California","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983 +Stanford University,"Stanford University, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983 +State University of New York Polytechnic Institute,State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.13800205,-75.2294359077068 +State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, Utica, New York","State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.13800205,-75.2294359077068 +State University of New York at Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.9706606561486 +State University of New York at Binghamton,"State University of New York at Binghamton, USA","State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.9706606561486 +State University of New York at Buffalo,State University of New York at Buffalo,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",42.95485245,-78.8178238693065 +Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.742252,-74.0270949 +"Stevens Institute of Technology, Hoboken, New Jersey, 07030","Stevens Institute of Technology, Hoboken, New Jersey, 07030","Stevens Institute of Technology, Hudson Street, Hoboken, Hudson County, New Jersey, 07030, USA",40.7451724,-74.027314 +Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626 +Stony Brook University,"Stony Brook University, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626 +Stony Brook University,"Stony Brook University, NY, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626 +Stony Brook University,"Stony Brook University, Stony Brook NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626 +Stony Brook University,"Stony Brook University, Stony Brook, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626 +Stony Brook University,"Stony Brook University, Stony Brook, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626 +Stony Brook University Hospital,Stony Brook University Hospital,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.90826665,-73.1152089127966 +Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +Sun Yat-Sen University,"Sun Yat-Sen University, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +Sun Yat-Sen University,"Sun Yat-Sen University, GuangZhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +Sun Yat-Sen University,"Sun Yat-Sen University, Guangzhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +Sun Yat-Sen University,"Sun Yat-Sen University, Guangzhou, P.R. China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +Sun Yat-sen University,"Sun Yat-sen University, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +Sun Yat-sen University,"Sun Yat-sen University, Guangzhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975 +SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123 +Sungkyunkwan University,Sungkyunkwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123 +Sungkyunkwan University,"Sungkyunkwan University, Suwon, Republic of Korea","성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123 +Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6091578,-3.97934429228629 +Swansea University,"Swansea University, Swansea, UK","Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6091578,-3.97934429228629 +Swiss Federal Institute of Technology,Swiss Federal Institute of Technology,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.3764534,8.54770931489751 +THE UNIVERSITY OF ARIZONA,THE UNIVERSITY OF ARIZONA,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2351726,-110.950958317648 +THE UNIVERSITY OF CHICAGO,THE UNIVERSITY OF CHICAGO,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.78468745,-87.6007493265106 +"TU Darmstadt, D-64283, Germany","TU Darmstadt, D-64283, Germany","Institut für Psychologie, 10, Alexanderstraße, Darmstadt-Mitte, Darmstadt, Regierungsbezirk Darmstadt, Hessen, 64283, Deutschland",49.8754648,8.6594332 +Tafresh University,Tafresh University,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎",34.68092465,50.0534135183902 +Tafresh University,"Tafresh University, Tafresh, Iran","دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎",34.68092465,50.0534135183902 +Tamkang University,Tamkang University,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.17500615,121.450767514156 +Tamkang University,"Tamkang University, Taipei, Taiwan","淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.17500615,121.450767514156 +Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096 +Tampere University of Technology,"Tampere University of Technology, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096 +Tampere University of Technology,"Tampere University of Technology, Tampere 33720, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096 +Tampere University of Technology,"Tampere University of Technology, Tampere, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096 +Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.5677531417838 +Technical University Munich,"Technical University Munich, Germany","TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.5677531417838 +"Technicolor, France","Technicolor, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.831533,2.28066282926829 +"Technicolor, Paris, France","Technicolor, Paris, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.831533,2.28066282926829 +Technion Israel Institute of Technology,Technion Israel Institute of Technology,"הטכניון - מכון טכנולוגי לישראל, דוד רוז, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל",32.7767536,35.0241452903301 +Technological University,Technological University,"UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4525199,75.9179512 +Technological University,"Technological University, Davanagere, Karnataka, India","UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4525199,75.9179512 +Teesside University,Teesside University,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.5703695,-1.23509661862823 +Teesside University,"Teesside University, Middlesbrough, UK","Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.5703695,-1.23509661862823 +Teesside University,"Teesside University, UK","Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.5703695,-1.23509661862823 +Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252 +Tel Aviv University,"Tel Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252 +Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252 +Tel-Aviv University,"Tel-Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252 +Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548 +Temple University,"Temple University, Philadelphia, PA 19122, USA","Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA",39.9808569,-75.149594 +Temple University,"Temple University, Philadelphia, PA, 19122, USA","Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA",39.9808569,-75.149594 +Temple University,"Temple University, Philadelphia, PA, USA","Temple University, Beasley's Walk, Stanton, Philadelphia, Philadelphia County, Pennsylvania, 19132:19133, USA",39.981188,-75.1562826952332 +Temple University,"Temple University, Philadelphia, USA","Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548 +Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6108365,-96.3521280026443 +Texas A&M University,"Texas A&M University, College Station, TX, USA","Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6108365,-96.3521280026443 +Thapar University,Thapar University,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India",30.35566105,76.3658164148513 +The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265 +The American University in Cairo,"The American University in Cairo, Egypt","الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265 +The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654 +The Australian National University,"The Australian National University, Canberra, ACT, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324 +The Australian National University,"The Australian National University, Canberra, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324 +The Australian National University Canberra ACT 2601,The Australian National University Canberra ACT 2601,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324 +The Australian National University Canberra ACT 2601,"The Australian National University Canberra ACT 2601, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324 +The Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805 +The Chinese University of Hong Kong,"The Chinese University of Hong Kong, China","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805 +The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805 +The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong, China","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.413656,114.2099405 +The Chinese University of Hong Kong,"The Chinese University of Hong Kong, New Territories, Hong Kong","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.413656,114.2099405 +The City College and the Graduate Center,The City College and the Graduate Center,"Graduate Center, 184, Hooper Street, Mission Bay, SF, California, 94158, USA",37.76799565,-122.400099572569 +"The City College of New York, New York, NY 10031, USA","The City College of New York, New York, NY 10031, USA","CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA",40.81819805,-73.9510089793336 +The City University of New York,The City University of New York,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA",40.8722825,-73.8948917141949 +The Education University of Hong Kong,The Education University of Hong Kong,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国",22.46935655,114.19474193618 +The Florida State University,The Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626 +The Hebrew University of Jerusalem,The Hebrew University of Jerusalem,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.7918555,35.244723 +The Hebrew University of Jerusalem,"The Hebrew University of Jerusalem, Israel","האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.7918555,35.244723 +The Hong Kong Polytechnic University,The Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Hong Kong, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Kowloon, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +The Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337 +The Hong Kong University of Science and Technology,"The Hong Kong University of Science and Technology, Hong Kong","香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337 +The Institute of Electronics,The Institute of Electronics,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India",12.8447999,77.6632389626693 +The Nanyang Technological University,The Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +The Nanyang Technological University,"The Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067 +The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604 +The Ohio State University,"The Ohio State University, Columbus, OH, USA","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604 +The Ohio State University,"The Ohio State University, OH","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604 +The Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.709274809394501 +The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188 +The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059 +The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119 +The State University of New York at Buffalo,The State University of New York at Buffalo,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",42.95485245,-78.8178238693065 +The State University of New York at Buffalo,"The State University of New York at Buffalo, New York, USA","University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",42.95485245,-78.8178238693065 +"The Univ of Hong Kong, China","The Univ of Hong Kong, China","海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719 +The University of Adelaide,The University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404 +The University of Adelaide,"The University of Adelaide, Adelaide, SA, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404 +The University of Adelaide,"The University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404 +The University of British Columbia,The University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019 +The University of Cambridge,The University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187 +The University of Edinburgh,The University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441 +The University of Edinburgh,"The University of Edinburgh, Edinburgh, U.K.","New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441 +The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257 +The University of Electro-Communications,"The University of Electro-Communications, JAPAN","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257 +The University of Electro-Communications,"The University of Electro-Communications, Japan","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257 +The University of Electro-Communications,"The University of Electro-Communications, Tokyo","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257 +The University of Hong Kong,The University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719 +The University of Manchester,The University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987 +The University of Maryland,The University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858 +The University of New South Wales,The University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527 +The University of New South Wales,"The University of New South Wales, Australia","UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527 +The University of Newcastle,The University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.3578899,151.37834708231 +The University of Newcastle,"The University of Newcastle, Callaghan 2308, Australia","University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia",-32.8930923,151.705656 +The University of North Carolina,The University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511 +The University of North Carolina,"The University of North Carolina, Chapel Hill","University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511 +The University of North Carolina at Charlotte,The University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699 +The University of North Carolina at Charlotte,"The University of North Carolina at Charlotte, USA","Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699 +The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574 +The University of Nottingham,"The University of Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574 +The University of Queensland,The University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +The University of Queensland,"The University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +The University of Queensland,"The University of Queensland, Brisbane, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +The University of Queensland,"The University of Queensland, QLD 4072, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +The University of Sheffield,The University of Sheffield,"University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK",53.3815248,-1.480681425 +The University of Sheffield,"The University of Sheffield, Sheffield, U.K.","University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK",53.3815248,-1.480681425 +The University of Sydney,The University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925 +The University of Sydney,"School, The University of Sydney, Sydney, NSW, Australia","Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia",-33.8893229,151.180068 +The University of Sydney,"The University of Sydney, NSW 2006, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925 +The University of Sydney,"The University of Sydney, Sydney, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925 +The University of Tennessee,The University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395 +The University of Tennessee,"The University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395 +The University of Texas,The University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459 +The University of Texas at,The University of Texas at,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459 +The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022 +The University of Texas at Austin Austin,The University of Texas at Austin Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022 +The University of Texas at Austin Austin,"The University of Texas at Austin Austin, Texas, USA","University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022 +The University of Texas at Dallas,The University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278 +The University of Texas at Dallas,"The University of Texas at Dallas, Richardson, TX","University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278 +The University of Texas at San Antonio,The University of Texas at San Antonio,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163 +The University of Texas at San Antonio,"The University of Texas at San Antonio, San Antonio, TX, USA","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163 +The University of Tokushima,The University of Tokushima,"大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本",34.0788068,134.558981 +The University of Tokushima,"The University of Tokushima, Japan","大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本",34.0788068,134.558981 +The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117 +The University of Tokyo,"The University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117 +The University of Western Australia,The University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251 +The University of Western Australia,"The University of Western Australia, Crawley, WA, Australia","University of Western Australia (Crawley Campus), 35, Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia",-31.98027975,115.818084637301 +The University of York,The University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649 +The University of York,"The University of York, Heslington, York YO10 5DD, United Kingdom","Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK",53.94830175,-1.05154975017361 +The University of York,"The University of York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649 +The University of York,"The University of York, United Kingdom","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649 +The University of the Humanities,The University of the Humanities,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс",47.9218937,106.919552402206 +The Weizmann Institute of,The Weizmann Institute of,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל",31.904187,34.807378 +The Weizmann Institute of Science,The Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421 +Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807 +Tianjin University,"Tianjin University, 300072, China","泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807 +Tianjin University,"Tianjin University, China","Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国",38.99224515,117.306075265115 +Tianjin University,"Tianjin University, Tianjin, China","Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国",38.99224515,117.306075265115 +Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593 +Tohoku University,"Tohoku University, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593 +Tohoku University,"Tohoku University, Sendai, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593 +Tokyo Denki University,Tokyo Denki University,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257 +Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406 +"Tokyo Institute of Technology, Japan","Tokyo Institute of Technology, Japan","東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406 +"Tokyo Institute of Technology, Kanagawa, Japan","Tokyo Institute of Technology, Kanagawa, Japan","東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406 +Tokyo Metropolitan University,Tokyo Metropolitan University,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本",35.6200925,139.38296706394 +Tomsk Polytechnic University,Tomsk Polytechnic University,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ",56.46255985,84.955654946724 +Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887 +Tongji University,"Tongji University, Shanghai 201804, China","同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887 +Tongji University,"Tongji University, Shanghai, China","同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887 +Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.40253645,-122.116551067984 +"Toyota Technological Institute (Chicago, US","Toyota Technological Institute (Chicago, US","Toyota Technological Institute, 6045, South Kenwood Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.7847112,-87.5926056707507 +Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, 100084 Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing 100084, P.R. China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing 100084, P.R.China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing, 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing, P. R. China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, Beijing,China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +Tsinghua University,"Tsinghua University, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778 +"UC Merced, USA","UC Merced, USA","UC Merced Venture Lab, 1735, M Street, Merced, Merced County, California, 95340, USA",37.302827,-120.484819845561 +UNIVERSITY IN PRAGUE,UNIVERSITY IN PRAGUE,"Business Institut EDU, Kodaňská, Vršovice, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 10100, Česko",50.0714761,14.4542642 +UNIVERSITY OF CALIFORNIA,UNIVERSITY OF CALIFORNIA,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443 +UNIVERSITY OF CALIFORNIA,"UNIVERSITY OF CALIFORNIA, BERKELEY","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743 +UNIVERSITY OF CALIFORNIA,"UNIVERSITY OF CALIFORNIA, SAN DIEGO","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +UNIVERSITY OF OULU,UNIVERSITY OF OULU,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507 +UNIVERSITY OF TAMPERE,UNIVERSITY OF TAMPERE,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.7792067776763 +UNIVERSITY OF TARTU,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.38131405,26.7207808104523 +UNIVERSITY OF WISCONSIN MADISON,UNIVERSITY OF WISCONSIN MADISON,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901 +Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362 +Ulm University,"Ulm University, Germany","HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362 +Universidad Autonoma de Madrid,Universidad Autonoma de Madrid,"Facultad de Medicina de la Universidad Autónoma de Madrid, Calle de Arturo Duperier, Fuencarral, Fuencarral-El Pardo, Madrid, Área metropolitana de Madrid y Corredor del Henares, Comunidad de Madrid, 28001, España",40.48256135,-3.69060789542556 +"Universidad Tecnica Federico Santa Maria, Valparaiso, Chile","Universidad Tecnica Federico Santa Maria, Valparaiso, Chile","Universidad Técnica Federico Santa María, Condominio Esmeralda, Valparaíso, Provincia de Valparaíso, V Región de Valparaíso, 2390382, Chile",-33.0362526,-71.595382 +Universitat Autònoma de Barcelona,Universitat Autònoma de Barcelona,"Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España",41.5007811,2.11143663166357 +Universitat Autònoma de Barcelona,"Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain","Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España",41.5007811,2.11143663166357 +Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341 +Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, Barcelona, Spain","Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341 +Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949251166 +Universitat Pompeu Fabra,"Universitat Pompeu Fabra, Barcelona, Spain","Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949251166 +Universitat de València,Universitat de València,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.47787665,-0.342577110177694 +Universitat de València,"Universitat de València, Valencia, Spain","Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.47787665,-0.342577110177694 +Universiti Teknologi PETRONAS,Universiti Teknologi PETRONAS,"UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia",4.3830464,100.970015404936 +Universiti Teknologi PETRONAS,"Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia","UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia",4.3830464,100.970015404936 +University,University,"Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.26007165,-123.253442836235 +University,"Ritsumeikan, University","Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.26007165,-123.253442836235 +University,"University, China","大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4133862,114.210058 +University,"University, Guangzhou, China","中山大学第一课室, 74号大院, 中山二路, 马棚岗, 农林街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1314851,113.2852239 +University,"University, Hong Kong","Hong-Kong, Feldstraße, Greifswald, Südliche Mühlenvorstadt, Greifswald, Vorpommern-Greifswald, Mecklenburg-Vorpommern, 17489, Deutschland",54.0856448,13.389089 +University,"University, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848 +University,"University, USA","University, South Dixie Highway, Coral Gables, Miami-Dade County, Florida, 33124-6310, USA",25.7147949,-80.276947 +University,"University, Xi an Shaanxi Province, Xi an 710049, China","西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国",34.2707834,108.94449949951 +University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413 +University (ITU,University (ITU,"IT-Universitetet i København, Emil Holms Kanal, Christianshavn, København, Københavns Kommune, Region Hovedstaden, 1424, Danmark",55.65965525,12.5910768893446 +University City Blvd.,University City Blvd.,"University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.312224,-80.7084736 +University City Blvd.,"University City Blvd., Charlotte, NC","University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.312224,-80.7084736 +University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037 +University College London,"University College London, London WC1N 3BG, United Kingdom","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037 +University College London,"University College London, London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037 +University College London,"University College London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037 +University Drive,University Drive,"University Drive, Ooralea, Mackay, QLD, 4740, Australia",-21.1753214,149.1432747 +University Drive,"University Drive, Fairfax, VA 22030-4444, USA","University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA",38.835411,-77.316447 +University Heights,University Heights,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +University Heights,"New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +University Heights Newark,University Heights Newark,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +University Heights Newark,"New Jersey Institute of Technology, University Heights Newark, NJ 07102 USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128 +University Institute of Engineering and Technology,University Institute of Engineering and Technology,"Maharishi University Of Information Technology, NH230, Jankipuram, Lucknow, Uttar Pradesh, 226021, India",26.9302879,80.9278433 +University Library,University Library,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore",1.30604775,103.7728987705 +University Library,"University Library, Singapore","University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore",1.30604775,103.7728987705 +University Of California San Diego,University Of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University Of Maryland,University Of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858 +University POLITEHNICA Timisoara,University POLITEHNICA Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.746189,21.2275507517647 +University POLITEHNICA Timisoara,"University POLITEHNICA Timisoara, Timisoara, 300223, Romania","UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.746189,21.2275507517647 +University POLITEHNICA of Bucharest,University POLITEHNICA of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413 +University POLITEHNICA of Bucharest,"University POLITEHNICA of Bucharest, Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413 +University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413 +University Politehnica of Bucharest,"University Politehnica of Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413 +University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, ‏پاکستان‎",29.3758342,71.7528712910287 +University of,"Electrical Engineering, University of","Electrical Engineering, 185, Loading Dock, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA",47.6532412,-122.3061707 +University of,"Statistics, University of","Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, ‏پاکستان‎",32.0731522,72.6814703364947 +University of Aberdeen,University of Aberdeen,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK",57.1646143,-2.10186013407315 +University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447511707098 +University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404 +University of Adelaide,"University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404 +University of Adelaide,"University of Adelaide, SA, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404 +University of Agder,University of Agder,"UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge",58.16308805,8.00144965545071 +University of Agder,"University of Agder, Kristiansand, Norway","UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge",58.16308805,8.00144965545071 +University of Aizu,University of Aizu,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.5236728,139.938072464124 +University of Aizu,"University of Aizu, Japan","会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.5236728,139.938072464124 +University of Akron,University of Akron,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.0789035,-81.5197127229943 +University of Akron,"University of Akron, Akron","University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.0789035,-81.5197127229943 +University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5238572,-113.522826652346 +University of Alberta,"University of Alberta, Edmonton, Canada","University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5238572,-113.522826652346 +University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644 +University of Amsterdam,"Science, University of Amsterdam","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644 +University of Amsterdam,"University of Amsterdam, Amsterdam, The","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644 +University of Amsterdam,"University of Amsterdam, Amsterdam, The Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644 +University of Amsterdam,"University of Amsterdam, The Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644 +University of Amsterdam,"University of Amsterdam, the Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644 +University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2351726,-110.950958317648 +University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.3383025526859 +University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632 +University of Barcelona,"University of Barcelona, Spain","Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632 +University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961 +University of Basel,"University of Basel, Switzerland","Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961 +University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332 +University of Bath,"University of Bath, Bath, Somerset, United Kingdom","University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332 +University of Bath,"University of Bath, Bath, United Kingdom","University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332 +University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134052244 +University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465 +University of Bonn,"University of Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465 +University of Brescia,University of Brescia,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA",37.7689374,-87.1113859 +University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.1664858,-73.1920564 +University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372 +University of Bristol,"University of Bristol, Bristol, BS8 1UB, UK","University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK",51.4562363,-2.602779 +University of Bristol,"University of Bristol, Bristol, UK","Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372 +University of British Columbia,University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019 +University of British Columbia,"University of British Columbia, Canada","University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019 +University of British Columbia,"University of British Columbia, Vancouver, Canada","University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019 +University of Buffalo,University of Buffalo,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA",40.7021766,-99.0985061173294 +University of Caen,University of Caen,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193 +University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.0784038,-114.1287077 +University of Calgary,"University of Calgary, Calgary, Alberta, Canada","University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.0784038,-114.1287077 +University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443 +University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743 +University of California,"University of California, Berkeley, Berkeley CA 94720, USA","Goldman School of Public Policy, Hearst Avenue, Northside, Berkeley, Alameda County, California, 94720, USA",37.8756681,-122.257979979865 +University of California,"University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553 +University of California,"University of California, Irvine, USA","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553 +University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632 +University of California,"University of California, Merced, CA 95344, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632 +University of California,"University of California, Merced, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632 +University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677 +University of California,"University of California, Riverside CA 92521-0425, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636 +University of California,"University of California, Riverside, California 92521, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636 +University of California,"University of California, Riverside, Riverside CA, California 92521 United States","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636 +University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California,"University of California, San Diego, CA, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California,"University of California, San Diego, California, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California,"University of California, San Diego, La Jolla","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California,"University of California, San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California,"University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869 +University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443 +University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443 +University of California Davis,University of California Davis,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.5336349,-121.790772639747 +University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California San Diego,"University of California San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California San Diego,"University of California San Diego, United States of America","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855 +University of California Santa Barbara,University of California Santa Barbara,"UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869 +University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187 +University of Cambridge,"University of Cambridge, United Kingdom","Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187 +University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.5953995,-48.6154218 +University of Campinas (Unicamp,University of Campinas (Unicamp,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil",-22.8224781,-47.0642599309425 +University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058 +University of Canterbury,University of Canterbury,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5240528,172.580306253669 +University of Canterbury,"University of Canterbury, New Zealand","University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5240528,172.580306253669 +University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.4599734888018 +University of Cape Town,"University of Cape Town, South Africa","University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.4599734888018 +University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395 +University of Central Florida,"University of Central Florida, Orlando","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936 +University of Central Florida,"University of Central Florida, Orlando, 32816, United States of America","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936 +University of Central Florida,"University of Central Florida, Orlando, FL, USA","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936 +University of Central Florida,"University of Central Florida, Orlando, USA","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936 +University of Central Florida,"University of Central Florida, USA","University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395 +University of Central Punjab,University of Central Punjab,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎",31.4466149,74.2679762 +University of Central Punjab,"University of Central Punjab, Pakistan","University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎",31.4466149,74.2679762 +University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 100190, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 101408, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences (UCAS,University of Chinese Academy of Sciences (UCAS,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences (UCAS),University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527 +University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816 +University of Coimbra,"University of Coimbra, Portugal","Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816 +University of Colorado,University of Colorado,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621 +University of Colorado,"University of Colorado, Boulder","Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621 +University of Colorado Colorado Springs,University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.8920756,-104.797163894584 +University of Colorado Denver,University of Colorado Denver,"University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA",39.74287785,-105.005963984841 +University of Colorado Denver,"University of Colorado Denver, Denver, CO, USA","University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA",39.74287785,-105.005963984841 +University of Connecticut,University of Connecticut,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA",41.8093779,-72.2536414 +University of Copenhagen,University of Copenhagen,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark",55.6801502,12.5723270014063 +University of Crete,University of Crete,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.3713024,24.4754408 +University of Crete,"University of Crete, Crete, 73100, Greece","House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.3713024,24.4754408 +University of Dammam,University of Dammam,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.39793625,50.1980792430511 +University of Dammam,"University of Dammam, Saudi Arabia","University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.39793625,50.1980792430511 +University of Dayton,University of Dayton,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.738444,-84.1791874663107 +University of Dayton,"University of Dayton, Dayton, OH, USA","University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.738444,-84.1791874663107 +University of Dayton,"University of Dayton, Ohio, USA","University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.738444,-84.1791874663107 +University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184 +University of Delaware,"University of Delaware, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184 +University of Delaware,"University of Delaware, Newark, 19716, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184 +University of Delaware,"University of Delaware, Newark, DE, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184 +University of Delaware,"University of Delaware, Newark, DE. USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184 +University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203 +University of Denver,"University of Denver, Denver, CO","University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203 +University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7316957,90.3965275 +University of Dhaka,"University of Dhaka, Bangladesh","World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7316957,90.3965275 +University of Dschang,University of Dschang,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4409448,10.0712056113589 +University of Dschang,"University of Dschang, Cameroon","Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4409448,10.0712056113589 +University of Dundee,University of Dundee,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK",56.45796755,-2.98214831353755 +University of East Anglia,University of East Anglia,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.6221571,1.2409136 +University of East Anglia,"University of East Anglia, Norwich, U.K.","Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.6221571,1.2409136 +University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441 +University of Edinburgh,"University of Edinburgh, Edinburgh, UK","New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441 +University of Engineering and Technology,University of Engineering and Technology,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, ‏پاکستان‎",31.6914689,74.2465617 +University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7369302,-3.53647671702167 +University of Exeter,"University of Exeter, UK","University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7369302,-3.53647671702167 +University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243 +University of Florida,"University of Florida, Gainesville, FL","University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243 +University of Florida,"University of Florida, Gainesville, FL, 32611, USA","University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA",29.6447739,-82.3575193392276 +University of Frankfurt,University of Frankfurt,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland",50.13053055,8.69234223934388 +University of Geneva,University of Geneva,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA",42.57054745,-88.5557862661765 +University of Glasgow,University of Glasgow,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK",55.87231535,-4.28921783557444 +University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542 +University of Groningen,"University of Groningen, Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542 +University of Groningen,"University of Groningen, The Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542 +University of Gujrat,University of Gujrat,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎",32.63744845,74.1617455759799 +University of Gujrat,"University of Gujrat, Pakistan","University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎",32.63744845,74.1617455759799 +University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.0198630428453 +University of Haifa,"University of Haifa, Haifa, Israel","אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.0198630428453 +University of Hawaii,University of Hawaii,"University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA",21.2982795,-157.818692295846 +University of Hawaii,"University of Hawaii, Manoa, Honolulu, HI, 96822","University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA",21.2982795,-157.818692295846 +University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719 +University of Hong Kong,"University of Hong Kong, China","海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719 +University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137 +University of Houston,"University of Houston, Houston, TX 77204, USA","UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137 +University of Houston,"University of Houston, Houston, TX, USA","UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137 +University of Iceland,University of Iceland,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland",64.137274,-21.9456145356869 +University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716 +University of Illinois,"University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716 +University of Illinois Urbana Champaign,University of Illinois Urbana Champaign,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716 +University of Illinois at,University of Illinois at,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1006938,-88.2313043272112 +University of Illinois at Chicago,University of Illinois at Chicago,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.6485625597018 +University of Illinois at Chicago,"University of Illinois at Chicago, Chicago, IL","University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.6485625597018 +University of Illinois at Urbana,University of Illinois at Urbana,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1006938,-88.2313043272112 +University of Illinois at Urbana Champaign,University of Illinois at Urbana Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana Champaign,"University of Illinois at Urbana Champaign, Urbana","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana Champaign,"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA","University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.1066501,-88.2240260725426 +University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, IL USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, Urbana, IL","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, Urbana, IL, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana—Champaign,University of Illinois at Urbana—Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Illinois at Urbana—Champaign,"University of Illinois at Urbana—Champaign, Champaign, IL, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378 +University of Information,University of Information,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA",34.17980475,-117.325843648456 +University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796 +University of Ioannina,"University of Ioannina, 45110, Greece","Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796 +University of Ioannina,"University of Ioannina, Ioannina, Greece","Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796 +University of Iowa,University of Iowa,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA",41.6659,-91.573103065 +University of Karlsruhe,University of Karlsruhe,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.00664235,8.39405151637065 +University of Karlsruhe,"University of Karlsruhe, Germany","Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.00664235,8.39405151637065 +University of Kent,University of Kent,"University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK",51.2975344,1.0729616473445 +University of Kent,"University of Kent, Canterbury, U.K.","University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK",51.2975344,1.0729616473445 +University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758 +University of Kentucky,"University of Kentucky, USA","University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758 +University of Leeds,University of Leeds,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK",53.80387185,-1.55245712031677 +University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121 +University of Lincoln,"University of Lincoln, U. K.","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121 +University of Lincoln,"University of Lincoln, U.K","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121 +University of Lincoln,"University of Lincoln, UK","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121 +University of Liverpool,University of Liverpool,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.406179,-2.96670818619252 +University of Liverpool,"University of Liverpool, Liverpool, U.K.","Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.406179,-2.96670818619252 +University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076 +University of Ljubljana,"University of Ljubljana, Ljubljana, Slovenia","UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076 +University of Ljubljana Faculty,University of Ljubljana Faculty,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076 +University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655 +University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2167565,-85.7572502291168 +University of Louisville,"University of Louisville, Louisville, KY 40292 USA","University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2167565,-85.7572502291168 +University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1240187,113.545109009671 +University of Macau,"University of Macau, Taipa, Macau","研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1240187,113.545109009671 +University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394 +University of Malaya,"University of Malaya, 50603 Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394 +University of Malaya,"University of Malaya, Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394 +University of Malta,University of Malta,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.9023226,14.4834189 +University of Malta,"University of Malta, Msida, Malta","University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.9023226,14.4834189 +University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987 +University of Manchester,"University of Manchester, Manchester, U.K.","University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987 +University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8091536,-97.133041790072 +University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858 +University of Maryland,"University of Maryland, College Park, MD, USA","The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858 +University of Maryland,"Y. Li, University of Maryland","Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA",39.2864694,-76.6263409932124 +University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905 +University of Maryland-College Park,University of Maryland-College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905 +University of Maryland-College Park,"University of Maryland-College Park, USA","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905 +University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987 +University of Massachusetts,"University of Massachusetts, Amherst","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987 +University of Massachusetts,"University of Massachusetts, Amherst MA, USA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987 +University of Massachusetts,"University of Massachusetts, Amherst, MA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987 +University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745 +University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745 +University of Massachusetts Amherst,"University of Massachusetts Amherst, Amherst MA, 01003","Murray D. Lincoln Campus Center, 1, Campus Center Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3919154,-72.5270705589714 +University of Massachusetts Dartmouth,University of Massachusetts Dartmouth,"University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA",41.62772475,-71.0072450098225 +University of Massachusetts Dartmouth,"University of Massachusetts Dartmouth, Dartmouth, MA, USA","University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA",41.62772475,-71.0072450098225 +University of Memphis,University of Memphis,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA",35.1189387,-89.9372195996589 +University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706 +University of Miami,"University of Miami, Coral Gables, FL","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706 +University of Miami,"University of Miami, USA","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706 +University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096 +University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096 +University of Michigan,"University of Michigan, Ann Arbor, MI","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096 +University of Michigan,"University of Michigan, Ann Arbor, MI 48109 USA","Power Center for the Performing Arts, 121, Fletcher Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2808797,-83.7357152493893 +University of Michigan,"University of Michigan, Ann Arbor, MI, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096 +University of Michigan,"University of Michigan, Ann Arbor, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096 +University of Michigan,"University of Michigan, Ann, Arbor, MI USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096 +University of Milan,University of Milan,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA",38.6796662,-90.3262816 +University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.2370881262941 +University of Missouri,University of Missouri,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.926761,-92.2919378337447 +University of Missouri,"University of Missouri, Columbia, MO","L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.926761,-92.2919378337447 +University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.8174723,-96.7044468 +University of Nevada,University of Nevada,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936 +University of Nevada,"University of Nevada, Reno, Reno, NV, USA","Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936 +University of Nevada,"University of Nevada, Reno, USA","Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936 +University of New South Wales,University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527 +University of New South Wales,"University of New South Wales, Sydney, NSW, Australia","UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527 +University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.3578899,151.37834708231 +University of Newcastle,"University of Newcastle, Newcastle, Australia","University of Newcastle, Christie Street, Newcastle, Newcastle-Maitland, Newcastle, NSW, 2300, Australia",-32.9276256,151.77133087091 +University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511 +University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129 +University of North Carolina Wilmington,"University of North Carolina Wilmington, USA","Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129 +University of North Carolina Wilmington,"University of North Carolina Wilmington, Wilmington, NC, USA","Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA",34.2377352,-77.92673494788 +University of North Carolina Wilmington,"University of North Carolina Wilmington, Wilmington, United States","Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129 +University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, Chapel Hill, NC","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9105975,-79.0517871 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9105975,-79.0517871 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529 +University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699 +University of North Carolina at Wilmington,University of North Carolina at Wilmington,"University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2249827,-77.8690774374448 +University of North Carolina at Wilmington,"University of North Carolina at Wilmington, USA","University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2249827,-77.8690774374448 +University of North Texas,University of North Texas,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2098879,-97.1514748776857 +University of North Texas,"University of North Texas, Denton, Texas, USA","University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2098879,-97.1514748776857 +University of Northern British Columbia,University of Northern British Columbia,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529 +University of Northern British Columbia,"University of Northern British Columbia, Canada","UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529 +University of Northern British Columbia,"University of Northern British Columbia, Prince George, Canada","UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529 +University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727 +University of Notre Dame,"University of Notre Dame, Notre Dame, IN, USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727 +University of Notre Dame,"University of Notre Dame, USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727 +University of Notre Dame. Notre Dame,University of Notre Dame. Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727 +University of Notre Dame. Notre Dame,"University of Notre Dame. Notre Dame, IN 46556.USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727 +University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574 +University of Nottingham,"University of Nottingham, Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574 +University of Oradea,University of Oradea,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.0570222,21.922709 +University of Oslo,University of Oslo,"UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge",59.93891665,10.7217076488427 +University of Oslo,"University of Oslo, Oslo, Norway","UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge",59.93891665,10.7217076488427 +University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989 +University of Ottawa,"University of Ottawa, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989 +University of Ottawa,"University of Ottawa, Ottawa, On, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989 +University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507 +University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507 +University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855 +University of Oxford,"University of Oxford, Oxford, United Kingdom","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855 +University of Oxford,"University of Oxford, UK","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855 +University of Oxford,"University of Oxford, United Kingdom","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855 +University of Patras,University of Patras,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469 +University of Patras,"University of Patras, Greece","Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469 +University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901 +University of Pennsylvania,"University of Pennsylvania, Philadelphia, PA","40th Street Parking Lot, Walnut Street, Southwest Schuylkill, Philadelphia, Philadelphia County, Pennsylvania, 19104-1469, USA",39.95455675,-75.2029503620423 +University of Perugia,University of Perugia,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.2622421,-123.2450052 +University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.0092004,71.4877494739102 +University of Peshawar,"University of Peshawar, Pakistan","University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.0092004,71.4877494739102 +University of Peshawar,"University of Peshawar, Peshawar, Pakistan","University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.0092004,71.4877494739102 +University of Piraeus,University of Piraeus,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα",37.94173275,23.6530326182197 +University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7201299,10.4078976 +University of Pisa,"University of Pisa, Pisa, Italy","Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7201299,10.4078976 +University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271 +University of Pittsburgh,"University of Pittsburgh, PA 15213, USA","Nationality Rooms, 4200, Omicron Delta Kappa Walk, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4444651,-79.9532347 +University of Pittsburgh,"University of Pittsburgh, PA, 15260, USA","Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4437547,-79.9529557 +University of Pittsburgh,"University of Pittsburgh, PA, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh PA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA , USA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA 15260, USA","Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4437547,-79.9529557 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA, USA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271 +University of Pittsburgh,"University of Pittsburgh, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271 +University of Plymouth,University of Plymouth,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3752501,-4.13927692297343 +University of Plymouth,"University of Plymouth, UK","Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3752501,-4.13927692297343 +University of Portsmouth,University of Portsmouth,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911234691 +University of Portsmouth,"University of Portsmouth, United Kingdom","University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911234691 +University of Posts and Telecommunications,University of Posts and Telecommunications,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国",32.11527165,118.925956600436 +University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +University of Queensland,"University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +University of Queensland,"University of Queensland, St Lucia, QLD, Australia","Anthropology Museum, Chancellors Place, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.497151,153.0117305 +University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007 +University of Rochester,"University of Rochester, NY 14627, USA","Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA",43.1242954,-77.6288352530005 +University of Rochester,"University of Rochester, Rochester, NY, USA","Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007 +University of Salzburg,University of Salzburg,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.79475945,13.0541752486067 +University of Salzburg,"University of Salzburg, Austria","Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.79475945,13.0541752486067 +University of Science and,University of Science and,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia",5.35755715,100.303850375 +University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576 +University of Science and Technology of China,"University of Science and Technology of China, Hefei 230026, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, 230027, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576 +University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4133862,114.210058 +University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225 +University of South Carolina,"University of South Carolina, Columbia, USA","University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225 +University of South Carolina,"University of South Carolina, USA","University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225 +University of South Florida,University of South Florida,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.0599999,-82.4138361902512 +University of South Florida,"University of South Florida, Tampa, Florida 33620","University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.0599999,-82.4138361902512 +University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816 +University of Southampton,"University of Southampton, SO17 1BJ, UK","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816 +University of Southampton,"University of Southampton, Southampton, U.K.","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816 +University of Southampton,"University of Southampton, United Kingdom","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816 +University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446 +University of Southern California,"University of Southern California, Los Angeles, CA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446 +University of Southern California,"University of Southern California, Los Angeles, CA 90089, USA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446 +University of Southern California,"University of Southern California, Los Angeles, USA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446 +University of St Andrews,University of St Andrews,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.3411984,-2.7930938 +University of St Andrews,"University of St Andrews, United Kingdom","University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.3411984,-2.7930938 +University of Stuttgart,University of Stuttgart,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland",48.9095338,9.1831892 +University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236 +University of Surrey,"University of Surrey, Guildford, Surrey GU2 7XH, UK","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236 +University of Surrey,"University of Surrey, Guildford, Surrey, GU2 7XH, UK","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236 +University of Surrey,"University of Surrey, United Kingdom","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236 +University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925 +University of Sydney,"University of Sydney, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925 +University of Sydney,"University of Sydney, Sydney, NSW, Australia","Sand Roll House, Parramatta Road, Camperdown, Sydney, NSW, 2050, Australia",-33.88578245,151.182068591379 +University of Tabriz,University of Tabriz,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎",38.0612553,46.3298484 +University of Tabriz,"University of Tabriz, Tabriz, Iran","دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎",38.0612553,46.3298484 +University of Tampere,University of Tampere,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.7792067776763 +University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368 +University of Technology,"University of Technology, Baghdad, Iraq","الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368 +University of Technology,"University of Technology, Sydney","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726 +University of Technology,"University of Technology, Sydney, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726 +University of Technology,"University of Technology, Sydney, NSW, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726 +University of Technology,"University of Technology, Sydney, Sydney, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726 +University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483 +University of Technology Sydney,"University of Technology Sydney, New South Wales, Australia","University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483 +University of Technology Sydney,"University of Technology Sydney, Sydney, NSW, Australia","University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8830909,151.20217235558 +University of Technology Sydney,"University of Technology Sydney, Ultimo, NSW, Australia","University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8830909,151.20217235558 +University of Tennessee,University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395 +University of Tennessee,"University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395 +University of Texas,University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459 +University of Texas,"University of Texas, Austin, TX 78712-1188, USA","University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA",30.284458,-97.7342106 +University of Texas,"University of Texas, San Antonio, TX, USA","University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA",30.284458,-97.7342106 +University of Texas at,University of Texas at,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459 +University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404 +University of Texas at Arlington,"University of Texas at Arlington, Arlington, TX","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404 +University of Texas at Arlington,"University of Texas at Arlington, Arlington, TX, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404 +University of Texas at Arlington,"University of Texas at Arlington, Arlington, Texas 76019, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404 +University of Texas at Arlington,"University of Texas at Arlington, TX, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404 +University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022 +University of Texas at Dallas,University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278 +University of Texas at Dallas,"University of Texas at Dallas, Richardson, 75080, USA","University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278 +University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688 +University of Texas at San Antonio,"University of Texas at San Antonio, 78249, USA","UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, TX","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, TX, USA","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, Texas","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, United States","UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688 +University of Thessaloniki,University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528 +University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117 +University of Tokyo,"University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117 +University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952 +University of Toronto,"University of Toronto, Toronto, ON, Canada","University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952 +University of Toronto Toronto,University of Toronto Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952 +University of Toronto Toronto,"University of Toronto Toronto, Canada","University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952 +University of Toulouse,University of Toulouse,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA",30.1781816,-93.2360581 +University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894 +University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894 +University of Trento,"University of Trento, Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894 +University of Trento,"University of Trento, Trento, TN, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894 +University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176 +University of Tsukuba,"University of Tsukuba, Japan","University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176 +University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761 +University of Twente,"University of Twente, Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761 +University of Twente,"University of Twente, The Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761 +University of Venezia,University of Venezia,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia",45.4312742,12.3265377 +University of Vermont,University of Vermont,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.48116865,-73.2002178989123 +University of Vermont,"University of Vermont, 33 Colchester Avenue, Burlington","University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.48116865,-73.2002178989123 +University of Vienna,University of Vienna,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2131302,16.3606865338016 +University of Vienna,"University of Vienna, Austria","Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2131302,16.3606865338016 +University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.0353682,-78.5035322 +University of Virginia,"University of Virginia, Charlottesville, VA","University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA",38.0410576,-78.5054996018357 +University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.3793131,-1.5604252 +University of Warwick,"University of Warwick, Coventry, U.K.","University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.3793131,-1.5604252 +University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203 +University of Washington,"University of Washington, Seattle, USA","University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203 +University of Washington,"University of Washington, Seattle, WA 98195, United States","University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6547795,-122.305818 +University of Washington,"University of Washington, Seattle, WA, USA","University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA",47.65249975,-122.2998748 +University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632 +University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251 +University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703 +University of Windsor,"University of Windsor, Canada","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703 +University of Windsor,"University of Windsor, Canada N9B 3P4","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703 +University of Windsor,"University of Windsor, Ontario, Canada","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703 +University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901 +University of Wisconsin - Madison,University of Wisconsin - Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901 +University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901 +University of Wisconsin-Madison,University of Wisconsin-Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901 +University of Wisconsin-Madison,"University of Wisconsin-Madison, Madison, WI, USA","UW Geology Museum, 1215, West Dayton Street, South Campus, Madison, Dane County, Wisconsin, 53715, USA",43.0705257,-89.4059387 +University of Witwatersrand,University of Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205 +University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278 +University of Wollongong,"University of Wollongong, Wollongong, Australia","University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278 +University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649 +University of York,"University of York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649 +University of York,"University of York, York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649 +University of York,"University of York, York, United Kingdom","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649 +University of Zurich,University of Zurich,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.4968476,8.72981767380829 +University of Zurich,"University of Zurich, Zurich, Switzerland","ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.4968476,8.72981767380829 +University of telecommunications and post,University of telecommunications and post,"Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия",42.6560524,23.3476108351659 +University of telecommunications and post,"University of telecommunications and post, Sofia, Bulgaria","Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия",42.6560524,23.3476108351659 +University of the Basque Country,University of the Basque Country,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.30927695,-2.01066784661227 +University of the Basque Country,"University of the Basque Country, San Sebastian, Spain","Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.30927695,-2.01066784661227 +University of the Western Cape,University of the Western Cape,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa",-33.9327762,18.6291540714825 +University of the Witwatersrand,University of the Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205 +University of the Witwatersrand,"University of the Witwatersrand, Johannesburg, South Africa","University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205 +Università degli Studi di Milano,Università degli Studi di Milano,"Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia",45.47567215,9.23336232066359 +Università degli Studi di Milano,"Università degli Studi di Milano, Italy","Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia",45.47567215,9.23336232066359 +Università di Salerno Italy,Università di Salerno Italy,"Università, Autostrada del Mediterraneo, Fisciano, SA, CAM, 84084, Italia",40.7646949,14.7889151 +Université du Québec à Chicoutimi (UQAC),Université du Québec à Chicoutimi (UQAC),"Université du Québec à Chicoutimi (UQAC), Chicoutimi, Ville de Saguenay, Saguenay - Lac-Saint-Jean, Québec, G7H 2B1, Canada",48.4200469,-71.0525344 +Ural Federal University (UrFU,Ural Federal University (UrFU,"УрФУ, улица Гагарина, Эврика, Втузгородок, Кировский район, Екатеринбург, городской округ Екатеринбург, Свердловская область, Уральский федеральный округ, 620062, РФ",56.8435083,60.6454805 +Urmia University,Urmia University,"دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ‏ایران‎",37.52914535,45.0488607694682 +Urmia University,"Urmia University, Urmia, Iran","دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ‏ایران‎",37.52914535,45.0488607694682 +"Ursinus College, Collegeville, PA","Ursinus College, Collegeville, PA","Ursinus College, East Main Street, Collegeville, Montgomery County, Pennsylvania, 19426, USA",40.1917705,-75.4568484 +Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309 +Utah State University,"Utah State University, Logan UT","Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309 +Utah State University,"Utah State University, Logan, UT 84322-4205, USA","Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309 +Varendra University,Varendra University,"department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ",24.3643231,88.6333105 +Varendra University,"Varendra University, Rajshahi, Bangladesh","department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ",24.3643231,88.6333105 +Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.768469187426 +Vienna University of Technology,Vienna University of Technology,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich",48.19853965,16.3698616762866 +Vignan University,Vignan University,"Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India",16.2329008,80.5475018 +Vignan University,"Vignan University, Andhra Pradesh, India","Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India",16.2329008,80.5475018 +Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.0367774,-75.342023320028 +Virginia Commonwealth University,Virginia Commonwealth University,"Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA",37.548215,-77.4530642444471 +Virginia Commonwealth University,"Virginia Commonwealth University, Richmond, VA, USA","Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA",37.548215,-77.4530642444471 +Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494 +Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Blacksburg","Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494 +Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Blacksburg, Virginia","Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494 +Virginia Tech Carilion Research Institute,Virginia Tech Carilion Research Institute,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA",37.2579548,-79.9423329131356 +"Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany","Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany","Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland",53.599482,9.93353435970931 +Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.8411007,4.32377555279953 +Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 1050 Brussels, Belgium","Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien",50.8223021,4.3967361 +"Vulcan Inc, Seattle, WA 98104","Vulcan Inc, Seattle, WA 98104","Vulcan Inc., 505, Downtown Seattle Transit Tunnel, Seattle Downtown, International District/Chinatown, Seattle, King County, Washington, 98191, USA",47.5980546,-122.3284865 +"Walt Disney Imagineering, USA","Walt Disney Imagineering, USA","Walt Disney Imagineering, 1401, Flower Street, Grand Central Creative Campus, Glendale, Los Angeles County, California, 91201, USA",34.1619174,-118.28837020278 +Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511 +Warsaw University of Technology,"Warsaw University of Technology, Poland","Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511 +Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107 +Waseda University,"Waseda University, Kitakyushu, Japan 808-0135","早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107 +Washington University,Washington University,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.6480445,-90.3099667 +Washington University,"Washington University, St. Louis, MO, USA","Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.6480445,-90.3099667 +Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.357757,-83.0628671134125 +Wayne State University,"Wayne State University, Detroit, MI 48202, USA","Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA",42.3656423,-83.0711533990367 +Wayne State University,"Wayne State University, Detroit, MI, USA","Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA",42.3656423,-83.0711533990367 +Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421 +"Weizmann Institute of Science, Rehovot, 76100, Israel","Weizmann Institute of Science, Rehovot, 76100, Israel","מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421 +West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355 +West Virginia University,"West Virginia University, Morgantown WV 26506, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355 +West Virginia University,"West Virginia University, Morgantown, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355 +West Virginia University,"West Virginia University, Morgantown, WV","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355 +West Virginia University,"West Virginia University, Morgantown, WV 26506, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355 +West Virginia University,"West Virginia University, Morgantown, WV, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355 +Western Kentucky University,Western Kentucky University,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA",36.9845317,-86.4576443016944 +Western Sydney University,Western Sydney University,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.8160848,151.00560034186 +Western Sydney University,"Western Sydney University, Parramatta, NSW 2150, Australia","Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.8160848,151.00560034186 +Wolfson College,Wolfson College,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK",51.7711076,-1.25361700492597 +Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.351428398184 +Wuhan University of Technology,"Wuhan University of Technology, Wuhan, China","武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.351428398184 +Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.5129109,-79.6664076152913 +Xi'an Jiaotong University,Xi'an Jiaotong University,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.2474949,108.978987508847 +Xi'an Jiaotong University,"Xi'an Jiaotong University, Xi'an, China","西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.2474949,108.978987508847 +Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127 +Xiamen University,"Xiamen University, Xiamen 361005, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127 +Xiamen University,"Xiamen University, Xiamen, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127 +Xiamen University,"Xiamen University, Xiamen, Fujian, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127 +Xiamen University,"Xiamen University, Xiamen, P. R. China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127 +Xiangtan University,Xiangtan University,"湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国",27.88707585,112.857109176016 +Xiangtan University,"Xiangtan University, Xiangtan, China","湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国",27.88707585,112.857109176016 +Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546 +Xidian University,"Xidian University, Xi an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546 +Xidian University,"Xidian University, Xi'an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546 +Xidian University,"Xidian University, Xi’an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546 +Yale University,Yale University,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA",41.25713055,-72.9896696015223 +Yaroslavl State University,Yaroslavl State University,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ",57.6252103,39.8845656 +Yeungnam University,Yeungnam University,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국",35.8365403,128.7534309 +Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248 +Yonsei University,"Yonsei University, 50 Yonsei-ro, SEOUL, Republic of Korea","연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248 +Yonsei University,"Yonsei University, 50 Yonsei-ro, Seodaemun-gu, SEOUL, Republic of Korea","연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248 +York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813 +York University,"York University, Toronto","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813 +York University,"York University, Toronto, Canada","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813 +Yunnan University,Yunnan University,"云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.05703205,102.700275254918 +Yunnan University,"Yunnan University, Kunming, P. R. China","云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.05703205,102.700275254918 +Zaragoza University,Zaragoza University,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España",41.6406218,-0.900793992168927 +Zhejiang Normal University,Zhejiang Normal University,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.13646725,119.637686517179 +Zhejiang Normal University,"Zhejiang Normal University, Jinhua, China","浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.13646725,119.637686517179 +Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677 +Zhejiang University,"Zhejiang University, Hangzhou, China","浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677 +Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.2931534,120.1620458 +Zhejiang University of Technology,"Zhejiang University of Technology, Hangzhou, China","浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.2931534,120.1620458 +Zhengzhou University,Zhengzhou University,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8088168,113.5352664 +Zhengzhou University,"Zhengzhou University, China","科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8088168,113.5352664 +Zhengzhou University,"Zhengzhou University, Zhengzhou, Henan 450052, China","科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8088168,113.5352664 +a The University of Nottingham Malaysia Campus,a The University of Nottingham Malaysia Campus,"The University of Nottingham Malaysia Campus, Jalan Broga, Bandar Rinching, Semenyih, Selangor, 43500, Malaysia",2.9438432,101.8736196 +any other University,any other University,"Northern Film School, Millennium Square, Steander, Woodhouse, Leeds, Yorkshire and the Humber, England, LS1 3DW, UK",53.8012316,-1.5476213 +college of Engineering,college of Engineering,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0110912,80.2354520862161 +of Cornell University,of Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428 +of bilkent university,of bilkent university,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323 +of the University of Notre Dame,of the University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727 +the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805 +the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +the Hong Kong Polytechnic University,"the Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269 +the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +the University of Queensland,"the University of Queensland, Brisbane, Qld, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836 +to Michigan State University,to Michigan State University,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA",42.7231021,-84.4449848597663 +university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ‏ایران‎",29.6284395,52.5181728343761 +university,"university, Shiraz, Iran","دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ‏ایران‎",29.6284395,52.5181728343761 +y National Institute of Advanced Industrial Science and Technology,y National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658 +"École Polytechnique Fédérale de Lausanne (EPFL), Switzerland","École Polytechnique Fédérale de Lausanne (EPFL), Switzerland","Bibliothèque de l'EPFL, Route des Noyerettes, Ecublens, District de l'Ouest lausannois, Vaud, 1024, Schweiz/Suisse/Svizzera/Svizra",46.5184121,6.5684654 diff --git a/scraper/reports/doi_domains.html b/scraper/reports/doi_domains.html new file mode 100644 index 00000000..48cd31ea --- /dev/null +++ b/scraper/reports/doi_domains.html @@ -0,0 +1 @@ +DOI Domains

DOI Domains

ieeexplore.ieee.org1846
link.springer.com388
dl.acm.org259
www.sciencedirect.com193
www.computer.org193
www.worldscientific.com18
arxiv.org15
www.ncbi.nlm.nih.gov14
www.crossref.org11
www.spiedigitallibrary.org9
onlinelibrary.wiley.com7
www.nature.com6
www.mitpressjournals.org5
mr.crossref.org5
jivp-eurasipjournals.springeropen.com4
www.tandfonline.com3
www.inderscience.com2
www.hindawi.com2
www.scitepress.org2
epubs.siam.org1
www.jstage.jst.go.jp1
annals-csis.org1
ora.ox.ac.uk1
www.emeraldinsight.com1
spiral.imperial.ac.uk:84431
autosoftjournal.net1
www.liebertpub.com1
\ No newline at end of file diff --git a/scraper/reports/doi_institutions.csv b/scraper/reports/doi_institutions.csv new file mode 100644 index 00000000..61467c23 --- /dev/null +++ b/scraper/reports/doi_institutions.csv @@ -0,0 +1,2171 @@ +,1637 +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore",37 +"Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece",24 +"Department of Electrical and Computer Engineering, National University of Singapore, Singapore",21 +"School of Computer Engineering, Nanyang Technological University, Singapore",19 +"Department of Automation, Tsinghua University, Beijing, China",16 +"South China University of Technology, Guangzhou, China",14 +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences",14 +"College of Computer Science and Technology, Zhejiang University, Hangzhou, China",14 +"School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China",13 +"Beijing University of Posts and Telecommunications, China",13 +"School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China",12 +"Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France",12 +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China",12 +"College of Computer Science, Sichuan University, Chengdu, China",12 +"College of Computer Science, Zhejiang University, Hangzhou, China",12 +"School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China",11 +"Department of Information Engineering and Computer Science, University of Trento, Trento, Italy",11 +"Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea",11 +"State Key Laboratory of Management and Control of Complex Systems, CASIA, Beijing, China",10 +"School of Computing, National University of Singapore, Singapore",10 +"University of Maryland, College Park",10 +"School of Computer Science and Engineering, Nanyang Technological University, Singapore",10 +"School of Computer Science and Technology, Tianjin University, Tianjin, China",10 +"Department of Computer Engineering, Kyung Hee University, South Korea",9 +"Dept. of Computer Science and Information Engineering, National Central University, Jhongli, Taiwan",9 +"Noblis, Falls Church, VA, U.S.A.",9 +"National University of Ireland Galway, Galway, Ireland",9 +"School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, South Korea",9 +"Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan",9 +"P.G. Demidov Yaroslavl State University, Yaroslavl, Russia",8 +"School of Electronic Information Engineering, Tianjin University, Tianjin, China",8 +"Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Bratislava, Slovakia",8 +"National Laboratory of Pattern Recognition, Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, Beijing, China",8 +"Department of Electronic and Information Engineering, The Hong Kong Polytechnic University",8 +"CAS Center for Excellence in Brain Science and Intelligence Technology; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China",8 +"Institute of Computer Science and Technology, Peking University, Beijing, P.R. China, 100871",8 +"School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China",8 +"State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China",8 +"Department of Computing, Imperial College London, London, U.K.",8 +"Samsung R&D Institute, China",8 +"Department of Computer Science and Engineering, Shanghai Jiao Tong University, China",8 +"IIIT-Delhi, India",7 +"National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, China",7 +"Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China",7 +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China",7 +"Stony Brook University, Stony Brook University, NY 11794, USA",7 +"CyLab Biometrics Center and the Department of Electrical and Computer Engineering (ECE), Carnegie Mellon University, Pittsburgh, USA",7 +"State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China",7 +"School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China",7 +"Department of Computer Science, Jiangnan University, No. 1800 LiHu Avenue, WuXi, China",7 +"Center for Automation Research, UMIACS, University of Maryland, College Park, 20740, United States of America",7 +"Beijing University of Posts and Telecommunications, Beijing, 100876, China",7 +"Visual Computing Group, Microsoft Research, Beijing, China",7 +"School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea",7 +"Samsung Advanced Institute of Technology, Korea",7 +"Indraprastha Institute of Information Technology Delhi, Delhi, India",7 +"Department of Electrical Engineering, KAIST, Daejeon, Korea",6 +"Colorado State University, Fort Collins",6 +"Department of Information Engineering and Computer Science, University of Trento, Italy",6 +"College of Information Technical Science, NanKai University, CITS, TianJin, China",6 +"SAIT India, Samsung India Software Operations Pvt. Ltd (SISO), Bangalore, India, 560093",6 +"State University of New York at Binghamton, USA",6 +"Computer Science, U.Illinois at Urbana Champaign, Urbana, United States",6 +"Department of Computer Science, Università degli Studi di Milano, Italy",6 +"College of Information Science and Engineering, Northeastern University, Shenyang, 110819, PR China",6 +"Advanced Digital Sciences Center, Singapore",6 +"School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA",6 +Shanghai Jiao Tong University,6 +"Dept. of Computer Science, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA",6 +"School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu, China",6 +"Key Lab of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China",6 +"University of Ljubljana, Ljubljana, Slovenia",6 +"University of Notre Dame, Notre Dame, IN, USA",6 +"School of Electronic and Information Engineering, Beihang University, Beijing, China",6 +"DIA, University of Trieste, Italy",6 +"Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China",6 +"School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China",6 +"Center for Machine Vision and Signal Analysis, University of Oulu, Finland",6 +"School of Information and Software Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China P.R.C",6 +"State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China",6 +"Institute of Automation, Chinese Academy of Sciences, China",6 +"Department of Automation, University of Science and Technology of China, Hefei, China",6 +"Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 117576, Singapore",6 +"IIT Guwahati, Guwahati, India",6 +"School of Software, Dalian University of Technology, Dalian, China",6 +"Department of Computer Science and Engineering, Varendra University, Rajshahi, Bangladesh",6 +"Department of Electronic Engineering, Tsinghua University, Beijing, China",6 +"Indraprastha Institute of Information Technology Delhi, New Delhi, India",6 +"Key Lab of Computing and Communication Software of Anhui Province, School of Computer Science and Technology, University of Science and Technology of China, Hefei, China, 230027",6 +"Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China",6 +"Department of Computing, The Hong Kong Polytechnic University, Hong Kong",6 +"Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay",6 +"School of Software, Dalian University of Technology, China 116620",6 +"School of Computer Science & Technology, Harbin Institute of Technology",6 +"Microsoft Res. Asia, Beijing, China",5 +"LUNAM Université, LIUM, Le Mans, France",5 +"School of Electronics and Information, Northwestern Polytechnical University",5 +"Electronics and Telecommunications Research Institute, Korea",5 +"Institute for Microsensors, Actuators and Systems, University of Bremen, Bremen, Germany",5 +"Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China, 100190",5 +"Institute of Automation, Chinese Academy of Sciences, Beijing, China",5 +"Nokia Research Center, Beijing",5 +"College of Computer Science, Zhejiang University of Technology, Hangzhou, China",5 +"Frontier Research Group, Samsung India Software Operations, India",5 +"Faculty of Information Technology, Beijing University of Technology, Beijing, China",5 +"Elektrik-Elektronik Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Türkiye",5 +"School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA",5 +IIIT-Delhi,5 +"School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea",5 +"Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China",5 +"State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Science, Beijing, 100190, China",5 +"Human Language Technology Center of Excellence, The Johns Hopkins University, Baltimore, MD, 21218, USA",5 +"Department of Electronic Engineering/Graduate School at Shenzhen, Tsinghua University, China",5 +"Dalian University of Technology, China",5 +Chinese Academy of Sciences,5 +"Nanyang Technological University, Singapore",5 +"College of Information Science and Technology, Beijing Normal University, Beijing, P.R. China",5 +"Visea İnovatif Bilgi Teknolojileri, ETGB Teknoparkı, Eskişehir, Türkiye",5 +"Ocean University of China, Department of Educational Technology, Qingdao, China",5 +"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China",5 +"Disney Research, UK",5 +"Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand",5 +"Department of Computer Science and Engineering, Michigan State University, East Lansing, MI",5 +"Telecommun. & Ind. Phys., CSIRO, Epping, NSW, Australia",5 +"Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney, New South Wales, Australia",5 +"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences",5 +"Pattern Recognition and Intelligent System Laboratory, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China",5 +"Artificial Vision Laboratory, National Taiwan University of Science and Technology, Taipei, Taiwan",5 +"Hangzhou Dianzi University, Hangzhou, China",5 +"Biometric Recognition Group - ATVS, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Avda. Francisco Tomas y Valiente, 11 - Campus de Cantoblanco - 28049, Spain",5 +"Queen Mary University of London, UK",5 +"Institute of Microelectronics, Tsinghua University, Beijing, China",5 +"Department of Computer Science and Engineering, National Institute of Technology, Durgapur, India",5 +"DUT-RU International School of Information & Software Engineering, Dalian University of Technology",5 +"Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia",5 +"The University of Queensland, Brisbane, Australia",5 +"Department of Information Science and Engineering, Ritsumeikan University, Shiga, Japan",5 +"Department of Automation, State Key Lab of Intelligent Technologies and Systems and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China",5 +"Chongqing Institute of Green and Intelligent Technology, CAS, Chongqing, 400714",5 +"School of Data and Computer Science, Sun Yat-Sen University, China",5 +"Centre of Development of Advanced Computing (CDAC) Mumbai, 400049, India",5 +"Chongqing Institute of Technology, China",5 +"Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China",5 +"Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Haidian District, Beijing, China",5 +"College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China",5 +"IBM China Research Laboratory, Beijing, China",5 +"Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy",5 +"Department of Computer Science, Xiamen University, Xiamen, P. R. China",5 +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798",5 +"The Institute of Optics and Electronics Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Chengdu, China",5 +"Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA",5 +"School of Computer and Information, Hefei University of Technology, Hefei, China",5 +"NICTA, PO Box 6020, St Lucia, QLD 4067, Australia",5 +"College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, China",5 +"Department of Electronics and Telecommunication Engineering, Don Bosco Institute of Technology, Kurla (W), Mumbai, India",5 +"Dept. of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA",5 +"R V College of Engineering, Department of Computer Science and Engineering, Bangalore, India",5 +"Centre for Machine Vision Research, University of Oulu, Finland",5 +"Knowledge Technology Institute, Department of Informatics, University of Hamburg, Hamburg, Germany",5 +"School of Electrical Engineering Department, Korea University, Rep. of Korea",5 +"Inst. Nat. des Telecommun., Evry, France",5 +"National Science and Technology Development Agency, National Electronics and Computer Technology Center, Pathum Thani, 12120, Thailand",4 +"Dalian University of Technology, Dalian, Liaoning, 116024, China",4 +"School of Engineering & Applied Science, Ahmedabad University, Gujarat, India 380009",4 +Shanghai Jiao Tong University School of Electronic Information and Electrical Engineering,4 +"University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia",4 +"The Australian Centre for Visual Technologies, The university of Adelaide",4 +"School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, 6140, New Zealand",4 +"National Taiwan University, Taipei, Taiwan",4 +"School of Computer Science & Technology, Nanjing University of Science and Technology, China",4 +"Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ- 08028",4 +"School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China, 710049",4 +"Media Integration and Communication Center - MICC, University of Florence, Italy",4 +"School of Computer Science, University of the Witwatersrand, Johannesburg, South Africa",4 +"Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland",4 +"School of Computer Science and Telecommunication Engineering, Jiangsu University, ZhenJiang, Jiangsu, 212013, P. R. China",4 +Seoul Nat'l Univ.,4 +"School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China 100876",4 +"Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, China",4 +"Institute of Computer Science and Technology, Peking University, Beijing, China, 100871",4 +"Department of Electronic Engineering, Tsinghua University, Beijing 100084, China",4 +"School of Computer Science and Engineering, Nanjing University of Science and Technology, China",4 +"Faculty of electrical engineering, University of Ljubljana, Slovenia",4 +"Department of Information Management and Security, Korea University",4 +"Pattern Recognition and Intelligent System Lab (PRIS) Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China",4 +"Institute of Intelligence Information Processing, Xidian University, Xi¿an, China, 710071",4 +"Research Center for Information Technology Innovation (CITI), Academia Sinica, Taipei, 115 Taiwan",4 +"Univ. Orléans, INSA CVL, PRISME EA 4229, Bourges, France",4 +"Institute of Systems and Robotics (ISR), University of Coimbra, Portugal",4 +"School of Electrical and Electronics Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, SEOUL, Republic of Korea",4 +"School of Information Science and Engineering, Southeast University, Nanjing, 210096, P.R. China",4 +"Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea",4 +"INRIA Grenoble Rhone-Alpes, FRANCE",4 +"Department of Automation, Shanghai Jiao Tong University, Shanghai, China",4 +"North China Electric Power University Department of Electronic and Communication Engineering Baoding, Hebei, China",4 +Seoul National University,4 +"School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand",4 +"Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China",4 +"School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guangxi Guilin, China",4 +"University of Portsmouth, United Kingdom",4 +"Bilgisayar Mühendisliği, Başkent Üniversitesi, Ankara, Türkiye",4 +Universidad Autonoma de Madrid,4 +"University of Oulu, Machine Vision Group, PO Box 4500, 90014, Finland",4 +"Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea",4 +"Center for Computer Vision and Department of Mathematics, Sun Yat-Sen University, Guangzhou, China",4 +"Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland",4 +"Institute of Computer, Hangzhou Dianzi University, China",4 +"State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No.95 East Road of Zhongguancun, Beijing, China",4 +"Dept. of Computing, Curtin University GPO Box U1987, Perth, WA 6845",4 +"Department of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China",4 +"Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China",4 +"Dalle Molle Instituite for Artificial Intelligence (IDSIA), Lugano, Switzerland",4 +"Dept of Electrical and Computer Engineering, University of Calgary, Calgary, CANADA",4 +"Department of Computer Science, University of Colorado at Colorado Springs",4 +"EECS Department, University of Kansas, Lawrence, KS",4 +"Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190",4 +"The Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia",4 +"School of Information and Communication, Guilin University of Electronic Technology Guangxi Guilin, China",4 +"College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, P.R. China",4 +Department of Mathematics and Computer Science University of Basel,4 +"Xi'an Jiaotong University, Xi'an, China",4 +"Department of Information Engineering, University of Brescia, Via Branze, 38 - 25123, Italy",4 +"Idiap Research Institute, Martigny, Switzerland",4 +"Department of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China",4 +"Norwegian Biometrics Laboratory, NTNU - Gj⊘vik, Norway",4 +"Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K.",4 +"Beijing Key Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing 100081, China",4 +"Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation of China, Xidian University, Xi’an, China",4 +"VUB-NPU Joint AVSP Research Lab, Vrije Universiteit Brussel (VUB), Deptartment of Electronics & Informatics (ETRO), Pleinlaan 2, 1050 Brussel, Belgium",4 +"National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu, China",4 +"State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China",4 +"Department of Electronic and Electrical Engineering, Pohang University of Science and Technology (POSTECH), South Korea",4 +"Graduate School of Information Science, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma-shi, Nara, Japan",4 +"Department of Computer Science, University of North Carolina, Charlotte, NC, USA",4 +"Institute of Machine Learning and Systems Biology, College of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, China",4 +"Intel Labs, Hillsboro, Oregon, USA",4 +"Smart Surveillance Interest Group, Department of Computer Science, Universidade Federal de Minas Gerais, Minas Gerais, Brazil",4 +"Department of Automation, State Key Lab of Intelligent Technologies and Systems, and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China",4 +"Université de Lyon, CNRS, UMR5205, F-69622, France",4 +"Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece",4 +"Shanghai University School of Communication and Information Engineering Shanghai, China",4 +"University of Chinese Academy of Sciences, Beijing, China",4 +"Computer Science and Engineering, Pennsylvania State University, PA, USA SiliconScapes, LLC, PA, USA",4 +"Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China",4 +"Queen Mary University of London, London",4 +"Dept. of Computer Engineering, Keimyung University, Daegu, Korea",4 +"Department of Cognitive Science, Xiamen University, Xiamen, Fujian, China",4 +"State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China",4 +"Université de Lyon, CNRS, UMR5205, F-69622, France",4 +"School of Information and Communication Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China",4 +"DII, University of Brescia, Brescia, Italy",4 +"Institute for Creative Technologies, University of Southern California",4 +"University of California, San Diego, USA",4 +"The University of Queensland, School of ITEE, QLD 4072, Australia",4 +"Department of Computer Science, University of York, UK",4 +"Department of Automation, State Key Lab of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China",4 +"Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan",4 +"SRI International, Menlo Park, USA",4 +"Université de Lyon, CNRS, France",4 +"School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing, Soochow University, Suzhou, China",4 +"Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China",4 +"Computer Science and Engineering Department, University of South Florida, Tampa, FL, USA",4 +"Advanced Technologies Application Center 7a #21406 b/ 214 and 216, P.C. 12200, Siboney, Playa, Havana, Cuba",4 +"Çoğulortam İşaret İşleme ve Örüntü Tanıma Grubu, İstanbul Teknik Üniversitesi, İstanbul, Türkiye",4 +"School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China",4 +"Department of Electrical and Computer Engineering, Beckman Institute Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, USA",4 +"National Laboratory of Pattern Recognition, CASIA, Center for Research on Intelligent Perception and Computing, CASIA, Center for Excellence in Brain Science and Intelligence Technology, CAS, University of Chinese Academy of Sciences, Beijing, 100049, China",4 +"Machine Learning and Cybernetics Research Center, School of Computer Science and Engineering, South China University of Technology, 510006, Guangzhou, China",4 +"IC Design Group, CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India",4 +"College of Information Engineering, Yangzhou University, Yangzhou, China",4 +"Department of Mathematics, Intelligent Data Center, Sun Yat-sen University, Guangzhou, China",4 +"State Key Laboratory of Intelligent Technology and Systems Tsinghua National Laboratory for Information Science and Technology Department of Electronic Engineering, Tsinghua University, Beijing 100084, China",4 +"National Laboratory of Radar Signal Processing, Xidian University, Xi’an, China",4 +"Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia",4 +"Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina Del Rey, 90292, USA",4 +"Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia",4 +"National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China",4 +"Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA",4 +University of Electronic Science and Technology of China,4 +National Taiwan University of Science and Technology,4 +"Samsung R&D Institute, Bangalore, India",4 +"Yaroslavl State University, Yaroslavl, Russia",4 +"Department of Electrical and Computer Engineering, Seoul National University",4 +"School of Electronics and Information Technology, Sun Yat-sen University, China",4 +"University of Tunis, The National Higher school of engineers of Tunis (ENSIT), Laboratory of Signal Image and Energy Mastery, LR13ES03 (SIME), Tunis, Tunisia",4 +"College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China",4 +"Department of Computer Science and Engineering, Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea",4 +"University of Maryland, College Park, Maryland 20740 United States",4 +"Face Aging Group, University of North Carolina, Wilmington, NC, USA",4 +"Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China",4 +"North Carolina State University, Department of Electrical and Computer Engineering, Raleigh, United States of America",4 +"Institute of Computer Science and Technology, Peking University, Beijing, China",4 +"College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia",4 +"Media Technology Lab, Huawei Technologies Co., Ltd",4 +"Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, China",4 +"National University of Defense Technology, Changsha, China",4 +"Hewlett-Packard Laboratories, Hewlett-Packard Company, Palo Alto, CA, USA",4 +"School of Computer Science and Engineering, Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China",4 +"School of Electronic and Computer Engineering, Peking University",4 +"Centre for Vision, Speech and Signal Processing University of Surrey, Guildford, UK",4 +"Shenzhen Key Laboratory of Information Science and Technology, Shenzhen Engineering Laboratory of IS&DCP and the Department of Electronic Engineering, Graduate School at Shenzhen, Tsinghua University, Beijing, China",4 +"Department of Computer Graphics and Multimedia, University of Brno, Brno, Czech Republic",4 +"Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain",4 +"Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China",4 +"Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, People's Republic of China",4 +"Video/Image Modeling and Synthesis Laboratory, Department of Computer and Information Sciences, University of Delaware, Newark, DE",4 +"Multimedia Processing Lab., Samsung Advanced Institute of Technology (SAIT), Suwon-si, Korea",4 +"Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA",4 +"Osaka university, Japan",4 +"IBJ, Inc., Tokyo, Japan",4 +"Faculty of Engineering, Ain Shams University, Computer and Systems Engineering Department, Cairo, Egypt",4 +"School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China",4 +College of electronic and information engineer Changchun University of Science and Technology Changchun China,4 +"School of Electrical, Computer and Telecommunication Engineering, University of Wollongong, NSW 2522, Australia",4 +"The University of Texas at Austin Austin, Texas, USA",4 +"Amity University Uttar Pradesh, Noida",4 +"Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University, Seoul, South Korea",4 +"Computer Science and Engineering Dept., University of Nevada Reno, USA",4 +"Dept of Computer Engineering, Kyung Hee University, Yongin-si, South Korea",4 +"Computational Biomedicine Lab, Department of Computer Science, University of Houston, TX, USA",4 +"Department of Information and Control, B-DAT Laboratory, Nanjing University of Information and Technology, Nanjing, China",4 +"State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China",4 +"State Key Laboratory of Robotics, Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang, 110016, China",4 +"Hefei University of Technology, Hefei, China",4 +"Sharp Laboratories of America, Camas, WA",4 +"National University of Singapore, Singapore",4 +"Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, Netherlands",4 +"Center for Biometrics and Security Research and the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China",4 +"Geintra Research Group, University of Alcala",4 +"National Engineering Research Center for Multimedia Software, Computer School, Wuhan University, Wuhan, China",4 +"Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, 46150 Selangor, Malaysia",4 +"Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing, China",4 +"Department of Computer Science, Hong Kong Baptist University, Hong Kong",4 +"Beijing, Haidian, China",4 +"Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China",4 +"School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.",4 +"Institute for Human-Machine Communication, Technische Universität München, Germany",4 +"School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia",4 +"Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada",4 +"Faculty of Engineering Science, Department of Systems Innovation, Arai Laboratory at Osaka University, Japan",4 +"School of Electronic Engineering, Xidian University, Xi'an, China",4 +"Biometric Recognition Group - ATVS, EPS, Universidad Autonoma de Madrid, Avda. Francisco Tomas y Valiente, 11 - Campus de Cantoblanco - 28049 Madrid, Spain",4 +"Department of MathematicsIntelligent Data Center, Sun Yat-sen University, Guangzhou, China",4 +"University of Trento, Italy",4 +"Centre for Imaging Sciences, The University of Manchester, Manchester, United Kingdom",4 +"National Laboratory of Pattern Recognition, CASIA, University of Chinese Academy of Sciences, Beijing, 100049, China",4 +"School of Electronic and Electrical Engineering, Shanghai Jiao Tong University, National Engineering Lab on Information Content Analysis Techniques, GT036001 Shanghai, China",4 +"State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences",4 +"Department of Informatics, University of Oslo, Oslo, Norway",4 +"Speech, Audio, Image and Video Technology (SAIVT) Laboratory, Queensland University of Technology, Australia",4 +"Technicolor, France",4 +"School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China",4 +"School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China",3 +"CyLab Biometrics Center and the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA",3 +"Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beersheba, Israel",3 +"National Laboratory of Pattern Recognition, Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China",3 +"Vision Lab at Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA",3 +"IBM T. J. Watson Research, Yorktown Heights, NY, USA",3 +"Computer Science and Technology, University of Science and Technology of China",3 +"School of Information Technologies, University of Sydney, Australia",3 +"Department of Electronic Engineering, The Chinese University of Hong Kong, China",3 +"Key Laboratory of Machine Perception (Ministry of Education) Engineering Lab on Intelligent Perception for Internet of Things (ELIP), Shenzhen Graduate School, Peking University, China",3 +"School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, CO 130012 China",3 +"Center for Cognitive Ubiquitous Computing, Arizona State University, USA",3 +"School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China",3 +"Institute of Computing, State University of Campinas, Campinas, Brazil",3 +"Guangdong Key Laboratory of Data Security and Privacy Preserving, Guangdong Engineering Research Center of Data Security and Privacy Preserving, College of Information Science and Technology, Jinan University, Guangzhou, China",3 +"State Key Laboratory of Intelligent Technology and Systems, Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R. China",3 +"CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei 230027, China",3 +"Algılayıcılar, Görüntü ve Sinyal İşleme Grubu, HAVELSAN A.Ş. Ankara, Türkiye",3 +"C & C Innovation Research Labs, NEC Corporation, Nara, Japan",3 +"Dept. of Audio Visual Technology, Technische Universitt, Ilmenau, Germany",3 +"Imperial College London, UK",3 +"School of Electrical and Computer Engineering, Royal Melbourne Institute of Technology University , Melbourne, Australia",3 +"School of Information Technology and Electrical Engineering, The University of Queensland, Australia",3 +"Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea",3 +"Institute for Infocomm Research, 1 Fusionpolis Way, #21-01, Connexis Singapore 138632, Singapore",3 +"School of Computer Science and Engineering, South China University of Technology, China",3 +"Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA",3 +"Dept. of Electrical Engineering and Comp. Sc., Northwestern University, Evanston, IL 60208, USA",3 +"School of Electronics and Computer Science, University of Southampton, Southampton, U.K.",3 +"School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China",3 +"Program of Electrical Engineering, COPPE/UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ CEP, Brazil",3 +"Bilgisayar Mühendisliği, İstanbul Teknik Üniversitesi, İstanbul, Turkey",3 +"Department of Electrical and Computer Engineering and the Center for Automation Research, UMIACS, University of Maryland, College Park, USA",3 +"Department of Computer Engineering, Kyung Hee University, Seoul, South Korea",3 +"Michigan State University, United States of America",3 +"School of Engineering, University of Baja California, Tijuana, México",3 +"Department of Computer Science and Engineering, University of South Florida, Tampa, Florida 33620",3 +"KTH Royal Institute of Technology, 100 44 Stockholm, Sweden",3 +"School of Software, Huazhong University of Science and Technology, Wuhan, China",3 +"Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA",3 +"School of Computer Science, Center for Optical Imagery Analysis and Learning (OPTIMAL)",3 +"Department of Computing, Curtin University, Perth WA 6102, Australia",3 +"Department of Systems and Computing, Federal University of Campina Grande, Av. Apríigio Veloso, 882, 58429-900 Campina Grande, PB, Brazil",3 +"Institute of Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany",3 +"Universidade Federal do Rio de Janeiro, Cx.P. 68504, Rio de Janeiro, RJ, CEP 21945-970, Brazil",3 +"R&D Centre Algoritmi, School of Engineering, University of Minho, Portugal",3 +"National Laboratory for Parallel and Distributed Processing, School of Computer, College of Computer, National University of Defense Technology, Changsha, China",3 +"Department of Computer and Information Science, Temple University, Philadelphia, PA, 19122, USA",3 +"Department of Control and Computer Engineering, Politecnico di Torino, Italy",3 +"Key Laboratory of System Control and Information Processing MOE, Department of Automation, Shanghai Jiao Tong University",3 +"College of Computer Science, Zhejiang University, China",3 +"Institute of Industrial Information Technology (IIIT), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany",3 +"School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China",3 +"Institute for Electronics, Signal Processing and Communications (IESK), Otto-von-Guericke-University Magdeburg, D-39106, P.O. Box 4210 Germany",3 +"Institute for Human-Machine Communication, TU München, Theresienstrae 90, 80333 München, Germany",3 +"School of Computer Science and Technology, Harbin Institute of Technology, China",3 +"Oak Ridge National Laboratory, USA",3 +"Center for Research in Intelligent Systems, University of California, Riverside Riverside, CA 92521-0425, USA",3 +"Department of Electrical and Computer Engineering, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Canada",3 +"Elektrik ve Elektronik Mühendisliği Bölümü, Eskişehir Osmangazi Üniversitesi, Türkiye",3 +"Department of Computer Science, Zhejiang University, Hangzhou, China",3 +"Software Solution Laboratory, Samsung Advanced Institute of Technology, Suwon-si, South Korea",3 +Rice University,3 +"Department of electronic engineering, Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China",3 +"Centre of Informatics, Federal University of Pernambuco, Recife-PE, Brazil. Bruno J. T. Fernandes is also with the Polytechnic School, University of Pernambuco, Brazil",3 +"Computer Vision Laboratory, ETH Zurich, Sternwartstrasse 7, 8092, Switzerland",3 +"VNU HCMC, University of Science, Ho Chi Minh City, Vietnam",3 +"Department of Electrical and Computer Engineering, Peking University, Beijing, China",3 +"Instrumentation, IT and Systems Lab IRSEEM Rouen, FR",3 +"Aristotle University of Thessaloniki, Greece",3 +"School of Automation, Northwestern Polytechnical University, Xi’an, China",3 +"Department of Computer Science and Engineering, Arizona State University, Tempe, AZ, USA",3 +"College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China",3 +"Center for Research on Intelligent Perception and Computing, Institute of Automation, National Laboratory of Pattern Recognition, Chinese Academy of Sciences",3 +"National Laboratory of Pattern Recognition CAS Center for Excellence in Brain Science and Intelligence Technology Institute of Automation, Chinese Academy of Sciences, 100190, China",3 +"Univ. Bordeaux, LaBRI, PICTURA, UMR 5800, F-33400 Talence, France",3 +"The Univ of Hong Kong, China",3 +"Advanced Technologies Application Center (CENATAV), 7A ♯21406 Siboney, Playa, P.C.12200, Havana, Cuba",3 +"GIPSA-Lab, Grenoble, France",3 +"Samsung Research and Development Institute Bangalore Pvt Ltd., Bangalore, India",3 +"Inst. of Autom., Shanghai Jiao Tong Univ., China",3 +"Department of Computer Science, New Jersey Institute of Technology, Newark, USA",3 +"State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China",3 +"Department of Electrical and Electronic Engineering, Imperial College London, London, U.K.",3 +"Center for Cognitive Ubiquitous Computing (CUbiC), Arizona State University, Tempe, AZ, USA",3 +"Department of Computing, Curtin University, Perth WA, Australia",3 +SUNY Buffalo,3 +"Graduate School of System Design Tokyo Metropolitan University Tokyo, Japan",3 +"Bilgisayar Mühendisliği Bölümü, TOBB Ekonomi ve Teknoloji Üniversitesi, Ankara, Türkiye",3 +"Intelligent Data Center, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China",3 +"Indian Institute of Information Technology at Allahabad, Allahabad, India",3 +"Face Aging Group, Computer Science Department, UNCW, USA",3 +"Department of Computer Science and Digital Technologies, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, U.K.",3 +"Faculty of Information Technology, University of Technology, Sydney, Australia",3 +"Department of Computer Science and Engineering, Visual Learning and Intelligence Group, IIT Hyderabad, Hyderabad, India",3 +"School of Computing, Communications and Electronics, University of Plymouth, UK",3 +"Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA",3 +"University of California San Diego, United States of America",3 +"Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, China",3 +"Singapore University of Technology and Design, Singapore",3 +"School of Information Science and Technology, Xiamen University, Xiamen, P. R. China",3 +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan",3 +"School of Information Technology and Electrical Engineering, The University of Queensland",3 +"Center for Automation Research, UMIACS University of Maryland, College Park, MD 20742",3 +"School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, U.K.",3 +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore",3 +"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia",3 +"Department of Computer Science, University of Hamburg, Germany",3 +"Peking University, Beijing, China",3 +"Department of Computer ScienceMultimedia Processing Laboratory, National Tsing Hua University, Hsinchu, Taiwan",3 +"West Virginia University, Lane Dept. of CSEE, Morgantown, WV",3 +University of California San Diego,3 +"School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China",3 +"School of Information Technologies, The University of Sydney, NSW 2006, Australia, Sydney",3 +"Department of Electrical Engineering, University of Windsor, Ontario, Canada",3 +"School of Information and Communication Engineering, Beijing University of Posts and Telcommunications, Beijing, China",3 +"INRIA Grenoble Rhône-Alpes Research Center, 655 avenue de l'Europe, 38 334 Saint Ismier Cedex, France",3 +"National Institutes of Health, Bethesda, Maryland 20892",3 +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA",3 +"Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, South Korea",3 +"Department of Computing, The Hong Kong Polytechnic University, China",3 +Harvard University,3 +"School of Computing and Information Sciences, Florida International University, Miami, FL",3 +"College of Electronic Information and Automation, Civil Aviation University of China, Tianjin",3 +"Department of Automation, Tsinghua University, 100084 Beijing, China",3 +"NICTA, Canberra ACT, Australia and CECS, Australian National University, Australia",3 +"Research Center of Intelligent Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R China",3 +"UtopiaCompression Corporation, 11150 W. Olympic Blvd, Suite 820, Los Angeles, CA 90064, USA",3 +"Laboratoire des Systèmes de Télécommunication et Ingénierie de la Décision (LASTID) Université Ibn Tofail BP 133, Kenitra 14000, Maroc",3 +"Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7222, F-75005, Paris, France",3 +"Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan",3 +"School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China",3 +University of Wisconsin - Madison,3 +"Mines-Télécom/Télécom Lille, CRIStAL (UMR CNRS 9189), Villeneuve d'Ascq, France",3 +"Kyung Hee University, Korea",3 +"Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina",3 +"Stony Brook University, Stony Brook, NY 11794, USA",3 +"University of Delaware, Newark, 19716, USA",3 +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Adenauerring 4, 76131, Germany",3 +"University at Buffalo, The State University of New York, Buffalo, NY 14203, USA",3 +UIUC,3 +"Computational Biomedicine Lab, Department of Computer Science, University of Houston, 4800 Calhoun Rd., TX, 77004, USA",3 +"Pattern Recognition and Intelligent Systems Laboratory, Beijing University of Posts and Telecommunications, Beijing, China",3 +"Laboratory of Intelligent Recognition and Image Processing, School of Computer Science and Engineering, Beihang University, 100191, Beijing, China",3 +"Face Aging Group, UNCW",3 +"College of Computer Science and Technology, Xinjiang Normal University, Urumchi, 830054, China",3 +"School of Information Technology, Deakin University, Geelong, VIC 3216, Australia",3 +"Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece",3 +"University of Southern California, Institute for Robotics and Intelligent Systems, Los Angeles, CA 90089, USA",3 +"Computer Science, University of Houston, Texas 77004, United States of America",3 +"School of Communication and Information Engineering, Beijing University of Posts and Telecommunications, Beijing, China",3 +"Department of Computer Science and Technology, Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China",3 +"Department of Computer Science and Engineering, Michigan State University, USA",3 +"Tsinghua University, Beijing,China",3 +"Media & Inf. Res. Labs., NEC Corp., Kanagawa, Japan",3 +"Department of Electronic Engineering, Shanghai Jiao Tong University, China",3 +"Department of Computer Science and TechnologyState Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China",3 +"School of Software, Tsinghua University, Beijing, P. R. China",3 +"Research Center of Intelligent Robotics Shanghai Jiao Tong University, Shanghai, 200240, P.R. China",3 +"Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences",3 +"School of Software, University of Technology Sydney, New South Wales, Australia",3 +"School of Telecommunications Engineering, Xidian University, Xi’an, China",3 +"Department of Computer Science, Shenzhen Graduate School, Harbin Institute of Technology, Guangdong 518055, China",3 +"Carnegie Mellon University, Pittsburgh, PA, USA",3 +"Azbil Corporation 1-12-2, Kawana, Fujisawa-shi, 251-8522, Japan",3 +"Graduate School of Information Sciences, Tohoku University, 6-6-05., Aramaki Aza Aoba., Sendai-shi., 980-8579., Japan",3 +"Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan",3 +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China",3 +"Institute for Electronics, Signal Processing and Communications (IESK) Otto-von-Guericke-University Magdeburg D-39016 Magdeburg, P.O. Box 4210 Germany",3 +"Department of Computer, the University of Suwon, Korea",3 +"Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany",3 +"Department of Electrical and Computer Engineering, Florida Institute of Technology, Melbourne, USA",3 +"Dept. of Computer Science and Engineering, St. Joseph's College of Engineering and Technology, Palai, Kerala, India",3 +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",3 +"Department of Computer Science and Engineering, Michigan State University, East Lansing 48824, USA",3 +"Centre for Vision, Speech and Signal Processing, University of Surrey, UK",3 +"School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China",3 +"Department of Electrical Engineering, Indian Institute of Technology Kanpur, PIN 208016, Uttar Pradesh, India",3 +"Dept. of Computer Science and Electrical Engineering, University of Missouri-Kansas City, MO, USA",3 +"University of North Carolina Wilmington, USA",3 +"Shenzhen Key Laboratory of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China",3 +"Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, Beijing 100876, China",3 +"Visual Media Computing Lab, Department of Multimedia and Graphic Arts, Cyprus University of Technology, Limassol, Cyprus",3 +"Department of Computer Science, Computational Biomedicine Laboratory, University of Houston, Houston, TX, USA",3 +"Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil",3 +"Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China",3 +"Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland",3 +"Australian Centre for Field Robotics University of Sydney, 2006, Australia",3 +"Université de Lyon, Laboratoire d’InfoRmatique en Image et Systèmes d’information, Centre National de Recherche Scientifique 5205, Ecole Centrale de Lyon, France",3 +"Department of Computer ScienceFace Aging Group Research Laboratory, Institute for Interdisciplinary Studies in Identity Sciences, University of North Carolina at Wilmington, Wilmington, NC, USA",3 +"School of Software, Tsinghua University, Beijing, China",3 +"Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA",3 +Center for Research on Intelligent Perception and Computing,3 +"UC Merced, USA",3 +"Centre for Quantum Computation & Information Systems, Faculty of Engineering and IT, University of Technology, Sydney, 235 Jones Street, Ultimo, NSW, Australia",3 +"Samsung Research Center-Beijing, SAIT China Lab Beijing, China",3 +"IT - Instituto de Telecomunicações, University of Beira Interior, Portugal",3 +"Center for Cognitive, Connected & Computational Imaging, College of Engineering & Informatics, NUI Galway, Ireland",3 +"Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany",3 +"Institute of Information Science, Beijing jiaotong University, Beijing, China",3 +"Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an, China",3 +"Center for Automation Research, University of Maryland, College Park, 20742, USA",3 +"Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482, Germany",3 +"Dalian University of Technology, School of Software Tuqiang St. 321, Dalian, 116620, China",3 +"Department of Computer Science, University of Central Florida, Orlando, 32816, United States of America",3 +"Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China",3 +"College of Computer Science and Technology, Jilin University, Changchun, China",3 +"Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China",3 +"University of Nottingham, Ningbo China",3 +"National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University Chengdu, 610065, China",3 +"Institute of Forensic Science, Ministry of Justice, Shanghai 200063, China",3 +"Department of Information Engineering, University of Florence, Florence, Italy",3 +"Dept. of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan",3 +"West Virginia University, Morgantown, WV, USA",3 +"EUP Mataró, Spain",3 +Université du Québec à Chicoutimi (UQAC),3 +"Dept. of Computer Sciences, ASIA Team, Moulay Ismail University, Faculty of Science and Techniques, BP 509 Boutalamine 52000 Errachidia, Morocco",3 +"School of Electrical and Electronic Engineering, Singapore",3 +"Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China",3 +"Advanced Technologies Application Center, 7a #21406 b/ 214 and 216, P.C. 12200, Playa, Havana, Cuba",3 +"Artificial Vision Laboratory, National Taiwan University of Science and Technology",3 +"Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India",3 +"Key Laboratory of Machine Perception (Ministry of Education), Engineering Lab on Intelligent Perception for Internet of Things (ELIP), Shenzhen Graduate School, Peking University, China",3 +"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China",3 +"Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China",3 +"State Key Laboratory of Management and Control for Complex Systems, Institute of Automation Chinese Academy of Sciences, Beijing, China 100190",3 +"Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong",3 +"Bilgisayar Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye",3 +Sharif University of Technology,3 +"Department of Computer Science and Engineering, National Institute of Technology Uttarakhand, Srinagar Garhwal, India",3 +"Dept. of Mediamatics, Delft Univ. of Technol., Netherlands",3 +"Disney Research Pittsburgh, Pittsburgh, PA, USA",3 +Electrical and Computer Engineering,3 +"School of Electronics and Information Engineering, Tianjin University, Tianjin, China",3 +"Cornell University, USA",3 +"Department of Information Science and Engineering, Changzhou University, Changzhou, China",3 +"International Center of Excellence on Intelligent Robotics and Automation Research, National Taiwan University, Taiwan",3 +"Department of Informatics, University of Thessaloniki, 54124, Greece",3 +"Department of Electrical and Computer Engineering, University of Dayton, Ohio, USA",3 +"Department of Electrical and Computer Engineering, University of Windsor, Canada",3 +"Graduate School of Shenzhen, Tsinghua University, Beijing, China",3 +"Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Korea",3 +"Institute of Computational Science, University of Lugano, Switzerland",3 +"Norwegian Biometrics Laboratory, NTNU - Gjøvik, Norway",3 +"Institute of Technology and Science, Tokushima University, 2-1 Minamijyousanjima, 770-8506, Japan",3 +"LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, France",3 +"National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China",3 +"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, China",3 +"Multimedia and Intelligent Software Technology Beijing Municipal Key Lab., College of Computer Science, Beijing University of Technology Beijing, China.",3 +"Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany",3 +Korea University,3 +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, NSW, Australia",3 +"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China",3 +"Shenzhen Key Laboratory of Broadband Network and Multimedia, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China",3 +"TCS Research, New Delhi, India",3 +"Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia",3 +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China",3 +"Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY",3 +"School of Electronics and Computer Science, University of Southampton, United Kingdom",3 +"Department of Computer Science, University of Massachusetts Amherst, Amherst MA, 01003",3 +"Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi’an, China",3 +"Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Technická 2 Czech Republic",3 +"Computer Laboratory, University of Cambridge, United Kingdom",3 +"Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, USA",3 +"South China University of Technology, China",3 +"Visionlab, Heriot-Watt University, Edinburgh, UK",3 +"Institute for Infocomm Research, A*STAR, Singapore",3 +"Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea",3 +"Xerox Research Center, Webster, NY, USA",3 +"Department of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Tyne and Wear",3 +"Institute of Applied Computer Science, Kiel University of Applied Sciences, Kiel, Germany",3 +"School of Creative Technologies, University of Portsmouth, Portsmouth, POI 2DJ, UK",3 +"Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, France",3 +"Faculty of Electronic Information and Electrical Engineering, School of Information and Communication Engineering, Dalian University of Technology, Dalian, China",3 +"Image Processing Center, Beihang University, Beijing, China",3 +"Affectiva Inc., Waltham, MA, USA",3 +"Department of Electronics and Communication Engineering, Sun Yat-Sen University, Guangzhou, China",3 +"Department of Computer Science, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea",3 +"Dept. of Electrical and Computer Engineering & Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada",3 +"Centre for Vision, Speech and Signal Processing, University of Surrey, Surrey, UK",3 +"Computer Vision and Image Processing Lab, Institute for Integrated and Intelligent Systems, Griffith University, Australia",3 +"Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA",3 +"Institute of Software, College of Computer, National University of Defense Technology, Changsha, Hunan, China, 410073",3 +"Department of Electrical and Computer Engineering, Northeastern University, Boston, USA, 02115",3 +"AltumView Systems Inc., Burnaby, BC, Canada",3 +Sapienza University of Rome,3 +"Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences",3 +"Computer Vision Lab, Sungkyunkwan University Suwon, South Korea",3 +"The University of Tokyo, Japan",3 +"Department of Computer Science, Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany",3 +"Faculty of Engineering, Shinshu University, Nagano, Japan",3 +"Institute for Creative Technologies, University of Southern California, 12015 E Waterfront Dr, Los Angeles, CA, USA",3 +"Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C",3 +"Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23529",3 +"Center for Research of E-life DIgital Technology (CREDIT), Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan",3 +"Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea",3 +"E-Comm Research Lab, Infosys Limited, Bangalore, India",3 +"College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China",3 +"National Laboratory of Pattern Recognition, Center for Biometrics and Security Research, Institute of Automation, Chinese Academy of Sciences, Beijing, China",3 +"School of Computer Science and Software Engineering University of Wollongong, Australia",3 +"Phonexia, Brno-Krlovo Pole, Czech Republic",3 +"Expert Systems, Modena, Italy",3 +"Chair of Complex & Intelligent Systems, University of Passau, Passau, Germany",3 +"Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden",3 +"Laboratory for Intelligent and Safe Automobiles, University of California, San Diego, USA",3 +Toyota Research Institute,3 +"University of California, Merced",3 +"Image and Video Research Lab, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD 4001, Australia",3 +"School of Computer Science and Engineering, Nanjing University of Science and Technology",3 +"Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, Tonantzintla, Puebla, Mexico",3 +"NLPR, Institute of Automation, Chinese Academy of Sciences",3 +"Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100190, China",3 +"Télécom Lille, CRIStAL UMR (CNRS 9189), France",3 +"IMPCA, Curtin University, Australia",3 +"Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia",3 +Concordia University,3 +"State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China",3 +"University of California, Los Angeles, CA Dept. of Electrical Engineering",3 +"University Of Electronic Science And Technology Of China, China",3 +"University of Texas at San Antonio, San Antonio, TX, USA",3 +IBM Research,3 +"Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia",3 +"Computational Biomedicine Lab, Department of Computer Science, University of Houston, Houston, TX, USA",3 +"Center for Digital Media Computing, Software School, Xiamen University, Xiamen 361005, China",3 +"Department of Informatics, Aristotle University of Thessaloniki, Greece",3 +"State Key Laboratory on Intelligent Technology and Systems, National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, China",3 +"School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, China",3 +"Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic",3 +"Key Lab of Intelligent Information Processing, Institute of Computer Technology, Chinese Academy of Science (CAS), Beijing, 100190, China",3 +"Image and Video Systems Lab, School of Electrical Engineering, KAIST, Republic of Korea",3 +"Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand",3 +"National Laboratory of Pattern Recognition, Center for Research on Intelligent Perception and Computing, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China",3 +"Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O.Box 217 7500 AE Enschede, The Netherlands",3 +"MindLAB Research Group, Universidad Nacional de Colombia, Colombia",3 +"IntelliView Technologies Inc., Calgary, AB, Canada",3 +"Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan",3 +"Information and media processing laboratories, NEC Corporation",3 +"School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, 75080, USA",3 +"Dept. of Automation and Applied Informatics, Politehnica University of Timisoara, Romania",3 +Queen Mary University of London,3 +"School of Automation and Electrical Engineering, University of Science and Technology Beijing, 100083, China",3 +"Michigan State University, East Lansing, 48824, USA",3 +"Department of Electronics, AGH University of Science and Technology, Kraków, Poland",3 +"School of Software, Jiangxi Normal University, Nanchang, China",3 +"Department of Computer Science, Pontificia Universidad Cato´lica de Chile",3 +"Faculty of Information Technology, Ho Chi Minh City University of Science, VNU-HCM, District 5, Ho Chi Minh City, Vietnam",3 +Department of Electronic and Computer Engineering National Taiwan University of Science and Technology,3 +"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China",3 +"Georgia Institute of Technology, Atlanta, 30332-0250, USA",3 +"Tongji University, Shanghai, China",3 +"Department of Electrical and Computer Engineering, Vision Laboratory, Old Dominion University, Norfolk, VA, USA",3 +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia",3 +"School of Information Science and Engineering, Xiamen University, Xiamen 361005, China",3 +"University of California San Diego, USA",3 +"HCC Lab, Vision & Sensing Group, University of Canberra, Australia",3 +"Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China",3 +"REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia",3 +"School of physics and engineering, Sun Yat-Sen University, GuangZhou, China",3 +"Intelligent Vision Research Lab, Department of Computer Science, Federal University of Bahia",3 +"FDNA inc., Herzliya, Israel",3 +"Department of Mathematics & Computer Science, Philipps-Universität Marburg, D-35032, Germany",3 +"Australian Center for Visual Technologies, and School of Computer Science, The University of Adelaide, Adelaide, Australia",3 +"Department of Electronic Measuring systems, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia",3 +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798",3 +"National University of Defence Technology, Changsha 410000, China",2 +"Elektrik-Elektronik Mühendisliği Bölümü, Eskişehir Osmangazi Üniversitesi, Turkey",2 +"Elektrik - Elektronik Mühendisliği Bölümü, Atılım Üniversitesi, Ankara, Türkiye",2 +"China Electronics Standardization Institute, Beijing, 100007",2 +"School of Reliability and System Engineering, Science and Technology on Reliability and Environmental Engineering Laboratory, Beihang University, Beijing, China",2 +"Department of Computer Science, Kent State University, OH 44242, U.S.A.",2 +"Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India",2 +"Computational Biomedicine Lab, University of Houston",2 +"Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown WV 26506, USA",2 +"Bilgisayar Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Turkiye",2 +"Universidad Tecnica Federico Santa Maria, Department of Electronic Engineering, Valparaiso, Chile",2 +"Dept. of Comput. Syst., Univ. of Technol., Sydney, NSW, Australia",2 +"Harvard University, Cambridge, MA, USA",2 +"Michigan State University, East Lansing, MI, U.S.A.",2 +"Department of Computer Science, National Tsing Hua University, Taiwan",2 +"Dept. of Comput. Sci., York Univ., UK",2 +"CSE, SUNY at Buffalo, USA",2 +"Department of Computer Engineering, Mahanakorn University of Technology, 140 Cheum-Sampan Rd., Nong Chok, Bangkok THAILAND 10530",2 +"Dept. of Computer Science, YiLi Normal College, Yining, China 835000",2 +"School of Computing and Communications, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia",2 +"DISI, University of Trento, Italy",2 +"LAPI, University Politehnica of Bucharest, Romania",2 +"University of Colorado at Colorado Springs, Colorado Springs, CO, USA",2 +"Department of Mechanical Engineering, National Taiwan University, 10647, Taipei, Taiwan",2 +"Institution for Infocomm Research, Connexis, Singapore",2 +"Department of d’Informàtica, Universitat de València, Valencia, Spain",2 +"Toyota Research Institute, Cambridge, MA, USA",2 +"Research Centre for Computers, Communication and Social Innovation La Trobe University, Victoria - 3086, Australia",2 +"IBM Thomas J. Watson, Research Center, Yorktown Heights, New York 10598, USA",2 +"Institute of Computing, University of Campinas (UNICAMP), SP, 13083-852, Brazil",2 +"IFRJDL, Institute of Computing Technology, CAS, P.O.Box 2704, Beijing, China, 100080",2 +"Computer Science Department, University of Southern California, Los Angeles, 90089, United States of America",2 +"Department of Signal Processing, Tampere University of Technology, Tampere, Finland",2 +"JD Artificial Intelligence Research, Beijing, China",2 +"STARS team, Inria Sophia Antipolis-Méditerranée, Sophia Antipolis, France",2 +"Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing, Singapore",2 +"Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA",2 +"Department of Electrical and Computer Engineering, Singapore",2 +"Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA",2 +"Department of Computer Science, Wayne State University, Detroit, MI, USA",2 +"Dept. of Computer Science, Yonsei University, Seoul, South Korea, 120-749",2 +"Division of Graduate Studies, Tijuana Institute of Technology, México",2 +"Faculty of Science and Technology, University of Macau, Macau, China",2 +"Department of Electrical and Computer Engineering and the Center for Automation Research, UMIACS, University of Maryland, College Park, MD",2 +"Visual Analysis of People (VAP) laboratory, Aalborg University, Denmark",2 +"Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Portugal",2 +"School of Computer Science, Northwestern Polytechnical University, Xi’an, China",2 +"Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, Spain",2 +"SUPELEC / IETR, Avenue de la Boulaie, 35576 Cesson Sevigne, France",2 +"IT - Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal",2 +"Dept. of Computer Science & Engineering, University of South Florida, Tampa, 33620, United States of America",2 +"Department of Information Management, National Formosa University, Huwei, Yulin 632, Taiwan",2 +"Dept of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece",2 +"Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany",2 +"Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA",2 +"Department of Electronic Engineering, Shanghai Jiao Tong University",2 +"College of Computer and Information, Hohai University, Nanjing, China",2 +"Department of Information Systems and Cyber Security and the Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA",2 +"Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA",2 +"Electronics & Telecommunications Research Institute (ETRI), Daejeon, Korea",2 +"Electrical and Computer Engineering Department, University of Windsor, Ontario, Canada N9B 3P4",2 +"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China",2 +"Department of Computer Science, The University of Hong Kong",2 +"Dept. of Eng. Sci., Oxford Univ., UK",2 +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Adenauerring 4, Karlsruhe, Germany",2 +"Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea",2 +"Facial Image Processing and Analysis Group, Institute for Anthropomatics, Karlsruhe Institute of Technology, D-76131 Karlsruhe, P.O. Box 6980 Germany",2 +"Delft University of Technology, Mekelweg 4, Netherlands",2 +"Human-Machines Interaction (HMI) Laboratory, Department of Industrial Informatics, TEI of Kavala, Kavala, Greece",2 +"Department of Computer Science and Engineering, Michigan State University",2 +"Dept. of ECE, Maryland Univ., College Park, MD, USA",2 +"Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, China",2 +National University of Defense and Technology,2 +"School of Computer Science, CECS, Australian National University, Australia",2 +"Electrical & Electronic Engineering Department, Mevlana University Konya, Turkey",2 +"Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA",2 +"Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan",2 +"GIPSA Laboratory, Image and Signal Department, Grenoble Institute of Technology, Grenoble, France",2 +"Gradate School of Information Production and System, Waseda University, Kitakyushu, Japan 808-0135",2 +"Graduate School of Information, Production and Systems, Waseda University, Japan",2 +"Department of Computer Science and Engineering, National Taiwan Ocean University, No.2, Beining Rd., Keelung 202, Taiwan",2 +"Tampere University of Technology, Finland",2 +"Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan",2 +"Biodata Mining Group, Technical Faculty, Bielefeld University, Germany",2 +"Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore",2 +"Bilgisayar Mühendisliği Bölümü, Deniz Harp Okulu, İstanbul, Türkiye",2 +"IETR, CNRS UMR 6164, Supelec, Cesson-Sevigne, France",2 +"Institute of Intelligent Systems and Robotics (ISIR), Pierre and Marie Curie University , Paris, France",2 +"University of Technology, Sydney, NSW, Australia",2 +"Statistical Machine Intelligence & LEarning, School of Computer Science & Engineering University of Electronic Science and Technology of China, 611731, China",2 +"Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Central University, Jhongli, Taiwan",2 +"Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia",2 +"School of Computer Science and Engineering, Nanyang Technological University, Singapore639798",2 +West Virginia University,2 +"Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada",2 +"Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China",2 +"College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China",2 +"School of Telecommunications Engineering, Xidian University, Xi’an, China",2 +"London Healthcare Sciences Centre, London, ON, Canada",2 +"Department of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Human Machines Interaction (HMI) Laboratory, 65404 Kavala, Greece",2 +"School of Electrical Engineering and Computer Science, Seoul National University, Korea",2 +"Jordan University of Science and Technology, Irbid, Jordan",2 +"College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China",2 +"Biometric Technologies Laboratory, Department of Electrical and Computer Engineering, University of Calgary, Alberta, T2N 1N4 Canada",2 +"Morpho, SAFRAN Group, 11 Boulevard Galliéni 92130 Issy-Les-Moulineaux - France",2 +"Department of Computer Science, Aalto University, Finland",2 +"Norwegian Biometrics Laboratory, Norwegian University of Science and Technology (NTNU), 2802 Gj⊘vik, Norway",2 +"International Institute of Information Technology (IIIT) Hyderabad, India",2 +"Computer Laboratory, University of Cambridge, Cambridge, UK",2 +"Department of Electronic Systems, Aalborg University, Denmark",2 +"Artificial Intelligence and Information Analysis Lab, Department of Informatics, Aristotle University of Thessaloniki, Greece",2 +University of British Columbia Department of Electrical and Computer Engineering,2 +"Department of Computer Science, Swansea University, Swansea, UK",2 +"Computer Science and Technology, IIEST, Shibpur",2 +"Amirkabir University of Technology, Tehran, Iran",2 +"EURECOM, Sophia Antipolis, France",2 +"School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China",2 +"Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA",2 +"School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, SEOUL, Republic of Korea",2 +"Department of Computer Science and Engineering, University of Califonia, San Diego",2 +"Department of Computer Science and Technology, Tsinghua University, Beijing",2 +"University of Missouri Department of Electrical and Computer Engineering Columbia, MO, USA",2 +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia",2 +"Inf. Syst. Dept., Buckingham Univ., UK",2 +"Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University, China",2 +"Dept. of Electr. & Comput. Eng., Old Dominion Univ., Norfolk, VA, USA",2 +"Department of Computer Science, Edge Hill University",2 +"Department of Psychology, University of Pittsburgh, PA, 15260, USA",2 +"The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA",2 +"National Central University, Taoyuan County, Taiwan",2 +"Department of Computer Science & Engineering, POSTECH, Pohang, Sourth Korea, 37673",2 +"Signals and Systems Group, Faculty of EEMCS, University of Twente, the Netherlands",2 +"Research Center of Machine Learning and Data Analysis, School of Computer Science and Technology, Soochow University, Suzhou, China",2 +"School of Computer Science, University of Windsor, Canada N9B 3P4",2 +"Laboratory Heudiasyc, University of Technology of Compiègne, BP 20529. F-60205, France",2 +"Dept. Electrical Engineering, National Taiwan University, Taipei, Taiwan",2 +"Elektrik-Elektronik Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Turkey",2 +University of Notre Dame,2 +University of Ljubljana,2 +Istanbul Technical University,2 +"Polytechnic School, University of Pernambuco, Recife, Brazil",2 +"Faculty of Technical Sciences, Singidunum University, Belgrade 11000, Serbia",2 +"Dept. of CSEE, University of Maryland, Baltimore County, Baltimore, MD 21250",2 +"Dept. of Electron. & Inf., Toyota Technol. Inst., Nagoya, Japan",2 +"Department of Computer Science, University of Maryland, College Park, MD",2 +"Department of Computer Science and Engineering, POSTECH, Pohang 790-784, Republic of Korea",2 +"School of Electronic Engineering and Computer Science, Queen Mary University of London, UK",2 +"Star Technologies, USA",2 +"Dept. of Comput. Sci., New York State Univ., Binghamton, NY, USA",2 +"Dept. of Electrical Engineering, National Institute of Technology, Rourkela, India 769008",2 +"Division of Control, EEE, Nanyang Tech. Univ., Singapore",2 +"Department of Computer Science & Engineering, University of Ioannina, 45110, Greece",2 +"Jiangsu University of Science and Technology, Zhenjiang, China",2 +"University of Valladolid (Spain), Dep. Of Systems Engineering and Automatic Control, Industrial Engineering School",2 +"Department of Computer Science, Mangalore University, India",2 +"Department of Computer Science, Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal",2 +"Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China",2 +"School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China",2 +"Video Analytics Laboratory, SERC, Indian Institute of Science, Bangalore, India",2 +"NPU-VUB Joint AVSP Research Lab, School of Computer Science, Northwestern Polytechnical University (NPU) Shaanxi Key Lab on Speech and Image Information Processing, 127 Youyi Xilu, Xi'an 710072, China",2 +"CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China",2 +Australian National University,2 +"Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil",2 +"Sichuan Univ., Chengdu",2 +"Laboratory for Intelligent and Safe Automobiles, University of California San Diego, La Jolla, CA 92093 USA",2 +"Department of Computing, Imperial College London, London, 180 Queen’s Gate, UK",2 +"Australian Center for Visual Technologies, and School of Computer Science, University of Adelaide, Canberra, Australia",2 +"Bilgisayar Mühendisligi Bölümü, İstanbul Teknik Üniversitesi",2 +"Research&Advanced Technology Division of SAIC Motor Corporation Limited, Shanghai 201804, P.R China",2 +"Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China",2 +"Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China",2 +"Departamento de Computação, Universidade Federal do Piauí, Teresina, Brasil",2 +"Bilgisayar Mühendisliği Bölümü, Marmara Üniversitesi, İstanbul, Türkiye",2 +"Le2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France",2 +"Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan",2 +"Department of Computing, Imperial College London, U.K.",2 +"Dept. of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan City, Taiwan",2 +"Corp. Res. & Dev., Toshiba Corp., Tokyo, Japan",2 +"Dept. of Electronics and Telecommunication Engg., KCT's Late G.N. Sapkal college of Engineering, Nashik, India",2 +"Bilgisayar Mühendisliği Bölümü, Gebze Teknik Üniversitesi, Kocaeli, 41400, Türkiye",2 +"State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China",2 +Tencent Inc,2 +"State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190",2 +"Faculty of Information Science and Technology (FIST), Multimedia University, Melaka, Malaysia",2 +"Fraunhofer IOSB, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany",2 +"Naval Research Laboratory, Washington DC",2 +"Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom",2 +"Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan",2 +"SPAWAR Systems Center Pacific, San Diego, California, USA",2 +"Department of Electrical Engineering, National Taiwan University, Taiwan",2 +"Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran",2 +"Artificial Vision Laboratory, Dept. of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan 106",2 +"Microsoft Corporation, Redmond, WA, USA",2 +"Dept. of Electrical Engineering, National Tsing-Hua University, Taiwan",2 +"Elektronik ve Haberleşme Mühendisliği Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Türkiye",2 +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, NSW, Australia",2 +"Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan, China",2 +"Department of Artificial Intelligence, Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur, 50603, Malaysia",2 +"Department of Computer Science and Engineering of Systems, University of Zaragoza, Escuela Universitaria Politécnica de Teruel, Teruel, Spain",2 +"Department of Automation, North-China University of Technology, Beijing, China",2 +"University of Bern, Neubrückstrasse 10, Bern, Switzerland",2 +"Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong",2 +"Computer Science, Fudan University, Shanghai, 201203, China",2 +"Electronic Engineering and Computer Science, Queen Mary University, London, United Kingdom",2 +"Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea",2 +"Swiss Federal, Institute of Technology, Lausanne (EPFL), Switzerland",2 +"Disney Research, CH",2 +"Water Optics Technology Pte. Ltd, Singapore",2 +"School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore",2 +"National Laboratory of Pattern Recognition, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China",2 +"Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China",2 +"Orange Labs International Center Beijing, Beijing, 100876, China",2 +"Beijing University of Posts and Telecommunications, Beijing 100876, China",2 +"Norwegian Biometrics Lab, NTNU, Gj⊘vik, Norway",2 +"The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Canada",2 +"School of Computer Science and Technology, University of Science and Technology of China",2 +"Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi, India",2 +"Department of Electronics and Communication Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India",2 +"Department of Electrical Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India",2 +"Center for Automation Research, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA",2 +"School of EECS, Queen Mary University of London, UK",2 +"College of Software, Shenyang Normal University, Shenyang, China",2 +"Zhejiang University of Technology, Hangzhou, China",2 +"School of Computer Science and Technology, Nanjing Normal University, China",2 +"University of Technology Sydney, Ultimo, NSW, Australia",2 +"Center for Special Needs Education, Nara University of Education, Takabatake-cho, Nara-shi, Nara, Japan",2 +"Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore",2 +"Samovar CNRS UMR 5157, Télécom SudParis, Université Paris-Saclay, Evry, France",2 +"Beijing E-Hualu Info Technology Co., Ltd, Beijing, China",2 +"Machine Learning Center, Faculty of Mathematics and Computer Science, Hebei University, Baoding 071002, China",2 +"Applied Informatics, Faculty of Technology, Bielefeld University, Germany",2 +"Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain",2 +"Department of Computer Science, Universitat Oberta de Catalunya, Barcelona, Spain",2 +"University of Groningen, Nijenborgh 9, 9747 AG, The Netherlands",2 +"University of Science and Technology of China, NO.443, Huangshan Road, Hefei, Anhui, China",2 +"Shenyang SIASUN Robot & Automation Co., LTD., Shenyang, China",2 +"State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China",2 +"Bilgisayar Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Türkiye",2 +"Department of National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing, China",2 +"Department of Computer Science Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand",2 +"Academy of Broadcasting Science, Beijing, P.R. China",2 +"Engineering Lab on Intelligent Perception for Internet of Things (ELIP), Shenzhen Graduate School, Peking University, Beijing, China",2 +"Key Laboratory of Machine Perception, Ministry of Eduction, Peking University, Beijing, China",2 +"College of Computer Science, Zhejiang University, Hangzhou, Zhejiang, China",2 +"Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey",2 +"Microsoft Research Asia, Beijing, China",2 +"Department of Information Engineering, The Chinese University of Hong Kong",2 +"School of Computing, Teesside University, Middlesbrough, UK",2 +"Department of Computer Science and Digital Technologies, Faculty of Engineering and Environment, Northumbria University, Newcastle, UK, NE1 8ST",2 +"Faculty of Telecommunications, Technical University of Sofia, Bulgaria",2 +"Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China",2 +"Computer Science, University of Haifa, Carmel, 31905, Israel",2 +"Fernuniversitt in Hagen FUH Hagen, Germany",2 +"Research institute for Telecommunication and Cooperation, FTK, Dortmund, Germany",2 +"Core Technology Center, OMRON Corporation, Kyoto, Japan",2 +"College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 404100, China",2 +"College of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 404100, China",2 +"USP - University of São Paulo / ICMC, SSC - LRM (Mobile Robots Lab.), São Carlos, 13566-590, Brazil",2 +"Department of Automation, Tsinghua National Laboratory for Information Science and Technology (TNList), State Key Lab of Intelligent Technologies and Systems, Tsinghua University, Beijing, China",2 +"Department of Electric and Electronics, Selçuk University, Konya, Turkey",2 +"Research Center of Intelligent Robotics, Department of Automation, Shanghai Jiao Tong University, 200240, China",2 +"Institute of Automation, Chinese Academy of Sciences",2 +"Department of Electrical Engineering, KAIST, Deajeon, Daejeon, Republic of Korea",2 +"Department of Electrical Engineering, Tafresh University, Tafresh, Iran",2 +"Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh",2 +"Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh",2 +"Kochi University of Technology, Kochi, 782-8502, Japan",2 +"Hefei University of Technology, School of Computer and Information, Hefei, Anhui, 230601, China",2 +"Karlsruhe Institute of Technology, Institute for Anthropomatics, Karlsruhe, Germany",2 +"Pattern Recognition and Intelligent System Lab., Beijing University of Posts and Telecommunications, China",2 +"NCCU, USA",2 +"WVU, USA",2 +"University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia",2 +"Centre for Quantum Computation and Intelligent Systems, the Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, Australia",2 +"Shahid Bahonar University of Kerman Computer Engineering Department, Kerman, Iran",2 +"Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA",2 +"Department of Electrical Engineering, University of Hawaii, Manoa, Honolulu, HI, 96822",2 +"Samsung Electronics, SAIT Suwon-si, Korea",2 +"Department of Automation, University of Science and Technology of China",2 +"Centre for Intelligent Sensing, Queen Mary University of London, London, U.K.",2 +"CETUC, Pontifical Catholic University of Rio de Janeiro, Brazil",2 +"İstanbul Teknik Üniversitesi, İstanbul, Türkiye",2 +"Islamic Azad University, South Tehran Branch, Electrical Engineering Department, Iran",2 +"Shenzhen Graduate School, Harbin Institute of Technology, China",2 +"Human Language Technology and Pattern Recognition Group, RWTH Aachen University",2 +"Rensselaer Polytechnic Institute, USA",2 +"Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran",2 +"Vision Lab, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom",2 +"University of Southern California, Los Angeles, USA",2 +"University of Amsterdam, The Netherlands",2 +"Academia Sinica, Institute of Information Science, Taipei, Taiwan",2 +"Centre for Communication Systems Research, University of Surrey, Guildford, Surrey, United Kingdom",2 +"School of Computer Engineering and Science, Shanghai University",2 +"Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China",2 +"Corp. Res. & Dev. Center, Toshiba Corp., Kawasaki, Japan",2 +"School of Computer Science and Technology, Tianjin University, 300072, China",2 +"Department of Information & Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain",2 +"Computer Engineering, Rochester Institute of Technology, USA",2 +"Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India",2 +"B. Tech Graduate, ECE, MSIT, C-4 Janakpuri, New Delhi, India",2 +"Department of Electrical, Computer and IT Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran",2 +"Computer Vision Institute, School of Computer Science and Software Engineering, and the Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen, China",2 +"RSISE, Australian National University, Australia",2 +"HumanRobot Interaction Research Center, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea seojh",2 +"Panasonic Singapore Laboratories Pte Ltd (PSL), Tai Seng Industrial Estate 534415, Singapore",2 +"Software School, Xiamen University, Xiamen, China",2 +"Massachusetts General Hospital, Boston, MA, USA",2 +"Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA",2 +"Dept. of Electrical and Electronics Engineering, Bahcesehir University, Istanbul, Turkey",2 +"Imaging Software Technol. Center, Fuji Photo Film Co. Ltd., Japan",2 +"Dept. of ECE & Digital Technology Center, University of Minnesota, USA",2 +"Shenzhen University, Shenzhen China",2 +"National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190, Beijing, China",2 +"Islamic University of Technology, Bangladesh",2 +"Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan",2 +Technion,2 +"Department of Computer Science, Okayama University, Okayama, Japan",2 +Cyprus University of Technology,2 +"Dept of Electronics and Communication, Manipal Institute Of Technology, Karnataka, India",2 +"University of Technology, Sydney, Sydney, Australia",2 +"Polytechnic School of Pernambuco, University of Pernambuco, Recife-PE, Brazil",2 +"Dept. of Electrical Engineering, National Taiwan University, Taiwan",2 +"Research Center for Information Technology Innovation, Academia Sinica, Taiwan",2 +"University of Illinois at Urbana-Champaign, 201 N Goodwin, 61820, USA",2 +"Research School of Engineering, The Australian National University, Canberra, ACT, Australia",2 +"CyLab Biometrics Center and the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA",2 +"Pittsburgh Univ., PA, USA",2 +"Computer Vision and Remote Sensing, Berlin University of Technology, Sekr. FR 3-1, Franklinstr. 28/29, 10587, Germany",2 +"Department of Information Engineering, the Chinese University of Hong Kong, Shatin",2 +"Department of Signal Processing, Tampere University of Technology, Finland",2 +"Bilgisayar Mühendisliği Bölümü, Ankara Yıldırım Beyazıt Üniversitesi, Ankara, Türkiye",2 +"Department of Electronic and Communication Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia",2 +"Senior Member, IEEE, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, South Korea. phone: 82-54-279-2880, 2214; fax: 82-54-279-5594; e-mail: dreaming@postech.ac.kr, syoh@postech.ac.kr",2 +"Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, South Korea. phone: 82-54-279-2880, 2214; fax: 82-54-279-5594; e-mail: dreaming@postech.ac.kr",2 +"Center of Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, Oulu, Finland",2 +"Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Center for Learning Science, Southeast University, Nanjing, China",2 +"Dirección General de la Guardia Civil - DGGC Madrid, Spain",2 +"School of Information Science and Technology, Huaqiao University, Xiamen, China",2 +"Computer Laboratory, University of Cambridge, UK",2 +"Rutgers University, Piscataway",2 +"University of Hong Kong, China",2 +"Department of Automation, State Key Laboratory of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China",2 +"School of Electronics and Information Technology, Sun Yat-Sen University",2 +"Hexi University, Center for Information Technology, Zhangye, China",2 +"Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA",2 +"School of Communication and Information Engineering, Shanghai University, Shanghai, China",2 +"Columbia University, New York, USA",2 +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China",2 +"Department of Communications and Computer Engineering, University of Malta, Msida, Malta",2 +"Multimedia Communications Dept., EURECOM, Sophia Antipolis, France",2 +"Michigan State University, East Lansing, U.S.A.",2 +"Dept. of E & TC Engineering, Maharashtra Institute of Technology, Pune, India",2 +"Commonwealth Scientific and Industrial Research Organisation, Clayton South, Vic. , Australia",2 +"Speech, Audio, Image and Video Technology Laboratory, Queensland University of Technology, Brisbane, Australia",2 +"School of Computer Science and Technology and the Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China",2 +"School of Electrical Engineering and Computer Science, Queen Mary University of London, London, U.K.",2 +"Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan",2 +"Dept. of ECE and Digital Technology Center, Univ. of Minnesota, USA",2 +"Department of Computer Science, National Tsing Hua University, Taiwan, R.O.C",2 +"Department of Computer Science, Chu Hai College of Higher Education, Hong Kong",2 +"School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, 689-798, Korea",2 +"Dept. of Comp. Sci. and Inf. Eng, Chung Hua University, Hsinchu, Taiwan",2 +"Dept. of Comp. Sci, National Chiao Tung University, Hsinchu, Taiwan",2 +"HEUDIASYC Mixed Res. Unit, Compiegne Univ. of Technol., France",2 +"Università di Salerno v. Ponte don Melillo, 84084, Fisciano (IT)",2 +"National Taiwan University of Science and Technology, No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei City 10607, Taiwan",2 +"Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China",2 +"Laboratory LAROSERI, Department of Computer Science, Faculty of Sciences, University of Chouaib Doukkali, El Jadida - Morocco",2 +"Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China",2 +"Computer Vision, Video and Image Processing (CvviP) Research Lab, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia",2 +"Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering & Information Technology, University of Technology, Sydney, Australia",2 +"Department of Electronics, University of Goa, India",2 +"Department of Computer Science, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa",2 +"Department of Computer Science, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa",2 +"Multimedia Processing Laboratory, Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan",2 +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA",2 +"Electric Power Research Institute, State Grid Shanghai Electric Power Company Shanghai, 200093, China",2 +"South East European University, Tetovo, Macedonia",2 +"Computer Science and Engineering, Arizona State University, Tempe, AZ",2 +"School of EE, Xidian University, Xi'an 710071, China",2 +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore",2 +"Department of ECE, National Institute of Technology, Rourkela (Odisha), India",2 +University of Houston,2 +Korea Electronics Technology Institute,2 +"Computer Science and Engineering Dept., University of North Texas, Denton, TX, USA",2 +"Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA",2 +"Computer Science and Engineering Michigan State University, East Lansing, USA",2 +"Organization of Advanced Science and Technology, Kobe University, Japan",2 +"IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA",2 +"University of Illinois’ Advanced Digital Sciences Center, Singapore",2 +"Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20740 United States",2 +"B-DAT Laboratory, School of Information and Control, Nanjing University of Information and Technology, Nanjing, China",2 +"Intelligent Data Center (IDC) and Department of Mathematics, Sun Yat-Sen University, Guangzhou, China",2 +"National Institute of Informatics, Tokyo, Japan",2 +Jaypee Institute of Information Technology,2 +"Samsung Advanced Institute of Technology (SAIT), Republic of Korea",2 +"Institute of Computing Technology, CAS, Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Beijing, China",2 +"School of Computer Science and Engineering, University of Aizu, Tsuruga, Ikkimachi, Aizuwakamatsu, Japan",2 +"Comnuter Science Department, Hong Kong Baptist University",2 +"Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA",2 +"Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil",2 +"College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan",2 +"Robotics Lab, Futurewei Technologies Inc., Santa Clara, USA",2 +"Institute of Automatic Control Engineering (LSR), TU München, Germany",2 +"Image Understanding and Knowledge-Based Systems, TU München, Germany",2 +"HRL Laboratories, LLC, Information Systems and Sciences Lab, Malibu, CA 90265 USA",2 +"School of Computer Science, Communication University of China, Beijing, China",2 +"Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA",2 +"Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China",2 +"Thales Services, ThereSIS, Palaiseau, France",2 +"School of Electrical and Electronic Engineering, Tianjin University of Technology, China",2 +"Faculty of Computers and Information, Cairo University, Egypt",2 +"Dept. of Electrical and Computer Engineering, National University of Singapore",2 +"Department of Computing, the Hong Kong Polytechnic University, Hong Kong",2 +"Institute of Computing, University of Campinas, Campinas, SP, Brazil, 13083-852",2 +"Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China",2 +"CyLab Biometrics Center, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA",2 +"La Trobe University, Australia",2 +"State key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, Hunan, China, 410073",2 +"Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, China",2 +"Science and Engineering Faculty, Queensland University of Technology, Australia",2 +"Department of Computer Technology, Shanghai Jiao Tong University, Shanghai, China",2 +"School of Computer Science and Software Engineering, The University of Western Australia, Nedlands, WA, Australia",2 +"National Tsing Hua University, Hsinchu, Taiwan",2 +"Rutgers, The State University of New Jersey",2 +"Dhirubhai Ambani Institute of Information and Communication Technology, India",2 +"Aix Marseille Univ LIF/CNRS, France",2 +"Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland",2 +"National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China",2 +Institut de Robòtica i Informàtica Industrial (CSIC-UPC),2 +"TeV, Fondazione Bruno Kessler, Trento, Italy",2 +"Department of Computer Science, IT: Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal",2 +"Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan, Taiwan",2 +"New Jersey Institute of Technology, Department of Electrical & Computer Engineering, University Heights Newark, NJ 07102 USA",2 +Korea Advanced Institute of Science and Technology,2 +"School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi-shi, Ishikawa, Japan, 923-1211",2 +"Chinese Academy of Sciences, Beijing",2 +"Tsinghua University, Beijing",2 +"Electrical and Control Engineering, National Chiao Tung University, Hsinchu, Taiwan",2 +"Artificial Intelligence Laboratory, University of Tsukuba, Japan",2 +"Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA",2 +"Brno University of Technology, Brno-střed, Czech Republic",2 +"Deutsche Welle, Bonn, Germany",2 +"GSI Universidad Polit-écnica de Madrid, Madrid, Spain",2 +"Department of Computer Science, University of Calgary, Calgary, Alberta, Canada",2 +"National Institute of Standards and Technology (NIST), Gaithersburg, MD",2 +"Räven AB, SE-411 14 Göteborg, Sweden",2 +"School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China",2 +"School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138",2 +"The Rowland Insitute at Harvard, Harvard University, Cambridge, MA 02142",2 +"Halmstad University, Halmstad, Sweden",2 +"Dept. of Appl. Phys. & Electron., Umea Univ., Sweden",2 +"Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR",2 +"Department of Radiology, University of Pennsylvania, Philadelphia, PA",2 +"Institute of VLSI Design, Zhejiang University, Hangzhou, China",2 +"Faculty of Engineering Technology, Hasselt University, Diepenbeek, Belgium",2 +"DUT-RU International School of Information and Software Engineering, Dalian University of Technology, Dalian, China",2 +"Universita degli Studi di Palermo, Dipartimento di Ingegegneria Informatica, Viale delle Scienze, 90128, ITALY",2 +"Mechatronic Engineering Department, Mevlana University, Konya, Turkey",2 +"Tokyo Metropolitan University, Hino, Tokyo 191-0065, Japan",2 +"Department of Electrical and Computer, Engineering, University of Denver, Denver, CO 80208",2 +"TÜBİITAK-BİILGEM-UEKAE, Anibal Cad., P.K.74, 41470, Gebze-KOCAELİ, Turkey",2 +"State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China",2 +"School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China",2 +"Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R. China",2 +"Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada",2 +"The 28th Research Institute of China Electronics Technology Group Corporation, China",2 +"Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India",2 +"Institute of VLSI Design, Zhejiang University",2 +"Faculty of Engineering Technology, University Hasselt",2 +"Institute of Information Science, Beijing Jiaotong University, 100044, China",2 +"Department of Computer and Information Sciences, Temple University",2 +"Department of Computing Sciences, Elon University",2 +"University of Maryland, College Park, MD, USA",2 +"Department of Electrical and Computer Engineering, University of Maryland, College Park, MD",2 +"Raytheon BBN Technologies, 10 Moulton St, Cambridge, MA",2 +"General Electric Global Research, 1 Research Circle, Niskayuna, NY",2 +"Concordia University, Montreal, QC, Canada",2 +"Charles Perkin Centre, Faculty of Medicine, University of Sydney, Australia",2 +"Charles Perkin Centre, Faculty of Engineering, University of Sydney, Australia",2 +"Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China",2 +"Department of Electrical and Computer Engineering, Nazarbayev University, Astana, Kazakhstan",2 +"Department of Information and Communication Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan",2 +"Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA",2 +"Tsinghua National Lab for Info. Sci. & Tech., Depart. of Computer Sci. & Tech., Tsinghua University, Beijing, China",2 +Harbin Institute of Technology,2 +"National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences, Beijing, China",2 +"School of Electrical Engineering and Computer Science at the University of Newcastle, Callaghan, NSW 2308, Australia",2 +"School of Electrical Engineering and Computing, University of Newcastle, Newcastle, Australia",2 +"Department of Computer Science and Engineering, Dankook University, Yongin, South Korea",2 +"KTH Royal Institute of Technology, Stockholm, Sweden",2 +"Division of Graduate Studies of Tijuana Institute Technology, Mexico",2 +"Department of Psychology and the Center for Brain Science, Harvard University, Cambridge",2 +"School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, and the Center for Brain Science, Harvard University, Cambridge",2 +"Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX, USA",2 +"Sch. of Infor. Sci. and Tech., Huizhou Unversity, Huizhou, China",2 +"Institute of Advanced Manufacturing Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China",2 +"School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China",2 +"Waseda University The Graduate School of Information, Production and Systems 2-7, Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka, Japan",2 +"London, United Kingdom",2 +"Shenzhen VisuCA Key Lab / SIAT, Chinese Academy of Sciences, China",2 +"Department of Mathematics, Center for Computer Vision, Sun Yat-Sen University, Guangzhou, China",2 +"Majority Report, France",2 +"Imaging Science and Engineering Laboratory Tokyo Institute of Technology Yokohama 226-8503, Japan",2 +"University of Montreal, Department of Computer Science and Operations Research (DIRO), 2920 Chemin de la tour, QC, Canada, H3C 3J7",2 +"College of Computer Science and Technology, Harbin Engineering University, Harbin, China",2 +"Microsoft Research, Haidian, Beijing, P. R. China",2 +"Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University , Xi'an, China",2 +"Department of Computing, Imperial College London, United Kingdom",2 +"Robert BOSCH Research and Technology Center, Palo Alto, CA 94304, USA",2 +"Advanced Technologies Application Center 7a #21406 b/ 214 and 216, P.C. 12200, Siboney Playa, Havana, Cuba",2 +"National Chung Hsing University, Taichung",2 +"School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing",2 +"School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China",2 +"Department of Sciences and Information Technology, University of Sassari, Viale Mancini 5, 07100 Sassari, Italy",2 +"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University Magdeburg, D-39016, P.O. Box 4210 Germany",2 +"ISIR, CNRS UMR 7222, Universite Pierre et Marie Curie, Paris",2 +"National Taiwan University of Science and Technology, Taipei, Taiwan",2 +Beijing Institute of Science and Technology Information,2 +"University of Maryland, College Park, MD, 20742",2 +"Department of Computer Science, University of Rochester, Rochester, NY, USA",2 +"School of Computer Science and Educational Software, Guangzhou University, Guangzhou, China",2 +"Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany",2 +"State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China",2 +"Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202",2 +"University of Udine, Italy",2 +"Department of Computer Science and Information Engineering, National Formosa University, Yunlin 632, Taiwan",2 +"Broadcasting & Telecommunications, Convergence Media Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea",2 +"Graduate Institute of Networking and Multimedia and the Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan",2 +"Innovation Center, Canon USA Inc., San Jose, California",2 +"University of Texas at San Antonio, San Antonio, Texas",2 +"Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA",2 +"Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA",2 +"FMV IŞIK Üniversitesi, Şile, Istanbul",2 +"Istanbul Technical University, Informatics Institute, 34469, Turkey",2 +"School of Mathematical Sciences, Anhui University, Hefei, China",2 +"Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA",2 +"University of Trento, Trento, Italy",2 +"Agency for Science, Technology and Research, Institute for Infocomm Research, Singapore",2 +"School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore",2 +Artificial Vision Laboratory National Taiwan University of Science and Technology,2 +"Computational Imaging Laboratory, School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA",1 +"Key Laboratory of Machine Perception(MOE), EECS, Peking University, Beijing, 100871",1 +"College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia",1 +"Griffith University, Australia",1 +"Department of Computer Science, University of California at Davis, Davis, USA",1 +"School of Computer Science, Fudan University, Shanghai, China",1 +"Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea",1 +"Korea Institute of Oriental Medicine, Daejeon, South Korea",1 +"Microsoft Research Asia, 49 Zhichun Road, Beijing, 100190, China",1 +"Department of Information Engineering, The Chinese University of Hong Kong, China",1 +"Harbin Engineering University, Harbin, Heilongjiang, 150001, China",1 +"Dept. of Computer Science and Computer Engineering, University of Louisville, KY, USA",1 +"Dept. of Advanced Technologies, Alcorn State University, MS, USA",1 +"Baiyun District Bureau of Justice, Guangzhou, China",1 +"Guangdong Key Laboratory of Information Security Technology, School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China",1 +IBM T. J. Watson Research Center,1 +"AI Lab, TAL Education Group, College of Electronics and Information Engineering, Sichuan University, Chengdu, China",1 +"Institute of High Performance Computing, A*STAR, Singapore",1 +"3OmniVision Technologies Singapore Pte. Ltd., Singapore",1 +"Department of ECE, National University of Singapore, Singapore",1 +"Department of Electrical and Computer Engineering, University of Toronto Toronto, Canada",1 +"School of Information Science and Engineering, Yunnan University, Kunming, P. R. China",1 +"Res. Center for Learning Sci., Southeast Univ., Jiangsu, China",1 +"CSE, SUNY at Buffalo, USA and Southeast University, China",1 +"Knowledge Enterprise Development, Arizona State University, Tempe, 85287-5406 United States",1 +"Computer Science, Florida State University, Tallahassee, United States",1 +"Computing Informatics and Decision Systems Engineering, Arizona State University, Tempe, United States",1 +"Department of Psychology, University of Northern British Columbia, Prince George, Canada",1 +"Speech, Audio, Image, and Video Technology Laboratory, Queensland University of Technology , Brisbane, Australia",1 +"Speech, Audio, Image, and Video Technology Laboratory, Queensland University of Technology, Brisbane, Australia",1 +"Commonwealth Scientific and Industrial Research Organization, Pullenvale, Australia",1 +"Department of Psychology, University of Pittsburgh, Pittsburgh, PA , USA",1 +"Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA",1 +"School of computer Science and Engineering, Nanyang Technological University, Singapore",1 +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore",1 +"Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India",1 +"Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030",1 +"Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881",1 +"Vulcan Inc, Seattle, WA 98104",1 +"Department of Computer Science, Hofstra University, Hempstead, NY 11549",1 +"Dept. of Computing, Curtin University of Technology, WA 6102, USA",1 +"School of Software, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia",1 +"Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA",1 +"Center for OPTical Imagery Analysis and Learning, Northwestern Polytechnical University, Shaanxi, China",1 +"Beijing Etrol Technologies Co., Ltd, Beijing, China",1 +"Securics, Inc. Colorado Springs, CO, USA",1 +"Institute of Computing, University of Campinas (Unicamp) Campinas, SP, Brazil",1 +"Department of Electrical and Computer Engineering, Saginaw Valley State University, University Ctr, MI- 48710",1 +"IDIAP Research Institute, Martigny, Switzerland",1 +"Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain",1 +"University of Michigan, Ann, Arbor, MI USA",1 +"Department of Computer Science, Rutgers University, Piscataway, New Jersey 08854, USA",1 +"Department of Embedded Systems, Institute for Infocomm Research, Singapore",1 +"IBM Research, USA",1 +"IBM Hursley Labs, UK",1 +"Monash University, Caulfield East, Australia",1 +"School of Math and Geospatial Sciences, Royal Melbourne Institute of Technology University , Melbourne, Australia",1 +"Department of Computer Science, Harbin Institute of Technology, China, 150001",1 +"Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213. Marios.Savvides@ri.cmu.edu",1 +"Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213. yunghui@cmu.edu",1 +"College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China",1 +"Department of Software Engineering, King Saud University, Riyadh, Saudi Arabia",1 +"Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh",1 +"Department of Information, The Third Affiliated Hospital, Sun Yat-sen University, China",1 +"OmniVision Technologies Singapore Pte. Ltd., Singapore",1 +"TCL Research America, San Jose, CA 95134, USA",1 +"Dept. of Eng. Sciences and Appl. Mathematics, Northwestern University, Evanston, IL 60208, USA",1 +GE Global Research,1 +"Xerox Research Center India, India",1 +"Palo Alto Research Center, Webster, NY",1 +"Facebook, Singapore",1 +"Elektrik-Elektronik Mühendisliği Bölümü, Bahçeşehir Üniversitesi, Turkey",1 +"Elektrik-Elektronik Mühendisliği Bölümü, Boğaziçi Üniversitesi, Turkey",1 +"School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China",1 +"Beijing Advanced Innovation Center for Imaging Technology, Beijing 100048, China",1 +"Lane Department of CSEE, West Virginia University, Morgantown, WV 26506, USA",1 +"Institute of Computing, University of Campinas, Campinas-SP, CEP, Brazil",1 +"Department of Electronics and Computing and the Electronics and Information Technology Research & Development Center, Universidade Federal do Amazonas, Manaus-AM, CEP, Brazil",1 +"National Chiao-Tung University, Hsinchiu, Taiwan",1 +"Department of Computer and Information Science, University of Macau, Taipa, Macau",1 +"General Electric Global Research, Niskayuna, NY, USA",1 +"Institute of Computing, University of Campinas, Campinas, Brazil",1 +"Department of Mathematics, Wayne State University, Detroit, MI, USA",1 +"Artificial Intelligence Key Laboratory, of Sichuan Province, Zigong, Sichuan, 643000, P. R. China",1 +"School of Big Data and Computer, Science, Guizhou Normal University, Guiyang, Guizhou, 550025, P. R. China",1 +"School of Electrical & Electronic Engineering, Yonsei University, Seoul, South Korea, 120-749",1 +"Inria Méditerranée, France",1 +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA",1 +"The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA",1 +"Data and Analytics Department, KPMG AGWPG, Düsseldorf, Germany",1 +"Faculty of Mathematics and Statistics, Hubei University, Wuhan, China",1 +"West Virginia University, Morgantown, WV",1 +Ajou Univ.,1 +"State Key Laboratory of Transient Optics and Photonics, Center for OPTical IMagery Analysis and Learning, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China",1 +"School of Information Technology, Halmstad University, Halmstad, Sweden",1 +"Nokia Bell-Labs, Madrid, Spain",1 +"Technicolor, Paris, France",1 +"MPI Informatics, Germany",1 +"Dept. de Ciência da Computacão, Universidade Federal de Ouro Preto, MG Brazil",1 +"Interactive and Digital Media Institute, National University of Singapore, Singapore",1 +"Alibaba Group, Hangzhou, China",1 +"Shin-Guang Elementary School, Yulin 646, Taiwan",1 +"Department of Computer Science, Brown University, Providence Rhode Island, 02912, USA",1 +"School of Management, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA",1 +"School of Electrical Engineering, Nantong University, Nantong, China",1 +"Vesalis company, Clermont-Ferrand, France",1 +"University of Calgary, Calgary, T3G 2T6 AB, CANADA",1 +"University of Louisville, Louisville, KY 40292 USA",1 +"School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA",1 +"Max Planck Institute for Informatics, Saarbrucken, Germany",1 +"School of Software Engineering, Chongqing University, Chongqing, China",1 +"College of Information Engineering, Capital Normal University, Beijing, China",1 +"School of Automation, Beijing University of Posts and Telecommunications, Beijing, China",1 +"Department of Electrical Engineering, University of California, Riverside, Riverside CA, California 92521 United States",1 +"Art History, University of California, Riverside, Riverside, California United States",1 +"Electrical Engineering, University of California, Riverside, Riverside, California 92521 United States",1 +"University of Science & Technology (UST), Daejeon, Korea",1 +"Universidade Estadual de Campinas, Cx.P. 6176 Campinas-SP, CEP 13084-971, Brazil",1 +"Embodied Emotion, Cognition and (Inter-)Action Lab, University of Hertfordshire, United Kingdom",1 +"Institute on Children Studies, University of Minho, Portugal",1 +"College of Aerospace and Material Engineering, National University of Defense Technology, Changsha, China",1 +"Air Force Research Lab, Rome, NY, 13441, USA",1 +"Department of Electronic Engineering, Institute of Image Communication and Information Processing, Shanghai Jiao Tong University, Shanghai, China",1 +"School of Computer Engineering, The Nanyang Technological University, Singapore",1 +"Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Fraunhoferstrasse 1, Karlsruhe, Germany",1 +"Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada",1 +"Department of Computer Science, University of Texas at San Antonio",1 +"Department of Computer Science, University of Rochester",1 +"School of Computer Science and Technology, Tianjin University, China",1 +"Philips Research Eindhoven, HTC 34, Netherlands",1 +"Epson Research and Development Inc., San Jose, CA",1 +"GE Global Research, Bangalore, India",1 +"Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea",1 +"Department of Business Planning & Information Systems, TEI of Crete, Agios Nikolaos, Greece",1 +"National Institute of Informatics, Japan",1 +"School of Information Technology Jawaharlal Nehru Technological University Hyderabad Andhra Pradesh, India",1 +"Department of CSE, Vignan University, Andhra Pradesh, India",1 +"University of North Carolina at Wilmington, USA",1 +"UNCW, USA",1 +"Department of EngineeringFaculty of Engineering and Science, University of Agder, Kristiansand, Norway",1 +"Yahoo Inc., New York, NY, USA",1 +"Queen Mary, University of London",1 +Brunel University,1 +"Vision & Sensing Group, Faculty of Information Sciences and Engineering, University of Canberra, Australia",1 +"School of Engineering, CECS, Australian National University, Australia",1 +"Comput. Control Lab, Nanyang Technol. Univ., Singapore",1 +School of Computer ScienceThe University of Adelaide,1 +"Instituto de Sistemas e Robótica, Instituto Superior Técnico, Lisboa, Portugal",1 +"Shenzhen Graduate School, Harbin Institute of Technology, Bio-Computing Research Center, Shenzhen, China",1 +"Department of Computing, Biometrics Research Centre, The Hong Kong Polytechnic University, Hong Kong",1 +"School of Computer Science, Nanjing University of Science and Technology, Nanjing, China",1 +"Centre for Quantum Computation & Intelligent Systems, University of Technology, Sydney, Australia",1 +"CSIE, National Cheng Kung University, Tainan, 701 Taiwan",1 +"CSIE, National Taiwan University of Science and Technology, Taipei, 106 Taiwan",1 +"Computer Science and Engineering Department, University of Texas at Arlington, Arlington, TX, USA",1 +"INSA CVL, Univ. Orléans, PRISME EA 4229, Bourges, France",1 +"LITIS, Universite de Rouen - INSA de Rouen, Rouen, FR",1 +"Department of Learning and Digital Technology, Fo Guang University, Yilan, Taiwan",1 +"Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong",1 +"Noah’s Ark Laboratory, Hong Kong",1 +"Noah.s Ark Laboratory and Hong Kong University of Science and Technology, Hong Kong",1 +"Department of Computer Science, University of Texas at San Antonio, San Antonio, United States",1 +"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of China, Hefei University of Technology, Hefei, China",1 +Carnegie Mellon University,1 +"Fac. of Mathematics and Computer Sciences, University of Science, Ho Chi Minh City, Viet Nam",1 +"Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan",1 +"LAMIA, University of French West Indies and Guiana, EA 4540, Pointe-à-Pitre, France",1 +"Institute of Intelligent Systems and Robotics (ISIR), Pierre and Marie Curie University, Paris, France",1 +"Xiamen University of Technology, Xiamen, China",1 +"Chulalongkorn University Bangkok, Thailand",1 +"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong",1 +"School of Automation, Huazhong University of Science and Technology, Wuhan, China",1 +"Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Taiwan 640, R.O.C.",1 +"Bordeaux INP, LaBRI, PICTURA, UMR 5800, F-33400 Talence, France",1 +"Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan",1 +"Department of Information Management, College of Management, National United University, Miaoli, Taiwan",1 +"Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan",1 +"Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia",1 +"Sch. of Electr. Eng. & Comput. Sci., Newcastle Univ., NSW, Australia",1 +"University of Sassari, Computer Vision Laboratory, PolComing Viale Mancini, 5 07100 Sassari, Italy",1 +"Azure Storage, Microsoft, Seattle, WA, USA",1 +"Department of Electronics Engineering, Mokpo National University, Republic of Korea",1 +"School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Republic of Korea",1 +"Graduate Program on Electrical Engineering, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil",1 +"Graduate Program on Electrical Engineering, University of Passo Fundo, Passo Fundo, Brazil",1 +"Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil",1 +"Northwestern Polytechnical University, Xi’an, China",1 +"Delft University of Technology, EEMCS, Delft, The Netherlands, reinierz@gmail.com",1 +"Imperial College London, Computing Department, London, U.K., m.pantic@imperial.ac.uk",1 +"Departments of Medical Imaging and Medical Biophysics, University of Western Ontario, London, ON, Canada",1 +"St. Joseph’s Health Care, London, ON, Canada",1 +"Northumbria University, Newcastle upon Tyne, U.K.",1 +"Department of Medical Biophysics, University of Western Ontario, London, ON, Canada",1 +"School of Electrical Engineering, Kookmin University, Seoul, Korea",1 +"The School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China",1 +"College of Automation, Shenyang Aerospace University, China",1 +"Université de Lyon, CNRS, Ecole Centrale de Lyon, LIRIS UMR5205, F-69134, France",1 +"Center for Machine Vision Research, University of Oulu, Finland",1 +"Faculty of Computer Science & Information Technology University of Malaya Kuala Lumpur, Malaysia",1 +Nanyang Technological University School of Computer Engineering,1 +"College of Engineering, Shibaura Institute of Technology, Tokyo, Japan",1 +"Graduate School of Engineering, Shibaura Institute of Technology, Tokyo, Japan",1 +"Department of Mathematics, JiaYing University, Meizhou, China",1 +"Hebei University of Technology, School of Science, Tianjin, P. R. China",1 +"Department of Electrical and Computer Engineering, College of Engineering, and College of Computer and Information Science (Affiliated), Northeastern University, MA, USA",1 +"Semnan University, Semnan, Iran",1 +"Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Sophia Antipolis, France",1 +"Centre for Intelligent Systems Research, Deakin University, Geelong, VIC, Australia",1 +"Faculty of Engineering, Technology, and Built Environment, UCSI University, Kuala Lumpur, Malaysia",1 +"Department of Computer Science, Cornell University and Cornell NYC Tech",1 +"Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark , NJ, USA",1 +"Microsoft Research , Redmond, WA, USA",1 +"Microsoft Visual Perception Laboratory, Zhejiang University, Hangzhou, China",1 +"Coll. of Electron. & Inf., Northwestern Polytech. Univ., Xi'an, China",1 +"Nanyang Technological University and the Institute for Infocomm Research, Singapore",1 +Ajou University,1 +"Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, China",1 +"Faculty of Information Science and Technology, Sun Yat-Sen University, Guangzhou, China",1 +"Department of Computer Science, University of Loughborogh",1 +"Department of Electrical Engineering and Electronics, University of Liverpool",1 +"Department of Creative IT Engineering, POSTECH, Pohang, South Korea, 37673",1 +"Viterbi School of Engineering, University of Southern California, Los Angeles, CA",1 +"University of Pittsburgh, USA",1 +"Donghua University, China",1 +"Department of Information Management, Yuan Ze University, Taoyuan, China",1 +"AI Speech Ltd., Suzhou, China",1 +"Department of Electronic Engineering, Kyung Hee University, Yongin, South Korea",1 +"Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia",1 +"Dept. of Comput. Sci. & Info. Eng., National Yunlin Univ. of Science & Technology, Taiwan",1 +"Bilgisayar Mühendisliği Bölümü, İstanbul Üniversitesi, Turkey",1 +"Bilgisayar Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Turkey",1 +"Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom. k.messer@surrey.ac.uk",1 +"Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom. j.kittler@surrey.ac.uk",1 +"Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom. x.zou@surrey.ac.uk",1 +"University of Twente, Human Media Interaction Group, Enschede, The Netherlands",1 +Biometric and Imaging Processing Laboratory (BIPLab),1 +University of Naples Federico II,1 +Warsaw University of Technology,1 +Research and Academic Computer Network (NASK),1 +SensoMotoric Instruments (SMI),1 +Maastricht University,1 +Università di Salerno Italy,1 +University of Southampton,1 +"University of Beira Interior, IT: Instituto de Telecomunicações",1 +"SAP Innovation Center Networks, Singapore",1 +"National Research University Higher School of Economics, Laboratory of Algorithms and Technologies for Network Analysis, Nizhny Novgorod, Russia",1 +"Bioinformatics Institute, A∗STAR, Singapore",1 +"iCV Research Group, Institute of Technology, University of Tartu, 50411, Estonia",1 +"Dept. Mathematics and Informatics, University of Barcelona, Computer Vision Center, Spain",1 +"Institute of Technology, University of Tartu, 50411, Estonia",1 +"Amazon.com Cambridge, MA, USA",1 +"Dept. of EMPH, Icahn School of Medicine at Mount Sinai, New York, NY 10029",1 +"Dept. of ENME College Park, University of Maryland, College Park, MD, 20742",1 +"Eskişehir Osmangazi Üniversitesi, Bilgisayar Mühendisliği Bölümü, Eskişehir, Türkiye",1 +"Anadolu Üniversitesi, Elek., Elektronik Mühendisliği Bölümü, Eskişehir, Türkiye",1 +"Department of Computer Science, University of Texas at San Antonio, San Antonio, TX",1 +"College of Communication Engineering, Chongqing University, Chongqing, China",1 +"Vision Semantics Ltd, UK",1 +"Rutgers University, USA",1 +"Computer Science, SUNY Stony Brook, Stony Brook, United States",1 +"Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874 U.S.A. peterson@math.colostate.edu",1 +"Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874 U.S.A. kirby@math.colostate.edu",1 +"Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874 U.S.A. chang@math.colostate.edu",1 +"The University of Electro-Communications, Japan",1 +"Institute for Infocomm Research, A-star, Singapore",1 +"Inst. Dalle Molle d'Intelligence Artificielle Perceptive, Martigny, Switzerland",1 +"Transmural Biotech, Barcelona, Spain",1 +"George Mason University, Fairfax, VA 22030",1 +"Computational Biomedicine Lab, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA",1 +"Purdue University, West Lafayette, IN, USA",1 +"Moshanghua Tech Company, Ltd., Beijing, China",1 +"College of Information Engineering, Xiangtan University, Xiangtan, China",1 +"CARTIF Centro Tecnológico, Robotics and Computer Vision Division, Boecillo (Valladolid, Spain)",1 +"University of California, San Diego",1 +"Dept. of Computer Science and Information Engineering, Providence University, Taichung, Taiwan",1 +"360 AI Institute, Beijing, China",1 +"Tencent YouTu Lab, Tencent Shanghai, China",1 +"Sun Yat-sen University, China",1 +"Centeye, Inc.",1 +"Center for Optical Imagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China",1 +"Institute of Information and Control, Hangzhou Dianzi University, China",1 +"NPU-VUB Joint AVSP Research Lab, Vrije Universitiet Brussel (VUB), Department of Electronics & Informatics (ETRO) Pleinlaan 2, 1050 Brussel, Belgium",1 +"School of Communication and Information Engineering, Shanghai University",1 +"IRISA, University of Rennes 1",1 +INRIA Rennes-Bretagne-Atlantique,1 +"Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore",1 +"International Institute of Information Technology, Hyderabad, Telangana, India",1 +"Shenzhen Graduate School, Harbin Institute of Technology, 518055, China",1 +"Research Institution of Intelligent Control and Testing, Graduate School of Tsinghua University at Shenzhen, 518055, China",1 +Commonwealth Scientific and Industrial Research Organization (CSIRO),1 +"University of Canberra, Austrlia",1 +"Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway",1 +"Ocean University of China, Teaching Center of Fundamental Courses, Qingdao, China",1 +"Clínica Otocenter, Teresina, Piauí, Brasil",1 +"Department of Computer Science and Engineering, The State University of New York at Buffalo, New York, USA",1 +"Elektrik-Elektronik Mühendisliği Bölümü, Trakya Üniversitesi, Edirne, Türkiye",1 +"Chinese Academy of Sciences, China",1 +"Amrita E-Learning Research Laboratory, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India",1 +"Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India",1 +"Amrita E-Learning Research Laboratory and the Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India",1 +"IKERBASQUE, Basque Foundation for Science, and the University of the Basque Country, San Sebastian, Spain",1 +"Computer Vision Center, Edifici “O” - Campus UAB, 08193 Bellaterra (Barcelona), Spain",1 +"Amazon Research, Berlin, Germany",1 +"State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, 100044, China",1 +"Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do, Korea",1 +"Department of Information Engineering, University of Florence, Firenze, Italy",1 +"Tsinghua National Lab for Information Science and Technology, Beijing, China",1 +"Universidad Argentina de la Empresa (UADE), Lima 717, Buenos Aires, Argentina",1 +"US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA",1 +"Dept. of Comput. Sci., North Carolina Univ., Wilmington, NC, USA",1 +"Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190",1 +"Research Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190",1 +"Biometrics Engineering Research Center, Yonsei University, Seoul, Korea",1 +"Departamento de Informtica e Matemtica Aplicada/University of Rio Grande do Norte, Natal, Brazil",1 +"Computer Engineering Department, Girne American University, Kyrenia, Cyprus 90",1 +"School of Engineering and Digital Arts, University of Kent, Canterbury, U.K.",1 +"Office of Naval Research, Arlington",1 +"Microsoft Research, Redmond, WA",1 +"Adobe Research Department, Adobe Systems Inc, San Jose, CA",1 +"Department of Computer Science, National Chung Cheng University, Chiayi, Taiwan",1 +"Microsoft, Redmond, WA",1 +"BIWI, ETH Zurich Zurich, Switzerland",1 +"Department of Electrical Engineering, National Chung Hsing University, Taiwan",1 +"Integrated Circuits and Electronics Laboratory, Department of Engineering, Aarhus University, Denmark",1 +"Dept. of Comput. Sci., California Inst. of Technol., Pasadena, CA, USA",1 +"Utechzone Co. Ltd., New Taipei City, Taiwan 235",1 +"Department of Cognitive Science, University of California, San Diego, CA, USA",1 +"Department of Communication Engineering, Shanghai University, Shanghai, China",1 +Department of Electronic Engineering Shanghai Jiao Tong University,1 +"Institute of Communication Engineering, National Tsing-Hua University, Taiwan",1 +"ICT Center, CSIRO",1 +"Bilişim Teknolojileri Enstitüsü, Tübitak BİLGEM, Kocaeli, Türkiye",1 +"Karlsruhe Institute of Technology (KIT), Germany",1 +"Istanbul Technical University (ITU), Turkey",1 +"École Polytechnique Fédérale de Lausanne (EPFL), Switzerland",1 +"Department of Electronics and Communication Engineering, Faculty of Electrical & Electronic Engineering, Khulna University of Engineering & Technology, Bangladesh",1 +"Space Application Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Japan",1 +"Department of Aeronautics and Astronautics Engineering, Graduate School of Engineering, University of Tokyo, Japan",1 +"University of Central Florida 4000 Central Florida Blvd., Orlando, 328816, USA",1 +"Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15213, USA",1 +"Integrated Management Coastal Research Institute, Universitat Politècnica de València, València, Spain",1 +"Department of Computer Science, Madrid Open University, Madrid, Spain",1 +"Department of Research and Diagnostic Methods, Faculty of Education, Pontificia University of Salamanca, Salamanca, Spain",1 +"The University of Tokushima, Japan",1 +"Computer Science Department, University of Maryland, College Park, MD",1 +"Department of Computer Science, Memorial University of Newfoundland, Saint John's, NL, Canada",1 +"Computer Science Department, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel",1 +"Shenzhen University, Shenzhen, China",1 +"U.S. Army Res. Lab., Adelphi, MD, USA",1 +"Department of Electrical Engineering, Assiut University, Asyut, Egypt",1 +"Visual Computation, Queen Mary University, London, United Kingdom",1 +"University of British Columbia, Canada",1 +"Graduate School at Shenzhen, Tsinghua University, China",1 +"Department of Computer Science, Cornell University, Ithaca, NY, USA",1 +"Department of Computer Science and Technology, Tongji University, Shanghai, China",1 +"Walt Disney Imagineering, USA",1 +"AEBC, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore",1 +"Australian Centre for Visual Technologies, University of Adelaide, Adelaide, Australia",1 +"Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, P. R. China",1 +"University of Massachusetts at Amherst, Amherst, MA, USA",1 +"School of Computer Science, The University of Adelaide, Adelaide, SA, Australia",1 +"Department of Engineering and MaintenanceChina Mobile Group, Jiangsu Company, Ltd., Changzhou, China",1 +"School of Computer Sciences and Technology, Nanjing Normal University, Nanjing, China",1 +"School of Mathematical Sciences, Nanjing Normal University, Nanjing, China",1 +"School of Information Engineering, Zhengzhou University, China",1 +"Dept. of Computer Science, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Greece",1 +"Dept. of Medical Physics, Medical School, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Greece",1 +"Dermalog Identification Systems GmbH, Hamburg, Germany",1 +"Research & Advanced Technology Division of SAIC Motor Corporation Limited, Shanghai, 201804, P.R. China",1 +"ECSE Department, Rensselaer Polytechnic Institute",1 +"Centre of Excellence for Research in Computational Intelligence and Applications, School of Computer Science, University of Birmingham, Birmingham, U.K.",1 +"VUB-NPU Joint AVSP Research Lab, Northwestern Polytechnical University (NPU), Shaanxi Key Lab on Speech and Image Information Processing, 127 Youyi Xilu, X'ian 710072, China",1 +"Institute of Computer Science, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland",1 +"KT Future Technology Laboratory, Seoul, South Korea",1 +"Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA",1 +"Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing, China",1 +"State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, China",1 +"Microsoft Key Laboratory of Visual Perception, Zhejiang University, Hangzhou, China",1 +"School of Automation, Northwestern Polytechnical University, Xi’an, China",1 +"SAIIP, School of Computer Science, Northwestern Polytechnical University, Xi’an, China",1 +"Department of Computer Science, Shenzhen Graduate School, Harbin Institute of Technology, China",1 +"State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning 110004, China",1 +"University of Pittsburgh and Adjunct Faculty at the Robotics Institute, Carnegie Mellon University: 3137 Sennott Square, 210 S. Bouquet St., PA 15260 USA",1 +"AI Institute, Qihoo/360 Company, Beijing, China",1 +"Intelligent Media Technique Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, P.R. China",1 +"CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China",1 +"AI Institute of Qihoo/360 Company, Beijing, P.R. China",1 +"Advanced Engineering Electronics & Safety, Delphi Deutschland GMBH, Delphiplatz 1, Wuppertal, North Rhine-Westfalia, Germany",1 +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China",1 +"LIRIS, UMR 5205 CNRS, INSA-Lyon, F-69621, France",1 +"Orange Labs, R&D, Meylan, France",1 +"Department of Computer Science, Chu Hai College of Higher Education, Tsuen Wan, Hong Kong",1 +"Teaching and research of section of mathematics, Hebei Information Engineering School, Baoding 071000, China",1 +"RheinAhrCampus der Hochschule Koblenz, Remagen, Germany",1 +"Singapore Polytechnic, 500 Dover Road, Singapore 139651",1 +"Singapore University of Technology and Design, 20 Dover Road, Singapore 138682",1 +"State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang, China",1 +"Technische Universitt Darmstadt, Computer Systems Group, Darmstadt, Germany",1 +"School of Engineering and Applied Science, Aston University, Birmingham, U.K.",1 +"PERCEPTION Team, INRIA Grenoble Rhône-Alpes, France",1 +"Digital World Research Centre, University of Surrey, UK",1 +"ARM, Inc., San Jose, CA",1 +"Department of Information Engineering, Henan University of Science and Technology, Luoyang, China",1 +"School of Computing Sciences, University of East Anglia, Norwich, U.K.",1 +Department of mechatronic technology of National Taiwan Normal University,1 +"Department of Computer Science, Taipei Municipal University of Education",1 +"Computer Vision Center 08193 Bellaterra, Barcelona, SPAIN",1 +"Computer Science Division, University of Central Florida, Orlando, FL, USA",1 +"GuangXi Cast Animation Company, Ltd., Nanning, China",1 +"Department of Electrical Engineering and Computer Science, Colorado School of Mines, Golden, CO, USA",1 +"School of Information Engineering, Xiangtan University, Xiangtan, China",1 +"Baidu International Technology (Shenzhen) Company, Ltd., Shenzhen, China",1 +"Department of Electronic Engineering, The Chinese University of Hong Kong",1 +"School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China",1 +"School of Computing, Teesside University, UK",1 +"Teleinfrastructure R&D Lab, Technical University of Sofia, Bulgaria",1 +"Dept. of Inf. Network Technol., Hsiuping Inst. of Technol., Taichung, Taiwan",1 +"Cork Institute of Technology, CIT, Cork Ireland",1 +"Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada",1 +"Department of Computer Science, University of North Carolina Wilmington, Wilmington, United States",1 +School of ComputingNational University of Singapore,1 +"UFSC - Federal University of Santa Catarina / INE - CTC, Florianópolis, 88040-900, Brazil",1 +"UDESC - Santa Catarina State University, DCC - CCT, Joinville, 89219-710, Brazil",1 +"School of Electrical and Electronic Engineering, University of Manchester, Manchester, U.K.",1 +"Fordham University, New York, 10023, USA",1 +"Rapid-Rich Object Search (ROSE) Lab, Nanyang Technological University, Interdisciplinary Graduate School, SingaporeSingapore",1 +"Department of Electrical Engineering, Semnan University, Semnan, Iran",1 +"Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran",1 +"Dept. of EE, UESTC, 2006 Xiyuan Ave, Chengdu, Sichuan 611731, China",1 +"Dept. of Radiation Oncology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA",1 +"Dept. of Electrical & Computer Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA",1 +"Film Department ELTE University, Budapest, Hungary",1 +"IIIT Hyderabad, 500032, A.P, India",1 +"School of Computing and Electrical Engineering, IIT Mandi, H.P, 175001, India",1 +"School of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, Australia",1 +"School of Engineering, Griffith University, Nathan, QLD, Australia",1 +"Faculty of Engineering and Information Technology, Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, NSW, Australia",1 +"NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA",1 +"Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109 USA",1 +"Beijing Key Laboratory of Digital Media, State Key Laboratory of Virtual Reality Technology and Systems, and School of Computer Science and Engineering , Beihang University, China",1 +"Philips Research , The Netherlands",1 +"Istanbul Technical University, Faculty of Computer and Informatics, Istanbul, Turkey",1 +"Signal and Information Processing section (SIP), Department of Electronic Systems, Aalborg University, Denmark",1 +"Section of Image Analysis and Computer Graphics, DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark",1 +" + University of Delaware, USA",1 +"Department of Cognitive Science, School of Information Science and Engineering, Xiamen University, Xiamen, China",1 +"Taylor's University Lakeside Campus, Selangor Darul Ehsan, Malaysia",1 +"Department of Mathematical Sciences, Georgia Southern University, Statesboro, USA",1 +"School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland",1 +"Department of Electronic EngineeringCentre for Vision, Speech and Signal Processing, University of Surrey, Surrey, U.K.",1 +"Department of Electrical EngineeringFaculty of Engineering, Urmia University, Urmia, Iran",1 +"ICT-ISVISION Joint R&D Lab. for Face Recognition, Chinese Acad. of Sci., Beijing, China",1 +"International School, Beijing University of Posts and Telecommunications, Beijing, China",1 +"Department of Social and Decision Sciences, Carnigie Mellon University, Pittsburgh, PA 15224, USA",1 +"Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. zhangxiaoxun@bit.edu.cn",1 +"Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. jiayunde@bit.edu.cn",1 +"Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. xushuang@bit.edu.cn",1 +"Microsoft Research Asia, China",1 +"Microsoft Live Labs Research, China",1 +"Baidu Research, USA",1 +"Applied Network Technology (ANT), Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand",1 +"Department of Business Computer, Faculty of Management Science, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand",1 +Microsoft Research,1 +MIT CSAIL,1 +Affectiva,1 +Yahoo! Research,1 +"Institute for Computational and Mathematical Engineering, Stanford University",1 +"Computer Laboratory, University of Cambridge, Cambridge, U.K.",1 +"Department of Mathematics and Computer Science, University of Cagliari, Italy",1 +"Center for OPTical IMagery Analysis and Learning, State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China",1 +"Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, U.K.",1 +"College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China",1 +"Fotonation LTD, Galway, Ireland",1 +"School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xian 710072, Shaanxi, China",1 +Elektronik ve Haberleşme Mühendisliği Bölümü,1 +"Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey",1 +"Amirkabir University of Technology, Electrical Engineering Department, Tehran, Iran",1 +"Office of Safety Research and Development, Federal Highway Administration, U.S. Department of Transportation, Virginia, USA",1 +"School of Computer Science and Technology, Guangdong University of Technology, China",1 +"College of Mathematics and Informatics, South China Agricultural University, China",1 +"Computer Vision and Multimodal Computing, MPI Informatics, Saarbruecken",1 +"Computer Vision Laboratory, ETH Zurich",1 +"School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China",1 +"Curtin University Department of Mechanical Engineering, Perth, Western Australia 6012",1 +"Department of Mechanical Engineering, Curtin University, Perth, Western Australia 6012",1 +Vols Taipei,1 +"Intel Labs Europe, London, United Kingdom",1 +"Technion - Israel Inst. of Technology, Haifa, 32000, Israel",1 +"The Open University of Israel, Raanana, 43107, Israel",1 +"Weizmann Institute of Science, Rehovot, 76100, Israel",1 +"Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China",1 +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China",1 +"Faculty of Science and Technology, Communication University of China, Beijing, China",1 +"Science and Technology Department, Communication University of China, Beijing, China",1 +"Collaborative Innovation Center, Communication University of China, Beijing, China",1 +"School of Computer Software, Tianjin University, 300072, China",1 +"Computer Vision Laboratory, ETH Zürich, Zürich, Switzerland",1 +"Universitat Pompeu Fabra, Universidad Pompeu Fabra (Edificio França), Passeig de Circumvallacio, 8, Barcelona, Spain",1 +"Departamento de estadística, Universidad Carlos III de Madrid, Barcelona, Spain",1 +"Southeast University, Nanjing, China",1 +"Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China",1 +"Computer Science, Rochester Institute of Technology, USA",1 +"Center for Imaging Science, Rochester Institute of Technology, USA",1 +"Space and Naval Warfare Systems Center Pacific, San Diego, CA, 92152, United States",1 +"Electrical and Computer Engineering, University of California, San Diego",1 +"ECE, Department MSIT, C-4 Janakpuri, New Delhi, India",1 +"Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA",1 +"Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan. e-mail: chihming.fu@gmail.com",1 +"Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan; Informatics Department, Fo-Guang University, I-Lan, Taiwan. e-mail: clhuang@ee.nthu.edu.tw",1 +"Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan",1 +"Research Institute for Future Media Computing, Shenzhen University, Shenzhen, China",1 +"School of Computer and Information, Anhui Polytechnic University, Wuhu, China",1 +"Faculty of Information Sciences and Engineering, University of Canberra, Australia",1 +"Robotics Institute, Carnegie Mellon University, USA",1 +"Pediatrics Department, University of South Florida, Tampa, FL, USA",1 +"Department of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China",1 +"Raytheon BBN Technologies, Cambridge, MA, USA",1 +"Pontifical Catholic University of Minas Gerais - Department of Computer Science, R. Dom Jose Gaspar, 500, Belo Horizonte MG, 30535901, Brazil",1 +"Human-Robot Interaction Research Center, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea",1 +"Tsinghua University, Beijing, 100084, China",1 +"Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada",1 +"Department of Statistics and Operational Research, Faculty of Mathematics, Complutense University of Madrid, Madrid, Spain",1 +"Distributed Infinity, Inc., Larkspur, CO, USA",1 +"University of Colorado Denver, Denver, CO, USA",1 +"IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA",1 +"Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA",1 +"Facebook Inc., San Francisco, CA, USA",1 +"Adobe Systems Inc., San Jose, CA, USA",1 +"Dept. of Mathematics and Computer Science, University of Udine, Italy",1 +"Faculty of Information Technology, University of Technology, Sydney, Sydney, Australia. email: hintz@it.uts.edu.au",1 +"Faculty of Information Technology, University of Technology, Sydney, Sydney, Australia. email: jant@it.uts.edu.au",1 +"Faculty of Information Technology, University of Technology, Sydney, Sydney, Australia. email: pohsiang@it.uts.edu.au",1 +"School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China",1 +"School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China",1 +"Advanced Electronics System, Academy of Scientific and Industrial Research, CSIR-Central Electronics Research Institute, Pilani, India",1 +"Mobile Communications Department, Eurecom, Biot, France",1 +"STARS Team, Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis, France",1 +"Institute of Industrial Science, the University of Tokyo, Tokyo, Japan",1 +"Department of Electrical Engineering, KAIST, Korea",1 +"Electronic R&D Center, Mando Corp., Korea",1 +"Department of New Media, Korean German Institute of Technology, Korea",1 +"SAIT Beijing Lab, Samsung Advanced Institute of Technology, China",1 +"Mechatronics & Manufacturing Technology Center, Samsung Electronics Co., Korea",1 +"Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy",1 +Open University of Israel,1 +"Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, H3G 1T7, Canada",1 +"Department of Electrical and Computer Engineering, Concordia University, QC, Canada, H3G 1T7",1 +"University of KwaZulu-Natal, School of Maths, Statistics & Computer Science, Durban - South Africa",1 +"Sudan University of Science and Technology, College of Computer Science and Information Technology, Khartoum - Sudan",1 +"Digital Media Institute, Hunan University, Changsha, 410082 P.R. China",1 +"College of information science and engineering, Hunan University, Changsha, 410082 P.R. China",1 +ACM Professional Specialist in Artificial Intelligence,1 +Université du Quebec a Rimouski (UQAR),1 +Shanghai university,1 +"CNRS, IMB, UMR 5251, Talence, France",1 +"UMR 5800, CNRS, LaBRI, Talence, France",1 +"UMR 5800, University of Bordeaux, LaBRI, Talence, France",1 +"UMR 5800, Bordeaux INP, LaBRI, Talence, France",1 +"UMR 5800, LaBRI, Talence, France",1 +"Dept. of Electrical Engineering, National Chung Hsing University, Taiwan",1 +"Division of Design of Intelligent Machines, Center for Development of Advanced Technologies, Algiers, Algeria",1 +"Microsoft Research, Beijing, China",1 +"University of Science and Technology of China, Hefei, China",1 +"AI Laboratories, Alibaba Group, Hangzhou, China",1 +"National ICT Australia, Canberra, ACT, Australia",1 +"MIT Media Laboratory, Cambridge, MA, USA",1 +"Industrial Technology Research Institute, Hsinchu, Taiwan",1 +"Garmin Corporation, New Taipei, Taiwan",1 +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan",1 +"School of Information Technologies, University of Sydney, Sydney, NSW, Australia",1 +"Tencent AI Laboratory, Shenzhen, China",1 +"Malong Technologies Company, Ltd., Shenzhen, China",1 +"Department of Information Engineering, the Chinese University of Hong Kong",1 +"Department of Electronic Engineering, the Chinese University of Hong Kong, Shatin, Hong Kong",1 +"Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No.1, Tonantzintla, Puebla, México. CP 72840",1 +"Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, Brasil",1 +"Department of Electrical Engineering, National Taiwan University of Science and Technology",1 +"Department of Computer Science and Technology, Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China",1 +"Computational Vision Group, University of California at Irvine, Irvine, CA, USA",1 +"Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland",1 +"Department of Computer Science and Technology, The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China",1 +"Tohoku University, Japan",1 +"Department of Mechanical Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia",1 +"Dept. of Electron. Eng., Hannam Univ., Daejeon, South Korea",1 +"School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China",1 +"Centre for Autism Research, Philadelphia, US",1 +University of Cambridge,1 +"Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan",1 +"Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada",1 +"Center for Advance Imaging Innovation and Research, New York University, New York, NY, USA",1 +"Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer Science, Peking University, Beijing, China",1 +"Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA",1 +"Department of Computer Science, University of Warwick, Coventry, U.K.",1 +"Laboratoire MIA, University of La Rochelle, La Rochelle, France",1 +"College of Cyber Security, Jinan University, Guangzhou, China",1 +"Columbia University, New York",1 +"Department of Electrical and Computer Engineering, College of Computer and Information Science, Northeastern University, Boston, MA, USA",1 +"School of Engineering, University of Illinois, Urban Champagne, USA",1 +"ECIT, School of Electronics, Electrical Engineering & Computer Science, Queen's University Belfast, Belfast, UK",1 +"Computer Science, Loughborough University, Loughborough, UK",1 +"Dept. of Computer Engineering, Science and Reaserch Branch, Islamic Azad University, Tehran, Iran",1 +"School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran",1 +"School of Computing and Communications, Lancaster University, Lancaster, UK",1 +"Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi’an, China",1 +"School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China",1 +"School of Automation, Huazhong University of Science and Technology, Wuhan, China 430074",1 +"College of Electronics and Information Engineering, Sichuan University, Chengdu, China 610064",1 +"Dept. of Comp. Sci. and Tech., Shenzhen Graduate School, Harbin Institute of Technology, China",1 +Imperial College London,1 +"Machine Vision Group, University of Oulu, Oulu, Finland",1 +"Inst. of Autom., Chinese Acad. of Sci., Beijing, China",1 +"School of Computing, Computing 1, 13 Computing Drive, National University of Singapore, Singapore 117417",1 +"Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1 +"Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576",1 +"Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, Brazil",1 +"Graduate Sch. of Inf. Sci. & Technol., Tokyo Univ., Japan",1 +"Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China",1 +"Department of Psychology, University of Pittsburgh/Robotics Institute, Carnegie Mellon University , Pittsburgh, PA, USA",1 +"School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China",1 +"Dept.of Intelligence Science and Technology, The Kyoto University of JAPAN",1 +"Dept.of Computational Intelligence and Systems Science, Tokyo Institute of Technology of JAPAN",1 +"Microsoft Research, Redmond, WA, USA",1 +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia",1 +"School of Software Technology, Dalian University of Technology",1 +"School of Computer and Information Science, Southwest University, Chongqing, China",1 +"School of Computer Science and Technology, Shandong University, Shandong, China",1 +"Facebook Inc., Palo Alto, CA, USA",1 +"Stanford University, USA",1 +"Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106 USA",1 +"Psychology Department, University of California, Santa Barbara, CA 93106 USA",1 +"Computer Science and Information Engineering Department, National Taiwan Normal University, Taipei, Taiwan",1 +"Dept. of Comp. Sci. and Inf. Eng, National United University, Miaoli, Taiwan",1 +"College of Mechanical and Electrical, Changzhou Textile Garment Institute, Changzhou, China",1 +"University of IIllinois, Urbana-Champaign",1 +"Institut EURECOM, Sophia Antipolis, (France)",1 +"Sapienza Università di Roma, v. Salaria 113, 00198, Rome, (IT)",1 +"Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China",1 +"Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA",1 +"Laboratory LIM, Department of Computer Science, Faculty of Sciences and Technologies, University Hassan II, Casablanca-Morocco",1 +"College of Electrical Engineering and Automation, Anhui University, Hefei, China",1 +"DCNS Research, 5 rue de l'Halbrane, 44340 Bouguenais, France",1 +"Department of Information Engineering and Computer Science, University of Trento, Trento, TN, Italy",1 +"Snapchat Research, Venice, CA90291",1 +"Beauty Cosmetic Research Lab, Kao Corporation, Tokyo, Japan",1 +"Department of CS, University of Texas at San Antonio, 78249, USA",1 +"Department of CSE, University at Buffalo (SUNY), NY 14260, USA",1 +University of Waterloo,1 +"College of Information, Capital University of Economics and Business, Beijing, China.sanyecunfu@emails.bjut.edu.cn",1 +"Bio-Computing Research Center, Harbin Institute of Technology Shenzhen Graduate School, China",1 +"Guangdong Industry Training Centre, Guangdong Polytechnic Normal University, Guangzhou, China",1 +"Korea University, Seoul, South Korea",1 +"Department of Electrical and Computer Engineering, Ajou University",1 +"Advanced Digital Sciences Center , Singapore",1 +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China",1 +"Computer Science and Electrical Engineering West Virginia University, Morgantown, USA",1 +"Department of ComputingBiometrics Research Centre, The Hong Kong Polytechnic University, Hong Kong",1 +"School of Computer Science and Information Technology, RMIT University, Melbourne, VIC, Australia",1 +"School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China",1 +"School of Digital Media, Jiangnan University Jiangsu Wuxi, PR China",1 +"School of Digital Media, Jiangnan University, Jiangsu Wuxi, PR China",1 +"School of Maths, Statistics & Computer Science, University of KwaZulu-Natal, Durban, South Africa",1 +"Faculty of Science and Technology, Sudan University of Science and Technology, Khartoum, Sudan",1 +"Graduate School of System Informatics, Kobe University, Japan",1 +"Center for Research in Computer Vision, University of Central Florida, Orlando, USA",1 +"Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL",1 +"Beijing FaceAll Co. Beijing, China",1 +University of Science and Technology of China,1 +"Amazon, Berkshire, U.K.",1 +"International Institute of Information Technology, Hyderabad, India",1 +"Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 United States",1 +"Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854 United States",1 +"Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering and Information Technology, University of Technology Sydney, 81 Broadway Street, Ultimo, NSW, Australia",1 +"Department of Multimedia and Graphic Arts, Cyprus University of Technology, P.O. Box 50329, 3036, Lemesos, Cyprus",1 +"Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong",1 +"National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China",1 +"Department of Computer Science and Technology, Tsinghua University, Beijing, China",1 +"Army Research Office, RTP, Raliegh, NC, United States of America",1 +"Department of Informatics, Modeling, Electronics, and Systems, University of Calabria, Rende, Italy",1 +"The University of New South Wales, Australia",1 +"Advanced Technologies Application, Center (CENATAV), Cuba",1 +"Institute of Digital Media, Peking University, Beijing, China",1 +"GREYC, CNRS UMR6072, University of Caen, Caen, France",1 +"IDIAP, Martigny, Switzerland",1 +"Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213. msavvid@cs.cmu.edu",1 +"Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292. mitra@isi.edu",1 +"Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: king@cse.cuhk.edu.hk",1 +"Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: lyu@cse.cuhk.edu.hk",1 +"Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: jkzhu@cse.cuhk.edu.hk",1 +"Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: hbdeng@cse.cuhk.edu.hk",1 +"Electronics and Telecommunications Research Institute (ETRI), Republic of Korea",1 +"Xerox Research Center, Europe, France",1 +"Department of Electronic Engineering, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China",1 +"Science and Technology on Integrated Information System Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China",1 +"Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan",1 +"Department of Automation, State Key Laboratory of Intelligent Technologies and Systems and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China",1 +"Laboratory of Media Audio & Video, Communication University of China, Beijing, China",1 +CNRS LTCI; Télécom ParisTech,1 +Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI,1 +"School of Science, Southwest Petroleum University, Chengdu, China",1 +"Research Center for Learning Science, Southeast University, China",1 +"School of Computer Science and Engineering, Tianjin University of Technology, China",1 +"Department of Electrical and Computer Engineering, College of the Computer and Information Science, Northeastern University, Boston, MA, USA",1 +"Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA",1 +"Department of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, MA, USA",1 +"Department of Computer Science, University of Brasília, DF, Brazil 70910-900",1 +"Department of Mechanical Engineering, University of Brasília, DF, Brazil 70910-900",1 +"Department of Neurosurgery, University of Pittsburgh, PA 15213, USA",1 +"Faculty of Computers and Information, Ain Shams University, Egypt",1 +"Faculty of Computers and Information, BeniSuef University, Egypt",1 +"LIAMA, French National Institute for Research in Computer Science and Control, Paris, France",1 +"Intel Laboratory China, Beijing, China",1 +"School of Computing, National University of Singapore",1 +"Institute for Infocomm Research, Singapore",1 +"Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China",1 +"Rapid-Rich Object Search Laboratory, Interdisciplinary Graduate School, Nanyang Technological University, Singapore",1 +"Department of Computer Science and Technology, College of Computer, National University of Defense Technology, Changsha, Hunan, China, 410073",1 +Sapienza Univertsity of Rome,1 +"Hohai University, No. 1 Xikang Road, Nanjing, Jiangsu Province, China",1 +"Institute of Intelligent Information Processing, Xidian University, Xi'an, China",1 +"College of Metropolitan Transportation, Beijing University of Technology, Beijing, China",1 +"School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China",1 +"School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China",1 +"Institute of Computing Technology, Chinese Academy of Sciences, Key Laboratory of Intelligent Information Processing, Beijing, China",1 +"Institute of Computing Technology, CAS, No.6 Kexueyuan South Road, Beijing, 100080, China",1 +"School of Computer Science Carnegie Mellon University Pittsburgh, PA, 15213, USA",1 +"Dept. of Computer Science, Purdue University",1 +"Center of Image and Signal Processing, Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur, Malaysia",1 +"Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA",1 +"Pudong Branch, China Mobile Group Shanghai, Company Limited, Shanghai, China",1 +"School of Mathematics and Statistics, The University of Western Australia, Nedlands, WA, Australia",1 +"Department of Computer Science and Engineering, Qatar University, Doha, Qatar",1 +"France Telecom - Orange Labs, Lannion, France",1 +"National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China",1 +"School of Computer Science, China University of Geosciences, Wuhan, China",1 +"Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong",1 +Waseda University,1 +Wide Eyes Technologies,1 +"Department of Electrical and Computer Engineering, University of Illinois at Urbana—Champaign, Champaign, IL, USA",1 +ThyssenKrupp Elevator Americas,1 +"State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China",1 +"Dept. of Autom. Test & Control, Harbin Inst. of Technol., China",1 +"Department of Information and Control, B-DAT Laboratory, Nanjing University of Information Science and Technology, Nanjing, China",1 +"University of Maryland, College Park, USA",1 +"Institute of Engineering and Management, Kolkata, India",1 +"Inst. de Telecomunicações, Fac. de Ciências da Universidade do Porto, Porto, Portugal",1 +"Peking University, Beijing",1 +"Siren Solutions, Dublin, Ireland",1 +"Paradigma Digital, Madrid, Spain",1 +"School of Mathematical Sciences, University of Science and Technology of China, Hefei, China",1 +"School of Computer Science and Technology, University of Science and Technology of China, Hefei, China",1 +"Department of Computer Science, Digital Image Processing Laboratory, Islamia College Peshawar, Peshawar, Pakistan",1 +"Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada",1 +"Faculty of Applied Science, University of British Columbia, Vancouver, British Columbia, Canada",1 +"Rutgers University, 94 Brett Road, Piscataway, NJ 08854, United States of America",1 +"Volvo Car Corporation, SE-405 31 Göteborg, Sweden",1 +"Smart Eye AB, SE-413 27 Göteborg, Sweden",1 +"Department of Mathematics and Informatics, Ecole Centrale de Lyon, Lyon, 69134, France",1 +Toyota Research Institute - North America,1 +Griffith University,1 +"School of Computer, Beijing University of Posts and Telecommunications, Beijing, China",1 +"School of Information, Singapore Management University, Singapore",1 +"Agency for Science, Technology and Research, Singapore",1 +"School of Software, Beijing Institute of Technology, Beijing, China",1 +"Griffith School of Engineering, Queensland Research Laboratory, National ICT Australia, Griffith University, Nathan, Australia",1 +"Queensland Research Laboratory, National ICT Australia and Institute for Integrated and Intelligent Systems, Griffith University, Nathan, Australia",1 +"PRaDA, Deakin University, Australia",1 +"Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA",1 +"Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania",1 +"Department of Psychology, University of Illinois at Chicago, Chicago, IL",1 +"Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA",1 +"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia",1 +"Chongqing University, China",1 +"University College London, UK, Dept. of Electronic and Electrical Engineering",1 +"School of Mathematical Sciences, DUT-RU International School of Information and Software Engineering, Dalian University of Technology, Dalian, China",1 +"Computing Department, Imperial College London, UK. M.Pantic@imperial.ic.ac.uk",1 +"Computing Department, Imperial College London, UK. M.F.Valstar@imperial.ic.ac.uk",1 +"Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni, Viale delle Scienze, 90128 Palermo, ITALY",1 +"Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China",1 +"NTT Network Innovation Laboratories, Nippon Telegraph and Telephone Corp.",1 +"Faculty of Engineering, Tunku Abdul Rahman University College, Setapak, Malaysia",1 +"Faculty of Computing and Information Technology, Setapak, Malaysia",1 +"Dep. Inteligencia Artificial, U. Politécnica Madrid, Spain",1 +"Dep. Ciencias de la Computación, U. Rey Juan Carlos, Spain",1 +"Dep. Comp. Sci. and Engr., Fudan University, China",1 +"Computer Science Department, University of Maryland, College Park, MD, USA",1 +"Cernium Corporation, Reston, VA, USA",1 +"Computer Science Department, University of California, Los Angeles, CA, USA",1 +"Department of Computer and Information Science, Temple University, Philadelphia, PA, USA",1 +"Department of Electrical and Computer Engineering and the College of Computer and Information Science, Northeastern University, Boston, MA",1 +"Department of Electrical and Computer Engineering, Northeastern University, Boston, MA",1 +"North Acton, London",1 +"Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Kanagawa, Japan",1 +"Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan",1 +"Department of ECE, University of Dayton, Dayton, OH, USA",1 +"ODU Vision Lab, Old Dominion University, Norfolk, VA, USA",1 +"School of Mathematical Sciences, Dalian University of Technology, Dalian, China",1 +"School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, China",1 +"RMIT University, Vietnam",1 +"Tolendata Singapore R&D Centre Private Limited, Singapore",1 +"College of Computer Science & Software Engineering, Shenzhen University, China 518060",1 +"Concordia Institute for Information Systems Engineering (CIISE), 1515 St. Catherine West, Montreal, Quebec H3G 2W1, CANADA",1 +"Dept. of Computer Science and Software Engineering, Concordia University, 1515 St. Catherine West, Montreal, Quebec H3G 2W1, CANADA",1 +"Department of Computer Science and Engineering, University of Notre Dame",1 +"Department of Computer Science, Pontificia Universidad Catolica de Chile",1 +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology at Sydney, Sydney, NSW, Australia",1 +"School of Engineering, The University of Edinburgh, Edinburgh, U.K.",1 +"Harbin Institute of Technology, Harbin, China",1 +"College of Computing, Georgia Tech",1 +"Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University, Korea",1 +"Taxes Instruments, Dallas, TX, United States",1 +"Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798",1 +"Visual Analysis of People Laboratory, Aalborg University, Aalborg, Denmark",1 +"Computer Vision Team, ARS Traffic & Transport Technology, Trivandrum, India",1 +"Computer Science Dept., Columbia University, USA",1 +"Computer Science Dept., SUNY Stony Brook, USA",1 +Rensselaer Polytechnic Institute,1 +"School of Mathematical and Physical Sciences at the University of Newcastle, Callaghan, NSW 2308, Australia",1 +"School of Computer Science and Technology, Xiamen University, Xiamen, China",1 +"Collaborative Innovation Center for Geospatial Information Technology, Wuhan, China",1 +"Department of Electrical Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, KA 560-012, India",1 +"School of Software, Shenyang University of Technology, Shenyang, China",1 +"Department of Internal Medicine, Chung-Ang University, Seoul, South Korea",1 +"Department of Data Science, Dankook University, Yongin, South Korea",1 +"School of Engineering of UABC, University of Baja California, Tijuana, Mexico",1 +"Department of Electrical and Electronic Engineering, Nazarbayev University, Astana, Kazakhstan",1 +"University of Electronic Science and Technology of China, Chendu, China",1 +"Inception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates",1 +"School of Electronics and Information Engineering, Beihang University, Beijing, China",1 +"College of Computer Science, Guangdong University of Petrochemical Technology, Maoming, China",1 +"Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, 12180",1 +"Department of Computer Engineering, Istanbul University, Istanbul, Turkey",1 +"Department of Computer Engineering, Bahçeşehir University, Istanbul, Turkey",1 +"National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA",1 +"Col. of Comp. Sci. and Comm. Eng., Jiangsu University, Zhenjiang, China",1 +"School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo, China",1 +"Center for Automation Research, University of Maryland, College Park, MD 20742, USA",1 +"School of Mathematics, Jilin University, China",1 +"Department of Computer Science, Memorial University of Newfoundland, Canada",1 +"School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA",1 +"Dept. of Computer Science, Purdue University, West Lafayette, IN, 47907, USA",1 +"Griffith University, Brisbane",1 +"Griffith University, Brisbane and University of the South Pacific, Fiji",1 +Vision Semantics Ltd,1 +"Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong",1 +"Concordia Institute for Information Systems Engineering Concordia University, Montreal, Canada",1 +"Department of Computer Science and Technology, Huaqiao University, Xiamen, China",1 +"Université des Antilles et de la Guyane (UAG), France",1 +"Institut des Systèmes intelligents et de Robotique, UPMC, France",1 +"School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China",1 +"College of Computer Science and Information Technology, Northeast Normal University, Changchun, China",1 +"College of Information Science and Engineering, Northeastern University, Shenyang, China",1 +"Dept. of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Iran",1 +"Department of Information Processing Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology Yokohama 226-8503, Japan",1 +"School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia",1 +"School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, QLD, Australia",1 +"Microsoft, Bellevue, WA, USA",1 +"M5001, Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong",1 +"Department of Computer Science, University of Texas, San Antonio, TX, USA",1 +"School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA",1 +"Imperial College London, London, U.K.",1 +"Alcohol Countermeasure Systems Corporation, Toronto, ON, Canada",1 +"Institute of Information and System Sciences, Faculty of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China",1 +"Research Division, Educational Testing Service, Princeton, NJ, USA",1 +"Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China",1 +"Division of Biomedical Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR",1 +"Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR",1 +"Kumamoto University, Kumamoto, Japan",1 +"Center for Research on Intelligent Perception and Computing (CRIPAC), NLPR, CASIA, Beijing, China",1 +"National Taichung University of science and Technology, Taichung",1 +"University of Technology Sydney, Sydney, NSW, Australia",1 +"SAP Innovation Center Network, Singapore",1 +"Agency for Science, Technology and Research, Institute of High Performance Computing, Singapore",1 +"Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. venu@cedar.buffalo.edu",1 +"Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. zhizhang@cedar.buffalo.edu",1 +"CUBRC, Buffalo, NY, USA. slowe@cubrc.org",1 +"Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. tulyakov@cedar.buffalo.edu",1 +"School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China",1 +"Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK",1 +"Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, China",1 +"LAMIA, EA 4540, University of French West Indies & Guyana",1 +"Institut Telecom - Telecom ParisTech CNRS/LTCI, Paris",1 +"ITI Department Telecom Bretagne, Brest, France",1 +"Adobe Systems Incorporated, San Jose, CA, 95110",1 +"University of Technology at Sydney, Sydney, NSW, Australia",1 +"College of Engineeing & Informatics, National University of Ireland Galway, Galway, Ireland",1 +"Faculty of Electronics and Telecommunications “POLITEHNICA” University from Timişoara Timişoara, România",1 +"College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China",1 +"Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore",1 +"Bahcesehir University, Istanbul, Turkey",1 +"University of Lincoln, U. K.",1 +"School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China",1 +"Department of Electrical Engineering, Chang Gung University, Taipei, Taiwan",1 +"School of Information Technology, Monash University Malaysia, Bandar Sunway, Malaysia",1 +"College of Engineering, Huaqiao University, Fujian, China",1 +"Department of Electrical Engineering and Information Technology, TU Darmstadt, D-64283, Germany",1 +"School of Computer Science and Software Engineering, University of Wollongong, Wollongong, Australia",1 +"Defence Science and Technology Organisation (DSTO), Edinburgh, Australia",1 +Reallusion Corporation,1 +National Taiwan Normal University,1 +University College London,1 +"Research Center for Institute of Information Science, Academia Sinica, Taiwan",1 +"Department of Computer Science and Information Engineering, National Taiwan University",1 +"Dept. of EE, Univ. at Buffalo, SUNY, USA",1 +"Istanbul Technical University, Computer Engineering Department, 34469, Turkey",1 +"Department of Electronic Engineering, City University of Hong Kong, Hong Kong",1 +"School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Qld, Australia",1 +"School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu",1 +"University of Electronic Science and Technology of China, Chengdu",1 +"IBM Research, Singapore",1 +"Center for Applied Mathematics, Tianjin University, Tianjin, China",1 +"Department of Mathematics, School of Science, Tianjin University, Tianjin, China",1 +"Faculty of Applied Mathematics, Shanxi University of Finance and Economics",1 diff --git a/scraper/reports/doi_institutions.html b/scraper/reports/doi_institutions.html new file mode 100644 index 00000000..25ebfea6 --- /dev/null +++ b/scraper/reports/doi_institutions.html @@ -0,0 +1 @@ +Institutions from IEEE

Institutions from IEEE

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore37
Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece29
National Taiwan University, Taipei, Taiwan Roc26
Department of Electrical and Computer Engineering, National University of Singapore, Singapore21
Fudan University, Shanghai, China21
National University of Singapore, Singapore, Singapore20
Universität Hamburg, Hamburg, Germany19
School of Computer Engineering, Nanyang Technological University, Singapore19
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China18
South China University of Technology, Guangzhou, China16
Department of Automation, Tsinghua University, Beijing, China16
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China15
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences14
College of Computer Science and Technology, Zhejiang University, Hangzhou, China14
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China14
Beijing University of Posts and Telecommunications, China13
School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China12
Institute of Automation, Chinese Academy of Sciences, Beijing, China12
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France12
Zhejiang University, Hangzhou, China12
School of Computer Science and Technology, Tianjin University, Tianjin, China12
College of Computer Science, Sichuan University, Chengdu, China12
College of Computer Science, Zhejiang University, Hangzhou, China12
Department of Information Engineering and Computer Science, University of Trento, Trento, Italy11
National University of Singapore, Singapore11
Harbin Institute of Technology, Harbin, China11
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea11
State Key Laboratory of Management and Control of Complex Systems, CASIA, Beijing, China10
Shanghai Jiao Tong University10
Stanford University10
School of Computing, National University of Singapore, Singapore10
Northeastern University, Boston, MA, USA10
University of Maryland, College Park10
School of Computer Science and Engineering, Nanyang Technological University, Singapore10
Peking University, Beijing, China10
Department of Computer Engineering, Kyung Hee University, South Korea9
Dept. of Computer Science and Information Engineering, National Central University, Jhongli, Taiwan9
Noblis, Falls Church, VA, U.S.A.9
School of Electronic Information Engineering, Tianjin University, Tianjin, China9
Shanghai Jiao Tong University, Shanghai, China9
Beihang University, Beijing, China9
National University of Ireland Galway, Galway, Ireland9
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China9
School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, South Korea9
Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan9
Singapore Management University, Singapore, Singapore8
P.G. Demidov Yaroslavl State University, Yaroslavl, Russia8
Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Bratislava, Slovakia8
National Laboratory of Pattern Recognition, Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, Beijing, China8
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University8
CAS Center for Excellence in Brain Science and Intelligence Technology; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China8
Institute of Computer Science and Technology, Peking University, Beijing, P.R. China, 1008718
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China8
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China8
Tsinghua University, Beijing, China8
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China8
University of Chinese Academy of Sciences, Beijing, China8
Arizona State University, Tempe, AZ, USA8
Department of Computing, Imperial College London, London, U.K.8
Samsung R&D Institute, China8
University of Texas at San Antonio, San Antonio, TX, USA8
Department of Computer Science and Engineering, Shanghai Jiao Tong University, China8
IIIT-Delhi, India7
University of Texas at Arlington, Arlington, TX, USA7
National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, China7
Huazhong University of Science and Technology, Wuhan, China7
Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China7
Stony Brook University, Stony Brook University, NY 11794, USA7
CyLab Biometrics Center and the Department of Electrical and Computer Engineering (ECE), Carnegie Mellon University, Pittsburgh, USA7
School of Electronic and Information Engineering, Beihang University, Beijing, China7
Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia7
State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China7
School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China7
Department of Computer Science, Jiangnan University, No. 1800 LiHu Avenue, WuXi, China7
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China7
Institute of Automation, Chinese Academy of Sciences, China7
School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China7
Ulm University, Ulm, Germany7
Center for Automation Research, UMIACS, University of Maryland, College Park, 20740, United States of America7
Beijing University of Posts and Telecommunications, Beijing, 100876, China7
Department of Electronic Engineering, Tsinghua University, Beijing, China7
Visual Computing Group, Microsoft Research, Beijing, China7
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea7
Samsung Advanced Institute of Technology, Korea7
Indraprastha Institute of Information Technology Delhi, Delhi, India7
Southeast University, China6
Department of Electrical Engineering, KAIST, Daejeon, Korea6
Colorado State University, Fort Collins6
Indian Institute of Technology (BHU) Varanasi, India6
Department of Information Engineering and Computer Science, University of Trento, Italy6
College of Information Technical Science, NanKai University, CITS, TianJin, China6
SAIT India, Samsung India Software Operations Pvt. Ltd (SISO), Bangalore, India, 5600936
Fudan University, Shang Hai, China6
State University of New York at Binghamton, USA6
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore6
Computer Science, U.Illinois at Urbana Champaign, Urbana, United States6
Indian Statistical Institute, Kolkata6
NC A&T State University, Greensboro, NC, USA6
Department of Computer Science, Università degli Studi di Milano, Italy6
College of Information Science and Engineering, Northeastern University, Shenyang, 110819, PR China6
Wuyi University, Jiangmen, China6
Advanced Digital Sciences Center, Singapore6
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA6
Dept. of Computer Science, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA6
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China6
School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu, China6
Key Lab of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China6
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China6
University of Ljubljana, Ljubljana, Slovenia6
University of Notre Dame, Notre Dame, IN, USA6
DIA, University of Trieste, Italy6
Beijing Normal University, China6
The University of Queensland, Brisbane, Australia6
University of Houston6
Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China6
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China6
Center for Machine Vision and Signal Analysis, University of Oulu, Finland6
School of Information and Software Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China P.R.C6
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China6
Department of Automation, University of Science and Technology of China, Hefei, China6
Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 117576, Singapore6
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China6
IIT Guwahati, Guwahati, India6
School of Software, Dalian University of Technology, Dalian, China6
Department of Computer Science and Engineering, Varendra University, Rajshahi, Bangladesh6
Indraprastha Institute of Information Technology Delhi, New Delhi, India6
School of Computer and Information, Hefei University of Technology, Hefei, China6
Key Lab of Computing and Communication Software of Anhui Province, School of Computer Science and Technology, University of Science and Technology of China, Hefei, China, 2300276
Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China6
Queen Mary University of London, UK6
Department of Computing, The Hong Kong Polytechnic University, Hong Kong6
Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay6
School of Software, Dalian University of Technology, China 1166206
School of Computer Science & Technology, Harbin Institute of Technology6
School of Computer Science and Engineering, South China University of Technology, Guangzhou, China6
Microsoft Res. Asia, Beijing, China5
LUNAM Université, LIUM, Le Mans, France5
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA5
School of Electronics and Information, Northwestern Polytechnical University5
Electronics and Telecommunications Research Institute, Korea5
Institute for Microsensors, Actuators and Systems, University of Bremen, Bremen, Germany5
Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China, 1001905
Nokia Research Center, Beijing5
College of Computer Science, Zhejiang University of Technology, Hangzhou, China5
Frontier Research Group, Samsung India Software Operations, India5
Faculty of Information Technology, Beijing University of Technology, Beijing, China5
Elektrik-Elektronik Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Türkiye5
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA5
IIIT-Delhi5
Georgia Institute of Technology5
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea5
Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China5
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Science, Beijing, 100190, China5
Human Language Technology Center of Excellence, The Johns Hopkins University, Baltimore, MD, 21218, USA5
Department of Electronic Engineering/Graduate School at Shenzhen, Tsinghua University, China5
Dalian University of Technology, China5
Chinese Academy of Sciences5
Nanyang Technological University, Singapore5
College of Information Science and Technology, Beijing Normal University, Beijing, P.R. China5
Visea İnovatif Bilgi Teknolojileri, ETGB Teknoparkı, Eskişehir, Türkiye5
Ocean University of China, Department of Educational Technology, Qingdao, China5
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China5
Disney Research, UK5
Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand5
Chonnam National University, Gwangju, Korea5
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI5
Microsoft Research Asia, Beijing, China5
Carnegie Mellon University, ForbesAvenue, Pittsburgh PA5
Telecommun. & Ind. Phys., CSIRO, Epping, NSW, Australia5
Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney, New South Wales, Australia5
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences5
Pattern Recognition and Intelligent System Laboratory, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China5
Artificial Vision Laboratory, National Taiwan University of Science and Technology, Taipei, Taiwan5
Hangzhou Dianzi University, Hangzhou, China5
Department of Automation, Shanghai Jiao Tong University, Shanghai, China5
Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece5
University of Trento, Italy, Via Sommarive, Trento (Italy)5
Biometric Recognition Group - ATVS, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Avda. Francisco Tomas y Valiente, 11 - Campus de Cantoblanco - 28049, Spain5
Institute of Microelectronics, Tsinghua University, Beijing, China5
Department of Computer Science and Engineering, National Institute of Technology, Durgapur, India5
DUT-RU International School of Information & Software Engineering, Dalian University of Technology5
East China Normal University, Shanghai, China5
Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia5
Department of Information Science and Engineering, Ritsumeikan University, Shiga, Japan5
Carnegie Mellon University, Pittsburgh, PA, USA5
Department of Automation, State Key Lab of Intelligent Technologies and Systems and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China5
Chongqing Institute of Green and Intelligent Technology, CAS, Chongqing, 4007145
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China5
School of Data and Computer Science, Sun Yat-Sen University, China5
Centre of Development of Advanced Computing (CDAC) Mumbai, 400049, India5
National Institute of Informatics, Tokyo, Japan5
University of Southern California5
Chongqing Institute of Technology, China5
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China5
Northwestern Polytechnical University, Xi'an Shaanxi, China5
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Haidian District, Beijing, China5
Chinese Academy of Sciences, Beijing, China5
SIAT at Chinese Academy of Sciences, China5
IBM China Research Laboratory, Beijing, China5
Stanford University, Stanford, CA, USA5
University of California, Merced5
Tsinghua National Laboratory for Information Science and Technology Institute of Microelectronics, Tsinghua University, Beijing, China5
Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy5
Hefei University of Technology, Hefei, China5
Department of Computer Science, Xiamen University, Xiamen, P. R. China5
University of Southern California Institute for Creative Technologies, Los Angeles, CA5
University of Maryland, College Park, MD, USA5
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 6397985
The Institute of Optics and Electronics Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Chengdu, China5
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA5
Idiap Research Institute, Martigny, Switzerland5
NICTA, PO Box 6020, St Lucia, QLD 4067, Australia5
College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, China5
Department of Electronics and Telecommunication Engineering, Don Bosco Institute of Technology, Kurla (W), Mumbai, India5
Dept. of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA5
School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia5
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China5
School of Electronic Engineering, Xidian University, Xi'an, China5
University of Science and Technology of China, Hefei, Anhui, China5
R V College of Engineering, Department of Computer Science and Engineering, Bangalore, India5
Centre for Machine Vision Research, University of Oulu, Finland5
Knowledge Technology Institute, Department of Informatics, University of Hamburg, Hamburg, Germany5
School of Electrical Engineering Department, Korea University, Rep. of Korea5
Inst. Nat. des Telecommun., Evry, France5
University of Trento, Trento, Italy5
National Science and Technology Development Agency, National Electronics and Computer Technology Center, Pathum Thani, 12120, Thailand4
Dalian University of Technology, Dalian, Liaoning, 116024, China4
School of Engineering & Applied Science, Ahmedabad University, Gujarat, India 3800094
Shanghai Jiao Tong University School of Electronic Information and Electrical Engineering4
University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia4
The Australian Centre for Visual Technologies, The university of Adelaide4
University of the Western Cape, Bellville, Western Cape4
School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, 6140, New Zealand4
Tsinghua University4
National Taiwan University, Taipei, Taiwan4
School of Computer Science & Technology, Nanjing University of Science and Technology, China4
Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ- 080284
School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China, 7100494
Media Integration and Communication Center - MICC, University of Florence, Italy4
School of Computer Science, University of the Witwatersrand, Johannesburg, South Africa4
Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland4
School of Computer Science and Telecommunication Engineering, Jiangsu University, ZhenJiang, Jiangsu, 212013, P. R. China4
Seoul Nat'l Univ.4
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China 1008764
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, China4
Institute of Computer Science and Technology, Peking University, Beijing, China, 1008714
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China4
School of Computer Science and Engineering, Nanjing University of Science and Technology, China4
Faculty of electrical engineering, University of Ljubljana, Slovenia4
Department of Information Management and Security, Korea University4
Pattern Recognition and Intelligent System Lab (PRIS) Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China4
Institute of Intelligence Information Processing, Xidian University, Xi¿an, China, 7100714
Research Center for Information Technology Innovation (CITI), Academia Sinica, Taipei, 115 Taiwan4
University of Miami, Coral Gables, FL4
Univ. Orléans, INSA CVL, PRISME EA 4229, Bourges, France4
Institute of Systems and Robotics (ISR), University of Coimbra, Portugal4
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong4
School of Electrical and Electronics Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, SEOUL, Republic of Korea4
School of Information Science and Engineering, Southeast University, Nanjing, 210096, P.R. China4
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea4
Hong Kong University of Science and Technology, Hong Kong4
INRIA Grenoble Rhone-Alpes, FRANCE4
North China Electric Power University Department of Electronic and Communication Engineering Baoding, Hebei, China4
Seoul National University4
School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand4
Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China4
School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guangxi Guilin, China4
University of Portsmouth, United Kingdom4
Carnegie Mellon University4
Bilgisayar Mühendisliği, Başkent Üniversitesi, Ankara, Türkiye4
Universidad Autonoma de Madrid4
University of Oulu, Machine Vision Group, PO Box 4500, 90014, Finland4
Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea4
Center for Computer Vision and Department of Mathematics, Sun Yat-Sen University, Guangzhou, China4
Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland4
KU Leuven, Leuven, Belgium4
Academia Sinica, Taipei, Taiwan4
Institute of Computer, Hangzhou Dianzi University, China4
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No.95 East Road of Zhongguancun, Beijing, China4
LIARA Laboratory, University of Quebec at Chicoutimi (UQAC), Boulevard de l'Université, Chicoutimi (Quebec), Canada4
Dept. of Computing, Curtin University GPO Box U1987, Perth, WA 68454
Department of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China4
NTT Software Innovation Center, Tokyo, Japan4
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China4
University of Electronic Science and Technology of China, Chengdu, China4
Dalle Molle Instituite for Artificial Intelligence (IDSIA), Lugano, Switzerland4
Dept of Electrical and Computer Engineering, University of Calgary, Calgary, CANADA4
Department of Computer Science, University of Colorado at Colorado Springs4
EECS Department, University of Kansas, Lawrence, KS4
Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha, Hunan, P.R. China4
Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 1001904
The Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia4
School of Information and Communication, Guilin University of Electronic Technology Guangxi Guilin, China4
College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, P.R. China4
Department of Mathematics and Computer Science University of Basel4
Xi'an Jiaotong University, Xi'an, China4
Department of Information Engineering, University of Brescia, Via Branze, 38 - 25123, Italy4
Department of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China4
Goa University, India4
University of Texas at Arlington, Arlington, TX4
Norwegian Biometrics Laboratory, NTNU - Gj⊘vik, Norway4
Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K.4
University of Nottingham, UK4
Beijing Key Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing 100081, China4
Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation of China, Xidian University, Xi’an, China4
VUB-NPU Joint AVSP Research Lab, Vrije Universiteit Brussel (VUB), Deptartment of Electronics & Informatics (ETRO), Pleinlaan 2, 1050 Brussel, Belgium4
National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu, China4
State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China4
Department of Electronic and Electrical Engineering, Pohang University of Science and Technology (POSTECH), South Korea4
University of Canberra, Canberra, Australia4
Graduate School of Information Science, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma-shi, Nara, Japan4
Department of Computer Science, University of North Carolina, Charlotte, NC, USA4
Institute of Machine Learning and Systems Biology, College of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, China4
Intel Labs, Hillsboro, Oregon, USA4
Smart Surveillance Interest Group, Department of Computer Science, Universidade Federal de Minas Gerais, Minas Gerais, Brazil4
Department of Automation, State Key Lab of Intelligent Technologies and Systems, and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China4
Université de Lyon, CNRS, UMR5205, F-69622, France4
Shanghai University School of Communication and Information Engineering Shanghai, China4
Microsoft, Redmond, WA, USA4
Computer Science and Engineering, Pennsylvania State University, PA, USA SiliconScapes, LLC, PA, USA4
Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China4
Queen Mary University of London, London4
Dept. of Computer Engineering, Keimyung University, Daegu, Korea4
Department of Cognitive Science, Xiamen University, Xiamen, Fujian, China4
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China4
Université de Lyon, CNRS, UMR5205, F-69622, France4
School of Information and Communication Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China4
DII, University of Brescia, Brescia, Italy4
School of Software, Tsinghua University, Beijing, China4
National ICT Australia and UNSW, Sydney, Australia4
Institute for Creative Technologies, University of Southern California4
School of Information Science and Technology, Xiamen University, Xiamen, China4
University of California, San Diego, USA4
The University of Queensland, School of ITEE, QLD 4072, Australia4
Department of Computer Science, University of York, UK4
Department of Automation, State Key Lab of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China4
Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan4
SRI International, Menlo Park, USA4
Université de Lyon, CNRS, France4
School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing, Soochow University, Suzhou, China4
Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China4
Computer Science and Engineering Department, University of South Florida, Tampa, FL, USA4
Advanced Technologies Application Center 7a #21406 b/ 214 and 216, P.C. 12200, Siboney, Playa, Havana, Cuba4
Çoğulortam İşaret İşleme ve Örüntü Tanıma Grubu, İstanbul Teknik Üniversitesi, İstanbul, Türkiye4
Department of Electrical and Computer Engineering, Beckman Institute Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, USA4
National Laboratory of Pattern Recognition, CASIA, Center for Research on Intelligent Perception and Computing, CASIA, Center for Excellence in Brain Science and Intelligence Technology, CAS, University of Chinese Academy of Sciences, Beijing, 100049, China4
Machine Learning and Cybernetics Research Center, School of Computer Science and Engineering, South China University of Technology, 510006, Guangzhou, China4
IC Design Group, CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India4
College of Information Engineering, Yangzhou University, Yangzhou, China4
Department of Mathematics, Intelligent Data Center, Sun Yat-sen University, Guangzhou, China4
State Key Laboratory of Intelligent Technology and Systems Tsinghua National Laboratory for Information Science and Technology Department of Electronic Engineering, Tsinghua University, Beijing 100084, China4
Universiti Kuala Lumpur, Kuala Lumpur4
Max Planck Institute for Informatics, Saarland Informatics Campus, Germany4
National Laboratory of Radar Signal Processing, Xidian University, Xi’an, China4
Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia4
Beijing Normal Univeristy, Beijing, China4
Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina Del Rey, 90292, USA4
National University of Defense Technology, China4
National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China4
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong4
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA4
University of Tsukuba4
University of Electronic Science and Technology of China4
National Taiwan University of Science and Technology4
Samsung R&D Institute, Bangalore, India4
Yaroslavl State University, Yaroslavl, Russia4
Department of Electrical and Computer Engineering, Seoul National University4
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China4
School of Electronics and Information Technology, Sun Yat-sen University, China4
University of Tunis, The National Higher school of engineers of Tunis (ENSIT), Laboratory of Signal Image and Energy Mastery, LR13ES03 (SIME), Tunis, Tunisia4
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China4
Department of Computer Science and Engineering, Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea4
University of Maryland, College Park, Maryland 20740 United States4
Face Aging Group, University of North Carolina, Wilmington, NC, USA4
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China4
North Carolina State University, Department of Electrical and Computer Engineering, Raleigh, United States of America4
Institute of Computer Science and Technology, Peking University, Beijing, China4
College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia4
Media Technology Lab, Huawei Technologies Co., Ltd4
Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, China4
Keio University, Japan4
National University of Defense Technology, Changsha, China4
Hewlett-Packard Laboratories, Hewlett-Packard Company, Palo Alto, CA, USA4
School of Computer Science and Engineering, Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China4
Image Processing Center, Beihang University, Beijing, China4
School of Electronic and Computer Engineering, Peking University4
Centre for Vision, Speech and Signal Processing University of Surrey, Guildford, UK4
Shenzhen Key Laboratory of Information Science and Technology, Shenzhen Engineering Laboratory of IS&DCP and the Department of Electronic Engineering, Graduate School at Shenzhen, Tsinghua University, Beijing, China4
Department of Computer Graphics and Multimedia, University of Brno, Brno, Czech Republic4
Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain4
Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China4
Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, People's Republic of China4
Video/Image Modeling and Synthesis Laboratory, Department of Computer and Information Sciences, University of Delaware, Newark, DE4
Multimedia Processing Lab., Samsung Advanced Institute of Technology (SAIT), Suwon-si, Korea4
Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA4
Osaka university, Japan4
IBJ, Inc., Tokyo, Japan4
The University of Tokyo, Japan4
Faculty of Engineering, Ain Shams University, Computer and Systems Engineering Department, Cairo, Egypt4
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China4
College of electronic and information engineer Changchun University of Science and Technology Changchun China4
School of Electrical, Computer and Telecommunication Engineering, University of Wollongong, NSW 2522, Australia4
The University of Texas at Austin Austin, Texas, USA4
Amity University Uttar Pradesh, Noida4
Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University, Seoul, South Korea4
Computer Science and Engineering Dept., University of Nevada Reno, USA4
Dept of Computer Engineering, Kyung Hee University, Yongin-si, South Korea4
Computational Biomedicine Lab, Department of Computer Science, University of Houston, TX, USA4
University of Surrey, Guildford4
Department of Information and Control, B-DAT Laboratory, Nanjing University of Information and Technology, Nanjing, China4
State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China4
State Key Laboratory of Robotics, Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang, 110016, China4
Inha University, South Korea4
Sharp Laboratories of America, Camas, WA4
Department of Informatics, Aristotle University of Thessaloniki, Greece4
Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, Netherlands4
Center for Biometrics and Security Research and the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China4
Geintra Research Group, University of Alcala4
National Engineering Research Center for Multimedia Software, Computer School, Wuhan University, Wuhan, China4
Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, 46150 Selangor, Malaysia4
Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing, China4
Department of Computer Science, Hong Kong Baptist University, Hong Kong4
University of Science and Technology of China, Hefei, China4
Beijing, Haidian, China4
Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China4
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.4
Institute for Human-Machine Communication, Technische Universität München, Germany4
Peking University, Shenzhen, China4
Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada4
Faculty of Engineering Science, Department of Systems Innovation, Arai Laboratory at Osaka University, Japan4
Biometric Recognition Group - ATVS, EPS, Universidad Autonoma de Madrid, Avda. Francisco Tomas y Valiente, 11 - Campus de Cantoblanco - 28049 Madrid, Spain4
Department of MathematicsIntelligent Data Center, Sun Yat-sen University, Guangzhou, China4
University of Trento, Italy4
Centre for Imaging Sciences, The University of Manchester, Manchester, United Kingdom4
National Laboratory of Pattern Recognition, CASIA, University of Chinese Academy of Sciences, Beijing, 100049, China4
School of Electronic and Electrical Engineering, Shanghai Jiao Tong University, National Engineering Lab on Information Content Analysis Techniques, GT036001 Shanghai, China4
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences4
Department of Informatics, University of Oslo, Oslo, Norway4
Speech, Audio, Image and Video Technology (SAIVT) Laboratory, Queensland University of Technology, Australia4
Technicolor, France4
Korea Advanced Institute of Science and Technology, Daejeon, South Korea4
School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China4
School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China3
CyLab Biometrics Center and the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA3
NTT Corporation, Atsugi, Japan3
Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beersheba, Israel3
National Laboratory of Pattern Recognition, Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China3
Vision Lab at Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA3
Intel Labs China, Beijing, China3
IBM T. J. Watson Research, Yorktown Heights, NY, USA3
Computer Science and Technology, University of Science and Technology of China3
School of Information Technologies, University of Sydney, Australia3
Department of Electronic Engineering, The Chinese University of Hong Kong, China3
Key Laboratory of Machine Perception (Ministry of Education) Engineering Lab on Intelligent Perception for Internet of Things (ELIP), Shenzhen Graduate School, Peking University, China3
School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, CO 130012 China3
Center for Cognitive Ubiquitous Computing, Arizona State University, USA3
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China3
Institute of Computing, State University of Campinas, Campinas, Brazil3
Guangdong Key Laboratory of Data Security and Privacy Preserving, Guangdong Engineering Research Center of Data Security and Privacy Preserving, College of Information Science and Technology, Jinan University, Guangzhou, China3
State Key Laboratory of Intelligent Technology and Systems, Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R. China3
CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei 230027, China3
Tokyo Institute of Technology, Tokyo, Japan3
Radboud University, Nijmegen, Netherlands3
Algılayıcılar, Görüntü ve Sinyal İşleme Grubu, HAVELSAN A.Ş. Ankara, Türkiye3
C & C Innovation Research Labs, NEC Corporation, Nara, Japan3
Dept. of Audio Visual Technology, Technische Universitt, Ilmenau, Germany3
Imperial College London, UK3
School of Electrical and Computer Engineering, Royal Melbourne Institute of Technology University , Melbourne, Australia3
School of Information Technology and Electrical Engineering, The University of Queensland, Australia3
Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea3
Institute for Infocomm Research, 1 Fusionpolis Way, #21-01, Connexis Singapore 138632, Singapore3
School of Computer Science and Engineering, South China University of Technology, China3
Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA3
Dept. of Electrical Engineering and Comp. Sc., Northwestern University, Evanston, IL 60208, USA3
School of Electronics and Computer Science, University of Southampton, Southampton, U.K.3
School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China3
Program of Electrical Engineering, COPPE/UFRJ, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ CEP, Brazil3
Bilgisayar Mühendisliği, İstanbul Teknik Üniversitesi, İstanbul, Turkey3
Department of Electrical and Computer Engineering and the Center for Automation Research, UMIACS, University of Maryland, College Park, USA3
Department of Computer Engineering, Kyung Hee University, Seoul, South Korea3
Michigan State University, United States of America3
School of Engineering, University of Baja California, Tijuana, México3
Center for Machine Vision Research, University of Oulu3
Department of Computer Science and Engineering, University of South Florida, Tampa, Florida 336203
KTH Royal Institute of Technology, 100 44 Stockholm, Sweden3
School of Software, Huazhong University of Science and Technology, Wuhan, China3
Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA3
School of Computer Science, Center for Optical Imagery Analysis and Learning (OPTIMAL)3
Department of Computing, Curtin University, Perth WA 6102, Australia3
Department of Systems and Computing, Federal University of Campina Grande, Av. Apríigio Veloso, 882, 58429-900 Campina Grande, PB, Brazil3
Institute of Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany3
Universidade Federal do Rio de Janeiro, Cx.P. 68504, Rio de Janeiro, RJ, CEP 21945-970, Brazil3
R&D Centre Algoritmi, School of Engineering, University of Minho, Portugal3
National Laboratory for Parallel and Distributed Processing, School of Computer, College of Computer, National University of Defense Technology, Changsha, China3
Department of Computer and Information Science, Temple University, Philadelphia, PA, 19122, USA3
Department of Control and Computer Engineering, Politecnico di Torino, Italy3
Key Laboratory of System Control and Information Processing MOE, Department of Automation, Shanghai Jiao Tong University3
College of Computer Science, Zhejiang University, China3
Institute of Industrial Information Technology (IIIT), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany3
School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China3
Institute for Electronics, Signal Processing and Communications (IESK), Otto-von-Guericke-University Magdeburg, D-39106, P.O. Box 4210 Germany3
Institute for Human-Machine Communication, TU München, Theresienstrae 90, 80333 München, Germany3
School of Computer Science and Technology, Harbin Institute of Technology, China3
Oak Ridge National Laboratory, USA3
Center for Research in Intelligent Systems, University of California, Riverside Riverside, CA 92521-0425, USA3
Department of CS&E, Indian Institute of Technology, Madras, India3
Department of Electrical and Computer Engineering, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Canada3
Shanghai Advanced Research Institute, CAS, Shanghai, China3
Elektrik ve Elektronik Mühendisliği Bölümü, Eskişehir Osmangazi Üniversitesi, Türkiye3
Department of Computer Science, Zhejiang University, Hangzhou, China3
Software Solution Laboratory, Samsung Advanced Institute of Technology, Suwon-si, South Korea3
Florida International University, Miami, FL3
Rice University3
Department of electronic engineering, Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China3
Centre of Informatics, Federal University of Pernambuco, Recife-PE, Brazil. Bruno J. T. Fernandes is also with the Polytechnic School, University of Pernambuco, Brazil3
Computer Vision Laboratory, ETH Zurich, Sternwartstrasse 7, 8092, Switzerland3
VNU HCMC, University of Science, Ho Chi Minh City, Vietnam3
Department of Electrical and Computer Engineering, Peking University, Beijing, China3
Instrumentation, IT and Systems Lab IRSEEM Rouen, FR3
Aristotle University of Thessaloniki, Greece3
School of Automation, Northwestern Polytechnical University, Xi’an, China3
Department of Computer Science and Engineering, Arizona State University, Tempe, AZ, USA3
BITS Pilani, Pilani , India3
Department of Computer Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India3
College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China3
Center for Research on Intelligent Perception and Computing, Institute of Automation, National Laboratory of Pattern Recognition, Chinese Academy of Sciences3
National Laboratory of Pattern Recognition CAS Center for Excellence in Brain Science and Intelligence Technology Institute of Automation, Chinese Academy of Sciences, 100190, China3
Univ. Bordeaux, LaBRI, PICTURA, UMR 5800, F-33400 Talence, France3
Tianjin University, China3
The Univ of Hong Kong, China3
Advanced Technologies Application Center (CENATAV), 7A ♯21406 Siboney, Playa, P.C.12200, Havana, Cuba3
GIPSA-Lab, Grenoble, France3
University of Maryland, Baltimore County, Baltimore, MD, USA3
Dept. of CS&E, IIT Madras, India3
Samsung Research and Development Institute Bangalore Pvt Ltd., Bangalore, India3
Inst. of Autom., Shanghai Jiao Tong Univ., China3
Department of Computer Science, New Jersey Institute of Technology, Newark, USA3
State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China3
Department of Electrical and Electronic Engineering, Imperial College London, London, U.K.3
Center for Cognitive Ubiquitous Computing (CUbiC), Arizona State University, Tempe, AZ, USA3
Department of Computing, Curtin University, Perth WA, Australia3
SUNY Buffalo3
Graduate School of System Design Tokyo Metropolitan University Tokyo, Japan3
Bilgisayar Mühendisliği Bölümü, TOBB Ekonomi ve Teknoloji Üniversitesi, Ankara, Türkiye3
Intelligent Data Center, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China3
Indian Institute of Information Technology at Allahabad, Allahabad, India3
Face Aging Group, Computer Science Department, UNCW, USA3
City University of New York, New York, NY, USA3
Department of Computer Science and Digital Technologies, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, U.K.3
Faculty of Information Technology, University of Technology, Sydney, Australia3
Department of Computer Science and Engineering, Visual Learning and Intelligence Group, IIT Hyderabad, Hyderabad, India3
School of Computing, Communications and Electronics, University of Plymouth, UK3
Ghent University, Ghent, Belgium3
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA3
University of California San Diego, United States of America3
Columbia Univeristy, New York, NY, USA3
Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, China3
Microsoft Research Cambridge3
Singapore University of Technology and Design, Singapore3
School of Information Science and Technology, Xiamen University, Xiamen, P. R. China3
Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan3
School of Information Technology and Electrical Engineering, The University of Queensland3
Center for Automation Research, UMIACS University of Maryland, College Park, MD 207423
School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, U.K.3
Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore3
University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia3
Department of Computer Science, University of Hamburg, Germany3
Department of Computer ScienceMultimedia Processing Laboratory, National Tsing Hua University, Hsinchu, Taiwan3
West Virginia University, Lane Dept. of CSEE, Morgantown, WV3
University of California San Diego3
School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China3
School of Information Technologies, The University of Sydney, NSW 2006, Australia, Sydney3
Department of Electrical Engineering, University of Windsor, Ontario, Canada3
School of Information and Communication Engineering, Beijing University of Posts and Telcommunications, Beijing, China3
INRIA Grenoble Rhône-Alpes Research Center, 655 avenue de l'Europe, 38 334 Saint Ismier Cedex, France3
National Institutes of Health, Bethesda, Maryland 208923
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA3
Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, South Korea3
Department of Computing, The Hong Kong Polytechnic University, China3
Harvard University3
School of Computing and Information Sciences, Florida International University, Miami, FL3
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin3
Department of Automation, Tsinghua University, 100084 Beijing, China3
NICTA, Canberra ACT, Australia and CECS, Australian National University, Australia3
Beijing University of Posts and Telecommunications, Beijing, China3
Research Center of Intelligent Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R China3
UtopiaCompression Corporation, 11150 W. Olympic Blvd, Suite 820, Los Angeles, CA 90064, USA3
Chinese Academy of Sciences, China3
Laboratoire des Systèmes de Télécommunication et Ingénierie de la Décision (LASTID) Université Ibn Tofail BP 133, Kenitra 14000, Maroc3
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7222, F-75005, Paris, France3
Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan3
School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China3
University of Wisconsin - Madison3
Mines-Télécom/Télécom Lille, CRIStAL (UMR CNRS 9189), Villeneuve d'Ascq, France3
Kyung Hee University, Korea3
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina3
Stony Brook University, Stony Brook, NY 11794, USA3
University of Delaware, Newark, 19716, USA3
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Adenauerring 4, 76131, Germany3
University at Buffalo, The State University of New York, Buffalo, NY 14203, USA3
UIUC3
Computational Biomedicine Lab, Department of Computer Science, University of Houston, 4800 Calhoun Rd., TX, 77004, USA3
Pattern Recognition and Intelligent Systems Laboratory, Beijing University of Posts and Telecommunications, Beijing, China3
Laboratory of Intelligent Recognition and Image Processing, School of Computer Science and Engineering, Beihang University, 100191, Beijing, China3
Face Aging Group, UNCW3
University of Texas at San Antonio, San Antonio, USA3
College of Computer Science and Technology, Xinjiang Normal University, Urumchi, 830054, China3
School of Information Technology, Deakin University, Geelong, VIC 3216, Australia3
Institute of Mathematical and Computer Sciences, University of Sao Paulo, Sao Paulo, Brazil3
Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece3
Zhejiang University3
Northwestern Polytechnical University, Xi'an, P. R. China3
University of Southern California, Institute for Robotics and Intelligent Systems, Los Angeles, CA 90089, USA3
NTT Media Intelligence Laboratories, Tokyo, Japan3
Computer Science, University of Houston, Texas 77004, United States of America3
School of Communication and Information Engineering, Beijing University of Posts and Telecommunications, Beijing, China3
Beijing Institute of Graphic Communication, Beijing3
Department of Computer Science and Technology, Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China3
Department of Computer Science and Engineering, Michigan State University, USA3
Tsinghua University, Beijing,China3
Media & Inf. Res. Labs., NEC Corp., Kanagawa, Japan3
Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain3
Department of Electronic Engineering, Shanghai Jiao Tong University, China3
Department of Computer Science and TechnologyState Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China3
School of Software, Tsinghua University, Beijing, P. R. China3
Research Center of Intelligent Robotics Shanghai Jiao Tong University, Shanghai, 200240, P.R. China3
Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences3
School of Software, University of Technology Sydney, New South Wales, Australia3
School of Telecommunications Engineering, Xidian University, Xi’an, China3
Department of Computer Science, Shenzhen Graduate School, Harbin Institute of Technology, Guangdong 518055, China3
Azbil Corporation 1-12-2, Kawana, Fujisawa-shi, 251-8522, Japan3
Graduate School of Information Sciences, Tohoku University, 6-6-05., Aramaki Aza Aoba., Sendai-shi., 980-8579., Japan3
Australian National University, Canberra, Australia3
Visualisation Group, University of Warwick, Coventry, UK3
School of Software Engineering, Chongqing University, Chongqing, China3
Beijing University of Posts and Telecommunications3
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan3
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China3
Nara Institute of Science and Technology, Japan3
Institute for Electronics, Signal Processing and Communications (IESK) Otto-von-Guericke-University Magdeburg D-39016 Magdeburg, P.O. Box 4210 Germany3
Department of Computer, the University of Suwon, Korea3
Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany3
Department of Electrical and Computer Engineering, Florida Institute of Technology, Melbourne, USA3
Fujian Key laboratory of Sensing and Computing for Smart City, School of Information Science and Technology, Xiamen University, Xiamen, China3
Dept. of Computer Science and Engineering, St. Joseph's College of Engineering and Technology, Palai, Kerala, India3
Beijing University of Posts and Telecommunications, Beijing, P.R. China3
Department of Computer Science and Engineering, Michigan State University, East Lansing 48824, USA3
Centre for Vision, Speech and Signal Processing, University of Surrey, UK3
School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China3
Department of Electrical Engineering, Indian Institute of Technology Kanpur, PIN 208016, Uttar Pradesh, India3
Dept. of Computer Science and Electrical Engineering, University of Missouri-Kansas City, MO, USA3
University of North Carolina Wilmington, USA3
Shenzhen Key Laboratory of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China3
Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, Beijing 100876, China3
Visual Media Computing Lab, Department of Multimedia and Graphic Arts, Cyprus University of Technology, Limassol, Cyprus3
Department of Computer Science, Computational Biomedicine Laboratory, University of Houston, Houston, TX, USA3
Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil3
Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China3
Inha University, Incheon, South Korea3
Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland3
Australian Centre for Field Robotics University of Sydney, 2006, Australia3
Université de Lyon, Laboratoire d’InfoRmatique en Image et Systèmes d’information, Centre National de Recherche Scientifique 5205, Ecole Centrale de Lyon, France3
Department of Computer ScienceFace Aging Group Research Laboratory, Institute for Interdisciplinary Studies in Identity Sciences, University of North Carolina at Wilmington, Wilmington, NC, USA3
Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA3
Center for Research on Intelligent Perception and Computing3
UC Merced, USA3
Centre for Quantum Computation & Information Systems, Faculty of Engineering and IT, University of Technology, Sydney, 235 Jones Street, Ultimo, NSW, Australia3
Samsung Research Center-Beijing, SAIT China Lab Beijing, China3
IT - Instituto de Telecomunicações, University of Beira Interior, Portugal3
Thiagarajar College of Engineering, Madurai, Tamilnadu, India3
Center for Cognitive, Connected & Computational Imaging, College of Engineering & Informatics, NUI Galway, Ireland3
Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany3
Institute of Information Science, Beijing jiaotong University, Beijing, China3
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an, China3
Center for Automation Research, University of Maryland, College Park, 20742, USA3
Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482, Germany3
Dalian University of Technology, School of Software Tuqiang St. 321, Dalian, 116620, China3
Shenzhen Graduate School, Peking University, Shenzhen, China3
Department of Computer Science, University of Central Florida, Orlando, 32816, United States of America3
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China3
College of Computer Science and Technology, Jilin University, Changchun, China3
University of Technology, Sydney3
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China3
Software School, Xiamen University, Xiamen, China3
University of Nottingham, Ningbo China3
National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University Chengdu, 610065, China3
Institute of Forensic Science, Ministry of Justice, Shanghai 200063, China3
Department of Information Engineering, University of Florence, Florence, Italy3
Dept. of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan3
West Virginia University, Morgantown, WV, USA3
EUP Mataró, Spain3
Université du Québec à Chicoutimi (UQAC)3
Dept. of Computer Sciences, ASIA Team, Moulay Ismail University, Faculty of Science and Techniques, BP 509 Boutalamine 52000 Errachidia, Morocco3
School of Electrical and Electronic Engineering, Singapore3
Microsoft Research, Beijing, China3
Northeastern University, Boston, USA3
Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China3
Advanced Technologies Application Center, 7a #21406 b/ 214 and 216, P.C. 12200, Playa, Havana, Cuba3
Artificial Vision Laboratory, National Taiwan University of Science and Technology3
Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India3
Universidade Nova Lisboa, Lisboa, Portugal3
Wuhan University, Wuhan, China3
Key Laboratory of Machine Perception (Ministry of Education), Engineering Lab on Intelligent Perception for Internet of Things (ELIP), Shenzhen Graduate School, Peking University, China3
Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China3
Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China3
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation Chinese Academy of Sciences, Beijing, China 1001903
Bilgisayar Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye3
Department of Computer Science and Engineering, Jadavpur University, Kolkata, India3
Indian Statistical Institute, Kolkata, India3
Jiangsu University, Zhenjiang, China3
Sharif University of Technology3
Department of Computer Science and Engineering, National Institute of Technology Uttarakhand, Srinagar Garhwal, India3
Dept. of Mediamatics, Delft Univ. of Technol., Netherlands3
Disney Research Pittsburgh, Pittsburgh, PA, USA3
Electrical and Computer Engineering3
Video Analytics Laboratory, SERC, Indian Institute of Science, Bangalore, India3
School of Electronics and Information Engineering, Tianjin University, Tianjin, China3
Cornell University, USA3
Department of Information Science and Engineering, Changzhou University, Changzhou, China3
International Center of Excellence on Intelligent Robotics and Automation Research, National Taiwan University, Taiwan3
Department of Informatics, University of Thessaloniki, 54124, Greece3
Department of Electrical and Computer Engineering, University of Dayton, Ohio, USA3
Department of Electrical and Computer Engineering, University of Windsor, Canada3
Graduate School of Shenzhen, Tsinghua University, Beijing, China3
Hanoi University of Science and Technology, Hanoi, Vietnam3
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Korea3
Institute of Computational Science, University of Lugano, Switzerland3
Norwegian Biometrics Laboratory, NTNU - Gjøvik, Norway3
Institute of Technology and Science, Tokushima University, 2-1 Minamijyousanjima, 770-8506, Japan3
LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, France3
National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China3
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, China3
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore3
Multimedia and Intelligent Software Technology Beijing Municipal Key Lab., College of Computer Science, Beijing University of Technology Beijing, China.3
Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany3
Korea University3
Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, NSW, Australia3
Shenzhen Key Laboratory of Broadband Network and Multimedia, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China3
TCS Research, New Delhi, India3
University of North Carolina Wilmington, Wilmington, NC3
Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia3
Research Institute of Shenzhen, Wuhan University, Shenzhen, China3
Shanghai University3
Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY3
Nanyang Technological University, Singapore, Singapore3
New York University, New York, NY, USA3
School of Electronics and Computer Science, University of Southampton, United Kingdom3
Department of Computer Science, University of Massachusetts Amherst, Amherst MA, 010033
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi’an, China3
Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Technická 2 Czech Republic3
Computer Laboratory, University of Cambridge, United Kingdom3
Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, USA3
Institute for Infocomm Research, A*STAR, Singapore, Singapore3
South China University of Technology, China3
Visionlab, Heriot-Watt University, Edinburgh, UK3
Institute for Infocomm Research, A*STAR, Singapore3
Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea3
Xerox Research Center, Webster, NY, USA3
Ashikaga Institute of Technology, Ashikaga, Japan3
Department of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Tyne and Wear3
College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan3
Institute of Applied Computer Science, Kiel University of Applied Sciences, Kiel, Germany3
School of Creative Technologies, University of Portsmouth, Portsmouth, POI 2DJ, UK3
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, France3
Faculty of Electronic Information and Electrical Engineering, School of Information and Communication Engineering, Dalian University of Technology, Dalian, China3
Affectiva Inc., Waltham, MA, USA3
Department of Electronics and Communication Engineering, Sun Yat-Sen University, Guangzhou, China3
Department of Computer Science, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea3
Dept. of Electrical and Computer Engineering & Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada3
Centre for Vision, Speech and Signal Processing, University of Surrey, Surrey, UK3
Computer Vision and Image Processing Lab, Institute for Integrated and Intelligent Systems, Griffith University, Australia3
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA3
Institute of Software, College of Computer, National University of Defense Technology, Changsha, Hunan, China, 4100733
Department of Electrical and Computer Engineering, Northeastern University, Boston, USA, 021153
AltumView Systems Inc., Burnaby, BC, Canada3
Central China Normal University, Wuhan, China3
Sapienza University of Rome3
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences3
Computer Vision Lab, Sungkyunkwan University Suwon, South Korea3
Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, China3
Department of Computer Science, Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany3
Faculty of Engineering, Shinshu University, Nagano, Japan3
Institute for Creative Technologies, University of Southern California, 12015 E Waterfront Dr, Los Angeles, CA, USA3
National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China3
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C3
Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 235293
Center for Research of E-life DIgital Technology (CREDIT), Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan3
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea3
E-Comm Research Lab, Infosys Limited, Bangalore, India3
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China3
Chongqing University of Posts and Telecommunications Chongqing, China3
National Laboratory of Pattern Recognition, Center for Biometrics and Security Research, Institute of Automation, Chinese Academy of Sciences, Beijing, China3
School of Computer Science and Software Engineering University of Wollongong, Australia3
Phonexia, Brno-Krlovo Pole, Czech Republic3
Expert Systems, Modena, Italy3
Chair of Complex & Intelligent Systems, University of Passau, Passau, Germany3
Stanford University, Palo Alto, CA, USA3
Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden3
Technische Universität München, Munich, Germany3
Laboratory for Intelligent and Safe Automobiles, University of California, San Diego, USA3
Toyota Research Institute3
Image and Video Research Lab, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD 4001, Australia3
School of Computer Science and Engineering, Nanjing University of Science and Technology3
The University of Newcastle, NSW, Australia3
Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, Tonantzintla, Puebla, Mexico3
NLPR, Institute of Automation, Chinese Academy of Sciences3
Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100190, China3
Columbia University, New York, USA3
Télécom Lille, CRIStAL UMR (CNRS 9189), France3
IMPCA, Curtin University, Australia3
Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia3
Concordia University3
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China3
University of California, Los Angeles, CA Dept. of Electrical Engineering3
University Of Electronic Science And Technology Of China, China3
IBM Research3
Academia Sinica, Taipei, Taiwan Roc3
Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia3
Computational Biomedicine Lab, Department of Computer Science, University of Houston, Houston, TX, USA3
Center for Digital Media Computing, Software School, Xiamen University, Xiamen 361005, China3
University of Milan, Italy3
State Key Laboratory on Intelligent Technology and Systems, National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, China3
School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, China3
Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic3
Department of Mathematics and Informatics, University of Florence, Florence, Italy3
Key Lab of Intelligent Information Processing, Institute of Computer Technology, Chinese Academy of Science (CAS), Beijing, 100190, China3
Image and Video Systems Lab, School of Electrical Engineering, KAIST, Republic of Korea3
Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand3
School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China3
National Laboratory of Pattern Recognition, Center for Research on Intelligent Perception and Computing, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China3
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O.Box 217 7500 AE Enschede, The Netherlands3
MindLAB Research Group, Universidad Nacional de Colombia, Colombia3
IntelliView Technologies Inc., Calgary, AB, Canada3
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan3
Information and media processing laboratories, NEC Corporation3
Southern Illinois University at Carbondale, IL, USA3
School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, 75080, USA3
Dept. of Automation and Applied Informatics, Politehnica University of Timisoara, Romania3
Queen Mary University of London3
School of Automation and Electrical Engineering, University of Science and Technology Beijing, 100083, China3
Michigan State University, East Lansing, 48824, USA3
The Hong Kong Polytechnic University, Hong Kong, China3
Peking University, China / Shanghai Jiao Tong University, China3
Department of Electronics, AGH University of Science and Technology, Kraków, Poland3
School of Software, Jiangxi Normal University, Nanchang, China3
Department of Computer Science, Pontificia Universidad Cato´lica de Chile3
Faculty of Information Technology, Ho Chi Minh City University of Science, VNU-HCM, District 5, Ho Chi Minh City, Vietnam3
Fujitsu Laboratories, Kawasaki, Kanagawa, Japan3
Department of Electronic and Computer Engineering National Taiwan University of Science and Technology3
Georgia Institute of Technology, Atlanta, 30332-0250, USA3
Tongji University, Shanghai, China3
Department of Electrical and Computer Engineering, Vision Laboratory, Old Dominion University, Norfolk, VA, USA3
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia3
School of Information Science and Engineering, Xiamen University, Xiamen 361005, China3
University of California San Diego, USA3
HCC Lab, Vision & Sensing Group, University of Canberra, Australia3
Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China3
REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia3
School of Computer Science and Educational Software, Guangzhou University, Guangzhou, China3
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA3
School of physics and engineering, Sun Yat-Sen University, GuangZhou, China3
New York University Abu Dhabi & NYU Tandon School of Engineering, Abu Dhabi, Uae3
Intelligent Vision Research Lab, Department of Computer Science, Federal University of Bahia3
FDNA inc., Herzliya, Israel3
Department of Mathematics & Computer Science, Philipps-Universität Marburg, D-35032, Germany3
Australian Center for Visual Technologies, and School of Computer Science, The University of Adelaide, Adelaide, Australia3
Department of Electronic Measuring systems, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia3
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 6397983
IT - Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal3
National University of Defence Technology, Changsha 410000, China2
National Ilan University, Ilan, Taiwan Roc2
Elektrik-Elektronik Mühendisliği Bölümü, Eskişehir Osmangazi Üniversitesi, Turkey2
Elektrik - Elektronik Mühendisliği Bölümü, Atılım Üniversitesi, Ankara, Türkiye2
China Electronics Standardization Institute, Beijing, 1000072
School of Reliability and System Engineering, Science and Technology on Reliability and Environmental Engineering Laboratory, Beihang University, Beijing, China2
Department of Computer Science, Kent State University, OH 44242, U.S.A.2
Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India2
Computational Biomedicine Lab, University of Houston2
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown WV 26506, USA2
Bilgisayar Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Turkiye2
Universidade Nova de Lisboa, Caparica, Portugal2
Universidad Tecnica Federico Santa Maria, Department of Electronic Engineering, Valparaiso, Chile2
Dept. of Comput. Syst., Univ. of Technol., Sydney, NSW, Australia2
Harvard University, Cambridge, MA, USA2
Michigan State University, East Lansing, MI, U.S.A.2
Department of Computer Science, National Tsing Hua University, Taiwan2
Dept. of Comput. Sci., York Univ., UK2
CSE, SUNY at Buffalo, USA2
Department of Computer Engineering, Mahanakorn University of Technology, 140 Cheum-Sampan Rd., Nong Chok, Bangkok THAILAND 105302
The Australian National University RSCS, ANU, Canberra, Australia2
University of Newcastle, Australia2
Dept. of Computer Science, YiLi Normal College, Yining, China 8350002
School of Computing and Communications, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia2
DISI, University of Trento, Italy2
LAPI, University Politehnica of Bucharest, Romania2
University of Colorado at Colorado Springs, Colorado Springs, CO, USA2
University of Twente, Enschede, Netherlands2
Department of Mechanical Engineering, National Taiwan University, 10647, Taipei, Taiwan2
Institution for Infocomm Research, Connexis, Singapore2
Department of d’Informàtica, Universitat de València, Valencia, Spain2
Toyota Research Institute, Cambridge, MA, USA2
Research Centre for Computers, Communication and Social Innovation La Trobe University, Victoria - 3086, Australia2
IBM Thomas J. Watson, Research Center, Yorktown Heights, New York 10598, USA2
Institute of Computing, University of Campinas (UNICAMP), SP, 13083-852, Brazil2
IFRJDL, Institute of Computing Technology, CAS, P.O.Box 2704, Beijing, China, 1000802
Computer Science Department, University of Southern California, Los Angeles, 90089, United States of America2
Department of Signal Processing, Tampere University of Technology, Tampere, Finland2
JD Artificial Intelligence Research, Beijing, China2
STARS team, Inria Sophia Antipolis-Méditerranée, Sophia Antipolis, France2
Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing, Singapore2
Delft University of Technology2
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA2
Department of Electrical and Computer Engineering, Singapore2
Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA2
Department of Computer Science, Wayne State University, Detroit, MI, USA2
Dept. of Computer Science, Yonsei University, Seoul, South Korea, 120-7492
Division of Graduate Studies, Tijuana Institute of Technology, México2
School of Engineering and Digital Arts, University of Kent, Canterbury, Kent CT2 7NT, United Kingdom2
Instituto de Telecomunicações & Faculdade de Ciěncias da Universidade do Porto2
Faculty of Science and Technology, University of Macau, Macau, China2
Department of Electrical and Computer Engineering and the Center for Automation Research, UMIACS, University of Maryland, College Park, MD2
Visual Analysis of People (VAP) laboratory, Aalborg University, Denmark2
Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Portugal2
School of Computer Science, Northwestern Polytechnical University, Xi’an, China2
Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, Spain2
SUPELEC / IETR, Avenue de la Boulaie, 35576 Cesson Sevigne, France2
Dept. of Computer Science & Engineering, University of South Florida, Tampa, 33620, United States of America2
Department of Information Management, National Formosa University, Huwei, Yulin 632, Taiwan2
Dept of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece2
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany2
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA2
Department of Electronic Engineering, Shanghai Jiao Tong University2
College of Computer and Information, Hohai University, Nanjing, China2
Department of Information Systems and Cyber Security and the Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA2
Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA2
Electronics & Telecommunications Research Institute (ETRI), Daejeon, Korea2
University of Ulm, Ulm, Germany2
Electrical and Computer Engineering Department, University of Windsor, Ontario, Canada N9B 3P42
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China2
Department of Computer Science, The University of Hong Kong2
Dept. of Eng. Sci., Oxford Univ., UK2
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Adenauerring 4, Karlsruhe, Germany2
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea2
Facial Image Processing and Analysis Group, Institute for Anthropomatics, Karlsruhe Institute of Technology, D-76131 Karlsruhe, P.O. Box 6980 Germany2
Delft University of Technology, Mekelweg 4, Netherlands2
Human-Machines Interaction (HMI) Laboratory, Department of Industrial Informatics, TEI of Kavala, Kavala, Greece2
Department of Computer Science and Engineering, Michigan State University2
Dept. of ECE, Maryland Univ., College Park, MD, USA2
Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, China2
Department of Computer Engineering, TOBB University of Economics and Technology, Ankara, Turkey2
National University of Defense and Technology2
School of Computer Science, CECS, Australian National University, Australia2
Electrical & Electronic Engineering Department, Mevlana University Konya, Turkey2
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA2
Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan2
GIPSA Laboratory, Image and Signal Department, Grenoble Institute of Technology, Grenoble, France2
Florida International University2
Gradate School of Information Production and System, Waseda University, Kitakyushu, Japan 808-01352
Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Odisha, India2
Graduate School of Information, Production and Systems, Waseda University, Japan2
Department of Computer Science and Engineering, National Taiwan Ocean University, No.2, Beining Rd., Keelung 202, Taiwan2
Tampere University of Technology, Finland2
Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan2
Biodata Mining Group, Technical Faculty, Bielefeld University, Germany2
Chungnam National University, Daejeon, South Korea2
Bilgisayar Mühendisliği Bölümü, Deniz Harp Okulu, İstanbul, Türkiye2
IETR, CNRS UMR 6164, Supelec, Cesson-Sevigne, France2
Institute of Intelligent Systems and Robotics (ISIR), Pierre and Marie Curie University , Paris, France2
University of Technology, Sydney, NSW, Australia2
Statistical Machine Intelligence & LEarning, School of Computer Science & Engineering University of Electronic Science and Technology of China, 611731, China2
Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Central University, Jhongli, Taiwan2
Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia2
School of Computer Science and Engineering, Nanyang Technological University, Singapore6397982
West Virginia University2
Czech Technical University in Prague, Prague, Czech Rep2
Masaryk University, Brno, Czech Rep2
Charles University, Prague, Czech Rep2
Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada2
Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China2
College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China2
School of Telecommunications Engineering, Xidian University, Xi’an, China2
Nanjing University of Science and Technology, Xiaolingwei, Xuanwu, Nanjing, China2
London Healthcare Sciences Centre, London, ON, Canada2
Department of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Human Machines Interaction (HMI) Laboratory, 65404 Kavala, Greece2
School of Electrical Engineering and Computer Science, Seoul National University, Korea2
Jordan University of Science and Technology, Irbid, Jordan2
College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China2
University of Michigan2
Biometric Technologies Laboratory, Department of Electrical and Computer Engineering, University of Calgary, Alberta, T2N 1N4 Canada2
Morpho, SAFRAN Group, 11 Boulevard Galliéni 92130 Issy-Les-Moulineaux - France2
Center for Machine Vision Research, University of Oulu, Finland2
Department of Computer Science, Aalto University, Finland2
Norwegian Biometrics Laboratory, Norwegian University of Science and Technology (NTNU), 2802 Gj⊘vik, Norway2
International Institute of Information Technology (IIIT) Hyderabad, India2
Computer Laboratory, University of Cambridge, Cambridge, UK2
Department of Electronic Systems, Aalborg University, Denmark2
Artificial Intelligence and Information Analysis Lab, Department of Informatics, Aristotle University of Thessaloniki, Greece2
University of British Columbia Department of Electrical and Computer Engineering2
Department of Computer Science, Swansea University, Swansea, UK2
Computer Science and Technology, IIEST, Shibpur2
Amirkabir University of Technology, Tehran, Iran2
EURECOM, Sophia Antipolis, France2
School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China2
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA2
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, SEOUL, Republic of Korea2
Department of Computer Science and Engineering, University of Califonia, San Diego2
Department of Computer Science and Technology, Tsinghua University, Beijing2
University of Missouri Department of Electrical and Computer Engineering Columbia, MO, USA2
School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia2
Inf. Syst. Dept., Buckingham Univ., UK2
Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University, China2
Dept. of Electr. & Comput. Eng., Old Dominion Univ., Norfolk, VA, USA2
Department of Computer Science, Edge Hill University2
Department of Psychology, University of Pittsburgh, PA, 15260, USA2
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA2
National Central University, Taoyuan County, Taiwan2
Department of Computer Science & Engineering, POSTECH, Pohang, Sourth Korea, 376732
Anhui University, HeFei, China2
Signals and Systems Group, Faculty of EEMCS, University of Twente, the Netherlands2
Research Center of Machine Learning and Data Analysis, School of Computer Science and Technology, Soochow University, Suzhou, China2
Coursera and Stanford University2
School of Computer Science, University of Windsor, Canada N9B 3P42
Laboratory Heudiasyc, University of Technology of Compiègne, BP 20529. F-60205, France2
Dept. Electrical Engineering, National Taiwan University, Taipei, Taiwan2
Elektrik-Elektronik Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Turkey2
University of Notre Dame2
University of Ljubljana2
Istanbul Technical University2
Polytechnic School, University of Pernambuco, Recife, Brazil2
Faculty of Technical Sciences, Singidunum University, Belgrade 11000, Serbia2
Dept. of CSEE, University of Maryland, Baltimore County, Baltimore, MD 212502
Dept. of Electron. & Inf., Toyota Technol. Inst., Nagoya, Japan2
Department of Computer Science, University of Maryland, College Park, MD2
Department of Computer Science and Engineering, POSTECH, Pohang 790-784, Republic of Korea2
School of Electronic Engineering and Computer Science, Queen Mary University of London, UK2
University of the Witwatersrand2
Star Technologies, USA2
Dept. of Comput. Sci., New York State Univ., Binghamton, NY, USA2
Dept. of Electrical Engineering, National Institute of Technology, Rourkela, India 7690082
Division of Control, EEE, Nanyang Tech. Univ., Singapore2
Department of Computer Science & Engineering, University of Ioannina, 45110, Greece2
Jiangsu University of Science and Technology, Zhenjiang, China2
University of Valladolid (Spain), Dep. Of Systems Engineering and Automatic Control, Industrial Engineering School2
Department of Computer Science, Mangalore University, India2
Department of Computer Education, Sungkyunkwan University, Seoul, Republic of Korea2
Department of Computer Science, Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal2
Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China2
University of Pittsburgh, Pittsburgh, PA, USA2
Xidian University, Xi'an, China2
School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China2
School of Computer Science and Technology, Tianjin University&Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China2
NPU-VUB Joint AVSP Research Lab, School of Computer Science, Northwestern Polytechnical University (NPU) Shaanxi Key Lab on Speech and Image Information Processing, 127 Youyi Xilu, Xi'an 710072, China2
CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China2
Australian National University2
Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil2
Sichuan Univ., Chengdu2
Laboratory for Intelligent and Safe Automobiles, University of California San Diego, La Jolla, CA 92093 USA2
Department of Computing, Imperial College London, London, 180 Queen’s Gate, UK2
Australian Center for Visual Technologies, and School of Computer Science, University of Adelaide, Canberra, Australia2
Bilgisayar Mühendisligi Bölümü, İstanbul Teknik Üniversitesi2
Research&Advanced Technology Division of SAIC Motor Corporation Limited, Shanghai 201804, P.R China2
Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China2
Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China2
Departamento de Computação, Universidade Federal do Piauí, Teresina, Brasil2
Bilgisayar Mühendisliği Bölümü, Marmara Üniversitesi, İstanbul, Türkiye2
Le2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France2
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan2
Department of Computing, Imperial College London, U.K.2
Dept. of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan City, Taiwan2
Corp. Res. & Dev., Toshiba Corp., Tokyo, Japan2
Dept. of Electronics and Telecommunication Engg., KCT's Late G.N. Sapkal college of Engineering, Nashik, India2
Bilgisayar Mühendisliği Bölümü, Gebze Teknik Üniversitesi, Kocaeli, 41400, Türkiye2
State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China2
Tencent Inc2
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 1001902
Faculty of Information Science and Technology (FIST), Multimedia University, Melaka, Malaysia2
Fraunhofer IOSB, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany2
Facebook Inc., Menlo Park, CA, USA2
Naval Research Laboratory, Washington DC2
Computational Intelligence Lab, Institute of Informatics and Telecommunications, NCSR Demokritos, Athens, Greece2
Computational Biomedicine Lab, Department of Computer Science, University of Houston, Houston, TX and Computational Intelligence Lab, Institute of Informatics and Telecommunications, NCSR Demokrit ...2
Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom2
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan2
SPAWAR Systems Center Pacific, San Diego, California, USA2
Department of Electrical Engineering, National Taiwan University, Taiwan2
Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran2
Artificial Vision Laboratory, Dept. of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan 1062
Microsoft Corporation, Redmond, WA, USA2
Dept. of Electrical Engineering, National Tsing-Hua University, Taiwan2
Department Informatik, Hamburg University of Applied Sciences, Hamburg, Germany2
Department Informatik, Hamburg University of Applied Sciences, Engineering and Computing, University of the West of Scotland2
University of Siena, Siena, Italy2
Elektronik ve Haberleşme Mühendisliği Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Türkiye2
Stony Brook University, Stony Brook, NY2
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, NSW, Australia2
Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan, China2
Department of Artificial Intelligence, Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur, 50603, Malaysia2
Department of Computer Science and Engineering of Systems, University of Zaragoza, Escuela Universitaria Politécnica de Teruel, Teruel, Spain2
Department of DMC Engineering, Sungkyunkwan University, Suwon, South Korea2
Department of Automation, North-China University of Technology, Beijing, China2
University of Bern, Neubrückstrasse 10, Bern, Switzerland2
Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong2
Computer Science, Fudan University, Shanghai, 201203, China2
Electronic Engineering and Computer Science, Queen Mary University, London, United Kingdom2
Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea2
Swiss Federal, Institute of Technology, Lausanne (EPFL), Switzerland2
Disney Research, CH2
Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia2
Water Optics Technology Pte. Ltd, Singapore2
School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore2
Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia2
National Laboratory of Pattern Recognition, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China2
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China2
Orange Labs International Center Beijing, Beijing, 100876, China2
Beijing University of Posts and Telecommunications, Beijing 100876, China2
Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, P.R. China2
Indian Statistical Insitute, Kolkata 7001082
Centre for Secure Information Technologies, Queen’s University Belfast, Belfast, UK2
National University of Defense Technology, Hunan, China2
Rutgers University, Piscataway, USA2
Wrocław University of Science and Technology, Wrocław, Poland2
Norwegian Biometrics Lab, NTNU, Gj⊘vik, Norway2
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Canada2
School of Computer Science and Technology, University of Science and Technology of China2
Zhejiang University, HangZhou, China2
Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi, India2
Department of Electronics and Communication Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India2
Department of Electrical Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India2
Center for Automation Research, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA2
School of EECS, Queen Mary University of London, UK2
College of Software, Shenyang Normal University, Shenyang, China2
Zhejiang University of Technology, Hangzhou, China2
School of Computer Science and Technology, Nanjing Normal University, China2
University of Technology Sydney, Ultimo, NSW, Australia2
Center for Special Needs Education, Nara University of Education, Takabatake-cho, Nara-shi, Nara, Japan2
Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing, China2
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore2
Samovar CNRS UMR 5157, Télécom SudParis, Université Paris-Saclay, Evry, France2
Beijing E-Hualu Info Technology Co., Ltd, Beijing, China2
Machine Learning Center, Faculty of Mathematics and Computer Science, Hebei University, Baoding 071002, China2
Applied Informatics, Faculty of Technology, Bielefeld University, Germany2
Osaka University Health Care Center, Japan2
Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain2
Department of Computer Science, Universitat Oberta de Catalunya, Barcelona, Spain2
University of Groningen, Nijenborgh 9, 9747 AG, The Netherlands2
University of Science and Technology of China, NO.443, Huangshan Road, Hefei, Anhui, China2
Shenyang SIASUN Robot & Automation Co., LTD., Shenyang, China2
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China2
Bilgisayar Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Türkiye2
Department of National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing, China2
Department of Computer Science Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand2
Queen Mary University of London, London, United Kingdom2
Academy of Broadcasting Science, Beijing, P.R. China2
Engineering Lab on Intelligent Perception for Internet of Things (ELIP), Shenzhen Graduate School, Peking University, Beijing, China2
Key Laboratory of Machine Perception, Ministry of Eduction, Peking University, Beijing, China2
College of Computer Science, Zhejiang University, Hangzhou, Zhejiang, China2
Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey2
Department of Information Engineering, The Chinese University of Hong Kong2
School of Computing, Teesside University, Middlesbrough, UK2
Department of Computer Science and Digital Technologies, Faculty of Engineering and Environment, Northumbria University, Newcastle, UK, NE1 8ST2
Faculty of Telecommunications, Technical University of Sofia, Bulgaria2
Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China2
Computer Science, University of Haifa, Carmel, 31905, Israel2
Fernuniversitt in Hagen FUH Hagen, Germany2
Research institute for Telecommunication and Cooperation, FTK, Dortmund, Germany2
Core Technology Center, OMRON Corporation, Kyoto, Japan2
College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 404100, China2
College of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 404100, China2
USP - University of São Paulo / ICMC, SSC - LRM (Mobile Robots Lab.), São Carlos, 13566-590, Brazil2
Department of Automation, Tsinghua National Laboratory for Information Science and Technology (TNList), State Key Lab of Intelligent Technologies and Systems, Tsinghua University, Beijing, China2
Department of Electric and Electronics, Selçuk University, Konya, Turkey2
Research Center of Intelligent Robotics, Department of Automation, Shanghai Jiao Tong University, 200240, China2
Institute of Automation, Chinese Academy of Sciences2
Department of Electrical Engineering, KAIST, Deajeon, Daejeon, Republic of Korea2
Department of Electrical Engineering, Tafresh University, Tafresh, Iran2
Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh2
Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh2
University of Ottawa, Ottawa, ON, Canada2
Kochi University of Technology, Kochi, 782-8502, Japan2
Hefei University of Technology, School of Computer and Information, Hefei, Anhui, 230601, China2
Karlsruhe Institute of Technology, Institute for Anthropomatics, Karlsruhe, Germany2
Chinese Academy of Sciences, Shenzhen, China2
Pattern Recognition and Intelligent System Lab., Beijing University of Posts and Telecommunications, China2
NCCU, USA2
WVU, USA2
University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia2
Centre for Quantum Computation and Intelligent Systems, the Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, Australia2
Shahid Bahonar University of Kerman Computer Engineering Department, Kerman, Iran2
Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA2
Department of Electrical Engineering, University of Hawaii, Manoa, Honolulu, HI, 968222
Samsung Electronics, SAIT Suwon-si, Korea2
Department of Automation, University of Science and Technology of China2
Centre for Intelligent Sensing, Queen Mary University of London, London, U.K.2
CETUC, Pontifical Catholic University of Rio de Janeiro, Brazil2
İstanbul Teknik Üniversitesi, İstanbul, Türkiye2
School of Electronic Engineering, Xidian University, Xi’an, China2
Islamic Azad University, South Tehran Branch, Electrical Engineering Department, Iran2
Istituto Italiano di Tecnologia (IIT) & Università di Torino, Genova, Italy2
Istituto Italiano di Tecnologia (IIT) & Università degli Studi di Genova, Genova, Italy2
Shenzhen Graduate School, Harbin Institute of Technology, China2
Human Language Technology and Pattern Recognition Group, RWTH Aachen University2
Rensselaer Polytechnic Institute, USA2
Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran2
Vision Lab, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom2
Center for Machine Vision Research, Computer Science and Engineering, University of Oulu, Oulu, Finland2
University of Southern California, Los Angeles, USA2
University of Amsterdam, The Netherlands2
Academia Sinica, Institute of Information Science, Taipei, Taiwan2
Centre for Communication Systems Research, University of Surrey, Guildford, Surrey, United Kingdom2
Norwegian Biometric Laboratory, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway2
School of Computer Engineering and Science, Shanghai University2
Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China2
Corp. Res. & Dev. Center, Toshiba Corp., Kawasaki, Japan2
School of Computer Science and Technology, Tianjin University, 300072, China2
Department of Information & Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain2
Computer Engineering, Rochester Institute of Technology, USA2
University of Notre Dame, Notre Dame, Indiana2
Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India2
B. Tech Graduate, ECE, MSIT, C-4 Janakpuri, New Delhi, India2
Department of Electrical, Computer and IT Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran2
Computer Vision Institute, School of Computer Science and Software Engineering, and the Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen, China2
University of Tokyo, Tokyo, Japan2
RSISE, Australian National University, Australia2
San Diego State University, San Diego, CA, USA2
University of Memphis, Memphis, TN2
HumanRobot Interaction Research Center, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea seojh2
Panasonic Singapore Laboratories Pte Ltd (PSL), Tai Seng Industrial Estate 534415, Singapore2
University of Texas at Arlington, Arlington, USA2
Massachusetts General Hospital, Boston, MA, USA2
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA2
Dept. of Electrical and Electronics Engineering, Bahcesehir University, Istanbul, Turkey2
MIT, Cambridge, MA, USA2
Department of Computer Science, University of York, York, UK2
Imaging Software Technol. Center, Fuji Photo Film Co. Ltd., Japan2
Dept. of ECE & Digital Technology Center, University of Minnesota, USA2
Shenzhen University, Shenzhen China2
National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190, Beijing, China2
Islamic University of Technology, Bangladesh2
Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan2
Technion2
Department of Computer Science, Okayama University, Okayama, Japan2
Cyprus University of Technology2
Dept of Electronics and Communication, Manipal Institute Of Technology, Karnataka, India2
University of Technology, Sydney, Sydney, Australia2
LMU Munich, Germany2
Polytechnic School of Pernambuco, University of Pernambuco, Recife-PE, Brazil2
Dept. of Electrical Engineering, National Taiwan University, Taiwan2
Research Center for Information Technology Innovation, Academia Sinica, Taiwan2
University of Illinois at Urbana-Champaign, 201 N Goodwin, 61820, USA2
Research School of Engineering, The Australian National University, Canberra, ACT, Australia2
CyLab Biometrics Center and the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA2
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands2
Department of Computing, Imperial College London, London, UK2
Pittsburgh Univ., PA, USA2
Computer Vision and Remote Sensing, Berlin University of Technology, Sekr. FR 3-1, Franklinstr. 28/29, 10587, Germany2
Department of Information Engineering, the Chinese University of Hong Kong, Shatin2
Başkent University, Ankara, TURKEY2
Department of Signal Processing, Tampere University of Technology, Finland2
Bilgisayar Mühendisliği Bölümü, Ankara Yıldırım Beyazıt Üniversitesi, Ankara, Türkiye2
Department of Computer and Information Science, University of Macau, Taipa, Macau2
Department of Electronic and Communication Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia2
Senior Member, IEEE, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, South Korea. phone: 82-54-279-2880, 2214; fax: 82-54-279-5594; e-mail: dreaming@postech.ac.kr, syoh@postech.ac.kr2
Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, South Korea. phone: 82-54-279-2880, 2214; fax: 82-54-279-5594; e-mail: dreaming@postech.ac.kr2
Center of Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, Oulu, Finland2
Key Laboratory of Child Development and Learning Science (Ministry of Education), Research Center for Learning Science, Southeast University, Nanjing, China2
School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China2
Dirección General de la Guardia Civil - DGGC Madrid, Spain2
School of Information Science and Technology, Huaqiao University, Xiamen, China2
Computer Laboratory, University of Cambridge, UK2
School of Automation, Southeast University, Nanjing, China2
Rutgers University, Piscataway2
University of Hong Kong, China2
Department of Automation, State Key Laboratory of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China2
School of Electronics and Information Technology, Sun Yat-Sen University2
Charles Sturt University, Wagga Wagga NSW, Australia2
Sunway University, Selangor, Malaysia2
Hexi University, Center for Information Technology, Zhangye, China2
Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA2
School of Communication and Information Engineering, Shanghai University, Shanghai, China2
Department of Communications and Computer Engineering, University of Malta, Msida, Malta2
Multimedia Communications Dept., EURECOM, Sophia Antipolis, France2
Northwestern Polytechnical University Xian, P. R. China2
Northwestern Polytechnical University, Xian, P. R. China, and UNC-Charlotte, Charlotte, NC2
Michigan State University, East Lansing, U.S.A.2
Dept. of E & TC Engineering, Maharashtra Institute of Technology, Pune, India2
Commonwealth Scientific and Industrial Research Organisation, Clayton South, Vic. , Australia2
Speech, Audio, Image and Video Technology Laboratory, Queensland University of Technology, Brisbane, Australia2
School of Computer Science and Technology and the Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China2
School of Electrical Engineering and Computer Science, Queen Mary University of London, London, U.K.2
Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan2
Dept. of ECE and Digital Technology Center, Univ. of Minnesota, USA2
Department of Computer Science, National Tsing Hua University, Taiwan, R.O.C2
Department of Computer Science, Chu Hai College of Higher Education, Hong Kong2
School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, 689-798, Korea2
Dept. of Comp. Sci. and Inf. Eng, Chung Hua University, Hsinchu, Taiwan2
Dept. of Comp. Sci, National Chiao Tung University, Hsinchu, Taiwan2
Department of Computing, Curtin University, Perth, Australia2
HEUDIASYC Mixed Res. Unit, Compiegne Univ. of Technol., France2
Università di Salerno v. Ponte don Melillo, 84084, Fisciano (IT)2
Shanghai Jiao Tong University & Alibaba Group, Shanghai, China2
National Taiwan University of Science and Technology, No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei City 10607, Taiwan2
School of Computer Science, Kyungpook National University, Buk-gu, Daegu, The Republic of Korea2
Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China2
Laboratory LAROSERI, Department of Computer Science, Faculty of Sciences, University of Chouaib Doukkali, El Jadida - Morocco2
Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China2
Computer Vision, Video and Image Processing (CvviP) Research Lab, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia2
Microsoft Research Asia, China2
Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering & Information Technology, University of Technology, Sydney, Australia2
Microsoft Research India Pvt. Ltd, Bangalore, Karnataka, India2
Indiana University Bloomington, Bloomington, IN, USA2
Department of Electronics, University of Goa, India2
Department of Computer Science, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa2
Department of Computer Science, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa2
Multimedia Processing Laboratory, Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan2
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA2
Electric Power Research Institute, State Grid Shanghai Electric Power Company Shanghai, 200093, China2
South East European University, Tetovo, Macedonia2
Computer Science and Engineering, Arizona State University, Tempe, AZ2
Villanova University, Villanova, PA, USA2
University of Technology Sydney, Sydney, Australia2
School of EE, Xidian University, Xi'an 710071, China2
Department of ECE, National Institute of Technology, Rourkela (Odisha), India2
Korea Electronics Technology Institute2
Computer Science and Engineering Dept., University of North Texas, Denton, TX, USA2
Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China2
Institute of Information Science, Beijing Jiaotong University, Beijing, China2
Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA2
Computer Science and Engineering Michigan State University, East Lansing, USA2
College of Information Science and Technology, Beijing Normal University, Beijing, China2
Organization of Advanced Science and Technology, Kobe University, Japan2
Center for Research in Computer Vision, University of Central Florida, Orlando, USA2
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA2
International Institute of Information Technology, Hyderabad, India2
University of Illinois’ Advanced Digital Sciences Center, Singapore2
Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20740 United States2
B-DAT Laboratory, School of Information and Control, Nanjing University of Information and Technology, Nanjing, China2
University of Cambridge, Cambridge, United Kingdom2
Intelligent Data Center (IDC) and Department of Mathematics, Sun Yat-Sen University, Guangzhou, China2
Jaypee Institute of Information Technology2
Samsung Advanced Institute of Technology (SAIT), Republic of Korea2
Department of Computer Science and Technology, Tsinghua University, Beijing, China2
Institute of Computing Technology, CAS, Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Beijing, China2
School of Computer Science and Engineering, University of Aizu, Tsuruga, Ikkimachi, Aizuwakamatsu, Japan2
Comnuter Science Department, Hong Kong Baptist University2
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA2
Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil2
Robotics Lab, Futurewei Technologies Inc., Santa Clara, USA2
Institute of Automatic Control Engineering (LSR), TU München, Germany2
Image Understanding and Knowledge-Based Systems, TU München, Germany2
University of Delaware, Newark, DE2
HRL Laboratories, LLC, Information Systems and Sciences Lab, Malibu, CA 90265 USA2
Division of Computing Systems, School of Computer Engineering, Nanyang Technological University, Singapore, Singapore2
School of Computer Science, Communication University of China, Beijing, China2
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA2
Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China2
Thales Services, ThereSIS, Palaiseau, France2
School of Electrical and Electronic Engineering, Tianjin University of Technology, China2
Faculty of Computers and Information, Cairo University, Egypt2
Dept. of Electrical and Computer Engineering, National University of Singapore2
Department of Computing, the Hong Kong Polytechnic University, Hong Kong2
Institute of Computing, University of Campinas, Campinas, SP, Brazil, 13083-8522
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China2
CyLab Biometrics Center, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA2
La Trobe University, Australia2
State key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, Hunan, China, 4100732
University of South Carolina, Columbia, SC, USA2
Science and Engineering Faculty, Queensland University of Technology, Australia2
Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, India2
Department of Computer Technology, Shanghai Jiao Tong University, Shanghai, China2
School of Computer Science and Software Engineering, The University of Western Australia, Nedlands, WA, Australia2
National Tsing Hua University, Hsinchu, Taiwan2
Rutgers, The State University of New Jersey2
Dhirubhai Ambani Institute of Information and Communication Technology, India2
Aix Marseille Univ LIF/CNRS, France2
Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland2
Department of Computer Science, San Jose State University, San Jose, CA2
IIIT Bangalore, India2
Institut de Robòtica i Informàtica Industrial (CSIC-UPC)2
TeV, Fondazione Bruno Kessler, Trento, Italy2
Department of Computer Science, IT: Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal2
Xinjiang University, Urumqi, China2
Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing, China2
School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, People’s Republic of China2
Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan, Taiwan2
New Jersey Institute of Technology, Department of Electrical & Computer Engineering, University Heights Newark, NJ 07102 USA2
Korea Advanced Institute of Science and Technology2
College of Communication Engineering, Chongqing University, Chongqing, China2
Department of Forestry and Management of the Environment, Democritus University of Thrace, Orestiada, Greece2
School of Computing Science and Engineering, VIT University, Vellore, India2
School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi-shi, Ishikawa, Japan, 923-12112
Chinese Academy of Sciences, Beijing2
Tsinghua University, Beijing2
Electrical and Control Engineering, National Chiao Tung University, Hsinchu, Taiwan2
Artificial Intelligence Laboratory, University of Tsukuba, Japan2
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA2
Brno University of Technology, Brno-střed, Czech Republic2
Deutsche Welle, Bonn, Germany2
GSI Universidad Polit-écnica de Madrid, Madrid, Spain2
University of Waterloo, Canada2
The University of Tokyo, Tokyo, Japan2
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada2
National Institute of Standards and Technology (NIST), Gaithersburg, MD2
Räven AB, SE-411 14 Göteborg, Sweden2
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China2
University of Illinois at Urbana-Champaign, Urbana, USA2
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 021382
The Rowland Insitute at Harvard, Harvard University, Cambridge, MA 021422
The Open University of Israel, Israel2
Halmstad University, Halmstad, Sweden2
Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea2
Division of Information and Computer Engineering, Ajou University, Suwon, Republic of Korea2
Department of Computer Engineering, Kyung Hee University, Suwon, Republic of Korea2
School of Computer Science, Carnegie Mellon University, Pittsburgh, USA2
Dept. of Appl. Phys. & Electron., Umea Univ., Sweden2
Universidade Federal do Paraná, Curitiba, Brazil2
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR2
Department of Radiology, University of Pennsylvania, Philadelphia, PA2
Institute of VLSI Design, Zhejiang University, Hangzhou, China2
Faculty of Engineering Technology, Hasselt University, Diepenbeek, Belgium2
DUT-RU International School of Information and Software Engineering, Dalian University of Technology, Dalian, China2
University of Barcelona, Barcelona, Spain2
Università degli Studi di Verona, Verona, Italy2
CEA, Gif-Sur-Yvette, France2
UMR CNRS - Univ. Bourgogne, Dijon, France2
Universita degli Studi di Palermo, Dipartimento di Ingegegneria Informatica, Viale delle Scienze, 90128, ITALY2
Robotics Institute, Carnegie Mellon University, Pittsburgh, USA2
Mechatronic Engineering Department, Mevlana University, Konya, Turkey2
Tokyo Metropolitan University, Hino, Tokyo 191-0065, Japan2
Department of Electrical and Computer, Engineering, University of Denver, Denver, CO 802082
TÜBİITAK-BİILGEM-UEKAE, Anibal Cad., P.K.74, 41470, Gebze-KOCAELİ, Turkey2
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China2
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China2
Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R. China2
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada2
The 28th Research Institute of China Electronics Technology Group Corporation, China2
Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India2
Institute of Neural Information Processing, Ulm University, Ulm, Germany2
Institute of VLSI Design, Zhejiang University2
Faculty of Engineering Technology, University Hasselt2
Massachusetts Institute of Technology, Cambridge, MA2
Institute of Information Science, Academia Sinica, Taipei, Taiwan Roc2
Institute of Information Science, Beijing Jiaotong University, 100044, China2
Department of Computer and Information Sciences, Temple University2
Department of Computing Sciences, Elon University2
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD2
Raytheon BBN Technologies, 10 Moulton St, Cambridge, MA2
General Electric Global Research, 1 Research Circle, Niskayuna, NY2
Concordia University, Montreal, QC, Canada2
Charles Perkin Centre, Faculty of Medicine, University of Sydney, Australia2
Charles Perkin Centre, Faculty of Engineering, University of Sydney, Australia2
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China2
Department of Electrical and Computer Engineering, Nazarbayev University, Astana, Kazakhstan2
Department of Information and Communication Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan2
Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA2
Tsinghua National Lab for Info. Sci. & Tech., Depart. of Computer Sci. & Tech., Tsinghua University, Beijing, China2
Harbin Institute of Technology2
National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences, Beijing, China2
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China2
School of Electrical Engineering and Computer Science at the University of Newcastle, Callaghan, NSW 2308, Australia2
School of Electrical Engineering and Computing, University of Newcastle, Newcastle, Australia2
School of Computer Science, University of Windsor, Windsor, Canada2
Department of Computer Science and Engineering, Dankook University, Yongin, South Korea2
Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India2
KTH Royal Institute of Technology, Stockholm, Sweden2
Division of Graduate Studies of Tijuana Institute Technology, Mexico2
Pontifícia Universidade Católica do RS, Porto Alegre-RS, Brazil2
Department of Psychology and the Center for Brain Science, Harvard University, Cambridge2
School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, and the Center for Brain Science, Harvard University, Cambridge2
Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX, USA2
Sch. of Infor. Sci. and Tech., Huizhou Unversity, Huizhou, China2
Institute of Advanced Manufacturing Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China2
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China2
Waseda University The Graduate School of Information, Production and Systems 2-7, Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka, Japan2
London, United Kingdom2
Shenzhen VisuCA Key Lab / SIAT, Chinese Academy of Sciences, China2
Department of Mathematics, Center for Computer Vision, Sun Yat-Sen University, Guangzhou, China2
Department of Computer Science and Technology, Huaqiao University, Xiamen, China2
Xiamen University, Fujian, China2
Majority Report, France2
Imaging Science and Engineering Laboratory Tokyo Institute of Technology Yokohama 226-8503, Japan2
SITI Laboratory, National Engineering School of Tunis (ENIT), University of Tunis El Manar, Tunis, Tunisia2
University of Montreal, Department of Computer Science and Operations Research (DIRO), 2920 Chemin de la tour, QC, Canada, H3C 3J72
College of Computer Science and Technology, Harbin Engineering University, Harbin, China2
Keio University, Kanagawa, Japan2
Microsoft Research, Haidian, Beijing, P. R. China2
Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University , Xi'an, China2
Department of Computing, Imperial College London, United Kingdom2
Robert BOSCH Research and Technology Center, Palo Alto, CA 94304, USA2
Università di Salerno, Fisciano (SA), Italy2
Advanced Technologies Application Center 7a #21406 b/ 214 and 216, P.C. 12200, Siboney Playa, Havana, Cuba2
National Chung Hsing University, Taichung2
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing2
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China2
The University of Tokyo2
Department of Sciences and Information Technology, University of Sassari, Viale Mancini 5, 07100 Sassari, Italy2
Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University Magdeburg, D-39016, P.O. Box 4210 Germany2
ISIR, CNRS UMR 7222, Universite Pierre et Marie Curie, Paris2
National Taiwan University of Science and Technology, Taipei, Taiwan2
Beijing Institute of Science and Technology Information2
University of Maryland, College Park, MD, 207422
Department of Computer Science, University of Rochester, Rochester, NY, USA2
Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany2
State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China2
Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 482022
Bahcesehir University, Istanbul, Turkey2
University of Udine, Italy2
Department of Computer Science and Information Engineering, National Formosa University, Yunlin 632, Taiwan2
Broadcasting & Telecommunications, Convergence Media Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea2
Keio University, Yokohama, Japan2
Graduate Institute of Networking and Multimedia and the Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan2
Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, USA2
Innovation Center, Canon USA Inc., San Jose, California2
University of Texas at San Antonio, San Antonio, Texas2
Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA2
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA2
FMV IŞIK Üniversitesi, Şile, Istanbul2
Istanbul Technical University, Informatics Institute, 34469, Turkey2
School of Mathematical Sciences, Anhui University, Hefei, China2
Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA2
Agency for Science, Technology and Research, Institute for Infocomm Research, Singapore2
School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore2
Artificial Vision Laboratory National Taiwan University of Science and Technology2
Department of Computer Science and Engineering, Myongji University, Yongin 449-728, South Korea1
Computational Imaging Laboratory, School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA1
Lehrstuhl für Mustererkennung, FAU Erlangen – Nürnberg, Erlangen, Germany1
College of Computer Science and Electronic Engineering, Hunan Key Laboratory of Dependable Systems and Network, Hunan University, Changsha, People’s Republic of China1
Department of Electrical and Computer Engineering, and ASRI, Seoul National University, Republic of Korea1
Istanbul Technical University, Turkey1
Sabanci University, Turkey1
Key Laboratory of Machine Perception(MOE), EECS, Peking University, Beijing, 1008711
Nanjing University of Posts and Telecommunications, China1
Information Sciences Institute, University of Southern California, Marina del Rey, USA1
Tianjin University, Tianjin, China1
Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan1
College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia1
Griffith University, Australia1
Laboratoire d’interprétation et de traitement d’images et vidéo, Polytechnique Montréal, Montreal, Canada1
Laboratoire d’imagerie de vision et d’intelligence artificielle, École de technologie supérieure, Université du Québec, Montreal, Canada1
Department of Multimedia Design, National Taichung University of Science and Technology, Taichung, Taiwan1
Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan1
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, Surrey GU2 7XH, UK1
University of Bern, Bern, Switzerland1
Department of Electrical and Computer Engineering, University of Denver, Denver, USA1
School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, PR China1
Department of Computer Science, University of California at Davis, Davis, USA1
School of Computer Science, Fudan University, Shanghai, China1
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea1
Korea Institute of Oriental Medicine, Daejeon, South Korea1
Microsoft Research Asia, 49 Zhichun Road, Beijing, 100190, China1
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, China1
School of Software Technology, Dalian University of Technology, Dalian, China1
Department of Computer Science and Engineering, Shri Shankaracharya Technical Campus, Bhilai, District-Durg, India1
Department of Computer Science and Engineering, Jaypee University of Information Technology, Solan, India1
Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India1
Department of Information Engineering, The Chinese University of Hong Kong, China1
Institute of Education, Xiamen University, Xiamen Shi, China1
College of Artificial Intelligenge and Big Data, ChongQing University of Electronic Engineering, Chongqing, China1
Harbin Engineering University, Harbin, Heilongjiang, 150001, China1
Laboratoire Jean Kuntzmann, Grenoble, France1
Electrical and Electronics Engineering Department, Eskisehir Osmangazi University, Eskisehir, Turkey1
Dept. of Computer Science and Computer Engineering, University of Louisville, KY, USA1
Dept. of Advanced Technologies, Alcorn State University, MS, USA1
Baiyun District Bureau of Justice, Guangzhou, China1
Guangdong Key Laboratory of Information Security Technology, School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China1
Department of Information Management, Tamkang University, New Taipei City, Taiwan1
Department of Industrial Design, Tatung University, Taipei 104, Republic of China1
Department of Computer Science and Engineering, Tatung University, Taipei 104, Republic of China1
IBM T. J. Watson Research Center1
AI Lab, TAL Education Group, College of Electronics and Information Engineering, Sichuan University, Chengdu, China1
Institute of High Performance Computing, A*STAR, Singapore1
3OmniVision Technologies Singapore Pte. Ltd., Singapore1
Department of ECE, National University of Singapore, Singapore1
Department of Computer Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China1
School of Computer Science and Engineering, Nanjing University of Science & Technology, Nanjing, People’s Republic of China1
Department of Electrical and Computer Engineering, University of Toronto Toronto, Canada1
School of Information Science and Engineering, Yunnan University, Kunming, P. R. China1
Department of Computer Science and Technology, Jiangnan University, Wuxi, China1
School of Information Engineering, Yangzhou University, Yangzhou, China1
Key Laboratory of Intelligent Processing, Institute of Computing Technology, CAS, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China1
Res. Center for Learning Sci., Southeast Univ., Jiangsu, China1
Eedoo Inc, Beijing, China1
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China1
CSE, SUNY at Buffalo, USA and Southeast University, China1
Knowledge Enterprise Development, Arizona State University, Tempe, 85287-5406 United States1
Computer Science, Florida State University, Tallahassee, United States1
Computing Informatics and Decision Systems Engineering, Arizona State University, Tempe, United States1
Department of Psychology, University of Northern British Columbia, Prince George, Canada1
Speech, Audio, Image, and Video Technology Laboratory, Queensland University of Technology , Brisbane, Australia1
Speech, Audio, Image, and Video Technology Laboratory, Queensland University of Technology, Brisbane, Australia1
Commonwealth Scientific and Industrial Research Organization, Pullenvale, Australia1
Department of Psychology, University of Pittsburgh, Pittsburgh, PA , USA1
Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA1
School of computer Science and Engineering, Nanyang Technological University, Singapore1
Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore1
Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India1
Yonsei University, Seoul, South Korea1
Multimedia University, Melaka, Malaysia1
School of Information Technology and Engineering, VIT University, Vellore, India1
Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 070301
Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 028811
Vulcan Inc, Seattle, WA 981041
Department of Computer Science, Hofstra University, Hempstead, NY 115491
Dept. of Computing, Curtin University of Technology, WA 6102, USA1
School of Software, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia1
University of Washington, Tacoma & Ghent University, Tacoma, WA, USA1
University of California, Santa Cruz & Ghent University, Santa Cruz, CA, USA1
Computer Vision Research lab, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran1
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA1
Center for OPTical Imagery Analysis and Learning, Northwestern Polytechnical University, Shaanxi, China1
Beijing Etrol Technologies Co., Ltd, Beijing, China1
Securics, Inc. Colorado Springs, CO, USA1
Institute of Computing, University of Campinas (Unicamp) Campinas, SP, Brazil1
HAN University of Applied Sciences, Arnhem, Netherlands1
Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan1
Laboratoire Hubert Curien, UMR5516, Université Jean Monnet, Saint-Etienne, France1
Université de Lyon, CNRS, LIRIS, UMR5205, Université Lyon 1, Lyon, France1
Department of Electrical and Computer Engineering, Saginaw Valley State University, University Ctr, MI- 487101
TCTS Lab, Faculté Polytechnique de Mons, Belgium1
Speech Technology Group, Technical University of Madrid, Spain1
TALP Research Center, Universitat Politècnica de Catalunya, Spain1
Electrical and Electronics Engineering Dept., Bogazici University, Turkey1
AIIA Lab, Aristotle University of Thessaloniki, Greece1
TELE Lab, Université catholique de Louvain, Belgium1
DISI, University of Trento, Trento, Italy1
LAPI, University Politehnica of Bucharest, Bucharest, Romania1
IDIAP Research Institute, Martigny, Switzerland1
University of Michigan, Ann, Arbor, MI USA1
Department of Computer Science, Memorial University of Newfoundland, St. John’s, Canada1
INRIA Grenoble-Rhône-Alpes Research Center, France1
Institute of Radioelectronics, Warsaw University of Technology, Faculty of Electronics and Information Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland1
Department of Computer Science, Rutgers University, Piscataway, New Jersey 08854, USA1
School of Computer Science and Information, Anhui Polytechnic University, Wuhu, China1
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, USA1
Department of Computer Science, Stanford University, Stanford, USA1
School of Mathematics, Beihang University, Beijing, China1
Department of Embedded Systems, Institute for Infocomm Research, Singapore1
IBM Research, USA1
IBM Hursley Labs, UK1
E.T.S. Ingenieros Industriales, Universidad de Castilla-La Mancha Campus Universitario, Ciudad Real, Spain1
Universidad de Las Palmas de Gran Canaria, SIANI, Edificio Central del Parque Científico-Tecnológico, Las Palmas, Spain1
Monash University, Caulfield East, Australia1
School of Math and Geospatial Sciences, Royal Melbourne Institute of Technology University , Melbourne, Australia1
Department of Computer Science, Harbin Institute of Technology, China, 1500011
Department of Computer Science and Application, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, China1
School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China1
Computer Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, China1
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213. Marios.Savvides@ri.cmu.edu1
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213. yunghui@cmu.edu1
College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China1
Department of Software Engineering, King Saud University, Riyadh, Saudi Arabia1
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh1
Department of Information, The Third Affiliated Hospital, Sun Yat-sen University, China1
OmniVision Technologies Singapore Pte. Ltd., Singapore1
Electrical and Computer Engineering, Ryerson University, Toronto, Canada1
Department of Electrical and Computing Engineering, Ryerson University, Toronto, Canada1
Department of Electrical and Computer Engineering, Naresuan University, Muang, Thailand1
Department of Computer Science, Christian-Albrechts University, Kiel, Germany1
Engineering Lab on Intelligent Perception for Internet of Things, Peking University Shenzhen Graduate School, Shenzhen, China1
MOE Key Laboratory of Machine Perception, Peking University, Beijing, China1
Eletrical and Computer Engineering Department, Drexel University, Philadelphia, USA1
TCL Research America, San Jose, CA 95134, USA1
Dept. of Eng. Sciences and Appl. Mathematics, Northwestern University, Evanston, IL 60208, USA1
Delft University of Technology and Sensor Technology, Netherlands Defense Academy1
GE Global Research1
Xerox Research Center India, India1
Palo Alto Research Center, Webster, NY1
Facebook, Singapore1
Elektrik-Elektronik Mühendisliği Bölümü, Bahçeşehir Üniversitesi, Turkey1
Elektrik-Elektronik Mühendisliği Bölümü, Boğaziçi Üniversitesi, Turkey1
School of Information Technologies, The University of Sydney, NSW, Australia1
School of Electrical Engineering and Automation, Qilu University of Technology, Jinan, China1
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China1
School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China1
Beijing Advanced Innovation Center for Imaging Technology, Beijing 100048, China1
Lane Department of CSEE, West Virginia University, Morgantown, WV 26506, USA1
Institute of Computing, University of Campinas, Campinas-SP, CEP, Brazil1
Department of Electronics and Computing and the Electronics and Information Technology Research & Development Center, Universidade Federal do Amazonas, Manaus-AM, CEP, Brazil1
National Chiao-Tung University, Hsinchiu, Taiwan1
General Electric Global Research, Niskayuna, NY, USA1
Institute of Computing, University of Campinas, Campinas, Brazil1
University of California at Merced, Merced, USA1
University of Adelaide, Adelaide, Australia1
Technische Universität München, Garching, Germany1
Department of Mathematics, Wayne State University, Detroit, MI, USA1
Artificial Intelligence Key Laboratory, of Sichuan Province, Zigong, Sichuan, 643000, P. R. China1
School of Big Data and Computer, Science, Guizhou Normal University, Guiyang, Guizhou, 550025, P. R. China1
Centre for Robotics and Neural Systems, School of Computing Electronics and Mathematics, Plymouth University, Plymouth, PL4 8AA, UK1
School of Electrical & Electronic Engineering, Yonsei University, Seoul, South Korea, 120-7491
Inria Méditerranée, France1
Microsoft Research, Mountain View, California1
University of California at Santa Cruz, Santa Cruz, California1
Massachusetts Institute of Technology, Cambridge, MA 02139, USA1
The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA1
School of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK1
Network Center, Huizhou University, Huizhou, China1
School of Advanced Computing, Sun Yat-sen University, Guangzhou, China1
School of Software, Sun Yat-sen University, Guangzhou, China1
Faculty of Engineering, Computer Engineering Department, Akdeniz University, Dumlupinar Bulvari, Turkey1
IRCICA, Parc Scientifique de la Haute Borne, Lille 1 University, Villeneuve d’Ascq, France1
University of Bath1
Data and Analytics Department, KPMG AGWPG, Düsseldorf, Germany1
Faculty of Mathematics and Statistics, Hubei University, Wuhan, China1
West Virginia University, Morgantown, WV1
Ajou Univ.1
State Key Laboratory of Transient Optics and Photonics, Center for OPTical IMagery Analysis and Learning, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China1
School of Information Technology, Halmstad University, Halmstad, Sweden1
Nokia Bell-Labs, Madrid, Spain1
Department of Electronic Information Engineering, Suzhou Vocational University, Suzhou, Jiangsu, China1
JiangSu Province Support Software Engineering R&D Center for Modern Information Technology Application in Enterprise, Suzhou, China1
Université de Lorraine, LORIA, UMR 75031
Department of Psychology, University of Pittsburgh, Pittsburgh, USA1
Department of Electrical Engineering, The City College of New York, New York, USA1
Robótica y Manufactura Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ramos Arizpe, Mexico1
Technicolor, Paris, France1
MPI Informatics, Germany1
School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, India1
Dept. de Ciência da Computacão, Universidade Federal de Ouro Preto, MG Brazil1
Interactive and Digital Media Institute, National University of Singapore, Singapore1
Alibaba Group, Hangzhou, China1
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK1
Shin-Guang Elementary School, Yulin 646, Taiwan1
Department of Computer Science and Engineering, Inha University, 253, Yong-Hyun Dong, Nam-Gu, Incheon, South Korea1
Department of Computer Science, Brown University, Providence Rhode Island, 02912, USA1
School of Management, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA1
SLAC National Laboratory, Stanford University, Stanford, USA1
IWE II, RWTH Aachen University, Aachen, Germany1
School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore1
Kodak Alaris Inc., Rochester, NY 14615, USA1
School of Electrical Engineering, Nantong University, Nantong, China1
Vesalis company, Clermont-Ferrand, France1
University of Calgary, Calgary, T3G 2T6 AB, CANADA1
University of Louisville, Louisville, KY 40292 USA1
School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA1
Max Planck Institute for Informatics, Saarbrucken, Germany1
College of Information Engineering, Capital Normal University, Beijing, China1
School of Automation, Beijing University of Posts and Telecommunications, Beijing, China1
Department of Electrical Engineering, University of California, Riverside, Riverside CA, California 92521 United States1
Art History, University of California, Riverside, Riverside, California United States1
Electrical Engineering, University of California, Riverside, Riverside, California 92521 United States1
University of Science & Technology (UST), Daejeon, Korea1
Chinese Academy of Sciences, Chongqing, China1
Chinese Academy of Sciences, Chongqing, Singapore1
Universidade Estadual de Campinas, Cx.P. 6176 Campinas-SP, CEP 13084-971, Brazil1
Department of CSE, Regional Campus of Anna University, Tirunelveli 627007, India1
Embodied Emotion, Cognition and (Inter-)Action Lab, University of Hertfordshire, United Kingdom1
Institute on Children Studies, University of Minho, Portugal1
College of Aerospace and Material Engineering, National University of Defense Technology, Changsha, China1
Air Force Research Lab, Rome, NY, 13441, USA1
Department of Electronic Engineering, Institute of Image Communication and Information Processing, Shanghai Jiao Tong University, Shanghai, China1
School of Computer Engineering, The Nanyang Technological University, Singapore1
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Fraunhoferstrasse 1, Karlsruhe, Germany1
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada1
Department of Computer Science, University of Texas at San Antonio1
Department of Computer Science, University of Rochester1
School of Computer Science and Technology, Tianjin University, China1
Institute of Systems Science, National University of Singapore, Singapore, Singapore1
Dalian Key Laboratory of Digital Technology for National Culture, Dalian Minzu University, Dalian, China1
Institute of Systems Science, Northeastern University, Shenyang, China1
Philips Research Eindhoven, HTC 34, Netherlands1
Epson Research and Development Inc., San Jose, CA1
GE Global Research, Bangalore, India1
Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea1
Department of Business Planning & Information Systems, TEI of Crete, Agios Nikolaos, Greece1
National Institute of Informatics, Japan1
School of Information Technology Jawaharlal Nehru Technological University Hyderabad Andhra Pradesh, India1
Department of CSE, Vignan University, Andhra Pradesh, India1
University of North Carolina at Wilmington, USA1
UNCW, USA1
Department of EngineeringFaculty of Engineering and Science, University of Agder, Kristiansand, Norway1
Yahoo Inc., New York, NY, USA1
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France1
Queen Mary, University of London1
Brunel University1
Vision & Sensing Group, Faculty of Information Sciences and Engineering, University of Canberra, Australia1
School of Engineering, CECS, Australian National University, Australia1
Comput. Control Lab, Nanyang Technol. Univ., Singapore1
School of Computer ScienceThe University of Adelaide1
Instituto de Sistemas e Robótica, Instituto Superior Técnico, Lisboa, Portugal1
University of Washington, Seattle, WA, USA1
Shanghai Advanced Research Institute, CAS & Qiniu AI Lab, Shanghai, China1
University of Lyon, LIRIS - CNRS, National Institute of Applied Sciences (INSA), Lyon, France1
Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), 4 place Jussieu, 75005 Paris, France1
Shenzhen Graduate School, Harbin Institute of Technology, Bio-Computing Research Center, Shenzhen, China1
Toyohashi University of Technology, Toyohashi, Japan1
Department of Computing, Biometrics Research Centre, The Hong Kong Polytechnic University, Hong Kong1
School of Computer Science, Nanjing University of Science and Technology, Nanjing, China1
Department of Informatics, King’s College London, Strand, London, UK1
Centre for Quantum Computation & Intelligent Systems, University of Technology, Sydney, Australia1
School of Computer Science and Engineering, Hebei University of Technology, Tianjin, China1
CSIE, National Cheng Kung University, Tainan, 701 Taiwan1
CSIE, National Taiwan University of Science and Technology, Taipei, 106 Taiwan1
Computer Science and Engineering Department, University of Texas at Arlington, Arlington, TX, USA1
INSA CVL, Univ. Orléans, PRISME EA 4229, Bourges, France1
Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FIN-33720 Tampere, Finland1
LITIS, Universite de Rouen - INSA de Rouen, Rouen, FR1
Department of Learning and Digital Technology, Fo Guang University, Yilan, Taiwan1
Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong1
Noah’s Ark Laboratory, Hong Kong1
Noah.s Ark Laboratory and Hong Kong University of Science and Technology, Hong Kong1
La Trobe University, Melbourne, Australia1
BITS Pilani, India , India1
College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia1
COMSATS, Institute of Information Technology, Sahiwal, Pakistan1
National University of Computer and Emerging Sciences, Islamabad, Islamabad, Pakistan1
Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, Canada1
Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada1
Research Team on Audio Visual Signal Processing (AVSP), Vrije Universiteit Brussel (VUB), Electronics and Informatics Department, VUB-ETRO, Pleinlaan 2, 1050 Brussel, Belgium1
School of Engineering and Information Technology, Deakin University, Geelong, Australia1
Griffith University, Queensland, Australia1
Department of Computer Science, University of Texas at San Antonio, San Antonio, United States1
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of China, Hefei University of Technology, Hefei, China1
Fac. of Mathematics and Computer Sciences, University of Science, Ho Chi Minh City, Viet Nam1
Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan1
LAMIA, University of French West Indies and Guiana, EA 4540, Pointe-à-Pitre, France1
Institute of Intelligent Systems and Robotics (ISIR), Pierre and Marie Curie University, Paris, France1
Xiamen University of Technology, Xiamen, China1
Chulalongkorn University Bangkok, Thailand1
College of Computer Science and Technology of Huaqiao University Xiamen, Xiamen, China1
School of Automation, Huazhong University of Science and Technology, Wuhan, China1
Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Taiwan 640, R.O.C.1
Bordeaux INP, LaBRI, PICTURA, UMR 5800, F-33400 Talence, France1
Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, China1
Department of Systems and Control Engineering, University of Malta, Msida, Malta1
Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan1
Department of Information Management, College of Management, National United University, Miaoli, Taiwan1
Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan1
Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia1
Department of Statistics, University of California at Berkeley, Berkeley, USA1
International Computer Science Institute, University of California at Berkeley, Berkeley, USA1
Computer Science Department, Rensselaer Polytechnic Institute, Troy, USA1
College of Information Science and Technology, Agricultural University of Hebei, Baoding, China1
Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China1
Sch. of Electr. Eng. & Comput. Sci., Newcastle Univ., NSW, Australia1
University of Sassari, Computer Vision Laboratory, PolComing Viale Mancini, 5 07100 Sassari, Italy1
Centre for Intelligent Machines, McGill University, Montréal, Canada1
Azure Storage, Microsoft, Seattle, WA, USA1
Department of Electronics Engineering, Mokpo National University, Republic of Korea1
School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Republic of Korea1
Institute of Computer Science and Technology, Peking university, Beijing, China1
FX Palo Alto Laboratory1
Department of Applied Optics and Photonics, University of Calcutta, Kolkata, India1
Department of Electrical Engineering, Future Institute of Engineering and Management, Kolkata, India1
School of Electronics and Information, Northwestern Polytechnical University, Xian, China1
Department of Computer Science, University of North Carolina, Charlotte, USA1
Graduate Program on Electrical Engineering, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil1
Graduate Program on Electrical Engineering, University of Passo Fundo, Passo Fundo, Brazil1
Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil1
Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India1
Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia1
Northwestern Polytechnical University, Xi’an, China1
Osaka University, Japan1
Telecom Division, Centre de Développement des Technologies Avancées, Algiers, Algeria1
Delft University of Technology, EEMCS, Delft, The Netherlands, reinierz@gmail.com1
Imperial College London, Computing Department, London, U.K., m.pantic@imperial.ac.uk1
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai, China1
Departments of Medical Imaging and Medical Biophysics, University of Western Ontario, London, ON, Canada1
St. Joseph’s Health Care, London, ON, Canada1
Northumbria University, Newcastle upon Tyne, U.K.1
Department of Medical Biophysics, University of Western Ontario, London, ON, Canada1
School of Computer Science, University of Nottingham, Nottingham, UK1
School of Electrical Engineering, Kookmin University, Seoul, Korea1
University of Science and Technology of China, Hefei, P.R. China1
The School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China1
School of Computer Science, Shaanxi Normal University, Xi’an, China1
Engineering Laboratory of Teaching Information Technology of Shaanxi Province, Xi’an, China1
Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi’an, China1
College of Automation, Shenyang Aerospace University, China1
Université de Lyon, CNRS, Ecole Centrale de Lyon, LIRIS UMR5205, F-69134, France1
College of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, P.R. China1
Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China1
Faculty of Computer Science & Information Technology University of Malaya Kuala Lumpur, Malaysia1
Nanyang Technological University School of Computer Engineering1
College of Engineering, Shibaura Institute of Technology, Tokyo, Japan1
Graduate School of Engineering, Shibaura Institute of Technology, Tokyo, Japan1
Department of Electronics and Electrical Engineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India1
Technology Section, Israel National Police, Jerusalem, Israel1
Department of Electro-Optics Engineering, Ben-Gurion University, Beer Sheva, Israel1
Department of Mathematics, JiaYing University, Meizhou, China1
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China1
Hebei University of Technology, School of Science, Tianjin, P. R. China1
Department of Electrical and Computer Engineering, College of Engineering, and College of Computer and Information Science (Affiliated), Northeastern University, MA, USA1
Chongqing University, Chongqing, China1
Semnan University, Semnan, Iran1
YiLi Normal College, Yining, China1
Curtin University, Perth WA, Australia1
Faculty of Electronic Information and Electrical Engineering, Dalian University, Dalian, China1
Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Taiwan1
Centre for Innovation in IT Services and Applications (iNEXT), University of Technology, Sydney, Australia1
Video Surveillance Laboratory, Guizhou University for Nationalities, Guiyang, China1
Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Sophia Antipolis, France1
College of Arts and Sciences, Shanxi Agricultural University, Shanxi, China1
Centre for Intelligent Systems Research, Deakin University, Geelong, VIC, Australia1
Faculty of Engineering, Technology, and Built Environment, UCSI University, Kuala Lumpur, Malaysia1
Sichuan Province Key Lab of Signal and Information Processing, Southwest Jiaotong University, Chengdu 610031, PR China1
Department of Computer Science, Cornell University and Cornell NYC Tech1
Dept of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, USA1
Department of Computer Science, Xiamen University, Xiamen, China1
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark , NJ, USA1
Microsoft Research , Redmond, WA, USA1
Microsoft Visual Perception Laboratory, Zhejiang University, Hangzhou, China1
Coll. of Electron. & Inf., Northwestern Polytech. Univ., Xi'an, China1
Nanyang Technological University and the Institute for Infocomm Research, Singapore1
Intelligent Systems Laboratory, University of Bristol, Merchant Venturers Building, Woodland Rd, Bristol BS8 1UB, UK1
IRDA Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, CNRST (URAC29), Mohammed V University of Rabat, Morocco1
LRIT, CNRST (URAC29), Mohammed V University of Rabat, Morocco1
Ajou University1
Queen’s University, Kingston, Canada1
University of Science Technology, Wuhan, China1
Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia1
University at Qatar, Doha, Qatar1
University of Istanbul, Istanbul, Turkey1
Institute for Information and System Sciences and Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, PR China1
Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, China1
Faculty of Information Science and Technology, Sun Yat-Sen University, Guangzhou, China1
Department of Computer Science, Chu Hai College of Higher Education, Tuen Mun, Hong Kong1
PolyU Shenzhen Research Institute, Shenzhen, China1
Department of Computer Science, University of Loughborogh1
Department of Electrical Engineering and Electronics, University of Liverpool1
University of Bristol, Bristol, United Kingdom1
German National Library of Science and Technology & Leibniz Universität Hannover, Hannover, Germany1
University of Applied Sciences Jena, Jena, Germany1
Department of Creative IT Engineering, POSTECH, Pohang, South Korea, 376731
Viterbi School of Engineering, University of Southern California, Los Angeles, CA1
Centre for Multimedia Signal Processing and Department of Computing, Hong Kong Polytechnic University, Flat PQ717, Kowloon, Hung Hom, Hong Kong1
Department of Computer Science, University of Western Ontario, London, Canada1
University of Pittsburgh, USA1
Anhui University, HeFei, China and Chinese Academy of Sciences, Beijing, China1
Rensselaer Polytechnic Institute, Troy, NY, USA1
Vision Laboratory, LARSyS, University of the Algarve, Faro, Portugal1
Donghua University, China1
Department of Information Management, Yuan Ze University, Taoyuan, China1
AI Speech Ltd., Suzhou, China1
Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China1
DICGIM, Universitá degli Studi di Palermo, V.le delle Scienze, Ed. 6, 90128 Palermo, Italy1
Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey1
Department of Computer Technologies, Trabzon Vocational School, Karadeniz Technical University, Trabzon, Turkey1
Department of Electronic Engineering, Kyung Hee University, Yongin, South Korea1
Stanford University and Coursera1
Dept. of Comput. Sci. & Info. Eng., National Yunlin Univ. of Science & Technology, Taiwan1
Bilgisayar Mühendisliği Bölümü, İstanbul Üniversitesi, Turkey1
Bilgisayar Mühendisliği Bölümü, Bahçeşehir Üniversitesi, İstanbul, Turkey1
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan1
School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China1
Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China1
Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom. k.messer@surrey.ac.uk1
Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom. j.kittler@surrey.ac.uk1
Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom. x.zou@surrey.ac.uk1
University of Twente, Human Media Interaction Group, Enschede, The Netherlands1
Biometric and Imaging Processing Laboratory (BIPLab)1
University of Naples Federico II1
Warsaw University of Technology1
Research and Academic Computer Network (NASK)1
SensoMotoric Instruments (SMI)1
Maastricht University1
Università di Salerno Italy1
University of Southampton1
University of Beira Interior, IT: Instituto de Telecomunicações1
Philips Applied Technologies, Eindhoven, Netherlands1
Delft University of Technology, Delft, Netherlands1
Philips Research Eindhoven, Eindhoven, Netherlands1
Key Lab Complex System & Intelligence Science, Institute of Automation, Chinese Academy of Science, Beijing, China1
College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China1
State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China1
SAP Innovation Center Networks, Singapore1
Department of Computer Science and Engineering, Southeast University, Nanjing, China1
National Research University Higher School of Economics, Laboratory of Algorithms and Technologies for Network Analysis, Nizhny Novgorod, Russia1
Bioinformatics Institute, A∗STAR, Singapore1
Emory University School of Medicine, Atlanta, USA1
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA1
Department of Radiology and Imaging Sciences, Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA1
iCV Research Group, Institute of Technology, University of Tartu, 50411, Estonia1
Dept. Mathematics and Informatics, University of Barcelona, Computer Vision Center, Spain1
Institute of Technology, University of Tartu, 50411, Estonia1
Amazon.com Cambridge, MA, USA1
Dept. of EMPH, Icahn School of Medicine at Mount Sinai, New York, NY 100291
Dept. of ENME College Park, University of Maryland, College Park, MD, 207421
Eskişehir Osmangazi Üniversitesi, Bilgisayar Mühendisliği Bölümü, Eskişehir, Türkiye1
Anadolu Üniversitesi, Elek., Elektronik Mühendisliği Bölümü, Eskişehir, Türkiye1
Department of Computer Science, University of Texas at San Antonio, San Antonio, TX1
Electrical-Electronics Engineering Department, Izmir University of Economics, Balcova, Turkey1
Electrical-Electronics Engineering Department, Firat University, Elazig, Turkey1
Mechatronics Engineering Department, Firat University, Elazig, Turkey1
Department of Computer Science, Solapur University, Solapur, India1
Vision Semantics Ltd, UK1
Rutgers University, USA1
Computer Science, SUNY Stony Brook, Stony Brook, United States1
Computer Vision Research Group, School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia1
Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874 U.S.A. peterson@math.colostate.edu1
Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874 U.S.A. kirby@math.colostate.edu1
Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874 U.S.A. chang@math.colostate.edu1
Department of Electrical Engineering, Faculty of Engineering, Urmia university, Urmia, Iran1
Department of Information Technology, Netaji Subhas Engineering College, Kolkata, India1
Computer Engineering College, Jimei University, Xiamen, China1
Fujian Key Laboratory of the Brain-like Intelligent Systems, Xiamen, China1
School of Information, Hunan University of Humanities, Science and Technology, Loudi, China1
Cognitive Science Department, Xiamen University, Xiamen, China1
Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia1
School of Information and Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Korea1
Department of Computer Science, COMSATS, Institute of Information Technology, Sahiwal, Pakistan1
The University of Electro-Communications, Japan1
Institute for Infocomm Research, A-star, Singapore1
Inst. Dalle Molle d'Intelligence Artificielle Perceptive, Martigny, Switzerland1
Transmural Biotech, Barcelona, Spain1
George Mason University, Fairfax, VA 220301
Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea1
Computational Biomedicine Lab, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA1
Purdue University, West Lafayette, IN, USA1
Moshanghua Tech Company, Ltd., Beijing, China1
College of Information Engineering, Xiangtan University, Xiangtan, China1
CARTIF Centro Tecnológico, Robotics and Computer Vision Division, Boecillo (Valladolid, Spain)1
University of California, San Diego1
School of Software Engineering, South China University of Technology, Guangzhou, China1
School of Computer Science, South China Normal University, Guangzhou, China1
Dept. of Computer Science and Information Engineering, Providence University, Taichung, Taiwan1
360 AI Institute, Beijing, China1
Tencent YouTu Lab, Tencent Shanghai, China1
Sun Yat-sen University, China1
Centeye, Inc.1
Center for Optical Imagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China1
Institute of Information and Control, Hangzhou Dianzi University, China1
Hong Kong Baptist University and BNU-HKBU United International College1
NPU-VUB Joint AVSP Research Lab, Vrije Universitiet Brussel (VUB), Department of Electronics & Informatics (ETRO) Pleinlaan 2, 1050 Brussel, Belgium1
Department of Computer Science, School of Information Science and Engineering, Xiamen University, Xiamen, China1
School of Communication and Information Engineering, Shanghai University1
IRISA, University of Rennes 11
INRIA Rennes-Bretagne-Atlantique1
Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore1
International Institute of Information Technology, Hyderabad, Telangana, India1
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China1
Shenzhen Graduate School, Harbin Institute of Technology, 518055, China1
Research Institution of Intelligent Control and Testing, Graduate School of Tsinghua University at Shenzhen, 518055, China1
Commonwealth Scientific and Industrial Research Organization (CSIRO)1
University of Canberra, Austrlia1
B-DAT Lab, School of Information and Control, Nanjing University of Information Science and Technology, No. 219, Ningliu Road, Nanjing, China1
Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway1
Ocean University of China, Teaching Center of Fundamental Courses, Qingdao, China1
Indiana University-Bloomington, USA1
Key Laboratory of Medical Image Computing (Northeastern University), Ministry of Education, Shenyang, China1
School of Information Science and Engineering, Northeastern University, Shenyang, China1
Clínica Otocenter, Teresina, Piauí, Brasil1
Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing, China1
Nanjing University of Posts and Telecommunications, Nanjing, China1
Department of Computer Science and Engineering, The State University of New York at Buffalo, New York, USA1
Elektrik-Elektronik Mühendisliği Bölümü, Trakya Üniversitesi, Edirne, Türkiye1
Grupo de Aplicacion de Telecomunicaciones Visuales, Universidad Politecnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain1
Department of Management Information Systems, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany1
Amrita E-Learning Research Laboratory, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India1
Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India1
Amrita E-Learning Research Laboratory and the Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India1
IKERBASQUE, Basque Foundation for Science, and the University of the Basque Country, San Sebastian, Spain1
Computer Vision Center, Edifici “O” - Campus UAB, 08193 Bellaterra (Barcelona), Spain1
Amazon Research, Berlin, Germany1
DISI-Alma Mater Studiorum, Università di Bologna, Bologna, Italy1
State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, 100044, China1
Department of ECE, PEC University of Technology, Chandigarh, India1
Biomedical Instrumentation (V-02), CSIR-Central Scientific Instruments Organisation (CSIO)|, Chandigarh, India1
CEERI, Pilani, India1
MNIT, Jaipur, India1
Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do, Korea1
Department of Information Engineering, University of Florence, Firenze, Italy1
Carnegie Mellon University, Pittsburgh, USA1
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China1
Department of Arts and Humanities, College of Business, Arts and Social Sciences, Brunel University London, Uxbridge, UK1
Product/Industrial Design, Northumbria School of Design, Northumbria University, Newcastle upon Tyne, UK1
Department of Design, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK1
Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India1
The Organization of Advanced Science and Technology, Kobe University, Kobe, Japan1
RIEB, Kobe University, Kobe, Japan1
NTT Service Evolution Laboratories, Kanagawa, Japan1
Tsinghua National Lab for Information Science and Technology, Beijing, China1
Universidad Argentina de la Empresa (UADE), Lima 717, Buenos Aires, Argentina1
Columbia University, NEW YORK, NY, USA1
Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia1
US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA1
Dept. of Comput. Sci., North Carolina Univ., Wilmington, NC, USA1
Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 1001901
Research Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences, Beijing, 1001901
Biometrics Engineering Research Center, Yonsei University, Seoul, Korea1
University of Washington &Microsoft, Seattle, WA, USA1
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK1
Departamento de Informtica e Matemtica Aplicada/University of Rio Grande do Norte, Natal, Brazil1
Computer Engineering Department, Girne American University, Kyrenia, Cyprus 901
School of Engineering and Digital Arts, University of Kent, Canterbury, U.K.1
Cornell University, New York, NY, USA1
Cornell University & Facebook Inc., New York, NY, USA1
Office of Naval Research, Arlington1
School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing, China1
Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Fuzhou, China1
School of Technology, Nanjing Audit University, Nanjing, China1
School of Computer Science and Engineering, Southeast University, Nanjing, China1
Microsoft Research, Redmond, WA1
Adobe Research Department, Adobe Systems Inc, San Jose, CA1
Department of Computer Science, National Chung Cheng University, Chiayi, Taiwan1
School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, China1
Microsoft, Redmond, WA1
BIWI, ETH Zurich Zurich, Switzerland1
Video Analytics Lab, SERC, Indian Institute of Science, Bangalore, India1
Department of Electrical Engineering, National Chung Hsing University, Taiwan1
Integrated Circuits and Electronics Laboratory, Department of Engineering, Aarhus University, Denmark1
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology (ICT), CAS, Beijing, China1
Dept. of Comput. Sci., California Inst. of Technol., Pasadena, CA, USA1
Utechzone Co. Ltd., New Taipei City, Taiwan 2351
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China1
Department of Cognitive Science, University of California, San Diego, CA, USA1
Department of Communication Engineering, Shanghai University, Shanghai, China1
Department of Electronic Engineering Shanghai Jiao Tong University1
Institute of Communication Engineering, National Tsing-Hua University, Taiwan1
Innovations Kontakt Stelle (IKS) Hamburg, Hamburg University of Applied Sciences1
School of Engineering and Computing, University of the West of Scotland1
Computer Science Department, Central Washington University (CWU)1
ICT Center, CSIRO1
CSE Department, Regional Campus, Anna University, Tirunelveli, India1
Technische Universität München, München, Germany1
National defense acquisition and system engineering management, National University of Defense Technology, Changsha, Hunan, P.R. China1
Electrical Engineering and Computer Science, School of Engineering, University of California at Merced, Merced, USA1
Bilişim Teknolojileri Enstitüsü, Tübitak BİLGEM, Kocaeli, Türkiye1
School of Computer Science and Software Engineering, University of Western Australia, Crawley, Australia1
College of Engineering & Computer Science, Australian National University, Canberra, Australia1
Data61, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, Australia1
Human-Centered Technology Research Centre, University of Canberra, Bruce, Australia1
Karlsruhe Institute of Technology (KIT), Germany1
Istanbul Technical University (ITU), Turkey1
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland1
Department of Electronics and Communication Engineering, Faculty of Electrical & Electronic Engineering, Khulna University of Engineering & Technology, Bangladesh1
Pennsylvania State University, University Park, PA1
University of Sao Paulo1
University of Southern California, Southern California, USA1
School of Software, Henan University, Kaifeng, China1
Department of Electrical and Computer Engineering, Texas A&M University, College Station, USA1
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China1
Space Application Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Japan1
Department of Aeronautics and Astronautics Engineering, Graduate School of Engineering, University of Tokyo, Japan1
Department of Electrical Engineering, Computer Vision Laboratory, Linköping University, Linköping, Sweden1
Computer Vision Research Laboratory, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran1
Treelogic, Technological Scientific Park of Asturias, Llanera, Spain1
Department of Computer Science and Engineering, University of Oviedo, Gijón, Spain1
Fundación CTIC (Technological Center), Technological Scientific Park of Gijón, Gijón, Spain1
University of Central Florida 4000 Central Florida Blvd., Orlando, 328816, USA1
Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15213, USA1
School of Tai-an, Shandong University of Science and Technology, Tai-an, China1
Integrated Management Coastal Research Institute, Universitat Politècnica de València, València, Spain1
Department of Computer Science, Madrid Open University, Madrid, Spain1
Department of Research and Diagnostic Methods, Faculty of Education, Pontificia University of Salamanca, Salamanca, Spain1
The University of Tokushima, Japan1
Department of Signal Processing, Tampere University of Technology, FIN-Tampere, 33720, Finland1
Computer Science Department, University of Maryland, College Park, MD1
Department of Computer Science, Memorial University of Newfoundland, Saint John's, NL, Canada1
Computer Science Department, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel1
Shenzhen University, Shenzhen, China1
U.S. Army Res. Lab., Adelphi, MD, USA1
Department of Electrical Engineering, Assiut University, Asyut, Egypt1
Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan1
Dept. of Information Engineering, Faculty of Engineering, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan1
Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan, +81 25 262 74991
Visual Computation, Queen Mary University, London, United Kingdom1
University of British Columbia, Canada1
NTNU, Norway1
Institute of Informatics, Wroclaw University of Technology, Wroclaw, Poland1
Department of Computer Engineering, Yeungnam University, Korea1
Graduate School at Shenzhen, Tsinghua University, China1
Department of Computer Science, Cornell University, Ithaca, NY, USA1
Polish-Japanese Institute of Information Technology, Warszawa, Poland1
Faculty of Applied Informatics and Mathematics, Department of Informatics, Warsaw University of Life Sciences (SGGW), Warsaw, Poland1
AGH University of Science and Technology, Kraków, Poland1
Polish-Japanese Institute of Information Technology, Warsaw, Poland1
Department of Computer Science and Technology, Tongji University, Shanghai, China1
FernUniversität , Hagen, Germany1
Universidad Tecnica Federico Santa Maria , Valparaiso, Chile1
Staffordshire University , Staffordshire, United Kingdom1
The University of North Carolina at Charlotte, Charlotte, USA1
Walt Disney Imagineering, USA1
AEBC, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore1
Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Malaysia1
Australian Centre for Visual Technologies, University of Adelaide, Adelaide, Australia1
Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, P. R. China1
University of Massachusetts at Amherst, Amherst, MA, USA1
School of Computer Science, The University of Adelaide, Adelaide, SA, Australia1
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, USA1
University of Maryland, College Park, College Park, USA1
Chinese Academy of Sciences, Beijing, P.R.China1
School of Science, Jiangnan University, Wuxi, China1
School of Internet of Things Engineering, Jiangnan University, Wuxi, China1
Department of Engineering and MaintenanceChina Mobile Group, Jiangsu Company, Ltd., Changzhou, China1
School of Computer Sciences and Technology, Nanjing Normal University, Nanjing, China1
School of Mathematical Sciences, Nanjing Normal University, Nanjing, China1
Indian Statistical Institute, Kolkata 7001081
Departament d’Informàtica, Universitat de Valencia, Valencia, Spain1
Department of Computer Science, George Mason University, Fairfax, USA1
School of Information Technology, Deakin University, Geelong, Australia1
School of Sciences, South China University of Technology, Guangzhou, China1
College of Computer and Information Science, Southwest University, Chongqing, China1
Department of Mathematics and Computer Science, Gannan Normal University, Ganzhou, People’s Republic of China1
Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, People’s Republic of China1
Department of Computer Science and Technology, Tongji University, Shanghai, People’s Republic of China1
School of Information Engineering, Zhengzhou University, China1
National Laboratory of Pattern Recognition, Beijing, China1
National University of Kaohsiung, Kaohsiung, Taiwan1
Quang Binh University, Dong Hoi City, Vietnam1
School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China1
Dept. of Computer Science, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Greece1
Dept. of Medical Physics, Medical School, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Greece1
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore1
Dermalog Identification Systems GmbH, Hamburg, Germany1
School of Mathematics and Information Technology, Nanjing Xiao Zhuang University, Nanjing, People’s Republic of China1
Research & Advanced Technology Division of SAIC Motor Corporation Limited, Shanghai, 201804, P.R. China1
ECSE Department, Rensselaer Polytechnic Institute1
Centre of Excellence for Research in Computational Intelligence and Applications, School of Computer Science, University of Birmingham, Birmingham, U.K.1
VUB-NPU Joint AVSP Research Lab, Northwestern Polytechnical University (NPU), Shaanxi Key Lab on Speech and Image Information Processing, 127 Youyi Xilu, X'ian 710072, China1
Arizona State University, Phoenix, AZ, USA1
School of Computing, Electronics and Mathematics, Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK1
Department of Computer Science and Information Engineering, National Taipei University, Taipei, Taiwan1
Institute of Computer Science, Christian-Albrechts-Universität Kiel, Kiel, Germany1
Institute of Computer Science, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland1
KT Future Technology Laboratory, Seoul, South Korea1
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA1
School of Computer Science and Technology, Anhui University, Hefei, China1
School of Mathematical Sciences, Xiamen University, Xiamen, China1
State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, China1
Microsoft Key Laboratory of Visual Perception, Zhejiang University, Hangzhou, China1
Institute of Automation, National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing, P.R. China1
School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA1
Microsoft Research Asia, Beijing, P.R. China1
Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea1
Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore1
Department of Computer Science, Northumbria University, Newcastle, UK1
School of Automation, Northwestern Polytechnical University, Xi’an, China1
SAIIP, School of Computer Science, Northwestern Polytechnical University, Xi’an, China1
Shanghai Maritime University, Shanghai, China1
Machine Intelligence Research Institute, Rockville, USA1
Department of Computer Science, Shenzhen Graduate School, Harbin Institute of Technology, China1
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning 110004, China1
University of Pittsburgh and Adjunct Faculty at the Robotics Institute, Carnegie Mellon University: 3137 Sennott Square, 210 S. Bouquet St., PA 15260 USA1
AI Institute, Qihoo/360 Company, Beijing, China1
Intelligent Media Technique Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, P.R. China1
CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China1
AI Institute of Qihoo/360 Company, Beijing, P.R. China1
Advanced Engineering Electronics & Safety, Delphi Deutschland GMBH, Delphiplatz 1, Wuppertal, North Rhine-Westfalia, Germany1
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China1
Orange—France Telecom Division R&D—TECH/IRIS, Cesson Sévigné Cedex, France1
IIT-Madras, Chennai, India1
Department of Computer Science, Innopolis University, Kazan, Russia1
Center for Telematics and Information Technology, University of Twente, Enschede, Netherlands1
Department of Computer Science, University of Science & Technology, Bannu, Pakistan1
Department of Biomedical Engineering, Kyung Hee University, Suwon, Korea1
Department of Computer Engineering, Kyung Hee University, Suwon, Korea1
Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, Korea1
Naver Labs Europe, Meylan, France1
Image and Video Systems Lab, Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 305-701, Republic of Korea1
LIRIS, UMR 5205 CNRS, INSA-Lyon, F-69621, France1
Orange Labs, R&D, Meylan, France1
School of Computer and Systems Sciences, JawaharLal Nehru University, New Delhi 110067, India1
Univ. La Rochelle, La Rochelle, France1
Department of Computer Science, Chu Hai College of Higher Education, Tsuen Wan, Hong Kong1
University of Maryland, Center for Automation Research, 4411 A.V. Williams Building, College Park, MD 20742-3275, USA1
Teaching and research of section of mathematics, Hebei Information Engineering School, Baoding 071000, China1
Institute for Creative Technologies, University of Southern California, Los Angeles, CA, USA1
George Mason University, Fairfax, USA1
University of Naples Federico II, Napoli, Italy1
University of Salerno, Salerno, Italy1
Sapienza University of Rome, Rome, Italy1
RheinAhrCampus der Hochschule Koblenz, Remagen, Germany1
Google, Mountain View, USA1
Computer Sciences Department, University of Wisconsin, Madison, USA1
Google, Seattle, USA1
Singapore Polytechnic, 500 Dover Road, Singapore 1396511
Singapore University of Technology and Design, 20 Dover Road, Singapore 1386821
State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang, China1
IIIT Delhi, India1
Bournemouth University, Poole, UK1
Technische Universitt Darmstadt, Computer Systems Group, Darmstadt, Germany1
School of Engineering and Applied Science, Aston University, Birmingham, U.K.1
School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China1
Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T Block, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK1
PERCEPTION Team, INRIA Grenoble Rhône-Alpes, France1
MIR@CL Laboratory, Faculty of Sciences of Sfax (FSS), University of Sfax, Sfax, Tunisia1
Saudi Electronic University, Riyadh, Kingdom of Saudi Arabia1
MIR@CL Laboratory, Faculty of Economics and Management of Sfax (FSEGS), University of Sfax, Sfax, Tunisia1
Digital World Research Centre, University of Surrey, UK1
Department of Electrical and Computer Engineering, Curtin University, Miri Sarawak, Malaysia1
Information Security Group, City University London, London, UK1
Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia1
Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia1
School of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, China1
IIIT Chittoor, SriCity, Andhra Pradesh, India1
ARM, Inc., San Jose, CA1
Department of Information Engineering, Henan University of Science and Technology, Luoyang, China1
School of Computing Sciences, University of East Anglia, Norwich, U.K.1
Department of mechatronic technology of National Taiwan Normal University1
Department of Computer Science, Taipei Municipal University of Education1
Computer Vision Center 08193 Bellaterra, Barcelona, SPAIN1
Computer Science Division, University of Central Florida, Orlando, FL, USA1
GuangXi Cast Animation Company, Ltd., Nanning, China1
Department of Electrical Engineering and Computer Science, Colorado School of Mines, Golden, CO, USA1
School of Information Engineering, Xiangtan University, Xiangtan, China1
Baidu International Technology (Shenzhen) Company, Ltd., Shenzhen, China1
The Image Processing and Analysis Laboratory (LAPI), University “Politehnica” of Bucharest, 313 Splaiul Independeţei, Bucharest, Romania1
Department of Electronic Engineering, The Chinese University of Hong Kong1
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China1
Division of Digital Media Engineering, Sang-Myung University, Suwon, Republic of Korea1
CAS, Key Lab of Intell. Info. Process., Institute of Computing Technology, Beijing, China1
School of Computing, Teesside University, UK1
Teleinfrastructure R&D Lab, Technical University of Sofia, Bulgaria1
The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China1
Facebook AI Research (FAIR), Menlo Park, USA1
Princeton University &Microsoft, Princeton, NJ, USA1
Microsoft &University of Washington, Redmond, WA, USA1
Intel Labs, Pittsburgh PA1
Dept. of Inf. Network Technol., Hsiuping Inst. of Technol., Taichung, Taiwan1
Alibaba Group, Zhejiang, People’s Republic of China1
Computer Science, Arizona State University, Tempe, USA1
Cork Institute of Technology, CIT, Cork Ireland1
Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada1
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute Troy, Troy, USA1
Key Lab of Computing and Communication Software of Anhui Province School of Computer Science and Technology, University of Science and Technology of China Hefei, Anhui, People’s Republic of China1
Department of Computer Science, University of North Carolina Wilmington, Wilmington, United States1
School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea1
School of ComputingNational University of Singapore1
Centre for Intelligent Machines and Department of Electrical and Computer Engineering, McGill University, Montreal, Canada1
UFSC - Federal University of Santa Catarina / INE - CTC, Florianópolis, 88040-900, Brazil1
UDESC - Santa Catarina State University, DCC - CCT, Joinville, 89219-710, Brazil1
School of Electrical and Electronic Engineering, University of Manchester, Manchester, U.K.1
School of Computer Science and Information Technology, University of Nottingham, Nottingham, UK1
Waseda University, Tokyo, Japan1
Computer Science Department, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA1
Fordham University, New York, 10023, USA1
Rapid-Rich Object Search (ROSE) Lab, Nanyang Technological University, Interdisciplinary Graduate School, SingaporeSingapore1
Department of Electrical Engineering, Semnan University, Semnan, Iran1
Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran1
Dept. of EE, UESTC, 2006 Xiyuan Ave, Chengdu, Sichuan 611731, China1
Dept. of Radiation Oncology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA1
Dept. of Electrical & Computer Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA1
University of Nottingham (Malaysia Campus), Malaysia1
South Valley University, Qena, Egypt1
Film Department ELTE University, Budapest, Hungary1
Department of Computer Science & Engineering, Tripura University (A Central University), Suryamaninagar-799022, Tripura, India1
Gipsa-Lab, Saint Martin d’Heres, France1
ICA Laboratory, Grenoble, France1
IIIT Hyderabad, 500032, A.P, India1
School of Computing and Electrical Engineering, IIT Mandi, H.P, 175001, India1
School of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, Australia1
School of Engineering, Griffith University, Nathan, QLD, Australia1
Faculty of Engineering and Information Technology, Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, NSW, Australia1
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA1
Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109 USA1
Beijing Key Laboratory of Digital Media, State Key Laboratory of Virtual Reality Technology and Systems, and School of Computer Science and Engineering , Beihang University, China1
Philips Research , The Netherlands1
Istanbul Technical University, Faculty of Computer and Informatics, Istanbul, Turkey1
Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China1
AICTE Emeritus Fellow,  1
Department of Computer Science & Engineering, Jadavpur University, Kolkata, India1
Department of Computer Science & Engineering, GCELT, Kolkata, India1
Chinese Academy of Sciences, Shaanxi, P. R. China1
University of Sydney, NSW, Australia1
Chinese University of Hong Kong, Hong Kong1
Signal and Information Processing section (SIP), Department of Electronic Systems, Aalborg University, Denmark1
Section of Image Analysis and Computer Graphics, DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark1
Department of Computer System and Communication, Faculty of Information and Communication, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Malaysia1
Division Télécom, Centre de Développement des Technologies Avancées - CDTA, Algiers, Algeria1
University of Delaware, USA1
Department of Cognitive Science, School of Information Science and Engineering, Xiamen University, Xiamen, China1
Taylor's University Lakeside Campus, Selangor Darul Ehsan, Malaysia1
Department of Mathematical Sciences, Georgia Southern University, Statesboro, USA1
School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland1
Department of Electronic EngineeringCentre for Vision, Speech and Signal Processing, University of Surrey, Surrey, U.K.1
Department of Electrical EngineeringFaculty of Engineering, Urmia University, Urmia, Iran1
ICT-ISVISION Joint R&D Lab. for Face Recognition, Chinese Acad. of Sci., Beijing, China1
School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA1
Baidu Research - Institute of Deep Learning, Sunnyvale, USA1
Jiaxing University, Jiaxing, China1
International School, Beijing University of Posts and Telecommunications, Beijing, China1
School of Computer Engineering, Nanyang Technological University, Singapore, Singapore1
Department of Social and Decision Sciences, Carnigie Mellon University, Pittsburgh, PA 15224, USA1
Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. zhangxiaoxun@bit.edu.cn1
Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. jiayunde@bit.edu.cn1
Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. xushuang@bit.edu.cn1
Department of Electronics and Communication, University of Allahabadm Allahabad, India 2110021
Microsoft Live Labs Research, China1
Baidu Research, USA1
Center for Machine Vision and Signal Analysis, Department of Computer Science and Engineering, University of Oulu, Oulu, Finland1
Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, People’s Republic of China1
Applied Network Technology (ANT), Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand1
Department of Business Computer, Faculty of Management Science, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand1
Microsoft Research1
MIT CSAIL1
Affectiva1
Yahoo! Research1
University of Denver, 2390 S York Street, CMK 308, Denver, CO 80210, USA1
Institute for Computational and Mathematical Engineering, Stanford University1
Computer Laboratory, University of Cambridge, Cambridge, U.K.1
Department of Mathematics and Computer Science, University of Cagliari, Italy1
Institute of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, P.R. China1
School of Information Science and Technology, Southwest Jiaotong University, Chengdou, P.R. China1
Center for OPTical IMagery Analysis and Learning, State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China1
Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, U.K.1
College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China1
Fotonation LTD, Galway, Ireland1
School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xian 710072, Shaanxi, China1
Universidad de León, León, Spain1
Elektronik ve Haberleşme Mühendisliği Bölümü1
Robert Bosch Engineering and Business Solutions Limited, Bangalore, India1
Department of Instrumentation and Control Engineering, PSG College of Technology, Coimbatore, India1
Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China1
Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey1
China Airborne Missile Academy, Luoyang, China1
Electronic Information Engineering College, Henan University of Science and Technology, Luoyang, China1
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi’an, People’s Republic of China1
Amirkabir University of Technology, Electrical Engineering Department, Tehran, Iran1
School of Computing and Communication, University of Technology Sydney, Sydney, Australia1
School of Electronic and Information Engineering, Inner Mongolia University of Science and Technology, Baotou, People’s Republic of China1
School of Electronic and Information Engineering, Beihang University, Beijing, People’s Republic of China1
Istituto Italiano di Tecnologia & Università di Verona, Genova, Italy1
Istituto Italiano di Tecnologia (IIT), Genova, Italy1
Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany1
Office of Safety Research and Development, Federal Highway Administration, U.S. Department of Transportation, Virginia, USA1
Department of Applied Mathematics, Beijing Jiaotong University, Beijing, People’s Republic of China1
Xinjiang Vocational and Technical College of Communications, Wulumuqi, People’s Republic of China1
School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, People’s Republic of China1
School of Computer Science and Technology, Guangdong University of Technology, China1
College of Mathematics and Informatics, South China Agricultural University, China1
Computer Vision and Multimodal Computing, MPI Informatics, Saarbruecken1
Computer Vision Laboratory, ETH Zurich1
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China1
Curtin University Department of Mechanical Engineering, Perth, Western Australia 60121
Department of Mechanical Engineering, Curtin University, Perth, Western Australia 60121
Department of Information Engineering, HeNan Radio and Television University, Zhengzhou, People’s Republic of China1
School of Computer and Information Science, Southwest University, Chongqing, People’s Republic of China1
School of Computer Science and Engineering, Center for Robotics, Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China1
National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, People’s Republic of China1
Computer Science Department, School of Information Science and Engineering, Xiamen, University, Xiamen, People’s Republic of China1
PLA University of Science and Technology, China1
PLA University of Science and Technology, China and State Key Lab. for Novel Software Technology, Nanjing University, China1
College of Computer and Information, Hohai University, China1
College of Computer and Information, Hohai University, China and Key Lab. of Image and Video Understanding for Social Safety, Nanjing University of Science & Technology, China1
Vols Taipei1
Intel Labs Europe, London, United Kingdom1
Technion - Israel Inst. of Technology, Haifa, 32000, Israel1
The Open University of Israel, Raanana, 43107, Israel1
Weizmann Institute of Science, Rehovot, 76100, Israel1
Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, USA1
Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China1
Department of Information and Communication Engineering, Chosun University, Gwangju, Korea1
School of Electronics and Computer Eng., Chonnam National University, Gwangju, Korea1
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA1
FAST, Supélec, Avenue de la Boulaie, Cesson-Sévigné, France1
ISIR laboratory, Pierre and Marie Curie university, Paris Cedex 05, France1
Centre for Visual Computing, Faculty of Engineering and Informatics, University of Bradford, Bradford, UK1
Faculty of Science and Technology, Communication University of China, Beijing, China1
Science and Technology Department, Communication University of China, Beijing, China1
Collaborative Innovation Center, Communication University of China, Beijing, China1
School of Computer Software, Tianjin University, 300072, China1
Computer Vision Laboratory, ETH Zürich, Zürich, Switzerland1
Amsterdam University College, Amsterdam, The Netherlands1
Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands1
Universitat Pompeu Fabra, Universidad Pompeu Fabra (Edificio França), Passeig de Circumvallacio, 8, Barcelona, Spain1
Departamento de estadística, Universidad Carlos III de Madrid, Barcelona, Spain1
Southeast University, Nanjing, China1
Computer Science, Rochester Institute of Technology, USA1
Center for Imaging Science, Rochester Institute of Technology, USA1
Space and Naval Warfare Systems Center Pacific, San Diego, CA, 92152, United States1
Electrical and Computer Engineering, University of California, San Diego1
Key Laboratory of Intelligent Information Processing, Shandong Normal University, Jinan, China1
School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China1
School of Computer Science, Chongqing University, Chongqing, China1
Institute of Life Sciences, Shandong Normal University, Jinan, China1
School of Information Science and Engineering, Shandong Normal University, Jinan, China1
FEECS, Department of Computer Science, Technical University of Ostrava, Ostrava-Poruba, Czech Republic1
ECE, Department MSIT, C-4 Janakpuri, New Delhi, India1
Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA1
Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan. e-mail: chihming.fu@gmail.com1
Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan; Informatics Department, Fo-Guang University, I-Lan, Taiwan. e-mail: clhuang@ee.nthu.edu.tw1
Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan1
Research Institute for Future Media Computing, Shenzhen University, Shenzhen, China1
University Politehnica of Bucharest, Bucharest, Romania1
School of Computer and Information, Anhui Polytechnic University, Wuhu, China1
Faculty of Information Sciences and Engineering, University of Canberra, Australia1
Robotics Institute, Carnegie Mellon University, USA1
Pediatrics Department, University of South Florida, Tampa, FL, USA1
Department of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China1
Sun Yat-Sen University, Guangzhou, China1
University of California at Los Angeles, Los Angeles, CA, USA1
University of Queensland, Brisbane, Australia1
University of Maryland, Baltimore County, Baltimore, MD1
Jadavpur University, Kolkata, India1
Department of Physics, Tripura University (A Central University), Suryamaninagar, India1
Department of Computer Science and Engineering, Tripura University (A Central University), Suryamaninagar, India1
Raytheon BBN Technologies, Cambridge, MA, USA1
Pontifical Catholic University of Minas Gerais - Department of Computer Science, R. Dom Jose Gaspar, 500, Belo Horizonte MG, 30535901, Brazil1
College of Computer and Information Science, Southwest University, Chongqing 400715, China1
Human-Robot Interaction Research Center, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea1
Tsinghua University, Beijing, 100084, China1
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea1
School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China1
Department of Electrical and Electronics Engineering, Bahcesehir University, Istanbul, Turkey1
School of Science, Jiangnan University, Wuxi, People’s Republic of China1
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, USA1
Key Laboratory of Advanced Process Control for Light Industry, Jiangnan University, Ministry of Education, Wuxi, People’s Republic of China1
School of Internet of Things, Jiangnan University, Wuxi, People’s Republic of China1
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada1
Department of Statistics and Operational Research, Faculty of Mathematics, Complutense University of Madrid, Madrid, Spain1
Distributed Infinity, Inc., Larkspur, CO, USA1
University of Colorado Denver, Denver, CO, USA1
Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA1
Facebook Inc., San Francisco, CA, USA1
Adobe Systems Inc., San Jose, CA, USA1
Dept. of Mathematics and Computer Science, University of Udine, Italy1
University of Wisconsin-Madison, Madison, WI, USA1
LIMSI-CNRS, Orsay Cedex, France1
Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy1
Faculty of Information Technology, University of Technology, Sydney, Sydney, Australia. email: hintz@it.uts.edu.au1
Faculty of Information Technology, University of Technology, Sydney, Sydney, Australia. email: jant@it.uts.edu.au1
Faculty of Information Technology, University of Technology, Sydney, Sydney, Australia. email: pohsiang@it.uts.edu.au1
Faculty of Information Sciences and Engineering, Management and Science University, Selangor, Malaysia1
UTM-Big Data Center, Universiti Teknologi Malaysia, Johor Bahru, Malaysia1
Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia1
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China1
Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia1
LAMIA, EA 4540, University of French West Indies and Guyana, Guadeloupe, France1
ISIR, UPMC Univ Paris 06, CNRS, Paris, France1
Advanced Electronics System, Academy of Scientific and Industrial Research, CSIR-Central Electronics Research Institute, Pilani, India1
Mobile Communications Department, Eurecom, Biot, France1
STARS Team, Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis, France1
Merchant Marine College, Shanghai Maritime University, Shanghai 201306, PR China1
Institute of Industrial Science, the University of Tokyo, Tokyo, Japan1
Department of Informatics, King’s College London, London, UK1
DST INSPIRE Fellow, Department of Computer Science and Engineering, Jadavpur University, Kolkata, India1
Department of Electrical Engineering, KAIST, Korea1
Electronic R&D Center, Mando Corp., Korea1
Department of New Media, Korean German Institute of Technology, Korea1
SAIT Beijing Lab, Samsung Advanced Institute of Technology, China1
Mechatronics & Manufacturing Technology Center, Samsung Electronics Co., Korea1
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy1
Open University of Israel1
The University of Western Australia, Crawley, Australia1
Curtin University, Perth, Australia1
Pontifical Catholic Univ of Rio de Janei, Department of Informatics, Rio de Janeiro, Brazil1
Department of Informatics, Pontifical Catholic Univ of Rio de Janei, Rio de Janeiro, Brazil1
School of Computing Sciences and Informatics, University of Cincinnati, Cincinnati, USA1
Concordia University, Montreal, Canada1
Universiti Kuala Lumpur, Kedah1
Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, H3G 1T7, Canada1
Department of Electrical and Computer Engineering, Concordia University, QC, Canada, H3G 1T71
Beijing University of Posts and Telecommunications, 100876, PR China1
University of KwaZulu-Natal, School of Maths, Statistics & Computer Science, Durban - South Africa1
Sudan University of Science and Technology, College of Computer Science and Information Technology, Khartoum - Sudan1
LMU Munich, Germany and Munich University of Applied Sciences, Germany1
Department of Electric and Electronic Engineering, Avrasya University, Trabzon, Turkey1
Department of Electric and Electronic Engineering, Selçuk University, Konya, Turkey1
Digital Media Institute, Hunan University, Changsha, 410082 P.R. China1
College of information science and engineering, Hunan University, Changsha, 410082 P.R. China1
ACM Professional Specialist in Artificial Intelligence1
Université du Quebec a Rimouski (UQAR)1
School of Information Technology & Electrical Engineering, The University of Queensland, Brisbane, Australia1
School of Computing, National University of Singapore, Singapore, Singapore1
School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China1
Shanghai university1
University of Washington and Google Inc.1
Google Inc.1
University of Washington1
CNRS, IMB, UMR 5251, Talence, France1
UMR 5800, CNRS, LaBRI, Talence, France1
UMR 5800, University of Bordeaux, LaBRI, Talence, France1
UMR 5800, Bordeaux INP, LaBRI, Talence, France1
UMR 5800, LaBRI, Talence, France1
Dept. of Electrical Engineering, National Chung Hsing University, Taiwan1
Division of Design of Intelligent Machines, Center for Development of Advanced Technologies, Algiers, Algeria1
AI Laboratories, Alibaba Group, Hangzhou, China1
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi’an, China1
CCCE, Nankai University Jinnan Campus, Tianjin, China1
College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, USA1
Department of Mathematics, University of Houston, Houston, USA1
Research Group on Intelligent Machines, University of Sfax, ENIS, Sfax, Tunisia1
Department of Management, Dalian University of Technology, Dalian Liaoning, China1
Department of Electronic Engineering, Dalian University of Technology, Dalian Liaoning, China1
College of Communication Engineering, Chongqing University, Shapingba district, Chongqing, China1
Department of Computer Science, VHNSN College, Virudhunagar, India1
Department of Computer Science, ANJA College, Sivakasi, India1
Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong1
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology Tsinghua University, Beijing, China1
National ICT Australia, Canberra, ACT, Australia1
MIT Media Laboratory, Cambridge, MA, USA1
Foundation for Research & Technology – Hellas, Heraklion, Crete, Greece1
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands1
Ruhr-Universität Bochum, Bochum, Germany1
Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland1
Industrial Technology Research Institute, Hsinchu, Taiwan1
Garmin Corporation, New Taipei, Taiwan1
Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan1
School of Information Technologies, University of Sydney, Sydney, NSW, Australia1
Tencent AI Laboratory, Shenzhen, China1
Malong Technologies Company, Ltd., Shenzhen, China1
Beijing Normal University, Beijing, China1
Sun Yat-sen University, Guangzhou, China1
Guangzhou University, Guangzhou, China1
Department of Information Engineering, the Chinese University of Hong Kong1
Department of Electronic Engineering, the Chinese University of Hong Kong, Shatin, Hong Kong1
Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No.1, Tonantzintla, Puebla, México. CP 728401
Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, Brasil1
Department of Electrical Engineering, National Taiwan University of Science and Technology1
Department of Computer Science and Technology, Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China1
Computational Vision Group, University of California at Irvine, Irvine, CA, USA1
Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland1
Department of Computer Science and Technology, The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China1
Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, People’s Republic of China1
Department of Automation, Shanghai Jiao Tong University, Shanghai, People’s Republic of China1
School of Psychology, University of Ottawa, Ottawa, Canada1
School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada1
Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran1
Tohoku University, Japan1
Intelligent Multimedia Technique Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China1
Department of Mechanical Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia1
University of Alberta, Canada1
China University of Geosciences, Wuhan, China1
College of Information Science and Engineering, Hunan University, Changsha, China1
Dept. of Electron. Eng., Hannam Univ., Daejeon, South Korea1
Centre for Autism Research, Philadelphia, US1
University of Cambridge1
Department of EE, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea1
Department of Software and Computer Engineering, Ajou University, Suwon, Korea1
Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Zhejiang, China1
College of Computer Science, Zhejiang University, Zhejiang, China1
Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan1
School of Information Science and Engineering, Shandong University, Jinan, China1
Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, Nanjing, China1
Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada1
Center for Advance Imaging Innovation and Research, New York University, New York, NY, USA1
Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer Science, Peking University, Beijing, China1
Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA1
Department of Computer Science, University of Warwick, Coventry, U.K.1
Laboratoire MIA, University of La Rochelle, La Rochelle, France1
College of Cyber Security, Jinan University, Guangzhou, China1
Columbia University, New York1
Department of Electrical and Computer Engineering, College of Computer and Information Science, Northeastern University, Boston, MA, USA1
Fraunhofer Institute for Telecommunications, Berlin, Germany1
Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany1
Siemens AG, Corporate Technology, Munich, Germany1
School of Engineering, University of Illinois, Urban Champagne, USA1
ECIT, School of Electronics, Electrical Engineering & Computer Science, Queen's University Belfast, Belfast, UK1
Computer Science, Loughborough University, Loughborough, UK1
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India1
Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Japan1
Dept. of Computer Engineering, Science and Reaserch Branch, Islamic Azad University, Tehran, Iran1
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran1
Luoyang Electro-Optical Equipment Research Institute, Luoyang, People’s Republic of China1
Schepens Eye Research Institute, Harvard University, Cambridge, USA1
Image Processing Center, Beihang University, Beijing, People’s Republic of China1
Technological Educational Institute of Sterea Ellada, Psahna, Halkida, Greece1
National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece1
University of Maastricht, Maastricht, The Netherlands1
Centre of Research and Technology Hellas, Thermi, Thessaloniki, Greece1
School of Computing and Communications, Lancaster University, Lancaster, UK1
Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi’an, China1
School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China1
Department of Electronics and Communication Engineering, P.P.G. Institute of Technology, Coimbatore, India1
Department of Electronics and Communication Engineering, Institute of Road and Transport Technology, Erode, India1
Wayne State University, Detroit, USA1
School of Automation, Huazhong University of Science and Technology, Wuhan, China 4300741
College of Electronics and Information Engineering, Sichuan University, Chengdu, China 6100641
Department of Computer Science, Banasthali Vidyapith, Banasthali, India1
Computer Science and Engineering Department, SP Memorial Institute of Technology, Kaushambi, India1
Dept. of Comp. Sci. and Tech., Shenzhen Graduate School, Harbin Institute of Technology, China1
Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China1
Imperial College London1
Machine Vision Group, University of Oulu, Oulu, Finland1
Fujifilm Software, San Jose, USA1
Inst. of Autom., Chinese Acad. of Sci., Beijing, China1
School of Computing, Computing 1, 13 Computing Drive, National University of Singapore, Singapore 1174171
Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis, Singapore 1386321
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 1175761
Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, Brazil1
Computational Brain Science Lab, Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden1
Graduate Sch. of Inf. Sci. & Technol., Tokyo Univ., Japan1
Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China1
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, People’s Republic of China1
National Laboratory of Speech and Language Information Processing, University of Science and Technology of China, Hefei, China1
Department of Psychology, University of Pittsburgh/Robotics Institute, Carnegie Mellon University , Pittsburgh, PA, USA1
School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China1
Dept.of Intelligence Science and Technology, The Kyoto University of JAPAN1
Dept.of Computational Intelligence and Systems Science, Tokyo Institute of Technology of JAPAN1
Microsoft Research, Redmond, WA, USA1
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia1
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China1
HTC Research, Beijing, China1
QCIS, University of Technology, Sydney, Australia1
IIIS, Tsinghua University, Beijing, China1
School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, PR China1
School of Software Technology, Dalian University of Technology1
Interuniversity Microelectronics Centre, Heverlee, Belgium1
NPU-VUB Joint AVSP Lab, Department ETRO, Vrije Universiteit Brussel (VUB), Brussels, Belgium1
Shaanxi Key Laboratory on Speech and Image Information Processing, Xi’an, China1
NPU-VUB Joint AVSP Lab, School of Computer Science, Northwestern Polytechnical University (NPU), Xi’an, China1
School of Computer and Information Science, Southwest University, Chongqing, China1
School of Computer Science and Technology, Shandong University, Shandong, China1
Facebook Inc., Palo Alto, CA, USA1
Stanford University, USA1
Institute of Electronics and Computer Science, Riga, Latvia1
Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106 USA1
Psychology Department, University of California, Santa Barbara, CA 93106 USA1
Computer Science and Information Engineering Department, National Taiwan Normal University, Taipei, Taiwan1
Dept. of Comp. Sci. and Inf. Eng, National United University, Miaoli, Taiwan1
School of Control Science and Engineering DUT, Dalian, China1
College of Mechanical and Electrical, Changzhou Textile Garment Institute, Changzhou, China1
Information Technology R&D Center, Mitsubishi Electric Corporation, Kamakura, Japan1
School of Information Science and Engineering, Hunan city University, Yiyang, China1
School of Electronics and Information Engineering, Tongji University, Shanghai, China1
KU Leuven, ESAT - PSI, iMinds, Leuven, Belgium1
Max-Planck-Institut für Informatik, Saarbrücken, Germany1
Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Prague 6, Czech Republic1
Department of Computer Science, University of Toronto, Toronto, Canada1
Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran1
University of IIllinois, Urbana-Champaign1
Department of ECE, National University of Singapore1
Department of Computer Science, University of Dayton1
Institut EURECOM, Sophia Antipolis, (France)1
Sapienza Università di Roma, v. Salaria 113, 00198, Rome, (IT)1
Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China1
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA1
Zhejiang University & Alibaba Group, Hangzhou, China1
Laboratory LIM, Department of Computer Science, Faculty of Sciences and Technologies, University Hassan II, Casablanca-Morocco1
College of Electrical Engineering and Automation, Anhui University, Hefei, China1
Electrical Engineering Department, Yazd University, Yazd, Iran1
School of Computer and Science Technology, Tianjin University, Tianjin, China1
School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China1
Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin, China1
Research School of Engineering, Australian National University, Canberra, Australia1
DCNS Research, 5 rue de l'Halbrane, 44340 Bouguenais, France1
Adjunct, Effat University, Jeddah, Saudi Arabia1
Department of Electrical and Computer Engineering, University of Miami, Coral Gables, USA1
School of Computer Science, Wuyi University, Jiangmen, China1
Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia1
School of Computer Engineering and Science, Shanghai University, Shanghai, China1
Faculty of Education, East China Normal University, Shanghai, China1
Department of Information Engineering and Computer Science, University of Trento, Trento, TN, Italy1
Snapchat Research, Venice, CA902911
Beauty Cosmetic Research Lab, Kao Corporation, Tokyo, Japan1
University of Waterloo, Waterloo, Canada1
Department of CS, University of Texas at San Antonio, 78249, USA1
Department of CSE, University at Buffalo (SUNY), NY 14260, USA1
University of Waterloo1
School of Information and Engineering, Jinhua Polytechnic, Jinhua, China1
Department of Computer Science and Engineering, University of Texas, Arlington, USA1
School of Medical Science, Jinhua Polytechnic, Jinhua, China1
College of Information, Capital University of Economics and Business, Beijing, China.sanyecunfu@emails.bjut.edu.cn1
Bio-Computing Research Center, Harbin Institute of Technology Shenzhen Graduate School, China1
Guangdong Industry Training Centre, Guangdong Polytechnic Normal University, Guangzhou, China1
S. S. College of Business Studies, University of Delhi, Delhi, India1
School of Computer & System Sciences, Jawaharlal Nehru University, New Delhi, India1
Department of Computer Science and Engineering, National Institute of Technology, Uttarakhand, India1
Korea University, Seoul, South Korea1
Department of Electrical and Computer Engineering, Ajou University1
Advanced Digital Sciences Center , Singapore1
National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China1
Baidu Online Network Technology (Beijing) Co. Ltd, Beijing, China1
Computer Science and Electrical Engineering West Virginia University, Morgantown, USA1
Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, China1
Department of ComputingBiometrics Research Centre, The Hong Kong Polytechnic University, Hong Kong1
School of Computer Science and Information Technology, RMIT University, Melbourne, VIC, Australia1
Faculty of Engineering and Computing, Coventry University, UK1
Dept. of Theoretical Electrical Engineering, Technical University of Sofia, Sofia, Bulgaria1
Clemson University, Clemson, SC1
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China1
School of Digital Media, Jiangnan University Jiangsu Wuxi, PR China1
School of Digital Media, Jiangnan University, Jiangsu Wuxi, PR China1
Department of Electronics and Communication Engineering, National Institute of Technology Trichy, Trichy 620015, India1
School of Maths, Statistics & Computer Science, University of KwaZulu-Natal, Durban, South Africa1
Faculty of Science and Technology, Sudan University of Science and Technology, Khartoum, Sudan1
Lawrence Berkeley National Laboratory, Berkeley, USA1
No.1 Senior Middle School of Wendeng District, Weihai, China1
Standards & Metrology Research Institute of CARS, Beijing, China1
College of Information Science & Technology, Hebei Agricultural University, Baoding, China1
Graduate School of System Informatics, Kobe University, Japan1
NOVA Laboratory for Computer Science and Informatics, NOVA-LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal1
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL1
Beijing FaceAll Co. Beijing, China1
University of Science and Technology of China1
Amazon, Berkshire, U.K.1
Tianjin Universtiy, Tianjin, China1
Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 United States1
Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854 United States1
The Computer Laboratory, University of Cambridge, Cambridge, UK1
New York University, New York City, NY, USA1
Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering and Information Technology, University of Technology Sydney, 81 Broadway Street, Ultimo, NSW, Australia1
University of Lancaster, Lancaster, United Kingdom1
University of Helsinki, Helsinki, Finland1
Department of Multimedia and Graphic Arts, Cyprus University of Technology, P.O. Box 50329, 3036, Lemesos, Cyprus1
Ryerson Multimedia Research Laboratory, Ryerson University, Toronto, Ontario, Canada1
Intelligent and Interactive Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria1
Signal and Image Exploitation (INTELSIG), Montefiore Institute, University of Liège, Liège, Belgium1
Megvii Inc., Beijing, China1
Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong1
Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC1
University of Ottawa, Ottawa, Canada1
National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China1
Army Research Office, RTP, Raliegh, NC, United States of America1
The State Key Laboratory of Integrated Services Networks (ISN), Xidian University, Xi’an, China1
Department of Electronic and Engineering, Xidian University, Xi’an, China1
Department of Informatics, Modeling, Electronics, and Systems, University of Calabria, Rende, Italy1
The University of New South Wales, Australia1
School of Materials Science and Engineering, Central South University, Changsha, China1
Institute of Energy, Jiangxi Academy of Sciences, Nanchang, China1
Xiamen Key Laboratory of Computer Vision and Pattern Recognition, Huaqiao University, Xiamen, China1
**1
Advanced Technologies Application, Center (CENATAV), Cuba1
Institute of Digital Media, Peking University, Beijing, China1
GREYC, CNRS UMR6072, University of Caen, Caen, France1
IDIAP, Martigny, Switzerland1
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213. msavvid@cs.cmu.edu1
Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292. mitra@isi.edu1
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: king@cse.cuhk.edu.hk1
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: lyu@cse.cuhk.edu.hk1
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: jkzhu@cse.cuhk.edu.hk1
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail: hbdeng@cse.cuhk.edu.hk1
Electrical and Electronic Engineering Department, Faculty of Engineering, Shahed University, Tehran, Iran1
Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran1
Electronics and Telecommunications Research Institute (ETRI), Republic of Korea1
Xerox Research Center, Europe, France1
Department of Electronic Engineering, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China1
Science and Technology on Integrated Information System Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China1
College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, China1
State Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu, China1
Dept. of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea1
Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan1
School of Electronic Science and Engineering, National ASIC Research and Engineering Center, Southeast University, Nanjing, China1
Human Media Interaction Group, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands1
School of Mechanical and Electrical Engineering, Shandong Management University, Jinan, China1
School of Information Science and Technology, Shandong Normal University, Jinan, China1
National Institute of Advanced Industrial Science Technology, Japan1
Tilburg center for Cognition and Communication, Tilburg University, Tilburg, The Netherlands1
Massachusetts Institute of Technology, Cambridge, USA1
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China1
MOE-Microsoft Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China1
Department of Automation, State Key Laboratory of Intelligent Technologies and Systems and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China1
Department of Computer Science, The University of Sheffield, Sheffield, UK1
Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Colombia1
Department of Computer Engineering, College of Computer & Information Sciences, King Saud University, Riyadh, Saudi Arabia1
Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China1
Laboratory of Media Audio & Video, Communication University of China, Beijing, China1
Division of Electrical Engineering, School of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701, Republic of Korea1
CNRS LTCI; Télécom ParisTech1
Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI1
School of Science, Southwest Petroleum University, Chengdu, China1
Amity University, Noida, India1
Infosys Limited, Bhubaneswar, India1
Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, China1
Research Center for Learning Science, Southeast University, China1
School of Computer Science and Engineering, Tianjin University of Technology, China1
Department of Electrical and Computer Engineering, College of the Computer and Information Science, Northeastern University, Boston, MA, USA1
Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA1
Department of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, MA, USA1
Department of Computer Science, University of Brasília, DF, Brazil 70910-9001
Department of Mechanical Engineering, University of Brasília, DF, Brazil 70910-9001
Department of Neurosurgery, University of Pittsburgh, PA 15213, USA1
Faculty of Computers and Information, Ain Shams University, Egypt1
Faculty of Computers and Information, BeniSuef University, Egypt1
Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China1
LIAMA, French National Institute for Research in Computer Science and Control, Paris, France1
Intel Laboratory China, Beijing, China1
School of Computing, National University of Singapore1
Institute for Infocomm Research, Singapore1
Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China1
Leiden University, Leiden, The Netherlands1
TNO, The Hague, The Netherlands1
City University, Kowloon Tong, Hong Kong1
Radboud University, EC Nijmegen, The Netherlands1
TNO, Oude Waalsdorperweg, AK The Hague, The Netherlands1
Liaocheng University, Liaocheng, China1
Machine Vision Group, Infotech Oulu and Department of Electrical and Information Engineering, University of Oulu, Finland1
Northwestern Polytechnic University, Xi’an, China1
University of Science and Technology Beijing, Beijing, China1
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun Donglu, Beijing 100190, China1
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China1
Rapid-Rich Object Search Laboratory, Interdisciplinary Graduate School, Nanyang Technological University, Singapore1
Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, USA1
Department of Mathematics, University of Portsmouth, Portsmouth, UK1
Department of Automation, Xiamen University, Xiamen, China1
Department of Computer Science and Technology, College of Computer, National University of Defense Technology, Changsha, Hunan, China, 4100731
Faculty of Information Engineering, China University of Geosciences, Wuhan, China1
University of Abertay, Dundee, UK1
China University of Geosciences Wuhan, China1
University of Udine, Udine, Italy1
INRS-EMT, Montreal, Canada1
Sapienza Univertsity of Rome1
Queen Mary University of London, London, England UK1
Fudan University, Shanghai , China1
Hohai University, No. 1 Xikang Road, Nanjing, Jiangsu Province, China1
Institute of Intelligent Information Processing, Xidian University, Xi'an, China1
College of Metropolitan Transportation, Beijing University of Technology, Beijing, China1
School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China1
School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China1
Institute of Computing Technology, Chinese Academy of Sciences, Key Laboratory of Intelligent Information Processing, Beijing, China1
University of Southern California, Los Angeles, CA, USA1
Institute of Computing Technology, CAS, No.6 Kexueyuan South Road, Beijing, 100080, China1
School of Computer Science Carnegie Mellon University Pittsburgh, PA, 15213, USA1
Dept. of Computer Science, Purdue University1
Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, USA1
Center of Image and Signal Processing, Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur, Malaysia1
Graduate School of Engineering Science, Department of Systems Innovation, Osaka University, Toyonaka, Japan1
College of Information and Technology, Incheon National University, Incheon, Korea1
College of Electronics and Information Engineering, Sichuan University, Chengdu, China1
School of Software Engineering, Beijing Jiaotong University, Beijing, China1
Tianjin University & University of South Carolina, Tianjin, China1
Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, USA1
School of Electronics Engineering, Kyungpook National University, Taegu, South Korea1
Department of Electrical & Electronics Engineering, Kalasalingam University, Krishnankoil, India1
Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA1
Pudong Branch, China Mobile Group Shanghai, Company Limited, Shanghai, China1
School of Mathematics and Statistics, The University of Western Australia, Nedlands, WA, Australia1
Department of Computer Science and Engineering, Qatar University, Doha, Qatar1
School of Computer Engineering, Hanshin University, Osan, Republic of Korea1
Department of Electrical and Computer Engineering, Center for Automation Research, University of Maryland, College Park, USA1
France Telecom - Orange Labs, Lannion, France1
National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China1
School of Computer Science, China University of Geosciences, Wuhan, China1
College of Computer Science and Technology of Huaqiao University, Xiamen, China1
Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong1
University of Windsor, Canada1
CEA (iRSTV/BGE), INSERM (U1038), CNRS (FR3425), Université Grenoble-Alpes, Grenoble, France1
NLPR, Institute of Automation, Chinese Academy of Science, Beijing, People’s Republic of China1
Costel, Université de Rennes 2, Rennes, France1
IRISA, Université de Bretagne Sud, Vannes, France1
Research & Development, British Broadcasting Corporation (BBC), London, UK1
Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia1
Faculty of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China1
Waseda University1
Wide Eyes Technologies1
Department of Electrical and Computer Engineering, University of Illinois at Urbana—Champaign, Champaign, IL, USA1
ThyssenKrupp Elevator Americas1
Tsinghua University, Shenzhen, China1
Center for Signal and Image Processing, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta1
School of Information Engineering, Jiangxi Manufacturing Technology College, Nanchang, China1
Department of Computer Science and Technology, Nanjing Forestry University and Shandong University, Jinan, China1
Department of Language Studies, Nanjing Forestry University, Nanjing, China1
Department of Computer Science and Technology, Nanjing Forestry University, Nanjing, China1
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China1
Dept. of Autom. Test & Control, Harbin Inst. of Technol., China1
Department of Computer Science and Engineering, Frederick University, Nicosia, Cyprus1
Department of Digital Systems, University of Piraeus, Piraeus, Greece1
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense M, Denmark1
Department of Information and Control, B-DAT Laboratory, Nanjing University of Information Science and Technology, Nanjing, China1
Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong1
University of Electronic Science and Technology of China, China1
University of Maryland, College Park, USA1
Institute of Engineering and Management, Kolkata, India1
Inst. de Telecomunicações, Fac. de Ciências da Universidade do Porto, Porto, Portugal1
Peking University, Beijing1
Korea Electronics Technology Institute, Bundang-gu, Seongnam-si, Republic of Korea1
National Taiwan University, Taiwan1
Siren Solutions, Dublin, Ireland1
Paradigma Digital, Madrid, Spain1
School of Mathematical Sciences, University of Science and Technology of China, Hefei, China1
School of Computer Science and Technology, University of Science and Technology of China, Hefei, China1
Australian National University, Australia1
University of Canberra, Australia1
Institute of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC1
Department of Computer Science, Digital Image Processing Laboratory, Islamia College Peshawar, Peshawar, Pakistan1
Department of Computer Science and Engineering, Michigan State University, East Lansing, USA1
Research Institute for Future Media Computing, School of Computer Science & Software Engineering, Shenzhen University, Shenzhen, China1
Computer Vision Institute, School of Computer Science & Software Engineering, Shenzhen University, Shenzhen, China1
Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada1
Faculty of Applied Science, University of British Columbia, Vancouver, British Columbia, Canada1
Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan1
Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan1
Rutgers University, 94 Brett Road, Piscataway, NJ 08854, United States of America1
Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190 Beijing, China1
Volvo Car Corporation, SE-405 31 Göteborg, Sweden1
Smart Eye AB, SE-413 27 Göteborg, Sweden1
Technische Universität München / Imperial College London, Munich / London, England UK1
University of Geneva, Geneva, Switzerland1
Department of Mathematics and Informatics, Ecole Centrale de Lyon, Lyon, 69134, France1
Department of Computer Science & Engineering, Jamia Hamdard University, New Delhi, India1
Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China1
Toyota Research Institute - North America1
Department of Computer Science & Engineering, Arizona State University, Tempe, USA1
Department of Computer Science & Engineering, University of Minnesota-Twin Cities, Minneapolis, USA1
Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary1
School of Information Science and Technology, Northwest University, Xi’an, China1
Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands1
Griffith University1
School of Computer, Beijing University of Posts and Telecommunications, Beijing, China1
School of Information, Singapore Management University, Singapore1
Agency for Science, Technology and Research, Singapore1
School of Software, Beijing Institute of Technology, Beijing, China1
Department of Software Technology and Enterprize, Korea University, Seoul, Republic of Korea1
University of St. Andrews, UK1
University of Illinois at Urbana-Champaign, Champaign, IL, USA1
University of Tunis El Manar, Tunis, Tunisia1
Department of Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany1
Department of Computer Science, Purdue University, West Lafayette, USA1
College of Information and Control Engineering, China University of Petroleum, Qingdao, China1
Griffith School of Engineering, Queensland Research Laboratory, National ICT Australia, Griffith University, Nathan, Australia1
Queensland Research Laboratory, National ICT Australia and Institute for Integrated and Intelligent Systems, Griffith University, Nathan, Australia1
Intel Labs Europe, Pipers Way, Swindon1
PRaDA, Deakin University, Australia1
Department of Computer Systems, Universidad Politécnica de Madrid, Madrid, Spain1
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA1
Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania1
Department of Psychology, University of Illinois at Chicago, Chicago, IL1
Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA1
Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia1
Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China1
Chongqing University, China1
University College London, UK, Dept. of Electronic and Electrical Engineering1
Institute of Semiconductors, Chinese Academy of Sciences&University of Chinese Academy of Sciences, Beijing, China1
School of Mathematical Sciences, DUT-RU International School of Information and Software Engineering, Dalian University of Technology, Dalian, China1
Computing Department, Imperial College London, UK. M.Pantic@imperial.ic.ac.uk1
Computing Department, Imperial College London, UK. M.F.Valstar@imperial.ic.ac.uk1
Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni, Viale delle Scienze, 90128 Palermo, ITALY1
School of Computer Science and Technology, Nanjing University of Science and Technology of China, Nanjing, People’s Republic of China1
University of Rochester, New York, USA1
Microsoft Research, Beijing, People’s Republic of China1
University of Science and Technology of China, Hefei, People’s Republic of China1
Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China1
NTT Network Innovation Laboratories, Nippon Telegraph and Telephone Corp.1
Faculty of Engineering, Tunku Abdul Rahman University College, Setapak, Malaysia1
Faculty of Computing and Information Technology, Setapak, Malaysia1
Dep. Inteligencia Artificial, U. Politécnica Madrid, Spain1
Dep. Ciencias de la Computación, U. Rey Juan Carlos, Spain1
Dep. Comp. Sci. and Engr., Fudan University, China1
Computer Science Department, University of Maryland, College Park, MD, USA1
Cernium Corporation, Reston, VA, USA1
Computer Science Department, University of California, Los Angeles, CA, USA1
Department of Computer and Information Science, Temple University, Philadelphia, PA, USA1
Department of Electrical and Computer Engineering and the College of Computer and Information Science, Northeastern University, Boston, MA1
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA1
School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China1
North Acton, London1
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Kanagawa, Japan1
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan1
Department of ECE, University of Dayton, Dayton, OH, USA1
ODU Vision Lab, Old Dominion University, Norfolk, VA, USA1
EURECOM, Route des Chappes, France1
INRIA, Sophia Antipolis, France1
School of Mathematical Sciences, Dalian University of Technology, Dalian, China1
School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, China1
University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, SI-2000, Slovenia1
RMIT University, Vietnam1
Tolendata Singapore R&D Centre Private Limited, Singapore1
College of Computer Science & Software Engineering, Shenzhen University, China 5180601
University of Tours, France1
Concordia Institute for Information Systems Engineering (CIISE), 1515 St. Catherine West, Montreal, Quebec H3G 2W1, CANADA1
Dept. of Computer Science and Software Engineering, Concordia University, 1515 St. Catherine West, Montreal, Quebec H3G 2W1, CANADA1
Department of Computer Science and Engineering, University of Notre Dame1
Department of Computer Science, Pontificia Universidad Catolica de Chile1
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology at Sydney, Sydney, NSW, Australia1
School of Engineering, The University of Edinburgh, Edinburgh, U.K.1
Changzhou University, Changzhou, China1
High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China1
Medical Psychology, Ulm University, Ulm, Germany1
Department of Information Management, Hwa Hsia University of Technology, New Taipei City, Taiwan1
Department of Electronic Engineering, National Ilan University, Yilan City, Taiwan1
School of Computer Science, Guangzhou University, Guangzhou, China1
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China1
College of Information and Electrical Engineering, Ludong University, Yantai, China1
College of Computing, Georgia Tech1
Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University, Korea1
Taxes Instruments, Dallas, TX, United States1
Wakayama University1
Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 6397981
Computer Science College, Xi’an Polytechnic University, Xi’an, China1
Visual Analysis of People Laboratory, Aalborg University, Aalborg, Denmark1
Computer Vision Team, ARS Traffic & Transport Technology, Trivandrum, India1
Computer Science Dept., Columbia University, USA1
Computer Science Dept., SUNY Stony Brook, USA1
Rensselaer Polytechnic Institute1
School of Mathematical and Physical Sciences at the University of Newcastle, Callaghan, NSW 2308, Australia1
Department of Electronics and Communication Engineering, JNTU College of Engineering, Hyderabad, India1
Department of Physics, JNTU College of Engineering, Kakinada, India1
Department of Computer Science and Engineering, JNTU College of Engineering, Kakinada, India1
School of Computer Science and Technology, Xiamen University, Xiamen, China1
Collaborative Innovation Center for Geospatial Information Technology, Wuhan, China1
Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 6, Czech Republic1
Department of Telecommunications and Information Processing, Image Processing and Interpretation, UGent/iMinds, Ghent, Belgium1
Department of Electrical Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, KA 560-012, India1
Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada1
School of Software, Shenyang University of Technology, Shenyang, China1
Department of Internal Medicine, Chung-Ang University, Seoul, South Korea1
Department of Data Science, Dankook University, Yongin, South Korea1
Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China1
School of Engineering of UABC, University of Baja California, Tijuana, Mexico1
University of Hawaii at Hilo, HI, USA1
Yuncheng University, Shanxi Province, China1
Department of Electrical and Electronic Engineering, Nazarbayev University, Astana, Kazakhstan1
Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, Nanjing, China1
State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China1
Rochester Institute of Technology, Rochester, NY, USA1
University of Electronic Science and Technology of China, Chendu, China1
Inception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates1
School of Electronics and Information Engineering, Beihang University, Beijing, China1
College of Computer Science, Guangdong University of Petrochemical Technology, Maoming, China1
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, 121801
Department of Computer Engineering, Istanbul University, Istanbul, Turkey1
Department of Computer Engineering, Bahçeşehir University, Istanbul, Turkey1
Sichuan University West China Hospital of Stomatology, Chengdu, China1
Center for Future Media, University of Electronic Science and Technology of China, Chengdu, China1
School of Software Engineering, Chengdu University of Information Technology, Chengdu, China1
School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China1
National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA1
Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China1
Col. of Comp. Sci. and Comm. Eng., Jiangsu University, Zhenjiang, China1
School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo, China1
Center for Automation Research, University of Maryland, College Park, MD 20742, USA1
Delft University of Technology, Delft, The Netherlands1
Department of Computer Engineering, Bogaziçi University, Bebek, Turkey1
Department of Electrical and Electronic Engineering, Auckland University of Technology , Auckland, New Zealand1
Department of Computer Engineering, Qazvin Islamic Azad University , Qazvin, Iran1
Shanghai University of Finance and Economics, Shanghai, China1
School of Mathematics, Jilin University, China1
Department of Computer Science, Memorial University of Newfoundland, Canada1
Graduate School of Engineering, Nagasaki University, Nagasaki, Japan1
Institute of Management and Information Technologies, Chiba University, Chiba, Japan1
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan1
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA1
Dept. of Computer Science, Purdue University, West Lafayette, IN, 47907, USA1
Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea1
Griffith University, Brisbane1
Griffith University, Brisbane and University of the South Pacific, Fiji1
Vision Semantics Ltd1
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong1
Department of Film and Digital Media, Seokyeong University, Seoul, Republic of Korea1
Department of MediaSoftware, Sungkyul University, Anyang-si, Republic of Korea1
Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea1
Pusan National University, Busan, Korea1
Graduate School at Shenzhen, Tsinghua University, Shenzhen, China1
School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland1
Department of Computer Science, Auckland University of Technology, Auckland, New Zealand1
L3S Research Center, Leibniz Universität Hannover, Hannover, Germany1
German National Library of Science and Technology (TIB), Hannover, Germany1
taglicht media Film- & Fernsehproduktion GmbH, Köln, Germany1
Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany1
The Hong Kong Polytechnic University, Chu Hai College of Higher Education, Hong Kong, China1
School of Mathematics and Computational Science, Anqing Normal University, Anqing, People’s Republic of China1
School of IoT Engineering, Jiangnan University, Wuxi, People’s Republic of China1
Concordia Institute for Information Systems Engineering Concordia University, Montreal, Canada1
IKERBASQUE, Basque Foundation for Science, Bilbao, Spain1
University of the Basque Country UPV/EHU, San Sebastian, Spain1
Computer Vision Center, Edifici “O”, Campus UAB, Bellaterra, Spain1
Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Japan1
Xiamen University of Technology, Fujian, China1
Université des Antilles et de la Guyane (UAG), France1
Institut des Systèmes intelligents et de Robotique, UPMC, France1
School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China1
College of Computer Science and Information Technology, Northeast Normal University, Changchun, China1
College of Information Science and Engineering, Northeastern University, Shenyang, China1
Dept. of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Iran1
Department of Information Processing Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology Yokohama 226-8503, Japan1
Research Groups on Intelligent Machines, University of Sfax, Sfax, Tunisia1
School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia1
School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, QLD, Australia1
Departament d’Informática, Universitat de Valéncia, Av. de la Universitat s/n, 46100-Burjassot, Spain1
School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang City 212003, China1
Microsoft, Bellevue, WA, USA1
M5001, Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong1
Department of Computer Science, University of Texas, San Antonio, TX, USA1
School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA1
Imperial College London, London, U.K.1
University of East Anglia, Norwich, United Kingdom1
University of Sheffield, Sheffield, United Kingdom1
Insititute of Automation, Chinese Academy of Sciences (CAS), Beijing, China1
Alcohol Countermeasure Systems Corporation, Toronto, ON, Canada1
Center for Ubiquitous Computing, University of Oulu, Oulu, Finland1
School of Computing and Information Systems, University of Melbourne, Melbourne, Australia1
Center for Machine Vision and Signal Analysis, University of Oulu, Oulu, Finland1
Institute of Information and System Sciences, Faculty of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China1
Research Division, Educational Testing Service, Princeton, NJ, USA1
Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China1
Division of Biomedical Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR1
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR1
University of York, York, United Kingdom1
Kumamoto University, Kumamoto, Japan1
Sapienza Università di Roma, Roma, Italy1
Center for Research on Intelligent Perception and Computing (CRIPAC), NLPR, CASIA, Beijing, China1
National Taichung University of science and Technology, Taichung1
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian, University, Xi'an 710071, China1
University of Technology Sydney, Sydney, NSW, Australia1
SAP Innovation Center Network, Singapore1
Agency for Science, Technology and Research, Institute of High Performance Computing, Singapore1
Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. venu@cedar.buffalo.edu1
Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. zhizhang@cedar.buffalo.edu1
CUBRC, Buffalo, NY, USA. slowe@cubrc.org1
Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. tulyakov@cedar.buffalo.edu1
Computational Biomedicine Lab, Department of Computer Science, University of Houston, Houston, USA1
School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China1
Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK1
Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, China1
College of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China1
National ASIC Design and Engineering Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China1
LAMIA, EA 4540, University of French West Indies & Guyana1
Institut Telecom - Telecom ParisTech CNRS/LTCI, Paris1
Peking University & Shanghai Jaio Tong University, Beijing, China1
School of Information Technology, Madurai Kamarai University, Madurai, India1
Computer Science and Engineering, Sanjivani College of Engineering, Kopargaon, India1
Computer Science and Engineering, St.Peter’s University, Chennai, India1
Computer Science and Engineering, Panimalar Engineering College, Chennai, India1
Department of Computer Science, IT-Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal1
ITI Department Telecom Bretagne, Brest, France1
Adobe Systems Incorporated, San Jose, CA, 951101
University of Technology at Sydney, Sydney, NSW, Australia1
College of Engineeing & Informatics, National University of Ireland Galway, Galway, Ireland1
Department of Computer Engineering, Bogazici University, Bebek, Istanbul, Turkey1
Department of Computer Engineering, Istanbul University, Avcilar, Istanbul, Turkey1
Department of Computer Engineering, Bahcesehir University, Besiktas, Istanbul, Turkey1
School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China1
Faculty of Electronics and Telecommunications “POLITEHNICA” University from Timişoara Timişoara, România1
College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China1
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore1
Division of Computer Science and Engineering, Center for Advanced Image and Information Technology, Chonbuk National University, Jeonju, Republic of Korea1
Division of Computer Science and Engineering, Chonbuk National University, Jeonju, Republic of Korea1
University of Lincoln, U. K.1
School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China1
Department of Electrical Engineering, Chang Gung University, Taipei, Taiwan1
School of Information Technology, Monash University Malaysia, Bandar Sunway, Malaysia1
College of Engineering, Huaqiao University, Fujian, China1
Department of Electrical Engineering and Information Technology, TU Darmstadt, D-64283, Germany1
Institute of Neural Information Processing, University of Ulm, Ulm, Germany1
Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany1
Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran1
University of Technology Sydney, Broadway, Australia1
School of Computer Science and Software Engineering, University of Wollongong, Wollongong, Australia1
Defence Science and Technology Organisation (DSTO), Edinburgh, Australia1
Reallusion Corporation1
National Taiwan Normal University1
University College London1
Keio University, Tokyo, Japan1
The University of Tokyo, Bunkyo, Tokyo, Japan1
Keio University, Yokohama City, Kanagawa, Japan1
Keio University, Yokohama City, Japan1
National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, Japan1
Research Center for Institute of Information Science, Academia Sinica, Taiwan1
Department of Computer Science and Information Engineering, National Taiwan University1
Department of Statistics, Carnegie Mellon University, Pittsburgh, USA1
Computer Application Research Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China1
Dept. of EE, Univ. at Buffalo, SUNY, USA1
Department of Computer Science, Minjiang University, Fuzhou, People’s Republic of China1
Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, People’s Republic of China1
Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., Tehran, Iran1
Istanbul Technical University, Computer Engineering Department, 34469, Turkey1
Department of Electronic Engineering, City University of Hong Kong, Hong Kong1
School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Qld, Australia1
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu1
University of Electronic Science and Technology of China, Chengdu1
Institute of High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Naples, Italy1
IBM Research, Singapore1
Center for Applied Mathematics, Tianjin University, Tianjin, China1
Department of Mathematics, School of Science, Tianjin University, Tianjin, China1
Faculty of Applied Mathematics, Shanxi University of Finance and Economics1
\ No newline at end of file diff --git a/scraper/reports/doi_institutions_geocoded.csv b/scraper/reports/doi_institutions_geocoded.csv new file mode 100644 index 00000000..1f7c7591 --- /dev/null +++ b/scraper/reports/doi_institutions_geocoded.csv @@ -0,0 +1,1443 @@ +61831364ddc8db869618f1c7f0ad35ab2ab6bcf7,Heterogeneous feature code for expression recognition,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +61a3c45c9f802f9d5fa8d94fee811e203bac6487,A Customized Sparse Representation Model With Mixed Norm for Undersampled Face Recognition,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +6159908dec4bc2c1102f416f8a52a31bf3e666a4,Local gradient increasing pattern for facial expression recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +610779e90b644cc18696d7ac7820d3e0598e24d0,Robust Representation and Recognition of Facial Emotions Using Extreme Sparse Learning,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +61e2044184d86d0f13e50ecaa3da6a4913088c76,Beyond Frame-level CNN: Saliency-Aware 3-D CNN With LSTM for Video Action Recognition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +61329bc767152f01aa502989abc854b53047e52c,A Two-Stage Approach to Robust Tensor Decomposition,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +61b22b1016bf13aca8d2e57c4e5e004d423f4865,Sliced Inverse Regression With Adaptive Spectral Sparsity for Dimension Reduction,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +0d7fcdb99dc0d65b510f2b0b09d3d3cfed390261,Robust face recognition with class dependent factor analysis,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +0d8cec1b3f9b6e25d9d31eeb54d8894a1f2ef84f,Deep Coupled ResNet for Low-Resolution Face Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +0de1450369cb57e77ef61cd334c3192226e2b4c2,"In defense of low-level structural features and SVMs for facial attribute classification: Application to detection of eye state, Mouth State, and eyeglasses in the wild",Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +95f1790da3d0a4a5310a050512ce355b3c5aac86,Towards temporal adaptive representation for video action recognition,Canon,"Innovation Center, Canon USA Inc., San Jose, California","2680 Zanker Rd #100, San Jose, CA 95134, USA",37.38976400,-121.92459300,company, +95b9df34bcf4ae04beea55c11cf0cc4095aa38dc,A One Bit Facial Asymmetry Code (FAC) in Fourier Domain for Human Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +95289007f2f336e6636cf8f920225b8d47c6e94f,Automatic Training Image Acquisition and Effective Feature Selection From Community-Contributed Photos for Facial Attribute Detection,"Academia Sinica, Taiwan","Research Center for Institute of Information Science, Academia Sinica, Taiwan","115, Taiwan, Taipei City, Nangang District, 研究院路二段128號",25.04117270,121.61465180,edu, +95023e3505263fac60b1759975f33090275768f3,Facial Expression Recognition in Daily Life by Embedded Photo Reflective Sensors on Smart Eyewear,Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.54169690,139.63471840,edu, +952138ae6534fad573dca0e6b221cdf042a36412,Flexible Template and Model Matching Using Intensity,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +9590b09c34fffda08c8f54faffa379e478f84b04,Efficient Dual Approach to Distance Metric Learning,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +95d858b39227edeaf75b7fad71f3dc081e415d16,Minimum-risk temporal alignment of videos,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +5957936195c10521dadc9b90ca9b159eb1fc4871,LBP-ferns-based feature extraction for robust facial recognition,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.59014110,127.03623180,edu, +59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,Robust feature encoding for age-invariant face recognition,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +592370b4c7b58a2a141e507f3a2cc5bbd247a62e,Teaching emotion expressions to a human companion robot using deep neural architectures,Universität Hamburg,Universität Hamburg,"Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland",53.59948200,9.93353436,edu, +59b83666c1031c3f509f063b9963c7ad9781ca23,Hierarchical Committee of Deep CNNs with Exponentially-Weighted Decision Fusion for Static Facial Expression Recognition,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +9255d3b2bfee4aaae349f68e67c76a077d2d07ad,Ocular Recognition for Blinking Eyes,Quanzhou Normal University,Quanzhou Normal University,"泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国",24.87147415,118.66738687,edu, +92de9a54515f4ac8cc8e4e6b0dfab20e5e6bb09d,Quality scores for deep regression systems,FDNA Israel,"FDNA inc., Herzliya, Israel","Sapir St 5, Herzliya, Israel",32.16388240,34.81158620,company,"5 Sapir St., Ampa House, Herzliya, Israel 4685209" +0c378c8dcf707145e1e840a9951519d4176a301f,Dynamic detection rate-based bit allocation for biometric discretization,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,Biometric template update under facial aging,Bahçeşehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.97697953,edu, +0c6a18b0cee01038eb1f9373c369835b236373ae,Learning warps based similarity for pose-unconstrained face recognition,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.13501330,edu, +6689aee6c9599c1af4c607ea5385ac0c2cf0c4b3,Fast and compact Kronecker-structured dictionary learning for classification and representation,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +66ec085c362f698b40d6e0e7b10629462280c062,Illumination compensation and normalization using logarithm and discrete cosine transform,"Nanyang Technological University, Singapore","Comput. Control Lab, Nanyang Technol. Univ., Singapore","50 Nanyang Avenue, Block N4 #02a-32, Singapore 639798",1.34619520,103.68154990,edu, +661c78a0e2b63cbdb9c20dcf89854ba029b6bc87,Structure-aware multi-object discovery for weakly supervised tracking,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +66f4d7c381bd1798703977de2e38b696c6641b77,Recognizing fleeting facial expressions with different viewpoints,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +6688b2b1c1162bc00047075005ec5c7fca7219fd,Face expression recognition: A brief overview of the last decade,West University of Timișoara,"Faculty of Electronics and Telecommunications “POLITEHNICA” University from Timişoara Timişoara, România","Bulevardul Vasile Pârvan, Timișoara, Romania",45.74728570,21.22630020,edu, +660c99ac408b535bb0468ab3708d0d1d5db30180,An improved redundant dictionary based on sparse representation for face recognition,China University of Mining and Technology,China University of Mining and Technology,"China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.21525380,117.13985410,edu, +3e01f2fefe219bfeb112f1d82e76ebba4c0e2aac,Transfer learning via attributes for improved on-the-fly classification,"Technicolor, France","Technicolor, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.83153300,2.28066283,edu, +3e0035b447d0d4e11ceda45936c898256f321382,Combining shape regression model and isophotes curvature information for eye center localization,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +3e1190655cc7c1159944d88bdbe591b53f48d761,Ensemble canonical correlation analysis,Bogazici University,Bogazici University,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.08688410,29.04413167,edu, +3e452ca67e17e4173ec8dfbd4a2b803ad2ee5a48,A privacy framework for the Internet of Things,National University of Ireland Galway,National University of Ireland Galway,"National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland",53.27639715,-9.05829961,edu, +3e0377af0087b9b836bf6d95bc1c7085dfde4897,Heterogeneous Semantic Level Features Fusion for Action Recognition,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +3e7070323bca6106f19bea4c97ef67bd6249cb5d,Discovery of facial motions using deep machine perception,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +3e03d19b950edadc74ca047dec86227282eccf71,Facial Expression Recognition Using Salient Features and Convolutional Neural Network,University of Oslo,University of Oslo,"UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge",59.93891665,10.72170765,edu, +3e2b9ffeb708b4362ebfad95fa7bb0101db1579d,"A Spontaneous Micro-expression Database: Inducement, collection and baseline",University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +503b6a490c2b24b9d2aaf642a0fdaf797a8cdb99,Patch-Based Principal Covariance Discriminative Learning for Image Set Classification,Guangzhou University,Guangzhou University,"广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04436505,113.36668458,edu, +504d2675da7a56a36386568ee668938df6d82bbe,Regularized Deep Belief Network for Image Attribute Detection,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +502d30c5eac92c7db587d85d080343fbd9bc469e,Domain Specific Learning for Newborn Face Recognition,"Indraprastha Institute of Information Technology Delhi, India","Indraprastha Institute of Information Technology Delhi, Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +50333790dd98c052dfafe1f9bf7bf8b4fc9530ba,Sparse concept discriminant matrix factorization for image representation,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +5039834df68600a24e7e8eefb6ba44a5124e67fc,Modular hierarchical feature learning with deep neural networks for face verification,Beijing Institute of Science and Technology Information,Beijing Institute of Science and Technology Information,"China, Beijing, Haidian, 清河四拔子",40.04332040,116.34181090,edu, +68c5b4d9ce2a0c75ba515870923a4bd1b7d8f9b5,Crowded scene understanding algorithm based on Two-Stream Residual Network,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +68eb6e0e3660009e8a046bff15cef6fe87d46477,Multi-dropout regression for wide-angle landmark localization,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +68e6cfb0d7423d3fae579919046639c8e2d04ad7,Multi-task ConvNet for blind face inpainting with application to face verification,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +68f19f06f49aa98b676fc6e315b25e23a1efb1f0,Robust pose normalization for face recognition under varying views,"Samsung SAIT, Korea","Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea","130 Samseong-ro, Maetan 3(sam)-dong, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea",37.25202260,127.05550190,company, +68c1090f912b69b76437644dd16922909dd40d60,Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting,University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300881,edu, +68021c333559ab95ca10e0dbbcc8a4840c31e157,A framework for joint facial expression recognition and point localization,Otto-von-Guericke-University Magdeburg,"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University Magdeburg, D-39016, P.O. Box 4210 Germany","Universitätspl. 2, 39106 Magdeburg, Germany",52.14020530,11.64419910,edu, +57eeaceb14a01a2560d0b90d38205e512dcca691,Recurrent Spatial-Temporal Attention Network for Action Recognition in Videos,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +5763b09ebca9a756b4adebf74d6d7de27e80e298,Picture-specific cohort score normalization for face pair matching,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +572dbaee6648eefa4c9de9b42551204b985ff863,The more the merrier: Analysing the affect of a group of people in images,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +57ca530e9acb63487e8591cb6efb89473aa1e5b4,Multilayer Surface Albedo for Face Recognition With Reference Images in Bad Lighting Conditions,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +578117ff493d691166fefc52fd61bad70d8752a9,Dealing with occlusions in face recognition by region-based fusion,Universidad Autonoma de Madrid,Universidad Autonoma de Madrid,"Facultad de Medicina de la Universidad Autónoma de Madrid, Calle de Arturo Duperier, Fuencarral, Fuencarral-El Pardo, Madrid, Área metropolitana de Madrid y Corredor del Henares, Comunidad de Madrid, 28001, España",40.48256135,-3.69060790,edu, +5721cd4b898f0e7df8de1e0215f630af94656be9,Retouch transfer for 3D printed face replica with automatic alignment,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +5779e3e439c90d43648db107e848aeb954d3e347,Graph Regularized Restricted Boltzmann Machine,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +5748652924084b7b0220cddcd28f6b2222004359,Large-Cone Nonnegative Matrix Factorization,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +3b350afd8b82487aa97097170c269a25daa0c82d,Sparse Simultaneous Recurrent Deep Learning for Robust Facial Expression Recognition,Old Dominion University,Old Dominion University,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.88568200,-76.30768579,edu, +3ba74755c530347f14ec8261996dd9eae896e383,A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on Face Detector,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +3b8c830b200f1df8ef705de37cbfe83945a3d307,Annotated face model-based alignment: a robust landmark-free pose estimation approach for 3D model registration,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +3bf8e4d89b9e6d004de6ea52e3e9d68f6015f94b,"Binary ""proximity patches motion"" descriptor for action recognition in videos",University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac,Terrain classification of hyperspectral remote sensing images based on kernel maximum margin criterion,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +3bf579baf0903ee4d4180a29739bf05cbe8f4a74,Facial Expression Biometrics Using Tracker Displacement Features,University at Buffalo,State University of New York at Buffalo,"Buffalo, NY 14260, USA",43.00080930,-78.78896970,edu, +3bfa630a6dc6d1ca98e7b43c90dd9e8b98e361d6,Deep CCA based super vector for action recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +3bd10f7603c4f5a4737c5613722124787d0dd818,An Efficient Joint Formulation for Bayesian Face Verification,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +3b75681f0162752865d85befd8b15e7d954ebfe6,Evaluation of a face recognition system performance's variation on a citizen passports database,"Universidad de la República, Uruguay","Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay","Ave Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay",-34.91817060,-56.16657250,edu, +3b64b8be33887e77e6def4c385985e43e2c15eea,Understanding Deep Representations Learned in Modeling Users Likes,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,Smart Facial Age Estimation with Stacked Deep Network Fusion,National Chung Hsing University,National Chung Hsing University,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.12084345,120.67571165,edu, +6f22324fab61fbc5df1aac2c0c9c497e0a7db608,Volume structured ordinal features with background similarity measure for video face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +6f16f4bd01aeefdd03d6783beacb7de118f5af8a,A multi-label classification approach for Facial Expression Recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +6fdf2f4f7ae589af6016305a17d460617d9ef345,Robust facial landmark localization using multi partial features,Kumamoto University,Kumamoto University,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.81641780,130.72703969,edu, +6f48e5e258da11e6ba45eeabe65a5698f17e58ef,Online whole-word and stroke-based modeling for hand-written letter recognition in in-car environments,Bosch Research and Technology Center,"Robert BOSCH Research and Technology Center, Palo Alto, CA 94304, USA","4009 Miranda Ave, Palo Alto, CA 94304, USA",37.40048670,-122.13643830,company, +0387b32d0ebd034dc778972367e7d4194223785d,Emotion recognition with boosted tree classifiers,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +03333e7ec198208c13627066bc76b0367f5e270f,Action unit selective feature maps in deep networks for facial expression recognition,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +03babadaaa7e71d4b65203e27e8957db649155c6,Distance Metric Learning via Iterated Support Vector Machines,Xi’an Jiaotong University,"Institute of Information and System Sciences, Faculty of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China","28 Xianning W Rd, JiaoDa ShangYe JieQu, Beilin Qu, Xian Shi, Shaanxi Sheng, China",34.25080300,108.98369300,edu, +035c8632c1ffbeb75efe16a4ec50c91e20e6e189,Kinship verification from facial images and videos: human versus machine,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +034b3f3bac663fb814336a69a9fd3514ca0082b9,Unifying holistic and Parts-Based Deformable Model fitting,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +0343f9401b98de36be957a30209fef45dd684270,On video based face recognition through adaptive sparse dictionary,Alcohol Countermeasure Systems Corporation,"Alcohol Countermeasure Systems Corporation, Toronto, ON, Canada","60 International Blvd, Etobicoke, ON M9W 6J2, Canada",43.67813310,-79.58748570,company, +9b9f6e5eb6d7fa50300d67502e8fda1006594b84,Learning to Recognise Unseen Classes by A Few Similes,University of East Anglia,University of East Anglia,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.62215710,1.24091360,edu, +9b1022a01ca4ecf8c1fa99b1b39a93924de2fcfb,IPST: Incremental Pictorial Structures for Model-Free Tracking of Deformable Objects,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +9bd3cafa16a411815f8f87ed3eb3cafefc25e5a3,Landmark manifold: Revisiting the Riemannian manifold approach for facial emotion recognition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +9b6d9f0923e1d42c86a1154897b1a9bd7ba6716c,Mining Latent Attributes From Click-Through Logs for Image Recognition,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +9b4d2cd2e5edbf5c8efddbdcce1db9a02a853534,Exponential Discriminant Locality Preserving Projection for face recognition,Jiangsu University of Science and Technology,Jiangsu University of Science and Technology,"江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.19805500,119.46326791,edu, +9e8382aa1de8f2012fd013d3b39838c6dad8fb4d,Learning Object-Centric Transformation for Video Prediction,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +9efdb73c6833df57732b727c6aeac510cadb53fe,Face image generation system using attribute information with DCGANs,Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.54169690,139.63471840,edu, +9e7646b7e9e89be525cda1385cc1351cc28a896e,Sensor-Assisted Multi-View Face Recognition System on Smart Glass,University of New South Wales,University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.23124025,edu, +9e2ab407ff36f3b793d78d9118ea25622f4b7434,Local generic representation for patch uLBP-based face recognition with single training sample per subject,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +9eaa967d19fc66010b7ade7d94eaf7971a1957f3,Segmentation-based illumination normalization for face detection,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.51675380,139.48342251,edu, +9eb13f8e8d948146bfbae1260e505ba209c7fdc1,Demo: Robust face recognition via sparse representation,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +9ef06cc958af2274afd193a1dca705c08234bcd3,Facial expression recognition using statistical subspace,Ho Chi Minh City University of Science,"Faculty of Information Technology, Ho Chi Minh City University of Science, VNU-HCM, District 5, Ho Chi Minh City, Vietnam","227 Đường Nguyễn Văn Cừ, Phường 4, Quận 5, Hồ Chí Minh, Vietnam",10.76252160,106.68232620,edu, +047d3cb2a6a9628b28cac077b97d95b04ca9044c,A robust composite metric for head pose tracking using an accurate face model,University of the French West Indies,"Université des Antilles et de la Guyane (UAG), France","Fouillole, Pointe-à-Pitre 97157, Guadeloupe",16.22427240,-61.52893250,edu,University of the French West Indies +041b51a81a977b5c64682c55414ad8d165c1f2ce,Voice authentication embedded solution for secured access control,AGH University of Science and Technology,AGH University of Science and Technology,"AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP",50.06570330,19.91895867,edu, +04c07ecaf5e962ac847059ece3ae7b6962b4e5c4,Multi-view common space learning for emotion recognition in the wild,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +047ce307ad0c871bc2c9a5c1e4649cefae2ba50d,Real-time emotion identification for socially intelligent robots,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +6a38e4bb35673a73f041e34d3f2db7067482a9b5,Emotion Recognition in the Wild with Feature Fusion and Multiple Kernel Learning,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +6adecb82edbf84a0097ff623428f4f1936e31de0,Client-specific A-stack model for adult face verification across aging,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +6a5d7d20a8c4993d56bcf702c772aa3f95f99450,Face recognition with temporal invariance: A 3D aging model,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +6aa0a47f4b986870370c622be51f00f3a1b9d364,Coupled Kernel Embedding for Low-Resolution Face Image Recognition,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +3266fbaaa317a796d0934b9a3f3bb7c64992ac7d,Rotational Linear Discriminant Analysis Technique for Dimensionality Reduction,Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.55339750,153.05336234,edu, +32f62da99ec9f58dd93e3be667612abcf00df16a,Octagonal prism LBP representation for face recognition,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +32b76220ed3a76310e3be72dab4e7d2db34aa490,Class specific subspace learning for collaborative representation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +32c5c65db2af9691f8bb749c953c978959329f8f,Recovering intrinsic images from image sequences using total variation models,Jilin University,Jilin University,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.05356500,113.39913285,edu, +328da943e22adef5957c08b6909bda09d931a350,On intelligent surveillance systems and face recognition for mass transport security,"CSIRO, Australia","NICTA, PO Box 6020, St Lucia, QLD 4067, Australia","Research Way, Clayton VIC 3168, Australia",-37.90627370,145.13194490,edu,f.k.a. NICTA +3288e16c62a215254e2ed7c39675482b356c3bef,Facial expression recognition system based on a face statistical model and Support Vector Machines,Politehnica University of Timisoara,Politehnica University of Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.74618900,21.22755075,edu, +329b2781007604652deb72139d14315df3bc2771,Fusing Pointwise and Pairwise Labels for Supporting User-adaptive Image Retrieval,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +32e9c9520cf6acb55dde672b73760442b2f166f5,Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning,"London, United Kingdom","London, United Kingdom","London, Greater London, England, SW1A 2DU, UK",51.50732190,-0.12764740,edu, +3251f40ed1113d592c61d2017e67beca66e678bb,Improving Face Pose Estimation Using Long-Term Temporal Averaging for Stochastic Optimization,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +356a144d2aa5cc5e74d178dae3963003871aa8a1,Learning Relative Aesthetic Quality with a Pairwise Approach,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +359edbaa9cf56857dd5c7c94aaef77003ba8b860,Human Behavior Understanding,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +35d90beea6b4dca8d949aae93f86cf53da72971f,Face tracking in low resolution videos under illumination variations,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +3598d10d7d4f2b543afa8bcf6b2c34a3696ef155,Fusion of probabilistic collaborative and sparse representation for robust image classification,Jiangsu University,Jiangsu University,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.50968362,edu, +35d272877b178aa97c678e3fcbb619ff512af4c2,A multi-scale fusion convolutional neural network for face detection,Chongqing University of Posts and Telecommunications,Chongqing University of Posts and Telecommunications,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.53570460,106.60482474,edu, +35d42f4e7a1d898bc8e2d052c38e1106f3e80188,Human and algorithm performance on the PaSC face Recognition Challenge,University of Texas at Dallas,University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.98207990,-96.75662780,edu, +69a9cf9bc8e585782824666fa3fb5ce5cf07cef2,Captioning Videos Using Large-Scale Image Corpus,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +69ba86f7aac7b7be0ac41d990f5cd38400158f96,Discriminative Feature Extraction by a Neural Implementation of Canonical Correlation Analysis,Istanbul University,Istanbul University,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.01324240,28.96376090,edu, +69ad67e204fb3763d4c222a6c3d05d6725b638ed,Capture expression-dependent AU relations for expression recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +69a41c98f6b71764913145dbc2bb4643c9bc4b0a,Learning Match Kernels on Grassmann Manifolds for Action Recognition,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +695426275dee2ec56bc0c0afe1c5b4227a350840,Pooling the Convolutional Layers in Deep ConvNets for Video Action Recognition,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +69b2a7533e38c2c8c9a0891a728abb423ad2c7e7,Manifold based sparse representation for facial understanding in natural images,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +696236fb6f986f6d5565abb01f402d09db68e5fa,Learning adaptive receptive fields for deep image parsing networks,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +3c1b73509cc09200e96ab9cfb28ebfd9d1d6aa9a,Nonoptimality of the Maximum-Weight Dependence Tree in Classification,Nazarbayev University,Nazarbayev University,"Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.09028540,71.39725263,edu, +3cb057a24a8adba6fe964b5d461ba4e4af68af14,Perceptual Annotation: Measuring Human Vision to Improve Computer Vision,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +3c09fb7fe1886072670e0c4dd632d052102a3733,Content-Attention Representation by Factorized Action-Scene Network for Action Recognition,Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.95866520,116.30971281,edu, +3c09d15b3e78f38618b60388ec9402e616fc6f8e,Neural networks recognition rate as index to compare the performance of fuzzy edge detectors,"Tijuana Institute of Technology, Mexico","Division of Graduate Studies of Tijuana Institute Technology, Mexico","San Diego, CA 92161, USA",32.87853490,-117.23583070,edu, +3ce96f03874d42345c0727edc78b6949b20b4a11,Image attribute learning with ontology guided fused lasso,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +3c18fb8ff0f5003fefa8e9dc9bebaf88908d255c,Is block matching an alternative tool to LBP for face recognition?,"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.07063213,edu, +3ce37af3ac0ed2eba08267a3605730b2e0433da5,Hierarchical Representation Learning for Kinship Verification,"Indraprastha Institute of Information Technology Delhi, India","Indraprastha Institute of Information Technology Delhi, Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +3cd22b5b81a0172d608ff14be71b755d1f68c201,Face Recognition Using Composite Features Based on Discriminant Analysis,Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882000,126.96190000,edu, +3cc2a2eaaacbf96c6b9abc1cf91bfefabf6fcfdd,A High-Efficiency and High-Accuracy Fully Automatic Collaborative Face Annotation System for Distributed Online Social Networks,National Taipei University of Technology,National Taipei University of Technology,"NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣",25.04306355,121.53468772,edu, +562f7555e5cb79ce0fe834c4613264d8378dd007,Spatio-temporal texture-based feature extraction for spontaneous facial expression recognition,Monash University Malaysia,Monash University Malaysia,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.06405715,101.60059740,edu, +5642bafa7955b69f05c11230151cd59fcbe43b8e,SN-SVM: a sparse nonparametric support vector machine classifier,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +56fb30b24e7277b47d366ca2c491749eee4d6bb1,Using Bayesian statistics and Gabor Wavelets for recognition of human faces,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +56e25358ebfaf8a8b3c7c33ed007e24f026065d0,V-shaped interval insensitive loss for ordinal classification,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.07642960,14.41802312,edu, +568ced900cbf7437c9e87b60a17e16f0c1e0c442,A novel algorithm for illumination invariant DCT-based face recognition,"IntelliView Technologies, Calgary, Canada","IntelliView Technologies Inc., Calgary, AB, Canada","205, 327 - 41st Ave NE, Calgary, AB T2E 2N4, Canada",51.08994730,-114.05591380,company, +5613cb13ab381c8a8b81181ac786255705691626,DeepEmo: Real-world facial expression analysis via deep learning,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +566563a02dbaebec07429046122426acd7039166,Improving Convolutional Neural Networks Via Compacting Features,"Collaborative Innovation Center for Geospatial Information Technology, Wuhan, China","Collaborative Innovation Center for Geospatial Information Technology, Wuhan, China","Wuhan, Hubei, China",30.59284900,114.30553900,edu, +5632ba72b2652df3b648b2ee698233e76a4eee65,Reconstruction of 3D facial image using a single 2D image,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +56f57786516dcc8ea3c0ffe877c1363bfb9981d2,Online multimodal matrix factorization for human action video indexing,Universidad Nacional de Colombia,"MindLAB Research Group, Universidad Nacional de Colombia, Colombia","Cra 45, Bogotá, Colombia",4.63819380,-74.08404640,edu, +565f7c767e6b150ebda491e04e6b1de759fda2d4,"Fine-grained face verification: FGLFW database, baselines, and human-DCMN partnership",Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +51b42da0706a1260430f27badcf9ee6694768b9b,Shape initialization without ground truth for face alignment,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +51410d6bd9a41eacb105f15dbdaee520e050d646,Facial Expression Recognition based on Support Vector Machine using Gabor Wavelet Filter,Varendra University,Varendra University,"department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ",24.36432310,88.63331050,edu, +51d6a8a61ea9588a795b20353c97efccec73f5db,Simultaneous facial activity tracking and recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +51f626540860ad75b68206025a45466a6d087aa6,Cluster convolutional neural networks for facial age estimation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +518a3ce2a290352afea22027b64bf3950bffc65a,Finding iconic images,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +51dcb36a6c247189be4420562f19feb00c9487f8,Towards robust face recognition from multiple views,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +51b770e6b2af994ffc8793f59b24a9f619033a3a,Human attribute analysis using a top-view camera based on multi-stage classification,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +516f8728ad1d4f9f2701a2b5385f8c8e71b9d356,Edge-Aware Spatial Denoising Filtering Based on a Psychological Model of Stimulus Similarity,Nazarbayev University,Nazarbayev University,"Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.09028540,71.39725263,edu, +5167e16b53283be5587659ea8eaa3b8ef3fddd33,Model-based reconstruction for illumination variation in face images,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +51bb86dc8748088a198b216f7e97616634147388,Face age estimation by using Bisection Search Tree,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +3d4b76fe73ea16400d62d0d776b3f43cc5ecf72b,Complementary Cohort Strategy for Multimodal Face Pair Matching,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532827,edu, +3db6fd6a0e9bb30f2421e84ee5e433683d17d9c1,An automatic region detection and processing approach in genetic programming for binary image classification,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.76846919,edu, +3d89f9b4da3d6fb1fdb33dea7592b5992069a096,Face recognition based on convolution siamese networks,University of the Chinese Academy of Sciences,"The Institute of Optics and Electronics Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Chengdu, China","Chengdu, Sichuan, China",30.57281500,104.06680100,edu, +5810ce61fda464d4de2769bd899e12727bee0382,Smile detection using Pair-wise Distance Vector and Extreme Learning Machine,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +588bed36b3cc9e2f26c39b5d99d6687f36ae1177,Sparsely Encoded Local Descriptor for face recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +58d43e32660446669ff54f29658961fe8bb6cc72,Automatic detection of obstructive sleep apnea using facial images,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +58684a925693a0e3e4bb1dd2ebe604885be034d2,A kernelized discriminant analysis algorithm based on modified generalized singular value decomposition,Texas Instruments,"Taxes Instruments, Dallas, TX, United States","12500 T I Blvd, Dallas, TX 75243, USA",32.91119080,-96.75231540,company, +58483028445bf6b2d1ad6e4b1382939587513fe1,Modelling and correction of multipath interference in time of flight cameras,University of Alcala,"Geintra Research Group, University of Alcala","Plaza de San Diego, s/n, 28801 Alcalá de Henares, Madrid, Spain",40.48247220,-3.36286740,edu, +5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,Regularized metric adaptation for unconstrained face verification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +58217ae5423828ed5e1569bee93d491569d79970,Multi-Modal Human Verification Using Face and Speech,Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882000,126.96190000,edu, +58eb9174211d58af76023ce33ee05769de57236c,Submodular Attribute Selection for Visual Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +58d0c140597aa658345230615fb34e2c750d164c,Continuous Biometric Verification for Non-Repudiation of Remote Services,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +5811944e93a1f3e35ece7a70a43a3de95c69b5ab,Convolutional neural networks for attribute-based active authentication on mobile devices,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +58df849378fbcfb6b1a8ebddfbe4caa450226b9d,Head pose estimation using learned discretization,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +58538cc418bf41197fad4fc4ee2449b2daeb08b1,Face recognition based on the fusion of wavelet packet sub-images and fisher linear discriminant,Guangzhou University,Guangzhou University,"广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04436505,113.36668458,edu, +67e6ddce6fea17bb2b171c949ee224936d36c0d1,Discriminant spectral analysis for facial expression recognition,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +675b1fd2aaebe9c62be6b22b9ac6d278193cc581,2D Cascaded AdaBoost for Eye Localization,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +0b45aeb0aede5e0c19b508ede802bdfec668aefd,Learning facial attributes by crowdsourcing in social media,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +0b3144cdc9d6d5a1498d6178db20d1c49fb64de9,"Eliciting, capturing and tagging spontaneous facialaffect in autism spectrum disorder",MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +0b8839945259ec764ef0fad47471f34db39f40c3,SVM point-based real-time emotion detection,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +0be015e2f9a1d2acebc3afb6e0f6948dd2f9d23d,Using unlabeled data to improve classification of emotional states in human computer interaction,Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.01010115,edu, +93af335bf8c610f34ce0cadc15d1dd592debc706,Auxiliary Demographic Information Assisted Age Estimation With Cascaded Structure,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +93d903d2e48d6a8ad3e3d2aff2e57622efe649cd,Local saliency-inspired binary patterns for automatic recognition of multi-view facial expression,"Indian Statistical Institute, Kolkata","Indian Statistical Institute, Kolkata","Plot No. 203, Barrackpore Trunk Road, Baranagar, Kolkata, West Bengal 700108, India",22.64815210,88.37681700,edu, +93cd5c47e4a3425d23e3db32c6eaef53745bb32e,Adaptive face representation via class-specific and intra-class variation dictionaries for recognition,Changzhou University,"Changzhou University, Changzhou, China","1 Gehu Middle Rd, Wujin Qu, Changzhou Shi, Jiangsu Sheng, China",31.68423700,119.95514100,edu, +93e1e195f294c463f4832c4686775bf386b3de39,Temporal Variance Analysis for Action Recognition,University of Technology at Sydney,"University of Technology at Sydney, Sydney, NSW, Australia","15 Broadway, Ultimo NSW 2007, Australia",-33.88323760,151.20049420,edu, +93c0405b1f5432eab11cb5180229720604ffd030,Recognition of Faces and Facial Attributes Using Accumulative Local Sparse Representations,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +93108f1548e8766621565bdb780455023349d2b2,Facial expression synthesis based on motion patterns learned from face database,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +939f9fa056f8be445da19b43da64bd2405851a43,Classifying facial expressions using point-based analytic face model and Support Vector Machines,Concordia Institute for Information Systems Engineering,"Concordia Institute for Information Systems Engineering (CIISE), 1515 St. Catherine West, Montreal, Quebec H3G 2W1, CANADA","1455 Boulevard de Maisonneuve O, Montréal, QC H3G 1M8, Canada",45.49726570,-73.57902270,edu, +9378ead3a09bc9f89fb711e2746facf399dd942e,Adaptive Region-Based Image Enhancement Method for Robust Face Recognition Under Variable Illumination Conditions,University of British Columbia,University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.24658161,edu, +93eb3963bc20e28af26c53ef3bce1e76b15e3209,Occlusion robust face recognition based on mask learning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +93dd4e512cd7647aecbfc0cd4767adf5d9289c3d,Pose-based composition improvement for portrait photographs,"RMIT University, Vietnam","RMIT University, Vietnam","RMIT University Vietnam - Saigon South Campus, 702, Nguyễn Văn Linh, Khu 3 - Khu Đại học, Phường Tân Phong, Quận 7, Tp HCM, 756604, Việt Nam",10.72991265,106.69320824,edu, +947cdeb52f694fb1c87fc16836f8877cd83dc652,High-performance and lightweight real-time deep face emotion recognition,Maastricht University,Maastricht University,"UNS60, Professor Ten Hoorlaan, Randwyck, Maastricht, Limburg, Nederland, 6229EV, Nederland",50.83367120,5.71589000,edu, +9436170c648c40b6f4cc3751fca3674aa82ffe9a,Maximum Margin Discriminant Projections for facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +946b4d840b026d91608758d04f2763e9b981234e,LUI: lip in multimodal mobile GUI interaction,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +947ee3452e4f3d657b16325c6b959f8b8768efad,Deep multi-view robust representation learning,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +940e5c45511b63f609568dce2ad61437c5e39683,Fiducial Facial Point Extraction Using a Novel Projective Invariant,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +0e05b365af662bc6744106a7cdf5e77c9900e967,"Assessment of female facial beauty based on anthropometric, non-permanent and acquisition characteristics",EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +0e37d70794d5ccfef8b4cc22b4203245f33eec6e,A second order polynomial based subspace projection method for dimensionality reduction,University of Dayton,University of Dayton,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.73844400,-84.17918747,edu, +0e8a28511d8484ad220d3e8dde39220c74fab14b,MSDLSR: Margin Scalable Discriminative Least Squares Regression for Multicategory Classification,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +0e454686f83284ced2ffc5740829552a032671a3,Estimating multimodal attributes for unknown objects,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.51675380,139.48342251,edu, +0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,Deep Aging Face Verification With Large Gaps,"North Acton, London","North Acton, London","North Acton, Victoria Road, Acton, London Borough of Ealing, London, Greater London, England, W3 6UP, UK",51.52344665,-0.25973535,edu, +0ed4b4d6d1a0c49c4eb619aab36db559b620d99f,Biased subspace learning for misalignment-robust facial expression recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +0ef20991e0ecc7dc3f6e0e5fd6ee93c4970206f3,Facial video super resolution using semantic exemplar components,"Sharp Laboratories of America, Camas, WA","Sharp Laboratories of America, Camas, WA","5750 NW Pacific Rim Blvd, Camas, WA 98607, USA",45.59332750,-122.46110560,company, +0e2d956790d3b8ab18cee8df6c949504ee78ad42,Scalable face image retrieval integrating multi-feature quantization and constrained reference re-ranking,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +0ed96cc68b1b61e9eb4096f67d3dcab9169148b9,Emotion Recognition in Real-world Conditions with Acoustic and Visual Features,Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.01010115,edu, +0e02dadab802128f6155e099135d03ca6b72f42c,Learning Balanced and Unbalanced Graphs via Low-Rank Coding,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +608b01c70f0d1166c10c3829c411424d9ef550e7,Facial expression recognition by learning spatiotemporal features with multi-layer independent subspace analysis,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +606dff86a34c67c79d93f1e536487847a5bb7002,Localized support vector machines using Parzen window for incomplete sets of categories,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +604a281100784b4d5bc1a6db993d423abc5dc8f0,Face Verification Across Age Progression Using Discriminative Methods,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +60821d447e5b8a96dd9294a0514911e1141ff620,Real-time facial expression recognition with illumination-corrected image sequences,"Universidad Politécnica Madrid, Spain","Dep. Inteligencia Artificial, U. Politécnica Madrid, Spain","Calle de los Ciruelos, 28660 Boadilla del Monte, Madrid, Spain",40.40462810,-3.83964120,edu, +607aebe7568407421e8ffc7b23a5fda52650ad93,Face alignment via an ensemble of random ferns,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +605f6817018a572797095b83bec7fae7195b2abc,Principal Gabor filters for face recognition,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +602f772c69e4a1a65de00443c30d51fdd47a80aa,Face recognition based on the feature fusion of 2DLDA and LBP,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +609d81ddf393164581b3e3bf11609a712ac47522,Fuzzy qualitative approach for micro-expression recognition,"Tunku Abdul Rahman University College, Malaysia","Faculty of Engineering, Tunku Abdul Rahman University College, Setapak, Malaysia","Danau Kota, 53100 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia",3.20685320,101.71829430,edu, +34c062e2b8a3f6421b9f4ff22f115a36d4aba823,A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology,Indian Institute of Technology Guwahati,"IIT Guwahati, Guwahati, India","Indian Institute of Technology Guwahati - IIT Guwahati, NH27, Amingaon, Guwahati, Kamrup, Assam, 781015, India",26.19247875,91.69463569,edu, +344c0917c8d9e13c6b3546da8695332f86b57bd3,Semi-supervised multi-output image manifold regression,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +346752e3ab96c93483413be4feaa024ccfe9499f,An Attribute-Assisted Reranking Model for Web Image Search,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.84691800,117.29053367,edu, +34dd83115195676e7a8b008eb0e9abe84b330b32,Optimized recognition with few instances based on semantic distance,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +34fd227f4fdbc7fe028cc1f7d92cb59204333718,A Deep Face Recognition Method Based on Model Fine-tuning and Principal Component Analysis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +5a259f2f5337435f841d39dada832ab24e7b3325,Face Recognition via Active Annotation and Learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +5a12e1d4d74fe1a57929eaaa14f593b80f907ea3,Learning hierarchical video representation for action recognition,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +5feee69ed183954fa76c58735daa7dd3549e434d,Mean shift clustering for personal photo album organization,"Istituto di Calcolo e Reti ad Alte Prestazioni, Palermo, Italy","Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni, Viale delle Scienze, 90128 Palermo, ITALY","Viale delle Scienze, 90128 Palermo PA, Italy",38.10304820,13.34789420,edu, +5f2c210644c1e567435d78522258e0ae036deedb,Biologically vs. Logic Inspired Encoding of Facial Actions and Emotions in Video,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +5f7094ba898a248e1e6b37e3d9fb795e59131cdc,Frame-skip Convolutional Neural Networks for action recognition,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +5fb9944b18f5a4a6d20778816290ed647f5e3853,Wearable for Wearable: A Social Signal Processing Perspective for Clothing Analysis using Wearable Devices,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +5f1cd82343f4bd6972f674d50aecb453d06f04ad,The Impact of Personalisation on Human-Robot Interaction in Learning Scenarios,Universität Hamburg,Universität Hamburg,"Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland",53.59948200,9.93353436,edu, +5f4219118556d2c627137827a617cf4e26242a6e,Explicit Shape Regression With Characteristic Number for Facial Landmark Localization,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +5fb59cf5b31a80d8c70d91660092ef86494be577,Real-time SVM-based emotion recognition algorithm,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +5f0d4657eab4152a1785ee0a25b5b499cd1163ec,Bandit Framework for Systematic Learning in Wireless Video-Based Face Recognition,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +5f448ab700528888019542e6fea1d1e0db6c35f2,Transferred Deep Convolutional Neural Network Features for Extensive Facial Landmark Localization,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +5f9dc3919fb088eb84accb1e490921a134232466,Pose Estimation Based on Two Images from Different Views,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.50841740,106.57858552,edu, +33b915476f798ca18ae80183bf40aea4aaf57d1e,Face Illumination Manipulation Using a Single Reference Image by Adaptive Layer Decomposition,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,Adaptive Cascade Regression Model For Robust Face Alignment,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +335435a94f8fa9c128b9f278d929c9d0e45e2510,CREMA-D: Crowd-Sourced Emotional Multimodal Actors Dataset,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,Age prediction on face features via multiple classifiers,"University Sultan Zainal Abidin, Malaysia","Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia","22020 Kampung Raja, Terengganu, Malaysia",5.76488480,102.62817020,edu, +33b61be191e63b0c9974be708180275c9d5b3057,Cross-dataset facial expression recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +33bbf01413910bca26ed287112d32fe88c1cc0df,Region-based feature fusion for facial-expression recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +05184f01e66d7139530729b281da74db35a178d2,Optimal metric selection for improved multi-pose face recognition with group information,Deakin University,Deakin University,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.19928505,144.30365229,edu, +05785cb0dcaace54801aa486d4f8fdad3245b27a,Novel generative model for facial expressions based on statistical shape analysis of landmarks trajectories,"CRIStAL UMR, France","Télécom Lille, CRIStAL UMR (CNRS 9189), France","Lille, France",50.62925000,3.05725600,edu, +052c5ef6b20bf3e88bc955b6b2e86571be08ba64,Heterogeneous Specular and Diffuse 3-D Surface Approximation for Face Recognition Across Pose,Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.55339750,153.05336234,edu, +057b80e235b10799d03876ad25465208a4c64caf,Video Question Answering via Gradually Refined Attention over Appearance and Motion,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +0532cbcf616f27e5f6a4054f818d4992b99d201d,Class specific centralized dictionary learning for face recognition,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +055cd8173536031e189628c879a2acad6cf2a5d0,Fast multi-view face alignment via multi-task auto-encoders,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +05c5134125a333855e8d25500bf97a31496c9b3f,Robust Multi-Modal Cues for Dyadic Human Interaction Recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +052cec9fdbfe12ccd02688f3b7f538c0d73555b3,Learning weighted hashing on local structured data,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +9d5bfaf6191484022a6731ce13ac1b866d21ad18,Hierarchical multi-label framework for robust face recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +9d4692e243e25eb465a0480376beb60a5d2f0f13,Positional Ternary Pattern (PTP): An edge based image descriptor for human age recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +9d46485ca2c562d5e295251530a99dd5df99b589,Real-time face recognition for human-robot interaction,"Instituto Nacional de Astrofísica, Óptica y Electrónica, Mexico","Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, Tonantzintla, Puebla, Mexico","Luis Enrique Erro 1, Sta María Tonanzintla, 72840 Puebla, Pue., Mexico",19.03231070,-98.31537020,edu, +9df86395c11565afa8683f6f0a9ca005485c5589,"Facial expression recognition using active contour-based face detection, facial movement-based feature extraction, and non-linear feature selection",Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.59014110,127.03623180,edu, +9d3377313759dfdc1a702b341d8d8e4b1469460c,Cast2Face: Assigning Character Names Onto Faces in Movie With Actor-Character Correspondence,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +9dcfa771a7e87d7681348dd9f6cf9803699b16ce,Multilevel Quadratic Variation Minimization for 3D Face Modeling and Virtual View Synthesis,Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.55339750,153.05336234,edu, +9cda3e56cec21bd8f91f7acfcefc04ac10973966,"Periocular biometrics: databases, algorithms and directions",Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.87929727,edu, +9ce97efc1d520dadaa0d114192ca789f23442727,Teaching Computer Vision: Bringing Research Benchmarks to the Classroom,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +9c2f20ed168743071db6268480a966d5d238a7ee,A face-house paradigm for architectural scene analysis,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.35788990,151.37834708,edu, +9cb7b3b14fd01cc2ed76784ab76304132dab6ff3,Facial landmark detection via pose-induced auto-encoder networks,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +9c23859ec7313f2e756a3e85575735e0c52249f4,Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +9c59bb28054eee783a40b467c82f38021c19ff3e,Logistic similarity metric learning for face verification,University of Lyon,"Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France","20 Avenue Albert Einstein, 69100 Villeurbanne, France",45.78332440,4.87819840,edu, +023decb4c56f2e97d345593e4f7b89b667a6763d,Generalized Low Rank Approximations of Matrices,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +026e96c3c4751e1583bfe78b8c28bdfe854c4988,Facial analysis in the wild with LSTM networks,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +0247998a1c045e601dc4d65c53282b5e655be62b,Learning to tell brake and turn signals in videos using CNN-LSTM structure,"Toyota Research Institute, North America",Toyota Research Institute - North America,"2311 Green Rd Suite E, Ann Arbor, MI 48105, USA",42.30985050,-83.69329530,company, +021469757d626a39639e260492eea7d3e8563820,3D Face Processing,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +a4898f55f12e6393b1c078803909ea715bf71730,"Where is the driver looking: Analysis of head, eye and iris for robust gaze zone estimation","University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +a4e75766ef93b43608c463c233b8646439ce2415,Automatic real-time FACS-coder to anonymise drivers in eye tracker videos,"Volvo, Sweden","Volvo Car Corporation, SE-405 31 Göteborg, Sweden","Karossvägen 2, 405 31 Göteborg, Sweden",57.72288600,11.84620530,edu, +a317083d9aac4062e77aa0854513383c87e47ece,L0-norm Based Structural Sparse Least Square Regression for Feature Selection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a35ed55dc330d470be2f610f4822f5152fcac4e1,Tattoo recognition technology - challenge (Tatt-C): an open tattoo database for developing tattoo recognition research,NIST,"National Institute of Standards and Technology (NIST), Gaithersburg, MD","100 Bureau Dr, Gaithersburg, MD 20899, USA",39.14004000,-77.21850600,edu, +a3201e955d6607d383332f3a12a7befa08c5a18c,VLAD encoded Deep Convolutional features for unconstrained face verification,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +a3ed0f15824802359e05d9777cacd5488dfa7dba,A Wearable Social Interaction Aid for Children with Autism,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +a3bf6129d1ae136709063a5639eafd8018f50feb,A linear regression model for estimating facial image quality,University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.07840380,-114.12870770,edu, +b5f9180666924a3215ab0b1faf712e70b353444d,Facial expression synthesis with direction field preservation based mesh deformation and lighting fitting based wrinkle mapping,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +b5bda4e1374acc7414107cde529ad8b3263fae4b,Online learning design of an image-based facial expression recognition system,National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.99724412,edu, +b54fe193b6faf228e5ffc4b88818d6aa234b5bb9,Video Generation Using 3D Convolutional Neural Network,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +b5690409be6c4e98bd37181d41121adfef218537,Improving image clustering: An unsupervised feature weight learning framework,IBM China Research Laboratory,"IBM China Research Laboratory, Beijing, China","Beijing, China",39.90419990,116.40739630,company, +b5f3b0f45cf7f462a9c463a941e34e102a029506,From individual to group-level emotion recognition: EmotiW 5.0,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +b51d11fa400d66b9f9d903a60c4ebe03fd77c8f2,Proposal and implementation of a novel scheme for image and emotion recognition using Hadoop,Amity University Uttar Pradesh,Amity University Uttar Pradesh,"Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India",28.54322285,77.33274830,edu, +b5f79df712ad535d88ae784a617a30c02e0551ca,Locating Facial Landmarks Using Probabilistic Random Forest,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +b55e70df03d9b80c91446a97957bc95772dcc45b,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,"Siren Solutions, Dublin, Ireland","Siren Solutions, Dublin, Ireland","Dublin, Ireland",53.34980530,-6.26030970,company, +b50edfea790f86373407a964b4255bf8e436d377,Group emotion recognition with individual facial emotion CNNs and global image based CNNs,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +b26e8f6ad7c2d4c838660d5a17337ce241442ed9,A Cascaded Framework for Model-Based 3D Face Reconstruction,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +b2470969e4fba92f7909eac26b77d08cc5575533,Profit Maximization Mechanism and Data Management for Data Analytics Services,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +b259f57f41f4b3b5b7ca29c5acb6f42186bbcf23,An interactive virtual mirror to support makeup for visually impaired persons,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.11120580,140.10551760,edu, +b2f9e0497901d22b05b9699b0ea8147861c2e2cc,Facial Expression Recognition Using Local Region Specific Dense Optical Flow and LBP Features,Korea Electronics Technology Institute,Korea Electronics Technology Institute,"South Korea, Gyeonggi-do, Seongnam-si, Bundang-gu, 새나리로 25 (야탑동) KETI 전자부품연구원",37.40391700,127.15978600,edu, +b22317a0bbbcc79425f7c8a871b2bf211ba2e9c4,Adaptive Feature Mapping for Customizing Deep Learning Based Facial Expression Recognition Model,National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.99724412,edu, +b234d429c9ea682e54fca52f4b889b3170f65ffc,A Concatenational Graph Evolution Aging Model,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +b2ddea9c71cd73fa63e09e8121bc7a098fae70b4,An interactive game for teaching facial expressions to children with Autism Spectrum Disorders,"Universidade do Porto, Portugal","Inst. de Telecomunicações, Fac. de Ciências da Universidade do Porto, Porto, Portugal","Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal",38.73684640,-9.13934570,edu, +b2cb335ded99b10f37002d09753bd5a6ea522ef1,Analysis of adaptability of deep features for verifying blurred and cross-resolution images,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +d9e66b877b277d73f8876f537206395e71f58269,Learning Stacked Image Descriptor for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d963bdff2ce5212fa585a83ca8fad96875bc0057,Combining multi-representation for multimedia event detection using co-training,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +d9218c2bbc7449dbccac351f55675efd810535db,Feature selection for facial expression recognition,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +d983dda8b03ed60fa3afafe5c50f1d9a495f260b,Face recognition using elastic local reconstruction based on a single face image,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +d9eed86e53ce5f7cba379fe77bbefb42e83c0d88,Implicit Block Diagonal Low-Rank Representation,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +d9b4b49378fcd77dcd5e755975b99ed4c7962f17,Stroke Detector and Structure Based Models for Character Recognition: A Comparative Study,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d91f9e8cbf271004ef1a293401197a10a26ccd1b,Facial action units detection by robust temporal features,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.44429490,136.59285870,edu, +acab402d706dbde4bea4b7df52812681011f435e,Robust face recognition with illumination normalization using a reference profile,"Infosys Limited, Bangalore, India","E-Comm Research Lab, Infosys Limited, Bangalore, India","Bengaluru, Karnataka, India",12.97159870,77.59456270,company, +acd4280453b995cb071c33f7c9db5760432f4279,Deep transformation learning for face recognition in the unconstrained scene,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.50841740,106.57858552,edu, +ac2e166c76c103f17fdea2b4ecb137200b8d4703,Cognitive face analysis system for future interactive TV,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +ac48ecbc7c3c1a7eab08820845d47d6ce197707c,Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning,Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.29315340,120.16204580,edu, +ac03849956ac470c41585d2ee34d8bb58bb3c764,Automatic inference of mental states from spontaneous facial expressions,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.74230250,-74.17928172,edu, +ad08426ca57da2be0e9f8c1f673e491582edb896,Convergence Analysis of Graph Regularized Non-Negative Matrix Factorization,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +adad7446e371d27fdaee39475856e2058f3045e5,A two-stage low complexity face recognition system for face images with alignment errors,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +ad4d1ecf5c5473c050e11f6876ce148de1c8920a,Matching video net: Memory-based embedding for video action recognition,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +ad8bd7016132a2f98ff1f41dac695285e71cc4b1,A face alignment method based on SURF features,"Changchun University of Science and Technology, China",College of electronic and information engineer Changchun University of Science and Technology Changchun China,"7989 Weixing Rd, Chaoyang Qu, Changchun Shi, Jilin Sheng, China, 130012",43.83467700,125.30313500,edu, +ad5a35a251e07628dd035c68e44a64c53652be6b,Robust facial landmark tracking via cascade regression,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +ad339a5fdaab95f3c8aad83b60ceba8d76107fa2,Segmented Linear Subspaces for Illumination-Robust Face Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +ada063ce9a1ff230791c48b6afa29c401a9007f1,Biometric Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +ad50f6899103eff0ee4504e539c38eb965fd1309,Emotion recognition based on a novel triangular facial feature extraction method,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +bbc21d6b7c6e807c6886d237a04b501158ca6bb8,Learning Personalized Models for Facial Expression Analysis and Gesture Recognition,"TeV, Fondazione Bruno Kessler, Trento, Italy","TeV, Fondazione Bruno Kessler, Trento, Italy","Trento, Province of Trento, Italy",46.07477930,11.12174860,edu, +bbc47f421ab161f22f2699ee7bbb7fc8aec1cb7b,Constrained versus unconstrained learning in generalized recurrent network for image processing,ThyssenKrupp Elevator Americas,ThyssenKrupp Elevator Americas,"4511 N Himes Ave, Tampa, FL 33614, USA",27.98411770,-82.50021990,company, +bb4be8e24d7b8ed56d81edec435b7b59bad96214,Localized Multifeature Metric Learning for Image-Set-Based Face Recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +bb2f61a057bbf176e402d171d79df2635ccda9f6,Multi-modal joint embedding for fashion product retrieval,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +bb3698df3b4f40c0b7cc523d26ffb8c5276d5a1c,"An improved approach for face detection using superpixels, moment-based matching, and isosceles triangle matching",National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +d7b8f285b0701ba7b1a11d1c7dd3d1e7e304083f,A Hybrid Approach for Facial Expression Recognition,San Jose State University,San Jose State University,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.33519080,-121.88126008,edu, +d7c87f4ca39f79d93c954ffacac32bc6eb527e2c,Curvelet Entropy for Facial Expression Recognition,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +d75bd05865224a1341731da66b8d812a7924d6f6,Dynamic Detection-Rate-Based Bit Allocation With Genuine Interval Concealment for Binary Biometric Representation,Hong Kong Baptist University,Hong Kong Baptist University,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.38742010,114.20822220,edu, +d7b7253f7d8b397d9d74057e1e72ed9c58e2ba6d,Towards Improving Social Communication Skills With Multimodal Sensory Information,Beijing Normal University,Beijing Normal University,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.35970438,edu, +d7a84db2a1bf7b97657b0250f354f249394dd700,Global and local feature based multi-classifier A-stack model for aging face identification,"Swiss Federal Institute of Technology Lausanne, Switzerland","Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland","Route Cantonale, 1015 Lausanne, Switzerland",46.51905570,6.56675760,edu, +d77f18917a58e7d4598d31af4e7be2762d858370,Detecting person presence in TV shows with linguistic and structural features,"Orange Labs, Lannion, France","France Telecom - Orange Labs, Lannion, France","2 Avenue Pierre Marzin, 22300 Lannion, France",48.75416800,-3.45845860,company, +d05759932001aa6f1f71e7dc261c4716f57a5397,Locality Preserving Discriminant Projection,"Dhirubhai Ambani Institute of Information and Communication Technology, India","Dhirubhai Ambani Institute of Information and Communication Technology, India","Near Reliance Chowkdi, DA IICT Road, Gandhinagar, Gujarat 382007, India",23.18854690,72.62902940,edu, +d00e9a6339e34c613053d3b2c132fccbde547b56,A cascaded convolutional neural network for age estimation of unconstrained faces,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +d0b67ec62086b55f00dc461ab58dc87b85388b2b,Online facial expression recognition based on combining texture and geometric information,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +d0a8889f694422614bf3ecccd69aa1d4f7822606,Image and Video-Based Biometrics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +d0d75a7116a76ccd98a3aeb6f6fff10ba91de1c1,Constrained Metric Learning by Permutation Inducing Isometries,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +d09fd7e0bb5d997963cfef45452724416b2bb052,Research on algorithm of state recognition of students based on facial expression,China Mobile Group Shanghai,"Pudong Branch, China Mobile Group Shanghai, Company Limited, Shanghai, China","Pudong, Shanghai, China",31.22151700,121.54437900,company, +bef4df99e1dc6f696f9b3732ab6bac8e85d3fb3c,A multi-label convolutional neural network approach to cross-domain action unit detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +be632b206f1cd38eab0c01c5f2004d1e8fc72880,Gradual training of cascaded shape regression for facial landmark localization and pose estimation,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +beae35eb5b2c7f63dfa9115f07b5ba0319709951,Discriminative 3D morphable model fitting,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +b313751548018e4ecd5ae2ce6b3b94fbd9cae33e,Evaluation of Face Datasets as Tools for Assessing the Performance of Face Recognition Methods,National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.10327775,edu, +b3050dc48600acf2f75edf1f580a1f9e9cb3c14a,Face relighting using discriminative 2D spherical spaces for face recognition,Osaka University,Osaka University,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218,edu, +b388bf63c79e429dafee16c62b2732bcbea0d026,Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification,University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103,edu, +b351575e3eab724d62d0703e24ecae55025eef00,Person-centered accessible technologies and computing solutions through interdisciplinary and integrated perspectives from disability research,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +df767f62a6bf3b09e6417d801726f2d5d642a202,Face Recognition under Varying Lighting Based on the Probabilistic Model of Gabor Phase,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +df87193e15a19d5620f5a6458b05fee0cf03729f,Emotional expression recognition with a cross-channel convolutional neural network for human-robot interaction,Universität Hamburg,Universität Hamburg,"Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland",53.59948200,9.93353436,edu, +dfbbe8100fcd70322a431bd5d2c2d52a65fd4bbd,Challenges in Deep Learning for Multimodal Applications,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +df550cb749858648209707bec5410431ea95e027,Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification,Beijing University of Technology,Beijing University of Technology,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.47722285,edu, +df7ff512e8324894d20103fd8ab5da650e4d86db,Linking names and faces by person-based subset clustering,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +df7af280771a6c8302b75ed0a14ffe7854cca679,Prediction of users' facial attractiveness on an online dating website,"IBJ, Inc., Tokyo, Japan","IBJ, Inc., Tokyo, Japan","Tokyo, Japan",35.68948750,139.69170640,company, +da1477b4a65ae5a013e646b57e004f0cd60619a2,Nose tip detection from 3D facial mesh data using a rotationally invariant local shape descriptor,Sungkyunkwan University Suwon,"Computer Vision Lab, Sungkyunkwan University Suwon, South Korea","25-2 Sungkyunkwan-ro, Myeongnyun 3(sam)ga-dong, Jongno-gu, Seoul, South Korea",37.58822700,126.99360600,edu, +da7bbfa905d88834f8929cb69f41a1b683639f4b,Discriminant analysis with Gabor phase for robust face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +dad6b36fd515bda801f3d22a462cc62348f6aad8,Gait-based age estimation using a whole-generation gait database,Osaka University,Osaka University,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218,edu, +dac8fc521dfafb2d082faa4697f491eae00472c7,Learning to Generate and Edit Hairstyles,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +dac6e9d708a9757f848409f25df99c5a561c863c,SVD Face: Illumination-Invariant Face Representation,"Samsung SAIT, Korea","Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea","130 Samseong-ro, Maetan 3(sam)-dong, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea",37.25202260,127.05550190,company, +dac34b590adddef2fc31f26e2aeb0059115d07a1,House in the (Biometric) Cloud: A Possible Application,Sapienza University of Rome,Sapienza University of Rome,"Piazzale Aldo Moro, 5, 00185 Roma RM, Italy",41.90376260,12.51443840,edu, +b472f91390781611d4e197564b0016d9643a5518,Facial expression recognition using geometric and appearance features,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447512,edu, +b484141b99d3478a12b8a6854864c4b875d289b8,Low-resolution face recognition via Simultaneous Discriminant Analysis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,Lapped convolutional neural networks for embedded systems,"AltumView Systems Inc., Burnaby, BC, Canada","AltumView Systems Inc., Burnaby, BC, Canada","8525 Baxter Pl, Burnaby, BC V5A 4V7, Canada",49.25938790,-122.91518930,company, +a216f7863fc6ab15e2bb7a538dfe00924e1da0ab,Block-wise constrained sparse graph for face image representation,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +a2646865d7c3d7fb346cf714caf146de2ea0e68f,Distributed graph regularized non-negative matrix factorization with greedy coordinate descent,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +a2b4a6c6b32900a066d0257ae6d4526db872afe2,Learning Face Image Quality From Human Assessments,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +a200885bf6bfa0493d85e7617e65cdabe30a2dab,An efficient face classification method based on shared and class-specific dictionary learning,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +a20036b7fbf6c0db454c8711e72d78f145560dc8,On averaging face images for recognition under pose variations,Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.55339750,153.05336234,edu, +a2af07176a38fe844b0e2fdf4abae65472628b38,Dog breed classification via landmarks,University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.68103280,-75.75401840,edu, +a2b76ab614d92f5e71312b530f0b6281d0c500f7,On optimal low rank Tucker approximation for tensors: the case for an adjustable core size,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.23708813,edu, +a26fd9df58bb76d6c7a3254820143b3da5bd584b,Monitor Pupils' Attention by Image Super-Resolution and Anomaly Detection,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +a5eb36f1e77245dfc9e5c0c03998529331e4c89b,An optimal set of code words and correntropy for rotated least squares regression,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +a5b9c6aa52f91092b5a8ab04ed1f7b60c0ea5260,Mediating Human Decision Making with Emotional Attitudes in Web Based Decision Support Systems,La Trobe University,La Trobe University,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.77847540,144.29804700,edu, +a5d4cc596446517dfaa4d92276a12d5e1c0a284c,Kernel Grassmannian distances and discriminant analysis for face recognition from image sets,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +a5f35880477ae82902c620245e258cf854c09be9,Face detection by structural models,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a53f988d16f5828c961553e8efd38fed15e70bcc,Pokerface: Partial order keeping and energy repressing method for extreme face illumination normalization,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +a52a69bf304d49fba6eac6a73c5169834c77042d,Margin Loss: Making Faces More Separable,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +bdf5434648356ce22bdbf81d2951e4bb00228e4d,A Half Face Recognition Scheme,"Chongqing Institute of Technology, China","Chongqing Institute of Technology, China","69 Hongguang Ave, Banan Qu, Chongqing Shi, China",29.45832600,106.52994700,edu, +bddc822cf20b31d8f714925bec192c39294184f7,Facial expression recognition based on local binary patterns,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +bdd203bcd3c41c336c5635fb026a78279d75b4be,Shannon information based adaptive sampling for action recognition,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +bd9e0b6a90b51cc19b65f51dacd08ce1a7ccaac5,Avatar recommendation method based on facial attributes,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +bd66dc891270d858de3adf97d42ed714860ae94d,Non-semantic facial parts for face verification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,Modified Hidden Factor Analysis for Cross-Age Face Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +d1ee9e63c8826a39d75fa32711fddbcc58d5161a,A facial symmetry prior for improved illumination fitting of 3D morphable model,Speech and Signal Processing University of Surrey,"Centre for Vision, Speech and Signal Processing University of Surrey, Guildford, UK","388 Stag Hill, Guildford GU2 7XH Stag Hill, Guildford GU2 7XH, UK",51.24354510,-0.58857440,edu, +d10cfcf206b0991e3bc20ac28df1f61c63516f30,Smile or smirk? Automatic detection of spontaneous asymmetric smiles to understand viewer experience,"Affectiva, Inc.","Affectiva Inc., Waltham, MA, USA","294 Washington St, Boston, MA 02108, USA",42.35730460,-71.05824150,company,MIT spinoff +d116bac3b6ad77084c12bea557d42ed4c9d78433,Recognition of occluded facial expressions based on CENTRIST features,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.59539950,-48.61542180,edu, +d1079444ceddb1de316983f371ecd1db7a0c2f38,Sparse residue for occluded face image reconstruction and classification,"Harbin Institute of Technology, Shenzhen","Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China","China, Guangdong, Shenzhen, Nanshan, 平山一路",22.58675200,113.96878000,edu, +d1dd80d77655876fb45b9420fe72444c303b219e,Accumulated motion images for facial expression recognition in videos,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +d1bd956a8523629ed4e2533b01272f22cea534c6,An illumination normalization model for face recognition under varied lighting conditions,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +d60e3eef429ed2a51bbd806125fa31f5bea072a4,Hajj human event classification system using machine learning techniques,Ain Shams University,"Faculty of Engineering, Ain Shams University, Cairo, Egypt","1 El Sarayat St.، ABBASSEYA، Al Waili, Cairo Governorate 11535, Egypt",30.06456570,31.27886080,edu, +d6ae7941dcec920d5726d50d1b1cdfe4dde34d35,Avatar digitization from a single image for real-time rendering,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +d691440030394c2e00a2ab47aba4f8b5fca5f25a,Tube ConvNets: Better exploiting motion for action recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +d63bd06340dd35590a22222509e455c49165ee13,Recurrent Temporal Sparse Autoencoder for attention-based action recognition,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +d6e08345ba293565086cb282ba08b225326022fc,Occlusion-Aware Fragment-Based Tracking With Spatial-Temporal Consistency,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +d6791b98353aa113d79f6fb96335aa6c7ea3b759,Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +d62d82c312c40437bc4c1c91caedac2ba5beb292,Super Wide Regression Network for Unsupervised Cross-Database Facial Expression Recognition,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +bc607bee2002c6c6bf694a15efd0a5d049767237,A novel large-scale multimedia image data classification algorithm based on mapping assisted deep neural network,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +bc66685acc64fa3c425c0ee6c443d3fa87db7364,Personal Clothing Retrieval on Photo Collections by Color and Attributes,"HP Labs, Palo Alto, CA","Hewlett-Packard Laboratories, Hewlett-Packard Company, Palo Alto, CA, USA","1501 Page Mill Rd, Palo Alto, CA 94304, USA",37.41233890,-122.14795950,company, +bcead1a92744e76c38caaa13159de4abfb81b1d0,Bags-of-daglets for action recognition,Télécom ParisTech,"Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Sophia Antipolis, France","Business Pôle. 1047 route des Dolines. Allée Pierre Ziller, 06560 Sophia Antipolis, France",43.62716550,7.04109170,edu, +bc08dfa22949fbe54e15b1a6379afade71835968,Multiple Facial Action Unit recognition by learning joint features and label relations,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +bca39960ba46dc3193defe0b286ee0bea4424041,A decision-boundary-oriented feature selection method and its application to face recognition,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +bc6a7390135bf127b93b90a21b1fdebbfb56ad30,Bimodal Vein Data Mining via Cross-Selected-Domain Knowledge Transfer,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +ae78469de00ea1e7602ca468dcf188cdfe2c80d4,Temporal Convolutional Neural Network for Gesture Recognition,Communication University of China,Communication University of China,"中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.91199955,116.55189141,edu, +ae425a2654a1064c2eda29b08a492c8d5aab27a2,An incremental face recognition system based on deep learning,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +ae89e464576209b1082da38e0cee7aeabd03d932,Robust face recognition using generalized neural reflectance model,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +ae7604b1840753e9c2e1ab7a97e02f91a9d81860,Automatic facial emotion recognition using weber local descriptor for e-Healthcare system,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +aea977a3b5556957ed5fb3ef21685ee84921eaa3,Dynamic facial landmarking selection for emotion recognition using Gaussian processes,University of Sheffield,The University of Sheffield,"University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK",53.38152480,-1.48068143,edu, +aef58a54d458ab76f62c9b6de61af4f475e0f616,A spiking thalamus model for form and motion processing of images,"HRL Laboratories, Malibu, CA","HRL Laboratories, LLC, Information Systems and Sciences Lab, Malibu, CA 90265 USA","4797, 3011 Malibu Canyon Rd, Malibu, CA 90265, United States",34.04286290,-118.69525780,company, +aed6af12148b43e4a24ee6e2bc3604ca59bd99a5,Discriminative Deep Metric Learning for Face and Kinship Verification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +aee3427d0814d8a398fd31f4f46941e9e5488d83,Face verification with aging using AdaBoost and local binary patterns,University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.68103280,-75.75401840,edu, +ae96fc36c89e5c6c3c433c1163c25db1359e13ea,Linear discriminant analysis with spectral regularization,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +d8c9bad8d07ae4196027dfb8343b9d9aefb130ff,Power difference template for action recognition,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +d8b99eada922bd2ce4e20dc09c61a0e3cc640a62,Image factorization and feature fusion for enhancing robot vision in human face recognition,University of Portsmouth,University of Portsmouth,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911,edu, +d89a754d7c59e025d2bfcdb872d2d061e2e371ba,Towards robotic facial mimicry: System development and evaluation,"TU München, Germany","Image Understanding and Knowledge-Based Systems, TU München, Germany","Arcisstraße 21, 80333 München, Germany",48.14966000,11.56786020,edu, +d8288322f32ee4501cef5a9b667e5bb79ebd7018,Facing scalability: Naming faces in an online social network,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1,Face detection and recognition for home service robots with end-to-end deep neural networks,"Futurewei Technologies Inc., Santa Clara, CA","Robotics Lab, Futurewei Technologies Inc., Santa Clara, USA","2330 Central Expy, Santa Clara, CA 95050, USA",37.37344400,-121.96487270,company, +ab7923968660d04434271559c4634790dc68c58e,Facial landmark detection via cascade multi-channel convolutional neural network,Xi'an Jiaotong University,Xi'an Jiaotong University,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.24749490,108.97898751,edu, +abf0aa1d8869d87f4ef62e2da058ccfb4bf46d18,A survey on aggregating methods for action recognition with dense trajectories,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +abfba1dc9a9991897acd0e0d3d4ef9d4aef4151c,Development of facial expression recognition for training video customer service representatives,Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.03332810,135.72491540,edu, +ab8ecf98f457e29b000c44d49f5bf49ec92e571c,Emotion Recognition from Occluded Facial Expressions Using Weber Local Descriptor,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.59539950,-48.61542180,edu, +ab0981d1da654f37620ca39c6b42de21d7eb58eb,Unsupervised Hierarchical Dynamic Parsing and Encoding for Action Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +abe4c1d6b964c4f5443b0334a44f0b03dd1909f4,Deep learning based image description generation,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +ab00ea1aa2f81fbe139b4632ec3682dfb7312ef0,Comparison of face detection and image classification for detecting front seat passengers in vehicles,Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.51291090,-79.66640762,edu, +abbc6dcbd032ff80e0535850f1bc27c4610b0d45,Facial age estimation via extended curvature Gabor filter,"Electronics and Telecommunications Research Institute, Korea","Electronics and Telecommunications Research Institute (ETRI), Republic of Korea",South Korea,35.90775700,127.76692200,edu, +ab80582807506c0f840bd1ba03a8b84f8ac72f79,Aphash: Anchor-Based Probability Hashing for Image Retrieval,"A*STAR, Singapore","Institute for Infocomm Research, A*STAR, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +ab6886252aea103b3d974462f589b4886ef2735a,Two-stage Multi-class AdaBoost for Facial Expression Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +e51f1ee5535017e10a5f77100ff892509ec6b221,Rough common vector: A new approach to face recognition,University of Aizu,University of Aizu,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.52367280,139.93807246,edu, +e5ea7295b89ef679e74919bf957f58d55ad49489,Gaussian Mixture Models based on the Phase Spectra for Illumination Invariant Face Identification on the Yale Database,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e57108607d94aa158eb22ae50540ae6080e48d4b,Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +e5c687c8c84f1cdb9d9fbc9b6ff7518ff4d71056,Classifiability-Based Discriminatory Projection Pursuit,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +e57ce6244ec696ff9aa42d6af7f09eed176153a8,Instantaneous real-time head pose at a distance,Heriot-Watt University,Heriot-Watt University,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK",55.91029135,-3.32345777,edu, +e50ec6b6d1c189edc127eb403c41a64f34fc0a6c,Learning Flexible Block based Local Binary Patterns for unconstrained face detection,"Advanced Technologies Application Center, Havana, Cuba","Advanced Technologies Application Center, Siboney Playa, Havana, Cuba","Playa, Havana, Cuba",23.08862140,-82.44819440,edu, +e546572f8205570de4518bcf8d0345465e51d7a0,Residue boundary histograms for action recognition in the compressed domain,University of New South Wales,University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.23124025,edu, +e287ff7997297ce1197359ed0fb2a0bd381638c9,Joint-Feature Guided Depth Map Super-Resolution With Face Priors,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +e2faaebd17d10e2919bd69492787e7565546a63f,Exploring hybrid spatio-temporal convolutional networks for human action recognition,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +e2106bb3febb4fc8fe91f0fcbc241bcda0e56b1e,Image classification: A hierarchical dictionary learning approach,"Army Research Office, Raliegh, NC","Army Research Office, RTP, Raliegh, NC, United States of America","800 Park Offices Dr, Durham, NC 27703, USA",35.89612180,-78.87039630,mil, +e2f78d2f75a807b89a13115a206da4661361fa71,Trip Outfits Advisor: Location-Oriented Clothing Recommendation,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +f472cb8380a41c540cfea32ebb4575da241c0288,Cross-dataset learning and person-specific normalisation for automatic Action Unit detection,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +f41d7f891a1fc4569fe2df66e67f277a1adef229,"Combining nonuniform sampling, hybrid super vector, and random forest with discriminative decision trees for action recognition","Samsung SAIT, Korea","Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea","130 Samseong-ro, Maetan 3(sam)-dong, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea",37.25202260,127.05550190,company, +f4411787688ca40466ee059ec64bf56d746733c1,Human emotion and cognition recognition from body language of the head using soft computing techniques,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +f4465454811acb2021a46d84d94fc88e2dda00a6,An interactive facial expression generation system,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +f41e80f941a45b5880f4c88e5bf721872db3400f,Differential evolution-based subspace clustering via thresholding ridge regression,Jaypee Institute of Information Technology,Jaypee Institute of Information Technology,"Jaypee Institute of Information Technology, Noida, A-10, National Highway 24 Bypass, Asha Pushp Vihar, Kaushambi, Ghaziabad, Uttar Pradesh, 201001, India",28.63004430,77.37208230,edu, +f4ba07d2ae6c9673502daf50ee751a5e9262848f,Real-time multi-view facial landmark detector learned by the structured output SVM,"National Institute of Informatics, Japan","National Institute of Informatics, Japan","2 Chome-1-2 Hitotsubashi, Chiyoda, Tokyo 100-0003, Japan",35.69248530,139.75825330,edu, +f449c85b8ba5fa67ead341c7ad4ec396f4ab2dd6,Sample Weighting: An Inherent Approach for Outlier Suppressing Discriminant Analysis,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +f486624efa750d718a670fba3c7f21b1c84ebaeb,Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +f4b5a8f6462a68e79d643648c780efe588e4b6ca,Enforcing similarity constraints with integer programming for better scene text recognition,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +f39783847499dd56ba39c1f3b567f64dfdfa8527,On categorising gender in surveillance imagery,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +f374ac9307be5f25145b44931f5a53b388a77e49,Improvements in Active Appearance Model based synthetic age progression for adult aging,University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.04775327,edu, +eb38f20eaa1b849cabec99815883390f84daf279,Automatic face detection in video sequences using local normalization and optimal adaptive correlation techniques,Ryerson University,Ryerson University,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.37908010,edu, +eb9867f5efc98d3203ce1037f9a8814b0d15d0aa,Periocular recognition based on Gabor and Parzen PNN,"Centre of Development of Advanced Computing, Mumbai, India","Centre of Development of Advanced Computing (CDAC) Mumbai, 400049, India","9, 10th Gulmohar Cross Rd, Gulmohar Road, JVPD Scheme, Juhu, Mumbai, Maharashtra 400049, India",19.11471490,72.83383690,edu, +ebbceab4e15bf641f74e335b70c6c4490a043961,Evaluating the performance of face-aging algorithms,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.04577648,edu, +ebc2a3e8a510c625353637e8e8f07bd34410228f,Dual Sparse Constrained Cascade Regression for Robust Face Alignment,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +eb5c1e526fe2d17778c68f60c874c3da0129fabd,A robust facial landmark detection method in multi-views,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +ebce3f5c1801511de9e2e14465482260ba5933cc,More than a Feeling: The MiFace Framework for Defining Facial Communication Mappings,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.99625394,edu, +eb240521d008d582af37f0497f12c51f4bab16c8,Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +ebb3d5c70bedf2287f9b26ac0031004f8f617b97,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +ebeb0546efeab2be404c41a94f586c9107952bc3,Multi-cue Augmented Face Clustering,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,Enhanced face detection using body part detections for wearable cameras,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +c7745f941532b7d6fa70db09e81eb1167f70f8a7,Rank-one Projections with Adaptive Margins for Face Recognition,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +c7cd490e43ee4ff81e8f86f790063695369c2830,Use fast R-CNN and cascade structure for face detection,"Beijing FaceAll Co., Beijing, China","Beijing FaceAll Co. Beijing, China","Beijing, China",39.90419990,116.40739630,edu, +c07ab025d9e3c885ad5386e6f000543efe091c4b,Preserving Model Privacy for Machine Learning in Distributed Systems,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +c0f9fae059745e50658d9605bd8875fc3a2d0b4b,Vision-based animation of 3D facial avatars,Sejong University,"Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University, Seoul, South Korea","209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, South Korea",37.55025960,127.07313900,edu, +c0b02be66a5a1907e8cfb8117de50f80b90a65a8,Manifold learning in sparse selected feature subspaces,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +c0f67e850176bb778b6c048d81c3d7e4d8c41003,Action recognition with gradient boundary convolutional network,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +ee2217f9d22d6a18aaf97f05768035c38305d1fa,Detection of facial parts via deformable part model using part annotation,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +ee56823f2f00c8c773e4ebc725ca57d2f9242947,Modest face recognition,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +ee2ec0836ded2f3f37bf49fa0e985280a8addaca,Face verification across age progression: A survey of the state-of-the-art,University of KwaZulu-Natal,University of KwaZulu-Natal,"238 Mazisi Kunene Rd, Glenwood, Durban, 4041, South Africa",-29.86742190,30.98072720,edu, +eeaeca3a601d65d2d978bf3da43ab42fa5e08ed2,Fisher discrimination sparse learning based on graph embedding for image classification,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,Structure-Aware Slow Feature Analysis for Age Estimation,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +c92e36689ef561df726a7ae861d9c166c3934908,Face hallucination by deep traversal network,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +c9efcd8e32dced6efa2bba64789df8d0a8e4996a,Deep Convolutional Neural Network with Independent Softmax for Large Scale Face Recognition,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +c907104680ad53bdc673f2648d713e4d26335825,Dataset and Metrics for Adult Age-Progression Evaluation,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +c9832564d5dc601113b4d80e5a05ede6fee9f7dd,Pre-trained classifiers with One Shot Similarity for context aware face verification and identification,"TCS Research, New Delhi, India","TCS Research, New Delhi, India","23, Prithviraj Rd, Tughlak Road Area, New Delhi, Delhi 110003, India",28.60208600,77.22407600,company, +c90427085909029afd2af01d1967e80b78e01b88,Gaze-Assisted Multi-Stream Deep Neural Network for Action Recognition,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +fc7b34a2e43bb3d3585e1963bb64a488e2f278a0,A Framework of Joint Graph Embedding and Sparse Regression for Dimensionality Reduction,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +fcd3d557863e71dd5ce8bcf918adbe22ec59e62f,Facial landmark localization based on hierarchical pose regression with cascaded random ferns,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +fcc6fe6007c322641796cb8792718641856a22a7,Automatic facial makeup detection with application in face recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +fc8fb68a7e3b79c37108588671c0e1abf374f501,Semantic Pooling for Complex Event Analysis in Untrimmed Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +fc8990088e0f1f017540900bc3f5a4996192ff05,Hierarchical bilinear network for high performance face detection,Chinese Academy of Science,"Key Lab of Intelligent Information Processing, Institute of Computer Technology, Chinese Academy of Science (CAS), Beijing, 100190, China","Beijing, China",39.90419990,116.40739630,edu, +fcb97ede372c5bddde7a61924ac2fd29788c82ce,Ordinary Preserving Manifold Analysis for Human Age and Head Pose Estimation,"Advanced Digital Sciences Center, Singapore","Advanced Digital Sciences Center, Singapore","1 Create Way, 14-02 Create Tower, Singapore 138602",1.30372570,103.77377630,edu, +fc5538e60952f86fff22571c334a403619c742c3,SampleBoost: Improving boosting performance by destabilizing weak learners based on weighted error analysis,University of North Texas,University of North Texas,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.20988790,-97.15147488,edu, +fcceea054cb59f1409dda181198ed4070ed762c9,Multiple face tracking method in the wild using color histogram features,Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.28300030,127.04548469,edu, +fc7f140fcedfe54dd63769268a36ff3f175662b5,FASTEN: An FPGA-Based Secure System for Big Data Processing,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +fd809ee36fa6832dda57a0a2403b4b52c207549d,A fully annotated thermal face database and its application for thermal facial expression recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +fdd19fee07f2404952e629cc7f7ffaac14febe01,Face recognition based on dictionary learning with the locality constraints of atoms,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +fd38163654a0551ed7f4e442851508106e6105d9,Face Recognition Assisted With 3D Face Model,Capital University of Economics and Business,"College of Information, Capital University of Economics and Business, Beijing, China.sanyecunfu@emails.bjut.edu.cn","121 Shoujingmao S Rd, Huaxiang, Fengtai Qu, Beijing Shi, China, 100070",39.84117100,116.31644700,edu, +f2902f5956d7e2dca536d9131d4334f85f52f783,Facial age estimation using Clustered Multi-task Support Vector Regression Machine,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +f2d605985821597773bc6b956036bdbc5d307386,Sharable and Individual Multi-View Metric Learning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +f2896dd2701fbb3564492a12c64f11a5ad456a67,Cross-database age estimation based on transfer learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +f27e5a13c1c424504b63a9084c50f491c1b17978,Robust Top-k Multiclass SVM for Visual Category Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +f25aa838fb44087668206bf3d556d31ffd75235d,Vinereactor: Crowdsourced Spontaneous Facial Expression Data,Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.03677740,-75.34202332,edu, +f2d15482e7055dd5f54cf4a8a8f60d8e75af7edf,High frequency compensated face hallucination,"Kao Corporation, Tokyo, Japan","Beauty Cosmetic Research Lab, Kao Corporation, Tokyo, Japan","Tokyo, Japan",35.68948750,139.69170640,edu, +f2eab39cf68de880ee7264b454044a55098e8163,Discriminative K-SVD for dictionary learning in face recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +f2cc459ada3abd9d8aa82e92710676973aeff275,Object class recognition using range of multiple computer vision algorithms,South East European University,South East European University,"Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија",41.98676415,20.96254516,edu, +f27fd2a1bc229c773238f1912db94991b8bf389a,How do you develop a face detector for the unconstrained environment?,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +f28ef0a61a45a8b9cd03aa0ca81863e1d54a31d1,An accurate eye pupil localization approach based on adaptive gradient boosting decision tree,"State Grid Shanghai Electric Power Company, Shanghai, China","Electric Power Research Institute, State Grid Shanghai Electric Power Company Shanghai, 200093, China","Shanghai, China",31.23039040,121.47370210,edu, +f201baf618574108bcee50e9a8b65f5174d832ee,Viewpoint-Consistent 3D Face Alignment,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +f5c57979ec3d8baa6f934242965350865c0121bd,An Across-Target Study on Visual Attentions in Facial Expression Recognition,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +f5a95f857496db376d69f7ac844d1f56e3577b75,"The LDOS-PerAff-1 corpus of facial-expression video clips with affective, personality and user-interaction metadata",University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +e3b9863e583171ac9ae7b485f88e503852c747b6,Deep Relative Attributes,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +cf4c1099bef189838877c8785812bc9baa5441ed,Semantic-free attributes for image classification,Paristech,"LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, France","3 Rue Michel Ange, 75016 Paris, France",48.84760370,2.26399340,edu, +cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,Application for video analysis based on machine learning and computer vision algorithms,Yaroslavl State University,Yaroslavl State University,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ",57.62521030,39.88456560,edu, +cf736f596bf881ca97ec4b29776baaa493b9d50e,Low Dimensional Deep Features for facial landmark alignment,"Samsung R&D Institute, Bangalore, India","Samsung R&D Institute, Bangalore, India","#2870, Phoenix Building, 4th Floor Bagmane Constellation Business Park, Outer Ring Rd, Doddanekundi, Marathahalli, Bengaluru, Karnataka 560037, India",12.98035370,77.69751010,company, +cf7a4442a6aad0e08d4aade8ec379c44f84bca8a,Learning parts-based representation for face transition,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +cf784156547c3be146706e2763c1a52d939d1722,Breaking video into pieces for action recognition,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,Subspace Learning for Facial Age Estimation Via Pairwise Age Ranking,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +cf54e9776d799aa183d7466094525251d66389a4,Key point localization for 3d model generation from facial illustrations using SURF and color features,Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.69750290,139.76139175,edu, +cf6851c24f489dabff0238e01554edea6aa0fc7c,An analytical method for face detection based on image patterns of EEG signals in the time-frequency domain,Tokushima University,"Institute of Technology and Science, Tokushima University, 2-1 Minamijyousanjima, 770-8506, Japan","2 Chome-24 Shinkuracho, Tokushima, Tokushima Prefecture 770-8501, Japan",34.07010740,134.55979330,edu, +cae41c3d5508f57421faf672ee1bea0da4be66e0,Palmprint recognition via discriminative index learning,University of Lugano,"Institute of Computational Science, University of Lugano, Switzerland","Via Giuseppe Buffi 13, 6900 Lugano, Switzerland",46.01073700,8.95810900,edu, +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734,Entropy-based active sparse subspace clustering,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +ca458f189c1167e42d3a5aaf81efc92a4c008976,Double Shrinking Sparse Dimension Reduction,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +ca8f23d9b9a40016eaf0467a3df46720ac718e1d,Face detection using Local Hybrid Patterns,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +ca44a838da4187617dca9f6249d8c4b604661ec7,Multi-pose face hallucination via neighbor embedding for facial components,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +cacce7f4ce74e3269f5555aa6fd83e48baaf9c96,Circle & Search: Attribute-Aware Shoe Retrieval,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +ca37933b6297cdca211aa7250cbe6b59f8be40e5,"Multi-task learning for smile detection, emotion recognition and gender classification",Hanoi University of Science and Technology,Hanoi University of Science and Technology,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam",21.00395200,105.84360183,edu, +e41246837c25d629ca0fad74643fb9eb8bf38009,Multi-color ULBP with wavelet transform in invariant pose face recognition,Universiti Teknologi Malaysia,"Computer Vision, Video and Image Processing (CvviP) Research Lab, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia","Sultan Ibrahim Chancellery Building, Jalan Iman, 81310 Skudai, Johor, Malaysia",1.56327890,103.63821900,edu, +e4d53e7f4c2052940841abc08f9574655f3f7fb4,TaiChi: A Fine-Grained Action Recognition Dataset,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +e4d7b8eb0a8e6d2bb5b90b027c1bf32bad320ba5,Learning Semantic-Aligned Action Representation,Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091,edu, +e4fa062bff299a0bcef9f6b2e593c85be116c9f1,Cascaded Elastically Progressive Model for Accurate Face Alignment,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +e47e8fa44decf9adbcdb02f8a64b802fe33b29ef,Robust Distance Metric Learning via Bayesian Inference,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +e42f3c27391821f9873539fc3da125b83bffd5a2,An efficient method for face recognition under illumination variations,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,Cross-pose landmark localization using multi-dropout framework,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +e4c3587392d477b7594086c6f28a00a826abf004,Face recognition by facial attribute assisted network,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +fe14d8177cbdb7e5b4085302e6e044f7a4c19cb2,Gradient feature matching for expression invariant face recognition using single reference image,University of Dayton,University of Dayton,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.73844400,-84.17918747,edu, +fe5d6c65e51386f4d36f7434fe6fcd9494fe9361,Discriminant Manifold Learning via Sparse Coding for Robust Feature Extraction,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +c847de9faa1f1a06d5647949a23f523f84aba7f3,Moving face spoofing detection via 3D projective invariants,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +c83d142a47babe84e8c4addafa9e2bb9e9b757a5,Facial expression recognition with robust covariance estimation and Support Vector Machines,University of Thessaloniki,University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +c83e26622b275fdf878135e71c23325a31d0e5fc,Denser Trajectories of Anchor Points for Action Recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +c8fb8872203ee694d95da47a1f9929ac27186d87,View and texture-independent facial expression recognition in videos using dynamic programming,"Compiegne University of Technology, France","HEUDIASYC Mixed Res. Unit, Compiegne Univ. of Technol., France","57 Avenue de Landshut, 60200 Compiègne, France",49.40075300,2.79528080,edu, +c8bc8c99acd009e4d27ddd8d9a6e0b899d48543e,Confidence fusion based emotion recognition of multiple persons for human-robot interaction,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +c81b27932069e6c7016bfcaa5e861b99ac617934,Leveraging geometric correlation for input-adaptive facial landmark regression,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +fb3aaf18ea07b30d1836e7cf2ab9fa898627fe93,Facial Expression Recognition Using Weighted Mixture Deep Neural Network Based on Double-Channel Facial Images,"Changzhou Textile Garment Institute, Changzhou, China","College of Mechanical and Electrical, Changzhou Textile Garment Institute, Changzhou, China","China, Jiangsu, Changzhou, Wujin, 武宜南路鸣凰镇北庙桥加油站北50米",31.68423300,119.93616400,edu, +fb1b6138aeb081adf853316c0d83ef4c5626a7fa,SCNN: Sequential convolutional neural network for human action recognition in videos,Chinese Academy of Science,"Key Lab of Intelligent Information Processing, Institute of Computer Technology, Chinese Academy of Science (CAS), Beijing, 100190, China","Beijing, China",39.90419990,116.40739630,edu, +fbc9ba70e36768efff130c7d970ce52810b044ff,Face-graph matching for classifying groups of people,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +ed9de242a23ad546902e1d5ec022dbb029cc2282,Local binary pattern orientation based face recognition,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +edfce091688bc88389dd4877950bd58e00ff1253,A talking profile to distinguish identical twins,Facebook,Facebook,"250 Bryant St, Mountain View, CA 94041, USA",37.39367170,-122.08072620,company,"Facebook, Mountain View, CA" +edbddf8c176d6e914f0babe64ad56c051597d415,Predicting Image Memorability Through Adaptive Transfer Learning From External Sources,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.36934730,120.67381800,edu, +ed273b5434013dcdb9029c1a9f1718da494a23a2,Off-Feature Information Incorporated Metric Learning for Face Recognition,Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.42050016,edu, +ed0d8997a4b7b80a7cd3592e98bdbe5c3aab0cee,A survey on compressed domain video analysis techniques,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +ed70d1a9435c0b32c0c75c1a062f4f07556f7016,Correlated warped Gaussian processes for gender-specific age estimation,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +edd6ed94207ab614c71ac0591d304a708d708e7b,Reconstructive discriminant analysis: A feature extraction method induced from linear regression classification,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +ede16b198b83d04b52dc3f0dafc11fd82c5abac4,LBP edge-mapped descriptor using MGM interest points for face recognition,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +c12260540ec14910f5ec6e38d95bdb606826b32e,Privileged Information-Based Conditional Structured Output Regression Forest for Facial Point Detection,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +c1a70d63d1667abfb1f6267f3564110d55c79c0d,Shadow compensation and illumination normalization of face image,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +c138c76809b8da9e5822fb0ae38457e5d75287e0,Random Forest Construction With Robust Semisupervised Node Splitting,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +c1581b5175994e33549b8e6d07b4ea0baf7fe517,Online incremental clustering with distance metric learning for high dimensional data,"Kyoto University, Japan",The Kyoto University of JAPAN,"Yoshidahonmachi, Sakyo Ward, Kyoto, Kyoto Prefecture 606-8501, Japan",35.02624440,135.78082180,edu, +c18a03568d4b512a0d8380cbb1fbf6bd56d11f05,A Wearable IoT with Complex Artificial Perception Embedding for Alzheimer Patients,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +c1173b8d8efb8c2d989ce0e51fe21f6b0b8d1478,Semi-Supervised Image-to-Video Adaptation for Video Action Recognition,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +c1c2775e19d6fd2ad6616f69bda92ac8927106a2,In the Pursuit of Effective Affective Computing: The Relationship Between Features and Registration,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c1fb854d9a04b842ff38bd844b50115e33113539,A Video-Based Facial Motion Tracking and Expression Recognition System,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +c17c7b201cfd0bcd75441afeaa734544c6ca3416,Layerwise Class-Aware Convolutional Neural Network,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +c175ebe550761b18bac24d394d85bdfaf3b7718c,Facial expression recognition using Fisher weight maps,"Tokyo University, Japan","Graduate Sch. of Inf. Sci. & Technol., Tokyo Univ., Japan","Tokyo, Japan",35.68948750,139.69170640,edu, +c61eaf172820fcafaabf39005bd4536f0c45f995,Spatio-Temporal Scale Selection in Video Data,"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.07063213,edu, +c6382de52636705be5898017f2f8ed7c70d7ae96,Unconstrained face detection: State of the art baseline and challenges,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +c631a31be2c793d398175ceef7daff1848bb6408,Emotional condition in the Health Smart Homes environment: emotion recognition using ensemble of classifiers,University of São Paulo,"Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, Brazil","Av. Trab. São Carlense, 400 - Centro, São Carlos - SP, 13566-590, Brazil",-22.00703470,-47.89493230,edu, +c60601bdb5465d8270fdf444e5d8aeccab744e29,Rotation invariant Facial Expression Recognition in image sequences,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +ecac3da2ff8bc2ba55981467f7fdea9de80e2092,Face recognition under varying lighting conditions using self quotient image,Chinese Academy of Science,"Key Lab of Intelligent Information Processing, Institute of Computer Technology, Chinese Academy of Science (CAS), Beijing, 100190, China","Beijing, China",39.90419990,116.40739630,edu, +ecc4be938f0e61a9c6b5111e0a99013f2edc54b9,Improving the recognition of faces occluded by facial accessories,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +ec5c63609cf56496715b0eba0e906de3231ad6d1,Private and Scalable Personal Data Analytics Using Hybrid Edge-to-Cloud Deep Learning,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,"Matching Software-Generated Sketches to Face Photographs With a Very Deep CNN, Morphed Faces, and Transfer Learning",University of Malta,University of Malta,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.90232260,14.48341890,edu, +4e1d89149fc4aa057a8becce2d730ec6afd60efa,IPCM separability ratio for supervised feature selection,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +4ea63435d7b58d41a5cbcdd34812201f302ca061,Robust blurred face recognition using sample-wise kernel estimation and random compressed multi-scale local binary pattern histograms,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +4e6e5cb93e7e564bc426b5b27888d55101504c50,Analyzing user behavior in online advertising with facial expressions,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +4eeccbbb98de4f2e992600482fd6b881ace014bb,Multi-pose Facial Expression Recognition Using Transformed Dirichlet Process,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.35775700,-83.06286711,edu, +4e581831d24fd90b0b5228b9136e76fa3e8f8279,LGE-KSVD: Robust Sparse Representation Classification,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +4eb8030b31ff86bdcb063403eef24e53b9ad4329,LSTM for dynamic emotion and group emotion recognition in the wild,Beijing Normal University,Beijing Normal University,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.35970438,edu, +4e37cd250130c6fd60e066f0c8efb3cbb778c421,"Discriminant Analysis via Joint Euler Transform and $\ell_{2,1}$ -Norm",Lancaster University,Lancaster University,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.00975365,-2.78757491,edu, +20d6a4aaf5abf2925fdce2780e38ab1771209f76,Double Supervision Face Recognition Based on Deep Learning,"Hexi University, China","Hexi University, Center for Information Technology, Zhangye, China","China, Gansu, Zhangye, Ganzhou, N Ring Rd, 环城北路",38.94385400,100.44471980,edu, +204f1cf56794bb23f9516b5f225a6ae00d3d30b8,An AdaBoost-Based Face Detection System Using Parallel Configurable Architecture With Optimized Computation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +20b405d658b7bb88d176653758384e2e3e367039,Face recognition with manifold-based kernel discriminant analysis,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +20eabf10e9591443de95b726d90cda8efa7e53bb,Discriminative Histogram Intersection Metric Learning and Its Applications,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +205f035ec90a7fa50fd04fdca390ce83c0eea958,Emotion Recognition Using Multiple Kernel Learning toward E-learning Applications,Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.06360710,147.35522340,edu, +189e5a2fa51ed471c0e7227d82dffb52736070d8,Cross-age face recognition using reference coding with kernel direct discriminant analysis,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +18855be5e7a60269c0652e9567484ce5b9617caa,Local Centre of Mass Face for face recognition under varying illumination,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.56115370,88.41310194,edu, +1860b8f63ce501bd0dfa9e6f2debc080e88d9baa,Local Large-Margin Multi-Metric Learning for Face and Kinship Verification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +18bfda16116e76c2b21eb2b54494506cbb25e243,Face Recognition in Global Harmonic Subspace,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +184dba921b932143d196c833310dee6884fa4a0a,Distributed face recognition system for indoor environments,"Istanbul Technical University, Turkey","Bilgisayar Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye","Maslak, 34467 Sarıyer/İstanbul, Turkey",41.10559410,29.02534010,edu, +18dd3867d68187519097c84b7be1da71771d01a3,Efficient evaluation of human-powered joins with crowdsourced join pre-filters,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.11120580,140.10551760,edu, +187f3ee3bc50a1f2471edc80d707e4fa1cac5b0b,Random Subspace Supervised Descent Method for Regression Problems in Computer Vision,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +18e54b74ed1f3c02b7569f53a7d930d72fc329f5,Robust Multiview Data Analysis Through Collective Low-Rank Subspace,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +188abc5bad3a3663d042ce98c7a7327e5a1ae298,Generalized Projection-Based M-Estimator,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +180bd019eab85bbf01d9cddc837242e111825750,A Content-Adaptive Joint Image Compression and Encryption Scheme,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +270acff7916589a6cc9ca915b0012ffcb75d4899,On the Applications of Robust PCA in Image and Video Processing,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.99625394,edu, +27812db1d2f68611cc284d65d11818082e572008,Computer vision for the blind: A dataset for experiments on face detection and recognition,University of Trieste,"DIA, University of Trieste, Italy","Via Alfonso Valerio, 6/1, Edificio C8, 34127 Trieste TS, Italy",45.66025100,13.79458400,edu, +27e5b7ae3506a0f7472ee9089cd2472442e71c14,Low-resolution degradation face recognition over long distance based on CCA,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.36934730,120.67381800,edu, +27b451abfe321a696c852215bb7efb4c2e50c89f,Panoramic Face Recognition,Chang Gung University,Chang Gung University,"長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣",25.03043800,121.39009513,edu, +279459cbbc5c6db4802e9c737cc72a612d76f7fc,DMMLN: A deep multi-task and metric learning based network for video classification,"National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China","National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China","Zhengzhou, Henan, China",34.74661100,113.62532800,edu, +272e487dfa32f241b622ac625f42eae783b7d9aa,Face recognition via semi-supervised discriminant local analysis,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +2744e6d526b8f2c1b297ac2d2458aaa08b0cda11,Example image-based feature extraction for face recognition,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +4b0cb10c6c3f2d581ac9eb654412f70bc72ed661,Automatic replication of teleoperator head movements and facial expressions on a humanoid robot,"Centre for Autism Research, Philadelphia, US","Centre for Autism Research, Philadelphia, US","5, 2716 South St, Philadelphia, PA 19104, USA",39.94558380,-75.18632190,edu, +4b9b30066a05bdeb0e05025402668499ebf99a6b,Real-time face detection using Gentle AdaBoost algorithm and nesting cascade structure,Huaqiao University,Huaqiao University,"华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国",24.60047120,118.08165740,edu, +4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,Understanding the discrimination power of facial regions in forensic casework,"Dirección General de la Guardia Civil, Madrid, Spain","Dirección General de la Guardia Civil - DGGC Madrid, Spain","Calle de Guzmán el Bueno, 110, 28003 Madrid, Spain",40.44455650,-3.71227850,edu, +4b9ec224949c79a980a5a66664d0ac6233c3d575,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +4ba2f445fcbbad464f107b036c57aa807ac5c0c2,Sparse Discriminative Multimanifold Grassmannian Analysis for Face Recognition With Image Sets,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +4bf85ef995c684b841d0a5a002d175fadd922ff0,Ensemble of Deep Models for Event Recognition,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +4b9c47856f8314ecbe4d0efc65278c2ededb2738,Spatiotemporal Local Monogenic Binary Patterns for Facial Expression Recognition,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +4b936847f39094d6cb0bde68cea654d948c4735d,Face alignment under occlusion based on local and global feature regression,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.62850666,edu, +11bb2abe0ca614c15701961428eb2f260e3e2eef,Joint Normalization and Dimensionality Reduction on Grassmannian: A Generalized Perspective,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +11ba01ce7d606bab5c2d7e998c6d94325521b8a0,Regression based landmark estimation and multi-feature fusion for visual speech recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +110919f803740912e02bb7e1424373d325f558a9,Statistical Inference of Gaussian-Laplace Distribution for Person Verification,China University of Geosciences,"China University of Geosciences, Wuhan, China","388 Lumo Rd, Hongshan Qu, Wuhan Shi, Hubei Sheng, China, 430073",30.52715100,114.40076200,edu, +11e6cf1cbb33d67a3e3c87dcaf7031d6654bc0de,Object class detection: A survey,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.52385720,-113.52282665,edu, +113cd9e5a4081ce5a0585107951a0d36456ce7a8,Real-time Recognition of Facial Expression using Active Appearance Model with Second Order Minimization and Neural Network,Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.32107509,edu, +11f8d0a54e55c5e6537eef431cd548fa292ef90b,Deep learning algorithms for discriminant autoencoding,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +110359824a0e3b6480102b108372793265a24a86,Landmark perturbation-based data augmentation for unconstrained face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +1125760c14ea6182b85a09bf3f5bad1bdad43ef5,A Probabilistic Approach to Linear Subspace Fitting for Computer Vision Problems,Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.25309450,140.87365930,edu, +11a6593e6e35f95ebeb5233897d1d8bcad6f9c87,A Brain-Inspired Method of Facial Expression Generation Using Chaotic Feature Extracting Bidirectional Associative Memory,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +7d61b70d922d20c52a4e629b09465076af71ddfd,Nonnegative class-specific entropy component analysis with adaptive step search criterion,University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.12401870,113.54510901,edu, +7d45f1878d8048f6b3de5b3ec912c49742d5e968,Automatic Facial Expression Recognition System Using Deep Network-Based Data Fusion,Indian Institute of Technology Kanpur,Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.51318800,80.23651945,edu, +7d7b036ed01765c9473d695f029142128d442aaa,Real-Time Action Recognition With Deeply Transferred Motion Vector CNNs,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +7dc498d45f9fcb97acee552c6f587b65d5122c35,Face detection and landmark localization using Bilayer Tree Structured Model,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +7de8a8b437ec7a18e395be9bf7c8f2d502025cc6,Robust face recognition under illumination variation and occlusion (in english),"Beyazıt University, Ankara, Turkey","Bilgisayar Mühendisliği Bölümü, Ankara Yıldırım Beyazıt Üniversitesi, Ankara, Türkiye","Ankara, Turkey",39.93336350,32.85974190,edu, +298c2be98370de8af538c06c957ce35d00e93af8,Prototype-based class-specific nonlinear subspace learning for large-scale face verification,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +2961e14c327341d22d5f266a6872aa174add8ac4,Web Image Re-Ranking UsingQuery-Specific Semantic Signatures,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +29f298dd5f806c99951cb434834bc8dcc765df18,Computationally efficient template-based face recognition,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +293d69d042fe9bc4fea256c61915978ddaf7cc92,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +2983cf95743be82671a71528004036bd19172712,Asymmetric Binary Coding for Image Search,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +29a5d38390857e234c111f8bb787724c08f39110,Statistical appearance models for automatic pose invariant face recognition,TU Berlin,TU Berlin,"Franklinstraße 28-29, 10587 Berlin, Germany",52.51806410,13.32504250,edu,"Franklinstr. 28/29, 10587, Germany" +292e1c88d43a77dbe5c610f4f611cfdb6d3212b6,"Multimodal coordination of facial action, head rotation, and eye motion during spontaneous smiles",Pittsburgh University,"Pittsburgh Univ., PA, USA","4200 Fifth Ave, Pittsburgh, PA 15260, USA",40.44435330,-79.96083500,edu, +7c57ac7c9f84fbd093f6393e2b63c18078bf0fdf,Investigating 3-D Model and Part Information for Improving Content-Based Vehicle Retrieval,"Industrial Technology Research Institute, Hsinchu, Taiwan","Industrial Technology Research Institute, Hsinchu, Taiwan","工研院, 195, 中興路四段, 頭重里, 竹東鎮, 新竹縣, 31040, 臺灣",24.77417560,121.04509279,edu, +7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,Markov Chain Monte Carlo for Automated Face Image Analysis,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,Robust Statistical Frontalization of Human and Animal Faces,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +7c457c9a658327af6f6490729b4cab1239c22005,An Emotion Recognition System for Mobile Applications,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +7cfbf90368553333b47731729e0e358479c25340,"Towards a Unified Framework for Pose, Expression, and Occlusion Tolerant Automatic Facial Alignment",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7c13fa0c742123a6a927771ce67da270492b588c,Deep Bidirectional Cross-Triplet Embedding for Online Clothing Shopping,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +7c66e7f357553fd4b362d00ff377bffb9197410e,Gaussian Process Domain Experts for Modeling of Facial Affect,MIT Media Lab,"MIT Media Laboratory, Cambridge, MA, USA","75 Amherst St, Cambridge, MA 02139, USA",42.36035700,-71.08726400,edu, +16b0c171fb094f677fcdf78bbb9aaef0d5404942,Category-Specific Object Image Denoising,"CSIRO, Australia","NICTA, PO Box 6020, St Lucia, QLD 4067, Australia","Research Way, Clayton VIC 3168, Australia",-37.90627370,145.13194490,edu,f.k.a. NICTA +16eaa26a84468b27e559215db01c53286808ec2a,MoFAP: A Multi-level Representation for Action Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +16c1b592d85d13f1ba4eff0afb4441bb78650785,Multilinear Spatial Discriminant Analysis for Dimensionality Reduction,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +16fadde3e68bba301f9829b3f99157191106bd0f,Utility data annotation with Amazon Mechanical Turk,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +16fc82d44188eb49a151bd5836a29911b3bfabcb,Sparse Softmax Vector Coding Based Deep Cascade Model,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.50841740,106.57858552,edu, +42441f1fee81c8fd42a74504df21b3226a648739,Automatic gender recognition based on pixel-pattern-based texture feature,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +42fff5b37006009c2dbfab63c0375c7c7d7d8ee3,Regularized directional feature learning for face recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +42a6beed493c69d5bad99ae47ea76497c8e5fdae,Joint salient object detection and existence prediction,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +425ea5656c7cf57f14781bafed51182b2e6da65f,Structured Kernel Dictionary Learning With Correlation Constraint for Object Recognition,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +89e31777f221ddb3bc9940d7f520c8114c4148a2,Integrating Spectral Kernel Learning and Constraints in Semi-Supervised Classification,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +89497854eada7e32f06aa8f3c0ceedc0e91ecfef,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,"AI Laboratories, Alibaba Group, Hangzhou, China","AI Laboratories, Alibaba Group, Hangzhou, China","Hangzhou, Zhejiang, China",30.27408400,120.15507000,company, +4551194408383b12db19a22cca5db0f185cced5c,Nonlinear Topological Component Analysis: Application to Age-Invariant Face Recognition,"Center for Development of Advanced Technologies, Algeria","Division of Design of Intelligent Machines, Center for Development of Advanced Technologies, Algiers, Algeria","haouch oukil، Cité 20 aout 1956 Baba Hassen 5 juillet 1962، Alger 16303, Algeria",36.68948700,2.98187700,edu,"Center for Development of Advanced Technologies, Algiers, Algeria" +45e043dffc57a9070f483ac4aec2c5cd2cec22cb,SuperpowerGlass: A Wearable Aid for the At-Home Therapy of Children with Autism,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +452ea180cf4d08d7500fc4bc046fd7141fd3d112,A robust approach to facial ethnicity classification on large scale face databases,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +45edb29fb7eed5a52040300e1fd3cd53f1bdb429,Facial makeup detection via selected gradient orientation of entropy information,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +4512b87d68458d9ba0956c0f74b60371b6c69df4,SuperPatchMatch: An Algorithm for Robust Correspondences Using Superpixel Patches,University of Bordeaux,"UMR 5800, LaBRI, Talence, France","Domaine universitaire, 351, cours de la Libération, 33405 Talence, France",44.80837500,-0.59670500,edu, +459eb3cfd9b52a0d416571e4bc4e75f979f4b901,Vision development of humanoid head robot SHFR-III,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +453bf941f77234cb5abfda4e015b2b337cea4f17,Robust regression based face recognition with fast outlier removal,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +1fd7a17a6c630a122c1a3d1c0668d14c0c375de0,"Facial landmark localization: Past, present and future",Moulay Ismail University,Moulay Ismail University,"Marjane 2, BP: 298، Meknes 50050, Morocco",33.85611100,-5.57439100,edu,Moulay Ismail University +1fe1a78c941e03abe942498249c041b2703fd3d2,Face alignment based on improved shape searching,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.62850666,edu, +1f5725a4a2eb6cdaefccbc20dccadf893936df12,On the relevance of age in handwritten biometric recognition,"EUP Mataró, Spain","EUP Mataró, Spain","Mataró, Barcelona, Spain",41.53811240,2.44474060,edu, +1fb980e137b2c9f8781a0d98c026e164b497ddb1,GazeDrone: Mobile Eye-Based Interaction in Public Space Without Augmenting the User,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +73ba33e933e834b815f62a50aa1a0e15c6547e83,Invariant feature extraction for facial recognition: A survey of the state-of-the-art,University of KwaZulu-Natal,University of KwaZulu-Natal,"238 Mazisi Kunene Rd, Glenwood, Durban, 4041, South Africa",-29.86742190,30.98072720,edu, +7343f0b7bcdaf909c5e37937e295bf0ac7b69499,Adaptive Cascade Deep Convolutional Neural Networks for face alignment,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,Report on the BTAS 2016 Video Person Recognition Evaluation,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +87610276ccbc12d0912b23fd493019f06256f94e,Unsupervised feature selection for proportional data clustering via expectation propagation,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +872ff48a3acfbf96376fd048348372f5137615e4,Parallelized deformable part models with effective hypothesis pruning,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +876583a059154def7a4bc503b21542f80859affd,On the analysis of factors influencing the performance of facial age progression,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.04577648,edu, +8027a9093f9007200e8e69e05616778a910f4a5f,Generating face images under multiple illuminations based on a single front-lighted sample without 3D models,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,Learning Kernel Extended Dictionary for Face Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +80aa455068018c63237c902001b58844fcc6f160,Sparse eigentracker augmented by associative mapping to 3D shape,Okayama University,Okayama University,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.68933930,133.92222720,edu, +80ed678ef28ccc1b942e197e0393229cd99d55c8,Face recognition based on Kinect,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +809e5884cf26b71dc7abc56ac0bad40fb29c671c,On SIFTs and their scales,Technion,Technion,"Haifa, 3200003, Israel",32.77677830,35.02312710,edu, +74cec83ee694b5d0e07d5d0bacd0aa48a80776aa,Improved discriminant nearest feature space analysis for variable lighting face recognition,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +745e74ae84e1b2b8690d07db523531642023d6c4,Face recognition via non-negative sparse low-rank representation classification,Yangzhou University,"College of Information Engineering, Yangzhou University, Yangzhou, China","196 Huayang W Rd, Hanjiang Qu, Yangzhou Shi, Jiangsu Sheng, China",32.33934870,119.39704100,edu, +1ab4fdcd431286a2fe9538cb9a9e3c67016fa98a,UGC-JU face database and its benchmarking using linear regression classifier,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.56115370,88.41310194,edu, +1aa61dd85d3a5a2fe819cba21192ec4471c08628,Deep learning based forensic face verification in videos,"Institute of Forensic Science, Ministry of Justice, Shanghai, China","Institute of Forensic Science, Ministry of Justice, Shanghai 200063, China","1347 Guangfu W Rd, Putuo Qu, Shanghai Shi, China, 200063",31.22665700,121.41905100,gov, +1ad5cb4c1eec5a9666b5dbbb6fab43576d0935db,Rank-constrained PCA for intrinsic images decomposition,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.11852361,edu, +1a8d40bcfb087591cc221086440d9891749d47b8,Directional ternary pattern ( DTP) for facial expression recognition,"Islamic University of Technology, Bangladesh","Islamic University of Technology, Bangladesh","Board Bazar, Dhaka- Mymensingh Highway, Gazipur 1704, Bangladesh",23.94726100,90.37993250,edu, +1a53ca294bbe5923c46a339955e8207907e9c8c6,What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +1afef6b389bd727c566cd6fbcd99adefe4c0cf32,Towards resolution invariant face recognition in uncontrolled scenarios,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +1aeef2ab062c27e0dbba481047e818d4c471ca57,Analyzing impact of image scaling algorithms on viola-jones face detection framework,"Central Electronics Research Institute, Pilani, India","Advanced Electronics System, Academy of Scientific and Industrial Research, CSIR-Central Electronics Research Institute, Pilani, India","Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031, India",28.36561930,75.58349530,edu, +1a81c722727299e45af289d905d7dcf157174248,BabyTalk: Understanding and Generating Simple Image Descriptions,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +1a40c2a2d17c52c8b9d20648647d0886e30a60fa,Hybrid hypergraph construction for facial expression recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +1ad780e02edf155c09ea84251289a054b671b98a,Facial expression recognition via Gabor wavelet and structured sparse representation,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +287de191c49a3caa38ad7594093045dfba1eb420,Object specific deep feature and its application to face detection,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +281b91c35a1af97b1405bc724a04e2be6e24971b,A novel gradient synthesis-based illumination formalization method for face recognition under varying lighting conditions,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +28d55935cc36df297fe21b98b4e2b07b5720612e,Efficient subspace clustering of large-scale data streams with misses,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.23708813,edu, +28a45770faf256f294ce3bbd5de25c6d5700976e,Accurate mouth state estimation via convolutional neural networks,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +283d381c5c2ba243013b1c4f5e3b29eb906fa823,Shape parameter optimization for Adaboosted active shape model,Fuji Photo Film,"Imaging Software Technol. Center, Fuji Photo Film Co. Ltd., Japan","Japan, 〒010-0001 Akita Prefecture, Akita, Nakadori, 2 Chome−2−32 山二ビル 6F",39.71635900,140.12378700,company, +170aa0f16cd655fdd4d087f5e9c99518949a1b5c,Facial Shape-from-shading and Recognition Using Principal Geodesic Analysis and Robust Statistics,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +179545c1fc645cb2ad9b31a30f48352d541876ff,Kernel-based Subspace Analysis for Face Recognition,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +179564f157a96787b1b3380a9f79701e3394013d,MACH: my automated conversation coach,University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.43066425,edu, +1773d65c1dc566fd6128db65e907ac91b4583bed,Learning Temporal Dynamics for Video Super-Resolution: A Deep Learning Approach,Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.61083650,-96.35212800,edu, +17d03da4db3bb89537d644b682b2a091d563af4a,Recognition of Partially Occluded and Rotated Images With a Network of Spiking Neurons,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.52385720,-113.52282665,edu, +7b47dd9302b3085cd6705614b88d7bdbc8ae5c13,Face Recognition Using Gabor-Based Feature Extraction and Feature Space Transformation Fusion Method for Single Image per Person Problem,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +7b618a699b79c1272f6c83101917ad021a58d96b,BAUM-2: a multilingual audio-visual affective face database,Bahçeşehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.97697953,edu, +8f71c97206a03c366ddefaa6812f865ac6df87e9,A face tracking framework based on convolutional neural networks and Kalman filter,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +8f3675e979629ca9cee9436d37763f546edb8d40,Video action classification by deep learning,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +8fee7b38358815e443f8316fa18768d76dba12e3,Robust nonnegative matrix factorization using L21-norm,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +8fa9cb5dac394e30e4089bf5f4ffecc873d1da96,Personalized clothing recommendation combining user social circle and fashion style consistency,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.69784700,104.05208110,edu, +8fba84af61ac9b5e2bcb69b6730a597d7521ad73,Context constrained facial landmark localization based on discontinuous Haar-like feature,Panasonic Singapore,"Panasonic Singapore Laboratories Pte Ltd (PSL), Tai Seng Industrial Estate 534415, Singapore",Singapore,1.33926090,103.89160770,company,"Tai Seng Industrial Estate 534415, Singapore" +8fe5feeaa72eddc62e7e65665c98e5cb0acffa87,Hierarchical committee of deep convolutional neural networks for robust facial expression recognition,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +8fb2ec3bbd862f680be05ef348b595e142463524,Multi-View Active Shape Model with Robust Parameter Estimation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +8f73af52d87c94d0bd43242462fd68d974eda331,Improving faces/non-faces discrimination in video sequences by using a local spatio-temporal representation,"Advanced Technologies Application Center, Havana, Cuba","Advanced Technologies Application Center, Siboney Playa, Havana, Cuba","Playa, Havana, Cuba",23.08862140,-82.44819440,edu, +8f99f7ccb85af6d4b9e015a9b215c529126e7844,Face image-based age and gender estimation with consideration of ethnic difference,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +8f051647bd8d23482c6c3866c0ce1959b8bd40f6,Semi-supervised classification by discriminative regularization,Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.42050016,edu, +8fc36452a49cb0fd43d986da56f84b375a05b4c1,Crowdsourcing facial expressions using popular gameplay,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +8aff9c8a0e17be91f55328e5be5e94aea5227a35,Sparse Tensor Discriminant Color Space for Face Verification,Raytheon BBN Technologies,"Raytheon BBN Technologies, Cambridge, MA, USA","10 Moulton St, Cambridge, MA 02138, USA",42.38980550,-71.14759860,company, +8ad0a88a7583af819af66cf2d9e8adb860cf9c34,Layer-wise supervised neural network for face alignment with multi-task regularization,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +8ac2d704f27a2ddf19b40c8e4695da629aa52a54,Expressions Recognition of North-East Indian (NEI) Faces,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.56115370,88.41310194,edu, +8a2210bedeb1468f223c08eea4ad15a48d3bc894,Do you see what I see?: designing a sensory substitution device to access non-verbal modes of communication,University of Memphis,University of Memphis,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA",35.11893870,-89.93721960,edu, +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae,Place-centric Visual Urban Perception with Deep Multi-instance Regression,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +8a63a2b10068b6a917e249fdc73173f5fd918db0,"A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases",University of South Florida,University of South Florida,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.05999990,-82.41383619,edu, +8a4893d825db22f398b81d6a82ad2560832cd890,Evaluating AAM fitting methods for facial expression recognition,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +8a2bedaa38abf173823944f0de2c84f5b2549609,Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise,Anhui Polytechnic University,Anhui Polytechnic University,"安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.34185955,118.40739712,edu, +8aa1591bf8fcb44f2e9f2f10d1029720ccbb8832,"Simple, Efficient and Effective Encodings of Local Deep Features for Video Action Recognition",University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +7ebfa8f1c92ac213ff35fa27287dee94ae5735a1,A Novel Transient Wrinkle Detection Algorithm and Its Application for Expression Synthesis,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +7e456e94f3080c761f858264428ee4c91cd187b2,Recognition of facial expressions using locally weighted and adjusted order Pseudo Zernike Moments,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +7e27d946d23229220bcb6672aacab88e09516d39,DLSTM approach to video modeling with hashing for large-scale video retrieval,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +10cb39e93fac194220237f15dae084136fdc6740,Informativeness of Degraded Data in Training a Classification System,"Space and Naval Warfare Systems Center Pacific, San Diego, CA","Space and Naval Warfare Systems Center Pacific, San Diego, CA, 92152, United States","53560 Hull St, San Diego, CA 92152, USA",32.70865800,-117.24724910,mil, +10e2f2ad1dedec6066e063cb2098b089b35905a8,Crowd Scene Understanding from Video: A Survey,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +10df1d4b278da991848fb71b572f687bd189c10e,Key frame extraction for salient activity recognition,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +104ee18b513b52386f871e959c1f9e5072604e93,A new dataset for hand gesture estimation,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +10f4bbf87a44bab3d79e330e486c897e95f5f33f,An Experimental Evaluation of Three Classifiers for Use in Self-Updating Face Recognition Systems,Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949,edu, +10bfa4cecd64b9584c901075d6b50f4fad898d0b,Optimized 3D Lighting Environment Estimation for Image Forgery Detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +10bf35bf98cfe555dfc03b5f03f2769d330e3af9,Robust Adaptive Embedded Label Propagation With Weight Learning for Inductive Classification,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +1050cd9bf281d0b7367c03d931e6e0b4fc08ccd3,Facial expression recognition via deep learning,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +193474d008cab9fa1c1fa81ce094d415f00b075c,A Review of Human Action Recognition in Video,Communication University of China,Communication University of China,"中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.91199955,116.55189141,edu, +1966bddc083886a9b547e1817fe6abc352a00ec3,Gender Classification Using Pyramid Segmentation for Unconstrained Back-facing Video Sequences,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +19705579b8e7d955092ef54a22f95f557a455338,Fiducial facial point extraction with cross ratio,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +1979e270093b343d62e97816eeed956062e155a0,Multi-lane architecture for eigenface based real-time face recognition,Old Dominion University,Old Dominion University,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.88568200,-76.30768579,edu, +194f5d3c240d06575403c9a422a0ebc86d43b91e,Real-time face detection and phone-to-face distance measuring for speech recognition for multi-modal interface in mobile device,Chosun University,Chosun University,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국",35.14410310,126.92578580,edu, +1902288256839539aeb5feb3e1699b963a15aa1a,Exploring multimodal video representation for action recognition,University of Potsdam,"Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482, Germany","Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany",52.39399650,13.13336570,edu, +191b70fdd6678ef9a00fd63710c70b022d075362,Synthesizing pose and lighting variation from object motion,Toshiba,"Corp. Res. & Dev. Center, Toshiba Corp., Kawasaki, Japan","Japan, 〒212-8582 Kanagawa Prefecture, Kawasaki, Saiwai Ward, 小向東芝町1",35.54931130,139.69201440,company, +4c141534210df53e58352f30bab558a077fec3c6,Bridging Music and Image via Cross-Modal Ranking Analysis,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +4c6886c489e93ccab5a1124555a6f3e5b0104464,Metric learning based on attribute hypergraph,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +4ca9753ab023accbfa75a547a65344ee17b549ba,A general framework for Approximate Nearest Subspace search,Technion,Technion,"Haifa, 3200003, Israel",32.77677830,35.02312710,edu, +4c0846bcfa64d9e810802c5b7ef0f8b43523fe54,Adaptive Anomaly Detection with Kernel Eigenspace Splitting and Merging,"Intel Labs Europe, London, United Kingdom","Intel Labs Europe, London, United Kingdom","40 Bank St, Canary Wharf, London E14 5NR, UK",51.50280900,-0.01945300,company, +4cfe921ac4650470b0473fd52a2b801f4494ee64,Human vision inspired framework for facial expressions recognition,University of Lyon,"Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France","20 Avenue Albert Einstein, 69100 Villeurbanne, France",45.78332440,4.87819840,edu, +4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,A Learning Framework for Age Rank Estimation Based on Face Images With Scattering Transform,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +4cec3e5776090852bef015a8bbe74fed862aa2dd,Class-Discriminative Kernel Sparse Representation-Based Classification Using Multi-Objective Optimization,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +4c0cc732314ba3ccccd9036e019b1cfc27850c17,Late fusion and calibration for multimedia event detection using few examples,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +4c842fbd4c032dd4d931eb6ff1eaa2a13450b7af,A review of recent advances in visual speech decoding,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +268c4bb54902433bf00d11391178a162e5d674c9,Learning spatial weighting via quadratic programming for facial expression analysis,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +261a80216dda39b127d2b7497c068ec7e0fdf183,A Framework for Making Face Detection Benchmark Databases,Vols Taipei,Vols Taipei,"Taipei, Taiwan",25.03296940,121.56541770,edu, +2601b679fdd637f3cd978753ae2f15e8759dd267,Joint classification of actions with matrix completion,Heriot-Watt University,Heriot-Watt University,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK",55.91029135,-3.32345777,edu, +2696d3708d6c6cccbd701f0dac14cc94d72dd76d,Nonnegative matrix factorization with Hessian regularizer,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +265a88a8805f6ba3efae3fcc93d810be1ea68866,Approximated Chi-square distance for histogram matching in facial image analysis: Face and expression recognition,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +26949c1ba7f55f0c389000aa234238bf01a32d3b,Coupled cascade regression for simultaneous facial landmark detection and head pose estimation,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +21d5c838d19fcb4d624b69fe9d98e84d88f18e79,Attribute-based continuous user authentication on mobile devices,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +21bd60919e2e182a29af455353141ba4907b1b41,Attended Visual Content Degradation Based Reduced Reference Image Quality Assessment,China University of Mining and Technology,China University of Mining and Technology,"China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.21525380,117.13985410,edu, +21b5af67618fcc047b495d2d5d7c2bf145753633,Warp that smile on your face: Optimal and smooth deformations for face recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +21cbf46c6adfb3a44ed2b30ff0b21a8391c18b13,Learning robust latent subspace for discriminative regression,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.13538360,113.29470496,edu, +21959bc56a160ebd450606867dce1462a913afab,Face recognition based on manifold constrained joint sparse sensing with K-SVD,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +21f5f65e832c5472d6d08f6ee280d65ff0202e29,Face Detection in Thermal Infrared Images: A Comparison of Algorithm- and Machine-Learning-Based Approaches,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +2149d49c84a83848d6051867290d9c8bfcef0edb,Label-Sensitive Deep Metric Learning for Facial Age Estimation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +4da4e58072c15904d4ce31076061ebd3ab1cdcd5,Learning deep facial expression features from image and optical flow sequences using 3D CNN,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +4d1f77d9418a212c61a3c75c04a5b3884f6441ba,Hierarchical and Spatio-Temporal Sparse Representation for Human Action Recognition,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +4d19401e44848fe65b721971bc71a9250870ed5f,Mgn: Multi-Glimpse Network for Action Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4d4736173a5e72c266e52f3a43bdcb2b58f237a2,Locally nonlinear regression based on kernel for pose-invariant face recognition,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +4d6d6369664a49f6992f65af4148cefef95055bc,Seamless texture stitching on a 3D mesh by poisson blending in patches,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +7535e3995deb84a879dc13857e2bc0796a2f7ce2,Fast density-weighted low-rank approximation spectral clustering,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +75d7ba926ef1cc2adab6c5019afbb2f69a5ca27d,Face recognition under varying illumination,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +75ce75c1a5c35ecdba99dd8b7ba900d073e35f78,Action unit intensity estimation using hierarchical partial least squares,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +75b51140d08acdc7f0af11b0ffa1edb40ebbd059,Selecting discriminant eigenfaces by using binary feature selection,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +754626bd5fb06fee5e10962fdfeddd495513e84b,Facial expression pair matching,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +81a4397d5108f6582813febc9ddbeff905474120,Unsupervised automatic attribute discovery method via multi-graph clustering,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +8184a92e1ccc7fdeb4a198b226feb325c63d6870,Deep learning for facial expression recognition: A step closer to a smartphone that knows your moods,"Fotonation LTD, Galway, Ireland","Fotonation LTD, Galway, Ireland","Galway, Ireland",53.27066800,-9.05679050,company, +8185be0689442db83813b49e215bf30870017459,Feature Learning for Image Classification Via Multiobjective Genetic Programming,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +81b8a6cabcd6451b21d5b44e69b0a355d9229cc4,Low-rank and sparse matrix recovery based on a randomized rank-revealing decomposition,Pontifical Catholic University of Rio de Janeiro,"Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, Brasil","R. Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-045, Brazil",-22.97910740,-43.23308250,edu, +81d81a2060366f29fd100f793c11acf000bd2a7f,Facial Expression Recognition Based on Rough Set Theory and SVM,Chongqing University of Posts and Telecommunications,Chongqing University of Posts and Telecommunications,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.53570460,106.60482474,edu, +81513764b73dae486a9d2df28269c7db75e9beb3,Learning Bases of Activity for Facial Expression Recognition,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +81d232e1f432db7de67baf4f30f240c62d1a9055,Improving human action recognitionby temporal attention,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +8127b7654d6e5c46caaf2404270b74c6b0967e19,Computer Expression Recognition Toolbox,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +81b0550c58e7409b4f1a1cd7838669cfaa512eb3,Task-dependent multi-task multiple kernel learning for facial action unit detection,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +81f101cea3c451754506bf1c7edf80a661fa4dd1,Exploiting sparsity and co-occurrence structure for action unit recognition,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5,Histogram equalized deep PCA with ELM classification for expressive face recognition,Khon Kaen University,Khon Kaen University,"มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.46007565,102.81211798,edu, +86fa086d02f424705bbea53943390f009191740a,Precise eye localization with improved SDM,"Samsung SAIT, Korea","Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea","130 Samseong-ro, Maetan 3(sam)-dong, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea",37.25202260,127.05550190,company, +865d4ce1751ff3c0a8eb41077a9aa7bd94603c47,Emotion recognition in the wild via sparse transductive transfer linear discriminant analysis,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +86afb1e38a96f2ac00e792ef353a971fd13c8474,How interesting images are: An atypicality approach for social networks,University of Hawaii,University of Hawaii,"University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA",21.29827950,-157.81869230,edu, +8686b15802529ff8aea50995ef14079681788110,Deformed Graph Laplacian for Semisupervised Learning,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +864d50327a88d1ff588601bf14139299ced2356f,Generating face images based on 3D morphable model,Slovak University of Technology,"Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Bratislava, Slovakia","Ilkovičova 2961/3, 841 04 Karlova Ves, Slovakia",48.15185320,17.07334460,edu, +8633732d9f787f8497c2696309c7d70176995c15,Multi-objective convolutional learning for face labeling,"Baidu Research, USA","Baidu Research, USA","1195 Bordeaux Dr, Sunnyvale, CA 94089, USA",37.40922650,-122.02366150,company, +72345fed8d068229e50f9ea694c4babfd23244a0,Comparative Study: Face Recognition via the Correlation Filter Technique,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +720763bcb5e0507f13a8a319018676eb24270ff0,What can visual content analysis do for text based image search?,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +72167c9e4e03e78152f6df44c782571c3058050e,Acume: A new visualization tool for understanding facial expression and gesture data,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +72119cb98f9502ec639de317dccea57fd4b9ee55,A new approach for face recognition under makeup changes,University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.68103280,-75.75401840,edu, +72d110df78a7931f5f2beaa29f1eb528cf0995d3,Facial emotion recognition system for autistic children: a feasible study based on FPGA implementation,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +44b827df6c433ca49bcf44f9f3ebfdc0774ee952,Deep Correlation Feature Learning for Face Verification in the Wild,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +443f4421e44d4f374c265e6f2551bf9830de5597,Effect of illumination on automatic expression recognition: A novel 3D relightable facial database,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +4490b8d8ab2ac693c670751d4c2bff0a56d7393d,Cognitive Gravity Model Based Semi-Supervised Dimension Reduction,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +44855e53801d09763c1fb5f90ab73e5c3758a728,Sentence Directed Video Object Codiscovery,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +44d93039eec244083ac7c46577b9446b3a071f3e,Empirical comparisons of several preprocessing methods for illumination insensitive face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2a92bda6dbd5cce5894f7d370d798c07fa8783f4,Class-Specific Kernel Fusion of Multiple Descriptors for Face Verification Using Multiscale Binarised Statistical Image Features,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +2afde207bd6f2e5fa20f3cf81940b18cc14e7dbb,Grassmannian Regularized Structured Multi-View Embedding for Image Classification,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +2a98b850139b911df5a336d6ebf33be7819ae122,Maximum entropy regularized group collaborative representation for face recognition,Georgia Southern University,Georgia Southern University,"Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA",32.42143805,-81.78450529,edu, +2ae2e29c3e9cc2d94a26da5730df7845de0d631b,Audio-Visual Recognition System in Compression Domain,University of Nottingham Malaysia,"University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia","Semenyih, Selangor, Malaysia",2.94513320,101.87609130,edu, +2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,A study of large-scale ethnicity estimation with gender and age variations,North Carolina Central University,North Carolina Central University,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA",35.97320905,-78.89755054,edu, +2a7058a720fa9da4b9b607ea00bfdb63652dff95,Continuous Probability Distribution Prediction of Image Emotions via Multitask Shared Sparse Regression,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +2a79bd36c56fd1634ca0f8089fe8aa9343eb92ce,Integrating Spatial and Discriminant Strength for Feature Selection and Linear Dimensionality Reduction,University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.68103280,-75.75401840,edu, +2a84f7934365f05b6707ea0ac225210f78e547af,A joint facial point detection method of deep convolutional network and shape regression,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +2a4984fb48c175d1e42c6460c5f00963da9f26b6,Binary pattern flavored feature extractors for Facial Expression Recognition: An overview,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2fd007088a75916d0bf50c493d94f950bf55c5e6,Projective Representation Learning for Discriminative Face Recognition,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +2f43b614607163abf41dfe5d17ef6749a1b61304,Investigating the Periocular-Based Face Recognition Across Gender Transformation,University of North Carolina at Wilmington,University of North Carolina at Wilmington,"University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.22498270,-77.86907744,edu, +2f67d5448b5372f639633d8d29aac9c0295b4d72,Facial expression classification on web images,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +2f837ff8b134b785ee185a9c24e1f82b4e54df04,Local Binary Patterns and Its Application to Facial Image Analysis: A Survey,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +2f73203fd71b755a9601d00fc202bbbd0a595110,Micro-expression Analysis by Fusing Deep Convolutional Neural Network and Optical Flow,Kochi University of Technology,"Kochi University of Technology, Kochi, 782-8502, Japan","185 Tosayamadacho Miyanokuchi, Kami, Kōchi Prefecture 782-0003, Japan",33.62081300,133.71975500,edu, +2f841ff062053f38725030aa1b77db903dad1efb,Crowdsourced saliency for mining robotically gathered 3D maps using multitouch interaction on smartphones and tablets,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +2facf3e85240042a02f289a0d40fee376c478d0f,Aging face verification in score-age space using single reference image template,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +43fce0c6b11eb50f597aa573611ac6dc47e088d3,IoT and Computer Vision Based Driver Safety Monitoring System with Risk Prediction,Chittagong University of Engineering and Technology,Chittagong University of Engineering and Technology,"Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ",22.46221665,91.96942263,edu, +4349f17ec319ac8b25c14c2ec8c35f374b958066,Dynamic Texture Comparison Using Derivative Sparse Representation: Application to Video-Based Face Recognition,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +43cbe3522f356fbf07b1ff0def73756391dc3454,Laplacian of smoothed image as representation for face recognition,"IIIT Hyderabad, India","IIIT Hyderabad, 500032, A.P, India","IIIT, Gachibowli, Hyderabad, Telangana 500032, India",17.44479180,78.34830980,edu, +4398afa0aeb5749a12772f2d81ca688066636019,Partial Matching of Facial Expression Sequence Using Over-Complete Transition Dictionary for Emotion Recognition,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,Weakly supervised multiscale-inception learning for web-scale face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4328933890f5a89ad0af69990926d8484f403e4b,Personalized portraits ranking,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +88780bd55615c58d9bacc4d66fc2198e603a1714,Classification of facial-emotion expression in the application of psychotherapy using Viola-Jones and Edge-Histogram of Oriented Gradient,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +884a9ce87d4d2338cb97bf4c8df3cdb079a87d5e,Discriminant dictionary learning with sparse embedding on face recognition,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +88ed558bff3600f5354963d1abe762309f66111e,Real-World and Rapid Face Recognition Toward Pose and Expression Variations via Feature Library Matrix,Semnan University,Semnan University,"دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ‏ایران‎",35.60374440,53.43445877,edu, +88535dba55b0a80975df179d31a6cc80cae1cc92,Facial expression recognition with an optimized radial basis kernel,Selçuk University,Selçuk University,"Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye",38.02420685,32.50570524,edu, +885c37f94e9edbbb2177cfba8cb1ad840b2a5f20,Simultaneous Local Binary Feature Learning and Encoding for Homogeneous and Heterogeneous Face Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +8882d39edae556a351b6445e7324ec2c473cadb1,Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +88c21e06ed44da518a7e346fce416efedc771704,Feature extraction via multi-view non-negative matrix factorization with local graph regularization,Fordham University,Fordham University,"Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA",40.77106040,-73.98528070,edu, +9f5e22fbc22e1b0a61bcd75202d299232e68de5d,Facial expression Recognition based on Motion Estimation,"Universidade Federal de Pernambuco, Brazil","Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil","Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, Recife - PE, 50740-560, Brazil",-8.05566810,-34.95157800,edu, +9ff931ca721d50e470e1a38e583c7b18b6cdc2cc,An Overview and Empirical Comparison of Distance Metric Learning Methods,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +9f3c9e41f46df9c94d714b1f080dafad6b4de1de,On the detection of images containing child-pornographic material,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.04577648,edu, +9f428db0d3cf26b9b929dd333a0445bcc7514cdf,Dynamic soft encoded patterns for facial event analysis,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +9f131b4e036208f2402182a1af2a59e3c5d7dd44,Face Retrieval Framework Relying on User's Visual Memory,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +9fd1b8abbad25cb38f0c009288fb5db0fc862db6,Soft margin AdaBoost for face pose classification,"CSIRO, Australia","NICTA, PO Box 6020, St Lucia, QLD 4067, Australia","Research Way, Clayton VIC 3168, Australia",-37.90627370,145.13194490,edu,f.k.a. NICTA +9fbcf40b0649c03ba0f38f940c34e7e6c9e04c03,A review on Gabor wavelets for face recognition,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +9f43caad22803332400f498ca4dd0429fe7da0aa,Exploring human visual system: Study to aid the development of automatic facial expression recognition framework,University of Lyon,"Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France","20 Avenue Albert Einstein, 69100 Villeurbanne, France",45.78332440,4.87819840,edu, +6ba3cb67bcdb7aea8a07e144c03b8c5a79c19bc0,Cross-Modal Metric Learning for AUC Optimization,University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300881,edu, +6b0a2f9ab9b134d66a325525ea5d90ad546fe2b7,A hybrid vision system for detecting use of mobile phones while driving,Federal University of Santa Catarina,"UFSC - Federal University of Santa Catarina / INE - CTC, Florianópolis, 88040-900, Brazil","R. Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil",-27.60070340,-48.51917750,edu, +6bacd4347f67ec60a69e24ed7cc0ac8073004e6f,Kinship classification based on discriminative facial patches,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +6b742055a664bcbd1c6a85ae6796bd15bc945367,Face recognition using localized features based on non-negative sparse coding,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +07a31bd7a0bd7118f8ac0bc735feef90e304fb08,Unconstrained face verification with a dual-layer block-based metric learning,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +071ec4f3fb4bfe6ae9980477d208a7b12691710e,Learning Multimodal Latent Attributes,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +0750c796467b6ef60b0caff5fb199337d54d431e,Face detection method based on histogram of sparse code in tree deformable model,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +38e7f3fe450b126367ec358be9b4cc04e82fa8c7,Maximal Likelihood Correspondence Estimation for Face Recognition Across Pose,"OMRON Corporation, Kyoto, Japan","Core Technology Center, OMRON Corporation, Kyoto, Japan","Kyoto, Kyoto Prefecture, Japan",35.01163630,135.76802940,company, +3888d7a40f3cea5e4a851c8ca97a2d7810a62867,A new margin-based AdaBoost algorithm: Even more robust than RobustBoost to class-label noise,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.80915360,-97.13304179,edu, +387b54cf6c186c12d83f95df6bd458c5eb1254ee,Deep probabilities for age estimation,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +38345264a9ca188c4facffe6e18a7e6865fb2966,The role of reproducibility in affective computing,"Fernuniversitt, Hagen, Germany","Fernuniversitt in Hagen FUH Hagen, Germany","Universitätsstraße 25, 58097 Hagen, Germany",51.37675480,7.49564310,edu, +00049f989067d082f7f8d0581608ad5441d09f8b,Adaptive Part-Level Model Knowledge Transfer for Gender Classification,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +00301c250d667700276b1e573640ff2fd7be574d,Establishing a test set and initial comparisons for quantitatively evaluating synthetic age progression for adult aging,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +009bf86913f1c366d9391bf236867d84d12fa20c,Illumination invariant representation for privacy preserving face identification,University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.01986304,edu, +0034e37a0faf0f71395245b266aacbf5412f190a,Face Distortion Recovery Based on Online Learning Database for Conversational Video,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +6e2041a9b5d840b0c3e4195241cd110640b1f5f3,Robust relative attributes for human action recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +6e7ffd67329ca6027357a133437505bc56044e65,Facial expressions recognition system using Bayesian inference,Indian Institute of Technology Kanpur,Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.51318800,80.23651945,edu, +6ec275755f8776b620d0a4550be0e65caf2bc87a,Action Unit recognition in still images using graph-based feature selection,Technical University of Sofia,"Faculty of Telecommunications, Technical University of Sofia, Bulgaria","ulitsa ""Akademik Stefan Mladenov"" 1, 1700 Studentski Kompleks, Sofia, Bulgaria",42.65608530,23.34765230,edu, +9abf6d56a7d336bc58f4e3328d2ee807032589f1,Facial expression recongition using firefly-based feature optimization,Teesside University,Teesside University,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.57036950,-1.23509662,edu, +9ab126760f68071a78cabe006cf92995d6427025,An efficient multi-threshold AdaBoost approach to detecting faces in images,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +9a98dd6d6aaba05c9e46411ea263f74df908203d,LETRIST: Locally Encoded Transform Feature Histogram for Rotation-Invariant Texture Classification,Chongqing University of Posts and Telecommunications,Chongqing University of Posts and Telecommunications,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.53570460,106.60482474,edu, +9a59abdf3460970de53e09cb397f47d86744f472,Query-specific visual semantic spaces for web image re-ranking,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +9aade3d26996ce7ef6d657130464504b8d812534,Face Alignment With Deep Regression,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +361eaef45fccfffd5b7df12fba902490a7d24a8d,Robust deep learning features for face recognition under mismatched conditions,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +36486944b4feeb88c0499fecd253c5a53034a23f,Deep feature selection and projection for cross-age face retrieval,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +36b13627ee8a5a8cd04645213aabfa917bbd32f5,Edge-Aware Label Propagation for Mobile Facial Enhancement on the Cloud,"Baidu, Inc.","Baidu International Technology (Shenzhen) Company, Ltd., Shenzhen, China","Shenzhen, Guangdong, China",22.54309600,114.05786500,company, +5c91fc106cfe9d57a9b149c1af29ca84d403fc7e,3D Pose Tracking With Multitemplate Warping and SIFT Correspondences,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +5c3eb40b06543f00b2345f3291619a870672c450,Facial Expression Recognition using Auto-regressive Models,"Computer Vision Center, Barcelona","Computer Vision Center 08193 Bellaterra, Barcelona, SPAIN","Campus UAB, Edifici O, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain",41.50089570,2.11155300,edu, +0974677f59e78649a40f0a1d85735410d21b906a,A real-time 17-scale object detection accelerator with adaptive 2000-stage classification in 65nm CMOS,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +099053f2cbfa06c0141371b9f34e26970e316426,Effective recognition of facial micro-expressions with video motion magnification,Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775,edu, +5dbb2d556f2e63a783a695a517f5deb11aafd7ea,Fine-grained face verification: Dataset and baseline results,"Advanced Digital Sciences Center, Singapore","Advanced Digital Sciences Center, Singapore","1 Create Way, 14-02 Create Tower, Singapore 138602",1.30372570,103.77377630,edu, +5dafab3c936763294257af73baf9fb3bb1696654,Towards inclusive design in mobile biometry,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +5d9971c6a9d5c56463ea186850b16f8969a58e67,Facial-expression recognition based on a low-dimensional temporal feature space,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +5da827fe558fb2e1124dcc84ef08311241761726,Attribute preserved face de-identification,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +5df17c81c266cf2ebb0778e48e825905e161a8d9,A Novel Lip Descriptor for Audio-Visual Keyword Spotting Based on Adaptive Decision Fusion,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +5d2e5833ca713f95adcf4267148ac2ccf2318539,Facial expression recognition using entropy and brightness features,University of Lyon,"Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France","20 Avenue Albert Einstein, 69100 Villeurbanne, France",45.78332440,4.87819840,edu, +5d9f468a2841ea2f27bbe3ef2c6fe531d444be68,PT-NET: Improve object and face detection via a pre-trained CNN model,"Academy of Broadcasting Science, Beijing, China","Academy of Broadcasting Science, Beijing, P.R. China","Beijing, China",39.90419990,116.40739630,edu, +31cdaaa7a47efe2ce0e78ebec29df4d2d81df265,Adaptive 3D Face Reconstruction from Unconstrained Photo Collections,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +3150e329e01be31ba08b6d76fc46b0da88a5ddeb,Action Recognition Using Convolutional Restricted Boltzmann Machines,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +31dd6bafd6e7c6095eb8d0591abac3b0106a75e3,Face Recognition In Unconstrained Environment,Khon Kaen University,Khon Kaen University,"มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.46007565,102.81211798,edu, +31ffc95167a2010ce7aab23db7d5fc7ec439f5fb,Groupwise Retargeted Least-Squares Regression,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +31f905d40a4ac3c16c91d5be8427762fa91277f1,Learning Rotation-Invariant Local Binary Descriptor,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +914d7527678b514e3ee9551655f55ffbd3f0eb0a,Facial action unit detection using deep neural networks in videos,Bahçeşehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.97697953,edu, +91167aceafbc9c1560381b33c8adbc32a417231b,Robust Tensor Analysis With L1-Norm,Aston University,Aston University,"Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK",52.48620785,-1.88849915,edu, +919bdc161485615d5ee571b1585c1eb0539822c8,A ranking model for face alignment with Pseudo Census Transform,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +9166f46aa3e58befaefd3537e5a11b31ebeea4d0,Low-complexity HOG for efficient video saliency,Technische Universitt Darmstadt,"Technische Universitt Darmstadt, Computer Systems Group, Darmstadt, Germany","Hochschulstraße 10, 64289 Darmstadt, Germany",49.87741510,8.65461020,edu, +91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,Robust facial landmark detection and tracking across poses and expressions for in-the-wild monocular video,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433739,edu, +918fc4c77a436b8a588f63b2b37420b7868fbbf8,Ocular biometrics: A survey of modalities and fusion approaches,"IIIT Delhi, India","IIIT Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +657e702326a1cbc561e059476e9be4d417c37795,Face detection based on multi task learning and multi layer feature fusion,"SIASUN Robot and Automation, Shenyang, China","Shenyang SIASUN Robot & Automation Co., LTD., Shenyang, China","Shenyang, Liaoning, China",41.80569900,123.43147200,company, +659dc6aa517645a118b79f0f0273e46ab7b53cd9,Age-invariant face recognition using a feature progressing model,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +6584c3c877400e1689a11ef70133daa86a238602,Supervised Committee of Convolutional Neural Networks in Automated Facial Expression Analysis,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.19453410,edu, +65fc8393610fceec665726fe4e48f00dc90f55fb,The effectiveness of using geometrical features for facial expression recognition,Otto-von-Guericke-University Magdeburg,"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University Magdeburg, D-39016, P.O. Box 4210 Germany","Universitätspl. 2, 39106 Magdeburg, Germany",52.14020530,11.64419910,edu, +62fddae74c553ac9e34f511a2957b1614eb4f937,Action Recognition Based on Efficient Deep Feature Learning in the Spatio-Temporal Domain,RheinAhrCampus der Hochschule Koblenz,"RheinAhrCampus der Hochschule Koblenz, Remagen, Germany","RheinAhrCampus, 2, Joseph-Rovan-Allee, Remagen, Landkreis Ahrweiler, Rheinland-Pfalz, 53424, Deutschland",50.57225620,7.25318610,edu, +62750d78e819d745b9200b0c5c35fcae6fb9f404,Leveraging implicit demographic information for face recognition using a multi-expert system,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +62e834114b58a58a2ea2d7b6dd7b0ce657a64317,Adaptive facial feature extraction,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.02804210,8.51148270,edu, +62f017907e19766c76887209d01d4307be0cc573,Exploring the effect of illumination on automatic expression recognition using the ICT-3DRFE database,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +6267dbeb54889be5bdb50c338a7c6ef82287084c,Face recognition based on 2DPCA and fuzzy-rough technique,"Hebei Information Engineering School, Baoding, China","Teaching and research of section of mathematics, Hebei Information Engineering School, Baoding 071000, China","Lianchi, Baoding, Hebei, China, 071000",38.86371910,115.51483260,edu, +963a004e208ce4bd26fa79a570af61d31651b3c3,Computational methods for modeling facial aging: A survey,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +9635493998ad60764d7bbf883351af57a668d159,Cross-validated smooth multi-instance learning,"Beijing E-Hualu Info Technology Co., Ltd, Beijing, China","Beijing E-Hualu Info Technology Co., Ltd, Beijing, China","165 Fushi Rd, Shijingshan Qu, Beijing Shi, China, 100144",39.92532100,116.19579500,company, +96b1f2bde46fe4f6cc637398a6a71e8454291a6e,Structured Max-Margin Learning for Inter-Related Classifier Training and Multilabel Image Annotation,University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.04775327,edu, +96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,State-of-the-art face recognition performance using publicly available software and datasets,"Université Paris-Saclay, France","Samovar CNRS UMR 5157, Télécom SudParis, Université Paris-Saclay, Evry, France","3 Rue Michel Ange, 75016 Paris, France",48.84760370,2.26399340,edu, +96fbadc5fa1393d59ce0b8fd3d71aebc1fe35b40,Pursuing face identity from view-specific representation to view-invariant representation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +96d34c1a749e74af0050004162d9dc5132098a79,High-speed face recognition based on discrete cosine transform and RBF neural networks,"Nanyang Technological University, Singapore","Comput. Control Lab, Nanyang Technol. Univ., Singapore","50 Nanyang Avenue, Block N4 #02a-32, Singapore 639798",1.34619520,103.68154990,edu, +3a0558ebfde592bd8bd07cb72b8ca8f700715bfb,Learning a bag of features based nonlinear metric for facial similarity,"LIRIS, INSA-Lyon, France","LIRIS, UMR 5205 CNRS, INSA-Lyon, F-69621, France","40 Avenue Guy de Collongue, 69130 Écully, France",45.78359660,4.76789480,edu, +3a9fbd05aaab081189a8eea6f23ed730fa6db03c,Facial action unit prediction under partial occlusion based on Error Weighted Cross-Correlation Model,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +3ac3a714042d3ebc159546c26321a1f8f4f5f80c,Clustering lightened deep representation for large scale face identification,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +3a6334953cd2775fab7a8e7b72ed63468c71dee7,Automated social skills training with audiovisual information,Nara University of Education,"Center for Special Needs Education, Nara University of Education, Takabatake-cho, Nara-shi, Nara, Japan","Takabatakecho, Nara, Nara Prefecture 630-8528, Japan",34.67412100,135.84217100,edu, +3ad56aed164190e1124abea4a3c4e1e868b07dee,Collaborative expression representation using peak expression and intra class variation face images for practical subject-independent emotion recognition in videos,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +5491478ae2c58af21389ed3af21babd362511a8e,Towards HDR Based Facial Expression Recognition under Complex Lighting,University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.37931310,-1.56042520,edu, +54e988bc0764073a5db2955705d4bfa8365b7fa9,Emotion recognition in the wild challenge (EmotiW) challenge and workshop summary,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,Towards Robust and Accurate Multi-View and Partially-Occluded Face Alignment,"360 AI Institute, Beijing, China","360 AI Institute, Beijing, China","Beijing, China",39.90419990,116.40739630,company, +982fcead58be419e4f34df6e806204674a4bc579,Performance improvement of face recognition algorithms using occluded-region detection,"Azbil Corporation, Kawana, Japan","Azbil Corporation 1-12-2, Kawana, Fujisawa-shi, 251-8522, Japan","2 Chome Kawana, Fujisawa, Kanagawa Prefecture 251-0015, Japan",35.33414870,139.49433560,company, +9888edfb6276887eb56a6da7fe561e508e72a517,Layer-Centric Memory Reuse and Data Migration for Extreme-Scale Deep Learning on Many-Core Architectures,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +98d1b5515b079492c8e7f0f9688df7d42d96da8e,Use of Active Appearance Models for analysis and synthesis of naturally occurring behavior,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +982ede05154c1afdcf6fc623ba45186a34f4b9f2,The Many Shades of Negativity,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +982d4f1dee188f662a4b5616a045d69fc5c21b54,Learning to link human objects in videos and advertisements with clothes retrieval,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +98e098ba9ff98fc58f22fed6d3d8540116284b91,Global Temporal Representation Based CNNs for Infrared Action Recognition,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +98fd92d68a143a5ced4a016fa3b7addd6b4a0122,Attribute-based supervised deep learning model for action recognition,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +539cb169fb65a5542c84f42efcd5d2d925e87ebb,A transfer learning approach to cross-database facial expression recognition,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +53507e2de66eaba996f14fd2f54a5535056f1e59,Feature fusion with covariance matrix regularization in face recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +5375a3344017d9502ebb4170325435de3da1fa16,Computer Vision – ACCV 2012,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +5304cd17f9d6391bf31276e4419100f17d4423b2,Local histogram specification using learned histograms for face recognition,Nanjing Normal University,Nanjing Normal University,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.10668110,118.90863081,edu, +53873fe7bbd5a2d171e2b1babc9cacaad6cabe45,Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +535cdce8264ac0813d5bb8b19ceafa77a1674adf,Discriminative Lasso,Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091,edu, +53f5cb365806c57811319a42659c9f68b879454a,Research on face recognition based on deep learning,Shenyang Normal University,"College of Software, Shenyang Normal University, Shenyang, China","Fanglin Rd, Shenbei Xinqu, Shenyang Shi, Liaoning Sheng, China",41.91299790,123.41795810,edu, +3f2a44dcf0ba3fc72b24c7f09bb08e25797398c1,Recent advances in video-based human action recognition using deep learning: A review,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +3fa628e7cff0b1dad3f15de98f99b0fdb09df834,People recognition in ambiguously labeled Photo Collections,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +3f88ea8cf2eade325b0f32832561483185db5c10,Low-Rank and Joint Sparse Representations for Multi-Modal Recognition,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +3ff79cf6df1937949cc9bc522041a9a39d314d83,Adversarial examples: A survey,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.00735776,edu, +30cc1ddd7a9b4878cca7783a59086bdc49dc4044,Intensity contrast masks for gender classification,National Taipei University,National Taipei University,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣",24.94314825,121.36862979,edu, +30fb5c24cc15eb8cde5e389bf368d65fb96513e4,Interpretable Partitioned Embedding for Customized Multi-item Fashion Outfit Composition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +30188b836f2fa82209d7afbf0e4d0ee29c6b9a87,Stable Orthogonal Local Discriminant Embedding for Linear Dimensionality Reduction,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +3080026f2f0846d520bd5bacb0cb2acea0ffe16b,2.5D cascaded regression for robust facial landmark detection,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +30cace74a7d51e9a928287e25bcefb968c49f331,Monocular 3D facial information retrieval for automated facial expression analysis,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +5e6fc99d8f5ebaab0e9c29bc0969530d201e0708,Fuzzy Sparse Autoencoder Framework for Single Image Per Person Face Recognition,University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134,edu, +5ee0103048e1ce46e34a04c45ff2c2c31529b466,Learning occlusion patterns using semantic phrases for object detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +5ed66fb992bfefb070b5c39dc45b6e3ff5248c10,Multi-instance Hidden Markov Model for facial expression recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +5e87f5076952cd442718d6b4addce905bae1a1a4,Facial expression recognition based on salient patch selection,"SAIC Motor Corporation, Shanghai","Research & Advanced Technology Division of SAIC Motor Corporation Limited, Shanghai, 201804, P.R. China","Shanghai, China",31.23039040,121.47370210,company, +5ed5e534c8defd683909200c1dc31692942b7b5f,A Multimodal Approach to Assessing User Experiences with Agent Helpers,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +5e806d8fa48216041fe719309534e3fa903f7b5b,An expression transformation for improving the recognition of expression-variant faces from one sample image per person,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +5efdf48ca56b78e34dc2f2f0ce107a25793d3fc2,Real-Time 3D Eye Performance Reconstruction for RGBD Cameras,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +5bed2453a5b0c54a4a4a294f29c9658658a9881e,Angular-Similarity-Preserving Binary Signatures for Linear Subspaces,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +5b64584d6b01e66dfd0b6025b2552db1447ccdeb,Deep expectation for estimation of fingerprint orientation fields,"Dermalog Identification Systems, Hamburg, Germany","Dermalog Identification Systems GmbH, Hamburg, Germany","Mittelweg 120, 20148 Hamburg, Germany",53.57227000,9.99472000,company, +5bfad0355cdb62b22970777d140ea388a7057d4c,Facial expression recognition using radial encoding of local Gabor features and classifier synthesis,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +5b4bbba68053d67d12bd3789286e8a9be88f7b9d,An automatic region based methodology for facial expression recognition,University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.61623060,20.83963011,edu, +37c5e3b6175db9eaadee425dc51bc7ce05b69a4e,RETRACTED ARTICLE: Sparse tensor CCA for color face recognition,Jiangsu University of Science and Technology,Jiangsu University of Science and Technology,"江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.19805500,119.46326791,edu, +378418fdd28f9022b02857ef7dbab6b0b9a02dbe,Intelligent Information and Database Systems,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +37866fea39deeff453802cde529dd9d32e0205a5,"Sense beauty via face, dressing, and/or voice","National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +373c4d6af0ee233f0d669c3955c3a3ef2a009638,Eye corner detection with texture image fusion,Zhengzhou University,Zhengzhou University,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.80881680,113.53526640,edu, +0874734e2af06883599ed449532a015738a1e779,Semi-supervised classification based on subspace sparse representation,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +6d2fd0a9cbea13e840f962ba7c8a9771ec437d3a,Robust Low Rank Subspace Segmentation via Joint $$\ell _{21} $$ ℓ21 -Norm Minimization,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +6d5f876a73799cc628e4ad2d9cfcd88091272342,An appearance model constructed on 3-D surface for robust face recognition against pose and illumination variations,"NEC, Kanagawa, Japan","Media & Inf. Res. Labs., NEC Corp., Kanagawa, Japan","Kanagawa Prefecture, Japan",35.44750730,139.64234460,company, +6dcf6b028a6042a9904628a3395520995b1d0ef9,Field support vector machines,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +6da3ff4250103369f4a6a39c8fb982438a97525c,Binary Data Embedding Framework for Multiclass Classification,University of Liverpool,University of Liverpool,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.40617900,-2.96670819,edu, +6de935a02f87aa31e33245c3b85ea3b7f8b1111c,Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +6da711d07b63c9f24d143ca3991070736baeb412,Spatio-temporal constraint for fast face tracking in movies,"Orange Labs International Center, Beijing, China","Orange Labs International Center Beijing, Beijing, 100876, China","Beitaipingzhuang, Haidian, Beijing, China, 100876",39.96416860,116.35725230,edu, +6d4c64ca6936f868d793e1b164ddaf19243c19a7,Scalable Linear Visual Feature Learning via Online Parallel Nonnegative Matrix Factorization,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +6d70344ae6f6108144a15e9debc7b0be4e3335f1,THU Face Database for Real-Time Automatic Video Scoring Model,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +013d0acff1e5410fd9f6e15520d16f4ea02f03f6,Learning Representative Deep Features for Image Set Analysis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +0133d1fe8a3138871075cd742c761a3de93a42ec,An SVM based scoring evaluation system for fluorescence microscopic image classification,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +017e94ad51c9be864b98c9b75582753ce6ee134f,Rapid one-shot acquisition of dynamic VR avatars,Walt Disney Imagineering,"Walt Disney Imagineering, USA","Walt Disney Imagineering, 1401, Flower Street, Grand Central Creative Campus, Glendale, Los Angeles County, California, 91201, USA",34.16191740,-118.28837020,company, +01e27b6d1af4c9c2f50e2908b5f3b2331ff24846,Toward Personalized Modeling: Incremental and Ensemble Alignment for Sequential Faces in the Wild,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +0141cb33c822e87e93b0c1bad0a09db49b3ad470,Unconstrained 3D face reconstruction,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +0647c9d56cf11215894d57d677997826b22f6a13,Transgender face recognition with off-the-shelf pre-trained CNNs: A comprehensive study,"Norwegian Biometrics Lab, NTNU, Norway","Norwegian Biometrics Lab, NTNU, Gj⊘vik, Norway","Teknologivegen 22, 2815 Gjøvik, Norway",60.78973180,10.68219270,edu, +067fe74aec42cb82b92cf6742c7cfb4a65f16951,Robust Manifold Nonnegative Matrix Factorization,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +06518858bd99cddf9bc9200fac5311fc29ac33b4,Sparse Low-Rank Component-Based Representation for Face Recognition With Low-Quality Images,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +06b4e41185734f70ce432fdb2b121a7eb01140af,Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +6c6f0e806e4e286f3b18b934f42c72b67030ce17,Combination of age and head pose for adult face verification,"Swiss Federal, Institute of Technology, Lausanne","Swiss Federal, Institute of Technology, Lausanne (EPFL), Switzerland","Route Cantonale, 1015 Lausanne, Switzerland",46.51905570,6.56675760,edu, +6c28b3550f57262889fe101e5d027912eb39564e,Hybrid Approach for Facial Feature Detection and Tracking under Occlusion,Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.32107509,edu, +6c7a42b4f43b3a2f9b250f5803b697857b1444ac,Multiple feature fusion for face recognition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +6cbde27d9a287ae926979dbb18dfef61cf49860e,Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Understanding of Visual Content,Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.05702220,21.92270900,edu, +39c8ed5213882d4dbc74332245ffe201882c5de1,Multi-view face hallucination based on sparse representation,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +397257783ccc8cace5b67cc71e0c73034d559a4f,A 3D-Based Pose Invariant Face Recognition at a Distance Framework,Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.17009498,edu, +396b2963f0403109d92a4d4f26205f279ea79d2c,A joint compression-discrimination neural transformation applied to target detection,US Army Research Laboratory,"US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA","2800 Powder Mill Rd, Adelphi, MD 20783, USA",39.02985870,-76.96380270,mil, +397022a4460750c762dbb0aaebcacc829dee8002,Attribute Regularization Based Human Action Recognition,"CASIA, Beijing, China","State Key Laboratory of Management and Control of Complex Systems, CASIA, Beijing, China","Beijing, China",39.90419990,116.40739630,edu, +39c10888a470b92b917788c57a6fd154c97b421c,Joint multi-feature fusion and attribute relationships for facial attribute prediction,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +39d0de660e2116f32088ce07c3376759d0fdaff5,Regression-based metric learning,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +39af06d29a74ad371a1846259e01c14b5343e3d1,Structure-Aware Data Consolidation,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +39d6339a39151b5f88ec2d7acc38fe0618d71b5f,Tracking characters in movies within logical story units,University of Brescia,University of Brescia,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA",37.76893740,-87.11138590,edu, +39d6f8b791995dc5989f817373391189d7ac478a,On the kernel Extreme Learning Machine speedup,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +3960882a7a1cd19dfb711e35a5fc1843ed9002e7,On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +993934822a42e70dd35fb366693d847164ca15ff,Example-based performance driven facial shape animation,University of Tokushima,The University of Tokushima,"大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本",34.07880680,134.55898100,edu, +99a1180c3d39532efecfc5fa251d6893375c91a1,Facial expression recognition based on Gabor features and sparse representation,China University of Petroleum,"College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, China","China, Shandong, Weifang, Kuiwen, Dongfeng E St, 49号潍坊学院经济管理学院附近",36.71684600,119.18339500,edu, +99d06fe2f4d6d76acf40b6da67c5052e82055f5a,Mobile App Classification Method Using Machine Learning Based User Emotion Recognition,SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.30031270,126.97212300,edu, +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,A Proposal to Improve the Authentication Process in m-Health Environments,Universitat Politècnica de València,"Integrated Management Coastal Research Institute, Universitat Politècnica de València, València, Spain","Camí de Vera, s/n, 46022 València, Valencia, Spain",39.48083760,-0.34095220,edu, +9989ad33b64accea8042e386ff3f1216386ba7f1,Facial feature extraction method based on shallow and deep fusion CNN,Guilin University of Electronic Technology Guangxi Guilin,Guilin University of Electronic Technology Guangxi Guilin,"桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.28739920,110.33242770,edu, +9961f1e5cf8fda29912344773bc75c47f18333a0,An automatic decision approach to coal–rock recognition in top coal caving based on MF-Score,Shandong University of Science and Technology,Shandong University of Science and Technology,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国",36.00146435,120.11624057,edu, +998542e5e3882bb0ce563d390b1e1bff5460e80c,Evaluation of face recognition techniques for application to facebook,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +9989eda2f5392cfe1f789bb0f6213a46d92d1302,Activity recognition and prediction with pose based discriminative patch model,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +993374c1c9d58a3dec28160188ff6ac1227d02f5,WHoG: A weighted HoG-based scheme for the detection of birds and identification of their poses in natural environments,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +5217ab9b723158b3ba2235e807d165e72fd33007,A novel facial expression database construction method based on web images,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +52e270ca8f5b53eabfe00a21850a17b5cc10f6d5,A comparison study of feature spaces and classification methods for facial expression recognition,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +5213549200bccec57232fc3ff788ddf1043af7b3,Displaced dynamic expression regression for real-time facial tracking and animation,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +52b102620fff029b80b3193bec147fe6afd6f42e,Benchmark of a large scale database for facial beauty prediction,Wuyi University,"Wuyi University, Jiangmen, China","Pengjiang, Jiangmen, China, 529030",22.59924800,113.08663400,edu, +559645d2447004355c83737a19c9a811b45780f1,Combining view-based pose normalization and feature transform for cross-pose face recognition,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +550351edcfd59d3666984771f5248d95548f465a,Diverse Expected Gradient Active Learning for Relative Attributes,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +556b05ab6eff48d32ffbd04f9008b9a5c78a4ad7,EyeOpener: Editing Eyes in the Wild,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +55fdff2881d43050a8c51c7fdc094dbfbbe6fa46,Transferring deep representation for NIR-VIS heterogeneous face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +552122432b92129d7e7059ef40dc5f6045f422b5,Empowering Simple Binary Classifiers for Image Set Based Face Recognition,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +553a605243b77a76c1ed4c1ad4f9a43ff45e391b,Experimental evaluation of facial expression recognition,Xinjiang Normal University,"College of Computer Science and Technology, Xinjiang Normal University, Urumchi, 830054, China","311 Nongda E Rd, Shayibake Qu, Wulumuqi Shi, Xinjiang Weiwuerzizhiqu, China, 830000",43.81413200,87.56629700,edu, +55c4efc082a8410b528af7325de8148b80cf41e3,"Integrated System for Face Detection, Clustering and Recognition","National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +9745a7f38c9bba9d2fd076813fc9ab7a128a3e19,Attribute-assisted reranking for web image retrieval,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +971cb1bfe3d10fcb2037e684c48bd99842f42fa4,Novel directional patterns and a Generalized Supervised Dimension Reduction System (GSDRS) for facial emotion recognition,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.01058380,80.23537360,edu, +972b1a7ef8cc9c83c2c6d8d126f94f27b567d7d0,Artificial Neural Networks in Pattern Recognition,University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.41338620,114.21005800,edu, +978b32ff990d636f7e2050bb05b8df7dfcbb42a1,Age invariant face recognition based on texture embedded discriminative graph model,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +9729930ab0f9cbcd07f1105bc69c540330cda50a,Compressing Fisher Vector for Robust Face Recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +63c74794aedb40dd6b1650352a2da7a968180302,Recurrent neural network for facial landmark detection,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +635d2696aa597a278dd6563f079be06aa76a33c0,Age estimation via fusion of multiple binary age grouping systems,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +6343bc0013343b6a5f96154f02d18dcd36a3f74c,Compressed domain human action recognition in H.264/AVC video streams,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +6316a4b689706b0f01b40f9a3cef47b92bc52411,Rotation-Invariant Neoperceptron,ETH Zurich,"Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland","Sternwartstrasse 7, 8092 Zürich, Switzerland",47.37723980,8.55216180,edu, +0f7e9199dad3237159e985e430dd2bf619ef2db5,Learning Social Circles in Ego-Networks Based on Multi-View Network Structure,Microsoft,"Microsoft Corporation, Redmond, WA, USA","One Microsoft Way, Redmond, WA 98052, USA",47.64233180,-122.13693020,company, +0f2461a265be997c962fa562ae48378fb964b7b4,Automated big security text pruning and classification,University of Colorado at Colorado Springs,University of Colorado at Colorado Springs,"1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA",38.89646790,-104.80505940,edu, +0f22b89341d162a7a0ebaa3c622d9731e5551064,Object recognition in ocean imagery using feature selection and compressive sensing,"SPAWAR Systems Center Pacific, San Diego","SPAWAR Systems Center Pacific, San Diego, California, USA","53560 Hull St, San Diego, CA 92152, USA",32.70865800,-117.24724910,mil, +0fdc3cbf92027cb1200f3f94927bef017d7325ae,Joint prototype and metric learning for set-to-set matching: Application to biometrics,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +0f1cb558b32c516e2b6919fea0f97a307aaa9091,Face image retrieval based on shape and texture feature fusion,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +0fcf04fda0bea5265b73c85d2cc2f7f70416537b,A Multiattribute Sparse Coding Approach for Action Recognition From a Single Unknown Viewpoint,National Chung Cheng University,National Chung Cheng University,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.56306355,120.47510531,edu, +0f64e26d6dd6f1c99fe2050887fac26cafe9ed60,Bridging the Gap Between Forensics and Biometric-Enabled Watchlists for e-Borders,University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.07840380,-114.12870770,edu, +0a4a8768c1ed419baebe1c420bd9051760875cbe,An approximate message passing algorithm for robust face recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +0a5b2e642683ff20b6f0cee16a32a68ba0099908,Beyond Mahalanobis distance: Learning second-order discriminant function for people verification,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +0aebe97a92f590bdf21cdadfddec8061c682cdb2,Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +0a451fc7d2c6b3509d213c210ae880645edf90ed,Semi-supervised local-learning-based feature selection,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.93362780,-78.88394479,edu, +0abfb5b89e9546f8a5c569ab35b39b888e7cea46,Toward Development of a Face Recognition System for Watchlist Surveillance,"Office of Naval Research, Arlington","Office of Naval Research, Arlington","875 N Randolph St, Arlington, VA 22217, USA",38.88079270,-77.10869400,mil, +0aaf785d7f21d2b5ad582b456896495d30b0a4e2,A Face Recognition Application for People with Visual Impairments: Understanding Use Beyond the Lab,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +642a386c451e94d9c44134e03052219a7512b9de,Taking the bite out of automated naming of characters in TV video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +64e216c128164f56bc91a33c18ab461647384869,Low-resolution Convolutional Neural Networks for video face recognition,Fraunhofer,"Fraunhofer IOSB, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany","Fraunhoferstraße 1, 76131 Karlsruhe, Germany",49.01546000,8.42579990,company, +64ec02e1056de4b400f9547ce56e69ba8393e2ca,Multi-RPN Fusion-based Sparse PCA-CNN Approach to Object Detection and Recognition for Robot-aided Visual System,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +6489ad111fee8224b34f99d1bcfb5122786508cd,Learning symmetric face pose models online using locally weighted projectron regression,Dalle Molle Instituite for Artificial Intelligence,"Dalle Molle Instituite for Artificial Intelligence (IDSIA), Lugano, Switzerland","Via Cantonale 2C, 6928 Manno TI, Switzerland",46.02619220,8.91848180,edu, +64b9ad39d115f3e375bde4f70fb8fdef5d681df8,Bootstrapping Joint Bayesian model for robust face verification,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +64fd48fae4d859583c4a031b51ce76ecb5de614c,Illuminated face normalization technique by using wavelet fusion and local binary patterns,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +90ddf1aabf1c73b5fc45254a2de46e53a0bde857,An improved eLBPH method for facial identity recognition: Expression-specific weighted local binary pattern histogram,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +90eb66e75381cce7146b3953a2ae479a7beec539,Hybrid sensing face detection and recognition,US Army Research Laboratory,"US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA","2800 Powder Mill Rd, Adelphi, MD 20783, USA",39.02985870,-76.96380270,mil, +90221884fe2643b80203991686af78a9da0f9791,High level describable attributes for predicting aesthetics and interestingness,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +90c4a6c6f790dbcef9a29c9a755458be09e319b6,Attention-based LSTM with Semantic Consistency for Videos Captioning,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +bf30477f4bd70a585588528355b7418d2f37953e,Facial expression recognition based on static and dynamic approaches,"Universidad Argentina de la Empresa, Argentina","Universidad Argentina de la Empresa (UADE), Lima 717, Buenos Aires, Argentina","Lima 775, C1073 AAO, Buenos Aires, Argentina",-34.61709410,-58.38204780,edu, +bf3bf5400b617fef2825eb987eb496fea99804b9,Recognizing Minimal Facial Sketch by Generating Photorealistic Faces With the Guidance of Descriptive Attributes,"Tsinghua National Lab for Information Science and Technology, Beijing","Tsinghua National Lab for Information Science and Technology, Beijing, China","Shuangqing Rd, Haidian Qu, Beijing Shi, China, 100083",39.99674580,116.33229460,edu, +bf0836e5c10add0b13005990ba019a9c4b744b06,An enhanced independent component-based human facial expression recognition from video,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +bf37a81d572bb154581845b65a766fab1e5c7dda,Rotation-reversal invariant HOG cascade for facial expression recognition,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +d34f546e61eccbac2450ca7490f558e751e13ec3,A Flexible Dirty Model Dictionary Learning Approach for Classification,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +d37ca68742b2999667faf464f78d2fbf81e0cb07,DFDnet: Discriminant Face Descriptor Network for Facial Age Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d3008b4122e50a28f6cc1fa98ac6af28b42271ea,Searching Persuasively: Joint Event Detection and Evidence Recounting with Limited Supervision,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d3dea0cd65ab3da14cb7b3bd0ec59531d98508aa,Spontaneous Expression Detection from 3D Dynamic Sequences by Analyzing Trajectories on Grassmann Manifolds,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +d383ba7bbf8b7b49dcef9f8abab47521966546bb,Face image retrieval by shape manipulation,University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.43066425,edu, +d3a3d15a32644beffaac4322b9f165ed51cfd99b,Eye detection by using deep learning,"Gebze Technical University, Turkey","Bilgisayar Mühendisliği Bölümü, Gebze Teknik Üniversitesi, Kocaeli, 41400, Türkiye","Cumhuriyet Mah, 2254. Sk. No:2, 41420 Gebze/Kocaeli, Turkey",40.80805620,29.35612020,edu, +d4331a8dd47b03433f8390da2eaa618751861c64,Probabilistic Approach to Realistic Face Synthesis With a Single Uncalibrated Image,"Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do, Korea","Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do, Korea","130 Samseong-ro, Maetan 3(sam)-dong, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea",37.25202260,127.05550190,company, +d40c16285d762f7a1c862b8ac05a0fdb24af1202,Coarse-to-fine facial landmarks localization based on convolutional feature,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +d4df31006798ee091b86e091a7bf5dce6e51ba3e,Face recognition using the classified appearance-based quotient image,Toshiba,"Corp. Res. & Dev. Center, Toshiba Corp., Kawasaki, Japan","Japan, 〒212-8582 Kanagawa Prefecture, Kawasaki, Saiwai Ward, 小向東芝町1",35.54931130,139.69201440,company, +d4fba386caca1b5b2ee35ee5310b5fce50b2b1c3,Analysis of in- and out-group differences between Western and East-Asian facial expression recognition,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +ba01dbfa29dc86d1279b2e9b9eeca1c52509bbda,A general framework for real-time analysis of massive multimedia streams,University of Bologna,Università di Bologna,"Via Zamboni, 33, 40126 Bologna BO, Italy",44.49623180,11.35415700,edu, +bad2df94fa771869fa35bd11a1a7ab2e3f6d1da3,Multi-pose facial expression recognition based on SURF boosting,Jiangsu University,Jiangsu University,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.50968362,edu, +ba1c0600d3bdb8ed9d439e8aa736a96214156284,Complex representations for learning statistical shape priors,"Amazon Research, Berlin","Amazon Research, Berlin, Germany","Krausenstraße 38, 10117 Berlin, Germany",52.50986860,13.39845130,company, +badb95dbdfb3f044a46d7ba0ee69dba929c511b1,Yet another gaze detector: An embodied calibration free system for the iCub robot,Osaka University,Osaka University,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218,edu, +ba17782ca5fc0d932317389c2adf94b5dbd3ebfe,Dynamic facial expression recognition using Laplacian Eigenmaps-based manifold learning,University of the Basque Country,University of the Basque Country,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.30927695,-2.01066785,edu, +a082c77e9a6c2e2313d8255e8e4c0677d325ce3e,Dynamic facial expression recognition by joint static and multi-time gap transition classification,Sorbonne,"Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7222, F-75005, Paris, France","4 Place Jussieu, 75005 Paris, France",48.84710360,2.35749900,edu, +a00fdf49e5e0a73eb24345cb25a0bd1383a10021,Evaluation of face image quality metrics in person identification problem,Yaroslavl State University,Yaroslavl State University,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ",57.62521030,39.88456560,edu, +a094e52771baabe4ab37ef7853f9a4f534227457,Estimation of Driver Head Yaw Angle Using a Generic Geometric Model,"Amrita Vishwa Vidyapeetham, India","Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India","Amritapuri, Vallikavu, Kerala 690546, India",9.09368520,76.49158540,edu, +a7c066e636b8953481b4a8d8ff25a43a96dd348f,Facial expression recognition using face-regions,"Université Ibn Tofail, Morocco","Laboratoire des Systèmes de Télécommunication et Ingénierie de la Décision (LASTID) Université Ibn Tofail BP 133, Kenitra 14000, Maroc","Av. de L'Université, Kénitra, Morocco",34.24608690,-6.58530760,edu, +a7ec294373ccc0598cbb0bbb6340c4e56fe5d979,Face Recognition with Relative Difference Space and SVM,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,A comparison of facial landmark detection methods,"Trakya University, Edirne, Turkey","Elektrik-Elektronik Mühendisliği Bölümü, Trakya Üniversitesi, Edirne, Türkiye","Edirne, Edirne Merkez/Edirne, Turkey",41.67712970,26.55571450,edu, +a7a3ec1128f920066c25cb86fbc33445ce613919,Joint facial landmark detection and action estimation based on deep probabilistic random forest,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.93362780,-78.88394479,edu, +a713a01971e73d0c3118d0409dc7699a24f521d6,Age estimation based on face images and pre-trained convolutional neural networks,Università degli Studi di Milano,Università degli Studi di Milano,"Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia",45.47567215,9.23336232,edu, +a7f188a7161b6605d58e48b2537c18a69bd2446f,An intelligent multi-modal affect recognition system for persistent and non-invasive personal health monitoring,"UtopiaCompression Corp., Los Angeles, CA","UtopiaCompression Corporation, 11150 W. Olympic Blvd, Suite 820, Los Angeles, CA 90064, USA","11150 W Olympic Blvd #820, Los Angeles, CA 90064",34.03927660,-118.43863880,company, +b8a16fcb65a8cee8dd32310a03fe36b5dff9266a,Facial expression recognition from static images,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +b84f164dbccb16da75a61323adaca730f528edde,Approximate Least Trimmed Sum of Squares Fitting and Applications in Image Analysis,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +b8048a7661bdb73d3613fde9d710bd45a20d13e7,An Academic Emotion Database and the Baseline Evaluation,Ocean University of China,Ocean University of China,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.16161795,120.49355276,edu, +b8bcf9c773da1c5ee76db4bf750c9ff5d159f1a0,Homemade TS-Net for Automatic Face Recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +b82f89d6ef94d26bf4fec4d49437346b727c3bd4,Context-Sensitive Dynamic Ordinal Regression for Intensity Estimation of Facial Action Units,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +b8978a5251b6e341a1171e4fd9177aec1432dd3a,FaceHunter: A multi-task convolutional neural network based face detector,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +b806a31c093b31e98cc5fca7e3ec53f2cc169db9,Gaze fixations and dynamics for behavior modeling and prediction of on-road driving maneuvers,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +b8f64a94f536b46ef34a0223272e02f9be785ef9,An face-based visual fixation system for prosthetic vision,"CSIRO, Australia","NICTA, PO Box 6020, St Lucia, QLD 4067, Australia","Research Way, Clayton VIC 3168, Australia",-37.90627370,145.13194490,edu,f.k.a. NICTA +b14e3fe0d320c0d7c09154840250d70bc88bb6c0,The Role of Featural and Configural Information in Face Classification A Simulation of the Expertise Hypothesis,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +b161d261fabb507803a9e5834571d56a3b87d147,Gender recognition from face images using a geometric descriptor,University of Campinas (UNICAMP),"Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil","Universidade Estadual de Campinas - Av. Albert Einstein, 1251 - Cidade Universitária, Campinas - SP, 13083-852, Brazil",-22.81483740,-47.06477080,edu, +b1efefcc9a5d30be90776571a6cc0071f3679753,BRoPH: A compact and efficient binary 3D feature descriptor,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +b1bb517bd87a1212174033fc786b2237844b04e6,Cumulative attribute relation regularization learning for human age estimation,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +b11b71b704629357fe13ed97b216b9554b0e7463,ASCERTAIN: Emotion and Personality Recognition Using Commercial Sensors,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +b1534888673e6119f324082246016d28eba249aa,Saliency-based navigation in omnidirectional image,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,Deep learning-based learning to rank with ties for image re-ranking,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +dd0086da7c4efe61abb70dd012538f5deb9a8d16,Face recognition by decision fusion of two-dimensional linear discriminant analysis and local binary pattern,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +dd8a851f2a0c63bb97e33aaff1841695f601c863,Still-to-Video face recognition via weighted scenario oriented discriminant analysis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +dd6826e9520a6e72bcd24d1bdb930e78c1083b31,HapFACS 3.0: FACS-Based Facial Expression Generator for 3D Speaking Virtual Characters,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +ddf577e8b7c86b1122c1bc90cba79f641d2b33fa,A framework of face synthesis based on multilinear analysis,Hong Kong Baptist University,Hong Kong Baptist University,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.38742010,114.20822220,edu, +dcb50e1f439d1f9b14ae85866f4542e51b830a07,Spatiotemporal local orientational binary patterns for facial expression recognition from video sequences,Hangzhou Dianzi University,Hangzhou Dianzi University,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.31255250,120.34309460,edu, +dcdece0d0ee382e2f388dcd7f5bd9721bb7354d6,Facial Skin Beautification Using Adaptive Region-Aware Masks,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +dc107e7322f7059430b4ef4991507cb18bcc5d95,Wide-angle micro sensors for vision on a tight budget,"Centeye, Inc.","Centeye, Inc.","4905 Reno Rd NW, Washington, DC 20008, USA",38.95353190,-77.07186700,company, +dc2f16f967eac710cb9b7553093e9c977e5b761d,Learning a lightweight deep convolutional network for joint age and gender recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +dc5d9399b3796db7fd850990402dce221b98c8be,New Robust Metric Learning Model Using Maximum Correntropy Criterion,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,Age classification with deep learning face representation,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +b69e7e2a7705a58a0e3f1b80ae542907b89ce02e,A depth video-based facial expression recognition system utilizing generalized local directional deviation-based binary pattern feature discriminant analysis,SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.30031270,126.97212300,edu, +b68452e28951bf8db5f1193eca3a8fd9e2d0d7ef,Approximate radial gradient transform based face recognition,Mangalore University,Mangalore University,"Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India",12.81608485,74.92449278,edu, +b6f15bf8723b2d5390122442ab04630d2d3878d8,Dense 3D face alignment from 2D videos in real-time,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +b69bcb5f73999ea12ff4ac1ac853b72cd5096b2d,Fully Automatic Facial Action Recognition in Spontaneous Behavior,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +b63b6ed78b39166d87d4c56f8890873aa65976a2,Nonverbal communication with a multimodal agent via facial expression recognition,"University of Valladolid, Spain","University of Valladolid (Spain), Dep. Of Systems Engineering and Automatic Control, Industrial Engineering School","2061 Rathbone Hall, 66506, 1701B Platt St, Manhattan, KS 66502, United States",39.19063310,-96.58404850,edu, +a9fc8efd1aa3d58f89c0f53f0cb112725b5bda10,Three-Dimensional Attention-Based Deep Ranking Model for Video Highlight Detection,"Moshanghua Tech Company, Ltd., Beijing, China","Moshanghua Tech Company, Ltd., Beijing, China","Beijing, China",39.90419990,116.40739630,company, +a92147bed9c17c311c6081beb0ef4c3165b6268e,Toward Large-Population Face Identification in Unconstrained Videos,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +a939e287feb3166983e36b8573cd161d12097ad8,Exploiting privileged information for facial expression recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +a9215666b4bcdf8d510de8952cf0d55b635727dc,Action Units and Their Cross-Correlations for Prediction of Cognitive Load during Driving,Ecole Polytechnique Fédérale de Lausanne,"Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland","Route Cantonale, 1015 Lausanne, Switzerland",46.51905570,6.56675760,edu, +a9426cb98c8aedf79ea19839643a7cf1e435aeaa,Cascaded regression for 3D pose estimation for mouse in fisheye lens distorted monocular images,"Transmural Biotech, Barcelona, Spain","Transmural Biotech, Barcelona, Spain","Carrer de Sabino Arana, 38, 08028 Barcelona, Spain",41.38617590,2.12487170,edu, +d569c3e62f471aa75ed53e631ec05c1a3d594595,Facial expression analysis using shape and motion information extracted by convolutional neural networks,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +d5b445c5716952be02172ca4d40c44f4f04067fa,Person independent facial expression analysis using Gabor features and Genetic Algorithm,"A*STAR, Singapore","Institute for Infocomm Research, A*STAR, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +d57ce0ff4acb2910c2d1afee2ebb7aa1e72a4584,Tensor-Jet: A tensorial representation of Local Binary Gaussian Jet maps,INRIA Grenoble,"INRIA Grenoble Rhone-Alpes, FRANCE","INRIA, 655, Avenue de l'Europe, Innovallée Montbonnot, Montbonnot-Saint-Martin, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38330, France",45.21829860,5.80703193,edu, +d5c66a48bc0a324750db3d295803f47f6060043d,Support Vector Machine with Weighted Summation Kernel Obtained by Adaboost,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +d289ce63055c10937e5715e940a4bb9d0af7a8c5,DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications,Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.84909214,edu, +d2a415365f997c8fe2dbdd4e06ceab2e654172f6,Synthesis of emotional expressions specific to facial structure,"Indian Statistical Institute, Kolkata","Indian Statistical Institute, Kolkata","Plot No. 203, Barrackpore Trunk Road, Baranagar, Kolkata, West Bengal 700108, India",22.64815210,88.37681700,edu, +d2fac640086ba89271ad7c1ebf36239ecd64605e,Illumination suppression for illumination invariant face recognition,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +d2f2b10a8f29165d815e652f8d44955a12d057e6,Multiscale binarised statistical image features for symmetric face matching using multiple descriptor fusion based on class-specific LDA,Urmia University,Urmia University,"دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ‏ایران‎",37.52914535,45.04886077,edu, +d20ea5a4fa771bc4121b5654a7483ced98b39148,Set-to-Set Face Recognition Under Variations in Pose and Illumination,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +aa7c72f874951ff7ca3769439f2f39b7cfd4b202,It's All About the Data,"University of Illinois, Urbana Champaign","Computer Science, U.Illinois at Urbana Champaign, Urbana, United States","Champaign, IL, USA",40.10195230,-88.22716150,edu, +aa892fe17c06e2b18db2b12314499a741e755df7,Improved performance of face recognition using CNN with constrained triplet loss layer,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +aab9a617be6e5507beb457b1e6c2e5b046f9cff0,Face recognition using a pictorial-edit distance,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +aa4af9b3811db6a30e1c7cc1ebf079078c1ee152,Deformable part models with CNN features for facial landmark detection under occlusion,University of the Witwatersrand,University of the Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.18888130,28.02479073,edu, +aa581b481d400982a7e2a88830a33ec42ad0414f,Learning a joint discriminative-generative model for action recognition,"Vision Semantics Ltd, UK","Vision Semantics Ltd, UK",United Kingdom,55.37805100,-3.43597300,edu, +aa5a7a9900548a1f1381389fc8695ced0c34261a,Multiple facial action unit recognition enhanced by facial expressions,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +aa6e8a2a9d3ed59d2ae72add84176e7b7f4b2912,ORCHARD: Visual object recognition accelerator based on approximate in-memory processing,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +af12a79892bd030c19dfea392f7a7ccb0e7ebb72,A study on human age estimation under facial expression changes,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +af7553d833886663550ce83b087a592a04b36419,Dual Subspace Nonnegative Graph Embedding for Identity-Independent Expression Recognition,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +af4745a3c3c7b51dab0fd90d68b53e60225aa4a9,Multi-Task Learning with Low Rank Attribute Embedding for Multi-Camera Person Re-Identification,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +af3b803188344971aa89fee861a6a598f30c6f10,Facial expression recognition with FHOG features,"Eskişehir Osmangazi Üniversitesi, Eskişehir, Turkey","Eskişehir Osmangazi Üniversitesi, Bilgisayar Mühendisliği Bölümü, Eskişehir, Türkiye","Büyükdere Mahallesi, Osmangazi Ünv. No:38, 26040 Odunpazarı/Eskişehir, Turkey",39.74887790,30.47581540,edu, +b749ca71c60904d7dad6fc8fa142bf81f6e56a62,Band-Reweighed Gabor Kernel Embedding for Face Image Representation and Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +b712f08f819b925ff7587b6c09a8855bc295d795,Independent Component Analysis Using Semi-Parametric Density Estimation Via Entropy Maximization,"Amazon Research, Cambridge","Amazon.com Cambridge, MA, USA","101 Main St, Cambridge, MA 02142, USA",42.36229600,-71.08100960,company, +b7128e0fe18dcb42e8a2ac5cf6794f64a8e37bd0,Automatic facial expression recognition based on a deep convolutional-neural-network structure,Beijing Normal University,Beijing Normal University,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.35970438,edu, +b7845e0b0ce17cde7db37d5524ef2a61dee3e540,Fusion of classifier predictions for audio-visual emotion recognition,University of Tartu,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.38131405,26.72078081,edu, +b7b8e7813fbc12849f2daba5cab604abd8cbaab6,Face recognition using affine dense SURF-like descriptors,Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.32107509,edu, +b7a0c70a320c1ac3e92f4bf0b50a7d8ceb757c41,Understanding how deep neural networks learn face expressions,University of Pernambuco,"University of Pernambuco, Recife-PE, Brazil","Av. Gov. Agamenon Magalhães - Santo Amaro, Recife - PE, 50100-010, Brazil",-8.04406030,-34.88611670,edu, +b759936982d6fb25c55c98955f6955582bdaeb27,Efficient object feature selection for action recognition,"A*STAR, Singapore","Institute for Infocomm Research, A*STAR, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +b7461aac36fc0b8a24ecadf6c5b5caf54f2aa2f7,Two-stage cascade model for unconstrained face detection,University of Zagreb,"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia","Unska ul. 3, 10000, Zagreb, Croatia",45.80112100,15.97084090,edu, +b7043048b4ba748c9c6317b6d8206192c34f57ff,Shaping datasets: Optimal data selection for specific target distributions across dimensions,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +b7c6df1ae0e8348feecd65e9ad574d1e04d212a5,Soft video parsing by label distribution learning,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +db0379c9b02e514f10f778cccff0d6a6acf40519,Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +dbb9601a1d2febcce4c07dd2b819243d81abb2c2,Landmark Free Face Attribute Prediction,"SAP Innovation Center Network, Singapore","SAP Innovation Center Network, Singapore","30 Pasir Panjang Rd, Singapore 117440",1.27486000,103.79778700,company,"30 Pasir Panjang Road, Singapore" +a8faeef97e2a00eddfb17a44d4892c179a7cc277,Scalable face labeling in online social networks,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +a8e7561ada380f2f50211c67fc45c3b3dea96bdb,Illumination Invariant Face Recognition: A Survey,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +a8fd23934e5039bb818b8d1c47ccb540ce2c253c,Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +def934edb7c7355757802a95218c6e4ed6122a72,Computer Vision,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.11852361,edu, +ded8252fc6df715753e75ba7b7fee518361266ef,Feature extraction for facial expression recognition by canonical correlation analysis,Bahçeşehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.97697953,edu, +de79437f74e8e3b266afc664decf4e6e4bdf34d7,To face or not to face: Towards reducing false positive of face detection,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +dec76940896a41a8a7b6e9684df326b23737cd5d,Seeing through the expression: Bridging the gap between expression and emotion recognition,"Academia Sinica, Taiwan","Research Center for Institute of Information Science, Academia Sinica, Taiwan","115, Taiwan, Taipei City, Nangang District, 研究院路二段128號",25.04117270,121.61465180,edu, +de92951ea021ec56492d76381a8ae560a972dd68,Discriminative filter based regression learning for facial expression recognition,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +de0df8b2b4755da9f70cf1613d7b12040d0ce8ef,Cross-spectral cross-resolution video database for face recognition,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +dec5b11b01f35f72adb41d2be26b9b95870c5c00,Facial expression recognition by combination of classifiers,University of Technology of Compiègne,"Laboratory Heudiasyc, University of Technology of Compiègne, BP 20529. F-60205, France","57 Avenue de Landshut, 60200 Compiègne, France",49.40075300,2.79528080,edu, +de45bf9e5593a5549a60ca01f2988266d04d77da,Continuous valence prediction using recurrent neural networks with facial expressions and EEG signals,"Başkent University, Ankara, Turkey","Bilgisayar Mühendisliği, Başkent Üniversitesi, Ankara, Türkiye","Fatih Sultan Mahallesi, Eskişehir Yolu 20. Km. Bağlıca Kampüsü, 06790 Etimesgut/Ankara, Turkey",39.88792060,32.65519900,edu, +b05943b05ef45e8ea8278e8f0870f23db5c83b23,User authentication on mobile devices with dynamical selection of biometric techniques for optimal performance,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +a6b5ca99432c23392cec682aebb8295c0283728b,Content-Aware Proactive Caching for Backhaul Offloading in Cellular Network,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +a60db9ca8bc144a37fe233b08232d9c91641cbb5,Spatial alignment network for facial landmark localization,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +a6ce1a1de164f41cb8999c728bceedf65d66bb23,Dynamic facial expression recognition using local patch and LBP-TOP,University of Portsmouth,University of Portsmouth,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911,edu, +b944cc4241d195b1609a7a9d87fce0e9ba1498bc,Kernel Sparse Representation-Based Classifier,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +b934f730a81c071dbfc08eb4c360d6fca2daa08f,Characteristic number regression for facial feature extraction,Donghua University,Donghua University,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.20619390,121.41047101,edu, +b97c7f82c1439fa1e4525e5860cb05a39cc412ea,Illumination Normalization Based on Simplified Local Binary Patterns for A Face Verification System,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,What Shall I Look Like after N Years?,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +b9dc8cc479cacda1f23b91df00eb03f88cc0c260,Event Specific Multimodal Pattern Mining for Knowledge Base Construction,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +b910590a0eb191d03e1aedb3d55c905129e92e6b,Robust gender classification on unconstrained face images,Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091,edu, +b91f54e1581fbbf60392364323d00a0cd43e493c,A high-resolution spontaneous 3D dynamic facial expression database,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +a180dc9766490416246e7fbafadca14a3c500a46,Improvements on the linear discrimination technique with application to face recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +a1e07c31184d3728e009d4d1bebe21bf9fe95c8e,"On looking at faces in an automobile: Issues, algorithms and evaluation on naturalistic driving dataset","University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +a1cda8e30ce35445e4f51b47ab65b775f75c9f18,Normalized face image generation with perceptron generative adversarial networks,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +a192845a7695bdb372cccf008e6590a14ed82761,A Novel Local Pattern Descriptor—Local Vector Pattern in High-Order Derivative Space for Face Recognition,National Central University,National Central University,"NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣",24.96841805,121.19139696,edu, +a119844792fd9157dec87e3937685c8319cac62f,"Multifarious distances, cameras and illuminations face database",Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +a168ca2e199121258fbb2b6c821207456e5bf994,"Continuous AU intensity estimation using localized, sparse facial feature space",University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +a1081cb856faae25df14e25045cd682db8028141,Audio-Visual Person Recognition in Multimedia Data From the Iarpa Janus Program,Johns Hopkins University,"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA","3400 N Charles St, Baltimore, MD 21218, USA",39.32905300,-76.61942500,edu, +ef2bb8bd93fa8b44414565b32735334fa6823b56,An accurate and efficient face recognition method based on hash coding,Guilin University of Electronic Technology Guangxi Guilin,Guilin University of Electronic Technology Guangxi Guilin,"桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.28739920,110.33242770,edu, +efc78a7d95b14abacdfde5c78007eabf9a21689c,Subjectively Interesting Component Analysis: Data Projections that Contrast with Prior Expectations,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +ef7b8f73e95faa7a747e0b04363fced0a38d33b0,Fast and reliable human action recognition in video sequences by sequential analysis,University of Loughborogh,University of Loughborogh,"Epinal Way, Loughborough LE11 3TU, UK",52.76508140,-1.23205340,edu, +ef3a0b454370991a9c18ac7bfd228cf15ad53da0,Two-dimensional Sparse Principal Component Analysis: A new technique for feature extraction,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.13538360,113.29470496,edu, +c3c463a9ee464bb610423b7203300a83a166b500,Transform-invariant dictionary learning for face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +c362116a358320e71fb6bc8baa559142677622d2,Improve robustness of sparse PCA by L1-norm maximization,Xi'an Jiaotong University,Xi'an Jiaotong University,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.24749490,108.97898751,edu, +c4a2cd5ec81cdfd894c9a20d4ffb8cda637aab1f,Towards retro-projected robot faces: An alternative to mechatronic and android faces,University of Plymouth,University of Plymouth,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.37525010,-4.13927692,edu, +c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,Age and gender estimation using deep residual learning network,Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.28300030,127.04548469,edu, +c4f3185f010027a0a97fcb9753d74eb27a9cfd3e,Learning to classify gender from four million images,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +c4ca092972abb74ee1c20b7cae6e69c654479e2c,Linear canonical correlation analysis based ranking approach for facial age estimation,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +c444c4dab97dd6d6696f56c1cacda051dde60448,Multiview Face Detection and Registration Requiring Minimal Manual Intervention,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +c48b68dc780c71ab0f0f530cd160aa564ed08ade,Facial expression recognition based on local binary patterns and coarse-to-fine classification,"Northwestern Polytechnic University, Xi'an, China","Coll. of Electron. & Inf., Northwestern Polytech. Univ., Xi'an, China","633 Clark St, Evanston, IL 60208, USA",42.05645940,-87.67526700,edu, +c49075ead6eb07ede5ada4fe372899bd0cfb83ac,Multi-stage classification network for automatic age estimation from facial images,RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.80874650,144.96388750,edu, +c4541802086461420afb1ecb5bb8ccd5962a9f02,Image Ratio Features for Facial Expression Recognition Application,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.74230250,-74.17928172,edu, +c4d439fe07a65b735d0c8604bd5fdaea13f6b072,Parallel AP Clustering and Re-ranking for Automatic Image-Text Alignment and Large-Scale Web Image Search,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +c4d0d09115a0df856cdb389fbccb20f62b07b14e,Environment coupled metrics learning for unconstrained face verification,Chinese Academy of Science,"Key Lab of Intelligent Information Processing, Institute of Computer Technology, Chinese Academy of Science (CAS), Beijing, 100190, China","Beijing, China",39.90419990,116.40739630,edu, +eac97959f2fcd882e8236c5dd6035870878eb36b,Adaptive ranking of facial attractiveness,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +ea026456729f0ec54c697198e1fd089310de4ae2,Face identity verification based on sinusoidal projection,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +ea86b75427f845f04e96bdaadfc0d67b3f460005,Label consistent recursive least squares dictionary learning for image classification,University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.68103280,-75.75401840,edu, +e12b2c468850acb456b0097d5535fc6a0d34efe3,Illumination robust single sample face recognition using multi-directional orthogonal gradient phase faces,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.69784700,104.05208110,edu, +e1c50cf0c08d70ff90cf515894b2b360b2bc788b,Facial behavior as behavior biometric? an empirical study,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +e101bab97bce2733222db9cfbb92a82779966508,A Micro-GA Embedded PSO Feature Selection Approach to Intelligent Facial Emotion Recognition,Deakin University,Deakin University,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.19928505,144.30365229,edu, +e1179a5746b4bf12e1c8a033192326bf7f670a4d,Facial makeup detection technique based on texture and shape analysis,Télécom ParisTech,"Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Sophia Antipolis, France","Business Pôle. 1047 route des Dolines. Allée Pierre Ziller, 06560 Sophia Antipolis, France",43.62716550,7.04109170,edu, +e14b046a564604508ea8e3369e7e9f612e148511,Facial Expression Recognition on Hexagonal Structure Using LBP-Based Histogram Variances,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +e1449be4951ba7519945cd1ad50656c3516113da,Local Gradient Hexa Pattern: A Descriptor for Face Recognition and Retrieval,"IIIT Allahabad, India","Indian Institute of Information Technology at Allahabad, Allahabad, India","Indian Institute of Information Technology, Jhalwa, Prayagraj, Uttar Pradesh, India",25.42991140,81.77118270,edu, +cdf0dc4e06d56259f6c621741b1ada5c88963c6d,Makeup-insensitive face recognition by facial depth reconstruction and Gabor filter bank from women's real-world images,Semnan University,Semnan University,"دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ‏ایران‎",35.60374440,53.43445877,edu, +cd85f71907f1c27349947690b48bfb84e44a3db0,Visual Pattern Discovery and Recognition,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.50841740,106.57858552,edu, +cdfa7dccbc9e9d466f8a5847004973a33c7fcc89,Multiple Subcategories Parts-Based Representation for One Sample Face Identification,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +cd3b713722ccb1e2ae3b050837ca296b2a2dd82a,Kernel dictionary learning based discriminant analysis,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae,Improving CNN Performance Accuracies With Min–Max Objective,Xi'an Jiaotong University,Xi'an Jiaotong University,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.24749490,108.97898751,edu, +ccb95192001b07bb25fc924587f9682b0df3de8e,Head pose estimation for recognizing face images using collaborative representation based classification,"IIEST Shibpur, India","Computer Science and Technology, IIEST, Shibpur","P.O. - Botanic Garden, Howrah, West Bengal 711103, India",22.55518080,88.30713790,edu, +cc70fb1ab585378c79a2ab94776723e597afe379,Detect face in the wild using CNN cascade with feature aggregation at multi-resolution,Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.60915780,-3.97934429,edu, +cc5edaa1b0e91bc3577547fc30ea094aa2722bf0,"The design, implementation and evaluation of a relaxation service with facial emotion detection",Shibaura Institute of Technology,Shibaura Institute of Technology,"芝浦工業大学 豊洲キャンパス, 晴海通り, 豊洲2, 豊洲, 富岡一丁目, 江東区, 東京都, 関東地方, 135-6001, 日本",35.66053325,139.79503121,edu, +cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,Analysis of the effect of image resolution on automatic face gender and age classification,"TOBB Economy and Technology University, Ankara, Turkey","Bilgisayar Mühendisliği Bölümü, TOBB Ekonomi ve Teknoloji Üniversitesi, Ankara, Türkiye","Söğütözü Mahallesi, Söğütözü Cd. No:43, 06510 Çankaya/Ankara, Turkey",39.92130970,32.79882330,edu, +ccebd3bf069f5c73ea2ccc5791976f894bc6023d,Face detection based on deep convolutional neural networks exploiting incremental facial part learning,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +cceec87bad847b9b87178bde8ce5cce6bf1a8e99,Robust face recognition via transfer learning for robot partner,"University of Malaya, Kuala Lumpur","Faculty of Computer Science & Information Technology University of Malaya Kuala Lumpur, Malaysia","University of Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia",3.12821340,101.65069480,edu, +ccfebdf7917cb50b5fcd56fb837f841a2246a149,A feature subtraction method for image based kinship verification under uncontrolled environments,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532827,edu, +cc2a9f4be1e465cb4ba702539f0f088ac3383834,Automated recognition of complex categorical emotions from facial expressions and head motions,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +e6d46d923f201da644ae8d8bd04721dd9ac0e73d,Robust transgender face recognition: Approach based on appearance and therapy factors,"Norwegian Biometrics Laboratory, NTNU, Norway","Norwegian Biometrics Laboratory, Norwegian University of Science and Technology (NTNU), 2802 Gj⊘vik, Norway","Teknologivegen 22, 2815 Gjøvik, Norway",60.78973180,10.68219270,edu, +e6d6203fa911429d76f026e2ec2de260ec520432,Siamese network features for image matching,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +e6c834c816b5366875cf3060ccc20e16f19a9fc6,Subspace learning via low rank projections for dimensionality reduction,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.93362780,-78.88394479,edu, +e66a6ae542907d6a0ebc45da60a62d3eecf17839,3D-aided face recognition from videos,University of Lyon,"Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France","20 Avenue Albert Einstein, 69100 Villeurbanne, France",45.78332440,4.87819840,edu, +e66b4aa85524f493dafde8c75176ac0afad5b79c,Watchlist risk assessment using multiparametric cost and relative entropy,University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.07840380,-114.12870770,edu, +e6d6d1b0a8b414160f67142fc18e1321fe3f1c49,Semantic facial description via axiomatic Fuzzy Set based clustering,Shenyang Aerospace University,"College of Automation, Shenyang Aerospace University, China","Hanqing S Rd, Heping Qu, Shenyang Shi, Liaoning Sheng, China, 110016",41.76538300,123.41744800,edu, +e69a765d033ef6ea55c57ca41c146b27964c5cf2,A 0.53mW ultra-low-power 3D face frontalization processor for face recognition with human-level accuracy in wearable devices,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +f9fb7979af4233c2dd14813da94ec7c38ce9232a,Detecting Gaze Towards Eyes in Natural Social Interactions and Its Use in Child Assessment,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +f95321f4348cfacc52084aae2a19127d74426047,A novel facial feature extraction method based on Empirical Mode Decomposition,South China Normal University,South China Normal University,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.14319700,113.34009651,edu, +f03a82fd4a039c1b94a0e8719284a777f776fb22,Video content analysis using convolutional neural networks,Jordan University of Science and Technology,Jordan University of Science and Technology,"Jordan University of Science and Technology, شارع الأردن, إربد‎, إربد, الأردن",32.49566485,35.99160717,edu, +f0dac9a55443aa39fd9832bdff202a579b835e88,Social Interaction Assistant: A Person-Centered Approach to Enrich Social Interactions for Individuals With Visual Impairments,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +f0a9d69028edd1a39147848ad1116ca308d7491e,Case-Based Facial Action Units Recognition Using Interactive Genetic Algorithm,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +f09d5b6433f63d7403df5650893b78cdcf7319b3,Pixel selection in a face image based on discriminant features for face recognition,Kookmin University,Kookmin University,"국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국",37.61075540,126.99466350,edu, +f095b5770f0ff13ba9670e3d480743c5e9ad1036,Fast Algorithms for Fitting Active Appearance Models to Unconstrained Images,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +f76a6b1d6029769e2dc1be4dadbee6a7ba777429,Compressing and Accelerating Neural Network for Facial Point Localization,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +f7911b9ff58d07d19c68f4a30f40621f63c0f385,Discriminative-Element-Aware Sparse Representation for Action Recognition,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +f7be8956639e66e534ed6195d929aed4e0b90cad,Active Learning of Introductory Machine Learning,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +f7bebb2d5ef7c9bd38808b8e615756efafc2a1e7,Facial expression recognition based on Local Sign Directional Pattern,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +e853484dc585bed4b0ed0c5eb4bc6d9d93a16211,InvisibleEye: Mobile Eye Tracking Using Multiple Low-Resolution Cameras and Learning-Based Gaze Estimation,Osaka University,Osaka University,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218,edu, +e8f4ded98f5955aad114f55e7aca6b540599236b,Convolutional Fusion Network for Face Verification in the Wild,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +e896389891ba84af58a8c279cf8ab5de3e9320ee,Audio-visual speaker localization via weighted clustering,INRIA Grenoble,"INRIA Grenoble Rhone-Alpes, FRANCE","INRIA, 655, Avenue de l'Europe, Innovallée Montbonnot, Montbonnot-Saint-Martin, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38330, France",45.21829860,5.80703193,edu, +e865908ed5e5d7469b412b081ca8abd738c72121,A Non-Greedy Algorithm for L1-Norm LDA,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +faf19885431cb39360158982c3a1127f6090a1f6,Inheritable Fisher vector feature for kinship verification,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.74230250,-74.17928172,edu, +fa72e39971855dff6beb8174b5fa654e0ab7d324,"A depth video-based facial expression recognition system using radon transform, generalized discriminant analysis, and hidden Markov model",King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +fa80344137c4d158bf59be4ac5591d074483157a,Face recognition based on constructive neural networks covering learning algorithm,"Shanghai Jiao Tong University, China","Inst. of Autom., Shanghai Jiao Tong Univ., China","1954 Huashan Rd, JiaoTong DaXue, Xuhui Qu, Shanghai Shi, China, 200030",31.20100100,121.43284100,edu, +fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,Customized Orthogonal Locality Preserving Projections With Soft-Margin Maximization for Face Recognition,Federal University of Rio Grande do Sul,"Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil","Av. Paulo Gama, 110 - Farroupilha, Porto Alegre - RS, 90040-060, Brazil",-30.03382480,-51.21882800,edu, +fadbb3a447d697d52771e237173b80782caaa936,Multi-label multi-instance learning with missing object tags,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +fa9610c2dc7e2a79e0096ac033b11508d8ae7ed7,Sparse representation based facial expression classification for pain assessment in neonates,"Nanjing Children's Hospital, Nanjing Medical University","Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China","140 Hanzhong Rd, Gulou Qu, Nanjing Shi, Jiangsu Sheng, China, 210029",32.04384600,118.77476300,edu, +fa5ab4b1b45bf22ce7b194c20c724946de2f2dd4,Neutral Face Classification Using Personalized Appearance Models for Fast and Robust Emotion Detection,"Samsung R&D Institute, Bangalore, India","Samsung R&D Institute, Bangalore, India","#2870, Phoenix Building, 4th Floor Bagmane Constellation Business Park, Outer Ring Rd, Doddanekundi, Marathahalli, Bengaluru, Karnataka 560037, India",12.98035370,77.69751010,company, +ffea4184a0b24807b5f4ed87f9a985c2a27027d9,Cross-media retrieval by intra-media and inter-media correlation mining,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +ff76ff05aa1ab17e5ca9864df2252e6bb44c8a17,Gender Recognition or Gender Reductionism?: The Social Implications of Embedded Gender Recognition Systems,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +ff8db3810f927506f3aa594d66d5e8658f3cf4d5,Visual Descriptors in Methods for Video Hyperlinking,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.07642960,14.41802312,edu, +ffc81ced9ee8223ab0adb18817321cbee99606e6,A multibiometrics-based CAPTCHA for improved online security,"IIIT Delhi, India","IIIT Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +fffe5ab3351deab81f7562d06764551422dbd9c4,Fully automated facial picture evaluation using high level attributes,"GIPSA-Lab, Grenoble, France","GIPSA-Lab, Grenoble, France","GIPSA-lab, 11, Rue des Mathématiques, Médiat Rhône-Alpes, Saint-Martin-d'Hères, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38400, France",45.19292450,5.76619830,edu, +ff012c56b9b1de969328dacd13e26b7138ff298b,Facial Age Estimation With Age Difference,Microsoft,"Microsoft Corporation, Redmond, WA, USA","One Microsoft Way, Redmond, WA 98052, USA",47.64233180,-122.13693020,company, +c570d1247e337f91e555c3be0e8c8a5aba539d9f,Robust semi-automatic head pose labeling for real-world face video sequences,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6,Age and gender classification using local appearance descriptors from facial components,University of Sassari,"University of Sassari, Computer Vision Laboratory, PolComing Viale Mancini, 5 07100 Sassari, Italy","Viale Pasquale Stanislao Mancini, 5, 07100 Sassari SS, Italy",40.72401760,8.55789470,edu, +c5022fbeb65b70f6fe11694575b8ad1b53412a0d,Lighting normalisation for face recognition,"Newcastle University, Australia","Sch. of Electr. Eng. & Comput. Sci., Newcastle Univ., NSW, Australia","University Dr, Callaghan NSW 2308, Australia",-32.89277180,151.70417750,edu, +c5e37630d0672e4d44f7dee83ac2c1528be41c2e,Multi-task Deep Neural Network for Joint Face Recognition and Facial Attribute Prediction,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +c553f0334fcadf43607925733685adef81fbe406,Adaptive feature learning CNN for behavior recognition in crowd scene,Universiti Teknologi Petronas,Universiti Teknologi PETRONAS,"UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia",4.38304640,100.97001540,edu, +c59a9151cef054984607b7253ef189c12122a625,Model-free non-rigid head pose tracking by joint shape and pose estimation,University of Malta,University of Malta,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.90232260,14.48341890,edu, +c59b62864a6d86eead075c88137a87070a984550,Facial expression recognition by correlated Topic Models and Bayes modeling,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +c270aff2b066ee354b4fe7e958a40a37f7bfca45,Expression recognition in the wild with transfer learning,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +c291f0e29871c8b9509d1a2876c3e305839ad4ac,A single layer feedforward fusion network for face verification,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +c244c3c797574048d6931b6714ebac64d820dbb3,Exploiting the locality information of dense trajectory feature for human action recognition,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +c222f8079c246ead285894c47bdbb2dfc7741044,Face de-identification with expressions preservation,"Bordeaux INP, France","Bordeaux INP, LaBRI, PICTURA, UMR 5800, F-33400 Talence, France","Avenue des Facultés, 33400 Talence, France",44.80557160,-0.60519720,edu, +c2474202d56bb80663e7bece5924245978425fc1,Localize heavily occluded human faces via deep segmentation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +c2422c975d9f9b62fbb19738e5ce5e818a6e1752," $L_{1}$ -Minimization Algorithms for Sparse Signal Reconstruction Based on a Projection Neural Network",City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +c2dc29e0db76122dfed075c3b9ee48503b027809,How scenes imply actions in realistic videos?,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +f64574ee0e6247b84d573ddb5c6e2c4ba798ffff,Class-Specific Subspace-Based Two-Dimensional Principal Component Analysis for Face Recognition,Chulalongkorn University ,Chulalongkorn University Bangkok,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.53287901,edu, +f6fc112ff7e4746b040c13f28700a9c47992045e,Bi-Level Semantic Representation Analysis for Multimedia Event Detection,Xiamen University of Technology,"Xiamen University of Technology, Xiamen 361024, China","600 Ligong Rd, Jimei Qu, Xiamen Shi, Fujian Sheng, China, 361024",24.62053900,118.08463100,edu, +f6532bf13a4649b7599eb40f826aa5281e392c61,Facial Action Recognition Combining Heterogeneous Features via Multikernel Learning,University of French West Indies and Guiana,"LAMIA, University of French West Indies and Guiana, EA 4540, Pointe-à-Pitre, France","Fouillole, Pointe-à-Pitre 97157, Guadeloupe",16.22427240,-61.52893250,edu, +f6311d6b3f4d3bd192d866d2e898c30eea37d7d5,Facial expression recognition based on discriminative dictionary learning,China University of Petroleum,"College of Information and Control Engineering, China University of Petroleum, Qingdao, 266580, China","China, Shandong, Weifang, Kuiwen, Dongfeng E St, 49号潍坊学院经济管理学院附近",36.71684600,119.18339500,edu, +f6f2a212505a118933ef84110e487551b6591553,Exemplar-embed complex matrix factorization for facial expression recognition,"University of Science, Vietnam","Fac. of Mathematics and Computer Sciences, University of Science, Ho Chi Minh City, Viet Nam","227 Đường Nguyễn Văn Cừ, Phường 4, Quận 5, Hồ Chí Minh, Vietnam",10.76241650,106.68120130,edu, +f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,Understanding Blooming Human Groups in Social Networks,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +f652cb159a2cf2745aabcbf6a7beed4415e79e34,An efficient image normalization method for face recognition under varying illuminations,Chungnam National University,Chungnam National University,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국",36.37029045,127.34780458,edu, +e957d0673af7454dbf0a14813201b0e2570577e9,COATL - a learning architecture for online real-time detection and classification assistance for environmental data,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.02804210,8.51148270,edu, +e9809c0c6bf33cfe232a63b0a13f9b1263c58cb8,Bayesian Constrained Local Models Revisited,University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.20759510,-8.42566148,edu, +e9cebf627c204c6949dcc077d04c57eb66b2c038,A method for extraction of affective audio-visual facial clips from movies,Bahçeşehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.97697953,edu, +e96cef8732f3021080c362126518455562606f2d,Binary Coding by Matrix Classifier for Efficient Subspace Retrieval,Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.55339750,153.05336234,edu, +e9b731f00d16a10a31ceea446b2baa38719a31f1,Facial expression recognition based on mixture of basic expressions and intensities,National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.99724412,edu, +e9d1b3767c06c896f89690deea7a95401ae4582b,Hierarchical class-specific kernel discriminant analysis for face verification,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +e96ce25d11296fce4e2ecc2da03bd207dc118724,Classification of face images using local iterated function systems,Deakin University,Deakin University,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.19928505,144.30365229,edu, +f1e44e64957397d167d13f8f551cae99e5c16c75,Face detection and facial expression recognition using simultaneous clustering and feature selection via an expectation propagation statistical learning framework,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +f16599e4ec666c6390c90ff9a253162178a70ef5,Linguistic Patterns and Cross Modality-based Image Retrieval for Complex Queries,La Trobe University,La Trobe University,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.77847540,144.29804700,edu, +f1da4d705571312b244ebfd2b450692fd875cd1f,Max-Margin Multiattribute Learning With Low-Rank Constraint,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +f1d6da83dcf71eda45a56a86c5ae13e7f45a8536,A Secure Face-Verification Scheme Based on Homomorphic Encryption and Deep Neural Networks,Beijing University of Technology,Beijing University of Technology,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.47722285,edu, +f1061b2b5b7ca32edd5aa486aecc63a0972c84f3,Duplex Metric Learning for Image Set Classification,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +f180cb7111e9a6ba7cfe0b251c0c35daaef4f517,Modeling Neuron Selectivity Over Simple Midlevel Features for Image Classification,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +f1af714b92372c8e606485a3982eab2f16772ad8,The MUG facial expression database,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +e7436b8e68bb7139b823a7572af3decd96241e78,A new approach for face detection with omnidirectional sensors,"University of Rouen, France","LITIS, Universite de Rouen - INSA de Rouen, Rouen, FR","685 Avenue de l'Université, 76800 Saint-Étienne-du-Rouvray, France",49.38497570,1.06832570,edu, +e75a589ca27dc4f05c2715b9d54206dee37af266,Multiscale Deep Alternative Neural Network for Large-Scale Video Classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +e73f2839fc232c03e9f027c78bc419ee15810fe8,Flexible 3D neighborhood cascade deformable part models for object detection,"University of Science, Vietnam","Fac. of Mathematics and Computer Sciences, University of Science, Ho Chi Minh City, Viet Nam","227 Đường Nguyễn Văn Cừ, Phường 4, Quận 5, Hồ Chí Minh, Vietnam",10.76241650,106.68120130,edu, +e790a2538579c8e2ef9b314962ab26197d6664c6,A jointly local structured sparse deep learning network for face recognition,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +e7e8c0bbee09b5af6f7df1de8f0f26da992737c4,Autoassociative Pyramidal Neural Network for face verification,University of Pernambuco,"University of Pernambuco, Recife-PE, Brazil","Av. Gov. Agamenon Magalhães - Santo Amaro, Recife - PE, 50100-010, Brazil",-8.04406030,-34.88611670,edu, +cbbd9880fb28bef4e33da418a3795477d3a1616e,Multi-class Support Vector Machine classifiers using intrinsic and penalty graphs,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +cb992fe67f0d4025e876161bfd2dda467eaec741,Random forest-based feature selection for emotion recognition,"University of Orléans, France","Univ. Orléans, INSA CVL, PRISME EA 4229, Bourges, France","Château de la Source, 45100 Orléans, France",47.84457440,1.93369650,edu, +cbc2de9b919bc63590b6ee2dfd9dda134af45286,Direct face detection and video reconstruction from event cameras,Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.40478113,edu, +cbf3e848c5d2130dd640d9bd546403b8d78ce0f9,Local linear discriminant analysis with composite kernel for face recognition,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +cbfcd1ec8aa30e31faf205c73d350d447704afee,Angle 2DPCA: A New Formulation for 2DPCA,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +cb8a1b8d87a3fef15635eb4a32173f9c6f966055,"A Survey on Deep Learning: Algorithms, Techniques, and Applications",Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +cb7a743b9811d20682c13c4ee7b791ff01c62155,VRank: Voting system on Ranking model for human age estimation,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +cb27b45329d61f5f95ed213798d4b2a615e76be2,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,"Samsung SAIT, Korea","Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea","130 Samseong-ro, Maetan 3(sam)-dong, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea",37.25202260,127.05550190,company, +cbaa17be8c22e219a9c656559e028867dfb2c2ed,Which face is more attractive?,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +cb160c5c2a0b34aba7b0f39f5dda6aca8135f880,Facial expression recognition based on locational features,"Eskişehir Osmangazi University, Turkey","Elektrik ve Elektronik Mühendisliği Bölümü, Eskişehir Osmangazi Üniversitesi, Türkiye","Eskişehir Osmangazi Üniversitesi, Mühendislik Fakültesi, 26480 Odunpazarı/Eskişehir, Turkey",39.74871200,30.47595620,edu, +f85ccab7173e543f2bfd4c7a81fb14e147695740,A method to infer emotions from facial Action Units,"Samsung R&D Institute, Bangalore, India","Samsung R&D Institute, Bangalore, India","#2870, Phoenix Building, 4th Floor Bagmane Constellation Business Park, Outer Ring Rd, Doddanekundi, Marathahalli, Bengaluru, Karnataka 560037, India",12.98035370,77.69751010,company, +f8162276f3b21a3873dde7a507fd68b4ab858bcc,Generalized Nonlinear Discriminant Analysis,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +f88ce52c5042f9f200405f58dbe94b4e82cf0d34,A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +f86c6942a7e187c41dd0714531efd2be828e18ad,Low-rank and structured sparse subspace clustering,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +cefaad8241bceb24827a71bf7c2556e458e57faa,Local Structure-Based Image Decomposition for Feature Extraction With Applications to Face Recognition,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +cef73d305e5368ee269baff53ec20ea3ae7cdd82,Correlation-Based Face Detection for Recognizing Faces in Videos,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +cec8936d97dea2fcf04f175d3facaaeb65e574bf,Large-Scale Video Classification with Elastic Streaming Sequential Data Processing System,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +ce8db0fe11e7c96d08de561506f9f8f399dabbb2,Weighted sparse representation using a learned distance metric for face recognition,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.59014110,127.03623180,edu, +ced7811f2b694e54e3d96ec5398e4b6afca67fc0,Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain,"Nanyang Technological University, Singapore","Comput. Control Lab, Nanyang Technol. Univ., Singapore","50 Nanyang Avenue, Block N4 #02a-32, Singapore 639798",1.34619520,103.68154990,edu, +ce30ddb5ceaddc0e7d308880a45c135287573d0e,Exploiting implicit affective labeling for image recommendations,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +ce2945e369603fcec1fcdc6e19aac5996325cba9,Emotion recognition using PHOG and LPQ features,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +e084b0e477ee07d78c32c3696ea22c94f5fdfbec,Semi-supervised visual recognition with constrained graph regularized non negative matrix factorization,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +e0ab926cd48a47a8c7b16e27583421141f71f6df,Human activity recognition using an ensemble of support vector machines,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +e03f69bad7e6537794a50a99da807c9df4ff5186,Unsupervised method of Domain Adaptation on representation of discriminatory regions of the face image for surveillance face datasets,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +46b2ecef197b465abc43e0e017543b1af61921ac,Face alignment with Cascaded Bidirectional LSTM Neural Networks,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +464ef1b3dcbe84099c904b6f9e9281c5f6fd75eb,LogDet Divergence-Based Metric Learning With Triplet Constraints and Its Applications,University of Agder,University of Agder,"UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge",58.16308805,8.00144966,edu, +2cf3564d7421b661e84251d280d159d4b3ebb336,Discriminating projections for estimating face age in wild images,University of North Carolina at Wilmington,University of North Carolina at Wilmington,"University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.22498270,-77.86907744,edu, +2cd426f10178bd95fef3dede69ae7b67e73bb70c,Real-time face alignment enhancement by tracking,Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.29315340,120.16204580,edu, +2ce84465b9759166effc7302c2f5339766cc523d,Sparsity-based joint gaze correction and face beautification for conferencing video,"National Institute of Informatics, Japan","National Institute of Informatics, Japan","2 Chome-1-2 Hitotsubashi, Chiyoda, Tokyo 100-0003, Japan",35.69248530,139.75825330,edu, +7923742e2af655dee4f9a99e39916d164bc30178,Soft biometric privacy: Retaining biometric utility of face images while perturbing gender,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +7914c3f510e84a3d83d66717aad0d852d6a4d148,Relative attribute guided dictionary learning,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +7935f644c8044c0d3b81e2842e5ecc3672698bbb,Frequency guided bilateral symmetry Gabor Wavelet Network,"Samsung SAIT, Korea","Advanced Media Lab. Samsung Advance Institute of Technology, Republic of Korea","130 Samseong-ro, Maetan 3(sam)-dong, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea",37.25202260,127.05550190,company, +7918e3e15099b4b2943746e1f6c9e3992a79c5f3,Non-negative matrix factorization as a feature selection tool for maximum margin classifiers,"Epson Research and Development Inc., San Jose, CA","Epson Research and Development Inc., San Jose, CA","214 Devcon Dr, San Jose, CA 95112, USA",37.37445600,-121.91274020,company, +794a51097385648e3909a1acae7188f5ab881710,Accurate eye localization in low and standard definition content,"Philips Research Eindhoven, HTC 34, Netherlands","Philips Research Eindhoven, HTC 34, Netherlands","High Tech Campus 34, 5656 AE Eindhoven, Netherlands",51.41175220,5.45866520,company, +79fd4baca5f840d6534a053b22e0029948b9075e,Neutral-independent geometric features for facial expression recognition,"Otto-von-Guericke-University, Magdeburg","Institute for Electronics, Signal Processing and Communications (IESK), Otto-von-Guericke-University Magdeburg, D-39106, P.O. Box 4210 Germany","Universitätspl. 2, 39106 Magdeburg, Germany",52.14020530,11.64419910,edu, +2d94dfa9c8f6708e071ef38d58f9f9bcb374cd84,A common framework for real-time emotion recognition and facial action unit detection,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +2d7c2c015053fff5300515a7addcd74b523f3f66,Age-Related Factor Guided Joint Task Modeling Convolutional Neural Network for Cross-Age Face Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +2dbc57abf3ceda80827b85593ce1f457b76a870b,Facial expression classification using salient pattern driven integrated geometric and textual features,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +2d79dece7890121469f515a6e773ba0251fc2d98,Integration of precise iris localization into active appearance models for automatic initialization and robust deformable face tracking,"Institute of Industrial Information Technology (IIIT), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany","Institute of Industrial Information Technology (IIIT), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany","76131 Karlsruhe, Germany",49.01191990,8.41703030,edu, +2df4d0c06f4f68060cecbbb8e2088d9c6b20d04f,Attribute prediction with long-range interactions via path coding,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +2d2fb01f761d21a459cfb34935bc47ab45a9913b,Intra-Class Variation Reduction Using Training Expression Images for Sparse Representation Based Facial Expression Recognition,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +417c2fa930bb7078fdf10cb85c503bd5270b9dc2,Low-resolution video face recognition with face normalization and feature adaptation,Fraunhofer,"Fraunhofer IOSB, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany","Fraunhoferstraße 1, 76131 Karlsruhe, Germany",49.01546000,8.42579990,company, +41c42cb001f34c43d4d8dd8fb72a982854e173fb,Evolutionary Cross-Domain Discriminative Hessian Eigenmaps,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +83b54b8c97dc14e302dad191327407ec0d5fb4a6,Temporal action localization with two-stream segment-based RNN,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +8383faea09b4b4bef8117a1da897495ebd68691b,Good Practices for Learning to Recognize Actions Using FV and VLAD,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +838dad9d1d68d29be280d92e69410eaac40084bc,Effectiveness of various classification techniques on human face recognition,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +834736698f2cc5c221c22369abe95515243a9fc3,GARP-face: Balancing privacy protection and utility preservation in face de-identification,"Air Force Research Lab, Rome, NY","Air Force Research Lab, Rome, NY, 13441, USA","26 Electronics Parkway, Rome, NY 13441, USA",43.22135160,-75.40855770,mil, +1b8541ec28564db66a08185510c8b300fa4dc793,Affine-Transformation Parameters Regression for Face Alignment,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +1b211f8221162ce7ef212956b637b50e30ad48f4,Saliency-context two-stream convnets for action recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +1b9976fea3c1cf13f0a102a884f027d9d80a14b3,Building a game scenario to encourage children with autism to recognize and label emotions using a humanoid robot,University of Hertfordshire,"Embodied Emotion, Cognition and (Inter-)Action Lab, University of Hertfordshire, United Kingdom","De Havilland Campus, Mosquito Way, Hatfield AL10 9EU, UK",51.76175610,-0.24679970,edu, +1bd8ab47177997acb3b0cca4b6a801e6e6ec3eac,Fast eye localization without a face model using inner product detectors,"Universidade Estadual de Campinas, Brazil","Universidade Estadual de Campinas, Cx.P. 6176 Campinas-SP, CEP 13084-971, Brazil","Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas - SP, 13083-970, Brazil",-22.81843930,-47.06472060,edu, +1b2d9a1c067f692dd48991beff03cd62b9faebf2,Local primitive code mining for fast and accurate face recognition,"Nokia Research Center, Beijing","Nokia Research Center, Beijing","China, Beijing Shi, Xicheng Qu, XiDan, Xidan N St, 118号西单商场2楼 邮政编码: 100031",39.91229390,116.37418790,company, +771a6a80dd08212d83a4e976522e1ce108881401,An automated method for realistic face simulation and facial landmark annotation and its application to active appearance models,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +7783095a565094ae5b3dccf082d504ddd7255a5c,"""Wow! you are so beautiful today!""",Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +77c5437107f8138d48cb7e10b2b286fa51473678,A pseudo ensemble convolutional neural networks,"Electronics and Telecommunications Research Institute, Daejeon, Korea","Electronics & Telecommunications Research Institute (ETRI), Daejeon, Korea","Electronics and Telecommunications Research Institute, Sinseong-dong, Daejeon, South Korea",36.38376500,127.36694000,edu,"Electronics and Telecommunications Research Institute, Daejeon, Korea" +77cea27494499dd162221d1476bf70a87391790a,Neighborhood repulsed correlation metric learning for kinship verification,Capital Normal University,Capital Normal University,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.92864575,116.30104052,edu, +779d3f0cf74b7d33344eea210170c7c981a7e27b,Fast-PADMA: Rapidly Adapting Facial Affect Model From Similar Individuals,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +77816b9567d5fed1f6085f33e1ddbcc73af2010e,Artimetrics: Biometrics for Artificial Entities,University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.07840380,-114.12870770,edu, +7788fa76f1488b1597ee2bebc462f628e659f61e,A Privacy-Aware Architecture at the Edge for Autonomous Real-Time Identity Reidentification in Crowds,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +778c1e95b6ea4ccf89067b83364036ab08797256,Exploring Patterns of Gradient Orientations and Magnitudes for Face Recognition,"VESALIS SAS, France","Vesalis company, Clermont-Ferrand, France","8 - 10 Allée Evariste Galois, 63000 Clermont-Ferrand, France",45.75976430,3.13102130,company, +771505abd38641454757de75fe751d41e87f89a4,Learning structured sparse representation for single sample face recognition,Nantong University,Nantong University,"南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国",31.97474630,120.90779264,edu, +48dcf45a1e38adbb9826594f7ffaa5e95ef78395,Illumination invariant feature based on neighboring radiance ratio,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +48255c9e1d6e1d030728d33a71699757e337be08,Person-independent facial expression recognition via hierarchical classification,Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775,edu, +48906f609446afcdaacbe1d65770d7a6165a8eee,Storages Are Not Forever,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +484bac2a9ff3a43a6f85d109bbc579a4346397f5,Finding VIPs - A visual image persons search using a content property reasoner and web ontology,Lehigh University,Lehigh University,"Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA",40.60680280,-75.37824880,edu, +486f5e85944404a1b57333443070b0b8c588c262,The power of fear: Facial emotion analysis of CEOs to forecast firm performance,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.74230250,-74.17928172,edu, +7049187c5155d9652747413ce1ebc8dbb209fd69,Facial depth map enhancement via neighbor embedding,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +70341f61dfe2b92d8607814b52dfd0863a94310e,Impact of resolution and image quality on video face analysis,Fraunhofer,"Fraunhofer IOSB, Fraunhoferstrasse 1, 76131 Karlsruhe, Germany","Fraunhoferstraße 1, 76131 Karlsruhe, Germany",49.01546000,8.42579990,company, +70444627cb765a67a2efba17b0f4b81ce1fc20ff,Joint Sparse Representation and Embedding Propagation Learning: A Framework for Graph-Based Semisupervised Learning,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +70d8bda4aafb0272ac4b93cd43e2448446b8e94d,Using SVM to design facial expression recognition for shape and texture features,"Shin-Guang Elementary School, Taiwan","Shin-Guang Elementary School, Yulin 646, Taiwan","Yulin, Guangxi, China",22.65403200,110.18122000,edu, +1e3068886b138304ec5a7296702879cc8788143d,Active Rare Class Discovery and Classification Using Dirichlet Processes,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +1e62ca5845a6f0492574a5da049e9b43dbeadb1b,Cross-Modality Face Recognition via Heterogeneous Joint Bayesian,"Alibaba Group, Hangzhou, China","Alibaba Group, Hangzhou, China","Alibaba Group, 五常街道, 余杭区 (Yuhang), 杭州市 Hangzhou, 浙江省, 中国",30.28106540,120.02139087,edu, +1eb9c859ff7537182a25556635954bcd11830822,Multi-features fusion based CRFs for face segmentation,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +1ed617d14dbc53b20287d3405b14c68d8dad3965,Benchmarking a Multimodal and Multiview and Interactive Dataset for Human Action Recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +1ed49161e58559be399ce7092569c19ddd39ca0b,Transferring from face recognition to face attribute prediction through adaptive selection of off-the-shelf CNN representations,"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.07063213,edu, +84f3c4937cd006888b82f2eb78e884f2247f0c4e,Beyond touch: Natural interactions using facial expressions,"Samsung SAIT, Bangalore","SAIT India, Samsung India Software Operations Pvt. Ltd (SISO), Bangalore, India, 560093","Bengaluru, Karnataka 560093, India",12.98586720,77.67130310,company, +84574aa43a98ad8a29470977e7b091f5a5ec2366,Latent max-margin metric learning for comparing video face tubes,"Technicolor, France","Technicolor, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.83153300,2.28066283,edu, +84a74ef8680b66e6dccbc69ae80321a52780a68e,Facial Expression Recognition,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +844e3e6992c98e53b45e4eb88368d0d6e27fc1d6,Structure-constrained low-rank and partial sparse representation for image classification,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +84ec0983adb8821f0655f83b8ce47f36896ca9ee,Finding label noise examples in large scale datasets,University of South Florida,University of South Florida,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.05999990,-82.41383619,edu, +4aea1213bdb5aa6c74b99fca1afc72d8a99503c6,Facial feature extraction using hybrid genetic-simplex optimization in multi-objective Active Appearance Model,"SUPELEC / IETR, France","SUPELEC / IETR, Avenue de la Boulaie, 35576 Cesson Sevigne, France","Campus de Rennes, Avenue de la Boulaie, 35510 Cesson-Sévigné, France",48.12523160,-1.62340120,edu, +24b5ea4e262e22768813e7b6581f60e4ab9a8de7,"Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation",Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.87929727,edu, +244293024aebbb0ff42a7cf2ba49b1164697a127,Multiscale representation for partial face recognition under near infrared illumination,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +24eeb748a5e431510381ec7c8253bcb70eff8526,Convex Multiview Semi-Supervised Classification,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +24286ef164f0e12c3e9590ec7f636871ba253026,Age and gender classification using wide convolutional neural network and Gabor filter,Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.28300030,127.04548469,edu, +2400c4994655c4dd59f919c4d6e9640f57f2009f,Super-resolution of facial images in forensics scenarios,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532827,edu, +24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,An analysis of the robustness of deep face recognition networks to noisy training labels,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +24b637c98b22cd932f74acfeecdb50533abea9ae,Robust Face Recognition via Minimum Error Entropy-Based Atomic Representation,Hubei University,"Faculty of Mathematics and Statistics, Hubei University, Wuhan, China","Hongshan, Wuhan, China",30.48176100,114.31096000,edu, +24e42e6889314099549583c7e19b1cb4cc995226,Research of face recognition under active infrared lighting based on embedded system,NanKai University,"College of Information Technical Science, NanKai University, CITS, TianJin, China","China, Tianjin, Nankai, Lequn N Rd, 南开大学综合实验楼A区604",39.10335500,117.16492700,edu, +24f3dfeb95bdecdc604d630acdfcafa1dc7c9124,Behavioural facial animation using motion graphs and mind maps,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +2360ecf058393141ead1ca6b587efa2461e120e4,Facial expression analysis and expression-invariant face recognition by manifold-based synthesis,University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300881,edu, +23ee7b7a9ca5948e81555aaf3a044cfec778f148,Beyond simple features: A large-scale feature search approach to unconstrained face recognition,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +2336de3a81dada63eb00ea82f7570c4069342fb5,A methodological framework for investigating age factors on the performance of biometric systems,University of Kent,University of Kent,"University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK",51.29753440,1.07296165,edu, +239e305c24155add73f2a0ba5ccbd66b37f77e14,Fast computation of low-rank matrix approximations,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +23e824d1dfc33f3780dd18076284f07bd99f1c43,Spoofing faces using makeup: An investigative study,INRIA Méditerranée,"Inria Méditerranée, France","2004 Route des Lucioles, 06902 Valbonne, France",43.61581310,7.06838000,edu,"Inria Méditerranée, France" +2340d810c515dc0c9fd319f598fa8012dc0368a0,A collaborative face recognition framework on a social network platform,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +239958d6778643101ab631ec354ea1bc4d33e7e0,Head pose estimation in the wild using Convolutional Neural Networks and adaptive gradient methods,Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.37552690,-4.13937687,edu, +4f03ba35440436cfa06a2ed2a571fea01cb36598,The extended collaborative representation-based classification,"Artificial Intelligence Key Laboratory of Sichuan Province, China","Artificial Intelligence Key Laboratory, of Sichuan Province, Zigong, Sichuan, 643000, P. R. China","Ziliujing, Zigong, Sichuan, China, 643000",29.33909180,104.77858020,gov, +4f1249369127cc2e2894f6b2f1052d399794919a,Deep Age Estimation: From Classification to Ranking,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.35775700,-83.06286711,edu, +8dd3f05071fd70fb1c349460b526b0e69dcc65bf,Local Directional Ternary Pattern for Facial Expression Recognition,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.59539950,-48.61542180,edu, +8d3e95c31c93548b8c71dbeee2e9f7180067a888,Template regularized sparse coding for face verification,GE Global Research,"General Electric Global Research, Niskayuna, NY, USA","1 Research Cir, Niskayuna, NY 12309, USA",42.82715560,-73.87804810,company, +8dd9c97b85e883c16e5b1ec260f9cd610df52dec,Rule based assessment of hearing-impaired children's facial expressions,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +15ef65fd68d61f3d47326e358c446b0f054f093a,Learning guided convolutional neural networks for cross-resolution face recognition,National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.99724412,edu, +159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,Weak Classifier for Density Estimation in Eye Localization and Tracking,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.59539950,-48.61542180,edu, +159caaa56c2291bedbd41d12af5546a7725c58d4,A joint optimization scheme to combine different levels of features for face recognition with makeup changes,Beijing Advanced Innovation Center for Imaging Technology,"Beijing Advanced Innovation Center for Imaging Technology, Beijing 100048, China","Haidian, Beijing, China, 100048",39.92907420,116.31093150,edu, +12c4ba96eaa37586f07be0d82b2e99964048dcb5,Local Adaptive Binary Patterns Using Diamond Sampling Structure for Texture Classification,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +1221e25763c3be95c1b6626ca9e7feaa3b636d9a,Exploiting spatial-temporal context for trajectory based action video retrieval,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +126076774da192d4d3f4efcd1accc719ee5f9683,A hybrid facial expression recognition method based on neutral face shape estimation,Bahçeşehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.97697953,edu, +12b533f7c6847616393591dcfe4793cfe9c4bb17,Semantic Face Signatures: Recognizing and Retrieving Faces by Verbal Descriptions,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +8cffe360a05085d4bcba111a3a3cd113d96c0369,Learning universal multi-view age estimator using video context,"Facebook, Singapore","Facebook, Singapore","Ewe Boon back lane, between Palm Spring, City Towers and Wing On Life Garden, Farrer Park Gardens, Novena, Singapore, Central, 259803, Singapore",1.31704170,103.83210410,company, +8c85ef961826575bc2c2f4da7784bc3bfcf8b188,Pareto-optimal discriminant analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +8c50869b745fc094a4fb1b27861934c3c14d7199,A study of the effect of subject motion to pulse rate estimation,GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.82982480,-73.87719385,edu, +8c4042191431e9eb43f00b0f14c23765ab9c6688,Multi-model robust error correction for face recognition,"TCL Research America, San Jose, CA","TCL Research America, San Jose, CA 95134, USA","2870 Zanker Rd Suite 200, San Jose, CA 95134, USA",37.39521480,-121.92778100,company, +8c3f7bd8ae50337dd812b370ce4c4ea9375a9f58,Facial action unit intensity estimation using rotation invariant features and regression analysis,University of the Witwatersrand,University of the Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.18888130,28.02479073,edu, +8c37bd06e1a637c6f249dcd1d2c4bc9589ae24b3,Component-Based Active Appearance Models for Face Modelling,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.95740000,-75.19026706,edu, +8c2b663f8be1702ed3e377b5e6e85921fe7c6389,An accurate eye localization approach for smart embedded system,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +8cd0855ca967ce47b0225b58bbadd38d8b1b41a1,Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +85785ae222c6a9e01830d73a120cdac75d0b838a,Multimedia Database Retrieval,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +85a136b48c2036b16f444f93b086e2bd8539a498,Orthogonal Principal Coefficients Embedding for Unsupervised Subspace Learning,OmniVision Technologies Singapore,"OmniVision Technologies Singapore Pte. Ltd., Singapore","4275 Burton Dr, Santa Clara, CA 95054, USA",37.39099960,-121.96450710,edu, +85f27ec70474fe93f32864dd03c1d0f321979100,Integrating Local and Global Manifold structures for unsupervised dimensionality reduction,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +85f7f03b79d03da5fae3a7f79d9aac228a635166,Age categorization via ECOC with fused gabor and LBP features,"Institute for Infocomm Research, Singapore","Institute for Infocomm Research, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +854b1f0581f5d3340f15eb79452363cbf38c04c8,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +85ec86f8320ba2ed8b3da04d1c291ce88b8969c0,RF-Based Fall Monitoring Using Convolutional Neural Networks,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +85ae6fa48e07857e17ac4bd48fb804785483e268,Gender Estimation Based on Smile-Dynamics,INRIA Méditerranée,"Inria Méditerranée, France","2004 Route des Lucioles, 06902 Valbonne, France",43.61581310,7.06838000,edu,"Inria Méditerranée, France" +8562b4f63e49847692b8cb31ef0bdec416b9a87a,Marginal Representation Learning With Graph Structure Self-Adaptation,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +1d30f813798c55ae4fe454829be6e2948ee841da,Kernel Fukunaga-Koontz Transform Subspaces For Enhanced Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1d51b256af68c5546d230f3e6f41da029e0f5852,Class-Specific Kernel Discriminant Analysis Revisited: Further Analysis and Extensions,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +1dabb080e3e968633f4b3774f19192f8378f5b67,Exploring deep learning based solutions in fine grained activity recognition in the wild,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +1da1299088a6bf28167c58bbd46ca247de41eb3c,Face identification from a single example image based on Face-Specific Subspace (FSS),Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +71d786fdb563bdec6ca0bbf69eba8e3f37c48c6f,Part-based representation and classification for face recognition,University of Campinas (UNICAMP),"Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil","Universidade Estadual de Campinas - Av. Albert Einstein, 1251 - Cidade Universitária, Campinas - SP, 13083-852, Brazil",-22.81483740,-47.06477080,edu, +710c3aaffef29730ffd909a63798e9185f488327,The GIST of aligning faces,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +71a9d7cf8cf1e206cb5fa18795f5ab7588c61aba,Robust Shape-Feature-Vector-Based Face Recognition System,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.95867433,edu, +7123e510dea783035b02f6c35e35a1a09677c5ab,Back to the future: A fully automatic method for robust age progression,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,Effective 3D based frontalization for unconstrained face recognition,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +7196b3832065aec49859c61318037b0c8c12363a,Probabilistic modeling of scenes using object frames,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7644b3a0871b8e0e7e1cdf06099e295f1e5fbdf7,Graph Maximum Margin Criterion for Face Recognition,Anhui Polytechnic University,Anhui Polytechnic University,"安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.34185955,118.40739712,edu, +76669f166ddd3fb830dbaacb3daa875cfedc24d9,Learning face recognition from limited training data using deep neural networks,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +76dff7008d9b8bf44ec5348f294d5518877c6182,Discrete area filters in accurate detection of faces and facial features,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.00735776,edu, +76640cb1a683a479ce2e0d6681d821ff39126d63,Innovative embodiment of job interview in emotionally aware communication robot,"NEC Corporation, Nara, Japan","C & C Innovation Research Labs, NEC Corporation, Nara, Japan","Nara, Nara Prefecture, Japan",34.68508690,135.80500020,edu, +1c25a3c8ef3e2c4dbff337aa727d13f5eba40fb2,Artistic stylization of face photos based on a single exemplar,Memorial University of Newfoundland,Memorial University of Newfoundland,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.57272510,-52.73305444,edu, +1c0acf9c2f2c43be47b34acbd4e7338de360e555,A Multi-Camera Deep Neural Network for Detecting Elevated Alertness in Drivers,Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.40253645,-122.11655107,edu, +8274069feeff6392b6c5d45d8bfaaacd36daedad,Face recognition using extended generalized Rayleigh quotient,Xi'an Jiaotong University,Xi'an Jiaotong University,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.24749490,108.97898751,edu, +82953e7b3d28ccd1534eedbb6de7984c59d38cd4,Incremental Generalized Discriminative Common Vectors for Image Classification,Universitat de València,Universitat de València,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.47787665,-0.34257711,edu, +8229f2735a0db0ad41f4d7252129311f06959907,Active Learning for Solving the Incomplete Data Problem in Facial Age Classification by the Furthest Nearest-Neighbor Criterion,"Institution for Infocomm Research, Singapore","Institution for Infocomm Research, Connexis, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +82a0a5d0785fb2c2282ed901a15c3ff02f8567df,Comparison of two methods for unsupervised person identification in TV shows,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +82e3f4099503633c042a425e9217bfe47cfe9d4b,A modified vector of locally aggregated descriptors approach for fast video classification,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +82dad0941a7cada11d2e2f2359293fe5fabf913f,A pool of deep models for event recognition,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +4909ed22b1310f1c6f2005be5ce3349e3259ff6a,Face recognition using AAM and global shape features,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +492116d16a39eb54454c7ffb1754cea27ad3a171,Making Facial Expressions of Emotions Accessible for Visually Impaired Persons,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +49068538b7eef66b4254cc11914128097302fab8,Difficult detection: A comparison of two different approaches to eye detection for unconstrained environments,"Securics, Colorado Springs, CO","Securics, Inc. Colorado Springs, CO, USA","2805 Jet Wing Dr, Colorado Springs, CO 80916, USA",38.79202200,-104.75308990,company, +496f3d14cf466f054d395a3c71fa2cd6a3dda61d,A fast identity-independent expression recognition system for robust cartoonification using smart devices,Indian Institute of Technology Varanasi,"Indian Institute of Technology (BHU) Varanasi, India","IIT-BHU, Banaras Hindu University Campus, Uttar Pradesh 221005, India",25.26232470,82.98937350,edu, +49be50efc87c5df7a42905e58b092729ea04c2f5,Beyond Bag-of-Words: Fast video classification with Fisher Kernel Vector of Locally Aggregated Descriptors,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +496d62741e8baf3859c24bb22eaccd3043322126,Beyond Trace Ratio: Weighted Harmonic Mean of Trace Ratios for Multiclass Discriminant Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +493c8591d6a1bef5d7b84164a73761cefb9f5a25,User Profiling through Deep Multimodal Fusion,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +4014d74e8f5ea4d76c2c1add81d0c88d6e342478,Group emotion recognition in the wild by combining deep neural networks for facial expression classification and scene-context analysis,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.35788990,151.37834708,edu, +4014e8c1a1b49ad2b9b2c45c328ec9f1fd56f676,ADL: Active dictionary learning for sparse representation,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.74225200,-74.02709490,edu, +4097fef623185557bb1842501cfdc97f812fc66d,CTC Network with Statistical Language Modeling for Action Sequence Recognition in Videos,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.51675380,139.48342251,edu, +407806f5fe3c5ecc2dc15b75d3d2b0359b4ee7e0,Enhanced independent spectral histogram representations in face recognition,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +40f06e5c052d34190832b8c963b462ade739cbf0,Face recognition based on the quotient image method and sparse representation,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +405cf40f3ce74210f7e9862b2b828ce002b409ed,Comprehensive study of features for subject-independent emotion recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +2e7e1ee7e3ee1445939480efd615e8828b9838f8,Automatically Detecting Pain in Video Through Facial Action Units,University of Northern British Columbia,University of Northern British Columbia,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.89256620,-122.81471592,edu, +2e5d173ee0d1d7f88c335ade6a7b879b2d987ab4,Identify Visual Human Signature in community via wearable camera,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +2e535b8cd02c2f767670ba47a43ad449fa1faad7,Deep-Learning Systems for Domain Adaptation in Computer Vision: Learning Transferable Feature Representations,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +2ed7d95588200c8c738c7dd61b8338538e04ea30,Local and holistic texture analysis approach for face recognition,Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.85620818,edu, +2ef1b1b5ed732634e005df779fd9b21da0ffe60c,Pair of projections based on sparse consistence with applications to efficient face recognition,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +2e12c5ea432004de566684b29a8e148126ef5b70,Video modeling and learning on Riemannian manifold for emotion recognition in the wild,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2b286ed9f36240e1d11b585d65133db84b52122c,Real-time 3D eyelids tracking from semantic edges,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +2b300985a507533db3ec9bd38ade16a32345968e,Laplacian multiset canonical correlations for multiview feature extraction and image recognition,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +2b5005c2abf2d9a8c16afa50306b6959dfc72275,LBP-based biometric hashing scheme for human authentication,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +2b43100a13811b33cc9f905fa1334bfd8b1873ba,A hybrid Genetic Programming approach to feature detection and image classification,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.76846919,edu, +2bf646a6efd15ab830344ae9d43e10cc89e29f34,Structured AutoEncoders for Subspace Clustering,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +2bcd9b2b78eb353ea57cf50387083900eae5384a,Image ranking and retrieval based on multi-attribute queries,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +47cd161546c59ab1e05f8841b82e985f72e5ddcb,Gender classification in live videos,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +4786638ffb3b2fb385cec80720cc6e7c3588b773,Effective semantic features for facial expressions recognition using SVM,Tamkang University,Tamkang University,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.17500615,121.45076751,edu, +4735fa28fa2a2af98f7b266efd300a00e60dddf7,Dual subspace nonnegative matrix factorization for person-invariant facial expression recognition,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +7831ab4f8c622d91974579c1ff749dadc170c73c,Video-to-video face matching: Establishing a baseline for unconstrained face recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +78d4d861c766af2a8da8855bece5da4e6eed2e1c,A comparison of facial feature representation methods for automatic facial expression recognition,University of the Western Cape,University of the Western Cape,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa",-33.93277620,18.62915407,edu, +78e1798c3077f4f8a4df04ca35cd73f82e9a38f3,A hierarchical algorithm with multi-feature fusion for facial expression recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +78cec49ca0acd3b961021bc27d5cf78cbbbafc7e,Is face recognition really a Compressive Sensing problem?,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +782a05fbe30269ff8ab427109f5c4d0a577e5284,Deep Manifold Learning Combined With Convolutional Neural Networks for Action Recognition,"Baiyun District Bureau of Justice, Guangzhou, China","Baiyun District Bureau of Justice, Guangzhou, China","100 Xianlie Middle Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China",23.13941620,113.30038740,company, +780c8a795baca1ba4cb4956cded877dd3d1ca313,Simulation of face recognition at a distance by scaling down images,University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.21675650,-85.75725023,edu, +785eeac2e236a85a45b4e0356c0745279c31e089,Learning Person-Specific Representations From Faces in the Wild,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +782eee555067b2d6d24db87775e1ded5fb047491,Adaptive Multiple Experts System for personal identification using facial behaviour biometrics,University of Technology,"Center for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia","11 University of Technology Sydney 81, Broadway, Ultimo NSW 2007, Australia",-33.88405040,151.19922540,edu, +8bf945166305eb8e304a9471c591139b3b01a1e1,Retrieval of TV Talk-Show Speakers by Associating Audio Transcript to Visual Clusters,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +8b1fa60b9164b60d1ca2705611fab063505a3ef5,Latent Facial Topics for affect analysis,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +8bebb26880274bdb840ebcca530caf26c393bf45,Real-time face recognition in HD videos: Algorithms and framework,Ahmedabad University,Ahmedabad University,"School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India",23.03787430,72.55180046,edu, +136aae348c7ebc6fd9df970b0657241983075795,Semi-supervised learning based on group sparse for relative attributes,Harbin Engineering University,Harbin Engineering University,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.77445695,126.67684917,edu, +13179bb3f2867ea44647b6fe0c8fb4109207e9f5,Recurrent learning of context for salient region detection,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +7f5346a169c9784ca79aca5d95ae8bf2ebab58e3,Two-level multi-task metric learning with application to multi-classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +7fcecaef60a681c47f0476e54e08712ee05d6154,Deeply learned attributes for crowded scene understanding,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +7f203f2ff6721e73738720589ea83adddb7fdd27,Face alignment under variable illumination,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a,A multi-view face database from Turkish TV series,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +7f904093e6933cab876e87532111db94c71a304f,Evaluation of gender classification methods on thermal and near-infrared face images,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +7fcd03407c084023606c901e8933746b80d2ad57,Local classifier chains for deep face recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +7a595800b490ff437ab06fe7612a678d5fe2b57d,Improved concept similarity measuring in the visual domain,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +7a09e8f65bd85d4c79f0ae90d4e2685869a9894f,Face and Hair Region Labeling Using Semi-Supervised Spectral Clustering-Based Multiple Segmentations,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +7a6e3ed956f71b20c41fbec008b1fa8dacad31a6,Enhanced facial expression recognition by age,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +7a91617ec959acedc5ec8b65e55b9490b76ab871,An efficient illumination invariant face recognition technique using two dimensional linear discriminant analysis,"Indian Statistical Institute, Kolkata","Indian Statistical Institute, Kolkata","Plot No. 203, Barrackpore Trunk Road, Baranagar, Kolkata, West Bengal 700108, India",22.64815210,88.37681700,edu, +7adfc2f854e2ea45c29d22d6e2dcccdd527f46a8,Facial expression recognition using $${l}_{p}$$ l p -norm MKL multiclass-SVM,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +14d7bce17265738f10f48987bb7bffb3eafc676e,An integrated approach for efficient analysis of facial expressions,Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.14435250,-81.33982833,edu, +143571c2fc9b1b69d3172f8a35b8fad50bc8202a,Facial action unit recognition using multi-class classification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +142e233adceed9171f718a214a7eba8497af4324,A new transfer learning Boosting approach based on distribution measure with an application on facial expression recognition,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +14ae16e9911f6504d994503989db34d2d1cb2cd4,Facial expression recognition using bag of distances,National Taichung University of Science and Technology,National Taichung University of science and Technology,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.15031065,120.68325501,edu, +1473e6f2d250307f0421f1e2ea68b6485d3bd481,Efficient feature extraction with simultaneous recurrent network for metric learning,Old Dominion University,Old Dominion University,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.88568200,-76.30768579,edu, +8e63868e552e433dc536ba732f4c2af095602869,Automatic Texture Synthesis for Face Recognition from Single Views,Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.55339750,153.05336234,edu, +8eb40d0a0a1339469a05711f532839e8ffd8126c,Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Networks,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +8e452379fda31744d4a4383fcb8a9eab6dbc4ae4,Principal Angles Separate Subject Illumination Spaces in YDB and CMU-PIE,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +8e55486aa456cae7f04fe922689b3e99a0e409fe,LEAF: Latent Extended Attribute Features Discovery for Visual Classification,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +8ebe2df4d82af79f0f082ced70f3a73d7fb93b66,Relative attributes with deep Convolutional Neural Network,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +8e272978dd1500ce6e4c2ef5e91d4332078ff757,Human Face Identification from Video Based on Frequency Domain Asymmetry Representation Using Hidden Markov Models,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +8e21399bb102e993edd82b003c306a068a2474da,A complete discriminative subspace for robust face recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +228ea13041910c41b50d0052bdce924037c3bc6a,A Review Paper Between Open Source and Commercial SDK and Performance Comparisons of Face Matchers,"National Science and Technology Development Agency, Thailand","National Science and Technology Development Agency, National Electronics and Computer Technology Center, Pathum Thani, 12120, Thailand","Pathum Thani 12120, Thailand",14.09502500,100.66471010,gov, +2238dddb76499b19035641d97711cf30d899dadb,Lip shape based emotion identification,"Atılım University, Ankara, Turkey","Elektrik - Elektronik Mühendisliği Bölümü, Atılım Üniversitesi, Ankara, Türkiye","Kızılcaşar Mahallesi, 06830 İncek Gölbaşı/Gölbaşı/Gölbaşı/Ankara, Turkey",39.81573110,32.72386770,edu, +22894c7a84984bd4822dcfe7c76a74673a242c36,Automatic emotion recognition in the wild using an ensemble of static and dynamic representations,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +22a10d8d2a2cb9055557a3b335d6706100890afb,Comparison of matrix decomposition and SIFT descriptor based methods for face alignment,"Eskişehir Osmangazi University, Turkey","Elektrik ve Elektronik Mühendisliği Bölümü, Eskişehir Osmangazi Üniversitesi, Türkiye","Eskişehir Osmangazi Üniversitesi, Mühendislik Fakültesi, 26480 Odunpazarı/Eskişehir, Turkey",39.74871200,30.47595620,edu, +22dbdace88c8f4bda2843ed421e3708ec0744237,"Real-time facial shape recovery from a single image under general, unknown lighting by rank relaxation",Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +22e121a8dea49e3042de305574356477ecacadda,Directional gradients integration image for illumination insensitive face representation,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.62850666,edu, +250b73ec5a4f78b7b4ea3aba65c27fc1352154d5,Constrained Multi-View Video Face Clustering,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +256b46b12ab47283e6ada05fad6a2b501de35323,Pose estimation using Spectral and Singular Value recomposition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +2546dc7e2c2390233de16502413fe1097ecf3fb5,An empirical evaluation on dimensionality reduction schemes for dissimilarity-based classifications,Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.23810230,127.19034310,edu, +258b3b1df82186dd76064ef86b28555e91389b73,Initial Shape Pool Construction for Facial Landmark Localization Under Occlusion,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +2564920d6976be68bb22e299b0b8098090bbf259,Face recognition algorithm based on cascading BGP feature fusion,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, diff --git a/scraper/reports/doi_institutions_unattributed.csv b/scraper/reports/doi_institutions_unattributed.csv new file mode 100644 index 00000000..bf5d6ea8 --- /dev/null +++ b/scraper/reports/doi_institutions_unattributed.csv @@ -0,0 +1,406 @@ +6196f4be3b28684f6528b8687adccbdf9ac5c67c,Recommending Outfits from Personal Closet +61971f8e6fff5b35faed610d02ad14ccfc186c70,Identity-Adaptive Facial Expression Recognition through Expression Regeneration Using Conditional Generative Adversarial Networks +0d90c992dd08bfb06df50ab5c5c77ce83061e830,An Automatic Face Annotation System Featuring High Accuracy for Online Social Networks +0d3ff34d8490a9a53de1aac1dea70172cb02e013,Cross-Database Evaluation of Normalized Raw Pixels for Gender Recognition under Unconstrained Settings +95288fa7ff4683e32fe021a78cbf7d3376e6e400,Football Action Recognition Using Hierarchical LSTM +592f14f4b12225fc691477a180a2a3226a5ef4f0,"Inferring Visual Persuasion via Body Language, Setting, and Deep Features" +9285f4a6a06e975bde3ae3267fccd971d4fff98a,Attentional Push: A Deep Convolutional Network for Augmenting Image Salience with Shared Attention Modeling in Social Scenes +0cf1287c8fd41dcef4ac03ebeab20482f02dce20,User-Demand-Oriented Privacy-Preservation in Video Delivering +66490b5869822b31d32af7108eaff193fbdb37b0,Cascade Multi-View Hourglass Model for Robust 3D Face Alignment +663efaa0671eace1100fdbdecacd94216a17b1db,A Max-Margin Riffled Independence Model for Image Tag Ranking +3ebb0209d5e99b22c67e425a67a959f4db8d1f47,Subspace-Based Convolutional Network for Handwritten Character Recognition +3e3227c8e9f44593d2499f4d1302575c77977b2e,Facial Expression Recognition Using a Large Out-of-Context Dataset +3e9ab40e6e23f09d16c852b74d40264067ac6abc,Learning Locally-Adaptive Decision Functions for Person Verification +3ec860cfbd5d953f29c43c4e926d3647e532c8b0,Gabor-Based Region Covariance Matrices for Face Recognition +57f4e54a63ef95596dbc743f391c3fff461f278b,On the Application of the Probabilistic Linear Discriminant Analysis to Face Recognition across Expression +57178b36c21fd7f4529ac6748614bb3374714e91,IARPA Janus Benchmark - C: Face Dataset and Protocol +57dc55edade7074f0b32db02939c00f4da8fe3a6,Yaw Estimation Using Cylindrical and Ellipsoidal Face Models +3b21aaf7def52964cf1fcc5f11520a7618c8fae3,Joint Discriminative Bayesian Dictionary and Classifier Learning +03e1480f1de2ffbd85655d68aae63a01685c5862,Indian Classical Dance Classification on Manifold Using Jensen-Bregman LogDet Divergence +9ba358281f2946cba12fff266019193a2b059590,Local Normalization with Optimal Adaptive Correlation for Automatic and Robust Face Detection on Video Sequences +9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682,To Frontalize or Not to Frontalize: Do We Really Need Elaborate Pre-processing to Improve Face Recognition? +9b0ead0a20a2b7c4ae40568d8d1c0c2b23a6b807,Efficient Multi-attribute Similarity Learning Towards Attribute-Based Fashion Search +9e105c4a176465d14434fb3f5bae67f57ff5fba2,SmartPartNet: Part-Informed Person Detection for Body-Worn Smartphones +9e28243f047cc9f62a946bf87abedb65b0da0f0a,Can We Minimize the Influence Due to Gender and Race in Age Estimation? +32bab8fe6db08c9d1e906be8a9c7e8cf7a0f0b99,Audio-Visual Recognition System with Intra-Modal Fusion +35208eda874591eac70286441d19785726578946,Deep Secure Encoding for Face Template Protection +352a620f0b96a7e76b9195a7038d5eec257fd994,Kinship Classification through Latent Adaptive Subspace +699b8250fb93b3fa64b2fc8f59fef036e172564d,Spontaneous Facial Expression Recognition: A Part Based Approach +6932baa348943507d992aba75402cfe8545a1a9b,Stacked Hourglass Network for Robust Facial Landmark Localisation +6966d9d30fa9b7c01523425726ab417fd8428790,Exemplar-Based Face Parsing +3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827,An Empirical Study of Face Recognition under Variations +3c6542295cf7fe362d7d629ac10670bf30cdabce,Hierarchical Aggregation Based Deep Aging Feature for Age Prediction +56fd4c05869e11e4935d48aa1d7abb96072ac242,OpenFace 2.0: Facial Behavior Analysis Toolkit +519f1486f0755ef3c1f05700ea8a05f52f83387b,A Fast Extension for Sparse Representation on Robust Face Recognition +5180c98815d7034e753a14ef6f54583f115da3aa,Challenging 3D Head Tracking and Evaluation Using Unconstrained Test Data Set +3dce635ce4b55fb63fc6d41b38640403b152a048,The Impact of Age and Threshold Variation on Facial Recognition Algorithm Performance Using Images of Children +3d2c89676fcc9d64aaed38718146055152d22b39,Nuclear Norm Based 2DPCA +3dfbd17bd9caf7bd1d908ff469dec2b61e8a9548,Usability of Pilot's Gaze in Aeronautic Cockpit for Safer Aircraft +3d6f59e0f0e16d01b9c588a53d3b6b3b984e991e,Learning Local Responses of Facial Landmarks with Conditional Variational Auto-Encoder for Face Alignment +67214e8d2f83eb41c14bfc86698eb6620e72e87c,What Makes a Style: Experimental Analysis of Fashion Prediction +0bab5213911c19c40e936b08d2f8fba01e286b85,Cascaded Pose Regression Revisited: Face Alignment in Videos +0ba5369c5e1e87ea172089d84a5610435c73de00,A Multi-task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection +0b82bf595e76898993ed4f4b2883c42720c0f277,Improving Face Recognition by Exploring Local Features with Visual Attention +93dcea2419ca95b96a47e541748c46220d289d77,Multi-scale Fully Convolutional Network for Face Detection in the Wild +94806f0967931d376d1729c29702f3d3bb70167c,Discriminative Hierarchical Rank Pooling for Activity Recognition +942f6eb2ec56809430c2243a71d03cc975d0a673,Fooling Neural Networks in Face Attractiveness Evaluation: Adversarial Examples with High Attractiveness Score But Low Subjective Score +94b729f9d9171e7c4489995e6e1cb134c8521f4e,Geometrical Approaches for Facial Expression Recognition Using Support Vector Machines +0e4fa61871755b5548a5c970c8103f7b2ada24f3,Partial Face Recognition Based on Template Matching +60777fbca8bff210398ec8b1179bc4ecb72dfec0,A Deformable Mixture Parsing Model with Parselets +60462b981fda63c5f9d780528a37c46884fe0b54,Statistical Machine Learning vs Deep Learning in Information Fusion: Competition or Collaboration? +34c1e9a6166f4732d1738db803467f7abc47ba87,Image Set Classification Using Sparse Bayesian Regression +5a547df635a9a56ac224d556333d36ff68cbf088,Cross Local Gabor Binary Pattern Descriptor with Probabilistic Linear Discriminant Analysis for Pose-Invariant Face Recognition +5fce9d893a40c4e0f2ae335b2e68bfd02f1cb2c6,A Methodology for Detecting Faces from Different Views +050e51268b0fb03033428ac777ccfef2db752ab3,"Fast, Accurate and Robust Recognition Based On Local Normalized Linear Summation Kernel" +9d1cebed7672210f9c411c5ba422a931980da833,Relational Learning Based Happiness Intensity Analysis in a Group +9cc8cf0c7d7fa7607659921b6ff657e17e135ecc,Detecting Masked Faces in the Wild with LLE-CNNs +9ca542d744149f0efc8b8aac8289f5e38e6d200c,Gender and Smile Classification Using Deep Convolutional Neural Networks +028e237cb539b01ec72c244f57fdcfb65bbe53d4,An Improved DLDA Based Method- Nonparametric DLDA +021e008282714eaefc0796303f521c9e4f199d7e,NCC-Net: Normalized Cross Correlation Based Deep Matcher with Robustness to Illumination Variations +a325d5ea42a0b6aeb0390318e9f65f584bd67edd,Fine-Grained Visual Comparisons with Local Learning +b5747ecfa0f3be0adaad919d78763b1133c4d662,Attribute-Assisted Domain Transfer from Image to Sketch +b58d381f9f953bfe24915246b65da872aa94f9aa,Recommending New Links in Social Networks Using Face Recognition +b5fdd7778503f27c9d9bf77fab193b475fab6076,Changes in Facial Expression as Biometric: A Database and Benchmarks of Identification +b598f7761b153ecb26e9d08d3c5817aac5b34b52,A Simulated Annealing and 2DPCA Based Method for Face Recognition +b5ca8d4f259f35c1f3edfd9f108ce29881e478b0,Disentangled Representation Learning GAN for Pose-Invariant Face Recognition +b299c292b84aeb4f080a8b39677a8e0d07d51b27,Part-Level Regularized Semi-Nonnegative Coding for Semi-Supervised Learning +b2add9fad0bcf7bf0660f99f389672cdf7cc6a70,Doppelganger Mining for Face Representation Learning +b262a2a543971e10fcbfc7f65f46115ae895d69e,Illumination Invariant Efficient Face Recognition Using a Single Training Image +d916602f694ebb9cf95d85e08dd53f653b6196c3,A Novel Space-Time Representation on the Positive Semidefinite Cone for Facial Expression Recognition +d9072e6b7999bc2d5750eb58c67a643f38d176d6,Learning Kernel in Kernel-Based LDA for Face Recognition Under Illumination Variations +d92084e376a795d3943df577d3b3f3b7d12eeae5,Face and Image Representation in Deep CNN Features +d9deafd9d9e60657a7f34df5f494edff546c4fb8,Learning the Multilinear Structure of Visual Data +ad7b6d2e8d66f720cc83323a0700c25006d49609,Face Recognition Under Varying Illumination Using Gradientfaces +adb040081974369c46b943e9f75be4e405623102,Cascade Two-dimensional Locality Preserving Projections for Face Recognition +bb070c019c0885232f114c7dca970d2afd9cd828,A Novel Landmark Detector System for Multi Resolution Frontal Faces +bb4f83458976755e9310b241a689c8d21b481238,Improving Face Verification and Person Re-Identification Accuracy Using Hyperplane Similarity +bb0ecedde7d6e837dc9a5e115302a2aaad1035e1,Face Verification: Strategies for Employing Deep Models +d790093cb85fc556c0089610026e0ec3466ab845,Learning Assignment Order of Instances for the Constrained K-Means Clustering Algorithm +d0b7d3f9a59034d44e7cd1b434cfd27136a7c029,Facial Emotion Recognition Using PHOG and a Hierarchical Expression Model +be51854ef513362bc236b85dd6f0e2c2da51614b,Learning to Identify While Failing to Discriminate +be6bd94322dd0ecfc8ea99eb7f40a9a14dd3471f,Automatic Face Annotation System Used Pyramid Database Architecture for Online Social Networks +be7444c891caf295d162233bdae0e1c79791d566,Face Recognition Performance under Aging +beb2f1a6f3f781443580ffec9161d9ce6852bf48,Deep Spatio-Temporal Representation Learning for Multi-Class Imbalanced Data Classification +b36a80d15c3e48870ea6118b855055cc34307658,Facial 3D Shape Estimation from Images for Visual Speech Animation +daa120032d8f141bc6aae20e23b1b754a0dd7d5f,Kernel ELM and CNN Based Facial Age Estimation +daca9d03c1c951ed518248de7f75ff51e5c272cb,Feature Learning Using Bayesian Linear Regression Model +daa4cfde41d37b2ab497458e331556d13dd14d0b,Multi-view Constrained Local Models for Large Head Angle Facial Tracking +da23d90bacf246b75ef752a2cbb138c4fcd789b7,Facial Action Unit Detection Using Active Learning and an Efficient Non-linear Kernel Approximation +b42b535fcd0d9bd41a6594a910ea4623e907ceb9,Model Representation for Facial Expression Recognition Based on Shape and Texture +a2e0966f303f38b58b898d388d1c83e40b605262,ECLIPSE: Ensembles of Centroids Leveraging Iteratively Processed Spatial Eclipse Clustering +a5acda0e8c0937bfed013e6382da127103e41395,Extended DISFA Dataset: Investigating Posed and Spontaneous Facial Expressions +bd74c3ca2ff03396109ac2d1131708636bd0d4d3,Low-Shot Face Recognition with Hybrid Classifiers +d6c8f5674030cf3f5a2f7cc929bad37a422b26a0,Face Aging Simulation with Deep Convolutional Generative Adversarial Networks +d6e3bd948aae43f7654ea1d9e89d88f20d8cf25f,Recognizing Conversational Expressions Using Latent Dynamic Conditional Random Fields +d6bdc70d259b38bbeb3a78db064232b4b4acc88f,Video-Based Face Association and Identification +bccb35704cdd3f2765b1a3f0296d1bff3be019c1,ADHD and ASD Classification Based on Emotion Recognition Data +bc36badb6606b8162d821a227dda09a94aac537f,An Optimization Model for Human Activity Recognition Inspired by Information on Human-Object Interaction +ae73f771d0e429a74b04a6784b1b46dfe98f53e4,Simultaneous Detection of Multiple Facial Action Units via Hierarchical Task Structure Learning +ae5e92abd5929ee7f0a5aa1622aa094bac4fae29,RGB-D Face Recognition via Deep Complementary and Common Feature Learning +aeb6b9aba5bb08cde2aebfeda7ced6c38c84df4a,Evaluating Automated Facial Age Estimation Techniques for Digital Forensics +d8526863f35b29cbf8ac2ae756eaae0d2930ffb1,Face Generation for Low-Shot Learning Using Generative Adversarial Networks +d8c9ce0bd5e4b6d1465402a760845e23af5ac259,Robust Face Detection with Eyes Occluded by the Shadow from Dazzling Avoidance System +e52f73c77c7eaece6f2d8fdd0f15327f9f007261,Flexible Spatio-Temporal Networks for Video Prediction +e5fbaeddbf98c667ec7c5575bda2158a36b55409,Facial Expression Recognition in Image Sequences Using Active Shape Model and SVM +e295c1aa47422eb35123053038e62e9aa50a2e3a,ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results +f402e088dddfaad7667bd4def26092d05f247206,Passenger Compartment Violation Detection in HOV/HOT Lanes +f38813f1c9dac44dcb992ebe51c5ede66fd0f491,Modeling Temporal Structure with LSTM for Online Action Detection +f33bd953d2df0a5305fc8a93a37ff754459a906c,Deformable Models of Ears in-the-Wild for Alignment and Recognition +eba4cfd76f99159ccc0a65cab0a02db42b548d85,Spoken Attributes: Mixing Binary and Relative Attributes to Say the Right Thing +ebde9b9c714ed326157f41add8c781f826c1d864,Classification of Puck Possession Events in Ice Hockey +eb3066de677f9f6131aab542d9d426aaf50ed2ce,Deep Transfer Network with 3D Morphable Models for Face Recognition +c05ae45c262b270df1e99a32efa35036aae8d950,Predicting Facial Attributes in Video Using Temporal Coherence and Motion-Attention +c0270a57ad78da6c3982a4034ffa195b9e932fda,Multi-level Feature Learning for Face Recognition under Makeup Changes +c0c0b8558b17aa20debc4611275a4c69edd1e2a7,Facial Expression Recognition via a Boosted Deep Belief Network +eece52bd0ed4d7925c49b34e67dbb6657d2d649b,Aff-Wild: Valence and Arousal ‘In-the-Wild’ Challenge +c91da328fe50821182e1ae4e7bcbe2b62496f8b9,Semantic Subspace Projection and Its Applications in Image Retrieval +c9c9ade2ef4dffb7582a629a47ea70c31be7a35e,Detecting Faces Using Inside Cascaded Contextual CNN +c900e0ad4c95948baaf0acd8449fde26f9b4952a,"EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild" +c98b13871a3bc767df0bdd51ff00c5254ede8b22,Fast and Exact: ADMM-Based Discriminative Shape Segmentation with Loopy Part Models +fd9ab411dc6258763c95b7741e3d51adf5504040,Eigenbubbles: An Enhanced Apparent BRDF Representation +fd5376fcb09001a3acccc03159e8ff5801129683,Facial Micro-Expressions Grand Challenge 2018 Summary +f2700e3d69d3cce2e0b1aea0d7f87e74aff437cd,Attention-Aware Deep Reinforcement Learning for Video Face Recognition +f2004fff215a17ac132310882610ddafe25ba153,Facial Expression Recognition via Deep Learning +f5603ceaebe3caf6a812edef9c4b38def78cbf34,Tailoring Model-Based Techniques to Facial Expression Interpretation +f531ce18befc03489f647560ad3e5639566b39dc,Boosting Speed and Accuracy in Deformable Part Models for Face Image in the Wild +f545b121b9612707339dfdc40eca32def5e60430,A Novel Gabor Filter Selection Based on Spectral Difference and Minimum Error Rate for Facial Expression Recognition +f58f30932e3464fc808e539897efa4ee4e7ac59f,Complex Event Detection Using Joint Max Margin and Semantic Features +e3ce4c3e1279e3dc0c14ff3bb2920aced9e62638,Spatio-Temporal Vector of Locally Max Pooled Features for Action Recognition in Videos +e3d76f1920c5bf4a60129516abb4a2d8683e48ae,I Know That Person: Generative Full Body and Face De-identification of People in Images +ca447d6479554b27b4afbd0fd599b2ed39f2c335,Automatic Video Genre Classification Using Multiple SVM Votes +e4df98e4b45a598661a47a0a8900065716dafd6d,Weakly Supervised Object Class Learning Via Discriminative Subspace Models +fe866887d3c26ee72590c440ed86ffc80e980293,Understanding Human Aging Patterns from a Machine Perspective +fe50efe9e282c63941ec23eb9b8c7510b6283228,A Facial Expression Recognition System Using Convolutional Networks +fecccc79548001ecbd6cafd3067bcf14de80b11a,Camera Selection for Broadcasting Soccer Games +c8585c95215bc53e28edb740678b3a0460ca8aa4,Facial Action Unit Recognition Augmented by Their Dependencies +c808c784237f167c78a87cc5a9d48152579c27a4,Know You at One Glance: A Compact Vector Representation for Low-Shot Learning +ed82f10e5bfe1825b9fa5379a1d0017b96fa1ebf,A Face-Recognition Approach Using Deep Reinforcement Learning Approach for User Authentication +c15b68986ecfa1e13e3791686ae9024f66983f14,Inferring Hidden Statuses and Actions in Video by Causal Reasoning +ec89f2307e29cc4222b887eb0619e0b697cf110d,Face Recognition Using Dual-Tree Complex Wavelet Features +ec39e9c21d6e2576f21936b1ecc1574dadaf291e,Pose-Robust Face Verification by Exploiting Competing Tasks +ec00ecb64fa206cea8b2e716955a738a96424084,Intelligent Synthesis Driven Model Calibration: Framework and Face Recognition Application +4e8f301dbedc9063831da1306b294f2bd5b10477,Discriminating Power of FISWG Characteristic Descriptors Under Different Forensic Use Cases +4e061a302816f5890a621eb278c6efa6e37d7e2f,Discriminative Deep Metric Learning for Face Verification in the Wild +4e343c66c5fe7426132869d552f0f205d1bc5307,Automatic Image Attribute Selection for Zero-Shot Learning of Object Categories +4e1258db62e4762fd8647b250fda9c3567f86eb8,Online Facial Expression Recognition Based on Finite Beta-Liouville Mixture Models +4ee94572ae1d9c090fe81baa7236c7efbe1ca5b4,"TenniSet: A Dataset for Dense Fine-Grained Event Recognition, Localisation and Description" +18010284894ed0edcca74e5bf768ee2e15ef7841,DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations +2724ba85ec4a66de18da33925e537f3902f21249,Robust Face Landmark Estimation under Occlusion +4b7f21b48c7e0dc7334e36108f558d54642c17c0,Describing Unseen Classes by Exemplars: Zero-Shot Learning Using Grouped Simile Ensemble +113b06e70b7eead8ae7450bafe9c91656705024c,Face Alignment across Large Pose via MT-CNN Based 3D Shape Reconstruction +116f9e9cda25ff3187bc777ceb3ecd28077a7eca,Barycentric Representation and Metric Learning for Facial Expression Recognition +1135a818b756b057104e45d976546970ba84e612,"Age, Gender, and Fine-Grained Ethnicity Prediction Using Convolutional Neural Networks for the East Asian Face Dataset" +29db16efc3b378c50511f743e5197a4c0b9e902f,Deeply Learned Rich Coding for Cross-Dataset Facial Age Estimation +7c8909da44e89a78fe88e815c83a4ced34f99149,Multi-classifier Q-stack Aging Model for Adult Face Verification +7c11fa4fd91cb57e6e216117febcdd748e595760,Discriminant Feature Manifold for Facial Aging Estimation +163ba5a998973f9ead6be0ca873aed5934d5022e,PFW: A Face Database in the Wild for Studying Face Identification and Verification in Uncontrolled Environment +166ef5d3fd96d99caeabe928eba291c082ec75a0,A 3D Morphable Model of Craniofacial Shape and Texture Variation +42a5dc91852c8c14ed5f4c3b451c9dc98348bc02,A Data Augmentation Methodology to Improve Age Estimation Using Convolutional Neural Networks +89272b78b651038ff4d294b9ccca0018d2c9033b,Low Computation Face Verification Using Class Center Analysis +891b31be76e2baa83745f24c2e2013851dc83cbb,Improved Face Representation by Nonuniform Multilevel Selection of Gabor Convolution Features +45877ff4694576f59c2a9ca45aa65f935378492a,A Novel Clustering-Based Feature Extraction Method for an Automatic Facial Expression Analysis System +1fa426496ed6bcd0c0b17b8b935a14c84a7ee1c2,Binary Coding for Partial Action Analysis with Limited Observation Ratios +7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4,Deep and Deformable: Convolutional Mixtures of Deformable Part-Based Models +73d53a7c27716ae9a6d3484e78883545e53117ae,A Multi-local Means Based Nearest Neighbor Classifier +87806c51dc8c1077953178367dcf5c75c553ce34,VISAGE: A Support Vector Machine Approach to Group Dynamic Analysis +87b607b8d4858a16731144d17f457a54e488f15d,Cross-Age Face Recognition on a Very Large Database: The Performance versus Age Intervals and Improvement Using Soft Biometric Traits +8706c3d49d1136035f298041f03bb70dc074f24d,Averaged Gabor Filter Features for Facial Expression Recognition +7477cf04c6b086108f459f693a60272523c134db,Learning Structured Low-Rank Representations for Image Classification +289cfcd081c4393c7d6f63510747b5372202f855,Detecting Decision Ambiguity from Facial Images +28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08,Deep Label Distribution Learning for Apparent Age Estimation +28f1542c63f5949ee6f2d51a6422244192b5a900,"You Lead, We Exceed: Labor-Free Video Concept Learning by Jointly Exploiting Web Videos and Images" +7bd37e6721d198c555bf41a2d633c4f0a5aeecc1,Fusing Local Patterns of Gabor and Non-subsampled Contourlet Transform for Face Recognition +7b455cbb320684f78cd8f2443f14ecf5f50426db,A Fast and Robust Negative Mining Approach for Enrollment in Face Recognition Systems +8a8127a06f432982bfb0150df3212f379b36840b,Analysis of Yawning Behaviour in Spontaneous Expressions of Drowsy Drivers +8a6033cbba8598945bfadd2dd04023c2a9f31681,3D-Assisted Coarse-to-Fine Extreme-Pose Facial Landmark Detection +7e8c8b1d72c67e2e241184448715a8d4bd88a727,Face Verification Based on Relational Disparity Features and Partial Least Squares Models +1071dde48a77f81c35ad5f0ca90a9daedb54e893,A Monocular Video-Based Facial Expression Recognition System by Combining Static and Dynamic Knowledge +10e4172dd4f4a633f10762fc5d4755e61d52dc36,Learning Multifunctional Binary Codes for Both Category and Attribute Oriented Retrieval Tasks +197efbef17f92e5cb5076961b6cd9f59e88ffd9a,Human Action Recognition Using Optical Flow and Convolutional Neural Networks +193bc8b663d041bc34134a8407adc3e546daa9cc,A Quantitative Comparison of Methods for 3D Face Reconstruction from 2D Images +19c82eacd77b35f57ac8815b979716e08e3339ca,Facial Expression Recognition Using Multiple Feature Sets +4c72a51a7c7288e6e17dfefe4f87df47929608e7,"Automatic Face Recognition of Newborns, Infants, and Toddlers: A Longitudinal Evaluation" +26b9d546a4e64c1d759c67cd134120f98a43c2a6,Polynomial Correlation Filters for Human Face Recognition +26575ad9e75efb440a7dc4ef8e548eed4e19dbd1,Video Frame Interpolation Based on Multi-scale Convolutional Network and Adversarial Training +4d90d7834ae25ee6176c096d5d6608555766c0b1,Face and Body Association for Video-Based Face Recognition +814369f171337ee1d8809446b7dbfc5e1ef9f4b5,3D Active Shape Model for Automatic Facial Landmark Location Trained with Automatically Generated Landmark Points +86597fe787e0bdd05935d25158790727257a40bd,Synthetic Prior Design for Real-Time Face Tracking +863ad2838b9b90d4461995f498a39bcd2fb87c73,Learning Spatiotemporal Features Using 3DCNN and Convolutional LSTM for Gesture Recognition +440b94b1624ca516b07e72ea8b3488072adc5e26,Comparison of Early and Late Information Fusion for Multi-camera HOV Lane Enforcement +44c278cbecd6c1123bfa5df92e0bda156895fa48,Head Pose Estimation by Instance Parameterization +2a826273e856939b58be8779d2136bffa0dddb08,Investigating Deep Neural Forests for Facial Expression Recognition +2ac7bb3fb014d27d3928a9b4bc1bf019627e0c1a,Exploring Textures in Traffic Matrices to Classify Data Center Communications +2a612a7037646276ff98141d3e7abbc9c91fccb8,A Compact and Discriminative Face Track Descriptor +2f1485994ef2c09a7bb2874eb8252be8fe710db1,Dynamic Image Networks for Action Recognition +2f5b51af8053cf82ab52bbfd46b56999222ec21c,Online Regression of Grandmother-Cell Responses with Visual Experience Learning for Face Recognition +2f69e9964f3b6bdc0d18749b48bb6b44a4171c64,Learning Neural Networks with Ranking-Based Losses for Action Retrieval +437642cfc8c34e445ea653929e2d183aaaeeb704,Component Biologically Inspired Features with Moving Segmentation for Age Estimation +4342a2b63c9c344d78cf153600cd918a5fecad59,Synergy between Face Alignment and Tracking via Discriminative Global Consensus Optimization +88e2efab01e883e037a416c63a03075d66625c26,Convolutional Experts Constrained Local Model for 3D Facial Landmark Detection +9fab78015e6e91ba7241a923222acd6c576c6e27,Clothes Advertising by Targeting Principal Actors in Video +9f62ac43a1086c22b9a3d9f192c975d1a5a4b31f,Lighting Analysis and Texture Modification of 3D Human Face Scans +6baaa8b763cc5553715766e7fbe7abb235fae33c,Facial Attributes Classification Using Multi-task Representation Learning +6b99cd366f2ea8e1c9abadf73b05388c0e24fec3,Jointly Learning Energy Expenditures and Activities Using Egocentric Multimodal Signals +6b8329730b2e13178a577b878631735a1cd58a71,A Real-Time Big Data Architecture for Glasses Detection Using Computer Vision Techniques +070c8ee3876c06f9a65693e536d61097ace40417,How Do Facial Expressions Contribute to Age Prediction? +0733ec1953f6c774eb3a723618e1268586b46359,Recognition of facial expressions and measurement of levels of interest from video +3826e47f0572ab4d0fe34f0ed6a49aa8303e0428,Joint Alignment and Clustering via Low-Rank Representation +3827f1cab643a57e3cd22fbffbf19dd5e8a298a8,One-Shot Face Recognition via Generative Learning +6e38011e38a1c893b90a48e8f8eae0e22d2008e8,A Computer Vision Based Approach for Understanding Emotional Involvements in Children with Autism Spectrum Disorders +9aab33ce8d6786b3b77900a9b25f5f4577cea461,Automatic Semantic Face Recognition +09f9409430bba2afb84aa8214dbbb43bfd4cf056,Uncertainty Estimation Using Fuzzy Measures for Multiclass Classification +09138ad5ad1aeef381f825481d1b4f6b345c438c,Low-resolution Face Recognition with Variable Illumination Based on Differential Images +098363b29eef1471c494382338687f2fe98f6e15,Metadata-Based Feature Aggregation Network for Face Recognition +5ddfd3d372f7679518db8fd763d5f8bc5899ed67,"Cascaded Fusion of Dynamic, Spatial, and Textural Feature Sets for Person-Independent Facial Emotion Recognition" +31ba7f5e09a2f0fe9cf7ea95314723206dcb6059,UHDB31: A Dataset for Better Understanding Face Recognition Across Pose and Illumination Variation +310fe4e6cb6d090f7817de4c1034e35567b56e34,Robust Multi-pose Facial Expression Recognition +31d51e48dbd9e7253eafe0719f3788adb564a971,Visual Phrases for Exemplar Face Detection +3157be811685c93d0cef7fa4c489efea581f9b8e,Multi-spectral Imaging for Robust Ocular Biometrics +31ec1e5c3b5e020af4a5a3c1be2724c7429a7c78,Instance-Aware Detailed Action Labeling in Videos +913062218c7498b2617bb9d7821fe1201659c5cc,Cross-Domain Facial Expression Recognition Using Supervised Kernel Mean Matching +65869cc5ef00d581c637ae8ea6ca02ae4bb2b996,A Pairwise Covariance-Preserving Projection Method for Dimension Reduction +629a973ca5f3c7d2f4a9befab97d0044dfd3167a,Facial Expression Recognition: A Fully Integrated Approach +9649a19b49607459cef32f43db4f6e6727080bdb,Offset Neural Network for Document Orientation Identification +9806d3dc7805dd8c9c20d7222c915fc4beee7099,Self-Stimulatory Behaviours in the Wild for Autism Diagnosis +53de11d144cd2eda7cf1bb644ae27f8ef2489289,Extending Detection with Privileged Information via Generalized Distillation +5305bfdff39ae74d2958ba28d42c16495ce2ff86,Regularized Least-Squares Coding with Unlabeled Dictionary for Image-Set Based Face Recognition +3ffbc912de7bad720c995385e1fdc439b1046148,A Face Recognition Algorithm Decreasing the Effect of Illumination +3fe3d6ff7e5320f4395571131708ecaef6ef4550,TV News Retrieval Based on Story Segmentation and Concept Association +3f0c6dbfd3c9cd5625ba748327d69324baa593a6,Head Pose Estimation on Low-Quality Images +3fc173805ed43602eebb7f64eea4d60c0386c612,Semi-supervised Bi-dictionary Learning Using Smooth Representation-Based Label Propagation +30044dd951133187cb8b57e53a22cf9306fa7612,Predicting the Perceptual Demands of Urban Driving with Video Regression +5b5b568a0ba63d00e16a263051c73e09ab83e245,Scaling Datacenter Accelerators with Compute-Reuse Architectures +6dcf418c778f528b5792104760f1fbfe90c6dd6a,"AgeDB: The First Manually Collected, In-the-Wild Age Database" +01e14d8ffd6767336d50c2b817a7b7744903e567,Deep Network Shrinkage Applied to Cross-Spectrum Face Recognition +06ab24721d7117974a6039eb2e57d1545eee5e46,Biomechanical-Based Approach to Data Augmentation for One-Shot Gesture Recognition +6c1227659878e867a01888eef472dd96b679adb6,Temporal Difference Networks for Video Action Recognition +6c01b349edb2d33530e8bb07ba338f009663a9dd,Cross-Media Alignment of Names and Faces +398558817e05e8de184cc4c247d4ea51ab9d4d58,Extraction and Selection of Muscle Based Features for Facial Expression Recognition +9939498315777b40bed9150d8940fc1ac340e8ba,ChaLearn Looking at People and Faces of the World: Face AnalysisWorkshop and Challenge 2016 +99cd84a62edb2bda2fc2fdc362a72413941f6aa4,Support Vector Regression of Sparse Dictionary-Based Features for View-Independent Action Unit Intensity Estimation +521aa8dcd66428b07728b91722cc8f2b5a73944b,Pseudo-Labeling Using Gaussian Process for Semi-Supervised Deep Learning +525da67fb524d46f2afa89478cd482a68be8a42b,Learning to Generate 3D Stylized Character Expressions from Humans +55ee484f9cbd62111512485e3c1c3eadbf2e15c0,Multi-Output Random Forests for Facial Action Unit Detection +556875fb04ed6043620d7ca04dfe3d8b3a9284f5,Interaction Recognition Using Sparse Portraits +97b5800e144a8df48f1f7e91383b0f37bc37cf60,Weakly Supervised Summarization of Web Videos +9774430006f1ed017156b17f3cf669071e398c58,Discriminant Multi-component Face Analysis +6318d3842b36362bb45527b717e1a45ae46151d5,Harnessing Object and Scene Semantics for Large-Scale Video Understanding +633c851ebf625ad7abdda2324e9de093cf623141,Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database +0fee3b9191dc1cef21f54232a23530cd8169d3b2,A Fast Iterative Algorithm for Improved Unsupervised Feature Selection +0ac2e8bd5a77d83bae9b49daab2c6f321e9b7a4e,Design of Radial Basis Function Neural Networks with Principal Component Analysis and Linear Discriminant Analysis for Black Plastic Identification +640e12837241d52d04379d3649d050ee3760048c,Automatic Recognition of Smiling and Neutral Facial Expressions +9057044c0347fb9798a9b552910a9aff150385db,Sparse Representation Based Face Recognition with Limited Labeled Samples +9077365c9486e54e251dd0b6f6edaeda30ae52b9,Convolutional Neural Network-Based Video Super-Resolution for Action Recognition +90c4deaa538da42b9b044d7b68c3692cced66036,Full Controllable Face Detection System Architecture for Robotic Vision +bfdafe932f93b01632a5ba590627f0d41034705d,Transfer Learning for Human Action Recognition +d31328b12eef33e7722b8e5505d0f9d9abe2ffd9,Deep Unsupervised Domain Adaptation for Face Recognition +d36a1e4637618304c2093f72702dcdcc4dcd41d1,Identity-Aware Convolutional Neural Network for Facial Expression Recognition +d3d39e419ac98db2de1a9d5a05cb0b4ca5cae8fd,The SVM-Minus Similarity Score for Video Face Recognition +d340a135a55ecf7506010e153d5f23155dcfa7e8,MAVI: An Embedded Device to Assist Mobility of Visually Impaired +d44e6baf3464bf56d3a29daf280b1b525ac30f7d,Spatial-Temporal Weighted Pyramid Using Spatial Orthogonal Pooling +d4ec62efcc631fa720dfaa1cbc5692b39e649008,New Robust Clustering Model for Identifying Cancer Genome Landscapes +d4fb26f5528b9a1f04ea773cc2b920e01fc0edd4,A Team of Continuous-Action Learning Automata for Noise-Tolerant Learning of Half-Spaces +ba931c3f90dd40a5db4301a8f0c71779a23043d6,A General Nonlinear Embedding Framework Based on Deep Neural Network +a03448488950ee5bf50e9e1d744129fbba066c50,Deep Manifold Embedding Active Shape Model for Pose Invarient Face Tracking +a006cd95c14de399706c5709b86ac17fce93fcba,Multi-label Learning with Missing Labels +a76969df111f9ee9f0b898b51ad23a721d289bdc,A Model of Local Binary Pattern Feature Descriptor for Valence Facial Expression Classification +b839bc95794dc65340b6e5fea098fa6e6ea5e430,Soft Biometrics in Online Social Networks: A Case Study on Twitter User Gender Recognition +b8e5800dfc590f82a0f7eedefce9abebf8088d12,How to Train Your Neural Network with Dictionary Learning +b86c49c6e3117ea116ec2d8174fa957f83502e89,A Correlated Topic Modeling Approach for Facial Expression Recognition +b8fc620a1563511744f1a9386bdfa09a2ea0f71b,Boosting Face in Video Recognition via CNN Based Key Frame Extraction +b8b9cef0938975c5b640b7ada4e3dea6c06d64e9,Metric-Promoted Siamese Network for Gender Classification +b85c198ce09ffc4037582a544c7ffb6ebaeff198,Efficient Multiple Instance Metric Learning Using Weakly Supervised Data +dc1510110c23f7b509035a1eda22879ef2506e61,3D-Aided Face Recognition Robust to Expression and Pose Variations +dcf6ecd51ba135d432fcb7697fc6c52e4e7b0a43,Factorized Variational Autoencoders for Modeling Audience Reactions to Movies +dc5d04d34b278b944097b8925a9147773bbb80cc,A Temporal Sequence Learning for Action Recognition and Prediction +a9ae55c83a8047c6cdf7c958fd3d4a6bfb0a13df,AcFR: Active Face Recognition Using Convolutional Neural Networks +a92c207031b0778572bf41803dba1a21076e128b,Unobtrusive Students' Engagement Analysis in Computer Science Laboratory Using Deep Learning Techniques +d57982dc55dbed3d0f89589e319dc2d2bd598532,Reliable Crowdsourcing and Deep Locality-Preserving Learning for Expression Recognition in the Wild +aafeb3d76155ec28e8ab6b4d063105d5e04e471d,Reconstructing Intensity Images from Binary Spatial Gradient Cameras +afdc303b3325fbc1baa9f18a66bcad59d5aa675b,Subclass Error Correcting Output Codes Using Fisher's Linear Discriminant Ratio +af97a51f56cd6b793cf96692931a8d1ddbe4e3cc,Learning Semantic Binary Codes by Encoding Attributes for Image Retrieval +b784bb1d2b2720dac8d4b92851a8d6360c35b0b2,New Probabilistic Multi-graph Decomposition Model to Identify Consistent Human Brain Network Modules +b72eebffe697008048781ab7b768e0c96e52236a,Discriminative Covariance Oriented Representation Learning for Face Recognition with Image Sets +db1a9b8d8ce9a5696a96f8db4206b6f72707730e,Cross-Modal Facial Attribute Recognition with Geometric Features +db3984b143c59584a32d762d712d21c0e8cf38b8,Weighted Fusion of Bit Plane-Specific Local Image Descriptors for Facial Expression Recognition +dbc8ffd6457147ff06cd3f56834e3ec6dccb2057,SmileNet: Registration-Free Smiling Face Detection In The Wild +dbfe62c02b544b48354fac741d90eb4edf815db5,Performance Review of a Multi-Layer Feed-Forward Neural Network and Normalized Cross Correlation for Facial Expression Identification +a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d,High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval +a8c62833f5e57d4cd060d6b5f0f9cfe486ee6825,Boosting for Learning a Similarity Measure in 2DPCA Based Face Recognition +de162d4b8450bf2b80f672478f987f304b7e6ae4,Weakly Supervised Manifold Learning for Dense Semantic Object Correspondence +dee6609615b73b10540f32537a242baa3c9fca4d,Temporal Domain Neural Encoder for Video Representation Learning +b0358af78b7c5ee7adc883ef513bbcc84a18a02b,Universal Skin Detection Without Color Information +b034cc919af30e96ee7bed769b93ea5828ae361b,Soft-Margin Mixture of Regressions +a62997208fec1b2fbca6557198eb7bc9340b2409,An New Algorithm on Feature Selection with L-Norm PCA +c3d3d2229500c555c7a7150a8b126ef874cbee1c,Shape Augmented Regression Method for Face Alignment +c3a53b308c7a75c66759cbfdf52359d9be4f552b,On Detecting Partially Occluded Faces with Pose Variations +c36f3cabeddce0263c944e9fe4afd510b5bae816,Action Parsing Using Context Features +c4cfdcf19705f9095fb60fb2e569a9253a475f11,Towards Context-Aware Interaction Recognition for Visual Relationship Detection +c41a3c31972cf0c1be6b6895f3bf97181773fcfb,Accurate Facial Landmarks Detection for Frontal Faces with Extended Tree-Structured Models +ea8fa68b74ffefbe79a3576d7e4ae4365a1346ff,View-Independent Facial Action Unit Detection +eacf974e235add458efb815ada1e5b82a05878fa,Dynamic Facial Expression Analysis and Synthesis With MPEG-4 Facial Animation Parameters +e16f73f3a63c44cf285b8c1bc630eb8377b85b6d,Symmetric Shape Morphing for 3D Face and Head Modelling +cdcfc75f54405c77478ab776eb407c598075d9f8,Learning Binary Codes for Maximum Inner Product Search +cc9d068cf6c4a30da82fd6350a348467cb5086d4,Protecting Your Faces: MeshFaces Generation and Removal via High-Order Relation-Preserving CycleGAN +cc1b093cfb97475faabab414878fa7e4a2d97cd7,Building a Face Expression Recognizer and a Face Expression Database for an Intelligent Tutoring System +ccb2ecb30a50460c9189bb55ba594f2300882747,Robust Gender Classification Using Multi-Spectral Imaging +cc7c63473c5bef5ae09f26b2258691d9ffdd5f93,Subject-Independent Facial Expression Recognition with Biologically Inspired Features +cce2f036d0c5f47c25e459b2f2c49fa992595654,Harvesting Web Images for Realistic Facial Expression Recognition +cce332405ce9cd9dccc45efac26d1d614eaa982d,A Ranking Approach for Human Ages Estimation Based on Face Images +e68869499471bcd6fa8b4dc02aa00633673c0917,Diffusion-Based Face Selective Smoothing in DCT Domain to Illumination Invariant Face Recognition +f9752fd07b14505d0438bc3e14b23d7f0fe7f48b,Incremental and Decremental Multi-category Classification by Support Vector Machines +f0f854f8cfe826fd08385c0c3c8097488f468076,Injury Mechanism Classification in Soccer Videos +f702a6cf6bc5e4cf53ea72baa4fc9d80cdbbae93,Reconstruction and Recognition of Tensor-Based Objects With Concurrent Subspaces Analysis +f73174cfcc5c329b63f19fffdd706e1df4cc9e20,Automatic Vehicle Detection and Driver Identification Framework for Secure Vehicle Parking +e8951cc76af80da43e3528fe6d984071f17f57e7,Online Cost Efficient Customer Recognition System for Retail Analytics +fa052fd40e717773c6dc9cc4a2f5c10b8760339f,Robust Regression for Face Recognition +fa641327dc5873276f0af453a2caa1634c16f143,ChaLearn Looking at People RGB-D Isolated and Continuous Datasets for Gesture Recognition +fa32b29e627086d4302db4d30c07a9d11dcd6b84,Weakly Supervised Facial Attribute Manipulation via Deep Adversarial Network +ff42ec628b0980909bbb84225d0c4f8d9ac51e03,Convergent 2-D Subspace Learning With Null Space Analysis +c535d4d61aa0f1d8aadb4082bdcc19f4cbdf0eaf,Unsupervised Action Discovery and Localization in Videos +c26b43c2e1e2da96e7caabd46e1d7314acac0992,Facial Expression Recognition Using Facial Landmarks and Random Forest Classifier +c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8,Age Estimation Guided Convolutional Neural Network for Age-Invariant Face Recognition +f61829274cfe64b94361e54351f01a0376cd1253,Regressing a 3D Face Shape from a Single Image +f65b47093e4d45013f54c3ba09bbcce7140af6bb,Multiple Anthropological Fisher Kernel Framework and Its Application to Kinship Verification +f6511d8156058737ec5354c66ef6fdcf035d714d,Response Surface Learning for Face Misalignment Correction +e9d77a85bc2fa672cc1bd10258c896c8d89b41e8,On the Theoretical and Computational Analysis between SDA and Lap-LDA +e94168c35be1d4b4d2aaf42ef892e64a3874ed8c,Two-Dimensional Maximum Margin Feature Extraction for Face Recognition +e98551055bdcf8e25e07f4ffdbf39d0a4a57bffc,Model Semantic Relations with Extended Attributes +f1ae9f5338fcff577b1ae9becdb66007fe57bd45,Deep Sequential Context Networks for Action Prediction +f1280f76933ba8b7f4a6b8662580504f02bb4ab6,Gender Classification by Deep Learning on Millions of Weakly Labelled Images +e7144f5c19848e037bb96e225d1cfd961f82bd9f,Heterogeneous Face Recognition: Recent Advances in Infrared-to-Visible Matching +e73b1137099368dd7909d203b80c3d5164885e44,Facial Action Units Recognition Based on Fuzzy Kernel Clustering +e79bacc03152ea55343e6af97bcd17d8904cf5ef,Recursive Spatial Transformer (ReST) for Alignment-Free Face Recognition +cba090a5bfae7dd8a60a973259f0870ed68c4dd3,Human Action Classification Using Temporal Slicing for Deep Convolutional Neural Networks +cbe021d840f9fc1cb191cba79d3f7e3bbcda78d3,Facial Landmark Detection via Progressive Initialization +cb4d8cef8cec9406b1121180d47c14dfef373882,Makeup-Invariant Face Recognition by 3D Face: Modeling and Dual-Tree Complex Wavelet Transform from Women's 2D Real-World Images +cb2470aade8e5630dcad5e479ab220db94ecbf91,Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks +f856532a729bd337fae1eb7dbe55129ae7788f45,Isolated Word Recognition Using Low Dimensional Features and Kernel Based Classification +cead57f2f7f7b733f4524c4b5a7ba7f271749b5f,Improving Face Detection Performance by Skin Detection Post-Processing +ce75deb5c645eeb08254e9a7962c74cab1e4c480,Emotion-Preserving Representation Learning via Generative Adversarial Network for Multi-View Facial Expression Recognition +e060e32f8ad98f10277b582393df50ac17f2836c,Zero-Shot Action Recognition with Error-Correcting Output Codes +e0162dea3746d58083dd1d061fb276015d875b2e,Unconstrained Face Alignment Without Face Detection +468bb5344f74842a9a43a7e1a3333ebd394929b4,From Macro to Micro Expression Recognition: Deep Learning on Small Datasets Using Transfer Learning +46c82cfadd9f885f5480b2d7155f0985daf949fc,3D Shape Attributes +2c052a1c77a3ec2604b3deb702d77c41418c7d3e,What Is the Challenge for Deep Learning in Unconstrained Face Recognition? +2ce1bac5ddc4cf668bbbb8879cd21dfb94b5cfe4,Spatiotemporal Pyramid Network for Video Action Recognition +41c56c69b20b3f0b6c8a625009fc0a4d317e047a,Integral Local Binary Patterns: A Novel Approach Suitable for Texture-Based Object Detection Tasks +8355d095d3534ef511a9af68a3b2893339e3f96b,DEX: Deep EXpectation of Apparent Age from a Single Image +83f80fd4eb614777285202fa99e8314e3e5b169c,Towards Automated Visual Monitoring of Individual Gorillas in the Wild +1b4b3d0ce900996a6da8928e16370e21d15ed83e,A Review of Performance Evaluation on 2D Face Databases +77d929b3c4bf546557815b41ed5c076a5792dc6b,Using Synthetic Data to Improve Facial Expression Analysis with 3D Convolutional Networks +480858e55abdbc07ca47b7dc10204613fdd9783c,Early Facial Expression Recognition Using Hidden Markov Models +48de3ca194c3830daa7495603712496fe908375c,Capturing Complex Spatio-temporal Relations among Facial Muscles for Facial Expression Recognition +70e14e216b12bed2211c4df66ef5f0bdeaffe774,Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks +708f4787bec9d7563f4bb8b33834de445147133b,Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution +70516aede32cf0dbc539abd9416c44faafc868bd,Automatic Emotion Recognition through Facial Expression Analysis in Merged Images Based on an Artificial Neural Network +1e0d92b9b4011822825d1f7dc0eba6d83504d45d,Generalized Face Super-Resolution +1eb48895d86404251aa21323e5a811c19f9a55f9,A Hybrid Image Feature Descriptor for Classification +84c5b45328dee855c4855a104ac9c0558cc8a328,Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition +845f45f8412905137bf4e46a0d434f5856cd3aec,The Spyware Used in Intimate Partner Violence +84f86f8c559a38752ddfb417e58f98e1f8402f17,Modified Multiscale Vesselness Filter for Facial Feature Detection +4a733a0862bd5f7be73fb4040c1375a6d17c9276,Designing Category-Level Attributes for Discriminative Visual Recognition +4a8480d58c30dc484bda08969e754cd13a64faa1,Offline Deformable Face Tracking in Arbitrary Videos +24603ed946cb9385ec541c86d2e42db47361c102,Reverse Engineering Psychologically Valid Facial Expressions of Emotion into Social Robots +2480f8dccd9054372d696e1e521e057d9ac9de17,Ontology-Driven Hierarchical Deep Learning for Fashion Recognition +4f8345f31e38f65f1155569238d14bd8517606f4,Learning by Associating Ambiguously Labeled Images +8da32ff9e3759dc236878ac240728b344555e4e9,Investigating Nuisance Factors in Face Recognition with DCNN Representation +8de5dc782178114d9424d33d9adabb2f29a1ab17,Driver Gaze Tracking and Eyes Off the Road Detection System +151b87de997e55db892b122c211f9c749f4293de,Joint Learning of Object and Action Detectors +1280b35e4a20036fcfd82ee09f45a3fca190276f,Face Verification Based on Feature Transfer via PCA-SVM Framework +12226bca7a891e25b7d1e1a34a089521bba75731,Hand-Crafted Feature Guided Deep Learning for Facial Expression Recognition +126204b377029feb500e9b081136e7a9010e3b6b,Efficient Dimensionality Reduction on Undersampled Problems through Incremental Discriminative Common Vectors +120b9c271c3a4ea0ad12bbc71054664d4d460bc3,Face Recognition against Mouth Shape Variations +8ccbbd9da0749d96f09164e28480d54935ee171c,Improved Facial Expression Recognition with Trainable 2-D Filters and Support Vector Machines +8598d31c7ca9c8f5bb433409af5e472a75037b4d,Active Learning for Interactive Multimedia Retrieval +85e78aa374d85f9a61da693e5010e40decd3f986,Top-Down Segmentation of Non-rigid Visual Objects Using Derivative-Based Search on Sparse Manifolds +85c90ad5eebb637f048841ebfded05942bb786b7,A Joint Evaluation of Dictionary Learning and Feature Encoding for Action Recognition +1ddea58d04e29069b583ac95bc0ae9bebb0bed07,"An Efficient Model for Simultaneous Face Detection, Pose Estimation and Landmark Localisation" +715d3eb3665f46cd2fab74d35578a72aafbad799,A Peak Detection Method for Understanding User States for Empathetic Intelligent Agents +7195cb08ba2248f3214f5dc5d7881533dd1f46d9,Age Regression Based on Local Image Features +765be0c44a67e41e0f8f0b5d8a3af0ff40a00c7d,Cross-Generating GAN for Facial Identity Preserving +768f6a14a7903099729872e0db231ea814eb05e9,De-Mark GAN: Removing Dense Watermark with Generative Adversarial Network +82e1692467969940a6d6ac40eae606b8b4981f7e,How Many Frames Does Facial Expression Recognition Require? +826015d9ade1637b3fcbeca071e3137d3ac1ef56,A Deep Learning Frame-Work for Recognizing Developmental Disorders +49e4f05fa98f63510de76e7abd8856ff8db0f38d,Facial Action Units Detection with Multi-Features and -AUs Fusion +49fdafef327069516d887d8e69b5e96c983c3dd0,Face Retrieval in Video Sequences Using a Single Face Sample +405d9a71350c9a13adea41f9d7f7f9274793824f,Enhancing Interior and Exterior Deep Facial Features for Face Detection in the Wild +2e3b981b9f3751fc5873f77ad2aa7789c3e1d1d2,Comprehensive Dataset of Broadcast Soccer Videos +2bb36c875754a2a8919f2f9b00a336c00006e453,Eigen-Evolution Dense Trajectory Descriptors +471bef061653366ba66a7ac4f29268e8444f146e,Semi-supervised Component Analysis +47fb74785fbd8870c2e819fc91d04b9d9722386f,Recurrent Assistance: Cross-Dataset Training of LSTMs on Kitchen Tasks +78f2c8671d1a79c08c80ac857e89315197418472,Recurrent 3D-2D Dual Learning for Large-Pose Facial Landmark Detection +784a83437b3dba49c0d7ccc10ac40497b84661a5,Generative Attribute Controller with Conditional Filtered Generative Adversarial Networks +78f244dc2a171944836a89874b8f60e9fe80865d,Affective Video Classification Based on Spatio-temporal Feature Fusion +7813d405450013bbdb0b3a917319d5964a89484a,From Affine Rank Minimization Solution to Sparse Modeling +13f065d4e6dfe2a130bd64d73eee97d10d9f7d33,A Study of the Region Covariance Descriptor: Impact of Feature Selection and Image Transformations +7f26c615dd187ca5e4b15759d5cb23ab3ea9d9a9,Leveraging the User's Face for Absolute Scale Estimation in Handheld Monocular SLAM +7f2a234ad5c256733a837dbf98f25ed5aad214e8,Optimal Feature Extraction and Classification of Tensors via Matrix Product State Decomposition +7f5b379b12505d60f9303aab1fea48515d36d098,Performance Comparison of Deep Learning Techniques for Recognizing Birds in Aerial Images +7f68a5429f150f9eb7550308bb47a363f2989cb3,Multiple-Facial Action Unit Recognition by Shared Feature Learning and Semantic Relation Modeling +14bdd23ea8f4f6d7f4c193e5cbb0622362e12ae1,Feature Extraction Using Recursive Cluster-Based Linear Discriminant With Application to Face Recognition +8e9b92a805d1ce0bf4e0c04133d26e28db036e6a,Evaluation of Triple-Stream Convolutional Networks for Action Recognition +22ccd537857aca1ee4b961f081f07c58d42a7f32,Face Recognition Despite Wearing Glasses +25960f0a2ed38a89fa8076a448ca538de2f1e183,The Dark Side of the Face: Exploring the Ultraviolet Spectrum for Face Biometrics +2563fc1797f187e2f6f9d9f4387d4bcadd3fbd02,Just Noticeable Differences in Visual Attributes +252f202bfb14d363a969fce19df2972b83fa7ec0,Boosting-POOF: Boosting Part Based One vs One Feature for Facial Expression Recognition in the Wild diff --git a/scraper/reports/doi_institutions_unknown.csv b/scraper/reports/doi_institutions_unknown.csv new file mode 100644 index 00000000..e1a509d9 --- /dev/null +++ b/scraper/reports/doi_institutions_unknown.csv @@ -0,0 +1,865 @@ +61262450d4d814865a4f9a84299c24daa493f66e,Biometric recognition in surveillance scenarios: a survey,"Institute of High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Naples, Italy" +0d6d9c4b5dd282b8f29cd3c200df02a00141f0a9,Anatomy based features for facial expression recognition,"FMV IŞIK Üniversitesi, Şile, Istanbul" +0d9815f62498db21f06ee0a9cc8b166acc93888e,Image recognition system based on novel measures of image similarity and cluster validity,a +0d9815f62498db21f06ee0a9cc8b166acc93888e,Image recognition system based on novel measures of image similarity and cluster validity,b +0d9815f62498db21f06ee0a9cc8b166acc93888e,Image recognition system based on novel measures of image similarity and cluster validity,c +0d9815f62498db21f06ee0a9cc8b166acc93888e,Image recognition system based on novel measures of image similarity and cluster validity,d +0d9815f62498db21f06ee0a9cc8b166acc93888e,Image recognition system based on novel measures of image similarity and cluster validity,e +0d7652652c742149d925c4fb5c851f7c17382ab8,A fast and efficient pre-training method based on layer-by-layer maximum discrimination for deep neural networks,"Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., Tehran, Iran" +0da3c329ae14a4032b3ba38d4ea808cf6d115c4a,Discriminant feature extraction for image recognition using complete robust maximum margin criterion,"Department of Computer Science, Minjiang University, Fuzhou, People’s Republic of China" +0d75c7d9a00f859cffe7d0bd78dd35d0b4bc7fa6,Active differential CMOS imaging device for human face recognition,"Inst. Nat. des Telecommun., Evry, France" +0d98750028ea7b84b86e6fec3e67d61e4f690d09,Large-scale subspace clustering using random sketching and validation,"Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA" +0d98750028ea7b84b86e6fec3e67d61e4f690d09,Large-scale subspace clustering using random sketching and validation,"Dept. of EE, Univ. at Buffalo, SUNY, USA" +0db371a6bc8794557b1bffc308814f53470e885a,Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing,"Computer Application Research Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China" +95023e3505263fac60b1759975f33090275768f3,Facial Expression Recognition in Daily Life by Embedded Photo Reflective Sensors on Smart Eyewear,"National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, Japan" +950bf95da60fd4e77d5159254fed906d5ed5fbcb,Clustering Faces in Movies Using an Automatically Constructed Social Network,Reallusion Corporation +95b5296f7ec70455b0cf1748cddeaa099284bfed,Measurement of Static and Dynamic Bio- Parameters of a Person in Remote Systems for Current Psycho- Emotional and Functional State Monitoring,"Department of Electronic Measuring systems, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia" +9590b09c34fffda08c8f54faffa379e478f84b04,Efficient Dual Approach to Distance Metric Learning,"Defence Science and Technology Organisation (DSTO), Edinburgh, Australia" +95e7cf27a8ee62b63ed9d1ecb02a7016e9a680a6,Simultaneous Learning of Nonlinear Manifolds Based on the Bottleneck Neural Network,"Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran" +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e,Facial point localization via neural networks in a cascade regression framework,"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany" +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e,Facial point localization via neural networks in a cascade regression framework,"Institute of Neural Information Processing, University of Ulm, Ulm, Germany" +5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,SmartFace: Efficient face detection on smartphones for wireless on-demand emergency networks,"Department of Electrical Engineering and Information Technology, TU Darmstadt, D-64283, Germany" +9227c1a5b26556b9c34015b3ea5f9ae5f50e9b23,Development of deep learning-based facial expression recognition system,"Broadcasting & Telecommunications, Convergence Media Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea" +0c65226edb466204189b5aec8f1033542e2c17aa,A study of CNN outside of training conditions,"Intelligent Vision Research Lab, Department of Computer Science, Federal University of Bahia" +0c247ac797a5d4035469abc3f9a0a2ccba49f4d8,An efficient landmark localization for face occlusion,"Department of Computer Science and Information Engineering, National Formosa University, Yunlin 632, Taiwan" +0c0db39cac8cb76b52cfdbe10bde1c53d68d202f,Metric-based Generative Adversarial Network,"New York University Abu Dhabi & NYU Tandon School of Engineering, Abu Dhabi, Uae" +3e59d97d42f36fc96d33a5658951856a555e997b,"Realistic inverse lighting from a single 2D image of a face, taken under unknown and complex lighting","Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany" +50ee027c63dcc5ab5cd0a6cdffb1994f83916a46,Learning a discriminative dictionary for sparse coding via label consistent K-SVD,"Adobe Systems Incorporated, San Jose, CA, 95110" +501076313de90aca7848e0249e7f0e7283d669a1,Face recognition based on geometric features using Support Vector Machines,"ITI Department Telecom Bretagne, Brest, France" +681d222f91b12b00e9a4217b80beaa11d032f540,Periocular recognition: how much facial expressions affect performance?,"Department of Computer Science, IT-Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal" +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,Facial Recognition System for Suspect Identification Using a Surveillance Camera,"Computer Science and Engineering, Panimalar Engineering College, Chennai, India" +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,Facial Recognition System for Suspect Identification Using a Surveillance Camera,"Computer Science and Engineering, St.Peter’s University, Chennai, India" +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,Facial Recognition System for Suspect Identification Using a Surveillance Camera,"Computer Science and Engineering, Sanjivani College of Engineering, Kopargaon, India" +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,Facial Recognition System for Suspect Identification Using a Surveillance Camera,"School of Information Technology, Madurai Kamarai University, Madurai, India" +6813208b94ffa1052760d318169307d1d1c2438e,Multiple Models Fusion for Emotion Recognition in the Wild,"Peking University & Shanghai Jaio Tong University, Beijing, China" +6856a11b98ffffeff6e2f991d3d1a1232c029ea1,Multiple kernel learning SVM and statistical validation for facial landmark detection,"LAMIA, EA 4540, University of French West Indies & Guyana" +68d566ed4041a7519acb87753036610bd64dcc09,Lighting Estimation of a Convex Lambertian Object Using Redundant Spherical Harmonic Frames,"College of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China" +5760d29574d78e79e8343b74e6e30b3555e48676,An Intelligent Music Player Based on Emotion Recognition,"R V College of Engineering, Department of Computer Science and Engineering, Bangalore, India" +5763b09ebca9a756b4adebf74d6d7de27e80e298,Picture-specific cohort score normalization for face pair matching,"Department of Sciences and Information Technology, University of Sassari, Viale Mancini 5, 07100 Sassari, Italy" +57ba4b6de23a6fc9d45ff052ed2563e5de00b968,An efficient deep neural networks training framework for robust face recognition,"School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China" +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac,Terrain classification of hyperspectral remote sensing images based on kernel maximum margin criterion,"School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China" +3bdaf59665e6effe323a1b61308bcac2da4c1b73,2D spherical spaces for objects recognition under harsh lighting conditions,"Faculty of Engineering Science, Department of Systems Innovation, Arai Laboratory at Osaka University, Japan" +3bf579baf0903ee4d4180a29739bf05cbe8f4a74,Facial Expression Biometrics Using Tracker Displacement Features,"Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. tulyakov@cedar.buffalo.edu" +6f74c3885b684e52096497b811692bd766071530,Low-rank representation with local constraint for graph construction,"Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian, University, Xi'an 710071, China" +6f22324fab61fbc5df1aac2c0c9c497e0a7db608,Volume structured ordinal features with background similarity measure for video face recognition,"Advanced Technologies Application Center 7a #21406 b/ 214 and 216, P.C. 12200, Siboney Playa, Havana, Cuba" +6ff0f804b8412a50ae2beea5cd020c94a5de5764,Measuring sample distortions in face recognition,"Sapienza Università di Roma, Roma, Italy" +6ff0f804b8412a50ae2beea5cd020c94a5de5764,Measuring sample distortions in face recognition,"Università di Salerno, Fisciano (SA), Italy" +035c8632c1ffbeb75efe16a4ec50c91e20e6e189,Kinship verification from facial images and videos: human versus machine,"School of Computing and Information Systems, University of Melbourne, Melbourne, Australia" +9b4b2a575641f3a7f8a5ce28b6a06c36694a9ddf,A lighting robust fitting approach of 3D morphable model for face reconstruction,"Insititute of Automation, Chinese Academy of Sciences (CAS), Beijing, China" +9b9f6e5eb6d7fa50300d67502e8fda1006594b84,Learning to Recognise Unseen Classes by A Few Similes,"University of Sheffield, Sheffield, United Kingdom" +9b8830655d4a5a837e3ffe835d14d6d71932a4f2,Multiview Face Recognition: From TensorFace to V-TensorFace and K-TensorFace,"Department of Computer Science, University of Texas, San Antonio, TX, USA" +9b1a70d6771547cbcf6ba646f8775614c0162aca,Combining feature extraction and expansion to improve classification based similarity learning,"Departament d’Informática, Universitat de Valéncia, Av. de la Universitat s/n, 46100-Burjassot, Spain" +9e5690cdb4dfa30d98dff653be459e1c270cde7f,Multiple path search for action tube detection in videos,Department of Electronic and Computer Engineering National Taiwan University of Science and Technology +9e5809122c0880183c7e42c7edd997f92de6d81e,Eye corner detector robust to shape and illumination changes,"Fujitsu Laboratories, Kawasaki, Kanagawa, Japan" +9e99f818b37d44ec6aac345fb2c5356d83d511c7,Sift-flow registration for facial expression analysis using Gabor wavelets,"University of Montreal, Department of Computer Science and Operations Research (DIRO), 2920 Chemin de la tour, QC, Canada, H3C 3J7" +9e2ab407ff36f3b793d78d9118ea25622f4b7434,Local generic representation for patch uLBP-based face recognition with single training sample per subject,"SITI Laboratory, National Engineering School of Tunis (ENIT), University of Tunis El Manar, Tunis, Tunisia" +9eaa967d19fc66010b7ade7d94eaf7971a1957f3,Segmentation-based illumination normalization for face detection,"Department of Information Processing Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology Yokohama 226-8503, Japan" +9e60614fd57afe381ae42c6ee0b18f32f60bb493,Attribute constrained subspace learning,"Institute for Human-Machine Communication, Technische Universität München, Germany" +9e60614fd57afe381ae42c6ee0b18f32f60bb493,Attribute constrained subspace learning,"Dept. of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Iran" +9e10ea753b9767aa2f91dafe8545cd6f44befd7f,Learning discriminative local binary patterns for face recognition,"Department of Computer Science, Pontificia Universidad Cato´lica de Chile" +049186d674173ebb76496f9ecee55e17ed1ca41b,Inner Product Regularized Nonnegative Self Representation for Image Classification and Clustering,"School of Software, Jiangxi Normal University, Nanchang, China" +049186d674173ebb76496f9ecee55e17ed1ca41b,Inner Product Regularized Nonnegative Self Representation for Image Classification and Clustering,"School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China" +047d3cb2a6a9628b28cac077b97d95b04ca9044c,A robust composite metric for head pose tracking using an accurate face model,"Majority Report, France" +04f56dc5abee683b1e00cbb493d031d303c815fd,Scene character recognition using PCANet,"Xiamen University of Technology, Fujian, China" +0450dacc43171c6e623d0d5078600dd570de777e,Emotional faces influence numerosity estimation without awareness,"Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Japan" +045275adac94cced8a898a815293700401e9955f,Texture-independent recognition of facial expressions in image snapshots and videos,"Computer Vision Center, Edifici “O”, Campus UAB, Bellaterra, Spain" +045275adac94cced8a898a815293700401e9955f,Texture-independent recognition of facial expressions in image snapshots and videos,"University of the Basque Country UPV/EHU, San Sebastian, Spain" +045275adac94cced8a898a815293700401e9955f,Texture-independent recognition of facial expressions in image snapshots and videos,"IKERBASQUE, Basque Foundation for Science, Bilbao, Spain" +6af75a8572965207c2b227ad35d5c61a5bd69f45,An Accelerated Variational Framework for Face Expression Recognition,"Concordia Institute for Information Systems Engineering Concordia University, Montreal, Canada" +6a6269e591e11f41d59c2ca1e707aaa1f0d57de6,KPCA method based on within-class auxiliary training samples and its application to pattern classification,"School of Mathematics and Computational Science, Anqing Normal University, Anqing, People’s Republic of China" +6afe1f668eea8dfdd43f0780634073ed4545af23,Deep learning for content-based video retrieval in film and television production,"Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany" +6afe1f668eea8dfdd43f0780634073ed4545af23,Deep learning for content-based video retrieval in film and television production,"taglicht media Film- & Fernsehproduktion GmbH, Köln, Germany" +6afe1f668eea8dfdd43f0780634073ed4545af23,Deep learning for content-based video retrieval in film and television production,"German National Library of Science and Technology (TIB), Hannover, Germany" +6afe1f668eea8dfdd43f0780634073ed4545af23,Deep learning for content-based video retrieval in film and television production,"L3S Research Center, Leibniz Universität Hannover, Hannover, Germany" +6a527eeb0b2480109fe987ed7eb671e0d847fca8,Introduction to Intelligent Surveillance,"Department of Computer Science, Auckland University of Technology, Auckland, New Zealand" +6adecb82edbf84a0097ff623428f4f1936e31de0,Client-specific A-stack model for adult face verification across aging,"School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland" +6a931e7b7475635f089dd33e8d9a2899ae963804,Unified convolutional neural network for direct facial keypoints detection,"Pusan National University, Busan, Korea" +6a6406906470be10f6d6d94a32741ba370a1db68,Emotion extraction based on multi bio-signal using back-propagation neural network,"Department of MediaSoftware, Sungkyul University, Anyang-si, Republic of Korea" +6a6406906470be10f6d6d94a32741ba370a1db68,Emotion extraction based on multi bio-signal using back-propagation neural network,"Department of Film and Digital Media, Seokyeong University, Seoul, Republic of Korea" +6ad5ac867c5ca56e0edaece153269d989b383b59,Local feature extraction and recognition under expression variations based on multimodal face and ear spherical map,"School of Automation and Electrical Engineering, University of Science and Technology Beijing, 100083, China" +3266fcd1886e8ad883714e38203e66c0c6487f7b,Exploring synonyms as context in zero-shot action recognition,Vision Semantics Ltd +321db1059032b828b223ca30f3304257f0c41e4c,Comparative evaluation of age classification from facial images,"Department of Electronics and Telecommunication Engineering, Don Bosco Institute of Technology, Kurla (W), Mumbai, India" +327ae6742cca4a6a684a632b0d160dd84d0d8632,Dimension Reduction and Construction of Feature Space for Image Pattern Recognition,"Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan" +327ae6742cca4a6a684a632b0d160dd84d0d8632,Dimension Reduction and Construction of Feature Space for Image Pattern Recognition,"Institute of Management and Information Technologies, Chiba University, Chiba, Japan" +327ae6742cca4a6a684a632b0d160dd84d0d8632,Dimension Reduction and Construction of Feature Space for Image Pattern Recognition,"Graduate School of Engineering, Nagasaki University, Nagasaki, Japan" +32e4fc2f0d9c535b1aca95aeb5bcc0623bcd2cf2,Real time facial expression recognition with AdaBoost,"Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China" +322488c4000c686e9bfb7514ccdeacae33e53358,People News Search via Name-Face Association Analysis,"Shanghai University of Finance and Economics, Shanghai, China" +32dfd4545c87d9820cc92ca912c7d490794a81d6,Computer Vision for Driver Assistance,"Department of Computer Engineering, Qazvin Islamic Azad University , Qazvin, Iran" +32dfd4545c87d9820cc92ca912c7d490794a81d6,Computer Vision for Driver Assistance,"Department of Electrical and Electronic Engineering, Auckland University of Technology , Auckland, New Zealand" +32a440720ee988b7b41de204b2910775171ee12c,Front view gait recognition using Spherical Space Model with Human Point Clouds,"Waseda University The Graduate School of Information, Production and Systems 2-7, Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka, Japan" +359edbaa9cf56857dd5c7c94aaef77003ba8b860,Human Behavior Understanding,"Department of Computer Engineering, Bogaziçi University, Bebek, Turkey" +35ccc836df60cd99c731412fe44156c7fd057b99,A cascade framework for masked face detection,"School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo, China" +359b4a4c6cb58c8ab5e8eaaed0e8562c8c43a0f9,A modified kernel clustering method with multiple factors,"Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China" +69a9cf9bc8e585782824666fa3fb5ce5cf07cef2,Captioning Videos Using Large-Scale Image Corpus,"School of Software Engineering, Chengdu University of Information Technology, Chengdu, China" +69a9cf9bc8e585782824666fa3fb5ce5cf07cef2,Captioning Videos Using Large-Scale Image Corpus,"Sichuan University West China Hospital of Stomatology, Chengdu, China" +69ba86f7aac7b7be0ac41d990f5cd38400158f96,Discriminative Feature Extraction by a Neural Implementation of Canonical Correlation Analysis,"Department of Computer Engineering, Bahçeşehir University, Istanbul, Turkey" +3c7825dcf5a027bd07eb0fe4cce23910b89cf050,Nonnegative Matrix Factorization with Integrated Graph and Feature Learning,"Southern Illinois University at Carbondale, IL, USA" +3c7825dcf5a027bd07eb0fe4cce23910b89cf050,Nonnegative Matrix Factorization with Integrated Graph and Feature Learning,"Yuncheng University, Shanxi Province, China" +3c7825dcf5a027bd07eb0fe4cce23910b89cf050,Nonnegative Matrix Factorization with Integrated Graph and Feature Learning,"University of Hawaii at Hilo, HI, USA" +3c086601ce0bac61047b5b931b253bd4035e1e7a,Occlusion handling in feature point tracking using ranked parts based models,"Information and media processing laboratories, NEC Corporation" +3cbd3124b1b4f95fcdf53abd358d7ceec7861dda,Convolutions through time for multi-label movie genre classification,"Pontifícia Universidade Católica do RS, Porto Alegre-RS, Brazil" +3c09d15b3e78f38618b60388ec9402e616fc6f8e,Neural networks recognition rate as index to compare the performance of fuzzy edge detectors,"School of Engineering of UABC, University of Baja California, Tijuana, Mexico" +3cd380bd0f3b164b44c49e3b01f6ac9798b6b6f9,Anubhav: recognizing emotions through facial expression,"Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India" +3ca6adc90aae5912baa376863807191ffd56b34e,Exploring Facial Asymmetry Using Optical Flow,"School of Software, Shenyang University of Technology, Shenyang, China" +56bcc89fb1e05d21a8b7b880c6b4df79271ceca5,Segmented face approximation with adaptive region growing based on low-degree polynomial fitting,"Department of Telecommunications and Information Processing, Image Processing and Interpretation, UGent/iMinds, Ghent, Belgium" +56fa0872ed73f7acfbfe83677fecb2dbc6eaa2fe,Performance evaluation of incremental training method for face recognition using PCA,"Department of Computer Science and Engineering, JNTU College of Engineering, Kakinada, India" +56fa0872ed73f7acfbfe83677fecb2dbc6eaa2fe,Performance evaluation of incremental training method for face recognition using PCA,"Department of Physics, JNTU College of Engineering, Kakinada, India" +56fa0872ed73f7acfbfe83677fecb2dbc6eaa2fe,Performance evaluation of incremental training method for face recognition using PCA,"Department of Electronics and Communication Engineering, JNTU College of Engineering, Hyderabad, India" +569988e19ab36582d4bd0ec98e344cbacf177f45,Affective Visual Perception Using Machine Pareidolia of Facial Expressions,"School of Electrical Engineering and Computer Science at the University of Newcastle, Callaghan, NSW 2308, Australia" +569988e19ab36582d4bd0ec98e344cbacf177f45,Affective Visual Perception Using Machine Pareidolia of Facial Expressions,"School of Mathematical and Physical Sciences at the University of Newcastle, Callaghan, NSW 2308, Australia" +518a3ce2a290352afea22027b64bf3950bffc65a,Finding iconic images,"Computer Science Dept., SUNY Stony Brook, USA" +3d1f976db6495e2bb654115b939b863d13dd3d05,Labeling faces with names based on the name semantic network,"Computer Science College, Xi’an Polytechnic University, Xi’an, China" +3d0b2da6169d38b56c58fe5f13342cf965992ece,Spatio-temporal representation for face authentication by using multi-task learning with human attributes,"Image and Video Systems Lab, School of Electrical Engineering, KAIST, Republic of Korea" +583e0d218e1e7aaf9763a5493e7c18c2b8dd7464,Coded facial expression,Wakayama University +58eb9174211d58af76023ce33ee05769de57236c,Submodular Attribute Selection for Visual Recognition,"Raytheon BBN Technologies, 10 Moulton St, Cambridge, MA" +587b8c147c6253878128ddacf6e5faf8272842a4,Driving High-Resolution Facial Scans with Video Performance Capture,"University of Southern California Institute for Creative Technologies, Los Angeles, CA" +58538cc418bf41197fad4fc4ee2449b2daeb08b1,Face recognition based on the fusion of wavelet packet sub-images and fisher linear discriminant,"College of Information and Electrical Engineering, Ludong University, Yantai, China" +58538cc418bf41197fad4fc4ee2449b2daeb08b1,Face recognition based on the fusion of wavelet packet sub-images and fisher linear discriminant,"Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China" +67af3ec65f1dc535018f3671624e72c96a611c39,Safe binary particle swam algorithm for an enhanced unsupervised label refinement in automatic face annotation,"Department of Electronic Engineering, National Ilan University, Yilan City, Taiwan" +67af3ec65f1dc535018f3671624e72c96a611c39,Safe binary particle swam algorithm for an enhanced unsupervised label refinement in automatic face annotation,"Department of Information Management, Hwa Hsia University of Technology, New Taipei City, Taiwan" +0b58b3a5f153f653c138257426bf8d572ae35a67,Cloud-based facial emotion recognition for real-time emotional atmosphere assessment during a lecture,"Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic" +939d28859c8bd2cca2d692901e174cfd599dac74,Facial expression recognition based on texture and shape,"The 28th Research Institute of China Electronics Technology Group Corporation, China" +93978ba84c8e95ff82e8b5960eab64e54ca36296,AMHUSE: a multimodal dataset for HUmour SEnsing,"University of Tours, France" +948f35344e6e063ffc35f10c547d5dd9204dee4e,Multi-Objective Differential Evolution for feature selection in Facial Expression Recognition systems,"University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, SI-2000, Slovenia" +940e5c45511b63f609568dce2ad61437c5e39683,Fiducial Facial Point Extraction Using a Novel Projective Invariant,"School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, China" +0e05b365af662bc6744106a7cdf5e77c9900e967,"Assessment of female facial beauty based on anthropometric, non-permanent and acquisition characteristics","INRIA, Sophia Antipolis, France" +0e4baf74dfccef7a99c6954bb0968a2e35315c1f,Gender identification from face images,"TÜBİITAK-BİILGEM-UEKAE, Anibal Cad., P.K.74, 41470, Gebze-KOCAELİ, Turkey" +604a281100784b4d5bc1a6db993d423abc5dc8f0,Face Verification Across Age Progression Using Discriminative Methods,"Computer Science Department, University of California, Los Angeles, CA, USA" +609d81ddf393164581b3e3bf11609a712ac47522,Fuzzy qualitative approach for micro-expression recognition,"Faculty of Computing and Information Technology, Setapak, Malaysia" +603231c507bb98cc8807b6cbe2c860f79e8f6645,Unitary transform-based template protection and its properties,"NTT Network Innovation Laboratories, Nippon Telegraph and Telephone Corp." +60284c37249532fe7ff6b14834a2ae4d2a7fda02,Compressive sensing based facial expression recognition,"Mechatronic Engineering Department, Mevlana University, Konya, Turkey" +6014eeb333998c2b2929657d233ebbcb1c3412c9,Discovering the City by Mining Diverse and Multimodal Data Streams,"Academia Sinica, Taipei, Taiwan Roc" +34c2ea3c7e794215588c58adf0eaad6dc267d082,Multi-modal emotion recognition using semi-supervised learning and multiple neural networks in the wild,"Inha University, South Korea" +5a0ae814be58d319dfc9fd98b058a2476801201c,Sparse margin–based discriminant analysis for feature extraction,"School of Computer Science and Technology, Nanjing University of Science and Technology of China, Nanjing, People’s Republic of China" +5fea59ccdab484873081eaa37af88e26e3db2aed,Capacitive Sensor for Tagless Remote Human Identification Using Body Frequency Absorption Signatures,"Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy" +5fc97d6cb5af21ed196e44f22cee31ce8c51ef13,NeuroDSP Accelerator for Face Detection Application,"UMR CNRS - Univ. Bourgogne, Dijon, France" +5fc97d6cb5af21ed196e44f22cee31ce8c51ef13,NeuroDSP Accelerator for Face Detection Application,"CEA, Gif-Sur-Yvette, France" +5fb9944b18f5a4a6d20778816290ed647f5e3853,Wearable for Wearable: A Social Signal Processing Perspective for Clothing Analysis using Wearable Devices,"Università degli Studi di Verona, Verona, Italy" +5fa6f72d3fe16f9160d221e28da35c1e67a5d951,A 700fps optimized coarse-to-fine shape searching based hardware accelerator for face alignment,"Institute of Semiconductors, Chinese Academy of Sciences&University of Chinese Academy of Sciences, Beijing, China" +5f0d4657eab4152a1785ee0a25b5b499cd1163ec,Bandit Framework for Systematic Learning in Wireless Video-Based Face Recognition,"University of California, Los Angeles, CA Dept. of Electrical Engineering" +33c2131cc85c0f0fef0f15ac18f28312347d9ba4,Edited AdaBoost by weighted kNN,"Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China" +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,Adaptive Cascade Regression Model For Robust Face Alignment,"Department of Information and Control, B-DAT Laboratory, Nanjing University of Information and Technology, Nanjing, China" +335435a94f8fa9c128b9f278d929c9d0e45e2510,CREMA-D: Crowd-Sourced Emotional Multimodal Actors Dataset,"Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA" +331d6ace8d59fa211e5bc84a93fdc65695238c69,Iterative column subset selection,"Department of Computer Systems, Universidad Politécnica de Madrid, Madrid, Spain" +052fb35f731680d9d4e7d89c8f70f14173efb015,A Survey on Mobile Social Signal Processing,"Intel Labs Europe, Pipers Way, Swindon" +053ee4a4793f54b02dfabde5436fd7ee479e79eb,Landmark-based Facial Expression Parametrization for Sign Languages Avatar Animation,"Universidade Federal do Paraná, Curitiba, Brazil" +0553c6b9ee3f7d24f80e204d758c94a9d6b375d2,Face identification from one single sample face image,"Dept. of Appl. Phys. & Electron., Umea Univ., Sweden" +0532cbcf616f27e5f6a4054f818d4992b99d201d,Class specific centralized dictionary learning for face recognition,"College of Information and Control Engineering, China University of Petroleum, Qingdao, China" +05c5134125a333855e8d25500bf97a31496c9b3f,Robust Multi-Modal Cues for Dyadic Human Interaction Recognition,"University of Tunis El Manar, Tunis, Tunisia" +9d01eca806e0f98c5b3c9a865cec1bd8c78e0f0c,A decentralised multimodal integration of social signals: a bio-inspired approach,"University of St. Andrews, UK" +9df86395c11565afa8683f6f0a9ca005485c5589,"Facial expression recognition using active contour-based face detection, facial movement-based feature extraction, and non-linear feature selection","Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea" +9d3377313759dfdc1a702b341d8d8e4b1469460c,Cast2Face: Assigning Character Names Onto Faces in Movie With Actor-Character Correspondence,"School of Software, Beijing Institute of Technology, Beijing, China" +9c686b318cb7774b6da5e2c712743a5a6cafa423,Increasingly complex representations of natural movies across the dorsal stream are shared between subjects,"Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands" +9c81d436b300494bc88d4de3ac3ec3cc9c43c161,Discriminative unsupervised 2D dimensionality reduction with graph embedding,"School of Information Science and Technology, Northwest University, Xi’an, China" +9c81d436b300494bc88d4de3ac3ec3cc9c43c161,Discriminative unsupervised 2D dimensionality reduction with graph embedding,"Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary" +023decb4c56f2e97d345593e4f7b89b667a6763d,Generalized Low Rank Approximations of Matrices,"Department of Computer Science & Engineering, University of Minnesota-Twin Cities, Minneapolis, USA" +02fc9e7283b79183eb3757a9b6ddeb8c91c209bb,High-dimensional multimedia classification using deep CNN and extended residual units,"Department of Computer Science & Engineering, Jamia Hamdard University, New Delhi, India" +a4bb791b135bdc721c8fcc5bdef612ca654d7377,Location-sensitive sparse representation of deep normal patterns for expression-robust 3D face recognition,"Department of Mathematics and Informatics, Ecole Centrale de Lyon, Lyon, 69134, France" +a4725a5b43e7c36d9e30028dff66958f892254a0,Emotion Recognition in the Wild: Incorporating Voice and Lip Activity in Multimodal Decision-Level Fusion,"Technische Universität München, Munich, Germany" +a4725a5b43e7c36d9e30028dff66958f892254a0,Emotion Recognition in the Wild: Incorporating Voice and Lip Activity in Multimodal Decision-Level Fusion,"Technische Universität München / Imperial College London, Munich / London, England UK" +a4e75766ef93b43608c463c233b8646439ce2415,Automatic real-time FACS-coder to anonymise drivers in eye tracker videos,"Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden" +a313851ed00074a4a6c0fccf372acb6a68d9bc0b,Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features,"Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan" +a313851ed00074a4a6c0fccf372acb6a68d9bc0b,Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features,"Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan" +a38dd439209b0913b14b1c3c71143457d8cf9b78,Face recognition in unconstrained environments,"Computer Science and Engineering Dept., University of Nevada Reno, USA" +b5979489e11edd76607c219a8bdc83ba4a88ab38,Action Recognition in Video Sequences using Deep Bi-Directional LSTM With CNN Features,"Department of Computer Science, Digital Image Processing Laboratory, Islamia College Peshawar, Peshawar, Pakistan" +b55e70df03d9b80c91446a97957bc95772dcc45b,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,"GSI Universidad Polit-écnica de Madrid, Madrid, Spain" +b55e70df03d9b80c91446a97957bc95772dcc45b,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,"Phonexia, Brno-Krlovo Pole, Czech Republic" +b5f9306c3207ac12ac761e7d028c78b3009a219c,Age estimation based on extended non-negative matrix factorization,"School of Computer Science and Software Engineering University of Wollongong, Australia" +b50edfea790f86373407a964b4255bf8e436d377,Group emotion recognition with individual facial emotion CNNs and global image based CNNs,"SIAT at Chinese Academy of Sciences, China" +b208f2fc776097e98b41a4ff71c18b393e0a0018,Efficient Design of Advanced Correlation Filters for Robust Distortion-Tolerant Face Recognition,"Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA" +d91a5589fd870bf62b7e4979d9d47e8acf6c655d,Face recognition method based on dynamic threshold local binary pattern,"Chongqing University of Posts and Telecommunications Chongqing, China" +aca728cab26b95fbe04ec230b389878656d8af5b,Knowledge Computing and its Applications,"School of Computing Science and Engineering, VIT University, Vellore, India" +aca728cab26b95fbe04ec230b389878656d8af5b,Knowledge Computing and its Applications,"The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense M, Denmark" +acff2dc5d601887741002a78f8c0c35a799e6403,Artificial Intelligence Applications and Innovations,"Department of Computer Science and Engineering, Frederick University, Nicosia, Cyprus" +ac37285f2f5ccf99e9054735a36465ee35a6afdd,Complete Kernel Fisher discriminant analysis of Gabor features with fractional power polynomial models for face recognition,"Dept. of Autom. Test & Control, Harbin Inst. of Technol., China" +ad6cc071b2585e4bdb6233b7ad8d63e12538537d,Effective multiplicative updates for non-negative discriminative learning in multimodal dimensionality reduction,"Department of Computer Science and Technology, Nanjing Forestry University, Nanjing, China" +ad6cc071b2585e4bdb6233b7ad8d63e12538537d,Effective multiplicative updates for non-negative discriminative learning in multimodal dimensionality reduction,"Department of Language Studies, Nanjing Forestry University, Nanjing, China" +ad6cc071b2585e4bdb6233b7ad8d63e12538537d,Effective multiplicative updates for non-negative discriminative learning in multimodal dimensionality reduction,"Department of Computer Science and Technology, Nanjing Forestry University and Shandong University, Jinan, China" +ad9ba7eade9d4299159512d6d5d07d7d3d26ae58,Feature Extraction Based on Maximum Nearest Subspace Margin Criterion,"School of Information Engineering, Jiangxi Manufacturing Technology College, Nanchang, China" +ad77056780328bdcc6b7a21bce4ddd49c49e2013,Face verification based on deep reconstruction network,"School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China" +ada063ce9a1ff230791c48b6afa29c401a9007f1,Biometric Recognition,"Xinjiang University, Urumqi, China" +ada56c9ceef50aa5159f1f8aa45ca2040d1ed15c,Soft Biometrics: Globally Coherent Solutions for Hair Segmentation and Style Recognition Based on Hierarchical MRFs,"Department of Computer Science, IT: Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal" +bb2f61a057bbf176e402d171d79df2635ccda9f6,Multi-modal joint embedding for fashion product retrieval,Institut de Robòtica i Informàtica Industrial (CSIC-UPC) +bb2f61a057bbf176e402d171d79df2635ccda9f6,Multi-modal joint embedding for fashion product retrieval,Wide Eyes Technologies +bb83d5c7c17832d1eef14aa5d303d9dd65748956,Predicting student engagement in classrooms using facial behavioral cues,"IIIT Bangalore, India" +bbc8ccd3f62615e3c0ce2c3aee5e4a223d215bbd,Towards robust automatic affective classification of images using facial expressions for practical applications,"Faculty of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China" +bbc8ccd3f62615e3c0ce2c3aee5e4a223d215bbd,Towards robust automatic affective classification of images using facial expressions for practical applications,"Research & Development, British Broadcasting Corporation (BBC), London, UK" +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,SAGA: sparse and geometry-aware non-negative matrix factorization through non-linear local embedding,"IRISA, Université de Bretagne Sud, Vannes, France" +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,SAGA: sparse and geometry-aware non-negative matrix factorization through non-linear local embedding,"Costel, Université de Rennes 2, Rennes, France" +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,SAGA: sparse and geometry-aware non-negative matrix factorization through non-linear local embedding,"NLPR, Institute of Automation, Chinese Academy of Science, Beijing, People’s Republic of China" +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,SAGA: sparse and geometry-aware non-negative matrix factorization through non-linear local embedding,"CEA (iRSTV/BGE), INSERM (U1038), CNRS (FR3425), Université Grenoble-Alpes, Grenoble, France" +d79530e1745b33f3b771d0b38d090b40afc04191,A new method to estimate ages of facial image for large database,"College of Computer Science and Technology of Huaqiao University, Xiamen, China" +d7b7253f7d8b397d9d74057e1e72ed9c58e2ba6d,Towards Improving Social Communication Skills With Multimodal Sensory Information,"School of Computer Science, China University of Geosciences, Wuhan, China" +d046030f7138e5a2dbe2b3eec1b948ad8c787538,Illumination invariant face recognition in logarithm Discrete Cosine Transform domain,"Faculty of Engineering, Ain Shams University, Computer and Systems Engineering Department, Cairo, Egypt" +d0f9143f6f43a39bff47daf8c596681581db72ea,Implementation of an improved facial emotion retrieval method in multimedia system,"School of Computer Engineering, Hanshin University, Osan, Republic of Korea" +d066575b48b552a38e63095bb1f7b56cbb1fbea4,The performance of corrected learning network for object recognition,"School of Information and Software Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China P.R.C" +bec0c33d330385d73a5b6a05ad642d6954a6d632,"Ranking, clustering and fusing the normalized LBP temporal facial features for face recognition in video sequences","Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, India" +bec0c33d330385d73a5b6a05ad642d6954a6d632,"Ranking, clustering and fusing the normalized LBP temporal facial features for face recognition in video sequences","Department of Electrical & Electronics Engineering, Kalasalingam University, Krishnankoil, India" +be4faea0971ef74096ec9800750648b7601dda65,Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network,"School of Electronics Engineering, Kyungpook National University, Taegu, South Korea" +b3ad7bc128b77d9254aa38c5e1ead7fa10b07d29,Recognizing Actions in Wearable-Camera Videos by Training Classifiers on Fixed-Camera Videos,"Tianjin University & University of South Carolina, Tianjin, China" +b3add9bc9e70b6b28ba31e843e9155e7c37f3958,Parallel Heat Kernel Volume Based Local Binary Pattern on Multi-Orientation Planes for Face Representation,"College of Information and Technology, Incheon National University, Incheon, Korea" +b3e60bb5627312b72c99c5ef18aa41bcc1d21aea,Class specific dictionary learning for face recognition,"School of Computer Science Carnegie Mellon University Pittsburgh, PA, 15213, USA" +df550cb749858648209707bec5410431ea95e027,Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification,"School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China" +da2b2be4c33e221c7f417875a6c5c74043b1b227,Score normalization in stratified biometric systems,"Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA" +dae9d0a9b77366f0cd52e38847e47691ee97bc1f,Multimodal emotion recognition based on peak frame selection from video,"INRS-EMT, Montreal, Canada" +dae9d0a9b77366f0cd52e38847e47691ee97bc1f,Multimodal emotion recognition based on peak frame selection from video,"University of Udine, Udine, Italy" +b472f91390781611d4e197564b0016d9643a5518,Facial expression recognition using geometric and appearance features,"Central China Normal University, Wuhan, China" +b472f91390781611d4e197564b0016d9643a5518,Facial expression recognition using geometric and appearance features,"China University of Geosciences Wuhan, China" +b41d585246360646c677a8238ec35e8605b083b0,Student engagement study based on multi-cue detection and recognition in an intelligent learning environment,"Faculty of Information Engineering, China University of Geosciences, Wuhan, China" +a59c0cf3d2c5bf144ee0dbc1152b1b5dd7634990,Big Data Analysis for Media Production,"Department of Computer Graphics and Multimedia, University of Brno, Brno, Czech Republic" +a5f70e0cd7da2b2df05fadb356a24743f3cf459a,Robust Video Face Recognition Under Pose Variation,"University of Science and Technology Beijing, Beijing, China" +bddc822cf20b31d8f714925bec192c39294184f7,Facial expression recognition based on local binary patterns,"Northwestern Polytechnic University, Xi’an, China" +d141c31e3f261d7d5214f07886c1a29ac734d6fc,Unsupervised Video Hashing via Deep Neural Network,"Liaocheng University, Liaocheng, China" +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,Blind late fusion in multimedia event retrieval,"TNO, Oude Waalsdorperweg, AK The Hague, The Netherlands" +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,Blind late fusion in multimedia event retrieval,"Radboud University, EC Nijmegen, The Netherlands" +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,Blind late fusion in multimedia event retrieval,"City University, Kowloon Tong, Hong Kong" +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,Blind late fusion in multimedia event retrieval,"TNO, The Hague, The Netherlands" +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,Blind late fusion in multimedia event retrieval,"Leiden University, Leiden, The Netherlands" +d12bea587989fc78b47584470fd8f689b6ab81d2,Robust Face Representation Using Hybrid Spatial Feature Interdependence Matrix,"LIAMA, French National Institute for Research in Computer Science and Control, Paris, France" +d628aabf1a666a875e77c3d3fee857cd25891947,Eye detection in unrestrained settings using efficient match kernels and SVM classification,"Department of Mechanical Engineering, University of Brasília, DF, Brazil 70910-900" +d628aabf1a666a875e77c3d3fee857cd25891947,Eye detection in unrestrained settings using efficient match kernels and SVM classification,"Department of Computer Science, University of Brasília, DF, Brazil 70910-900" +d62d82c312c40437bc4c1c91caedac2ba5beb292,Super Wide Regression Network for Unsupervised Cross-Database Facial Expression Recognition,"School of Computer Science and Engineering, Tianjin University of Technology, China" +d62d82c312c40437bc4c1c91caedac2ba5beb292,Super Wide Regression Network for Unsupervised Cross-Database Facial Expression Recognition,"School of Electrical and Electronic Engineering, Tianjin University of Technology, China" +bc607bee2002c6c6bf694a15efd0a5d049767237,A novel large-scale multimedia image data classification algorithm based on mapping assisted deep neural network,"Infosys Limited, Bhubaneswar, India" +bcf2710d46941695e421226372397c9544994214,Facial expression recognition based on transfer learning from deep convolutional networks,"School of Science, Southwest Petroleum University, Chengdu, China" +bc9bad25f8149318314971d8b8c170064e220ea8,Triplet CNN and pedestrian attribute recognition for improved person re-identification,"Thales Services, ThereSIS, Palaiseau, France" +aea977a3b5556957ed5fb3ef21685ee84921eaa3,Dynamic facial landmarking selection for emotion recognition using Gaussian processes,"Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Colombia" +d878a67b2ef6a0a5dec72db15291f12419040ab1,Using web images as additional training resource for the discriminative generalized hough transform,"Institute of Applied Computer Science, Kiel University of Applied Sciences, Kiel, Germany" +d8e5d94c3c8688f0ca0ee656c79847c7df04c77d,Voice activity detection based on facial movement,"Tilburg center for Cognition and Communication, Tilburg University, Tilburg, The Netherlands" +d855791bc23b4aa8e751d6a4e2ae7f5566a991e8,"Evaluation of Facial Expression Recognition by a Smart Eyewear for Facial Direction Changes, Repeatability, and Positional Drift","National Institute of Advanced Industrial Science Technology, Japan" +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7,Two-class 3D-CNN classifiers combination for video copy detection,"School of Information Science and Technology, Shandong Normal University, Jinan, China" +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7,Two-class 3D-CNN classifiers combination for video copy detection,"School of Mechanical and Electrical Engineering, Shandong Management University, Jinan, China" +ab68837d09986c592dcab7d08ee6dfb40e02916f,Enhanced Face Preprocessing and Feature Extraction Methods Robust to Illumination Variation,"Dept. of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea" +ab703224e3d6718bc28f7b9987eb6a5e5cce3b01,Unseen head pose prediction using dense multivariate label distribution,"College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, China" +ab2c07c9867243fad2d66fa6aeabfb780433f319,An Unscented Kalman filter based novel face detector and its robust system for illumination variant images using stochastic resonance,"Ashikaga Institute of Technology, Ashikaga, Japan" +abf573864b8fbc0f1c491ca60b60527a3e75f0f5,A new deformable mesh model for face tracking using edge based features and novel sets of energy functions,"Electrical and Electronic Engineering Department, Faculty of Engineering, Shahed University, Tehran, Iran" +e50ec6b6d1c189edc127eb403c41a64f34fc0a6c,Learning Flexible Block based Local Binary Patterns for unconstrained face detection,"Media Technology Lab, Huawei Technologies Co., Ltd" +e55f7250f3b8ee722814f8809620a851c31e5b0e,Feature Extraction and Filter Design for Eye Pattern Analysis,* +e55f7250f3b8ee722814f8809620a851c31e5b0e,Feature Extraction and Filter Design for Eye Pattern Analysis,** +e57014b4106dd1355e69a0f60bb533615a705606,Following event detection method based on human skeleton motion analysis by Kinect sensor,"Institute of Energy, Jiangxi Academy of Sciences, Nanchang, China" +e57014b4106dd1355e69a0f60bb533615a705606,Following event detection method based on human skeleton motion analysis by Kinect sensor,"School of Materials Science and Engineering, Central South University, Changsha, China" +e26a7e343fe109e2b52d1eeea5b02dae836f3502,Facial Expression Recognition Utilizing Local Direction-Based Robust Features and Deep Belief Network,"Department of Informatics, Modeling, Electronics, and Systems, University of Calabria, Rende, Italy" +e2b3aae594035e58f72125e313e92c7c4cc9d5bb,Real-time moustache detection by combining image decolorization and texture detection with applications to facial gender recognition,"Institute for Infocomm Research, A*STAR, Singapore, Singapore" +f423d8be5e13d9ef979debd3baf0a1b2e1d3682f,Approaching human level facial landmark localization by deep learning,"Megvii Inc., Beijing, China" +f3553148e322f4f64545d6667dfbc7607c82703a,Can computer vision problems benefit from structured hierarchical classification?,"Signal and Image Exploitation (INTELSIG), Montefiore Institute, University of Liège, Liège, Belgium" +f3553148e322f4f64545d6667dfbc7607c82703a,Can computer vision problems benefit from structured hierarchical classification?,"Intelligent and Interactive Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria" +eb02daee558e483427ebcf5d1f142f6443a6de6b,The Science and Detection of Tilting,"University of Helsinki, Helsinki, Finland" +eb02daee558e483427ebcf5d1f142f6443a6de6b,The Science and Detection of Tilting,"University of Lancaster, Lancaster, United Kingdom" +ebc2a3e8a510c625353637e8e8f07bd34410228f,Dual Sparse Constrained Cascade Regression for Robust Face Alignment,"B-DAT Laboratory, School of Information and Control, Nanjing University of Information and Technology, Nanjing, China" +ebeb0546efeab2be404c41a94f586c9107952bc3,Multi-cue Augmented Face Clustering,"Tianjin Universtiy, Tianjin, China" +eb8a3948c4be0d23eb7326d27f2271be893b3409,A Probabilistic Approach to People-Centric Photo Selection and Sequencing,"Amazon, Berkshire, U.K." +c06b13d0ec3f5c43e2782cd22542588e233733c3,Crowdsourcing facial expressions for affective-interaction,"NOVA Laboratory for Computer Science and Informatics, NOVA-LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal" +eef0be751e9aca7776d83f25c8ffdc1a18201fd8,A dense flow-based framework for real-time object registration under compound motion,f +ee1f9637f372d2eccc447461ef834a9859011ec1,Optimized learning instance-based image retrieval,"College of Information Science & Technology, Hebei Agricultural University, Baoding, China" +ee1f9637f372d2eccc447461ef834a9859011ec1,Optimized learning instance-based image retrieval,"Standards & Metrology Research Institute of CARS, Beijing, China" +ee1f9637f372d2eccc447461ef834a9859011ec1,Optimized learning instance-based image retrieval,"No.1 Senior Middle School of Wendeng District, Weihai, China" +ee1f9637f372d2eccc447461ef834a9859011ec1,Optimized learning instance-based image retrieval,"Lawrence Berkeley National Laboratory, Berkeley, USA" +eed05da2c0ab7d2b0a3c665a5368efa81b185099,Maximizing Gaussianity using kurtosis measurement in the kernel space for kernel linear discriminant analysis,"Department of Electronics and Communication Engineering, National Institute of Technology Trichy, Trichy 620015, India" +c997744db532767ee757197491d8ac28d10f1c0f,A real-time emotion recognition system for disabled persons,"University of Tunis, The National Higher school of engineers of Tunis (ENSIT), Laboratory of Signal Image and Energy Mastery, LR13ES03 (SIME), Tunis, Tunisia" +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225,Engineering Applications of Neural Networks,"Dept. of Theoretical Electrical Engineering, Technical University of Sofia, Sofia, Bulgaria" +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225,Engineering Applications of Neural Networks,"Faculty of Engineering and Computing, Coventry University, UK" +fcf393a90190e376b617cc02e4a473106684d066,A sparse neighborhood preserving non-negative tensor factorization algorithm for facial expression recognition,"Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China" +fcf393a90190e376b617cc02e4a473106684d066,A sparse neighborhood preserving non-negative tensor factorization algorithm for facial expression recognition,"Baidu Online Network Technology (Beijing) Co. Ltd, Beijing, China" +fc8990088e0f1f017540900bc3f5a4996192ff05,Hierarchical bilinear network for high performance face detection,"Chongqing Institute of Green and Intelligent Technology, CAS, Chongqing, 400714" +fcb276874cd932c8f6204f767157420500c64bd0,A Comparative Study of Linear Discriminant and Linear Regression Based Methods for Expression Invariant Face Recognition,"Department of Computer Science and Engineering, National Institute of Technology, Uttarakhand, India" +fcb276874cd932c8f6204f767157420500c64bd0,A Comparative Study of Linear Discriminant and Linear Regression Based Methods for Expression Invariant Face Recognition,"School of Computer & System Sciences, Jawaharlal Nehru University, New Delhi, India" +fcb276874cd932c8f6204f767157420500c64bd0,A Comparative Study of Linear Discriminant and Linear Regression Based Methods for Expression Invariant Face Recognition,"S. S. College of Business Studies, University of Delhi, Delhi, India" +fde611bf25a89fe11e077692070f89dcdede043a,Facial Expression recognition using Local Binary Patterns and Kullback Leibler divergence,"Department of ECE, National Institute of Technology, Rourkela (Odisha), India" +f28d549feffd414f38147d5e0460883fb487e2d3,Modular discriminant analysis and its applications,"School of Medical Science, Jinhua Polytechnic, Jinhua, China" +f28d549feffd414f38147d5e0460883fb487e2d3,Modular discriminant analysis and its applications,"Department of Computer Science and Engineering, University of Texas, Arlington, USA" +f28d549feffd414f38147d5e0460883fb487e2d3,Modular discriminant analysis and its applications,"School of Information and Engineering, Jinhua Polytechnic, Jinhua, China" +f2896dd2701fbb3564492a12c64f11a5ad456a67,Cross-database age estimation based on transfer learning,"Department of CSE, University at Buffalo (SUNY), NY 14260, USA" +f201baf618574108bcee50e9a8b65f5174d832ee,Viewpoint-Consistent 3D Face Alignment,"Snapchat Research, Venice, CA90291" +f557df59cd088ffb8e27506d8612d062407e96f4,Multimedia event detection with ℓ2-regularized logistic Gaussian mixture regression,"School of Computer Science, Wuyi University, Jiangmen, China" +f557df59cd088ffb8e27506d8612d062407e96f4,Multimedia event detection with ℓ2-regularized logistic Gaussian mixture regression,"Adjunct, Effat University, Jeddah, Saudi Arabia" +cfba667644508853844c45bfe5d0b8a2ffb756d3,Robust gender classification using extended multi-spectral imaging by exploring the spectral angle mapper,"Department of Electronics, University of Goa, India" +ca096e158912080493a898b0b8a4bd2902674fed,Up to a Limit?: Privacy Concerns of Bystanders and Their Willingness to Share Additional Information with Visually Impaired Users of Assistive Technologies,"Microsoft Research India Pvt. Ltd, Bangalore, Karnataka, India" +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734,Entropy-based active sparse subspace clustering,"Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin, China" +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734,Entropy-based active sparse subspace clustering,"School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China" +cab3c6069387461c3a9e5d77defe9a84fe9c9032,A Novel multiple kernel-based dictionary learning for distributive and collective sparse representation based classifiers,"Electrical Engineering Department, Yazd University, Yazd, Iran" +e4ad82afc563b783475ed45e9f2cd4c9e2a53e83,New distances combination for facial expression recognition from image sequences,"Laboratory LAROSERI, Department of Computer Science, Faculty of Sciences, University of Chouaib Doukkali, El Jadida - Morocco" +e4ad82afc563b783475ed45e9f2cd4c9e2a53e83,New distances combination for facial expression recognition from image sequences,"Laboratory LIM, Department of Computer Science, Faculty of Sciences and Technologies, University Hassan II, Casablanca-Morocco" +e4b825bf9d5df47e01e8d7829371d05208fc272d,Recognition of Facial Attributes Using Multi-Task Learning of Deep Networks,"School of Computer Science, Kyungpook National University, Buk-gu, Daegu, The Republic of Korea" +fef6f1e04fa64f2f26ac9f01cd143dd19e549790,Spatio-Temporal AutoEncoder for Video Anomaly Detection,"Shanghai Jiao Tong University & Alibaba Group, Shanghai, China" +fef6f1e04fa64f2f26ac9f01cd143dd19e549790,Spatio-Temporal AutoEncoder for Video Anomaly Detection,"Zhejiang University & Alibaba Group, Hangzhou, China" +c833c2fb73decde1ad5b5432d16af9c7bee1c165,Homotopic Image Pseudo-Invariants for Openset Object Recognition and Image Retrieval,"University of IIllinois, Urbana-Champaign" +c8fb8994190c1aa03c5c54c0af64c2c5c99139b4,Pose-invariant descriptor for facial emotion recognition,"Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran" +c858c74d30c02be2d992f82a821b925669bfca13,Computer Vision – ECCV 2014,"Max-Planck-Institut für Informatik, Saarbrücken, Germany" +c858c74d30c02be2d992f82a821b925669bfca13,Computer Vision – ECCV 2014,"KU Leuven, ESAT - PSI, iMinds, Leuven, Belgium" +c843f591658ca9dbb77944a89372a92006defe68,Learning motion and content-dependent features with convolutions for action recognition,"School of Information Science and Engineering, Hunan city University, Yiyang, China" +c872d6310f2079db0cee0e69cc96da1470055225,Heterogeneous Multi-task Learning on Non-overlapping Datasets for Facial Landmark Detection,"Information Technology R&D Center, Mitsubishi Electric Corporation, Kamakura, Japan" +fb3aaf18ea07b30d1836e7cf2ab9fa898627fe93,Facial Expression Recognition Using Weighted Mixture Deep Neural Network Based on Double-Channel Facial Images,"Department of Information Science and Engineering, Changzhou University, Changzhou, China" +fb7bf10cbc583db5d5eee945aa633fcb968e01ad,A novel weighted fuzzy LDA for face recognition using the genetic algorithm,"School of Control Science and Engineering DUT, Dalian, China" +fbc591cde7fb7beb985437a22466f9cf4b16f8b1,Illumination Robust Face Recognition Using Spatial Expansion Local Histogram Equalization and Locally Linear Regression Classification,"Dept. of Comp. Sci. and Inf. Eng, Chung Hua University, Hsinchu, Taiwan" +fbc591cde7fb7beb985437a22466f9cf4b16f8b1,Illumination Robust Face Recognition Using Spatial Expansion Local Histogram Equalization and Locally Linear Regression Classification,"Dept. of Comp. Sci. and Inf. Eng, National United University, Miaoli, Taiwan" +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d,An experimental study on content-based face annotation of photos,"Psychology Department, University of California, Santa Barbara, CA 93106 USA" +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d,An experimental study on content-based face annotation of photos,"Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106 USA" +fb3ff56ab12bd250caf8254eca30cd97984a949a,Face recognition Face2vec based on deep learning: Small database case,"Institute of Electronics and Computer Science, Riga, Latvia" +fb2bd6c2959a4f811b712840e599f695dad2967e,Environmental illumination invariant face recognition using near infrared imaging system,"School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, 689-798, Korea" +fba386ac63fe87ee5a0cf64bf4fb90324b657d61,Dynamic texture and geometry features for facial expression recognition in video,"Department of Computer Science, Chu Hai College of Higher Education, Hong Kong" +ed94e7689cdae87891f08428596dec2a2dc6a002,Distributed sketched subspace clustering for large-scale datasets,"Dept. of ECE and Digital Technology Center, Univ. of Minnesota, USA" +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,Audio Visual Recognition of Spontaneous Emotions In-the-Wild,"NPU-VUB Joint AVSP Lab, School of Computer Science, Northwestern Polytechnical University (NPU), Xi’an, China" +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,Audio Visual Recognition of Spontaneous Emotions In-the-Wild,"Shaanxi Key Laboratory on Speech and Image Information Processing, Xi’an, China" +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,Audio Visual Recognition of Spontaneous Emotions In-the-Wild,"NPU-VUB Joint AVSP Lab, Department ETRO, Vrije Universiteit Brussel (VUB), Brussels, Belgium" +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,Audio Visual Recognition of Spontaneous Emotions In-the-Wild,"Interuniversity Microelectronics Centre, Heverlee, Belgium" +edf60d081ffdfa80243217a50a411ab5407c961d,Recognizing an Action Using Its Name: A Knowledge-Based Approach,"QCIS, University of Technology, Sydney, Australia" +edf60d081ffdfa80243217a50a411ab5407c961d,Recognizing an Action Using Its Name: A Knowledge-Based Approach,"HTC Research, Beijing, China" +c65cfc9d3568c586faf18611c4124f6b7c0c1a13,A framework for face classification under pose variations,"Dept. of E & TC Engineering, Maharashtra Institute of Technology, Pune, India" +c6bbb56a26222bdb8ce7dd829cff38b67d4b03cd,Multiple instance learning with missing object tags,"Northwestern Polytechnical University Xian, P. R. China" +c61a8940d66eed9850b35dd3768f18b59471ca34,Facial action unit recognition using temporal templates,"Dept. of Mediamatics, Delft Univ. of Technol., Netherlands" +c60601bdb5465d8270fdf444e5d8aeccab744e29,Rotation invariant Facial Expression Recognition in image sequences,"Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632" +ec1a57e609eda72b4eb60155fac12db1da31f6c0,Probabilistic Linear Discriminant Analysis,"Fujifilm Software, San Jose, USA" +ec1bec7344d07417fb04e509a9d3198da850349f,Determine attention of faces through growing level of emotion using deep Convolution Neural Network,"Department of Computer Science and Engineering, National Institute of Technology, Durgapur, India" +ec983394f800da971d243f4143ab7f8421aa967c,D-FES: Deep facial expression recognition system,"Department of Computer Science and Engineering, National Institute of Technology Uttarakhand, Srinagar Garhwal, India" +ecdd83002f69c2ccc644d07abb44dd939542d89d,Linear dimensionality reduction based on Hybrid structure preserving projections,"Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China" +4e43408a59852c1bbaa11596a5da3e42034d9380,Efficient facial expression recognition using histogram of oriented gradients in wavelet domain,"Computer Science and Engineering Department, SP Memorial Institute of Technology, Kaushambi, India" +4e43408a59852c1bbaa11596a5da3e42034d9380,Efficient facial expression recognition using histogram of oriented gradients in wavelet domain,"Department of Computer Science, Banasthali Vidyapith, Banasthali, India" +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d,A proposed method for the improvement in biometric facial image recognition using document-based classification,"Department of Electronics and Communication Engineering, Institute of Road and Transport Technology, Erode, India" +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d,A proposed method for the improvement in biometric facial image recognition using document-based classification,"Department of Electronics and Communication Engineering, P.P.G. Institute of Technology, Coimbatore, India" +20a0f71d2c667f3c69df18f097f2b5678ac7d214,Exploiting sensing devices availability in AR/VR deployments to foster engagement,"Centre of Research and Technology Hellas, Thermi, Thessaloniki, Greece" +20a0f71d2c667f3c69df18f097f2b5678ac7d214,Exploiting sensing devices availability in AR/VR deployments to foster engagement,"University of Maastricht, Maastricht, The Netherlands" +20a0f71d2c667f3c69df18f097f2b5678ac7d214,Exploiting sensing devices availability in AR/VR deployments to foster engagement,"National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece" +20a0f71d2c667f3c69df18f097f2b5678ac7d214,Exploiting sensing devices availability in AR/VR deployments to foster engagement,"Technological Educational Institute of Sterea Ellada, Psahna, Halkida, Greece" +20eeb83a8b6fea64c746bf993f9c991bb34a4b30,End-to-end temporal attention extraction and human action recognition,"Luoyang Electro-Optical Equipment Research Institute, Luoyang, People’s Republic of China" +20b405d658b7bb88d176653758384e2e3e367039,Face recognition with manifold-based kernel discriminant analysis,"School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran" +205f035ec90a7fa50fd04fdca390ce83c0eea958,Emotion Recognition Using Multiple Kernel Learning toward E-learning Applications,"Sunway University, Selangor, Malaysia" +18855be5e7a60269c0652e9567484ce5b9617caa,Local Centre of Mass Face for face recognition under varying illumination,"Department of Computer Science and Engineering, University of Calcutta, Kolkata, India" +18bfda16116e76c2b21eb2b54494506cbb25e243,Face Recognition in Global Harmonic Subspace,"ECIT, School of Electronics, Electrical Engineering & Computer Science, Queen's University Belfast, Belfast, UK" +18145b0b13aa477eeabef9ceec4299b60e87c563,Role-based identity recognition for TV broadcasts,"Siemens AG, Corporate Technology, Munich, Germany" +18145b0b13aa477eeabef9ceec4299b60e87c563,Role-based identity recognition for TV broadcasts,"Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany" +18145b0b13aa477eeabef9ceec4299b60e87c563,Role-based identity recognition for TV broadcasts,"Fraunhofer Institute for Telecommunications, Berlin, Germany" +270acff7916589a6cc9ca915b0012ffcb75d4899,On the Applications of Robust PCA in Image and Video Processing,"Laboratoire MIA, University of La Rochelle, La Rochelle, France" +27e0684fa5b57715162ac6c58a6ea283c7db1719,Select eigenfaces for face recognition with one training sample per subject,"Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada" +27aa23d7a05368a6b5e3d95627f9bab34284e5c4,Sparse representation based on matrix rank minimization and k-means clustering for recognition,"State Key Laboratory of Management and Control for Complex Systems, Institute of Automation Chinese Academy of Sciences, Beijing, China 100190" +27a586a435efdcecb151c275947fe5b5b21cf59b,Very Fast Semantic Image Segmentation Using Hierarchical Dilation and Feature Refining,"Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Zhejiang, China" +4b94f531c203743a9f7f1e9dd009cdbee22ea197,Face recognition by using neural network classifiers based on PCA and LDA,"Dept. of Electron. Eng., Hannam Univ., Daejeon, South Korea" +11c2d40fc63ecd88febadd8a9cac9521a6b7de66,Discriminant Tchebichef based moment features for face recognition,"Department of Electronic and Communication Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia" +11c2d40fc63ecd88febadd8a9cac9521a6b7de66,Discriminant Tchebichef based moment features for face recognition,"Department of Mechanical Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia" +7d8798e7430dcc68fcdbd93053c884fc44978906,Crowdsourcing for affective-interaction in computer games,"Universidade Nova Lisboa, Lisboa, Portugal" +7d18e9165312cf669b799aa1b883c6bbe95bf40e,Simultaneous dimensionality reduction and dictionary learning for sparse representation based classification,"Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, People’s Republic of China" +2945cc9e821ab87fa17afc8802f3858435d1264c,Efficient video face recognition by using Fisher Vector encoding of binary features,"Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No.1, Tonantzintla, Puebla, México. CP 72840" +2960500033eb31777ed1af1fcb133dcab1b4a857,Recognizing facial expressions of emotion using action unit specific decision thresholds,"Başkent University, Ankara, TURKEY" +29fd98f096fc9d507cd5ee7d692600b1feaf7ed1,Exploring Multimodal Visual Features for Continuous Affect Recognition,"Beijing Normal Univeristy, Beijing, China" +7c8e0f3053e09da6d8f9a1812591a35bccd5c669,"Research in Attacks, Intrusions, and Defenses","Ruhr-Universität Bochum, Bochum, Germany" +7c8e0f3053e09da6d8f9a1812591a35bccd5c669,"Research in Attacks, Intrusions, and Defenses","Vrije Universiteit Amsterdam, Amsterdam, The Netherlands" +7c8e0f3053e09da6d8f9a1812591a35bccd5c669,"Research in Attacks, Intrusions, and Defenses","Foundation for Research & Technology – Hellas, Heraklion, Crete, Greece" +1617f56c86bf8ea61de62062a97961d23fcf03d3,Facial Similarity Learning with Humans in the Loop,"Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology Tsinghua University, Beijing, China" +163d0e6ea8c8b88b4383a4eaa740870e2458b9b0,"Face Recognition by RBF with Wavelet, DCV and Modified LBP Operator Face Representation Methods","Department of Computer Science, ANJA College, Sivakasi, India" +163d0e6ea8c8b88b4383a4eaa740870e2458b9b0,"Face Recognition by RBF with Wavelet, DCV and Modified LBP Operator Face Representation Methods","Department of Computer Science, VHNSN College, Virudhunagar, India" +42a6beed493c69d5bad99ae47ea76497c8e5fdae,Joint salient object detection and existence prediction,"CCCE, Nankai University Jinnan Campus, Tianjin, China" +892400017e5c93611dc8361e7749135520d66f25,A comparative study of age-invariant face recognition with different feature representations,"School of Electrical and Electronic Engineering, Singapore" +4500888fd4db5d7c453617ee2b0047cedccf2a27,Moving portraits,Google Inc. +4500888fd4db5d7c453617ee2b0047cedccf2a27,Moving portraits,University of Washington and Google Inc. +453bf941f77234cb5abfda4e015b2b337cea4f17,Robust regression based face recognition with fast outlier removal,"School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China" +1f5f67d315c9dad341d39129d8f8fe7fa58e564c,Facial expressions based error detection for smart environment using deep learning,ACM Professional Specialist in Artificial Intelligence +1f41bf5e8b8562ac7ef0013f4d0cf1c9e1a431f9,A novel constructive algorithm for CANet,"Polytechnic School of Pernambuco, University of Pernambuco, Recife-PE, Brazil" +1f02bf412a82ad99fe99dc3cfb3adec9dd41eabb,Facial expression recognition based on image pyramid and single-branch decision tree,"Department of Electric and Electronic Engineering, Avrasya University, Trabzon, Turkey" +1fb980e137b2c9f8781a0d98c026e164b497ddb1,GazeDrone: Mobile Eye-Based Interaction in Public Space Without Augmenting the User,"LMU Munich, Germany" +1fb980e137b2c9f8781a0d98c026e164b497ddb1,GazeDrone: Mobile Eye-Based Interaction in Public Space Without Augmenting the User,"LMU Munich, Germany and Munich University of Applied Sciences, Germany" +73ba33e933e834b815f62a50aa1a0e15c6547e83,Invariant feature extraction for facial recognition: A survey of the state-of-the-art,"Sudan University of Science and Technology, College of Computer Science and Information Technology, Khartoum - Sudan" +73dcb4c452badb3ee39a2f222298b234d08c21eb,Face recognition and facial expression identification using PCA,"Dept of Electronics and Communication, Manipal Institute Of Technology, Karnataka, India" +87ee56feefdb39938cda7f872e784d9d986713af,Fusion of face recognition and facial expression detection for authentication: a proposed model,"Universiti Kuala Lumpur, Kuala Lumpur" +87ee56feefdb39938cda7f872e784d9d986713af,Fusion of face recognition and facial expression detection for authentication: a proposed model,"Universiti Kuala Lumpur, Kedah" +80677676b127b67938c8db06a15d87f5dd4bd7f1,A method for determining the number of features in the kernel space required for preserving classifiability,"School of Computing Sciences and Informatics, University of Cincinnati, Cincinnati, USA" +80d4cf7747abfae96328183dd1f84133023c2668,Face retrieval in face track using sparse representation,"Dept. of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan" +80a5afeb6968c7e736adc48bd4d5ec5b45b13f71,Beauty Technology,"Department of Informatics, Pontifical Catholic Univ of Rio de Janei, Rio de Janeiro, Brazil" +80a5afeb6968c7e736adc48bd4d5ec5b45b13f71,Beauty Technology,"Pontifical Catholic Univ of Rio de Janei, Department of Informatics, Rio de Janeiro, Brazil" +746c0205fdf191a737df7af000eaec9409ede73f,Investigating Nuisances in DCNN-Based Face Recognition,"Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy" +1ab19e516b318ed6ab64822efe9b2328836107a4,Face Recognition System Using Multiple Face Model of Hybrid Fourier Feature Under Uncontrolled Illumination Variation,"Department of New Media, Korean German Institute of Technology, Korea" +1ab19e516b318ed6ab64822efe9b2328836107a4,Face Recognition System Using Multiple Face Model of Hybrid Fourier Feature Under Uncontrolled Illumination Variation,"Department of Electrical Engineering, KAIST, Korea" +1a0e1ba4408d12f8a28049da0ff8cad4f91690d5,A Hierarchical Predictive Coding Model of Object Recognition in Natural Images,"Department of Informatics, King’s College London, London, UK" +1a47f12a2490f6775c0ad863ac856de27f5b3e03,An ℓ2/ℓ1 regularization framework for diverse learning tasks,"Merchant Marine College, Shanghai Maritime University, Shanghai 201306, PR China" +1addc5c1fa80086d1ed58f71a9315ad13bd87ca2,Impact of action unit detection in automatic emotion recognition,"ISIR, UPMC Univ Paris 06, CNRS, Paris, France" +1addc5c1fa80086d1ed58f71a9315ad13bd87ca2,Impact of action unit detection in automatic emotion recognition,"LAMIA, EA 4540, University of French West Indies and Guyana, Guadeloupe, France" +1a03dcc811131b0b702bd5a75c54ed26cd27151a,Automated facial expression recognition based on histograms of oriented gradient feature vector differences,"Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia" +28e1982d20b6eff33989abbef3e9e74400dbf508,Automated kinship verification and identification through human facial images: a survey,"Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia" +28e1982d20b6eff33989abbef3e9e74400dbf508,Automated kinship verification and identification through human facial images: a survey,"UTM-Big Data Center, Universiti Teknologi Malaysia, Johor Bahru, Malaysia" +28e1982d20b6eff33989abbef3e9e74400dbf508,Automated kinship verification and identification through human facial images: a survey,"Faculty of Information Sciences and Engineering, Management and Science University, Selangor, Malaysia" +17de5a9ce09f4834629cd76b8526071a956c9c6d,Smart Parental Advisory: A Usage Control and Deep Learning-Based Framework for Dynamic Parental Control on Smart TV,"Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy" +179564f157a96787b1b3380a9f79701e3394013d,MACH: my automated conversation coach,"MIT, Cambridge, MA, USA" +179564f157a96787b1b3380a9f79701e3394013d,MACH: my automated conversation coach,"LIMSI-CNRS, Orsay Cedex, France" +1723227710869a111079be7d61ae3df48604e653,Multimodal emotion recognition with automatic peak frame selection,"Dept. of Mathematics and Computer Science, University of Udine, Italy" +1773d65c1dc566fd6128db65e907ac91b4583bed,Learning Temporal Dynamics for Video Super-Resolution: A Deep Learning Approach,"Department of Electrical and Computer Engineering, Beckman Institute Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, USA" +17d03da4db3bb89537d644b682b2a091d563af4a,Recognition of Partially Occluded and Rotated Images With a Network of Spiking Neurons,"Department of Statistics and Operational Research, Faculty of Mathematics, Complutense University of Madrid, Madrid, Spain" +8f713e3c5b6b166c213e00a3873f750fb5939c9a,The 2D factor analysis and its application to face recognition with a single sample per person,"Pontifical Catholic University of Minas Gerais - Department of Computer Science, R. Dom Jose Gaspar, 500, Belo Horizonte MG, 30535901, Brazil" +8ac2d704f27a2ddf19b40c8e4695da629aa52a54,Expressions Recognition of North-East Indian (NEI) Faces,"Department of Computer Science and Engineering, Tripura University (A Central University), Suryamaninagar, India" +8ac2d704f27a2ddf19b40c8e4695da629aa52a54,Expressions Recognition of North-East Indian (NEI) Faces,"Department of Physics, Tripura University (A Central University), Suryamaninagar, India" +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae,Place-centric Visual Urban Perception with Deep Multi-instance Regression,"San Diego State University, San Diego, CA, USA" +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae,Place-centric Visual Urban Perception with Deep Multi-instance Regression,"University of California at Los Angeles, Los Angeles, CA, USA" +8a63a2b10068b6a917e249fdc73173f5fd918db0,"A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases","Department of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China" +7eb8476024413269bfb2abd54e88d3e131d0aa0e,Hybrid-Boost Learning for Multi-Pose Face Detection and Facial Expression Recognition,"Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan" +7eb8476024413269bfb2abd54e88d3e131d0aa0e,Hybrid-Boost Learning for Multi-Pose Face Detection and Facial Expression Recognition,"Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan; Informatics Department, Fo-Guang University, I-Lan, Taiwan. e-mail: clhuang@ee.nthu.edu.tw" +7eb8476024413269bfb2abd54e88d3e131d0aa0e,Hybrid-Boost Learning for Multi-Pose Face Detection and Facial Expression Recognition,"Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan. e-mail: chihming.fu@gmail.com" +7e56d9ebd47490bb06a8ff0bd5bcd8672ec52364,Enhanced independent component analysis and its application to content based face image retrieval,"Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA" +7ee7b0602ef517b445316ca8aa525e28ea79307e,Emotion detection through fusion of complementary facial features,"ECE, Department MSIT, C-4 Janakpuri, New Delhi, India" +7ee7b0602ef517b445316ca8aa525e28ea79307e,Emotion detection through fusion of complementary facial features,"B. Tech Graduate, ECE, MSIT, C-4 Janakpuri, New Delhi, India" +7e48711c627edf90e9b232f2cbc0e3576c8f2f2a,Energy transfer features combined with DCT for object detection,"FEECS, Department of Computer Science, Technical University of Ostrava, Ostrava-Poruba, Czech Republic" +7e2f7c0eeaeb47b163a7258665324643669919e8,Classifying advertising video by topicalizing high-level semantic concepts,"School of Information Science and Engineering, Shandong Normal University, Jinan, China" +7e2f7c0eeaeb47b163a7258665324643669919e8,Classifying advertising video by topicalizing high-level semantic concepts,"Institute of Life Sciences, Shandong Normal University, Jinan, China" +7e2f7c0eeaeb47b163a7258665324643669919e8,Classifying advertising video by topicalizing high-level semantic concepts,"School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China" +7e2f7c0eeaeb47b163a7258665324643669919e8,Classifying advertising video by topicalizing high-level semantic concepts,"Key Laboratory of Intelligent Information Processing, Shandong Normal University, Jinan, China" +7ec431e36919e29524eceb1431d3e1202637cf19,Object detection and tracking in crowd environment — A review,"Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India" +1025c4922491745534d5d4e8c6e74ba2dc57b138,Auto-Calibrated Gaze Estimation Using Human Gaze Patterns,"Amsterdam University College, Amsterdam, The Netherlands" +196c12571ab51273f44ea3469d16301d5b8d2828,Is gender encoded in the smile? A computational framework for the analysis of the smile driven dynamic face for gender recognition,"Centre for Visual Computing, Faculty of Engineering and Informatics, University of Bradford, Bradford, UK" +19b492d426f092d80825edba3b02e354c312295f,A survey on face modeling: building a bridge between face analysis and synthesis,"ISIR laboratory, Pierre and Marie Curie university, Paris Cedex 05, France" +19b492d426f092d80825edba3b02e354c312295f,A survey on face modeling: building a bridge between face analysis and synthesis,"FAST, Supélec, Avenue de la Boulaie, Cesson-Sévigné, France" +194f5d3c240d06575403c9a422a0ebc86d43b91e,Real-time face detection and phone-to-face distance measuring for speech recognition for multi-modal interface in mobile device,"School of Electronics and Computer Eng., Chonnam National University, Gwangju, Korea" +4cc326fc977cf967eef5f3135bf0c48d07b79e2d,Advances in computational facial attractiveness methods,"Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, USA" +4c648fe9b7bfd25236164333beb51ed364a73253,Presentation Attack Detection Methods for Face Recognition Systems: A Comprehensive Survey,"Norwegian Biometric Laboratory, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway" +262cdbc57ecf5c18756046c0d8b9aa7eb10e3b19,Local Similarity based Linear Graph Embedding: A Robust Face Recognition Framework for SSPP problem,"PLA University of Science and Technology, China" +2696d3708d6c6cccbd701f0dac14cc94d72dd76d,Nonnegative matrix factorization with Hessian regularizer,"Computer Science Department, School of Information Science and Engineering, Xiamen, University, Xiamen, People’s Republic of China" +26bbe76d1ae9e05da75b0507510b92e7e6308c73,Learning to pool high-level features for face representation,"Department of Information Engineering, HeNan Radio and Television University, Zhengzhou, People’s Republic of China" +2138ccf78dcf428c22951cc066a11ba397f6fcef,Efficacy of biophysiological measurements at FTFPs for facial expression classification: A validation,"Curtin University Department of Mechanical Engineering, Perth, Western Australia 6012" +21cbf46c6adfb3a44ed2b30ff0b21a8391c18b13,Learning robust latent subspace for discriminative regression,"College of Mathematics and Informatics, South China Agricultural University, China" +21959bc56a160ebd450606867dce1462a913afab,Face recognition based on manifold constrained joint sparse sensing with K-SVD,"Xinjiang Vocational and Technical College of Communications, Wulumuqi, People’s Republic of China" +214072c84378802a0a0fde0b93ffb17bc04f3759,Driver cell phone usage detection on Strategic Highway Research Program (SHRP2) face view videos,"Office of Safety Research and Development, Federal Highway Administration, U.S. Department of Transportation, Virginia, USA" +217aa3aa0b3d9f6f394b5d26f03418187d775596,Predicting Human Intentions from Motion Cues Only: A 2D+3D Fusion Approach,"Istituto Italiano di Tecnologia (IIT) & Università degli Studi di Genova, Genova, Italy" +217aa3aa0b3d9f6f394b5d26f03418187d775596,Predicting Human Intentions from Motion Cues Only: A 2D+3D Fusion Approach,"Istituto Italiano di Tecnologia (IIT), Genova, Italy" +217aa3aa0b3d9f6f394b5d26f03418187d775596,Predicting Human Intentions from Motion Cues Only: A 2D+3D Fusion Approach,"Istituto Italiano di Tecnologia (IIT) & Università di Torino, Genova, Italy" +217aa3aa0b3d9f6f394b5d26f03418187d775596,Predicting Human Intentions from Motion Cues Only: A 2D+3D Fusion Approach,"Istituto Italiano di Tecnologia & Università di Verona, Genova, Italy" +4da4e58072c15904d4ce31076061ebd3ab1cdcd5,Learning deep facial expression features from image and optical flow sequences using 3D CNN,"School of Electronic and Information Engineering, Inner Mongolia University of Science and Technology, Baotou, People’s Republic of China" +75d7ba926ef1cc2adab6c5019afbb2f69a5ca27d,Face recognition under varying illumination,"Electronic Information Engineering College, Henan University of Science and Technology, Luoyang, China" +75d7ba926ef1cc2adab6c5019afbb2f69a5ca27d,Face recognition under varying illumination,"China Airborne Missile Academy, Luoyang, China" +758d481bbf24d12615b751fd9ec121500a648bce,Robust face identification using DTCWT and PCA subspace based sparse representation,"Department of Instrumentation and Control Engineering, PSG College of Technology, Coimbatore, India" +758d481bbf24d12615b751fd9ec121500a648bce,Robust face identification using DTCWT and PCA subspace based sparse representation,"Robert Bosch Engineering and Business Solutions Limited, Bangalore, India" +754626bd5fb06fee5e10962fdfeddd495513e84b,Facial expression pair matching,Elektronik ve Haberleşme Mühendisliği Bölümü +751fb994b2c553dc843774a5620bfcab8bc657fd,Data Mining Techniques for the Estimation of Variables in Health-Related Noisy Data,"Universidad de León, León, Spain" +81af86e3d343a40ce06a3927b6aa8c8853f6811a,MUSA: a banana database for ripening level determination,"Thiagarajar College of Engineering, Madurai, Tamilnadu, India" +81c21f4aafab39b7f5965829ec9e0f828d6a6182,Acquiring high-resolution face images in outdoor environments: A master-slave calibration algorithm,"Department of Mathematics and Computer Science, University of Cagliari, Italy" +81f101cea3c451754506bf1c7edf80a661fa4dd1,Exploiting sparsity and co-occurrence structure for action unit recognition,Yahoo! Research +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5,Histogram equalized deep PCA with ELM classification for expressive face recognition,"Department of Business Computer, Faculty of Management Science, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand" +728b1b2a86a7ffda402e7ec1a97cd1988dcde868,An Ontology Based Framework for Retrieval of Museum Artifacts,"Department of Electronics and Communication, University of Allahabadm Allahabad, India 211002" +72a3bb0fb490355a926c5a689e12268bff9ff842,Coding Facial Expression with Oriented Steerable Filters,"Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. xushuang@bit.edu.cn" +72a3bb0fb490355a926c5a689e12268bff9ff842,Coding Facial Expression with Oriented Steerable Filters,"Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. jiayunde@bit.edu.cn" +72a3bb0fb490355a926c5a689e12268bff9ff842,Coding Facial Expression with Oriented Steerable Filters,"Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. zhangxiaoxun@bit.edu.cn" +7234468db46b37e2027ab2978c67b48b8581f796,Mirrored non-maximum suppression for accurate object part localization,Center for Research on Intelligent Perception and Computing +4490b8d8ab2ac693c670751d4c2bff0a56d7393d,Cognitive Gravity Model Based Semi-Supervised Dimension Reduction,"Jiaxing University, Jiaxing, China" +44855e53801d09763c1fb5f90ab73e5c3758a728,Sentence Directed Video Object Codiscovery,"Baidu Research - Institute of Deep Learning, Sunnyvale, USA" +44834929e56f2a8f16844fde519039d647006216,Improving object detection by removing noisy samples from training sets,"National ICT Australia and UNSW, Sydney, Australia" +44b91268fbbf62e1d2ba1d5331ec7aedac30dbe8,Structured supervised dictionary learning based on class-specific and shared sub-dictionaries,"Shahid Bahonar University of Kerman Computer Engineering Department, Kerman, Iran" +2afde207bd6f2e5fa20f3cf81940b18cc14e7dbb,Grassmannian Regularized Structured Multi-View Embedding for Image Classification,"School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland" +2a2df7e790737a026434187f9605c4763ff71292,Towards nonuniform illumination face enhancement via adaptive contrast stretching,"Division Télécom, Centre de Développement des Technologies Avancées - CDTA, Algiers, Algeria" +2a2df7e790737a026434187f9605c4763ff71292,Towards nonuniform illumination face enhancement via adaptive contrast stretching,"Department of Computer System and Communication, Faculty of Information and Communication, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Malaysia" +2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,"Chinese University of Hong Kong, Hong Kong" +2f8ef56c1007a02cdc016219553479d6b7e097fb,Face Recognition Using Kernel Fisher Linear Discriminant Analysis and RBF Neural Network,"Department of Computer Science & Engineering, GCELT, Kolkata, India" +2f8ef56c1007a02cdc016219553479d6b7e097fb,Face Recognition Using Kernel Fisher Linear Discriminant Analysis and RBF Neural Network,"AICTE Emeritus Fellow,  " +2f17c0514bb71e0ca20780d71ea0d50ff0da4938,Photo search in a personal photo diary by drawing face position with people tagging,"Inha University, Incheon, South Korea" +43cbe3522f356fbf07b1ff0def73756391dc3454,Laplacian of smoothed image as representation for face recognition,"School of Computing and Electrical Engineering, IIT Mandi, H.P, 175001, India" +4344ba6e33faaa616d01248368e66799548ca48b,Unsupervised joint face alignment with gradient correlation coefficient,"ICA Laboratory, Grenoble, France" +4344ba6e33faaa616d01248368e66799548ca48b,Unsupervised joint face alignment with gradient correlation coefficient,"Gipsa-Lab, Saint Martin d’Heres, France" +43bb2b58f906262035ef61e41768375bc8d99ae3,An Approach for Automatic Pain Detection through Facial Expression,"Department of Computer Science & Engineering, Tripura University (A Central University), Suryamaninagar-799022, Tripura, India" +434f1442533754b3098afd4e24abf1e3792b24db,Over-the-shoulder shot detection in art films,"Film Department ELTE University, Budapest, Hungary" +43c3b6a564b284382fdf8ae33f974f4e7a89600e,An Integrated Signature-Based Framework for Efficient Visual Similarity Detection,"South Valley University, Qena, Egypt" +43c3b6a564b284382fdf8ae33f974f4e7a89600e,An Integrated Signature-Based Framework for Efficient Visual Similarity Detection,"University of Nottingham (Malaysia Campus), Malaysia" +4317856a1458baa427dc00e8ea505d2fc5f118ab,Regularizing face verification nets for pain intensity regression,"Dept. of Electrical & Computer Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA" +4317856a1458baa427dc00e8ea505d2fc5f118ab,Regularizing face verification nets for pain intensity regression,"Dept. of Radiation Oncology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA" +4317856a1458baa427dc00e8ea505d2fc5f118ab,Regularizing face verification nets for pain intensity regression,"Dept. of EE, UESTC, 2006 Xiyuan Ave, Chengdu, Sichuan 611731, China" +6ba6045e4b404c44f9b4dfce2d946019f0e85a72,Facial landmark detection based on an ensemble of local weighted regressors during real driving situation,"Dept. of Computer Engineering, Keimyung University, Daegu, Korea" +07dc9f3b34284cc915dea7575f40ef0c04338126,Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition,School of ComputingNational University of Singapore +0701b01bc99bf3b64050690ceadb58a8800e81ed,Facial expression recognition through modeling age-related spatial patterns,"Key Lab of Computing and Communication Software of Anhui Province School of Computer Science and Technology, University of Science and Technology of China Hefei, Anhui, People’s Republic of China" +0701b01bc99bf3b64050690ceadb58a8800e81ed,Facial expression recognition through modeling age-related spatial patterns,"Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute Troy, Troy, USA" +008528d5e27919ee95c311266041e4fb1711c254,User-adaptive image retrieval via fusing pointwise and pairwise labels,"Alibaba Group, Zhejiang, People’s Republic of China" +00d4c2db10f3a32d505d7b8adc7179e421443dec,Data driven adaptation for QoS aware embedded vision systems,"Computer Science and Engineering, Pennsylvania State University, PA, USA SiliconScapes, LLC, PA, USA" +003ba2001bd2614d309d6ec15e9e2cbe86db03a1,A novel post-nonlinear ICA-based reflectance model for 3D surface reconstruction,"Dept. of Inf. Network Technol., Hsiuping Inst. of Technol., Taichung, Taiwan" +00a38ebce124879738b04ffc1536018e75399193,Convolutional neural network for age classification from smart-phone based ocular images,"Dept. of Computer Science and Electrical Engineering, University of Missouri-Kansas City, MO, USA" +007fbc7a1d7eae33b2bb59b175dd1033e5e178f3,Enabling Live Video Analytics with a Scalable and Privacy-Aware Framework,"Intel Labs, Pittsburgh PA" +6e46d8aa63db3285417c8ebb65340b5045ca106f,Accelerating Machine Learning Inference with Probabilistic Predicates,"Microsoft &University of Washington, Redmond, WA, USA" +6e46d8aa63db3285417c8ebb65340b5045ca106f,Accelerating Machine Learning Inference with Probabilistic Predicates,"Princeton University &Microsoft, Princeton, NJ, USA" +6e46d8aa63db3285417c8ebb65340b5045ca106f,Accelerating Machine Learning Inference with Probabilistic Predicates,"Microsoft, Redmond, WA, USA" +6e9de9c3af3258dd18142e9bef2977b7ce153bd5,Computer Vision – ECCV 2016 Workshops,"Facebook AI Research (FAIR), Menlo Park, USA" +9a84588fe7e758cfbe7062686a648fab787fc32f,Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection,"Division of Digital Media Engineering, Sang-Myung University, Suwon, Republic of Korea" +36219a3196aac2bd149bc786f083957a6e6da125,Recognition of the gaze direction: Anchoring with the eyebrows,"The Image Processing and Analysis Laboratory (LAPI), University “Politehnica” of Bucharest, 313 Splaiul Independeţei, Bucharest, Romania" +36bb93c4f381adca267191811abb8cc7812363f9,Quick retrieval method of massive face images based on global feature and local feature fusion,"Shanghai University School of Communication and Information Engineering Shanghai, China" +5c91fc106cfe9d57a9b149c1af29ca84d403fc7e,3D Pose Tracking With Multitemplate Warping and SIFT Correspondences,"Department of Electrical Engineering and Computer Science, Colorado School of Mines, Golden, CO, USA" +5c526ee00ec0e80ba9678fee5134dae3f497ff08,Contrast compensation by fuzzy classification and image illumination analysis for back-lit and front-lit color face images,Department of mechatronic technology of National Taiwan Normal University +5c4f9260762a450892856b189df240f25b5ed333,Discriminative Elastic-Net Regularized Linear Regression,"Department of Information Engineering, Henan University of Science and Technology, Luoyang, China" +09903df21a38e069273b80e94c8c29324963a832,Human action and event recognition using a novel descriptor based on improved dense trajectories,"IIIT Chittoor, SriCity, Andhra Pradesh, India" +099053f2cbfa06c0141371b9f34e26970e316426,Effective recognition of facial micro-expressions with video motion magnification,"School of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, China" +099053f2cbfa06c0141371b9f34e26970e316426,Effective recognition of facial micro-expressions with video motion magnification,"Information Security Group, City University London, London, UK" +5d9971c6a9d5c56463ea186850b16f8969a58e67,Facial-expression recognition based on a low-dimensional temporal feature space,"Saudi Electronic University, Riyadh, Kingdom of Saudi Arabia" +5dd3c9ac3c6d826e17c5b378d1575b68d02432d7,A survey on soft Biometrics and their application in person recognition at a distance,"Dept. of Computer Science and Engineering, St. Joseph's College of Engineering and Technology, Palai, Kerala, India" +31ba9d0bfaa2a44bae039e5625eb580afd962892,Gender and gaze gesture recognition for human-computer interaction,"Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T Block, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK" +314c4c95694ff12b3419733db387476346969932,Adaptive Metric Learning with the Low Rank Constraint,"School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China" +915ff2bedfa0b73eded2e2e08b17f861c0e82a58,Automated facial expression recognition app development on smart phones using cloud computing,"Department of Electrical and Computer Engineering, Florida Institute of Technology, Melbourne, USA" +91e17338a12b5e570907e816bff296b13177971e,Towards open-set face recognition using hashing functions,"Smart Surveillance Interest Group, Department of Computer Science, Universidade Federal de Minas Gerais, Minas Gerais, Brazil" +65475ce4430fb524675ebab6bcb570dfa07e0041,Mapping method between image and natural sentence,"Department of Computer, the University of Suwon, Korea" +651cafb2620ab60a0e4f550c080231f20ae6d26e,4D unconstrained real-time face recognition using a commodity depth camera,"Singapore Polytechnic, 500 Dover Road, Singapore 139651" +6256b47342f080c62acd106095cf164df2be6020,FaceSimile: A mobile application for face image search based on interactive shape manipulation,"Google, Seattle, USA" +6256b47342f080c62acd106095cf164df2be6020,FaceSimile: A mobile application for face image search based on interactive shape manipulation,"Computer Sciences Department, University of Wisconsin, Madison, USA" +6256b47342f080c62acd106095cf164df2be6020,FaceSimile: A mobile application for face image search based on interactive shape manipulation,"Google, Mountain View, USA" +62750d78e819d745b9200b0c5c35fcae6fb9f404,Leveraging implicit demographic information for face recognition using a multi-expert system,"University of Salerno, Salerno, Italy" +628f9c1454b85ff528a60cd8e43ec7874cf17931,Automatic detection of very early stage of dementia through multimodal interaction with computer avatars,"Nara Institute of Science and Technology, Japan" +628f9c1454b85ff528a60cd8e43ec7874cf17931,Automatic detection of very early stage of dementia through multimodal interaction with computer avatars,"Osaka University Health Care Center, Japan" +96a8f115df9e2c938453282feb7d7b9fde6f4f95,Facial Expression Recognition in Video with Multiple Feature Fusion,"Department of Computer Science, Chu Hai College of Higher Education, Tsuen Wan, Hong Kong" +9652f154f4ae7807bdaff32d3222cc0c485a6762,An efficient and sparse approach for large scale human action recognition in videos,"Univ. La Rochelle, La Rochelle, France" +96e0b67f34208b85bd90aecffdb92bc5134befc8,Perturbation scheme for online learning of features: Incremental principal component analysis,"School of Computer and Systems Sciences, JawaharLal Nehru University, New Delhi 110067, India" +3a3e55cf5bfd689d6c922e082efa0cd71cd2ae5c,Face tracking with convolutional neural network heat-map,"Chonnam National University, Gwangju, Korea" +3a49507c46a2b8c6411809c81ac47b2b1d2282c3,Exploring joint encoding of multi-direction local binary patterns for image classification,"Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing, China" +3a6334953cd2775fab7a8e7b72ed63468c71dee7,Automated social skills training with audiovisual information,"Graduate School of Information Science, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma-shi, Nara, Japan" +3a0425c25beea6c4c546771adaf5d2ced4954e0d,Domain Adaptation in Computer Vision Applications,"Naver Labs Europe, Meylan, France" +5435d5f8b9f4def52ac84bee109320e64e58ab8f,Evaluating real-life performance of the state-of-the-art in facial expression recognition using a novel YouTube-based datasets,"Department of Computer Science, University of Science & Technology, Bannu, Pakistan" +5435d5f8b9f4def52ac84bee109320e64e58ab8f,Evaluating real-life performance of the state-of-the-art in facial expression recognition using a novel YouTube-based datasets,"Department of Computer Science, Innopolis University, Kazan, Russia" +54058859a2ddf4ecfc0fe7ccbea7bb5f29d9201d,Age Estimation by LS-SVM Regression on Facial Images,"IIT-Madras, Chennai, India" +548233d67f859491e50c5c343d7d77a7531d4221,Robust detection of outliers for projection-based face recognition methods,"Orange—France Telecom Division R&D—TECH/IRIS, Cesson Sévigné Cedex, France" +984edce0b961418d81203ec477b9bfa5a8197ba3,Customer and target individual face analysis for retail analytics,"Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand" +985bbe1d47b843fa0b974b4db91be23f218d1ce7,Intelligence Science I,"Machine Intelligence Research Institute, Rockville, USA" +985bbe1d47b843fa0b974b4db91be23f218d1ce7,Intelligence Science I,"Shanghai Maritime University, Shanghai, China" +5375a3344017d9502ebb4170325435de3da1fa16,Computer Vision – ACCV 2012,"Microsoft Research Asia, Beijing, P.R. China" +3f4711c315d156a972af37fe23642dc970a60acf,Pose invariant face recognition with 3D morphable model and neural network,"KT Future Technology Laboratory, Seoul, South Korea" +3ff418ac82df0b5c2f09f3571557e8a4b500a62c,Robust GPU-assisted camera tracking using free-form surface models,"Institute of Computer Science, Christian-Albrechts-Universität Kiel, Kiel, Germany" +3060ac37dec4633ef69e7bc63488548ab3511f61,A hybrid deep learning neural approach for emotion recognition from facial expressions for socially assistive robots,"School of Computing, Electronics and Mathematics, Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK" +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8,Facial expression recognition with enhanced feature extraction using graph fourier transform,"Department of Electrical Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India" +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8,Facial expression recognition with enhanced feature extraction using graph fourier transform,"Department of Electronics and Communication Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India" +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8,Facial expression recognition with enhanced feature extraction using graph fourier transform,"Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi, India" +30cace74a7d51e9a928287e25bcefb968c49f331,Monocular 3D facial information retrieval for automated facial expression analysis,"VUB-NPU Joint AVSP Research Lab, Vrije Universiteit Brussel (VUB), Deptartment of Electronics & Informatics (ETRO), Pleinlaan 2, 1050 Brussel, Belgium" +5e19d7307ea67799eb830d5ce971f893e2b8a9ca,Heteroscedastic Sparse Representation Based Classification for Face Recognition,"School of Mathematics and Information Technology, Nanjing Xiao Zhuang University, Nanjing, People’s Republic of China" +5e0b691e9e5812dd3cb120a8d77619a45aa8e4c4,Pose-indexed based multi-view method for face alignment,"Beijing Key Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing 100081, China" +378418fdd28f9022b02857ef7dbab6b0b9a02dbe,Intelligent Information and Database Systems,"Wrocław University of Science and Technology, Wrocław, Poland" +378418fdd28f9022b02857ef7dbab6b0b9a02dbe,Intelligent Information and Database Systems,"Quang Binh University, Dong Hoi City, Vietnam" +37866fea39deeff453802cde529dd9d32e0205a5,"Sense beauty via face, dressing, and/or voice","National Laboratory of Pattern Recognition, Beijing, China" +0831794eddcbac1f601dcb9be9d45531a56dbf7e,Learning correlations for human action recognition in videos,"Department of Mathematics and Computer Science, Gannan Normal University, Ganzhou, People’s Republic of China" +080e0efc3cf71260bfe9bdc62cd86614d1ebca46,Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction,"Centre for Secure Information Technologies, Queen’s University Belfast, Belfast, UK" +080e0efc3cf71260bfe9bdc62cd86614d1ebca46,Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction,"Departament d’Informàtica, Universitat de Valencia, Valencia, Spain" +08872d801f134e41753601e85971769b28314ca2,Recognizing Facial Expressions in the Orthogonal Complement of Principal Subspace,"Indian Statistical Insitute, Kolkata 700108" +08872d801f134e41753601e85971769b28314ca2,Recognizing Facial Expressions in the Orthogonal Complement of Principal Subspace,"Indian Statistical Institute, Kolkata 700108" +080ab68a898a3703feead145e2c38361ae84a0a8,Pairwise Costs in Semisupervised Discriminant Analysis for Face Recognition,"Department of Engineering and MaintenanceChina Mobile Group, Jiangsu Company, Ltd., Changzhou, China" +6dcf6b028a6042a9904628a3395520995b1d0ef9,Field support vector machines,"Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, P.R. China" +6d4c64ca6936f868d793e1b164ddaf19243c19a7,Scalable Linear Visual Feature Learning via Online Parallel Nonnegative Matrix Factorization,"University of Massachusetts at Amherst, Amherst, MA, USA" +013305c13cfabaea82c218b841dbe71e108d2b97,Incremental Clustering-Based Facial Feature Tracking Using Bayesian ART,"Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Malaysia" +016194dbcd538ab5a129ef1bcff3c6e073db63f9,"An insight into multimodal databases for social signal processing: acquisition, efforts, and directions","Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia" +06a799ad89a2a45aee685b9e892805e3e0251770,Learning Technology for Education in Cloud – The Changing Face of Education,"Staffordshire University , Staffordshire, United Kingdom" +06a799ad89a2a45aee685b9e892805e3e0251770,Learning Technology for Education in Cloud – The Changing Face of Education,"Universidad Tecnica Federico Santa Maria , Valparaiso, Chile" +06a799ad89a2a45aee685b9e892805e3e0251770,Learning Technology for Education in Cloud – The Changing Face of Education,"FernUniversität , Hagen, Germany" +060f67c8a0de8fee9c1732b63ab40627993f93d0,Computer Vision and Graphics,"Polish-Japanese Institute of Information Technology, Warsaw, Poland" +060f67c8a0de8fee9c1732b63ab40627993f93d0,Computer Vision and Graphics,"Faculty of Applied Informatics and Mathematics, Department of Informatics, Warsaw University of Life Sciences (SGGW), Warsaw, Poland" +060f67c8a0de8fee9c1732b63ab40627993f93d0,Computer Vision and Graphics,"Polish-Japanese Institute of Information Technology, Warszawa, Poland" +6ca6ade6c9acb833790b1b4e7ee8842a04c607f7,Deep Transfer Network for Unconstrained Face Verification,"Beijing Institute of Graphic Communication, Beijing" +6cb8c52bb421ce04898fa42cb997c04097ddd328,Computational Collective Intelligence. Technologies and Applications,"Institute of Informatics, Wroclaw University of Technology, Wroclaw, Poland" +6c0ad77af4c0850bd01bb118e175ecc313476f27,Extended multi-spectral face recognition across two different age groups: an empirical study,"Goa University, India" +6c0ad77af4c0850bd01bb118e175ecc313476f27,Extended multi-spectral face recognition across two different age groups: an empirical study,"NTNU, Norway" +6ca7a82ec1c51417c4f0b8eebddb53a73a3874b1,Interactive Facial Expression Reader and Extension to First Impression Improver,"Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan, +81 25 262 7499" +6ca7a82ec1c51417c4f0b8eebddb53a73a3874b1,Interactive Facial Expression Reader and Extension to First Impression Improver,"Dept. of Information Engineering, Faculty of Engineering, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan" +6ca7a82ec1c51417c4f0b8eebddb53a73a3874b1,Interactive Facial Expression Reader and Extension to First Impression Improver,"Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan" +3980dadd27933d99b2f576c3b36fe0d22ffc4746,A facial expression recognition method based on cubic spline interpolation and HOG features,"Department of Automation, North-China University of Technology, Beijing, China" +9944c451b4a487940d3fd8819080fe16d627892d,Human face shape analysis under spherical harmonics illumination considering self occlusion,Department of Mathematics and Computer Science University of Basel +997b9ffe2f752ba84a66730cfd320d040e7ba2e2,Exploiting Objects with LSTMs for Video Categorization,"NTT Media Intelligence Laboratories, Tokyo, Japan" +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,A Proposal to Improve the Authentication Process in m-Health Environments,"Department of Research and Diagnostic Methods, Faculty of Education, Pontificia University of Salamanca, Salamanca, Spain" +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,A Proposal to Improve the Authentication Process in m-Health Environments,"Department of Computer Science and Engineering of Systems, University of Zaragoza, Escuela Universitaria Politécnica de Teruel, Teruel, Spain" +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,A Proposal to Improve the Authentication Process in m-Health Environments,"Department of Computer Science, Madrid Open University, Madrid, Spain" +992e4119d885f866cb715f4fbf0250449ce0db05,Glasses detection on real images based on robust alignment,"Fundación CTIC (Technological Center), Technological Scientific Park of Gijón, Gijón, Spain" +992e4119d885f866cb715f4fbf0250449ce0db05,Glasses detection on real images based on robust alignment,"Department of Computer Science and Engineering, University of Oviedo, Gijón, Spain" +992e4119d885f866cb715f4fbf0250449ce0db05,Glasses detection on real images based on robust alignment,"Treelogic, Technological Scientific Park of Asturias, Llanera, Spain" +5278b7a6f1178bf5f90cd3388908925edff5ad46,3D object retrieval based on histogram of local orientation using one-shot score support vector machine,"Computer Vision Research Laboratory, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran" +52af7625f7e7a0bd9f9d8eeafd631c4d431e67e7,Fast facial expression recognition using local binary features and shallow neural networks,"Department of Electrical Engineering, Computer Vision Laboratory, Linköping University, Linköping, Sweden" +522a4ca705c06a0436bbe62f46efe24d67a82422,Robust and efficient face recognition via low-rank supported extreme learning machine,"School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China" +522a4ca705c06a0436bbe62f46efe24d67a82422,Robust and efficient face recognition via low-rank supported extreme learning machine,"School of Software, Henan University, Kaifeng, China" +526c79c6ce39882310b814b7918449d48662e2a9,Facial expression analysis under partial occlusion,"Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece" +524f6dc7441a3899ea8eb5d3e0d5d70e50ba566a,Exploiting the Use of Ensemble Classifiers to Enhance the Precision of User's Emotion Classification,"Institute of Mathematical and Computer Sciences, University of Sao Paulo, Sao Paulo, Brazil" +524f6dc7441a3899ea8eb5d3e0d5d70e50ba566a,Exploiting the Use of Ensemble Classifiers to Enhance the Precision of User's Emotion Classification,University of Sao Paulo +55c46ae1154ed310610bdf5f6d9e7023d14c7eb4,Adaptive multimodal recognition of voluntary and involuntary gestures of people with motor disabilities,"Pennsylvania State University, University Park, PA" +55432723c728a2ce90d817e9e9877ae9fbad6fe5,"Performance of SVM, CNN, and ANN with BoW, HOG, and Image Pixels in Face Recognition","Department of Electronics and Communication Engineering, Faculty of Electrical & Electronic Engineering, Khulna University of Engineering & Technology, Bangladesh" +552122432b92129d7e7059ef40dc5f6045f422b5,Empowering Simple Binary Classifiers for Image Set Based Face Recognition,"Data61, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, Australia" +55266ddbe9d5366e8cd1b0b645971cad6d12157a,Face recognition classifier based on dimension reduction in deep learning properties,"Elektronik ve Haberleşme Mühendisliği Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Türkiye" +55aafdef9d9798611ade1a387d1e4689f2975e51,Hallucinating Compressed Face Images,"Electrical Engineering and Computer Science, School of Engineering, University of California at Merced, Merced, USA" +972e044f69443dfc5c987e29250b2b88a6d2f986,Face model fitting with learned displacement experts and multi-band images,"Technische Universität München, München, Germany" +97c59db934ff85c60c460a4591106682b5ab9caa,Extremely dense face registration: Comparing automatic landmarking algorithms for general and ethno-gender models,"ICT Center, CSIRO" +9790ec6042fb2665c7d9369bf28566b0ce75a936,Towards More Robust Automatic Facial Expression Recognition in Smart Environments,"Department Informatik, Hamburg University of Applied Sciences, Engineering and Computing, University of the West of Scotland" +9790ec6042fb2665c7d9369bf28566b0ce75a936,Towards More Robust Automatic Facial Expression Recognition in Smart Environments,"Department Informatik, Hamburg University of Applied Sciences, Hamburg, Germany" +9790ec6042fb2665c7d9369bf28566b0ce75a936,Towards More Robust Automatic Facial Expression Recognition in Smart Environments,"Computer Science Department, Central Washington University (CWU)" +9790ec6042fb2665c7d9369bf28566b0ce75a936,Towards More Robust Automatic Facial Expression Recognition in Smart Environments,"School of Engineering and Computing, University of the West of Scotland" +9790ec6042fb2665c7d9369bf28566b0ce75a936,Towards More Robust Automatic Facial Expression Recognition in Smart Environments,"Innovations Kontakt Stelle (IKS) Hamburg, Hamburg University of Applied Sciences" +97c1f68fb7162af326cd0f1bc546908218ec5da6,Supervised-learning based face hallucination for enhancing face recognition,"Dept. of Electrical Engineering, National Tsing-Hua University, Taiwan" +97c1f68fb7162af326cd0f1bc546908218ec5da6,Supervised-learning based face hallucination for enhancing face recognition,Department of Electronic Engineering Shanghai Jiao Tong University +63fd7a159e58add133b9c71c4b1b37b899dd646f,Exemplar-Based Human Action Pose Correction,"Department of Cognitive Science, University of California, San Diego, CA, USA" +637b31157386efbde61505365c0720545248fbae,Deep learning with time-frequency representation for pulse estimation from facial videos,"Utechzone Co. Ltd., New Taipei City, Taiwan 235" +636b8ffc09b1b23ff714ac8350bb35635e49fa3c,Pruning training sets for learning of object categories,"Dept. of Comput. Sci., California Inst. of Technol., Pasadena, CA, USA" +6359fcb0b4546979c54818df8271debc0d653257,Fusing magnitude and phase features with multiple face models for robust face recognition,"Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology (ICT), CAS, Beijing, China" +6345c0062885b82ccb760c738a9ab7fdce8cd577,Pain detection from facial images using unsupervised feature learning approach,"Integrated Circuits and Electronics Laboratory, Department of Engineering, Aarhus University, Denmark" +0f7e9199dad3237159e985e430dd2bf619ef2db5,Learning Social Circles in Ego-Networks Based on Multi-View Network Structure,"EECS Department, University of Kansas, Lawrence, KS" +0aebe97a92f590bdf21cdadfddec8061c682cdb2,Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification,"Adobe Research Department, Adobe Systems Inc, San Jose, CA" +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39,Unsupervised multi-manifold linear differential projection(UMLDP) for face recognition,"School of Technology, Nanjing Audit University, Nanjing, China" +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39,Unsupervised multi-manifold linear differential projection(UMLDP) for face recognition,"Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Fuzhou, China" +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39,Unsupervised multi-manifold linear differential projection(UMLDP) for face recognition,"School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing, China" +0a0b9a9ff827065e4ff11022b0e417ddf1d3734e,Fusing active orientation models and mid-term audio features for automatic depression estimation,"Computational Intelligence Lab, Institute of Informatics and Telecommunications, NCSR Demokritos, Athens, Greece" +0aaf785d7f21d2b5ad582b456896495d30b0a4e2,A Face Recognition Application for People with Visual Impairments: Understanding Use Beyond the Lab,"Cornell University & Facebook Inc., New York, NY, USA" +0aaf785d7f21d2b5ad582b456896495d30b0a4e2,A Face Recognition Application for People with Visual Impairments: Understanding Use Beyond the Lab,"Facebook Inc., Menlo Park, CA, USA" +6486b36c6f7fd7675257d26e896223a02a1881d9,Selective Review and Analysis of Aging Effects in Biometric System Implementation,"Computer Engineering Department, Girne American University, Kyrenia, Cyprus 90" +6486b36c6f7fd7675257d26e896223a02a1881d9,Selective Review and Analysis of Aging Effects in Biometric System Implementation,"Departamento de Informtica e Matemtica Aplicada/University of Rio Grande do Norte, Natal, Brazil" +645f09f4bc2e6a13663564ee9032ca16e35fc52d,Interactive Demonstration of Probabilistic Predicates,"University of Washington &Microsoft, Seattle, WA, USA" +9048732c8591a92a1f4f589b520a733f07578f80,Improved CNN-based facial landmarks tracking via ridge regression at 150 Fps on mobile devices,Tencent Inc +9055b155cbabdce3b98e16e5ac9c0edf00f9552f,MORPH: a longitudinal image database of normal adult age-progression,"Dept. of Comput. Sci., North Carolina Univ., Wilmington, NC, USA" +90ae02da16b750a9fd43f8a38440f848309c2fe0,A review of facial gender recognition,"Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia" +bf4f79fd31493648d80d0a4a8da5edeeaba74055,Adaptive Message Update for Fast Affinity Propagation,"NTT Software Innovation Center, Tokyo, Japan" +bf4f79fd31493648d80d0a4a8da5edeeaba74055,Adaptive Message Update for Fast Affinity Propagation,"NTT Service Evolution Laboratories, Kanagawa, Japan" +bf2eb77e9b795a4a0a38ed4b1c8dd4b2c9a74317,Two-Stream Convolutional Network with Multi-level Feature Fusion for Categorization of Human Action from Videos,"Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India" +bf1ebcaad91c2c0ed35544159415b3ad388cc7a9,Cultural-based visual expression: emotional analysis of human face via Peking Opera Painted Faces (POPF),"Department of Design, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK" +bf1ebcaad91c2c0ed35544159415b3ad388cc7a9,Cultural-based visual expression: emotional analysis of human face via Peking Opera Painted Faces (POPF),"Department of Arts and Humanities, College of Business, Arts and Social Sciences, Brunel University London, Uxbridge, UK" +d4353952a408e1eae8c27a45cc358976d38dde00,Features classification using geometrical deformation feature vector of support vector machine and active appearance algorithm for automatic facial expression recognition,"MNIT, Jaipur, India" +d4353952a408e1eae8c27a45cc358976d38dde00,Features classification using geometrical deformation feature vector of support vector machine and active appearance algorithm for automatic facial expression recognition,"CEERI, Pilani, India" +d4453ec649dbde752e74da8ab0984c6f15cc6e06,An augmented image gradients based supervised regression technique for iris center localization,"Biomedical Instrumentation (V-02), CSIR-Central Scientific Instruments Organisation (CSIO)|, Chandigarh, India" +d4453ec649dbde752e74da8ab0984c6f15cc6e06,An augmented image gradients based supervised regression technique for iris center localization,"Department of ECE, PEC University of Technology, Chandigarh, India" +d4b4020e289c095ce2c2941685c6cd37667f5cc9,Facial expression recognition,"Dept. of Electronics and Telecommunication Engg., KCT's Late G.N. Sapkal college of Engineering, Nashik, India" +bab2f4949a38a712a78aafbc0a3c392227c65f56,Eye detection using gradient histogram matching for cornea localization in refractive eye surgery,"Dept. of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan City, Taiwan" +a07f78124f83eef1ed3a6f54ba982664ae7ca82a,Tensor based robust color face recognition,"Dept. of Computing, Curtin University GPO Box U1987, Perth, WA 6845" +a094e52771baabe4ab37ef7853f9a4f534227457,Estimation of Driver Head Yaw Angle Using a Generic Geometric Model,"Amrita E-Learning Research Laboratory and the Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India" +a094e52771baabe4ab37ef7853f9a4f534227457,Estimation of Driver Head Yaw Angle Using a Generic Geometric Model,"Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India" +a0f6196d27a39cde2dbf62c08d89cbe489600bb0,Development of two novel face-recognition CAPTCHAs: A security and usability study,"Department of Management Information Systems, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany" +a76e57c1b2e385b68ffdf7609802d71244804c1d,Improving retail efficiency through sensing technologies: A survey,"Grupo de Aplicacion de Telecomunicaciones Visuales, Universidad Politecnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain" +a78b5495a4223b9784cc53670cc10b6f0beefd32,Time-varying LSTM networks for action recognition,"Nanjing University of Posts and Telecommunications, Nanjing, China" +a78b5495a4223b9784cc53670cc10b6f0beefd32,Time-varying LSTM networks for action recognition,"Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing, China" +a735c6330430c0ff0752d117c54281b1396b16bf,Automatic location of facial landmarks for plastic surgery procedures,"Clínica Otocenter, Teresina, Piauí, Brasil" +a73405038fdc0d8bf986539ef755a80ebd341e97,Conditional High-Order Boltzmann Machines for Supervised Relation Learning,"Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China" +b85d0aef3ee2883daca2835a469f5756917e76b7,Semantic movie summarization based on string of IE-RoleNets,"Key Laboratory of Medical Image Computing (Northeastern University), Ministry of Education, Shenyang, China" +b856d8d6bff745bb1b4beb67e4b821fc20073840,Joint dimensionality reduction for face recognition based on D-KSVD,"Research&Advanced Technology Division of SAIC Motor Corporation Limited, Shanghai 201804, P.R China" +b84dde74dddf6a3281a0b22c68999942d2722919,A New Approach of Facial Expression Recognition for Ambient Assisted Living,"LIARA Laboratory, University of Quebec at Chicoutimi (UQAC), Boulevard de l'Université, Chicoutimi (Quebec), Canada" +b85d953de16eecaecccaa8fad4081bd6abda9b1b,Something to sink your teeth into: The presence of teeth augments ERPs to mouth expressions,"Indiana University-Bloomington, USA" +b1f4423c227fa37b9680787be38857069247a307,"Collecting Large, Richly Annotated Facial-Expression Databases from Movies",Commonwealth Scientific and Industrial Research Organization (CSIRO) +b1891010a0722117c57e98809e1f2b26cd8e9ee3,Analyzing the cross-generalization ability of a hybrid genetic & evolutionary application for multibiometric feature weighting and selection,"NC A&T State University, Greensboro, NC, USA" +b1efefcc9a5d30be90776571a6cc0071f3679753,BRoPH: A compact and efficient binary 3D feature descriptor,"Research Institution of Intelligent Control and Testing, Graduate School of Tsinghua University at Shenzhen, 518055, China" +b1534888673e6119f324082246016d28eba249aa,Saliency-based navigation in omnidirectional image,"IRISA, University of Rennes 1" +dd031dbf634103ff3c58ce87aa74ec6921b2e21d,3D emotional facial animation synthesis with factored conditional Restricted Boltzmann Machines,"NPU-VUB Joint AVSP Research Lab, School of Computer Science, Northwestern Polytechnical University (NPU) Shaanxi Key Lab on Speech and Image Information Processing, 127 Youyi Xilu, Xi'an 710072, China" +dd031dbf634103ff3c58ce87aa74ec6921b2e21d,3D emotional facial animation synthesis with factored conditional Restricted Boltzmann Machines,"NPU-VUB Joint AVSP Research Lab, Vrije Universitiet Brussel (VUB), Department of Electronics & Informatics (ETRO) Pleinlaan 2, 1050 Brussel, Belgium" +ddd9d7cb809589b701fba9f326d7cf998a63b14f,What Can We Learn about Motion Videos from Still Images?,"School of Computer Science and Technology, Tianjin University&Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China" +dc84d3f29c52e6d296b5d457962c02074aa75d0f,Relative Forest for Visual Attribute Prediction,"360 AI Institute, Beijing, China" +dc34ab49d378ddcf6c8e2dbf5472784c5bfa8006,Image Representation Using Supervised and Unsupervised Learning Methods on Complex Domain,"Dept. of Computer Science and Information Engineering, Providence University, Taichung, Taiwan" +dca2bb023b076de1ccd0c6b8d71faeb3fccb3978,Joint Estimation of Age and Expression by Combining Scattering and Convolutional Networks,"Academia Sinica, Taipei, Taiwan" +b6bb883dd14f2737d0d6225cf4acbf050d307634,“A Leopard Cannot Change Its Spots”: Improving Face Recognition Using 3D-Based Caricatures,"Department of Computer Science, Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal" +b6259115b819424de53bb92f64cc459dcb649f31,Learning Feature Representation for Face Verification,"Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, South Korea" +b6ac33d2c470077fa8dcbfe9b113beccfbd739f8,Cross-modal alignment for wildlife recognition,"KU Leuven, Leuven, Belgium" +a96c45ed3a44ad79a72499be238264ae38857988,Encouraging second-order consistency for multiple graph matching,"Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea" +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4,A novel spontaneous facial expression recognition using dynamically weighted majority voting based ensemble classifier,"School of Information and Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Korea" +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4,A novel spontaneous facial expression recognition using dynamically weighted majority voting based ensemble classifier,"Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia" +d5d5cc27ca519d1300e77e3c1a535a089f52f646,Stratified pooling based deep convolutional neural networks for human action recognition,"School of Information, Hunan University of Humanities, Science and Technology, Loudi, China" +d5d5cc27ca519d1300e77e3c1a535a089f52f646,Stratified pooling based deep convolutional neural networks for human action recognition,"Fujian Key Laboratory of the Brain-like Intelligent Systems, Xiamen, China" +d5d5cc27ca519d1300e77e3c1a535a089f52f646,Stratified pooling based deep convolutional neural networks for human action recognition,"Computer Engineering College, Jimei University, Xiamen, China" +d5dc78eae7a3cb5c953c89376e06531d39b34836,High-speed face recognition using self-adaptive radial basis function neural networks,"Department of Information Technology, Netaji Subhas Engineering College, Kolkata, India" +d2598c088b0664c084413796f39697c6f821d56e,Cross-modal face matching: Tackling visual abstraction using fine-grained attributes,"School of Information and Communication Engineering, Beijing University of Posts and Telcommunications, Beijing, China" +d2b3166b8a6a3e6e7bc116257e718e4fe94a0638,An unsupervised approach to learn the kernel functions: from global influence to local similarity,"Computer Vision Research Group, School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia" +aad4c94fd55d33a3f3a5377bbe441c9474cdbd1e,A low rank model based improved eye detection under spectacles,"Dept. of Electrical Engineering, National Institute of Technology, Rourkela, India 769008" +aad6fc5bd7631d2e68b7a5a01ac5d578899c43e5,Multi-scale primal feature based facial expression modeling and identification,"Dept. of Comput. Sci., New York State Univ., Binghamton, NY, USA" +aad7b12936e0ced60bc0be95e8670b60b5d5ce20,Face identification using affine simulated dense local descriptors,"Department of Computer Science and Engineering, POSTECH, Pohang 790-784, Republic of Korea" +af29ad70ab148c83e1faa8b3098396bc1cd87790,Unconstrained face detection: a Deep learning and Machine learning combined approach,"Department of Computer Science, Solapur University, Solapur, India" +af8e22ef8c405f9cc9ad26314cb7a9e7d3d4eec2,A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering,"Electrical-Electronics Engineering Department, Izmir University of Economics, Balcova, Turkey" +af97e792827438ddea1d5900960571939fc0533e,Face recognition under variable lighting using the mean-field method and the gray-level pyramid,"Dept. of Electron. & Inf., Toyota Technol. Inst., Nagoya, Japan" +b712f08f819b925ff7587b6c09a8855bc295d795,Independent Component Analysis Using Semi-Parametric Density Estimation Via Entropy Maximization,"Dept. of EMPH, Icahn School of Medicine at Mount Sinai, New York, NY 10029" +b75eecc879da38138bf3ace9195ae1613fb6e3cc,Improvement in Detection of Wrong-Patient Errors When Radiologists Include Patient Photographs in Their Interpretation of Portable Chest Radiographs,"Department of Radiology and Imaging Sciences, Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA" +b75eecc879da38138bf3ace9195ae1613fb6e3cc,Improvement in Detection of Wrong-Patient Errors When Radiologists Include Patient Photographs in Their Interpretation of Portable Chest Radiographs,"Emory University School of Medicine, Atlanta, USA" +b7ec41005ce4384e76e3be854ecccd564d2f89fb,Granular Computing and Sequential Analysis of Deep Embeddings in Fast Still-to-Video Face Recognition,"National Research University Higher School of Economics, Laboratory of Algorithms and Technologies for Network Analysis, Nizhny Novgorod, Russia" +dba7d8c4d2fca41269a2c96b1ea594e2d0b9bdda,Largest Matching Areas for Illumination and Occlusion Robust Face Recognition,"School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, U.K." +dbcfefa92edab8d1ffe8bc1cc66ad80fb13d2b6a,Feature extraction using maximum variance sparse mapping,"College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China" +dbcfefa92edab8d1ffe8bc1cc66ad80fb13d2b6a,Feature extraction using maximum variance sparse mapping,"Key Lab Complex System & Intelligence Science, Institute of Automation, Chinese Academy of Science, Beijing, China" +dbc3ab8c9f564f038e7779b87900c4a0426f3dd1,Eye localization for face matching: is it always useful and under what conditions?,"Philips Research Eindhoven, Eindhoven, Netherlands" +dbc3ab8c9f564f038e7779b87900c4a0426f3dd1,Eye localization for face matching: is it always useful and under what conditions?,"Philips Applied Technologies, Eindhoven, Netherlands" +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab,Trends and Controversies,Research and Academic Computer Network (NASK) +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab,Trends and Controversies,Biometric and Imaging Processing Laboratory (BIPLab) +a88ced67f4ed7940c76b666e1c9c0f08b59f9cf8,Towards view-invariant expression analysis using analytic shape manifolds,"Center for Automation Research, UMIACS University of Maryland, College Park, MD 20742" +a8fd23934e5039bb818b8d1c47ccb540ce2c253c,Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification,"Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China" +dec76940896a41a8a7b6e9684df326b23737cd5d,Seeing through the expression: Bridging the gap between expression and emotion recognition,"Dept. of Comput. Sci. & Info. Eng., National Yunlin Univ. of Science & Technology, Taiwan" +b0b944b3a783c2d9f12637b471fe1efb44deb52b,Offering Verified Credentials in Massive Open Online Courses: MOOCs and technology to advance learning and learning research (Ubiquity symposium),Stanford University and Coursera +b0b944b3a783c2d9f12637b471fe1efb44deb52b,Offering Verified Credentials in Massive Open Online Courses: MOOCs and technology to advance learning and learning research (Ubiquity symposium),Coursera and Stanford University +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5,A new facial age estimation method using centrally overlapped block based local texture features,"Department of Computer Technologies, Trabzon Vocational School, Karadeniz Technical University, Trabzon, Turkey" +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5,A new facial age estimation method using centrally overlapped block based local texture features,"Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey" +a6e75b4ccc793a58ef0f6dbe990633f7658c7241,Boosting Hankel matrices for face emotion recognition and pain detection,"DICGIM, Universitá degli Studi di Palermo, V.le delle Scienze, Ed. 6, 90128 Palermo, Italy" +a6902db7972a7631d186bbf59c5ef116c205b1e8,Photo clip art,Microsoft Research Cambridge +b944cc4241d195b1609a7a9d87fce0e9ba1498bc,Kernel Sparse Representation-Based Classifier,"Department of Information Management, Yuan Ze University, Taoyuan, China" +b999364980e4c21d9c22cc5a9f14501432999ca4,Human action recognition in videos with articulated pose information by deep networks,"Vision Laboratory, LARSyS, University of the Algarve, Faro, Portugal" +b9dc8cc479cacda1f23b91df00eb03f88cc0c260,Event Specific Multimodal Pattern Mining for Knowledge Base Construction,"Columbia Univeristy, New York, NY, USA" +b961e512242ddad7712855ab00b4d37723376e5d,A real-time framework for eye detection and tracking,"Department of Computer Science, University of Western Ontario, London, Canada" +a13a27e65c88b6cb4a414fd4f6bca780751a59db,Deep convolution neural network with stacks of multi-scale convolutional layer block using triplet of faces for face recognition in the wild,"Department of Creative IT Engineering, POSTECH, Pohang, South Korea, 37673" +a13a27e65c88b6cb4a414fd4f6bca780751a59db,Deep convolution neural network with stacks of multi-scale convolutional layer block using triplet of faces for face recognition in the wild,"Department of Computer Science & Engineering, POSTECH, Pohang, Sourth Korea, 37673" +a11ce3c9b78bf3f868b1467b620219ff651fe125,Semi-supervised Identification of Rarely Appearing Persons in Video by Correcting Weak Labels,"University of Applied Sciences Jena, Jena, Germany" +a11ce3c9b78bf3f868b1467b620219ff651fe125,Semi-supervised Identification of Rarely Appearing Persons in Video by Correcting Weak Labels,"German National Library of Science and Technology & Leibniz Universität Hannover, Hannover, Germany" +efc78a7d95b14abacdfde5c78007eabf9a21689c,Subjectively Interesting Component Analysis: Data Projections that Contrast with Prior Expectations,"Ghent University, Ghent, Belgium" +ef35c30529df914a6975af62aca1b9428f678e9f,Smile detection in the wild with deep convolutional neural networks,"PolyU Shenzhen Research Institute, Shenzhen, China" +ef35c30529df914a6975af62aca1b9428f678e9f,Smile detection in the wild with deep convolutional neural networks,"Department of Computer Science, Chu Hai College of Higher Education, Tuen Mun, Hong Kong" +c38b1fa00f1f370c029984c55d4d2d40b529d00c,Neural Information Processing,"University of Istanbul, Istanbul, Turkey" +c38b1fa00f1f370c029984c55d4d2d40b529d00c,Neural Information Processing,"University at Qatar, Doha, Qatar" +c38b1fa00f1f370c029984c55d4d2d40b529d00c,Neural Information Processing,"Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia" +c38b1fa00f1f370c029984c55d4d2d40b529d00c,Neural Information Processing,"University of Science Technology, Wuhan, China" +c3e53788370341afe426f2216bed452cbbdaf117,A crowd sourced framework for neighbour assisted medical emergency system,"School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand" +c4b00e86841db3fced2a5d8ac65f80d0d3bbe352,A multi-view approach on modular PCA for illumination and pose invariant face recognition,"Dept. of Electr. & Comput. Eng., Old Dominion Univ., Norfolk, VA, USA" +c4e2d5ebfebbb9dcee6a9866c3d6290481496df5,Adaptive linear discriminant analysis for online feature extraction,"Queen’s University, Kingston, Canada" +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae,An optimization of the K-Nearest Neighbor using Dynamic Time Warping as a measurement similarity for facial expressions recognition,"LRIT, CNRST (URAC29), Mohammed V University of Rabat, Morocco" +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae,An optimization of the K-Nearest Neighbor using Dynamic Time Warping as a measurement similarity for facial expressions recognition,"IRDA Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, CNRST (URAC29), Mohammed V University of Rabat, Morocco" +c459014131cbcd85f5bd5c0a89115b5cc1512be9,Face recognition in the presence of expression and/or illumination variation,"Inf. Syst. Dept., Buckingham Univ., UK" +ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,Age group classification in the wild with deep RoR architecture,"North China Electric Power University Department of Electronic and Communication Engineering Baoding, Hebei, China" +ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,Age group classification in the wild with deep RoR architecture,"University of Missouri Department of Electrical and Computer Engineering Columbia, MO, USA" +eac97959f2fcd882e8236c5dd6035870878eb36b,Adaptive ranking of facial attractiveness,"Department of Computer Science and Engineering, University of Califonia, San Diego" +ea1303f6746f815b7518c82c9c4d4a00cd6328b9,Spontaneous Expression Recognition Using Universal Attribute Model,"Department of Computer Science and Engineering, Visual Learning and Intelligence Group, IIT Hyderabad, Hyderabad, India" +ea5c9d5438cde6d907431c28c2f1f35e02b64b33,Robust principal component analysis via feature self-representation,"School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China" +e1d1540a718bb7a933e21339f1a2d90660af7353,Discriminative Probabilistic Latent Semantic Analysis with Application to Single Sample Face Recognition,"College of Arts and Sciences, Shanxi Agricultural University, Shanxi, China" +e14b046a564604508ea8e3369e7e9f612e148511,Facial Expression Recognition on Hexagonal Structure Using LBP-Based Histogram Variances,"Video Surveillance Laboratory, Guizhou University for Nationalities, Guiyang, China" +e14b046a564604508ea8e3369e7e9f612e148511,Facial Expression Recognition on Hexagonal Structure Using LBP-Based Histogram Variances,"Centre for Innovation in IT Services and Applications (iNEXT), University of Technology, Sydney, Australia" +e14cc2715b806288fe457d88c1ad07ef55c65318,A Deep Feature based Multi-kernel Learning Approach for Video Emotion Recognition,"City University of New York, New York, NY, USA" +e198a7b9e61dd19c620e454aaa81ae8f7377ade0,A hierarchical approach to facial aging,"Face Aging Group, Computer Science Department, UNCW, USA" +cdf2c8752f1070b0385a94c7bf22e8b54cac521b,An Innovative Weighted 2DLDA Approach for Face Recognition,"Faculty of Electronic Information and Electrical Engineering, Dalian University, Dalian, China" +cdf2c8752f1070b0385a94c7bf22e8b54cac521b,An Innovative Weighted 2DLDA Approach for Face Recognition,"YiLi Normal College, Yining, China" +cd63759842a56bd2ede3999f6e11a74ccbec318b,Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression,"Hebei University of Technology, School of Science, Tianjin, P. R. China" +cd74d606e76ecddee75279679d9770cdc0b49861,Transfer Learning of Structured Representation for Face Recognition,"Department of Mathematics, JiaYing University, Meizhou, China" +ccca2263786429b1b3572886ce6a2bea8f0dfb26,Improved nuisance attribute projection for face recognition,"Department of Electro-Optics Engineering, Ben-Gurion University, Beer Sheva, Israel" +ccca2263786429b1b3572886ce6a2bea8f0dfb26,Improved nuisance attribute projection for face recognition,"Technology Section, Israel National Police, Jerusalem, Israel" +cccd0edb5dafb3a160179a60f75fd8c835c0be82,Extraction of texture and geometrical features from informative facial regions for sign language recognition,"Department of Electronics and Electrical Engineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India" +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4,Physiological parameter monitoring of drivers based on video data and independent vector analysis,University of British Columbia Department of Electrical and Computer Engineering +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4,Physiological parameter monitoring of drivers based on video data and independent vector analysis,Nanyang Technological University School of Computer Engineering +cceec87bad847b9b87178bde8ce5cce6bf1a8e99,Robust face recognition via transfer learning for robot partner,"Graduate School of System Design Tokyo Metropolitan University Tokyo, Japan" +e6f3707a75d760c8590292b54bc8a48582da2cd4,Lighting estimation of a convex Lambertian object using weighted spherical harmonic frames,"College of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, P.R. China" +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e,Discriminative face recognition via kernel sparse representation,"Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi’an, China" +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e,Discriminative face recognition via kernel sparse representation,"Engineering Laboratory of Teaching Information Technology of Shaanxi Province, Xi’an, China" +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e,Discriminative face recognition via kernel sparse representation,"School of Computer Science, Shaanxi Normal University, Xi’an, China" +f0b4f5104571020206b2d5e606c4d70f496983f9,Lattice computing (LC) meta-representation for pattern classification,"Department of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Human Machines Interaction (HMI) Laboratory, 65404 Kavala, Greece" +f7ae38a073be7c9cd1b92359131b9c8374579b13,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,"Department of Medical Biophysics, University of Western Ontario, London, ON, Canada" +f7ae38a073be7c9cd1b92359131b9c8374579b13,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,"Departments of Medical Imaging and Medical Biophysics, University of Western Ontario, London, ON, Canada" +e82a0976db908e6f074b926f58223ac685533c65,Audiovisual synchrony assessment for replay attack detection in talking face biometrics,"Telecom Division, Centre de Développement des Technologies Avancées, Algiers, Algeria" +faa46ef96493b04694555738100d9f983915cf9b,"Expression invariant face recognition using semidecimated DWT, Patch-LDSMT, feature and score level fusion","Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India" +ff82825a04a654ca70e6d460c8d88080ee4a7fcc,"Face Recognition in Surveillance Conditions with Bag-of-words, using Unsupervised Domain Adaptation","Dept. of CS&E, IIT Madras, India" +ff9e042cccbed7e350a25b7d806cd17fb79dfdf9,Band-pass correlation filter for illumination- and noise-tolerant face recognition,"Department of Electrical Engineering, Future Institute of Engineering and Management, Kolkata, India" +ff9e042cccbed7e350a25b7d806cd17fb79dfdf9,Band-pass correlation filter for illumination- and noise-tolerant face recognition,"Department of Applied Optics and Photonics, University of Calcutta, Kolkata, India" +fff31548617f208cd5ae5c32917afd48abc4ff6a,Mobile situated analytics of ego-centric network data,FX Palo Alto Laboratory +ff402bd06c9c4e94aa47ad80ccc4455efa869af3,ICA filters for lighting invariant face recognition,"Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada" +ff8db3810f927506f3aa594d66d5e8658f3cf4d5,Visual Descriptors in Methods for Video Hyperlinking,"Charles University, Prague, Czech Rep" +ff8db3810f927506f3aa594d66d5e8658f3cf4d5,Visual Descriptors in Methods for Video Hyperlinking,"Masaryk University, Brno, Czech Rep" +ffb1cb0f9fd65247f02c92cfcb152590a5d68741,Complexity reduction of kernel discriminant analysis,"Department of Electronics Engineering, Mokpo National University, Republic of Korea" +c5c53d42e551f3c8f6ca2c13335af80a882009fa,Group Collaborative Representation for Image Set Classification,"College of Information Science and Technology, Agricultural University of Hebei, Baoding, China" +c5c53d42e551f3c8f6ca2c13335af80a882009fa,Group Collaborative Representation for Image Set Classification,"International Computer Science Institute, University of California at Berkeley, Berkeley, USA" +c5c53d42e551f3c8f6ca2c13335af80a882009fa,Group Collaborative Representation for Image Set Classification,"Department of Statistics, University of California at Berkeley, Berkeley, USA" +c58ece1a3fa23608f022e424ec5a93cddda31308,Extraction of Visual Facial Features for Health Management,"Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan" +c58ece1a3fa23608f022e424ec5a93cddda31308,Extraction of Visual Facial Features for Health Management,"Department of Information Management, College of Management, National United University, Miaoli, Taiwan" +c58ece1a3fa23608f022e424ec5a93cddda31308,Extraction of Visual Facial Features for Health Management,"Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan" +c252bc84356ed69ccf53507752135b6e98de8db4,Sparse representation-based robust face recognition by graph regularized low-rank sparse representation recovery,"Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, China" +c23bd1917badd27093c8284bd324332b8c45bfcf,Personalized facial expression recognition in indoor environments,"Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Taiwan 640, R.O.C." +c2474202d56bb80663e7bece5924245978425fc1,Localize heavily occluded human faces via deep segmentation,"Statistical Machine Intelligence & LEarning, School of Computer Science & Engineering University of Electronic Science and Technology of China, 611731, China" +c29fe5ed41d2240352fcb8d8196eb2f31d009522,Age estimation with dynamic age range,"College of Computer Science and Technology of Huaqiao University Xiamen, Xiamen, China" +f63b3b8388bc4dcd4a0330402af37a59ce37e4f3,Random attributes for image classification,"Bilgisayar Mühendisliği Bölümü, Deniz Harp Okulu, İstanbul, Türkiye" +e95c5aaa72e72761b05f00fad6aec11c3e2f8d0f,Gabor Filter Based Face Recognition Using Non-frontal Face Images,"Department of Computer Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India" +e9331ae2a887c02e0a908ebae2810a681aedee29,Smooth Adaptive Fitting of 3D Face Model for the Estimation of Rigid and Non-rigid Facial Motion in Video Sequences,"Research Team on Audio Visual Signal Processing (AVSP), Vrije Universiteit Brussel (VUB), Electronics and Informatics Department, VUB-ETRO, Pleinlaan 2, 1050 Brussel, Belgium" +f17d8f14651c123d39e13a39dc79b7eb3659fe68,An adaptive training based on classification system for patterns in facial expressions using SURF descriptor templates,"National University of Computer and Emerging Sciences, Islamabad, Islamabad, Pakistan" +f17d8f14651c123d39e13a39dc79b7eb3659fe68,An adaptive training based on classification system for patterns in facial expressions using SURF descriptor templates,"College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia" +f16599e4ec666c6390c90ff9a253162178a70ef5,Linguistic Patterns and Cross Modality-based Image Retrieval for Complex Queries,"BITS Pilani, Pilani , India" +f16599e4ec666c6390c90ff9a253162178a70ef5,Linguistic Patterns and Cross Modality-based Image Retrieval for Complex Queries,"BITS Pilani, India , India" +f19bf8b5c1860cd81b5339804d5db9e791085aa7,Video action classification using symmelets and deep learning,"Department of Computer Science and Engineering, National Taiwan Ocean University, No.2, Beining Rd., Keelung 202, Taiwan" +f19bf8b5c1860cd81b5339804d5db9e791085aa7,Video action classification using symmelets and deep learning,"Department of Learning and Digital Technology, Fo Guang University, Yilan, Taiwan" +e7697c7b626ba3a426106d83f4c3a052fcde02a4,Real time 3D face alignment with Random Forests-based Active Appearance Models,"Computer Vision Laboratory, ETH Zurich, Sternwartstrasse 7, 8092, Switzerland" +e7b7df786cf5960d55cbac4e696ca37b7cee8dcd,A sparse kernel representation method for image classification,"Department of electronic engineering, Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China" +cb8382f43ce073322eba82809f02d3084dad7969,Facial Expression Recognition using 2D Stationary Wavelet Transform and Gray-Level Co-occurrence MatrixP@13-17,"Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Odisha, India" +cb9921d5fc4ffa50be537332e111f03d74622442,Face Occlusion Detection Using Cascaded Convolutional Neural Network,"School of Computer Science and Engineering, Hebei University of Technology, Tianjin, China" +f812347d46035d786de40c165a158160bb2988f0,Predictive coding as a model of cognition,"Department of Informatics, King’s College London, Strand, London, UK" +f8fe1b57347cdcbea755722bf1ae85c4b26f3e5c,OptiFuzz: a robust illumination invariant face recognition system and its implementation,"Toyohashi University of Technology, Toyohashi, Japan" +f834c50e249c9796eb7f03da7459b71205dc0737,Enhanced Patterns of Oriented Edge Magnitudes for Face Recognition and Image Matching,"GIPSA Laboratory, Image and Signal Department, Grenoble Institute of Technology, Grenoble, France" +ce3304119ba6391cb6bb25c4b3dff79164df9ac6,Real-time facial action unit intensity prediction with regularized metric learning,"Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), 4 place Jussieu, 75005 Paris, France" +cea2911ccabab40e9c1e5bcc0aa1127cab0c789f,Siamese multi-layer perceptrons for dimensionality reduction and face identification,"University of Lyon, LIRIS - CNRS, National Institute of Applied Sciences (INSA), Lyon, France" +cec8936d97dea2fcf04f175d3facaaeb65e574bf,Large-Scale Video Classification with Elastic Streaming Sequential Data Processing System,"Shanghai Advanced Research Institute, CAS & Qiniu AI Lab, Shanghai, China" +cec8936d97dea2fcf04f175d3facaaeb65e574bf,Large-Scale Video Classification with Elastic Streaming Sequential Data Processing System,"Shanghai Advanced Research Institute, CAS, Shanghai, China" +ce70dd0d613b840754dce528c14c0ebadd20ffaa,Deep Learning on Sparse Manifolds for Faster Object Segmentation,School of Computer ScienceThe University of Adelaide +ceba8ca45bad226c401a509e6b8ccbf31361b0c9,Facial expression recognition using Support Vector Machines,"Electrical & Electronic Engineering Department, Mevlana University Konya, Turkey" +e0423788eb91772de9d708a17799179cf3230d63,Age Classification Using an Optimized CNN Architecture,"Department of Computer Engineering, TOBB University of Economics and Technology, Ankara, Turkey" +46f48211716062744ddec5824e9de9322704dea1,Learning a Distance Metric from Relative Comparisons between Quadruplets of Images,"Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France" +4686df20f0ee40cd411e4b43860ef56de5531d9e,Illuminating light field: image-based face recognition across illuminations and poses,"Dept. of ECE, Maryland Univ., College Park, MD, USA" +46976097c54e86032932d559c8eb82ffea4bb6bb,Facial emotion recognition with anisotropic inhibited Gabor energy histograms,"Center for Research in Intelligent Systems, University of California, Riverside Riverside, CA 92521-0425, USA" +2c6ab32a03c4862ee3e2bc02e7e74745cd523ad2,Gabor based face recognition with dynamic time warping,"School of Information Technology Jawaharlal Nehru Technological University Hyderabad Andhra Pradesh, India" +798e58c181f3ba3aecbe41acd1881860c5e2df3a,Lattice Computing Extension of the FAM Neural Classifier for Human Facial Expression Recognition,"Human-Machines Interaction (HMI) Laboratory, Department of Industrial Informatics, TEI of Kavala, Kavala, Greece" +798e58c181f3ba3aecbe41acd1881860c5e2df3a,Lattice Computing Extension of the FAM Neural Classifier for Human Facial Expression Recognition,"Department of Business Planning & Information Systems, TEI of Crete, Agios Nikolaos, Greece" +2d3af3ee03793f76fb8ff15e7d7515ff1e03f34c,New semantic descriptor construction for facial expression recognition based on axiomatic fuzzy set,"Dalian Key Laboratory of Digital Technology for National Culture, Dalian Minzu University, Dalian, China" +4113269f916117f975d5d2a0e60864735b73c64c,Regression and classification approaches to eye localization in face images,"Dept. of Eng. Sci., Oxford Univ., UK" +83d50257eb4c0aa8d16d27bf2ee8d0614fd63bf6,A multi-perspective holistic approach to Kinship Verification in the Wild,"Department of Control and Computer Engineering, Politecnico di Torino, Italy" +1b9976fea3c1cf13f0a102a884f027d9d80a14b3,Building a game scenario to encourage children with autism to recognize and label emotions using a humanoid robot,"R&D Centre Algoritmi, School of Engineering, University of Minho, Portugal" +1bcb1c6d6cebc9737f9933fcefbf3da8a612f994,A novel Monogenic Directional Pattern (MDP) and pseudo-Voigt kernel for facilitating the identification of facial emotions,"Department of CSE, Regional Campus of Anna University, Tirunelveli 627007, India" +7782627fa2e545276996ff9e9a1686ac496df081,Enhanced Autocorrelation in Real World Emotion Recognition,"University of Ulm, Ulm, Germany" +77c3574a020757769b2ca807ff4b95a88eaa2a37,Computerized Face Recognition in Renaissance Portrait Art: A quantitative measure for identifying uncertain subjects in ancient portraits,"Department of Electrical Engineering, University of California, Riverside, Riverside CA, California 92521 United States" +48a6a1c6a0ac5f2b7912b3ccb40b0c07f62ddfdf,Event-enabled intelligent asset selection and grouping for photobook creation,"Kodak Alaris Inc., Rochester, NY 14615, USA" +4848a48a2b8bacd2092e87961cd86818da8e7151,Comparative evaluation of facial fiducial point detection approaches,"Department of Systems and Computing, Federal University of Campina Grande, Av. Apríigio Veloso, 882, 58429-900 Campina Grande, PB, Brazil" +480ccd25cb2a851745f5e6e95d33edb703efb49e,Cross-Modal Message Passing for Two-Stream Fusion,"School of Computer Science, Center for Optical Imagery Analysis and Learning (OPTIMAL)" +70769def1284fe88fd57a477cde8a9c9a3dff13f,Adaptive feature representation for robust face recognition using context-aware approach,"Department of Computer Science and Engineering, Inha University, 253, Yong-Hyun Dong, Nam-Gu, Incheon, South Korea" +7081958a390d3033f5f33e22bbfec7055ea8d601,Learning Distributions of Image Features by Interactive Fuzzy Lattice Reasoning in Pattern Recognition Applications,"Dept of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece" +70d8bda4aafb0272ac4b93cd43e2448446b8e94d,Using SVM to design facial expression recognition for shape and texture features,"Department of Information Management, National Formosa University, Huwei, Yulin 632, Taiwan" +1eb1fdc5c933d2483ba1acbfa8c457fae87e71e5,Building semantic understanding beyond deep learning from sound and vision,"Dept. de Ciência da Computacão, Universidade Federal de Ouro Preto, MG Brazil" +1ea4347def5868c622d7ce57cbe171fa68207e2b,Analysis of WD Face Dictionary for Sparse Coding Based Face Recognition,"School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, India" +84be18c7683417786c13d59026f30daeed8bd8c9,A photometric sampling method for facial shape recovery,"Robótica y Manufactura Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ramos Arizpe, Mexico" +84a74ef8680b66e6dccbc69ae80321a52780a68e,Facial Expression Recognition,"Department of Electrical Engineering, The City College of New York, New York, USA" +4aa27c1f8118dbb39809a0f79a28c0cbc3ede276,3D Visual Speech Animation from Image Sequences,"Université de Lorraine, LORIA, UMR 7503" +4a7e5a0f6a0df8f5ed25ef356cd67745cd854bea,Face Recognition Using the Feature Fusion Technique Based on LNMF and NNSC Algorithms,"JiangSu Province Support Software Engineering R&D Center for Modern Information Technology Application in Enterprise, Suzhou, China" +4a7e5a0f6a0df8f5ed25ef356cd67745cd854bea,Face Recognition Using the Feature Fusion Technique Based on LNMF and NNSC Algorithms,"Department of Electronic Information Engineering, Suzhou Vocational University, Suzhou, Jiangsu, China" +247a8040447b6577aa33648395d95d80441a0cf3,A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection,"Data and Analytics Department, KPMG AGWPG, Düsseldorf, Germany" +24f3dfeb95bdecdc604d630acdfcafa1dc7c9124,Behavioural facial animation using motion graphs and mind maps,Instituto de Telecomunicações & Faculdade de Ciěncias da Universidade do Porto +245d98726674297208e76308c3a11ce3fc43bee2,In-plane face orientation estimation in still images,"IRCICA, Parc Scientifique de la Haute Borne, Lille 1 University, Villeneuve d’Ascq, France" +245d98726674297208e76308c3a11ce3fc43bee2,In-plane face orientation estimation in still images,"Faculty of Engineering, Computer Engineering Department, Akdeniz University, Dumlupinar Bulvari, Turkey" +23edcd0d2011d9c0d421193af061f2eb3e155da3,Facial age estimation by using stacked feature composition and selection,"Network Center, Huizhou University, Huizhou, China" +235bebe7d0db37e6727dfa1246663be34027d96b,General Type-2 fuzzy edge detectors applied to face recognition systems,"School of Engineering, University of Baja California, Tijuana, México" +239e305c24155add73f2a0ba5ccbd66b37f77e14,Fast computation of low-rank matrix approximations,"University of California at Santa Cruz, Santa Cruz, California" +4f03ba35440436cfa06a2ed2a571fea01cb36598,The extended collaborative representation-based classification,"School of Big Data and Computer, Science, Guizhou Normal University, Guiyang, Guizhou, 550025, P. R. China" +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc,Computer Vision -- ACCV 2014,"Technische Universität München, Garching, Germany" +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc,Computer Vision -- ACCV 2014,"University of California at Merced, Merced, USA" +158aa18c724107587bcc4137252d0ba10debf417,A randomized approach to large-scale subspace clustering,"Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA" +159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,Weak Classifier for Density Estimation in Eye Localization and Tracking,"Department of Electronics and Computing and the Electronics and Information Technology Research & Development Center, Universidade Federal do Amazonas, Manaus-AM, CEP, Brazil" +152683f3ac99f829b476ea1b1b976dec6e17b911,Evaluation of head pose estimation methods for a non-cooperative biometric system,"Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland" +127c7f87f289b1d32e729738475b337a6b042cf7,Real-Time Drowsiness Detection Algorithm for Driver State Monitoring Systems,"Electronics and Telecommunications Research Institute, Korea" +1252727e8096f48096ef89483d30c3a74500dd15,Action recognition using edge trajectories and motion acceleration descriptor,"School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China" +1252727e8096f48096ef89483d30c3a74500dd15,Action recognition using edge trajectories and motion acceleration descriptor,"School of Electrical Engineering and Automation, Qilu University of Technology, Jinan, China" +8cffe360a05085d4bcba111a3a3cd113d96c0369,Learning universal multi-view age estimator using video context,"Department of Electrical and Computer Engineering, Singapore" +8cedb92694845854f3ad0daf6c9adb6b81c293de,Products appreciation by facial expressions analysis,"Delft University of Technology and Sensor Technology, Netherlands Defense Academy" +8c048be9dd2b601808b893b5d3d51f00907bdee0,Spontaneous versus posed smile recognition via region-specific texture descriptor and geometric facial dynamics,"Engineering Lab on Intelligent Perception for Internet of Things, Peking University Shenzhen Graduate School, Shenzhen, China" +8c048be9dd2b601808b893b5d3d51f00907bdee0,Spontaneous versus posed smile recognition via region-specific texture descriptor and geometric facial dynamics,"Department of Computer Science, Christian-Albrechts University, Kiel, Germany" +85785ae222c6a9e01830d73a120cdac75d0b838a,Multimedia Database Retrieval,"Department of Electrical and Computer Engineering, Naresuan University, Muang, Thailand" +1de23d7fe718d9fab0159f58f422099e44ad3f0a,Locality Preserving Collaborative Representation for Face Recognition,"School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China" +1de23d7fe718d9fab0159f58f422099e44ad3f0a,Locality Preserving Collaborative Representation for Face Recognition,"Department of Computer Science and Application, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, China" +71a9d7cf8cf1e206cb5fa18795f5ab7588c61aba,Robust Shape-Feature-Vector-Based Face Recognition System,"School of Electrical and Computer Engineering, Royal Melbourne Institute of Technology University , Melbourne, Australia" +71a9d7cf8cf1e206cb5fa18795f5ab7588c61aba,Robust Shape-Feature-Vector-Based Face Recognition System,"School of Math and Geospatial Sciences, Royal Melbourne Institute of Technology University , Melbourne, Australia" +71f07c95a2b039cc21854c602f29e5be053f2aba,A comparison of face and facial feature detectors based on the Viola–Jones general object detection framework,"Universidad de Las Palmas de Gran Canaria, SIANI, Edificio Central del Parque Científico-Tecnológico, Las Palmas, Spain" +71f07c95a2b039cc21854c602f29e5be053f2aba,A comparison of face and facial feature detectors based on the Viola–Jones general object detection framework,"E.T.S. Ingenieros Industriales, Universidad de Castilla-La Mancha Campus Universitario, Ciudad Real, Spain" +71d68af11df855f886b511e4fc1635c1e9e789b0,A Self-Configurable Systolic Architecture for Face Recognition System Based on Principal Component Neural Network,"Department of Embedded Systems, Institute for Infocomm Research, Singapore" +71c4b8e1bb25ee80f4317411ea8180dae6499524,Extended Features using Machine Learning Techniques for Photo Liking Prediction,"Dept. of Audio Visual Technology, Technische Universitt, Ilmenau, Germany" +761304bbd259a9e419a2518193e1ff1face9fd2d,Robust and Computationally Efficient Face Detection Using Gaussian Derivative Features of Higher Orders,"INRIA Grenoble-Rhône-Alpes Research Center, France" +49358915ae259271238c7690694e6a887b16f7ed,Synthesis of expressive facial animations: A multimodal caricatural mirror,"TELE Lab, Université catholique de Louvain, Belgium" +49358915ae259271238c7690694e6a887b16f7ed,Synthesis of expressive facial animations: A multimodal caricatural mirror,"TALP Research Center, Universitat Politècnica de Catalunya, Spain" +49358915ae259271238c7690694e6a887b16f7ed,Synthesis of expressive facial animations: A multimodal caricatural mirror,"Speech Technology Group, Technical University of Madrid, Spain" +49358915ae259271238c7690694e6a887b16f7ed,Synthesis of expressive facial animations: A multimodal caricatural mirror,"TCTS Lab, Faculté Polytechnique de Mons, Belgium" +493bc7071e35e7428336a515d1d26020a5fb9015,Automated human behavioral analysis framework using facial feature extraction and machine learning,"Department of Electrical and Computer Engineering, Saginaw Valley State University, University Ctr, MI- 48710" +4983076c1a8b80ff5cd68b924b11df58a68b6c84,Saliency-based framework for facial expression recognition,"Université de Lyon, CNRS, LIRIS, UMR5205, Université Lyon 1, Lyon, France" +4983076c1a8b80ff5cd68b924b11df58a68b6c84,Saliency-based framework for facial expression recognition,"Laboratoire Hubert Curien, UMR5516, Université Jean Monnet, Saint-Etienne, France" +4983076c1a8b80ff5cd68b924b11df58a68b6c84,Saliency-based framework for facial expression recognition,"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +4932b929a2e09ddebedcb1abe8c62f269e7d4e33,Color based vehicle classification in surveillance videos,"Algılayıcılar, Görüntü ve Sinyal İşleme Grubu, HAVELSAN A.Ş. Ankara, Türkiye" +492116d16a39eb54454c7ffb1754cea27ad3a171,Making Facial Expressions of Emotions Accessible for Visually Impaired Persons,"Radboud University, Nijmegen, Netherlands" +492116d16a39eb54454c7ffb1754cea27ad3a171,Making Facial Expressions of Emotions Accessible for Visually Impaired Persons,"HAN University of Applied Sciences, Arnhem, Netherlands" +49fe4f387ac7e5852a78b327ec42cc7300c5f8e0,3D model retrieval based on linear prediction coding in cylindrical and spherical projections using SVM-OSS,"Computer Vision Research lab, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran" +493c8591d6a1bef5d7b84164a73761cefb9f5a25,User Profiling through Deep Multimodal Fusion,"University of California, Santa Cruz & Ghent University, Santa Cruz, CA, USA" +40c9dce0a4c18829c4100bff5845eb7799b54ca1,Expression-invariant facial identification,"School of Computing and Communications, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia" +40c9dce0a4c18829c4100bff5845eb7799b54ca1,Expression-invariant facial identification,"School of Software, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia" +4033ac52dba394e390a86cd149b9838f1d7834b5,A modularly vectorized two dimensional LDA for face recognition,"Dept. of Computer Science, YiLi Normal College, Yining, China 835000" +4033ac52dba394e390a86cd149b9838f1d7834b5,A modularly vectorized two dimensional LDA for face recognition,"Dept. of Computing, Curtin University of Technology, WA 6102, USA" +4014e8c1a1b49ad2b9b2c45c328ec9f1fd56f676,ADL: Active dictionary learning for sparse representation,"Vulcan Inc, Seattle, WA 98104" +4014e8c1a1b49ad2b9b2c45c328ec9f1fd56f676,ADL: Active dictionary learning for sparse representation,"Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881" +4007bf090887d8a0e907ab5e17ecfcdbbdafc2e4,Robustness of DR-LDP over PCANet for face analysis,"School of Information Technology and Engineering, VIT University, Vellore, India" +2e36b63fdf1353425a57a0665b0d0274efe92963,Discriminating real and posed smiles: human and avatar smiles,"The Australian National University RSCS, ANU, Canberra, Australia" +2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d,Genealogical face recognition based on UB KinFace database,"CSE, SUNY at Buffalo, USA and Southeast University, China" +2e27667421a7eeab278e0b761db4d2c725683c3f,Effective human age estimation using a two-stage approach based on Lie Algebrized Gaussians feature,"Eedoo Inc, Beijing, China" +2e6776cd582c015b46faf616f29c98ce9cff51a2,Facial expression recognition using kernel canonical correlation analysis (KCCA),"Res. Center for Learning Sci., Southeast Univ., Jiangsu, China" +2b300985a507533db3ec9bd38ade16a32345968e,Laplacian multiset canonical correlations for multiview feature extraction and image recognition,"School of Information Engineering, Yangzhou University, Yangzhou, China" +2b0d14dbd079b3d78631117b1304d6c1579e1940,Fractional-Order Embedding Supervised Canonical Correlations Analysis with Applications to Feature Extraction and Recognition,"School of Computer Science and Engineering, Nanjing University of Science & Technology, Nanjing, People’s Republic of China" +2b0d14dbd079b3d78631117b1304d6c1579e1940,Fractional-Order Embedding Supervised Canonical Correlations Analysis with Applications to Feature Extraction and Recognition,"Department of Computer Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China" +2be9284d531b8c573a4c39503ca50606446041a3,Recovering facial shape using a statistical surface normal model,"Dept. of Comput. Sci., York Univ., UK" +4786638ffb3b2fb385cec80720cc6e7c3588b773,Effective semantic features for facial expressions recognition using SVM,"Department of Computer Science and Engineering, Tatung University, Taipei 104, Republic of China" +4786638ffb3b2fb385cec80720cc6e7c3588b773,Effective semantic features for facial expressions recognition using SVM,"Department of Industrial Design, Tatung University, Taipei 104, Republic of China" +780c8a795baca1ba4cb4956cded877dd3d1ca313,Simulation of face recognition at a distance by scaling down images,"Dept. of Advanced Technologies, Alcorn State University, MS, USA" +8be60114634caa0eff8566f3252cb9a1b7d5ef10,Multiple target tracking with structural inference,Shanghai Jiao Tong University School of Electronic Information and Electrical Engineering +8b4124bb68e5b3e6b8b77888beae7350dc594a40,Expression-invariant face recognition system using subspace model analysis,"Dept. of Comput. Syst., Univ. of Technol., Sydney, NSW, Australia" +8bbd40558a99e33fac18f6736b8fe99f4a97d9b1,Visual Object Detection Using Cascades of Binary and One-Class Classifiers,"Laboratoire Jean Kuntzmann, Grenoble, France" +13d430257d595231bda216ef859950caa736ad1d,Finding a Proper Approach to Obtain Cognitive Parameters from Human Faces Under Illumination Variations,"Universidad Tecnica Federico Santa Maria, Department of Electronic Engineering, Valparaiso, Chile" +13179bb3f2867ea44647b6fe0c8fb4109207e9f5,Recurrent learning of context for salient region detection,"College of Artificial Intelligenge and Big Data, ChongQing University of Electronic Engineering, Chongqing, China" +7f9be0e08784835de0f8bc3a82fcca02b3721dc1,Facial expression recognition under random block occlusion based on maximum likelihood estimation sparse representation,"School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, CO 130012 China" +7f4040b482d16354d5938c1d1b926b544652bf5b,Competitive affective gaming: winning with a smile,"Universidade Nova de Lisboa, Caparica, Portugal" +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4,Real-time recognition of cattle using animal biometrics,"Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India" +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4,Real-time recognition of cattle using animal biometrics,"Department of Computer Science and Engineering, Jaypee University of Information Technology, Solan, India" +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4,Real-time recognition of cattle using animal biometrics,"Department of Computer Science and Engineering, Shri Shankaracharya Technical Campus, Bhilai, District-Durg, India" +7f1078a2ebfa23a58adb050084d9034bd48a8a99,"Fisher discrimination-based $$l_{2,1} $$ l 2 , 1 -norm sparse representation for face recognition","Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, China" +7acbf0b060e948589b38d5501ca217463cfd5c2f,Learning Multiple Relative Attributes With Humans in the Loop,"Department of Computer Science, University of California at Davis, Davis, USA" +7a666a91a47da0d371a9ba288912673bcd5881e4,Enhanced supervised locally linear embedding,"School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, PR China" +7a94936ce558627afde4d5b439ec15c59dbcdaa4,"A Closed-Form, Consistent and Robust Solution to Uncalibrated Photometric Stereo Via Local Diffuse Reflectance Maxima","University of Bern, Bern, Switzerland" +14efb131bed66f1874dd96170f714def8db45d90,Capturing AU-Aware Facial Features and Their Latent Relations for Emotion Recognition in the Wild,"Intel Labs China, Beijing, China" +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74,Robust watch-list screening using dynamic ensembles of SVMs based on multiple face representations,"Laboratoire d’imagerie de vision et d’intelligence artificielle, École de technologie supérieure, Université du Québec, Montreal, Canada" +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74,Robust watch-list screening using dynamic ensembles of SVMs based on multiple face representations,"Laboratoire d’interprétation et de traitement d’images et vidéo, Polytechnique Montréal, Montreal, Canada" +8ef465ff12ee1d2be2a99d1c628117a4ce890a6b,An embedded system for real-time facial expression recognition based on the extension theory,"Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan" +8e8a6623b4abd2452779c43f3c2085488dfcb323,Multi-clue fusion for emotion recognition in the wild,"Nanjing University of Posts and Telecommunications, China" +8e21399bb102e993edd82b003c306a068a2474da,A complete discriminative subspace for robust face recognition,"China Electronics Standardization Institute, Beijing, 100007" +22648dcd3100432fe0cc71e09de5ee855c61f12b,Automatic generation of composite image descriptions,"Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beersheba, Israel" +22c06284a908d8ad0994ad52119773a034eed7ee,Adaptive Visual Feedback Generation for Facial Expression Improvement with Multi-task Deep Neural Networks,"NTT Corporation, Atsugi, Japan" +22d5aeb25bb034f6ae2fc50b5cdd9934a85d6505,An Effective Machine Learning Approach for Refining the Labels of Web Facial Images,"National Ilan University, Ilan, Taiwan Roc" +259ddd3c618feec51576baac7eaaf80ea924b791,Private emotions versus social interaction: a data-driven approach towards analysing emotion in speech,"Lehrstuhl für Mustererkennung, FAU Erlangen – Nürnberg, Erlangen, Germany" diff --git a/scraper/reports/doi_institutions_unknown.html b/scraper/reports/doi_institutions_unknown.html new file mode 100644 index 00000000..66292e82 --- /dev/null +++ b/scraper/reports/doi_institutions_unknown.html @@ -0,0 +1 @@ +Unknown Institutions from DOI

Unknown Institutions from DOI

NC A&T State University, Greensboro, NC, USA6
School of Information and Software Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China P.R.C6
Electronics and Telecommunications Research Institute, Korea5
Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand5
Chonnam National University, Gwangju, Korea5
Department of Computer Science and Engineering, National Institute of Technology, Durgapur, India5
Chongqing Institute of Green and Intelligent Technology, CAS, Chongqing, 4007145
SIAT at Chinese Academy of Sciences, China5
Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy5
University of Southern California Institute for Creative Technologies, Los Angeles, CA5
Department of Electronics and Telecommunication Engineering, Don Bosco Institute of Technology, Kurla (W), Mumbai, India5
R V College of Engineering, Department of Computer Science and Engineering, Bangalore, India5
Inst. Nat. des Telecommun., Evry, France5
Shanghai Jiao Tong University School of Electronic Information and Electrical Engineering4
Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland4
North China Electric Power University Department of Electronic and Communication Engineering Baoding, Hebei, China4
School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand4
KU Leuven, Leuven, Belgium4
Academia Sinica, Taipei, Taiwan4
LIARA Laboratory, University of Quebec at Chicoutimi (UQAC), Boulevard de l'Université, Chicoutimi (Quebec), Canada4
Dept. of Computing, Curtin University GPO Box U1987, Perth, WA 68454
NTT Software Innovation Center, Tokyo, Japan4
EECS Department, University of Kansas, Lawrence, KS4
Department of Mathematics and Computer Science University of Basel4
Goa University, India4
Beijing Key Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing 100081, China4
VUB-NPU Joint AVSP Research Lab, Vrije Universiteit Brussel (VUB), Deptartment of Electronics & Informatics (ETRO), Pleinlaan 2, 1050 Brussel, Belgium4
Graduate School of Information Science, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma-shi, Nara, Japan4
Smart Surveillance Interest Group, Department of Computer Science, Universidade Federal de Minas Gerais, Minas Gerais, Brazil4
Shanghai University School of Communication and Information Engineering Shanghai, China4
Microsoft, Redmond, WA, USA4
Computer Science and Engineering, Pennsylvania State University, PA, USA SiliconScapes, LLC, PA, USA4
Dept. of Computer Engineering, Keimyung University, Daegu, Korea4
National ICT Australia and UNSW, Sydney, Australia4
Department of Electrical and Computer Engineering, Beckman Institute Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, USA4
Universiti Kuala Lumpur, Kuala Lumpur4
Beijing Normal Univeristy, Beijing, China4
University of Tunis, The National Higher school of engineers of Tunis (ENSIT), Laboratory of Signal Image and Energy Mastery, LR13ES03 (SIME), Tunis, Tunisia4
Media Technology Lab, Huawei Technologies Co., Ltd4
Department of Computer Graphics and Multimedia, University of Brno, Brno, Czech Republic4
Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA4
Faculty of Engineering, Ain Shams University, Computer and Systems Engineering Department, Cairo, Egypt4
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China4
Computer Science and Engineering Dept., University of Nevada Reno, USA4
Department of Information and Control, B-DAT Laboratory, Nanjing University of Information and Technology, Nanjing, China4
Inha University, South Korea4
Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China4
Institute for Human-Machine Communication, Technische Universität München, Germany4
Faculty of Engineering Science, Department of Systems Innovation, Arai Laboratory at Osaka University, Japan4
NTT Corporation, Atsugi, Japan3
Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beersheba, Israel3
Intel Labs China, Beijing, China3
School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, CO 130012 China3
Radboud University, Nijmegen, Netherlands3
Algılayıcılar, Görüntü ve Sinyal İşleme Grubu, HAVELSAN A.Ş. Ankara, Türkiye3
Dept. of Audio Visual Technology, Technische Universitt, Ilmenau, Germany3
School of Electrical and Computer Engineering, Royal Melbourne Institute of Technology University , Melbourne, Australia3
School of Engineering, University of Baja California, Tijuana, México3
School of Computer Science, Center for Optical Imagery Analysis and Learning (OPTIMAL)3
Department of Systems and Computing, Federal University of Campina Grande, Av. Apríigio Veloso, 882, 58429-900 Campina Grande, PB, Brazil3
R&D Centre Algoritmi, School of Engineering, University of Minho, Portugal3
Department of Control and Computer Engineering, Politecnico di Torino, Italy3
Center for Research in Intelligent Systems, University of California, Riverside Riverside, CA 92521-0425, USA3
Shanghai Advanced Research Institute, CAS, Shanghai, China3
Department of electronic engineering, Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China3
Computer Vision Laboratory, ETH Zurich, Sternwartstrasse 7, 8092, Switzerland3
BITS Pilani, Pilani , India3
Department of Computer Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India3
Dept. of CS&E, IIT Madras, India3
Graduate School of System Design Tokyo Metropolitan University Tokyo, Japan3
Face Aging Group, Computer Science Department, UNCW, USA3
City University of New York, New York, NY, USA3
Department of Computer Science and Engineering, Visual Learning and Intelligence Group, IIT Hyderabad, Hyderabad, India3
Ghent University, Ghent, Belgium3
Columbia Univeristy, New York, NY, USA3
Microsoft Research Cambridge3
Center for Automation Research, UMIACS University of Maryland, College Park, MD 207423
School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, U.K.3
School of Information and Communication Engineering, Beijing University of Posts and Telcommunications, Beijing, China3
Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, South Korea3
Institute of Mathematical and Computer Sciences, University of Sao Paulo, Sao Paulo, Brazil3
Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece3
NTT Media Intelligence Laboratories, Tokyo, Japan3
Beijing Institute of Graphic Communication, Beijing3
Nara Institute of Science and Technology, Japan3
Department of Computer, the University of Suwon, Korea3
Department of Electrical and Computer Engineering, Florida Institute of Technology, Melbourne, USA3
Dept. of Computer Science and Engineering, St. Joseph's College of Engineering and Technology, Palai, Kerala, India3
Dept. of Computer Science and Electrical Engineering, University of Missouri-Kansas City, MO, USA3
Inha University, Incheon, South Korea3
Center for Research on Intelligent Perception and Computing3
Thiagarajar College of Engineering, Madurai, Tamilnadu, India3
Dept. of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan3
School of Electrical and Electronic Engineering, Singapore3
Universidade Nova Lisboa, Lisboa, Portugal3
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation Chinese Academy of Sciences, Beijing, China 1001903
Department of Computer Science and Engineering, National Institute of Technology Uttarakhand, Srinagar Garhwal, India3
Dept. of Mediamatics, Delft Univ. of Technol., Netherlands3
Department of Information Science and Engineering, Changzhou University, Changzhou, China3
Institute for Infocomm Research, A*STAR, Singapore, Singapore3
Ashikaga Institute of Technology, Ashikaga, Japan3
Institute of Applied Computer Science, Kiel University of Applied Sciences, Kiel, Germany3
Central China Normal University, Wuhan, China3
Chongqing University of Posts and Telecommunications Chongqing, China3
School of Computer Science and Software Engineering University of Wollongong, Australia3
Phonexia, Brno-Krlovo Pole, Czech Republic3
Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden3
Technische Universität München, Munich, Germany3
University of California, Los Angeles, CA Dept. of Electrical Engineering3
Academia Sinica, Taipei, Taiwan Roc3
Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic3
Image and Video Systems Lab, School of Electrical Engineering, KAIST, Republic of Korea3
Information and media processing laboratories, NEC Corporation3
Southern Illinois University at Carbondale, IL, USA3
School of Automation and Electrical Engineering, University of Science and Technology Beijing, 100083, China3
School of Software, Jiangxi Normal University, Nanchang, China3
Department of Computer Science, Pontificia Universidad Cato´lica de Chile3
Fujitsu Laboratories, Kawasaki, Kanagawa, Japan3
Department of Electronic and Computer Engineering National Taiwan University of Science and Technology3
New York University Abu Dhabi & NYU Tandon School of Engineering, Abu Dhabi, Uae3
Intelligent Vision Research Lab, Department of Computer Science, Federal University of Bahia3
Department of Electronic Measuring systems, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia3
National Ilan University, Ilan, Taiwan Roc2
China Electronics Standardization Institute, Beijing, 1000072
Universidade Nova de Lisboa, Caparica, Portugal2
Universidad Tecnica Federico Santa Maria, Department of Electronic Engineering, Valparaiso, Chile2
Dept. of Comput. Syst., Univ. of Technol., Sydney, NSW, Australia2
Dept. of Comput. Sci., York Univ., UK2
The Australian National University RSCS, ANU, Canberra, Australia2
Dept. of Computer Science, YiLi Normal College, Yining, China 8350002
School of Computing and Communications, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia2
Department of Electrical and Computer Engineering, Singapore2
Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA2
Instituto de Telecomunicações & Faculdade de Ciěncias da Universidade do Porto2
Department of Information Management, National Formosa University, Huwei, Yulin 632, Taiwan2
Dept of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece2
University of Ulm, Ulm, Germany2
Dept. of Eng. Sci., Oxford Univ., UK2
Human-Machines Interaction (HMI) Laboratory, Department of Industrial Informatics, TEI of Kavala, Kavala, Greece2
Dept. of ECE, Maryland Univ., College Park, MD, USA2
Department of Computer Engineering, TOBB University of Economics and Technology, Ankara, Turkey2
Electrical & Electronic Engineering Department, Mevlana University Konya, Turkey2
GIPSA Laboratory, Image and Signal Department, Grenoble Institute of Technology, Grenoble, France2
Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Odisha, India2
Department of Computer Science and Engineering, National Taiwan Ocean University, No.2, Beining Rd., Keelung 202, Taiwan2
Bilgisayar Mühendisliği Bölümü, Deniz Harp Okulu, İstanbul, Türkiye2
Statistical Machine Intelligence & LEarning, School of Computer Science & Engineering University of Electronic Science and Technology of China, 611731, China2
Masaryk University, Brno, Czech Rep2
Charles University, Prague, Czech Rep2
Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada2
Department of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Human Machines Interaction (HMI) Laboratory, 65404 Kavala, Greece2
University of British Columbia Department of Electrical and Computer Engineering2
School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China2
Department of Computer Science and Engineering, University of Califonia, San Diego2
University of Missouri Department of Electrical and Computer Engineering Columbia, MO, USA2
Inf. Syst. Dept., Buckingham Univ., UK2
Dept. of Electr. & Comput. Eng., Old Dominion Univ., Norfolk, VA, USA2
Department of Computer Science & Engineering, POSTECH, Pohang, Sourth Korea, 376732
Coursera and Stanford University2
Dept. of Electron. & Inf., Toyota Technol. Inst., Nagoya, Japan2
Department of Computer Science and Engineering, POSTECH, Pohang 790-784, Republic of Korea2
Dept. of Comput. Sci., New York State Univ., Binghamton, NY, USA2
Dept. of Electrical Engineering, National Institute of Technology, Rourkela, India 7690082
Department of Computer Science, Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal2
School of Computer Science and Technology, Tianjin University&Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China2
NPU-VUB Joint AVSP Research Lab, School of Computer Science, Northwestern Polytechnical University (NPU) Shaanxi Key Lab on Speech and Image Information Processing, 127 Youyi Xilu, Xi'an 710072, China2
Research&Advanced Technology Division of SAIC Motor Corporation Limited, Shanghai 201804, P.R China2
Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China2
Dept. of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan City, Taiwan2
Dept. of Electronics and Telecommunication Engg., KCT's Late G.N. Sapkal college of Engineering, Nashik, India2
Tencent Inc2
Facebook Inc., Menlo Park, CA, USA2
Computational Intelligence Lab, Institute of Informatics and Telecommunications, NCSR Demokritos, Athens, Greece2
Dept. of Electrical Engineering, National Tsing-Hua University, Taiwan2
Department Informatik, Hamburg University of Applied Sciences, Hamburg, Germany2
Department Informatik, Hamburg University of Applied Sciences, Engineering and Computing, University of the West of Scotland2
Elektronik ve Haberleşme Mühendisliği Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Türkiye2
Department of Computer Science and Engineering of Systems, University of Zaragoza, Escuela Universitaria Politécnica de Teruel, Teruel, Spain2
Department of Automation, North-China University of Technology, Beijing, China2
Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia2
Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, P.R. China2
Indian Statistical Insitute, Kolkata 7001082
Centre for Secure Information Technologies, Queen’s University Belfast, Belfast, UK2
Wrocław University of Science and Technology, Wrocław, Poland2
Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi, India2
Department of Electronics and Communication Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India2
Department of Electrical Engineering Malaviya National Institute of Technology Jaipur, Rajasthan, India2
Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing, China2
Osaka University Health Care Center, Japan2
Shahid Bahonar University of Kerman Computer Engineering Department, Kerman, Iran2
Istituto Italiano di Tecnologia (IIT) & Università di Torino, Genova, Italy2
Istituto Italiano di Tecnologia (IIT) & Università degli Studi di Genova, Genova, Italy2
Norwegian Biometric Laboratory, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway2
Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India2
B. Tech Graduate, ECE, MSIT, C-4 Janakpuri, New Delhi, India2
San Diego State University, San Diego, CA, USA2
MIT, Cambridge, MA, USA2
Dept of Electronics and Communication, Manipal Institute Of Technology, Karnataka, India2
LMU Munich, Germany2
Polytechnic School of Pernambuco, University of Pernambuco, Recife-PE, Brazil2
Başkent University, Ankara, TURKEY2
Department of Electronic and Communication Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia2
Sunway University, Selangor, Malaysia2
Northwestern Polytechnical University Xian, P. R. China2
Dept. of E & TC Engineering, Maharashtra Institute of Technology, Pune, India2
Dept. of ECE and Digital Technology Center, Univ. of Minnesota, USA2
Department of Computer Science, Chu Hai College of Higher Education, Hong Kong2
School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, 689-798, Korea2
Dept. of Comp. Sci. and Inf. Eng, Chung Hua University, Hsinchu, Taiwan2
Shanghai Jiao Tong University & Alibaba Group, Shanghai, China2
School of Computer Science, Kyungpook National University, Buk-gu, Daegu, The Republic of Korea2
Laboratory LAROSERI, Department of Computer Science, Faculty of Sciences, University of Chouaib Doukkali, El Jadida - Morocco2
Microsoft Research India Pvt. Ltd, Bangalore, Karnataka, India2
Department of Electronics, University of Goa, India2
Department of ECE, National Institute of Technology, Rourkela (Odisha), India2
Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China2
B-DAT Laboratory, School of Information and Control, Nanjing University of Information and Technology, Nanjing, China2
Thales Services, ThereSIS, Palaiseau, France2
School of Electrical and Electronic Engineering, Tianjin University of Technology, China2
Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, India2
IIIT Bangalore, India2
Institut de Robòtica i Informàtica Industrial (CSIC-UPC)2
Department of Computer Science, IT: Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal2
Xinjiang University, Urumqi, China2
School of Computing Science and Engineering, VIT University, Vellore, India2
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA2
GSI Universidad Polit-écnica de Madrid, Madrid, Spain2
Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea2
Dept. of Appl. Phys. & Electron., Umea Univ., Sweden2
Universidade Federal do Paraná, Curitiba, Brazil2
Università degli Studi di Verona, Verona, Italy2
CEA, Gif-Sur-Yvette, France2
UMR CNRS - Univ. Bourgogne, Dijon, France2
Mechatronic Engineering Department, Mevlana University, Konya, Turkey2
TÜBİITAK-BİILGEM-UEKAE, Anibal Cad., P.K.74, 41470, Gebze-KOCAELİ, Turkey2
The 28th Research Institute of China Electronics Technology Group Corporation, China2
Raytheon BBN Technologies, 10 Moulton St, Cambridge, MA2
School of Electrical Engineering and Computer Science at the University of Newcastle, Callaghan, NSW 2308, Australia2
Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India2
Pontifícia Universidade Católica do RS, Porto Alegre-RS, Brazil2
Waseda University The Graduate School of Information, Production and Systems 2-7, Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka, Japan2
Majority Report, France2
SITI Laboratory, National Engineering School of Tunis (ENIT), University of Tunis El Manar, Tunis, Tunisia2
University of Montreal, Department of Computer Science and Operations Research (DIRO), 2920 Chemin de la tour, QC, Canada, H3C 3J72
Università di Salerno, Fisciano (SA), Italy2
Advanced Technologies Application Center 7a #21406 b/ 214 and 216, P.C. 12200, Siboney Playa, Havana, Cuba2
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China2
Department of Sciences and Information Technology, University of Sassari, Viale Mancini 5, 07100 Sassari, Italy2
Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany2
Department of Computer Science and Information Engineering, National Formosa University, Yunlin 632, Taiwan2
Broadcasting & Telecommunications, Convergence Media Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea2
Dept. of ECE & Digital Technology Center, Univ. of Minnesota, USA2
FMV IŞIK Üniversitesi, Şile, Istanbul2
Lehrstuhl für Mustererkennung, FAU Erlangen – Nürnberg, Erlangen, Germany1
Nanjing University of Posts and Telecommunications, China1
Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan1
Laboratoire d’interprétation et de traitement d’images et vidéo, Polytechnique Montréal, Montreal, Canada1
Laboratoire d’imagerie de vision et d’intelligence artificielle, École de technologie supérieure, Université du Québec, Montreal, Canada1
University of Bern, Bern, Switzerland1
School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, PR China1
Department of Computer Science, University of California at Davis, Davis, USA1
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, China1
Department of Computer Science and Engineering, Shri Shankaracharya Technical Campus, Bhilai, District-Durg, India1
Department of Computer Science and Engineering, Jaypee University of Information Technology, Solan, India1
Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India1
College of Artificial Intelligenge and Big Data, ChongQing University of Electronic Engineering, Chongqing, China1
Laboratoire Jean Kuntzmann, Grenoble, France1
Dept. of Advanced Technologies, Alcorn State University, MS, USA1
Department of Industrial Design, Tatung University, Taipei 104, Republic of China1
Department of Computer Science and Engineering, Tatung University, Taipei 104, Republic of China1
Department of Computer Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China1
School of Computer Science and Engineering, Nanjing University of Science & Technology, Nanjing, People’s Republic of China1
School of Information Engineering, Yangzhou University, Yangzhou, China1
Res. Center for Learning Sci., Southeast Univ., Jiangsu, China1
Eedoo Inc, Beijing, China1
CSE, SUNY at Buffalo, USA and Southeast University, China1
School of Information Technology and Engineering, VIT University, Vellore, India1
Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 028811
Vulcan Inc, Seattle, WA 981041
Dept. of Computing, Curtin University of Technology, WA 6102, USA1
School of Software, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia1
University of California, Santa Cruz & Ghent University, Santa Cruz, CA, USA1
Computer Vision Research lab, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran1
HAN University of Applied Sciences, Arnhem, Netherlands1
Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan1
Laboratoire Hubert Curien, UMR5516, Université Jean Monnet, Saint-Etienne, France1
Université de Lyon, CNRS, LIRIS, UMR5205, Université Lyon 1, Lyon, France1
Department of Electrical and Computer Engineering, Saginaw Valley State University, University Ctr, MI- 487101
TCTS Lab, Faculté Polytechnique de Mons, Belgium1
Speech Technology Group, Technical University of Madrid, Spain1
TALP Research Center, Universitat Politècnica de Catalunya, Spain1
TELE Lab, Université catholique de Louvain, Belgium1
INRIA Grenoble-Rhône-Alpes Research Center, France1
Department of Embedded Systems, Institute for Infocomm Research, Singapore1
E.T.S. Ingenieros Industriales, Universidad de Castilla-La Mancha Campus Universitario, Ciudad Real, Spain1
Universidad de Las Palmas de Gran Canaria, SIANI, Edificio Central del Parque Científico-Tecnológico, Las Palmas, Spain1
School of Math and Geospatial Sciences, Royal Melbourne Institute of Technology University , Melbourne, Australia1
Department of Computer Science and Application, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, China1
School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China1
Department of Electrical and Computer Engineering, Naresuan University, Muang, Thailand1
Department of Computer Science, Christian-Albrechts University, Kiel, Germany1
Engineering Lab on Intelligent Perception for Internet of Things, Peking University Shenzhen Graduate School, Shenzhen, China1
Delft University of Technology and Sensor Technology, Netherlands Defense Academy1
School of Electrical Engineering and Automation, Qilu University of Technology, Jinan, China1
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China1
Department of Electronics and Computing and the Electronics and Information Technology Research & Development Center, Universidade Federal do Amazonas, Manaus-AM, CEP, Brazil1
University of California at Merced, Merced, USA1
Technische Universität München, Garching, Germany1
School of Big Data and Computer, Science, Guizhou Normal University, Guiyang, Guizhou, 550025, P. R. China1
University of California at Santa Cruz, Santa Cruz, California1
Network Center, Huizhou University, Huizhou, China1
Faculty of Engineering, Computer Engineering Department, Akdeniz University, Dumlupinar Bulvari, Turkey1
IRCICA, Parc Scientifique de la Haute Borne, Lille 1 University, Villeneuve d’Ascq, France1
Data and Analytics Department, KPMG AGWPG, Düsseldorf, Germany1
Department of Electronic Information Engineering, Suzhou Vocational University, Suzhou, Jiangsu, China1
JiangSu Province Support Software Engineering R&D Center for Modern Information Technology Application in Enterprise, Suzhou, China1
Université de Lorraine, LORIA, UMR 75031
Department of Electrical Engineering, The City College of New York, New York, USA1
Robótica y Manufactura Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ramos Arizpe, Mexico1
School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, India1
Dept. de Ciência da Computacão, Universidade Federal de Ouro Preto, MG Brazil1
Department of Computer Science and Engineering, Inha University, 253, Yong-Hyun Dong, Nam-Gu, Incheon, South Korea1
Kodak Alaris Inc., Rochester, NY 14615, USA1
Department of Electrical Engineering, University of California, Riverside, Riverside CA, California 92521 United States1
Department of CSE, Regional Campus of Anna University, Tirunelveli 627007, India1
Dalian Key Laboratory of Digital Technology for National Culture, Dalian Minzu University, Dalian, China1
Department of Business Planning & Information Systems, TEI of Crete, Agios Nikolaos, Greece1
School of Information Technology Jawaharlal Nehru Technological University Hyderabad Andhra Pradesh, India1
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France1
School of Computer ScienceThe University of Adelaide1
Shanghai Advanced Research Institute, CAS & Qiniu AI Lab, Shanghai, China1
University of Lyon, LIRIS - CNRS, National Institute of Applied Sciences (INSA), Lyon, France1
Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), 4 place Jussieu, 75005 Paris, France1
Toyohashi University of Technology, Toyohashi, Japan1
Department of Informatics, King’s College London, Strand, London, UK1
School of Computer Science and Engineering, Hebei University of Technology, Tianjin, China1
Department of Learning and Digital Technology, Fo Guang University, Yilan, Taiwan1
BITS Pilani, India , India1
College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia1
National University of Computer and Emerging Sciences, Islamabad, Islamabad, Pakistan1
Research Team on Audio Visual Signal Processing (AVSP), Vrije Universiteit Brussel (VUB), Electronics and Informatics Department, VUB-ETRO, Pleinlaan 2, 1050 Brussel, Belgium1
College of Computer Science and Technology of Huaqiao University Xiamen, Xiamen, China1
Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Taiwan 640, R.O.C.1
Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, China1
Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan1
Department of Information Management, College of Management, National United University, Miaoli, Taiwan1
Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National United University, Miaoli, Taiwan1
Department of Statistics, University of California at Berkeley, Berkeley, USA1
International Computer Science Institute, University of California at Berkeley, Berkeley, USA1
College of Information Science and Technology, Agricultural University of Hebei, Baoding, China1
Department of Electronics Engineering, Mokpo National University, Republic of Korea1
FX Palo Alto Laboratory1
Department of Applied Optics and Photonics, University of Calcutta, Kolkata, India1
Department of Electrical Engineering, Future Institute of Engineering and Management, Kolkata, India1
Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India1
Telecom Division, Centre de Développement des Technologies Avancées, Algiers, Algeria1
Departments of Medical Imaging and Medical Biophysics, University of Western Ontario, London, ON, Canada1
Department of Medical Biophysics, University of Western Ontario, London, ON, Canada1
School of Computer Science, Shaanxi Normal University, Xi’an, China1
Engineering Laboratory of Teaching Information Technology of Shaanxi Province, Xi’an, China1
Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi’an, China1
College of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, P.R. China1
Nanyang Technological University School of Computer Engineering1
Department of Electronics and Electrical Engineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India1
Technology Section, Israel National Police, Jerusalem, Israel1
Department of Electro-Optics Engineering, Ben-Gurion University, Beer Sheva, Israel1
Department of Mathematics, JiaYing University, Meizhou, China1
Hebei University of Technology, School of Science, Tianjin, P. R. China1
YiLi Normal College, Yining, China1
Faculty of Electronic Information and Electrical Engineering, Dalian University, Dalian, China1
Centre for Innovation in IT Services and Applications (iNEXT), University of Technology, Sydney, Australia1
Video Surveillance Laboratory, Guizhou University for Nationalities, Guiyang, China1
College of Arts and Sciences, Shanxi Agricultural University, Shanxi, China1
IRDA Group, ADMIR Laboratory, Rabat IT Center, ENSIAS, CNRST (URAC29), Mohammed V University of Rabat, Morocco1
LRIT, CNRST (URAC29), Mohammed V University of Rabat, Morocco1
Queen’s University, Kingston, Canada1
University of Science Technology, Wuhan, China1
Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia1
University at Qatar, Doha, Qatar1
University of Istanbul, Istanbul, Turkey1
Department of Computer Science, Chu Hai College of Higher Education, Tuen Mun, Hong Kong1
PolyU Shenzhen Research Institute, Shenzhen, China1
German National Library of Science and Technology & Leibniz Universität Hannover, Hannover, Germany1
University of Applied Sciences Jena, Jena, Germany1
Department of Creative IT Engineering, POSTECH, Pohang, South Korea, 376731
Department of Computer Science, University of Western Ontario, London, Canada1
Vision Laboratory, LARSyS, University of the Algarve, Faro, Portugal1
Department of Information Management, Yuan Ze University, Taoyuan, China1
DICGIM, Universitá degli Studi di Palermo, V.le delle Scienze, Ed. 6, 90128 Palermo, Italy1
Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey1
Department of Computer Technologies, Trabzon Vocational School, Karadeniz Technical University, Trabzon, Turkey1
Stanford University and Coursera1
Dept. of Comput. Sci. & Info. Eng., National Yunlin Univ. of Science & Technology, Taiwan1
Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China1
Biometric and Imaging Processing Laboratory (BIPLab)1
Research and Academic Computer Network (NASK)1
Philips Applied Technologies, Eindhoven, Netherlands1
Philips Research Eindhoven, Eindhoven, Netherlands1
Key Lab Complex System & Intelligence Science, Institute of Automation, Chinese Academy of Science, Beijing, China1
College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China1
National Research University Higher School of Economics, Laboratory of Algorithms and Technologies for Network Analysis, Nizhny Novgorod, Russia1
Emory University School of Medicine, Atlanta, USA1
Department of Radiology and Imaging Sciences, Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA1
Dept. of EMPH, Icahn School of Medicine at Mount Sinai, New York, NY 100291
Electrical-Electronics Engineering Department, Izmir University of Economics, Balcova, Turkey1
Department of Computer Science, Solapur University, Solapur, India1
Computer Vision Research Group, School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia1
Department of Information Technology, Netaji Subhas Engineering College, Kolkata, India1
Computer Engineering College, Jimei University, Xiamen, China1
Fujian Key Laboratory of the Brain-like Intelligent Systems, Xiamen, China1
School of Information, Hunan University of Humanities, Science and Technology, Loudi, China1
Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia1
School of Information and Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Korea1
Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea1
Dept. of Computer Science and Information Engineering, Providence University, Taichung, Taiwan1
360 AI Institute, Beijing, China1
NPU-VUB Joint AVSP Research Lab, Vrije Universitiet Brussel (VUB), Department of Electronics & Informatics (ETRO) Pleinlaan 2, 1050 Brussel, Belgium1
IRISA, University of Rennes 11
Research Institution of Intelligent Control and Testing, Graduate School of Tsinghua University at Shenzhen, 518055, China1
Commonwealth Scientific and Industrial Research Organization (CSIRO)1
Indiana University-Bloomington, USA1
Key Laboratory of Medical Image Computing (Northeastern University), Ministry of Education, Shenyang, China1
Clínica Otocenter, Teresina, Piauí, Brasil1
Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing, China1
Nanjing University of Posts and Telecommunications, Nanjing, China1
Grupo de Aplicacion de Telecomunicaciones Visuales, Universidad Politecnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain1
Department of Management Information Systems, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany1
Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India1
Amrita E-Learning Research Laboratory and the Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, India1
Department of ECE, PEC University of Technology, Chandigarh, India1
Biomedical Instrumentation (V-02), CSIR-Central Scientific Instruments Organisation (CSIO)|, Chandigarh, India1
CEERI, Pilani, India1
MNIT, Jaipur, India1
Department of Arts and Humanities, College of Business, Arts and Social Sciences, Brunel University London, Uxbridge, UK1
Department of Design, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK1
Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India1
NTT Service Evolution Laboratories, Kanagawa, Japan1
Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia1
Dept. of Comput. Sci., North Carolina Univ., Wilmington, NC, USA1
University of Washington &Microsoft, Seattle, WA, USA1
Departamento de Informtica e Matemtica Aplicada/University of Rio Grande do Norte, Natal, Brazil1
Computer Engineering Department, Girne American University, Kyrenia, Cyprus 901
Cornell University & Facebook Inc., New York, NY, USA1
School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing, China1
Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Fuzhou, China1
School of Technology, Nanjing Audit University, Nanjing, China1
Adobe Research Department, Adobe Systems Inc, San Jose, CA1
Integrated Circuits and Electronics Laboratory, Department of Engineering, Aarhus University, Denmark1
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology (ICT), CAS, Beijing, China1
Dept. of Comput. Sci., California Inst. of Technol., Pasadena, CA, USA1
Utechzone Co. Ltd., New Taipei City, Taiwan 2351
Department of Cognitive Science, University of California, San Diego, CA, USA1
Department of Electronic Engineering Shanghai Jiao Tong University1
Innovations Kontakt Stelle (IKS) Hamburg, Hamburg University of Applied Sciences1
School of Engineering and Computing, University of the West of Scotland1
Computer Science Department, Central Washington University (CWU)1
ICT Center, CSIRO1
Technische Universität München, München, Germany1
Electrical Engineering and Computer Science, School of Engineering, University of California at Merced, Merced, USA1
Data61, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, Australia1
Department of Electronics and Communication Engineering, Faculty of Electrical & Electronic Engineering, Khulna University of Engineering & Technology, Bangladesh1
Pennsylvania State University, University Park, PA1
University of Sao Paulo1
School of Software, Henan University, Kaifeng, China1
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China1
Department of Electrical Engineering, Computer Vision Laboratory, Linköping University, Linköping, Sweden1
Computer Vision Research Laboratory, Electrical Engineering Faculty, Sahand University of Technology, Tabriz, Iran1
Treelogic, Technological Scientific Park of Asturias, Llanera, Spain1
Department of Computer Science and Engineering, University of Oviedo, Gijón, Spain1
Fundación CTIC (Technological Center), Technological Scientific Park of Gijón, Gijón, Spain1
Department of Computer Science, Madrid Open University, Madrid, Spain1
Department of Research and Diagnostic Methods, Faculty of Education, Pontificia University of Salamanca, Salamanca, Spain1
Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan1
Dept. of Information Engineering, Faculty of Engineering, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan1
Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku Niigata, 950-2181, Japan, +81 25 262 74991
NTNU, Norway1
Institute of Informatics, Wroclaw University of Technology, Wroclaw, Poland1
Polish-Japanese Institute of Information Technology, Warszawa, Poland1
Faculty of Applied Informatics and Mathematics, Department of Informatics, Warsaw University of Life Sciences (SGGW), Warsaw, Poland1
Polish-Japanese Institute of Information Technology, Warsaw, Poland1
FernUniversität , Hagen, Germany1
Universidad Tecnica Federico Santa Maria , Valparaiso, Chile1
Staffordshire University , Staffordshire, United Kingdom1
Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Malaysia1
University of Massachusetts at Amherst, Amherst, MA, USA1
Department of Engineering and MaintenanceChina Mobile Group, Jiangsu Company, Ltd., Changzhou, China1
Indian Statistical Institute, Kolkata 7001081
Departament d’Informàtica, Universitat de Valencia, Valencia, Spain1
Department of Mathematics and Computer Science, Gannan Normal University, Ganzhou, People’s Republic of China1
National Laboratory of Pattern Recognition, Beijing, China1
Quang Binh University, Dong Hoi City, Vietnam1
School of Mathematics and Information Technology, Nanjing Xiao Zhuang University, Nanjing, People’s Republic of China1
School of Computing, Electronics and Mathematics, Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK1
Institute of Computer Science, Christian-Albrechts-Universität Kiel, Kiel, Germany1
KT Future Technology Laboratory, Seoul, South Korea1
Microsoft Research Asia, Beijing, P.R. China1
Shanghai Maritime University, Shanghai, China1
Machine Intelligence Research Institute, Rockville, USA1
Orange—France Telecom Division R&D—TECH/IRIS, Cesson Sévigné Cedex, France1
IIT-Madras, Chennai, India1
Department of Computer Science, Innopolis University, Kazan, Russia1
Department of Computer Science, University of Science & Technology, Bannu, Pakistan1
Naver Labs Europe, Meylan, France1
School of Computer and Systems Sciences, JawaharLal Nehru University, New Delhi 110067, India1
Univ. La Rochelle, La Rochelle, France1
Department of Computer Science, Chu Hai College of Higher Education, Tsuen Wan, Hong Kong1
University of Salerno, Salerno, Italy1
Google, Mountain View, USA1
Computer Sciences Department, University of Wisconsin, Madison, USA1
Google, Seattle, USA1
Singapore Polytechnic, 500 Dover Road, Singapore 1396511
School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China1
Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T Block, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK1
Saudi Electronic University, Riyadh, Kingdom of Saudi Arabia1
Information Security Group, City University London, London, UK1
School of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, China1
IIIT Chittoor, SriCity, Andhra Pradesh, India1
Department of Information Engineering, Henan University of Science and Technology, Luoyang, China1
Department of mechatronic technology of National Taiwan Normal University1
Department of Electrical Engineering and Computer Science, Colorado School of Mines, Golden, CO, USA1
The Image Processing and Analysis Laboratory (LAPI), University “Politehnica” of Bucharest, 313 Splaiul Independeţei, Bucharest, Romania1
Division of Digital Media Engineering, Sang-Myung University, Suwon, Republic of Korea1
Facebook AI Research (FAIR), Menlo Park, USA1
Princeton University &Microsoft, Princeton, NJ, USA1
Microsoft &University of Washington, Redmond, WA, USA1
Intel Labs, Pittsburgh PA1
Dept. of Inf. Network Technol., Hsiuping Inst. of Technol., Taichung, Taiwan1
Alibaba Group, Zhejiang, People’s Republic of China1
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute Troy, Troy, USA1
Key Lab of Computing and Communication Software of Anhui Province School of Computer Science and Technology, University of Science and Technology of China Hefei, Anhui, People’s Republic of China1
School of ComputingNational University of Singapore1
Dept. of EE, UESTC, 2006 Xiyuan Ave, Chengdu, Sichuan 611731, China1
Dept. of Radiation Oncology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA1
Dept. of Electrical & Computer Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA1
University of Nottingham (Malaysia Campus), Malaysia1
South Valley University, Qena, Egypt1
Film Department ELTE University, Budapest, Hungary1
Department of Computer Science & Engineering, Tripura University (A Central University), Suryamaninagar-799022, Tripura, India1
Gipsa-Lab, Saint Martin d’Heres, France1
ICA Laboratory, Grenoble, France1
School of Computing and Electrical Engineering, IIT Mandi, H.P, 175001, India1
AICTE Emeritus Fellow,  1
Department of Computer Science & Engineering, GCELT, Kolkata, India1
Chinese University of Hong Kong, Hong Kong1
Department of Computer System and Communication, Faculty of Information and Communication, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Malaysia1
Division Télécom, Centre de Développement des Technologies Avancées - CDTA, Algiers, Algeria1
School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland1
Baidu Research - Institute of Deep Learning, Sunnyvale, USA1
Jiaxing University, Jiaxing, China1
Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. zhangxiaoxun@bit.edu.cn1
Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. jiayunde@bit.edu.cn1
Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, CHINA. xushuang@bit.edu.cn1
Department of Electronics and Communication, University of Allahabadm Allahabad, India 2110021
Department of Business Computer, Faculty of Management Science, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand1
Yahoo! Research1
Department of Mathematics and Computer Science, University of Cagliari, Italy1
Universidad de León, León, Spain1
Elektronik ve Haberleşme Mühendisliği Bölümü1
Robert Bosch Engineering and Business Solutions Limited, Bangalore, India1
Department of Instrumentation and Control Engineering, PSG College of Technology, Coimbatore, India1
China Airborne Missile Academy, Luoyang, China1
Electronic Information Engineering College, Henan University of Science and Technology, Luoyang, China1
School of Electronic and Information Engineering, Inner Mongolia University of Science and Technology, Baotou, People’s Republic of China1
Istituto Italiano di Tecnologia & Università di Verona, Genova, Italy1
Istituto Italiano di Tecnologia (IIT), Genova, Italy1
Office of Safety Research and Development, Federal Highway Administration, U.S. Department of Transportation, Virginia, USA1
Xinjiang Vocational and Technical College of Communications, Wulumuqi, People’s Republic of China1
College of Mathematics and Informatics, South China Agricultural University, China1
Curtin University Department of Mechanical Engineering, Perth, Western Australia 60121
Department of Information Engineering, HeNan Radio and Television University, Zhengzhou, People’s Republic of China1
Computer Science Department, School of Information Science and Engineering, Xiamen, University, Xiamen, People’s Republic of China1
PLA University of Science and Technology, China1
Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, USA1
School of Electronics and Computer Eng., Chonnam National University, Gwangju, Korea1
FAST, Supélec, Avenue de la Boulaie, Cesson-Sévigné, France1
ISIR laboratory, Pierre and Marie Curie university, Paris Cedex 05, France1
Centre for Visual Computing, Faculty of Engineering and Informatics, University of Bradford, Bradford, UK1
Amsterdam University College, Amsterdam, The Netherlands1
Key Laboratory of Intelligent Information Processing, Shandong Normal University, Jinan, China1
School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China1
Institute of Life Sciences, Shandong Normal University, Jinan, China1
School of Information Science and Engineering, Shandong Normal University, Jinan, China1
FEECS, Department of Computer Science, Technical University of Ostrava, Ostrava-Poruba, Czech Republic1
ECE, Department MSIT, C-4 Janakpuri, New Delhi, India1
Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA1
Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan. e-mail: chihming.fu@gmail.com1
Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan; Informatics Department, Fo-Guang University, I-Lan, Taiwan. e-mail: clhuang@ee.nthu.edu.tw1
Electrical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan1
Department of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China1
University of California at Los Angeles, Los Angeles, CA, USA1
Department of Physics, Tripura University (A Central University), Suryamaninagar, India1
Department of Computer Science and Engineering, Tripura University (A Central University), Suryamaninagar, India1
Pontifical Catholic University of Minas Gerais - Department of Computer Science, R. Dom Jose Gaspar, 500, Belo Horizonte MG, 30535901, Brazil1
Department of Statistics and Operational Research, Faculty of Mathematics, Complutense University of Madrid, Madrid, Spain1
Dept. of Mathematics and Computer Science, University of Udine, Italy1
LIMSI-CNRS, Orsay Cedex, France1
Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy1
Faculty of Information Sciences and Engineering, Management and Science University, Selangor, Malaysia1
UTM-Big Data Center, Universiti Teknologi Malaysia, Johor Bahru, Malaysia1
Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia1
Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia1
LAMIA, EA 4540, University of French West Indies and Guyana, Guadeloupe, France1
ISIR, UPMC Univ Paris 06, CNRS, Paris, France1
Merchant Marine College, Shanghai Maritime University, Shanghai 201306, PR China1
Department of Informatics, King’s College London, London, UK1
Department of Electrical Engineering, KAIST, Korea1
Department of New Media, Korean German Institute of Technology, Korea1
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy1
Pontifical Catholic Univ of Rio de Janei, Department of Informatics, Rio de Janeiro, Brazil1
Department of Informatics, Pontifical Catholic Univ of Rio de Janei, Rio de Janeiro, Brazil1
School of Computing Sciences and Informatics, University of Cincinnati, Cincinnati, USA1
Universiti Kuala Lumpur, Kedah1
Sudan University of Science and Technology, College of Computer Science and Information Technology, Khartoum - Sudan1
LMU Munich, Germany and Munich University of Applied Sciences, Germany1
Department of Electric and Electronic Engineering, Avrasya University, Trabzon, Turkey1
ACM Professional Specialist in Artificial Intelligence1
School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China1
University of Washington and Google Inc.1
Google Inc.1
CCCE, Nankai University Jinnan Campus, Tianjin, China1
Department of Computer Science, VHNSN College, Virudhunagar, India1
Department of Computer Science, ANJA College, Sivakasi, India1
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology Tsinghua University, Beijing, China1
Foundation for Research & Technology – Hellas, Heraklion, Crete, Greece1
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands1
Ruhr-Universität Bochum, Bochum, Germany1
Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No.1, Tonantzintla, Puebla, México. CP 728401
Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, People’s Republic of China1
Department of Mechanical Engineering, Universiti Tenaga Nasional Km 7, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia1
Dept. of Electron. Eng., Hannam Univ., Daejeon, South Korea1
Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Zhejiang, China1
Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada1
Laboratoire MIA, University of La Rochelle, La Rochelle, France1
Fraunhofer Institute for Telecommunications, Berlin, Germany1
Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany1
Siemens AG, Corporate Technology, Munich, Germany1
ECIT, School of Electronics, Electrical Engineering & Computer Science, Queen's University Belfast, Belfast, UK1
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India1
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran1
Luoyang Electro-Optical Equipment Research Institute, Luoyang, People’s Republic of China1
Technological Educational Institute of Sterea Ellada, Psahna, Halkida, Greece1
National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece1
University of Maastricht, Maastricht, The Netherlands1
Centre of Research and Technology Hellas, Thermi, Thessaloniki, Greece1
Department of Electronics and Communication Engineering, P.P.G. Institute of Technology, Coimbatore, India1
Department of Electronics and Communication Engineering, Institute of Road and Transport Technology, Erode, India1
Department of Computer Science, Banasthali Vidyapith, Banasthali, India1
Computer Science and Engineering Department, SP Memorial Institute of Technology, Kaushambi, India1
Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China1
Fujifilm Software, San Jose, USA1
Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis, Singapore 1386321
HTC Research, Beijing, China1
QCIS, University of Technology, Sydney, Australia1
Interuniversity Microelectronics Centre, Heverlee, Belgium1
NPU-VUB Joint AVSP Lab, Department ETRO, Vrije Universiteit Brussel (VUB), Brussels, Belgium1
Shaanxi Key Laboratory on Speech and Image Information Processing, Xi’an, China1
NPU-VUB Joint AVSP Lab, School of Computer Science, Northwestern Polytechnical University (NPU), Xi’an, China1
Institute of Electronics and Computer Science, Riga, Latvia1
Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106 USA1
Psychology Department, University of California, Santa Barbara, CA 93106 USA1
Dept. of Comp. Sci. and Inf. Eng, National United University, Miaoli, Taiwan1
School of Control Science and Engineering DUT, Dalian, China1
Information Technology R&D Center, Mitsubishi Electric Corporation, Kamakura, Japan1
School of Information Science and Engineering, Hunan city University, Yiyang, China1
KU Leuven, ESAT - PSI, iMinds, Leuven, Belgium1
Max-Planck-Institut für Informatik, Saarbrücken, Germany1
Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran1
University of IIllinois, Urbana-Champaign1
Zhejiang University & Alibaba Group, Hangzhou, China1
Laboratory LIM, Department of Computer Science, Faculty of Sciences and Technologies, University Hassan II, Casablanca-Morocco1
Electrical Engineering Department, Yazd University, Yazd, Iran1
School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China1
Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin, China1
Adjunct, Effat University, Jeddah, Saudi Arabia1
School of Computer Science, Wuyi University, Jiangmen, China1
Snapchat Research, Venice, CA902911
Department of CSE, University at Buffalo (SUNY), NY 14260, USA1
School of Information and Engineering, Jinhua Polytechnic, Jinhua, China1
Department of Computer Science and Engineering, University of Texas, Arlington, USA1
School of Medical Science, Jinhua Polytechnic, Jinhua, China1
S. S. College of Business Studies, University of Delhi, Delhi, India1
School of Computer & System Sciences, Jawaharlal Nehru University, New Delhi, India1
Department of Computer Science and Engineering, National Institute of Technology, Uttarakhand, India1
Baidu Online Network Technology (Beijing) Co. Ltd, Beijing, China1
Faculty of Engineering and Computing, Coventry University, UK1
Dept. of Theoretical Electrical Engineering, Technical University of Sofia, Sofia, Bulgaria1
Department of Electronics and Communication Engineering, National Institute of Technology Trichy, Trichy 620015, India1
Lawrence Berkeley National Laboratory, Berkeley, USA1
No.1 Senior Middle School of Wendeng District, Weihai, China1
Standards & Metrology Research Institute of CARS, Beijing, China1
College of Information Science & Technology, Hebei Agricultural University, Baoding, China1
NOVA Laboratory for Computer Science and Informatics, NOVA-LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal1
Amazon, Berkshire, U.K.1
Tianjin Universtiy, Tianjin, China1
University of Lancaster, Lancaster, United Kingdom1
University of Helsinki, Helsinki, Finland1
Intelligent and Interactive Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria1
Signal and Image Exploitation (INTELSIG), Montefiore Institute, University of Liège, Liège, Belgium1
Megvii Inc., Beijing, China1
Department of Informatics, Modeling, Electronics, and Systems, University of Calabria, Rende, Italy1
School of Materials Science and Engineering, Central South University, Changsha, China1
Institute of Energy, Jiangxi Academy of Sciences, Nanchang, China1
**1
Electrical and Electronic Engineering Department, Faculty of Engineering, Shahed University, Tehran, Iran1
College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, China1
Dept. of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea1
School of Mechanical and Electrical Engineering, Shandong Management University, Jinan, China1
School of Information Science and Technology, Shandong Normal University, Jinan, China1
National Institute of Advanced Industrial Science Technology, Japan1
Tilburg center for Cognition and Communication, Tilburg University, Tilburg, The Netherlands1
Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Colombia1
School of Science, Southwest Petroleum University, Chengdu, China1
Infosys Limited, Bhubaneswar, India1
School of Computer Science and Engineering, Tianjin University of Technology, China1
Department of Computer Science, University of Brasília, DF, Brazil 70910-9001
Department of Mechanical Engineering, University of Brasília, DF, Brazil 70910-9001
LIAMA, French National Institute for Research in Computer Science and Control, Paris, France1
Leiden University, Leiden, The Netherlands1
TNO, The Hague, The Netherlands1
City University, Kowloon Tong, Hong Kong1
Radboud University, EC Nijmegen, The Netherlands1
TNO, Oude Waalsdorperweg, AK The Hague, The Netherlands1
Liaocheng University, Liaocheng, China1
Northwestern Polytechnic University, Xi’an, China1
University of Science and Technology Beijing, Beijing, China1
Faculty of Information Engineering, China University of Geosciences, Wuhan, China1
China University of Geosciences Wuhan, China1
University of Udine, Udine, Italy1
INRS-EMT, Montreal, Canada1
School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China1
School of Computer Science Carnegie Mellon University Pittsburgh, PA, 15213, USA1
College of Information and Technology, Incheon National University, Incheon, Korea1
Tianjin University & University of South Carolina, Tianjin, China1
School of Electronics Engineering, Kyungpook National University, Taegu, South Korea1
Department of Electrical & Electronics Engineering, Kalasalingam University, Krishnankoil, India1
School of Computer Engineering, Hanshin University, Osan, Republic of Korea1
School of Computer Science, China University of Geosciences, Wuhan, China1
College of Computer Science and Technology of Huaqiao University, Xiamen, China1
CEA (iRSTV/BGE), INSERM (U1038), CNRS (FR3425), Université Grenoble-Alpes, Grenoble, France1
NLPR, Institute of Automation, Chinese Academy of Science, Beijing, People’s Republic of China1
Costel, Université de Rennes 2, Rennes, France1
IRISA, Université de Bretagne Sud, Vannes, France1
Research & Development, British Broadcasting Corporation (BBC), London, UK1
Faculty of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China1
Wide Eyes Technologies1
School of Information Engineering, Jiangxi Manufacturing Technology College, Nanchang, China1
Department of Computer Science and Technology, Nanjing Forestry University and Shandong University, Jinan, China1
Department of Language Studies, Nanjing Forestry University, Nanjing, China1
Department of Computer Science and Technology, Nanjing Forestry University, Nanjing, China1
Dept. of Autom. Test & Control, Harbin Inst. of Technol., China1
Department of Computer Science and Engineering, Frederick University, Nicosia, Cyprus1
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense M, Denmark1
Department of Computer Science, Digital Image Processing Laboratory, Islamia College Peshawar, Peshawar, Pakistan1
Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan1
Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan1
Technische Universität München / Imperial College London, Munich / London, England UK1
Department of Mathematics and Informatics, Ecole Centrale de Lyon, Lyon, 69134, France1
Department of Computer Science & Engineering, Jamia Hamdard University, New Delhi, India1
Department of Computer Science & Engineering, University of Minnesota-Twin Cities, Minneapolis, USA1
Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary1
School of Information Science and Technology, Northwest University, Xi’an, China1
Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands1
School of Software, Beijing Institute of Technology, Beijing, China1
University of St. Andrews, UK1
University of Tunis El Manar, Tunis, Tunisia1
College of Information and Control Engineering, China University of Petroleum, Qingdao, China1
Intel Labs Europe, Pipers Way, Swindon1
Department of Computer Systems, Universidad Politécnica de Madrid, Madrid, Spain1
Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA1
Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China1
Institute of Semiconductors, Chinese Academy of Sciences&University of Chinese Academy of Sciences, Beijing, China1
School of Computer Science and Technology, Nanjing University of Science and Technology of China, Nanjing, People’s Republic of China1
NTT Network Innovation Laboratories, Nippon Telegraph and Telephone Corp.1
Faculty of Computing and Information Technology, Setapak, Malaysia1
Computer Science Department, University of California, Los Angeles, CA, USA1
INRIA, Sophia Antipolis, France1
School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, China1
University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, SI-2000, Slovenia1
University of Tours, France1
Department of Information Management, Hwa Hsia University of Technology, New Taipei City, Taiwan1
Department of Electronic Engineering, National Ilan University, Yilan City, Taiwan1
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China1
College of Information and Electrical Engineering, Ludong University, Yantai, China1
Wakayama University1
Computer Science College, Xi’an Polytechnic University, Xi’an, China1
Computer Science Dept., SUNY Stony Brook, USA1
School of Mathematical and Physical Sciences at the University of Newcastle, Callaghan, NSW 2308, Australia1
Department of Electronics and Communication Engineering, JNTU College of Engineering, Hyderabad, India1
Department of Physics, JNTU College of Engineering, Kakinada, India1
Department of Computer Science and Engineering, JNTU College of Engineering, Kakinada, India1
Department of Telecommunications and Information Processing, Image Processing and Interpretation, UGent/iMinds, Ghent, Belgium1
School of Software, Shenyang University of Technology, Shenyang, China1
School of Engineering of UABC, University of Baja California, Tijuana, Mexico1
University of Hawaii at Hilo, HI, USA1
Yuncheng University, Shanxi Province, China1
Department of Computer Engineering, Bahçeşehir University, Istanbul, Turkey1
Sichuan University West China Hospital of Stomatology, Chengdu, China1
School of Software Engineering, Chengdu University of Information Technology, Chengdu, China1
Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China1
School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo, China1
Department of Computer Engineering, Bogaziçi University, Bebek, Turkey1
Department of Electrical and Electronic Engineering, Auckland University of Technology , Auckland, New Zealand1
Department of Computer Engineering, Qazvin Islamic Azad University , Qazvin, Iran1
Shanghai University of Finance and Economics, Shanghai, China1
Graduate School of Engineering, Nagasaki University, Nagasaki, Japan1
Institute of Management and Information Technologies, Chiba University, Chiba, Japan1
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan1
Vision Semantics Ltd1
Department of Film and Digital Media, Seokyeong University, Seoul, Republic of Korea1
Department of MediaSoftware, Sungkyul University, Anyang-si, Republic of Korea1
Pusan National University, Busan, Korea1
School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland1
Department of Computer Science, Auckland University of Technology, Auckland, New Zealand1
L3S Research Center, Leibniz Universität Hannover, Hannover, Germany1
German National Library of Science and Technology (TIB), Hannover, Germany1
taglicht media Film- & Fernsehproduktion GmbH, Köln, Germany1
Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany1
School of Mathematics and Computational Science, Anqing Normal University, Anqing, People’s Republic of China1
Concordia Institute for Information Systems Engineering Concordia University, Montreal, Canada1
IKERBASQUE, Basque Foundation for Science, Bilbao, Spain1
University of the Basque Country UPV/EHU, San Sebastian, Spain1
Computer Vision Center, Edifici “O”, Campus UAB, Bellaterra, Spain1
Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Japan1
Xiamen University of Technology, Fujian, China1
School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China1
Dept. of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Iran1
Department of Information Processing Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology Yokohama 226-8503, Japan1
Departament d’Informática, Universitat de Valéncia, Av. de la Universitat s/n, 46100-Burjassot, Spain1
Department of Computer Science, University of Texas, San Antonio, TX, USA1
University of Sheffield, Sheffield, United Kingdom1
Insititute of Automation, Chinese Academy of Sciences (CAS), Beijing, China1
School of Computing and Information Systems, University of Melbourne, Melbourne, Australia1
Sapienza Università di Roma, Roma, Italy1
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian, University, Xi'an 710071, China1
Center for Unified Biometrics and Sensors, University at Buffalo, NY, USA. tulyakov@cedar.buffalo.edu1
School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China1
College of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China1
LAMIA, EA 4540, University of French West Indies & Guyana1
Peking University & Shanghai Jaio Tong University, Beijing, China1
School of Information Technology, Madurai Kamarai University, Madurai, India1
Computer Science and Engineering, Sanjivani College of Engineering, Kopargaon, India1
Computer Science and Engineering, St.Peter’s University, Chennai, India1
Computer Science and Engineering, Panimalar Engineering College, Chennai, India1
Department of Computer Science, IT-Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal1
ITI Department Telecom Bretagne, Brest, France1
Adobe Systems Incorporated, San Jose, CA, 951101
Department of Electrical Engineering and Information Technology, TU Darmstadt, D-64283, Germany1
Institute of Neural Information Processing, University of Ulm, Ulm, Germany1
Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany1
Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran1
Defence Science and Technology Organisation (DSTO), Edinburgh, Australia1
Reallusion Corporation1
National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, Japan1
Computer Application Research Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China1
Dept. of EE, Univ. at Buffalo, SUNY, USA1
Department of Computer Science, Minjiang University, Fuzhou, People’s Republic of China1
Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., Tehran, Iran1
Institute of High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Naples, Italy1
\ No newline at end of file diff --git a/scraper/reports/first_pages.html b/scraper/reports/first_pages.html new file mode 100644 index 00000000..1fa50094 --- /dev/null +++ b/scraper/reports/first_pages.html @@ -0,0 +1,48171 @@ +First pages

First pages

611961abc4dfc02b67edd8124abb08c449f5280aExploiting Image-trained CNN Architectures +
for Unconstrained Video Classification +
Northwestern University
Evanston IL USA +
Raytheon BBN Technologies +
Cambridge, MA USA +
University of Toronto
('2815926', 'Shengxin Zha', 'shengxin zha')
('1689313', 'Florian Luisier', 'florian luisier')
('2996926', 'Walter Andrews', 'walter andrews')
('2897313', 'Nitish Srivastava', 'nitish srivastava')
('1776908', 'Ruslan Salakhutdinov', 'ruslan salakhutdinov')
szha@u.northwestern.edu +
{fluisier,wandrews}@bbn.com +
{nitish,rsalakhu}@cs.toronto.edu +
610a4451423ad7f82916c736cd8adb86a5a64c59 Volume 4, Issue 11, November 2014 ISSN: 2277 128X +
International Journal of Advanced Research in +
Computer Science and Software Engineering +
Research Paper +
Available online at: www.ijarcsse.com +
A Survey on Search Based Face Annotation Using Weakly +
Labelled Facial Images +
Department of Computer Engg, DYPIET Pimpri, +
Savitri Bai Phule Pune University, Maharashtra India
('15731441', 'Shital A. Shinde', 'shital a. shinde')
('3392505', 'Archana Chaugule', 'archana chaugule')
6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2Complex Bingham Distribution for Facial +
Feature Detection +
Eslam Mostafa1,2 and Aly Farag1 +
CVIP Lab, University of Louisville, Louisville, KY, USA
Alexandria University, Alexandria, Egypt
{eslam.mostafa,aly.farag}@louisville.edu +
61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8Greedy Feature Selection for Subspace Clustering +
Greedy Feature Selection for Subspace Clustering +
Department of Electrical & Computer Engineering +
Rice University, Houston, TX, 77005, USA
Department of Electrical & Computer Engineering +
Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Department of Electrical & Computer Engineering +
Rice University, Houston, TX, 77005, USA
Editor: +
('1746363', 'Eva L. Dyer', 'eva l. dyer')
('1745861', 'Aswin C. Sankaranarayanan', 'aswin c. sankaranarayanan')
('1746260', 'Richard G. Baraniuk', 'richard g. baraniuk')
e.dyer@rice.edu +
saswin@ece.cmu.edu +
richb@rice.edu +
61084a25ebe736e8f6d7a6e53b2c20d9723c4608
61542874efb0b4c125389793d8131f9f99995671Fair comparison of skin detection approaches on publicly available datasets +
a. DISI, Università di Bologna, Via Sacchi 3, 47521 Cesena, Italy. +
b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy
('1707759', 'Alessandra Lumini', 'alessandra lumini')
('1804258', 'Loris Nanni', 'loris nanni')
61f93ed515b3bfac822deed348d9e21d5dffe373Deep Image Set Hashing +
Columbia University
Columbia University
('1710567', 'Jie Feng', 'jie feng')
('2602265', 'Svebor Karaman', 'svebor karaman')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
jiefeng@cs.columbia.edu +
svebor.karaman@columbia.edu, sfchang@ee.columbia.edu +
6180bc0816b1776ca4b32ced8ea45c3c9ce56b47Fast Randomized Algorithms for Convex Optimization and +
Statistical Estimation +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2016-147 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-147.html +
August 14, 2016 +
('3173667', 'Mert Pilanci', 'mert pilanci')
61f04606528ecf4a42b49e8ac2add2e9f92c0defDeep Deformation Network for Object Landmark +
Localization +
NEC Laboratories America, Department of Media Analytics +
('39960064', 'Xiang Yu', 'xiang yu')
('46468682', 'Feng Zhou', 'feng zhou')
{xiangyu,manu}@nec-labs.com, zhfe99@gmail.com +
612075999e82596f3b42a80e6996712cc52880a3CNNs with Cross-Correlation Matching for Face Recognition in Video +
Surveillance Using a Single Training Sample Per Person +
University of Texas at Arlington, TX, USA
2École de technologie supérieure, Université du Québec, Montreal, Canada +
('3046171', 'Mostafa Parchami', 'mostafa parchami')
('2805645', 'Saman Bashbaghi', 'saman bashbaghi')
('1697195', 'Eric Granger', 'eric granger')
mostafa.parchami@mavs.uta.edu, bashbaghi@livia.etsmtl.ca and eric.granger@etsmtl.ca +
61efeb64e8431cfbafa4b02eb76bf0c58e61a0faMerging Datasets Through Deep learning +
IBM Research +
Yeshiva University
IBM Research +
('35970154', 'Kavitha Srinivas', 'kavitha srinivas')
('51428397', 'Abraham Gale', 'abraham gale')
('2828094', 'Julian Dolby', 'julian dolby')
61e9e180d3d1d8b09f1cc59bdd9f98c497707effSemi-supervised learning of +
facial attributes in video +
1INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Sup´erieure, +
ENS/INRIA/CNRS UMR 8548 +
University of Oxford
('1877079', 'Neva Cherniavsky', 'neva cherniavsky')
('1785596', 'Ivan Laptev', 'ivan laptev')
('1782755', 'Josef Sivic', 'josef sivic')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
6193c833ad25ac27abbde1a31c1cabe56ce1515bTrojaning Attack on Neural Networks +
Purdue University, 2Nanjing University
('3347155', 'Yingqi Liu', 'yingqi liu')
('2026855', 'Shiqing Ma', 'shiqing ma')
('3216258', 'Yousra Aafer', 'yousra aafer')
('2547748', 'Wen-Chuan Lee', 'wen-chuan lee')
('3293342', 'Juan Zhai', 'juan zhai')
('3155328', 'Weihang Wang', 'weihang wang')
('1771551', 'Xiangyu Zhang', 'xiangyu zhang')
liu1751@purdue.edu, ma229@purdue.edu, yaafer@purdue.edu, lee1938@purdue.edu, zhaijuan@nju.edu.cn, +
wang1315@cs.purdue.edu, xyzhang@cs.purdue.edu +
614a7c42aae8946c7ad4c36b53290860f62564411 +
Joint Face Detection and Alignment using +
Multi-task Cascaded Convolutional Networks +
('3393556', 'Kaipeng Zhang', 'kaipeng zhang')
('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')
('32787758', 'Zhifeng Li', 'zhifeng li')
('33427555', 'Yu Qiao', 'yu qiao')
614079f1a0d0938f9c30a1585f617fa278816d53Automatic Detection of ADHD and ASD from Expressive Behaviour in +
RGBD Data +
School of Computer Science, The University of Nottingham
2Nottingham City Asperger Service & ADHD Clinic +
Institute of Mental Health, The University of Nottingham
('2736086', 'Shashank Jaiswal', 'shashank jaiswal')
('1795528', 'Michel F. Valstar', 'michel f. valstar')
('38690723', 'Alinda Gillott', 'alinda gillott')
('2491166', 'David Daley', 'david daley')
0d746111135c2e7f91443869003d05cde3044bebPARTIAL FACE DETECTION FOR CONTINUOUS AUTHENTICATION +
(cid:63)Department of Electrical and Computer Engineering and the Center for Automation Research, +
Rutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ
UMIACS, University of Maryland, College Park, MD
§Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 +
('3152615', 'Upal Mahbub', 'upal mahbub')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('2406413', 'Brandon Barbello', 'brandon barbello')
('9215658', 'Rama Chellappa', 'rama chellappa')
umahbub@umiacs.umd.edu, vishal.m.patel@rutgers.edu, +
dchandra@google.com, bbarbello@google.com, rama@umiacs.umd.edu +
0da75b0d341c8f945fae1da6c77b6ec345f47f2a121 +
The Effect of Computer-Generated Descriptions on Photo- +
Sharing Experiences of People With Visual Impairments +
YUHANG ZHAO, Information Science, Cornell Tech, Cornell University
SHAOMEI WU, Facebook Inc. +
LINDSAY REYNOLDS, Facebook Inc. +
SHIRI AZENKOT, Information Science, Cornell Tech, Cornell University
Like sighted people, visually impaired people want to share photographs on social networking services, but +
find it difficult to identify and select photos from their albums. We aimed to address this problem by +
incorporating state-of-the-art computer-generated descriptions into Facebook’s photo-sharing feature. We +
interviewed 12 visually impaired participants to understand their photo-sharing experiences and designed +
a photo description feature for the Facebook mobile application. We evaluated this feature with six +
participants in a seven-day diary study. We found that participants used the descriptions to recall and +
organize their photos, but they hesitated to upload photos without a sighted person’s input. In addition to +
basic information about photo content, participants wanted to know more details about salient objects and +
people, and whether the photos reflected their personal aesthetic. We discuss these findings from the lens +
of self-disclosure and self-presentation theories and propose new computer vision research directions that +
will better support visual content sharing by visually impaired people. +
CCS Concepts: • Information interfaces and presentations → Multimedia and information systems; • +
Computer and society → Social issues +
impairments; computer-generated descriptions; SNSs; photo sharing; self-disclosure; self- +
KEYWORDS +
Visual +
presentation +
ACM Reference format: +
2017. The Effect of Computer-Generated Descriptions On Photo-Sharing Experiences of People With Visual +
Impairments. Proc. ACM Hum.-Comput. Interact. 1, 1. 121 (January 2017), 24 pages. +
DOI: 10.1145/3134756 +
1 INTRODUCTION +
Sharing memories and experiences via photos is a common way to engage with others on social +
networking services (SNSs) [39,46,51]. For instance, Facebook users uploaded more than 350 +
million photos a day [24] and Twitter, which initially supported only text in tweets, now has +
more than 28.4% of tweets containing images [39]. Visually impaired people (both blind and low +
vision) have a strong presence on SNS and are interested in sharing photos [50]. They take +
photos for the same reasons that sighted people do: sharing daily moments with their sighted +
+
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee +
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and +
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. +
0d88ab0250748410a1bc990b67ab2efb370ade5dAuthor(s) : +
ERROR HANDLING IN MULTIMODAL BIOMETRIC SYSTEMS USING +
RELIABILITY MEASURES (ThuPmOR6) +
(EPFL, Switzerland) +
(EPFL, Switzerland) +
(EPFL, Switzerland) +
(EPFL, Switzerland) +
Plamen Prodanov +
('1753932', 'Krzysztof Kryszczuk', 'krzysztof kryszczuk')
('1994765', 'Jonas Richiardi', 'jonas richiardi')
('2439888', 'Andrzej Drygajlo', 'andrzej drygajlo')
0db43ed25d63d801ce745fe04ca3e8b363bf3147Kernel Principal Component Analysis and its Applications in +
Face Recognition and Active Shape Models +
Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 USA
('4019552', 'Quan Wang', 'quan wang')wangq10@rpi.edu +
0daf696253a1b42d2c9d23f1008b32c65a9e4c1eUnsupervised Discovery of Facial Events +
CMU-RI-TR-10-10 +
May 2010 +
Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 +
c(cid:13) Carnegie Mellon University
('1757386', 'Feng Zhou', 'feng zhou')
0d538084f664b4b7c0e11899d08da31aead87c32Deformable Part Descriptors for +
Fine-grained Recognition and Attribute Prediction +
Forrest Iandola1 +
ICSI / UC Berkeley 2Brigham Young University
('40565777', 'Ning Zhang', 'ning zhang')
('2071606', 'Ryan Farrell', 'ryan farrell')
('1753210', 'Trevor Darrell', 'trevor darrell')
1{nzhang,forresti,trevor}@eecs.berkeley.edu +
2farrell@cs.byu.edu +
0dccc881cb9b474186a01fd60eb3a3e061fa6546Effective Face Frontalization in Unconstrained Images +
The open University of Israel. 2Adience
Figure 1: Frontalized faces. Top: Input photos; bottom: our frontalizations, +
obtained without estimating 3D facial shapes. +
“Frontalization” is the process of synthesizing frontal facing views of faces +
appearing in single unconstrained photos. Recent reports have suggested +
that this process may substantially boost the performance of face recogni- +
tion systems. This, by transforming the challenging problem of recognizing +
faces viewed from unconstrained viewpoints to the easier problem of rec- +
ognizing faces in constrained, forward facing poses. Previous frontalization +
methods did this by attempting to approximate 3D facial shapes for each +
query image. We observe that 3D face shape estimation from unconstrained +
photos may be a harder problem than frontalization and can potentially in- +
troduce facial misalignments. Instead, we explore the simpler approach of +
using a single, unmodified, 3D surface as an approximation to the shape of +
all input faces. We show that this leads to a straightforward, efficient and +
easy to implement method for frontalization. More importantly, it produces +
aesthetic new frontal views and is surprisingly effective when used for face +
recognition and gender estimation. +
Observation 1: For frontalization, one rough estimate of the 3D facial shape +
seems as good as another, demonstrated by the following example: +
Figure 2: Frontalization process. (a) facial features detected on a query +
face and on a reference face (b) which was produced by rendering a tex- +
tured 3D, CG model (c); (d) 2D query coordinates and corresponding 3D +
coordinates on the model provide an estimated projection matrix, used to +
back-project query texture to the reference coordinate system; (e) estimated +
self-occlusions shown overlaid on the frontalized result (warmer colors re- +
flect more occlusions.) Facial appearances in these regions are borrowed +
from corresponding symmetric face regions; (f) our final frontalized result. +
The top row shows surfaces estimated for the same query (left) by Hass- +
ner [2] (mid) and DeepFaces [6] (right). Frontalizations are shown at the +
bottom using our single-3D approach (left), Hassner (mid) and DeepFaces +
(right). Clearly, both surfaces are rough approximations to the facial shape. +
Moreover, despite the different surfaces, all results seem qualitatively simi- +
lar, calling to question the need for shape estimation for frontalization. +
Result 1: A novel frontalization method using a single, unmodified 3D ref- +
erence shape is described in the paper (illustrated in Fig. 2). +
Observation 2: A single, unmodified 3D reference shape produces aggres- +
sively aligned faces, as can be observed in Fig. 3. +
Result 2: Frontalized, strongly aligned faces elevate LFW [5] verification +
accuracy and gender estimation rates on the Adience benchmark [1]. +
Conclusion: On the role of 2D appearance vs. 3D shape in face recognition, +
our results suggest that 3D shape estimation may be unnecessary. +
('1756099', 'Tal Hassner', 'tal hassner')
('35840854', 'Shai Harel', 'shai harel')
('1753918', 'Eran Paz', 'eran paz')
('1792038', 'Roee Enbar', 'roee enbar')
0d467adaf936b112f570970c5210bdb3c626a717
0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306Review of Perceptual Resemblance of Local +
Plastic Surgery Facial Images using Near Sets +
1,2 Department of Computer Technology, +
YCCE Nagpur, India +
('9083090', 'Prachi V. Wagde', 'prachi v. wagde')
('9218400', 'Roshni Khedgaonkar', 'roshni khedgaonkar')
0de91641f37b0a81a892e4c914b46d05d33fd36eRAPS: Robust and Efficient Automatic Construction of Person-Specific +
Deformable Models +
∗Department of Computing, +
Imperial College London
180 Queens Gate, +
†EEMCS, +
University of Twente
Drienerlolaan 5, +
London SW7 2AZ, U.K. +
7522 NB Enschede, The Netherlands +
('3320415', 'Christos Sagonas', 'christos sagonas')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{c.sagonas, i.panagakis, s.zafeiriou, m.pantic}@imperial.ac.uk +
0df0d1adea39a5bef318b74faa37de7f3e00b452Appearance-Based Gaze Estimation in the Wild +
1Perceptual User Interfaces Group, 2Scalable Learning and Perception Group +
Max Planck Institute for Informatics, Saarbr ucken, Germany
('2520795', 'Xucong Zhang', 'xucong zhang')
('1751242', 'Yusuke Sugano', 'yusuke sugano')
('1739548', 'Mario Fritz', 'mario fritz')
('3194727', 'Andreas Bulling', 'andreas bulling')
{xczhang,sugano,mfritz,bulling}@mpi-inf.mpg.de +
0d3bb75852098b25d90f31d2f48fd0cb4944702bA DATA-DRIVEN APPROACH TO CLEANING LARGE FACE DATASETS +
Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore
('1702224', 'Stefan Winkler', 'stefan winkler')
0db8e6eb861ed9a70305c1839eaef34f2c85bbaf
0d0b880e2b531c45ee8227166a489bf35a528cb9Structure Preserving Object Tracking +
Computer Vision Lab, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands +
('2883723', 'Lu Zhang', 'lu zhang')
('1803520', 'Laurens van der Maaten', 'laurens van der maaten')
{lu.zhang, l.j.p.vandermaaten}@tudelft.nl +
0d3882b22da23497e5de8b7750b71f3a4b0aac6bResearch Article +
Context Is Routinely Encoded +
During Emotion Perception +
21(4) 595 –599 +
© The Author(s) 2010 +
Reprints and permission: +
sagepub.com/journalsPermissions.nav +
DOI: 10.1177/0956797610363547 +
http://pss.sagepub.com +
Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School +
('1731779', 'Lisa Feldman Barrett', 'lisa feldman barrett')
0dbf4232fcbd52eb4599dc0760b18fcc1e9546e9
0d760e7d762fa449737ad51431f3ff938d6803feLCDet: Low-Complexity Fully-Convolutional Neural Networks for +
Object Detection in Embedded Systems +
UC San Diego ∗ +
Gokce Dane +
Qualcomm Inc. +
UC San Diego +
Qualcomm Inc. +
UC San Diego +
('2906509', 'Subarna Tripathi', 'subarna tripathi')
('1801046', 'Byeongkeun Kang', 'byeongkeun kang')
('3484765', 'Vasudev Bhaskaran', 'vasudev bhaskaran')
('30518518', 'Truong Nguyen', 'truong nguyen')
stripathi@ucsd.edu +
gokced@qti.qualcomm.com +
bkkang@ucsd.edu +
vasudevb@qti.qualcomm.com +
tqn001@eng.ucsd.edu +
0d3068b352c3733c9e1cc75e449bf7df1f7b10a4Context based Facial Expression Analysis in the +
Wild +
School of Computer Science, CECS, Australian National University, Australia
http://users.cecs.anu.edu.au/∼adhall +
('1735697', 'Abhinav Dhall', 'abhinav dhall')abhinav.dhall@anu.edu.au +
0dd72887465046b0f8fc655793c6eaaac9c03a3dReal-time Head Orientation from a Monocular +
Camera using Deep Neural Network +
KAIST, Republic of Korea +
('3250619', 'Byungtae Ahn', 'byungtae ahn')
('2870153', 'Jaesik Park', 'jaesik park')
[btahn,jspark]@rcv.kaist.ac.kr, iskweon77@kaist.ac.kr +
0d087aaa6e2753099789cd9943495fbbd08437c0
0d8415a56660d3969449e77095be46ef0254a448
0dfa460a35f7cab4705726b6367557b9f7842c65Modeling Spatial-Temporal Clues in a Hybrid Deep +
Learning Framework for Video Classification +
School of Computer Science, Shanghai Key Lab of Intelligent Information Processing, +
Fudan University, Shanghai, China
('3099139', 'Zuxuan Wu', 'zuxuan wu')
('31825486', 'Xi Wang', 'xi wang')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('1743864', 'Hao Ye', 'hao ye')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
{zxwu, xwang10, ygj, haoye10, xyxue}@fudan.edu.cn +
0d14261e69a4ad4140ce17c1d1cea76af6546056Adding Facial Actions into 3D Model Search to Analyse +
Behaviour in an Unconstrained Environment +
Imaging Science and Biomedical Engineering, The University of Manchester, UK
('1753123', 'Angela Caunce', 'angela caunce')
0dbacb4fd069462841ebb26e1454b4d147cd8e98Recent Advances in Discriminant Non-negative +
Matrix Factorization +
Aristotle University of Thessaloniki
Thessaloniki, Greece, 54124 +
('1793625', 'Symeon Nikitidis', 'symeon nikitidis')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
Email: {nikitidis,tefas,pitas}@aiia.csd.auth.gr +
0db36bf08140d53807595b6313201a7339470cfeMoving Vistas: Exploiting Motion for Describing Scenes +
Department of Electrical and Computer Engineering +
Center for Automation Research, UMIACS, University of Maryland, College Park, MD
('34711525', 'Nitesh Shroff', 'nitesh shroff')
('9215658', 'Rama Chellappa', 'rama chellappa')
{nshroff,pturaga,rama}@umiacs.umd.edu +
0d781b943bff6a3b62a79e2c8daf7f4d4d6431adEmotiW 2016: Video and Group-Level Emotion +
Recognition Challenges +
Roland Goecke +
David R. Cheriton School of +
Human-Centred Technology +
David R. Cheriton School of +
Computer Science +
University of Waterloo
Canada +
University of Canberra
Centre +
Australia +
Computer Science +
University of Waterloo
Canada +
Tom Gedeon +
David R. Cheriton School of +
Information Human Centred +
Computer Science +
University of Waterloo
Canada +
Australian National University
Computing +
Australia +
('1735697', 'Abhinav Dhall', 'abhinav dhall')
('2942991', 'Jyoti Joshi', 'jyoti joshi')
('1773895', 'Jesse Hoey', 'jesse hoey')
abhinav.dhall@uwaterloo.ca +
roland.goecke@ieee.org +
jyoti.joshi@uwaterloo.ca +
jhoey@cs.uwaterloo.ca +
tom.gedeon@anu.edu.au +
0d735e7552af0d1dcd856a8740401916e54b7eee
0d06b3a4132d8a2effed115a89617e0a702c957a
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e
0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1aDetection and Tracking of Faces in Videos: A Review +
© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939 +
of Related Work +
1Student, 2Assistant Professor +
1, 2Dept. of Electronics & Comm., S S I E T, Punjab, India +
________________________________________________________________________________________________________ +
('48816689', 'Seema Saini', 'seema saini')
0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2University of Nebraska - Lincoln
US Army Research +
2015 +
U.S. Department of Defense +
Effects of emotional expressions on persuasion +
University of Southern California
University of Southern California
University of Southern California
University of Southern California
Follow this and additional works at: http://digitalcommons.unl.edu/usarmyresearch +
Wang, Yuqiong; Lucas, Gale; Khooshabeh, Peter; de Melo, Celso; and Gratch, Jonathan, "Effects of emotional expressions on +
persuasion" (2015). US Army Research. Paper 340. +
http://digitalcommons.unl.edu/usarmyresearch/340 +
('2522587', 'Yuqiong Wang', 'yuqiong wang')
('2419453', 'Gale Lucas', 'gale lucas')
('2635945', 'Peter Khooshabeh', 'peter khooshabeh')
('1977901', 'Celso de Melo', 'celso de melo')
('1730824', 'Jonathan Gratch', 'jonathan gratch')
DigitalCommons@University of Nebraska - Lincoln +
University of Southern California, wangyuqiong@ymail.com +
This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has +
been accepted for inclusion in US Army Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. +
0da4c3d898ca2fff9e549d18f513f4898e960acaWang, Y., Thomas, J., Weissgerber, S. C., Kazemini, S., Ul-Haq, I., & +
Quadflieg, S. (2015). The Headscarf Effect Revisited: Further Evidence for a +
336. 10.1068/p7940 +
Peer reviewed version +
Link to published version (if available): +
10.1068/p7940 +
Link to publication record in Explore Bristol Research +
PDF-document +
University of Bristol - Explore Bristol Research
General rights +
This document is made available in accordance with publisher policies. Please cite only the published +
version using the reference above. Full terms of use are available: +
http://www.bristol.ac.uk/pure/about/ebr-terms.html +
Take down policy +
Explore Bristol Research is a digital archive and the intention is that deposited content should not be +
removed. However, if you believe that this version of the work breaches copyright law please contact +
• Your contact details +
Bibliographic details for the item, including a URL
• An outline of the nature of the complaint +
On receipt of your message the Open Access Team will immediately investigate your claim, make an +
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question +
from public view. +
open-access@bristol.ac.uk and include the following information in your message: +
951368a1a8b3c5cd286726050b8bdf75a80f7c37A Family of Online Boosting Algorithms +
University of California, San Diego
University of California, Merced
University of California, San Diego
('2490700', 'Boris Babenko', 'boris babenko')
('37144787', 'Ming-Hsuan Yang', 'ming-hsuan yang')
('1769406', 'Serge Belongie', 'serge belongie')
bbabenko@cs.ucsd.edu +
mhyang@ucmerced.edu +
sjb@cs.ucsd.edu +
956e9b69b3366ed3e1670609b53ba4a7088b8b7eSemi-supervised dimensionality reduction for image retrieval +
aIBM China Research Lab, Beijing, China
bTsinghua University, Beijing, China
956317de62bd3024d4ea5a62effe8d6623a64e53Lighting Analysis and Texture Modification of 3D Human +
Face Scans +
Author +
Zhang, Paul, Zhao, Sanqiang, Gao, Yongsheng +
Published +
2007 +
Conference Title +
Digital Image Computing Techniques and Applications +
DOI +
https://doi.org/10.1109/DICTA.2007.4426825 +
Copyright Statement +
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/ +
republish this material for advertising or promotional purposes or for creating new collective +
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +
this work in other works must be obtained from the IEEE. +
Downloaded from +
http://hdl.handle.net/10072/17889 +
Link to published version +
http://www.ieee.org/ +
Griffith Research Online +
https://research-repository.griffith.edu.au +
959bcb16afdf303c34a8bfc11e9fcc9d40d76b1cTemporal Coherency based Criteria for Predicting +
Video Frames using Deep Multi-stage Generative +
Adversarial Networks +
Visualization and Perception Laboratory +
Department of Computer Science and Engineering +
Indian Institute of Technology Madras, Chennai, India
('29901316', 'Prateep Bhattacharjee', 'prateep bhattacharjee')
('1680398', 'Sukhendu Das', 'sukhendu das')
1prateepb@cse.iitm.ac.in, 2sdas@iitm.ac.in +
951f21a5671a4cd14b1ef1728dfe305bda72366fInternational Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Impact Factor (2012): 3.358 +
Use of ℓ2/3-norm Sparse Representation for Facial +
Expression Recognition +
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
in +
three +
to discriminate +
it +
from +
represents emotion, +
95f26d1c80217706c00b6b4b605a448032b93b75New Robust Face Recognition Methods Based on Linear +
Regression +
Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network
Oriented Intelligent Computation, Shenzhen, Guangdong Province, China +
('2208128', 'Jian-Xun Mi', 'jian-xun mi')
('2650895', 'Jin-Xing Liu', 'jin-xing liu')
('40342210', 'Jiajun Wen', 'jiajun wen')
95f12d27c3b4914e0668a268360948bce92f7db3Interactive Facial Feature Localization +
University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
2 Adobe Systems Inc., San Jose, CA 95110, USA +
3 Facebook Inc., Menlo Park, CA 94025, USA +
('36474335', 'Vuong Le', 'vuong le')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
9547a7bce2b85ef159b2d7c1b73dea82827a449fFacial Expression Recognition Using Gabor Motion Energy Filters +
Dept. Computer Science Engineering +
UC San Diego +
Marian S. Bartlett +
Institute for Neural Computation
UC San Diego +
('4072965', 'Tingfan Wu', 'tingfan wu')
('1741200', 'Javier R. Movellan', 'javier r. movellan')
tingfan@gmail.com +
{marni,movellan}@mplab.ucsd.edu +
9513503867b29b10223f17c86e47034371b6eb4fComparison of optimisation algorithms for +
deformable template matching +
Link oping University, Computer Vision Laboratory
ISY, SE-581 83 Link¨oping, SWEDEN +
('1797883', 'Vasileios Zografos', 'vasileios zografos')zografos@isy.liu.se ⋆ +
955e2a39f51c0b6f967199942d77625009e580f9NAMING FACES ON THE WEB +
a thesis +
submitted to the department of computer engineering +
and the institute of engineering and science
of bilkent university
in partial fulfillment of the requirements +
for the degree of +
master of science +
By +
July, 2010 +
('34946851', 'Hilal Zitouni', 'hilal zitouni')
956c634343e49319a5e3cba4f2bd2360bdcbc075IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +
873 +
A Novel Incremental Principal Component Analysis +
and Its Application for Face Recognition +
('1776124', 'Haitao Zhao', 'haitao zhao')
('1768574', 'Pong Chi Yuen', 'pong chi yuen')
95ea564bd983129ddb5535a6741e72bb1162c779Multi-Task Learning by Deep Collaboration and +
Application in Facial Landmark Detection +
Laval University, Qu bec, Canada
('2758280', 'Ludovic Trottier', 'ludovic trottier')
('2310695', 'Philippe Giguère', 'philippe giguère')
('1700926', 'Brahim Chaib-draa', 'brahim chaib-draa')
ludovic.trottier.1@ulaval.ca +
{philippe.giguere,brahim.chaib-draa}@ift.ulaval.ca +
958c599a6f01678513849637bec5dc5dba592394Noname manuscript No. +
(will be inserted by the editor) +
Generalized Zero-Shot Learning for Action +
Recognition with Web-Scale Video Data +
Received: date / Accepted: date +
('2473509', 'Kun Liu', 'kun liu')
('8984539', 'Wenbing Huang', 'wenbing huang')
950171acb24bb24a871ba0d02d580c09829de372Speeding up 2D-Warping for Pose-Invariant Face Recognition +
Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany
('1804963', 'Harald Hanselmann', 'harald hanselmann')
('1685956', 'Hermann Ney', 'hermann ney')
surname@cs.rwth-aachen.de +
59be98f54bb4ed7a2984dc6a3c84b52d1caf44ebA Deep-Learning Approach to Facial Expression Recognition +
with Candid Images +
CUNY City College
Alibaba. Inc +
IBM China Research Lab
CUNY Graduate Center and City College
('40617554', 'Wei Li', 'wei li')
('1713016', 'Min Li', 'min li')
('1703625', 'Zhong Su', 'zhong su')
('4697712', 'Zhigang Zhu', 'zhigang zhu')
lwei000@citymail.cuny.edu +
mushi.lm@alibaba.inc +
suzhong@cn.ibm.com +
zhu@cs.ccny.cuny.edu +
59fc69b3bc4759eef1347161e1248e886702f8f7Final Report of Final Year Project +
HKU-Face: A Large Scale Dataset for +
Deep Face Recognition +
3035141841 +
COMP4801 Final Year Project +
Project Code: 17007 +
('40456402', 'Haoyu Li', 'haoyu li')
591a737c158be7b131121d87d9d81b471c400dbaAffect Valence Inference From Facial Action Unit Spectrograms +
MIT Media Lab +
MA 02139, USA +
MIT Media Lab +
MA 02139, USA +
Harvard University
MA 02138, USA +
Rosalind Picard +
MIT Media Lab +
MA 02139, USA +
('1801452', 'Daniel McDuff', 'daniel mcduff')
('1754451', 'Rana El Kaliouby', 'rana el kaliouby')
('2010950', 'Karim Kassam', 'karim kassam')
djmcduff@mit.edu +
kaliouby@mit.edu +
kskassam@fas.harvard.edu +
picard@mit.edu +
59bfeac0635d3f1f4891106ae0262b81841b06e4Face Verification Using the LARK Face +
Representation +
('3326805', 'Hae Jong Seo', 'hae jong seo')
('1718280', 'Peyman Milanfar', 'peyman milanfar')
59efb1ac77c59abc8613830787d767100387c680DIF : Dataset of Intoxicated Faces for Drunk Person +
Identification +
Indian Institute of Technology Ropar
Indian Institute of Technology Ropar
('46241736', 'Devendra Pratap Yadav', 'devendra pratap yadav')
('1735697', 'Abhinav Dhall', 'abhinav dhall')
2014csb1010@iitrpr.ac.in +
abhinav@iitrpr.ac.in +
590628a9584e500f3e7f349ba7e2046c8c273fcf
593234ba1d2e16a887207bf65d6b55bbc7ea2247Combining Language Sources and Robust +
Semantic Relatedness for Attribute-Based +
Knowledge Transfer +
1 Department of Computer Science, TU Darmstadt +
Max Planck Institute for Informatics, Saarbr ucken, Germany
('34849128', 'Marcus Rohrbach', 'marcus rohrbach')
('37718254', 'Michael Stark', 'michael stark')
('1697100', 'Bernt Schiele', 'bernt schiele')
59eefa01c067a33a0b9bad31c882e2710748ea24IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +
Fast Landmark Localization +
with 3D Component Reconstruction and CNN for +
Cross-Pose Recognition +
('24020847', 'Hung-Cheng Shie', 'hung-cheng shie')
('9640380', 'Cheng-Hua Hsieh', 'cheng-hua hsieh')
59e2037f5079794cb9128c7f0900a568ced14c2aClothing and People - A Social Signal Processing Perspective +
Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
2 Computer Vision Center, Barcelona, Spain +
University of Verona, Verona, Italy
('2084534', 'Maedeh Aghaei', 'maedeh aghaei')
('10724083', 'Federico Parezzan', 'federico parezzan')
('2837527', 'Mariella Dimiccoli', 'mariella dimiccoli')
('1724155', 'Petia Radeva', 'petia radeva')
('1723008', 'Marco Cristani', 'marco cristani')
59dac8b460a89e03fa616749a08e6149708dcc3aA Convergent Solution to Matrix Bidirectional Projection Based Feature +
Extraction with Application to Face Recognition ∗ +
School of Computer, National University of Defense Technology
No 137, Yanwachi Street, Kaifu District, +
Changsha, Hunan Province, 410073, P.R. China +
('3144121', 'Yubin Zhan', 'yubin zhan')
('1969736', 'Jianping Yin', 'jianping yin')
('33793976', 'Xinwang Liu', 'xinwang liu')
E-mail: {YubinZhan,JPYin,XWLiu}@nudt.edu.cn +
59e9934720baf3c5df3a0e1e988202856e1f83ceUA-DETRAC: A New Benchmark and Protocol for +
Multi-Object Detection and Tracking +
University at Albany, SUNY
2 School of Computer and Control Engineering, UCAS +
3 Department of Electrical and Computer Engineering, UCSD +
4 National Laboratory of Pattern Recognition, CASIA +
University at Albany, SUNY
Division of Computer Science and Engineering, Hanyang University
7 Electrical Engineering and Computer Science, UCM +
('39774417', 'Longyin Wen', 'longyin wen')
('1910738', 'Dawei Du', 'dawei du')
('1773408', 'Zhaowei Cai', 'zhaowei cai')
('39643145', 'Ming-Ching Chang', 'ming-ching chang')
('3245785', 'Honggang Qi', 'honggang qi')
('33047058', 'Jongwoo Lim', 'jongwoo lim')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
59d225486161b43b7bf6919b4a4b4113eb50f039Complex Event Recognition from Images with Few Training Examples +
Irfan Essa∗ +
Georgia Institute of Technology
University of Southern California
('2308598', 'Unaiza Ahsan', 'unaiza ahsan')
('1726241', 'Chen Sun', 'chen sun')
('1945508', 'James Hays', 'james hays')
uahsan3@gatech.edu +
chensun@google.com +
hays@gatech.edu +
irfan@cc.gatech.edu +
5945464d47549e8dcaec37ad41471aa70001907fNoname manuscript No. +
(will be inserted by the editor) +
Every Moment Counts: Dense Detailed Labeling of Actions in Complex +
Videos +
Received: date / Accepted: date +
('34149749', 'Serena Yeung', 'serena yeung')
('3216322', 'Li Fei-Fei', 'li fei-fei')
59c9d416f7b3d33141cc94567925a447d0662d80Universität des Saarlandes +
Max-Planck-Institut für Informatik +
AG5 +
Matrix factorization over max-times +
algebra for data mining +
Masterarbeit im Fach Informatik +
Master’s Thesis in Computer Science +
von / by +
angefertigt unter der Leitung von / supervised by +
begutachtet von / reviewers +
November 2013 +
UNIVERSITASSARAVIENSIS
('2297723', 'Sanjar Karaev', 'sanjar karaev')
('1804891', 'Pauli Miettinen', 'pauli miettinen')
('1804891', 'Pauli Miettinen', 'pauli miettinen')
('1751591', 'Gerhard Weikum', 'gerhard weikum')
59bece468ed98397d54865715f40af30221aa08cDeformable Part-based Robust Face Detection +
under Occlusion by Using Face Decomposition +
into Face Components +
Darijan Marčetić, Slobodan Ribarić +
University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
{darijan.marcetic, slobodan.ribaric}@fer.hr +
59a35b63cf845ebf0ba31c290423e24eb822d245The FaceSketchID System: Matching Facial +
Composites to Mugshots +
tedious, and may not +
('34393045', 'Hu Han', 'hu han')
('6680444', 'Anil K. Jain', 'anil k. jain')
59f325e63f21b95d2b4e2700c461f0136aecc1713070 +
978-1-4577-1302-6/11/$26.00 ©2011 IEEE +
FOR FACE RECOGNITION +
1. INTRODUCTION +
59420fd595ae745ad62c26ae55a754b97170b01fObjects as Attributes for Scene Classification +
Stanford University
('33642044', 'Li-Jia Li', 'li-jia li')
('2888806', 'Hao Su', 'hao su')
('7892285', 'Yongwhan Lim', 'yongwhan lim')
('3216322', 'Li Fei-Fei', 'li fei-fei')
599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0aHow Robust is 3D Human Pose Estimation to Occlusion? +
Visual Computing Institute, RWTH Aachen University
2Robert Bosch GmbH, Corporate Research +
('2699877', 'Timm Linder', 'timm linder')
('1789756', 'Bastian Leibe', 'bastian leibe')
{sarandi,leibe}@vision.rwth-aachen.de +
{timm.linder,kaioliver.arras}@de.bosch.com +
5922e26c9eaaee92d1d70eae36275bb226ecdb2eBoosting Classification Based Similarity +
Learning by using Standard Distances +
Departament d’Informàtica, Universitat de València +
Av. de la Universitat s/n. 46100-Burjassot (Spain) +
('2275648', 'Emilia López-Iñesta', 'emilia lópez-iñesta')
('3138833', 'Miguel Arevalillo-Herráez', 'miguel arevalillo-herráez')
('2627759', 'Francisco Grimaldo', 'francisco grimaldo')
eloi@alumni.uv.es,miguel.arevalillo@uv.es +
francisco.grimaldo@uv.es +
59d8fa6fd91cdb72cd0fa74c04016d79ef5a752bThe Menpo Facial Landmark Localisation Challenge: +
A step towards the solution +
Department of Computing +
Imperial College London
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('2814229', 'George Trigeorgis', 'george trigeorgis')
('1688922', 'Grigorios Chrysos', 'grigorios chrysos')
('3234063', 'Jiankang Deng', 'jiankang deng')
('1719912', 'Jie Shen', 'jie shen')
{s.zafeiriou, g.trigeorgis, g.chrysos, j.deng16, jie.shen07}@imperial.ac.uk +
59e75aad529b8001afc7e194e21668425119b864Membrane Nonrigid Image Registration +
Department of Computer Science +
Drexel University
Philadelphia, PA +
('1708819', 'Ko Nishino', 'ko nishino')
59d45281707b85a33d6f50c6ac6b148eedd71a25Rank Minimization across Appearance and Shape for AAM Ensemble Fitting +
2The Commonwealth Scientific and Industial Research Organization (CSIRO) +
Queensland University of Technology
('2699730', 'Xin Cheng', 'xin cheng')
('1729760', 'Sridha Sridharan', 'sridha sridharan')
('1820249', 'Simon Lucey', 'simon lucey')
1{x2.cheng,s.sridharan}@qut.edu.au +
2{jason.saragih,simon.lucey}@csiro.au +
59319c128c8ac3c88b4ab81088efe8ae9c458e07Effective Computer Model For Recognizing +
Nationality From Frontal Image +
Bat-Erdene.B +
Information and Communication Management School +
The University of the Humanities
Ulaanbaatar, Mongolia +
e-mail: basubaer@gmail.com +
59a6c9333c941faf2540979dcfcb5d503a49b91eSampling Clustering +
School of Computer Science and Technology, Shandong University, China
('51016741', 'Ching Tarn', 'ching tarn')
('2413471', 'Yinan Zhang', 'yinan zhang')
('48260402', 'Ye Feng', 'ye feng')
∗i@ctarn.io +
59031a35b0727925f8c47c3b2194224323489d68Sparse Variation Dictionary Learning for Face Recognition with A Single +
Training Sample Per Person +
ETH Zurich +
Switzerland +
('5828998', 'Meng Yang', 'meng yang')
('1681236', 'Luc Van Gool', 'luc van gool')
{yang,vangool}@vision.ee.ethz.ch +
926c67a611824bc5ba67db11db9c05626e79de961913 +
Enhancing Bilinear Subspace Learning +
by Element Rearrangement +
('38188040', 'Dong Xu', 'dong xu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('1686911', 'Stephen Lin', 'stephen lin')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
923ede53b0842619831e94c7150e0fc4104e62f7978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
1293 +
ICASSP 2016 +
92b61b09d2eed4937058d0f9494d9efeddc39002Under review in IJCV manuscript No. +
(will be inserted by the editor) +
BoxCars: Improving Vehicle Fine-Grained Recognition using +
3D Bounding Boxes in Traffic Surveillance +
Received: date / Accepted: date +
('34891870', 'Jakub Sochor', 'jakub sochor')
9264b390aa00521f9bd01095ba0ba4b42bf84d7eDisplacement Template with Divide-&-Conquer +
Algorithm for Significantly Improving +
Descriptor based Face Recognition Approaches +
Wenzhou University, China
University of Northern British Columbia, Canada
Aberystwyth University, UK
('1692551', 'Liang Chen', 'liang chen')
('33500699', 'Ling Yan', 'ling yan')
('1990125', 'Yonghuai Liu', 'yonghuai liu')
('39388942', 'Lixin Gao', 'lixin gao')
('3779849', 'Xiaoqin Zhang', 'xiaoqin zhang')
92be73dffd3320fe7734258961fe5a5f2a43390eTRANSFERRING FACE VERIFICATION NETS TO PAIN AND EXPRESSION REGRESSION +
Dept. of {Computer Science1, Electrical & Computer Engineering2, Radiation Oncology3, Cognitive Science4} +
Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
5Dept. of EE, UESTC, 2006 Xiyuan Ave, Chengdu, Sichuan 611731, China +
Tsinghua University, Beijing 100084, China
('39369840', 'Feng Wang', 'feng wang')
('40031188', 'Xiang Xiang', 'xiang xiang')
('1692867', 'Chang Liu', 'chang liu')
('1709073', 'Trac D. Tran', 'trac d. tran')
('3207112', 'Austin Reiter', 'austin reiter')
('1678633', 'Gregory D. Hager', 'gregory d. hager')
('2095823', 'Harry Quon', 'harry quon')
('1709439', 'Jian Cheng', 'jian cheng')
('1746141', 'Alan L. Yuille', 'alan l. yuille')
920a92900fbff22fdaaef4b128ca3ca8e8d54c3eLEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM +
SELECTION +
Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +
Signal Processing Laboratory (LTS4) +
Switzerland-1015 Lausanne +
('12636684', 'Elif Vural', 'elif vural')
('1703189', 'Pascal Frossard', 'pascal frossard')
9207671d9e2b668c065e06d9f58f597601039e5eFace Detection Using a 3D Model on +
Face Keypoints +
('2455529', 'Adrian Barbu', 'adrian barbu')
('3019469', 'Gary Gramajo', 'gary gramajo')
924b14a9e36d0523a267293c6d149bca83e73f3bVolume 5, Number 2, pp. 133 -164 +
Development and Evaluation of a Method +
Employed to Identify Internal State +
Utilizing Eye Movement Data +
(cid:2) Graduate School of Media and +
Governance, Keio University
(JAPAN) +
(cid:3) Faculty of Environmental +
Information, Keio University
(JAPAN) +
('31726964', 'Noriyuki Aoyama', 'noriyuki aoyama')
('1889276', 'Tadahiko Fukuda', 'tadahiko fukuda')
9282239846d79a29392aa71fc24880651826af72Antonakos et al. EURASIP Journal on Image and Video Processing 2014, 2014:14 +
http://jivp.eurasipjournals.com/content/2014/1/14 +
RESEARCH +
Open Access +
Classification of extreme facial events in sign +
language videos +
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('1738119', 'Vassilis Pitsikalis', 'vassilis pitsikalis')
('1750686', 'Petros Maragos', 'petros maragos')
92115b620c7f653c847f43b6c4ff0470c8e55dabTraining Deformable Object Models for Human +
Detection Based on Alignment and Clustering +
Department of Computer Science, +
Centre of Biological Signalling Studies (BIOSS), +
University of Freiburg, Germany
('2127987', 'Benjamin Drayer', 'benjamin drayer')
('1710872', 'Thomas Brox', 'thomas brox')
{drayer,brox}@cs.uni-freiburg.de +
928b8eb47288a05611c140d02441660277a7ed54Exploiting Images for Video Recognition with Hierarchical Generative +
Adversarial Networks +
1 Beijing Laboratory of Intelligent Information Technology, School of Computer Science, +
Big Data Research Center, University of Electronic Science and Technology of China
Beijing Institute of Technology
('3450614', 'Feiwu Yu', 'feiwu yu')
('2125709', 'Xinxiao Wu', 'xinxiao wu')
('9177510', 'Yuchao Sun', 'yuchao sun')
('2055900', 'Lixin Duan', 'lixin duan')
{yufeiwu,wuxinxiao,sunyuchao}@bit.edu.cn, lxduan@uestc.edu.cn +
926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural +
Networks +
Department of Electrical and Computer Engineering +
University of Denver, Denver, CO
('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')behzad.hasani@du.edu and mmahoor@du.edu +
92c2dd6b3ac9227fce0a960093ca30678bceb364Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +
version when available. +
Title +
On color texture normalization for active appearance models +
Author(s) +
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +
Publication +
Date +
2009-05-12 +
Publication +
Information +
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +
Texture Normalization for Active Appearance Models. Image +
Processing, IEEE Transactions on, 18(6), 1372-1378. +
Publisher +
IEEE +
Link to +
publisher's +
version +
http://dx.doi.org/10.1109/TIP.2009.2017163 +
Item record +
http://hdl.handle.net/10379/1350 +
Some rights reserved. For more information, please see the item record link above. +
Downloaded 2018-11-06T00:40:53Z +
92e464a5a67582d5209fa75e3b29de05d82c7c86Reconstruction for Feature Disentanglement in Pose-invariant Face Recognition +
Rutgers University, NJ, USA
2NEC Labs America, CA, USA +
('4340744', 'Xi Peng', 'xi peng')
('39960064', 'Xiang Yu', 'xiang yu')
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
{xpeng.cs, dnm}@rutgers.edu, {xiangyu, ksohn, manu}@nec-labs.com +
927ba64123bd4a8a31163956b3d1765eb61e4426Customer satisfaction measuring based on the most +
significant facial emotion +
To cite this version: +
most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals +
Devices (SSD 2018), Mar 2018, Hammamet, Tunisia. +
HAL Id: hal-01790317 +
https://hal-upec-upem.archives-ouvertes.fr/hal-01790317 +
Submitted on 11 May 2018 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('50101862', 'Rostom Kachouri', 'rostom kachouri')
('50101862', 'Rostom Kachouri', 'rostom kachouri')
922838dd98d599d1d229cc73896d55e7a769aa7cLearning Hierarchical Representations for Face Verification +
with Convolutional Deep Belief Networks +
Erik Learned-Miller +
University of Massachusetts
University of Michigan
University of Massachusetts
Amherst, MA +
Ann Arbor, MI +
Amherst, MA +
('3219900', 'Gary B. Huang', 'gary b. huang')
('1697141', 'Honglak Lee', 'honglak lee')
gbhuang@cs.umass.edu +
honglak@eecs.umich.edu +
elm@cs.umass.edu +
9294739e24e1929794330067b84f7eafd286e1c8Expression Recognition using Elastic Graph Matching +
21, +
21, +
21, +
, Cairong Zhou 2 +
Research Center for Learning Science, Southeast University, Nanjing 210096, China
Southeast University, Nanjing 210096, China
('40622743', 'Yujia Cao', 'yujia cao')
('40608983', 'Wenming Zheng', 'wenming zheng')
('1718117', 'Li Zhao', 'li zhao')
Email: yujia_cao@seu.edu.cn +
92fada7564d572b72fd3be09ea3c39373df3e27c
927ad0dceacce2bb482b96f42f2fe2ad1873f37aInterest-Point based Face Recognition System +
87 +
X +
Interest-Point based Face Recognition System +
Spain +
1. Introduction +
Among all applications of face recognition systems, surveillance is one of the most +
challenging ones. In such an application, the goal is to detect known criminals in crowded +
environments, like airports or train stations. Some attempts have been made, like those of +
Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success. +
The first task to be carried out in an automatic surveillance system involves the detection of +
all the faces in the images taken by the video cameras. Current face detection algorithms are +
highly reliable and thus, they will not be the focus of our work. Some of the best performing +
examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade +
algorithm (Schneiderman & Kanade, 2000). +
The second task to be carried out involves the comparison of all detected faces among the +
database of known criminals. The ideal behaviour of an automatic system performing this +
task would be to get a 100% correct identification rate, but this behaviour is far from the +
capabilities of current face recognition algorithms. Assuming that there will be false +
identifications, supervised surveillance systems seem to be the most realistic option: the +
automatic system issues an alarm whenever it detects a possible match with a criminal, and +
a human decides whether it is a false alarm or not. Figure 1 shows an example. +
However, even in a supervised scenario the requirements for the face recognition algorithm +
are extremely high: the false alarm rate must be low enough as to allow the human operator +
to cope with it; and the percentage of undetected criminals must be kept to a minimum in +
order to ensure security. Fulfilling both requirements at the same time is the main challenge, +
as a reduction in false alarm rate usually implies an increase of the percentage of undetected +
criminals. +
We propose a novel face recognition system based in the use of interest point detectors and +
local descriptors. In order to check the performances of our system, and particularly its +
performances in a surveillance application, we present experimental results in terms of +
Receiver Operating Characteristic curves or ROC curves. From the experimental results, it +
becomes clear that our system outperforms classical appearance based approaches. +
www.intechopen.com +
('35178717', 'Cesar Fernandez', 'cesar fernandez')
('3686544', 'Maria Asuncion Vicente', 'maria asuncion vicente')
('2422580', 'Miguel Hernandez', 'miguel hernandez')
929bd1d11d4f9cbc638779fbaf958f0efb82e603This is the author’s version of a work that was submitted/accepted for pub- +
lication in the following source: +
Zhang, Ligang & Tjondronegoro, Dian W. (2010) Improving the perfor- +
mance of facial expression recognition using dynamic, subtle and regional +
features. +
In Kok, WaiWong, B. Sumudu, U. Mendis, & Abdesselam , +
Bouzerdoum (Eds.) Neural Information Processing. Models and Applica- +
tions, Lecture Notes in Computer Science, Sydney, N.S.W, pp. 582-589. +
This file was downloaded from: http://eprints.qut.edu.au/43788/ +
c(cid:13) Copyright 2010 Springer-Verlag +
Conference proceedings published, by Springer Verlag, will be available +
via Lecture Notes in Computer Science http://www.springer.de/comp/lncs/ +
Notice: Changes introduced as a result of publishing processes such as +
copy-editing and formatting may not be reflected in this document. For a +
definitive version of this work, please refer to the published source: +
http://dx.doi.org/10.1007/978-3-642-17534-3_72 +
923ec0da8327847910e8dd71e9d801abcbc93b08Hide-and-Seek: Forcing a Network to be Meticulous for +
Weakly-supervised Object and Action Localization +
University of California, Davis
('19553871', 'Krishna Kumar Singh', 'krishna kumar singh')
('1883898', 'Yong Jae Lee', 'yong jae lee')
0c741fa0966ba3ee4fc326e919bf2f9456d0cd74Facial Age Estimation by Learning from Label Distributions +
School of Mathematical Sciences, Monash University, VIC 3800, Australia
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
('1735299', 'Xin Geng', 'xin geng')
('2848275', 'Kate Smith-Miles', 'kate smith-miles')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
0c435e7f49f3e1534af0829b7461deb891cf540aCapturing Global Semantic Relationships for Facial Action Unit Recognition +
Rensselaer Polytechnic Institute
School of Electrical Engineering and Automation, Harbin Institute of Technology
School of Computer Science and Technology, University of Science and Technology of China
('2860279', 'Ziheng Wang', 'ziheng wang')
('1830523', 'Yongqiang Li', 'yongqiang li')
('1791319', 'Shangfei Wang', 'shangfei wang')
('1726583', 'Qiang Ji', 'qiang ji')
{wangz10,liy23,jiq}@rpi.edu +
sfwang@ustc.edu.cn +
0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0bafInternational Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 3, May 2014 +
FACIAL EXPRESSION RECOGNITION BASED ON +
Computer Science, Engineering and Mathematics School, Flinders University, Australia
Computer Science, Engineering and Mathematics School, Flinders University, Australia
('3105876', 'Humayra Binte Ali', 'humayra binte ali')
('1739260', 'David M W Powers', 'david m w powers')
0c30f6303dc1ff6d05c7cee4f8952b74b9533928Pareto Discriminant Analysis +
Karim T. Abou–Moustafa +
Centre of Intelligent Machines +
The Robotics Institute
Centre of Intelligent Machines +
McGill University
Carnegie Mellon University
McGill University
('1707876', 'Fernando De la Torre', 'fernando de la torre')
('1701344', 'Frank P. Ferrie', 'frank p. ferrie')
karimt@cim.mcgill.ca +
ftorre@cs.cmu.edu +
ferrie@cim.mcgill.ca +
0ccc535d12ad2142a8310d957cc468bbe4c63647Better Exploiting OS-CNNs for Better Event Recognition in Images +
Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China
('33345248', 'Limin Wang', 'limin wang')
('1915826', 'Zhe Wang', 'zhe wang')
('2072196', 'Sheng Guo', 'sheng guo')
('33427555', 'Yu Qiao', 'yu qiao')
{07wanglimin, buptwangzhe2012, guosheng1001}@gmail.com, yu.qiao@siat.ac.cn +
0c8a0a81481ceb304bd7796e12f5d5fa869ee448International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, June 2010, pp. 95-100 +
A Spatial Regularization of LDA for Face Recognition +
Gangnung-Wonju National University
123 Chibyun-Dong, Kangnung, 210-702, Korea +
('39845108', 'Lae-Jeong Park', 'lae-jeong park')Tel : +82-33-640-2389, Fax : +82-33-646-0740, E-mail : ljpark@gwnu.ac.kr +
0c36c988acc9ec239953ff1b3931799af388ef70Face Detection Using Improved Faster RCNN +
Huawei Cloud BU, China +
Figure1.Face detection results of FDNet1.0 +
('2568329', 'Changzheng Zhang', 'changzheng zhang')
('5084124', 'Xiang Xu', 'xiang xu')
('2929196', 'Dandan Tu', 'dandan tu')
{zhangzhangzheng, xuxiang12, tudandan}@huawei.com +
0c5ddfa02982dcad47704888b271997c4de0674b
0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1Face Recognition in Videos by Label Propagation +
International Institute of Information Technology, Hyderabad, India
('37956314', 'Vijay Kumar', 'vijay kumar')
('3185334', 'Anoop M. Namboodiri', 'anoop m. namboodiri')
{vijaykumar.r@research., anoop@, jawahar@}iiit.ac.in +
0cccf576050f493c8b8fec9ee0238277c0cfd69a
0cdb49142f742f5edb293eb9261f8243aee36e12Combined Learning of Salient Local Descriptors and Distance Metrics +
for Image Set Face Verification +
NICTA, PO Box 6020, St Lucia, QLD 4067, Australia +
University of Queensland, School of ITEE, QLD 4072, Australia
('1781182', 'Conrad Sanderson', 'conrad sanderson')
('3026404', 'Yongkang Wong', 'yongkang wong')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
0c069a870367b54dd06d0da63b1e3a900a257298Author manuscript, published in "ICANN 2011 - International Conference on Artificial Neural Networks (2011)" +
0c75c7c54eec85e962b1720755381cdca3f57dfb2212 +
Face Landmark Fitting via Optimized Part +
Mixtures and Cascaded Deformable Model +
('39960064', 'Xiang Yu', 'xiang yu')
('1768190', 'Junzhou Huang', 'junzhou huang')
('1753384', 'Shaoting Zhang', 'shaoting zhang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
0cf2eecf20cfbcb7f153713479e3206670ea0e9cPrivacy-Protective-GAN for Face De-identification +
Temple University
('50117915', 'Yifan Wu', 'yifan wu')
('46319628', 'Fan Yang', 'fan yang')
('1805398', 'Haibin Ling', 'haibin ling')
{yifan.wu, fyang, hbling} @temple.edu +
0ca36ecaf4015ca4095e07f0302d28a5d9424254Improving Bag-of-Visual-Words Towards Effective Facial Expressive +
Image Classification +
1Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France +
Keywords: +
BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF. +
('10762131', 'Dawood Al Chanti', 'dawood al chanti')
('1788869', 'Alice Caplier', 'alice caplier')
dawood.alchanti@gmail.com +
0c1d85a197a1f5b7376652a485523e616a406273Joint Registration and Representation Learning for Unconstrained Face +
Identification +
University of Canberra, Australia, Data61 - CSIRO and ANU, Australia
Khalifa University, Abu Dhabi, United Arab Emirates
('2008898', 'Munawar Hayat', 'munawar hayat')
('1802072', 'Naoufel Werghi', 'naoufel werghi')
{munawar.hayat,roland.goecke}@canberra.edu.au, salman.khan@csiro.au, naoufel.werghi@kustar.ac.ae +
0ca66283f4fb7dbc682f789fcf6d6732006befd5Active Dictionary Learning for Image Representation +
Department of Electrical and Computer Engineering +
Rutgers, The State University of New Jersey, Piscataway, NJ
('37799945', 'Tong Wu', 'tong wu')
('9208982', 'Anand D. Sarwate', 'anand d. sarwate')
('2138101', 'Waheed U. Bajwa', 'waheed u. bajwa')
0c7f27d23a162d4f3896325d147f412c40160b52Models and Algorithms for +
Vision through the Atmosphere +
Submitted in partial fulfillment of the +
requirements for the degree +
of Doctor of Philosophy +
in the Graduate School of Arts and Sciences +
COLUMBIA UNIVERSITY
2003 +
('1779052', 'Srinivasa G. Narasimhan', 'srinivasa g. narasimhan')
0cfca73806f443188632266513bac6aaf6923fa8Predictive Uncertainty in Large Scale Classification +
using Dropout - Stochastic Gradient Hamiltonian +
Monte Carlo. +
Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4. +
∗Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile. +
∗∗German Research Centre for Artificial Intelligence, Bremen, Germany. +
Email: 1diego.vergara@alu.ucm.cl, 2shernandez@ucm.cl,3matias.valdenegro@dfki.de, +
4f.jorquera.uribe@gmail.com +
0c20fd90d867fe1be2459223a3cb1a69fa3d44bfA Monte Carlo Strategy to Integrate Detection +
and Model-Based Face Analysis +
Department for Mathematics and Computer Science +
University of Basel, Switzerland
('2591294', 'Andreas Forster', 'andreas forster')
('34460642', 'Bernhard Egger', 'bernhard egger')
('1687079', 'Thomas Vetter', 'thomas vetter')
sandro.schoenborn,andreas.forster,bernhard.egger,thomas.vetter@unibas.ch +
0c2875bb47db3698dbbb3304aca47066978897a4Recurrent Models for Situation Recognition +
University of Illinois at Urbana-Champaign
('36508529', 'Arun Mallya', 'arun mallya')
('1749609', 'Svetlana Lazebnik', 'svetlana lazebnik')
{amallya2,slazebni}@illinois.edu +
0c3f7272a68c8e0aa6b92d132d1bf8541c062141Hindawi Publishing Corporation +
e Scientific World Journal +
Volume 2014, Article ID 672630, 6 pages +
http://dx.doi.org/10.1155/2014/672630 +
Research Article +
Kruskal-Wallis-Based Computationally Efficient Feature +
Selection for Face Recognition +
Foundation University, Rawalpindi 46000, Pakistan
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad
Islamabad 44000, Pakistan +
International Islamic University, Islamabad 44000, Pakistan
Received 5 December 2013; Accepted 10 February 2014; Published 21 May 2014 +
Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Face recognition in today’s technological world, and face recognition applications attain much more importance. Most of the +
existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. +
The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute +
to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more +
discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers +
are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are +
performed on standard face database images and results are compared with existing techniques. +
1. Introduction +
Face recognition is becoming more acceptable in the domain +
of computer vision and pattern recognition. The authenti- +
cation systems based on the traditional ID card and pass- +
word are nowadays replaced by the techniques which are +
more preferable in order to handle the security issues. The +
authentication systems based on biometrics are one of the +
substitutes which are independent of the user’s memory and +
not subjected to loss. Among those systems, face recognition +
gains special attention because of the security it provides and +
because it is independent of the high accuracy equipment +
unlike iris and recognition based on the fingerprints. +
Feature selection in pattern recognition is specifying the +
subset of significant features to decrease the data dimensions +
and at the same time it provides the set of selective features. +
Image is represented by set of features in methods used for +
feature extraction and each feature plays a vital role in the +
process of recognition. The feature selection algorithm drops +
all the unrelated features with the highly acceptable precision +
rate as compared to some other pattern classification problem +
in which higher precision rate cannot be obtained by greater +
number of feature sets [1]. +
The feature selected by the classifiers plays a vital role +
in producing the best features that are vigorous to the +
inconsistent environment, for example, change in expressions +
and other barriers. Local (texture-based) and global (holistic) +
approaches are the two approaches used for face recognition +
[2]. Local approaches characterized the face in the form of +
geometric measurements which matches the unfamiliar face +
with the closest face from database. Geometric measurements +
contain angles and the distance of different facial points, +
for example, mouth position, nose length, and eyes. Global +
features are extracted by the use of algebraic methods like +
PCA (principle component analysis) and ICA (independent +
component analysis) [3]. PCA shows a quick response to +
light and variation as it serves inner and outer classes +
fairly. In face recognition, LDA (linear discriminate analysis) +
usually performs better than PCA but separable creation is +
not precise in classification. Good recognition rates can be +
produced by transformation techniques like DCT (discrete +
cosine transform) and DWT (discrete wavelet transform) [4]. +
('8652075', 'Sajid Ali Khan', 'sajid ali khan')
('9955306', 'Ayyaz Hussain', 'ayyaz hussain')
('1959869', 'Abdul Basit', 'abdul basit')
('2388005', 'Sheeraz Akram', 'sheeraz akram')
('8652075', 'Sajid Ali Khan', 'sajid ali khan')
Correspondence should be addressed to Sajid Ali Khan; sajidalibn@gmail.com +
0cbc4dcf2aa76191bbf641358d6cecf38f644325Visage: A Face Interpretation Engine for +
Smartphone Applications +
Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA
Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA
3 Microsoft Research Asia, No. 5 Dan Ling St., Haidian District, Beijing, China +
('1840450', 'Xiaochao Yang', 'xiaochao yang')
('1702472', 'Chuang-Wen You', 'chuang-wen you')
('1884089', 'Hong Lu', 'hong lu')
('1816301', 'Mu Lin', 'mu lin')
('2772904', 'Nicholas D. Lane', 'nicholas d. lane')
('1690035', 'Andrew T. Campbell', 'andrew t. campbell')
{Xiaochao.Yang,chuang-wen.you}@dartmouth.edu,hong.lu@intel.com, +
mu.lin@dartmouth.edu,niclane@microsoft.com,campbell@cs.dartmouth.edu +
0ce8a45a77e797e9d52604c29f4c1e227f604080International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.3,No. 6,December 2013 +
ZERNIKE MOMENT-BASED FEATURE EXTRACTION +
FOR FACIAL RECOGNITION OF IDENTICAL TWINS +
1Department of Electrical,Computer and Biomedical Engineering, Qazvin branch, +
Amirkabir University of Technology, Tehran
IslamicAzad University, Qazvin, Iran
Iran +
('13302047', 'Hoda Marouf', 'hoda marouf')
('1692435', 'Karim Faez', 'karim faez')
0ce3a786aed896d128f5efdf78733cc675970854Learning the Face Prior +
for Bayesian Face Recognition +
Department of Information Engineering, +
The Chinese University of Hong Kong, China
('2312486', 'Chaochao Lu', 'chaochao lu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
0c54e9ac43d2d3bab1543c43ee137fc47b77276e
0c5afb209b647456e99ce42a6d9d177764f9a0dd97 +
Recognizing Action Units for +
Facial Expression Analysis +
('40383812', 'Ying-li Tian', 'ying-li tian')
('1733113', 'Takeo Kanade', 'takeo kanade')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
0c59071ddd33849bd431165bc2d21bbe165a81e0Person Recognition in Personal Photo Collections +
Max Planck Institute for Informatics
Saarbrücken, Germany +
('2390510', 'Seong Joon Oh', 'seong joon oh')
('1798000', 'Rodrigo Benenson', 'rodrigo benenson')
('1739548', 'Mario Fritz', 'mario fritz')
('1697100', 'Bernt Schiele', 'bernt schiele')
{joon,benenson,mfritz,schiele}@mpi-inf.mpg.de +
0c377fcbc3bbd35386b6ed4768beda7b5111eec6258 +
A Unified Probabilistic Framework +
for Spontaneous Facial Action Modeling +
and Understanding +
('1686235', 'Yan Tong', 'yan tong')
('1713712', 'Jixu Chen', 'jixu chen')
('1726583', 'Qiang Ji', 'qiang ji')
0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58Memory-Augmented Attribute Manipulation Networks for +
Interactive Fashion Search +
Southwest Jiaotong University
National University of Singapore
AI Institute
('33901950', 'Bo Zhao', 'bo zhao')
('33221685', 'Jiashi Feng', 'jiashi feng')
('1814091', 'Xiao Wu', 'xiao wu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
zhaobo@my.swjtu.edu.cn, elezhf@nus.edu.sg, wuxiaohk@swjtu.edu.cn, yanshuicheng@360.cn +
0cb2dd5f178e3a297a0c33068961018659d0f443('2964917', 'Cameron Whitelam', 'cameron whitelam')
('1885566', 'Emma Taborsky', 'emma taborsky')
('1917247', 'Austin Blanton', 'austin blanton')
('8033275', 'Brianna Maze', 'brianna maze')
('15282121', 'Tim Miller', 'tim miller')
('6680444', 'Anil K. Jain', 'anil k. jain')
('40205896', 'James A. Duncan', 'james a. duncan')
('2040584', 'Kristen Allen', 'kristen allen')
('39403529', 'Jordan Cheney', 'jordan cheney')
('2136478', 'Patrick Grother', 'patrick grother')
0cd8895b4a8f16618686f622522726991ca2a324Discrete Choice Models for Static Facial Expression +
Recognition +
Ecole Polytechnique Federale de Lausanne, Signal Processing Institute
2 Ecole Polytechnique Federale de Lausanne, Operation Research Group +
Ecublens, 1015 Lausanne, Switzerland +
Ecublens, 1015 Lausanne, Switzerland +
('1794461', 'Gianluca Antonini', 'gianluca antonini')
('2916630', 'Matteo Sorci', 'matteo sorci')
('1690395', 'Michel Bierlaire', 'michel bierlaire')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
{Matteo.Sorci,Gianluca.Antonini,JP.Thiran}@epfl.ch +
Michel.Bierlaire@epfl.ch +
0cf7da0df64557a4774100f6fde898bc4a3c4840Shape Matching and Object Recognition using Low Distortion Correspondences +
Department of Electrical Engineering and Computer Science +
U.C. Berkeley +
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1689212', 'Jitendra Malik', 'jitendra malik')
faberg,millert,malikg@eecs.berkeley.edu +
0cbe059c181278a373292a6af1667c54911e7925Owl and Lizard: Patterns of Head Pose and Eye +
Pose in Driver Gaze Classification +
Massachusetts Institute of Technology (MIT
Chalmers University of Technology, SAFER
('7137846', 'Joonbum Lee', 'joonbum lee')
('1901227', 'Bryan Reimer', 'bryan reimer')
('35816778', 'Trent Victor', 'trent victor')
0c4659b35ec2518914da924e692deb37e96d62061236 +
Registering a MultiSensor Ensemble of Images +
('1822837', 'Jeff Orchard', 'jeff orchard')
('6056877', 'Richard Mann', 'richard mann')
0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dcLearning Bayesian Network Classifiers for Facial Expression Recognition using +
both Labeled and Unlabeled Data +
Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA
iracohen, huang +
 Escola Polit´ecnica, Universidade de S˜ao Paulo, S˜ao Paulo, Brazil +
fgcozman, marcelo.cirelo +
('1774778', 'Ira Cohen', 'ira cohen')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
@ifp.uiuc.edu +
 Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands, nicu@liacs.nl +
@usp.br +
0ced7b814ec3bb9aebe0fcf0cac3d78f36361eaeAvailable Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IMPACT FACTOR: 6.017 +
+
IJCSMC, Vol. 6, Issue. 1, January 2017, pg.221 – 227 +
Central Local Directional Pattern Value +
Flooding Co-occurrence Matrix based +
Features for Face Recognition +
Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad
('40221166', 'Chandra Sekhar Reddy', 'chandra sekhar reddy')
('40221166', 'Chandra Sekhar Reddy', 'chandra sekhar reddy')
0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926dSUBMITTED TO JOURNAL +
Weakly Supervised PatchNets: Describing and +
Aggregating Local Patches for Scene Recognition +
('40184588', 'Zhe Wang', 'zhe wang')
('39709927', 'Limin Wang', 'limin wang')
('40457196', 'Yali Wang', 'yali wang')
('3047890', 'Bowen Zhang', 'bowen zhang')
('40285012', 'Yu Qiao', 'yu qiao')
0c60eebe10b56dbffe66bb3812793dd514865935
0c05f60998628884a9ac60116453f1a91bcd9ddaOptimizing Open-Ended Crowdsourcing: The Next Frontier in +
Crowdsourced Data Management +
University of Illinois
cid:63)Stanford University
('32953042', 'Akash Das Sarma', 'akash das sarma')
('8336538', 'Vipul Venkataraman', 'vipul venkataraman')
6601a0906e503a6221d2e0f2ca8c3f544a4adab7SRTM-2 2/9/06 3:27 PM Page 321 +
Detection of Ancient Settlement Mounds: +
Archaeological Survey Based on the +
SRTM Terrain Model +
B.H. Menze, J.A. Ur, and A.G. Sherratt +
660b73b0f39d4e644bf13a1745d6ee74424d4a163,250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Reviews, Refinements and New Ideas in Face RecognitionDownloaded from: http://www.intechopen.com/books/reviews-refinements-and-new-ideas-in-face-recognitionPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at book.department@intechopen.com
66d512342355fb77a4450decc89977efe7e55fa2Under review as a conference paper at ICLR 2018 +
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +
INATIVE AND MINIMUM INFORMATION LOSS PRIORS +
Anonymous authors +
Paper under double-blind review +
66aad5b42b7dda077a492e5b2c7837a2a808c2faA Novel PCA-Based Bayes Classifier +
and Face Analysis +
1 Centre de Visi´o per Computador, +
Universitat Aut`onoma de Barcelona, Barcelona, Spain +
2 Department of Computer Science, +
Nanjing University of Science and Technology
Nanjing, People’s Republic of China +
3 HEUDIASYC - CNRS Mixed Research Unit, +
Compi`egne University of Technology
60205 Compi`egne cedex, France +
('1761329', 'Zhong Jin', 'zhong jin')
('1742818', 'Franck Davoine', 'franck davoine')
('35428318', 'Zhen Lou', 'zhen lou')
zhong.jin@cvc.uab.es +
jyyang@mail.njust.edu.cn +
franck.davoine@hds.utc.fr +
66b9d954dd8204c3a970d86d91dd4ea0eb12db47Evaluation of Gabor-Wavelet-Based Facial Action Unit Recognition +
in Image Sequences of Increasing Complexity +
IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
University of Pittsburgh, Pittsburgh, PA
('40383812', 'Ying-li Tian', 'ying-li tian')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
Email: yltian@us.ibm.com, +
tk@cs.cmu.edu +
jeffcohn@pitt.edu +
6643a7feebd0479916d94fb9186e403a4e5f7cbfChapter 8 +
3D Face Recognition +
('1737428', 'Nick Pears', 'nick pears')
661ca4bbb49bb496f56311e9d4263dfac8eb96e9Datasheets for Datasets +('2076288', 'Timnit Gebru', 'timnit gebru')
('1722360', 'Hal Daumé', 'hal daumé')
66dcd855a6772d2731b45cfdd75f084327b055c2Quality Classified Image Analysis with Application +
to Face Detection and Recognition +
International Doctoral Innovation Centre +
University of Nottingham Ningbo China
School of Computer Science +
University of Nottingham Ningbo China
College of Information Engineering
Shenzhen University, Shenzhen, China
('1684164', 'Fei Yang', 'fei yang')
('1737486', 'Qian Zhang', 'qian zhang')
('2155597', 'Miaohui Wang', 'miaohui wang')
('1698461', 'Guoping Qiu', 'guoping qiu')
666939690c564641b864eed0d60a410b31e49f80What Visual Attributes Characterize an Object Class ? +
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of
Sciences, No.95, Zhongguancun East Road, Beijing, 100190, China +
2Microsoft Research, No.5, Dan Ling Street, Haidian District, Beijing 10080, China +
('3247966', 'Jianlong Fu', 'jianlong fu')
('1783122', 'Jinqiao Wang', 'jinqiao wang')
('3349534', 'Xin-Jing Wang', 'xin-jing wang')
('3663422', 'Yong Rui', 'yong rui')
('1694235', 'Hanqing Lu', 'hanqing lu')
1fjlfu, jqwang, luhqg@nlpr.ia.ac.cn, 2fxjwang, yongruig@microsoft.com +
66330846a03dcc10f36b6db9adf3b4d32e7a3127Polylingual Multimodal Learning +
Institute AIFB, Karlsruhe Institute of Technology, Germany
('3219864', 'Aditya Mogadala', 'aditya mogadala'){aditya.mogadala}@kit.edu +
66d087f3dd2e19ffe340c26ef17efe0062a59290Dog Breed Identification +
Brian Mittl +
Vijay Singh +
wlarow@stanford.edu +
bmittl@stanford.edu +
vpsingh@stanford.edu +
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4cOrdinal Regression with Multiple Output CNN for Age Estimation +
Xidian University 2Xi an Jiaotong University 3Microsoft Research Asia
('1786361', 'Zhenxing Niu', 'zhenxing niu')
('1745420', 'Gang Hua', 'gang hua')
('10699750', 'Xinbo Gao', 'xinbo gao')
('36497527', 'Mo Zhou', 'mo zhou')
('40367806', 'Le Wang', 'le wang')
{zhenxingniu,cdluminate}@gmail.com, lewang@mail.xjtu.edu.cn, xinbogao@mail.xidian.edu.cn +
ganghua@gmail.com +
666300af8ffb8c903223f32f1fcc5c4674e2430bChanging Fashion Cultures +
National Institute of Advanced Industrial Science and Technology (AIST
Tsukuba, Ibaraki, Japan +
Tokyo Denki University
Adachi, Tokyo, Japan +
('3408038', 'Kaori Abe', 'kaori abe')
('5014206', 'Teppei Suzuki', 'teppei suzuki')
('9935341', 'Shunya Ueta', 'shunya ueta')
('1732705', 'Yutaka Satoh', 'yutaka satoh')
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('2462801', 'Akio Nakamura', 'akio nakamura')
{abe.keroko, suzuki-teppei, shunya.ueta, yu.satou, hirokatsu.kataoka}@aist.go.jp +
nkmr-a@cck.dendai.ac.jp +
66029f1be1a5cee9a4e3e24ed8fcb65d5d293720HWANG AND GRAUMAN: ACCOUNTING FOR IMPORTANCE IN IMAGE RETRIEVAL +
Accounting for the Relative Importance of +
Objects in Image Retrieval +
The University of Texas
Austin, TX, USA +
('35788904', 'Sung Ju Hwang', 'sung ju hwang')
('1794409', 'Kristen Grauman', 'kristen grauman')
sjhwang@cs.utexas.edu +
grauman@cs.utexas.edu +
6691dfa1a83a04fdc0177d8d70e3df79f606b10fIllumination Modeling and Normalization for Face Recognition +
Institute of Automation
Chinese Academy of Sciences +
Beijing, 100080, China +
('29948255', 'Haitao Wang', 'haitao wang')
('34679741', 'Stan Z. Li', 'stan z. li')
('1744302', 'Yangsheng Wang', 'yangsheng wang')
('38248052', 'Weiwei Zhang', 'weiwei zhang')
{htwang, wys, wwzhang}@nlpr.ia.ac.cn +
66a2c229ac82e38f1b7c77a786d8cf0d7e369598Proceedings of the 2016 Industrial and Systems Engineering Research Conference +
H. Yang, Z. Kong, and MD Sarder, eds. +
A Probabilistic Adaptive Search System +
for Exploring the Face Space +
Escuela Superior Politecnica del Litoral (ESPOL) +
Guayaquil-Ecuador +
('3123974', 'Andres G. Abad', 'andres g. abad')
('3044670', 'Luis I. Reyes Castro', 'luis i. reyes castro')
66886997988358847615375ba7d6e9eb0f1bb27f
66837add89caffd9c91430820f49adb5d3f40930
66a9935e958a779a3a2267c85ecb69fbbb75b8dcFAST AND ROBUST FIXED-RANK MATRIX RECOVERY +
Fast and Robust Fixed-Rank Matrix +
Recovery +
Antonio Lopez +
('34210410', 'Julio Guerrero', 'julio guerrero')
66533107f9abdc7d1cb8f8795025fc7e78eb1122Vi a Sevig f a Ue  h wih E(cid:11)ecive ei Readig +
i a Wheechai baed Rbic A +
W y g Sgy Dae i iy g S g iz ad Ze ga Biey +
y EECS AST 373 1  g Dg Y g G  Taej 305 701 REA +
z VR Cee ETR 161 ajg Dg Y g G  Taej 305 350 REA +
Abac +
Thee exi he c eaive aciviy bewee a h +
a beig ad ehabiiai b beca e he h +
a eae ehabiiai b i he ae evi +
e ad ha he bee(cid:12) f ehabiiai b +
 ch a ai ay  bie f ci. ei +
eadig i e f he eeia f ci f h a +
fiedy ehabiiai b i de  ie he +
cf ad afey f a wh eed he. Fi f +
a he vea  c e f a ew wheechai baed +
bic a ye ARES  ad i h a b +
ieaci echgie ae eeed. Ag he +
echgie we cceae  vi a evig ha +
aw hi bic a  eae a  y via +
vi a feedback. E(cid:11)ecive iei eadig  ch a +
ecgizig he iive ad egaive eaig f he +
e i efed  he bai f chage f he facia +
exei a d i ha i gy eaed  he +
e iei whie hi bic a vide he +
e wih a beveage. F he eÆcie vi a ifa +
i ceig g a aed iage ae ed  +
c he ee caea head ha i caed i he +
ed e(cid:11)ec f he bic a. The vi a evig +
wih e(cid:11)ecive iei eadig i  ccef y aied +
 eve a beveage f he e. +
d ci +
Wheechai baed bic ye ae aiy ed  +
ai he edey ad he diabed wh have hadi +
ca i ey ad  f ci i ib. S ch a +
ye ci f a weed wheechai ad a bic +
a ad ha  y a bie caabiiy h gh +
he wheechai b  a a ai ay f ci via +
he bic a ad h  ake ibe he c +
exiece f a e ad a b i he ae evi +
e. +
 hi cae he e eed  ieac wih +
he bic a i cfabe ad afe way. w +
Fig e 1: The wheechai baed bic a ad i +
h a b ieaci echgie. +
eve i ha bee eed ha ay diÆc ie exi +
i h a bf ieaci i exiig ehabiiai +
b. F exae a a c f he bic +
a ake a high cgiive ad  he e a whie +
hyicay diabed e ay have diÆc ie i  +
eaig jyick dexe y   hig b  f +
deicae vee [4].  addii AUS eva +
ai e eed ha he  diÆc  hig  +
ig ehabiiai b i  ay cad f a +
a adj e ad  ay f ci  kee i +
id a he begiig [4]. Theefe h a fiedy +
h a b ieaci i e f eeia echi e +
i a wheechai baed bic a. +
 hi ae we cide he wheechai baed +
bic ye ARES AST Rehabiiai E +
gieeig Sevice ye  which we ae deveig +
a a evice bic ye f he diabed ad he +
edey ad dic  i h a b ieaci ech +
i e Fig. 1. Ag h a b ieaci ech +
i e vi a evig i dea wih a a aj ic. +
zbie@ee.kai.ac.k +
66810438bfb52367e3f6f62c24f5bc127cf92e56Face Recognition of Illumination Tolerance in 2D +
Subspace Based on the Optimum Correlation +
Filter +
Xu Yi +
Department of Information Engineering, Hunan Industry Polytechnic, Changsha, China +
images will be tested to project +
66af2afd4c598c2841dbfd1053bf0c386579234eNoname manuscript No. +
(will be inserted by the editor) +
Context Assisted Face Clustering Framework with +
Human-in-the-Loop +
Received: date / Accepted: date +
('3338094', 'Liyan Zhang', 'liyan zhang')
('1686199', 'Sharad Mehrotra', 'sharad mehrotra')
66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5The AAAI-17 Workshop on +
Human-Aware Artificial Intelligence +
WS-17-10 +
Using Co-Captured Face, Gaze and Verbal Reactions to Images of +
Varying Emotional Content for Analysis and Semantic Alignment +
Muhlenberg College
Rochester Institute of Technology
Rochester Institute of Technology
('40114708', 'Trevor Walden', 'trevor walden')
('2459642', 'Preethi Vaidyanathan', 'preethi vaidyanathan')
('37459359', 'Reynold Bailey', 'reynold bailey')
('1695716', 'Cecilia O. Alm', 'cecilia o. alm')
ag249083@muhlenberg.edu +
tjw5866@rit.edu +
{pxv1621, emilypx, rjbvcs, coagla}@rit.edu +
66e9fb4c2860eb4a15f713096020962553696e12A New Urban Objects Detection Framework +
Using Weakly Annotated Sets +
University of S ao Paulo - USP, S ao Paulo - Brazil
New York University
('40014199', 'Claudio Silva', 'claudio silva')
('1748049', 'Roberto M. Cesar', 'roberto m. cesar')
{keiji, gabriel.augusto.ferreira, rmcesar}@usp.br +
csilva@nyu.edu +
66e6f08873325d37e0ec20a4769ce881e04e964eInt J Comput Vis (2014) 108:59–81 +
DOI 10.1007/s11263-013-0695-z +
The SUN Attribute Database: Beyond Categories for Deeper Scene +
Understanding +
Received: 27 February 2013 / Accepted: 28 December 2013 / Published online: 18 January 2014 +
© Springer Science+Business Media New York 2014 +
('40541456', 'Genevieve Patterson', 'genevieve patterson')
('12532254', 'James Hays', 'james hays')
661da40b838806a7effcb42d63a9624fcd68497653 +
An Illumination Invariant Accurate +
Face Recognition with Down Scaling +
of DCT Coefficients +
Department of Computer Science and Engineering, Amity School of Engineering and Technology, New Delhi, India +
In this paper, a novel approach for illumination normal- +
ization under varying lighting conditions is presented. +
Our approach utilizes the fact that discrete cosine trans- +
form (DCT) low-frequency coefficients correspond to +
illumination variations in a digital image. Under varying +
illuminations, the images captured may have low con- +
trast; initially we apply histogram equalization on these +
for contrast stretching. Then the low-frequency DCT +
coefficients are scaled down to compensate the illumi- +
nation variations. The value of scaling down factor and +
the number of low-frequency DCT coefficients, which +
are to be rescaled, are obtained experimentally. The +
classification is done using k−nearest neighbor classi- +
fication and nearest mean classification on the images +
obtained by inverse DCT on the processed coefficients. +
The correlation coefficient and Euclidean distance ob- +
tained using principal component analysis are used as +
distance metrics in classification. We have tested our +
face recognition method using Yale Face Database B. +
The results show that our method performs without any +
error (100% face recognition performance), even on the +
most extreme illumination variations. There are different +
schemes in the literature for illumination normalization +
under varying lighting conditions, but no one is claimed +
to give 100% recognition rate under all illumination +
variations for this database. The proposed technique is +
computationally efficient and can easily be implemented +
for real time face recognition system. +
Keywords: discrete cosine transform, correlation co- +
efficient, face recognition, illumination normalization, +
nearest neighbor classification +
1. Introduction +
Two-dimensional pattern classification plays a +
crucial role in real-world applications. To build +
high-performance surveillance or information +
security systems, face recognition has been +
known as the key application attracting enor- +
mous researchers highlighting on related topics +
[1,2]. Even though current machine recognition +
systems have reached a certain level of matu- +
rity, their success is limited by the real appli- +
cations constraints, like pose, illumination and +
expression. The FERET evaluation shows that +
the performance of a face recognition system +
decline seriously with the change of pose and +
illumination conditions [31]. +
To solve the variable illumination problem a +
variety of approaches have been proposed [3, 7- +
11, 26-29]. Early work in illumination invariant +
face recognition focused on image representa- +
tions that are mostly insensitive to changes in +
illumination. There were approaches in which +
the image representations and distance mea- +
sures were evaluated on a tightly controlled face +
database that varied the face pose, illumination, +
and expression. The image representations in- +
clude edge maps, 2D Gabor-like filters, first and +
second derivatives of the gray-level image, and +
the logarithmic transformations of the intensity +
image along with these representations [4]. +
The different approaches to solve the prob- +
lem of illumination invariant face recognition +
can be broadly classified into two main cate- +
gories. The first category is named as passive +
approach in which the visual spectrum images +
are analyzed to overcome this problem. The +
approaches belonging to other category named +
active, attempt to overcome this problem by +
employing active imaging techniques to obtain +
face images captured in consistent illumina- +
tion condition, or images of illumination invari- +
ant modalities. There is a hierarchical catego- +
rization of these two approaches. An exten- +
sive review of both approaches is given in [5]. +
('2650871', 'Virendra P. Vishwakarma', 'virendra p. vishwakarma')
('2100294', 'Sujata Pandey', 'sujata pandey')
('11690561', 'M. N. Gupta', 'm. n. gupta')
66886f5af67b22d14177119520bd9c9f39cdd2e6T. KOBAYASHI: LEARNING ADDITIVE KERNEL +
Learning Additive Kernel For Feature +
Transformation and Its Application to CNN +
Features +
National Institute of Advanced Industrial
Science and Technology +
Tsukuba, Japan +
('1800592', 'Takumi Kobayashi', 'takumi kobayashi')takumi.kobayashi@aist.go.jp +
3edb0fa2d6b0f1984e8e2c523c558cb026b2a983Automatic Age Estimation Based on +
Facial Aging Patterns +
('1735299', 'Xin Geng', 'xin geng')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
('2848275', 'Kate Smith-Miles', 'kate smith-miles')
3e69ed088f588f6ecb30969bc6e4dbfacb35133eACEEE Int. J. on Information Technology, Vol. 01, No. 02, Sep 2011 +
Improving Performance of Texture Based Face +
Recognition Systems by Segmenting Face Region +
St. Xavier s Catholic College of Engineering, Nagercoil, India
Manonmaniam Sundaranar University, Tirunelveli, India
('9375880', 'R. Reena Rose', 'r. reena rose')
('3311251', 'A. Suruliandi', 'a. suruliandi')
mailtoreenarose@yahoo.in +
suruliandi@yahoo.com +
3e0a1884448bfd7f416c6a45dfcdfc9f2e617268Understanding and Controlling User Linkability in +
Decentralized Learning +
Max Planck Institute for Informatics
Saarland Informatics Campus +
Saarbrücken, Germany +
('9517443', 'Tribhuvanesh Orekondy', 'tribhuvanesh orekondy')
('2390510', 'Seong Joon Oh', 'seong joon oh')
('1697100', 'Bernt Schiele', 'bernt schiele')
{orekondy,joon,schiele,mfritz}@mpi-inf.mpg.de +
3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS +
AND LINEAR PROGRAMMING +
Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1 +
1 Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering +
P. O. Box 4500 Fin-90014 University of Oulu, Finland
College of Electronics and Information, Northwestern Polytechnic University
710072 Xi’an, China +
In this work, we propose a novel approach to recognize facial expressions from static +
images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial +
images and then the Linear Programming (LP) technique is adopted to classify the seven +
facial expressions anger, disgust, fear, happiness, sadness, surprise and neutral. +
Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE +
database, which outperforms the rates of all other reported methods on the same database. +
Introduction +
Facial expression recognition from static +
images is a more challenging problem +
than from image sequences because less +
information for expression actions +
is +
available. However, information in a +
single image is sometimes enough for +
expression recognition, and +
in many +
applications it is also useful to recognize +
single image’s facial expression. +
In the recent years, numerous approaches +
to facial expression analysis from static +
images have been proposed [1] [2]. These +
methods +
face +
representation and similarity measure. +
For instance, Zhang [3] used two types of +
features: the geometric position of 34 +
manually selected fiducial points and a +
set of Gabor wavelet coefficients at these +
points. These two types of features were +
used both independently and jointly with +
a multi-layer perceptron for classification. +
Guo and Dyer [4] also adopted a similar +
face representation, combined with linear +
to carry out +
programming +
selection +
simultaneous +
and +
classifier +
they reported +
technique +
feature +
training, and +
differ +
generally +
in +
a +
simple +
imperative question +
better result. Lyons et al. used a similar face +
representation with +
LDA-based +
classification scheme [5]. All the above methods +
required the manual selection of fiducial points. +
Buciu et al. used ICA and Gabor representation for +
facial expression recognition and reported good result +
on the same database [6]. However, a suitable +
combination of feature extraction and classification is +
still one +
for expression +
recognition. +
In this paper, we propose a novel method for facial +
expression recognition. In the feature extraction step, +
the Local Binary Pattern (LBP) operator is used to +
describe facial expressions. In the classification step, +
seven expressions (anger, disgust, fear, happiness, +
sadness, surprise and neutral) are decomposed into 21 +
expression pairs such as anger-fear, happiness- +
sadness etc. 21 classifiers are produced by the Linear +
Programming (LP) technique, each corresponding to +
one of the 21 expression pairs. A simple binary tree +
tournament scheme with pairwise comparisons is +
used for classifying unknown expressions. +
Face Representation with Local Binary Patterns +
+
Fig.1 shows the basic LBP operator [7], in which the +
original 3×3 neighbourhood at the left is thresholded +
by the value of the centre pixel, and a binary pattern +
{xiaoyi,mkp,hadid}@ee.oulu.fi +
fengxiao@nwpu.edu.cn +
3ee7a8107a805370b296a53e355d111118e96b7c
3ebce6710135d1f9b652815e59323858a7c60025Component-based Face Detection +
(cid:1)Center for Biological and Computational Learning, M.I.T., Cambridge, MA, USA +
cid:2)Honda RandD Americas, Inc., Boston, MA, USA
University of Siena, Siena, Italy
('1684626', 'Bernd Heisele', 'bernd heisele')(cid:1)heisele, serre, tp(cid:2) @ai.mit.edu pontil@dii.unisi.it +
3e4acf3f2d112fc6516abcdddbe9e17d839f5d9bDeep Value Networks Learn to +
Evaluate and Iteratively Refine Structured Outputs +
('3037160', 'Michael Gygli', 'michael gygli')
3e3f305dac4fbb813e60ac778d6929012b4b745aFeature sampling and partitioning for visual vocabulary +
generation on large action classification datasets. +
Oxford Brookes University
University of Oxford
('3019396', 'Michael Sapienza', 'michael sapienza')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
3ea8a6dc79d79319f7ad90d663558c664cf298d4('40253814', 'IRA COHEN', 'ira cohen')
3e4f84ce00027723bdfdb21156c9003168bc1c801979 +
© EURASIP, 2011 - ISSN 2076-1465 +
19th European Signal Processing Conference (EUSIPCO 2011) +
INTRODUCTION +
3e04feb0b6392f94554f6d18e24fadba1a28b65f14 +
Subspace Image Representation for Facial +
Expression Analysis and Face Recognition +
and its Relation to the Human Visual System +
Aristotle University of Thessaloniki GR
Thessaloniki, Box 451, Greece. +
2 Electronics Department, Faculty of Electrical Engineering and Information +
Technology, University of Oradea 410087, Universitatii 1, Romania
Summary. Two main theories exist with respect to face encoding and representa- +
tion in the human visual system (HVS). The first one refers to the dense (holistic) +
representation of the face, where faces have “holon”-like appearance. The second one +
claims that a more appropriate face representation is given by a sparse code, where +
only a small fraction of the neural cells corresponding to face encoding is activated. +
Theoretical and experimental evidence suggest that the HVS performs face analysis +
(encoding, storing, face recognition, facial expression recognition) in a structured +
and hierarchical way, where both representations have their own contribution and +
goal. According to neuropsychological experiments, it seems that encoding for face +
recognition, relies on holistic image representation, while a sparse image represen- +
tation is used for facial expression analysis and classification. From the computer +
vision perspective, the techniques developed for automatic face and facial expres- +
sion recognition fall into the same two representation types. Like in Neuroscience, +
the techniques which perform better for face recognition yield a holistic image rep- +
resentation, while those techniques suitable for facial expression recognition use a +
sparse or local image representation. The proposed mathematical models of image +
formation and encoding try to simulate the efficient storing, organization and coding +
of data in the human cortex. This is equivalent with embedding constraints in the +
model design regarding dimensionality reduction, redundant information minimiza- +
tion, mutual information minimization, non-negativity constraints, class informa- +
tion, etc. The presented techniques are applied as a feature extraction step followed +
by a classification method, which also heavily influences the recognition results. +
Key words: Human Visual System; Dense, Sparse and Local Image Repre- +
sentation and Encoding, Face and Facial Expression Analysis and Recogni- +
tion. +
R.P. W¨urtz (ed.), Organic Computing. Understanding Complex Systems, +
doi: 10.1007/978-3-540-77657-4 14, © Springer-Verlag Berlin Heidelberg 2008 +
('2336758', 'Ioan Buciu', 'ioan buciu')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
pitas@zeus.csd.auth.gr +
ibuciu@uoradea.ro +
3e685704b140180d48142d1727080d2fb9e52163Single Image Action Recognition by Predicting +
Space-Time Saliency +
('32998919', 'Marjaneh Safaei', 'marjaneh safaei')
('1691260', 'Hassan Foroosh', 'hassan foroosh')
3e51d634faacf58e7903750f17111d0d172a0bf1A COMPRESSIBLE TEMPLATE PROTECTION SCHEME +
FOR FACE RECOGNITION BASED ON SPARSE REPRESENTATION +
Tokyo Metropolitan University
6–6 Asahigaoka, Hino-shi, Tokyo 191–0065, Japan +
† NTT Network Innovation Laboratories, Japan +
('32403098', 'Yuichi Muraki', 'yuichi muraki')
('11129971', 'Masakazu Furukawa', 'masakazu furukawa')
('1728060', 'Masaaki Fujiyoshi', 'masaaki fujiyoshi')
('34638424', 'Yoshihide Tonomura', 'yoshihide tonomura')
('1737217', 'Hitoshi Kiya', 'hitoshi kiya')
3e40991ab1daa2a4906eb85a5d6a01a958b6e674LIPNET: END-TO-END SENTENCE-LEVEL LIPREADING +
University of Oxford, Oxford, UK
Google DeepMind, London, UK 2 +
CIFAR, Canada 3 +
{yannis.assael,brendan.shillingford, +
('3365565', 'Yannis M. Assael', 'yannis m. assael')
('3144580', 'Brendan Shillingford', 'brendan shillingford')
('1766767', 'Shimon Whiteson', 'shimon whiteson')
shimon.whiteson,nando.de.freitas}@cs.ox.ac.uk +
3e687d5ace90c407186602de1a7727167461194aPhoto Tagging by Collection-Aware People Recognition +
UFF +
UFF +
Asla S´a +
FGV +
IMPA +
('2901520', 'Cristina Nader Vasconcelos', 'cristina nader vasconcelos')
('19264449', 'Vinicius Jardim', 'vinicius jardim')
('1746637', 'Paulo Cezar Carvalho', 'paulo cezar carvalho')
crisnv@ic.uff.br +
vinicius@id.uff.br +
asla.sa@fgv.br +
pcezar@impa.br +
3e3a87eb24628ab075a3d2bde3abfd185591aa4cEffects of sparseness and randomness of +
pairwise distance matrix on t-SNE results +
BECS, Aalto University, Helsinki, Finland
('32430508', 'Eli Parviainen', 'eli parviainen')
3e207c05f438a8cef7dd30b62d9e2c997ddc0d3fObjects as context for detecting their semantic parts +
University of Edinburgh
('20758701', 'Abel Gonzalez-Garcia', 'abel gonzalez-garcia')
('1996209', 'Davide Modolo', 'davide modolo')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
a.gonzalez-garcia@sms.ed.ac.uk +
davide.modolo@gmail.com +
vferrari@staffmail.ed.ac.uk +
5040f7f261872a30eec88788f98326395a44db03PAPAMAKARIOS, PANAGAKIS, ZAFEIRIOU: GENERALISED SCALABLE ROBUST PCA +
Generalised Scalable Robust Principal +
Component Analysis +
Department of Computing +
Imperial College London
London, UK +
('2369138', 'Georgios Papamakarios', 'georgios papamakarios')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
georgios.papamakarios13@imperial.ac.uk +
i.panagakis@imperial.ac.uk +
s.zafeiriou@imperial.ac.uk +
50f0c495a214b8d57892d43110728e54e413d47dSubmitted 8/11; Revised 3/12; Published 8/12 +
Pairwise Support Vector Machines and their Application to Large +
Scale Problems +
Institute for Numerical Mathematics
Technische Universit¨at Dresden +
01062 Dresden, Germany +
Cognitec Systems GmbH +
Grossenhainer Str. 101 +
01127 Dresden, Germany +
Editor: Corinna Cortes +
('25796572', 'Carl Brunner', 'carl brunner')
('1833903', 'Andreas Fischer', 'andreas fischer')
('2201239', 'Klaus Luig', 'klaus luig')
('2439730', 'Thorsten Thies', 'thorsten thies')
C.BRUNNER@GMX.NET +
ANDREAS.FISCHER@TU-DRESDEN.DE +
LUIG@COGNITEC.COM +
THIES@COGNITEC.COM +
501096cca4d0b3d1ef407844642e39cd2ff86b37Illumination Invariant Face Image +
Representation using Quaternions +
Dayron Rizo-Rodr´ıguez, Heydi M´endez-V´azquez, and Edel Garc´ıa-Reyes +
Advanced Technologies Application Center. 7a # 21812 b/ 218 and 222, +
Rpto. Siboney, Playa, P.C. 12200, La Habana, Cuba. +
{drizo,hmendez,egarcia}@cenatav.co.cu +
500fbe18afd44312738cab91b4689c12b4e0eeeeChaLearn Looking at People 2015 new competitions: +
Age Estimation and Cultural Event Recognition +
University of Barcelona
Computer Vision Center, UAB +
Jordi Gonz`alez +
Xavier Bar´o +
Univ. Aut`onoma de Barcelona +
Computer Vision Center, UAB +
Universitat Oberta de Catalunya +
Computer Vision Center, UAB +
University of Barcelona
Univ. Aut`onoma de Barcelona +
Computer Vision Center, UAB +
University of Barcelona
Computer Vision Center, UAB +
INAOE +
Ivan Huerta +
University of Venezia
Clopinet, Berkeley +
('7855312', 'Sergio Escalera', 'sergio escalera')
('40378482', 'Pablo Pardo', 'pablo pardo')
('37811966', 'Junior Fabian', 'junior fabian')
('3305641', 'Marc Oliu', 'marc oliu')
('1742688', 'Hugo Jair Escalante', 'hugo jair escalante')
('1743797', 'Isabelle Guyon', 'isabelle guyon')
Email: sergio@maia.ub.es +
Email: ppardoga7@gmail.com +
Email: poal@cvc.uab.es +
Email: xbaro@uoc.edu +
Email: jfabian@cvc.uab.es +
Email: moliusimon@gmail.com +
Email: hugo.jair@gmail.com +
Email: huertacasado@iuav.it +
Email: guyon@chalearn.org +
501eda2d04b1db717b7834800d74dacb7df58f91('3846862', 'Pedro Miguel Neves Marques', 'pedro miguel neves marques')
5083c6be0f8c85815ead5368882b584e4dfab4d1 Please do not quote. In press, Handbook of affective computing. New York, NY: Oxford +
Automated Face Analysis for Affective Computing +
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
506c2fbfa9d16037d50d650547ad3366bb1e1cdeConvolutional Channel Features: Tailoring CNN to Diverse Tasks +
Junjie Yan +
Zhen Lei +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, China
('1716231', 'Bin Yang', 'bin yang')
('34679741', 'Stan Z. Li', 'stan z. li')
{zlei, szli}@nlpr.ia.ac.cn +
{yb.derek, yanjjie}@gmail.com +
500b92578e4deff98ce20e6017124e6d2053b451
504028218290d68859f45ec686f435f473aa326cMulti-Fiber Networks for Video Recognition +
National University of Singapore
2 Facebook Research +
Qihoo 360 AI Institute
('1713312', 'Yunpeng Chen', 'yunpeng chen')
('1944225', 'Yannis Kalantidis', 'yannis kalantidis')
('2757639', 'Jianshu Li', 'jianshu li')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('33221685', 'Jiashi Feng', 'jiashi feng')
{chenyunpeng, jianshu}@u.nus.edu, yannisk@fb.com, +
{eleyans, elefjia}@nus.edu.sg +
5058a7ec68c32984c33f357ebaee96c59e269425A Comparative Evaluation of Regression Learning +
Algorithms for Facial Age Estimation +
1 Herta Security +
Pau Claris 165 4-B, 08037 Barcelona, Spain +
DPDCE, University IUAV
Santa Croce 1957, 30135 Venice, Italy +
('1733945', 'Andrea Prati', 'andrea prati')carles.fernandez@hertasecurity.com +
huertacasado@iuav.it, aprati@iuav.it +
50ff21e595e0ebe51ae808a2da3b7940549f4035IEEE TRANSACTIONS ON LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2017 +
Age Group and Gender Estimation in the Wild with +
Deep RoR Architecture +
('32164792', 'Ke Zhang', 'ke zhang')
('35038034', 'Ce Gao', 'ce gao')
('3451321', 'Liru Guo', 'liru guo')
('2598874', 'Miao Sun', 'miao sun')
('3451660', 'Xingfang Yuan', 'xingfang yuan')
('3244463', 'Tony X. Han', 'tony x. han')
('2626320', 'Zhenbing Zhao', 'zhenbing zhao')
('2047712', 'Baogang Li', 'baogang li')
5042b358705e8d8e8b0655d07f751be6a1565482International Journal of +
Emerging Research in Management &Technology +
ISSN: 2278-9359 (Volume-4, Issue-8) +
Research Article +
August +
2015 +
Review on Emotion Detection in Image +
CSE & PCET, PTU HOD, CSE & PCET, PTU +
Punjab, India Punj ab, India +
50e47857b11bfd3d420f6eafb155199f4b41f6d7International Journal of Computer, Consumer and Control (IJ3C), Vol. 2, No.1 (2013) +
3D Human Face Reconstruction Using a Hybrid of Photometric +
Stereo and Independent Component Analysis +
('1734467', 'Cheng-Jian Lin', 'cheng-jian lin')
('3318507', 'Shyi-Shiun Kuo', 'shyi-shiun kuo')
('18305737', 'Hsueh-Yi Lin', 'hsueh-yi lin')
('2911354', 'Cheng-Yi Yu', 'cheng-yi yu')
50eb75dfece76ed9119ec543e04386dfc95dfd13Learning Visual Entities and their Visual Attributes from Text Corpora +
Dept. of Computer Science +
K.U.Leuven, Belgium +
Dept. of Computer Science +
K.U.Leuven, Belgium +
Dept. of Computer Science +
K.U.Leuven, Belgium +
('2955093', 'Erik Boiy', 'erik boiy')
('1797588', 'Koen Deschacht', 'koen deschacht')
('1802161', 'Marie-Francine Moens', 'marie-francine moens')
erik.boiy@cs.kuleuven.be +
koen.deschacht@cs.kuleuven.be +
sien.moens@cs.kuleuven.be +
5050807e90a925120cbc3a9cd13431b98965f4b9To appear in the ECCV Workshop on Parts and Attributes, Oct. 2012. +
Unsupervised Learning of Discriminative +
Relative Visual Attributes +
Boston University
Hacettepe University
('2863531', 'Shugao Ma', 'shugao ma')
('2011587', 'Nazli Ikizler-Cinbis', 'nazli ikizler-cinbis')
50a0930cb8cc353e15a5cb4d2f41b365675b5ebf
508702ed2bf7d1b0655ea7857dd8e52d6537e765ZUO, ORGANISCIAK, SHUM, YANG: SST-VLAD AND SST-FV FOR VAR +
Saliency-Informed Spatio-Temporal Vector +
of Locally Aggregated Descriptors and +
Fisher Vectors for Visual Action Recognition +
Department of Computer and +
Information Sciences +
Northumbria University
Newcastle upon Tyne, NE1 8ST, UK +
('40760781', 'Zheming Zuo', 'zheming zuo')
('34975328', 'Daniel Organisciak', 'daniel organisciak')
('2840036', 'Hubert P. H. Shum', 'hubert p. h. shum')
('1706028', 'Longzhi Yang', 'longzhi yang')
zheming.zuo@northumbria.ac.uk +
daniel.organisciak@northumbria.ac.uk +
hubert.shum@northumbria.ac.uk +
longzhi.yang@northumbria.ac.uk +
50eb2ee977f0f53ab4b39edc4be6b760a2b05f96Australian Journal of Basic and Applied Sciences, 11(5) April 2017, Pages: 1-11 +
AUSTRALIAN JOURNAL OF BASIC AND +
APPLIED SCIENCES +
ISSN:1991-8178 EISSN: 2309-8414 +
Journal home page: www.ajbasweb.com +
Emotion Recognition Based on Texture Analysis of Facial Expressions +
Using Wavelets Transform +
1Suhaila N. Mohammed and 2Loay E. George +
Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq
College of Science, Baghdad University, Baghdad, Iraq
Address For Correspondence: +
Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq
A R T I C L E I N F O +
Article history: +
Received 18 January 2017 +
Accepted 28 March 2017 +
Available online 15 April 2017 +
Keywords: +
Facial Emotion, Face Detection, +
Template Based Methods, Texture +
Based Features, Haar Wavelets +
Transform, Image Blocking, Neural +
Network. +
A B S T R A C T +
Background: The interests toward developing accurate automatic facial emotion +
recognition methodologies are growing vastly and still an ever growing research field in +
the region of computer vision, artificial intelligent and automation. Auto emotion +
detection systems are demanded in various fields such as medicine, education, driver +
safety, games, etc. Despite the importance of this issue it still remains an unsolved +
problem Objective: In this paper a facial based emotion recognition system is +
introduced. Template based method is used for face region extraction by exploiting +
human knowledge about face components and the corresponding symmetry property. +
The system is based on texture features to work as identical feature vector. These +
features are extracted from face region through using Haar wavelets transform and +
blocking idea by calculating the energy of each block The feed forward neural network +
classifier is used for classification task. The network is trained using a training set of +
samples, and then the generated weights are used to test the recognition ability of the +
system. Results: JAFFE public dataset is used for system evaluation purpose; it holds +
213 facial samples for seven basic emotions. The conducted tests on the developed +
system gave accuracy around 90.05% when the number of blocks is set 4x4. +
Conclusion: This result is considered the highest when compared with the results of +
other newly published works, especially those based on texture features in which +
blocking idea allows the extraction of statistical features according to local energy of +
each block; this gave chance for more features to work more effectively. +
INTRODUCTION +
Due to the rapid development of technologies, it is being required to build a smart system for understanding +
human emotion (Ruivo et al., 2016). There are different ways to distinguish person emotions such as facial +
image, voice, shape of body and others. Mehrabian explained that person impression can be expressed through +
words (verbal part) by 7%, and 38% through tone of voice (vocal part) while the facial image can give the +
largest rate which reaches to 55% (Rani and Garg, 2014). Also, he indicated that one of the most important ways +
to display emotions is through facial expressions; where facial image contains much information (such as, +
person's identification and also about mood and state of mind) which can be used to distinguish human +
inspiration (Saini and Rana, 2014). +
Facial emotion recognition is an active area of research with several fields of applications. Some of the +
significant applications are: feedback system for e-learning, alert system for driving, social robot emotion +
recognition system, medical practices...etc (Dubey and Singh, 2016). +
Human emotion is composed of thousands of expressions but in the last decade the focus on analyzing only +
seven basic facial expressions such as happiness, sadness, surprise, disgust, fear, natural, and anger (Singh and +
Open Access Journal +
Published BY AENSI Publication +
© 2017 AENSI Publisher All rights reserved +
This work is licensed under the Creative Commons Attribution International License (CC BY). +
http://creativecommons.org/licenses/by/4.0/ +
To Cite This Article: Suhaila N. Mohammed and Loay E. George., Emotion Recognition Based on Texture Analysis of Facial Expressions +
Using Wavelets Transform. Aust. J. Basic & Appl. Sci., 11(5): 1-11, 2017 +
50e45e9c55c9e79aaae43aff7d9e2f079a2d787bHindawi Publishing Corporation +
e Scientific World Journal +
Volume 2015, Article ID 471371, 18 pages +
http://dx.doi.org/10.1155/2015/471371 +
Research Article +
Unbiased Feature Selection in Learning Random Forests for +
High-Dimensional Data +
Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences, Shenzhen 518055, China +
University of Chinese Academy of Sciences, Beijing 100049, China
School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam
Received 20 June 2014; Accepted 20 August 2014 +
Academic Editor: Shifei Ding +
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +
cited. +
Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging +
samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs +
have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where +
multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select +
good features in learning RFs for high-dimensional data. We first remove the uninformative features using 𝑝-value assessment, +
and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into +
two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This +
approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed +
for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image +
datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in +
increasing the accuracy and the AUC measures. +
1. Introduction +
Random forests (RFs) [1] are a nonparametric method that +
builds an ensemble model of decision trees from random +
subsets of features and bagged samples of the training data. +
RFs have shown excellent performance for both clas- +
sification and regression problems. RF model works well +
even when predictive features contain irrelevant features +
(or noise); it can be used when the number of features is +
much larger than the number of samples. However, with +
randomizing mechanism in both bagging samples and feature +
selection, RFs could give poor accuracy when applied to high +
dimensional data. The main cause is that, in the process of +
growing a tree from the bagged sample data, the subspace +
of features randomly sampled from thousands of features to +
split a node of the tree is often dominated by uninformative +
features (or noise), and the tree grown from such bagged +
subspace of features will have a low accuracy in prediction +
which affects the final prediction of the RFs. Furthermore, +
Breiman et al. noted that feature selection is biased in the +
classification and regression tree (CART) model because it is +
based on an information criteria, called multivalue problem +
[2]. It tends in favor of features containing more values, even if +
these features have lower importance than other ones or have +
no relationship with the response feature (i.e., containing +
less missing values, many categorical or distinct numerical +
values) [3, 4]. +
In this paper, we propose a new random forests algo- +
rithm using an unbiased feature sampling method to build +
a good subspace of unbiased features for growing trees. +
('40538635', 'Thanh-Tung Nguyen', 'thanh-tung nguyen')
('8192216', 'Joshua Zhexue Huang', 'joshua zhexue huang')
('39340373', 'Thuy Thi Nguyen', 'thuy thi nguyen')
('40538635', 'Thanh-Tung Nguyen', 'thanh-tung nguyen')
Correspondence should be addressed to Thanh-Tung Nguyen; tungnt@wru.vn +
5003754070f3a87ab94a2abb077c899fcaf936a6Evaluation of LC-KSVD on UCF101 Action Dataset +
University of Maryland, College Park
2Noah’s Ark Lab, Huawei Technologies +
('3146162', 'Hyunjong Cho', 'hyunjong cho')
('2445131', 'Hyungtae Lee', 'hyungtae lee')
('34145947', 'Zhuolin Jiang', 'zhuolin jiang')
cho@cs.umd.edu, htlee@umd.edu, zhuolin.jiang@huawei.com +
503db524b9a99220d430e741c44cd9c91ce1ddf8Who’s Better, Who’s Best: Skill Determination in Video using Deep Ranking +
University of Bristol, Bristol, UK
Walterio Mayol-Cuevas +
('28798386', 'Hazel Doughty', 'hazel doughty')
('1728459', 'Dima Damen', 'dima damen')
.@bristol.ac.uk +
50d15cb17144344bb1879c0a5de7207471b9ff74Divide, Share, and Conquer: Multi-task +
Attribute Learning with Selective Sharing +
('3197570', 'Chao-Yeh Chen', 'chao-yeh chen')
('2228235', 'Dinesh Jayaraman', 'dinesh jayaraman')
('1693054', 'Fei Sha', 'fei sha')
('1794409', 'Kristen Grauman', 'kristen grauman')
50d961508ec192197f78b898ff5d44dc004ef26dInternational Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009 +
A LOW INDEXED CONTENT BASED +
NEURAL NETWORK APPROACH FOR +
NATURAL OBJECTS RECOGNITION +
1Research Scholar, JNTUH, Hyderabad, AP. India +
Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India
Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India
shyam_gunda2002@yahoo.co.in +
govardhan_cse@yahoo.co.in +
tv_venkat@yahoo.com +
50ccc98d9ce06160cdf92aaf470b8f4edbd8b899Towards Robust Cascaded Regression for Face Alignment in the Wild +
J¨urgen Beyerer2,1 +
Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB
3Signal Processing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +
('1797975', 'Chengchao Qu', 'chengchao qu')
('1697965', 'Hua Gao', 'hua gao')
('2233872', 'Eduardo Monari', 'eduardo monari')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
firstname.lastname@iosb.fraunhofer.de +
firstname.lastname@epfl.ch +
5028c0decfc8dd623c50b102424b93a8e9f2e390Published as a conference paper at ICLR 2017 +
REVISITING CLASSIFIER TWO-SAMPLE TESTS +
1Facebook AI Research, 2WILLOW project team, Inria / ENS / CNRS +
('3016461', 'David Lopez-Paz', 'david lopez-paz')
('2093491', 'Maxime Oquab', 'maxime oquab')
dlp@fb.com, maxime.oquab@inria.fr +
505e55d0be8e48b30067fb132f05a91650666c41A Model of Illumination Variation for Robust Face Recognition +
Institut Eur´ecom +
Multimedia Communications Department +
BP 193, 06904 Sophia Antipolis Cedex, France +
('1723883', 'Florent Perronnin', 'florent perronnin')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
fflorent.perronnin, jean-luc.dugelayg@eurecom.fr +
507c9672e3673ed419075848b4b85899623ea4b0Faculty of Informatics +
Institute for Anthropomatics
Chair Prof. Dr.-Ing. R. Stiefelhagen +
Facial Image Processing and Analysis Group +
Multi-View Facial Expression +
Classification +
ADVISORS +
MARCH 2011 +
KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association
www.kit.edu +
('33357889', 'Nikolas Hesse', 'nikolas hesse')
('38113750', 'Hua Gao', 'hua gao')
('40303076', 'Tobias Gehrig', 'tobias gehrig')
50c0de2cccf7084a81debad5fdb34a9139496da0ORIGINAL RESEARCH +
published: 30 November 2016 +
doi: 10.3389/fict.2016.00027 +
The Influence of Annotation, Corpus +
Design, and Evaluation on the +
Outcome of Automatic Classification +
of Human Emotions +
Institute of Neural Information Processing, Ulm University, Ulm, Germany
The integration of emotions into human–computer interaction applications promises a +
more natural dialog between the user and the technical system operators. In order +
to construct such machinery, continuous measuring of the affective state of the user +
becomes essential. While basic research that is aimed to capture and classify affective +
signals has progressed, many issues are still prevailing that hinder easy integration +
of affective signals into human–computer interaction. In this paper, we identify and +
investigate pitfalls in three steps of the work-flow of affective classification studies. It starts +
with the process of collecting affective data for the purpose of training suitable classifiers. +
Emotional data have to be created in which the target emotions are present. Therefore, +
human participants have to be stimulated suitably. We discuss the nature of these stimuli, +
their relevance to human–computer interaction, and the repeatability of the data recording +
setting. Second, aspects of annotation procedures are investigated, which include the +
variances of +
individual raters, annotation delay, the impact of the used annotation +
tool, and how individual ratings are combined to a unified label. Finally, the evaluation +
protocol +
is examined, which includes, among others, the impact of the performance +
measure on the accuracy of a classification model. We hereby focus especially on the +
evaluation of classifier outputs against continuously annotated dimensions. Together with +
the discussed problems and pitfalls and the ways how they affect the outcome, we +
provide solutions and alternatives to overcome these issues. As the final part of the paper, +
we sketch a recording scenario and a set of supporting technologies that can contribute +
to solve many of the issues mentioned above. +
Keywords: affective computing, affective labeling, human–computer interaction, performance measures, machine +
guided labeling +
1. INTRODUCTION +
The integration of affective signals into human–computer interaction (HCI) is generally considered +
beneficial to improve the interaction process (Picard, 2000). The analysis of affective data in HCI +
can be considered both cumbersome and prone to errors. The main reason for this is that the +
important steps in affective classification are particularly difficult. This includes difficulties that arise +
in the recording of suitable data collections comprising episodes of affective HCI, in the uncertainty +
and subjectivity of the annotations of these data, and finally in the evaluation protocol that should +
account for the continuous nature of the application. +
Edited by: +
Anna Esposito, +
Seconda Università degli Studi di +
Napoli, Italy +
Reviewed by: +
Anna Pribilova, +
Slovak University of Technology in
Bratislava, Slovakia +
Alda Troncone, +
Seconda Università degli Studi di +
Napoli, Italy +
*Correspondence: +
contributed equally to this work. +
Specialty section: +
This article was submitted to +
Human-Media Interaction, a section +
of the journal Frontiers in ICT +
Received: 15 May 2016 +
Accepted: 26 October 2016 +
Published: 30 November 2016 +
Citation: +
Kächele M, Schels M and +
Schwenker F (2016) The Influence of +
Annotation, Corpus Design, and +
Evaluation on the Outcome of +
Automatic Classification of Human +
Emotions. +
doi: 10.3389/fict.2016.00027 +
Frontiers in ICT | www.frontiersin.org +
November 2016 | Volume 3 | Article 27 +
('2144395', 'Markus Kächele', 'markus kächele')
('3037635', 'Martin Schels', 'martin schels')
('1685857', 'Friedhelm Schwenker', 'friedhelm schwenker')
('2144395', 'Markus Kächele', 'markus kächele')
('2144395', 'Markus Kächele', 'markus kächele')
('3037635', 'Martin Schels', 'martin schels')
markus.kaechele@uni-ulm.de +
680d662c30739521f5c4b76845cb341dce010735Int J Comput Vis (2014) 108:82–96 +
DOI 10.1007/s11263-014-0716-6 +
Part and Attribute Discovery from Relative Annotations +
Received: 25 February 2013 / Accepted: 14 March 2014 / Published online: 26 April 2014 +
© Springer Science+Business Media New York 2014 +
('35208858', 'Subhransu Maji', 'subhransu maji')
68f89c1ee75a018c8eff86e15b1d2383c250529bFinal Report for Project Localizing Objects and +
Actions in Videos Using Accompanying Text +
Johns Hopkins University, Center for Speech and Language Processing
Summer Workshop 2010 +
J. Neumann, StreamSage/Comcast +
F.Ferraro, University of Rochester
H. He, Honkong Polytechnic University
Y. Li, University of Maryland
C.L. Teo, University of Maryland
November 4, 2010 +
('3167986', 'C. Fermueller', 'c. fermueller')
('1743020', 'J. Kosecka', 'j. kosecka')
('2601166', 'E. Tzoukermann', 'e. tzoukermann')
('2995090', 'R. Chaudhry', 'r. chaudhry')
('1937619', 'I. Perera', 'i. perera')
('9133363', 'B. Sapp', 'b. sapp')
('38873583', 'G. Singh', 'g. singh')
('1870728', 'X. Yi', 'x. yi')
68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5AGE CLASSIFICATION BASED ON +
SIMPLE LBP TRANSITIONS +
Aditya institute of Technology and Management, Tekkalli-532 201, A.P
2Dr. V.Vijaya Kumar +
3A. Obulesu +
2Dean-Computer Sciences (CSE & IT), Anurag Group of Institutions, Hyderabad – 500088, A.P., India., +
3Asst. Professor, Dept. Of CSE, Anurag Group of Institutions, Hyderabad – 500088, A.P., India. +
('34964075', 'Satyanarayana Murty', 'satyanarayana murty')India, 1gsn_73@yahoo.co.in +
2drvvk144@gmail.com +
3obulesh.a@gmail.com +
68d2afd8c5c1c3a9bbda3dd209184e368e4376b9Representation Learning by Rotating Your Faces +('1849929', 'Luan Tran', 'luan tran')
('2399004', 'Xi Yin', 'xi yin')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
68a3f12382003bc714c51c85fb6d0557dcb15467
6859b891a079a30ef16f01ba8b85dc45bd22c352International Journal of Emerging Technology and Advanced Engineering +
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 10, October 2014) +
2D Face Recognition Based on PCA & Comparison of +
Manhattan Distance, Euclidean Distance & Chebychev +
Distance +
RCC Institute of Information Technology, Kolkata, India
('2467416', 'Rajib Saha', 'rajib saha')
('2144187', 'Sayan Barman', 'sayan barman')
68d08ed9470d973a54ef7806318d8894d87ba610Drive Video Analysis for the Detection of Traffic Near-Miss Incidents +('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('5014206', 'Teppei Suzuki', 'teppei suzuki')
('6881850', 'Shoko Oikawa', 'shoko oikawa')
('1720770', 'Yasuhiro Matsui', 'yasuhiro matsui')
('1732705', 'Yutaka Satoh', 'yutaka satoh')
68caf5d8ef325d7ea669f3fb76eac58e0170fff0
68003e92a41d12647806d477dd7d20e4dcde1354ISSN: 0976-9102 (ONLINE) +
DOI: 10.21917/ijivp.2013.0101 +
ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2013, VOLUME: 04, ISSUE: 02 +
FUZZY BASED IMAGE DIMENSIONALITY REDUCTION USING SHAPE +
PRIMITIVES FOR EFFICIENT FACE RECOGNITION +
1Deprtment of Computer Science and Engineering, Nalla Narasimha Reddy Education Society’s Group of Institutions, India +
Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India
3Deprtment of Computer Science and Engineering, Anurag Group of Institutions, India +
('2086540', 'P. Chandra', 'p. chandra')
('2803943', 'B. Eswara Reddy', 'b. eswara reddy')
('36754879', 'Vijaya Kumar', 'vijaya kumar')
E-Mail: pchandureddy@yahoo.com +
E-mail: eswarcsejntu@gmail.com +
E-mail: vijayvakula@yahoo.com +
68d4056765c27fbcac233794857b7f5b8a6a82bfExample-Based Face Shape Recovery Using the +
Zenith Angle of the Surface Normal +
Mario Castel´an1, Ana J. Almaz´an-Delf´ın2, Marco I. Ram´ırez-Sosa-Mor´an3, +
and Luz A. Torres-M´endez1 +
1 CINVESTAV Campus Saltillo, Ramos Arizpe 25900, Coahuila, M´exico +
2 Universidad Veracruzana, Facultad de F´ısica e Inteligencia Artificial, Xalapa 91000, +
3 ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico +
Veracruz, M´exico +
mario.castelan@cinvestav.edu.mx +
684f5166d8147b59d9e0938d627beff8c9d208ddIEEE TRANS. NNLS, JUNE 2017 +
Discriminative Block-Diagonal Representation +
Learning for Image Recognition +
('38448016', 'Zheng Zhang', 'zheng zhang')
('40065614', 'Yong Xu', 'yong xu')
('40799321', 'Ling Shao', 'ling shao')
('49500178', 'Jian Yang', 'jian yang')
68c5238994e3f654adea0ccd8bca29f2a24087fcPLSA-BASED ZERO-SHOT LEARNING +
Centre of Image and Signal Processing +
Faculty of Computer Science & Information Technology +
University of Malaya, 50603 Kuala Lumpur, Malaysia
('2800072', 'Wai Lam Hoo', 'wai lam hoo')
('2863960', 'Chee Seng Chan', 'chee seng chan')
{wailam88@siswa.um.edu.my; cs.chan@um.edu.my} +
68cf263a17862e4dd3547f7ecc863b2dc53320d8
68e9c837431f2ba59741b55004df60235e50994dDetecting Faces Using Region-based Fully +
Convolutional Networks +
Tencent AI Lab, China +
('1996677', 'Yitong Wang', 'yitong wang'){yitongwang,denisji,encorezhou,hawelwang,michaelzfli}@tencent.com +
685f8df14776457c1c324b0619c39b3872df617bMaster of Science Thesis in Electrical Engineering +
Link ping University
Face Recognition with +
Preprocessing and Neural +
Networks +
68484ae8a042904a95a8d284a7f85a4e28e37513Spoofing Deep Face Recognition with Custom Silicone Masks +
S´ebastien Marcel +
Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland
('1952348', 'Sushil Bhattacharjee', 'sushil bhattacharjee'){sushil.bhattacharjee; amir.mohammadi; sebastien.marcel}@idiap.ch +
687e17db5043661f8921fb86f215e9ca2264d4d2A Robust Elastic and Partial Matching Metric for Face Recognition +
Microsoft Corporate +
One Microsoft Way, Redmond, WA 98052 +
('1745420', 'Gang Hua', 'gang hua')
('33474090', 'Amir Akbarzadeh', 'amir akbarzadeh')
{ganghua, amir}@microsoft.com +
688754568623f62032820546ae3b9ca458ed0870bioRxiv preprint first posted online Sep. 27, 2016; +
doi: +
http://dx.doi.org/10.1101/077784 +
. +
The copyright holder for this preprint (which was not +
peer-reviewed) is the author/funder. It is made available under a +
CC-BY-NC-ND 4.0 International license +
. +
Resting high frequency heart rate variability is not associated with the +
recognition of emotional facial expressions in healthy human adults. +
1 Univ. Grenoble Alpes, LPNC, F-38040, Grenoble, France +
2 CNRS, LPNC UMR 5105, F-38040, Grenoble, France +
3 IPSY, Université Catholique de Louvain, Louvain-la-Neuve, Belgium +
4 Fund for Scientific Research (FRS-FNRS), Brussels, Belgium +
Correspondence concerning this article should be addressed to Brice Beffara, Office E250, Institut +
de Recherches en Sciences Psychologiques, IPSY - Place du Cardinal Mercier, 10 bte L3.05.01 B-1348 +
Author note +
This study explores whether the myelinated vagal connection between the heart and the brain +
is involved in emotion recognition. The Polyvagal theory postulates that the activity of the +
myelinated vagus nerve underlies socio-emotional skills. It has been proposed that the perception +
of emotions could be one of this skills dependent on heart-brain interactions. However, this +
assumption was differently supported by diverging results suggesting that it could be related to +
confounded factors. In the current study, we recorded the resting state vagal activity (reflected by +
High Frequency Heart Rate Variability, HF-HRV) of 77 (68 suitable for analysis) healthy human +
adults and measured their ability to identify dynamic emotional facial expressions. Results show +
that HF-HRV is not related to the recognition of emotional facial expressions in healthy human +
adults. We discuss this result in the frameworks of the polyvagal theory and the neurovisceral +
integration model. +
Keywords: HF-HRV; autonomic flexibility; emotion identification; dynamic EFEs; Polyvagal +
theory; Neurovisceral integration model +
Word count: 9810 +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 +
Introduction +
The behavior of an animal is said social when involved in in- +
teractions with other animals (Ward & Webster, 2016). These +
interactions imply an exchange of information, signals, be- +
tween at least two animals. In humans, the face is an efficient +
communication channel, rapidly providing a high quantity of +
information. Facial expressions thus play an important role +
in the transmission of emotional information during social +
interactions. The result of the communication is the combina- +
tion of transmission from the sender and decoding from the +
receiver (Jack & Schyns, 2015). As a consequence, the quality +
of the interaction depends on the ability to both produce and +
identify facial expressions. Emotions are therefore a core +
feature of social bonding (Spoor & Kelly, 2004). Health +
of individuals and groups depend on the quality of social +
bonds in many animals (Boyer, Firat, & Leeuwen, 2015; S. L. +
Brown & Brown, 2015; Neuberg, Kenrick, & Schaller, 2011), +
18 +
19 +
20 +
21 +
22 +
23 +
24 +
25 +
26 +
27 +
28 +
29 +
30 +
31 +
32 +
33 +
34 +
35 +
especially in highly social species such as humans (Singer & +
Klimecki, 2014). +
The recognition of emotional signals produced by others is +
not independent from its production by oneself (Niedenthal, +
2007). The muscles of the face involved in the production of +
a facial expressions are also activated during the perception of +
the same facial expressions (Dimberg, Thunberg, & Elmehed, +
2000). In other terms, the facial mimicry of the perceived +
emotional facial expression (EFE) triggers its sensorimotor +
simulation in the brain, which improves the recognition abili- +
ties (Wood, Rychlowska, Korb, & Niedenthal, 2016). Beyond +
that, the emotion can be seen as the body -including brain- +
dynamic itself (Gallese & Caruana, 2016) which helps to un- +
derstand why behavioral simulation is necessary to understand +
the emotion. +
The interplay between emotion production, emotion percep- +
tion, social communication and body dynamics has been sum- +
marized in the framework of the polyvagal theory (Porges, +
('37799937', 'Nicolas Vermeulen', 'nicolas vermeulen')
('2634712', 'Martial Mermillod', 'martial mermillod')
Louvain-la-Neuve, Belgium. E-mail: brice.beffara@univ-grenoble-alpes.fr +
68f9cb5ee129e2b9477faf01181cd7e3099d1824ALDA Algorithms for Online Feature Extraction +('2784763', 'Youness Aliyari Ghassabeh', 'youness aliyari ghassabeh')
('2060085', 'Hamid Abrishami Moghaddam', 'hamid abrishami moghaddam')
68bf34e383092eb827dd6a61e9b362fcba36a83a
68d40176e878ebffbc01ffb0556e8cb2756dd9e9International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +
International Conference on Humming Bird ( 01st March 2014) +
RESEARCH ARTICLE +
OPEN ACCESS +
Locality Repulsion Projection and Minutia Extraction Based +
Similarity Measure for Face Recognition +
AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of
2Ramya P. is currently working as an Asst. Professor in the dept. of Information Technology at Vins Christian +
college of Engineering
Engineering. e-mail:anushyase@gmail.com. +
68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090AgeNet: Deeply Learned Regressor and Classifier for +
Robust Apparent Age Estimation +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
2Tencent BestImage Team, Shanghai, 100080, China +
('1731144', 'Xin Liu', 'xin liu')
('1688086', 'Shaoxin Li', 'shaoxin li')
('1693589', 'Meina Kan', 'meina kan')
('1698586', 'Jie Zhang', 'jie zhang')
('3126238', 'Shuzhe Wu', 'shuzhe wu')
('13323391', 'Wenxian Liu', 'wenxian liu')
('34393045', 'Hu Han', 'hu han')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{xin.liu, meina.kan, jie.zhang, shuzhe.wu, wenxian.liu, hu.han}@vipl.ict.ac.cn +
{darwinli}@tencent.com, {sgshan, xlchen}@ict.ac.cn +
6889d649c6bbd9c0042fadec6c813f8e894ac6ccAnalysis of Robust Soft Learning Vector +
Quantization and an application to Facial +
Expression Recognition +
68f69e6c6c66cfde3d02237a6918c9d1ee678e1bEnhancing Concept Detection by Pruning Data with MCA-based Transaction +
Weights +
Department of Electrical and +
Computer Engineering +
University of Miami
Coral Gables, FL 33124, USA +
School of Computing and +
Information Sciences +
Florida International University
Miami, FL 33199, USA +
('1685202', 'Lin Lin', 'lin lin')
('1693826', 'Mei-Ling Shyu', 'mei-ling shyu')
('1705664', 'Shu-Ching Chen', 'shu-ching chen')
Email: l.lin2@umiami.edu, shyu@miami.edu +
Email: chens@cs.fiu.edu +
682760f2f767fb47e1e2ca35db3becbb6153756fThe Effect of Pets on Happiness: A Large-scale Multi-Factor +
Analysis using Social Multimedia +
From reducing stress and loneliness, to boosting productivity and overall well-being, pets are believed to play +
a significant role in people’s daily lives. Many traditional studies have identified that frequent interactions +
with pets could make individuals become healthier and more optimistic, and ultimately enjoy a happier life. +
However, most of those studies are not only restricted in scale, but also may carry biases by using subjective +
self-reports, interviews, and questionnaires as the major approaches. In this paper, we leverage large-scale +
data collected from social media and the state-of-the-art deep learning technologies to study this phenomenon +
in depth and breadth. Our study includes four major steps: 1) collecting timeline posts from around 20,000 +
Instagram users; 2) using face detection and recognition on 2-million photos to infer users’ demographics, +
relationship status, and whether having children, 3) analyzing a user’s degree of happiness based on images +
and captions via smiling classification and textual sentiment analysis; 3) applying transfer learning techniques +
to retrain the final layer of the Inception v3 model for pet classification; and 4) analyzing the effects of pets +
on happiness in terms of multiple factors of user demographics. Our main results have demonstrated the +
efficacy of our proposed method with many new insights. We believe this method is also applicable to other +
domains as a scalable, efficient, and effective methodology for modeling and analyzing social behaviors and +
psychological well-being. In addition, to facilitate the research involving human faces, we also release our +
dataset of 700K analyzed faces. +
CCS Concepts: • Human-centered computing → Social media; +
Additional Key Words and Phrases: Happiness analysis, happiness, user demographics, pet and happiness, +
social multimedia, social media. +
ACM Reference format: +
Analysis using Social Multimedia. ACM Trans. Intell. Syst. Technol. 9, 4, Article 39 (June 2017), 15 pages. +
https://doi.org/0000001.0000001 +
1 INTRODUCTION +
Happiness has always been a subjective and multidimensional matter; its definition varies individu- +
ally, and the factors impacting our feeling of happiness are diverse. A study in [21] has constructed +
We thank the support of New York State through the Goergen Institute for Data Science, our corporate research sponsors
Xerox and VisualDX, and NSF Award #1704309. +
Author s addresses: X. Peng, University of Rochester; L. Chi
University of Rochester and J. Luo, University of Rochester
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee +
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the +
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. +
('1901094', 'Xuefeng Peng', 'xuefeng peng')
('35678395', 'Li-Kai Chi', 'li-kai chi')
('33642939', 'Jiebo Luo', 'jiebo luo')
('1901094', 'Xuefeng Peng', 'xuefeng peng')
('35678395', 'Li-Kai Chi', 'li-kai chi')
('33642939', 'Jiebo Luo', 'jiebo luo')
683ec608442617d11200cfbcd816e86ce9ec0899Dual Linear Regression Based Classification for Face Cluster Recognition +
University of Northern British Columbia
Prince George, BC, Canada V2N 4Z9 +
('1692551', 'Liang Chen', 'liang chen')chen.liang.97@gmail.com +
68c17aa1ecbff0787709be74d1d98d9efd78f410International Journal of Optomechatronics, 6: 92–119, 2012 +
Copyright # Taylor & Francis Group, LLC +
ISSN: 1559-9612 print=1559-9620 online +
DOI: 10.1080/15599612.2012.663463 +
GENDER CLASSIFICATION FROM FACE IMAGES +
USING MUTUAL INFORMATION AND FEATURE +
FUSION +
Department of Electrical Engineering and Advanced Mining Technology +
Center, Universidad de Chile, Santiago, Chile +
In this article we report a new method for gender classification from frontal face images +
using feature selection based on mutual information and fusion of features extracted from +
intensity, shape, texture, and from three different spatial scales. We compare the results of +
three different mutual information measures: minimum redundancy and maximal relevance +
(mRMR), normalized mutual information feature selection (NMIFS), and conditional +
mutual information feature selection (CMIFS). We also show that by fusing features +
extracted from six different methods we significantly improve the gender classification +
results relative to those previously published, yielding 99.13% of the gender classification +
rate on the FERET database. +
Keywords: Feature fusion, feature selection, gender classification, mutual information, real-time gender +
classification +
1. INTRODUCTION +
During the 90’s, one of the main issues addressed in the area of computer +
vision was face detection. Many methods and applications were developed including +
the face detection used in many digital cameras nowadays. Gender classification is +
important in many possible applications including electronic marketing. Displays +
at retail stores could show products and offers according to the person gender as +
the person passes in front of a camera at the store. This is not a simple task since +
faces are not rigid and depend on illumination, pose, gestures, facial expressions, +
occlusions (glasses), and other facial features (makeup, beard). The high variability +
in the appearance of the face directly affects their detection and classification. Auto- +
matic classification of gender from face images has a wide range of possible applica- +
tions, ranging from human-computer interaction to applications in real-time +
electronic marketing in retail stores (Shan 2012; Bekios-Calfa et al. 2011; Chu +
et al. 2010; Perez et al. 2010a). +
Automatic gender classification has a wide range of possible applications for +
improving human-machine interaction and face identification methods (Irick et al. +
ing.uchile.cl +
92 +
('32271973', 'Claudio Perez', 'claudio perez')
('40333310', 'Juan Tapia', 'juan tapia')
('32723983', 'Claudio Held', 'claudio held')
('32271973', 'Claudio Perez', 'claudio perez')
('32271973', 'Claudio Perez', 'claudio perez')
Engineering, Universidad de Chile Casilla 412-3, Av. Tupper 2007, Santiago, Chile. E-mail: clperez@ +
68f61154a0080c4aae9322110c8827978f01ac2eResearch Article +
Journal of the Optical Society of America A +
Recognizing blurred, non-frontal, illumination and +
expression variant partially occluded faces +
Indian Institute of Technology Madras, Chennai 600036, India
Compiled June 26, 2016 +
The focus of this paper is on the problem of recognizing faces across space-varying motion blur, changes +
in pose, illumination, and expression, as well as partial occlusion, when only a single image per subject +
is available in the gallery. We show how the blur incurred due to relative motion between the camera and +
the subject during exposure can be estimated from the alpha matte of pixels that straddle the boundary +
between the face and the background. We also devise a strategy to automatically generate the trimap re- +
quired for matte estimation. Having computed the motion via the matte of the probe, we account for pose +
variations by synthesizing from the intensity image of the frontal gallery, a face image that matches the +
pose of the probe. To handle illumination and expression variations, and partial occlusion, we model the +
probe as a linear combination of nine blurred illumination basis images in the synthesized non-frontal +
pose, plus a sparse occlusion. We also advocate a recognition metric that capitalizes on the sparsity of the +
occluded pixels. The performance of our method is extensively validated on synthetic as well as real face +
data. © 2016 Optical Society of America +
OCIS codes: +
(150.0150) Machine vision. +
http://dx.doi.org/10.1364/ao.XX.XXXXXX +
(100.0100) Image processing; (100.5010) Pattern recognition; (100.3008) Image recognition, algorithms and filters; +
1. INTRODUCTION +
State-of-the-art face recognition (FR) systems can outperform +
even humans when presented with images captured under con- +
trolled environments. However, their performance drops quite +
rapidly in unconstrained settings due to image degradations +
arising from blur, variations in pose, illumination, and expres- +
sion, partial occlusion etc. Motion blur is commonplace today +
owing to the exponential rise in the use and popularity of light- +
weight and cheap hand-held imaging devices, and the ubiquity +
of mobile phones equipped with cameras. Photographs cap- +
tured using a hand-held device usually contain blur when the +
illumination is poor because larger exposure times are needed +
to compensate for the lack of light, and this increases the possi- +
bility of camera shake. On the other hand, reducing the shutter +
speed results in noisy images while tripods inevitably restrict +
mobility. Even for a well-lit scene, the face might be blurred if +
the subject is in motion. The problem is further compounded +
in the case of poorly-lit dynamic scenes since the blur observed +
on the face is due to the combined effects of the blur induced +
by the motion of the camera and the independent motion of +
the subject. In addition to blur and illumination, practical face +
recognition algorithms must also possess the ability to recognize +
faces across reasonable variations in pose. Partial occlusion and +
facial expression changes, common in real-world applications, +
escalate the challenges further. Yet another factor that governs +
the performance of face recognition algorithms is the number +
of images per subject available for training. In many practical +
application scenarios such as law enforcement, driver license or +
passport identification, where there is usually only one training +
sample per subject in the database, techniques that rely on the +
size and representation of the training set suffer a serious perfor- +
mance drop or even fail to work. Face recognition algorithms +
can broadly be classified into either discriminative or genera- +
tive approaches. While the availability of large labeled datasets +
and greater computing power has boosted the performance of +
discriminative methods [1, 2] recently, generative approaches +
continue to remain very popular [3, 4], and there is concurrent +
research in both directions. The model we present in this paper +
falls into the latter category. In fact, generative models are even +
useful for producing training samples for learning algorithms. +
Literature on face recognition from blurred images can be +
broadly classified into four categories. It is important to note +
that all of them (except our own earlier work in [4]) are restricted +
to the convolution model for uniform blur. In the first approach +
[5, 6], the blurred probe image is first deblurred using standard +
deconvolution algorithms before performing recognition. How- +
*Corresponding author: jithuthatswho@gmail.com +
6821113166b030d2123c3cd793dd63d2c909a110STUDIA INFORMATICA +
Volume 36 +
2015 +
Number 1 (119) +
Gdansk University of Technology, Faculty of Electronics, Telecommunication
and Informatics +
ACQUISITION AND INDEXING OF RGB-D RECORDINGS FOR +
FACIAL EXPRESSIONS AND EMOTION RECOGNITION1 +
Summary. In this paper KinectRecorder comprehensive tool is described which +
provides for convenient and fast acquisition, indexing and storing of RGB-D video +
streams from Microsoft Kinect sensor. The application is especially useful as a sup- +
porting tool for creation of fully indexed databases of facial expressions and emotions +
that can be further used for learning and testing of emotion recognition algorithms for +
affect-aware applications. KinectRecorder was successfully exploited for creation of +
Facial Expression and Emotion Database (FEEDB) significantly reducing the time of +
the whole project consisting of data acquisition, indexing and validation. FEEDB has +
already been used as a learning and testing dataset for a few emotion recognition al- +
gorithms which proved utility of the database, and the KinectRecorder tool. +
Keywords: RGB-D data acquisition and indexing, facial expression recognition, +
emotion recognition +
AKWIZYCJA ORAZ INDEKSACJA NAGRAŃ RGB-D DO +
Streszczenie. W pracy przedstawiono kompleksowe narzędzie, które pozwala na +
wygodną i szybką akwizycję, indeksowanie i przechowywanie nagrań strumieni +
RGB-D z czujnika Microsoft Kinect. Aplikacja jest szczególnie przydatna jako na- +
mogą być następnie wykorzystywane do nauki i testowania algorytmów rozpoznawa- +
nia emocji użytkownika dla aplikacji je uwzględniających. KinectRecorder został +
skracając czas całego procesu, obejmującego akwizycję, indeksowanie i walidację +
nagrań. Baza FEEDB została już z powodzeniem wykorzystana jako uczący i testują- +
+
1 The research leading to these results has received funding from the Polish-Norwegian Research Programme +
operated by the National Centre for Research and Development under the Norwegian Financial Mechanism +
2009-2014 in the frame of Project Contract No Pol-Nor/210629/51/2013. +
('3271448', 'Mariusz SZWOCH', 'mariusz szwoch')
68a04a3ae2086986877fee2c82ae68e3631d0356THERMAL & REFLECTANCE BASED IDENTIFICATION IN CHALLENGING VARIABLE ILLUMINATIONS +
Thermal and Reflectance Based Personal +
Identification Methodology in Challenging +
Variable Illuminations +
†Department of Engineering +
University of Cambridge
‡Delphi Corporation, +
Delphi Electronics and Safety +
Cambridge, CB2 1PZ, UK +
Kokomo, IN 46901-9005, USA +
February 15, 2007 +
DRAFT +
('2214319', 'Riad Hammoud', 'riad hammoud'){oa214,cipolla}@eng.cam.ac.uk +
riad.hammoud@delphi.com +
6888f3402039a36028d0a7e2c3df6db94f5cb9bbUnder review as a conference paper at ICLR 2018 +
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +
Anonymous authors +
Paper under double-blind review +
57f5711ca7ee5c7110b7d6d12c611d27af37875fIllumination Invariance for Face Verification +
Submitted for the Degree of +
Doctor of Philosophy +
from the +
University of Surrey
Centre for Vision, Speech and Signal Processing +
School of Electronics and Physical Sciences +
University of Surrey
Guildford, Surrey GU2 7XH, U.K. +
August 2006 +
('28467739', 'J. Short', 'j. short')
('28467739', 'J. Short', 'j. short')
570308801ff9614191cfbfd7da88d41fb441b423Unsupervised Synchrony Discovery in Human Interaction +
Robotics Institute, Carnegie Mellon University 3University of Pittsburgh, USA
Beihang University, Beijing, China
University of Miami, USA
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
('1874236', 'Daniel S. Messinger', 'daniel s. messinger')
57bf9888f0dfcc41c5ed5d4b1c2787afab72145aRobust Facial Expression Recognition Based on +
Local Directional Pattern +
Automatic facial expression recognition has many +
potential applications +
in different areas of human +
computer interaction. However, they are not yet fully +
realized due to the lack of an effective facial feature +
descriptor. In this paper, we present a new appearance- +
based feature descriptor, the local directional pattern +
(LDP), to represent facial geometry and analyze its +
performance in expression recognition. An LDP feature is +
obtained by computing the edge response values in 8 +
directions at each pixel and encoding them into an 8 bit +
binary number using the relative strength of these edge +
responses. The LDP descriptor, a distribution of LDP +
codes within an image or image patch, is used to describe +
each expression image. The effectiveness of dimensionality +
reduction techniques, such as principal component +
analysis and AdaBoost, is also analyzed in terms of +
computational cost saving and classification accuracy. Two +
well-known machine +
template +
matching and support vector machine, are used for +
classification using the Cohn-Kanade and Japanese +
female facial expression databases. Better classification +
accuracy shows the superiority of LDP descriptor against +
other appearance-based feature descriptors. +
learning methods, +
Keywords: Image representation, facial expression +
recognition, local directional pattern, features extraction, +
principal component analysis, support vector machine. +
+
Manuscript received Mar. 15, 2010; revised July 15, 2010; accepted Aug. 2, 2010. +
This work was supported by the Korea Research Foundation Grant funded by the Korean +
Government (KRF-2010-0015908). +
Kyung Hee University, Yongin, Rep. of Korea
doi:10.4218/etrij.10.1510.0132 +
I. Introduction +
Facial expression provides the most natural and immediate +
indication about a person’s emotions and intentions [1], [2]. +
Therefore, automatic facial expression analysis is an important +
and challenging task that has had great impact in such areas as +
human-computer +
interaction and data-driven animation. +
Furthermore, video cameras have recently become an integral +
part of many consumer devices [3] and can be used for +
capturing facial images for recognition of people and their +
emotions. This ability to recognize emotions can enable +
customized applications [4], [5]. Even though much work has +
already been done on automatic facial expression recognition +
[6], [7], higher accuracy with reasonable speed still remains a +
great challenge [8]. Consequently, a fast but robust facial +
expression recognition system is very much needed to support +
these applications. +
The most critical aspect for any successful facial expression +
recognition system is to find an efficient facial feature +
representation [9]. An extracted facial feature can be considered +
an efficient representation if it can fulfill three criteria: first, it +
minimizes within-class variations of expressions while +
maximizes between-class variations; second, it can be easily +
extracted from the raw face image; and third, it can be +
described in a low-dimensional feature space to ensure +
computational speed during the classification step [10], [11]. +
The goal of the facial feature extraction is thus to find an +
efficient and effective representation of the facial images which +
would provide robustness during recognition process. Two +
types of approaches have been proposed to extract facial +
features for expression recognition: a geometric feature-based +
system and an appearance-based system [12]. +
In the geometric feature extraction system, the shape and +
© 2010 +
ETRI Journal, Volume 32, Number 5, October 2010 +
('3182680', 'Taskeed Jabid', 'taskeed jabid')
('9408912', 'Hasanul Kabir', 'hasanul kabir')
('1685505', 'Oksam Chae', 'oksam chae')
('3182680', 'Taskeed Jabid', 'taskeed jabid')
Taskeed Jabid (phone: +82 31 201 2948, email: taskeed@khu.ac.kr), Md. Hasanul Kabir +
(email: hasanul@khu.ac.kr), and Oksam Chae (email: oschae@khu.ac.kr) are with the +
57ebeff9273dea933e2a75c306849baf43081a8cDeep Convolutional Network Cascade for Facial Point Detection +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('1681656', 'Yi Sun', 'yi sun')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
sy011@ie.cuhk.edu.hk +
xgwang@ee.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
574751dbb53777101502419127ba8209562c4758
5778d49c8d8d127351eee35047b8d0dc90defe85Probabilistic Subpixel Temporal Registration +
for Facial Expression Analysis +
Queen Mary University of London
Centre for Intelligent Sensing +
('1781916', 'Hatice Gunes', 'hatice gunes')
('1713138', 'Andrea Cavallaro', 'andrea cavallaro')
fe.sariyanidi, h.gunes, a.cavallarog@qmul.ac.uk +
57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1Modeling the joint density of two images under a variety of transformations +
Joshua Susskind +
Institute for Neural Computation
University of California, San Diego
United States +
Department of Computer Science +
University of Frankfurt
Germany +
Department of Computer Science +
Department of Computer Science +
ETH Zurich +
Switzerland +
Geoffrey Hinton +
University of Toronto
Canada +
('1710604', 'Roland Memisevic', 'roland memisevic')
('1742208', 'Marc Pollefeys', 'marc pollefeys')
josh@mplab.ucsd.edu +
ro@cs.uni-frankfurt.de +
hinton@cs.toronto.edu +
marc.pollefeys@inf.ethz.ch +
57fd229097e4822292d19329a17ceb013b2cb648Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +
Fast Structural Binary Coding +
University of California, San Diego
University of California, San Diego
('2451800', 'Dongjin Song', 'dongjin song')
('1722649', 'Wei Liu', 'wei liu')
('3520515', 'David A. Meyer', 'david a. meyer')
La Jolla, USA, 92093-0409. Email: dosong@ucsd.edu +
] Didi Research, Didi Kuaidi, Beijing, China. Email: wliu@ee.columbia.edu +
La Jolla, USA, 92093-0112. Email: dmeyer@math.ucsd.edu +
57c59011614c43f51a509e10717e47505c776389Unsupervised Human Action Detection by Action Matching +
The Australian National University Queensland University of Technology
('1688071', 'Basura Fernando', 'basura fernando')firstname.lastname@anu.edu.au +
s.shirazi@qut.edu.au +
57b8b28f8748d998951b5a863ff1bfd7ca4ae6a5
57101b29680208cfedf041d13198299e2d396314
57893403f543db75d1f4e7355283bdca11f3ab1b
571f493c0ade12bbe960cfefc04b0e4607d8d4b2International Journal of Research Studies in Science, Engineering and Technology +
Volume 3, Issue 2, February 2016, PP 18-41 +
ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) +
Review on Content Based Image Retrieval: From Its Origin to the +
New Age +
Assistant Professor, ECE +
Dr. B. L. Malleswari +
Principal +
Mahatma Gandhi Institute of Technology
Sridevi Women's Engineering College
Hyderabad, India +
Hyderabad, India +
pasumarthinalini@gmil.com +
blmalleswari@gmail.com +
57f8e1f461ab25614f5fe51a83601710142f8e88Region Selection for Robust Face Verification using UMACE Filters +
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering, +
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. +
In this paper, we investigate the verification performances of four subdivided face images with varying expressions. The +
objective of this study is to evaluate which part of the face image is more tolerant to facial expression and still retains its personal +
characteristics due to the variations of the image. The Unconstrained Minimum Average Correlation Energy (UMACE) filter is +
implemented to perform the verification process because of its advantages such as shift–invariance, ability to trade-off between +
discrimination and distortion tolerance, e.g. variations in pose, illumination and facial expression. The database obtained from the +
facial expression database of Advanced Multimedia Processing (AMP) Lab at CMU is used in this study. Four equal +
sizes of face regions i.e. bottom, top, left and right halves are used for the purpose of this study. The results show that the bottom +
half of the face region gives the best performance in terms of the PSR values with zero false accepted rate (FAR) and zero false +
rejection rate (FRR) compared to the other three regions. +
1. Introduction +
Face recognition is a well established field of research, +
and a large number of algorithms have been proposed in the +
literature. Various classifiers have been explored to improve +
the accuracy of face classification. The basic approach is to +
use distance-base methods which measure Euclidean distance +
between any two vectors and then compare it with the preset +
threshold. Neural Networks are often used as classifiers due +
to their powerful generation ability [1]. Support Vector +
Machines (SVM) have been applied with encouraging results +
[2]. +
In biometric applications, one of the important tasks is the +
matching process between an individual biometrics against +
the database that has been prepared during the enrolment +
stage. For biometrics systems such as face authentication that +
use images as personal characteristics, biometrics sensor +
output and image pre-processing play an important role since +
the quality of a biometric input can change significantly due +
to illumination, noise and pose variations. Over the years, +
researchers have studied the role of illumination variation, +
pose variation, facial expression, and occlusions in affecting +
the performance of face verification systems [3]. +
The Minimum Average Correlation Energy (MACE) +
filters have been reported to be an alternative solution to these +
problems because of the advantages such as shift-invariance, +
close-form expressions and distortion-tolerance. MACE +
filters have been successfully applied in the field of automatic +
target recognition as well as in biometric verification [3][4]. +
Face and fingerprint verification using correlation filters have +
been investigated in [5] and [6], respectively. Savvides et.al +
performed face authentication and identification using +
correlation filters based on illumination variation [7]. In the +
process of implementing correlation filters, the number of +
training images used depends on the level of distortions +
applied to the images [5], [6]. +
In this study, we investigate which part of a face image is +
more tolerant to facial expression and retains its personal +
characteristics for the verification process. Four subdivided +
face images, i.e. bottom, top, left and right halves, with +
varying expressions are investigated. By identifying only the +
region of the face that gives the highest verification +
performance, that region can be used instead of the full-face +
to reduce storage requirements. +
2. Unconstrained Minimum Average Correlation +
Energy (UMACE) Filter +
Correlation filter theory and the descriptions of the design +
of the correlation filter can be found in a tutorial survey paper +
[8]. According to [4][6], correlation filter evolves from +
matched filters which are optimal for detecting a known +
reference image in the presence of additive white Gaussian +
noise. However, the detection rate of matched filters +
decreases significantly due to even the small changes of scale, +
rotation and pose of the reference image. +
the pre-specified peak values +
In an effort to solve this problem, the Synthetic +
Discriminant Function (SDF) filter and the Equal Correlation +
Peak SDF (ECP SDF) filter ware introduced which allowed +
several training images to be represented by a single +
correlation filter. SDF filter produces pre-specified values +
called peak constraints. These peak values correspond to the +
authentic class or impostor class when an image is tested. +
However, +
to +
misclassifications when the sidelobes are larger than the +
controlled values at the origin. +
Savvides et.al developed +
the Minimum Average +
Correlation Energy (MACE) filters [5]. This filter reduces the +
large sidelobes and produces a sharp peak when the test +
image is from the same class as the images that have been +
used to design the filter. There are two kinds of variants that +
can be used in order to obtain a sharp peak when the test +
image belongs to the authentic class. The first MACE filter +
variant minimizes the average correlation energy of the +
training images while constraining the correlation output at +
the origin to a specific value for each of the training images. +
The second MACE filter variant is the Unconstrained +
Minimum Average Correlation Energy (UMACE) filter +
which also minimizes the average correlation output while +
maximizing the correlation output at the origin [4]. +
lead +
Proceedings of the International Conference onElectrical Engineering and InformaticsInstitut Teknologi Bandung, Indonesia June 17-19, 2007B-67ISBN 978-979-16338-0-2611
('5461819', 'Salina Abdul Samad', 'salina abdul samad')
('2864147', 'Dzati Athiar Ramli', 'dzati athiar ramli')
('2573778', 'Aini Hussain', 'aini hussain')
* E-mail: salina@vlsi.eng.ukm.my +
57a1466c5985fe7594a91d46588d969007210581A Taxonomy of Face-models for System Evaluation +
Motivation and Data Types +
Synthetic Data Types +
Unverified – Have no underlying physical or +
statistical basis +
Physics -Based – Based on structure and +
materials combined with the properties +
formally modeled in physics. +
Statistical – Use statistics from real +
data/experiments to estimate/learn model +
parameters. Generally have measurements +
of accuracy +
Guided Synthetic – Individual models based +
on individual people. No attempt to capture +
properties of large groups, a unique model +
per person. For faces, guided models are +
composed of 3D structure models and skin +
textures, capturing many artifacts not +
easily parameterized. Can be combined with +
physics-based rendering to generate samples +
under different conditions. +
Semi–Synethetic – Use measured data such +
as 2D images or 3D facial scans. These are +
not truly synthetic as they are re-rendering’s +
of real measured data. +
Semi and Guided Synthetic data provide +
higher operational relevance while +
maintaining a high degree of control. +
Generating statistically significant size +
datasets for face matching system +
evaluation is both a laborious and +
expensive process. +
There is a gap in datasets that allow for +
evaluation of system issues including: +
 Long distance recognition +
 Blur caused by atmospherics +
 Various weather conditions +
 End to end systems evaluation +
Our contributions: +
 Define a taxonomy of face-models +
for controlled experimentations +
 Show how Synthetic addresses gaps +
in system evaluation +
 Show a process for generating and +
validating synthetic models +
 Use these models in long distance +
face recognition system evaluation +
Experimental Setup +
Results and Conclusions +
Example Models +
Original Pie +
Semi- +
Synthetic +
FaceGen +
Animetrics +
http://www.facegen.com +
http://www.animetrics.com/products/Forensica.php +
Guided- +
Synthetic +
Models +
 Models generated using the well +
known CMU PIE [18] dataset. Each of +
the 68 subjects of PIE were modeled +
using a right profile and frontal +
image from the lights subset. +
 Two modeling programs were used, +
Facegen and Animetrics. Both +
programs create OBJ files and +
textures +
 Models are re-rendered using +
custom display software built with +
OpenGL, GLUT and DevIL libraries +
 Custom Display Box housing a BENQ SP820 high +
powered projector rated at 4000 ANSI Lumens +
 Canon EOS 7D withd a Sigma 800mm F5.6 EX APO +
DG HSM lens a 2x adapter imaging the display +
from 214 meters +
Normalized Example Captures +
Real PIE 1 Animetrics +
FaceGen +
81M inside 214M outside +
Real PIE 2 +
 Pre-cropped images were used for the +
commercial core +
 Ground truth eye points + geometric/lighting +
normalization pre processing before running +
through the implementation of the V1 +
recognition algorithm found in [1]. +
 Geo normalization highlights how the feature +
region of the models looks very similar to +
that of the real person. +
Each test consisted of using 3 approximately frontal gallery images NOT used to +
make the 3D model used as the probe, best score over 3 images determined score. +
Even though the PIE-3D-20100224A–D sets were imaged on the same day, the V1 +
core scored differently on each highlighting the synthetic data’s ability to help +
evaluate data capture methods and effects of varying atmospherics. The ISO setting +
varied which effects the shutter speed, with higher ISO generally yielding less blur. +
Dataset +
Range(m) +
Iso +
V1 +
Comm. +
Original PIE Images +
FaceGen ScreenShots +
Animetrics Screenshots +
PIE-3D-20100210B +
PIE-3D-20100224A +
PIE-3D-20100224B +
PIE-3D-20100224C +
PIE-3D-20100224D +
N/A +
N/A +
N/A +
81m +
214m +
214m +
214m +
214m +
N/A +
N/A +
N/A +
500 +
125 +
125 +
250 +
400 +
100 +
47.76 +
100 +
100 +
58.82 +
45.59 +
81.82 +
79.1 +
100 +
100 +
100 +
100 +
100 +
100 +
 The same (100 percent) recognition rate on screenshots as original images +
validate the Anmetrics guided synthetic models and fails FaceGen Models. +
 100% recognition means dataset is too small/easy; exapanding pose and models +
underway. +
 Expanded the photohead methodology into 3D +
 Developed a robust modeling system allowing for multiple configurations of a +
single real life data set. +
 Gabor+SVM based V1[15] significantly more impacted by atmospheric blur than +
the commercial algorithm +
Key References: +
[6 of 21] R. Bevridge, D. Bolme, M Teixeira, and B. Draper. The CSU Face Identification Evaluation System Users Guide: Version 5.0. Technical report, CSU 2003 +
[8 of 21] T. Boult and W. Scheirer. Long range facial image acquisition and quality. In M. Tisarelli, S. Li, and R. Chellappa. +
[15 of 21] N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you get with a modern face recognition test set using only simple features? In IEEE CVPR, 2009. +
[18 of 21] T. Sim, S. Baker, and M. Bsat. The CMU Pose, Illumination and Expression (PIE) Database. In Proceedings of the IEEE F&G, May 2002. +
('31552290', 'Brian C. Parks', 'brian c. parks')
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
{viyer,skirkbride,bparks,wscheirer,tboult}@vast.uccs.edu +
574b62c845809fd54cc168492424c5fac145bc83Learning Warped Guidance for Blind Face +
Restoration +
School of Computer Science and Technology, Harbin Institute of Technology, China
School of Data and Computer Science, Sun Yat-sen University, China
University of Kentucky, USA
('21515518', 'Xiaoming Li', 'xiaoming li')
('40508248', 'Yuting Ye', 'yuting ye')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('1737218', 'Liang Lin', 'liang lin')
('38958903', 'Ruigang Yang', 'ruigang yang')
csxmli@hit.edu.cn, csmliu@outlook.com, yeyuting.jlu@gmail.com, +
wmzuo@hit.edu.cn +
linliang@ieee.org +
ryang@cs.uky.edu +
57246142814d7010d3592e3a39a1ed819dd01f3bMITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com +
Verification of Very Low-Resolution Faces Using An +
Identity-Preserving Deep Face Super-resolution Network +
TR2018-116 August 24, 2018 +
5721216f2163d026e90d7cd9942aeb4bebc92334
575141e42740564f64d9be8ab88d495192f5b3bcAge Estimation based on Multi-Region +
Convolutional Neural Network +
1Center for Biometrics and Security Research & National Laboratory of Pattern +
Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences
('40282288', 'Ting Liu', 'ting liu')
('1756538', 'Jun Wan', 'jun wan')
('39974958', 'Tingzhao Yu', 'tingzhao yu')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
{ting.liu,jun.wan,zlei,szli}@nlpr.ia.ac.cn,yutingzhao2013@ia.ac.cn +
5789f8420d8f15e7772580ec373112f864627c4bEfficient Global Illumination for Morphable Models +
University of Basel, Switzerland
('1801001', 'Andreas Schneider', 'andreas schneider')
('34460642', 'Bernhard Egger', 'bernhard egger')
('32013053', 'Lavrenti Frobeen', 'lavrenti frobeen')
('1687079', 'Thomas Vetter', 'thomas vetter')
{andreas.schneider,sandro.schoenborn,bernhard.egger,l.frobeen,thomas.vetter}@unibas.ch +
574705812f7c0e776ad5006ae5e61d9b071eebdbAvailable Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IJCSMC, Vol. 3, Issue. 5, May 2014, pg.780 – 787 +
RESEARCH ARTICLE +
A Novel Approach for Face Recognition +
Using PCA and Artificial Neural Network +
Dayananda Sagar College of Engg., India
Dayananda Sagar College of Engg., India
('9856026', 'Karthik G', 'karthik g')
('9856026', 'Karthik G', 'karthik g')
1 email : karthik.knocks@gmail.com; 2 email : hcsateesh@gmail.com +
5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725
571b83f7fc01163383e6ca6a9791aea79cafa7ddSeqFace: Make full use of sequence information for face recognition +
College of Information Science and Technology
Beijing University of Chemical Technology, China
YUNSHITU Corp., China +
('48594708', 'Wei Hu', 'wei hu')
('7524887', 'Yangyu Huang', 'yangyu huang')
('8451319', 'Guodong Yuan', 'guodong yuan')
('47191084', 'Fan Zhang', 'fan zhang')
('50391855', 'Ruirui Li', 'ruirui li')
('47113208', 'Wei Li', 'wei li')
574ad7ef015995efb7338829a021776bf9daaa08AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks +
for Human Action Recognition in Videos +
1IIT Kanpur‡ +
2SRI International +
3UCSD +
('24899770', 'Amlan Kar', 'amlan kar')
('12692625', 'Nishant Rai', 'nishant rai')
('39707211', 'Karan Sikka', 'karan sikka')
('39396475', 'Gaurav Sharma', 'gaurav sharma')
57a14a65e8ae15176c9afae874854e8b0f23dca7UvA-DARE (Digital Academic Repository) +
Seeing mixed emotions: The specificity of emotion perception from static and dynamic +
facial expressions across cultures +
Fang, X.; Sauter, D.A.; van Kleef, G.A. +
Published in: +
Journal of Cross-Cultural Psychology +
DOI: +
10.1177/0022022117736270 +
Link to publication +
Citation for published version (APA): +
Fang, X., Sauter, D. A., & van Kleef, G. A. (2018). Seeing mixed emotions: The specificity of emotion perception +
from static and dynamic facial expressions across cultures. Journal of Cross-Cultural Psychology, 49(1), 130- +
148. DOI: 10.1177/0022022117736270 +
General rights +
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +
Disclaimer/Complaints regulations +
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
The Netherlands. You will be contacted as soon as possible. +
Download date: 08 Aug 2018 +
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
57b052cf826b24739cd7749b632f85f4b7bcf90bFast Fashion Guided Clothing Image Retrieval: +
Delving Deeper into What Feature Makes +
Fashion +
School of Data and Computer Science, Sun Yat-sen University
Guangzhou, P.R China +
('3079146', 'Yuhang He', 'yuhang he')
('40451106', 'Long Chen', 'long chen')
*Corresponding Author: chenl46@mail.sysu.edu.cn +
57d37ad025b5796457eee7392d2038910988655aGEERATVEEETATF +
ERARCCAVETYDETECTR +
by +
DagaEha +
UdeheS eviif +
f.DahaWeiha +
ATheiS biediaiaF (cid:28)efhe +
Re ieefheDegeef +
aefSciece +
a +
TheSchfC eScieceadEgieeig +
ebewUiveiyfe aeae91904 +
Decebe2009 +
57f7d8c6ec690bd436e70d7761bc5f46e993be4cFacial Expression Recognition Using Histogram Variances Faces +
University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
University of Aizu, Japan
('32796151', 'Ruo Du', 'ruo du')
('37046680', 'Qiang Wu', 'qiang wu')
('1706670', 'Xiangjian He', 'xiangjian he')
('1714410', 'Wenjing Jia', 'wenjing jia')
('40394300', 'Daming Wei', 'daming wei')
{ruodu, wuq, sean, wejia}@it.uts.edu.au +
dm-wei@u-aizu.ac.jp +
3b1260d78885e872cf2223f2c6f3d6f6ea254204
3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5Sparse Representation-based Open Set Recognition +('2310707', 'He Zhang', 'he zhang')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
3b092733f428b12f1f920638f868ed1e8663fe57On the Size of Convolutional Neural Networks and +
Generalization Performance +
Center for Automation Research, UMIACS* +
Department of Electrical and Computer Engineering† +
University of Maryland, College Park
('2747758', 'Maya Kabkab', 'maya kabkab')
('9215658', 'Rama Chellappa', 'rama chellappa')
Email: {mayak, emhand, rama}@umiacs.umd.edu +
3b73f8a2b39751efb7d7b396bf825af2aaadee24Connecting Pixels to Privacy and Utility: +
Automatic Redaction of Private Information in Images +
Max Planck Institute for Informatics
Saarland Informatics Campus +
Saabr¨ucken, Germany +
('9517443', 'Tribhuvanesh Orekondy', 'tribhuvanesh orekondy')
('1739548', 'Mario Fritz', 'mario fritz')
('1697100', 'Bernt Schiele', 'bernt schiele')
{orekondy,mfritz,schiele}@mpi-inf.mpg.de +
3b2d5585af59480531616fe970cb265bbdf63f5bRobust Face Recognition under Varying Light +
Based on 3D Recovery +
Center of Computer Vision, School of +
Mathematics and Computing, Sun Yat-sen +
University, Guangzhou, China
Ching Y Suen +
Centre for Pattern Recognition and Machine +
Intelligence, Concordia University, Montreal
Canada, H3G 1M8 +
('3246510', 'Guan Yang', 'guan yang')mcsfgc@mail.sysu.edu.cn +
parmidir@cenparmi.concordia.ca +
3b64efa817fd609d525c7244a0e00f98feacc8b4A Comprehensive Survey on Pose-Invariant +
Face Recognition +
Centre for Quantum Computation and Intelligent Systems +
Faculty of Engineering and Information Technology +
University of Technology, Sydney
81-115 Broadway, Ultimo, NSW +
Australia +
15 March 2016 +
('37990555', 'Changxing Ding', 'changxing ding')
('1692693', 'Dacheng Tao', 'dacheng tao')
Emails: chx.ding@gmail.com, dacheng.tao@uts.edu.au +
3bc776eb1f4e2776f98189e17f0d5a78bb755ef4
3b7f6035a113b560760c5e8000540fc46f91fed5COUPLING ALIGNMENTS WITH RECOGNITION FOR STILL-TO-VIDEO +
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
FACE RECOGNITION +
MOTIVATION +
Problem: Still-to-Video face recognition +
1. Gallery: high quality still face images (e.g., sharp and +
high face resolution ones) +
2. Probe: low quality video face frames (e.g., blur and low +
face resolution ones) +
Solution: Couple alignments with recognition +
1. Quality Alignment (QA): select the frames of ‘best +
quality’ from videos +
2. Geometric Alignment (GA): jointly align the selected +
frames to the still faces +
3. Sparse Representation (SR): sparsely represent the +
frames on the still faces +
Frame 1 +
20 +
220 +
301 +
333 +
image +
OVERVIEW +
GA: Geometric Alignment +
SR: Sparse Representation +
QA: Quality Alignment +
T : Alignment parameters +
L: Identity labels +
C: Selecting confidences +
FORMULATION +
{ ˆT , ˆL} = arg minT,L (cid:107)Z(cid:107)1 +(cid:80)c +
s.t. Y ◦ T = B + E, B = AZ, Si = {j|Lj = i}. +
i=1 (cid:107)BSi(cid:107)∗ + (cid:107)E(cid:107)1, +
• Couple GA with SR: Y ◦T = B+E, B = AZ, (cid:107)Z(cid:107)1 ≤ t +
DATASETS +
1. YouTube-S2V dataset: 100 subjects, privately +
collected from YouTube Face DB [Wolf et al., CVPR’ 11] +
2. COX-S2V dataset: 1,000 subjects, publicly released +
in our prior work [Huang et al., ACCV ’12] +
– Y : Video faces, A: dictionary (still faces) +
– ◦ and T : Alignment operator and parameters +
– B: Sparse representations, E: residual errors +
Examples of still faces +
Examples of still faces +
• Couple SR with QA: Si = {j|Lj = i},(cid:80) (cid:107)BSi(cid:107)∗ ≤ k +
– Identity label: Lj = arg mink (cid:107)yj ◦τj −Akzjk(cid:107)2 +
– Confidence: Ci =(cid:80) +
(cid:16) −(cid:107)ej(cid:107)1 +
(cid:17) +
j∈Si +
exp +
σ2 +
Frame 1 +
RESULTS +
Frame 1 +
31 +
45 +
72 +
84 +
Frame 1 +
14 +
25 +
35 +
46 +
89 +
Examples of video faces +
118 +
Frame 1 +
Examples of video faces +
14 +
25 +
OPTIMIZATION +
{ ˆT , ˆL} = arg minT,L (cid:107)Z(cid:107)1 +(cid:80)c +
Linearization: +
i=1 (cid:107)BSi(cid:107)∗ + (cid:107)E(cid:107)1, +
s.t.Y ◦ T + J∆T = B + E, B = AZ, Si = {j|Lj = i}. +
∂T Y ◦ T : Jacobian matrices w.r.t transformations +
J = ∂ +
Main algorithm: +
Comparative methods: +
1. Baseline: SRC[1], CRC[2] +
2. Blind Geometric Alignment: RASL[3] +
3. Joint Geometric Alignment and Recognition: MRR[4] +
4. Our method: Couping Alignments with Recognition +
(CAR) +
Evaluation terms: +
1. Face Alignments (QA and GA) +
2. Sparse Reprentation (SR) for Face Recognition +
INPUT: Gallery data matrix A, probe video sequence +
data matrix Y and initial transformation T of Y +
1. WHILE not converged DO +
2. Compute Jacobian matrices w.r.t transformations +
3. Warp and normalize the images: +
(cid:20) vec(Y1 ◦ τ1) +
Y ◦ T = +
Set the segments at coarse search stage: +
vec((cid:107)Y1 ◦ τ1(cid:107)2) +
S1 = {1, . . . , n}, Si = φ, i = 2, . . . , c +
, . . . , +
vec(Yn ◦ τn) +
vec((cid:107)Yn ◦ τn(cid:107)2) +
5. Apply Augmented Lagrange Multiplier to solve: +
(cid:107)BSi(cid:107)∗ + (cid:107)E(cid:107)1, +
{ ˆT , ˆZ} = arg min +
(cid:107)Z(cid:107)1 + +
c(cid:88) +
4. +
(cid:21) +
T,Z +
i=1 +
s.t. Y ◦ T + J∆T = B + E, B = AZ; +
6. Update transformations: T = T + ∆T ∗ +
7. Update segments at fine search stage: +
Si = {j|i = arg min +
(cid:107)yj ◦ τj − Akzjk(cid:107)2}. +
8. END WHILE +
9. Compute Ci of Si, i = 1, . . . , n for voting class label. +
OUTPUT: Class label of the probe video sequence. +
QA, GA, SR results. +
: correctly identified, (cid:3): finally selected +
CONCLUSION +
• The proposed method jointly performs GA, QA and SR +
in a unified optimization. +
• We employ an iterative EM-like algorithm to jointly op- +
timize the three tasks. +
• Experimental results demonstrate that GA, QA and SR +
benefit from each other. +
QA and GA results. Average faces of video frames finally +
selected for face recognition +
Methods +
SRC[1] +
CRC[2] +
RASL[3] -SRC +
RASL[3]-CRC +
MRR[4] +
CAR +
10.78 +
10.34 +
26.29 +
29.74 +
28.45 +
36.21 +
C1 +
15.57 +
14.43 +
22.14 +
19.43 +
26.43 +
43.42 +
C2 +
42.29 +
43.57 +
39.00 +
41.29 +
44.14 +
55.00 +
C3 +
2.86 +
4.14 +
4.57 +
4.00 +
3.57 +
10.71 +
C4 +
18.71 +
19.71 +
18.29 +
19.43 +
13.57 +
28.86 +
Face recognition results. Intensity feature, Y: YouTube-S2V, Ci: +
the i-the testing scenario of COX-S2V +
REFERENCES +
[1] +
J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma. Robust face recognition via sparse representa- +
tion. In TPAMI ’09 +
[2] L. Zhang, M. Yang, X. Feng. Sparse representation or collaborative representation which helps +
face recognition? In ICCV ’11 +
[3] Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma. RASL: Robust alignement by sparse and low-rank +
decomposition for linearly correlated images. In CVPR ’10 +
[4] M. Yang, L. Zhang, D. Zhang. Efficient misalignment-robust representaion for real-time face +
recognition. In ECCV ’12 +
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('1874505', 'Xiaowei Zhao', 'xiaowei zhao')
('1685914', 'Shiguang Shan', 'shiguang shan')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1710220', 'Xilin Chen', 'xilin chen')
3b2a2357b12cf0a5c99c8bc06ef7b46e40dd888eLearning Person Trajectory Representations for Team Activity Analysis +
Simon Fraser University
('10386960', 'Nazanin Mehrasa', 'nazanin mehrasa')
('19198359', 'Yatao Zhong', 'yatao zhong')
('2123865', 'Frederick Tung', 'frederick tung')
('3004771', 'Luke Bornn', 'luke bornn')
('10771328', 'Greg Mori', 'greg mori')
{nmehrasa, yataoz, ftung, lbornn}@sfu.ca, mori@cs.sfu.ca +
3bd1d41a656c8159305ba2aa395f68f41ab84f31Entity-based Opinion Mining from Text and +
Multimedia +
1 Introduction +
Social web analysis is all about the users who are actively engaged and generate +
content. This content is dynamic, reflecting the societal and sentimental fluctuations +
of the authors as well as the ever-changing use of language. Social networks are +
pools of a wide range of articulation methods, from simple ”Like” buttons to com- +
plete articles, their content representing the diversity of opinions of the public. User +
activities on social networking sites are often triggered by specific events and re- +
lated entities (e.g. sports events, celebrations, crises, news articles) and topics (e.g. +
global warming, financial crisis, swine flu). +
With the rapidly growing volume of resources on the Web, archiving this material +
becomes an important challenge. The notion of community memories extends tradi- +
tional Web archives with related data from a variety of sources. In order to include +
this information, a semantically-aware and socially-driven preservation model is a +
natural way to go: the exploitation of Web 2.0 and the wisdom of crowds can make +
web archiving a more selective and meaning-based process. The analysis of social +
media can help archivists select material for inclusion, while social media mining +
can enrich archives, moving towards structured preservation around semantic cat- +
egories. In this paper, we focus on the challenges in the development of opinion +
mining tools from both textual and multimedia content. +
We focus on two very different domains: socially aware federated political +
archiving (realised by the national parliaments of Greece and Austria), and socially +
contextualized broadcaster web archiving (realised by two large multimedia broad- +
University of Shef eld, Regent Court, 211 Portobello, Shef eld
Jonathon Hare +
Electronics and Computer Science, University of Southampton, Southampton, Hampshire
('2144272', 'Diana Maynard', 'diana maynard')
('2144272', 'Diana Maynard', 'diana maynard')
S1 4DP, UK e-mail: diana@dcs.shef.ac.uk +
SO17 1BJ, UK e-mail: jsh2@ecs.soton.ac.uk +
3bcd72be6fbc1a11492df3d36f6d51696fd6bdadMulti-Task Zero-Shot Action Recognition with +
Prioritised Data Augmentation +
School of Electronic Engineering and Computer Science, +
Queen Mary University of London
('1735328', 'Xun Xu', 'xun xu')
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
('2073354', 'Shaogang Gong', 'shaogang gong')
{xun.xu,t.hospedales,s.gong}@qmul.ac.uk +
3b9c08381282e65649cd87dfae6a01fe6abea79bCUHK & ETHZ & SIAT Submission to ActivityNet Challenge 2016 +
Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong
2Computer Vision Lab, ETH Zurich, Switzerland +
Shenzhen Institutes of Advanced Technology, CAS, China
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('33345248', 'Limin Wang', 'limin wang')
('1915826', 'Zhe Wang', 'zhe wang')
('3047890', 'Bowen Zhang', 'bowen zhang')
('2313919', 'Hang Song', 'hang song')
('1688012', 'Wei Li', 'wei li')
('1807606', 'Dahua Lin', 'dahua lin')
('1681236', 'Luc Van Gool', 'luc van gool')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
3b84d074b8622fac125f85ab55b63e876fed4628End-to-End Localization and Ranking for +
Relative Attributes +
University of California, Davis
('19553871', 'Krishna Kumar Singh', 'krishna kumar singh')
('1883898', 'Yong Jae Lee', 'yong jae lee')
3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10Glimpse: Continuous, Real-Time Object Recognition on +
Mobile Devices +
MIT CSAIL +
Microsoft Research +
MIT CSAIL +
Microsoft Research +
MIT CSAIL +
('32214366', 'Tiffany Yu-Han Chen', 'tiffany yu-han chen')
('40125198', 'Lenin Ravindranath', 'lenin ravindranath')
('1904357', 'Shuo Deng', 'shuo deng')
('2292948', 'Paramvir Bahl', 'paramvir bahl')
('1712771', 'Hari Balakrishnan', 'hari balakrishnan')
yuhan@csail.mit.edu +
lenin@microsoft.com +
shuodeng@csail.mit.edu +
bahl@microsoft.com +
hari@csail.mit.edu +
3be8f1f7501978287af8d7ebfac5963216698249Deep Cascaded Regression for Face Alignment +
School of Data and Computer Science, Sun Yat-Sen University, China
National University of Singapore, Singapore
algorithm refines the shape by estimating a shape increment +
∆S. In particular, a shape increment at stage k is calculated +
as: +
('3124720', 'Shengtao Xiao', 'shengtao xiao')
('10338111', 'Zhen Cui', 'zhen cui')
('48815683', 'Yan Pan', 'yan pan')
('48258938', 'Chunyan Xu', 'chunyan xu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
3bc376f29bc169279105d33f59642568de36f17fActive Shape Models with SIFT Descriptors and MARS +
University of Cape Town, South Africa
Keywords: +
Facial Landmark, Active Shape Model, Multivariate Adaptive Regression Splines +
('2822258', 'Stephen Milborrow', 'stephen milborrow')
('2537623', 'Fred Nicolls', 'fred nicolls')
milbo@sonic.net +
3b38c06caf54f301847db0dd622a6622c3843957RESEARCH ARTICLE +
Gender differences in emotion perception +
and self-reported emotional intelligence: A +
test of the emotion sensitivity hypothesis +
University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University
Leiden, the Netherlands, 3 Delft University of Technology
Intelligent Systems, Delft, the Netherlands +
('1735303', 'Joost Broekens', 'joost broekens')* a.h.fischer@uva.nl +
3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0On Knowledge Transfer in +
Object Class Recognition +
A dissertation approved by +
TECHNISCHE UNIVERSITÄT DARMSTADT +
Fachbereich Informatik +
for the degree of +
Doktor-Ingenieur (Dr.-Ing.) +
presented by +
Dipl.-Inform. +
born in Mainz, Germany +
Prof. Dr.-Ing. Michael Goesele, examiner +
Prof. Martial Hebert, Ph.D., co-examiner +
Prof. Dr. Bernt Schiele, co-examiner +
Date of Submission: 12th of August, 2010 +
Date of Defense: 23rd of September, 2010 +
Darmstadt, 2010 +
D17 +
('37718254', 'Michael Stark', 'michael stark')
3baa3d5325f00c7edc1f1427fcd5bdc6a420a63fEnhancing Convolutional Neural Networks for Face Recognition with +
Occlusion Maps and Batch Triplet Loss +
aSchool of Engineering and Technology, University of Hertfordshire, Hat eld AL10 9AB, UK
bIDscan Biometrics (a GBG company), London E14 9QD, UK +
('2133352', 'Li Meng', 'li meng')
('46301106', 'Margaret Hartnett', 'margaret hartnett')
3b9b200e76a35178da940279d566bbb7dfebb787Learning Channel Inter-dependencies at Multiple Scales on Dense +
Networks for Face Recognition +
109 Research Way — PO Box 6109 Morgantown, West Virginia +
West Virginia University
November 29, 2017 +
('16145333', 'Qiangchang Wang', 'qiangchang wang')
('1822413', 'Guodong Guo', 'guodong guo')
('23981570', 'Mohammad Iqbal Nouyed', 'mohammad iqbal nouyed')
qw0007@mix.wvu.edu, guodong.guo@mail.wvu.edu, monouyed@mix.wvu.edu +
3b408a3ca6fb39b0fda4d77e6a9679003b2dc9abImproving Classification by Improving Labelling: +
Introducing Probabilistic Multi-Label Object Interaction Recognition +
Walterio Mayol-Cuevas +
University of Bristol
('2052236', 'Michael Wray', 'michael wray')
('3420479', 'Davide Moltisanti', 'davide moltisanti')
('1728459', 'Dima Damen', 'dima damen')
.@bristol.ac.uk +
3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8Who Leads the Clothing Fashion: Style, Color, or Texture? +
A Computational Study +
School of Computer Science, Wuhan University, P.R. China
Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China
School of Data of Computer Science, Sun Yat-sen University, P.R. China
University of South Carolina, USA
('4793870', 'Qin Zou', 'qin zou')
('37361540', 'Zheng Zhang', 'zheng zhang')
('40102806', 'Qian Wang', 'qian wang')
('1720431', 'Qingquan Li', 'qingquan li')
('40451106', 'Long Chen', 'long chen')
('10829233', 'Song Wang', 'song wang')
3ba8f8b6bfb36465018430ffaef10d2caf3cfa7eLocal Directional Number Pattern for Face +
Analysis: Face and Expression Recognition +
('2525887', 'Adin Ramirez Rivera', 'adin ramirez rivera')
('1685505', 'Oksam Chae', 'oksam chae')
3b80bf5a69a1b0089192d73fa3ace2fbb52a4ad5
3b9d94752f8488106b2c007e11c193f35d941e92CVPR +
#2052 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2013 Submission #2052. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#2052 +
Appearance, Visual and Social Ensembles for +
Face Recognition in Personal Photo Collections +
Anonymous CVPR submission +
Paper ID 2052 +
3bb6570d81685b769dc9e74b6e4958894087f3f1Hu-Fu: Hardware and Software Collaborative +
Attack Framework against Neural Networks +
Beijing National Research Center for Information Science and Technology
Tsinghua University
('3493074', 'Wenshuo Li', 'wenshuo li')
('1909938', 'Jincheng Yu', 'jincheng yu')
('6636914', 'Xuefei Ning', 'xuefei ning')
('2892980', 'Pengjun Wang', 'pengjun wang')
('49988678', 'Qi Wei', 'qi wei')
('47904166', 'Yu Wang', 'yu wang')
('39150998', 'Huazhong Yang', 'huazhong yang')
{lws17@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn} +
3b557c4fd6775afc80c2cf7c8b16edde125b270eFace Recognition: Perspectives from the +
Real-World +
Institute for Infocomm Research, A*STAR
1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632. +
Phone: +65 6408 2071; Fax: +65 6776 1378; +
('1709001', 'Bappaditya Mandal', 'bappaditya mandal')E-mail: bmandal@i2r.a-star.edu.sg +
3b3482e735698819a6a28dcac84912ec01a9eb8aIndividual Recognition Using Gait Energy Image +
Center for Research in Intelligent Systems +
University of California, Riverside, California 92521, USA
jhan,bhanu +
('1699904', 'Ju Han', 'ju han')
('1707159', 'Bir Bhanu', 'bir bhanu')
@cris.ucr.edu +
3b37d95d2855c8db64bd6b1ee5659f87fce36881ADA: A Game-Theoretic Perspective on Data Augmentation for Object Detection +
University of Illinois at Chicago
Carnegie Mellon University
University of Illinois at Chicago
('2761655', 'Sima Behpour', 'sima behpour')
('37991449', 'Kris M. Kitani', 'kris m. kitani')
('1753269', 'Brian D. Ziebart', 'brian d. ziebart')
sbehpo2@uic.edu +
kkitani@cs.cmu.edu +
bziebart@uic.edu +
3be7b7eb11714e6191dd301a696c734e8d07435f
3be027448ad49a79816cd21dcfcce5f4e1cec8a8Actively Selecting Annotations Among Objects and Attributes +
University of Texas at Austin
('1770205', 'Adriana Kovashka', 'adriana kovashka')
('2259154', 'Sudheendra Vijayanarasimhan', 'sudheendra vijayanarasimhan')
('1794409', 'Kristen Grauman', 'kristen grauman')
{adriana, svnaras, grauman}@cs.utexas.edu +
3bd56f4cf8a36dd2d754704bcb71415dcbc0a165Robust Regression +
Robotics Institute, Carnegie Mellon University
('39792229', 'Dong Huang', 'dong huang')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
3b410ae97e4564bc19d6c37bc44ada2dcd608552Scalability Analysis of Audio-Visual Person +
Identity Verification +
1 Communications Laboratory, +
Universit´e catholique de Louvain, B-1348 Belgium, +
2 IDIAP, CH-1920 Martigny, +
Switzerland +
('34964585', 'Jacek Czyz', 'jacek czyz')
('1751569', 'Samy Bengio', 'samy bengio')
('2510802', 'Christine Marcel', 'christine marcel')
('1698047', 'Luc Vandendorpe', 'luc vandendorpe')
czyz@tele.ucl.ac.be, +
{Samy.Bengio,Christine.Marcel}@idiap.ch +
3b470b76045745c0ef5321e0f1e0e6a4b1821339Consensus of Regression for Occlusion-Robust +
Facial Feature Localization +
Rutgers University, Piscataway, NJ 08854, USA
2 Adobe Research, San Jose, CA 95110, USA +
('39960064', 'Xiang Yu', 'xiang yu')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cbLow Resolution Face Recognition Using a +
Two-Branch Deep Convolutional Neural Network +
Architecture +
('19189138', 'Erfan Zangeneh', 'erfan zangeneh')
('1772623', 'Mohammad Rahmati', 'mohammad rahmati')
('3071758', 'Yalda Mohsenzadeh', 'yalda mohsenzadeh')
6f288a12033fa895fb0e9ec3219f3115904f24deLearning Expressionlets via Universal Manifold +
Model for Dynamic Facial Expression Recognition +
('1730228', 'Mengyi Liu', 'mengyi liu')
('1685914', 'Shiguang Shan', 'shiguang shan')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1710220', 'Xilin Chen', 'xilin chen')
6fa0c206873dcc5812f7ea74a48bb4bf4b273494Real-time Mobile Facial Expression Recognition System – A Case Study +
Department of Computer Engineering +
The University of Texas at Dallas, Richardson, TX
('2774175', 'Myunghoon Suk', 'myunghoon suk'){mhsuk, praba}@utdallas.edu +
6f9824c5cb5ac08760b08e374031cbdabc953baeUnconstrained Human Identification Using Comparative Facial Soft Biometrics +
Nawaf Y. Almudhahka +
University of Southampton
Southampton, United Kingdom +
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('31534955', 'Jonathon S. Hare', 'jonathon s. hare')
{nya1g14,msn,jsh2}@ecs.soton.ac.uk +
6f2dc51d607f491dbe6338711c073620c85351ac
6fed504da4e192fe4c2d452754d23d3db4a4e5e3Learning Deep Features via Congenerous Cosine Loss for Person Recognition +
1 SenseTime Group Ltd., Beijing, China +
The Chinese University of Hong Kong, New Territories, Hong Kong
('1715752', 'Yu Liu', 'yu liu')
('1929886', 'Hongyang Li', 'hongyang li')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
liuyu@sensetime.com, {yangli, xgwang}@ee.cuhk.edu.hk +
6f957df9a7d3fc4eeba53086d3d154fc61ae88dfMod´elisation et suivi des d´eformations faciales : +
applications `a la description des expressions du visage +
dans le contexte de la langue des signes +
To cite this version: +
des expressions du visage dans le contexte de la langue des signes. Interface homme-machine +
[cs.HC]. Universit´e Paul Sabatier - Toulouse III, 2007. Fran¸cais. +
HAL Id: tel-00185084 +
https://tel.archives-ouvertes.fr/tel-00185084 +
Submitted on 5 Nov 2007 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('3029015', 'Hugo Mercier', 'hugo mercier')
('3029015', 'Hugo Mercier', 'hugo mercier')
6f26ab7edd971148723d9b4dc8ddf71b36be9bf7Differences in Abundances of Cell-Signalling Proteins in +
Blood Reveal Novel Biomarkers for Early Detection Of +
Clinical Alzheimer’s Disease +
Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de
Produc¸a˜o, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil +
('8423987', 'Mateus Rocha de Paula', 'mateus rocha de paula')
('34861417', 'Regina Berretta', 'regina berretta')
('1738680', 'Pablo Moscato', 'pablo moscato')
6f75697a86d23d12a14be5466a41e5a7ffb79fad
6f7d06ced04ead3b9a5da86b37e7c27bfcedbbddPages 51.1-51.12 +
DOI: https://dx.doi.org/10.5244/C.30.51 +
6f7a8b3e8f212d80f0fb18860b2495be4c363eacCreating Capsule Wardrobes from Fashion Images +
UT-Austin +
UT-Austin +
('22211024', 'Wei-Lin Hsiao', 'wei-lin hsiao')
('1794409', 'Kristen Grauman', 'kristen grauman')
kimhsiao@cs.utexas.edu +
grauman@cs.utexas.edu +
6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81Structured Output SVM Prediction of Apparent Age, +
Gender and Smile From Deep Features +
Michal Uˇriˇc´aˇr +
CMP, Dept. of Cybernetics +
FEE, CTU in Prague +
Computer Vision Lab +
D-ITET, ETH Zurich +
Computer Vision Lab +
D-ITET, ETH Zurich +
PSI, ESAT, KU Leuven +
CVL, D-ITET, ETH Zurich +
Jiˇr´ı Matas +
CMP, Dept. of Cybernetics +
FEE, CTU in Prague +
('1732855', 'Radu Timofte', 'radu timofte')
('2173683', 'Rasmus Rothe', 'rasmus rothe')
('1681236', 'Luc Van Gool', 'luc van gool')
uricamic@cmp.felk.cvut.cz +
radu.timofte@vision.ee.ethz.ch +
rrothe@vision.ee.ethz.ch +
vangool@vision.ee.ethz.ch +
matas@cmp.felk.cvut.cz +
6f08885b980049be95a991f6213ee49bbf05c48dThis article appeared in a journal published by Elsevier. The attached +
copy is furnished to the author for internal non-commercial research +
and education use, including for instruction at the authors institution
and sharing with colleagues. +
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party +
websites are prohibited. +
In most cases authors are permitted to post their version of the +
article (e.g. in Word or Tex form) to their personal website or +
institutional repository. Authors requiring further information +
regarding Elsevier’s archiving and manuscript policies are +
encouraged to visit: +
http://www.elsevier.com/authorsrights +
6f0900a7fe8a774a1977c5f0a500b2898bcbe1491 +
Quotient Based Multiresolution Image Fusion of Thermal +
and Visual Images Using Daubechies Wavelet Transform +
for Human Face Recognition +
Tripura University (A Central University
Suryamaninagar, Tripura 799130, India +
Jadavpur University
Kolkata, West Bengal 700032, India +
*AICTE Emeritus Fellow +
('1694317', 'Mrinal Kanti Bhowmik', 'mrinal kanti bhowmik')
('1721942', 'Debotosh Bhattacharjee', 'debotosh bhattacharjee')
('1729425', 'Mita Nasipuri', 'mita nasipuri')
('1679476', 'Dipak Kumar Basu', 'dipak kumar basu')
('1727663', 'Mahantapas Kundu', 'mahantapas kundu')
mkb_cse@yahoo.co.in +
debotosh@indiatimes.com, mitanasipuri@gmail.com, dipakkbasu@gmail.com, mkundu@cse.jdvu.ac.in +
6fea198a41d2f6f73e47f056692f365c8e6b04ceVideo Captioning with Boundary-aware Hierarchical Language +
Decoding and Joint Video Prediction +
Nanyang Technological University
Nanyang Technological University
Singapore, Singapore +
Singapore, Singapore +
Nanyang Technological University
Singapore, Singapore +
Shafiq Joty +
Nanyang Technological University
Singapore, Singapore +
('8668622', 'Xiangxi Shi', 'xiangxi shi')
('1688642', 'Jianfei Cai', 'jianfei cai')
('2174964', 'Jiuxiang Gu', 'jiuxiang gu')
xxshi@ntu.edu.sg +
JGU004@e.ntu.edu.sg +
asjfcai@ntu.edu.sg +
srjoty@ntu.edu.sg +
6fbb179a4ad39790f4558dd32316b9f2818cd106Input Aggregated Network for Face Video Representation +
Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China
Stony Brook University, Stony Brook, USA
('40061483', 'Zhen Dong', 'zhen dong')
('3306427', 'Su Jia', 'su jia')
('1690083', 'Chi Zhang', 'chi zhang')
('35371203', 'Mingtao Pei', 'mingtao pei')
6f84e61f33564e5188136474f9570b1652a0606fDual Motion GAN for Future-Flow Embedded Video Prediction +
Carnegie Mellon University
('40250403', 'Xiaodan Liang', 'xiaodan liang')
('3682478', 'Lisa Lee', 'lisa lee')
{xiaodan1,lslee}@cs.cmu.edu +
6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3DOI 10.1007/s00530-005-0177-4 +
R E G U L A R PA P E R +
Learning probabilistic classifiers for human–computer +
interaction applications +
Published online: 10 May 2005 +
c(cid:1) Springer-Verlag 2005 +
intelligent +
interaction, +
('1703601', 'Nicu Sebe', 'nicu sebe')
('1695527', 'Theo Gevers', 'theo gevers')
6f3054f182c34ace890a32fdf1656b583fbc7445Article +
Age Estimation Robust to Optical and Motion +
Blurring by Deep Residual CNN +
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu
Received: 9 March 2018; Accepted: 10 April 2018; Published: 13 April 2018 +
('31515471', 'Jeon Seong Kang', 'jeon seong kang')
('31864414', 'Chan Sik Kim', 'chan sik kim')
('29944844', 'Se Woon Cho', 'se woon cho')
('4634733', 'Kang Ryoung Park', 'kang ryoung park')
Seoul 100-715, Korea; kjs2605@dgu.edu (J.S.K.); kimchsi9004@naver.com (C.S.K.); +
lyw941021@dongguk.edu (Y.W.L.); jsu319@naver.com (S.W.C.) +
* Correspondence: parkgr@dongguk.edu; Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +
6fa3857faba887ed048a9e355b3b8642c6aab1d8Face Recognition in Challenging Environments: +
An Experimental and Reproducible Research +
Survey +
('2121764', 'Laurent El Shafey', 'laurent el shafey')
6fda12c43b53c679629473806c2510d84358478fJournal of Academic and Applied Studies +
Vol. 1(1), June 2011, pp. 29-38 +
A Training Model for Fuzzy Classification +
System +
+
Islamic Azad University
Iran +
Available online @ www.academians.org +
Email:a.jamshidnejad@yahoo.com +
6fef65bd7287b57f0c3b36bf8e6bc987fd161b7dDeep Discriminative Model for Video +
Classification +
Center for Machine Vision and Signal Analysis (CMVS) +
University of Oulu, Finland
('2014145', 'Mohammad Tavakolian', 'mohammad tavakolian')
('1751372', 'Abdenour Hadid', 'abdenour hadid')
firstname.lastname@oulu.fi +
6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
937 +
ICASSP 2012 +
6fe2efbcb860767f6bb271edbb48640adbd806c3SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS +
Soft Biometrics; Human Identification using +
Comparative Descriptions +
('34386180', 'Daniel A. Reid', 'daniel a. reid')
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('2093843', 'Sarah V. Stevenage', 'sarah v. stevenage')
6fdc0bc13f2517061eaa1364dcf853f36e1ea5aeDAISEE: Dataset for Affective States in +
E-Learning Environments +
1 Microsoft India R&D Pvt. Ltd. +
2 Department of Computer Science, IIT Hyderabad +
('50178849', 'Abhay Gupta', 'abhay gupta')
('3468123', 'Richik Jaiswal', 'richik jaiswal')
('3468212', 'Sagar Adhikari', 'sagar adhikari')
('1973980', 'Vineeth Balasubramanian', 'vineeth balasubramanian')
abhgup@microsoft.com +
{cs12b1032, cs12b1034, vineethnb}@iith.ac.in +
6f5151c7446552fd6a611bf6263f14e729805ec75KHHAO /7 %:0 7 +
)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA +
FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI +
?=IIIAF=H=>EEJO MAECDJEC +
/=>H M=LAAJI H FHE?EF= ?FAJI ==OIEI 2+) ! 1 JDEI F=FAH MA +
.=?E= )?JE 7EJ 4A?CEJE KIEC .EJAHA@ +
?= *E=HO 2=JJAH .A=JKHAI MEJD *JIJH=FFA@ +
=@ 9AECDJA@ -++ +=IIEAHI +
455EJD =@ 69E@A=JJ +
+AJHA BH 8EIE 5FAA?D =@ 5EC= 2H?AIIEC 7ELAHIEJO B 5KHHAO /KE@BH@ +
4=O@5EJD 69E@A=JJ(IKHHAO=?K +
B=?E= =?JE ?@EC IOIJA .)+5 MA =@@HAII JDA FH>A B @AJA?J +
EC B=?E= =?JE KEJI )7I 6DA AJD@ =@FJA@ EI J JH=E = IECA +
AHHH?HHA?JEC KJFKJ ?@A -++ KJE?=II ?=IIEAH J AIJE=JA JDA +
FHAIAJ E JDA FH>A E=CA 2=JJ I?=EC EI KIA@ J ?=E>H=JA JDA -++ +
KJFKJI J FH>=>EEJEAI =@ =FFHFHE=JA IKI B JDAIA FH>=>EEJEAI =HA +
J=A J >J=E = IAF=H=JA FH>=>EEJO BH A=?D )7 E@ELE@K=O .A=JKHA +
ANJH=?JE EI FAHBHA@ >O CAAH=JEC = =HCA K>AH B ?= >E=HO F=J +
JAH *2 BA=JKHAI =@ JDA IAA?JEC BH JDAIA KIEC B=IJ ?HHA=JE +
>=IA@ JAHEC .+*. 6DA >E=I =@ L=HE=?A FHFAHJEAI B JDA ?=IIEAH +
=HA A=IKHA@ =@ MA IDM JD=J >JD JDAIA IKH?AI B AHHH ?= >A HA +
@K?A@ >O AD=?EC -++ JDHKCD JDA =FFE?=JE B >JIJH=FFEC =@ +
1JH@K?JE +
6DA B=?E==?JE ?@EC IOIJA .)+5 B -= =@ .HEAIA   EI ?O +
AFOA@ E =FFE?=JEI MDE?D FAHBH =KJ=JE? B=?E= ANFHAIIE HA?CEJE +
1 JDEI AJD@ E@ELE@K= B=?E= LAAJI =HA ?D=H=?JAHEIA@ =I A B "" JOFAI +
M =I =?JE KEJI )7I /HKFI B )7I =O JDA >A =FFA@ J AJEI +
KIEC = IJ=@=H@ ?@A > JA DMALAH JD=J )7I =HA J A?AII=HEO E@A +
FA@AJ =I JDA FHAIA?A B A )7 =O =A?J JDA =FFA=H=?A B =JDAH 6DAO +
=O =I ??KH =J @EAHAJ EJAIEJEAI =@ =O ??KH  O A IE@A B JDA +
B=?A 1 JDEI F=FAH MA B?KI  HA?CEIEC IEN )7I BH JDA HACE =HK@ JDA +
AOAI =I EKIJH=JA@ E .EC  +
1EJE= HAFHAIAJ=JE AJD@I BH )7 ?=IIE?=JE MAHA >=IA@  A=IKHEC +
JDA HA=JELA FIEJE B = =HCA K>AH B =@=H FEJI  JDA B=?A   1J +
D=I >AA BK@ DMALAH JD=J ?F=H=>A H >AJJAH HAIKJI ?= >A >J=EA@ >O +
J=EC = HA DEIJE? =FFH=?D J BA=JKHA ANJH=?JE KIEC AJD@I IK?D =I +
?F=HA JM IK?D AJD@I =AO 2+) " =@ ?= >E=HO F=JJAH *2 +
03c56c176ec6377dddb6a96c7b2e95408db65a7aA Novel Geometric Framework on Gram Matrix +
Trajectories for Human Behavior Understanding +
('46243486', 'Anis Kacem', 'anis kacem')
('2909056', 'Mohamed Daoudi', 'mohamed daoudi')
('2125606', 'Boulbaba Ben Amor', 'boulbaba ben amor')
('2507859', 'Stefano Berretti', 'stefano berretti')
03d9ccce3e1b4d42d234dba1856a9e1b28977640
0322e69172f54b95ae6a90eb3af91d3daa5e36eaFace Classification using Adjusted Histogram in +
Grayscale +
036c41d67b49e5b0a578a401eb31e5f46b3624e0The Tower Game Dataset: A Multimodal Dataset +
for Analyzing Social Interaction Predicates +
∗ SRI International +
University of California, Santa Cruz
University of California, Berkeley
('1955011', 'David A. Salter', 'david a. salter')
('1860011', 'Amir Tamrakar', 'amir tamrakar')
('1832513', 'Behjat Siddiquie', 'behjat siddiquie')
('4599641', 'Mohamed R. Amer', 'mohamed r. amer')
('1696401', 'Ajay Divakaran', 'ajay divakaran')
('40530418', 'Brian Lande', 'brian lande')
('2108704', 'Darius Mehri', 'darius mehri')
Email: {david.salter, amir.tamrakar, behjat.siddiquie, mohamed.amer, ajay.divakaran}@sri.com +
Email: brianlande@soe.ucsc.edu +
Email: darius mehri@berkeley.edu +
03b03f5a301b2ff88ab3bb4969f54fd9a35c7271Multi-kernel learning of deep convolutional features for action recognition +
Imperial College London
Noah’s Ark Lab (Huawei Technologies UK) +
Cortexica Vision Systems Limited +
('39599054', 'Biswa Sengupta', 'biswa sengupta')
('29742002', 'Yu Qian', 'yu qian')
b.sengupta@imperial.ac.uk +
03f7041515d8a6dcb9170763d4f6debd50202c2bClustering Millions of Faces by Identity +('40653304', 'Charles Otto', 'charles otto')
('7496032', 'Dayong Wang', 'dayong wang')
('40217643', 'Anil K. Jain', 'anil k. jain')
03ce2ff688f9b588b6f264ca79c6857f0d80ceaeAttention Clusters: Purely Attention Based +
Local Feature Integration for Video Classification +
Tsinghua University, 2Rutgers University, 3Massachusetts Institute of Technology, 4Baidu IDL
('1716690', 'Xiang Long', 'xiang long')
('2551285', 'Chuang Gan', 'chuang gan')
('1732213', 'Gerard de Melo', 'gerard de melo')
('3045089', 'Jiajun Wu', 'jiajun wu')
('48033101', 'Xiao Liu', 'xiao liu')
('35247507', 'Shilei Wen', 'shilei wen')
03b99f5abe0e977ff4c902412c5cb832977cf18eCROWLEY AND ZISSERMAN: OF GODS AND GOATS +
Of Gods and Goats: Weakly Supervised +
Learning of Figurative Art +
Elliot J. Crowley +
Department of Engineering Science +
University of Oxford
('1688869', 'Andrew Zisserman', 'andrew zisserman')elliot@robots.ox.ac.uk +
az@robots.ox.ac.uk +
038ce930a02d38fb30d15aac654ec95640fe5cb0Approximate Structured Output Learning for Constrained Local +
Models with Application to Real-time Facial Feature Detection and +
Tracking on Low-power Devices +
('40474289', 'Shuai Zheng', 'shuai zheng')
('3274976', 'Paul Sturgess', 'paul sturgess')
('1730268', 'Philip H. S. Torr', 'philip h. s. torr')
03167776e17bde31b50f294403f97ee068515578Chapter 11. Facial Expression Analysis +
University of Pittsburgh, Pittsburgh, PA 15260, USA
1 Principles of Facial Expression Analysis +
1.1 What Is Facial Expression Analysis? +
Facial expressions are the facial changes in response to a person’s internal emotional states, +
intentions, or social communications. Facial expression analysis has been an active research +
topic for behavioral scientists since the work of Darwin in 1872 [18, 22, 25, 71]. Suwa et +
al. [76] presented an early attempt to automatically analyze facial expressions by tracking the +
motion of 20 identified spots on an image sequence in 1978. After that, much progress has +
been made to build computer systems to help us understand and use this natural form of human +
communication [6, 7, 17, 20, 28, 39, 51, 55, 65, 78, 81, 92, 93, 94, 96]. +
In this chapter, facial expression analysis refers to computer systems that attempt to auto- +
matically analyze and recognize facial motions and facial feature changes from visual informa- +
tion. Sometimes the facial expression analysis has been confused with emotion analysis in the +
computer vision domain. For emotion analysis, higher level knowledge is required. For exam- +
ple, although facial expressions can convey emotion, they can also express intention, cognitive +
processes, physical effort, or other intra- or interpersonal meanings. Interpretation is aided by +
context, body gesture, voice, individual differences, and cultural factors as well as by facial +
configuration and timing [10, 67, 68]. Computer facial expression analysis systems need to +
analyze the facial actions regardless of context, culture, gender, and so on. +
The accomplishments in the related areas such as psychological studies, human movement +
analysis, face detection, face tracking, and recognition make the automatic facial expression +
analysis possible. Automatic facial expression analysis can be applied in many areas such as +
emotion and paralinguistic communication, clinical psychology, psychiatry, neurology, pain +
assessment, lie detection, intelligent environments, and multimodal human computer interface +
(HCI). +
1.2 Basic Structure of Facial Expression Analysis Systems +
Facial expression analysis includes both measurement of facial motion and recognition of ex- +
pression. The general approach to automatic facial expression analysis (AFEA) consists of +
('40383812', 'Ying-Li Tian', 'ying-li tian')
('1733113', 'Takeo Kanade', 'takeo kanade')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
1 IBM T. J. Watson Research Center, Hawthorne, NY 10532, USA. yltian@us.ibm.com +
2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA. tk@cs.cmu.edu +
jeffcohn@pitt.edu +
0334a8862634988cc684dacd4279c5c0d03704daFaceNet2ExpNet: Regularizing a Deep Face Recognition Net for +
Expression Recognition +
University of Maryland, College Park
2 Siemens Healthcare Technology Center, Princeton, New Jersey +
('1700765', 'Hui Ding', 'hui ding')
('1682187', 'Shaohua Kevin Zhou', 'shaohua kevin zhou')
('9215658', 'Rama Chellappa', 'rama chellappa')
03c1fc9c3339813ed81ad0de540132f9f695a0f8Proceedings of Machine Learning Research 81:1–15, 2018 +
Conference on Fairness, Accountability, and Transparency +
Gender Shades: Intersectional Accuracy Disparities in +
Commercial Gender Classification∗ +
MIT Media Lab 75 Amherst St. Cambridge, MA 02139 +
Microsoft Research 641 Avenue of the Americas, New York, NY 10011 +
Editors: Sorelle A. Friedler and Christo Wilson +
('38222513', 'Joy Buolamwini', 'joy buolamwini')
('2076288', 'Timnit Gebru', 'timnit gebru')
joyab@mit.edu +
timnit.gebru@microsoft.com +
0339459a5b5439d38acd9c40a0c5fea178ba52fbD|C|I&I 2009 Prague +
Multimodal recognition of emotions in car +
environments +
030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f11936 • The Journal of Neuroscience, August 26, 2015 • 35(34):11936 –11945 +
Behavioral/Cognitive +
Inhibition-Induced Forgetting Results from Resource +
Competition between Response Inhibition and Memory +
Encoding Processes +
Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We +
recently documented the “inhibition-induced forgetting effect”: no-go cues are remembered more poorly than go cues. We attributed this +
effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal +
is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the “common resource +
hypothesis”: (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subse- +
quently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions +
having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in +
a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, +
memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as +
quantified by the trial-by-trial ratio of activity in neural “no-go” versus “go” networks. Moreover, this index of inhibitory demand +
exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, +
notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity +
related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from +
stimulus processing. +
Key words: attention; cognitive control; memory; response inhibition +
Significance Statement +
Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a “no-go cue”) impairs subsequent +
memory for that cue. Here, we used fMRI to test whether this “inhibition-induced forgetting effect” is caused by competition for +
neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in +
neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was further- +
more associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. +
Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to +
inhibiting action, less are available for encoding sensory stimuli. +
Introduction +
Response inhibition, the ability to preempt or cancel goal- +
inappropriate actions, is considered a core cognitive control +
Received Feb. 6, 2015; revised July 22, 2015; accepted July 24, 2015. +
Author contributions: Y.-C.C. and T.E. designed research; Y.-C.C. performed research; Y.-C.C. analyzed data; +
Y.-C.C. and T.E. wrote the paper. +
This work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E
The authors declare no competing financial interests. +
DOI:10.1523/JNEUROSCI.0519-15.2015 +
Copyright © 2015 the authors +
0270-6474/15/3511936-10$15.00/0 +
function (Logan and Cowan, 1984; Aron, 2007), an impairment +
that contributes to impulsive symptoms of multiple psychiatric +
diseases, +
including obsessive-compulsive disorder, substance +
abuse, and attention-deficit/hyperactivity disorder (Horn et al., +
2003; de Wit, 2009). However, the relation of response inhibition +
to other cognitive control functions, and to traditional cognitive +
domains, such as perception, memory, and attention, remains +
poorly understood (Jurado and Rosselli, 2007; Miyake and Fried- +
man, 2012). +
A recent behavioral study has shed new light on this issue by +
documenting an “inhibition-induced forgetting” effect, whereby +
inhibiting responses to no-go or stop cues impaired subsequent +
('2846298', 'Yu-Chin Chiu', 'yu-chin chiu')
('1900710', 'Tobias Egner', 'tobias egner')
('2846298', 'Yu-Chin Chiu', 'yu-chin chiu')
LSRC, Box 90999, Durham, NC 27708. E-mail: chiu.yuchin@duke.edu. +
03f98c175b4230960ac347b1100fbfc10c100d0cSupervised Descent Method and its Applications to Face Alignment +
The Robotics Institute, Carnegie Mellon University, Pittsburgh PA
('3182065', 'Xuehan Xiong', 'xuehan xiong')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
xxiong@andrew.cmu.edu +
ftorre@cs.cmu.edu +
032825000c03b8ab4c207e1af4daeb1f225eb025J. Appl. Environ. Biol. Sci., 7(10)159-164, 2017 +
ISSN: 2090-4274 +
© 2017, TextRoad Publication +
Journal of Applied Environmental +
and Biological Sciences +
www.textroad.com +
A Novel Approach for Human Face Detection in Color Images Using Skin +
Color and Golden Ratio +
Bacha Khan University, Charsadda, KPK, Pakistan
Abdul WaliKhan University, Mardan, KPK, Pakistan
Received: May 9, 2017 +
Accepted: August 2, 2017 +
('12144785', 'Faizan Ullah', 'faizan ullah')
('49669073', 'Dilawar Shah', 'dilawar shah')
('46463663', 'Sabir Shah', 'sabir shah')
('47160013', 'Abdus Salam', 'abdus salam')
('12579194', 'Shujaat Ali', 'shujaat ali')
03264e2e2709d06059dd79582a5cc791cbef94b1Convolutional Neural Networks for Facial Attribute-based Active Authentication +
On Mobile Devices +
University of Maryland, College Park
University of Maryland, College Park
MD, USA +
MD, USA +
('9215658', 'Rama Chellappa', 'rama chellappa')
('3383048', 'Pouya Samangouei', 'pouya samangouei')
pouya@umiacs.umd.org +
rama@umiacs.umd.edu +
03a8f53058127798bc2bc0245d21e78354f6c93bMax-Margin Additive Classifiers for Detection +
Sam Hare +
VGG Reading Group +
October 30, 2009 +
('35208858', 'Subhransu Maji', 'subhransu maji')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20A Real Time System for Model-based Interpretation of +
the Dynamics of Facial Expressions +
Technische Universit¨at M¨unchen +
Boltzmannstr. 3, 85748 Garching +
1. Motivation +
Recent progress in the field of Computer Vision allows +
intuitive interaction via speech, gesture or facial expressions +
between humans and technical systems.Model-based tech- +
niques facilitate accurately interpreting images with faces +
by exploiting a priori knowledge, such as shape and texture +
information. This renders them an inevitable component +
to realize the paradigm of intuitive human-machine interac- +
tion. +
Our demonstration shows model-based recognition of +
facial expressions in real-time via the state-of-the-art +
Candide-3 face model [1] as visible in Figure 1. This three- +
dimensional and deformable model is highly appropriate +
for real-world face interpretation applications. However, +
its complexity challenges the task of model fitting and we +
tackle this challenge with an algorithm that has been auto- +
matically learned from a large set of images. This solution +
provides both, high accuracy and runtime. Note, that our +
system is not limited to facial expression estimation. Gaze +
direction, gender and age are also estimated. +
2. Face Model Fitting +
Models reduce the large amount of image data to a +
small number of model parameters to describe the im- +
age content, which facilitates and accelerates the subse- +
quent interpretation task. Cootes et al. [3] introduced mod- +
elling shapes with Active Contours. Further enhancements +
emerged the idea of expanding shape models with texture +
information [2]. Recent research considers modelling faces +
in 3D space [1, 10]. +
Fitting the face model is the computational challenge of +
finding the parameters that best describe the face within a +
given image. This task is often addressed by minimizing +
an objective function, such as the pixel error between the +
model’s rendered surface and the underlying image content. +
This section describes the four main components of model- +
based techniques, see [9]. +
The face model contains a parameter vector p that repre- +
sents its configurations. We integrate the complex and de- +
formable 3D wire frame Candide-3 face model [1]. The +
model consists of 116 anatomical landmarks and its param- +
eter vector p = (rx, ry, rz, s, tx, ty, σ, α)T describes the +
affine transformation (rx, ry, rz, s, tx, ty) and the deforma- +
tion (σ, α). The 79 deformation parameters indicate the +
shape of facial components such as the mouth, the eyes, or +
the eye brows, etc., see Figure 2. +
The localization algorithm computes an initial estimate of +
the model parameters that is further refined by the subse- +
quent fitting algorithm. Our system integrates the approach +
of [8], which detects the model’s affine transformation in +
case the image shows a frontal view face. +
The objective function yields a comparable value that +
specifies how accurately a parameterized model matches an +
image. Traditional approaches manually specify the objec- +
tive function in a laborious and erroneous task. In contrast, +
we automatically learn the objective function from a large +
set of training data based on objective information theoretic +
measures [9]. This approach does not require expert knowl- +
edge and it is domain-independently applicable. As a re- +
sult, this approach yields more robust and accurate objective +
functions, which greatly facilitate the task of the associated +
fitting algorithms. Accurately estimated model parameters +
in turn are required to infer correct high-level information, +
such as facial expression or gaze direction. +
Figure 1. Interpreting expressions with the Candide-3 face model. +
('1685773', 'Christoph Mayer', 'christoph mayer')
('32131501', 'Matthias Wimmer', 'matthias wimmer')
('1704997', 'Freek Stulp', 'freek stulp')
('1725709', 'Zahid Riaz', 'zahid riaz')
('36401753', 'Anton Roth', 'anton roth')
('34667371', 'Martin Eggers', 'martin eggers')
('1699132', 'Bernd Radig', 'bernd radig')
{mayerc,wimmerm,stulp,riaz,roth,eggers,radig}@in.tum.de +
03b98b4a2c0b7cc7dae7724b5fe623a43eaf877bAcume: A Novel Visualization Tool for Understanding Facial +
Expression and Gesture Data +
03adcf58d947a412f3904a79f2ab51cfdf0e838aWorld Journal of Science and Technology 2012, 2(4):136-139 +
ISSN: 2231 – 2587 +
Available Online: www.worldjournalofscience.com +
_________________________________________________________________ +
Proceedings of "Conference on Advances in Communication and Computing (NCACC'12)” +
Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India
April 21, 2012 +
Video-based face recognition: a survey +
R.C.Patel Institute of Technology, Shirpur, Dist.Dhule.Maharashtra, India
('40628915', 'Shailaja A Patil', 'shailaja a patil')
('30751046', 'Pramod J Deore', 'pramod j deore')
03104f9e0586e43611f648af1132064cadc5cc07
03f14159718cb495ca50786f278f8518c0d8c8c92015 IEEE International Conference on Control System, Computing and Engineering, Nov 27 – Nov 29, 2015 Penang, Malaysia +
2015 IEEE International Conference on Control System, +
Computing and Engineering (ICCSCE2015) +
Technical Session 1A – DAY 1 – 27th Nov 2015 +
Time: 3.00 pm – 4.30 pm +
Venue: Jintan +
Topic: Signal and Image Processing +
3.00 pm – 3.15pm +
3.15 pm – 3.30pm +
3.30 pm – 3.45pm +
3.45 pm – 4.00pm +
4.00 pm – 4.15pm +
4.15 pm – 4.30pm +
4.30 pm – 4.45pm +
1A 01 ID3 +
Can Subspace Based Learning Approach Perform on Makeup Face +
Recognition? +
Khor Ean Yee, Pang Ying Han, Ooi Shih Yin and Wee Kuok Kwee +
1A 02 ID35 +
Performance Evaluation of HOG and Gabor Features for Vision-based +
Vehicle Detection +
1A 03 ID23 +
Experimental Method to Pre-Process Fuzzy Bit Planes before Low-Level +
Feature Extraction in Thermal Images +
Chan Wai Ti and Sim Kok Swee +
1A 04 ID84 +
Fractal-based Texture and HSV Color Features for Fabric Image Retrieval +
Nanik Suciati, Darlis Herumurti and Arya Yudhi Wijaya +
1A 05 ID168 +
Study of Automatic Melody Extraction Methods for Philippine Indigenous +
Music +
Jason Disuanco, Vanessa Tan, Franz de Leon +
1A 06 ID211 +
Acoustical Comparison between Voiced and Voiceless Arabic Phonemes of +
Malay +
Speakers +
Ali Abd Almisreb, Ahmad Farid Abidin, Nooritawati Md Tahir +
*shaded cell is the proposed session chair +
viii +
©Faculty of Electrical Engineering, Universiti Teknologi MARA +
('2715116', 'Soo Siang Teoh', 'soo siang teoh')Tea Break @ Foyer +
0394040749195937e535af4dda134206aa830258Geodesic Entropic Graphs for Dimension and +
Entropy Estimation in Manifold Learning +
December 16, 2003 +
('1759109', 'Jose A. Costa', 'jose a. costa')
('1699402', 'Alfred O. Hero', 'alfred o. hero')
0334cc0374d9ead3dc69db4816d08c917316c6c4
03c48d8376990cff9f541d542ef834728a2fcda2Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs +
Columbia University
New York, NY, USA +
('2195345', 'Zheng Shou', 'zheng shou')
('2704179', 'Dongang Wang', 'dongang wang')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{zs2262,dw2648,sc250}@columbia.edu +
0319332ded894bf1afe43f174f5aa405b49305f0Shearlet Network-based Sparse Coding Augmented by +
Facial Texture Features for Face Recognition +
Ben Amar1 +
Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia
University of Houston, Houston, TX 77204, USA
('2791150', 'Mohamed Anouar Borgi', 'mohamed anouar borgi')
('8847309', 'Demetrio Labate', 'demetrio labate')
{anoir.borgi@ieee.org ; dlabate@math.uh.edu ; +
maher.elarbi@gmail.com; chokri.benamar@ieee.org} +
03ac1c694bc84a27621da6bfe73ea9f7210c6d45Chapter 1 +
Introduction to information security +
foundations and applications +
1.1 Background +
Information security has extended to include several research directions like user +
authentication and authorization, network security, hardware security, software secu- +
rity, and data cryptography. Information security has become a crucial need for +
protecting almost all information transaction applications. Security is considered as +
an important science discipline whose many multifaceted complexities deserve the +
synergy of the computer science and engineering communities. +
Recently, due to the proliferation of Information and Communication Tech- +
nologies, information security has started to cover emerging topics such as cloud +
computing security, smart cities’ security and privacy, healthcare and telemedicine, +
the Internet-of-Things (IoT) security [1], the Internet-of-Vehicles security, and sev- +
eral types of wireless sensor networks security [2,3]. In addition, information security +
has extended further to cover not only technical security problems but also social and +
organizational security challenges [4,5]. +
Traditional systems’ development approaches were focusing on the system’s +
usability where security was left to the last stage with less priority. However, the +
new design approaches consider security-in-design process where security is consid- +
ered at the early phase of the design process. The new designed systems should be +
well protected against the available security attacks. Having new systems such as IoT +
or healthcare without enough security may lead to a leakage of sensitive data and, in +
some cases, life threatening situations. +
Taking the social aspect into account, security education is a vital need for both +
practitioners and system users [6]. Users’ misbehaviour due to a lack of security +
knowledge is the weakest point in the system security chain. The users’ misbehaviour +
is considered as a security vulnerability that may be exploited for launching security +
attacks. A successful security attack such as distributed denial-of-service attack will +
impose incident recovery cost in addition to the downtime cost. +
Electrical and Space Engineering, Lule University of Technology
Sweden +
Faculty of Engineering, Al Azhar University, Qena, Egypt
('4073409', 'Ali Ismail Awad', 'ali ismail awad')
03baf00a3d00887dd7c828c333d4a29f3aacd5f5Entropy Based Feature Selection for 3D Facial +
Expression Recognition +
Submitted to the +
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of +
Doctor of Philosophy +
in +
Electrical and Electronic Engineering +
Eastern Mediterranean University
September 2014 +
Gazimağusa, North Cyprus +
('1974278', 'Kamil Yurtkan', 'kamil yurtkan')
0359f7357ea8191206b9da45298902de9f054c92Going Deeper in Facial Expression Recognition using Deep Neural Networks +
1 Department of Electrical and Computer Engineering +
2 Department of Computer Science +
University of Denver, Denver, CO
('2314025', 'Ali Mollahosseini', 'ali mollahosseini')
('38461715', 'David Chan', 'david chan')
('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')
ali.mollahosseini@du.edu, davidchan@cs.du.edu, and mmahoor@du.edu ∗ † +
0394e684bd0a94fc2ff09d2baef8059c2652ffb0Median Robust Extended Local Binary Pattern +
for Texture Classification +
Index Terms— Texture descriptors, rotation invariance, local +
binary pattern (LBP), feature extraction, texture analysis. +
how the texture recognition process works in humans as +
well as in the important role it plays in the wide variety of +
applications of computer vision and image analysis [1], [2]. +
The many applications of texture classification include medical +
image analysis and understanding, object recognition, biomet- +
rics, content-based image retrieval, remote sensing, industrial +
inspection, and document classification. +
As a classical pattern recognition problem, texture classifi- +
cation primarily consists of two critical subproblems: feature +
extraction and classifier designation [1], [2]. It is generally +
agreed that the extraction of powerful texture features plays a +
relatively more important role, since if poor features are used +
even the best classifier will fail to achieve good recognition +
results. Consequently, most research in texture classification +
focuses on the feature extraction part and numerous texture +
feature extraction methods have been developed, with excellent +
surveys given in [1]–[5]. Most existing methods have not, +
however, been capable of performing sufficiently well for +
real-world applications, which have demanding requirements +
including database size, nonideal environmental conditions, +
and running in real-time. +
('39695518', 'Li Liu', 'li liu')
('1716428', 'Songyang Lao', 'songyang lao')
('1731709', 'Paul W. Fieguth', 'paul w. fieguth')
('1714724', 'Matti Pietikäinen', 'matti pietikäinen')
03e88bf3c5ddd44ebf0e580d4bd63072566613ad
03f4c0fe190e5e451d51310bca61c704b39dcac8J Ambient Intell Human Comput +
DOI 10.1007/s12652-016-0406-z +
O R I G I N A L R E S E A R C H +
CHEAVD: a Chinese natural emotional audio–visual database +
Received: 30 March 2016 / Accepted: 22 August 2016 +
Ó Springer-Verlag Berlin Heidelberg 2016 +
('1704841', 'Ya Li', 'ya li')
('37670752', 'Jianhua Tao', 'jianhua tao')
('1850313', 'Linlin Chao', 'linlin chao')
('1694779', 'Wei Bao', 'wei bao')
('3095820', 'Yazhu Liu', 'yazhu liu')
03bd58a96f635059d4bf1a3c0755213a51478f12Smoothed Low Rank and Sparse Matrix Recovery by +
Iteratively Reweighted Least Squares Minimization +
This work presents a general framework for solving the low +
rank and/or sparse matrix minimization problems, which may +
involve multiple non-smooth terms. The Iteratively Reweighted +
Least Squares (IRLS) method is a fast solver, which smooths the +
objective function and minimizes it by alternately updating the +
variables and their weights. However, the traditional IRLS can +
only solve a sparse only or low rank only minimization problem +
with squared loss or an affine constraint. This work generalizes +
IRLS to solve joint/mixed low rank and sparse minimization +
problems, which are essential formulations for many tasks. As a +
concrete example, we solve the Schatten-p norm and (cid:96)2,q-norm +
regularized Low-Rank Representation (LRR) problem by IRLS, +
and theoretically prove that the derived solution is a stationary +
point (globally optimal if p, q ≥ 1). Our convergence proof of +
IRLS is more general than previous one which depends on +
the special properties of the Schatten-p norm and (cid:96)2,q-norm. +
Extensive experiments on both synthetic and real data sets +
demonstrate that our IRLS is much more efficient. +
Index Terms—Low-rank and sparse minimization, Iteratively +
Reweighted Least Squares. +
I. INTRODUCTION +
I N recent years, the low rank and sparse matrix learning +
problems have been hot research topics and lead to broad +
applications in computer vision and machine learning, such +
as face recognition [1], collaborative filtering [2], background +
modeling [3], and subspace segmentation [4], [5]. The (cid:96)1- +
norm and nuclear norm are popular choices for sparse and +
low rank matrix minimizations with theoretical guarantees +
and competitive performance in practice. The models can be +
formulated as a joint low rank and sparse matrix minimization +
problem as follow: +
T(cid:88) +
nuclear norm ||M||∗ = (cid:80) +
min +
i=1 +
where x and bi can be either vectors or matrices, Fi is a +
convex function (the Frobenius norm ||M||2 +
ij; +
ij M 2 +
i σi(M ), the sum of all singular +
F = (cid:80) +
Fi(Ai(x) + bi), +
(1) +
Copyright (c) 2014 IEEE. Personal use of this material +
is permitted. +
However, permission to use this material for any other purposes must be +
This research is supported by the Singapore National Research Foundation +
administered by the IDM Programme Office. Z. Lin is supported by NSF +
China (grant nos. 61272341 and 61231002), 973 Program of China (grant no. +
2015CB3525) and MSRA Collaborative Research Program. +
C. Lu and S. Yan are with the Department of Electrical and Com- +
puter Engineering, National University of Singapore, Singapore (e-mails
Z. Lin is with the Key Laboratory of Machine Perception (MOE), School +
values of a matrix; (cid:96)1-norm ||M||1 = (cid:80) +
norm ||M||2,1 =(cid:80) +
= (cid:80) +
ij |Mij|; and (cid:96)2,1- +
j ||Mj||2, the sum of the (cid:96)2-norm of each +
column of a matrix) and Ai : Rd → Rm is a linear mapping. +
In this work, we further consider the nonconvex Schatten-p +
norm ||M||p +
ij |Mij|p +
and (cid:96)2,p-norm ||M||p +
j ||Mj||p +
2 with 0 < p < 1 for +
pursuing lower rank or sparser solutions. +
i σp(M ), (cid:96)p-norm ||M||p +
2,p = (cid:80) +
p = (cid:80) +
Sp +
Problem (1) is general which involves a wide range of +
problems, such as Lasso [6], group Lasso [7], trace Lasso [4], +
matrix completion [8], Robust Principle Component Analysis +
(RPCA) [3] and Low-Rank Representation (LRR) [5]. In this +
work, we aim to propose a general solver for (1). For the ease +
of discussion, we focus on the following two representative +
problems, +
RPCA: +
s.t. X = Z + E, +
(2) +
||Z||∗ + λ||E||1, +
min +
Z,E +
||Z||∗ + λ||E||2,1, +
min +
Z,E +
s.t. X = XZ + E, +
LRR: +
(3) +
where X ∈ Rd×n is a given data matrix, Z and E are with +
compatible dimensions and λ > 0 is the model parameter. No- +
tice that these problems can be reformulated as unconstrained +
problems (by representing E by Z) as that in problem (1). +
A. Related Works +
The sparse and low rank minimization problems can be +
solved by various methods, such as Semi-Definite Program- +
ming (SDP) [9], Accelerated Proximal Gradient (APG) [10], +
and Alternating Direction Method (ADM) [11]. However, SDP +
has a complexity of O(n6) for an n × n sized matrix, which +
is unbearable for large scale applications. APG requires that +
at +
least one term of the objective function has Lipschitz +
continuous gradient. Such an assumption is violated in many +
problems, e.g., problem (2) and (3). Compared with SDP +
and APG, ADM is the most widely used one. But it usually +
requires introducing several auxiliary variables corresponding +
to non-smooth terms. The auxiliary variables may slow down +
the convergence, or even lead to divergence when there are +
too many variables. Linearized ADM (LADM) [12] may +
reduce the number of auxiliary variables, but suffer the same +
convergence issue. The work [12] proposes an accelerated +
LADM with Adaptive Penalty (LADMAP) with lower per- +
iteration cost. However, the accelerating trick is special for the +
LRR problem. And thus are not general for other problems. +
Another drawback for many low rank minimization solvers is +
that they have to perform the soft singular value thresholding: +
λ||Z||∗ + +
||Z − Y ||2 +
F , +
min +
(4) +
('33224509', 'Canyi Lu', 'canyi lu')
('33383055', 'Zhouchen Lin', 'zhouchen lin')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
obtained from the IEEE by sending a request to pubs-permissions@ieee.org. +
under its International Research Centre @Singapore Funding Initiative and +
canyilu@gmail.com; eleyans@nus.edu.sg). +
of EECS, Peking University, China (e-mail: zlin@pku.edu.cn). +
031055c241b92d66b6984643eb9e05fd605f24e2Multi-fold MIL Training for Weakly Supervised Object Localization +
Inria∗ +
('1939006', 'Ramazan Gokberk Cinbis', 'ramazan gokberk cinbis')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136Int J Comput Vis +
DOI 10.1007/s11263-017-1009-7 +
Large Scale 3D Morphable Models +
Received: 15 March 2016 / Accepted: 24 March 2017 +
© The Author(s) 2017. This article is an open access publication +
('1848903', 'James Booth', 'james booth')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('2931390', 'Anastasios Roussos', 'anastasios roussos')
('5137183', 'Allan Ponniah', 'allan ponniah')
034addac4637121e953511301ef3a3226a9e75fdImplied Feedback: Learning Nuances of User Behavior in Image Search +
Virginia Tech +
('1713589', 'Devi Parikh', 'devi parikh')parikh@vt.edu +
03701e66eda54d5ab1dc36a3a6d165389be0ce79179 +
Improved Principal Component Regression for Face +
Recognition Under Illumination Variations +
('1776127', 'Shih-Ming Huang', 'shih-ming huang')
('1749263', 'Jar-Ferr Yang', 'jar-ferr yang')
03fe3d031afdcddf38e5cc0d908b734884542eebDOI: http://dx.doi.org/10.14236/ewic/EVA2017.60 +
Engagement with Artificial Intelligence +
through Natural Interaction Models +
Sara (Salevati) Feldman +
Simon Fraser University
Vancouver, Canada +
Simon Fraser University
Vancouver, Canada +
Simon Fraser University
Vancouver, Canada +
As Artificial Intelligence (AI) systems become more ubiquitous, what user experience design +
paradigms will be used by humans to impart their needs and intents to an AI system, in order to +
engage in a more social interaction? In our work, we look mainly at expression and creativity +
based systems, where the AI both attempts to model or understand/assist in processes of human +
expression and creativity. We therefore have designed and implemented a prototype system with +
more natural interaction modes for engagement with AI as well as other human computer +
interaction (HCI) where a more open natural communication stream is beneficial. Our proposed +
conversational agent system makes use of the affective signals from the gestural behaviour of the +
user and the semantic information from the speech input in order to generate a personalised, +
human-like conversation that is expressed in the visual and conversational output of the 3D virtual +
avatar system. We describe our system and two application spaces we are using it in – a care +
advisor / assistant for the elderly and an interactive creative assistant for uses to produce art +
forms. +
Artificial Intelligence. Natural user interfaces. Voice systems. Expression systems. ChatBots. +
1. INTRODUCTION +
is +
for +
way +
there +
sensor +
natural +
devices, +
understand +
requirement +
to +
the human +
Due to the increase of natural user interfaces and +
untethered +
a +
corresponding +
for computational +
models that can utilise interactive and affective +
user data in order to understand and emulate a +
more +
conversational +
communication. From an emulation standpoint, it is +
the mechanisms +
important +
underlying +
to human multilayered +
semantic communication to achieve a more natural +
user experience. Humans tend to make use of +
gestures and expressions +
in a conversational +
setting in addition to the linguistic components that +
allow them to express more than the semantics of +
is usually +
the utterances. This phenomenon +
automated +
current +
disregarded +
to +
conversational +
due +
being +
computationally demanding and +
requiring a +
cognitive component to be able to model the +
complexity of the additional signals. With the +
advances in the current technology we are now +
closer to achieve more natural-like conversational +
systems. Gesture capture and recognition systems +
for video and sound input can be combined with +
output systems such as Artificial Intelligence (AI) +
based conversational +
tools and 3D modelling +
systems +
the +
in +
© Feldman et al. Published by +
BCS Learning and Development Ltd. +
Proceedings of Proceedings of EVA London 2017, UK +
296 +
to +
include +
in order +
systems +
to achieve human-level +
meaningful communication. This may allow the +
interaction to be more intuitive, open and fluent that +
can be more helpful in certain situations. In this +
work, we attempt +
the affective +
components from these input signals in order to +
generate a compatible and personalised character +
that can reflect some human-like qualities. +
Given +
these goals, we overview our 3D +
conversational avatar system and describe its use +
in our two application spaces, stressing its use +
where AI systems are involved. Our first application +
space is CareAdvisor, for maintaining active and +
healthy aging in older adults through a multi- +
modular Personalised Virtual Coaching system. +
Here the natural communication system is better +
suited for the elderly, who are technologically less +
experienced, +
non- +
confrontationally and as an assistant conduit to +
health data from other less conversational devices. +
Our second application space is in the interactive +
art exhibition area, where our avatar system is able +
to converse with users in a more open way, +
compared to say forms and input systems, on +
issues of art and creativity. This allows for more +
open, +
to an +
intuitive conversation +
especially when +
leading +
used +
('22588208', 'Ozge Nilay Yalcin', 'ozge nilay yalcin')
('1700040', 'Steve DiPaola', 'steve dipaola')
sara_salevati@sfu.ca +
oyalcin@sfu.ca +
sdipaola@sfu.ca +
9b318098f3660b453fbdb7a579778ab5e9118c4c3931 +
Joint Patch and Multi-label Learning for Facial +
Action Unit and Holistic Expression Recognition +
classifiers without +
('2393320', 'Kaili Zhao', 'kaili zhao')
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('1720776', 'Honggang Zhang', 'honggang zhang')
9be94fa0330dd493f127d51e4ef7f9fd64613cfcResearch Article +
Effects of pose and image resolution on +
automatic face recognition +
ISSN 2047-4938 +
Received on 5th February 2015 +
Revised on 16th May 2015 +
Accepted on 14th September 2015 +
doi: 10.1049/iet-bmt.2015.0008 +
www.ietdl.org +
North Dakota State University, Fargo, ND 58108-6050, USA
Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands
('3001880', 'Zahid Mahmood', 'zahid mahmood')
('1798087', 'Tauseef Ali', 'tauseef ali')
✉ E-mail: zahid.mahmood@ndsu.edu +
9bd35145c48ce172b80da80130ba310811a44051Face Detection with End-to-End Integration of a +
ConvNet and a 3D Model +
1Nat’l Engineering Laboratory for Video Technology, +
Key Laboratory of Machine Perception (MoE), +
Cooperative Medianet Innovation Center, Shanghai +
Sch l of EECS, Peking University, Beijing, 100871, China
2Department of ECE and the Visual Narrative Cluster, +
North Carolina State University, Raleigh, USA
('3422021', 'Yunzhu Li', 'yunzhu li')
('3423002', 'Benyuan Sun', 'benyuan sun')
('47353858', 'Tianfu Wu', 'tianfu wu')
('1717863', 'Yizhou Wang', 'yizhou wang')
{leo.liyunzhu, sunbenyuan, Yizhou.Wang}@pku.edu.cn, tianfu wu@ncsu.edu +
9b000ccc04a2605f6aab867097ebf7001a52b459
9b0489f2d5739213ef8c3e2e18739c4353c3a3b7Visual Data Augmentation through Learning +
Imperial College London, UK
Middlesex University London, UK
('34586458', 'Grigorios G. Chrysos', 'grigorios g. chrysos')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
{g.chrysos, i.panagakis, s.zafeiriou}@imperial.ac.uk +
9b474d6e81e3b94e0c7881210e249689139b3e04VG-RAM Weightless Neural Networks for +
Face Recognition +
Departamento de Inform´atica +
Universidade Federal do Esp´ırito Santo +
Av. Fernando Ferrari, 514, 29075-910 - Vit´oria-ES +
Brazil +
1. Introduction +
Computerized human face recognition has many practical applications, such as access control, +
security monitoring, and surveillance systems, and has been one of the most challenging and +
active research areas in computer vision for many decades (Zhao et al.; 2003). Even though +
current machine recognition systems have reached a certain level of maturity, the recognition +
of faces with different facial expressions, occlusions, and changes in illumination and/or pose +
is still a hard problem. +
A general statement of the problem of machine recognition of faces can be formulated as fol- +
lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene +
using a database of faces. In identification problems, given a face as input, the system reports +
back the identity of an individual based on a database of known individuals; whereas in veri- +
fication problems, the system confirms or rejects the claimed identity of the input face. In both +
cases, the solution typically involves segmentation of faces from scenes (face detection), fea- +
ture extraction from the face regions, recognition, or verification. In this chapter, we examine +
the recognition of frontal face images required in the context of identification problems. +
Many approaches have been proposed to tackle the problem of face recognition. One can +
roughly divide these into (i) holistic approaches, (ii) feature-based approaches, and (iii) hybrid +
approaches (Zhao et al.; 2003). Holistic approaches use the whole face region as the raw input +
to a recognition system (a classifier). In feature-based approaches, local features, such as the +
eyes, nose, and mouth, are first extracted and their locations and local statistics (geometric +
and/or appearance based) are fed into a classifier. Hybrid approaches use both local features +
and the whole face region to recognize a face. +
Among +
fisher- +
faces (Belhumeur et al.; 1997; Etemad and Chellappa; 1997) have proved to be effective +
(Turk and Pentland; +
eigenfaces +
holistic +
approaches, +
1991) +
and +
('1699216', 'Alberto F. De Souza', 'alberto f. de souza')
('3015563', 'Claudine Badue', 'claudine badue')
('3158075', 'Felipe Pedroni', 'felipe pedroni')
('3169286', 'Hallysson Oliveira', 'hallysson oliveira')
9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493Close the Loop: Joint Blind Image Restoration and Recognition +
with Sparse Representation Prior +
School of Computer Science, Northwestern Polytechnical University, Xi an China
Beckman Institute, University of Illinois at Urbana-Champaign, IL USA
U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA
('40479011', 'Haichao Zhang', 'haichao zhang')
('1706007', 'Jianchao Yang', 'jianchao yang')
('1801395', 'Yanning Zhang', 'yanning zhang')
('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
‡{hczhang,jyang29,huang}@ifp.uiuc.edu †ynzhang@nwpu.edu.cn §nasser.m.nasrabadi.civ@mail.mil +
9bc01fa9400c231e41e6a72ec509d76ca797207c
9b2c359c36c38c289c5bacaeb5b1dd06b464f301Dense Face Alignment +
Michigan State University, MI
2Monta Vista High School, Cupertino, CA +
('6797891', 'Yaojie Liu', 'yaojie liu')
('2357264', 'Amin Jourabloo', 'amin jourabloo')
('26365310', 'William Ren', 'william ren')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
1{liuyaoj1,jourablo,liuxm}@msu.edu, 2williamyren@gmail.com +
9bcfadd22b2c84a717c56a2725971b6d49d3a804How to Detect a Loss of Attention in a Tutoring System +
using Facial Expressions and Gaze Direction +
('2975858', 'Mark ter Maat', 'mark ter maat')
9b1bcef8bfef0fb5eb5ea9af0b699aa0534fcecaPosition-Squeeze and Excitation Module +
for Facial Attribute Analysis +
Shanghai Key Laboratory of +
Multidimensional Information +
Processing, +
East China Normal University
200241 Shanghai, China +
('36124320', 'Yan Zhang', 'yan zhang')
('7962836', 'Wanxia Shen', 'wanxia shen')
('49755228', 'Li Sun', 'li sun')
('12493943', 'Qingli Li', 'qingli li')
('36124320', 'Yan Zhang', 'yan zhang')
('7962836', 'Wanxia Shen', 'wanxia shen')
('49755228', 'Li Sun', 'li sun')
('12493943', 'Qingli Li', 'qingli li')
452642781@qq.com +
51151214005@ecnu.cn +
sunli@ee.ecnu.edu.cn +
qlli@cs.ecnu.edu.cn +
9b07084c074ba3710fee59ed749c001ae70aa408698535 CDPXXX10.1177/0963721417698535MartinezComputational Models of Face Perception +
research-article2017 +
Computational Models of Face Perception +
Aleix M. Martinez +
Department of Electrical and Computer Engineering, Center for Cognitive and Brain Sciences, +
and Mathematical Biosciences Institute, The Ohio State University
Current Directions in Psychological +
Science +
1 –7 +
© The Author(s) 2017 +
Reprints and permissions: +
sagepub.com/journalsPermissions.nav +
DOI: 10.1177/0963721417698535 +
https://doi.org/10.1177/0963721417698535 +
www.psychologicalscience.org/CDPS +
9be653e1bc15ef487d7f93aad02f3c9552f3ee4aComputer Vision for Head Pose Estimation: +
Review of a Competition +
Tampere University of Technology, Finland
University of Paderborn, Germany
3 Zorgon, The Netherlands +
('1847889', 'Heikki Huttunen', 'heikki huttunen')
('40394658', 'Ke Chen', 'ke chen')
('2364638', 'Abhishek Thakur', 'abhishek thakur')
('2558923', 'Artus Krohn-Grimberghe', 'artus krohn-grimberghe')
('2300445', 'Oguzhan Gencoglu', 'oguzhan gencoglu')
('3328835', 'Xingyang Ni', 'xingyang ni')
('2067035', 'Mohammed Al-Musawi', 'mohammed al-musawi')
('40448210', 'Lei Xu', 'lei xu')
('3152947', 'Hendrik Jacob van Veen', 'hendrik jacob van veen')
9b246c88a0435fd9f6d10dc88f47a1944dd8f89ePICODES: Learning a Compact Code for +
Novel-Category Recognition +
Dartmouth College
Hanover, NH, U.S.A. +
Andrew Fitzgibbon +
Microsoft Research +
Cambridge, United Kingdom +
('34338883', 'Alessandro Bergamo', 'alessandro bergamo')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
{aleb, lorenzo}@cs.dartmouth.edu +
awf@microsoft.com +
9b164cef4b4ad93e89f7c1aada81ae7af802f3a4 Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +
Vol. 2(1), 17-20, January (2013) +
Res.J.Recent Sci. +
A Fully Automatic and Haar like Feature Extraction-Based Method for Lip +
Contour Detection +
School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN
Received 26th September 2012, revised 27th October 2012, accepted 6th November 2012 +
Available online at: www.isca.in +
9bac481dc4171aa2d847feac546c9f7299cc5aa0Matrix Product State for Higher-Order Tensor +
Compression and Classification +
('2852180', 'Johann A. Bengua', 'johann a. bengua')
('2839912', 'Ho N. Phien', 'ho n. phien')
('1834451', 'Minh N. Do', 'minh n. do')
9b93406f3678cf0f16451140ea18be04784faeeeA Bayesian Approach to Alignment-Based +
Image Hallucination +
University of Central Florida
2 Microsoft Research New England +
('1802944', 'Marshall F. Tappen', 'marshall f. tappen')
('1681442', 'Ce Liu', 'ce liu')
mtappen@eecs.ucf.edu +
celiu@microsoft.com +
9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7Faical Expression Recognition by Combining +
Texture and Geometrical Features +
('3057167', 'Renjie Liu', 'renjie liu')
('36485086', 'Ruofei Du', 'ruofei du')
('40371477', 'Bao-Liang Lu', 'bao-liang lu')
9b6d0b3fbf7d07a7bb0d86290f97058aa6153179NII, Japan at the first THUMOS Workshop 2013 +
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430 +
('39814149', 'Sang Phan', 'sang phan')
('1802416', 'Duy-Dinh Le', 'duy-dinh le')
('40693818', 'Shin’ichi Satoh', 'shin’ichi satoh')
{plsang,ledduy,satoh}@nii.ac.jp +
9b684e2e2bb43862f69b12c6be94db0e7a756187Differentiating Objects by Motion: +
Joint Detection and Tracking of Small Flying Objects +
The University of Tokyo
CSIRO-Data61 +
Australian National University
The University of Tokyo
Figure 1: Importance of multi-frame information for recognizing apparently small flying objects (birds in these examples). +
While visual features in single frames are vague and limited, multi-frame information, including deformation and pose
changes, provides better clues with which to recognize birds. To extract such useful motion patterns, tracking is necessary for +
compensating translation of objects, but the tracking itself is a challenge due to the limited visual information. The blue boxes +
are birds tracked by our method that utilizes multi-frame representation for detection, while the red boxes are the results of a +
single-frame handcrafted-feature-based tracker [11] , which tends to fail when tracking small objects. +
('1890560', 'Ryota Yoshihashi', 'ryota yoshihashi')
('38621343', 'Tu Tuan Trinh', 'tu tuan trinh')
('48727803', 'Rei Kawakami', 'rei kawakami')
('2941564', 'Shaodi You', 'shaodi you')
('33313329', 'Makoto Iida', 'makoto iida')
('48795689', 'Takeshi Naemura', 'takeshi naemura')
{yoshi, tu, rei, naemura}@hc.ic.i.u-tokyo.ac.jp +
iida@ilab.eco.rcast.u-tokyo.ac.jp +
shaodi.you@data61.csiro.au +
9e8637a5419fec97f162153569ec4fc53579c21eSegmentation and Normalization of Human Ears +
using Cascaded Pose Regression +
University of Applied Sciences Darmstadt - CASED
Haardtring 100, +
64295 Darmstadt, Germany +
http://www.h-da.de +
('1742085', 'Christoph Busch', 'christoph busch')anika.pflug@cased.de +
christoph.busch@hig.no +
9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32Exploring Temporal Preservation Networks for Precise Temporal Action +
Localization +
National Laboratory for Parallel and Distributed Processing, +
National University of Defense Technology
Changsha, China +
('2352864', 'Ke Yang', 'ke yang')
('2292038', 'Peng Qiao', 'peng qiao')
('1718853', 'Dongsheng Li', 'dongsheng li')
('1893776', 'Shaohe Lv', 'shaohe lv')
('1791001', 'Yong Dou', 'yong dou')
{yangke13,pengqiao,dongshengli,yongdou,shaohelv}@nudt.edu.cn +
9e4b052844d154c3431120ec27e78813b637b4fcJournal of AI and Data Mining +
Vol. 2, No .1, 2014, 33-38. +
Local gradient pattern - A novel feature representation for facial +
expression recognition +
School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand
Received 23 April 2013; accepted 16 June 2013 +
('31914125', 'M. Shahidul Islam', 'm. shahidul islam')*Corresponding author: suva.93@grads.nida.ac.th (M.Shahidul Islam) +
9e42d44c07fbd800f830b4e83d81bdb9d106ed6bLearning Discriminative Aggregation Network for Video-based Face Recognition +
Tsinghua University, Beijing, China
2State Key Lab of Intelligent Technologies and Systems, Beijing, China +
3Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China +
('39358728', 'Yongming Rao', 'yongming rao')
('2772283', 'Ji Lin', 'ji lin')
('1697700', 'Jiwen Lu', 'jiwen lu')
('39491387', 'Jie Zhou', 'jie zhou')
raoyongming95@gmail.com; lin-j14@mails.tsinghua.edu.cn; {lujiwen,jzhou}@tsinghua.edu.cn +
9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0Max-Margin Invariant Features from Transformed +
Unlabeled Data +
Department of Electrical and Computer Engineering +
Carnegie Mellon University
Pittsburgh, PA 15213 +
('2628116', 'Dipan K. Pal', 'dipan k. pal')
('27756148', 'Ashwin A. Kannan', 'ashwin a. kannan')
('27693929', 'Gautam Arakalgud', 'gautam arakalgud')
('1794486', 'Marios Savvides', 'marios savvides')
{dipanp,aalapakk,garakalgud,marioss}@cmu.edu +
9ea73660fccc4da51c7bc6eb6eedabcce7b5ceadTalking Head Detection by Likelihood-Ratio Test† +
MIT Lincoln Laboratory, +
Lexington MA 02420, USA +
('2877010', 'Carl Quillen', 'carl quillen')wcampbell@ll.mit.edu +
9e9052256442f4e254663ea55c87303c85310df9International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) +
Volume 4 Issue 10, October 2015 +
Review On Attribute-assisted Reranking for +
Image Search +
 +
9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA +
A New Facial Expression Recognition Method Based on +
Local Gabor Filter Bank and PCA plus LDA +
1 School of Electronic and Information Engineering, South China +
University of Technology, Guangzhou, 510640, P.R.China
Motorola China Research Center, Shanghai, 210000, P.R.China
('15414934', 'Hong-Bo Deng', 'hong-bo deng')
('2949795', 'Lian-Wen Jin', 'lian-wen jin')
('1751744', 'Li-Xin Zhen', 'li-xin zhen')
('34824270', 'Jian-Cheng Huang', 'jian-cheng huang')
('15414934', 'Hong-Bo Deng', 'hong-bo deng')
('2949795', 'Lian-Wen Jin', 'lian-wen jin')
('1751744', 'Li-Xin Zhen', 'li-xin zhen')
('34824270', 'Jian-Cheng Huang', 'jian-cheng huang')
{hbdeng, eelwjin}@scut.edu.cn +
{Li-Xin.Zhen, Jian-Cheng.Huang}@motorola.com +
9ef2b2db11ed117521424c275c3ce1b5c696b9b3Robust Face Alignment Using a Mixture of Invariant Experts +
‡Intel Corporation +
Mitsubishi Electric Research Labs (MERL
('2577513', 'Oncel Tuzel', 'oncel tuzel')
('14939251', 'Salil Tambe', 'salil tambe')
('34749896', 'Tim K. Marks', 'tim k. marks')
{oncel, tmarks}@merl.com, +
salil.tambe@intel.com +
9e5acdda54481104aaf19974dca6382ed5ff21edYulia Gizatdinova and Veikko Surakka  +
Automatic localization of facial +
landmarks from expressive images +
of high complexity +
DEPARTMENT OF COMPUTER SCIENCES  +
UNIVERSITY OF TAMPERE
D‐2008‐9  +
TAMPERE 2008  +
9ed943f143d2deaac2efc9cf414b3092ed482610Independent subspace of dynamic Gabor features for facial expression classification +
School of Information Science +
Japan Advanced Institute of Science and Technology
Asahidai 1-1, Nomi-city, Ishikawa, Japan +
('2847306', 'Prarinya Siritanawan', 'prarinya siritanawan')
('1791753', 'Kazunori Kotani', 'kazunori kotani')
('1753878', 'Fan Chen', 'fan chen')
Email: {p.siritanawan, ikko, chen-fan}@jaist.ac.jp +
9e1c3b8b1653337094c1b9dba389e8533bc885b0Demographic Classification with Local Binary +
Patterns +
Department of Computer Science and Technology, +
Tsinghua University, Beijing 100084, China
('4381671', 'Zhiguang Yang', 'zhiguang yang')
('1679380', 'Haizhou Ai', 'haizhou ai')
ahz@mail.tsinghua.edu.cn +
9e0285debd4b0ba7769b389181bd3e0fd7a02af6From face images and attributes to attributes +
Computer Vision Laboratory, ETH Zurich, Switzerland +
('9664434', 'Robert Torfason', 'robert torfason')
('2794259', 'Eirikur Agustsson', 'eirikur agustsson')
('2173683', 'Rasmus Rothe', 'rasmus rothe')
('1732855', 'Radu Timofte', 'radu timofte')
9ed4ad41cbad645e7109e146ef6df73f774cd75dSARFRAZ, SIDDIQUE, STIEFELHAGEN: RPM FOR PAIR-WISE FACE-SIMILARITY +
RPM: Random Points Matching for Pair-wise +
Face-Similarity +
Institute for Anthropomatics
Karlsruhe Institute of Technology
Karlsruhe, Germany +
Swiss Federal Institute of Technology
(ETH) Zurich +
Zurich, Switzerland +
('4241648', 'M. Saquib Sarfraz', 'm. saquib sarfraz')
('6262445', 'Muhammad Adnan Siddique', 'muhammad adnan siddique')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
saquib.sarfraz@kit.edu +
siddique@ifu.baug.ethz.ch +
rainer.stiefelhagen@kit.edu +
9e182e0cd9d70f876f1be7652c69373bcdf37fb4Talking Face Generation by Adversarially +
Disentangled Audio-Visual Representation +
The Chinese University of Hong Kong
('40576774', 'Hang Zhou', 'hang zhou')
('1715752', 'Yu Liu', 'yu liu')
('3243969', 'Ziwei Liu', 'ziwei liu')
('47571885', 'Ping Luo', 'ping luo')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
9e8d87dc5d8a6dd832716a3f358c1cdbfa97074cWhat Makes an Image Popular? +
Massachusetts Institute
of Technology +
eBay Research Labs
DigitalGlobe +
('2556428', 'Aditya Khosla', 'aditya khosla')
('2541992', 'Atish Das Sarma', 'atish das sarma')
('37164887', 'Raffay Hamid', 'raffay hamid')
khosla@csail.mit.edu +
atish.dassarma@gmail.com +
raffay@gmail.com +
9e5c2d85a1caed701b68ddf6f239f3ff941bb707
044d9a8c61383312cdafbcc44b9d00d650b21c70300 Faces in-the-Wild Challenge: The first facial landmark localization +
Challenge +
Imperial College London, UK
School of Computer Science, University of Lincoln, U.K
EEMCS, University of Twente, The Netherlands
('3320415', 'Christos Sagonas', 'christos sagonas')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{c.sagonas, gt204, s.zafeiriou, m.pantic}@imperial.ac.uk +
04bb3fa0824d255b01e9db4946ead9f856cc0b59
040dc119d5ca9ea3d5fc39953a91ec507ed8cc5dNoname manuscript No. +
(will be inserted by the editor) +
Large-scale Bisample Learning on ID vs. Spot Face Recognition +
Received: date / Accepted: date +
('8362374', 'Xiangyu Zhu', 'xiangyu zhu')
('34679741', 'Stan Z. Li', 'stan z. li')
04f0292d9a062634623516edd01d92595f03bd3fDistribution-based Iterative Pairwise Classification of +
Emotions in the Wild Using LGBP-TOP +
The University of Nottingham
Mised Reality Lab +
Anıl Yüce +
Signal Processing +
Laboratory(LTS5) +
École Polytechnique Fédérale +
de Lausanne, Switzerland +
The University of Nottingham
Mixed Reality Lab +
The University of Nottingham
Mixed Reality Lab +
('2449665', 'Timur R. Almaev', 'timur r. almaev')
('1795528', 'Michel F. Valstar', 'michel f. valstar')
('2321668', 'Alexandru Ghitulescu', 'alexandru ghitulescu')
psxta4@nottingham.ac.uk +
anil.yuce@epfl.ch +
psyadg@nottingham.ac.uk +
michel.valstar@nottingham.ac.uk +
047f6afa87f48de7e32e14229844d1587185ce45An Improvement of Energy-Transfer Features +
Using DCT for Face Detection +
Technical University of Ostrava, FEECS
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic +
('2467747', 'Radovan Fusek', 'radovan fusek')
('2557877', 'Eduard Sojka', 'eduard sojka')
{radovan.fusek,eduard.sojka,karel.mozdren,milan.surkala}@vsb.cz +
04b851f25d6d49e61a528606953e11cfac7df2b2Optical Flow Guided Feature: A Fast and Robust Motion Representation for +
Video Action Recognition +
The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong
('1837024', 'Shuyang Sun', 'shuyang sun')
('1874900', 'Zhanghui Kuang', 'zhanghui kuang')
('37145669', 'Lu Sheng', 'lu sheng')
('3001348', 'Wanli Ouyang', 'wanli ouyang')
('1726357', 'Wei Zhang', 'wei zhang')
{shuyang.sun wanli.ouyang}@sydney.edu.au +
{wayne.zhang kuangzhanghui}@sensetime.com +
lsheng@ee.cuhk.edu.hk +
04522dc16114c88dfb0ebd3b95050fdbd4193b90Appears in 2nd Canadian Conference on Computer and Robot Vision, Victoria, Canada, 2005. +
Minimum Bayes Error Features for Visual Recognition by Sequential Feature +
Selection and Extraction +
Department of Computer Science +
University of British Columbia
Department of Electrical and Computer engineering +
University of California San Diego
('3265767', 'Gustavo Carneiro', 'gustavo carneiro')
('1699559', 'Nuno Vasconcelos', 'nuno vasconcelos')
carneiro@cs.ubc.ca +
nuno@ece.ucsd.edu +
04470861408d14cc860f24e73d93b3bb476492d0
0486214fb58ee9a04edfe7d6a74c6d0f661a7668Patch-based Probabilistic Image Quality Assessment for +
Face Selection and Improved Video-based Face Recognition +
NICTA, PO Box 6020, St Lucia, QLD 4067, Australia ∗ +
The University of Queensland, School of ITEE, QLD 4072, Australia
('3026404', 'Yongkang Wong', 'yongkang wong')
('3104113', 'Shaokang Chen', 'shaokang chen')
('40080354', 'Sandra Mau', 'sandra mau')
('1781182', 'Conrad Sanderson', 'conrad sanderson')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
0447bdb71490c24dd9c865e187824dee5813a676Manifold Estimation in View-based Feature +
Space for Face Synthesis Across Pose +
Paper 27 +
0435a34e93b8dda459de49b499dd71dbb478dc18VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification +
Using Convolutional Neural Networks +
Department of Electronics and Communication Engineering and +
Computer Vision Group, L. D. College of Engineering, Ahmedabad, India
the need for handcrafted facial descriptors and data +
preprocessing. D-CNN models have been not only +
successfully applied to human face analysis, but also for +
the visual saliency detection [21, 22, 23]. Visual Saliency +
is fundamentally an intensity map where higher intensity +
signifies regions, where a general human being would +
look, and lower intensities mean decreasing level of visual +
attention. It’s a measure of visual attention of humans +
based on the content of the image. It has numerous +
applications in computer vision and image processing +
tasks. It is still an open problem when considering the MIT +
Saliency Benchmark [24]. +
In previous five years, considering age estimation, +
gender classification and facial expression classification +
accuracies +
increased rapidly on several benchmarks. +
However, in unconstrained environments, i.e. low to high +
occluded face and +
this +
classification tasks are still facing challenges to achieve +
competitive results. Some of the sample images are shown +
in the Fig. 1. +
low-resolution facial +
image, +
Figure 1: Sample images having unconstrained environments i.e. +
occlusion, low resolution. +
In this paper, we tackle the age, gender, and facial +
expression classification problem from different angle. We +
are inspired by the recent progress in the domain of image +
classification and visual saliency prediction using deep +
learning to achieve the competitive results. Based on the +
above motivation our work +
this multi-task +
classification of the facial image is as follows: +
Our VEGAC method uses off-the-shelf face detector +
proposed by Mathias et al. [2] to obtain the location of the +
face in the test image. Then, we increase the margin of +
detected face by 30% and crop the face. After getting the +
cropped face, we pass the cropped face on the Deep Multi- +
for +
('27343041', 'Ayesha Gurnani', 'ayesha gurnani')
('23922616', 'Vandit Gajjar', 'vandit gajjar')
('22239413', 'Viraj Mavani', 'viraj mavani')
('26425477', 'Yash Khandhediya', 'yash khandhediya')
{gurnani.ayesha.52, gajjar.vandit.381, mavani.viraj.604, khandhediya.yash.364}@ldce.ac.in +
043efe5f465704ced8d71a067d2b9d5aa5b59c29EGGER ET AL.: OCCLUSION-AWARE 3D MORPHABLE FACE MODELS +
Occlusion-aware 3D Morphable Face Models +
Department of Mathematics and +
Computer Science +
University of Basel
Basel Switzerland +
http://gravis.cs.unibas.ch +
Andreas Morel-Forster +
('34460642', 'Bernhard Egger', 'bernhard egger')
('49462138', 'Andreas Schneider', 'andreas schneider')
('39550224', 'Clemens Blumer', 'clemens blumer')
('1987368', 'Sandro Schönborn', 'sandro schönborn')
('1687079', 'Thomas Vetter', 'thomas vetter')
bernhard.egger@unibas.ch +
andreas.schneider@unibas.ch +
clemens.blumer@unibas.ch +
andreas.forster@unibas.ch +
sandro.schoenborn@unibas.ch +
thomas.vetter@unibas.ch +
044ba70e6744e80c6a09fa63ed6822ae241386f2TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION +
Early Prediction for Physical Human Robot +
Collaboration in the Operating Room +
('2641330', 'Tian Zhou', 'tian zhou')
04661729f0ff6afe4b4d6223f18d0da1d479accfFrom Facial Parts Responses to Face Detection: A Deep Learning Approach +
The Chinese University of Hong Kong
Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
('1692609', 'Shuo Yang', 'shuo yang')
('1693209', 'Ping Luo', 'ping luo')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{ys014, pluo, ccloy, xtang}@ie.cuhk,edu.hk +
04dcdb7cb0d3c462bdefdd05508edfcff5a6d315Assisting the training of deep neural networks +
with applications to computer vision +
tesi doctoral està subjecta a +
la +
Aquesta +
CompartirIgual 4.0. Espanya de Creative Commons. +
Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual +
4.0. España de Creative Commons. +
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- +
ShareAlike 4.0. Spain License. +
llicència Reconeixement- NoComercial – +
('3995639', 'Adriana Romero', 'adriana romero')
044fdb693a8d96a61a9b2622dd1737ce8e5ff4faDynamic Texture Recognition Using Local Binary +
Patterns with an Application to Facial Expressions +
('1757287', 'Guoying Zhao', 'guoying zhao')
04f55f81bbd879773e2b8df9c6b7c1d324bc72d8Multi-view Face Analysis Based on Gabor Features +
College of Information and Control Engineering in China University of Petroleum
Qingdao 266580, China +
+
('1707922', 'Hongli Liu', 'hongli liu')
04250e037dce3a438d8f49a4400566457190f4e2
0431e8a01bae556c0d8b2b431e334f7395dd803aLearning Localized Perceptual Similarity Metrics for Interactive Categorization +
Google Inc. +
google.com +
('2367820', 'Catherine Wah', 'catherine wah')
04b4c779b43b830220bf938223f685d1057368e9Video retrieval based on deep convolutional +
neural network +
Yajiao Dong +
School of Information and Electronics, +
Beijing Institution of Technology, Beijing, China +
Jianguo Li +
School of Information and Electronics, +
Beijing Institution of Technology, Beijing, China +
yajiaodong@bit.edu.cn +
jianguoli@bit.edu.cn +
04616814f1aabe3799f8ab67101fbaf9fd115ae4UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese
04c2cda00e5536f4b1508cbd80041e9552880e67Hipster Wars: Discovering Elements +
of Fashion Styles +
University of North Carolina at Chapel Hill, NC, USA
Tohoku University, Japan
('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')
('1721910', 'Kota Yamaguchi', 'kota yamaguchi')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1685538', 'Tamara L. Berg', 'tamara l. berg')
{hadi,aberg,tlberg}@cs.unc.edu +
kyamagu@vision.is.tohoku.ac.jp +
04ff69aa20da4eeccdabbe127e3641b8e6502ec0Sequential Face Alignment via Person-Specific Modeling in the Wild +
Rutgers University
University of Texas at Arlington
Piscataway, NJ 08854 +
Arlington, TX 76019 +
Rutgers University
Piscataway, NJ 08854 +
('4340744', 'Xi Peng', 'xi peng')
('1768190', 'Junzhou Huang', 'junzhou huang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
xpeng.nb@cs.rutgers.edu +
jzhuang@uta.edu +
dnm@cs.rutgers.edu +
046a694bbb3669f2ff705c6c706ca3af95db798cConditional Convolutional Neural Network for Modality-aware Face Recognition +
Imperial College London
National University of Singapore
3Panasonic R&D Center Singapore +
('34336393', 'Chao Xiong', 'chao xiong')
('1874505', 'Xiaowei Zhao', 'xiaowei zhao')
('40245930', 'Danhang Tang', 'danhang tang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')
{chao.xiong10, x.zhao, d.tang11}@imperial.ac.uk, Karlekar.Jayashree@sg.panasonic.com, eleyans@nus.edu.sg, tk.kim@imperial.ac.uk +
047d7cf4301cae3d318468fe03a1c4ce43b086edCo-Localization of Audio Sources in Images Using +
Binaural Features and Locally-Linear Regression +
To cite this version: +
Sources in Images Using Binaural Features and Locally-Linear Regression. IEEE Transactions +
on Audio Speech and Language Processing, 2015, 15p. +
HAL Id: hal-01112834 +
https://hal.inria.fr/hal-01112834 +
Submitted on 3 Feb 2015 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('3307172', 'Antoine Deleforge', 'antoine deleforge')
('1794229', 'Radu Horaud', 'radu horaud')
('2159538', 'Yoav Y. Schechner', 'yoav y. schechner')
('1780746', 'Laurent Girin', 'laurent girin')
('3307172', 'Antoine Deleforge', 'antoine deleforge')
('1794229', 'Radu Horaud', 'radu horaud')
('2159538', 'Yoav Y. Schechner', 'yoav y. schechner')
('1780746', 'Laurent Girin', 'laurent girin')
04317e63c08e7888cef480fe79f12d3c255c5b00Face Recognition Using a Unified 3D Morphable Model +
Hu, G., Yan, F., Chan, C-H., Deng, W., Christmas, W., Kittler, J., & Robertson, N. M. (2016). Face Recognition +
Using a Unified 3D Morphable Model. In Computer Vision – ECCV 2016: 14th European Conference, +
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII (pp. 73-89). (Lecture Notes in +
Computer Science; Vol. 9912). Springer Verlag. DOI: 10.1007/978-3-319-46484-8_5 +
Published in: +
Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, +
2016, Proceedings, Part VIII +
Document Version: +
Peer reviewed version +
Queen's University Belfast - Research Portal
Link to publication record in Queen's University Belfast Research Portal
Publisher rights +
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46484-8_5 +
General rights +
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +
with these rights. +
Take down policy +
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +
Download date:12. Sep. 2018 +
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk. +
046865a5f822346c77e2865668ec014ec3282033Discovering Informative Social Subgraphs and Predicting +
Pairwise Relationships from Group Photos +
National Taiwan University, Taipei, Taiwan
†Academia Sinica, Taipei, Taiwan +
('35081710', 'Yan-Ying Chen', 'yan-ying chen')
('1716836', 'Winston H. Hsu', 'winston h. hsu')
('1704678', 'Hong-Yuan Mark Liao', 'hong-yuan mark liao')
yanying@cmlab.csie.ntu.edu.tw, winston@csie.ntu.edu.tw, liao@iis.sinica.edu.tw +
047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efffUnsupervised Training for 3D Morphable Model Regression +
Princeton University
2Google Research +
3MIT CSAIL +
('32627314', 'Kyle Genova', 'kyle genova')
('39578349', 'Forrester Cole', 'forrester cole')
0470b0ab569fac5bbe385fa5565036739d4c37f8Automatic Face Naming with Caption-based Supervision +
To cite this version: +
with Caption-based Supervision. CVPR 2008 - IEEE Conference on Computer Vision +
Pattern Recognition, +
ciety, +
<10.1109/CVPR.2008.4587603>. +
Jun +
2008, +
pp.1-8, +
2008, Anchorage, United +
so- +
. +
IEEE Computer +
States. +
HAL Id: inria-00321048 +
https://hal.inria.fr/inria-00321048v2 +
Submitted on 11 Apr 2011 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('2737253', 'Matthieu Guillaumin', 'matthieu guillaumin')
('1722052', 'Thomas Mensink', 'thomas mensink')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
('2737253', 'Matthieu Guillaumin', 'matthieu guillaumin')
('1722052', 'Thomas Mensink', 'thomas mensink')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
6a3a07deadcaaab42a0689fbe5879b5dfc3ede52Learning to Estimate Pose by Watching Videos +
Department of Computer Science and Engineering +
IIT Kanpur +
('36668573', 'Prabuddha Chakraborty', 'prabuddha chakraborty')
('1744135', 'Vinay P. Namboodiri', 'vinay p. namboodiri')
{prabudc, vinaypn} @iitk.ac.in +
6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4dCooperative Learning with Visual Attributes +
Carnegie Mellon University
Georgia Tech +
('32519394', 'Tanmay Batra', 'tanmay batra')
('1713589', 'Devi Parikh', 'devi parikh')
tbatra@cmu.edu +
parikh@gatech.edu +
6afed8dc29bc568b58778f066dc44146cad5366cKernel Hebbian Algorithm for Single-Frame +
Super-Resolution +
Max Planck Institute f ur biologische Kybernetik
Spemannstr. 38, D-72076 T¨ubingen, Germany +
http://www.kyb.tuebingen.mpg.de/ +
('1808255', 'Kwang In Kim', 'kwang in kim')
('30541601', 'Matthias O. Franz', 'matthias o. franz')
{kimki, mof, bs}@tuebingen.mpg.de +
6ad107c08ac018bfc6ab31ec92c8a4b234f67d49
6a184f111d26787703f05ce1507eef5705fdda83
6a16b91b2db0a3164f62bfd956530a4206b23feaA Method for Real-Time Eye Blink Detection and Its Application +
Mahidol Wittayanusorn School +
Puttamonton, Nakornpatom 73170, Thailand +
Chinnawat.Deva@gmail.com +
6a806978ca5cd593d0ccd8b3711b6ef2a163d810Facial feature tracking for Emotional Dynamic +
Analysis +
1ISIR, CNRS UMR 7222 +
Univ. Pierre et Marie Curie, Paris +
2LAMIA, EA 4540 +
Univ. of Fr. West Indies & Guyana +
('3093849', 'Thibaud Senechal', 'thibaud senechal')
('3074790', 'Vincent Rapp', 'vincent rapp')
('2554802', 'Lionel Prevost', 'lionel prevost')
{rapp, senechal}@isir.upmc.fr +
lionel.prevost@univ-ag.fr +
6a8a3c604591e7dd4346611c14dbef0c8ce9ba54ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS. +
58 +
An Affect-Responsive Interactive Photo Frame +
('1713360', 'Ilkka Kosunen', 'ilkka kosunen')
('32062164', 'Marcos Ortega Hortas', 'marcos ortega hortas')
('1764521', 'Albert Ali Salah', 'albert ali salah')
6aa43f673cc42ed2fa351cbc188408b724cb8d50
6a2b83c4ae18651f1a3496e48a35b0cd7a2196dfTop Rank Supervised Binary Coding for Visual Search +
Department of ECE +
School of Electronic Engineering +
School of Information Science +
UC San Diego +
Xidian University
and Engineering +
Xiamen University
Department of Mathematics +
UC San Diego +
IBM T. J. Watson +
Research Center
('2451800', 'Dongjin Song', 'dongjin song')
('39059457', 'Wei Liu', 'wei liu')
('1725599', 'Rongrong Ji', 'rongrong ji')
('3520515', 'David A. Meyer', 'david a. meyer')
('1732563', 'John R. Smith', 'john r. smith')
dosong@ucsd.edu +
wliu@ee.columbia.edu +
rrji@xmu.edu.cn +
dmeyer@math.ucsd.edu +
jsmith@us.ibm.com +
6a52e6fce541126ff429f3c6d573bc774f5b8d89Role of Facial Emotion in Social Correlation +
Department of Computer Science and Engineering +
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
('2159044', 'Pankaj Mishra', 'pankaj mishra')
('47865262', 'Takayuki Ito', 'takayuki ito')
{pankaj.mishra, rafik}@itolab.nitech.ac.jp, +
ito.takayuki@nitech.ac.jp +
6a5fe819d2b72b6ca6565a0de117c2b3be448b02Supervised and Projected Sparse Coding for Image Classification +
Computer Science and Engineering Department +
University of Texas at Arlington
Arlington,TX,76019 +
('39122448', 'Jin Huang', 'jin huang')
('1688370', 'Feiping Nie', 'feiping nie')
('1748032', 'Heng Huang', 'heng huang')
huangjinsuzhou@gmail.com, feipingnie@gmail.com, heng@uta.edu, chqding@uta.edu +
6afeb764ee97fbdedfa8f66810dfc22feae3fa1fRobust Principal Component Analysis with Complex Noise +
School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
The Hong Kong Polytechnic University, Hong Kong, China
('40209122', 'Qian Zhao', 'qian zhao')
('1803714', 'Deyu Meng', 'deyu meng')
('7814629', 'Zongben Xu', 'zongben xu')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('36685537', 'Lei Zhang', 'lei zhang')
TIMMY.ZHAOQIAN@GMAIL.COM +
DYMENG@MAIL.XJTU.EDU.CN +
ZBXU@MAIL.XJTU.EDU.CN +
CSWMZUO@GMAIL.COM +
CSLZHANG@COMP.POLYU.EDU.HK +
6aa61d28750629febe257d1cb69379e14c66c67fMax–Planck–Institut f¨ur biologische Kybernetik +
Max Planck Institute for Biological Cybernetics
Technical Report No. 109 +
Kernel Hebbian Algorithm for +
Iterative Kernel Principal +
Component Analysis +
Sch¨olkopf1 +
June 2003 +
This report is available in PDF–format via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/kha.pdf. The com- +
plete series of Technical Reports is documented at: http://www.kyb.tuebingen.mpg.de/techreports.html +
('1808255', 'Kwang In Kim', 'kwang in kim')
('30541601', 'Matthias O. Franz', 'matthias o. franz')
1 Department Sch¨olkopf, email: kimki;mof;bs@tuebingen.mpg.de +
6ae96f68187f1cdb9472104b5431ec66f4b2470fCarnegie Mellon University
Dietrich College Honors Theses
Dietrich College of Humanities and Social Sciences
4-30-2012 +
Improving Task Performance in an Affect-mediated +
Computing System +
Follow this and additional works at: http://repository.cmu.edu/hsshonors +
Part of the Databases and Information Systems Commons +
('29120285', 'Vivek Pai', 'vivek pai')Research Showcase @ CMU +
Carnegie Mellon University, vpai@cmu.edu +
This Thesis is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase @ CMU. It has +
been accepted for inclusion in Dietrich College Honors Theses by an authorized administrator of Research Showcase @ CMU. For more information, +
please contact research-showcase@andrew.cmu.edu. +
6a4419ce2338ea30a570cf45624741b754fa52cbStatistical transformer networks: learning shape +
and appearance models via self supervision +
University of York
('39180407', 'Anil Bas', 'anil bas')
('1687021', 'William A. P. Smith', 'william a. p. smith')
{ab1792,william.smith}@york.ac.uk +
6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8A New Weighted Sparse Representation Based +
on MSLBP and Its Application to Face Recognition +
School of IoT Engineering, Jiangnan University, Wuxi 214122, China
('1823451', 'He-Feng Yin', 'he-feng yin')
('37020604', 'Xiao-Jun Wu', 'xiao-jun wu')
yinhefeng@126.com, wu_xiaojun@yahoo.com.cn +
6a657995b02bc9dee130701138ea45183c18f4aeTHE TIMING OF FACIAL MOTION IN POSED AND SPONTANEOUS SMILES +
J.F. COHN* and K.L.SCHMIDT +
University of Pittsburgh
Department of Psychology +
4327 Sennott Square, 210 South Bouquet Street +
Pittsburgh, PA 15260, USA +
Revised 19 March 2004 +
Almost all work in automatic facial expression analysis has focused on recognition of prototypic +
expressions rather than dynamic changes in appearance over time. To investigate the relative +
contribution of dynamic features to expression recognition, we used automatic feature tracking to +
measure the relation between amplitude and duration of smile onsets in spontaneous and deliberate +
smiles of 81 young adults of Euro- and African-American background. Spontaneous smiles were of +
smaller amplitude and had a larger and more consistent relation between amplitude and duration than +
deliberate smiles. A linear discriminant classifier using timing and amplitude measures of smile +
onsets achieved a 93% recognition rate. Using timing measures alone, recognition rate declined only +
marginally to 89%. These findings suggest that by extracting and representing dynamic as well as +
morphological features, automatic facial expression analysis can begin to discriminate among the +
message values of morphologically similar expressions. +
Keywords: automatic facial expression analysis, timing, spontaneous facial behavior +
AMS Subject Classification: +
1. Introduction +
Almost all work in automatic facial expression analysis has sought to recognize either +
prototypic expressions of emotion (e.g., joy or anger) or more molecular appearance +
prototypes such as FACS action units. This emphasis on prototypic expressions follows +
from the work of Darwin10and more recently Ekman12 who proposed that basic emotions +
have corresponding prototypic expressions and described their components, such as +
crows-feet wrinkles lateral to the outer eye corners, in emotion-specified joy expressions. +
Considerable evidence suggests that six prototypic expressions (joy, surprise, anger, +
sadness, disgust, and fear) are universal in their performance and in their perception12 +
and can communicate subjective emotion, communicative +
intent, and action +
tendencies.18, 19, 26 +
*jeffcohn@pitt.edu +
kschmidt@pitt.edu +
6a0368b4e132f4aa3bbdeada8d894396f201358aOne-Class Multiple Instance Learning via +
Robust PCA for Common Object Discovery +
Huazhong University of Science and Technology
2Visual Computing Group, Microsoft Research Asia +
3Lab of Neuro Imaging and Department of Computer Science, UCLA +
('2443233', 'Xinggang Wang', 'xinggang wang')
('2554701', 'Zhengdong Zhang', 'zhengdong zhang')
('1700297', 'Yi Ma', 'yi ma')
('1686737', 'Xiang Bai', 'xiang bai')
('1743698', 'Wenyu Liu', 'wenyu liu')
('1736745', 'Zhuowen Tu', 'zhuowen tu')
{wxghust,zhangzdfaint}@gmail.com, mayi@microsoft.com, +
{xbai,liuwy}@hust.edu.cn, ztu@loni.ucla.edu +
6ab33fa51467595f18a7a22f1d356323876f8262Ordinal Hyperplanes Ranker with Cost Sensitivities for Age Estimation +
Institute of Information Science, Academia Sinica, Taipei, Taiwan
Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
National Taiwan University, Taipei, Taiwan
Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
('34692779', 'Kuang-Yu Chang', 'kuang-yu chang')
('1720473', 'Chu-Song Chen', 'chu-song chen')
('1732064', 'Yi-Ping Hung', 'yi-ping hung')
{kuangyu, song}@iis.sinica.edu.tw, hung@csie.ntu.edu.tw +
6aefe7460e1540438ffa63f7757c4750c844764dNon-rigid Segmentation using Sparse Low Dimensional Manifolds and +
Deep Belief Networks ∗ +
Instituto de Sistemas e Rob´otica +
Instituto Superior T´ecnico, Portugal +
('3259175', 'Jacinto C. Nascimento', 'jacinto c. nascimento')
6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180aExcitation Dropout: +
Encouraging Plasticity in Deep Neural Networks +
1Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia +
Boston University
3Adobe Research +
University of Verona
('40063519', 'Andrea Zunino', 'andrea zunino')
('3298267', 'Sarah Adel Bargal', 'sarah adel bargal')
('2322579', 'Pietro Morerio', 'pietro morerio')
('1701293', 'Jianming Zhang', 'jianming zhang')
('1749590', 'Stan Sclaroff', 'stan sclaroff')
('1727204', 'Vittorio Murino', 'vittorio murino')
{andrea.zunino,vittorio.murino}@iit.it, +
{sbargal,sclaroff}@bu.edu, jianmzha@adobe.com +
6a4ebd91c4d380e21da0efb2dee276897f56467aHOG ACTIVE APPEARANCE MODELS +
cid:2)Imperial College London, U.K
University of Lincoln, School of Computer Science, U.K
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2
6a7e464464f70afea78552c8386f4d2763ea1d9cReview Article +
International Journal of Current Engineering and Technology +
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161 +
©2014 INPRESSCO +
, All Rights Reserved +
Available at http://inpressco.com/category/ijcet +
Facial Landmark Localization – A Literature Survey +
PES Institute of Technology, Bangalore, Karnataka, India
Accepted 25 May 2014, Available online 01 June2014, Vol.4, No.3 (June 2014) +
32925200665a1bbb4fc8131cd192cb34c2d7d9e33-9 +
MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN +
An Active Appearance Model with a Derivative-Free +
Optimization +
CNRS , Institute of Automation of the Chinese Academy of Sciences
95, Zhongguancun Dong Lu, PO Box 2728 − Beijing 100190 − PR China +
LIAMA Sino-French IT Lab. +
('8214735', 'Jixia Zhang', 'jixia zhang')
('1742818', 'Franck Davoine', 'franck davoine')
('3364363', 'Chunhong Pan', 'chunhong pan')
Franck.Davoine@gmail.com +
322c063e97cd26f75191ae908f09a41c534eba90Noname manuscript No. +
(will be inserted by the editor) +
Improving Image Classification using Semantic Attributes +
Received: date / Accepted: date +
('1758652', 'Yu Su', 'yu su')
325b048ecd5b4d14dce32f92bff093cd744aa7f8CVPR +
#2670 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2008 Submission #2670. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#2670 +
Multi-Image Graph Cut Clothing Segmentation for Recognizing People +
Anonymous CVPR submission +
Paper ID 2670 +
32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347HIERARCHICAL SPARSE AND COLLABORATIVE LOW-RANK REPRESENTATION FOR +
EMOTION RECOGNITION +
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
('40031188', 'Xiang Xiang', 'xiang xiang')
('31507586', 'Minh Dao', 'minh dao')
('1678633', 'Gregory D. Hager', 'gregory d. hager')
('1709073', 'Trac D. Tran', 'trac d. tran')
{xxiang, minh.dao, ghager1, trac}@jhu.edu +
32d8e555441c47fc27249940991f80502cb70bd5Machine Learning Models that Remember Too Much +
Cornell University
Cornell Tech +
Cornell Tech +
('3469125', 'Congzheng Song', 'congzheng song')
('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')
('1707461', 'Thomas Ristenpart', 'thomas ristenpart')
cs2296@cornell.edu +
ristenpart@cornell.edu +
shmat@cs.cornell.edu +
3294e27356c3b1063595885a6d731d625b15505aIllumination Face Spaces are Idiosyncratic +
2, H. Kley1, C. Peterson1 ∗ +
Colorado State University, Fort Collins, CO 80523, USA
('2640182', 'Jen-Mei Chang', 'jen-mei chang')
324f39fb5673ec2296d90142cf9a909e595d82cfHindawi Publishing Corporation +
Mathematical Problems in Engineering +
Volume 2011, Article ID 864540, 15 pages +
doi:10.1155/2011/864540 +
Research Article +
Relationship Matrix Nonnegative +
Decomposition for Clustering +
Faculty of Science and State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong +
University, Xi an Shaanxi Province, Xi an 710049, China
Received 18 January 2011; Revised 28 February 2011; Accepted 9 March 2011 +
Copyright q 2011 J.-Y. Pan and J.-S. Zhang. This is an open access article distributed under +
the Creative Commons Attribution License, which permits unrestricted use, distribution, and +
reproduction in any medium, provided the original work is properly cited. +
Nonnegative matrix factorization (cid:2)NMF(cid:3) is a popular tool for analyzing the latent structure of non- +
negative data. For a positive pairwise similarity matrix, symmetric NMF (cid:2)SNMF(cid:3) and weighted +
NMF (cid:2)WNMF(cid:3) can be used to cluster the data. However, both of them are not very efficient +
for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship +
matrix nonnegative decomposition (cid:2)RMND(cid:3), is proposed to discover the latent clustering structure +
from the pairwise similarity matrix. The RMND model is derived from the nonlinear NMF +
algorithm. RMND decomposes a pairwise similarity matrix into a product of three low rank +
nonnegative matrices. The pairwise similarity matrix is represented as a transformation of a +
positive semidefinite matrix which pops out the latent clustering structure. We develop a learning +
procedure based on multiplicative update rules and steepest descent method to calculate the +
nonnegative solution of RMND. Experimental results in four different databases show that the +
proposed RMND approach achieves higher clustering accuracy. +
1. Introduction +
Nonnegative matrix factorization (cid:2)NMF(cid:3) (cid:6)1(cid:7) has been introduced as an effective technique for +
analyzing the latent structure of nonnegative data such as images and documents. A variety +
of real-world applications of NMF has been found in many areas such as machine learning, +
signal processing (cid:6)2–4(cid:7), data clustering (cid:6)5, 6(cid:7), and computer vision (cid:6)7(cid:7). +
Most applications focus on the clustering aspect of NMF (cid:6)8, 9(cid:7). Each sample can be +
represented as a linear combination of clustering centroids. Recently, a theoretic analysis +
has shown the equivalence between NMF and K-means/spectral clustering (cid:6)10(cid:7). Symmetric +
NMF (cid:2)SNMF(cid:3) (cid:6)10(cid:7) is an extension of NMF. It aims at learning clustering structure from +
the kernel matrix or pairwise similarity matrix which is positive semidefinite. When the simi- +
larity matrix is not positive semidefinite, SNMF is not able to capture the clustering structure +
('9416881', 'Ji-Yuan Pan', 'ji-yuan pan')
('2265568', 'Jiang-She Zhang', 'jiang-she zhang')
('14464924', 'Angelo Luongo', 'angelo luongo')
Correspondence should be addressed to Ji-Yuan Pan, panjiyuan@gmail.com +
321bd4d5d80abb1bae675a48583f872af3919172Wang et al. EURASIP Journal on Image and Video Processing (2016) 2016:44 +
DOI 10.1186/s13640-016-0152-3 +
EURASIP Journal on Image +
and Video Processing +
R EV I E W +
Entropy-weighted feature-fusion method +
for head-pose estimation +
Open Access +
('40579241', 'Kang Liu', 'kang liu')
('2076553', 'Xu Qian', 'xu qian')
3240c9359061edf7a06bfeb7cc20c103a65904c2PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise +
R-FCN +
Columbia University, National University of Singapore
('5462268', 'Hanwang Zhang', 'hanwang zhang')
('26538630', 'Zawlin Kyaw', 'zawlin kyaw')
('46380822', 'Jinyang Yu', 'jinyang yu')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{hanwangzhang, kzl.zawlin, yjy941124}@gmail.com; shih.fu.chang@columbia.edu +
32b8c9fd4e3f44c371960eb0074b42515f318ee7
32575ffa69d85bbc6aef5b21d73e809b37bf376d-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61 +
7ELAHIEJO B JJ=M= +
)*564)+6 +
IKHA L=HE=JEI E >EAJHE? I=FA GK=EJO 9A >ACE MEJD +
IKHAAJI 9A JDA IDM JD=J JDA >EAJHE? EBH=JE BH +
JA EI JDA A= D(p(cid:107)q) BH = FAHII E JDA FFK=JE 1 +
BH I= ALAI B >KH MEJD = =IOFJJE? >AD=LEH =J =HCAH +
>KH +
 164,7+61 +
*EAJHE? I=FA GK=EJO EI = A=IKHA B JDA KIABKAII B = +
GK=EJO +
F=FAH MA FHFIA = AM =FFH=?D J A=IKHA JDEI GK=JEJO +
JDA EJKEJELA >IAHL=JE JD=J = DECD GK=EJO >EAJHE? E=CA +
>EAJHE? EBH=JE +
EIIKAI E >EAJHE? JA?DCO .H AN=FA A B JDA IJ +
? >EAJHE? GKAIJEI EI JD=J B KEGKAAII AC J MD=J +
ANJAJ =HA CAHFHEJI KEGKA .H JDA FEJ B LEAM B +
=>A EBH=JE EI =L=E=>A BH = CELA JA?DCO IK?D +
  $  " +
1 JDEI F=FAH MA A=>H=JA = =FFH=?D J +
BMI +
AJI +
 >ABHA = >EAJHE? A=IKHAAJ t0 =J MDE?D JEA MA O +
M = FAHI p EI F=HJ B = FFK=JE q MDE?D =O >A JDA +
4E?D=H@ ;K=H= =@ )@O )@AH +
5?D B 1BH=JE 6A?DCO =@ -CEAAHEC +
J=HE +==@= +
6DEI F=FAH @ALAFI = AM =FFH=?D J K@AHIJ=@ =@ A= +
JDA EJKEJE JD=J @ACH=@=JEI J = >EAJHE? I=FA ME HA +
@K?A JDA =KJ B E@AJE=>A EBH=JE =L=E=>A 1 H +
@AH J A=IKHA JDA =KJ B E@AJE=>A EBH=JE MA +
@AA >EAJHE? EBH=JE =I JDA @A?HA=IA E K?AHJ=EJO +
=>KJ JDA E@AJEJO B = FAHI @KA J = IAJ B >EAJHE? A= +
= FAHI =O >A ?=?K=JA@ >O JDA HA=JELA AJHFO D(p(cid:107)q) +
>AJMAA JDA FFK=JE BA=JKHA @EIJHE>KJE q =@ JDA FAHII +
BA=JKHA @EIJHE>KJE p 6DA >EAJHE? EBH=JE BH = IOI +
H@AH J FH=?JE?=O A=IKHA D(p(cid:107)q) MEJD EEJA@ @=J= I= +
FAI MA EJH@K?A = =CHEJD MDE?D HACK=HEAI = /=KIIE= +
@A B JDA BA=JKHA ?L=HE=?AI ) AN=FA B JDEI AJD@ +
EI IDM BH 2+) .EIDAH EA=H @EI?HEE=J ., =@ 1+) +
>=IA@ B=?A HA?CEJE MEJD >EAJHE? EBH=JE ?=?K=JA@ +
J >A 45.0 >EJI 2+) 37.0 >EJI ., 39.0 >EJI 1+) =@ +
55.6 >EJI BKIE B 2+) =@ ., BA=JKHAI *=IA@  JDEI +
@AEJE B >EAJHE? EBH=JE MA IEK=JA @ACH=@=JEI +
B >EAJHE? E=CAI =@ ?=?K=JA JDA HAIKJEC @A?HA=IA E +
>EAJHE? EBH=JE 4AIKJI IDM = GK=IEEA=H @A?HA=IA +
>EAJHE? E=CA ' A HA?AJ @ALAFAJ EI JDA IECEB +
E?=J ALA B EJAHAIJ E IJ=@=H@I BH A=IKHAAJ B >E +
AJHE? GK=EJO .H AN=FA 15 D=I HA?AJO AIJ=>EIDA@ = +
>EAJHE? I=FA GK=EJO @H=BJ IJ=@=H@ ' )??H@EC J ' +
>EAJHE? I=FA GK=EJO =O >A ?IE@AHA@ BH JDA FEJ B +
LEAM B ?D=H=?JAH EDAHAJ BA=JKHAI @AEJO =??KH=?O B BA= +
JKHAI H KJEEJO FHA@E?JA@ >EAJHE?I FAHBH=?A ) CA +
AH= ?IAIKI D=I @ALAFA@ JD=J JDA IJ EFHJ=J A=IKHA +
B = GK=EJO AJHE? EI EJI KJEEJO ` E=CAI AL=K=JA@ =I DECDAH +
GK=EJO KIJ >A JDIA JD=J HAIKJ E >AJJAH E@AJE?=JE B E +
@ELE@K=I =I A=IKHA@ >O = E?HA=IA@ IAF=H=JE B CAKEA +
=@ EFIJH =J?D I?HA @EIJHE>KJEI 6DA =JKHA B >E +
AJHE? I=FA @AEJO D=I IAA EJJA ELAIJEC=JE =JDKCD +
BH IFA?E? >EAJHE? @=EJEAI =CHEJDI J A=IKHA >E +
AJHE? GK=EJO D=LA >AA FHFIA@ .H AN=FA JDA .13 +
=CHEJD   EI = ME@AO KIA@ A=IKHA BH CAHFHEJ E=CA +
A ?KHHAJ @EB?KJO EI JD=J JDAHA EI  ?IAIKI =I J MD=J +
= A=IKHA B >EAJHE? I=FA @AEJO IDK@ CELA 1 JDEI +
>=IA@  = EBH=JE JDAHAJE? BH=AMH 9A >ACE MEJD +
EI HA KIABK J E@AJEBO JDA E@ELE@K= JD= = M GK=EJO +
E=CA 6DEI IKCCAIJI JD=J JDA GK=JEJO B E@AJE=>A EBH +
=JE @A?HA=IAI MEJD = HA@K?JE E GK=EJO /ELA = M=O J +
A=IKHA JDA @A?HA=IA E EBH=JE ?=KIA@ >O = CELA E +
=CA @ACH=@=JE A ?= A=IKHA JDA =II?E=JA@ @A?HA=IA E +
A=IKHEC >EAJHE? EBH=JE ?JAJ EI HA=JA@ J =O +
E@AJE=>EEJO A =O >A EJAHAIJA@ E DM K?D E@AJE +
=I LE@A IKHLAE=?A 1 JDA ?JANJ B >EAJHE? BKIE  +
A MK@ EA J >A =>A J GK=JEBO JDA >EAJHE? EBH= +
JE E A=?D IOIJA E@ELE@K=O =@ JDA FJAJE= C=E BH +
BKIEC JDA IOIJAI )@@EJE=O IK?D = A=IKHA EI HAAL=J +
J >EAJHE? ?HOFJIOIJAI =@ FHEL=?O A=IKHAI 5ALAH= +
=KJDHI D=LA FHAIAJA@ =FFH=?DAI HAAL=J J JDEI GKAIJE +
=@@HAII JDEI GKAIJE >=IA@  @AEJEI BH EBH=JE +
JDAHO   9A @AA JDA JAH ]>EAJHE? EBH=JE^ =I +
>EAJHE? EBH=JE *1 JDA @A?HA=IA E K?AHJ=EJO =>KJ +
JDA E@AJEJO B = FAHI @KA J = IAJ B >EAJHE? A=IKHA +
1 H@AH J EJAHFHAJ JDEI @AEJE MA HABAH J JM EIJ=JI +
MDA F=AJ =@  =BJAH HA?AELEC = IAJ B A=IKHAAJI +
t1 MA D=LA HA EBH=JE =@ AII K?AHJ=EJO =>KJ JDA +
FAHII E@AJEJO +
*=IA@  JDAIA A=IKHAI MA JDA @AA JDA EBH=JE II +
@KA J = @ACH=@=JE E E=CA GK=EJO =I JDA HA=JELA ?D=CA +
32ecbbd76fdce249f9109594eee2d52a1cafdfc7Object Specific Deep Learning Feature and Its Application to Face Detection +
University of Nottingham, Ningbo, China
University of Nottingham, Ningbo, China
Shenzhen University, Shenzhen, China
University of Nottingham, Ningbo, China
('3468964', 'Xianxu Hou', 'xianxu hou')
('39508183', 'Ke Sun', 'ke sun')
('1687690', 'LinLin Shen', 'linlin shen')
('1698461', 'Guoping Qiu', 'guoping qiu')
xianxu.hou@nottingham.edu.cn +
ke.sun@nottingham.edu.cn +
llshen@szu.edu.cn +
guoping.qiu@nottingham.edu.cn +
32c20afb5c91ed7cdbafb76408c3a62b38dd9160Viewing Real-World Faces in 3D +
The Open University of Israel, Israel
('1756099', 'Tal Hassner', 'tal hassner')hassner@openu.ac.il +
32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6bLighting Aware Preprocessing for Face +
Recognition across Varying Illumination +
1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing 100190, China
Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Digital Media, Peking University, Beijing 100871, China
('34393045', 'Hu Han', 'hu han')
('1685914', 'Shiguang Shan', 'shiguang shan')
('2343895', 'Laiyun Qing', 'laiyun qing')
('1710220', 'Xilin Chen', 'xilin chen')
('1698902', 'Wen Gao', 'wen gao')
{hhan,sgshan,lyqing,xlchen,wgao}@jdl.ac.cn +
329394480fc5e9e96de4250cc1a2b060c3677c94Improved Dense Trajectory with Cross Streams +
Graduate School of +
Information +
Science and Technology +
University of Tokyo
tokyo.ac.jp +
Graduate School of +
Information +
Science and Technology +
University of Tokyo
tokyo.ac.jp +
Graduate School of +
Information +
Science and Technology +
University of Tokyo
tokyo.ac.jp +
('8197937', 'Katsunori Ohnishi', 'katsunori ohnishi')
('2859204', 'Masatoshi Hidaka', 'masatoshi hidaka')
('1790553', 'Tatsuya Harada', 'tatsuya harada')
ohnishi@mi.t.u- +
hidaka@mi.t.u- +
harada@mi.t.u- +
32728e1eb1da13686b69cc0bd7cce55a5c963cddAutomatic Facial Emotion Recognition Method Based on Eye +
Region Changes +
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran
Received: 19/Apr/2015 Revised: 19/Mar/2016 Accepted: 19/Apr/2016 +
('35191740', 'Nasrollah Moghadam Charkari', 'nasrollah moghadam charkari')
('2239524', 'Muharram Mansoorizadeh', 'muharram mansoorizadeh')
m.navran@modares.ac.ir +
charkari@modares.ac.ir +
mansoorm@basu.ac.ir +
32c9ebd2685f522821eddfc19c7c91fd6b3caf22Finding Correspondence from Multiple Images +
via Sparse and Low-Rank Decomposition +
School of Computer Engineering, Nanyang Technological University, Singapore
2 Advanced Digital Sciences Center, Singapore +
('1920683', 'Zinan Zeng', 'zinan zeng')
('1926757', 'Tsung-Han Chan', 'tsung-han chan')
('2370507', 'Kui Jia', 'kui jia')
('1714390', 'Dong Xu', 'dong xu')
{znzeng,dongxu}@ntu.edu.sg, {Th.chan,Chris.jia}@adsc.com.sg +
3270b2672077cc345f188500902eaf7809799466Multibiometric Systems: Fusion Strategies and +
Template Security +
By +
A Dissertation +
Submitted to +
Michigan State University
in partial fulfillment of the requirements +
for the degree of +
Doctor of Philosophy +
Department of Computer Science and Engineering +
2008 +
('34633765', 'Karthik Nandakumar', 'karthik nandakumar')
321c8ba38db118d8b02c0ba209be709e6792a2c7Learn to Combine Multiple Hypotheses for Accurate Face Alignment +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, China
('1721677', 'Junjie Yan', 'junjie yan')
('1718623', 'Zhen Lei', 'zhen lei')
('1716143', 'Dong Yi', 'dong yi')
('34679741', 'Stan Z. Li', 'stan z. li')
{jjyan,zlei,dyi,szli}@nlpr.ia.ac.cn +
324b9369a1457213ec7a5a12fe77c0ee9aef1ad4Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network +
NVIDIA +
('2931118', 'Jinwei Gu', 'jinwei gu'){jinweig,xiaodongy,shalinig,jkautz}@nvidia.com +
329d58e8fb30f1bf09acb2f556c9c2f3e768b15cLeveraging Intra and Inter-Dataset Variations for +
Robust Face Alignment +
Department of Computer Science and Technology +
Tsinghua University
Department of Information Engineering +
The Chinese University of Hong Kong
('38766009', 'Wenyan Wu', 'wenyan wu')
('1692609', 'Shuo Yang', 'shuo yang')
wwy15@mails.tsinghua.edu.cn +
ys014@ie.cuhk.edu.hk +
32df63d395b5462a8a4a3c3574ae7916b0cd4d1d978-1-4577-0539-7/11/$26.00 ©2011 IEEE +
1489 +
ICASSP 2011 +
35308a3fd49d4f33bdbd35fefee39e39fe6b30b7('1799216', 'Jeong-Jik Seo', 'jeong-jik seo')
('1780155', 'Jisoo Son', 'jisoo son')
('7627712', 'Wesley De Neve', 'wesley de neve')
('1692847', 'Yong Man Ro', 'yong man ro')
353b6c1f431feac6edde12b2dde7e6e702455abdMulti-scale Patch based Collaborative +
Representation for Face Recognition with +
Margin Distribution Optimization +
Biometric Research Center
The Hong Kong Polytechnic University
School of Computer Science and Technology, Tianjin University
('2873638', 'Pengfei Zhu', 'pengfei zhu')
('36685537', 'Lei Zhang', 'lei zhang')
('1688792', 'Qinghua Hu', 'qinghua hu')
{cspzhu,cslzhang}@comp.polyu.edu.hk +
352d61eb66b053ae5689bd194840fd5d33f0e9c0Analysis Dictionary Learning based +
Classification: Structure for Robustness +
('49501811', 'Wen Tang', 'wen tang')
('1733181', 'Ashkan Panahi', 'ashkan panahi')
('1769928', 'Hamid Krim', 'hamid krim')
('2622498', 'Liyi Dai', 'liyi dai')
350da18d8f7455b0e2920bc4ac228764f8fac292From: AAAI Technical Report SS-03-08. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved. +
Automatic Detecting Neutral Face for Face Authentication and +
Facial Expression Analysis +
Exploratory Computer Vision Group +
IBM Thomas J. Watson Research Center
PO Box 704, Yorktown Heights, NY 10598 +
('40383812', 'Ying-li Tian', 'ying-li tian')
('1773140', 'Ruud M. Bolle', 'ruud m. bolle')
{yltian, bolle}@us.ibm.com +
3538d2b5f7ab393387ce138611ffa325b6400774A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION +
ALGORITHMS +
A. U. Batur +
B. E. Flinchbaugh +
M. H. Hayes IIl +
Center for Signal and Image Proc. +
Georgia Inst. Of Technology +
Atlanta, GA +
Imaging and Audio Lab. +
Texas Instruments +
Dallas, TX +
Center for Signal and Image Proc. +
Georgia Inst. Of Technology +
Atlanta, CA +
3504907a2e3c81d78e9dfe71c93ac145b1318f9cNoname manuscript No. +
(will be inserted by the editor) +
Unconstrained Still/Video-Based Face Verification with Deep +
Convolutional Neural Networks +
Received: date / Accepted: date +
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('2682056', 'Ching-Hui Chen', 'ching-hui chen')
('9215658', 'Rama Chellappa', 'rama chellappa')
('26988560', 'Rajeev Ranjan', 'rajeev ranjan')
35b1c1f2851e9ac4381ef41b4d980f398f1aad68Geometry Guided Convolutional Neural Networks for +
Self-Supervised Video Representation Learning +
('2551285', 'Chuang Gan', 'chuang gan')
('40206014', 'Boqing Gong', 'boqing gong')
('2473509', 'Kun Liu', 'kun liu')
('49466491', 'Hao Su', 'hao su')
('1744254', 'Leonidas J. Guibas', 'leonidas j. guibas')
351c02d4775ae95e04ab1e5dd0c758d2d80c3dddActionSnapping: Motion-based Video +
Synchronization +
Disney Research +
('2893744', 'Alexander Sorkine-Hornung', 'alexander sorkine-hornung')
35f03f5cbcc21a9c36c84e858eeb15c5d6722309Placing Broadcast News Videos in their Social Media +
Context using Hashtags +
Columbia University
('2136860', 'Joseph G. Ellis', 'joseph g. ellis')
('2602265', 'Svebor Karaman', 'svebor karaman')
('1786871', 'Hongzhi Li', 'hongzhi li')
('36009509', 'Hong Bin Shim', 'hong bin shim')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{jge2105, svebor.karaman, hongzhi.li, h.shim, sc250}@columbia.edu +
35e4b6c20756cd6388a3c0012b58acee14ffa604Gender Classification in Large Databases +
E. Ram´on-Balmaseda, J. Lorenzo-Navarro, and M. Castrill´on-Santana (cid:63) +
Universidad de Las Palmas de Gran Canaria +
SIANI +
Spain +
enrique.de101@.alu.ulpgc.es{jlorenzo,mcastrillon}@siani.es +
356b431d4f7a2a0a38cf971c84568207dcdbf189Recognize Complex Events from Static Images by Fusing Deep Channels +
The Chinese University of Hong Kong
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology
CAS, China +
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')xy012@ie.cuhk.edu.hk +
zk013@ie.cuhk.edu.hk +
dhlin@ie.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
35f921def890210dda4b72247849ad7ba7d35250Exemplar-based Graph Matching +
for Robust Facial Landmark Localization +
Carnegie Mellon University
Pittsburgh, PA 15213 +
http://www.f-zhou.com +
Adobe Research +
San Jose, CA 95110 +
('1757386', 'Feng Zhou', 'feng zhou')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
{jbrandt, zlin}@adobe.com +
357963a46dfc150670061dbc23da6ba7d6da786e
35ec9b8811f2d755c7ad377bdc29741b55b09356Efficient, Robust and Accurate Fitting of a 3D Morphable Model +
University of Basel
Bernoullistrasse 16, CH - 4056 Basel, Switzerland +
('3293655', 'Sami Romdhani', 'sami romdhani')
('1687079', 'Thomas Vetter', 'thomas vetter')
fsami.romdhani, thomas.vetterg@unibas.ch +
35f1bcff4552632419742bbb6e1927ef5e998eb4
35c973dba6e1225196566200cfafa150dd231fa8
35f084ddee49072fdb6e0e2e6344ce50c02457efA Bilinear Illumination Model +
for Robust Face Recognition +
The Harvard community has made this +
article openly available. Please share how +
this access benefits you. Your story matters +
Citation +
Machiraju. 2005. A bilinear illumination model for robust face +
recognition. Proceedings of the Tenth IEEE International Conference +
on Computer Vision: October 17-21, 2005, Beijing, China. 1177-1184. +
Los Almamitos, C.A.: IEEE Computer Society. +
Published Version +
doi:10.1109/ICCV.2005.5 +
Citable link +
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4238979 +
Terms of Use +

repository, and is made available under the terms and conditions +
applicable to Other Posted Material, as set forth at http:// +
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- +
use#LAA +
('1780935', 'Baback Moghaddam', 'baback moghaddam')
('1701371', 'Hanspeter Pfister', 'hanspeter pfister')
3505c9b0a9631539e34663310aefe9b05ac02727A Joint Discriminative Generative Model for Deformable Model +
Construction and Classification +
Imperial College London, UK
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The
Netherlands +
('2000297', 'Ioannis Marras', 'ioannis marras')
('1793625', 'Symeon Nikitidis', 'symeon nikitidis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
2 Yoti Ltd, London, UK, e-mail: symeon.nikitidis@yoti.com +
3506518d616343d3083f4fe257a5ee36b376b9e1Unsupervised Domain Adaptation for +
Personalized Facial Emotion Recognition +
University of Trento
Trento, Italy +
FBK +
University of Perugia
Trento, Italy +
Perugia, Italy +
University of Trento
Trento, Italy +
('2933565', 'Gloria Zen', 'gloria zen')
('1716310', 'Enver Sangineto', 'enver sangineto')
('40811261', 'Elisa Ricci', 'elisa ricci')
('1703601', 'Nicu Sebe', 'nicu sebe')
353a89c277cca3e3e4e8c6a199ae3442cdad59b5
35e0256b33212ddad2db548484c595334f15b4daAttentive Fashion Grammar Network for +
Fashion Landmark Detection and Clothing Category Classification +
Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China
University of California, Los Angeles, USA
('2693875', 'Wenguan Wang', 'wenguan wang')
('2762640', 'Yuanlu Xu', 'yuanlu xu')
('34926055', 'Jianbing Shen', 'jianbing shen')
('3133970', 'Song-Chun Zhu', 'song-chun zhu')
35e6f6e5f4f780508e5f58e87f9efe2b07d8a864This paper is a preprint (IEEE accepted status). IEEE copyright notice. 2018 IEEE. +
Personal use of this material is permitted. Permission from IEEE must be obtained for all +
other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribu- +
tion to servers or lists, or reuse of any copyrighted. +
A. Tejero-de-Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna and E. Rahtu, ”Sum- +
marization of User-Generated Sports Video by Using Deep Action Recognition Features,” in +
doi: 10.1109/TMM.2018.2794265 +
keywords: Cameras; Feature extraction; Games; Hidden Markov models; Semantics; +
Three-dimensional displays; 3D convolutional neural networks; Sports video summarization; +
action recognition; deep learning; long short-term memory; user-generated video, +
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8259321&isnumber=4456689 +
35e87e06cf19908855a16ede8c79a0d3d7687b5cStrategies for Multi-View Face Recognition for +
Identification of Human Faces: A Review +
Department of Computer Science +
Mahatma Gandhi Shikshan Mandal’s, +
Arts, Science and Commerce College, Chopda
Dist: Jalgaon (M.S) +
Dr. R.R.Manza +
Department of Computer Science and IT +
Dr. Babasaheb Ambedkar Marathwada University
Aurangabad. +
('21182750', 'Pritesh G. Shah', 'pritesh g. shah')pritshah143@gmail.com +
manzaramesh@gmail.com +
352110778d2cc2e7110f0bf773398812fd905eb1TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014 +
Matrix Completion for Weakly-supervised +
Multi-label Image Classification +
('31671904', 'Ricardo Cabral', 'ricardo cabral')
('1683568', 'Fernando De la Torre', 'fernando de la torre')
('2884203', 'Alexandre Bernardino', 'alexandre bernardino')
6964af90cf8ac336a2a55800d9c510eccc7ba8e1Temporal Relational Reasoning in Videos +
MIT CSAIL +
('1804424', 'Bolei Zhou', 'bolei zhou')
('50112310', 'Alex Andonian', 'alex andonian')
('1690178', 'Antonio Torralba', 'antonio torralba')
{bzhou,aandonia,oliva,torralba}@csail.mit.edu +
697b0b9630213ca08a1ae1d459fabc13325bdcbb
69ff40fd5ce7c3e6db95a2b63d763edd8db3a102HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL +
FEATURES +
Merve KILINC1 and Yusuf Sinan AKGUL2 +
1TUBITAK BILGEM UEKAE, Anibal Street, 41470, Gebze, Kocaeli, Turkey +
GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology
Kocaeli, Turkey +
Keywords: +
Age estimation:age classification:geometric features:LBP:Gabor:LGBP:cross ratio:FGNET:MORPH +
mkilinc@uekae.tubitak.gov.tr1, mkilinc@gyte.edu.tr2, akgul@bilmuh.gyte.edu.tr2 +
69adbfa7b0b886caac15ebe53b89adce390598a3Face hallucination using cascaded +
super-resolution and identity priors +
University of Ljubljana, Faculty of Electrical Engineering
University of Notre Dame
Fig. 1. Sample face hallucination results generated with the proposed method. +
('3387470', 'Klemen Grm', 'klemen grm')
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
69d29012d17cdf0a2e59546ccbbe46fa49afcd68Subspace clustering of dimensionality-reduced data +
ETH Zurich, Switzerland +
('1730683', 'Reinhard Heckel', 'reinhard heckel')
('2208878', 'Michael Tschannen', 'michael tschannen')
Email: {heckel,boelcskei}@nari.ee.ethz.ch, michaelt@student.ethz.ch +
69a68f9cf874c69e2232f47808016c2736b90c35Learning Deep Representation for Imbalanced Classification +
The Chinese University of Hong Kong
2SenseTime Group Limited +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('2000034', 'Chen Huang', 'chen huang')
('9263285', 'Yining Li', 'yining li')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{chuang,ly015,ccloy,xtang}@ie.cuhk.edu.hk +
69de532d93ad8099f4d4902c4cad28db958adfea
69a55c30c085ad1b72dd2789b3f699b2f4d3169fInternational Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016 +
Automatic Happiness Strength Analysis of a +
Group of People using Facial Expressions +
Sagiri Prasanthi#1, Maddali M.V.M. Kumar*2, +
#1PG Student, #2Assistant Professor +
St. Ann s College of Engineering and Technology, Andhra Pradesh, India
is a collective concern +
69b18d62330711bfd7f01a45f97aaec71e9ea6a5RESEARCH ARTICLE +
M-Track: A New Software for Automated +
Detection of Grooming Trajectories in Mice +
State University of New York Polytechnic Institute, Utica, New York
United States of America, State University of New York Albany, Albany, New York
United States of America, State University of New York Albany, Albany
New York, United States of America +
☯ These authors contributed equally to this work. +
a11111 +
('35820210', 'Sheldon L. Reeves', 'sheldon l. reeves')
('8626210', 'Kelsey E. Fleming', 'kelsey e. fleming')
('1708615', 'Lin Zhang', 'lin zhang')
('3976998', 'Annalisa Scimemi', 'annalisa scimemi')
* scimemia@gmail.com, ascimemi@albany.edu +
69526cdf6abbfc4bcd39616acde544568326d856636 +
[17] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recogni- +
tion,” Pattern Recognit., vol. 33, no. 11, pp. 1771–1782, Nov. 2000. +
[18] A. Nefian, “A hidden Markov model-based approach for face detection +
and recognition,” Ph.D. dissertation, Dept. Elect. Comput. Eng. Elect. +
Eng., Georgia Inst. Technol., Atlanta, 1999. +
[19] P. J. Phillips et al., “Overview of the face recognition grand challenge,” +
presented at the IEEE CVPR, San Diego, CA, Jun. 2005. +
[20] H. T. Tanaka, M. Ikeda, and H. Chiaki, “Curvature-based face surface +
recognition using spherical correlation-principal direction for curved +
object recognition,” in Proc. Int. Conf. Automatic Face and Gesture +
Recognition, 1998, pp. 372–377. +
[21] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit. Sci., +
pp. 71–86, 1991. +
[22] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998. +
[23] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips, “Face recogni- +
tion: A literature survey,” ACM Comput. Surveys, vol. 35, no. 44, pp. +
399–458, 2003. +
[24] W. Zhao, R. Chellappa, and P. J. Phillips, “Subspace linear discrimi- +
nant analysis for face recognition,” UMD TR4009, 1999. +
Face Verification Using Template Matching +
('2627097', 'Anil Kumar Sao', 'anil kumar sao')
690d669115ad6fabd53e0562de95e35f1078dfbbProgressive versus Random Projections for Compressive Capture of Images, +
Lightfields and Higher Dimensional Visual Signals +
MIT Media Lab +
75 Amherst St, Cambridge, MA +
MERL +
201 Broadway, Cambridge MA +
MIT Media Lab +
75 Amherst St, Cambridge, MA +
('1912905', 'Rohit Pandharkar', 'rohit pandharkar')
('1785066', 'Ashok Veeraraghavan', 'ashok veeraraghavan')
('1717566', 'Ramesh Raskar', 'ramesh raskar')
6993bca2b3471f26f2c8a47adfe444bfc7852484The Do’s and Don’ts for CNN-based Face Verification +
Carlos Castillo +
University of Maryland, College Park
UMIACS +
('2068427', 'Ankan Bansal', 'ankan bansal')
('48467498', 'Rajeev Ranjan', 'rajeev ranjan')
('9215658', 'Rama Chellappa', 'rama chellappa')
{ankan,carlos,rranjan1,rama}@umiacs.umd.edu +
69eb6c91788e7c359ddd3500d01fb73433ce2e65CAMGRAPH: Distributed Graph Processing for +
Camera Networks +
College of Computing
Georgia Institute of Technology
Atlanta, GA, USA +
('3427189', 'Steffen Maass', 'steffen maass')
('5540701', 'Kirak Hong', 'kirak hong')
('1751741', 'Umakishore Ramachandran', 'umakishore ramachandran')
steffen.maass@gatech.edu,khong9@cc.gatech.edu,rama@cc.gatech.edu +
691964c43bfd282f6f4d00b8b0310c554b613e3bTemporal Hallucinating for Action Recognition with Few Still Images +
2† +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
The Chinese University of Hong Kong 3 SenseTime Group Limited
('46696518', 'Lei Zhou', 'lei zhou')
('33427555', 'Yu Qiao', 'yu qiao')
69063f7e0a60ad6ce16a877bc8f11b59e5f7348eClass-Specific Image Deblurring +
2, Fatih Porikli1 +
The Australian National University Canberra ACT 2601, Australia
2NICTA, Locked Bag 8001, Canberra ACT 2601, Australia +
('33672969', 'Saeed Anwar', 'saeed anwar')
('1774721', 'Cong Phuoc Huynh', 'cong phuoc huynh')
69a9da55bd20ce4b83e1680fbc6be2c976067631
69c2ac04693d53251500557316c854a625af84eeJID: PATREC +
ARTICLE IN PRESS +
Contents lists available at ScienceDirect +
Pattern Recognition Letters +
journal homepage: www.elsevier.com/locate/patrec +
[m5G; April 22, 2016;10:30 ] +
50 years of biometric research: Accomplishments, challenges, +
and opportunities +
a , 1 , +
a +
Michigan State University, East Lansing, MI 48824, USA
b IBM Research Singapore, 9 Changi Business Park Central 1, 486048 Singapore +
a r t i c l e +
i n f o +
a b s t r a c t +
Article history: +
Received 4 February 2015 +
Available online xxx +
Keywords: +
Biometrics +
Fingerprints +
Face +
Iris +
Security +
Privacy +
Forensics +
Biometric recognition refers to the automated recognition of individuals based on their biological and +
behavioral characteristics such as fingerprint, face, iris, and voice. The first scientific paper on automated +
fingerprint matching was published by Mitchell Trauring in the journal Nature in 1963. The first objec- +
tive of this paper is to document the significant progress that has been achieved in the field of biometric +
recognition in the past 50 years since Trauring’s landmark paper. This progress has enabled current state- +
of-the-art biometric systems to accurately recognize individuals based on biometric trait(s) acquired un- +
der controlled environmental conditions from cooperative users. Despite this progress, a number of chal- +
lenging issues continue to inhibit the full potential of biometrics to automatically recognize humans. The +
second objective of this paper is to enlist such challenges, analyze the solutions proposed to overcome +
them, and highlight the research opportunities in this field. One of the foremost challenges is the de- +
sign of robust algorithms for representing and matching biometric samples obtained from uncooperative +
subjects under unconstrained environmental conditions (e.g., recognizing faces in a crowd). In addition, +
fundamental questions such as the distinctiveness and persistence of biometric traits need greater atten- +
tion. Problems related to the security of biometric data and robustness of the biometric system against +
spoofing and obfuscation attacks, also remain unsolved. Finally, larger system-level issues like usability, +
user privacy concerns, integration with the end application, and return on investment have not been ad- +
equately addressed. Unlocking the full potential of biometrics through inter-disciplinary research in the +
above areas will not only lead to widespread adoption of this promising technology, but will also result +
in wider user acceptance and societal impact. +
© 2016 Published by Elsevier B.V. +
1. Introduction +
“It is the purpose of this article to present, together with some evi- +
dence of its feasibility, a method by which decentralized automatic +
identity verification, such as might be desired for credit, banking +
or security purposes, can be accomplished through automatic com- +
parison of the minutiae in finger-ridge patterns.” +
– Mitchell Trauring, Nature, March 1963 +
In modern society, the ability to reliably identify individu- +
als in real-time is a fundamental requirement in many applica- +
tions including forensics, international border crossing, financial +
transactions, and computer security. Traditionally, an exclusive pos- +
This paper has been recommended for acceptance by S. Sarkar. +
Corresponding author. Tel.: +1 517 355 9282; fax: +1 517 432 1061. +
1 IAPR Fellow. +
http://dx.doi.org/10.1016/j.patrec.2015.12.013 +
0167-8655/© 2016 Published by Elsevier B.V. +
session of a token, such as a passport or an ID card, has been ex- +
tensively used for identifying individuals. In the context of com- +
puter systems and applications, knowledge-based schemes based +
on passwords and PINs are commonly used for person authentica- +
2 Since both token-based and knowledge-based mechanisms +
tion. +
have their own strengths and limitations, the use of two-factor +
authentication schemes that combine both these authentication +
mechanisms are also popular. +
Biometric recognition, or simply biometrics, refers to the auto- +
mated recognition of individuals based on their biological and be- +
havioral characteristics [39] . Examples of biometric traits that have +
been successfully used in practical applications include face, fin- +
gerprint, palmprint, iris, palm/finger vein, and voice. The use of +
DNA, in the context of biometrics (as opposed to just forensics), is +
also beginning to gain traction. Since biometric traits are generally +
inherent to an individual, there is a strong and reasonably +
2 Authentication involves verifying the claimed identity of a person. +
Please cite this article as: A.K. Jain et al., 50 years of biometric research: Accomplishments, challenges, and opportunities, Pattern Recog- +
nition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2015.12.013 +
('6680444', 'Anil K. Jain', 'anil k. jain')
('34633765', 'Karthik Nandakumar', 'karthik nandakumar')
('1698707', 'Arun Ross', 'arun ross')
E-mail addresses: jain@cse.msu.edu (A.K. Jain), nkarthik@sg.ibm.com +
(K. Nandakumar), rossarun@cse.msu.edu (A. Ross). +
6974449ce544dc208b8cc88b606b03d95c8fd368
69fb98e11df56b5d7ec7d45442af274889e4be52Harnessing the Deep Net Object Models for +
enhancing Human Action Recognition +
O.V. Ramana Murthy1 and Roland Goecke1,2 +
Vision and Sensing, HCC Lab, ESTeM, University of Canberra
IHCC, RSCS, CECS, Australian National University
Email: O.V.RamanaMurthy@ieee.org, roland.goecke@ieee.org +
3cb2841302af1fb9656f144abc79d4f3d0b27380See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319928941 +
When 3D-Aided 2D Face Recognition Meets Deep +
Learning: An extended UR2D for Pose-Invariant +
Face Recognition +
Article · September 2017 +
CITATIONS +
4 authors: +
READS +
33 +
Xiang Xu +
University of Houston
Pengfei Dou +
University of Houston
8 PUBLICATIONS 10 CITATIONS +
9 PUBLICATIONS 29 CITATIONS +
SEE PROFILE +
SEE PROFILE +
Ha Le +
University of Houston
7 PUBLICATIONS 2 CITATIONS +
Ioannis A Kakadiaris +
University of Houston
468 PUBLICATIONS 5,233 CITATIONS +
SEE PROFILE +
SEE PROFILE +
Some of the authors of this publication are also working on these related projects: +
3D-Aided 2D Face Recognition View project +
iRay: mobile medical AR View project +
All content following this page was uploaded by Xiang Xu on 27 September 2017. +
The user has requested enhancement of the downloaded file. +
3c78b642289d6a15b0fb8a7010a1fb829beceee2Analysis of Facial Dynamics +
Using a Tensor Framework +
University of Bristol
Department of Computer Science +
Bristol, United Kingdom +
University of Bristol
Department of Experimental Psychology +
Bristol, United Kingdom +
('2903159', 'Lisa Gralewski', 'lisa gralewski')
('23725787', 'Edward Morrison', 'edward morrison')
('2022210', 'Ian Penton-Voak', 'ian penton-voak')
gralewsk@cs.bris.ac.uk +
3cc3cf57326eceb5f20a02aefae17108e8c8ab57BENCHMARK FOR EVALUATING BIOLOGICAL IMAGE ANALYSIS TOOLS +
Center for Bio-Image Informatics, Electrical and Computer Engineering Department, +
University of California, Santa Barbara
http://www.bioimage.ucsb.edu +
Biological images are critical components for a detailed understanding of the structure and functioning of cells and proteins. +
Image processing and analysis tools increasingly play a significant role in better harvesting this vast amount of data, most of +
which is currently analyzed manually and qualitatively. A number of image analysis tools have been proposed to automatically +
extract the image information. As the studies relying on image analysis tools have become widespread, the validation of +
these methods, in particular, segmentation methods, has become more critical. There have been very few efforts at creating +
benchmark datasets in the context of cell and tissue imaging, while, there have been successful benchmarks in other fields, such +
as the Berkeley segmentation dataset [1], the handwritten digit recognition dataset MNIST [2] and face recognition dataset [3, 4]. +
In the field of biomedical image processing, most of standardized benchmark data sets concentrates on macrobiological images +
such as mammograms and magnet resonance imaging (MRI) images [5], however, there is still a lack of a standardized dataset +
for microbiological structures (e.g. cells and tissues) and it is well known in biomedical imaging [5]. +
We propose a benchmark for biological images to: 1) provide image collections with well defined ground truth; 2) provide +
image analysis tools and evaluation methods to compare and validate analysis tools. We include a representative dataset of +
microbiological structures whose scales range from a subcellular level (nm) to a tissue level (µm), inheriting intrinsic challenges +
in the domain of biomedical image analysis (Fig. 1). The dataset is acquired through two of the main microscopic imaging +
techniques: transmitted light microscopy and confocal laser scanning microscopy. The analysis tools1in the benchmark are +
designed to obtain different quantitative measures from the dataset including microtubule tracing, cell segmentation, and retinal +
layer segmentation. +
Fig. 1. Example dataset provided in the benchmark. +
This research is supported by NSF ITR-0331697. +
1All analysis tools mentioned in this work can be found at http://www.bioimage.ucsb.edu/publications/. +
ScaleConfocal microscopyLight microscopymicrotubulehorizontal cellSubcellular(< 1 µm)photoreceptorsbreast cancer cellsCOS1 cellsCellularTissue(< 10 µm)(< 30 µm)(< 350 µm)(≈10-50 µm in width)retinal layers
('8451780', 'Elisa Drelie Gelasca', 'elisa drelie gelasca')
('3045933', 'Jiyun Byun', 'jiyun byun')
('3064236', 'Boguslaw Obara', 'boguslaw obara')
3cb488a3b71f221a8616716a1fc2b951dd0de549Facial Age Estimation by +
Adaptive Label Distribution Learning +
School of Computer Science and Engineering +
Key Lab of Computer Network and Information Integration, Ministry of Education +
Southeast University, Nanjing 211189, China
('1735299', 'Xin Geng', 'xin geng')
('1794816', 'Qin Wang', 'qin wang')
('40228279', 'Yu Xia', 'yu xia')
Email: {xgeng, qinwang, xiayu}@seu.edu.cn +
3cfbe1f100619a932ba7e2f068cd4c41505c9f58A Realistic Simulation Tool for Testing Face Recognition +
Systems under Real-World Conditions∗ +
M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae +
Department of Electrical Engineering, Universidad de Chile +
Advanced Mining Technology Center, Universidad de Chile +
3c563542db664321aa77a9567c1601f425500f94TV-GAN: Generative Adversarial Network Based Thermal to Visible Face +
Recognition +
The University of Queensland, School of ITEE, QLD 4072, Australia
('50615828', 'Teng Zhang', 'teng zhang')
('2331880', 'Arnold Wiliem', 'arnold wiliem')
('1973322', 'Siqi Yang', 'siqi yang')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
[patrick.zhang, a.williem, siqi.yang]@uq.edu.au, lovell@itee.uq.edu.au +
3c03d95084ccbe7bf44b6d54151625c68f6e74d0
3cd7b15f5647e650db66fbe2ce1852e00c05b2e4
3c6cac7ecf546556d7c6050f7b693a99cc8a57b3Robust Facial Landmark Detection in the Wild +
Submitted for the Degree of +
Doctor of Philosophy +
from the +
University of Surrey
Centre for Vision, Speech and Signal Processing +
Faculty of Engineering and Physical Sciences +
University of Surrey
Guildford, Surrey GU2 7XH, U.K. +
January 2016 +
('37705062', 'Zhenhua Feng', 'zhenhua feng')
('37705062', 'Zhenhua Feng', 'zhenhua feng')
3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0Defeating Image Obfuscation with Deep Learning +
The University of Texas at
Austin +
Cornell Tech +
Cornell Tech +
('34861228', 'Richard McPherson', 'richard mcpherson')
('2520493', 'Reza Shokri', 'reza shokri')
('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')
richard@cs.utexas.edu +
shokri@cornell.edu +
shmat@cs.cornell.edu +
3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3Submitted 2/11; Revised 10/11; Published ??/11 +
Distance Metric Learning with Eigenvalue Optimization +
College of Engineering, Mathematics and Physical Sciences
University of Exeter
Harrison Building, North Park Road +
Exeter, EX4 4QF, UK +
Department of Engineering Mathematics +
University of Bristol
Merchant Venturers Building, Woodland Road +
Bristol, BS8 1UB, UK +
Editor: +
('38954213', 'Yiming Ying', 'yiming ying')
('1695363', 'Peng Li', 'peng li')
y.ying@exeter.ac.uk +
lipeng@ieee.org +
3c97c32ff575989ef2869f86d89c63005fc11ba9Face Detection with the Faster R-CNN +
Erik Learned-Miller +
University of Massachusetts Amherst
University of Massachusetts Amherst
Amherst MA 01003 +
Amherst MA 01003 +
('40175280', 'Huaizu Jiang', 'huaizu jiang')hzjiang@cs.umass.edu +
elm@cs.umass.edu +
3ce2ecf3d6ace8d80303daf67345be6ec33b3a93
3c1aef7c2d32a219bdbc89a44d158bc2695e360aAdversarial Attack Type I: Generating False Positives +
Shanghai Jiao Tong University
Shanghai, P.R. China 200240 +
Shanghai Jiao Tong University
Shanghai, P.R. China 200240 +
Shanghai Jiao Tong University
Shanghai, P.R. China 200240 +
Shanghai Jiao Tong University
Shanghai, P.R. China 200240 +
('51428687', 'Sanli Tang', 'sanli tang')
('13858459', 'Mingjian Chen', 'mingjian chen')
('2182657', 'Xiaolin Huang', 'xiaolin huang')
('1688428', 'Jie Yang', 'jie yang')
tangsanli@sjtu.edu.cn +
w179261466@sjtu.edu.cn +
xiaolinhuang@sjtu.edu.cn +
jieyang@sjtu.edu.cn +
3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8Measuring Gaze Orientation for Human-Robot +
Interaction +
∗ CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France +
† Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France +
Introduction +
In the context of Human-Robot interaction estimating gaze orientation brings +
useful information about human focus of attention. This is a contextual infor- +
mation : when you point something you usually look at it. Estimating gaze +
orientation requires head pose estimation. There are several techniques to esti- +
mate head pose from images, they are mainly based on training [3, 4] or on local +
face features tracking [6]. The approach described here is based on local face +
features tracking in image space using online learning, it is a mixed approach +
since we track face features using some learning at feature level. It uses SURF +
features [2] to guide detection and tracking. Such key features can be matched +
between images, used for object detection or object tracking [10]. Several ap- +
proaches work on fixed size images like training techniques which mainly work +
on low resolution images because of computation costs whereas approaches based +
on local features tracking work on high resolution images. Tracking face features +
such as eyes, nose and mouth is a common problem in many applications such as +
detection of facial expression or video conferencing [8] but most of those appli- +
cations focus on front face images [9]. We developed an algorithm based on face +
features tracking using a parametric model. First we need face detection, then +
we detect face features in following order: eyes, mouth, nose. In order to achieve +
full profile detection we use sets of SURF to learn what eyes, mouth and nose +
look like once tracking is initialized. Once those sets of SURF are known they +
are used to detect and track face features. SURF have a descriptor which is often +
used to identify a key point and here we add some global geometry information +
by using the relative position between key points. Then we use a particle filter to +
track face features using those SURF based detectors, we compute the head pose +
angles from features position and pass the results through a median filter. This +
paper is organized as follows. Section 2 describes our modeling of visual features, +
section 3 presents our tracking implementation. Section 4 presents results we get +
with our implementation and future works in section 5. +
2 Visual features +
We use some basic properties of facial features to initialize our algorithm : eyes +
are dark and circular, mouth is an horizontal dark line with a specific color,... +
('5253126', 'R. Brochard', 'r. brochard')
('2667229', 'B. Burger', 'b. burger')
('2325221', 'A. Herbulot', 'a. herbulot')
('1797260', 'F. Lerasle', 'f. lerasle')
3c0bbfe664fb083644301c67c04a7f1331d9515fThe Role of Color and Contrast in Facial Age Estimation +
Paper ID: 7 +
No Institute Given
3c4f6d24b55b1fd3c5b85c70308d544faef3f69aA Hybrid Deep Learning Architecture for +
Privacy-Preserving Mobile Analytics +
cid:63)Sharif University of Technology, University College London, Queen Mary University of London
('8201306', 'Seyed Ali Ossia', 'seyed ali ossia')
('9920557', 'Ali Shahin Shamsabadi', 'ali shahin shamsabadi')
('2251846', 'Ali Taheri', 'ali taheri')
('1688652', 'Hamid R. Rabiee', 'hamid r. rabiee')
('1763096', 'Hamed Haddadi', 'hamed haddadi')
3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264fAbsolute Head Pose Estimation From Overhead Wide-Angle Cameras +
IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532 USA +
('40383812', 'Ying-li Tian', 'ying-li tian')
('1690709', 'Arun Hampapur', 'arun hampapur')
{ yltian,lisabr,jconnell,sharat,arunh,aws,bolle }@us.ibm.com +
3cb64217ca2127445270000141cfa2959c84d9e7
3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bdInternational Journal of Computer Information Systems and Industrial Management Applications (IJCISIM) +
ISSN: 2150-7988 Vol.2 (2010), pp.262-278 +
http://www.mirlabs.org/ijcisim +
Simulating Pareidolia of Faces for Architectural Image Analysis +
Newcastle Robotics Laboratory +
School of Electrical Engineering and Computer Science +
The University of Newcastle, Callaghan 2308, Australia
School of Architecture and Built Environment +
The University of Newcastle
Callaghan 2308, Australia +
('1716539', 'Stephan K. Chalup', 'stephan k. chalup')
('40211094', 'Michael J. Ostwald', 'michael j. ostwald')
Stephan.Chalup@newcastle.edu.au, Kenny.Hong@uon.edu.au +
Michael.Ostwald@newcastle.edu.au +
3cd8ab6bb4b038454861a36d5396f4787a21cc68 Video‐Based Facial Expression Recognition Using Hough Forest +
National Tsing Hua University, Hsin-Chu, Taiwan
Asian University, Taichung, Taiwan
('2790846', 'Shih-Chung Hsu', 'shih-chung hsu')
('1793389', 'Chung-Lin Huang', 'chung-lin huang')
E-mail: d9761817@oz.nthu.edu.tw, clhuang@asia.edu.tw +
3cd5da596060819e2b156e8b3a28331ef633036b
3ca5d3b8f5f071148cb50f22955fd8c1c1992719EVALUATING RACE AND SEX DIVERSITY IN THE WORLD’S LARGEST +
COMPANIES USING DEEP NEURAL NETWORKS +
1 ​Youth Laboratories, Ltd, Diversity AI Group, Skolkovo Innovation Center, Nobel Street 5, +
143026, Moscow, Russia +
2 ​Insilico Medicine, Emerging Technology Centers, JHU, 1101 33rd Street, Baltimore, MD, +
21218, USA +
University of Oxford, Oxford, United Kingdom
Computer Engineering and Computer Science, Duthie Center for Engineering, University of
Louisville, Louisville, KY 40292, USA +
5 ​Computer Vision Lab, Department of Information Technology and Electrical Engineering, ETH +
Zürich, Switzerland +
Center for Healthy Aging, University of
Copenhagen, Denmark +
7 ​The Biogerontology Research Foundation, 2354 Chynoweth House, Trevissome Park, Truro, +
TR4 8UN, UK. +
Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia
('3888942', 'Konstantin Chekanov', 'konstantin chekanov')
('4017984', 'Polina Mamoshina', 'polina mamoshina')
('1976753', 'Roman V. Yampolskiy', 'roman v. yampolskiy')
('1732855', 'Radu Timofte', 'radu timofte')
('40336662', 'Alex Zhavoronkov', 'alex zhavoronkov')
Morten Scheibye-Knudsen: ​mscheibye@sund.ku.dk +
Alex Zhavoronkov: ​alex@biogerontology.org +
3c56acaa819f4e2263638b67cea1ec37a226691dBody Joint guided 3D Deep Convolutional +
Descriptors for Action Recognition +
('3201156', 'Congqi Cao', 'congqi cao')
('46867228', 'Yifan Zhang', 'yifan zhang')
('1713887', 'Chunjie Zhang', 'chunjie zhang')
('1694235', 'Hanqing Lu', 'hanqing lu')
3cc46bf79fb9225cf308815c7d41c8dd5625cc29AGE INTERVAL AND GENDER PREDICTION USING PARAFAC2 APPLIED TO SPEECH +
UTTERANCES +
Aristotle University of Thessaloniki
Thessaloniki 54124, GREECE +
Cyprus University of Technology
3040 Limassol, Cyprus +
('3352401', 'Evangelia Pantraki', 'evangelia pantraki')
('1736143', 'Constantine Kotropoulos', 'constantine kotropoulos')
('1830709', 'Andreas Lanitis', 'andreas lanitis')
{pantraki@|costas@aiia}.csd.auth.gr +
andreas.lanitis@cut.ac.cy +
3c8da376576938160cbed956ece838682fa50e9fChapter 4 +
Aiding Face Recognition with +
Social Context Association Rule +
based Re-Ranking +
Humans are very efficient at recognizing familiar face images even in challenging condi- +
tions. One reason for such capabilities is the ability to understand social context between +
individuals. Sometimes the identity of the person in a photo can be inferred based on the +
identity of other persons in the same photo, when some social context between them is +
known. This chapter presents an algorithm to utilize the co-occurrence of individuals as +
the social context to improve face recognition. Association rule mining is utilized to infer +
multi-level social context among subjects from a large repository of social transactions. +
The results are demonstrated on the G-album and on the SN-collection pertaining to 4675 +
identities prepared by the authors from a social networking website. The results show that +
association rules extracted from social context can be used to augment face recognition and +
improve the identification performance. +
4.1 +
Introduction +
Face recognition capabilities of humans have inspired several researchers to understand +
the science behind it and use it in developing automated algorithms. Recently, it is also +
argued that encoding social context among individuals can be leveraged for improved +
automatic face recognition [175]. As shown in Figure 4.1, often times a person’s identity +
can be inferred based on the identity of other persons in the same photo, when some social +
context between them is known. A subject’s face in consumer photos generally co-occur +
along with their socially relevant people. With the advent of social networking services, +
the social context between individuals is readily available. Face recognition performance +
105 +
56e4dead93a63490e6c8402a3c7adc493c230da5World Journal of Computer Application and Technology 1(2): 41-50, 2013 +
DOI: 10.13189/wjcat.2013.010204 +
http://www.hrpub.org +
Face Recognition Techniques: A Survey +
V.Vijayakumari +
Sri krishna College of Technology, Coimbatore, India
Copyright © 2013 Horizon Research Publishing All rights reserved. +
*Corresponding Author: ebinviji@rediffmail.com +
56e885b9094391f7d55023a71a09822b38b26447FREQUENCY DECODED LOCAL BINARY PATTERN +
Face Retrieval using Frequency Decoded Local +
Descriptor +
('34992579', 'Shiv Ram Dubey', 'shiv ram dubey')
56c700693b63e3da3b985777da6d9256e2e0dc21Global Refinement of Random Forest +
University of Science and Technology of China
Microsoft Research +
('3080683', 'Shaoqing Ren', 'shaoqing ren')
('2032273', 'Xudong Cao', 'xudong cao')
('1732264', 'Yichen Wei', 'yichen wei')
('40055995', 'Jian Sun', 'jian sun')
sqren@mail.ustc.edu.cn +
{xudongca,yichenw,jiansun}@microsoft.com +
56359d2b4508cc267d185c1d6d310a1c4c2cc8c2Shape Driven Kernel Adaptation in +
Convolutional Neural Network for Robust Facial Trait Recognition +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China
National University of Singapore, Singapore
('1688086', 'Shaoxin Li', 'shaoxin li')
('1757173', 'Junliang Xing', 'junliang xing')
('1773437', 'Zhiheng Niu', 'zhiheng niu')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
56e079f4eb40744728fd1d7665938b06426338e5Bayesian Approaches to Distribution Regression +
University of Oxford
University College London
University of Oxford
Imperial College London
('35142231', 'Ho Chung Leon Law', 'ho chung leon law')
('36326783', 'Dougal J. Sutherland', 'dougal j. sutherland')
('1698032', 'Dino Sejdinovic', 'dino sejdinovic')
('2127497', 'Seth Flaxman', 'seth flaxman')
ho.law@spc.ox.ac.uk +
dougal@gmail.com +
dino.sejdinovic@stats.ox.ac.uk +
s.flaxman@imperial.ac.uk +
56e6f472090030a6f172a3e2f46ef9daf6cad757Asian Face Image Database PF01 +
Intelligent Multimedia Lab. +
†Department of Computer Science and Engineering +
Pohang University of Science and Technology
San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Korea +
56a653fea5c2a7e45246613049fb16b1d204fc963287 +
Quaternion Collaborative and Sparse Representation +
With Application to Color Face Recognition +
representation-based +
('2888882', 'Cuiming Zou', 'cuiming zou')
('3369665', 'Kit Ian Kou', 'kit ian kou')
('3154834', 'Yulong Wang', 'yulong wang')
56f86bef26209c85f2ef66ec23b6803d12ca6cd6Pyramidal RoR for Image Classification +
North China Electric Power University, Baoding, China
('32164792', 'Ke Zhang', 'ke zhang')
('3451321', 'Liru Guo', 'liru guo')
('35038034', 'Ce Gao', 'ce gao')
('2626320', 'Zhenbing Zhao', 'zhenbing zhao')
Eail:zhangke41616@126.com +
5666ed763698295e41564efda627767ee55cc943Manuscript +
Click here to download Manuscript: template.tex +
Click here to view linked References +
Noname manuscript No. +
(will be inserted by the editor) +
Relatively-Paired Space Analysis: Learning a Latent Common +
Space from Relatively-Paired Observations +
Received: date / Accepted: date +
('1874900', 'Zhanghui Kuang', 'zhanghui kuang')
566a39d753c494f57b4464d6bde61bf3593f7cebA Critical Review of Action Recognition Benchmarks +
The Open University of Israel
('1756099', 'Tal Hassner', 'tal hassner')hassner@openu.ac.il +
56c2fb2438f32529aec604e6fc3b06a595ddbfccMAICS 2016 +
pp. 97–102 +
Comparison of Recent Machine Learning Techniques for Gender Recognition +
from Facial Images +
Computer Science Department +
Central Washington University
Ellensburg, WA, USA +
Computer Science Department +
Central Washington University
Ellensburg, WA, USA +
R˘azvan Andonie +
Computer Science Department +
Central Washington University
Computer Science Department +
Central Washington University
Ellensburg, WA, USA +
Ellensburg, WA, USA +
and +
Electronics and Computers Department +
Transilvania University
Bras¸ov, Romania +
('9770023', 'Joseph Lemley', 'joseph lemley')
('9770023', 'Joseph Lemley', 'joseph lemley')
('40470929', 'Sami Abdul-Wahid', 'sami abdul-wahid')
('35877118', 'Dipayan Banik', 'dipayan banik')
56f231fc40424ed9a7c93cbc9f5a99d022e1d242Age Estimation Based on A Single Network with +
Soft Softmax of Aging Modeling +
1Center for Biometrics and Security Research & National Laboratory of Pattern +
Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences
3Faculty of Information Technology, +
Macau University of Science and Technology, Macau
('9645431', 'Zichang Tan', 'zichang tan')
('2950852', 'Shuai Zhou', 'shuai zhou')
('1756538', 'Jun Wan', 'jun wan')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
5615d6045301ecbc5be35e46cab711f676aadf3aDiscriminatively Learned Hierarchical Rank Pooling Networks +
Received: date / Accepted: date +
('1688071', 'Basura Fernando', 'basura fernando')
561ae67de137e75e9642ab3512d3749b34484310December 2017 +
DeepGestalt - Identifying Rare Genetic Syndromes +
Using Deep Learning +
1FDNA Inc., Boston, Massachusetts, USA +
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
Recanati Genetic Institute, Rabin Medical Center and Schneider Children s Medical Center, Petah Tikva, Israel
Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn
Rheinische-Friedrich-Wilhelms University, Bonn, Germany
Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
University of California, San Diego, California, USA
7Division of Genetics/Dysmorphology, Rady Children’s Hospital San Diego, San Diego, California, USA +
8Division of Medical Genetics, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware,USA +
Boston 186 South St. 5th Floor, Boston, MA 02111 U.S.A., Tel: +1 (617) 412-7000 +
Conflict of interest: YG, YH, OB, NF, DG are employees of FDNA; LBS is an advisor of FDNA; +
LBS, PK, LMB, KWG are members of the scientific advisory board of FDNA +
('2916582', 'Yaron Gurovich', 'yaron gurovich')
('1917486', 'Yair Hanani', 'yair hanani')
('40142952', 'Omri Bar', 'omri bar')
('40443403', 'Nicole Fleischer', 'nicole fleischer')
('35487552', 'Dekel Gelbman', 'dekel gelbman')
('20717247', 'Lina Basel-Salmon', 'lina basel-salmon')
('4346029', 'Martin Zenker', 'martin zenker')
('6335877', 'Lynne M. Bird', 'lynne m. bird')
('5404116', 'Karen W. Gripp', 'karen w. gripp')
568cff415e7e1bebd4769c4a628b90db293c1717Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) +
Concepts Not Alone: Exploring Pairwise Relationships +
for Zero-Shot Video Activity Recognition +
IIIS, Tsinghua University, Beijing, China
QCIS, University of Technology Sydney, Sydney, Australia
DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA
('2551285', 'Chuang Gan', 'chuang gan')
('2735055', 'Ming Lin', 'ming lin')
('39033919', 'Yi Yang', 'yi yang')
('1732213', 'Gerard de Melo', 'gerard de melo')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
560e0e58d0059259ddf86fcec1fa7975dee6a868Face Recognition in Unconstrained Videos with Matched Background Similarity +
The Blavatnik School of Computer Science, Tel-Aviv University, Israel
Computer Science Division, The Open University of Israel
('1776343', 'Lior Wolf', 'lior wolf')
('3352629', 'Itay Maoz', 'itay maoz')
56a677c889e0e2c9f68ab8ca42a7e63acf986229Mining Spatial and Spatio-Temporal ROIs for Action Recognition +
Jiang Wang2 Alan Yuille1,3 +
University of California, Los Angeles
Baidu Research, USA 3John Hopkins University
('5964529', 'Xiaochen Lian', 'xiaochen lian'){lianxiaochen@,yuille@stat.}ucla.edu +
{chenzhuoyuan,yangyi05,wangjiang03}@baidu.com +
566038a3c2867894a08125efe41ef0a40824a090978-1-4244-2354-5/09/$25.00 ©2009 IEEE +
1945 +
ICASSP 2009 +
56dca23481de9119aa21f9044efd7db09f618704Riemannian Dictionary Learning and Sparse +
Coding for Positive Definite Matrices +
('2691929', 'Anoop Cherian', 'anoop cherian')
('3072326', 'Suvrit Sra', 'suvrit sra')
56ae6d94fc6097ec4ca861f0daa87941d1c10b70Distance Estimation of an Unknown Person +
from a Portrait +
1 Technicolor - Cesson S´evign´e, France +
California Institute of Technology, Pasadena, CA, USA
('2232848', 'Xavier P. Burgos-Artizzu', 'xavier p. burgos-artizzu')
('3339867', 'Matteo Ruggero Ronchi', 'matteo ruggero ronchi')
('1690922', 'Pietro Perona', 'pietro perona')
xavier.burgos@technicolor.com, {mronchi,perona}@caltech.edu +
56f812661c3248ed28859d3b2b39e033b04ae6aeMultiple Feature Fusion by Subspace Learning +
Beckman Institute
University of Illinois at
Urbana-Champaign +
Urbana, IL 61801, USA +
Durham, NC 27707, USA +
Computer Science +
North Carolina Central +
University
Beckman Institute
University of Illinois at
Urbana-Champaign +
Urbana, IL 61801, USA +
('1708679', 'Yun Fu', 'yun fu')
('37575012', 'Liangliang Cao', 'liangliang cao')
('1822413', 'Guodong Guo', 'guodong guo')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
{yunfu2,cao4}@uiuc.edu +
gdguo@nccu.edu +
huang@ifp.uiuc.edu +
516a27d5dd06622f872f5ef334313350745eadc3> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +
1 +
Fine-Grained Facial Expression Analysis Us- +
ing Dimensional Emotion Model +
 +
('41179750', 'Feng Zhou', 'feng zhou')
('34362536', 'Shu Kong', 'shu kong')
('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')
('29889388', 'Tao Chen', 'tao chen')
('40216538', 'Baiying Lei', 'baiying lei')
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfEvidence and a Computational Explanation of Cultural Differences in +
Facial Expression Recognition +
Matthew N. Dailey +
Computer Science and Information Management +
Asian Institute of Technology, Pathumthani, Thailand
Computer Science and Engineering +
University of California, San Diego, USA
Michael J. Lyons +
College of Image Arts and Sciences
Ritsumeikan University, Kyoto, Japan
Faculty of Informatics +
Kogakuin University, Tokyo, Japan
Department of Design and Computer Applications +
Sendai National College of Technology, Natori, Japan
Department of Psychology +
Tohoku University, Sendai, Japan
Garrison W. Cottrell +
Computer Science and Engineering +
University of California, San Diego, USA
Facial expressions are crucial to human social communication, but the extent to which they are +
innate and universal versus learned and culture dependent is a subject of debate. Two studies +
explored the effect of culture and learning on facial expression understanding. In Experiment +
better than the other at classifying facial expressions posed by members of the same culture. +
In Experiment 2, this reciprocal in-group advantage was reproduced by a neurocomputational +
model trained in either a Japanese cultural context or an American cultural context. The model +
demonstrates how each of us, interacting with others in a particular cultural context, learns to +
recognize a culture-specific facial expression dialect. +
The scientific literature on innate versus culture-specific +
years ago, Darwin (1872/1998) argued for innate production +
of facial expressions based on cross-cultural comparisons. +
Landis (1924), however, found little agreement between par- +
ticipants. Woodworth (1938) and Schlosberg (1952) found +
structure in the disagreement in interpretation, proposing a +
low-dimensional similarity space characterizing affective fa- +
cial expressions. +
Starting in the 1960’s, researchers found more support for +
facial expressions as innate, universal indicators of particular +
sions (Tomkins, 1962–1963; Tomkins & McCarter, 1964). +
Ekman and colleagues found cross-cultural consistency in +
pressions in both literate and preliterate cultures (Ekman, +
1972; Ekman, Friesen, O’Sullivan, et al., 1987; Ekman, +
Sorensen, & Friesen, 1969). +
Today, researchers disagree on the precise degree to which +
sal versus culture-specific (Ekman, 1994, 1999b; Fridlund, +
1994; Izard, 1994; Russell, 1994, 1995), but there appears +
to be consensus that universal factors interact to some extent +
with culture-specific learning to produce differences between +
cultures. A number of modern theories (Ekman, 1999a; Rus- +
sell & Bullock, 1986; Scherer, 1992; Russell, 1994) attempt +
to account for these universals and culture-specific varia- +
tions. +
Cultural differences in facial expression interpre- +
tation +
The early cross-cultural studies on facial expression +
recognition focused mainly on the question of universality +
sought to analyze and interpret the cultural differences that +
came up in those studies. However, a steadily increasing +
number of studies have focused on the factors underlying +
cultural differences. These studies either compare the fa- +
cial expression judgments made by participants from differ- +
ent cultures or attempt to find the relevant dimensions of +
culture predicting observed cultural differences. Much of +
the research was framed by Ekman’s “neuro-cultural” theory +
elicitors, display rules, and/or consequences due to culture- +
specific learning. +
Ekman (1972) and Friesen (1972) proposed display rules +
('33597747', 'Carrie Joyce', 'carrie joyce')
('40533190', 'Miyuki Kamachi', 'miyuki kamachi')
('12030857', 'Hanae Ishi', 'hanae ishi')
('8365437', 'Jiro Gyoba', 'jiro gyoba')
51c3050fb509ca685de3d9ac2e965f0de1fb21ccFantope Regularization in Metric Learning +
Marc T. Law +
Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France +
('1728523', 'Nicolas Thome', 'nicolas thome')
('1702233', 'Matthieu Cord', 'matthieu cord')
516d0d9eb08825809e4618ca73a0697137ebabd5Regularizing Long Short Term +
Memory with 3D Human-Skeleton +
Sequences for Action Recognition +
Oregon State University
CVPR 2016 +
('3112334', 'Behrooz Mahasseni', 'behrooz mahasseni')
('34917793', 'Sinisa Todorovic', 'sinisa todorovic')
519a724426b5d9ad384d38aaf2a4632d3824f243WANG et al.: LEARNING OBJECT RECOGNITION FROM DESCRIPTIONS +
Learning Models for Object Recognition +
from Natural Language Descriptions +
School of Computing +
University of Leeds
Leeds, UK +
('2635321', 'Josiah Wang', 'josiah wang')
('1686341', 'Katja Markert', 'katja markert')
('3056091', 'Mark Everingham', 'mark everingham')
scs6jwks@comp.leeds.ac.uk +
markert@comp.leeds.ac.uk +
me@comp.leeds.ac.uk +
5180df9d5eb26283fb737f491623395304d57497Scalable Angular Discriminative Deep Metric Learning +
for Face Recognition +
aCenter for Combinatorics, Nankai University, Tianjin 300071, China
bCenter for Applied Mathematics, Tianjin University, Tianjin 300072, China
('2143751', 'Bowen Wu', 'bowen wu')
51c7c5dfda47647aef2797ac3103cf0e108fdfb4CS 395T: Celebrity Look-Alikes ∗ +('2362854', 'Adrian Quark', 'adrian quark')quark@mail.utexas.edu +
519f4eb5fe15a25a46f1a49e2632b12a3b18c94dNon-Lambertian Reflectance Modeling and +
Shape Recovery of Faces using Tensor Splines +
('9432255', 'Ritwik Kumar', 'ritwik kumar')
('1765280', 'Angelos Barmpoutis', 'angelos barmpoutis')
('3163927', 'Arunava Banerjee', 'arunava banerjee')
('1733005', 'Baba C. Vemuri', 'baba c. vemuri')
518edcd112991a1717856841c1a03dd94a250090Rice University
Endogenous Sparse Recovery +
by +
A Thesis Submitted +
in Partial Fulfillment of the +
Requirements for the Degree +
Masters of Science +
Approved, Thesis Committee: +
Dr. Richard G. Baraniuk, Chair +
Victor E. Cameron Professor of Electrical +
and Computer Engineering +
Dr. Don H. Johnson +
J.S. Abercrombie Professor Emeritus of +
Electrical and Computer Engineering +
Dr. Wotao Yin +
Assistant Professor of Computational and +
Applied Mathematics +
Houston, Texas +
December 2011 +
('1746363', 'Eva L. Dyer', 'eva l. dyer')
51683eac8bbcd2944f811d9074a74d09d395c7f3Automatic Analysis of Facial Actions: +
Learning from Transductive, Supervised and +
Unsupervised Frameworks +
CMU-RI-TR-17-01 +
January 2017 +
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213 +
Thesis Committee: +
Fernando De la Torre, Co-chair +
Submitted in partial fulfillment of the requirements +
for the degree of Doctor of Philosophy in Robotics. +
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('1820249', 'Simon Lucey', 'simon lucey')
('1770537', 'Deva Ramanan', 'deva ramanan')
('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
51faacfa4fb1e6aa252c6970e85ff35c5719f4ffZoom-Net: Mining Deep Feature Interactions for +
Visual Relationship Recognition +
University of Science and Technology of China, Key Laboratory of Electromagnetic
Space Information, the Chinese Academy of Sciences, 2SenseTime Group Limited, +
CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
SenseTime-NTU Joint AI Research Centre, Nanyang Technological University
('4332039', 'Guojun Yin', 'guojun yin')
('37145669', 'Lu Sheng', 'lu sheng')
('50677886', 'Bin Liu', 'bin liu')
('1708598', 'Nenghai Yu', 'nenghai yu')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('49895575', 'Jing Shao', 'jing shao')
('1717179', 'Chen Change Loy', 'chen change loy')
gjyin@mail.ustc.edu.cn, {flowice,ynh}@ustc.edu.cn, ccloy@ieee.org, +
{lsheng,xgwang}@ee.cuhk.edu.hk, shaojing@sensetime.com +
51cc78bc719d7ff2956b645e2fb61bab59843d2bFace and Facial Expression Recognition with an +
Embedded System for Human-Robot Interaction +
School of Computer Engineering, Sejong University, Seoul, Korea
('2241562', 'Yang-Bok Lee', 'yang-bok lee')
('2706430', 'Yong-Guk Kim', 'yong-guk kim')
*ykim@sejong.ac.kr +
511b06c26b0628175c66ab70dd4c1a4c0c19aee9International Journal of Engineering Research and General ScienceVolume 2, Issue 5, August – September 2014 +
ISSN 2091-2730 +
Face Recognition using Laplace Beltrami Operator by Optimal Linear +
Approximations +
Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj
Research Scholar (M.Tech, IT), Institute of Engineering and Technology
51528cdce7a92835657c0a616c0806594de7513b
51cb09ee04831b95ae02e1bee9b451f8ac4526e3Beyond Short Snippets: Deep Networks for Video Classification +
Matthew Hausknecht2 +
University of Maryland, College Park
University of Texas at Austin
Google, Inc
('2340579', 'Joe Yue-Hei Ng', 'joe yue-hei ng')
('1689108', 'Oriol Vinyals', 'oriol vinyals')
('3089272', 'Rajat Monga', 'rajat monga')
('2259154', 'Sudheendra Vijayanarasimhan', 'sudheendra vijayanarasimhan')
('1805076', 'George Toderici', 'george toderici')
yhng@umiacs.umd.edu +
mhauskn@cs.utexas.edu +
svnaras@google.com +
vinyals@google.com +
rajatmonga@google.com +
gtoderici@google.com +
514a74aefb0b6a71933013155bcde7308cad2b46CARNEGIE MELLON UNIVERSITY
OPTIMAL CLASSIFIER ENSEMBLES +
FOR IMPROVED BIOMETRIC VERIFICATION +
A Dissertation +
Submitted to the Faculty of Graduate School +
In Partial Fulfillment of the Requirements +
for The Degree of +
DOCTOR OF PHILOSOPHY +
in +
ELECTRICAL AND COMPUTER ENGINEERING +
by +
COMMITTEE: +
Advisor: Prof. Vijayakumar Bhagavatula +
Prof. Tsuhan Chen +
Prof. David Casasent +
Prof. Arun Ross +
Pittsburgh, Pennsylvania +
January, 2007 +
('2202489', 'Krithika Venkataramani', 'krithika venkataramani')
('1794486', 'Marios Savvides', 'marios savvides')
51a8dabe4dae157aeffa5e1790702d31368b9161SPI-J068 00418 +
International Journal of Pattern Recognition +
and Artificial Intelligence +
Vol. 19, No. 4 (2005) 513–531 +
c(cid:1) World Scientific Publishing Company +
FACE RECOGNITION UNDER GENERIC ILLUMINATION +
BASED ON HARMONIC RELIGHTING +
Graduate School of Chinese Academy Sciences +
No. 19, Yuquan Road, Beijing, 100039, P.R. China +
Institute of Computing Technology, CAS
No. 6 Kexueyuan South Road, Beijing, 100080, P.R. China +
The performances of the current face recognition systems suffer heavily from the vari- +
ations in lighting. To deal with this problem, this paper presents an illumination nor- +
malization approach by relighting face images to a canonical illumination based on the +
harmonic images model. Benefiting from the observations that human faces share sim- +
ilar shape, and the albedos of the face surfaces are quasi-constant, we first estimate +
the nine low-frequency components of the illumination from the input facial image. The +
facial image is then normalized to the canonical illumination by re-rendering it using +
the illumination ratio image technique. For the purpose of face recognition, two kinds of +
canonical illuminations, the uniform illumination and a frontal flash with the ambient +
lights, are considered, among which the former encodes merely the texture information, +
while the latter encodes both the texture and shading information. Our experiments on +
the CMU-PIE face database and the Yale B face database have shown that the proposed +
relighting normalization can significantly improve the performance of a face recognition +
system when the probes are collected under varying lighting conditions. +
Keywords: Face recognition; varying lighting; harmonic images; lighting estimation; +
illumination normalization. +
1. Introduction +
Face recognition has various potential applications in public security, law enforce- +
ment and commerce such as mug-shot database matching, identity authentication +
for credit card or driver license, access control, information security, and video +
surveillance. In addition, there are many emerging fields that can benefit from face +
recognition, such as human computer interfaces and e-services, including e-home
online-shopping and online-banking. Related research activities have significantly +
increased over the past few years.5,26 +
513 +
('2343895', 'Laiyun Qing', 'laiyun qing')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1698902', 'Wen Gao', 'wen gao')
('1691233', 'Bo Du', 'bo du')
lyqing@jdl.ac.cn +
sgshan@jdl.ac.cn +
wgao@jdl.ac.cn +
bdu@jdl.ac.cn +
512b4c8f0f3fb23445c0c2dab768bcd848fa8392 Analysis and Synthesis of Facial Expressions by Feature- +
Points Tracking and Deformable Model +
1- Faculty of Electrical and Computer Eng., +
University of Tabriz, Tabriz, Iran
2- Department of Electrical Eng., +
Tarbiat Modarres University, Tehran, Iran
in +
an +
role +
essential +
facial expressions +
+
('3210269', 'H. Seyedarabi', 'h. seyedarabi')
('31092101', 'A. Aghagolzadeh', 'a. aghagolzadeh')
('2052255', 'S. Khanmohammadi', 's. khanmohammadi')
('2922912', 'E. Kabir', 'e. kabir')
seyedarabi@tahoo.com, aghagol@tabrizu.ac.ir, khan@tabrizu.ac.ir +
51eba481dac6b229a7490f650dff7b17ce05df73Situation Recognition: +
Visual Semantic Role Labeling for Image Understanding +
Computer Science and Engineering, University of Washington, Seattle, WA
Allen Institute for Arti cial Intelligence (AI2), Seattle, WA
Figure 1. Six images that depict situations where actors, objects, substances, and locations play roles in an activity. Below each image is a +
realized frame that summarizes the situation: the left columns (blue) list activity-specific roles (derived from FrameNet, a broad coverage +
verb lexicon) while the right columns (green) list values (from ImageNet) for each role. Three different activities are shown, highlighting +
that visual properties can vary widely between role values (e.g., clipping a sheep’s wool looks very different from clipping a dog’s nails). +
('2064210', 'Mark Yatskar', 'mark yatskar')
('2270286', 'Ali Farhadi', 'ali farhadi')
[my89, lsz, ali]@cs.washington.edu +
5173a20304ea7baa6bfe97944a5c7a69ea72530fSensors 2013, 13, 12830-12851; doi:10.3390/s131012830 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
Best Basis Selection Method Using Learning Weights for +
Face Recognition +
The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong
The School of Electrical Electronic and Control Engineering, Kongju National University
275 Budae-Dong, Seobuk-Gu, Cheonan, Chungnam 331-717, Korea +
Tel.: +82-41-521-9168; Fax: +82-41-563-3689. +
Received: 24 July 2013; in revised form: 26 August 2013 / Accepted: 16 September 2013/ +
Published: 25 September 2013 +
('1801849', 'Wonju Lee', 'wonju lee')
('2840643', 'Minkyu Cheon', 'minkyu cheon')
('2638048', 'Chang-Ho Hyun', 'chang-ho hyun')
('1718637', 'Mignon Park', 'mignon park')
Seodaemun-Gu, Seoul 120-749, Korea; E-Mails: delicado@yonsei.ac.kr (W.L.); +
1000minkyu@gmail.com (M.C.); mignpark@yonsei.ac.kr (M.P.) +
* Author to whom correspondence should be addressed; E-Mail: hyunch@kongju.ac.kr; +
51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6Computing and Informatics, Vol. 22, 2003, ??–?? +
A SURVEY OF FACE DETECTION, EXTRACTION +
AND RECOGNITION +
National Storage System Laboratory +
School of Software Engineering +
Huazhong University of Science and Technology
Wuhan, 430074, P. R. China +
Manuscript received 23 June 2002; revised 27 January 2003 +
Communicated by Ladislav Hluch´y +
('2366162', 'Yongzhong Lu', 'yongzhong lu')
('1711876', 'Jingli Zhou', 'jingli zhou')
('1714618', 'Shengsheng Yu', 'shengsheng yu')
e-mail: luyongz0@sohu.com +
5161e38e4ea716dcfb554ccb88901b3d97778f64SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR +
FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON +
School of Computing, KAIST, Republic of Korea +
('2487892', 'Sungeun Hong', 'sungeun hong')
('40506942', 'Woobin Im', 'woobin im')
5121f42de7cb9e41f93646e087df82b573b23311CLASSIFYING ONLINE DATING PROFILES ON TINDER USING FACENET FACIAL +
EMBEDDINGS +
FL
Charles F. Jekel (cjekel@ufl.edu; cj@jekel.me) and Raphael T. Haftka +
51d1a6e15936727e8dd487ac7b7fd39bd2baf5eeJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
A Fast and Accurate System for Face Detection, +
Identification, and Verification +
('48467498', 'Rajeev Ranjan', 'rajeev ranjan')
('2068427', 'Ankan Bansal', 'ankan bansal')
('7674316', 'Jingxiao Zheng', 'jingxiao zheng')
('2680836', 'Hongyu Xu', 'hongyu xu')
('35199438', 'Joshua Gleason', 'joshua gleason')
('2927406', 'Boyu Lu', 'boyu lu')
('8435884', 'Anirudh Nanduri', 'anirudh nanduri')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('38171682', 'Carlos D. Castillo', 'carlos d. castillo')
('9215658', 'Rama Chellappa', 'rama chellappa')
5141cf2e59fb2ec9bb489b9c1832447d3cd93110Learning Person Trajectory Representations for Team Activity Analysis +
Simon Fraser University
('10386960', 'Nazanin Mehrasa', 'nazanin mehrasa')
('19198359', 'Yatao Zhong', 'yatao zhong')
('2123865', 'Frederick Tung', 'frederick tung')
('3004771', 'Luke Bornn', 'luke bornn')
('10771328', 'Greg Mori', 'greg mori')
{nmehrasa, yataoz, ftung, lbornn}@sfu.ca, mori@cs.sfu.ca +
5185f2a40836a754baaa7419a1abdd1e7ffaf2adA Multimodality Framework for Creating Speaker/Non-Speaker Profile +
Databases for Real-World Video +
Beckman Institute
University of Illinois
Urbana, IL 61801 +
Beckman Institute
University of Illinois
Urbana, IL 61801 +
Beckman Institute
University of Illinois
Urbana, IL 61801 +
('3082579', 'Jehanzeb Abbas', 'jehanzeb abbas')
('1804874', 'Charlie K. Dagli', 'charlie k. dagli')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
jabbas2@ifp.uiuc.edu +
dagli@ifp.uiuc.edu +
huang@ifp.uiuc.edu +
511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7Hindawi +
Computational Intelligence and Neuroscience +
Volume 2018, Article ID 4512473, 10 pages +
https://doi.org/10.1155/2018/4512473 +
Research Article +
A Community Detection Approach to Cleaning Extremely +
Large Face Database +
Computer School, University of South China, Hengyang, China
National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha, China
Received 11 December 2017; Accepted 12 March 2018; Published 22 April 2018 +
Academic Editor: Amparo Alonso-Betanzos +
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Though it has been easier to build large face datasets by collecting images from the Internet in this Big Data era, the time-consuming +
manual annotation process prevents researchers from constructing larger ones, which makes the automatic cleaning of noisy labels +
highly desirable. However, identifying mislabeled faces by machine is quite challenging because the diversity of a person’s face +
images that are captured wildly at all ages is extraordinarily rich. In view of this, we propose a graph-based cleaning method that +
mainly employs the community detection algorithm and deep CNN models to delete mislabeled images. As the diversity of faces is +
preserved in multiple large communities, our cleaning results have both high cleanness and rich data diversity. With our method, we +
clean the extremely large MS-Celeb-1M face dataset (approximately 10 million images with noisy labels) and obtain a clean version +
of it called C-MS-Celeb (6,464,018 images of 94,682 celebrities). By training a single-net model using our C-MS-Celeb dataset, +
without fine-tuning, we achieve 99.67% at Equal Error Rate on the LFW face recognition benchmark, which is comparable to other +
state-of-the-art results. This demonstrates the data cleaning positive effects on the model training. To the best of our knowledge, +
our C-MS-Celeb is the largest clean face dataset that is publicly available so far, which will benefit face recognition researchers. +
1. Introduction +
In the last few years, researchers have witnessed the remark- +
able progress in face recognition due to the significant success +
of deep convolutional neural networks [1] and the emergence +
of large scale face datasets [2]. Although the data explosion +
has made it easier to build datasets by collecting real world +
images from the Internet [3], constructing a large scale face +
dataset remains a highly time-consuming and costly task +
because the mislabeled images returned by search engines +
need to be manually removed [4]. Thus, automatic cleaning +
of noisy labels in the raw dataset is strongly desirable. +
However, identifying mislabeled faces automatically by +
machine is by no means easy. The main reason for this is that, +
for faces that are captured wildly, the variation of a man’s faces +
can be so large that some of his images may easily be identified +
as someone else’s [5]. Thus, a machine may be misled by this +
rich data diversity within one person and delete correctly +
labeled images. For example, if old faces of a man are the +
majority in the dataset, a young face of him may be regarded +
as someone else and removed. Another challenge is that, due +
to the ambiguity of people’s names, searching for someone’s +
pictures online usually returns images from multiple people +
[2], which requires the cleaning method to be tolerant to the +
high proportion of noisy labels in the raw dataset constructed +
by online searching. +
In order to clean noisy labels and meanwhile preserve +
the rich data diversity of various faces, we propose a three- +
stage graph-based method to clean large face datasets using +
the community detection algorithm. For each image in the +
raw dataset, we firstly use pretrained deep CNN models to +
align the face and extract a feature vector to represent each +
face. Secondly, for features of the same identity, based on the +
cosine similarity between different features, we construct an +
undirected graph, named “face similarity graph,” to quantify +
the similarity between different images. After deleting weak +
edges and applying the community detection algorithm, we +
delete mislabeled images by removing minor communities. In +
the last stage, we try to relabel each previously deleted image +
('3335298', 'Chi Jin', 'chi jin')
('9856301', 'Ruochun Jin', 'ruochun jin')
('38536592', 'Kai Chen', 'kai chen')
('1791001', 'Yong Dou', 'yong dou')
('3335298', 'Chi Jin', 'chi jin')
Correspondence should be addressed to Ruochun Jin; sczjrc@163.com +
51d048b92f6680aca4a8adf07deb380c0916c808This is the accepted version of the following article: "State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications", +
which has been published in final form at http://onlinelibrary.wiley.com. This article may be used for non-commercial purposes in accordance +
with the Wiley Self-Archiving Policy [http://olabout.wiley.com/WileyCDA/Section/id-820227.html]. +
EUROGRAPHICS 2018 +
K. Hildebrandt and C. Theobalt +
(Guest Editors) +
Volume 37 (2018), Number 2 +
STAR – State of The Art Report +
State of the Art on Monocular 3D Face +
Reconstruction, Tracking, and Applications +
M. Zollhöfer1,2 +
J. Thies3 P. Garrido1,5 D. Bradley4 T. Beeler4 P. Pérez5 M. Stamminger6 M. Nießner3 C. Theobalt1 +
Max Planck Institute for Informatics
Stanford University
Technical University of Munich
4Disney Research +
5Technicolor +
University of Erlangen-Nuremberg
Figure 1: This state-of-the-art report provides an overview of monocular 3D face reconstruction and tracking, and highlights applications. +
5134353bd01c4ea36bd007c460e8972b1541d0adFace Recognition with Multi-Resolution Spectral Feature +
Images +
School of Electrical Engineering and Automation, Anhui University, Hefei, China, Hong Kong Polytechnic
University, Hong Kong, China, 3 Center for Intelligent Electricity Networks, University of Newcastle, Newcastle, Australia, 4 School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore, Singapore
('31443079', 'Zhan-Li Sun', 'zhan-li sun')
('1703078', 'Kin-Man Lam', 'kin-man lam')
('50067626', 'Zhao-yang Dong', 'zhao-yang dong')
('40465036', 'Han Wang', 'han wang')
('29927490', 'Qing-wei Gao', 'qing-wei gao')
5160569ca88171d5fa257582d161e9063c8f898dLocal Binary Patterns as an Image Preprocessing for Face Authentication +
IDIAP Research Institute, Martigny, Switzerland
Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Switzerland +
('16602458', 'Guillaume Heusch', 'guillaume heusch')
('2820403', 'Yann Rodriguez', 'yann rodriguez')
fheusch, rodrig, marcelg@idiap.ch +
5157dde17a69f12c51186ffc20a0a6c6847f1a29Evolutionary Cost-sensitive Extreme Learning +
Machine +
1 +
('40613723', 'Lei Zhang', 'lei zhang')
('1698371', 'David Zhang', 'david zhang')
51dc127f29d1bb076d97f515dca4cc42dda3d25b
3d18ce183b5a5b4dcaa1216e30b774ef49eaa46fFace Alignment Across Large Poses: A 3D Solution +
Hailin Shi1 +
Institute of Automation, Chinese Academy of Sciences
Michigan State University
('8362374', 'Xiangyu Zhu', 'xiangyu zhu')
('1718623', 'Zhen Lei', 'zhen lei')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('34679741', 'Stan Z. Li', 'stan z. li')
{xiangyu.zhu,zlei,hailin.shi,szli}@nlpr.ia.ac.cn +
liuxm@msu.edu +
3d143cfab13ecd9c485f19d988242e7240660c86Discriminative Collaborative Representation for +
Classification +
Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan
Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan
3 OMRON Social Solutions Co., LTD, Kyoto 619-0283, Japan +
('2549020', 'Yang Wu', 'yang wu')
('40400215', 'Wei Li', 'wei li')
('1707934', 'Masayuki Mukunoki', 'masayuki mukunoki')
('1681266', 'Michihiko Minoh', 'michihiko minoh')
('1710195', 'Shihong Lao', 'shihong lao')
yangwu@mm.media.kyoto-u.ac.jp,seuliwei@126.com, +
{minoh,mukunoki}@media.kyoto-u.ac.jp,lao_shihong@oss.omron.co.jp +
3daafe6389d877fe15d8823cdf5ac15fd919676fHuman Action Localization +
with Sparse Spatial Supervision +
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
('49142153', 'Xavier Martin', 'xavier martin')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
3dabf7d853769cfc4986aec443cc8b6699136ed0In A. Esposito, N. Bourbakis, N. Avouris, and I. Hatzilygeroudis. (Eds.) Lecture Notes in +
Computer Science, Vol 5042: Verbal and Nonverbal Features of Human-human and Human- +
machine Interaction, Springer Verlag, p. 1-21. +
Data mining spontaneous facial behavior with +
automatic expression coding +
Institute for Neural Computation, University of California, San Diego, La Jolla, CA
Human Development and Applied Psychology, University of Toronto, Ontario, Canada
0445, USA +
Engineering and Natural Science, Sabanci University, Istanbul, Turkey
('2724380', 'Gwen Littlewort', 'gwen littlewort')
('40322754', 'Esra Vural', 'esra vural')
('2855884', 'Kang Lee', 'kang lee')
mbartlett@ucsd.edu; gwen@mpmlab.ucsd.edu, movellan@mplab.ucsd.edu, +
vesra@ucsd.edu, kang.lee@utoronto.ca +
3db75962857a602cae65f60f202d311eb4627b41
3daf1191d43e21a8302d98567630b0e2025913b0Can Autism be Catered with Artificial Intelligence-Assisted Intervention +
Technology? A Literature Review +
Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan
†Universit´e Claude Bernard Lyon 1, France +
('38817141', 'Muhammad Shoaib Jaliawala', 'muhammad shoaib jaliawala')
('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')
3d36f941d8ec613bb25e80fb8f4c160c1a2848dfOut-of-sample generalizations for supervised +
manifold learning for classification +
('12636684', 'Elif Vural', 'elif vural')
('1780587', 'Christine Guillemot', 'christine guillemot')
3d5a1be4c1595b4805a35414dfb55716e3bf80d8Hidden Two-Stream Convolutional Networks for +
Action Recognition +
('1749901', 'Yi Zhu', 'yi zhu')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
3d62b2f9cef997fc37099305dabff356d39ed477Joint Face Alignment and 3D Face +
Reconstruction with Application to Face +
Recognition +
('33320460', 'Feng Liu', 'feng liu')
('7345195', 'Qijun Zhao', 'qijun zhao')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('39422721', 'Dan Zeng', 'dan zeng')
3dc522a6576c3475e4a166377cbbf4ba389c041f
3dd4d719b2185f7c7f92cc97f3b5a65990fcd5ddEnsemble of Hankel Matrices for +
Face Emotion Recognition +
DICGIM, Universit´a degli Studi di Palermo, +
V.le delle Scienze, Ed. 6, 90128 Palermo, Italy, +
DRAFT +
To appear in ICIAP 2015 +
('1711610', 'Liliana Lo Presti', 'liliana lo presti')
('9127836', 'Marco La Cascia', 'marco la cascia')
liliana.lopresti@unipa.it +
3d1a6a5fd5915e0efb953ede5af0b23debd1fc7fProceedings of the Pakistan Academy of Sciences 52 (1): 27–38 (2015) +
Copyright © Pakistan Academy of Sciences +
ISSN: 0377 - 2969 (print), 2306 - 1448 (online) +
Pakistan Academy of Sciences +
Research Article +
Bimodal Human Emotion Classification in the +
Speaker-Dependent Scenario +
University of Peshawar, Peshawar, Pakistan
University of Engineering and Technology
Sarhad University of Science and Information Technology
University of Peshawar, Peshawar, Pakistan
Peshawar, Pakistan +
Peshawar, Pakistan +
+
('34267835', 'Sanaul Haq', 'sanaul haq')
('3124216', 'Tariqullah Jan', 'tariqullah jan')
('1766329', 'Muhammad Asif', 'muhammad asif')
('1710701', 'Amjad Ali', 'amjad ali')
('40332145', 'Naveed Ahmad', 'naveed ahmad')
3d0379688518cc0e8f896e30815d0b5e8452d4cdAutotagging Facebook: +
Social Network Context Improves Photo Annotation +
Harvard University
Todd Zickler +
Harvard University
UC Berkeley EECS & ICSI +
('2201347', 'Zak Stone', 'zak stone')
('1753210', 'Trevor Darrell', 'trevor darrell')
zstone@fas.harvard.edu +
zickler@seas.harvard.edu +
trevor@eecs.berkeley.edu +
3dda181be266950ba1280b61eb63ac11777029f9
3d24b386d003bee176a942c26336dbe8f427aaddSequential Person Recognition in Photo Albums with a Recurrent Network∗ +
The University of Adelaide, Australia
('39948681', 'Yao Li', 'yao li')
('2604251', 'Guosheng Lin', 'guosheng lin')
('3194022', 'Bohan Zhuang', 'bohan zhuang')
('2161037', 'Lingqiao Liu', 'lingqiao liu')
('1780381', 'Chunhua Shen', 'chunhua shen')
('5546141', 'Anton van den Hengel', 'anton van den hengel')
3dcebd4a1d66313dcd043f71162d677761b07a0d Yerel Đkili Örüntü Ortamında Yerel Görünüme Dayalı Yüz Tanıma +
Local Binary Pattern Domain Local Appearance Face Recognition +
Hazım K. Ekenel1, Mika Fischer1, Erkin Tekeli2, Rainer Stiefelhagen1, Aytül Erçil2 +
1Institut für Theorestische Informatik, Universität Karlsruhe (TH), Karlsruhe, Germany +
Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey
Özetçe +
Bu bildiride, ayrık kosinüs dönüşümü tabanlı yerel görünüme +
dayalı yüz tanıma algoritması ile yüz imgelerinin yerel ikili +
örüntüye (YĐÖ) dayalı betimlemesini birleştiren hızlı bir yüz +
tanıma algoritması sunulmuştur. Bu tümleştirmedeki amaç, +
yerel ikili örüntünün dayanıklı imge betimleme yeteneği ile +
ayrık kosinüs dönüşümünün derli-toplu veri betimleme +
yeteneğinden yararlanmaktır. Önerilen yaklaşımda, yerel +
görünümün modellenmesinden önce girdi yüz imgesi yerel +
ikili örüntü ile betimlenmiştir. Elde edilen YĐÖ betimlemesi, +
birbirleri ile örtüşmeyen bloklara ayrılmış ve her blok +
üzerinde yerel özniteliklerin çıkartımı için ayrık kosinüs +
dönüşümü uygulanmıştır. Çıkartımı yapılan yerel öznitelikler +
daha sonra arka arkaya eklenerek global öznitelik vektörü +
oluşturulmuştur. Önerilen algoritma, CMU PIE ve FRGC +
versiyon 2 veritabanlarından seçilen yüz imgeleri üzerinde +
sınanmıştır. Deney sonuçları, tümleşik yöntemin başarımı +
önemli ölçüde arttırdığını göstermiştir. +
{ekenel,mika.fischer,stiefel}@ira.uka.de, {erkintekeli,aytulercil}@sabanciuniv.edu +
3d0f9a3031bee4b89fab703ff1f1d6170493dc01SVDD-Based Illumination Compensation +
for Face Recognition +
The Robotics Institute, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, USA +
Center for Arti cial Vision Research, Korea University
Anam-dong, Seongbuk-ku, Seoul 136-713, Korea +
('2348968', 'Sang-Woong Lee', 'sang-woong lee')
('1703007', 'Seong-Whan Lee', 'seong-whan lee')
rhiephil@cs.cmu.edu +
swlee@image.korea.ac.kr +
3d6ee995bc2f3e0f217c053368df659a5d14d5b5
3d0c21d4780489bd624a74b07e28c16175df6355Deep or Shallow Facial Descriptors? A Case for +
Facial Attribute Classification and Face Retrieval +
1 Faculty of Engineering, +
Multimedia University, Cyberjaya, Malaysia
2 Faculty of Computing & Informatics, +
Multimedia University, Cyberjaya, Malaysia
('3366793', 'Rasoul Banaeeyan', 'rasoul banaeeyan')
('31612015', 'Mohd Haris Lye', 'mohd haris lye')
('4759494', 'Mohammad Faizal Ahmad Fauzi', 'mohammad faizal ahmad fauzi')
('2339975', 'John See', 'john see')
banaeeyan@gmail.com, {haris.lye, faizal1, hezerul, johnsee}@mmu.edu.my +
3df8cc0384814c3fb05c44e494ced947a7d43f36The Pose Knows: Video Forecasting by Generating Pose Futures +
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213 +
('14192361', 'Jacob Walker', 'jacob walker')
('35789996', 'Kenneth Marino', 'kenneth marino')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
('1709305', 'Martial Hebert', 'martial hebert')
{jcwalker, kdmarino, abhinavg, hebert}@cs.cmu.edu +
3d42e17266475e5d34a32103d879b13de2366561Proc.4thIEEEInt’lConf.AutomaticFace&GestureRecognition,Grenoble,France,pp264–270 +
The Global Dimensionality of Face Space +
(cid:3) +
http://venezia.rockefeller.edu/ +
The Rockefeller University
Laboratory of Computational Neuroscience +
Laboratory for Applied Mathematics +
Mount Sinai School of Medicine +
c(cid:13) IEEE2000 +
1230 York Avenue, New York, NY 10021 +
One Gustave L. Levy Place, New York, NY 10029 +
('2939761', 'Penio S. Penev', 'penio s. penev')
('3266322', 'Lawrence Sirovich', 'lawrence sirovich')
PenevPS@IEEE.org +
chico@camelot.mssm.edu +
3dd906bc0947e56d2b7bf9530b11351bbdff2358
3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0Face2Text: Collecting an Annotated Image Description Corpus for the +
Generation of Rich Face Descriptions +
University of Malta
University of Copenhagen
('1700894', 'Albert Gatt', 'albert gatt')
('32227979', 'Marc Tanti', 'marc tanti')
('35347012', 'Adrian Muscat', 'adrian muscat')
('1782032', 'Patrizia Paggio', 'patrizia paggio')
('2870709', 'Claudia Borg', 'claudia borg')
('3356545', 'Lonneke van der Plas', 'lonneke van der plas')
{albert.gatt, marc.tanti.06, adrian.muscat, patrizia.paggio, reuben.farrugia}@um.edu.mt +
{claudia.borg, kenneth.camilleri, mike.rosner, lonneke.vanderplas}@um.edu.mt +
paggio@hum.ku.dk +
3dbfd2fdbd28e4518e2ae05de8374057307e97b3Improving Face Detection +
CISUC, University of Coimbra
Faculty of Computer Science, University of A Coru na, Coru na, Spain
('2045142', 'Penousal Machado', 'penousal machado')
('39583137', 'Juan Romero', 'juan romero')
3030 Coimbra, Portugal machado@dei.uc.pt, jncor@dei.uc.pt +
jj@udc.pt +
3df7401906ae315e6aef3b4f13126de64b894a54Robust Learning of Discriminative Projection for Multicategory Classification on +
the Stiefel Manifold +
Curtin University of Technology
GPO Box U1987, Perth, WA 6845, Australia +
('1725024', 'Duc-Son Pham', 'duc-son pham')
('1679520', 'Svetha Venkatesh', 'svetha venkatesh')
dspham@ieee.org, svetha@cs.curtin.edu.au +
3d68cedd80babfbb04ab197a0b69054e3c196cd9Bimodal Information Analysis for Emotion Recognition +
Master of Engineering +
Department of Electrical and Computer Engineering +
McGill University
Montreal, Quebec +
October 2009 +
Revised: February 2010 +
A Thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Engineering +
i +
('2376514', 'Malika Meghjani', 'malika meghjani')
('2376514', 'Malika Meghjani', 'malika meghjani')
3dfb822e16328e0f98a47209d7ecd242e4211f82Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in +
Unconstrained Environments +
Beijing University of Posts and Telecommunications
Beijing 100876,China +
('15523767', 'Tianyue Zheng', 'tianyue zheng')
('1774956', 'Weihong Deng', 'weihong deng')
('23224233', 'Jiani Hu', 'jiani hu')
2231135739@qq.com, whdeng@bupt.edu.cn, 40902063@qq.com +
3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a1892 +
Random Multispace Quantization as +
an Analytic Mechanism for BioHashing +
of Biometric and Random Identity Inputs +
('2124820', 'Alwyn Goh', 'alwyn goh')
3d6943f1573f992d6897489b73ec46df983d776c
3d948e4813a6856e5b8b54c20e50cc5050e66abeA Smart Phone Image Database for Single +
Image Recapture Detection +
Institute for Infocomm Research, A*STAR, Singapore
2 Department of Electrical and Computer Engineering +
National University of Singapore, Singapore
3 Department of Electrical and Computer Engineering +
New Jersey Institute of Technology, USA
('2740420', 'Xinting Gao', 'xinting gao')
('2821964', 'Bo Qiu', 'bo qiu')
('3138499', 'JingJing Shen', 'jingjing shen')
('2475944', 'Tian-Tsong Ng', 'tian-tsong ng')
{xgao, qiubo, ttng}@i2r.a-star.eud.sg +
shenjingjing89@gmail.com +
shi@njit.edu +
3d94f81cf4c3a7307e1a976dc6cb7bf38068a3813846 +
Data-Dependent Label Distribution Learning +
for Age Estimation +
('3276410', 'Zhouzhou He', 'zhouzhou he')
('40613648', 'Xi Li', 'xi li')
('1720488', 'Zhongfei Zhang', 'zhongfei zhang')
('28342797', 'Fei Wu', 'fei wu')
('1735299', 'Xin Geng', 'xin geng')
('2998634', 'Yaqing Zhang', 'yaqing zhang')
('37144787', 'Ming-Hsuan Yang', 'ming-hsuan yang')
('1755711', 'Yueting Zhuang', 'yueting zhuang')
3d9db1cacf9c3bb7af57b8112787b59f45927355Original research +
published: 20 June 2016 +
doi: 10.3389/fict.2016.00011 +
improving Medical students’ +
awareness of Their non-Verbal +
communication through automated +
non-Verbal Behavior Feedback +
School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical
School, The University of Sydney, Sydney, NSW, Australia
The non-verbal communication of clinicians has an impact on patients’ satisfaction and +
health outcomes. Yet medical students are not receiving enough training on the appropri- +
ate non-verbal behaviors in clinical consultations. Computer vision techniques have been +
used for detecting different kinds of non-verbal behaviors, and they can be incorporated +
in educational systems that help medical students to develop communication skills. +
We describe EQClinic, a system that combines a tele-health platform with automated +
non-verbal behavior recognition. The system aims to help medical students improve +
their communication skills through a combination of human and automatically generated +
feedback. EQClinic provides fully automated calendaring and video conferencing features +
for doctors or medical students to interview patients. We describe a pilot (18 dyadic +
interactions) in which standardized patients (SPs) (i.e., someone acting as a real patient) +
were interviewed by medical students and provided assessments and comments about +
their performance. After the interview, computer vision and audio processing algorithms +
were used to recognize students’ non-verbal behaviors known to influence the quality of +
a medical consultation: including turn taking, speaking ratio, sound volume, sound pitch, +
smiling, frowning, head leaning, head tilting, nodding, shaking, face-touch gestures and +
overall body movements. The results showed that students’ awareness of non-verbal +
communication was enhanced by the feedback information, which was both provided +
by the SPs and generated by the machines. +
Keywords: non-verbal communication, non-verbal behavior, clinical consultation, medical education, +
communication skills, non-verbal behavior detection, automated feedback +
inTrODUcTiOn +
Edited by: +
Leman Figen Gul, +
Istanbul Technical University, Turkey
Reviewed by: +
Marc Aurel Schnabel, +
Victoria University of Wellington
New Zealand +
Antonella Lotti, +
University of Genoa, Italy
*Correspondence: +
Specialty section: +
This article was submitted +
to Digital Education, +
a section of the journal +
Frontiers in ICT +
Received: 28 April 2016 +
Accepted: 07 June 2016 +
Published: 20 June 2016 +
Citation: +
Liu C, Calvo RA and Lim R (2016) +
Improving Medical Students’ +
Awareness of Their Non-Verbal +
Communication through Automated +
Non-Verbal Behavior Feedback. +
doi: 10.3389/fict.2016.00011 +
Over the last 10 years, we have witnessed a dramatic improvement in affective computing (Picard, +
2000; Calvo et  al., 2015) and behavior recognition techniques (Vinciarelli et  al., 2012). These +
techniques have progressed from the recognition of person-specific posed behavior to the more +
difficult person-independent recognition of behavior in “the-wild” (Vinciarelli et al., 2009). They +
are considered robust enough that they are being incorporated into new applications. For example, +
new learning technologies have been developed that detect a student’s emotions and use this to guide +
the learning experience (Calvo and D’Mello, 2011). They can also be used to support reflection by +
Frontiers in ICT | www.frontiersin.org +
June 2016 | Volume 3 | Article 11 +
('30772945', 'Chunfeng Liu', 'chunfeng liu')
('1742162', 'Rafael A. Calvo', 'rafael a. calvo')
('36807976', 'Renee Lim', 'renee lim')
('1742162', 'Rafael A. Calvo', 'rafael a. calvo')
rafael.calvo@sydney.edu.au +
580f86f1ace1feed16b592d05c2b07f26c429b4bDense-Captioning Events in Videos +
Stanford University
('2580593', 'Ranjay Krishna', 'ranjay krishna')
('35163655', 'Kenji Hata', 'kenji hata')
('3260219', 'Frederic Ren', 'frederic ren')
('3216322', 'Li Fei-Fei', 'li fei-fei')
('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')
{ranjaykrishna, kenjihata, fren, feifeili, jniebles}@cs.stanford.edu +
58d47c187b38b8a2bad319c789a09781073d052dFactorizable Net: An Efficient Subgraph-based +
Framework for Scene Graph Generation +
The Chinese University of Hong Kong, Hong Kong SAR, China
The University of Sydney, SenseTime Computer Vision Research Group
3 MIT CSAIL, USA +
4 Sensetime Ltd, Beijing, China +
Samsung Telecommunication Research Institute, Beijing, China
('2180892', 'Yikang Li', 'yikang li')
('3001348', 'Wanli Ouyang', 'wanli ouyang')
('1804424', 'Bolei Zhou', 'bolei zhou')
('1788070', 'Jianping Shi', 'jianping shi')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
{ykli, xgwang}@ee.cuhk.edu.hk, wanli.ouyang@sydney.edu.au, +
bzhou@csail.mit.edu, shijianping@sensetime.com, c0502.zhang@samsung.com +
582edc19f2b1ab2ac6883426f147196c8306685aDo We Really Need to Collect Millions of Faces +
for Effective Face Recognition? +
Institute for Robotics and Intelligent Systems, USC, CA, USA
Information Sciences Institute, USC, CA, USA
The Open University of Israel, Israel
('11269472', 'Iacopo Masi', 'iacopo masi')
('2955822', 'Jatuporn Toy Leksut', 'jatuporn toy leksut')
('1756099', 'Tal Hassner', 'tal hassner')
5859774103306113707db02fe2dd3ac9f91f1b9e
5892f8367639e9c1e3cf27fdf6c09bb3247651edEstimating Missing Features to Improve Multimedia Information Retrieval +('2666918', 'Abraham Bagherjeiran', 'abraham bagherjeiran')
('35089151', 'Nicole S. Love', 'nicole s. love')
('1696815', 'Chandrika Kamath', 'chandrika kamath')
5850aab97e1709b45ac26bb7d205e2accc798a87
587f81ae87b42c18c565694c694439c65557d6d5DeepFace: Face Generation using Deep Learning +('31560532', 'Hardie Cate', 'hardie cate')
('6415321', 'Fahim Dalvi', 'fahim dalvi')
('8815003', 'Zeshan Hussain', 'zeshan hussain')
ccate@stanford.edu +
fdalvi@cs.stanford.edu +
zeshanmh@stanford.edu +
580054294ca761500ada71f7d5a78acb0e622f191331 +
A Subspace Model-Based Approach to Face +
Relighting Under Unknown Lighting and Poses +
('2081318', 'Hyunjung Shim', 'hyunjung shim')
('33642939', 'Jiebo Luo', 'jiebo luo')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
587c48ec417be8b0334fa39075b3bfd66cc29dbeJournal of Vision (2016) 16(15):28, 1–8 +
Serial dependence in the perception of attractiveness +
University of California
Berkeley, CA, USA +
University of California
Berkeley, CA, USA +
University of California
Berkeley, CA, USA +
Helen Wills Neuroscience Institute, University of
California, Berkeley, CA, USA +
Vision Science Group, University of California
Berkeley, CA, USA +
The perception of attractiveness is essential for choices +
of food, object, and mate preference. Like perception of +
other visual features, perception of attractiveness is +
stable despite constant changes of image properties due +
to factors like occlusion, visual noise, and eye +
movements. Recent results demonstrate that perception +
of low-level stimulus features and even more complex +
attributes like human identity are biased towards recent +
percepts. This effect is often called serial dependence. +
Some recent studies have suggested that serial +
dependence also exists for perceived facial +
attractiveness, though there is also concern that the +
reported effects are due to response bias. Here we used +
an attractiveness-rating task to test the existence of +
serial dependence in perceived facial attractiveness. Our +
results demonstrate that perceived face attractiveness +
was pulled by the attractiveness level of facial images +
encountered up to 6 s prior. This effect was not due to +
response bias and did not rely on the previous motor +
response. This perceptual pull increased as the difference +
in attractiveness between previous and current stimuli +
increased. Our results reconcile previously conflicting +
findings and extend previous work, demonstrating that +
sequential dependence in perception operates across +
different levels of visual analysis, even at the highest +
levels of perceptual interpretation. +
Introduction +
Humans make aesthetic judgments all the time about +
the attractiveness or desirability of objects and scenes. +
Aesthetic judgments are not merely about judging +
works of art; they are constantly involved in our daily +
activity, influencing or determining our choices of food, +
object (Creusen & Schoormans, 2005), and mate +
preference (Rhodes, Simmons, & Peters, 2005). +
Aesthetic judgments are based on perceptual pro- +
cessing (Arnheim, 1954; Livingstone & Hubel, 2002; +
Solso, 1996). These judgments, like other perceptual +
experiences, are thought to be relatively stable in spite +
of fluctuations in the raw visual input we receive due to +
factors like occlusion, visual noise, and eye movements. +
One mechanism that allows the visual system to achieve +
this stability is serial dependence. Recent results have +
revealed that the perception of visual features such as +
orientation (Fischer & Whitney, 2014), numerosity +
(Cicchini, Anobile, & Burr, 2014), and facial identity +
(Liberman, Fischer, & Whitney, 2014) are systemati- +
cally assimilated toward visual input from the recent +
past. This perceptual pull has been distinguished from +
hysteresis in motor responses or decision processes, and +
has been shown to be tuned by the magnitude of the +
difference between previous and current visual inputs +
(Fischer & Whitney, 2014; Liberman, Fischer, & +
Whitney, 2014). +
Is aesthetics perception similarly stable like feature +
perception? Some previous studies have suggested that +
the answer is yes. It has been shown that there is a +
positive correlation between observers’ successive +
attractiveness ratings of facial images (Kondo, Taka- +
hashi, & Watanabe, 2012; Taubert, Van der Burg, & +
Alais, 2016). This suggests that there is an assimilative +
sequential dependence in attractiveness judgments. +
Citation: Xia, Y., Leib, A. Y., & Whitney, D. (2016). Serial dependence in the perception of attractiveness. Journal of Vision, +
16(15):28, 1–8, doi:10.1167/16.15.28. +
doi: 10 .116 7 /1 6. 15 . 28 +
Received July 13, 2016; published December 22, 2016 +
ISSN 1534-7362 +
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. +
('37397364', 'Ye Xia', 'ye xia')
('6931574', 'Allison Yamanashi Leib', 'allison yamanashi leib')
('1821337', 'David Whitney', 'david whitney')
58081cb20d397ce80f638d38ed80b3384af76869Embedded Real-Time Fall Detection Using Deep +
Learning For Elderly Care +
Samsung Research, Samsung Electronics +
('1729858', 'Hyunwoo Lee', 'hyunwoo lee')
('1784186', 'Jooyoung Kim', 'jooyoung kim')
('32671800', 'Dojun Yang', 'dojun yang')
('3443235', 'Joon-Ho Kim', 'joon-ho kim')
{hyun0772.lee, joody.kim, dojun.yang, mythos.kim}@samsung.com +
581e920ddb6ecfc2a313a3aa6fed3d933b917ab0Automatic Mapping of Remote Crowd Gaze to +
Stimuli in the Classroom +
University of T ubingen, T ubingen, Germany
2 Leibniz-Institut f¨ur Wissensmedien, T¨ubingen, Germany +
Hector Research Institute of Education Sciences and Psychology, T ubingen
Germany +
('2445102', 'Thiago Santini', 'thiago santini')
('24003697', 'Lucas Draghetti', 'lucas draghetti')
('3286609', 'Peter Gerjets', 'peter gerjets')
('2446461', 'Ulrich Trautwein', 'ulrich trautwein')
('1884159', 'Enkelejda Kasneci', 'enkelejda kasneci')
58fa85ed57e661df93ca4cdb27d210afe5d2cdcdCancún Center, Cancún, México, December 4-8, 2016 +
978-1-5090-4847-2/16/$31.00 ©2016 IEEE +
4118 +
5860cf0f24f2ec3f8cbc39292976eed52ba2eafdInternational Journal of Automated Identification Technology, 3(2), July-December 2011, pp. 51-60 +
COMPUTATION EvaBio: A TOOL FOR PERFORMANCE +
EVALUATION IN BIOMETRICS +
GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS
6 Boulevard Maréchal Juin, 14000 Caen Cedex - France +
('2774452', 'Julien Mahier', 'julien mahier')
('3356614', 'Baptiste Hemery', 'baptiste hemery')
('2174941', 'Mohamad El-Abed', 'mohamad el-abed')
('1793765', 'Christophe Rosenberger', 'christophe rosenberger')
584909d2220b52c0d037e8761d80cb22f516773fOCR-Free Transcript Alignment +
Dept. of Mathematics and Computer Science +
School of Computer Science +
School of Computer Science +
The Open University
Israel +
Tel Aviv University
Tel-Aviv, Israel +
Tel Aviv University
Tel-Aviv, Israel +
('1756099', 'Tal Hassner', 'tal hassner')
('1776343', 'Lior Wolf', 'lior wolf')
('1759551', 'Nachum Dershowitz', 'nachum dershowitz')
Email: hassner@openu.ac.il +
Email: wolf@cs.tau.ac.il +
Email: nachumd@tau.ac.il +
58bf72750a8f5100e0c01e55fd1b959b31e7dbcePyramidBox: A Context-assisted Single Shot +
Face Detector. +
Baidu Inc. +
('48785141', 'Xu Tang', 'xu tang')
('14931829', 'Daniel K. Du', 'daniel k. du')
('31239588', 'Zeqiang He', 'zeqiang he')
('2272123', 'Jingtuo Liu', 'jingtuo liu')
tangxu02@baidu.com,daniel.kang.du@gmail.com,{hezeqiang,liujingtuo}@baidu.com +
58542eeef9317ffab9b155579256d11efb4610f2International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +
Face Recognition Revisited on Pose, Alignment, +
Color, Illumination and Expression-PyTen +
Computer Science, BIT Noida, India +
58823377757e7dc92f3b70a973be697651089756Technical Report +
UCAM-CL-TR-861 +
ISSN 1476-2986 +
Number 861 +
Computer Laboratory +
Automatic facial expression analysis +
October 2014 +
15 JJ Thomson Avenue +
Cambridge CB3 0FD +
United Kingdom +
phone +44 1223 763500 +
http://www.cl.cam.ac.uk/ +
('1756344', 'Tadas Baltrusaitis', 'tadas baltrusaitis')
580e48d3e7fe1ae0ceed2137976139852b1755dfTHE EFFECTS OF MOTION AND ORIENTATION ON PERCEPTION OF +
FACIAL EXPRESSIONS AND FACE RECOGNITION +
by +
B.S. University of Indonesia
M.S. Brunel University of West London
Submitted to the Graduate Faculty of +
Arts and Sciences in partial fulfillment +
of the requirements for the degree of +
Doctor of Philosophy +
University of Pittsburgh
2002 +
('2059653', 'Zara Ambadar', 'zara ambadar')
5865e824e3d8560e07840dd5f75cfe9bf68f9d96RESEARCH ARTICLE +
Embodied conversational agents for +
multimodal automated social skills training in +
people with autism spectrum disorders +
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara
Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara
Japan, 3 Developmental Center for Child and Adult, Shigisan Hospital, Ikoma-gun, Nara, 636-0815, Japan +
('3162048', 'Hiroki Tanaka', 'hiroki tanaka')
('1867578', 'Hideki Negoro', 'hideki negoro')
('35238212', 'Hidemi Iwasaka', 'hidemi iwasaka')
('40285672', 'Satoshi Nakamura', 'satoshi nakamura')
* hiroki-tan@is.naist.jp +
58bb77dff5f6ee0fb5ab7f5079a5e788276184ccFacial Expression Recognition with PCA and LBP +
Features Extracting from Active Facial Patches +
 +
('7895427', 'Yanpeng Liu', 'yanpeng liu')
('16879896', 'Yuwen Cao', 'yuwen cao')
('29275442', 'Yibin Li', 'yibin li')
('1686211', 'Ming Liu', 'ming liu')
('1772484', 'Rui Song', 'rui song')
('1706513', 'Yafang Wang', 'yafang wang')
('40395865', 'Zhigang Xu', 'zhigang xu')
('1708045', 'Xin Ma', 'xin ma')
585260468d023ffc95f0e539c3fa87254c28510bCardea: Context–Aware Visual Privacy Protection +
from Pervasive Cameras +
HKUST-DT System and Media Laboratory +
Hong Kong University of Science and Technology, Hong Kong
('3432205', 'Jiayu Shu', 'jiayu shu')
('2844817', 'Rui Zheng', 'rui zheng')
('2119751', 'Pan Hui', 'pan hui')
Email: ∗jshuaa@ust.hk, †rzhengac@ust.hk, ‡panhui@ust.hk +
58cb1414095f5eb6a8c6843326a6653403a0ee17
58db008b204d0c3c6744f280e8367b4057173259International Journal of Current Engineering and Technology +
ISSN 2277 - 4106 +
© 2012 INPRESSCO. All Rights Reserved. +
Available at http://inpressco.com/category/ijcet +
Research Article +
Facial Expression Recognition +
Jaipur, Rajasthan, India
Accepted 3June 2012, Available online 8 June 2012 +
('40621542', 'Riti Kushwaha', 'riti kushwaha')
('2117075', 'Neeta Nain', 'neeta nain')
58628e64e61bd2776a2a7258012eabe3c79ca90cActive Grounding of Visual Situations +
Portland State University
Santa Fe Institute
Unpublished Draft +
('3438473', 'Max H. Quinn', 'max h. quinn')
('27572284', 'Erik Conser', 'erik conser')
('38388831', 'Jordan M. Witte', 'jordan m. witte')
('4421478', 'Melanie Mitchell', 'melanie mitchell')
676a136f5978783f75b5edbb38e8bb588e8efbbeMatrix Completion for Resolving Label Ambiguity +
UMIACS, University of Maryland, College Park, USA
Learning a visual classifier requires a large amount of labeled images +
and videos. However, labeling images is expensive and time-consuming +
due to the significant amount of human efforts involved. As a result, brief +
descriptions such as tags, captions and screenplays accompanying the im- +
ages and videos become important for training classifiers. Although such +
information is publicly available, it is not as explicitly labeled as human +
annotation. For instance, names in the caption of a news photo provide +
possible candidates for faces appearing in the image [1]. The names in the +
screenplays are only weakly associated with faces in the shots [4]. The prob- +
lem in which instead of a single label per instance, one is given a candidate +
set of labels, of which only one is correct is known as ambiguously labeled +
learning [2, 6]. +
Ambiguous Labels +
Disambiguated Labels +
Class 2 +
MCar +
Class 1 +
L={1} +
L={2} +
L={3} +
L={1, 2} +
L={2, 3} +
L={1, 3} +
Class 3 +
The ambiguously labeled data is denoted as L = {(x j , L j), j = 1, 2, . . . , N}, +
Figure 1: MCar reassigns the labels for those ambiguously labeled in- +
stances such that instances of the same subjects cohesively form potentially- +
separable convex hulls. +
where N is the number of instances. There are c classes, and the class labels +
are denoted as Y = {1, 2, . . . , c}. Note that x j is the feature vector of the jth +
instance, and its ambiguous labeling set L j ⊆ Y consists of the candidate +
labels associated with the jth instance. The true label of the jth instance is +
l j ∈ L j. In other words, one of the labels in L j is the true label of x j. The +
objective is to resolve the ambiguity in L such that each predicted label ˆl j +
of x j matches its true label l j. +
We interpret the ambiguous labeling set L j with soft labeling vector p j, +
where pi, j indicates the probability that instance j belongs to class i. This +
allows us to quantitatively assign the likelihood of each class the instance +
belongs to if such information is provided. Without any prior knowledge, +
we assume equal probability for each candidate label. Let P ∈ Rc×N denotes +
the ambiguous labeling matrix with p j in its jth column. With this, one can +
model the ambiguous labeling as P = P0 + EP, where P0 and EP denote the +
true labeling matrix and the labeling noise, respectively. The jth column +
vector of P0 is p0 +
j = el j , where el j is the canonical vector corresponding to +
the 1-of-K coding of its true label l j. Similarly, assuming that the feature +
vectors are corrupted by some noise or occlusion, the feature matrix X with +
x j in its jth column can be modeled as X = X0 + EX , where X ∈ Rm×N con- +
sists of N feature vectors of dimension m, X0 represents the feature matrix +
in the absence of noise and EX accounts for the noise. +
Figure 1 shows the geometric interpretation of our proposed method, +
Matrix Completion for Ambiguity Resolving (MCar). When each element +
in the ambiguous labeling set is trivially treated as the true label, the convex +
hulls of each class are erroneously expanded. MCar reassigns the ambiguous +
labels such that each over-expanded convex hull shrinks to its actual contour, +
and the convex hulls becomes potentially separable. +
In the paper, we show that the heterogeneous feature matrix, which is +
the concatenation of the labeling matrix P and feature matrix X, is ideally +
low-rank in the absence of noise (Figure 2), which allows us to convert the +
aforementioned label reassignment problem as a matrix completion prob- +
lem [5]. The proposed MCar takes the heterogeneous feature matrix as in- +
put, and returns the predicted labeling matrix Y by solving the following +
optimization problem +
= +
= +
+ +
+ +
۾଴ +
܆଴ +
۾ +
܆ +
+
۳௉ +
۳௑ +
Figure 2: Ideal decomposition of heterogeneous feature matrix using MCar. +
The underlying low-rank structure and the ambiguous labeling are recovered +
simultaneously. +
The proposed method inherits the benefit of low-rank recovery and pos- +
sesses the capability to resolve the label ambiguity via low-rank approxima- +
tion of the heterogeneous matrix. As a result, our method is more robust +
compared to some of the existing discriminative ambiguous learning meth- +
ods [3, 7], sparsity/dictionary-based method [2], and low-rank representation- +
based method [8]. Moreover, we generalize MCar to include the labeling +
constraints between the instances for practical applications. Compared to +
the state of the arts, our proposed framework achieves 2.9% improvement +
on the labeling accuracy of the Lost dataset and performs comparably on the +
Labeled Yahoo! News dataset. +
[1] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White, Y.-W. Teh, +
E. Learned-Miller, and D. A. Forsyth. Names and faces in the news. In +
CVPR, 2004. +
[2] Y.-C. Chen, V. M. Patel, J. K. Pillai, R. Chellappa, and P. J. Phillips. +
Dictionary learning from ambiguously labeled data. In CVPR, 2013. +
[3] T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning from ambiguously +
labeled images. In CVPR, 2009. +
[4] M. Everingham, J. Sivic, and A. Zisserman. Hello! My name is... Buffy +
(1) +
- Automatic naming of characters in TV video. In BMVC, 2006. +
[5] A. B. Goldberg, X. Zhu, B. Recht, J.-M. Xu, and R. D. Nowak. Trans- +
duction with matrix completion: Three birds with one stone. In NIPS, +
2010. +
[6] E. Hüllermeier and J. Beringer. Learning from ambiguously labeled +
examples. In Intell. Data Anal., 2006. +
[7] J. Luo and F. Orabona. Learning from candidate labeling sets. In NIPS, +
2010. +
min +
Y,EX +
rank(H) + λ kEX k0 + γkYk0 +
Z(cid:21) =(cid:20)P +
X(cid:21) −(cid:20)EP +
EX(cid:21) , +
N , Y ∈ Rc×N +
+ , +
s.t. H =(cid:20)Y +
1T +
c Y = 1T +
yi, j = 0 if pi, j = 0, +
where λ ∈ R+ and γ ∈ R+ control the sparsity of data noise and predicted +
labeling matrix, respectively. Consequently, the predicted label of instance +
j can be obtained as +
ˆl j = arg max +
i∈Y +
yi, j . +
(2) +
('2682056', 'Ching-Hui Chen', 'ching-hui chen')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
677585ccf8619ec2330b7f2d2b589a37146ffad7A flexible model for training action localization +
with varying levels of supervision +
('1902524', 'Guilhem Chéron', 'guilhem chéron')
('2285263', 'Jean-Baptiste Alayrac', 'jean-baptiste alayrac')
('1785596', 'Ivan Laptev', 'ivan laptev')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
676f9eabf4cfc1fd625228c83ff72f6499c67926FACE IDENTIFICATION AND CLUSTERING +
A thesis submitted to the +
Graduate School—New Brunswick +
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements +
for the degree of +
Master of Science +
Graduate Program in Computer Science +
Written under the direction of +
Dr. Vishal Patel, Dr. Ahmed Elgammal +
and approved by +
New Brunswick, New Jersey +
May, 2017 +
('34805991', 'Atul Dhingra', 'atul dhingra')
677477e6d2ba5b99633aee3d60e77026fb0b9306
6789bddbabf234f31df992a3356b36a47451efc7Unsupervised Generation of Free-Form and +
Parameterized Avatars +
('33964593', 'Adam Polyak', 'adam polyak')
('2188620', 'Yaniv Taigman', 'yaniv taigman')
('1776343', 'Lior Wolf', 'lior wolf')
679b7fa9e74b2aa7892eaea580def6ed4332a228Communication and automatic +
interpretation of affect from facial +
expressions1 +
University of Amsterdam, the Netherlands
University of Trento, Italy
University of Amsterdam, the Netherlands
('1764521', 'Albert Ali Salah', 'albert ali salah')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1695527', 'Theo Gevers', 'theo gevers')
675b2caee111cb6aa7404b4d6aa371314bf0e647AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions +
Carl Vondrick∗ +
('39599498', 'Chunhui Gu', 'chunhui gu')
('1758054', 'Yeqing Li', 'yeqing li')
('1726241', 'Chen Sun', 'chen sun')
('48536531', 'David A. Ross', 'david a. ross')
('2259154', 'Sudheendra Vijayanarasimhan', 'sudheendra vijayanarasimhan')
('1805076', 'George Toderici', 'george toderici')
('2997956', 'Caroline Pantofaru', 'caroline pantofaru')
('2262946', 'Susanna Ricco', 'susanna ricco')
('1694199', 'Rahul Sukthankar', 'rahul sukthankar')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
('1689212', 'Jitendra Malik', 'jitendra malik')
679b72d23a9cfca8a7fe14f1d488363f2139265f
67484723e0c2cbeb936b2e863710385bdc7d5368Anchor Cascade for Efficient Face Detection +('2425630', 'Baosheng Yu', 'baosheng yu')
('1692693', 'Dacheng Tao', 'dacheng tao')
670637d0303a863c1548d5b19f705860a23e285cFace Swapping: Automatically Replacing Faces in Photographs +
Columbia University
Peter Belhumeur +
Figure 1: We have developed a system that automatically replaces faces in an input image with ones selected from a large collection of +
face images, obtained by applying face detection to publicly available photographs on the internet. In this example, the faces of (a) two +
people are shown after (b) automatic replacement with the top three ranked candidates. Our system for face replacement can be used for face +
de-identification, personalized face replacement, and creating an appealing group photograph from a set of “burst” mode images. Original +
images in (a) used with permission from Retna Ltd. (top) and Getty Images Inc. (bottom). +
Rendering, Computational Photography +
1 Introduction +
it +
Advances in digital photography have made it possible to cap- +
ture large collections of high-resolution images and share them +
on the internet. While the size and availability of these col- +
lections is leading to many exciting new applications, +
is +
also creating new problems. One of the most +
important of +
these problems is privacy. Online systems such as Google +
Street View (http://maps.google.com/help/maps/streetview) and +
EveryScape (http://everyscape.com) allow users to interactively +
navigate through panoramic images of public places created using +
thousands of photographs. Many of the images contain people who +
have not consented to be photographed, much less to have these +
photographs publicly viewable. Identity protection by obfuscating +
the face regions in the acquired photographs using blurring, pixela- +
tion, or simply covering them with black pixels is often undesirable +
as it diminishes the visual appeal of the image. Furthermore, many +
('2085183', 'Dmitri Bitouk', 'dmitri bitouk')
('40631426', 'Neeraj Kumar', 'neeraj kumar')
('2057606', 'Samreen Dhillon', 'samreen dhillon')
('1750470', 'Shree K. Nayar', 'shree k. nayar')
6742c0a26315d7354ab6b1fa62a5fffaea06da14BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE? +
What does 2D geometric information +
really tell us about 3D face shape? +
('39180407', 'Anil Bas', 'anil bas')
('1687021', 'William A. P. Smith', 'william a. p. smith')
67a50752358d5d287c2b55e7a45cc39be47bf7d0
67c3c1194ee72c54bc011b5768e153a035068c43StreetScenes: Towards Scene Understanding in +
Still Images +
by +
Stanley Michael Bileschi +
Submitted to the Department of Electrical Engineering and Computer +
Science +
in partial fulflllment of the requirements for the degree of +
Doctor of Philosophy in Computer Science and Engineering +
at the +
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2006 +
c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Department of Electrical Engineering and Computer Science +
May 5, 2006 +
Certifled by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Tomaso A. Poggio +
McDermott Professor +
Thesis Supervisor +
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Arthur C. Smith +
Chairman, Department Committee on Graduate Students +
673d4885370b27c863e11a4ece9189a6a45931ccRecurrent Residual Module for Fast Inference in Videos +
Shanghai Jiao Tong University, 2Zhejiang University, 3Massachusetts Institute of Technology
networks for video recognition are more challenging. For +
example, for Youtube-8M dataset [1] with over 8 million +
video clips, it will take 50 years for a CPU to extract the +
deep features using a standard CNN model. +
('35654996', 'Bowen Pan', 'bowen pan')
('35992009', 'Wuwei Lin', 'wuwei lin')
('2126444', 'Xiaolin Fang', 'xiaolin fang')
('35933894', 'Chaoqin Huang', 'chaoqin huang')
('1804424', 'Bolei Zhou', 'bolei zhou')
('1830034', 'Cewu Lu', 'cewu lu')
†{googletornado,linwuwei13, huangchaoqin}@sjtu.edu.cn, ¶fxlfang@gmail.com +
§bzhou@csail.mit.edu; ‡lu-cw@cs.sjtu.edu.cn +
67c703a864aab47eba80b94d1935e6d244e00bcb (IJACSA) International Journal of Advanced Computer Science and Applications +
Vol. 7, No. 6, 2016 +
Face Retrieval Based On Local Binary Pattern and Its +
Variants: A Comprehensive Study +
University of Science, VNU-HCM, Viet Nam
face searching, +
('3911040', 'Phan Khoi', 'phan khoi')
6754c98ba73651f69525c770fb0705a1fae78eb5Joint Cascade Face Detection and Alignment +
University of Science and Technology of China
2 Microsoft Research +
('39447786', 'Dong Chen', 'dong chen')
('3080683', 'Shaoqing Ren', 'shaoqing ren')
('1732264', 'Yichen Wei', 'yichen wei')
('47300766', 'Xudong Cao', 'xudong cao')
('40055995', 'Jian Sun', 'jian sun')
{chendong,sqren}@mail.ustc.edu.cn +
{yichenw,xudongca,jiansun}@microsoft.com +
672fae3da801b2a0d2bad65afdbbbf1b2320623ePose-Selective Max Pooling for Measuring Similarity +
1Dept. of Computer Science +
2Dept. of Electrical & Computer Engineering +
Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
('40031188', 'Xiang Xiang', 'xiang xiang')
('1709073', 'Trac D. Tran', 'trac d. tran')
xxiang@cs.jhu.edu +
677ebde61ba3936b805357e27fce06c44513a455Facial Expression Recognition Based on Facial +
Components Detection and HOG Features +
The Hong Kong Polytechnic University, Hong Kong
Chu Hai College of Higher Education, Hong Kong
('2366262', 'Junkai Chen', 'junkai chen')
('1715231', 'Zenghai Chen', 'zenghai chen')
('8590720', 'Zheru Chi', 'zheru chi')
('1965426', 'Hong Fu', 'hong fu')
Email: Junkai.Chen@connect.polyu.hk +
67ba3524e135c1375c74fe53ebb03684754aae56978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
1767 +
ICASSP 2017 +
6769cfbd85329e4815bb1332b118b01119975a95Tied factor analysis for face recognition across +
large pose changes +
0be43cf4299ce2067a0435798ef4ca2fbd255901Title +
A temporal latent topic model for facial expression recognition +
Author(s) +
Shang, L; Chan, KP +
Citation +
The 10th Asian Conference on Computer Vision (ACCV 2010), +
Queenstown, New Zealand, 8-12 November 2010. In Lecture +
Notes in Computer Science, 2010, v. 6495, p. 51-63 +
Issued Date +
2011 +
URL +
http://hdl.handle.net/10722/142604 +
Rights +
Creative Commons: Attribution 3.0 Hong Kong License +
0bc53b338c52fc635687b7a6c1e7c2b7191f42e5ZHANG, BHALERAO: LOGLET SIFT FOR PART DESCRIPTION +
Loglet SIFT for Part Description in +
Deformable Part Models: Application to Face +
Alignment +
Department of Computer Science +
University of Warwick
Coventry, UK +
('39900385', 'Qiang Zhang', 'qiang zhang')
('2227351', 'Abhir Bhalerao', 'abhir bhalerao')
q.zhang.13@warwick.ac.uk +
abhir.bhalerao@warwick.ac.uk +
0b2277a0609565c30a8ee3e7e193ce7f79ab48b0944 +
Cost-Sensitive Semi-Supervised Discriminant +
Analysis for Face Recognition +
('1697700', 'Jiwen Lu', 'jiwen lu')
('3353607', 'Xiuzhuang Zhou', 'xiuzhuang zhou')
('1689805', 'Yap-Peng Tan', 'yap-peng tan')
('38152390', 'Yuanyuan Shang', 'yuanyuan shang')
('39491387', 'Jie Zhou', 'jie zhou')
0b9ce839b3c77762fff947e60a0eb7ebbf261e84Proceedings of the IASTED International Conference +
Computer Vision (CV 2011) +
June 1 - 3, 2011 Vancouver, BC, Canada +
LOGARITHMIC FOURIER PCA: A NEW APPROACH TO FACE +
RECOGNITION +
1 Lakshmiprabha Nattamai Sekar, +
omjyoti +
Majumder +
Surface Robotics Lab +
Central Mechanical Engineering Research Institute
Mahatma Gandhi Avenue, +
Durgapur - 713209, West Bengal, India. +
('9155672', 'Jhilik Bhattacharya', 'jhilik bhattacharya')email: 1 n prabha mech@cmeri.res.in, 2 bjhilik@cmeri.res.in, 3 sjm@cmeri.res.in +
0b8b8776684009e537b9e2c0d87dbd56708ddcb4Adversarial Discriminative Heterogeneous Face Recognition +
National Laboratory of Pattern Recognition, CASIA +
Center for Research on Intelligent Perception and Computing, CASIA +
Center for Excellence in Brain Science and Intelligence Technology, CAS +
University of Chinese Academy of Sciences, Beijing 100190, China
('3051419', 'Lingxiao Song', 'lingxiao song')
('2567523', 'Man Zhang', 'man zhang')
('2225749', 'Xiang Wu', 'xiang wu')
('1705643', 'Ran He', 'ran he')
0ba64f4157d80720883a96a73e8d6a5f5b9f1d9b
0b6a5200c33434cbfa9bf24ba482f6e06bf5fff71 +
The Use of Deep Learning in Image +
Segmentation, Classification and Detection +
The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania
 +
('33789881', 'Mihai-Sorin Badea', 'mihai-sorin badea')
('3407753', 'Laura Maria Florea', 'laura maria florea')
('2905899', 'Constantin Vertan', 'constantin vertan')
0b605b40d4fef23baa5d21ead11f522d7af1df06Label-Embedding for Attribute-Based Classification +
a Computer Vision Group∗, XRCE, France +
b LEAR†, INRIA, France +
('2893664', 'Zeynep Akata', 'zeynep akata')
('1723883', 'Florent Perronnin', 'florent perronnin')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
0b0eb562d7341231c3f82a65cf51943194add0bb> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +
Facial Image Analysis Based on Local Binary +
Patterns: A Survey +
+
('40451093', 'Di Huang', 'di huang')
('10795229', 'Caifeng Shan', 'caifeng shan')
('40703561', 'Mohsen Ardebilian', 'mohsen ardebilian')
('40231048', 'Liming Chen', 'liming chen')
0b3a146c474166bba71e645452b3a8276ac05998Who’s in the Picture? +
Berkeley, CA 94720 +
Computer Science Division +
U.C. Berkeley +
('1685538', 'Tamara L. Berg', 'tamara l. berg')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('34497462', 'Jaety Edwards', 'jaety edwards')
millert@cs.berkeley.edu +
0b78fd881d0f402fd9b773249af65819e48ad36dANALYSIS AND MODELING OF AFFECTIVE AUDIO VISUAL SPEECH +
BASED ON PAD EMOTION SPACE +
Tsinghua University
('2180849', 'Shen Zhang', 'shen zhang')
('1856341', 'Yingjin Xu', 'yingjin xu')
('25714033', 'Jia Jia', 'jia jia')
('7239047', 'Lianhong Cai', 'lianhong cai')
{zhangshen05, xuyj03, jiajia}@mails.tsinghua.edu.cn, clh-dcs@tsinghua.edu.cn +
0b835284b8f1f45f87b0ce004a4ad2aca1d9e153Cartooning for Enhanced Privacy in Lifelogging and Streaming Videos +
David Crandall +
School of Informatics and Computing +
Indiana University Bloomington
('3053390', 'Eman T. Hassan', 'eman t. hassan')
('2221434', 'Rakibul Hasan', 'rakibul hasan')
('34507388', 'Patrick Shaffer', 'patrick shaffer')
('1996617', 'Apu Kapadia', 'apu kapadia')
{emhassan, rakhasan, patshaff, djcran, kapadia}@indiana.edu +
0b5bd3ce90bf732801642b9f55a781e7de7fdde0
0b0958493e43ca9c131315bcfb9a171d52ecbb8aA Unified Neural Based Model for Structured Output Problems +
Soufiane Belharbi∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien Adam∗2 +
1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +
2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +
April 13, 2015 +
0b51197109813d921835cb9c4153b9d1e12a9b34THE UNIVERSITY OF CHICAGO
JOINTLY LEARNING MULTIPLE SIMILARITY METRICS FROM TRIPLET +
CONSTRAINTS +
A DISSERTATION SUBMITTED TO +
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES +
IN CANDIDACY FOR THE DEGREE OF +
MASTER OF SCIENCE +
DEPARTMENT OF COMPUTER SCIENCE +
BY +
CHICAGO, ILLINOIS +
WINTER, 2015 +
('40504838', 'LIWEN ZHANG', 'liwen zhang')
0bf3513d18ec37efb1d2c7934a837dabafe9d091Robust Subspace Clustering via Thresholding Ridge Regression +
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore
College of Computer Science, Sichuan University, Chengdu 610065, P.R. China
('8249791', 'Xi Peng', 'xi peng')
('9276020', 'Zhang Yi', 'zhang yi')
('3134548', 'Huajin Tang', 'huajin tang')
pangsaai@gmail.com, zhangyi@scu.edu.cn, htang@i2r.a-star.edu.sg. +
0b20f75dbb0823766d8c7b04030670ef7147ccdd1 +
Feature selection using nearest attributes +
('1744784', 'Alex Pappachen James', 'alex pappachen james')
('1697594', 'Sima Dimitrijev', 'sima dimitrijev')
0b5a82f8c0ee3640503ba24ef73e672d93aeebbfOn Learning 3D Face Morphable Model +
from In-the-wild Images +
('1849929', 'Luan Tran', 'luan tran')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
0b174d4a67805b8796bfe86cd69a967d357ba9b6 Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +
Vol. 3(4), 56-62, April (2014) +
Res.J.Recent Sci. +
0ba449e312894bca0d16348f3aef41ca01872383
0b87d91fbda61cdea79a4b4dcdcb6d579f063884The Open Automation and Control Systems Journal, 2015, 7, 569-579 +
569 +
Open Access +
Research on Theory and Method for Facial Expression Recognition Sys- +
tem Based on Dynamic Image Sequence +
School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R
China +
Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China
('9296838', 'Yang Xinfeng', 'yang xinfeng')
('2083303', 'Jiang Shan', 'jiang shan')
Send Orders for Reprints to reprints@benthamscience.ae +
0be2245b2b016de1dcce75ffb3371a5e4b1e731bOn the Variants of the Self-Organizing Map That Are +
Based on Order Statistics +
Aristotle University of Thessaloniki
Box 451, Thessaloniki 54124, Greece +
('1762248', 'Vassiliki Moschou', 'vassiliki moschou')
('1711062', 'Dimitrios Ververidis', 'dimitrios ververidis')
('1736143', 'Constantine Kotropoulos', 'constantine kotropoulos')
{vmoshou, jimver, costas}@aiia.csd.auth.gr +
0b79356e58a0df1d0efcf428d0c7c4651afa140dAppears In: Advances in Neural Information Processing Systems , MIT Press,  . +
Bayesian Modeling of Facial Similarity +
Mitsubishi Electric Research Laboratory
 Broadway +
Cambridge, MA  , USA +
Massachusettes Institute of Technology
 Ames St. +
Cambridge, MA  , USA +
('1780935', 'Baback Moghaddam', 'baback moghaddam')
('1768120', 'Tony Jebara', 'tony jebara')
('1682773', 'Alex Pentland', 'alex pentland')
baback@merl.com +
fjebara,sandyg@media.mit.edu +
0b572a2b7052b15c8599dbb17d59ff4f02838ff7Automatic Subspace Learning via Principal +
Coefficients Embedding +
('8249791', 'Xi Peng', 'xi peng')
('1697700', 'Jiwen Lu', 'jiwen lu')
('1709367', 'Zhang Yi', 'zhang yi')
('1680126', 'Rui Yan', 'rui yan')
0b85b50b6ff03a7886c702ceabad9ab8c8748fdchttp://www.journalofvision.org/content/11/3/17 +
Is there a dynamic advantage for facial expressions? +
Institute of Child Health, University College London, UK
Laboratory of Neuromotor Physiology, Santa Lucia +
Foundation, Rome, Italy +
Some evidence suggests that it is easier to identify facial expressions (FEs) shown as dynamic displays than as photographs +
(dynamic advantage hypothesis). Previously, this has been tested by using dynamic FEs simulated either by morphing a +
neutral face into an emotional one or by computer animations. For the first time, we tested the dynamic advantage hypothesis +
by using high-speed recordings of actors’ FEs. In the dynamic condition, stimuli were graded blends of two recordings +
(duration: 4.18 s), each describing the unfolding of an expression from neutral to apex. In the static condition, stimuli (duration: +
3 s) were blends of just the apex of the same recordings. Stimuli for both conditions were generated by linearly morphing one +
expression into the other. Performance was estimated by a forced-choice task asking participants to identify which prototype +
the morphed stimulus was more similar to. Identification accuracy was not different between conditions. Response times (RTs) +
measured from stimulus onset were shorter for static than for dynamic stimuli. Yet, most responses to dynamic stimuli were +
given before expressions reached their apex. Thus, with a threshold model, we tested whether discriminative information is +
integrated more effectively in dynamic than in static conditions. We did not find any systematic difference. In short, neither +
identification accuracy nor RTs supported the dynamic advantage hypothesis. +
Keywords: facial expressions, dynamic advantage, emotion, identification +
1–15, http://www.journalofvision.org/content/11/3/17, doi:10.1167/11.3.17. +
Introduction +
Research on emotion recognition has relied primarily on +
static images of intense facial expressions (FEs), which— +
despite being accurately identified (Ekman & Friesen, +
1982)—are fairly impoverished representations of real-life +
FEs. As a motor behavior determined by facial muscle +
actions, expressions are intrinsically dynamic. Insofar as +
detecting moment-to-moment changes in others’ affective +
states is fundamental for regulating social +
interactions +
(Yoshikawa & Sato, 2008), visual sensitivity to the +
dynamic properties of FEs might be an important aspect +
of our emotion recognition abilities. +
There is considerable evidence that dynamic information +
is not redundant and may be beneficial for various aspect of +
face processing, including age (Berry, 1990), sex (Hill
Johnston, 2001; Mather & Murdoch, 1994), and identity +
(Hill & Johnston, 2001; Lander, Christie, & Bruce, 1999; +
see O’Toole, Roark, & Abdi, 2002 for a review) recogni- +
tion. In real life, static information—such as the invariant +
geometrical parameters of +
features—and +
dynamic information describing the contraction of the +
expressive muscles are closely intertwined and contribute +
jointly to the overall perception. The relative contribution +
of either type of cues, which is likely to depend on the +
meaning that one is asked to extract from the stimulus, is +
still poorly understood. Pure motion information is suffi- +
cient to recognize a person’s identity and sex (Hill & +
the facial +
Johnston, 2001). Other studies have shown that face +
identity is better recognized from dynamic than static +
displays when the stimuli are degraded (e.g., shown as +
negatives, upside down, thresholded, pixilated, or blurred). +
However, +
the advantage disappears with unmodified +
stimuli (Knight & Johnston, 1997; Lander et al., 1999). In +
short, insofar as recognition of identity from complete +
static images is already close to perfect, motion appears to +
be beneficial only when static information is insufficient or +
has been manipulated (Katsiri, 2006; O’Toole et al., 2002). +
In comparison to face identity, fewer studies have +
investigated the role of dynamic information in FE recog- +
nition (see Katsiri, 2006, for a review). Taken together, +
they seem to suggest that the process of emotion identi- +
fication is facilitated when expressions are dynamic rather +
than static. However, because of various methodological +
issues and conceptual inconsistencies across studies, this +
suggestion needs to be qualified. We can divide the avail- +
able studies in three main groups. +
First, there are studies showing that dynamic information +
improves expression recognition in a variety of suboptimal +
conditions, i.e., when static information is either unavail- +
able or is only partially accessible. As in the case of +
identity recognition, emotions can be inferred from +
animated point-light descriptions of the faces that neglect +
facial features (Bassili, 1978, 1979; see also Bruce & +
Valentine, 1988). Furthermore, in various neuropsycholog- +
ical and developmental conditions, there is evidence that +
dynamic presentation improves emotion recognition with +
doi: 10.1167/11.3.17 +
Received November 18, 2010; published March 22, 2011 +
ISSN 1534-7362 * ARVO +
Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933483/ on 03/30/2017
('34569930', 'Chiara Fiorentini', 'chiara fiorentini')
('32709245', 'Paolo Viviani', 'paolo viviani')
0b84f07af44f964817675ad961def8a51406dd2ePerson Re-identification in the Wild +
3USTC +
4UCSD +
University of Technology Sydney
2UTSA +
('14904242', 'Liang Zheng', 'liang zheng')
('1983351', 'Hengheng Zhang', 'hengheng zhang')
('3141359', 'Shaoyan Sun', 'shaoyan sun')
('1698559', 'Yi Yang', 'yi yang')
('1713616', 'Qi Tian', 'qi tian')
{liangzheng06,manu.chandraker,yee.i.yang,wywqtian}@gmail.com +
0b242d5123f79defd5f775d49d8a7047ad3153bcCBMM Memo No. 36 +
September 15, 2015 +
How Important is Weight Symmetry in +
Backpropagation? +
by +
Center for Brains, Minds and Machines, McGovern Institute, MIT
('1694846', 'Qianli Liao', 'qianli liao')
('1700356', 'Joel Z. Leibo', 'joel z. leibo')
0ba1d855cd38b6a2c52860ae4d1a85198b304be4Variable-state Latent Conditional Random Fields +
for Facial Expression Recognition and Action Unit Detection +
Imperial College London, UK
Rutgers University, USA
('2616466', 'Robert Walecki', 'robert walecki')
('1729713', 'Ognjen Rudovic', 'ognjen rudovic')
('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')
('1694605', 'Maja Pantic', 'maja pantic')
0b50e223ad4d9465bb92dbf17a7b79eccdb997fbImplicit Elastic Matching with Random Projections for Pose-Variant Face +
Recognition +
Electrical and Computer Engineering +
University of Illinois at Urbana-Champaign
Microsoft Live Labs Research +
('1738310', 'John Wright', 'john wright')
('1745420', 'Gang Hua', 'gang hua')
ganghua@microsoft.com +
jnwright@uiuc.edu +
0badf61e8d3b26a0d8b60fe94ba5c606718daf0bRev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 2, 384 - 392, 2016 +
Facial Expression Recognition Using Deep Belief Network +
School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China
Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China
School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China
School of Computer and Information Science, Chongqing Normal University 401331, China
Deli Zhu +
('3439338', 'Yunong Yang', 'yunong yang')
('2068791', 'Dingyi Fang', 'dingyi fang')
0b02bfa5f3a238716a83aebceb0e75d22c549975Learning Probabilistic Models for Recognizing Faces +
under Pose Variations +
Computer vision and Remote Sensing, Berlin university of Technology
Sekr. FR-3-1, Franklinstr. 28/29, Berlin, Germany +
('2326207', 'M. Saquib', 'm. saquib')
('2962236', 'Olaf Hellwich', 'olaf hellwich')
{saquib;hellwich}@fpk.tu-berlin.de +
0bce54bfbd8119c73eb431559fc6ffbba741e6aaPublished as a conference paper at ICLR 2018 +
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +
RECURRENT NEURAL NETWORKS +
†Barcelona Supercomputing Center, ‡Google Inc, +
Universitat Polit`ecnica de Catalunya, Columbia University
('2447185', 'Brendan Jou', 'brendan jou')
('1711068', 'Jordi Torres', 'jordi torres')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{victor.campos, jordi.torres}@bsc.es, bjou@google.com, +
xavier.giro@upc.edu, shih.fu.chang@columbia.edu +
0b2966101fa617b90510e145ed52226e79351072Beyond Verbs: Understanding Actions in Videos +
with Text +
Department of Computer Science +
University of Manitoba
Winnipeg, MB, Canada +
Department of Computer Science +
University of Manitoba
Winnipeg, MB, Canada +
('3056962', 'Shujon Naha', 'shujon naha')
('2295608', 'Yang Wang', 'yang wang')
Email: shujon@cs.umanitoba.ca +
Email: ywang@cs.umanitoba.ca +
0ba0f000baf877bc00a9e144b88fa6d373db2708Facial Expression Recognition Based on Local +
Directional Pattern Using SVM Decision-level Fusion +
1. Key Laboratory of Education Informalization for Nationalities, Ministry of +
Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan
Normal University, Kunming, China
('2535958', 'Juxiang Zhou', 'juxiang zhou')
('3305175', 'Tianwei Xu', 'tianwei xu')
('2411704', 'Jianhou Gan', 'jianhou gan')
{zjuxiang@126.com,xutianwei@ynnu.edu.cn,kmganjh@yahoo.com.cn} +
0be80da851a17dd33f1e6ffdd7d90a1dc7475b96Hindawi Publishing Corporation +
Computational Intelligence and Neuroscience +
Volume 2016, Article ID 7696035, 7 pages +
http://dx.doi.org/10.1155/2016/7696035 +
Research Article +
Weighted Feature Gaussian Kernel SVM for +
Emotion Recognition +
School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China
Received 26 June 2016; Revised 14 August 2016; Accepted 14 September 2016 +
Academic Editor: Francesco Camastra +
Copyright © 2016 W. Wei and Q. Jia. This is an open access article distributed under the Creative Commons Attribution License, +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great +
attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. +
First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. +
Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At +
last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance +
on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method +
has achieved encouraging recognition results compared to the state-of-the-art methods. +
1. Introduction +
Emotion recognition has necessary applications in the real +
world. Its applications include but are not limited to artificial +
intelligence and human computer interaction. It remains a +
challenging and attractive topic. There are many methods +
which have been proposed for handling problems in emotion +
recognition. Speech [1, 2], physiological [3–5], and visual +
signals have been explored for emotion recognition. Speech +
signals are discontinuous signals, since they can be captured +
only when people are talking. Acquirement of physiological +
signal needs some special physiological sensors. Visual signal +
is the best choice for emotion recognition based on the above +
reasons. Although the visual information provided is useful, +
there are challenges regarding how to utilize this information +
reliably and robustly. According to Albert Mehrabian’s 7%– +
38%–55% rule, facial expression is an important mean of +
detecting emotions [6]. +
Further studies have been carried out on emotion recog- +
nition problems in facial expression images during the last +
decade [7, 8]. Given a facial expression image, estimate the +
correct emotional state, such as anger, happiness, sadness, and +
surprise. The general process has two steps: feature extraction +
and classification. For feature extraction, geometric feature, +
texture feature, motion feature, and statistical feature are in +
common use. For classification, methods based on machine +
learning algorithm are frequently used. According to special- +
ity of features, applying weighted features to machine learning +
algorithm has become an active research topic. +
In recent years, emotion recognition with weighted fea- +
ture based on facial expression has become a new research +
topic and received more and more attention [9, 10]. The +
aim is to estimate emotion type from a facial expression +
image captured during physical facial expression process of +
a subject. But the emotion features captured from the facial +
expression image are strongly linked to not the whole face +
but some specific regions in the face. For instance, features +
of eyebrow, eye, nose, and mouth areas are closely related +
to facial expression [11]. Besides, the effect of each feature +
on recognition result is different. In order to make the best +
of feature, using feature weighting technique can further +
enhance recognition performance. While there are several +
approaches of confirming weight, it remains an open issue +
on how to select feature and calculate corresponding weight +
effectively. +
In this paper, a new emotion recognition method based +
on weighted feature facial expression is presented. It is +
motivated by the fact that emotion can be described by facial +
expression and each facial expression feature has different +
impact on recognition results. Different from previous works +
('39248132', 'Wei Wei', 'wei wei')
('2301733', 'Qingxuan Jia', 'qingxuan jia')
Correspondence should be addressed to Wei Wei; wei wei@bupt.edu.cn +
0b183f5260667c16ef6f640e5da50272c36d599bSpatio-temporal Event Classification Using +
Time-Series Kernel Based Structured Sparsity(cid:2) +
L´aszl´o A. Jeni1, Andr´as L˝orincz2, Zolt´an Szab´o3, +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
Faculty of Informatics, E otv os Lor and University, Budapest, Hungary
Gatsby Computational Neuroscience Unit, University College London, London, UK
University of Pittsburgh, Pittsburgh, PA, USA
('1733113', 'Takeo Kanade', 'takeo kanade')laszlo.jeni@ieee.org, andras.lorincz@elte.hu, +
zoltan.szabo@gatsby.ucl.ac.uk, {jeffcohn,tk}@cs.cmu.edu +
0b4c4ea4a133b9eab46b217e22bda4d9d13559e6MORF: Multi-Objective Random Forests for Face Characteristic Estimation +
MICC - University of Florence
2CVC - Universitat Autonoma de Barcelona +
DVMM Lab - Columbia University
('37822746', 'Dario Di Fina', 'dario di fina')
('2602265', 'Svebor Karaman', 'svebor karaman')
('1749498', 'Andrew D. Bagdanov', 'andrew d. bagdanov')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
{dario.difina, alberto.delbimbo}@unifi.it, svebor.karaman@columbia.edu, bagdanov@cvc.uab.es +
0ba99a709cd34654ac296418a4f41a9543928149
0be764800507d2e683b3fb6576086e37e56059d1Learning from Geometry +
by +
Department of Electrical and Computer Engineering +
Duke University
Date: +
Approved: +
Robert Calderbank, Supervisor +
Lawrence Carin +
Ingrid Daubechies +
Gallen Reeves +
Guillermo Sapiro +
Dissertation submitted in partial fulfillment of the requirements for the degree of +
Doctor of Philosophy in the Department of Electrical and Computer Engineering +
in the Graduate School of Duke University
2016 +
('34060310', 'Jiaji Huang', 'jiaji huang')
0b642f6d48a51df64502462372a38c50df2051b1A Domain Adaptation Approach to Improve +
Speaker Turn Embedding Using Face Representation +
Idiap Research Institute, Martigny, Switzerland
École Polytechnique Fédéral de Lausanne, Switzerland +
('39560344', 'Nam Le', 'nam le')
('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')
nle@idiap.ch,odobez@idiap.ch +
0b7d1386df0cf957690f0fe330160723633d2305Learning American English Accents Using Ensemble Learning with GMMs +
Department of Computer Science +
Rensselaer Polytechnic Institute
Troy, NY 12180 +
Department of Computer Science +
Rensselaer Polytechnic Institute
Troy, NY 12180 +
('38769302', 'Jonathan T. Purnell', 'jonathan t. purnell')
('1705107', 'Malik Magdon-Ismail', 'malik magdon-ismail')
purnej@cs.rpi.edu +
magdon@cs.rpi.edu +
0b6616f3ebff461e4b6c68205fcef1dae43e2a1aRectifying Self Organizing Maps +
for Automatic Concept Learning from Web Images +
Bilkent University
06800 Ankara/Turkey +
Pinar Duygulu +
Bilkent University
06800 Ankara/Turkey +
('2540074', 'Eren Golge', 'eren golge')eren.golge@bilkent.edu.tr +
pinar.duygulu@gmail.com +
0b8c92463f8f5087696681fb62dad003c308ebe2On Matching Sketches with Digital Face Images +
in local +
('2559473', 'Himanshu S. Bhatt', 'himanshu s. bhatt')
('34173298', 'Samarth Bharadwaj', 'samarth bharadwaj')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
0bc0f9178999e5c2f23a45325fa50300961e0226Recognizing facial expressions from videos using Deep +
Belief Networks +
CS 229 Project +
('34699434', 'Andrew Ng', 'andrew ng')Adithya Rao (adithyar@stanford.edu), Narendran Thiagarajan (naren@stanford.edu) +
0ba402af3b8682e2aa89f76bd823ddffdf89fa0aSquared Earth Mover’s Distance-based Loss for Training Deep Neural Networks +
Computer Science Department +
Stony Brook University
Cognitive Neuroscience Lab +
Computer Science Department +
Harvard University
Stony Brook University
('2321406', 'Le Hou', 'le hou')
('2576295', 'Chen-Ping Yu', 'chen-ping yu')
('1686020', 'Dimitris Samaras', 'dimitris samaras')
lehhou@cs.stonybrook.edu +
chenpingyu@fas.harvard.edu +
samaras@cs.stonybrook.edu +
0bf0029c9bdb0ac61fda35c075deb1086c116956Article +
Modelling of Orthogonal Craniofacial Profiles +
University of York, Heslington, York YO10 5GH, UK
Received: 20 October 2017; Accepted: 23 November 2017; Published: 30 November 2017 +
('1694260', 'Hang Dai', 'hang dai')
('1737428', 'Nick Pears', 'nick pears')
('1678859', 'Christian Duncan', 'christian duncan')
nick.pears@york.ac.uk +
2 Alder Hey Children’s Hospital, Liverpool L12 2AP, UK; Christian.Duncan@alderhey.nhs.uk +
* Correspondence: hd816@york.ac.uk; Tel.: +44-1904-325-643 +
0b3f354e6796ef7416bf6dde9e0779b2fcfabed2
9391618c09a51f72a1c30b2e890f4fac1f595ebdGlobally Tuned Cascade Pose Regression via +
Back Propagation with Application in 2D Face +
Pose Estimation and Heart Segmentation in 3D +
CT Images +
Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College
April 1, 2015 +
This work was submitted to ICML 2015 but got rejected. We put the initial +
submission ”as is” in Page 2 - 11 and add updated contents at the tail. The +
code of this work is available at https://github.com/pengsun/bpcpr5. +
Peng Sun pes2021@med.cornell.edu +
James K Min jkm2001@med.cornell.edu +
Guanglei Xiong gux2003@med.cornell.edu +
93675f86d03256f9a010033d3c4c842a732bf661Universit´edesSciencesetTechnologiesdeLilleEcoleDoctoraleSciencesPourl’ing´enieurUniversit´eLilleNord-de-FranceTHESEPr´esent´ee`al’Universit´edesSciencesetTechnologiesdeLillePourobtenirletitredeDOCTEURDEL’UNIVERSIT´ESp´ecialit´e:MicroetNanotechnologieParTaoXULocalizedgrowthandcharacterizationofsiliconnanowiresSoutenuele25Septembre2009Compositiondujury:Pr´esident:TuamiLASRIRapporteurs:ThierryBARONHenriMARIETTEExaminateurs:EricBAKKERSXavierWALLARTDirecteurdeth`ese:BrunoGRANDIDIER
935a7793cbb8f102924fa34fce1049727de865c2AGE ESTIMATION UNDER CHANGES IN IMAGE QUALITY: AN EXPERIMENTAL STUDY +
ISLA Lab, Informatics Institute, University of Amsterdam
('1765602', 'Fares Alnajar', 'fares alnajar')
('1695527', 'Theo Gevers', 'theo gevers')
('1968574', 'Sezer Karaoglu', 'sezer karaoglu')
9326d1390e8601e2efc3c4032152844483038f3fLandmark Based Facial Component Reconstruction +
for Recognition Across Pose +
Department of Mechanical Engineering +
National Taiwan University of Science and Technology
Taipei, Taiwan +
('38801529', 'Gee-Sern Hsu', 'gee-sern hsu')
('3329222', 'Hsiao-Chia Peng', 'hsiao-chia peng')
('2329565', 'Kai-Hsiang Chang', 'kai-hsiang chang')
Email: ∗jison@mail.ntust.edu.tw +
93747de3d40376761d1ef83ffa72ec38cd385833COGNITION AND EMOTION, 2015 +
http://dx.doi.org/10.1080/02699931.2015.1039494 +
Team members’ emotional displays as indicators +
of team functioning +
University of Amsterdam, Amsterdam, The
Netherlands +
University of Amsterdam, Amsterdam, The Netherlands
Ross School of Business, University of Michigan, Ann Arbor, MI, USA
(Received 18 August 2014; accepted 6 April 2015) +
Emotions are inherent to team life, yet it is unclear how observers use team members’ emotional +
expressions to make sense of team processes. Drawing on Emotions as Social Information theory, we +
propose that observers use team members’ emotional displays as a source of information to predict the +
team’s trajectory. We argue and show that displays of sadness elicit more pessimistic inferences +
regarding team dynamics (e.g., trust, satisfaction, team effectiveness, conflict) compared to displays of +
happiness. Moreover, we find that this effect is strengthened when the future interaction between the +
team members is more ambiguous (i.e., under ethnic dissimilarity; Study 1) and when emotional +
displays can be clearly linked to the team members’ collective experience (Study 2). These studies shed +
light on when and how people use others’ emotional expressions to form impressions of teams. +
Keywords: Emotions as social information; Impression formation; Team functioning; Sense-making. +
How do people make sense of social collectives? This +
question has a long-standing interest in the social +
sciences (Hamilton & Sherman, 1996), because +
observers’ understanding of what goes on between +
other individuals informs their behavioural responses +
(Abelson, Dasgupta, Park, & Banaji, 1998; Magee & +
Tiedens, 2006). A special type of social collective is +
the team, in which individuals work together on a +
joint task (Ilgen, 1999). There are many reasons why +
outside observers may want to develop an under- +
standing of a team’s functioning and future trajectory, +
for instance because their task is to supervise the team +
or because they are considering sponsoring or poten- +
tially joining the team as a member. However, +
making sense of a team’s trajectory is an uncertain +
endeavour because explicit information about team +
functioning is often not available. This problem is +
further exacerbated by the fact that team ventures are +
simultaneously potent and precarious. When indivi- +
duals join forces in teams, great achievements can be +
obtained (Guzzo & Dickson, 1996), but teams are +
also a potential breeding ground for myriad negative +
outcomes such as intra-team conflicts, social inhibi- +
tion, decision-making biases and productivity losses +
(Jehn, 1995; Kerr & Tindale, 2004). We propose +
that, in their sense-making efforts, observers there- +
fore make use of dynamic signals that provide up-to- +
date diagnostic information about the likely trajectory +
Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein
© 2015 Taylor & Francis +
('2863272', 'Jeffrey Sanchez-Burks', 'jeffrey sanchez-burks')1018 XA Amsterdam, The Netherlands. E-mail: ac.homan@uva.nl +
936c7406de1dfdd22493785fc5d1e5614c6c28822012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 762–772, +
Montr´eal, Canada, June 3-8, 2012. c(cid:13)2012 Association for Computational Linguistics +
762 +
93721023dd6423ab06ff7a491d01bdfe83db7754ROBUST FACE ALIGNMENT USING CONVOLUTIONAL NEURAL +
NETWORKS +
Orange Labs, 4, Rue du Clos Courtel, 35512 Cesson-S´evign´e, France +
Keywords: +
Face alignment, Face registration, Convolutional Neural Networks. +
('1762557', 'Stefan Duffner', 'stefan duffner')
('34798028', 'Christophe Garcia', 'christophe garcia')
{stefan.duffner, christophe.garcia}@orange-ftgroup.com +
93971a49ef6cc88a139420349a1dfd85fb5d3f5cScalable Probabilistic Models: +
Applied to Face Identification in the Wild +
Biometric Person Recognition Group +
Idiap Research Institute
Rue Marconi 19 PO Box 592 +
1920 Martigny +
('2121764', 'Laurent El Shafey', 'laurent el shafey')laurent.el-shafey@idiap.ch +
sebastien.marcel@idiap.ch +
93420d9212dd15b3ef37f566e4d57e76bb2fab2fAn All-In-One Convolutional Neural Network for Face Analysis +
Center for Automation Research, UMIACS, University of Maryland, College Park, MD
('48467498', 'Rajeev Ranjan', 'rajeev ranjan')
('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')
('38171682', 'Carlos D. Castillo', 'carlos d. castillo')
('9215658', 'Rama Chellappa', 'rama chellappa')
{rranjan1,swamiviv,carlos,rama}@umiacs.umd.edu +
93af36da08bf99e68c9b0d36e141ed8154455ac2Workshop track - ICLR 2018 +
ADDITIVE MARGIN SOFTMAX +
FOR FACE VERIFICATION +
Department of Information and Communication Engineering +
University of Electronic Science and Technology of China
Chengdu, Sichuan 611731 China +
College of Computing
Georgia Institute of Technology
Atlanta, United States. +
Department of Information and Communication Engineering +
University of Electronic Science and Technology of China
Chengdu, Sichuan 611731 China +
('47939378', 'Feng Wang', 'feng wang')
('51094998', 'Weiyang Liu', 'weiyang liu')
('8424682', 'Haijun Liu', 'haijun liu')
feng.wff@gmail.com +
{wyliu, hanjundai}@gatech.edu +
haijun liu@126.com chengjian@uestc.edu.cn +
93cbb3b3e40321c4990c36f89a63534b506b6dafIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +
477 +
Learning From Examples in the Small Sample Case: +
Face Expression Recognition +
('1822413', 'Guodong Guo', 'guodong guo')
('1724754', 'Charles R. Dyer', 'charles r. dyer')
937ffb1c303e0595317873eda5ce85b1a17f9943Eyes Do Not Lie: Spontaneous versus Posed Smiles +
Intelligent Systems Lab Amsterdam, University of Amsterdam
Science Park 107, Amsterdam, The Netherlands +
('9301018', 'Roberto Valenti', 'roberto valenti')
('1764521', 'Albert Ali Salah', 'albert ali salah')
('1695527', 'Theo Gevers', 'theo gevers')
h.dibeklioglu@uva.nl, r.valenti@uva.nl, a.a.salah@uva.nl, th.gevers@uva.nl +
93f37c69dd92c4e038710cdeef302c261d3a4f92Compressed Video Action Recognition +
Philipp Kr¨ahenb¨uhl1 +
The University of Texas at Austin, 2Carnegie Mellon University
University of Southern California, 4A9, 5Amazon
('2978413', 'Chao-Yuan Wu', 'chao-yuan wu')
('1771307', 'Manzil Zaheer', 'manzil zaheer')
('2804000', 'Hexiang Hu', 'hexiang hu')
('1691629', 'Alexander J. Smola', 'alexander j. smola')
('1758550', 'R. Manmatha', 'r. manmatha')
cywu@cs.utexas.edu +
manzil@cmu.edu +
smola@amazon.com +
hexiangh@usc.edu +
philkr@cs.utexas.edu +
manmatha@a9.com +
936227f7483938097cc1cdd3032016df54dbd5b6Learning to generalize to new compositions in image understanding +
Gonda Brain Research Center, Bar Ilan University, Israel
3Google Research, Mountain View CA, USA +
Tel Aviv University, Israel
('34815079', 'Yuval Atzmon', 'yuval atzmon')
('1750652', 'Jonathan Berant', 'jonathan berant')
('3451674', 'Vahid Kezami', 'vahid kezami')
('1786843', 'Amir Globerson', 'amir globerson')
('1732280', 'Gal Chechik', 'gal chechik')
yuval.atzmon@biu.ac.il +
939123cf21dc9189a03671484c734091b240183eWithin- and Cross- Database Evaluations for Gender +
Classification via BeFIT Protocols +
Idiap Research Institute
Centre du Parc, Rue Marconi 19, CH-1920, Martigny, Switzerland +
('2128163', 'Nesli Erdogmus', 'nesli erdogmus')
('2059725', 'Matthias Vanoni', 'matthias vanoni')
Email: nesli.erdogmus, matthias.vanoni, marcel@idiap.ch +
938ae9597f71a21f2e47287cca318d4a2113feb2Classifier Learning with Prior Probabilities +
for Facial Action Unit Recognition +
1National Laboratory of Pattern Recognition, CASIA +
University of Chinese Academy of Sciences
Rensselaer Polytechnic Institute
('49889545', 'Yong Zhang', 'yong zhang')
('38690089', 'Weiming Dong', 'weiming dong')
('39495638', 'Bao-Gang Hu', 'bao-gang hu')
('1726583', 'Qiang Ji', 'qiang ji')
zhangyong201303@gmail.com, weiming.dong@ia.ac.cn, hubg@nlpr.ia.ac.cn, qji@ecse.rpi.edu +
94b9c0a6515913bad345f0940ee233cdf82fffe1International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Impact Factor (2012): 3.358 +
Face Recognition using Local Ternary Pattern for +
Low Resolution Image +
Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India
Chandigarh University, Gharuan, Punjab, India
('40440964', 'Amanpreet Kaur', 'amanpreet kaur')
946017d5f11aa582854ac4c0e0f1b18b06127ef1Tracking Persons-of-Interest +
via Adaptive Discriminative Features +
Xi an Jiaotong University
Hanyang University
University of Illinois, Urbana-Champaign
University of California, Merced
http://shunzhang.me.pn/papers/eccv2016/ +
('2481388', 'Shun Zhang', 'shun zhang')
('1698965', 'Yihong Gong', 'yihong gong')
('3068086', 'Jia-Bin Huang', 'jia-bin huang')
('33047058', 'Jongwoo Lim', 'jongwoo lim')
('32014778', 'Jinjun Wang', 'jinjun wang')
('1752333', 'Narendra Ahuja', 'narendra ahuja')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
94eeae23786e128c0635f305ba7eebbb89af0023Journal of Machine Learning Research 18 (2018) 1-34 +
Submitted 01/17; Revised 4/18; Published 6/18 +
Emergence of Invariance and Disentanglement +
in Deep Representations∗ +
Department of Computer Science +
University of California
Los Angeles, CA 90095, USA +
Department of Computer Science +
University of California
Los Angeles, CA 90095, USA +
Editor: Yoshua Bengio +
('16163297', 'Alessandro Achille', 'alessandro achille')
('1715959', 'Stefano Soatto', 'stefano soatto')
achille@cs.ucla.edu +
soatto@cs.ucla.edu +
944faf7f14f1bead911aeec30cc80c861442b610Action Tubelet Detector for Spatio-Temporal Action Localization +('1881509', 'Vicky Kalogeiton', 'vicky kalogeiton')
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b735967 +
A Benchmark and Comparative Study of +
Video-Based Face Recognition +
on COX Face Database +
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1705483', 'Haihong Zhang', 'haihong zhang')
('1710195', 'Shihong Lao', 'shihong lao')
('2378840', 'Alifu Kuerban', 'alifu kuerban')
('1710220', 'Xilin Chen', 'xilin chen')
948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494Available online at www.sciencedirect.com +
Procedia Engineering 41 ( 2012 ) 465 – 472 +
International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) +
Face Recognition From Single Sample Per Person by Learning of +
Generic Discriminant Vectors +
aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia
bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
('7453141', 'Fadhlan Hafiz', 'fadhlan hafiz')
('2412523', 'Amir A. Shafie', 'amir a. shafie')
('9146253', 'Yasir Mohd Mustafah', 'yasir mohd mustafah')
94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81
94325522c9be8224970f810554611d6a73877c13
9487cea80f23afe9bccc94deebaa3eefa6affa99Fast, Dense Feature SDM on an iPhone +
Queensland University of Technology, Brisbane, Queensland, Australia
Carnegie Mellon University, Pittsburgh, PA, USA
('3231493', 'Ashton Fagg', 'ashton fagg')
('1820249', 'Simon Lucey', 'simon lucey')
('1729760', 'Sridha Sridharan', 'sridha sridharan')
9441253b638373a0027a5b4324b4ee5f0dffd670A Novel Scheme for Generating Secure Face +
Templates Using BDA +
P.G. Student, Department of Computer Engineering, +
Associate Professor, Department of Computer +
MCERC, +
Nashik (M.S.), India +
('40075681', 'Shraddha S. Shinde', 'shraddha s. shinde')
('2590072', 'Anagha P. Khedkar', 'anagha p. khedkar')
e-mail: shraddhashinde@gmail.com +
949699d0b865ef35b36f11564f9a4396f5c9cddbAnders, Ende, Junghofer, Kissler & Wildgruber (Eds.) +
ISSN 0079-6123 +
CHAPTER 18 +
Processing of facial identity and expression: a +
psychophysical, physiological and computational +
perspective +
Sarah D. Chiller-Glaus2 +
Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 T bingen, Germany
University of Zurich, Zurich, Switzerland
('2388249', 'Adrian Schwaninger', 'adrian schwaninger')
('1793750', 'Christian Wallraven', 'christian wallraven')
94ac3008bf6be6be6b0f5140a0bea738d4c75579
94e259345e82fa3015a381d6e91ec6cded3971b4Classiflcation of Photometric Factors +
Based on Photometric Linearization +
The Institute of Scienti c and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, JAPAN +
2 Matsushita Electric Industrial Co., Ltd. +
Okayama University
Okayama-shi, Okayama 700-8530, JAPAN +
('3155610', 'Yasuhiro Mukaigawa', 'yasuhiro mukaigawa')
('2740479', 'Yasunori Ishii', 'yasunori ishii')
('1695509', 'Takeshi Shakunaga', 'takeshi shakunaga')
mukaigaw@am.sanken.osaka-u.ac.jp +
94a11b601af77f0ad46338afd0fa4ccbab909e82
0efdd82a4753a8309ff0a3c22106c570d8a84c20LDA WITH SUBGROUP PCA METHOD FOR FACIAL IMAGE RETRIEVAL +
Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea
('34600044', 'Wonjun Hwang', 'wonjun hwang')
('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')
('37980373', 'Seokcheol Kee', 'seokcheol kee')
wjhwang@sait.samsung.co.kr +
0e5dcc6ae52625fd0637c6bba46a973e46d58b9cPareto Models for Multiclass Discriminative Linear +
Dimensionality Reduction +
University of Alberta, Edmonton, AB T6G 2E8, Canada
bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
cCentre of Intelligent Machines, McGill University, Montr eal, QC H3A 0E9, Canada
('3141839', 'Fernando De La Torre', 'fernando de la torre')
('1701344', 'Frank P. Ferrie', 'frank p. ferrie')
0e73d2b0f943cf8559da7f5002414ccc26bc77cdSimilarity Comparisons for Interactive Fine-Grained Categorization +
California Institute of Technology
vision.caltech.edu +
Serge Belongie4 +
Toyota Technological Institute at Chicago
ttic.edu +
4 Cornell Tech +
tech.cornell.edu +
Approach +
1) Image +
Database w/ +
Class Labels +
2) Collect Similarity +
Comparisons +
3) Learn Perceptual +
Embedding +
A +
Mallard +
Cardinal +
? +
1) Query Image +
2) Computer +
Vision +
B +
3) Human-in-the-Loop Categorization +
C +
(cid:1876) +
(cid:1855) +
(cid:1868) +
C +
D +
perceptual space +
where +
(cid:1826) True location of (cid:1876) in +
(cid:1872) Time step +
(cid:1847)(cid:3047) User responses at (cid:1872) +
(cid:1876) Query image +
(cid:1855) Class +
INTERACTIVE +
CATEGORIZATION +
• Compute per-class probabilities as: +
(cid:1826) +
(cid:1868)(cid:1855),|(cid:1876),(cid:1847)(cid:3047) (cid:1503)(cid:1868)(cid:1855),(cid:1847)(cid:3047)|(cid:1876) = (cid:3505) (cid:1868)(cid:1855),(cid:1826),(cid:1847)(cid:3047)|(cid:1876)(cid:1856)(cid:1826) +
(cid:1875)(cid:3047)=(cid:1868)(cid:1855),(cid:1826),(cid:1847)(cid:3047)|(cid:1876) =(cid:1868)(cid:1847)(cid:3047)| (cid:1855),(cid:1826),(cid:1876) (cid:1868)(cid:1855),(cid:1826)(cid:1876) +
(cid:1868)(cid:1855),|(cid:1876),(cid:1847)(cid:3047) (cid:3406)(cid:963) +
(cid:1875)(cid:3038)(cid:3047) +
(cid:3038),(cid:3030)(cid:3286)(cid:2880)(cid:3030)(cid:963) (cid:1875)(cid:3038)(cid:3047) +
i.e. sum of weights of examples of class (cid:1855) +
(cid:3038) +
where (cid:1863) enumerates training examples +
• Weight (cid:1875)(cid:3038) represents how likely (cid:1826)(cid:3038) is +
true location (cid:1826): +
(cid:1875)(cid:3038)(cid:3047)=(cid:1868)(cid:1855)(cid:3038),(cid:1826)(cid:3038),(cid:1847)(cid:3047)|(cid:1876) =(cid:1868)(cid:1847)(cid:3047)| (cid:1855)(cid:3038),(cid:1826)(cid:3038),(cid:1876) (cid:1868)(cid:1855)(cid:3038),(cid:1826)(cid:3038)(cid:1876) +
Efficient computation +
• Approximate per-class probabilities as: +
such that +
(cid:1875)(cid:3038)(cid:3047)(cid:2878)(cid:2869)=(cid:1868)(cid:1873)(cid:3047)(cid:2878)(cid:2869)(cid:1826)(cid:3038)(cid:1875)(cid:3038)(cid:3047) +
= (cid:2038)(cid:1845)(cid:3036)(cid:3038) +
(cid:1875)(cid:3038)(cid:3047) +
(cid:963) +
(cid:2038)(cid:1845)(cid:3037)(cid:3038) +
(cid:3037)(cid:1488)(cid:3005) +
(cid:3513) Initialize weights (cid:1875)(cid:3038)(cid:2868)= (cid:1868)(cid:1855)(cid:3038),(cid:1826)(cid:3038)(cid:1876) +
(cid:3514) Update weights (cid:1875)(cid:3038)(cid:3047)(cid:2878)(cid:2869) when user answers +
Efficient update rule: +
a similarity question +
(cid:3515) Update per-class probabilities +
? +
(cid:3047) +
(cid:1847) +
(cid:1876) +
(cid:1855) +
(cid:1868) +
D +
A +
Learning a Metric +
• Given set of triplet comparisons (cid:2286), learn +
embedding (cid:1800) of (cid:1840) training images with +
From (cid:1800), generate similarity matrix +
(cid:1845)(cid:1488)(cid:1840)×(cid:1840) +
stochastic triplet embedding [van der Maaten +
& Weinberger 2012] +
B +
D +
D +
Computer Vision +
• Easy to map off-the-shelf CV +
algorithms into framework, e.g., +
multiclass classification scores +
(cid:1868)(cid:1855),(cid:1826)(cid:1876) (cid:1503)(cid:1868)(cid:1855)|(cid:1876) +
Incorporate independent user +
response as: +
Incorporating Users +
• (cid:1830) is grid of images for each question +
(cid:1868)(cid:1873)(cid:1826) = (cid:2038)(cid:1871)((cid:1826),(cid:1826)(cid:3036)) +
(cid:963) +
(cid:2038)(cid:1871)((cid:1826),(cid:1826)(cid:3037)) +
(cid:3037)(cid:1488)(cid:3005) +
entropy of (cid:1868)(cid:1855),(cid:1826)(cid:3038),(cid:1847)(cid:3047)|(cid:1876) +
largest (cid:1875)(cid:3038)(cid:3047) +
Selecting the Display +
• Approximate solution: maximizes +
[Fang & Geman 2005] +
From each cluster, select image with +
expected information gain in terms of +
• Group images into equal-weight clusters +
Results +
Learned Embedding +
Learn category-level embedding of +
• Category-level embedding requires +
(cid:1840)=200 nodes +
Simulated noisy users +
With computer vision +
Deterministic users +
No computer vision +
Deterministic users +
With computer vision +
Interactive Categorization +
• Using computer vision reduces the burden on the user +
• The system is robust to user noise +
much fewer comparisons compared to +
at the instance-level +
Similarity comparisons are advantageous compared to part/attribute questions +
Intelligently selecting image displays reduces effort +
System supports multiple similarity +
metrics as different types of +
questions +
Simulate perceptual spaces using +
CUB-200-2011 attribute +
annotations +
Multiple Metrics +
CV, Color Similarity +
CV, Shape Similarity +
CV, Pattern Similarity +
No CV, Color/Shape/Pattern Similarity +
CV, Color/Shape/Pattern Similarity +
Method +
Avg. #Qs +
2.70 +
2.67 +
2.67 +
2.64 +
4.21 +
Qualitative Results +
Vermilion +
Fly- +
catcher +
Query Image +
Q1: Most Similar? +
Q2: Most Similar? +
Query Image +
Q1: Most Similar By Color? +
Q2: Most Similar By Pattern? +
Hooded +
Merganser +
University of California, San Diego
vision.ucsd.edu +
Overview +
Problem +
• Parts and attributes exhibit weaknesses +
(cid:190) Scalability issues; costly; reliance on experts, but experts are scarce +
Proposed Solution +
• Use relative similarity comparisons to reduce dependence on expert- +
derived part and attribute vocabularies +
Contributions +
• We present an efficient, flexible, and scalable system for interactive +
fine-grained visual categorization +
(cid:190) Based on perceptual similarity +
(cid:190) Combines similarity metrics and computer vision methods in a +
unified framework +
• Outperforms state-of-the-art relevance feedback-based and +
part/attribute-based approaches +
Similarity Comparisons +
A +
A. Collect grid-based +
similarity comp- +
arisons that do not +
require prior expertise +
B. Broadcast grid-based +
comparisons to triplet +
comparisons +
B +
(cid:2286)= (cid:1861),(cid:1862),(cid:1864) (cid:1876)(cid:3036) more similar to (cid:1876)(cid:3037) than (cid:1876)(cid:3039) +
Is this more similar to… (cid:1876)(cid:3036) +
(cid:1876)(cid:3037) +
This one? +
(cid:1876)(cid:3039) +
Or this one? +
(cid:1871) , > (cid:1871) , +
(cid:1871) , > (cid:1871) , +
(cid:1871) , > (cid:1871) , +
(cid:1871) , > (cid:1871) , +
(cid:1871) , > (cid:1871) , +
(cid:1871) , > (cid:1871) , +
(cid:1871) , > (cid:1871) , +
(cid:1871) , > (cid:1871) , +
? +
(cid:1871)((cid:1861),(cid:1862)): perceptual similarity +
between images (cid:1876)(cid:3036) and (cid:1876)(cid:3037) +
('2367820', 'Catherine Wah', 'catherine wah')
('2996914', 'Grant Van Horn', 'grant van horn')
('3251767', 'Steve Branson', 'steve branson')
('35208858', 'Subhransu Maji', 'subhransu maji')
('1690922', 'Pietro Perona', 'pietro perona')
{sbranson,perona}@caltech.edu +
smaji@ttic.edu +
sjb@cs.cornell.edu +
{cwah@cs,gvanhorn@}ucsd.edu +
0ed0e48b245f2d459baa3d2779bfc18fee04145bSemi-Supervised Dimensionality Reduction∗ +
1National Laboratory for Novel Software Technology +
Nanjing University, Nanjing 210093, China
2Department of Computer Science and Engineering +
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
('1772283', 'Daoqiang Zhang', 'daoqiang zhang')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
('1680768', 'Songcan Chen', 'songcan chen')
dqzhang@nuaa.edu.cn +
zhouzh@nju.edu.cn +
s.chen@nuaa.edu.cn +
0eac652139f7ab44ff1051584b59f2dc1757f53bEfficient Branching Cascaded Regression +
for Face Alignment under Significant Head Rotation +
University of Wisconsin Madison
('2721523', 'Brandon M. Smith', 'brandon m. smith')
('1724754', 'Charles R. Dyer', 'charles r. dyer')
bmsmith@cs.wisc.edu +
dyer@cs.wisc.edu +
0ef96d97365899af797628e80f8d1020c4c7e431Improving the Speed of Kernel PCA on Large Scale Datasets +
Institute for Vision Systems Engineering
Monash University, Victoria, Australia
('2451050', 'Tat-Jun Chin', 'tat-jun chin')
('2220700', 'David Suter', 'david suter')
{ tat.chin | d.suter }@eng.monash.edu.au +
0e7f277538142fb50ce2dd9179cffdc36b794054Combining Image Captions and Visual Analysis +
for Image Concept Classification +
Department of Information and +
Knowledge Engineering +
Faculty of Informatics and +
Statistics, University of
Economics, Prague +
Multimedia and Vision +
Research Group +
Queen Mary University
Mile End Road, London +
United Kingdom +
Department of Information and +
Knowledge Engineering +
Faculty of Informatics and +
Statistics, University of
Economics, Prague +
Department of Information and +
Knowledge Engineering +
Faculty of Informatics and +
Statistics, University of
Economics, Prague +
Multimedia and Vision +
Research Group +
Queen Mary University
Mile End Road, London +
United Kingdom +
('2005670', 'Tomas Kliegr', 'tomas kliegr')
('3183509', 'Krishna Chandramouli', 'krishna chandramouli')
('2073485', 'Jan Nemrava', 'jan nemrava')
('1740821', 'Vojtech Svatek', 'vojtech svatek')
('1732655', 'Ebroul Izquierdo', 'ebroul izquierdo')
tomas.kliegr@vse.cz +
krishna.c@ieee.org +
nemrava@vse.cz +
svatek@vse.cz +
ebroul.izquierdo@elec.qmul.ac.uk +
0e8760fc198a7e7c9f4193478c0e0700950a86cd
0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056HHS Public Access +
Author manuscript +
Curr Res Psychol. Author manuscript; available in PMC 2017 January 17. +
Published in final edited form as: +
Curr Res Psychol. 2016 ; 6(2): 22–30. doi:10.3844/crpsp.2015.22.30. +
The Role of Perspective-Taking on Ability to Recognize Fear +
Virginia Polytechnic Institute and State University, Blacksburg
Virginia, USA +
Virginia Polytechnic Institute and State University, Blacksburg, Virginia
USA +
Virginia Tech Carilion Research Institute
Roanoke, Virginia, USA +
Virginia Polytechnic Institute and State University, Blacksburg
Virginia, USA +
('2974674', 'Andrea Trubanova', 'andrea trubanova')
('2359365', 'Inyoung Kim', 'inyoung kim')
('3712207', 'Marika C. Coffman', 'marika c. coffman')
('6057482', 'Martha Ann Bell', 'martha ann bell')
('2294952', 'Stephen M. LaConte', 'stephen m. laconte')
('1709677', 'Denis Gracanin', 'denis gracanin')
('2197231', 'Susan W. White', 'susan w. white')
0e652a99761d2664f28f8931fee5b1d6b78c2a82BERGSTRA, YAMINS, AND COX: MAKING A SCIENCE OF MODEL SEARCH +
Making a Science of Model Search +
J. Bergstra1 +
D. Yamins2 +
D. D. Cox1 +
Rowland Institute at Harvard
100 Edwin H. Land Boulevard +
Cambridge, MA 02142, USA +
2 Department of Brain and Cognitive +
Sciences +
Massachusetts Institute of Technology
Cambridge, MA 02139, USA +
bergstra@rowland.harvard.edu +
yamins@mit.edu +
davidcox@fas.harvard.edu +
0e50fe28229fea45527000b876eb4068abd6ed8cProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
2936 +
0eff410cd6a93d0e37048e236f62e209bc4383d1Anchorage Convention District +
May 3-8, 2010, Anchorage, Alaska, USA +
978-1-4244-5040-4/10/$26.00 ©2010 IEEE +
4803 +
0ea7b7fff090c707684fd4dc13e0a8f39b300a97Integrated Face Analytics Networks through +
Cross-Dataset Hybrid Training +
School of Computing, National University of Singapore, Singapore
Electrical and Computer Engineering, National University of Singapore, Singapore
Beijing Institute of Technology University, P. R. China
4 SAP Innovation Center Network Singapore, Singapore +
('2757639', 'Jianshu Li', 'jianshu li')
('2052311', 'Jian Zhao', 'jian zhao')
('1715286', 'Terence Sim', 'terence sim')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('3124720', 'Shengtao Xiao', 'shengtao xiao')
('33221685', 'Jiashi Feng', 'jiashi feng')
('40345914', 'Fang Zhao', 'fang zhao')
('1943724', 'Jianan Li', 'jianan li')
{jianshu,xiao_shengtao,zhaojian90}@u.nus.edu,lijianan15@gmail.com +
{elezhf,elefjia,eleyans}@nus.edu.sg,tsim@comp.nus.edu.sg +
0ee737085af468f264f57f052ea9b9b1f58d7222SiGAN: Siamese Generative Adversarial Network +
for Identity-Preserving Face Hallucination +
('3192517', 'Chih-Chung Hsu', 'chih-chung hsu')
('1685088', 'Chia-Wen Lin', 'chia-wen lin')
('3404171', 'Weng-Tai Su', 'weng-tai su')
('1705205', 'Gene Cheung', 'gene cheung')
0ee661a1b6bbfadb5a482ec643573de53a9adf5eJOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR +
On the Use of Discriminative Cohort Score +
Normalization for Unconstrained Face Recognition +
('1725688', 'Massimo Tistarelli', 'massimo tistarelli')
('2384894', 'Yunlian Sun', 'yunlian sun')
('2404207', 'Norman Poh', 'norman poh')
0e36ada8cb9c91f07c9dcaf196d036564e117536Much Ado About Time: Exhaustive Annotation of Temporal Data +
Carnegie Mellon University
2Inria +
University of Washington 4The Allen Institute for AI
http://allenai.org/plato/charades/ +
('34280810', 'Gunnar A. Sigurdsson', 'gunnar a. sigurdsson')
('2192178', 'Olga Russakovsky', 'olga russakovsky')
('2270286', 'Ali Farhadi', 'ali farhadi')
('1785596', 'Ivan Laptev', 'ivan laptev')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
0e986f51fe45b00633de9fd0c94d082d2be51406Face Detection, Pose Estimation, and Landmark Localization in the Wild +
University of California, Irvine
('32542103', 'Xiangxin Zhu', 'xiangxin zhu'){xzhu,dramanan}@ics.uci.edu +
0ebc50b6e4b01eb5eba5279ce547c838890b1418Similarity-Preserving Binary Signature for Linear Subspaces +
∗State Key Laboratory of Intelligent Technology and Systems, +
Tsinghua National Laboratory for Information Science and Technology (TNList), +
Tsinghua University, Beijing 100084, China
National University of Singapore, Singapore
('1901939', 'Jianqiu Ji', 'jianqiu ji')
('38376468', 'Jianmin Li', 'jianmin li')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('1713616', 'Qi Tian', 'qi tian')
('34997537', 'Bo Zhang', 'bo zhang')
jijq10@mails.tsinghua.edu.cn, {lijianmin, dcszb}@mail.tsinghua.edu.cn +
‡Department of Computer Science, University of Texas at San Antonio, qi.tian@utsa.edu +
eleyans@nus.edu.sg +
0e49a23fafa4b2e2ac097292acf00298458932b4Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 13–31 +
Unsupervised Detection of Outlier Images Using Multi-Order +
Image Transforms +
aLawrence Technological University, 21000 W Ten Mile Rd., South eld, MI 48075, United States
0ec1673609256b1e457f41ede5f21f05de0c054fBlessing of Dimensionality: High-dimensional Feature and Its Efficient +
Compression for Face Verification +
University of Science and Technology of China
Microsoft Research Asia +
('39447786', 'Dong Chen', 'dong chen')
('2032273', 'Xudong Cao', 'xudong cao')
('1716835', 'Fang Wen', 'fang wen')
('40055995', 'Jian Sun', 'jian sun')
chendong@mail.ustc.edu.cn +
{xudongca,fangwen,jiansun}@microsoft.com +
0e3840ea3227851aaf4633133dd3cbf9bbe89e5b
0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a
0ea38a5ba0c8739d1196da5d20efb13406bb6550Relative Attributes +
Toyota Technological Institute Chicago (TTIC
University of Texas at Austin
('1713589', 'Devi Parikh', 'devi parikh')
('1794409', 'Kristen Grauman', 'kristen grauman')
dparikh@ttic.edu +
grauman@cs.utexas.edu +
0e21c9e5755c3dab6d8079d738d1188b03128a31Constrained Clustering and Its Application to Face Clustering in Videos +
1NLPR, CASIA, Beijing 100190, China +
Rensselaer Polytechnic Institute, Troy, NY 12180, USA
('2040015', 'Baoyuan Wu', 'baoyuan wu')
('40382978', 'Yifan Zhang', 'yifan zhang')
('39495638', 'Bao-Gang Hu', 'bao-gang hu')
('1726583', 'Qiang Ji', 'qiang ji')
0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698Spontaneous Subtle Expression Recognition: +
Imbalanced Databases & Solutions (cid:63) +
1 Faculty of Engineering, +
Multimedia University (MMU), Cyberjaya, Malaysia
2 Faculty of Computing & Informatics, +
Multimedia University (MMU), Cyberjaya, Malaysia
('2339975', 'John See', 'john see')lengoanhcat@gmail.com, raphael@mmu.edu.my +
johnsee@mmu.edu.my +
0e93a5a7f6dbdb3802173dca05717d27d72bfec0Attribute Recognition by Joint Recurrent Learning of Context and Correlation +
Queen Mary University of London
Vision Semantics Ltd.2 +
('48093957', 'Jingya Wang', 'jingya wang')
('2171228', 'Xiatian Zhu', 'xiatian zhu')
('2073354', 'Shaogang Gong', 'shaogang gong')
('47113208', 'Wei Li', 'wei li')
{jingya.wang, s.gong, wei.li}@qmul.ac.uk +
eddy@visionsemantics.com +
0e2ea7af369dbcaeb5e334b02dd9ba5271b10265
0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5Max-Margin Early Event Detectors +
Minh Hoai +
Robotics Institute, Carnegie Mellon University
('1707876', 'Fernando De la Torre', 'fernando de la torre')
0e7c70321462694757511a1776f53d629a1b38f3NIST Special Publication 1136 +
2012 Proceedings of the +
Performance Metrics for Intelligent +
Systems (PerMI ‘12) Workshop +
+
http://dx.doi.org/10.6028/NIST.SP.1136 +
('39737545', 'Rajmohan Madhavan', 'rajmohan madhavan')
('2105056', 'Elena R. Messina', 'elena r. messina')
('31797581', 'Brian A. Weiss', 'brian a. weiss')
0ec2049a1dd7ae14c7a4c22c5bcd38472214f44dFast Subspace Search via Grassmannian Based Hashing +
University of Minnesota
Proto Labs, Inc
Columbia University
University of Minnesota
('1712593', 'Xu Wang', 'xu wang')
('1734862', 'Stefan Atev', 'stefan atev')
('1738310', 'John Wright', 'john wright')
('1919996', 'Gilad Lerman', 'gilad lerman')
wang1591@umn.edu +
stefan.atev@gmail.com +
johnwright@ee.columbia.edu +
lerman@umn.edu +
0ec67c69e0975cfcbd8ba787cc0889aec4cc5399Locating Salient Object Features +
K.N.Walker, T.F.Cootes and C.J.Taylor +
Dept. Medical Biophysics, +
Manchester University, UK
knw@sv1.smb.man.ac.uk +
0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64Estimating Illumination Parameters In Real Space +
With Application To Image Relighting +
Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education
Guangyou Xu +
Tsinghua University, Beijing 100084, P.R.China
Categories and Subject Descriptors +
I.4.8 [Image Processing and Computer Vision]: Scene Analysis +
– photometry, shading, shape. +
General Terms +
Algorithms +
Keywords +
Illumination parameters estimation, spherical harmonic, image +
relighting. +
1. INTRODUCTION +
Illumination condition is a fundamental problem in both computer +
vision and graphics. For instance, the estimation of lighting +
condition is important in face relighting and recognition, since +
synthesized realistic images can alleviate the small sample +
problem in face recognition applications. +
Recently Basri [2] and Ramamoorthi [3] independently apply the +
spherical harmonics techniques to explain the low dimensionality +
of differently illuminated images for convex Lambertian object. +
Ramamoorthi even derives analytically the principal components +
of this low dimensional image subspace. This method have +
already been widely applied to the areas of inverse rendering, +
image relighting, face recognition, etc. +
One of the limitations of this method is that the cast shadows are +
ignored. In the experiment results of [1], the cast shadows +
improve the face recognition result on the most extreme light +
directions. How to overcome this limitation is one of the +
motivations of our work. Furthermore, rendering realistic image +
need the real light direction. Although the spherical harmonics +
coefficient of illumination could be easily estimated, how to +
recover the real light direction from these coefficients is still a +
problem. +
We propose a novel algorithm for estimating the illumination +
parameters including the direction and strength of point light with +
the strength of ambient illumination. Images are projected into the +
analytical subspace derived in [3] according to a known 3D +
geometry, then the illumination parameters are estimated from +
these projected coefficients. Our primary experiments proved the +
stability and effectiveness of this method. +
Copyright is held by the author/owner(s). +
MM'05, November 6-11, 2005, Singapore. +
ACM 1-59593-044-2/05/0011. +
2. METHODOLOGY +
Consider a convex Lambertian object of known geometry with +
uniform albedo illuminated by distant isotropic light sources, the +
irradiance could be expressed as a linear combination of the +
spherical harmonic basis functions. In fact, 99% of the energy of +
the Lambertian BRDF filter is constrained by the first 9 basis [3]. +
In this paper we consider a simple illumination model consisting +
of one distant directional point light source and ambient +
illumination. We could write the illumination coefficients as +
formula of four illumination parameters (Azimuth and Elevation +
angel for point light direction, Sp for point light strength and Sa +
for ambient illumination strength). +
One problem is that, although the spherical harmonic basis +
functions are orthogonal in the sphere coordinates, they are not +
orthogonal in the image space. This property causes the algorithm +
unstable in some case. We choose the analytical subspace +
constructed in [3], which requires no training data. The image is +
projected to this subspace and the PCA coefficients are computed. +
Then the illumination parameters could be estimated from these +
PCA coefficients by solving a nonlinear least-square problem. +
Finding a global extreme of nonlinear problem is very difficult. +
We choose the popular Gauss-Newton method to solve this +
minimal problem, which might stay on local minima. The +
experimental results show that if we choose enough PCA +
coefficients, the energy surface guarantee the local minima is +
same as the global minima.(Note that we can use only a part of +
the PCA coefficients to solve this nonlinear minimal problem.) +
Actually the first five PCA coefficients are enough for estimate +
these parameters stably. (For limited length of this paper, the +
equations and stability analysis of the result is omitted.) +
3. RESULTS +
We experimented on both synthesized sphere images and real face +
images in CMU PIE database [4] and Yale Database B [1]. +
3.1 Synthesized sphere images result +
First, we randomly select the four illumination parameters and +
synthesize 600 sphere images under the different illumination, in +
which the incident directions are limited to the upper hemisphere +
and the light strength parameters are normalized to sum to unity. +
Then we test our algorithm on these synthesized sphere images. +
Similar to the Yale Database B, we divide the images into 5 +
subsets (12°, 25°, 55°, 77°, 90°) according to the angle which the +
light source direction makes with the camera's axis. +
1039
('13801076', 'Feng Xie', 'feng xie')
('3265275', 'Linmi Tao', 'linmi tao')
xiefeng97@mails.tsinghua.edu.cn +
{linmi, xgy-dcs}@tsinghua.edu.cn +
0ee5c4112208995bf2bb0fb8a87efba933a94579Understanding Clothing Preference Based on Body Shape From Online Sources +
Fashion is Taking Shape: +
1Scalable Learning and Perception Group, 2Real Virtual Humans +
Max Planck Institute for Informatics, Saarbr ucken, Germany
('26879574', 'Hosnieh Sattar', 'hosnieh sattar')
('1739548', 'Mario Fritz', 'mario fritz')
('2635816', 'Gerard Pons-Moll', 'gerard pons-moll')
{sattar,mfritz,gpons}@mpi-inf.mpg.de +
0e1a18576a7d3b40fe961ef42885101f4e2630f8Automated Detection and Identification of +
Persons in Video +
Visual Geometry Group +
Department of Engineering Science +
University of Oxford
September 24, 2004 +
('3056091', 'Mark Everingham', 'mark everingham'){me|az}@robots.ox.ac.uk +
6080f26675e44f692dd722b61905af71c5260af8
60a006bdfe5b8bf3243404fae8a5f4a9d58fa892A Reference-Based Framework for +
Pose Invariant Face Recognition +
1 HP Labs, Palo Alto, CA 94304, USA +
2 Google Inc., Mountain View, CA 94043, USA +
BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
('1784929', 'Mehran Kafai', 'mehran kafai')
('1745657', 'Kave Eshghi', 'kave eshghi')
('39776603', 'Le An', 'le an')
('1707159', 'Bir Bhanu', 'bir bhanu')
mehran.kafai@hp.com, kave@google.com, lan004@unc.edu, bhanu@cris.ucr.edu +
6043006467fb3fd1e9783928d8040ee1f1db1f3aFace Recognition with Learning-based Descriptor +
The Chinese University of Hong Kong
ITCS, Tsinghua University
Shenzhen Institutes of Advanced Technology
4Microsoft Research Asia +
Chinese Academy of Sciences, China +
('2695115', 'Zhimin Cao', 'zhimin cao')
('2274228', 'Qi Yin', 'qi yin')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('40055995', 'Jian Sun', 'jian sun')
600025c9a13ff09c6d8b606a286a79c823d89db8Machine Learning and Applications: An International Journal (MLAIJ) Vol.1, No.1, September 2014 +
A REVIEW ON LINEAR AND NON-LINEAR +
DIMENSIONALITY REDUCTION +
TECHNIQUES +
1Arunasakthi. K, 2KamatchiPriya. L +
1 Assistant Professor +
Department of Computer Science and Engineering +
Ultra College of Engineering and Technology for Women, India
2Assistant Professor +
Department of Computer Science and Engineering +
Vickram College of Engineering, Enathi, Tamil Nadu, India
60d765f2c0a1a674b68bee845f6c02741a49b44e
60c24e44fce158c217d25c1bae9f880a8bd19fc3Controllable Image-to-Video Translation: +
A Case Study on Facial Expression Generation +
MIT CSAIL +
Wenbing Huang +
Tencent AI Lab +
MIT-Waston Lab +
Tencent AI Lab +
Tencent AI Lab +
('2548303', 'Lijie Fan', 'lijie fan')
('2551285', 'Chuang Gan', 'chuang gan')
('1768190', 'Junzhou Huang', 'junzhou huang')
('40206014', 'Boqing Gong', 'boqing gong')
60e2b9b2e0db3089237d0208f57b22a3aac932c1Frankenstein: Learning Deep Face Representations +
using Small Data +
('38819702', 'Guosheng Hu', 'guosheng hu')
('1766837', 'Xiaojiang Peng', 'xiaojiang peng')
('2653152', 'Yongxin Yang', 'yongxin yang')
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
('34602236', 'Jakob Verbeek', 'jakob verbeek')
60542b1a857024c79db8b5b03db6e79f74ec8f9fLearning to Detect Human-Object Interactions +
University of Michigan, Ann Arbor
Washington University in St. Louis
('2820136', 'Yu-Wei Chao', 'yu-wei chao')
('1860829', 'Yunfan Liu', 'yunfan liu')
('9539636', 'Xieyang Liu', 'xieyang liu')
('9344937', 'Huayi Zeng', 'huayi zeng')
('8342699', 'Jia Deng', 'jia deng')
{ywchao,yunfan,lxieyang,jiadeng}@umich.edu +
{zengh}@wustl.edu +
60d4cef56efd2f5452362d4d9ac1ae05afa970d1Learning End-to-end Video Classification with Rank-Pooling +
Research School of Engineering, The Australian National University, ACT 2601, Australia
Research School of Computer Science, The Australian National University, ACT 2601, Australia
('1688071', 'Basura Fernando', 'basura fernando')
('2377076', 'Stephen Gould', 'stephen gould')
BASURA.FERNANDO@ANU.EDU.AU +
STEPHEN.GOULD@ANU.EDU.AU +
60ce4a9602c27ad17a1366165033fe5e0cf68078TECHNICAL NOTE +
DIGITAL & MULTIMEDIA SCIENCES +
J Forensic Sci, 2015 +
doi: 10.1111/1556-4029.12800 +
Available online at: onlinelibrary.wiley.com +
Ph.D. +
Combination of Face Regions in Forensic +
Scenarios* +
('1808344', 'Pedro Tome', 'pedro tome')
('1701431', 'Julian Fierrez', 'julian fierrez')
('1692626', 'Ruben Vera-Rodriguez', 'ruben vera-rodriguez')
('1732220', 'Javier Ortega-Garcia', 'javier ortega-garcia')
6097ea6fd21a5f86a10a52e6e4dd5b78a436d5bf
60c699b9ec71f7dcbc06fa4fd98eeb08e915eb09Long-Term Video Interpolation with Bidirectional +
Predictive Network +
Peking University
('8082703', 'Xiongtao Chen', 'xiongtao chen')
('1788029', 'Wenmin Wang', 'wenmin wang')
('3258842', 'Jinzhuo Wang', 'jinzhuo wang')
60970e124aa5fb964c9a2a5d48cd6eee769c73efSubspace Clustering for Sequential Data +
School of Computing and Mathematics +
Charles Sturt University
Bathurst, NSW 2795, Australia +
Division of Computational Informatics +
CSIRO +
North Ryde, NSW 2113, Australia +
('40635684', 'Stephen Tierney', 'stephen tierney')
('1750488', 'Junbin Gao', 'junbin gao')
('1767638', 'Yi Guo', 'yi guo')
{stierney, jbgao}@csu.edu.au +
yi.guo@csiro.au +
60efdb2e204b2be6701a8e168983fa666feac1beInt J Comput Vis +
DOI 10.1007/s11263-017-1043-5 +
Transferring Deep Object and Scene Representations for Event +
Recognition in Still Images +
Received: 31 March 2016 / Accepted: 1 September 2017 +
© Springer Science+Business Media, LLC 2017 +
('33345248', 'Limin Wang', 'limin wang')
('1915826', 'Zhe Wang', 'zhe wang')
60824ee635777b4ee30fcc2485ef1e103b8e7af9Cascaded Collaborative Regression for Robust Facial +
Landmark Detection Trained using a Mixture of Synthetic and +
Real Images with Dynamic Weighting +
Life Member, IEEE, William Christmas, and Xiao-Jun Wu +
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('38819702', 'Guosheng Hu', 'guosheng hu')
('1748684', 'Josef Kittler', 'josef kittler')
60643bdab1c6261576e6610ea64ea0c0b200a28d
60a20d5023f2bcc241eb9e187b4ddece695c2b9bInvertible Nonlinear Dimensionality Reduction +
via Joint Dictionary Learning +
Department of Electrical and Computer Engineering +
Technische Universit¨at M¨unchen, Germany +
('30013158', 'Xian Wei', 'xian wei')
('1744239', 'Martin Kleinsteuber', 'martin kleinsteuber')
('36559760', 'Hao Shen', 'hao shen')
{xian.wei, kleinsteuber, hao.shen}@tum.de. +
60cdcf75e97e88638ec973f468598ae7f75c59b486 +
Face Annotation Using Transductive +
Kernel Fisher Discriminant +
('1704030', 'Jianke Zhu', 'jianke zhu')
('1681775', 'Michael R. Lyu', 'michael r. lyu')
60040e4eae81ab6974ce12f1c789e0c05be00303Center for Energy Harvesting +
Materials and Systems (CEHMS), +
Bio-Inspired Materials and +
Devices Laboratory (BMDL), +
Center for Intelligent Material +
Systems and Structure (CIMSS), +
Department of Mechanical Engineering, +
Virginia Tech, +
Blacksburg, VA 24061 +
Graphical Facial Expression +
Analysis and Design Method: +
An Approach to Determine +
Humanoid Skin Deformation +
The architecture of human face is complex consisting of 268 voluntary muscles that perform +
coordinated action to create real-time facial expression. In order to replicate facial expres- +
sion on humanoid face by utilizing discrete actuators, the first and foremost step is the identi- +
fication of a pair of origin and sinking points (SPs). In this paper, we address this issue and +
present a graphical analysis technique that could be used to design expressive robotic faces. +
The underlying criterion in the design of faces being deformation of a soft elastomeric skin +
through tension in anchoring wires attached on one end to the skin through the sinking point +
and the other end to the actuator. The paper also addresses the singularity problem of facial +
control points and important phenomena such as slacking of actuators. Experimental charac- +
terization on a prototype humanoid face was performed to validate the model and demon- +
strate the applicability on a generic platform. [DOI: 10.1115/1.4006519] +
Keywords: humanoid prototype, facial expression, artificial skin, contractile actuator, +
graphical analysis +
Introduction +
Facial expression of humanoid is becoming a key research topic +
in recent years in the areas of social robotics. The embodiment of +
robotic head akin to that of human being promotes a more friendly +
communication between the humanoid and the user. There are +
many challenges in realizing human-like face such as material +
suitable for artificial skin, muscles, sensors, supporting structures, +
machine elements, vision, and audio systems. In addition to mate- +
rials and their integration, computational tools, static and dynamic +
analysis are required to fully understand the effect of each param- +
eter on the overall performance of a prototype humanoid face and +
provide optimum condition. +
This paper is organized in eight sections. First, we introduce the +
background and methodology for creating facial expression in +
robotic heads. A thorough description of the overall problem asso- +
ciated with expression analysis is presented along with pictorial +
representation of the muscle arrangement on a prototype face. +
Second, a literature survey is presented on facial expression analy- +
sis techniques applied to humanoid head. Third, the description of +
graphical facial expression analysis and design (GFEAD) method +
is presented focusing on two generic cases. Fourth, application +
of the GFEAD method on a prototype skull is presented and +
important manifestations that could not be obtained with other +
techniques are discussed. Fifth, results from experimental charac- +
terization of facial movement with a skin layer are discussed. +
Sixth, the effect of the skin properties and associated issues will +
be discussed. Section 7 discusses the significance of GFEAD +
method on practical platforms. Finally, the summary of this study +
is presented in Sec. 8. +
In the last few years, we have demonstrated humanoid heads +
using a variety of actuation technologies including: piezoelectric +
ultrasonic motors for actuation and macrofiber composite for sens- +
ing [1]; electromagnetic RC servo motor for actuation and embed- +
University of Texas at
Dallas 800 West Campbell Rd., Richardson, TX 75080. +
2Corresponding author. +
Contributed by the Mechanisms and Robotics Committee of ASME for publica- +
tion in the JOURNAL OF MECHANISMS AND ROBOTICS. Manuscript received October 10, +
2010; final manuscript received February 23, 2012; published online April 25, 2012. +
Assoc. Editor: Qiaode Jeffrey Ge. +
ded unimorph for sensing [2,3], and recently shape memory alloy +
(SMA) based actuation for baby humanoid robot focusing on the +
face and jaw movement [4]. We have also reported facial muscles +
based on conducting polymer actuators to overcome the high +
power requirement of current actuation technologies including +
polypyrrole–polyvinylidene difluoride composite stripe and zig- +
zag actuators [5] and axial type helically wounded polypyrrole– +
platinum composite actuators [6]. All these studies have identified +
the issues related to the design of facial structure and artificial +
muscle requirements. Other types of actuators such as dielectric +
elastomer were also studied for general robotics application [7]. +
There are several other studies reported in literature related to +
humanoid facial expression. Facial expression generation and ges- +
ture synthesis from sign language has been applied in the animation +
of an avatar [8], expressive humanoid robot Albert-HUBO with 31 +
Degree of Freedom (DOF) head and 35 DOF body motions based +
on servo motors [9], facial expression imitation system for face rec- +
ognition and implementation on mascot type robotic system [10], +
facial expressive humanoid robot SAYA based on McKibben pneu- +
matic actuators [11], and android robot Repliee for studying psy- +
chological aspects [12]. However, none of these studies address the +
design strategy for humanoid head based on discrete actuators. +
Computational tools for precise analysis of the effect of actuator +
arrangement on the facial expression are missing. +
Even though significant efforts have been made, there is little +
fundamental understanding of the structural design questions. +
How these facial expressions can be precisely designed? How are +
the terminating points on the skull determined? What will be the +
effect of variation in arrangement of actuators? The answer to +
these questions requires the development of an accurate mathe- +
matical model that can be easily coded and visualized. For this +
purpose, we present a GFEAD method for application in human- +
oid head development. This method will be briefly discussed for +
generic cases to illustrate all the computational steps. +
The prime motivation behind using the graphical approach is +
that it provides both visual information as well as quantitative +
data required for the design and analysis of humanoid face. The +
deformation analysis and design is performed directly on the skull +
surface, which ultimately forms the platform for actuation. The +
graphical approach is simple to implement as it is conducted in +
2D. Generally, the skull is created from a scanned model; thus, +
Journal of Mechanisms and Robotics +
Copyright VC 2012 by ASME +
MAY 2012, Vol. 4 / 021010-1 +
('2248772', 'Yonas Tadesse', 'yonas tadesse')
('25310631', 'Shashank Priya', 'shashank priya')
e-mail: yonas@vt.edu; +
yonas.tadesse@utdallas.edu +
e-mail: spriya@vt.edu +
60b3601d70f5cdcfef9934b24bcb3cc4dde663e7SUBMITTED TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Binary Gradient Correlation Patterns +
for Robust Face Recognition +
('1739171', 'Weilin Huang', 'weilin huang')
('1709042', 'Hujun Yin', 'hujun yin')
60737db62fb5fab742371709485e4b2ddf64b7b2Crowdsourced Selection on Multi-Attribute Data +
Tsinghua University
('39163188', 'Xueping Weng', 'xueping weng')
('23492509', 'Guoliang Li', 'guoliang li')
('1802748', 'Huiqi Hu', 'huiqi hu')
('33091680', 'Jianhua Feng', 'jianhua feng')
wxp15@mails.tsinghua.edu.cn, liguoliang@tsinghua.edu.cn, hqhu@sei.ecnu.edu.cn, fengjh@tsinghua.edu.cn +
60496b400e70acfbbf5f2f35b4a49de2a90701b5Avoiding Boosting Overfitting by Removing Confusing +
Samples +
Moscow State University, dept. of Computational Mathematics and Cybernetics
Graphics and Media Lab +
119992 Moscow, Russia +
('2918740', 'Alexander Vezhnevets', 'alexander vezhnevets')
('3319972', 'Olga Barinova', 'olga barinova')
{avezhnevets, obarinova}@graphics.cs.msu.ru +
60bffecd79193d05742e5ab8550a5f89accd8488PhD Thesis Proposal +
Classification using sparse representation and applications to skin +
lesion diagnosis +
In only a few decades, sparse representation modeling has undergone a tremendous expansion with +
successful applications in many fields including signal and image processing, computer science, +
machine learning, statistics. Mathematically, it can be considered as the problem of finding the +
sparsest solution (the one with the fewest non-zeros entries) to an underdetermined linear system +
of equations [1]. Based on the observation for natural images (or images rich in textures) that small +
scale structures tend to repeat themselves in an image or in a group of similar images, a signal +
source can be sparsely represented over some well-chosen redundant basis (a dictionary). In other +
words, it can be approximately representable by a linear combination of a few elements (also called +
atoms or basis vectors) of a redundant/over-complete dictionary. +
Such models have been proven successful in many tasks including denoising [2]-[5], compression +
[6],[7], super-resolution [8],[9], classification and pattern recognition [10]-[16]. In the context of +
classification, the objective is to find the class to which a test signal belongs, given training data +
from multiple classes. Sparse representation has become a powerful technique in classification and +
applications, including texture classification [16], face recognition [12], object detection [10], and
segmentation of medical images [17], [18]. In conventional Sparse Representation Classification +
(SRC) schemes, learned dictionaries and sparse representation are involved to classify image pixels +
(the image is divided into patches surrounding each image pixel). The performance of a SRC relies +
on a good dictionary, and on the sparse representation optimization model. Typically, a dictionary +
is learned for each signal class using training data, and classification of a new signal is achieved +
by associating it with the class whose dictionary allows the best approximation of the signal via an +
optimization problem that minimize the reconstruction error under some constraints including the +
sparsity one. It is important to note that the dictionary may not be a trained one [12]. In [12], the +
dictionary used for the face recognition is composed of many face images. Generally, the +
classification methods consider sparse modeling of natural high-dimensional signals and assume +
that the data belonging to the same class lie in the same subspace of a much lower dimension. Thus, +
the data can be modeled as a union of low dimensional linear subspaces. Then a union of a small +
subset of these linear subspaces is found to be a model of each class [19]. More advanced methods +
take into account the multi-subspace structure of the data of a high dimensional space. That is the +
case when data in multiple classes lie in multiple low-dimensional subspaces. Then, the +
classification problem can be formulated via a structured sparsity-based model, or group sparsity +
one [13, 20]. Other approach proposed to increase the performance of classification by using +
multiple disjoint sparse representation for the dictionary of each class instead of a single signal +
representation [21]. +
II. Objective +
In this study, we focus on a highly accurate classification methods by sparse representation in order +
to improve existing methods. More specifically, we aim to improve the result of classification for +
-1- +
601834a4150e9af028df90535ab61d812c45082cA short review and primer on using video for +
psychophysiological observations in +
human-computer interaction applications +
Quanti ed Employee unit, Finnish Institute of Occupational Health
POBox 40, 00250, Helsinki, Finland +
('2612057', 'Teppo Valtonen', 'teppo valtonen')teppo. valtonen @ttl. fi, +
346dbc7484a1d930e7cc44276c29d134ad76dc3f
On: 21 November 2007 +
Access Details: [subscription number 785020433] +
Publisher: Informa Healthcare +
Informa Ltd Registered in England and Wales Registered Number: 1072954 +
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK +
Systems +
Publication details, including instructions for authors and subscription information
http://www.informaworld.com/smpp/title~content=t713663148 +
Artists portray human faces with the Fourier statistics of +
complex natural scenes +
a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany
Friedrich Schiller University, D-07740 Jena
Germany +
First Published on: 28 August 2007 +
To cite this Article: Redies, Christoph, Hänisch, Jan, Blickhan, Marko and Denzler, +
Joachim (2007) 'Artists portray human faces with the Fourier statistics of complex +
To link to this article: DOI: 10.1080/09548980701574496 +
URL: http://dx.doi.org/10.1080/09548980701574496 +
PLEASE SCROLL DOWN FOR ARTICLE +
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf +
This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, +
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly +
forbidden. +
The publisher does not give any warranty express or implied or make any representation that the contents will be +
complete or accurate or up to date. The accuracy of any instructions, +
formulae and drug doses should be +
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, +
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or +
arising out of the use of this material. +
('2485437', 'Christoph Redies', 'christoph redies')
34a41ec648d082270697b9ee264f0baf4ffb5c8d
34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4cThe AXES submissions at TrecVid 2013 +
University of Twente 2Dublin City University 3Oxford University
4KU Leuven 5Fraunhofer Sankt Augustin 6INRIA Grenoble +
('3157479', 'Robin Aly', 'robin aly')
('3271933', 'Matthijs Douze', 'matthijs douze')
('1688071', 'Basura Fernando', 'basura fernando')
('9401491', 'Zaid Harchaoui', 'zaid harchaoui')
('1767756', 'Kevin McGuinness', 'kevin mcguinness')
('3095774', 'Dan Oneata', 'dan oneata')
('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')
('2319574', 'Danila Potapov', 'danila potapov')
('3428663', 'Jérôme Revaud', 'jérôme revaud')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
('1809436', 'Jochen Schwenninger', 'jochen schwenninger')
('1783430', 'David Scott', 'david scott')
('1704728', 'Tinne Tuytelaars', 'tinne tuytelaars')
('34602236', 'Jakob Verbeek', 'jakob verbeek')
('40465030', 'Heng Wang', 'heng wang')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
34bb11bad04c13efd575224a5b4e58b9249370f3Towards Good Practices for Action Video Encoding +
National Key Laboratory for Novel Software Technology +
Nanyang Technological University
Shanghai Jiao Tong University
Nanjing University, China
Singapore +
China +
('1808816', 'Jianxin Wu', 'jianxin wu')
('22183596', 'Yu Zhang', 'yu zhang')
('8131625', 'Weiyao Lin', 'weiyao lin')
wujx2001@nju.edu.cn +
roykimbly@hotmail.com +
wylin@sjtu.edu.cn +
3411ef1ff5ad11e45106f7863e8c7faf563f4ee1Image Retrieval and Ranking via Consistently +
Reconstructing Multi-attribute Queries +
School of Computer Science and Technology, Tianjin University, Tianjin, China
2 State Key Laboratory of Information Security, IIE, Chinese Academy of Sciences, China +
National University of Singapore
4 State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science +
and Engineering, Beihang University, Beijing, China
('1719250', 'Xiaochun Cao', 'xiaochun cao')
('38188331', 'Hua Zhang', 'hua zhang')
('33465926', 'Xiaojie Guo', 'xiaojie guo')
('2705801', 'Si Liu', 'si liu')
('33610144', 'Xiaowu Chen', 'xiaowu chen')
caoxiaochun@iie.ac.cn, huazhang@tju.edu.cn, xj.max.guo@gmail.com, +
dcslius@nus.edu.sg, chen@buaa.edu.cn +
345cc31c85e19cea9f8b8521be6a37937efd41c2Deep Manifold Traversal: Changing Labels with +
Convolutional Features +
Cornell University, Washington University in St. Louis
*Authors contributing equally +
('31693738', 'Jacob R. Gardner', 'jacob r. gardner')
('3222840', 'Paul Upchurch', 'paul upchurch')
('1940272', 'Matt J. Kusner', 'matt j. kusner')
('7769997', 'Yixuan Li', 'yixuan li')
('1706504', 'John E. Hopcroft', 'john e. hopcroft')
34d484b47af705e303fc6987413dc0180f5f04a9RI:Medium: Unsupervised and Weakly-Supervised +
Discovery of Facial Events +
1 Introduction +
The face is one of the most powerful channels of nonverbal communication. Facial expression has been a +
focus of emotion research for over a hundred years [11]. It is central to several leading theories of emotion +
[16, 28, 44] and has been the focus of at times heated debate about issues in emotion science [17, 23, 40]. +
Facial expression gures prominently in research on almost every aspect of emotion, including psychophys
iology [30], neural correlates [18], development [31], perception [4], addiction [24], social processes [26], +
depression [39] and other emotion disorders [46], to name a few. In general, facial expression provides cues +
about emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology. +
While people have believed for centuries that facial expressions can reveal what people are thinking and +
feeling, it is relatively recently that the face has been studied scientifically for what it can tell us about +
internal states, social behavior, and psychopathology. +
Faces possess their own language. Beginning with Darwin and his contemporaries, extensive efforts +
have been made to manually describe this language. A leading approach, the Facial Action Coding System +
(FACS) [19] , segments the visible effects of facial muscle activation into ”action units.” Because of its +
descriptive power, FACS has become the state of the art in manual measurement of facial expression and is +
widely used in studies of spontaneous facial behavior. The FACS taxonomy was develop by manually ob- +
serving graylevel variation between expressions in images and to a lesser extent by recording the electrical +
activity of underlying facial muscles [9]. Because of its importance to human social dynamics, person per- +
ception, biological bases of behavior, extensive efforts have been made to automatically detect this language +
(i.e., facial expression) using computer vision and machine learning. In part for these reasons, much effort +
in automatic facial image analysis seeks to automatically recognize FACS action units [5, 45, 38, 42]. With +
few exceptions, previous work on facial expression has been supervised in nature (i.e. event categories are +
defined in advance in labeled training data, see [5, 45, 38, 42] for a review of state-of-the-art algorithms) +
using either FACS or emotion labels (e.g. angry, surprise, sad). Because manual coding is highly labor +
intensive, progress in automated facial image analysis has been limited by lack of sufficient training data +
especially with respect to human behavior in naturally occurring settings (as opposed to posed facial be- +
havior). Little attention has been paid to the problem of unsupervised or weakly-supervised discovery of +
facial events prior to recognition. In this proposal we question whether the reliance on supervised learning +
is necessary. Specifically, Can unsupervised or weakly-supervised learning algorithms discover useful and +
meaningful facial events in video sequences of natural occurring behavior?. Three are the main contributions +
of this proposal: +
• We ask whether unsupervised or weakly-supervised learning algorithms can discover useful and +
meaningful facial events in video sequences of one or more persons with natural occurring behavior. +
Several issues contribute to the challenge of discovery of facial events; these include the large vari- +
ability in the temporal scale and periodicity of facial expressions, illumination and fast pose changes, +
the complexity of decoupling rigid and non-rigid motion from video, the exponential nature of all +
possible facial movement combinations, and characterization of subtle facial behavior. +
• We propose two novel non-parametric algorithms for unsupervised and weakly-supervised time-series +
analysis. In preliminary experiments these algorithms were able to discover meaningful facial events +
341002fac5ae6c193b78018a164d3c7295a495e4von Mises-Fisher Mixture Model-based Deep +
learning: Application to Face Verification +
('1773090', 'Md. Abul Hasnat', 'md. abul hasnat')
('34767162', 'Jonathan Milgram', 'jonathan milgram')
('34086868', 'Liming Chen', 'liming chen')
34ce703b7e79e3072eed7f92239a4c08517b0c55What impacts skin color in digital photos? +
Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore
('3213946', 'Albrecht Lindner', 'albrecht lindner')
('1702224', 'Stefan Winkler', 'stefan winkler')
345bea5f7d42926f857f395c371118a00382447fTransfiguring Portraits +
Computer Science and Engineering, University of Washington
Figure 1: Our system’s goal is to let people imagine and explore how they may look like in a different country, era, hair style, hair color, age, +
and anything else that can be queried in an image search engine. The examples above show a single input photo (left) and automatically +
synthesized appearances of the input person with ”curly hair” (top row), in ”india” (2nd row), and at ”1930” (3rd row). +
('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')
34ec83c8ff214128e7a4a4763059eebac59268a6Action Anticipation By Predicting Future +
Dynamic Images +
Australian Centre for Robotic Vision, ANU, Canberra, Australia +
('46771280', 'Cristian Rodriguez', 'cristian rodriguez')
('1688071', 'Basura Fernando', 'basura fernando')
('40124570', 'Hongdong Li', 'hongdong li')
{cristian.rodriguez, basura.fernando, hongdong.li}@.anu.edu.au +
3463f12ad434d256cd5f94c1c1bfd2dd6df36947Article +
Facial Expression Recognition with Fusion Features +
Extracted from Salient Facial Areas +
School of Control Science and Engineering, Shandong University, Jinan 250061, China
Academic Editors: Xue-Bo Jin; Shuli Sun; Hong Wei and Feng-Bao Yang +
Received: 23 January 2017; Accepted: 24 March 2017; Published: 29 March 2017 +
('7895427', 'Yanpeng Liu', 'yanpeng liu')
('29275442', 'Yibin Li', 'yibin li')
('1708045', 'Xin Ma', 'xin ma')
('1772484', 'Rui Song', 'rui song')
liuyanpeng@sucro.org (Y.L.); liyb@sdu.edu.cn (Y.L.); maxin@sdu.edu.cn (X.M.) +
* Correspondence: rsong@sdu.edu.cn +
346c9100b2fab35b162d7779002c974da5f069eePhoto Search by Face Positions and Facial Attributes +
on Touch Devices +
National Taiwan University, Taipei, Taiwan
('2476032', 'Yu-Heng Lei', 'yu-heng lei')
('35081710', 'Yan-Ying Chen', 'yan-ying chen')
('2817570', 'Lime Iida', 'lime iida')
('33970300', 'Bor-Chun Chen', 'bor-chun chen')
('1776110', 'Hsiao-Hang Su', 'hsiao-hang su')
('1716836', 'Winston H. Hsu', 'winston h. hsu')
{limeiida, siriushpa}@gmail.com, b95901019@ntu.edu.tw, winston@csie.ntu.edu.tw +
{ryanlei, yanying}@cmlab.csie.ntu.edu.tw, +
34863ecc50722f0972e23ec117f80afcfe1411a9An Efficient Face Recognition Algorithm Based +
on Robust Principal Component Analysis +
TNLIST and Department of Automation +
Tsinghua University
Beijing, China +
('2860279', 'Ziheng Wang', 'ziheng wang')
('2842970', 'Xudong Xie', 'xudong xie')
zihengwang.thu@gmail.com, xdxie@tsinghua.edu.cn +
34b7e826db49a16773e8747bc8dfa48e344e425d
34c594abba9bb7e5813cfae830e2c4db78cf138cTransport-Based Single Frame Super Resolution of Very Low Resolution Face Images +
Carnegie Mellon University
We describe a single-frame super-resolution method for reconstructing high- +
resolution (abbr. high-res) faces from very low-resolution (abbr. low-res) +
face images (e.g. smaller than 16× 16 pixels) by learning a nonlinear La- +
grangian model for the high-res face images. Our technique is based on the +
mathematics of optimal transport, and hence we denote it as transport-based +
SFSR (TB-SFSR). In the training phase, a nonlinear model of high-res fa- +
cial images is constructed based on transport maps that morph a reference +
image into the training face images. In the testing phase, the resolution of +
a degraded image is enhanced by finding the model parameters that best fit +
the given low resolution data. +
Generally speaking, most SFSR methods [2, 3, 4, 5] are based on a +
linear model for the high-res images. Hence, ultimately, the majority of +
SFSR models in the literature can be written as, Ih(x) = ∑i wiψi(x), where +
Ih is a high-res image or a high-res image patch, w’s are weight coefficients, +
and ψ’s are high-res images (or image patches), which are learned from the +
training images using a specific model. Here we propose a fundamentally +
different approach toward modeling high-res images. In our approach the +
high-res image is modeled as a mass preserving mapping of a high-res tem- +
plate image, I0, as follows +
Ih(x) = det(I +∑ +
αiDvi(x))I0(x +∑ +
αivi(x)), +
(1) +
where I is the identity matrix, αi is the weight coefficient of displacement +
field vi (i.e. a smooth vector field), and Dvi(x) is the Jacobian matrix of the +
displacement field vi, evaluated at x. The proposed method can be viewed +
as a linear modeling in the space of mass-preserving mappings, which cor- +
responds to a non-linear model in the image space. Thus (through the use of +
the optimal mapping function f(x) = x +∑i αivi(x)) our modeling approach +
can also displace pixels, in addition to changing their intensities. +
Given a training set of high-res face images, I1, ...,IN : Ω → R with +
Ω = [0,1]2 the image intensities are first normalized to integrate to 1. This +
is done so the images can be treated as distributions of a fixed amount of in- +
tensity values (i.e. fixed amount of mass). Next, the reference face is defined +
to be the average image, I0 = 1 +
i=1 Ii, and the optimal transport distance +
between the reference image and the i’th training image, Ii, is defined to be, +
N ∑N +
(cid:90) +
dOT (I0,Ii) = minui +
|ui(x)|2Ii(x)dx +
s.t. det(I + Dui(x))I0(x + ui(x)) = Ii(x) +
(2) +
where (f(x) = x + u(x)) : Ω → Ω is a mass preserving transform from Ii to +
I0, u is the optimal displacement field, and Dui is the Jacobian matrix of +
u. The optimization problem above is well posed and has a unique min- +
imizer [1]. Having optimal displacement fields ui for i = 1, . . . ,N a sub- +
space, V , is learned for these displacement fields. Let v j for j = 1, ...,M +
be a basis for subspace V. Then, any combination of the basis displacement +
fields can be used to construct an arbitrary deformation field, fα (x) = x + +
∑M +
j=1 α jv j(x), which can then be used to construct a given image Iα (x) = +
det(Dfα (x))I0(fα (x)). Hence, subspace V provides a generative model for +
the high-res face image. +
In the testing phase, we constrain the space of +
possible high-res solutions to those, which are representable as Iα for some +
α ∈ RM. Hence, for a degraded input image, Il, and assuming that φ (.) is +
known and following the MAP criteria we can write, +
α∗ = argminα +
(cid:107)Il − φ (Iα )(cid:107)2 +
(3) +
where a gradient descent approach is used to obtain a local optima α∗. Note +
that, images of faces (and other deformable objects) differ from each other +
s.t Iα (x) = det(Dfα (x))I0(fα (x)) +
('2062432', 'Soheil Kolouri', 'soheil kolouri')
('1818350', 'Gustavo K. Rohde', 'gustavo k. rohde')
34108098e1a378bc15a5824812bdf2229b938678Reconstructive Sparse Code Transfer for +
Contour Detection and Semantic Labeling +
1TTI Chicago +
California Institute of Technology
University of California at Berkeley / ICSI
('1965929', 'Michael Maire', 'michael maire')
('2251428', 'Stella X. Yu', 'stella x. yu')
('1690922', 'Pietro Perona', 'pietro perona')
mmaire@ttic.edu, stellayu@berkeley.edu, perona@caltech.edu +
341ed69a6e5d7a89ff897c72c1456f50cfb23c96DAGER: Deep Age, Gender and Emotion +
Recognition Using Convolutional Neural +
Networks +
Computer Vision Lab, Sighthound Inc., Winter Park, FL +
('1707795', 'Afshin Dehghan', 'afshin dehghan')
('16131262', 'Enrique G. Ortiz', 'enrique g. ortiz')
('37574860', 'Guang Shu', 'guang shu')
('2234898', 'Syed Zain Masood', 'syed zain masood')
{afshindehghan, egortiz, guangshu, zainmasood}@sighthound.com +
348a16b10d140861ece327886b85d96cce95711eFinding Good Features for Object Recognition +
by +
B.S. (Cornell University
M.S. (University of California, Berkeley
A dissertation submitted in partial satisfaction +
of the requirements for the degree of +
Doctor of Philosophy +
in +
Computer Science +
in the +
GRADUATE DIVISION +
of the +
UNIVERSITY OF CALIFORNIA, BERKELEY
Committee in charge: +
Professor Jitendra Malik, Chair +
Spring 2005 +
('3236352', 'Andras David Ferencz', 'andras david ferencz')
('1744452', 'David A. Forsyth', 'david a. forsyth')
('1678771', 'Peter J. Bickel', 'peter j. bickel')
3419af6331e4099504255a38de6f6b7b3b1e5c14Modified Eigenimage Algorithm for Painting +
Image Retrieval +
Stanford University
+
('12833413', 'Qun Feng Tan', 'qun feng tan')
34c8de02a5064e27760d33b861b7e47161592e65Video Action Recognition based on Deeper Convolution Networks with +
Pair-Wise Frame Motion Concatenation +
School of Computer Science, Northwestern Polytechnical University, China
Sensor-enhanced Social Media (SeSaMe) Centre, National University of Singapore, Singapore
School of Information Engineering, Nanchang University, China
('9229148', 'Yamin Han', 'yamin han')
('40188000', 'Peng Zhang', 'peng zhang')
('2628886', 'Tao Zhuo', 'tao zhuo')
('1730584', 'Wei Huang', 'wei huang')
('1801395', 'Yanning Zhang', 'yanning zhang')
340d1a9852747b03061e5358a8d12055136599b0Audio-Visual Recognition System Insusceptible +
to Illumination Variation over Internet Protocol +
+
('1968167', 'Yee Wan Wong', 'yee wan wong')
34ccdec6c3f1edeeecae6a8f92e8bdb290ce40fdProceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +
A Virtual Assistant to Help Dysphagia Patients Eat Safely at Home +
SRI International, Menlo Park California / *Brooklyn College, Brooklyn New York
+
('6647218', 'Michael Freed', 'michael freed')
('1936842', 'Brian Burns', 'brian burns')
('39451362', 'Aaron Heller', 'aaron heller')
('3431324', 'Sharon Beaumont-Bowman', 'sharon beaumont-bowman')
{first name, last name}@sri.com, sharonb@brooklyn.cuny.edu +
34b42bcf84d79e30e26413f1589a9cf4b37076f9Learning Sparse Representations of High +
Dimensional Data on Large Scale Dictionaries +
Princeton University
Princeton, NJ 08544, USA +
('1730249', 'Zhen James Xiang', 'zhen james xiang')
('1693135', 'Peter J. Ramadge', 'peter j. ramadge')
{zxiang,haoxu,ramadge}@princeton.edu +
5a3da29970d0c3c75ef4cb372b336fc8b10381d7CNN-based Real-time Dense Face Reconstruction +
with Inverse-rendered Photo-realistic Face Images +
('8280113', 'Yudong Guo', 'yudong guo')
('2938279', 'Juyong Zhang', 'juyong zhang')
('1688642', 'Jianfei Cai', 'jianfei cai')
('15679675', 'Boyi Jiang', 'boyi jiang')
('48510441', 'Jianmin Zheng', 'jianmin zheng')
5a93f9084e59cb9730a498ff602a8c8703e5d8a5HUSSAIN ET. AL: FACE RECOGNITION USING LOCAL QUANTIZED PATTERNS +
Face Recognition using Local Quantized +
Patterns +
Fréderic Jurie +
GREYC — CNRS UMR 6072, +
University of Caen Basse-Normandie
Caen, France +
('2695106', 'Sibt ul Hussain', 'sibt ul hussain')
('3423479', 'Thibault Napoléon', 'thibault napoléon')
Sibt.ul.Hussain@gmail.com +
Thibault.Napoleon@unicaen.fr +
Frederic.Jurie@unicaen.fr +
5a87bc1eae2ec715a67db4603be3d1bb8e53ace2A Novel Convergence Scheme for Active Appearance Models +
School of Electrical and Computer Engineering +
Georgia Institute of Technology
Atlanta, GA 30332 +
('38410822', 'Aziz Umit Batur', 'aziz umit batur')
('2583044', 'Monson H. Hayes', 'monson h. hayes')
{batur, mhh3}@ece.gatech.edu +
5aad56cfa2bac5d6635df4184047e809f8fecca2A VISUAL DICTIONARY ATTACK ON PICTURE PASSWORDS +
Cornell University
('1803066', 'Amir Sadovnik', 'amir sadovnik')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0Available online at www.sciencedirect.com +
ScienceDirect +
Procedia Computer Science 87 ( 2016 ) 300 – 305 +
4th International Conference on Recent Trends in Computer Science &Engineering +
Automatic Frontal Face Reconstruction Approach for Pose Invariant Face +
Recognition +
Kavitha.Ja,Mirnalinee.T.Tb +
aResearch Scholar, Anna University, Chennai, Inida
SSN College of Engineering, Kalavakkam, Tamil Nadu, India
5ac80e0b94200ee3ecd58a618fe6afd077be0a00Unifying Geometric Features and Facial Action Units for Improved +
Performance of Facial Expression Analysis +
Kent State University
Keywords: +
Facial Action Unit, Facial Expression, Geometric features. +
('1688430', 'Mehdi Ghayoumi', 'mehdi ghayoumi'){mghayoum,akbansal}@kent.edu +
5aadd85e2a77e482d44ac2a215c1f21e4a30d91bFace Recognition using Principle Components and Linear +
Discriminant Analysis +
HATIM A. +
ABOALSAMH 1,2 +
HASSAN I. +
MATHKOUR 1,2 +
GHAZY M.R. +
ASSASSA 1,2 +
MONA F.M. +
MURSI 1,3 +
1 Center of Excellence in Information Assurance (CoEIA), +
2 Department of Computer Science +
3 Department of Information Technology +
College of Computer and Information Sciences
King Saud University, Riyadh
SAUDI ARABIA +
hatim@ksu.edu.sa +
mathkour@ksu.edu.sa +
gassassa@coeia.edu.sa +
monmursi@coeia.edu.sa +
5a34a9bb264a2594c02b5f46b038aa1ec3389072Label-Embedding for Image Classification +('2893664', 'Zeynep Akata', 'zeynep akata')
('1723883', 'Florent Perronnin', 'florent perronnin')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
5a5f9e0ed220ce51b80cd7b7ede22e473a62062cVideos as Space-Time Region Graphs +
Robotics Institute, Carnegie Mellon University
Figure 1. How do you recognize simple actions such as opening book? We argue action +
understanding requires appearance modeling but also capturing temporal dynamics +
(how shape of book changes) and functional relationships. We propose to represent +
videos as space-time region graphs followed by graph convolutions for inference. +
('39849136', 'Xiaolong Wang', 'xiaolong wang')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
5ac946fc6543a445dd1ee6d5d35afd3783a31353FEATURELESS: BYPASSING FEATURE EXTRACTION IN ACTION CATEGORIZATION +
S. L. Pinteaa, P. S. Mettesa +
J. C. van Gemerta,b, A. W. M. Smeuldersa +
aIntelligent Sensory Information Systems, +
University of Amsterdam
Amsterdam, Netherlands +
5a4c6246758c522f68e75491eb65eafda375b701978-1-4244-4296-6/10/$25.00 ©2010 IEEE +
1118 +
ICASSP 2010 +
5aad5e7390211267f3511ffa75c69febe3b84cc7Driver Gaze Estimation +
Without Using Eye Movement +
MIT AgeLab +
('2145054', 'Lex Fridman', 'lex fridman')
('2180983', 'Philipp Langhans', 'philipp langhans')
('7137846', 'Joonbum Lee', 'joonbum lee')
('1901227', 'Bryan Reimer', 'bryan reimer')
fridman@mit.edu, philippl@mit.edu, joonbum@mit.edu, reimer@mit.edu +
5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372
5ae970294aaba5e0225122552c019eb56f20af74International Journal of Computer and Electrical Engineering +
Establishing Dense Correspondence of High Resolution 3D +
Faces via Möbius Transformations +
College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
Manuscript submitted July 14, 2014; accepted November 2, 2014. +
doi: 10. 17706/ijcee.2014.v6.866 +
('30373915', 'Jian Liu', 'jian liu')
('37509862', 'Quan Zhang', 'quan zhang')
('3224964', 'Chaojing Tang', 'chaojing tang')
* Corresponding author. Email: cjtang@263.net +
5a86842ab586de9d62d5badb2ad8f4f01eada885International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015 +
ISSN 2091-2730 +
Facial Emotion Recognition and Classification Using Hybridization +
Method +
Chandigarh Engg. College, Mohali, Punjab, India
('6010530', 'Anchal Garg', 'anchal garg')
('9744572', 'Rohit Bajaj', 'rohit bajaj')
anchalgarg949@gmail.com, 07696449500 +
5a4ec5c79f3699ba037a5f06d8ad309fb4ee682cDownloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605.
5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014 +
+
149 +
+
Face Recognition using Adaptive Margin Fisher’s +
Criterion and Linear Discriminant Analysis +
+
(AMFC-LDA) +
COMSATS Institute of Information Technology, Pakistan
('2151799', 'Marryam Murtaza', 'marryam murtaza')
('33088042', 'Muhammad Sharif', 'muhammad sharif')
('36739230', 'Mudassar Raza', 'mudassar raza')
('1814986', 'Jamal Hussain Shah', 'jamal hussain shah')
5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6International Journal of Computer Applications® (IJCA) (0975 – 8887) +
International Conference on Knowledge Collaboration in Engineering, ICKCE-2014 +
Human Expression Recognition using Facial Features +
G.Saranya +
Post graduate student, Dept. of ECE +
Parisutham Institute of Technology and Science
Thanjavur. +
Affiliated to Anna university, Chennai
recognition can be used +
5a7520380d9960ff3b4f5f0fe526a00f63791e99The Indian Spontaneous Expression +
Database for Emotion Recognition +
('38657440', 'Priyadarshi Patnaik', 'priyadarshi patnaik')
('2680543', 'Aurobinda Routray', 'aurobinda routray')
('2730256', 'Rajlakshmi Guha', 'rajlakshmi guha')
5a07945293c6b032e465d64f2ec076b82e113fa6Pulling Actions out of Context: Explicit Separation for Effective Combination +
Stony Brook University, Stony Brook, NY 11794, USA
('50874742', 'Yang Wang', 'yang wang'){wang33, minhhoai}@cs.stonybrook.edu +
5fff61302adc65d554d5db3722b8a604e62a8377Additive Margin Softmax for Face Verification +
UESTC +
Georgia Tech +
UESTC +
UESTC +
('47939378', 'Feng Wang', 'feng wang')
('51094998', 'Weiyang Liu', 'weiyang liu')
('8424682', 'Haijun Liu', 'haijun liu')
('1709439', 'Jian Cheng', 'jian cheng')
feng.wff@gmail.com +
wyliu@gatech.edu +
haijun liu@126.com +
chengjian@uestc.edu.cn +
5f771fed91c8e4b666489ba2384d0705bcf75030Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning +
and A New Benchmark for Multi-Human Parsing +
National University of Singapore
National University of Defense Technology
Qihoo 360 AI Institute
('46509484', 'Jian Zhao', 'jian zhao')
('2757639', 'Jianshu Li', 'jianshu li')
('48207454', 'Li Zhou', 'li zhou')
('1715286', 'Terence Sim', 'terence sim')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('33221685', 'Jiashi Feng', 'jiashi feng')
chengyu996@gmail.com zhouli2025@gmail.com +
{eleyans, elefjia}@nus.edu.sg +
{zhaojian90, jianshu}@u.nus.edu +
tsim@comp.nus.edu.sg +
5fa04523ff13a82b8b6612250a39e1edb5066521Dockerface: an Easy to Install and Use Faster R-CNN Face Detector in a Docker +
Container +
Center for Behavioral Imaging +
College of Computing
Georgia Institute of Technology
('31601235', 'Nataniel Ruiz', 'nataniel ruiz')
('1692956', 'James M. Rehg', 'james m. rehg')
nataniel.ruiz@gatech.edu +
rehg@gatech.edu +
5fa6e4a23da0b39e4b35ac73a15d55cee8608736IJCV special issue (Best papers of ECCV 2016) manuscript No. +
(will be inserted by the editor) +
RED-Net: +
A Recurrent Encoder-Decoder Network for Video-based Face Alignment +
Submitted: April 19 2017 / Revised: December 12 2017 +
('4340744', 'Xi Peng', 'xi peng')
5f871838710a6b408cf647aacb3b198983719c311716 +
Locally Linear Regression for Pose-Invariant +
Face Recognition +
('1695600', 'Xiujuan Chai', 'xiujuan chai')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
('1698902', 'Wen Gao', 'wen gao')
5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9
5f344a4ef7edfd87c5c4bc531833774c3ed23542c Copyright by Ira Cohen, 2003 +
5f6ab4543cc38f23d0339e3037a952df7bcf696bVideo2Vec: Learning Semantic Spatial-Temporal +
Embeddings for Video Representation +
School of Computer Engineering +
School of Electrical Engineering +
School of Computer Science +
Arizona State University
Tempe, Arizona 85281 +
Arizona State University
Tempe, Arizona 85281 +
Arizona State University
Tempe, Arizona 85281 +
('8060096', 'Sheng-hung Hu', 'sheng-hung hu')
('2180892', 'Yikang Li', 'yikang li')
('2913552', 'Baoxin Li', 'baoxin li')
Email:shenghun@asu.edu +
Email:yikangli@asu.edu +
Email:Baoxin.Li@asu.edu +
5f7c4c20ae2731bfb650a96b69fd065bf0bb950eTurk J Elec Eng & Comp Sci +
(2016) 24: 1797 { 1814 +
c⃝ T (cid:127)UB_ITAK +
doi:10.3906/elk-1310-253 +
A new fuzzy membership assignment and model selection approach based on +
dynamic class centers for fuzzy SVM family using the (cid:12)re(cid:13)y algorithm +
Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Faculty of Engineering, Ferdowsi University, Mashhad, Iran
Received: 01.11.2013 +
(cid:15) +
Accepted/Published Online: 30.06.2014 +
(cid:15) +
Final Version: 23.03.2016 +
('9437627', 'Omid Naghash Almasi', 'omid naghash almasi')
('4945660', 'Modjtaba Rouhani', 'modjtaba rouhani')
5f94969b9491db552ffebc5911a45def99026afeMultimodal Learning and Reasoning for Visual +
Question Answering +
Integrative Sciences and Engineering +
National University of Singapore
Electrical and Computer Engineering +
National University of Singapore
('3393294', 'Ilija Ilievski', 'ilija ilievski')
('33221685', 'Jiashi Feng', 'jiashi feng')
ilija.ilievski@u.nus.edu +
elefjia@nus.edu.sg +
5f758a29dae102511576c0a5c6beda264060a401Fine-grained Video Attractiveness Prediction Using Multimodal +
Deep Learning on a Large Real-world Dataset +
Wuhan University, Tencent AI Lab, National University of Singapore, University of Rochester
('3179887', 'Xinpeng Chen', 'xinpeng chen')
('47740660', 'Jingyuan Chen', 'jingyuan chen')
('34264361', 'Lin Ma', 'lin ma')
('1849993', 'Jian Yao', 'jian yao')
('46641573', 'Wei Liu', 'wei liu')
('33642939', 'Jiebo Luo', 'jiebo luo')
('38144094', 'Tong Zhang', 'tong zhang')
5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a
5feb1341a49dd7a597f4195004fe9b59f67e6707A Deep Ranking Model for Spatio-Temporal Highlight Detection +
from a 360◦ Video +
Seoul National University
('7877122', 'Youngjae Yu', 'youngjae yu')
('1693291', 'Sangho Lee', 'sangho lee')
('35272603', 'Joonil Na', 'joonil na')
('35365676', 'Jaeyun Kang', 'jaeyun kang')
('1743920', 'Gunhee Kim', 'gunhee kim')
{yj.yu, sangho.lee, joonil}@vision.snu.ac.kr, {kjy13411}@gmail.com, gunhee@snu.ac.kr +
5f0d4a0b5f72d8700cdf8cb179263a8fa866b59bCBMM Memo No. 85 +
06/2018 +
Deep Regression Forests for Age Estimation +
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University
Johns Hopkins University
College of Computer and Control Engineering, Nankai University 4: Hikvision Research
('41187410', 'Wei Shen', 'wei shen')
('9544564', 'Yilu Guo', 'yilu guo')
('46394340', 'Yan Wang', 'yan wang')
('1681247', 'Kai Zhao', 'kai zhao')
('46172451', 'Bo Wang', 'bo wang')
('35922327', 'Alan Yuille', 'alan yuille')
5f57a1a3a1e5364792b35e8f5f259f92ad561c1fImplicit Sparse Code Hashing +
Institute of Information Science
Academia Sinica, Taiwan +
('2144284', 'Tsung-Yu Lin', 'tsung-yu lin')
('2301765', 'Tsung-Wei Ke', 'tsung-wei ke')
('1805102', 'Tyng-Luh Liu', 'tyng-luh liu')
5f27ed82c52339124aa368507d66b71d96862cb7Semi-supervised Learning of Classifiers: Theory, Algorithms +
and Their Application to Human-Computer Interaction +
This work has been partially funded by NSF Grant IIS 00-85980. +
DRAFT +
('1774778', 'Ira Cohen', 'ira cohen')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
Ira Cohen: Hewlett-Packard Labs, Palo Alto, CA, USA, ira.cohen@hp.com +
Fabio G. Cozman and Marcelo C. Cirelo: Escola Polit´ecnica, Universidade de S˜ao Paulo, S˜ao Paulo,Brazil. fgcozman@usp.br, +
marcelo.cirelo@poli.usp.br +
Nicu Sebe: Faculty of Science, University of Amsterdam, The Netherlands. nicu@science.uva.nl +
Thomas S. Huang: Beckman Institute, University of Illinois at Urbana-Champaign, USA. huang@ifp.uiuc.edu +
5fa932be4d30cad13ea3f3e863572372b915bec8
5fea26746f3140b12317fcf3bc1680f2746e172eDense Supervision for Visual Comparisons via Synthetic Images +
Semantic Jitter: +
University of Texas at Austin
University of Texas at Austin
Distinguishing subtle differences in attributes is valuable, yet +
learning to make visual comparisons remains non-trivial. Not +
only is the number of possible comparisons quadratic in the +
number of training images, but also access to images adequately +
spanning the space of fine-grained visual differences is limited. +
We propose to overcome the sparsity of supervision problem +
via synthetically generated images. Building on a state-of-the- +
art image generation engine, we sample pairs of training images +
exhibiting slight modifications of individual attributes. Augment- +
ing real training image pairs with these examples, we then train +
attribute ranking models to predict the relative strength of an +
attribute in novel pairs of real images. Our results on datasets of +
faces and fashion images show the great promise of bootstrapping +
imperfect image generators to counteract sample sparsity for +
learning to rank. +
INTRODUCTION +
Fine-grained analysis of images often entails making visual +
comparisons. For example, given two products in a fashion +
catalog, a shopper may judge which shoe appears more pointy +
at the toe. Given two selfies, a teen may gauge in which one he +
is smiling more. Given two photos of houses for sale on a real +
estate website, a home buyer may analyze which facade looks +
better maintained. Given a series of MRI scans, a radiologist +
may judge which pair exhibits the most shape changes. +
In these and many other such cases, we are interested in +
inferring how a pair of images compares in terms of a par- +
ticular property, or “attribute”. That is, which is more pointy, +
smiling, well-maintained, etc. Importantly, the distinctions of +
interest are often quite subtle. Subtle comparisons arise both +
in image pairs that are very similar in almost every regard +
(e.g., two photos of the same individual wearing the same +
clothing, yet smiling more in one photo than the other), as +
well as image pairs that are holistically different yet exhibit +
only slight differences in the attribute in question (e.g., two +
individuals different in appearance, and one is smiling slightly +
more than the other). +
A growing body of work explores computational models +
for visual comparisons [1], [2], [3], [4], [5], [6], [7], [8], [9], +
[10], [11], [12]. In particular, ranking models for “relative +
attributes” [2], [3], [4], [5], [9], [11] use human-ordered pairs +
of images to train a system to predict the relative ordering in +
novel image pairs. +
A major challenge in training a ranking model is the sparsity +
of supervision. That sparsity stems from two factors: label +
availability and image availability. Because training instances +
consist of pairs of images—together with the ground truth +
human judgment about which exhibits the property more +
Fig. 1: Our method “densifies” supervision for training ranking functions to +
make visual comparisons, by generating ordered pairs of synthetic images. +
Here, when learning the attribute smiling, real training images need not be +
representative of the entire attribute space (e.g., Web photos may cluster +
around commonly photographed expressions, like toothy smiles). Our idea +
“fills in” the sparsely sampled regions to enable fine-grained supervision. +
Given a novel pair (top), the nearest synthetic pairs (right) may present better +
training data than the nearest real pairs (left). +
or less—the space of all possible comparisons is quadratic +
in the number of potential +
training images. This quickly +
makes it intractable to label an image collection exhaustively +
for its comparative properties. At the same time, attribute +
comparisons entail a greater cognitive load than, for example, +
object category labeling. Indeed, the largest existing relative +
attribute datasets sample only less than 0.1% of all image pairs +
for ground truth labels [11], and there is a major size gap +
between standard datasets labeled for classification (now in +
the millions [13]) and those for comparisons (at best in the +
thousands [11]). A popular shortcut is to propagate category- +
level comparisons down to image instances [4], [14]—e.g., +
deem all ocean scenes as “more open” than all forest scenes— +
but +
label noise and in practice +
underperforms training with instance-level comparisons [2]. +
this introduces substantial +
Perhaps more insidious than the annotation cost, however, +
is the problem of even curating training images that suf- +
ficiently illustrate fine-grained differences. Critically, sparse +
supervision arises not simply because 1) we lack resources +
to get enough image pairs labeled, but also because 2) we +
lack a direct way to curate photos demonstrating all sorts +
of subtle attribute changes. For example, how might we +
gather unlabeled image pairs depicting all subtle differences +
Novel PairReal PairsSynthetic Pairsvs.
('2206630', 'Aron Yu', 'aron yu')
('1794409', 'Kristen Grauman', 'kristen grauman')
aron.yu@utexas.edu +
grauman@cs.utexas.edu +
5f5906168235613c81ad2129e2431a0e5ef2b6e4Noname manuscript No. +
(will be inserted by the editor) +
A Unified Framework for Compositional Fitting of +
Active Appearance Models +
Received: date / Accepted: date +
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70cMultiple Facial Attributes Estimation based on +
Weighted Heterogeneous Learning +
H.Fukui* T.Yamashita* Y.Kato* R.Matsui* +
Chubu University
**Abeja Inc. +
1200, Matuoto-cho, Kasugai, +
4-1-20, Toranomon, Minato-ku, +
Aichi, Japan +
Tokyo, Japan +
('2531207', 'T. Ogata', 't. ogata')
5f676d6eca4c72d1a3f3acf5a4081c29140650fbTo Skip or not to Skip? A Dataset of Spontaneous Affective Response +
of Online Advertising (SARA) for Audience Behavior Analysis +
College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
3 HP Labs, Palo Alto, CA 94304, USA +
Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
('1803478', 'Songfan Yang', 'songfan yang')
('39776603', 'Le An', 'le an')
('1784929', 'Mehran Kafai', 'mehran kafai')
('1707159', 'Bir Bhanu', 'bir bhanu')
syang@scu.edu.cn, lan004@unc.edu, mehran.kafai@hp.com, bhanu@cris.ucr.edu +
5f453a35d312debfc993d687fd0b7c36c1704b16Clemson University
TigerPrints +
All Theses +
12-2015 +
Theses +
A Training Assistant Tool for the Automated Visual +
Inspection System +
Follow this and additional works at: http://tigerprints.clemson.edu/all_theses +
Part of the Electrical and Computer Engineering Commons +
Recommended Citation +
Ramaraj, Mohan Karthik, "A Training Assistant Tool for the Automated Visual Inspection System" (2015). All Theses. Paper 2285. +
This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized +
('4154752', 'Mohan Karthik Ramaraj', 'mohan karthik ramaraj')Clemson University, rmohankarthik91@gmail.com +
administrator of TigerPrints. For more information, please contact awesole@clemson.edu. +
5fc664202208aaf01c9b62da5dfdcd71fdadab29arXiv:1504.05308v1 [cs.CV] 21 Apr 2015 +
5fac62a3de11125fc363877ba347122529b5aa50AMTnet: Action-Micro-Tube Regression by +
End-to-end Trainable Deep Architecture +
Oxford Brookes University, Oxford, United Kingdom
('3017538', 'Suman Saha', 'suman saha')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
('1931660', 'Gurkirt Singh', 'gurkirt singh')
{suman.saha-2014, gurkirt.singh-2015, fabio.cuzzolin}@brookes.ac.uk +
5fa1724a79a9f7090c54925f6ac52f1697d6b570Proceedings of the Workshop on Grammar and Lexicon: Interactions and Interfaces, +
pages 41–47, Osaka, Japan, December 11 2016. +
41 +
5fba1b179ac80fee80548a0795d3f72b1b6e49cdVirtual U: Defeating Face Liveness Detection by Building Virtual Models +
From Your Public Photos +
University of North Carolina at Chapel Hill
('1734114', 'Yi Xu', 'yi xu')
('39310157', 'True Price', 'true price')
('40454588', 'Jan-Michael Frahm', 'jan-michael frahm')
('1792232', 'Fabian Monrose', 'fabian monrose')
{yix, jtprice, jmf, fabian}@cs.unc.edu +
33f7e78950455c37236b31a6318194cfb2c302a4Parameterizing Object Detectors +
in the Continuous Pose Space +
Boston University, USA
2 Disney Research Pittsburgh, USA +
('1702188', 'Kun He', 'kun he')
('14517812', 'Leonid Sigal', 'leonid sigal')
{hekun,sclaroff}@cs.bu.edu, lsigal@disneyresearch.com +
33548531f9ed2ce6f87b3a1caad122c97f1fd2e9International Journal of Computer Applications (0975 – 8887) +
Volume 104 – No.2, October 2014 +
Facial Expression Recognition in Video using +
Adaboost and SVM +
Surabhi Prabhakar +
Department of CSE +
Amity University
Noida, India +
Jaya Sharma +
Shilpi Gupta +
Department of CSE +
Department of CSE +
Amity University
Noida, India +
Amity University
Noida, India +
33ac7fd3a622da23308f21b0c4986ae8a86ecd2bBuilding an On-Demand Avatar-Based Health Intervention for Behavior Change +
School of Computing and Information Sciences +
Florida International University
Miami, FL, 33199, USA +
Department of Computer Science +
University of Miami
Coral Gables, FL, 33146, USA +
('2671668', 'Ugan Yasavur', 'ugan yasavur')
('2782570', 'Claudia de Leon', 'claudia de leon')
('1809087', 'Reza Amini', 'reza amini')
('1765935', 'Ubbo Visser', 'ubbo visser')
33030c23f6e25e30b140615bb190d5e1632c3d3bToward a General Framework for Words and +
Pictures +
Stony Brook University
Stony Brook University
Hal Daum´e III +
University of Maryland
Jesse Dodge +
University of Washington
University of Maryland
Stony Brook University
Alyssa Mensch +
M.I.T. +
University of Aberdeen
Karl Stratos +
Columbia University
Stony Brook University
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1685538', 'Tamara L. Berg', 'tamara l. berg')
('2694557', 'Amit Goyal', 'amit goyal')
('1682965', 'Xufeng Han', 'xufeng han')
('38390487', 'Margaret Mitchell', 'margaret mitchell')
('1721910', 'Kota Yamaguchi', 'kota yamaguchi')
33ba256d59aefe27735a30b51caf0554e5e3a1dfEarly Active Learning via Robust +
Representation and Structured Sparsity +
†Department of Computer Science and Engineering +
University of Texas at Arlington, Arlington, Texas 76019, USA
‡Department of Electrical Engineering and Computer Science +
Colorado School of Mines, Golden, Colorado 80401, USA +
('1688370', 'Feiping Nie', 'feiping nie')
('1683402', 'Hua Wang', 'hua wang')
('1748032', 'Heng Huang', 'heng huang')
feipingnie@gmail.com, huawangcs@gmail.com, heng@uta.edu, chqding@uta.edu +
33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13Imperial College London
Department of Computing +
Machine Learning Techniques +
for Automated Analysis of Facial +
Expressions +
December, 2013 +
Supervised by Prof. Maja Pantic +
Submitted in part fulfilment of the requirements for the degree of PhD in Computing and +
the Diploma of Imperial College London. This thesis is entirely my own work, and, except
where otherwise indicated, describes my own research. +
('1729713', 'Ognjen Rudovic', 'ognjen rudovic')
33aff42530c2fd134553d397bf572c048db12c28From Emotions to Action Units with Hidden and Semi-Hidden-Task Learning +
Universitat Pompeu Fabra +
Centre de Visio per Computador +
Universitat Pompeu Fabra +
Barcelona +
Barcelona +
Barcelona +
('40097226', 'Adria Ruiz', 'adria ruiz')
('2820687', 'Joost van de Weijer', 'joost van de weijer')
('1692494', 'Xavier Binefa', 'xavier binefa')
adria.ruiz@upf.es +
joost@cvc.uab.es +
xavier.binefa@upf.es +
33a1a049d15e22befc7ddefdd3ae719ced8394bfFULL PAPER +
International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009 +
An Efficient Approach to Facial Feature Detection +
for Expression Recognition +
S.P. Khandait1, P.D. Khandait2 and Dr.R.C.Thool2 +
1Deptt. of Info.Tech., K.D.K.C.E., Nagpur, India +
2Deptt.of Electronics Engg., K.D.K.C.E., Nagpur, India, 2Deptt. of Info.Tech., SGGSIET, Nanded +
Prapti_khandait@yahoo.co.in +
prabhakark_117@yahoo.co.in , rcthool@yahoo.com, +
334e65b31ad51b1c1f84ce12ef235096395f1ca7Emotion in Human-Computer Interaction +
Emotion in Human-Computer Interaction +
Brave, S. & Nass, C. (2002). Emotion in human-computer interaction. In J. Jacko & A. +
Sears (Eds.), Handbook of human-computer interaction (pp. 251-271). Hillsdale, NJ: +
Lawrence Erlbaum Associates. +
Scott Brave and Clifford Nass +
Department of Communication +
Stanford University
Stanford, CA 94305-2050 +
Phone: 650-428-1805,650-723-5499 +
Fax: 650-725-2472 +
brave,nass@stanford.edu +
3328413ee9944de1cc7c9c1d1bf2fece79718ba1Co-Training of Audio and Video Representations +
from Self-Supervised Temporal Synchronization +
Dartmouth College
Facebook Research +
Dartmouth College
('3443095', 'Bruno Korbar', 'bruno korbar')
('1687325', 'Du Tran', 'du tran')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
bruno.18@dartmouth.edu +
trandu@fb.com +
LT@dartmouth.edu +
3399f8f0dff8fcf001b711174d29c9d4fde89379Face R-CNN +
Tencent AI Lab, China +
('39049654', 'Hao Wang', 'hao wang'){hawelwang,michaelzfli,denisji,yitongwang}@tencent.com +
333aa36e80f1a7fa29cf069d81d4d2e12679bc67Suggesting Sounds for Images +
from Video Collections +
1Computer Science Department, ETH Z¨urich, Switzerland +
2Disney Research, Switzerland +
('39231399', 'Oliver Wang', 'oliver wang')
('1734448', 'Andreas Krause', 'andreas krause')
('2893744', 'Alexander Sorkine-Hornung', 'alexander sorkine-hornung')
{msoler,krausea}@ethz.ch +
{jean-charles.bazin,owang,alex}@disneyresearch.com +
3312eb79e025b885afe986be8189446ba356a507This is a post-print of the original paper published in ECCV 2016 (SpringerLink). +
MOON : A Mixed Objective Optimization +
Network for the Recognition of Facial Attributes +
Vision and Security Technology (VAST) Lab, +
University of Colorado at Colorado Springs
('39886114', 'Ethan M. Rudd', 'ethan m. rudd')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
{erudd,mgunther,tboult}@vast.uccs.edu +
33792bb27ef392973e951ca5a5a3be4a22a0d0c6Two-dimensional Whitening Reconstruction for +
Enhancing Robustness of Principal Component +
Analysis +
('2766473', 'Xiaoshuang Shi', 'xiaoshuang shi')
('1759643', 'Zhenhua Guo', 'zhenhua guo')
('1688370', 'Feiping Nie', 'feiping nie')
('1705066', 'Lin Yang', 'lin yang')
('1748883', 'Jane You', 'jane you')
('1692693', 'Dacheng Tao', 'dacheng tao')
3328674d71a18ed649e828963a0edb54348ee598IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004 +
2405 +
A Face and Palmprint Recognition Approach Based +
on Discriminant DCT Feature Extraction +
('15132338', 'Xiao-Yuan Jing', 'xiao-yuan jing')
('1698371', 'David Zhang', 'david zhang')
339937141ffb547af8e746718fbf2365cc1570c8Facial Emotion Recognition in Real Time +('1849233', 'Dan Duncan', 'dan duncan')
('3133285', 'Gautam Shine', 'gautam shine')
('3158339', 'Chris English', 'chris english')
duncand@stanford.edu +
gshine@stanford.edu +
chriseng@stanford.edu +
33402ee078a61c7d019b1543bb11cc127c2462d2Self-Supervised Video Representation Learning With Odd-One-Out Networks +
ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam
('1688071', 'Basura Fernando', 'basura fernando')
33aa980544a9d627f305540059828597354b076c
33ae696546eed070717192d393f75a1583cd8e2c
33f2b44742cc828347ccc5ec488200c25838b664Pooling the Convolutional Layers in Deep ConvNets for Action Recognition +
School of Computer Science and Technology, Tianjin University, China
School of Computer and Information, Hefei University of Technology, China
('2905510', 'Shichao Zhao', 'shichao zhao')
('1732242', 'Yanbin Liu', 'yanbin liu')
('2302512', 'Yahong Han', 'yahong han')
('2248826', 'Richang Hong', 'richang hong')
{zhaoshichao, csyanbin, yahong}@tju.edu.cn, hongrc.hfut@gmail.com +
3393459600368be2c4c9878a3f65a57dcc0c2cfaEigen-PEP for Video Face Recognition +
Stevens Institute of Technology Adobe Systems Inc
('3131569', 'Haoxiang Li', 'haoxiang li')
('1745420', 'Gang Hua', 'gang hua')
('1720987', 'Xiaohui Shen', 'xiaohui shen')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
3352426a67eabe3516812cb66a77aeb8b4df4d1bJOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015 +
Joint Multi-view Face Alignment in the Wild +
('3234063', 'Jiankang Deng', 'jiankang deng')
('2814229', 'George Trigeorgis', 'george trigeorgis')
('47943220', 'Yuxiang Zhou', 'yuxiang zhou')
334d6c71b6bce8dfbd376c4203004bd4464c2099BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN +
COMPUTER VISION +
('36861219', 'Sohil Shah', 'sohil shah')
('1746575', 'Christoph Studer', 'christoph studer')
('1962083', 'Tom Goldstein', 'tom goldstein')
33695e0779e67c7722449e9a3e2e55fde64cfd99Riemannian Coding and Dictionary Learning: Kernels to the Rescue +
Australian National University and NICTA
While sparse coding on non-flat Riemannian manifolds has recently become +
increasingly popular, existing solutions either are dedicated to specific man- +
ifolds, or rely on optimization problems that are difficult to solve, especially +
when it comes to dictionary learning. In this paper, we propose to make use +
of kernels to perform coding and dictionary learning on Riemannian man- +
ifolds. To this end, we introduce a general Riemannian coding framework +
with its kernel-based counterpart. This lets us (i) generalize beyond the spe- +
cial case of sparse coding; (ii) introduce efficient solutions to two coding +
schemes; (iii) learn the kernel parameters; (iv) perform unsupervised and +
supervised dictionary learning in a much simpler manner than previous Rie- +
mannian coding approaches. +
i=1, di ∈ M, be a dictionary on a Rie- +
mannian manifold M, and x ∈ M be a query point on the manifold. We +
(cid:17) +
define a general Riemannian coding formulation as +
More specifically, let D = {di}N +
(cid:93)N +
j=1 α jd j +
min +
s.t. α ∈ C, +
+ λγ(α;x,D) +
δ 2(cid:0)x, +
(1) +
on α. Moreover, (cid:85) : M×···×M× R× R···× R → M is an operator +
where δ : M×M → R+ is a metric on M, α ∈ RN is the vector of Rie- +
mannian codes, γ is a prior on the codes α and C is a set of constraints +
that combines multiple dictionary atoms {d j ∈ M} with weights {α j} and +
generates a point ˆx on M. This general formulation encapsulates intrinsic +
sparse coding [2, 5], but also lets us derive and intrinsic version of Locality- +
constrained Linear Coding [10]. Such intrinsic formulations, however, de- +
pend on the logarithm map, which may be highly nonlinear, or not even have +
an analytic solution. +
To overcome these weaknesses and obtain a general formulation of Rie- +
mannian coding, we propose to perform coding in RKHS. This has the +
twofold advantage of yielding simple solutions to several popular coding +
techniques and of resulting in a potentially better representation than stan- +
dard coding techniques due to the nonlinearity of the approach. To this +
end, let φ : M → H be a mapping to an RKHS induced by the kernel +
k(x,y) = φ (x)T φ (y). Coding in H can then be formulated as +
(cid:13)(cid:13)(cid:13)φ(cid:0)x)−∑N +
(cid:13)(cid:13)(cid:13)2 +
j=1 α jφ(cid:0)d j) +
+ λγ(α;φ(cid:0)x),φ(cid:0)D)) +
min +
s.t. α ∈ C. +
(2) +
As shown in the paper, the reconstruction term in (2) can be kernelized. +
More importantly, after kernelization, this term remains quadratic, convex +
and similar to its counterpart in Euclidean space. This lets us derive efficient +
solutions to two coding schemes: kernel Sparse Coding (kSC) and kernel +
Locality Constrained Coding (kLCC). +
In many cases, it is beneficial not only to compute the codes for a given +
dictionary, but also to optimize the dictionary to best suit the problem at +
hand. Given training data, and for fixed codes, we then show that, by relying +
on the Representer theorem [8], the dictionary update has an analytic form. +
Furthermore, we introduce an approach to supervised dictionary learning, +
which, given labeled data, jointly learns the dictionary and a classifier acting +
on the codes. The resulting supervised coding schemes are referred to as +
kSSC and kSLCC. +
We demonstrate the effectiveness of our approach on three different +
types of non-flat manifolds, as well as illustrate its generality by also ap- +
plying it to Euclidean space, which simply is a special type of Rieman- +
nian manifold. In particular, we evaluated our different techniques on two +
challenging classification datasets where the images are represented with +
region covariance descriptors (RCovDs) [9], which lie on SPD manifolds. +
('2862871', 'Mathieu Salzmann', 'mathieu salzmann')
334ac2a459190b41923be57744aa6989f9a54a51Apples to Oranges: Evaluating Image Annotations from Natural Language +
Processing Systems +
Brown Laboratory for Linguistic Information Processing (BLLIP) +
Brown University, Providence, RI
('2139196', 'Rebecca Mason', 'rebecca mason')
('1749837', 'Eugene Charniak', 'eugene charniak')
{rebecca,ec}@cs.brown.edu +
33e20449aa40488c6d4b430a48edf5c4b43afdabTRANSACTIONS ON AFFECTIVE COMPUTING +
The Faces of Engagement: Automatic +
Recognition of Student Engagement from Facial +
Expressions +
('1775637', 'Jacob Whitehill', 'jacob whitehill')
('3089406', 'Zewelanji Serpell', 'zewelanji serpell')
('3267606', 'Yi-Ching Lin', 'yi-ching lin')
('39687351', 'Aysha Foster', 'aysha foster')
('1741200', 'Javier R. Movellan', 'javier r. movellan')
333e7ad7f915d8ee3bb43a93ea167d6026aa3c22This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2014.2309851 +
DRAFT +
3D Assisted Face Recognition: Dealing With +
Expression Variations +
+
('2128163', 'Nesli Erdogmus', 'nesli erdogmus')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
334166a942acb15ccc4517cefde751a381512605 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +
Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 +
Facial Expression Analysis using Deep Learning +
M.Tech Student, SSG Engineering College, Odisha, India
---------------------------------------------------------------------***--------------------------------------------------------------------- +
examination structures need to analyse the facial exercises +
('13518951', 'Raman Patel', 'raman patel')
33403e9b4bbd913ae9adafc6751b52debbd45b0e
33ef419dffef85443ec9fe89a93f928bafdc922eSelfKin: Self Adjusted Deep Model For +
Kinship Verification +
Faculty of Engineering, Bar-Ilan University, Israel
('32450996', 'Eran Dahan', 'eran dahan')
('1926432', 'Yosi Keller', 'yosi keller')
33ad23377eaead8955ed1c2b087a5e536fecf44eAugmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling +
∗ indicates equal contribution +
('2177037', 'Andrew Kae', 'andrew kae')
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
('1697141', 'Honglak Lee', 'honglak lee')
1 University of Massachusetts, Amherst, MA, USA, {akae,elm}@cs.umass.edu +
2 University of Michigan, Ann Arbor, MI, USA, {kihyuks,honglak}@umich.edu +
053b263b4a4ccc6f9097ad28ebf39c2957254dfbCost-Effective HITs for Relative Similarity Comparisons +
Cornell University
University of California, San Diego
Cornell University
('3035230', 'Michael J. Wilber', 'michael j. wilber')
('2064392', 'Iljung S. Kwak', 'iljung s. kwak')
('1769406', 'Serge J. Belongie', 'serge j. belongie')
05b8673d810fadf888c62b7e6c7185355ffa4121(will be inserted by the editor) +
A Comprehensive Survey to Face Hallucination +
Received: date / Accepted: date +
('2870173', 'Nannan Wang', 'nannan wang')
056d5d942084428e97c374bb188efc386791e36dTemporally Robust Global Motion +
Compensation by Keypoint-based Congealing +
Michigan State University
('2447931', 'Yousef Atoum', 'yousef atoum')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
05e658fed4a1ce877199a4ce1a8f8cf6f449a890
05ad478ca69b935c1bba755ac1a2a90be6679129Attribute Dominance: What Pops Out? +
Georgia Tech +
('3169410', 'Naman Turakhia', 'naman turakhia')nturakhia@gatech.edu +
0595d18e8d8c9fb7689f636341d8a55cc15b3e6aDiscriminant Analysis on Riemannian Manifold of Gaussian Distributions +
for Face Recognition with Image Sets +
1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100049, China
('39792743', 'Wen Wang', 'wen wang')
('39792743', 'Ruiping Wang', 'ruiping wang')
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{wen.wang, zhiwu.huang}@vipl.ict.ac.cn, {wangruiping, sgshan, xlchen}@ict.ac.cn +
0573f3d2754df3a717368a6cbcd940e105d67f0bEmotion Recognition In The Wild Challenge 2013∗ +
Res. School of Computer +
Science +
Australian National University
Roland Goecke +
Vision & Sensing Group +
University of Canberra
Australian National University
Vision & Sensing Group +
University of Canberra
HCC Lab +
University of Canberra
Australian National University
('1735697', 'Abhinav Dhall', 'abhinav dhall')
('2942991', 'Jyoti Joshi', 'jyoti joshi')
('1743035', 'Michael Wagner', 'michael wagner')
jyoti.joshi@canberra.edu.au +
abhinav.dhall@anu.edu.au +
roland.goecke@ieee.org +
michael.wagner@canberra.edu.au +
05a0d04693b2a51a8131d195c68ad9f5818b2ce1Dual-reference Face Retrieval +
School of Computing Sciences, University of East Anglia, Norwich, UK
University of Pittsburgh, Pittsburgh, USA
3JD Artificial Intelligence Research (JDAIR), Beijing, China +
('19285980', 'BingZhang Hu', 'bingzhang hu')
('40255667', 'Feng Zheng', 'feng zheng')
('40799321', 'Ling Shao', 'ling shao')
bingzhang.hu@uea.ac.uk, feng.zheng@pitt.edu, ling.shao@ieee.org +
0562fc7eca23d47096472a1d42f5d4d086e21871
054738ce39920975b8dcc97e01b3b6cc0d0bdf32Towards the Design of an End-to-End Automated +
System for Image and Video-based Recognition +
('9215658', 'Rama Chellappa', 'rama chellappa')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('26988560', 'Rajeev Ranjan', 'rajeev ranjan')
('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')
('40080979', 'Amit Kumar', 'amit kumar')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('38171682', 'Carlos D. Castillo', 'carlos d. castillo')
05e03c48f32bd89c8a15ba82891f40f1cfdc7562Scalable Robust Principal Component +
Analysis using Grassmann Averages +
('2142792', 'Søren Hauberg', 'søren hauberg')
('1808965', 'Aasa Feragen', 'aasa feragen')
('2105795', 'Michael J. Black', 'michael j. black')
05a312478618418a2efb0a014b45acf3663562d7Accelerated Sampling for the Indian Buffet Process +
Cambridge University, Trumpington Street, Cambridge CB21PZ, UK
('2292194', 'Finale Doshi-Velez', 'finale doshi-velez')
('1983575', 'Zoubin Ghahramani', 'zoubin ghahramani')
finale@alum.mit.edu +
zoubin@eng.cam.ac.uk +
056ba488898a1a1b32daec7a45e0d550e0c51ae4Cascaded Continuous Regression for Real-time +
Incremental Face Tracking +
Enrique S´anchez-Lozano, Brais Martinez, +
Computer Vision Laboratory. University of Nottingham
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos'){psxes1,yorgos.tzimiropoulos,michel.valstar}@nottingham.ac.uk +
050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371Contents +
Scale Space and PDE Methods +
Spatio-Temporal Scale Selection in Video Data . . . . . . . . . . . . . . . . . . . . . +
Dynamic Texture Recognition Using Time-Causal Spatio-Temporal +
Scale-Space Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Corner Detection Using the Affine Morphological Scale Space . . . . . . . . . . . +
Luis Alvarez +
Nonlinear Spectral Image Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger, +
Daniel Cremers, Guy Gilboa, and Carola-Bibiane Schönlieb +
16 +
29 +
41 +
Tubular Structure Segmentation Based on Heat Diffusion. . . . . . . . . . . . . . . +
54 +
Fang Yang and Laurent D. Cohen +
Analytic Existence and Uniqueness Results for PDE-Based Image +
Reconstruction with the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Laurent Hoeltgen, Isaac Harris, Michael Breuß, and Andreas Kleefeld +
Combining Contrast Invariant L1 Data Fidelities with Nonlinear +
Spectral Image Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Leonie Zeune, Stephan A. van Gils, Leon W.M.M. Terstappen, +
and Christoph Brune +
An Efficient and Stable Two-Pixel Scheme for 2D +
Forward-and-Backward Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Martin Welk and Joachim Weickert +
66 +
80 +
94 +
Restoration and Reconstruction +
Blind Space-Variant Single-Image Restoration of Defocus Blur. . . . . . . . . . . +
109 +
Leah Bar, Nir Sochen, and Nahum Kiryati +
Denoising by Inpainting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
121 +
Robin Dirk Adam, Pascal Peter, and Joachim Weickert +
Stochastic Image Reconstruction from Local Histograms +
of Gradient Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Agnès Desolneux and Arthur Leclaire +
133 +
('3205375', 'Tony Lindeberg', 'tony lindeberg')
('3205375', 'Tony Lindeberg', 'tony lindeberg')
056294ff40584cdce81702b948f88cebd731a93e
052880031be0a760a5b606b2ad3d22f237e8af70Datasets on object manipulation and interaction: a survey +('3112203', 'Yongqiang Huang', 'yongqiang huang')
('35760122', 'Yu Sun', 'yu sun')
055de0519da7fdf27add848e691087e0af166637Joint Unsupervised Face Alignment +
and Behaviour Analysis(cid:2) +
Imperial College London, UK
('1786302', 'Lazaros Zafeiriou', 'lazaros zafeiriou')
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{l.zafeiriou12,e.antonakos,s.zafeiriou,m.pantic}@imperial.ac.uk +
0515e43c92e4e52254a14660718a9e498bd61cf5MACHINE LEARNING SYSTEMS FOR DETECTING DRIVER DROWSINESS +
Sabanci University
Faculty of +
Engineering and Natural Sciences +
Orhanli, Istanbul +
University Of California San Diego
Institute of
Neural Computation +
La Jolla, San Diego +
('40322754', 'Esra Vural', 'esra vural')
('2724380', 'Gwen Littlewort', 'gwen littlewort')
('1858421', 'Marian Bartlett', 'marian bartlett')
('29794862', 'Javier Movellan', 'javier movellan')
053c2f592a7f153e5f3746aa5ab58b62f2cf1d21International Journal of Research in +
Engineering & Technology (IJRET) +
ISSN 2321-8843 +
Vol. 1, Issue 2, July 2013, 11-20 +
© Impact Journals +
PERFORMANCE EVALUATION OF ILLUMINATION NORMALIZATION TECHNIQUES +
FOR FACE RECOGNITION +
PSG College of Technology, Coimbatore, Tamil Nadu, India
05891725f5b27332836cf058f04f18d74053803fOne-shot Action Localization by Learning Sequence Matching Network +
The Australian National University
ShanghaiTech University
Fatih Porikli +
The Australian National University
('51050729', 'Hongtao Yang', 'hongtao yang')
('33913193', 'Xuming He', 'xuming he')
u5226028@anu.edu.au +
hexm@shanghaitech.edu.cn +
fatih.porikli@anu.edu.au +
0568fc777081cbe6de95b653644fec7b766537b2Learning Expressionlets on Spatio-Temporal Manifold for Dynamic Facial +
Expression Recognition +
1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
University of Oulu, Finland
('1730228', 'Mengyi Liu', 'mengyi liu')
('1685914', 'Shiguang Shan', 'shiguang shan')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1710220', 'Xilin Chen', 'xilin chen')
mengyi.liu@vipl.ict.ac.cn, {sgshan, wangruiping, xlchen}@ict.ac.cn +
05d80c59c6fcc4652cfc38ed63d4c13e2211d944On Sampling-based Approximate Spectral Decomposition +
Google Research, New York, NY +
Courant Institute of Mathematical Sciences and Google Research, New York, NY
Courant Institute of Mathematical Sciences, New York, NY
('2794322', 'Sanjiv Kumar', 'sanjiv kumar')
('1709415', 'Mehryar Mohri', 'mehryar mohri')
('8395559', 'Ameet Talwalkar', 'ameet talwalkar')
sanjivk@google.com +
mohri@cs.nyu.edu +
ameet@cs.nyu.edu +
05ea7930ae26165e7e51ff11b91c7aa8d7722002Learning And-Or Model to Represent Context and +
Occlusion for Car Detection and Viewpoint Estimation +
('3198440', 'Tianfu Wu', 'tianfu wu')
('40479452', 'Bo Li', 'bo li')
('3133970', 'Song-Chun Zhu', 'song-chun zhu')
055530f7f771bb1d5f352e2758d1242408d34e4dA Facial Expression Recognition System from +
Depth Video +
Department of Computer Education +
Sungkyunkwan University
Seoul, Republic of Korea +
('3241032', 'Md. Zia Uddin', 'md. zia uddin')Email: ziauddin@skku.edu +
050eda213ce29da7212db4e85f948b812a215660Combining Models and Exemplars for Face Recognition: +
An Illuminating Example +
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213 +
('1715286', 'Terence Sim', 'terence sim')
('1733113', 'Takeo Kanade', 'takeo kanade')
051a84f0e39126c1ebeeb379a405816d5d06604dCogn Comput (2009) 1:257–267 +
DOI 10.1007/s12559-009-9018-7 +
Biometric Recognition Performing in a Bioinspired System +
Joan Fa`bregas Æ Marcos Faundez-Zanuy +
Published online: 20 May 2009 +
Ó Springer Science+Business Media, LLC 2009 +
05e3acc8afabc86109d8da4594f3c059cf5d561fActor-Action Semantic Segmentation with Grouping Process Models +
Department of Electrical Engineering and Computer Science +
University of Michigan, Ann Arbor
CVPR 2016 +
OBJECTIVE +
We seek to label each pixel in a video with a pair of actor (e.g. adult, baby and +
dog) and action (e.g. eating, walking and jumping) labels. +
Overview of the Grouping Process Model +
Video Labeling +
- We propose a novel grouping process model (GPM) that adaptively adds +
long-ranging interactions of the supervoxel hierarchy to the labeling CRF. +
Input Video +
Segment-Level +
s. +
The Tree Slice Problem +
slice +
The Video Labeling Problem +
Selected Nodes +
Input Video +
- We incorporate the video-level recognition into segment-level labeling by +
the means of global labeling cost and the GPM. +
- a set of random variables defined on the segments taking +
Definition & Joint Modeling +
Segment-Level: +
- a video segmentation with n segments. +
V = {q1, q2, . . . , qN} +
L = {l1, l2, . . . , lN} +
labels from both actor space and action space, e.g. adult-eating, dog-crawling. +
Supervoxel Hierarchy: +
T = {T1, T2, . . . , TS} +
chy with S total supervoxels. +
s = {s1, s2, . . . , sS} +
voxels denoting its active or not. +
- a segmentation tree extracted from a supervoxel hierar- +
- a set of binary random variables defined on the super- +
The Overall Objective Function: +
(L∗, s∗) = arg min +
E(L, s|V,T ) +
E(L, s|V,T ) = Ev(L|V) +E h(s|T ) +
L,s +
+(cid:31)t∈T +
(Eh(Lt|st) +E h(st|Lt)) +
Grouping Cues from Segment Labeling. The GPM uses evidence directly from +
the segment-level CRF to locate supervoxels across various scales that best cor- +
respond to the actor and its action. +
Eh(st|Lt) = (H(Lt)|Lt| + θh)st +
The Tree Slice Constraint. We seek a single labeling over the video. Each node +
in CRF is associated with one and only one supervoxel in the hierarchy. This con- +
straint is the same as our previous work in Xu et al. ICCV 2013. +
Eh(s|T ) = +
P(cid:31)p=1 +
δ(PT +
p s (cid:31)= 1)θτ +
Labeling Cues from Supervoxel Hierarchy. Once the supervoxels are selected, +
they provide strong labeling cues to the segment-level CRF. The CRF nodes con- +
nected to the same active supervoxel are encouraged to have the same label. +
Eh(Lt|st) =(cid:31) (cid:30)i∈Lt(cid:30)j(cid:30)=i,j∈Lt +
ij(li, lj) =(cid:31) θt +
ψh +
if li (cid:31)= lj +
otherwise +
ψh +
ij(li, lj) +
if st = 1 +
otherwise +
Segment-Level CRF +
The segment-level CRF considers the interplay of actors and actions. +
- denotes the set of actor labels (e.g. adult, baby and dog). +
- denotes the set of action labels (e.g. eating, running and crawling). +
Ev(L|V) =(cid:31)i∈V +
ξv +
i (li) +(cid:31)i∈V (cid:31)j∈E(i) +
ξv +
ij(li, lj) +
ξv +
i (li) = ψv +
i (lXi ) +φ v +
i (lYi ) +ϕ v +
i (lXi , lYj ) +
ij(lXi , lXj ) +
ψv +
ij(lYi , lYj ) +
φv +
ij(lXi , lXj ) +φ v +
ψv +
ij(lYi , lYj ) +
(cid:31)= lXj ∧ lYi = lYj +
if lXi +
(cid:31)= lYj +
if lXi = lXj ∧ lYi +
(cid:31)= lXj ∧ lYi +
(cid:31)= lYj +
if lXi +
if lXi = lXj ∧ lYi = lYj . +
ξv +
ij(li, lj) = +
Iterative Inference +
Directly solving the overall objective function is hard. We use an iterative inference +
schema to efficiently solve it. +
The Video Labeling Problem. Given a tree slice, we find the best labeling. +
L∗ = arg min +
= arg min +
E(L|s,V,T ) +
Ev(L|V) +(cid:31)t∈T +
- Optimization depends on +
- Solvable by graph-cuts multi-label inference. +
+
Eh(Lt|st) +
The Tree Slice Problem. Given a labeling, we find the best tree slice. +
- Rewrite as a binary linear program. +
s∗ = arg min +
E(s|L,V,T ) +
= arg min +
Eh(st|Lt) +
Eh(s|T ) +(cid:31)t∈T +
s.t. Ps = 1P and s ∈ {0, 1}S +
min(cid:31)t∈T +
αtst +
Experiments: The Actor-Action Semantic Segmentation +
- Dataset: the A2D large-scale video labeling dataset. +
One-third of videos have more than one actor performing different actions. +
- Two different hierarchies: TSP and GBH. +
- Video-level recognition is added through both global labeling cost and the GPM. +
It consists of 3782 YouTube videos with an average length of 136 frames. +
100.0 +
80.0 +
60.0 +
40.0 +
20.0 +
0.0 +
!-./' +
77.9 +
74.6 +
44.8 +
45.7 +
64.9 +
38.0 +
85.2 +
84.9 +
58.3 +
59.4 +
!"#$ +
$%#$ &'()*+,' !"#$%& !"#$!& +
100.0 +
80.0 +
60.0 +
40.0 +
20.0 +
0.0 +
!-.(/0 +
77.6 +
74.6 +
45.5 +
47.0 +
85.3 +
84.8 +
60.5 +
61.2 +
63.9 +
29.0 +
!"#$ +
$%#$ &'()*+,' !"#$%& !"#$!& +
100.0 +
80.0 +
60.0 +
40.0 +
20.0 +
0.0 +
1!-./'23!-.(/04 +
84.2 +
76.2 +
72.9 +
63.0 +
83.8 +
43.3 +
43.9 +
25.4 +
26.5 +
13.9 +
!"#$ +
$%#$ &'()*+,' !"#$%& !"#$!& +
5)6,73'()*+,)-")*./0+11-'223*+24839,))/:73 ;)/<*)3=(>,)3!--6'*-+ +
Visual example of the actor-action video labelings for all methods. (a) - (c) are +
videos where most methods get correct labelings; (d) - (e) are videos where GPM +
models outperform; (h) - (i) are different videos with partially correct labelings. +
(a) +
(b) +
(c) +
(d) +
(e) +
(f) +
(g) +
(h) +
(i) +
Ground-Truth +
AHRF +
FCRF +
adult-none +
adult-eating +
adult-eating +
adult-eating +
baby-crawling +
Trilayer +
GPM (TSP) +
GPM (GBH) +
adult-none +
adult-eating +
adult-eating +
adult-eating +
car-running +
car-running +
car-running +
car-running +
car-running +
car-running +
baby-rolling +
baby-rolling +
baby-rolling +
baby-rolling +
baby-rolling +
baby-rolling +
dog-eating +
baby-crawling +
dog-crawling +
adult-none +
car-rolling +
car-rolling +
dog-crawling +
dog-crawling +
bird-eating +
cat-climbing +
adult-walking +
adult-walking +
bird-eating +
bird-eating +
adult-walking +
bird-walking +
bird-flying +
car-running +
car-running +
bird-walking +
bird-walking +
car-running +
dog-walking +
dog-walking +
adult-walking +
car-jumping +
ball-flying +
adult-walking +
car-running +
adult-walking +
adult-walking +
adult-walking +
car-running +
adult-walking +
adult-running +
ball-rolling +
adult-none +
adult-walking +
adult-running +
adult-walking +
adult-walking +
dog-walking +
dog-rolling +
ball-rolling +
ball-rolling +
adult-none +
car-jumping +
adult-none +
bird-walking +
adult-crawling +
adult-jumping +
adult-crawling +
car-flying +
adult-crawling +
adult-crawling +
αt = H(Lt)|Lt| + θh +
Acknowledgements. This work has been supported in part by Google, Samsung, DARPA W32P4Q-15-C-0070 +
and ARO W911NF-15-1-0354. +
('2026123', 'Chenliang Xu', 'chenliang xu')
('3587688', 'Jason J. Corso', 'jason j. corso')
05f4d907ee2102d4c63a3dc337db7244c570d067
0559fb9f5e8627fecc026c8ee6f7ad30e54ee9294 +
Facial Expression Recognition +
ADSIP Research Centre, University of Central Lancashire
UK +
1. Introduction +
Facial expressions are visible signs of a person’s affective state, cognitive activity and +
personality. Humans can perform expression recognition with a remarkable robustness +
without conscious effort even under a variety of adverse conditions such as partially +
occluded faces, different appearances and poor illumination. Over the last two decades, the +
advances in imaging technology and ever increasing computing power have opened up a +
possibility of automatic facial expression recognition and this has led to significant research +
efforts from the computer vision and pattern recognition communities. One reason for this +
growing interest is due to a wide spectrum of possible applications in diverse areas, such as +
more engaging human-computer interaction (HCI) systems, video conferencing, augmented +
reality. Additionally from the biometric perspective, automatic recognition of facial +
expressions has been investigated in the context of monitoring patients in the intensive care +
and neonatal units for signs of pain and anxiety, behavioural research, identifying level of +
concentration, and improving face recognition. +
Automatic facial expression recognition is a difficult task due to its inherent subjective +
nature, which is additionally hampered by usual difficulties encountered in pattern +
recognition and computer vision research. The vast majority of the current state-of-the-art +
facial expression recognition systems are based on 2-D facial images or videos, which offer +
good performance only for the data captured under controlled conditions. As a result, there +
is currently a shift towards the use of 3-D facial data to yield better recognition performance. +
However, it requires more expensive data acquisition systems and sophisticated processing +
algorithms. The aim of this chapter is to provide an overview of the existing methodologies +
and recent advances in the facial expression recognition, as well as present a systematic +
description of the authors’ work on the use of 3-D facial data for automatic recognition of +
facial expressions, starting from data acquisition and database creation to data processing +
algorithms and performance evaluation. +
1.1 Facial expression +
Facial expressions are generated ... skin texture” (Pantic & Rothkrantz, 2000)” should be +
replaced by “Expressions shown on the face are produced by a combination of contraction +
activities made by facial muscles, with most noticeable temporal deformation around nose, +
lips, eyelids, and eyebrows as well as facial skin texture patterns (Pantic & Rothkrantz, +
2000). Typical facial expressions last for a few seconds, normally between 250 milliseconds +
and five seconds (Fasel & Luettin, 2003). According to psychologists Ekman and Friesen +
('2647218', 'Bogdan J. Matuszewski', 'bogdan j. matuszewski')
('2343120', 'Wei Quan', 'wei quan')
052f994898c79529955917f3dfc5181586282cf8Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos +
1NEC Labs America +
2UC Merced +
Dalian University of Technology
4UC San Diego +
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
05a7be10fa9af8fb33ae2b5b72d108415519a698Multilayer and Multimodal Fusion of Deep Neural Networks +
for Video Classification +
NVIDIA +
('2214162', 'Xiaodong Yang', 'xiaodong yang'){xiaodongy, pmolchanov, jkautz}@nvidia.com +
050a149051a5d268fcc5539e8b654c2240070c82MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE
05318a267226f6d855d83e9338eaa9e718b2a8dd_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION +
Age Estimation from Face Images: Challenging +
Problem for Audience Measurement Systems +
Yaroslavl State University
Russia +
('1857299', 'Alexander Ganin', 'alexander ganin')
('39942308', 'Olga Stepanova', 'olga stepanova')
('39635716', 'Anton Lebedev', 'anton lebedev')
vhr@yandex.ru, angnn@mail.ru, dcslab@uniyar.ac.ru, lebedevdes@gmail.com +
057d5f66a873ec80f8ae2603f937b671030035e6Newtonian Image Understanding: +
Unfolding the Dynamics of Objects in Static Images +
Allen Institute for Arti cial Intelligence (AI
University of Washington
('3012475', 'Roozbeh Mottaghi', 'roozbeh mottaghi')
('2456400', 'Hessam Bagherinezhad', 'hessam bagherinezhad')
('2563325', 'Mohammad Rastegari', 'mohammad rastegari')
('2270286', 'Ali Farhadi', 'ali farhadi')
0580edbd7865414c62a36da9504d1169dea78d6fBaseline CNN structure analysis for facial expression recognition +('2448391', 'Minchul Shin', 'minchul shin')
('1702520', 'Munsang Kim', 'munsang kim')
('1750864', 'Dong-Soo Kwon', 'dong-soo kwon')
050a3346e44ca720a54afbf57d56b1ee45ffbe49Multi-Cue Zero-Shot Learning with Strong Supervision +
Max-Planck Institute for Informatics
('2893664', 'Zeynep Akata', 'zeynep akata')
('34070834', 'Mateusz Malinowski', 'mateusz malinowski')
('1739548', 'Mario Fritz', 'mario fritz')
('1697100', 'Bernt Schiele', 'bernt schiele')
0517d08da7550241fb2afb283fc05d37fce5d7b7Sensors & Transducers, Vol. 153, Issue 6, June 2013, pp. 92-99 +
+
SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss +
© 2013 by IFSA +
http://www.sensorsportal.com +
Combination of Local Multiple Patterns and Exponential +
Discriminant Analysis for Facial Recognition +
College of Computer Science, Chongqing University, Chongqing, 400030, China
College of software, Chongqing University of Posts and Telecommunications Chongqing
Institute of Computer Science and Technology, Chongqing University of Posts and
400065, China +
Telecommunications, Chongqing 400065, China +
1 Tel.: 023-65112784, fax: 023-65112784 +
Received: 26 April 2013 /Accepted: 14 June 2013 /Published: 25 June 2013 +
('2623870', 'Lifang Zhou', 'lifang zhou')
('1713814', 'Bin Fang', 'bin fang')
('1964987', 'Weisheng Li', 'weisheng li')
('2103166', 'Lidou Wang', 'lidou wang')
1 E-mail: zhoulf@cqupt.edu.cn +
053931267af79a89791479b18d1b9cde3edcb415Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Attributes for Improved Attributes: A Multi-Task Network +
Utilizing Implicit and Explicit Relationships for Facial Attribute Classification +
University of Maryland, College Park
College Park, MD
('3351637', 'Emily M. Hand', 'emily m. hand')
('9215658', 'Rama Chellappa', 'rama chellappa')
{emhand, rama}@umiacs.umd.edu +
05f3d1e9fb254b275354ca69018e9ed321dd8755Face Recognition using Optimal Representation +
Ensemble +
NICTA , Queensland Research Laboratory, QLD, Australia
Grif th University, QLD, Australia
University of Adelaide, SA, Australia
29·4·2013 +
('1711119', 'Hanxi Li', 'hanxi li')
('1780381', 'Chunhua Shen', 'chunhua shen')
('1744926', 'Yongsheng Gao', 'yongsheng gao')
05e96d76ed4a044d8e54ef44dac004f796572f1a
051f03bc25ec633592aa2ff5db1d416b705eac6cTo appear in the International Joint Conference on Biometrics (IJCB 2011), Washington D.C., October 2011 +
Partial Face Recognition: An Alignment Free Approach +
Department of Computer Science and Engineering +
Michigan State University, East Lansing, MI 48824, U.S.A
('40397682', 'Shengcai Liao', 'shengcai liao')
('6680444', 'Anil K. Jain', 'anil k. jain')
{scliao,jain}@cse.msu.edu +
9d58e8ab656772d2c8a99a9fb876d5611fe2fe20Beyond Temporal Pooling: Recurrence and Temporal +
Convolutions for Gesture Recognition in Video +
{lionel.pigou,aaron.vandenoord,sander.dieleman, +
Ghent University
February 11, 2016 +
('2660640', 'Lionel Pigou', 'lionel pigou')
('48373216', 'Sander Dieleman', 'sander dieleman')
('10182287', 'Mieke Van Herreweghe', 'mieke van herreweghe')
mieke.vanherreweghe, joni.dambre}@ugent.be +
9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6International Journal of Pattern Recognition +
and Arti¯cial Intelligence +
Vol. 26, No. 1 (2012) 1250002 (9 pages) +
#.c World Scienti¯c Publishing Company +
DOI: 10.1142/S0218001412500024 +
IMPROVED PSEUDOINVERSE LINEAR +
DISCRIMINANT ANALYSIS METHOD FOR +
DIMENSIONALITY REDUCTION +
*Signal Processing Laboratory, School of Engineering +
Gri th University, QLD-4111, Brisbane, Australia
University of the South Paci c, Fiji
‡Laboratory of DNA Information Analysis +
Human Genome Center, Institute of Medical Science
University of Tokyo, 4-6-1 Shirokanedai
Minato-ku, Tokyo 108-8639, Japan +
Received 4 November 2010 +
Accepted 22 September 2011 +
Published 11 May 2012 +
Pseudoinverse linear discriminant analysis (PLDA) is a classical method for solving small +
sample size problem. However, its performance is limited. In this paper, we propose an improved +
PLDA method which is faster and produces better classi¯cation accuracy when experimented on +
several datasets. +
Keywords : Pseudoinverse; +
tational complexity. +
linear discriminant analysis; dimensionality reduction; compu- +
1. Introduction +
Dimensionality reduction is an important aspect of pattern classi¯cation. It helps in +
improving the robustness (or generalization capability) of the pattern classi¯er and +
in reducing its computational complexity. The linear discriminant analysis (LDA) +
method5 is a well-known dimensionality reduction technique studied in the litera- +
ture. The LDA technique ¯nds an orientation matrix W that transforms high- +
dimensional feature vectors belonging to di®erent classes to lower dimensional +
feature vectors such that the projected feature vectors of a class are well separated +
from the feature vectors of other classes. The orientation W is obtained by max- +
imizing the Fisher's criterion function J1ðWÞ ¼ jW TSBWj=jW TSW Wj, where SB is +
between-class scatter matrix and SW is within-class scatter matrix. It has been shown +
in the literature that modi¯ed version of Fisher's criterion J2ðWÞ ¼ jW TSBWj= +
jW TST Wj produces similar results, where ST is total scatter matrix.6 +
1250002-1 +
Int. J. Patt. Recogn. Artif. Intell. 2012.26. Downloaded from www.worldscientific.comby GRIFFITH UNIVERSITY INFORMATION SERVICES on 09/05/12. For personal use only
('3150542', 'Kuldip K. Paliwal', 'kuldip k. paliwal')
('40532633', 'Alok Sharma', 'alok sharma')
§aloks@ims.u-tokyo.ac.jp +
¶sharma_al@usp.ac.fj +
9d42df42132c3d76e3447ea61e900d3a6271f5feInternational Journal of Computer Applications (0975 – 8887) +
Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014) +
AutoCAP: An Automatic Caption Generation System +
based on the Text Knowledge Power Series +
Representation Model +
M.Tech Dept of CSE +
NSS College of Engineering
Palakkad, Kerala +
('24326432', 'Krishnapriya P S', 'krishnapriya p s')
9d55ec73cab779403cd933e6eb557fb04892b634Kernel principal component analysis network for image classification1 +
Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing
210096, China) +
(2 Institut National de la Santé et de la Recherche Médicale U 1099, Rennes 35000, France) +
(3 Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35000, France) +
(4Centre de Recherche en Information Biomédicale Sino-français, Nanjing 210096, China) +
('1684465', 'Lotfi Senhadji', 'lotfi senhadji')
9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2Workshop track - ICLR 2018 +
LEARNING TO CLUSTER +
ZHAW Datalab, Zurich University of Applied Sciences
Winterthur, Switzerland +
('40087403', 'Benjamin B. Meier', 'benjamin b. meier')
('2793787', 'Thilo Stadelmann', 'thilo stadelmann')
benjamin.meier70@gmail.com, stdm@zhaw.ch, oliver.duerr@gmail.com +
9d357bbf014289fb5f64183c32aa64dc0bd9f454Face Identification by Fitting a 3D Morphable Model +
using Linear Shape and Texture Error Functions +
University of Freiburg, Instit ut f ur Informatik
Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany, +
('3293655', 'Sami Romdhani', 'sami romdhani')
('2880906', 'Volker Blanz', 'volker blanz')
('1687079', 'Thomas Vetter', 'thomas vetter')
fromdhani, volker, vetterg@informatik.uni-freiburg.de +
9d66de2a59ec20ca00a618481498a5320ad38481POP: Privacy-preserving Outsourced Photo Sharing +
and Searching for Mobile Devices +
cid:3) School of Software, Tsinghua University
Illinois Institute of Technology
('1718343', 'Lan Zhang', 'lan zhang')
('8645024', 'Taeho Jung', 'taeho jung')
('1773806', 'Cihang Liu', 'cihang liu')
('1752660', 'Xuan Ding', 'xuan ding')
('34569491', 'Xiang-Yang Li', 'xiang-yang li')
('10258874', 'Yunhao Liu', 'yunhao liu')
9d839dfc9b6a274e7c193039dfa7166d3c07040bAugmented Faces +
1ETH Z¨urich +
2Kooaba AG +
3K.U. Leuven +
('1727791', 'Matthias Dantone', 'matthias dantone')
('1696393', 'Lukas Bossard', 'lukas bossard')
('1726249', 'Till Quack', 'till quack')
('1681236', 'Luc Van Gool', 'luc van gool')
{dantone,bossard,tquack,vangool}@vision.ee.ethz.ch +
9dcc6dde8d9f132577290d92a1e76b5decc6d755Journal of Trends in the Development of Machinery +
and Associated Technology +
Vol. 16, No. 1, 2012, ISSN 2303-4009 (online), p.p. 175-178 +
FACIAL EXPRESSION ANALYSIS BASED +
ON OPTIMIZED GABOR FEATURES +
Istanbul University
Avcilar, 34320 Istanbul +
Turkey +
Yalçın Çekiç +
Bahcesehir University
Besiktas, 34349 Istanbul +
Turkey +
('40701205', 'Aydın Akan', 'aydın akan')
9d36c81b27e67c515df661913a54a797cd1260bbApplications (IJERA) ISSN: 2248-9622 www.ijera.com +
Vol. 2, Issue 1,Jan-Feb 2012, pp.787-793 +
3D FACE RECOGNITION TECHNIQUES - A REVIEW +
Gujarat Technological University, India
Gujarat Technological University, India
security at many places +
('9318822', 'Mahesh M. Goyani', 'mahesh m. goyani')
('9198701', 'Preeti B. Sharma', 'preeti b. sharma')
('9318822', 'Mahesh M. Goyani', 'mahesh m. goyani')
9d757c0fede931b1c6ac344f67767533043cba14Search Based Face Annotation Using PCA and +
Unsupervised Label Refinement Algorithms +
Savitribai Phule Pune University
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune
Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India +
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune
Computer Department, D.Y.PIET, Pimpri, Pune-18, MH, India +
presents +
('15731441', 'Shital Shinde', 'shital shinde')
('3392505', 'Archana Chaugule', 'archana chaugule')
9d57c4036a0e5f1349cd11bc342ac515307b6720Landmark Weighting for 3DMM Shape Fitting +
aSchool of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
bCVSSP, University of Surrey, Guildford, GU2 7XH, UK
A B S T R A C T +
('51232704', 'Yu Yanga', 'yu yanga')
('37020604', 'Xiao-Jun Wu', 'xiao-jun wu')
('1748684', 'Josef Kittler', 'josef kittler')
9d941a99e6578b41e4e32d57ece580c10d578b22Sensors 2015, 15, 4326-4352; doi:10.3390/s150204326 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
Illumination-Invariant and Deformation-Tolerant Inner Knuckle +
Print Recognition Using Portable Devices +
School of Computer Science and Engineering, South China University of Technology
Higher Education Mega Center, Panyu, Guangzhou 510006, China; +
2 National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, +
School of Medicine, Shenzhen University, Shenzhen 518060, China
The Chinese University of Hong Kong
Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
Academic Editor: Vittorio M.N. Passaro +
Received: 6 January 2015 / Accepted: 6 February 2015 / Published: 12 February 2015 +
('2884662', 'Xuemiao Xu', 'xuemiao xu')
('35636977', 'Qiang Jin', 'qiang jin')
('3041338', 'Le Zhou', 'le zhou')
('38166238', 'Jing Qin', 'jing qin')
('1720633', 'Tien-Tsin Wong', 'tien-tsin wong')
('2513505', 'Guoqiang Han', 'guoqiang han')
E-Mails: jin.q@mail.scut.edu.cn (Q.J.); z.le02@mail.scut.edu.cn (L.Z.); csgqhan@scut.edu.cn (G.H.) +
Hong Kong 999077, China; E-Mail: ttwong@cse.cuhk.edu.hk +
* Authors to whom correspondence should be addressed; E-Mails: xuemx@scut.edu.cn (X.X.); +
jqin@szu.edu.cn (J.Q.); Tel.:+86-20-39380285 (X.X.); +86-755-86392117 (J.Q.). +
9d60ad72bde7b62be3be0c30c09b7d03f9710c5fA Survey: Face Recognition Techniques +
Assistant Professor, ITM GOI +
M Tech, ITM GOI +
face +
video +
(Eigen +
passport-verification, +
('4122158', 'Arun Agrawal', 'arun agrawal')
('3731551', 'Ranjana Sikarwar', 'ranjana sikarwar')
9d896605fbf93315b68d4ee03be0770077f84e40Baby Talk: Understanding and Generating Image Descriptions +
Stony Brook University
Stony Brook University, NY 11794, USA
('2170826', 'Girish Kulkarni', 'girish kulkarni')
('1699545', 'Yejin Choi', 'yejin choi')
('40305780', 'Siming Li', 'siming li')
('1685538', 'Tamara L Berg', 'tamara l berg')
('3128210', 'Visruth Premraj', 'visruth premraj')
('2985883', 'Sagnik Dhar', 'sagnik dhar')
('39668247', 'Alexander C Berg', 'alexander c berg')
{tlberg}@cs.stonybrook.edu +
9d61b0beb3c5903fc3032655dc0fd834ec0b2af3Learning a Locality Preserving Subspace for Visual Recognition +
Microsoft Research Asia, Beijing 100080, China +
School of Mathematical Science, Peking University, China
('3945955', 'Xiaofei He', 'xiaofei he')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('1689532', 'Yuxiao Hu', 'yuxiao hu')
*Department of Computer Science, University of Chicago (xiaofei@cs.uchicago.edu) +
9d24179aa33a94c8c61f314203bf9e906d6b64deSearching for People through +
Textual and Visual Attributes +
Institute of Computing
University of Campinas (Unicamp
Campinas-SP, Brazil +
Fig. 1. The proposed approach aims at searching for people using textual and visual attributes. Given an image database of faces, we extract the points of +
interest (PoIs) to construct a visual dictionary that allow us to obtain the feature vectors by a quantization process (top). Then we train attribute classifiers to +
generate a score for each image (middle). Finally, given a textual query (e.g., male), we fusion obtained scores to return a unique final rank (bottom). +
('37811966', 'Junior Fabian', 'junior fabian')
('1820089', 'Ramon Pires', 'ramon pires')
('2145405', 'Anderson Rocha', 'anderson rocha')
9d3aa3b7d392fad596b067b13b9e42443bbc377cFacial Biometric Templates and Aging: +
Problems and Challenges for Artificial +
Intelligence +
Cyprus University of Technology
P.O Box 50329, Lemesos, 3066, Cyprus +
('1830709', 'Andreas Lanitis', 'andreas lanitis')andreas.lanitis@cut.ac.cy +
9db4b25df549555f9ffd05962b5adf2fd9c86543Nonlinear 3D Face Morphable Model +
Department of Computer Science and Engineering +
Michigan State University, East Lansing MI
('1849929', 'Luan Tran', 'luan tran')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
{tranluan, liuxm}@msu.edu +
9d06d43e883930ddb3aa6fe57c6a865425f28d44Clustering Appearances of Objects Under Varying Illumination Conditions +
Computer Science & Engineering +
University of California at San Diego
cid:1) Honda Research Institute
David Kriegman +
Computer Science +
800 California Street +
University of Illinois at Urbana-Champaign
La Jolla, CA 92093 +
Mountain View, CA 94041 +
Urbana, IL 61801 +
('1788818', 'Jeffrey Ho', 'jeffrey ho')
('33047058', 'Jongwoo Lim', 'jongwoo lim')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
('2457452', 'Kuang-chih Lee', 'kuang-chih lee')
jho@cs.ucsd.edu myang@honda-ri.com jlim1@uiuc.edu +
klee10@uiuc.edu +
kriegman@cs.ucsd.edu +
9c1305383ce2c108421e9f5e75f092eaa4a5aa3cSPEAKER RETRIEVAL FOR TV SHOW VIDEOS BY ASSOCIATING AUDIO SPEAKER +
RECOGNITION RESULT TO VISUAL FACES∗ +
School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China
’CNRS-LTCI, TELECOM-ParisTech, Paris, France +
('1859487', 'Yina Han', 'yina han')
('2485487', 'Joseph Razik', 'joseph razik')
('1693574', 'Gerard Chollet', 'gerard chollet')
('1774346', 'Guizhong Liu', 'guizhong liu')
9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1
9c1860de6d6e991a45325c997bf9651c8a9d716f3D Reconstruction and Face Recognition Using Kernel-Based +
ICA and Neural Networks +
Chi-Yung Lee +
Dept. of Electrical Dept. of CSIE Dept. of CSIE +
Engineering Chaoyang University Nankai Institute of
National University of Technology Technology
('1734467', 'Cheng-Jian Lin', 'cheng-jian lin') of Kaohsiung s9527618@cyut.edu.tw cylee@nkc.edu.tw +
cjlin@nuk.edu.tw +
9c9ef6a46fb6395702fad622f03ceeffbada06e5EUROGRAPHICS 2004 / M.-P. Cani and M. Slater +
(Guest Editors) +
Volume 23 (2004), Number 3 +
Exchanging Faces in Images +
1 Max-Planck-Institut für Informatik, Saarbrücken, Germany +
University of Basel, Departement Informatik, Basel, Switzerland
('2880906', 'Volker Blanz', 'volker blanz')
('2658043', 'Kristina Scherbaum', 'kristina scherbaum')
('1687079', 'Thomas Vetter', 'thomas vetter')
('1746884', 'Hans-Peter Seidel', 'hans-peter seidel')
9c1cdb795fd771003da4378f9a0585730d1c3784Stacked Deformable Part Model with Shape +
Regression for Object Part Localization +
Center for Biometrics and Security Research & National Laboratory +
of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
('1721677', 'Junjie Yan', 'junjie yan')
('1718623', 'Zhen Lei', 'zhen lei')
('1708973', 'Yang Yang', 'yang yang')
('34679741', 'Stan Z. Li', 'stan z. li')
{jjyan,zlei,yang.yang,szli}@nlpr.ia.ac.cn +
9ca7899338129f4ba6744f801e722d53a44e4622Deep Neural Networks Regularization for Structured +
Output Prediction +
Soufiane Belharbi∗ +
INSA Rouen, LITIS +
76000 Rouen, France +
INSA Rouen, LITIS +
76000 Rouen, France +
INSA Rouen, LITIS +
76000 Rouen, France +
INSA Rouen, LITIS +
76000 Rouen, France +
Normandie Univ, UNIROUEN, UNIHAVRE, +
Normandie Univ, UNIROUEN, UNIHAVRE, +
Normandie Univ, UNIROUEN, UNIHAVRE, +
Normandie Univ, UNIROUEN, UNIHAVRE, +
('1712446', 'Clément Chatelain', 'clément chatelain')
('1782268', 'Romain Hérault', 'romain hérault')
('37078795', 'Sébastien Adam', 'sébastien adam')
soufiane.belharbi@insa-rouen.fr +
romain.herault@insa-rouen.fr +
clement.chatelain@insa-rouen.fr +
sebastien.adam@univ-rouen.fr +
9c1664f69d0d832e05759e8f2f001774fad354d6Action representations in robotics: A +
taxonomy and systematic classification +
Journal Title +
XX(X):1–32 +
c(cid:13)The Author(s) 2016 +
Reprints and permission: +
sagepub.co.uk/journalsPermissions.nav +
DOI: 10.1177/ToBeAssigned +
www.sagepub.com/ +
('33237072', 'Philipp Zech', 'philipp zech')
('2898615', 'Erwan Renaudo', 'erwan renaudo')
('36081156', 'Simon Haller', 'simon haller')
('46447747', 'Xiang Zhang', 'xiang zhang')
9c25e89c80b10919865b9c8c80aed98d223ca0c6GENDER PREDICTION BY GAIT ANALYSIS BASED ON TIME SERIES VARIATION OF +
JOINT POSITIONS +
Dept. of Computer Science +
School of Science and Technology +
Meiji University
Dept. of Fundamental Science and Technology +
Graduate School of Science and Technology +
Meiji University
1-1-1 Higashimita Tama-ku +
Kawasaki Kanagawa Japan +
1-1-1 Higashimita Tama-ku +
Kawasaki Kanagawa Japan +
('1800246', 'Ryusuke Miyamoto', 'ryusuke miyamoto')
('8187964', 'Risako Aoki', 'risako aoki')
E-mail: miya@cs.meiji.ac.jp +
E-mail: aori@cs.meiji.ac.jp +
9c7444c6949427994b430787a153d5cceff46d5cJournal of Computer Science 5 (11): 801-810, 2009 +
ISSN 1549-3636 +
© 2009 Science Publications +
Boosting Kernel Discriminative Common Vectors for Face Recognition +
1Department of Computer Science and Engineering, +
SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India
Bharathidasan University, Trichy, India
('34608395', 'C. Lakshmi', 'c. lakshmi')
('2594379', 'M. Ponnavaikko', 'm. ponnavaikko')
9c065dfb26ce280610a492c887b7f6beccf27319Learning from Video and Text via Large-Scale Discriminative Clustering +
1 ´Ecole Normale Sup´erieure +
2Inria +
3CIIRC +
('19200186', 'Antoine Miech', 'antoine miech')
('2285263', 'Jean-Baptiste Alayrac', 'jean-baptiste alayrac')
('2329288', 'Piotr Bojanowski', 'piotr bojanowski')
('1785596', 'Ivan Laptev', 'ivan laptev')
('1782755', 'Josef Sivic', 'josef sivic')
9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +
Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072 +
Attribute Based Face Classification Using Support Vector Machine +
Research Scholar, PSGR Krishnammal College for Women, Coimbatore
PSGR Krishnammal College for Women, Coimbatore
9c373438285101d47ab9332cdb0df6534e3b93d1Occupancy Detection in Vehicles Using Fisher Vector +
Image Representation +
Xerox Research Center
Webster, NY 14580 +
Xerox Research Center
Webster, NY 14580 +
('1762503', 'Yusuf Artan', 'yusuf artan')
('5942563', 'Peter Paul', 'peter paul')
Yusuf.Artan@xerox.com +
Peter.Paul@xerox.com +
9cbb6e42a35f26cf1d19f4875cd7f6953f10b95dExpression Recognition with Ri-HOG Cascade +
Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan
RIEB, Kobe University, Kobe, 657-8501, Japan
('2866465', 'Jinhui Chen', 'jinhui chen')
('2834542', 'Zhaojie Luo', 'zhaojie luo')
('1744026', 'Tetsuya Takiguchi', 'tetsuya takiguchi')
('1678564', 'Yasuo Ariki', 'yasuo ariki')
9ce0d64125fbaf625c466d86221505ad2aced7b1Saliency Based Framework for Facial Expression +
Recognition +
To cite this version: +
Facial Expression Recognition. Frontiers of Computer Science, 2017, <10.1007/s11704-017-6114-9>. +
+
HAL Id: hal-01546192 +
https://hal.archives-ouvertes.fr/hal-01546192 +
Submitted on 23 Jun 2017 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')
('39469581', 'Alexandre Meyer', 'alexandre meyer')
('1971616', 'Hubert Konik', 'hubert konik')
('1768560', 'Saïda Bouakaz', 'saïda bouakaz')
('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')
('39469581', 'Alexandre Meyer', 'alexandre meyer')
('1971616', 'Hubert Konik', 'hubert konik')
('1768560', 'Saïda Bouakaz', 'saïda bouakaz')
9c4cc11d0df2de42d6593f5284cfdf3f05da402aAppears in the 14th International Conference on Pattern Recognition, ICPR’98, Queensland, Australia, August 17-20, 1998. +
Enhanced Fisher Linear Discriminant Models for Face Recognition +
George Mason University
University Drive, Fairfax, VA 22030-4444, USA
cliu, wechsler +
('39664966', 'Chengjun Liu', 'chengjun liu')
('1781577', 'Harry Wechsler', 'harry wechsler')
@cs.gmu.edu +
9cd6a81a519545bf8aa9023f6e879521f85d4cd1Domain-invariant Face Recognition using Learned Low-rank +
Transformation +
Duke University
Durham, NC, 27708 +
Duke University
Durham, NC, 27708 +
University of Maryland
College Park, MD
May 11, 2014 +
('2077648', 'Qiang Qiu', 'qiang qiu')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
('2682056', 'Ching-Hui Chen', 'ching-hui chen')
qiang.qiu@duke.edu +
guillermo.sapiro@duke.edu +
ching@umd.edu +
9cadd166893f1b8aaecb27280a0915e6694441f5Appl. Math. Inf. Sci. 7, No. 2, 455-462 (2013) +
455 +
Applied Mathematics & Information Sciences +
An International Journal +
c⃝ 2013 NSP +
Natural Sciences Publishing Cor. +
Multi-Modal Emotion Recognition Fusing Video and +
Audio +
School of Computer Software, Tianjin University, 300072 Tianjin, China
School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China
Received: 7 Sep. 2012; Revised 15 Nov. 2012; Accepted 18 Nov. 2012 +
Published online: 1 Mar. 2013 +
('29962190', 'Chao Xu', 'chao xu')
('2531641', 'Pufeng Du', 'pufeng du')
('38465490', 'Zhiyong Feng', 'zhiyong feng')
('1889014', 'Zhaopeng Meng', 'zhaopeng meng')
('2375971', 'Tianyi Cao', 'tianyi cao')
('36675950', 'Caichao Dong', 'caichao dong')
02601d184d79742c7cd0c0ed80e846d95def052eGraphical Representation for Heterogeneous +
Face Recognition +
('2299758', 'Chunlei Peng', 'chunlei peng')
('10699750', 'Xinbo Gao', 'xinbo gao')
('2870173', 'Nannan Wang', 'nannan wang')
('38158055', 'Jie Li', 'jie li')
02cc96ad997102b7c55e177ac876db3b91b4e72cMuseumVisitors: a dataset for pedestrian and group detection, gaze estimation +
and behavior understanding +
('36971654', 'Federico Bartoli', 'federico bartoli')
('2973738', 'Giuseppe Lisanti', 'giuseppe lisanti')
('2831602', 'Lorenzo Seidenari', 'lorenzo seidenari')
('2602265', 'Svebor Karaman', 'svebor karaman')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
1{firstname.lastname}@unifi.it, University of Florence +
2sk4089@columbia.edu, Columbia University +
02e43d9ca736802d72824892c864e8cfde13718eTransferring a Semantic Representation for Person Re-Identification and +
Search +
Shi, Z; Yang, Y; Hospedales, T; XIANG, T; IEEE Conference on Computer Vision and +
Pattern Recognition +
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be +
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale +
or redistribution to servers or lists, or reuse of any copyrighted component of this work in +
other works. +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10075 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
more information contact scholarlycommunications@qmul.ac.uk +
02fda07735bdf84554c193811ba4267c24fe2e4aIllumination Invariant Face Recognition +
Using Near-Infrared Images +
('34679741', 'Stan Z. Li', 'stan z. li')
('1724841', 'Rufeng Chu', 'rufeng chu')
('40397682', 'Shengcai Liao', 'shengcai liao')
('39306651', 'Lun Zhang', 'lun zhang')
023ed32ac3ea6029f09b8c582efbe3866de7d00aCENTER FOR +
MACHINE PERCEPTION +
Discriminative learning from +
partially annotated examples +
CZECH TECHNICAL +
UNIVERSITY IN PRAGUE
Study Programme: Electrical Engineering and +
Information Technology +
Branch of Study: Artificial Intelligence and Biocybernetics +
CTU–CMP–2016–07 +
June 14, 2016 +
ftp://cmp.felk.cvut.cz/pub/cvl/articles/antoniuk/Antoniuk-TR-2016-07.pdf +
Available at +
Thesis Advisors: Ing. Vojtˇech Franc, Ph.D. , +
prof. Ing. V´aclav Hlav´aˇc, CSc. +
Acknowledgements: SGS15/201/OHK3/3T/13, CAK/TE01020197, +
UP-Driving/688652, GACR/P103/12/G084. +
Research Reports of CMP, Czech Technical University in Prague, No
Published by +
Center for Machine Perception, Department of Cybernetics +
Faculty of Electrical Engineering, Czech Technical University
Technick´a 2, 166 27 Prague 6, Czech Republic +
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz +
('2742026', 'Kostiantyn Antoniuk', 'kostiantyn antoniuk')antonkos@fel.cvut.cz +
0241513eeb4320d7848364e9a7ef134a69cbfd55Supervised Translation-Invariant Sparse +
Coding +
University of Illinois at Urbana Champaign
²NEC Laboratories America at Cupertino +
('1706007', 'Jianchao Yang', 'jianchao yang')
('38701713', 'Kai Yu', 'kai yu')
02dd0af998c3473d85bdd1f77254ebd71e6158c6PPP: Joint Pointwise and Pairwise Image Label Prediction +
1Department of Computer Science, Arizona State Univerity +
2Yahoo Research +
('33513248', 'Yilin Wang', 'yilin wang')
('1736632', 'Jiliang Tang', 'jiliang tang')
{yilinwang,suhang.wang,huan.liu,baoxin.li}@asu.edu +
jlt@yahoo-inc.com +
0290523cabea481e3e147b84dcaab1ef7a914612Generated Motion Maps +
Tokyo Denki University
National Institute of Advanced Industrial Science and Technology (AIST
('20505300', 'Yuta Matsuzaki', 'yuta matsuzaki')
('34935749', 'Kazushige Okayasu', 'kazushige okayasu')
('2462801', 'Akio Nakamura', 'akio nakamura')
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
matsuzaki.y, okayasu.k@is.dendai.ac.jp, nkmr-a@cck.dendai.ac.jp +
hirokatsu.kataoka@aist.go.jp +
0229829e9a1eed5769a2b5eccddcaa7cd9460b92Pooled Motion Features for First-Person Videos +
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
Figure 1: Overall representation framework of our pooled time series (PoT). Given a sequence of per-frame feature descriptors (e.g., HOF or CNN +
features) from a video, PoT represents motion information in the video by computing short-term/long-term changes in each descriptor value. +
In this paper, we present a new feature representation for first-person videos. +
In first-person video understanding (e.g., activity recognition [4]), it is very +
important to capture both entire scene dynamics (i.e., egomotion) and salient +
local motion observed in videos. We describe a representation framework +
('1904850', 'Brandon Rothrock', 'brandon rothrock')
025720574ef67672c44ba9e7065a83a5d6075c36Unsupervised Learning of Video Representations using LSTMs +
University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA
('2897313', 'Nitish Srivastava', 'nitish srivastava')
('2711409', 'Elman Mansimov', 'elman mansimov')
('1776908', 'Ruslan Salakhutdinov', 'ruslan salakhutdinov')
NITISH@CS.TORONTO.EDU +
EMANSIM@CS.TORONTO.EDU +
RSALAKHU@CS.TORONTO.EDU +
029317f260b3303c20dd58e8404a665c7c5e73391276 +
Character Identification in Feature-Length Films +
Using Global Face-Name Matching +
and Yeh-Min Huang, Member, IEEE +
('1688633', 'Changsheng Xu', 'changsheng xu')
('1694235', 'Hanqing Lu', 'hanqing lu')
026e4ee480475e63ae68570d73388f8dfd4b4cdeEvaluating gender portrayal in Bangladeshi TV +
Department of CSE +
Eastern University
Dhaka, Bangladesh +
Department of Women and Gender Studies +
Rawshan E Fatima +
Dhaka University
Dhaka, Bangladesh +
Khulna University of Engineering and Technology
Massachusetts Institute of Technology
Department of EEE +
Khulna, Bangladesh +
Media Lab +
Cambridge, MA, USA +
('34688479', 'Md. Naimul Hoque', 'md. naimul hoque')
('40081015', 'Manash Kumar Mandal', 'manash kumar mandal')
('1706468', 'Nazmus Saquib', 'nazmus saquib')
naimul.et@easternuni.edu.bd +
rawshan.e.fatima@gmail.com +
manashmndl@gmail.com +
saquib@mit.edu +
02e628e99f9a1b295458cb453c09863ea1641b67Two-stage Convolutional Part Heatmap +
Regression for the 1st 3D Face Alignment in the +
Wild (3DFAW) Challenge +
Computer Vision Laboratory, University of Nottingham, Nottingham, UK
('3458121', 'Adrian Bulat', 'adrian bulat')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
{adrian.bulat,yorgos.tzimiropoulos}@nottingham.ac.uk +
0273414ba7d56ab9ff894959b9d46e4b2fef7fd0Photographic home styles in Congress: a +
computer vision approach∗ +
December 1, 2016 +
('40845190', 'L. Jason Anastasopoulos', 'l. jason anastasopoulos')
('2007721', 'Dhruvil Badani', 'dhruvil badani')
('2647307', 'Crystal Lee', 'crystal lee')
('2361255', 'Shiry Ginosar', 'shiry ginosar')
('40411568', 'Jake Williams', 'jake williams')
02e133aacde6d0977bca01ffe971c79097097b7f
02567fd428a675ca91a0c6786f47f3e35881bcbdACCEPTED BY IEEE TIP +
Deep Label Distribution Learning +
With Label Ambiguity +
('2226422', 'Bin-Bin Gao', 'bin-bin gao')
('1694501', 'Chao Xing', 'chao xing')
('3407628', 'Chen-Wei Xie', 'chen-wei xie')
('1808816', 'Jianxin Wu', 'jianxin wu')
('1735299', 'Xin Geng', 'xin geng')
02f4b900deabbe7efa474f2815dc122a4ddb5b76Local and Global Optimization Techniques in Graph-based Clustering +
The University of Tokyo, Japan
('11682769', 'Daiki Ikami', 'daiki ikami')
('2759239', 'Toshihiko Yamasaki', 'toshihiko yamasaki')
('1712839', 'Kiyoharu Aizawa', 'kiyoharu aizawa')
{ikami, yamasaki, aizawa}@hal.t.u-tokyo.ac.jp +
029b53f32079063047097fa59cfc788b2b550c4b
02bd665196bd50c4ecf05d6852a4b9ba027cd9d0
026b5b8062e5a8d86c541cfa976f8eee97b30ab8MDLFace: Memorability Augmented Deep Learning for Video Face Recognition +
IIIT-Delhi, India +
('1931069', 'Gaurav Goswami', 'gaurav goswami')
('1875774', 'Romil Bhardwaj', 'romil bhardwaj')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
{gauravgs,romil11092,rsingh,mayank}@iiitd.ac.in +
0235b2d2ae306b7755483ac4f564044f46387648Recognition of Facial Attributes +
using Adaptive Sparse Representations +
of Random Patches +
1 Department of Computer Science +
Pontificia Universidad Cat´olica de Chile +
http://dmery.ing.puc.cl +
2 Department of Computer Science & Engineering +
University of Notre Dame
http://www.nd.edu/~kwb +
('1797475', 'Domingo Mery', 'domingo mery')
02467703b6e087799e04e321bea3a4c354c5487dTo appear in the CVPR Workshop on Biometrics, June 2016 +
Grouper: Optimizing Crowdsourced Face Annotations∗ +
Noblis +
Noblis +
Noblis +
Noblis +
Michigan State University
('9453012', 'Jocelyn C. Adams', 'jocelyn c. adams')
('7996649', 'Kristen C. Allen', 'kristen c. allen')
('15282121', 'Tim Miller', 'tim miller')
('1718102', 'Nathan D. Kalka', 'nathan d. kalka')
('6680444', 'Anil K. Jain', 'anil k. jain')
jocelyn.adams@noblis.org +
kristen.allen@noblis.org +
timothy.miller@noblis.org +
nathan.kalka@noblis.org +
jain@cse.msu.edu +
02e39f23e08c2cb24d188bf0ca34141f3cc72d47REMOVING ILLUMINATION ARTIFACTS FROM FACE IMAGES USING THE NUISANCE +
ATTRIBUTE PROJECTION +
Vitomir ˇStruc, Boˇstjan Vesnicer, France Miheliˇc, Nikola Paveˇsi´c +
Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia
023be757b1769ecb0db810c95c010310d7daf00bYANG, MOU, ZHANG ET AL.: FACE ALIGNMENT ASSISTED BY HEAD POSE ESTIMATION1 +
Face Alignment Assisted by Head Pose +
Estimation +
1 Computer Laboratory +
University of Cambridge
Cambridge, UK +
2 School of EECS +
Queen Mary University of London
London, UK +
3 Faculty of Arts & Sciences +
Harvard University
Cambridge, MA, US +
('2966679', 'Heng Yang', 'heng yang')
('2734386', 'Wenxuan Mou', 'wenxuan mou')
('40491398', 'Yichi Zhang', 'yichi zhang')
('1744405', 'Ioannis Patras', 'ioannis patras')
('1781916', 'Hatice Gunes', 'hatice gunes')
('39626495', 'Peter Robinson', 'peter robinson')
heng.yang@cl.cam.ac.uk +
w.mou@qmul.ac.uk +
yichizhang@fas.harvard.edu +
i.patras@qmul.ac.uk +
h.gunes@qmul.ac.uk +
peter.robinson@cl.cam.ac.uk +
0278acdc8632f463232e961563e177aa8c6d6833Selective Transfer Machine for Personalized +
Facial Expression Analysis +
1 INTRODUCTION +
Index Terms—Facial expression analysis, personalization, domain adaptation, transfer learning, support vector machine (SVM) +
A UTOMATIC facial AU detection confronts a number of +
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
('3141839', 'Fernando De la Torre', 'fernando de la torre')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
0209389b8369aaa2a08830ac3b2036d4901ba1f1DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild +
Rıza Alp G¨uler 1 +
1INRIA-CentraleSup´elec, France +
Imperial College London, UK
University College London, UK
('2814229', 'George Trigeorgis', 'george trigeorgis')
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('2796644', 'Patrick Snape', 'patrick snape')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('2010660', 'Iasonas Kokkinos', 'iasonas kokkinos')
1riza.guler@inria.fr +
2{g.trigeorgis, e.antonakos, p.snape,s.zafeiriou}@imperial.ac.uk +
3i.kokkinos@cs.ucl.ac.uk +
02c993d361dddba9737d79e7251feca026288c9c
02239ae5e922075a354169f75f684cad8fdfd5abCommonly Uncommon: +
Semantic Sparsity in Situation Recognition +
Computer Science and Engineering, University of Washington, Seattle, WA
Allen Institute for Arti cial Intelligence (AI2), Seattle, WA
University of Virginia, Charlottesville, VA
('2064210', 'Mark Yatskar', 'mark yatskar')
('2004053', 'Vicente Ordonez', 'vicente ordonez')
('2270286', 'Ali Farhadi', 'ali farhadi')
[my89, lsz, ali]@cs.washington.edu, vicente@cs.virginia.edu +
02d650d8a3a9daaba523433fbe93705df0a7f4b1How Does Aging Affect Facial Components? +
Michigan State University
('40653304', 'Charles Otto', 'charles otto')
('34393045', 'Hu Han', 'hu han')
{ottochar,hhan,jain}@cse.msu.edu +
0294f992f8dfd8748703f953925f9aee14e1b2a2Blur-Robust Face Recognition via +
Transformation Learning +
Beijing University of Posts and Telecommunications, Beijing, China
('40448827', 'Jun Li', 'jun li')
('1690083', 'Chi Zhang', 'chi zhang')
('23224233', 'Jiani Hu', 'jiani hu')
('1774956', 'Weihong Deng', 'weihong deng')
02820c1491b10a1ff486fed32c269e4077c36551Active User Authentication for Smartphones: A Challenge +
Data Set and Benchmark Results +
1Department of Electrical and Computer Engineering and the Center for Automation Research, +
UMIACS, University of Maryland, College Park, MD
Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ
('3152615', 'Upal Mahbub', 'upal mahbub')
('40599829', 'Sayantan Sarkar', 'sayantan sarkar')
{umahbub, ssarkar2, rama}@umiacs.umd.edu +
vishal.m.patel@rutgers.edu∗ +
a40edf6eb979d1ddfe5894fac7f2cf199519669fImproving Facial Attribute Prediction using Semantic Segmentation +
Center for Research in Computer Vision +
University of Central Florida
('3222250', 'Mahdi M. Kalayeh', 'mahdi m. kalayeh')
('40206014', 'Boqing Gong', 'boqing gong')
('1745480', 'Mubarak Shah', 'mubarak shah')
Mahdi@eecs.ucf.edu +
bgong@crcv.ucf.edu +
shah@crcv.ucf.edu +
a46283e90bcdc0ee35c680411942c90df130f448
a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2Yudistira and Kurita EURASIP Journal on Image and Video +
Processing (2017) 2017:85 +
DOI 10.1186/s13640-017-0235-9 +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
Gated spatio and temporal convolutional +
neural network for activity recognition: +
towards gated multimodal deep learning +
('2035597', 'Novanto Yudistira', 'novanto yudistira')
('1742728', 'Takio Kurita', 'takio kurita')
a4876b7493d8110d4be720942a0f98c2d116d2a0Multi-velocity neural networks for gesture recognition in videos +
Massachusetts Institute of Technology
Cambridge, MA +
('37381309', 'Otkrist Gupta', 'otkrist gupta')
('2283049', 'Dan Raviv', 'dan raviv')
('1717566', 'Ramesh Raskar', 'ramesh raskar')
otkrist@mit.edu +
raviv@mit.edu +
raskar@media.mit.edu +
a40f8881a36bc01f3ae356b3e57eac84e989eef0End-to-end semantic face segmentation with conditional +
random fields as convolutional, recurrent and adversarial +
networks +
('3038211', 'Umut Güçlü', 'umut güçlü')
('1920611', 'Meysam Madadi', 'meysam madadi')
('7855312', 'Sergio Escalera', 'sergio escalera')
('1857280', 'Xavier Baró', 'xavier baró')
('38485168', 'Rob van Lier', 'rob van lier')
('2052286', 'Marcel van Gerven', 'marcel van gerven')
a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3Ecient Recurrent Residual Networks Improved by +
Feature Transfer +
MSc Thesis +
written by +
degree of +
Master of Science +
at the Delft University of Technology
Date of the public defense: Members of the Thesis Committee: +
August 31, 2017 +
Prof. Marcel Reinders +
Dr. Julian Urbano Merino +
Dr. Gonzalez Adrlana (Bosch) +
('1694101', 'Yue Liu', 'yue liu')
('37806314', 'Silvia-Laura Pintea', 'silvia-laura pintea')
('30445013', 'Jan van Gemert', 'jan van gemert')
('2372050', 'Ildiko Suveg', 'ildiko suveg')
('30445013', 'Jan van Gemert', 'jan van gemert')
('37806314', 'Silvia-Laura Pintea', 'silvia-laura pintea')
('2372050', 'Ildiko Suveg', 'ildiko suveg')
a46086e210c98dcb6cb9a211286ef906c580f4e8Fusing Multi-Stream Deep Networks for Video Classification +
Fudan University, Shanghai, China
Alibaba Group, Seattle, USA +
('3099139', 'Zuxuan Wu', 'zuxuan wu')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('31825486', 'Xi Wang', 'xi wang')
('1743864', 'Hao Ye', 'hao ye')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
('1715001', 'Jun Wang', 'jun wang')
zxwu, ygj, xwang10, haoye10, xyxue@fudan.edu.cn +
wongjun@gmail.com +
a44590528b18059b00d24ece4670668e86378a79Learning the Hierarchical Parts of Objects by Deep +
Non-Smooth Nonnegative Matrix Factorization +
('19275690', 'Jinshi Yu', 'jinshi yu')
('1764724', 'Guoxu Zhou', 'guoxu zhou')
('1747156', 'Andrzej Cichocki', 'andrzej cichocki')
('1795838', 'Shengli Xie', 'shengli xie')
a472d59cff9d822f15f326a874e666be09b70cfdVISUAL LEARNING WITH WEAKLY LABELED VIDEO +
A DISSERTATION +
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +
AND THE COMMITTEE ON GRADUATE STUDIES +
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +
FOR THE DEGREE OF +
DOCTOR OF PHILOSOPHY +
May 2015 +
('3355264', 'Kevin Tang', 'kevin tang')
a4c430b7d849a8f23713dc283794d8c1782198b2Video Concept Embedding +
1. Introduction +
In the area of natural language processing, there has been +
much success in learning distributed representations for +
words as vectors. Doing so has an advantage over using +
simple labels, or a one-hot coding scheme for representing +
individual words. In learning distributed vector representa- +
tions for words, we manage to capture semantic relatedness +
of words in vector distance. For example, the word vector +
for ”car” and ”road” should end up being closer together in +
the vector space representation than ”car” and ”penguin”. +
This has been very useful in NLP areas of machine transla- +
tion and semantic understanding. +
In the computer vision domain, video understanding is a +
very important topic. +
It is made hard due to the large +
amount of high dimensional data in videos. One strategy +
to address this is to summarize a video into concepts (eg. +
running, climbing, cooking). This allows us to represent a +
video in a very natural way to humans, such as a sequence +
of semantic events. However this has the same shortcom- +
ings that one-hot coding of words have. +
The goal of this project is to find a meaningful way to em- +
bed video concepts into a vector space. The hope would +
be to capture semantic relatedness of concepts in a vector +
representation, essentially doing for videos what word2vec +
did for text. Having a vector representation for video con- +
cepts would help in areas such as semantic video retrieval +
and video classification, as it would provide a statistically +
meaningful and robust way of representing videos as lower +
dimensional vectors. An interesting thing would be to ob- +
serve if such a vector representation would result in ana- +
logical reasoning using simple vector arithmetic. +
Figure 1 shows an example of concepts detected at differ- +
ent snapshots in the same video. For example, consider +
the scenario where the concepts Kicking a ball, Soccer and +
Running are detected in the three snapshots respectively +
(from left to right). Since, these snapshots belong in the +
same video, we expect that these concepts are semantically +
similar and that they should lie close in the resulting em- +
bedding space. The aim of this project is to find a vector +
space embedding for the space of concepts such that vector +
representations for semantically similar concepts (in this +
Figure 1. Example snapshots from the same video +
case, Running, Kicking and Soccer) lie in the vicinity of +
each other. +
2. Related Work +
(Mikolov et al., 2013a) introduces the popular skip-gram +
model to learn distributed representations of words from +
very large linguistic datasets. Specifically, it uses each +
word as an input to a log-linear classifier and predict words +
within a certain range before and after the current word in +
the dataset. +
(Mikolov et al., 2013b) extends this model +
to learn representations for phrases, in addition to words, +
and also improve the quality of vectors and training speed. +
These works also show that the skip-gram model exhibits +
a linear structure that enables it to perform reasoning using +
basic vector arithmetic. The skip-gram model from these +
works is the basis of our model in learning representations +
for concepts. +
(Le & Mikolov, 2014) extends the concept of word vectors +
to sentences and paragraphs. Their approach is more in- +
volved than a simple bag of words approach, in that it tries +
to capture the nature of the words in the paragraph. They +
construct the paragraph vector in such a way that it can be +
used to predict the word vectors that are contained inside +
the paragraph. They do this by first learning word vectors, +
such that the probability of a word vector given its context +
is maximized. To learn paragraph vectors, the paragraph +
is essentially treated as a word, and the words it contains +
become the context. This provides a key insight in how +
a set of concept vectors can be used together to provide a +
more meaningful vector representation for videos, which +
can then be used for retrieval. +
(Hu et al.) utilizes structured knowledge in the data to learn +
distributed representations that improve semantic related- +
('2387189', 'Anirudh Vemula', 'anirudh vemula')
('32203964', 'Rahul Nallamothu', 'rahul nallamothu')
('9619757', 'Syed Zahir Bokhari', 'syed zahir bokhari')
AVEMULA1@ANDREW.CMU.EDU +
RNALLAMO@ANDREW.CMU.EDU +
SBOKHARI@ANDREW.CMU.EDU +
a4cc626da29ac48f9b4ed6ceb63081f6a4b304a2
a4f37cfdde3af723336205b361aefc9eca688f5cRecent Advances +
in Face Recognition +
a481e394f58f2d6e998aa320dad35c0d0e15d43cSelectively Guiding Visual Concept Discovery +
Colorado State University
Fort Collins, Colorado +
('2857477', 'Maggie Wigness', 'maggie wigness')
('1694404', 'Bruce A. Draper', 'bruce a. draper')
('1757322', 'J. Ross Beveridge', 'j. ross beveridge')
mwigness,draper,ross@cs.colostate.edu +
a30869c5d4052ed1da8675128651e17f97b87918Fine-Grained Comparisons with Attributes +('2206630', 'Aron Yu', 'aron yu')
('1794409', 'Kristen Grauman', 'kristen grauman')
a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7bFirst International Workshop on Adaptive Shot Learning +
for Gesture Understanding and Production +
ASL4GUP 2017 +
Held in conjunction with IEEE FG 2017, in May 30, 2017, +
Washington DC, USA +
a3d8b5622c4b9af1f753aade57e4774730787a00Pose-Aware Person Recognition +
Anoop Namboodiri (cid:63) +
(cid:63) CVIT, IIIT Hyderabad, India +
† Facebook AI Research +
('37956314', 'Vijay Kumar', 'vijay kumar')
('2210374', 'Manohar Paluri', 'manohar paluri')
('1694502', 'C. V. Jawahar', 'c. v. jawahar')
a322479a6851f57a3d74d017a9cb6d71395ed806Towards Pose Invariant Face Recognition in the Wild +
National University of Singapore
National University of Defense Technology
Nanyang Technological University
4Panasonic R&D Center Singapore +
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
Qihoo 360 AI Institute
('2668358', 'Sugiri Pranata', 'sugiri pranata')
('3493398', 'Shengmei Shen', 'shengmei shen')
('1757173', 'Junliang Xing', 'junliang xing')
('46509407', 'Jian Zhao', 'jian zhao')
('5524736', 'Yu Cheng', 'yu cheng')
('33419682', 'Lin Xiong', 'lin xiong')
('2757639', 'Jianshu Li', 'jianshu li')
('40345914', 'Fang Zhao', 'fang zhao')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('33221685', 'Jiashi Feng', 'jiashi feng')
a3017bb14a507abcf8446b56243cfddd6cdb542bFace Localization and Recognition in Varied +
Expressions and Illumination +
Hui-Yu Huang, Shih-Hang Hsu +
+
a3c8c7da177cd08978b2ad613c1d5cb89e0de741A Spatio-temporal Approach for Multiple +
Object Detection in Videos Using Graphs +
and Probability Maps +
University of S ao Paulo, S ao Paulo, Brazil
2 Institut Mines T´el´ecom, T´el´ecom ParisTech, CNRS LTCI, Paris, France +
('1863046', 'Henrique Morimitsu', 'henrique morimitsu')
('1695917', 'Isabelle Bloch', 'isabelle bloch')
henriquem87@gmail.com +
a378fc39128107815a9a68b0b07cffaa1ed32d1fDetermining a Suitable Metric When using Non-negative Matrix Factorization∗ +
Computer Vision Center, Dept. Inform`atica +
Universitat Aut`onoma de Barcelona +
08193 Bellaterra, Barcelona, Spain +
('1761407', 'David Guillamet', 'david guillamet'){davidg,jordi}@cvc.uab.es +
a34d75da87525d1192bda240b7675349ee85c123Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? +
Face++, Megvii Inc. +
Face++, Megvii Inc. +
Face++, Megvii Inc. +
('1848243', 'Erjin Zhou', 'erjin zhou')
('2695115', 'Zhimin Cao', 'zhimin cao')
('2274228', 'Qi Yin', 'qi yin')
zej@megvii.com +
czm@megvii.com +
yq@megvii.com +
a301ddc419cbd900b301a95b1d9e4bb770afc6a3Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
DECK: Discovering Event Composition Knowledge from +
Web Images for Zero-Shot Event Detection and Recounting in Videos +
University of Southern California
IIIS, Tsinghua University
‡ Google Research +
('2551285', 'Chuang Gan', 'chuang gan')
('1726241', 'Chen Sun', 'chen sun')
a3dc109b1dff3846f5a2cc1fe2448230a76ad83fJ.Savitha et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 722-731 +
Available Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IJCSMC, Vol. 4, Issue. 4, April 2015, pg.722 – 731 +
RESEARCH ARTICLE +
ACTIVE APPEARANCE MODEL AND PCA +
BASED FACE RECOGNITION SYSTEM +
Mrs. J.Savitha M.Sc., M.Phil. +
Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India
Dr. A.V.Senthil Kumar +
Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India
Email: savitha.sanjay1@gmail.com +
Email: avsenthilkumar@gmail.com +
a3f69a073dcfb6da8038607a9f14eb28b5dab2dbProceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +
1184 +
a38045ed82d6800cbc7a4feb498e694740568258UNLV Theses, Dissertations, Professional Papers, and Capstones +
5-2010 +
African American and Caucasian males' evaluation +
of racialized female facial averages +
Rhea M. Watson +
University of Nevada Las Vegas
Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations +
Part of the Cognition and Perception Commons, Race and Ethnicity Commons, and the Social +
Psychology Commons +
Repository Citation +
Watson, Rhea M., "African American and Caucasian males' evaluation of racialized female facial averages" (2010). UNLV Theses, +
Dissertations, Professional Papers, and Capstones. 366. +
http://digitalscholarship.unlv.edu/thesesdissertations/366 +
This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, +
Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact +
digitalscholarship@unlv.edu. +
a3f684930c5c45fcb56a2b407d26b63879120cbfLPM for Fast Action Recognition with Large Number of Classes +
School of Electrical Engineering and Computer Scinece +
University of Ottawa, Ottawa, On, Canada
Department of Electronics and Information Engineering +
Hua Zhong University of Science and Technology, Wuhan, China
1. Introduction +
In this paper, we provide an overview of the Local Part +
Model system for the THUMOS 2013: Action Recognition +
with a Large Number of Classes1 evaluations. Our system +
uses a combination of fast random sampling feature extrac- +
tion and local part model feature representation. +
Over the last decade, the advances in the area of com- +
puter vision and pattern recognition have fuelled a large +
amount of research with great progress in human action +
recognition. Much of the early progress [1, 5, 14] has been +
reported on atomic actions with several categories based +
on staged videos captured under controlled settings, such +
as KTH [14] and Weizmann [1]. More recently, there are +
emerging interests for sophisticated algorithms in recogniz- +
ing actions from realistic video. Such interests involve two +
prospects: 1) In comparison to image classification evalu- +
ating millions of images with over one thousand categories, +
action recognition is still at its initial stage. It is important +
to develop reliable, automatic methods which scale to large +
numbers of action categories captured in realistic settings. +
2) With over 100 hours of videos are uploaded to YouTube +
every minute2, and millions of surveillance cameras all over +
the world, the need for efficient recognition of the visual +
events in the video is crucial for real world applications. +
Recent studies [5, 10, 11, 21] have shown that lo- +
cal spatio-temporal features can achieve remarkable per- +
formance when represented by popular bag-of-features +
method. A recent trend is the use of dense sampled points +
[16, 21] and trajectories [7, 19] to improve the perfor- +
mance. Local Part Model [15] achieved state-of-the-art per- +
formance on real-life datasets with high efficiency when +
combined with random sampling over high density sam- +
1http://crcv.ucf.edu/ICCV13-Action-Workshop/index.html +
2http://www.youtube.com/yt/press/statistics.html +
pling grids. +
In this paper, we focus on recognize human +
action “in the wild” with large number of classes. More +
specifically, we aim to improve the state-of-the-art Local +
Part Model method on large scale real-life action datasets. +
The paper is organized as follows: The next section re- +
views the LPM algorithm. Section 3 introduces four differ- +
ent descriptors we will use. In section 4, we present some +
experimental results and analysis. The paper is completed +
with a brief conclusion. The code for computing random +
sampling with Local Part Model is available on-line3. +
2. LPM algorithm +
Inspired by the multiscale, deformable part model [6] +
for object classification, we proposed a 3D multiscale part +
model in [16]. However, instead of adopting deformable +
“parts”, we used “parts” with fixed size and location on the +
purpose of maintaining both structural information and lo- +
cal events ordering for action recognition. As shown in Fig- +
ure 1, the local part model includes both a coarse primi- +
tive level root feature covering event-content statistics and +
higher resolution overlapping part filters incorporating lo- +
cal structural and temporal relations. +
More recently, we [15] applied random sampling method +
with local part model over a very dense sampling grid +
and achieved state-of-the-art performance on realistic large +
scale datasets with potential for real-time recognition. Un- +
der the local part model, a feature consists of a coarse global +
root filter and several fine overlapped part filters. The root +
filter is extracted on the video at half the resolution. This +
way, a high density grid can be defined with far less sam- +
ples. For every coarse root filter, a group of fine part filters +
are computed at full video resolution and at locations rela- +
tive to their root filter reference position. These part filters +
3https://github.com/fshi/actionMBH +
('36925389', 'Feng Shi', 'feng shi')
('1745632', 'Emil Petriu', 'emil petriu')
fshi98@gmail.com, {laganier, petriu}@site.uottawa.ca +
zhenhaiyu@mail.hust.edu.cn +
a3f78cc944ac189632f25925ba807a0e0678c4d5Action Recognition in Realistic Sports Videos +('1799979', 'Khurram Soomro', 'khurram soomro')
('40029556', 'Amir Roshan Zamir', 'amir roshan zamir')
a33f20773b46283ea72412f9b4473a8f8ad751ae
a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7Multiple Local Curvature Gabor Binary +
Patterns for Facial Action Recognition +
Signal Processing Laboratory (LTS5), +
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +
('2383305', 'Nuri Murat Arar', 'nuri murat arar')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
{anil.yuce,murat.arar,jean-philippe.thiran}@epfl.ch +
a32c5138c6a0b3d3aff69bcab1015d8b043c91fbDownloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018 +
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406.
a32d4195f7752a715469ad99cb1e6ebc1a099de6Hindawi Publishing Corporation +
e Scientific World Journal +
Volume 2014, Article ID 749096, 10 pages +
http://dx.doi.org/10.1155/2014/749096 +
Research Article +
The Potential of Using Brain Images for Authentication +
College of Mechatronic Engineering and Automation, National University of Defense Technology
Changsha, Hunan 410073, China +
Received 6 May 2014; Accepted 19 June 2014; Published 10 July 2014 +
Academic Editor: Wangmeng Zuo +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or +
behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and +
complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and +
try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter +
extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from +
an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two +
data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though +
currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential +
possibility for authentication in view of pattern recognition. +
1. Introduction +
Identity authentication is an important task for different +
applications including access control, ATM card verification, +
and forensic affairs. Compared with conventional methods +
(e.g., key, ID card, and password), biometric recognition +
is more resistant to social engineering attacks (e.g., theft). +
Biometric recognition is also intrinsically superior that makes +
it unforgettable. During the past few decades, biometric tech- +
nologies have shown more and more importance in various +
applications [1, 2]. Among them, recognition technologies +
based on fingerprint [3, 4], palmprint [5, 6], iris [7, 8], and +
face [9, 10] are the most popular. +
The brain is the center of the nervous system and the most +
important and complex organ in the human body. Though +
different brains may be alike in the way they act and have +
similar traits, scientists have confirmed that no two brains are +
or will ever be the same [11]. Both genes (what we inherit) +
and experience (what we learn) could allow individual brains +
to develop in distinctly different ways. Recent studies show +
that the so-called jumping genes, which ensure that identical +
twins are different, may also influence the brains [12]. All +
these studies show that the human brain is a work of genius in +
its design and capabilities, and it is unique. Though brain gray +
matter will change with age or disease, it shows steadiness in +
adulthood [13, 14]. The question we are interested in this study +
is as follows: can we use the brain for identity authentication? +
This paper analyzes the uniqueness of human brain +
and proposes to use the brain for personal identification +
(authentication). Compared with other biometric techniques, +
brain recognition is more resistant to forgery (e.g., fake +
fingerprints [15]) and spoofing (e.g., face disguise [16]). Brain +
recognition is also more reliable to identify the escapee +
since one’s brain can hardly be modified, whereas other +
biologic traits may be altered, such as altered fingerprints [17]. +
Palaniappan and Mandic [18] established a Visual Evoked +
Potential- (VEP-) based biometrics, and simulations have +
indicated the significant potential of brain electrical activity +
as a biometric tool. However, VEP is not robust to the +
activity of brain. Aloui et al. [19] extracted characteristics of +
brain images and used them in an application as a biometric +
tool to identify individuals. Their method just uses a single +
slice of the brain and thus suffers from the influence of +
noise. Another drawback of this method is that it only uses +
('40326124', 'Fanglin Chen', 'fanglin chen')
('8526311', 'Zongtan Zhou', 'zongtan zhou')
('1730001', 'Hui Shen', 'hui shen')
('2517668', 'Dewen Hu', 'dewen hu')
('40326124', 'Fanglin Chen', 'fanglin chen')
Correspondence should be addressed to Dewen Hu; dwhu@nudt.edu.cn +
a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9Recognizing Violence in Movies +
CIS400/401 Project Final Report +
Univ. of Pennsylvania +
Philadelphia, PA +
Univ. of Pennsylvania +
Philadelphia, PA +
Ben Sapp +
Univ. of Pennsylvania +
Philadelphia, PA +
Univ. of Pennsylvania +
Philadelphia, PA +
('1908780', 'Lei Kang', 'lei kang')
('1685978', 'Ben Taskar', 'ben taskar')
kanglei@seas.upenn.edu +
mjiawei@seas.upenn.edu +
bensapp@cis.upenn.edu +
taskar@cis.upenn.edu +
a3eab933e1b3db1a7377a119573ff38e780ea6a3978-1-4244-4296-6/10/$25.00 ©2010 IEEE +
838 +
ICASSP 2010 +
a308077e98a611a977e1e85b5a6073f1a9bae6f0Hindawi Publishing Corporation +
e Scientific World Journal +
Volume 2014, Article ID 810368, 15 pages +
http://dx.doi.org/10.1155/2014/810368 +
Review Article +
Intelligent Screening Systems for Cervical Cancer +
Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
Received 24 December 2013; Accepted 11 February 2014; Published 11 May 2014 +
Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Advent of medical image digitalization leads to image processing and computer-aided diagnosis systems in numerous clinical +
applications. These technologies could be used to automatically diagnose patient or serve as second opinion to pathologists. This +
paper briefly reviews cervical screening techniques, advantages, and disadvantages. The digital data of the screening techniques +
are used as data for the computer screening system as replaced in the expert analysis. Four stages of the computer system are +
enhancement, features extraction, feature selection, and classification reviewed in detail. The computer system based on cytology +
data and electromagnetic spectra data achieved better accuracy than other data. +
1. Introduction +
Cervical cancer is a leading cause of mortality and morbidity, +
which comprises approximately 12% of all cancers in women +
worldwide according to World Health Organization (WHO). +
In fact, the annual global statistics of WHO estimated 470 +
600 new cases and 233 400 deaths from cervical cancer +
around the year 2000. As reported in National Cervical +
Cancer Coalition (NCCC) in 2010, cervical cancer is a cancer +
of the cervix which is commonly caused by a virus named +
Human Papillomavirus (HPV) [1]. The virus can damage +
cells in the cervix, namely, squamous cells and glandular +
cells that may develop into squamous cell carcinoma (cancer +
of the squamous cells) and adenocarcinoma (cancer of the +
glandular cells), respectively. Squamous cell carcinoma can +
be thought of as similar to skin cancer because it begins on +
the surface of the ectocervix. Adenocarcinoma begins further +
inside the uterus, in the mucus-producing gland cells of the +
endocervix [2]. +
Cervical cancer develops from normal to precancerous +
cells (dysplasia) over a period of two to three decades [3]. +
Even though the dysplasia cells look like cancer cells, they +
are not malignant cells. These cells are known as cervical +
intraepithelial neoplasia (CIN) which is usually of low grade, +
and they only affect the surface of the cervical tissue. The +
majority will regress back to normal spontaneously. Over +
time, a small proportion will continue to develop into cancer. +
Based on WHO system, the level of CIN growth can be +
divided into grades 1, 2, and 3. It should be noted that at least +
two-thirds of the CIN 1 lesions, half of the CIN 2 lesions, and +
one-third of the CIN 3 lesions will regress back to normal [3]. +
The median ages of patients with these different precursor +
grades are 25, 29, and 34 years, respectively. Ultimately, a +
small proportion will develop into infiltrating cancer, usually +
from the age of 45 years onwards. +
In 1994, the Bethesda system was introduced to simplify +
the WHO system. This system divided all cervical epithelial +
precursor lesions into two groups: the Low-grade Squamous +
Intraepithelial Lesion (LSIL) and High-grade Squamous +
Intraepithelial Lesion (HSIL). The LSIL corresponds to CIN1, +
while the HSIL includes CIN2 and CIN3 [4]. +
Since a period of two to three decades is needed for +
cervical cancer to reach an invasive state, the incidence and +
mortality related to this disease can be significantly reduced +
through early detection and proper treatment. Realizing +
this fact, a variety of screening tests have therefore been +
developed in attempting to be implemented as early cervical +
precancerous screening tools. +
2. Methodology +
This paper reviews 103 journal papers. The papers are +
obtained electronically through 2 major scientific databases: +
('2905656', 'Yessi Jusman', 'yessi jusman')
('33102280', 'Siew Cheok Ng', 'siew cheok ng')
('2784667', 'Noor Azuan Abu Osman', 'noor azuan abu osman')
('2905656', 'Yessi Jusman', 'yessi jusman')
Correspondence should be addressed to Siew Cheok Ng; siewcng@um.edu.my and Noor Azuan Abu Osman; azuan@um.edu.my +
a35dd69d63bac6f3296e0f1d148708cfa4ba80f6Audio Visual Emotion Recognition with Temporal Alignment and Perception +
Attention +
National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences
Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain
Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS
('1850313', 'Linlin Chao', 'linlin chao')
('37670752', 'Jianhua Tao', 'jianhua tao')
('2740129', 'Minghao Yang', 'minghao yang')
('1704841', 'Ya Li', 'ya li')
('1718662', 'Zhengqi Wen', 'zhengqi wen')
{linlin.chao, jhtao, mhyang, yli, zqwen}@nlpr.ia.ac.cn +
a3a34c1b876002e0393038fcf2bcb00821737105Face Identification across Different Poses and Illuminations +
with a 3D Morphable Model +
V. Blanz, S. Romdhani, and T. Vetter +
University of Freiburg
Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany +
fvolker, romdhani, vetterg@informatik.uni-freiburg.de +
a3f1db123ce1818971a57330d82901683d7c2b67Poselets and Their Applications in High-Level +
Computer Vision +
Lubomir Bourdev +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2012-52 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-52.html +
May 1, 2012 +
a36c8a4213251d3fd634e8893ad1b932205ad1caVideos from the 2013 Boston Marathon: +
An Event Reconstruction Dataset for +
Synchronization and Localization +
CMU-LTI-018 +
Language Technologies Institute
School of Computer Science +
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 +
www.lti.cs.cmu.edu +
© October 1, 2016 +
('1915796', 'Junwei Liang', 'junwei liang')
('47896638', 'Han Lu', 'han lu')
('2927024', 'Shoou-I Yu', 'shoou-i yu')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
a3a97bb5131e7e67316b649bbc2432aaa1a6556eCogn Affect Behav Neurosci +
DOI 10.3758/s13415-013-0170-x +
Role of the hippocampus and orbitofrontal cortex +
during the disambiguation of social cues in working memory +
Chantal E. Stern +
Psychonomic Society, Inc
('2973557', 'Karin Schon', 'karin schon')
a35d3ba191137224576f312353e1e0267e6699a1Increasing security in DRM systems +
through biometric authentication. +
ecuring the exchange +
of intellectual property +
and providing protection +
to multimedia contents in +
distribution systems have enabled the +
advent of digital rights management +
(DRM) systems [5], [14], [21], [47], +
[51], [53]. Rights holders should be able to +
license, monitor, and track the usage of rights +
in a dynamic digital trading environment, espe- +
cially in the near future when universal multimedia +
access (UMA) becomes a reality, and any multimedia +
content will be available anytime, anywhere. In such +
DRM systems, encryption algorithms, access control, +
key management strategies, identification and tracing +
of contents, or copy control will play a prominent role +
to supervise and restrict access to multimedia data, +
avoiding unauthorized or fraudulent operations. +
A key component of any DRM system, also known +
as intellectual property management and protection +
(IPMP) systems in the MPEG-21 framework, is user +
authentication to ensure that +
only those with specific rights are +
able to access the digital informa- +
tion. It is here that biometrics can +
play an essential role, reinforcing securi- +
ty at all stages where customer authentica- +
tion is needed. The ubiquity of users and +
devices, where the same user might want to +
access to multimedia contents from different +
environments (home, car, work, jogging, etc.) and +
also from different devices or media (CD, DVD, +
home computer, laptop, PDA, 2G/3G mobile phones, +
game consoles, etc.) strengthens the need for reliable +
and universal authentication of users. +
Classical user authentication systems have been +
based in something that you have (like a key, an identi- +
fication card, etc.) and/or something that you know +
(like a password, or a PIN). With biometrics, a new +
user authentication paradigm is added: something that +
you are (e.g., fingerprints or face) or something that +
you do or produce (e.g., handwritten signature or +
50 +
IEEE SIGNAL PROCESSING MAGAZINE +
1053-5888/04/$20.00©2004IEEE +
MARCH 2004 +
('1732220', 'Javier Ortega-Garcia', 'javier ortega-garcia')
('5058247', 'Josef Bigun', 'josef bigun')
('3127386', 'Douglas Reynolds', 'douglas reynolds')
('1775227', 'Joaquin Gonzalez-Rodriguez', 'joaquin gonzalez-rodriguez')
a3a2f3803bf403262b56ce88d130af15e984fff0Building a Compact Relevant Sample Coverage +
for Relevance Feedback in Content-Based Image +
Retrieval +
Tsinghua University, Beijing, China
2 Sensing & Control Technology Laboratory, Omron Corporation, Kyoto, Japan +
('38916673', 'Bangpeng Yao', 'bangpeng yao')
('1679380', 'Haizhou Ai', 'haizhou ai')
('1710195', 'Shihong Lao', 'shihong lao')
b56f3a7c50bfcd113d0ba84e6aa41189e262d7aeHarvesting Motion Patterns in Still Images from the Internet +
ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing
University of California, San Diego, La Jolla
Jiajun Wu (jiajunwu.cs@gmail.com) +
Yining Wang (ynwang.yining@gmail.com) +
Zhulin Li (li-zl12@mails.tsinghua.edu.cn) +
Zhuowen Tu (ztu@ucsd.edu) +
b5968e7bb23f5f03213178c22fd2e47af3afa04cMulti-Human Parsing in the Wild +
National University of Singapore
Beijing Jiaotong University
March 16, 2018 +
('2757639', 'Jianshu Li', 'jianshu li')
('2263674', 'Yidong Li', 'yidong li')
('46509407', 'Jian Zhao', 'jian zhao')
('1715286', 'Terence Sim', 'terence sim')
('33221685', 'Jiashi Feng', 'jiashi feng')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
b5cd9e5d81d14868f1a86ca4f3fab079f63a366dTag-based Video Retrieval by Embedding Semantic Content in a Continuous +
Word Space +
University of Southern California
Ram Nevatia +
Cees G.M. Snoek +
University of Amsterdam
('3407713', 'Arnav Agharwal', 'arnav agharwal')
('3407447', 'Rama Kovvuri', 'rama kovvuri')
{agharwal,nkovvuri,nevatia}@usc.edu +
cgmsnoek@uva.nl +
b558be7e182809f5404ea0fcf8a1d1d9498dc01aBottom-up and top-down reasoning with convolutional latent-variable models +
UC Irvine +
UC Irvine +
('2894848', 'Peiyun Hu', 'peiyun hu')
('1770537', 'Deva Ramanan', 'deva ramanan')
peiyunh@ics.uci.edu +
dramanan@ics.uci.edu +
b5cd8151f9354ee38b73be1d1457d28e39d3c2c6Finding Celebrities in Video +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2006-77 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-77.html +
May 23, 2006 +
('3317048', 'Nazli Ikizler', 'nazli ikizler')
('1865836', 'Jai Vasanth', 'jai vasanth')
('1744452', 'David Forsyth', 'david forsyth')
b5fc4f9ad751c3784eaf740880a1db14843a85baSIViP (2007) 1:225–237 +
DOI 10.1007/s11760-007-0016-5 +
ORIGINAL PAPER +
Significance of image representation for face verification +
Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007 +
© Springer-Verlag London Limited 2007 +
('2627097', 'Anil Kumar Sao', 'anil kumar sao')
('1783087', 'B. V. K. Vijaya Kumar', 'b. v. k. vijaya kumar')
b562def2624f59f7d3824e43ecffc990ad780898
b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57UNIVERSITY OF CALIFORNIA
RIVERSIDE +
Modeling Social and Temporal Context for Video Analysis +
A Dissertation submitted in partial satisfaction +
of the requirements for the degree of +
Doctor of Philosophy +
in +
Computer Science +
by +
June 2015 +
Dissertation Committee: +
Dr. Christian R. Shelton, Chairperson +
Dr. Tao Jiang +
Dr. Stefano Lonardi +
Dr. Amit Roy-Chowdhury +
('12561781', 'Zhen Qin', 'zhen qin')
b599f323ee17f12bf251aba928b19a09bfbb13bbAUTONOMOUS QUADCOPTER VIDEOGRAPHER +
by +
REY R. COAGUILA +
B.S. Universidad Peruana de Ciencias Aplicadas, 2009 +
A thesis submitted in partial fulfillment of the requirements +
for the degree of Master of Science in Computer Science +
in the Department of Electrical Engineering and Computer Science +
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida +
Spring Term +
2015 +
Major Professor: Gita R. Sukthankar +
b5f2846a506fc417e7da43f6a7679146d99c5e96UCF101: A Dataset of 101 Human Actions +
Classes From Videos in The Wild +
CRCV-TR-12-01 +
November 2012 +
Keywords: Action Dataset, UCF101, UCF50, Action Recognition +
Center for Research in Computer Vision +
University of Central Florida
4000 Central Florida Blvd. +
Orlando, FL 32816-2365 USA +
('1799979', 'Khurram Soomro', 'khurram soomro')
('40029556', 'Amir Roshan Zamir', 'amir roshan zamir')
('1745480', 'Mubarak Shah', 'mubarak shah')
b5da4943c348a6b4c934c2ea7330afaf1d655e79Facial Landmarks Detection by Self-Iterative Regression based +
Landmarks-Attention Network +
University of Chinese Academy of Sciences, Beijing, China
2 Microsoft Research Asia, Beijing, China +
('33325349', 'Tao Hu', 'tao hu')
('3245785', 'Honggang Qi', 'honggang qi')
('1697982', 'Jizheng Xu', 'jizheng xu')
('1689702', 'Qingming Huang', 'qingming huang')
hutao16@mails.ucas.ac.cn, hgqi@ucas.ac.cn +
b5402c03a02b059b76be829330d38db8e921e4b5Mei, et al, Hybridized KNN and SVM for gene expression data classification +
Hybridized KNN and SVM for gene expression data classification +
Zhengzhou University, Zhengzhou, Henan 450052, China
Received October 22, 2008 +
('39156927', 'Zhen Mei', 'zhen mei')
('2380760', 'Qi Shen', 'qi shen')
('35476967', 'Baoxian Ye', 'baoxian ye')
b5160e95192340c848370f5092602cad8a4050cdIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR +
Video Classification With CNNs: Using The Codec +
As A Spatio-Temporal Activity Sensor +
('33998511', 'Aaron Chadha', 'aaron chadha')
('2822935', 'Alhabib Abbas', 'alhabib abbas')
('2747620', 'Yiannis Andreopoulos', 'yiannis andreopoulos')
b52c0faba5e1dc578a3c32a7f5cfb6fb87be06adJournal of Applied Research and +
Technology +
ISSN: 1665-6423 +
Centro de Ciencias Aplicadas y +
Desarrollo Tecnológico +
México +
+
Hussain Shah, Jamal; Sharif, Muhammad; Raza, Mudassar; Murtaza, Marryam; Ur-Rehman, Saeed +
Robust Face Recognition Technique under Varying Illumination +
Journal of Applied Research and Technology, vol. 13, núm. 1, febrero, 2015, pp. 97-105 +
Centro de Ciencias Aplicadas y Desarrollo Tecnológico +
Distrito Federal, México +
Available in: http://www.redalyc.org/articulo.oa?id=47436895009 +
How to cite +
Complete issue +
More information about this article +
Journal's homepage in redalyc.org +
Scientific Information System +
Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal +
Non-profit academic project, developed under the open access initiative +
jart@aleph.cinstrum.unam.mx +
b56530be665b0e65933adec4cc5ed05840c37fc4IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2007 +
©IEEE +
Reducing correspondence ambiguity in loosely labeled training data +
University of Arizona
Tucson Arizona +
('1728667', 'Kobus Barnard', 'kobus barnard')kobus@cs.arizona.edu +
b5f4e617ac3fc4700ec8129fcd0dcf5f71722923Hierarchical Wavelet Networks for Facial Feature Localization +
Rog·erio S. Feris +
Microsoft Research +
Redmond, WA 98052 +
U.S.A. +
Volker Kr¤uger +
University of Maryland, CFAR
College Park, MD
U.S.A. +
('1936061', 'Jim Gemmell', 'jim gemmell')
b52886610eda6265a2c1aaf04ce209c047432b6dMicroexpression Identification and Categorization +
using a Facial Dynamics Map +
('1684875', 'Feng Xu', 'feng xu')
('2247926', 'Junping Zhang', 'junping zhang')
b51b4ef97238940aaa4f43b20a861eaf66f67253Hindawi Publishing Corporation +
EURASIP Journal on Image and Video Processing +
Volume 2008, Article ID 184618, 16 pages +
doi:10.1155/2008/184618 +
Research Article +
Unsupervised Modeling of Objects and Their Hierarchical +
Contextual Interactions +
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Received 11 June 2008; Accepted 2 September 2008 +
Recommended by Simon Lucey +
A successful representation of objects in literature is as a collection of patches, or parts, with a certain appearance and position. +
The relative locations of the different parts of an object are constrained by the geometry of the object. Going beyond a single +
object, consider a collection of images of a particular scene category containing multiple (recurring) objects. The parts belonging +
to different objects are not constrained by such a geometry. However, the objects themselves, arguably due to their semantic +
relationships, demonstrate a pattern in their relative locations. Hence, analyzing the interactions among the parts across the +
collection of images can allow for extraction of the foreground objects, and analyzing the interactions among these objects +
can allow for a semantically meaningful grouping of these objects, which characterizes the entire scene. These groupings are +
typically hierarchical. We introduce hierarchical semantics of objects (hSO) that captures this hierarchical grouping. We propose +
an approach for the unsupervised learning of the hSO from a collection of images of a particular scene. We also demonstrate the +
use of the hSO in providing context for enhanced object localization in the presence of significant occlusions, and show its superior +
performance over a fully connected graphical model for the same task. +
Copyright © 2008 D. Parikh and T. Chen. This is an open access article distributed under the Creative Commons Attribution +
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +
cited. +
1. +
INTRODUCTION +
Objects that tend to cooccur in scenes are often semantically +
related. Hence, they demonstrate a characteristic grouping +
behavior according to their relative positions in the scene. +
Some groupings are tighter than others, and thus a hierarchy +
of these groupings among these objects can be observed in a +
collection of images of similar scenes. It is this hierarchy that +
we refer to as the hierarchical semantics of objects (hSO). +
This can be better understood with an example. +
Consider an office scene. Most offices, as seen in Figure 1, +
are likely to have, for instance, a chair, a phone, a monitor, +
and a keyboard. If we analyze a collection of images taken +
from such office settings, we would observe that across +
images, the monitor and keyboard are more or less in the +
same position with respect to each other, and hence can be +
considered to be part of the same super object at a lower level +
in the hSO structure, say a computer. Similarly, the computer +
may usually be somewhere in the vicinity of the phone, and +
so the computer and the phone belong to the same super +
object at a higher level, say the desk area. But the chair and +
the desk area may be placed relatively arbitrarily in the scene +
with respect to each other, more so than any of the other +
objects, and hence belong to a common super object only +
at the highest level in the hierarchy, that is, the scene itself. +
A possible hSO that would describe such an office scene is +
shown in Figure 1. Along with the structure, the hSO may +
also store other information such as the relative position of +
the objects and their cooccurrence counts as parameters. +
The hSO is motivated from an interesting thought +
exercise: at what scale is an object defined? Are the individual +
keys on a keyboard objects, or the entire keyboard, or is +
the entire computer an object? The definition of an object +
is blurry, and the hSO exploits this to allow incorporation +
of semantic information of the scene layout. The leaves of +
the hSO are a collection of parts and represent the objects, +
while the various levels in the hSO represent the super objects +
('1713589', 'Devi Parikh', 'devi parikh')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
Correspondence should be addressed to Devi Parikh, dparikh@andrew.cmu.edu +
b5d7c5aba7b1ededdf61700ca9d8591c65e84e88INTERSPEECH 2010 +
Data Pruning for Template-based Automatic Speech Recognition +
ESAT, Katholieke Universiteit Leuven, Leuven, Belgium
('1717646', 'Dino Seppi', 'dino seppi')dino.seppi@esat.kuleuven.be, dirk.vancompernolle@esat.kuleuven.be +
b5c749f98710c19b6c41062c60fb605e1ef4312aEvaluating Two-Stream CNN for Video Classification +
School of Computer Science, Shanghai Key Lab of Intelligent Information Processing, +
Fudan University, Shanghai, China
('1743864', 'Hao Ye', 'hao ye')
('3099139', 'Zuxuan Wu', 'zuxuan wu')
('3066866', 'Rui-Wei Zhao', 'rui-wei zhao')
('31825486', 'Xi Wang', 'xi wang')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
{haoye10, zxwu,rwzhao14, xwang10, ygj, xyxue}@fudan.edu.cn +
b5857b5bd6cb72508a166304f909ddc94afe53e3SSIG and IRISA at Multimodal Person Discovery +
1Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +
2IRISA & Inria Rennes , CNRS, Rennes, France +
('2823797', 'Cassio E. dos Santos', 'cassio e. dos santos')
('1708671', 'Guillaume Gravier', 'guillaume gravier')
('1679142', 'William Robson Schwartz', 'william robson schwartz')
cass@dcc.ufmg.br, guig@irisa.fr, william@dcc.ufmg.br +
b59f441234d2d8f1765a20715e227376c7251cd7
b51e3d59d1bcbc023f39cec233f38510819a2cf9CBMM Memo No. 003 +
March 27, 2014 +
Can a biologically-plausible hierarchy effectively +
replace face detection, alignment, and +
recognition pipelines? +
by +
('1694846', 'Qianli Liao', 'qianli liao')
('2211263', 'Youssef Mroueh', 'youssef mroueh')
b54c477885d53a27039c81f028e710ca54c83f111201 +
Semi-Supervised Kernel Mean Shift Clustering +
('34817359', 'Saket Anand', 'saket anand')
('3323332', 'Sushil Mittal', 'sushil mittal')
('2577513', 'Oncel Tuzel', 'oncel tuzel')
('1729185', 'Peter Meer', 'peter meer')
b503f481120e69b62e076dcccf334ee50559451eRecognition of Facial Action Units with Action +
Unit Classifiers and An Association Network +
1Department of Electronic and Information Engineering, The Hong Kong Polytechnic +
University, Hong Kong
Chu Hai College of Higher Education, Hong Kong
('2366262', 'JunKai Chen', 'junkai chen')
('1715231', 'Zenghai Chen', 'zenghai chen')
('8590720', 'Zheru Chi', 'zheru chi')
('1965426', 'Hong Fu', 'hong fu')
Junkai.Chen@connect.polyu.hk, Zenghai.Chen@connect.polyu.hk +
chi.zheru@polyu.edu.hk, hongfu@chuhai.edu.hk +
b55d0c9a022874fb78653a0004998a66f8242cadHybrid Facial Representations +
for Emotion Recognition +
Automatic facial expression recognition is a widely +
studied problem in computer vision and human-robot +
interaction. There has been a range of studies for +
representing facial descriptors for facial expression +
recognition. Some prominent descriptors were presented +
in the first facial expression recognition and analysis +
challenge (FERA2011). In that competition, the Local +
Gabor Binary Pattern Histogram Sequence descriptor +
showed the most powerful description capability. In this +
paper, we introduce hybrid facial representations for facial +
expression recognition, which have more powerful +
description capability with lower dimensionality. Our +
descriptors consist of a block-based descriptor and a pixel- +
based descriptor. The block-based descriptor represents +
the micro-orientation and micro-geometric structure +
information. The pixel-based descriptor represents texture +
information. We validate our descriptors on two public +
databases, and the results show that our descriptors +
perform well with a relatively low dimensionality. +
Keywords: Facial expression recognition, Histograms of +
Oriented Gradients, HOG, Local Binary Pattern, LBP, +
Rotated Local Binary Pattern, RLBP, Gabor filter, GF. +
+
Manuscript received Mar. 31, 2013; revised Aug. 29, 2013; accepted Sept. 23, 2013. +
This work was supported by the R&D program of the Korea Ministry of Knowledge and +
Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT
[10041826, Development of emotional features sensing, diagnostics and distribution s/w +
platform for measurement of multiple intelligence from young children]. +
Jaehong Kim +
Daejeon, Rep. of Korea. +
and +
I. Introduction +
Facial expression is a natural and intuitive means for humans +
to express and sense their emotions and intentions. For this +
reason, automatic facial expression recognition has been an +
active research field in computer vision and human-robot +
interaction for a long time [1], [2]. In the case of robots living +
with a family, it is very useful to sense the family members’ +
emotions through facial expressions and respond appropriately. +
There are three stages in the general automatic facial +
expression recognition systems. The first stage is to detect the +
faces and normalize the photographic images of the faces. This +
stage may be based on a holistic facial region or on facial +
components such as the eyes, nose, and mouth. The next stage +
is to extract the facial expression descriptors from the +
normalized faces. Finally, the system classifies the facial +
descriptors into the proper expression categories. +
In this paper, we introduce new facial expression descriptors. +
These descriptors adopt two representations, a block-based +
representation and a pixel-based representation, to reflect the +
micro-orientation, micro-geometric structure, and texture +
information. The descriptors show more powerful description +
capability with low dimensionality than the state-of-the-art +
descriptors. +
II. Previous Work +
Many researchers have shown a range of approaches to +
construct an automatic facial expression recognition system. +
Geometric approaches and texture-based approaches are the +
types. Texture-based approaches have +
most prominent +
generally shown a better performance +
than geometric +
approaches in previous research [3], [4]. In texture-based +
ETRI Journal, Volume 35, Number 6, December 2013 © 2013 +
http://dx.doi.org/10.4218/etrij.13.2013.0054 +
Woo-han Yun et al. 1021 +
('36034086', 'DoHyung Kim', 'dohyung kim')Woo-han Yun (phone: +82 42 860 5804, yochin@etri.re.kr), DoHyung Kim +
(dhkim008@etri.re.kr), Chankyu Park +
(jhkim504@etri.re.kr) are with the IT Convergence Technology Research Laboratory, ETRI, +
(parkck@etri.re.kr), +
b5930275813a7e7a1510035a58dd7ba7612943bcJOURNAL OF INFORMATION SCIENCE AND ENGINEERING 26, 1525-1537 (2010) +
Short Paper__________________________________________________ +
Face Recognition Using L-Fisherfaces* +
Institute of Information Science
Beijing Jiaotong University
Beijing, 100044 China +
College of Information and Electrical Engineering
Shandong University of Science and Technology
Qingdao, 266510 China +
An appearance-based face recognition approach called the L-Fisherfaces is pro- +
posed in this paper, By using Local Fisher Discriminant Embedding (LFDE), the face +
images are mapped into a face subspace for analysis. Different from Linear Discriminant +
Analysis (LDA), which effectively sees only the Euclidean structure of face space, LFDE +
finds an embedding that preserves local information, and obtains a face subspace that +
best detects the essential face manifold structure. Different from Locality Preserving +
Projections (LPP) and Unsupervised Discriminant projections (UDP), which ignore the +
class label information, LFDE searches for the project axes on which the data points of +
different classes are far from each other while requiring data points of the same class to +
be close to each other. We compare the proposed L-Fisherfaces approach with PCA, +
LDA, LPP, and UDP on three different face databases. Experimental results suggest that +
the proposed L-Fisherfaces provides a better representation and achieves higher accuracy +
in face recognition. +
Keywords: face recognition, local Fisher discriminant embedding, manifold learning, lo- +
cality preserving projections, unsupervised discriminant projections +
1. INTRODUCTION +
Face recognition has aroused wide concerns over the past few decades due to its +
potential applications, such as criminal identification, credit card verification, and secu- +
rity system and scene surveillance. In the literature, various algorithms have been proposed +
for this problem [1, 2]. PCA and LDA are two well-known linear subspace-learning tech- +
niques and have become the most popular methods for face recognition [3-5]. Recently, He +
et al. [6, 7] and Yang et al. [8, 9] proposed two manifold learning based methods, +
namely, Locality Preserving Projections (LPP) and unsupervised discriminant projection +
(UDP), for face recognition. LPP is a linear subspace method derived from Laplacian +
Eigenmap [10]. It results in a linear map that optimally preserves local neighborhood +
information and its objective function is to minimize the local scatter of the projected +
data. Unlike LPP, UDP finds a linear map based on the criterion that seeks to maximize +
Received July 29, 2008; revised October 30, 2008; accepted January 8, 2009. +
Communicated by H. Y. Mark Liao. +
* This work was partially supported by the National Natural Science Foundation of China (NSFC, No. 60672062) +
and the Major State Basic Research Development Program of China (973 Program No. 2004CB318005). +
1525 +
('7924002', 'Cheng-Yuan Zhang', 'cheng-yuan zhang')
('2383779', 'Qiu-Qi Ruan', 'qiu-qi ruan')
b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88An Enhanced Intelligent Agent with Image Description +
Generation +
Department of Computer Science and Digital Technologies, Facutly of Engineering and +
Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom
learning +
for +
techniques +
('29695322', 'Ben Fielding', 'ben fielding')
('1921534', 'Philip Kinghorn', 'philip kinghorn')
('2801063', 'Kamlesh Mistry', 'kamlesh mistry')
('1712838', 'Li Zhang', 'li zhang')
{ben.fielding, philip.kinghorn, kamlesh.mistry, li.zhang (corr. author)}@northumbria.ac.uk +
b59cee1f647737ec3296ccb3daa25c890359c307Continuously Reproducing Toolchains in Pattern +
Recognition and Machine Learning Experiments +
A. Anjos +
Idiap Research Institute
Martigny, Switzerland +
M. G¨unther +
Vision and Security Technology +
University of Colorado
Colorado Springs, USA +
andre.anjos@idiap.ch +
mgunther@vast.uccs.edu +
b249f10a30907a80f2a73582f696bc35ba4db9e2Improved graph-based SFA: Information preservation +
complements the slowness principle +
Institut f¨ur Neuroinformatik +
Ruhr-University Bochum, Germany
('2366497', 'Alberto N. Escalante', 'alberto n. escalante')
('1736245', 'Laurenz Wiskott', 'laurenz wiskott')
b2a0e5873c1a8f9a53a199eecae4bdf505816ecbHybrid VAE: Improving Deep Generative Models +
using Partial Observations +
Snap Research +
Microsoft Research +
('1715440', 'Sergey Tulyakov', 'sergey tulyakov')
('2388416', 'Sebastian Nowozin', 'sebastian nowozin')
stulyakov@snap.com +
{awf,Sebastian.Nowozin}@microsoft.com +
b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8HyperFace: A Deep Multi-task Learning Framework for Face Detection, +
Landmark Localization, Pose Estimation, and Gender Recognition +
University of Maryland
College Park, MD
('26988560', 'Rajeev Ranjan', 'rajeev ranjan')rranjan1@umd.edu +
b216040f110d2549f61e3f5a7261cab128cab3612734 +
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017 +
LETTER +
Weighted Voting of Discriminative Regions for Face Recognition∗ +
SUMMARY +
This paper presents a strategy, Weighted Voting of Dis- +
criminative Regions (WVDR), to improve the face recognition perfor- +
mance, especially in Small Sample Size (SSS) and occlusion situations. +
In WVDR, we extract the discriminative regions according to facial key +
points and abandon the rest parts. Considering different regions of face +
make different contributions to recognition, we assign weights to regions +
for weighted voting. We construct a decision dictionary according to the +
recognition results of selected regions in the training phase, and this dic- +
tionary is used in a self-defined loss function to obtain weights. The final +
identity of test sample is the weighted voting of selected regions. In this +
paper, we combine the WVDR strategy with CRC and SRC separately, and +
extensive experiments show that our method outperforms the baseline and +
some representative algorithms. +
key words: discriminative regions, small sample size, occlusion, weighted +
strategy, face recognition +
1. +
Introduction +
Face recognition is one of the most popular and challenging +
problems in computer vision. Many representative methods, +
such as SRC [1] and CRC [2], have achieved good results in +
the controlled condition. However, face recognition with +
occlusion or small training size is still challenging. +
Wright et al. [1] first apply the Sparse Representation +
based Classification (SRC) for face recognition (FR). Zhang +
et al. [2] propose Collaborative Representation based Clas- +
sification (CRC) and claim that it is the CR instead of the +
l1-norm sparsity that truly improves the FR performance. +
However, the performance of classifiers (e.g. SVM [3], SRC +
and CRC) declines dramatically if the training sample size +
is small. Some works have been done to tackle the Small +
Sample Size (SSS) problem. The Extended SRC [4] algo- +
rithm constructs an auxiliary intra-class variant dictionary +
to represent the variations between training and test images, +
while the construction of the dictionary needs extra data. +
Patch-based methods are another effective way to solve the +
SSS problem. +
In [5], Zhu et al. propose the patch-based +
CRC and multi-scale ensemble. Gao et al. [6] propose the +
Regularized Patch-based Representation to solve the SSS +
problem. However, patch-based methods are sensitive to the +
patch size [7], and haven’t noticed the texture distribution of +
a face image. +
Images with disguise or occlusion are hard to clas- +
sify. The recognition rate of many classifiers (e.g. SVM and +
SRC) decreases rapidly when images occluded. Local Con- +
tourlet Combined Patterns (LCCP) [8] reports a good per- +
formance in non-occlusion images but the recognition rate +
decreases in occlusion condition. There are some improve- +
ments [9], [10] for occlusion problem. The recent prob- +
abilistic collaborative representation (ProCRC) [10] jointly +
maximizes the likelihood of test samples with multiple +
classes. +
Instead of splitting the image into patches of same size, +
we extract the face regions according to an alignment algo- +
rithm [11]. Some regions, such as eyes and nose, are dis- +
In addition, different regions +
criminative for recognition. +
have different representation abilities. As Fig. 1 shows, dis- +
criminative ability of regions is affected by type of region +
and training size. So it’s reasonable that the regions are as- +
signed with different weights. +
In this paper, we propose a method termed Weighted +
Voting of Discriminative Regions (WVDR), in which, dis- +
criminative regions are extracted from face images and +
weights are learned from a decision dictionary in training +
Manuscript received June 5, 2017. +
Manuscript revised July 16, 2017. +
Manuscript publicized August 4, 2017. +
The authors are with Shenzhen Key Lab. of Information Sci +
& Tech, Shenzhen Engineering Lab. of IS & DCP Department of +
Electronic Engineering, Graduate School at Shenzhen, Tsinghua +
University, China
This work was supported by the Natural Science Foun- +
dation of China (No. 61471216, No. 61771276), +
the Na- +
tional Key Research and Development Program of China +
(No. 2016YFB0101001 and 2017YFC0112500) and the Spe- +
cial Foundation for the Development of Strategic Emerging In- +
dustries of Shenzhen (No. JCYJ20170307153940960 and No. +
JCYJ20150831192224146). +
thor) +
DOI: 10.1587/transinf.2017EDL8124 +
Fig. 1 +
Recognition rates (AR database) when using only a single region. +
The s represents the number of training samples per person. The X-axis +
represents the regions extracted from face, and the image means the whole +
face image. +
Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers
('3196016', 'Wenming Yang', 'wenming yang')
('2183412', 'Riqiang Gao', 'riqiang gao')
('2883861', 'Qingmin Liao', 'qingmin liao')
a) E-mail: grq15@mails.tsinghua.edu.cn (Corresponding au- +
b261439b5cde39ec52d932a222450df085eb5a91International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 2 – June 2015 +
Facial Expression Recognition using Analytical Hierarchy +
Process +
MTech Student 1, 2, Disha Institute of
Management and Technology, Raipur Chhattisgarh, India1, 2 +
to +
its significant contribution +
b234cd7788a7f7fa410653ad2bafef5de7d5ad29Unsupervised Temporal Ensemble Alignment +
For Rapid Annotation +
1 CSIRO, Brisbane, QLD, Australia +
Queensland University of Technology, Brisbane, QLD, Australia
Carnegie Mellon University, Pittsburgh, PA, USA
('3231493', 'Ashton Fagg', 'ashton fagg')
('1729760', 'Sridha Sridharan', 'sridha sridharan')
('1820249', 'Simon Lucey', 'simon lucey')
ashton@fagg.id.au, s.sridharan@qut.edu.au, slucey@cs.cmu.edu +
b2c60061ad32e28eb1e20aff42e062c9160786beDiverse and Controllable Image Captioning with +
Part-of-Speech Guidance +
University of Illinois at Urbana-Champaign
('2118997', 'Aditya Deshpande', 'aditya deshpande')
('29956361', 'Jyoti Aneja', 'jyoti aneja')
('46659761', 'Liwei Wang', 'liwei wang')
{ardeshp2, janeja2, lwang97, aschwing, daf}@illinois.edu +
b2b535118c5c4dfcc96f547274cdc05dde629976JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +
Automatic Recognition of Facial Displays of +
Unfelt Emotions +
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +
('38370357', 'Kaustubh Kulkarni', 'kaustubh kulkarni')
('22197083', 'Ciprian Adrian Corneanu', 'ciprian adrian corneanu')
('22211769', 'Ikechukwu Ofodile', 'ikechukwu ofodile')
('47608164', 'Gholamreza Anbarjafari', 'gholamreza anbarjafari')
b235b4ccd01a204b95f7408bed7a10e080623d2eRegularizing Flat Latent Variables with Hierarchical Structures +('7246002', 'Rongcheng Lin', 'rongcheng lin')
('2703486', 'Huayu Li', 'huayu li')
('38472218', 'Xiaojun Quan', 'xiaojun quan')
('2248826', 'Richang Hong', 'richang hong')
('2737890', 'Zhiang Wu', 'zhiang wu')
('1874059', 'Yong Ge', 'yong ge')
(cid:117)UNC Charlotte. Email: {rlin4, hli38, yong.ge}@uncc.edu, +
(cid:63) Hefei University of Technology. Email: hongrc@hfut.edu.cn +
† Institute for Infocomm Research. Email: quanx@i2r.a-star.edu.sg +
∓ Nanjing University of Finance and Economics. Email: zawu@seu.edu.cn +
b29b42f7ab8d25d244bfc1413a8d608cbdc51855EFFECTIVE FACE LANDMARK LOCALIZATION VIA SINGLE DEEP NETWORK +
1National Key Laboratory of Fundamental Science on Synthetic Vision +
School of Computer Science, Sichuan University, Chengdu, China
('3471145', 'Zongping Deng', 'zongping deng')
('1691465', 'Ke Li', 'ke li')
('7345195', 'Qijun Zhao', 'qijun zhao')
('40600345', 'Yi Zhang', 'yi zhang')
('1715100', 'Hu Chen', 'hu chen')
3huchen@scu.edu.cn +
b2e5df82c55295912194ec73f0dca346f7c113f6CUHK&SIAT Submission for THUMOS15 Action Recognition Challenge +
The Chinese University of Hong Kong, Hong Kong
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
('39060754', 'Limin Wang', 'limin wang')
('40184588', 'Zhe Wang', 'zhe wang')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('40612284', 'Yu Qiao', 'yu qiao')
07wanglimin@gmail.com, buptwangzhe2012@gmail.com, yjxiong@ie.cuhk.edu.hk, yu.qiao@siat.ac.cn +
b2e6944bebab8e018f71f802607e6e9164ad3537Mixed Error Coding for +
Face Recognition with Mixed Occlusions +
Zhejiang University of Technology
Hangzhou, China +
('4487395', 'Ronghua Liang', 'ronghua liang')
('34478462', 'Xiao-Xin Li', 'xiao-xin li')
{rhliang, mordekai}@zjut.edu.cn +
b2c25af8a8e191c000f6a55d5f85cf60794c2709Noname manuscript No. +
(will be inserted by the editor) +
A Novel Dimensionality Reduction Technique based on +
Kernel Optimization Through Graph Embedding +
N. Vretos, A. Tefas and I. Pitas +
the date of receipt and acceptance should be inserted later +
b239a756f22201c2780e46754d06a82f108c1d03Robust Multimodal Recognition via Multitask +
Multivariate Low-Rank Representations +
Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA
('9033105', 'Heng Zhang', 'heng zhang')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
{hzhang98, pvishalm, rama}@umiacs.umd.edu +
b20cfbb2348984b4e25b6b9174f3c7b65b6aed9eLearning with Ambiguous Label Distribution for +
Apparent Age Estimation +
Department of Signal Processing +
Tampere University of Technology
Tampere 33720, Finland +
('40394658', 'Ke Chen', 'ke chen')firstname.lastname@tut.fi +
d904f945c1506e7b51b19c99c632ef13f340ef4cA scalable 3D HOG model for fast object detection and viewpoint estimation +
KU Leuven, ESAT/PSI - iMinds +
Kasteelpark Arenberg 10 B-3001 Leuven, Belgium +
('3048367', 'Marco Pedersoli', 'marco pedersoli')
('1704728', 'Tinne Tuytelaars', 'tinne tuytelaars')
firstname.lastname@esat.kuleuven.be +
d949fadc9b6c5c8b067fa42265ad30945f9caa99Rethinking Feature Discrimination and +
Polymerization for Large-scale Recognition +
The Chinese University of Hong Kong
('1715752', 'Yu Liu', 'yu liu')
('46382329', 'Hongyang Li', 'hongyang li')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
{yuliu, yangli, xgwang}@ee.cuhk.edu.hk +
d93baa5ecf3e1196b34494a79df0a1933fd2b4ecPrecise Temporal Action Localization by +
Evolving Temporal Proposals +
East China Normal University
Shanghai, China +
University of Washington
Seattle, WA, USA +
Shanghai Advanced Research +
Institute, CAS, China
East China Normal University
Shanghai, China +
Shanghai Advanced Research +
Institute, CAS, China
Liang He +
East China Normal University
Shanghai, China +
('31567595', 'Haonan Qiu', 'haonan qiu')
('1803391', 'Yao Lu', 'yao lu')
('3015119', 'Yingbin Zheng', 'yingbin zheng')
('47939010', 'Feng Wang', 'feng wang')
('1743864', 'Hao Ye', 'hao ye')
hnqiu@ica.stc.sh.cn +
luyao@cs.washington.edu +
zhengyb@sari.ac.cn +
fwang@cs.ecnu.edu.cn +
yeh@sari.ac.cn +
lhe@cs.ecnu.edu.cn +
d961617db4e95382ba869a7603006edc4d66ac3bExperimenting Motion Relativity for Action Recognition +
with a Large Number of Classes +
East China Normal University
500 Dongchuan Rd., Shanghai, China +
('39586279', 'Feng Wang', 'feng wang')
('38755510', 'Xiaoyan Li', 'xiaoyan li')
d9810786fccee5f5affaef59bc58d2282718af9bAdaptive Frame Selection for +
Enhanced Face Recognition in +
Low-Resolution Videos +
by +
Thesis submitted to the +
College of Engineering and Mineral Resources
at West Virginia University
in partial fulfillment of the requirements +
for the degree of +
Master of Science +
in +
Electrical Engineering +
Arun Ross, PhD., Chair +
Xin Li, PhD. +
Donald Adjeroh, PhD. +
Lane Department of Computer Science and Electrical Engineering +
Morgantown, West Virginia +
2008 +
Keywords: Face Biometrics, Super-Resolution, Optical Flow, Super-Resolution using +
Optical Flow, Adaptive Frame Selection, Inter-Frame Motion Parameter, Image Quality, +
Image-Level Fusion, Score-Level Fusion +
('2531952', 'Raghavender Reddy Jillela', 'raghavender reddy jillela')
('2531952', 'Raghavender Reddy Jillela', 'raghavender reddy jillela')
d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
3031 +
ICASSP 2017 +
d930ec59b87004fd172721f6684963e00137745fFace Pose Estimation using a +
Tree of Boosted Classifiers +
Signal Processing Institute
´Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +
September 11, 2006 +
('1768663', 'Julien Meynet', 'julien meynet')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
d9739d1b4478b0bf379fe755b3ce5abd8c668f89
d9c4586269a142faee309973e2ce8cde27bda718Contextual Visual Similarity +
The Robotics Institute
Carnegie Mellon University
('2461523', 'Xiaofang Wang', 'xiaofang wang')
('37991449', 'Kris M. Kitani', 'kris m. kitani')
('1709305', 'Martial Hebert', 'martial hebert')
xiaofan2@andrew.cmu.edu {kkitani,hebert}@cs.cmu.edu +
d912b8d88d63a2f0cb5d58164e7414bfa6b41dfaFacial identification problem: A tracking based approach +
Department of Information Technology +
University of Milan
via Bramante, 65 - 26013, Crema (CR), Italy +
Telephone: +390373898047, Fax: 0373899010 +
AST Group, ST Microelectronics +
via Olivetti, 5 - 20041, +
Agrate Brianza (MI), Italy +
Telephone: +390396037234 +
('3330245', 'Marco Anisetti', 'marco anisetti')
('2061298', 'Valerio Bellandi', 'valerio bellandi')
('1746044', 'Ernesto Damiani', 'ernesto damiani')
('2666794', 'Fabrizio Beverina', 'fabrizio beverina')
Email: {anisetti,bellandi,damiani}@dti.unimi.it +
Email: fabrizio.beverina@st.com +
d9318c7259e394b3060b424eb6feca0f71219179406 +
Face Matching and Retrieval Using Soft Biometrics +
('2222919', 'Unsang Park', 'unsang park')
('6680444', 'Anil K. Jain', 'anil k. jain')
d9a1dd762383213741de4c1c1fd9fccf44e6480d
d963e640d0bf74120f147329228c3c272764932bInternational Journal of Advanced Science and Technology +
Vol.64 (2014), pp.1-10 +
http://dx.doi.org/10.14257/ijast.2014.64.01 +
Image Processing for Face Recognition Rate Enhancement +
School of Computer and Information, Hefei University of Technology, Hefei
University of Technology, Baghdad, Iraq
People’s Republic of China +
Israa_ameer@yahoo.com +
d9ef1a80738bbdd35655c320761f95ee609b8f49 Volume 5, Issue 4, 2015 ISSN: 2277 128X +
International Journal of Advanced Research in +
Computer Science and Software Engineering +
Research Paper +
Available online at: www.ijarcsse.com +
A Research - Face Recognition by Using Near Set Theory +
Department of Computer Science and Engineering +
Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India
('9231464', 'Bhakti Kurhade', 'bhakti kurhade')
d9c4b1ca997583047a8721b7dfd9f0ea2efdc42cLearning Inference Models for Computer Vision +
d9bad7c3c874169e3e0b66a031c8199ec0bc2c1fIt All Matters: +
Reporting Accuracy, Inference Time and Power Consumption +
for Face Emotion Recognition on Embedded Systems +
Institute of Telecommunications, TU Wien
Movidius an Intel Company +
Dexmont Pe˜na +
Movidius an Intel Company +
Movidius an Intel Company +
ALaRI, Faculty of Informatics, USI +
('48802034', 'Jelena Milosevic', 'jelena milosevic')
('51129064', 'Andrew Forembsky', 'andrew forembsky')
('9151916', 'David Moloney', 'david moloney')
('1697550', 'Miroslaw Malek', 'miroslaw malek')
jelena.milosevic@tuwien.ac.at +
andrew.forembsky2@mail.dcu.ie +
dexmont.pena@intel.com +
david.moloney@intel.com +
miroslaw.malek@usi.ch +
d9327b9621a97244d351b5b93e057f159f24a21eSCIENCE CHINA +
Information Sciences +
. RESEARCH PAPERS . +
December 2010 Vol. 53 No. 12: 2415–2428 +
doi: 10.1007/s11432-010-4099-1 +
Laplacian smoothing transform for face recognition +
GU SuiCheng, TAN Ying +
& HE XinGui +
Key Laboratory of Machine Perception (MOE); Department of Machine Intelligence, +
School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China
Received March 16, 2009; accepted April 1, 2010 +
d915e634aec40d7ee00cbea96d735d3e69602f1aTwo-Stream convolutional nets for action recognition in untrimmed video +
Stanford University
Stanford University
('3308619', 'Kenneth Jung', 'kenneth jung')
('5590869', 'Song Han', 'song han')
kjung@stanford.edu +
songhan@stanford.edu +
aca232de87c4c61537c730ee59a8f7ebf5ecb14fEBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION +
19.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece +
Athens Information Technology +
Keywords: +
Human-Machine Interfaces, Computer Vision, Face Recognition. +
('40089976', 'Andreas Stergiou', 'andreas stergiou')
('1702943', 'Aristodemos Pnevmatikakis', 'aristodemos pnevmatikakis')
('1725498', 'Lazaros Polymenakos', 'lazaros polymenakos')
ac1d97a465b7cc56204af5f2df0d54f819eef8a6A Look at Eye Detection for Unconstrained +
Environments +
Key words: Unconstrained Face Recognition, Eye Detection, Machine Learning, +
Correlation Filters, Photo-head Testing Protocol +
1 Introduction +
Eye detection is a necessary processing step for many face recognition algorithms. +
For some of these algorithms, the eye coordinates are required for proper geomet- +
ric normalization before recognition. For others, the eyes serve as reference points +
to locate other significant features on the face, such as the nose and mouth. The +
eyes, containing significant discriminative information, can even be used by them- +
selves as features for recognition. Eye detection is a well studied problem for the +
constrained face recognition problem, where we find controlled distances, lighting, +
and limited pose variation. A far more difficult scenario for eye detection is the un- +
constrained face recognition problem, where we do not have any control over the +
environment or the subject. In this chapter, we will take a look at eye detection for +
the latter, which encompasses problems of flexible authentication, surveillance, and +
intelligence collection. +
A multitude of problems affect the acquisition of face imagery in unconstrained +
environments, with major problems related to lighting, distance, motion and pose. +
Existing work on lighting [14, 7] has focused on algorithmic issues (specifically, +
normalization), and not the direct impact of acquisition. Under difficult acquisition +
Vision and Security Technology Lab, University of Colorado at Colorado Springs, Colorado
Anderson Rocha +
Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
USA, e-mail: lastname@uccs.edu +
son.rocha@ic.unicamp.br +
ac2e44622efbbab525d4301c83cb4d5d7f6f0e55A 3D Morphable Model learnt from 10,000 faces +
Imperial College London, UK
†Great Ormond Street Hospital, UK +
Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland
('1848903', 'James Booth', 'james booth')
('2931390', 'Anastasios Roussos', 'anastasios roussos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('5137183', 'Allan Ponniah', 'allan ponniah')
('2421231', 'David Dunaway', 'david dunaway')
⋆{james.booth,troussos,s.zafeiriou}@imperial.ac.uk, †{allan.ponniah,david.dunaway}@gosh.nhs.uk +
ac6c3b3e92ff5fbcd8f7967696c7aae134bea209Deep Cascaded Bi-Network for +
Face Hallucination(cid:63) +
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
University of California, Merced
('2226254', 'Shizhan Zhu', 'shizhan zhu')
('2391885', 'Sifei Liu', 'sifei liu')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
ac855f0de9086e9e170072cb37400637f0c9b735Fast Geometrically-Perturbed Adversarial Faces +
West Virginia University
('35477977', 'Ali Dabouei', 'ali dabouei')
('30319988', 'Sobhan Soleymani', 'sobhan soleymani')
('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')
{ad0046, ssoleyma}@mix.wvu.edu, {jeremy.dawson, nasser.nasrabadi}@mail.wvu.edu +
ac21c8aceea6b9495574f8f9d916e571e2fc497fPose-Independent Identity-based Facial Image +
Retrieval using Contextual Similarity +
King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia
('3036634', 'Islam Almasri', 'islam almasri')
ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6779 +
Privacy-Protected Facial Biometric Verification +
Using Fuzzy Forest Learning +
('1690116', 'Ahmed Bouridane', 'ahmed bouridane')
('1691478', 'Danny Crookes', 'danny crookes')
('1739563', 'M. Emre Celebi', 'm. emre celebi')
('39486168', 'Hua-Liang Wei', 'hua-liang wei')
aca273a9350b10b6e2ef84f0e3a327255207d0f5
aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9Co-Regularized Ensemble for Feature Selection +
School of Computer Science and Technology, Tianjin University, China
School of Information Technology and Electrical Engineering, The University of Queensland
3Tianjin Key Laboratory of Cognitive Computing and Application +
('2302512', 'Yahong Han', 'yahong han')
('1698559', 'Yi Yang', 'yi yang')
('1720932', 'Xiaofang Zhou', 'xiaofang zhou')
yahong@tju.edu.cn, yee.i.yang@gmail.com, zxf@itee.uq.edu.au +
accbd6cd5dd649137a7c57ad6ef99232759f7544FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS +
AND LINEAR PROGRAMMING +
1 Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering +
P. O. Box 4500 Fin-90014 University of Oulu, Finland
College of Electronics and Information, Northwestern Polytechnic University
710072 Xi’an, China +
In this work, we propose a novel approach to recognize facial expressions from static +
images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial +
images and then the Linear Programming (LP) technique is adopted to classify the seven +
facial expressions anger, disgust, fear, happiness, sadness, surprise and neutral. +
Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE +
database, which outperforms the rates of all other reported methods on the same database. +
Introduction +
Facial expression recognition from static +
images is a more challenging problem +
than from image sequences because less +
information for expression actions +
is +
available. However, information in a +
single image is sometimes enough for +
expression recognition, and +
in many +
applications it is also useful to recognize +
single image’s facial expression. +
In the recent years, numerous approaches +
to facial expression analysis from static +
images have been proposed [1] [2]. These +
methods +
face +
representation and similarity measure. +
For instance, Zhang [3] used two types of +
features: the geometric position of 34 +
manually selected fiducial points and a +
set of Gabor wavelet coefficients at these +
points. These two types of features were +
used both independently and jointly with +
a multi-layer perceptron for classification. +
Guo and Dyer [4] also adopted a similar +
face representation, combined with linear +
to carry out +
programming +
selection +
simultaneous +
and +
classifier +
they reported +
technique +
feature +
training, and +
differ +
generally +
in +
a +
simple +
imperative question +
better result. Lyons et al. used a similar face +
representation with +
LDA-based +
classification scheme [5]. All the above methods +
required the manual selection of fiducial points. +
Buciu et al. used ICA and Gabor representation for +
facial expression recognition and reported good result +
on the same database [6]. However, a suitable +
combination of feature extraction and classification is +
still one +
for expression +
recognition. +
In this paper, we propose a novel method for facial +
expression recognition. In the feature extraction step, +
the Local Binary Pattern (LBP) operator is used to +
describe facial expressions. In the classification step, +
seven expressions (anger, disgust, fear, happiness, +
sadness, surprise and neutral) are decomposed into 21 +
expression pairs such as anger-fear, happiness- +
sadness etc. 21 classifiers are produced by the Linear +
Programming (LP) technique, each corresponding to +
one of the 21 expression pairs. A simple binary tree +
tournament scheme with pairwise comparisons is +
Face Representation with Local Binary Patterns +
+
Fig.1 shows the basic LBP operator [7], in which the +
original 3×3 neighbourhood at the left is thresholded +
by the value of the centre pixel, and a binary pattern +
('4729239', 'Xiaoyi Feng', 'xiaoyi feng')
('1714724', 'Matti Pietikäinen', 'matti pietikäinen')
('1751372', 'Abdenour Hadid', 'abdenour hadid')
{xiaoyi,mkp,hadid}@ee.oulu.fi +
fengxiao@nwpu.edu.cn +
ac51d9ddbd462d023ec60818bac6cdae83b66992Hindawi Publishing Corporation +
Computational Intelligence and Neuroscience +
Volume 2015, Article ID 709072, 10 pages +
http://dx.doi.org/10.1155/2015/709072 +
Research Article +
An Efficient Robust Eye Localization by Learning +
the Convolution Distribution Using Eye Template +
1Science and Technology on Parallel and Distributed Processing Laboratory, School of Computer, +
National University of Defense Technology, Changsha 410073, China
Informatization Office, National University of Defense Technology, Changsha 410073, China
Received 30 January 2015; Accepted 14 April 2015 +
Academic Editor: Ye-Sho Chen +
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Eye localization is a fundamental process in many facial analyses. In practical use, it is often challenged by illumination, head pose, +
facial expression, occlusion, and other factors. It remains great difficulty to achieve high accuracy with short prediction time and +
low training cost at the same time. This paper presents a novel eye localization approach which explores only one-layer convolution +
map by eye template using a BP network. Results showed that the proposed method is robust to handle many difficult situations. In +
experiments, accuracy of 98% and 96%, respectively, on the BioID and LFPW test sets could be achieved in 10 fps prediction rate +
with only 15-minute training cost. In comparison with other robust models, the proposed method could obtain similar best results +
with greatly reduced training time and high prediction speed. +
1. Introduction +
Eye localization is essential to many face analyses. In analysis +
of the human sentiment, eye focus, and head pose, the loca- +
tion of the eye is indispensable to extract the corresponding +
information there [1]. In face tracing, eye localization is often +
required in real time. In face recognition, many algorithms +
ask for the alignment of the face images based on eye location +
[2]. Inaccurate location may result in the failure of the +
recognition [3, 4]. +
However, real-world eye localization is filled with chal- +
lenges. Face pictures are commonly taken by a projection +
from the 3D space to the 2D plane. Appearance of the face +
image could be influenced by the head pose, facial expression, +
and illumination. Texture around eyes is therefore full of +
change. Moreover, eyes may be occluded by stuffs like glasses +
and hair, as shown in Figure 1. To work in any unexpected +
cases, the algorithm should be robust to those impacts. +
In the design of the eye localization algorithm in practical +
use, prediction accuracy, rate, and the training cost are the +
most concerned factors. A robust algorithm should keep high +
prediction accuracy for varying cases with diverse face poses, +
facial expressions in complex environment with occlusion, +
and illumination changes. For real time applications, high +
prediction rate is required. For some online learning systems +
like the one used for public security, short training time is +
also in demand to quickly adapt the algorithm to different +
working places. Low training cost is also of benefit for the +
tuning of the algorithm. To improve the accuracy in the diffi- +
cult environment, complex model is often applied. However, +
the over complicated model will increase the training cost +
and the prediction time. How to select an approach with +
enough complexity to achieve high prediction accuracy, high +
prediction rate, and low training cost at the same time is still +
a challenge. +
Eye localization approaches could be mainly divided into +
the texture based and the structure based. Texture based +
methods [5–8] learn the features from the image textures. For +
the methods exploring local textures [5, 6], high prediction +
rate could be achieved with simple training. However, they +
are usually not robust to the situation with occlusion and +
distortion due to the limited information from the local area. +
On the other hand, methods like [7, 8] study the global texture +
feature from entire face image by convolution networks. High +
('1790480', 'Xuan Li', 'xuan li')
('1791001', 'Yong Dou', 'yong dou')
('2223570', 'Xin Niu', 'xin niu')
('2512580', 'Jiaqing Xu', 'jiaqing xu')
('2672701', 'Ruorong Xiao', 'ruorong xiao')
('1790480', 'Xuan Li', 'xuan li')
Correspondence should be addressed to Xuan Li; lixuan@nudt.edu.cn +
acc548285f362e6b08c2b876b628efceceeb813eHindawi Publishing Corporation +
Computational and Mathematical Methods in Medicine +
Volume 2014, Article ID 427826, 12 pages +
http://dx.doi.org/10.1155/2014/427826 +
Research Article +
Objectifying Facial Expressivity Assessment of Parkinson’s +
Patients: Preliminary Study +
Vrije Universiteit Brussel, 1050 Brussels, Belgium
Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China
Vrije Universiteit Brussel, 1050 Brussels, Belgium
Vrije Universiteit Brussel, 1050 Brussels, Belgium
Received 9 June 2014; Accepted 22 September 2014; Published 13 November 2014 +
Academic Editor: Justin Dauwels +
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Patients with Parkinson’s disease (PD) can exhibit a reduction of spontaneous facial expression, designated as “facial masking,” a +
symptom in which facial muscles become rigid. To improve clinical assessment of facial expressivity of PD, this work attempts +
to quantify the dynamic facial expressivity (facial activity) of PD by automatically recognizing facial action units (AUs) and +
estimating their intensity. Spontaneous facial expressivity was assessed by comparing 7 PD patients with 8 control participants. To +
voluntarily produce spontaneous facial expressions that resemble those typically triggered by emotions, six emotions (amusement, +
sadness, anger, disgust, surprise, and fear) were elicited using movie clips. During the movie clips, physiological signals (facial +
electromyography (EMG) and electrocardiogram (ECG)) and frontal face video of the participants were recorded. The participants +
were asked to report on their emotional states throughout the experiment. We first examined the effectiveness of the emotion +
manipulation by evaluating the participant’s self-reports. Disgust-induced emotions were significantly higher than the other +
emotions. Thus we focused on the analysis of the recorded data during watching disgust movie clips. The proposed facial expressivity +
assessment approach captured differences in facial expressivity between PD patients and controls. Also differences between PD +
patients with different progression of Parkinson’s disease have been observed. +
1. Introduction +
One of the manifestations of Parkinson’s disease (PD) is the +
gradual loss of facial mobility and “mask-like” appearance. +
Katsikitis and Pilowsky (1988) [1] stated that PD patients +
were rated as significantly less expressive than an aphasic +
and control group, on a task designed to assess spontaneous +
facial expression. In addition, the spontaneous smiles of PD +
patients are often perceived to be “unfelt,” because of the lack +
of accompanying cheek raises [2]. Jacobs et al. [3] confirmed +
that PD patients show reduced intensity of emotional facial +
expression compared to the controls. In order to assess facial +
expressivity, most research relies on subjective coding of the +
implied researchers, as in aforementioned studies. Tickle- +
Degnen and Lyons [4] found that decreased facial expressivity +
correlated with self-reports of PD patients as well as the +
Unified Parkinson’s Disease Rating Scale (UPDRS) [5]. PD +
patients, who rated their ability to facially express emotions +
as severely affected, did demonstrate less facial expressivity. +
In this paper, we investigate automatic measurements +
of facial expressivity from video recorded PD patients and +
control populations. To the best of our knowledge, in actual +
research, few attempts have been made for designing a +
computer-based quantitative analysis of facial expressivity of +
PD patient. To analyze whether Parkinson’s disease affected +
voluntary expression of facial emotions, Bowers et al. [6] +
videotaped PD patients and healthy control participants +
while they made voluntary facial expression (happy, sad, fear, +
anger, disgust, and surprise). In their approach, the amount of +
facial movements change and timing have been quantified by +
('40432410', 'Peng Wu', 'peng wu')
('34068333', 'Isabel Gonzalez', 'isabel gonzalez')
('3348420', 'Dongmei Jiang', 'dongmei jiang')
('1970907', 'Hichem Sahli', 'hichem sahli')
('3041213', 'Eric Kerckhofs', 'eric kerckhofs')
('2540163', 'Marie Vandekerckhove', 'marie vandekerckhove')
('40432410', 'Peng Wu', 'peng wu')
Correspondence should be addressed to Peng Wu; pwu@etro.vub.ac.be +
acee2201f8a15990551804dd382b86973eb7c0a8To Boost or Not to Boost? On the Limits of +
Boosted Trees for Object Detection +
Computer Vision and Robotics Research Laboratory
University of California San Diego
('1802326', 'Eshed Ohn-Bar', 'eshed ohn-bar'){eohnbar, mtrivedi}@ucsd.edu +
ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e
ac820d67b313c38b9add05abef8891426edd5afb
ac9a331327cceda4e23f9873f387c9fd161fad76Deep Convolutional Neural Network for Age Estimation based on +
VGG-Face Model +
University of Bridgeport
University of Bridgeport
Technology Building, Bridgeport CT 06604 USA +
('7404315', 'Zakariya Qawaqneh', 'zakariya qawaqneh')
('34792425', 'Arafat Abu Mallouh', 'arafat abu mallouh')
('2791535', 'Buket D. Barkana', 'buket d. barkana')
Emails: {zqawaqneh; aabumall@my.bridgeport.edu}, bbarkana@bridgeport.edu +
ac26166857e55fd5c64ae7194a169ff4e473eb8bPersonalized Age Progression with Bi-level +
Aging Dictionary Learning +
('2287686', 'Xiangbo Shu', 'xiangbo shu')
('8053308', 'Jinhui Tang', 'jinhui tang')
('3233021', 'Zechao Li', 'zechao li')
('2356867', 'Hanjiang Lai', 'hanjiang lai')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
ac559873b288f3ac28ee8a38c0f3710ea3f986d9Team DEEP-HRI Moments in Time Challenge 2018 Technical Report +
Hikvision Research Institute
('39816387', 'Chao Li', 'chao li')
('48375401', 'Zhi Hou', 'zhi hou')
('35843399', 'Jiaxu Chen', 'jiaxu chen')
('9162532', 'Jiqiang Zhou', 'jiqiang zhou')
('50322310', 'Di Xie', 'di xie')
('3290437', 'Shiliang Pu', 'shiliang pu')
ac8e09128e1e48a2eae5fa90f252ada689f6eae7Leolani: a reference machine with a theory of +
mind for social communication +
VU University Amsterdam, Computational Lexicology and Terminology Lab, De
Boelelaan 1105, 1081HV Amsterdam, The Netherlands +
www.cltl.nl +
('50998926', 'Bram Kraaijeveld', 'bram kraaijeveld'){p.t.j.m.vossen,s.baezsantamaria,l.bajcetic,b.kraaijeveld}@vu.nl +
ac8441e30833a8e2a96a57c5e6fede5df81794afIEEE TRANSACTIONS ON IMAGE PROCESSING +
Hierarchical Representation Learning for Kinship +
Verification +
('1952698', 'Naman Kohli', 'naman kohli')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('39129417', 'Richa Singh', 'richa singh')
('2487227', 'Afzel Noore', 'afzel noore')
('2641605', 'Angshul Majumdar', 'angshul majumdar')
ac86ccc16d555484a91741e4cb578b75599147b2Morphable Face Models - An Open Framework +
Gravis Research Group, University of Basel
('3277377', 'Thomas Gerig', 'thomas gerig')
('39550224', 'Clemens Blumer', 'clemens blumer')
('34460642', 'Bernhard Egger', 'bernhard egger')
('1687079', 'Thomas Vetter', 'thomas vetter')
ac12ba5bf81de83991210b4cd95b4ad048317681Combining Deep Facial and Ambient Features +
for First Impression Estimation +
Program of Computational Science and Engineering, Bo gazi ci University
Bebek, Istanbul, Turkey +
Nam k Kemal University
C¸ orlu, Tekirda˘g, Turkey +
Bo gazi ci University
Bebek, Istanbul, Turkey +
('38007788', 'Heysem Kaya', 'heysem kaya')
('1764521', 'Albert Ali Salah', 'albert ali salah')
furkan.gurpinar@boun.edu.tr +
hkaya@nku.edu.tr +
salah@boun.edu.tr +
ac75c662568cbb7308400cc002469a14ff25edfdREGULARIZATION STUDIES ON LDA FOR FACE RECOGNITION +
Bell Canada Multimedia Laboratory, The Edward S. Rogers Sr. Department of +
Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada
('1681365', 'Juwei Lu', 'juwei lu')
ac9dfbeb58d591b5aea13d13a83b1e23e7ef1feaFrom Gabor Magnitude to Gabor Phase Features: +
Tackling the Problem of Face Recognition under Severe Illumination Changes +
215 +
12 +
X +
From Gabor Magnitude to Gabor Phase +
Features: Tackling the Problem of Face +
Recognition under Severe Illumination Changes +
Faculty of Electrical Engineering, University of Ljubljana
Slovenia +
1. Introduction +
Among the numerous biometric systems presented in the literature, face recognition +
systems have received a great deal of attention in recent years. The main driving force in the +
development of these systems can be found in the enormous potential face recognition +
technology has in various application domains ranging from access control, human-machine +
interaction and entertainment to homeland security and surveillance (Štruc et al., 2008a). +
While contemporary face recognition techniques have made quite a leap in terms of +
performance over the last two decades, they still struggle with their performance when +
deployed in unconstrained and uncontrolled environments (Gross et al., 2004; Phillips et al., +
2007). In such environments the external conditions present during the image acquisition +
stage heavily influence the appearance of a face in the acquired image and consequently +
affect the performance of the recognition system. It is said that face recognition techniques +
suffer from the so-called PIE problem, which refers to the problem of handling Pose, +
Illumination and Expression variations that are typically encountered in real-life operating +
conditions. In fact, it was emphasized by numerous researchers that the appearance of the +
same face can vary significantly from image to image due to changes of the PIE factors and +
that the variability in the images induced by the these factors can easily surpass the +
variability induced by the subjects’ identity (Gross et al., 2004; Short et al., 2005). To cope +
with image variability induced by the PIE factors, face recognition systems have to utilize +
feature extraction techniques capable of extracting stable and discriminative features from +
facial images regardless of the conditions governing the acquisition procedure. We will +
confine ourselves in this chapter to tackling the problem of illumination changes, as it +
represents the PIE factor which, in our opinion, is the hardest to control when deploying a +
face recognition system, e.g., in access control applications. +
Many feature extraction techniques, among them particularly the appearance based +
methods, have difficulties extracting stable features from images captured under varying +
illumination conditions and, hence, perform poorly when deployed in unconstrained +
environments. Researchers have, therefore, proposed a number of alternatives that should +
compensate for the illumination changes and thus ensure stable face recognition +
performance. +
('2011218', 'Vitomir Štruc', 'vitomir štruc')
('1753753', 'Nikola Pavešić', 'nikola pavešić')
acb83d68345fe9a6eb9840c6e1ff0e41fa373229Kernel Methods in Computer Vision: +
Object Localization, Clustering, +
and Taxonomy Discovery +
vorgelegt von +
Matthew Brian Blaschko, M.S. +
aus La Jolla +
Von der Fakult¨at IV - Elektrotechnik und Informatik +
der Technischen Universit¨at Berlin +
zur Erlangung des akademischen Grades +
Doktor der Naturwissenschaften +
Dr. rer. nat. +
genehmigte Dissertation +
Promotionsausschuß: +
Vorsitzender: Prof. Dr. O. Hellwich +
Berichter: Prof. Dr. T. Hofmann +
Berichter: Prof. Dr. K.-R. M¨uller +
Berichter: Prof. Dr. B. Sch¨olkopf +
Tag der wissenschaftlichen Aussprache: 23.03.2009 +
Berlin 2009 +
D83 +
ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7Multimodal Caricatural Mirror +
(1) : Université catholique de Louvain, Belgium +
(2) Universitat Polytecnica de Barcelona, Spain +
(3) Universidad Polytècnica de Madrid, Spain +
Aristotle University of Thessaloniki, Greece
Bogazici University, Turkey
(6) Faculté Polytechnique de Mons, Belgium +
ad8540379884ec03327076b562b63bc47e64a2c7Int. J. Bio-Inspired Computation, Vol. 5, No. 3, 2013 +
175 +
Bee royalty offspring algorithm for improvement of +
facial expressions classification model +
Department of Computer Science, +
Mahshahr Branch, +
Islamic Azad University
Mahshahr, Iran +
*Corresponding author +
Md Jan Nordin +
Centre for Artificial Intelligence Technology, +
Universiti Kebangsaan Malaysia, +
Bangi, Selangor, Malaysia +
('1880066', 'Amir Jamshidnezhad', 'amir jamshidnezhad')E-mail: a.jamshidnejad@yahoo.com +
E-mail: jan@ftsm.ukm.my +
adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6Two Birds, One Stone: Jointly Learning Binary Code for +
Large-scale Face Image Retrieval and Attributes Prediction +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100049, China
School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China
('38751558', 'Yan Li', 'yan li')
('3373117', 'Ruiping Wang', 'ruiping wang')
('3035576', 'Haomiao Liu', 'haomiao liu')
('3371529', 'Huajie Jiang', 'huajie jiang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{yan.li, haomiao.liu, huajie.jiang}@vipl.ict.ac.cn, {wangruiping, sgshan, xlchen}@ict.ac.cn +
adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9beApprentissage de métrique appliqué à la +
détection de changement de page Web et +
aux attributs relatifs +
thieu Cord* +
* Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, +
France +
RÉSUMÉ. Nous proposons dans cet article un nouveau schéma d’apprentissage de métrique. +
Basé sur l’exploitation de contraintes qui impliquent des quadruplets d’images, notre approche +
vise à modéliser des relations sémantiques de similarités riches ou complexes. Nous étudions +
comment ce schéma peut être utilisé dans des contextes tels que la détection de régions impor- +
tantes dans des pages Web ou la reconnaissance à partir d’attributs relatifs. +
('1728523', 'Nicolas Thome', 'nicolas thome')
ada73060c0813d957576be471756fa7190d1e72dVRPBench: A Vehicle Routing Benchmark Tool +
October 19, 2016 +
('7660594', 'Guilherme A. Zeni', 'guilherme a. zeni')
('7809605', 'Mauro Menzori', 'mauro menzori')
('1788152', 'Luis A. A. Meira', 'luis a. a. meira')
add50a7d882eb38e35fe70d11cb40b1f0059c96fHigh-Fidelity Pose and Expression Normalization for Face Recognition in the Wild +
Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
Pose and expression normalization is a crucial step to recover the canonical +
view of faces under arbitrary conditions, so as to improve the face recogni- +
tion performance. Most normalization algorithms can be divided in to 2D +
and 3D methods. 2D methods either estimate a flow to simulate the 3D +
geometry transformation or learn appearance transformations between dif- +
ferent poses. 3D methods estimate the depth information with a face model +
and normalize faces through 3D transformations. +
An ideal normalization is desired to preserve the face appearance with +
little artifact and information loss, which we call high-fidelity. However, +
most previous methods fail to satisfy that. In this paper, we present a 3D +
pose and expression normalization method to recover the canonical-view, +
expression-free image with high fidelity. It contains three components: pose +
adaptive 3D Morphable Model (3DMM) fitting, identity preserving normal- +
ization and invisible region filling, which is briefly summarized in Fig. 1. +
Figure 1: Overview of the High-Fidelity Pose and Expression Normalization +
(HPEN) method +
With an input image, the landmarks are detected with the face alignment +
algorithm and we mark the corresponding 3D landmarks on the face model. +
Then the 3DMM can be fitted by minimizing the distance between the 2D +
landmarks and projected 3D landmarks: +
arg +
min +
f ,R,t3d ,αid ,αexp +
(cid:107)s2d − f PR(S + Aidαid + Aexpαexp +t3d)(cid:107) +
(1) +
where αid is the shape parameter, αexp is the expression parameter. f ,R,t3d +
are pose parameters. However, when faces deviate from the frontal pose, the +
correspondence between 2D and 3D landmarks will be broken, which we +
model as “landmark marching”: when pose changes, the contour landmarks +
move along the parallel to the visibility boundary, see Fig. 2(a). To deal with +
the phenomenon we propose an approximation method to adjust contour +
landmarks during 3DMM fitting. The 3D model are firstly projected with +
only yaw and pitch to eliminate in-plane rotation. Then for each parallel, the +
point with extreme x coordinate will be chosen as the marching destimation, +
see Fig. 2(b). +
With the fitted 3DMM, The face can be normalized through 3D trans- +
formations. In this paper we also normalize the external face region which +
contains discriminative information as well. Firstly we mark three groups of +
anchors which are located on the face boundary, face surrounding and image +
contour, see Fig. 3(a). Then their depth are estimated by enlarging the fitted +
('8362374', 'Xiangyu Zhu', 'xiangyu zhu')
('1718623', 'Zhen Lei', 'zhen lei')
('1721677', 'Junjie Yan', 'junjie yan')
('1716143', 'Dong Yi', 'dong yi')
('34679741', 'Stan Z. Li', 'stan z. li')
ad784332cc37720f03df1c576e442c9c828a587aFace Recognition Based on Face-Specific Subspace +
JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China
Harbin Institute of Technology, Harbin, China
('1685914', 'Shiguang Shan', 'shiguang shan')
('1698902', 'Wen Gao', 'wen gao')
('1725937', 'Debin Zhao', 'debin zhao')
ada42b99f882ba69d70fff68c9ccbaff642d5189Semantic Image Segmentation +
and +
Web-Supervised Visual Learning +
D.Phil Thesis +
Robotics Research Group +
Department of Engineering Science +
University of Oxford
Supervisors: +
Professor Andrew Zisserman +
Dr. Antonio Criminisi +
Florian Schroff +
St. Anne s College
Trinity, 2009 +
ad0d4d5c61b55a3ab29764237cd97be0ebb0ddffWeakly Supervised Action Localization by Sparse Temporal Pooling Network +
University of California
Irvine, CA, USA +
Google +
Venice, CA, USA +
Seoul National University
Seoul, Korea +
('1998374', 'Phuc Nguyen', 'phuc nguyen')
('40282288', 'Ting Liu', 'ting liu')
('2775959', 'Gautam Prasad', 'gautam prasad')
('40030651', 'Bohyung Han', 'bohyung han')
nguyenpx@uci.edu +
{liuti, gautamprasad}@google.com +
bhhan@snu.ac.kr +
adfaf01773c8af859faa5a9f40fb3aa9770a8aa7LARGE SCALE VISUAL RECOGNITION +
A DISSERTATION +
PRESENTED TO THE FACULTY +
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE +
OF DOCTOR OF PHILOSOPHY +
RECOMMENDED FOR ACCEPTANCE +
BY THE DEPARTMENT OF +
COMPUTER SCIENCE +
ADVISER: FEI-FEI LI +
JUNE 2012 +
('8342699', 'JIA DENG', 'jia deng')
adf5caca605e07ee40a3b3408f7c7c92a09b0f70Line-based PCA and LDA approaches for Face Recognition +
Kyung Hee University South of Korea
('1687579', 'Vo Dinh Minh Nhat', 'vo dinh minh nhat')
('1700806', 'Sungyoung Lee', 'sungyoung lee')
{vdmnhat, sylee}@oslab.khu.ac.kr +
adaf2b138094981edd615dbfc4b7787693dbc396Statistical Methods For Facial +
Shape-from-shading and Recognition +
Submitted for the degree of Doctor of Philosophy +
Department of Computer Science +
20th February 2007 +
('1687021', 'William A. P. Smith', 'william a. p. smith')
ad6745dd793073f81abd1f3246ba4102046da022
ad9cb522cc257e3c5d7f896fe6a526f6583ce46fReal-Time Recognition of Facial Expressions for Affective +
Computing Applications +
by +
A M. Eng. Project submitted in conformity with the requirements +
for the degree of Master of Engineering +
Department of Mechanical and Industrial Engineering +
University of Toronto
('26301224', 'Christopher Wang', 'christopher wang')
('26301224', 'Christopher Wang', 'christopher wang')
ad08c97a511091e0f59fc6a383615c0cc704f44aTowards the improvement of self-service +
systems via emotional virtual agents +
Christopher Martin +
School of Computing & +
Engineering Systems +
University of Abertay
Bell Street, Dundee +
School of Computing & +
Engineering Systems +
University of Abertay
Bell Street, Dundee +
School of Computing & +
Engineering Systems +
University of Abertay
Bell Street, Dundee +
School of Social & Health +
Sciences +
University of Abertay
Bell Street, Dundee +
Affective computing and emotional agents have been found to have a positive effect on human- +
computer interactions. In order to develop an acceptable emotional agent for use in a self-service +
interaction, two stages of research were identified and carried out; the first to determine which +
facial expressions are present in such an interaction and the second to determine which emotional +
agent behaviours are perceived as appropriate during a problematic self-service shopping task. In +
the first stage, facial expressions associated with negative affect were found to occur during self- +
service shopping interactions, indicating that facial expression detection is suitable for detecting +
negative affective states during self-service interactions. In the second stage, user perceptions of +
the emotional facial expressions displayed by an emotional agent during a problematic self-service +
interaction were gathered. Overall, the expression of disgust was found to be perceived as +
inappropriate while emotionally neutral behaviour was perceived as appropriate, however gender +
differences suggested that females perceived surprise as inappropriate. Results suggest that +
agents should change their behaviour and appearance based on user characteristics such as +
gender. +
Keywords: affective computing, virtual agents, emotions, emotion detection, HCI, computer vision, empathy. +
1. INTRODUCTION +
This paper describes research which contributes +
towards the development of an empathetic system +
which will detect and improve a user’s affective +
state during a problematic self-service interaction +
(SSI) through the use of an affective agent. Self- +
Service Technologies (SSTs) are those which allow +
a person to obtain goods or services from a retailer +
or service provider without the need for another +
person to be involved in the transaction. SSTs are +
used in many situations including high street shops, +
supermarkets and ticket kiosks. The use of SSTs +
may provide benefits such as improved customer +
service (for example allowing 24 hour a day, 7 days +
a week service), +
labour costs and +
improved efficiency (Cho & Fiorito, 2010). Less +
than 5% of causes for dissatisfaction with SST +
interactions were found to be the fault of the +
customer (Meuter et al., 2000; Pujari, 2004), +
indicating that there is a need for businesses and +
SST manufacturers to improve these interactions in +
order to reduce causes for dissatisfaction (Martin et +
al., unpublished). The frustration caused by a +
negative SSI can have a detrimental effect on a +
user’s behavioural intentions towards the retailer, +
impacting the likelihood the user will continue doing +
reduced +
business with them in the future and whether they +
will recommend them to other potential users (Lin & +
Hsieh, 2006; Johnson et al., 2008). By adopting +
affective computing practices in SSI design, such +
as giving computers the ability to detect and react +
intelligently to human emotions and to express their +
own simulated emotions, user experiences may be +
improved (Klein et al., 1999; Jaksic et al., 2006; +
Wang et al., 2009). +
Affective agents have been +
to reduce +
found +
frustration during human-computer +
interactions +
(HCIs) (Klein et al., 1999; Jaksic et al., 2006), +
therefore we are investigating their effectiveness at +
improving negative affective states in a SST user +
during a shopping scenario. We propose a system +
which will detect negative affective states in a user +
and express appropriate empathetic reactions +
using an affective virtual agent. +
Two stages of research were identified. The +
purpose of stage 1 (reported in Martin et al., in +
press) was to investigate whether emotional facial +
expressions are present during SST use, +
to +
determine whether a vision-based emotion detector +
would be suitable for this system. The purpose of +
stage 2 (reported in Martin et al., unpublished) was +
© The Authors. Published by BISL. Proceedings of the BCS HCI 2012 People & Computers XXVI, Birmingham, UK351Work In Progress
('11111134', 'Leslie Ball', 'leslie ball')
('2529392', 'Jacqueline Archibald', 'jacqueline archibald')
('33069212', 'Lloyd Carson', 'lloyd carson')
c.martin@abertay.ac.uk +
l.ball@abertay.ac.uk +
j.archibald @abertay.ac.uk +
l.carson@abertay.ac.uk +
ad2339c48ad4ffdd6100310dcbb1fb78e72fac98Video Fill In the Blank using LR/RL LSTMs with Spatial-Temporal Attentions +
Center for Research in Computer Vision, University of Central Florida, Orlando, FL
('33209161', 'Amir Mazaheri', 'amir mazaheri')
('46335319', 'Dong Zhang', 'dong zhang')
('1745480', 'Mubarak Shah', 'mubarak shah')
amirmazaheri@cs.ucf.edu, dzhang@cs.ucf.edu, shah@crcv.ucf.edu +
ad247138e751cefa3bb891c2fe69805da9c293d7American Journal of Networks and Communications +
2015; 4(4): 90-94 +
Published online July 7, 2015 (http://www.sciencepublishinggroup.com/j/ajnc) +
doi: 10.11648/j.ajnc.20150404.12 +
ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online) +
A Novel Hybrid Method for Face Recognition Based on 2d +
Wavelet and Singular Value Decomposition +
Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran
Islamic Azad University, Shahrood, Iran
Email address: +
To cite this article: +
Decomposition. American Journal of Networks and Communications. Vol. 4, No. 4, 2015, pp. 90-94. doi: 10.11648/j.ajnc.20150404.12 +
('2653670', 'Vahid Haji Hashemi', 'vahid haji hashemi')
('2153844', 'Abdorreza Alavi Gharahbagh', 'abdorreza alavi gharahbagh')
('2653670', 'Vahid Haji Hashemi', 'vahid haji hashemi')
('2153844', 'Abdorreza Alavi Gharahbagh', 'abdorreza alavi gharahbagh')
hajihashemi.vahid@yahoo.com (V. H. Hashemi), R_alavi@iau-shahrood.ac.ir (A. A. Gharahbagh) +
adf62dfa00748381ac21634ae97710bb80fc2922ViFaI: A trained video face indexing scheme +
1. Introduction +
With the increasing prominence of inexpensive +
video recording devices (e.g., digital camcorders and +
video recording smartphones), +
the average user’s +
video collection today is increasing rapidly. With this +
development, there arises a natural desire to rapidly +
access a subset of one’s collection of videos. The solu- +
tion to this problem requires an effective video index- +
ing scheme. In particular, we must be able to easily +
process a video to extract such indexes. +
Today, there also exist large sets of labeled (tagged) +
face images. One important example is an individual’s +
Facebook profile. Such a set of of tagged images of +
one’s self, family, friends, and colleagues represents +
an extremely valuable potential training set. +
In this work, we explore how to leverage the afore- +
mentioned training set to solve the video indexing +
problem. +
2. Problem Statement +
Use a labeled (tagged) training set of face images +
to extract relevant indexes from a collection of videos, +
and use these indexes to answer boolean queries of the +
form: “videos with ‘Person 1’ OP1 ‘Person 2’ OP2 ... +
OP(N-1) ‘Person N’ ”, where ‘Person N’ corresponds +
to a training label (tag) and OPN is a boolean operand +
such as AND, OR, NOT, XOR, and so on. +
3. Proposed Scheme +
In this section, we outline our proposed scheme to +
address the problem we postulate in the previous sec- +
tion. We provide further details about the system im- +
plementation in Section 4. +
At a high level, we subdivide the problem into two +
key phases: the first ”off-line” executed once, and the +
second ”on-line” phase instantiated upon each query. +
For the purposes of this work, we define an index as +
follows:
('30006340', 'Nayyar', 'nayyar')
('47384529', 'Audrey Wei', 'audrey wei')
hnayyar@stanford.edu +
awei1001@stanford.edu +
bbc4b376ebd296fb9848b857527a72c82828fc52Attributes for Improved Attributes +
University of Maryland
College Park, MD
('3351637', 'Emily Hand', 'emily hand')emhand@cs.umd.edu +
bb489e4de6f9b835d70ab46217f11e32887931a2Everything you wanted to know about Deep Learning for Computer Vision but were +
afraid to ask +
Moacir A. Ponti, Leonardo S. F. Ribeiro, Tiago S. Nazare +
ICMC University of S ao Paulo
S˜ao Carlos/SP, 13566-590, Brazil +
CVSSP University of Surrey
Guildford, GU2 7XH, UK +
tools, +
('2227956', 'Tu Bui', 'tu bui')
('10710438', 'John Collomosse', 'john collomosse')
Email: [ponti, leonardo.sampaio.ribeiro, tiagosn]@usp.br +
Email: [t.bui, j.collomosse]@surrey.ac.uk +
bba281fe9c309afe4e5cc7d61d7cff1413b29558Social Cognitive and Affective Neuroscience, 2017, 984–992 +
doi: 10.1093/scan/nsx030 +
Advance Access Publication Date: 11 April 2017 +
Original article +
An unpleasant emotional state reduces working +
memory capacity: electrophysiological evidence +
1Laboratorio de Neurofisiologia do Comportamento, Departamento de Fisiologia e Farmacologia, Instituto +
Biome´dico, Universidade Federal Fluminense, Niteroi, Brazil, 2MograbiLab, Departamento de Psicologia, +
Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, and 3Laboratorio de Engenharia +
Pulmonar, Programa de Engenharia Biome´dica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil +
('18129331', 'Jessica S. B. Figueira', 'jessica s. b. figueira')
('2993713', 'Leticia Oliveira', 'leticia oliveira')
('38252417', 'Mirtes G. Pereira', 'mirtes g. pereira')
('18138365', 'Luiza B. Pacheco', 'luiza b. pacheco')
('6891211', 'Isabela Lobo', 'isabela lobo')
('5663717', 'Gabriel C. Motta-Ribeiro', 'gabriel c. motta-ribeiro')
('1837214', 'Isabel A. David', 'isabel a. david')
('1837214', 'Isabel A. David', 'isabel a. david')
Fluminense, Rua Hernani Pires de Mello, 101, Niteroi, RJ 24210-130, Brazil. E-mail: isabeldavid@id.uff.br. +
bb557f4af797cae9205d5c159f1e2fdfe2d8b096
bb06ef67a49849c169781657be0bb717587990e0Impact of Temporal Subsampling on Accuracy and +
Performance in Practical Video Classification +
F. Scheidegger∗†, L. Cavigelli∗, M. Schaffner∗, A. C. I. Malossi†, C. Bekas†, L. Benini∗‡ +
∗ETH Zürich, 8092 Zürich, Switzerland +
†IBM Research - Zürich, 8803 Rüschlikon, Switzerland +
‡Università di Bologna, Italy +
bb22104d2128e323051fb58a6fe1b3d24a9e9a46IAJ=JE BH ==OIEI 1 AIIA?A ?= EBH=JE =EO B?KIAI  JDA IK>JA +
ABBA?JELAAII B KH =CHEJD +
==OIEI 7IK=O = B=?E= ANFHAIIE ==OIEI IOIJA ?J=EI JDHAA IJ=CAI B=?A =?GKE +
9DAJDAH KIEC *=OAIE= ?=IIEAH " & IKFFHJ LA?JH =?DEA 58  H AKH= +
HACEI E = IECA ?=IIEAH EI = ? IJH=JACO & 0MALAH J = ?= HACEI +
)=OEC .=?E= -NFHAIIE >O .KIEC =EB@I +
9A;= +D=C1,2 +DK5C +DA1,3 =@ ;E2EC 0KC1,2,3 +
11IJEJKJA B 1BH=JE 5?EA?A )?=@AE= 5EE?= 6=EM= +
2,AFJ B +FKJAH 5?EA?A =@ 1BH=JE -CEAAHEC =JE= 6=EM= 7ELAHIEJO +
3/H=@K=JA 1IJEJKJA B AJMHEC =@ KJEA@E= =JE= 6=EM= 7ELAHIEJO +
{wychang, song}@iis.sinica.edu.tw; hung@csie.ntu.edu.tw +
)>IJH=?J .A=JKHA HAFHAIAJ=JE =@ ?=IIE?=JE =HA JM =H EIIKAI E B=?E= +
ANFHAIIE ==OIEI 1 JDA F=IJ IJ AJD@I KIA@ AEJDAH DEIJE? H ?= HAFHA +
L=HE=JEI B ANFHAIIEI =@ DEIJE? HAFHAIAJ=JE IJHAIIAI  C>= @ELAHIE +
JEAI 6 J=A JDA =@L=J=CAI B >JD = DO>HE@ HAFHAIAJ=JE EI IKCCAIJA@ E JDEI +
F=FAH =@ =EB@ A=HEC EI =FFEA@ J ?D=H=?JAHEA C>= =@ ?= EBH= +
JE @EI?HEE=JELAO 7EA IA AJD@I KIEC KIKFAHLEIA@ =EB@ A=H +
EC =FFH=?DAI A>A@@A@ =EB@I B JDA DO>HE@ HAFHAIAJ=JE =HA A=HA@ >O +
=@FJEC = IKFAHLEIA@ =EB@ A=HEC JA?DEGKA 6 EJACH=JA JDAIA =EB@I +
ABBA?JELAO = BKIE ?=IIEAH EI EJH@K?A@ MDE?D ?= DAF J AFO IKEJ=>A +
?>E=JE MAECDJI B B=?E= ?FAJI J E@AJEBO = ANFHAIIE +FHADA +
IELA ?F=HEII  B=?E= ANFHAIIE HA?CEJE =HA E?K@A@ J @AIJH=JA JDA +
 1JH@K?JE +
4A=EEC DK= AJEI F=OI = EFHJ=J HA E DK= ?KE?=JE 6 IJK@O +
DK= >AD=LEH I?EAJE?=O =@ IOIJA=JE?=O AJE ==OIEI EI = EJHECKEC HA +
IA=H?D EIIKA E =O A@I K?D =JJAJE D=I >AA @H=M J JDEI JFE? E ?FKJAH +
LEIE =FFE?=JEI IK?D =I DK=?FKJAH EJAH=?JE H>J ?CEJE =@ >AD=LEH +
IEJE BA=JKHA ANJH=?JE =@ ?=IIE?=JE +
.H BA=JKHA ANJH=?JE = J B AJD@I D=LA >AA FHFIA@ 1 CAAH= IJ AJD +
@I HAFHAIAJ BA=JKHAI E AEJDAH DEIJE? H ?= M=OI 0EIJE? HAFHAIAJ=JE KIAI JDA +
MDA B=?A BH HAFHAIAJ=JE =@ B?KIAI  JDA B=?E= L=HE=JEI B C>= =FFA=H=?A +
1 ?JH=IJ ?= HAFHAIAJ=JE =@FJI ?= B=?E= HACEI H BA=JKHAI =@ CELAI =JJA +
JE J JDA IK>JA @ELAHIEJEAI  = B=?A 6DKCD IJ HA?AJ IJK@EAI D=LA >AA @EHA?JA@ +
JM=H@I ?= HAFHAIAJ=JE % & C@ HAIA=H?D HAIKJI =HA IJE >J=EA@ >O KIEC +
DEIJE? =FFH=?D   0A?A EJ EI EJAHAIJEC J ANFEJ >JD B JDAEH >AAJI J @A +
LAF = DO>HE@ HAFHAIAJ=JE +
1 =@@EJE J BA=JKHA HAFHAIAJ=JE MA =I EJH@K?A = AJD@ BH ?=IIE?=JE +
AJMHI @EC = IJHC ?=IIEAH EI JDA ?HA E JDA ANEIJEC B=?E= ANFHAIIE ==O +
IEI IJK@EAI 1 JDA =FFH=?DAI JD=J =@FJ ?= B=?E= EBH=JE MAECDJEC JDAIA ?= +
bbf28f39e5038813afd74cf1bc78d55fcbe630f1Style Aggregated Network for Facial Landmark Detection +
University of Technology Sydney, 2 The University of Sydney
('9929684', 'Xuanyi Dong', 'xuanyi dong')
('1685212', 'Yan Yan', 'yan yan')
('3001348', 'Wanli Ouyang', 'wanli ouyang')
('1698559', 'Yi Yang', 'yi yang')
{xuanyi.dong,yan.yan-3}@student.uts.edu.au; +
wanli.ouyang@sydney.edu.au; yi.yang@uts.edu.au +
bbe1332b4d83986542f5db359aee1fd9b9ba9967
bbe949c06dc4872c7976950b655788555fe513b8Automatic Frequency Band Selection for +
Illumination Robust Face Recognition +
Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen'){ekenel,rainer.stiefelhagen}@kit.edu +
bbcb4920b312da201bf4d2359383fb4ee3b17ed9RESEARCH ARTICLE +
Robust Face Recognition via Multi-Scale +
Patch-Based Matrix Regression +
Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing
China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology
Nanjing, 210094, China, 3 School of Automation, Nanjing University of Posts and Telecommunications
Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and
Telecommunications, Nanjing, 210023, China +
a11111 +
('3306402', 'Guangwei Gao', 'guangwei gao')
('2700773', 'Jian Yang', 'jian yang')
('1712078', 'Xiaoyuan Jing', 'xiaoyuan jing')
('35919708', 'Pu Huang', 'pu huang')
('3359690', 'Juliang Hua', 'juliang hua')
('1742990', 'Dong Yue', 'dong yue')
* csggao@gmail.com +
bb6bf94bffc37ef2970410e74a6b6dc44a7f4febSituation Recognition with Graph Neural Networks +
Supplementary Material +
Uber Advanced Technologies Group, 5Vector Institute
We present additional analysis and results of our approach in the supplementary material. First, we analyze the verb +
prediction performance in Sec. 1. In Sec. 2, we present t-SNE [2] plots to visualize the verb and role embeddings. We present +
several examples of the influence of different roles on predicting the verb-frame correctly. This is visualized in Sec. 3 through +
propagation matrices similar to Fig. 7 of the main paper. Finally, in Sec. 4 we include several example predictions that our +
model makes. +
1. Verb Prediction +
We present the verb prediction accuracies for our fully-connected model on the development set in Fig. 1. The random +
performance is close to 0.2% (504 verbs). About 22% of all verbs are classified correctly over 50% of the time. These +
include taxiing, erupting, flossing, microwaving, etc. On the other hand, verbs such as attaching, +
making, placing can have very different image representations, and show prediction accuracies of less than 10%. +
Our model helps improve the role-noun predictions by sharing information across all roles. Nevertheless, if the verb is +
predicted incorrectly, the whole situation is treated as incorrect. Thus, verb prediction performance plays a crucial role. +
Figure 1. Verb prediction accuracy on the development set. Some verbs such as taxiing typically have a similar image (a plane on the +
tarmac), while verbs such as rubbing or twisting can have very different corresponding images. +
taxiinglappingretrievingflickingminingwaxingjugglingcurtsyingcommutingdancingcrushingreadingexaminingdousingdecomposingchoppingdrawingcryingcalmingsniffingmourningsubmergingtwistingcarvingrubbingaskingVerbs0102030405060708090100Accuracy (%)
('8139953', 'Ruiyu Li', 'ruiyu li')
('2103464', 'Makarand Tapaswi', 'makarand tapaswi')
('2246396', 'Renjie Liao', 'renjie liao')
('1729056', 'Jiaya Jia', 'jiaya jia')
('2422559', 'Raquel Urtasun', 'raquel urtasun')
('37895334', 'Sanja Fidler', 'sanja fidler')
('2043324', 'Hong Kong', 'hong kong')
ryli@cse.cuhk.edu.hk, {makarand,rjliao,urtasun,fidler}@cs.toronto.edu, leojia9@gmail.com +
bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197TO APPEAR IN TPAMI +
From Images to 3D Shape Attributes +
('1786435', 'David F. Fouhey', 'david f. fouhey')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
bbf01aa347982592b3e4c9e4f433e05d30e71305
bbc5f4052674278c96abe7ff9dc2d75071b6e3f3Nonlinear Hierarchical Part-based Regression for Unconstrained Face Alignment +
†NEC Laboratories America, Media Analytics +
‡Adobe Research +
cid:93)University of North Carolina at Charlotte
Rutgers, The State University of New Jersey
('39960064', 'Xiang Yu', 'xiang yu')
('1753384', 'Shaoting Zhang', 'shaoting zhang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
xiangyu@nec-labs.com, zlin@adobe.com, szhang16@uncc.edu, dnm@cs.rutgers.edu +
bbfe0527e277e0213aafe068113d719b2e62b09cDog Breed Classification Using Part Localization +
Columbia University
University of Maryland
('2454675', 'Jiongxin Liu', 'jiongxin liu')
('20615377', 'Angjoo Kanazawa', 'angjoo kanazawa')
bbf1396eb826b3826c5a800975047beabde2f0de
bb451dc2420e1a090c4796c19716f93a9ef867c9International Journal of Computer Applications (0975 – 8887) +
Volume 104 – No.5, October 2014 +
A Review on: Automatic Movie Character Annotation +
by Robust Face-Name Graph Matching +
Research Scholar +
Sinhgad College of
Engineering, korti, Pandharpur, +
Solapur University, INDIA
Gadekar P.R. +
Assistant Professor +
Sinhgad College of
Engineering, korti, Pandharpur, +
Solapur University, INDIA
Bandgar Vishal V. +
Assistant Professor +
College of Engineering (Poly
Pandharpur, Solapur, INDIA +
Bhise Avdhut S. +
HOD, Department of +
Information Technology, +
College of Engineering (Poly
Pandharpur, Solapur, INDIA +
bbd1eb87c0686fddb838421050007e934b2d74ab
d73d2c9a6cef79052f9236e825058d5d9cdc13212014-ENST-0040 +
EDITE - ED 130 +
Doctorat ParisTech +
T H È S E +
pour obtenir le grade de docteur délivré par +
TELECOM ParisTech +
Spécialité « Signal et Images » +
présentée et soutenue publiquement par +
le 08 juillet 2014 +
Cutting the Visual World into Bigger Slices for Improved Video +
Concept Detection +
Amélioration de la détection des concepts dans les vidéos par de plus grandes tranches du Monde +
Visuel +
Directeur de thèse : Bernard Mérialdo +
Jury +
M. Philippe-Henri Gosselin, Professeur, INRIA +
M. Georges Quénot, Directeur de recherche CNRS, LIG +
M. Georges Linares, Professeur, LIA +
M. François Brémond, Professeur, INRIA +
M. Bernard Mérialdo, Professeur, EURECOM +
Rapporteur +
Rapporteur +
Examinateur +
Examinateur +
Encadrant +
TELECOM ParisTech +
école de l’Institut Télécom - membre de ParisTech +
('2135932', 'Usman Farrokh Niaz', 'usman farrokh niaz')
d794ffece3533567d838f1bd7f442afee13148fdHand Detection and Tracking in Videos +
for Fine-grained Action Recognition +
The University of Electro-Communications, Tokyo
1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan +
('1681659', 'Keiji Yanai', 'keiji yanai')
d78077a7aa8a302d4a6a09fb9737ab489ae169a6
d7593148e4319df7a288180d920f2822eeecea0bLIU, YU, FUNES-MORA, ODOBEZ: DIFFERENTIAL APPROACH FOR GAZE ESTIMATION 1 +
A Differential Approach for Gaze +
Estimation with Calibration +
Idiap Research Institute
2 Eyeware Tech SA +
Kenneth A. Funes-Mora 2 +
('1697913', 'Gang Liu', 'gang liu')
('50133842', 'Yu Yu', 'yu yu')
('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')
gang.liu@idiap.ch +
yu.yu@idiap.ch +
kenneth@eyeware.tech +
odobez@idiap.ch +
d7312149a6b773d1d97c0c2b847609c07b5255ec
d7fe2a52d0ad915b78330340a8111e0b5a66513aUnpaired Photo-to-Caricature Translation on Faces in +
the Wild +
aNo. 238 Songling Road, Ocean University of
China, Qingdao, China +
('4670300', 'Ziqiang Zheng', 'ziqiang zheng')
('50077564', 'Zhibin Yu', 'zhibin yu')
('2336297', 'Haiyong Zheng', 'haiyong zheng')
('49297407', 'Bing Zheng', 'bing zheng')
d7cbedbee06293e78661335c7dd9059c70143a28MobileFaceNets: Efficient CNNs for Accurate Real- +
Time Face Verification on Mobile Devices +
School of Computer and Information Technology, Beijing Jiaotong University, Beijing
Research Institute, Watchdata Inc., Beijing, China
China +
('39326372', 'Sheng Chen', 'sheng chen')
('1681842', 'Yang Liu', 'yang liu')
('46757550', 'Xiang Gao', 'xiang gao')
('2765914', 'Zhen Han', 'zhen han')
{sheng.chen, yang.liu.yj, xiang.gao}@watchdata.com, +
zhan@bjtu.edu.cn +
d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2fAutomating Image Analysis by Annotating Landmarks with Deep +
Neural Networks +
February 3, 2017 +
Running head: Automatic Annotation of Landmarks +
Boston University, Boston, MA
University of North Carolina at Chapel Hill, Chapel Hill, NC
Keywords: automatic landmark localization, annotation, pose estimation, deep neural networks, hawkmoths +
Contents +
('2025025', 'Mikhail Breslav', 'mikhail breslav')
('1711465', 'Tyson L. Hedrick', 'tyson l. hedrick')
('1749590', 'Stan Sclaroff', 'stan sclaroff')
('1723703', 'Margrit Betke', 'margrit betke')
d708ce7103a992634b1b4e87612815f03ba3ab24FCVID: Fudan-Columbia Video Dataset +
Available at: http://bigvid.fudan.edu.cn/FCVID/ +
1 OVERVIEW +
Recognizing visual contents in unconstrained videos +
has become a very important problem for many ap- +
plications, such as Web video search and recommen- +
dation, smart content-aware advertising, robotics, etc. +
Existing datasets for video content recognition are +
either small or do not have reliable manual labels. +
In this work, we construct and release a new Inter- +
net video dataset called Fudan-Columbia Video Dataset +
(FCVID), containing 91,223 Web videos (total duration +
4,232 hours) annotated manually according to 239 +
categories. We believe that the release of FCVID can +
stimulate innovative research on this challenging and +
important problem. +
2 COLLECTION AND ANNOTATION +
The categories in FCVID cover a wide range of topics +
like social events (e.g., “tailgate party”), procedural +
events (e.g., “making cake”), objects (e.g., “panda”), +
scenes (e.g., “beach”), etc. These categories were de- +
fined very carefully. Specifically, we conducted user +
surveys and used the organization structures on +
YouTube and Vimeo as references, and browsed nu- +
merous videos to identify categories that satisfy the +
following three criteria: (1) utility — high relevance +
in supporting practical application needs; (2) cover- +
age — a good coverage of the contents that people +
record; and (3) feasibility — likely to be automatically +
recognized in the next several years, and a high +
frequency of occurrence that is sufficient for training +
a recognition algorithm. +
This definition effort led to a set of over 250 candi- +
date categories. For each category, in addition to the +
official name used in the public release, we manually +
defined another alternative name. Videos were then +
downloaded from YouTube searches using the official +
and the alternative names as search terms. The pur- +
pose of using the alternative names was to expand the +
candidate video sets. For each search, we downloaded +
1,000 videos, and after removing duplicate videos and +
some extremely long ones (longer than 30 minutes), +
there were around 1,000–1,500 candidate videos for +
each category. +
All the videos were annotated manually to ensure +
a high precision of the FCVID labels. In order to min- +
imize subjectivity, nearly 20 annotators were involved +
in the task, and a master annotator was assigned to +
monitor the entire process and double-check all the +
found positive videos. Some of the videos are multi- +
labeled, and thus filtering the 1,000–1,500 videos for +
each category with focus on just the single category +
label is not adequate. As checking the existence of all +
the 250+ classes for each video is extremely difficult, +
we use the following strategy to narrow down the “la- +
bel search space” for each video. We first grouped the +
categories according to subjective predictions of label +
co-occurrences, e.g., “wedding reception” & “wed- +
ding ceremony”, “waterfall” & “river”, “hiking” & +
“mountain”, and even “dog” & “birthday”. We then +
annotated the videos not only based on the target cat- +
egory label, but also according to the identified related +
labels. This helped produce a fairly complete label +
set for FCVID, but largely reduced the annotation +
workload. After removing the rare categories with +
less than 100 videos after annotation, the final FCVID +
dataset contains 91,223 videos and 239 categories, +
where 183 are events and 56 are objects, scenes, etc. +
Figure 1 shows the number of videos per category. +
“Dog” has the largest number of positive videos +
(1,136), while “making egg tarts” is the most infre- +
quent category containing only 108 samples. The total +
duration of FCVID is 4,232 hours with an average +
video duration of 167 seconds. Figure 2 further gives +
the average video duration of each category. +
The categories are organized using a hierarchy con- +
taining 11 high-level groups, as visualized in Figure 3. +
3 COMPARISON WITH RELATED DATASETS +
We compare FCVID with the following datasets. Most +
of them have been widely adopted in the existing +
works on video categorization. +
KTH and Weizmann: The KTH [1] and the Weiz- +
mann [2] datasets are well-known benchmarks for +
human action recognition. The former contains 600 +
videos of 6 human actions performed by 25 people +
in four scenarios, and the latter consists of 81 videos +
associated with 9 actions performed by 9 actors. +
Hollywood Human Action: The Hollywood +
dataset [3] contains 8 action classes collected from +
32 Hollywood movies with a total of 430 videos. +
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('3099139', 'Zuxuan Wu', 'zuxuan wu')
('39811558', 'Jun Wang', 'jun wang')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
d78734c54f29e4474b4d47334278cfde6efe963aExploring Disentangled Feature Representation Beyond Face Identification +
CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
SenseTime Group Limited, 3Peking University
('1715752', 'Yu Liu', 'yu liu')
('22181490', 'Fangyin Wei', 'fangyin wei')
('49895575', 'Jing Shao', 'jing shao')
('37145669', 'Lu Sheng', 'lu sheng')
('1721677', 'Junjie Yan', 'junjie yan')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
{yuliu,lsheng,xgwang}@ee.cuhk.edu.hk, weifangyin@pku.edu.cn, +
{shaojing,yanjunjie}@sensetime.com +
d785fcf71cb22f9c33473cba35f075c1f0f06ffcLearning Active Facial Patches for Expression Analysis +
Rutgers University, Piscataway, NJ
Nanjing University of Information Science and Technology, Nanjing, 210044, China
University of Texas at Arlington, Arlington, TX
('29803023', 'Lin Zhong', 'lin zhong')
('1734954', 'Qingshan Liu', 'qingshan liu')
('39606160', 'Peng Yang', 'peng yang')
('40107085', 'Bo Liu', 'bo liu')
('1768190', 'Junzhou Huang', 'junzhou huang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
{linzhong,qsliu,peyang,lb507,dnm}@cs.rutgers.edu, Jzhuang@uta.edu +
d79365336115661b0e8dbbcd4b2aa1f504b91af6Variational methods for Conditional Multimodal +
Deep Learning +
Department of Computer Science and Automation +
Indian Institute of Science
('2686270', 'Gaurav Pandey', 'gaurav pandey')
('2440174', 'Ambedkar Dukkipati', 'ambedkar dukkipati')
Email{gp88, ad@csa.iisc.ernet.in +
d7b6bbb94ac20f5e75893f140ef7e207db7cd483Griffith Research Online +
https://research-repository.griffith.edu.au +
Face Recognition across Pose: A +
Review +
Author +
Zhang, Paul, Gao, Yongsheng +
Published +
2009 +
Journal Title +
Pattern Recognition +
DOI +
https://doi.org/10.1016/j.patcog.2009.04.017 +
Copyright Statement +
Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance +
with the copyright policy of the publisher. Please refer to the journal's website for access to the +
definitive, published version. +
Downloaded from +
http://hdl.handle.net/10072/30193 +
d78373de773c2271a10b89466fe1858c3cab677f
d78fbd11f12cbc194e8ede761d292dc2c02d38a2(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 8, No. 10, 2017 +
Enhancing Gray Scale Images for Face Detection +
under Unstable Lighting Condition +
Department of Mathematics and Computer Science, +
Faculty of Sciences, PO Box 67 Dschang +
University of Dschang, Cameroon
DJIMELI TSAMENE Charly +
Department of Mathematics and Computer Science, +
Faculty of Sciences, PO Box 67 Dschang, +
University of Dschang, Cameroon
techniques compared are: +
d72973a72b5d891a4c2d873daeb1bc274b48cddfA New Supervised Dimensionality Reduction Algorithm Using Linear +
Discriminant Analysis and Locality Preserving Projection +
School of Information Engineering +
Guangdong Medical College
Dongguan, Guangdong, China +
School of Electronics and Information +
South China University of Technology
Guangzhou, Guangdong, China +
('2588058', 'DI ZHANG', 'di zhang')
('20374749', 'YUN ZHAO', 'yun zhao')
('31866339', 'MINGHUI DU', 'minghui du')
haihaiwenqi@163.com, zyun@gdmc.edu.cn +
ecmhdu@scut.edu.cn +
d700aedcb22a4be374c40d8bee50aef9f85d98efRethinking Spatiotemporal Feature Learning: +
Speed-Accuracy Trade-offs in Video Classification +
1 Google Research +
University of California San Diego
('1817030', 'Saining Xie', 'saining xie')
('40559421', 'Chen Sun', 'chen sun')
('1808244', 'Jonathan Huang', 'jonathan huang')
('1736745', 'Zhuowen Tu', 'zhuowen tu')
('1702318', 'Kevin Murphy', 'kevin murphy')
d7d166aee5369b79ea2d71a6edd73b7599597aaaFast Subspace Clustering Based on the +
Kronecker Product +
Beihang University 2Gri th University 3University of York, UK
('38840844', 'Lei Zhou', 'lei zhou')
('3042223', 'Xiao Bai', 'xiao bai')
('6820648', 'Xianglong Liu', 'xianglong liu')
('40582215', 'Jun Zhou', 'jun zhou')
('38987678', 'Hancock Edwin', 'hancock edwin')
d79f9ada35e4410cd255db39d7cc557017f8111aJournal of Eye Movement Research +
7(3):3, 1-8 +
Evaluation of accurate eye corner detection methods for gaze +
estimation +
Public University of Navarra, Spain
Childrens National Medical Center, USA +
Public University of Navarra, Spain
Public University of Navarra, Spain
Accurate detection of iris center and eye corners appears to be a promising +
approach for low cost gaze estimation. +
In this paper we propose novel eye +
inner corner detection methods. Appearance and feature based segmentation +
approaches are suggested. All these methods are exhaustively tested on a realistic +
dataset containing images of subjects gazing at different points on a screen. +
We have demonstrated that a method based on a neural network presents the +
best performance even in light changing scenarios. +
In addition to this method, +
algorithms based on AAM and Harris corner detector present better accuracies +
than recent high performance face points tracking methods such as Intraface. +
Keywords: eye tracking, low cost, eye inner corner +
Introduction +
Research on eye detection and tracking has attracted +
much attention in the last decades. Since it is one of the +
most stable and representative features of the subject, +
eye detection is used in a great variety of applications, +
such as subject identification, human computer inter- +
action as shown in Morimoto and Mimica (2005) and +
gesture recognition as described by Tian, Kanade, and +
Cohn (2000) and Bailenson et al. (2008). +
Human computer interaction based on eye informa- +
tion is one of the most challenging research topics in +
the recent years. According to the literature, the first +
attempts to track the human gaze using cameras be- +
gan in 1974 as shown in the work by Merchant, Mor- +
rissette, and Porterfield (1974). Since then, and espe- +
cially in the last decades, much effort has been devoted +
to improving the performance of eye tracking systems. +
The availability of high performance eye tracking sys- +
tems has provided advances in fields such as usabil- +
ity research as described by Ellis, Candrea, Misner, +
Craig, and Lankford (1998) Poole and Ball (2005) and +
interaction for severely disabled people in works such +
as Bolt (1982), Starker and Bolt (1990) and Vertegaal +
(1999). Gaze tracking systems can be used to deter- +
mine the fixation point of an individual on a computer +
screen, which can in turn be used as a pointer to in- +
teract with the computer. Thus, severely disabled peo- +
ple who cannot communicate with their environment +
using alternative interaction tools can perform several +
tasks by means of their gaze. Performance limitations, +
such as head movement constraints, limit the employ- +
ment of the gaze trackers as interaction tools in other +
areas. Moreover, the limited market for eye tracking +
systems and the specialized hardware they employ, in- +
crease their prices. The eye tracking community has +
identified new application fields, such as video games +
or the automotive industry, as potential markets for the +
technology (Zhang, Bulling, & Gellersen, 2013). How- +
ever, simpler (i.e., lower cost) hardware is needed to +
reach these areas. +
Although web cams offer acceptable resolutions for +
eye tracking purposes, the optics used provide a wider +
field of view in which the whole face appears. By con- +
trast, most of the existing high-performance eye track- +
ing systems employ infrared illumination. +
Infrared +
light-emitting diodes provide a higher image quality +
and produce bright pixels in the image from infrared +
light reflections on the cornea named as glints. Al- +
though some works suggest the combination of light +
sources and web cams to track the eyes as described in +
Sigut and Sidha (2011), the challenge of low-cost sys- +
tems is to avoid the use of light sources to keep the sys- +
tems as simple as possible; hence, the image quality de- +
creases. High-performance eye tracking systems usu- +
ally combine glints and pupil information to compute +
the gaze position on the screen. Accurate pupil detec- +
tion is not feasible in web cam images, and most works +
on this topic focus on iris center. In order to improve +
accuracy, other elements such as eye corners or head +
position are necessary for gaze estimation applications, +
apart from the estimation of both irises. In the work by +
Ince and Yang (2009), they consider that the horizontal +
and vertical deviation of eye movements through eye- +
('2592332', 'Jose Javier Bengoechea', 'jose javier bengoechea')
('2595143', 'Juan J. Cerrolaza', 'juan j. cerrolaza')
('2175923', 'Arantxa Villanueva', 'arantxa villanueva')
('1752979', 'Rafael Cabeza', 'rafael cabeza')
d0e895a272d684a91c1b1b1af29747f92919d823Classification of Mouth Action Units using Local Binary Patterns +
The American University in Cairo
Department of Computer Science, AUC, AUC +
Avenue, P.O. Box 74 New Cairo 11835, Egypt +
The American University in Cairo
Department of Computer Science, AUC, AUC +
Avenue, P.O. Box 74 New Cairo 11835, Egypt +
('3298267', 'Sarah Adel Bargal', 'sarah adel bargal')
('3337337', 'Amr Goneid', 'amr goneid')
s_bargal@aucegypt.edu +
goneid@aucegypt.edu +
d082f35534932dfa1b034499fc603f299645862dTAMING WILD FACES: WEB-SCALE, OPEN-UNIVERSE FACE IDENTIFICATION IN +
STILL AND VIDEO IMAGERY +
by +
B.S. University of Central Florida
M.S. University of Central Florida
A dissertation submitted in partial fulfilment of the requirements +
for the degree of Doctor of Philosophy +
in the Department of Electrical Engineering and Computer Science +
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida +
Spring Term +
2014 +
Major Professor: Mubarak Shah +
('1873759', 'G. ORTIZ', 'g. ortiz')
d03265ea9200a993af857b473c6bf12a095ca178Multiple deep convolutional neural +
networks averaging for face +
alignment +
Zhouping Yin +
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms
('7671296', 'Shaohua Zhang', 'shaohua zhang')
('39584289', 'Hua Yang', 'hua yang')
d0ac9913a3b1784f94446db2f1fb4cf3afda151fExploiting Multi-modal Curriculum in Noisy Web Data for +
Large-scale Concept Learning +
School of Computer Science, Carnegie Mellon University, PA, USA
School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China
('1915796', 'Junwei Liang', 'junwei liang')
('38782499', 'Lu Jiang', 'lu jiang')
('1803714', 'Deyu Meng', 'deyu meng')
{junweil, lujiang, alex}@cs.cmu.edu, dymeng@mail.xjtu.edu.cn. +
d0471d5907d6557cf081edf4c7c2296c3c221a38A Constrained Deep Neural Network for Ordinal Regression +
Nanyang Technological University
Rolls-Royce Advanced Technology Centre +
50 Nanyang Avenue, Singapore, 639798 +
6 Seletar Aerospace Rise, Singapore, 797575 +
('47908585', 'Yanzhu Liu', 'yanzhu liu')
('1799918', 'Chi Keong Goh', 'chi keong goh')
liuy0109@e.ntu.edu.sg, adamskong@ntu.edu.sg +
ChiKeong.Goh@Rolls-Royce.com +
d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0
d00c335fbb542bc628642c1db36791eae24e02b7Article +
Deep Learning-Based Gaze Detection System for +
Automobile Drivers Using a NIR Camera Sensor +
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu
Received: 5 January 2018; Accepted: 1 February 2018; Published: 3 February 2018 +
('8683310', 'Rizwan Ali Naqvi', 'rizwan ali naqvi')
('15668895', 'Muhammad Arsalan', 'muhammad arsalan')
('3407484', 'Ganbayar Batchuluun', 'ganbayar batchuluun')
('40376380', 'Hyo Sik Yoon', 'hyo sik yoon')
('4634733', 'Kang Ryoung Park', 'kang ryoung park')
Seoul 100-715, Korea; rizwanali@dongguk.edu (R.A.N.); arsal@dongguk.edu (M.A.); +
ganabata87@gmail.com (G.B.); yoonhs@dongguk.edu (H.S.Y.) +
* Correspondence: parkgr@dongguk.edu; Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +
d06c8e3c266fbae4026d122ec9bd6c911fcdf51dRole for 2D image generated 3D face models in the rehabilitation of facial palsy +
Northumbria University, Newcastle Upon-Tyne NE21XE, UK
Published in Healthcare Technology Letters; Received on 4th April 2017; Revised on 7th June 2017; Accepted on 7th June 2017 +
The outcome for patients diagnosed with facial palsy has been shown to be linked to rehabilitation. Dense 3D morphable models have been +
shown within the computer vision to create accurate representations of human faces even from single 2D images. This has the potential +
to provide feedback to both the patient and medical expert dealing with the rehabilitation plan. It is proposed that a framework for the +
creation and measuring of patient facial movement consisting of a hybrid 2D facial landmark fitting technique which shows better +
accuracy in testing than current methods and 3D model fitting. +
1. Introduction: Recent medical studies [1–3] have highlighted +
that patients diagnosed and treated with specific types of facial +
paralysis such as Bell’s palsy have outcomes that are directly +
linked to the rehabilitation provided. While various treatment and +
rehabilitation paths exist dependant on the specifics of the facial +
palsy diagnosis, the aim is to restore a degree of facial muscle +
movement +
[4] completed a +
comprehensive study over 5 years of the rehabilitation process +
and outcomes for 303 facial paralysis patients, the key finding +
was the need for specialised therapy plans tailored via feedback +
for the best patient outcomes. While Banks et al [5] have shown +
that quality qualitative feedback to a clinician is required for the +
best development of rehabilitation plans. +
to the patient. Lindsay et al +
Tracking and providing qualitative feedback on the progress +
of rehabilitation for a patient is an area where the application of +
computer vision and machine learning techniques could prove to +
be highly beneficial. Computer vision methods can provide the +
capability of capturing accurate 3D models of the human face +
these in turn can be leveraged to analyse and measure changes in +
face shape and levels of motion [6]. +
Applying 3D face modelling techniques in an automated +
framework for +
tracking facial palsy rehabilitation progression +
has a number of potential benefits. 3D face models generated +
from a 2D face image can provide a detailed topography of an +
individual human face which can be qualitatively measured for +
change over time by a computer system. Potential benefits of +
such an automated system include providing the clinician +
dealing with a patients rehabilitation to gather regular objective +
feedback on the condition and tailor therapy without always +
needing to physically see the patient or providing continuity of +
care if for instance the clinician changes during the rehabilitation +
period. Patients will have a visual evidence in which to see the +
progress that has been made. It has been indicated that patients +
suffering from facial palsy can also be affected by psychol- +
ogical and social problems the capacity to track rehabilitation pri- +
vately within a comfortable setting like their own home may be +
of benefit. +
Some previous studies [7] have looked at the process of aiding +
diagnosis through the application of computer vision techniques +
these have been limited to 2D imaging which measure on a spare +
set of landmarks. The hypothesis is that 3D face modelling consist- +
ing of thousands of landmarks provides a far richer model of the +
face which in turn can present a more accurate measurement +
system for facial motion. +
In this Letter we propose a framework applicable for accurate +
generation of 3D face models of facial palsy patients from 2D +
images applying state-of-the-art methods and a proposed method +
Healthcare Technology Letters, 2017, Vol. 4, Iss. 4, pp. 145–148 +
doi: 10.1049/htl.2017.0023 +
Fig. 1 2D face alignment of 68 landmarks on a facial image which displays +
asymmetric movement, like that of a patient suffering from facial palsy +
of using geometrical features to track rehabilitation and present +
our conclusions. +
2. Proposed system overview: The accuracy of +
the facial +
representation is a key components of any computer-based system +
which aims to measure facial motion. We suggest that the more +
complex a depiction of the individuals patient facial topography +
the greater the potential +
is for the desired level of accuracy. +
Developing such a system requires a framework of methods to +
build and measure such a model. +
As camera systems which perceive depth within an image are not +
currently common place or require specialist and expensive hard- +
ware initially we require a method for face detection and 2D face +
145 +
This is an open access article published by the IET under the +
Creative Commons Attribution License (http://creativecommons. +
org/licenses/by/3.0/) +
('12667800', 'Gary Storey', 'gary storey')
('40618413', 'Richard Jiang', 'richard jiang')
('1690116', 'Ahmed Bouridane', 'ahmed bouridane')
✉ E-mail: gary.storey@northumbria.ac.uk +
d074b33afd95074d90360095b6ecd8bc4e5bb6a2December 11, 2007 +
12:8 WSPC/INSTRUCTION FILE +
bauer-2007-ijhr +
International Journal of Humanoid Robotics +
c(cid:13) World Scientific Publishing Company +
Human-Robot Collaboration: A Survey +
Institute of Automatic Control Engineering (LSR
Technische Universit¨at M¨unchen +
80290 Munich +
Germany +
Received 01.05.2007 +
Revised 29.09.2007 +
Accepted Day Month Year +
As robots are gradually leaving highly structured factory environments and moving into +
human populated environments, they need to possess more complex cognitive abilities. +
They do not only have to operate efficiently and safely in natural, populated environ- +
ments, but also be able to achieve higher levels of cooperation and communication with +
humans. Human-robot collaboration (HRC) is a research field with a wide range of ap- +
plications, future scenarios, and potentially a high economic impact. HRC is an interdis- +
ciplinary research area comprising classical robotics, cognitive sciences, and psychology. +
This article gives a survey of the state of the art of human-robot collaboration. Es- +
tablished methods for intention estimation, action planning, joint action, and machine +
learning are presented together with existing guidelines to hardware design. This article +
is meant to provide the reader with a good overview of technologies and methods for +
HRC. +
Keywords: Human-robot collaboration; intention estimation; action planning; machine +
learning. +
1. Introduction +
Human-robot Collaboration (HRC) is a wide research field with a high economic +
impact. Robots have already started moving out of laboratory and manufacturing +
environments into more complex human working environments such as homes, of- +
fices, hospitals and even outer space. HRC is already used in elderly care1, space +
applications2, and rescue robotics3. The design of robot behaviour, appearance, +
cognitive, and social skills is highly challenging, and requires interdisciplinary co- +
operation between classical robotics, cognitive sciences, and psychology. Humans as +
nondeterministic factors make cognitive sciences and artificial intelligence important +
research fields in HRC. +
This article refers to human-robot collaboration as opposed to human-robot in- +
teraction (HRI) as these two terms hold different meanings4. Interaction is a more +
general term, including collaboration. Interaction determines action on someone
('1749896', 'Dirk Wollherr', 'dirk wollherr')
('1732126', 'Martin Buss', 'martin buss')
ab@tum.de; dw@tum.de; mb@tum.de +
d04d5692461d208dd5f079b98082eda887b62323Subspace learning with frequency regularizer: its application to face recognition +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, +
Institute of Automation, Chinese Academy of Sciences
95 Zhongguancun Donglu, Beijing 100190, China. +
('1704114', 'Xiangsheng Huang', 'xiangsheng huang')
('34679741', 'Stan Z. Li', 'stan z. li')
('1718623', 'Zhen Lei', 'zhen lei')
('1716143', 'Dong Yi', 'dong yi')
{zlei,dyi,szli}@cbsr.ia.ac.cn, xiangsheng.huang@ia.ac.cn +
d05513c754966801f26e446db174b7f2595805baEverything is in the Face? Represent Faces with +
Object Bank +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
School of Computer Science, Carnegie Mellon University, PA 15213, USA
University of Chinese Academy of Sciences, Beijing 100049, China
('1731144', 'Xin Liu', 'xin liu')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1688086', 'Shaoxin Li', 'shaoxin li')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
{xin.liu, shiguang.shan, shaoxin.li}@vipl.ict.ac.cn, alex@cs.cmu.edu; +
d0509afe9c2c26fe021889f8efae1d85b519452aVisual Psychophysics for Making Face +
Recognition Algorithms More Explainable +
University of Notre Dame, Notre Dame, IN, 46556, USA
Perceptive Automata, Inc
Harvard University, Cambridge, MA 02138, USA
('3849184', 'Brandon RichardWebster', 'brandon richardwebster')
('40901458', 'So Yon Kwon', 'so yon kwon')
('40896426', 'Christopher Clarizio', 'christopher clarizio')
('2503235', 'Samuel E. Anthony', 'samuel e. anthony')
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
d03baf17dff5177d07d94f05f5791779adf3cd5f
d0144d76b8b926d22411d388e7a26506519372ebImproving Regression Performance with Distributional Losses +('29905816', 'Ehsan Imani', 'ehsan imani')
d02e27e724f9b9592901ac1f45830341d37140feDA-GAN: Instance-level Image Translation by Deep Attention Generative +
Adversarial Networks +
The State Universtiy of New York at Buffalo +
The State Universtiy of New York at Buffalo +
Microsoft Research +
Microsoft Research +
('2327045', 'Shuang Ma', 'shuang ma')
('1735257', 'Chang Wen Chen', 'chang wen chen')
('3247966', 'Jianlong Fu', 'jianlong fu')
('1724211', 'Tao Mei', 'tao mei')
shuangma@buffalo.edu +
chencw@buffalo.edu +
jianf@microsoft.com +
tmei@microsoft.com +
d02b32b012ffba2baeb80dca78e7857aaeececb0Human Pose Estimation: Extension and Application +
Thesis submitted in partial fulfillment +
of the requirements for the degree of +
Master of Science (By Research) +
in +
Computer Science and Engineering +
by +
201002052 +
Center for Visual Information Technology +
International Institute of Information Technology
Hyderabad - 500 032, INDIA +
September 2016 +
('50226534', 'Digvijay Singh', 'digvijay singh')digvijay.singh@research.iiit.ac.in +
d0a21f94de312a0ff31657fd103d6b29db823caaFacial Expression Analysis +('1707876', 'Fernando De la Torre', 'fernando de la torre')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3eaFace Recognition with Patterns of Oriented +
Edge Magnitudes +
1 Vesalis Sarl, Clermont Ferrand, France +
2 Gipsa-lab, Grenoble INP, France +
('35083213', 'Ngoc-Son Vu', 'ngoc-son vu')
('1788869', 'Alice Caplier', 'alice caplier')
d0d7671c816ed7f37b16be86fa792a1b29ddd79bExploring Semantic Inter-Class Relationships (SIR) +
for Zero-Shot Action Recognition +
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia
School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
College of Computer Science, Zhejiang University, Zhejiang, China
('2551285', 'Chuang Gan', 'chuang gan')
('2735055', 'Ming Lin', 'ming lin')
('39033919', 'Yi Yang', 'yi yang')
('1755711', 'Yueting Zhuang', 'yueting zhuang')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
ganchuang1990@gmail.com, linming04@gmail.com, +
yiyang@cs.cmu.edu, yzhuang@zju.edu.cn, alex@cs.cmu.edu +
d01303062b21cd9ff46d5e3ff78897b8499480deMulti-task Learning by Maximizing Statistical Dependence +
University of Bath
University of Bath
University of Bath
('51013428', 'Youssef A. Mejjati', 'youssef a. mejjati')
('1792288', 'Darren Cosker', 'darren cosker')
('1808255', 'Kwang In Kim', 'kwang in kim')
d02c54192dbd0798b43231efe1159d6b4375ad363D Reconstruction and Face Recognition Using Kernel-Based +
ICA and Neural Networks +
Dept. of Electrical Dept. of CSIE Dept. of CSIE +
Engineering Chaoyang University Nankai Institute of
National University of Technology Technology
('1734467', 'Cheng-Jian Lin', 'cheng-jian lin')
('1759040', 'Chi-Yung Lee', 'chi-yung lee')
of Kaohsiung s9527618@cyut.edu.tw cylee@nkc.edu.tw +
cjlin@nuk.edu.tw +
d00787e215bd74d32d80a6c115c4789214da5edbFaster and Lighter Online +
Sparse Dictionary Learning +
Project report +
('2714145', 'Jeremias Sulam', 'jeremias sulam')
d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5Towards Universal Representation for Unseen Action Recognition +
University of California, Merced
Open Lab, School of Computing, Newcastle University, UK
Inception Institute of Arti cial Intelligence (IIAI), Abu Dhabi, UAE
('1749901', 'Yi Zhu', 'yi zhu')
('50363618', 'Yang Long', 'yang long')
('1735787', 'Yu Guan', 'yu guan')
('40799321', 'Ling Shao', 'ling shao')
be8c517406528edc47c4ec0222e2a603950c2762Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7 +
17.6.2005 +
5:45pm +
B A S I C R E S E A RC H +
M E T H O D S A N D +
P RO C E D U R E S +
beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2RESEARCH PAPER +
International Journal of Recent Trends in Engineering Vol 1, No. 1, May 2009, +
Adaptive Histogram Equalization and Logarithm +
Transform with Rescaled Low Frequency DCT +
Coefficients for Illumination Normalization +
Department of Computer Science and Engineering +
Amity School of Engineering Technology, 580, Bijwasan, New Delhi-110061, India +
Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India
illumination normalization. The +
lighting conditions. Most of the +
('2650871', 'Virendra P. Vishwakarma', 'virendra p. vishwakarma')
('2100294', 'Sujata Pandey', 'sujata pandey')
Email: vpvishwakarma@aset.amity.edu +
be86d88ecb4192eaf512f29c461e684eb6c35257Automatic Attribute Discovery and +
Characterization from Noisy Web Data +
Stony Brook University, Stony Brook NY 11794, USA
Columbia University, New York NY 10027, USA
University of California, Berkeley, Berkeley CA 94720, USA
('1685538', 'Tamara L. Berg', 'tamara l. berg')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('9676096', 'Jonathan Shih', 'jonathan shih')
tlberg@cs.sunysb.edu, +
aberg@cs.columbia.edu, +
jmshih@berkeley.edu. +
be48b5dcd10ab834cd68d5b2a24187180e2b408fFOR PERSONAL USE ONLY +
Constrained Low-rank Learning Using Least +
Squares Based Regularization +
('2420746', 'Ping Li', 'ping li')
('1720236', 'Jun Yu', 'jun yu')
('48958393', 'Meng Wang', 'meng wang')
('1763785', 'Luming Zhang', 'luming zhang')
('1724421', 'Deng Cai', 'deng cai')
('50080046', 'Xuelong Li', 'xuelong li')
beb49072f5ba79ed24750108c593e8982715498eSTUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES +
GeneGAN: Learning Object Transfiguration +
and Attribute Subspace from Unpaired Data +
1 Megvii Inc. +
Beijing, China +
2 Department of Information Science, +
School of Mathematical Sciences, +
Peking University
Beijing, China +
('35132667', 'Shuchang Zhou', 'shuchang zhou')
('14002400', 'Taihong Xiao', 'taihong xiao')
('1698559', 'Yi Yang', 'yi yang')
('7841666', 'Dieqiao Feng', 'dieqiao feng')
('8159691', 'Qinyao He', 'qinyao he')
('2416953', 'Weiran He', 'weiran he')
shuchang.zhou@gmail.com +
xiaotaihong@pku.edu.cn +
yangyi@megvii.com +
fdq@megvii.com +
hqy@megvii.com +
hwr@megvii.com +
be4a20113bc204019ea79c6557a0bece23da1121DeepCache: Principled Cache for Mobile Deep Vision +
We present DeepCache, a principled cache design for deep learning +
inference in continuous mobile vision. DeepCache benefits model +
execution efficiency by exploiting temporal locality in input video +
streams. It addresses a key challenge raised by mobile vision: the +
cache must operate under video scene variation, while trading off +
among cacheability, overhead, and loss in model accuracy. At the +
input of a model, DeepCache discovers video temporal locality by ex- +
ploiting the video’s internal structure, for which it borrows proven +
heuristics from video compression; into the model, DeepCache prop- +
agates regions of reusable results by exploiting the model’s internal +
structure. Notably, DeepCache eschews applying video heuristics to +
model internals which are not pixels but high-dimensional, difficult- +
to-interpret data. +
Our implementation of DeepCache works with unmodified deep +
learning models, requires zero developer’s manual effort, and is +
therefore immediately deployable on off-the-shelf mobile devices. +
Our experiments show that DeepCache saves inference execution +
time by 18% on average and up to 47%. DeepCache reduces system +
energy consumption by 20% on average. +
CCS Concepts: • Human-centered computing → Ubiquitous +
and mobile computing; • Computing methodologies → Com- +
puter vision tasks; +
Additional Key Words and Phrases: Deep Learning; Mobile Vision; +
Cache +
INTRODUCTION +
With ubiquitous cameras on mobile and wearable devices, +
continuous mobile vision emerges to enable a variety of com- +
pelling applications, including cognitive assistance [29], life
style monitoring [61], and street navigation [27]. To support +
continuous mobile vision, Convolutional Neural Network +
2018. XXXX-XXXX/2018/9-ART $15.00 +
https://doi.org/10.1145/3241539.3241563 +
Fig. 1. The overview of DeepCache. +
(CNN) is recognized as the state-of-the-art algorithm: a soft- +
ware runtime, called deep learning engine, ingests a continu- +
ous stream of video images1; for each input frame the engine +
executes a CNN model as a cascade of layers, produces in- +
termediate results called feature maps, and outputs inference +
results. Such CNN executions are known for their high time +
and space complexity, stressing resource-constrained mobile +
devices. Although CNN execution can be offloaded to the +
cloud [2, 34], it becomes increasingly compelling to execute +
CNNs on device [27, 44, 52], which ensures fast inference, pre- +
serves user privacy, and remains unaffected by poor Internet +
connectivity. +
To afford costly CNN on resource-constrained mobile/wear- +
able devices, we set to exploit a mobile video stream’s tempo- +
ral locality, i.e., rich information redundancy among consec- +
utive video frames [27, 51, 52]. Accordingly, a deep learning +
engine can cache results when it executes CNN over a mo- +
bile video, by using input frame contents as cache keys and +
inference results as cache values. Such caching is expected +
to reduce the engine’s resource demand significantly. +
Towards effective caching and result reusing, we face two +
major challenges. 1) Reusable results lookup: Classic caches, +
e.g., the web browser cache, look up cached values (e.g., web +
pages) based on key equivalence (e.g., identical URLs). This +
does not apply to a CNN cache: its keys, i.e., mobile video +
contents, often undergo moderate scene variation over time. +
The variation is caused by environmental changes such as +
1We refer to them as a mobile video stream in the remainder of the paper. +
, Vol. 1, No. 1, Article . Publication date: September 2018. +
('2529558', 'Mengwei Xu', 'mengwei xu')
('46694806', 'Mengze Zhu', 'mengze zhu')
('3180228', 'Yunxin Liu', 'yunxin liu')
('1774176', 'Felix Xiaozhu Lin', 'felix xiaozhu lin')
('8016688', 'Xuanzhe Liu', 'xuanzhe liu')
('8016688', 'Xuanzhe Liu', 'xuanzhe liu')
('2529558', 'Mengwei Xu', 'mengwei xu')
xumengwei@pku.edu.cn; Mengze Zhu, Peking University, MoE, Beijing, +
China, zhumz@pku.edu.cn; Yunxin Liu, Microsoft Research, Beijing, China, +
yunxin.liu@microsoft.com; Felix Xiaozhu Lin, Purdue ECE, West Lafayette, +
Indiana, USA, xzl@purdue.edu; Xuanzhe Liu, Peking University, MoE, Bei- +
jing, China, xzl@pku.edu.cn. +
becd5fd62f6301226b8e150e1a5ec3180f748ff8Robust and Practical Face Recognition via +
Structured Sparsity +
1Advanced Digital Sciences Center, Singapore +
2 Microsoft Research Asia, Beijing, China +
University of Illinois at Urbana-Champaign
('2370507', 'Kui Jia', 'kui jia')
('1926757', 'Tsung-Han Chan', 'tsung-han chan')
('1700297', 'Yi Ma', 'yi ma')
be437b53a376085b01ebd0f4c7c6c9e40a4b1a75ISSN (Online) 2321 – 2004 +
ISSN (Print) 2321 – 5526 +
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +
Vol. 4, Issue 5, May 2016 +
IJIREEICE +
Face Recognition and Retrieval Using Cross +
Age Reference Coding +
BE, DSCE, Bangalore1 +
Assistant Professor, DSCE, Bangalore2 +
('4427719', 'Chandrakala', 'chandrakala')
bebb8a97b2940a4e5f6e9d3caf6d71af21585edaMapping Emotional Status to Facial Expressions +
Tsinghua University
Beijing 100084, P. R. China +
('3165307', 'Yangzhou Du', 'yangzhou du')
('2693354', 'Xueyin Lin', 'xueyin lin')
dyz99@mails.tsinghua.edu.cn; lxy-dcs@tsinghua.edu.cn +
be07f2950771d318a78d2b64de340394f7d6b717See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290192867 +
3D HMM-based Facial Expression Recognition +
using Histogram of Oriented Optical Flow +
ARTICLE in SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING · DECEMBER 2015 +
DOI: 10.14738/tmlai.36.1661 +
READS +
12 +
3 AUTHORS, INCLUDING: +
Sheng Kung +
Oakland University
Djamel Bouchaffra +
Institute of Electrical and Electronics Engineers
1 PUBLICATION 0 CITATIONS +
57 PUBLICATIONS 402 CITATIONS +
SEE PROFILE +
SEE PROFILE +
All in-text references underlined in blue are linked to publications on ResearchGate, +
letting you access and read them immediately. +
Available from: Djamel Bouchaffra +
Retrieved on: 11 February 2016 +
be4f7679797777f2bc1fd6aad8af67cce5e5ce87Interestingness Prediction +
by Robust Learning to Rank(cid:2) +
School of EECS, Queen Mary University of London, UK
School of Mathematical Sciences, Peking University, China
('35782003', 'Yanwei Fu', 'yanwei fu')
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
('1700927', 'Tao Xiang', 'tao xiang')
('2073354', 'Shaogang Gong', 'shaogang gong')
('1746280', 'Yuan Yao', 'yuan yao')
{y.fu,t.hospedales,t.xiang,s.gong}@qmul.ac.uk, yuany@math.pku.edu.cn +
beb4546ae95f79235c5f3c0e9cc301b5d6fc9374A Modular Approach to Facial Expression Recognition +
Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht
Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht
('31822812', 'Michal Sindlar', 'michal sindlar')
('1727399', 'Marco Wiering', 'marco wiering')
sindlar@phil.uu.nl +
marco@cs.uu.nl +
be28ed1be084385f5d389db25fd7f56cd2d7f7bfExploring Computation-Communication Tradeoffs +
in Camera Systems +
Paul G. Allen School of Computer Science and Engineering, University of Washington
University of Washington
('19170117', 'Amrita Mazumdar', 'amrita mazumdar')
('47108160', 'Thierry Moreau', 'thierry moreau')
('37270394', 'Meghan Cowan', 'meghan cowan')
('1698528', 'Armin Alaghi', 'armin alaghi')
('1717411', 'Luis Ceze', 'luis ceze')
('1723213', 'Mark Oskin', 'mark oskin')
('46829693', 'Visvesh Sathe', 'visvesh sathe')
{amrita,moreau,cowanmeg}@cs.washington.edu, sungk9@uw.edu, {armin,luisceze,oskin}@cs.washington.edu, sathe@uw.edu +
bebea83479a8e1988a7da32584e37bfc463d32d4Discovery of Latent 3D Keypoints via +
End-to-end Geometric Reasoning +
Google AI +
('37016781', 'Supasorn Suwajanakorn', 'supasorn suwajanakorn')
('2704494', 'Jonathan Tompson', 'jonathan tompson')
{supasorn, snavely, tompson, mnorouzi}@google.com +
bed06e7ff0b510b4a1762283640b4233de4c18e0Bachelor Project +
Czech +
Technical +
University
in Prague +
F3 +
Faculty of Electrical Engineering +
Department of Cybernetics +
Face Interpretation Problems on Low +
Quality Images +
Supervisor: Ing. Jan Čech, Ph.D +
May 2018 +
bec31269632c17206deb90cd74367d1e6586f75fLarge-scale Datasets: Faces with Partial +
Occlusions and Pose Variations in the Wild +
Wayne State University
Detroit, MI, USA 48120 +
('2489629', 'Zeyad Hailat', 'zeyad hailat')
('35265528', 'Xuewen Chen', 'xuewen chen')
Email: ∗tarik alafif@wayne.edu, †zmhailat@wayne.edu, ‡melih.aslan@wayne.edu, §xuewen.chen@wayne.edu +
be5276e9744c4445fe5b12b785650e8f173f56ffSpatio-temporal VLAD Encoding for +
Human Action Recognition in Videos +
University of Trento, Italy
University Politehnica of Bucharest, Romania
University of Tokyo, Japan
('3429470', 'Ionut C. Duta', 'ionut c. duta')
('1796198', 'Bogdan Ionescu', 'bogdan ionescu')
('1712839', 'Kiyoharu Aizawa', 'kiyoharu aizawa')
('1703601', 'Nicu Sebe', 'nicu sebe')
{ionutcosmin.duta, niculae.sebe}@unitn.it +
bionescu@imag.pub.ro +
aizawa@hal.t.u-tokyo.ac.jp +
be57d2aaab615ec8bc1dd2dba8bee41a4d038b85Automatic Analysis of Naturalistic Hand-Over-Face Gestures +
University of Cambridge
One of the main factors that limit the accuracy of facial analysis systems is hand occlusion. As the face +
becomes occluded, facial features are lost, corrupted, or erroneously detected. Hand-over-face occlusions are +
considered not only very common but also very challenging to handle. However, there is empirical evidence +
that some of these hand-over-face gestures serve as cues for recognition of cognitive mental states. In this +
article, we present an analysis of automatic detection and classification of hand-over-face gestures. We detect +
hand-over-face occlusions and classify hand-over-face gesture descriptors in videos of natural expressions +
using multi-modal fusion of different state-of-the-art spatial and spatio-temporal features. We show experi- +
mentally that we can successfully detect face occlusions with an accuracy of 83%. We also demonstrate that +
we can classify gesture descriptors (hand shape, hand action, and facial region occluded) significantly better +
than a na¨ıve baseline. Our detailed quantitative analysis sheds some light on the challenges of automatic +
classification of hand-over-face gestures in natural expressions. +
Categories and Subject Descriptors: I.2.10 [Vision and Scene Understanding]: Video Analysis +
General Terms: Affective Computing, Body Expressions +
Additional Key Words and Phrases: Hand-over-face occlusions, face touches, hand gestures, facial landmarks, +
histograms of oriented gradient, space-time interest points +
ACM Reference Format: +
over-face gestures. ACM Trans. Interact. Intell. Syst. 6, 2, Article 19 (July 2016), 18 pages. +
DOI: http://dx.doi.org/10.1145/2946796 +
1. INTRODUCTION +
Over the past few years, there has been an increasing interest in machine under- +
standing and recognition of people’s affective and cognitive mental states, especially +
based on facial expression analysis. One of the major factors that limits the accuracy +
of facial analysis systems is hand occlusion. People often hold their hands near their +
faces as a gesture in natural conversation. As many facial analysis systems are based +
on geometric or appearance based facial features, such features are lost, corrupted, +
or erroneously detected during occlusion. This results in an incorrect analysis of the +
person’s facial expression. Although face touches are very common, they are under- +
researched, mostly because segmenting of the hand on the face is very challenging, +
as face and hand usually have similar colour and texture. Detection of hand-over-face +
The research leading to these results received partial funding from the European Community’s Seventh +
Framework Programme (FP7/2007-2013) under Grant No. 289021 (ASC-Inclusion). We also thank Yousef +
Jameel and Qualcomm for providing funding as well. +
Authors’ address: The Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom; +
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted +
without fee provided that copies are not made or distributed for profit or commercial advantage and that +
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for +
('2022940', 'Marwa Mahmoud', 'marwa mahmoud')
('39626495', 'Peter Robinson', 'peter robinson')
('2022940', 'Marwa Mahmoud', 'marwa mahmoud')
('39626495', 'Peter Robinson', 'peter robinson')
emails: {Marwa.Mahmoud, Tadas.Baltrusaitis, Peter.Robinson}@cl.cam.ac.uk. +
be4f18e25b06f430e2de0cc8fddcac8585b00bebSTUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES +
A New Face Recognition Algorithm based on +
Dictionary Learning for a Single Training +
Sample per Person +
Ian Wassell +
Computer Laboratory, +
University of Cambridge
('1681842', 'Yang Liu', 'yang liu')yl504@cam.ac.uk +
ijw24@cam.ac.uk +
bef503cdfe38e7940141f70524ee8df4afd4f954
beab10d1bdb0c95b2f880a81a747f6dd17caa9c2DeepDeblur: Fast one-step blurry face images restoration +
Tsinghua Unversity +
('2766905', 'Lingxiao Wang', 'lingxiao wang')
('2112160', 'Yali Li', 'yali li')
('1678689', 'Shengjin Wang', 'shengjin wang')
wlx16@mails.tsinghua.edu.cn, liyali@ocrserv.ee.tsinghua.edu.cn, wgsgj@tsinghua.edu.cn +
b331ca23aed90394c05f06701f90afd550131fe3Zhou et al. EURASIP Journal on Image and Video Processing (2018) 2018:49 +
https://doi.org/10.1186/s13640-018-0287-5 +
EURASIP Journal on Image +
and Video Processing +
R ES EAR CH +
Double regularized matrix factorization for +
image classification and clustering +
Open Access +
('39147685', 'Wei Zhou', 'wei zhou')
('7513726', 'Chengdong Wu', 'chengdong wu')
('46583983', 'Jianzhong Wang', 'jianzhong wang')
('9305845', 'Xiaosheng Yu', 'xiaosheng yu')
('50130800', 'Yugen Yi', 'yugen yi')
b3b532e8ea6304446b1623e83b0b9a96968f926cJoint Network based Attention for Action Recognition +
1 National Engineering Laboratory for Video Technology, School of EE&CS, +
Peking University, Beijing, China
2 Cooperative Medianet Innovation Center, China +
3 School of Information and Electronics, +
Beijing Institute of Technology, Beijing, China
('38179026', 'Yemin Shi', 'yemin shi')
('1705972', 'Yonghong Tian', 'yonghong tian')
('5765799', 'Yaowei Wang', 'yaowei wang')
('34097174', 'Tiejun Huang', 'tiejun huang')
b37f57edab685dba5c23de00e4fa032a3a6e8841Towards Social Interaction Detection in Egocentric Photo-streams +
University of Barcelona and Computer Vision Centre, Barcelona, Spain
Recent advances in wearable camera technology have +
led to novel applications in the field of Preventive Medicine. +
For some of them, such as cognitive training of elderly peo- +
ple by digital memories and detection of unhealthy social +
trends associated to neuropsychological disorders, social in- +
teraction are of special interest. Our purpose is to address +
this problem in the domain of egocentric photo-streams cap- +
tured by a low temporal resolution wearable camera (2fpm). +
These cameras are suited for collecting visual information +
for long period of time, as required by the aforementioned +
applications. The major difficulties to be handled in this +
context are the sparsity of observations as well as the unpre- +
dictability of camera motion and attention orientation due +
to the fact that the camera is worn as part of clothing (see +
Fig. 1). Inspired by the theory of F-formation which is a +
pattern that people tend to follow when interacting [5], our +
proposed approach consists of three steps: multi-faces as- +
signment, social signals extraction and interaction detection +
of the individuals with the camera wearer (see Fig. 2). +
1. Multi-face Assignment +
While person detection and tracking in classical videos +
have been active research areas for a long time, the problem +
of people assignment in low temporal resolution egocen- +
tric photo-streams is still unexplored. To address such an +
issue, we proposed a novel method for multi-face assign- +
ment in egocentric photo-streams, we called extended-Bag- +
of-Tracklets (eBoT) [2]. This approach basically consists +
of 4 major sequential modules: seed and tracklet gener- +
ation, grouping tracklets into eBoT, prototypes extraction +
and occlusion treatment. Prior to any computation, first, a +
temporal segmentation algorithm [6] is applied to extract +
segments characterized by similar visual properties. Later +
on, a face detector is applied on all the frames of a seg- +
ment to detect visible faces on them [8]. Based on the ratio +
between the number of frames with detected faces and the +
total number of frames of the segment, we extract segments +
containing trackable persons. The next steps are applied on +
these extracted segments, hereafter referred to as sequences. +
Figure 1. Example of social interaction (first row) and non-social +
interaction (second row) in egocentric photo-streams. +
• Seed and tracklet generation: The set of collected +
bounding boxes that surround the face of each per- +
son throughout the sequence, are called seeds. For +
each seed, a set of correspondences to it is generated +
along the sequence by propagating the seed forward +
and backward employing the deep-matching technique +
[7] that lead to form a tracklet. To propagate a seed +
found in a frame, in all the frames of the sequence, the +
region of the frames most similar to the seed is found +
as the one having the highest deep-matching score. +
• Grouping tracklets into Bag-of-tracklets (eBoT): +
Assuming that tracklets generated by seeds belong- +
ing to the same person in a sequence, are likely to +
be similar to each other, we group them into a set of +
non-overlapping eBoTs. Since seeds corresponding to +
false positive detections generate unreliable tracklets +
and unreliable eBoTs, we defined a measure based on +
the density of the eBoTs to exclude unreliable eBoTs. +
• Prototypes extraction: A prototype extracted from an +
eBoT, should best represent all tracklets in the eBoT, +
and therefore, it should best localize a person’s face in +
each frame. As the prototype frame, the frame whose +
bounding box has the biggest intersection with the rest +
of the tracklets in that frame is chosen. +
• Occlusion treatment: Estimation of occluded frames +
is a very helpful feature since it allows us to exclude +
occluded frames which do not convey many informa- +
tion from final prototypes. To this goal, we define a +
frame confidence measure to assign a confidence value +
('2084534', 'Maedeh Aghaei', 'maedeh aghaei')
('2837527', 'Mariella Dimiccoli', 'mariella dimiccoli')
('1724155', 'Petia Radeva', 'petia radeva')
aghaei.maya@gmail.com +
b3154d981eca98416074538e091778cbc031ca29Pedestrian Attribute Analysis +
Using a Top-View Camera in a Public Space +
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan +
School of Electrical and Computer Engineering, Cornell University
116 Ward Hall, Ithaca, NY 14853, USA +
3 JSPS Postdoctoral Fellow for Research Abroad +
('2759239', 'Toshihiko Yamasaki', 'toshihiko yamasaki')
('21152852', 'Tomoaki Matsunami', 'tomoaki matsunami')
{yamasaki,matsunami}@hal.t.u-tokyo.ac.jp +
b3cb91a08be4117d6efe57251061b62417867de9T. Swearingen and A. Ross. "A label propagation approach for predicting missing biographic labels in +
A Label Propagation Approach for +
Predicting Missing Biographic Labels +
in Face-Based Biometric Records +
('3153117', 'Thomas Swearingen', 'thomas swearingen')
('1698707', 'Arun Ross', 'arun ross')
b340f275518aa5dd2c3663eed951045a5b8b0ab1Visual Inference of Human Emotion and Behaviour +
Dept of Computer Science +
Queen Mary College, London
Dept of Computer Science +
Queen Mary College, London
Dept of Computer Science +
Queen Mary College, London
England, UK +
England, UK +
England, UK +
('2073354', 'Shaogang Gong', 'shaogang gong')
('10795229', 'Caifeng Shan', 'caifeng shan')
('1700927', 'Tao Xiang', 'tao xiang')
sgg@dcs.qmul.ac.uk +
cfshan@dcs.qmul.ac.uk +
txiang@dcs.qmul.ac.uk +
b3200539538eca54a85223bf0ec4f3ed132d0493Action Anticipation with RBF Kernelized +
Feature Mapping RNN +
Hartley[0000−0002−5005−0191] +
The Australian National University, Australia
('11519650', 'Yuge Shi', 'yuge shi')
b3b467961ba66264bb73ffe00b1830d7874ae8ceFinding Tiny Faces +
Robotics Institute
Carnegie Mellon University
Figure 1: We describe a detector that can find around 800 faces out of the reportedly 1000 present, by making use of novel +
characterizations of scale, resolution, and context to find small objects. Detector confidence is given by the colorbar on the +
right: can you confidently identify errors? +
('2894848', 'Peiyun Hu', 'peiyun hu')
('1770537', 'Deva Ramanan', 'deva ramanan')
{peiyunh,deva}@cs.cmu.edu +
b3ba7ab6de023a0d58c741d6abfa3eae67227cafZero-Shot Activity Recognition with Verb Attribute Induction +
Paul G. Allen School of Computer Science & Engineering +
University of Washington
Seattle, WA 98195, USA +
('2545335', 'Rowan Zellers', 'rowan zellers')
('1699545', 'Yejin Choi', 'yejin choi')
{rowanz,yejin}@cs.washington.edu +
b375db63742f8a67c2a7d663f23774aedccc84e5Brain-inspired Classroom Occupancy +
Monitoring on a Low-Power Mobile Platform +
Electronic and Information Engineering, University of Bologna, Italy
†Integrated Systems Laboratory, ETH Zurich, Switzerland +
('1721381', 'Francesco Conti', 'francesco conti')
('1785226', 'Antonio Pullini', 'antonio pullini')
('1710649', 'Luca Benini', 'luca benini')
f.conti@unibo.it,{pullinia,lbenini}@iis.ee.ethz.ch +
b3330adb131fb4b6ebbfacce56f1aec2a61e0869Emotion recognition using facial images +
School of Electrical and Electronics Engineering +
Department of Electronics and Communication Engineering +
SASTRA University, Thanjavur, Tamil Nadu, India
('9365696', 'Siva sankari', 'siva sankari') ramya.ece.sk@gmail.com, siva.ece.ds@gmail.com, knr@ece.sastra.edu +
b3c60b642a1c64699ed069e3740a0edeabf1922cMax-Margin Object Detection +('29250541', 'Davis E. King', 'davis e. king')davis@dlib.net +
b3f3d6be11ace907c804c2d916830c85643e468dUniversity of Toulouse
University of Toulouse II Le Mirail
PhD in computer sciences / artificial intelligence +
A Logical Framework for +
Trust-Related Emotions: +
Formal and Behavioral Results +
by +
Co-supervisors: +
Toulouse, September 2010 +
('1759342', 'Manh Hung NGUYEN', 'manh hung nguyen')
('3107309', 'Jean-François BONNEFON', 'jean-françois bonnefon')
('1733042', 'Dominique LONGIN', 'dominique longin')
b3f7c772acc8bc42291e09f7a2b081024a172564 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3225-3230 ISSN: 2249-6645 +
International Journal of Modern Engineering Research (IJMER) +
A novel approach for performance parameter estimation of face +
recognition based on clustering, shape and corner detection +

+
('1904292', 'Prashant Jain', 'prashant jain')
b3c398da38d529b907b0bac7ec586c81b851708fFace Recognition under Varying Lighting Conditions Using Self Quotient +
Image +
Institute of Automation, Chinese Academy of
Sciences, Beijing, 100080, China, +
('29948255', 'Haitao Wang', 'haitao wang')
('1744302', 'Yangsheng Wang', 'yangsheng wang')
Email: {htwang,wys}@nlpr.ia.ac.cn +
b32cf547a764a4efa475e9c99a72a5db36eeced6UvA-DARE (Digital Academic Repository) +
Mimicry of ingroup and outgroup emotional expressions +
Sachisthal, M.S.M.; Sauter, D.A.; Fischer, A.H. +
Published in: +
Comprehensive Results in Social Psychology +
DOI: +
10.1080/23743603.2017.1298355 +
Link to publication +
Citation for published version (APA): +
Sachisthal, M. S. M., Sauter, D. A., & Fischer, A. H. (2016). Mimicry of ingroup and outgroup emotional +
expressions. Comprehensive Results in Social Psychology, 1(1-3), 86-105. DOI: +
10.1080/23743603.2017.1298355 +
General rights +
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +
Disclaimer/Complaints regulations +
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
The Netherlands. You will be contacted as soon as possible. +
Download date: 08 Aug 2018 +
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
b3658514a0729694d86a8b89c875a66cde20480cImproving the Robustness of Subspace Learning +
Techniques for Facial Expression Recognition +
Aristotle University of Thessaloniki
Box 451, 54124 Thessaloniki, Greece +
('2342345', 'Dimitris Bolis', 'dimitris bolis')
('2447585', 'Anastasios Maronidis', 'anastasios maronidis')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
email: {mpolis, amaronidis, tefas, pitas}@aiia.csd.auth.gr (cid:63) +
b3b4a7e29b9186e00d2948a1d706ee1605fe5811Paper +
Image Preprocessing +
for Illumination Invariant Face +
Verification +
Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland
('3031283', 'Mariusz Leszczyński', 'mariusz leszczyński')
b32631f456397462b3530757f3a73a2ccc362342Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
3069 +
b33e8db8ccabdfc49211e46d78d09b14557d4cbaFace Expression Recognition and Analysis: +
1 +
The State of the Art +
College of Computing, Georgia Institute of Technology
('3115428', 'Vinay Bettadapura', 'vinay bettadapura')vinay@gatech.edu +
b3afa234996f44852317af382b98f5f557cab25a
df90850f1c153bfab691b985bfe536a5544e438bFACE TRACKING ALGORITHM ROBUST TO POSE, +
ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D +
PARAMETRIC MODEL APPROACH +

via Bramante 65 - 26013, Crema (CR), Italy +
Luigi Arnone, Fabrizio Beverina +
STMicroelectronics - Advanced System Technology Group +
via Olivetti 5 - 20041, Agrate Brianza, Italy +
Keywords: +
Face tracking, expression changes, FACS, illumination changes. +
('3330245', 'Marco Anisetti', 'marco anisetti')
('2061298', 'Valerio Bellandi', 'valerio bellandi')
df8da144a695269e159fb0120bf5355a558f4b02International Journal of Computer Applications (0975 – 8887) +
International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013) +
Face Recognition using PCA and Eigen Face +
Approach +
ME EXTC [VLSI & Embedded System] +
Sinhgad Academy of Engineering +
EXTC Department +
Pune, India +
dfd934ae448a1b8947d404b01303951b79b13801Christopher A. Longmore +
University of Plymouth, UK
Bournemouth University, UK
Andrew W. Young +
University of York, UK
The importance of internal facial features in learning new +
faces +
Running head: FACIAL FEATURES IN LEARNING NEW FACES +
Address of correspondence: +
Chris Longmore +
School of Psychology +
Faculty of Health and Human Sciences +
Plymouth University
Drake Circus +
Plymouth +
PL4 8AA +
Tel: +44 (0)1752 584890 +
Fax: +44 (0)1752 584808 +
('39557512', 'Chang Hong Liu', 'chang hong liu')Email: chris.longmore@plymouth.ac.uk +
df577a89830be69c1bfb196e925df3055cafc0edShift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions +
UC Berkeley +
('3130257', 'Bichen Wu', 'bichen wu')
('40417702', 'Alvin Wan', 'alvin wan')
('27577617', 'Xiangyu Yue', 'xiangyu yue')
('1755487', 'Sicheng Zhao', 'sicheng zhao')
('30096597', 'Noah Golmant', 'noah golmant')
('3647010', 'Amir Gholaminejad', 'amir gholaminejad')
('30503077', 'Joseph Gonzalez', 'joseph gonzalez')
('1732330', 'Kurt Keutzer', 'kurt keutzer')
{bichen,alvinwan,xyyue,phj,schzhao,noah.golmant,amirgh,jegonzal,keutzer}@berkeley.edu +
df0e280cae018cebd5b16ad701ad101265c369faDeep Attributes from Context-Aware Regional Neural Codes +
Image Processing Center, Beihang University
2 Intel Labs China +
Columbia University
('2780589', 'Jianwei Luo', 'jianwei luo')
('35423937', 'Jianguo Li', 'jianguo li')
('1715001', 'Jun Wang', 'jun wang')
('1791565', 'Zhiguo Jiang', 'zhiguo jiang')
('6060281', 'Yurong Chen', 'yurong chen')
dfabe7ef245ca68185f4fcc96a08602ee1afb3f7
df51dfe55912d30fc2f792561e9e0c2b43179089Face Hallucination using Linear Models of Coupled +
Sparse Support +
grid and fuse them to suppress the aliasing caused by under- +
sampling [5], [6]. On the other hand, learning based meth- +
ods use coupled dictionaries to learn the mapping relations +
between low- and high- resolution image pairs to synthesize +
high-resolution images from low-resolution images [4], [7]. +
The research community has lately focused on the latter +
category of super-resolution methods, since they can provide +
higher quality images and larger magnification factors. +
('1805605', 'Reuben A. Farrugia', 'reuben a. farrugia')
('1780587', 'Christine Guillemot', 'christine guillemot')
df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbbSREFI: Synthesis of Realistic Example Face Images +
University of Notre Dame, USA
FaceTec, Inc
('40061203', 'Sandipan Banerjee', 'sandipan banerjee')
('3365839', 'John S. Bernhard', 'john s. bernhard')
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
('1704876', 'Patrick J. Flynn', 'patrick j. flynn')
{sbanerj1, wscheire, kwb, flynn}@nd.edu +
jsbernhardjr@gmail.com +
df054fa8ee6bb7d2a50909939d90ef417c73604cImage Quality-Aware Deep Networks Ensemble for Efficient +
Gender Recognition in the Wild +
Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany
German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany
Keywords: +
Gender, Face, Deep Neural Networks, Quality, In the Wild +
('2585383', 'Mohamed Selim', 'mohamed selim')
('40810260', 'Suraj Sundararajan', 'suraj sundararajan')
('1771057', 'Alain Pagani', 'alain pagani')
('1807169', 'Didier Stricker', 'didier stricker')
{mohamed.selim, alain.pagani, didier.stricker}@dfki.uni-kl.de, s lakshmin13@informatik.uni-kl.de +
df80fed59ffdf751a20af317f265848fe6bfb9c91666 +
Learning Deep Sharable and Structural +
Detectors for Face Alignment +
('40387982', 'Hao Liu', 'hao liu')
('1697700', 'Jiwen Lu', 'jiwen lu')
('2632601', 'Jianjiang Feng', 'jianjiang feng')
('25060740', 'Jie Zhou', 'jie zhou')
dfd8602820c0e94b624d02f2e10ce6c798193a25STRUCTURED ANALYSIS DICTIONARY LEARNING FOR IMAGE CLASSIFICATION +
Department of Electrical and Computer Engineering +
North Carolina State University, Raleigh, NC, USA
†Army Research Office, RTP, Raleigh, NC, USA +
('49501811', 'Wen Tang', 'wen tang')
('1733181', 'Ashkan Panahi', 'ashkan panahi')
('1769928', 'Hamid Krim', 'hamid krim')
('2622498', 'Liyi Dai', 'liyi dai')
{wtang6, apanahi, ahk}@ncsu.edu, liyi.dai@us.army.mil +
dff838ba0567ef0a6c8fbfff9837ea484314efc6Progress Report, MSc. Dissertation: On-line +
Random Forest for Face Detection +
School of Computer Science +
The University of Manchester
May 9, 2014 +
Contents +
1 Introduction +
2 Background +
3 Research Methods +
3.1 What the project involves . . . . . . . . . . . . . . . . . . . . . . +
3.2 The project plan and evaluation of the plan . . . . . . . . . . . . +
4 Progress +
4.1 Quality attributes +
4.2 Prototypes +
. . . . . . . . . . . . . . . . . . . . . . . . . . +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
4.2.1 PGM Image . . . . . . . . . . . . . . . . . . . . . . . . . . +
4.2.2 Working with Haar-like features and Integral Image +
. . . +
4.2.3 Accesing the Webcam Driver . . . . . . . . . . . . . . . . +
4.2.4 The On-line Random Forest . . . . . . . . . . . . . . . . . +
4.2.5 The First version of the User Interface . . . . . . . . . . . +
4.3 Open discussion about the On-line Random Forest . . . . . . . . +
5 Next Steps and Conclusions +
6 References +
10 +
10 +
11 +
11 +
12 +
13 +
15 +
15 +
16 +
17 +
18 +
dfa80e52b0489bc2585339ad3351626dee1a8395Human Action Forecasting by Learning Task Grammars +('22237490', 'Tengda Han', 'tengda han')
('36541522', 'Jue Wang', 'jue wang')
('2691929', 'Anoop Cherian', 'anoop cherian')
('2377076', 'Stephen Gould', 'stephen gould')
df71a00071d5a949f9c31371c2e5ee8b478e7dc8Using Opportunistic Face Logging +
from Smartphone to Infer Mental +
Health: Challenges and Future +
Directions +
Dartmouth College
Dartmouth College
Dartmouth College
Permission to make digital or hard copies of all or part of this work for personal +
or classroom use is granted without fee provided that copies are not made or +
distributed for profit or commercial advantage and that copies bear this notice +
and the full citation on the first page. Copyrights for components of this work +
('1698066', 'Rui Wang', 'rui wang')
('1690035', 'Andrew T. Campbell', 'andrew t. campbell')
('2253140', 'Xia Zhou', 'xia zhou')
rui.wang@cs.dartmouth.edu +
campbell@cs.dartmouth.edu +
xia@cs.dartmouth.edu +
df9269657505fcdc1e10cf45bbb8e325678a40f5INTERSPEECH 2016 +
September 8–12, 2016, San Francisco, USA +
Open-Domain Audio-Visual Speech Recognition: A Deep Learning Approach +
Carnegie Mellon University
('37467623', 'Yajie Miao', 'yajie miao')
('1740721', 'Florian Metze', 'florian metze')
{ymiao,fmetze}@cs.cmu.edu +
dfb6aa168177d4685420fcb184def0aa7db7cddbThe Effect of Lighting Direction/Condition on the Performance +
of Face Recognition Algorithms +
West Virginia University, Morgantown, WV
University of Miami, Coral Gables, FL
('1722978', 'Gamal Fahmy', 'gamal fahmy')
('4562956', 'Ahmed El-Sherbeeny', 'ahmed el-sherbeeny')
('9449390', 'Mohamed Abdel-Mottaleb', 'mohamed abdel-mottaleb')
('16279046', 'Hany Ammar', 'hany ammar')
df2841a1d2a21a0fc6f14fe53b6124519f3812f9Learning Image Attributes +
using the Indian Buffet Process +
Department of Computer Science +
Brown University
Providence, RI 02912 +
Department of Computer Science +
Brown University
Providence, RI 02912 +
('2059199', 'Soravit Changpinyo', 'soravit changpinyo')
('1799035', 'Erik B. Sudderth', 'erik b. sudderth')
schangpi@cs.brown.edu +
sudderth@cs.brown.edu +
dfecaedeaf618041a5498cd3f0942c15302e75c3Noname manuscript No. +
(will be inserted by the editor) +
A Recursive Framework for Expression Recognition: From +
Web Images to Deep Models to Game Dataset +
Received: date / Accepted: date +
('48625314', 'Wei Li', 'wei li')
df5fe0c195eea34ddc8d80efedb25f1b9034d07dRobust Modified Active Shape Model for Automatic Facial Landmark +
Annotation of Frontal Faces +
('2363348', 'Keshav Seshadri', 'keshav seshadri')
('1794486', 'Marios Savvides', 'marios savvides')
df2494da8efa44d70c27abf23f73387318cf1ca8RESEARCH ARTICLE +
Supervised Filter Learning for Representation +
Based Face Recognition +
College of Computer Science and Information Technology, Northeast Normal University, Changchun
China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of
Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of
Economics and Business, Beijing, China +
a11111 +
('2498586', 'Chao Bi', 'chao bi')
('1684635', 'Lei Zhang', 'lei zhang')
('7009658', 'Miao Qi', 'miao qi')
('5858971', 'Caixia Zheng', 'caixia zheng')
('3042163', 'Yugen Yi', 'yugen yi')
('1831935', 'Jianzhong Wang', 'jianzhong wang')
('1751108', 'Baoxue Zhang', 'baoxue zhang')
* wangjz019@nenu.edu.cn (JW); zhangbaoxue@cueb.edu.cn (BZ) +
df674dc0fc813c2a6d539e892bfc74f9a761fbc8IOSR Journal of Computer Engineering (IOSR-JCE) +
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 6 (May. - Jun. 2013), PP 21-29 +
www.iosrjournals.org +
An Image Mining System for Gender Classification & Age +
Prediction Based on Facial Features +
1.Ms.Dhanashri Shirkey , 2Prof.Dr.S.R.Gupta, +
M.E(Scholar),Department Computer Science & Engineering, PRMIT & R, Badnera +
Asstt.Prof. Department Computer Science & Engineering, PRMIT & R, Badnera +
dad7b8be074d7ea6c3f970bd18884d496cbb0f91Super-Sparse Regression for Fast Age +
Estimation From Faces at Test Time +
University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy +
WWW home page: http://prag.diee.unica.it +
('2272441', 'Ambra Demontis', 'ambra demontis')
('1684175', 'Battista Biggio', 'battista biggio')
('1716261', 'Giorgio Fumera', 'giorgio fumera')
('1710171', 'Fabio Roli', 'fabio roli')
{ambra.demontis,battista.biggio,fumera,roli}@diee.unica.it +
daf05febbe8406a480306683e46eb5676843c424Robust Subspace Segmentation with Block-diagonal Prior +
National University of Singapore, Singapore
Key Lab. of Machine Perception, School of EECS, Peking University, China
National University of Singapore, Singapore
('33221685', 'Jiashi Feng', 'jiashi feng')
('33383055', 'Zhouchen Lin', 'zhouchen lin')
('1678675', 'Huan Xu', 'huan xu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
1{a0066331,eleyans}@nus.edu.sg, 2zlin@pku.edu.cn, 3mpexuh@nus.edu.sg +
da4170c862d8ae39861aa193667bfdbdf0ecb363Multi-task CNN Model for Attribute Prediction +('3282196', 'Abrar H. Abdulnabi', 'abrar h. abdulnabi')
('22804340', 'Gang Wang', 'gang wang')
('1697700', 'Jiwen Lu', 'jiwen lu')
('2370507', 'Kui Jia', 'kui jia')
da15344a4c10b91d6ee2e9356a48cb3a0eac6a97
da5bfddcfe703ca60c930e79d6df302920ab9465
dac2103843adc40191e48ee7f35b6d86a02ef019854 +
Unsupervised Celebrity Face Naming in Web Videos +
('2172810', 'Lei Pang', 'lei pang')
('1751681', 'Chong-Wah Ngo', 'chong-wah ngo')
dae420b776957e6b8cf5fbbacd7bc0ec226b3e2eRECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS +
Institut f¨ur Nachrichtentechnik +
Universit¨at Karlsruhe (TH), Germany +
('2500636', 'Michael Grimm', 'michael grimm')
('1787004', 'Kristian Kroschel', 'kristian kroschel')
grimm@int.uni-karlsruhe.de +
daa02cf195818cbf651ef81941a233727f71591fFace recognition system on Raspberry Pi +
Institute of Electronics and Computer Science
14 Dzerbenes Street, Riga, LV 1006, Latvia +
('2059963', 'Olegs Nikisins', 'olegs nikisins')
('2337567', 'Rihards Fuksis', 'rihards fuksis')
('3199162', 'Arturs Kadikis', 'arturs kadikis')
('3310787', 'Modris Greitans', 'modris greitans')
daa52dd09b61ee94945655f0dde216cce0ebd505Recognizing Micro-Actions and Reactions from Paired Egocentric Videos +
The University of Tokyo
Carnegie Mellon University
The University of Tokyo
Tokyo, Japan +
Pittsburgh, PA, USA +
Tokyo, Japan +
('1899753', 'Ryo Yonetani', 'ryo yonetani')
('37991449', 'Kris M. Kitani', 'kris m. kitani')
('9467266', 'Yoichi Sato', 'yoichi sato')
yonetani@iis.u-tokyo.ac.jp +
kkitani@cs.cmu.edu +
ysato@iis.u-tokyo.ac.jp +
daba8f0717f3f47c272f018d0a466a205eba6395
daefac0610fdeff415c2a3f49b47968d84692e87New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +
Proceedings of NAACL-HLT 2018, pages 1481–1491 +
1481 +
b49affdff167f5d170da18de3efa6fd6a50262a2Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +
(2008)" +
b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3Rapid Face Recognition Using Hashing +
Australian National University, and NICTA
Australian National University, and NICTA
Canberra, Australia +
Canberra, Australia +
NICTA, and Australian National University
Canberra, Australia +
('3177281', 'Qinfeng Shi', 'qinfeng shi')
('1711119', 'Hanxi Li', 'hanxi li')
('1780381', 'Chunhua Shen', 'chunhua shen')
b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807A short review and primer on electromyography +
in human computer interaction applications +
Helsinki Collegium for Advanced Studies, University of Helsinki, Finland
Helsinki Institute for Information Technology, Aalto University, Finland
School of Business, Aalto University, Finland
Quantitative Employee unit, Finnish Institute of Occupational Health
POBox 40, Helsinki, 00250, Finland +
Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of
Helsinki, Finland +
('1751008', 'Niklas Ravaja', 'niklas ravaja')
('1713422', 'Jari Torniainen', 'jari torniainen')
benjamin.cowley@ttl.fi, +
b446bcd7fb78adfe346cf7a01a38e4f43760f363To appear in ICB 2018 +
Longitudinal Study of Child Face Recognition +
Michigan State University
East Lansing, MI, USA +
Malaviya National Institute of Technology
Jaipur, India +
Michigan State University
East Lansing, MI, USA +
('32623642', 'Debayan Deb', 'debayan deb')
('2117075', 'Neeta Nain', 'neeta nain')
('1739705', 'Anil K. Jain', 'anil k. jain')
debdebay@msu.edu +
nnain.cse@mnit.ac.in +
jain@cse.msu.edu +
b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172Face Aging with Contextual Generative Adversarial Nets +
SKLOIS, IIE, CAS +
SKLOIS, IIE, CAS +
School of Cyber Security, UCAS +
SKLOIS, IIE, CAS +
University of Trento, Italy
Qihoo 360 AI Institute, Beijing, China
National University of singapore
SKLOIS, IIE, CAS +
School of Cyber Security, UCAS +
Nanjing University of Science and
Technology +
('38110120', 'Si Liu', 'si liu')
('7760591', 'Renda Bao', 'renda bao')
('39711014', 'Yao Sun', 'yao sun')
('1699978', 'Wei Wang', 'wei wang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('4661961', 'Defa Zhu', 'defa zhu')
('2287686', 'Xiangbo Shu', 'xiangbo shu')
liusi@iie.ac.cn +
roger bao@163.com +
sunyao@iie.ac.cn +
wangwei1990@gmail.com +
eleyans@nus.edu.sg +
18502408950@163.com +
shuxb@njust.edu.cn +
b41374f4f31906cf1a73c7adda6c50a78b4eb498This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Iterative Gaussianization: From ICA to +
Random Rotations +
('2732577', 'Valero Laparra', 'valero laparra')
('1684246', 'Gustavo Camps-Valls', 'gustavo camps-valls')
('2186866', 'Jesús Malo', 'jesús malo')
b42a97fb47bcd6bfa72e130c08960a77ee96f9abFACIAL EXPRESSION RECOGNITION BASED ON GRAPH-PRESERVING SPARSE +
NON-NEGATIVE MATRIX FACTORIZATION +
Institute of Information Science
Beijing Jiaotong University
Beijing 100044, P.R. China +
Qiuqi Ruan +
ACCESS Linnaeus Center +
KTH Royal Institute of Technology, Stockholm
School of Electrical Engineering +
('3247912', 'Ruicong Zhi', 'ruicong zhi')
('1749334', 'Markus Flierl', 'markus flierl')
{05120370, qqruan}@bjtu.edu.cn +
{ruicong, mflierl, bastiaan}@kth.se +
b4d209845e1c67870ef50a7c37abaf3770563f3eGHODRATI, GAVVES, SNOEK: VIDEO TIME +
Video Time: Properties, Encoders and +
Evaluation +
Cees G. M. Snoek +
QUVA Lab +
University of Amsterdam
Netherlands +
('3060081', 'Amir Ghodrati', 'amir ghodrati')
('2304222', 'Efstratios Gavves', 'efstratios gavves')
{a.ghodrati,egavves,cgmsnoek}@uva.nl +
b4d7ca26deb83cec1922a6964c1193e8dd7270e7
b4ee64022cc3ccd14c7f9d4935c59b16456067d3Unsupervised Cross-Domain Image Generation +('40084473', 'Davis Rempe', 'davis rempe')
('9184695', 'Haotian Zhang', 'haotian zhang')
b40290a694075868e0daef77303f2c4ca1c43269第 40 卷 第 4 期 +
2014 年 4 月 +
自 动 化 学 报 +
ACTA AUTOMATICA SINICA +
Vol. 40, No. 4 +
April, 2014 +
融合局部与全局信息的头发形状模型 +
王 楠 1 艾海舟 1 +
摘 要 头发在人体表观中具有重要作用, 然而, 因为缺少有效的形状模型, 头发分割仍然是一个非常具有挑战性的问题. 本 +
文提出了一种基于部件的模型, 它对头发形状以及环境变化更加鲁棒. 该模型将局部与全局信息相结合以描述头发的形状. 局 +
部模型通过一系列算法构建, 包括全局形状词表生成, 词表分类器学习以及参数优化; 而全局模型刻画不同的发型, 采用支持 +
向量机 (Support vector machine, SVM) 来学习, 它为所有潜在的发型配置部件并确定势函数. 在消费者图片上的实验证明 +
了本文算法在头发形状多变和复杂环境等条件下的准确性与有效性. +
关键词 头发形状建模, 部件模型, 部件配置算法, 支持向量机 +
引用格式 王楠, 艾海舟. 融合局部与全局信息的头发形状模型. 自动化学报, 2014, 40(4): 615−623 +
DOI 10.3724/SP.J.1004.2014.00615 +
Combining Local and Global Information for Hair Shape Modeling +
AI Hai-Zhou1 +
('3666771', 'WANG Nan', 'wang nan')
b4362cd87ad219790800127ddd366cc465606a78Sensors 2015, 15, 26756-26768; doi:10.3390/s151026756 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
A Smartphone-Based Automatic Diagnosis System for Facial +
Nerve Palsy +
Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea
Head and Neck Surgery, Seoul National University
College of Medicine, Seoul National University
Seoul 03080, Korea +
Fax: +82-2-870-3863 (Y.H.K.); +82-2-3676-1175 (K.S.P.). +
Academic Editor: Ki H. Chon +
Received: 31 July 2015 / Accepted: 19 October 2015 / Published: 21 October 2015 +
('31812715', 'Hyun Seok Kim', 'hyun seok kim')
('2189639', 'So Young Kim', 'so young kim')
('40219387', 'Young Ho Kim', 'young ho kim')
('1972762', 'Kwang Suk Park', 'kwang suk park')
E-Mail: khs0330kr@bmsil.snu.ac.kr +
Boramae Medical Center, Seoul 07061, Korea; E-Mail: sossi81@hanmail.net +
* Authors to whom correspondence should be addressed; E-Mails: yhkiment@gmail.com (Y.H.K.); +
pks@bmsil.snu.ac.kr (K.S.P.); Tel.: +82-2-870-2442 (Y.H.K.); +82-2-2072-3135 (K.S.P.); +
b4f4b0d39fd10baec34d3412d53515f1a4605222Every Picture Tells a Story: +
Generating Sentences from Images +
1 Computer Science Department +
University of Illinois at Urbana-Champaign
2 Computer Vision Group, School of Mathematics +
Institute for studies in theoretical Physics and Mathematics(IPM
('2270286', 'Ali Farhadi', 'ali farhadi')
('1888731', 'Mohsen Hejrati', 'mohsen hejrati')
('21160985', 'Mohammad Amin Sadeghi', 'mohammad amin sadeghi')
('35527128', 'Peter Young', 'peter young')
('3125805', 'Cyrus Rashtchian', 'cyrus rashtchian')
('3118681', 'Julia Hockenmaier', 'julia hockenmaier')
{afarhad2,pyoung2,crashtc2,juliahmr,daf}@illinois.edu +
{m.a.sadeghi,mhejrati}@gmail.com +
b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4Autonomous Learning Framework Based on Online Hybrid +
Classifier for Multi-view Object Detection in Video +
aSchool of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China
bSchool of Automation, China University of Geosciences, Wuhan, Hubei 430074, China
cHuizhou School Affiliated to Beijing Normal University, Huizhou 516002, China
dNational Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong +
University of Science and Technology, Wuhan, 430074, China
('2588731', 'Dapeng Luo', 'dapeng luo')
b43b6551ecc556557b63edb8b0dc39901ed0343bICA AND GABOR REPRESENTATION FOR FACIAL EXPRESSION RECOGNITION +
I. Buciu C. Kotropoulos +
and I. Pitas +
Aristotle University of Thessaloniki
GR-54124, Thessaloniki, Box 451, Greece, {nelu,costas,pitas}@zeus.csd.auth.gr +
a255a54b8758050ea1632bf5a88a201cd72656e1Nonparametric Facial Feature Localization +
J. K. Aggarwal +
Computer and Vision Research Center
The University of Texas at Austin
('2622649', 'Birgi Tamersoy', 'birgi tamersoy')
('1713065', 'Changbo Hu', 'changbo hu')
birgi@utexas.edu +
changbo.hu@gmail.com +
aggarwaljk@mail.utexas.edu +
a2b9cee7a3866eb2db53a7d81afda72051fe9732Reconstructing a Fragmented Face from an Attacked +
Secure Identification Protocol +
Department of Computer Science +
University of Texas at Austin
May 6, 2011 +
('39573884', 'Andy Luong', 'andy luong')
('1794409', 'Kristen Grauman', 'kristen grauman')
aluong@cs.utexas.edu +
a285b6edd47f9b8966935878ad4539d270b406d1Sensors 2011, 11, 9573-9588; doi:10.3390/s111009573 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
Facial Expression Recognition Based on Local Binary Patterns +
and Kernel Discriminant Isomap +
Taizhou University, Taizhou 317000, China
School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China
Tel.: +86-576-8513-7178; Fax: ++86-576-8513-7178. +
Received: 31 August 2011; in revised form: 27 September 2011 / Accepted: 9 October 2011 / +
Published: 11 October 2011 +
('48551029', 'Xiaoming Zhao', 'xiaoming zhao')
('1695589', 'Shiqing Zhang', 'shiqing zhang')
E-Mail: tzczsq@163.com +
* Author to whom correspondence should be addressed; E-Mail: tzxyzxm@163.com; +
a2bd81be79edfa8dcfde79173b0a895682d62329Multi-Objective Vehicle Routing Problem Applied to +
Large Scale Post Office Deliveries +
Zenia +
aSchool of Technology, University of Campinas
Paschoal Marmo, 1888, Limeira, SP, Brazil +
('1788152', 'Luis A. A. Meira', 'luis a. a. meira')
('37279198', 'Paulo S. Martins', 'paulo s. martins')
('7809605', 'Mauro Menzori', 'mauro menzori')
a2359c0f81a7eb032cff1fe45e3b80007facaa2aTowards Structured Analysis of Broadcast Badminton Videos +
C.V.Jawahar +
CVIT, KCIS, IIIT Hyderabad +
('2964097', 'Anurag Ghosh', 'anurag ghosh')
('48039353', 'Suriya Singh', 'suriya singh')
{anurag.ghosh, suriya.singh}@research.iiit.ac.in, jawahar@iiit.ac.in +
a2eb90e334575d9b435c01de4f4bf42d2464effcA NEW SPARSE IMAGE REPRESENTATION +
ALGORITHM APPLIED TO FACIAL +
EXPRESSION RECOGNITION +
Ioan Buciu and Ioannis Pitas +
Department of Informatics +
Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
Phone: +30-231-099-6361 +
Fax: +30-231-099-8453 +
Web: http://poseidon.csd.auth.gr +
E-mail: nelu,pitas@zeus.csd.auth.gr +
a25106a76af723ba9b09308a7dcf4f76d9283589 Available Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IJCSMC, Vol. 3, Issue. 4, April 2014, pg.139 – 146 +
RESEARCH ARTICLE +
Local Octal Pattern: A Proficient Feature +
Extraction for Face Recognition +
Computer Science and Engineering, Easwari Engineering College, India
Computer Science and Engineering, Anna University, India
('3263740', 'S Chitrakala', 's chitrakala')1 nithya.jagan90@gamil.com +
2 suchitra.s@srmeaswari.ac.in +
3 ckgops@gmail.com +
a2d9c9ed29bbc2619d5e03320e48b45c15155195
a29a22878e1881d6cbf6acff2d0b209c8d3f778bBenchmarking Still-to-Video Face Recognition +
via Partial and Local Linear Discriminant +
Analysis on COX-S2V Dataset +
Key Lab of Intelligent Information Processing, Institute of Computing Technology
Chinese Academy of Sciences, Beijing 100190, China +
University of Chinese Academy of Sciences, Beijing 100049, China
3OMRON Social Solutions Co. Ltd, Kyoto, Japan +
College of Information Science and Engineering, Xinjiang University
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1705483', 'Haihong Zhang', 'haihong zhang')
('1710195', 'Shihong Lao', 'shihong lao')
('1710220', 'Xilin Chen', 'xilin chen')
{zhiwu.huang, shiguang.shan}@vipl.ict.ac.cn, +
angelazhang@ssb.kusatsu.omron.co.jp, lao@ari.ncl.omron.co.jp, +
ghalipk@xju.edu.cn, xilin.chen@vipl.ict.ac.cn +
a2429cc2ccbabda891cc5ae340b24ad06fcdbed5Discovering the Signatures of Joint Attention in Child-Caregiver Interaction +
Department of Computer Science +
Department of Psychology +
Stanford University
Department of Psychology +
Stanford University
Department of Computer Science +
Stanford University
Department of Psychology +
Stanford University
('2536223', 'Michael C. Frank', 'michael c. frank')
('7211962', 'Laura Soriano', 'laura soriano')
('3147852', 'Guido Pusiol', 'guido pusiol')
('3216322', 'Li Fei-Fei', 'li fei-fei')
guido@cs.stanford.edu +
lsoriano@stanford.edu +
feifeili@stanford.edu +
mcfrank@stanford.edu +
a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d
a27735e4cbb108db4a52ef9033e3a19f4dc0e5faIntention from Motion +('40063519', 'Andrea Zunino', 'andrea zunino')
('3393678', 'Jacopo Cavazza', 'jacopo cavazza')
('34465973', 'Atesh Koul', 'atesh koul')
('37783905', 'Andrea Cavallo', 'andrea cavallo')
('1834966', 'Cristina Becchio', 'cristina becchio')
('1727204', 'Vittorio Murino', 'vittorio murino')
a2bcfba155c990f64ffb44c0a1bb53f994b68a15The Photoface Database +
Imperial College London
180 Queen’s Gate, London SW7 2AZ UK. +
Machine Vision Lab, Faculty of Environment and Technology, University of the West of England
cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London
Frenchay Campus, Bristol BS16 1QY UK. +
Exhibition Road, South Kensington Campus, London SW7 2AZ UK. +
River House, 53-57 High Street, Kingston upon Thames, Surrey KT1 1LQ UK. +
Imperial College London
Informatics and Telematics Institute, Centre of Research and Technology - Hellas
6th km Xarilaou - Thermi, Thessaloniki 57001 Greece +
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1689047', 'Vasileios Argyriou', 'vasileios argyriou')
('2871609', 'Maria Petrou', 'maria petrou')
{s.zafeiriou,maria.petrou}@imperial.ac.uk, vasileios.argyriou@kinston.ac.uk +
{mark.hansen,gary.atkinson,melvyn.smith,lyndon.smith}@uwe.ac.uk. ∗ +
a2fbaa0b849ecc74f34ebb36d1442d63212b29d2 Volume 5, Issue 6, June 2015 ISSN: 2277 128X +
International Journal of Advanced Research in +
Computer Science and Software Engineering +
Research Paper +
Available online at: www.ijarcsse.com +
An Efficient Approach to Face Recognition of Surgically +
Altered Images +
Department of computer science and engineering +
SUS college of Engineering and Technology
Tangori, District, Mohali, Punjab, India +
a50b4d404576695be7cd4194a064f0602806f3c4In Proceedings of BMVC, Edimburgh, UK, September 2006 +
Efficiently estimating facial expression and +
illumination in appearance-based tracking +
†ESCET, U. Rey Juan Carlos +
C/ Tulip´an, s/n +
28933 M´ostoles, Spain +
‡Facultad Inform´atica, UPM +
Campus de Montegancedo s/n +
28660 Boadilla del Monte, Spain +
http://www.dia.fi.upm.es/~pcr +
('1778998', 'Luis Baumela', 'luis baumela')
a59cdc49185689f3f9efdf7ee261c78f9c180789JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (2015) +
A New Approach for Learning Discriminative Dictionary +
for Pattern Classification +
THUY THI NGUYEN1, BINH THANH HUYNH2 AND SANG VIET DINH2 +
1Faculty of Information Technology +
Vietnam National University of Agriculture
Trau Quy town, Gialam, Hanoi, Vietnam +
2School of Information and Communication Technology +
Hanoi University of Science and Technology
No 1, Dai Co Viet Street, Hanoi, Vietnam +
Dictionary learning (DL) for sparse coding based classification has been widely re- +
searched in pattern recognition in recent years. Most of the DL approaches focused on +
the reconstruction performance and the discriminative capability of the learned dictionary. +
This paper proposes a new method for learning discriminative dictionary for sparse rep- +
resentation based classification, called Incoherent Fisher Discrimination Dictionary +
Learning (IFDDL). IFDDL combines the Fisher Discrimination Dictionary Learning +
(FDDL) method, which learns a structured dictionary where the class labels and the dis- +
crimination criterion are exploited, and the Incoherent Dictionary Learning (IDL) method, +
which learns a dictionary where the mutual incoherence between pairs of atoms is ex- +
ploited. In the combination, instead of considering the incoherence between atoms in a +
single shared dictionary as in IDL, we propose to incorporate the incoherence between +
pairs of atoms within each sub-dictionary, which represent a specific object class. This +
aims to increase discrimination capacity of between basic atoms in sub-dictionaries. The +
combination allows one to exploit the advantages of both methods and the discrimination +
capacity of the entire dictionary. Extensive experiments have been conducted on bench- +
mark image data sets for Face recognition (ORL database, Extended Yale B database, AR +
database) and Digit recognition (the USPS database). The experimental results show that +
our proposed method outperforms most of state-of-the-art methods for sparse coding and +
DL based classification, meanwhile maintaining similar complexity. +
Keywords: dictionary learning, sparse coding, fisher criterion, pattern recognition, object +
classification +
1. INTRODUCTION +
Sparse representation (or sparse coding) has been widely used in many problems of +
image processing and computer vision [1, 2], audio processing [3, 4], as well as classifi- +
cation [5-9] and archived very impressive results. In this model, an input signal is de- +
composed by a sparse linear combination of a few atoms from an over-complete diction- +
ary. In general, the goal of sparse representation is to represent input signals by a linear +
combination of atoms (or words). This is done by minimizing the reconstruction error +
under a sparsity constraint: +
min +
D X +
|| +
A DX +
|| +
X +
|| +
|| +
Received February 15, 2015; revised June 18, 2015; accepted July 9, 2015. +
Communicated by Hsin-Min Wang. +
xxx +
(1) +
E-mail: myngthuy@gmail.com +
E-mail: {binhht; sangdv}@soict.hust.edu.vn +
a5e5094a1e052fa44f539b0d62b54ef03c78bf6aDetection without Recognition for Redaction +
Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA
2Conduent, Conduent Labs - US, 800 Phillips Rd, MS128, Webster, NY USA, 14580 +
('3424086', 'Shagan Sah', 'shagan sah')
('40492623', 'Ram Longman', 'ram longman')
('29980978', 'Ameya Shringi', 'ameya shringi')
('1736673', 'Robert Loce', 'robert loce')
('39834006', 'Majid Rabbani', 'majid rabbani')
('32847225', 'Raymond Ptucha', 'raymond ptucha')
Email: sxs4337@rit.edu +
a5c8fc1ca4f06a344b53dc81ebc6d87f54896722Learning to see people like people +
University of California, San Diego
9500 Gilman Dr, La Jolla, CA 92093 +
University of California, San Diego
9500 Gilman Dr, La Jolla, CA 92093 +
Purdue University
610 Purdue Mall, West Lafayette, IN 47907 +
Garrison Cottrell +
University of California, San Diego
9500 Gilman Dr, La Jolla, CA 92093 +
('9409376', 'Amanda Song', 'amanda song')
('13212680', 'Chad Atalla', 'chad atalla')
('11157727', 'Linjie Li', 'linjie li')
feijuejuanling@gmail.com +
li2477@purdue.edu +
catalla@ucsd.edu +
gary@ucsd.edu +
a5ade88747fa5769c9c92ffde9b7196ff085a9ebWhy is Facial Expression Analysis in the Wild +
Challenging? +
Institute for Anthropomatics
Karlsruhe Institute of Technology, Germany
Hazım Kemal Ekenel +
Faculty of Computer and Informatics +
Istanbul Technical University, Turkey
Institute for Anthropomatics
Karlsruhe Institute of Technology, Germany
('40303076', 'Tobias Gehrig', 'tobias gehrig')tobias.gehrig@kit.edu +
ekenel@itu.edu.tr +
a56c1331750bf3ac33ee07004e083310a1e63ddcVol. xx, pp. x +
c(cid:13) xxxx Society for Industrial and Applied Mathematics +
x–x +
Efficient Point-to-Subspace Query in (cid:96)1 with Application to Robust Object +
Instance Recognition +
('1699024', 'Ju Sun', 'ju sun')
('2580421', 'Yuqian Zhang', 'yuqian zhang')
('1738310', 'John Wright', 'john wright')
a54e0f2983e0b5af6eaafd4d3467b655a3de52f4Face Recognition Using Convolution Filters and +
Neural Networks +
Head, Dept. of E&E,PEC +
Sec-12, Chandigarh – 160012 +
Department of CSE & IT, PEC +
Sec-12, Chandigarh – 160012 +
C.P. Singh +
Physics Department, CFSL, +
Sec-36, Chandigarh - 160036 +
a +
of +
to: (a) +
potential method +
('1734714', 'V. Rihani', 'v. rihani')
('2927010', 'Amit Bhandari', 'amit bhandari')
vrihani@yahoo.com +
amit.bhandari@yahoo.com +
cpureisingh@yahoo.com +
a5625cfe16d72bd00e987857d68eb4d8fc3ce4fbVFSC: A Very Fast Sparse Clustering to Cluster Faces +
from Videos +
University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam
('2187730', 'Dinh-Luan Nguyen', 'dinh-luan nguyen')
('1780348', 'Minh-Triet Tran', 'minh-triet tran')
1212223@student.hcmus.edu.vn +
tmtriet@fit.hcmus.edu.vn +
a5f11c132eaab258a7cea2d681875af09cddba65A spatiotemporal model with visual attention for +
video classification +
Department of Electrical and Computer Engineering +
University of California San Diego, La Jolla, California, USA
paper proposes a spatiotemporal model in which CNN and +
RNN are concatenated, as shown in Fig. 1. +
('2493180', 'Mo Shan', 'mo shan')
('50365495', 'Nikolay Atanasov', 'nikolay atanasov')
Email: {moshan, natanasov}@eng.ucsd.edu +
a546fd229f99d7fe3cf634234e04bae920a2ec33RESEARCH ARTICLE +
Fast Fight Detection +
1 Department of Systems Engineering and Automation, E.T.S.I. Industriales, Ciudad Real, Castilla-La +
Mancha, Spain, Imperial College, London, UK
('5463808', 'Ismael Serrano Gracia', 'ismael serrano gracia')
('8952654', 'Oscar Deniz Suarez', 'oscar deniz suarez')
('8219927', 'Gloria Bueno Garcia', 'gloria bueno garcia')
('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')
* ismael.serrano@uclm.es (ISG); oscar.deniz@uclm.es (ODS); gloria.bueno@uclm.es (GBG) +
a538b05ebb01a40323997629e171c91aa28b8e2fRectified Linear Units Improve Restricted Boltzmann Machines +
Geoffrey E. Hinton +
University of Toronto, Toronto, ON M5S 2G4, Canada
('4989209', 'Vinod Nair', 'vinod nair')vnair@cs.toronto.edu +
hinton@cs.toronto.edu +
a57ee5a8fb7618004dd1def8e14ef97aadaaeef5Fringe Projection Techniques: Whither we are? +
Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
During recent years, the use of fringe projection techniques +
for generating three-dimensional (3D) surface information has +
become one of the most active research areas in optical metrol- +
ogy. +
Its applications range from measuring the 3D shape of +
MEMS components to the measurement of flatness of large +
panels (2.5 m × .45 m). The technique has found various ap- +
plications in diverse fields: biomedical applications such as +
3D intra-oral dental measurements [1], non-invasive 3D imag- +
ing and monitoring of vascular wall deformations [2], human +
body shape measurement for shape guided radiotherapy treat- +
ment [3, 4], lower back deformation measurement [5], detection +
and monitoring of scoliosis [6], inspection of wounds [7, 8] +
and skin topography measurement for use in cosmetology [9, +
10, 11]; +
industrial and scientific applications such as char- +
acterization of MEMS components [12, 13], vibration analy- +
sis [14, 15], refractometry [16], global measurement of free +
surface deformations [17, 18], local wall thickness measure- +
ment of forced sheet metals [19], corrosion analysis [20, 21], +
measurement of surface roughness [22, 23], reverse engineer- +
ing [24, 25, 26], quality control of printed circuit board man- +
ufacturing [27, 28, 29] and heat-flow visualization [30]; kine- +
matics applications such as measuring the shape and position +
of a moving object/creature [31, 32] and the study of kinemat- +
ical parameters of dragonfly in free flight [33, 34]; biometric +
identification applications such as 3D face reconstruction for +
the development of robust face recognition systems [35, 36]; +
cultural heritage and preservation [37, 38, 39] etc. +
One of the outstanding features of some of the fringe pro- +
jection techniques is their ability to provide high-resolution, +
whole-field 3D reconstruction of objects in a non-contact man- +
ner at video frame rates. This feature has backed the technique +
to pervade new areas of applications such as security systems, +
gaming and virtual reality. To gain insights into the series of +
contributions that have helped in unfolding the technique to ac- +
quire this feature, the reader is referred to the review articles in +
this special issue by Song Zhang, and Xianyu Su et al. +
A typical fringe projection profilometry system is shown in +
Fig 1. +
It consists of a projection unit, an image acquisition +
unit and a processing/analysis unit. Measurement of shape +
through fringe projection techniques involves (1) projecting a +
structured pattern (usually a sinusoidal fringe pattern) onto the +
object surface, (2) recording the image of the fringe pattern +
that is phase modulated by the object height distribution, (3) +
calculating the phase modulation by analyzing the image with +
one of the fringe analysis techniques (such as Fourier transform +
Figure 1: Fringe projection profilometry system +
method, phase stepping and spatial phase detection methods- +
most of them generate wrapped phase distribution) (4) using a +
suitable phase unwrapping algorithm to get continuous phase +
distribution which is proportional to the object height varia- +
tions, and finally (5) calibrating the system for mapping the +
unwrapped phase distribution to real world 3-D co-ordinates. +
Fig. 2 shows the flowchart that depicts different steps involved +
in the measurement of height distribution of an object using the +
fringe projection technique and the role of each step. A pic- +
torial representation of the same with more details is shown in +
Fig. 3. +
During the last three decades, fringe projection techniques +
have developed tremendously due to the contribution of large +
number of researchers and the developments can be broadly +
categorized as follows: design or structure of the pattern +
used for projection [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], +
method of generating and projecting the patterns [50, 51, 52, +
53, 54, 55, 56, 57, 58, 59, 60, 61, 62], study of errors +
caused by the equipment used and proposing possible correc- +
tions [63, 64, 65, 66], developing new fringe analysis meth- +
ods to extract underlying phase distribution [67, 68, 69, 70, +
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], improv- +
ing existing fringe analysis methods [84, 85, 86, 87, 88, 89, +
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], phase unwrapping +
algorithms [101, 102, 103, 104, 105, 106, 107, 108, 109], cal- +
ibration techniques [110, 111, 112, 113, 114, 115, 116, 117, +
118, 119, 120, 121, 122, 123], scale of measurement (mi- +
Preprint submitted to Optics and Lasers in Engineering +
September 1, 2009 +
('1694155', 'Sai Siva Gorthi', 'sai siva gorthi')
('32741407', 'Pramod Rastogi', 'pramod rastogi')
a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529Exemplar Hidden Markov Models for Classification of Facial Expressions in +
Videos +
Univ. of California San Diego +
Univ. of Canberra, Australian +
Univ. of California San Diego +
Marian Bartlett +
California, USA +
National University
Australia +
California, USA +
('1735697', 'Abhinav Dhall', 'abhinav dhall')
('39707211', 'Karan Sikka', 'karan sikka')
ksikka@ucsd.edu +
mbartlett@ucsd.edu +
abhinav.dhall@anu.edu +
a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a818 +
Continuous Head Movement Estimator for +
Driver Assistance: Issues, Algorithms, +
and On-Road Evaluations +
Mohan Manubhai Trivedi, Fellow, IEEE +
('1947383', 'Ashish Tawari', 'ashish tawari')
('1841835', 'Sujitha Martin', 'sujitha martin')
a51d5c2f8db48a42446cc4f1718c75ac9303cb7aCross-validating Image Description Datasets and Evaluation Metrics +
Department of Computer Science +
University of Shef eld, UK
('2635321', 'Josiah Wang', 'josiah wang'){j.k.wang, r.gaizauskas}@sheffield.ac.uk +
a52d9e9daf2cb26b31bf2902f78774bd31c0dd88Understanding and Designing Convolutional Networks +
for Local Recognition Problems +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2016-97 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-97.html +
May 13, 2016 +
('34703740', 'Jonathan Long', 'jonathan long')
a51882cfd0706512bf50e12c0a7dd0775285030dCross-Modal Face Matching: Beyond Viewed +
Sketches +
Beijing University of Posts and Telecommunications, Beijing, China. 2School of
Electronic Engineering and Computer Science Queen Mary University of London
London E1 4NS, United Kingdom +
('2961830', 'Shuxin Ouyang', 'shuxin ouyang')
('1705408', 'Yi-Zhe Song', 'yi-zhe song')
('7823169', 'Xueming Li', 'xueming li')
a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be
a503eb91c0bce3a83bf6f524545888524b29b166
a5a44a32a91474f00a3cda671a802e87c899fbb4Moments in Time Dataset: one million +
videos for event understanding +
('2526653', 'Mathew Monfort', 'mathew monfort')
('1804424', 'Bolei Zhou', 'bolei zhou')
('3298267', 'Sarah Adel Bargal', 'sarah adel bargal')
('50112310', 'Alex Andonian', 'alex andonian')
('12082007', 'Tom Yan', 'tom yan')
('40544169', 'Kandan Ramakrishnan', 'kandan ramakrishnan')
('33421444', 'Quanfu Fan', 'quanfu fan')
('1856025', 'Carl Vondrick', 'carl vondrick')
('31735139', 'Aude Oliva', 'aude oliva')
a52581a7b48138d7124afc7ccfcf8ec3b48359d0http://www.jos.org.cn +
Tel/Fax: +86-10-62562563 +
ISSN 1000-9825, CODEN RUXUEW +
Journal of Software, Vol.17, No.3, March 2006, pp.525−534 +
DOI: 10.1360/jos170525 +
© 2006 by Journal of Software. All rights reserved. +
基于 3D 人脸重建的光照、姿态不变人脸识别 +
柴秀娟 1+, 山世光 2, 卿来云 2, 陈熙霖 2, 高 文 1,2 +
1(哈尔滨工业大学 计算机学院,黑龙江 哈尔滨 150001) +
2(中国科学院 计算技术研究所 ICT-ISVISION 面像识别联合实验室,北京 100080) +
Pose and Illumination Invariant Face Recognition Based on 3D Face Reconstruction +
Harbin Institute of Technology, Harbin 150001, China
ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences
Beijing 100080, China) +
Chai XJ, Shan SG, Qing LY, Chen XL, Gao W. Pose and illumination invariant face recognition based on 3D +
face reconstruction. Journal of Software, 2006,17(3):525−534. http://www.jos.org.cn/1000-9825/17/525.htm +
('2100752', 'GAO Wen', 'gao wen')E-mail: jos@iscas.ac.cn +
+ Corresponding author: Phn: +86-10-58858300 ext 314, Fax: +86-10-58858301, E-mail: xjchai@jdl.ac.cn, http://www.jdl.ac.cn/ +
bd0265ba7f391dc3df9059da3f487f7ef17144dfData-Driven Sparse Sensor Placement +
University of Washington, Seattle, WA 98195, United States
University of Washington, Seattle, WA 98195, United States
University of Washington, Seattle, WA 98195, United States
('37119658', 'Krithika Manohar', 'krithika manohar')
('1824880', 'Bingni W. Brunton', 'bingni w. brunton')
('1937069', 'J. Nathan Kutz', 'j. nathan kutz')
('3083169', 'Steven L. Brunton', 'steven l. brunton')
bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4Hindawi +
Computational Intelligence and Neuroscience +
Volume 2018, Article ID 7068349, 13 pages +
https://doi.org/10.1155/2018/7068349 +
Review Article +
Deep Learning for Computer Vision: A Brief Review +
Technological Educational Institute of Athens, 12210 Athens, Greece
National Technical University of Athens, 15780 Athens, Greece
Received 17 June 2017; Accepted 27 November 2017; Published 1 February 2018 +
Academic Editor: Diego Andina +
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +
cited. +
Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques +
in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some +
of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep +
Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, +
advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object +
detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future +
directions in designing deep learning schemes for computer vision problems and the challenges involved therein. +
1. Introduction +
Deep learning allows computational models of multiple +
processing layers to learn and represent data with multiple +
('3393001', 'Nikolaos Doulamis', 'nikolaos doulamis')
('2594647', 'Athanasios Voulodimos', 'athanasios voulodimos')
('3393144', 'Anastasios Doulamis', 'anastasios doulamis')
('1806369', 'Eftychios Protopapadakis', 'eftychios protopapadakis')
('2594647', 'Athanasios Voulodimos', 'athanasios voulodimos')
Correspondence should be addressed to Athanasios Voulodimos; thanosv@mail.ntua.gr +
bd6099429bb7bf248b1fd6a1739e744512660d55Submitted 11/09; Revised 5/10; Published 8/10 +
Regularized Discriminant Analysis, Ridge Regression and Beyond +
College of Computer Science and Technology
Zhejiang University
Hangzhou, Zhejiang 310027, China +
Computer Science Division and Department of Statistics +
University of California
Berkeley, CA 94720-1776, USA +
Editor: Inderjit Dhillon +
('1739312', 'Zhihua Zhang', 'zhihua zhang')
('1779165', 'Guang Dai', 'guang dai')
('1682914', 'Congfu Xu', 'congfu xu')
('1694621', 'Michael I. Jordan', 'michael i. jordan')
ZHZHANG@ZJU.EDU.CN +
GUANG.GDAI@GMAIL.COM +
XUCONGFU@ZJU.EDU.CN +
JORDAN@CS.BERKELEY.EDU +
bd0e100a91ff179ee5c1d3383c75c85eddc81723Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action +
Detection∗ +
Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm
Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of
Tokyo, Tokyo, 6National Institute of Informatics, Tokyo
('39393520', 'Mohammadamin Barekatain', 'mohammadamin barekatain')
('19185012', 'Hsueh-Fu Shih', 'hsueh-fu shih')
('47427148', 'Samuel Murray', 'samuel murray')
('1943224', 'Kotaro Nakayama', 'kotaro nakayama')
('47972365', 'Yutaka Matsuo', 'yutaka matsuo')
('2356111', 'Helmut Prendinger', 'helmut prendinger')
m.barekatain@tum.de, miquelmr@kth.se, r03945026@ntu.edu.tw, samuelmu@kth.se, +
nakayama@weblab.t.u-tokyo.ac.jp, matsuo@weblab.t.u-tokyo.ac.jp, helmut@nii.ac.jp +
bd8f3fef958ebed5576792078f84c43999b1b207BUAA-iCC at ImageCLEF 2015 Scalable +
Concept Image Annotation Challenge +
Intelligent Recognition and Image Processing Lab, Beihang University, Beijing
100191, P.R.China +
http://irip.buaa.edu.cn/ +
School of Information Technology and Management, University of International
Business and Economics, Beijing 100029, P.R.China +
('40013375', 'Yunhong Wang', 'yunhong wang')
('2097309', 'Jiaxin Chen', 'jiaxin chen')
('34288046', 'Ningning Liu', 'ningning liu')
('1712838', 'Li Zhang', 'li zhang')
yhwang@buaa.edu.cn; chenjiaxinX@gmail.com. +
ningning.liu@uibe.edu.cn +
bd9eb65d9f0df3379ef96e5491533326e9dde315
bd07d1f68486052b7e4429dccecdb8deab1924db
bd0201b32e7eca7818468f2b5cb1fb4374de75b9 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +
Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072 +
FACIAL EMOTION EXPRESSIONS RECOGNITION WITH BRAIN ACTIVITES +
USING KINECT SENSOR V2 +
Ph.D student Hesham A. ALABBASI, Doctoral School of Automatic Control and Computers, +
University POLITEHNICA of Bucharest, Bucharest, Romania
Bucharest, Bucharest, Romania. +
Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest
Bucharest, Romania. +
Ph.D student Zaid Shhedi, Doctoral School of Automatic Control and Computers, University
POLITEHNICA of Bucharest, Bucharest, Romania. +
is emotional +
sensor, Face tracking SDK, Neural network, Brain +
activities. +
Key Words: Facial expressions, Facial features, Kinect +
visual Studio 2013 (C++) and Matlab 2015 to recognize +
eight expressions. +
---------------------------------------------------------------------***--------------------------------------------------------------------- +
('3124644', 'Florica Moldoveanu', 'florica moldoveanu')
bd8e2d27987be9e13af2aef378754f89ab20ce10
bd236913cfe07896e171ece9bda62c18b8c8197eDeep Learning with Energy-efficient Binary Gradient Cameras +
∗NVIDIA, +
Carnegie Mellon University
('39131476', 'Suren Jayasuriya', 'suren jayasuriya')
('39775678', 'Orazio Gallo', 'orazio gallo')
('2931118', 'Jinwei Gu', 'jinwei gu')
('1690538', 'Jan Kautz', 'jan kautz')
bd379f8e08f88729a9214260e05967f4ca66cd65Learning Compositional Visual Concepts with Mutual Consistency +
School of Electrical and Computer Engineering, Cornell University, Ithaca NY
Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
3Siemens Corporate Technology, Princeton NJ +
Figure 1: We propose ConceptGAN, a framework that can jointly learn, transfer and compose concepts to generate semantically meaningful +
images, even in subdomains with no training data (highlighted) while the state-of-the-art methods such as CycleGAN [49] fail to do so. +
('3303727', 'Yunye Gong', 'yunye gong')
('1976152', 'Srikrishna Karanam', 'srikrishna karanam')
('3311781', 'Ziyan Wu', 'ziyan wu')
('2692770', 'Kuan-Chuan Peng', 'kuan-chuan peng')
('39497207', 'Jan Ernst', 'jan ernst')
('1767099', 'Peter C. Doerschuk', 'peter c. doerschuk')
{yg326,pd83}@cornell.edu,{first.last}@siemens.com +
bd13f50b8997d0733169ceba39b6eb1bda3eb1aaOcclusion Coherence: Detecting and Localizing Occluded Faces +
University of California at Irvine, Irvine, CA
('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')
('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')
bd21109e40c26af83c353a3271d0cd0b5c4b4adeAttentive Sequence to Sequence Translation for Localizing Clips of Interest +
by Natural Language Descriptions +
Zhejiang University
University of Technology Sydney
Zhejiang University
University of Technology Sydney
Hikvision Research Institute
('1819984', 'Ke Ning', 'ke ning')
('2948393', 'Linchao Zhu', 'linchao zhu')
('50140409', 'Ming Cai', 'ming cai')
('1698559', 'Yi Yang', 'yi yang')
('2603725', 'Di Xie', 'di xie')
ningke@zju.edu.cn +
zhulinchao7@gmail.com +
Yi.Yang@uts.edu.au +
xiedi@hikvision.com +
bd8b7599acf53e3053aa27cfd522764e28474e57Learning Long Term Face Aging Patterns +
from Partially Dense Aging Databases +
Jinli Suo1,2,3 +
Graduate University of Chinese Academy of Sciences(CAS), 100190, China
2Key Lab of Intelligent Information Processing of CAS, +
Institute of Computing Technology, CAS, Beijing, 100190, China
Lotus Hill Institute for Computer Vision and Information Science, 436000, China
School of Electronic Engineering and Computer Science, Peking University, 100871, China
('1698902', 'Wen Gao', 'wen gao')
('1710220', 'Xilin Chen', 'xilin chen')
('1685914', 'Shiguang Shan', 'shiguang shan')
wgao@pku.edu.cn +
jlsuo@jdl.ac.cn +
{xlchen,sgshan}@ict.ac.cn +
bd8f77b7d3b9d272f7a68defc1412f73e5ac3135SphereFace: Deep Hypersphere Embedding for Face Recognition +
Georgia Institute of Technology
Carnegie Mellon University
Sun Yat-Sen University
('36326884', 'Weiyang Liu', 'weiyang liu')
('1751019', 'Zhiding Yu', 'zhiding yu')
('1779453', 'Le Song', 'le song')
wyliu@gatech.edu, {yandongw,yzhiding}@andrew.cmu.edu, lsong@cc.gatech.edu +
bd26dabab576adb6af30484183c9c9c8379bf2e0SCUT-FBP: A Benchmark Dataset for +
Facial Beauty Perception +
School of Electronic and Information Engineering +
South China University of Technology, Guangzhou 510640, China
('2361818', 'Duorui Xie', 'duorui xie')
('2521432', 'Lingyu Liang', 'lingyu liang')
('1703322', 'Lianwen Jin', 'lianwen jin')
('1720015', 'Jie Xu', 'jie xu')
('4997446', 'Mengru Li', 'mengru li')
*Email: lianwen.jin@gmail.com +
bd78a853df61d03b7133aea58e45cd27d464c3cfA Sparse Representation Approach to Facial +
Expression Recognition Based on LBP plus LFDA +
Computer science and Engineering Department, +
Government College of Engineering, Aurangabad [Autonomous
Station Road, Aurangabad, Maharashtra, India. +
bd9c9729475ba7e3b255e24e7478a5acb393c8e9Interpretable Partitioned Embedding for Customized Fashion Outfit +
Composition +
Zhejiang University, Hangzhou, China
Arizona State University, Phoenix, Arizona
♭Alibaba Group, Hangzhou, China +
('7357719', 'Zunlei Feng', 'zunlei feng')
('46218293', 'Zhenyun Yu', 'zhenyun yu')
('7607499', 'Yezhou Yang', 'yezhou yang')
('9633703', 'Yongcheng Jing', 'yongcheng jing')
('46179768', 'Junxiao Jiang', 'junxiao jiang')
('1727111', 'Mingli Song', 'mingli song')
bd2d7c7f0145028e85c102fe52655c2b6c26aeb5Attribute-based People Search: Lessons Learnt from a +
Practical Surveillance System +
Rogerio Feris +
IBM Watson +
http://rogerioferis.com +
Russel Bobbitt +
IBM Watson +
Lisa Brown +
IBM Watson +
IBM Watson +
('1767897', 'Sharath Pankanti', 'sharath pankanti')bobbitt@us.ibm.com +
lisabr@us.ibm.com +
sharat@us.ibm.com +
bd9157331104a0708aa4f8ae79b7651a5be797c6SLAC: A Sparsely Labeled Dataset for Action Classification and Localization +
Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College
('1683002', 'Hang Zhao', 'hang zhao')
('3305169', 'Zhicheng Yan', 'zhicheng yan')
('1804138', 'Heng Wang', 'heng wang')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
('1690178', 'Antonio Torralba', 'antonio torralba')
{hangzhao, torralba}@mit.edu, {zyan3, hengwang, torresani}@fb.com +
bdbba95e5abc543981fb557f21e3e6551a563b45International Journal of Computational Intelligence and Applications +
Vol. 17, No. 2 (2018) 1850008 (15 pages) +
#.c The Author(s) +
DOI: 10.1142/S1469026818500086 +
Speeding up the Hyperparameter Optimization of Deep +
Convolutional Neural Networks +
Knowledge Technology, Department of Informatics +
Universit€at Hamburg +
Vogt-K€olln-Str. 30, Hamburg 22527, Germany +
Received 15 August 2017 +
Accepted 23 March 2018 +
Published 18 June 2018 +
Most learning algorithms require the practitioner to manually set the values of many hyper- +
parameters before the learning process can begin. However, with modern algorithms, the +
evaluation of a given hyperparameter setting can take a considerable amount of time and the +
search space is often very high-dimensional. We suggest using a lower-dimensional represen- +
tation of the original data to quickly identify promising areas in the hyperparameter space. This +
information can then be used to initialize the optimization algorithm for the original, higher- +
dimensional data. We compare this approach with the standard procedure of optimizing the +
hyperparameters only on the original input. +
We perform experiments with various state-of-the-art hyperparameter optimization algo- +
rithms such as random search, the tree of parzen estimators (TPEs), sequential model-based +
algorithm con¯guration (SMAC), and a genetic algorithm (GA). Our experiments indicate that +
it is possible to speed up the optimization process by using lower-dimensional data repre- +
sentations at the beginning, while increasing the dimensionality of the input later in the opti- +
mization process. This is independent of the underlying optimization procedure, making the +
approach promising for many existing hyperparameter optimization algorithms. +
Keywords: Hyperparameter optimization; hyperparameter importance; convolutional neural +
networks; genetic algorithm; Bayesian optimization. +
1. Introduction +
The performance of many contemporary machine learning algorithms depends cru- +
cially on the speci¯c initialization of hyperparameters such as the general architec- +
ture, the learning rate, regularization parameters, and many others.1,2 Indeed, +
This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under +
the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is +
permitted, provided the original work is properly cited. +
1850008-1 +
Int. J. Comp. Intel. Appl. 2018.17. Downloaded from www.worldscientific.comby WSPC on 07/18/18. Re-use and distribution is strictly not permitted, except for Open Access articles.
('11634287', 'Tobias Hinz', 'tobias hinz')
('2632932', 'Sven Magg', 'sven magg')
('1736513', 'Stefan Wermter', 'stefan wermter')
*hinz@informatik.uni-hamburg.de +
†navarro@informatik.uni-hamburg.de +
‡magg@informatik.uni-hamburg.de +
wermter@informatik.uni-hamburg.de +
bd70f832e133fb87bae82dfaa0ae9d1599e52e4bCombining Classifier for Face Identification +
HCI Lab., Samsung Advanced Institute of Technology, Yongin, Korea
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')
('1748684', 'Josef Kittler', 'josef kittler')
taekyun@sait.samsung.co.kr +
J.Kittler@surrey.ac.uk +
d1dfdc107fa5f2c4820570e369cda10ab1661b87Super SloMo: High Quality Estimation of Multiple Intermediate Frames +
for Video Interpolation +
Erik Learned-Miller1 +
1UMass Amherst +
2NVIDIA 3UC Merced +
('40175280', 'Huaizu Jiang', 'huaizu jiang')
('3232265', 'Deqing Sun', 'deqing sun')
('2745026', 'Varun Jampani', 'varun jampani')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
('1690538', 'Jan Kautz', 'jan kautz')
{hzjiang,elm}@cs.umass.edu,{deqings,vjampani,jkautz}@nvidia.com, mhyang@ucmerced.edu +
d185f4f05c587e23c0119f2cdfac8ea335197ac0 33 +
Chapter III +
Facial Expression Analysis, +
Modeling and Synthesis: +
Overcoming the Limitations of +
Artificial Intelligence with the Art +
of the Soluble +
Eindhoven University of Technology, The Netherlands
Ritsumeikan University, Japan
('1728894', 'Christoph Bartneck', 'christoph bartneck')
('1709339', 'Michael J. Lyons', 'michael j. lyons')
d140c5add2cddd4a572f07358d666fe00e8f4fe1Statistically Learned Deformable Eye Models +
Imperial College London
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
('37539937', 'Bingqing Qu', 'bingqing qu')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
d1dae2993bdbb2667d1439ff538ac928c0a593dcInternational Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013 +
Gamma Correction Technique Based Feature Extraction +
for Face Recognition System +
P Kumar +
Electronics and Communication Engineering +
K S Rangasamy College of Technology
Electronics and Communication Engineering +
K S Rangasamy College of Technology
Tamilnadu, India +
Tamilnadu, India +
('9316812', 'B Vinothkumar', 'b vinothkumar')Vinoeee58@gmail.com +
kumar@ksrct.ac.in +
d1f58798db460996501f224fff6cceada08f59f9Transferrable Representations for Visual Recognition +
Jeffrey Donahue +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2017-106 +
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-106.html +
May 14, 2017 +
d115c4a66d765fef596b0b171febca334cea15b5Combining Stacked Denoising Autoencoders and +
Random Forests for Face Detection +
Swansea University
Singleton Park, Swansea SA2 8PP, United Kingdom +
http://csvision.swan.ac.uk +
('6248353', 'Jingjing Deng', 'jingjing deng')
('2168049', 'Xianghua Xie', 'xianghua xie')
('13154093', 'Michael Edwards', 'michael edwards')
*x.xie@swansea.ac.uk +
d1a43737ca8be02d65684cf64ab2331f66947207IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3) +
Kevin O’Connor z +
('1718102', 'Nathan D. Kalka', 'nathan d. kalka')
('48889427', 'Stephen Elliott', 'stephen elliott')
('8033275', 'Brianna Maze', 'brianna maze')
('40205896', 'James A. Duncan', 'james a. duncan')
('40577714', 'Julia Bryan', 'julia bryan')
('6680444', 'Anil K. Jain', 'anil k. jain')
d122d66c51606a8157a461b9d7eb8b6af3d819b0Vol-3 Issue-4 2017 +
IJARIIE-ISSN(O)-2395-4396 +
AUTOMATED RECOGNITION OF FACIAL +
EXPRESSIONS +
METs Institute of Engineering
Adgoan,Nashik,Maharashtra. +
Adgoan, Nashik, Maharashtra. +
+
d142e74c6a7457e77237cf2a3ded4e20f8894e1aHUMAN EMOTION ESTIMATION FROM +
EEG AND FACE USING STATISTICAL +
FEATURES AND SVM +
1,3Department of Information Technologies, +
University of telecommunications and post, Sofia, Bulgaria
2,4Department of Telecommunications, +
University of telecommunications and post, Sofia, Bulgaria
('40110188', 'Strahil Sokolov', 'strahil sokolov')
('3050423', 'Yuliyan Velchev', 'yuliyan velchev')
('2283935', 'Svetla Radeva', 'svetla radeva')
('2512835', 'Dimitar Radev', 'dimitar radev')
d1082eff91e8009bf2ce933ac87649c686205195(will be inserted by the editor) +
Pruning of Error Correcting Output Codes by +
Optimization of Accuracy-Diversity Trade off +
S¨ureyya ¨Oz¨o˘g¨ur Aky¨uz · Terry +
Windeatt · Raymond Smith +
Received: date / Accepted: date +
d1959ba4637739dcc6cc6995e10fd41fd6604713Rochester Institute of Technology
RIT Scholar Works +
Theses +
5-2017 +
Thesis/Dissertation Collections +
Deep Learning for Semantic Video Understanding +
Follow this and additional works at: http://scholarworks.rit.edu/theses +
Recommended Citation +
Kulhare, Sourabh, "Deep Learning for Semantic Video Understanding" (2017). Thesis. Rochester Institute of Technology. Accessed
from +
This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion +
('10376365', 'Sourabh Kulhare', 'sourabh kulhare')sk1846@rit.edu +
in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu. +
d1881993c446ea693bbf7f7d6e750798bf958900Large-Scale YouTube-8M Video Understanding with Deep Neural Networks +
Institute for System Programming
Institute for System Programming
ispras.ru +
('34125461', 'Manuk Akopyan', 'manuk akopyan')
('19228325', 'Eshsou Khashba', 'eshsou khashba')
manuk@ispras.ru +
d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576Neural Face Editing with Intrinsic Image Disentangling +
Stony Brook University 2Adobe Research 3 CentraleSup elec, Universit e Paris-Saclay
('2496409', 'Zhixin Shu', 'zhixin shu')1{zhshu,samaras}@cs.stonybrook.edu +
2{yumer,hadap,sunkaval,elishe}@adobe.com +
d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0
d61578468d267c2d50672077918c1cda9b91429bAvailable Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IJCSMC, Vol. 3, Issue. 9, September 2014, pg.314 – 323 +
RESEARCH ARTICLE +
Face Image Retrieval Using Pose Specific +
Set Sparse Feature Representation +
Viswajyothi College of Engineering and Technology Kerala, India
Viswajyothi College of Engineering and Technology Kerala, India
('3163376', 'Sebastian George', 'sebastian george')afeefengg@gmail.com +
d687fa99586a9ad229284229f20a157ba2d41aeaJournal of Intelligent Learning Systems and Applications, 2013, 5, 115-122 +
http://dx.doi.org/10.4236/jilsa.2013.52013 Published Online May 2013 (http://www.scirp.org/journal/jilsa) +
115 +
Face Recognition Based on Wavelet Packet Coefficients +
and Radial Basis Function Neural Networks +
Virudhunagar Hindu Nadars Senthikumara Nadar College, Virudhunagar
Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India
Received December 12th, 2012; revised April 19th, 2013; accepted April 26th, 2013 +
tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any me- +
dium, provided the original work is properly cited. +
Email: *kathirvalavakumar@yahoo.com, jebaarul07@yahoo.com +
d69719b42ee53b666e56ed476629a883c59ddf66Learning Facial Action Units from Web Images with +
Scalable Weakly Supervised Clustering +
Aleix M. Martinez3 +
School of Comm. and Info. Engineering, Beijing University of Posts and Telecom
Robotics Institute, Carnegie Mellon University
The Ohio State University
('2393320', 'Kaili Zhao', 'kaili zhao')
d647099e571f9af3a1762f895fd8c99760a3916eExploring Facial Expressions with Compositional Features +
Rutgers University
110 Frelinghuysen Road, Piscataway, NJ 08854, USA +
('39606160', 'Peng Yang', 'peng yang')
('1734954', 'Qingshan Liu', 'qingshan liu')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
peyang@cs.rutgers.edu, qsliu@cs.rutgers.edu, dnm@cs.rutgers.edu +
d69271c7b77bc3a06882884c21aa1b609b3f76ccFaceBoxes: A CPU Real-time Face Detector with High Accuracy +
CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
('3220556', 'Shifeng Zhang', 'shifeng zhang'){shifeng.zhang,xiangyu.zhu,zlei,hailin.shi,xiaobo.wang,szli}@nlpr.ia.ac.cn +
d6a9ea9b40a7377c91c705f4c7f206a669a9eea2Visual Representations for Fine-grained +
Categorization +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2015-244 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-244.html +
December 17, 2015 +
('40565777', 'Ning Zhang', 'ning zhang')
d6ca3dc01de060871839d5536e8112b551a7f9ffSleep-deprived Fatigue Pattern Analysis using Large-Scale Selfies from Social Media +
Computer Science Department +
Computer Science Department +
University of Rochester
University of Rochester
Rochester, USA +
Rochester, USA +
Department of Psychiatry +
University of Rochester
Rochester, USA +
Computer Science Department +
University of Rochester
Rochester, USA +
('1901094', 'Xuefeng Peng', 'xuefeng peng')
('33642939', 'Jiebo Luo', 'jiebo luo')
('39226140', 'Catherine Glenn', 'catherine glenn')
('35678395', 'Li-Kai Chi', 'li-kai chi')
('13171221', 'Jingyao Zhan', 'jingyao zhan')
xpeng4@u.rochester.edu +
jiebo.luo@rochester.edu +
catherine.glenn@rochester.edu +
{lchi3, jzhan}@u.rochester.edu +
d671a210990f67eba9b2d3dda8c2cb91575b4a7aJournal of Machine Learning Research () +
Submitted ; Published +
Social Environment Description from Data Collected with a +
Wearable Device +
Computer Vision Center +
Autonomous University of Barcelona
Barcelona, Spain +
Editor: Radeva Petia, Pujol Oriol +
('7629833', 'Pierluigi Casale', 'pierluigi casale')pierluigi@cvc.uab.cat +
d61e794ec22a4d4882181da17316438b5b24890fDetecting Sensor Level Spoof Attacks Using Joint +
Encoding of Temporal and Spatial Features +
The Hong Kong Polytechnic University, Hong Kong
('1690410', 'Jun Liu', 'jun liu')
('1684016', 'Ajay Kumar', 'ajay kumar')
d65b82b862cf1dbba3dee6541358f69849004f30Contents lists available at ScienceDirect +
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c v i u +
2.5D Elastic graph matching +
Imperial College, London, UK
a r t i c l e +
i n f o +
a b s t r a c t +
Article history: +
Received 29 November 2009 +
Accepted 1 December 2010 +
Available online 17 March 2011 +
Keywords: +
Elastic graph matching +
3D face recognition +
Multiscale mathematical morphology +
Geodesic distances +
In this paper, we propose novel elastic graph matching (EGM) algorithms for face recognition assisted by +
the availability of 3D facial geometry. More specifically, we conceptually extend the EGM algorithm in +
order to exploit the 3D nature of human facial geometry for face recognition/verification. In order to +
achieve that, first we extend the matching module of the EGM algorithm in order to capitalize on the +
2.5D facial data. Furthermore, we incorporate the 3D geometry into the multiscale analysis used and +
build a novel geodesic multiscale morphological pyramid of dilations/erosions in order to fill the graph +
jets. We show that the proposed advances significantly enhance the performance of EGM algorithms. +
We demonstrate the efficiency of the proposed advances in the face recognition/verification problem +
using photometric stereo. +
Ó 2011 Elsevier Inc. All rights reserved. +
1. Introduction +
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('2871609', 'Maria Petrou', 'maria petrou')
d6102a7ddb19a185019fd2112d2f29d9258f6decProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
3721 +
d6bfa9026a563ca109d088bdb0252ccf33b76bc6Unsupervised Temporal Segmentation of Facial Behaviour +
Department of Computer Science and Engineering, IIT Kanpur +
('2094658', 'Abhishek Kar', 'abhishek kar')
('2676758', 'Prithwijit Guha', 'prithwijit guha')
{akar,amit}@iitk.ac.in, prithwijit.guha@tcs.com +
d67dcaf6e44afd30c5602172c4eec1e484fc7fb7Illumination Normalization for Robust Face Recognition +
Using Discrete Wavelet Transform +
Mahanakorn University of Technology
51 Cheum-Sampan Rd., Nong Chok, Bangkok, THAILAND 10530 +
('2337544', 'Amnart Petpon', 'amnart petpon')
('1805935', 'Sanun Srisuk', 'sanun srisuk')
ta tee473@hotmail.com, sanun@mut.ac.th +
d6c7092111a8619ed7a6b01b00c5f75949f137bfA Novel Feature Extraction Technique for Facial Expression +
Recognition +
1 Department of Computer Science, School of Applied Statistics, +
National Institute of Development Administration
Bangkok, 10240, Thailand +
+
2 Department of Computer Science, School of Applied Statistics, +
National Institute of Development Administration
Bangkok, 10240, Thailand +
+
('7484236', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')
('2291161', 'Surapong Auwatanamongkol', 'surapong auwatanamongkol')
d68dbb71b34dfe98dee0680198a23d3b53056394VIVA Face-off Challenge: Dataset Creation and Balancing Privacy +
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093 +
1. Introduction +
Vision for intelligent vehicles is a growing area of re- +
search [5] for many practical reasons including the rela- +
tively inexpensive nature of camera sensing units and even +
more the non-contact and non-intrusive manner of obser- +
vation. The latter is of critical importance when observing +
the driver inside the vehicle cockpit because no sensing unit +
should impede the driver’s primary task of driving. One +
of the key tasks in observing the driver is to estimate the +
driver’s gaze direction. From a vision sensing perspective, +
for driver gaze estimation, two of the fundamental building +
blocks are face detection and head pose estimation. +
Figure 1. A sample of challenging instances due to varying illumi- +
nation, occlusions and camera perspectives. +
In literature, vision based systems for face detection and +
head pose estimation have progressed significantly in the +
last decade. However, the limits of the state-of-the-art sys- +
tems have not been tested thoroughly on a common pool +
of challenging dataset as the one we propose in this work. +
Using our database, we want to benchmark existing algo- +
rithms to highlight problems and deficiencies in current +
approaches and, simultaneously, progress the development +
of future algorithms to tackle this problem. Furthermore, +
while introducing a new benchmarking database, we also +
raise awareness of privacy protection systems [4] necessary +
to protect the identity of driver’s in such databases. +
2. In-the Wild Dataset +
In recent years, literature has introduced a few in-the- +
wild datasets (e.g. Helen [2] and COFW [1]) but nothing +
like the challenges from real-world driving scenario are pre- +
sented in such databases. Therefore, we introduce a never +
before seen challenging database of driver’s faces under +
varying illumination (e.g. sunny and cloudy), in the pres- +
ence of typical partially occluding objects (e.g. eyewear and +
hats) or actions (e.g. hand movements),in blur from head +
motions, under different camera configurations and from +
different drivers. A small sample of these challenging in- +
stances are depicted in Figure 1. +
Three major efforts have been put forth in creating this +
challenging database. One is in the data collection itself +
which was done by instrumenting vehicles at UCSD-LISA +
and having multiple drivers drive the instrumented vehicle +
year around. Second is in extracting challenging instances +
from more than a hundred hours of video data. The final +
effort has been in ground truth annotations (e.g. face posi- +
tion and head pose). Preliminary evaluation of the state-of- +
the art head pose algorithms on a small validation part of +
this dataset is shown in Table 1. Here detection rate is the +
number of sample images where an algorithm produced an +
output over the total number of sample images. It is evident +
that no one algorithm is yet to reach high detection rate and +
low error values in head pose. +
3. Balancing Privacy +
In current literature, there is a lack of publicly available +
naturalistic driving data largely due to concerns over indi- +
vidual privacy. Camera sensors looking at a driver, which +
('1841835', 'Sujitha Martin', 'sujitha martin')
('1713989', 'Mohan M. Trivedi', 'mohan m. trivedi')
scmartin@ucsd.edu, mtrivedi@ucsd.edu +
d666ce9d783a2d31550a8aa47da45128a67304a7On Relating Visual Elements to City Statistics +
University of California, Berkeley
Maneesh Agrawala† +
University of California, Berkeley
University of California, Berkeley
(c) Visual Elements for Thefts in San Francisco +
(a) Predicted High Theft Location in Oakland +
(b) Predicted Low Theft Location in Oakland +
(d) Predicted Theft Rate in Oakland +
Figure 1: Our system automatically computes a predictor from a set of Google StreetView images of areas where a statistic was observed. In this example +
we use a predictor generated from reports of theft in San Francisco to predict the probability of thefts occurring in Oakland. Our system can predict high +
theft rate areas (a) and low theft rates area (b) based solely on street-level images from the areas. Visually, the high theft area exhibits a marked quality of +
disrepair (bars on the windows, unkempt facades, etc), a visual cue that the probability of theft is likely higher. Our method automatically computes machine +
learning models that detect visual elements similar to these cues (c) from San Francisco. To compute predictions, we use the models to detect the presence of +
these visual elements in an image and combine all of the detections according to an automatically learned set of weights. Our resulting predictions are 63% +
accurate in this case and can be computed everywhere in Oakland (d) as they only rely on images as input. +
('2288243', 'Sean M. Arietta', 'sean m. arietta')
('1752236', 'Ravi Ramamoorthi', 'ravi ramamoorthi')
d6fb606e538763282e3942a5fb45c696ba38aee6
bcee40c25e8819955263b89a433c735f82755a03Biologically inspired vision for human-robot +
interaction +
M. Saleiro, M. Farrajota, K. Terzi´c, S. Krishna, J.M.F. Rodrigues, and J.M.H. +
du Buf +
Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal
{masaleiro, mafarrajota, kterzic, jrodrig, dubuf}@ualg.pt, +
saikrishnap2003@gmail.com, +
bc6de183cd8b2baeebafeefcf40be88468b04b74Age Group Recognition using Human Facial Images +
International Journal of Computer Applications (0975 – 8887) +
Volume 126 – No.13, September 2015 +
Dept. of Electronics and Telecommunication +
Government College of Engineering
Aurangabad, Maharashtra, India +
('31765215', 'Shailesh S. Kulkarni', 'shailesh s. kulkarni')
bcf19b964e7d1134d00332cf1acf1ee6184aff001922 +
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017 +
LETTER +
Trajectory-Set Feature for Action Recognition +
SUMMARY We propose a feature for action recognition called +
Trajectory-Set (TS), on top of the improved Dense Trajectory (iDT). +
The TS feature encodes only trajectories around densely sampled inter- +
est points, without any appearance features. Experimental results on the +
UCF50 action dataset demonstrates that TS is comparable to state-of-the- +
arts, and outperforms iDT; the accuracy of 95.0%, compared to 91.7% by +
iDT. +
key words: action recognition, trajectory, improved Dense Trajectory +
the two-stream CNN [2] that uses a single frame and a opti- +
cal flow stack. In their paper stacking trajectories was also +
reported but did not perform well, probably the sparseness +
of trajectories does not fit to CNN architectures. In contrast, +
we take a hand-crafted approach that can be fused later with +
CNN outputs. +
1. +
Introduction +
Action recognition has been well studied in the computer +
vision literature [1] because it is an important and challeng- +
ing task. Deep learning approaches have been proposed +
recently [2]–[4], however still a hand-crafted feature, im- +
proved Dense Trajectory (iDT) [5], [6], is comparable in +
performance. Moreover, top performances of deep learn- +
ing approaches are obtained by combining the iDT fea- +
ture [3], [7], [8]. +
In this paper, we propose a novel hand-crafted feature +
for action recognition, called Trajectory-Set (TS), that en- +
codes trajectories in a local region of a video. The con- +
tribution of this paper is summarized as follows. We pro- +
pose another hand-crafted feature that can be combined with +
deep learning approaches. Hand-crafted features are com- +
plement to deep learning approaches, however a little effort +
has been done in this direction after iDT. Second, the pro- +
posed TS feature focuses on the better handling of motions +
in the scene. The iDT feature uses trajectories of densely +
samples interest points in a simple way, while we explore +
here the way to extract a rich information from trajectories. +
The proposed TS feature is complement to appearance in- +
formation such as HOG and objects in the scene, which can +
be computed separately and combined afterward in a late +
fusion fashion. +
There are two relate works relevant to our work. One +
is trajectons [9] that uses a global dictionary of trajectories +
in a video to cluster representative trajectories as snippets. +
Our TS feature is computed locally, not globally, inspired +
by the success of local image descriptors [10]. The other is +
Manuscript received March 2, 2017. +
Manuscript revised April 27, 2017. +
Manuscript publicized May 10, 2017. +
The authors are with Hiroshima University, Higashihiroshima
shi, 739–8527 Japan. +
DOI: 10.1587/transinf.2017EDL8049 +
2. Dense Trajectory +
Here we briefly summarize the improved dense trajectory +
(iDT) [6] on which we base for the proposed method. First, +
the image pyramid for a particular frame at time t in a video +
is constructed, and interest points are densely sampled at +
each level of the pyramid. Next, interest points are tracked +
in the following L frames (L = 15 by default). Then, the +
iDT is computed by using local features such as HOG (His- +
togram of Oriented Gradient) [10], HOF (Histogram of Op- +
tical Flow), and MBH (Motion Boundary Histograms) [11] +
along the trajectory tube; a stack of patches centered at the +
trajectory in the frames. +
, pt1 +
In fact, Tt0,tL +
For example, between two points in time t0 and tL, a +
, . . . , ptL in frames {t0, t1, +
trajectory Tt0,tL has points pt0 +
. . . , tL}. +
is a vector of displacement be- +
tween frames rather than point coordinates, that is, Tt0,tL +
(v0, v1, . . . , vL−1) where vi = pi−1 − pi. Local features such as +
HOGti are computed with a patch centered at pti in frame at +
time ti. +
To improve the performance, the global motion is re- +
moved by computing homography, and background trajec- +
tories are removed by using a people detector. The Fisher +
vector encoding [12] is used to compute an iDT feature of a +
video. +
3. Proposed Trajectory-Set Feature +
We think that extracted trajectories might have rich informa- +
tion discriminative enough for classifying different actions, +
even although trajectories have no appearance information. +
As shown in Fig. 1, different actions are expected to have +
different trajectories, regardless of appearance, texture, or +
shape of the video frame contents. However a single trajec- +
tory Tt0,tL may be severely affected by inaccurate tracking +
results and an irregular motion in the frame. +
We instead propose to aggregate nearby trajectories to +
form a Trajectory-Set (TS) feature. First, a frame is divided +
into non-overlapping cells of M × M pixels as shown in +
Copyright c(cid:2) 2017 The Institute of Electronics, Information and Communication Engineers
('47916686', 'Kenji Matsui', 'kenji matsui')
('1744862', 'Toru Tamaki', 'toru tamaki')
('1688940', 'Bisser Raytchev', 'bisser raytchev')
('1686272', 'Kazufumi Kaneda', 'kazufumi kaneda')
a) E-mail: tamaki@hiroshima-u.ac.jp +
bc9003ad368cb79d8a8ac2ad025718da5ea36bc4Technische Universit¨at M¨unchen +
Bildverstehen und Intelligente Autonome Systeme +
Facial Expression Recognition With A +
Three-Dimensional Face Model +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Informatik der Technischen Uni- +
versit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktors der Naturwissenschaften +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr. Johann Schlichter +
Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. Bernd Radig (i.R.) +
2. Univ.-Prof. Gudrun J. Klinker, Ph.D. +
Die Dissertation wurde am 04.07.2011 bei der Technischen Universit¨at M¨unchen +
eingereicht und durch die Fakult¨at f¨ur Informatik am 02.12.2011 angenommen. +
('50565622', 'Christoph Mayer', 'christoph mayer')
bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9Using Deep Autoencoders for Facial Expression +
Recognition +
COMSATS Institute of Information Technology, Islamabad
Information Technology University (ITU), Punjab, Lahore, Pakistan
National University of Sciences and Technology (NUST), Islamabad, Pakistan
('24040678', 'Siddique Latif', 'siddique latif')
('1734917', 'Junaid Qadir', 'junaid qadir')
engr.ussman@gmail.com, slatif.msee15seecs@seecs.edu.pk, junaid.qadir@itu.edu.pk +
bcc346f4a287d96d124e1163e4447bfc47073cd8
bc27434e376db89fe0e6ef2d2fabc100d2575ec6Faceless Person Recognition; +
Privacy Implications in Social Media +
Max-Planck Institute for Informatics
Person A training samples. +
Is this person A ? +
Fig. 1: An illustration of one of the scenarios considered: can a vision system +
recognise that the person in the right image is the same as the tagged person in +
the left images, even when the head is obfuscated? +
('2390510', 'Seong Joon Oh', 'seong joon oh')
('1798000', 'Rodrigo Benenson', 'rodrigo benenson')
('1739548', 'Mario Fritz', 'mario fritz')
('1697100', 'Bernt Schiele', 'bernt schiele')
{joon, benenson, mfritz, schiele}@mpi-inf.mpg.de +
bcc172a1051be261afacdd5313619881cbe0f676978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
2197 +
ICASSP 2017 +
bcfeac1e5c31d83f1ed92a0783501244dde5a471
bc12715a1ddf1a540dab06bf3ac4f3a32a26b135An Analysis of the State of the Art in Multiple Object Tracking +
Tracking the Trackers: +
Technical University Munich, Germany
University of Adelaide, Australia
3Photogrammetry and Remote Sensing, ETH Z¨urich, Switzerland +
4TU Darmstadt, Germany +
('34761498', 'Anton Milan', 'anton milan')
('1803034', 'Konrad Schindler', 'konrad schindler')
('34493380', 'Stefan Roth', 'stefan roth')
bc910ca355277359130da841a589a36446616262Conditional High-order Boltzmann Machine: +
A Supervised Learning Model for Relation Learning +
1Center for Research on Intelligent Perception and Computing +
National Laboratory of Pattern Recognition +
2Center for Excellence in Brain Science and Intelligence Technology +
Institute of Automation, Chinese Academy of Sciences
('39937384', 'Yan Huang', 'yan huang')
('40119691', 'Wei Wang', 'wei wang')
('22985667', 'Liang Wang', 'liang wang')
{yhuang, wangwei, wangliang}@nlpr.ia.ac.cn +
bc2852fa0a002e683aad3fb0db5523d1190d0ca5
bc866c2ced533252f29cf2111dd71a6d1724bd49Sensors 2014, 14, 19561-19581; doi:10.3390/s141019561 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
A Multi-Modal Face Recognition Method Using Complete Local +
Derivative Patterns and Depth Maps +
Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Tel.: +86-10-6279-4398. +
External Editor: Vittorio M.N. Passaro +
Received: 8 August 2014; in revised form: 3 October 2014 / Accepted: 13 October 2014 / +
Published: 20 October 2014 +
('3817476', 'Shouyi Yin', 'shouyi yin')
('34585208', 'Xu Dai', 'xu dai')
('12263637', 'Peng Ouyang', 'peng ouyang')
('1743798', 'Leibo Liu', 'leibo liu')
('1803672', 'Shaojun Wei', 'shaojun wei')
E-Mails: daixu@gmail.com (X.D.); oyangpeng12@163.com (P.O.); liulb@tsinghua.edu.cn (L.L.); +
wsj@tsinghua.edu.cn (S.W.) +
* Author to whom correspondence should be addressed; E-Mail: yinsy@tsinghua.edu.cn; +
bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Deep Learning for Fixed Model Reuse∗ +
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China
Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, 210023, China +
('1708973', 'Yang Yang', 'yang yang')
('1721819', 'De-Chuan Zhan', 'de-chuan zhan')
('3750883', 'Ying Fan', 'ying fan')
('2192443', 'Yuan Jiang', 'yuan jiang')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
{yangy, zhandc, fany, jiangy, zhouzh}@lamda.nju.edu.cn +
bcb99d5150d792001a7d33031a3bd1b77bea706b
bc811a66855aae130ca78cd0016fd820db1603ecTowards three-dimensional face recognition in the real +
To cite this version: +
HAL Id: tel-00998798 +
https://tel.archives-ouvertes.fr/tel-00998798 +
Submitted on 2 Jun 2014 +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
teaching and research institutions in France or +
destin´ee au d´epˆot et `a la diffusion de documents +
recherche fran¸cais ou ´etrangers, des laboratoires +
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
('47144044', 'Li', 'li')
bc98027b331c090448492eb9e0b9721e812fac84Journal of Intelligent Learning Systems and Applications, 2012, 4, 266-273 +
http://dx.doi.org/10.4236/jilsa.2012.44027 Published Online November 2012 (http://www.SciRP.org/journal/jilsa) +
Face Representation Using Combined Method of Gabor +
Filters, Wavelet Transformation and DCV and Recognition +
Using RBF +
VHNSN College, Virudhunagar, ANJA College
Sivakasi, India. +
Received April 27th, 2012; revised July 19th, 2012; accepted July 26th, 2012 +
('39000426', 'Kathirvalavakumar Thangairulappan', 'kathirvalavakumar thangairulappan')
('15392239', 'Jebakumari Beulah Vasanthi Jeyasingh', 'jebakumari beulah vasanthi jeyasingh')
Email: *kathirvalavakumar@yahoo.com, jebaarul07@yahoo.com +
bc9af4c2c22a82d2c84ef7c7fcc69073c19b30abMoCoGAN: Decomposing Motion and Content for Video Generation +
Snap Research +
NVIDIA +
('1715440', 'Sergey Tulyakov', 'sergey tulyakov')
('9536217', 'Ming-Yu Liu', 'ming-yu liu')
('50030951', 'Xiaodong Yang', 'xiaodong yang')
('1690538', 'Jan Kautz', 'jan kautz')
stulyakov@snap.com +
{mingyul,xiaodongy,jkautz}@nvidia.com +
bcac3a870501c5510df80c2a5631f371f2f6f74aCVPR +
#1387 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2013 Submission #1387. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#1387 +
Structured Face Hallucination +
Anonymous CVPR submission +
Paper ID 1387 +
ae8d5be3caea59a21221f02ef04d49a86cb80191Published as a conference paper at ICLR 2018 +
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +
RECURRENT NEURAL NETWORKS +
†Barcelona Supercomputing Center, ‡Google Inc, +
Universitat Polit`ecnica de Catalunya, Columbia University
('2447185', 'Brendan Jou', 'brendan jou')
('1711068', 'Jordi Torres', 'jordi torres')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{victor.campos, jordi.torres}@bsc.es, bjou@google.com, +
xavier.giro@upc.edu, shih.fu.chang@columbia.edu +
aed321909bb87c81121c841b21d31509d6c78f69
ae936628e78db4edb8e66853f59433b8cc83594f
ae0765ebdffffd6e6cc33c7705df33b7e8478627Self-Reinforced Cascaded Regression for Face Alignment +
DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China +
School of Mathematical Science, Dalian University of Technology, Dalian, China
('1710408', 'Xin Fan', 'xin fan')
('34469457', 'Risheng Liu', 'risheng liu')
('3453975', 'Kang Huyan', 'kang huyan')
('3013708', 'Yuyao Feng', 'yuyao feng')
('7864960', 'Zhongxuan Luo', 'zhongxuan luo')
{xin.fan, rsliu, zxluo}@dlut.edu.cn, huyankang@hotmail.com yyaofeng@gmail.com +
aefc7c708269b874182a5c877fb6dae06da210d4Deep Learning of Invariant Features via Simulated +
Fixations in Video +
Stanford University, CA
Stanford University, CA
NEC Laboratories America, Inc., Cupertino, CA
('2860351', 'Will Y. Zou', 'will y. zou')
('1682028', 'Shenghuo Zhu', 'shenghuo zhu')
('1701538', 'Andrew Y. Ng', 'andrew y. ng')
('38701713', 'Kai Yu', 'kai yu')
{wzou, ang}@cs.stanford.edu +
{zsh, kyu}@sv.nec-labs.com +
ae2cf545565c157813798910401e1da5dc8a6199Mahkonen et al. EURASIP Journal on Image and Video +
Processing (2018) 2018:61 +
https://doi.org/10.1186/s13640-018-0303-9 +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
Cascade of Boolean detector +
combinations +
('3292563', 'Katariina Mahkonen', 'katariina mahkonen')
aebb9649bc38e878baef082b518fa68f5cda23a5 +
aeaf5dbb3608922246c7cd8a619541ea9e4a7028Weakly Supervised Facial Action Unit Recognition through Adversarial Training +
University of Science and Technology of China, Hefei, Anhui, China
('46217896', 'Guozhu Peng', 'guozhu peng')
('1791319', 'Shangfei Wang', 'shangfei wang')
gzpeng@mail.ustc.edu.cn, sfwang@ustc.edu.cn +
ae836e2be4bb784760e43de88a68c97f4f9e44a1Semi-Supervised Dimensionality Reduction∗ +
1National Laboratory for Novel Software Technology +
Nanjing University, Nanjing 210093, China
2Department of Computer Science and Engineering +
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
('51326748', 'Daoqiang Zhang', 'daoqiang zhang')
('46228434', 'Zhi-Hua Zhou', 'zhi-hua zhou')
('1680768', 'Songcan Chen', 'songcan chen')
dqzhang@nuaa.edu.cn +
zhouzh@nju.edu.cn +
s.chen@nuaa.edu.cn +
ae5bb02599244d6d88c4fe466a7fdd80aeb91af4Analysis of Recognition Algorithms using Linear, Generalized Linear, and +
Generalized Linear Mixed Models +
Dept. of Computer Science +
Colorado State University
Fort Colllins, CO 80523 +
Dept. of Statistics +
Colorado State University
Fort Collins, CO 80523 +
('1757322', 'J. Ross Beveridge', 'j. ross beveridge')
('1750370', 'Geof H. Givens', 'geof h. givens')
ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9Sensing Highly Non-Rigid Objects with RGBD +
Sensors for Robotic Systems +
A Dissertation +
Presented to +
the Graduate School of +
Clemson University
In Partial Fulfillment +
of the Requirements for the Degree +
Doctor of Philosophy +
Computer Engineering +
by +
May 2013 +
Accepted by: +
Dr. Stanley T. Birchfield, Committee Chair +
('2181472', 'Bryan Willimon', 'bryan willimon')
('26607413', 'Ian D. Walker', 'ian d. walker')
('1724942', 'Adam W. Hoover', 'adam w. hoover')
('2171076', 'Damon L. Woodard', 'damon l. woodard')
aeeea6eec2f063c006c13be865cec0c350244e5bInduced Disgust, Happiness and Surprise: an Addition to the MMI Facial +
Expression Database +
Imperial College London / Twente University
Department of Computing / EEMCS +
180 Queen’s Gate / Drienerlolaan 5 +
London / Twente +
('1795528', 'Michel F. Valstar', 'michel f. valstar')
('1694605', 'Maja Pantic', 'maja pantic')
Michel.Valstar@imperial.ac.uk, M.Pantic@imperial.ac.uk +
ae9257f3be9f815db8d72819332372ac59c1316bP SY CH O L O GIC AL SC I E NC E +
Research Article +
Deciphering the Enigmatic Face +
The Importance of Facial Dynamics in Interpreting Subtle +
Facial Expressions +
University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada
('2059653', 'Zara Ambadar', 'zara ambadar')
ae89b7748d25878c4dc17bdaa39dd63e9d442a0dOn evaluating face tracks in movies +
To cite this version: +
in movies. IEEE International Conference on Image Processing (ICIP 2013), Sep 2013, Melbourne, +
Australia. 2013. +
HAL Id: hal-00870059 +
https://hal.inria.fr/hal-00870059 +
Submitted on 4 Oct 2013 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('2889451', 'Alexey Ozerov', 'alexey ozerov')
('2712091', 'Jean-Ronan Vigouroux', 'jean-ronan vigouroux')
('39255836', 'Louis Chevallier', 'louis chevallier')
('1799777', 'Patrick Pérez', 'patrick pérez')
('2889451', 'Alexey Ozerov', 'alexey ozerov')
('2712091', 'Jean-Ronan Vigouroux', 'jean-ronan vigouroux')
('39255836', 'Louis Chevallier', 'louis chevallier')
('1799777', 'Patrick Pérez', 'patrick pérez')
ae1de0359f4ed53918824271c888b7b36b8a5d41Low-cost Automatic Inpainting for Artifact Suppression in Facial Images +
Thomaz4 +
Scienti c Visualization and Computer Graphics, University of Groningen, Nijenborgh 9, Groningen, The Netherlands
2Department of Computing, National Laboratory of Scientific Computation, Petr´opolis, Brazil +
Paran a Federal University, Curitiba, Brazil
University Center of FEI, S ao Bernardo do Campo, Brazil
Keywords: +
Image inpainting, Face reconstruction, Statistical Decision, Image Quality Index +
('1686665', 'Alexandru Telea', 'alexandru telea'){a.sobiecki, a.c.telea}@rug.nl, gilson@lncc.br, neves@ufpr.br, cet@fei.edu.br +
ae4390873485c9432899977499c3bf17886fa149FACIAL EXPRESSION RECOGNITION USING +
DIGITALISED FACIAL FEATURES BASED ON +
ACTIVE SHAPE MODEL +
Institute for Arts, Science and Technology
Glyndwr University
Wrexham, United Kingdom +
('39048426', 'Nan Sun', 'nan sun')
('11832393', 'Zheng Chen', 'zheng chen')
('1818364', 'Richard Day', 'richard day')
bruce.n.sun@gmail.com1 +
z.chen@glyndwr.ac.uk2 +
r.day@glyndwr.ac.uk3 +
aeff403079022683b233decda556a6aee3225065DeepFace: Face Generation using Deep Learning +('31560532', 'Hardie Cate', 'hardie cate')
('6415321', 'Fahim Dalvi', 'fahim dalvi')
('8815003', 'Zeshan Hussain', 'zeshan hussain')
ccate@stanford.edu +
fdalvi@cs.stanford.edu +
zeshanmh@stanford.edu +
ae753fd46a744725424690d22d0d00fb05e53350000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
Describing Clothing by Semantic Attributes +
Anonymous ECCV submission +
Paper ID 727 +
aea4128ba18689ff1af27b90c111bbd34013f8d5Efficient k-Support Matrix Pursuit +
National University of Singapore
School of Software, Sun Yat-sen University, China
School of Information Science and Technology, Sun Yat-sen University, China
School of Computer Science, South China Normal University, China
('2356867', 'Hanjiang Lai', 'hanjiang lai')
('2493641', 'Yan Pan', 'yan pan')
('33224509', 'Canyi Lu', 'canyi lu')
('1704995', 'Yong Tang', 'yong tang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
{laihanj,canyilu}@gmail.com, panyan5@mail.sysu.edu.cn, +
ytang@scnu.edu.cn, eleyans@nus.edu.sg +
ae2c71080b0e17dee4e5a019d87585f2987f0508Research Paper: Emotional Face Recognition in Children +
With Attention Deficit/Hyperactivity Disorder: Evidence +
From Event Related Gamma Oscillation +
CrossMark +
School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
Amirkabir University of Technology, Tehran, Iran
Use your device to scan +
and read the article online +
Citation: Sarraf Razavi, M., Tehranidoost, M., Ghassemi, F., Purabassi, P., & Taymourtash, A. (2017). Emotional Face Rec- +
ognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation. Basic +
and Clinical Neuroscience, 8(5):419-426. https://doi.org/10.18869/NIRP.BCN.8.5.419 +
: : https://doi.org/10.18869/NIRP.BCN.8.5.419 +
Article info: +
Received: 03 Feb. 2017 +
First Revision: 29 Feb. 2017 +
Accepted: 11 Jul. 2017 +
Key Words: +
Emotional face +
recognition, Event- +
Related Oscillation +
(ERO), Gamma band +
activity, Attention Deficit +
Hyperactivity Disorder +
(ADHD) +
A B S T R A C T +
Introduction: Children with attention-deficit/hyperactivity disorder (ADHD) have some +
impairment in emotional relationship which can be due to problems in emotional processing. +
The present study investigated neural correlates of early stages of emotional face processing in +
this group compared with typically developing children using the Gamma Band Activity (GBA). +
Methods: A total of 19 children diagnosed with ADHD (Combined type) based on DSM-IV +
classification were compared with 19 typically developing children matched on age, gender, and +
IQ. The participants performed an emotional face recognition while their brain activities were +
recorded using an event-related oscillation procedure. +
Results: The results indicated that ADHD children compared to normal group showed a significant +
reduction in the gamma band activity, which is thought to reflect early perceptual emotion +
discrimination for happy and angry emotions (P<0.05). +
Conclusion: The present study supports the notion that individuals with ADHD have some +
impairments in early stage of emotion processing which can cause their misinterpretation of +
emotional faces. +
1. Introduction +
DHD is a common neurodevelopmental +
disorder characterized by inattentiveness +
and hyperactivity/impulsivity (American +
Psychiatric Association, 2013). Individu- +
als with ADHD also show problems in social and emo- +
tional functions, including the effective assessment of
the emotional state of others. It is important to set the +
adaptive behavior of human facial expressions in social +
interactions (Cadesky, Mota, & Schachar, 2000; Corbett +
& Glidden, 2000). Based on the evidence, frontotem- +
poral-posterior and fronto striatal cerebellar systems +
are involved in emotional functions. These regions may +
contribute to impairments of emotional recognition in +
ADHD (Corbett & Glidden, 2000; Dickstein, Bannon, +
Xavier Castellanos, & Milham, 2006; Durston, Van +
Belle, & De Zeeuw, 2011). +
* Corresponding Author: +
Amirkabir University of Technology, Tehran, Iran
Tel:+98 (912) 3260661 +
419 +
Basic and ClinicalSeptember, October 2017, Volume 8, Number 5
('29928144', 'Mahdiyeh Sarraf Razavi', 'mahdiyeh sarraf razavi')
('7171067', 'Mehdi Tehranidoost', 'mehdi tehranidoost')
('34494047', 'Farnaz Ghassemi', 'farnaz ghassemi')
('29839761', 'Parivash Purabassi', 'parivash purabassi')
('29933673', 'Athena Taymourtash', 'athena taymourtash')
('34494047', 'Farnaz Ghassemi', 'farnaz ghassemi')
E-mail: ghassemi@aut.ac.ir +
ae4e2c81c8a8354c93c4b21442c26773352935dd
ae85c822c6aec8b0f67762c625a73a5d08f5060dThis is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2353624 +
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. M, NO. N, MONTH YEAR +
Retrieving Similar Styles to Parse Clothing +
('1721910', 'Kota Yamaguchi', 'kota yamaguchi')
('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')
('35258350', 'Luis E. Ortiz', 'luis e. ortiz')
('1685538', 'Tamara L. Berg', 'tamara l. berg')
ae5f32e489c4d52e7311b66060c7381d932f4193Appearance-and-Relation Networks for Video Classification +
State Key Laboratory for Novel Software Technology, Nanjing University, China
2Computer Vision Laboratory, ETH Zurich, Switzerland +
3Google Research +
('33345248', 'Limin Wang', 'limin wang')
('47113208', 'Wei Li', 'wei li')
('50135099', 'Wen Li', 'wen li')
('1681236', 'Luc Van Gool', 'luc van gool')
ae71f69f1db840e0aa17f8c814316f0bd0f6fbbfContents lists available at ScienceDirect +
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o m p h u m b e h +
Full length article +
That personal profile image might jeopardize your rental opportunity! +
On the relative impact of the seller's facial expressions upon buying +
behavior on Airbnb™* +
a Faculty of Technology, Westerdals Oslo School of Arts, Communication and Technology, Oslo, Norway +
b School of Business, Reykjavik University, Reykjavik, Iceland
c Cardiff Business School, Cardiff University, Cardiff, United Kingdom
a r t i c l e i n f o +
a b s t r a c t +
Article history: +
Received 29 November 2016 +
Received in revised form +
2 February 2017 +
Accepted 9 February 2017 +
Available online 10 February 2017 +
Keywords: +
Sharing economy +
Peer-to-peer +
Facial expressions +
Evolutionary psychology +
Approach and avoidance +
Conjoint study +
Airbnb is an online marketplace for peer-to-peer accommodation rental services. In contrast to tradi- +
tional rental services, personal profile images, i.e. the sellers' facial images, are present along with the +
housing on offer. This study aims to investigate the impact of a seller's facial image and their expression +
upon buyers' behavior in this context. The impact of facial expressions was investigated together with +
other relevant variables (price and customer ratings). Findings from a conjoint study (n ¼ 139) show that +
the impact of a seller's facial expression on buying behavior in an online peer-to-peer context is sig- +
nificant. A negative facial expression and absence of facial image (head silhouette) abates approach and +
evokes avoidance tendencies to explore a specific web page on Airbnb, and, simultaneously decrease the +
likelihood to rent. The reverse effect was true for neutral and positive facial expressions. We found that a +
negative and positive facial expression had more impact on likelihood to rent, for women than for men. +
Further analysis shows that the absence of facial image and an angry facial expression cannot be +
compensated for by a low price and top customer ratings related to likelihood to rent. Practitioners +
should keep in mind that the presence/absence of facial images and their inherent expressions have a +
significant impact in the peer-to-peer accommodation rental services. +
© 2017 Elsevier Ltd. All rights reserved. +
1. Introduction +
The sharing economy, characterized by peer-to-peer trans- +
actions, has seen immense growth recently. These marketplaces are +
defined by direct transactions between individuals (buyers and +
sellers), while the marketplace itself is provided by a third party +
(Botsman & Rogers, 2011). According to a recent survey by Penn +
Schoen Berland (2016), 22% of American adults have already +
offered something to this market, and 42% had used the service to +
buy a product or a service. PricewaterhouseCoopers (PwC) (2014), +
has predicted that these sharing economy sectors will be worth +
* The authors express their thanks to Dr. R. G. Vishnu Menon for assistance with +
the conjoint analysis. +
* Corresponding author. Westerdals Oslo School of Arts, Communication and +
Technology, Faculty of Technology, Christian Kroghs Gate 32, 0186, Oslo, Norway. +
http://dx.doi.org/10.1016/j.chb.2017.02.029 +
0747-5632/© 2017 Elsevier Ltd. All rights reserved. +
around $335 billion by 2025. Their research further indicates that +
the most important growth sectors are lending and crowd funding, +
online staffing, and peer-to-peer accommodation. Participants in +
the peer-to-peer market tend to be motivated by new economic, +
environmental, and social factors (Bucher, Fieseler, & Lutz, 2016; +
B€ocker & Meelen, 2016; Schor, 2014) as this marketplace has +
some additional attributes compared to more traditional forms of +
commerce. The behavior of buyers on the peer-to-peer marketplace +
is, however, not well understood. +
Airbnb is a peer-to-peer platform that facilitates accommoda- +
tion rental services. This marketplace offers intangible experienced +
goods (Levitt, 1981, pp. 94e102), which are typically produced and +
consumed simultaneously (Gr€onroos, 1978). The sellers are co- +
producers of the service experience. Thus, the quality of renting +
an apartment on Airbnb cannot be verified before the buyer has +
started using the service. The Sellers on Airbnb are, therefore, an +
integrated part of the service that is delivered, and are expected to +
fulfill the buyer's needs throughout their stay. Consequently, +
('2372119', 'Asle Fagerstrøm', 'asle fagerstrøm')
('10665177', 'Sanchit Pawar', 'sanchit pawar')
('3617093', 'Valdimar Sigurdsson', 'valdimar sigurdsson')
('3232722', 'Mirella Yani-De-Soriano', 'mirella yani-de-soriano')
E-mail address: asle.fagerstrom@westerdals.no (A. Fagerstrøm). +
d893f75206b122973cdbf2532f506912ccd6fbe0Facial Expressions with Some Mixed +
Expressions Recognition Using Neural +
Networks +
Dr.R.Parthasarathi, V.Lokeswar Reddy, K.Vishnuthej, G.Vishnu Vandan +
Department of Information Technology +
Pondicherry Engineering College
Puducherry-605014, India +
d861c658db2fd03558f44c265c328b53e492383aAutomated Face Extraction and Normalization of 3D Mesh Data +('10423763', 'Jia Wu', 'jia wu')
('1905646', 'Raymond Tse', 'raymond tse')
('1809809', 'Linda G. Shapiro', 'linda g. shapiro')
d84a48f7d242d73b32a9286f9b148f5575acf227Global and Local Consistent Age Generative +
Adversarial Networks +
Center for Research on Intelligent Perception and Computing, CASIA, Beijing, China +
National Laboratory of Pattern Recognition, CASIA, Beijing, China +
University of Chinese Academy of Sciences, Beijing, China
('2112221', 'Peipei Li', 'peipei li')
('33079499', 'Yibo Hu', 'yibo hu')
('39763795', 'Qi Li', 'qi li')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
Email: peipei.li, yibo.hu@cripac.ia.ac.cn, qli,rhe,znsun@nlpr.ia.ac.cn +
d8f0bda19a345fac81a1d560d7db73f2b4868836UNIVERSITY OF CALIFORNIA
RIVERSIDE +
Online Activity Understanding and Labeling in Natural Videos +
A Dissertation submitted in partial satisfaction +
of the requirements for the degree of +
Doctor of Philosophy +
in +
Computer Science +
by +
August 2016 +
Dissertation Committee: +
Dr. Amit K. Roy-Chowdhury, Chairperson +
Dr. Eamonn Keogh +
Dr. Evangelos Christidis +
Dr. Christian Shelton +
('38514801', 'Mahmudul Hasan', 'mahmudul hasan')
d82b93f848d5442f82154a6011d26df8a9cd00e7NEURAL NETWORK BASED AGE CLASSIFICATION USING +
LINEAR WAVELET TRANSFORMS +
1Department of Computer Science & Engineering, +
Sathyabama University Old Mamallapuram Road, Chennai, India
Electronics Engineering, National Institute of Technical Teachers
Training & Research, Taramani, Chennai, India +
E-mail : 1nithyaranjith2002@yahoo.co.in, 2gkvel@rediffmail.com +
d8722ffbca906a685abe57f3b7b9c1b542adfa0cUniversity of Twente
Faculty: Electrical Engineering, Mathematics and Computer Science +
Department: Computer Science +
Group: Human Media Interaction +
Facial Expression Analysis for Human +
Computer Interaction +
Recognizing emotions in an intelligent tutoring system by facial +
expression analysis from a video stream +
M. Ghijsen +
November 2004 +
Examination committee: +
Dr. D.K.J. Heylen +
Prof.dr.ir. A Nijholt +
Dr.ir. H.J.A. op den Akker +
Dr. M. Poel +
Ir. R.J. Rienks +
d8896861126b7fd5d2ceb6fed8505a6dff83414fIn-Plane Rotational Alignment of Faces by Eye and Eye-Pair Detection +
M.F. Karaaba1, O. Surinta1, L.R.B. Schomaker1 and M.A. Wiering1 +
Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen
Nijenborgh 9, Groningen 9747AG, The Netherlands +
Keywords: +
Eye-pair Detection, Eye Detection, Face Alignment, Face Recognition, Support Vector Machine +
{m.f.karaaba, o.surinta, l.r.b.schomaker, m.a.wiering}@rug.nl +
d83d2fb5403c823287f5889b44c1971f049a1c93Motiv Emot +
DOI 10.1007/s11031-013-9353-6 +
O R I G I N A L P A P E R +
Introducing the sick face +
Ó Springer Science+Business Media New York 2013 +
('3947094', 'Sherri C. Widen', 'sherri c. widen')
d8b568392970b68794a55c090c4dd2d7f90909d2PDA Face Recognition System +
Using Advanced Correlation +
Filters +
Chee Kiat Ng +
2005 +
Advisor: Prof. Khosla/Reviere +
d83ae5926b05894fcda0bc89bdc621e4f21272daversion of the following thesis: +
Frugal Forests: Learning a Dynamic and Cost Sensitive +
Feature Extraction Policy for Anytime Activity Classification +
('1794409', 'Kristen Grauman', 'kristen grauman')
('1728389', 'Peter Stone', 'peter stone')
d86fabd4498c8feaed80ec342d254fb877fb92f5Y. GOUTSU: REGION-OBJECT RELEVANCE-GUIDED VRD +
Region-Object Relevance-Guided +
Visual Relationship Detection +
National Institute of Informatics
Tokyo, Japan +
('2897806', 'Yusuke Goutsu', 'yusuke goutsu')goutsu@nii.ac.jp +
d8bf148899f09a0aad18a196ce729384a4464e2bFACIAL EXPRESSION RECOGNITION AND EXPRESSION +
INTENSITY ESTIMATION +
A dissertation submitted to the +
Graduate School—New Brunswick +
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements +
for the degree of +
Doctor of Philosophy +
Graduate Program in Computer Science +
Written under the direction of +
and approved by +
New Brunswick, New Jersey +
May, 2011 +
('1683829', 'PENG YANG', 'peng yang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
d80a3d1f3a438e02a6685e66ee908446766fefa9ZHANG ET AL.: QUANTIFYING FACIAL AGE BY POSTERIOR OF AGE COMPARISONS +
Quantifying Facial Age by Posterior of +
Age Comparisons +
1 SenseTime Group Limited +
2 Department of Information Engineering, +
The Chinese University of Hong Kong
('6693591', 'Yunxuan Zhang', 'yunxuan zhang')
('46457827', 'Li Liu', 'li liu')
('46651787', 'Cheng Li', 'cheng li')
('1717179', 'Chen Change Loy', 'chen change loy')
zhangyunxuan@sensetime.com +
liuli@sensetime.com +
chengli@sensetime.com +
ccloy@ie.cuhk.edu.hk +
d850aff9d10a01ad5f1d8a1b489fbb3998d0d80eUNIVERSITY OF CALIFORNIA
IRVINE +
Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter +
DISSERTATION +
submitted in partial satisfaction of the requirements +
for the degree of +
DOCTOR OF PHILOSOPHY +
in Computer Science +
by +
Dissertation Committee: +
Professor Charless Fowlkes, Chair +
Professor Deva Ramanan +
Professor Alexander Ihler +
2016 +
('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')
d89cfed36ce8ffdb2097c2ba2dac3e2b2501100dRobust Face Recognition via Multimodal Deep +
Face Representation +
('37990555', 'Changxing Ding', 'changxing ding')
('1692693', 'Dacheng Tao', 'dacheng tao')
ab8f9a6bd8f582501c6b41c0e7179546e21c5e91Nonparametric Face Verification Using a Novel +
Face Representation +
('3326805', 'Hae Jong Seo', 'hae jong seo')
('1718280', 'Peyman Milanfar', 'peyman milanfar')
ab58a7db32683aea9281c188c756ddf969b4cdbdEfficient Solvers for Sparse Subspace Clustering +('50333204', 'Stephen Becker', 'stephen becker')
ab734bac3994b00bf97ce22b9abc881ee8c12918Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold +
with Application to Image Set Classification +
†Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100049, China
§Cooperative Medianet Innovation Center, China +
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('3046528', 'Xianqiu Li', 'xianqiu li')
('1710220', 'Xilin Chen', 'xilin chen')
ZHIWU.HUANG@VIPL.ICT.AC.CN +
WANGRUIPING@ICT.AC.CN +
SGSHAN@ICT.AC.CN +
XIANQIU.LI@VIPL.ICT.AC.CN +
XLCHEN@ICT.AC.CN +
aba770a7c45e82b2f9de6ea2a12738722566a149Face Recognition in the Scrambled Domain via Salience-Aware +
Ensembles of Many Kernels +
Jiang, R., Al-Maadeed, S., Bouridane, A., Crookes, D., & Celebi, M. E. (2016). Face Recognition in the +
Scrambled Domain via Salience-Aware Ensembles of Many Kernels. IEEE Transactions on Information +
Forensics and Security, 11(8), 1807-1817. DOI: 10.1109/TIFS.2016.2555792 +
Published in: +
Document Version: +
Peer reviewed version +
Queen's University Belfast - Research Portal
Link to publication record in Queen's University Belfast Research Portal
Publisher rights +
c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, +
or reuse of any copyrighted components of this work in other works. +
General rights +
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +
with these rights. +
Take down policy +
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +
Download date:05. Nov. 2018 +
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk. +
ab0f9bc35b777eaefff735cb0dd0663f0c34ad31Semi-Supervised Learning of Geospatial Objects +
Through Multi-Modal Data Integration +
Electrical Engineering and Computer Science +
University of California, Merced, CA
('1698559', 'Yi Yang', 'yi yang')Email: snewsam@ucmerced.edu +
abb396490ba8b112f10fbb20a0a8ce69737cd492Robust Face Recognition Using Color +
Information +
New Jersey Institute of Technology
('2047820', 'Zhiming Liu', 'zhiming liu')
('39664966', 'Chengjun Liu', 'chengjun liu')
Newark, New Jersey 07102, USA. femail:zl9@njit.edug +
ab989225a55a2ddcd3b60a99672e78e4373c0df1Sample, Computation vs Storage Tradeoffs for +
Classification Using Tensor Subspace Models +
('9039699', 'Mohammadhossein Chaghazardi', 'mohammadhossein chaghazardi')
('1980683', 'Shuchin Aeron', 'shuchin aeron')
abac0fa75281c9a0690bf67586280ed145682422Describable Visual Attributes for Face Images +
Submitted in partial fulfillment of the +
requirements for the degree +
of Doctor of Philosophy +
in the Graduate School of Arts and Sciences +
COLUMBIA UNIVERSITY
2011 +
('40192613', 'Neeraj Kumar', 'neeraj kumar')
ab6776f500ed1ab23b7789599f3a6153cdac84f7International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1212 +
ISSN 2229-5518 +
A Survey on Various Facial Expression +
Techniques +
('2122870', 'Joy Bhattacharya', 'joy bhattacharya')
ab1719f573a6c121d7d7da5053fe5f12de0182e7Combining Visual Recognition +
and Computational Linguistics +
Linguistic Knowledge for Visual Recognition +
and Natural Language Descriptions +
of Visual Content +
Thesis for obtaining the title of +
Doctor of Engineering Science +
(Dr.-Ing.) +
of the Faculty of Natural Science and Technology I +
of Saarland University
by +
Saarbrücken +
March 2014 +
('34849128', 'Marcus Rohrbach', 'marcus rohrbach')
ab2b09b65fdc91a711e424524e666fc75aae7a51Multi-modal Biomarkers to Discriminate Cognitive State* +
1MIT Lincoln Laboratory, Lexington, Massachusetts, USA +
2USARIEM, 3NSRDEC +
1. Introduction +
Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have +
recently obtained increasing popularity in the detection of cognitive stress- and neurological-based +
disorders. Such conditions are significantly and adversely affecting human performance and quality +
of life for a large fraction of the world’s population. Example modalities used in detection of these +
conditions include voice, facial expression, physiology, eye tracking, gait, and EEG analysis. +
Toward the goal of finding simple, noninvasive means to detect, predict and monitor cognitive +
stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy +
three criteria. First, we seek biomarkers that reflect core components of cognitive status such as +
working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we +
seek biomarkers that reflect timing and coordination relations both within components of each +
modality and across different modalities. This is based on the hypothesis that neural coordination +
across different parts of the brain is essential in cognition (Figure 1). An example of timing and +
coordination within a modality is the set of finely timed and synchronized physiological +
components of speech production, while an example of coordination across modalities is the timing +
and synchrony that occurs across speech and facial expression while speaking. Third, we seek +
multimodal biomarkers that contribute in a complementary fashion under various channel and +
background conditions. In this chapter, as an illustration of this biomarker approach we focus on +
cognitive stress and the particular case of detecting different cognitive load levels. We also briefly +
show how similar feature-extraction principles can be applied to a neurological condition through +
the example of major depression disorder (MDD). MDD is one of several neurological disorders +
where multi-modal biomarkers based on principles of timing and coordination are important for +
detection [11]-[22]. In our cognitive load experiments, we use two easily obtained noninvasive +
modalities, voice and face, and show how these two modalities can be fused to produce results on +
par with more invasive, “gold-standard” EEG measurements. Vocal and facial biomarkers will also +
be used in our MDD case study. In both application areas we focus on timing and coordination +
relations within the components of each modality. +
* Distribution A: public release.This work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force contract +
#FA8721-05-C-0002. Opinions,interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States +
Government. +
('1718470', 'Thomas F. Quatieri', 'thomas f. quatieri')
('48628822', 'James R. Williamson', 'james r. williamson')
('2794344', 'Christopher J. Smalt', 'christopher j. smalt')
('38799981', 'Tejash Patel', 'tejash patel')
('2894484', 'Brian S. Helfer', 'brian s. helfer')
('3051832', 'Daryush D. Mehta', 'daryush d. mehta')
('35718569', 'Kristin Heaton', 'kristin heaton')
('47534051', 'Marianna Eddy', 'marianna eddy')
('49739272', 'Joseph Moran', 'joseph moran')
[quatieri,jrw]@ll.mit.edu +
ab87dfccb1818bdf0b41d732da1f9335b43b74aeSUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING +
Structured Dictionary Learning for Classification +
('36657778', 'Yuanming Suo', 'yuanming suo')
('31507586', 'Minh Dao', 'minh dao')
('35210356', 'Umamahesh Srinivas', 'umamahesh srinivas')
('3346079', 'Vishal Monga', 'vishal monga')
('1709073', 'Trac D. Tran', 'trac d. tran')
abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72Raisonnement abductif en logique de +
description exploitant les domaines concrets +
spatiaux pour l’interprétation d’images +
1. LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France +
Universit Paris-Dauphine, PSL Research University, CNRS, UMR
LAMSADE, 75016 Paris, France +
RÉSUMÉ. L’interprétation d’images a pour objectif non seulement de détecter et reconnaître des +
objets dans une scène mais aussi de fournir une description sémantique tenant compte des in- +
formations contextuelles dans toute la scène. Le problème de l’interprétation d’images peut être +
formalisé comme un problème de raisonnement abductif, c’est-à-dire comme la recherche de la +
meilleure explication en utilisant une base de connaissances. Dans ce travail, nous présentons +
une nouvelle approche utilisant une méthode par tableau pour la génération et la sélection +
d’explications possibles d’une image donnée lorsque les connaissances, exprimées dans une +
logique de description, comportent des concepts décrivant les objets mais aussi les relations +
spatiales entre ces objets. La meilleure explication est sélectionnée en exploitant les domaines +
concrets pour évaluer le degré de satisfaction des relations spatiales entre les objets. +
('4156317', 'Yifan Yang', 'yifan yang')
('1773774', 'Jamal Atif', 'jamal atif')
('1695917', 'Isabelle Bloch', 'isabelle bloch')
{yifan.yang,isabelle.bloch}@telecom-paristech.fr +
jamal.atif@dauphine.fr +
abba1bf1348a6f1b70a26aac237338ee66764458Facial Action Unit Detection Using Attention and Relation Learning +
Shanghai Jiao Tong University, China
School of Computer Science and Technology, Tianjin University, China
School of Computer Science and Engineering, Nanyang Technological University, Singapore
4 Tencent YouTu, China +
School of Computer Science and Software Engineering, East China Normal University, China
('3403352', 'Zhiwen Shao', 'zhiwen shao')
('1771215', 'Zhilei Liu', 'zhilei liu')
('1688642', 'Jianfei Cai', 'jianfei cai')
('10609538', 'Yunsheng Wu', 'yunsheng wu')
('8452947', 'Lizhuang Ma', 'lizhuang ma')
shaozhiwen@sjtu.edu.cn, zhileiliu@tju.edu.cn, asjfcai@ntu.edu.sg +
simonwu@tencent.com, ma-lz@cs.sjtu.edu.cn +
abdd17e411a7bfe043f280abd4e560a04ab6e992Pose-Robust Face Recognition via Deep Residual Equivariant Mapping +
The Chinese University of Hong Kong
2SenseTime Research +
('9963152', 'Kaidi Cao', 'kaidi cao')
('46651787', 'Cheng Li', 'cheng li')
{ry017, ccloy, xtang}@ie.cuhk.edu.hk +
{caokaidi, chengli}@sensetime.com +
ab1dfcd96654af0bf6e805ffa2de0f55a73c025d
abeda55a7be0bbe25a25139fb9a3d823215d7536UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015
ab427f0c7d4b0eb22c045392107509451165b2baLEARNING SCALE RANGES FOR THE EXTRACTION OF REGIONS OF +
INTEREST +
Western Kentucky University
Department of Mathematics and Computer Science +
College Heights Blvd, Bowling Green, KY
('1682467', 'Qi Li', 'qi li')
('2446364', 'Zachary Bessinger', 'zachary bessinger')
ab1900b5d7cf3317d17193e9327d57b97e24d2fc
ab8fb278db4405f7db08fa59404d9dd22d38bc83UNIVERSITÉ DE GENÈVE +
Département d'Informatique +
FACULTÉ DES SCIENCES +
Implicit and Automated Emotional +
Tagging of Videos +
THÈSE +
présenté à la Faculté des sciences de l'Université de Genève +
pour obtenir le grade de Docteur ès sciences, mention informatique +
par +
de +
Téhéran (IRAN) +
Thèse No 4368 +
GENÈVE +
Repro-Mail - Université de Genève +
2011 +
('1809085', 'Thierry Pun', 'thierry pun')
('2463695', 'Mohammad SOLEYMANI', 'mohammad soleymani')
e5e5f31b81ed6526c26d277056b6ab4909a56c6cRevisit Multinomial Logistic Regression in Deep Learning: +
Data Dependent Model Initialization for Image Recognition +
University of Illinois at Urbana-Champaign
2Ping An Property&Casualty Insurance Company of China, +
3Microsoft +
('50563570', 'Bowen Cheng', 'bowen cheng')
('1972288', 'Rong Xiao', 'rong xiao')
('3133575', 'Yandong Guo', 'yandong guo')
('1689532', 'Yuxiao Hu', 'yuxiao hu')
('38504661', 'Jianfeng Wang', 'jianfeng wang')
('48571185', 'Lei Zhang', 'lei zhang')
1bcheng9@illinois.edu +
2xiaorong283@pingan.com.cn +
3yandong.guo@live.com, yuxiaohu@msn.com, {jianfw, leizhang}@microsoft.com +
e5737ffc4e74374b0c799b65afdbf0304ff344cb
e506cdb250eba5e70c5147eb477fbd069714765bHeterogeneous Face Recognition +
By +
Brendan F. Klare +
A Dissertation +
Submitted to +
Michigan State University
in partial fulfillment of the requirements +
for the degree of +
Doctor of Philosophy +
Computer Science and Engineering +
2012 +
e572c42d8ef2e0fadedbaae77c8dfe05c4933fbfA Visual Historical Record of American High School Yearbooks +
A Century of Portraits: +
University of California Berkeley
Brown University
University of California Berkeley
('2361255', 'Shiry Ginosar', 'shiry ginosar')
('2660664', 'Kate Rakelly', 'kate rakelly')
('33385802', 'Sarah Sachs', 'sarah sachs')
('2130100', 'Brian Yin', 'brian yin')
('1763086', 'Alexei A. Efros', 'alexei a. efros')
e5823a9d3e5e33e119576a34cb8aed497af20eeaDocFace+: ID Document to Selfie* Matching +('9644181', 'Yichun Shi', 'yichun shi')
('6680444', 'Anil K. Jain', 'anil k. jain')
e5dfd17dbfc9647ccc7323a5d62f65721b318ba9
e510f2412999399149d8635a83eca89c338a99a1Journal of Advanced Computer Science and Technology, 1 (4) (2012) 266-283 +
c(cid:13)Science Publishing Corporation +
www.sciencepubco.com/index.php/JACST +
Face Recognition using Block-Based +
DCT Feature Extraction +
1Department of Electronics and Communication Engineering, +
M S Ramaiah Institute of Technology, Bangalore, Karnataka, India
2Department of Electronics and Communication Engineering, +
S J B Institute of Technology, Bangalore, Karnataka, India
('2472608', 'K Manikantan', 'k manikantan')
('3389602', 'Vaishnavi Govindarajan', 'vaishnavi govindarajan')
('35084871', 'V V S Sasi Kiran', 'v v s sasi kiran')
('1687245', 'S Ramachandran', 's ramachandran')
E-mail: kmanikantan@msrit.edu +
E-mail: vaish.india@gmail.com +
E-mail: sasikiran.f4@gmail.com +
E-mail: ramachandr@gmail.com +
e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69Human Activity Recognition Based on Wearable +
Sensor Data: A Standardization of the +
State-of-the-Art +
Smart Surveillance Interest Group, Computer Science Department +
Universidade Federal de Minas Gerais, Brazil +
('2954974', 'Antonio C. Nazare', 'antonio c. nazare')
('1679142', 'William Robson Schwartz', 'william robson schwartz')
Email: {arturjordao, antonio.nazare, jessicasena, william}@dcc.ufmg.br +
e59813940c5c83b1ce63f3f451d03d34d2f68082Faculty of Informatics - Papers (Archive) +
Faculty of Engineering and Information Sciences +
University of Wollongong
Research Online +
2008 +
A real-time facial expression recognition system for +
online games +
Publication Details +
Zhan, C., Li, W., Ogunbona, P. & Safaei, F. (2008). A real-time facial expression recognition system for online games. International +
Journal of Computer Games Technology, 2008 (Article No. 10), 1-7. +
Research Online is the open access institutional repository for the +
University of Wollongong. For further information contact the UOW
('3283367', 'Ce Zhan', 'ce zhan')
('1685696', 'Wanqing Li', 'wanqing li')
('1719314', 'Philip Ogunbona', 'philip ogunbona')
('1803733', 'Farzad Safaei', 'farzad safaei')
University of Wollongong, czhan@uow.edu.au +
University of Wollongong, wanqing@uow.edu.au +
University of Wollongong, philipo@uow.edu.au +
University of Wollongong, farzad@uow.edu.au +
Library: research-pubs@uow.edu.au +
e5b301ee349ba8e96ea6c71782295c4f06be6c31The Case for Onloading Continuous High-Datarate Perception to the Phone +
University of Washington
Microsoft Research +
('1871038', 'Seungyeop Han', 'seungyeop han')
('3041721', 'Matthai Philipose', 'matthai philipose')
e569f4bd41895028c4c009e5b46b935056188e91SIMONYAN et al.: FISHER VECTOR FACES IN THE WILD +
Fisher Vector Faces in the Wild +
Visual Geometry Group +
Department of Engineering Science +
University of Oxford
Omkar M. Parkhi +
Andrea Vedaldi +
Andrew Zisserman +
('34838386', 'Karen Simonyan', 'karen simonyan')karen@robots.ox.ac.uk +
omkar@robots.ox.ac.uk +
vedaldi@robots.ox.ac.uk +
az@robots.ox.ac.uk +
e5fbffd3449a2bfe0acb4ec339a19f5b88fff783WILES, KOEPKE, ZISSERMAN: SELF-SUP. FACIAL ATTRIBUTE FROM VIDEO +
Self-supervised learning of a facial attribute +
embedding from video +
Visual Geometry Group +
University of Oxford
Oxford, UK +
('8792285', 'Olivia Wiles', 'olivia wiles')
('47104886', 'A. Sophia Koepke', 'a. sophia koepke')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
ow@robots.ox.ac.uk +
koepke@robots.ox.ac.uk +
az@robots.ox.ac.uk +
e5342233141a1d3858ed99ccd8ca0fead519f58bISSN: 2277 – 9043 +
International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE) +
Volume 2, Issue 2, February 2013 +
Finger print and Palm print based Multibiometric +
Authentication System with GUI Interface +
PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India
Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India
e52be9a083e621d9ed29c8e9914451a6a327ff59UvA-DARE (Digital Academic Repository) +
Communication and Automatic Interpretation of Affect from Facial Expressions +
Salah, A.A.; Sebe, N.; Gevers, T. +
Published in: +
Affective computing and interaction: psychological, cognitive, and neuroscientific perspectives +
Link to publication +
Citation for published version (APA): +
Salah, A. A., Sebe, N., & Gevers, T. (2010). Communication and Automatic Interpretation of Affect from Facial +
Expressions. In D. Gökçay, & G. Yildirim (Eds.), Affective computing and interaction: psychological, cognitive, +
and neuroscientific perspectives (pp. 157-183). Hershey, PA: Information Science Reference. +
General rights +
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +
Disclaimer/Complaints regulations +
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
The Netherlands. You will be contacted as soon as possible. +
Download date: 12 Sep 2017 +
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
e5d53a335515107452a30b330352cad216f88fc3Generalized Loss-Sensitive Adversarial Learning +
with Manifold Margins +
Laboratory for MAchine Perception and LEarning (MAPLE) +
http://maple.cs.ucf.edu/ +
University of Central Florida, Orlando FL 32816, USA
('46232436', 'Marzieh Edraki', 'marzieh edraki')
('2272096', 'Guo-Jun Qi', 'guo-jun qi')
m.edraki@knights.ucf.edu, guojun.qi@ucf.edu +
e5799fd239531644ad9270f49a3961d7540ce358KINSHIP CLASSIFICATION BY MODELING FACIAL FEATURE HEREDITY +
Cornell University 2Eastman Kodak Company
('2666471', 'Ruogu Fang', 'ruogu fang')
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
e5eb7fa8c9a812d402facfe8e4672670541ed108Performance of PCA Based Semi-supervised +
Learning in Face Recognition Using MPEG-7 +
Edge Histogram Descriptor +
Department of Computer Science and Engineering +
Bangladesh University of Engineering and Technology(BUET
Dhaka-1000, Bangladesh +
('3034202', 'Sheikh Motahar Naim', 'sheikh motahar naim')
('9248625', 'Abdullah Al Farooq', 'abdullah al farooq')
('1990532', 'Md. Monirul Islam', 'md. monirul islam')
Email: {shafin buet, naim sbh2007, saurav00001}@yahoo.com, mmislam@cse.buet.ac.bd +
e22adcd2a6a7544f017ec875ce8f89d5c59e09c8Published in Proc. of IEEE 9th International Conference on Biometrics: Theory, Applications and Systems (BTAS), (Los +
Angeles, CA), October 2018. +
Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding +
Arbitrary Gender Classifiers +
Computer Science and Engineering, Michigan State University, East Lansing, USA
University of Wisconsin Madison, USA
('5456235', 'Vahid Mirjalili', 'vahid mirjalili')
('2562040', 'Sebastian Raschka', 'sebastian raschka')
('1698707', 'Arun Ross', 'arun ross')
mirjalil@cse.msu.edu +
mail@sebastianraschka.com +
rossarun@cse.msu.edu +
e27c92255d7ccd1860b5fb71c5b1277c1648ed1e
e200c3f2849d56e08056484f3b6183aa43c0f13a
e2d265f606cd25f1fd72e5ee8b8f4c5127b764dfReal-Time End-to-End Action Detection +
with Two-Stream Networks +
School of Engineering, University of Guelph
Vector Institute for Arti cial Intelligence
Canadian Institute for Advanced Research
('35933395', 'Alaaeldin El-Nouby', 'alaaeldin el-nouby')
('3861110', 'Graham W. Taylor', 'graham w. taylor')
{aelnouby,gwtaylor}@uoguelph.ca +
e293a31260cf20996d12d14b8f29a9d4d99c4642Published as a conference paper at ICLR 2017 +
LR-GAN: LAYERED RECURSIVE GENERATIVE AD- +
VERSARIAL NETWORKS FOR IMAGE GENERATION +
Virginia Tech +
Blacksburg, VA +
Facebook AI Research +
Menlo Park, CA +
Georgia Institute of Technology
Atlanta, GA +
('2404941', 'Jianwei Yang', 'jianwei yang')
('39248118', 'Anitha Kannan', 'anitha kannan')
('1746610', 'Dhruv Batra', 'dhruv batra')
jw2yang@vt.edu +
akannan@fb.com +
{dbatra, parikh}@gatech.edu +
e20e2db743e8db1ff61279f4fda32bf8cf381f8eDeep Cross Polarimetric Thermal-to-visible Face Recognition +
West Virginia University
('6779960', 'Seyed Mehdi Iranmanesh', 'seyed mehdi iranmanesh')
('35477977', 'Ali Dabouei', 'ali dabouei')
('2700951', 'Hadi Kazemi', 'hadi kazemi')
('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')
{seiranmanesh, ad0046, hakazemi}@mix.wvu.edu, {nasser.nasrabadi}@mail.wvu.edu +
f437b3884a9e5fab66740ca2a6f1f3a5724385eaHuman Identification Technical Challenges +
DARPA +
3701 N. Fairfax Dr +
Arlington, VA 22203 +
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')jphillips@darpa.mil +
f412d9d7bc7534e7daafa43f8f5eab811e7e4148Durham Research Online +
Deposited in DRO: +
16 December 2014 +
Version of attached le: +
Accepted Version +
Peer-review status of attached le: +
Peer-reviewed +
Citation for published item: +
Kirk, H. E. and Hocking, D. R. and Riby, D. M. and Cornish, K. M. (2013) 'Linking social behaviour and +
anxiety to attention to emotional faces in Williams syndrome.', Research in developmental disabilities., 34 +
(12). pp. 4608-4616. +
Further information on publisher's website: +
http://dx.doi.org/10.1016/j.ridd.2013.09.042 +
Publisher's copyright statement: +
NOTICE: this is the author's version of a work that was accepted for publication in Research in Developmental +
Disabilities. Changes resulting from the publishing process, such as peer review, editing, corrections, structural +
formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made +
to this work since it was submitted for publication. A denitive version was subsequently published in Research in +
Developmental Disabilities, 34, 12, December 2013, 10.1016/j.ridd.2013.09.042. +
Additional information: +
Use policy +
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for +
personal research or study, educational, or not-for-prot purposes provided that: +
• a full bibliographic reference is made to the original source +
• a link is made to the metadata record in DRO +
• the full-text is not changed in any way +
The full-text must not be sold in any format or medium without the formal permission of the copyright holders. +
Please consult the full DRO policy for further details. +
Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom
Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 +
http://dro.dur.ac.uk +
f43eeb578e0ca48abfd43397bbd15825f94302e4Optical Computer Recognition of Facial Expressions +
Associated with Stress Induced by Performance +
Demands +
DINGES DF, RIDER RL, DORRIAN J, MCGLINCHEY EL, ROGERS NL, +
CIZMAN Z, GOLDENSTEIN SK, VOGLER C, VENKATARAMAN S, METAXAS +
DN. Optical computer recognition of facial expressions associated +
with stress induced by performance demands. Aviat Space Environ +
Med 2005; 76(6, Suppl.):B172– 82. +
Application of computer vision to track changes in human facial +
expressions during long-duration spaceflight may be a useful way to +
unobtrusively detect the presence of stress during critical operations. To +
develop such an approach, we applied optical computer recognition +
(OCR) algorithms for detecting facial changes during performance while +
people experienced both low- and high-stressor performance demands. +
Workload and social feedback were used to vary performance stress in +
60 healthy adults (29 men, 31 women; mean age 30 yr). High-stressor +
scenarios involved more difficult performance tasks, negative social +
feedback, and greater time pressure relative to low workload scenarios. +
Stress reactions were tracked using self-report ratings, salivary cortisol, +
and heart rate. Subjects also completed personality, mood, and alexi- +
thymia questionnaires. To bootstrap development of the OCR algorithm, +
we had a human observer, blind to stressor condition, identify the +
expressive elements of the face of people undergoing high- vs. low- +
stressor performance. Different sets of videos of subjects’ faces during +
performance conditions were used for OCR algorithm training. Subjec- +
tive ratings of stress, task difficulty, effort required, frustration, and +
negative mood were significantly increased during high-stressor perfor- +
mance bouts relative to low-stressor bouts (all p ⬍ 0.01). The OCR +
algorithm was refined to provide robust 3-d tracking of facial expres- +
sions during head movement. Movements of eyebrows and asymmetries +
in the mouth were extracted. These parameters are being used in a +
Hidden Markov model to identify high- and low-stressor conditions. +
Preliminary results suggest that an OCR algorithm using mouth and +
eyebrow regions has the potential +
to discriminate high- from low- +
stressor performance bouts in 75– 88% of subjects. The validity of the +
workload paradigm to induce differential levels of stress in facial ex- +
pressions was established. The paradigm also provided the basic stress- +
related facial expressions required to establish a prototypical OCR al- +
gorithm to detect such changes. Efforts are underway to further improve +
the OCR algorithm by adding facial touching and automating applica- +
tion of the deformable masks and OCR algorithms to video footage of the +
moving faces as a prelude to blind validation of the automated ap- +
proach. +
Keywords: optical computer recognition, computer vision, workload, +
performance, stress, human face, cortisol, heart rate, astronauts, Markov +
models. +
ASTRONAUTS ARE required to perform mission- +
critical tasks at a high level of functional capability +
throughout spaceflight. While they can be trained to +
cope with, and/or adapt to some stressors of space- +
flight, stressful reactions can and have occurred during +
long-duration missions, especially when operational +
performance demands become elevated when unex- +
pected and/or underestimated operational require- +
ments occurred while crews were already experiencing +
work-related stressors (13,28,42,43,52,57,66). In some of +
these instances, stressed flight crews have withdrawn +
from voice communications with ground controllers +
(7,66), or when pressed to continue performing, made +
errors that could have jeopardized the mission (13,28). +
Consequently, there is a need to identify when during +
operational demands astronauts are experiencing be- +
havioral stress associated with performance demands. +
This is especially important as mission durations in- +
crease in length and ultimately involve flight to other +
locations in the solar system. +
Facial Expressions of Stress +
Measurement of human emotional expressions via +
the face, including negative affect and distress, dates
back to Darwin (14), but in recent years has been un- +
dergoing extensive scientific study (46). Although cul- +
tural differences can intensify facial expression of emo- +
tions (53), there is considerable scientific evidence that +
select emotions are communicated in distinct facial dis- +
plays across cultures, age, and gender (45). Because +
many techniques for monitoring stress reactions are +
impractical, unreliable, or obtrusive in spaceflight, we +
seek to develop a novel, objective, unobtrusive com- +
puter vision system to continuously track facial expres- +
sions during performance demands, to detect when +
From the Unit for Experimental Psychiatry, Department of Psychi- +
atry, University of Pennsylvania School of Medicine, Philadelphia, PA
(D. F. Dinges, R. L. Rider, J. Dorrian, E. L. McGlinchey, N. L. Rogers, +
Z. Cizman); and the Center for Computational Biomedicine, Imaging +
and Modeling, Rutgers University
New Brunswick, NJ (S. K. Goldstein, C. Vogler, S. Venkataraman, +
D. N. Metaxas). +
Address reprint requests to: David F. Dinges, Ph.D., Professor and +
Director, Unit for Experimental Psychiatry, Department of Psychiatry, +
University of Pennsylvania School of Medicine, 1013 Blockley Hall
med.upenn.edu. +
Reprint & Copyright © by Aerospace Medical Association, Alexan- +
dria, VA. +
B172 +
('5515440', 'Jillian Dorrian', 'jillian dorrian')
('4940404', 'Ziga Cizman', 'ziga cizman')
('2467082', 'Christian Vogler', 'christian vogler')
('2898034', 'Sundara Venkataraman', 'sundara venkataraman')
423 Guardian Drive, Philadelphia, PA 19104-6021; dinges@mail. +
f442a2f2749f921849e22f37e0480ac04a3c3fec Critical Features for Face Recognition in Humans and Machines Naphtali Abudarham1, Lior Shkiller1, Galit Yovel1,2 1School of Psychological Sciences, 2Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel Correspondence regarding this manuscript should be addressed to: Galit Yovel School of Psychological Sciences & Sagol School of Neuroscience Tel Aviv University Tel Aviv, 69978, Israel Email: gality@post.tau.ac.il,
f4f9697f2519f1fe725ee7e3788119ed217dca34Selfie-Presentation in Everyday Life: A Large-scale +
Characterization of Selfie Contexts on Instagram +
Georgia Institute of Technology
North Ave NW +
Atlanta, GA 30332 +
('10799246', 'Julia Deeb-Swihart', 'julia deeb-swihart')
('39723397', 'Christopher Polack', 'christopher polack')
('1809407', 'Eric Gilbert', 'eric gilbert')
{jdeeb3, cfpolack,gilbert,irfan}@gatech.edu +
f4f6fc473effb063b7a29aa221c65f64a791d7f4Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407.
f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0
f4373f5631329f77d85182ec2df6730cbd4686a9Soft Computing manuscript No. +
(will be inserted by the editor) +
Recognizing Gender from Human Facial Regions using +
Genetic Algorithm +
Received: date / Accepted: date +
('24069279', 'Avirup Bhattacharyya', 'avirup bhattacharyya')
('40813600', 'Partha Pratim Roy', 'partha pratim roy')
('32614479', 'Samarjit Kar', 'samarjit kar')
f4210309f29d4bbfea9642ecadfb6cf9581ccec7An Agreement and Sparseness-based Learning Instance Selection +
and its Application to Subjective Speech Phenomena +
1 Machine Intelligence & Signal Processing Group, MMK, Technische Universit¨at M¨unchen, Germany +
Imperial College London, United Kingdom
('30512170', 'Zixing Zhang', 'zixing zhang')
('1751126', 'Florian Eyben', 'florian eyben')
('39629517', 'Jun Deng', 'jun deng')
zixing.zhang@tum.de +
f47404424270f6a20ba1ba8c2211adfba032f405International Journal of Emerging Technology and Advanced Engineering +
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +
Identification of Face Age range Group using Neural +
Network +
('7530203', 'Sneha Thakur', 'sneha thakur') 1sne_thakur@yahoo.co.in +
2ligendra@rediffmail.com +
f4d30896c5f808a622824a2d740b3130be50258eDS++: A Flexible, Scalable and Provably Tight Relaxation for Matching Problems +
Weizmann Institute of Science
('3046344', 'Nadav Dym', 'nadav dym')
('3416939', 'Haggai Maron', 'haggai maron')
('3232072', 'Yaron Lipman', 'yaron lipman')
f4ebbeb77249d1136c355f5bae30f02961b9a359Human Computation for Attribute and Attribute Value Acquisition +
School of Computer Science +
Carnegie Melon University
('2987829', 'Edith Law', 'edith law')
('1717452', 'Burr Settles', 'burr settles')
('2681926', 'Aaron Snook', 'aaron snook')
('2762792', 'Harshit Surana', 'harshit surana')
('3328108', 'Luis von Ahn', 'luis von ahn')
('39182987', 'Tom Mitchell', 'tom mitchell')
edith@cmu.edu +
f4aed1314b2d38fd8f1b9d2bc154295bbd45f523Subspace Clustering using Ensembles of +
K-Subspaces +
Department of Electrical and Computer Engineering +
University of Michigan, Ann Arbor
('1782134', 'John Lipor', 'john lipor')
('5250186', 'David Hong', 'david hong')
('2358258', 'Dejiao Zhang', 'dejiao zhang')
('1682385', 'Laura Balzano', 'laura balzano')
{lipor,dahong,dejiao,girasole}@umich.edu +
f42dca4a4426e5873a981712102aa961be34539aNext-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost +
Optical-Flow Estimation in the Wild +
University of Freiburg
Germany +
('31656404', 'Nima Sedaghat', 'nima sedaghat')nima@cs.uni-freiburg.de +
f3ca2c43e8773b7062a8606286529c5bc9b3ce25Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative +
Entropy Minimization +
Electrical and Computer Engineering, University of Pittsburgh, USA
Computer Science and Engineering, University of Texas at Arlington, USA
cid:93)School of Electronic Engineering, Xidian University, China
cid:92)School of Information Technologies, University of Sydney, Australia
('2331771', 'Kamran Ghasedi Dizaji', 'kamran ghasedi dizaji')
('10797930', 'Amirhossein Herandi', 'amirhossein herandi')
('1748032', 'Heng Huang', 'heng huang')
kamran.ghasedi@gmail.com, amirhossein.herandi@uta.edu, chdeng@mail.xidian.edu.cn +
tom.cai@sydney.edu.au, heng.huang@pitt.edu +
f3fcaae2ea3e998395a1443c87544f203890ae15
f3015be0f9dbc1a55b6f3dc388d97bb566ff94feA Study on the Effective Approach +
to Illumination-Invariant Face Recognition +
Based on a Single Image +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China
2 Shenzhen Key Laboratory for Visual Computing and Analytics, Shenzhen, 518055, China +
('31361063', 'Jiapei Zhang', 'jiapei zhang')
('2002129', 'Xiaohua Xie', 'xiaohua xie')
{jp.zhang,xiaohua.xie}@siat.ac.cn, +
sysuxiexh@gmail.com +
f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7NosePose: a competitive, landmark-free +
methodology for head pose estimation in the wild +
IMAGO Research Group - Universidade Federal do Paran´a +
('37435823', 'Antonio C. P. Nascimento', 'antonio c. p. nascimento')
('1800955', 'Olga R. P. Bellon', 'olga r. p. bellon')
{flavio,antonio.paes,olga,luciano}@ufpr.br +
f3a59d85b7458394e3c043d8277aa1ffe3cdac91Query-Free Attacks on Industry-Grade Face Recognition Systems under Resource +
Constraints +
Chinese University of Hong Kong
Indiana University
Chinese University of Hong Kong
('1807925', 'Di Tang', 'di tang')
('47119002', 'XiaoFeng Wang', 'xiaofeng wang')
('3297454', 'Kehuan Zhang', 'kehuan zhang')
td016@ie.cuhk.edu.hk +
xw7@indiana.edu +
khzhang@ie.cuhk.edu.hk +
f3f77b803b375f0c63971b59d0906cb700ea24edAdvances in Electrical and Computer Engineering Volume 9, Number 3, 2009 +
Feature Extraction for Facial Expression +
Recognition based on Hybrid Face Regions +
Seyed M. LAJEVARDI, Zahir M. HUSSAIN +
RMIT University, Australia
seyed.lajevardi @ rmit.edu.au +
f355e54ca94a2d8bbc598e06e414a876eb62ef99
f3df296de36b7c114451865778e211350d153727Spatio-Temporal Facial Expression Recognition Using Convolutional +
Neural Networks and Conditional Random Fields +
University of Denver, Denver, CO
('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')behzad.hasani@du.edu, and mmahoor@du.edu +
f3ea181507db292b762aa798da30bc307be95344Covariance Pooling for Facial Expression Recognition +
†Computer Vision Lab, ETH Zurich, Switzerland +
‡VISICS, KU Leuven, Belgium +
('32610154', 'Dinesh Acharya', 'dinesh acharya')
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('35268081', 'Danda Pani Paudel', 'danda pani paudel')
('1681236', 'Luc Van Gool', 'luc van gool')
{acharyad, zhiwu.huang, paudel, vangool}@vision.ee.ethz.ch +
f3fed71cc4fc49b02067b71c2df80e83084b2a82Published as a conference paper at ICLR 2018 +
LEARNING SPARSE LATENT REPRESENTATIONS WITH +
THE DEEP COPULA INFORMATION BOTTLENECK +
University of Basel, Switzerland
('30069186', 'Aleksander Wieczorek', 'aleksander wieczorek')
('30537851', 'Mario Wieser', 'mario wieser')
('2620254', 'Damian Murezzan', 'damian murezzan')
('39891341', 'Volker Roth', 'volker roth')
{firstname.lastname}@unibas.ch +
f3cf10c84c4665a0b28734f5233d423a65ef1f23Title +
Temporal Exemplar-based Bayesian Networks for facial +
expression recognition +
Author(s) +
Shang, L; Chan, KP +
Citation +
Proceedings - 7Th International Conference On Machine +
Learning And Applications, Icmla 2008, 2008, p. 16-22 +
Issued Date +
2008 +
URL +
http://hdl.handle.net/10722/61208 +
Rights +
This work is licensed under a Creative Commons Attribution- +
NonCommercial-NoDerivatives 4.0 International License.; +
International Conference on Machine Learning and Applications +
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +
this material is permitted. However, permission to +
reprint/republish this material for advertising or promotional +
purposes or for creating new collective works for resale or +
redistribution to servers or lists, or to reuse any copyrighted +
component of this work in other works must be obtained from +
the IEEE. +
f35a493afa78a671b9d2392c69642dcc3dd2cdc2Automatic Attribute Discovery with Neural +
Activations +
University of North Carolina at Chapel Hill, USA
2 NTT Media Intelligence Laboratories, Japan +
Tohoku University, Japan
('3302783', 'Sirion Vittayakorn', 'sirion vittayakorn')
('1706592', 'Takayuki Umeda', 'takayuki umeda')
('2023568', 'Kazuhiko Murasaki', 'kazuhiko murasaki')
('1745497', 'Kyoko Sudo', 'kyoko sudo')
('1718872', 'Takayuki Okatani', 'takayuki okatani')
('1721910', 'Kota Yamaguchi', 'kota yamaguchi')
f3b7938de5f178e25a3cf477107c76286c0ad691JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017 +
Object Detection with Deep Learning: A Review +
('33698309', 'Zhong-Qiu Zhao', 'zhong-qiu zhao')
('36659418', 'Peng Zheng', 'peng zheng')
('51132438', 'Shou-tao Xu', 'shou-tao xu')
('1748808', 'Xindong Wu', 'xindong wu')
ebedc841a2c1b3a9ab7357de833101648281ff0e
eb526174fa071345ff7b1fad1fad240cd943a6d7Deeply Vulnerable – A Study of the Robustness of Face Recognition to +
Presentation Attacks +
('1990628', 'Amir Mohammadi', 'amir mohammadi')
('1952348', 'Sushil Bhattacharjee', 'sushil bhattacharjee')
eb100638ed73b82e1cce8475bb8e180cb22a09a2Temporal Action Detection with Structured Segment Networks +
The Chinese University of Hong Kong
2Computer Vision Laboratory, ETH Zurich, Switzerland +
('47827548', 'Yue Zhao', 'yue zhao')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('33345248', 'Limin Wang', 'limin wang')
('2765994', 'Zhirong Wu', 'zhirong wu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1807606', 'Dahua Lin', 'dahua lin')
eb6ee56e085ebf473da990d032a4249437a3e462Age/Gender Classification with Whole-Component +
Convolutional Neural Networks (WC-CNN) +
University of Southern California, Los Angeles, CA 90089, USA
('39004239', 'Chun-Ting Huang', 'chun-ting huang')
('7022231', 'Yueru Chen', 'yueru chen')
('35521292', 'Ruiyuan Lin', 'ruiyuan lin')
('9363144', 'C.-C. Jay Kuo', 'c.-c. jay kuo')
E-mail: {chuntinh, yueruche, ruiyuanl}@usc.edu, cckuo@sipi.usc.edu +
eb8519cec0d7a781923f68fdca0891713cb81163Temporal Non-Volume Preserving Approach to Facial Age-Progression and +
Age-Invariant Face Recognition +
Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada
2 CyLab Biometrics Center and the Department of Electrical and Computer Engineering, +
Carnegie Mellon University, Pittsburgh, PA, USA
('1876581', 'Chi Nhan Duong', 'chi nhan duong')
('2687827', 'Kha Gia Quach', 'kha gia quach')
('1769788', 'Khoa Luu', 'khoa luu')
('6131978', 'T. Hoang Ngan Le', 't. hoang ngan le')
('1794486', 'Marios Savvides', 'marios savvides')
{chinhand, kquach, kluu, thihoanl}@andrew.cmu.edu, msavvid@ri.cmu.edu +
ebb1c29145d31c4afa3c9be7f023155832776cd3CASME II: An Improved Spontaneous Micro-Expression +
Database and the Baseline Evaluation +
State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences
Beijing, China, 3 Center for Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, Oulu, Finland, 4 TNList, Department of
Computer Science and Technology, Tsinghua University, Beijing, China
('9185305', 'Wen-Jing Yan', 'wen-jing yan')
('39522870', 'Xiaobai Li', 'xiaobai li')
('2819642', 'Su-Jing Wang', 'su-jing wang')
('1757287', 'Guoying Zhao', 'guoying zhao')
('1715826', 'Yong-Jin Liu', 'yong-jin liu')
('1838009', 'Yu-Hsin Chen', 'yu-hsin chen')
('1684007', 'Xiaolan Fu', 'xiaolan fu')
eb566490cd1aa9338831de8161c6659984e923fdFrom Lifestyle Vlogs to Everyday Interactions +
EECS Department, UC Berkeley +
('1786435', 'David F. Fouhey', 'david f. fouhey')
('1763086', 'Alexei A. Efros', 'alexei a. efros')
('1689212', 'Jitendra Malik', 'jitendra malik')
eb9312458f84a366e98bd0a2265747aaed40b1a61-4244-1437-7/07/$20.00 ©2007 IEEE +
IV - 473 +
ICIP 2007 +
eb716dd3dbd0f04e6d89f1703b9975cad62ffb09Copyright +
by +
2012 +
('1883898', 'Yong Jae Lee', 'yong jae lee')
eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6Int. J. Information Technology and Management, Vol. 11, Nos. 1/2, 2012 +
35 +
A new soft biometric approach for keystroke +
dynamics based on gender recognition +
GREYC Research Lab
ENSICAEN – Université de Caen Basse Normandie – CNRS, +
14000 Caen, France +
Fax: +33-231538110 +
*Corresponding author +
('2615638', 'Romain Giot', 'romain giot')
('1793765', 'Christophe Rosenberger', 'christophe rosenberger')
E-mail: romain.giot@ensicaen.fr +
E-mail: christophe.rosenberger@ensicaen.fr +
ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9Journal of Computational Mathematics +
Vol.xx, No.x, 200x, 1–25. +
http://www.global-sci.org/jcm +
doi:?? +
Fast algorithms for Higher-order Singular Value Decomposition +
from incomplete data* +
University of Alabama, Tuscaloosa, AL
('40507939', 'Yangyang Xu', 'yangyang xu')Email: yangyang.xu@ua.edu +
ebabd1f7bc0274fec88a3dabaf115d3e226f198fDriver drowsiness detection system based on feature +
representation learning using various deep networks +
School of Electrical Engineering, KAIST, +
Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea +
('1989730', 'Sanghyuk Park', 'sanghyuk park')
('1773194', 'Fei Pan', 'fei pan')
('3315036', 'Sunghun Kang', 'sunghun kang')
{shine0624, feipan, sunghun.kang, cd yoo}@kaist.ac.kr +
eb70c38a350d13ea6b54dc9ebae0b64171d813c9On Graph-Structured Discrete +
Labelling Problems in Computer +
Vision: Learning, Inference and +
Applications +
Submitted in partial fulfillment of the requirements for +
the degree of +
Doctor of Philosophy +
in +
Electrical and Computer Engineering +
M.S., Electrical and Computer Engineering, Carnegie Mellon University
B.Tech., Electronics Engineering, Institute of Technology, Banaras Hindu University
Carnegie Mellon University
August, 2010 +
('1746610', 'Dhruv Batra', 'dhruv batra')
ebb9d53668205c5797045ba130df18842e3eadef
eb027969f9310e0ae941e2adee2d42cdf07d938cVGGFace2: A dataset for recognising faces across pose and age +
Visual Geometry Group, University of Oxford
('46632720', 'Qiong Cao', 'qiong cao')
('46980108', 'Li Shen', 'li shen')
('10096695', 'Weidi Xie', 'weidi xie')
('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
{qiong,lishen,weidi,omkar,az}@robots.ox.ac.uk +
eb48a58b873295d719827e746d51b110f5716d6cFace Alignment Using K-cluster Regression Forests +
With Weighted Splitting +
('2393538', 'Marek Kowalski', 'marek kowalski')
('1930272', 'Jacek Naruniec', 'jacek naruniec')
eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5aFacial Expression Recognition using Neural +
Network +
National Cheng Kung University
Tainan, Taiwan, R.O.C. +
+
('1751725', 'Shen-Chuan Tai', 'shen-chuan tai')
('2142418', 'Yu-Yi Liao', 'yu-yi liao')
('1925097', 'Chien-Shiang Hong', 'chien-shiang hong')
sctai@mail.ncku.edu.tw hhf93d@lily.ee.ncku.edu.tw zgz@lily.ee.ncku.edu.tw +
lyy94d@lily.ee.ncku.edu.tw hcs95d@dcmc.ee.ncku.edu.tw +
ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430cFast Localization of Facial Landmark Points +
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
Link oping University, SE-581 83 Link oping, Sweden
March 28, 2014 +
('3013350', 'Miroslav Frljak', 'miroslav frljak')
('1767736', 'Robert Forchheimer', 'robert forchheimer')
ebf204e0a3e137b6c24e271b0d55fa49a6c52b41Master of Science Thesis in Electrical Engineering +
Link ping University
Visual Tracking Using +
Deep Motion Features +
('8161428', 'Susanna Gladh', 'susanna gladh')
c71f36c9376d444075de15b1102b4974481be84d3D Morphable Models: Data +
Pre-Processing, Statistical Analysis and +
Fitting +
Submitted for the degree of Doctor of Philosophy +
Department of Computer Science +
The University of York
June, 2011 +
('37519514', 'Ankur Patel', 'ankur patel')
c7c53d75f6e963b403057d8ba5952e4974a779adPurdue University
Purdue e-Pubs +
Open Access Theses +
8-2016 +
Theses and Dissertations +
Aging effects in automated face recognition +
Purdue University
Follow this and additional works at: http://docs.lib.purdue.edu/open_access_theses +
Recommended Citation +
Agamez, Miguel Cedeno, "Aging effects in automated face recognition" (2016). Open Access Theses. 930. +
http://docs.lib.purdue.edu/open_access_theses/930 +
additional information. +
This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for +
c79cf7f61441195404472102114bcf079a72138aPose-Invariant 2D Face Recognition by Matching +
Using Graphical Models +
Submitted for the Degree of +
Doctor of Philosophy +
from the +
University of Surrey
Center for Vision, Speech and Signal Processing +
Faculty of Engineering and Physical Sciences +
University of Surrey
Guildford, Surrey GU2 7XH, U.K. +
September 2010 +
('1690611', 'Shervin Rahimzadeh Arashloo', 'shervin rahimzadeh arashloo')
('1690611', 'Shervin Rahimzadeh Arashloo', 'shervin rahimzadeh arashloo')
c73dd452c20460f40becb1fd8146239c88347d87Manifold Constrained Low-Rank Decomposition +
1State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang, China +
Center for Research in Computer Vision (CRCV), University of Central Florida (UCF
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
4 Istituto Italiano di Tecnologia, Genova, Italy +
('9497155', 'Chen Chen', 'chen chen')
('1740430', 'Baochang Zhang', 'baochang zhang')
('1714730', 'Alessio Del Bue', 'alessio del bue')
('1727204', 'Vittorio Murino', 'vittorio murino')
chenchen870713@gmail.com, alessio.delbue@iit.it, bczhang@buaa.edu.cn, vittorio.murino@iit.it ∗ +
c7e4c7be0d37013de07b6d829a3bf73e1b95ad4eThe International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 +
DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL +
EXPRESSIONS OF EMOTIONS +
1LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France +
2LIG, Univ. Grenoble Alpes, BP 53 - 38041 Grenoble Cedex 9, France +
('3209946', 'Anna Tcherkassof', 'anna tcherkassof')
('20944713', 'Damien Dupré', 'damien dupré')
('2357225', 'Brigitte Meillon', 'brigitte meillon')
('2872246', 'Nadine Mandran', 'nadine mandran')
('1870899', 'Michel Dubois', 'michel dubois')
('1828394', 'Jean-Michel Adam', 'jean-michel adam')
c72e6992f44ce75a40f44be4365dc4f264735cfbStory Understanding in Video +
Advertisements +
Department of Computer Science +
University of Pittsburgh
Pennsylvania, United States +
('9085797', 'Keren Ye', 'keren ye')
('51150048', 'Kyle Buettner', 'kyle buettner')
('1770205', 'Adriana Kovashka', 'adriana kovashka')
('9085797', 'Keren Ye', 'keren ye')
('51150048', 'Kyle Buettner', 'kyle buettner')
('1770205', 'Adriana Kovashka', 'adriana kovashka')
yekeren@cs.pitt.edu +
buettnerk@pitt.edu +
kovashka@cs.pitt.edu +
c74aba9a096379b3dbe1ff95e7af5db45c0fd680Neuro-Fuzzy Analysis of Facial Action Units +
and Expressions +
Digital Signal Processing Lab, Department of Computer Engineering +
Sharif University of Technology
Tehran, Iran, Tel: +98 21 6616 4632 +
('1736464', 'Mahmoud Khademi', 'mahmoud khademi')
('2936650', 'Mohammad Taghi Manzuri', 'mohammad taghi manzuri')
('1702826', 'Mohammad Hadi Kiapour', 'mohammad hadi kiapour')
khademi@ce.sharif.edu, manzuri@sharif.edu, kiapour@ee.sharif.edu +
c7de0c85432ad17a284b5b97c4f36c23f506d9d1INTERSPEECH 2011 +
RANSAC-based Training Data Selection for Speaker State Recognition +
Multimedia, Vision and Graphics Laboratory, Koc University, Istanbul, Turkey
Bahc es ehir University, Istanbul, Turkey
Ozye gin University, Istanbul, Turkey
('1777185', 'Elif Bozkurt', 'elif bozkurt')
('1749677', 'Engin Erzin', 'engin erzin')
ebozkurt, eerzin@ku.edu.tr, cigdem.eroglu@bahcesehir.edu.tr, tanju.erdem@ozyegin.edu.tr +
c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3cTHE IMPACT OF PRODUCT PHOTO ON ONLINE CONSUMER +
PURCHASE INTENTION: AN IMAGE-PROCESSING ENABLED +
EMPIRICAL STUDY +
('39306563', 'Xin Li', 'xin li')
('2762720', 'Mengyue Wang', 'mengyue wang')
('39016300', 'Yubo Chen', 'yubo chen')
Xin.Li.PhD@gmail.com +
Kong, menwang-c@my.cityu.edu.hk +
chenyubo@sem.tsinghua.edu.cn +
c7f752eea91bf5495a4f6e6a67f14800ec246d08EXPLORING THE TRANSFER +
LEARNING ASPECT OF DEEP +
NEURAL NETWORKS IN FACIAL +
INFORMATION PROCESSING +
A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF SCIENCE +
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES +
2015 +
By +
Crefeda Faviola Rodrigues +
School of Computer Science +
c71217b2b111a51a31cf1107c71d250348d1ff68One Network to Solve Them All — Solving Linear Inverse Problems +
using Deep Projection Models +
Carnegie Mellon University, Pittsburgh, PA
('2088535', 'Chun-Liang Li', 'chun-liang li')
('1783087', 'B. V. K. Vijaya Kumar', 'b. v. k. vijaya kumar')
('1745861', 'Aswin C. Sankaranarayanan', 'aswin c. sankaranarayanan')
c758b9c82b603904ba8806e6193c5fefa57e9613Heterogeneous Face Recognition with CNNs +
INRIA Grenoble, Laboratoire Jean Kuntzmann +
('2143851', 'Shreyas Saxena', 'shreyas saxena')
('34602236', 'Jakob Verbeek', 'jakob verbeek')
{firstname.lastname}@inria.fr +
c7c03324833ba262eeaada0349afa1b5990c1ea7A Wearable Face Recognition System on Google +
Glass for Assisting Social Interactions +
Institute for Infocomm Research, Singapore
('1709001', 'Bappaditya Mandal', 'bappaditya mandal')
('35718875', 'Liyuan Li', 'liyuan li')
('1694051', 'Cheston Tan', 'cheston tan')
Email address: bmandal@i2r.a-star.edu.sg (∗Contact author: Bappaditya Mandal); +
{scchia, lyli, vijay, cheston-tan, joohwee}@i2r.a-star.edu.sg +
c76f64e87f88475069f7707616ad9df1719a6099T-RECS: Training for Rate-Invariant +
Embeddings by Controlling Speed for Action +
Recognition +
University of Michigan
('31646172', 'Madan Ravi Ganesh', 'madan ravi ganesh')
('24337238', 'Eric Hofesmann', 'eric hofesmann')
('40893359', 'Byungsu Min', 'byungsu min')
('40893002', 'Nadha Gafoor', 'nadha gafoor')
('3587688', 'Jason J. Corso', 'jason j. corso')
c7f0c0636d27a1d45b8fcef37e545b902195d937Towards Around-Device Interaction using Corneal Imaging +
Coburg University
Coburg University
('49770541', 'Daniel Schneider', 'daniel schneider')
('2708269', 'Jens Grubert', 'jens grubert')
daniel.schneider@hs-coburg.de +
jg@jensgrubert.de +
c7c8d150ece08b12e3abdb6224000c07a6ce7d47DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification +
National Laboratory of Pattern Recognition, CASIA +
Center for Research on Intelligent Perception and Computing, CASIA +
('50202300', 'Shu Zhang', 'shu zhang'){shu.zhang,rhe,tnt}@nlpr.ia.ac.cn +
c78fdd080df01fff400a32fb4cc932621926021fRobust Automatic Facial Expression Detection +
Method +
Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan
Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan
China +
China +
('33024921', 'Yan Ouyang', 'yan ouyang')
('1707161', 'Nong Sang', 'nong sang')
Email:oyy_01@163.com +
Email: nsang@hust.edu.cn +
c74b1643a108939c6ba42ae4de55cb05b2191be5NON-NEGATIVE MATRIX FACTORIZATION FOR FACE +
ILLUMINATION ANALYSIS +
CVSSP, University of Surrey
CVSSP, University of Surrey
CVSSP, University of Surrey
Guildford, Surrey +
UK GU2 7XH +
Guildford, Surrey +
UK GU2 7XH +
Guildford, Surrey +
UK GU2 7XH +
('38746097', 'Xuan Zou', 'xuan zou')
('39685698', 'Wenwu Wang', 'wenwu wang')
('1748684', 'Josef Kittler', 'josef kittler')
xuan.zou@surrey.ac.uk +
w.wang@surrey.ac.uk +
j.kittler@surrey.ac.uk +
c75e6ce54caf17b2780b4b53f8d29086b391e839ExpNet: Landmark-Free, Deep, 3D Facial Expressions +
Institute for Robotics and Intelligent Systems, USC, CA, USA
Information Sciences Institute, USC, CA, USA
The Open University of Israel, Israel
('1752756', 'Feng-Ju Chang', 'feng-ju chang')
('46634688', 'Anh Tuan Tran', 'anh tuan tran')
('1756099', 'Tal Hassner', 'tal hassner')
('11269472', 'Iacopo Masi', 'iacopo masi')
{fengjuch,anhttran,iacopoma,nevatia,medioni}@usc.edu, hassner@openu.ac.il +
c0723e0e154a33faa6ff959d084aebf07770ffafInterpolation Between Eigenspaces Using +
Rotation in Multiple Dimensions +
Graduate School of Information Science, Nagoya University, Japan
2 No Japan Society for the Promotion of Science +
Japan
('1685524', 'Tomokazu Takahashi', 'tomokazu takahashi')
('2833316', 'Lina', 'lina')
('1679187', 'Ichiro Ide', 'ichiro ide')
('1680642', 'Yoshito Mekada', 'yoshito mekada')
('1725612', 'Hiroshi Murase', 'hiroshi murase')
ttakahashi@murase.m.is.nagoya-u.ac.jp +
c03f48e211ac81c3867c0e787bea3192fcfe323eINTERSPEECH 2016 +
September 8–12, 2016, San Francisco, USA +
Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in +
I-vector Speaker Recognition System +
School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China
('3308432', 'Zhenchun Lei', 'zhenchun lei')
('2947033', 'Yanhong Wan', 'yanhong wan')
('1853437', 'Jian Luo', 'jian luo')
('2956877', 'Yingen Yang', 'yingen yang')
zhenchun.lei@hotmail.com, wyanhhappy@126.com, +
luo.jian@hotmail.com, ygyang@jxnu.edu.cn +
c038beaa228aeec174e5bd52460f0de75e9cccbeTemporal Segment Networks for Action +
Recognition in Videos +
('33345248', 'Limin Wang', 'limin wang')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('48708388', 'Zhe Wang', 'zhe wang')
('40612284', 'Yu Qiao', 'yu qiao')
('1807606', 'Dahua Lin', 'dahua lin')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1681236', 'Luc Van Gool', 'luc van gool')
c043f8924717a3023a869777d4c9bee33e607fb5Emotion Separation Is Completed Early and It Depends +
on Visual Field Presentation +
Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia
Cyprus +
('2259342', 'Lichan Liu', 'lichan liu')
('2348276', 'Andreas A. Ioannides', 'andreas a. ioannides')
c05a7c72e679745deab9c9d7d481f7b5b9b36bddNPS-CS-11-005 +
+
+
NAVAL +
POSTGRADUATE +
SCHOOL +
MONTEREY, CALIFORNIA +
by +
BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS: +
A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE, +
AND SOCIAL CONDITIONS ON THE EFFECTIVE +
COLLECTION OF BIOMETRICS +
April 2011 +
Approved for public release; distribution is unlimited +
('3337733', 'Paul C. Clark', 'paul c. clark')
c03e01717b2d93f04cce9b5fd2dcfd1143bcc180Locality-constrained Active Appearance Model +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
('1874505', 'Xiaowei Zhao', 'xiaowei zhao')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1695600', 'Xiujuan Chai', 'xiujuan chai')
('1710220', 'Xilin Chen', 'xilin chen')
mathzxw2002@gmail.com,{sgshan,chaixiujuan,xlchen}@ict.ac.cn +
c0ff7dc0d575658bf402719c12b676a34271dfcdA New Incremental Optimal Feature Extraction +
Method for On-line Applications +
K. N. Toosi University of
Technology, Tehran, Iran +
21−Σ +
('2784763', 'Youness Aliyari Ghassabeh', 'youness aliyari ghassabeh')
('2060085', 'Hamid Abrishami Moghaddam', 'hamid abrishami moghaddam')
y_aliyari@ee.kntu.ac.ir, moghadam@saba.kntu.ac.ir +
c02847a04a99a5a6e784ab580907278ee3c12653Fine Grained Video Classification for +
Endangered Bird Species Protection +
Non-Thesis MS Final Report +
1. Introduction +
1.1 Background +
This project is about detecting eagles in videos. Eagles are endangered species at the brim of +
extinction since 1980s. With the bans of harmful pesticides, the number of eagles keep increasing. +
However, recent studies on golden eagles’ activities in the vicinity of wind turbines have shown +
significant number of turbine blade collisions with eagles as the major cause of eagles’ mortality. [1] +
This project is a part of a larger research project to build an eagle detection and deterrent system +
on wind turbine toward reducing eagles’ mortality. [2] The critical component of this study is a +
computer vision system for eagle detection in videos. The key requirement are that the system should +
work in real time and detect eagles at a far distance from the camera (i.e. in low resolution). +
There are three different bird species in my dataset - falcon, eagle and seagull. The reason for +
involving only these three species is based on the real world situation. Wind turbines are always +
installed near coast and mountain hill where falcons and seagulls will be the majority. So my model +
will classify the minority eagles out of other bird species during the immigration season and protecting +
them by using the deterrent system. +
1.2 Brief Approach +
Our approach represents a unified deep-learning architecture for eagle detection. Given videos, +
our goal is to detect eagle species at far distance from the camera, using both appearance and bird +
motion cues, so as to meet the recall-precision rates set by the user. Detecting eagle is a challenging +
task because of the following reasons. Frist, an eagle flies fast and high in the sky which means that +
we need a lens with wide angle such that captures their movement. However, a camera with wide +
angle produces a low resolution and low quality video and the detailed appearance of bird is +
compromised. Second, current neural network typically take as input low resolution images. This is +
because a higher resolution image will require larger filters and deeper networks which is turn hard to +
train [3]. So it is not clear whether the low resolution will cause challenge for fine-grained +
classification task. Last but not the least, there is not a large training database like PASCAL, MNIST +
('2355840', 'Chenyu Wang', 'chenyu wang')
c0c8d720658374cc1ffd6116554a615e846c74b5JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Modeling Multimodal Clues in a Hybrid Deep +
Learning Framework for Video Classification +
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('3099139', 'Zuxuan Wu', 'zuxuan wu')
('8053308', 'Jinhui Tang', 'jinhui tang')
('3233021', 'Zechao Li', 'zechao li')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
c035c193eed5d72c7f187f0bc880a17d217dada0Local Gradient Gabor Pattern (LGGP) with Applications in +
Face Recognition, Cross-spectral Matching and Soft +
Biometrics +
West Virginia University
Michigan State University
Morgantown, WV, USA +
East Lansing, MI, USA +
('1751335', 'Cunjian Chen', 'cunjian chen')
('1698707', 'Arun Ross', 'arun ross')
c0cdaeccff78f49f4604a6d263dc6eb1bb8707d5Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'16 | +
263 +
MLP Neural Network Based Approach for +
Facial Expression Analysis +
Kent State University, Kent, Ohio, USA
2 Department of Robotic Engineering, AU-TNB, Tehran, Iran +
the efficiency of +
c00f402b9cfc3f8dd2c74d6b3552acbd1f358301LEARNING DEEP REPRESENTATION FROM COARSE TO FINE FOR FACE ALIGNMENT +
Shanghai Jiao Tong University, China
('3403352', 'Zhiwen Shao', 'zhiwen shao')
('7406856', 'Shouhong Ding', 'shouhong ding')
('3450479', 'Yiru Zhao', 'yiru zhao')
('3451401', 'Qinchuan Zhang', 'qinchuan zhang')
('8452947', 'Lizhuang Ma', 'lizhuang ma')
{shaozhiwen, feiben, yiru.zhao, qinchuan.zhang}@sjtu.edu.cn, ma-lz@cs.sjtu.edu.cn +
c089c7d8d1413b54f59fc410d88e215902e51638TVParser: An Automatic TV Video Parsing Method +
National Lab of Pattern Recognition, Institute of Automation
Chinese Academy of Sciences, Beijing, China, 100190 +
China-Singapore Institute of Digital Media, Singapore
('1690954', 'Chao Liang', 'chao liang')
('1688633', 'Changsheng Xu', 'changsheng xu')
('1709439', 'Jian Cheng', 'jian cheng')
('1694235', 'Hanqing Lu', 'hanqing lu')
fcliang,csxu,jcheng,luhqg@nlpr.ia.ac.cn +
c0ee89dc2dad76147780f96294de9e421348c1f4Efficiently detecting outlying behavior in +
video-game players +
Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea
School of Games, Hongik University, Seoul, Korea
Korea University
Seoul, Korea +
4 AI Lab, NCSOFT, Seongnam, Korea +
('7652095', 'Young Bin Kim', 'young bin kim')
('40267433', 'Shin Jin Kang', 'shin jin kang')
('4972813', 'Sang Hyeok Lee', 'sang hyeok lee')
('5702793', 'Jang Young Jung', 'jang young jung')
('3000093', 'Hyeong Ryeol Kam', 'hyeong ryeol kam')
('2013790', 'Jung Lee', 'jung lee')
('2467280', 'Young Sun Kim', 'young sun kim')
('3103240', 'Joonsoo Lee', 'joonsoo lee')
('22232963', 'Chang Hun Kim', 'chang hun kim')
c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774A Two-Layer Representation For Large-Scale Action Recognition +
Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University
2Shanghai Key Lab of Digital Media Processing and Transmission, 3Microsoft Research Asia +
University of California, San Diego
('1701941', 'Jun Zhu', 'jun zhu')
('2450889', 'Baoyuan Wang', 'baoyuan wang')
('1795291', 'Xiaokang Yang', 'xiaokang yang')
('38790729', 'Wenjun Zhang', 'wenjun zhang')
('1736745', 'Zhuowen Tu', 'zhuowen tu')
{zhujun.sjtu,zhuowen.tu}@gmail.com, baoyuanw@microsoft.com, {xkyang,zhangwenjun}@sjtu.edu.cn +
c00df53bd46f78ae925c5768d46080159d4ef87dLearning Bag-of-Features Pooling for Deep Convolutional Neural Networks +
Aristotle University of Thessaloniki
Thessaloniki, Greece +
('3200630', 'Nikolaos Passalis', 'nikolaos passalis')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
passalis@csd.auth.gr, tefas@aiia.csd.auth.gr +
c0d5c3aab87d6e8dd3241db1d931470c15b9e39d
c05441dd1bc418fb912a6fafa84c0659a6850bf0Received on 16th July 2014 +
Revised on 11th September 2014 +
Accepted on 23rd September 2014 +
doi: 10.1049/iet-cvi.2014.0200 +
www.ietdl.org +
ISSN 1751-9632 +
Face recognition under varying illumination based on +
adaptive homomorphic eight local directional patterns +
Utah State University, Logan, UT 84322-4205, USA
('2147212', 'Mohammad Reza Faraji', 'mohammad reza faraji')
('1725739', 'Xiaojun Qi', 'xiaojun qi')
E-mail: Mohammadreza.Faraji@aggiemail.usu.edu +
eee8a37a12506ff5df72c402ccc3d59216321346Uredniki: +
dr. Tomaž Erjavec +
Odsek za tehnologije znanja +
Institut »Jožef Stefan«, Ljubljana +
dr. Jerneja Žganec Gros +
Alpineon d.o.o, Ljubljana +
Založnik: Institut »Jožef Stefan«, Ljubljana +
Tisk: Birografika BORI d.o.o. +
Priprava zbornika: Mitja Lasič +
Oblikovanje naslovnice: dr. Damjan Demšar +
Tiskano iz predloga avtorjev +
Naklada: 50 +
Ljubljana, oktober 2008 +
Konferenco IS 2008 sofinancirata +
Ministrstvo za visoko šolstvo, znanost in tehnologijo +
Institut »Jožef Stefan« +
ISSN 1581-9973 +
CIP - Kataložni zapis o publikaciji +
Narodna in univerzitetna knjižnica, Ljubljana +
004.934(082) +
81'25:004.6(082) +
004.8(063) +
oktober 2008, Ljubljana, Slovenia : zbornik 11. mednarodne +
Proceedings of the Sixth Language Technologies Conference, October +
16th-17th, 2008 : proceedings of the 11th International +
Multiconference Information Society - IS 2008, volume C / uredila, +
edited by Tomaž Erjavec, Jerneja Žganec Gros. - Ljubljana : +
1581-9973) +
ISBN 978-961-264-006-4 +
družba 4. Information society 5. Erjavec, Tomaž, 1960- 6. +
Ljubljana) +
241520896 +
ee6b503ab512a293e3088fdd7a1c893a77902acbAutomatic Name-Face Alignment to Enable Cross-Media News Retrieval +
*School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, +
The University of North Carolina at Charlotte, USA
Fudan University, Shanghai, China
('7550713', 'Yuejie Zhang', 'yuejie zhang')
('1721131', 'Wei Wu', 'wei wu')
('1678662', 'Yang Li', 'yang li')
('1751513', 'Cheng Jin', 'cheng jin')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
('2344620', 'Jianping Fan', 'jianping fan')
*{yjzhang, 10210240122, 11210240052, jc, xyxue}@fudan.edu.cn, +jfan@uncc.edu +
ee18e29a2b998eddb7f6663bb07891bfc72622481119 +
Local Linear Discriminant Analysis Framework +
Using Sample Neighbors +
('38162192', 'David Zhang', 'david zhang')
eeb6d084f9906c53ec8da8c34583105ab5ab828412 +
Generation of Facial Expression Map using +
Supervised and Unsupervised Learning +
Akita Prefectural University
Akita University
Japan +
1. Introduction +
Recently, studies of human face recognition have been conducted vigorously (Fasel & +
Luettin, 2003; Yang et al., 2002; Pantic & Rothkrantz, 2000a; Zhao et al., 2000; Hasegawa et +
al., 1997; Akamatsu, 1997). Such studies are aimed at the implementation of an intelligent +
man-machine interface. Especially, studies of facial expression recognition for human- +
machine emotional communication are attracting attention (Fasel & Luettin, 2003; Pantic & +
Rothkrantz, 2000a; Tian et al., 2001; Pantic & Rothkrantz, 2000b; Lyons et al., 1999; Lyons et +
al., 1998; Zhang et al., 1998). +
The shape (static diversity) and motion (dynamic diversity) of facial components such as the +
eyebrows, eyes, nose, and mouth manifest expressions. Considering facial expressions from +
the perspective of static diversity because facial configurations differ among people, it is +
presumed that a facial expression pattern appearing on a face when facial expression is +
manifested includes person-specific features. In addition, from the viewpoint of dynamic +
diversity, because the dynamic change of facial expression originates in a person-specific +
facial expression pattern, it is presumed that the displacement vector of facial components +
has person-specific features. The properties of the human face described above reveal the +
following tasks. +
The first task is to generalize a facial expression recognition model. Numerous conventional +
approaches have attempted generalization of a facial expression recognition model. They +
use the distance of motion of feature points set on a face and the motion vectors of facial +
muscle movements in its arbitrary regions as feature values. Typically, such methods assign +
that information to so-called Action Units (AUs) of a Facial Action Coding System (FACS) +
(Ekman & Friesen, 1978). In fact, AUs are described qualitatively. Therefore, no objective +
criteria pertain to the setting positions of feature points and regions. They all depend on a +
particular researcher’s experience. However, features representing facial expressions are +
presumed to differ among subjects. Accordingly, a huge effort is necessary to link +
quantitative features with qualitative AUs for each subject and to derive universal features +
therefrom. It is also suspected that a generalized facial expression recognition model that is +
applicable to all subjects would disregard person-specific features of facial expressions that are +
borne originally by each subject. For all the reasons described above, it is an important task to +
establish a method to extract person-specific features using a common approach to every +
subject, and to build a facial expression recognition model that incorporates these features. +
Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira, +
ISBN 978-3-902613-56-1, pp. 450, February 2009, I-Tech, Vienna, Austria +
www.intechopen.com +
('1932760', 'Masaki Ishii', 'masaki ishii')
('2052920', 'Kazuhito Sato', 'kazuhito sato')
('1738333', 'Hirokazu Madokoro', 'hirokazu madokoro')
('21063785', 'Makoto Nishida', 'makoto nishida')
ee815f60dc4a090fa9fcfba0135f4707af21420dEAC-Net: A Region-based Deep Enhancing and Cropping Approach for +
Facial Action Unit Detection +
Grove School of Engineering, CUNY City College, NY, USA
2 Department of Computer Science, CUNY Graduate Center, NY, USA +
Engineering and Applied Science, SUNY Binghamton University, NY, USA
('48625314', 'Wei Li', 'wei li')
eed7920682789a9afd0de4efd726cd9a706940c8Computers to Help with Conversations: +
Affective Framework to Enhance Human Nonverbal Skills +
by +
Mohammed Ehsan Hoque +
B.S., Pennsylvania State University
M.S., University of Memphis
Submitted to the Program in Media Arts and Sciences, +
School of Architecture and Planning, +
In partial fulfilment of the requirements for the degree of +
DOCTOR OF PHILOSOPHY +
at the +
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2013 +
Massachusetts Institute of Technology 2013. All rights reserved
Author +
Certified by +
Accepted by +
Program in Media Arts and Sciences +
August 15, 2013 +
Rosalind W. Picard +
Professor of Media Arts and Sciences +
Program in Media Arts and Sciences, MIT +
Thesis supervisor +
Pattie Maes +
Associate Academic Head +
Program in Media Arts and Sciences, MIT +
ee7093e91466b81d13f4d6933bcee48e4ee63a16Discovering Person Identity via +
Large-Scale Observations +
Interactive and Digital Media Institute, National University of Singapore, SG
School of Computing, National University of Singapore, SG
('3026404', 'Yongkang Wong', 'yongkang wong')
('1986874', 'Lekha Chaisorn', 'lekha chaisorn')
('1744045', 'Mohan S. Kankanhalli', 'mohan s. kankanhalli')
ee461d060da58d6053d2f4988b54eff8655ecede
eefb8768f60c17d76fe156b55b8a00555eb40f4dSubspace Scores for Feature Selection in Computer Vision +('2032038', 'Cameron Musco', 'cameron musco')
('2767340', 'Christopher Musco', 'christopher musco')
cnmusco@mit.edu +
cpmusco@mit.edu +
ee463f1f72a7e007bae274d2d42cd2e5d817e751Automatically Extracting Qualia Relations for the Rich Event Ontology +
University of Colorado Boulder, 2U.S. Army Research Lab
('51203051', 'Ghazaleh Kazeminejad', 'ghazaleh kazeminejad')
('3202888', 'Claire Bonial', 'claire bonial')
('1783500', 'Susan Windisch Brown', 'susan windisch brown')
('1728285', 'Martha Palmer', 'martha palmer')
{ghazaleh.kazeminejad, susan.brown, martha.palmer}@colorado.edu +
claire.n.bonial.civ@mail.mil +
eed1dd2a5959647896e73d129272cb7c3a2e145c
ee92d36d72075048a7c8b2af5cc1720c7bace6ddFACE RECOGNITION USING MIXTURES OF PRINCIPAL COMPONENTS +
Video and Display Processing +
Philips Research USA +
Briarcliff Manor, NY 10510 +
('1727257', 'Deepak S. Turaga', 'deepak s. turaga')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
deepak.turaga@philips.com +
ee418372b0038bd3b8ae82bd1518d5c01a33a7ecCSE 255 Winter 2015 Assignment 1: Eye Detection using Histogram +
of Oriented Gradients and Adaboost Classifier +
Electrical and Computer Engineering Department +
University of California, San Diego
('2812409', 'Kevan Yuen', 'kevan yuen')kcyuen@eng.ucsd.edu +
eee06d68497be8bf3a8aba4fde42a13aa090b301CR-GAN: Learning Complete Representations for Multi-view Generation +
Rutgers University
University of North Carolina at Charlotte
('6812347', 'Yu Tian', 'yu tian')
('4340744', 'Xi Peng', 'xi peng')
('33860220', 'Long Zhao', 'long zhao')
('1753384', 'Shaoting Zhang', 'shaoting zhang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
{yt219, px13, lz311, dnm}@cs.rutgers.edu, szhang16@uncc.edu +
eee2d2ac461f46734c8e674ae14ed87bbc8d45c6Generalized Rank Pooling for Activity Recognition +
1Australian Centre for Robotic Vision, 2Data61/CSIRO +
The Australian National University, Canberra, Australia
('2691929', 'Anoop Cherian', 'anoop cherian')
('1688071', 'Basura Fernando', 'basura fernando')
('23911916', 'Mehrtash Harandi', 'mehrtash harandi')
('49384847', 'Stephen Gould', 'stephen gould')
firstname.lastname@{anu.edu.au, data61.csiro.au} +
eed93d2e16b55142b3260d268c9e72099c53d5bcICFVR 2017: 3rd International Competition on Finger Vein Recognition +
Chittagong University of Engineering and Technology
∗ These authors contributed equally to this work +
Peking University
2Shenzhen Maidi Technology Co., LTD. +
3TigerIT +
('46867002', 'Yi Zhang', 'yi zhang')
('2560109', 'Houjun Huang', 'houjun huang')
('38728899', 'Haifeng Zhang', 'haifeng zhang')
('3142600', 'Liao Ni', 'liao ni')
('47210488', 'Wei Xu', 'wei xu')
('1694788', 'Nasir Uddin Ahmed', 'nasir uddin ahmed')
('9336364', 'Md. Shakil Ahmed', 'md. shakil ahmed')
('9372198', 'Yilun Jin', 'yilun jin')
('23100665', 'Yingjie Chen', 'yingjie chen')
('35273470', 'Jingxuan Wen', 'jingxuan wen')
('39201759', 'Wenxin Li', 'wenxin li')
eedfb384a5e42511013b33104f4cd3149432bd9eMultimodal Probabilistic Person +
Tracking and Identification +
in Smart Spaces +
zur Erlangung des akademischen Grades eines +
Doktors der Ingenieurwissenschaften +
der Fakultät für Informatik +
der Universität Fridericiana zu Karlsruhe (TH) +
genehmigte +
Dissertation +
von +
aus Karlsruhe +
Tag der mündlichen Prüfung: 20.11.2009 +
Erster Gutachter: +
Zweiter Gutachter: +
Prof. Dr. A. Waibel +
Prof. Dr. R. Stiefelhagen +
('1701229', 'Keni Bernardin', 'keni bernardin')
c94b3a05f6f41d015d524169972ae8fd52871b67The Fastest Deformable Part Model for Object Detection +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, China
('1721677', 'Junjie Yan', 'junjie yan')
('1718623', 'Zhen Lei', 'zhen lei')
('39774417', 'Longyin Wen', 'longyin wen')
('34679741', 'Stan Z. Li', 'stan z. li')
{jjyan,zlei,lywen,szli}@nlpr.ia.ac.cn +
c9424d64b12a4abe0af201e7b641409e182bababArticle +
Which, When, and How: Hierarchical Clustering with +
Human–Machine Cooperation +
Academic Editor: Tom Burr +
Received: 3 November 2016; Accepted: 14 December 2016; Published: 21 December 2016 +
('1751849', 'Huanyang Zheng', 'huanyang zheng')
('1703691', 'Jie Wu', 'jie wu')
Computer and Information Sciences, Temple University, PA 19121, USA; jiewu@temple.edu +
* Correspondence: huanyang.zheng@temple.edu; Tel.: +1-215-204-8450 +
c91103e6612fa7e664ccbc3ed1b0b5deac865b02Automatic facial expression recognition using +
statistical-like moments +
Integrated Research Center, Universit`a Campus Bio-Medico di Roma
Via Alvaro del Portillo, 00128 Roma, Italy +
('1679260', 'Giulio Iannello', 'giulio iannello')
('1720099', 'Paolo Soda', 'paolo soda')
{r.dambrosio, g.iannello, p.soda}@unicampus.it +
c903af0d69edacf8d1bff3bfd85b9470f6c4c243
c97a5f2241cc6cd99ef0c4527ea507a50841f60bPerson Search in Videos with One Portrait +
Through Visual and Temporal Links +
CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
Tsinghua University
3 SenseTime Research +
('39360892', 'Qingqiu Huang', 'qingqiu huang')
('40584026', 'Wentao Liu', 'wentao liu')
('1807606', 'Dahua Lin', 'dahua lin')
{hq016,dhlin}@ie.cuhk.edu.hk +
liuwtwinter@gmail.com +
c95cd36779fcbe45e3831ffcd3314e19c85defc5FACE RECOGNITION USING MULTI-MODAL LOW-RANK DICTIONARY LEARNING +
University of Alberta, Edmonton, Canada
('1807674', 'Homa Foroughi', 'homa foroughi')
('2627414', 'Moein Shakeri', 'moein shakeri')
('1772846', 'Nilanjan Ray', 'nilanjan ray')
('1734058', 'Hong Zhang', 'hong zhang')
c9e955cb9709f16faeb0c840f4dae92eb875450aProposal of Novel Histogram Features +
for Face Detection +
Harbin Institute of Technology, School of Computer Science and Technology
P.O.Box 1071, Harbin, Heilongjiang 150001, China +
Heilongjiang University, College of Computer Science and Technology, China
('2607285', 'Haijing Wang', 'haijing wang')
('40426020', 'Peihua Li', 'peihua li')
('1821107', 'Tianwen Zhang', 'tianwen zhang')
ninhaijing@yahoo.com +
peihualj@hotmail.com +
c92bb26238f6e30196b0c4a737d8847e61cfb7d4BEYOND CONTEXT: EXPLORING SEMANTIC SIMILARITY FOR TINY FACE DETECTION +
School of Computer Science, Northwestern Polytechnical University, P.R.China
Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia
School of Data and Computer Science, Sun Yat-sen University, P.R.China
('24336288', 'Yue Xi', 'yue xi')
('3104013', 'Jiangbin Zheng', 'jiangbin zheng')
('1714410', 'Wenjing Jia', 'wenjing jia')
('3031842', 'Hanhui Li', 'hanhui li')
c9bbd7828437e70cc3e6863b278aa56a7d545150Unconstrained Fashion Landmark Detection via +
Hierarchical Recurrent Transformer Networks +
The Chinese University of Hong Kong
2SenseTime Group Limited +
('1979911', 'Sijie Yan', 'sijie yan')
('3243969', 'Ziwei Liu', 'ziwei liu')
('47571885', 'Ping Luo', 'ping luo')
('1725421', 'Shi Qiu', 'shi qiu')
{ys016,lz013,pluo,xtang}@ie.cuhk.edu.hk,sqiu@sensetime.com,xgwang@ee.cuhk.edu.hk +
c9f588d295437009994ddaabb64fd4e4c499b294Predicting Professions through +
Probabilistic Model under Social Context +
Northeastern University
Boston, MA, 02115 +
('2025056', 'Ming Shao', 'ming shao')
('2897748', 'Liangyue Li', 'liangyue li')
('1708679', 'Yun Fu', 'yun fu')
mingshao@ccs.neu.edu, {liangyue, yunfu}@ece.neu.edu +
c92da368a6a886211dc759fe7b1b777a64d8b682International Journal of Science and Advanced Technology (ISSN 2221-8386) Volume 1 No 2 April 2011 +
http://www.ijsat.com +
Face Recognition System based on +
Face Pose Estimation and +
Frontal Face Pose Synthesis +
Department of Electrical Engineering +
National Chiao-Tung University
Hsinchu, Taiwan, R.O.C +
Department of Electrical Engineering +
National Chiao-Tung University
Hsinchu, Taiwan, R.O.C +
('4525043', 'Kuo-Yu Chiu', 'kuo-yu chiu')
('1707677', 'Sheng-Fuu Lin', 'sheng-fuu lin')
Alvin_cgr@hotmail.com +
c98983592777952d1751103b4d397d3ace00852dFace Synthesis from Facial Identity Features +
Google Research +
Google Research +
University of Massachusetts Amherst
Google Research +
Google Research +
CSAIL, MIT and Google Research +
('39578349', 'Forrester Cole', 'forrester cole')
('8707513', 'Aaron Sarna', 'aaron sarna')
('2636941', 'David Belanger', 'david belanger')
('1707347', 'Dilip Krishnan', 'dilip krishnan')
('2138834', 'Inbar Mosseri', 'inbar mosseri')
('1768236', 'William T. Freeman', 'william t. freeman')
fcole@google.com +
sarna@google.com +
belanger@cs.umass.edu +
dilipkay@google.com +
inbarm@google.com +
wfreeman@google.com +
c9367ed83156d4d682cefc59301b67f5460013e0Geometry-Contrastive GAN for Facial Expression +
Transfer +
Institute of Software, Chinese Academy of Sciences
('35790820', 'Fengchun Qiao', 'fengchun qiao')
('35996065', 'Zirui Jiao', 'zirui jiao')
('3238696', 'Zhihao Li', 'zhihao li')
('1804472', 'Hui Chen', 'hui chen')
('7643981', 'Hongan Wang', 'hongan wang')
fc1e37fb16006b62848def92a51434fc74a2431aDRAFT +
A Comprehensive Analysis of Deep Regression +
('2793152', 'Pablo Mesejo', 'pablo mesejo')
('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')
('1794229', 'Radu Horaud', 'radu horaud')
fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192Initialization Strategies of Spatio-Temporal +
Convolutional Neural Networks +
University of Toronto
('2711409', 'Elman Mansimov', 'elman mansimov')
('2897313', 'Nitish Srivastava', 'nitish srivastava')
('1776908', 'Ruslan Salakhutdinov', 'ruslan salakhutdinov')
fc20149dfdff5fdf020647b57e8a09c06e11434bSubmitted 8/06; Revised 1/07; Published 5/07 +
Local Discriminant Wavelet Packet Coordinates for Face Recognition +
Center for Computer Vision and Department of Mathematics +
Sun Yat-Sen (Zhongshan) University
Guangzhou, 510275 China +
Department of Electric Engineering +
City University of Hong Kong
83 Tat Chee Avenue +
Kowloon, Hong Kong, China +
Editor: Donald Geman +
('5692650', 'Chao-Chun Liu', 'chao-chun liu')
('1726138', 'Dao-Qing Dai', 'dao-qing dai')
('1718530', 'Hong Yan', 'hong yan')
STSDDQ@MAIL.SYSU.EDU.CN +
H.YAN@CITYU.EDU.HK +
fc516a492cf09aaf1d319c8ff112c77cfb55a0e5
fc0f5859a111fb17e6dcf6ba63dd7b751721ca61Design of an Automatic +
Facial Expression Detector +
An essay presented for the degree +
of +
M.Math +
Applied Mathematics +
University of Waterloo
2018/01/26 +
('2662893', 'Jian Liang', 'jian liang')
fcbec158e6a4ace3d4311b26195482b8388f0ee9Face Recognition from Still Images and Videos +
Center for Automation Research (CfAR) and +
Department of Electrical and Computer Engineering +
University of Maryland, College Park, MD
I. INTRODUCTION +
In most situations, identifying humans using faces is an effortless task for humans. Is this true for computers? +
This very question defines the field of automatic face recognition [7], [31], [62], one of the most active research +
areas in computer vision, pattern recognition, and image understanding. +
Over the past decade, the problem of face recognition has attracted substantial attention from various disciplines +
and has witnessed a skyrocketing growth of the literature. Below, we mainly emphasize some key perspectives of +
the face recognition problem. +
A. Biometric perspective +
Face is a biometric. As a consequence, face recognition finds wide applications in authentication, security, and +
so on. One recent application is the US-VISIT system by the Department of Homeland Security (DHS), collecting +
foreign passengers’ fingerprints and face images. +
Biometric signatures of a person characterize the physiological or behavioral characteristics. Physiological bio- +
metrics are innate or naturally occuring, while behavioral biometrics arise from mannerisms or traits that are learned +
or acquired. Table I lists commonly used biometrics. Biometric technologies provide the foundation for an extensive +
array of highly secure identification and personal verification solutions. Compared to conventional identification and +
verification methods based on personal identification numbers (PINs) or passwords, biometric technologies offer +
many advantages. First, biometrics are individualized traits while passwords may be used or stolen by someone +
other than the authorized user. Also, biometric is very convenient since there is nothing to carry or remember. In +
addition, biometric technologies are becoming more accurate and less expensive. +
Among all biometrics listed in Table I, the face is a very unique one because it is the only biometric belonging +
to both physiological and behavioral categories. While the physiological part of the face has been widely exploited +
Partially supported by NSF ITR Grant 03-25119. Zhou is now with Integrated Data Systems Department, Siemens Corporate Research, +
November 5, 2004 +
DRAFT +
('1682187', 'Shaohua Kevin Zhou', 'shaohua kevin zhou')
('9215658', 'Rama Chellappa', 'rama chellappa')
Email: {shaohua, rama}@cfar.umd.edu +
Princeton, NJ 08540. His current email address is kzhou@scr.siemens.com. +
fcd3d69b418d56ae6800a421c8b89ef363418665Effects of Aging over Facial Feature Analysis and Face +
Recognition +
Bogaziçi Un. Electronics Eng. Dept. March 2010 +
('3398552', 'Bilgin Esme', 'bilgin esme')
fcd77f3ca6b40aad6edbd1dab9681d201f85f365c(cid:13)Copyright 2014 +('3299424', 'Miro Enev', 'miro enev')
fcf91995dc4d9b0cee84bda5b5b0ce5b757740acProceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Asymmetric Discrete Graph Hashing +
University of Florida, Gainesville, FL, 32611, USA
('2766473', 'Xiaoshuang Shi', 'xiaoshuang shi')
('2082604', 'Fuyong Xing', 'fuyong xing')
('46321210', 'Kaidi Xu', 'kaidi xu')
('2599018', 'Manish Sapkota', 'manish sapkota')
('49576071', 'Lin Yang', 'lin yang')
xsshi2015@ufl.edu +
fc798314994bf94d1cde8d615ba4d5e61b6268b6Face Recognition: face in video, age invariance, +
and facial marks +
By +
A DISSERTATION +
Submitted to +
Michigan State University
in partial fulfillment of the requirements +
for the degree of +
DOCTOR OF PHILOSOPHY +
Computer Science +
2009 +
('2222919', 'Unsang Park', 'unsang park')
fc23a386c2189f221b25dbd0bb34fcd26ccf60faA Discriminative Latent Model of Object +
Classes and Attributes +
School of Computing Science, Simon Fraser University, Canada
('40457160', 'Yang Wang', 'yang wang')
('10771328', 'Greg Mori', 'greg mori')
{ywang12,mori}@cs.sfu.ca +
fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9fThis is a preprint of the paper presented at the 11th International Conference Beyond Databases, Architectures and +
Structures (BDAS 2015), May 26-29 2015 in Ustroń, Poland and published in the Communications in Computer and +
Information Science Volume 521, 2015, pp 585-597. DOI: 10.1007/978-3-319-18422-7_52 +
Evaluation Criteria for Affect-Annotated Databases +
Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland
('2414357', 'Agnieszka Landowska', 'agnieszka landowska')
('3271448', 'Mariusz Szwoch', 'mariusz szwoch')
('3175073', 'Wioleta Szwoch', 'wioleta szwoch')
szwoch@eti.pg.gda.pl +
fc2bad3544c7c8dc7cd182f54888baf99ed75e53Efficient Retrieval for Large Scale Metric +
Learning +
Institute for Computer Graphics and Vision
Graz University of Technology, Austria
('1791182', 'Peter M. Roth', 'peter m. roth')
('3628150', 'Horst Bischof', 'horst bischof')
{koestinger,pmroth,bischof}@icg.tugraz.at +
fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46MANUSCRIPT SUBMITTED TO IEEE TRANS. PATTERN ANAL. MACH. INTELL., JULY 2010 +
Feature Selection via Sparse Approximation for +
Face Recognition +
('1944073', 'Yixiong Liang', 'yixiong liang')
('31685288', 'Lei Wang', 'lei wang')
('2090968', 'Yao Xiang', 'yao xiang')
('6609276', 'Beiji Zou', 'beiji zou')
fcbf808bdf140442cddf0710defb2766c2d25c30IJCV manuscript No. +
(will be inserted by the editor) +
Unsupervised Semantic Action Discovery from Video +
Collections +
Received: date / Accepted: date +
('3114252', 'Ozan Sener', 'ozan sener')
('1681995', 'Ashutosh Saxena', 'ashutosh saxena')
fdff2da5bdca66e0ab5874ef58ac2205fb088ed7Continuous Supervised Descent Method for +
Facial Landmark Localisation +
1Universitat Oberta de Catalunya, 156 Rambla del Poblenou, Barcelona, Spain +
2Universitat de Barcelona, 585 Gran Via de les Corts Catalanes, Barcelona, Spain +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
4Computer Vision Center, O Building, UAB Campus, Bellaterra, Spain +
University of Pittsburgh, Pittsburgh, PA, USA
('3305641', 'Marc Oliu', 'marc oliu')
('1733113', 'Takeo Kanade', 'takeo kanade')
('7855312', 'Sergio Escalera', 'sergio escalera')
fdfd57d4721174eba288e501c0c120ad076cdca8An Analysis of Action Recognition Datasets for +
Language and Vision Tasks +
Institute for Language, Cognition and Computation
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB +
('2921001', 'Spandana Gella', 'spandana gella')
('48716849', 'Frank Keller', 'frank keller')
S.Gella@sms.ed.ac.uk, keller@inf.ed.ac.uk +
fd4ac1da699885f71970588f84316589b7d8317bJOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +
Supervised Descent Method +
for Solving Nonlinear Least Squares +
Problems in Computer Vision +
('3182065', 'Xuehan Xiong', 'xuehan xiong')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
fd33df02f970055d74fbe69b05d1a7a1b9b2219bSingle Shot Temporal Action Detection +
Shanghai Jiao Tong University, China. 2Columbia University, USA
Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, China
('6873935', 'Tianwei Lin', 'tianwei lin')
('1758267', 'Xu Zhao', 'xu zhao')
('2195345', 'Zheng Shou', 'zheng shou')
{wzmsltw,zhaoxu}@sjtu.edu.cn,zs2262@columbia.edu +
fdf533eeb1306ba418b09210387833bdf27bb756951 +
fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3Im2Flow: Motion Hallucination from Static Images for Action Recognition +
UT Austin +
UT Austin +
UT Austin +
('3387849', 'Ruohan Gao', 'ruohan gao')
('50398746', 'Bo Xiong', 'bo xiong')
('1794409', 'Kristen Grauman', 'kristen grauman')
rhgao@cs.utexas.edu +
bxiong@cs.utexas.edu +
grauman@cs.utexas.edu +
fdfaf46910012c7cdf72bba12e802a318b5bef5aComputerized Face Recognition in Renaissance +
Portrait Art +
('18640672', 'Ramya Srinivasan', 'ramya srinivasan')
('3007257', 'Conrad Rudolph', 'conrad rudolph')
('1688416', 'Amit Roy-Chowdhury', 'amit roy-chowdhury')
fd15e397629e0241642329fc8ee0b8cd6c6ac807Semi-Supervised Clustering with Neural Networks +
IIIT-Delhi, India +
('2200208', 'Ankita Shukla', 'ankita shukla')
('39866663', 'Gullal Singh Cheema', 'gullal singh cheema')
('34817359', 'Saket Anand', 'saket anand')
{ankitas, gullal1408, anands}@iiitd.ac.in +
fde41dc4ec6ac6474194b99e05b43dd6a6c4f06fMulti-Expert Gender Classification on Age Group by Integrating Deep Neural +
Networks +
Yonsei University
50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. +
('51430701', 'Jun Beom Kho', 'jun beom kho')kojb87@hanmail.net +
fd9feb21b3d1fab470ff82e3f03efce6a0e67a1fUniversity of Twente
Department of Services, Cybersecurity and Safety +
Master Thesis +
Deep Verification Learning +
Author: +
F.H.J. Hillerstr¨om +
Committee: +
Prof. Dr. Ir. R.N.J. Veldhuis +
Dr. Ir. L.J. Spreeuwers +
Dr. Ir. D. Hiemstra +
December 5, 2016 +
fdca08416bdadda91ae977db7d503e8610dd744f +
ICT-2009.7.1 +
KSERA Project +
2010-248085 +
Deliverable D3.1 +
Deliverable D3.1 +
Human Robot Interaction +
Human Robot Interaction +
18 October 2010 +
Public Document +
The KSERA project (http://www.ksera +
KSERA project (http://www.ksera-project.eu) has received funding from the European Commission +
project.eu) has received funding from the European Commission +
under the 7th Framework Programme (FP7) for Research and Technological Development under grant +
under the 7th Framework Programme (FP7) for Research and Technological Development under grant +
under the 7th Framework Programme (FP7) for Research and Technological Development under grant +
agreement n°2010-248085. +
fd53be2e0a9f33080a9db4b5a5e416e24ae8e198Apparent Age Estimation Using Ensemble of Deep Learning Models +
Refik Can Mallı∗ +
Mehmet Ayg¨un∗ +
Hazım Kemal Ekenel +
Istanbul Technical University
Istanbul, Turkey +
{mallir,aygunme,ekenel}@itu.edu.tr +
fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81Action Detection from a Robot-Car Perspective +
Universit´a degli Studi Federico II +
Naples, Italy +
Oxford Brookes University
Oxford, UK +
('39078800', 'Valentina Fontana', 'valentina fontana')
('51149466', 'Manuele Di Maio', 'manuele di maio')
('51152717', 'Stephen Akrigg', 'stephen akrigg')
('1931660', 'Gurkirt Singh', 'gurkirt singh')
('49348905', 'Suman Saha', 'suman saha')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
vale.fontana@studenti.unina.it, man.dimaio@gmail.com +
15057204@brookes.ac.uk, gurkirt.singh-2015@brookes.ac.uk, +
suman.saha-2014@brookes.ac.uk, fabio.cuzzolin@brookes.ac.uk +
fd96432675911a702b8a4ce857b7c8619498bf9fImproved Face Detection and Alignment using Cascade +
Deep Convolutional Network +
†Beijing Key Laboratory of Intelligent Information Technology, School of +
Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China
China Mobile Research Institute, Xuanwu Men West Street, Beijing
('22244104', 'Weilin Cong', 'weilin cong')
('2901725', 'Sanyuan Zhao', 'sanyuan zhao')
('1698061', 'Hui Tian', 'hui tian')
('34926055', 'Jianbing Shen', 'jianbing shen')
fd10b0c771a2620c0db294cfb82b80d65f73900dIdentifying The Most Informative Features Using A Structurally Interacting Elastic Net +
Central University of Finance and Economics, Beijing, China
Xiamen University, Xiamen, Fujian, China
University of York, York, UK
('2290930', 'Lixin Cui', 'lixin cui')
('1749518', 'Lu Bai', 'lu bai')
('47295137', 'Zhihong Zhang', 'zhihong zhang')
('49416727', 'Yue Wang', 'yue wang')
('1679753', 'Edwin R. Hancock', 'edwin r. hancock')
fd7b6c77b46420c27725757553fcd1fb24ea29a8MEXSVMs: Mid-level Features for Scalable Action Recognition +
Dartmouth College
6211 Sudikoff Lab, Hanover, NH 03755 +
Dartmouth Computer Science Technical Report TR2013-726 +
('1687325', 'Du Tran', 'du tran')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
{dutran,lorenzo}@cs.dartmouth.edu +
fdb33141005ca1b208a725796732ab10a9c37d75Int.J.Appl. Math. Comput.Sci.,2016,Vol. 26,No. 2,451–465 +
DOI: 10.1515/amcs-2016-0032 +
A CONNECTIONIST COMPUTATIONAL METHOD FOR FACE RECOGNITION +
, JOS ´E A. GIRONA-SELVA a +
aDepartment of Computer Technology +
University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. +
First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial +
graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of +
the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining +
each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and +
the recognition process are performed by using a similarity function that takes into account both the geometric and texture +
information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our +
proposal when compared with other state-of the-art methods. +
Keywords: pattern recognition, face recognition, neural networks, self-organizing maps. +
1. +
Introduction +
libraries, +
In recent years, there has been intensive research carried +
to develop complex security systems involving +
out +
biometric features. +
Automated biometric systems +
are being widely used in many applications such +
as surveillance, digital +
law +
enforcement, human computer intelligent interaction, and +
banking, among others. For applications requiring high +
levels of security, biometrics can be integrated with other +
authentication means such as smart cards and passwords. +
In relation to this, face recognition is an emerging research +
area and, in the next few years, it is supposed to be +
extensively used for automatic human recognition systems +
in many of the applications mentioned before. +
forensic work, +
One of the most popular methods for face recognition +
is elastic graph bunch matching (EBGM), proposed by +
Wiskott et al. (1997). This method is an evolution of the +
so-called dynamic link architecture (DLA) (Kotropoulos +
and Pitas, 1997). The main idea in elastic graph matching +
is to represent a face starting from a set of reference or +
fiducial points known as landmarks. These fiducial points +
have a spatial coherence, as they are connected using a +
graph structure. Therefore, EBGM represents faces as +
facial graphs with nodes at those facial landmarks (such +
Corresponding author +
as eyes, the tip of the nose, etc.). Considering these nodes, +
geometric information can be extracted, and both distance +
and angle metrics can be defined accordingly. +
This algorithm takes into account that facial images +
have many nonlinear features (variations in lighting, +
pose and expression) that are not generally considered +
in linear analysis methods, such as linear discriminant +
analysis (LDA) or principal component analysis (PCA) +
(Shin and Park, 2011). Moreover, it is particularly robust +
when out-of-plane rotations appear. However, the main +
drawback of this method is that it requires an accurate +
location of the fiducial points. +
Artificial neural networks (ANNs) are one of the +
most often used paradigms to address problems in +
artificial intelligence (Ba´nka et al., 2014; Kayarvizhy +
et al., 2014; Tran et al., 2014; Kumar and Kumar, +
2015). Among the different approaches of ANNs, the self +
organizing map (SOM) has special features for association +
and pattern classification (Kohonen, 2001), and it is one of +
the most popular neural network models. This technique +
is suitable in situations where there is an inaccuracy or a +
lack of formalization of the problem to be solved. In these +
cases, there is no precise mathematical formulation of +
the relationship between the input patterns (Azor´ın-L´opez +
et al., 2014). +
The SOM makes use of an unsupervised learning +
('2274078', 'Francisco A. Pujol', 'francisco a. pujol')e-mail: {fpujol,hmora}@dtic.ua.es,jags20@alu.ua.es +
fdbacf2ff0fc21e021c830cdcff7d347f2fddd8eORIGINAL RESEARCH +
published: 17 August 2018 +
doi: 10.3389/fnhum.2018.00327 +
Recognizing Frustration of Drivers +
From Face Video Recordings and +
Brain Activation Measurements With +
Functional Near-Infrared +
Spectroscopy +
Institute of Transportation Systems, German Aerospace Center (DLR), Braunschweig
Germany, University of Oldenburg, Oldenburg, Germany
Experiencing frustration while driving can harm cognitive processing, result in aggressive +
behavior and hence negatively influence driving performance and traffic safety. Being +
able to automatically detect frustration would allow adaptive driver assistance and +
automation systems to adequately react to a driver’s frustration and mitigate potential +
negative consequences. To identify reliable and valid indicators of driver’s frustration, +
we conducted two driving simulator experiments. In the first experiment, we aimed to +
reveal facial expressions that indicate frustration in continuous video recordings of the +
driver’s face taken while driving highly realistic simulator scenarios in which frustrated +
or non-frustrated emotional states were experienced. An automated analysis of facial +
expressions combined with multivariate logistic regression classification revealed that +
frustrated time intervals can be discriminated from non-frustrated ones with accuracy +
of 62.0% (mean over 30 participants). A further analysis of the facial expressions +
revealed that frustrated drivers tend to activate muscles in the mouth region (chin +
raiser, lip pucker, lip pressor). In the second experiment, we measured cortical activation +
with almost whole-head functional near-infrared spectroscopy (fNIRS) while participants +
experienced frustrating and non-frustrating driving simulator scenarios. Multivariate +
logistic regression applied to the fNIRS measurements allowed us to discriminate +
between frustrated and non-frustrated driving intervals with higher accuracy of 78.1% +
(mean over 12 participants). Frustrated driving intervals were indicated by increased +
activation in the inferior frontal, putative premotor and occipito-temporal cortices. +
Our results show that facial and cortical markers of +
frustration can be informative +
for time resolved driver state identification in complex realistic driving situations. The +
markers derived here can potentially be used as an input for future adaptive driver +
assistance and automation systems that detect driver frustration and adaptively react +
to mitigate it. +
Keywords: frustration, driver state recognition, facial expressions, functional near-infrared spectroscopy, adaptive +
automation +
Edited by: +
Guido P. H. Band, +
Leiden University, Netherlands
Reviewed by: +
Paola Pinti, +
University College London
United Kingdom +
Edmund Wascher, +
Leibniz-Institut für Arbeitsforschung +
an der TU Dortmund (IfADo), +
Germany +
*Correspondence: +
Received: 17 April 2018 +
Accepted: 25 July 2018 +
Published: 17 August 2018 +
Citation: +
Ihme K, Unni A, Zhang M, Rieger JW +
and Jipp M (2018) Recognizing +
Frustration of Drivers From Face +
Video Recordings and Brain +
Activation Measurements With +
Functional Near-Infrared +
Spectroscopy. +
Front. Hum. Neurosci. 12:327. +
doi: 10.3389/fnhum.2018.00327 +
Frontiers in Human Neuroscience | www.frontiersin.org +
August 2018 | Volume 12 | Article 327 +
('2873465', 'Klas Ihme', 'klas ihme')
('34722642', 'Anirudh Unni', 'anirudh unni')
('48984951', 'Meng Zhang', 'meng zhang')
('2743311', 'Jochem W. Rieger', 'jochem w. rieger')
('50093361', 'Meike Jipp', 'meike jipp')
('2873465', 'Klas Ihme', 'klas ihme')
klas.ihme@dlr.de +
fd892e912149e3f5ddd82499e16f9ea0f0063fa3GazeDirector: Fully Articulated Eye Gaze Redirection in Video +
University of Cambridge, UK 2Carnegie Mellon University, USA
Max Planck Institute for Informatics, Germany
4Microsoft +
('34399452', 'Erroll Wood', 'erroll wood')
('49933077', 'Louis-Philippe Morency', 'louis-philippe morency')
fde0180735699ea31f6c001c71eae507848b190fInternational Journal of Computer Applications (0975 – 8887) +
Volume 76– No.3, August 2013 +
Face Detection and Sex Identification from Color Images +
using AdaBoost with SVM based Component Classifier +
Lecturer, Department of EEE +
University of Information
Technology and Sciences +
(UITS) +
Dhaka, Bangladesh +
B.Sc. in EEE +
International University of
Business Agriculture and +
Technology (IUBAT) +
Dhaka-1230, Bangladesh +
Lecturer, Department of EEE +
International University of
Business Agriculture and +
Technology (IUBAT) +
Dhaka-1230, Bangladesh +
('1804849', 'Tonmoy Das', 'tonmoy das')
('2832495', 'Md. Hafizur Rahman', 'md. hafizur rahman')
fdf8e293a7618f560e76bd83e3c40a0788104547Interspecies Knowledge Transfer for Facial Keypoint Detection +
University of California, Davis
Zhejiang University
University of California, Davis
('35157022', 'Maheen Rashid', 'maheen rashid')
('10734287', 'Xiuye Gu', 'xiuye gu')
('1883898', 'Yong Jae Lee', 'yong jae lee')
mhnrashid@ucdavis.edu +
gxy0922@zju.edu.cn +
yongjaelee@ucdavis.edu +
fd615118fb290a8e3883e1f75390de8a6c68bfdeJoint Face Alignment with Non-Parametric +
Shape Models +
University of Wisconsin Madison
http://www.cs.wisc.edu/~lizhang/projects/joint-align/ +
('1893050', 'Brandon M. Smith', 'brandon m. smith')
('40396555', 'Li Zhang', 'li zhang')
fdaf65b314faee97220162980e76dbc8f32db9d6Accepted Manuscript +
Face recognition using both visible light image and near-infrared image and a deep +
network +
PII: +
DOI: +
Reference: +
S2468-2322(17)30014-8 +
10.1016/j.trit.2017.03.001 +
TRIT 41 +
To appear in: +
CAAI Transactions on Intelligence Technology +
Received Date: 30 January 2017 +
Accepted Date: 28 March 2017 +
Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and +
near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi: +
10.1016/j.trit.2017.03.001. +
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to +
our customers we are providing this early version of the manuscript. The manuscript will undergo +
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please +
note that during the production process errors may be discovered which could affect the content, and all +
legal disclaimers that apply to the journal pertain. +
('48477652', 'Kai Guo', 'kai guo')
('40200363', 'Shuai Wu', 'shuai wu')
f22d6d59e413ee255e5e0f2104f1e03be1a6722eLattice Long Short-Term Memory for Human Action Recognition +
The Hong Kong University of Science and Technology
Stanford University
South China University of Technology
('41191188', 'Lin Sun', 'lin sun')
('2370507', 'Kui Jia', 'kui jia')
('1794604', 'Kevin Chen', 'kevin chen')
('2131088', 'Bertram E. Shi', 'bertram e. shi')
('1702137', 'Silvio Savarese', 'silvio savarese')
f24e379e942e134d41c4acec444ecf02b9d0d3a9International Scholarly Research Network +
ISRN Machine Vision +
Volume 2012, Article ID 505974, 7 pages +
doi:10.5402/2012/505974 +
Research Article +
Analysis of Facial Images across Age Progression by Humans +
Temple University, Philadelphia, PA 19122, USA
Temple University, Philadelphia, PA 19122, USA
West Virginia University, Morgantown, WV 26506, USA
Received 25 July 2011; Accepted 25 August 2011 +
Academic Editors: O. Ghita and R.-H. Park +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
The appearance of human faces can undergo large variations over aging progress. Analysis of facial image taken over age +
progression recently attracts increasing attentions in computer-vision community. Human abilities for such analysis are, however, +
less studied. In this paper, we conduct a thorough study of human ability on two tasks, face verification and age estimation, for +
facial images taken at different ages. Detailed and rigorous experimental analysis is provided, which helps understanding roles of +
different factors including age group, age gap, race, and gender. In addition, our study also leads to an interesting observation: for +
age estimation, photos from adults are more challenging than that from young people. We expect the study to provide a reference +
for machine-based solutions. +
1. Introduction +
Human faces are important in revealing the personal char- +
acteristic and understanding visual data. The facial research +
has been studied over several decades in computer vision +
community [1, 2]. Analysis facial images across age pro- +
gression recently attracts increasing research attention [3] +
because of its important real-life applications. For example, +
facial appearance predictor of missing people and ID photo +
automatic update system are playing important roles in +
simulating face aging of human beings. Age estimation can +
also be applied to age-restricted vending machine [4]. Most +
recent studies (see Section 2) of age-related facial image +
analysis mainly focus on three tasks: face verification, age +
estimation, and age effect simulation. In comparison, it +
remains unclear how humans perform on these tasks. +
In this paper, we study human ability on face verification +
and age estimation for face photos taken at across age +
progression. Such studies are important in that it not only +
provides a reference for future machine-based solutions, +
but also provides insight on how different factors (e.g., age +
gaps, gender, etc.) affect facial analysis algorithms. There are +
previous works on human performance for face recognition +
and age estimation; however, most of them are either +
focusing on nonage related issues such as lighting [5] or +
limited by the scale of image datasets (e.g., [6]). Taking +
advantage of the recent available MORPH dataset [7], which +
to the best of our knowledge is the largest publicly available +
face aging dataset, we are able to conduct thorough human +
studies on facial analysis tasks. +
For face verification, the task is to let a human subject +
decide whether two photos come from the same person (at +
different ages). In addition to report the general performance +
on our human subjects’ performance, we also analyze the +
e ects of di erence factors, including age group, age gap
race, and gender. In addition, we also compare human +
performance with previous reported baseline algorithm. For +
age estimation, similarly, we report and analyze human +
performance for general cases as well as for different factors. +
Compared to a previous study on the FGNet database [8], +
our study implies that age estimation are harder for photos +
from adults than those from young people. +
The rest of the paper is organized as follows. Section 2 +
shows the related works on different databases. Section 3 +
describes the details of human experiments of face-recog- +
nition and age-estimation problems. Then, in Section 4, +
('38129124', 'Jingting Zeng', 'jingting zeng')
('1805398', 'Haibin Ling', 'haibin ling')
('1686678', 'Longin Jan Latecki', 'longin jan latecki')
('1822413', 'Guodong Guo', 'guodong guo')
('38129124', 'Jingting Zeng', 'jingting zeng')
Correspondence should be addressed to Haibin Ling, hbling@temple.edu +
f2b13946d42a50fa36a2c6d20d28de2234aba3b4Adaptive Facial Expression Recognition Using Inter-modal +
Top-down Context +
Ravi Kiran +
Sarvadevabhatla +
Honda Research Institute USA
425 National Ave, Suite 100 +
Mountain View 94043, USA +
Neural Prosthetics Lab +
Department of Electrical and +
Computer Engineering +
McGill University
Montreal H3A 2A7, Canada +
Neural Prosthetics Lab +
Department of Electrical and +
Computer Engineering +
McGill University
Montreal H3A 2A7, Canada +
Honda Research Institute USA
425 National Ave, Suite 100 +
Mountain View 94043, USA +
('1708927', 'Mitchel Benovoy', 'mitchel benovoy')
('2003327', 'Sam Musallam', 'sam musallam')
('1692465', 'Victor Ng-Thow-Hing', 'victor ng-thow-hing')
RSarvadevabhatla@hra.com +
benovoym@mcgill.ca +
sam.musallam@mcgill.ca +
vngthowhing@hra.com +
f2c30594d917ea915028668bc2a481371a72a14dScene Understanding Using Internet Photo Collections +
A dissertation submitted in partial fulfillment +
of the requirements for the degree of +
Doctor of Philosophy +
University of Washington
2010 +
Program Authorized to Offer Degree: Computer Science and Engineering +
('35577716', 'Ian Simon', 'ian simon')
f2ad9b43bac8c2bae9dea694f6a4e44c760e63daA Study on Illumination Invariant Face Recognition Methods +
Based on Multiple Eigenspaces +
1National Laboratory for Novel Software Technology +
Nanjing University, Nanjing 210093, P.R.China
2Department of Computer Science +
North Dakota State University, Fargo, ND58105, USA
('7878359', 'Wu-Jun Li', 'wu-jun li')
('2697799', 'Chong-Jun Wang', 'chong-jun wang')
('1737124', 'Bin Luo', 'bin luo')
Email: {liwujun, chjwang}@ai.nju.edu.cn +
Email: Dianxiang.xu@ndsu.nodak.edu +
f2e9494d0dca9fb6b274107032781d435a508de6
f2c568fe945e5743635c13fe5535af157b1903d1
f2a7f9bd040aa8ea87672d38606a84c31163e171Human Action Recognition without Human +
National Institute of Advanced Industrial Science and Technology (AIST
Tsukuba, Ibaraki, Japan +
('1713046', 'Yun He', 'yun he')
('3393640', 'Soma Shirakabe', 'soma shirakabe')
('1732705', 'Yutaka Satoh', 'yutaka satoh')
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
{yun.he, shirakabe-s, yu.satou, hirokatsu.kataoka}@aist.go.jp +
f257300b2b4141aab73f93c146bf94846aef5fa1Eigen Evolution Pooling for Human Action Recognition +
Stony Brook University, Stony Brook, NY 11794, USA
('2295608', 'Yang Wang', 'yang wang')
('49701507', 'Vinh Tran', 'vinh tran')
('2356016', 'Minh Hoai', 'minh hoai')
{wang33, tquangvinh, minhhoai}@cs.stonybrook.edu +
f20e0eefd007bc310d2a753ba526d33a8aba812cLee et al.: RGB-D FACE RECOGNITION WITH A DEEP LEARNING APPROACH +
Accurate and robust face recognition from +
RGB-D images with a deep learning +
approach +
Yuancheng Lee +
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=150 +
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=153 +
Ching-Wei Tseng +
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=156 +
Computer Vision Lab, +
Department of +
Computer Science, +
National Tsing Hua +
University
Hsinchu, Taiwan +
http://www.cs.nthu.edu.tw/~lai/ +
('7557765', 'Jiancong Chen', 'jiancong chen')
('1696527', 'Shang-Hong Lai', 'shang-hong lai')
f26097a1a479fb6f32b27a93f8f32609cfe30fdc
f231046d5f5d87e2ca5fae88f41e8d74964e8f4fWe are IntechOpen, +
the first native scientific +
publisher of Open Access books +
3,350 +
108,000 +
1.7 M +
Open access books available +
International authors and editors +
Downloads +
Our authors are among the +
151 +
Countries delivered to +
TOP 1% +
12.2% +
most cited scientists +
Contributors from top 500 universities +
Selection of our books indexed in the Book Citation Index +
in Web of Science™ Core Collection (BKCI) +
Interested in publishing with us? +
Numbers displayed above are based on latest data collected. +
For more information visit www.intechopen.com +
Contact book.department@intechopen.com +
f28b7d62208fdaaa658716403106a2b0b527e763Clustering-driven Deep Embedding with Pairwise Constraints +
JACOB GOLDBERGER, Bar-Ilan University
Fig. 1. Employing deep embeddings for clustering 3D shapes. Above, we use PCA to visualize the output embedding of point clouds of chairs. We also highlight +
(in unique colors) a few random clusters and display a few representative chairs from these clusters. +
Recently, there has been increasing interest to leverage the competence +
of neural networks to analyze data. In particular, new clustering meth- +
ods that employ deep embeddings have been presented. In this paper, we +
depart from centroid-based models and suggest a new framework, called +
Clustering-driven deep embedding with PAirwise Constraints (CPAC), for +
non-parametric clustering using a neural network. We present a clustering- +
driven embedding based on a Siamese network that encourages pairs of data +
points to output similar representations in the latent space. Our pair-based +
model allows augmenting the information with labeled pairs to constitute a +
semi-supervised framework. Our approach is based on analyzing the losses +
associated with each pair to refine the set of constraints. We show that clus- +
tering performance increases when using this scheme, even with a limited +
amount of user queries. We demonstrate how our architecture is adapted +
for various types of data and present the first deep framework to cluster 3D +
shapes. +
INTRODUCTION +
Autoencoders provide means to analyze data without supervision. +
Autoencoders based on deep neural networks include non-linear +
neurons which significantly strengthen the power of the analysis. +
The key idea is that the encoders project the data into an embedding +
latent space, where the L2 proximity among the projected elements +
better expresses their similarity. To further enhance the data prox- +
imity in the embedding space, the encoder can be encouraged to +
form tight clusters in the embedding space. Xie et al. [2016] have +
presented an unsupervised embedding driven by a centroid-based +
clustering. They have shown that their deep embedding leads to +
better clustering of the data. More advanced clustering-driven em- +
bedding techniques have been recently presented [Dizaji et al. 2017; +
Yang et al. 2016]. These techniques are all centroid-based and para- +
metric, in the sense that the number of clusters is known a-priori. +
In this paper, we present a clustering-driven embedding technique +
that allows semi-supervision. The idea is to depart from centroid- +
based methods and use pairwise constraints to drive the clustering. +
Most, or all the constraints, can be learned with no supervision, +
while possibly a small portion of the data is supervised. More specifi- +
cally, we adopt robust continuous clustering (RCC) [Shah and Koltun +
2017] as a driving mechanism to encourage a tight clustering of the +
embedded data. +
The idea is to extract pairwise constraints using a mutual k- +
nearest neighbors analysis, and use these pairs as must-link con- +
straints. With no supervision, the set of constraints is imperfect +
and contains false positive pairs on one hand. Our technique allows +
removing false positive pairs and strengthening true positive pairs +
actively by a user. We present an approach that analyzes the losses +
associated with the pairs to form a set of false positive candidates. +
See Figure 2(b)-(c) for a visualization of the distribution of the data +
('40901326', 'Sharon Fogel', 'sharon fogel')
('1793313', 'Hadar Averbuch-Elor', 'hadar averbuch-elor')
('1701009', 'Daniel Cohen-Or', 'daniel cohen-or')
f214bcc6ecc3309e2efefdc21062441328ff6081
f5149fb6b455a73734f1252a96a9ce5caa95ae02Low-Rank-Sparse Subspace Representation for Robust Regression +
Harbin Institute of Technology
Harbin Institute of Technology;Shenzhen University
Harbin, China +
Harbin, China;Shenzhen, China +
The University of Sydney
Harbin Institute of Technology
Sydney, Australia +
Harbin, China +
('1747644', 'Yongqiang Zhang', 'yongqiang zhang')
('1887263', 'Daming Shi', 'daming shi')
('1750488', 'Junbin Gao', 'junbin gao')
('2862899', 'Dansong Cheng', 'dansong cheng')
seekever@foxmail.com +
d.m.shi@hotmail.com +
junbin.gao@sydney.edu.au +
cdsinhit@hit.edu.cn +
f58d584c4ac93b4e7620ef6e5a8f20c6f6da295eProceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Feature Selection Guided Auto-Encoder +
1Department of Electrical & Computer Engineering, +
College of Computer and Information Science
Northeastern University, Boston, MA, USA
('47673521', 'Shuyang Wang', 'shuyang wang')
('2788685', 'Zhengming Ding', 'zhengming ding')
('1708679', 'Yun Fu', 'yun fu')
{shuyangwang, allanding, yunfu}@ece.neu.edu +
f5eb0cf9c57716618fab8e24e841f9536057a28aRethinking Feature Distribution for Loss Functions in Image Classification +
Tsinghua University, Beijing, China
University of at Urbana-Champaign, Illinois, USA
('47718901', 'Weitao Wan', 'weitao wan')
('1752427', 'Jiansheng Chen', 'jiansheng chen')
('8802368', 'Yuanyi Zhong', 'yuanyi zhong')
('2641581', 'Tianpeng Li', 'tianpeng li')
wwt16@mails.tsinghua.edu.cn +
yuanyiz2@illinois.edu +
ltp16@mails.tsinghua.edu.cn +
jschenthu@mail.tsinghua.edu.cn +
f571fe3f753765cf695b75b1bd8bed37524a52d2Submodular Attribute Selection for Action +
Recognition in Video +
Jinging Zheng +
UMIACS, University of Maryland
College Park, MD, USA
Noah’s Ark Lab +
Huawei Technologies +
UMIACS, University of Maryland
National Institute of Standards and Technology
College Park, MD, USA
Gaithersburg, MD, USA +
('34145947', 'Zhuolin Jiang', 'zhuolin jiang')
('9215658', 'Rama Chellappa', 'rama chellappa')
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
zjngjng@umiacs.umd.edu +
zhuolin.jiang@huawei.com +
rama@umiacs.umd.edu +
jonathon.phillips@nist.gov +
f5fae7810a33ed67852ad6a3e0144cb278b24b41Multilingual Gender Classification with Multi-view +
Deep Learning +
Notebook for PAN at CLEF 2018 +
Jo ef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia +
USHER Institute, University of Edinburgh, United Kingdom
('22684661', 'Matej Martinc', 'matej martinc')
('40235216', 'Senja Pollak', 'senja pollak')
{matej.martinc,blaz.skrlj,senja.pollak}@ijs.si +
f5af4e9086b0c3aee942cb93ece5820bdc9c9748ENHANCING PERSON ANNOTATION +
FOR PERSONAL PHOTO MANAGEMENT +
USING CONTENT AND CONTEXT +
BASED TECHNOLOGIES +
By +
THESIS DIRECTED BY: PROF. NOEL E. O’CONNOR +
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE +
DEGREE OF DOCTOR OF PHILOSOPHY +
September 2008 +
SCHOOL OF ELECTRONIC ENGINEERING +
DUBLIN CITY UNIVERSITY
('2668569', 'Saman H. Cooray', 'saman h. cooray')
f5770dd225501ff3764f9023f19a76fad28127d4Real Time Online Facial Expression Transfer +
with Single Video Camera +
f5aee1529b98136194ef80961ba1a6de646645feLarge-Scale Learning of +
Discriminative Image Representations +
D.Phil Thesis +
Robotics Research Group +
Department of Engineering Science +
University of Oxford
Supervisors: +
Professor Andrew Zisserman +
Doctor Antonio Criminisi +
Mans eld College
Trinity Term, 2013 +
('34838386', 'Karen Simonyan', 'karen simonyan')
f52efc206432a0cb860155c6d92c7bab962757deMUGSHOT DATABASE ACQUISITION IN VIDEO SURVEILLANCE NETWORKS USING +
INCREMENTAL AUTO-CLUSTERING QUALITY MEASURES +
Computer Science Department +
University of Kentucky
Lexington, KY, 40508 +
('3237043', 'Quanren Xiong', 'quanren xiong')
f519723238701849f1160d5a9cedebd31017da89Impact of multi-focused images on recognition of soft biometric traits +
aEURECOM, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia +
+
Antipolis cedex, FRANCE +
('24362694', 'V. Chiesa', 'v. chiesa')
f5eb411217f729ad7ae84bfd4aeb3dedb850206aTackling Low Resolution for Better Scene Understanding +
Thesis submitted in partial fulfillment +
of the requirements for the degree of +
MS in Computer Science and Engineering +
By Research +
by +
201202172 +
International Institute of Information Technology
Hyderabad - 500 032, INDIA +
July 2018 +
('41033644', 'Harish Krishna', 'harish krishna')harishkrishna.v@research.iiit.ac.in +
f558af209dd4c48e4b2f551b01065a6435c3ef33International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) +
ISSN: 0976-1353 Volume 23 Issue 1 –JUNE 2016. +
AN ENHANCED ATTRIBUTE +
RERANKING DESIGN FOR WEB IMAGE +
SEARCH +
#Student,Cse, CIET, Lam,Guntur, India +
* Assistant Professort,Cse, CIET, Lam,Guntur , India +
('4384318', 'G K Kishore Babu', 'g k kishore babu')
e378ce25579f3676ca50c8f6454e92a886b9e4d7Robust Video Super-Resolution with Learned Temporal Dynamics +
University of Illinois at Urbana-Champaign 2Adobe Research
Facebook 4Texas AandM University 5IBM Research
('1771885', 'Ding Liu', 'ding liu')
('2969311', 'Zhangyang Wang', 'zhangyang wang')
e393a038d520a073b9835df7a3ff104ad610c552Automatic temporal segment +
detection via bilateral long short- +
term memory recurrent neural +
networks +
detection via bilateral long short-term memory recurrent neural networks,” J. +
Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501. +
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx
('49447269', 'Bo Sun', 'bo sun')
('7886608', 'Siming Cao', 'siming cao')
('49264106', 'Jun He', 'jun he')
('8834504', 'Lejun Yu', 'lejun yu')
('2089565', 'Liandong Li', 'liandong li')
('49447269', 'Bo Sun', 'bo sun')
('7886608', 'Siming Cao', 'siming cao')
('49264106', 'Jun He', 'jun he')
('8834504', 'Lejun Yu', 'lejun yu')
('2089565', 'Liandong Li', 'liandong li')
e35b09879a7df814b2be14d9102c4508e4db458bOptimal Sensor Placement and +
Enhanced Sparsity for Classification +
University of Washington, Seattle, WA 98195, United States
University of Washington, Seattle, WA 98195, United States
Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States
('1824880', 'Bingni W. Brunton', 'bingni w. brunton')
('3083169', 'Steven L. Brunton', 'steven l. brunton')
('2424683', 'Joshua L. Proctor', 'joshua l. proctor')
('1937069', 'J. Nathan Kutz', 'j. nathan kutz')
e3b324101157daede3b4d16bdc9c2388e849c7d4Robust Real-Time 3D Face Tracking from RGBD Videos under Extreme Pose, +
Depth, and Expression Variations +
Hai X. Pham +
Rutgers University, USA
('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic'){hxp1,vladimir}@cs.rutgers.edu +
e3657ab4129a7570230ff25ae7fbaccb4ba9950c
e315959d6e806c8fbfc91f072c322fb26ce0862bAn Efficient Face Recognition System Based on Sub-Window +
International Journal of Soft Computing and Engineering (IJSCE) +
ISSN: 2231-2307, Volume-1, Issue-6, January 2012 +
Extraction Algorithm +
('1696227', 'Manish Gupta', 'manish gupta')
('36776003', 'Govind sharma', 'govind sharma')
e3c011d08d04c934197b2a4804c90be55e21d572How to Train Triplet Networks with 100K Identities? +
Orion Star +
Beijing, China +
Orion Star +
Beijing, China +
Orion Star +
Beijing, China +
('1747751', 'Chong Wang', 'chong wang')
('46447079', 'Xue Zhang', 'xue zhang')
('26403761', 'Xipeng Lan', 'xipeng lan')
chongwang.nlpr@gmail.com +
yuannixue@126.com +
xipeng.lan@gmail.com +
e39a0834122e08ba28e7b411db896d0fdbbad9ba1368 +
Maximum Likelihood Estimation of Depth Maps +
Using Photometric Stereo +
('2964822', 'Adam P. Harrison', 'adam p. harrison')
('39367958', 'Dileepan Joseph', 'dileepan joseph')
e3bb83684817c7815f5005561a85c23942b1f46bFace Verification using Correlation Filters +
Electrical and Computer Eng. Dept, +
Electrical and Computer Eng. Dept, +
Electrical and Computer Eng. Dept, +
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A. +
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A. +
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A. +
('1794486', 'Marios Savvides', 'marios savvides')
('36754879', 'Vijaya Kumar', 'vijaya kumar')
('34607721', 'Pradeep Khosla', 'pradeep khosla')
msavvid@ri.cmu.edu +
kumar@ece.cmu.edu +
pkk@ece.cmu.edu +
e30dc2abac4ecc48aa51863858f6f60c7afdf82aFacial Signs and Psycho-physical Status Estimation for Well-being +
Assessment +
F. Chiarugi, G. Iatraki, E. Christinaki, D. Manousos, G. Giannakakis, M. Pediaditis, +
A. Pampouchidou, K. Marias and M. Tsiknakis +
Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas
70013 Vasilika Vouton, Heraklion, Crete, Greece +
Keywords: +
Facial Expression, Stress, Anxiety, Feature Selection, Well-being Evaluation, FACS, FAPS, Classification. +
{chiarugi, giatraki, echrist, mandim, ggian, mped, pampouch, kmarias, tsiknaki}@ics.forth.gr +
e3e2c106ccbd668fb9fca851498c662add257036Appearance, Context and Co-occurrence Ensembles for +
Identity Recognition in Personal Photo Collections +
University of Colorado at Colorado Springs
T.E.Boult1 +
2AT&T Labs-Research, Middletown, NJ +
('27469806', 'Archana Sapkota', 'archana sapkota')
('33692583', 'Raghuraman Gopalan', 'raghuraman gopalan')
('2900213', 'Eric Zavesky', 'eric zavesky')
1 {asapkota,tboult}@vast.uccs.edu +
2{raghuram,ezavesky}@research.att.com +
e379e73e11868abb1728c3acdc77e2c51673eb0dIn S.Li and A.Jain, (ed). Handbook of Face Recognition. Springer-Verlag, 2005 +
Face Databases +
The Robotics Inistitute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213 +
Because of its nonrigidity and complex three-dimensional (3D) structure, the appearance of a face is affected by a large +
number of factors including identity, face pose, illumination, facial expression, age, occlusion, and facial hair. The develop- +
ment of algorithms robust to these variations requires databases of sufficient size that include carefully controlled variations +
of these factors. Furthermore, common databases are necessary to comparatively evaluate algorithms. Collecting a high +
quality database is a resource-intensive task: but the availability of public face databases is important for the advancement of +
the field. In this chapter we review 27 publicly available databases for face recognition, face detection, and facial expression +
analysis. +
1 Databases for Face Recognition +
Face recognition continues to be one of the most popular research areas of computer vision and machine learning. Along +
with the development of face recognition algorithms, a comparatively large number of face databases have been collected. +
However, many of these databases are tailored to the specific needs of the algorithm under development. In this section +
we review publicly available databases that are of demonstrated use to others in the community. At the beginning of each +
subsection a table summarizing the key features of the database is provided, including (where available) the number of
subjects, recording conditions, image resolution, and total number of images. Table 1 gives an overview of the recording +
conditions for all databases discussed in this section. Owing to space constraints not all databases are discussed at the same +
level of detail. Abbreviated descriptions of a number of mostly older databases are included in Section 1.13. The scope of +
this section is limited to databases containing full face imagery. Note, however, that there are databases of subface images +
available, such as the recently released CASIA Iris database [23]. +
1.1 AR Database +
No. of subjects +
116 +
Conditions +
Facial expressions +
Illumination +
Occlusion +
Time +
Image Resolution +
No. of Images +
768 × 576 +
3288 +
http://rvl1.ecn.purdue.edu/˜aleix/aleix face DB.html +
The AR database was collected at the Computer Vision Center in Barcelona, Spain in 1998 [25]. It contains images of +
116 individuals (63 men and 53 women). The imaging and recording conditions (camera parameters, illumination setting, +
camera distance) were carefully controlled and constantly recalibrated to ensure that settings are identical across subjects. +
The resulting RGB color images are 768 × 576 pixels in size. The subjects were recorded twice at a 2–week interval. During +
each session 13 conditions with varying facial expressions, illumination and occlusion were captured. Figure 1 shows an +
example for each condition. So far, more than 200 research groups have accessed the database. +
('33731953', 'Ralph Gross', 'ralph gross')Email: {rgross}@cs.cmu.edu +
e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07faUniversity of Massachusetts - Amherst
Dissertations +
5-1-2012 +
Dissertations and Theses +
Weakly Supervised Learning for Unconstrained +
Face Processing +
Follow this and additional works at: http://scholarworks.umass.edu/open_access_dissertations +
Recommended Citation +
Huang, Gary B., "Weakly Supervised Learning for Unconstrained Face Processing" (2012). Dissertations. Paper 559. +
('3219900', 'Gary B. Huang', 'gary b. huang')ScholarWorks@UMass Amherst +
University of Massachusetts - Amherst, garybhuang@gmail.com +
This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has +
been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact +
scholarworks@library.umass.edu. +
e3a6e9ddbbfc4c5160082338d46808cea839848aVision-Based Classification of Developmental Disorders +
Using Eye-Movements +
Stanford University, USA
Stanford University, USA
Stanford University, USA
Stanford University, USA
Stanford University, USA
('3147852', 'Guido Pusiol', 'guido pusiol')
('1811529', 'Andre Esteva', 'andre esteva')
('3472674', 'Arnold Milstein', 'arnold milstein')
('3216322', 'Li Fei-Fei', 'li fei-fei')
e3c8e49ffa7beceffca3f7f276c27ae6d29b35dbFamilies in the Wild (FIW): Large-Scale Kinship Image +
Database and Benchmarks +
Northeastern University, Boston, USA
College of Computer and Information Science, Northeastern University, Boston, USA
('4056993', 'Joseph P. Robinson', 'joseph p. robinson')
('49248003', 'Ming Shao', 'ming shao')
('47096713', 'Yue Wu', 'yue wu')
('1708679', 'Yun Fu', 'yun fu')
{jrobins1, mingshao, yuewu, yunfu}@ece.neu.edu +
e38371b69be4f341baa95bc854584e99b67c6d3aDYAN: A Dynamical Atoms-Based Network +
For Video Prediction(cid:63) +
Electrical and Computer Engineering, Northeastern University, Boston, MA
http://robustsystems.coe.neu.edu +
('40366599', 'WenQian Liu', 'wenqian liu')
('1785252', 'Abhishek Sharma', 'abhishek sharma')
('30929906', 'Octavia Camps', 'octavia camps')
('1687866', 'Mario Sznaier', 'mario sznaier')
liu.wenqi,sharma.abhis@husky.neu.edu, camps,msznaier@northeastern.edu +
e3917d6935586b90baae18d938295e5b089b5c62152 +
Face Localization and Authentication +
Using Color and Depth Images +
('1807962', 'Filareti Tsalakanidou', 'filareti tsalakanidou')
('1744180', 'Sotiris Malassiotis', 'sotiris malassiotis')
('1721460', 'Michael G. Strintzis', 'michael g. strintzis')
e328d19027297ac796aae2470e438fe0bd334449Automatic Micro-expression Recognition from +
Long Video using a Single Spotted Apex +
1 Faculty of Computer Science & Information Technology, +
University of Malaya, Kuala Lumpur, Malaysia
2 Faculty of Computing & Informatics, +
Multimedia University, Cyberjaya, Malaysia
3 Faculty of Engineering, +
Multimedia University, Cyberjaya, Malaysia
('39888137', 'Sze-Teng Liong', 'sze-teng liong')
('2339975', 'John See', 'john see')
('1713159', 'KokSheik Wong', 'koksheik wong')
szeteng1206@hotmail.com,koksheik@um.edu.my +
johnsee@mmu.edu.my +
raphael@mmu.edu.my +
e3144f39f473e238374dd4005c8b83e19764ae9eNext-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost +
Optical-Flow Estimation in the Wild +
University of Freiburg
Germany +
('31656404', 'Nima Sedaghat', 'nima sedaghat')nima@cs.uni-freiburg.de +
e3a6e5a573619a97bd6662b652ea7d088ec0b352Compare and Contrast: Learning Prominent Visual Differences +
The University of Texas at Austin
('50357985', 'Steven Chen', 'steven chen')
('1794409', 'Kristen Grauman', 'kristen grauman')
cfeb26245b57dd10de8f187506d4ed5ce1e2b7ddCapsNet comparative performance evaluation for image +
classification +
University of Waterloo, ON, Canada
('30421594', 'Rinat Mukhometzianov', 'rinat mukhometzianov')
('36957611', 'Juan Carrillo', 'juan carrillo')
cffebdf88e406c27b892857d1520cb2d7ccda573LEARNING FROM LARGE-SCALE VISUAL DATA +
FOR ROBOTS +
A Dissertation +
Presented to the Faculty of the Graduate School +
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of +
Doctor of Philosophy +
by +
Ozan S¸ener +
August 2016 +
cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2
cfffae38fe34e29d47e6deccfd259788176dc213TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012 +
Matrix Completion for Weakly-supervised +
Multi-label Image Classification +
('1707876', 'Fernando De la Torre', 'fernando de la torre')
('2884203', 'Alexandre Bernardino', 'alexandre bernardino')
cfd4004054399f3a5f536df71f9b9987f060f434IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20?? +
Person Recognition in Personal Photo Collections +
('2390510', 'Seong Joon Oh', 'seong joon oh')
('1798000', 'Rodrigo Benenson', 'rodrigo benenson')
('1739548', 'Mario Fritz', 'mario fritz')
('1697100', 'Bernt Schiele', 'bernt schiele')
cfd933f71f4a69625390819b7645598867900eabINTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 03 55 +
ISSN 2347-4289 +
Person Authentication Using Face And Palm Vein: +
A Survey Of Recognition And Fusion Techniques +
College of Engineering, Pune, India
Image Processing & Machine Vision Section, Electronics & Instrumentation Services Division, BARC +
('38561481', 'Dhanashree Vaidya', 'dhanashree vaidya')
('2623250', 'Madhuri A. Joshi', 'madhuri a. joshi')
Email: preethimedu@gmail.com, dvaidya33@gmail.com, hod.extc@coep.ac.in, maj.extc@coep.ac.in, skar@barc.gov.in +
cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce
cf875336d5a196ce0981e2e2ae9602580f3f62437 What 1 +
Rosalind W. Picard +
It Mean for a Computer to "Have" Emotions? +
There is a lot of talk about giving machines emotions, some of +
it fluff. Recently at a large technical meeting, a researcher stood up +
and talked of how a Bamey stuffed animal [the purple dinosaur for +
kids) "has emotions." He did not define what he meant by this, but +
after repeating it several times, it became apparent that children +
attributed emotions to Barney, and that Barney had deliberately +
expressive behaviors that would encourage the kids to think. Bar- +
ney had emotions. But kids have attributed emotions to dolls and +
stuffed animals for as long a s we know; and most of my technical +
colleagues would agree that such toys have never had and still do +
not have emotions. What is different now that prompts a researcher +
to make such a claim? Is the computational plush an example of a +
computer that really does have emotions? +
If not Barney, then what would be an example of a computa- +
tional system that has emotions? I am not a philosopher, and this +
paper will not be a discussion of the meaning of this question in +
any philosophical sense. However, as an engineer I am interested +
in what capabilities I would require a machine to have before I +
would say that it "has emotions," if that is even possible. +
Theorists still grappl~ with the problem of defining emotion, +
after many decades of discussion, and no clean definition looks +
likely to emerge. Even without a precise definition, one can still +
begin to say concrete things about certain components of emotion, +
at least based on what is known about human and animal emo- +
tions. Of course, much is still u d a o w n about human emotions, so +
we are nowhere near being able to model them, much less dupli- +
cate all their functions in machines.'~lso, all scientific findings are +
subject to revision-history has certainly taught us humility, that +
what scientists believed to be true at one point has often been +
changed at a later date. +
I wish to begin by mentioning four motivations for giving +
machines certain emotional abilities (and there are more). One goal +
is to build robots and synthetic characters that can emulate living +
humans and animals-for example, to build a humanoid robot. A +
I +
cfd8c66e71e98410f564babeb1c5fd6f77182c55Comparative Study of Coarse Head Pose Estimation +
IBM T.J. Watson Research Center
Hawthorne, NY 10532 +
('34609371', 'Lisa M. Brown', 'lisa m. brown')
('40383812', 'Ying-Li Tian', 'ying-li tian')
{lisabr,yltian}@us.ibm.com +
cf54a133c89f730adc5ea12c3ac646971120781c
cfbb2d32586b58f5681e459afd236380acd86e28Improving Alignment of Faces for Recognition +
Christopher J. Pal +
D´epartement de g´enie informatique et g´enie logiciel +
´Ecole Polytechnique de Montr´eal, +
D´epartement de g´enie informatique et g´enie logiciel +
´Ecole Polytechnique de Montr´eal, +
Qu´ebec, Canada +
Qu´ebec, Canada +
('2811524', 'Md. Kamrul Hasan', 'md. kamrul hasan')md-kamrul.hasan@polymtl.ca +
christopher.pal@polymtl.ca +
cfa92e17809e8d20ebc73b4e531a1b106d02b38cAdvances in Data Analysis and Classification manuscript No. +
(will be inserted by the editor) +
Parametric Classification with Soft Labels using the +
Evidential EM Algorithm +
Linear Discriminant Analysis vs. Logistic Regression +
Received: date / Accepted: date +
('1772306', 'Benjamin Quost', 'benjamin quost')
('2259794', 'Shoumei Li', 'shoumei li')
cf5c9b521c958b84bb63bea9d5cbb522845e4ba7Towards Arbitrary-View Face Alignment by Recommendation Trees∗ +
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2SenseTime Group +
('2226254', 'Shizhan Zhu', 'shizhan zhu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
zs014@ie.cuhk.edu.hk, chengli@sensetime.com, ccloy@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk +
cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150Detection of emotions from video in non-controlled +
environment +
To cite this version: +
Processing. Universit´e Claude Bernard - Lyon I, 2013. English. . +
+
HAL Id: tel-01166539 +
https://tel.archives-ouvertes.fr/tel-01166539v2 +
Submitted on 23 Jun 2015 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')
('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')
cfdc632adcb799dba14af6a8339ca761725abf0aProbabilistic Formulations of Regression with Mixed +
Guidance +
('38688704', 'Aubrey Gress', 'aubrey gress')
('38673135', 'Ian Davidson', 'ian davidson')
adgress@ucdavis.edu, davidson@cs.ucdavis.edu +
cfa931e6728a825caada65624ea22b840077f023Deformable Generator Network: Unsupervised Disentanglement of +
Appearance and Geometry +
College of Automation, Harbin Engineering University, Heilongjiang, China
University of California, Los Angeles, California, USA
('7306249', 'Xianglei Xing', 'xianglei xing')
('9659905', 'Ruiqi Gao', 'ruiqi gao')
('50495880', 'Tian Han', 'tian han')
('3133970', 'Song-Chun Zhu', 'song-chun zhu')
('39092098', 'Ying Nian Wu', 'ying nian wu')
cfc30ce53bfc204b8764ebb764a029a8d0ad01f4Regularizing Deep Neural Networks by Noise: +
Its Interpretation and Optimization +
Dept. of Computer Science and Engineering, POSTECH, Korea +
('2018393', 'Hyeonwoo Noh', 'hyeonwoo noh')
('2205770', 'Tackgeun You', 'tackgeun you')
('8511875', 'Jonghwan Mun', 'jonghwan mun')
('40030651', 'Bohyung Han', 'bohyung han')
{shgusdngogo,tackgeun.you,choco1916,bhhan}@postech.ac.kr +
cff911786b5ac884bb71788c5bc6acf6bf569effMulti-task Learning of Cascaded CNN for +
Facial Attribute Classification +
School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
('41034942', 'Ni Zhuang', 'ni zhuang')
('40461734', 'Yan Yan', 'yan yan')
('47336404', 'Si Chen', 'si chen')
('37414077', 'Hanzi Wang', 'hanzi wang')
Email: ni.zhuang@foxmail.com, {yanyan, hanzi.wang}@xmu.edu.cn, chensi@xmut.edu.cn +
cf09e2cb82961128302b99a34bff91ec7d198c7cOFFICE ENTRANCE CONTROL WITH FACE RECOGNITION +
Dept. of Computer Science and Information Engineering, +
National Taiwan University, Taiwan
Dept. of Computer Science and Information Engineering, +
National Taiwan University, Taiwan
('1721106', 'Yun-Che Tsai', 'yun-che tsai')
('1703041', 'Chiou-Shann Fuh', 'chiou-shann fuh')
E-mail: jpm9ie8c@gmail.com +
E-mail: fuh@csie.ntu.edu.tw +
cfc4aa456d9da1a6fabd7c6ca199332f03e35b29University of Amsterdam and Renmin University at TRECVID
Searching Video, Detecting Events and Describing Video +
University of Amsterdam
Zhejiang University
Amsterdam, The Netherlands +
Hangzhou, China +
Renmin University of China
Beijing, China +
('46741353', 'Cees G. M. Snoek', 'cees g. m. snoek')
('40240283', 'Jianfeng Dong', 'jianfeng dong')
('9931285', 'Xirong Li', 'xirong li')
('48631563', 'Xiaoxu Wang', 'xiaoxu wang')
('24332496', 'Qijie Wei', 'qijie wei')
('2896042', 'Weiyu Lan', 'weiyu lan')
('2304222', 'Efstratios Gavves', 'efstratios gavves')
('13142264', 'Noureldien Hussein', 'noureldien hussein')
('1769315', 'Dennis C. Koelma', 'dennis c. koelma')
('1705182', 'Arnold W. M. Smeulders', 'arnold w. m. smeulders')
cf805d478aeb53520c0ab4fcdc9307d093c21e52Finding Tiny Faces in the Wild with Generative Adversarial Network +
Mingli Ding2 +
Visual Computing Center, King Abdullah University of Science and Technology (KAUST
School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT
Institute of Software, Chinese Academy of Sciences (CAS
Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of +
re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned +
by the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in. +
('2860057', 'Yancheng Bai', 'yancheng bai')
('48378890', 'Yongqiang Zhang', 'yongqiang zhang')
('2931652', 'Bernard Ghanem', 'bernard ghanem')
baiyancheng20@gmail.com +
{zhangyongqiang, dingml}@hit.edu.cn +
bernard.ghanem@kaust.edu.sa +
cfdc4d0f8e1b4b9ced35317d12b4229f2e3311abQuaero at TRECVID 2010: Semantic Indexing +
1UJF-Grenoble 1 / UPMF-Grenoble 2 / Grenoble INP / CNRS, LIG UMR 5217, Grenoble, F-38041, France +
Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
('2357942', 'Bahjat Safadi', 'bahjat safadi')
('1921500', 'Yubing Tong', 'yubing tong')
('1981024', 'Franck Thollard', 'franck thollard')
('40303076', 'Tobias Gehrig', 'tobias gehrig')
('3025777', 'Hazim Kemal Ekenel', 'hazim kemal ekenel')
cf86616b5a35d5ee777585196736dfafbb9853b5This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Learning Multiscale Active Facial Patches for +
Expression Analysis +
('29803023', 'Lin Zhong', 'lin zhong')
('1734954', 'Qingshan Liu', 'qingshan liu')
('39606160', 'Peng Yang', 'peng yang')
('1768190', 'Junzhou Huang', 'junzhou huang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
cacd51221c592012bf2d9e4894178c1c1fa307ca +
ISSN: 2277-3754 +
ISO 9001:2008 Certified +
International Journal of Engineering and Innovative Technology (IJEIT) +
Volume 4, Issue 11, May 2015 +
Face and Expression Recognition Techniques: A +
Review +
+
Advanced Communication & Signal Processing Laboratory, Department of Electronics & Communication +
engineering, Government College of Engineering Kannur, Kerala, India
('35135054', 'A. Ranjith Ram', 'a. ranjith ram')
ca0363d29e790f80f924cedaf93cb42308365b3dFacial Expression Recognition in Image Sequences +
using Geometric Deformation Features and Support +
Vector Machines +
yAristotle University of Thessaloniki
Department of Informatics +
Box 451 +
54124 Thessaloniki, Greece +
('1754270', 'Irene Kotsia', 'irene kotsia')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
email: fekotsia,pitasg@aiia.csd.auth.gr +
cad52d74c1a21043f851ae14c924ac689e197d1fFrom Ego to Nos-vision: +
Detecting Social Relationships in First-Person Views +
Universit`a degli Studi di Modena e Reggio Emilia +
Via Vignolese 905, 41125 Modena - Italy +
('2452552', 'Stefano Alletto', 'stefano alletto')
('2275344', 'Giuseppe Serra', 'giuseppe serra')
('2175529', 'Simone Calderara', 'simone calderara')
('2059900', 'Francesco Solera', 'francesco solera')
('1741922', 'Rita Cucchiara', 'rita cucchiara')
{name.surname}@unimore.it +
cac8bb0e393474b9fb3b810c61efdbc2e2c25c29
ca54d0a128b96b150baef392bf7e498793a6371fImprove Pedestrian Attribute Classification by +
Weighted Interactions from Other Attributes +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences
('1739258', 'Jianqing Zhu', 'jianqing zhu')
('40397682', 'Shengcai Liao', 'shengcai liao')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
jianqingzhu@foxmail.com, {scliao, zlei, szli}@cbsr.ia.ac.cn +
cad24ba99c7b6834faf6f5be820dd65f1a755b29Understanding hand-object +
manipulation by modeling the +
contextual relationship between actions, +
grasp types and object attributes +
Journal Title +
XX(X):1–14 +
c(cid:13)The Author(s) 2016 +
Reprints and permission: +
sagepub.co.uk/journalsPermissions.nav +
DOI: 10.1177/ToBeAssigned +
www.sagepub.com/ +
('3172280', 'Minjie Cai', 'minjie cai')
('37991449', 'Kris M. Kitani', 'kris m. kitani')
('9467266', 'Yoichi Sato', 'yoichi sato')
cadba72aa3e95d6dcf0acac828401ddda7ed8924THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES +
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +
Algorithms and VLSI Architectures +
for Low-Power Mobile Face Verification +
par +
Acceptée sur proposition du jury: +
Prof. F. Pellandini, directeur de thèse +
PD Dr. M. Ansorge, co-directeur de thèse +
Prof. P.-A. Farine, rapporteur +
Dr. C. Piguet, rapporteur +
Soutenue le 2 juin 2005 +
INSTITUT DE MICROTECHNIQUE +
UNIVERSITÉ DE NEUCHÂTEL +
2006 +
('1844418', 'Jean-Luc Nagel', 'jean-luc nagel')
ca37eda56b9ee53610c66951ee7ca66a35d0a846Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection +
Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney
Language Technologies Institute, Carnegie Mellon University
Carnegie Mellon University
('1729163', 'Xiaojun Chang', 'xiaojun chang')
('39033919', 'Yi Yang', 'yi yang')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
('1752601', 'Eric P. Xing', 'eric p. xing')
{cxj273, yee.i.yang}@gmail.com, {alex, epxing, yaoliang}@cs.cmu.edu +
ca606186715e84d270fc9052af8500fe23befbdaUsing Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for +
Face Recognition +
Department of Electrical Engineering, +
Iran Univ. of Science and Technology, +
Narmak, Tehran, Iran +
Department of Electrical Engineering, +
Iran Univ. of Science and Technology, +
Department of Electrical Engineering, +
Iran Univ. of Science and Technology, +
Narmak, Tehran, Iran +
Narmak, Tehran, Iran +
('9267982', 'Seyed Mohammad Seyedzade', 'seyed mohammad seyedzade')
('2532375', 'Sattar Mirzakuchaki', 'sattar mirzakuchaki')
('2535533', 'Amir Tahmasbi', 'amir tahmasbi')
Email: sm.seyedzade@ieee.org +
Email: m_kuchaki@iust.ac.ir +
Email: a.tahmasbi@ieee.org +
e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6Illumination invariant face recognition and impostor rejection +
using different MINACE filter algorithms +
Carnegie Mellon University, Pittsburgh, PA
('8142777', 'Rohit Patnaik', 'rohit patnaik')
('34925745', 'David Casasent', 'david casasent')
e4bf70e818e507b54f7d94856fecc42cc9e0f73dIJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 +
FACE RECOGNITION UNDER VARYING BLUR IN AN +
UNCONSTRAINED ENVIRONMENT +
M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India
Information Technology, Madras Institute of Technology, TamilNadu, India, email
anubhapearl@gmail.com +
hemalatha.ch@gmail.com +
e4bc529ced68fae154e125c72af5381b1185f34ePERCEPTUAL GOAL SPECIFICATIONS FOR REINFORCEMENT LEARNING +
A Thesis Proposal +
Presented to +
The Academic Faculty +
by +
In Partial Fulfillment +
of the Requirements for the Degree +
Doctor of Philosophy in the +
School of Interactive Computing +
Georgia Institute of Technology
November 2017 +
('12313871', 'Ashley D. Edwards', 'ashley d. edwards')
e465f596d73f3d2523dbf8334d29eb93a35f6da0
e4aeaf1af68a40907fda752559e45dc7afc2de67
e4c3d5d43cb62ac5b57d74d55925bdf76205e306
e42998bbebddeeb4b2bedf5da23fa5c4efc976faGeneric Active Appearance Models Revisited +
Imperial College London, United Kingdom
School of Computer Science, University of Lincoln, United Kingdom
Faculty of Electrical Engineering, Mathematics and Computer Science, University
of Twente, The Netherlands +
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{gt204, ja310, s.zafeiriou, m.pantic}@imperial.ac.uk +
e4a1b46b5c639d433d21b34b788df8d81b518729JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Side Information for Face Completion: a Robust +
PCA Approach +
('4091869', 'Niannan Xue', 'niannan xue')
('3234063', 'Jiankang Deng', 'jiankang deng')
('1902288', 'Shiyang Cheng', 'shiyang cheng')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
e4c81c56966a763e021938be392718686ba9135e3,100+OPEN ACCESS BOOKS103,000+INTERNATIONALAUTHORS AND EDITORS106+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Visual Cortex - Current Status and PerspectivesDownloaded from: http://www.intechopen.com/books/visual-cortex-current-status-and-perspectivesPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at book.department@intechopen.com
e4e95b8bca585a15f13ef1ab4f48a884cd6ecfccFace Recognition with Independent Component Based +
Super-resolution +
aFaculty of Engineering and Natural Sciences, Sabanci Univ., Istanbul, Turkiye, 34956 +
bSchool of Elec. and Comp. Eng. , Georgia Inst. of Tech., Atlanta, GA, USA, 30332-0250 +
('1844879', 'Osman Gokhan Sezer', 'osman gokhan sezer')
('3975060', 'Yucel Altunbasak', 'yucel altunbasak')
('31849282', 'Aytul Ercil', 'aytul ercil')
e4df83b7424842ff5864c10fa55d38eae1c45facHindawi Publishing Corporation +
Discrete Dynamics in Nature and Society +
Volume 2009, Article ID 916382, 8 pages +
doi:10.1155/2009/916382 +
Research Article +
Locally Linear Discriminate Embedding for +
Face Recognition +
Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia
Received 21 January 2009; Accepted 12 October 2009 +
Recommended by B. Sagar +
A novel method based on the local nonlinear mapping is presented in this research. The method +
is called Locally Linear Discriminate Embedding (cid:2)LLDE(cid:3). LLDE preserves a local linear structure +
of a high-dimensional space and obtains a compact data representation as accurately as possible +
in embedding space (cid:2)low dimensional(cid:3) before recognition. For computational simplicity and fast +
processing, Radial Basis Function (cid:2)RBF(cid:3) classifier is integrated with the LLDE. RBF classifier +
is carried out onto low-dimensional embedding with reference to the variance of the data. To +
validate the proposed method, CMU-PIE database has been used and experiments conducted in +
this research revealed the efficiency of the proposed methods in face recognition, as compared to +
the linear and non-linear approaches. +
the Creative Commons Attribution License, which permits unrestricted use, distribution, and +
reproduction in any medium, provided the original work is properly cited. +
1. Introduction +
Linear subspace analysis has been extensively applied to face recognition. A successful face +
recognition methodology is largely dependent on the particular choice of features used by +
the classifier. Linear methods are easy to understand and are very simple to implement, but +
the linearity assumption does not hold in many real-world scenarios. Face appearance lies in +
a high-dimensional nonlinear manifold. A disadvantage of the linear techniques is that they +
fail to capture the characteristics of the nonlinear appearance manifold. This is due to the +
fact that the linear methods extract features only from the input space without considering +
the nonlinear information between the components of the input data. However, a globally +
nonlinear mapping can often be approximated using a linear mapping in a local region. This +
has motivated the design of the nonlinear mapping methods in this study. +
The history of the nonlinear mapping is long; it can be traced back to Sammon’s +
mapping in 1969 (cid:5)1(cid:6). Over time, different techniques have been proposed such as the +
projection pursuit (cid:5)2(cid:6), the projection pursuit regression (cid:5)3(cid:6), self-organizing maps or SOM +
('2008201', 'Eimad E. Abusham', 'eimad e. abusham')
('32191265', 'E. K. Wong', 'e. k. wong')
('32191265', 'E. K. Wong', 'e. k. wong')
Correspondence should be addressed to Eimad E. Abusham, eimad.eldin@mmu.edu.my +
e4e3faa47bb567491eaeaebb2213bf0e1db989e1Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +
Empirical Risk Minimization for Metric +
Learning Using Privileged Information +
School of Computer and Information, Hefei University of Technology, China
Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia
('2028727', 'Xun Yang', 'xun yang')
('15970836', 'Meng Wang', 'meng wang')
('1763785', 'Luming Zhang', 'luming zhang')
('1692693', 'Dacheng Tao', 'dacheng tao')
{hfutyangxun, eric.mengwang, zglumg}@gmail.com; +
dacheng.tao@uts.edu.au; +
e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5Facial Expression Recognition Based on Constrained +
Local Models and Support Vector Machines +
('1901962', 'Nikolay Neshov', 'nikolay neshov')
('34945173', 'Ivo Draganov', 'ivo draganov')
('1750280', 'Agata Manolova', 'agata manolova')
e476cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf
e4c2f8e4aace8cb851cb74478a63d9111ca550aeDISTRIBUTED ONE-CLASS LEARNING +
cid:63)Queen Mary University of London, Imperial College London
('9920557', 'Ali Shahin Shamsabadi', 'ali shahin shamsabadi')
('1763096', 'Hamed Haddadi', 'hamed haddadi')
('1713138', 'Andrea Cavallaro', 'andrea cavallaro')
e475e857b2f5574eb626e7e01be47b416deff268Facial Emotion Recognition Using Nonparametric +
Weighted Feature Extraction and Fuzzy Classifier +
('2121174', 'Maryam Imani', 'maryam imani')
('1801348', 'Gholam Ali Montazer', 'gholam ali montazer')
e4391993f5270bdbc621b8d01702f626fba36fc2Author manuscript, published in "18th Scandinavian Conference on Image Analysis (2013)" +
DOI : 10.1007/978-3-642-38886-6_31 +
e43045a061421bd79713020bc36d2cf4653c044dA New Representation of Skeleton Sequences for 3D Action Recognition +
The University of Western Australia
Murdoch University
('2796959', 'Qiuhong Ke', 'qiuhong ke')
('1698675', 'Mohammed Bennamoun', 'mohammed bennamoun')
('1782428', 'Senjian An', 'senjian an')
qiuhong.ke@research.uwa.edu.au +
{mohammed.bennamoun,senjian.an,farid.boussaid}@uwa.edu.au +
f.sohel@murdoch.edu.au +
e4d8ba577cabcb67b4e9e1260573aea708574886UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO +
AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA +
Gaspare Giuliano Elias Bruno +
Tese de Doutorado apresentada ao Programa +
de P´os-gradua¸c˜ao em Engenharia de Sistemas e +
Computa¸c˜ao, COPPE, da Universidade Federal +
do Rio de Janeiro, como parte dos requisitos +
necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em +
Engenharia de Sistemas e Computa¸c˜ao. +
Orientadores: Edmundo Albuquerque de +
Souza e Silva +
Rosa Maria Meri Le˜ao +
Rio de Janeiro +
Janeiro de 2016 +
e475deadd1e284428b5e6efd8fe0e6a5b83b9dcdAccepted in Pattern Recognition Letters +
Pattern Recognition Letters +
journal homepage: www.elsevier.com +
Are you eligible? Predicting adulthood from face images via class specific mean +
autoencoder +
IIIT-Delhi, New Delhi, 110020, India +
Article history: +
Received 15 March 2017 +
('2220719', 'Maneet Singh', 'maneet singh')
('1925017', 'Shruti Nagpal', 'shruti nagpal')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('39129417', 'Richa Singh', 'richa singh')
e4abc40f79f86dbc06f5af1df314c67681dedc51Head Detection with Depth Images in the Wild +
Department of Engineering ”Enzo Ferrari” +
University of Modena and Reggio Emilia, Italy
Keywords: +
Head Detection, Head Localization, Depth Maps, Convolutional Neural Network +
('6125279', 'Diego Ballotta', 'diego ballotta')
('12010968', 'Guido Borghi', 'guido borghi')
('1723285', 'Roberto Vezzani', 'roberto vezzani')
('1741922', 'Rita Cucchiara', 'rita cucchiara')
{name.surname}@unimore.it +
e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5bImplicit Video Multi-Emotion Tagging by Exploiting Multi-Expression +
Relations +
('1771215', 'Zhilei Liu', 'zhilei liu')
('1791319', 'Shangfei Wang', 'shangfei wang')
('3558606', 'Zhaoyu Wang', 'zhaoyu wang')
('1726583', 'Qiang Ji', 'qiang ji')
e48e94959c4ce799fc61f3f4aa8a209c00be8d7fHindawi Publishing Corporation +
The Scientific World Journal +
Volume 2013, Article ID 135614, 6 pages +
http://dx.doi.org/10.1155/2013/135614 +
Research Article +
Design of an Efficient Real-Time Algorithm Using Reduced +
Feature Dimension for Recognition of Speed Limit Signs +
Sogang University, Seoul 121-742, Republic of Korea
2 Samsung Techwin R&D Center, Security Solution Division, 701 Sampyeong-dong, Bundang-gu, Seongnam-si, +
Gyeonggi 463-400, Republic of Korea +
Received 28 August 2013; Accepted 1 October 2013 +
Academic Editors: P. Daponte, M. Nappi, and N. Nishchal +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
We propose a real-time algorithm for recognition of speed limit signs from a moving vehicle. Linear Discriminant Analysis (LDA) +
required for classification is performed by using Discrete Cosine Transform (DCT) coefficients. To reduce feature dimension in +
LDA, DCT coefficients are selected by a devised discriminant function derived from information obtained by training. Binarization +
and thinning are performed on a Region of Interest (ROI) obtained by preprocessing a detected ROI prior to DCT for further +
reduction of computation time in DCT. This process is performed on a sequence of image frames to increase the hit rate of +
recognition. Experimental results show that arithmetic operations are reduced by about 60%, while hit rates reach about 100% +
compared to previous works. +
1. Introduction +
Driver safety is the main concern of the advanced vehicle +
system which became implementable due to the develop- +
ment of the autonomous driving, automatic control, and +
imaging technology. An advanced vehicle system gives driver +
information related to safety by sensing the surroundings +
automatically [1]. Speed limit signs recognition is regarded +
to be helpful in safety for drivers using advanced vehicle +
system. The system needs to recognize the speed limit sign +
in the distance quickly and accurately in order to give +
the driver precaution in time since vehicle is moving fast. +
But existing algorithms perform recognition by using many +
features extracted from captured image, requiring a large +
amount of arithmetic operations for classification [2]. +
Several classification algorithms have been proposed, +
which include Neural Networks [2, 3], Support Vector +
Machine (SVM) [2], and Linear Discriminant Analysis +
(LDA) [2, 4]. Among these, SVM has relatively higher recog- +
nition rate, and LDA is used in many classification applica- +
tions due to its low computational complexity. However, its +
computational complexity needs to be further reduced to be +
used in real-time application. It can be achieved by reducing +
the number of inputs of LDA. +
This paper proposes an efficient real-time algorithm for +
recognition of speed limit signs by using reduced feature +
dimension. In this research study, DCT is employed and parts +
of Discrete Cosine Transform (DCT) coefficients are used as +
inputs to LDA instead of features extracted from image. DCT +
coefficients are selected by a devised discriminant function. +
To further reduce DCT computation time, binarization and +
thinning are applied to the detected Region of Interest (ROI). +
Image of speed limit sign in the distance obtained from cam- +
era has a low resolution and it gives poor rate of recognition. +
To resolve this problem, this paper proposes a recognition +
system using classification results on a sequence of frames. +
It can enhance hit rate of recognition by accumulating the +
probability of single frame recognition. +
2. Background +
In this section, LDA is briefly described, which is popularly +
employed for classification. LDA is a classical statistical +
('2012225', 'Hanmin Cho', 'hanmin cho')
('5984008', 'Seungwha Han', 'seungwha han')
('6348959', 'Sun-Young Hwang', 'sun-young hwang')
('2012225', 'Hanmin Cho', 'hanmin cho')
Correspondence should be addressed to Sun-Young Hwang; hwang@sogang.ac.kr +
e496d6be415038de1636bbe8202cac9c1cea9dbeFacial Expression Recognition in Older Adults using +
Deep Machine Learning +
National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce
Italy +
('2886068', 'Andrea Caroppo', 'andrea caroppo')
('1796761', 'Alessandro Leone', 'alessandro leone')
('1737181', 'Pietro Siciliano', 'pietro siciliano')
{andrea.caroppo,alessandro.leone,pietro.siciliano}@le.imm.cnr.it +
e43cc682453cf3874785584fca813665878adaa7www.ijecs.in +
International Journal Of Engineering And Computer Science ISSN:2319-7242 +
Volume 3 Issue 10 October, 2014 Page No.8830-8834 +
Face Recognition using Local Derivative Pattern Face +
Descriptor +
Department of Electronics and Telecommunication +
Datta Meghe College of Engineering
Airoli, Navi Mumbai, India 1,2 +
Mob: 99206746061 +
Mob: 99870353142 +
pranitachavan42@gmail.com 1 +
djpethe@gmail.com 2 +
fec6648b4154fc7e0892c74f98898f0b51036dfeA Generic Face Processing +
Framework: Technologies, +
Analyses and Applications +
A Thesis Submitted in Partial Ful(cid:12)lment +
of the Requirements for the Degree of +
Master of Philosophy +
in +
Computer Science and Engineering +
Supervised by +
c(cid:13)The Chinese University of Hong Kong
July 2003 +
The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in +
a proposed publication must seek copyright release from the Dean of the +
Graduate School. +
('1681775', 'Michael R. Lyu', 'michael r. lyu')
fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9Enhancing Recommender Systems for TV by Face Recognition +
iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium
Keywords: +
Recommender System, Face Recognition, Face Detection, TV, Emotion Detection. +
('1738833', 'Toon De Pessemier', 'toon de pessemier')
('3441798', 'Damien Verlee', 'damien verlee')
('1698239', 'Luc Martens', 'luc martens')
{toon.depessemier, luc.martens}@intec.ugent.be +
fe9c460d5ca625402aa4d6dd308d15a40e1010faNeural Architecture for Temporal Emotion +
Classification +
Universit¨at Ulm, Neuroinformatik, Germany +
('1681327', 'Roland Schweiger', 'roland schweiger')
('2331203', 'Pierre Bayerl', 'pierre bayerl')
('1706025', 'Heiko Neumann', 'heiko neumann')
froland.schweiger,pierre.bayerl,heiko.neumanng@informatik.uni-ulm.de +
fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) +
Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 47-53 +
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197 +
www.iosrjournals.org +
Performance Evaluation of Gabor Wavelet Features for Face +
Representation and Recognition +
Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India
University B.D.T.College of Engineering, Visvesvaraya
Technological University, Davanagere, Karnataka, India
('2038371', 'M. E. Ashalatha', 'm. e. ashalatha')
('3283067', 'Mallikarjun S. Holi', 'mallikarjun s. holi')
fe464b2b54154d231671750053861f5fd14454f5Multi Joint Action in CoTeSys +
- Setup and Challenges - +
Technical report CoTeSys-TR-10-01 +
D. Brˇsˇci´c, F. Rohrm¨uller, O. Kourakos, S. Sosnowski, D. Althoff, M. Lawitzky, +
{drazen, rohrm, omirosk, sosnowski, dalthoff, lawitzky, moertl, rambow, vicky, +
M. Eggers, C. Mayer, T. Kruse, A. Kirsch, M. Beetz and B. Radig 2 +
T. Lorenz and A. Schub¨o 4 +
P. Basili and S. Glasauer 5 +
W. Maier and E. Steinbach 7 +
Institute of Automatic Control
4 Experimental Psychology Unit +
Engineering +
Department of Psychology +
Department of Electrical Engineering +
Ludwig-Maximilians-Universit¨at +
and Information Technology +
Technische Universit¨at M¨unchen +
Arcisstraße 21, 80333 M¨unchen +
2Intelligent Autonomous Systems +
Department of Informatics +
M¨unchen +
Leopoldstraße 13, 80802 M¨unchen +
5Center for Sensorimotor Research +
Clinical Neurosciences and +
Department of Neurology +
Technische Universit¨at M¨unchen +
Ludwig-Maximilians-Universit¨at +
Boltzmannstraße 3, 85748 Garching +
M¨unchen +
bei M¨unchen +
Marchionistraße 23, 81377 M¨unchen +
Institute for Human-Machine
6Robotics and Embedded Systems +
Communication +
Department of Informatics +
Department of Electrical Engineering +
Technische Universit¨at M¨unchen +
and Information Technology +
Boltzmannstraße 3, 85748 Garching +
Technische Universit¨at M¨unchen +
Arcisstraße 21, 80333 M¨unchen +
bei M¨unchen +
Institute for Media Technology
Department of Electrical Engineering +
and Information Technology +
Technische Universit¨at M¨unchen +
Arcisstraße 21, 80333 M¨unchen +
('46953125', 'X. Zang', 'x. zang')
('47824592', 'W. Wang', 'w. wang')
('48172476', 'A. Bannat', 'a. bannat')
('30849638', 'G. Panin', 'g. panin')
medina, xueliang zang, wangwei, dirk, kuehnlen, hirche, buss}@lsr.ei.tum.de +
{eggers, mayerc, kruset, kirsch, beetz, radig}@in.tum.de +
{blume, bannat, rehrl, wallhoff}@tum.de +
{lorenz, schuboe}@psy.lmu.de +
{p.basili,s.glasauer}@lrz.uni-muenchen.de +
{lenz,roeder,panin,knoll}@in.tum.de +
{werner.maier, eckehard.steinbach}@tum.de +
fe7c0bafbd9a28087e0169259816fca46db1a837
fe5df5fe0e4745d224636a9ae196649176028990University of Massachusetts - Amherst
Dissertations +
9-1-2010 +
Dissertations and Theses +
Using Context to Enhance the Understanding of +
Face Images +
Follow this and additional works at: http://scholarworks.umass.edu/open_access_dissertations +
Recommended Citation +
Jain, Vidit, "Using Context to Enhance the Understanding of Face Images" (2010). Dissertations. Paper 287. +
('2246870', 'Vidit Jain', 'vidit jain')ScholarWorks@UMass Amherst +
University of Massachusetts - Amherst, vidit.jain@gmail.com +
This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has +
been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact +
scholarworks@library.umass.edu. +
fe961cbe4be0a35becd2d722f9f364ec3c26bd34Computer-based Tracking, Analysis, and Visualization of Linguistically +
Significant Nonmanual Events in American Sign Language (ASL) +
Boston University / **Rutgers University / ***Gallaudet University
Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA
Rutgers University, Computer and Information Sciences, 110 Frelinghuysen Road, Piscataway, NJ
Gallaudet University, Technology Access Program, 800 Florida Ave NE, Washington, DC
('1732359', 'Carol Neidle', 'carol neidle')
('38079056', 'Jingjing Liu', 'jingjing liu')
('39132952', 'Bo Liu', 'bo liu')
('4340744', 'Xi Peng', 'xi peng')
('2467082', 'Christian Vogler', 'christian vogler')
('1711560', 'Dimitris Metaxas', 'dimitris metaxas')
E-mail: carol@bu.edu, jl1322@cs.rutgers.edu, lb507@cs.rutgers.edu, px13@cs.rutgers.edu, +
christian.vogler@gallaudet.edu, dnm@ cs.rutgers.edu +
feb6e267923868bff6e2108603d00fdfd65251caFebruary 1, 2013 15:16 WSPC/INSTRUCTION FILE +
S0218213012500297 +
International Journal on Artificial Intelligence Tools +
Vol. 22, No. 1 (2013) 1250029 (30 pages) +
c(cid:13) World Scientific Publishing Company +
DOI: 10.1142/S0218213012500297 +
UNSUPERVISED DISCOVERY OF VISUAL FACE CATEGORIES +
Institute of Systems Engineering, Southeast University, Nanjing, China
University of Nevada, Reno, USA
College of Computer and Information Sciences
King Saud University, Riyadh 11543, Saudi Arabia
College of Computer and Information Sciences
King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
GHULAM MUHAMMAD +
College of Computer and Information Sciences
King Saud University, Riyadh 11543, Saudi Arabia
Received 30 January 2012 +
Accepted 10 May 2012 +
Published +
Human faces can be arranged into different face categories using information from common visual +
cues such as gender, ethnicity, and age. It has been demonstrated that using face categorization as a +
precursor step to face recognition improves recognition rates and leads to more graceful errors.1 +
Although face categorization using common visual cues yields meaningful face categories, +
developing accurate and robust gender, ethnicity, and age categorizers is a challenging issue. +
Moreover, it limits the overall number of possible face categories and, in practice, yields unbalanced +
face categories which can compromise recognition performance. This paper investigates ways to +
automatically discover a categorization of human faces from a collection of unlabeled face images +
without relying on predefined visual cues. Specifically, given a set of face images from a group of +
known individuals (i.e., gallery set), our goal is finding ways to robustly partition the gallery set +
(i.e., face categories). The objective is being able to assign novel images of the same individuals +
(i.e., query set) to the correct face category with high accuracy and robustness. To address the issue +
of face category discovery, we represent faces using local features and apply unsupervised learning +
(i.e., clustering). To categorize faces in novel images, we employ nearest-neighbor algorithms +
1250029-1 +
('2884262', 'Shicai Yang', 'shicai yang')
('1808451', 'George Bebis', 'george bebis')
('2363759', 'Muhammad Hussain', 'muhammad hussain')
('39344692', 'Anwar M. Mirza', 'anwar m. mirza')
shicai.yang@gmail.com +
bebis@cse.unr.edu +
mhussain@ksu.edu.sa +
ghulam@ksu.edu.sa +
anwar.m.mirza@gmail.com +
fe48f0e43dbdeeaf4a03b3837e27f6705783e576
fea83550a21f4b41057b031ac338170bacda8805Learning a Metric Embedding +
for Face Recognition +
using the Multibatch Method +
Orcam Ltd., Jerusalem, Israel +
('46273386', 'Oren Tadmor', 'oren tadmor')
('1743988', 'Yonatan Wexler', 'yonatan wexler')
('31601132', 'Tal Rosenwein', 'tal rosenwein')
('2554670', 'Shai Shalev-Shwartz', 'shai shalev-shwartz')
('3140335', 'Amnon Shashua', 'amnon shashua')
firstname.lastname@orcam.com +
feeb0fd0e254f38b38fe5c1022e84aa43d63f7ccEURECOM +
Multimedia Communications Department +
and +
Mobile Communications Department +
2229, route des Crˆetes +
B.P. 193 +
06904 Sophia-Antipolis +
FRANCE +
Research Report RR-11-255 +
Search Pruning with Soft Biometric Systems: +
Efficiency-Reliability Tradeoff +
June 1st, 2011 +
Last update June 1st, 2011 +
1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco, +
Monaco Telecom, Orange, SAP, SFR, Sharp, STEricsson, Swisscom, Symantec, Thales. +
('3299530', 'Antitza Dantcheva', 'antitza dantcheva')
('15758502', 'Arun Singh', 'arun singh')
('1688531', 'Petros Elia', 'petros elia')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
fe108803ee97badfa2a4abb80f27fa86afd9aad9
fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139Rahman et al. EURASIP Journal on Image and Video Processing (2015) 2015:35 +
DOI 10.1186/s13640-015-0090-5 +
RESEARCH +
Open Access +
Bayesian face recognition using 2D +
Gaussian-Hermite moments +
('47081388', 'S. M. Mahbubur Rahman', 's. m. mahbubur rahman')
('2021126', 'Tamanna Howlader', 'tamanna howlader')
c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3dModeling for part-based visual object +
detection based on local features +
Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Rheinisch-Westf¨alischen Technischen Hochschule Aachen +
zur Erlangung des akademischen Grades eines Doktors +
der Ingenieurwissenschaften genehmigte Dissertation +
vorgelegt von +
Diplom-Ingenieur +
aus Neuss +
Berichter: +
Univ.-Prof. Dr.-Ing. Jens-Rainer Ohm +
Univ.-Prof. Dr.-Ing. Til Aach +
Tag der m¨undlichen Pr¨ufung: 28. September 2011 +
Diese Dissertation ist auf den Internetseiten der +
Hochschulbibliothek online verf¨ugbar. +
('2447988', 'Mark Asbach', 'mark asbach')
c86e6ed734d3aa967deae00df003557b6e937d3dGenerative Adversarial Networks with +
Decoder-Encoder Output Noise +
conditional distribution of their neighbors. In [32], Portilla and +
Simoncelli proposed a parametric texture model based on joint +
statistics, which uses a decomposition method that is called +
steerable pyramid decomposition to decompose the texture +
of images. An example-based super-resolution algorithm [11] +
was proposed in 2002, which uses a Markov network to model +
the spatial relationship between the pixels of an image. A +
scene completion algorithm [16] was proposed in 2007, which +
applied a semantic scene match technique. These traditional +
algorithms can be applied to particular image generation tasks, +
such as texture synthesis and super-resolution. Their common +
characteristic is that they predict the images pixel by pixel +
rather than generate an image as a whole, and the basic idea +
of them is to make an interpolation according to the existing +
part of the images. Here, the problem is, given a set of images, +
can we generate totally new images with the same distribution +
of the given ones? +
('2421012', 'Guoqiang Zhong', 'guoqiang zhong')
('46874300', 'Wei Gao', 'wei gao')
('3142351', 'Yongbin Liu', 'yongbin liu')
('47796538', 'Youzhao Yang', 'youzhao yang')
c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS +
J´er´emie Nicolle +
K´evin Bailly +
Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France +
('3074790', 'Vincent Rapp', 'vincent rapp')
('1680828', 'Mohamed Chetouani', 'mohamed chetouani')
{nicolle, bailly, rapp, chetouani}@isir.upmc.fr +
c87f7ee391d6000aef2eadb49f03fc237f4d11701 +
A real-time and unsupervised face Re-Identification system for Human-Robot +
Interaction +
Intelligent Behaviour Understanding Group, Imperial College London, London, UK
A B S T R A C T +
In the context of Human-Robot Interaction (HRI), face Re-Identification (face Re-ID) aims to verify if certain detected faces have already been +
observed by robots. The ability of distinguishing between different users is crucial in social robots as it will enable the robot to tailor the interaction +
strategy toward the users’ individual preferences. So far face recognition research has achieved great success, however little attention has been paid +
to the realistic applications of Face Re-ID in social robots. In this paper, we present an effective and unsupervised face Re-ID system which +
simultaneously re-identifies multiple faces for HRI. This Re-ID system employs Deep Convolutional Neural Networks to extract features, and an +
online clustering algorithm to determine the face’s ID. Its performance is evaluated on two datasets: the TERESA video dataset collected by the +
TERESA robot, and the YouTube Face Dataset (YTF Dataset). We demonstrate that the optimised combination of techniques achieves an overall +
93.55% accuracy on TERESA dataset and an overall 90.41% accuracy on YTF dataset. We have implemented the proposed method into a software +
module in the HCI^2 Framework [1] for it to be further integrated into the TERESA robot [2], and has achieved real-time performance at 10~26 +
Frames per second. +
Keywords: Real-Time Face Re-Identification, Open Set Re-ID, Multiple Re-ID, Human-Robot Interaction, CNN Descriptors, Online Clustering +
1. Introduction +
Face recognition problem is one of the oldest topics in +
Computer Vision [3]. Recently, the interest in this problem has +
been revamped, mostly due to the observation that standard face +
recognition approaches do not perform well in real-time +
scenarios where faces can be rotated, occluded, and under +
unconstrained illumination. Face recognition tasks are generally +
classified into two categories: +
1. Face Verification. Given two face images, the task of face +
verification is to determine if these two faces belong to the same +
person. +
2. Face Identification. This refers to the process of finding the +
identity of an unknown face image given a database of known +
faces. +
However, there are certain situations where a third type of +
face recognition is needed: face re-identification (face Re-ID). In +
the context of Human-Robot Interaction (HRI), the goal of face +
Re-ID is to determine if certain faces have been seen by the robot +
before, and if so, to determine their identity. +
Generally, a real-time and unsupervised face re-identification +
system is required to achieve effective interactions between +
humans and robots. In the realistic scenarios of HRI, the face re- +
identification task is confronted with the following challenges: +
a. The system needs to be able to build and update the run- +
time user gallery on the fly as there is usually no prior +
knowledge about the interaction targets in advance. +
b. The system should achieve high processing speed in +
order for the robot to maintain real-time interaction with +
the users. +
c. The method should be robust against high intra-class +
illumination changes, partial +
variance caused by +
+
occlusion, pose variation, and/or the display of facial +
expressions. +
d. The system should achieve high recognition accuracy on +
low-quality images resulted from motion blur (when the +
robot and / or the user is moving), out-of-focus blur, +
and/or over /under-exposure. +
Recently, deep-learning approaches, especially Convolutional +
Neural Networks (CNNs), have achieved great success in solving +
face recognition problems [4]–[8]. Comparing +
to classic +
approaches, deep-learning-based methods are characterised by +
their powerful feature extraction abilities. However, as existing +
works mostly focused on traditional face identification problems, +
the potential applications of deep-learning-based methods in +
solving face Re-ID problems is yet to be explored. +
that can work effectively +
In this paper, we present a real-time unsupervised face re- +
identification system +
in an +
unconstrained environment. Firstly, we employ a pre-trained +
CNN [7] as the feature extractor and try to improve its +
performance and processing speed in HRI context by utilising a +
variety of pre-processing techniques. In the Re-Identification step, +
we then use an online clustering algorithm to build and update a +
run-time face gallery and to output the probe faces’ ID. +
Experiments show that our system can achieve a Re-ID accuracy +
of 93.55% and 90.41% on the TERESA video dataset and the +
YTF Dataset respectively and is able to achieve a real-time +
processing speed of 10~26 FPS. +
2. Related Works +
Various methods [9]–[15] have been developed to solve the +
person Re-ID problem in surveillance context. However, most of +
them [9]–[13] are unsuitable to HRI applications as these +
approaches often rely on soft biometrics (i.e. clothing’s colours +
and textures) that are unavailable to the robot (which usually only +
sees the user’s face). Due to the unavailability of such soft +
biometrics, it is difficult to apply person re-identification +
('2563750', 'Yujiang Wang', 'yujiang wang')
('49927631', 'Jie Shen', 'jie shen')
('2403354', 'Stavros Petridis', 'stavros petridis')
('1694605', 'Maja Pantic', 'maja pantic')
c866a2afc871910e3282fd9498dce4ab20f6a332Noname manuscript No. +
(will be inserted by the editor) +
Surveillance Face Recognition Challenge +
Received: date / Accepted: date +
('5314735', 'Zhiyi Cheng', 'zhiyi cheng')
c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd1 Department of Computer Science +
Rutgers University
New Jersey, USA +
2 Department of Computer Science +
The University of Texas at Arlington
Texas, USA +
PENG, XI: TRACK FACIAL POINTS IN UNCONSTRAINED VIDEOS +
Track Facial Points in Unconstrained Videos +
('4340744', 'Xi Peng', 'xi peng')
('40420376', 'Qiong Hu', 'qiong hu')
('1768190', 'Junzhou Huang', 'junzhou huang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
xipeng.cs@rutgers.edu +
qionghu.cs@rutgers.edu +
jzhuang@uta.edu +
dnm@cs.rutgers.edu +
c8292aa152a962763185e12fd7391a1d6df60d07Camera Distance from Face Images +
University of California, San Diego
9500 Gilman Drive, La Jolla, CA, USA +
('25234832', 'Arturo Flores', 'arturo flores'){aflores,echristiansen,kriegman,sjb}@cs.ucsd.edu +
c82c147c4f13e79ad49ef7456473d86881428b89
c84233f854bbed17c22ba0df6048cbb1dd4d3248Exploring Locally Rigid Discriminative +
Patches for Learning Relative Attributes +
http://researchweb.iiit.ac.in/~yashaswi.verma/ +
http://www.iiit.ac.in/~jawahar/ +
CVIT +
IIIT-Hyderabad, India +
http://cvit.iiit.ac.in +
('1694502', 'C. V. Jawahar', 'c. v. jawahar')
('2169614', 'Yashaswi Verma', 'yashaswi verma')
('1694502', 'C. V. Jawahar', 'c. v. jawahar')
c829be73584966e3162f7ccae72d9284a2ebf358shuttleNet: A biologically-inspired RNN with loop connection and parameter +
sharing +
1 National Engineering Laboratory for Video Technology, School of EE&CS, +
Peking University, Beijing, China
2 Cooperative Medianet Innovation Center, China +
3 School of Information and Electronics, +
Beijing Institute of Technology, Beijing, China
('38179026', 'Yemin Shi', 'yemin shi')
('1705972', 'Yonghong Tian', 'yonghong tian')
('5765799', 'Yaowei Wang', 'yaowei wang')
('34097174', 'Tiejun Huang', 'tiejun huang')
c87d5036d3a374c66ec4f5870df47df7176ce8b9ORIGINAL RESEARCH +
published: 12 July 2018 +
doi: 10.3389/fpsyg.2018.01190 +
Temporal Dynamics of Natural Static +
Emotional Facial Expressions +
Decoding: A Study Using Event- and +
Eye Fixation-Related Potentials +
GIPSA-lab, Institute of Engineering, Universit Grenoble Alpes, Centre National de la Recherche Scienti que, Grenoble INP
Grenoble, France, 2 Department of Conception and Control of Aeronautical and Spatial Vehicles, Institut Supérieur de +
l’Aéronautique et de l’Espace, Université Fédérale de Toulouse, Toulouse, France, 3 Laboratoire InterUniversitaire de +
Psychologie – Personnalité, Cognition, Changement Social, Université Grenoble Alpes, Université Savoie Mont Blanc, +
Grenoble, France, 4 Exploration Fonctionnelle du Système Nerveux, Pôle Psychiatrie, Neurologie et Rééducation +
Neurologique, CHU Grenoble Alpes, Grenoble, France, 5 Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble +
Institut des Neurosciences, Grenoble, France +
This study aims at examining the precise temporal dynamics of the emotional facial +
decoding as it unfolds in the brain, according to the emotions displayed. To characterize +
this processing as it occurs in ecological settings, we focused on unconstrained visual +
explorations of natural emotional faces (i.e., free eye movements). The General Linear +
Model (GLM; Smith and Kutas, 2015a,b; Kristensen et al., 2017a) enables such a +
depiction. It allows deconvolving adjacent overlapping responses of the eye fixation- +
related potentials (EFRPs) elicited by the subsequent fixations and the event-related +
potentials (ERPs) elicited at the stimuli onset. Nineteen participants were displayed +
with spontaneous static facial expressions of emotions (Neutral, Disgust, Surprise, and +
Happiness) from the DynEmo database (Tcherkassof et al., 2013). Behavioral results +
on participants’ eye movements show that the usual diagnostic features in emotional +
decoding (eyes for negative facial displays and mouth for positive ones) are consistent +
with the literature. The impact of emotional category on both the ERPs and the EFRPs +
elicited by the free exploration of the emotional faces is observed upon the temporal +
dynamics of the emotional facial expression processing. Regarding the ERP at stimulus +
onset, there is a significant emotion-dependent modulation of the P2–P3 complex +
and LPP components’ amplitude at the left frontal site for the ERPs computed by +
averaging. Yet, the GLM reveals the impact of subsequent fixations on the ERPs time- +
locked on stimulus onset. Results are also in line with the valence hypothesis. The +
observed differences between the two estimation methods (Average vs. GLM) suggest +
the predominance of the right hemisphere at the stimulus onset and the implication +
of the left hemisphere in the processing of the information encoded by subsequent +
fixations. Concerning the first EFRP, the Lambda response and the P2 component are +
modulated by the emotion of surprise compared to the neutral emotion, suggesting +
Edited by: +
Eva G. Krumhuber, +
University College London
United Kingdom +
Reviewed by: +
Marie Arsalidou, +
National Research University Higher
School of Economics, Russia +
Jaana Simola, +
University of Helsinki, Finland
*Correspondence: +
Specialty section: +
This article was submitted to +
Emotion Science, +
a section of the journal +
Frontiers in Psychology +
Received: 07 March 2018 +
Accepted: 20 June 2018 +
Published: 12 July 2018 +
Citation: +
Guérin-Dugué A, Roy RN, +
Kristensen E, Rivet B, Vercueil L and +
Tcherkassof A (2018) Temporal +
Dynamics of Natural Static Emotional +
Facial Expressions Decoding: A Study +
Using Event- and Eye Fixation-Related +
Potentials. Front. Psychol. 9:1190. +
doi: 10.3389/fpsyg.2018.01190 +
Frontiers in Psychology | www.frontiersin.org +
July 2018 | Volume 9 | Article 1190 +
('7200702', 'Anne Guérin-Dugué', 'anne guérin-dugué')
('20903548', 'Raphaëlle N. Roy', 'raphaëlle n. roy')
('33987947', 'Emmanuelle Kristensen', 'emmanuelle kristensen')
('48223466', 'Bertrand Rivet', 'bertrand rivet')
('2544058', 'Laurent Vercueil', 'laurent vercueil')
('3209946', 'Anna Tcherkassof', 'anna tcherkassof')
('7200702', 'Anne Guérin-Dugué', 'anne guérin-dugué')
anne.guerin@gipsa-lab.grenoble-inp.fr +
c8e84cdff569dd09f8d31e9f9ba3218dee65e961Dictionaries for Image and Video-based Face Recognition +
Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
In recent years, sparse representation and dictionary learning-based methods have emerged as +
powerful tools for efficiently processing data in non-traditional ways. A particular area of promise +
for these theories is face recognition. +
In this paper, we review the role of sparse representation +
and dictionary learning for efficient face identification and verification. Recent face recognition +
algorithms from still images, videos, and ambiguously label imagery are reviewed. In particular, +
discriminative dictionary learning algorithms as well as methods based on weakly supervised learning +
and domain adaptation are summarized. Some of the compelling challenges and issues that confront +
research in face recognition using sparse representations and dictionary learning are outlined. +
OCIS codes: (150.0150) Machine vision; (100.5010) Pattern recognition; (150.1135) Algorithms; +
(100.0100) Image processing. +
I. +
INTRODUCTION +
Face recognition is a challenging problem that has been +
actively researched for over two decades [59]. Current +
systems work very well when the test image is captured +
under controlled conditions [35]. However, their perfor- +
mance degrades significantly when the test image con- +
tains variations that are not present in the training im- +
ages. Some of these variations include illumination, pose, +
expression, cosmetics, and aging. +
It has been observed that since human faces have sim- +
ilar overall configuration, face images can be described +
by a relatively low dimensional subspace. As a result, +
holistic dimensionality reduction subspace methods such +
as Principle Component Analysis (PCA) [51], Linear +
Discriminant Analysis (LDA) [3], [17] and Independent +
Component Analysis (ICA) [2] have been proposed for +
the task of face recognition. These approaches can be +
classified into either generative or discriminative meth- +
ods. An advantage of using generative approaches is their +
reduced sensitivity to noise [59], [55]. +
In recent years, generative and discriminative ap- +
proaches based on sparse representations have been gain- +
ing a lot of traction in biometrics recognition [32]. +
In +
sparse representation, given a signal and a redundant dic- +
tionary, the goal is to represent this signal as a sparse lin- +
ear combination of elements (also known as atoms) from +
this dictionary. Finding a sparse representation entails +
solving a convex optimization problem. Using sparse rep- +
resentation, one can extract semantic information from +
the signal. For instance, one can sparsely represent a test +
sample in an overcomplete dictionary whose elements are +
the training samples themselves, provided that sufficient +
training samples are available from each class [55]. An in- +
teresting property of sparse representations is that they +
are robust to noise and occlusion. For instance, good +
performance under partial occlusion, missing data and +
variations in background has been demonstrated in many +
sparsity-based methods [55], [38]. The ability of sparse +
representations to extract meaningful information is due +
in part to the fact that face images belonging to the same +
person lie on a low-dimensional manifold. +
In order to successfully apply sparse representation to +
face recognition problems, one needs to correctly choose +
an appropriate dictionary. Rather than using a pre- +
determined dictionary, e.g. wavelets, one can train an +
overcomplete data-driven dictionary. An appropriately +
trained data-driven dictionary can simultaneously span +
the subspace of all faces and support optimal discrimi- +
nation of the classes. These dictionaries tend to provide +
better classification accuracy than a predetermined dic- +
tionary [31]. +
Data-driven dictionaries can produce state-of-the-art +
results in various face recognition tasks. However, when +
the target data has a different distribution than the +
source data, the learned sparse representation may not +
be optimal. As a result, one needs to adapt these learned +
representations from one domain to the other. The prob- +
lem of transferring a representation or classifier from one +
domain to the other is known as domain adaptation or +
domain transfer learning [22], [42]. +
In this paper, we summarize some of the recent ad- +
vances in still- and video-based face recognition using +
sparse representation and dictionary learning. Discrimi- +
native dictionary learning algorithms as well as methods +
based on weakly supervised learning and domain adapta- +
tion are summarized. These examples show that sparsity +
and dictionary learning are powerful tools for face recog- +
nition. Understanding how well these algorithms work +
can greatly improve our insights into some of the most +
compelling challenges in still- and video-based face recog- +
nition. +
A. Organization of the paper +
This paper is organized as follows. In Section II, we +
briefly review the idea behind sparse representation and +
dictionary learning. Section III presents some recent +
('1751078', 'Yi-Chen Chen', 'yi-chen chen')
('9215658', 'Rama Chellappa', 'rama chellappa')
∗ Corresponding author: pvishalm@umiacs.umd.edu +
c8829013bbfb19ccb731bd54c1a885c245b6c7d7Flexible Template and Model Matching Using Image Intensity +
University College London
Department of Computer Science +
Gower Street, London, United Kingdom +
('31557997', 'Bernard F. Buxton', 'bernard f. buxton')
('1797883', 'Vasileios Zografos', 'vasileios zografos')
{B.Buxton, V.Zografos}@cs.ucl.ac.uk +
c81ee278d27423fd16c1a114dcae486687ee27ffSearch Based Face Annotation Using Weakly +
Labeled Facial Images +
Savitribai Phule Pune University
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune
Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India +
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University
DYPIET, Pimpri, Pune-18, MH, India +
('15731441', 'Shital Shinde', 'shital shinde')
('3392505', 'Archana Chaugule', 'archana chaugule')
c83a05de1b4b20f7cd7cd872863ba2e66ada4d3fBREUER, KIMMEL: A DEEP LEARNING PERSPECTIVE ON FACIAL EXPRESSIONS +
A Deep Learning Perspective on the Origin +
of Facial Expressions +
Department of Computer Science +
Technion - Israel Institute of Technology
Technion City, Haifa, Israel +
Figure 1: Demonstration of the filter visualization process. +
('50484701', 'Ran Breuer', 'ran breuer')
('1692832', 'Ron Kimmel', 'ron kimmel')
rbreuer@cs.technion.ac.il +
ron@cs.technion.ac.il +
c88ce5ef33d5e544224ab50162d9883ff6429aa3Face Match for Family Reunification: +
Real-world Face Image Retrieval +
U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA +
Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA
('1744255', 'Eugene Borovikov', 'eugene borovikov')
('34928283', 'Michael Gill', 'michael gill')
('35029039', 'Szilárd Vajda', 'szilárd vajda')
(FaceMatch@NIH.gov) +
(Szilard.Vajda@cwu.edu) +
c822bd0a005efe4ec1fea74de534900a9aa6fb93Face Recognition Committee Machines: +
Dynamic Vs. Static Structures +
Department of Computer Science and Engineering +
The Chinese University of Hong Kong
Shatin, Hong Kong +
('2899702', 'Ho-Man Tang', 'ho-man tang')
('1681775', 'Michael R. Lyu', 'michael r. lyu')
('1706259', 'Irwin King', 'irwin king')
fhmtang, lyu, kingg@cse.cuhk.edu.hk +
c88c21eb9a8e08b66c981db35f6556f4974d27a8Attribute Learning +
Using Joint Human and Machine Computation +
Edith Law +
April 2011 +
Machine Learning Department +
Carnegie Mellon University
Pittsburgh, PA 15213 +
Thesis Committee: +
Luis von Ahn (co-Chair) +
Tom Mitchell (co-Chair) +
Jaime Carbonell +
Eric Horvitz, Microsoft Research +
Rob Miller, MIT +
Submitted in partial fulfillment of the requirements +
for the degree of Doctor of Philosophy. +
Copyright c(cid:13) 2011 Edith Law +
c8adbe00b5661ab9b3726d01c6842c0d72c8d997Deep Architectures for Face Attributes +
Computer Vision and Machine Learning Group, Flickr, Yahoo, +
('3469274', 'Tobi Baumgartner', 'tobi baumgartner')
('31922487', 'Jack Culpepper', 'jack culpepper')
{tobi, jackcul}@yahoo-inc.com +
fb4545782d9df65d484009558e1824538030bbb1
fbf196d83a41d57dfe577b3a54b1b7fa06666e3bExtreme Learning Machine for Large-Scale +
Action Recognition +
Bo gazi ci University, Turkey
('1764521', 'Albert Ali Salah', 'albert ali salah')
fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1Learning Discriminative Features via Label Consistent Neural Network +
†Raytheon BBN Technologies, Cambridge, MA, 02138 +
University of Maryland, College Park, MD
('34145947', 'Zhuolin Jiang', 'zhuolin jiang')
('1691470', 'Yaming Wang', 'yaming wang')
('2502892', 'Viktor Rozgic', 'viktor rozgic')
{zjiang,wandrews,vrozgic}@bbn.com, {wym,lsd}@umiacs.umd.edu +
fbb6ee4f736519f7231830a8e337b263e91f06feIllumination Robust Facial Feature Detection via +
Decoupled Illumination and Texture Features +
University of Waterloo, Waterloo ON N2L3G1, Canada
WWW home page: http://vip.uwaterloo.ca/ (cid:63) +
('2797326', 'Brendan Chwyl', 'brendan chwyl')
('1685952', 'Alexander Wong', 'alexander wong')
('1720258', 'David A. Clausi', 'david a. clausi')
{bchwyl,a28wong,dclausi}@uwaterloo.ca, +
fb87045600da73b07f0757f345a937b1c8097463JIA, YANG, ZHU, KUANG, NIU, CHAN: RCCR FOR LARGE POSE +
Reflective Regression of 2D-3D Face Shape +
Across Large Pose +
The University of Hong Kong
National University of Defense
Technology +
3 Tencent Inc. +
4 Sensetime Inc. +
('34760532', 'Xuhui Jia', 'xuhui jia')
('2966679', 'Heng Yang', 'heng yang')
('35130187', 'Xiaolong Zhu', 'xiaolong zhu')
('1874900', 'Zhanghui Kuang', 'zhanghui kuang')
('1939702', 'Yifeng Niu', 'yifeng niu')
('40392393', 'Kwok-Ping Chan', 'kwok-ping chan')
xhjia@cs.hku.hk +
yanghengnudt@gmail.com +
lucienzhu@gmail.com +
kuangzhanghui@sensetime.com +
niuyifeng@nudt.edu.cn +
kpchan@cs.hku.hk +
fb85867c989b9ee6b7899134136f81d6372526a9Learning to Align Images using Weak Geometric Supervision +
Georgia Institute of Technology
2 Microsoft Research +
('1703391', 'Jing Dong', 'jing dong')
('3288815', 'Byron Boots', 'byron boots')
('2038264', 'Frank Dellaert', 'frank dellaert')
('1757937', 'Sudipta N. Sinha', 'sudipta n. sinha')
fb5280b80edcf088f9dd1da769463d48e7b08390
fb54d3c37dc82891ff9dc7dd8caf31de00c40d6aBeauty and the Burst: +
Remote Identification of Encrypted Video Streams +
Tel Aviv University, Cornell Tech
Cornell Tech +
Tel Aviv University, Columbia University
('39347554', 'Roei Schuster', 'roei schuster')
('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')
('2337345', 'Eran Tromer', 'eran tromer')
rs864@cornell.edu +
shmat@cs.cornell.edu +
tromer@cs.tau.ac.il +
fba464cb8e3eff455fe80e8fb6d3547768efba2f +
International Journal of Engineering and Applied Sciences (IJEAS) +
ISSN: 2394-3661, Volume-3, Issue-2, February 2016 +
Survey Paper on Emotion Recognition +
 +
('40502287', 'Prachi Shukla', 'prachi shukla')
('2229305', 'Sandeep Patil', 'sandeep patil')
fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59Reading Hidden Emotions: Spontaneous +
Micro-expression Spotting and Recognition +
('50079101', 'Xiaobai Li', 'xiaobai li')
('1836646', 'Xiaopeng Hong', 'xiaopeng hong')
('39056318', 'Antti Moilanen', 'antti moilanen')
('47932625', 'Xiaohua Huang', 'xiaohua huang')
('1757287', 'Guoying Zhao', 'guoying zhao')
fb084b1fe52017b3898c871514cffcc2bdb40b73RESEARCH ARTICLE +
Illumination Normalization of Face Image +
Based on Illuminant Direction Estimation and +
Improved Retinex +
School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics
University POLITEHNICA Timisoara, Timisoara, 300223, Romania
('1699804', 'Jizheng Yi', 'jizheng yi')
('1724834', 'Xia Mao', 'xia mao')
('35153304', 'Lijiang Chen', 'lijiang chen')
('3399189', 'Yuli Xue', 'yuli xue')
('1734732', 'Alberto Rovetta', 'alberto rovetta')
('1860887', 'Catalin-Daniel Caleanu', 'catalin-daniel caleanu')
* clj@ee.buaa.edu.cn +
fb9ad920809669c1b1455cc26dbd900d8e719e613D Gaze Estimation from Remote RGB-D Sensors +
THÈSE NO 6680 (2015) +
PRÉSENTÉE LE 9 OCTOBRE 2015 +
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR +
LABORATOIRE DE L'IDIAP +
PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE +
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE +
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +
PAR +
acceptée sur proposition du jury: +
Prof. K. Aminian, président du jury +
Dr J.-M. Odobez, directeur de thèse +
Prof. L.-Ph. Morency, rapporteur +
Prof. D. Witzner Hansen, rapporteur +
Dr R. Boulic, rapporteur +
Suisse +
2015 +
('9206411', 'Kenneth Alberto Funes Mora', 'kenneth alberto funes mora')
ed28e8367fcb7df7e51963add9e2d85b46e2d5d6International J. of Engg. Research & Indu. Appls. (IJERIA). +
ISSN 0974-1518, Vol.9, No. III (December 2016), pp.23-42 +
A NOVEL APPROACH OF FACE RECOGNITION USING +
CONVOLUTIONAL NEURAL NETWORKS WITH AUTO +
ENCODER +
1 Research Scholar, Dept. of Electronics & Communication Engineering, +
Rayalaseema University Kurnool, Andhra Pradesh
2 Research Supervisor, Professor, Dept. of Electronics & Communication Engineering, +
Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh
('7006226', 'S. A. K JILANI', 's. a. k jilani')
ed0cf5f577f5030ac68ab62fee1cf065349484ccRevisiting Data Normalization for +
Appearance-Based Gaze Estimation +
Max Planck Institute for Informatics
Saarland Informatics Campus, +
Graduate School of Information +
Science and Technology, Osaka +
Max Planck Institute for Informatics
Saarland Informatics Campus, +
Germany +
University, Japan
Germany +
('2520795', 'Xucong Zhang', 'xucong zhang')
('1751242', 'Yusuke Sugano', 'yusuke sugano')
('3194727', 'Andreas Bulling', 'andreas bulling')
xczhang@mpi-inf.mpg.de +
sugano@ist.osaka-u.ac.jp +
bulling@mpi-inf.mpg.de +
edde81b2bdd61bd757b71a7b3839b6fef81f4be4SHIH, MALLYA, SINGH, HOIEM: MULTI-PROPOSAL PART LOCALIZATION +
Part Localization using Multi-Proposal +
Consensus for Fine-Grained Categorization +
University of Illinois
Urbana-Champaign +
IL, US +
('2525469', 'Kevin J. Shih', 'kevin j. shih')
('36508529', 'Arun Mallya', 'arun mallya')
('37415643', 'Saurabh Singh', 'saurabh singh')
('2433269', 'Derek Hoiem', 'derek hoiem')
kjshih2@illinois.edu +
amallya2@illinois.edu +
ss1@illinois.edu +
dhoiem@illinois.edu +
edf98a925bb24e39a6e6094b0db839e780a77b08Simplex Representation for Subspace Clustering +
The Hong Kong Polytechnic University, Hong Kong SAR, China
School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China
Spectral clustering based methods have achieved leading performance on subspace clustering problem. State-of-the-art subspace +
clustering methods follow a three-stage framework: compute a coefficient matrix from the data by solving an optimization problem; +
construct an affinity matrix from the coefficient matrix; and obtain the final segmentation by applying spectral clustering to the +
affinity matrix. To construct a feasible affinity matrix, these methods mostly employ the operations of exponentiation, absolutely +
symmetrization, or squaring, etc. However, all these operations will force the negative entries (which cannot be explicitly avoided) +
the data. In this paper, we introduce the simplex representation (SR) to remedy this problem of representation based subspace +
clustering. We propose an SR based least square regression (SRLSR) model to construct a physically more meaningful affinity matrix +
by integrating the nonnegative property of graph into the representation coefficient computation while maintaining the discrimination +
of original data. The SRLSR model is reformulated as a linear equality-constrained problem, which is solved efficiently under the +
alternating direction method of multipliers framework. Experiments on benchmark datasets demonstrate that the proposed SRLSR +
algorithm is very efficient and outperforms state-of-the-art subspace clustering methods on accuracy. +
Index Terms—Subspace clustering, simplex representation, spectral clustering. +
I. INTRODUCTION +
H IGH-dimensional data are commonly observed in var- +
ious computer vision and image processing prob- +
lems. Contrary to their high-dimensional appearance, +
the +
latent structure of those data usually lie in a union of +
low-dimensional subspaces [1]. Recovering the latent low- +
dimensional subspaces from the high-dimensional observation +
can not only reduce the computational cost and memory +
requirements of subsequent algorithms, but also reduce the +
learning and computer vision tasks, we need to find the clusters +
of high-dimensional data such that each cluster can be fitted +
by a subspace, which is referred to as the subspace clustering +
(SC) problem [1]. +
SC has been extensively studied in the past decades [2]– +
[33]. Most of existing SC methods can be categorized into +
four categories: iterative based methods [2], [3], algebraic +
based methods [4]–[6], statistical based methods [7]–[10], and +
spectral clustering based methods [14]–[33]. Among these four +
categories, spectral clustering based methods have become the +
mainstream due to their theoretical guarantees and promising +
performance on real-world applications such as motion seg- +
mentation [16] and face clustering [18]. The spectral clustering +
based methods usually follow a three-step framework: Step +
1) obtain a coefficient matrix of the data points by solving +
an optimization problem, which usually incorporates sparse +
or low rank regularizations due to their good mathematical +
properties; Step 2) construct an affinity matrix from the +
coefficient matrix by employing exponentiation [14], abso- +
lutely symmetrization [15], [16], [20], [23]–[31], and squaring +
operations [17]–[19], [32], [33], etc.; Step 3) apply spectral +
analysis techniques [34] to the affinity matrix and obtain the +
final clusters of the data points. +
Most spectral clustering based methods [14]–[33] obtain +
the expected coefficient matrix under the self-expressiveness +
property [15], [16], which states that each data point in a union +
of multiple subspaces can be linearly represented by the other +
data points in the same subspace. However, in some real-world +
applications, the data points lie in a union of multiple affine +
subspaces rather than linear subspaces [16]. A trivial solution +
is to ignore the affine structure of the data points and directly +
perform clustering as in the subspaces of linear structures. +
A non-negligible drawback of this solution is the increasing +
dimension of the intersection of two subspaces, which can +
make the subspaces indistinguishable from each other [16]. To +
cluster data points lying in affine subspaces instead of linear +
subspaces, the affine constraint is introduced [15], [16], in +
which each data point can be written as an affine combination +
of other points with the sum of coefficients being one. +
Despite their high clustering accuracy, most of spectral +
clustering based methods [14]–[33] suffer from three major +
drawbacks. First, under the affine constraint, the coefficient +
vector is not flexible enough to handle real-world applications +
Second, negative coefficients cannot be fully avoided since +
the existing methods do not explicitly consider non-negative +
constraint +
in real-world applications, +
it is physically problematic to reconstruct a data point by +
allowing the others to “cancel each other out” with complex +
additions and subtractions [35]. Thus, most of these methods +
are limited by being stranded at this physical bottleneck. Third, +
the exponentiation, absolutely symmetrization, and squaring +
operations in Step 2 will force the negative coefficients to +
among the data points. +
in Step 1. However, +
To solve the three drawbacks mentioned above, we intro- +
duce the Simplex Representation (SR) for spectral clustering +
based SC. Specifically, the SR is introduced from two in- +
terdependent aspects. First, to broaden its adaptivity to real +
scenarios, we extend the affine constraint to the scaled affine +
constraint, in which the coefficient vector in the optimization +
('47882783', 'Jun Xu', 'jun xu')
('1803714', 'Deyu Meng', 'deyu meng')
('48571185', 'Lei Zhang', 'lei zhang')
ed08ac6da6f8ead590b390b1d14e8a9b97370794 +
+
+
+
+
ISSN(Online): 2320-9801 +
+
ISSN (Print): 2320-9798 +
International Journal of Innovative Research in Computer +
and Communication Engineering +
(An ISO 3297: 2007 Certified Organization) +
Vol. 3, Issue 9, September 2015 +
An Efficient Approach for 3D Face +
Recognition Using ANN Based Classifiers +
Shri Shivaji College, Parbhani, M.S, India
Arts, Commerce and Science College, Gangakhed, M.S, India
Dnyanopasak College Parbhani, M.S, India
('34443070', 'Vaibhav M. Pathak', 'vaibhav m. pathak')
ed9d11e995baeec17c5d2847ec1a8d5449254525Efficient Gender Classification Using a Deep LDA-Pruned Net +
McGill University
845 Sherbrooke Street W, Montreal, QC H3A 0G4, Canada +
('48087399', 'Qing Tian', 'qing tian')
('1699104', 'Tal Arbel', 'tal arbel')
('1713608', 'James J. Clark', 'james j. clark')
{qtian,arbel,clark}@cim.mcgill.ca +
edef98d2b021464576d8d28690d29f5431fd5828Pixel-Level Alignment of Facial Images +
for High Accuracy Recognition +
Using Ensemble of Patches +
('1782221', 'Hoda Mohammadzade', 'hoda mohammadzade')
('35809715', 'Amirhossein Sayyafan', 'amirhossein sayyafan')
('24033665', 'Benyamin Ghojogh', 'benyamin ghojogh')
ed04e161c953d345bcf5b910991d7566f7c486f7Combining facial expression analysis and synthesis on a +
Mirror my emotions! +
robot +
('2185308', 'Stefan Sosnowski', 'stefan sosnowski')
('39124596', 'Christoph Mayer', 'christoph mayer')
('1699132', 'Bernd Radig', 'bernd radig')
ed07856461da6c7afa4f1782b5b607b45eebe9f63D Morphable Models as Spatial Transformer Networks +
University of York, UK
Centre for Vision, Speech and Signal Processing, University of Surrey, UK
('39180407', 'Anil Bas', 'anil bas')
('39976184', 'Patrik Huber', 'patrik huber')
('1687021', 'William A. P. Smith', 'william a. p. smith')
('46649582', 'Muhammad Awais', 'muhammad awais')
('1748684', 'Josef Kittler', 'josef kittler')
{ab1792,william.smith}@york.ac.uk, {p.huber,m.a.rana,j.kittler}@surrey.ac.uk +
ed1886e233c8ecef7f414811a61a83e44c8bbf50Deep Alignment Network: A convolutional neural network for robust face +
alignment +
Warsaw University of Technology
('2393538', 'Marek Kowalski', 'marek kowalski')
('1930272', 'Jacek Naruniec', 'jacek naruniec')
('1760267', 'Tomasz Trzcinski', 'tomasz trzcinski')
m.kowalski@ire.pw.edu.pl, j.naruniec@ire.pw.edu.pl, t.trzcinski@ii.pw.edu.pl +
edd7504be47ebc28b0d608502ca78c0aea6a65a2Recurrent Residual Learning for Action +
Recognition +
University of Bonn, Germany
('3434584', 'Ahsan Iqbal', 'ahsan iqbal')
('32774629', 'Alexander Richard', 'alexander richard')
('2946643', 'Juergen Gall', 'juergen gall')
{iqbalm,richard,kuehne,gall}@iai.uni-bonn.de +
ed388878151a3b841f95a62c42382e634d4ab82eDenseImage Network: Video Spatial-Temporal Evolution +
Encoding and Understanding +
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
('3162023', 'Xiaokai Chen', 'xiaokai chen')
('2027479', 'Ke Gao', 'ke gao')
{chenxiaokai,kegao}@ict.ac.cn +
edbb8cce0b813d3291cae4088914ad3199736aa0Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence +
Efficient Subspace Segmentation via Quadratic Programming +
College of Computer Science and Technology, Zhejiang University, China
National University of Singapore, Singapore
School of Information Systems, Singapore Management University, Singapore
('35019367', 'Shusen Wang', 'shusen wang')
('2026127', 'Tiansheng Yao', 'tiansheng yao')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('38203359', 'Jialie Shen', 'jialie shen')
wssatzju@gmail.com, eleyuanx@nus.edu.sg, tsyaoo@gmail.com, eleyans@nus.edu.sg, jlshen@smu.edu.sg +
edff76149ec44f6849d73f019ef9bded534a38c2Privacy-Preserving Visual Learning Using +
Doubly Permuted Homomorphic Encryption +
The University of Tokyo
Tokyo, Japan +
Michigan State University
East Lansing, MI, USA +
The University of Tokyo
Tokyo, Japan +
Carnegie Mellon University
Pittsburgh, PA, USA +
('1899753', 'Ryo Yonetani', 'ryo yonetani')
('2232940', 'Vishnu Naresh Boddeti', 'vishnu naresh boddeti')
('9467266', 'Yoichi Sato', 'yoichi sato')
('37991449', 'Kris M. Kitani', 'kris m. kitani')
yonetani@iis.u-tokyo.ac.jp +
vishnu@msu.edu +
kkitani@cs.cmu.edu +
ysato@iis.u-tokyo.ac.jp +
ed96f2eb1771f384df2349879970065a87975ca7Adversarial Attacks on Face Detectors using Neural +
Net based Constrained Optimization +
Department of Electrical and +
Computer Engineering +
University of Toronto
Department of Electrical and +
Computer Engineering +
University of Toronto
('26418299', 'Avishek Joey Bose', 'avishek joey bose')
('3241876', 'Parham Aarabi', 'parham aarabi')
Email: joey.bose@mail.utoronto.ca +
Email: parham@ecf.utoronto.ca +
c178a86f4c120eca3850a4915134fff44cbccb48
c1d2d12ade031d57f8d6a0333cbe8a772d752e01Journal of Math-for-Industry, Vol.2(2010B-5), pp.147–156 +
Convex optimization techniques for the efficient recovery of a sparsely +
corrupted low-rank matrix +
D 案 +
Received on August 10, 2010 / Revised on August 31, 2010 +
E 案 +
('2372029', 'Silvia Gandy', 'silvia gandy')
('1685085', 'Isao Yamada', 'isao yamada')
c180f22a9af4a2f47a917fd8f15121412f2d0901Facial Expression Recognition by ICA with +
Selective Prior +
Department of Information Processing, School of Information Science, +
Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan
('1753878', 'Fan Chen', 'fan chen')
('1791753', 'Kazunori Kotani', 'kazunori kotani')
{chen-fan, ikko}@jaist.ac.jp +
c146aa6d56233ce700032f1cb1797007785576013D Morphable Models as Spatial Transformer Networks +
University of York, UK
Centre for Vision, Speech and Signal Processing, University of Surrey, UK
('39180407', 'Anil Bas', 'anil bas')
('39976184', 'Patrik Huber', 'patrik huber')
('1687021', 'William A. P. Smith', 'william a. p. smith')
('9170545', 'Muhammad Awais', 'muhammad awais')
('1748684', 'Josef Kittler', 'josef kittler')
{ab1792,william.smith}@york.ac.uk, {p.huber,m.a.rana,j.kittler}@surrey.ac.uk +
c1f07ec629be1c6fe562af0e34b04c54e238dcd1A Novel Facial Feature Localization Method Using Probabilistic-like Output* +
Microsoft Research Asia +
+
Other methods utilize the face structure information and +
heuristically search the facial features within the facial +
regions [12]. Though the method is fast in localizing feature +
points, it might be sensitive to some noises, such as eye +
glasses, and thus fail in localization. +
To address these problems, we proposed a learning-based +
facial feature localization method under probabilistic-like +
framework. We modified an object detection method [12] so +
that it could generate a unified probabilistic-like output for +
each point. We therefore proposed an algorithm to locate +
the facial features using this probabilistic-like output. +
Because this method is learning-based, it is robust to pose, +
illumination, expression and appearance variations. The +
localization speed of the proposed method is extremely fast. +
It takes only about 10ms on the computer with a P4 1.3G +
CPU to locate five feature points and the accuracy is +
comparable with hand labeled results. +
This paper is organized as follows. Section 2 first +
describes the algorithm to calculate probabilistic-like output, +
and then presents the proposed localization approach based +
on the probabilistic-like output. Experiments will be given +
at Section 3. Section 4 gives the conclusion remarks and +
discusses future works. +
2. FACIAL FEATURE POINT LOCALIZATION +
The framework of the proposed method is illustrated in +
Figure 1. +
Figure 1.Feature Point Localization Framework +
ECE dept, University of Miami
1251 Memorial Drive, EB406 +
Coral Gables, Florida, 33124, U.S. +
+
('1684635', 'Lei Zhang', 'lei zhang')
('9310930', 'Long', 'long')
('8392859', 'Mingjing Li', 'mingjing li')
('38188346', 'Hongjiang Zhang', 'hongjiang zhang')
('1679242', 'Longbin Chen', 'longbin chen')
{leizhang, mjli,hjzhang}@microsoft.com +
longzhu@msrchina.research.microsoft.com +
l.chen6@umiami.edu +
c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3dDual-Agent GANs for Photorealistic and Identity +
Preserving Profile Face Synthesis +
National University of Singapore
3 Panasonic R&D Center Singapore +
National University of Defense Technology
Franklin. W. Olin College of Engineering
Qihoo 360 AI Institute
('46509484', 'Jian Zhao', 'jian zhao')
('33419682', 'Lin Xiong', 'lin xiong')
('2757639', 'Jianshu Li', 'jianshu li')
('40345914', 'Fang Zhao', 'fang zhao')
('2513111', 'Zhecan Wang', 'zhecan wang')
('2668358', 'Sugiri Pranata', 'sugiri pranata')
('3493398', 'Shengmei Shen', 'shengmei shen')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('33221685', 'Jiashi Feng', 'jiashi feng')
{zhaojian90, jianshu}@u.nus.edu +
{lin.xiong, karlekar.jayashree, sugiri.pranata, shengmei.shen}@sg.panasonic.com +
zhecan.wang@students.olin.edu +
{elezhf, eleyans, elefjia}@u.nus.edu +
c10a15e52c85654db9c9343ae1dd892a2ac4a279Int J Comput Vis (2012) 100:134–153 +
DOI 10.1007/s11263-011-0494-3 +
Learning the Relative Importance of Objects from Tagged Images +
for Retrieval and Cross-Modal Search +
Received: 16 December 2010 / Accepted: 23 August 2011 / Published online: 18 October 2011 +
© Springer Science+Business Media, LLC 2011 +
('35788904', 'Sung Ju Hwang', 'sung ju hwang')
c1fc70e0952f6a7587b84bf3366d2e57fc572fd7
c1dfabe36a4db26bf378417985a6aacb0f769735Journal of Computer Vision and Image Processing, NWPJ-201109-50 +
1 +
Describing Visual Scene through EigenMaps +
 +
('2630005', 'Shizhi Chen', 'shizhi chen')
('35484757', 'YingLi Tian', 'yingli tian')
c1482491f553726a8349337351692627a04d5dbe
c1ff88493721af1940df0d00bcfeefaa14f1711fCVPR +
#1369 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2010 Submission #1369. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#1369 +
Subspace Regression: Predicting a Subspace from one Sample +
Anonymous CVPR submission +
Paper ID 1369 +
c11eb653746afa8148dc9153780a4584ea529d28Global and Local Consistent Wavelet-domain Age +
Synthesis +
('2112221', 'Peipei Li', 'peipei li')
('49995036', 'Yibo Hu', 'yibo hu')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7eeRobust Facial Landmark Localization Based on +('19254504', 'Yiyun Pan', 'yiyun pan')
('7934466', 'Junwei Zhou', 'junwei zhou')
('46636537', 'Yongsheng Gao', 'yongsheng gao')
('2065968', 'Shengwu Xiong', 'shengwu xiong')
c17a332e59f03b77921942d487b4b102b1ee73b6Learning an appearance-based gaze estimator +
from one million synthesised images +
Tadas Baltruˇsaitis2 +
('34399452', 'Erroll Wood', 'erroll wood')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
('39626495', 'Peter Robinson', 'peter robinson')
('3194727', 'Andreas Bulling', 'andreas bulling')
1University of Cambridge, United Kingdom {erroll.wood,peter.robinson}@cam.ac.uk +
2Carnegie Mellon University, United States {tbaltrus,morency}@cs.cmu.edu +
3Max Planck Institute for Informatics, Germany bulling@mpi-inf.mpg.de +
c1e76c6b643b287f621135ee0c27a9c481a99054
c10b0a6ba98aa95d740a0d60e150ffd77c7895adHANSELMANN, YAN, NEY: DEEP FISHER FACES +
Deep Fisher Faces +
Human Language Technology and +
Pattern Recognition Group +
RWTH Aachen University
Aachen, Germany +
('1804963', 'Harald Hanselmann', 'harald hanselmann')
('35362682', 'Shen Yan', 'shen yan')
('1685956', 'Hermann Ney', 'hermann ney')
hanselmann@cs.rwth-aachen.de +
shen.yan@rwth-aachen.de +
ney@cs.rwth-aachen.de +
c1298120e9ab0d3764512cbd38b47cd3ff69327bDisguised Faces in the Wild +
IIIT-Delhi, India +
IBM TJ Watson Research Center, USA
Rama Chellappa +
University of Maryland, College Park, USA
('2573268', 'Vineet Kushwaha', 'vineet kushwaha')
('2220719', 'Maneet Singh', 'maneet singh')
('50631607', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('47733712', 'Nalini Ratha', 'nalini ratha')
{maneets, rsingh, mayank}@iiitd.ac.in +
ratha@us.ibm.com +
rama@umiacs.umd.ed +
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290Unconstrained face identification with multi-scale block-based +
correlation +
Gaston, J., MIng, J., & Crookes, D. (2016). Unconstrained face identification with multi-scale block-based +
correlation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal +
Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE
Published in: +
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing +
Document Version: +
Peer reviewed version +
Queen's University Belfast - Research Portal
Link to publication record in Queen's University Belfast Research Portal
Publisher rights +
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future +
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. +
General rights +
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +
with these rights. +
Take down policy +
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +
Download date:29. Nov. 2017 +
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk. +
c68ec931585847b37cde9f910f40b2091a662e83(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 9, No. 6, 2018 +
A Comparative Evaluation of Dotted Raster- +
Stereography and Feature-Based Techniques for +
Automated Face Recognition +
S. Talha Ahsan +
Department of Computer Science +
Department of Electrical Engineering +
Usman Institute of Technology
Usman Institute of Technology
Karachi, Pakistan +
Karachi, Pakistan +
Department of Computer Science +
Usman Institute of Technology
Karachi, Pakistan +
and +
feature-based +
system. The +
techniques +
two candidate +
('49508503', 'Muhammad Wasim', 'muhammad wasim')
('3251091', 'Lubaid Ahmed', 'lubaid ahmed')
('33238128', 'Syed Faisal Ali', 'syed faisal ali')
c696c9bbe27434cb6279223a79b17535cd6e88c8International Journal of Information Technology Vol.11 No.9 2005 +
* +
Discriminant Analysis +
Facial Expression Recognition with Pyramid Gabor +
Features and Complete Kernel Fisher Linear +
1 School of Electronic and Information Engineering, South China +
University of Technology, Guangzhou, 510640, P.R.China
Motorola China Research Center, Shanghai, 210000, P.R.China
('30193721', 'Duan-Duan Yang', 'duan-duan yang')
('2949795', 'Lian-Wen Jin', 'lian-wen jin')
('9215052', 'Jun-Xun Yin', 'jun-xun yin')
('1751744', 'Li-Xin Zhen', 'li-xin zhen')
('34824270', 'Jian-Cheng Huang', 'jian-cheng huang')
{ddyang, eelwjin,eejxyin}@scut.edu.cn +
{Li-Xin.Zhen, Jian-Cheng.Huang}@motorola.com +
c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3Recurrent Neural Networks for Facial Action Unit +
Recognition from Image Sequences +
School of Computer Science +
University of Witwatersrand
Private Bag 3, Wits 2050, South Africa +
Department of Computer Science +
University of the Western Cape
Bellville, South Africa +
Middle East Technical University
Northern Cyprus Campus +
Güzelyurt, Mersin10, Turkey +
('1903882', 'H Nyongesa', 'h nyongesa')Hima.vadapalli@wits.ac.za +
hnyongesa@uwc.ac.za +
Omlin@metu.edu.tr +
c614450c9b1d89d5fda23a54dbf6a27a4b821ac0Vol.60: e17160480, January-December 2017 +
http://dx.doi.org/10.1590/1678-4324-2017160480 +
ISSN 1678-4324 Online Edition +
1 +
Engineering,Technology and Techniques +
BRAZILIAN ARCHIVES OF +
BIOLOGY AND TECHNOLOGY +
A N I N T E R N A T I O N A L J O U R N A L +
Face Image Retrieval of Efficient Sparse Code words and +
Multiple Attribute in Binning Image +
Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India
c6096986b4d6c374ab2d20031e026b581e7bf7e9A Framework for Using Context to +
Understand Images of People +
Submitted in partial fulfillment of the +
requirements for the +
degree of Doctor of Philosophy +
Department of Electrical and Computer Engineering +
Carnegie Mellon University
Pittsburgh, PA 15213 +
May 2009 +
Thesis Committee: +
Tsuhan Chen, Chair +
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('1763086', 'Alexei A. Efros', 'alexei a. efros')
('1709305', 'Martial Hebert', 'martial hebert')
('33642939', 'Jiebo Luo', 'jiebo luo')
('1794486', 'Marios Savvides', 'marios savvides')
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
c6608fdd919f2bc4f8d7412bab287527dcbcf505Unsupervised Alignment of Natural +
Language with Video +
by +
Submitted in Partial Fulfillment +
of the +
Requirements for the Degree +
Doctor of Philosophy +
Supervised by +
Professor Daniel Gildea +
Department of Computer Science +
Arts, Sciences and Engineering +
Edmund A. Hajim School of Engineering and Applied Sciences +
University of Rochester
Rochester, New York +
2015 +
('2296971', 'Iftekhar Naim', 'iftekhar naim')
c6f3399edb73cfba1248aec964630c8d54a9c534A Comparison of CNN-based Face and Head Detectors for +
Real-Time Video Surveillance Applications +
1 ´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada +
2 Genetec Inc., Montreal, Canada +
('38993564', 'Le Thanh Nguyen-Meidine', 'le thanh nguyen-meidine')
('1697195', 'Eric Granger', 'eric granger')
('40185782', 'Madhu Kiran', 'madhu kiran')
('38755219', 'Louis-Antoine Blais-Morin', 'louis-antoine blais-morin')
lethanh@livia.etsmtl.ca, eric.granger@etsmtl.ca, mkiran@livia.etsmtl.ca +
lablaismorin@genetec.com +
c62c910264658709e9bf0e769e011e7944c45c90Recent Progress of Face Image Synthesis +
National Laboratory of Pattern Recognition, CASIA +
Center for Research on Intelligent Perception and Computing, CASIA +
Center for Excellence in Brain Science and Intelligence Technology, CAS +
University of Chinese Academy of Sciences, Beijing, 100049, China
('9702077', 'Zhihe Lu', 'zhihe lu')
('7719475', 'Zhihang Li', 'zhihang li')
('1680853', 'Jie Cao', 'jie cao')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
{luzhihe2016, lizhihang2016, caojie2016}@ia.ac.cn, {rhe, znsun}@nlpr.ia.ac.cn +
c678920facffd35853c9d185904f4aebcd2d8b49Learning to Anonymize Faces for +
Privacy Preserving Action Detection +
1 EgoVid Inc., South Korea +
University of California, Davis
('10805888', 'Zhongzheng Ren', 'zhongzheng ren')
('1883898', 'Yong Jae Lee', 'yong jae lee')
('1766489', 'Michael S. Ryoo', 'michael s. ryoo')
{zzren,yongjaelee}@ucdavis.edu, mryoo@egovid.com +
c660500b49f097e3af67bb14667de30d67db88e3www.elsevier.com/locate/cviu +
Facial asymmetry quantification for +
expression invariant human identification +
and Sinjini Mitrac +
a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
University of Pittsburgh, Pittsburgh, PA 15260, USA
Carnegie Mellon University, Pittsburgh, PA 15213, USA
Received 15 February 2002; accepted 24 March 2003 +
('1689241', 'Yanxi Liu', 'yanxi liu')
('2185899', 'Karen L. Schmidt', 'karen l. schmidt')
c6241e6fc94192df2380d178c4c96cf071e7a3acAction Recognition with Trajectory-Pooled Deep-Convolutional Descriptors +
The Chinese University of Hong Kong
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
('33345248', 'Limin Wang', 'limin wang')
('33427555', 'Yu Qiao', 'yu qiao')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
07wanglimin@gmail.com, yu.qiao@siat.ac.cn, xtang@ie.cuhk.edu.hk +
c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6This article appeared in a journal published by Elsevier. The attached +
copy is furnished to the author for internal non-commercial research +
and education use, including for instruction at the authors institution
and sharing with colleagues. +
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party +
websites are prohibited. +
In most cases authors are permitted to post their version of the +
article (e.g. in Word or Tex form) to their personal website or +
institutional repository. Authors requiring further information +
regarding Elsevier’s archiving and manuscript policies are +
encouraged to visit: +
http://www.elsevier.com/copyright +
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8OPEN +
Received: 22 December 2015 +
Accepted: 04 April 2016 +
Published: 21 April 2016 +
Anxiety promotes memory for +
mood-congruent faces but does not +
alter loss aversion +
Pathological anxiety is associated with disrupted cognitive processing, including working memory and
decision-making. In healthy individuals, experimentally-induced state anxiety or high trait anxiety +
often results in the deployment of adaptive harm-avoidant behaviours. However, how these processes +
affect cognition is largely unknown. To investigate this question, we implemented a translational +
within-subjects anxiety induction, threat of shock, in healthy participants reporting a wide range of +
trait anxiety scores. Participants completed a gambling task, embedded within an emotional working +
memory task, with some blocks under unpredictable threat and others safe from shock. Relative to the +
safe condition, threat of shock improved recall of threat-congruent (fearful) face location, especially in +
highly trait anxious participants. This suggests that threat boosts working memory for mood-congruent +
stimuli in vulnerable individuals, mirroring memory biases in clinical anxiety. By contrast, Bayesian +
analysis indicated that gambling decisions were better explained by models that did not include threat +
or treat anxiety, suggesting that: (i) higher-level executive functions are robust to these anxiety +
manipulations; and (ii) decreased risk-taking may be specific to pathological anxiety. These findings +
provide insight into the complex interactions between trait anxiety, acute state anxiety and cognition, +
and may help understand the cognitive mechanisms underlying adaptive anxiety. +
Anxiety disorders constitute a major global health burden1, and are characterized by negative emotional process- +
ing biases, as well as disrupted working memory and decision-making2,3. On the other hand, anxiety can also be +
an adaptive response to stress, stimulating individuals to engage in harm-avoidant behaviours. Influential the- +
ories of pathological anxiety propose that clinical anxiety emerges through dysregulation of adaptive anxiety4,5. +
Therefore, in order to understand how this dysregulation emerges in pathological anxiety, it is crucial to first +
understand the cognitive features associated with adaptive or ‘non-pathological’ anxiety, in other words anxiety +
levels that can vary within and between individuals but do not result in the development of clinical symptoms +
associated with anxiety disorders. +
Several methods exists to induce anxiety in healthy individuals, including threat of shock (ToS), the Trier
social stressor test (TSST), and the cold pressor test (CPT). During the ToS paradigm, subjects typically perform +
a cognitive task while either at risk of or safe from rare, but unpleasant, electric shocks. Compared to the other +
methodologies, ToS has the advantage of allowing for within-subjects, within-sessions, designs (for a review +
on its effects on cognition, see Robinson et al.2), and ensures the task is performed while being anxious, rather +
than after being relieved from the stressor. In addition, ToS paradigms have good translational analogues6, are +
well-validated7, and are thus considered a reliable model for examining adaptive anxiety in healthy individuals. +
Because the engagement of adaptive anxiety processes may vary with individuals’ vulnerability to developing +
pathological anxiety8–10, we were also interested in examining how the effects of state anxiety induced by threat +
of shock interact with dispositional or trait anxiety, as reflected in self-report questionnaire scores such as the +
State-Trait Anxiety Inventory11 (STAI). High levels of self-reported trait anxiety are indeed considered a strong +
vulnerability factor in the development of pathological anxiety4,12. +
The extent to which induced state anxiety (elicited by the laboratory procedures discussed above) and +
trait anxiety interact to alter cognition has rarely been studied10. In particular, does induced anxiety have a +
Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain
Lab, University College London, London WC1H 0AP, UK. 3Clinical
Psychopharmacology Unit, Educational and Health Psychology, University College
London, WC1E 7HB. *These authors contributed equally to this work. †These authors jointly supervised this work. +
('4177273', 'Chandni Hindocha', 'chandni hindocha')Correspondence and requests for materials should be addressed to C.J.C. (email: caroline.charpentier.11@ucl.ac.uk) +
c62c07de196e95eaaf614fb150a4fa4ce49588b4Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +
1078 +
c65a394118d34beda5dd01ae0df163c3db88fcebIn press : Proceedings of the 30th European Conference On Information Retrieval +
Glasgow, March-April 2008 +
Finding the Best Picture: +
Cross-Media Retrieval of Content +
Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium +
http://www.cs.kuleuven.be/~liir/ +
('1797588', 'Koen Deschacht', 'koen deschacht')
('1802161', 'Marie-Francine Moens', 'marie-francine moens')
{Koen.Deschacht,Marie-Francine.Moens}@cs.kuleuven.be +
ec90d333588421764dff55658a73bbd3ea3016d2Research Article +
Protocol for Systematic Literature Review of Face +
Recognition in Uncontrolled Environment +
Bacha Khan University, Charsadda, KPK, Pakistan
('12144785', 'Faizan Ullah', 'faizan ullah')
('46463663', 'Sabir Shah', 'sabir shah')
('49669073', 'Dilawar Shah', 'dilawar shah')
('12579194', 'Shujaat Ali', 'shujaat ali')
faizanullah@bkuc.edu.pk +
ec8ec2dfd73cf3667f33595fef84c95c42125945Pose-Invariant Face Alignment with a Single CNN +
Michigan State University
2Visualization Group, Bosch Research and Technology Center North America +
('2357264', 'Amin Jourabloo', 'amin jourabloo')
('3876303', 'Mao Ye', 'mao ye')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('3334600', 'Liu Ren', 'liu ren')
1,2 {jourablo, liuxm}@msu.edu, {mao.ye2, liu.ren}@us.bosch.com +
ec1e03ec72186224b93b2611ff873656ed4d2f74JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
3D Reconstruction of “In-the-Wild” Faces in +
Images and Videos +
('47456731', 'James Booth', 'james booth')
('2931390', 'Anastasios Roussos', 'anastasios roussos')
('31243357', 'Evangelos Ververas', 'evangelos ververas')
('2015036', 'Stylianos Ploumpis', 'stylianos ploumpis')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
ec12f805a48004a90e0057c7b844d8119cb21b4aDistance-Based Descriptors and Their +
Application in the Task of Object Detection +
Technical University of Ostrava, FEECS
17. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic +
('2467747', 'Radovan Fusek', 'radovan fusek')
('2557877', 'Eduard Sojka', 'eduard sojka')
{radovan.fusek,eduard.sojka}@vsb.cz +
ec22eaa00f41a7f8e45ed833812d1ac44ee1174e
ec54000c6c0e660dd99051bdbd7aed2988e27ab8TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1 +
*Dept. Teoria del Senyal i Comunicacions - Universitat Politècnica de Catalunya, Barcelona, Spain +
+Dipartimento di Elettronica e Informazione - Politecnico di Milano, Meiland, Italy +
('2771575', 'Francesc Tarres', 'francesc tarres')
('31936578', 'Antonio Rama', 'antonio rama')
('2158932', 'Davide Onofrio', 'davide onofrio')
('1729506', 'Stefano Tubaro', 'stefano tubaro')
{tarres, alrama}@gps.tsc.upc.edu +
{d.onofrio, tubaro}@elet.polimi.it +
ec0104286c96707f57df26b4f0a4f49b774c486b758 +
An Ensemble CNN2ELM for Age Estimation +
('40402919', 'Mingxing Duan', 'mingxing duan')
('39893222', 'Kenli Li', 'kenli li')
('34373985', 'Keqin Li', 'keqin li')
ec05078be14a11157ac0e1c6b430ac886124589bLongitudinal Face Aging in the Wild - Recent Deep Learning Approaches +
Concordia University
Montreal, Quebec, Canada +
Concordia University
Montreal, Quebec, Canada +
CyLab Biometrics Center +
Dept. of Electrical and Computer Engineering +
Carnegie Mellon University Pittsburgh, PA, USA
Concordia University
Montreal, Quebec, Canada +
('1876581', 'Chi Nhan Duong', 'chi nhan duong')
('2687827', 'Kha Gia Quach', 'kha gia quach')
('1769788', 'Khoa Luu', 'khoa luu')
('1699922', 'Tien D. Bui', 'tien d. bui')
Email: c duon@encs.concordia.ca +
Email: k q@encs.concordia.ca +
Email: kluu@andrew.cmu.edu +
Email: bui@encs.concordia.ca +
4e7ed13e541b8ed868480375785005d33530e06dFace Recognition Using Deep Multi-Pose Representations +
Ram Nevatiab Gerard Medionib +
Prem Natarajana +
aInformation Sciences Institute
University of Southern California
Marina Del Rey, CA +
b Institute for Robotics and Intelligent Systems
University of Southern California
Los Angeles, California +
cThe Open University
Raanana, Israel +
('1746738', 'Yue Wu', 'yue wu')
('38696444', 'Stephen Rawls', 'stephen rawls')
('35840854', 'Shai Harel', 'shai harel')
('11269472', 'Iacopo Masi', 'iacopo masi')
('1689391', 'Jongmoo Choi', 'jongmoo choi')
('2955822', 'Jatuporn Toy Leksut', 'jatuporn toy leksut')
('5911467', 'Jungyeon Kim', 'jungyeon kim')
('1756099', 'Tal Hassner', 'tal hassner')
4e30107ee6a2e087f14a7725e7fc5535ec2f5a5fПредставление новостных сюжетов с помощью +
событийных фотографий +
© М.М. Постников +
© Б.В. Добров +
Московский государственный университет имени М.В. Ломоносова +
факультет вычислительной математики и кибернетики, +
Москва, Россия +
Аннотация. Рассмотрена задача аннотирования новостного сюжета изображениями, +
ассоциированными с конкретными текстами сюжета. Введено понятие «событийной фотографии», +
содержащей конкретную информацию, дополняющую текст сюжета. Для решения задачи применены +
нейронные сети с использованием переноса обучения (Inception v3) для специальной размеченной +
коллекции из 4114 изображений. Средняя точность полученных результатов составила более 94,7%. +
Ключевые слова: событийная фотография, новостные иллюстрации, перенос обучения. +
News Stories Representation Using Event Photos +
© M.M. Postnikov +
© B.V. Dobrov +
Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Moscow, Russia +
mihanlg@yandex.ru +
dobrov_bv@mail.ru +
mihanlg@yandex.ru +
dobrov_bv@mail.ru +
4e5dc3b397484326a4348ccceb88acf309960e86Hindawi Publishing Corporation +
e Scientific World Journal +
Volume 2014, Article ID 219732, 12 pages +
http://dx.doi.org/10.1155/2014/219732 +
Research Article +
Secure Access Control and Large Scale Robust Representation +
for Online Multimedia Event Detection +
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
School of Computer Science, Wuyi University, Jiangmen 529020, China
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
Received 2 April 2014; Accepted 30 June 2014; Published 22 July 2014 +
Academic Editor: Vincenzo Eramo +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
We developed an online multimedia event detection (MED) system. However, there are a secure access control issue and a large +
scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For +
the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC) model based on the traditional role +
based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed +
that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the +
object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK) event descriptor. Feature vectors of the 1000OBK were +
extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such +
as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap +
between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging +
TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art +
approaches. +
1. Introduction +
As one of the most interesting aspects of multimedia content +
analysis, the multimedia event detection (MED) is becoming +
an important research area for computer vision in recent +
years. According to the definition by the National Institute
of Standards and Technology (NIST) [1], an event (1) is +
a complex activity occurring at a specific place and time, +
(2) involves people interacting with other people and/or +
objects, (3) consists of a number of human actions, processes, +
and activities that are loosely or tightly organized and that +
have significant temporal and semantic relationships to the +
overarching activity, and (4) is directly observable. A MED +
task is to indicate whether an event is occurred in a specified +
test clip based on a standard event kit [1], which includes an +
event name, a textual definition, a textual explication with an +
attribute list, an evidential description, and a set of illustrative +
video examples. Although there are many other definitions +
available, such as the MED definitions from the NIST, the +
research on the MED is still far from reaching its maturity. +
Most of the current researches are focused on specific areas, +
such as sports video [2], news video [3], and surveillance +
video [4]. These approaches do not perform well when used +
for the online or web based event detection due to two types +
of issues, which are the secure access control issue and the +
large scale robust representation issue. Thus, we developed an +
online multimedia event detection system, trying to provide +
general MED services. +
The first issue is about how we can obtain a secure access +
control for the online multimedia event detection system. +
Compared with that of traditional distributed systems, it is a +
kind of service relationships between access control subjects +
and objects in the online multimedia event detection system. +
The service could establish, recombine, destruct, and even +
inherit efficiently to requested parameters which cannot be +
satisfied well by traditional access control models, such as +
('1706701', 'Changyu Liu', 'changyu liu')
('40371462', 'Bin Lu', 'bin lu')
('1780591', 'Huiling Li', 'huiling li')
('1706701', 'Changyu Liu', 'changyu liu')
Correspondence should be addressed to Bin Lu; lbscut@gmail.com +
4e6c17966efae956133bf8f22edeffc24a0470c1Face Classification: A Specialized Benchmark +
Study +
1School of Electronic, Electrical and Communication Engineering +
2Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
University of Chinese Academy of Sciences
Institute of Automation, Chinese Academy of Sciences
Macau University of Science and Technology
('37614515', 'Jiali Duan', 'jiali duan')
('40397682', 'Shengcai Liao', 'shengcai liao')
('2950852', 'Shuai Zhou', 'shuai zhou')
('34679741', 'Stan Z. Li', 'stan z. li')
{jli.duan,shuaizhou.palm}@gmail.com, {scliao,szli}@nlpr.ia.ac.cn +
4e1836914bbcf94dc00e604b24b1b0d6d7b61e66Dynamic Facial Expression Recognition Using Boosted +
Component-based Spatiotemporal Features and +
Multi-Classifier Fusion +
1. Machine Vision Group, Department of Electrical and Information Engineering, +
University of Oulu, Finland
Research Center for Learning Science, Southeast University, China
http://www.ee.oulu.fi/mvg +
('18780812', 'Xiaohua Huang', 'xiaohua huang')
('1757287', 'Guoying Zhao', 'guoying zhao')
('40608983', 'Wenming Zheng', 'wenming zheng')
{huang.xiaohua,gyzhao,mkp}@ee.oulu.fi +
wenming_zheng@seu.edu.cn +
4e4fa167d772f34dfffc374e021ab3044566afc3Learning Low-Rank Representations with Classwise +
Block-Diagonal Structure for Robust Face Recognition +
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
School of Computer Science, Nanjing University of Science and Technology
University of Maryland, College Park
('1689181', 'Yong Li', 'yong li')
('38188270', 'Jing Liu', 'jing liu')
('3233021', 'Zechao Li', 'zechao li')
('34868330', 'Yangmuzi Zhang', 'yangmuzi zhang')
('1694235', 'Hanqing Lu', 'hanqing lu')
('38450168', 'Songde Ma', 'songde ma')
{yong.li,jliu,luhq}@nlpr.ia.ac.cn, zechao.li@gmail.com, ymzhang@umiacs.umd.edu, masd@most.cn +
4e32fbb58154e878dd2fd4b06398f85636fd0cf4A Hierarchical Matcher using Local Classifier Chains +
L. Zhang and I.A. Kakadiaris +
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204 +
4ed54d5093d240cc3644e4212f162a11ae7d1e3bLearning Visual Compound Models from Parallel +
Image-Text Datasets +
Bielefeld University
University of Toronto
('2872318', 'Jan Moringen', 'jan moringen')
('1724954', 'Sven Wachsmuth', 'sven wachsmuth')
('1792908', 'Suzanne Stevenson', 'suzanne stevenson')
{jmoringe,swachsmu}@techfak.uni-bielefeld.de +
{sven,suzanne}@cs.toronto.edu +
4e8c608fc4b8198f13f8a68b9c1a0780f6f50105How Related Exemplars Help Complex Event Detection in Web Videos? +
ITEE, The University of Queensland, Australia
ECE, National University of Singapore, Singapore
§† +
School of Computer Science, Carnegie Mellon University, USA
('39033919', 'Yi Yang', 'yi yang')
('1727419', 'Zhigang Ma', 'zhigang ma')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
('2351434', 'Zhongwen Xu', 'zhongwen xu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
{yiyang,kevinma,alex}@cs.cmu.edu z.xu3@uq.edu.au +
4ea53e76246afae94758c1528002808374b75cfaLasbela, U. J.Sci. Techl., vol.IV , pp. 57-70, 2015 +
Review ARTICLE +
A Review of Scholastic Examination and Models for Face Recognition +
ISSN 2306-8256 +
and Retrieval in Video +
+
SBK Women s University, Quetta, Balochistan
University of Balochistan, Quetta
University of Balochistan, Quetta
Institute of Biochemistry, University of Balochistan, Quetta
('35415301', 'Varsha Sachdeva', 'varsha sachdeva')
('2139801', 'Junaid Baber', 'junaid baber')
('3343681', 'Maheen Bakhtyar', 'maheen bakhtyar')
('1903979', 'Muzamil Bokhari', 'muzamil bokhari')
('1702753', 'Imran Ali', 'imran ali')
4ed2d7ecb34a13e12474f75d803547ad2ad811b2Common Action Discovery and Localization in Unconstrained Videos +
School of Electrical and Electronic Engineering +
Nanyang Technological University, Singapore
('1691251', 'Jiong Yang', 'jiong yang')
('34316743', 'Junsong Yuan', 'junsong yuan')
yang0374@e.ntu.edu.sg, jsyuan@ntu.edu.sg +
4e97b53926d997f451139f74ec1601bbef125599Discriminative Regularization for Generative Models +
Montreal Institute for Learning Algorithms, Universit e de Montr eal
('2059369', 'Alex Lamb', 'alex lamb')
('3074927', 'Vincent Dumoulin', 'vincent dumoulin')
FIRST.LAST@UMONTREAL.CA +
4e8168fbaa615009d1618a9d6552bfad809309e9Deep Convolutional Neural Network Features and the Original Image +
School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
University of Maryland, College Park, USA
('7493834', 'Connor J. Parde', 'connor j. parde')
('3363752', 'Matthew Q. Hill', 'matthew q. hill')
('15929465', 'Y. Ivette Colon', 'y. ivette colon')
('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
4e0636a1b92503469b44e2807f0bb35cc0d97652Adversarial Localization Network +
Tsinghua University
Stanford University
Stanford University
('2548303', 'Lijie Fan', 'lijie fan')
('3303970', 'Shengjia Zhao', 'shengjia zhao')
('2490652', 'Stefano Ermon', 'stefano ermon')
flj14@mails.tsinghua.edu.cn +
sjzhao@stanford.edu +
ermon@stanford.edu +
4e27fec1703408d524d6b7ed805cdb6cba6ca132SSD-Sface: Single shot multibox detector for small faces +
C. Thuis +
4e6c9be0b646d60390fe3f72ce5aeb0136222a10Long-term Temporal Convolutions +
for Action Recognition +
('1785596', 'Ivan Laptev', 'ivan laptev')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
4ea4116f57c5d5033569690871ba294dc3649ea5Multi-View Face Alignment Using 3D Shape Model for +
View Estimation +
Tsinghua University
2Core Technology Center, Omron Corporation +
('1739678', 'Yanchao Su', 'yanchao su')
('1679380', 'Haizhou Ai', 'haizhou ai')
('1710195', 'Shihong Lao', 'shihong lao')
ahz@mail.tsinghua.edu.cn +
4e444db884b5272f3a41e4b68dc0d453d4ec1f4c
4ef0a6817a7736c5641dc52cbc62737e2e063420International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970) +
Volume-4 Number-4 Issue-17 December-2014 +
Study of Face Recognition Techniques +
Received: 10-November-2014; Revised: 18-December-2014; Accepted: 23-December-2014 +
©2014 ACCENTS +
('7874804', 'Sangeeta Kaushik', 'sangeeta kaushik')
('33551600', 'R. B. Dubey', 'r. b. dubey')
('1680807', 'Abhimanyu Madan', 'abhimanyu madan')
4e4d034caa72dce6fca115e77c74ace826884c66RESEARCH ARTICLE +
Sex differences in facial emotion recognition +
across varying expression intensity levels +
from videos +
University of Bath, Bath, Somerset, United Kingdom
☯ These authors contributed equally to this work. +
¤ Current address: Social and Affective Neuroscience Laboratory, Centre for Health and Biological Sciences, +
Mackenzie Presbyterian University, S o Paulo, S o Paulo, Brazil
('2708124', 'Chris Ashwin', 'chris ashwin')
('39455300', 'Mark Brosnan', 'mark brosnan')
* tanja.wingenbach@bath.edu +
4e7ebf3c4c0c4ecc48348a769dd6ae1ebac3bf1b
4e0e49c280acbff8ae394b2443fcff1afb9bdce6Automatic learning of gait signatures for people identification +
F.M. Castro +
Univ. of Malaga +
fcastrouma.es +
M.J. Mar´ın-Jim´enez +
Univ. of Cordoba +
mjmarinuco.es +
N. Guil +
Univ. of Malaga +
nguiluma.es +
N. P´erez de la Blanca +
Univ. of Granada +
nicolasugr.es +
4e4e8fc9bbee816e5c751d13f0d9218380d74b8f
20a88cc454a03d62c3368aa1f5bdffa73523827b
20a432a065a06f088d96965f43d0055675f0a6c1In: Proc. of the 25th Int. Conference on Artificial Neural Networks (ICANN) +
Part II, LNCS 9887, pp. 80-87, Barcelona, Spain, September 2016 +
The final publication is available at Springer via +
http://dx.doi.org//10.1007/978-3-319-44781-0_10 +
The Effects of Regularization on Learning Facial +
Expressions with Convolutional Neural Networks +

Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany +
http://www.informatik.uni-hamburg.de/WTM +
('11634287', 'Tobias Hinz', 'tobias hinz')
('1736513', 'Stefan Wermter', 'stefan wermter')
{4hinz,barros,wermter}@informatik.uni-hamburg.de +
20a3ce81e7ddc1a121f4b13e439c4cbfb01adfbaSparse-MVRVMs Tree for Fast and Accurate +
Head Pose Estimation in the Wild +
Augmented Vision Research Group, +
German Research Center for Arti cial Intelligence (DFKI
Tripstaddterstr. 122, 67663 Kaiserslautern, Germany +
Technical University of Kaiserslautern
http://www.av.dfki.de +
('2585383', 'Mohamed Selim', 'mohamed selim')
('1771057', 'Alain Pagani', 'alain pagani')
('1807169', 'Didier Stricker', 'didier stricker')
{mohamed.selim,alain.pagani,didier.stricker}@dfki.uni-kl.de +
20b994a78cd1db6ba86ea5aab7211574df5940b3Enriched Long-term Recurrent Convolutional Network +
for Facial Micro-Expression Recognition +
Faculty of Computing and Informatics, Multimedia University, Malaysia
Faculty of Engineering, Multimedia University, Malaysia
Shanghai Jiao Tong University, China
('30470673', 'Huai-Qian Khor', 'huai-qian khor')
('2339975', 'John See', 'john see')
('8131625', 'Weiyao Lin', 'weiyao lin')
Emails: 1hqkhor95@gmail.com, 2johnsee@mmu.edu.my, 3raphael@mmu.edu.my, 4wylin@sjtu.edu.cn +
2004afb2276a169cdb1f33b2610c5218a1e47332Hindawi +
Computational Intelligence and Neuroscience +
Volume 2018, Article ID 3803627, 11 pages +
https://doi.org/10.1155/2018/3803627 +
Research Article +
Deep Convolutional Neural Network Used in Single Sample per +
Person Face Recognition +
School of Information Engineering, Wuyi University, Jiangmen 529020, China
Received 27 November 2017; Revised 23 May 2018; Accepted 26 July 2018; Published 23 August 2018 +
Academic Editor: Jos´e Alfredo Hern´andez-P´erez +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be +
trained, it makes facial variation such as pose, illumination, and disguise difficult to be predicted. To overcome this problem, this paper +
proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample +
method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and +
conveniently. Besides, it can generate samples such as disguise, expression, and mixed variation. Second, it uses transfer learning and +
introduces a well-trained deep convolutional neural network (DCNN) model and then selects some expanding samples to fine-tune the +
DCNN model. 0ird, the fine-tuned model is used to implement experiment. Experimental results on AR face database, Extend Yale B +
face database, FERET face database, and LFW database demonstrate that TDL achieves the state-of-the-art performance in SSPP FR. +
1. Introduction +
As artificial +
intelligence (AI) becomes more and more +
popular, computer vision (CV) also has been proved to be +
a very hot topic in academic such as face recognition [1], +
facial expression recognition [2], and object recognition [3]. +
It is well known that the basic and important foundation in +
CV is that there are an amount of training samples. But in +
actual scenarios such as immigration management, fugitive +
tracing, and video surveillance, there may be only one +
sample, which leads to single sample per person (SSPP) +
problem such as gait recognition [4], face recognition (FR) +
[5, 6], and low-resolution face recognition [7] in CV. +
However, as the widely use of second-generation ID card +
which is convenient to be collected, SSPP FR becomes one of +
the most popular topics no matter in academic or in +
industry. +
Beymer and Poggio [8] proposed one example view +
problem in 1996. In [8], it was researched that how to +
perform face recognition (FR) using one example view. +
Firstly, it exploited prior knowledge to generate multiple +
virtual views. 0en, the example view and these multiple +
virtual views were used as example views in a view-based, +
pose-invariant +
face recognizer. Later, SSPP FR became +
a popular research topic at the beginning of the 21st century. +
Recently, many methods have been proposed. Generally +
speaking, these methods can be summarized in five basic +
methods: direct method, generic learning method, patch- +
based method, expanding sample method, and deep learning +
(DL) method. Direct method does experiment based on the +
SSPP directly by using an algorithm. Generic learning +
method is the way that using an auxiliary dataset to build +
a generic dataset from which some variation information +
can be learned by single sample. Patch-based method par- +
titions single sample into several patches first, then extracts +
features on these patches, respectively, and does classifica- +
tion finally. 0e expanding sample method is with some +
special means such as perturbation-based method [9, 10], +
photometric transforms, and geometric distortion [11] to +
increase sample so that abundant training samples can be +
used to process this task. 0e DL method uses the DL model +
to perform the research. +
Attracted by the good performance of DCNN, inspired +
by [12] and driven by AI, in this paper, a scheme combined +
('9363278', 'Junying Zeng', 'junying zeng')
('12054657', 'Xiaoxiao Zhao', 'xiaoxiao zhao')
('2926767', 'Junying Gan', 'junying gan')
('40552250', 'Chaoyun Mai', 'chaoyun mai')
('1716453', 'Fan Wang', 'fan wang')
('3003242', 'Yikui Zhai', 'yikui zhai')
('9363278', 'Junying Zeng', 'junying zeng')
Correspondence should be addressed to Xiaoxiao Zhao; xiaoxiao-zhao@foxmail.com +
20e504782951e0c2979d9aec88c76334f7505393Robust LSTM-Autoencoders for Face De-Occlusion +
in the Wild +
('37182704', 'Fang Zhao', 'fang zhao')
('33221685', 'Jiashi Feng', 'jiashi feng')
('39913117', 'Jian Zhao', 'jian zhao')
('1898172', 'Wenhan Yang', 'wenhan yang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
209324c152fa8fab9f3553ccb62b693b5b10fb4dCROWDSOURCED VISUAL KNOWLEDGE REPRESENTATIONS +
VISUAL GENOME +
A THESIS +
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +
AND THE COMMITTEE ON GRADUATE STUDIES +
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +
FOR THE DEGREE OF +
MASTERS OF SCIENCE +
March 2016 +
('2580593', 'Ranjay Krishna', 'ranjay krishna')
2050847bc7a1a0453891f03aeeb4643e360fde7dAccio: A Data Set for Face Track Retrieval +
in Movies Across Age +
Istanbul Technical University, Istanbul, Turkey
Karlsruhe Institute of Technology, Karlsruhe, Germany
('2398366', 'Esam Ghaleb', 'esam ghaleb')
('2103464', 'Makarand Tapaswi', 'makarand tapaswi')
('2256981', 'Ziad Al-Halah', 'ziad al-halah')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
{ghalebe, ekenel}@itu.edu.tr, {tapaswi, ziad.al-halah, rainer.stiefelhagen}@kit.edu +
20ade100a320cc761c23971d2734388bfe79f7c5IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Subspace Clustering via Good Neighbors +
('1755872', 'Jufeng Yang', 'jufeng yang')
('1780418', 'Jie Liang', 'jie liang')
('39329211', 'Kai Wang', 'kai wang')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
202d8d93b7b747cdbd6e24e5a919640f8d16298aFace Classification via Sparse Approximation +
Bilgi University, Dolapdere, Istanbul, TR
Bo gazici University, Istanbul, TR
Y ld z Teknik University, Istanbul, TR
('2804969', 'Songul Albayrak', 'songul albayrak')
20767ca3b932cbc7b8112db21980d7b9b3ea43a3
20a16efb03c366fa4180659c2b2a0c5024c679daSCREENING RULES FOR OVERLAPPING GROUP LASSO +
Carnegie Mellon University
Recently, to solve large-scale lasso and group lasso problems, +
screening rules have been developed, the goal of which is to reduce +
the problem size by efficiently discarding zero coefficients using simple +
rules independently of the others. However, screening for overlapping +
group lasso remains an open challenge because the overlaps between +
groups make it infeasible to test each group independently. In this +
paper, we develop screening rules for overlapping group lasso. To ad- +
dress the challenge arising from groups with overlaps, we take into +
account overlapping groups only if they are inclusive of the group +
being tested, and then we derive screening rules, adopting the dual +
polytope projection approach. This strategy allows us to screen each +
group independently of each other. In our experiments, we demon- +
strate the efficiency of our screening rules on various datasets. +
1. Introduction. We propose efficient screening rules for regression +
with the overlapping group lasso penalty. Our goal is to develop simple +
rules to discard groups with zero coefficients in the optimization problem +
with the following form: +
(cid:13)(cid:13)βg +
(cid:13)(cid:13)2 , +
ng +
(1.1) +
min +
(cid:107)y − Xβ(cid:107)2 +
2 + λ +
(cid:88) +
g∈G +
where X ∈ RN×J is the input data for J inputs and N samples, y ∈ RN×1 +
is the output vector, β ∈ RJ×1 is the vector of regression coefficients, ng +
is the size of group g, and λ is a regularization parameter that determines +
the sparsity of β. In this setting, G represents a set of groups of coefficients, +
defined a priori, and we allow arbitrary overlap between different groups, +
hence “overlapping” group lasso. Overlapping group lasso is a general model +
that subsumes lasso (Tibshirani, 1996), group lasso (Yuan and Lin, 2006), +
sparse group lasso (Simon et al., 2013), composite absolute penalties (Zhao, +
Rocha and Yu, 2009), and tree lasso (Zhao, Rocha and Yu, 2009; Kim et al., +
2012) with (cid:96)1/(cid:96)2 penalty because they are a specific form of overlapping +
group lasso. +
In this paper, we do not consider the latent group lasso proposed by +
Jacob et al. (Jacob, Obozinski and Vert, 2009), where support is defined +
by the union of groups with nonzero coefficients. Instead, we consider the +
('1918078', 'Seunghak Lee', 'seunghak lee')
('1752601', 'Eric P. Xing', 'eric p. xing')
205b34b6035aa7b23d89f1aed2850b1d3780de35504 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
†Shenzhen Key Lab. of Information Sci&Tech, +
Nagaoka University of Technology, Japan
RECOGNITION +
1. INTRODUCTION +
20c2a5166206e7ffbb11a23387b9c5edf42b5230
20e505cef6d40f896e9508e623bfc01aa1ec3120Fast Online Incremental Attribute-based Object +
Classification using Stochastic Gradient Descent and Self- +
Organizing Incremental Neural Network +
Department of Computational Intelligence and Systems Science, +
Tokyo Institute of Technology
4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 JAPAN +
('2641676', 'Sirinart Tangruamsub', 'sirinart tangruamsub')
('1711160', 'Aram Kawewong', 'aram kawewong')
('1727786', 'Osamu Hasegawa', 'osamu hasegawa')
(tangruamsub.s.aa, kawewong.a.aa, hasegawa.o.aa)@m.titech.ac.jp +
205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffaA Model-Based Facial Expression Recognition +
Algorithm using Principal Components Analysis +
N. Vretos, N. Nikolaidis and I.Pitas +
Informatics and Telematics Institute
Centre for Research and Technology Hellas, Greece +
Aristotle University of Thessaloniki
Thessaloniki 54124, Greece Tel,Fax: +30-2310996304 +
e-mail: vretos,nikolaid,pitas@aiia.csd.auth.gr +
2098983dd521e78746b3b3fa35a22eb2fa630299
20b437dc4fc44c17f131713ffcbb4a8bd672ef00Head pose tracking from RGBD sensor based on +
direct motion estimation +
Warsaw University of Technology, Poland
('1899063', 'Adam Strupczewski', 'adam strupczewski')
('2393538', 'Marek Kowalski', 'marek kowalski')
('1930272', 'Jacek Naruniec', 'jacek naruniec')
206e24f7d4b3943b35b069ae2d028143fcbd0704Learning Structure and Strength of CNN Filters for Small Sample Size Training +
IIIT-Delhi, India +
('3390448', 'Rohit Keshari', 'rohit keshari')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('39129417', 'Richa Singh', 'richa singh')
{rohitk, mayank, rsingh}@iiitd.ac.in +
208a2c50edb5271a050fa9f29d3870f891daa4dchttp://www.journalofvision.org/content/11/13/24 +
The resolution of facial expressions of emotion +
Aleix M. Martinez +
The Ohio State University, Columbus, OH, USA
The Ohio State University, Columbus, OH, USA
Much is known on how facial expressions of emotion are produced, including which individual muscles are most active in
each expression. Yet, little is known on how this information is interpreted by the human visual system. This paper presents +
a systematic study of the image dimensionality of facial expressions of emotion. In particular, we investigate how recognition +
degrades when the resolution of the image (i.e., number of pixels when seen as a 5.3 by 8 degree stimulus) is reduced. We +
show that recognition is only impaired in practice when the image resolution goes below 20  30 pixels. A study of the +
confusion tables demonstrates that each expression of emotion is consistently confused by a small set of alternatives and +
that the confusion is not symmetric, i.e., misclassifying emotion a as b does not imply we will mistake b for a. This +
asymmetric pattern is consistent over the different image resolutions and cannot be explained by the similarity of muscle +
activation. Furthermore, although women are generally better at recognizing expressions of emotion at all resolutions, the +
asymmetry patterns are the same. We discuss the implications of these results for current models of face perception. +
Keywords: resolution, facial expressions, emotion +
http://www.journalofvision.org/content/11/13/24, doi:10.1167/11.13.24. +
Introduction +
Emotions are fundamental in studies of cognitive science +
(Damassio, 1995), neuroscience (LeDoux, 2000), social +
psychology (Adolphs, 2003), sociology (Massey, 2002), +
economics (Connolly & Zeelenberg, 2002), human evo- +
lution (Schmidt & Cohn, 2001), and engineering and +
computer science (Pentland, 2000). Emotional states and +
emotional analysis are known to influence or mediate +
behavior and cognitive processing. Many of these emo- +
tional processes may be hidden to an outside observer, +
whereas others are visible through facial expressions of +
emotion. +
Facial expressions of emotion are a consequence of the +
movement of the muscles underneath the skin of our face +
(Duchenne, 1862/1990). The movement of these muscles +
causes the skin of the face to deform in ways that an +
external observer can use to interpret the emotion of that +
person. Each muscle employed to create these facial +
constructs is referred to as an Action Unit (AU). Ekman +
and Friesen (1978) identified those AUs responsible for +
generating the emotions most commonly seen in the +
majority of culturesVanger, sadness, fear, surprise, +
happiness, and disgust. For example, happiness generally +
involves an upper–backward movement of the mouth +
corners; while the mouth is upturned (to produce the +
smile), the cheeks lift and the upper corner of the eyes +
wrinkle. This is known as the Duchenne (1862/1990) +
smile. It requires the activation of two facial muscles: +
the zygomatic major (AU 12) to raise the corners of the +
mouth and the orbicularis oculi (AU 42) to uplift the +
cheeks and form the eye corner wrinkles. The muscles and +
mechanisms used to produce the abovementioned facial +
expressions of emotion are now quite well understood and +
it has been shown that the AUs used in each expression +
are relatively consistent from person to person and among +
distinct cultures (Burrows & Cohn, 2009). +
Yet, as much as we understand the generative process +
of facial expressions of emotion, much still needs to be +
learned about their interpretation by our cognitive system. +
Thus, an important open problem is to define the +
computational (cognitive) space of facial expressions of +
emotion of the human visual system. In the present paper, +
we study the limits of this visual processing of facial +
expressions of emotion and what it tells us about how +
emotions are represented and recognized by our visual +
system. Note that the term “computational space” is used +
here to specify the combination of features (dimensions) +
used by the cognitive system to determine (i.e., analyze +
and classify) +
for each facial +
expression of emotion. +
the appropriate label +
To properly address the problem stated in the preceding +
paragraph, it is worth recalling that some facial expressions +
of emotion may have evolved to enhance or reduce our +
sensory inputs (Susskind et al., 2008). For example, fear is +
associated with a facial expression with open mouth, +
nostrils, and eyes and an inhalation of air, as if to enhance +
the perception of our environment, while the expression of +
disgust closes these channels (Chapman, Kim, Susskind, +
& Anderson, 2009). Other emotions, though, may have +
evolved for communication purposes (Schmidt & Cohn, +
2001). Under this assumption, +
the evolution of this +
capacity to express emotions had to be accompanied by +
doi: 10.1167/11.13.24 +
Received January 25, 2011; published November 30, 2011 +
ISSN 1534-7362 * ARVO +
Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/932792/ on 06/20/2017
('2323717', 'Shichuan Du', 'shichuan du')
207798603e3089a1c807c93e5f36f7767055ec06Modeling the Correlation between +
Modality Semantics and Facial Expressions +
* Key Laboratory of Pervasive Computing, Ministry of Education +
Tsinghua National Laboratory for Information Science and Technology (TNList) +
Tsinghua University, Beijing 100084, China
Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems
Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
† Human-Computer Communications Laboratory, Department of Systems Engineering and Engineering Management, +
The Chinese University of Hong Kong, Hong Kong SAR, China
('25714033', 'Jia Jia', 'jia jia')
('37783013', 'Xiaohui Wang', 'xiaohui wang')
('3860920', 'Zhiyong Wu', 'zhiyong wu')
('7239047', 'Lianhong Cai', 'lianhong cai')
Contact E-mail: # zywu@sz.tsinghua.edu.cn, * jjia@tsinghua.edu.cn +
20be15dac7d8a5ba4688bf206ad24cab57d532d6Face Shape Recovery and Recognition Using a +
Surface Gradient Based Statistical Model +
1 Centro de Investigaci´on y Estudios Avanzados del I.P.N., Ramos Arizpe 25900, +
Coahuila, Mexico +
The University of York, Heslington, York YO10 5DD, United Kingdom
('1679753', 'Edwin R. Hancock', 'edwin r. hancock')mario.castelan@cinvestav.edu.mx +
erh@cs.york.ac.uk +
2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5bTRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015 +
Co-Localization of Audio Sources in Images Using +
Binaural Features and Locally-Linear Regression +
∗ INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +
† Univ. Grenoble Alpes, GIPSA-Lab, France +
‡ Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel +
('3307172', 'Antoine Deleforge', 'antoine deleforge')
206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8
2042aed660796b14925db17c0a8b9fbdd7f3ebacSaliency in Crowd +
Department of Electrical and Computer Engineering +
National University of Singapore, Singapore
('40452812', 'Ming Jiang', 'ming jiang')
('1946538', 'Juan Xu', 'juan xu')
('3243515', 'Qi Zhao', 'qi zhao')
eleqiz@nus.edu.sg +
202dc3c6fda654aeb39aee3e26a89340fb06802aSpatio-Temporal Instance Learning: +
Action Tubes from Class Supervision +
University of Amsterdam
('2606260', 'Pascal Mettes', 'pascal mettes')
20111924fbf616a13d37823cd8712a9c6b458cd6International Journal of Computer Applications (0975 – 8887) +
Volume 130 – No.11, November2015 +
Linear Regression Line based Partial Face Recognition +
Naveena M. +
Department of Studies in +
Computer Science, +
Manasagagothri, +
Mysore. +
Department of Studies in +
Computer Science, +
Manasagagothri, +
Mysore. +
P. Nagabhushan +
Department of Studies in +
Computer Science, +
Manasagagothri, +
Mysore. +
images. In +
('33377948', 'G. Hemantha Kumar', 'g. hemantha kumar')
20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6Appears in the Second International Conference on Audio- and Video-based Biometric Person Authentication, AVBPA’99, Washington D. C. USA, March 22-24, 1999. +
Comparative Assessment of Independent Component +
Analysis (ICA) for Face Recognition +
George Mason University
University Drive, Fairfax, VA 22030-4444, USA
cliu, wechsler +
('39664966', 'Chengjun Liu', 'chengjun liu')
('1781577', 'Harry Wechsler', 'harry wechsler')
@cs.gmu.edu +
20532b1f80b509f2332b6cfc0126c0f80f438f10A deep matrix factorization method for learning +
attribute representations +
Bj¨orn W. Schuller, Senior member, IEEE +
('2814229', 'George Trigeorgis', 'george trigeorgis')
('2732737', 'Konstantinos Bousmalis', 'konstantinos bousmalis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
205af28b4fcd6b569d0241bb6b255edb325965a4Intel Serv Robotics (2008) 1:143–157 +
DOI 10.1007/s11370-007-0014-z +
SPECIAL ISSUE +
Facial expression recognition and tracking for intelligent human-robot +
interaction +
Received: 27 June 2007 / Accepted: 6 December 2007 / Published online: 23 January 2008 +
© Springer-Verlag 2008 +
('1716880', 'Y. Yang', 'y. yang')
20cfb4136c1a984a330a2a9664fcdadc2228b0bcSparse Coding Trees with Application to Emotion Classification +
Harvard University, Cambridge, MA
('3144257', 'Hsieh-Chung Chen', 'hsieh-chung chen')
('2512314', 'Marcus Z. Comiter', 'marcus z. comiter')
('1731308', 'H. T. Kung', 'h. t. kung')
('1841852', 'Bradley McDanel', 'bradley mcdanel')
20c02e98602f6adf1cebaba075d45cef50de089fVideo Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video +
Action Recognition +
Georgia Institute of Technology
Carnegie Mellon University
Irfan Essa +
Georgia Institute of Technology
('2308598', 'Unaiza Ahsan', 'unaiza ahsan')
('37714701', 'Rishi Madhok', 'rishi madhok')
uahsan3@gatech.edu +
rmadhok@andrew.cmu.edu +
irfan@gatech.edu +
2020e8c0be8fa00d773fd99b6da55029a6a83e3dAn Evaluation of the Invariance Properties +
of a Biologically-Inspired System +
for Unconstrained Face Recognition +
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Rowland Institute at Harvard, Cambridge, MA 02142, USA
('30017846', 'Nicolas Pinto', 'nicolas pinto')pinto@mit.edu +
cox@rowland.harvard.edu +
20a0b23741824a17c577376fdd0cf40101af5880Learning to track for spatio-temporal action localization +
Zaid Harchaouia,b +
b NYU +
a Inria∗ +
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
firstname.lastname@inria.fr +
18c72175ddbb7d5956d180b65a96005c100f6014IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, +
JUNE 2001 +
643 +
From Few to Many: Illumination Cone +
Models for Face Recognition under +
Variable Lighting and Pose +
('3230391', 'Athinodoros S. Georghiades', 'athinodoros s. georghiades')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
('1765887', 'David J. Kriegman', 'david j. kriegman')
18636347b8741d321980e8f91a44ee054b051574978-1-4244-5654-3/09/$26.00 ©2009 IEEE +
37 +
ICIP 2009 +
18206e1b988389eaab86ef8c852662accf3c3663
189b1859f77ddc08027e1e0f92275341e5c0fdc6Sparse Representations and Distance Learning for +
Attribute based Category Recognition +
1 Center for Imaging Science, 2 Department of Computer Engineering +
Rochester Institute of Technology, Rochester, NY
('2272443', 'Grigorios Tsagkatakis', 'grigorios tsagkatakis'){gxt6260, andreas.savakis}@rit.edu +
18a9f3d855bd7728ed4f988675fa9405b5478845ISSN: 0976-9102 (ONLINE) +
DOI: 10.21917/ijivp.2013.0103 +
ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2013, VOLUME: 04, ISSUE: 02 +
AN ILLUMINATION INVARIANT TEXTURE BASED FACE RECOGNITION +
J. P. College of Engineering, India
Manonmaniam Sundaranar University, India
St. Xavier s Catholic College of Engineering, India
('2792485', 'K. Meena', 'k. meena')
('3311251', 'A. Suruliandi', 'a. suruliandi')
('1998086', 'Reena Rose', 'reena rose')
E-mail: meen.nandhu@gmail.com +
E-mail: suruliandi@yahoo.com +
E-mail: mailtoreenarose@yahoo.in +
181045164df86c72923906aed93d7f2f987bce6cRHEINISCH-WESTFÄLISCHE TECHNISCHE +
HOCHSCHULE AACHEN +
KNOWLEDGE-BASED SYSTEMS GROUP +
Detection and Recognition of Human +
Faces using Random Forests for a +
Mobile Robot +
MASTER OF SCIENCE THESIS +
MATRICULATION NUMBER: 26 86 51 +
SUPERVISOR: +
SECOND SUPERVISOR: +
PROF. ENRICO BLANZIERI, PH. D. +
ADVISERS: +
('1779592', 'GERHARD LAKEMEYER', 'gerhard lakemeyer')
('2181555', 'VAISHAK BELLE', 'vaishak belle')
('1779592', 'GERHARD LAKEMEYER', 'gerhard lakemeyer')
('1686596', 'STEFAN SCHIFFER', 'stefan schiffer')
('1879646', 'THOMAS DESELAERS', 'thomas deselaers')
18166432309000d9a5873f989b39c72a682932f5LEARNING A WARPED SUBSPACE MODEL OF FACES +
WITH IMAGES OF UNKNOWN POSE AND +
ILLUMINATION +
GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA
Keywords: +
('2720935', 'Jihun Ham', 'jihun ham')
('1732066', 'Daniel D. Lee', 'daniel d. lee')
jhham@seas.upenn.edu, ddlee@seas.upenn.edu +
18d5b0d421332c9321920b07e0e8ac4a240e5f1fCollaborative Representation Classification +
Ensemble for Face Recognition +
('2972883', 'Suah Kim', 'suah kim')
('2434811', 'Run Cui', 'run cui')
('1730037', 'Hyoung Joong Kim', 'hyoung joong kim')
18d51a366ce2b2068e061721f43cb798177b4bb7Cognition and Emotion +
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20 +
Looking into your eyes: observed pupil size +
influences approach-avoidance responses +
eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI: +
10.1080/02699931.2018.1472554 +
To link to this article: https://doi.org/10.1080/02699931.2018.1472554 +
View supplementary material +
Published online: 11 May 2018. +
Submit your article to this journal +
View related articles +
View Crossmark data +
Full Terms & Conditions of access and use can be found at +
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20 +
('47930228', 'Marco Brambilla', 'marco brambilla')
('41074530', 'Marco Biella', 'marco biella')
('47930228', 'Marco Brambilla', 'marco brambilla')
('41074530', 'Marco Biella', 'marco biella')
18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaaeLearning invariant representations and applications +
to face verification +
Center for Brains, Minds and Machines +
McGovern Institute for Brain Research
Massachusetts Institute of Technology
Cambridge MA 02139 +
('1694846', 'Qianli Liao', 'qianli liao')lql@mit.edu, jzleibo@mit.edu, tp@ai.mit.edu +
185263189a30986e31566394680d6d16b0089772Efficient Annotation of Objects for Video Analysis +
Thesis submitted in partial fulfillment +
of the requirements for the degree of +
MS in Computer Science and Engineering +
by +
Research +
by +
Sirnam Swetha +
201303014 +
International Institute of Information Technology
Hyderabad - 500 032, INDIA +
June 2018 +
sirnam.swetha@research.iiit.ac.in +
1885acea0d24e7b953485f78ec57b2f04e946eafCombining Local and Global Features for 3D Face Tracking +
Megvii (face++) Research +
('40448951', 'Pengfei Xiong', 'pengfei xiong')
('1775836', 'Guoqing Li', 'guoqing li')
('3756559', 'Yuhang Sun', 'yuhang sun')
{xiongpengfei, liguoqing, sunyuhang}@megvii.com +
184750382fe9b722e78d22a543e852a6290b3f70
18b9dc55e5221e704f90eea85a81b41dab51f7daAttention-based Temporal Weighted +
Convolutional Neural Network for +
Action Recognition +
Xi an Jiaotong University, Xi an, Shannxi 710049, P.R.China
2HERE Technologies, Chicago, IL 60606, USA +
3Alibaba Group, Hangzhou, Zhejiang 311121, P.R.China +
4Microsoft Research, Redmond, WA 98052, USA +
('14800230', 'Jinliang Zang', 'jinliang zang')
('40367806', 'Le Wang', 'le wang')
('46324995', 'Qilin Zhang', 'qilin zhang')
('1786361', 'Zhenxing Niu', 'zhenxing niu')
('1745420', 'Gang Hua', 'gang hua')
('1715389', 'Nanning Zheng', 'nanning zheng')
18a849b1f336e3c3b7c0ee311c9ccde582d7214fInt J Comput Vis +
DOI 10.1007/s11263-012-0564-1 +
Efficiently Scaling up Crowdsourced Video Annotation +
A Set of Best Practices for High Quality, Economical Video Labeling +
Received: 31 October 2011 / Accepted: 20 August 2012 +
© Springer Science+Business Media, LLC 2012 +
('1856025', 'Carl Vondrick', 'carl vondrick')
18cd79f3c93b74d856bff6da92bfc87be1109f80International Journal of Advances in Engineering & Technology, May 2012. +
©IJAET ISSN: 2231-1963 +
AN APPLICATION TO HUMAN FACE PHOTO-SKETCH +
SYNTHESIS AND RECOGNITION +
1Student and 2Professor & Head, +
Bharti Vidyapeeth Deemed University, Pune, India
('35541779', 'Amit R. Sharma', 'amit r. sharma')
('2731104', 'Prakash. R. Devale', 'prakash. r. devale')
182470fd0c18d0c5979dff75d089f1da176ceeebA Multimodal Annotation Schema for Non-Verbal Affective +
Analysis in the Health-Care Domain +
Federico M. Sukno +
Adrià Ruiz +
Department of Information and Communication Technologies +
Pompeu Fabra University, Spain
Human-Centered Multimedia +
Augsburg University, Germany
Louisa Praagst +
Institute of Communications Engineering
Ulm University, Germany
Information Technologies Institute
Centre for Research & Technology Hellas, Greece +
('33451278', 'Mónica Domínguez', 'mónica domínguez')
('34326647', 'Dominik Schiller', 'dominik schiller')
('2565410', 'Florian Lingenfelser', 'florian lingenfelser')
('8632684', 'Ekeni Kamateri', 'ekeni kamateri')
1862cb5728990f189fa91c67028f6d77b5ac94f6Speeding Up Tracking by Ignoring Features +
Hamdi Dibeklio˘glu +
Pattern Recognition and Bioinformatics Group, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands +
('2883723', 'Lu Zhang', 'lu zhang')
('1803520', 'Laurens van der Maaten', 'laurens van der maaten')
{lu.zhang, h.dibeklioglu, l.j.p.vandermaaten}@tudelft.nl +
1862bfca2f105fddfc79941c90baea7db45b8b16Annotator Rationales for Visual Recognition +
University of Texas at Austin
('7408951', 'Jeff Donahue', 'jeff donahue')
('1794409', 'Kristen Grauman', 'kristen grauman')
{jdd,grauman}@cs.utexas.edu +
1886b6d9c303135c5fbdc33e5f401e7fc4da6da4Knowledge Guided Disambiguation for Large-Scale +
Scene Classification with Multi-Resolution CNNs +
('39709927', 'Limin Wang', 'limin wang')
('2072196', 'Sheng Guo', 'sheng guo')
('1739171', 'Weilin Huang', 'weilin huang')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('40285012', 'Yu Qiao', 'yu qiao')
1888bf50fd140767352158c0ad5748b501563833PA R T 1 +
THE BASICS +
187d4d9ba8e10245a34f72be96dd9d0fb393b1aaGAIDON et al.: MINING VISUAL ACTIONS FROM MOVIES +
Mining visual actions from movies +
http://lear.inrialpes.fr/people/gaidon/ +
Marcin Marszałek2 +
http://www.robots.ox.ac.uk/~marcin/ +
http://lear.inrialpes.fr/people/schmid/ +
1 LEAR +
INRIA, LJK +
Grenoble, France +
2 Visual Geometry Group +
University of Oxford
Oxford, UK +
('1799820', 'Adrien Gaidon', 'adrien gaidon')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
182f3aa4b02248ff9c0f9816432a56d3c8880706Sparse Coding for Classification via Discrimination Ensemble∗ +
1School of Computer Science & Engineering, South China Univ. of Tech., Guangzhou 510006, China +
2School of Automation Science & Engineering, South China Univ. of Tech., Guangzhou 510006, China +
National University of Singapore, Singapore
('2217653', 'Yuhui Quan', 'yuhui quan')
('1725160', 'Yong Xu', 'yong xu')
('2111796', 'Yuping Sun', 'yuping sun')
('34881546', 'Yan Huang', 'yan huang')
('39689301', 'Hui Ji', 'hui ji')
{csyhquan@scut.edu.cn, yxu@scut.edu.cn, ausyp@scut.edu.cn, matjh@nus.edu.sg} +
18941b52527e6f15abfdf5b86a0086935706e83bDeepGUM: Learning Deep Robust Regression with a +
Gaussian-Uniform Mixture Model +
1 Inria Grenoble Rhˆone-Alpes, Montbonnot-Saint-Martin, France, +
University of Granada, Granada, Spain
University of Trento, Trento, Italy
('2793152', 'Pablo Mesejo', 'pablo mesejo')
('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')
('1794229', 'Radu Horaud', 'radu horaud')
firstname.name@inria.fr +
185360fe1d024a3313042805ee201a75eac50131299 +
Person De-Identification in Videos +
('35624289', 'Prachi Agrawal', 'prachi agrawal')
('1729020', 'P. J. Narayanan', 'p. j. narayanan')
1824b1ccace464ba275ccc86619feaa89018c0adOne Millisecond Face Alignment with an Ensemble of Regression Trees +
KTH, Royal Institute of Technology
Computer Vision and Active Perception Lab +
Teknikringen 14, Stockholm, Sweden +
('2626422', 'Vahid Kazemi', 'vahid kazemi')
('1736906', 'Josephine Sullivan', 'josephine sullivan')
{vahidk,sullivan}@csc.kth.se +
18dfc2434a95f149a6cbb583cca69a98c9de9887
27a00f2490284bc0705349352d36e9749dde19abVoxCeleb2: Deep Speaker Recognition +
Visual Geometry Group, Department of Engineering Science, +
University of Oxford, UK
('2863890', 'Joon Son Chung', 'joon son chung')
('19263506', 'Arsha Nagrani', 'arsha nagrani')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
{joon,arsha,az}@robots.ox.ac.uk +
271e2856e332634eccc5e80ba6fa9bbccf61f1be3D Spatio-Temporal Face Recognition Using Dynamic Range Model Sequences +
Department of Computer Science +
State University of New York at Binghamton, Binghamton, NY
('1681656', 'Yi Sun', 'yi sun')
('8072251', 'Lijun Yin', 'lijun yin')
27846b464369095f4909f093d11ed481277c8bbaJournal of Signal and Information Processing, 2017, 8, 99-112 +
http://www.scirp.org/journal/jsip +
ISSN Online: 2159-4481 +
ISSN Print: 2159-4465 +
Real-Time Face Detection and Recognition in +
Complex Background +
Illinois Institute of Technology, Chicago, Illinois, USA
How to cite this paper: Zhang, X., Gon- +
not, T. and Saniie, J. (2017) Real-Time +
Face Detection and Recognition in Com- +
plex Background. Journal of Signal and +
Information Processing, 8, 99-112. +
https://doi.org/10.4236/jsip.2017.82007 +
Received: March 25, 2017 +
Accepted: May 16, 2017 +
Published: May 19, 2017 +
Copyright © 2017 by authors and +
Scientific Research Publishing Inc. +
This work is licensed under the Creative +
Commons Attribution International +
License (CC BY 4.0). +
http://creativecommons.org/licenses/by/4.0/ +
+
Open Access +
('1682913', 'Xin Zhang', 'xin zhang')
('2324553', 'Thomas Gonnot', 'thomas gonnot')
('1691321', 'Jafar Saniie', 'jafar saniie')
27eb7a6e1fb6b42516041def6fe64bd028b7614dJoint Unsupervised Deformable Spatio-Temporal Alignment of Sequences +
Imperial College London, UK
University of Twente, The Netherlands
Center for Machine Vision and Signal Analysis, University of Oulu, Finland
('1786302', 'Lazaros Zafeiriou', 'lazaros zafeiriou')
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('1694605', 'Maja Pantic', 'maja pantic')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
⋆{l.zafeiriou12, e.antonakos, s.zafeiriou, m.pantic}@imperial.ac.uk, †PanticM@cs.utwente.nl +
2717998d89d34f45a1cca8b663b26d8bf10608a9Real-time Action Recognition with Enhanced Motion Vector CNNs +
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China
3Computer Vision Lab, ETH Zurich, Switzerland +
('3047890', 'Bowen Zhang', 'bowen zhang')
('33345248', 'Limin Wang', 'limin wang')
('1915826', 'Zhe Wang', 'zhe wang')
('33427555', 'Yu Qiao', 'yu qiao')
('2774427', 'Hanli Wang', 'hanli wang')
27c66b87e0fbb39f68ddb783d11b5b7e807c76e8Fast Simplex-HMM for One-Shot Learning Activity Recognition +
Zaragoza University
Zaragoza, Spain. +
Kingston University
London,UK. +
('1783769', 'Carlos Medrano', 'carlos medrano')
('1687002', 'Dimitrios Makris', 'dimitrios makris')
[mrodrigo, corrite, ctmedra]@unizar.es +
D.Makris@kingston.ac.uk +
27a0a7837f9114143717fc63294a6500565294c2Face Recognition in Unconstrained Environments: A +
Comparative Study +
To cite this version: +
Environments: A Comparative Study: . Workshop on Faces in ’Real-Life’ Images: Detection, +
Alignment, and Recognition, Oct 2008, Marseille, France. 2008. +
HAL Id: inria-00326730 +
https://hal.inria.fr/inria-00326730 +
Submitted on 5 Oct 2008 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('1689681', 'Rodrigo Verschae', 'rodrigo verschae')
('1737300', 'Javier Ruiz-Del-Solar', 'javier ruiz-del-solar')
('34047285', 'Mauricio Correa', 'mauricio correa')
('1689681', 'Rodrigo Verschae', 'rodrigo verschae')
('1737300', 'Javier Ruiz-Del-Solar', 'javier ruiz-del-solar')
('34047285', 'Mauricio Correa', 'mauricio correa')
27d709f7b67204e1e5e05fe2cfac629afa21699d
271df16f789bd2122f0268c3e2fa46bc0cb5f195Mining Discriminative Co-occurrence Patterns for Visual Recognition +
School of EEE +
Nanyang Technological University
Singapore 639798 +
Dept. of Media Analytics +
NEC Laboratories America +
Cupertino, CA, 95014 USA +
EECS Dept. +
Northwestern University
Evanston, IL, 60208 USA +
('34316743', 'Junsong Yuan', 'junsong yuan')
('40634508', 'Ming Yang', 'ming yang')
('39955137', 'Ying Wu', 'ying wu')
jsyuan@ntu.edu.sg +
myang@sv.nec-labs.com +
yingwu@eecs.northwestern.edu +
275b5091c50509cc8861e792e084ce07aa906549Institut für Informatik +
der Technischen +
Universität München +
Dissertation +
Leveraging the User’s Face as a Known Object +
in Handheld Augmented Reality +
Sebastian Bernhard Knorr +
27218ff58c3f0e7d7779fba3bb465d746749ed7cActive Learning for Image Ranking +
Over Relative Visual Attributes +
by +
Department of Computer Science +
University of Texas at Austin
('2548555', 'Lucy Liang', 'lucy liang')
('1794409', 'Kristen Grauman', 'kristen grauman')
276dbb667a66c23545534caa80be483222db77693D Res. 2, 03(2011)4 +
10.1007/3DRes.03(2011)4 +
3DR REVIEW w +
An Introduction to Image-based 3D Surface Reconstruction and a +
Survey of Photometric Stereo Methods +
for +
introduction +
image-based 3D +
techniques. Then we describe +
Received: 21Feburary 2011 / Revised: 20 March 2011 / Accepted: 11 May 2011 +
D Research Center, Kwangwoon University and Springer
('1908324', 'Steffen Herbort', 'steffen herbort')
270733d986a1eb72efda847b4b55bc6ba9686df4We are IntechOpen, +
the first native scientific +
publisher of Open Access books +
3,350 +
108,000 +
1.7 M +
Open access books available +
International authors and editors +
Downloads +
Our authors are among the +
151 +
Countries delivered to +
TOP 1% +
12.2% +
most cited scientists +
Contributors from top 500 universities +
Selection of our books indexed in the Book Citation Index +
in Web of Science™ Core Collection (BKCI) +
Interested in publishing with us? +
Numbers displayed above are based on latest data collected. +
For more information visit www.intechopen.com +
Contact book.department@intechopen.com +
27c6cd568d0623d549439edc98f6b92528d39bfeRegressive Tree Structured Model for Facial Landmark Localization +
Artificial Vision Lab., Dept Mechanical Engineering +
National Taiwan University of Science and Technology
('2329565', 'Kai-Hsiang Chang', 'kai-hsiang chang')
('2421405', 'Shih-Chieh Huang', 'shih-chieh huang')
jison@mail.ntust.edu.tw +
273b0511588ab0a81809a9e75ab3bd93d6a0f1e3The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3428-9 +
Recognition of Facial Expressions Based on Salient +
Geometric Features and Support Vector Machines +
Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep
Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do
School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; E-Mail
Tel.: +82-63-270-2406; Fax: +82-63-270-2394. +
('32322842', 'Deepak Ghimire', 'deepak ghimire')
('2034182', 'Joonwhoan Lee', 'joonwhoan lee')
('1689656', 'Ze-Nian Li', 'ze-nian li')
('31984909', 'SungHwan Jeong', 'sunghwan jeong')
of Korea; E-Mails: (deepak, shjeong)@keti.re.kr +
Rep. of Korea; E-Mail: chlee@jbnu.ac.kr +
li@cs.sfu.ca +
* Author to whom correspondence should be addressed; E-Mail: chlee@jbnu.ac.kr; +
27169761aeab311a428a9dd964c7e34950a62a6bInternational Journal of the Physical Sciences Vol. 5(13), pp. 2020 -2029, 18 October, 2010 +
Available online at http://www.academicjournals.org/IJPS +
ISSN 1992 - 1950 ©2010 Academic Journals +
Full Length Research Paper +
Face recognition using 3D head scan data based on +
Procrustes distance +
Kongju National University, South Korea
Korean Research Institute of Standards and Science (KRISS), Korea
Accepted 6 July, 2010 +
Recently, face recognition has attracted significant attention from the researchers and scientists in +
various fields of research, such as biomedical informatics, pattern recognition, vision, etc due its +
applications in commercially available systems, defense and security purpose. In this paper a practical +
method for face reorganization utilizing head cross section data based on Procrustes analysis is +
proposed. This proposed method relies on shape signatures of the contours extracted from face data. +
The shape signatures are created by calculating the centroid distance of the boundary points, which is +
a translation and rotation invariant signature. The shape signatures for a selected region of interest +
(ROI) are used as feature vectors and authentication is done using them. After extracting feature +
vectors a comparison analysis is performed utilizing Procrustes distance to differentiate their face +
pattern from each other. The proposed scheme attains an equal error rate (EER) of 4.563% for the 400 +
head data for 100 subjects. The performance analysis of face recognition was analyzed based on K +
nearest neighbour classifier. The experimental results presented here verify that the proposed method +
is considerable effective. +
Key words: Face, biometrics, Procrustes distance, equal error rate, k nearest classifier. +
INTRODUCTION +
Perhaps face is the easiest means of identifying a person +
by another person. In general humans can identify +
themselves and others by faces in a scene without hard +
effort, but face recognition systems that implement these +
tasks are very challenging to design. The challenges are +
even extensive when there is a wide range of variation +
due to imaging situations. Both inter- and intra-subject +
variations are related with face images. Physical similarity +
among +
inter-subject +
variation whereas intra-subject variation is dependent on +
the following aspects such as age, head pose facial app- +
roach, presence of light and presence of other obje- +
cts/people etc. However, in face recognition, it has been +
observed that inter-person variations are available due to +
variations in local geometric features. Automatic face +
recognition has been widely studied during the last few +
decades. It is an active research area spanning many di- +
sciplines such as image processing, pattern recognition, +
responsible +
individuals +
for +
is +
computer vision, neural networks, artificial intelligence, +
and biometrics. +
Many researchers from these different disciplines work +
toward the goal of endowing machines or computers with +
the ability to recognize human faces as we human beings +
do, effortlessly, in our everyday life (Brunelli and Poggio, +
1993; Samaria, 1994; Wiskott et al., 1997; Turk and +
Pentland, 1991; Belhumeur et al., 1997; He et al., 2005; +
Wiskott et al., 1997; Lanitis et al., 1995; Cootes et al., +
2001; Brunelli and Poggio, 1993; Turk, 1991; Bellhumer +
et al., 1997). Face recognition has a wide range of +
potential applications +
for commercial, security, and +
forensic purposes. These applications include automated +
crowd +
shot +
identification (e.g., for issuing driver licenses), credit card +
authorization, ATM machine access control, design of +
human computer interfaces, etc. The rapid evaluation in +
face recognition research can be found by the progress +
of systematic evaluation standards that includes the +
FERET, FRVT 2000, FRVT 2002, and XM2VTS +
protocols, and many existing software packages for +
example FaceIt, FaceVACS, FaceSnap Recorder, +
control, mug +
surveillance, +
access +
('3222448', 'Sikyung Kim', 'sikyung kim')
('2387342', 'Se Jin Park', 'se jin park')
*Corresponding author. E-mail: mynudding@yahoo.com. +
27da432cf2b9129dce256e5bf7f2f18953eef5a5
27961bc8173ac84fdbecacd01e5ed6f7ed92d4bdTo Appear in The IEEE 6th International Conference on Biometrics: Theory, Applications and +
Systems (BTAS), Sept. 29-Oct. 2, 2013, Washington DC, USA +
Automatic Multi-view Face Recognition via 3D Model Based Pose Regularization +
Department of Computer Science and Engineering +
Michigan State University, East Lansing, MI, U.S.A
('1883998', 'Koichiro Niinuma', 'koichiro niinuma')
('34393045', 'Hu Han', 'hu han')
('6680444', 'Anil K. Jain', 'anil k. jain')
{niinumak, hhan, jain}@msu.edu +
27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.40-44 +
RESEARCH ARTICLE +
OPEN ACCESS +
Effect of Different Occlusion on Facial Expressions Recognition +
RGPV University, Indore
RGPV University, Indore
+
('2890210', 'Ramchand Hablani', 'ramchand hablani')
2784d9212dee2f8a660814f4b85ba564ec333720Learning Class-Specific Image Transformations with Higher-Order Boltzmann +
Machines +
Erik Learned-Miller +
University of Massachusetts Amherst
Amherst, MA +
('3219900', 'Gary B. Huang', 'gary b. huang'){gbhuang,elm}@cs.umass.edu +
2717b044ae9933f9ab87f16d6c611352f66b2033GNAS: A Greedy Neural Architecture Search Method for +
Multi-Attribute Learning +
Zhejiang University, 2Southwest Jiaotong University, 3Carnegie Mellon University
('2986516', 'Siyu Huang', 'siyu huang')
('50079147', 'Xi Li', 'xi li')
('1720488', 'Zhongfei Zhang', 'zhongfei zhang')
{siyuhuang,xilizju,zhongfei}@zju.edu.cn,zhiqicheng@gmail.com,alex@cs.cmu.edu +
2770b095613d4395045942dc60e6c560e882f887GridFace: Face Rectification via Learning Local +
Homography Transformations +
Face++, Megvii Inc. +
('1848243', 'Erjin Zhou', 'erjin zhou')
('2695115', 'Zhimin Cao', 'zhimin cao')
('40055995', 'Jian Sun', 'jian sun')
{zej,czm,sunjian}@megvii.com +
27cccf992f54966feb2ab4831fab628334c742d8International Journal of Computer Applications (0975 – 8887) +
Volume 64– No.18, February 2013 +
Facial Expression Recognition by Statistical, Spatial +
Features and using Decision Tree +
Assistant Professor +
CSIT Department +
GGV BIlaspur, Chhattisgarh +
India +
Assistant Professor +
Electronics (ECE) Department +
JECRC Jaipur, Rajasthan India +
IshanBhardwaj +
Student of Ph.D. +
Electrical Department +
NIT Raipur, Chhattisgarh India +
('8836626', 'Nazil Perveen', 'nazil perveen')
('2092589', 'Darshan Kumar', 'darshan kumar')
27883967d3dac734c207074eed966e83afccb8c3This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +
Two-dimensional Maximum Local Variation based on Image Euclidean Distance for Face +
Recognition +
State Key Laboratory of Integrated Services Networks, Xidian University, Xi an 710071 China
State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China
The Chinese University of Hong Kong, Hong Kong
to +
improve +
in +
images and +
in estimating +
('38469552', 'Quanxue Gao', 'quanxue gao')
270e5266a1f6e76954dedbc2caf6ff61a5fbf8d0EmotioNet Challenge: Recognition of facial expressions of emotion in the wild +
Dept. Electrical and Computer Engineering +
The Ohio State University
('8038057', 'Ramprakash Srinivasan', 'ramprakash srinivasan')
('9947018', 'Qianli Feng', 'qianli feng')
('1678691', 'Yan Wang', 'yan wang')
27f8b01e628f20ebfcb58d14ea40573d351bbaadDEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE +
ICT International Doctoral School +
Events based Multimedia Indexing +
and Retrieval +
SUBMITTED TO THE DEPARTMENT OF +
INFORMATION ENGINEERING AND COMPUTER SCIENCE (DISI) +
IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE +
OF +
DOCTOR OF PHILOSOPHY +
Advisor: +
Examiners: Prof. Marco Carli, Universit`a degli Studi di Roma Tre, Italy +
Prof. Nicola Conci, Universit`a degli Studi di Trento, Italy +
Prof. Pietro Zanuttigh, Universit`a degli Studi di Padova, Italy +
Prof. Giulia Boato, Universit`a degli Studi di Trento, Italy +
December 2017 +
('36296712', 'Kashif Ahmad', 'kashif ahmad')
2742a61d32053761bcc14bd6c32365bfcdbefe35Submitted 9/13; Revised 6/14; Published 2/15 +
Learning Transformations for Clustering and Classification +
Department of Electrical and Computer Engineering +
Duke University
Durham, NC 27708, USA +
Department of Electrical and Computer Engineering +
Department of Computer Science +
Department of Biomedical Engineering +
Duke University
Durham, NC 27708, USA +
Editor: Ben Recht +
('2077648', 'Qiang Qiu', 'qiang qiu')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
qiang.qiu@duke.edu +
guillermo.sapiro@duke.edu +
27dafedccd7b049e87efed72cabaa32ec00fdd45Unsupervised Visual Alignment with Similarity Graphs +
Tampere University of Technology, Finland
('2416841', 'Fatemeh Shokrollahi Yancheshmeh', 'fatemeh shokrollahi yancheshmeh')
('40394658', 'Ke Chen', 'ke chen')
{fatemeh.shokrollahiyancheshmeh, ke.chen, joni.kamarainen}@tut.fi +
27a299b834a18e45d73e0bf784bbb5b304c197b3Social Role Discovery in Human Events +
Stanford University
br. maids +
bride +
groom +
gr. man +
Pairwise interaction features +
Social Role Model +
Σ𝛼 +
Σ𝛽 +
Introduction +
• Social Roles describe humans in an event +
•Social roles of humans are dependent on +
- their actions in a social setting +
- their interactions with other roles +
• Obtaining role annotations for training is expensive +
•Goal: Discover role clusters in a social event based on +
role-specific interactions +
1. Input: videos +
with human tracks +
2. Extract unary and +
interaction features +
3. Output: Cluster +
people into social roles +
Our Approach +
- Does not require +
role annotations +
- Clusters people +
into roles based +
on interactions as +
well as person- +
specific features +
Results: Clustering Accuracy +
• New YouTube dataset: ~40 videos with 160-240 people per event +
• Human tracks and ground-truth roles annotated +
Method +
prior +
K-means +
Only unary +
Interaction +
as context +
Birthday Wedding Award +
Function +
62.97% +
31.97% +
69.31% +
77.75% +
20.17% +
29.43% +
39.22% +
38.83% +
29.32% +
33.88% +
38.25% +
41.53% +
Physical +
Training +
65.93% +
57.67% +
76.69% +
77.91% +
No spatial +
43.72% +
No proxemic 43.72% +
44.81% +
Full Model +
36.41% +
39.32% +
42.72% +
79.54% +
79.80% +
83.12% +
82.82% +
77.91% +
82.82% +
• Only unary – No +
interaction feature +
Interaction as +
context – Average +
interaction as unary +
• No spatial – Only +
proxemic interaction +
• No proxemic – Only +
spatial interaction +
Ψ𝑃 +
- Spatio-temporal trajectory features +
- Proxemic[2] interaction features +
Unary features +
- HOG3D and Trajectory to capture action +
- Gender and Color Histogram features +
- Object interaction features +
Ψ𝑢 +
𝒔𝑖 +
𝛼 - Unary feature weight +
𝒔𝑖 +
- Social role assignment +
- Reference role assignment +
Interaction feature weight +
Jointly infer +
by variational +
inference +
Ψ𝑢 +
Ψ𝑝 +
Interaction restricted +
to reference role for +
tractable inference +
• Spatial relations in wedding. Cross-arrow is the position of the reference +
Results: Role Clusters +
role (groom) +
Bride +
Priest +
Brides maid +
Grooms man +
• Color of cross represents ground-truth role for wrong assignments +
bride +
groom +
priest +
grooms men +
brides maid +
b’day person +
parent +
friends +
guest +
presenter +
recipient +
host +
distributor +
[1] V. Ramanathan, B. Yao, L. Fei-Fei. Social Role Discovery in Human Events. In CVPR, 2013. +
[2] Y. Yang, S. Baker, A. Kannan, and D. Ramanan. Recognizing proxemics in personal photos. In CVPR, 2012. +
This work was supported in part by DARPA Minds Eye, NSF, Intel, Microsoft Research, Google Research and the Intelligence Advanced +
Research Projects Activity* (IARPA) via Department of Interior National Business Center contract number D11PC20069. +
* The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright thereon. Disclaimer: The views and conclusions contained herein are +
those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DOI/NBC, or the U.S. Government. +
instructor +
presenter +
('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')
('38916673', 'Bangpeng Yao', 'bangpeng yao')
('3216322', 'Li Fei-Fei', 'li fei-fei')
{vigneshr, bangpeng, feifeili}@cs.stanford.edu +
27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0baComparison between k-nn and svm method +
for speech emotion recognition +
Anjuman College of Engineering and Technology, Sadar, Nagpur, India
('27879696', 'Muzaffar Khan', 'muzaffar khan')
274f87ad659cd90382ef38f7c6fafc4fc7f0d74d
27ee8482c376ef282d5eb2e673ab042f5ded99d7Scale Normalization for the Distance Maps AAM. +
Avenue de la boulaie, BP 81127, +
35 511 Cesson-S´evign´e, France +
Sup´elec, IETR-SCEE Team +
('31491147', 'Denis Giri', 'denis giri')
('2861129', 'Maxime Rosenwald', 'maxime rosenwald')
('32420329', 'Benjamin Villeneuve', 'benjamin villeneuve')
('3353560', 'Sylvain Le Gallou', 'sylvain le gallou')
Email: {denis.giri, maxime.rosenwald, benjamin.villeneuve, sylvain.legallou, renaud.seguier}@supelec.fr +
4b4106614c1d553365bad75d7866bff0de6056edUnconstrained Facial Images: Database for Face +
Recognition under Real-world Conditions⋆ +
1 Dept. of Computer Science & Engineering +
University of West Bohemia
Plzeˇn, Czech Republic +
2 NTIS - New Technologies for the Information Society +
University of West Bohemia
Plzeˇn, Czech Republic +
('2628715', 'Ladislav Lenc', 'ladislav lenc'){llenc,pkral}@kiv.zcu.cz +
4bb03b27bc625e53d8d444c0ba3ee235d2f17e86Reading Between The Lines: Object Localization +
Using Implicit Cues from Image Tags +
Department of Computer Science +
University of Texas at Austin
('35788904', 'Sung Ju Hwang', 'sung ju hwang')
('1794409', 'Kristen Grauman', 'kristen grauman')
{sjhwang,grauman}@cs.utexas.edu +
4b89cf7197922ee9418ae93896586c990e0d2867LATEX Author Guidelines for CVPR Proceedings +
First Author +
Institution1 +
Institution1 address +
firstauthor@i1.org +
4bc9a767d7e63c5b94614ebdc24a8775603b15c9University of Trento
Doctoral Thesis +
Understanding Visual Information: +
from Unsupervised Discovery to +
Minimal Effort Domain Adaptation +
Author: +
Supervisor: +
Dr. Nicu Sebe +
A thesis submitted in fulfilment of the requirements +
for the degree of Doctor of Philosophy +
in the +
International Doctorate School in Information and Communication Technologies +
Department of Information Engineering and Computer Science +
Multimedia and Human Understanding Group (MHUG) +
April 2015 +
('2933565', 'Gloria Zen', 'gloria zen')
4b519e2e88ccd45718b0fc65bfd82ebe103902f7A Discriminative Model for Age Invariant Face +
Recognition +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China
Michigan State University, E. Lansing, MI 48823, USA
Korea University, Seoul 136-713, Korea
('1911510', 'Zhifeng Li', 'zhifeng li')
('2222919', 'Unsang Park', 'unsang park')
('6680444', 'Anil K. Jain', 'anil k. jain')
4b3f425274b0c2297d136f8833a31866db2f2aecThis is a pre-print of the original paper accepted for publication in the CVPR 2017 Biometrics Workshop. +
Toward Open-Set Face Recognition +
Manuel G¨unther +
Vision and Security Technology Lab, University of Colorado Colorado Springs
('39616991', 'Steve Cruz', 'steve cruz')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
('39886114', 'Ethan M. Rudd', 'ethan m. rudd')
{mgunther,scruz,erudd,tboult}@vast.uccs.edu +
4b7c110987c1d89109355b04f8597ce427a7cd72ORIGINAL RESEARCH ARTICLE +
published: 16 October 2014 +
doi: 10.3389/fnhum.2014.00804 +
Feature- and Face-Exchange illusions: new insights and +
applications for the study of the binding problem +
American University, Washington, DC, USA
University of Nevada, Reno, Reno, NV, USA
Edited by: +
Baingio Pinna, University of
Sassari, Italy +
Reviewed by: +
Stephen Louis Macknik, Barrow +
Neurological Institute, USA
Susana Martinez-Conde, Barrow +
Neurological Institute, USA
*Correspondence: +
Psychology, American University
4400 Massachusetts Avenue NW, +
Washington, DC 20016, USA +
The binding problem is a longstanding issue in vision science: i.e., how are humans able to +
maintain a relatively stable representation of objects and features even though the visual +
system processes many aspects of the world separately and in parallel? We previously +
investigated this issue with a variant of the bounce-pass paradigm, which consists of two +
rectangular bars moving in opposite directions; if the bars are identical and never overlap, +
the motion could equally be interpreted as bouncing or passing. Although bars of different +
colors should be seen as passing each other (since the colors provide more information +
about the bars’ paths), we found “Feature Exchange”: observers reported the paradoxical +
perception that the bars appear to bounce off of each other and exchange colors. Here we +
extend our previous findings with three demonstrations. “Peripheral Feature-Exchange” +
consists of two colored bars that physically bounce (they continually meet in the middle +
of the monitor and return to the sides). When viewed in the periphery, the bars appear +
to stream past each other even though this percept relies on the exchange of features +
and contradicts the information provided by the color of the bars. In “Face-Exchange” +
two different faces physically pass each other. When fixating centrally, observers typically +
report the perception of bouncing faces that swap features, indicating that the Feature +
Exchange effect can occur even with complex objects. In “Face-Go-Round,” one face +
repeatedly moves from left to right on the top of the monitor, and the other from right +
to left at the bottom of the monitor. Observers typically perceive the faces moving in a +
circle—a percept that contradicts information provided by the identity of the faces. We +
suggest that Feature Exchange and the paradigms used to elicit it can be useful for the +
investigation of the binding problem as well as other contemporary issues of interest to +
vision science. +
Keywords: motion perception, object perception, binding problem, visual periphery, animation, bouncing +
streaming illusions, illusion of causality +
INTRODUCTION +
The “binding problem” refers to the observation that the brain +
processes many aspects of the visual world separately and in +
parallel, yet we perceive a unified world, populated by coherent +
objects (James, 1890; Treisman, 1996; Holcombe et al., 2009). The +
implication is that the visual system binds together the output of +
separate processes (which presumably compute features, textures, +
colors, motion gradients, etc.) prior to creating our object-centric +
perceptual world. Two fundamental questions of the binding +
problem can be summarized as follows: (1) How, and under +
what conditions, does the brain combine (or fail to combine) the +
outputs of these separate processes to construct an object rep- +
resentation? (2) How are object representations maintained over +
time and space? +
We recently examined the spatiotemporal conditions and the +
role feature-level processes play in representing and maintaining +
objects (Caplovitz et al., 2011) using a variant of the “bounce- +
pass paradigm” (Metzger, 1934; Michotte, 1946/1963; Kanizsa, +
1969). In a typical version of the bounce pass paradigm, the +
interpretation of motion direction and object correspondence +
direction is intrinsically ambiguous, and the degree to which +
observers report one or the other of the potential percepts has +
been used to study a range of perceptual and cognitive processes. +
For example, versions of this basic paradigm have been used to +
study properties of cross-modal interactions and motion per- +
ception as well as object representations (Bertenthal et al., 1993; +
Watanabe and Shimojo, 1998; Sekuler and Sekuler, 1999; Mitroff +
et al., 2005; Feldman and Tremoulet, 2006). +
The basic paradigm (illustrated in Figure 1A) consists of two +
rectangles; one that moves from right to left while the other moves +
from left to right. The display is ambiguous because the stimulus +
is wholly consistent with each rectangle passing from one side of +
the screen to the other (i.e., the perception of streaming) or as +
bouncing off of the other rectangle and returning to its point of +
origin (i.e., the perception of bouncing). If, at the point of inter- +
section, one rectangle overlaps with the other rectangle observers +
will commonly perceive streaming (Sekuler and Sekuler, 1999). +
In our experiments, this potential cue is removed: at the critical +
point of intersection, the rectangles exactly exchange places and +
thus never have an overlapping edge. When the two rectangles are +
Frontiers in Human Neuroscience +
www.frontiersin.org +
October 2014 | Volume 8 | Article 804 | 1 +
HUMAN NEUROSCIENCE
('31981243', 'Arthur G. Shapiro', 'arthur g. shapiro')
('8369036', 'Gideon P. Caplovitz', 'gideon p. caplovitz')
('23863232', 'Erica L. Dixon', 'erica l. dixon')
('31981243', 'Arthur G. Shapiro', 'arthur g. shapiro')
e-mail: arthur.shapiro@american.edu +
4bd088ba3f42aa1e43ae33b1988264465a643a1fTechnical Report, IDE0852, May 2008 +
Multiview Face Detection Using +
Gabor Filters and +
Support Vector Machine +
Bachelor’s Thesis in Computer Systems Engineering +
School of Information Science, Computer and Electrical Engineering +
+
Halmstad University
4bfce41cc72be315770861a15e467aa027d91641Active Annotation Translation +
Caltech +
Kristj´an Eldj´arn Hj¨orleifsson +
University of Iceland
Caltech +
('3251767', 'Steve Branson', 'steve branson')
('1690922', 'Pietro Perona', 'pietro perona')
sbranson@caltech.edu +
keh4@hi.is +
perona@caltech.edu +
4b61d8490bf034a2ee8aa26601d13c83ad7f843aA Modulation Module for Multi-task Learning with +
Applications in Image Retrieval +
Northwestern University
2 AIBee +
3 Bytedance AI Lab +
Carnegie Mellon University
('8343585', 'Xiangyun Zhao', 'xiangyun zhao')
4bd3de97b256b96556d19a5db71dda519934fd53Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face +
Recognition +
School of Electronic and Information Engineering, South China University of Technology
Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
('2512949', 'Yandong Wen', 'yandong wen')
('32787758', 'Zhifeng Li', 'zhifeng li')
('33427555', 'Yu Qiao', 'yu qiao')
yd.wen@siat.ac.cn, zhifeng.li@siat.ac.cn, yu.qiao@siat.ac.cn +
4b04247c7f22410681b6aab053d9655cf7f3f888Robust Face Recognition by Constrained Part-based +
Alignment +
('1692992', 'Yuting Zhang', 'yuting zhang')
('2370507', 'Kui Jia', 'kui jia')
('7135663', 'Yueming Wang', 'yueming wang')
('1734380', 'Gang Pan', 'gang pan')
('1926757', 'Tsung-Han Chan', 'tsung-han chan')
('1700297', 'Yi Ma', 'yi ma')
4b60e45b6803e2e155f25a2270a28be9f8bec130Attribute Based Object Identification +('1686318', 'Yuyin Sun', 'yuyin sun')
('1766509', 'Liefeng Bo', 'liefeng bo')
('1731079', 'Dieter Fox', 'dieter fox')
4b48e912a17c79ac95d6a60afed8238c9ab9e553JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Minimum Margin Loss for Deep Face Recognition +
('49141822', 'Xin Wei', 'xin wei')
('3552546', 'Hui Wang', 'hui wang')
('2986129', 'Huan Wan', 'huan wan')
4b5eeea5dd8bd69331bd4bd4c66098b125888deaHuman Activity Recognition Using Conditional +
Random Fields and Privileged Information +
submitted to +
the designated by the General Assembly Composition of the +
Department of Computer Science & Engineering Inquiry +
Committee +
by +
in partial fulfillment of the Requirements for the Degree of +
DOCTOR OF PHILOSOPHY +
February 2016 +
('2045915', 'Michalis Vrigkas', 'michalis vrigkas')
4bbbee93519a4254736167b31be69ee1e537f942
4b74f2d56cd0dda6f459319fec29559291c61bffCHIACHIA ET AL.: PERSON-SPECIFIC SUBSPACES FOR FAMILIAR FACES +
Person-Specific Subspace Analysis for +
Unconstrained Familiar Face Identification +
David Cox2 +
Institute of Computing
University of Campinas
Campinas, Brazil +
Rowland Institute
Harvard University
Cambridge, USA +
McGovern Institute
Massachusetts Institute of Technology
Cambridge, USA +
4 Department of Computer Science +
Universidade Federal de Minas Gerais +
Belo Horizonte, Brazil +
('1761151', 'Giovani Chiachia', 'giovani chiachia')
('30017846', 'Nicolas Pinto', 'nicolas pinto')
('1679142', 'William Robson Schwartz', 'william robson schwartz')
('2145405', 'Anderson Rocha', 'anderson rocha')
('1716806', 'Alexandre X. Falcão', 'alexandre x. falcão')
giovanichiachia@gmail.com +
pinto@mit.edu +
william@dcc.ufmg.br +
anderson.rocha@ic.unicamp.br +
afalcao@ic.unicamp.br +
davidcox@fas.harvard.edu +
4ba38262fe20fab3e4c80215147b498f83843b93MAKIANDCIPOLLA:OBTAININGTHESHAPEOFAMOVINGOBJECT +
Obtaining the Shape of a Moving Object +
with a Specular Surface +
Toshiba Research Europe +
Cambridge Research Laboratory
Department of Engineering +
University of Cambridge
('1801052', 'Atsuto Maki', 'atsuto maki')
('1745672', 'Roberto Cipolla', 'roberto cipolla')
atsuto.maki@crl.toshiba.co.uk +
cipolla@cam.ac.uk +
4bbe460ab1b279a55e3c9d9f488ff79884d01608GAGAN: Geometry-Aware Generative Adversarial Networks +
Jean Kossaifi∗ +
Middlesex University London
Imperial College London
('47801605', 'Linh Tran', 'linh tran')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1694605', 'Maja Pantic', 'maja pantic')
{jean.kossaifi;linh.tran;i.panagakis;m.pantic}@imperial.ac.uk +
4b3eaedac75ac419c2609e131ea9377ba8c3d4b8FAST NEWTON ACTIVE APPEARANCE MODELS +
Jean Kossaifi(cid:63) +
cid:63) Imperial College London, UK
University of Lincoln, UK
University of Twente, The Netherlands
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1694605', 'Maja Pantic', 'maja pantic')
4b507a161af8a7dd41e909798b9230f4ac779315A Theory of Multiplexed Illumination +
Dept. Electrical Engineering +
Technion - Israel Inst. Technology +
Haifa 32000, ISRAEL +
Dept. Computer Science +
Columbia University
New York, NY 10027 +
('2159538', 'Yoav Y. Schechner', 'yoav y. schechner')
('1750470', 'Shree K. Nayar', 'shree k. nayar')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
yoav@ee.technion.ac.il +
{nayar,belhumeur}@cs.columbia.edu +
4b02387c2db968a70b69d98da3c443f139099e91Detecting facial landmarks in the video based on a hybrid framework +
School of Information Engineering, Guangdong University of Technology, 510006 Guangzhou, China
School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China
('1850205', 'Nian Cai', 'nian cai')
('3468993', 'Zhineng Lin', 'zhineng lin')
('2686365', 'Fu Zhang', 'fu zhang')
('39038751', 'Guandong Cen', 'guandong cen')
('40465036', 'Han Wang', 'han wang')
4b6be933057d939ddfa665501568ec4704fabb39
4b71d1ff7e589b94e0f97271c052699157e6dc4aHindawi Publishing Corporation +
EURASIP Journal on Advances in Signal Processing +
Volume 2008, Article ID 748483, 18 pages +
doi:10.1155/2008/748483 +
Research Article +
Pose-Encoded Spherical Harmonics for Face Recognition and +
Synthesis Using a Single Image +
Center for Automation Research, University of Maryland, College Park, MD 20742, USA
2 Vision Technologies Lab, Sarnoff Corporation, Princeton, NJ 08873, USA +
Received 1 May 2007; Accepted 4 September 2007 +
Recommended by Juwei Lu +
Face recognition under varying pose is a challenging problem, especially when illumination variations are also present. In this +
paper, we propose to address one of the most challenging scenarios in face recognition. That is, to identify a subject from a test +
image that is acquired under different pose and illumination condition from only one training sample (also known as a gallery +
image) of this subject in the database. For example, the test image could be semifrontal and illuminated by multiple lighting +
sources while the corresponding training image is frontal under a single lighting source. Under the assumption of Lambertian +
reflectance, the spherical harmonics representation has proved to be effective in modeling illumination variations for a fixed pose. +
In this paper, we extend the spherical harmonics representation to encode pose information. More specifically, we utilize the fact +
that 2D harmonic basis images at different poses are related by close-form linear transformations, and give a more convenient +
transformation matrix to be directly used for basis images. An immediate application is that we can easily synthesize a different +
view of a subject under arbitrary lighting conditions by changing the coefficients of the spherical harmonics representation. A +
more important result is an efficient face recognition method, based on the orthonormality of the linear transformations, for +
solving the above-mentioned challenging scenario. Thus, we directly project a nonfrontal view test image onto the space of frontal +
view harmonic basis images. The impact of some empirical factors due to the projection is embedded in a sparse warping matrix; +
for most cases, we show that the recognition performance does not deteriorate after warping the test image to the frontal view. +
Very good recognition results are obtained using this method for both synthetic and challenging real images. +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
1. +
INTRODUCTION +
Face recognition is one of the most successful applications +
of image analysis and understanding [1]. Given a database of +
training images (sometimes called a gallery set, or gallery im- +
ages), the task of face recognition is to determine the facial ID +
of an incoming test image. Built upon the success of earlier +
efforts, recent research has focused on robust face recogni- +
tion to handle the issue of significant difference between a +
test image and its corresponding training images (i.e., they +
belong to the same subject). Despite significant progress, ro- +
bust face recognition under varying lighting and different +
pose conditions remains to be a challenging problem. The +
problem becomes even more difficult when only one train- +
ing image per subject is available. Recently, methods have +
been proposed to handle the combined pose and illumina- +
tion problem when only one training image is available, for +
example, the method based on morphable models [2] and its +
extension [3] that proposes to handle the complex illumina- +
tion problem by integrating spherical harmonics representa- +
tion [4, 5]. In these methods, either arbitrary illumination +
conditions cannot be handled [2] or the expensive computa- +
tion of harmonic basis images is required for each pose per +
subject [3]. +
Under the assumption of Lambertian reflectance, the +
spherical harmonics representation has proved to be effec- +
tive in modelling illumination variations for a fixed pose. In +
this paper, we extend the harmonic representation to encode +
pose information. We utilize the fact that all the harmonic +
basis images of a subject at various poses are related to each +
other via close-form linear transformations [6, 7], and de- +
rive a more convenient transformation matrix to analytically +
synthesize basis images of a subject at various poses from +
just one set of basis images at a fixed pose, say, the frontal +
('39265975', 'Zhanfeng Yue', 'zhanfeng yue')
('38480590', 'Wenyi Zhao', 'wenyi zhao')
('9215658', 'Rama Chellappa', 'rama chellappa')
('39265975', 'Zhanfeng Yue', 'zhanfeng yue')
Correspondence should be addressed to Zhanfeng Yue, zyue@cfar.umd.edu +
4b0a2937f64df66cadee459a32ad7ae6e9fd7ed2Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset +
Jo˜ao Carreira† +
†DeepMind +
University of Oxford
('1688869', 'Andrew Zisserman', 'andrew zisserman')joaoluis@google.com +
zisserman@google.com +
4b4ecc1cb7f048235605975ab37bb694d69f63e5Nonlinear Embedding Transform for +
Unsupervised Domain Adaptation +
Center for Cognitive Ubiquitous Computing +
Arizona State University, AZ, USA
('3151995', 'Hemanth Venkateswara', 'hemanth venkateswara')
('2471253', 'Shayok Chakraborty', 'shayok chakraborty')
('1743991', 'Sethuraman Panchanathan', 'sethuraman panchanathan')
{hemanthv,schakr10,panch}@asu.edu +
4be03fd3a76b07125cd39777a6875ee59d9889bdCONTENT-BASED ANALYSIS FOR ACCESSING AUDIOVISUAL ARCHIVES: +
ALTERNATIVES FOR CONCEPT-BASED INDEXING AND SEARCH +
ESAT/PSI - IBBT +
KU Leuven, Belgium +
('1704728', 'Tinne Tuytelaars', 'tinne tuytelaars')Tinne.Tuytelaars@esat.kuleuven.be +
4be774af78f5bf55f7b7f654f9042b6e288b64bdVariational methods for Conditional Multimodal Learning: +
Generating Human Faces from Attributes +
Indian Institute of Science
Bangalore, India +
('2686270', 'Gaurav Pandey', 'gaurav pandey')
('2440174', 'Ambedkar Dukkipati', 'ambedkar dukkipati')
{gp88, ad}@csa.iisc.ernet.in +
4b321065f6a45e55cb7f9d7b1055e8ac04713b41Affective Computing Models for Character +
Animation +
School of Computing and Mathematical Sciences +
Liverpool John Moores University
Byrom Street, L3 3AF, Liverpool, UK +
('1794784', 'Abdennour El Rhalibi', 'abdennour el rhalibi')
('36782007', 'Christopher Carter', 'christopher carter')
('1768270', 'Madjid Merabti', 'madjid merabti')
R.L.Duarte@2010.ljmu.ac.uk;{A.Elrhalibi; C.J.Carter;M.Merabti}@ljmu.ac.uk +
4b605e6a9362485bfe69950432fa1f896e7d19bfTo appear in the CVPR Workshop on Biometrics, June 2016 +
A Comparison of Human and Automated Face Verification Accuracy on +
Unconstrained Image Sets∗ +
Noblis +
Noblis +
Noblis +
Noblis +
Michigan State University
('1917247', 'Austin Blanton', 'austin blanton')
('7996649', 'Kristen C. Allen', 'kristen c. allen')
('15282121', 'Tim Miller', 'tim miller')
('1718102', 'Nathan D. Kalka', 'nathan d. kalka')
('6680444', 'Anil K. Jain', 'anil k. jain')
imaus10@gmail.com +
kristen.allen@noblis.org +
timothy.miller@noblis.org +
nathan.kalka@noblis.org +
jain@cse.msu.edu +
4b3dd18882ff2738aa867b60febd2b35ab34dffcFACIAL FEATURE ANALYSIS OF +
SPONTANEOUS FACIAL EXPRESSION +
Computer Laboratory +
University of Cambridge
William Gates Building, +
Cambridge CB3 0FD UK +
Department of Computer Science +
The American University in Cairo
113 Kasr Al Aini Street, +
P.O. Box 2511, Cairo, Egypt +
('1754451', 'Rana El Kaliouby', 'rana el kaliouby')
('3337337', 'Amr Goneid', 'amr goneid')
rana.el-kaliouby@cl.cam.ac.uk +
goneid@aucegypt.edu +
11a2ef92b6238055cf3f6dcac0ff49b7b803aee3TOWARDS REDUCTION OF THE TRAINING AND SEARCH RUNNING TIME +
COMPLEXITIES FOR NON-RIGID OBJECT SEGMENTATION +
Instituto de Sistemas e Rob´otica, Instituto Superior T´ecnico, 1049-001 Lisboa, Portugal(a) +
Australian Centre for Visual Technologies, The University of Adelaide, Australia (b
('3259175', 'Jacinto C. Nascimento', 'jacinto c. nascimento')
('3265767', 'Gustavo Carneiro', 'gustavo carneiro')
11dc744736a30a189f88fa81be589be0b865c9faA Unified Multiplicative Framework for Attribute Learning +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
('2582309', 'Kongming Liang', 'kongming liang')
('1783542', 'Hong Chang', 'hong chang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{kongming.liang, hong.chang, shiguang.shan, xilin.chen}@vipl.ict.ac.cn +
11a210835b87ccb4989e9ba31e7559bb7a9fd292Hub +
ScienceDirect +
Scopus +
SciTopics +
Applications +
Register +
Login +
Go to SciVal Suite +
Search +
Sources +
Analytics +
My alerts +
My list +
My settings +
Quick Search +
View search history | Back to results | < Previous 4 of 11 Next > +
Help +
Download PDF +
Add to 2collab +
Export +
Print +
E-mail +
Create bibliography +
Add to My List +
Cited by since 1996 +
Proceedings of the 2010 10th International Conference on Intelligent Systems Design and +
Applications, ISDA'10 +
2010, Article number 5687029, Pages 1154-1158 +
This article has been cited 0 times in Scopus. +
Inform me when this document is cited in Scopus: +
Set alert +
Set feed +
ISBN: 978-142448135-4 +
DOI: 10.1109/ISDA.2010.5687029 +
Document Type: Conference Paper +
Source Type: Conference Proceeding +
Sponsors: Machine Intelligence Research Labs (MIR Labs
View references (23) +
My Applications +
Add +
More By These Authors +
The authors of this article have a total of 67 records in +
Scopus: +
(Showing 5 most recent) +
Shekofteh, S.K.,Maryam Baradaran, K.,Toosizadeh, +
S.,Akbarzadeh-T., M.-R.,Hashemi, M. +
Head pose estimation using fuzzy approximator +
augmented by redundant membership functions +
(2010)ICSTE 2010 - 2010 2nd International Conference on +
Software Technology and Engineering, Proceedings +
Kamkar, I.,Akbarzadeh-T, M.-R.,Yaghoobi, M. +
Intelligent water drops a new optimization algorithm +
Hide Applications +
Find related documents +
In Scopus based on +
References +
Authors +
Keywords +
Cairo; 29 November 2010 through 1 December 2010; Category number CFP10394-CDR; Code +
83753 +
View at publisher | +
A fuzzy approximator with Gaussian membership functions +
to estimate a human's head pose +
Baradaran-K, M.a +
, Toosizadeh, S.a +
Islamic Azad University, Mashhad Branch, Mashhad, Iran
Ferdowsi University of Mashhad, Mashhad, Iran
, Akbarzadeh-T, M.-R.b +
, Shekofteh, S.K.b +
118ca3b2e7c08094e2a50137b1548ada7935e505Workshop track - ICLR 2018 +
A DATASET TO EVALUATE THE REPRESENTATIONS +
LEARNED BY VIDEO PREDICTION MODELS +
Toyota Research Institute, Cambridge, MA 2 University of Michigan, Ann Arbor, MI
('34246012', 'Ryan Szeto', 'ryan szeto')
('2307158', 'Simon Stent', 'simon stent')
('3587688', 'Jason J. Corso', 'jason j. corso')
{szetor,jjcorso}@umich.edu +
{simon.stent,german.ros}@tri.global +
11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1dAutomated measurement of mouse social behaviors +
using depth sensing, video tracking, and +
machine learning +
and David J. Andersona,1 +
aDivision of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA
and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA
Contributed by David J. Anderson, August 16, 2015 (sent for review May 20, 2015) +
A lack of automated, quantitative, and accurate assessment of social +
behaviors in mammalian animal models has limited progress toward +
understanding mechanisms underlying social interactions and their +
disorders such as autism. Here we present a new integrated hard- +
ware and software system that combines video tracking, depth +
sensing, and machine learning for automatic detection and quanti- +
fication of social behaviors involving close and dynamic interactions +
between two mice of different coat colors in their home cage. We +
designed a hardware setup that integrates traditional video cameras +
with a depth camera, developed computer vision tools to extract the +
body “pose” of individual animals in a social context, and used a +
supervised learning algorithm to classify several well-described so- +
cial behaviors. We validated the robustness of the automated classi- +
fiers in various experimental settings and used them to examine how +
genetic background, such as that of Black and Tan Brachyury (BTBR) +
mice (a previously reported autism model), influences social behavior. +
Our integrated approach allows for rapid, automated measurement +
of social behaviors across diverse experimental designs and also af- +
fords the ability to develop new, objective behavioral metrics. +
social behavior | behavioral tracking | machine vision | depth sensing | +
supervised machine learning +
Social behaviors are critical for animals to survive and re- +
produce. Although many social behaviors are innate, they +
must also be dynamic and flexible to allow adaptation to a rap- +
idly changing environment. The study of social behaviors in model +
organisms requires accurate detection and quantification of such +
behaviors (1–3). Although automated systems for behavioral +
scoring in rodents are available (4–8), they are generally limited to +
single-animal assays, and their capabilities are restricted either to +
simple tracking or to specific behaviors that are measured using a +
dedicated apparatus (6–11) (e.g., elevated plus maze, light-dark +
box, etc.). By contrast, rodent social behaviors are typically scored +
manually. This is slow, highly labor-intensive, and subjective, +
resulting in analysis bottlenecks as well as inconsistencies between +
different human observers. These issues limit progress toward +
understanding the function of neural circuits and genes controlling +
social behaviors and their dysfunction in disorders such as autism +
(1, 12). In principle, these obstacles could be overcome through +
the development of automated systems for detecting and mea- +
suring social behaviors. +
Automating tracking and behavioral measurements during +
social interactions pose a number of challenges not encountered +
in single-animal assays, however, especially in the home cage +
environment (2). During many social behaviors, such as aggression +
or mating, two animals are in close proximity and often cross or +
touch each other, resulting in partial occlusion. This makes track- +
ing body positions, distinguishing each mouse, and detecting be- +
haviors particularly difficult. This is compounded by the fact that +
such social interactions are typically measured in the animals’ +
home cage, where bedding, food pellets, and other moveable items +
can make tracking difficult. Nevertheless a home-cage environment +
is important for studying social behaviors, because it avoids the +
stress imposed by an unfamiliar testing environment. +
Recently several techniques have been developed to track +
social behaviors in animals with rigid exoskeletons, such as the +
fruit fly Drosophila, which have relatively few degrees of freedom +
in their movements (13–23). These techniques have had a trans- +
formative impact on the study of social behaviors in that species +
(2). Accordingly, the development of similar methods for mam- +
malian animal models, such as the mouse, could have a similar +
impact as well. However, endoskeletal animals exhibit diverse and +
flexible postures, and their actions during any one social behavior, +
such as aggression, are much less stereotyped than in flies. This +
presents a dual challenge to automated behavior classification: +
first, to accurately extract a representation of an animal’s posture +
from observed data, and second, to map that representation to the +
correct behavior (24–27). Current machine vision algorithms that +
track social interactions in mice mainly use the relative positions of +
two animals (25, 28–30); this approach generally cannot discrimi- +
nate social interactions that involve close proximity and vigorous +
physical activity, or identify specific behaviors such as aggression +
and mounting. In addition, existing algorithms that measure social +
interactions use a set of hardcoded, “hand-crafted” (i.e., pre- +
defined) parameters that make them difficult to adapt to new ex- +
perimental setups and conditions (25, 31). +
In this study, we combined 3D tracking and machine learning +
in an integrated system that can automatically detect, classify, +
and quantify distinct social behaviors, including those involving
Significance +
Accurate, quantitative measurement of animal social behaviors +
is critical, not only for researchers in academic institutions +
studying social behavior and related mental disorders, but also for +
pharmaceutical companies developing drugs to treat disorders +
affecting social interactions, such as autism and schizophrenia. +
Here we describe an integrated hardware and software system +
that combines video tracking, depth-sensing technology, machine +
vision, and machine learning to automatically detect and score +
innate social behaviors, such as aggression, mating, and social +
investigation, between mice in a home-cage environment. This +
technology has the potential to have a transformative impact on +
the study of the neural mechanisms underlying social behavior +
and the development of new drug therapies for psychiatric dis- +
orders in humans. +
Author contributions: W.H., P.P., and D.J.A. designed research; W.H. performed research; +
W.H., X.P.B.-A., and S.G.N. contributed new reagents/analytic tools; W.H., A.K., M.Z., P.P., +
and D.J.A. analyzed data; and W.H., A.K., M.Z., P.P., and D.J.A. wrote the paper. +
The authors declare no conflict of interest. +
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. +
1073/pnas.1515982112/-/DCSupplemental. +
www.pnas.org/cgi/doi/10.1073/pnas.1515982112 +
PNAS | Published online September 9, 2015 | E5351–E5360 +
('4502168', 'Weizhe Hong', 'weizhe hong')
('6201086', 'Ann Kennedy', 'ann kennedy')
('4195968', 'Moriel Zelikowsky', 'moriel zelikowsky')
('1690922', 'Pietro Perona', 'pietro perona')
1To whom correspondence may be addressed. Email: whong@caltech.edu, perona@ +
caltech.edu, or wuwei@caltech.edu. +
113c22eed8383c74fe6b218743395532e2897e71MODEC: Multimodal Decomposable Models for Human Pose Estimation +
Ben Sapp +
Google, Inc
University of Washington
('1685978', 'Ben Taskar', 'ben taskar')bensapp@google.com +
taskar@cs.washington.edu +
11408af8861fb0a977412e58c1a23d61b8df458cA Robust Learning Algorithm Based on +
SURF and PSM for Facial Expression Recognition +
Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan
('2866465', 'Jinhui Chen', 'jinhui chen')
('39484328', 'Xiaoyan Lin', 'xiaoyan lin')
('1744026', 'Tetsuya Takiguchi', 'tetsuya takiguchi')
('1678564', 'Yasuo Ariki', 'yasuo ariki')
ianchen@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp +
11cc0774365b0cc0d3fa1313bef3d32c345507b1Face Recognition Using Active Near-IR +
Illumination +
Centre for Vision, Speech and Signal Processing +
University of Surrey, United Kingdom
x.zou, j.kittler, k.messer +
('38746097', 'Xuan Zou', 'xuan zou')
('1748684', 'Josef Kittler', 'josef kittler')
('2173900', 'Kieron Messer', 'kieron messer')
@surrey.ac.uk +
11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem +
Institute of Systems and Robotics - University of Coimbra, Portugal
Portugal
('2117944', 'Rui Caseiro', 'rui caseiro')
('39458914', 'Pedro Martins', 'pedro martins')
('36478254', 'João F. Henriques', 'joão f. henriques')
{ruicaseiro, pedromartins, henriques, batista}@isr.uc.pt, fleite@mat.uc.pt +
11269e98f072095ff94676d3dad34658f4876e0eFacial Expression Recognition with Multithreaded +
Cascade of Rotation-invariant HOG +
Graduate School of System Informatics +
Graduate School of System Informatics +
Graduate School of System Informatics +
Kobe University
Kobe, 657-8501, Japan +
Kobe University
Kobe, 657-8501, Japan +
Kobe University
Kobe, 657-8501, Japan +
In this paper, we propose a novel framework that adopts +
robust feature representation for training the multithreading +
boosting cascade. We adopt rotation-invariant HOG (Ri-HOG) +
as features, which is reminiscent of Dalal et al.’s HOG [9]. +
However, in this paper, we noticeably enhance the conven- +
tional HOG in rotation-invariant ability and feature extraction +
speed. We carry out a detailed study of the effects of various +
implementation choices in descriptor performance. We subdi- +
vide the local patch into annular spatial bins to achieve spatial +
binning invariance. Besides, we apply radial gradient to attain +
gradient binning invariance, which is inspired by Takacs et +
al.’s RGT (Radial Gradient Transform) [10]. +
('2866465', 'Jinhui Chen', 'jinhui chen')
('1744026', 'Tetsuya Takiguchi', 'tetsuya takiguchi')
('1678564', 'Yasuo Ariki', 'yasuo ariki')
Email: ianchen@me.cs.scitec.kobe-u.ac.jp +
Email: takigu@kobe-u.ac.jp +
Email: ariki@kobe-u.ac.jp +
113e5678ed8c0af2b100245057976baf82fcb907Facing Imbalanced Data +
Recommendations for the Use of Performance Metrics +
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
1Carnegie Mellon University, Pittsburgh, PA, laszlo.jeni@ieee.org,ftorre@cs.cmu.edu +
2University of Pittsburgh, Pittsburgh, PA, jeffcohn@cs.cmu.edu +
11691f1e7c9dbcbd6dfd256ba7ac710581552baaSoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos +
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
('22314218', 'Silvio Giancola', 'silvio giancola')
('41022271', 'Mohieddine Amine', 'mohieddine amine')
('41015552', 'Tarek Dghaily', 'tarek dghaily')
('2931652', 'Bernard Ghanem', 'bernard ghanem')
silvio.giancola@kaust.edu.sa, maa249@mail.aub.edu, tad05@mail.aub.edu, bernard.ghanem@kaust.edu.sa +
11c04c4f0c234a72f94222efede9b38ba6b2306cReal-Time Human Action Recognition by Luminance Field +
Trajectory Analysis +
Dept of Computing +
Kowloon, Hong Kong +
+852 2766-7316 +
Hong Kong Polytechnic University
University of Illinois at Urbana
National University of Singapore
Dept of ECE +
Champaign, USA +
+1 217-244-2960 +
Dept of ECE +
Singapore +
+65 6516-2116 +
('2659956', 'Zhu Li', 'zhu li')
('1708679', 'Yun Fu', 'yun fu')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
zhu.li@ieee.org +
{yunfu2,huang}@ifp.uiuc.edu +
elesyan@ece.nus.edu.sg +
1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9Action Recognition by Learning Deep Multi-Granular +
Spatio-Temporal Video Representation∗ +
University of Science and Technology of China, Hefei 230026, P. R. China
2 Microsoft Research, Beijing 100080, P. R. China +
University of Rochester, NY 14627, USA
('35539590', 'Qing Li', 'qing li')
('3430743', 'Zhaofan Qiu', 'zhaofan qiu')
('2053452', 'Ting Yao', 'ting yao')
('1724211', 'Tao Mei', 'tao mei')
('3663422', 'Yong Rui', 'yong rui')
('33642939', 'Jiebo Luo', 'jiebo luo')
{sealq, qiudavy}@mail.ustc.edu.cn; {tiyao, tmei, yongrui}@microsoft.com; +
jluo@cs.rochester.edu +
1149c6ac37ae2310fe6be1feb6e7e18336552d95Proc. Int. Conf. on Artificial Neural Networks (ICANN’05), Warsaw, LNCS 3696, vol. I, pp. 569-574, Springer Verlag 2005 +
Classification of Face Images for Gender, Age, +
Facial Expression, and Identity1 +
Department of Neuroinformatics and Cognitive Robotics +
Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany
('34420922', 'Torsten Wilhelm', 'torsten wilhelm')
11f17191bf74c80ad0b16b9f404df6d03f7c8814Recognition of Visually Perceived Compositional +
Human Actions by Multiple Spatio-Temporal Scales +
Recurrent Neural Networks +
('1754201', 'Minju Jung', 'minju jung')
('1780524', 'Jun Tani', 'jun tani')
11367581c308f4ba6a32aac1b4a7cdb32cd63137
11a47a91471f40af5cf00449954474fd6e9f7694Article +
NIRFaceNet: A Convolutional Neural Network for +
Near-Infrared Face Identification +
Southwest University, Chongqing 400715, China
† These authors contribute equally to this work. +
Academic Editor: Willy Susilo +
Received: 16 July 2016; Accepted: 24 October 2016; Published: 27 October 2016 +
('34063916', 'Min Peng', 'min peng')
('8206607', 'Chongyang Wang', 'chongyang wang')
('34520676', 'Tong Chen', 'tong chen')
('2373829', 'Guangyuan Liu', 'guangyuan liu')
peng2014m@email.swu.edu.cn (M.P.); mvrjustid520@email.swu.edu.cn (C.W.); liugy@swu.edu.cn (G.L.) +
* Correspondence: c_tong@swu.edu.cn; Tel.: +86-23-6825-4309 +
1198572784788a6d2c44c149886d4e42858d49e4Learning Discriminative Features using Encoder/Decoder type Deep +
Neural Nets +
('2162592', 'Vishwajeet Singh', 'vishwajeet singh')
('40835709', 'Killamsetti Ravi Kumar', 'killamsetti ravi kumar')
1ALPES, Bolarum, Hyderabad 500010, vsthakur@gmail.com +
2ALPES, Bolarum, Hyderabad 500010, ravi.killamsetti@gmail.com +
3SNIST, Ghatkesar, Hyderabad 501301, kumar.e@gmail.com +
11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8970 +
JUNE 2008 +
Tied Factor Analysis for Face Recognition +
across Large Pose Differences +
('1792404', 'James H. Elder', 'james h. elder')
('1734784', 'Jonathan Warrell', 'jonathan warrell')
('2338011', 'Fatima M. Felisberti', 'fatima m. felisberti')
1134a6be0f469ff2c8caab266bbdacf482f32179IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 +
FACIAL EXPRESSION IDENTIFICATION USING FOUR-BIT CO- +
OCCURRENCE MATRIXFEATURES AND K-NN CLASSIFIER +
Aditya College of Engineering, Surampalem, East Godavari
District, Andhra Pradesh, India +
('8118823', 'Bala Shankar', 'bala shankar')
('27686729', 'S R Kumar', 's r kumar')
11b3877df0213271676fa8aa347046fd4b1a99adUnsupervised Identification of Multiple Objects of +
Interest from Multiple Images: dISCOVER +
Carnegie Mellon University
('1713589', 'Devi Parikh', 'devi parikh')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
{dparikh,tsuhan}@cmu.edu +
112780a7fe259dc7aff2170d5beda50b2bfa7bda
1130c38e88108cf68b92ecc61a9fc5aeee8557c9Dynamically Encoded Actions based on Spacetime Saliency +
Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria
York University, Toronto, Canada
('2322150', 'Christoph Feichtenhofer', 'christoph feichtenhofer')
('1718587', 'Axel Pinz', 'axel pinz')
('1709096', 'Richard P. Wildes', 'richard p. wildes')
{feichtenhofer, axel.pinz}@tugraz.at +
wildes@cse.yorku.ca +
11b89011298e193d9e6a1d99302221c1d8645bdaStructured Feature Selection +
Rensselaer Polytechnic Institute, USA
('39965604', 'Tian Gao', 'tian gao')
('2860279', 'Ziheng Wang', 'ziheng wang')
('1726583', 'Qiang Ji', 'qiang ji')
{gaot, wangz10, jiq}@rpi.edu +
111a9645ad0108ad472b2f3b243ed3d942e7ff16Facial Expression Classification Using +
Combined Neural Networks +
DEE/PUC-Rio, Marquês de São Vicente 225, Rio de Janeiro – RJ - Brazil +
('14032279', 'Rafael V. Santos', 'rafael v. santos')
('1744578', 'Marley M.B.R. Vellasco', 'marley m.b.r. vellasco')
('34686777', 'Raul Q. Feitosa', 'raul q. feitosa')
('1687882', 'Ricardo Tanscheit', 'ricardo tanscheit')
marley@ele.puc-rio.br +
1177977134f6663fff0137f11b81be9c64c1f424Multi-Manifold Deep Metric Learning for Image Set Classification +
1Advanced Digital Sciences Center, Singapore +
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
School of ICE, Beijing University of Posts and Telecommunications, Beijing, China
University of Illinois at Urbana-Champaign, Urbana, IL, USA
Tsinghua University, Beijing, China
('1697700', 'Jiwen Lu', 'jiwen lu')
('22804340', 'Gang Wang', 'gang wang')
('1774956', 'Weihong Deng', 'weihong deng')
('1742248', 'Pierre Moulin', 'pierre moulin')
('39491387', 'Jie Zhou', 'jie zhou')
jiwen.lu@adsc.com.sg; wanggang@ntu.edu.sg; whdeng@bupt.edu.cn; +
moulin@ifp.uiuc.edu; jzhou@tsinghua.edu.cn +
1190cba0cae3c8bb81bf80d6a0a83ae8c41240bcSquared Earth Mover’s Distance Loss for Training +
Deep Neural Networks on Ordered-Classes +
Dept. of Computer Science +
Stony Brook University
Chen-Ping Yu +
Phiar Technologies, Inc
('2321406', 'Le Hou', 'le hou')
111d0b588f3abbbea85d50a28c0506f74161e091International Journal of Computer Applications (0975 – 8887) +
Volume 134 – No.10, January 2016 +
Facial Expression Recognition from Visual Information +
using Curvelet Transform +
Surabhi Group of Institution Bhopal +
systems. Further applications +
('6837599', 'Pratiksha Singh', 'pratiksha singh')
11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0Hybrid Cascade Model for Face Detection in the Wild +
Based on Normalized Pixel Difference and a Deep +
Convolutional Neural Network +
Darijan Marčetić[0000-0002-6556-665X], Martin Soldić[0000-0002-4031-0404] +
and Slobodan Ribarić[0000-0002-8708-8513] +
University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
{darijan.marcetic, martin.soldic, slobodan.ribaric}@fer.hr +
117f164f416ea68e8b88a3005e55a39dbdf32ce4Neuroaesthetics in Fashion: Modeling the Perception of Fashionability +
1Institut de Rob`otica i Inform`atica Industrial (CSIC-UPC), +
University of Toronto
('3114470', 'Edgar Simo-Serra', 'edgar simo-serra')
('37895334', 'Sanja Fidler', 'sanja fidler')
('1994318', 'Francesc Moreno-Noguer', 'francesc moreno-noguer')
('2422559', 'Raquel Urtasun', 'raquel urtasun')
7dda2eb0054eb1aeda576ed2b27a84ddf09b07d42010 The 3rd International Conference on Machine Vision (ICMV 2010) +
Face Recognition and Representation by Tensor-based MPCA Approach +
Dept. of Control, Instrumentation, and Robot +
Engineering +
Chosun University
Gwangju, Korea +
('2806903', 'Yun-Hee Han', 'yun-hee han')Yhhan1059@gmail.com +
7d2556d674ad119cf39df1f65aedbe7493970256Now You Shake Me: Towards Automatic 4D Cinema +
University of Toronto
Vector Institute
http://www.cs.toronto.edu/˜henryzhou/movie4d/ +
('2481662', 'Yuhao Zhou', 'yuhao zhou')
('37895334', 'Sanja Fidler', 'sanja fidler')
{henryzhou, makarand, fidler}@cs.toronto.edu +
7d94fd5b0ca25dd23b2e36a2efee93244648a27bConvolutional Network for Attribute-driven and Identity-preserving Human Face +
Generation +
The Hong Kong Polytechnic University, Hong Kong
bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
('1701799', 'Mu Li', 'mu li')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('1698371', 'David Zhang', 'david zhang')
7d8c2d29deb80ceed3c8568100376195ce0914cbIdentity-Aware Textual-Visual Matching with Latent Co-attention +
The Chinese University of Hong Kong
('1700248', 'Shuang Li', 'shuang li')
('1721881', 'Tong Xiao', 'tong xiao')
('1764548', 'Hongsheng Li', 'hongsheng li')
('1742383', 'Wei Yang', 'wei yang')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
{sli,xiaotong,hsli,wyang,xgwang}@ee.cuhk.edu.hk +
7d306512b545df98243f87cb8173df83b4672b18Flag Manifolds for the Characterization of +
Geometric Structure in Large Data Sets +
T. Marrinan, J. R. Beveridge, B. Draper, M. Kirby, and C. Peterson +
Colorado State University, Fort Collins, Colorado, USA
kirby@math.colostate.edu +
7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632bFACE APPEARANCE FACTORIZATION FOR EXPRESSION ANALYSIS AND SYNTHESIS +
Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne
BP 20529, 60205 COMPIEGNE Cedex, FRANCE. +
('2371236', 'Bouchra Abboud', 'bouchra abboud')
('1742818', 'Franck Davoine', 'franck davoine')
E-mail: Bouchra.Abboud@hds.utc.fr +
7d41b67a641426cb8c0f659f0ba74cdb60e7159aSoft Biometric Retrieval to Describe and Identify Surveillance Images +
School of Electronics and Computer Science, +
University of Southampton, United Kingdom
('3408521', 'Daniel Martinho-Corbishley', 'daniel martinho-corbishley')
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('3000521', 'John N. Carter', 'john n. carter')
{dmc,msn,jnc}@ecs.soton.ac.uk +
7d1688ce0b48096e05a66ead80e9270260cb8082Real vs. Fake Emotion Challenge: Learning to Rank Authenticity From Facial +
Activity Descriptors +
Otto von Guericke University
Magdeburg, Germany +
('2441656', 'Frerk Saxen', 'frerk saxen')
('1783606', 'Philipp Werner', 'philipp werner')
('1741165', 'Ayoub Al-Hamadi', 'ayoub al-hamadi')
{Frerk.Saxen, Philipp.Werner, Ayoub.Al-Hamadi}@ovgu.de +
7d53678ef6009a68009d62cd07c020706a2deac3Facial Feature Point Extraction using +
the Adaptive Mean Shape in Active Shape Model +
Hanyang University
Haengdang-dong, Seongdong-gu, Seoul, South Korea +
Giheung-eup, Yongin-si, Gyeonggi-do, Seoul, Korea +
Samsung Advanced Institute of Technology
('2771795', 'Hyoung-Joon Kim', 'hyoung-joon kim')
('34600044', 'Wonjun Hwang', 'wonjun hwang')
('2077154', 'Seok-Cheol Kee', 'seok-cheol kee')
('2982904', 'Whoi-Yul Kim', 'whoi-yul kim')
('40370422', 'Hyun-Chul Kim', 'hyun-chul kim')
{hckim, khjoon}@vision.hanyang.ac.kr, wykim@hanyang.ac.kr +
{wj.hwang, sckee}@samsung.com +
7d7be6172fc2884e1da22d1e96d5899a29831ad2L2GSCI: Local to Global Seam Cutting and Integrating for +
Accurate Face Contour Extraction +
South China University of China
South China University of China
Kitware, Inc
The Education University of Hong Kong
South China University of China
('37221211', 'Yongwei Nie', 'yongwei nie')
('37579534', 'Xu Cao', 'xu cao')
('2792312', 'Chengjiang Long', 'chengjiang long')
('2420746', 'Ping Li', 'ping li')
('4882057', 'Guiqing Li', 'guiqing li')
nieyongwei@scut.edu.cn +
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22Labeled Faces in the Wild: A Survey +('1714536', 'Erik Learned-Miller', 'erik learned-miller')
('1799600', 'Gary Huang', 'gary huang')
('2895705', 'Aruni RoyChowdhury', 'aruni roychowdhury')
('3131569', 'Haoxiang Li', 'haoxiang li')
('1745420', 'Gang Hua', 'gang hua')
7d73adcee255469aadc5e926066f71c93f51a1a5978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
1283 +
ICASSP 2016 +
7df4f96138a4e23492ea96cf921794fc5287ba72A Jointly Learned Deep Architecture for Facial Attribute Analysis and Face +
Detection in the Wild +
Fudan University
('37391748', 'Keke He', 'keke he')
('35782003', 'Yanwei Fu', 'yanwei fu')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
{kkhe15, yanweifu, xyxue}@fudan.edu.cn +
7d9fe410f24142d2057695ee1d6015fb1d347d4aFacial Expression Feature Extraction Based on +
FastLBP +
Beijing, China
Beijing, China
facial expression +
('1921151', 'Ya Zheng', 'ya zheng')
('2780963', 'Xiuxin Chen', 'xiuxin chen')
('2671173', 'Chongchong Yu', 'chongchong yu')
('39681852', 'Cheng Gao', 'cheng gao')
Email: zy_lovedabao@163.com +
Email: chenxx1979@126.com, chongzhy@vip.sina.com, gcandgh@163.com +
7dd578878e84337d6d0f5eb593f22cabeacbb94cClassifiers for Driver Activity Monitoring +
Department of Computer Science and Engineering +
University of Minnesota
('3055503', 'Harini Veeraraghavan', 'harini veeraraghavan')
('32975623', 'Nathaniel Bird', 'nathaniel bird')
('1734862', 'Stefan Atev', 'stefan atev')
('1696163', 'Nikolaos Papanikolopoulos', 'nikolaos papanikolopoulos')
harini@cs.umn.edu bird@cs.umn.edu atev@cs.umn.edu npapas@cs.umn.edu +
7dffe7498c67e9451db2d04bb8408f376ae86992LEAR-INRIA submission for the THUMOS workshop +
LEAR, INRIA, France +
('40465030', 'Heng Wang', 'heng wang')firstname.lastname@inria.fr +
7df268a3f4da7d747b792882dfb0cbdb7cc431bcSemi-supervised Adversarial Learning to Generate +
Photorealistic Face Images of New Identities from 3D +
Morphable Model +
Imperial College London, UK
Centre for Vision, Speech and Signal Processing, University of Surrey, UK
('2151914', 'Baris Gecer', 'baris gecer')
('48467774', 'Binod Bhattarai', 'binod bhattarai')
('1748684', 'Josef Kittler', 'josef kittler')
('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')
{b.gecer,b.bhattarai,tk.kim}@imperial.ac.uk, +
j.kittler@surrey.ac.uk +
7d3f6dd220bec883a44596ddec9b1f0ed4f6aca22106 +
Linear Regression for Face Recognition +
('2095953', 'Imran Naseem', 'imran naseem')
('2444665', 'Roberto Togneri', 'roberto togneri')
('1698675', 'Mohammed Bennamoun', 'mohammed bennamoun')
7de386bf2a1b2436c836c0cc1f1f23fccb24aad6Finding What the Driver Does +
Final Report +
Prepared by: +
Artificial Intelligence, Robotics, and Vision Laboratory +
Department of Computer Science and Engineering +
University of Minnesota
CTS 05-03 +
HUMAN-CENTERED TECHNOLOGY TO ENHANCE SAFETY AND MOBILITY +
('3055503', 'Harini Veeraraghavan', 'harini veeraraghavan')
('1734862', 'Stefan Atev', 'stefan atev')
('32975623', 'Nathaniel Bird', 'nathaniel bird')
('31791248', 'Paul Schrater', 'paul schrater')
('40654170', 'Nilolaos Papanikolopoulos', 'nilolaos papanikolopoulos')
29ce6b54a87432dc8371f3761a9568eb3c5593b0Kent Academic Repository +
Full text document (pdf) +
Citation for published version +
Yassin, DK H. PHM and Hoque, Sanaul and Deravi, Farzin (2013) Age Sensitivity of Face Recognition +
pp. 12-15. +
DOI +
https://doi.org/10.1109/EST.2013.8 +
Link to record in KAR +
http://kar.kent.ac.uk/43222/ +
Document Version +
Author's Accepted Manuscript +
Copyright & reuse +
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all +
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions +
for further reuse of content should be sought from the publisher, author or other copyright holder. +
Versions of research +
The version in the Kent Academic Repository may differ from the final published version. +
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the +
published version of record. +
Enquiries +
For any further enquiries regarding the licence status of this document, please contact: +
If you believe this document infringes copyright then please contact the KAR admin team with the take-down +
information provided at http://kar.kent.ac.uk/contact.html +
researchsupport@kent.ac.uk +
2914e8c62f0432f598251fae060447f98141e935University of Nebraska - Lincoln
Computer Science and Engineering: Theses, +
Dissertations, and Student Research +
Computer Science and Engineering, Department of +
8-2016 +
ACTIVITY ANALYSIS OF SPECTATOR +
PERFORMER VIDEOS USING MOTION +
TRAJECTORIES +
Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss +
Part of the Computer Engineering Commons +
Timsina, Anish, "ACTIVITY ANALYSIS OF SPECTATOR PERFORMER VIDEOS USING MOTION TRAJECTORIES" (2016). +
Computer Science and Engineering: Theses, Dissertations, and Student Research. Paper 107. +
http://digitalcommons.unl.edu/computerscidiss/107 +
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an +
('2404944', 'Anish Timsina', 'anish timsina')DigitalCommons@University of Nebraska - Lincoln +
University of Nebraska-Lincoln, timsina.anish@gmail.com +
This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of +
authorized administrator of DigitalCommons@University of Nebraska - Lincoln. +
292eba47ef77495d2613373642b8372d03f7062bDeep Secure Encoding: An Application to Face Recognition +('39192292', 'Rohit Pandey', 'rohit pandey')
('34872128', 'Yingbo Zhou', 'yingbo zhou')
('1723877', 'Venu Govindaraju', 'venu govindaraju')
29e96ec163cb12cd5bd33bdf3d32181c136abaf9Report No. UIUCDCS-R-2006-2748 +
UILU-ENG-2006-1788 +
Regularized Locality Preserving Projections with Two-Dimensional +
Discretized Laplacian Smoothing +
by +
July 2006 +
('1724421', 'Deng Cai', 'deng cai')
('3945955', 'Xiaofei He', 'xiaofei he')
('39639296', 'Jiawei Han', 'jiawei han')
29e793271370c1f9f5ac03d7b1e70d1efa10577cInternational Journal of Signal Processing, Image Processing and Pattern Recognition +
Vol.6, No.5 (2013), pp.423-436 +
http://dx.doi.org/10.14257/ijsip.2013.6.5.37 +
Face Recognition Based on Multi-classifierWeighted Optimization +
and Sparse Representation +
Institute of control science and engineering
University of Science and Technology Beijing
1,2,330 Xueyuan Road, Haidian District, Beijing 100083 P. R.China +
('11241192', 'Deng Nan', 'deng nan')
('7814565', 'Zhengguang Xu', 'zhengguang xu')
1dengnan666666@163.com, 2xzg_1@263.net, 3 xiaobian@ustb.edu.cn +
2902f62457fdf7e8e8ee77a9155474107a2f423eNon-rigid 3D Shape Registration using an +
Adaptive Template +
University of York, UK
('1694260', 'Hang Dai', 'hang dai')
('1737428', 'Nick Pears', 'nick pears')
('32131827', 'William Smith', 'william smith')
{hd816,nick.pears,william.smith}@york.ac.uk +
29d3ed0537e9ef62fd9ccffeeb72c1beb049e1eaParametric Dictionaries and Feature Augmentation for +
Continuous Domain Adaptation∗ +
Adobe Research +
Bangalore, India +
Light +
Paolo Alto, USA +
University of Maryland
College Park, USA
('35223379', 'Sumit Shekhar', 'sumit shekhar')
('34711525', 'Nitesh Shroff', 'nitesh shroff')
('9215658', 'Rama Chellappa', 'rama chellappa')
sshekha@umiacs.umd.edu +
nshroff@umiacs.umd.edu +
rama@umiacs.umd.edu +
29c7dfbbba7a74e9aafb6a6919629b0a7f576530Automatic Facial Expression Analysis and Emotional +
Classification +
by +
Submitted to the Department of Math and Natural Sciences +
in partial fulfillment of the requirements for the degree of a +
Diplomingenieur der Optotechnik und Bildverarbeitung (FH) +
(Diplom Engineer of Photonics and Image Processing) +
at the +
UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD
Accomplished and written at the +
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT
October 2004 +
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Department of Math and Natural Sciences +
October 30, 2004 +
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Dr. Harald Scharfenberg +
Professor at FHD +
Thesis Supervisor +
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
visiting scientist at MIT +
('40163324', 'Robert Fischer', 'robert fischer')
('1684626', 'Bernd Heisele', 'bernd heisele')
292c6b743ff50757b8230395c4a001f210283a34Fast Violence Detection in Video +
O. Deniz1, I. Serrano1, G. Bueno1 and T-K. Kim2 +
VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain
Imperial College, South Kensington Campus, London SW7 2AZ, UK
Keywords: +
action recognition, violence detection, fight detection +
{oscar.deniz, ismael.serrano, gloria.bueno}@uclm.es, tk.kim@imperial.ac.uk +
29fc4de6b680733e9447240b42db13d5832e408fInternational Journal of Multimedia and Ubiquitous Engineering +
Vol. 10, No. 3 (2015), pp. 35-44 +
http://dx.doi.org/10.14257/ijmue.2015.10.3.04 +
Recognition of Facial Expressions Based on Tracking and +
Selection of Discriminative Geometric Features +
Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of
Korea +
Chonbuk National University, Jeonju-si
Jeollabuk-do 561-756, Rep. of Korea +
School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
('32322842', 'Deepak Ghimire', 'deepak ghimire')
('2034182', 'Joonwhoan Lee', 'joonwhoan lee')
('1689656', 'Ze-Nian Li', 'ze-nian li')
('1682436', 'Sunghwan Jeong', 'sunghwan jeong')
('1937680', 'Hyo Sub Choi', 'hyo sub choi')
deepak@keti.re.kr, chlee@jbnu.ac.kr, li@sfu.ca, shjeong@keti.re.kr, +
shpark@keti.re.kr, hschoi@keti.re.kr +
29c1f733a80c1e07acfdd228b7bcfb136c1dff98
29f27448e8dd843e1c4d2a78e01caeaea3f46a2d
294d1fa4e1315e1cf7cc50be2370d24cc6363a412008 SPIE Digital Library -- Subscriber Archive Copy +
29d414bfde0dfb1478b2bdf67617597dd2d57fc6Multidim Syst Sign Process (2010) 21:213–229 +
DOI 10.1007/s11045-009-0099-y +
Perfect histogram matching PCA for face recognition +
Received: 10 August 2009 / Revised: 21 November 2009 / Accepted: 29 December 2009 / +
Published online: 14 January 2010 +
© Springer Science+Business Media, LLC 2010 +
('2413241', 'Ana-Maria Sevcenco', 'ana-maria sevcenco')
2912c3ea67678a1052d7d5cbe734a6ad90fc360eFacial Feature Detection using a Virtual Structuring +
Element +
Intelligent Systems Lab Amsterdam, +
University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands +
Keywords: Feature Detection, Active Appearance Models +
('9301018', 'Roberto Valenti', 'roberto valenti')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1695527', 'Theo Gevers', 'theo gevers')
rvalenti@science.uva.nl +
nicu@science.uva.nl +
gevers@science.uva.nl +
29f4ac49fbd6ddc82b1bb697820100f50fa98ab6The Benefits and Challenges of Collecting Richer Object Annotations +
Department of Computer Science +
University of Illinois Urbana Champaign
('2831988', 'Ian Endres', 'ian endres')
('2270286', 'Ali Farhadi', 'ali farhadi')
('2433269', 'Derek Hoiem', 'derek hoiem')
('1744452', 'David A. Forsyth', 'david a. forsyth')
{iendres2,afarhad2,dhoiem,daf}@uiuc.edu +
2910fcd11fafee3f9339387929221f4fc1160973Evaluating Open-Universe Face Identification on the Web +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
Center for Research in Computer Vision, University of Central Florida, Orlando, FL
('16131262', 'Enrique G. Ortiz', 'enrique g. ortiz')brian@briancbecker.com and eortiz@cs.ucf.edu +
29479bb4fe8c04695e6f5ae59901d15f8da6124bMultiple Instance Learning for Labeling Faces in +
Broadcasting News Video +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
('38936351', 'Jun Yang', 'jun yang')
('2005689', 'Rong Yan', 'rong yan')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
juny@cs.cmu.edu +
yanrong@cs.cmu.edu +
alex+@cs.cmu.edu +
290136947fd44879d914085ee51d8a4f433765faOn a Taxonomy of Facial Features +('1817623', 'Brendan Klare', 'brendan klare')
('6680444', 'Anil K. Jain', 'anil k. jain')
2957715e96a18dbb5ed5c36b92050ec375214aa6Improving Face Attribute Detection with Race and Gender Diversity +
InclusiveFaceNet: +
('3766392', 'Hee Jung Ryu', 'hee jung ryu')
291f527598c589fb0519f890f1beb2749082ddfdSeeing People in Social Context: Recognizing +
People and Social Relationships +
University of Illinois at Urbana-Champaign, Urbana, IL
Kodak Research Laboratories, Rochester, NY
('22804340', 'Gang Wang', 'gang wang')
('33642939', 'Jiebo Luo', 'jiebo luo')
291265db88023e92bb8c8e6390438e5da148e8f5MS-Celeb-1M: A Dataset and Benchmark for +
Large-Scale Face Recognition +
Microsoft Research +
('3133575', 'Yandong Guo', 'yandong guo')
('1684635', 'Lei Zhang', 'lei zhang')
('1689532', 'Yuxiao Hu', 'yuxiao hu')
('1722627', 'Xiaodong He', 'xiaodong he')
('1800422', 'Jianfeng Gao', 'jianfeng gao')
{yandong.guo,leizhang,yuxiao.hu,xiaohe,jfgao}@microsoft.com +
29c340c83b3bbef9c43b0c50b4d571d5ed037cbdStacked Dense U-Nets with Dual +
Transformers for Robust Face Alignment +
https://github.com/deepinsight/insightface +
https://jiankangdeng.github.io/ +
https://ibug.doc.ic.ac.uk/people/nxue +
Stefanos Zafeiriou2 +
https://wp.doc.ic.ac.uk/szafeiri/ +
1 InsightFace +
Shanghai, China +
2 IBUG +
Imperial College London
London, UK +
('3007274', 'Jia Guo', 'jia guo')
('3234063', 'Jiankang Deng', 'jiankang deng')
('3007274', 'Jia Guo', 'jia guo')
('3234063', 'Jiankang Deng', 'jiankang deng')
('4091869', 'Niannan Xue', 'niannan xue')
297d3df0cf84d24f7efea44f87c090c7d9be4bedAppearance-based 3-D Face Recognition from +
Video +
University of Maryland, Center for Automation Research
A.V. Williams Building +
College Park, MD
The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213 +
('33731953', 'Ralph Gross', 'ralph gross')
('40039594', 'Simon Baker', 'simon baker')
29b86534d4b334b670914038c801987e18eb5532Total Cluster: A person agnostic clustering method for +
broadcast videos +
Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany
Visual Geometry Group, University of Oxford, UK
Center for Machine Vision Research, University of Oulu, Finland
('2103464', 'Makarand Tapaswi', 'makarand tapaswi')
('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')
('2827962', 'Esa Rahtu', 'esa rahtu')
('1741116', 'Eric Sommerlade', 'eric sommerlade')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
tapaswi@kit.edu, omkar@robots.ox.ac.uk, erahtu@ee.oulu.fi +
eric@robots.ox.ac.uk, rainer.stiefelhagen@kit.edu, az@robots.ox.ac.uk +
29631ca6cff21c9199c70bcdbbcd5f812d331a96RESEARCH ARTICLE +
Error Rates in Users of Automatic Face +
Recognition Software +
School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology
The University of Sydney, Sydney, Australia
('40404556', 'David White', 'david white')
('29329747', 'James D. Dunn', 'james d. dunn')
('5016966', 'Alexandra C. Schmid', 'alexandra c. schmid')
('3086646', 'Richard I. Kemp', 'richard i. kemp')
* david.white@unsw.edu.au +
2965d092ed72822432c547830fa557794ae7e27bImproving Representation and Classification of Image and +
Video Data for Surveillance Applications +
BSc(Biol), MSc(Biol), MSc(CompSc) +
A thesis submitted for the degree of Doctor of Philosophy at +
The University of Queensland in
School of Information Technology and Electrical Engineering +
('2706642', 'Andres Sanin', 'andres sanin')
2983efadb1f2980ab5ef20175f488f77b6f059d7ch04_88815.QXP 12/23/08 3:36 PM Page 53 +
◆ 4 ◆ +
EMOTION IN HUMAN–COMPUTER INTERACTION +
Stanford University
Understanding Emotion . . . . . . . . . . . . . . . . . . . . . . . . . . 54 +
Distinguishing Emotion from Related Constructs . . . . 55 +
Mood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 +
Sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 +
Effects of Affect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 +
Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 +
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 +
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 +
Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 +
Causes of Emotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 +
Needs and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 +
Appraisal Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 +
Contagion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 +
Moods and Sentiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 +
Previous Emotional State . . . . . . . . . . . . . . . . . . . . . . . . . . 59 +
Causes of Mood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 +
Contagion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 +
Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 +
Other Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 +
Measuring Affect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 +
Neurological Responses . . . . . . . . . . . . . . . . . . . . . . . . . . 61 +
Autonomic Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 +
Facial Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 +
Voice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 +
Self-Report Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 +
Affect Recognition by Users . . . . . . . . . . . . . . . . . . . . . . . 63 +
Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 +
1. With which emotion should HCI designers +
be most concerned? . . . . . . . . . . . . . . . . . . . . . . . . . 64 +
2. When and how should interfaces attempt to +
directly address users’ emotions and basic +
needs (vs. application-specific goals)? . . . . . . . . . . . . 64 +
3. How accurate must emotion recognition be +
to be useful as an interface technique? . . . . . . . . . . . 64 +
4. When and how should users be informed +
that their affective states are being monitored +
and adapted to? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 +
5. How does emotion play out in computer- +
mediated communication (CMC)? . . . . . . . . . . . . . . 64 +
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 +
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 +
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 +
53 +
('2739604', 'Scott Brave', 'scott brave')
('2029850', 'Clifford Nass', 'clifford nass')
2911e7f0fb6803851b0eddf8067a6fc06e8eadd6Joint Fine-Tuning in Deep Neural Networks +
for Facial Expression Recognition +
School of Electrical Engineering +
Korea Advanced Institute of Science and Technology
('1800903', 'Heechul Jung', 'heechul jung')
('3249661', 'Junho Yim', 'junho yim')
{heechul, haeng, junho.yim, sunny0414, junmo.kim}@kaist.ac.kr +
2921719b57544cfe5d0a1614d5ae81710ba804faFace Recognition Enhancement Based on Image +
File Formats and Wavelet De-noising +
 +
('4050987', 'Jieqing Tan', 'jieqing tan')
('40160496', 'Zhengfeng Hou', 'zhengfeng hou')
29a013b2faace976f2c532533bd6ab4178ccd348This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Hierarchical Manifold Learning With Applications +
to Supervised Classification for High-Resolution +
Remotely Sensed Images +
('7192623', 'Hong-Bing Huang', 'hong-bing huang')
('3239427', 'Hong Huo', 'hong huo')
('1680725', 'Tao Fang', 'tao fang')
29921072d8628544114f68bdf84deaf20a8c8f91Multi-Task Curriculum Transfer Deep Learning of Clothing Attributes +
School of EECS, Queen Mary University of London, UK
('40204089', 'Qi Dong', 'qi dong')
('2073354', 'Shaogang Gong', 'shaogang gong')
('2171228', 'Xiatian Zhu', 'xiatian zhu')
{q.dong, s.gong, xiatian.zhu}@qmul.ac.uk +
2969f822b118637af29d8a3a0811ede2751897b5Cascaded Shape Space Pruning for Robust Facial Landmark Detection +
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing 100190, China
('1874505', 'Xiaowei Zhao', 'xiaowei zhao')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1695600', 'Xiujuan Chai', 'xiujuan chai')
('1710220', 'Xilin Chen', 'xilin chen')
{xiaowei.zhao,shiguang.shan,xiujuan.chai,xilin.chen}@vipl.ict.ac.cn +
29756b6b16d7b06ea211f21cdaeacad94533e8b4Thresholding Approach based on GPU for Facial +
Expression Recognition +
1 Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México +
2Instituto Tecnológico de Puebla, Puebla, México +
('4348305', 'Jesús García-Ramírez', 'jesús garcía-ramírez')
('3430302', 'Adolfo Aguilar-Rico', 'adolfo aguilar-rico')
gr_jesus@outlook.com,{aolvera,iolmos}@cs.buap.mx +
{kremhilda,adolforico2}@gmail.com +
293193d24d5c4d2975e836034bbb2329b71c4fe7Building a Corpus of Facial Expressions +
for Learning-Centered Emotions +
Instituto Tecnológico de Culiacán, Culiacán, Sinaloa, +
Mexico +
('1744658', 'María Lucía Barrón-Estrada', 'maría lucía barrón-estrada')
('38814197', 'Bianca Giovanna Aispuro-Medina', 'bianca giovanna aispuro-medina')
('38906263', 'Elvia Minerva Valencia-Rodríguez', 'elvia minerva valencia-rodríguez')
('38797488', 'Ana Cecilia Lara-Barrera', 'ana cecilia lara-barrera')
{lbarron, rzatarain, m06170904, m95170906, m15171452} @itculiacan.edu.mx +
294bd7eb5dc24052237669cdd7b4675144e22306International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 +
Automatic Face Annotation +
+
M.Tech Student, Mount Zion College of Engineering, Pathanamthitta, Kerala, India
2988f24908e912259d7a34c84b0edaf7ea50e2b3A Model of Brightness Variations Due to +
Illumination Changes and Non-rigid Motion +
Using Spherical Harmonics +
Jos´e M. Buenaposada +
Dep. Ciencias de la Computaci´on, +
U. Rey Juan Carlos, Spain +
http://www.dia.fi.upm.es/~pcr +
Inst. for Systems and Robotics +
Inst. Superior T´ecnico, Portugal +
http://www.isr.ist.utl.pt/~adb +
Enrique Mu˜noz +
Facultad de Inform´atica, +
U. Complutense de Madrid, Spain +
Dep. de Inteligencia Artificial, +
U. Polit´ecnica de Madrid, Spain +
http://www.dia.fi.upm.es/~pcr +
http://www.dia.fi.upm.es/~pcr +
('1714730', 'Alessio Del Bue', 'alessio del bue')
('1778998', 'Luis Baumela', 'luis baumela')
29156e4fe317b61cdcc87b0226e6f09e416909e0
29f0414c5d566716a229ab4c5794eaf9304d78b6Hindawi Publishing Corporation +
EURASIP Journal on Advances in Signal Processing +
Volume 2008, Article ID 579416, 17 pages +
doi:10.1155/2008/579416 +
Review Article +
Biometric Template Security +
Michigan State University, 3115 Engineering Building
East Lansing, MI 48824, USA +
Received 2 July 2007; Revised 28 September 2007; Accepted 4 December 2007 +
Recommended by Arun Ross +
Biometric recognition offers a reliable solution to the problem of user authentication in identity management systems. With the +
widespread deployment of biometric systems in various applications, there are increasing concerns about the security and privacy +
of biometric technology. Public acceptance of biometrics technology will depend on the ability of system designers to demonstrate +
that these systems are robust, have low error rates, and are tamper proof. We present a high-level categorization of the various +
vulnerabilities of a biometric system and discuss countermeasures that have been proposed to address these vulnerabilities. In par- +
ticular, we focus on biometric template security which is an important issue because, unlike passwords and tokens, compromised +
biometric templates cannot be revoked and reissued. Protecting the template is a challenging task due to intrauser variability in the +
acquired biometric traits. We present an overview of various biometric template protection schemes and discuss their advantages +
and limitations in terms of security, revocability, and impact on matching accuracy. A template protection scheme with provable +
security and acceptable recognition performance has thus far remained elusive. Development of such a scheme is crucial as bio- +
metric systems are beginning to proliferate into the core physical and information infrastructure of our society. +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
1. +
INTRODUCTION +
A reliable identity management system is urgently needed in +
order to combat the epidemic growth in identity theft and to +
meet the increased security requirements in a variety of ap- +
plications ranging from international border crossings to se- +
curing information in databases. Establishing the identity of +
a person is a critical task in any identity management system. +
Surrogate representations of identity such as passwords and +
ID cards are not sufficient for reliable identity determination +
because they can be easily misplaced, shared, or stolen. Bio- +
metric recognition is the science of establishing the identity +
of a person using his/her anatomical and behavioral traits. +
Commonly used biometric traits include fingerprint, face, +
iris, hand geometry, voice, palmprint, handwritten signa- +
tures, and gait (see Figure 1). Biometric traits have a number +
of desirable properties with respect to their use as an authen- +
tication token, namely, reliability, convenience, universality, +
and so forth. These characteristics have led to the widespread +
deployment of biometric authentication systems. But there +
are still some issues concerning the security of biometric +
recognition systems that need to be addressed in order to en- +
sure the integrity and public acceptance of these systems. +
There are five major components in a generic biomet- +
ric authentication system, namely, sensor, feature extrac- +
tor, template database, matcher, and decision module (see +
Figure 2). Sensor is the interface between the user and the +
authentication system and its function is to scan the bio- +
metric trait of the user. Feature extraction module processes +
the scanned biometric data to extract the salient information +
(feature set) that is useful in distinguishing between differ- +
ent users. In some cases, the feature extractor is preceded +
by a quality assessment module which determines whether +
the scanned biometric trait is of sufficient quality for fur- +
ther processing. During enrollment, the extracted feature +
set is stored in a database as a template (XT) indexed by +
the user’s identity information. Since the template database +
could be geographically distributed and contain millions of +
records (e.g., in a national identification system), maintain- +
ing its security is not a trivial task. The matcher module is +
usually an executable program, which accepts two biomet- +
ric feature sets XT and XQ (from template and query, resp.) +
as inputs, and outputs a match score (S) indicating the sim- +
ilarity between the two sets. Finally, the decision module +
makes the identity decision and initiates a response to the +
query. +
('6680444', 'Anil K. Jain', 'anil k. jain')
('34633765', 'Karthik Nandakumar', 'karthik nandakumar')
('2743820', 'Abhishek Nagar', 'abhishek nagar')
('6680444', 'Anil K. Jain', 'anil k. jain')
Correspondence should be addressed to Karthik Nandakumar, nandakum@cse.msu.edu +
293ade202109c7f23637589a637bdaed06dc37c9
7c61d21446679776f7bdc7afd13aedc96f9acac1Hierarchical Label Inference for Video Classification +
Simon Fraser University
Simon Fraser University
Simon Fraser University
('3079079', 'Nelson Nauata', 'nelson nauata')
('2847110', 'Jonathan Smith', 'jonathan smith')
('10771328', 'Greg Mori', 'greg mori')
nnauata@sfu.ca +
jws4@sfu.ca +
mori@cs.sfu.ca +
7cee802e083c5e1731ee50e731f23c9b12da7d362B3C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional +
Networks +
Department of Electronics and Communication Engineering and +
Computer Vision Group, L. D. College of Engineering, Ahmedabad, India
('23922616', 'Vandit Gajjar', 'vandit gajjar') gajjar.vandit.381@ldce.ac.in +
7c47da191f935811f269f9ba3c59556c48282e80Robust Eye Centers Localization +
with Zero–Crossing Encoded Image Projections +
Image Processing and Analysis Laboratory +
University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
Image Processing and Analysis Laboratory +
University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
Image Processing and Analysis Laboratory +
University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
('2143956', 'Laura Florea', 'laura florea')
('2760434', 'Corneliu Florea', 'corneliu florea')
('2905899', 'Constantin Vertan', 'constantin vertan')
laura.florea@upb.ro +
corneliu.florea@upb.ro +
constantin.vertan@upb.ro +
7c7ab59a82b766929defd7146fd039b89d67e984Improving Multiview Face Detection with +
Multi-Task Deep Convolutional Neural Networks +
Microsoft Research +
One Microsoft Way, Redmond WA 98052 +
('1706673', 'Cha Zhang', 'cha zhang')
('1809184', 'Zhengyou Zhang', 'zhengyou zhang')
7ca337735ec4c99284e7c98f8d61fb901dbc9015Proceedings of the 8th International +
IEEE Conference on Intelligent Transportation Systems +
Vienna, Austria, September 13-16, 2005 +
TC4.2 +
Driver Activity Monitoring through Supervised and Unsupervised Learning +
Harini Veeraraghavan Stefan Atev Nathaniel Bird Paul Schrater Nikolaos Papanikolopoulos† +
Department of Computer Science and Engineering +
University of Minnesota
{harini,atev,bird,schrater,npapas}@cs.umn.edu +
7c1cfab6b60466c13f07fe028e5085a949ec8b30Deep Feature Consistent Variational Autoencoder +
University of Nottingham, Ningbo China
Shenzhen University, Shenzhen China
University of Nottingham, Ningbo China
University of Nottingham, Ningbo China
('3468964', 'Xianxu Hou', 'xianxu hou')
('1687690', 'Linlin Shen', 'linlin shen')
('39508183', 'Ke Sun', 'ke sun')
('1698461', 'Guoping Qiu', 'guoping qiu')
xianxu.hou@nottingham.edu.cn +
llshen@szu.edu.cn +
ke.sun@nottingham.edu.cn +
guoping.qiu@nottingham.edu.cn +
7c45b5824645ba6d96beec17ca8ecfb22dfcdd7fNews image annotation on a large parallel text-image corpus +
Universit´e de Rennes 1/IRISA, CNRS/IRISA, INRIA Rennes-Bretagne Atlantique +
Campus de Beaulieu +
35042 Rennes Cedex, France +
('1694537', 'Pierre Tirilly', 'pierre tirilly')
('1735666', 'Vincent Claveau', 'vincent claveau')
('2436627', 'Patrick Gros', 'patrick gros')
ptirilly@irisa.fr, vclaveau@irisa.fr, pgros@inria.fr +
7c17280c9193da3e347416226b8713b99e7825b8VideoCapsuleNet: A Simplified Network for Action +
Detection +
Kevin Duarte +
Yogesh S Rawat +
Center for Research in Computer Vision +
University of Central Florida
Orlando, FL 32816 +
('1745480', 'Mubarak Shah', 'mubarak shah')kevin_duarte@knights.ucf.edu +
yogesh@crcv.ucf.edu +
shah@crcv.ucf.edu +
7cffcb4f24343a924a8317d560202ba9ed26cd0bThe Unconstrained Ear Recognition Challenge +
University of Ljubljana
Ljubljana, Slovenia +
IIT Kharagpur +
Kharagpur, India +
University of Colorado Colorado Springs
Colorado Springs, CO, USA +
Islamic Azad University
Qazvin, Iran +
Imperial College London
London, UK +
ITU Department of Computer Engineering +
Istanbul, Turkey +
('34862665', 'Peter Peer', 'peter peer')
('3110004', 'Anjith George', 'anjith george')
('2173052', 'Adil Ahmad', 'adil ahmad')
('39000630', 'Elshibani Omar', 'elshibani omar')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
('3062107', 'Reza Safdari', 'reza safdari')
('47943220', 'Yuxiang Zhou', 'yuxiang zhou')
('23981209', 'Dogucan Yaman', 'dogucan yaman')
ziga.emersic@fri.uni-lj.si +
7c0a6824b556696ad7bdc6623d742687655852db18th Telecommunications forum TELFOR 2010 +
Serbia, Belgrade, November 23-25, 2010. +
MPCA+DATER: A Novel Approach for Face +
Recognition Based on Tensor Objects +
Ali. A. Shams Baboli, Member, IEEE, G. Rezai-rad, Member, IEEE, Aref. Shams Baboli +
7c95449a5712aac7e8c9a66d131f83a038bb7caaThis is an author produced version of Facial first impressions from another angle: How +
social judgements are influenced by changeable and invariant facial properties. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/102935/ +
Article: +
Rhodes (2017) Facial first impressions from another angle: How social judgements are +
influenced by changeable and invariant facial properties. British journal of psychology. pp. +
397-415. ISSN 0007-1269 +
https://doi.org/10.1111/bjop.12206 +
promoting access to +
White Rose research papers +
http://eprints.whiterose.ac.uk/ +
('16854522', 'Clare', 'clare')
('9384336', 'Young', 'young')
eprints@whiterose.ac.uk +
7c4c442e9c04c6b98cd2aa221e9d7be15efd8663Classifier Learning with Hidden Information +
ECSE, Rensselaer Polytechnic Institute, Troy, NY
('2860279', 'Ziheng Wang', 'ziheng wang')
('1726583', 'Qiang Ji', 'qiang ji')
wangz10@rpi.edu +
jiq@rpi.edu +
7c3e09e0bd992d3f4670ffacb4ec3a911141c51fNoname manuscript No. +
(will be inserted by the editor) +
Transferring Object-Scene Convolutional Neural Networks for +
Event Recognition in Still Images +
Received: date / Accepted: date +
('33345248', 'Limin Wang', 'limin wang')
7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719dDissimilarity-Based Classifications in Eigenspaces(cid:63) +
Myongji University, Yongin, 449-728 South
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of
('34959719', 'Sang-Woon Kim', 'sang-woon kim')
('1747298', 'Robert P. W. Duin', 'robert p. w. duin')
Korea. e-mail : kimsw@mju.ac.kr +
Technology, The Netherlands. e-mail : r.p.w.duin@tudelft.nl +
7cf8a841aad5b7bdbea46a7bb820790e9ce12d0bSUPERVISED HEAT KERNEL LPP +
METHOD FOR FACE RECOGNITION +
Utah State University, Logan UT
('1725739', 'Xiaojun Qi', 'xiaojun qi')cryshan@cc.usu.edu and xqi@cc.usu.edu +
7c9622ad1d8971cd74cc9e838753911fe27ccac4Representation Learning with Smooth +
Autoencoder +
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
('2582309', 'Kongming Liang', 'kongming liang')
('1783542', 'Hong Chang', 'hong chang')
('10338111', 'Zhen Cui', 'zhen cui')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{kongming.liang, hong.chang, zhen.cui, shiguang.shan, xilin.chen}@vipl.ict.ac.cn +
7c2c9b083817f7a779d819afee383599d2e97ed8Disentangling Motion, Foreground and Background Features in Videos +
Beihang University
Beijing, China +
V´ıctor Campos +
Xavier Giro-i-Nieto +
Barcelona Supercomputing Center +
Universitat Politecnica de Catalunya +
Barcelona, Catalonia/Spain +
Barcelona, Catalonia/Spain +
Barcelona Supercomputing Center +
Barcelona, Catalonia/Spain +
Cristian Canton Ferrer +
Facebook +
Seattle (WA), USA +
('10668384', 'Xunyu Lin', 'xunyu lin')
('1711068', 'Jordi Torres', 'jordi torres')
xunyulin2017@outlook.com +
victor.campos@bsc.es +
xavier.giro@upc.edu +
jordi.torres@bsc.es +
ccanton@fb.com +
7c45339253841b6f0efb28c75f2c898c79dfd038Unsupervised Joint Alignment of Complex Images +
University of Massachusetts Amherst
Amherst, MA +
Erik Learned-Miller +
('3219900', 'Gary B. Huang', 'gary b. huang')
('2246870', 'Vidit Jain', 'vidit jain')
fgbhuang,vidit,elmg@cs.umass.edu +
7c825562b3ff4683ed049a372cb6807abb09af2aFinding Tiny Faces +
Supplementary Materials +
Robotics Institute
Carnegie Mellon University
1. Error analysis +
Quantitative analysis We plot the distribution of error modes among false positives in Fig. 1 and the impact of object +
characteristics on detection performance in Fig. 2 and Fig. 3. +
Qualitative analysis We show top 20 scoring false positives in Fig. 4. +
2. Experimental details +
Multi-scale features Inspired by the way [3] trains “FCN-8s at-once”, we scale the learning rate of predictor built on +
top of each layer by a fixed constant. Specifically, we use a scaling factor of 1 for res4, 0.1 for res3, and 0.01 for res2. +
One more difference between our model and [3] is that: instead of predicting at original resolution, our model predicts +
at the resolution of res3 feature (downsampled by 8X comparing to input resolution). +
Input sampling We first randomly re-scale the input image by 0.5X, 1X, or 2X. Then we randomly crop a 500x500 +
image region out of the re-scaled input. We pad with average RGB value (prior to average subtraction) when cropping +
outside image boundary. +
Border cases Similar to [2], we ignore gradients coming from heatmap locations whose detection windows cross the +
image boundary. The only difference is, we treat padded average pixels (as described in Input sampling) as outside +
image boundary as well. +
Online hard mining and balanced sampling We apply hard mining on both positive and negative examples. Our +
implementation is simpler yet still effective comparing to [4]. We set a small threshold (0.03) on classification loss +
to filter out easy locations. Then we sample at most 128 locations for both positive and negative (respectively) from +
remaining ones whose losses are above the threshold. We compare training with and without hard mining on validation +
performance in Table 1. +
Loss function Our loss function is formulated in the same way as [2]. Note that we also use Huber loss as the loss +
function for bounding box regression. +
Bounding box regression Our bounding box regression is formulated as [2] and trained jointly with classification +
using stochastic gradient descent. We compare between testing with and without regression in terms of performance +
on WIDER FACE validation set. +
('1770537', 'Deva Ramanan', 'deva ramanan'){peiyunh,deva}@cs.cmu.edu +
7c7b0550ec41e97fcfc635feffe2e53624471c591051-4651/14 $31.00 © 2014 IEEE +
DOI 10.1109/ICPR.2014.124 +
660 +
7ce03597b703a3b6754d1adac5fbc98536994e8f
7c36afc9828379de97f226e131390af719dbc18dUnsupervised Face-Name Association +
via Commute Distance +
1Zhejiang Provincial Key Laboratory of Service Robot +
College of Computer Science, Zhejiang University, Hangzhou, China
State Key Lab of CADandCG, College of Computer Science, Zhejiang University, Hangzhou, China
('4140420', 'Jiajun Bu', 'jiajun bu')
('40155478', 'Bin Xu', 'bin xu')
('2484982', 'Chenxia Wu', 'chenxia wu')
('2588203', 'Chun Chen', 'chun chen')
('1704030', 'Jianke Zhu', 'jianke zhu')
('1724421', 'Deng Cai', 'deng cai')
('3945955', 'Xiaofei He', 'xiaofei he')
{bjj,xbzju,chenxiawu,chenc,jkzhu}@zju.edu.cn +
{dengcai,xiaofeihe}@cad.zju.edu.cn +
7c119e6bdada2882baca232da76c35ae9b5277f8Facial Expression Recognition Using Embedded +
Hidden Markov Model +
Intelligence Computing Research Center
HIT Shenzhen Graduate School +
Shenzhen, China +
('24233679', 'Languang He', 'languang he')
('1747105', 'Xuan Wang', 'xuan wang')
('10106946', 'Chenglong Yu', 'chenglong yu')
('38700402', 'Kun Wu', 'kun wu')
{telent, wangxuan, ycl, wukun} @cs.hitsz.edu.cn +
7ca7255c2e0c86e4adddbbff2ce74f36b1dc522dStereo Matching for Unconstrained Face Recognition +
Ph.D. Proposal +
University of Maryland
Department of Computer Science +
College Park, MD
May 10, 2009 +
('38171682', 'Carlos D. Castillo', 'carlos d. castillo')carlos@cs.umd.edu +
7c42371bae54050dbbf7ded1e7a9b4109a23a482The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015 183 +
Optimized Features Selection using Hybrid PSO- +
GA for Multi-View Gender Classification +
Foundation University Rawalpindi Campus, Pakistan
University of Central Punjab, Pakistan
University of Dammam, Saudi Arabia
4Department of Computer Science, SZABIST, Pakistan +
('1723986', 'Muhammad Nazir', 'muhammad nazir')
('11616523', 'Muhammad Khan', 'muhammad khan')
7c953868cd51f596300c8231192d57c9c514ae17Detecting and Aligning Faces by Image Retrieval +
Zhe Lin2 +
Northwestern University
2Adobe Research +
2145 Sheridan Road, Evanston, IL 60208 +
345 Park Ave, San Jose, CA 95110 +
('1720987', 'Xiaohui Shen', 'xiaohui shen')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
('1736695', 'Ying Wu', 'ying wu')
{xsh835, yingwu}@eecs.northwestern.edu +
{zlin, jbrandt}@adobe.com +
7c6dbaebfe14878f3aee400d1378d90d61373921A Novel Biometric Feature Extraction Algorithm using Two +
Dimensional Fisherface in 2DPCA subspace for Face Recognition +
School of Electrical, Electronic and Computer Engineering +
University of Newcastle
Newcastle upon Tyne, NE1 7RU +
UNITED KINDOM +
('3156162', 'R. M. MUTELO', 'r. m. mutelo')
7c9a65f18f7feb473e993077d087d4806578214eSpringerLink - Zeitschriftenbeitrag +
http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352... +
Deutsch +
Deutsch +
Go +
Vorherige Beitrag Nächste Beitrag +
Beitrag markieren +
In den Warenkorb legen +
Zu gespeicherten Artikeln +
hinzufügen +
Permissions & Reprints +
Diesen Artikel empfehlen +
Ergebnisse +
finden +
Erweiterte Suche +
Go +
im gesamten Inhalt +
in dieser Zeitschrift +
in diesem Heft +
Diesen Beitrag exportieren +
Diesen Beitrag exportieren als RIS +
| Text +
Text +
PDF +
PDF ist das gebräuchliche Format +
für Online Publikationen. Die Größe +
dieses Dokumentes beträgt 564 +
Kilobyte. Je nach Art Ihrer +
Internetverbindung kann der +
Download einige Zeit in Anspruch +
nehmen. +
öffnen: Gesamtdokument +
Publikationsart Subject Collections +
Zurück zu: Journal Issue +
Athens Authentication Point +
Zeitschriftenbeitrag +
Willkommen! +
Um unsere personalisierten +
Angebote nutzen zu können, +
müssen Sie angemeldet sein. +
Login +
Jetzt registrieren +
Zugangsdaten vergessen? +
Hilfe. +
Mein Menü +
Markierte Beiträge +
Alerts +
Meine Bestellungen +
Private emotions versus social interaction: a data-driven approach towards +
analysing emotion in speech +
Zeitschrift +
Verlag +
ISSN +
Heft +
Kategorie +
DOI +
Seiten +
Subject Collection +
SpringerLink Date +
User Modeling and User-Adapted Interaction +
Springer Netherlands +
0924-1868 (Print) 1573-1391 (Online) +
Volume 18, Numbers 1-2 / Februar 2008 +
Original Paper +
10.1007/s11257-007-9039-4 +
175-206 +
Informatik +
Freitag, 12. Oktober 2007 +
Gespeicherte Beiträge +
Alle +
Favoriten +
(1) Lehrstuhl für Mustererkennung, FAU Erlangen – Nürnberg, Martensstr. 3, 91058 Erlangen, +
Germany +
Received: 3 July 2006 Accepted: 14 January 2007 Published online: 12 October 2007 +
('1745089', 'Anton Batliner', 'anton batliner')
('1732747', 'Stefan Steidl', 'stefan steidl')
('2596771', 'Christian Hacker', 'christian hacker')
('1739326', 'Elmar Nöth', 'elmar nöth')
7c1e1c767f7911a390d49bed4f73952df8445936NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) +
Non-Rigid Object Detection with Local +
Interleaved Sequential Alignment (LISA) +
and Tom´aˇs Svoboda, Member, IEEE +
('35274952', 'Karel Zimmermann', 'karel zimmermann')
('2687885', 'David Hurych', 'david hurych')
7cf579088e0456d04b531da385002825ca6314e2Emotion Detection on TV Show Transcripts with +
Sequence-based Convolutional Neural Networks +
Mathematics and Computer Science +
Mathematics and Computer Science +
Emory University
Atlanta, GA 30322, USA +
Emory University
Atlanta, GA 30322, USA +
('10669356', 'Sayyed M. Zahiri', 'sayyed m. zahiri')
('4724587', 'Jinho D. Choi', 'jinho d. choi')
sayyed.zahiri@emory.edu +
jinho.choi@emory.edu +
7c80d91db5977649487388588c0c823080c9f4b4DocFace: Matching ID Document Photos to Selfies∗ +
Michigan State University
East Lansing, Michigan, USA +
('9644181', 'Yichun Shi', 'yichun shi')
('1739705', 'Anil K. Jain', 'anil k. jain')
shiyichu@msu.edu, jain@cse.msu.edu +
7c349932a3d083466da58ab1674129600b12b81c
7c30ea47f5ae1c5abd6981d409740544ed16ed16ROITBERG, AL-HALAH, STIEFELHAGEN: NOVELTY DETECTION FOR ACTION RECOGNITION +
Informed Democracy: Voting-based Novelty +
Detection for Action Recognition +
Karlsruhe Institute of Technology
76131 Karlsruhe, +
Germany +
('33390229', 'Alina Roitberg', 'alina roitberg')
('2256981', 'Ziad Al-Halah', 'ziad al-halah')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
alina.roitberg@kit.edu +
ziad.al-halah@kit.edu +
rainer.stiefelhagen@kit.edu +
1648cf24c042122af2f429641ba9599a2187d605Boosting Cross-Age Face Verification via Generative Age Normalization +
(cid:2) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +
† Eurecom, 450 route des Chappes, 06410 Biot, France +
('3116433', 'Grigory Antipov', 'grigory antipov')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
('2341854', 'Moez Baccouche', 'moez baccouche')
{grigory.antipov,moez.baccouche}@orange.com +
jean-luc.dugelay@eurecom.fr +
162403e189d1b8463952fa4f18a291241275c354Action Recognition with Spatio-Temporal +
Visual Attention on Skeleton Image Sequences +
With a strong ability of modeling sequential data, Recur- +
rent Neural Networks (RNN) with Long Short-Term Memory +
(LSTM) neurons outperform the previous hand-crafted feature +
based methods [9], [10]. Each skeleton frame is converted into +
a feature vector and the whole sequence is fed into the RNN. +
Despite the strong ability in modeling temporal sequences, +
RNN structures lack the ability to efficiently learn the spatial +
relations between the joints. To better use spatial information, +
a hierarchical structure is proposed in [11], [12] that feeds +
the joints into the network as several pre-defined body part +
groups. However, +
limit +
the effectiveness of representing spatial relations. A spatio- +
temporal 2D LSTM (ST-LSTM) network [13] is proposed +
to learn the spatial and temporal relations simultaneously. +
Furthermore, a two-stream RNN structure [14] is proposed to +
learn the spatio-temporal relations with two RNN branches. +
the pre-defined body regions still +
('21518096', 'Zhengyuan Yang', 'zhengyuan yang')
('3092578', 'Yuncheng Li', 'yuncheng li')
('1706007', 'Jianchao Yang', 'jianchao yang')
('33642939', 'Jiebo Luo', 'jiebo luo')
160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2bDiscriminant Multi-Label Manifold Embedding for Facial Action Unit +
Detection +
Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +
('1697965', 'Hua Gao', 'hua gao')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
anil.yuce@epfl.ch, hua.gao@epfl.ch, jean-philippe.thiran@epfl.ch +
16671b2dc89367ce4ed2a9c241246a0cec9ec10e2006 +
Detecting the Number of Clusters +
in n-Way Probabilistic Clustering +
('1788526', 'Zhaoshui He', 'zhaoshui he')
('1747156', 'Andrzej Cichocki', 'andrzej cichocki')
('1795838', 'Shengli Xie', 'shengli xie')
('1775180', 'Kyuwan Choi', 'kyuwan choi')
16fdd6d842475e6fbe58fc809beabbed95f0642eLearning Temporal Embeddings for Complex Video Analysis +
Stanford University, 2Simon Fraser University
('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')
('10771328', 'Greg Mori', 'greg mori')
('3216322', 'Li Fei-Fei', 'li fei-fei')
{vigneshr, kdtang}@cs.stanford.edu, mori@cs.sfu.ca, feifeili@cs.stanford.edu +
16bce9f940bb01aa5ec961892cc021d4664eb9e4Mutual Component Analysis for Heterogeneous Face Recognition +
39 +
Heterogeneous face recognition, also known as cross-modality face recognition or inter-modality face recogni- +
tion, refers to matching two face images from alternative image modalities. Since face images from different +
image modalities of the same person are associated with the same face object, there should be mutual com- +
ponents that reflect those intrinsic face characteristics that are invariant to the image modalities. Motivated +
by this rationality, we propose a novel approach called mutual component analysis (MCA) to infer the mu- +
tual components for robust heterogeneous face recognition. In the MCA approach, a generative model is first +
proposed to model the process of generating face images in different modalities, and then an Expectation +
Maximization (EM) algorithm is designed to iteratively learn the model parameters. The learned generative +
model is able to infer the mutual components (which we call the hidden factor, where hidden means the +
factor is unreachable and invisible, and can only be inferred from observations) that are associated with +
the person’s identity, thus enabling fast and effective matching for cross-modality face recognition. To en- +
hance recognition performance, we propose an MCA-based multi-classifier framework using multiple local +
features. Experimental results show that our new approach significantly outperforms the state-of-the-art +
results on two typical application scenarios, sketch-to-photo and infrared-to-visible face recognition. +
Categories and Subject Descriptors: I.5.1 [Pattern Recognition]: Models +
General Terms: Design, Algorithms, Performance +
Additional Key Words and Phrases: Face recognition, heterogeneous face recognition, mutual component +
analysis (MCA) +
ACM Reference Format: +
Heterogeneous Face Recognition ACM Trans. Intell. Syst. Technol. 9, 4, Article 39 (July 2015), 22 pages. +
DOI: http://dx.doi.org/10.1145/2807705 +
This work was supported by grants from National Natural Science Foundation of China (61103164 and +
61125106), Natural Science Foundation of Guangdong Province (2014A030313688), Australian Research +
Council Projects (FT-130101457 and LP-140100569), Key Laboratory of Human-Machine Intelligence- +
Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong
Innovative Research Team Program (No.201001D0104648280), the Key Research Program of the Chinese +
Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of
Advanced Engineering, The Chinese University of Hong Kong
Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy
tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University
Key Laboratory of Transient Optics and Photonics, Xi an Institute of Optics and Precision Mechanics, Chi
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted +
without fee provided that copies are not made or distributed for profit or commercial advantage and that +
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned +
('1911510', 'Zhifeng Li', 'zhifeng li')
('2856494', 'Dihong Gong', 'dihong gong')
('20638185', 'Qiang Li', 'qiang li')
('1692693', 'Dacheng Tao', 'dacheng tao')
('1720243', 'Xuelong Li', 'xuelong li')
('1911510', 'Zhifeng Li', 'zhifeng li')
('20638185', 'Qiang Li', 'qiang li')
('1692693', 'Dacheng Tao', 'dacheng tao')
('1720243', 'Xuelong Li', 'xuelong li')
of Sciences, P. R. China; e-mail: {zhifeng.li, dh.gong}@siat.ac.cn; Q. Li and D. Tao, Centre for Quan- +
of Technology Sydney, 81 Broadway, Ultimo, NSW 2007, Australia; e-mail: qiang.li-2@student.uts.edu.au, +
dacheng.tao@uts.edu.au; X. Li, the Center for OPTical IMagery Analysis and Learning (OPTIMAL), State +
nese Academy of Sciences, Xi’an 710119, Shaanxi, China; e-mail: xuelong li@opt.ac.cn. +
16de1324459fe8fdcdca80bba04c3c30bb789bdf
16892074764386b74b6040fe8d6946b67a246a0b
16395b40e19cbc6d5b82543039ffff2a06363845Action Recognition in Video Using Sparse Coding and Relative Features +
Anal´ı Alfaro +
P. Universidad Catolica de Chile +
P. Universidad Catolica de Chile +
P. Universidad Catolica de Chile +
Santiago, Chile +
Santiago, Chile +
Santiago, Chile +
('1797475', 'Domingo Mery', 'domingo mery')
('7263603', 'Alvaro Soto', 'alvaro soto')
ajalfaro@uc.cl +
dmery@ing.puc.cl +
asoto@ing.uc.cl +
1677d29a108a1c0f27a6a630e74856e7bddcb70dEfficient Misalignment-Robust Representation +
for Real-Time Face Recognition +
The Hong Kong Polytechnic University, Hong Kong
('5828998', 'Meng Yang', 'meng yang')
('36685537', 'Lei Zhang', 'lei zhang')
('1698371', 'David Zhang', 'david zhang')
{csmyang,cslzhang}@comp.polyu.edu.hk +
16b9d258547f1eccdb32111c9f45e2e4bbee79af2006 Xiyuan Ave. +
Chengdu, Sichuan 611731 +
2006 Xiyuan Ave. +
Chengdu, Sichuan 611731 +
University of Electronic Science and Technology of China
Johns Hopkins University
3400 N. Charles St. +
Baltimore, Maryland 21218 +
Johns Hopkins University
3400 N. Charles St. +
Baltimore, Maryland 21218 +
NormFace: L2 Hypersphere Embedding for Face Verification +
University of Electronic Science and Technology of China
('1709439', 'Jian Cheng', 'jian cheng')
('40031188', 'Xiang Xiang', 'xiang xiang')
('1746141', 'Alan L. Yuille', 'alan l. yuille')
('39369840', 'Feng Wang', 'feng wang')
feng.w(cid:29)@gmail.com +
chengjian@uestc.edu.cn +
xxiang@cs.jhu.edu +
alan.yuille@jhu.edu +
16c884be18016cc07aec0ef7e914622a1a9fb59dUNIVERSITÉ DE GRENOBLE +
No attribué par la bibliothèque +
THÈSE +
pour obtenir le grade de +
DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE +
Spécialité : Mathématiques et Informatique +
préparée au Laboratoire Jean Kuntzmann +
dans le cadre de l’École Doctorale Mathématiques, +
Sciences et Technologies de l’Information, Informatique +
présentée et soutenue publiquement +
par +
le 27 septembre 2010 +
Exploiting Multimodal Data for Image Understanding +
Données multimodales pour l’analyse d’image +
Directeurs de thèse : Cordelia Schmid et Jakob Verbeek +
JURY +
M. Éric Gaussier +
M. Antonio Torralba +
Mme Tinne Tuytelaars Katholieke Universiteit Leuven
M. Mark Everingham University of Leeds
Mme Cordelia Schmid +
M. Jakob Verbeek +
Président +
Université Joseph Fourier +
Massachusetts Institute of Technology Rapporteur
Rapporteur +
Examinateur +
Examinatrice +
Examinateur +
INRIA Grenoble +
INRIA Grenoble +
('2737253', 'Matthieu Guillaumin', 'matthieu guillaumin')
162dfd0d2c9f3621d600e8a3790745395ab25ebcHead Pose Estimation Based on Multivariate Label Distribution +
School of Computer Science and Engineering +
Southeast University, Nanjing, China
('1735299', 'Xin Geng', 'xin geng')
('40228279', 'Yu Xia', 'yu xia')
{xgeng, xiayu}@seu.edu.cn +
16f940b4b5da79072d64a77692a876627092d39cA Framework for Automated Measurement of the Intensity of Non-Posed Facial +
Action Units +
University of Denver, Denver, CO
University of Miami, Coral Gables, FL
University of Miami, Coral Gables, FL
University of Pittsburgh, Pittsburgh, PA
Emails: +
('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')
('2897823', 'Steven Cadavid', 'steven cadavid')
('1874236', 'Daniel S. Messinger', 'daniel s. messinger')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
mmahoor@du.edu, scadavid@umsis.miami.edu, dmessinger@miami.edu, and jeffcohn@pitt.edu +
16572c545384174f8136d761d2b0866e968120a8Sequential Max-Margin Event Detectors +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA
('39792229', 'Dong Huang', 'dong huang')
('2583890', 'Shitong Yao', 'shitong yao')
('1734275', 'Yi Wang', 'yi wang')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
16820ccfb626dcdc893cc7735784aed9f63cbb70Real-time Embedded Age and Gender Classification in Unconstrained Video +
School of Electrical Engineering and Computer Science +
University of Ottawa
Ottawa, ON K1N 6N5 Canada +
CogniVue Corporation +
Gatineau, QC, Canada +
('2014654', 'Ramin Azarmehr', 'ramin azarmehr')
('1807494', 'Won-Sook Lee', 'won-sook lee')
('2551825', 'Christina Xu', 'christina xu')
('32944169', 'Daniel Laroche', 'daniel laroche')
{razar033,laganier,wslee}@uottawa.ca +
{cxu,dlaroche}@cognivue.com +
1630e839bc23811e340bdadad3c55b6723db361dSONG, TAN, CHEN: EXPLOITING RELATIONSHIP BETWEEN ATTRIBUTES +
Exploiting Relationship between Attributes for +
Improved Face Verification +
Department of Computer Science and +
Technology, Nanjing University of Aero
nautics and Astronautics, Nanjing 210016, +
P.R. China +
('3075941', 'Fengyi Song', 'fengyi song')
('2248421', 'Xiaoyang Tan', 'xiaoyang tan')
('1680768', 'Songcan Chen', 'songcan chen')
f.song@nuaa.edu.cn +
x.tan@nuaa.edu.cn +
s.chen@nuaa.edu.cn +
164b0e2a03a5a402f66c497e6c327edf20f8827bProceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Sparse Deep Transfer Learning for +
Convolutional Neural Network +
The Chinese University of Hong Kong, Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
('2335888', 'Jiaming Liu', 'jiaming liu')
('47903936', 'Yali Wang', 'yali wang')
('33427555', 'Yu Qiao', 'yu qiao')
jiaming.liu@email.ucr.edu, {yl.wang, yu.qiao}@siat.ac.cn +
16286fb0f14f6a7a1acc10fcd28b3ac43f12f3ebJ Nonverbal Behav +
DOI 10.1007/s10919-008-0059-5 +
O R I G I N A L P A P E R +
All Smiles are Not Created Equal: Morphology +
and Timing of Smiles Perceived as Amused, Polite, +
and Embarrassed/Nervous +
Ó Springer Science+Business Media, LLC 2008 +
('2059653', 'Zara Ambadar', 'zara ambadar')
1667a77db764e03a87a3fd167d88b060ef47bb56Alternative Semantic Representations for +
Zero-Shot Human Action Recognition +
School of Computer Science, The University of Manchester
Manchester, M13 9PL, UK +
('1729612', 'Qian Wang', 'qian wang')
('32811782', 'Ke Chen', 'ke chen')
{qian.wang,ke.chen}@manchester.ac.uk +
169618b8dc9b348694a31c6e9e17b989735b4d39Unsupervised Representation Learning by Sorting Sequences +
University of California, Merced
Maneesh Singh3 +
2Virginia Tech +
3Verisk Analytics +
http://vllab1.ucmerced.edu/˜hylee/OPN/ +
('2837591', 'Hsin-Ying Lee', 'hsin-ying lee')
('3068086', 'Jia-Bin Huang', 'jia-bin huang')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
16e95a907b016951da7c9327927bb039534151daJOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2016) +
3D Face Recognition Using Spherical Vector Norms Map * +
a Beijing Key Laboratory of Information Service Engineering, +
Beijing Union University, 100101, China
b Computer Technology Institute, Beijing Union University, 100101, China
c Beijing Advanced Innovation Center for Imaging Technology, +
Capital Normal University, 100048, China
In this paper, we introduce a novel, automatic method for 3D face recognition. A +
new feature called a spherical vector norms map of a 3D face is created using the normal +
vector of each point. This feature contains more detailed information than the original +
depth image in regions such as the eyes and nose. For certain flat areas of 3D face, such +
as the forehead and cheeks, this map could increase the distinguishability of different +
points. In addition, this feature is robust to facial expression due to an adjustment that is +
made in the mouth region. Then, the facial representations, which are based on Histo- +
grams of Oriented Gradients, are extracted from the spherical vector norms map and the +
original depth image. A new partitioning strategy is proposed to produce the histogram +
of eight patches of a given image, in which all of the pixels are binned based on the +
magnitude and direction of their gradients. In this study, SVNs map and depth image are +
represented compactly with two histograms of oriented gradients; this approach is com- +
pleted by Linear Discriminant Analysis and a Nearest Neighbor classifier. +
Keywords: spherical vector norms map, Histograms of Oriented Gradients, 3D face +
recognition, Linear Discriminant Analysis, Face Recognition Grand Challenge database +
1. INTRODUCTION +
With the rapidly decreasing costs of 3D capturing devices, many researchers are in- +
vestigating 3D face recognition systems because it could overcome limitations illumina- +
tion and make-up, but still bear limitations mostly due to facial expression. We summa- +
rize a smaller subset of expressive-robust methods below: +
1. Deformable template-based approaches: Berretti et al. [1] proposed an approach +
that describes the geometric information of a 3D facial using a surface graph form, and +
the relevant information among the neighboring points could be encoded into a compact +
representation. 3DWWs (3D Weighted Walkthroughs) descriptors were proposed to +
demonstrate the mutual spatial displacement among pairwise arcs of points of the corre- +
sponding stripes. An 81.2% verification rate at a 0.1% FAR was achieved on the all vs. +
all experiment. The advantage of the method is the computational complexity is low. +
Kakadiaris et al. [2] mapped 3D geometry information onto a 2D regular grid using +
an elastically adapted deformable model. Then, advanced wavelet analysis was used for +
recognition and get good performance. +
Drira et al. [3] used radial curves emanating from the nose tips which were already +
provided, and used elastic shape analysis of these curves to develop a Riemannian +
framework. Finally, they analyze the shapes of full facial surfaces. +
1249 +
('3282147', 'Xue-Qiao Wang', 'xue-qiao wang')
('2130097', 'Jia-Zheng Yuan', 'jia-zheng yuan')
('1930238', 'Qing Li', 'qing li')
E-mail: {ldxueqiao; jiazheng; liqing10}@buu.edu.cn +
166186e551b75c9b5adcc9218f0727b73f5de899Volume 4, Issue 2, February 2016 +
International Journal of Advance Research in +
Computer Science and Management Studies +
Research Article / Survey Paper / Case Study +
Available online at: www.ijarcsms.com +
ISSN: 2321-7782 (Online) +
Automatic Age and Gender Recognition in Human Face Image +
Dataset using Convolutional Neural Network System +
Subhani Shaik1 +
Assoc. Prof & Head of the Department +
Department of CSE, +
Associate Professor +
Department of CSE, +
St.Mary’s Group of Institutions Guntur +
St.Mary’s Group of Institutions Guntur +
Chebrolu(V&M),Guntur(Dt), +
Andhra Pradesh - India +
Chebrolu(V&M),Guntur(Dt), +
Andhra Pradesh - India +
('39885231', 'Anto A. Micheal', 'anto a. micheal')
16d6737b50f969247339a6860da2109a8664198aConvolutional Neural Networks +
for Age and Gender Classification +
Stanford University
('22241470', 'Ari Ekmekji', 'ari ekmekji')aekmekji@stanford.edu +
16d9b983796ffcd151bdb8e75fc7eb2e31230809EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer +
(Guest Editors) +
Volume 37 (2018), Number 2 +
GazeDirector: Fully Articulated Eye Gaze Redirection in Video +
ID: paper1004 +
1679943d22d60639b4670eba86665371295f52c3
162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5eMygdalis, V., Iosifidis, A., Tefas, A., & Pitas, I. (2016). Large-Scale +
Classification by an Approximate Least Squares One-Class Support Vector +
of a meeting held 20-22 August 2015, Helsinki, Finland (Vol. 2, pp. 6-10). +
Institute of Electrical and Electronics Engineers (IEEE). DOI
10.1109/Trustcom.2015.555 +
Peer reviewed version +
Link to published version (if available): +
10.1109/Trustcom.2015.555 +
Link to publication record in Explore Bristol Research +
PDF-document +
University of Bristol - Explore Bristol Research
General rights +
This document is made available in accordance with publisher policies. Please cite only the published +
version using the reference above. Full terms of use are available: +
http://www.bristol.ac.uk/pure/about/ebr-terms +
1610d2d4947c03a89c0fda506a74ba1ae2bc54c2Robust Real-Time 3D Face Tracking from RGBD Videos under Extreme Pose, +
Depth, and Expression Variations +
Hai X. Pham +
Rutgers University, USA
('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic'){hxp1,vladimir}@cs.rutgers.edu +
1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6Recent Developments in Social Signal Processing +
Institute of Informatics - ISLA
University of Amsterdam, Amsterdam, The Netherlands
†Department of Computing +
Imperial College London, London, UK
EEMCS, University of Twente Enschede, The Netherlands
University of Glasgow
Glasgow, Scotland +
('1764521', 'Albert Ali Salah', 'albert ali salah')
('1694605', 'Maja Pantic', 'maja pantic')
('1719436', 'Alessandro Vinciarelli', 'alessandro vinciarelli')
Email: a.a.salah@uva.nl +
Email: m.pantic@imperial.ac.uk +
Email: vincia@dcs.gla.ac.uk +
169076ffe5e7a2310e98087ef7da25aceb12b62d
167736556bea7fd57cfabc692ec4ae40c445f144METHODS +
published: 13 January 2016 +
doi: 10.3389/fict.2015.00028 +
Improved Motion Description for +
Action Classification +
Inria, Centre Rennes – Bretagne Atlantique, Rennes, France +
Even though the importance of explicitly integrating motion characteristics in video +
descriptions has been demonstrated by several recent papers on action classification, our +
current work concludes that adequately decomposing visual motion into dominant and +
residual motions, i.e., camera and scene motion, significantly improves action recognition +
algorithms. This holds true both for the extraction of the space-time trajectories and for +
computation of descriptors. We designed a new motion descriptor – the DCS descriptor – +
that captures additional information on local motion patterns enhancing results based on +
differential motion scalar quantities, divergence, curl, and shear features. Finally, applying +
the recent VLAD coding technique proposed in image retrieval provides a substantial +
improvement for action recognition. These findings are complementary to each other +
and they outperformed all previously reported results by a significant margin on three +
challenging datasets: Hollywood 2, HMDB51, and Olympic Sports as reported in Jain +
et al. (2013). These results were further improved by Oneata et al. (2013), Wang and +
Schmid (2013), and Zhu et al. (2013) through the use of the Fisher vector encoding. We +
therefore also employ Fisher vector in this paper, and we further enhance our approach by +
combining trajectories from both optical flow and compensated flow. We as well provide +
additional details of DCS descriptors, including visualization. For extending the evaluation
a novel dataset with 101 action classes, UCF101, was added. +
Keywords: action classification, camera motion, optical flow, motion trajectories, motion descriptors +
1. INTRODUCTION +
The recognition of human actions in unconstrained videos remains a challenging problem in +
computer vision despite the fact that human actions are often attributed to essential meaningful +
content in such videos. The field receives sustained attention due to its potential applications, +
such as for designing video-surveillance systems, in providing automatic annotation of video +
archives, as well as for improving human–computer interaction. The solutions that were proposed +
to address the above problems were inherited from the techniques first designed for image search +
and classification. +
Successful local features were developed to describe image patches (Schmid and Mohr, 1997; +
Lowe, 2004) and translated in the 2D + t domain as spatio-temporal local descriptors (Laptev et al., +
2008; Wang et al., 2009) and now include motion clues of Wang et al. (2011). These descriptors +
are often extracted from spatial–temporal interest points (Laptev and Lindeberg, 2003; Willems +
et al., 2008). Furthermore, several approaches assume underlying temporal motion model involving +
trajectories (Hervieu et al., 2008; Matikainen et al., 2009; Messing et al., 2009; Sun et al., 2009; +
Brox and Malik, 2010; Wang et al., 2011; Wu et al., 2011; Gaidon et al., 2012; Wang and Schmid, +
2013). +
Edited by: +
Jean-Marc Odobez, +
Idiap Research Institute, Switzerland
Reviewed by: +
Thanh Duc Ngo, +
Ho Chi Minh City University of
Information Technology, Vietnam +
Jean Martinet, +
Lille 1 University, France
*Correspondence: +
Specialty section: +
This article was submitted to +
Computer Image Analysis, a section +
of the journal Frontiers in ICT +
Received: 16 April 2015 +
Accepted: 22 December 2015 +
Published: 13 January 2016 +
Citation: +
Jain M, Jégou H and Bouthemy P +
(2016) Improved Motion Description +
for Action Classification. +
doi: 10.3389/fict.2015.00028 +
Frontiers in ICT | www.frontiersin.org +
January 2016 | Volume 2 | Article 28 +
('40027484', 'Mihir Jain', 'mihir jain')
('1681054', 'Hervé Jégou', 'hervé jégou')
('1716733', 'Patrick Bouthemy', 'patrick bouthemy')
('40027484', 'Mihir Jain', 'mihir jain')
m.jain@uva.nl +
167ea1631476e8f9332cef98cf470cb3d4847bc6Visual Search at Pinterest +
1Visual Discovery, Pinterest +
University of California, Berkeley
('39554931', 'Yushi Jing', 'yushi jing')
('1911082', 'Dmitry Kislyuk', 'dmitry kislyuk')
('39835325', 'Andrew Zhai', 'andrew zhai')
('2560579', 'Jiajing Xu', 'jiajing xu')
('7408951', 'Jeff Donahue', 'jeff donahue')
('2608161', 'Sarah Tavel', 'sarah tavel')
{jing, dliu, dkislyuk, andrew, jiajing, jdonahue, sarah}@pinterest.com +
161eb88031f382e6a1d630cd9a1b9c4bc6b476521 +
Automatic Facial Expression Recognition +
Using Features of Salient Facial Patches +
('2680543', 'Aurobinda Routray', 'aurobinda routray')
420782499f38c1d114aabde7b8a8104c9e40a974Joint Ranking and Classification using Weak Data for Feature Extraction +
Fashion Style in 128 Floats: +
Department of Computer Science and Engineering +
Waseda University, Tokyo, Japan
('3114470', 'Edgar Simo-Serra', 'edgar simo-serra')
('1692113', 'Hiroshi Ishikawa', 'hiroshi ishikawa')
esimo@aoni.waseda.jp +
hfs@waseda.jp +
4209783b0cab1f22341f0600eed4512155b1dee6Accurate and Efficient Similarity Search for Large Scale Face Recognition +
BUPT +
BUPT +
BUPT +
('49712251', 'Ce Qi', 'ce qi')
('35963823', 'Zhizhong Liu', 'zhizhong liu')
('1684263', 'Fei Su', 'fei su')
42e3dac0df30d754c7c7dab9e1bb94990034a90dPANDA: Pose Aligned Networks for Deep Attribute Modeling +
2EECS, UC Berkeley +
1Facebook AI Research +
('40565777', 'Ning Zhang', 'ning zhang')
('2210374', 'Manohar Paluri', 'manohar paluri')
('1753210', 'Trevor Darrell', 'trevor darrell')
{mano, ranzato, lubomir}@fb.com +
{nzhang, trevor}@eecs.berkeley.edu +
4217473596b978f13a211cdf47b7d3f6588c785fAn Efficient Approach for Clustering Face Images +
Michigan State University
Noblis +
Anil Jain +
Michigan State Universtiy +
('40653304', 'Charles Otto', 'charles otto')
('1817623', 'Brendan Klare', 'brendan klare')
ottochar@msu.edu +
Brendan.Klare@noblis.org +
jain@msu.edu +
4223666d1b0b1a60c74b14c2980069905088edc6A Convergent Incoherent Dictionary Learning +
Algorithm for Sparse Coding +
Department of Mathematics +
National University of Singapore
('3183763', 'Chenglong Bao', 'chenglong bao')
('2217653', 'Yuhui Quan', 'yuhui quan')
('39689301', 'Hui Ji', 'hui ji')
42afe6d016e52c99e2c0d876052ade9c192d91e7Spontaneous vs. Posed Facial Behavior: +
Automatic Analysis of Brow Actions +
Imperial College London, UK
Faculty of EEMCS, University of Twente, The Netherlands
Psychology and Psychiatry, University of Pittsburgh, USA
('1795528', 'Michel F. Valstar', 'michel f. valstar')
('1694605', 'Maja Pantic', 'maja pantic')
('2059653', 'Zara Ambadar', 'zara ambadar')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
{michel.valstar,m.pantic}@imperial.ac.uk, {ambadar,jeffcohn}@pitt.edu, +
42765c170c14bd58e7200b09b2e1e17911eed42b2 +
Feature Extraction Based on Wavelet +
Moments and Moment Invariants in +
Machine Vision Systems +
G.A. Papakostas, D.E. Koulouriotis and V.D. Tourassis +
Democritus University of Thrace
Department of Production Engineering and Management +
Greece +
1. Introduction +
Recently, there has been an increasing interest on modern machine vision systems for +
industrial and commercial purposes. More and more products are introduced in the market, +
which are making use of visual information captured by a camera in order to perform a +
specific task. Such machine vision systems are used for detecting and/or recognizing a face +
in an unconstrained environment for security purposes, for analysing the emotional states of +
a human by processing his facial expressions or for providing a vision based interface in the +
context of the human computer interaction (HCI) etc.. +
In almost all the modern machine vision systems there is a common processing procedure +
called feature extraction, dealing with the appropriate representation of the visual information. +
This task has two main objectives simultaneously, the compact description of the useful +
information by a set of numbers (features), by keeping the dimension as low as possible. +
Image moments constitute an important feature extraction method (FEM) which generates +
high discriminative features, able to capture the particular characteristics of the described +
pattern, which distinguish it among similar or totally different objects. Their ability to fully +
describe an image by encoding its contents in a compact way makes them suitable for many +
disciplines of the engineering life, such as image analysis (Sim et al., 2004), image +
watermarking (Papakostas et al., 2010a) and pattern recognition (Papakostas et al., 2007, +
2009a, 2010b). +
Among the several moment families introduced in the past, the orthogonal moments are +
the most popular moments widely used in many applications, owing to their +
orthogonality property that comes from the nature of the polynomials used as kernel +
functions, which they constitute an orthogonal base. As a result, the orthogonal moments +
have minimum information redundancy meaning that different moment orders describe +
different parts of the image. +
In order to use the moments to classify visual objects, they have to ensure high recognition +
rates for all possible object’s orientations. This requirement constitutes a significant +
operational feature of each modern pattern recognition system and it can be satisfied during +
www.intechopen.com +
429c3588ce54468090cc2cf56c9b328b549a86dc
42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830Coordinated Local Metric Learning +
Inria∗ +
('2143851', 'Shreyas Saxena', 'shreyas saxena')
('34602236', 'Jakob Verbeek', 'jakob verbeek')
42350e28d11e33641775bef4c7b41a2c3437e4fd212 +
Multilinear Discriminant Analysis +
for Face Recognition +
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('38188040', 'Dong Xu', 'dong xu')
('1706370', 'Qiang Yang', 'qiang yang')
('39089563', 'Lei Zhang', 'lei zhang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
42e155ea109eae773dadf74d713485be83fca105
4223917177405eaa6bdedca061eb28f7b440ed8eB-spline Shape from Motion & Shading: An Automatic Free-form Surface +
Modeling for Face Reconstruction +
School of Computer Science, Tianjin University
School of Computer Science, Tianjin University
School of Software, Tianjin University
('1919846', 'Weilong Peng', 'weilong peng')
('1683334', 'Zhiyong Feng', 'zhiyong feng')
('29962190', 'Chao Xu', 'chao xu')
wlpeng@tju.edu.cn +
zyfeng@tju.edu.cn +
42eda7c20db9dc0f42f72bb997dd191ed8499b10Gaze Embeddings for Zero-Shot Image Classification +
Max Planck Institute for Informatics
Saarland Informatics Campus +
2Amsterdam Machine Learning Lab +
University of Amsterdam
('7789181', 'Nour Karessli', 'nour karessli')
('3194727', 'Andreas Bulling', 'andreas bulling')
42c9394ca1caaa36f535721fa9a64b2c8d4e0deeLabel Efficient Learning of Transferable +
Representations across Domains and Tasks +
Stanford University
Virginia Tech +
University of California, Berkeley
('3378742', 'Zelun Luo', 'zelun luo')
('8299168', 'Yuliang Zou', 'yuliang zou')
('4742485', 'Judy Hoffman', 'judy hoffman')
zelunluo@stanford.edu +
ylzou@vt.edu +
jhoffman@eecs.berkeley.edu +
4270460b8bc5299bd6eaf821d5685c6442ea179aInt J Comput Vis (2009) 84: 163–183 +
DOI 10.1007/s11263-008-0147-3 +
Partial Similarity of Objects, or How to Compare a Centaur +
to a Horse +
Received: 30 September 2007 / Accepted: 3 June 2008 / Published online: 26 July 2008 +
© Springer Science+Business Media, LLC 2008 +
('1731883', 'Alexander M. Bronstein', 'alexander m. bronstein')
('1692832', 'Ron Kimmel', 'ron kimmel')
4205cb47ba4d3c0f21840633bcd49349d1dc02c1ACTION RECOGNITION WITH GRADIENT BOUNDARY CONVOLUTIONAL NETWORK +
Research Institute of Shenzhen, Wuhan University, Shenzhen, China
National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China
Center for Research in Computer Vision, University of Central Florida, Orlando, USA
('2559431', 'Huafeng Chen', 'huafeng chen')
('1736897', 'Jun Chen', 'jun chen')
('1732874', 'Chen Chen', 'chen chen')
('37254976', 'Ruimin Hu', 'ruimin hu')
42ded74d4858bea1070dadb08b037115d9d15db5Exigent: An Automatic Avatar Generation System +
Computer Science and Artificial Intelligence Laboratory +
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, USA +
('2852664', 'Dominic Kao', 'dominic kao')
('1709421', 'D. Fox Harrell', 'd. fox harrell')
{dkao,fox.harrell}@mit.edu +
42ea8a96eea023361721f0ea34264d3d0fc49ebdParameterized Principal Component Analysis +
Florida State University, USA
('2109527', 'Ajay Gupta', 'ajay gupta')
('2455529', 'Adrian Barbu', 'adrian barbu')
42f6f5454dda99d8989f9814989efd50fe807ee8Conditional generative adversarial nets for convolutional face generation +
Symbolic Systems Program, Natural Language Processing Group +
Stanford University
('24339276', 'Jon Gauthier', 'jon gauthier')jgauthie@stanford.edu +
429d4848d03d2243cc6a1b03695406a6de1a7abdFace Recognition based on Logarithmic Fusion +
International Journal of Soft Computing and Engineering (IJSCE) +
ISSN: 2231-2307, Volume-2, Issue-3, July 2012 +
of SVD and KT +
Ramachandra A C, Raja K B, Venugopal K R, L M Patnaik +
to +
 +
42dc36550912bc40f7faa195c60ff6ffc04e7cd6Hindawi Publishing Corporation +
ISRN Machine Vision +
Volume 2013, Article ID 579126, 10 pages +
http://dx.doi.org/10.1155/2013/579126 +
Research Article +
Visible and Infrared Face Identification via +
Sparse Representation +
LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France
GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin
14050 Caen, France +
Received 4 April 2013; Accepted 27 April 2013 +
Academic Editors: O. Ghita, D. Hernandez, Z. Hou, M. La Cascia, and J. M. Tavares +
Copyright © 2013 P. Buyssens and M. Revenu. This is an open access article distributed under the Creative Commons Attribution +
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +
cited. +
We present a facial recognition technique based on facial sparse representation. A dictionary is learned from data, and patches +
extracted from a face are decomposed in a sparse manner onto this dictionary. We particularly focus on the design of dictionaries +
that play a crucial role in the final identification rates. Applied to various databases and modalities, we show that this approach +
gives interesting performances. We propose also a score fusion framework that allows quantifying the saliency classifiers outputs +
and merging them according to these saliencies. +
1. Introduction +
Face recognition is a topic which has been of increasing inter- +
est during the last two decades due to a vast number of pos- +
sible applications: biometrics, video surveillance, advanced +
HMI, or image/video indexation. Although considerable +
progress has been made in this domain, especially with the +
development of powerful methods (such as the Eigenfaces +
or the Elastic Bunch Graph Matching methods), automatic +
face recognition is not enough accurate in uncontrolled envi- +
ronments for a large use. Many factors can degrade the per- +
formances of facial biometric system: illumination variation +
creates artificial shadows, changing locally the appearance of +
the face; head poses modify the distance between localized +
features; facial expression introduces global changes; artefacts +
wearing, such as glasses or scarf, may hide parts of the face. +
For the particular case of illumination, a lot of work has +
been done on the preprocessing step of the images to reduce +
the effect of the illumination on the face. Another approach is +
to use other imagery such as infrared, which has been showed +
to be a promising alternative. An infrared capture of a face is +
nearly invariant to illumination changes and allows a system +
to process in all the illumination conditions, including total
darkness like night. +
While visual cameras measure the electromagnetic +
energy in the visible spectrum (0.4–0.7 𝜇m), sensors in the +
IR respond to thermal radiation in the infrared spectrum +
(0.7–14.0 𝜇m). The infrared spectrum can mainly be divided +
into reflected IR (Figure 1(b)) and emissive IR (Figure 1(c)). +
Reflected IR contains near infrared (NIR) (0.7–0.9 𝜇m) +
and short-wave infrared (SWIR) (0.9–2.4 𝜇m). The ther- +
mal IR band is associated with thermal radiation emitted +
by the objects. It contains the midwave infrared (MWIR) +
(3.0–5.0 𝜇m) and long-wave infrared (LWIR) (8.0–14.0 𝜇m). +
Although the reflected IR is by far the most studied, we use +
thermal long-wave IR in this study. +
Despite the advantages of infrared modality, infrared im- +
agery has other limitations. Since a face captured under this +
modality renders its thermal patterns, a temperature screen +
placed in front of the face will totally occlude it. This phe- +
nomenon appears when a subject simply wears glasses. In this +
case, the captured face has two black holes, corresponding to +
the glasses, which is far more inconvenient than in the visible +
('2825139', 'Pierre Buyssens', 'pierre buyssens')Correspondence should be addressed to Pierre Buyssens; pierre.buyssens@gmail.com +
424259e9e917c037208125ccc1a02f8276afb667
42ecfc3221c2e1377e6ff849afb705ecd056b6ffPose Invariant Face Recognition under Arbitrary +
Unknown Lighting using Spherical Harmonics +
Department of Computer Science, +
SUNY at Stony Brook, NY, 11790 +
('38323599', 'Lei Zhang', 'lei zhang')
('1686020', 'Dimitris Samaras', 'dimitris samaras')
{lzhang, samaras}@cs.sunysb.edu +
421955c6d2f7a5ffafaf154a329a525e21bbd6d3570 +
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 6, +
JUNE 2000 +
Evolutionary Pursuit and Its +
Application to Face Recognition +
('39664966', 'Chengjun Liu', 'chengjun liu')
('1781577', 'Harry Wechsler', 'harry wechsler')
42e0127a3fd6a96048e0bc7aab6d0ae88ba00fb0
42df75080e14d32332b39ee5d91e83da8a914e344280 +
Illumination Compensation Using Oriented +
Local Histogram Equalization and +
Its Application to Face Recognition +
('1822733', 'Ping-Han Lee', 'ping-han lee')
('2250469', 'Szu-Wei Wu', 'szu-wei wu')
('1732064', 'Yi-Ping Hung', 'yi-ping hung')
4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99Face Recognition From Video +
1Siemens Corporate Research +
College Road East, Princeton, NJ
2Center for Automation Research (CfAR) and +
Department of Electrical and Computer Engineering +
University of Maryland, College Park, MD
I. INTRODUCTION +
While face recognition (FR) from a single still image has been studied extensively [13], [57], FR based on a +
video sequence is an emerging topic, evidenced by the growing increase in the literature. It is predictable that with +
the ubiquity of video sequences, FR based on video sequences will become more and more popular. In this chapter, +
we also address FR based on a group of still images (also referred to as multiple still images). Multiple still images +
are not necessarily from a video sequence; they can come from multiple independent still captures. +
It is obvious that multiple still images or a video sequence can be regarded as a single still image in a degenerate +
manner. More specifically, suppose that we have a group of face images {y1, . . . , yT} and a single-still-image-based +
FR algorithm A (or the base algorithm), we can construct a recognition algorithm based on multiple still images +
or a video sequence by fusing multiple base algorithms denoted by Ai’s. Each Ai takes a different single image +
yi as input. The fusion rule can be additive, multiplicative, and so on. +
Even though the fusion algorithm might work well in practice, clearly, the overall recognition performance solely +
depends on the base algorithm and hence designing the base algorithm A (or the similarity function k) is of ultimate +
importance. However, the fused algorithms neglect additional properties manifested in multiple still images or video +
sequences. Generally speaking, algorithms that judiciously exploit these properties will perform better in terms of +
recognition accuracy, computational efficiency, etc. +
There are three additional properties available from multiple still images and/or video sequences: +
- [P 1: Set of observations]. This property is directly exploited by the fused algorithms. One main disadvantage +
may be the ad hoc nature of the combination rule. However, theoretical analysis based on a set of observations +
can be performed. For example, a set of observations can be summarized using quantities like matrix, probability +
density function, manifold, etc. Hence, corresponding knowledge can be utilized to match two sets. +
- [P 2: Temporal continuity/Dynamics]. Successive frames in the video sequences are continuous in the +
temporal dimension. Such continuity, coming from facial expression, geometric continuity related to head +
July 14, 2008 +
DRAFT +
('1682187', 'Shaohua Kevin Zhou', 'shaohua kevin zhou')
('9215658', 'Rama Chellappa', 'rama chellappa')
('1867477', 'Gaurav Aggarwal', 'gaurav aggarwal')
Email: shaohua.zhou@siemens.com, rama@cfar.umd.edu, gaurav@cs.umd.edu +
89945b7cd614310ebae05b8deed0533a9998d212Divide-and-Conquer Method for L1 Norm Matrix +
Factorization in the Presence of Outliers and +
Missing Data +
('1803714', 'Deyu Meng', 'deyu meng')
89de30a75d3258816c2d4d5a733d2bef894b66b9
89002a64e96a82486220b1d5c3f060654b24ef2aPIEFA: Personalized Incremental and Ensemble Face Alignment +
Yang Yu⋆ +
Rutgers University
Piscataway, NJ, 08854 +
The University of North Carolina at Charlotte
Charlotte, NC, 28223 +
('4340744', 'Xi Peng', 'xi peng')
('1753384', 'Shaoting Zhang', 'shaoting zhang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
xpeng.nb,yyu,dnm@cs.rutgers.edu +
szhang16@uncc.edu +
89c84628b6f63554eec13830851a5d03d740261aImage Enhancement and Automated Target Recognition +
Techniques for Underwater Electro-Optic Imagery +
Metron, Inc
11911 Freedom Dr., Suite 800 +
Reston, VA 20190 +
Contract Number N00014-07-C-0351 +
http:www.metsci.com +
LONG TERM GOALS +
The long-term goal of this project is to provide a flexible, accurate and extensible automated target +
recognition (ATR) system for use with a variety of imaging and non-imaging sensors. Such an ATR +
system, once it achieves a high level of performance, can relieve human operators from the tedious +
business of pouring over vast quantities of mostly mundane data, calling the operator in only when the +
computer assessment involves an unacceptable level of ambiguity. The ATR system will provide most +
leading edge algorithms for detection, segmentation, and classification while incorporating many novel +
algorithms that we are developing at Metron. To address one of the most critical challenges in ATR +
technology, the system will also provide powerful feature extraction routines designed for specific +
applications of current interest. +
OBJECTIVES +
The main objective of this project is to develop a complete, flexible, and extensible modular automated +
target recognition (MATR) system for computer aided detection and classification (CAD/CAC) of +
target objects from within cluttered and possibly noisy image data. The MATR system framework is +
designed to be applicable to a wide range of situations, each with its own challenges, and so is +
organized in such a way that the constituent algorithms are interchangeable and can be selected based +
on their individual suitability to the particular task within the specific application. The ATR system +
designer can select combinations of algorithms, many of which are being developed at Metron, to +
produce a variety of systems, each tailored to specific needs. While the development of the system is +
still ongoing, results for mine countermeasures (MCM) applications using electro-optical (EO) image +
data have been encouraging. A brief description of the system framework, some of the novel +
algorithms, and preliminary test results are provided in this interim report. +
APPROACH +
The MATR system is composed of several modules, as depicted in Figure 1, reflecting the sequence of +
steps in the ATR process. The detection step is concerned with finding portions of an image that +
contain possible objects of interest, or targets, that merit further attention. During the localization and +
segmentation phase the position and approximate size and shape of the object is estimated and a +
portion of the image, or “snippet,” containing the object is extracted. At this stage, image processing +
may be performed on the snippet to reorient the target, mitigate noise, accentuate edge detail, etc. +
1 +
('2395986', 'Thomas Giddings', 'thomas giddings')
('2386585', 'Cetin Savkli', 'cetin savkli')
('2632462', 'Joseph Shirron', 'joseph shirron')
phone: (703) 437-2428 fax: (703) 787-3518 email: giddings@metsci.com +
89c51f73ec5ebd1c2a9000123deaf628acf3cdd8American Journal of Applied Sciences 5 (5): 574-580, 2008 +
ISSN 1546-9239 +
© 2008 Science Publications +
Face Recognition Based on Nonlinear Feature Approach +
1Eimad E.A. Abusham, 1Andrew T.B. Jin, 1Wong E. Kiong and 2G. Debashis +
1Faculty of Information Science and Technology, +
Faculty of Engineering and Technology, Multimedia University (Melaka Campus
Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia +
89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199Application of an Improved Mean Shift Algorithm +
in Real-time Facial Expression Recognition +
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
Yan-hui ZHU +
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
facial +
real-time +
expression +
('1719090', 'Zhao-yi Peng', 'zhao-yi peng')
('1696179', 'Yu Zhou', 'yu zhou')
('2276926', 'Zhi-qiang Wen', 'zhi-qiang wen')
Email:pengzhaoyi@163.com +
Email:zypzy@163.com +
Email: swayhzhu@163.com +
Email: zhqwen20001@163.com +
89e7d23e0c6a1d636f2da68aaef58efee36b718bLucas-Kanade Scale Invariant Feature Transform for +
Uncontrolled Viewpoint Face Recognition +
1Division of Computer Science and Engineering, +
2Center for Advanced Image and Information Technology +
Chonbuk National University, Jeonju 561-756, Korea
('2642847', 'Yongbin Gao', 'yongbin gao')
('4292934', 'Hyo Jong Lee', 'hyo jong lee')
893239f17dc2d17183410d8a98b0440d98fa2679UvA-DARE (Digital Academic Repository) +
Expression-Invariant Age Estimation +
Published in: +
Proceedings of the British Machine Vision Conference 2014 +
DOI: +
10.5244/C.28.14 +
Link to publication +
Citation for published version (APA): +
French, & T. Pridmore (Eds.), Proceedings of the British Machine Vision Conference 2014 (pp. 14.1-14.11). +
BMVA Press. DOI: 10.5244/C.28.14 +
General rights +
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +
Disclaimer/Complaints regulations +
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
The Netherlands. You will be contacted as soon as possible. +
Download date: 04 Aug 2017 +
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
('49776777', 'Alvarez Lopez', 'alvarez lopez')
89f4bcbfeb29966ab969682eae235066a89fc151A Comparison of Photometric Normalisation Algorithms for Face Verification +
Centre for Vision, Speech and Signal Processing +
University of Surrey
Guildford, Surrey, GU2 7XH, UK +
('39213687', 'James Short', 'james short')
('1748684', 'Josef Kittler', 'josef kittler')
('2173900', 'Kieron Messer', 'kieron messer')
(cid:0)j.short,j.kittler,k.messer(cid:1)@eim.surrey.ac.uk +
892c911ca68f5b4bad59cde7eeb6c738ec6c4586RESEARCH ARTICLE +
The Ryerson Audio-Visual Database of +
Emotional Speech and Song (RAVDESS): A +
dynamic, multimodal set of facial and vocal +
expressions in North American English +
Ryerson University, Toronto, Canada
Information Systems, University of Wisconsin-River Falls, Wisconsin, WI, United States of America
('2940438', 'Frank A. Russo', 'frank a. russo')* steven.livingstone@uwrf.edu +
8913a5b7ed91c5f6dec95349fbc6919deee4fc75BigBIRD: A Large-Scale 3D Database of Object Instances +('37248999', 'Arjun Singh', 'arjun singh')
('1905626', 'James Sha', 'james sha')
('39537097', 'Karthik S. Narayan', 'karthik s. narayan')
('2461427', 'Tudor Achim', 'tudor achim')
('1689992', 'Pieter Abbeel', 'pieter abbeel')
8986585975c0090e9ad97bec2ba6c4b437419daeUnsupervised Hard Example Mining from +
Videos for Improved Object Detection +
College of Information and Computer Sciences, University of Massachusetts, Amherst
{souyoungjin,arunirc,hzjiang,ashishsingh, +
('24525313', 'SouYoung Jin', 'souyoung jin')
('2895705', 'Aruni RoyChowdhury', 'aruni roychowdhury')
('40175280', 'Huaizu Jiang', 'huaizu jiang')
('1785936', 'Ashish Singh', 'ashish singh')
('39087749', 'Aditya Prasad', 'aditya prasad')
('32315404', 'Deep Chakraborty', 'deep chakraborty')
aprasad,dchakraborty,elm}@cs.umass.edu +
89cabb60aa369486a1ebe586dbe09e3557615ef8Bayesian Networks as Generative +
Models for Face Recognition +
IDIAP RESEARCH INSTITUTE
´ECOLE POLYTECHNIQUE F´ED´ERALE DE LAUSANNE +
supervised by: +
Dr. S. Marcel +
Prof. H. Bourlard +
2009 +
('16602458', 'Guillaume Heusch', 'guillaume heusch')
89d3a57f663976a9ac5e9cdad01267c1fc1a7e06Neural Class-Specific Regression for face +
verification +
('38813382', 'Guanqun Cao', 'guanqun cao')
('9219875', 'Moncef Gabbouj', 'moncef gabbouj')
8983485996d5d9d162e70d66399047c5d01ac451Deep Feature-based Face Detection on Mobile Devices +
Center for Automation Research, University of Maryland, College Park, MD
Rutgers University, Piscataway, NJ
('40599829', 'Sayantan Sarkar', 'sayantan sarkar')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
{ssarkar2, rama}@umiacs.umd.edu +
vishal.m.patel@rutgers.edu +
89bc311df99ad0127383a9149d1684dfd8a5aa34Towards ontology driven learning of +
visual concept detectors +
Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA
('3407640', 'Sanchit Arora', 'sanchit arora')
('21781318', 'Chuck Cho', 'chuck cho')
('1810102', 'Paul Fitzpatrick', 'paul fitzpatrick')
8981be3a69cd522b4e57e9914bf19f034d4b530cFast Automatic Video Retrieval using Web Images +
Center For Automation Research, University of Maryland, College Park
('2257769', 'Xintong Han', 'xintong han')
('47679939', 'Bharat Singh', 'bharat singh')
('2852035', 'Vlad I. Morariu', 'vlad i. morariu')
('1693428', 'Larry S. Davis', 'larry s. davis')
{xintong,bharat,morariu,lsd}@umiacs.umd.edu +
898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7cDynamic vs. Static Recognition of Facial +
Expressions +
No Author Given +
No Institute Given
89d7cc9bbcd2fdc4f4434d153ecb83764242227b(IJERA) ISSN: 2248-9622 www.ijera.com +
Vol. 3, Issue 2, March -April 2013, pp.351-355 +
Face-Name Graph Matching For The Personalities In Movie +
Screen +
VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College
Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai
Chennai.) +
896f4d87257abd0f628c1ffbbfdac38c86a56f50Action and Gesture Temporal Spotting with +
Super Vector Representation +
Southwest Jiaotong University, Chengdu, China
The Chinese University of Hong Kong
Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS
('1766837', 'Xiaojiang Peng', 'xiaojiang peng')
('33345248', 'Limin Wang', 'limin wang')
('2985266', 'Zhuowei Cai', 'zhuowei cai')
('33427555', 'Yu Qiao', 'yu qiao')
891b10c4b3b92ca30c9b93170ec9abd71f6099c4Facial landmark detection using structured output deep +
neural networks +
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +
1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +
2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +
September 24, 2015 +
('49529671', 'Adam', 'adam')
451b6409565a5ad18ea49b063561a2645fa4281bAction Sets: Weakly Supervised Action Segmentation without Ordering +
Constraints +
University of Bonn, Germany
('32774629', 'Alexander Richard', 'alexander richard')
('51267303', 'Hilde Kuehne', 'hilde kuehne')
('2946643', 'Juergen Gall', 'juergen gall')
{richard,kuehne,gall}@iai.uni-bonn.de +
45c340c8e79077a5340387cfff8ed7615efa20fd
455204fa201e9936b42756d362f62700597874c4A REGION BASED METHODOLOGY FOR FACIAL +
EXPRESSION RECOGNITION +
Medical School, University of Ioannina, Ioannina, Greece
Unit of Medical Technology and Intelligent Information Systems, Dept. of Computer Science +
University of Ioannina, Ioannina, Greece
Keywords: +
Facial expression recognition, Gabor filters, filter bank, artificial neural networks, Japanese Female Facial +
Expression Database (JAFFE). +
('2059518', 'Anastasios C. Koutlas', 'anastasios c. koutlas')
('1692818', 'Dimitrios I. Fotiadis', 'dimitrios i. fotiadis')
me01697@cc.uoi.gr +
fotiadis@cs.uoi.gr +
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6The role of structural facial asymmetry in asymmetry of +
peak facial expressions +
Karen L. Schmidt +
University of Pittsburgh, PA, USA
Carnegie Mellon University, Pittsburgh, PA, USA
Jeffrey F. Cohn +
University of Pittsburgh, PA, USA
joy, anger, and disgust expressions, +
Asymmetric facial expression is generally attributed to asymmetry in movement, +
but structural asymmetry in the face may also affect asymmetry of expression. +
Asymmetry in posed expressions was measured using image-based approaches in +
digitised sequences of facial expression in 55 individuals, N/16 men, N/39 +
women. Structural asymmetry (at neutral expression) was higher in men than +
women and accounted for .54, .62, and .66 of the variance in asymmetry at peak +
expression for +
respectively. Movement +
asymmetry (measured by change in pixel values over time) was found, but was +
unrelated to peak asymmetry in joy or anger expressions over the whole face and in +
facial subregions relevant to the expression. Movement asymmetry was negatively +
related to peak asymmetry in disgust expressions. Sidedness of movement +
asymmetry (defined as the ratio of summed movement on the left to movement +
on the right) was consistent across emotions within individuals. Sidedness was +
found only for joy expressions, which had significantly more movement on the left. +
The significant role of structural asymmetry in asymmetry of emotion expression +
and the exploration of facial expression asymmetry have important implications for +
evolutionary interpretations of facial signalling and facial expressions in general. +
Address correspondence to: Karen L. Schmidt, University of
This study is part of a larger programme of research that is ongoing in the Department of +
Psychiatry at the University of Pittsburgh
Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part
by grants from the National Institute of Mental Health (MH 15279 and MH067976 (K. Schmidt
and MH51435 (J. Cohn). Additional support for this project was received from Office of Naval +
Research (HID 29-203). The authors acknowledge the contribution of Rebecca McNutt to this +
article. A preliminary version of these results was presented at the Tenth Annual Conference: Facial +
Measurement and Meaning in Rimini, Italy, September 2003. +
# 2006 Psychology Press, an imprint of the Taylor & Francis Group, an informa business +
DOI: 10.1080/13576500600832758 +
('1689241', 'Yanxi Liu', 'yanxi liu')Pittsburgh, 121 University Place, Pittsburgh PA 15217, USA. E-mail: kschmidt@pitt.edu +
4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ecDisentangling Features in 3D Face Shapes +
for Joint Face Reconstruction and Recognition∗ +
College of Computer Science, Sichuan University
Michigan State University
('1734409', 'Feng Liu', 'feng liu')
('1778454', 'Ronghang Zhu', 'ronghang zhu')
('39422721', 'Dan Zeng', 'dan zeng')
('7345195', 'Qijun Zhao', 'qijun zhao')
('38284381', 'Xiaoming Liu', 'xiaoming liu')
459960be65dd04317dd325af5b7cbb883d822ee4The Meme Quiz: A Facial Expression Game Combining +
Human Agency and Machine Involvement +
Department of Computer Science and Engineering +
University of Washington
('3059933', 'Kathleen Tuite', 'kathleen tuite'){ktuite,kemelmi}@cs.washington.edu +
45f858f9e8d7713f60f52618e54089ba68dfcd6dWhat Actions are Needed for Understanding Human Actions in Videos? +
Carnegie Mellon University
github.com/gsig/actions-for-actions +
('34280810', 'Gunnar A. Sigurdsson', 'gunnar a. sigurdsson')
45e7ddd5248977ba8ec61be111db912a4387d62fCHEN ET AL.: ADVERSARIAL POSENET +
Adversarial Learning of Structure-Aware Fully +
Convolutional Networks for Landmark +
Localization +
('50579509', 'Yu Chen', 'yu chen')
('1780381', 'Chunhua Shen', 'chunhua shen')
('2126047', 'Xiu-Shen Wei', 'xiu-shen wei')
('2161037', 'Lingqiao Liu', 'lingqiao liu')
('49499405', 'Jian Yang', 'jian yang')
45215e330a4251801877070c85c81f42c2da60fbDomain Adaptive Dictionary Learning +
Center for Automation Research, UMIACS, University of Maryland, College Park
Arts Media and Engineering, Arizona State University
('2077648', 'Qiang Qiu', 'qiang qiu')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
qiu@cs.umd.edu, {pvishalm, rama}@umiacs.umd.edu, pturaga@asu.edu +
457cf73263d80a1a1338dc750ce9a50313745d1dPublished as a conference paper at ICLR 2017 +
DECOMPOSING MOTION AND CONTENT FOR +
NATURAL VIDEO SEQUENCE PREDICTION +
University of Michigan, Ann Arbor, USA
2Adobe Research, San Jose, CA 95110 +
3POSTECH, Pohang, Korea +
Beihang University, Beijing, China
5Google Brain, Mountain View, CA 94043 +
('2241528', 'Seunghoon Hong', 'seunghoon hong')
('10668384', 'Xunyu Lin', 'xunyu lin')
('1697141', 'Honglak Lee', 'honglak lee')
('1768964', 'Jimei Yang', 'jimei yang')
('1711926', 'Ruben Villegas', 'ruben villegas')
4526992d4de4da2c5fae7a5ceaad6b65441adf9dSystem for Medical Mask Detection +
in the Operating Room Through +
Facial Attributes +
A. Nieto-Rodr´ıguez, M. Mucientes(B), and V.M. Brea +
Center for Research in Information Technologies (CiTIUS), +
University of Santiago de Compostela, Santiago de Compostela, Spain
{adrian.nietorodriguez,manuel.mucientes,victor.brea}@usc.es +
45e616093a92e5f1e61a7c6037d5f637aa8964afFine-grained Evaluation on Face Detection in the Wild +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, China
('1716231', 'Bin Yang', 'bin yang')
('1721677', 'Junjie Yan', 'junjie yan')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
{yb.derek,yanjjie}@gmail.com +
{zlei,szli}@nlpr.ia.ac.cn +
45efd6c2dd4ca19eed38ceeb7c2c5568231451e1Comparative Analysis of Statistical Approach +
for Face Recognition +
CMR Institute of Technology, Hyderabad, (India
('39463904', 'M.Janga Reddy', 'm.janga reddy')
45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8
4560491820e0ee49736aea9b81d57c3939a69e12Investigating the Impact of Data Volume and +
Domain Similarity on Transfer Learning +
Applications +
State Farm Insurance, Bloomington IL 61710, USA, +
('30492517', 'Michael Bernico', 'michael bernico')
('50024782', 'Yuntao Li', 'yuntao li')
('41092475', 'Dingchao Zhang', 'dingchao zhang')
michael.bernico.qepz@statefarm.com +
4571626d4d71c0d11928eb99a3c8b10955a74afeGeometry Guided Adversarial Facial Expression Synthesis +
1National Laboratory of Pattern Recognition, CASIA +
2Center for Research on Intelligent Perception and Computing, CASIA +
3Center for Excellence in Brain Science and Intelligence Technology, CAS +
('3051419', 'Lingxiao Song', 'lingxiao song')
('9702077', 'Zhihe Lu', 'zhihe lu')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
('1688870', 'Tieniu Tan', 'tieniu tan')
4534d78f8beb8aad409f7bfcd857ec7f19247715Under review as a conference paper at ICLR 2017 +
TRANSFORMATION-BASED MODELS OF VIDEO +
SEQUENCES +
Facebook AI Research +
('39248118', 'Anitha Kannan', 'anitha kannan')
('3149531', 'Arthur Szlam', 'arthur szlam')
('1687325', 'Du Tran', 'du tran')
joost@joo.st, {akannan, ranzato, aszlam, trandu, soumith}@fb.com +
459e840ec58ef5ffcee60f49a94424eb503e8982One-shot Face Recognition by Promoting Underrepresented Classes +
Microsoft +
One Microsoft Way, Redmond, Washington, United States +
('3133575', 'Yandong Guo', 'yandong guo')
('1684635', 'Lei Zhang', 'lei zhang')
{yandong.guo, leizhang}@microsoft.com +
45fbeed124a8956477dbfc862c758a2ee2681278
451c42da244edcb1088e3c09d0f14c064ed9077e1964 +
© EURASIP, 2011 - ISSN 2076-1465 +
19th European Signal Processing Conference (EUSIPCO 2011) +
INTRODUCTION +
4568063b7efb66801e67856b3f572069e774ad33Correspondence Driven Adaptation for Human Profile Recognition +
NEC Laboratories America, Inc
2Huawei Technologies (USA) +
Cupertino, CA 95014 +
Santa Clara, CA 95050 +
('2909406', 'Ming Yang', 'ming yang')
('1682028', 'Shenghuo Zhu', 'shenghuo zhu')
('39157653', 'Fengjun Lv', 'fengjun lv')
('38701713', 'Kai Yu', 'kai yu')
{myang,zsh,kyu}@sv.nec-labs.com +
felix.Lv@huawei.com +
45c31cde87258414f33412b3b12fc5bec7cb3ba9Coding Facial Expressions with Gabor Wavelets +
ATR Human Information Processing Research Laboratory
2-2 Hikaridai, Seika-cho +
Soraku-gun, Kyoto 619-02, Japan +
Kyushu University
('34801422', 'Shigeru Akamatsu', 'shigeru akamatsu')
('40533190', 'Miyuki Kamachi', 'miyuki kamachi')
('8365437', 'Jiro Gyoba', 'jiro gyoba')
mlyons@hip.atr.co.jp +
4542273a157bfd4740645a6129d1784d1df775d2FaceRipper +
Automatic Face Indexer and Tagger for Personal +
Albums and Videos +
A PROJECT REPORT +
SUBMITTED IN PARTIAL FULFILMENT OF THE +
REQUIREMENTS FOR THE DEGREE OF +
Master of Engineering +
IN +
COMPUTER SCIENCE AND ENGINEERING +
by +
Computer Science and Automation +
Indian Institute of Science
BANGALORE – 560 012 +
July 2007 +
('2819449', 'Mehul Parsana', 'mehul parsana')
4511e09ee26044cb46073a8c2f6e1e0fbabe33e8
45513d0f2f5c0dac5b61f9ff76c7e46cce62f402LEE,GRAUMAN:FACEDISCOVERYWITHSOCIALCONTEXT +
Face Discovery with Social Context +
https://webspace.utexas.edu/yl3663/~ylee/ +
http://www.cs.utexas.edu/~grauman/ +
University of Texas at Austin
Austin, TX, USA +
('1883898', 'Yong Jae Lee', 'yong jae lee')
('1794409', 'Kristen Grauman', 'kristen grauman')
45e459462a80af03e1bb51a178648c10c4250925LCrowdV: Generating Labeled Videos for +
Simulation-based Crowd Behavior Learning +
The University of North Carolina at Chapel Hill
('3422427', 'Ernest Cheung', 'ernest cheung')
('3422442', 'Tsan Kwong Wong', 'tsan kwong wong')
('2718563', 'Aniket Bera', 'aniket bera')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1699159', 'Dinesh Manocha', 'dinesh manocha')
458677de7910a5455283a2be99f776a834449f61Face Image Retrieval Using Facial Attributes By +
K-Means +
[1]I.Sudha, [2]V.Saradha, [3]M.Tamilselvi, [4]D.Vennila +
[1]AP, Department of CSE ,[2][3][4] B.Tech(CSE) +
Achariya college of Engineering Technology
Puducherry +
45a6333fc701d14aab19f9e2efd59fe7b0e89fecHAND POSTURE DATASET CREATION FOR GESTURE +
RECOGNITION +
Luis Anton-Canalis +
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +
Campus Universitario de Tafira, 35017 Gran Canaria, Spain +
Elena Sanchez-Nielsen +
Departamento de E.I.O. y Computacion +
38271 Universidad de La Laguna, Spain +
Keywords: +
Image understanding, Gesture recognition, Hand dataset. +
450c6a57f19f5aa45626bb08d7d5d6acdb863b4bTowards Interpretable Face Recognition +
Michigan State University
2 Adobe Inc. +
3 Aibee +
('32032812', 'Bangjie Yin', 'bangjie yin')
('1849929', 'Luan Tran', 'luan tran')
('3131569', 'Haoxiang Li', 'haoxiang li')
('1720987', 'Xiaohui Shen', 'xiaohui shen')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
{yinbangj, tranluan, liuxm}@msu.edu, xshen@adobe.com, lhxustcer@gmail.com +
1f9b2f70c24a567207752989c5bd4907442a9d0fDeep Representations to Model User ‘Likes’ +
School of Computer Engineering, Nanyang Technological University, Singapore
Institute for Infocomm Research, Singapore
QCIS, University of Technology, Sydney
('2731733', 'Sharath Chandra Guntuku', 'sharath chandra guntuku')
('10638646', 'Joey Tianyi Zhou', 'joey tianyi zhou')
('1872875', 'Sujoy Roy', 'sujoy roy')
('1807998', 'Ivor W. Tsang', 'ivor w. tsang')
sharathc001@e.ntu.edu.sg, tzhou1@ntu.edu.sg, wslin@ntu.edu.sg +
sujoy@i2r.a-star.edu.sg +
ivor.tsang@uts.edu.au +
1fe1bd6b760e3059fff73d53a57ce3a6079adea1SINGH ET AL.: SCALING BAG-OF-VISUAL-WORDS GENERATION +
Fast-BoW: Scaling Bag-of-Visual-Words +
Generation +
Visual Learning & Intelligence Group +
Department of Computer Science and +
Engineering +
Indian Institute of Technology
Hyderabad +
Kandi, Sangareddy, Telangana, India +
('40624178', 'Dinesh Singh', 'dinesh singh')
('51292354', 'Abhijeet Bhure', 'abhijeet bhure')
('51305895', 'Sumit Mamtani', 'sumit mamtani')
('34358756', 'C. Krishna Mohan', 'c. krishna mohan')
cs14resch11003@iith.ac.in +
cs15btech11001@iith.ac.in +
cs15btech11022@iith.ac.in +
ckm@iith.ac.in +
1f05473c587e2a3b587f51eb808695a1c10bc153Towards Good Practices for Very Deep Two-Stream ConvNets +
The Chinese University of Hong Kong, Hong Kong
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
('33345248', 'Limin Wang', 'limin wang')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('1915826', 'Zhe Wang', 'zhe wang')
('33427555', 'Yu Qiao', 'yu qiao')
{07wanglimin,bitxiong,buptwangzhe2012}@gmail.com, yu.qiao@siat.ac.cn +
1fa3948af1c338f9ae200038c45adadd2b39a3e4Computational Explorations of Split Architecture in Modeling Face and Object +
Recognition +
University of California San Diego
9500 Gilman Drive #0404, La Jolla, CA 92093, USA +
University of California San Diego
9500 Gilman Drive #0515, La Jolla, CA 92093, USA +
Janet Hui-wen Hsiao (jhsiao@cs.ucsd.edu) +
Garrison W. Cottrell (gary@ucsd.edu) +
Danke Shieh (danke@ucsd.edu) +
1ffe20eb32dbc4fa85ac7844178937bba97f4bf0Face Clustering: Representation and Pairwise +
Constraints +
('9644181', 'Yichun Shi', 'yichun shi')
('40653304', 'Charles Otto', 'charles otto')
('6680444', 'Anil K. Jain', 'anil k. jain')
1f8304f4b51033d2671147b33bb4e51b9a1e16feNoname manuscript No. +
(will be inserted by the editor) +
Beyond Trees: +
MAP Inference in MRFs via Outer-Planar Decomposition +
Received: date / Accepted: date +
('1746610', 'Dhruv Batra', 'dhruv batra')
1f89439524e87a6514f4fbe7ed34bda4fd1ce286Carnegie Mellon University
Department of Statistics +
Dietrich College of Humanities and Social Sciences
9-2005 +
Devising Face Authentication System and +
Performance Evaluation Based on Statistical +
Models +
Carnegie Mellon University
Follow this and additional works at: http://repository.cmu.edu/statistics +
Part of the Statistics and Probability Commons +
('2046854', 'Sinjini Mitra', 'sinjini mitra')
('1680307', 'Anthony Brockwell', 'anthony brockwell')
('1794486', 'Marios Savvides', 'marios savvides')
('1684961', 'Stephen E. Fienberg', 'stephen e. fienberg')
Research Showcase @ CMU +
Carnegie Mellon University, abrock@stat.cmu.edu +
Carnegie Mellon University, msavvid@cs.cmu.edu +
Carnegie Mellon University, fienberg@stat.cmu.edu +
This Technical Report is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase @ +
CMU. It has been accepted for inclusion in Department of Statistics by an authorized administrator of Research Showcase @ CMU. For more +
information, please contact research-showcase@andrew.cmu.edu. +
1f9ae272bb4151817866511bd970bffb22981a49An Iterative Regression Approach for Face Pose Estima- +
tion from RGB Images +
This paper presents a iterative optimization method, explicit shape regression, for face pose +
detection and localization. The regression function is learnt to find out the entire facial shape +
and minimize the alignment errors. A cascaded learning framework is employed to enhance +
shape constraint during detection. A combination of a two-level boosted regression, shape +
performance. In this paper, we have explain the advantage of ESR for deformable object like +
face pose estimation and reveal its generic applications of the method. In the experiment, +
we compare the results with different work and demonstrate the accuracy and robustness in +
different scenarios. +
Introduction +
Pose estimation is an important problem in computer vision, and has enabled many practical ap- +
plication from face expression 1 to activity tracking 2. Researchers design a new algorithm called +
explicit shape regression (ESR) to find out face alignment from a picture 3. Figure 1 shows how +
the system uses ESR to learn a shape of a human face image. A simple way to identify a face is to +
find out facial landmarks like eyes, nose, mouth and chin. The researchers define a face shape S +
and S is composed of Nf p facial landmarks. Therefore, they get S = [x1, y1, ..., xNf p, yNf p]T . The +
objective of the researchers is to estimate a shape S of a face image. The way to know the accuracy +
('3988780', 'Wenye He', 'wenye he')
1fd6004345245daf101c98935387e6ef651cbb55Learning Symmetry Features for Face Detection +
Based on Sparse Group Lasso +
Center for Research on Intelligent Perception and Computing, +
National Laboratory of Pattern Recognition, Institute of Automation
Chinese Academy of Sciences, Beijing, China +
('39763795', 'Qi Li', 'qi li')
('1757186', 'Zhenan Sun', 'zhenan sun')
('1705643', 'Ran He', 'ran he')
('1688870', 'Tieniu Tan', 'tieniu tan')
{qli,znsun,rhe,tnt}@nlpr.ia.ac.cn +
1fc249ec69b3e23856b42a4e591c59ac60d77118Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +
Computational Biomedicine Lab +
4800 Calhoun Rd. Houston, TX, USA +
('5084124', 'Xiang Xu', 'xiang xu')
('26401746', 'Ha A. Le', 'ha a. le')
('39634395', 'Pengfei Dou', 'pengfei dou')
('2461369', 'Yuhang Wu', 'yuhang wu')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
{xxu18, hale4, pdou, ywu35, ikakadia}@central.uh.edu +
1fbde67e87890e5d45864e66edb86136fbdbe20eThe Action Similarity Labeling Challenge +('3294355', 'Orit Kliper-Gross', 'orit kliper-gross')
('1756099', 'Tal Hassner', 'tal hassner')
('1776343', 'Lior Wolf', 'lior wolf')
1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6Demographic Estimation from Face Images: +
Human vs. Machine Performance +
('34393045', 'Hu Han', 'hu han')
('40653304', 'Charles Otto', 'charles otto')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('6680444', 'Anil K. Jain', 'anil k. jain')
1fd2ed45fb3ba77f10c83f0eef3b66955645dfe0
1fe59275142844ce3ade9e2aed900378dd025880Facial Landmark Detection via Progressive Initialization +
National University of Singapore
Singapore 117576 +
('3124720', 'Shengtao Xiao', 'shengtao xiao')xiao shengtao@u.nus.edu, eleyans@nus.edu.sg, ashraf@nus.edu.sg +
1f2d12531a1421bafafe71b3ad53cb080917b1a7
1fe121925668743762ce9f6e157081e087171f4cUnsupervised Learning of Overcomplete Face Descriptors +
Center for Machine Vision Research +
University of Oulu
('32683737', 'Juha Ylioinas', 'juha ylioinas')
('1776374', 'Juho Kannala', 'juho kannala')
('1751372', 'Abdenour Hadid', 'abdenour hadid')
firstname.lastname@ee.oulu.fi +
1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58dvExplorer: A Search Method to Find Relevant YouTube Videos for Health +
Researchers +
IBM Research, Cambridge, MA, USA +
('1764750', 'Hillol Sarker', 'hillol sarker')
('3456866', 'Murtaza Dhuliawala', 'murtaza dhuliawala')
('31633051', 'Nicholas Fay', 'nicholas fay')
('15793829', 'Amar Das', 'amar das')
1fdeba9c4064b449231eac95e610f3288801fd3eFine-Grained Head Pose Estimation Without Keypoints +
Georgia Institute of Technology
('31601235', 'Nataniel Ruiz', 'nataniel ruiz')
('39832600', 'Eunji Chong', 'eunji chong')
('1692956', 'James M. Rehg', 'james m. rehg')
{nataniel.ruiz, eunjichong, rehg}@gatech.edu +
1f8e44593eb335c2253d0f22f7f9dc1025af8c0dFine-tuning regression forests votes for object alignment in the wild. +
Yang, H; Patras, I +
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be +
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale +
or redistribution to servers or lists, or reuse of any copyrighted component of this work in +
other works. +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22607 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
more information contact scholarlycommunications@qmul.ac.uk +
1f94734847c15fa1da68d4222973950d6b683c9eEmbedding Label Structures for Fine-Grained Feature Representation +
UNC Charlotte +
Charlotte, NC 28223 +
NEC Lab America +
Cupertino, CA 95014 +
NEC Lab America +
Cupertino, CA 95014 +
UNC Charlotte +
Charlotte, NC 28223 +
('2739998', 'Xiaofan Zhang', 'xiaofan zhang')
('1757386', 'Feng Zhou', 'feng zhou')
('1695082', 'Yuanqing Lin', 'yuanqing lin')
('1753384', 'Shaoting Zhang', 'shaoting zhang')
xzhang35@uncc.edu +
feng@nec-labs.com +
ylin@nec-labs.com +
szhang16@uncc.edu +
1f745215cda3a9f00a65166bd744e4ec35644b02Facial Cosmetics Database and Impact Analysis on +
Automatic Face Recognition +
# Computer Science Department, TU Muenchen +
Boltzmannstr. 3, 85748 Garching b. Muenchen, Germany +
∗ Multimedia Communications Department, EURECOM +
450 Route des Chappes, 06410 Biot, France +
('38996894', 'Marie-Lena Eckert', 'marie-lena eckert')
('1862703', 'Neslihan Kose', 'neslihan kose')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
1 marie-lena.eckert@mytum.de +
2 kose@eurecom.fr +
3 jld@eurecom.fr +
1fff309330f85146134e49e0022ac61ac60506a9Data-Driven Sparse Sensor Placement for Reconstruction +('37119658', 'Krithika Manohar', 'krithika manohar')
('1824880', 'Bingni W. Brunton', 'bingni w. brunton')
('1937069', 'J. Nathan Kutz', 'j. nathan kutz')
('3083169', 'Steven L. Brunton', 'steven l. brunton')
∗Corresponding author: kmanohar@uw.edu +
1fd3dbb6e910708fa85c8a86e17ba0b6fef5617cARISTOTLE UNIVERSITY OF THESSALONIKI
FACULTY OF SCIENCES +
DEPARTMENT OF INFORMATICS +
POSTGRADUATE STUDIES PROGRAMME +
Age interval and gender prediction using PARAFAC2 on +
speech recordings and face images +
Supervisor: Professor Kotropoulos Constantine +
A thesis submitted in partial fulfillment of the requirements +
for the degree of Master of Science +
July 2016 +
1f24cef78d1de5aa1eefaf344244dcd1972797e8Outlier-Robust Tensor PCA +
National University of Singapore, Singapore
('33481412', 'Pan Zhou', 'pan zhou')
('33221685', 'Jiashi Feng', 'jiashi feng')
pzhou@u.nus.edu +
elefjia@nus.edu.sg +
1fe990ca6df273de10583860933d106298655ec8College of Information Science and Engineering
Hunan University
Changsha, 410082 P.R. China +
In this paper, we propose a wavelet-based illumination normalization method for +
face recognition against different directions and strength of light. Here, by one-level +
discrete wavelet transform, a given face image is first decomposed into low frequency +
and high frequency components, respectively, and then the two components are pro- +
cessed separately through contrast enhancement to eliminate the effect of illumination +
variations and enhance the detailed edge information. Finally the normalized image is +
obtained through the inverse discrete wavelet transform. Experimental results on the +
Yale B, the extended Yale B and CMU PIE face databases show that the proposed +
method can effectively reduce the effect of illumination variations on face recognition. +
Keywords: face recognition, illumination normalization, discrete wavelet transform, edge +
enhancement, face representation +
1. INTRODUCTION +
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 31, 1711-1731 (2015) +
A Wavelet-Based Image Preprocessing Method +
for Illumination Insensitive Face Recognition +
Face recognition plays an important role in pattern recognition and computer vision +
due to its wide applications in human computer interaction, information security and +
access control, law enforcement and entertainment [1]. Various methods have been pro- +
posed for face recognition, such as PCA [2], LDA [3], LFA [4], EBGM [5], probabilistic +
and Bayesian matching [6] and SVM [7]. These methods can yield good performance +
when face images are well frontally illuminated. Existing studies have proved that face +
recognition for the same face with different illumination conditions is more difficult than +
the perception of face identity [8, 9]. The reason is that an object's appearance largely +
depends on the way in which it is viewed. Illumination variations mainly consist of the +
lighting direction and the lighting intensity. Usually, slight changes in illumination pro- +
duce dramatical changes in the face appearance. So, the performance of face recognition +
is highly sensitive to the illumination condition. For example, the unsuitable lighting +
direction and intensity may lead to underexposed or overexposed regions over the face, +
and weaken the discrimination of face features such as skin texture, eye detail, etc. +
Therefore, illumination normalization is a very important task for face recognition under +
varying illumination. +
To make face recognition relatively insensitive to illumination variations, many +
methods have been proposed with the goal of illumination normalization, illumination- +
invariant feature extraction or illumination variation modeling [10]. Illumination-inva- +
riant approaches generally fall into three classes. The first class is to preprocess face +
images by using some simply techniques, such as logarithm transform and histogram +
Received March 26, 2014; revised May 26, 2014; accepted July 17, 2014. +
Communicated by Chung-Lin Huang. +
1711 +
('2078993', 'Xiaochao Zhao', 'xiaochao zhao')
('2138422', 'Yaping Lin', 'yaping lin')
('2431083', 'Bo Ou', 'bo ou')
('1824216', 'Junfeng Yang', 'junfeng yang')
E-mail: {s12103017; yplin; oubo; B12100031}@hnu.edu.cn +
1feeab271621128fe864e4c64bab9b2e2d0ed1f1Article +
Perception-Link Behavior Model: Supporting +
a Novel Operator Interface for a Customizable +
Anthropomorphic Telepresence Robot +
BeingTogether Centre, Institute for Media Innovation, Singapore 637553, Singapore
Robotic Research Centre, Nanyang Technological University, Singapore 639798, Singapore
Received: 15 May 2017; Accepted: 15 July 2017; Published: 20 July 2017 +
('1768723', 'William Gu', 'william gu')
('9216152', 'Gerald Seet', 'gerald seet')
('1695679', 'Nadia Magnenat-Thalmann', 'nadia magnenat-thalmann')
mglseet@ntu.edu.sg (G.S.); NADIATHALMANN@ntu.edu.sg (N.M.-T.) +
* Correspondence: GUYU0007@e.ntu.edu.sg +
73b90573d272887a6d835ace89bfaf717747c59bFeature Disentangling Machine - A Novel +
Approach of Feature Selection and Disentangling +
in Facial Expression Analysis +
University of South Carolina, USA
Center for Computational Intelligence, Nanyang Technology University, Singapore
3 Center for Quantum Computation and Intelligent Systems, +
University of Technology, Australia
('40205868', 'Ping Liu', 'ping liu')
('10638646', 'Joey Tianyi Zhou', 'joey tianyi zhou')
('3091647', 'Zibo Meng', 'zibo meng')
('49107074', 'Shizhong Han', 'shizhong han')
('1686235', 'Yan Tong', 'yan tong')
73f467b4358ac1cafb57f58e902c1cab5b15c590 ISSN 0976 3724 47 +
Combination of Dimensionality Reduction Techniques for Face +
Image Retrieval: A Review +
M.Tech Scholar, MES College of Engineering, Kuttippuram
Kerala +
MES College of Engineering, Kuttippuram
Kerala +
fousisadath@gmail.com +
Jahfar.ali@gmail.com +
7323b594d3a8508f809e276aa2d224c4e7ec5a80JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
An Experimental Evaluation of Covariates +
Effects on Unconstrained Face Verification +
('2927406', 'Boyu Lu', 'boyu lu')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('9215658', 'Rama Chellappa', 'rama chellappa')
732e8d8f5717f8802426e1b9debc18a8361c1782Unimodal Probability Distributions for Deep Ordinal Classification +('12757989', 'Christopher Beckham', 'christopher beckham')
73ed64803d6f2c49f01cffef8e6be8fc9b5273b8Noname manuscript No. +
(will be inserted by the editor) +
Cooking in the kitchen: Recognizing and Segmenting Human +
Activities in Videos +
Received: date / Accepted: date +
('51267303', 'Hilde Kuehne', 'hilde kuehne')
7306d42ca158d40436cc5167e651d7ebfa6b89c1Noname manuscript No. +
(will be inserted by the editor) +
Transductive Zero-Shot Action Recognition by +
Word-Vector Embedding +
Received: date / Accepted: date +
('47158489', 'Xun Xu', 'xun xu')
734cdda4a4de2a635404e4c6b61f1b2edb3f501dTie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 +
http://jivp.eurasipjournals.com/content/2013/1/8 +
R ES EAR CH +
Open Access +
Automatic landmark point detection and tracking +
for human facial expressions +
('1721867', 'Ling Guan', 'ling guan')
739d400cb6fb730b894182b29171faaae79e3f01A New Regularized Orthogonal Local Fisher Discriminant Analysis for Image +
Feature Extraction +
dept. name of organization, name of organization, City, Country +
School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China
Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China
('2539310', 'ZHONGFENG WANG', 'zhongfeng wang')
('2539310', 'ZHONGFENG WANG', 'zhongfeng wang')
('1718667', 'Zhan WANG', 'zhan wang')
732e4016225280b485c557a119ec50cffb8fee98Are all training examples equally valuable? +
Massachusetts Institute of Technology
Universitat Oberta de Catalunya +
Agata Lapedriza +
Computer Vision Center +
Massachusetts Institute of Technology
Massachusetts Institute of Technology
Massachusetts Institute of Technology
('2367683', 'Hamed Pirsiavash', 'hamed pirsiavash')
('3326347', 'Zoya Bylinskii', 'zoya bylinskii')
('1690178', 'Antonio Torralba', 'antonio torralba')
hpirsiav@mit.edu +
agata@mit.edu +
zoya@mit.edu +
torralba@mit.edu +
7373c4a23684e2613f441f2236ed02e3f9942dd4This document is downloaded from DR-NTU, Nanyang Technological +
University Library, Singapore
Title +
Feature extraction through binary pattern of phase +
congruency for facial expression recognition +
Author(s) +
Shojaeilangari, Seyedehsamaneh; Yau, Wei-Yun; Li, Jun; +
Teoh, Eam Khwang +
Citation +
Shojaeilangari, S., Yau, W. Y., Li, J., & Teoh, E. K. +
(2012). Feature extraction through binary pattern of +
phase congruency for facial expression recognition. 12th +
International Conference on Control Automation Robotics +
& Vision (ICARCV), 166-170. +
Date +
2012 +
URL +
http://hdl.handle.net/10220/18012 +
Rights +
© 2012 IEEE. Personal use of this material is permitted. +
Permission from IEEE must be obtained for all other +
uses, in any current or future media, including
reprinting/republishing this material for advertising or +
promotional purposes, creating new collective works, for +
resale or redistribution to servers or lists, or reuse of any +
copyrighted component of this work in other works. The +
published version is available at: +
[http://dx.doi.org/10.1109/ICARCV.2012.6485152]. +
732686d799d760ccca8ad47b49a8308b1ab381fbRunning head: TEACHERS’ DIFFERING BEHAVIORS +
1 +
Graduate School of Psychology +
RESEARCH MASTER’S PSYCHOLOGY THESıS REPORT +
+
Teachers’ differing classroom behaviors: +
The role of emotional sensitivity and cultural tolerance +
Research Master’s, Social Psychology +
Ethics Committee Reference Code: 2016-SP-7084 +
('7444483', 'Agneta Fischer', 'agneta fischer')
('22253276', 'Disa Sauter', 'disa sauter')
('2808612', 'Monique Volman', 'monique volman')
73fbdd57270b9f91f2e24989178e264f2d2eb7ae978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1945 +
ICASSP 2012 +
738a985fba44f9f5acd516e07d0d9578f2ffaa4eMACHINE LEARNING TECHNIQUES FOR FACE ANALYSIS +
Man Machine Interaction Group +
Delft University of Technology
Mekelweg 4, 2628 CD Delft +
The Netherlands +
from +
learning, pattern recognition, classifiers, face +
KEYWORDS +
Machine +
detection, facial expression recognition. +
('2866326', 'D. Datcu', 'd. datcu')E-mail: {D.Datcu, L.J.M.Rothkrantz}@ewi.tudelft.nl +
73fd7e74457e0606704c5c3d3462549f1b2de1adLearning Predictable and Discriminative Attributes +
for Visual Recognition +
School of Software, Tsinghua University, Beijing 100084, China
('34811036', 'Yuchen Guo', 'yuchen guo')
('38329336', 'Guiguang Ding', 'guiguang ding')
('39665252', 'Xiaoming Jin', 'xiaoming jin')
('1751179', 'Jianmin Wang', 'jianmin wang')
yuchen.w.guo@gmail.com, {dinggg,xmjin,jimwang}@tsinghua.edu.cn, +
73c5bab5c664afa96b1c147ff21439135c7d968bWhitened LDA for Face Recognition ∗ +
Ubiquitous Computing Lab +
Kyung Hee University
Suwon, Korea +
Ubiquitous Computing Lab +
Kyung Hee University
Suwon, Korea +
Mobile Computing Lab +
SungKyunKwan University
Suwon, Korea +
('1687579', 'Vo Dinh Minh Nhat', 'vo dinh minh nhat')
('1700806', 'Sungyoung Lee', 'sungyoung lee')
('1718666', 'Hee Yong Youn', 'hee yong youn')
vdmnhat@oslab.khu.ac.kr +
sylee@oslab.khu.ac.kr +
youn@ece.skku.ac.kr +
73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c
877100f430b72c5d60de199603ab5c65f611ce17Within-person variability in men’s facial +
width-to-height ratio +
University of York, York, United Kingdom
('40598264', 'Robin S.S. Kramer', 'robin s.s. kramer')
870433ba89d8cab1656e57ac78f1c26f4998edfbRegressing Robust and Discriminative 3D Morphable Models +
with a very Deep Neural Network +
Institute for Robotics and Intelligent Systems, USC, CA, USA
Information Sciences Institute, USC, CA, USA
The Open University of Israel, Israel
('1756099', 'Tal Hassner', 'tal hassner')
('11269472', 'Iacopo Masi', 'iacopo masi')
872dfdeccf99bbbed7c8f1ea08afb2d713ebe085L2-constrained Softmax Loss for Discriminative Face Verification +
Center for Automation Research, UMIACS, University of Maryland, College Park, MD
('48467498', 'Rajeev Ranjan', 'rajeev ranjan')
('38171682', 'Carlos D. Castillo', 'carlos d. castillo')
('9215658', 'Rama Chellappa', 'rama chellappa')
{rranjan1,carlos,rama}@umiacs.umd.edu +
87e6cb090aecfc6f03a3b00650a5c5f475dfebe1KIM, BALTRUŠAITIS et al.: HOLISTICALLY CONSTRAINED LOCAL MODEL +
Holistically Constrained Local Model: +
Going Beyond Frontal Poses for Facial +
Landmark Detection +
Tadas Baltrušaitis2 +
Amir Zadeh2 +
Gérard Medioni1 +
Institute for Robotics and Intelligent
Systems +
University of Southern California
Los Angeles, CA, USA +
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA, USA +
('2792633', 'KangGeon Kim', 'kanggeon kim')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
kanggeon.kim@usc.edu +
tbaltrus@cs.cmu.edu +
abagherz@cs.cmu.edu +
morency@cs.cmu.edu +
medioni@usc.edu +
8796f2d54afb0e5c924101f54d469a1d54d5775dJournal of Signal and Information Processing, 2012, 3, 45-50 +
http://dx.doi.org/10.4236/jsip.2012.31007 Published Online February 2012 (http://www.SciRP.org/journal/jsip) +
45 +
Illumination Invariant Face Recognition Using Fuzzy LDA +
and FFNN +
School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Received October 20th, 2011; revised November 24th, 2011; accepted December 10th, 2011 +
('1697559', 'Behzad Bozorgtabar', 'behzad bozorgtabar')
('3280435', 'Hamed Azami', 'hamed azami')
('3097307', 'Farzad Noorian', 'farzad noorian')
Email: b_bozorgtabar@elec.iust.ac.ir, hmdazami@gmail.com, fnoorian@ee.iust.ac.ir +
87f285782d755eb85d8922840e67ed9602cfd6b9INCORPORATING BOLTZMANN MACHINE PRIORS +
FOR SEMANTIC LABELING IN IMAGES AND VIDEOS +
A Dissertation Presented +
by +
ANDREW KAE +
Submitted to the Graduate School of the +
University of Massachusetts Amherst in partial ful llment
of the requirements for the degree of +
DOCTOR OF PHILOSOPHY +
May 2014 +
Computer Science +
871f5f1114949e3ddb1bca0982086cc806ce84a8Discriminative Learning of Apparel Features +
1 Computer Vision Laboratory, D-ITET, ETH Z¨urich, Switzerland +
2 ESAT - PSI / IBBT, K.U. Leuven, Belgium +
('2173683', 'Rasmus Rothe', 'rasmus rothe')
('2113583', 'Marko Ristin', 'marko ristin')
('1727791', 'Matthias Dantone', 'matthias dantone')
('1681236', 'Luc Van Gool', 'luc van gool')
{rrothe,ristin,mdantone,vangool}@vision.ee.ethz.ch +
luc.vangool@esat.kuleuven.be +
8724fc4d6b91eebb79057a7ce3e9dfffd3b1426fOrdered Pooling of Optical Flow Sequences for Action Recognition +
1Data61/CSIRO, 2 Australian Center for Robotic Vision +
Australian National University, Canberra, Australia
Fatih Porikli1,2,3 +
('48094509', 'Jue Wang', 'jue wang')
('2691929', 'Anoop Cherian', 'anoop cherian')
jue.wang@anu.edu.au +
anoop.cherian@anu.edu.au +
fatih.porikli@anu.edu.au +
87bee0e68dfc86b714f0107860d600fffdaf7996Automated 3D Face Reconstruction from Multiple Images +
using Quality Measures +
Institute for Vision and Graphics, University of Siegen, Germany
('2712313', 'Marcel Piotraschke', 'marcel piotraschke')
('2880906', 'Volker Blanz', 'volker blanz')
piotraschke@nt.uni-siegen.de, blanz@informatik.uni-siegen.de +
87309bdb2b9d1fb8916303e3866eca6e3452c27dKernel Coding: General Formulation and Special Cases +
Australian National University, Canberra, ACT 0200, Australia
NICTA(cid:63), Locked Bag 8001, Canberra, ACT 2601, Australia +
('2862871', 'Mathieu Salzmann', 'mathieu salzmann')
878169be6e2c87df2d8a1266e9e37de63b524ae7CBMM Memo No. 089 +
May 10, 2018 +
Image interpretation above and below the object level +
('2507298', 'Guy Ben-Yosef', 'guy ben-yosef')
('1743045', 'Shimon Ullman', 'shimon ullman')
878301453e3d5cb1a1f7828002ea00f59cbeab06Faceness-Net: Face Detection through +
Deep Facial Part Responses +
('1692609', 'Shuo Yang', 'shuo yang')
('47571885', 'Ping Luo', 'ping luo')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
87e592ee1a7e2d34e6b115da08700a1ae02e9355Deep Pictorial Gaze Estimation +
AIT Lab, Department of Computer Science, ETH Zurich +
('20466488', 'Seonwook Park', 'seonwook park')
('21195502', 'Adrian Spurr', 'adrian spurr')
('2531379', 'Otmar Hilliges', 'otmar hilliges')
{firstname.lastname}@inf.ethz.ch +
87147418f863e3d8ff8c97db0b42695a1c28195bAttributes for Improved Attributes: A +
Multi-Task Network for Attribute Classification +
University of Maryland, College Park
('3351637', 'Emily M. Hand', 'emily m. hand')
('9215658', 'Rama Chellappa', 'rama chellappa')
87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5SPATIO-TEMPORAL MAXIMUM AVERAGE CORRELATION +
HEIGHT TEMPLATES IN ACTION RECOGNITION AND VIDEO +
SUMMARIZATION +
by +
B.A. Earlham College, Richmond Indiana
M.S. University of Central Florida
A dissertation submitted in partial fulfillment of the requirements +
for the degree of Doctor of Philosophy +
in the School of Electrical Engineering and Computer Science +
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida +
Summer Term +
2010 +
Major Professor: Mubarak Shah +
('35188194', 'MIKEL RODRIGUEZ', 'mikel rodriguez')
87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fdCraniofacial Image Analysis +('1935115', 'Ezgi Mercan', 'ezgi mercan')
('1771661', 'Indriyati Atmosukarto', 'indriyati atmosukarto')
('10423763', 'Jia Wu', 'jia wu')
('1744684', 'Shu Liang', 'shu liang')
('1809809', 'Linda G. Shapiro', 'linda g. shapiro')
8006219efb6ab76754616b0e8b7778dcfb46603dCONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble
80193dd633513c2d756c3f568ffa0ebc1bb5213e
808b685d09912cbef4a009e74e10476304b4cccfFrom Understanding to Controlling Privacy +
against Automatic Person Recognition in Social Media +
Max Planck Institute for Informatics, Germany
('2390510', 'Seong Joon Oh', 'seong joon oh')
('1697100', 'Bernt Schiele', 'bernt schiele')
('1739548', 'Mario Fritz', 'mario fritz')
{joon,mfritz,schiele}@mpi-inf.mpg.de +
804b4c1b553d9d7bae70d55bf8767c603c1a09e3978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
1831 +
ICASSP 2016 +
800cbbe16be0f7cb921842d54967c9a94eaa2a65MULTIMODAL RECOGNITION OF +
EMOTIONS +
80135ed7e34ac1dcc7f858f880edc699a920bf53EFFICIENT ACTION AND EVENT RECOGNITION IN VIDEOS USING +
EXTREME LEARNING MACHINES +
by +
G¨ul Varol +
B.S., Computer Engineering, Bo gazi ci University
Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of +
the requirements for the degree of +
Master of Science +
Graduate Program in Computer Engineering +
Bo gazi ci University
2015 +
803c92a3f0815dbf97e30c4ee9450fd005586e1aMax-Mahalanobis Linear Discriminant Analysis Networks +('19201674', 'Tianyu Pang', 'tianyu pang')
80277fb3a8a981933533cf478245f262652a33b5Synergy-based Learning of Facial Identity +
Institute for Computer Graphics and Vision
Graz University of Technology, Austria
('1791182', 'Peter M. Roth', 'peter m. roth')
('3628150', 'Horst Bischof', 'horst bischof')
{koestinger,pmroth,bischof}@icg.tugraz.at +
80840df0802399838fe5725cce829e1b417d7a2eFast Approximate L∞ Minimization: Speeding Up Robust Regression +
School of Computer Science and Technology, Nanjing University of Science and Technology, China
School of Computer Science, The University of Adelaide, Australia
('2731972', 'Fumin Shen', 'fumin shen')
('1780381', 'Chunhua Shen', 'chunhua shen')
('26065407', 'Rhys Hill', 'rhys hill')
('5546141', 'Anton van den Hengel', 'anton van den hengel')
('3195119', 'Zhenmin Tang', 'zhenmin tang')
80c8d143e7f61761f39baec5b6dfb8faeb814be9Local Directional Pattern based Fuzzy Co- +
occurrence Matrix Features for Face recognition +
Professor, CSE Dept. +
Gokaraju Rangaraju Institute of Engineering and Technology, Hyd
('39121253', 'P Chandra Sekhar Reddy', 'p chandra sekhar reddy')
809ea255d144cff780300440d0f22c96e98abd53ArcFace: Additive Angular Margin Loss for Deep Face Recognition +
Imperial College London
UK +
DeepInSight +
China +
Imperial College London
UK +
('3234063', 'Jiankang Deng', 'jiankang deng')
('3007274', 'Jia Guo', 'jia guo')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
j.deng16@imperial.ac.uk +
guojia@gmail.com +
s.zafeiriou@imperial.ac.uk +
80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923Research Article +
Soft Biometrics for a Socially Assistive Robotic +
Platform +
Open Access +
('2104853', 'Pierluigi Carcagnì', 'pierluigi carcagnì')
('2417460', 'Dario Cazzato', 'dario cazzato')
('33097940', 'Marco Del Coco', 'marco del coco')
('35438199', 'Pier Luigi Mazzeo', 'pier luigi mazzeo')
('4730472', 'Marco Leo', 'marco leo')
('1741861', 'Cosimo Distante', 'cosimo distante')
80a6bb337b8fdc17bffb8038f3b1467d01204375Proceedings of the International Conference on Computer and Information Science and Technology +
Ottawa, Ontario, Canada, May 11 – 12, 2015 +
Paper No. 126 +
Subspace LDA Methods for Solving the Small Sample Size +
Problem in Face Recognition +

101 KwanFu Rd., Sec. 2, Hsinchu, Taiwan +
('2018515', 'Ching-Ting Huang', 'ching-ting huang')
('1830341', 'Chaur-Chin Chen', 'chaur-chin chen')
j60626j@gmail.com;cchen@cs.nthu.edu.tw +
80be8624771104ff4838dcba9629bacfe6b3ea09Simultaneous Feature and Dictionary Learning +
for Image Set Based Face Recognition +
1 Advanced Digital Sciences Center, Singapore +
Nanyang Technological University, Singapore
Beijing University of Posts and Telecommunications, Beijing, China
University of Illinois at Urbana-Champaign, IL USA
('1697700', 'Jiwen Lu', 'jiwen lu')
('39209795', 'Gang Wang', 'gang wang')
8000c4f278e9af4d087c0d0895fff7012c5e3d78Multi-Task Warped Gaussian Process for Personalized Age Estimation +
Hong Kong University of Science and Technology
('36233573', 'Yu Zhang', 'yu zhang'){zhangyu,dyyeung}@cse.ust.hk +
80097a879fceff2a9a955bf7613b0d3bfa68dc23Active Self-Paced Learning for Cost-Effective and +
Progressive Face Identification +
('1737218', 'Liang Lin', 'liang lin')
('3170394', 'Keze Wang', 'keze wang')
('1803714', 'Deyu Meng', 'deyu meng')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('36685537', 'Lei Zhang', 'lei zhang')
80bd795930837330e3ced199f5b9b75398336b87Relative Forest for Attribute Prediction +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
Graduate University of Chinese Academy of Sciences, Beijing 100049, China
('1688086', 'Shaoxin Li', 'shaoxin li')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{shaoxin.li, shiguang.shan, xilin.chen}@vipl.ict.ac.cn +
74de03923a069ffc0fb79e492ee447299401001fOn Film Character Retrieval in Feature-Length Films +
1 Introduction +
The problem of automatic face recognition (AFR) concerns matching a detected (roughly localized) face +
against a database of known faces with associated identities. This task, although very intuitive to humans +
and despite the vast amounts of research behind it, still poses a significant challenge to computer-based +
methods. For reviews of the literature and commercial state-of-the-art see [5, 31] and [22, 23]. Much AFR +
research has concentrated on the user authentication paradigm (e.g. [2, 8, 19]). In contrast, we consider the +
content-based multimedia retrieval setup: our aim is to retrieve, and rank by confidence, film shots based on +
the presence of specific actors. A query to the system consists of the user choosing the person of interest in +
one or more keyframes. Possible applications include: +
1. DVD browsing: Current DVD technology allows users to quickly jump to the chosen part of a film +
using an on-screen index. However, the available locations are predefined. AFR technology could allow +
the user to rapidly browse scenes by formulating queries based on the presence of specific actors. +
2. Content-based web search: Many web search engines have very popular image search features (e.g. +
http://www.google.co.uk/imghp). Currently, the search is performed based on the keywords +
that appear in picture filenames or in the surrounding web page content. Face recognition can make the +
retrieval much more accurate by focusing on the content of images. +
We proceed from the face detection stage, assuming localized faces. Face detection technology is fairly +
mature and a number of reliable face detectors have been built, see [17, 21, 25, 30]. We use a local imple- +
mentation of the method of Schneiderman and Kanade [25] and consider a face to be correctly detected if +
both eyes and the mouth are visible, see Figure 1. In a typical feature-length film, using every 10th frame, +
we obtain 2000-5000 face detections which result from a cast of 10-20 primary and secondary characters +
(see §3). +
Problem challenges. +
A number of factors other than identity influence the way a face appears in an image. Lighting conditions, +
and especially light angle, drastically change the appearance of a face [1]. Facial expressions, including
closed or partially closed eyes, also complicate the problem, just as head pose does. Partial occlusions, be +
they artefacts in front of a face or resulting from hair style change, or growing a beard or moustache also +
('1688869', 'Andrew Zisserman', 'andrew zisserman')1 Department of Engineering, University of Cambridge, UK oa214@cam.ac.uk +
2 Department of Engineering, University of Oxford, UK az@robots.ox.ac.uk +
74f643579949ccd566f2638b85374e7a6857a9fcMonogenic Binary Pattern (MBP): A Novel Feature Extraction and +
Representation Model for Face Recognition +
Biometric Research Center, The Hong Kong Polytechnic University
Different from other face recognition methods, LBP +
methods use local structural information and histogram +
of sub-regions to extract and describe facial features. +
Following LBP, LGBPHS [6] was proposed to use +
Gabor filtering to enhance the facial features and then +
extract the local Gabor binary pattern histogram +
sequence, which improves much LBP’s robustness to +
illumination changes. The Gabor phase was also used +
to improve the recognition rate [7-8], and a typical +
method of this class is the HGPP [8], which captures +
the Global Gabor phase and Local Gabor phase +
variation. Despite the high accuracy, the expense of +
the above mentioned Gabor +
face +
recognition methods is also very expensive: both the +
computational cost and the storage space are high +
because Gabor filtering is usually applied at five +
different scales and along eight different orientations, +
which limits the application of these methods. +
filter based +
is a +
signal +
(HMBP) +
the MBP +
to describe +
two-dimensional +
This paper presents a new local facial feature +
extraction method, namely monogenic binary pattern +
(MBP), based on the theory of monogenic signal +
analysis [9], and then proposes to use the histogram of +
features. +
MBP +
Monogenic +
(2D) +
generalization of the one-dimensional analytic signal, +
through which +
the multi-resolution magnitude, +
orientation and phase of a 2D signal can be estimated. +
The proposed MBP combines monogenic orientation +
and monogenic magnitude information for face feature +
extraction and description. The advantage of MBP +
over other Gabor based methods [4][6][8] is that it has +
much lower time and space complexity but with better +
or comparable performance. This is mainly because +
monogenic signal analysis +
itself a compact +
representation of features with little information loss. +
It does not use steerable filters to create multi- +
orientation features like Gabor filters do. HMBP is the +
sub-region spatial histogram sequence of MBP +
features, which is robust to face image variation of +
is +
('5828998', 'Meng Yang', 'meng yang')
('36685537', 'Lei Zhang', 'lei zhang')
('40613710', 'Lin Zhang', 'lin zhang')
('1698371', 'David Zhang', 'david zhang')
E-mail: {csmyang, cslzhang, cslinzhang, csdzhang}@comp.polyu.edu.hk +
74ce7e5e677a4925489897665c152a352c49d0a2SONG ET AL.: SEGMENTATION-GUIDED IMAGE INPAINTING +
SPG-Net: Segmentation Prediction and +
Guidance Network for Image Inpainting +
University of Southern California
3740 McClintock Ave +
Los Angeles, USA +
2 Baidu Research +
1195 Bordeaux Dr., +
Sunnyvale, USA +
('3383051', 'Yuhang Song', 'yuhang song')
('1683340', 'Chao Yang', 'chao yang')
('8035191', 'Yeji Shen', 'yeji shen')
('1722767', 'Peng Wang', 'peng wang')
('38592052', 'Qin Huang', 'qin huang')
('9363144', 'C.-C. Jay Kuo', 'c.-c. jay kuo')
yuhangso@usc.edu +
chaoy@usc.edu +
yejishen@usc.edu +
wangpeng54@baidu.com +
qinhuang@usc.edu +
cckuo@sipi.usc.edu +
74408cfd748ad5553cba8ab64e5f83da14875ae8Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation +
and Evaluation +
747d5fe667519acea1bee3df5cf94d9d6f874f20
74dbe6e0486e417a108923295c80551b6d759dbeInternational Journal of Computer Applications (0975 – 8887) +
Volume 45– No.11, May 2012 +
An HMM based Model for Prediction of Emotional +
Composition of a Facial Expression using both +
Significant and Insignificant Action Units and +
Associated Gender Differences +
Department of Management and Information +
Department of Management and Information +
Systems Science +
1603-1 Kamitomioka, Nagaoka +
Niigata, Japan +
Systems Science +
1603-1 Kamitomioka, Nagaoka +
Niigata, Japan +
('2931637', 'Suvashis Das', 'suvashis das')
('1808643', 'Koichi Yamada', 'koichi yamada')
740e095a65524d569244947f6eea3aefa3cca526Towards Human-like Performance Face Detection: A +
Convolutional Neural Network Approach +
University of Twente
P.O. Box 217, 7500AE Enschede +
The Netherlands +
('2651432', 'Joshua van Kleef', 'joshua van kleef')j.a.vankleef-1@student.utwente.nl +
74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8Context and Subcategories for +
Sliding Window Object Recognition +
CMU-RI-TR-12-17 +
Submitted in partial fulfillment of the +
requirements for the degree of +
Doctor of Philosophy in Robotics +
The Robotics Institute
School of Computer Science +
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 +
August 2012 +
Thesis Committee +
Martial Hebert, Co-Chair +
Alexei A. Efros, Co-Chair +
Takeo Kanade +
Deva Ramanan, University of California at Irvine
('2038685', 'Santosh K. Divvala', 'santosh k. divvala')
('2038685', 'Santosh K. Divvala', 'santosh k. divvala')
747c25bff37b96def96dc039cc13f8a7f42dbbc7EmoNets: Multimodal deep learning approaches for emotion +
recognition in video +
('3127597', 'Samira Ebrahimi Kahou', 'samira ebrahimi kahou')
('1748421', 'Vincent Michalski', 'vincent michalski')
('2488222', 'Nicolas Boulanger-Lewandowski', 'nicolas boulanger-lewandowski')
('1923596', 'David Warde-Farley', 'david warde-farley')
('1751762', 'Yoshua Bengio', 'yoshua bengio')
741485741734a99e933dd0302f457158c6842adf A Novel Automatic Facial Expression +
Recognition Method Based on AAM +
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
('1703431', 'Li Wang', 'li wang')
('2677485', 'Ruifeng Li', 'ruifeng li')
('1751643', 'Ke Wang', 'ke wang')
Email: wangli-hb@163.com, lrf100@ hit.edu.cn, wangke@ hit.edu.cn +
744fa8062d0ae1a11b79592f0cd3fef133807a03Aalborg Universitet +
Deep Pain +
Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi; M. Gonfaus, Josep ; Nasrollahi, Kamal; +
Moeslund, Thomas B.; Xavier Roca, F. +
Published in: +
I E E E Transactions on Cybernetics +
DOI (link to publication from Publisher): +
10.1109/TCYB.2017.2662199 +
Publication date: +
2017 +
Document Version +
Accepted author manuscript, peer reviewed version +
Link to publication from Aalborg University
Citation for published version (APA): +
Rodriguez, P., Cucurull, G., Gonzàlez, J., M. Gonfaus, J., Nasrollahi, K., Moeslund, T. B., & Xavier Roca, F. +
(2017). Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. I E E E +
Transactions on Cybernetics, 1-11. DOI: 10.1109/TCYB.2017.2662199 +
General rights +
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. +
? You may not further distribute the material or use it for any profit-making activity or commercial gain +
? You may freely distribute the URL identifying the publication in the public portal ? +
Take down policy +
the work immediately and investigate your claim. +
Downloaded from vbn.aau.dk on: marts 22, 2018 +
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to +
743e582c3e70c6ec07094887ce8dae7248b970adInternational Journal of Signal Processing, Image Processing and Pattern Recognition +
Vol.8, No.10 (2015), pp.29-38 +
http://dx.doi.org/10.14257/ijsip.2015.8.10.04 +
Face Recognition based on Deep Neural Network +
Shandong Women s University
('9094473', 'Li Xinhua', 'li xinhua')
('29742002', 'Yu Qian', 'yu qian')
lixinhua@sdwu.edu.cn +
74b0095944c6e29837c208307a67116ebe1231c8
74156a11c2997517061df5629be78428e1f09cbdCancún Center, Cancún, México, December 4-8, 2016 +
978-1-5090-4846-5/16/$31.00 ©2016 IEEE +
2784 +
748e72af01ba4ee742df65e9c030cacec88ce506Discriminative Regions Selection for Facial Expression +
Recognition +
MIRACL-FSEG, University of Sfax
3018 Sfax, Tunisia +
MIRACL-FS, University of Sfax
3018 Sfax, Tunisia +
('2049116', 'Hazar Mliki', 'hazar mliki')
('1749733', 'Mohamed Hammami', 'mohamed hammami')
745b42050a68a294e9300228e09b5748d2d20b81
749d605dd12a4af58de1fae6f5ef5e65eb06540eMulti-Task Video Captioning with Video and Entailment Generation +
UNC Chapel Hill +
('10721120', 'Ramakanth Pasunuru', 'ramakanth pasunuru')
('7736730', 'Mohit Bansal', 'mohit bansal')
{ram, mbansal}@cs.unc.edu +
749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7A Modular Framework to Detect and Analyze Faces for +
Audience Measurement Systems +
Fraunhofer Institute for Integrated Circuits IIS
Department Electronic Imaging +
Am Wolfsmantel 33, 91058 Erlangen, Germany +
('33046373', 'Andreas Ernst', 'andreas ernst')
('27421829', 'Tobias Ruf', 'tobias ruf')
{andreas.ernst, tobias.ruf, christian.kueblbeck}@iis.fraunhofer.de +
74c19438c78a136677a7cb9004c53684a4ae56ffRESOUND: Towards Action Recognition +
without Representation Bias +
UC San Diego +
('48513320', 'Yingwei Li', 'yingwei li')
('47002970', 'Yi Li', 'yi li')
('1699559', 'Nuno Vasconcelos', 'nuno vasconcelos')
{yil325,yil898,nvasconcelos}@ucsd.edu +
74618fb4ce8ce0209db85cc6069fe64b1f268ff4Rendering and Animating Expressive +
Caricatures +
Mukundan +
*HITLab New Zealand, +
University
of Canterbury, +
Christchurch, +
New Zealand +
tComputer +
Science +
and Software Engineering +
Email: {mohammad.obaid, +
University
of Canterbury, +
New Zealand +
non­ +
stylized +
and control +
on the generated caricature. +
A stroke-based +
of the caricature, +
of facial expressions. +
rendering of caricatures +
from a given face image, with +
the facial appearance +
using quadratic deformation +
rendering (NPR) engine is developed to generate +
that appears to be a sketch of the original +
('1761180', 'Mohammad Obaid', 'mohammad obaid')
('1684805', 'Mark Billinghurst', 'mark billinghurst')
mark.billinghurst}@hitlabnz.org, +
mukund@cosc.canterbury.ac.nz +
74875368649f52f74bfc4355689b85a724c3db47Object Detection by Labeling Superpixels +
1National Laboratory of Pattern Recognition, Chinese Academy of Sciences +
Institute of Data Science and Technology, Alibaba Group
Institute of Deep Learning, Baidu Research
('1721677', 'Junjie Yan', 'junjie yan')
('2278628', 'Yinan Yu', 'yinan yu')
('8362374', 'Xiangyu Zhu', 'xiangyu zhu')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
7492c611b1df6bce895bee6ba33737e7fc7f60a6The 3D Menpo Facial Landmark Tracking Challenge +
Imperial College London, UK
Center for Machine Vision and Signal Analysis, University of Oulu, Finland
University of Exeter, UK
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('34586458', 'Grigorios G. Chrysos', 'grigorios g. chrysos')
('2931390', 'Anastasios Roussos', 'anastasios roussos')
('31243357', 'Evangelos Ververas', 'evangelos ververas')
('3234063', 'Jiankang Deng', 'jiankang deng')
('2814229', 'George Trigeorgis', 'george trigeorgis')
{s.zafeiriou, g.chrysos}@imperial.ac.uk +
74eae724ef197f2822fb7f3029c63014625ce1caInternational Journal of Bio-Science and Bio-Technology +
Vol. 5, No. 2, April, 2013 +
Feature Extraction based on Local Directional Pattern with SVM +
Decision-level Fusion for Facial Expression Recognition +
1Key Laboratory of Education Informalization for Nationalities, Ministry of +
Education, Yunnan Normal University, Kunming, China
College of Information, Yunnan Normal University, Kunming, China
('2535958', 'Juxiang Zhou', 'juxiang zhou')
('3305175', 'Tianwei Xu', 'tianwei xu')
('2411704', 'Jianhou Gan', 'jianhou gan')
zjuxiang@126.com,xutianwei@ynnu.edu.cn,kmganjh@yahoo.com.cn +
7480d8739eb7ab97c12c14e75658e5444b852e9fNEGREL ET AL.: REVISITED MLBOOST FOR FACE RETRIEVAL +
MLBoost Revisited: A Faster Metric +
Learning Algorithm for Identity-Based Face +
Retrieval +
Frederic Jurie +
Normandie Univ, UNICAEN, +
ENSICAEN, CNRS +
France +
('2838835', 'Romain Negrel', 'romain negrel')
('2504258', 'Alexis Lechervy', 'alexis lechervy')
romain.negrel@unicaen.fr +
alexis.lechervy@unicaen.fr +
frederic.jurie@unicaen.fr +
74ba4ab407b90592ffdf884a20e10006d2223015Partial Face Detection in the Mobile Domain +('3152615', 'Upal Mahbub', 'upal mahbub')
('40599829', 'Sayantan Sarkar', 'sayantan sarkar')
('9215658', 'Rama Chellappa', 'rama chellappa')
7405ed035d1a4b9787b78e5566340a98fe4b63a0Self-Expressive Decompositions for +
Matrix Approximation and Clustering +
('1746363', 'Eva L. Dyer', 'eva l. dyer')
('3318961', 'Raajen Patel', 'raajen patel')
('1746260', 'Richard G. Baraniuk', 'richard g. baraniuk')
744db9bd550bf5e109d44c2edabffec28c867b91FX e-Makeup for Muscle Based Interaction +
1 Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil +
2 Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil +
3 Department of Administration, PUC-Rio, Rio de Janeiro, Brazil +
('21852164', 'Abel Arrieta', 'abel arrieta')
('38047086', 'Felipe Esteves', 'felipe esteves')
('1805792', 'Hugo Fuks', 'hugo fuks')
{kvega,hugo}@inf.puc-rio.br +
abel.arrieta@aluno.puc-rio.br +
felipeesteves@aluno.puc-rio.br +
74325f3d9aea3a810fe4eab8863d1a48c099de11Regression-Based Image Alignment +
for General Object Categories +
Queensland University of Technology (QUT
Brisbane QLD 4000, Australia +
Carnegie Mellon University (CMU
Pittsburgh PA 15289, USA +
('2266155', 'Hilton Bristow', 'hilton bristow')
('1820249', 'Simon Lucey', 'simon lucey')
744d23991a2c48d146781405e299e9b3cc14b731This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2535284, IEEE +
Transactions on Image Processing +
Aging Face Recognition: A Hierarchical Learning +
Model Based on Local Patterns Selection +
('1911510', 'Zhifeng Li', 'zhifeng li')
('2856494', 'Dihong Gong', 'dihong gong')
('1720243', 'Xuelong Li', 'xuelong li')
('1692693', 'Dacheng Tao', 'dacheng tao')
1a45ddaf43bcd49d261abb4a27977a952b5fff12LDOP: Local Directional Order Pattern for Robust +
Face Retrieval +
 +
('34992579', 'Shiv Ram Dubey', 'shiv ram dubey')
('34356161', 'Snehasis Mukherjee', 'snehasis mukherjee')
1a41e5d93f1ef5b23b95b7163f5f9aedbe661394Hindawi Publishing Corporation +
e Scientific World Journal +
Volume 2014, Article ID 903160, 9 pages +
http://dx.doi.org/10.1155/2014/903160 +
Research Article +
Alignment-Free and High-Frequency Compensation in +
Face Hallucination +
College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China
College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan
Received 25 August 2013; Accepted 21 November 2013; Published 12 February 2014 +
Academic Editors: S. Bourennane and J. Marot +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Face hallucination is one of learning-based super resolution techniques, which is focused on resolution enhancement of facial +
images. Though face hallucination is a powerful and useful technique, some detailed high-frequency components cannot be +
recovered. It also needs accurate alignment between training samples. In this paper, we propose a high-frequency compensation +
framework based on residual images for face hallucination method in order to improve the reconstruction performance. The basic +
idea of proposed framework is to reconstruct or estimate a residual image, which can be used to compensate the high-frequency +
components of the reconstructed high-resolution image. Three approaches based on our proposed framework are proposed. We +
also propose a patch-based alignment-free face hallucination. In the patch-based face hallucination, we first segment facial images +
into overlapping patches and construct training patch pairs. For an input low-resolution (LR) image, the overlapping patches +
are also used to obtain the corresponding high-resolution (HR) patches by face hallucination. The whole HR image can then be +
reconstructed by combining all of the HR patches. Experimental results show that the high-resolution images obtained using our +
proposed approaches can improve the quality of those obtained by conventional face hallucination method even if the training data +
set is unaligned. +
1. Introduction +
There is a high demand for high-resolution (HR) images such +
as video surveillance, remote sensing, and medical imaging +
because high-resolution images can reveal more information +
than low-resolution images. However, it is hard to improve +
the image resolution by replacing sensors because of the +
high cost, hardware physical limits. Super resolution image +
reconstruction (SR) is one promising technique to solve the +
problem [1, 2]. SR can be broadly classified into two families of +
methods: (1) the classical multiframe super resolution [2] and +
(2) the single-frame super resolution, which is also known as +
example-based or learning-based super resolution [3–5]. In +
the classical multiimage SR, the HR image is reconstructed +
by combining subpixel-aligned multiimages (LR images). In +
the learning-based SR, the HR image is reconstructed by +
learning correspondence between low and high-resolution +
image patches from a database. +
Face hallucination is one of learning-based SR techniques +
proposed by Baker and Kanade [1, 6], which is focused on +
resolution enhancement of facial images. To date, a lot of +
algorithms of face hallucination methods have been proposed +
[7–12]. Though face hallucination is a powerful and useful +
technique, some detailed high-frequency components cannot +
be recovered. In this paper, we propose a high-frequency +
compensation framework based on residual images for face +
hallucination method in order to improve the reconstruction +
performance. The basic idea of proposed framework is to +
reconstruct or estimate a residual image, which can be used +
to compensate the high-frequency components of the recon- +
structed high-resolution image. Three approaches based on +
our proposed framework are proposed. We also propose a +
patch-based alignment-free face hallucination method. In the +
patch-based face hallucination, we first segment facial images +
into overlapping patches and construct training patch pairs. +
For an input LR image, the overlapping patches are also used +
to obtain the corresponding HR patches by face hallucination. +
The whole HR image can then be reconstructed by combining +
all of the HR patches. +
('1699766', 'Yen-Wei Chen', 'yen-wei chen')
('2755407', 'So Sasatani', 'so sasatani')
('1707360', 'Xian-Hua Han', 'xian-hua han')
('1699766', 'Yen-Wei Chen', 'yen-wei chen')
Correspondence should be addressed to Yen-Wei Chen; chen@is.ritsumei.ac.jp +
1a65cc5b2abde1754b8c9b1d932a68519bcb1adaLU, LIAN, YUILLE: PARSING SEMANTIC PARTS OF CARS +
Parsing Semantic Parts of Cars Using +
Graphical Models and Segment Appearance +
Consistency +
Alan Yuille2 +
1 Department of Electrical Engineering +
Tsinghua University
2 Department of Statistics +
University of California, Los Angeles
('2282045', 'Wenhao Lu', 'wenhao lu')
('5964529', 'Xiaochen Lian', 'xiaochen lian')
yourslewis@gmail.com +
lianxiaochen@gmail.com +
yuille@stat.ucla.edu +
1aa766bbd49bac8484e2545c20788d0f86e73ec2 +
Baseline Face Detection, Head Pose Estimation, and Coarse +
Direction Detection for Facial Data in the SHRP2 Naturalistic +
Driving Study +
J. Paone, D. Bolme, R. Ferrell, Member, IEEE, D. Aykac, and +
T. Karnowski, Member, IEEE +
Oak Ridge National Laboratory, Oak Ridge, TN +
1a849b694f2d68c3536ed849ed78c82e979d64d5This is a repository copy of Symmetric Shape Morphing for 3D Face and Head Modelling. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/131760/ +
Version: Accepted Version +
Proceedings Paper: +
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634, Smith, William Alfred +
Peter orcid.org/0000-0002-6047-0413 et al. (1 more author) (2018) Symmetric Shape +
Morphing for 3D Face and Head Modelling. In: The 13th IEEE Conference on Automatic +
Face and Gesture Recognition. IEEE . +
Reuse +
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless +
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by +
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of +
the full text version. This is indicated by the licence information on the White Rose Research Online record +
for the item. +
Takedown +
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +
https://eprints.whiterose.ac.uk/ +
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. +
eprints@whiterose.ac.uk +
1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1dOnline Robust Image Alignment via Iterative Convex Optimization +
Center for Data Analytics & Biomedical Informatics, Computer & Information Science Department, +
Temple University, Philadelphia, PA 19122, USA
School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Purdue University, West Lafayette, IN 47907, USA
('36578908', 'Yi Wu', 'yi wu')
('39274045', 'Bin Shen', 'bin shen')
('1805398', 'Haibin Ling', 'haibin ling')
fwuyi,hblingg@temple.edu, bshen@purdue.edu +
1a878e4667fe55170252e3f41d38ddf85c87fcafDiscriminative Machine Learning with Structure +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2010-4 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-4.html +
January 12, 2010 +
('1685481', 'Simon Lacoste-Julien', 'simon lacoste-julien')
1a41831a3d7b0e0df688fb6d4f861176cef97136massachusetts institute of technology artificial intelligence laboratory
A Biological Model of Object +
Recognition with Feature Learning +
AI Technical Report 2003-009 +
CBCL Memo 227 +
June 2003 +
© 2 0 0 3 m a s s a c h u s e t t s i n s t i t u t e o f +
t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u +
('1848733', 'Jennifer Louie', 'jennifer louie')@ MIT +
1ac2882559a4ff552a1a9956ebeadb035cb6df5bHow much training data for facial action unit detection? +
University of Pittsburgh, Pittsburgh, PA, USA
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
('36185909', 'Jeffrey M. Girard', 'jeffrey m. girard')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('1820249', 'Simon Lucey', 'simon lucey')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
1a7a17c4f97c68d68fbeefee1751d349b83eb14aIterative Hessian sketch: Fast and accurate solution +
approximation for constrained least-squares +
1Department of Electrical Engineering and Computer Science +
2Department of Statistics +
University of California, Berkeley
November 4, 2014 +
('3173667', 'Mert Pilanci', 'mert pilanci')
('1721860', 'Martin J. Wainwright', 'martin j. wainwright')
{mert, wainwrig}@berkeley.edu +
1aef6f7d2e3565f29125a4871cd60c4d86c48361Natural Language Video Description using +
Deep Recurrent Neural Networks +
University of Texas at Austin
Doctoral Dissertation Proposal +
('1811430', 'Subhashini Venugopalan', 'subhashini venugopalan')
('1797655', 'Raymond J. Mooney', 'raymond j. mooney')
vsub@cs.utexas.edu +
1a6c3c37c2e62b21ebc0f3533686dde4d0103b3fInternational Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print) +
Volume 4, Issue 1, January – March 2017 ISSN 2394-6393 (Online) +
Implementation of Partial Face Recognition +
using Directional Binary Code +
N.Pavithra #1, A.Sivapriya*2, K.Hemalatha*3 , D.Lakshmi*4 +
Final Year, PanimalarInstitute of Technology
PanimalarInstitute of Technology, Tamilnadu, India
in +
faith +
is proposed. It +
face alignment and +
1a167e10fe57f6d6eff0bb9e45c94924d9347a3eBoosting VLAD with Double Assignment using +
Deep Features for Action Recognition in Videos +
University of Trento, Italy
Tuan A. Nguyen +
University of Tokyo, Japan
University of Tokyo, Japan
University Politehnica of Bucharest, Romania
University of Trento, Italy
('3429470', 'Ionut C. Duta', 'ionut c. duta')
('1712839', 'Kiyoharu Aizawa', 'kiyoharu aizawa')
('1796198', 'Bogdan Ionescu', 'bogdan ionescu')
('1703601', 'Nicu Sebe', 'nicu sebe')
ionutcosmin.duta@unitn.it +
t nguyen@hal.t.u-tokyo.ac.jp +
aizawa@hal.t.u-tokyo.ac.jp +
bionescu@imag.pub.ro +
niculae.sebe@unitn.it +
1a3eee980a2252bb092666cf15dd1301fa84860ePCA GAUSSIANIZATION FOR IMAGE PROCESSING +
Image Processing Laboratory (IPL), Universitat de Val`encia +
Catedr´atico A. Escardino - 46980 Paterna, Val`encia, Spain +
('2732577', 'Valero Laparra', 'valero laparra')
('1684246', 'Gustavo Camps-Valls', 'gustavo camps-valls')
{lapeva,gcamps,jmalo}@uv.es +
1a140d9265df8cf50a3cd69074db7e20dc060d14Face Parts Localization Using +
Structured-Output Regression Forests +
School of EECS, Queen Mary University of London
('2966679', 'Heng Yang', 'heng yang')
('1744405', 'Ioannis Patras', 'ioannis patras')
{heng.yang,i.patras}@eecs.qmul.ac.uk +
1a85956154c170daf7f15f32f29281269028ff69Active Pictorial Structures +
Imperial College London
180 Queens Gate, SW7 2AZ, London, U.K. +
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
{e.antonakos, ja310, s.zafeiriou}@imperial.ac.uk +
1a031378cf1d2b9088a200d9715d87db8a1bf041Workshop track - ICLR 2018 +
DEEP DICTIONARY LEARNING: SYNERGIZING RE- +
CONSTRUCTION AND CLASSIFICATION +
('3362896', 'Shahin Mahdizadehaghdam', 'shahin mahdizadehaghdam')
('1733181', 'Ashkan Panahi', 'ashkan panahi')
('1769928', 'Hamid Krim', 'hamid krim')
{smahdiz,apanahi,ahk}@ncsu.edu & liyi.dai.civ@mail.mil +
1afd481036d57320bf52d784a22dcb07b1ca95e2The Computer Journal Advance Access published December 6, 2012 +
The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved
doi:10.1093/comjnl/bxs146 +
Automated Content Metadata Extraction +
Services Based on MPEG Standards +
D.C. Gibbon∗, Z. Liu, A. Basso and B. Shahraray +
AT&T Labs Research, Middletown, NJ, USA +
This paper is concerned with the generation, acquisition, standardized representation and transport +
of video metadata. The use of MPEG standards in the design and development of interoperable +
media architectures and web services is discussed. A high-level discussion of several algorithms +
for metadata extraction is presented. Some architectural and algorithmic issues encountered when +
designing services for real-time processing of video streams, as opposed to traditional offline media +
processing, are addressed. A prototype real-time video analysis system for generating MPEG-7 +
Audiovisual Description Profile from MPEG-2 transport stream encapsulated video is presented. +
Such a capability can enable a range of new services such as content-based personalization of live +
broadcasts given that the MPEG-7 based data models fit in well with specifications for advanced +
television services such as TV-Anytime andAlliance for Telecommunications Industry Solutions IPTV +
Interoperability Forum. +
Keywords: MPEG-7; MPEG-21; audiovisual description profile; video processing; automated metadata +
extraction; video metadata, real-time media processing +
Received 1 March 2012; revised 11 September 2012; accepted 9 October 2012 +
Handling editor: Marios Angelides +
1. +
INTRODUCTION +
Content descriptors have gained considerable prominence +
in the content ecosystem in the last decade. This growing +
significance stems from the fact that rich metadata promotes +
user engagement, enables fine-grained access to content and +
allows more intelligent and targeted access to content. +
Effective utilization of content descriptors involves three +
basic steps, namely generation, representation and transport. +
In traditional broadcasting, +
the generation of the content +
descriptions has been a manual process in which individuals +
would access the content and would index it according to +
specific rules (i.e. annotation guides). While in the past this +
was a viable option due to the limited amount of available +
content, with the large volumes of content that are generated +
today (e.g. YouTube uploads have currently surpassed 1 h of +
video every second), manual indexing is no longer a viable +
option. Research in multimedia content analysis has generated a +
variety of algorithms for content feature extraction in the visual, +
text, music and speech domains. Such algorithms provide +
descriptions with different levels of confidence and are often +
combined to improve their accuracy and descriptive power. +
Despite the enormous progress that has been made in this area, +
content description generation is not yet sufficiently advanced +
to be fully automated for all applications and types of content. +
However, for a subset of content types and certain applications, +
the current state of the art in automated content processing has +
proven sufficient. +
Another important consideration in effective and widespread +
utilization of content metadata is the adoption of appropriate +
representations for the metadata. Historically, the represen- +
tation of content metadata has been specialized to specific +
representation and service needs (i.e. the asset distribution +
interface from CableLabs for traditional paid video on demand +
services). Recently, in the context of MPEG, a standardization +
effort has been undertaken to create more general represen- +
tations of content descriptors that are independent of any +
particular application and to enable interoperability among +
metadata generation systems and applications. +
Finally, for a certain class of applications and services, +
real-time delivery or transport of metadata is critical, but +
is an area that is still in its infancy. For example, today’s +
systems for delivering television electronic program guide +
(EPG) information make efficient use of multicast delivery, +
but the data are largely static (the data may only change +
The Computer Journal, 2012 +
For Permissions, please email: journals.permissions@oup.com +
Corresponding author: dcg@research.att.com +
1a9337d70a87d0e30966ecd1d7a9b0bbc7be161f
1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6Deep Learning for Video Classification and Captioning +
Fudan University, 2Microsoft Research Asia, 3University of Maryland
1. Introduction +
Today’s digital contents are inherently multimedia: text, audio, image, +
video and etc. Video, in particular, becomes a new way of communication +
between Internet users with the proliferation of sensor-rich mobile devices. +
Accelerated by the tremendous increase in Internet bandwidth and storage +
space, video data has been generated, published and spread explosively, be- +
coming an indispensable part of today’s big data. This has encouraged the +
development of advanced techniques for a broad range of video understand- +
ing applications. A fundamental issue that underlies the success of these +
technological advances is the understanding of video contents. Recent ad- +
vances in deep learning in image [41, 68, 17, 50] and speech [21, 27] domain +
have encouraged techniques to learn robust video feature representations to +
effectively exploit abundant multimodal clues in video data. +
In this paper, we focus on reviewing two lines of research aiming to stimu- +
late the comprehension of videos with deep learning: video classification and +
video captioning. While video classification concentrates on automatically +
labeling video clips based on their semantic contents like human actions or +
complex events, video captioning attempts to generate a complete and nat- +
ural sentence, enriching the single label as in video classification, to capture +
the most informative dynamics in videos. +
There have been several efforts surveying literatures on video content +
understanding. Most of the approaches surveyed in these works adopted +
hand-crafted features coupled with typical machine learning pipelines for +
action recognition and event detection [1, 88, 61, 35]. In contrast, this paper +
focuses on discussing state-of-the-art deep learning techniques not only for +
video classification but also video captioning. As deep learning for video +
analysis is an emerging and vibrant field, we hope this paper could help +
stimulate future research along the line. +
('3099139', 'Zuxuan Wu', 'zuxuan wu')
('2053452', 'Ting Yao', 'ting yao')
('35782003', 'Yanwei Fu', 'yanwei fu')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
zxwu@cs.umd.edu, tiyao@microsoft.com, {ygj, yanweifu}@fudan.edu.cn +
1a9a192b700c080c7887e5862c1ec578012f9ed1IEEE TRANSACTIONS ON SYSTEM, MAN AND CYBERNETICS, PART B +
Discriminant Subspace Analysis for Face +
Recognition with Small Number of Training +
Samples +
('1844328', 'Hui Kong', 'hui kong')
('1786811', 'Xuchun Li', 'xuchun li')
('1752714', 'Matthew Turk', 'matthew turk')
('1708413', 'Chandra Kambhamettu', 'chandra kambhamettu')
1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9ARTICLE +
International Journal of Advanced Robotic Systems +
Face Recognition Under Illumination +
Variation Using Shadow Compensation +
and Pixel Selection +
Regular Paper +
Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea
Received 14 Jun 2012; Accepted 31 Aug 2012 +
DOI: 10.5772/52939 +
© 2012 Choi; licensee InTech. This is an open access article distributed under the terms of the Creative +
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, +
distribution, and reproduction in any medium, provided the original work is properly cited. +
to  other  +
features  +
for  +
face  +
retinal  or  +
is  similar  +
to  +
the  +
fingerprint,  +
image  +
taken  with  +
it  widely  applicable  +
illumination  variation.  By  using  +
('1737997', 'Sang-Il Choi', 'sang-il choi')* Corresponding author E-mail: choisi@dankook.ac.kr +
1a8ccc23ed73db64748e31c61c69fe23c48a2bb1Extensive Facial Landmark Localization +
with Coarse-to-fine Convolutional Network Cascade +
Megvii Inc. +
('1848243', 'Erjin Zhou', 'erjin zhou'){zej,fhq,czm,jyn,yq}@megvii.com +
1a40092b493c6b8840257ab7f96051d1a4dbfeb2Sports Videos in the Wild (SVW): A Video Dataset for Sports Analysis +
Michigan State University, East Lansing, MI, USA
2 TechSmith Corporation, Okemos, MI, USA +
('2941187', 'Seyed Morteza Safdarnejad', 'seyed morteza safdarnejad')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('1938832', 'Lalita Udpa', 'lalita udpa')
('40467330', 'Brooks Andrus', 'brooks andrus')
('1678721', 'John Wood', 'john wood')
('37008125', 'Dean Craven', 'dean craven')
1ad97cce5fa8e9c2e001f53f6f3202bddcefba22Grassmann Averages for Scalable Robust PCA +
DIKU and MPIs T¨ubingen∗ +
Denmark and Germany +
DTU Compute∗ +
Lyngby, Denmark +
('1808965', 'Aasa Feragen', 'aasa feragen')
('2142792', 'Søren Hauberg', 'søren hauberg')
aasa@diku.dk +
sohau@dtu.dk +
1a1118cd4339553ad0544a0a131512aee50cf7de
1a6c9ef99bf0ab9835a91fe5f1760d98a0606243ConceptMap: +
Mining Noisy Web Data for Concept Learning +
Bilkent University, 06800 Cankaya, Turkey
('2540074', 'Eren Golge', 'eren golge')
1afdedba774f6689eb07e048056f7844c9083be9Markov Random Field Structures for Facial Action Unit Intensity Estimation +
∗Department of Computing +
Imperial College London
180 Queen’s Gate +
London, UK +
†EEMCS +
University of Twente
7522 NB Enschede +
Netherlands +
('3007548', 'Georgia Sandbach', 'georgia sandbach')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{gls09,s.zafeiriou,m.pantic}@imperial.ac.uk +
1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43WANG AND MORI: MAX-MARGIN LATENT DIRICHLET ALLOCATION +
Max-Margin Latent Dirichlet Allocation for +
Image Classification and Annotation +
University
of Illinois at Urbana Champaign +
School of Computing Science, Simon +
Fraser University
('40457160', 'Yang Wang', 'yang wang')
('10771328', 'Greg Mori', 'greg mori')
yangwang@uiuc.edu +
mori@cs.sfu.ca +
1a7a2221fed183b6431e29a014539e45d95f0804Person Identification Using Text and Image Data +
David S. Bolme, J. Ross Beveridge and Adele E. Howe +
Computer Science Department +
Colorado State Univeristy +
Fort Collins, Colorado 80523 +
[bolme,ross,howe]@cs.colostate.edu +
1a5b39a4b29afc5d2a3cd49087ae23c6838eca2bCompetitive Game Designs for Improving the Cost +
Effectiveness of Crowdsourcing +
L3S Research Center, Hannover, Germany
('2993225', 'Markus Rokicki', 'markus rokicki')
('3257370', 'Sergiu Chelaru', 'sergiu chelaru')
('2553718', 'Sergej Zerr', 'sergej zerr')
('1745880', 'Stefan Siersdorfer', 'stefan siersdorfer')
{rokicki,chelaru,siersdorfer,zerr}@L3S.de +
2878b06f3c416c98496aad6fc2ddf68d2de5b8f6Available online at www.sciencedirect.com +
Computer Vision and Image Understanding 110 (2008) 91–101 +
www.elsevier.com/locate/cviu +
Two-stage optimal component analysis +
Florida State University, Tallahassee, FL 32306, USA
Florida State University, Tallahassee, FL 32306, USA
c School of Computational Science, Florida State University, Tallahassee, FL 32306, USA
Received 26 September 2006; accepted 30 April 2007 +
Available online 8 June 2007 +
('2207859', 'Yiming Wu', 'yiming wu')
('1800002', 'Xiuwen Liu', 'xiuwen liu')
('2436294', 'Washington Mio', 'washington mio')
287795991fad3c61d6058352879c7d7ae1fdd2b6International Journal of Computer Applications (0975 – 8887) +
Volume 66– No.8, March 2013 +
Biometrics Security: Facial Marks Detection from the +
Low Quality Images +
and facial marks are detected using LoG with morphological +
operator. This method though was not enough to detect the +
facial marks from the low quality images [7]. But, facial +
marks have been used to speed up the retrieval process in +
order to differentiate the human faces [15]. +
B.S.Abdur Rahman University B.S.Abdur Rahman University
Dept. Of Information Technology Dept. Of Computer Science & Engineering +
Chennai, India Chennai, India +
+
('9401261', 'Ziaul Haque Choudhury', 'ziaul haque choudhury')
28a900a07c7cbce6b6297e4030be3229e094a950382 The International Arab Journal of Information Technology, Vol. 9, No. 4, July 2012 +
Local Directional Pattern Variance (LDPv): A +
Robust Feature Descriptor for Facial +
Expression Recognition +
Kyung Hee University, South Korea
('3182680', 'Taskeed Jabid', 'taskeed jabid')
('1685505', 'Oksam Chae', 'oksam chae')
282503fa0285240ef42b5b4c74ae0590fe169211Feeding Hand-Crafted Features for Enhancing the Performance of +
Convolutional Neural Networks +
Seoul National University
Seoul Nat’l Univ. +
Seoul National University
('35453923', 'Sepidehsadat Hosseini', 'sepidehsadat hosseini')
('32193683', 'Seok Hee Lee', 'seok hee lee')
('1707645', 'Nam Ik Cho', 'nam ik cho')
sepid@ispl.snu.ac.kr +
seokheel@snu.ac.kr +
nicho@snu.ac.kr +
28e0ed749ebe7eb778cb13853c1456cb6817a166
28b9d92baea72ec665c54d9d32743cf7bc0912a7
283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43BAYESIAN DATA ASSOCIATION FOR TEMPORAL SCENE +
UNDERSTANDING +
by +
A Dissertation Submitted to the Faculty of the +
DEPARTMENT OF COMPUTER SCIENCE +
In Partial Fulfillment of the Requirements +
For the Degree of +
DOCTOR OF PHILOSOHPY +
In the Graduate College
THE UNIVERSITY OF ARIZONA
2013 +
('10399726', 'Ernesto Brau Avila', 'ernesto brau avila')
28d7029cfb73bcb4ad1997f3779c183972a406b4Discriminative Nonlinear Analysis Operator +
Learning: When Cosparse Model Meets Image +
Classification +
('2833510', 'Zaidao Wen', 'zaidao wen')
('1940528', 'Biao Hou', 'biao hou')
('1734497', 'Licheng Jiao', 'licheng jiao')
280d59fa99ead5929ebcde85407bba34b1fcfb59978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2662 +
ICASSP 2016 +
28f5138d63e4acafca49a94ae1dc44f7e9d84827Journal of Machine Learning Research xx (2012) xx-xx +
Submitted xx/xx; Published xx/xx +
MahNMF: Manhattan Non-negative Matrix Factorization +
Center for Quantum Computation and Intelligent Systems +
Faculty of Engineering and Information Technology +
University of Technology, Sydney
Sydney, NSW 2007, Australia +
Center for Quantum Computation and Intelligent Systems +
Faculty of Engineering and Information Technology +
University of Technology, Sydney
Sydney, NSW 2007, Australia +
School of Computer Science +
National University of Defense Technology
Changsha, Hunan 410073, China +
Centre for Computational Statistics and Machine Learning (CSML) +
Department of Computer Science +
University College London
Gower Street, London WC1E 6BT, United Kingdom +
Editor: xx +
('2067095', 'Naiyang Guan', 'naiyang guan')
('1692693', 'Dacheng Tao', 'dacheng tao')
('1764542', 'Zhigang Luo', 'zhigang luo')
('1792322', 'John Shawe-Taylor', 'john shawe-taylor')
Guan.Naiyang@uts.edu.au +
dacheng.tao@uts.edu.au +
zgluo@nudt.edu.cn +
J.Shawe-Taylor@cs.ucl.ac.uk +
28e1668d7b61ce21bf306009a62b06593f1819e3RESEARCH ARTICLE +
Validation of the Amsterdam Dynamic Facial +
Expression Set – Bath Intensity Variations +
(ADFES-BIV): A Set of Videos Expressing Low, +
Intermediate, and High Intensity Emotions +
University of Bath, Bath, United Kingdom
☯ These authors contributed equally to this work. +
('7249951', 'Tanja S. H. Wingenbach', 'tanja s. h. wingenbach')
('2708124', 'Chris Ashwin', 'chris ashwin')
('39455300', 'Mark Brosnan', 'mark brosnan')
* tshw20@bath.ac.uk +
28cd46a078e8fad370b1aba34762a874374513a5CVPAPER.CHALLENGE IN 2016, JULY 2017 +
cvpaper.challenge in 2016: Futuristic Computer +
Vision through 1,600 Papers Survey +
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('1713046', 'Yun He', 'yun he')
('9935341', 'Shunya Ueta', 'shunya ueta')
('5014206', 'Teppei Suzuki', 'teppei suzuki')
('3408038', 'Kaori Abe', 'kaori abe')
('2554424', 'Asako Kanezaki', 'asako kanezaki')
('22219521', 'Toshiyuki Yabe', 'toshiyuki yabe')
('10800402', 'Yoshihiro Kanehara', 'yoshihiro kanehara')
('22174281', 'Hiroya Yatsuyanagi', 'hiroya yatsuyanagi')
('1692565', 'Shinya Maruyama', 'shinya maruyama')
('3217653', 'Masataka Fuchida', 'masataka fuchida')
('2642022', 'Yudai Miyashita', 'yudai miyashita')
('34935749', 'Kazushige Okayasu', 'kazushige okayasu')
('20505300', 'Yuta Matsuzaki', 'yuta matsuzaki')
286adff6eff2f53e84fe5b4d4eb25837b46cae23Single-Image Depth Perception in the Wild +
University of Michigan, Ann Arbor
('1732404', 'Weifeng Chen', 'weifeng chen')
('8342699', 'Jia Deng', 'jia deng')
('2097755', 'Zhao Fu', 'zhao fu')
('2500067', 'Dawei Yang', 'dawei yang')
{wfchen,zhaofu,ydawei,jiadeng}@umich.edu +
286812ade95e6f1543193918e14ba84e5f8e852eDOU, WU, SHAH, KAKADIARIS: 3D FACE RECONSTRUCTION FROM 2D LANDMARKS +
Robust 3D Face Shape Reconstruction from +
Single Images via Two-Fold Coupled +
Structure Learning +
Computational Biomedicine Lab +
Department of Computer Science +
University of Houston
Houston, TX, USA +
('39634395', 'Pengfei Dou', 'pengfei dou')
('2461369', 'Yuhang Wu', 'yuhang wu')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
bensondou@gmail.com +
yuhang@cbl.uh.edu +
sshah@central.uh.edu +
ioannisk@uh.edu +
282a3ee79a08486f0619caf0ada210f5c3572367
288dbc40c027af002298b38954d648fddd4e2fd3
28f311b16e4fe4cc0ff6560aae3bbd0cb6782966Learning Language from Perceptual Context +
Department of Computer Science +
University of Texas at Austin
David L. Chen +
Austin, TX 78712 +
Doctoral Dissertation Proposal +
('1797655', 'Raymond J. Mooney', 'raymond j. mooney')dlcc@cs.utexas.edu +
28312c3a47c1be3a67365700744d3d6665b86f22
28d06fd508d6f14cd15f251518b36da17909b79eWhat’s in a Name? First Names as Facial Attributes +
Stanford University
Cornell University
Stanford University
('2896700', 'Huizhong Chen', 'huizhong chen')
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('1739786', 'Bernd Girod', 'bernd girod')
hchen2@stanford.edu +
andrew.c.gallagher@cornell.edu +
bgirod@stanford.edu +
28b5b5f20ad584e560cd9fb4d81b0a22279b2e7bA New Fuzzy Stacked Generalization Technique +
and Analysis of its Performance +
('2159942', 'Mete Ozay', 'mete ozay')
('7158165', 'Fatos T. Yarman Vural', 'fatos t. yarman vural')
281486d172cf0c78d348ce7d977a82ff763efccdMining a Deep And-OR Object Semantics from Web Images via Cost-Sensitive +
Question-Answer-Based Active Annotations +
Shanghai Jiao Tong University
University of California, Los Angeles
cid:107)Chongqing University of Posts and Telecommunications
('22063226', 'Quanshi Zhang', 'quanshi zhang')
('39092098', 'Ying Nian Wu', 'ying nian wu')
('3133970', 'Song-Chun Zhu', 'song-chun zhu')
288964068cd87d97a98b8bc927d6e0d2349458a2Mean-Variance Loss for Deep Age Estimation from a Face +
1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100049, China
3CAS Center for Excellence in Brain Science and Intelligence Technology +
('34393045', 'Hu Han', 'hu han')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
hongyu.pan@vipl.ict.ac.cn, {hanhu,sgshan,xlchen}@ict.ac.cn +
28bc378a6b76142df8762cd3f80f737ca2b79208Understanding Objects in Detail with Fine-grained Attributes +
Ross Girshick5 +
David Weiss7 +
('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
('2585200', 'Siddharth Mahendran', 'siddharth mahendran')
('2381485', 'Stavros Tsogkas', 'stavros tsogkas')
('35208858', 'Subhransu Maji', 'subhransu maji')
('1776374', 'Juho Kannala', 'juho kannala')
('2827962', 'Esa Rahtu', 'esa rahtu')
('1758219', 'Matthew B. Blaschko', 'matthew b. blaschko')
('1685978', 'Ben Taskar', 'ben taskar')
('2362960', 'Naomi Saphra', 'naomi saphra')
('2920190', 'Sammy Mohamed', 'sammy mohamed')
('2010660', 'Iasonas Kokkinos', 'iasonas kokkinos')
('34838386', 'Karen Simonyan', 'karen simonyan')
287900f41dd880802aa57f602e4094a8a9e5ae56
28c0cb56e7f97046d6f3463378d084e9ea90a89aAutomatic Face Recognition for Film Character Retrieval in Feature-Length +
Films +
Ognjen Arandjelovi´c +
University of Oxford, UK
('1688869', 'Andrew Zisserman', 'andrew zisserman')E-mail: oa214@cam.ac.uk,az@robots.ox.ac.uk +
28be652db01273289499bc6e56379ca0237506c0FaLRR: A Fast Low Rank Representation Solver +
School of Computer Engineering, Nanyang Technological University, Singapore
of Engineering and Information Technology, University of Technology, Sydney, Australia
‡Centre for Quantum Computation & Intelligent Systems and the Faculty +
In this paper, we develop a fast solver of low rank representation (LRR) [3] +
called FaLRR, which achieves order-of-magnitude speedup over existing +
LRR solvers, and is theoretically guaranteed to obtain a global optimum. +
LRR [3] has shown promising performance for various computer vision +
applications such as face clustering. Let X = [x1, . . . ,xn] ∈ Rd×n be a set +
of data samples drawn from a union of several subspaces, where d is the +
feature dimension and n is the total number of data samples. LRR seeks +
a low-rank data representation matrix Z ∈ Rn×n such that X can be self- +
expressed (i.e., X = XZ) when the data is clean. Considering that input +
data may contain outliers (i.e., some columns of X are corrupted), the LRR +
problem can be formulated as, +
(cid:107)Z(cid:107)∗ + λ(cid:107)E(cid:107)2,1 +
min +
Z,E +
s.t. X = XZ + E, +
(1) +
where λ is a tradeoff parameter and E ∈ Rd×n denotes the representation +
error. The nuclear norm based term (cid:107)Z(cid:107)∗ acts as an approximation of the +
rank regularizer, and the (cid:96)2,1 norm based term (cid:107)E(cid:107)2,1 encourages E to be +
column-sparse. +
Regarding optimization, several algorithms [2, 3, 4] were proposed to +
exactly solve LRR. Moreover, to efficiently obtain an approximated solution +
of LRR, a distributed framework [5] was developed. However, the existing +
algorithms are usually based on the original formulation in (1) or a similar +
variant [4], which are two-variable problems with regard to the original data +
matrix. In this paper, we develop a fast LRR solver named FaLRR, which +
is based on a new reformulation of LRR as an optimization problem with +
regard to factorized data (which is obtained by skinny SVD on the original +
data matrix). +
Reformulation. Specifically, we study a more general formulation of +
LRR as follows, +
min +
Z∈Rn×m,E∈Rd×m +
(cid:107)Z(cid:107)∗ + λ(cid:107)E(cid:107)2,1 +
s.t. XD = XZ + E +
(2) +
rUr = V(cid:48) +
which includes (1) as a special case. Let r denote the rank of X. More- +
over, let us factorize X via the skinny singular value decomposition (SVD): +
X = UrSrV(cid:48) +
r, where Ur ∈ Rd×r and Vr ∈ Rn×r are two column-wise orthog- +
onal matrices that satisfy U(cid:48) +
rVr = Ir, Sr ∈ Rr×r is a diagonal matrix +
defined as Sr = diag([σ1, . . . ,σr](cid:48)), in which {σi}r +
i=1 are the r positive sin- +
gular values of X sorted in descending order. Based on the definitions above, +
we present the reformulation by the following theorem: +
Theorem 1 Let W∗ denote an optimal solution of the following problem, +
(3) +
Then, {Z∗,E∗}, defined as Z∗ = VrW∗ and E∗ = XD− XVrW∗, is an op- +
timal solution of the problem in (2). In particular, (cid:107)Z∗(cid:107)∗ = (cid:107)W∗(cid:107)∗ and +
(cid:107)E∗(cid:107)2,1 = (cid:107)Sr(V(cid:48) +
rD−W∗)(cid:107)2,1 always hold, implying that the two problems +
in (2) and (3) have equal optimal objective values. +
(cid:107)W(cid:107)∗ + λ(cid:107)Sr(V(cid:48) +
rD− W)(cid:107)2,1 . +
min +
W∈Rr×m +
Optimization. In terms of optimization, we rewrite the problem in (3) +
as follows by introducing another variable Q ∈ Rr×m: +
min +
W,Q∈Rr×m +
(cid:107)W(cid:107)∗ + λ(cid:107)SrQ(cid:107)2,1 +
s.t. W + Q = V(cid:48) +
rD, +
(4) +
and develop an efficient algorithm based on the alternating direction method +
(ADM) [1, 2], in which both resultant subproblems can be solved exactly. +
The corresponding augmented Lagrangian [1] w.r.t. (4) is +
Lρ (W,Q,L) +
= (cid:107)W(cid:107)∗ + λ(cid:107)SrQ(cid:107)2,1 +(cid:10)L,V(cid:48) +
rD− W− Q(cid:11) + +
(cid:107)V(cid:48) +
rD− W− Q(cid:107)2 +
F , +
('2518469', 'Shijie Xiao', 'shijie xiao')
('12135788', 'Wen Li', 'wen li')
('38188040', 'Dong Xu', 'dong xu')
('1692693', 'Dacheng Tao', 'dacheng tao')
28bcf31f794dc27f73eb248e5a1b2c3294b3ec9dInternational Journal of Computer Applications (0975 – 8887) +
Volume 96– No.13, June 2014 +
Improved Combination of LBP plus LFDA for Facial +
Expression Recognition using SRC +
Research Scholar, CSE Department, +
Government College of Engineering, Aurangabad
human +
facial +
expression +
recognition +
2836d68c86f29bb87537ea6066d508fde838ad71Personalized Age Progression with Aging Dictionary +
School of Computer Science and Engineering, Nanjing University of Science and Technology
National University of Singapore
Figure 1. A personalized aging face by the proposed method. The personalized aging face contains the aging layer (e.g., +
wrinkles) and the personalized layer (e.g., mole). The former can be seen as the corresponding face in a linear combination +
of the aging patterns, while the latter is invariant in the aging process. For better view, please see ×3 original color PDF. +
('2287686', 'Xiangbo Shu', 'xiangbo shu')
('8053308', 'Jinhui Tang', 'jinhui tang')
('2356867', 'Hanjiang Lai', 'hanjiang lai')
('1776665', 'Luoqi Liu', 'luoqi liu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
{shuxb104,laihanj}@gmail.com, jinhuitang@njust.edu.cn, {liuluoqi, eleyans}@nus.edu.sg +
28de411a5b3eb8411e7bcb0003c426aa91f33e97 Volume 4, Issue 4, April 2014 ISSN: 2277 128X +
International Journal of Advanced Research in +
Computer Science and Software Engineering +
Research Paper +
Available online at: www.ijarcsse.com +
Emotion Detection Using Facial Expressions -A Review +
+
Department of computer science and Application +
M Tech Student +
Department of computer science and Application +
Assistant professor +
Kurukshetra University, Kurukshetra
Kurukshetra University, Kurukshetra
Haryana (India) +
+
Haryana (India) +
('2234813', 'Jyoti Rani', 'jyoti rani')
('39608299', 'Kanwal Garg', 'kanwal garg')
28b26597a7237f9ea6a9255cde4e17ee18122904Cerebral Cortex September 2015;25:2876–2882 +
doi:10.1093/cercor/bhu083 +
Advance Access publication April 25, 2014 +
Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus +
1MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK and 2Wellcome Centre for Imaging Neuroscience, +
University College London, 12 Queen Square, London WC1N 3BG, UK
The superior temporal sulcus (STS) in the human and monkey is sen- +
sitive to the motion of complex forms such as facial and bodily +
actions. We used functional magnetic resonance imaging (fMRI) to +
explore network-level explanations for how the form and motion +
information in dynamic facial expressions might be combined in the +
human STS. Ventral occipitotemporal areas selective for facial form +
were localized in occipital and fusiform face areas (OFA and FFA), +
and motion sensitivity was localized in the more dorsal temporal +
area V5. We then tested various connectivity models that modeled +
communication between the ventral form and dorsal motion path- +
ways. We show that facial form information modulated transmission +
of motion information from V5 to the STS, and that this face- +
selective modulation likely originated in OFA. This finding shows that +
form-selective motion sensitivity in the STS can be explained in +
terms of modulation of gain control on information flow in the motion +
pathway, and provides a substantial constraint for theories of the +
perception of faces and biological motion. +
Keywords: biological motion, dynamic causal modeling, face perception, +
functional magnetic resonance imaging, superior temporal sulcus +
Introduction +
Humans and other animals effortlessly recognize facial iden- +
tities and actions such as emotional expressions even when +
faces continuously move. Brain representations of dynamic +
faces may be manifested as greater responses in the superior +
temporal sulcus (STS) to facial motion than motion of nonface +
objects (Pitcher et al. 2011), suggesting localized representa- +
tions that combine information about motion and facial form. +
This finding relates to a considerable literature on “biological +
motion,” which studies how the complex forms of bodily actions +
are perceived from only the motion of light points fixed to limb +
joints, with form-related texture cues removed (Johansson 1973). +
Perception of such stimuli has been repeatedly associated with +
the human posterior STS (Vaina et al. 2001; Vaina and Gross +
2004; Giese and Poggio 2003; Hein and Knight 2008; Jastorff +
and Orban 2009) with similar results observed in potentially cor- +
responding areas of the macaque STS (Oram and Perrett 1994; +
Jastorff et al. 2012). The STS has been described as integrating +
form and motion information (Vaina et al. 2001; Giese and +
Poggio 2003), containing neurons that code for conjunctions of +
certain forms and movements (Oram and Perrett 1996). Never- +
theless, the mechanisms by which STS neurons come to be sensi- +
tive to the motion of some forms, but not others, remains a +
matter of speculation (Giese and Poggio 2003). +
We propose that network interactions can provide a mech- +
anistic explanation for STS sensitivity to motion that is selective +
to certain forms, in this case, faces. Specifically, STS responses +
to dynamic faces could result from communicative interactions +
between pathways sensitive to motion and facial form. Such in- +
teractions can occur when one pathway modulates or “gates” +
the ability of the other pathway to transmit information to the +
STS. Using functional magnetic resonance imaging (fMRI), we +
localized face-selective motion sensitivity in the STS of the +
human and then used causal connectivity analyses to model +
how these STS responses are influenced by areas sensitive to +
motion and areas selective to facial form. We localized ventral +
occipital and fusiform face areas (OFA and FFA) (Kanwisher +
et al. 1997), which selectively respond to facial form versus +
other objects (Calder and Young 2005; Calder 2011). We also +
localized motion sensitivity to faces and nonfaces in the more +
dorsal temporal hMT+/V5 complex (hereafter, V5). Together, +
these areas provide ventral and dorsal pathways to the STS. +
The ventral pathway transmits facial form information, via OFA +
and FFA, and the dorsal pathway transmits motion informa- +
tion, via V5. We then compared combinations of bilinear and +
nonlinear dynamic causal models (Friston et al. 2003) to iden- +
tify connectivity models that optimally explain how interac- +
tions between these form and motion pathways could generate +
STS responses to dynamic faces. We found that information +
about facial form, most likely originating in the OFA, gates the +
transmission of information about motion from V5 to the STS. +
Thus, integrated facial form and motion information in the STS +
can arise due to network interactions, where form and motion +
pathways play distinct roles. +
Materials and Methods +
Participants +
fMRI data were collected from 18 healthy, right-handed participants +
(over 18 years, 13 females) with normal or corrected-to-normal vision. +
Experimental procedures were approved by the Cambridge Psych- +
ology Research Ethics Committee. +
Imaging Acquisition +
A 3T Siemens Tim Trio MRI scanner with a 32-channel head coil was +
used for data acquisition. We collected a structural T1-weighted MPRAGE +
image (1-mm isotropic voxels). Functional data consisted of whole-brain +
T2*-weighted echo-planar imaging volumes with 32 oblique axial slices +
that were 3.5 mm thick, in-plane 64 × 64 matrix with resolution of 3 × 3 +
mm, TR 2 s, TE 30 ms, flip angle 78°. We discarded the first 5 “dummy” +
volumes to ensure magnetic equilibration. +
Experimental Design +
The experiment used a block design with 2 runs (229 scans per run), +
which were collected as the localizer for another experiment (Furl, +
Henson, et al. 2013). Note that the dynamic causal modeling (DCM) +
analyses reported in Furl, Henson et al. (2013) used independent data +
(from separate runs using different stimuli) to address a different phe- +
nomenon than considered here. All blocks were 11 s, comprised +
The Author 2014. Published by Oxford University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted +
reuse, distribution, and reproduction in any medium, provided the original work is properly cited. +
('3162581', 'Nicholas Furl', 'nicholas furl')
('1690599', 'Richard N. Henson', 'richard n. henson')
('1737497', 'Karl J. Friston', 'karl j. friston')
('2825775', 'Andrew J. Calder', 'andrew j. calder')
('3162581', 'Nicholas Furl', 'nicholas furl')
UK. E-mail: nick.furl@mrc-cbu.cam.ac.uk +
28fe6e785b32afdcd2c366c9240a661091b850cfInternational Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 +
Foundation of Computer Science FCS, New York, USA +
Volume 10 – No.7, March 2016 – www.ijais.org +
Facial Expression Recognition using Patch based Gabor +
Features +
Electronics & Telecommunication Engg +
Electronics & Telecommunication Engg +
St. Francis Institute of Technology
St. Francis Institute of Technology
Department +
Mumbai, India +
Department +
Mumbai, India +
('40187425', 'Vaqar Ansari', 'vaqar ansari')
('9390824', 'Anju Chandran', 'anju chandran')
28c9198d30447ffe9c96176805c1cd81615d98c8rsos.royalsocietypublishing.org +
Research +
Cite this article: Saunders TJ, Taylor AH, +
Atkinson QD. 2016 No evidence that a range of +
artificial monitoring cues influence online +
donations to charity in an MTurk sample. +
R. Soc. open sci. 3: 150710. +
http://dx.doi.org/10.1098/rsos.150710 +
Received: 22 December 2015 +
Accepted: 13 September 2016 +
Subject Category: +
Psychology and cognitive neuroscience +
Subject Areas: +
behaviour/psychology/evolution +
Keywords: +
prosociality, eye images, charity donation, +
reputation, online behaviour +
Author for correspondence: +
Quentin D. Atkinson +
No evidence that a range of +
artificial monitoring cues +
influence online donations +
to charity in an MTurk +
sample +
Timothy J. Saunders, Alex H. Taylor and +
Quentin D. Atkinson +
School of Psychology, University of Auckland, Auckland, New Zealand
AHT, 0000-0003-3492-7667 +
Monitoring cues, such as an image of a face or pair of +
eyes, have been found to increase prosocial behaviour in +
several studies. However, other studies have found little +
or no support for this effect. Here, we examined whether +
monitoring cues affect online donations to charity while +
manipulating the emotion displayed, the number of watchers +
and the cue type. We also include as statistical controls a +
range of likely covariates of prosocial behaviour. Using the +
crowdsourcing Internet marketplace, Amazon Mechanical Turk +
(MTurk), 1535 participants completed our survey and were +
given the opportunity to donate to charity while being shown +
an image prime. None of the monitoring primes we tested +
had a significant effect on charitable giving. By contrast, the +
control variables of culture, age, sex and previous charity +
giving frequency did predict donations. This work supports +
the importance of cultural differences and enduring individual +
differences in prosocial behaviour and shows that a range of +
artificial monitoring cues do not reliably boost online charity +
donation on MTurk. +
Introduction +
1. +
Humans care deeply about their reputations [1]. If we know +
our choices will be made public, we act more prosocially [2–6]. +
Recent work has shown that simple but evolutionarily significant +
artificial monitoring cues, such as an image of a pair of eyes, +
can promote cooperation [7–22]. While an image alone cannot +
monitor behaviour, the evolutionary legacy hypothesis holds that +
humans possess an evolved proximate mechanism that causes us +
to react to monitoring cues as if our reputations are at stake [9]. +
Work using a range of economic games has shown that people act +
2016 The Authors. Published by the Royal Society under the terms of the Creative Commons +
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted +
use, provided the original author and source are credited. +
e-mail: q.atkinson@auckland.ac.nz +
28d4e027c7e90b51b7d8908fce68128d1964668a
2866cbeb25551257683cf28f33d829932be651feIn Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP) +
The final publication is available at: http://dx.doi.org/10.1109/ICIP.2018.8451026 +
A TWO-STEP LEARNING METHOD FOR DETECTING LANDMARKS +
ON FACES FROM DIFFERENT DOMAINS +
Erickson R. Nascimento +
Universidade Federal de Minas Gerais (UFMG), Brazil +
('2749017', 'Bruna Vieira Frade', 'bruna vieira frade'){brunafrade, erickson}@dcc.ufmg.br +
28d99dc2d673d62118658f8375b414e5192eac6fUsing Ranking-CNN for Age Estimation +
1Department of Computer Science +
2Department of Mathematics +
3Research & Innovation Center +
Wayne State University
Wayne State University
Ford Motor Company +
('15841224', 'Shixing Chen', 'shixing chen')
('28887876', 'Jialiang Le', 'jialiang le')
{schen, czhang, mdong}@wayne.edu +
{jle1, mrao}@ford.com +
280bc9751593897091015aaf2cab39805768b463U.U.Tariq et al. / Carpathian Journal of Electronic and Computer Engineering 6/1 (2013) 8-15 8 +
________________________________________________________________________________________________________ +
Gender Perception From Faces Using Boosted LBPH +
(Local Binary Patten Histograms) +
COMSATS Institute of Information Technology
Department of Electrical Engineering +
Abbottabad, Pakistan +
+
Umair_tariq29@yahoo.com +
28aa89b2c827e5dd65969a5930a0520fdd4a3dc7
28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68Predicting User Annoyance Using Visual Attributes +
Virginia Tech +
Goibibo +
Virginia Tech +
Virginia Tech +
('1755657', 'Gordon Christie', 'gordon christie')
('2076800', 'Amar Parkash', 'amar parkash')
('3051209', 'Ujwal Krothapalli', 'ujwal krothapalli')
('1713589', 'Devi Parikh', 'devi parikh')
gordonac@vt.edu +
amar08007@iiitd.ac.in +
ujjwal@vt.edu +
parikh@vt.edu +
288d2704205d9ca68660b9f3a8fda17e18329c13Studying Very Low Resolution Recognition Using Deep Networks +
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
('2969311', 'Zhangyang Wang', 'zhangyang wang')
('3307026', 'Shiyu Chang', 'shiyu chang')
('2680237', 'Yingzhen Yang', 'yingzhen yang')
('1771885', 'Ding Liu', 'ding liu')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
{zwang119, chang87, yyang58, dingliu2, t-huang1}@illinois.edu +
17b46e2dad927836c689d6787ddb3387c6159eceGeoFaceExplorer: Exploring the Geo-Dependence of +
Facial Attributes +
University of Kentucky
UNC Charlotte +
UNC Charlotte +
University of Kentucky
('2121759', 'Connor Greenwell', 'connor greenwell')
('1690110', 'Richard Souvenir', 'richard souvenir')
('1715594', 'Scott Spurlock', 'scott spurlock')
('1990750', 'Nathan Jacobs', 'nathan jacobs')
csgr222@uky.edu +
souvenir@uncc.edu +
sspurloc@uncc.edu +
jacobs@cs.uky.edu +
17a85799c59c13f07d4b4d7cf9d7c7986475d01cADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents +
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha +
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats +
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats +
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la +
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de +
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita +
de parts de la tesi és obligat indicar el nom de la persona autora. +
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes +
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha +
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos +
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción +
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. +
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). +
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus +
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la +
persona autora. +
WARNING. On having consulted this thesis you’re accepting the following use conditions: +
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the +
titular of the intellectual property rights only for private uses placed in investigation and teaching +
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability +
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the +
TDX service is not authorized (framing). This rights affect to the presentation summary of the +
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate +
the name of the author +
1768909f779869c0e83d53f6c91764f41c338ab5A Large-Scale Car Dataset for Fine-Grained Categorization and Verification +
The Chinese University of Hong Kong
Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences, Shenzhen, China +
('2889075', 'Linjie Yang', 'linjie yang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1717179', 'Chen Change Loy', 'chen change loy')
('1693209', 'Ping Luo', 'ping luo')
{yl012,pluo,ccloy,xtang}@ie.cuhk.edu.hk +
171ca25bc2cdfc79cad63933bcdd420d35a541abCalibration-Free Gaze Estimation Using Human Gaze Patterns +
University of Amsterdam
Amsterdam, The Netherlands +
('1765602', 'Fares Alnajar', 'fares alnajar')
('1695527', 'Theo Gevers', 'theo gevers')
('9301018', 'Roberto Valenti', 'roberto valenti')
('1682828', 'Sennay Ghebreab', 'sennay ghebreab')
{f.alnajar,th.gevers,r.valenti,s.ghebreab}@uva.nl +
176bd61cc843d0ed6aa5af83c22e3feb13b89fe114 +
Investigating Spontaneous Facial Action +
Recognition through +
AAM Representations of the Face +
Carnegie Mellon University
USA +
1. Introduction +
The Facial Action Coding System (FACS) [Ekman et al., 2002] is the leading method for +
measuring facial movement in behavioral science. FACS has been successfully applied, but +
not limited to, identifying the differences between simulated and genuine pain, differences +
betweenwhen people are telling the truth versus lying, and differences between suicidal and +
non-suicidal patients [Ekman and Rosenberg, 2005]. Successfully recognizing facial actions +
is recognized as one of the “major” hurdles to overcome, for successful automated +
expression recognition. +
How one should represent the face for effective action unit recognition is the main topic of +
interest in this chapter. This interest is motivated by the plethora of work in existence in +
other areas of face analysis, such as face recognition [Zhao et al., 2003], that demonstrate the +
benefit of representation when performing recognition tasks. It is well understood in the +
field of statistical pattern recognition [Duda et al., 2001] given a fixed classifier and training +
set that how one represents a pattern can greatly effect recognition performance. The face +
can be represented in a myriad of ways. Much work in facial action recognition has centered +
solely on the appearance (i.e., pixel values) of the face given quite a basic alignment (e.g., +
eyes and nose). In our work we investigate the employment of the Active Appearance +
Model (AAM) framework [Cootes et al., 2001, Matthews and Baker, 2004] in order to derive +
effective representations for facial action recognition. Some of the representations we will be +
employing can be seen in Figure 1. +
Experiments in this chapter are run across two action unit databases. The Cohn- Kanade +
FACS-Coded Facial Expression Database [Kanade et al., 2000] is employed to investigate the +
effect of face representation on posed facial action unit recognition. Posed facial actions are +
those that have been elicited by asking subjects to deliberately make specific facial actions or +
expressions. Facial actions are typically recorded under controlled circumstances that +
include full-face frontal view, good lighting, constrained head movement and selectivity in +
terms of the type and magnitude of facial actions. Almost all work in automatic facial +
expression analysis has used posed image data and the Cohn-Kanade database may be the +
database most widely used [Tian et al., 2005]. The RU-FACS Spontaneous Expression +
Database is employed to investigate how these same representations affect spontaneous facial +
action unit recognition. Spontaneous facial actions are representative of “real-world” facial +
Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007 +
('1820249', 'Simon Lucey', 'simon lucey')
('2640279', 'Ahmed Bilal Ashraf', 'ahmed bilal ashraf')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
17d01f34dfe2136b404e8d7f59cebfb467b72b26Riemannian Similarity Learning +
Bioinformatics Institute, A*STAR, Singapore
School of Computing, National University of Singapore, Singapore
('39466179', 'Li Cheng', 'li cheng')chengli@bii.a-star.edu.sg +
176f26a6a8e04567ea71677b99e9818f8a8819d0MEG: Multi-Expert Gender classification from +
face images in a demographics-balanced dataset +
('1763890', 'Maria De Marsico', 'maria de marsico')
('1795333', 'Michele Nappi', 'michele nappi')
('1772512', 'Daniel Riccio', 'daniel riccio')
1Universidad de Las Palmas de Gran Canaria, Spain. Email: mcastrillon@siani.es +
2Sapienza University of Rome, Italy. Email: demarsico@di.uniroma1.it +
3University of Salerno, Fisciano (SA), Italy. Email: mnappi@unisa.it +
4University of Naples Federico II, Italy, Email: daniel.riccio@unina.it +
17cf838720f7892dbe567129dcf3f7a982e0b56eGlobal-Local Face Upsampling Network +
Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA
('2577513', 'Oncel Tuzel', 'oncel tuzel')
('2066068', 'Yuichi Taguchi', 'yuichi taguchi')
('2387467', 'John R. Hershey', 'john r. hershey')
17035089959a14fe644ab1d3b160586c67327db2
17370f848801871deeed22af152489e39b6e1454UNDERSAMPLED FACE RECOGNITION WITH ONE-PASS DICTIONARY LEARNING +
Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
('2017922', 'Chia-Po Wei', 'chia-po wei')
('2733735', 'Yu-Chiang Frank Wang', 'yu-chiang frank wang')
{cpwei, ycwang}@citi.sinica.edu.tw +
178a82e3a0541fa75c6a11350be5bded133a59fdTechset Composition Ltd, Salisbury +
Doc: +
{IEE}BMT/Articles/Pagination/BMT20140045.3d +
www.ietdl.org +
Received on 15th July 2014 +
Revised on 17th September 2014 +
Accepted on 23rd September 2014 +
doi: 10.1049/iet-bmt.2014.0045 +
ISSN 2047-4938 +
BioHDD: a dataset for studying biometric +
identification on heavily degraded data +
IT Instituto de Telecomunica es, University of Beira Interior, Covilh , Portugal
Remote Sensing Unit Optics, Optometry and Vision Sciences Group, University of Beira Interior
Covilhã, Portugal +
('1712429', 'Hugo Proença', 'hugo proença')E-mail: gmelfe@ubi.pt +
17479e015a2dcf15d40190e06419a135b66da4e0Predicting First Impressions with Deep Learning +
University of Notre Dame
Harvard University 3Perceptive Automata, Inc
('7215627', 'Mel McCurrie', 'mel mccurrie')
('51174355', 'Fernando Beletti', 'fernando beletti')
('51176594', 'Lucas Parzianello', 'lucas parzianello')
('51176974', 'Allen Westendorp', 'allen westendorp')
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
17fa1c2a24ba8f731c8b21f1244463bc4b465681Published as a conference paper at ICLR 2016 +
DEEP MULTI-SCALE VIDEO PREDICTION BEYOND +
MEAN SQUARE ERROR +
New York University
2Facebook Artificial Intelligence Research +
('2341378', 'Camille Couprie', 'camille couprie')mathieu@cs.nyu.edu, {coupriec,yann}@fb.com +
17579791ead67262fcfb62ed8765e115fb5eca6fReal-Time Fashion-guided Clothing Semantic Parsing: a Lightweight Multi-Scale +
Inception Neural Network and Benchmark +
1School of Data and Computer Science +
Beijing University of Posts and Telecommunications, Beijing, P.R. China
Sun Yat-Sen University, Guangzhou, P.R. China
2 PRMCT Lab +
('3079146', 'Yuhang He', 'yuhang he')
177d1e7bbea4318d379f46d8d17720ecef3086acJMLR: Workshop and Conference Proceedings 44 (2015) 60-71 +
NIPS 2015 +
The 1st International Workshop “Feature Extraction: Modern Questions and Challenges” +
Learning Multi-channel Deep Feature Representations for +
Face Recognition +
Wayne State University, Detroit, MI 48202, USA
University of Illinois at Urbana Champaign, Urbana
IL 61801, USA +
Editor: Afshin Rostamizadeh +
('2410994', 'Xue-wen Chen', 'xue-wen chen')
('2708905', 'Melih S. Aslan', 'melih s. aslan')
('1982110', 'Kunlei Zhang', 'kunlei zhang')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
xuewen.chen@wayne.edu +
melih.aslan@wayne.edu +
kunlei.zhang@wayne.edu +
t-huang1@illinois.edu +
17a995680482183f3463d2e01dd4c113ebb31608IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z +
Structured Label Inference for +
Visual Understanding +
('3079079', 'Nelson Nauata', 'nelson nauata')
('2804000', 'Hexiang Hu', 'hexiang hu')
('2057809', 'Guang-Tong Zhou', 'guang-tong zhou')
('47640964', 'Zhiwei Deng', 'zhiwei deng')
('2928799', 'Zicheng Liao', 'zicheng liao')
('10771328', 'Greg Mori', 'greg mori')
17aa78bd4331ef490f24bdd4d4cd21d22a18c09c
170a5f5da9ac9187f1c88f21a88d35db38b4111aOnline Real-time Multiple Spatiotemporal Action Localisation and Prediction +
Philip Torr2 +
Oxford Brookes University
Oxford University
Figure 1: Online spatiotemporal action localisation in a test ‘fencing’ video from UCF-101 [39]. (a) to (c): A 3D volumetric view of +
the video showing detection boxes and selected frames. At any given time, a certain portion (%) of the entire video is observed by the +
system, and the detection boxes are linked up to incrementally build online space-time action tubes in real-time. Note that the proposed +
method is able to detect multiple co-occurring action instances (3 action instances are shown in different colours). Note also that one of +
the fencers moves out of the image boundaries between frames 114 and 145, to which our model responds by trimming action tube 01 +
at frame 114, and initiating a new tube (03) at frame 146. +
('1931660', 'Gurkirt Singh', 'gurkirt singh')
('3017538', 'Suman Saha', 'suman saha')
('3019396', 'Michael Sapienza', 'michael sapienza')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
{gurkirt.singh-2015,suman.saha-2014,fabio.cuzzolin}@brookes.ac.uk +
{michael.sapienza,philip.torr}@eng.ox.ac.uk +
17c0d99171efc957b88c31a465c59485ab033234
1742ffea0e1051b37f22773613f10f69d2e4ed2c
1791f790b99471fc48b7e9ec361dc505955ea8b1
17a8d1b1b4c23a630b051f35e47663fc04dcf043Differential Angular Imaging for Material Recognition +
Rutgers University, Piscataway, NJ
Drexel University, Philadelphia, PA
('48181328', 'Jia Xue', 'jia xue'){jia.xue,zhang.hang}@rutgers.edu, kdana@ece.rutgers.edu, kon@drexel.edu +
171d8a39b9e3d21231004f7008397d5056ff23afSimultaneous Facial Landmark Detection, Pose and Deformation Estimation +
under Facial Occlusion +
ECSE Department +
Institute of Automation
ECSE Department +
Rensselaer Polytechnic Institute
Chinese Academy of Sciences +
Rensselaer Polytechnic Institute
('1746738', 'Yue Wu', 'yue wu')
('2864523', 'Chao Gou', 'chao gou')
('1726583', 'Qiang Ji', 'qiang ji')
wuyuesophia@gmail.com +
gouchao2012@ic.ac.cn +
jiq@rpi.edu +
17045163860fc7c38a0f7d575f3e44aaa5fa40d7Boosting VLAD with Supervised Dictionary +
Learning and High-Order Statistics +
Southwest Jiaotong University, Chengdu, China
The Chinese University of Hong Kong
Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS
Hong Kong, China +
Hengyang Normal University, Hengyang, China
Shenzhen, China +
('1766837', 'Xiaojiang Peng', 'xiaojiang peng')
('33345248', 'Limin Wang', 'limin wang')
('33427555', 'Yu Qiao', 'yu qiao')
('37040717', 'Qiang Peng', 'qiang peng')
174930cac7174257515a189cd3ecfdd80ee7dd54Multi-view Face Detection Using Deep Convolutional +
Neural Networks +
Yahoo +
Mohammad Saberian +
inc.com +
Yahoo +
Yahoo +
('2114438', 'Sachin Sudhakar Farfade', 'sachin sudhakar farfade')
('33642044', 'Li-Jia Li', 'li-jia li')
fsachin@yahoo-inc.com +
saberian@yahoo- +
lijiali.vision@gmail.com +
17fad2cc826d2223e882c9fda0715fcd5475acf3
17e563af203d469c456bb975f3f88a741e43fb71Naming TV Characters by Watching and Analyzing Dialogs +
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
('3408009', 'Monica-Laura Haurilet', 'monica-laura haurilet')
('2103464', 'Makarand Tapaswi', 'makarand tapaswi')
('2256981', 'Ziad Al-Halah', 'ziad al-halah')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
{haurilet, tapaswi, ziad.al-halah, rainer.stiefelhagen}@kit.edu +
171389529df11cc5a8b1fbbe659813f8c3be024dManifold Estimation in View-based Feature +
Space for Face Synthesis across Poses +
Center for Visualization and Virtual Environments +
University of Kentucky, USA
('2257812', 'Xinyu Huang', 'xinyu huang')
('2943451', 'Jizhou Gao', 'jizhou gao')
('1772171', 'Sen-Ching S. Cheung', 'sen-ching s. cheung')
('38958903', 'Ruigang Yang', 'ruigang yang')
17d5e5c9a9ee4cf85dfbb9d9322968a6329c3735Study on Parameter Selection Using SampleBoost +
Computer Science and Engineering Department, +
University of North Texas, Denton, Texas, USA
('1898814', 'Mohamed Abouelenien', 'mohamed abouelenien')
('1982703', 'Xiaohui Yuan', 'xiaohui yuan')
{mohamed, xiaohui.yuan}@unt.edu +
1750db78b7394b8fb6f6f949d68f7c24d28d934fDetecting Facial Retouching Using Supervised +
Deep Learning +
Bowyer, Fellow, IEEE +
('5014060', 'Aparna Bharati', 'aparna bharati')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
17cf6195fd2dfa42670dc7ada476e67b381b8f69†Image Processing Laboratory, Department of Image Engineering +
Graduate School of Advanced Imaging Science, Multimedia, and Film +
Chung-Ang University, Seoul, Korea
Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong
Wonmi-Gu Puchon-Si, Kyunggi-Do 420-140, Korea +
‡Imaging, Robotics, and Intelligent Systems Laboratory +
Department of Electrical and Computer Engineering +
The University of Tennessee, Knoxville
AUTOMATIC FACE REGION TRACKING FOR HIGHLY ACCURATE FACE +
RECOGNITION IN UNCONSTRAINED ENVIRONMENTS +
('2243148', 'Young-Ouk Kim', 'young-ouk kim')
('1684329', 'Joonki Paik', 'joonki paik')
('39533703', 'Jingu Heo', 'jingu heo')
173657da03e3249f4e47457d360ab83b3cefbe63HKU-Face: A Large Scale Dataset for +
Deep Face Recognition +
Final Report +
3035140108 +
COMP4801 Final Year Project +
Project Code: 17007 +
('3347561', 'Haicheng Wang', 'haicheng wang')
174f46eccb5852c1f979d8c386e3805f7942baceThe Shape-Time Random Field for Semantic Video Labeling +
School of Computer Science +
University of Massachusetts, Amherst MA, USA
('2177037', 'Andrew Kae', 'andrew kae'){akae,marlin,elm}@cs.umass.edu +
17670b60dcfb5cbf8fdae0b266e18cf995f6014cLongitudinal Face Modeling via +
Temporal Deep Restricted Boltzmann Machines +
Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada
2 CyLab Biometrics Center and the Department of Electrical and Computer Engineering, +
Carnegie Mellon University, Pittsburgh, PA, USA
('1876581', 'Chi Nhan Duong', 'chi nhan duong')
('1769788', 'Khoa Luu', 'khoa luu')
('2687827', 'Kha Gia Quach', 'kha gia quach')
('1699922', 'Tien D. Bui', 'tien d. bui')
1{c duon, k q, bui}@encs.concordia.ca, 2kluu@andrew.cmu.edu +
17027a05c1414c9a06a1c5046899abf382a1142dArticulated Motion Discovery using Pairs of Trajectories +
University of Edinburgh
2Google Research +
('2059950', 'Luca Del Pero', 'luca del pero')
('2262946', 'Susanna Ricco', 'susanna ricco')
('1694199', 'Rahul Sukthankar', 'rahul sukthankar')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
ldelper@inf.ed.ac.uk +
ricco@google.com +
sukthankar@google.com +
ferrari@inf.ed.ac.uk +
17ded725602b4329b1c494bfa41527482bf83a6fCompact Convolutional Neural Network Cascade for Face Detection +
Kalinovskii I.A. +
Spitsyn V.G. +
Tomsk Polytechnic University
Tomsk Polytechnic University
Tomsk, Russia +
Tomsk, Russia +
kua_21@mail.ru +
spvg@tpu.ru +
177bc509dd0c7b8d388bb47403f28d6228c14b5cDeep Learning Face Representation from Predicting 10,000 Classes +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('1681656', 'Yi Sun', 'yi sun')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
sy011@ie.cuhk.edu.hk +
xgwang@ee.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889
7bbaa09c9e318da4370a83b126bcdb214e7f8428FaaSter, Better, Cheaper: The Prospect of +
Serverless Scientific Computing and HPC +
Zurich University of Applied Sciences, School of Engineering
Service Prototyping Lab (blog.zhaw.ch/icclab/), 8401 Winterthur, Switzerland +
ISISTAN Research Institute - CONICET - UNICEN
Campus Universitario, Paraje Arroyo Seco, Tandil (7000), Buenos Aires, Argentina +
ITIC Research Institute, National University of Cuyo
Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina +
('1765470', 'Josef Spillner', 'josef spillner')
('2891834', 'Cristian Mateos', 'cristian mateos')
('34889755', 'David A. Monge', 'david a. monge')
josef.spillner@zhaw.ch +
cristian.mateos@isistan.unicen.edu.ar +
dmonge@uncu.edu.ar +
7b63ed54345d8c06523f6b03c41a09b5c8f227e2Facial Expression Recognition Based on +
Combination of Spatio-temporal and Spectral +
Features in Local Facial Regions +
Department of Electrical Engineering, +
Najafabad Branch, Islamic Azad University
Isfahan, Iran. +
('9337964', 'Nakisa Abounasr', 'nakisa abounasr')n_abounasr@sel.iaun.ac.ir +
7bf0a1aa1d0228a51d24c0c3a83eceb937a6ae25UNIVERSITY OF CALIFORNIA, SAN DIEGO
Video-based Car Surveillance: License Plate, Make, and Model Recognition +
A thesis submitted in partial satisfaction of the +
requirements for the degree Masters of Science +
in Computer Science +
by +
Louka Dlagnekov +
Committee in charge: +
Professor Serge J. Belongie, Chairperson +
2005 +
('3520515', 'David A. Meyer', 'david a. meyer')
('1765887', 'David J. Kriegman', 'david j. kriegman')
7b9961094d3e664fc76b12211f06e12c47a7e77dBridging Biometrics and Forensics +
EECS, Syracuse University, Syracuse, NY, USA
('38495931', 'Yanjun Yan', 'yanjun yan')
('2598035', 'Lisa Ann Osadciw', 'lisa ann osadciw')
{yayan, laosadci}@syr.edu +
7bfe085c10761f5b0cc7f907bdafe1ff577223e0
7b43326477795a772c08aee750d3e433f00f20beComputational Methods for Behavior Analysis +
Thesis by +
In Partial Fulfillment of the Requirements for the +
degree of +
Doctor of Philosophy +
CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California +
2017 +
Defended September 16, 2016 +
('2948199', 'Eyrun Eyjolfsdottir', 'eyrun eyjolfsdottir')
7b9b3794f79f87ca8a048d86954e0a72a5f97758DOI 10.1515/jisys-2013-0016      Journal of Intelligent Systems 2013; 22(4): 365–415 +
Passing an Enhanced Turing Test – +
Interacting with Lifelike Computer +
Representations of Specific Individuals  +
('1708812', 'Avelino J. Gonzalez', 'avelino j. gonzalez')
('1745342', 'Jason Leigh', 'jason leigh')
('1727179', 'Ronald F. DeMara', 'ronald f. demara')
('7777088', 'Steven Jones', 'steven jones')
('1761244', 'Sangyoon Lee', 'sangyoon lee')
('1917523', 'Carlos Leon-Barth', 'carlos leon-barth')
('3191606', 'Miguel Elvir', 'miguel elvir')
('33294824', 'James Hollister', 'james hollister')
('2680448', 'Steven Kobosko', 'steven kobosko')
7bce4f4e85a3bfcd6bfb3b173b2769b064fce0edA Psychologically-Inspired Match-Score Fusion Model +
for Video-Based Facial Expression Recognition +
VISLab, EBUII-216, University of California Riverside
Riverside, California, USA, 92521-0425 +
('1707159', 'Bir Bhanu', 'bir bhanu')
('1803478', 'Songfan Yang', 'songfan yang')
{acruz, bhanu, syang}@ee.ucr.edu +
7b0f1fc93fb24630eb598330e13f7b839fb46cceLearning to Find Eye Region Landmarks for Remote Gaze +
Estimation in Unconstrained Settings +
ETH Zurich +
MPI for Informatics +
MPI for Informatics +
ETH Zurich +
('20466488', 'Seonwook Park', 'seonwook park')
('2520795', 'Xucong Zhang', 'xucong zhang')
('3194727', 'Andreas Bulling', 'andreas bulling')
('2531379', 'Otmar Hilliges', 'otmar hilliges')
spark@inf.ethz.ch +
xczhang@mpi-inf.mpg.de +
bulling@mpi-inf.mpg.de +
otmarh@inf.ethz.ch +
7be60f8c34a16f30735518d240a01972f3530e00Facial Expression Recognition with Temporal Modeling of Shapes +

The University of Texas at Austin
('18692590', 'Suyog Jain', 'suyog jain')
('1713065', 'Changbo Hu', 'changbo hu')
suyog@cs.utexas.edu, changbo.hu@gmail.com, aggarwaljk@mail.utexas.edu +
7bdcd85efd1e3ce14b7934ff642b76f017419751289 +
Learning Discriminant Face Descriptor +
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21fOn the Design and Evaluation of Robust Head Pose for +
Visual User Interfaces: Algorithms, Databases, and +
Comparisons +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Mohan Trivedi +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
('1841835', 'Sujitha Martin', 'sujitha martin')
('1947383', 'Ashish Tawari', 'ashish tawari')
('1780529', 'Erik Murphy-Chutorian', 'erik murphy-chutorian')
('3205274', 'Shinko Y. Cheng', 'shinko y. cheng')
scmartin@ucsd.edu +
atawari@ucsd.edu +
erikmc@google.com +
sycheng@hrl.com +
mtrivedi@ucsd.edu +
8fe38962c24300129391f6d7ac24d7783e0fddd0Center for Research in Computer Vision, University of Central Florida('33209161', 'Amir Mazaheri', 'amir mazaheri')
('1745480', 'Mubarak Shah', 'mubarak shah')
amirmazaheri@knights.ucf.edu +
shah@crcv.ucf.edu +
8f6d05b8f9860c33c7b1a5d704694ed628db66c7Non-linear dimensionality reduction and sparse +
representation models for facial analysis +
To cite this version: +
Medical Imaging. INSA de Lyon, 2014. English. . +
HAL Id: tel-01127217 +
https://tel.archives-ouvertes.fr/tel-01127217 +
Submitted on 7 Mar 2015 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('35061362', 'Yuyao Zhang', 'yuyao zhang')
('35061362', 'Yuyao Zhang', 'yuyao zhang')
8f772d9ce324b2ef5857d6e0b2a420bc93961196MAHPOD et al.: CFDRNN +
Facial Landmark Point Localization using +
Coarse-to-Fine Deep Recurrent Neural Network +
('2748312', 'Shahar Mahpod', 'shahar mahpod')
('3001038', 'Rig Das', 'rig das')
('1767715', 'Emanuele Maiorana', 'emanuele maiorana')
('1926432', 'Yosi Keller', 'yosi keller')
('1682433', 'Patrizio Campisi', 'patrizio campisi')
8f3e120b030e6c1d035cb7bd9c22f6cc75782025Bayesian Networks and the Imprecise Dirichlet +
Model applied to Recognition Problems +
Dalle Molle Institute for Arti cial Intelligence
Galleria 2, Manno-Lugano, Switzerland +
Rensselaer Polytechnic Institute
110 Eighth St., Troy, NY, USA +
('1726583', 'Qiang Ji', 'qiang ji')cassio@idsia.ch, jiq@rpi.edu +
8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483
8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2aFeature Selection with Annealing for Big Data +
Learning +
('2455529', 'Adrian Barbu', 'adrian barbu')
('34680388', 'Yiyuan She', 'yiyuan she')
('2139735', 'Liangjing Ding', 'liangjing ding')
('3019469', 'Gary Gramajo', 'gary gramajo')
8fed5ea3b69ea441a8b02f61473eafee25fb2374Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Two-Dimensional PCA with F-Norm Minimization +
State Key Laboratory of ISN, Xidian University
State Key Laboratory of ISN, Xidian University
Xi’an China +
Xi’an China +
('38469552', 'Quanxue Gao', 'quanxue gao')
('40326660', 'Qianqian Wang', 'qianqian wang')
8fa3478aaf8e1f94e849d7ffbd12146946badabaAttributes for Classifier Feedback +
Indraprastha Institute of Information Technology (Delhi, India
Toyota Technological Institute (Chicago, US
('2076800', 'Amar Parkash', 'amar parkash')
('1713589', 'Devi Parikh', 'devi parikh')
8f3da45ff0c3e1777c3a7830f79c10f5896bcc21Situation Recognition with Graph Neural Networks +
The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent
Uber Advanced Technologies Group, 5Vector Institute
('8139953', 'Ruiyu Li', 'ruiyu li')
('2103464', 'Makarand Tapaswi', 'makarand tapaswi')
('2246396', 'Renjie Liao', 'renjie liao')
('1729056', 'Jiaya Jia', 'jiaya jia')
('2422559', 'Raquel Urtasun', 'raquel urtasun')
('37895334', 'Sanja Fidler', 'sanja fidler')
ryli@cse.cuhk.edu.hk, {makarand,rjliao,urtasun,fidler}@cs.toronto.edu, leojia9@gmail.com +
8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8Age Estimation Using Expectation of Label Distribution Learning ∗ +
National Key Laboratory for Novel Software Technology, Nanjing University, China
MOE Key Laboratory of Computer Network and Information Integration, Southeast University, China
('2226422', 'Bin-Bin Gao', 'bin-bin gao')
('7678704', 'Hong-Yu Zhou', 'hong-yu zhou')
('1808816', 'Jianxin Wu', 'jianxin wu')
('1735299', 'Xin Geng', 'xin geng')
{gaobb,zhouhy,wujx}@lamda.nju.edu.cn, xgeng@seu.edu.cn +
8f9c37f351a91ed416baa8b6cdb4022b231b9085Generative Adversarial Style Transfer Networks for Face Aging +
Sveinn Palsson +
D-ITET, ETH Zurich +
Eirikur Agustsson +
D-ITET, ETH Zurich +
spalsson@ethz.ch +
aeirikur@ethz.ch +
8f8c0243816f16a21dea1c20b5c81bc223088594
8f08b2101d43b1c0829678d6a824f0f045d57da5Supplementary Material for: Active Pictorial Structures +
Imperial College London
180 Queens Gate, SW7 2AZ, London, U.K. +
In the following sections, we provide additional material for the paper “Active Pictorial Structures”. Section 1 explains in +
more detail the differences between the proposed Active Pictorial Structures (APS) and Pictorial Structures (PS). Section 2 +
presents the proofs about the structure of the precision matrices of the Gaussian Markov Random Filed (GMRF) (Eqs. 10 +
and 12 of the main paper). Section 3 gives an analysis about the forward Gauss-Newton optimization of APS and shows that +
the inverse technique with fixed Jacobian and Hessian, which is used in the main paper, is much faster. Finally, Sec. 4 shows +
additional experimental results and conducts new experiments on different objects (human eyes and cars). An open-source +
implementation of APS is available within the Menpo Project [1] in http://www.menpo.org/. +
1. Differences between Active Pictorial Structures and Pictorial Structures +
As explained in the main paper, the proposed model is partially motivated by PS [4, 8]. In the original formulation of PS, +
the cost function to be optimized has the form +
(cid:88) +
n(cid:88) +
n(cid:88) +
i=1 +
arg min +
= arg min +
i=1 +
mi((cid:96)i) + +
dij((cid:96)i, (cid:96)j) = +
i,j:(vi,vj )∈E +
[A((cid:96)i) − µa +
i ]T (Σa +
i )−1[A((cid:96)i) − µa +
i ] + +
(cid:88) +
i,j:(vi,vj )∈E +
[(cid:96)i − (cid:96)j − µd +
ij]T (Σd +
ij)−1[(cid:96)i − (cid:96)j − µd +
ij] +
(1) +
1 , . . . , (cid:96)T +
n ]T is the vector of landmark coordinates ((cid:96)i = [xi, yi]T , ∀i = 1, . . . , n), A((cid:96)i) is a feature vector +
where s = [(cid:96)T +
ij} denote the mean +
extracted from the image location (cid:96)i and we have assumed a tree G = (V, E). {µa +
and covariances of the appearance and deformation respectively. In Eq. 1, mi((cid:96)i) is a function measuring the degree of +
mismatch when part vi is placed at location (cid:96)i in the image. Moreover, dij((cid:96)i, (cid:96)j) denotes a function measuring the degree +
of deformation of the model when part vi is placed at location (cid:96)i and part vj is placed at location (cid:96)j. The authors show +
an inference algorithm based on distance transform [3] that can find a global minimum of Eq. 1 without any initialization. +
However, this algorithm imposes two important restrictions: (1) appearance of each part is independent of the rest of them +
and (2) G must always be acyclic (a tree). Additionally, the computation of mi((cid:96)i) for all parts (i = 1, . . . , n) and all possible +
image locations (response maps) has a high computational cost, which makes the algorithm very slow. Finally, in [8], the +
authors only use a diagonal covariance for the relative locations (deformation) of each edge of the graph, which restricts the +
flexibility of the model. +
i } and {µd +
ij, Σd +
i , Σa +
In the proposed APS, we aim to minimize the cost function (Eq. 19 of the main paper) +
(cid:107)A(S(¯s, p)) − ¯a(cid:107)2 +
[A(S(¯s, p)) − ¯a]T Qa[A(S(¯s, p)) − ¯a] + [S(¯s, p) − ¯s]T Qd[S(¯s, p) − ¯s] +
Qa + (cid:107)S(¯s, p) − ¯s(cid:107)2 +
Qd = +
arg min +
= arg min +
(2) +
There are two main differences between APS and PS: (1) we employ a statistical shape model and optimize with respect +
to its parameters and (2) we use the efficient Gauss-Newton optimization technique. However, these differences introduce +
some important advantages, as also mentioned in the main paper. The proposed formulation allows to define a graph (not +
only tree) between the object’s parts. This means that we can assume dependencies between any pair of landmarks for both +
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
{e.antonakos, ja310, s.zafeiriou}@imperial.ac.uk +
8fbec9105d346cd23d48536eb20c80b7c2bbbe30The Effectiveness of Face Detection Algorithms in Unconstrained Crowd Scenes +
Department of Computer Science and Engineering +
University of Notre Dame
Notre Dame, IN 46656 +
('27937356', 'Jeremiah R. Barr', 'jeremiah r. barr')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
('1704876', 'Patrick J. Flynn', 'patrick j. flynn')
jbarr1,kwb,flynn@nd.edu +
8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09Electronic Letters on Computer Vision and Image Analysis 14(2):24-44; 2015 +
A Survey on Human Emotion Recognition Approaches, +
Databases and Applications +
Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India
P.S.R Engineering College, Sivakasi, Tamilnadu, India
Received 7th Aug 2015; accepted 30th Nov 2015 +
8f8a5be9dc16d73664285a29993af7dc6a598c83IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011 +
71 +
Neural Network based Face Recognition with Gabor Filters +
Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
+
('5463951', 'Amina Khatun', 'amina khatun')
('38674112', 'Al-Amin Bhuiyan', 'al-amin bhuiyan')
8f5ce25e6e1047e1bf5b782d045e1dac29ca747eA Novel Discriminant Non-negative Matrix +
Factorization Algorithm with Applications to +
Facial Image Characterization Problems +
yAristotle University of Thessaloniki
Department of Informatics +
Box 451 +
54124 Thessaloniki, Greece +
Address for correspondence: +
Aristotle University of Thessaloniki
54124 Thessaloniki +
GREECE +
Tel. ++ 30 231 099 63 04 +
Fax ++ 30 231 099 63 04 +
April 18, 2007 +
DRAFT +
('1754270', 'Irene Kotsia', 'irene kotsia')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
email: fekotsia, dralbert, pitasg@aiia.csd.auth.gr +
8f89aed13cb3555b56fccd715753f9ea72f27f05Attended End-to-end Architecture for Age +
Estimation from Facial Expression Videos +
('1678473', 'Wenjie Pei', 'wenjie pei')
8f92cccacf2c84f5d69db3597a7c2670d93be781FACIAL EXPRESSION SYNTHESIS THROUGH FACIAL EXPRESSIONS +
STATISTICAL ANALYSIS +
Aristotle University of Thessaloniki
Department of Informatics +
Box 451, 54124 Thessaloniki, Greece +
('2764130', 'Stelios Krinidis', 'stelios krinidis')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
email: pitas@zeus.csd.auth.gr, stelios.krinidis@mycosmos.gr +
8f6263e4d3775757e804796e104631c7a2bb8679Characterizing Visual Representations within Convolutional Neural Networks: +
Toward a Quantitative Approach +
Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
('1739108', 'Chuan-Yung Tsai', 'chuan-yung tsai')
('2042941', 'David D. Cox', 'david d. cox')
CHUANYUNGTSAI@FAS.HARVARD.EDU +
DAVIDCOX@FAS.HARVARD.EDU +
8f9f599c05a844206b1bd4947d0524234940803d
8f60c343f76913c509ce623467bf086935bcadacJoint 3D Face Reconstruction and Dense +
Alignment with Position Map Regression +
Network +
Shanghai Jiao Tong University, CloudWalk Technology
Research Center for Intelligent Security Technology, CIGIT
('9196752', 'Yao Feng', 'yao feng')
('1917608', 'Fan Wu', 'fan wu')
('3492237', 'Xiaohu Shao', 'xiaohu shao')
('1706354', 'Yanfeng Wang', 'yanfeng wang')
('39851640', 'Xi Zhou', 'xi zhou')
fengyao@sjtu.edu.cn, wufan@cloudwalk.cn, shaoxiaohu@cigit.ac.cn +
wangyanfeng@sjtu.edu.cn, zhouxi@cloudwalk.cn +
8fd9c22b00bd8c0bcdbd182e17694046f245335f   +
Recognizing Facial Expressions in Videos +
('8502461', 'Lin Su', 'lin su')
('14362431', 'Matthew Balazsi', 'matthew balazsi')
8f5facdc0a2a79283864aad03edc702e2a400346 +
+
ISSN: 2277-3754 +
ISO 9001:2008 Certified +
International Journal of Engineering and Innovative Technology (IJEIT) +
Volume 4, Issue 7, January 2015 +
Human Age Estimation Framework using +
Bio-Inspired Features for Facial Image +
Santhosh Kumar G, Dr. Suresh H. N. +
Research scholor, BIT, under VTU, Belgaum India +
Bangalore Institute of Technology
Bangalore–04, Karnataka +
8a3c5507237957d013a0fe0f082cab7f757af6eeFacial Landmark Detection by +
Deep Multi-task Learning +
The Chinese University of Hong Kong
('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')
('1693209', 'Ping Luo', 'ping luo')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
8af411697e73f6cfe691fe502d4bfb42510b4835Dynamic Local Ternary Pattern for Face Recognition and +
Verification +
Institute of Information Technology
University of Dhaka, Bangladesh
Department of Industrial and Management Engineering +
Hankuk University of Foreign Studies, South Korea
M. Abdullah-Al-Wadud +
('39036762', 'Mohammad Ibrahim', 'mohammad ibrahim')
('31210416', 'Humayun Kayesh', 'humayun kayesh')
('13193999', 'Shah', 'shah')
('2233124', 'Mohammad Shoyaib', 'mohammad shoyaib')
ibrahim iit@yahoo.com, iftekhar.efat@gmail.com, hkayesh@gmail.com, khaled@univdhaka.edu, shoyaib@du.ac.bd +
wadud@hufs.ac.kr +
8acdc4be8274e5d189fb67b841c25debf5223840Gultepe and Makrehchi +
Hum. Cent. Comput. Inf. Sci. (2018) 8:25 +
https://doi.org/10.1186/s13673-018-0148-3 +
RESEARCH +
Improving clustering performance +
using independent component analysis +
and unsupervised feature learning +
Open Access +
*Correspondence: +
Department of Electrical +
and Computer Engineering, +
University of Ontario Institute
of Technology, 2000 Simcoe +
St N, Oshawa, ON L1H 7K4, +
Canada +
('2729102', 'Eren Gultepe', 'eren gultepe')
('3183840', 'Masoud Makrehchi', 'masoud makrehchi')
eren.gultepe@uoit.net +
8a1ed5e23231e86216c9bdd62419c3b05f1e0b4dFacial Keypoint Detection +
Stanford University
March 13, 2016 +
('29909347', 'Shayne Longpre', 'shayne longpre')
('9928926', 'Ajay Sohmshetty', 'ajay sohmshetty')
slongpre@stanford.edu, ajay14@stanford.edu +
8a54f8fcaeeede72641d4b3701bab1fe3c2f730aWhat do you think of my picture? Investigating factors +
of influence in profile images context perception +
Heynderickx +
To cite this version: +
think of my picture? Investigating factors of influence in profile images context perception. Human +
Vision and Electronic Imaging XX, Mar 2015, San Francisco, United States. Proc. SPIE 9394, Hu- +
man Vision and Electronic Imaging XX, 9394, electronic-imaging>. <10.1117/12.2082817>. +
HAL Id: hal-01149535 +
https://hal.archives-ouvertes.fr/hal-01149535 +
Submitted on 7 May 2015 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('34678433', 'Filippo Mazza', 'filippo mazza')
('40130265', 'Matthieu Perreira Da Silva', 'matthieu perreira da silva')
('7591543', 'Patrick Le Callet', 'patrick le callet')
('34678433', 'Filippo Mazza', 'filippo mazza')
('40130265', 'Matthieu Perreira Da Silva', 'matthieu perreira da silva')
('7591543', 'Patrick Le Callet', 'patrick le callet')
('1728396', 'Ingrid Heynderickx', 'ingrid heynderickx')
8a8861ad6caedc3993e31d46e7de6c251a8cda22StreetStyle: Exploring world-wide clothing styles from millions of photos +
Cornell University
Figure 1: Extracting and measuring clothing style from Internet photos at scale. (a) We apply deep learning methods to learn to extract +
fashion attributes from images and create a visual embedding of clothing style. We use this embedding to analyze millions of Instagram photos +
of people sampled worldwide, in order to study spatio-temporal trends in clothing around the globe. (b) Further, using our embedding, we +
can cluster images to produce a global set of representative styles, from which we can (c) use temporal and geo-spatial statistics to generate +
concise visual depictions of what makes clothing unique in each city versus the rest. +
('40353974', 'Kevin Matzen', 'kevin matzen')
('1791337', 'Kavita Bala', 'kavita bala')
('1830653', 'Noah Snavely', 'noah snavely')
8aae23847e1beb4a6d51881750ce36822ca7ed0bComparison Between Geometry-Based and Gabor-Wavelets-Based +
Facial Expression Recognition Using Multi-Layer Perceptron +
ATR Human Information Processing Research Laboratories
ATR Interpreting Telecommunications Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan +
INRIA, 2004 route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France +
('1809184', 'Zhengyou Zhang', 'zhengyou zhang')
('34801422', 'Shigeru Akamatsu', 'shigeru akamatsu')
('36206997', 'Michael Schuster', 'michael schuster')
e-mail: zzhang@sophia.inria.fr, zzhang@hip.atr.co.jp +
8a866bc0d925dfd8bb10769b8b87d7d0ff01774dWikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art +
National Research Council Canada +
('2886725', 'Svetlana Kiritchenko', 'svetlana kiritchenko'){saif.mohammad,svetlana.kiritchenko}@nrc-cnrc.gc.ca +
8a40b6c75dd6392ee0d3af73cdfc46f59337efa9
8a3bb63925ac2cdf7f9ecf43f71d65e210416e17ShearFace: Efficient Extraction of Anisotropic +
Features for Face Recognition +
1Research Groups on Intelligent Machines, +
University of Sfax
Sfax 3038, Tunisia +
and anisotropic +
('2791150', 'Mohamed Anouar Borgi', 'mohamed anouar borgi')
('8847309', 'Demetrio Labate', 'demetrio labate')
{anoir.borgi@ieee.org; dlabate@math.uh.edu} +
8a0159919ee4e1a9f4cbfb652a1be212bf0554fdUniversity of Surrey
Faculty of Engineering and Physical Sciences +
Department of Computer Science +
PhD Thesis +
Application of Power Laws to +
Biometrics, Forensics and +
Network Traffic Analysis +
by +
Supervisor: Prof. A.T.S. Ho +
Co-supervisors: Dr. N. Poh, Dr. S. Li +
November, 2016 +
('2909991', 'Aamo Iorliam', 'aamo iorliam')
8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2bPredicting the Future with Transformational +
States +
University of Pennsylvania, 2Ryerson University
('2689633', 'Andrew Jaegle', 'andrew jaegle')
('40805511', 'Oleh Rybkin', 'oleh rybkin')
('3150825', 'Konstantinos G. Derpanis', 'konstantinos g. derpanis')
('1751586', 'Kostas Daniilidis', 'kostas daniilidis')
ajaegle@upenn.edu, oleh@cis.upenn.edu, +
kosta@scs.ryerson.ca, kostas@cis.upenn.edu +
8adb2fcab20dab5232099becbd640e9c4b6a905aBeyond Euclidean Eigenspaces: +
Bayesian Matching for Visual Recognition +
Mitsubishi Electric Research Laboratory
MIT Media Laboratory +
 Broadway +
 Ames St. +
Cambridge, MA  , USA +
Cambridge, MA  , USA +
('1780935', 'Baback Moghaddam', 'baback moghaddam')
('1682773', 'Alex Pentland', 'alex pentland')
baback@merl.com +
sandy@media.mit.edu +
8a0d10a7909b252d0e11bf32a7f9edd0c9a8030bAnimals on the Web +
University of California, Berkeley
University of Illinois, Urbana-Champaign
Computer Science Division +
Department of Computer Science +
('1685538', 'Tamara L. Berg', 'tamara l. berg')
('1744452', 'David A. Forsyth', 'david a. forsyth')
millert@cs.berkeley.edu +
daf@cs.uiuc.edu +
8a91ad8c46ca8f4310a442d99b98c80fb8f7625f2592 +
2D Segmentation Using a Robust Active +
Shape Model With the EM Algorithm +
('38769654', 'Carlos Santiago', 'carlos santiago')
('3259175', 'Jacinto C. Nascimento', 'jacinto c. nascimento')
('1744810', 'Jorge S. Marques', 'jorge s. marques')
8aed6ec62cfccb4dba0c19ee000e6334ec585d70Localizing and Visualizing Relative Attributes +('2299381', 'Fanyi Xiao', 'fanyi xiao')
('1883898', 'Yong Jae Lee', 'yong jae lee')
8a336e9a4c42384d4c505c53fb8628a040f2468eWang and Luo EURASIP Journal on Bioinformatics +
and Systems Biology (2016) 2016:13 +
DOI 10.1186/s13637-016-0048-7 +
R ES EAR CH +
Detecting Visually Observable Disease +
Symptoms from Faces +
Open Access +
('2207567', 'Kuan Wang', 'kuan wang')
('33642939', 'Jiebo Luo', 'jiebo luo')
7e600faee0ba11467d3f7aed57258b0db0448a72
7ed3b79248d92b255450c7becd32b9e5c834a31eL1-regularized Logistic Regression Stacking and Transductive CRF Smoothing +
for Action Recognition in Video +
University of Florence
Lorenzo Seidenari +
University of Florence
Andrew D. Bagdanov +
University of Florence
University of Florence
('2602265', 'Svebor Karaman', 'svebor karaman')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
svebor.karaman@unifi.it +
lorenzo.seidenari@unifi.it +
bagdanov@dsi.unifi.it +
alberto.delbimbo@unifi.it +
7e8016bef2c180238f00eecc6a50eac473f3f138TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Immersive Interactive Data Mining and Machine +
Learning Algorithms for Big Data Visualization +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr. sc.techn. Andreas Herkersdorf +
Pr¨ufer der Dissertation: +
1. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Univ.-Prof. Dr.-Ing. habil. Dirk Wollherr +
3. Prof. Dr. Mihai Datcu +
Die Dissertation wurde am 13.08.2015 bei der Technischen Universit¨at M¨unchen eingerei- +
cht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 16.02.2016 +
angenommen. +
('2133342', 'Mohammadreza Babaee', 'mohammadreza babaee')
7ed2c84fdfc7d658968221d78e745dfd1def6332May 15, 2007 6:32 +
World Scientific Review Volume - 9.75in x 6.5in +
ObjectRecognitionLCV2 +
Chapter 1 +
Evaluation of linear combination of views for object recognition +
on real and synthetic datasets +
Department of computer science, +
University College London
Malet Place, London, WC1E 6BT +
In this work, we present a method for model-based recognition of 3d objects from +
a small number of 2d intensity images taken from nearby, but otherwise arbitrary +
viewpoints. Our method works by linearly combining images from two (or more) +
viewpoints of a 3d object to synthesise novel views of the object. The object is +
recognised in a target image by matching to such a synthesised, novel view. All +
that is required is the recovery of the linear combination parameters, and since +
we are working directly with pixel intensities, we suggest searching the parameter +
space using a global, evolutionary optimisation algorithm combined with a local +
search method in order efficiently to recover the optimal parameters and thus +
recognise the object in the scene. We have experimented with both synthetic +
data and real-image, public databases. +
1.1. Introduction +
Object recognition is one of the most important and basic problems in computer +
vision and, for this reason, it has been studied extensively resulting in a plethora +
of publications and a variety of different approachesa aiming to solve this problem. +
Nevertheless accurate, robust and efficient solutions remain elusive because of the +
inherent difficulties when dealing in particular with 3d objects that may be seen +
from a variety of viewpoints. Variations in geometry, photometry and viewing angle, +
noise, occlusions and incomplete data are some of the problems with which object +
recognition systems are faced. +
In this paper, we will address a particular kind of extrinsic variations: varia- +
tions of the image due to changes in the viewpoint from which the object is seen. +
Traditionally, methods that aimed to solve the recognition problem for objects with +
varying pose relied on an explicit 3d model of the object, generating 2d projections +
from that model and comparing them with the scene image. Such was the work +
aFor a comprehensive review of object recognition methods and deformable templates in particular, +
see Refs. 1–4. +
('1797883', 'Vasileios Zografos', 'vasileios zografos')
('31557997', 'Bernard F. Buxton', 'bernard f. buxton')
{v.zografos,b.buxton}@cs.ucl.ac.uk +
7eaa97be59019f0d36aa7dac27407b004cad5e93Sampling Generative Networks +
School of Design +
Victoria University of Wellington
Wellington, New Zealand +
('40603980', 'Tom White', 'tom white')tom.white@vuw.ac.nz +
7eb895e7de883d113b75eda54389460c61d63f67Can you tell a face from a HEVC bitstream? +
School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
('3393216', 'Saeed Ranjbar Alvar', 'saeed ranjbar alvar')
('3320198', 'Hyomin Choi', 'hyomin choi')
Email: {saeedr,chyomin, ibajic}@sfu.ca +
7e467e686f9468b826133275484e0a1ec0f5bde6Efficient On-the-fly Category Retrieval +
using ConvNets and GPUs +
Visual Geometry Group, University of Oxford
('34838386', 'Karen Simonyan', 'karen simonyan')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
{ken,karen,az}@robots.ox.ac.uk +
7e3367b9b97f291835cfd0385f45c75ff84f4dc5Improved Local Binary Pattern Based Action Unit Detection Using +
Morphological and Bilateral Filters +
1Signal Processing Laboratory (LTS5) +
´Ecole Polytechnique F´ed´erale de Lausanne, +
Switzerland +
2nViso SA +
Lausanne, Switzerland +
('2916630', 'Matteo Sorci', 'matteo sorci')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
{anil.yuce;jean-philippe.thiran}@epfl.ch +
matteo.sorci@nviso.ch +
7ef0cc4f3f7566f96f168123bac1e07053a939b2Triangular Similarity Metric Learning: a Siamese +
Architecture Approach +
To cite this version: +
puter Science [cs]. UNIVERSITE DE LYON, 2016. English. . 01314392> +
HAL Id: tel-01314392 +
https://hal.archives-ouvertes.fr/tel-01314392 +
Submitted on 11 May 2016 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('37848497', 'Lilei Zheng', 'lilei zheng')
('37848497', 'Lilei Zheng', 'lilei zheng')
7e00fb79576fe213853aeea39a6bc51df9fdca16Online Multi-Face Detection and Tracking +
using Detector Confidence and Structured SVMs +
Eindhoven University of Technology, The Netherlands
2TNO Embedded Systems Innovation, Eindhoven, The Netherlands +
('3199035', 'Francesco Comaschi', 'francesco comaschi')
('1679431', 'Sander Stuijk', 'sander stuijk')
('1708289', 'Twan Basten', 'twan basten')
('1684335', 'Henk Corporaal', 'henk corporaal')
{f.comaschi, s.stuijk, a.a.basten, h.corporaal}@tue.nl +
7e2cfbfd43045fbd6aabd9a45090a5716fc4e179Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False Positive Rate +
Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False +
Positive Rate +
a School of Computer and Information Technology, Beijing Jiaotong University, Beijing
China +
b Research Institute, Watchdata Inc., Beijing, China
c DeepInSight, China +
('39326372', 'Sheng Chen', 'sheng chen')
('3007274', 'Jia Guo', 'jia guo')
('1681842', 'Yang Liu', 'yang liu')
('46757550', 'Xiang Gao', 'xiang gao')
('2765914', 'Zhen Han', 'zhen han')
{shengchen, zhan}@bjtu.edu.cn +
{yang.liu.yj, xiang.gao}@watchdata.com +
guojia@gmail.com +
7ee53d931668fbed1021839db4210a06e4f33190What if we do not have multiple videos of the same action? — +
Video Action Localization Using Web Images +
Center for Research in Computer Vision (CRCV), University of Central Florida (UCF
('3195774', 'Waqas Sultani', 'waqas sultani')
('1745480', 'Mubarak Shah', 'mubarak shah')
waqassultani@knights.ucf.edu, shah@crcv.ucf.edu +
7e18b5f5b678aebc8df6246716bf63ea5d8d714eOriginal research +
published: 15 January 2018 +
doi: 10.3389/fpsyt.2017.00309 +
increased loss aversion in +
Unmedicated Patients with +
Obsessive–compulsive Disorder +
1 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 2 Fishberg Department of +
Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
of Psychology, University of Michigan, Ann Arbor, MI, United States, University of Michigan, Ann
Arbor, MI, United States +
introduction: Obsessive–compulsive disorder (OCD) patients show abnormalities in +
decision-making and, clinically, appear to show heightened sensitivity to potential nega- +
tive outcomes. Despite the importance of these cognitive processes in OCD, few studies +
have examined the disorder within an economic decision-making framework. Here, we +
investigated loss aversion, a key construct in the prospect theory that describes the +
tendency for individuals to be more sensitive to potential losses than gains when making +
decisions. +
Methods: Across two study sites, groups of unmedicated OCD patients (n = 14), medi- +
cated OCD patients (n = 29), and healthy controls (n = 34) accepted or rejected a series +
of 50/50 gambles containing varying loss/gain values. Loss aversion was calculated +
as the ratio of the likelihood of rejecting a gamble with increasing potential losses to +
the likelihood of accepting a gamble with increasing potential gains. Decision times to +
accept or reject were also examined and correlated with loss aversion. +
results: Unmedicated OCD patients exhibited significantly more loss aversion com- +
pared to medicated OCD or controls, an effect that was replicated across both sites +
and remained significant even after controlling for OCD symptom severity, trait anxiety, +
and sex. Post hoc analyses further indicated that unmedicated patients’ increased +
likelihood to reject a gamble as its loss value increased could not be explained solely by +
greater risk aversion among patients. Unmedicated patients were also slower to accept +
than reject gambles, effects that were not found in the other two groups. Loss aversion +
was correlated with decision times in unmedicated patients but not in the other two +
groups. +
Discussion: These data identify abnormalities of decision-making in a subgroup +
of OCD patients not taking psychotropic medication. The findings help elucidate +
the cognitive mechanisms of the disorder and suggest that future treatments could +
aim to target abnormalities of loss/gain processing during decision-making in this +
population. +
Keywords: decision-making, prospect theory, choice behavior, reward, obsessive–compulsive disorder +
Edited by: +
Qinghua He, +
Southwest University, China
Reviewed by: +
Qiang Wang, +
Beijing Normal University, China
Michael Grady Wheaton, +
Columbia University, United States
*Correspondence: +
Specialty section: +
This article was submitted +
to Psychopathology, +
a section of the journal +
Frontiers in Psychiatry +
Received: 08 December 2017 +
Accepted: 26 December 2017 +
Published: 15 January 2018 +
Citation: +
Sip KE, Gonzalez R, Taylor SF and +
Stern ER (2018) Increased Loss +
Aversion in Unmedicated Patients +
with Obsessive–Compulsive Disorder. +
Front. Psychiatry 8:309. +
doi: 10.3389/fpsyt.2017.00309 +
Frontiers in Psychiatry | www.frontiersin.org +
January 2018 | Volume 8 | Article 309 +
('3592712', 'Kamila E. Sip', 'kamila e. sip')
('31801083', 'Richard Gonzalez', 'richard gonzalez')
('2085281', 'Stephan F. Taylor', 'stephan f. taylor')
('2025121', 'Emily R. Stern', 'emily r. stern')
('2025121', 'Emily R. Stern', 'emily r. stern')
emily.stern@mssm.edu, +
emily.stern@nyumc.org +
7e9df45ece7843fe050033c81014cc30b3a8903aAUDIO-VISUAL INTENT-TO-SPEAK DETECTION FOR HUMAN-COMPUTER +
INTERACTION +
Institut Eurecom +
 , route des Cr^etes, BP   +
  Sophia-Antipolis Cedex, FRANCE +
IBM T.J. Watson Research Center
Yorktown Heights, NY  , USA +
('3163391', 'Philippe de Cuetos', 'philippe de cuetos')
('2264160', 'Chalapathy Neti', 'chalapathy neti')
('33666044', 'Andrew W. Senior', 'andrew w. senior')
decuetos@eurecom.fr +
cneti,aws@us.ibm.com +
7ebd323ddfe3b6de8368c4682db6d0db7b70df62Proceedings of the International Conference on Computer and Information Science and Technology +
Ottawa, Ontario, Canada, May 11 – 12, 2015 +
Paper No. 111 +
Location-based Face Recognition Using Smart Mobile Device +
Sensors +
Department of Computer Science +
University of Victoria, Victoria, Canada
('2019933', 'Nina Taherimakhsousi', 'nina taherimakhsousi')
('1747880', 'Hausi A. Müller', 'hausi a. müller')
ninata@uvic.ca; hausi@uvic.ca +
7eb85bcb372261bad707c05e496a09609e27fdb3A Compute-efficient Algorithm for Robust Eyebrow Detection +
Nanyang Technological University, 2University of California San Diego
('36375772', 'Supriya Sathyanarayana', 'supriya sathyanarayana')
('1710219', 'Ravi Kumar Satzoda', 'ravi kumar satzoda')
('1924458', 'Suchitra Sathyanarayana', 'suchitra sathyanarayana')
supriya001@e.ntu.edu.sg, rsatzoda@eng.ucsd.edu, ssathyanarayana@ucsd.edu, astsrikan@ntu.edu.sg +
7ed6ff077422f156932fde320e6b3bd66f8ffbcbState of 3D Face Biometrics for Homeland Security Applications +
Chaudhari4 +
('2925401', 'Anshuman Razdan', 'anshuman razdan')
('1693971', 'Gerald Farin', 'gerald farin')
7ebb153704706e457ab57b432793d2b6e5d12592ZHONG, ARANDJELOVI ´C, ZISSERMAN: FACES IN PLACES +
Faces In Places: compound query retrieval +
Relja Arandjelovi´c2 +
1 Visual Geometry Group +
Department of Engineering Science +
University of Oxford, UK
2 WILLOW project +
Departement d’Informatique de l’École +
Normale Supérieure +
ENS/INRIA/CNRS UMR 8548 +
('6730372', 'Yujie Zhong', 'yujie zhong')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
yujie@robots.ox.ac.uk +
relja.arandjelovic@inria.fr +
az@robots.ox.ac.uk +
7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922ORIGINAL RESEARCH +
published: 20 June 2018 +
doi: 10.3389/fpsyg.2018.00971 +
Skiing and Thinking About It: +
Moment-to-Moment and +
Retrospective Analysis of Emotions +
in an Extreme Sport +
and Tove Irene Dahl +
UiT The Arctic University of Norway, Troms , Norway
Happiness is typically reported as an important reason for participating in challenging +
activities like extreme sport. While in the middle of the activity, however, participants +
do not seem particularly happy. So where does the happiness come from? The +
article proposes some answers from a study of facially expressed emotions measured +
moment-by-moment during a backcountry skiing event. Self-reported emotions were +
also assessed immediately after the skiing. Participants expressed lower levels of +
happiness while skiing, compared to when stopping for a break. Moment-to-moment +
and self-reported measures of emotions were largely unrelated. These findings are +
explained with reference to the Functional Wellbeing Approach (Vittersø, 2013), which +
argues that some moment-to-moment feelings are non-evaluative in the sense of being +
generated directly by the difficulty of an activity. By contrast, retrospective emotional +
feelings are more complex as they include an evaluation of the overall goals and values +
associated with the activity as a whole. +
Keywords: emotions, facial expression, moment-to-moment, functional wellbeing approach, extreme sport, +
backcountry skiing +
INTRODUCTION +
We engage in recreational activities in order to feel good. This pursuit is not restricted to +
leisure activities like sunbathing at the beach or enjoying a fine meal with friends and family. +
Mountaineers, BASE jumpers, and other extreme athletes also claim that the importance of their +
favorite activities is the experience of positive feelings (Brymer, 2005; Willig, 2008; Brown and +
Fraser, 2009; Hetland and Vittersø, 2012). But what exactly is it that feels so good about these +
vigorous and exhausting activities, often referred to as extreme sport? To explore this question, +
we developed a new way of measuring emotions in real time during the activity. We equipped +
the participants with a camera that captured their facially expressed emotion while skiing. These +
films were then analyzed with software for automatic coding of facial expressions and compared +
the participants self-reported emotions assessed in retrospect. This approach enabled us to explore +
long standing questions as to how such positive experiences are created. Are they a result of a series +
of online positive feelings? Or is it the impact of a few central features like intensity peaks, rapid +
emotional changes, and happy endings that create them? Is it the experience of flow? Or is it the +
feeling of mastery that kicks in only after the activity has been successfully accomplished? +
Edited by: +
Eric Brymer, +
Leeds Beckett University
United Kingdom +
Reviewed by: +
Michael Banissy, +
Goldsmiths, University of London
United Kingdom +
Ralf Christopher Buckley, +
Grif th University, Australia
*Correspondence: +
Specialty section: +
This article was submitted to +
Movement Science and Sport +
Psychology, +
a section of the journal +
Frontiers in Psychology +
Received: 26 September 2017 +
Accepted: 25 May 2018 +
Published: 20 June 2018 +
Citation: +
Hetland A, Vittersø J, Wie SOB, +
Kjelstrup E, Mittner M and Dahl TI +
(2018) Skiing and Thinking About It: +
Moment-to-Moment +
and Retrospective Analysis +
of Emotions in an Extreme Sport. +
Front. Psychol. 9:971. +
doi: 10.3389/fpsyg.2018.00971 +
Frontiers in Psychology | www.frontiersin.org +
June 2018 | Volume 9 | Article 971 +
('50814786', 'Audun Hetland', 'audun hetland')
('2956586', 'Joar Vittersø', 'joar vittersø')
('50823709', 'Simen Oscar Bø Wie', 'simen oscar bø wie')
('50829546', 'Eirik Kjelstrup', 'eirik kjelstrup')
('4281140', 'Matthias Mittner', 'matthias mittner')
('50814786', 'Audun Hetland', 'audun hetland')
audun.hetland@uit.no +
7e0c75ce731131e613544e1a85ae0f2c28ee4c1fImperial College London
Department of Computing +
Regression-based Estimation of Pain and +
Facial Expression Intensity +
June, 2015 +
Submitted in part fulfilment of the requirements for the degree of PhD in Computing and +
the Diploma of Imperial College London. This thesis is entirely my own work, and, except
where otherwise indicated, describes my own research. +
('3291812', 'Sebastian Kaltwang', 'sebastian kaltwang')
('1694605', 'Maja Pantic', 'maja pantic')
7ef44b7c2b5533d00001ae81f9293bdb592f1146No d’ordre : 227-2013 +
Anne 2013 +
THESE DE L’UNIVERSITE DE LYON +
Dlivre par +
L’UNIVERSITE CLAUDE BERNARD - LYON 1 +
Ecole Doctorale Informatique et Mathmatiques +
P H D T H E S I S +
D´etection des ´emotions `a partir de vid´eos dans un +
environnement non contrˆol´e +
Detection of emotions from video in non-controlled environment +
Soutenue publiquement (Public defense) le 14/11/2013 +
Composition du jury (Dissertation committee): +
Rapporteurs +
Mr. Renaud SEGUIER +
Mr. Jean-Claude MARTIN +
Examinateurs +
Mr. Thomas MOESLUND +
Mr. Patrick LAMBERT +
Mr. Samir GARBAYA +
Directeur +
Mme. Saida BOUAKAZ +
Co-encadrant +
Mr. Alexandre MEYER +
Mr. Hubert KONIK +
Professor, Supelec, CNRS UMR 6164, Rennes, France +
Professor, LIMSI-CNRS, Universit´e Paris-Sud, France +
Professor, Department of Architecture, Design and Media Technology, +
Aalborg University, Denmark
Professor, LISTIC - Polytech Annecy-Chambery, France +
Associate Professor, Le2i, ENSAM, Chalon sur Saone, France +
Professor, LIRIS-CNRS, Universit´e Claude Bernard Lyon 1, France +
Associate Professor, LIRIS, Universit´e Claude Bernard Lyon 1, France +
Associate Professor, LaHC, Universit´e Jean Monnet, Saint-Etienne, France +
('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')
7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83Extensions of Hierarchical Slow Feature +
Analysis for Efficient Classification and +
Regression on High-Dimensional Data +
Dissertation +
Submitted to the Faculty of Electrical +
Engineering and Information Technology +
at the +
Ruhr University Bochum
for the +
Degree of Doktor-Ingenieur +
Alberto Nicol´as Escalante Ba˜nuelos +
by +
Bochum, Germany, January, 2017 +
7e507370124a2ac66fb7a228d75be032ddd083ccThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2708106, IEEE +
Transactions on Affective Computing +
Dynamic Pose-Robust Facial Expression +
Recognition by Multi-View Pairwise Conditional +
Random Forests +
1 Sorbonne Universit´es, UPMC Univ Paris 06 +
CNRS, UMR 7222, F-75005, Paris, France +
('3190846', 'Arnaud Dapogny', 'arnaud dapogny')
('2521061', 'Kevin Bailly', 'kevin bailly')
1056347fc5e8cd86c875a2747b5f84fd570ba232
10550ee13855bd7403946032354b0cd92a10d0aaAccelerating Neuromorphic Vision Algorithms +
for Recognition +
Ahmed Al Maashri +
Vijaykrishnan Narayanan +
Microsystems Design Lab, The Pennsylvania State University
†IBM System and Technology Group +
School of Electrical, Computer and Energy Engineering, Arizona State University
('1723845', 'Michael DeBole', 'michael debole')
('36156473', 'Matthew Cotter', 'matthew cotter')
('2916636', 'Nandhini Chandramoorthy', 'nandhini chandramoorthy')
('37095722', 'Yang Xiao', 'yang xiao')
('1685028', 'Chaitali Chakrabarti', 'chaitali chakrabarti')
{maashri, mjcotter, nic5090, yux106, vijay}@cse.psu.edu +
mvdebole@us.ibm.com +
chaitali@asu.edu +
10e12d11cb98ffa5ae82343f8904cfe321ae8004A New Simplex Sparse Learning Model to Measure +
Data Similarity for Clustering +
University of Texas at Arlington
Arlington, Texas 76019, USA +
('39122448', 'Jin Huang', 'jin huang')
('1688370', 'Feiping Nie', 'feiping nie')
('1748032', 'Heng Huang', 'heng huang')
huangjinsuzhou@gmail.com, feipingnie@gmail.com, heng@uta.edu +
10e7dd3bbbfbc25661213155e0de1a9f043461a2Cross Euclidean-to-Riemannian Metric Learning +
with Application to Face Recognition from Video +
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1681236', 'Luc Van Gool', 'luc van gool')
('1710220', 'Xilin Chen', 'xilin chen')
100105d6c97b23059f7aa70589ead2f61969fbc3Frontal to Profile Face Verification in the Wild +
Center for Automation Research, University of Maryland, College Park, MD 20740, USA
The State University of New Jersey
Piscataway, NJ 08854, USA. +
('2500202', 'Soumyadip Sengupta', 'soumyadip sengupta')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
('34734622', 'David W. Jacobs', 'david w. jacobs')
100da509d4fa74afc6e86a49352751d365fceee5Multiclass Recognition and Part Localization with Humans in the Loop +
†Department of Computer Science and Engineering +
University of California, San Diego
Serge Belongie† +
‡Department of Electrical Engineering +
California Institute of Technology
('2367820', 'Catherine Wah', 'catherine wah')
('3251767', 'Steve Branson', 'steve branson')
('1690922', 'Pietro Perona', 'pietro perona')
{cwah,sbranson,sjb}@cs.ucsd.edu +
perona@caltech.edu +
10ab1b48b2a55ec9e2920a5397febd84906a7769
10af69f11301679b6fbb23855bf10f6af1f3d2e6Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition +
School of Computer Science, Carnegie Mellon University
('46329993', 'Ming Lin', 'ming lin')
('2314980', 'Xuanchong Li', 'xuanchong li')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
('1681921', 'Bhiksha Raj', 'bhiksha raj')
lanzhzh, minglin, xcli, alex, bhiksha@cs.cmu.edu +
10ce3a4724557d47df8f768670bfdd5cd5738f95Fihe igh Fied f Face Recgii +
Ac e ad  iai +
Rah G ai ahew ad Si Bake +
The Rbic i e Caegie e Uiveiy +
5000 Fbe Ave e ib gh A 15213 +
Abac.  ay face ecgii ak he e ad i iai +
cdii f he be ad gaey iage ae di(cid:11)ee.  he cae +
 ie gaey  be iage ay be avaiabe each ca ed f +
a di(cid:11)ee e ad de a di(cid:11)ee i iai. We e a face +
ecgii agih which ca e ay  be f gaey iage e +
 bjec ca ed a abiay e ad de abiay i iai +
ad ay  be f be iage agai ca ed a abiay e ad +
de abiay i iai. The agih eae by eiaig he +
Fihe igh (cid:12)ed f he  bjec head f he i  gaey  be +
iage. achig bewee he be ad gaey i he efed ig +
he Fihe igh (cid:12)ed. +
d ci +
 ay face ecgii ceai he e f he be ad gaey iage ae +
di(cid:11)ee. The gaey cai he iage ed d ig aiig f he agih. +
The agih ae eed wih he iage i he be e. F exae he +
gaey iage igh be a fa \ g h" ad he be iage igh be a 3/4 +
view ca ed f a caea i he ce f he . The  be f gaey +
ad be iage ca a vay. F exae he gaey ay ci f a ai f +
iage f each  bjec a fa  g h ad f (cid:12)e view ike he iage +
yicay ca ed by ice deae. The be ay be a iia ai f +
iage a ige 3/4 view  eve a ceci f view f ad e. +
Face ecgii ac e i.e. face ecgii whee he gaey ad be +
iage d  have he ae e ha eceived vey ie aei. Agih +
have bee ed which ca ecgize face [1]  e geea bjec [2] +
a a vaiey f e. weve  f hee agih e ie gaey iage +
a evey e. Agih have bee ed which d geeaize ac e +
f exae [3] b  hi agih c e 3D head de ig a gaey +
caiig a age  be f iage e  bjec ca ed ig ced i +
iai vaiai.  ca be ed wih abiay gaey ad be e. +
Afe e vaiai he ex  igi(cid:12)ca fac a(cid:11)ecig he aea +
ace f face i i iai. A  be f agih have bee deveed f +
face ecgii ac i iai b  hey yicay y dea wih fa +
face [4 5]. y a few aache have bee ed  hade bh e ad +
i iai vaiai a he ae ie. F exae [3] c e a 3D head +
fgiaiibg@c.c .ed +
100428708e4884300e4c1ac1f84cbb16e7644ccfREGULARIZED SHEARLET NETWORK FOR FACE RECOGNITION USING SINGLE +
SAMPLE PER PERSON +
Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia
University of Houston, Houston, TX 77204, USA
('2791150', 'Mohamed Anouar Borgi', 'mohamed anouar borgi')
('8847309', 'Demetrio Labate', 'demetrio labate')
('3410172', 'Chokri Ben Amar', 'chokri ben amar')
{anoir.borgi@ieee.org; dlabate@math.uh.edu ; maher.elarbi@gmail.com ; chokri.benamar@ieee.org } +
102e374347698fe5404e1d83f441630b1abf62d9Facial Image Analysis for Fully-Automatic +
Prediction of Difficult Endotracheal Intubation +
('40564153', 'Patrick Schoettker', 'patrick schoettker')
('2916630', 'Matteo Sorci', 'matteo sorci')
('1697965', 'Hua Gao', 'hua gao')
('2612411', 'Christophe Perruchoud', 'christophe perruchoud')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
10f17534dba06af1ddab96c4188a9c98a020a459People-LDA: Anchoring Topics to People using Face Recognition +
Erik Learned-Miller +
University of Massachusetts Amherst
Amherst MA 01003 +
http://vis-www.cs.umass.edu/(cid:152)vidit/peopleLDA +
('2246870', 'Vidit Jain', 'vidit jain')
('1735747', 'Andrew McCallum', 'andrew mccallum')
10e0e6f1ec00b20bc78a5453a00c792f1334b016Pose-Selective Max Pooling for Measuring Similarity +
1Dept. of Computer Science +
2Dept. of Electrical & Computer Engineering +
Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
('40031188', 'Xiang Xiang', 'xiang xiang')xxiang@cs.jhu.edu +
102b968d836177f9c436141e382915a4f8549276Affective Multimodal Human-Computer Interaction +
Faculty of EEMCS, Delft University of Technology, The Netherlands
Faculty of Science, University of Amsterdam, The Netherlands
Psychology and Psychiatry, University of Pittsburgh, USA
Beckman Institute, University of Illinois at Urbana-Champaign, USA
('1694605', 'Maja Pantic', 'maja pantic')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
mpantic@ieee.org, nicu@science.uva.nl, jeffcohn@pitt.edu, huang@ifp.uiuc.edu +
100641ed8a5472536dde53c1f50fa2dd2d4e9be9Visual Attributes for Enhanced Human-Machine Communication* +('1713589', 'Devi Parikh', 'devi parikh')
10195a163ab6348eef37213a46f60a3d87f289c5
10e704c82616fb5d9c48e0e68ee86d4f83789d96
101569eeef2cecc576578bd6500f1c2dcc0274e2Multiaccuracy: Black-Box Post-Processing for Fairness in +
Classification +
James Zou +
('40102677', 'Michael P. Kim', 'michael p. kim')
('27316199', 'Amirata Ghorbani', 'amirata ghorbani')
mpk@cs.stanford.edu +
amiratag@stanford.edu +
jamesz@stanford.edu +
106732a010b1baf13c61d0994552aee8336f8c85Expanded Parts Model for Semantic Description +
of Humans in Still Images +
('2515597', 'Gaurav Sharma', 'gaurav sharma')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
10e70a34d56258d10f468f8252a7762950830d2b
102b27922e9bd56667303f986404f0e1243b68abWang et al. Appl Inform (2017) 4:13 +
DOI 10.1186/s40535-017-0042-5 +
RESEARCH +
Multiscale recurrent regression networks +
for face alignment +
Open Access +
*Correspondence: +
3 State Key Lab of Intelligent +
Technologies and Systems, +
Beijing 100084, People’s +
Republic of China +
Full list of author information +
is available at the end of the +
article +
('27660491', 'Caixun Wang', 'caixun wang')
('22192520', 'Haomiao Sun', 'haomiao sun')
('1697700', 'Jiwen Lu', 'jiwen lu')
('2632601', 'Jianjiang Feng', 'jianjiang feng')
('25060740', 'Jie Zhou', 'jie zhou')
lujiwen@tsinghua.edu.cn +
10fcbf30723033a5046db791fec2d3d286e34daaOn-Line Cursive Handwriting Recognition: A Survey of Methods +
and Performances +
*Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM) , 81310 +
Skudai, Johor, Malaysia. +
('1731121', 'Dzulkifli Mohamad', 'dzulkifli mohamad')
('1921146', 'M. Othman', 'm. othman')
1dzul@fsksm.utm.my, faisal@gmm.fsksm.utm.my, razib@fsksm.utm.my +
101d4cfbd6f8a7a10bd33505e2b183183f1d8770The 2013 SESAME Multimedia Event Detection and +
Recounting System +
SRI International (SRI) +
University of Amsterdam (UvA
University of Southern California
(USC) +
Cees G.M. Snoek +
Remi Trichet +
('1764443', 'Robert C. Bolles', 'robert c. bolles')
('40560201', 'J. Brian Burns', 'j. brian burns')
('48804780', 'James A. Herson', 'james a. herson')
('31693932', 'Gregory K. Myers', 'gregory k. myers')
('2594026', 'Stephanie Pancoast', 'stephanie pancoast')
('1746492', 'Julien van Hout', 'julien van hout')
('49966591', 'Julie Wong', 'julie wong')
('3000952', 'AmirHossein Habibian', 'amirhossein habibian')
('1769315', 'Dennis C. Koelma', 'dennis c. koelma')
('3245057', 'Zhenyang Li', 'zhenyang li')
('2690389', 'Masoud Mazloom', 'masoud mazloom')
('37806314', 'Silvia-Laura Pintea', 'silvia-laura pintea')
('1964898', 'Sung Chun Lee', 'sung chun lee')
('1858100', 'Pramod Sharma', 'pramod sharma')
('40559421', 'Chen Sun', 'chen sun')
108b2581e07c6b7ca235717c749d45a1fa15bb24Using Stereo Matching with General Epipolar +
Geometry for 2D Face Recognition +
across Pose +
('38171682', 'Carlos D. Castillo', 'carlos d. castillo')
('34734622', 'David W. Jacobs', 'david w. jacobs')
106092fafb53e36077eba88f06feecd07b9e78e7Attend and Interact: Higher-Order Object Interactions for Video Understanding +
Georgia Institute of Technology, 2NEC Laboratories America, 3Georgia Tech Research Institute
('7437104', 'Chih-Yao Ma', 'chih-yao ma')
('2293919', 'Asim Kadav', 'asim kadav')
('50162780', 'Iain Melvin', 'iain melvin')
('1746245', 'Zsolt Kira', 'zsolt kira')
('1775043', 'Hans Peter Graf', 'hans peter graf')
103c8eaca2a2176babab2cc6e9b25d48870d6928FINDING RELEVANT SEMANTIC CONTENT FOR GROUNDED LANGUAGE LEARNING +
PANNING FOR GOLD: +
The University of Texas at Austin
Department of Computer Science +
Austin, TX 78712, USA +
('47514115', 'David L. Chen', 'david l. chen')
('1797655', 'Raymond J. Mooney', 'raymond j. mooney')
dlcc@cs.utexas.edu and mooney@cs.utexas.edu +
10d334a98c1e2a9e96c6c3713aadd42a557abb8bScene Text Recognition using Part-based Tree-structured Character Detection +
State Key Laboratory of Management and Control for Complex Systems, CASIA, Beijing, China +
('1959339', 'Cunzhao Shi', 'cunzhao shi')
('1683416', 'Chunheng Wang', 'chunheng wang')
('2658590', 'Baihua Xiao', 'baihua xiao')
('1698138', 'Yang Zhang', 'yang zhang')
('39001252', 'Song Gao', 'song gao')
('34539206', 'Zhong Zhang', 'zhong zhang')
{cunzhao.shi,chunheng.wang,baihua.xiao,yang.zhang,song.gao,zhong.zhang}@ia.ac.cn +
10f66f6550d74b817a3fdcef7fdeba13ccdba51cBenchmarking Face Alignment +
Institute for Anthropomatics
Karlsruhe Institute of Technology
Karlsruhe, Germany +
('1697965', 'Hua Gao', 'hua gao')Email: {gao, ekenel}@kit.edu +
107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53Hollywood in Homes: Crowdsourcing Data +
Collection for Activity Understanding +
Carnegie Mellon University
2Inria +
University of Washington
The Allen Institute for AI
http://allenai.org/plato/charades/ +
('34280810', 'Gunnar A. Sigurdsson', 'gunnar a. sigurdsson')
('39849136', 'Xiaolong Wang', 'xiaolong wang')
('2270286', 'Ali Farhadi', 'ali farhadi')
('1785596', 'Ivan Laptev', 'ivan laptev')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
1048c753e9488daa2441c50577fe5fdba5aa5d7cRecognising faces in unseen modes: a tensor based approach +
Curtin University of Technology
GPO Box U1987, Perth, WA 6845, Australia. +
('2867032', 'Santu Rana', 'santu rana')
('1713220', 'Wanquan Liu', 'wanquan liu')
('1679953', 'Mihai Lazarescu', 'mihai lazarescu')
('1679520', 'Svetha Venkatesh', 'svetha venkatesh')
{santu.rana, wanquan, m.lazarescu, svetha}@cs.curtin.edu.au +
10ca2e03ff995023a701e6d8d128455c6e8db030Modeling Stylized Character Expressions +
via Deep Learning +
University of Washington
Seattle, WA, USA +
2 Zillow Group, Seattle, WA, USA +
3 Gage Academy of Art, Seattle, WA, USA +
('2494850', 'Deepali Aneja', 'deepali aneja')
('2952700', 'Alex Colburn', 'alex colburn')
('9610752', 'Gary Faigin', 'gary faigin')
('3349536', 'Barbara Mones', 'barbara mones')
{deepalia,shapiro,mones}@cs.washington.edu +
alexco@cs.washington.edu +
gary@gageacademy.org +
1921e0a97904bdf61e17a165ab159443414308edBielefeld University
Faculty of Technology +
Applied Informatics +
Bachelor Thesis +
Retrieval of Web Images for +
Computer Vision Research +
September 28, 2009 +
Author: +
malinke techfak.uni-bielefeld.de +
Supervisors: +
Dipl.-Inform. Marco Kortkamp +
PD Dr.-Ing. Sven Wachsmuth +
19841b721bfe31899e238982a22257287b9be66aPublished as a conference paper at ICLR 2018 +
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +
RECURRENT NEURAL NETWORKS +
†Barcelona Supercomputing Center, ‡Google Inc, +
Universitat Polit`ecnica de Catalunya, Columbia University
('2447185', 'Brendan Jou', 'brendan jou')
('1711068', 'Jordi Torres', 'jordi torres')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{victor.campos, jordi.torres}@bsc.es, bjou@google.com, +
xavier.giro@upc.edu, shih.fu.chang@columbia.edu +
1922ad4978ab92ce0d23acc4c7441a8812f157e5Face Alignment by Coarse-to-Fine Shape Searching +
The Chinese University of Hong Kong
2SenseTime Group +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('2226254', 'Shizhan Zhu', 'shizhan zhu')
('40475617', 'Cheng Li', 'cheng li')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
zs014@ie.cuhk.edu.hk, chengli@sensetime.com, ccloy@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk +
19e62a56b6772bbd37dfc6b8f948e260dbb474f5Cross-Domain Metric Learning Based on Information Theory +
1. State Key Laboratory of Computer Science +
2. Science and Technology on Integrated Information System Laboratory +
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
University of Science and Technology of China
('39483391', 'Hao Wang', 'hao wang')
('40451597', 'Wei Wang', 'wei wang')
('1783918', 'Chen Zhang', 'chen zhang')
('34532334', 'Fanjiang Xu', 'fanjiang xu')
weiwangpenny@gmail.com +
192723085945c1d44bdd47e516c716169c06b7c0This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation +
Vision and Attention Theory Based Sampling +
for Continuous Facial Emotion Recognition +
Ninad S. Thakoor, Member, IEEE +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 +
25 +
26 +
27 +
28 +
29 +
30 +
31 +
32 +
33 +
34 +
35 +
36 +
37 +
('1693314', 'Albert C. Cruz', 'albert c. cruz')
('1707159', 'Bir Bhanu', 'bir bhanu')
19fb5e5207b4a964e5ab50d421e2549ce472baa8International Conference on Computer Systems and Technologies - CompSysTech’14 +
Online Emotional Facial Expression Dictionary +
Léon Rothkrantz +
1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2ROBUST ONLINE FACE TRACKING-BY-DETECTION +
2TNO Embedded Systems Innovation, Eindhoven, The Netherlands +
Eindhoven University of Technology, The Netherlands
('3199035', 'Francesco Comaschi', 'francesco comaschi')
('1679431', 'Sander Stuijk', 'sander stuijk')
('1708289', 'Twan Basten', 'twan basten')
('1684335', 'Henk Corporaal', 'henk corporaal')
{f.comaschi, s.stuijk, a.a.basten, h.corporaal}@tue.nl +
1962e4c9f60864b96c49d85eb897141486e9f6d1Neural Comput & Applic (2011) 20:565–573 +
DOI 10.1007/s00521-011-0577-7 +
O R I G I N A L A R T I C L E +
Locality preserving embedding for face and handwriting digital +
recognition +
Received: 3 December 2008 / Accepted: 11 March 2011 / Published online: 1 April 2011 +
Ó Springer-Verlag London Limited 2011 +
supervised manifold +
the local sub-manifolds. +
('5383601', 'Zhihui Lai', 'zhihui lai')
193debca0be1c38dabc42dc772513e6653fd91d8Mnemonic Descent Method: +
A recurrent process applied for end-to-end face alignment +
Imperial College London, UK
Goldsmiths, University of London, UK
Center for Machine Vision and Signal Analysis, University of Oulu, Finland
('2814229', 'George Trigeorgis', 'george trigeorgis')
('2796644', 'Patrick Snape', 'patrick snape')
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('1752913', 'Mihalis A. Nicolaou', 'mihalis a. nicolaou')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
(cid:63){g.trigeorgis, p.snape, e.antonakos, s.zafeiriou}@imperial.ac.uk, †m.nicolaou@gold.ac.uk +
191674c64f89c1b5cba19732869aa48c38698c84International Journal of Advanced Technology in Engineering and Science www.ijates.com +
Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550 +
FACE IMAGE RETRIEVAL USING ATTRIBUTE - +
ENHANCED SPARSE CODEWORDS +
E.Sakthivel1 , M.Ashok kumar2 +
PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India
Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India
190d8bd39c50b37b27b17ac1213e6dde105b21b8This document is downloaded from DR-NTU, Nanyang Technological +
University Library, Singapore
Title +
Mining weakly labeled web facial images for search- +
based face annotation +
Author(s) Wang, Dayong; Hoi, Steven C. H.; He, Ying; Zhu, Jianke +
Citation +
Wang, D., Hoi, S. C. H., He, Y., & Zhu, J. (2014). Mining +
weakly labeled web facial images for search-based face +
annotation. IEEE Transactions on Knowledge and Data +
Engineering, 26(1), 166-179. +
Date +
2014 +
URL +
http://hdl.handle.net/10220/18955 +
Rights +
© 2014 IEEE. Personal use of this material is permitted. +
Permission from IEEE must be obtained for all other +
uses, in any current or future media, including
reprinting/republishing this material for advertising or +
promotional purposes, creating new collective works, for +
resale or redistribution to servers or lists, or reuse of any +
copyrighted component of this work in other works. +
Published version of this article is available at [DOI: +
http://dx.doi.org/10.1109/TKDE.2012.240]. +
19af008599fb17bbd9b12288c44f310881df951cDiscriminative Local Sparse Representations for +
Robust Face Recognition +
('1719561', 'Yi Chen', 'yi chen')
('35210356', 'Umamahesh Srinivas', 'umamahesh srinivas')
('1694440', 'Thong T. Do', 'thong t. do')
('3346079', 'Vishal Monga', 'vishal monga')
('1709073', 'Trac D. Tran', 'trac d. tran')
19296e129c70b332a8c0a67af8990f2f4d4f44d1Metric Learning Approaches for Face Identification +
Is that you? +
M. Guillaumin, J. Verbeek and C. Schmid +
LEAR team, INRIA Rhˆone-Alpes, France +
Supplementary Material +
19666b9eefcbf764df7c1f5b6938031bcf777191Group Component Analysis for Multi-block Data: +
Common and Individual Feature Extraction +
('1764724', 'Guoxu Zhou', 'guoxu zhou')
('1747156', 'Andrzej Cichocki', 'andrzej cichocki')
('38741479', 'Yu Zhang', 'yu zhang')
198b6beb53e0e61357825d57938719f614685f75Vaulted Verification: A Scheme for Revocable Face +
Recognition +
University of Colorado, Colorado Springs
('3035230', 'Michael Wilber', 'michael wilber')mwilber@uccs.edu +
1921795408345751791b44b379f51b7dd54ebfa2From Face Recognition to Models of Identity: +
A Bayesian Approach to Learning about +
Unknown Identities from Unsupervised Data +
Imperial College London, UK
2 Microsoft Research, Cambridge, UK +
('2388416', 'Sebastian Nowozin', 'sebastian nowozin')dc315@imperial.ac.uk +
Sebastian.Nowozin@microsoft.com +
190b3caa2e1a229aa68fd6b1a360afba6f50fde4
19e0cc41b9f89492b6b8c2a8a58d01b8242ce00bW. ZHANG ET AL.: IMPROVING HFR WITH CGAN +
Improving Heterogeneous Face Recognition +
with Conditional Adversarial Networks +
1 Laboratory LIRIS +
Ecole Centrale de Lyon +
Ecully, France +
2 Computer Vision Lab +
Stony Brook University
Stony Brook, NY, USA +
('2553752', 'Wuming Zhang', 'wuming zhang')
('2496409', 'Zhixin Shu', 'zhixin shu')
('1686020', 'Dimitris Samaras', 'dimitris samaras')
('34086868', 'Liming Chen', 'liming chen')
wuming.zhang@ec-lyon.fr +
zhshu@cs.stonybrook.edu +
samaras@cs.stonybrook.edu +
liming.chen@ec-lyon.fr +
19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54Facial Action Coding Using Multiple Visual Cues and a Hierarchy of Particle +
Filters +
Computer Vision and Robotics Research Laboratory
University of California, San Diego
('32049271', 'Joel C. McCall', 'joel c. mccall')
('1713989', 'Mohan M. Trivedi', 'mohan m. trivedi')
jmccall@ucsd.edu mtrivedi@ucsd.edu +
1938d85feafdaa8a65cb9c379c9a81a0b0dcd3c4Monogenic Binary Coding: An Efficient Local Feature +
Extraction Approach to Face Recognition +
The Hong Kong Polytechnic University, Hong Kong, China
('5828998', 'Meng Yang', 'meng yang')
('36685537', 'Lei Zhang', 'lei zhang')
('1738911', 'Simon C. K. Shiu', 'simon c. k. shiu')
('1698371', 'David Zhang', 'david zhang')
195d331c958f2da3431f37a344559f9bce09c0f7Parsing Occluded People by Flexible Compositions +
University of California, Los Angeles
Figure 1: An illustration of the flexible compositions. Each connected sub- +
tree of the full graph (include the full graph itself) is a flexible composition. +
The flexible compositions that do not have certain parts are suitable for the +
people with those parts occluded. +
Figure 2: The absence of body parts evidence can help to predict occlusion. +
However, absence of evidence is not evidence of absence. +
It can fail in +
some challenging scenes. The local image measurements near the occlusion +
boundary (i.e., around the right elbow and left shoulder) can reliably provide +
evidence of occlusion. +
This paper presents an approach to parsing humans when there is signifi- +
cant occlusion. We model humans using a graphical model which has a tree +
structure building on recent work [1, 6] and exploit the connectivity prior +
that, even in presence of occlusion, the visible nodes form a connected sub- +
tree of the graphical model. We call each connected subtree a flexible com- +
position of object parts. This involves a novel method for learning occlusion +
cues. During inference we need to search over a mixture of different flexible +
models. By exploiting part sharing, we show that this inference can be done +
extremely efficiently requiring only twice as many computations as search- +
ing for the entire object (i.e., not modeling occlusion). We evaluate our +
model on the standard benchmarked “We Are Family" Stickmen dataset [2] +
and obtain significant performance improvements over the best alternative +
algorithms. +
Parsing humans into parts is an important visual task with many applica- +
tions such as activity recognition. A common approach is to formulate this +
task in terms of graphical models where the graph nodes and edges repre- +
sent human parts and their spatial relationships respectively. This approach +
is becoming successful on benchmarked datasets [1, 6]. But in many real +
world situations many human parts are occluded. Standard methods are par- +
tially robust to occlusion by, for example, using a latent variable to indicate +
whether a part is present and paying a penalty if the part is not detected, but +
are not designed to deal with significant occlusion. One of these models [1] +
will be used in this paper as a base model, and we will compare to it. +
In this paper, we observe that part occlusions often occur in regular pat- +
terns. The visible parts of a human tend to consist of a subset of connected +
parts even when there is significant occlusion (see Figures 1 and 2). In the +
terminology of graphical models, the visible (non-occluded) nodes form a +
connected subtree of the full graphical model (following current models, for +
simplicity, we assume that the graphical model is treelike). This connectiv- +
ity prior is not always valid (i.e., the visible parts of humans may form two +
or more connected subsets), but our analysis suggests it’s often true. In any +
case, we will restrict ourselves to it in this paper, since verifying that some +
isolated pieces of body parts belong to the same person is still very difficult +
for vision methods, especially in challenging scenes where multiple people +
occlude one another (see Figure 2). +
To formulate our approach we build on the base model [1], which is the +
state of the art on several benchmarked datasets [3, 4, 5], but is not designed +
for dealing with significant occlusion. We explicitly model occlusions us- +
ing the connectivity prior above. This means that we have a mixture of +
models where the number of components equals the number of all the pos- +
sible connected subtrees of the graph, which we call flexible compositions, +
('34420250', 'Xianjie Chen', 'xianjie chen')
199c2df5f2847f685796c2523221c6436f022464Self Quotient Image for Face Recognition +
Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School
Bournemouth University
('29948255', 'Haitao Wang', 'haitao wang')
('34679741', 'Stan Z. Li', 'stan z. li')
('1744302', 'Yangsheng Wang', 'yangsheng wang')
19c0069f075b5b2d8ac48ad28a7409179bd08b86Modifying the Memorability of Face Photographs +
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory +
('2556428', 'Aditya Khosla', 'aditya khosla')
('2553201', 'Wilma A. Bainbridge', 'wilma a. bainbridge')
('1690178', 'Antonio Torralba', 'antonio torralba')
('31735139', 'Aude Oliva', 'aude oliva')
{khosla, wilma, torralba, oliva}@csail.mit.edu +
19c0c7835dba1a319b59359adaa738f0410263e8228 +
Natural Image Statistics and +
Low-Complexity Feature Selection +
('30125215', 'Manuela Vasconcelos', 'manuela vasconcelos')
('1699559', 'Nuno Vasconcelos', 'nuno vasconcelos')
19808134b780b342e21f54b60095b181dfc7a600
19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9FaceNet: A Unified Embedding for Face Recognition and Clustering +
Google Inc. +
Google Inc. +
Google Inc. +
('3302320', 'Florian Schroff', 'florian schroff')
('2741985', 'Dmitry Kalenichenko', 'dmitry kalenichenko')
('2276542', 'James Philbin', 'james philbin')
fschroff@google.com +
dkalenichenko@google.com +
jphilbin@google.com +
1910f5f7ac81d4fcc30284e88dee3537887acdf3 Volume 6, Issue 5, May 2016 ISSN: 2277 128X +
International Journal of Advanced Research in +
Computer Science and Software Engineering +
Research Paper +
Available online at: www.ijarcsse.com +
Semantic Based Hypergraph Reranking Model for Web +
Image Search +
1, 2, 3, 4 B. E. Dept of CSE, 5 Asst. Prof. Dept of CSE +
Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India
19a9f658ea14701502d169dc086651b1d9b2a8eaStructural Models for Face Detection +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, China
('1721677', 'Junjie Yan', 'junjie yan')
('2520795', 'Xucong Zhang', 'xucong zhang')
('1718623', 'Zhen Lei', 'zhen lei')
('1716143', 'Dong Yi', 'dong yi')
('34679741', 'Stan Z. Li', 'stan z. li')
{jjyan,xczhang,zlei,dyi,szli}@nlpr.ia.ac.cn +
197c64c36e8a9d624a05ee98b740d87f94b4040cRegularized Greedy Column Subset Selection +
aDepartment of Computer Systems, Universidad Polit´ecnica de Madrid +
bDepartment of Applied Mathematics, Universidad Polit´ecnica de Madrid +
('1858768', 'Alberto Mozo', 'alberto mozo')*bruno.ordozgoiti@upm.es +
19d4855f064f0d53cb851e9342025bd8503922e2Learning SURF Cascade for Fast and Accurate Object Detection +
Intel Labs China +
('35423937', 'Jianguo Li', 'jianguo li')
('2470865', 'Yimin Zhang', 'yimin zhang')
19d3b02185ad36fb0b792f2a15a027c58ac91e8eIm2Text: Describing Images Using 1 Million +
Captioned Photographs +
Tamara L Berg +
Stony Brook University
Stony Brook, NY 11794 +
('2004053', 'Vicente Ordonez', 'vicente ordonez')
('2170826', 'Girish Kulkarni', 'girish kulkarni')
{vordonezroma or tlberg}@cs.stonybrook.edu +
193ec7bb21321fcf43bbe42233aed06dbdecbc5cUC Santa Barbara +
UC Santa Barbara Previously Published Works +
Title +
Automatic 3D facial expression analysis in videos +
Permalink +
https://escholarship.org/uc/item/3g44f7k8 +
Authors +
Chang, Y +
Vieira, M +
Turk, M +
et al. +
Publication Date +
2005-01-01 +
Peer reviewed +
eScholarship.org +
Powered by the California Digital Library +
University of California
19da9f3532c2e525bf92668198b8afec14f9efeaChallenge: Face verification across age progression using real-world data +
Video and Image Modeling and Synthesis Lab, Department of Computer Science, +
University of Delaware, Newark, DE. USA
1. Overview +
Analysis of face images has been the topic of in-depth research with wide spread applications. Face recognition, verifi- +
cation, age progression studies are some of the topics under study. In order to facilitate comparison and benchmarking of +
different approaches, various datasets have been released. For the specific topics of face verification with age progression, +
aging pattern extraction and age estimation, only two public datasets are currently available. The FGNET and MORPH +
datasets contain a large number of subjects, but only a few images are available for each subject. We present a new dataset, +
VADANA, which complements them by providing a large number of high quality digital images for each subject within and +
across ages (depth vs. breadth). It provides the largest number of intra-personal pairs, essential for better training and testing. +
The images also offer a natural range of pose, expression and illumination variation. We demonstrate the difference and +
difficulty of VADANA by testing with state-of-the-art algorithms. Our findings from experiments show how VADANA can +
aid further research on different types of verification algorithms. +
The following sections provide details for the proposed challenge. The dataset details, the need and motivation for its +
creation, comparison to existing benchmarks and the experiments performed on the same have been provided in the attached +
paper. +
2. Problem definition and challenges +
There are various problems in facial image analysis, such as face detection (finding faces in a given image), face recogni- +
tion (matching new image to a known dataset), face verification (determine if a given unknown pair of face images belong to +
same person) and many others. In this work, we focus on face verification specifically in the case of age progression. +
Problem definition: The input is a pair of facial images. The images are such that at least region from top of forehead till +
the chin is covered. Though in general, the images cover from top of head region and part of neck region also. The identity +
of the person(s) in the images is not known a priori. The system must determine if the two images belong to the same person +
(intra-personal pair or intra-pair) or to different persons (extra-personal pair or extra-pair). The two images are taken across a +
time period such that the age gap between the pair may range from 0 to 9 years. Also, the pose, expression and illumination +
is uncontrolled for both images. +
Training setup: During the training phase, the system is provided with pair of images (both intra-pairs and extra-pairs). +
The age of the subject in a given image and thus the age gap between a pair is provided during training. A classifier is trained +
using the features from the images. +
Testing setup: During the testing phase, the input is a pair of images. The subjects in these pairs are different from those +
in the training, i.e, the training and testing subjects are non-overlapping. There is no explicit age (or age-gap) information +
provided at this stage. The system must classify the pair as either intra-personal or extra-personal. +
Applications: The above problem definition closely resembles various real-world application scenarios such as passport +
verification, security and surveillance matching in videos/image captured over a period of time, clustering of people in large +
datasets where identities are unknown and many others. +
Challenges: The challenges stem from various aspects of the above problem definition: (1) The subject identities are not +
known, the system must therefore only rely on the information from the pair of images to determine the final classification. +
(2) The images are taken at different times, ranging from a gap of few months to up to 9 years (as in the case of passport +
verification). The effects due to aging thus contribute to shape and appearance changes even for an intra-pair (same person). +
('1692539', 'Gowri Somanath', 'gowri somanath')
('1708413', 'Chandra Kambhamettu', 'chandra kambhamettu')
somanath,chandra@cis.udel.edu +
19868a469dc25ee0db00947e06c804b88ea94fd0SP-SVM: Large Margin Classifier for Data on Multiple Manifolds +
Purdue University, West Lafayette, IN. 47907, USA
College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China
Santa Clara University, Santa Clara, CA. 95053, USA
cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA
('39274045', 'Bin Shen', 'bin shen')
('1678435', 'Bao-Di Liu', 'bao-di liu')
('34913796', 'Qifan Wang', 'qifan wang')
('3047254', 'Yi Fang', 'yi fang')
('1741931', 'Jan P. Allebach', 'jan p. allebach')
bshen@purdue.edu, thu.liubaodi@gmail.com, wang868@purdue.edu, yfang@scu.edu, allebach@ecn.purdue.edu +
192235f5a9e4c9d6a28ec0d333e36f294b32f764Reconfiguring the Imaging Pipeline for Computer Vision +
Cornell University
Carnegie Mellon University
Cornell University
('2328520', 'Mark Buckler', 'mark buckler')
('39131476', 'Suren Jayasuriya', 'suren jayasuriya')
('2138184', 'Adrian Sampson', 'adrian sampson')
19878141fbb3117d411599b1a74a44fc3daf296dEye-State Action Unit Detection by Gabor Wavelets +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
University of Pittsburgh, Pittsburgh, PA
http://www.cs.cmu.edu/face +
('40383812', 'Ying-li Tian', 'ying-li tian')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
Email: fyltian, tkg@cs.cmu.edu +
jeffcohn@pitt.edu +
19f076998ba757602c8fec04ce6a4ca674de0e25Turk J Elec Eng & Comp Sci +
(2016) 24: 219 { 233 +
c⃝ T (cid:127)UB_ITAK +
doi:10.3906/elk-1304-139 +
Fast and de-noise support vector machine training method based on fuzzy +
clustering method for large real world datasets +
(cid:3) +
Islamic Azad University, Gonabad, Iran
Received: 15.04.2013 +
(cid:15) +
Accepted/Published Online: 30.10.2013 +
(cid:15) +
Final Version: 01.01.2016 +
('9437627', 'Omid Naghash ALMASI', 'omid naghash almasi')
('4945660', 'Modjtaba ROUHANI', 'modjtaba rouhani')
19eb486dcfa1963c6404a9f146c378fc7ae3a1df
4c6daffd092d02574efbf746d086e6dc0d3b1e91
4cb8a691a15e050756640c0a35880cdd418e2b87Class-based matching of object parts +
Department of Computer Science and Applied Mathematics +
Weizmann Institute of Science
Rehovot, ISRAEL 76100 +
('1938475', 'Evgeniy Bart', 'evgeniy bart')
('1743045', 'Shimon Ullman', 'shimon ullman')
(cid:0)evgeniy.bart, shimon.ullman(cid:1)@weizmann.ac.il +
4cc681239c8fda3fb04ba7ac6a1b9d85b68af31dMining Spatial and Spatio-Temporal ROIs for Action Recognition +
Jiang Wang2 Alan Yuille1,3 +
University of California, Los Angeles
Baidu Research, USA 3John Hopkins University
('5964529', 'Xiaochen Lian', 'xiaochen lian'){lianxiaochen@,yuille@stat.}ucla.edu +
{chenzhuoyuan,yangyi05,wangjiang03}@baidu.com +
4c6e1840451e1f86af3ef1cb551259cb259493baHAND POSTURE DATASET CREATION FOR GESTURE +
RECOGNITION +
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +
Campus Universitario de Tafira, 35017 Gran Canaria, Spain +
Departamento de E.I.O. y Computacion +
38271 Universidad de La Laguna, Spain +
Keywords: +
Image understanding, Gesture recognition, Hand dataset. +
('1706692', 'Luis Anton-Canalis', 'luis anton-canalis')
('1797958', 'Elena Sanchez-Nielsen', 'elena sanchez-nielsen')
lanton@iusiani.ulpgc.es +
enielsen@ull.es +
4c87aafa779747828054cffee3125fcea332364dView-Constrained Latent Variable Model +
for Multi-view Facial Expression Classification +
Imperial College London, UK
EEMCS, University of Twente, The Netherlands
('2308430', 'Stefanos Eleftheriadis', 'stefanos eleftheriadis')
('1729713', 'Ognjen Rudovic', 'ognjen rudovic')
('1694605', 'Maja Pantic', 'maja pantic')
{s.eleftheriadis,o.rudovic,m.pantic}@imperial.ac.uk +
4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc
4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56Photorealistic Facial Texture Inference Using Deep Neural Networks +
*Pinscreen +
University of Southern California
USC Institute for Creative Technologies
Figure 1: We present an inference framework based on deep neural networks for synthesizing photorealistic facial texture +
along with 3D geometry from a single unconstrained image. We can successfully digitize historic figures that are no longer +
available for scanning and produce high-fidelity facial texture maps with mesoscopic skin details. +
('2059597', 'Shunsuke Saito', 'shunsuke saito')
('1792471', 'Lingyu Wei', 'lingyu wei')
('1808579', 'Liwen Hu', 'liwen hu')
('1897417', 'Koki Nagano', 'koki nagano')
('1706574', 'Hao Li', 'hao li')
4c8e5fc0877d066516bb63e6c31eb1b8b5f967ebMODI, KOVASHKA: CONFIDENCE AND DIVERSITY FOR ACTIVE SELECTION +
Confidence and Diversity for Active +
Selection of Feedback in Image Retrieval +
Department of Computer Science +
University of Pittsburgh
Pittsburgh, PA, USA +
('1770205', 'Adriana Kovashka', 'adriana kovashka')bhavin_modi@hotmail.com +
kovashka@cs.pitt.edu +
4c8ef4f98c6c8d340b011cfa0bb65a9377107970Sentiment Recognition in Egocentric +
Photostreams +
Intelligent Systems Group, University of Groningen, The Netherlands
University of Barcelona, Spain
3 Computer Vision Center, Barcelona, Spain +
('1742086', 'Nicola Strisciuglio', 'nicola strisciuglio')
('1730388', 'Nicolai Petkov', 'nicolai petkov')
('1724155', 'Petia Radeva', 'petia radeva')
e.talavera.martinez@rug.nl, +
4c822785c29ceaf67a0de9c699716c94fefbd37dA Key Volume Mining Deep Framework for Action Recognition +
2 SenseTime Group Limited +
Tsinghua University
Shenzhen Institutes of Advanced Technology, CAS, China
Figure 1. Key volumes detected by our key volume mining deep framework. A volume is a spatial-temporal video clip. The top row shows +
key volumes are very sparse among the whole video, and the second row shows that key volumes may come from different modalities +
(different motion patterns here). Note that frames are sampled with fixed time interval. +
('2121584', 'Wangjiang Zhu', 'wangjiang zhu')
('1748341', 'Jie Hu', 'jie hu')
('1687740', 'Gang Sun', 'gang sun')
('2032273', 'Xudong Cao', 'xudong cao')
('40612284', 'Yu Qiao', 'yu qiao')
4c815f367213cc0fb8c61773cd04a5ca8be2c959978-1-4244-4296-6/10/$25.00 ©2010 IEEE +
2470 +
ICASSP 2010 +
4ccf64fc1c9ca71d6aefdf912caf8fea048fb211Light-weight Head Pose Invariant Gaze Tracking +
University of Maryland
NVIDIA +
NVIDIA +
('48467498', 'Rajeev Ranjan', 'rajeev ranjan')
('24817039', 'Shalini De Mello', 'shalini de mello')
('1690538', 'Jan Kautz', 'jan kautz')
rranjan1@umiacs.umd.edu +
shalinig@nvidia.com +
jkautz@nvidia.com +
4cdb6144d56098b819076a8572a664a2c2d27f72Face Synthesis for Eyeglass-Robust Face +
Recognition +
CBSRandNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
('46220439', 'Jianzhu Guo', 'jianzhu guo')
('8362374', 'Xiangyu Zhu', 'xiangyu zhu')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
{jianzhu.guo,xiangyu.zhu,zlei,szli}@nlpr.ia.ac.cn +
4c4e49033737467e28aa2bb32f6c21000deda2efImproving Landmark Localization with Semi-Supervised Learning +
MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research
('25056820', 'Sina Honari', 'sina honari')
('2824500', 'Pavlo Molchanov', 'pavlo molchanov')
('2342481', 'Stephen Tyree', 'stephen tyree')
('1707326', 'Pascal Vincent', 'pascal vincent')
('1690538', 'Jan Kautz', 'jan kautz')
1{honaris, vincentp}@iro.umontreal.ca, +
2{pmolchanov, styree, jkautz}@nvidia.com, 3christopher.pal@polymtl.ca +
4c6233765b5f83333f6c675d3389bbbf503805e3Real-time High Performance Deformable Model for Face Detection in the Wild +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, China
('1721677', 'Junjie Yan', 'junjie yan')
('2520795', 'Xucong Zhang', 'xucong zhang')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
{jjyan,xczhang,zlei,szli}@nlpr.ia.ac.cn +
4c078c2919c7bdc26ca2238fa1a79e0331898b56Unconstrained Facial Landmark Localization with Backbone-Branches +
Fully-Convolutional Networks +
Sun Yat-Sen University
Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China +
('1742286', 'Zhujin Liang', 'zhujin liang')
('2442939', 'Shengyong Ding', 'shengyong ding')
('1737218', 'Liang Lin', 'liang lin')
alfredtofu@gmail.com, marcding@163.com, linliang@ieee.org +
4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7EFFICIENT LIKELIHOOD BAYESIAN CONSTRAINED LOCAL MODEL +
The Hong Kong Polytechnic University
Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China
('2116302', 'Hailiang Li', 'hailiang li')
('1703078', 'Kin-Man Lam', 'kin-man lam')
('3280193', 'Man-Yau Chiu', 'man-yau chiu')
('2233216', 'Kangheng Wu', 'kangheng wu')
('1982263', 'Zhibin Lei', 'zhibin lei')
harley.li@connect.polyu.hk,{harleyli, edmondchiu, khwu, lei}@astri.org, enkmlam@polyu.edu.hk +
4cac9eda716a0addb73bd7ffea2a5fb0e6ec2367Representing Videos based on Scene Layouts +
for Recognizing Agent-in-Place Actions +
University of Maryland, College Park
2Comcast Applied AI Research +
3DeepMind +
4Adobe Research +
('2180291', 'Ruichi Yu', 'ruichi yu')
('3254319', 'Hongcheng Wang', 'hongcheng wang')
('7674316', 'Jingxiao Zheng', 'jingxiao zheng')
{richyu, jxzheng, lsd}@umiacs.umd.edu +
anglili@google.com morariu@adobe.com +
4c4236b62302957052f1bbfbd34dbf71ac1650ecSEMI-SUPERVISED FACE RECOGNITION WITH LDA SELF-TRAINING +
Multimedia Communications Department, EURECOM +
2229 Route des Crêtes , BP 193, F-06560 Sophia-Antipolis Cedex, France +
('37560971', 'Xuran Zhao', 'xuran zhao')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
{zhaox, evans, dugelay}@eurecom.fr +
4cd0da974af9356027a31b8485a34a24b57b8b90Binarized Convolutional Landmark Localizers for Human Pose Estimation and +
Face Alignment with Limited Resources +
Computer Vision Laboratory, The University of Nottingham
Nottingham, United Kingdom +
('3458121', 'Adrian Bulat', 'adrian bulat')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
{adrian.bulat, yorgos.tzimiropoulos}@nottingham.ac.uk +
4c170a0dcc8de75587dae21ca508dab2f9343974FaceTracer: A Search Engine for +
Large Collections of Images with Faces +
Columbia University
('40631426', 'Neeraj Kumar', 'neeraj kumar')
4c81c76f799c48c33bb63b9369d013f51eaf5adaMulti-modal Score Fusion and Decision Trees for Explainable Automatic Job +
Candidate Screening from Video CVs +
Nam k Kemal University, Tekirda g, Turkey
Bo gazic i University, Istanbul, Turkey
('38007788', 'Heysem Kaya', 'heysem kaya')
('1764521', 'Albert Ali Salah', 'albert ali salah')
hkaya@nku.edu.tr, furkan.gurpinar@boun.edu.tr,salah@boun.edu.tr +
4c1ce6bced30f5114f135cacf1a37b69bb709ea1Gaze Direction Estimation by Component Separation for +
Recognition of Eye Accessing Cues +
Ruxandra Vrˆanceanu +
Image Processing and Analysis Laboratory +
University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
Image Processing and Analysis Laboratory +
University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
Image Processing and Analysis Laboratory +
University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
Image Processing and Analysis Laboratory +
University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
('2760434', 'Corneliu Florea', 'corneliu florea')
('2143956', 'Laura Florea', 'laura florea')
('2905899', 'Constantin Vertan', 'constantin vertan')
rvranceanu@imag.pub.ro +
corneliu.florea@upb.ro +
laura.florea@upb.ro +
constantin.vertan@upb.ro +
4c5b38ac5d60ab0272145a5a4d50872c7b89fe1bFacial Expression Recognition with Emotion-Based +
Feature Fusion +
The Hong Kong Polytechnic University, Hong Kong, SAR, 2University of Technology Sydney, Australia
('13671251', 'Cigdem Turan', 'cigdem turan')
('1703078', 'Kin-Man Lam', 'kin-man lam')
('1706670', 'Xiangjian He', 'xiangjian he')
E-mail: cigdem.turan@connect.polyu.hk, enkmlam@polyu.edu.hk, Xiangjian.He@uts.edu.au +
4c523db33c56759255b2c58c024eb6112542014ePatch-based Within-Object Classification∗ +
University College London
MRC Laboratory For Molecular Cell Biology, University College London
('1904148', 'Jania Aghajanian', 'jania aghajanian')
('1734784', 'Jonathan Warrell', 'jonathan warrell')
('1695363', 'Peng Li', 'peng li')
('32948556', 'Jennifer L. Rohn', 'jennifer l. rohn')
('31046411', 'Buzz Baum', 'buzz baum')
1{j.aghajanian, j.warrell, s.prince, p.li}@cs.ucl.ac.uk 2{j.rohn, b.baum}@ucl.ac.uk +
261c3e30bae8b8bdc83541ffa9331b52fcf015e6PATEL, SMITH: SFS+3DMM FOR FACE RECOGNITION +
Shape-from-shading driven 3D Morphable +
Models for Illumination Insensitive Face +
Recognition +
William A.P. Smith +
Department of Computer Science, +
The University of York
('37519514', 'Ankur Patel', 'ankur patel')ankur@cs.york.ac.uk +
wsmith@cs.york.ac.uk +
26f03693c50eb50a42c9117f107af488865f3dc1Eigenhill vs. Eigenface and Eigenedge +
Istanbul Technical University
Department of Computer Science +
('1858702', 'Alper Yilmaz', 'alper yilmaz')
('1766445', 'Muhittin Gökmen', 'muhittin gökmen')
yilmaz@cs.ucf.edu +
gokmen@cs.itu.edu.tr +
2661f38aaa0ceb424c70a6258f7695c28b97238aIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012 +
1027 +
Multilayer Architectures for Facial +
Action Unit Recognition +
('4072965', 'Tingfan Wu', 'tingfan wu')
('2593137', 'Nicholas J. Butko', 'nicholas j. butko')
('12114845', 'Paul Ruvolo', 'paul ruvolo')
('1775637', 'Jacob Whitehill', 'jacob whitehill')
('1741200', 'Javier R. Movellan', 'javier r. movellan')
2609079d682998da2bc4315b55a29bafe4df414eON RANK AGGREGATION FOR FACE RECOGNITION FROM VIDEOS +
IIIT-Delhi, India +
('2559473', 'Himanshu S. Bhatt', 'himanshu s. bhatt')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
264a84f4d27cd4bca94270620907cffcb889075cDeep Motion Features for Visual Tracking +
Computer Vision Laboratory, Link oping University, Sweden
('8161428', 'Susanna Gladh', 'susanna gladh')
('2488938', 'Martin Danelljan', 'martin danelljan')
('2358803', 'Fahad Shahbaz Khan', 'fahad shahbaz khan')
('2228323', 'Michael Felsberg', 'michael felsberg')
26d407b911d1234e8e3601e586b49316f0818c95[POSTER] Feasibility of Corneal Imaging for Handheld Augmented Reality +
Coburg University
('37101400', 'Daniel Schneider', 'daniel schneider')
('2708269', 'Jens Grubert', 'jens grubert')
26a44feb7a64db7986473ca801c251aa88748477Journal of Machine Learning Research 1 () +
Submitted ; Published +
Unsupervised Learning of Gaussian Mixture Models with a +
Uniform Background Component +
Department of Statistics +
Florida State University
Tallahassee, FL 32306-4330, USA +
Department of Statistics +
Florida State University
Tallahassee, FL 32306-4330, USA +
Editor: +
('2761870', 'Sida Liu', 'sida liu')
('2455529', 'Adrian Barbu', 'adrian barbu')
sida.liu@stat.fsu.edu +
abarbu@stat.fsu.edu +
264f7ab36ff2e23a1514577a6404229d7fe1242bFacial Expression Recognition by De-expression Residue Learning +
Department of Computer Science +
State University of New York at Binghamton, USA
('2671017', 'Huiyuan Yang', 'huiyuan yang')
('8072251', 'Lijun Yin', 'lijun yin')
{hyang51, uciftci}@binghamton.edu; lijun@cs.binghamton.edu +
26a72e9dd444d2861298d9df9df9f7d147186bcdDOI 10.1007/s00138-016-0768-4 +
ORIGINAL PAPER +
Collecting and annotating the large continuous action dataset +
Received: 18 June 2015 / Revised: 18 April 2016 / Accepted: 22 April 2016 / Published online: 21 May 2016 +
© The Author(s) 2016. This article is published with open access at Springerlink.com +
('2089428', 'Daniel Paul Barrett', 'daniel paul barrett')
266766818dbc5a4ca1161ae2bc14c9e269ddc490Article +
Boosting a Low-Cost Smart Home Environment with +
Usage and Access Control Rules +
Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy
Received: 27 April 2018; Accepted: 31 May 2018; Published: 8 June 2018 +
('1773887', 'Paolo Barsocchi', 'paolo barsocchi')
('38567341', 'Antonello Calabrò', 'antonello calabrò')
('1693901', 'Erina Ferro', 'erina ferro')
('2209975', 'Claudio Gennaro', 'claudio gennaro')
('1709783', 'Eda Marchetti', 'eda marchetti')
('2508924', 'Claudio Vairo', 'claudio vairo')
antonello.calabro@isti.cnr.it (A.C.); erina.ferro@isti.cnr.it (E.F.); claudio.gennaro@isti.cnr.it (C.G.); +
eda.marchetti@isti.cnr.it (E.M.); claudio.vairo@isti.cnr.it (C.V.) +
* Correspondence: paolo.barsocchi@isti.cnr.it; Tel.: +39-050-315-2965 +
265af79627a3d7ccf64e9fe51c10e5268fee2aae1817 +
A Mixture of Transformed Hidden Markov +
Models for Elastic Motion Estimation +
('1932096', 'Huijun Di', 'huijun di')
('3265275', 'Linmi Tao', 'linmi tao')
('1797002', 'Guangyou Xu', 'guangyou xu')
267c6e8af71bab68547d17966adfaab3b4711e6b
26af867977f90342c9648ccf7e30f94470d40a73IJIRST –International Journal for Innovative Research in Science & Technology| Volume 3 | Issue 04 | September 2016 +
ISSN (online): 2349-6010 +
Joint Gender and Face Recognition System for +
RGB-D Images with Texture and DCT Features +
PG Student +
Department of Computer Science & Information Systems +
Federal Institute of Science and Technology, Mookkannoor
PO, Angamaly, Ernakulam, Kerala 683577, India +
Prasad J. C. +
Associate Professor +
Department of Computer Science & Engineering +
Federal Institute of Science and Technology, Mookkannoor
PO, Angamaly, Ernakulam, Kerala 683577, India +
26a89701f4d41806ce8dbc8ca00d901b68442d45
26c884829897b3035702800937d4d15fef7010e4IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x +
PAPER +
Facial Expression Recognition by Supervised Independent +
Component Analysis using MAP Estimation +
, Member +
SUMMARY Permutation ambiguity of the classical Inde- +
pendent Component Analysis (ICA) may cause problems in fea- +
ture extraction for pattern classification. Especially when only a +
small subset of components is derived from data, these compo- +
nents may not be most distinctive for classification, because ICA +
is an unsupervised method. We include a selective prior for de- +
mixing coefficients into the classical ICA to alleviate the problem. +
Since the prior is constructed upon the classification information +
from the training data, we refer to the proposed ICA model with +
a selective prior as a supervised ICA (sICA). We formulated the +
learning rule for sICA by taking a Maximum a Posteriori (MAP) +
scheme and further derived a fixed point algorithm for learning +
the de-mixing matrix. We investigate the performance of sICA +
in facial expression recognition from the aspects of both correct +
rate of recognition and robustness even with few independent +
components. +
key words: +
dent component analysis, fixed-point algorithm +
facial expression recognition, supervised indepen- +
1. +
Introduction +
Various methods have been proposed for auto- +
matic recognition of facial expression in the past several +
decades, which could be roughly classified into three +
categories: 1) Appearance-based method, represented +
by eigenfaces, fisherfaces and other methods using +
machine-learning techniques, such as neural networks +
and Support Vector Machine (SVM); 2) Model-based +
methods, including graph matching, optical- ow-based
method and others; and 3) Hybrids of appearance based +
and model-based methods, such as Active Appearance +
Model (AAM). Detailed review of these methods could +
be found in two surveys in Refs.[1][2]. Appearance- +
based methods are superior to model-based methods +
in system complexity and performance reproducibil- +
ity. Further, appearance-based methods allow efficient +
characterization of a low-dimensional subspace within +
the overall space of raw image measurement, which +
deepen our understanding of facial expressions from +
their manifolds in subspace, and provide a statistical +
framework for the theoretical analysis of system per- +
formance. ICA, a powerful technique for blind source +
separation, was applied to facial expression recognition +
by Bartlett et al. for feature extraction.[3] They argued +
that facial expression consists of those features standing +
for minor, non-rigid, local variations of faces[3]. Struc- +
Manuscript received January 1, 200x. +
Manuscript revised January 1, 200x. +
Final manuscript received January 1, 200x. +
The author is with the school of information science, +
Japan Advanced Institute of Science and Technology
tural information for those local variations are related +
to higher-order statistics, which could be well extracted +
by ICA.[5] The efficiency of ICA in extracting features +
for facial expression recognition has been verified by +
many previous works.[4][6][7] +
The major purpose of the present work is to im- +
prove the performance of ICA in facial expression recog- +
nition. In the classical ICA, the derived independent +
components are in random order, i.e., permutation am- +
biguity, where the original order provides no informa- +
tion on the significance of components in discrimina- +
tion.[8] As a result, the derived independent compo- +
nents may not be most distinctive for the classification +
task, especially when only a small subset of compo- +
nents is derived. Feature selection must be performed +
along with the feature extraction. The selection can +
be applied before, during or after ICA. In Ref.[4], Best +
Individual Feature (BIF) selection was adopted, where +
features were chosen according to some defined criteria +
individually. Methods by means of Sequential Forward +
Selection (SFS) and Sequential Floating Forward Se- +
lection (SFFS) were also proposed. [9] Since the selec- +
tion is performed after ICA, the features are limited to +
those chosen from the set of independent components +
obtained. To create a candidate set with enough repre- +
sentative features for discrimination, a large number of +
independent components should be learned, which may +
be expensive in computational cost. It is meaningful +
to search for a way to affect the selection of features +
before or during ICA. GEMC [10] makes a selection +
before ICA by heuristically replacing PCA with a dis- +
criminant analysis as the pre-processing to ICA, which +
still lacks a mathematical explanation. ICA in a local +
facial residue space is also proposed for face recognition, +
which can be regarded as using the pre-specified residue +
space to limit the selection of independent components +
before applying ICA. [11] +
We propose an approach to implement the feature +
selection during the learning of independent compo- +
nents. A constraint ICA has been proposed for the +
analysis of EEG signals, where all components should +
be sparse and close to a supplied reference signal by +
including a correlation term. [12] In our case, we try to +
design a method to let those components with higher +
degrees of class separation emerge easier than others. +
The classical ICA in Ref.[13] was shown to be deriv- +
able under the scheme of Maximum Log-Likelihood +
('1753878', 'Fan Chen', 'fan chen')
('1791753', 'Kazunori Kotani', 'kazunori kotani')
266ed43dcea2e7db9f968b164ca08897539ca8ddBeyond Principal Components: Deep Boltzmann Machines for Face Modeling +
Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada
Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA
('1876581', 'Chi Nhan Duong', 'chi nhan duong')
('1769788', 'Khoa Luu', 'khoa luu')
('2687827', 'Kha Gia Quach', 'kha gia quach')
('1699922', 'Tien D. Bui', 'tien d. bui')
1 {c duon, k q, bui}@encs.concordia.ca, 2 kluu@andrew.cmu.edu +
26ad6ceb07a1dc265d405e47a36570cb69b2ace6RESEARCH AND EXPLOR ATORY +
DEVELOPMENT DEPARTMENT +
REDD-2015-384 +
Neural Correlates of Cross-Cultural +
How to Improve the Training and Selection for +
Military Personnel Involved in Cross-Cultural +
Operating Under Grant #N00014-12-1-0629/113056 +
Adaptation +
September, 2015 +
Interactions +
Prepared for: +
Office of Naval Research +
('20444535', 'Jonathon Kopecky', 'jonathon kopecky')
('29125372', 'Alice Jackson', 'alice jackson')
2642810e6c74d900f653f9a800c0e6a14ca2e1c7Projection Bank: From High-dimensional Data to Medium-length Binary Codes +
Department of Computer Science and Digital Technologies +
Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
('40017778', 'Li Liu', 'li liu')
('9452165', 'Mengyang Yu', 'mengyang yu')
('40799321', 'Ling Shao', 'ling shao')
li2.liu@northumbria.ac.uk, m.y.yu@ieee.org, ling.shao@ieee.org +
26437fb289cd7caeb3834361f0cc933a022677662012 International Conference on Management and Education Innovation +
IPEDR vol.37 (2012) © (2012) IACSIT Press, Singapore +
Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and +
Game-Based Development of Thinking Skills in Classroom Settings +
University of Szeged, 2 E tv s Lor nd University
('39201903', 'Gyöngyvér Molnár', 'gyöngyvér molnár')
('32197908', 'András Lőrincz', 'andrás lőrincz')
26e570049aaedcfa420fc8c7b761bc70a195657cJ Sign Process Syst +
DOI 10.1007/s11265-017-1276-0 +
Hybrid Facial Regions Extraction for Micro-expression +
Recognition System +
Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017 +
© Springer Science+Business Media, LLC 2017 +
('39888137', 'Sze-Teng Liong', 'sze-teng liong')
('2339975', 'John See', 'john see')
('37809010', 'Su-Wei Tan', 'su-wei tan')
2654ef92491cebeef0997fd4b599ac903e48d07aFacial Expression Recognition from Near-Infrared Video Sequences +
1. Machine Vision Group, Infotech Oulu and Department of Electrical and Information +
Engineering, +
P. O. Box 4500 FI-90014 University of Oulu, Finland
Institute of Automation, Chinese Academy of Sciences
P. O. Box 95 Zhongguancun Donglu, Beijing 100080, China +
('2021982', 'Matti Taini', 'matti taini')
('1757287', 'Guoying Zhao', 'guoying zhao')
('34679741', 'Stan Z. Li', 'stan z. li')
('1714724', 'Matti Pietikäinen', 'matti pietikäinen')
E-mail: {matti.taini,gyzhao,mkp}@ee.oulu.fi +
E-mail: szli@cbsr.ia.ac.cn +
2679e4f84c5e773cae31cef158eb358af475e22fAdaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition +
Carnegie Mellon University, Pittsburgh, PA
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science
The Hong Kong Polytechnic University, Hong Kong, China
University of Chinese Academy of Sciences, Beijing, China
('1790207', 'Xiaofeng Liu', 'xiaofeng liu')
('1748883', 'Jane You', 'jane you')
('37774211', 'Ping Jia', 'ping jia')
liuxiaofeng@cmu.edu, kumar@ece.cmu.edu, csyjia@comp.polyu.edu.hk, jiap@ciomp.ac.cn +
21ef129c063bad970b309a24a6a18cbcdfb3aff5POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Dr J.-M. Vesin, président du juryProf. J.-Ph. Thiran, Prof. D. Sander, directeurs de thèseProf. M. F. Valstar, rapporteurProf. H. K. Ekenel, rapporteurDr S. Marcel, rapporteurIndividual and Inter-related Action Unit Detection in Videos for Affect RecognitionTHÈSE NO 6837 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 19 FÉVRIER 2016À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 5PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAnıl YÜCE
218b2c5c9d011eb4432be4728b54e39f366354c1Enhancing Training Collections for Image +
Annotation: An Instance-Weighted Mixture +
Modeling Approach +
('1793498', 'Neela Sawant', 'neela sawant')
('40116905', 'Jia Li', 'jia li')
217a21d60bb777d15cd9328970cab563d70b5d23Hidden Factor Analysis for Age Invariant Face Recognition +
1Shenzhen Key Lab of Computer Vision and Pattern Recognition +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
Toyota Technological Institute at Chicago
The Chinese University of Hong Kong
4Media Lab, Huawei Technologies Co. Ltd., China +
('2856494', 'Dihong Gong', 'dihong gong')
('1911510', 'Zhifeng Li', 'zhifeng li')
('1807606', 'Dahua Lin', 'dahua lin')
('7137861', 'Jianzhuang Liu', 'jianzhuang liu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
dh.gong@siat.ac.cn +
zhifeng.li@siat.ac.cn +
dhlin@ttic.edu +
liu.jianzhuang@huawei.com +
xtang@ie.cuhk.edu.hk +
21e828071249d25e2edaca0596e27dcd63237346
21a2f67b21905ff6e0afa762937427e92dc5aa0bHindawi +
Computational Intelligence and Neuroscience +
Volume 2017, Article ID 8710492, 13 pages +
https://doi.org/10.1155/2017/8710492 +
Research Article +
Extra Facial Landmark Localization via +
Global Shape Reconstruction +
School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave
West Hi-Tech Zone, Chengdu 611731, China +
Received 4 January 2017; Revised 26 March 2017; Accepted 4 April 2017; Published 23 April 2017 +
Academic Editor: Elio Masciari +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Localizing facial landmarks is a popular topic in the field of face analysis. However, problems arose in practical applications such +
as handling pose variations and partial occlusions while maintaining moderate training model size and computational efficiency +
still challenges current solutions. In this paper, we present a global shape reconstruction method for locating extra facial landmarks +
comparing to facial landmarks used in the training phase. In the proposed method, the reduced configuration of facial landmarks +
is first decomposed into corresponding sparse coefficients. Then explicit face shape correlations are exploited to regress between +
sparse coefficients of different facial landmark configurations. Finally extra facial landmarks are reconstructed by combining the +
pretrained shape dictionary and the approximation of sparse coefficients. By applying the proposed method, both the training +
time and the model size of a class of methods which stack local evidences as an appearance descriptor can be scaled down with +
only a minor compromise in detection accuracy. Extensive experiments prove that the proposed method is feasible and is able to +
reconstruct extra facial landmarks even under very asymmetrical face poses. +
1. Introduction +
Facial landmark localization is the first and a crucial step for +
many face analysis tasks such as face recognition [1], cartoon +
facial animation [2, 3], and facial expression understanding +
[4, 5]. Most facial landmarks are located along the dominant +
contours around facial features like eyebrows, nose, and +
mouth. Therefore facial landmarks on a face image jointly +
describe a face shape which lies in the shape space [6]. +
For the last ten years remarkable progress has been +
made in the field of facial +
landmark localization [7, 8]. +
Among a large number of proposed methods, the most +
popular solution is to treat the facial landmark localiza- +
tion problem as a holistic shape regression process and +
to learn a general regression model from labeled training +
images [9, 10]. Following this shape regression idea, various +
methods try to model a regression function that directly +
maps the appearance of images to landmark coordinates +
without the need of computing a parametric model. All +
facial landmarks in a shape are iterated collectively and the +
relationship between facial landmarks is flexibly embedded +
into the iteration process. On the other hand, to generate +
enough description of face images, multiscale local feature +
descriptors are typically adopted in most shape regression +
methods. For example, cascaded pose regression (CPR) [7] +
was first proposed to estimate general object poses with pose- +
indexed features and then extended for the problem of face +
alignment in explicit shape regression (ESR) [11] method. +
ESR combines two-level boosting regression, shape-indexed +
features, and correlation-based feature selection. As another +
example, supervised descent method (SDM) [12] and its +
extensions also have shown an impressive performance in the +
field of facial landmark localization. These kinds of methods +
stack shape-indexed high dimension feature descriptors and +
train regression functions from a supervised gradient descent +
view. +
However, facial landmark localization still meets great +
challenges in practical applications, such as handling pose +
variations and partial occlusion while maintaining moderate +
training model size and computational efficiency. In SDM +
and its improved methods, the dimension of regression +
('9684590', 'Shuqiu Tan', 'shuqiu tan')
('2915473', 'Dongyi Chen', 'dongyi chen')
('9486108', 'Chenggang Guo', 'chenggang guo')
('2122143', 'Zhiqi Huang', 'zhiqi huang')
('9684590', 'Shuqiu Tan', 'shuqiu tan')
Correspondence should be addressed to Dongyi Chen; dychen@uestc.edu.cn +
2162654cb02bcd10794ae7e7d610c011ce0fb51b4697 +
978-1-4799-5751-4/14/$31.00 ©2014 IEEE +
1http://www.skype.com/ +
2http://www.google.com/hangouts/ +
tification, sparse coding +
21258aa3c48437a2831191b71cd069c05fb84cf7A Robust and E(cid:14)cient Doubly Regularized +
Metric Learning Approach +
Siemens Corporate Research, Princeton, NJ, 08540 +
CISE, University of Florida, Gainesville, FL
('35582088', 'Meizhu Liu', 'meizhu liu')
('1733005', 'Baba C. Vemuri', 'baba c. vemuri')
21f3c5b173503185c1e02a3eb4e76e13d7e9c5bcm a s s a c h u s e t t s i n s t i t u t e o f +
t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y +
Rotation Invariant Real-time +
Face Detection and +
Recognition System +
AI Memo 2001-010 +
CBCL Memo 197 +
May 31, 2001 +
© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f +
t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u +
('35541734', 'Purdy Ho', 'purdy ho')
21bd9374c211749104232db33f0f71eab4df35d5Integrating Facial Makeup Detection Into +
Multimodal Biometric User Verification System +
CuteSafe Technology Inc. +
Gebze, Kocaeli, Turkey +
Eurecom Digital Security Department +
06410 Biot, France +
('39935459', 'Ekberjan Derman', 'ekberjan derman')
('3179061', 'Chiara Galdi', 'chiara galdi')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
ekberjan.derman@cutesafe.com +
{chiara.galdi, jean-luc.dugelay}@eurecom.fr +
214db8a5872f7be48cdb8876e0233efecdcb6061Semantic-aware Co-indexing for Image Retrieval +
NEC Laboratories America, Inc
2Dept. of CS, Univ. of Texas at San Antonio +
Cupertino, CA 95014 +
San Antonio, TX 78249 +
('1776581', 'Shiliang Zhang', 'shiliang zhang')
('2909406', 'Ming Yang', 'ming yang')
('3991189', 'Xiaoyu Wang', 'xiaoyu wang')
('1695082', 'Yuanqing Lin', 'yuanqing lin')
('1713616', 'Qi Tian', 'qi tian')
{myang,xwang,ylin}@nec-labs.com +
slzhang.jdl@gmail.com qitian@cs.utsa.edu +
21104bcf07ef0269ab133471a3200b9bf94b2948Beyond Comparing Image Pairs: Setwise Active Learning for Relative Attributes +
University of Texas at Austin
('2548555', 'Lucy Liang', 'lucy liang')
('1794409', 'Kristen Grauman', 'kristen grauman')
214ac8196d8061981bef271b37a279526aab5024Face Recognition Using Smoothed High-Dimensional +
Representation +
Center for Machine Vision Research, PO Box 4500, +
FI-90014 University of Oulu, Finland
('32683737', 'Juha Ylioinas', 'juha ylioinas')
('1776374', 'Juho Kannala', 'juho kannala')
('1751372', 'Abdenour Hadid', 'abdenour hadid')
213a579af9e4f57f071b884aa872651372b661fdInt J Comput Vis +
DOI 10.1007/s11263-013-0672-6 +
Automatic and Efficient Human Pose Estimation for Sign +
Language Videos +
Received: 4 February 2013 / Accepted: 29 October 2013 +
© Springer Science+Business Media New York 2013 +
('36326860', 'James Charles', 'james charles')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1978-1-4673-2533-2/12/$26.00 ©2012 IEEE +
1437 +
ICIP 2012 +
217de4ff802d4904d3f90d2e24a29371307942fePOOF: Part-Based One-vs-One Features for Fine-Grained Categorization, Face +
Verification, and Attribute Estimation +
Columbia University
Columbia University
('1778562', 'Thomas Berg', 'thomas berg')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
tberg@cs.columbia.edu +
belhumeur@cs.columbia.edu +
2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44Lessons from Collecting a Million Biometric Samples +
University of Notre Dame
Notre Dame, IN 46556, USA +
National Institute of Standards and Technology
Gaithersburg, MD 20899, USA +
('1704876', 'Patrick J. Flynn', 'patrick j. flynn')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
flynn@cse.nd.edu +
kwb@cse.nd.edu +
jonathon@nist.gov +
210b98394c3be96e7fd75d3eb11a391da1b3a6caSpatiotemporal Derivative Pattern: A Dynamic +
Texture Descriptor for Video Matching +
Saeed Mian3 +
Tafresh University, Tafresh, Iran
Electrical Eng. Dep., Central Tehran Branch, Islamic Azad University, Tehran, Iran
Computer Science and Software Engineering, The University of Western Australia
WA 6009, Australia +
('3046235', 'Farshid Hajati', 'farshid hajati')
('2014145', 'Mohammad Tavakolian', 'mohammad tavakolian')
('2997971', 'Soheila Gheisari', 'soheila gheisari')
{hajati,m_tavakolian}@tafreshu.ac.ir +
s.gheisari@iauctb.ac.ir +
ajmal.mian@uwa.edu.au +
21765df4c0224afcc25eb780bef654cbe6f0bc3aMulti-Channel Correlation Filters +
National University of Singapore
National University of Singapore
Singapore +
Singapore +
CSIRO +
Australia +
('2860592', 'Hamed Kiani Galoogahi', 'hamed kiani galoogahi')
('1715286', 'Terence Sim', 'terence sim')
('1820249', 'Simon Lucey', 'simon lucey')
hkiani@comp.nus.edu.sg +
tsim@comp.nus.edu.sg +
simon.lucey@csiro.au +
21b16df93f0fab4864816f35ccb3207778a51952Recognition of Static Gestures applied to Brazilian Sign Language (Libras) +
Math Institute
Department of Technology, Department of Exact Sciences +
Federal University of Bahia (UFBA
State University of Feira de Santana (UEFS
Salvador, Brazil +
Feira de Santana, Brazil +
('2009399', 'Igor L. O. Bastos', 'igor l. o. bastos')
('3057269', 'Michele F. Angelo', 'michele f. angelo')
('2563043', 'Angelo C. Loula', 'angelo c. loula')
igorcrexito@gmail.com +
mfangelo@uefs.ecomp.br, angelocl@gmail.com +
212608e00fc1e8912ff845ee7a4a67f88ba938fcCoupled Deep Learning for Heterogeneous Face Recognition +
Center for Research on Intelligent Perception and Computing (CRIPAC), +
National Laboratory of Pattern Recognition (NLPR), +
Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China
('2225749', 'Xiang Wu', 'xiang wu')
('3051419', 'Lingxiao Song', 'lingxiao song')
('1705643', 'Ran He', 'ran he')
('1688870', 'Tieniu Tan', 'tieniu tan')
alfredxiangwu@gmail.com, {lingxiao.song, rhe, tnt}@nlpr.ia.ac.cn +
4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27Topological Principal Component Analysis for +
face encoding and recognition +
Juan J. Villanueva +
Computer Vision Center and Departament d’Inform(cid:18)atica, Edi(cid:12)ci O, Universitat +
Aut(cid:18)onoma de Barcelona  , Cerdanyola, Spain +
('38034605', 'Albert Pujol', 'albert pujol')
('2997661', 'Felipe Lumbreras', 'felipe lumbreras')
4d625677469be99e0a765a750f88cfb85c522cceUnderstanding Hand-Object Manipulation +
with Grasp Types and Object Attributes +
Institute of Industrial Science
The University of Tokyo, Japan
Robotics Institute
Carnegie Mellon University, USA
Institute of Industrial Science
The University of Tokyo, Japan
('3172280', 'Minjie Cai', 'minjie cai')
('37991449', 'Kris M. Kitani', 'kris m. kitani')
('9467266', 'Yoichi Sato', 'yoichi sato')
cai-mj@iis.u-tokyo.ac.jp +
kkitani@cs.cmu.edu +
ysato@iis.u-tokyo.ac.jp +
4da735d2ed0deeb0cae4a9d4394449275e316df2Gothenburg, Sweden, June 19-22, 2016 +
978-1-5090-1820-8/16/$31.00 ©2016 IEEE +
1410 +
4d15254f6f31356963cc70319ce416d28d8924a3Quo vadis Face Recognition? +
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213 +
Department of Psychology +
University of Pittsburgh
Pittsburgh, PA 15260 +
('33731953', 'Ralph Gross', 'ralph gross')
('1838212', 'Jianbo Shi', 'jianbo shi')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
frgross,jshig@cs.cmu.edu +
jeffcohn@pitt.edu +
4d530a4629671939d9ded1f294b0183b56a513efInternational Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012 +
Facial Expression Classification Method Based on Pseudo +
Zernike Moment and Radial Basis Function Network +
+
('2009230', 'Tran Binh Long', 'tran binh long')
('2710459', 'Le Hoang Thai', 'le hoang thai')
('1971778', 'Tran Hanh', 'tran hanh')
4d2975445007405f8cdcd74b7fd1dd547066f9b8Image and Video Processing +
for Affective Applications +
('1694605', 'Maja Pantic', 'maja pantic')
4df889b10a13021928007ef32dc3f38548e5ee56
4d6462fb78db88afff44561d06dd52227190689cFace-to-Face Social Activity Detection Using +
Data Collected with a Wearable Device +
1 Computer Vision Center, Campus UAB, Edifici O, Bellaterra, Barcelona, Spain +
Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain
http://www.cvc.uab.es, http://www.maia.ub.es +
('7629833', 'Pierluigi Casale', 'pierluigi casale')
('9783922', 'Oriol Pujol', 'oriol pujol')
('1724155', 'Petia Radeva', 'petia radeva')
pierluigi@cvc.uab.es +
4d423acc78273b75134e2afd1777ba6d3a398973
4db9e5f19366fe5d6a98ca43c1d113dac823a14dCombining Crowdsourcing and Face Recognition to Identify Civil War Soldiers +
Are 1,000 Features Worth A Picture? +
Department of Computer Science and Center for Human-Computer Interaction +
Virginia Tech, Arlington, VA, USA +
('32698591', 'Vikram Mohanty', 'vikram mohanty')
('51219402', 'David Thames', 'david thames')
('2427623', 'Kurt Luther', 'kurt luther')
4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41
4de757faa69c1632066391158648f8611889d862International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-3 , March- 2016] +
ISSN: 2349-6495 +
Review of Face Recognition Technology Using +
Feature Fusion Vector +
S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India
+
4dd71a097e6b3cd379d8c802460667ee0cbc8463Real-time Multi-view Facial Landmark Detector +
Learned by the Structured Output SVM +
1 Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech +
Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic
National Institute of Informatics, Tokyo, Japan
('39492787', 'Diego Thomas', 'diego thomas')
('1691286', 'Akihiro Sugimoto', 'akihiro sugimoto')
4db0968270f4e7b3fa73e41c50d13d48e20687beFashion Forward: Forecasting Visual Style in Fashion +
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
The University of Texas at Austin, 78701 Austin, USA
('2256981', 'Ziad Al-Halah', 'ziad al-halah')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
('1794409', 'Kristen Grauman', 'kristen grauman')
{ziad.al-halah, rainer.stiefelhagen}@kit.edu, grauman@cs.utexas.edu +
4d9c02567e7b9e065108eb83ea3f03fcff880462Towards Facial Expression Recognition in the Wild: A New Database and Deep +
Recognition System +
School of Electronics and Information, Northwestern Polytechnical University, China
('3411701', 'Xianlin Peng', 'xianlin peng')
('1917901', 'Zhaoqiang Xia', 'zhaoqiang xia')
('2871379', 'Lei Li', 'lei li')
('4729239', 'Xiaoyi Feng', 'xiaoyi feng')
pengxl515@163.com, zxia@nwpu.edu.cn, li lei 08@163.com, fengxiao@nwpu.edu.cn +
4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
2352 +
ICASSP 2017 +
4d90bab42806d082e3d8729067122a35bbc15e8d
4d3c4c3fe8742821242368e87cd72da0bd7d3783Hybrid Deep Learning for Face Verification +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('1681656', 'Yi Sun', 'yi sun')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
sy011@ie.cuhk.edu.hk +
xgwang@ee.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
4d01d78544ae0de3075304ff0efa51a077c903b7International Journal of Computer Applications (0975 – 8887) +
Volume 77– No.13, September 2013 +
ART Network based Face Recognition with Gabor Filters +
Dept. of Computer Science & Engineering +
Dept. of Computer Science & Engineering +
Jahangirnagar University
Savar, Dhaka – 1342, Bangladesh. +
('5380965', 'Md. Mozammel Haque', 'md. mozammel haque')
('39604645', 'Md. Al-amin Bhuiyan', 'md. al-amin bhuiyan')
4dd2be07b4f0393995b57196f8fc79d666b3aec53572 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
EXPRESSION RECOGNITION +
Dept. of Electronic Engineering +
Yeungnam University
Gyeongsan, Korea +
1. INTRODUCTION +
('9215658', 'Rama Chellappa', 'rama chellappa')
('1685841', 'Chan-Su Lee', 'chan-su lee')
4d8ce7669d0346f63b20393ffaa438493e7adfecSimilarity Features for Facial Event Analysis +
Rutgers University, Piscataway NJ 08854, USA
2 National Laboratory of Pattern Recognition, Chinese Academy of Sciences +
Beijing, 100080, China +
('39606160', 'Peng Yang', 'peng yang')
('1734954', 'Qingshan Liu', 'qingshan liu')
peyang@cs.rutgers.edu +
4d6ad0c7b3cf74adb0507dc886993e603c863e8cHuman Activity Recognition Based on Wearable +
Sensor Data: A Standardization of the +
State-of-the-Art +
Smart Surveillance Interest Group, Computer Science Department +
Universidade Federal de Minas Gerais, Brazil +
('2954974', 'Antonio C. Nazare', 'antonio c. nazare')Email: {arturjordao, antonio.nazare, jessicasena, william}@dcc.ufmg.br +
4d16337cc0431cd43043dfef839ce5f0717c3483A Scalable and Privacy-Aware IoT Service for Live Video Analytics +
Carnegie Mellon University
Carnegie Mellon University
Intel Labs +
Norman Sadeh +
Carnegie Mellon University
Carnegie Mellon University
Carnegie Mellon University
('3196473', 'Junjue Wang', 'junjue wang')
('1773498', 'Brandon Amos', 'brandon amos')
('1802347', 'Padmanabhan Pillai', 'padmanabhan pillai')
('1732721', 'Anupam Das', 'anupam das')
('1747303', 'Mahadev Satyanarayanan', 'mahadev satyanarayanan')
junjuew@cs.cmu.edu +
bamos@cs.cmu.edu +
padmanabhan.s.pillai@intel.com +
sadeh@cs.cmu.edu +
anupamd@cs.cmu.edu +
satya@cs.cmu.edu +
4d0b3921345ae373a4e04f068867181647d57d7dLearning attributes from human gaze +
Department of Computer Science +
University of Pittsburgh
IEEE 2017 Winter +
Conference on +
Applications of +
Computer Vision +
('1916866', 'Nils Murrugarra-Llerena', 'nils murrugarra-llerena')
('1770205', 'Adriana Kovashka', 'adriana kovashka')
4dca3d6341e1d991c902492952e726dc2a443d1cLearning towards Minimum Hyperspherical Energy +
Georgia Institute of Technology 2Emory University
South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial
('36326884', 'Weiyang Liu', 'weiyang liu')
('10035476', 'Rongmei Lin', 'rongmei lin')
('46270580', 'Zhen Liu', 'zhen liu')
('47968201', 'Lixin Liu', 'lixin liu')
('1751019', 'Zhiding Yu', 'zhiding yu')
('47175326', 'Bo Dai', 'bo dai')
('1779453', 'Le Song', 'le song')
4d0ef449de476631a8d107c8ec225628a67c87f9© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE +
must be obtained for all other uses, in any current or future media, including +
reprinting/republishing this material for advertising or promotional purposes, +
creating new collective works, for resale or redistribution to servers or lists, or +
reuse of any copyrighted component of this work in other works. +
Pre-print of article that appeared at BTAS 2010. +
The published article can be accessed from: +
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517 +
4d47261b2f52c361c09f7ab96fcb3f5c22cafb9fDeep multi-frame face super-resolution +
Evgeniya Ustinova, Victor Lempitsky +
October 17, 2017 +
4df3143922bcdf7db78eb91e6b5359d6ada004d2Behav Res (2015) 47:1122–1135 +
DOI 10.3758/s13428-014-0532-5 +
The Chicago face database: A free stimulus set of faces +
and norming data +
Published online: 13 January 2015 +
Psychonomic Society, Inc
('2428798', 'Joshua Correll', 'joshua correll')
75879ab7a77318bbe506cb9df309d99205862f6cAnalysis Of Emotion Recognition From Facial +
Expressions Using Spatial And Transform Domain +
Methods +
('2855399', 'P. Suja', 'p. suja')
('2510426', 'Shikha Tripathi', 'shikha tripathi')
7574f999d2325803f88c4915ba8f304cccc232d1Transfer Learning For Cross-Dataset Recognition: A Survey +
This paper summarises and analyses the cross-dataset recognition transfer learning techniques with the +
emphasis on what kinds of methods can be used when the available source and target data are presented +
in different forms for boosting the target task. This paper for the first time summarises several transferring +
criteria in details from the concept level, which are the key bases to guide what kind of knowledge to transfer +
between datasets. In addition, a taxonomy of cross-dataset scenarios and problems is proposed according the +
properties of data that define how different datasets are diverged, thereby review the recent advances on +
each specific problem under different scenarios. Moreover, some real world applications and corresponding +
commonly used benchmarks of cross-dataset recognition are reviewed. Lastly, several future directions are +
identified. +
Additional Key Words and Phrases: Cross-dataset, transfer learning, domain adaptation +
1. INTRODUCTION +
It has been explored how human would transfer learning in one context to another +
similar context [Woodworth and Thorndike 1901; Perkins et al. 1992] in the field of +
Psychology and Education. For example, learning to drive a car helps a person later +
to learn more quickly to drive a truck, and learning mathematics prepares students to +
study physics. The machine learning algorithms are mostly inspired by human brains. +
However, most of them require a huge amount of training examples to learn a new +
model from scratch and fail to apply knowledge learned from previous domains or +
tasks. This may be due to that a basic assumption of statistical learning theory is +
that the training and test data are drawn from the same distribution and belong to +
the same task. Intuitively, learning from scratch is not realistic and practical, because +
it violates how human learn things. In addition, manually labelling a large amount +
of data for new domain or task is labour extensive, especially for the modern “data- +
hungry” and “data-driven” learning techniques (i.e. deep learning). However, the big +
data era provides a huge amount available data collected for other domains and tasks. +
Hence, how to use the previously available data smartly for the current task with +
scarce data will be beneficial for real world applications. +
To reuse the previous knowledge for current tasks, the differences between old data +
and new data need to be taken into account. Take the object recognition as an ex- +
ample. As claimed by Torralba and Efros [2011], despite the great efforts of object +
datasets creators, the datasets appear to have strong build-in bias caused by various +
factors, such as selection bias, capture bias, category or label bias, and negative set +
bias. This suggests that no matter how big the dataset is, it is impossible to cover +
the complexity of the real visual world. Hence, the dataset bias needs to be consid- +
ered before reusing data from previous datasets. Pan and Yang [2010] summarise that +
the differences between different datasets can be caused by domain divergence (i.e. +
distribution shift or feature space difference) or task divergence (i.e. conditional dis- +
tribution shift or label space difference), or both. For example, in visual recognition, +
the distributions between the previous and current data can be discrepant due to the +
different environments, lighting, background, sensor types, resolutions, view angles, +
and post-processing. Those external factors may cause the distribution divergence or +
even feature space divergence between different domains. On the other hand, the task +
divergence between current and previous data is also ubiquitous. For example, it is +
highly possible that an animal species that we want to recognize have not been seen +
ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. +
('47539715', 'Jing Zhang', 'jing zhang')
('40508657', 'Wanqing Li', 'wanqing li')
('1719314', 'Philip Ogunbona', 'philip ogunbona')
75fcbb01bc7e53e9de89cb1857a527f97ea532ceDetection of Facial Landmarks from Neutral, Happy, +
and Disgust Facial Images +
Research Group for Emotions, Sociality, and Computing +
Tampere Unit for Computer-Human Interaction +
Department of Computer Sciences +
University of Tampere
FIN-33014 Tampere, Finland +
('2396729', 'Ioulia Guizatdinova', 'ioulia guizatdinova')
('1718377', 'Veikko Surakka', 'veikko surakka')
ig74400@cs.uta.fi +
Veikko.Surakka@uta.fi +
757e4cb981e807d83539d9982ad325331cb59b16Demographics versus Biometric Automatic +
Interoperability +
Sapienza University of Rome, Italy
Biometric and Image Processing Lab, University of Salerno, Italy
George Mason University, Fairfax Virginia, USA
('1763890', 'Maria De Marsico', 'maria de marsico')
('1795333', 'Michele Nappi', 'michele nappi')
('1772512', 'Daniel Riccio', 'daniel riccio')
('1781577', 'Harry Wechsler', 'harry wechsler')
demarsico@di.uniroma1.it +
{mnappi,driccio}@unisa.it +
wechsler@cs.gmu.edu +
75e9a141b85d902224f849ea61ab135ae98e7bfb
75503aff70a61ff4810e85838a214be484a674baImproved Facial Expression Recognition via Uni-Hyperplane Classification +
S.W. Chew∗, S. Lucey†, P. Lucey‡, S. Sridharan∗, and J.F. Cohn‡ +
75fd9acf5e5b7ed17c658cc84090c4659e5de01dProject-Out Cascaded Regression with an application to Face Alignment +
School of Computer Science, University of Nottingham
Contributions. Cascaded regression approaches [2] have been recently +
shown to achieve state-of-the-art performance for many computer vision +
tasks. Beyond its connection to boosting, cascaded regression has been in- +
terpreted as a learning-based approach to iterative optimization methods like +
the Newton’s method. However, in prior work [1],[4], the connection to op- +
timization theory is limited only in learning a mapping from image features +
to problem parameters. +
In this paper, we consider the problem of facial deformable model fit- +
ting using cascaded regression and make the following contributions: (a) We +
propose regression to learn a sequence of averaged Jacobian and Hessian +
matrices from data, and from them descent directions in a fashion inspired +
by Gauss-Newton optimization. (b) We show that the optimization problem +
in hand has structure and devise a learning strategy for a cascaded regres- +
sion approach that takes the problem structure into account. By doing so, the +
proposed method learns and employs a sequence of averaged Jacobians and +
descent directions in a subspace orthogonal to the facial appearance varia- +
tion; hence, we call it Project-Out Cascaded Regression (PO-CR). (c) Based +
on the principles of PO-CR, we built a face alignment system that produces +
remarkably accurate results on the challenging iBUG data set outperform- +
ing previously proposed systems by a large margin. Code for our system is +
available from http://www.cs.nott.ac.uk/~yzt/. +
Shape and appearance models. We use parametric shape and appearance +
models. An instance of the shape model is given by s(p) = s0 + Sp. An +
instance of the appearance model is given by A(c) = A0 + Ac. +
Face alignment via Gauss-Newton optimization. In this section, we for- +
mulate and solve the non-linear least squares optimization problem for face +
alignment using Gauss-Newton optimization. This will provide the basis for +
learning and fitting in PO-CR in the next section. In particular, to localize +
the landmarks in a new image, we would like to find p and c such that [3] +
||I(s(p))− A(c)||2. +
argmin +
p,c +
An update for p and c can be found by solving the following problem +
arg min +
∆p,∆c +
||I(s(p)) + JI∆p− A0 − Ac− A∆c||2. +
(1) +
(2) +
By exploiting the problem structure, the calculation for the optimal ∆c at +
each iteration is not necessary. We end up with the following problem [3] +
||I(s(p)) + JI∆p− A0||2 +
P, +
argmin +
∆p +
(3) +
where P = E − AAT is a projection operator that projects out the facial +
appearance variation from the image Jacobian JI. The solution to the above +
problem is readily given by +
∆p = −H−1 +
P JT +
P (I(s(p))− A0). +
(4) +
Face alignment via Project-Out Cascaded Regression. Based on Eqs. (3) +
and (4), the key idea in PO-CR is to compute from a set of training examples +
a sequence of averaged Jacobians(cid:98)J(k) from which the facial appearance +
variation is projected-out and from them and descent directions: +
Step I. Starting from the ground truth shape parameters p∗ +
i for each +
training image Ii, i = 1, . . . ,H, we generate a set of K perturbed shape pa- +
rameters for iteration 1 pi, j(1), j = 1, . . . ,K that capture the statistics of the +
PO-CR learns the averaged projected-out Jacobian(cid:98)JP(1) = P(cid:98)J(1) for itera- +
face detection initialization process. Using the set ∆pi, j(1) = p∗ +
i − pi, j(1), +
tion 1 by solving the following weighted least squares problem +
||I(s(pi, j(1))) + J(1)∆pi, j(1)− A0||2 +
P, +
arg min(cid:98)JP(1) +
i=1 +
j=1 +
Step II. Having computed(cid:98)JP(1), we compute(cid:98)HP(1) =(cid:98)JP(1)T(cid:98)JP(1) . +
Step III. The descent directions R(1) for iteration 1 are given by +
R(1) =(cid:98)HP(1)−1(cid:98)JP(1)T . +
(6) +
Step IV. For each training sample, a new estimate for its shape parame- +
ters (to be used at the next iteration) is obtained from +
pi, j(2) = pi, j(1) + R(1)(I(s(pi, j(1)))− A0). +
(7) +
Finally, Steps I-IV are sequentially repeated until convergence and the whole +
process produces a set of L regressor matrices R(l), l = 1, . . . ,L. +
During testing,we extract image features I(s(p(k))) and then compute +
an update for the shape parameters from +
∆p(k) = R(k)(I(s(p(k)))− A0). +
(8) +
Results. We conducted a large number of experiments on LFPW, Helen, +
AFW and iBUG data sets. In the following figure, we show fiiting results +
from the challenging iBUG data set. +
Figure 1: Application of PO-CR to the alignment of the iBUG data set. +
[1] T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. +
TPAMI, 23(6):681–685, 2001. +
[2] Piotr Dollár, Peter Welinder, and Pietro Perona. Cascaded pose regres- +
sion. In CVPR, 2010. +
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
75308067ddd3c53721430d7984295838c81d4106Article +
Rapid Facial Reactions +
in Response to Facial +
Expressions of Emotion +
Displayed by Real Versus +
Virtual Faces +
i-Perception +
2018 Vol. 9(4), 1–18 +
! The Author(s) 2018 +
DOI: 10.1177/2041669518786527 +
journals.sagepub.com/home/ipe +
LIMSI, CNRS, University of Paris-Sud, Orsay, France
('28174013', 'Jean-Claude Martin', 'jean-claude martin')
75cd81d2513b7e41ac971be08bbb25c63c37029a
75bf3b6109d7a685236c8589f8ead7d769ea863fModel Selection with Nonlinear Embedding for Unsupervised Domain Adaptation +
Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA
('3151995', 'Hemanth Venkateswara', 'hemanth venkateswara')
('2471253', 'Shayok Chakraborty', 'shayok chakraborty')
('1743991', 'Sethuraman Panchanathan', 'sethuraman panchanathan')
{hemanthv, shayok.chakraborty, troy.mcdaniel, panch}@asu.edu +
759cf57215fcfdd8f59c97d14e7f3f62fafa2b30Real-time Distracted Driver Posture Classification +
Department of Computer Science and Engineering, School of Sciences and Engineering +
The American University in Cairo, New Cairo 11835, Egypt
('3434212', 'Yehya Abouelnaga', 'yehya abouelnaga')
('2150605', 'Hesham M. Eraqi', 'hesham m. eraqi')
('2233511', 'Mohamed N. Moustafa', 'mohamed n. moustafa')
{devyhia,heraqi,m.moustafa}@aucegypt.edu +
751970d4fb6f61d1b94ca82682984fd03c74f127Array-based Electromyographic Silent Speech Interface +
Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany
Keywords: +
EMG, EMG-based Speech Recognition, Silent Speech Interface, Electrode Array +
('1723149', 'Michael Wand', 'michael wand')
('2289793', 'Christopher Schulte', 'christopher schulte')
('1684236', 'Matthias Janke', 'matthias janke')
('1713194', 'Tanja Schultz', 'tanja schultz')
{michael.wand, matthias.janke, tanja.schultz}@kit.edu, christopher.schulte@student.kit.edu +
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dAttribute and Simile Classifiers for Face Verification +
Columbia University
('40631426', 'Neeraj Kumar', 'neeraj kumar')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
('1750470', 'Shree K. Nayar', 'shree k. nayar')
75ebe1e0ae9d42732e31948e2e9c03d680235c39“Hello! My name is... Buffy” – Automatic +
Naming of Characters in TV Video +
University of Oxford
('3056091', 'Mark Everingham', 'mark everingham')
('1782755', 'Josef Sivic', 'josef sivic')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
{me,josef,az}@robots.ox.ac.uk +
75e5ba7621935b57b2be7bf4a10cad66a9c445b9
75859ac30f5444f0d9acfeff618444ae280d661dMultibiometric Cryptosystems based on Feature +
Level Fusion +
('2743820', 'Abhishek Nagar', 'abhishek nagar')
('34633765', 'Karthik Nandakumar', 'karthik nandakumar')
('6680444', 'Anil K. Jain', 'anil k. jain')
758d7e1be64cc668c59ef33ba8882c8597406e53IEEE TRANSACTIONS ON AFFECTIVE COMPUTING +
AffectNet: A Database for Facial Expression, +
Valence, and Arousal Computing in the Wild +
('2314025', 'Ali Mollahosseini', 'ali mollahosseini')
('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')
7553fba5c7f73098524fbb58ca534a65f08e91e7Available Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IJCSMC, Vol. 3, Issue. 6, June 2014, pg.816 – 824 +
RESEARCH ARTICLE +
A Practical Approach for Determination +
of Human Gender & Age +
+
India
India
('1802780', 'Harpreet Kaur', 'harpreet kaur')
('1802780', 'Harpreet Kaur', 'harpreet kaur')
('38968310', 'Ahsan Hussain', 'ahsan hussain')
1 hkaur_bhatia23@yahoo.com, 2 ahsanhbaba@gmail.com +
751b26e7791b29e4e53ab915bfd263f96f531f56Mood Meter: Counting Smiles in the Wild +
Mohammed (Ehsan) Hoque * +
Media Lab +
Massachusetts Institute of Technology
Cambridge, MA, USA +
('2806721', 'Will Drevo', 'will drevo')
('1719389', 'Rosalind W. Picard', 'rosalind w. picard')
('15977480', 'Javier Hernandez', 'javier hernandez')
{javierhr, mehoque, drevo, picard}@mit.edu +
75da1df4ed319926c544eefe17ec8d720feef8c0FDDB: A Benchmark for Face Detection in Unconstrained Settings +
University of Massachusetts Amherst
University of Massachusetts Amherst
Amherst MA 01003 +
Amherst MA 01003 +
('1714536', 'Erik Learned-Miller', 'erik learned-miller')
('2246870', 'Vidit Jain', 'vidit jain')
elm@cs.umass.edu +
vidit@cs.umass.edu +
75259a613285bdb339556ae30897cb7e628209faUnsupervised Domain Adaptation for Zero-Shot Learning +
Queen Mary University of London, London E1 4NS, UK
('2999293', 'Elyor Kodirov', 'elyor kodirov')
('1700927', 'Tao Xiang', 'tao xiang')
('2073354', 'Shaogang Gong', 'shaogang gong')
{e.kodirov, t.xiang, z.fu, s.gong}@qmul.ac.uk +
754f7f3e9a44506b814bf9dc06e44fecde599878Quantized Densely Connected U-Nets for +
Efficient Landmark Localization +
('2986505', 'Zhiqiang Tang', 'zhiqiang tang')
('4340744', 'Xi Peng', 'xi peng')
('1947101', 'Shijie Geng', 'shijie geng')
('3008832', 'Lingfei Wu', 'lingfei wu')
('1753384', 'Shaoting Zhang', 'shaoting zhang')
1Rutgers University, {zt53, sg1309, dnm}@rutgers.edu +
2Binghamton University, xpeng@binghamton.edu +
3IBM T. J. Watson, lwu@email.wm.edu +
4SenseTime, zhangshaoting@sensetime.com +
75249ebb85b74e8932496272f38af274fbcfd696Face Identification in Large Galleries +
Smart Surveillance Interest Group, Department of Computer Science +
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +
('1679142', 'William Robson Schwartz', 'william robson schwartz')rafaelvareto@dcc.ufmg.br, filipe.oc87@gmail.com, william@dcc.ufmg.br +
75d2ecbbcc934563dff6b39821605dc6f2d5ffccCapturing Subtle Facial Motions in 3D Face Tracking +
Beckman Institute
University of Illinois at Urbana-Champaign
Urbana, IL 61801 +
('1735018', 'Zhen Wen', 'zhen wen')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
{zhenwen, huang}@ifp.uiuc.edu +
81a142c751bf0b23315fb6717bc467aa4fdfbc92978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
1767 +
ICASSP 2017 +
81bfe562e42f2eab3ae117c46c2e07b3d142dadeA Hajj And Umrah Location Classification System For Video +
Crowded Scenes +
Adnan A. Gutub† +
Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA
College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA
('2872536', 'Hossam M. Zawbaa', 'hossam m. zawbaa')
('1977955', 'Salah A. Aly', 'salah a. aly')
81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0fUNIVERSITY OF TARTU
FACULTY OF SCIENCE AND TECHNOLOGY  +
Institute of Computer Science
Computer Science +
Comparison of Face Recognition +
Neural Networks  +
Bachelor's thesis (6 ECST) +
Supervisor: Tambet Matiisen +
Tartu 2016 +
8147ee02ec5ff3a585dddcd000974896cb2edc53Angular Embedding: +
A Robust Quadratic Criterion +
Stella X. Yu, Member, +
IEEE +
8199803f476c12c7f6c0124d55d156b5d91314b6The iNaturalist Species Classification and Detection Dataset +
1Caltech +
2Google +
3Cornell Tech +
4iNaturalist +
('2996914', 'Grant Van Horn', 'grant van horn')
('13412044', 'Alex Shepard', 'alex shepard')
('1690922', 'Pietro Perona', 'pietro perona')
('50172592', 'Serge Belongie', 'serge belongie')
816bd8a7f91824097f098e4f3e0f4b69f481689dLatent Semantic Analysis of Facial Action Codes +
for Automatic Facial Expression Recognition +
D-ITET/BIWI +
ETH Zurich +
Zurich, Switzerland +
IDIAP Research Institute
Martigny, Switzerland +
IDIAP Research Institute
Martigny, Switzerland +
('8745904', 'Beat Fasel', 'beat fasel')
('1824057', 'Florent Monay', 'florent monay')
('1698682', 'Daniel Gatica-Perez', 'daniel gatica-perez')
bfasel@vision.ee.ethz.ch +
monay@idiap.ch +
gatica@idiap.ch +
81706277ed180a92d2eeb94ac0560f7dc591ee13International Journal of Computer Applications (0975 – 8887) +
Volume 55– No.15, October 2012 +
Emotion based Contextual Semantic Relevance +
Feedback in Multimedia Information Retrieval +
Department of Computer Engineering, Indian +
Institute of Technology, Banaras Hindu
University, Varanasi, 221005, India
Anil K. Tripathi +
Department of Computer Engineering, Indian +
Institute of Technology, Banaras Hindu
University, Varanasi, 221005, India
to +
find some +
issued by a user +
('41132883', 'Karm Veer Singh', 'karm veer singh')
81831ed8e5b304e9d28d2d8524d952b12b4cbf55
81b2a541d6c42679e946a5281b4b9dc603bc171cUniversit¨at Ulm | 89069 Ulm | Deutschland +
Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +
Institut f¨ur Neuroinformatik +
Direktor: Prof. Dr. G¨unther Palm +
Semi-Supervised Learning with Committees: +
Exploiting Unlabeled Data Using Ensemble +
Learning Algorithms +
Dissertation zur Erlangung des Doktorgrades +
Doktor der Naturwissenschaften (Dr. rer. nat.) +
der Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +
der Universit¨at Ulm +
vorgelegt von +
aus Kairo, ¨Agypten +
Ulm, Deutschland +
2010 +
('1799097', 'Mohamed Farouk Abdel Hady', 'mohamed farouk abdel hady')
81e11e33fc5785090e2d459da3ac3d3db5e43f65International Journal of Advances in Engineering & Technology, March 2012. +
©IJAET ISSN: 2231-1963 +
A NOVEL FACE RECOGNITION APPROACH USING A +
MULTIMODAL FEATURE VECTOR +
Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India
National Institute of Technology, Durgapur, West Bengal, India
('9155672', 'Jhilik Bhattacharya', 'jhilik bhattacharya')
('40301536', 'Nattami Sekhar', 'nattami sekhar')
('1872045', 'Somajyoti Majumder', 'somajyoti majumder')
('33606010', 'Gautam Sanyal', 'gautam sanyal')
81e366ed1834a8d01c4457eccae4d57d169cb932Pose-Configurable Generic Tracking of Elongated Objects +
Multimedia Systems Department +
Gdansk University of Technology
Departement Electronique et Physique +
Institut Mines-Telecom / Telecom SudParis +
('2120042', 'Daniel Wesierski', 'daniel wesierski')
('2603633', 'Patrick Horain', 'patrick horain')
daniel.wesierski@pg.gda.pl +
patrick.horain@telecom-sudaris.eu +
8164ebc07f51c9e0db4902980b5ac3f5a8d8d48cShuffle-Then-Assemble: Learning +
Object-Agnostic Visual Relationship Features +
School of Computer Science and Engineering, +
Nanyang Technological University
('47008946', 'Xu Yang', 'xu yang')
('5462268', 'Hanwang Zhang', 'hanwang zhang')
('1688642', 'Jianfei Cai', 'jianfei cai')
s170018@e.ntu.edu.sg,{hanwangzhang,asjfcai}@ntu.edu.sg +
81fc86e86980a32c47410f0ba7b17665048141ecSegment-based Methods for Facial Attribute +
Detection from Partial Faces +
Department of Electrical and Computer Engineering and the Center for Automation Research, +
UMIACS, University of Maryland, College Park, MD
('3152615', 'Upal Mahbub', 'upal mahbub'){umahbub, ssarkar2, rama}@umiacs.umd.edu +
8160b3b5f07deaa104769a2abb7017e9c031f1c1683 +
Exploiting Discriminant Information in Nonnegative +
Matrix Factorization With Application +
to Frontal Face Verification +
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('2336758', 'Ioan Buciu', 'ioan buciu')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
814d091c973ff6033a83d4e44ab3b6a88cc1cb66Behav Res (2016) 48:567–576 +
DOI 10.3758/s13428-015-0601-4 +
The EU-Emotion Stimulus Set: A validation study +
Published online: 30 September 2015 +
Psychonomic Society, Inc
('2625704', 'Delia Pigat', 'delia pigat')
('2391819', 'Shahar Tal', 'shahar tal')
('2100443', 'Ofer Golan', 'ofer golan')
('1884685', 'Simon Baron-Cohen', 'simon baron-cohen')
('3343472', 'Daniel Lundqvist', 'daniel lundqvist')
816eff5e92a6326a8ab50c4c50450a6d02047b5efLRR: Fast Low-Rank Representation Using +
Frobenius Norm +
Low Rank Representation (LRR) intends to find the representation +
with lowest-rank of a given data set, which can be formulated as a +
rank minimization problem. Since the rank operator is non-convex and +
discontinuous, most of the recent works use the nuclear norm as a convex +
relaxation. This letter theoretically shows that under some conditions, +
Frobenius-norm-based optimization problem has an unique solution that +
is also a solution of the original LRR optimization problem. In other +
words, it is feasible to apply Frobenius-norm as a surrogate of the +
nonconvex matrix rank function. This replacement will largely reduce the +
time-costs for obtaining the lowest-rank solution. Experimental results +
show that our method (i.e., fast Low Rank Representation, fLRR), +
performs well in terms of accuracy and computation speed in image +
clustering and motion segmentation compared with nuclear-norm-based +
LRR algorithm. +
Introduction: Given a data set X ∈ Rm×n(m < n) composed of column +
vectors, let A be a data set composed of vectors with the same dimension +
as those in X. Both X and A can be considered as matrices. A linear +
representation of X with respect to A is a matrix Z that satisfies the +
equation X = AZ. The data set A is called a dictionary. In general, this +
linear matrix equation will have infinite solutions, and any solution can be +
considered to be a representation of X associated with the dictionary A. To +
obtain an unique Z and explore the latent structure of the given data set, +
various assumptions could be enforced over Z. +
Liu et al. recently proposed Low Rank Representation (LRR) [1] by +
assuming that data are approximately sampled from an union of low-rank +
subspaces. Mathematically, LRR aims at solving +
min rank(Z) +
s.t. X = AZ, +
(1) +
where rank(Z) could be defined as the number of nonzero eigenvalues of +
the matrix Z. Clearly, (1) is non-convex and discontinuous, whose convex +
relaxation is as follows, +
min kZk∗ +
s.t. X = AZ, +
(2) +
where kZk∗ is the nuclear norm, which is a convex and continuous +
optimization problem. +
Considering the possible corruptions, the objective function of LRR is +
min kZk∗ + λkEkp +
s.t. X = AZ + E, +
(3) +
where k · kp could be ℓ1-norm for describing sparse corruption or ℓ2,1- +
norm for characterizing sample-specified corruption. +
The above nuclear-norm-based optimization problems are generally +
solved using Augmented Lagrange Multiplier algorithm (ALM) [2] which +
requires repeatedly performing Single Value Decomposition (SVD) over +
Z. Hence, this optimization program is inefficient. +
Beyond the nuclear-norm, do other norms exist that can be used as +
a surrogates for rank-minimization problem in LRR? Can we develop +
a fast algorithm to calculate LRR? This letter addresses these problems +
by theoretically showing the equivalence between the solutions of a +
Frobenius-norm-based problem and the original LRR problem. And we +
further develop fast Low Rank Representation (fLRR) based on the +
theoretical results. +
Theoretical Analysis: In the following analyses, Theorem 1 and +
Theorem 3 prove that Frobenius-norm-based problem is a surrogate of +
the rank-minimization problem of LRR in the case of clean data and +
corrupted ones, respectively. Theorem 2 shows that our Frobenius-norm- +
based method could produce a block-diagonal Z under some conditions. +
This property is helpful to subspace clustering. +
Let A ∈ Rm×n be a matrix with rank r. The full SVD and skinny +
SVD of A are A = U ΣV T and A = UrΣrV T +
r , where U and V are two +
orthogonal matrices with the size of m × m and n × n, respectively. In +
addition, Σ is an m × n rectangular diagonal matrix, its diagonal elements +
are nonnegative real numbers. Σr is a r × r diagonal matrix with singular +
values located on the diagonal in decreasing order, Ur and Vr consist of the +
first r columns of U and V , respectively. Clearly, Ur and Vr are column +
orthogonal matrices, i.e., U T +
r Vr = Ir, where Ir denotes the +
r Ur = Ir, V T +
identity matrix with the size of r × r. The pseudoinverse of A is defined +
by A† = VrΣ−1 +
r U T +
r . +
Given a matrix M ∈ Rm×n, the Frobenius norm of M is defined by +
kM kF =ptrace (M T M ) =qPmin{m,n} +
value of M . Clearly, kM kF = 0 if and only if M = 0. +
i=1 +
σ2 +
i , where σi is a singular +
Lemma 1: Suppose P is a column orthogonal matrix, i.e., P T P = I. Then, +
kP M kF = kM kF . +
Lemma 2: For the matrices M and N with same number of columns, it +
holds that +
= kM k2 +
F + kN k2 +
F . +
(4) +
N (cid:21)(cid:13)(cid:13)(cid:13)(cid:13) +
(cid:13)(cid:13)(cid:13)(cid:13) +
(cid:20) M +
The proofs of the above two lemmas are trivial. +
Theorem 1: +
minimization problem +
Suppose +
that X ∈ span{A}, +
the Frobenius norm +
min kZkF +
s.t. X = AZ, +
(5) +
has an unique solution Z ∗ = A†X which is also the lowest-rank solution +
of LRR in terms of (1). +
Proof: Let the full and skinny SVDs of A be A = U ΣV T and A = +
r U T +
UrΣrV T +
r . +
r , respectively. Then, the pseudoinverse of A is A† = VrΣ−1 +
Defining Vc by V T =(cid:20) V T +
V T +
(cid:21) and V T +
c Vr = 0. Moreover, it can be easily +
checked that Z ∗ satisfies X = AZ ∗ owing to X ∈ span{A}. +
To prove that Z ∗ is the unique solution of the optimization problem +
(5), two steps are required. First, we will prove that, for any solution Z of +
X = AZ, it must hold that kZkF ≥ kZ ∗kF . Using Lemma 1, we have +
kZkF = (cid:13)(cid:13)(cid:13)(cid:13) +
= (cid:13)(cid:13)(cid:13)(cid:13) +
V T +
(cid:20) V T +
(cid:20) V T +
(cid:21) [Z ∗ + (Z − Z ∗)](cid:13)(cid:13)(cid:13)(cid:13)F +
c (Z − Z ∗) (cid:21)(cid:13)(cid:13)(cid:13)(cid:13)F +
r (Z − Z ∗) +
r Z ∗ + V T +
c Z ∗ + V T +
V T +
As A (Z − Z ∗) = 0, +
r (Z − Z ∗) = 0. Denote B = Σ−1 +
V T +
V T +
c Vr = 0, we have V T +
i.e., UrΣrV T +
r U T +
c VrB = 0. Then, +
r (Z − Z ∗) = 0, +
r X, +
follows that +
then Z ∗ = VrB. Because +
it +
c Z ∗ = V T +
(cid:20) +
kZkF =(cid:13)(cid:13)(cid:13)(cid:13) +
V T +
c (Z − Z ∗) (cid:21)(cid:13)(cid:13)(cid:13)(cid:13)F +
By Lemma 2, +
kZk2 +
F = kBk2 +
F + kV T +
c (Z − Z ∗)k2 +
F , +
then, kZkF ≥ kBkF . +
By Lemma 1, +
kBkF = kVrBkF = kZ ∗kF , +
(6) +
(7) +
(8) +
thus, kZkF ≥ kZ ∗kF for any solution Z of X = AZ. +
In the second step, we will prove that if there exists another solution Z +
of (5), Z = Z ∗ must hold. Clearly, Z is a solution of (5) which implies that +
X = AZ and kZkF = kZ ∗kF . From (7) and (8), +
kZk2 +
F + kV T +
F = kZ ∗k2 +
Since kZkF = kZ ∗kF , +
c (Z − Z ∗) k2 +
F . +
c (Z − Z ∗) kF = 0, +
r (Z − Z ∗) = 0, this gives +
and so V T +
V T (Z − Z ∗) = 0. Because V is an orthogonal matrix, it must hold +
that Z = Z ∗. The above proves that Z ∗ is the unique solution of the +
optimization problem (5). +
c (Z − Z ∗) = 0. Together with V T +
it must hold that kV T +
(9) +
Next, we prove that Z ∗ is also a solution of the LRR optimization +
problem (1). Clearly, for any solution Z of X = AZ, +
it holds that +
rank(Z) ≥ rank(AZ) = rank(X). On the other hand, rank(Z ∗) = +
rank(A†X) ≤ rank(X). Thus, rank(Z ∗) = rank(X). This shows that +
Z ∗ is the lowest-rank solution of the LRR optimization problem (1). The +
proof is complete. +
(cid:4) +
In the following, Theorem 2 will show that the optimal Z of (5) will +
be block-diagonal if the data are sampled from a set of independent +
subspaces {S1, S2, · · · , Sk}, where the dimensionality of Si is ri and +
i = {1, 2, · · · , k}. Note that, {S1, S2, · · · , Sk} are independent if and +
only if SiTPj6=i Sj = {0}. Suppose that X = [X1, X2, · · · , Xk] and +
A = [A1, A2, · · · , Ak], where Ai and Xi contain mi and ni data points +
ELECTRONICS LETTERS 12th December 2011 Vol. 00 No. 00 +
('2235162', 'Haixian Zhang', 'haixian zhang')
('4340744', 'Xi Peng', 'xi peng')
8149c30a86e1a7db4b11965fe209fe0b75446a8cSemi-Supervised Multiple Instance Learning based +
Domain Adaptation for Object Detection +
Siemens Corporate Research +
Siemens Corporate Research +
Siemens Corporate Research +
Amit Kale +
Bangalore +
Bangalore +
{chhaya.methani, +
Bangalore +
rahul.thota, +
('2970569', 'Chhaya Methani', 'chhaya methani')
('31516659', 'Rahul Thota', 'rahul thota')
kale.amit}@siemens.com +
81da427270c100241c07143885ba3051ec4a2ecbLearning the Synthesizability of Dynamic Texture Samples∗ +
State Key Lab. LIESMARS, Wuhan University, China
2Computer Vision Lab., ETH Zurich, Switzerland +
February 6, 2018 +
('1706687', 'Feng Yang', 'feng yang')
('39943835', 'Gui-Song Xia', 'gui-song xia')
('1778526', 'Dengxin Dai', 'dengxin dai')
('1733213', 'Liangpei Zhang', 'liangpei zhang')
{guisong.xia, fengyang, zlp62}@whu.edu.cn +
dai@vision.ee.ethz.ch +
861c650f403834163a2c27467a50713ceca37a3eProbabilistic Elastic Part Model for Unsupervised Face Detector Adaptation +
Stevens Institute of Technology
Hoboken, NJ 07030 +
Adobe Systems Inc. +
San Jose, CA 95110 +
('3131569', 'Haoxiang Li', 'haoxiang li')
('1745420', 'Gang Hua', 'gang hua')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
('1706007', 'Jianchao Yang', 'jianchao yang')
{hli18, ghua}@stevens.edu +
{zlin, jbrandt, jiayang}@adobe.com +
86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663Benchmarks for Cloud Robotics +
Arjun Singh +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2016-142 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-142.html +
August 12, 2016 +
86b69b3718b9350c9d2008880ce88cd035828432Improving Face Image Extraction by Using Deep Learning Technique +
National Library of Medicine, NIH, Bethesda, MD +
('1726787', 'Zhiyun Xue', 'zhiyun xue')
('1721328', 'Sameer Antani', 'sameer antani')
('1691151', 'L. Rodney Long', 'l. rodney long')
('1705831', 'Dina Demner-Fushman', 'dina demner-fushman')
('1692057', 'George R. Thoma', 'george r. thoma')
86904aee566716d9bef508aa9f0255dc18be3960Learning Anonymized Representations with +
Adversarial Neural Networks +
('1743922', 'Pablo Piantanida', 'pablo piantanida')
('1751762', 'Yoshua Bengio', 'yoshua bengio')
('1694313', 'Pierre Duhamel', 'pierre duhamel')
86f191616423efab8c0d352d986126a964983219Visual to Sound: Generating Natural Sound for Videos in the Wild +
University of North Carolina at Chapel Hill, 2Adobe Research
('49455017', 'Yipin Zhou', 'yipin zhou')
('8056043', 'Zhaowen Wang', 'zhaowen wang')
('2442612', 'Chen Fang', 'chen fang')
('30190128', 'Trung Bui', 'trung bui')
('1685538', 'Tamara L. Berg', 'tamara l. berg')
867e709a298024a3c9777145e037e239385c0129 INTERNATIONAL JOURNAL +
OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 2 / FEB 2017 +
ANALYTICAL REPRESENTATION OF UNDERSAMPLED FACE +
RECOGNITION APPROACH BASED ON DICTIONARY LEARNING +
AND SPARSE REPRESENTATION +
(M.Tech)1, Assistant Professor2, Assistant Professor3, HOD of CSE Department4 +
('32628937', 'Murala Sandeep', 'murala sandeep')
('1702980', 'Ranga Reddy', 'ranga reddy')
869a2fbe42d3fdf40ed8b768edbf54137be7ac71Relative Attributes for Enhanced Human-Machine Communication +
Toyota Technological Institute, Chicago
Indraprastha Institute of Information Technology, Delhi
University of Texas, Austin
('1713589', 'Devi Parikh', 'devi parikh')
('1770205', 'Adriana Kovashka', 'adriana kovashka')
('2076800', 'Amar Parkash', 'amar parkash')
('1794409', 'Kristen Grauman', 'kristen grauman')
86c5478f21c4a9f9de71b5ffa90f2a483ba5c497Kernel Selection using Multiple Kernel Learning and Domain +
Adaptation in Reproducing Kernel Hilbert Space, for Face +
Recognition under Surveillance Scenario +
Indian Institute of Technology, Madras, Chennai 600036, INDIA
Face Recognition (FR) has been the interest to several researchers over the past few decades due to its passive nature of biometric +
authentication. Despite high accuracy achieved by face recognition algorithms under controlled conditions, achieving the same +
performance for face images obtained in surveillance scenarios, is a major hurdle. Some attempts have been made to super-resolve +
the low-resolution face images and improve the contrast, without considerable degree of success. The proposed technique in this +
paper tries to cope with the very low resolution and low contrast face images obtained from surveillance cameras, for FR under +
surveillance conditions. For Support Vector Machine classification, the selection of appropriate kernel has been a widely discussed +
issue in the research community. In this paper, we propose a novel kernel selection technique termed as MFKL (Multi-Feature +
Kernel Learning) to obtain the best feature-kernel pairing. Our proposed technique employs a effective kernel selection by Multiple +
Kernel Learning (MKL) method, to choose the optimal kernel to be used along with unsupervised domain adaptation method in the +
Reproducing Kernel Hilbert Space (RKHS), for a solution to the problem. Rigorous experimentation has been performed on three +
real-world surveillance face datasets : FR SURV [33], SCface [20] and ChokePoint [44]. Results have been shown using Rank-1 +
Recognition Accuracy, ROC and CMC measures. Our proposed method outperforms all other recent state-of-the-art techniques by +
a considerable margin. +
Index Terms—Kernel Selection, Surveillance, Multiple Kernel Learning, Domain Adaptation, RKHS, Hallucination +
I. INTRODUCTION +
Face Recognition (FR) is a classical problem which is far +
from being solved. Face Recognition has a clear advantage +
of being natural and passive over other biometric techniques +
requiring co-operative subjects. Most face recognition algo- +
rithms perform well under a controlled environment. A face +
recognition system trained at a certain resolution, illumination +
and pose, recognizes faces under similar conditions with very +
high accuracy. In contrary, if the face of the same subject is +
presented with considerable change in environmental condi- +
tions, then such a face recognition system fails to achieve a +
desired level of accuracy. So, we aim to find a solution to the +
face recognition under unconstrained environment. +
Face images obtained by an outdoor panoramic surveillance +
camera, are often confronted with severe degradations (e.g., +
low-resolution, blur, low-contrast, interlacing and noise). This +
significantly limits the performance of face recognition sys- +
tems used for binding “security with surveillance” applica- +
tions. Here, images used for training are usually available be- +
forehand which are taken under a well controlled environment +
in an indoor setup (laboratory, control room), whereas the +
images used for testing are captured when a subject comes +
under a surveillance scene. With ever increasing demands +
to combine “security with surveillance” in an integrated and +
automated framework, it is necessary to analyze samples of +
face images of subjects acquired by a surveillance camera +
from a long distance. Hence the subject must be accurately +
recognized from a low resolution, blurred and degraded (low +
contrast, aliasing, noise) face image, as obtained from the +
surveillance camera. These face images are difficult to match +
because they are often captured under non-ideal conditions. +
Thus, face recognition in surveillance scenario is an impor- +
tant and emerging research area which motivates the work +
presented in this paper. +
Performance of most classifiers degrade when both the +
resolution and contrast of face templates used for recognition +
are low. There have been many advancement in this area +
during the past decade, where attempts have been made to +
deal with this problem under an unconstrained environment. +
For surveillance applications, a face recognition system must +
recognize a face in an unconstrained environment without the +
notice of the subject. Degradation of faces is quite evident in +
the surveillance scenario due to low-resolution and camera- +
blur. Variations in the illuminating conditions of the faces +
not only reduces the recognition accuracy but occasionally +
degrades the performance of face detection which is the first +
step of face recognition. The work presented in this paper deals +
with such issues involved in FR under surveillance conditions. +
In the work presented in this paper, the face samples from +
both gallery and probe are initially passed through a robust +
face detector, the Chehra face tracker, to find a tightly cropped +
face image. A domain adaptation (DA) based algorithm, +
formulated using eigen-domain transformation is designed to +
bridge the gap between the features obtained from the gallery +
and the probe samples. A novel Multiple kernel Learning +
(MKL) based learning method, termed MFKL (Multi-Feature +
Kernel Learning), is then used to obtain an optimal combi- +
nation (pairing) of the feature and the kernel for FR. The +
novelty of the work presented in this paper is the optimal +
pairing of feature and kernel to provide best performance with +
DA based learning for FR. Results of performance analysis on +
('2643208', 'Samik Banerjee', 'samik banerjee')
('1680398', 'Sukhendu Das', 'sukhendu das')
86c053c162c08bc3fe093cc10398b9e64367a100Cascade of Forests for Face Alignment +('2966679', 'Heng Yang', 'heng yang')
('2876552', 'Changqing Zou', 'changqing zou')
('1744405', 'Ioannis Patras', 'ioannis patras')
86b985b285c0982046650e8d9cf09565a939e4f9
861802ac19653a7831b314cd751fd8e89494ab12Time-of-Flight and Depth Imaging. Sensors, Algorithms +
and Applications: Dagstuhl Seminar 2012 and GCPR +
Workshop on Imaging New Modalities (Lecture ... Vision, +
Pattern Recognition, and Graphics) +
Publisher: Springer; 2013 edition +
(November 8, 2013) +
Language: English +
Pages: 320 +
ISBN: 978-3642449635 +
Size: 20.46 MB +
Format: PDF / ePub / Kindle +
Cameras for 3D depth imaging, using +
either time-of-flight (ToF) or +
structured light sensors, have received +
a lot of attention recently and have +
been improved considerably over the +
last few years. The present +
techniques... +
('1727057', 'Marcin Grzegorzek', 'marcin grzegorzek')
('1680185', 'Christian Theobalt', 'christian theobalt')
('39897382', 'Reinhard Koch', 'reinhard koch')
('1758212', 'Andreas Kolb', 'andreas kolb')
86ed5b9121c02bcf26900913f2b5ea58ba23508fActions ⇠ Transformations +
Carnegie Mellon University
University of Washington
The Allen Institute for AI
('39849136', 'Xiaolong Wang', 'xiaolong wang')
('2270286', 'Ali Farhadi', 'ali farhadi')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
861b12f405c464b3ffa2af7408bff0698c6c9bf0International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 +
Volume: 3 Issue: 5 +
3337 - 3342 +
_______________________________________________________________________________________________ +
An Effective Technique for Removal of Facial Dupilcation by SBFA +
Computer Department, +
GHRCEM, +
Pune, India +
Computer Department, +
GHRCEM, +
Pune, India +
('2947776', 'Ayesha Butalia', 'ayesha butalia')deepikapatil941@gmail.com +
ayeshabutalia@gmail.com +
86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cdYUE et al.: ATTENTIONAL ALIGNMENT NETWORK +
Attentional Alignment Network +
Beihang University, Beijing, China
2 The Key Laboratory of Advanced +
Technologies for Near Space +
Information Systems +
Ministry of +
Technology of China +
University of Texas at Arlington
TX, USA +
Shanghai Jiao Tong University
Shanghai, China +
Industry and Information +
('35310815', 'Lei Yue', 'lei yue')
('6050999', 'Xin Miao', 'xin miao')
('3127895', 'Pengbo Wang', 'pengbo wang')
('1740430', 'Baochang Zhang', 'baochang zhang')
('34798935', 'Xiantong Zhen', 'xiantong zhen')
('40916581', 'Xianbin Cao', 'xianbin cao')
yuelei@buaa.edu.cn +
xin.miao@mavs.uta.edu +
wangpengbo_vincent@sjtu.edu.cn +
bczhang@buaa.edu.cn +
zhenxt@buaa.edu.cn +
xbcao@buaa.edu.cn +
862d17895fe822f7111e737cbcdd042ba04377e8Semi-Latent GAN: Learning to generate and modify facial images from +
attributes +
The school of Data Science, Fudan University
† Disney Research, +
('11740128', 'Weidong Yin', 'weidong yin')
('35782003', 'Yanwei Fu', 'yanwei fu')
('14517812', 'Leonid Sigal', 'leonid sigal')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
yanweifu@fudan.edu.cn +
86d0127e1fd04c3d8ea78401c838af621647dc95Facial Attribute Prediction +
College of Information and Engineering, Hunan University, Changsha, China
School of Computer Science, National University of Defense Technology, Changsha, China
University of Texas at San Antonio, USA
('48664471', 'Mingxing Duan', 'mingxing duan')
('50842217', 'Qi Tian', 'qi tian')
duanmingxing16@nudt.edu.cn, lkl@hnu.edu.cn, qi.tian@utsa.edu +
86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6The Kinetics Human Action Video Dataset +
Jo˜ao Carreira +
Paul Natsev +
('21028601', 'Will Kay', 'will kay')
('34838386', 'Karen Simonyan', 'karen simonyan')
('11809518', 'Brian Zhang', 'brian zhang')
('38961760', 'Chloe Hillier', 'chloe hillier')
('2259154', 'Sudheendra Vijayanarasimhan', 'sudheendra vijayanarasimhan')
('39045746', 'Fabio Viola', 'fabio viola')
('1691808', 'Tim Green', 'tim green')
('2830305', 'Trevor Back', 'trevor back')
('2573615', 'Mustafa Suleyman', 'mustafa suleyman')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
wkay@google.com +
joaoluis@google.com +
simonyan@google.com +
brianzhang@google.com +
chillier@google.com +
svnaras@google.com +
fviola@google.com +
tfgg@google.com +
back@google.com +
natsev@google.com +
mustafasul@google.com +
zisserman@google.com +
86b6de59f17187f6c238853810e01596d37f63cd(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 7, No. 3, 2016 +
Competitive Representation Based Classification +
Using Facial Noise Detection +
Chongqing Key Laboratory of Computational Intelligence +
College of Computer Science and Technology, Chongqing
Chongqing Key Laboratory of Computational Intelligence +
College of Computer Science and Technology, Chongqing
University of Posts and Telecommunications
University of Posts and Telecommunications
Chongqing, China +
Chongqing, China +
Chongqing Key Laboratory of Computational Intelligence +
College of Computer Science and Technology, Chongqing
Chongqing Key Laboratory of Computational Intelligence +
College of Computer Science and Technology, Chongqing
University of Posts and Telecommunications
University of Posts and Telecommunications
Chongqing, China +
Chongqing, China +
('1779859', 'Tao Liu', 'tao liu')
('32611393', 'Ying Liu', 'ying liu')
('38837555', 'Cong Li', 'cong li')
('40032263', 'Chao Li', 'chao li')
86b105c3619a433b6f9632adcf9b253ff98aee871­4244­0367­7/06/$20.00 ©2006 IEEE +
1013 +
ICME 2006 +
86f3552b822f6af56cb5079cc31616b4035ccc4eTowards Miss Universe Automatic Prediction: The Evening Gown Competition +
University of Queensland, Brisbane, Australia
(cid:5) Data61, CSIRO, Australia +
('1850202', 'Johanna Carvajal', 'johanna carvajal')
('2331880', 'Arnold Wiliem', 'arnold wiliem')
('1781182', 'Conrad Sanderson', 'conrad sanderson')
86a8b3d0f753cb49ac3250fa14d277983e30a4b7Exploiting Unlabeled Ages for Aging Pattern Analysis on A Large Database +
West Virginia University, Morgantown, WV
('1720735', 'Chao Zhang', 'chao zhang')
('1822413', 'Guodong Guo', 'guodong guo')
cazhang@mix.wvu.edu, guodong.guo@mail.wvu.edu +
860588fafcc80c823e66429fadd7e816721da42aUnsupervised Discovery of Object Landmarks as Structural Representations +
University of Michigan, Ann Arbor
2Google Brain +
('1692992', 'Yuting Zhang', 'yuting zhang')
('1857914', 'Yijie Guo', 'yijie guo')
('50442731', 'Yixin Jin', 'yixin jin')
('49513553', 'Yijun Luo', 'yijun luo')
('46915665', 'Zhiyuan He', 'zhiyuan he')
('1697141', 'Honglak Lee', 'honglak lee')
{yutingzh, guoyijie, jinyixin, lyjtour, zhiyuan, honglak}@umich.edu +
honglak@google.com +
86b51bd0c80eecd6acce9fc538f284b2ded5bcdd
8699268ee81a7472a0807c1d3b1db0d0ab05f40d
86374bb8d309ad4dbde65c21c6fda6586ae4147aDetect-and-Track: Efficient Pose Estimation in Videos +
The Robotics Institute, Carnegie Mellon University
Dartmouth College
2Facebook +
https://rohitgirdhar.github.io/DetectAndTrack +
('3102850', 'Rohit Girdhar', 'rohit girdhar')
('2082991', 'Georgia Gkioxari', 'georgia gkioxari')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
('2210374', 'Manohar Paluri', 'manohar paluri')
869583b700ecf33a9987447aee9444abfe23f343
72282287f25c5419dc6fd9e89ec9d86d660dc0b5A Rotation Invariant Latent Factor Model for +
Moveme Discovery from Static Poses +
California Institute of Technology, Pasadena, CA, USA
('3339867', 'Matteo Ruggero Ronchi', 'matteo ruggero ronchi')
('14834454', 'Joon Sik Kim', 'joon sik kim')
('1740159', 'Yisong Yue', 'yisong yue')
{mronchi, jkim5, yyue}@caltech.edu +
72a87f509817b3369f2accd7024b2e4b30a1f588Fault diagnosis of a railway device using semi-supervised +
independent factor analysis with mixing constraints +
To cite this version: +
using semi-supervised independent factor analysis with mixing constraints. Pattern Analysis and +
Applications, Springer Verlag, 2012, 15 (3), pp.313-326. +
HAL Id: hal-00750589 +
https://hal.archives-ouvertes.fr/hal-00750589 +
Submitted on 11 Nov 2012 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('3202810', 'Etienne Côme', 'etienne côme')
('1707103', 'Latifa Oukhellou', 'latifa oukhellou')
('1710347', 'Thierry Denoeux', 'thierry denoeux')
('2688359', 'Patrice Aknin', 'patrice aknin')
('3202810', 'Etienne Côme', 'etienne côme')
('1707103', 'Latifa Oukhellou', 'latifa oukhellou')
('1710347', 'Thierry Denoeux', 'thierry denoeux')
('2688359', 'Patrice Aknin', 'patrice aknin')
72a00953f3f60a792de019a948174bf680cd6c9fStat Comput (2007) 17:57–70 +
DOI 10.1007/s11222-006-9004-9 +
Understanding the role of facial asymmetry in human face +
identification +
Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007 +
C(cid:1) Springer Science + Business Media, LLC 2007 +
('2046854', 'Sinjini Mitra', 'sinjini mitra')
726b8aba2095eef076922351e9d3a724bb71cb51
721b109970bf5f1862767a1bec3f9a79e815f79a
727ecf8c839c9b5f7b6c7afffe219e8b270e7e15LEVERAGING GEO-REFERENCED DIGITAL PHOTOGRAPHS +
A DISSERTATION +
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +
AND THE COMMITTEE ON GRADUATE STUDIES +
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +
FOR THE DEGREE OF +
DOCTOR OF PHILOSOPHY +
July 2005 +
('1687465', 'Mor Naaman', 'mor naaman')
72a5e181ee8f71b0b153369963ff9bfec1c6b5b0Expression recognition in videos using a weighted +
component-based feature descriptor +
1. Machine Vision Group, Department of Electrical and Information Engineering, +
University of Oulu, Finland
Research Center for Learning Science, Southeast University, China
http://www.ee.oulu.fi/mvg +
('18780812', 'Xiaohua Huang', 'xiaohua huang')
('1757287', 'Guoying Zhao', 'guoying zhao')
('40608983', 'Wenming Zheng', 'wenming zheng')
{huang.xiaohua,gyzhao,mkp}@ee.oulu.fi +
wenming_zheng@seu.edu.cn +
72ecaff8b57023f9fbf8b5b2588f3c7019010ca7Facial Keypoints Detection +('27744156', 'Shenghao Shi', 'shenghao shi')
72591a75469321074b072daff80477d8911c3af3Group Component Analysis for Multi-block Data: +
Common and Individual Feature Extraction +
('1764724', 'Guoxu Zhou', 'guoxu zhou')
('1747156', 'Andrzej Cichocki', 'andrzej cichocki')
('38741479', 'Yu Zhang', 'yu zhang')
7224d58a7e1f02b84994b60dc3b84d9fe6941ff5When Face Recognition Meets with Deep Learning: an Evaluation of +
Convolutional Neural Networks for Face Recognition +
Centre for Vision, Speech and Signal Processing, University of Surrey, UK
Electronic Engineering and Computer Science, Queen Mary University of London, UK
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Chinese Academy of Sciences, China♠ +
('38819702', 'Guosheng Hu', 'guosheng hu')
('2653152', 'Yongxin Yang', 'yongxin yang')
('1716143', 'Dong Yi', 'dong yi')
('1748684', 'Josef Kittler', 'josef kittler')
('34679741', 'Stan Z. Li', 'stan z. li')
{g.hu,j.kittler,w.christmas}@surrey.ac.uk,{yongxin.yang,t.hospedales}@qmul.ac.uk, {szli,dyi}@cbsr.ia.ac.cn +
729dbe38538fbf2664bc79847601f00593474b05
729a9d35bc291cc7117b924219bef89a864ce62cRecognizing Material Properties from Images +('40116153', 'Gabriel Schwartz', 'gabriel schwartz')
('1708819', 'Ko Nishino', 'ko nishino')
72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114Face Alignment using Cascade Gaussian Process Regression Trees +
Korea Advanced institute of Science and Technology
Face alignment is a task to locate fiducial facial landmark points, such as eye +
corners, nose tip, mouth corners, and chin, in a face image. Shape regression +
has become an accurate, robust, and fast framework for face alignment [2, +
In shape regression, face shape s = (x1,y1,··· ,xp,yp)(cid:62), that is a +
4, 5]. +
concatenation of p facial landmark coordinates {(xi,yi)}p +
i=1, is initialized +
and iteratively updated through a cascade regression trees (CRT) as shown +
in Figure 1. Each tree estimates the shape increment from the current shape +
estimate, and the final shape estimate is given by a cumulated sum of the +
outputs of the trees to the initial estimate as follows: +
ˆsT = ˆs0 + +
t=1 +
f t (xt;θ t ), +
(1) +
where T is the number of stages, t is an index that denotes the stage, ˆst is a +
shape estimate, xt is a feature vector that is extracted from an input image +
I, and f t (·;·) is a tree that is parameterized by θ t. Starting from the rough +
initial shape estimate ˆs0, each stage iteratively updates the shape estimate +
by ˆst = ˆst−1 + f t (xt;θ t ). +
The two key elements of CRT-based shape regression that impact to the +
prediction performance are gradient boosting [3] for learning the CRT and +
the shape-indexed features [2] which the trees are based. In gradient boost- +
ing, each stage iteratively fits training data in a greedy stage-wise manner by +
reducing the regression residuals that are defined as the differences between +
the ground truth shapes and shape estimates. The shape-indexed features +
are extracted from the pixel coordinates referenced by the shape estimate. +
The shape-indexed features are extremely cheap to compute and are robust +
against geometric variations. +
Instead of using gradient boosting, we propose cascade Gaussian pro- +
cess regression trees (cGPRT) that can be incorporated as a learning method +
for a CRT prediction framework. The cGPRT is constructed by combining +
Gaussian process regression trees (GPRT) in a cascade stage-wise manner. +
Given training samples S = (s1,··· ,sN )(cid:62) and Xt = (x1,··· ,xN )(cid:62), GPRT +
models the relationship between inputs and outputs by a regression function +
f (x) drawn from a Gaussian process with independent additive noise εi, +
i = 1,··· ,N, +
si = f (xi) + εi, +
f (x) ∼ GP(0,k(x,x(cid:48))), +
εi ∼ N (0,σ 2 +
n ). +
A kernel k(x,x(cid:48)) in GPRT is defined by a set of M number of trees: +
k(x,x(cid:48)) = σ 2 +
κm(x,x(cid:48)) = +
m=1 +
(cid:26) 1 +
κm(x,x(cid:48)), +
if τm(x) = τm(x(cid:48)) +
otherwise, +
(2) +
(3) +
(4) +
(5) +
(6) +
where σ 2 +
k is the scaling parameter that represents the kernel power, and τ is +
a split function takes an input x and computes the leaf index b ∈ {1,··· ,B}. +
Given an input x∗, distribution over its predictive variable f∗ is given as +
¯f∗ = +
i=1 +
αik(xi,x∗), +
(7) +
where α = (α1,··· ,αN )(cid:62) is given by K−1 +
n IN, +
and K is a covariance matrix of which K(i, j) is computed from the i-th and +
j-th row vector of X. Computation of Equation (7) is in O(N); however, this +
can be more efficient as follows: +
s S. Here, Ks is given by K+σ 2 +
¯f∗ = +
m=1 +
¯αm,τm(x∗), +
(8) +
('2350325', 'Donghoon Lee', 'donghoon lee')
('2857402', 'Hyunsin Park', 'hyunsin park')
72160aae43cd9b2c3aae5574acc0d00ea0993b9eBoosting Facial Expression Recognition in a Noisy Environment +
Using LDSP-Local Distinctive Star Pattern +
1 Department of Computer Science and Engineering +
Stamford University Bangladesh, Dhaka-1209, Bangladesh
2 Department of Computer Science and Engineering +
Stamford University Bangladesh, Dhaka-1209, Bangladesh
3 Department of Computer Science and Engineering +
Stamford University Bangladesh, Dhaka-1209, Bangladesh
('7484236', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')
('7497618', 'Tarin Kazi', 'tarin kazi')
72cbbdee4f6eeee8b7dd22cea6092c532271009fAdversarial Occlusion-aware Face Detection +
1National Laboratory of Pattern Recognition, CASIA +
2Center for Research on Intelligent Perception and Computing, CASIA +
University of Chinese Academy of Sciences, Beijing 100190, China
('3065234', 'Yujia Chen', 'yujia chen')
('3051419', 'Lingxiao Song', 'lingxiao song')
('1705643', 'Ran He', 'ran he')
721d9c387ed382988fce6fa864446fed5fb23173
72c0c8deb9ea6f59fde4f5043bff67366b86bd66Age progression in Human Faces : A Survey +('34713849', 'Narayanan Ramanathan', 'narayanan ramanathan')
('9215658', 'Rama Chellappa', 'rama chellappa')
721e5ba3383b05a78ef1dfe85bf38efa7e2d611dBULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE +
Convolutional aggregation of local evidence +
for large pose face alignment +
Computer Vision Laboratory +
University of Nottingham
Nottingham, UK +
('3458121', 'Adrian Bulat', 'adrian bulat')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
adrian.bulat@nottingham.ac.uk +
yorgos.tzimiropoulos@nottingham.ac.uk +
72f4aaf7e2e3f215cd8762ce283988220f182a5bTurk J Elec Eng & Comp Sci, Vol.18, No.4, 2010, c(cid:2) T ¨UB˙ITAK +
doi:10.3906/elk-0906-48 +
Active illumination and appearance model for face +
alignment +
Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY
Istanbul Technical University, Istanbul, 34469, TURKEY
DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK
('2061450', 'Fatih KAHRAMAN', 'fatih kahraman')
('1762901', 'Sune DARKNER', 'sune darkner')
('2134834', 'Rasmus LARSEN', 'rasmus larsen')
e-mail: kahraman@be.itu.edu.tr +
e-mail: gokmen@itu.edu.tr +
e-mail: {sda, rl}@imm.dtu.dk +
72a55554b816b66a865a1ec1b4a5b17b5d3ba784Real-Time Face Identification +
via CNN +
and Boosted Hashing Forest +
State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia
IEEE Computer Society Workshop on Biometrics +
In conjunction with CVPR 2016, June 26, 2016 +
('2966131', 'Yury Vizilter', 'yury vizilter')
('5669812', 'Vladimir Gorbatsevich', 'vladimir gorbatsevich')
('34296728', 'Andrey Vorotnikov', 'andrey vorotnikov')
('7729536', 'Nikita Kostromov', 'nikita kostromov')
viz@gosniias.ru, gvs@gosniias.ru, vorotnikov@gosniias.ru, nikita-kostromov@yandex.ru +
72450d7e5cbe79b05839c30a4f0284af5aa80053Natural Facial Expression Recognition Using Dynamic +
and Static Schemes +
1 Computer Vision Center, 08193 Bellaterra, Barcelona, Spain +
2 IKERBASQUE, Basque Foundation for Science +
University of the Basque Country, San Sebastian, Spain
('3262395', 'Bogdan Raducanu', 'bogdan raducanu')
('1803584', 'Fadi Dornaika', 'fadi dornaika')
bogdan@cvc.uab.es +
fadi dornaika@ehu.es +
72bf9c5787d7ff56a1697a3389f11d14654b4fcfRobustFaceRecognitionUsing +
SymmetricShape-from-Shading +
W.Zhao +
RamaChellappa +
CenterforAutomationResearchand +
ElectricalandComputerEngineeringDepartment +
UniversityofMaryland
CollegePark, MD
ThesupportoftheO(cid:14)ceofNavalResearchunderGrantN- --isgratefullyacknowledged.DRAFT +
Email:fwyzhao,ramag@cfar.umd.edu +
725c3605c2d26d113637097358cd4c08c19ff9e1Deep Reasoning with Knowledge Graph for Social Relationship Understanding +
School of Data and Computer Science, Sun Yat-sen University, China
2 SenseTime Research, China +
('29988001', 'Zhouxia Wang', 'zhouxia wang')
('1765674', 'Tianshui Chen', 'tianshui chen')
('12254824', 'Weihao Yu', 'weihao yu')
('47413456', 'Hui Cheng', 'hui cheng')
('1737218', 'Liang Lin', 'liang lin')
zhouzi1212,tianshuichen,jimmy.sj.ren,weihaoyu6@gmail.com, +
chengh9@mail.sysu.edu.cn, linliang@ieee.org +
445461a34adc4bcdccac2e3c374f5921c93750f8Emotional Expression Classification using Time-Series Kernels∗ +('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('1733113', 'Takeo Kanade', 'takeo kanade')
1E¨otv¨os Lor´and University, Budapest, Hungary, {andras.lorincz,szzoli}@elte.hu +
2Carnegie Mellon University, Pittsburgh, PA, laszlo.jeni@ieee.org,tk@cs.cmu.edu +
3University of Pittsburgh, Pittsburgh, PA, jeffcohn@cs.cmu.edu +
4414a328466db1e8ab9651bf4e0f9f1fe1a163e41164 +
© EURASIP, 2010 ISSN 2076-1465 +
18th European Signal Processing Conference (EUSIPCO-2010) +
INTRODUCTION +
442f09ddb5bb7ba4e824c0795e37cad754967208
443acd268126c777bc7194e185bec0984c3d1ae7Retrieving Relative Soft Biometrics +
for Semantic Identification +
School of Electronics and Computer Science, +
University of Southampton, United Kingdom
('3408521', 'Daniel Martinho-Corbishley', 'daniel martinho-corbishley')
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('3000521', 'John N. Carter', 'john n. carter')
{dmc,msn,jnc}@ecs.soton.ac.uk +
44f23600671473c3ddb65a308ca97657bc92e527Convolutional Two-Stream Network Fusion for Video Action Recognition +
Graz University of Technology
Graz University of Technology
University of Oxford
('2322150', 'Christoph Feichtenhofer', 'christoph feichtenhofer')
('1718587', 'Axel Pinz', 'axel pinz')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
feichtenhofer@tugraz.at +
axel.pinz@tugraz.at +
az@robots.ox.ac.uk +
4439746eeb7c7328beba3f3ef47dc67fbb52bcb3An Efficient Face Detection Method Using Adaboost and Facial Parts +
Computer, IT and Electronic department +
Azad University of Qazvin
Tehran, Iran +
('2514753', 'Yasaman Heydarzadeh', 'yasaman heydarzadeh')
('2514753', 'Yasaman Heydarzadeh', 'yasaman heydarzadeh')
('1681854', 'Abolfazl Toroghi Haghighat', 'abolfazl toroghi haghighat')
heydarzadeh@ qiau.ac.ir , haghighat@qiau.ac.ir +
446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03A Pose-Adaptive Constrained Local Model For +
Accurate Head Pose Tracking +
Eikeo +
11 rue Leon Jouhaux, +
F-75010, Paris, France +
Sorbonne Universit´es +
UPMC Univ Paris 06 +
CNRS UMR 7222, ISIR +
F-75005, Paris, France +
Eikeo +
11 rue Leon Jouhaux, +
F-75010, Paris, France +
('2416620', 'Lucas Zamuner', 'lucas zamuner')
('2521061', 'Kevin Bailly', 'kevin bailly')
('2254216', 'Erwan Bigorgne', 'erwan bigorgne')
lucas.zamuner@eikeo.com +
kevin.bailly@upmc.fr +
erwan.bigorgne@eikeo.com +
4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6fLearning features from Improved Dense Trajectories using deep convolutional +
networks for Human Activity Recognition +
University Drive
Burnaby, BC +
Canada V5A 1S6 +
Sportlogiq Inc. +
780 Avenue Brewster, +
Montreal QC, +
Canada H4C 1A8 +
University Drive
Burnaby, BC +
Canada V5A 1S6 +
('2716937', 'Srikanth Muralidharan', 'srikanth muralidharan')
('2190580', 'Simon Fraser', 'simon fraser')
('15695326', 'Mehrsan Javan', 'mehrsan javan')
('10771328', 'Greg Mori', 'greg mori')
('2190580', 'Simon Fraser', 'simon fraser')
smuralid@sfu.ca +
mehrsan@sportlogiq.com +
mori@cs.sfu.ca +
44b1399e8569a29eed0d22d88767b1891dbcf987This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Learning Multi-modal Latent Attributes +
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
('1700927', 'Tao Xiang', 'tao xiang')
('2073354', 'Shaogang Gong', 'shaogang gong')
44f48a4b1ef94a9104d063e53bf88a69ff0f55f3Automatically Building Face Datasets of New Domains +
from Weakly Labeled Data with Pretrained Models +
Sun Yat-sen University
('2442939', 'Shengyong Ding', 'shengyong ding')
('4080607', 'Junyu Wu', 'junyu wu')
('1723992', 'Wei Xu', 'wei xu')
('38255852', 'Hongyang Chao', 'hongyang chao')
446dc1413e1cfaee0030dc74a3cee49a47386355Recent Advances in Zero-shot Recognition +('35782003', 'Yanwei Fu', 'yanwei fu')
('1700927', 'Tao Xiang', 'tao xiang')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
('14517812', 'Leonid Sigal', 'leonid sigal')
('2073354', 'Shaogang Gong', 'shaogang gong')
44a3ec27f92c344a15deb8e5dc3a5b3797505c06A Taxonomy of Part and Attribute Discovery +
Techniques +
('35208858', 'Subhransu Maji', 'subhransu maji')
44aeda8493ad0d44ca1304756cc0126a2720f07bFace Alive Icons +('1685323', 'Xin Li', 'xin li')
('2304980', 'Chieh-Chih Chang', 'chieh-chih chang')
('1679040', 'Shi-Kuo Chang', 'shi-kuo chang')
1University of Pittsburgh, USA,{flying, chang}@cs.pitt.edu +
2Industrial Technology Research Institute, Taiwan, chieh@itri.org.tw +
449b1b91029e84dab14b80852e35387a9275870e
44078d0daed8b13114cffb15b368acc467f96351
44d23df380af207f5ac5b41459c722c87283e1ebHuman Attribute Recognition by Deep +
Hierarchical Contexts +
The Chinese University of Hong Kong
('47002704', 'Yining Li', 'yining li')
('2000034', 'Chen Huang', 'chen huang')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{ly015,chuang,ccloy,xtang}@ie.cuhk.edu.hk +
44c9b5c55ca27a4313daf3760a3f24a440ce17adRevisiting hand-crafted feature for action recognition: +
a set of improved dense trajectories +
Hiroshima University, Japan
ENSICAEN, France +
Hiroshima University, Japan
('2223849', 'Kenji Matsui', 'kenji matsui')
('1744862', 'Toru Tamaki', 'toru tamaki')
('30171131', 'Gwladys Auffret', 'gwladys auffret')
('1688940', 'Bisser Raytchev', 'bisser raytchev')
('1686272', 'Kazufumi Kaneda', 'kazufumi kaneda')
44dd150b9020b2253107b4a4af3644f0a51718a3An Analysis of the Sensitivity of Active Shape +
Models to Initialization when Applied to Automatic +
Facial Landmarking +
('2363348', 'Keshav Seshadri', 'keshav seshadri')
('1794486', 'Marios Savvides', 'marios savvides')
447d8893a4bdc29fa1214e53499ffe67b28a6db5('35734434', 'Maxime BERTHE', 'maxime berthe')
44f65e3304bdde4be04823fd7ca770c1c05c2cefSIViP +
DOI 10.1007/s11760-009-0125-4 +
ORIGINAL PAPER +
On the use of phase of the Fourier transform for face recognition +
under variations in illumination +
Received: 17 November 2008 / Revised: 20 February 2009 / Accepted: 7 July 2009 +
© Springer-Verlag London Limited 2009 +
('2627097', 'Anil Kumar Sao', 'anil kumar sao')
44fbbaea6271e47ace47c27701ed05e15da8f7cf588306 PSSXXX10.1177/0956797615588306Kret et al.Effect of Pupil Size on Trust +
research-article2015 +
Research Article +
Pupil Mimicry Correlates With Trust in +
In-Group Partners With Dilating Pupils +
1 –10 +
© The Author(s) 2015 +
Reprints and permissions: +
sagepub.com/journalsPermissions.nav +
DOI: 10.1177/0956797615588306 +
pss.sagepub.com +
M. E. Kret1,2, A. H. Fischer1,2, and C. K. W. De Dreu1,2,3 +
University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of
Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam
44eb4d128b60485377e74ffb5facc0bf4ddeb022
448ed201f6fceaa6533d88b0b29da3f36235e131
441bf5f7fe7d1a3939d8b200eca9b4bb619449a9Head Pose Estimation in the Wild using Approximate View Manifolds +
University of Florida
Gainesville, FL, USA +
University of Florida
Gainesville, FL, USA +
('30900274', 'Kalaivani Sundararajan', 'kalaivani sundararajan')
('2171076', 'Damon L. Woodard', 'damon l. woodard')
kalaivani.s@ufl.edu +
dwoodard@ufl.edu +
447a5e1caf847952d2bb526ab2fb75898466d1bcUnder review as a conference paper at ICLR 2018 +
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +
INATIVE AND MINIMUM INFORMATION LOSS PRIORS +
Anonymous authors +
Paper under double-blind review +
449808b7aa9ee6b13ad1a21d9f058efaa400639aRecovering 3D Facial Shape via Coupled 2D/3D Space Learning +
1Key Lab of Intelligent Information Processing of CAS, +
Institute of Computing Technology, CAS, Beijing 100190, China
Graduate University of CAS, 100190, Beijing, China
System Research Center, NOKIA Research Center, Beijing, 100176, China
Institute of Digital Media, Peking University, Beijing, 100871, China
('3079475', 'Annan Li', 'annan li')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
('1695600', 'Xiujuan Chai', 'xiujuan chai')
('1698902', 'Wen Gao', 'wen gao')
{anli,sgshan,xlchen,wgao}@jdl.ac.cn +
ext-xiujuan.chai@nokia.com +
2a7bca56e2539c8cf1ae4e9da521879b7951872dExploiting Unrelated Tasks in Multi-Task Learning +
Anonymous Author 1 +
Unknown Institution 1 +
Anonymous Author 2 +
Unknown Institution 2 +
Anonymous Author 3 +
Unknown Institution 3 +
2a65d7d5336b377b7f5a98855767dd48fa516c0fFast Supervised LDA for Discovering Micro-Events in +
Large-Scale Video Datasets +
Multimedia Understanding Group +
Aristotle University of Thessaloniki, Greece
('3493855', 'Angelos Katharopoulos', 'angelos katharopoulos')
('3493472', 'Despoina Paschalidou', 'despoina paschalidou')
('1789830', 'Christos Diou', 'christos diou')
('1708199', 'Anastasios Delopoulos', 'anastasios delopoulos')
{katharas, pdespoin}@auth.gr; diou@mug.ee.auth.gr; adelo@eng.auth.gr +
2af2b74c3462ccff3a6881ff7cf4f321b3242fa9Chen ZN, Ngo CW, Zhang W et al. Name-face association in Web videos: A large-scale dataset, baselines, and open issues. +
1468-z +
Name-Face Association in Web Videos: A Large-Scale Dataset, +
Baselines, and Open Issues +
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
City University of Hong Kong, Hong Kong, China
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
School of Computer Science, Fudan University, Shanghai 200433, China
Received February 24, 2014; revised July 3, 2014. +
('1751681', 'Chong-Wah Ngo', 'chong-wah ngo')
('40538946', 'Wei Zhang', 'wei zhang')
('1778024', 'Juan Cao', 'juan cao')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
E-mail: zhineng.chen@ia.ac.cn; cscwngo@cityu.edu.hk; wzhang34-c@my.cityu.edu.hk; caojuan@ict.ac.cn; ygj@fudan.edu.cn +
2aaa6969c03f435b3ea8431574a91a0843bd320b
2af620e17d0ed67d9ccbca624250989ce372e255Meta-Class Features for Large-Scale Object Categorization on a Budget +
Dartmouth College
Hanover, NH, U.S.A. +
('34338883', 'Alessandro Bergamo', 'alessandro bergamo')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
{aleb, lorenzo}@cs.dartmouth.edu +
2a35d20b2c0a045ea84723f328321c18be6f555con Converting Supervised Classification to Semi-supervised Classification +
Boost Picking: A Universal Method +
Beijing Institute of Technology, Beijing 100081 CHINA
North China University of Technology, Beijing 100144 CHINA
Beijing Institute of Technology, Beijing 100081 CHINA
Beijing Institute of Technology, Beijing 100081 CHINA
('1742846', 'Fuqiang Liu', 'fuqiang liu')
('33179404', 'Fukun Bi', 'fukun bi')
('3148439', 'Yiding Yang', 'yiding yang')
('36522003', 'Liang Chen', 'liang chen')
2ad7cef781f98fd66101fa4a78e012369d064830
2ad29b2921aba7738c51d9025b342a0ec770c6ea
2a9b398d358cf04dc608a298d36d305659e8f607Facial Action Unit Recognition with Sparse Representation +
University of Denver, Denver, CO
University of Pittsburgh, Pittsburgh, PA
facial +
image exhibiting +
('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')
('5510802', 'Mu Zhou', 'mu zhou')
('1837267', 'Kevin L. Veon', 'kevin l. veon')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
Emails: mmahoor@du.edu, mu.zhou09fall@gmail.com, kevin.veon@du.edu, seyedmohammad.mavadati@du.edu, and jeffcohn@pitt.edu +
2a0efb1c17fbe78470acf01e4601a75735a805ccIllumination-InsensitiveFaceRecognitionUsing +
SymmetricShape-from-Shading +
WenYiZhao +
RamaChellappa +
CenterforAutomationResearch +
UniversityofMaryland, CollegePark, MD
Email:fwyzhao,ramag@cfar.umd.edu +
2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924
2ac21d663c25d11cda48381fb204a37a47d2a574Interpreting Hand-Over-Face Gestures +
University of Cambridge
('2022940', 'Marwa Mahmoud', 'marwa mahmoud')
('39626495', 'Peter Robinson', 'peter robinson')
2a4153655ad1169d482e22c468d67f3bc2c49f12Face Alignment Across Large Poses: A 3D Solution +
1 Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, +
Institute of Automation, Chinese Academy of Sciences
Michigan State University
('8362374', 'Xiangyu Zhu', 'xiangyu zhu')
('1718623', 'Zhen Lei', 'zhen lei')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('1704812', 'Hailin Shi', 'hailin shi')
('34679741', 'Stan Z. Li', 'stan z. li')
{xiangyu.zhu,zlei,hailin.shi,szli}@nlpr.ia.ac.cn +
liuxm@msu.edu +
2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40Estimating Sheep Pain Level Using Facial Action Unit Detection +
Computer Laboratory, University of Cambridge, Cambridge, UK
('9871228', 'Yiting Lu', 'yiting lu')
('2022940', 'Marwa Mahmoud', 'marwa mahmoud')
('39626495', 'Peter Robinson', 'peter robinson')
2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3cRobust Registration and Geometry Estimation from Unstructured +
Facial Scans +
('19214361', 'Maxim Bazik', 'maxim bazik')
2ae139b247057c02cda352f6661f46f7feb38e45Combining Modality Specific Deep Neural Networks for +
Emotion Recognition in Video +
1École Polytechique de Montréal, Université de Montréal, Montréal, Canada +
2Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada +
('3127597', 'Samira Ebrahimi Kahou', 'samira ebrahimi kahou')
('2900675', 'Xavier Bouthillier', 'xavier bouthillier')
('2558801', 'Pierre Froumenty', 'pierre froumenty')
('1710604', 'Roland Memisevic', 'roland memisevic')
('1724875', 'Pascal Vincent', 'pascal vincent')
('1751762', 'Yoshua Bengio', 'yoshua bengio')
{samira.ebrahimi-kahou, christopher.pal, pierre.froumenty}@polymtl.ca +
{bouthilx, gulcehrc, memisevr, vincentp, courvila, bengioy}@iro.umontreal.ca +
2a3e19d7c54cba3805115497c69069dd5a91da65Looking at Hands in Autonomous Vehicles: +
A ConvNet Approach using Part Affinity Fields +
LISA: Laboratory for Intelligent & Safe Automobiles +
University of California San Diego
('2812409', 'Kevan Yuen', 'kevan yuen')
('1713989', 'Mohan M. Trivedi', 'mohan m. trivedi')
kcyuen@eng.ucsd.edu, mtrivedi@eng.ucsd.edu +
2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5ccMulti-Region Probabilistic Histograms +
for Robust and Scalable Identity Inference (cid:63) +
NICTA, PO Box 6020, St Lucia, QLD 4067, Australia +
University of Queensland, School of ITEE, QLD 4072, Australia
('1781182', 'Conrad Sanderson', 'conrad sanderson')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
2a14b6d9f688714dc60876816c4b7cf763c029a9Combining Multiple Sources of Knowledge in Deep CNNs for Action Recognition +
University of North Carolina at Chapel Hill
('2155311', 'Eunbyung Park', 'eunbyung park')
('1682965', 'Xufeng Han', 'xufeng han')
('1685538', 'Tamara L. Berg', 'tamara l. berg')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
{eunbyung,xufeng,tlberg,aberg}@cs.unc.edu +
2a88541448be2eb1b953ac2c0c54da240b47dd8aDiscrete Graph Hashing +
IBM T. J. Watson Research Center
Columbia University
(cid:2)Google Research +
('39059457', 'Wei Liu', 'wei liu')
('2794322', 'Sanjiv Kumar', 'sanjiv kumar')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
weiliu@us.ibm.com +
cm3052@columbia.edu +
sfchang@ee.columbia.edu +
sanjivk@google.com +
2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83121 +
The Effect of Computer-Generated Descriptions +
on Photo-Sharing Experiences of People With +
Visual Impairments +
Like sighted people, visually impaired people want to share photographs on social networking services, but +
find it difficult to identify and select photos from their albums. We aimed to address this problem by +
incorporating state-of-the-art computer-generated descriptions into Facebook’s photo-sharing feature. We +
interviewed 12 visually impaired participants to understand their photo-sharing experiences and designed a +
photo description feature for the Facebook mobile application. We evaluated this feature with six +
participants in a seven-day diary study. We found that participants used the descriptions to recall and +
organize their photos, but they hesitated to upload photos without a sighted person’s input. In addition to +
basic information about photo content, participants wanted to know more details about salient objects and +
people, and whether the photos reflected their personal aesthetic. We discuss these findings from the lens of +
self-disclosure and self-presentation theories and propose new computer vision research directions that will +
better support visual content sharing by visually impaired people. +
CCS Concepts: • Information interfaces and presentations → Multimedia and information systems; • +
Social and professional topics → People with disabilities +
KEYWORDS +
Visual impairments; computer-generated descriptions; SNSs; photo sharing; self-disclosure; self-presentation +
ACM Reference format: +
The Effect of Computer-Generated Descriptions On Photo-Sharing Experiences of People With Visual +
Impairments. Proc. ACM Hum.-Comput. Interact. 1, CSCW. 121 (November 2017), 22 pages. +
DOI: 10.1145/3134756 +
1 INTRODUCTION +
Sharing memories and experiences via photos is a common way to engage with others on social networking +
services (SNSs) [39,46,51]. For instance, Facebook users uploaded more than 350 million photos a day [24] +
and Twitter, which initially supported only text in tweets, now has more than 28.4% of tweets containing +
images [39]. Visually impaired people (both blind and low vision) have a strong presence on SNS and are +
interested in sharing photos [50]. They take photos for the same reasons that sighted people do: sharing +
daily moments with their sighted friends and family [30,32]. A prior study showed that visually impaired +
people shared a relatively large number of photos on Facebook—only slightly less than their sighted +
counterparts [50]. +
+
PACM on Human-Computer Interaction, Vol. 1, No. 2, Article 121. Publication date: November 2017 +
('2582568', 'Yuhang Zhao', 'yuhang zhao')
('1968133', 'Shaomei Wu', 'shaomei wu')
('39685591', 'Lindsay Reynolds', 'lindsay reynolds')
('3283573', 'Shiri Azenkot', 'shiri azenkot')
2a02355c1155f2d2e0cf7a8e197e0d0075437b19
2a171f8d14b6b8735001a11c217af9587d095848Learning Social Relation Traits from Face Images +
The Chinese University of Hong Kong
('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')
('1693209', 'Ping Luo', 'ping luo')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
zz013@ie.cuhk.edu.hk, pluo@ie.cuhk.edu.hk, ccloy@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk +
2aea27352406a2066ddae5fad6f3f13afdc90be9
2a0623ae989f2236f5e1fe3db25ab708f5d029553D Face Modelling for 2D+3D Face Recognition +
J.R. Tena Rodr´ıguez +
Submitted for the Degree of +
Doctor of Philosophy +
from the +
University of Surrey
Centre for Vision, Speech and Signal Processing +
School of Electronics and Physical Sciences +
University of Surrey
Guildford, Surrey GU2 7XH, U.K. +
November 2007 +
c(cid:13) J.R. Tena Rodr´ıguez 2007 +
2ad0ee93d029e790ebb50574f403a09854b65b7eAcquiring Linear Subspaces for Face +
Recognition under Variable Lighting +
David Kriegman, Senior Member, IEEE +
('2457452', 'Kuang-chih Lee', 'kuang-chih lee')
('1788818', 'Jeffrey Ho', 'jeffrey ho')
2afdda6fb85732d830cea242c1ff84497cd5f3cbFace Image Retrieval by Using Haar Features +
Institute ofInformation Science, Academia Sinica, Taipei, Taiwan
Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan
Tamkang University, Taipei, Taiwan
('2609751', 'Bau-Cheng Shen', 'bau-cheng shen')
('1720473', 'Chu-Song Chen', 'chu-song chen')
('1679560', 'Hui-Huang Hsu', 'hui-huang hsu')
{bcshen, song} @ iis.sinica. edu. tw, h_hsu@mail. tku. edu. tw +
2ab034e1f54c37bfc8ae93f7320160748310dc73Siamese Capsule Networks +
James O’ Neill +
Department of Computer Science +
University of Liverpool
Liverpool, L69 3BX +
james.o-neill@liverpool.ac.uk +
2ff9618ea521df3c916abc88e7c85220d9f0ff06Facial Tic Detection Using Computer Vision +
Christopher D. Leveille +
March 20, 2014 +
('40579411', 'Aaron Cass', 'aaron cass')
2fda461869f84a9298a0e93ef280f79b9fb76f94OpenFace: an open source facial behavior analysis toolkit +
Tadas Baltruˇsaitis +
('39626495', 'Peter Robinson', 'peter robinson')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
Tadas.Baltrusaitis@cl.cam.ac.uk +
Peter.Robinson@cl.cam.ac.uk +
morency@cs.cmu.edu +
2ff9ffedfc59422a8c7dac418a02d1415eec92f1Face Verification Using Boosted Cross-Image Features +
University of Central Florida
University of California, Berkeley
Orlando, FL +
Berkeley, CA +
University of Central Florida
Orlando, FL +
('1720307', 'Dong Zhang', 'dong zhang')
('2405613', 'Omar Oreifej', 'omar oreifej')
('1745480', 'Mubarak Shah', 'mubarak shah')
dzhang@cs.ucf.edu +
oreifej@eecs.berkeley.edu +
shah@crcv.ucf.edu +
2fdce3228d384456ea9faff108b9c6d0cf39e7c7
2ffcd35d9b8867a42be23978079f5f24be8d3e35 +
ISSN XXXX XXXX © 2018 IJESC +
+
+
Research Article Volume 8 Issue No.6 +
Satellite based Image Processing using Data mining +
E.Malleshwari1, S.Nirmal Kumar2, J.Dhinesh3 +
Professor1, Assistant Professor2, PG Scholar3 +
Department of Information Technology1, 2, Master of Computer Applications3 +
Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India
2f7e9b45255c9029d2ae97bbb004d6072e70fa79Noname manuscript No. +
(will be inserted by the editor) +
cvpaper.challenge in 2015 +
A review of CVPR2015 and DeepSurvey +
Nakamura +
Received: date / Accepted: date +
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('29998543', 'Hironori Hoshino', 'hironori hoshino')
('3407486', 'Takaaki Imanari', 'takaaki imanari')
2f53b97f0de2194d588bc7fb920b89cd7bcf7663Facial Expression Recognition Using Sparse +
Gaussian Conditional Random Field +
School of Electrical and Computer Engineering +
School of Electrical and Computer Engineering +
Shiraz University
Shiraz, Iran +
Shiraz University
Shiraz, Iran +
('37514045', 'Mohammadamin Abbasnejad', 'mohammadamin abbasnejad')
('2229932', 'Mohammad Ali Masnadi-Shirazi', 'mohammad ali masnadi-shirazi')
Email: amin.abbasnejad@gmail.com +
Email: mmasnadi@shirazu.ac.ir +
2f16baddac6af536451b3216b02d3480fc361ef4Web-Scale Training for Face +
Identification +
1 Facebook AI Research +
Tel Aviv University
('2909406', 'Ming Yang', 'ming yang')
('2188620', 'Yaniv Taigman', 'yaniv taigman')
2f489bd9bfb61a7d7165a2f05c03377a00072477JIA, YANG: STRUCTURED SEMI-SUPERVISED FOREST +
Structured Semi-supervised Forest for +
Facial Landmarks Localization with Face +
Mask Reasoning +
1 Department of Computer Science +
The Univ. of Hong Kong, HK +
2 School of EECS +
Queen Mary Univ. of London, UK +
Angran Lin1 +
('34760532', 'Xuhui Jia', 'xuhui jia')
('2966679', 'Heng Yang', 'heng yang')
('40392393', 'Kwok-Ping Chan', 'kwok-ping chan')
('1744405', 'Ioannis Patras', 'ioannis patras')
xhjia@cs.hku.hk +
heng.yang@qmul.ac.uk +
arlin@cs.hku.hk +
kpchan@cs.hku.hk +
i.patras@qmul.ac.uk +
2f2aa67c5d6dbfaf218c104184a8c807e8b29286Video Analytics for Surveillance Camera Networks +
(Invited Paper) +
Interactive and Digital Media Institute
National University of Singapore, Singapore
('1986874', 'Lekha Chaisorn', 'lekha chaisorn')
('3026404', 'Yongkang Wong', 'yongkang wong')
2f16459e2e24dc91b3b4cac7c6294387d4a0eacf
2f59f28a1ca3130d413e8e8b59fb30d50ac020e2Children Gender Recognition Under Unconstrained +
Conditions Based on Contextual Information +
Joint Research Centre, European Commission, Ispra, Italy +
('3309307', 'Riccardo Satta', 'riccardo satta')
('1907426', 'Javier Galbally', 'javier galbally')
('2730666', 'Laurent Beslay', 'laurent beslay')
Email: {riccardo.satta,javier.galbally,laurent.beslay}@jrc.ec.europa.eu +
2f78e471d2ec66057b7b718fab8bfd8e5183d8f4SOFTWARE ENGINEERING +
VOLUME: 14 | NUMBER: 5 | 2016 | DECEMBER +
An Investigation of a New Social Networks +
Contact Suggestion Based on Face Recognition +
Algorithm +
1Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics +
Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman
2Department of Computer Science, Faculty of Electrical Engineering and Computer Science, +
VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
DOI: 10.15598/aeee.v14i5.1116 +
('1681072', 'Ivan ZELINKA', 'ivan zelinka')
('1856530', 'Petr SALOUN', 'petr saloun')
('2053234', 'Jakub STONAWSKI', 'jakub stonawski')
('2356663', 'Adam ONDREJKA', 'adam ondrejka')
ivan.zelinka@tdt.edu.vn, petr.saloun@vsb.cz, stonawski.jakub@gmail.com, adam.ondrejka@gmail.com +
2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9aHierarchical Video Generation from Orthogonal +
Information: Optical Flow and Texture +
The University of Tokyo
The University of Tokyo
The University of Tokyo
The University of Tokyo / RIKEN
('8197937', 'Katsunori Ohnishi', 'katsunori ohnishi')
('48333400', 'Shohei Yamamoto', 'shohei yamamoto')
('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')
('1790553', 'Tatsuya Harada', 'tatsuya harada')
ohnishi@mi.t.u-tokyo.ac.jp +
yamamoto@mi.t.u-tokyo.ac.jp +
ushiku@mi.t.u-tokyo.ac.jp +
harada@mi.t.u-tokyo.ac.jp +
2f88d3189723669f957d83ad542ac5c2341c37a5Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018 +
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021.
2fda164863a06a92d3a910b96eef927269aeb730Names and Faces in the News +
Computer Science Division +
U.C. Berkeley +
Berkeley, CA 94720 +
('1685538', 'Tamara L. Berg', 'tamara l. berg')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('34497462', 'Jaety Edwards', 'jaety edwards')
('1965929', 'Michael Maire', 'michael maire')
('6714943', 'Ryan White', 'ryan white')
daf@cs.berkeley.edu +
2fa057a20a2b4a4f344988fee0a49fce85b0dc33
2f8ef26bfecaaa102a55b752860dbb92f1a11dc6A Graph Based Approach to Speaker Retrieval in Talk +
Show Videos with Transcript-Based Supervision +
('1859487', 'Yina Han', 'yina han')
('1774346', 'Guizhong Liu', 'guizhong liu')
('1692389', 'Hichem Sahbi', 'hichem sahbi')
('1693574', 'Gérard Chollet', 'gérard chollet')
2f17f6c460e02bd105dcbf14c9b73f34c5fb59bdArticle +
Robust Face Recognition Using the Deep C2D-CNN +
Model Based on Decision-Level Fusion +
School of Electronic and Information, Yangtze University, Jingzhou 434023, China
National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University
Jingzhou 434023, China +
† These authors contributed equally to this work. +
Received: 20 May 2018; Accepted: 25 June 2018; Published: 28 June 2018 +
('1723081', 'Jing Li', 'jing li')
('48216473', 'Tao Qiu', 'tao qiu')
('41208300', 'Chang Wen', 'chang wen')
('36203475', 'Kai Xie', 'kai xie')
201501479@yangtzeu.edu.cn (J.L.); 500646@yangtzeu.edu.cn (K.X.); wenfangqing@yangtzeu.edu.cn (F-Q.W.) +
School of Computer Science, Yangtze University, Jingzhou 434023, China; 201603441@yangtzeu.edu.cn +
* Correspondence: 400100@yangtzeu.edu.cn; Tel.: +86-136-9731-5482 +
2f184c6e2c31d23ef083c881de36b9b9b6997ce9Polichotomies on Imbalanced Domains +
by One-per-Class Compensated Reconstruction Rule +
Integrated Research Centre, Universit´a Campus Bio-Medico of Rome, Rome, Italy +
('1720099', 'Paolo Soda', 'paolo soda'){r.dambrosio,p.soda}@unicampus.it +
2f9c173ccd8c1e6b88d7fb95d6679838bc9ca51d
2f8183b549ec51b67f7dad717f0db6bf342c9d02
2f13dd8c82f8efb25057de1517746373e05b04c4EVALUATION OF STATE-OF-THE-ART ALGORITHMS FOR REMOTE FACE +
RECOGNITION +
University
of Maryland, College Park, MD 20742, USA
('38811046', 'Jie Ni', 'jie ni')
('9215658', 'Rama Chellappa', 'rama chellappa')
2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475A novel approach to personal photo album representation +
and management +
Universit`a di Palermo - Dipartimento di Ingegneria Informatica +
Viale delle Scienze, 90128, Palermo, Italy +
('1762753', 'Edoardo Ardizzone', 'edoardo ardizzone')
('9127836', 'Marco La Cascia', 'marco la cascia')
('1698741', 'Filippo Vella', 'filippo vella')
2f2406551c693d616a840719ae1e6ea448e2f5d3Age Estimation from Face Images: +
Human vs. Machine Performance +
Pattern Recognition & Image Processing Laboratory +
Michigan State University
('34393045', 'Hu Han', 'hu han')
('40653304', 'Charles Otto', 'charles otto')
('6680444', 'Anil K. Jain', 'anil k. jain')
2f882ceaaf110046e63123b495212d7d4e99f33dHigh Frequency Component Compensation based Super-resolution +
Algorithm for Face Video Enhancement +
CVRR Lab, UC San Diego, La Jolla, CA 92093, USA +
('1807917', 'Junwen Wu', 'junwen wu')
2f95340b01cfa48b867f336185e89acfedfa4d92Face Expression Recognition with a 2-Channel +
Convolutional Neural Network +

Vogt-K¨olln-Straße 30, 22527 Hamburg, Germany +
http://www.informatik.uni-hamburg.de/WTM/ +
('2283866', 'Dennis Hamester', 'dennis hamester')
('1736513', 'Stefan Wermter', 'stefan wermter')
{hamester,barros,wermter}@informatik.uni-hamburg.de +
2f7fc778e3dec2300b4081ba2a1e52f669094fcdAction Representation Using Classifier Decision Boundaries +
3 Fatih Porikli1 +
1Data61/CSIRO, +
2Australian Centre for Robotic Vision +
The Australian National University, Canberra, Australia
('36541522', 'Jue Wang', 'jue wang')
('2691929', 'Anoop Cherian', 'anoop cherian')
('2377076', 'Stephen Gould', 'stephen gould')
firstname.lastname@anu.edu.au +
2fea258320c50f36408032c05c54ba455d575809
2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1Facial Expression Recognition Using a Hybrid CNN–SIFT Aggregator +
Mundher Ahmed Al-Shabi +
Tee Connie +
Faculty of Information Science and Technology (FIST) +
Multimedia University
Melaka, Malaysia +
('1700590', 'Wooi Ping Cheah', 'wooi ping cheah')
2faa09413162b0a7629db93fbb27eda5aeac54caNISTIR 7674 +
Quantifying How Lighting and Focus +
Affect Face Recognition Performance +
Phillips, P. J. +
Beveridge, J. R. +
Draper, B. +
Bolme, D. +
Givens, G. H. +
Lui, Y. M. +
1 +
2f5e057e35a97278a9d824545d7196c301072ebfCapturing long-tail distributions of object subcategories +
University of California, Irvine
Google Inc. +
University of California, Irvine
('32542103', 'Xiangxin Zhu', 'xiangxin zhu')
('1838674', 'Dragomir Anguelov', 'dragomir anguelov')
('1770537', 'Deva Ramanan', 'deva ramanan')
xzhu@ics.uci.edu +
dragomir@google.com +
dramanan@ics.uci.edu +
2f04ba0f74df046b0080ca78e56898bd4847898bAggregate Channel Features for Multi-view Face Detection +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, China
('1716231', 'Bin Yang', 'bin yang')
('1721677', 'Junjie Yan', 'junjie yan')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
{jjyan,zlei,szli}@nlpr.ia.ac.cn +
yb.derek@gmail.com +
433bb1eaa3751519c2e5f17f47f8532322abbe6d
4300fa1221beb9dc81a496cd2f645c990a7ede53
43010792bf5cdb536a95fba16b8841c534ded316Towards General Motion-Based Face Recognition +
School of Computing, National University of Singapore, Singapore
('2268503', 'Ning Ye', 'ning ye')
('1715286', 'Terence Sim', 'terence sim')
{yening,tsim}@comp.nus.edu.sg +
43bb20ccfda7b111850743a80a5929792cb031f0PhD Dissertation +
International Doctorate School in Information and +
Communication Technologies +
DISI - University of Trento
Discrimination of Computer Generated +
versus Natural Human Faces +
Advisor: +
Prof. Giulia Boato +
Universit`a degli Studi di Trento +
Co-Advisor: +
Prof. Francesco G. B. De Natale +
Universit`a degli Studi di Trento +
February 2014 +
('2598811', 'Duc-Tien Dang-Nguyen', 'duc-tien dang-nguyen')
438c4b320b9a94a939af21061b4502f4a86960e3Reconstruction-Based Disentanglement for Pose-invariant Face Recognition +
Rutgers, The State University of New Jersey
University of California, San Diego
‡ NEC Laboratories America +
('4340744', 'Xi Peng', 'xi peng')
('39960064', 'Xiang Yu', 'xiang yu')
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
{xipeng.cs, dnm}@rutgers.edu, {xiangyu,ksohn,manu}@nec-labs.com +
439ac8edfa1e7cbc65474cab544a5b8c4c65d5dbSIViP (2011) 5:401–413 +
DOI 10.1007/s11760-011-0244-6 +
ORIGINAL PAPER +
Face authentication with undercontrolled pose and illumination +
Received: 15 September 2010 / Revised: 14 December 2010 / Accepted: 17 February 2011 / Published online: 7 August 2011 +
© Springer-Verlag London Limited 2011 +
('1763890', 'Maria De Marsico', 'maria de marsico')
43f6953804964037ff91a4f45d5b5d2f8edfe4d5Multi-Feature Fusion in Advanced Robotics Applications +
Institut für Informatik +
Technische Universität München +
D-85748 Garching, Germany +
('1725709', 'Zahid Riaz', 'zahid riaz')
('1685773', 'Christoph Mayer', 'christoph mayer')
('1746229', 'Michael Beetz', 'michael beetz')
('1699132', 'Bernd Radig', 'bernd radig')
{riaz,mayerc,beetz,radig}@in.tum.de +
439ec47725ae4a3660e509d32828599a495559bfFacial Expressions Tracking and Recognition: Database Protocols for Systems Validation +
and Evaluation +
43e99b76ca8e31765d4571d609679a689afdc99eLearning Dense Facial Correspondences in Unconstrained Images +
University of Southern California
2Adobe Research +
3Pinscreen +
USC Institute for Creative Technologies
('9965153', 'Ronald Yu', 'ronald yu')
('2059597', 'Shunsuke Saito', 'shunsuke saito')
('3131569', 'Haoxiang Li', 'haoxiang li')
('39686979', 'Duygu Ceylan', 'duygu ceylan')
('1706574', 'Hao Li', 'hao li')
4377b03bbee1f2cf99950019a8d4111f8de9c34aSelective Encoding for Recognizing Unreliably Localized Faces +
Institute for Advanced Computer Studies
University of Maryland, College Park, MD
('40592297', 'Ang Li', 'ang li')
('2852035', 'Vlad I. Morariu', 'vlad i. morariu')
('1693428', 'Larry S. Davis', 'larry s. davis')
{angli, morariu, lsd}@umiacs.umd.edu +
43a03cbe8b704f31046a5aba05153eb3d6de4142Towards Robust Face Recognition from Video +
Image Science and Machine Vision Group +
Oak Ridge National Laboratory +
Oak Ridge, TN 37831-6010 +
('3211433', 'Jeffery R. Price', 'jeffery r. price')
('2743462', 'Timothy F. Gee', 'timothy f. gee')
{pricejr, geetf}@ornl.gov +
434bf475addfb580707208618f99c8be0c55cf95UNDER CONSIDERATION FOR PUBLICATION IN PATTERN RECOGNITION LETTERS +
DeXpression: Deep Convolutional Neural +
Network for Expression Recognition +
German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany
University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany
('20651567', 'Peter Burkert', 'peter burkert')
('3026604', 'Felix Trier', 'felix trier')
('6149779', 'Muhammad Zeshan Afzal', 'muhammad zeshan afzal')
('1703343', 'Andreas Dengel', 'andreas dengel')
('1743758', 'Marcus Liwicki', 'marcus liwicki')
p burkert11@cs.uni-kl.de, f +
trier10@cs.uni-kl.de, afzal@iupr.com, andreas.dengel@dfki.de, +
liwicki@dfki.uni-kl.de +
43836d69f00275ba2f3d135f0ca9cf88d1209a87Ozaki et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:20 +
DOI 10.1186/s41074-017-0030-7 +
IPSJ Transactions on Computer +
Vision and Applications +
RESEARCH PAPER +
Open Access +
Effective hyperparameter optimization +
using Nelder-Mead method in deep learning +
('2167404', 'Yoshihiko Ozaki', 'yoshihiko ozaki')
('30735847', 'Masaki Yano', 'masaki yano')
('1703823', 'Masaki Onishi', 'masaki onishi')
4307e8f33f9e6c07c8fc2aeafc30b22836649d8cSupervised Earth Mover’s Distance Learning +
and its Computer Vision Applications +
Stanford University, CA, United States
('1716453', 'Fan Wang', 'fan wang')
('1744254', 'Leonidas J. Guibas', 'leonidas j. guibas')
435642641312364e45f4989fac0901b205c49d53Face Model Compression +
by Distilling Knowledge from Neurons +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
('1693209', 'Ping Luo', 'ping luo')
('2042558', 'Zhenyao Zhu', 'zhenyao zhu')
('3243969', 'Ziwei Liu', 'ziwei liu')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{pluo,zz012,lz013,xtang}@ie.cuhk.edu.hk, {xgwang}@ee.cuhk.edu.hk +
43aa40eaa59244c233f83d81f86e12eba8d74b59
4362368dae29cc66a47114d5ffeaf0534bf0159cUACEE International Journal of Artificial Intelligence and Neural Networks ISSN:- 2250-3749 (online) +
Performance Analysis of FDA Based Face +
Recognition Using Correlation, ANN and SVM +
Department of Computer Engineering +
Department of Computer Engineering +
Department of Computer Engineering +
Anand, INDIA +
Anand, INDIA +
Anand, INDIA +
('9318822', 'Mahesh Goyani', 'mahesh goyani')
('40632096', 'Ronak Paun', 'ronak paun')
('40803051', 'Sardar Patel', 'sardar patel')
('40803051', 'Sardar Patel', 'sardar patel')
('40803051', 'Sardar Patel', 'sardar patel')
e- mail : mgoyani@gmail.com +
e- mail : akashdhorajiya@gmail.com +
e- mail : ronak_paun@yahoo.com +
43e268c118ac25f1f0e984b57bc54f0119ded520
4350bb360797a4ade4faf616ed2ac8e27315968eMITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com +
Edge Suppression by Gradient Field +
Transformation using Cross-Projection +
Tensors +
TR2006-058 +
June 2006 +
('1717566', 'Ramesh Raskar', 'ramesh raskar')
('9215658', 'Rama Chellappa', 'rama chellappa')
43476cbf2a109f8381b398e7a1ddd794b29a9a16A Practical Transfer Learning Algorithm for Face Verification +
David Wipf +
('2032273', 'Xudong Cao', 'xudong cao')
('1716835', 'Fang Wen', 'fang wen')
('3168114', 'Genquan Duan', 'genquan duan')
('40055995', 'Jian Sun', 'jian sun')
{xudongca,davidwip,fangwen,genduan,jiansun}@microsoft.com +
4353d0dcaf450743e9eddd2aeedee4d01a1be78bLearning Discriminative LBP-Histogram Bins +
for Facial Expression Recognition +
Philips Research, High Tech Campus 36, Eindhoven 5656 AE, The Netherlands +
('10795229', 'Caifeng Shan', 'caifeng shan')
('3006670', 'Tommaso Gritti', 'tommaso gritti')
{caifeng.shan, tommaso.gritti}@philips.com +
437a720c6f6fc1959ba95e48e487eb3767b4e508
436d80cc1b52365ed7b2477c0b385b6fbbb51d3b
434d6726229c0f556841fad20391c18316806f73Detecting Visual Relationships with Deep Relational Networks +
The Chinese University of Hong Kong
('38222190', 'Bo Dai', 'bo dai')
('2617419', 'Yuqi Zhang', 'yuqi zhang')
('1807606', 'Dahua Lin', 'dahua lin')
db014@ie.cuhk.edu.hk +
zy016@ie.cuhk.edu.hk +
dhlin@ie.cuhk.edu.hk +
43b8b5eeb4869372ef896ca2d1e6010552cdc4d4Large-scale Supervised Hierarchical Feature Learning for Face Recognition +
Intel Labs China +
('35423937', 'Jianguo Li', 'jianguo li')
('6060281', 'Yurong Chen', 'yurong chen')
43ae4867d058453e9abce760ff0f9427789bab3a951 +
Graph Embedded Nonparametric Mutual +
Information For Supervised +
Dimensionality Reduction +
('2784463', 'Dimitrios Bouzas', 'dimitrios bouzas')
('2965236', 'Nikolaos Arvanitopoulos', 'nikolaos arvanitopoulos')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
435dc062d565ce87c6c20a5f49430eb9a4b573c4to appear. +
Lighting Condition Adaptation +
for Perceived Age Estimation +
NEC Soft, Ltd., Japan +
Tokyo Institute of Technology, Japan
NEC Soft, Ltd., Japan +
('2163491', 'Kazuya Ueki', 'kazuya ueki')
('1719221', 'Masashi Sugiyama', 'masashi sugiyama')
('1853974', 'Yasuyuki Ihara', 'yasuyuki ihara')
430c4d7ad76e51d83bbd7ec9d3f856043f054915
438b88fe40a6f9b5dcf08e64e27b2719940995e0Building a Classi(cid:2)cation Cascade for Visual Identi(cid:2)cation from One Example +
Computer Science, U.C. Berkeley +
Computer Science, UMass Amherst +
Computer Science, U.C. Berkeley +
('3236352', 'Andras Ferencz', 'andras ferencz')
('1714536', 'Erik G. Learned-Miller', 'erik g. learned-miller')
('1689212', 'Jitendra Malik', 'jitendra malik')
ferencz@cs.berkeley.edu +
elm@cs.umass.edu +
malik@cs.berkeley.edu +
433a6d6d2a3ed8a6502982dccc992f91d665b9b3Transferring Landmark Annotations for +
Cross-Dataset Face Alignment +
The Chinese University of Hong Kong
Tsinghua University
('2226254', 'Shizhan Zhu', 'shizhan zhu')
('40475617', 'Cheng Li', 'cheng li')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
438e7999c937b94f0f6384dbeaa3febff6d283b6Face Detection, Bounding Box Aggregation and Pose Estimation for Robust +
Facial Landmark Localisation in the Wild +
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('1748684', 'Josef Kittler', 'josef kittler')
{z.feng, j.kittler, m.a.rana, p.huber}@surrey.ac.uk, wu xiaojun@jiangnan.edu.cn +
43776d1bfa531e66d5e9826ff5529345b792def7Automatic Critical Event Extraction +
and Semantic Interpretation +
by Looking-Inside +
Laboratory for Intelligent and Safe Automobiles +
University of California, San Diego
Sept 17th, 2015 +
('1841835', 'Sujitha Martin', 'sujitha martin')
('1802326', 'Eshed Ohn-Bar', 'eshed ohn-bar')
('1713989', 'Mohan M. Trivedi', 'mohan m. trivedi')
43fb9efa79178cb6f481387b7c6e9b0ca3761da8Mixture of Parts Revisited: Expressive Part Interactions for Pose Estimation +
Anoop R Katti +
IIT Madras +
Chennai, India +
IIT Madras +
Chennai, India +
('1717115', 'Anurag Mittal', 'anurag mittal')akatti@cse.iitm.ac.in +
amittal@cse.iitm.ac.in +
432d8cba544bf7b09b0455561fea098177a85db1Published as a conference paper at ICLR 2017 +
TOWARDS A NEURAL STATISTICIAN +
Harrison Edwards +
School of Informatics +
University of Edinburgh
Edinburgh, UK +
Amos Storkey +
School of Informatics +
University of Edinburgh
Edinburgh, UK +
H.L.Edwards@sms.ed.ac.uk +
A.Storkey@ed.ac.uk +
43ed518e466ff13118385f4e5d039ae4d1c000fbClassification of Occluded Objects using Fast Recurrent +
Processing +
Ozgur Yilmaza,∗ +
aTurgut Ozal University, Ankara Turkey
439647914236431c858535a2354988dde042ef4dFace Illumination Normalization on Large and Small Scale Features +
School of Mathematics and Computational Science, Sun Yat-sen University, China
School of Information Science and Technology, Sun Yat-sen University, China
3 Guangdong Province Key Laboratory of Information Security, China, +
Hong Kong Baptist University
('2002129', 'Xiaohua Xie', 'xiaohua xie')
('3333315', 'Wei-Shi Zheng', 'wei-shi zheng')
('1768574', 'Pong C. Yuen', 'pong c. yuen')
Email: sysuxiexh@gmail.com, wszheng@ieee.org, stsljh@mail.sysu.edu.cn, pcyuen@comp.hkbu.edu.hk +
43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101aPobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl +
Data: 04/05/2018 16:53:32 +
U M CS +
439ca6ded75dffa5ddea203dde5e621dc4a88c3eRobust Real-time Performance-driven 3D Face Tracking +
School of Computer Science and Engineering, Nanyang Technological University, Singapore
Rutgers University, USA
('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')
('1688642', 'Jianfei Cai', 'jianfei cai')
('1775268', 'Tat-Jen Cham', 'tat-jen cham')
{hxp1,vladimir}@cs.rutgers.edu +
{asjfcai,astfcham}@ntu.edu.sg +
88e090ffc1f75eed720b5afb167523eb2e316f7fAttribute-Based Transfer Learning for Object +
Categorization with Zero/One Training Example +
University of Maryland, College Park, MD, USA
('3099583', 'Xiaodong Yu', 'xiaodong yu')
('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')
xdyu@umiacs.umd.edu, yiannis@cs.umd.edu +
8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4AUTOMATIC FACIAL EXPRESSION RECOGNITION FOR AFFECTIVE COMPUTING +
BASED ON BAG OF DISTANCES +
National Chung Cheng University, Chiayi, Taiwan, R.O.C
E-mail: {hfs95p,wylin}cs.ccu.edu.tw +
National Taichung University of Science and Technology, Taichung, Taiwan, R.O.C
('2240934', 'Fu-Song Hsu', 'fu-song hsu')
('1682393', 'Wei-Yang Lin', 'wei-yang lin')
('2080026', 'Tzu-Wei Tsai', 'tzu-wei tsai')
E-mail: wei@nutc.edu.tw +
88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320Image patch modeling in a light field +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2014-81 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-81.html +
May 15, 2014 +
('2040369', 'Zeyu Li', 'zeyu li')
889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7174 +
Using Support Vector Machines to Enhance the +
Performance of Bayesian Face Recognition +
('1911510', 'Zhifeng Li', 'zhifeng li')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
88a898592b4c1dfd707f04f09ca58ec769a257deMobileFace: 3D Face Reconstruction +
with Efficient CNN Regression +
1 VisionLabs, Amsterdam, The Netherlands +
2 Inria, WILLOW, Departement d’Informatique de l’Ecole Normale Superieure, PSL +
Research University, ENS/INRIA/CNRS UMR 8548, Paris, France
('51318557', 'Nikolai Chinaev', 'nikolai chinaev')
('2564281', 'Alexander Chigorin', 'alexander chigorin')
('1785596', 'Ivan Laptev', 'ivan laptev')
{n.chinaev, a.chigorin}@visionlabs.ru +
ivan.laptev@inria.fr +
88f7a3d6f0521803ca59fde45601e94c3a34a403Semantic Aware Video Transcription +
Using Random Forest Classifiers +
University of Southern California, Institute for Robotics and Intelligent Systems
Los Angeles, CA 90089, USA +
('1726241', 'Chen Sun', 'chen sun')
8812aef6bdac056b00525f0642702ecf8d57790bA Unified Features Approach to Human Face Image +
Analysis and Interpretation +
Department of Informatics, +
Technische Universit¨at M¨unchen +
85748 Garching, Germany +
('1725709', 'Zahid Riaz', 'zahid riaz')
('2110952', 'Suat Gedikli', 'suat gedikli')
('1699132', 'Bernd Radig', 'bernd radig')
{riaz|gedikli|beetz|radig}@in.tum.de +
881066ec43bcf7476479a4146568414e419da804From Traditional to Modern : Domain Adaptation for +
Action Classification in Short Social Video Clips +
Center for Visual Information Technology, IIIT Hyderabad, India +
('2461059', 'Aditya Singh', 'aditya singh')
('3448416', 'Saurabh Saini', 'saurabh saini')
('1962817', 'Rajvi Shah', 'rajvi shah')
8813368c6c14552539137aba2b6f8c55f561b75fTrunk-Branch Ensemble Convolutional Neural +
Networks for Video-based Face Recognition +
('37990555', 'Changxing Ding', 'changxing ding')
('1692693', 'Dacheng Tao', 'dacheng tao')
88e2574af83db7281c2064e5194c7d5dfa649846Hindawi Publishing Corporation +
Computational Intelligence and Neuroscience +
Volume 2017, Article ID 4579398, 11 pages +
http://dx.doi.org/10.1155/2017/4579398 +
Research Article +
A Robust Shape Reconstruction Method for Facial Feature +
Point Detection +
School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave
West Hi-Tech Zone, Chengdu 611731, China +
Received 24 October 2016; Revised 18 January 2017; Accepted 30 January 2017; Published 19 February 2017 +
Academic Editor: Ezequiel L´opez-Rubio +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed +
and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression +
and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction +
method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept +
of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment +
dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. +
Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation +
tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the +
state-of-the-art methods. +
1. Introduction +
In most literatures, facial feature points are also referred to +
facial landmarks or facial fiducial points. These points mainly +
locate around edges or corners of facial components such as +
eyebrows, eyes, mouth, nose, and jaw (see Figure 1). Existing +
databases for method comparison are labeled with different +
number of feature points, varying from the minimum 5-point +
configuration [1] to the maximal 194-point configuration +
[2]. Generally facial feature point detection is a supervised +
or semisupervised learning process that trains model on +
a large number of labeled facial images. It starts from a +
face detection process and then predicts facial landmarks +
inside the detected face bounding box. The localized facial +
feature points can be utilized for various face analysis +
tasks, for example, face recognition [3], facial animation +
[4], facial expression detection [5], and head pose tracking +
[6]. +
In recent years, regression-based methods have gained +
increasing attention for robust facial feature point detection. +
Among these methods, a cascade framework is adopted to +
recursively estimate the face shape 𝑆 of an input image, +
which is the concatenation of facial feature point coordinates. +
Beginning with an initial shape 𝑆(1), 𝑆 is updated by inferring +
a shape increment Δ𝑆 from the previous shape: +
Δ𝑆(𝑡) = 𝑊(𝑡)Φ(𝑡) (𝐼, 𝑆(𝑡)) , +
(1) +
where Δ𝑆(𝑡) and 𝑊(𝑡) are the shape increment and linear +
regression matrix after 𝑡 iterations, respectively. As the input +
variable of the mapping function Φ(𝑡), 𝐼 denotes the image +
appearance and 𝑆(𝑡) denotes the corresponding face shape. +
The regression goes to the next iteration by the additive +
formula: +
𝑆(𝑡) = 𝑆(𝑡−1) + Δ𝑆(𝑡−1). +
(2) +
In this paper, we propose a sparse reconstruction method +
that embeds sparse coding in the reconstruction of shape +
increment. As a very popular signal coding algorithm, sparse +
coding has been recently successfully applied to the fields +
of computer vision and machine learning, such as feature +
selection and clustering analysis, image classification, and +
face recognition [7–11]. In our method, sparse overcomplete +
dictionaries are learned to encode various facial poses and +
local textures considering the complex nature of imaging +
('9684590', 'Shuqiu Tan', 'shuqiu tan')
('2915473', 'Dongyi Chen', 'dongyi chen')
('9486108', 'Chenggang Guo', 'chenggang guo')
('2122143', 'Zhiqi Huang', 'zhiqi huang')
('9684590', 'Shuqiu Tan', 'shuqiu tan')
Correspondence should be addressed to Shuqiu Tan; tanshuqiu123136@hotmail.com and Dongyi Chen; dychen@uestc.edu.cn +
88bef50410cea3c749c61ed68808fcff84840c37Sparse Representations of Image Gradient Orientations for Visual Recognition +
and Tracking +
Imperial College London
EEMCS, University of Twente
180 Queen’s Gate, London SW7 2AZ, U.K. +
Drienerlolaan 5, 7522 NB Enschede, +
The Netherlands +
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{gt204,s.zafeiriou,m.pantic}@imperial.ac.uk +
PanticM@cs.utwente.nl +
883006c0f76cf348a5f8339bfcb649a3e46e2690Weakly Supervised Pain Localization using Multiple Instance Learning +('39707211', 'Karan Sikka', 'karan sikka')
('1735697', 'Abhinav Dhall', 'abhinav dhall')
88850b73449973a34fefe491f8836293fc208580www.ijaret.org Vol. 2, Issue I, Jan. 2014 +
ISSN 2320-6802 +
INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN +
ENGINEERING AND TECHNOLOGY +
WINGS TO YOUR THOUGHTS….. +
XBeats-An Emotion Based Music Player +
1U.G. Student, Dept. of Computer Engineering, +
D.J. Sanghvi College of Engineering
Vile Parle (W), Mumbai-400056. +
2 U.G. Student, Dept. of Computer Engineering, +
D.J. Sanghvi College of Engineering
Vile Parle (W), Mumbai-400056. +
3 U.G. Student, Dept. of Computer Engineering, +
D.J. Sanghvi College of Engineering
Vile Parle (W), Mumbai-400056. +
4 Assistant Professor, Dept. of Computer Engineering, +
D.J. Sanghvi College of Engineering
Vile Parle (W), Mumbai-400056. +
('40770722', 'Sayali Chavan', 'sayali chavan')
('2122358', 'Dipali Bhatt', 'dipali bhatt')
sayalichavan17@gmail.com +
ekta.malkan27@yahoo.in +
dipupb1392@gmail.com +
prakashparanjape2012@gmail.com +
8820d1d3fa73cde623662d92ecf2e3faf1e3f328Continuous Video to Simple Signals for Swimming Stroke Detection with +
Convolutional Neural Networks +
La Trobe University, Australia
Australian Institute of Sport
('38689120', 'Brandon Victor', 'brandon victor')
('1787185', 'Zhen He', 'zhen he')
('31548192', 'Stuart Morgan', 'stuart morgan')
('2874225', 'Dino Miniutti', 'dino miniutti')
{b.victor,z.he,s.morgan}@latrobe.edu.au +
Dino.Miniutti@ausport.gov.au +
88f2952535df5859c8f60026f08b71976f8e19ecA neural network framework for face +
recognition by elastic bunch graph matching +
('37048377', 'Francisco A. Pujol López', 'francisco a. pujol lópez')
('3144590', 'Higinio Mora Mora', 'higinio mora mora')
('2260459', 'José A. Girona Selva', 'josé a. girona selva')
8818b12aa0ff3bf0b20f9caa250395cbea0e8769Fashion Conversation Data on Instagram +
∗Graduate School of Culture Technology, KAIST, South Korea +
†Department of Communication Studies, UCLA, USA +
('3459091', 'Yu-i Ha', 'yu-i ha')
('2399803', 'Sejeong Kwon', 'sejeong kwon')
('1775511', 'Meeyoung Cha', 'meeyoung cha')
('1834047', 'Jungseock Joo', 'jungseock joo')
8862a573a42bbaedd392e9e634c1ccbfd177a01d3D Face Tracking and Texture Fusion in the Wild +
Centre for Vision, Speech and Signal Processing +
Image Understanding and Interactive Robotics +
University of Surrey
Guildford, GU2 7XH, United Kingdom +
Contact: http://www.patrikhuber.ch +
Reutlingen University
D-72762 Reutlingen, Germany +
('39976184', 'Patrik Huber', 'patrik huber')
('1748684', 'Josef Kittler', 'josef kittler')
('16764402', 'Philipp Kopp', 'philipp kopp')
887b7676a4efde616d13f38fcbfe322a791d1413Deep Temporal Appearance-Geometry Network +
for Facial Expression Recognition +
Korea Advanced Institute of Science and Technology
Electronics and Telecommunications Research Institute
('8271137', 'Injae Lee', 'injae lee')
('1769295', 'Junmo Kim', 'junmo kim')
('1800903', 'Heechul Jung', 'heechul jung')
{heechul, haeng, sunny0414, junmo.kim}@kaist.ac.kr†, {ninja, hyun}@etri.re.kr‡ +
8878871ec2763f912102eeaff4b5a2febfc22fbe3781 +
Human Action Recognition in Unconstrained +
Videos by Explicit Motion Modeling +
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('9227981', 'Qi Dai', 'qi dai')
('39059457', 'Wei Liu', 'wei liu')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
('1751681', 'Chong-Wah Ngo', 'chong-wah ngo')
8855d6161d7e5b35f6c59e15b94db9fa5bbf2912COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD +
8895d6ae9f095a8413f663cc83f5b7634b3dc805BEHL ET AL: INCREMENTAL TUBE CONSTRUCTION FOR HUMAN ACTION DETECTION 1 +
Incremental Tube Construction for Human +
Action Detection +
Harkirat Singh Behl1 +
1 Department of Engineering Science +
University of Oxford
Oxford, UK +
2 Think Tank Team +
Samsung Research America +
Mountain View, CA +
3 Dept. of Computing and +
Communication Technologies +
Oxford Brookes University
Oxford, UK +
(a) Illustrative results on a video sequence from the LIRIS-HARL dataset [23]. Two people enter a room +
Figure 1: +
and put/take an object from a box (frame 150). They then shake hands (frame 175) and start having a discussion +
(frame 350). In frame 450, another person enters the room, shakes hands, and then joins the discussion. Each +
action tube instance is numbered and coloured according to its action category. We selected this video to show that +
our tube construction algorithm can handle very complex situations in which multiple distinct action categories +
occur in sequence and at concurrent times. (b) Action tubes drawn as viewed from above, compared to (c) the +
ground truth action tubes. +
('3019396', 'Michael Sapienza', 'michael sapienza')
('1931660', 'Gurkirt Singh', 'gurkirt singh')
('49348905', 'Suman Saha', 'suman saha')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
('1730268', 'Philip H. S. Torr', 'philip h. s. torr')
harkirat@robots.ox.ac.uk +
m.sapienza@samsung.com +
gurkirt.singh-2015@brookes.ac.uk +
suman.saha-2014@brookes.ac.uk +
fabio.cuzzolin@brookes.ac.uk +
phst@robots.ox.ac.uk +
88bee9733e96958444dc9e6bef191baba4fa6efaExtending Face Identification to +
Open-Set Face Recognition +
Department of Computer Science +
Universidade Federal de Minas Gerais +
Belo Horizonte, Brazil +
('2823797', 'Cassio E. dos Santos', 'cassio e. dos santos')
('1679142', 'William Robson Schwartz', 'william robson schwartz')
{cass,william}@dcc.ufmg.br +
88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2697 +
ICASSP 2016 +
887745c282edf9af40d38425d5fdc9b3fe139c08FAME: +
Face Association through Model Evolution +
Bilkent University
06800 Ankara/Turkey +
Pinar Duygulu +
Bilkent University
06800 Ankara/Turkey +
('2540074', 'Eren Golge', 'eren golge')eren.golge@bilkent.edu.tr +
pinar.duygulu@gmail.com +
9f6d04ce617d24c8001a9a31f11a594bd6fe3510Personality and Individual Differences 52 (2012) 61–66 +
Contents lists available at SciVerse ScienceDirect +
Personality and Individual Differences +
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p a i d +
Attentional bias towards angry faces in trait-reappraisal +
1E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2R
a r t i c l e +
i n f o +
a b s t r a c t +
Article history: +
Received 31 May 2011 +
Received in revised form 26 August 2011 +
Accepted 31 August 2011 +
Available online 2 October 2011 +
Keywords: +
Trait emotion regulation +
Reappraisal +
Attention +
Individual differences +
Dot-probe +
Emotion regulation (ER) strategies differ in when and how they influence emotion experience, expres- +
sion, and concomitant cognition. However, no study to date has directly compared cognition in individ- +
uals who have a clear disposition for either cognitive or behavioural ER strategies. The present study +
compared selective attention to angry faces in groups of high trait-suppressors (people who are hiding +
emotional reactions in response to emotional challenge) and high trait-reappraisers (people who cogni- +
tively reinterpret emotional events). Since reappraisers are also low trait-anxious and suppressors are +
high trait-anxious, high and low anxious control groups, both being low in trait-ER, were also included. +
Attention to angry faces was assessed using an emotional dot-probe task. Trait-reappraisers and high- +
anxious individuals both showed attentional biases towards angry faces. Trait-reappraisers’ vigilance +
for angry faces was significantly more pronounced compared to both trait-suppressors and low anxious +
controls. We suggest that threat prioritization in high trait-reappraisal may allow deeper cognitive pro- +
cessing of threat information without being associated with psychological maladjustment. +
Ó 2011 Elsevier Ltd. All rights reserved. +
1. Introduction +
An extensive literature suggests that cognition is influenced by +
the emotional connotation of to-be-processed information. Emo- +
tional events, especially negative emotional events, orient, attract +
and/or capture attention more so than neutral events. Evidence +
comes from studies using the emotional dot-probe paradigm +
(MacLeod & Mathews, 1988). This task measures selective atten- +
tion biases towards or away from emotional relative to neutral +
stimuli (see Methods for details). Several person variables influ- +
ence such biases. For example, high trait anxious individuals are +
more likely than low trait anxious individuals to show an atten- +
tional bias towards threatening stimuli (Frewen, Dozois, Joanisse, +
& Neufeld, 2008). Interestingly, trait anxiety seems to modify the +
ability to disengage attentional resources from the location of a +
threatening stimulus more so than the speed of orienting attention +
toward the stimulus location. For example, Fox, Russo, Bowles, and +
Dutton (2001) found that high anxious, but not low anxious indi- +
viduals responded slower to a dot-probe when an angry face, as +
opposed to a happy or a neutral face, appeared in a different screen +
location just prior. However, high anxious participants were not +
faster to respond to the dot-probe when it followed in the same +
location as the angry faces compared to happy or neutral faces +
(attentional orienting). Hence, trait anxiety seems associated with +
University of
Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel
4667; fax: +1 403 282 8249. +
0191-8869/$ - see front matter Ó 2011 Elsevier Ltd. All rights reserved. +
doi:10.1016/j.paid.2011.08.030 +
a tendency to dwell on (i.e., difficulty in disengaging attention), +
rather than to quickly orient toward, threatening stimuli such as +
angry facial expressions. +
information, +
Although it is relatively well-established that individual differ- +
ences in trait emotionality (i.e., high versus low trait anxiety) influ- +
ence attentional processing of emotional +
little is +
known about how attentional biases may interact with a person’s +
attempt to modulate their emotional responses. Recent findings +
in emotion regulation (ER) suggest that emotion regulative strate- +
gies differ in their consequences for the emotional response and +
concomitant cognition. To date, most studies of ER have compared +
cognitive and behavioural forms of ER, with the two most com- +
monly studied ER strategies being cognitive reappraisal and +
expressive suppression (Gross, 1998; Richards & Gross, 2000). +
According to Gross (1998), reappraisal involves cognitively chang- +
ing our appraisal of the emotional meaning of a stimulus in order +
to render it less emotional, and in so doing, down-regulating our +
own emotional response. In contrast, suppression involves the +
behavioural inhibition of overt reactions to emotional experiences +
(e.g., frowning) without changing the evaluation of the emotional +
stimulus itself. +
1.1. Instructed emotion regulation +
To examine the consequences of ER, researchers have tradition- +
ally exposed participants to an emotion-eliciting stimulus with an +
instruction to use a specific ER strategy to down-regulate (or more +
rarely, up-regulate) the resulting emotion. Because participants are +
('6027810', 'Jody E. Arndt', 'jody e. arndt')
('2726268', 'Esther Fujiwara', 'esther fujiwara')
E-mail address: jearndt@ucalgary.ca (J.E. Arndt). +
9f499948121abb47b31ca904030243e924585d5fHierarchical Attention Network for Action +
Recognition in Videos +
Arizona State University
Arizona State University
Yahoo Research +
Neil O’Hare +
Yahoo Research +
Yahoo Research +
Arizona State University
('33513248', 'Yilin Wang', 'yilin wang')
('2893721', 'Suhang Wang', 'suhang wang')
('1736632', 'Jiliang Tang', 'jiliang tang')
('1787097', 'Yi Chang', 'yi chang')
('2913552', 'Baoxin Li', 'baoxin li')
ywang370@asu.edu +
suhang.wang@asu.edu +
jlt@yahoo-inc.com +
nohare@yahoo-inc.com +
yichang@yahoo-inc.com +
baoxin.li@asu.edu +
9fc04a13eef99851136eadff52e98eb9caac919dRethinking the Camera Pipeline for Computer Vision +
Cornell University
Carnegie Mellon University
Cornell University
('2328520', 'Mark Buckler', 'mark buckler')
('39131476', 'Suren Jayasuriya', 'suren jayasuriya')
('2138184', 'Adrian Sampson', 'adrian sampson')
mab598@cornell.edu +
sjayasur@andrew.cmu.edu +
asampson@cs.cornell.edu +
9f4078773c8ea3f37951bf617dbce1d4b3795839Leveraging Inexpensive Supervision Signals +
for Visual Learning +
Technical Report Number: +
CMU-RI-TR-17-13 +
a dissertation presented +
by +
to +
The Robotics Institute
in partial fulfillment of the requirements +
for the degree of +
Master of Science +
in the subject of +
Robotics +
Carnegie Mellon University
Pittsburgh, Pennsylvania +
May 2017 +
All rights reserved. +
('3234247', 'Senthil Purushwalkam', 'senthil purushwalkam')
('3234247', 'Senthil Purushwalkam', 'senthil purushwalkam')
9f65319b8a33c8ec11da2f034731d928bf92e29dTAKING ROLL: A PIPELINE FOR FACE RECOGNITION +
Dip. di Scienze Teoriche e Applicate +
University of Insubria
21100, Varese, Italy +
Louisiana State University
2222 Business Education Complex South, +
LA, 70803, USA +
('39149650', 'I. Gallo', 'i. gallo')
('1876793', 'S. Nawaz', 's. nawaz')
('3457883', 'A. Calefati', 'a. calefati')
('2398301', 'G. Piccoli', 'g. piccoli')
9fa1be81d31fba07a1bde0275b9d35c528f4d0b8Identifying Persons by Pictorial and +
Contextual Cues +
Nicholas Leonard Pi¨el +
Thesis submitted for the degree of Master of Science +
Supervisor: +
April 2009 +
('1695527', 'Theo Gevers', 'theo gevers')
9f094341bea610a10346f072bf865cb550a1f1c1Recognition and Volume Estimation of Food Intake using a Mobile Device +
Sarnoff Corporation +
201 Washington Rd, +
Princeton, NJ, 08540 +
('1981308', 'Manika Puri', 'manika puri'){mpuri, zzhu, qyu, adivakaran, hsawhney}@sarnoff.com +
9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfdEURASIP Journal on Applied Signal Processing 2005:13, 2091–2100 +
c(cid:1) 2005 Hindawi Publishing Corporation +
Spatio-Temporal Graphical-Model-Based +
Multiple Facial Feature Tracking +
Congyong Su +
College of Computer Science, Zhejiang University, Hangzhou 310027, China
Li Huang +
College of Computer Science, Zhejiang University, Hangzhou 310027, China
Received 1 January 2004; Revised 20 February 2005 +
It is challenging to track multiple facial features simultaneously when rich expressions are presented on a face. We propose a two- +
step solution. In the first step, several independent condensation-style particle filters are utilized to track each facial feature in the +
temporal domain. Particle filters are very effective for visual tracking problems; however multiple independent trackers ignore +
the spatial constraints and the natural relationships among facial features. In the second step, we use Bayesian inference—belief +
propagation—to infer each facial feature’s contour in the spatial domain, in which we learn the relationships among contours of +
facial features beforehand with the help of a large facial expression database. The experimental results show that our algorithm +
can robustly track multiple facial features simultaneously, while there are large interframe motions with expression changes. +
Keywords and phrases: facial feature tracking, particle filter, belief propagation, graphical model. +
1. +
INTRODUCTION +
Multiple facial feature tracking is very important in the com- +
puter vision field: it needs to be carried out before video- +
based facial expression analysis and expression cloning. Mul- +
tiple facial feature tracking is also very challenging be- +
cause there are plentiful nonrigid motions in facial fea- +
tures besides rigid motions in faces. Nonrigid facial fea- +
ture motions are usually very rapid and often form dense +
clutter by facial features themselves. Only using traditional +
Kalman filter is inadequate because it is based on Gaus- +
sian density, and works relatively poorly in clutter, which +
causes the density for facial feature’s contour to be multi- +
modal and therefore non-Gaussian. Isard and Blake [1] firstly +
proposed a face tracker by particle filters—condensation— +
which is more effective in clutter than comparable Kalman +
filter. +
Although particle filters are often very effective for visual +
tracking problems, they are specialized to temporal problems +
whose corresponding graphs are simple Markov chains (see +
Figure 1). There is often structure within each time instant +
that is ignored by particle filters. For example, in multiple +
facial feature tracking, the expressions of each facial feature +
(such as eyes, brows, lips) are closely related; therefore a more +
complex graph should be formulated. +
The contribution of this paper is extending particle filters +
to track multiple facial features simultaneously. The straight- +
forward approach of tracking each facial feature by one in- +
dependent particle filter is questionable, because influences +
and actions among facial features are not taken into account. +
In this paper, we propose a spatio-temporal graphical +
model for multiple facial feature tracking (see Figure 2). Here +
the graphical model is not a 2D or a 3D facial mesh model. +
In the spatial domain, the model is shown in Figure 3, where +
xi is a hidden random variable and yi is a noisy local ob- +
servation. Nonparametric belief propagation is used to infer +
facial feature’s interrelationships in a part-based face model, +
allowing positions and states of some features in clutter to +
be recovered. Facial structure is also taken into account, be- +
cause facial features have spatial position constraints [2]. In +
the temporal domain, every facial feature forms a Markov +
chain (see Figure 1). +
After briefly reviewing related work in Section 2, we +
introduce the details of our algorithm in Sections 3 and +
4. Many convincing experimental results are shown in +
Section 5. Conclusions are given in Section 6. +
2. RELATED WORK +
After the pioneering work of Isard and Blake [1] who +
creatively used particle filters for visual tracking, many +
Email: su@cs.zju.edu.cn +
Email: lihuang@cs.zju.edu.cn +
6b333b2c6311e36c2bde920ab5813f8cfcf2b67b
6b3e360b80268fda4e37ff39b7f303e3684e8719FACE RECOGNITION FROM SKETCHES USING ADVANCED +
CORRELATION FILTERS USING HYBRID EIGENANALYSIS +
FOR FACE SYNTHESIS +
Language Technology Institute, Carnegie Mellon Universty
Carnegie Mellon University
Keywords: +
Face from sketch synthesis, face recognition, eigenface, advanced correlation filters, OTSDF. +
('3036546', 'Yung-hui Li', 'yung-hui li')
('1794486', 'Marios Savvides', 'marios savvides')
6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9
6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0Facial expression recognition in the wild using improved dense trajectories and +
Fisher vector encoding +
Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey
Bo gazic i University, Istanbul, Turkey
('2471932', 'Sadaf Afshar', 'sadaf afshar')
('1764521', 'Albert Ali Salah', 'albert ali salah')
{sadaf.afshar, salah}@boun.edu.tr +
6bca0d1f46b0f7546ad4846e89b6b842d538ee4eFACE RECOGNITION FROM SURVEILLANCE-QUALITY VIDEO +
A Dissertation +
Submitted to the Graduate School +
of the University of Notre Dame
in Partial Fulfillment of the Requirements +
for the Degree of +
Doctor of Philosophy +
by +
Patrick J. Flynn, Co-Director +
Graduate Program in Computer Science and Engineering +
Notre Dame, Indiana +
July 2010 +
('30042752', 'Deborah Thomas', 'deborah thomas')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
6b089627a4ea24bff193611e68390d1a4c3b3644CROSS-POLLINATION OF NORMALISATION +
TECHNIQUES FROM SPEAKER TO FACE +
AUTHENTICATION USING GAUSSIAN +
MIXTURE MODELS +
Idiap-RR-03-2012 +
JANUARY 2012 +
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny +
('1843477', 'Roy Wallace', 'roy wallace')
('1698382', 'Sébastien Marcel', 'sébastien marcel')
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch +
6b8d0569fffce5cc221560d459d6aa10c4db2f03Interlinked Convolutional Neural Networks for +
Face Parsing +
State Key Laboratory of Intelligent Technology and Systems +
Tsinghua National Laboratory for Information Science and Technology (TNList) +
Department of Computer Science and Technology +
Tsinghua University, Beijing 100084, China
('1879713', 'Yisu Zhou', 'yisu zhou')
('1705418', 'Xiaolin Hu', 'xiaolin hu')
('49846744', 'Bo Zhang', 'bo zhang')
6be0ab66c31023762e26d309a4a9d0096f72a7f0Enhance Visual Recognition under Adverse +
Conditions via Deep Networks +
('1771885', 'Ding Liu', 'ding liu')
('2392101', 'Bowen Cheng', 'bowen cheng')
('2969311', 'Zhangyang Wang', 'zhangyang wang')
('40479011', 'Haichao Zhang', 'haichao zhang')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
6bcee7dba5ed67b3f9926d2ae49f9a54dee64643Assessment of Time Dependency in Face Recognition: +
An Initial Study +
IDept of Computer Science and Engineering +
University of Notre Dame. Notre Dame, IN 46556.USA
Nqtional Institute of Standards and Technology
100 Bureau Dr.• Stop 8940, Gaithersburg, MD 20899 USA +
Performance +
and products +
research matures +
factors of strong practical +
the performance of such syslemsis +
are +
('1704876', 'Patrick J. Flynn', 'patrick j. flynn')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
{flynn,kwb}@nd.edu +
jonathon@nist.gov +
6b18628cc8829c3bf851ea3ee3bcff8543391819Face recognition based on subset selection via metric learning on manifold. +
1058. [doi:10.1631/FITEE.1500085] +
Face recognition based on subset +
selection via metric learning on manifold +
Key words: Face recognition, Sparse representation, Manifold structure, +
Metric learning, Subset selection +
ORCID: http://orcid.org/0000-0001-7441-4749 +
Front Inform Technol & Electron Eng
('2684160', 'Hong Shao', 'hong shao')
('1752664', 'Shuang Chen', 'shuang chen')
('1941366', 'Wen-cheng Cui', 'wen-cheng cui')
('1752664', 'Shuang Chen', 'shuang chen')
E-mail: chenshuang19891129@gmail.com +
6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6April 13, 2009 +
14:13 WSPC/INSTRUCTION FILE +
International Journal of Pattern Recognition and Artificial Intelligence +
c(cid:13) World Scientific Publishing Company +
Feature extraction through cross - phase congruency for facial +
expression analysis +
Electronics Department +
Faculty of Electrical Engineering and Information Technology +
University of Oradea
410087, Universitatii 1, +
Romania +
http://webhost.uoradea.ro/ibuciu +
Electronics and Communications Faculty +
Politehnica University of Timisoara
Bd. Vasile Parvan, no.2 +
300223 Timisoara +
Romania +
http://hermes.etc.upt.ro +
Human face analysis has attracted a large number of researchers from various fields, +
such as computer vision, image processing, neurophysiology or psychology. One of the +
particular aspects of human face analysis is encompassed by facial expression recognition +
task. A novel method based on phase congruency for extracting the facial features used +
in the facial expression classification procedure is developed. Considering a set of image +
samples comprising humans expressing various expressions, this new approach computes +
the phase congruency map between the samples. The analysis is performed in the fre- +
quency space where the similarity (or dissimilarity) between sample phases is measured +
to form discriminant features. The experiments were run using samples from two facial +
expression databases. To assess the method’s performance, the technique is compared to +
the state-of-the art techniques utilized for classifying facial expressions, such as Principal +
Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discrim- +
inant Analysis (LDA), and Gabor jets. The features extracted by the aforementioned +
techniques are further classified using two classifiers: a distance-based classifier and a +
Support Vector Machine - based classifier. Experiments reveal superior facial expression +
recognition performance for the proposed approach with respect to other techniques. +
Keywords: feature extraction; phase congruency; facial expression analysis. +
1. Feature Extraction for Facial Expression Recognition +
Facial expression analysis is a concern of several disciplinary scientific fields, such +
as computer vision, image processing, neurophysiology and psychology. The large +
interest for this analysis is motivated by an impressive area of applications. These +
('2336758', 'Ioan Buciu', 'ioan buciu')
('2526319', 'Ioan Nafornita', 'ioan nafornita')
ibuciu@uoradea.ro +
ioan.nafornita@etc.upt.ro +
6b1b43d58faed7b457b1d4e8c16f5f7e7d819239
6bb0425baac448297fbd29a00e9c9b9926ce8870INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP’09) +
MUSCAT, FEBRUARY 15-18, 2009 +
Facial Expression Recognition Using Log-Gabor +
Filters and Local Binary Pattern Operators +
School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
('1857490', 'Seyed Mehdi Lajevardi', 'seyed mehdi lajevardi')
('1749220', 'Zahir M. Hussain', 'zahir m. hussain')
seyed.lajevardi@rmit.edu.au, zmhussain@ieee.org +
6b35b15ceba2f26cf949f23347ec95bbbf7bed64
6b6493551017819a3d1f12bbf922a8a8c8cc2a03Pose Normalization for Local Appearance-Based +
Face Recognition +
Computer Science Department, Universit¨at Karlsruhe (TH) +
Am Fasanengarten 5, Karlsruhe 76131, Germany +
http://isl.ira.uka.de/cvhci +
('1697965', 'Hua Gao', 'hua gao')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
{hua.gao,ekenel,stiefel}@ira.uka.de +
6b17b219bd1a718b5cd63427032d93c603fcf24fCarnegie Mellon University
Language Technologies Institute
School of Computer Science +
10-1-2016 +
Videos from the 2013 Boston Marathon: An Event +
Reconstruction Dataset for Synchronization and +
Localization +
Carnegie Mellon University
Carnegie Mellon University
Carnegie Mellon University
Carnegie Mellon University
Follow this and additional works at: http://repository.cmu.edu/lti +
Part of the Computer Sciences Commons +
('3175807', 'Jia Chen', 'jia chen')
('1915796', 'Junwei Liang', 'junwei liang')
('2075232', 'Han Lu', 'han lu')
('2927024', 'Shoou-I Yu', 'shoou-i yu')
('7661726', 'Alexander Hauptmann', 'alexander hauptmann')
Research Showcase @ CMU +
Carnegie Mellon University, alex@cs.cmu.edu +
This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been +
accepted for inclusion in Language Technologies Institute by an authorized administrator of Research Showcase @ CMU. For more information, please +
contact research-showcase@andrew.cmu.edu. +
6bb630dfa797168e6627d972560c3d438f71ea99
6b6ff9d55e1df06f8b3e6f257e23557a73b2df96International Journal of Computer Applications (0975 – 8887) +
Volume 61– No.17, January 2013 +
Survey of Threats to the Biometric Authentication +
Systems and Solutions +
Research Scholor,Mewar +
University, Chitorgarh. (INDIA
P.C.Gupta +
Kota University, Kota(INDIA
Khushboo Mantri +
M.tech.student, Arya College of
engineering ,Jaipur(INDIA) +
('2875951', 'Sarika Khandelwal', 'sarika khandelwal')
07377c375ac76a34331c660fe87ebd7f9b3d74c4Detailed Human Avatars from Monocular Video +
1Computer Graphics Lab, TU Braunschweig, Germany +
Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
Figure 1: Our method creates a detailed avatar from a monocular video of a person turning around. Based on the SMPL +
model, we first compute a medium-level avatar, then add subject-specific details and finally generate a seamless texture. +
('1914886', 'Thiemo Alldieck', 'thiemo alldieck')
('9765909', 'Weipeng Xu', 'weipeng xu')
{alldieck,magnor}@cg.cs.tu-bs.de {wxu,theobalt,gpons}@mpi-inf.mpg.de +
0729628db4bb99f1f70dd6cb2353d7b76a9fce47Separating Pose and Expression in Face Images: +
A Manifold Learning Approach +
University of Pennsylvania
Moore Bldg, 200 South 33rd St, Philadelphia, PA 19104, USA +
(Submitted on December 27, 2006) +
('1732066', 'Daniel D. Lee', 'daniel d. lee')E-mail: {jhham,ddlee}@seas.upenn.edu +
0728f788107122d76dfafa4fb0c45c20dcf523caThe Best of Both Worlds: Combining Data-independent and Data-driven +
Approaches for Action Recognition +
('1711953', 'Dezhong Yao', 'dezhong yao')
('2735055', 'Ming Lin', 'ming lin')
('2927024', 'Shoou-I Yu', 'shoou-i yu')
{lanzhzh, minglin, iyu, alex@cs.cmu.edu}, dyao@hust.edu.cn +
07c90e85ac0f74b977babe245dea0f0abcf177e3Appeared in the 4th International Conference on Audio- and Video-Based +
Biometric Person Authentication, pp 10{18, June 9 - 11, 2003, Guildford, UK +
An Image Preprocessing Algorithm for +
Illumination Invariant Face Recognition +
The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213 +
('33731953', 'Ralph Gross', 'ralph gross')
('2407094', 'Vladimir Brajovic', 'vladimir brajovic')
frgross,brajovicg@cs.cmu.edu +
07ea3dd22d1ecc013b6649c9846d67f2bf697008HUMAN-CENTRIC VIDEO UNDERSTANDING WITH WEAK +
SUPERVISION +
A DISSERTATION +
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +
AND THE COMMITTEE ON GRADUATE STUDIES +
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +
FOR THE DEGREE OF +
DOCTOR OF PHILOSOPHY +
June 2016 +
('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')
071099a4c3eed464388c8d1bff7b0538c7322422FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES +
Microsoft Advanced Technology labs, Microsoft Technology and Research, Cairo, Egypt +
+
('34828041', 'Abubakrelsedik Karali', 'abubakrelsedik karali')
('2376438', 'Ahmad Bassiouny', 'ahmad bassiouny')
('3144122', 'Motaz El-Saban', 'motaz el-saban')
07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1Large Scale Unconstrained Open Set Face Database +
University of Colorado at Colorado Springs
2Securics Inc, Colorado Springs +
('27469806', 'Archana Sapkota', 'archana sapkota')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
asapkota@vast.uccs.edu +
tboult@vast.uccs.edu +
076d3fc800d882445c11b9af466c3af7d2afc64fFACE ATTRIBUTE CLASSIFICATION USING ATTRIBUTE-AWARE CORRELATION MAP +
AND GATED CONVOLUTIONAL NEURAL NETWORKS +
Korea Advanced institute of Science and Technology
Department of Electrical Engineering +
291 Daehak-ro, Yuseong-gu, Daejeon, Korea +
('3315036', 'Sunghun Kang', 'sunghun kang')
('2350325', 'Donghoon Lee', 'donghoon lee')
071af21377cc76d5c05100a745fb13cb2e40500f
070ab604c3ced2c23cce2259043446c5ee342fd6AnActiveIlluminationandAppearance(AIA)ModelforFaceAlignment +
FatihKahraman,MuhittinGokmen +
IstanbulTechnicalUniversity
ComputerScienceDept.,Turkey +
InformaticsandMathematicalModelling,Denmark +
SuneDarkner,RasmusLarsen +
TechnicalUniversityofDenmark
{fkahraman, gokmen}@itu.edu.tr +
{sda,rl}@imm.dtu.dk +
071135dfb342bff884ddb9a4d8af0e70055c22a1New Architecture and Transfer Learning for Video Classification +
Temporal 3D ConvNets: +
ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai
('3310120', 'Ali Diba', 'ali diba')
('3169187', 'Mohsen Fayyaz', 'mohsen fayyaz')
('38035876', 'Vivek Sharma', 'vivek sharma')
('31493847', 'Amir Hossein Karami', 'amir hossein karami')
('2713759', 'Mohammad Mahdi Arzani', 'mohammad mahdi arzani')
('9456273', 'Rahman Yousefzadeh', 'rahman yousefzadeh')
('1681236', 'Luc Van Gool', 'luc van gool')
{firstname.lastname}@esat.kuleuven.be, {lastname}@sensifai.com, +
fayyaz@iai.uni-bonn.de, vivek.sharma@kit.edu +
0754e769eb613fd3968b6e267a301728f52358beTowards a Watson That Sees: Language-Guided Action Recognition for +
Robots +
('7607499', 'Yezhou Yang', 'yezhou yang')
('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')
07c83f544d0604e6bab5d741b0bf9a3621d133daLearning Spatio-Temporal Features with 3D Residual Networks +
for Action Recognition +
National Institute of Advanced Industrial Science and Technology (AIST
Tsukuba, Ibaraki, Japan +
('2199251', 'Kensho Hara', 'kensho hara')
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('1732705', 'Yutaka Satoh', 'yutaka satoh')
{kensho.hara, hirokatsu.kataoka, yu.satou}@aist.go.jp +
0773c320713dae62848fceac5a0ac346ba224ecaDigital Facial Augmentation for Interactive +
Entertainment +
Centre for Intelligent Machines +
McGill University
Montreal, Quebec, Canada +
('2726121', 'Naoto Hieda', 'naoto hieda')
('2242019', 'Jeremy R. Cooperstock', 'jeremy r. cooperstock')
Email: {nhieda, jer}@cim.mcgill.ca +
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3A FACS Valid 3D Dynamic Action Unit Database with Applications to 3D +
Dynamic Morphable Facial Modeling +
Department of Computer Science +
School of Humanities and Social Sciences +
University of Bath
Jacobs University
Centre for Vision, Speech and Signal Processing +
University of Surrey
('1792288', 'Darren Cosker', 'darren cosker')
('2035177', 'Eva Krumhuber', 'eva krumhuber')
('1695085', 'Adrian Hilton', 'adrian hilton')
dpc@cs.bath.ac.uk +
e.krumhuber@jacobs-university.de +
a.hilton@surrey.ac.uk +
07a472ea4b5a28b93678a2dcf89028b086e481a2Head Dynamic Analysis: A Multi-view +
Framework +
University of California, San Diego, USA
('1947383', 'Ashish Tawari', 'ashish tawari'){atawari,mtrivedi}@ucsd.edu +
0717b47ab84b848de37dbefd81cf8bf512b544acInternational Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +
International Conference on Humming Bird ( 01st March 2014) +
RESEARCH ARTICLE +
OPEN ACCESS +
Robust Face Recognition and Tagging in Visual Surveillance +
System +
('21008397', 'Kavitha MS', 'kavitha ms')
('39546266', 'Siva Pradeepa', 'siva pradeepa')
('21008397', 'Kavitha MS', 'kavitha ms')
('39546266', 'Siva Pradeepa', 'siva pradeepa')
e-mail:kavithams999@gmail.com +
07fa153b8e6196ee6ef6efd8b743de8485a07453Action Prediction from Videos via Memorizing Hard-to-Predict Samples +
Northeastern University, Boston, MA, USA
College of Engineering, Northeastern University, Boston, MA, USA
College of Computer and Information Science, Northeastern University, Boston, MA, USA
('48901920', 'Yu Kong', 'yu kong')
('9355577', 'Shangqian Gao', 'shangqian gao')
('47935056', 'Bin Sun', 'bin sun')
('1708679', 'Yun Fu', 'yun fu')
{yukong,yunfu}@ece.neu.edu, {gao.sh,sun.bi}@husky.neu.edu +
0708059e3bedbea1cbfae1c8cd6b7259d4b56b5bGraph-regularized Multi-class Support Vector +
Machines for Face and Action Recognition +
Tampere University of Technology, Tampere, Finland
('9219875', 'Moncef Gabbouj', 'moncef gabbouj')Email: {alexandros.iosifidis,moncef.gabbouj}@tut.fi +
074af31bd9caa61fea3c4216731420bd7c08b96aFace Verification Using Sparse Representations +
Institute for Advanced Computer Studies, University of Maryland, College Park, MD
TNLIST, Tsinghua University, Beijing, 100084, China
('2723427', 'Huimin Guo', 'huimin guo')
('3373117', 'Ruiping Wang', 'ruiping wang')
('3826759', 'Jonghyun Choi', 'jonghyun choi')
('1693428', 'Larry S. Davis', 'larry s. davis')
{hmguo, jhchoi, lsd}@umiacs.umd.edu, rpwang@tsinghua.edu.cn +
0750a816858b601c0dbf4cfb68066ae7e788f05dCosFace: Large Margin Cosine Loss for Deep Face Recognition +
Tencent AI Lab +
('39049654', 'Hao Wang', 'hao wang')
('1996677', 'Yitong Wang', 'yitong wang')
('48741267', 'Zheng Zhou', 'zheng zhou')
('3478009', 'Xing Ji', 'xing ji')
('2856494', 'Dihong Gong', 'dihong gong')
('2263912', 'Jingchao Zhou', 'jingchao zhou')
('1911510', 'Zhifeng Li', 'zhifeng li')
('46641573', 'Wei Liu', 'wei liu')
{hawelwang,yitongwang,encorezhou,denisji,sagazhou,michaelzfli}@tencent.com +
gongdihong@gmail.com wliu@ee.columbia.edu +
078d507703fc0ac4bf8ca758be101e75ea286c80 ISSN: 2321-8169 +
International Journal on Recent and Innovation Trends in Computing and Communication +
Volume: 3 Issue: 8 +
5287 - 5296 +
________________________________________________________________________________________________________________________________ +
Large- Scale Content Based Face Image Retrieval using Attribute Enhanced +
Sparse Codewords. +
Chaitra R, +
Mtech Digital Coomunication Engineering +
Acharya Institute Of Technology
Bangalore +
0716e1ad868f5f446b1c367721418ffadfcf0519Interactively Guiding Semi-Supervised +
Clustering via Attribute-Based Explanations +
Virginia Tech, Blacksburg, VA, USA +
('9276834', 'Shrenik Lad', 'shrenik lad')
('1713589', 'Devi Parikh', 'devi parikh')
073eaa49ccde15b62425cda1d9feab0fea03a842
07f31bef7a7035792e3791473b3c58d03928abbfLessons from Collecting a Million +
Biometric Samples +
University of Notre Dame
National Institute of Standards and Technology
('1704876', 'Patrick J. Flynn', 'patrick j. flynn')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
0726a45eb129eed88915aa5a86df2af16a09bcc1Introspective Perception: Learning to Predict Failures in Vision Systems +('2739544', 'Shreyansh Daftry', 'shreyansh daftry')
('3308210', 'Sam Zeng', 'sam zeng')
('1756566', 'J. Andrew Bagnell', 'j. andrew bagnell')
('1709305', 'Martial Hebert', 'martial hebert')
07de8371ad4901356145722aa29abaeafd0986b9April 13, 2017 +
DRAFT +
Towards Usable Multimedia Event Detection +
February, 2017 +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
Thesis Committee: +
Alexander G. Hauptmann (Chair) +
Submitted in partial fulfillment of the requirements +
for the degree of Doctor of Philosophy. +
('34692532', 'Zhenzhong Lan', 'zhenzhong lan')
('1880336', 'Bhiksha Raj Ramakrishnan', 'bhiksha raj ramakrishnan')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
('14517812', 'Leonid Sigal', 'leonid sigal')
('34692532', 'Zhenzhong Lan', 'zhenzhong lan')
07e639abf1621ceff27c9e3f548fadfa2052c912RESEARCH ARTICLE +
5-HTTLPR Expression Outside the Skin: An +
Experimental Test of the Emotional +
Reactivity Hypothesis in Children +
Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands
Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The
Netherlands, Utrecht University, Utrecht, The Netherlands
Current Address: Research Institute of Child Development and Education, University of Amsterdam
Amsterdam,The Netherlands +
('4594074', 'Joyce Weeland', 'joyce weeland')
('6811600', 'Meike Slagt', 'meike slagt')
('5859538', 'Eddie Brummelman', 'eddie brummelman')
('3935697', 'Walter Matthys', 'walter matthys')
('4441681', 'Geertjan Overbeek', 'geertjan overbeek')
* j.weeland@uva.nl +
07da958db2e561cc7c24e334b543d49084dd1809Dictionary Learning Based Dimensionality +
Reduction for Classification +
Karin Schnass and Pierre Vandergheynst +
Signal Processing Institute
Swiss Federal Institute of Technology
Lausanne, Switzerland +
EPFL-STI-ITS-LTS2 +
CH-1015 Lausanne +
Tel: +41 21 693 2657 +
Fax: +41 21 693 7600 +
EDICS: SPC-CODC +
{karin.schnass, pierre.vandergheynst}@epfl.ch +
0742d051caebf8a5d452c03c5d55dfb02f84baabReal-Time Geometric Motion Blur for a Deforming Polygonal Mesh +
Nathan Jones +
Formerly: Texas AandM University
Currently: The Software Group +
nathan.jones@tylertechnologies.com +
07d986b1005593eda1aeb3b1d24078db864f8f6aInternational Journal of Industrial Electronics and Electrical Engineering, ISSN: 2347-6982 +
Volume-3, Issue-11, Nov.-2015 +
FACIAL EXPRESSION RECOGNITION USING LOCAL FACIAL +
FEATURES +
National University of Kaohsiung, 811 Kaohsiung, Taiwan
National University of Kaohsiung, 811 Kaohsiung, Taiwan
National Sun Yat Sen University, 804 Kaohsiung, Taiwan
followed by +
communications +
[1]. Automatic +
E-mail: abc3329797@gmail.com, {cclai, johnw, stpan}@nuk.edu.tw, leesj@mail.ee.nsysu.edu.tw +
38d56ddcea01ce99902dd75ad162213cbe4eaab7Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
2648 +
389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26FACIAL PARAMETER EXTRACTION SYSTEM BASED ON ACTIVE CONTOURS +
Universitat Politècnica de Catalunya, Barcelona, Spain +
('1767549', 'Montse Pardàs', 'montse pardàs')
('1820469', 'Marcos Losada', 'marcos losada')
38f7f3c72e582e116f6f079ec9ae738894785b96IJARCCE +
ISSN (Online) 2278-1021 +
ISSN (Print) 2319 5940 +
International Journal of Advanced Research in Computer and Communication Engineering +
Vol. 4, Issue 11, November 2015 +
A New Technique for Face Matching after +
Plastic Surgery in Forensics +
Student, Amal Jyothi College of Engineering, Kanjirappally, India
Amal Jyothi College of Engineering, Kanjirappally, India
I. INTRODUCTION +
Facial recognition is one of the most important task that +
forensic examiners execute +
their +
investigation. This work focuses on analysing the effect of +
plastic surgery in face recognition algorithms. It is +
imperative for the subsequent facial recognition systems to +
be capable of addressing this significant issue and +
accordingly there is a need for more research in this +
important area. +
('32764403', 'Anju Joseph', 'anju joseph')
('16501589', 'Nilu Tressa Thomas', 'nilu tressa thomas')
('40864737', 'Neethu C. Sekhar', 'neethu c. sekhar')
380dd0ddd5d69adc52defc095570d1c22952f5cc
38679355d4cfea3a791005f211aa16e76b2eaa8dTitle +
Evolutionary cross-domain discriminative Hessian Eigenmaps +
Author(s) +
Si, S; Tao, D; Chan, KP +
Citation +
1086 +
Issued Date +
2010 +
URL +
http://hdl.handle.net/10722/127357 +
Rights +
This work is licensed under a Creative Commons Attribution- +
NonCommercial-NoDerivatives 4.0 International License.; ©2010 +
IEEE. Personal use of this material is permitted. However, +
permission to reprint/republish this material for advertising or +
promotional purposes or for creating new collective works for +
resale or redistribution to servers or lists, or to reuse any +
copyrighted component of this work in other works must be +
obtained from the IEEE. +
3802c97f925cb03bac91d9db13d8b777dfd29dccNon-Parametric Bayesian Constrained Local Models +
Institute of Systems and Robotics, University of Coimbra, Portugal
('39458914', 'Pedro Martins', 'pedro martins')
('2117944', 'Rui Caseiro', 'rui caseiro')
('1678231', 'Jorge Batista', 'jorge batista')
{pedromartins,ruicaseiro,batista}@isr.uc.pt +
38a2661b6b995a3c4d69e7d5160b7596f89ce0e6Randomized Intraclass-Distance Minimizing Binary Codes for Face Recognition +
Colorado State University
Fort Collins, CO 80523 +
National Institute of Standards and Technology
('40370804', 'Hao Zhang', 'hao zhang')
('1757322', 'J. Ross Beveridge', 'j. ross beveridge')
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
{zhangh, ross, qmo, draper}@cs.colostate.edu +
jonathon.phillips@nist.gov +
38682c7b19831e5d4f58e9bce9716f9c2c29c4e7International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 5 – Dec 2014 +
Movie Character Identification Using Graph Matching +
Algorithm +
M.Tech Scholar, Dept of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India. +
Associate Professor, Department of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India +
38787338ba659f0bfbeba11ec5b7748ffdbb1c3dEVALUATION OF THE DISCRIMINATION POWER OF FEATURES EXTRACTED +
FROM 2-D AND 3-D FACIAL IMAGES FOR FACIAL EXPRESSION ANALYSIS +
University of Piraeus
Karaoli & Dimitriou 80, Piraeus 185 34 +
GREECE +
('2828175', 'Ioanna-Ourania Stathopoulou', 'ioanna-ourania stathopoulou')
('1802584', 'George A. Tsihrintzis', 'george a. tsihrintzis')
phone: + 30 210 4142322, fax: + 30 210 4142264, email: {iostath, geoatsi}@unipi.gr +
3803b91e784922a2dacd6a18f61b3100629df932Temporal Multimodal Fusion +
for Video Emotion Classification in the Wild +
Orange Labs +
Cesson-Sévigné, France +
Orange Labs +
Cesson-Sévigné, France +
Normandie Univ., UNICAEN, +
ENSICAEN, CNRS +
Caen, France +
('26339425', 'Valentin Vielzeuf', 'valentin vielzeuf')
('2642628', 'Stéphane Pateux', 'stéphane pateux')
('1801809', 'Frédéric Jurie', 'frédéric jurie')
valentin.vielzeuf@orange.com +
stephane.pateux@orange.com +
frederic.jurie@unicaen.fr +
38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7Noname manuscript No. +
(will be inserted by the editor) +
Multi-distance Support Matrix Machine +
Received: date / Accepted: date +
('34679353', 'Yunfei Ye', 'yunfei ye')
('49405675', 'Dong Han', 'dong han')
38c901a58244be9a2644d486f9a1284dc0edbf8aMulti-Camera Action Dataset for Cross-Camera Action Recognition +
Benchmarking +
School of Electronic Information Engineering, Tianjin University, China
Interactive and Digital Media Institute, National University of Singapore, Singapore
School of Computing, National University of Singapore, Singapore
('1803305', 'Wenhui Li', 'wenhui li')
('3026404', 'Yongkang Wong', 'yongkang wong')
('1678662', 'Yang Li', 'yang li')
385750bcf95036c808d63db0e0b14768463ff4c6
3852968082a16db8be19b4cb04fb44820ae823d4Unsupervised Learning of Long-Term Motion Dynamics for Videos +
Stanford University
('3378742', 'Zelun Luo', 'zelun luo')
('3378457', 'Boya Peng', 'boya peng')
('38485317', 'De-An Huang', 'de-an huang')
('3304525', 'Alexandre Alahi', 'alexandre alahi')
('3216322', 'Li Fei-Fei', 'li fei-fei')
{zelunluo,boya,dahuang,alahi,feifeili}@cs.stanford.edu +
38cc2f1c13420170c7adac30f9dfac69b297fb76Rochester Institute of Technology
RIT Scholar Works +
Theses +
7-1-2009 +
Thesis/Dissertation Collections +
Recognition of human activities and expressions in +
video sequences using shape context descriptor +
Follow this and additional works at: http://scholarworks.rit.edu/theses +
Recommended Citation +
Kholgade, Natasha Prashant, "Recognition of human activities and expressions in video sequences using shape context descriptor" +
Thesis. Rochester Institute of Technology. Accessed from
This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion +
('2201569', 'Natasha Prashant Kholgade', 'natasha prashant kholgade')in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu. +
38cbb500823057613494bacd0078aa0e57b30af82017 IEEE Conference on Computer Vision and Pattern Recognition Workshops +
Deep Face Deblurring +
Imperial College London
Imperial College London
('34586458', 'Grigorios G. Chrysos', 'grigorios g. chrysos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
g.chrysos@imperial.ac.uk +
s.zafeiriou@imperial.ac.uk +
384f972c81c52fe36849600728865ea50a0c46701 +
Multi-Fold Gabor, PCA and ICA Filter +
Convolution Descriptor for Face Recognition +
+
('1801904', 'Andrew Beng Jin Teoh', 'andrew beng jin teoh')
('3326176', 'Cong Jie Ng', 'cong jie ng')
38f1fac3ed0fd054e009515e7bbc72cdd4cf801aFinding Person Relations in Image Data of the +
Internet Archive +
Eric M¨uller-Budack1,2[0000−0002−6802−1241], +
1 Leibniz Information Centre for Science and Technology (TIB), Hannover, Germany +
L3S Research Center, Leibniz Universit at Hannover, Germany
('51008013', 'Kader Pustu-Iren', 'kader pustu-iren')
('50983345', 'Sebastian Diering', 'sebastian diering')
('1738703', 'Ralph Ewerth', 'ralph ewerth')
38f06a75eb0519ae1d4582a86ef4730cc8fb8d7fShrinkage Expansion Adaptive Metric Learning +
1 School of Information and Communications Engineering, +
Dalian University of Technology, China
School of Computer Science and Technology, Harbin Institute of Technology, China
Hong Kong Polytechnic University, Hong Kong
('2769011', 'Qilong Wang', 'qilong wang')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('36685537', 'Lei Zhang', 'lei zhang')
('40426020', 'Peihua Li', 'peihua li')
{csqlwang,cswmzuo}@gmail.com, cslzhang@comp.polyu.edu.hk, +
peihuali@dlut.edu.cn +
380d5138cadccc9b5b91c707ba0a9220b0f39271Deep Imbalanced Learning for Face Recognition +
and Attribute Prediction +
('2000034', 'Chen Huang', 'chen huang')
('47002704', 'Yining Li', 'yining li')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
384945abd53f6a6af51faf254ba8ef0f0fb3f338Visual Recognition with Humans in the Loop +
University of California, San Diego
California Institute of Technology
('3251767', 'Steve Branson', 'steve branson')
('2367820', 'Catherine Wah', 'catherine wah')
('2490700', 'Boris Babenko', 'boris babenko')
('1690922', 'Pietro Perona', 'pietro perona')
{sbranson,cwah,gschroff,bbabenko,sjb}@cs.ucsd.edu +
{welinder,perona}@caltech.edu +
38215c283ce4bf2c8edd597ab21410f99dc9b094The SEMAINE Database: Annotated Multimodal Records of +
Emotionally Colored Conversations between a Person and a Limited +
Agent +
McKeown, G., Valstar, M., Cowie, R., Pantic, M., & Schröder, M. (2012). The SEMAINE Database: Annotated +
Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent. IEEE +
Transactions on Affective Computing, 3(1), 5-17. DOI: 10.1109/T-AFFC.2011.20 +
Published in: +
Document Version: +
Peer reviewed version +
Queen's University Belfast - Research Portal
Link to publication record in Queen's University Belfast Research Portal
General rights +
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +
with these rights. +
Take down policy +
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +
Download date:05. Nov. 2018 +
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk. +
38861d0d3a0292c1f54153b303b0d791cbba1d50
38d8ff137ff753f04689e6b76119a44588e143f3When 3D-Aided 2D Face Recognition Meets Deep Learning: +
An extended UR2D for Pose-Invariant Face Recognition +
Computational Biomedicine Lab +
University of Houston
4800 Calhoun Rd. Houston, TX, USA +
('5084124', 'Xiang Xu', 'xiang xu')
('39634395', 'Pengfei Dou', 'pengfei dou')
('26401746', 'Ha A. Le', 'ha a. le')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
3896c62af5b65d7ba9e52f87505841341bb3e8dfFace Recognition from Still Images and Video +
Department of Electrical and Computer Engineering +
Center for Automation Research +
University of Maryland, College Park
Related concepts Biometric identification, verification. +
Definition Face recognition is concerned with identifying or verifying one or more persons from still +
images or video sequences using a stored database of faces. +
Background The earliest work on face recognition started as early as 1950’s in psychology and in the +
1960’s in engineering, but research on automatic face recognition practically started in the 1970’s after the +
seminal work of Kanade [1] and Kelly [2]. +
Application Face recognition has wide range of applications in many different areas ranging from +
law enforcement and surveillance, information security to human-computer interaction, virtual reality and +
computer entertainment. +
1 Introduction +
Face recognition with its wide range of commercial and law enforcement applications has been one of the +
most active areas of research in the field of computer vision and pattern recognition. Personal identification +
systems based on faces have the advantage that facial images can be obtained from a distance without requir- +
ing cooperation of the subject, as compared to other biometrics such as fingerprint, iris, etc. Face recognition +
is concerned with identifying or verifying one or more persons from still images or video sequences using +
a stored database of faces. Depending on the particular application, there can be different scenarios, rang- +
ing from controlled still images to uncontrolled videos. Since face recognition is essentially the problem of +
recognizing a 3D object from its 2D image or a video sequence, it has to deal with significant appearance +
changes due to illumination and pose variations. Current algorithms perform well in controlled scenarios, +
but their performance is far from satisfactory in uncontrolled scenarios. Most of the current research in this +
area is focused toward recognizing faces in uncontrolled scenarios. This chapter is broadly divided into two +
sections. The first section discusses the approaches proposed for recognizing faces from still images and the +
second section deals with face recognition from video sequences. +
2 Still image face recognition +
This section discusses some of the early subspace and feature-based approaches, followed by those which +
address the problem of appearance change due to illumination variations and approaches that can handle both +
illumination and pose variations. +
2.1 Early approaches +
Among the early subspace-based holistic approaches, eigenfaces [3] and Fisherfaces [4][5] have proved to be +
very effective for the task of face recognition. Since human faces have similar overall configuration, the facial +
images can be described by a relatively low-dimensional subspace. Principal Component Analysis (PCA) [3] +
has been used for finding those vectors which can best account for the distribution of facial images within the +
whole image space. These vectors are eigenvectors of the covariance matrix computed from the aligned face +
images in the training set and are thus known as ’eigenfaces’. Given the eigenfaces, every face in the gallery +
database is represented as a vector of weights obtained by projecting the image onto the eigenfaces using +
('2642508', 'Soma Biswas', 'soma biswas')
('9215658', 'Rama Chellappa', 'rama chellappa')
38192a0f9261d9727b119e294a65f2e25f72d7e6
38bbca5f94d4494494860c5fe8ca8862dcf9676eProbabilistic, Features-based Object Recognition +
Thesis by +
In Partial Ful(cid:2)llment of the Requirements +
for the Degree of +
Doctor of Philosophy +
California Institute of Technology
Pasadena, California +
2008 +
(Defended October 12, 2007) +
('2462051', 'Pierre Moreels', 'pierre moreels')
38183fe28add21693729ddeaf3c8a90a2d5caea3Scale-Aware Face Detection +
SenseTime, 2Tsinghua University
('19235216', 'Zekun Hao', 'zekun hao')
('1715752', 'Yu Liu', 'yu liu')
('2137185', 'Hongwei Qin', 'hongwei qin')
('1721677', 'Junjie Yan', 'junjie yan')
('2693308', 'Xiu Li', 'xiu li')
('1705418', 'Xiaolin Hu', 'xiaolin hu')
{haozekun, yanjunjie}@outlook.com, liuyuisanai@gmail.com, +
{qhw12@mails., xlhu@, li.xiu@sz.}tsinghua.edu.cn +
38a9ca2c49a77b540be52377784b9f734e0417e4Face Verification using Large Feature Sets and One Shot Similarity +
1Department of Computer Science +
University of Maryland
College Park, MD, 20740, USA
Institute of Computing
University of Campinas
Campinas, SP, 13084-971, Brazil +
('2723427', 'Huimin Guo', 'huimin guo')
('1679142', 'William Robson Schwartz', 'william robson schwartz')
('1693428', 'Larry S. Davis', 'larry s. davis')
hmguo@cs.umd.edu +
schwartz@ic.unicamp.br +
lsd@umiacs.umd.edu +
3802da31c6d33d71b839e260f4022ec4fbd88e2dDeep Attributes for One-Shot Face Recognition +
Xerox Research Center India
3Department of Electrical Engineering, IIT Kanpur +
('5060928', 'Aishwarya Jadhav', 'aishwarya jadhav')
('1744135', 'Vinay P. Namboodiri', 'vinay p. namboodiri')
('1797662', 'K. S. Venkatesh', 'k. s. venkatesh')
aishwaryauj@gmail.com, vinaypn@iitk.ac.in, venkats@iitk.ac.in +
00fb2836068042c19b5197d0999e8e93b920eb9c
00f7f7b72a92939c36e2ef9be97397d8796ee07c3D ConvNets with Optical Flow Based Regularization +
Stanford University
Stanford, CA +
('35627656', 'Kevin Chavez', 'kevin chavez')kjchavez@stanford.edu +
0021f46bda27ea105d722d19690f5564f2b8869eDeep Region and Multi-label Learning for Facial Action Unit Detection +
School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China
Robotics Institute, Carnegie Mellon University, USA
('2393320', 'Kaili Zhao', 'kaili zhao')
0081e2188c8f34fcea3e23c49fb3e17883b33551Training Deep Face Recognition Systems +
with Synthetic Data +
Department of Mathematics and Computer Science +
University of Basel
('2780587', 'Adam Kortylewski', 'adam kortylewski')
('1801001', 'Andreas Schneider', 'andreas schneider')
('3277377', 'Thomas Gerig', 'thomas gerig')
('34460642', 'Bernhard Egger', 'bernhard egger')
('31540387', 'Andreas Morel-Forster', 'andreas morel-forster')
('1687079', 'Thomas Vetter', 'thomas vetter')
00dc942f23f2d52ab8c8b76b6016d9deed8c468dAdvanced Correlation-Based Character Recognition Applied to +
the Archimedes Palimpsest +
by +
B. S. Rochester Institute of Technology
A dissertation submitted in partial fulfillment of the +
requirements for the degree of Doctor of Philosophy +
in the Chester F. Carlson Center for Imaging Science +
Rochester Institute of Technology
May 2008 +
Signature of the Author +
Accepted by +
Coordinator, Ph.D. Degree Program +
Date +
('31960835', 'Derek J. Walvoord', 'derek j. walvoord')
0077cd8f97cafd2b389783858a6e4ab7887b0b6bMAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES +
On the Reconstruction of Deep Face Templates +
('3391550', 'Guangcan Mai', 'guangcan mai')
('1684684', 'Kai Cao', 'kai cao')
('1768574', 'Pong C. Yuen', 'pong c. yuen')
('6680444', 'Anil K. Jain', 'anil k. jain')
0055c7f32fa6d4b1ad586d5211a7afb030ca08ccSAHAet al.: DEEPLEARNINGFORDETECTINGSPACE-TIMEACTIONTUBES +
Deep Learning for Detecting Multiple +
Space-Time Action Tubes in Videos +
1 Dept. of Computing and +
Communication Technologies +
Oxford Brookes University
Oxford, UK +
2 Department of Engineering Science +
University of Oxford
Oxford, UK +
('3017538', 'Suman Saha', 'suman saha')
('1931660', 'Gurkirt Singh', 'gurkirt singh')
('3019396', 'Michael Sapienza', 'michael sapienza')
('1730268', 'Philip H. S. Torr', 'philip h. s. torr')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
suman.saha-2014@brookes.ac.uk +
gurkirt.singh-2015@brookes.ac.uk +
michael.sapienza@eng.ox.ac.uk +
philip.torr@eng.ox.ac.uk +
fabio.cuzzolin@brookes.ac.uk +
009cd18ff06ff91c8c9a08a91d2516b264eee48e8 +
Face and Automatic Target Recognition Based +
on Super-Resolved Discriminant Subspace +
Chulalongkorn University, Bangkok
Thailand +
1. Introduction +
Recently, super-resolution reconstruction (SRR) method of low-dimensional face subspaces +
has been proposed for face recognition. This face subspace, also known as eigenface, is +
extracted using principal component analysis (PCA). One of the disadvantages of the +
reconstructed features obtained from the super-resolution face subspace is that no class +
information is included. To remedy the mentioned problem, at first, this chapter will be +
discussed about two novel methods for super-resolution reconstruction of discriminative +
features, i.e., class-specific and discriminant analysis of principal components; that aims on +
improving the discriminant power of the recognition systems. Next, we discuss about two- +
dimensional principal component analysis (2DPCA), also refered to as image PCA. We suggest +
new reconstruction algorithm based on the replacement of PCA with 2DPCA in extracting +
super-resolution subspace for face and automatic target recognition. Our experimental +
results on Yale and ORL face databases are very encouraging. Furthermore, the performance +
of our proposed approach on the MSTAR database is also tested. +
In general, the fidelity of data, feature extraction, discriminant analysis, and classification +
rule are four basic elements in face and target recognition systems. One of the efficacies of +
recognition systems could be improved by enhancing the fidelity of the noisy, blurred, and +
undersampled images that are captured by the surveillance imagers. Regarding to the +
fidelity of data, when the resolution of the captured image is too small, the quality of the +
detail information becomes too limited, leading to severely poor decisions in most of the +
existing recognition systems. Having used super-resolution reconstruction algorithms (Park +
et al., 2003), it is fortunately to learn that a high-resolution (HR) image can be reconstructed +
from an undersampled image sequence obtained from the original scene with pixel +
displacements among images. This HR image is then used to input to the recognition system +
in order to improve the recognition performance. In fact, super-resolution can be considered +
as the numerical and regularization study of the ill-conditioned large scale problem given to +
describe the relationship between low-resolution (LR) and HR pixels (Nguyen et al., 2001). +
On the one hand, feature extraction aims at reducing the dimensionality of face or target +
image so that the extracted feature is as representative as possible. On the other hand, +
super-resolution aims at visually increasing the dimensionality of face or target image. +
Having applied super-resolution methods at pixel domain (Lin et al., 2005; Wagner et al., +
2004), the performance of face and target recognition applicably increases. However, with +
the emphases on improving computational complexity and robustness to registration error +
www.intechopen.com +
('2874330', 'Widhyakorn Asdornwised', 'widhyakorn asdornwised')
00214fe1319113e6649435cae386019235474789Bachelorarbeit im Fach Informatik +
Face Recognition using +
Distortion Models +
Mathematik, Informatik und Naturwissenschaften der +
RHEINISCH-WESTFÄLISCHEN TECHNISCHEN HOCHSCHULE AACHEN +
Der Fakultät für +
Lehrstuhl für Informatik VI +
Prof. Dr.-Ing. H. Ney +
vorgelegt von: +
Matrikelnummer 252400 +
Gutachter: +
Prof. Dr.-Ing. H. Ney +
Prof. Dr. B. Leibe +
Betreuer: +
September 2009 +
('1804963', 'Harald Hanselmann', 'harald hanselmann')
('1967060', 'Philippe Dreuw', 'philippe dreuw')
004e3292885463f97a70e1f511dc476289451ed5Quadruplet-wise Image Similarity Learning +
Marc T. Law +
LIP6, UPMC - Sorbonne University, Paris, France
('1728523', 'Nicolas Thome', 'nicolas thome')
('1702233', 'Matthieu Cord', 'matthieu cord')
{Marc.Law, Nicolas.Thome, Matthieu.Cord}@lip6.fr +
0004f72a00096fa410b179ad12aa3a0d10fc853c
00b08d22abc85361e1c781d969a1b09b97bc7010Who is the Hero? − Semi-Supervised Person Re-Identification in Videos +
Tampere University of Technology, Tampere, Finland
Nokia Research Center, Tampere, Finland
Keywords: +
Semi-supervised person re-identification, Important person detection, Face tracks, Clustering +
('13413642', 'Umar Iqbal', 'umar iqbal')
('9219875', 'Moncef Gabbouj', 'moncef gabbouj')
{umar.iqbal, moncef.gabbouj}@tut.fi, igor.curcio@nokia.com +
007250c2dce81dd839a55f9108677b4f13f2640aAdvances in Component Based Face Detection +
S. M. Bileschi +
B. Heisele +
Center for Biological And Computational Learning +
Massachusetts Institute of Technology
Cambridge, MA. +
Honda Research and Development +
Boston, MA. +
00e3957212517a252258baef833833921dd308d4Adaptively Weighted Multi-task Deep Network for Person +
A￿ribute Classification +
Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China
School of Data Science, Fudan University, China
('37391748', 'Keke He', 'keke he')
('11032846', 'Zhanxiong Wang', 'zhanxiong wang')
('35782003', 'Yanwei Fu', 'yanwei fu')
('6260277', 'Rui Feng', 'rui feng')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
{kkhe15,15210240046,yanweifu,fengrui,ygj,xyxue}@fudan.edu.cn +
00f0ed04defec19b4843b5b16557d8d0ccc5bb42
0037bff7be6d463785d4e5b2671da664cd7ef746Author manuscript, published in "European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647" +
DOI : 10.1007/978-3-642-15549-9_46 +
009a18d04a5e3ec23f8ffcfc940402fd8ec9488fBOYRAZ ET AL. : WEAKLY-SUPERVISED ACTION RECOGNITION BY LOCALIZATION +
Action Recognition by Weakly-Supervised +
Discriminative Region Localization +
Marshall Tappen12 +
1 Department of EECS +
University of Central Florida
Orlando, FL USA +
Amazon, Inc
Seattle, WA USA +
Sighthound, Inc
Orlando, FL USA +
('3174233', 'Hakan Boyraz', 'hakan boyraz')
('2234898', 'Syed Zain Masood', 'syed zain masood')
('6312216', 'Baoyuan Liu', 'baoyuan liu')
('1691260', 'Hassan Foroosh', 'hassan foroosh')
hakanb@amazon.com +
zainmasood@sighthound.com +
bliu@cs.ucf.edu +
tappenm@amazon.com +
foroosh@cs.ucf.edu +
0066caed1238de95a431d836d8e6e551b3cde391Filtered Component Analysis to Increase Robustness +
to Local Minima in Appearance Models +
Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
Pennsylvania
('1707876', 'Fernando De la Torre', 'fernando de la torre')ftorre@cs.cmu.edu acollet@cs.cmu.edu mquero@andrew.cmu.edu +
tk@cs.cmu.edu +
jeffcohn@pitt.edu +
00075519a794ea546b2ca3ca105e2f65e2f5f471Generating a Large, Freely-Available Dataset for +
Face-Related Algorithms +
Amherst College
('40175953', 'Benjamin Mears', 'benjamin mears')
0019925779bff96448f0c75492717e4473f88377Deep Heterogeneous Face Recognition Networks based on Cross-modal +
Distillation and an Equitable Distance Metric +
U.S. Army Research Laboratory
University of Maryland, College Park
3Booz Allen Hamilton Inc. +
('39412489', 'Christopher Reale', 'christopher reale')
('2445131', 'Hyungtae Lee', 'hyungtae lee')
('1688527', 'Heesung Kwon', 'heesung kwon')
reale@umiacs.umd.edu +
lee hyungtae@bah.com +
heesung.kwon.civ@mail.mil +
00e9011f58a561500a2910a4013e6334627dee60FACIAL EXPRESSION RECOGNITION USING ANGLE-RELATED INFORMATION +
FROM FACIAL MESHES +
1Computer Science Department, Aristotle +
University of Thessaloniki
University Campus, 54124, Thessaloniki, Greece
phone: (+30) 2310 996361, fax: (+30) 2310 996304, +
web: www.aiia.csd.auth.gr +
('1738865', 'Nicholas Vretos', 'nicholas vretos')
('1681629', 'Vassilios Solachidis', 'vassilios solachidis')
('3176394', 'Petr Somol', 'petr somol')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
email: vretos,vasilis,pitas@aiia.csd.auth.gr +
00d9d88bb1bdca35663946a76d807fff3dc1c15fSubjects and Their Objects: Localizing Interactees for a +
Person-Centric View of Importance +
('3197570', 'Chao-Yeh Chen', 'chao-yeh chen')
00a967cb2d18e1394226ad37930524a31351f6cfFully-adaptive Feature Sharing in Multi-Task Networks with Applications in +
Person Attribute Classification +
UC San Diego +
IBM Research +
IBM Research +
Binghamton Univeristy, SUNY +
UC San Diego +
Rogerio Feris +
IBM Research +
('2325498', 'Yongxi Lu', 'yongxi lu')
('8991006', 'Yu Cheng', 'yu cheng')
('40632040', 'Abhishek Kumar', 'abhishek kumar')
('2443456', 'Shuangfei Zhai', 'shuangfei zhai')
('1737723', 'Tara Javidi', 'tara javidi')
yol070@ucsd.edu +
abhishk@us.ibm.com +
szhai2@binghamton.edu +
chengyu@us.ibm.com +
tjavidi@eng.ucsd.edu +
rsferis@us.ibm.com +
00f1e5e954f9eb7ffde3ca74009a8c3c27358b58Unsupervised Clustering for Google Searches of Celebrity Images +
California Institute of Technology, Pasadena, CA
* These authors contributed equally in this work +
('3075121', 'Alex Holub', 'alex holub')
('2462051', 'Pierre Moreels', 'pierre moreels')
('1690922', 'Pietro Perona', 'pietro perona')
holub@vision.caltech.edu, pmoreels@vision.caltech.edu, perona@vision.caltech.edu +
00a3cfe3ce35a7ffb8214f6db15366f4e79761e3Kinect for real-time emotion recognition via facial expressions. Frontiers of +
Information Technology & Electronic Engineering, 16(4):272-282. +
[doi:10.1631/FITEE.1400209] +
Using Kinect for real-time emotion +
recognition via facial expressions +
Key words: Kinect, Emotion recognition, Facial expression, Real-time +
classification, Fusion algorithm, Support vector machine (SVM) +
ORCID: http://orcid.org/0000-0002-5021-9057 +
Front Inform Technol & Electron Eng
('2566775', 'Qi-rong Mao', 'qi-rong mao')
('2016065', 'Xin-yu Pan', 'xin-yu pan')
('20342486', 'Yong-zhao Zhan', 'yong-zhao zhan')
('2800876', 'Xiang-jun Shen', 'xiang-jun shen')
('2566775', 'Qi-rong Mao', 'qi-rong mao')
E-mail: mao_qr@ujs.edu.cn +
0058cbe110933f73c21fa6cc9ae0cd23e974a9c7BISWAS, JACOBS: AN EFFICIENT ALGORITHM FOR LEARNING DISTANCES +
An Efficient Algorithm for Learning +
Distances that Obey the Triangle Inequality +
http://www.xrci.xerox.com/profile-main/67 +
http://www.cs.umd.edu/~djacobs/ +
Xerox Research Centre India +
Bangalore, India +
Computer Science Department +
University of Maryland
College Park, USA
('2221075', 'Arijit Biswas', 'arijit biswas')
('1682573', 'David Jacobs', 'david jacobs')
004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4Balanced k-Means and Min-Cut Clustering +('1729163', 'Xiaojun Chang', 'xiaojun chang')
('1688370', 'Feiping Nie', 'feiping nie')
('1727419', 'Zhigang Ma', 'zhigang ma')
('39033919', 'Yi Yang', 'yi yang')
00d94b35ffd6cabfb70b9a1d220b6823ae9154eeDiscriminative Bayesian Dictionary Learning +
for Classification +
('2941543', 'Naveed Akhtar', 'naveed akhtar')
('1688013', 'Faisal Shafait', 'faisal shafait')
00ebc3fa871933265711558fa9486057937c416eCollaborative Representation based Classification +
for Face Recognition +
The Hong Kong Polytechnic University, Hong Kong, China
b School of Applied Mathematics, Xidian University, Xi an, China
c Principal Researcher, Microsoft Research Asia, Beijing, China +
('36685537', 'Lei Zhang', 'lei zhang')
('5828998', 'Meng Yang', 'meng yang')
('2340559', 'Xiangchu Feng', 'xiangchu feng')
('1700297', 'Yi Ma', 'yi ma')
('1698371', 'David Zhang', 'david zhang')
006f283a50d325840433f4cf6d15876d475bba77756 +
Preserving Structure in Model-Free Tracking +
('2883723', 'Lu Zhang', 'lu zhang')
('1803520', 'Laurens van der Maaten', 'laurens van der maaten')
00b29e319ff8b3a521b1320cb8ab5e39d7f42281Towards Transparent Systems: Semantic +
Characterization of Failure Modes +
Carnegie Mellon University, Pittsburgh, USA
University of Washington, Seattle, USA
3 Virginia Tech, Blacksburg, USA +
('3294630', 'Aayush Bansal', 'aayush bansal')
('2270286', 'Ali Farhadi', 'ali farhadi')
('1713589', 'Devi Parikh', 'devi parikh')
00d931eccab929be33caea207547989ae7c1ef39The Natural Input Memory Model +
IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands
Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands
IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands
Joyca P.W. Lacroix (j.lacroix@cs.unimaas.nl) +
Jaap M.J. Murre (jaap@murre.com) +
Eric O. Postma (postma@cs.unimaas.nl) +
H. Jaap van den Herik (herik@cs.unimaas.nl) +
0059b3dfc7056f26de1eabaafd1ad542e34c2c2e
0052de4885916cf6949a6904d02336e59d98544cSpringer Science + Business Media, Inc. Manufactured in The Netherlands
DOI: 10.1007/s10994-005-3561-6 +
Generalized Low Rank Approximations of Matrices +
University of Minnesota-Twin Cities, Minneapolis
MN 55455, USA +
Editor: +
Peter Flach +
Published online: 12 August 2005 +
('37513601', 'Jieping Ye', 'jieping ye')jieping@cs.umn.edu +
6e60536c847ac25dba4c1c071e0355e5537fe061Computer Vision and Natural Language Processing: Recent +
Approaches in Multimedia and Robotics +
71 +
Integrating computer vision and natural language processing is a novel interdisciplinary field that has +
received a lot of attention recently. In this survey, we provide a comprehensive introduction of the integration +
of computer vision and natural language processing in multimedia and robotics applications with more than +
200 key references. The tasks that we survey include visual attributes, image captioning, video captioning, +
visual question answering, visual retrieval, human-robot interaction, robotic actions, and robot navigation. +
We also emphasize strategies to integrate computer vision and natural language processing models as a +
unified theme of distributional semantics. We make an analog of distributional semantics in computer vision +
and natural language processing as image embedding and word embedding, respectively. We also present a +
unified view for the field and propose possible future directions. +
Categories and Subject Descriptors: I.2.0 [Artificial Intelligence]: General; I.2.7 [Artificial Intelligence]: +
Natural Language Processing; I.2.9 [Artificial Intelligence]: Robotics; I.2.10 [Artificial Intelligence]: +
Vision and Scene Understanding; I.4.9 [Image Processing and Computer Vision]: Applications; I.5.4 +
[Pattern Recognition]: Applications +
General Terms: Computer Vision, Natural Language Processing, Robotics +
Additional Key Words and Phrases: Language and vision, survey, multimedia, robotics, symbol grounding, +
distributional semantics, computer vision, natural language processing, visual attribute, image captioning, +
imitation learning, word2vec, word embedding, image embedding, semantic parsing, lexical semantics +
ACM Reference Format: +
Computer vision and natural language processing: Recent approaches in multimedia and robotics. ACM +
Comput. Surv. 49, 4, Article 71 (December 2016), 44 pages. +
DOI: http://dx.doi.org/10.1145/3009906 +
1. INTRODUCTION +
We have many ways to describe the world for communication between people: texts, +
gestures, sign languages, and face expressions are all ways of sharing meaning. Lan- +
guage is unique among communication systems in that its compositionality through +
syntax allows a limitless number of meanings to be expressed. Such meaning ulti- +
mately must be tied to perception of the world. This is usually referred to as the symbol +
An earlier version of this article appeared as “Computer Vision and Natural Language Processing: Re- +
cent Approaches in Multimedia and Robotics,” Scholarly Paper Archive, Department of Computer Science, +
University of Maryland, College Park, MD
Authors’ addresses: P. Wiriyathammabhum, C. Ferm ¨uller, and Y. Aloimonos, Computer Vision Lab, Uni- +
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted +
without fee provided that copies are not made or distributed for profit or commercial advantage and that +
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for +
('2862582', 'Peratham Wiriyathammabhum', 'peratham wiriyathammabhum')
('1937719', 'Douglas Summers-Stay', 'douglas summers-stay')
('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')
('2862582', 'Peratham Wiriyathammabhum', 'peratham wiriyathammabhum')
('1937719', 'Douglas Summers-Stay', 'douglas summers-stay')
('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')
versity of Maryland College Park, MD 20742-3275; email: {peratham@cs.umd.edu, fer@umiacs.umd.edu, +
yiannis@cs.umd.edu}. D. Summers-Stay, U.S. Army Research Laboratory, Adelphi, MD 20783; email: +
{douglas.a.summers-stay.civ@mail.mil}. +
6e198f6cc4199e1c4173944e3df6f39a302cf787MORPH-II: Inconsistencies and Cleaning Whitepaper +
NSF-REU Site at UNC Wilmington, Summer 2017 +
('39845059', 'G. Bingham', 'g. bingham')
('1693470', 'B. Yip', 'b. yip')
('1833570', 'M. Ferguson', 'm. ferguson')
('1693283', 'C. Chen', 'c. chen')
('11134292', 'Y. Wang', 'y. wang')
('3369885', 'T. Kling', 't. kling')
6eaf446dec00536858548fe7cc66025b70ce20eb
6e173ad91b288418c290aa8891193873933423b3Are you from North or South India? A hard race classification task reveals +
systematic representational differences between humans and machines +
aCentre for Neuroscience, Indian Institute of Science, Bangalore, India
('2478739', 'Harish Katti', 'harish katti')
6e91be2ad74cf7c5969314b2327b513532b1be09Dimensionality Reduction with Subspace Structure +
Preservation +
Department of Computer Science +
SUNY Buffalo +
Buffalo, NY 14260 +
('2309967', 'Devansh Arpit', 'devansh arpit')
('1841118', 'Ifeoma Nwogu', 'ifeoma nwogu')
('1723877', 'Venu Govindaraju', 'venu govindaraju')
{devansh,inwogua,govind}@buffalo.edu +
6eba25166fe461dc388805cc2452d49f5d1cdaddPages 122.1-122.12 +
DOI: https://dx.doi.org/10.5244/C.30.122 +
6e8a81d452a91f5231443ac83e4c0a0db4579974Illumination robust face representation based on intrinsic geometrical +
information +
Soyel, H; Ozmen, B; McOwan, PW +
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET +
Conference on Image Processing (IPR 2012). The version of record is available +
http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1 +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
more information contact scholarlycommunications@qmul.ac.uk +
6ed738ff03fd9042965abdfaa3ed8322de15c116This document is downloaded from DR-NTU, Nanyang Technological +
University Library, Singapore
Title +
K-MEAP: Generating Specified K Clusters with Multiple +
Exemplars by Efficient Affinity Propagation +
Author(s) Wang, Yangtao; Chen, Lihui +
Citation +
Wang, Y & Chen, L. (2014). K-MEAP: Generating +
Specified K Clusters with Multiple Exemplars by Efficient +
Affinity Propagation. 2014 IEEE International Conference +
on Data Mining (ICDM), 1091-1096. +
Date +
2014 +
URL +
http://hdl.handle.net/10220/39690 +
Rights +
© 2014 IEEE. Personal use of this material is permitted. +
Permission from IEEE must be obtained for all other +
uses, in any current or future media, including
reprinting/republishing this material for advertising or +
promotional purposes, creating new collective works, for +
resale or redistribution to servers or lists, or reuse of any +
copyrighted component of this work in other works. The +
published version is available at: +
[http://dx.doi.org/10.1109/ICDM.2014.54]. +
6ecd4025b7b5f4894c990614a9a65e3a1ac347b2International Journal on Recent and Innovation Trends in Computing and Communication +
+
ISSN: 2321-8169 +
Volume: 2 Issue: 5 +
1275– 1281 +
_______________________________________________________________________________________________ +
Automatic Naming of Character using Video Streaming for Face +
Recognition with Graph Matching +
Nivedita.R.Pandey +
Ranjan.P.Dahake +
PG Student at MET’s IOE Bhujbal Knowledge City, +
PG Student at MET’s IOE Bhujbal Knowledge City, +
Nasik, Maharashtra, India, +
Nasik, Maharashtra, India, +
pandeynivedita7@gmail.com +
dahakeranjan@gmail.com +
6eddea1d991e81c1c3024a6cea422bc59b10a1dcTowards automatic analysis of gestures and body +
expressions in depression +
University of Cambridge
Computer Laboratory +
Cambridge, UK +
University of Cambridge
Computer Laboratory +
Cambridge, UK +
('2022940', 'Marwa Mahmoud', 'marwa mahmoud')
('39840677', 'Peter Robinson', 'peter robinson')
marwa.mahmoud@cl.cam.ac.uk +
peter.robinson@cl.cam.ac.uk +
6eaeac9ae2a1697fa0aa8e394edc64f32762f578
6ee2ea416382d659a0dddc7a88fc093accc2f8ee
6e97a99b2879634ecae962ddb8af7c1a0a653a82Towards Context-aware Interaction Recognition∗ +
School of Computer Science, University of Adelaide, Australia
Contents +
1. Introduction +
2. Related work +
3. Methods +
3.1. Context-aware interaction classification +
framework . . . . . . . . . . . . . . . . . +
3.2. Feature representations for interactions +
recognition . . . . . . . . . . . . . . . . +
3.2.1 +
Spatial feature representation . . +
3.2.2 Appearance feature representation +
Improving appearance representation +
with attention and context-aware atten- +
tion . . . . . . . . . . . . . . . . . . . . +
3.4. Implementation details . . . . . . . . . . +
3.3. +
4. Experiments +
4.1. Evaluation on the Visual Relationship +
dataset . . . . . . . . . . . . . . . . . . . +
4.1.1 Detection results comparison . . +
Zero-shot learning performance +
4.1.2 +
evaluation . . . . . . . . . . . . . +
4.1.3 Extensions and comparison with +
the state-of-the-art methods . . . +
4.2. Evaluation on the Visual Phrase dataset +
5. Conclusion +
('3194022', 'Bohan Zhuang', 'bohan zhuang')
('2161037', 'Lingqiao Liu', 'lingqiao liu')
('1780381', 'Chunhua Shen', 'chunhua shen')
6e9a8a34ab5b7cdc12ea52d94e3462225af2c32cFusing Aligned and Non-Aligned Face Information +
for Automatic Affect Recognition in the Wild: A Deep Learning Approach +
Computational NeuroSystems Laboratory (CNSL) +
Korea Advanced Institute of Science and Technology (KAIST
('3918690', 'Bo-Kyeong Kim', 'bo-kyeong kim')
('2527421', 'Suh-Yeon Dong', 'suh-yeon dong')
('3294960', 'Jihyeon Roh', 'jihyeon roh')
('34577016', 'Soo-Young Lee', 'soo-young lee')
{bokyeong1015, suhyeon.dong}@gmail.com, {rohleejh, gmkim90, sylee}@kaist.ac.kr +
6e3a181bf388dd503c83dc324561701b19d37df1Finding a low-rank basis in a matrix subspace +
Andr´e Uschmajew +
('2391697', 'Yuji Nakatsukasa', 'yuji nakatsukasa')
6ef1996563835b4dfb7fda1d14abe01c8bd24a05Nonparametric Part Transfer for Fine-grained Recognition +
Computer Vision Group, Friedrich Schiller University Jena
www.inf-cv.uni-jena.de +
('1679449', 'Erik Rodner', 'erik rodner')
('1720839', 'Alexander Freytag', 'alexander freytag')
('1728382', 'Joachim Denzler', 'joachim denzler')
6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2fDeep Episodic Memory: Encoding, Recalling, and Predicting +
Episodic Experiences for Robot Action Execution +
('35309584', 'Jonas Rothfuss', 'jonas rothfuss')
('2128564', 'Fabio Ferreira', 'fabio ferreira')
('34876449', 'Eren Erdal Aksoy', 'eren erdal aksoy')
('46432716', 'You Zhou', 'you zhou')
('1722677', 'Tamim Asfour', 'tamim asfour')
6e911227e893d0eecb363015754824bf4366bdb7Wasserstein Divergence for GANs +
1 Computer Vision Lab, ETH Zurich, Switzerland +
2 VISICS, KU Leuven, Belgium +
('1839268', 'Jiqing Wu', 'jiqing wu')
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('30691454', 'Janine Thoma', 'janine thoma')
('32610154', 'Dinesh Acharya', 'dinesh acharya')
('1681236', 'Luc Van Gool', 'luc van gool')
{jwu,zhiwu.huang,jthoma,vangool}@vision.ee.ethz.ch, +
acharyad@student.ethz.ch +
6ee8a94ccba10062172e5b31ee097c846821a822Submitted 3/13; Revised 10/13; Published 12/13 +
How to Solve Classification and Regression Problems on +
High-Dimensional Data with a Supervised +
Extension of Slow Feature Analysis +
Institut f¨ur Neuroinformatik +
Ruhr-Universit¨at Bochum +
Bochum D-44801, Germany +
Editor: David Dunson +
('2366497', 'Alberto N. Escalante', 'alberto n. escalante')
('1736245', 'Laurenz Wiskott', 'laurenz wiskott')
ALBERTO.ESCALANTE@INI.RUB.DE +
LAURENZ.WISKOTT@INI.RUB.DE +
6ee64c19efa89f955011531cde03822c2d1787b8Table S1: Review of existing facial expression databases that are often used in social +
psycholgy. +
Author +
Face +
name +
database +
Expressions1 +
Format +
Short summary +
[1] +
GEMEP Corpus +
Mind Reading: the +
interactive +
guide +
to emotions +
audio +
and +
video +
record- +
ings +
Videos +
anger, +
amuse- +
admiration, +
ment, +
tender- +
ness, disgust, despair, +
pride, +
shame, anxiety +
(worry), +
interest, +
irritation, joy (elation), +
contempt, panic fear, +
pleasure +
(sensual), +
relief, surprise, sadness +
expressions +
groups +
:afraid, angry, bored, +
bothered, disbelieving, +
disgust, excited, +
fond, +
happy, hurt, interested, +
kind, +
romantic, +
sad, sneaky, sorry, sure, +
thinking, +
surprised, +
touched, +
unfriendly, +
unsure, wanting +
liked, +
RU-FACS Sponta- +
neous Expression +
Database +
spontaneous facial ac- +
tions +
Videos +
This database contains more than 7000 clips of the six basic +
emotions as well as subtle emotions. For the recordings 10 +
professional actors (5 female) were coached by a professional +
director. The actors received a list of the emotions together +
with short definitions and brief scenarios. The recordings are +
available in different intensity levels and part of the database +
has been validated. +
The database contains over 400 videos of facial expressions +
that are summarized in 24 groups. Each group consists of dif- +
ferent subordinate expressions. Each expression is displayed +
by 6 models ranging in age. +
100 participants were asked for recording the database. There- +
fore, a false option paradigm was used which is though to elicit +
spontaneous facial expressions. Here, participants fill out a +
questionnaire regarding their opinions about particular social +
or political issues. Participants are then asked about their +
answer by an interviewer. Either participants are asked to +
tell the truth or to fool the interviewer. Moreover, partici- +
pants were financially rewarded. The expressions were video +
captured by four synchronized cameras and clips of 33 partic- +
ipants have been FACS coded (onset, apex, and offset of the +
face action). +
Comprises 1008 short videos of expressions produced by 8 Ital- +
ian professional actors. Each expression was recorded in three +
intensities (low, medium, and high) and in two different condi- +
tions: (1) Utterance condition in which actors spoke additional +
sentences and (2) Non-Utterance condition. Here, actors were +
additionally given scenarios according to the expressions to be +
produced. +
The expressions are taken from 12 participants (European, +
Asian and African). Each expression was created using a di- +
rect facial action task and all expressions were FACS coded. +
Moreover, the expressions have been morphed into 5 different +
levels of intensity. +
It contains 165 greyscale images of 15 individuals one per +
different facial expression or configuration (with or without +
glasses, different camera perspectives). +
This database contains two sets of facial expressions: (1) The +
laboratory set, that includes 40 participants (varied in culture, +
race, and appearance) displaying their own choice of expres- +
sions. Participants were allowed to move their head without +
going into profile view. Moreover, they were asked to avoid +
speech. Each video sequence contains 1-3 expressions. +
(2) +
video recordings from TV that also contained speech. +
The database contains videos of one actor performing approx- +
imately 45 action units which were recorded from six different +
viewpoints simultaneously. +
For this database, between 19 and 97 different action units +
were recorded form 10 participants. Action unit sequences +
contain single and combined action units. The peak of each ex- +
pression has been manually coded by certified FACS experts. +
Moreover, a framework is proposed that allows to build dy- +
namic 3D morphable models for the first time. +
[2] +
[3] +
[5] +
[6] +
[7] +
Breidt2 +
[8] +
Chen3 , 2007 +
[4] +
DaFEx +
happiness, +
fear, +
and disgust +
sadness, +
surprise, +
anger +
Videos +
Images +
Images +
Videos +
happiness, +
anger, +
and embarrassment +
fear, +
sadness, +
disgust, +
happiness, +
sleepy, +
wink +
surprise, +
sadness, +
and +
happiness, +
fear, +
and disgust +
sadness, +
surprise, +
anger +
Facial action units +
Videos +
Facial action units +
Videos +
Montreal Set +
of +
facial displays of +
emotion (MSFDE) +
The Yale +
Database +
Face +
University
of +
Database +
Maryland +
Face +
Database +
MPI +
Video +
the +
of +
Dynamic +
FACS +
(D3DFACS) +
data +
3D +
set +
Fa- +
Taiwanese +
cial +
Expression +
Database (TFEID) +
anger, contempt, dis- +
gust, +
fear, happiness, +
sadness and surprise +
Images +
The database consists of 7200 images captured from 40 indi- +
viduals. The expressions are displayed in two (high and low) +
intensities and two viewing angles (0◦ and 45◦ ) simultane- +
ously. +
[9] +
CAFE Database +
anger, disgust, happy, +
maudlin (for sad), fear, +
surprise +
Images +
The database consists of two normalized versions (one gamma +
corrected and the other histogram equalized) of the faces. +
1Neutral expression is not included. +
2Please see http://vdb.kyb.tuebingen.mpg.de/. +
3Please see http://bml.ym.edu.tw/ download/html/news.htm. +
6e00a406edb508312108f683effe6d3c1db020fbFaces as Lighting Probes via Unsupervised Deep +
Highlight Extraction +
Simon Fraser University, Burnaby, Canada
National University of Defense Technology, Changsha, China
3 Microsoft Research, Beijing, China +
('2693616', 'Renjiao Yi', 'renjiao yi')
('2041096', 'Chenyang Zhu', 'chenyang zhu')
('37291674', 'Ping Tan', 'ping tan')
('1686911', 'Stephen Lin', 'stephen lin')
{renjiaoy, cza68, pingtan}@sfu.ca +
stevelin@microsoft.com +
6e94c579097922f4bc659dd5d6c6238a428c4d22Graph Based Multi-class Semi-supervised +
Learning Using Gaussian Process +
State Key Laboratory of Intelligent Technology and Systems, +
Tsinghua University, Beijing, China
('1809614', 'Yangqiu Song', 'yangqiu song')
('1700883', 'Changshui Zhang', 'changshui zhang')
('1760678', 'Jianguo Lee', 'jianguo lee')
{songyq99, lijg01}@mails.tsinghua.edu.cn, zcs@mail.tsinghua.edu.cn +
6e379f2d34e14efd85ae51875a4fa7d7ae63a662A NEW MULTI-MODAL BIOMETRIC SYSTEM +
BASED ON FINGERPRINT AND FINGER +
VEIN RECOGNITION +
Master's Thesis +
Department of Software Engineering +
JULY-2014 +
I +
('37171106', 'Naveed AHMED', 'naveed ahmed')
('1987743', 'Asaf VAROL', 'asaf varol')
6eb1e006b7758b636a569ca9e15aafd038d2c1b1Human Capabilities on Video-based Facial +
Expression Recognition +
Faculty of Science and Engineering, Waseda University, Tokyo, Japan
2 Institut f¨ur Informatik, Technische Universit¨at M¨unchen, Germany +
('32131501', 'Matthias Wimmer', 'matthias wimmer')
('1989987', 'Ursula Zucker', 'ursula zucker')
('1699132', 'Bernd Radig', 'bernd radig')
6eece104e430829741677cadc1dfacd0e058d60fAutomated Facial Image Analysis 1 +
To appear in J. A. Coan & J. B. Allen (Eds.), The handbook of emotion elicitation and assess- +
ment. Oxford University Press Series in Affective Science. New York: Oxford
Use of Automated Facial Image Analysis for Measurement of Emotion Expression +
Department of Psychology +
University of Pittsburgh
Takeo Kanade +
Robotics Institute
Carnegie Mellon University
Facial expressions are a key index of emotion. They have consistent correlation with +
self-reported emotion (Keltner, 1995; Rosenberg & Ekman, 1994; Ekman & Rosenberg, in press) +
and emotion-related central and peripheral physiology (Davidson, Ekman, Saron, Senulis, & +
Friesen, 1990; Fox & Davidson, 1988; Levenson, Ekman, & Friesen, 1990). They putatively +
share similar underlying dimensions with self-reported emotion (e.g., positive and negative +
affect) (Bullock & Russell, 1984; Gross & John, 1997; Watson & Tellegen, 1985). Facial +
expressions serve interpersonal functions of emotion by conveying communicative intent, +
signaling affective information in social referencing (Campos, Bertenthal, & Kermoian, 1992), +
and more generally contributing to the regulation of social interaction (Cohn & Elmore, 1988; +
Fridlund, 1994; Schmidt & Cohn, 2001). As a measure of trait affect, stability in facial +
expression emerges early in life (Cohn & Campbell, 1992; Malatesta, Culver, Tesman, & +
Shephard, 1989). By adulthood, stability is moderately strong, comparable to that for self- +
reported emotion (Cohn, Schmidt, Gross, & Ekman, 2002), and predictive of favorable outcomes +
in emotion-related domains including marriage and personal well-being over periods as long as +
30 years (Harker & Keltner, 2001). Expressive changes in the face are a rich source of cues +
about intra- and interpersonal functions of emotion (cf. Keltner & Haitd, 1999). +
clinical practice, reliable, valid, and efficient methods of measurement are critical. Until recently, +
selecting a measurement method meant choosing among one or another human-observer-based +
coding system (e.g., Ekman & Friesen, 1978 and Izard, 1983) or facial electromyography +
(EMG). While each of these approaches has advantages, they are not without costs. Human- +
observer-based methods are time consuming to learn and use, and they are difficult to +
standardize, especially across laboratories and over time (Bakeman & Gottman, 1986; Martin & +
Bateson, 1986). Facial EMG requires placement of sensors on the face, which may inhibit facial +
action and which rules out its use for naturalistic observation. +
computer vision. Computer vision is the science of extracting and representing meaningful +
information from digitized video and recognizing perceptually meaningful patterns. An early +
focus in automated face image analysis by computer vision was face recognition (Kanade, 1973, +
To make use of the information afforded by facial expression for emotion science and +
An emerging alternative to these methods is automated facial image analysis using +
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94RANDOM GRAPHS FOR STRUCTURE +
DISCOVERY IN HIGH-DIMENSIONAL DATA +
by +
Jos¶e Ant¶onio O. Costa +
A dissertation submitted in partial fulflllment +
of the requirements for the degree of +
Doctor of Philosophy +
(Electrical Engineering: Systems) +
in The University of Michigan
2005 +
Doctoral Committee: +
Professor Alfred O. Hero III, Chair +
Professor Jefirey A. Fessler +
Professor David L. Neuhofi +
('1703616', 'Susan A. Murphy', 'susan a. murphy')
6e1802874ead801a7e1072aa870681aa2f555f351­4244­0728­1/07/$20.00 ©2007 IEEE +
I ­ 629 +
ICASSP 2007 +
-:241/.-)674-,-5+412645.4.)+-4-+/16115DKE?DAC;=20K=9=C2:E=K6=C=@16D=I0K=C1-+-,AF=HJAJ7ELAHIEJOB1EEI=J7H>==+D=F=EC75)2,AF=HJAJB1BH=JE-CEAAHEC+DEAIA7ELAHIEJOB0CC0CC)*564)+60MJA?@A=B=?AEI=ME@AOIJK@EA@FH>AE>JDF=JJAHHA?CEJE=@FIO?DCOEJAH=JKHAI=OBA=JKHA@AI?HEFJHI/=>HBA=JKHA?=*E=HO2=JJAH*2=@-@CAHEAJ=JE0EIJCH=D=LA>AAFHFIA@1JDEIF=FAHMACELA=?FHADAIELAIJK@OBJDAIA@AI?HEFJHIK@AHJDABH=AMHB2HE?EF=+FAJ)=OIEI2+)BMA@>OEA=H,EI?HEE=J)=OIEI,)?F=HA@JDHAA@EBBAHAJFFK=HIEE=HEJOA=IKHAI=@JM@EBBAHAJBA=JKHA?HHAIF@A?AIJH=JACEAIDEIJE?=@?=HALAHMAFHAIAJ=AMBA=JKHA@AI?HEFJH=A@KJE4=@EKI*2=@=IFHFIA=?>E=JEI?DAABHJDA*2=@/=>H@AI?HEFJH6DAANFAHEAJIJDA2KH@KA=@+721-@=J=>=IAI@AIJH=JAJD=J=>LEKIHA?CEJE>IJB*2EI=?DEALA@K@AH2+),)BH=AMH?F=HA@JJDA@EHA?J?=IIE?=JE JDA*2=@/=>HBA=JKHAI=HA?F=H=>A=IMA=IKJK=O?FAAJ=HO=@JDA?>E=JEBJDAIAJM@AI?HEFJHI>HECI=IECE?=JEFHLAAJE?=IIE?=JE?=F=>EEJOLAHIECAAI=@!JDAKJE4=@EKI*2IDMIJKJFAHBH=JDAIJ=JABJDA=HJBA=JKHA@AI?HEFJHI1@AN6AHIa.A=JKHA,AI?HEFJH5EE=HEJOA=IKHA164,7+616DAIK??AIIB=B=?AHA?CEJE=CHEJDCHA=JOHAEAIDMJANJH=?JABBA?JELABA=JKHAIJ@AI?HE>A=E=CA=@ DMJEBAHJDAIEE=HEJOBJMB=?AI>=IA@JDAANJH=?JA@BA=JKHAIIJFHALEKIIJK@EAIB?KIJDA=JJAHF=HJIK?D=I-ECAB=?A .EIDAHB=?A =@LEAM>=IA@HA?CEJE=FFH=?DAI!6DAO=HA=>=IA@JDAHECE=CH=OALAL=KAI=@FHAIAJ@EBBAHAJIEE=HEJOA=IKHAI>=IA@IK>IF=?AJA?DEGKAI6DAHECE=CH=OALABA=JKHABJAIKBBAHIBHJDAEKE=JE=@ANFHAIIEL=HE=JEI=@=O=FFH=?DAID=LA>AAFHFIA@JANJH=?JHAH>KIJHIA=JE?BA=JKHAIBHE=CAI)CJDA/=>HBA=JKHAEIJDAIJFFK=HA=@JDA-=IJE?*K?D/H=FD=J?DEC-*/"AJD@D=IIK??AIIBKOEJACH=JA@/=>HBA=JKHAI=@JDA?=?HHAIF@A?AIJH=JACOBHJDAKJELEAMB=?AHA?CEJEFH>A+>EA@MEJDKEA@IK>IF=?A==OIEI EJD=I=I>AAKIA@JEFHLAE@H=@KJ@HB=?AHA?CEJE4A?AJO?=*E=HO2=JJAH*2HECE=OEJH@K?A@BHJANJKHAHAFHAIAJ=JED=IFHLA@J>A=FMAHBK@AI?HEFJHBHB=?AHA?CEJE6DA-0@AI?HEFJH?FKJAIJDADEIJCH=BJDAA@CAHEAJ=JE@EIJHE>KJEMEJDEJDAAECD>HD@B=FEJ=@JDAMHE#IDMIJD=J-0BA=JKHA?=IECE?=JOEFHLAJDAB=?A@AJA?JEFAHBH=?AE?F=HEIJJDAHECE=CH=OALABA=JKHA1JDEIF=FAHMA=FFOJDA-0@AI?HEFJHBHB=?AHA?CEJE6DAMHEIDMIJD=J*2>=IA@@EHA?JA=HAIJAECD>H+=IIEAH@AIJ=M=OIFH@K?AI=JEIBOECHAIKJI1JDEIMHMAFHFIAJKJEEAJDABH=AMHB2HE?EF=+FAJ)=OIEI2+)BMA@>OEA=H,EI?HEE=J)=OIEI,)BH*2>=IA@B=?AHA?CEJEEMDE?D=FIIE>A2+)=@,)@EAIE?>E=JEI=HAANFHA@)@H==JE?HA?CEJE>IJEI>IAHLA@>=IA@JDEIAMBH=AMH)IMAFHFIAJDAKJE4=@EKI*2HAFHAIAJ=JEBHB=?AHA?CEJE=@CELA=?FHADAIELAIJK@OMEJDJDABA=JKHA@AI?HEFJHI/=>H*2-0=IMA=IJDAHECE=CH=OALABA=JKHAI6DAIABA=JKHA@AI?HEFJHI=HA?F=HA@MEJDJM@EBBAHAJBA=JKHA?HHAIF@A?AAJD@IEADEIJE?=@?=6DABHAHA?IJHK?JIJDABA=JKHA?HHAIF@A?A@EHA?JO>=IA@JDAE=CA?H@E=JAIMDEAJDA=JJAHAEI>=IA@=IAJBAOBA=JKHAFEJIIK?D=IJDAKJD=@AOA?HAHIIA=@B=?A?JKHFEJIHALAHJDHAA@EBBAHAJIEE=HEJOA=IKHAI =@+IEA=HA=FFEA@JANJAIELAOAL=K=JAJDAABBA?JELAAIIBJDAIA@EBBAHAJ@AI?HEFJHI/=>HBA=JKHA=@*2?D=H=?JAHEAJDAFHFAHJOB?=JANJKHA@EIJHE>KJEIE@EIJE?JM=OI1JDEIMHE=@@EJEJJDA?FHADAIELA?F=HEIMAAL=K=JAJDAEH?FAAJ=HOFHFAHJO=@JDAANFAHEAJ=HAIKJIJDA+721-=@2KH@KA@=J=>=IAIIDMJD=JJDA?>E=JEBJDA>HECIIECE?=JFAHBH=?AEFHLAAJI 4-81-9.60-.-)674-,-5+4126451JDEIIA?JEMACELA=LAHLEAMBJDAIJ=JABJDA=HJBA=JKHA@AI?HEFJHIBHJDAB=?AHA?CEJEFH>A
6ed22b934e382c6f72402747d51aa50994cfd97bCustomized Expression Recognition for Performance-Driven +
Cutout Character Animation +
†NEC Laboratories America +
‡Snapchat +
('39960064', 'Xiang Yu', 'xiang yu')
('1706007', 'Jianchao Yang', 'jianchao yang')
6e93fd7400585f5df57b5343699cb7cda20cfcc2http://journalofvision.org/9/2/22/ +
Comparing a novel model based on the transferable +
belief model with humans during the recognition of +
partially occluded facial expressions +
Département de Psychologie, Université de Montréal, +
Canada +
Département de Psychologie, Université de Montréal, +
Canada +
Département de Psychologie, Université de Montréal, +
Canada +
Humans recognize basic facial expressions effortlessly. Yet, despite a considerable amount of research, this task remains +
elusive for computer vision systems. Here, we compared the behavior of one of the best computer models of facial +
expression recognition (Z. Hammal, L. Couvreur, A. Caplier, & M. Rombaut, 2007) with the behavior of human observers +
during the M. Smith, G. Cottrell, F. Gosselin, and P. G. Schyns (2005) facial expression recognition task performed on +
stimuli randomly sampled using Gaussian apertures. The modelVwhich we had to significantly modify in order to give the +
ability to deal with partially occluded stimuliVclassifies the six basic facial expressions (Happiness, Fear, Sadness, +
Surprise, Anger, and Disgust) plus Neutral from static images based on the permanent facial feature deformations and the +
Transferable Belief Model (TBM). Three simulations demonstrated the suitability of the TBM-based model to deal with +
partially occluded facial parts and revealed the differences between the facial information used by humans and by the +
model. This opens promising perspectives for the future development of the model. +
Keywords: facial features behavior, facial expressions classification, Transferable Belief Model, Bubbles +
Citation: Hammal, Z., Arguin, M., & Gosselin, F. (2009). Comparing a novel model based on the transferable belief +
http://journalofvision.org/9/2/22/, doi:10.1167/9.2.22. +
Introduction +
Facial expressions communicate information from +
which we can quickly infer the state of mind of our peers +
and adjust our behavior accordingly (Darwin, 1872). To +
illustrate, take a person like patient SM with complete +
bilateral damage to the amygdala nuclei that prevents her +
from recognizing facial expressions of fear. SM would be +
incapable of interpreting the fearful expression on the face +
of a bystander, who has encountered a furious Grizzly +
bear, as a sign of potential +
threat (Adolphs, Tranel, +
Damasio, & Damasio, 1994). +
Facial expressions are typically arranged into six +
universally recognized basic categories Happiness, Sur- +
prise, Disgust, Anger, Sadness, and Fear that are similarly +
expressed across different backgrounds and cultures +
(Cohn, 2006; Ekman, 1999; Izard, 1971, 1994). Facial +
expressions result +
from the precisely choreographed +
deformation of facial features, which are often described +
using the 46 Action Units (AUs; Ekman & Friesen, +
1978). +
Facial expression recognition and computer +
vision +
The study of human facial expressions has an impact in +
several areas of life such as art, social interaction, cognitive +
science, medicine, security, affective computing, and +
human-computer interaction (HCI). An automatic facial +
expressions classification system may contribute signifi- +
cantly to the development of all these disciplines. However, +
the development of such a system constitutes a significant +
challenge because of the many constraints that are imposed +
by its application in a real-world context (Pantic & Bartlett, +
2007; Pantic & Patras, 2006). In particular, such systems +
need to provide great accuracy and robustness without +
demanding too many interventions from the user. +
There have been major advances in computer vision +
over the past 15 years for the recognition of the six basic +
facial expressions (for reviews, see Fasel & Luettin, 2003; +
Pantic & Rothkrantz, 2000b). The main approaches can be +
divided in two classes: Model-based and fiducial points +
approaches. The model-based approach requires the +
design of a deterministic physical model that can represent +
doi: 10.1167/9.2.22 +
Received January 28, 2008; published February 26, 2009 +
ISSN 1534-7362 * ARVO +
('1785007', 'Zakia Hammal', 'zakia hammal')
('3005969', 'Martin Arguin', 'martin arguin')
('2074568', 'Frédéric Gosselin', 'frédéric gosselin')
6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9LEGO Pictorial Scales for Assessing Affective Responses +
t2i Lab, Chalmers University of Technology, Gothenburg, Sweden
2Digital Productivity, CSIRO, Australia +
University of Canterbury, New Zealand
Texas AandM University, College Station, TX, USA
Human Centered Multimedia, Augsburg University, Germany
Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand
('1761180', 'Mohammad Obaid', 'mohammad obaid')
('39191121', 'Andreas Dünser', 'andreas dünser')
('1719307', 'Elena Moltchanova', 'elena moltchanova')
('33096182', 'Danielle Cummings', 'danielle cummings')
('1728894', 'Christoph Bartneck', 'christoph bartneck')
mobaid@chalmers.se +
6e12ba518816cbc2d987200c461dc907fd19f533
6e782073a013ce3dbc5b9b56087fd0300c510f67IOSR Journal of Computer Engineering (IOSR-JCE) +
e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 3, Ver. II (May – Jun. 2015), PP 61-68 +
www.iosrjournals.org +
Real Time Facial Emotion Recognition using Kinect V2 Sensor +
Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania
Ministry of Higher Education and Scientific Research / The University of Mustsnsiriyah/Baghdad IRAQ
2(Department of Computers/Faculty of Automatic Control and ComputersPOLITEHNICA of Bucharest +
3(Department of Computers/Faculty of Automatic Control and ComputersPOLITEHNICA of Bucharest +
ROMANIA) +
ROMANIA) +
('9384437', 'Hesham A. Alabbasi', 'hesham a. alabbasi')
('3088730', 'Alin Moldoveanu', 'alin moldoveanu')
9ab463d117219ed51f602ff0ddbd3414217e3166Weighted Transmedia +
Relevance Feedback for +
Image Retrieval and +
Auto-annotation +
TECHNICAL +
REPORT +
N° 0415 +
December 2011 +
Project-Teams LEAR - INRIA +
and TVPA - XRCE +
('1722052', 'Thomas Mensink', 'thomas mensink')
('34602236', 'Jakob Verbeek', 'jakob verbeek')
('1808423', 'Gabriela Csurka', 'gabriela csurka')
9ac82909d76b4c902e5dde5838130de6ce838c16Recognizing Facial Expressions Automatically +
from Video +
1 Introduction +
Facial expressions, resulting from movements of the facial muscles, are the face +
changes in response to a person’s internal emotional states, intentions, or social +
communications. There is a considerable history associated with the study on fa- +
cial expressions. Darwin (1872) was the first to describe in details the specific fa- +
cial expressions associated with emotions in animals and humans, who argued that +
all mammals show emotions reliably in their faces. Since that, facial expression +
analysis has been a area of great research interest for behavioral scientists (Ekman, +
Friesen, and Hager, 2002). Psychological studies (Mehrabian, 1968; Ambady and +
Rosenthal, 1992) suggest that facial expressions, as the main mode for non-verbal +
communication, play a vital role in human face-to-face communication. For illus- +
tration, we show some examples of facial expressions in Fig. 1. +
Computer recognition of facial expressions has many important applications in +
intelligent human-computer interaction, computer animation, surveillance and se- +
curity, medical diagnosis, law enforcement, and awareness systems (Shan, 2007). +
Therefore, it has been an active research topic in multiple disciplines such as psy- +
chology, cognitive science, human-computer interaction, and pattern recognition. +
Meanwhile, as a promising unobtrusive solution, automatic facial expression analy- +
sis from video or images has received much attention in last two decades (Pantic and +
Rothkrantz, 2000a; Fasel and Luettin, 2003; Tian, Kanade, and Cohn, 2005; Pantic +
and Bartlett, 2007). +
This chapter introduces recent advances in computer recognition of facial expres- +
sions. Firstly, we describe the problem space, which includes multiple dimensions: +
level of description, static versus dynamic expression, facial feature extraction and +
('10795229', 'Caifeng Shan', 'caifeng shan')
('3297850', 'Ralph Braspenning', 'ralph braspenning')
('10795229', 'Caifeng Shan', 'caifeng shan')
('3297850', 'Ralph Braspenning', 'ralph braspenning')
Philips Research, Eindhoven, The Netherlands, e-mail: caifeng.shan@philips.com +
Philips Research, Eindhoven, The Netherlands, e-mail: ralph.braspenning@philips.com +
9a0c7a4652c49a177460b5d2fbbe1b2e6535e50aAutomatic and Quantitative evaluation of attribute discovery methods +
The University of Queensland, School of ITEE
QLD 4072, Australia +
('2499431', 'Liangchen Liu', 'liangchen liu')
('2331880', 'Arnold Wiliem', 'arnold wiliem')
('3104113', 'Shaokang Chen', 'shaokang chen')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
l.liu9@uq.edu.au +
a.wiliem@uq.edu.au +
shaokangchenuq@gmail.com +
lovell@itee.uq.edu.au +
9ac15845defcd0d6b611ecd609c740d41f0c341dCopyright +
by +
2011 +
('1926834', 'Juhyun Lee', 'juhyun lee')
9ac43a98fe6fde668afb4fcc115e4ee353a6732dSurvey of Face Detection on Low-quality Images +
Beckmann Institute, University of Illinois at Urbana-Champaign, USA
('1698743', 'Yuqian Zhou', 'yuqian zhou')
('1771885', 'Ding Liu', 'ding liu')
{yuqian2, dingliu2}@illinois.edu +
huang@ifp.uiuc.edu +
9af1cf562377b307580ca214ecd2c556e20df000Feb. 28 +
International Journal of Advanced Studies in Computer Science and Engineering +
IJASCSE, Volume 4, Issue 2, 2015 +
Video-Based Facial Expression Recognition +
Using Local Directional Binary Pattern +
Electrical Engineering Dept., AmirKabir Univarsity of Technology +
Tehran, Iran +
('38519671', 'Sahar Hooshmand', 'sahar hooshmand')
('3232144', 'Ali Jamali Avilaq', 'ali jamali avilaq')
('3293075', 'Amir Hossein Rezaie', 'amir hossein rezaie')
9a23a0402ae68cc6ea2fe0092b6ec2d40f667adbHigh-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs +
1NVIDIA Corporation +
2UC Berkeley +
Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps +
(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can +
change labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also +
allows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road. +
Please visit our website for more side-by-side comparisons as well as interactive editing demos. +
('2195314', 'Ting-Chun Wang', 'ting-chun wang')
('2436356', 'Jun-Yan Zhu', 'jun-yan zhu')
('1690538', 'Jan Kautz', 'jan kautz')
9a4c45e5c6e4f616771a7325629d167a38508691A Facial Features Detector Integrating Holistic Facial Information and +
Part-based Model +
Eslam Mostafa1,2 +
Aly Farag1 +
CVIP Lab, University of Louisville, Louisville, KY 40292, USA
Alexandria University, Alexandria, Egypt
Assiut University, Assiut 71515, Egypt
4Kentucky Imaging Technology (KIT), Louisville, KY 40245, USA. +
('28453046', 'Asem A. Ali', 'asem a. ali')
('2239392', 'Ahmed Shalaby', 'ahmed shalaby')
9af9a88c60d9e4b53e759823c439fc590a4b5bc5Learning Deep Convolutional Embeddings for Face Representation Using Joint +
Sample- and Set-based Supervision +
Department of Electrical and Electronic Engineering, +
Imperial College London
('2151914', 'Baris Gecer', 'baris gecer')
('3288623', 'Vassileios Balntas', 'vassileios balntas')
('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')
{b.gecer,v.balntas15,tk.kim}@imperial.ac.uk +
9a7858eda9b40b16002c6003b6db19828f94a6c6MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE +
(cid:63) UC Berkeley / †ICSI +
('2301765', 'Tsung-Wei Ke', 'tsung-wei ke')
('2251428', 'Stella X. Yu', 'stella x. yu')
('1821337', 'David Whitney', 'david whitney')
9a3535cabf5d0f662bff1d897fb5b777a412d82eUniversity of Kentucky
UKnowledge +
Computer Science +
Computer Science Faculty Publications +
6-10-2015 +
Large-Scale Geo-Facial Image Analysis +
Mohammed T. Islam +
University of Kentucky
University of North Carolina at Charlotte
Click here to let us know how access to this document benefits you. +
Follow this and additional works at: https://uknowledge.uky.edu/cs_facpub +
Part of the Computer Sciences Commons +
Repository Citation +
Islam, Mohammed T.; Greenwell, Connor; Souvenir, Richard; and Jacobs, Nathan, "Large-Scale Geo-Facial Image Analysis" (2015). +
Computer Science Faculty Publications. 7. +
https://uknowledge.uky.edu/cs_facpub/7 +
This Article is brought to you for free and open access by the Computer Science at UKnowledge. It has been accepted for inclusion in Computer +
('2121759', 'Connor Greenwell', 'connor greenwell')
('1690110', 'Richard Souvenir', 'richard souvenir')
('1990750', 'Nathan Jacobs', 'nathan jacobs')
University of Kentucky, connor.greenwell@uky.edu +
University of Kentucky, nathan.jacobs@uky.edu +
Science Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. +
9abd35b37a49ee1295e8197aac59bde802a934f3Depth2Action: Exploring Embedded Depth for +
Large-Scale Action Recognition +
University of California, Merced
('1749901', 'Yi Zhu', 'yi zhu'){yzhu25,snewsam}@ucmerced.edu +
9a276c72acdb83660557489114a494b86a39f6ffEmotion Classification through Lower Facial Expressions using Adaptive +
Support Vector Machines +
Department of Information Technology, Faculty of Industrial Technology and Management, +
('2621463', 'Porawat Visutsak', 'porawat visutsak')King Mongkut’s University of Technology North Bangkok, porawatv@kmutnb.ac.th +
9a1a9dd3c471bba17e5ce80a53e52fcaaad4373eAutomatic Recognition of Spontaneous Facial +
Actions +
Institute for Neural Computation, University of California, San Diego
University at Buffalo, State University of New York
('2218905', 'Marian Stewart Bartlett', 'marian stewart bartlett')
('21751782', 'Gwen C. Littlewort', 'gwen c. littlewort')
('2639526', 'Mark G. Frank', 'mark g. frank')
('2767464', 'Claudia Lainscsek', 'claudia lainscsek')
('2039025', 'Ian R. Fasel', 'ian r. fasel')
('1741200', 'Javier R. Movellan', 'javier r. movellan')
mbartlet@ucsd.edu, gwen@mplab.ucsd.edu, clainscsek@ucsd.edu, ianfasel@cogsci.ucsd.edu, +
movellan@mplab.ucsd.edu +
mfrank83@buffalo.edu +
9a42c519f0aaa68debbe9df00b090ca446d25bc4Face Recognition via Centralized Coordinate +
Learning +
('2689287', 'Xianbiao Qi', 'xianbiao qi')
('1684635', 'Lei Zhang', 'lei zhang')
9aad8e52aff12bd822f0011e6ef85dfc22fe8466Temporal-Spatial Mapping for Action Recognition +('3865974', 'Xiaolin Song', 'xiaolin song')
('40093162', 'Cuiling Lan', 'cuiling lan')
('8434337', 'Wenjun Zeng', 'wenjun zeng')
('1757173', 'Junliang Xing', 'junliang xing')
('1759461', 'Jingyu Yang', 'jingyu yang')
('1692735', 'Xiaoyan Sun', 'xiaoyan sun')
36b40c75a3e53c633c4afb5a9309d10e12c292c7
363ca0a3f908859b1b55c2ff77cc900957653748International Journal of Computer Trends and Technology (IJCTT) – volume 1 Issue 3 Number 4 – Aug 2011 +
Local Binary Patterns and Linear Programming using +
Facial Expression +
Ms.P.Jennifer +
Bharath Institute of Science and Technology
B.Tech (C.S.E), Bharath University, Chennai
Dr. A. Muthu kumaravel +
Bharath Institute of Science and Technology
B.Tech (C.S.E), Bharath University, Chennai
+
36939e6a365e9db904d81325212177c9e9e76c54Assessing the Accuracy of Four Popular Face Recognition Tools for +
Inferring Gender, Age, and Race +
Qatar Computing Research Institute, HBKU
HBKU Research Complex, Doha, P.O. Box 34110, Qatar +
('1861541', 'Soon-Gyo Jung', 'soon-gyo jung')
('40660541', 'Jisun An', 'jisun an')
('2592694', 'Haewoon Kwak', 'haewoon kwak')
('2734912', 'Joni Salminen', 'joni salminen')
{sjung,jan,hkwak,jsalminen,bjansen}@hbku.edu.qa +
3646b42511a6a0df5470408bc9a7a69bb3c5d742International Journal of Computer Applications (0975 – 8887) +
Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015 +
Detection of Facial Parts based on ABLATA +
Technical Campus, Bhilai +
Vikas Singh +
Technical Campus, Bhilai +
Abha Choubey +
Technical Campus, Bhilai +
('9173769', 'Siddhartha Choubey', 'siddhartha choubey')
365f67fe670bf55dc9ccdcd6888115264b2a2c56
36fe39ed69a5c7ff9650fd5f4fe950b5880760b0Tracking von Gesichtsmimik +
mit Hilfe von Gitterstrukturen +
zur Klassifikation von schmerzrelevanten Action +
Units +
1Fraunhofer-Institut f¨ur Integrierte Schaltungen IIS, Erlangen, +
2Otto-Friedrich-Universit¨at Bamberg, 3Universit¨atsklinkum Erlangen +
Kurzfassung. In der Schmerzforschung werden schmerzrelevante Mi- +
mikbewegungen von Probanden mittels des Facial Action Coding System +
klassifiziert. Die manuelle Klassifikation hierbei ist aufw¨andig und eine +
automatische (Vor-)klassifikation k¨onnte den diagnostischen Wert dieser +
Analysen erh¨ohen sowie den klinischen Workflow unterst¨utzen. Der hier +
vorgestellte regelbasierte Ansatz erm¨oglicht eine automatische Klassifika- +
tion ohne große Trainingsmengen vorklassifizierter Daten. Das Verfahren +
erkennt und verfolgt Mimikbewegungen, unterst¨utzt durch ein Gitter, +
und ordnet diese Bewegungen bestimmten Gesichtsarealen zu. Mit die- +
sem Wissen kann aus den Bewegungen auf die zugeh¨origen Action Units +
geschlossen werden. +
1 Einleitung +
Menschliche Empfindungen wie Emotionen oder Schmerz l¨osen spezifische Mu- +
ster von Kontraktionen der Gesichtsmuskulatur aus, die Grundlage dessen sind, +
was wir Mimik nennen. Aus der Beobachtung der Mimik kann wiederum auf +
menschliche Empfindungen r¨uckgeschlossen werden. Im Rahmen der Schmerz- +
forschung werden Videoaufnahmen von Probanden hinsichtlich des mimischen +
Schmerzausdrucks analysiert. Zur Beschreibung des mimischen Ausdrucks und +
dessen Ver¨anderungen wird das Facial Action Coding System (FACS) [1] verwen- +
det, das anatomisch begr¨undet, kleinste sichtbare Muskelbewegungen im Gesicht +
beschreibt und als einzelne Action Units (AUs) kategorisiert. Eine Vielzahl von +
Untersuchungen hat gezeigt, dass spezifische Muster von Action Units auftre- +
ten, wenn Probanden Schmerzen angeben [2]. Die manuelle Klassifikation und +
Markierung der Action Units von Probanden in Videosequenzen bedarf einer +
langwierigen Beobachtung durch ausgebildete FACS-Coder. Eine automatische +
(Vor-)klassifikation kann hierbei den klinischen Workflow unterst¨utzen und dieses +
Verfahren zum brauchbaren diagnostischen Instrument machen. Bisher realisier- +
te Ans¨atze zum Erkennen von Gesichtsausdr¨ucken basieren auf der Klassifikation +
('31431972', 'Christine Barthold', 'christine barthold')
('2009811', 'Anton Papst', 'anton papst')
('1773752', 'Thomas Wittenberg', 'thomas wittenberg')
('1793798', 'Stefan Lautenbacher', 'stefan lautenbacher')
('1727734', 'Ute Schmid', 'ute schmid')
('2500903', 'Sven Friedl', 'sven friedl')
sven.friedl@iis.fraunhofer.de +
36a3a96ef54000a0cd63de867a5eb7e84396de09Automatic Photo Orientation Detection with Convolutional Neural Networks +
Dept. of Computer Science +
University of Toronto
Toronto, Ontario, Canada +
('40121109', 'Ujash Joshi', 'ujash joshi')
('1959343', 'Michael Guerzhoy', 'michael guerzhoy')
ujash.joshi@utoronto.ca, guerzhoy@cs.toronto.edu +
36fc4120fc0638b97c23f97b53e2184107c52233National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013) +
Proceedings published by International Journal of Computer Applications® (IJCA) +
Introducing Celebrities in an Images using HAAR +
Cascade algorithm +
Asst. Professor +
PES Modern College of Engg
PES Modern College of Engg
PES Modern College of Engg
Shivaji Nagar, Pune +
Shivaji Nagar, Pune +
Shivaji Nagar, Pune +
('12682677', 'Deipali V. Gore', 'deipali v. gore')
36ce0b68a01b4c96af6ad8c26e55e5a30446f360Multimed Tools Appl +
DOI 10.1007/s11042-014-2322-6 +
Facial expression recognition based on a mlp neural +
network using constructive training algorithm +
Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014 +
© Springer Science+Business Media New York 2014 +
('1746834', 'Hayet Boughrara', 'hayet boughrara')
('3410172', 'Chokri Ben Amar', 'chokri ben amar')
3674f3597bbca3ce05e4423611d871d09882043bISSN 1796-2048 +
Volume 7, Number 4, August 2012 +
Contents +
Special Issue: Multimedia Contents Security in Social Networks Applications +
Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran +
Guest Editorial +
Zhiyong Zhang and Muthucumaru Maheswaran +
SPECIAL ISSUE PAPERS +
DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding +
Gang Wang and Xiao-lin Gui +
Block-Based Parallel Intra Prediction Scheme for HEVC +
Jie Jiang, Baolong, Wei Mo, and Kefeng Fan +
Optimized LSB Matching Steganography Based on Fisher Information +
Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao +
A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform +
Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo +
Stego Key Estimation in LSB Steganography +
Jing Liu and Guangming Tang +
REGULAR PAPERS +
Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions +
277 +
279 +
289 +
295 +
303 +
309 +
314 +
('46575279', 'H. Madokoro', 'h. madokoro')
362bfeb28adac5f45b6ef46c07c59744b4ed6a52INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE +
LEARNING +
University of California, Riverside, CA
('49616225', 'Sujoy Paul', 'sujoy paul')
('2177805', 'Sourya Roy', 'sourya roy')
('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')
360d66e210f7011423364327b7eccdf758b5fdd217th European Signal Processing Conference (EUSIPCO 2009) +
Glasgow, Scotland, August 24-28, 2009 +
LOCAL FEATURE EXTRACTION METHODS FOR FACIAL EXPRESSION +
RECOGNITION +
School of Electrical and Computer Engineering, RMIT University
City Campus, Swanston St., Melbourne, Australia +
http://www.rmit.edu.au +
('1857490', 'Seyed Mehdi Lajevardi', 'seyed mehdi lajevardi')
('1749220', 'Zahir M. Hussain', 'zahir m. hussain')
seyed.lajevardi@rmit.edu.au, zmhussain@ieee.org +
365866dc937529c3079a962408bffaa9b87c1f06 IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May 2014. +
www.ijiset.com +
ISSN 2348 – 7968 +
Facial Feature Expression Based Approach for Human Face +
Recognition: A Review +
SSESA, Science College, Congress Nagar, Nagpur, (MS)-India
RTM Nagpur University, Campus Nagpur, (MS)-India
for +
face +
task +
required +
extraction of +
361c9ba853c7d69058ddc0f32cdbe94fbc2166d5Deep Reinforcement Learning of +
Video Games +
s2098407 +
September 29, 2017 +
MSc. Project +
Arti(cid:12)cial Intelligence +
University of Groningen, The Netherlands
Supervisors +
Dr. M.A. (Marco) Wiering +
Prof. dr. L.R.B. (Lambert) Schomaker +
ALICE Institute
University of Groningen
Nijenborgh 9, 9747 AG, Groningen, The Netherlands +
('3405120', 'Jos van de Wolfshaar', 'jos van de wolfshaar')
368e99f669ea5fd395b3193cd75b301a76150f9dOne-to-many face recognition with bilinear CNNs +
Aruni RoyChowdhury +
University of Massachusetts, Amherst
Erik Learned-Miller +
('2144284', 'Tsung-Yu Lin', 'tsung-yu lin')
('35208858', 'Subhransu Maji', 'subhransu maji')
{arunirc,tsungyulin,smaji,elm}@cs.umass.edu +
362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2792 +
ICASSP 2016 +
36df81e82ea5c1e5edac40b60b374979a43668a5ON-THE-FLY SPECIFIC PERSON RETRIEVAL +
University of Oxford, United Kingdom
('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')
('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
{omkar,vedaldi,az}@robots.ox.ac.uk +
3619a9b46ad4779d0a63b20f7a6a8d3d49530339SIMONYAN et al.: FISHER VECTOR FACES IN THE WILD +
Fisher Vector Faces in the Wild +
Visual Geometry Group +
Department of Engineering Science +
University of Oxford
('34838386', 'Karen Simonyan', 'karen simonyan')
('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')
('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
karen@robots.ox.ac.uk +
omkar@robots.ox.ac.uk +
vedaldi@robots.ox.ac.uk +
az@robots.ox.ac.uk +
366d20f8fd25b4fe4f7dc95068abc6c6cabe1194
3630324c2af04fd90f8668f9ee9709604fe980fdThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2607345, IEEE +
Transactions on Circuits and Systems for Video Technology +
Image Classification with Tailored Fine-Grained +
Dictionaries +
('2287686', 'Xiangbo Shu', 'xiangbo shu')
('8053308', 'Jinhui Tang', 'jinhui tang')
('2272096', 'Guo-Jun Qi', 'guo-jun qi')
('3233021', 'Zechao Li', 'zechao li')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
362ba8317aba71c78dafca023be60fb71320381d
36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958RGB-D Face Recognition with Texture and +
Attribute Features +
Member, IEEE +
('1931069', 'Gaurav Goswami', 'gaurav goswami')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('39129417', 'Richa Singh', 'richa singh')
36e8ef2e5d52a78dddf0002e03918b101dcdb326Multiview Active Shape Models with SIFT Descriptors +
for the 300-W Face Landmark Challenge +
University of Cape Town
Anthropics Technology Ltd. +
University of Cape Town
('2822258', 'Stephen Milborrow', 'stephen milborrow')
('1823550', 'Tom E. Bishop', 'tom e. bishop')
('2537623', 'Fred Nicolls', 'fred nicolls')
milbo@sonic.net +
t.e.bishop@gmail.com +
fred.nicolls@uct.ac.za +
36018404263b9bb44d1fddaddd9ee9af9d46e560OCCLUDED FACE RECOGNITION BY USING GABOR +
FEATURES +
1 Department of Electrical And Electronics Engineering, METU, Ankara, Turkey +
2 7h%ł7$.(cid:3)%ł/7(1(cid:15)(cid:3)$QNDUD(cid:15)(cid:3)7XUNH\ +
('2920043', 'Burcu Kepenekci', 'burcu kepenekci')
('3110567', 'F. Boray Tek', 'f. boray tek')
('1929001', 'Gozde Bozdagi Akar', 'gozde bozdagi akar')
367f2668b215e32aff9d5122ce1f1207c20336c8Proceedings of the Pakistan Academy of Sciences 52 (1): 15–25 (2015) +
Copyright © Pakistan Academy of Sciences +
ISSN: 0377 - 2969 (print), 2306 - 1448 (online) +
Pakistan Academy of Sciences +
Research Article +
Speaker-Dependent Human Emotion Recognition in +
Unimodal and Bimodal Scenarios +
University of Peshawar, Pakistan
University of Engineering and Technology
Sarhad University of Science and Information Technology
University of Peshawar, Peshawar, Pakistan
Peshawar, Pakistan +
Peshawar, Pakistan +
('34267835', 'Sanaul Haq', 'sanaul haq')
('3124216', 'Tariqullah Jan', 'tariqullah jan')
('1766329', 'Muhammad Asif', 'muhammad asif')
('1710701', 'Amjad Ali', 'amjad ali')
('40332145', 'Naveed Ahmad', 'naveed ahmad')
36c2db5ff76864d289781f93cbb3e6351f11984c17th European Signal Processing Conference (EUSIPCO 2009) +
Glasgow, Scotland, August 24-28, 2009 +
ONE COLORED IMAGE BASED 2.5D HUMAN FACE RECONSTRUCTION +
School of Electrical, Electronic and Computer Engineering +
Newcastle University, Newcastle upon Tyne
England, United Kingdom +
('1687577', 'Peng Liu', 'peng liu')Email: peng.liu2@ncl.ac.uk, w.l.woo@ncl.ac.uk, s.s.dlay@ncl.ac.uk +
3661a34f302883c759b9fa2ce03de0c7173d2bb2Peak-Piloted Deep Network for Facial Expression +
Recognition +
University of California, San Diego 2 Carnegie Mellon University
AI Institute
National University of Singapore
Institute of Automation, Chinese Academy of Sciences
('8343585', 'Xiangyun Zhao', 'xiangyun zhao')
('1776665', 'Luoqi Liu', 'luoqi liu')
('1699559', 'Nuno Vasconcelos', 'nuno vasconcelos')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('1743598', 'Teng Li', 'teng li')
xiz019@ucsd.edu xdliang328@gmail.com liuluoqi@360.cn +
tenglwy@gmail.com nvasconcelos@ucsd.edu eleyans@nus.edu.sg +
36c473fc0bf3cee5fdd49a13cf122de8be736977Temporal Segment Networks: Towards Good +
Practices for Deep Action Recognition +
1Computer Vision Lab, ETH Zurich, Switzerland +
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, CAS, China
('33345248', 'Limin Wang', 'limin wang')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('1915826', 'Zhe Wang', 'zhe wang')
('33427555', 'Yu Qiao', 'yu qiao')
('1807606', 'Dahua Lin', 'dahua lin')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1681236', 'Luc Van Gool', 'luc van gool')
368d59cf1733af511ed8abbcbeb4fb47afd4da1cTo Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques +
and Their Impact on Recognition +
RichardWebster1, Vitomir ˇStruc2, Patrick J. Flynn1 and Walter J. Scheirer1 +
University of Notre Dame, USA
Faculty of Electrical Engineering, University of Ljubljana, Slovenia
('40061203', 'Sandipan Banerjee', 'sandipan banerjee')
('6846673', 'Joel Brogan', 'joel brogan')
('5014060', 'Aparna Bharati', 'aparna bharati')
{janez.krizaj, vitomir.struc}@fe.uni-lj.si +
{sbanerj1, jbrogan4, abharati, brichar1, flynn, wscheire}@nd.edu +
366595171c9f4696ec5eef7c3686114fd3f116adAlgorithms and Representations for Visual +
Recognition +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2012-53 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-53.html +
May 1, 2012 +
('35208858', 'Subhransu Maji', 'subhransu maji')
36b9f46c12240898bafa10b0026a3fb5239f72f3Collaborative Deep Reinforcement Learning for Joint Object Search +
Peking University
Microsoft Research +
Peking University
Microsoft Research +
('2045334', 'Xiangyu Kong', 'xiangyu kong')
('1894653', 'Bo Xin', 'bo xin')
('36637369', 'Yizhou Wang', 'yizhou wang')
('1745420', 'Gang Hua', 'gang hua')
kong@pku.edu.cn +
boxin@microsoft.com +
yizhou.wang@pku.edu.cn +
ganghua@microsoft.com +
361d6345919c2edc5c3ce49bb4915ed2b4ee49beDelft University of Technology
Models for supervised learning in sequence data +
Pei, Wenjie +
DOI +
10.4233/uuid:fff15717-71ec-402d-96e6-773884659f2c +
Publication date +
2018 +
Document Version +
Publisher's PDF, also known as Version of record +
Citation (APA) +
Pei, W. (2018). Models for supervised learning in sequence data DOI: 10.4233/uuid:fff15717-71ec-402d- +
96e6-773884659f2c +
Important note +
To cite this publication, please use the final published version (if applicable). +
Please check the document version above. +
Copyright +
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent +
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. +
Takedown policy +
Please contact us and provide details if you believe this document breaches copyrights. +
We will remove access to the work immediately and investigate your claim. +
This work is downloaded from Delft University of Technology
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. +
3634b4dd263c0f330245c086ce646c9bb748cd6bTemporal Localization of Fine-Grained Actions in Videos +
by Domain Transfer from Web Images +
University of Southern California
Google, Inc
('1726241', 'Chen Sun', 'chen sun'){chensun,nevatia}@usc.edu +
{sanketh,sukthankar}@google.com +
367a786cfe930455cd3f6bd2492c304d38f6f488A Training Assistant Tool for the Automated Visual +
Inspection System +
A Thesis +
Presented to +
the Graduate School of +
Clemson University
In Partial Fulfillment +
of the Requirements for the Degree +
Master of Science +
Electrical Engineering +
by +
December 2015 +
Accepted by: +
Dr. Adam W. Hoover, Committee Chair +
Dr. Richard E. Groff +
Dr. Yongqiang Wang +
('4154752', 'Mohan Karthik Ramaraj', 'mohan karthik ramaraj')
5c4ce36063dd3496a5926afd301e562899ff53ea
5c6de2d9f93b90034f07860ae485a2accf529285Int. J. Biometrics, Vol. X, No. Y, xxxx +
Compensating for pose and illumination in +
unconstrained periocular biometrics +
Department of Computer Science, +
IT – Instituto de Telecomunicações, +
University of Beira Interior
6200-Covilhã, Portugal +
Fax: +351-275-319899 +
*Corresponding author +
('1678263', 'Chandrashekhar N. Padole', 'chandrashekhar n. padole')
('1712429', 'Hugo Proença', 'hugo proença')
E-mail: chandupadole@ubi.pt +
E-mail: hugomcp@di.ubi.pt +
5cbe1445d683d605b31377881ac8540e1d17adf0On 3D Face Reconstruction via Cascaded Regression in Shape Space +
College of Computer Science, Sichuan University, Chengdu, China
('50207647', 'Feng Liu', 'feng liu')
('39422721', 'Dan Zeng', 'dan zeng')
('1723081', 'Jing Li', 'jing li')
('7345195', 'Qijun Zhao', 'qijun zhao')
qjzhao@scu.edu.cn +
5ca23ceb0636dfc34c114d4af7276a588e0e8dacTexture Representation in AAM using Gabor Wavelet +
and Local Binary Patterns +
School of Electronic Engineering, +
Xidian University
Xi’an 710071, China +
School of Computer Science and Information Systems, +
Birkbeck College, University of London
London WC1E 7HX, U.K. +
School of Computer Engineering, +
Nanyang Technological University
50 Nanyang Avenue, Singapore 639798 +
School of Electronic Engineering, +
Xidian University
Xi’an 710071, China +
('5452186', 'Ya Su', 'ya su')
('1720243', 'Xuelong Li', 'xuelong li')
('1692693', 'Dacheng Tao', 'dacheng tao')
('10699750', 'Xinbo Gao', 'xinbo gao')
su1981ya@gmail.com +
xuelong@dcs.bbk.ac.uk +
dacheng.tao@gmail.com +
xbgao@mail.xidian.edu.cn +
5c2a7518fb26a37139cebff76753d83e4da25159
5c493c42bfd93e4d08517438983e3af65e023a87The Thirty-Second AAAI Conference +
on Artificial Intelligence (AAAI-18) +
Multimodal Keyless Attention +
Fusion for Video Classification +
Tsinghua University, 2Rutgers University, 3Baidu IDL
('1716690', 'Xiang Long', 'xiang long')
('2551285', 'Chuang Gan', 'chuang gan')
('1732213', 'Gerard de Melo', 'gerard de melo')
('48033101', 'Xiao Liu', 'xiao liu')
('48515099', 'Yandong Li', 'yandong li')
('9921390', 'Fu Li', 'fu li')
('35247507', 'Shilei Wen', 'shilei wen')
{longx13, ganc13}@mails.tsinghua.edu.cn, gdm@demelo.org, {liuxiao12, liyandong, lifu, wenshilei}@baidu.com +
5cb83eba8d265afd4eac49eb6b91cdae47def26dFace Recognition with Local Line Binary Pattern +
Mahanakorn University of Technology
51 Cheum-Sampan Rd., Nong Chok, Bangkok, THAILAND 10530 +
('2337544', 'Amnart Petpon', 'amnart petpon')
('1805935', 'Sanun Srisuk', 'sanun srisuk')
ta tee473@hotmail.com, sanun@mut.ac.th +
5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48Robust Face Detection by Simple Means +
Institute for Computer Graphics and Vision
Graz University of Technology, Austria
1 Motivation +
Face detection is still one of the core problems in computer vision, especially in +
unconstrained real-world situations where variations in face pose or bad imaging +
conditions have to be handled. These problems are covered by recent benchmarks +
such as Face Detection Dataset and Benchmark (FDDB) [2], which reveals that +
established methods, e.g, Viola and Jones [8] suffer a drop in performance. More +
effective approaches exist, but are closed source and not publicly available. Thus, +
we propose a simple but effective detector that is available to the public. It +
combines Histograms of Orientated Gradient (HOG) [1] features with linear +
Support Vector Machine (SVM) classification. +
2 Technical Details +
One important aspect in the training of our face detector is bootstrapping. Thus, +
we rely on iterative training. In particular, each iteration consists of first describ- +
ing the face patches by HOGs [1] and then learning a linear SVM. At the end +
of each iteration we bootstrap with the preliminary detector hard examples to +
enrich the training set. We perform several bootstrapping rounds to improve the +
detector until the desired false positive per window rate is reached. Interestingly, +
we found out that picking up false positives at multiple scales in a sliding win- +
dow fashion yields better results than just at a single scale. Testing several patch +
sizes and HOG layouts revealed that a patch size of 36 by 36 delivers the best +
results. For the HOG descriptor we ended up with a block size of 12x12, 4x4 for +
the cells. Prior to the actual training we gathered face crops of the Annotated +
facial landmarks in the wild (AFLW) dataset [4]. As AFLW includes the coarse +
face pose we are able to retrieve about 28k frontal faces by limiting the yaw angle +
between ± π +
6 and mirroring them. For each face we crop a square region between +
forehead and chin. The non-face patches are obtained by randomly sampling at +
multiple scales of the PASCAL VOC 2007 dataset, excluding the persons subset. +
3 Results +
In Figure 1 we report the performance of our final detector on the challenging +
FDDB benchmark compared to state-of-the-art methods. Despite the simplicity +
of our detector it is able to improve considerably over the boosted classifier cas- +
cade of Viola and Jones [8] and even outperforms the recent work of Jain and +
('3202367', 'Paul Wohlhart', 'paul wohlhart')
('1791182', 'Peter M. Roth', 'peter m. roth')
('3628150', 'Horst Bischof', 'horst bischof')
{koestinger,wohlhart,pmroth,bischof}@icg.tugraz.at +
5c3dce55c61ee86073575ac75cc882a215cb49e6Neural Codes for Image Retrieval +
Alexandr Chigorin1, and Victor Lempitsky2 +
1 Yandex, Russia +
Skolkovo Institute of Science and Technology (Skoltech), Russia
Moscow Institute of Physics and Technology, Russia
('2412441', 'Artem Babenko', 'artem babenko')
('32829387', 'Anton Slesarev', 'anton slesarev')
5c2e264d6ac253693469bd190f323622c457ca05978-1-4799-2341-0/13/$31.00 ©2013 IEEE +
4367 +
ICIP 2013 +
5c473cfda1d7c384724fbb139dfe8cb39f79f626
5c820e47981d21c9dddde8d2f8020146e600368fExtended Supervised Descent Method for +
Robust Face Alignment +
Beijing University of Posts and Telecommunications, Beijing, China
('9120475', 'Liu Liu', 'liu liu')
('23224233', 'Jiani Hu', 'jiani hu')
('1678529', 'Shuo Zhang', 'shuo zhang')
('1774956', 'Weihong Deng', 'weihong deng')
5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c02132 +
Reference Face Graph for Face Recognition +
('1784929', 'Mehran Kafai', 'mehran kafai')
('39776603', 'Le An', 'le an')
('1707159', 'Bir Bhanu', 'bir bhanu')
5c35ac04260e281141b3aaa7bbb147032c887f0cFace Detection and Tracking Control with Omni Car +
CS 231A Final Report +
June 31, 2016 +
('2645488', 'Tung-Yu Wu', 'tung-yu wu')
5c435c4bc9c9667f968f891e207d241c3e45757aRUIZ-HERNANDEZ, CROWLEY, LUX: HOW OLD ARE YOU? +
"How old are you?" : Age Estimation with +
Tensors of Binary Gaussian Receptive Maps +
INRIA Grenoble Rhones-Alpes +
Research Center and Laboratoire
d’Informatique de Grenoble (LIG) +
655 avenue de l’Europe +
38 334 Saint Ismier Cedex, France +
('2291512', 'John A. Ruiz-Hernandez', 'john a. ruiz-hernandez')
('34740185', 'James L. Crowley', 'james l. crowley')
('2599357', 'Augustin Lux', 'augustin lux')
john-alexander.ruiz-hernandez@inrialpes.fr +
james.crowley@inrialpes.fr +
augustin.lux@inrialpes.fr +
5c7adde982efb24c3786fa2d1f65f40a64e2afbfRanking Domain-Specific Highlights +
by Analyzing Edited Videos +
University of Washington, Seattle, WA, USA
('1711801', 'Min Sun', 'min sun')
('2270286', 'Ali Farhadi', 'ali farhadi')
5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934GeePS: Scalable deep learning on distributed GPUs +
with a GPU-specialized parameter server +
Carnegie Mellon University
('1874200', 'Henggang Cui', 'henggang cui')
('1682058', 'Hao Zhang', 'hao zhang')
('1707164', 'Gregory R. Ganger', 'gregory r. ganger')
('1974678', 'Phillip B. Gibbons', 'phillip b. gibbons')
('1752601', 'Eric P. Xing', 'eric p. xing')
5cfbeae360398de9e20e4165485837bd42b93217Cengil Emine, Cınars Ahmet, International Journal of Advance Research, Ideas and Innovations in Technology. +
ISSN: 2454-132X +
Impact factor: 4.295 +
(Volume3, Issue5) +
Available online at www.ijariit.com +
Comparison Of Hog (Histogram of Oriented Gradients) and +
Haar Cascade Algorithms with a Convolutional Neural Network +
Based Face Detection Approaches +
Computer Engineering Department +
Firat University
Computer Engineering Department +
Firat University
('27758959', 'Emine Cengil', 'emine cengil')ecengil@firat.edu.tr +
acinar@firat.edu.tr +
5ca14fa73da37855bfa880b549483ee2aba26669ISSN (e): 2250 – 3005 || Volume, 07 || Issue, 07|| June – 2017 || +
International Journal of Computational Engineering Research (IJCER) +
Face Recognition under Varying Illuminations Using Local +
Binary Pattern And Local Ternary Pattern Fusion +
Punjabi University Patiala
Punjabi University Patiala
('2029759', 'Reecha Sharma', 'reecha sharma')
5c02bd53c0a6eb361972e8a4df60cdb30c6e3930Multimedia stimuli databases usage patterns: a +
survey report +
M. Horvat1, S. Popović1 and K. Ćosić1 +
University of Zagreb, Faculty of Electrical Engineering and Computing
Department of Electric Machines, Drives and Automation +
Zagreb, Croatia +
marko.horvat2@fer.hr +
5c8ae37d532c7bb8d7f00dfde84df4ba63f46297DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative +
Adversarial Networks +
Georgia Institute of Technology
Google +
Irfan Essa +
Georgia Institute of Technology
('2308598', 'Unaiza Ahsan', 'unaiza ahsan')
('1726241', 'Chen Sun', 'chen sun')
uahsan3@gatech.edu +
chensun@google.com +
irfan@gatech.edu +
5c717afc5a9a8ccb1767d87b79851de8d3016294978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1845 +
ICASSP 2012 +
5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49Facial Expression Intensity Estimation Using Ordinal Information +
Computer and Systems Engineering, Rensselaer Polytechnic Institute
School of Computer Science and Technology, University of Science and Technology of China
('1746803', 'Rui Zhao', 'rui zhao')
('2316359', 'Quan Gan', 'quan gan')
('1791319', 'Shangfei Wang', 'shangfei wang')
('1726583', 'Qiang Ji', 'qiang ji')
1{zhaor,jiq}@rpi.edu, 2{gqquan@mail.,sfwang@}ustc.edu.cn +
5c4d4fd37e8c80ae95c00973531f34a6d810ea3aThe Open World of Micro-Videos +
UC Irvine1, INRIA2, Carnegie Mellon University
('1879100', 'Phuc Xuan Nguyen', 'phuc xuan nguyen')
('1770537', 'Deva Ramanan', 'deva ramanan')
09b80d8eea809529b08a8b0ff3417950c048d474Adding Unlabeled Samples to Categories by Learned Attributes +
University of Maryland, College Park
University of Washington
('3826759', 'Jonghyun Choi', 'jonghyun choi')
('2270286', 'Ali Farhadi', 'ali farhadi')
('1693428', 'Larry S. Davis', 'larry s. davis')
{jhchoi,mrastega,lsd}@umiacs.umd.edu +
ali@cs.uw.edu +
09f58353e48780c707cf24a0074e4d353da18934To appear in Proc. IEEE IJCB, 2014 +
Unconstrained Face Recognition: Establishing Baseline +
Human Performance via Crowdsourcing +
Michigan State University, East Lansing, MI, U.S.A
Cornell University, Ithaca, NY, U.S.A
3Noblis, Falls Church, VA, U.S.A. +
('2180413', 'Lacey Best-Rowden', 'lacey best-rowden')
('2339748', 'Shiwani Bisht', 'shiwani bisht')
('2619953', 'Joshua C. Klontz', 'joshua c. klontz')
('6680444', 'Anil K. Jain', 'anil k. jain')
bestrow1@cse.msu.edu;sb854@cornell.edu;joshua.klontz@noblis.org;jain@cse.msu.edu +
096eb8b4b977aaf274c271058feff14c99d46af3REPORT DOCUMENTATION PAGE +
Form Approved OMB NO. 0704-0188 +
including +
the +
time +
for reviewing +
for +
information, +
for +
this collection of +
information +
is estimated +
to average 1 hour per response, +
the data needed, and completing and reviewing +
this collection of +
instructions, +
The public reporting burden +
Send comments +
searching existing data sources, gathering and maintaining +
to Washington +
regarding +
this burden estimate or any other aspect of +
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. +
Headquarters Services, Directorate +
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of +
information if it does not display a currently valid OMB control number. +
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. +
1. REPORT DATE (DD-MM-YYYY) +
05-10-2012 +
4. TITLE AND SUBTITLE +
Multi-observation visual recognition via joint dynamic sparse +
representation +
5a. CONTRACT NUMBER +
W911NF-09-1-0383 +
5b. GRANT NUMBER +
2. REPORT TYPE +
Conference Proceeding +
3. DATES COVERED (From - To) +
the collection of +
reducing +
for +
information. +
this burden, +
including suggesstions +
6. AUTHORS +
Huang +
7. PERFORMING ORGANIZATION NAMES AND ADDRESSES +
William Marsh Rice University
Office of Sponsored Research +
William Marsh Rice University
Houston, TX +
9. SPONSORING/MONITORING AGENCY NAME(S) AND +
ADDRESS(ES) +
77005 - +
U.S. Army Research Office +
P.O. Box 12211 +
Research Triangle Park, NC 27709-2211 +
5c. PROGRAM ELEMENT NUMBER +
611103 +
5d. PROJECT NUMBER +
5e. TASK NUMBER +
5f. WORK UNIT NUMBER +
8. PERFORMING ORGANIZATION REPORT +
NUMBER +
10. SPONSOR/MONITOR'S ACRONYM(S) +
ARO +
11. SPONSOR/MONITOR'S REPORT +
NUMBER(S) +
56177-CS-MUR.84 +
12. DISTRIBUTION AVAILIBILITY STATEMENT +
Approved for public release; distribution is unlimited. +
13. SUPPLEMENTARY NOTES +
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department +
of the Army position, policy or decision, unless so designated by other documentation. +
('40479011', 'Haichao Zhang', 'haichao zhang')
('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')
('1801395', 'Yanning Zhang', 'yanning zhang')
0952ac6ce94c98049d518d29c18d136b1f04b0c0
0969e0dc05fca21ff572ada75cb4b703c8212e80Article +
Semi-Supervised Classification Based on +
Low Rank Representation +
College of Computer and Information Science, Southwest University, Chongqing 400715, China
Academic Editor: Javier Del Ser Lorente +
Received: 1 June 2016; Accepted: 20 July 2016; Published: 22 July 2016 +
('40290479', 'Xuan Hou', 'xuan hou')
('3439025', 'Guangjun Yao', 'guangjun yao')
('40362316', 'Jun Wang', 'jun wang')
hx1995@email.swu.edu.cn (X.H.); guangjunyao@email.swu.edu.cn (G.Y.) +
* Correspondence: kingjun@swu.edu.cn; Tel.: +86-23-6825-4396 +
09137e3c267a3414314d1e7e4b0e3a4cae801f45Noname manuscript No. +
(will be inserted by the editor) +
Two Birds with One Stone: Transforming and Generating +
Facial Images with Iterative GAN +
Received: date / Accepted: date +
('49626434', 'Dan Ma', 'dan ma')
09dd01e19b247a33162d71f07491781bdf4bfd00Efficiently Scaling Up Video Annotation +
with Crowdsourced Marketplaces +
Department of Computer Science +
University of California, Irvine, USA
('1856025', 'Carl Vondrick', 'carl vondrick')
('1770537', 'Deva Ramanan', 'deva ramanan')
{cvondric,dramanan,djp3}@ics.uci.edu +
09cf3f1764ab1029f3a7d57b70ae5d5954486d69Comparison of ICA approaches for facial +
expression recognition +
I. Buciu 1,2 C. Kotropoulos 1 +
I. Pitas 1 +
Aristotle University of Thessaloniki
GR-541 24, Thessaloniki, Box 451, Greece +
2 Electronics Department +
Faculty of Electrical Engineering and Information Technology +
University of Oradea 410087, Universitatii 1, Romania
August 18, 2008 +
DRAFT +
costas,pitas@aiia.csd.auth.gr +
ibuciu@uoradea.ro +
09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081Where to Buy It: Matching Street Clothing Photos in Online Shops +
University of North Carolina at Chapel Hill
University of Illinois at Urbana-Champaign
('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')
('1682965', 'Xufeng Han', 'xufeng han')
('1749609', 'Svetlana Lazebnik', 'svetlana lazebnik')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1685538', 'Tamara L. Berg', 'tamara l. berg')
{hadi,xufeng,tlberg,aberg}@cs.unc.edu +
slazebni@illinois.edu +
09926ed62511c340f4540b5bc53cf2480e8063f8Action Tubelet Detector for Spatio-Temporal Action Localization +('1881509', 'Vicky Kalogeiton', 'vicky kalogeiton')
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
0951f42abbf649bb564a21d4ff5dddf9a5ea54d9Joint Estimation of Age and Gender from Unconstrained Face Images +
using Lightweight Multi-task CNN for Mobile Applications +
Institute of Information Science, Academia Sinica, Taipei
('1781429', 'Jia-Hong Lee', 'jia-hong lee')
('2679814', 'Yi-Ming Chan', 'yi-ming chan')
('2329177', 'Ting-Yen Chen', 'ting-yen chen')
('1720473', 'Chu-Song Chen', 'chu-song chen')
{honghenry.lee, yiming, timh20022002, song}@iis.sinica.edu.tw +
09628e9116e7890bc65ebeabaaa5f607c9847baeSemantically Consistent Regularization for Zero-Shot Recognition +
Department of Electrical and Computer Engineering +
University of California, San Diego
('1797523', 'Pedro Morgado', 'pedro morgado')
('1699559', 'Nuno Vasconcelos', 'nuno vasconcelos')
{pmaravil,nuno}@ucsd.edu +
09733129161ca7d65cf56a7ad63c17f493386027Face Recognition under Varying Illumination +
Vienna University of Technology
Inst. of Computer Graphics and +
Algorithms +
Vienna, Austria +
Istanbul Technical University
Department of Computer +
Engineering +
Istanbul, Turkey +
Vienna University of Technology
Inst. of Computer Graphics and +
Algorithms +
Vienna, Austria +
('1968256', 'Erald VUÇINI', 'erald vuçini')
('1766445', 'Muhittin GÖKMEN', 'muhittin gökmen')
('1725803', 'Eduard GRÖLLER', 'eduard gröller')
vucini@cg.tuwien.ac.at +
gokmen@cs.itu.edu.tr +
groeller@cg.tuwien.ac.at +
097340d3ac939ce181c829afb6b6faff946cdce0Adding New Tasks to a Single Network with +
Weight Transformations using Binary Masks +
Sapienza University of Rome, 2Fondazione Bruno Kessler, 3University of Trento
Italian Institute of Technology, 5Mapillary Research
('38286801', 'Massimiliano Mancini', 'massimiliano mancini')
('40811261', 'Elisa Ricci', 'elisa ricci')
('3033284', 'Barbara Caputo', 'barbara caputo')
{mancini,caputo}@diag.uniroma1.it,eliricci@fbk.eu,samuel@mapillary.com +
09507f1f1253101d04a975fc5600952eac868602Motion Feature Network: Fixed Motion Filter +
for Action Recognition +
Seoul National University, Seoul, South Korea
2 V.DO Inc., Suwon, Korea +
('2647624', 'Myunggi Lee', 'myunggi lee')
('51151436', 'Seungeui Lee', 'seungeui lee')
('51136389', 'Gyutae Park', 'gyutae park')
('3160425', 'Nojun Kwak', 'nojun kwak')
{myunggi89, dehlix, sjson, pgt4861, nojunk}@snu.ac.kr +
09718bf335b926907ded5cb4c94784fd20e5ccd8875 +
Recognizing Partially Occluded, Expression Variant +
Faces From Single Training Image per Person +
With SOM and Soft k-NN Ensemble +
('2248421', 'Xiaoyang Tan', 'xiaoyang tan')
('1680768', 'Songcan Chen', 'songcan chen')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
('2375371', 'Fuyan Zhang', 'fuyan zhang')
098a1ccc13b8d6409aa333c8a1079b2c9824705bAttribute Pivots for Guiding Relevance Feedback in Image Search +
The University of Texas at Austin
('1770205', 'Adriana Kovashka', 'adriana kovashka')
('1794409', 'Kristen Grauman', 'kristen grauman')
{adriana, grauman}@cs.utexas.edu +
0903bb001c263e3c9a40f430116d1e629eaa616fCVPR +
#987 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
An Empirical Study of Context in Object Detection +
Anonymous CVPR submission +
Paper ID 987 +
090ff8f992dc71a1125636c1adffc0634155b450Topic-aware Deep Auto-encoders (TDA) +
for Face Alignment +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Imperial College London, London, UK
('1698586', 'Jie Zhang', 'jie zhang')
('1693589', 'Meina Kan', 'meina kan')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1874505', 'Xiaowei Zhao', 'xiaowei zhao')
('1710220', 'Xilin Chen', 'xilin chen')
09b43b59879d59493df2a93c216746f2cf50f4acDeep Transfer Metric Learning +
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore
How to design a good similarity function plays an important role in many +
visual recognition tasks. Recent advances have shown that learning a dis- +
tance metric directly from a set of training examples can usually achieve +
proposing performance than hand-crafted distance metrics [2, 3]. While +
many metric learning algorithms have been presented in recent years, there +
are still two shortcomings: 1) most of them usually seek a single linear dis- +
tance to transform sample into a linear feature space, so that the nonlinear +
relationship of samples cannot be well exploited. Even if the kernel trick +
can be employed to addressed the nonlinearity issue, these methods still +
suffer from the scalability problem because they cannot obtain the explicit +
nonlinear mapping functions; 2) most of them assume that the training and +
test samples are captured in similar scenarios so that their distributions are +
assumed to be the same. This assumption doesn’t hold in many real visual +
recognition applications, when samples are captured across datasets. +
We propose a deep transfer metric learning (DTML) method for cross- +
dataset visual recognition. Our method learns a set of hierarchical nonlinear +
transformations by transferring discriminative knowledge from the labeled +
source domain to the unlabeled target domain, under which the inter-class +
variations are maximized and the intra-class variations are minimized, and +
the distribution divergence between the source domain and the target do- +
main at the top layer of the network is minimized, simultaneously. Figure 1 +
illustrates the basic idea of the proposed method. +
Figure 1: The basic idea of the proposed DTML method. For each sample +
in the training sets from the source domain and the target domain, we pass +
it to the developed deep neural network. We enforce two constraints on +
the outputs of all training samples at the top of the network: 1) the inter- +
class variations are maximized and the intra-class variations are minimized, +
and 2) the distribution divergence between the source domain and the target +
domain at the top layer of the network is minimized. +
Deep Metric Learning. We construct a deep neural network to compute +
the representations of each sample x. Assume there are M + 1 layers of the +
network and p(m) units in the mth layer, where m = 1,2,··· ,M. The output +
of x at the mth layer is computed as: +
(cid:16) +
W(m)h(m−1) + b(m)(cid:17) ∈ Rp(m) +
(1) +
f (m)(x) = h(m) = ϕ +
where W(m) ∈ Rp(m)×p(m−1) and b(m) ∈ Rp(m) are the weight matrix and bias +
of the parameters in this layer; and ϕ is a nonlinear activation function which +
operates component-wisely, e.g., tanh or sigmoid functions. The nonlinear +
mapping f (m) : Rd (cid:55)→ Rp(m) is a function parameterized by {W(i)}m +
i=1 and +
{b(i)}m +
i=1. For the first layer, we assume h(0) = x. +
For each pair of samples xi and x j, they can be finally represented as +
f (m)(xi) and f (m)(x j) at the mth layer of our designed network, and their +
distance metric can be measured by computing the squared Euclidean dis- +
tance between f (m)(xi) and f (m)(x j) at the mth layer: +
where Pi j is set as one if x j is one of k1-intra-class nearest neighbors of xi, +
and zero otherwise; and Qi j is set as one if x j is one of k2-interclass nearest +
neighbors of xi, and zero otherwise. +
Deep Transfer Metric Learning. Given target domain data Xt and source +
domain data Xs, their probability distributions are usually different in the o- +
riginal feature space when they are captured from different datasets. To +
reduce the distribution difference, we apply the Maximum Mean Discrep- +
ancy (MMD) criterion [1] to measure their distribution difference at the mth +
layer, which is defined as as follows: +
ts (Xt ,Xs) = +
D(m) +
Nt ∑Nt +
i=1 f (m)(xti)− 1 +
Ns ∑Ns +
i=1 f (m)(xsi) +
(6) +
By combining (3) and (6), we formulate DTML as the following opti- +
mization problem: +
(cid:13)(cid:13)(cid:13)(cid:13) 1 +
(cid:13)(cid:13)(cid:13)(cid:13)2 +
d2 +
f (m) (xi,x j) = +
(2) +
min +
f (M) +
(cid:13)(cid:13)(cid:13) f (m)(xi)− f (m)(x j) +
(cid:13)(cid:13)(cid:13)2 +
(cid:16)(cid:13)(cid:13)W(m)(cid:13)(cid:13)2 +
Following the graph embedding framework, we enforce the marginal +
fisher analysis criterion [4] on the output of all training samples at the top +
layer and formulate a strongly-supervised deep metric learning method: +
F +(cid:13)(cid:13)b(m)(cid:13)(cid:13)2 +
(cid:17) +
(3) +
J = S(M) +
c − α S(M) +
b + γ ∑M +
m=1 +
min +
f (M) +
where α (α > 0) is a free parameter which balances the important between +
intra-class compactness and interclass separability; (cid:107)Z(cid:107)F denotes the Frobe- +
nius norm of the matrix Z; γ (γ > 0) is a tunable positive regularization pa- +
rameter; S(m) +
define the intra-class compactness and the interclass +
separability, which are defined as follows: +
and S(m) +
S(m) +
c = +
S(m) +
b = +
Nk1 +
Nk2 +
i=1∑N +
∑N +
i=1∑N +
∑N +
j=1 Pi j d2 +
f (m) (xi,x j), +
j=1 Qi j d2 +
f (m) (xi,x j), +
(4) +
(5) +
('34651153', 'Junlin Hu', 'junlin hu')
('1697700', 'Jiwen Lu', 'jiwen lu')
('1689805', 'Yap-Peng Tan', 'yap-peng tan')
09df62fd17d3d833ea6b5a52a232fc052d4da3f5ISSN: 1405-5546 +
Instituto Politécnico Nacional +
México +
+
Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez, +
Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J. +
Mejora de Contraste y Compensación en Cambios de la Iluminación +
Instituto Politécnico Nacional +
Distrito Federal, México +
Disponible en: http://www.redalyc.org/articulo.oa?id=61509703 +
Cómo citar el artículo +
Número completo +
Más información del artículo +
Página de la revista en redalyc.org +
Sistema de Información Científica +
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal +
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto +
computacion-y-sistemas@cic.ipn.mx +
09b0ef3248ff8f1a05b8704a1b4cf64951575be9Recognizing Activities of Daily Living with a Wrist-mounted Camera +
Graduate School of Information Science and Technology, The University of Tokyo
('8197937', 'Katsunori Ohnishi', 'katsunori ohnishi')
('2551640', 'Atsushi Kanehira', 'atsushi kanehira')
('2554424', 'Asako Kanezaki', 'asako kanezaki')
('1790553', 'Tatsuya Harada', 'tatsuya harada')
{ohnishi, kanehira, kanezaki, harada}@mi.t.u-tokyo.ac.jp +
097104fc731a15fad07479f4f2c4be2e071054a2
094357c1a2ba3fda22aa6dd9e496530d784e1721A Unified Probabilistic Approach Modeling Relationships +
between Attributes and Objects +
Rensselaer Polytechnic Institute
110 Eighth Street, Troy, NY USA 12180 +
('40066738', 'Xiaoyang Wang', 'xiaoyang wang')
('1726583', 'Qiang Ji', 'qiang ji')
{wangx16,jiq}@rpi.edu +
09f853ce12f7361c4b50c494df7ce3b9fad1d221myjournal manuscript No. +
(will be inserted by the editor) +
Random forests for real time 3D face analysis +
Received: date / Accepted: date +
('3092828', 'Gabriele Fanelli', 'gabriele fanelli')
('1681236', 'Luc Van Gool', 'luc van gool')
09111da0aedb231c8484601444296c50ca0b5388
09750c9bbb074bbc4eb66586b20822d1812cdb20978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1385 +
ICASSP 2012 +
09ce14b84af2dc2f76ae1cf227356fa0ba337d07Face Reconstruction in the Wild +
University of Washington
University of Washington and Google Inc
('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')
('1679223', 'Steven M. Seitz', 'steven m. seitz')
kemelmi@cs.washington.edu +
seitz@cs.washington.edu +
090e4713bcccff52dcd0c01169591affd2af7e76What Do You Do? Occupation Recognition +
in a Photo via Social Context +
College of Computer and Information Science, Northeastern University, MA, USA
Northeastern University, MA, USA
('2025056', 'Ming Shao', 'ming shao')
('2897748', 'Liangyue Li', 'liangyue li')
mingshao@ccs.neu.edu, {liangyue, yunfu}@ece.neu.edu +
097f674aa9e91135151c480734dda54af5bc4240Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney +
Face Recognition Based on Multiple Region Features +
CSIRO Telecommunications & Industrial Physics +
Australia +
Tel: 612 9372 4104, Fax: 612 9372 4411, Email: +
('40833472', 'Jiaming Li', 'jiaming li')
('1751724', 'Ying Guo', 'ying guo')
('39877973', 'Rong-yu Qiao', 'rong-yu qiao')
jiaming.li@csiro.au +
5d485501f9c2030ab33f97972aa7585d3a0d59a7
5da740682f080a70a30dc46b0fc66616884463ecReal-Time Head Pose Estimation Using +
Multi-Variate RVM on Faces in the Wild +
Augmented Vision Research Group, +
German Research Center for Arti cial Intelligence (DFKI
Tripstaddterstr. 122, 67663 Kaiserslautern, Germany +
Technical University of Kaiserslautern
http://www.av.dfki.de +
('2585383', 'Mohamed Selim', 'mohamed selim')
('1771057', 'Alain Pagani', 'alain pagani')
('1807169', 'Didier Stricker', 'didier stricker')
{mohamed.selim,alain.pagani,didier.stricker}@dfki.de +
5de5848dc3fc35e40420ffec70a407e4770e3a8dWebVision Database: Visual Learning and Understanding from Web Data +
1 Computer Vision Laboratory, ETH Zurich +
2 Google Switzerland +
('1702619', 'Wen Li', 'wen li')
('33345248', 'Limin Wang', 'limin wang')
('1688012', 'Wei Li', 'wei li')
('2794259', 'Eirikur Agustsson', 'eirikur agustsson')
('1681236', 'Luc Van Gool', 'luc van gool')
5da139fc43216c86d779938d1c219b950dd82a4c1-4244-1437-7/07/$20.00 ©2007 IEEE +
II - 205 +
ICIP 2007 +
5dc056fe911a3e34a932513abe637076250d96da
5d185d82832acd430981ffed3de055db34e3c653A Fuzzy Reasoning Model for Recognition +
of Facial Expressions +
Research Center CENTIA, Electronics and Mechatronics
Universidad de las Américas, 72820, Puebla, Mexico +
{oleg.starostenko; renan.contrerasgz; vicente.alarcon; leticia.florespo; +
Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez
Insurgentes Este, 21280, Mexicali, Baja California, Mexico +
3 Universidad Politécnica de Baja California, Mexicali, Baja California, Mexico +
('1956337', 'Oleg Starostenko', 'oleg starostenko')
('20083621', 'Renan Contreras', 'renan contreras')
('1690236', 'Vicente Alarcón Aquino', 'vicente alarcón aquino')
('2069473', 'Oleg Sergiyenko', 'oleg sergiyenko')
jorge.rodriguez}@udlap.mx +
srgnk@iing.mxl.uabc.mx +
vera-tyrsa@yandex.ru +
5d233e6f23b1c306cf62af49ce66faac2078f967RESEARCH ARTICLE +
Optimal Geometrical Set for Automated +
Marker Placement to Virtualized Real-Time +
Facial Emotions +
School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Ulu Pauh, Arau, Perlis, West Malaysia +
('6962924', 'Vasanthan Maruthapillai', 'vasanthan maruthapillai')
('32588646', 'Murugappan Murugappan', 'murugappan murugappan')
* murugappan@unimap.edu.my +
5dd496e58cfedfc11b4b43c4ffe44ac72493bf55Discriminative convolutional Fisher vector network for action recognition +
School of Electrical Engineering and Computer Science +
Queen Mary University of London
London E1 4NS, United Kingdom +
('2685285', 'Petar Palasek', 'petar palasek')
('1744405', 'Ioannis Patras', 'ioannis patras')
p.palasek@qmul.ac.uk, i.patras@qmul.ac.uk +
5db075a308350c083c3fa6722af4c9765c4b8fefThe Novel Method of Moving Target Tracking Eyes +
Location based on SIFT Feature Matching and Gabor +
Wavelet Algorithm +
College of Computer and Information Engineering, Nanyang Institute of Technology
Henan Nanyang, 473004, China +
* Tel.: 0086+13838972861 +
Sensors & Transducers, Vol. 154, Issue 7, July 2013, pp. 129-137 +
+
SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss +
© 2013 by IFSA +
http://www.sensorsportal.com +
Received: 28 April 2013 /Accepted: 19 July 2013 /Published: 31 July 2013 +
('2266189', 'Jing Zhang', 'jing zhang')
('2732767', 'Caixia Yang', 'caixia yang')
('1809507', 'Kecheng Liu', 'kecheng liu')
* E-mail: eduzhangjing@163.com +
5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cfRobust Registration of Dynamic Facial Sequences +('2046537', 'Evangelos Sariyanidi', 'evangelos sariyanidi')
('1781916', 'Hatice Gunes', 'hatice gunes')
('1713138', 'Andrea Cavallaro', 'andrea cavallaro')
5dcf78de4d3d867d0fd4a3105f0defae2234b9cb
5db4fe0ce9e9227042144758cf6c4c2de2042435INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010 +
Recognition of Facial Expression Using Haar +
Wavelet Transform +
for +
paper +
features +
investigates +
+
('2254697', 'M. Satiyan', 'm. satiyan')
5d88702cdc879396b8b2cc674e233895de99666bExploiting Feature Hierarchies with Convolutional Neural Networks +
for Cultural Event Recognition +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
School of Computer Science, Carnegie Mellon University, 15213, USA
('1730228', 'Mengyi Liu', 'mengyi liu')
('1731144', 'Xin Liu', 'xin liu')
('38751558', 'Yan Li', 'yan li')
('1710220', 'Xilin Chen', 'xilin chen')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
('1685914', 'Shiguang Shan', 'shiguang shan')
{mengyi.liu, xin.liu, yan.li}@vipl.ict.ac.cn, {xlchen, sgshan}@ict.ac.cn, alex@cs.cmu.edu +
5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194eFace Recognition Algorithms +
June 16, 2010 +
Ion Marqu´es +
Supervisor: +
Manuel Gra˜na +
5d09d5257139b563bd3149cfd5e6f9eae3c34776Optics Communications 338 (2015) 77–89 +
Contents lists available at ScienceDirect +
Optics Communications +
journal homepage: www.elsevier.com/locate/optcom +
Pattern recognition with composite correlation filters designed with +
multi-objective combinatorial optimization +
a Instituto Politécnico Nacional – CITEDI, Ave. del Parque 1310, Mesade Otay, Tijuana B.C. 22510, México +
b Department of Computer Science, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada B.C. 22860, México +
c Instituto Tecnológico de Tijuana, Blvd. Industrial y Ave. ITR TijuanaS/N, Mesa de Otay, Tijuana B.C. 22500, México +
d National Ignition Facility, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA +
a r t i c l e i n f o +
a b s t r a c t +
Article history: +
Received 12 July 2014 +
Accepted 16 November 2014 +
Available online 23 October 2014 +
Keywords: +
Object recognition +
Composite correlation filters +
Multi-objective evolutionary algorithm +
Combinatorial optimization +
Composite correlation filters are used for solving a wide variety of pattern recognition problems. These +
filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. +
In this work, we present a new approach for the design of composite filters based on multi-objective +
combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used +
to synthesize a filter with an optimized performance in terms of several competing criteria. Moreover, by +
employing a suggested binary-search procedure a filter bank with a minimum number of filters can be +
constructed, for a prespecified trade-off of performance metrics. Computer simulation results obtained +
with the proposed method in recognizing geometrically distorted versions of a target in cluttered and +
noisy scenes are discussed and compared in terms of recognition performance and complexity with +
existing state-of-the-art filters. +
& Elsevier B.V. All rights reserved. +
1. +
Introduction +
Nowadays, object recognition receives much research interest +
due to its high impact in real-life activities, such as robotics, bio- +
metrics, and target tracking [1,2]. Object recognition consists in +
solving two essential tasks: detection of a target within an ob- +
served scene and determination of the exact position of the de- +
tected object. Different approaches can be utilized to address these +
tasks, that is feature-based methods [3–6] and template matching +
algorithms [7,8]. In feature-based methods the observed scene is +
processed to extract relevant features of potential targets within +
the scene. Next, the extracted features are processed and analyzed +
to make decisions. Feature-based methods yield good results in +
many applications. However, they depend on several subjective +
decisions which often require optimization [9,10]. On the other +
hand, correlation filtering is a template matching processing. In +
this approach, the coordinates of the maximum of the filter output +
are taken as estimates of the target coordinates in the observed +
scene. Correlation filters possess a good mathematical basis and +
they can be implemented by exploiting massive parallelism either +
in hybrid opto-digital correlators [11,12] or in high-performance +
n Corresponding author. Tel.: þ52 664 623 1344x82856. +
http://dx.doi.org/10.1016/j.optcom.2014.10.038 +
0030-4018/& Elsevier B.V. All rights reserved. +
hardware such as graphics processing units (GPUs) [13] or field +
programmable gate arrays (FPGAs) [14] at high rate. Additionally, +
these filters are capable to reliably recognize a target in highly +
cluttered and noisy environments [8,15,16]. Moreover, they are +
able to estimate very accurately the position of the target within +
the scene [17]. Correlation filters are usually designed by a opti- +
mization of various criteria [18,19]. The filters can be broadly +
classified in to two main categories: analytical and composite fil- +
ters. Analytical filters optimize a performance criterion using +
mathematical models of signals and noise [20,21]. Composite fil- +
ters are constructed by combination of several training templates, +
each of them representing an expected target view in the observed +
scene [22,21]. In practice, composite filters are effective for real- +
life degradations of targets such as rotations and scaling. Compo- +
site filters are synthesized by means of a supervised training +
process. Thus, the performance of the filters highly depends on a +
proper selection of image templates used for training [20,23]. +
Normally, the training templates are chosen by a designer in an ad +
hoc manner. Such a subjective procedure is not optimal. In addi- +
tion, Kumar and Pochavsky [24] showed that the signal to noise +
ratio of a composite filter gradually reduces when the number of +
training templates increases. In order to synthesize composite +
filters with improved performance in terms of several competing +
metrics, a search and optimization strategy is required to auto- +
matically choose the set of training templates. +
('1908859', 'Victor H. Diaz-Ramirez', 'victor h. diaz-ramirez')
('14245397', 'Andres Cuevas', 'andres cuevas')
('1684262', 'Vitaly Kober', 'vitaly kober')
('2166904', 'Leonardo Trujillo', 'leonardo trujillo')
('37615801', 'Abdul Awwal', 'abdul awwal')
E-mail address: vdiazr@ipn.mx (V.H. Diaz-Ramirez). +
5d479f77ecccfac9f47d91544fd67df642dfab3cLinking People in Videos with “Their” Names +
Using Coreference Resolution +
Stanford University, USA
Stanford University, USA
('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')
('2319608', 'Armand Joulin', 'armand joulin')
('40085065', 'Percy Liang', 'percy liang')
('3216322', 'Li Fei-Fei', 'li fei-fei')
{vigneshr,ajoulin,pliang,feifeili}@cs.stanford.edu +
5d01283474b73a46d80745ad0cc0c4da14aae194
5d197c8cd34473eb6cde6b65ced1be82a3a1ed14AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The"CAS-PEAL","FERET","CMUPIE",and"YaleB"databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The"HarvardRL","CMUPIE"and"YaleB"databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe"BANCA",and"NDHID"databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com
5da2ae30e5ee22d00f87ebba8cd44a6d55c6855eThis is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository: http://orca.cf.ac.uk/111659/ +
This is the author’s version of a work that was submitted to / accepted for publication. +
Citation for final published version: +
Krumhuber, Eva G, Lai, Yukun, Rosin, Paul and Hugenberg, Kurt 2018. When facial expressions +
Publishers page: +
Please note: +
Changes made as a result of publishing processes such as copy-editing, formatting and page +
numbers may not be reflected in this version. For the definitive version of this publication, please +
refer to the published source. You are advised to consult the publisher’s version if you wish to cite +
this paper. +
This version is being made available in accordance with publisher policies. See +
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications +
made available in ORCA are retained by the copyright holders. +
5df376748fe5ccd87a724ef31d4fdb579dab693fA Dashboard for Affective E-learning: +
Data Visualization for Monitoring Online Learner Emotions +
School of Computer Science +
Carleton University
Canada +
('2625368', 'Reza GhasemAghaei', 'reza ghasemaghaei')
('40230630', 'Ali Arya', 'ali arya')
('8547603', 'Robert Biddle', 'robert biddle')
Reza.GhasemAghaei@carleton.ca +
31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a
31b05f65405534a696a847dd19c621b7b8588263
31625522950e82ad4dffef7ed0df00fdd2401436Motion Representation with Acceleration Images +
National Institute of Advanced Industrial Science and Technology (AIST
Tsukuba, Ibaraki, Japan +
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('1713046', 'Yun He', 'yun he')
('3393640', 'Soma Shirakabe', 'soma shirakabe')
('1732705', 'Yutaka Satoh', 'yutaka satoh')
{hirokatsu.kataoka, yun.he, shirakabe-s, yu.satou}@aist.go.jp +
3167f415a861f19747ab5e749e78000179d685bcRankBoost with l1 regularization for Facial Expression Recognition and +
Intensity Estimation +
Rutgers University, Piscataway NJ 08854, USA
2National Laboratory of Pattern Recognition, Chinese Academy of Sciences Beijing, 100080, China +
('39606160', 'Peng Yang', 'peng yang')
('1734954', 'Qingshan Liu', 'qingshan liu')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
3107316f243233d45e3c7e5972517d1ed4991f91CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training +
University of Science and Technology of China
2Microsoft Research Asia, +
('3093568', 'Jianmin Bao', 'jianmin bao')
('39447786', 'Dong Chen', 'dong chen')
('1716835', 'Fang Wen', 'fang wen')
('7179232', 'Houqiang Li', 'houqiang li')
('1745420', 'Gang Hua', 'gang hua')
jmbao@mail.ustc.edu.cn, lihq@ustc.edu.cn +
{doch,fangwen,ganghua}@microsoft.com +
318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24aSparsity in Dynamics of Spontaneous +
Subtle Emotions: Analysis & Application +
('35256518', 'Anh Cat Le Ngo', 'anh cat le ngo')
('2339975', 'John See', 'john see')
('6633183', 'Raphael C.-W. Phan', 'raphael c.-w. phan')
31c0968fb5f587918f1c49bf7fa51453b3e89cf7Deep Transfer Learning for Person Re-identification +('3447059', 'Mengyue Geng', 'mengyue geng')
('5765799', 'Yaowei Wang', 'yaowei wang')
('1700927', 'Tao Xiang', 'tao xiang')
('1705972', 'Yonghong Tian', 'yonghong tian')
313d5eba97fe064bdc1f00b7587a4b3543ef712aCompact Deep Aggregation for Set Retrieval +
Visual Geometry Group, University of Oxford, UK
2 DeepMind +
('6730372', 'Yujie Zhong', 'yujie zhong')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
{yujie,az}@robots.ox.ac.uk +
relja@google.com +
31e57fa83ac60c03d884774d2b515813493977b9
3137a3fedf23717c411483c7b4bd2ed646258401Joint Learning of Discriminative Prototypes +
and Large Margin Nearest Neighbor Classifiers +
Institute for Computer Graphics and Vision, Graz University of Technology
('3202367', 'Paul Wohlhart', 'paul wohlhart')
('1791182', 'Peter M. Roth', 'peter m. roth')
('3628150', 'Horst Bischof', 'horst bischof')
{koestinger,wohlhart,pmroth,bischof}@icg.tugraz.at +
31c34a5b42a640b824fa4e3d6187e3675226143eShape and Texture based Facial Action and Emotion +
Recognition +
(Demonstration) +
Department of Computer Science and Digital Technologies +
Northumbria University
Newcastle, NE1 8ST, UK +
('1712838', 'Li Zhang', 'li zhang')
('2801063', 'Kamlesh Mistry', 'kamlesh mistry')
{li.zhang, kamlesh.mistry, alamgir.hossain}@northumbria.ac.uk +
316e67550fbf0ba54f103b5924e6537712f06beeMultimodal semi-supervised learning +
for image classification +
LEAR team, INRIA Grenoble, France +
('2737253', 'Matthieu Guillaumin', 'matthieu guillaumin')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
31ef5419e026ef57ff20de537d82fe3cfa9ee741Facial Expression Analysis Based on +
High Dimensional Binary Features +
´Ecole Polytechique de Montr´eal, Universit´e de Montr´eal, Montr´eal, Canada +
('3127597', 'Samira Ebrahimi Kahou', 'samira ebrahimi kahou')
('2558801', 'Pierre Froumenty', 'pierre froumenty')
{samira.ebrahimi-kahou, pierre.froumenty, christopher.pal}@polymtl.ca +
31ea88f29e7f01a9801648d808f90862e066f9eaPublished as a conference paper at ICLR 2017 +
DEEP MULTI-TASK REPRESENTATION LEARNING: +
A TENSOR FACTORISATION APPROACH +
Queen Mary, University of London
('2653152', 'Yongxin Yang', 'yongxin yang')
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
{yongxin.yang, t.hospedales}@qmul.ac.uk +
3176ee88d1bb137d0b561ee63edf10876f805cf0Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation +
University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR
('25056820', 'Sina Honari', 'sina honari')
('2965424', 'Jason Yosinski', 'jason yosinski')
('1707326', 'Pascal Vincent', 'pascal vincent')
1{honaris, vincentp}@iro.umontreal.ca, 2yosinski@cs.cornell.edu, 3christopher.pal@polymtl.ca +
31b58ced31f22eab10bd3ee2d9174e7c14c27c01
31835472821c7e3090abb42e57c38f7043dc3636Flow Counting Using Realboosted +
Multi-sized Window Detectors +
Lund University, Cognimatics AB
('38481779', 'Mikael Nilsson', 'mikael nilsson')
('3181258', 'Rikard Berthilsson', 'rikard berthilsson')
312b2566e315dd6e65bd42cfcbe4d919159de8a1An Accurate Algorithm for Generating a Music Playlist +
International Journal of Computer Applications (0975 – 8887) +
Volume 100– No.9, August 2014 +
based on Facial Expressions +
Computer Science and Engineering Department +
Amity School of Engineering & Technology, +
Amity University, Noida, India
3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4Exploring Stereotypes and Biased Data with the Crowd +
Department of Computer Science +
The University of Texas at Austin
Department of Computer Science +
The University of Texas at Austin
Introduction +
In 2016, Baidu and Google spent somewhere between +
twenty and thirty billion dollars developing and acquir- +
ing artificial intelligence and machine learning technolo- +
gies (Bughin et al. 2017). A range of other sectors, includ
ing health care, education, and manufacturing, are also pre- +
dicted to adopt these technologies at increasing rates. Ma- +
chine learning and AI are proven to have the capacity to +
greatly improve lives and spur innovation. However, as soci- +
ety becomes increasingly dependent on these technologies, +
it is crucial that we acknowledge some of the dangers, in- +
cluding the capacity for these algorithms to absorb and am- +
plify harmful cultural biases. +
Algorithms are often praised for their objectivity, but ma- +
chine learning algorithms have increasingly made news for a +
number of problematic outcomes, ranging from Google Pho- +
the judicial system using algorithms that are biased against +
African Americans (Dougherty 2015; Angwin et al. 2016). +
These harmful outcomes can be traced back to the data that +
was used to train the models. +
Machine learning applications put a heavy premium on +
data quantity. Research communities generally believe that +
the more training data there is, the better the learning out- +
come of the models will be (Halevy, Norvig, and Pereira +
2009). This has led to large scale data collection. How- +
ever, unless extra care is taken by the researchers, these +
large data sets will often contain bias that can profoundly +
change the learning outcome. Even minimal bias within +
a data set can end up being amplified by machine learn- +
ing models, leading to skewed results. Researchers have +
found that widely used image data sets imSitu and MS- +
COCO, along with textual data sets mined from Google +
News, contain significant gender bias (Zhao et al. 2017; +
Bolukbasi et al. 2016). This research also found that train- +
ing models with this data amplified the bias in the final out- +
comes. +
Once these algorithms have been improperly trained they +
can then be implemented into feedback loops where systems +
“define their own reality and use it to justify their results” as +
Copyright c(cid:13) 2018 is held by the authors. Copies may be freely +
made and distributed by others. Presented at the 2016 AAAI Con- +
ference on Human Computation and Crowdsourcing (HCOMP). +
Cathy O’Neil describes in her book Weapons of Math De- +
struction. O’Neil discusses problematic systems like Pred- +
Pol, a program that predicts where crimes are most likely to +
occur based on past crime reports, which may unfairly target +
poor communities. +
It therefore becomes necessary to consider the bias that +
may be introduced as a data set is being collected and to +
attempt to prevent that bias from being absorbed by an al- +
gorithm. We propose using the crowd to help uncover what +
bias may reside in a specific data set. +
The crowd has potential to be useful for this task. One +
of the key difficulties in preventing bias is knowing what +
to look for. The varied demographics of crowd workers pro- +
vide an extended range of perspectives that can help uncover +
stereotypes that may go unnoticed by a small group of re- +
searchers. Some work has already been conducted in this +
area, and Bolukbasi et al. (2016) found that the crowd was +
useful in determining the level of stereotype associated with +
ased words by asking the crowd to rate analogies such as +
“she is to sewing as he is to carpentry”. We want to extend +
our analysis to stereotypes beyond gender, including those
surrounding race and class. +
The goal of our research is to contribute information about +
how useful the crowd is at anticipating stereotypes that may +
be biasing a data set without a researcher’s knowledge. The +
results of the crowd’s prediction can potentially be used dur- +
ing data collection to help prevent the suspected stereotypes +
from introducing bias to the dataset. We conduct our re- +
search by asking the crowd on Amazon’s Mechanical Turk +
(AMT) to complete two similar Human Intelligence Tasks +
(HITs) by suggesting stereotypes relating to their personal +
experience. Our analysis of these responses focuses on de- +
termining the level of diversity in the workers’ suggestions +
and their demographics. Through this process we begin a +
discussion on how useful the crowd can be in tackling this +
difficult problem within machine learning data collection. +
2 Related Work +
2.1 Work on bias in data sets and amplification +
As biased data sets get more coverage in the news, an in- +
creasing amount of research has been conducted around de- +
termining if data sets are biased and trying to mitigate the +
('32193161', 'Zeyuan Hu', 'zeyuan hu')
('40410119', 'Julia Strout', 'julia strout')
iamzeyuanhu@utexas.edu +
jstrout@utexas.edu +
31ace8c9d0e4550a233b904a0e2aabefcc90b0e3Learning Deep Face Representation +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
('1934546', 'Haoqiang Fan', 'haoqiang fan')
('2695115', 'Zhimin Cao', 'zhimin cao')
('1691963', 'Yuning Jiang', 'yuning jiang')
('2274228', 'Qi Yin', 'qi yin')
('2479859', 'Chinchilla Doudou', 'chinchilla doudou')
fhq@megvii.com +
czm@megvii.com +
jyn@megvii.com +
yq@megvii.com +
doudou@megvii.com +
316d51aaa37891d730ffded7b9d42946abea837fCBMM Memo No. 23 +
April 27, 2015 +
Unsupervised learning of clutter-resistant visual +
representations from natural videos +
by +
MIT, McGovern Institute, Center for Brains, Minds and Machines
('1694846', 'Qianli Liao', 'qianli liao')
31afdb6fa95ded37e5871587df38976fdb8c0d67QUANTIZED FUZZY LBP FOR FACE RECOGNITION +
Jianfeng +
Ren +
Junsong +
Yuan +
BeingThere +
Centre +
Institute
of Media Innovation +
Nanyang +
50 Nanyang +
Technological +
Singapore +
Drive, +
637553. +
University
School of Electrical +
& Electronics +
Engineering +
Nanyang +
50 Nanyang +
Technological +
Singapore +
Avenue, +
639798 +
University
('3307580', 'Xudong Jiang', 'xudong jiang')
31d60b2af2c0e172c1a6a124718e99075818c408Robust Facial Expression Recognition using Near Infrared Cameras +
Paper: jc*-**-**-**** +
Robust Facial Expression Recognition using Near Infrared +
Cameras +
The University of Tokyo
Electronics and Communication Engineering, Chuo University
[Received 00/00/00; accepted 00/00/00] +
('34415055', 'Hideki Hashimoto', 'hideki hashimoto')
('9181040', 'Takashi Kubota', 'takashi kubota')
31f1e711fcf82c855f27396f181bf5e565a2f58dUnconstrained Age Estimation with Deep Convolutional Neural Networks +
Jun Cheng Chen1 +
University of Maryland
2Montgomery Blair High School +
Rutgers University
('26988560', 'Rajeev Ranjan', 'rajeev ranjan')
('2349530', 'Sabrina Zhou', 'sabrina zhou')
('40080979', 'Amit Kumar', 'amit kumar')
('2943431', 'Azadeh Alavi', 'azadeh alavi')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
rranjan1@.umiacs.umd.edu, sabrina.zhou.m@gmail.com, {pullpull,akumar14,azadeh}@umiacs.umd.edu, +
vishal.m.patel@rutgers.edu, Rama@umiacs.umd.edu +
312afff739d1e0fcd3410adf78be1c66b3480396
3107085973617bbfc434c6cb82c87f2a952021b7Spatio-temporal Human Action Localisation and +
Instance Segmentation in Temporally Untrimmed Videos +
Oxford Brookes University
University of Oxford
Figure 1: A video sequence taken from the LIRIS-HARL dataset plotted in space-and time. (a) A top down view of the +
video plotted with the detected action tubes of class ‘handshaking’ in green, and ‘person leaves baggage unattended’ in +
red. Each action is located to be within a space-time tube. (b) A side view of the same space-time detections. Note that +
no action is detected at the beginning of the video when there is human motion present in the video. (c) The detection +
and instance segmentation result of two actions occurring simultaneously in a single frame. +
('3017538', 'Suman Saha', 'suman saha')
('1931660', 'Gurkirt Singh', 'gurkirt singh')
('3019396', 'Michael Sapienza', 'michael sapienza')
('1730268', 'Philip H. S. Torr', 'philip h. s. torr')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
{suman.saha-2014, gurkirt.singh-2015, fabio.cuzzolin}@brookes.ac.uk +
{michael.sapienza, philip.torr}@eng.ox.ac.uk +
31182c5ffc8c5d8772b6db01ec98144cd6e4e8973D Face Reconstruction with Region Based Best Fit Blending Using +
Mobile Phone for Virtual Reality Based Social Media +
VALGMA 1∗ +
iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia
Hasan Kalyoncu University, Gaziantep, Turkey
('3087532', 'Gholamreza Anbarjafari', 'gholamreza anbarjafari')
('35447268', 'Rain Eric Haamer', 'rain eric haamer')
('7296001', 'Iiris Lüsi', 'iiris lüsi')
('12602781', 'Toomas Tikk', 'toomas tikk')
31bb49ba7df94b88add9e3c2db72a4a98927bb05
3146fabd5631a7d1387327918b184103d06c2211Person-independent 3D Gaze Estimation using Face Frontalization +
L´aszl´o A. Jeni +
Carnegie Mellon University
University of Pittsburgh
Pittsburgh, PA, USA +
Pittsburgh, PA, USA +
Figure 1: From a 2D image of a person’s face (a) a dense, part-based 3D deformable model is aligned (b) to reconstruct a partial frontal +
view of the face (c). Binary features are extracted around eye and pupil markers (d) for the 3D gaze calculation (e). +
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')laszlojeni@cmu.edu +
jeffcohn@pitt.edu +
91811203c2511e919b047ebc86edad87d985a4faExpression Subspace Projection for Face +
Recognition from Single Sample per Person +
('1782221', 'Hoda Mohammadzade', 'hoda mohammadzade')
91495c689e6e614247495c3f322d400d8098de43A Deep-Learning Approach to Facial Expression Recognition +
with Candid Images +
Wei Li +
CUNY City College
Min Li +
Alibaba. Inc +
Zhong Su +
IBM China Research Lab
Zhigang Zhu +
CUNY Graduate Center and City College
lwei000@citymail.cuny.edu +
mushi.lm@alibaba.inc +
suzhong@cn.ibm.com +
zhu@cs.ccny.cuny.edu +
910524c0d0fe062bf806bb545627bf2c9a236a03Master Thesis +
Improvement of Facial Expression Recognition through the +
Evaluation of Dynamic and Static Features in Video Sequences +
Submitted by: +
Dated: +
24th June, 2008 +
Supervisors: +
Otto-von-Guericke University Magdeburg
Faculty of Computer Science +
Department of Simulation und Graphics +
Otto-von-Guericke University Magdeburg
Faculty of Electrical Engineering and Information Technology +
Institute for Electronics, Signal Processing and Communications
('1692049', 'Klaus Toennies', 'klaus toennies')
('1741165', 'Ayoub Al-Hamadi', 'ayoub al-hamadi')
9117fd5695582961a456bd72b157d4386ca6a174Facial Expression +
n Recognition Using Dee +
ep Neural +
Networks +
Departm +
ment of Electrical and Electronic Engineering +
he University of Hong Kong, Pokfulam
Hong Kong +
('8550244', 'Junnan Li', 'junnan li')
('1725389', 'Edmund Y. Lam', 'edmund y. lam')
91df860368cbcebebd83d59ae1670c0f47de171dCOCO Attributes: +
Attributes for People, Animals, and Objects +
Microsoft Research +
Georgia Institute of Technology
('40541456', 'Genevieve Patterson', 'genevieve patterson')
('12532254', 'James Hays', 'james hays')
gen@microsoft.com +
hays@gatech.edu +
91067f298e1ece33c47df65236853704f6700a0bIJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 11 | May 2016 +
ISSN (online): 2349-784X +
Local Binary Pattern and Local Linear +
Regression for Pose Invariant Face Recognition +
M. Tech Student +
+
Shreekumar T +
Associate Professor +
Department of Computer Science & Engineering +
Department of Computer Science & Engineering +
Mangalore Institute of Engineering and Technology, Badaga
Mangalore Institute of Engineering and Technology, Badaga
Mijar, Moodbidri, Mangalore +
Mijar, Moodbidri, Mangalore +
Karunakara K +
Professor & Head of Dept. +
Department of Information Science & Engineering +
Sri SidarthaInstitute of Technology, Tumkur
919d3067bce76009ce07b070a13728f549ebba49International Journal of Scientific and Research Publications, Volume 4, Issue 6, June 2014 +
ISSN 2250-3153 +
1 +
Time Based Re-ranking for Web Image Search +
Ms. A.Udhayabharadhi *, Mr. R.Ramachandran ** +
MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry
Sri Manakula Vinayagar Engineering College, Pondicherry
9110c589c6e78daf4affd8e318d843dc750fb71aChapter 6 +
Facial Expression Synthesis Based on Emotion +
Dimensions for Affective Talking Avatar +
1 Key Laboratory of Pervasive Computing, Ministry of Education +
Tsinghua National Laboratory for Information Science and Technology +
Department of Computer Science and Technology, +
Tsinghua University, Beijing 100084, China
Tsinghua-CUHK Joint Research Center for Media Sciences
Technologies and Systems, +
Graduate School at Shenzhen, Tsinghua University, Shenzhen
3 Department of Systems Engineering and Engineering Management +
The Chinese University of Hong Kong, HKSAR, China
('2180849', 'Shen Zhang', 'shen zhang')
('3860920', 'Zhiyong Wu', 'zhiyong wu')
('1702243', 'Helen M. Meng', 'helen m. meng')
('7239047', 'Lianhong Cai', 'lianhong cai')
zhangshen05@mails.tsinghua.edu.cn, john.zy.wu@gmail.com, +
hmmeng@se.cuhk.edu.hk, clh-dcs@tsinghua.edu.cn +
91e57667b6fad7a996b24367119f4b22b6892ecaProbabilistic Corner Detection for Facial Feature +
Extraction +
Article +
Accepted version +
E. Ardizzone, M. La Cascia, M. Morana +
In Lecture Notes in Computer Science Volume 5716, 2009 +
It is advisable to refer to the publisher's version if you intend to cite +
from the work. +
Publisher: Springer +
http://link.springer.com/content/pdf/10.1007%2F978-3- +
642-04146-4_50.pdf +
91883dabc11245e393786d85941fb99a6248c1fb
917bea27af1846b649e2bced624e8df1d9b79d6fUltra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for +
Mobile and Embedded Applications +
Gyrfalcon Technology Inc. +
1900 McCarthy Blvd. Milpitas, CA 95035 +
('47935028', 'Baohua Sun', 'baohua sun')
('49576071', 'Lin Yang', 'lin yang')
('46195424', 'Patrick Dong', 'patrick dong')
('49039276', 'Wenhan Zhang', 'wenhan zhang')
('35287113', 'Jason Dong', 'jason dong')
('48990565', 'Charles Young', 'charles young')
{baohua.sun,lin.yang,patrick.dong,wenhan.zhang,jason.dong,charles.yang}@gyrfalcontech.com +
91b1a59b9e0e7f4db0828bf36654b84ba53b0557This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +
 +
Simultaneous Hallucination and Recognition of +
Low-Resolution Faces Based on Singular Value +
Decomposition +
(SVD) +
for performing both +
('1783889', 'Muwei Jian', 'muwei jian')
('1703078', 'Kin-Man Lam', 'kin-man lam')
911bef7465665d8b194b6b0370b2b2389dfda1a1RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW +
Learning Human Optical Flow +
1 MPI for Intelligent Systems +
Tübingen, Germany +
2 Amazon Inc. +
('1952002', 'Anurag Ranjan', 'anurag ranjan')
('39040964', 'Javier Romero', 'javier romero')
('2105795', 'Michael J. Black', 'michael j. black')
aranjan@tuebingen.mpg.de +
javier@amazon.com +
black@tuebingen.mpg.de +
91ead35d1d2ff2ea7cf35d15b14996471404f68dCombining and Steganography of 3D Face Textures +('38478675', 'Mohsen Moradi', 'mohsen moradi')
919d0e681c4ef687bf0b89fe7c0615221e9a1d30
912a6a97af390d009773452814a401e258b77640
91d513af1f667f64c9afc55ea1f45b0be7ba08d4Automatic Face Image Quality Prediction +('2180413', 'Lacey Best-Rowden', 'lacey best-rowden')
('6680444', 'Anil K. Jain', 'anil k. jain')
91e507d2d8375bf474f6ffa87788aa3e742333ceRobust Face Recognition Using Probabilistic +
Facial Trait Code +
†Department of Computer Science and Information Engineering, National Taiwan +
Graduate Institute of Networking and Multimedia, National Taiwan University
National Taiwan University of Science and
University
Technology +
('1822733', 'Ping-Han Lee', 'ping-han lee')
('38801529', 'Gee-Sern Hsu', 'gee-sern hsu')
('2250469', 'Szu-Wei Wu', 'szu-wei wu')
('1732064', 'Yi-Ping Hung', 'yi-ping hung')
918b72a47b7f378bde0ba29c908babf6dab6f833
91e58c39608c6eb97b314b0c581ddaf7daac075ePixel-wise Ear Detection with Convolutional +
Encoder-Decoder Networks +
('31834768', 'Luka Lan Gabriel', 'luka lan gabriel')
('34862665', 'Peter Peer', 'peter peer')
91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0
9103148dd87e6ff9fba28509f3b265e1873166c9Face Analysis using 3D Morphable Models +
Submitted for the Degree of +
Doctor of Philosophy +
from the +
University of Surrey
Centre for Vision, Speech and Signal Processing +
Faculty of Engineering and Physical Sciences +
University of Surrey
Guildford, Surrey GU2 7XH, U.K. +
April 2015 +
('38819702', 'Guosheng Hu', 'guosheng hu')
('38819702', 'Guosheng Hu', 'guosheng hu')
9131c990fad219726eb38384976868b968ee9d9cDeep Facial Expression Recognition: A Survey +('39433609', 'Shan Li', 'shan li')
('1774956', 'Weihong Deng', 'weihong deng')
911505a4242da555c6828509d1b47ba7854abb7aIMPROVED ACTIVE SHAPE MODEL FOR FACIAL FEATURE LOCALIZATION +
National Formosa University, Taiwan
('1711364', 'Hui-Yu Huang', 'hui-yu huang')
('2782376', 'Shih-Hang Hsu', 'shih-hang hsu')
Email: hyhuang@nfu.edu.tw +
915d4a0fb523249ecbc88eb62cb150a60cf60fa0Comparison of Feature Extraction Techniques in Automatic +
Face Recognition Systems for Security Applications +
S . Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez +
Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain +
http://www.atvs.diac.upm.es +
{cruzll, jortega, etorrico, jgonzalz}@atvs.diac.upm.es. +
65126e0b1161fc8212643b8ff39c1d71d262fbc1Occlusion Coherence: Localizing Occluded Faces with a +
Hierarchical Deformable Part Model +
University of California, Irvine
('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi'){gghiasi,fowlkes}@ics.uci.edu +
65b737e5cc4a565011a895c460ed8fd07b333600Transfer Learning For Cross-Dataset Recognition: A Survey +
This paper summarises and analyses the cross-dataset recognition transfer learning techniques with the +
emphasis on what kinds of methods can be used when the available source and target data are presented +
in different forms for boosting the target task. This paper for the first time summarises several transferring +
criteria in details from the concept level, which are the key bases to guide what kind of knowledge to transfer +
between datasets. In addition, a taxonomy of cross-dataset scenarios and problems is proposed according the +
properties of data that define how different datasets are diverged, thereby review the recent advances on +
each specific problem under different scenarios. Moreover, some real world applications and corresponding +
commonly used benchmarks of cross-dataset recognition are reviewed. Lastly, several future directions are +
identified. +
Additional Key Words and Phrases: Cross-dataset, transfer learning, domain adaptation +
1. INTRODUCTION +
It has been explored how human would transfer learning in one context to another +
similar context [Woodworth and Thorndike 1901; Perkins et al. 1992] in the field of +
Psychology and Education. For example, learning to drive a car helps a person later +
to learn more quickly to drive a truck, and learning mathematics prepares students to +
study physics. The machine learning algorithms are mostly inspired by human brains. +
However, most of them require a huge amount of training examples to learn a new +
model from scratch and fail to apply knowledge learned from previous domains or +
tasks. This may be due to that a basic assumption of statistical learning theory is +
that the training and test data are drawn from the same distribution and belong to +
the same task. Intuitively, learning from scratch is not realistic and practical, because +
it violates how human learn things. In addition, manually labelling a large amount +
of data for new domain or task is labour extensive, especially for the modern “data- +
hungry” and “data-driven” learning techniques (i.e. deep learning). However, the big +
data era provides a huge amount available data collected for other domains and tasks. +
Hence, how to use the previously available data smartly for the current task with +
scarce data will be beneficial for real world applications. +
To reuse the previous knowledge for current tasks, the differences between old data +
and new data need to be taken into account. Take the object recognition as an ex- +
ample. As claimed by Torralba and Efros [2011], despite the great efforts of object +
datasets creators, the datasets appear to have strong build-in bias caused by various +
factors, such as selection bias, capture bias, category or label bias, and negative set +
bias. This suggests that no matter how big the dataset is, it is impossible to cover +
the complexity of the real visual world. Hence, the dataset bias needs to be consid- +
ered before reusing data from previous datasets. Pan and Yang [2010] summarise that +
the differences between different datasets can be caused by domain divergence (i.e. +
distribution shift or feature space difference) or task divergence (i.e. conditional dis- +
tribution shift or label space difference), or both. For example, in visual recognition, +
the distributions between the previous and current data can be discrepant due to the +
different environments, lighting, background, sensor types, resolutions, view angles, +
and post-processing. Those external factors may cause the distribution divergence or +
even feature space divergence between different domains. On the other hand, the task +
divergence between current and previous data is also ubiquitous. For example, it is +
highly possible that an animal species that we want to recognize have not been seen +
ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. +
('38791459', 'Jing Zhang', 'jing zhang')
('1685696', 'Wanqing Li', 'wanqing li')
('1719314', 'Philip Ogunbona', 'philip ogunbona')
6582f4ec2815d2106957215ca2fa298396dde274JUNE 2007 +
1005 +
Discriminative Learning and Recognition +
of Image Set Classes Using +
Canonical Correlations +
('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')
('1748684', 'Josef Kittler', 'josef kittler')
('1745672', 'Roberto Cipolla', 'roberto cipolla')
65b1760d9b1541241c6c0222cc4ee9df078b593aEnhanced Pictorial Structures for Precise Eye Localization +
Under Uncontrolled Conditions +
1Department of Computer Science and Engineering +
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2National Key Laboratory for Novel Software Technology +
Nanjing University, Nanjing 210093, China
('2248421', 'Xiaoyang Tan', 'xiaoyang tan')
('3075941', 'Fengyi Song', 'fengyi song')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
('1680768', 'Songcan Chen', 'songcan chen')
{x.tan, f.song, s.chen}@nuaa.edu.cn +
zhouzh@lamda.nju.edu.cn +
65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220Face Recognition for the Visually Impaired +
King Saud University, Riyadh, Saudi Arabia
2ISM-TEC LLC, Wilmington, Delaware, U.S.A +
University of Georgia, Athens, GA, U.S.A
('2278811', 'Rabia Jafri', 'rabia jafri')
('2227653', 'Syed Abid Ali', 'syed abid ali')
('1712033', 'Hamid R. Arabnia', 'hamid r. arabnia')
65bba9fba03e420c96ec432a2a82521ddd848c09Connectionist Temporal Modeling for Weakly +
Supervised Action Labeling +
Stanford University
('38485317', 'De-An Huang', 'de-an huang')
('3216322', 'Li Fei-Fei', 'li fei-fei')
('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')
{dahuang,feifeili,jniebles}@cs.stanford.edu +
656531036cee6b2c2c71954bb6540ef6b2e016d0W. LIU ET AL.: JOINTLY LEARNING NON-NEGATIVE PROJECTION AND DICTIONARY 1 +
Jointly Learning Non-negative Projection +
and Dictionary with Discriminative Graph +
Constraints for Classification +
Yandong Wen3 +
Rongmei Lin4 +
Meng Yang*1 +
College of Computer Science
Software Engineering, +
Shenzhen University, China
2 School of ECE, +
Peking University, China
3 Dept. of ECE, +
Carnegie Mellon University, USA
4 Dept. of Math & Computer Science, +
Emory University, USA
('36326884', 'Weiyang Liu', 'weiyang liu')
('1751019', 'Zhiding Yu', 'zhiding yu')
wyliu@pku.edu.cn +
yzhiding@andrew.cmu.edu +
yandongw@andrew.cmu.edu +
rongmei.lin@emory.edu +
yang.meng@szu.edu.cn +
65b1209d38c259fe9ca17b537f3fb4d1857580aeInformation Constraints on Auto-Encoding Variational Bayes +
University of California, Berkeley
University of California, Berkeley
Ragon Institute of MGH, MIT and Harvard
4Chan-Zuckerberg Biohub +
('39848341', 'Romain Lopez', 'romain lopez')
('39967607', 'Jeffrey Regier', 'jeffrey regier')
('1694621', 'Michael I. Jordan', 'michael i. jordan')
('2163873', 'Nir Yosef', 'nir yosef')
{romain_lopez, regier, niryosef}@berkeley.edu +
jordan@cs.berkeley.edu +
655d9ba828eeff47c600240e0327c3102b9aba7cIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +
489 +
Kernel Pooled Local Subspaces for Classification +
('40409453', 'Peng Zhang', 'peng zhang')
('1708023', 'Jing Peng', 'jing peng')
('1741392', 'Carlotta Domeniconi', 'carlotta domeniconi')
656a59954de3c9fcf82ffcef926af6ade2f3fdb5Convolutional Network Representation +
for Visual Recognition +
Doctoral Thesis +
Stockholm, Sweden, 2017 +
('2835963', 'Ali Sharif Razavian', 'ali sharif razavian')
652aac54a3caf6570b1c10c993a5af7fa2ef31ffCARNEGIE MELLON UNIVERSITY
STATISTICAL MODELING FOR NETWORKED VIDEO: +
CODING OPTIMIZATION, ERROR CONCEALMENT AND +
TRAFFIC ANALYSIS +
A DISSERTATION +
SUBMITTED TO THE GRADUATE SCHOOL +
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +
for the degree +
DOCTOR OF PHILOSOPHY +
in +
ELECTRICAL AND COMPUTER ENGINEERING +
by +
Pittsburgh, Pennsylvania +
July, 2001 +
('1727257', 'Deepak Srinivas Turaga', 'deepak srinivas turaga')
656ef752b363a24f84cc1aeba91e4fa3d5dd66baRobust Open-Set Face Recognition for +
Small-Scale Convenience Applications +
Institute for Anthropomatics
Karlsruhe Institute of Technology
Karlsruhe, Germany +
('1697965', 'Hua Gao', 'hua gao')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
Email: {hua.gao, ekenel, rainer.stiefelhagen}@kit.edu +
656aeb92e4f0e280576cbac57d4abbfe6f9439eaJournal of Engineering Science and Technology +
Vol. 12, No. 1 (2017) 155 - 167 +
School of Engineering, Taylor s University
USE OF IMAGE ENHANCEMENT TECHNIQUES +
FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY +
ON WEARABLE GADGETS +
Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia
Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom
('22422404', 'MUHAMMAD EHSAN RANA', 'muhammad ehsan rana')*Corresponding Author: muhd_ehsanrana@apu.edu.my +
656f05741c402ba43bb1b9a58bcc5f7ce2403d9a('2319574', 'Danila Potapov', 'danila potapov')
6577c76395896dd4d352f7b1ee8b705b1a45fa90TOWARDS COMPUTATIONAL MODELS OF KINSHIP VERIFICATION +
Cornell University
Cornell University
('2666471', 'Ruogu Fang', 'ruogu fang')
('1830653', 'Noah Snavely', 'noah snavely')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772A Deep Learning Approach for Subject Independent Emotion +
Recognition from Facial Expressions +
*Faculty of Electronics, Telecommunications & Information Technology +
Polytechnic University of Bucharest
Splaiul Independentei No. 313, Sector 6, Bucharest, +
ROMANIA +
**Department of Information Engineering and Computer Science +
University of Trento
ITALY +
('3178525', 'VICTOR-EMIL NEAGOE', 'victor-emil neagoe')victoremil@gmail.com, andreibarar@gmail.com, robitupaul@gmail.com +
sebe@disi.unitn.it +
65293ecf6a4c5ab037a2afb4a9a1def95e194e5fFace, Age and Gender Recognition +
using Local Descriptors +
by +
Thesis submitted to the +
Faculty of Graduate and Postdoctoral Studies +
In partial fulfillment of the requirements +
For the M.A.Sc. degree in +
Electrical and Computer Engineering +
School of Electrical Engineering and Computer Science +
Faculty of Engineering +
University of Ottawa
('15604275', 'Mohammad Esmaeel Mousa Pasandi', 'mohammad esmaeel mousa pasandi')
('15604275', 'Mohammad Esmaeel Mousa Pasandi', 'mohammad esmaeel mousa pasandi')
65817963194702f059bae07eadbf6486f18f4a0ahttp://dx.doi.org/10.1007/s11263-015-0814-0 +
WhittleSearch: Interactive Image Search with Relative Attribute +
Feedback +
Received: date / Accepted: date +
('1770205', 'Adriana Kovashka', 'adriana kovashka')
6581c5b17db7006f4cc3575d04bfc6546854a785Contextual Person Identification +
in Multimedia Data +
zur Erlangung des akademischen Grades eines +
Doktors der Ingenieurwissenschaften +
der Fakultät für Informatik +
des Karlsruher Instituts für Technologie (KIT) +
genehmigte +
Dissertation +
von +
aus Erlangen +
Tag der mündlichen Prüfung: +
18. November 2014 +
Hauptreferent: +
Korreferent: +
Prof. Dr. Rainer Stiefelhagen +
Karlsruher Institut für Technologie +
Prof. Dr. Gerhard Rigoll +
Technische Universität München +
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft +
www.kit.edu +
('1931707', 'Martin Bäuml', 'martin bäuml')
6515fe829d0b31a5e1f4dc2970a78684237f6edbConstrained Maximum Likelihood Learning of +
Bayesian Networks for Facial Action Recognition +
1 Electrical, Computer and Systems Eng. Dept. +
Rensselaer Polytechnic Institute
Troy, NY, USA +
2 Visualization and Computer Vision Lab +
GE Global Research Center
Niskayuna, NY, USA +
('1686235', 'Yan Tong', 'yan tong')
('1726583', 'Qiang Ji', 'qiang ji')
653d19e64bd75648cdb149f755d59e583b8367e3Decoupling “when to update” from “how to +
update” +
School of Computer Science, The Hebrew University, Israel
('19201820', 'Eran Malach', 'eran malach')
('2554670', 'Shai Shalev-Shwartz', 'shai shalev-shwartz')
65babb10e727382b31ca5479b452ee725917c739Label Distribution Learning +('1735299', 'Xin Geng', 'xin geng')
62dccab9ab715f33761a5315746ed02e48eed2a0A Short Note about Kinetics-600 +
Jo˜ao Carreira +
('51210148', 'Eric Noland', 'eric noland')
('51215438', 'Andras Banki-Horvath', 'andras banki-horvath')
('38961760', 'Chloe Hillier', 'chloe hillier')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
joaoluis@google.com +
enoland@google.com +
bhandras@google.com +
chillier@google.com +
zisserman@google.com +
62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43 +
DOI 10.1186/s13640-017-0188-z +
EURASIP Journal on Image +
and Video Processing +
R ES EAR CH +
Noise-resistant network: a deep-learning +
method for face recognition under noise +
Open Access +
('3012331', 'Yuanyuan Ding', 'yuanyuan ding')
('1976669', 'Yongbo Cheng', 'yongbo cheng')
('1847689', 'Xiaoliu Cheng', 'xiaoliu cheng')
('4869582', 'Baoqing Li', 'baoqing li')
('2757480', 'Xing You', 'xing you')
('38334864', 'Xiaobing Yuan', 'xiaobing yuan')
62694828c716af44c300f9ec0c3236e98770d7cfPadrón-Rivera, G., Rebolledo-Mendez, G., Parra, P. P., & Huerta-Pacheco, N. S. (2016). Identification of Action Units Related to +
Identification of Action Units Related to Affective States in a Tutoring System +
1Facultad de Estadística e Informática, Universidad Veracruzana, Mexico // 2Universidad Juárez Autónoma de +
for Mathematics +
Huerta-Pacheco1 +
*Corresponding author +
('2221778', 'Gustavo Padrón-Rivera', 'gustavo padrón-rivera')
('1731562', 'Genaro Rebolledo-Mendez', 'genaro rebolledo-mendez')
Tabasco, Mexico // zS12020111@estudiantes.uv.mx // grebolledo@uv.mx // pilar.pozos@ujat.mx // +
nehuerta@uv.mx +
6261eb75066f779e75b02209fbd3d0f02d3e1e45Fudan-Huawei at MediaEval 2015: Detecting Violent +
Scenes and Affective Impact in Movies with Deep Learning +
School of Computer Science, Fudan University, Shanghai, China
2Media Lab, Huawei Technologies Co. Ltd., China +
('9227981', 'Qi Dai', 'qi dai')
('3066866', 'Rui-Wei Zhao', 'rui-wei zhao')
('3099139', 'Zuxuan Wu', 'zuxuan wu')
('31825486', 'Xi Wang', 'xi wang')
('2650085', 'Zichen Gu', 'zichen gu')
('2273062', 'Wenhai Wu', 'wenhai wu')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
622daa25b5e6af69f0dac3a3eaf4050aa0860396Greedy Feature Selection for Subspace Clustering +
Greedy Feature Selection for Subspace Clustering +
Department of Electrical & Computer Engineering +
Rice University, Houston, TX, 77005, USA
Department of Electrical & Computer Engineering +
Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Department of Electrical & Computer Engineering +
Rice University, Houston, TX, 77005, USA
Editor: +
('1746363', 'Eva L. Dyer', 'eva l. dyer')
('1745861', 'Aswin C. Sankaranarayanan', 'aswin c. sankaranarayanan')
('1746260', 'Richard G. Baraniuk', 'richard g. baraniuk')
e.dyer@rice.edu +
saswin@ece.cmu.edu +
richb@rice.edu +
620339aef06aed07a78f9ed1a057a25433faa58b
62b3598b401c807288a113796f424612cc5833ca
62f0d8446adee6a5e8102053a63a61af07ac4098FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK +
TRANSFERRED FROM A HETEROGENEOUS TASK +
**Tome R&D +
Chubu University
1200, Matsumoto-cho, Kasugai, AICHI +
('1687819', 'Takayoshi Yamashita', 'takayoshi yamashita')
628a3f027b7646f398c68a680add48c7969ab1d9Plan for Final Year Project: +
HKU-Face: A Large Scale Dataset for Deep Face +
Recognition +
3035140108 +
3035141841 +
Introduction +
Face recognition has been one of the most successful techniques in the field of artificial intelligence +
because of its surpassing human-level performance in academic experiments and broad application in +
the industrial world. Gaussian-face[1] and Facenet[2] hold state-of-the-art record using statistical +
method and deep-learning method respectively. What’s more, face recognition has been applied +
in various areas like authority checking and recording, fostering a large number of start-ups like +
Face++. +
Our final year project will deal with the face recognition task by building a large-scaled and carefully- +
filtered dataset. Our project plan specifies our roadmap and current research process. This plan first +
illustrates the significance and potential enhancement in constructing large-scale face dataset for +
both academics and companies. Then objectives to accomplish and related literature review will be +
expressed in detail. Next, methodologies used, scope of our project and challenges faced by us are +
described. The detailed timeline for this project follows as well as a small summary. +
2 Motivation +
Nowadays most of the face recognition tasks are supervised learning tasks which use dataset annotated +
by human beings. This contains mainly two drawbacks: (1) limited size of dataset due to limited +
human effort; (2) accuracy problem resulted from human perceptual bias. +
Parkhi et al.[3] discuss the first problem, showing that giant companies hold private face databases +
with larger size of data (See the comparison in Table 1). Other research institution could only get +
access to public but smaller databases like LFW[4, 5], which acts like a barricade to even higher +
performance. +
Dataset +
IJB-A [6] +
LFW [4, 5] +
YFD [7] +
CelebFaces [8] +
CASIA-WebFace [9] +
MS-Celeb-1M [10] +
Facebook +
Google +
Availability +
public +
public +
public +
public +
public +
public +
private +
private +
identities +
500 +
5K +
1595 +
10K +
10K +
100K +
4K +
8M +
images +
5712 +
13K +
3425 videos +
202K +
500K +
about 10M +
4400K +
100-200M +
Table 1: Face recognition datasets +
('3347561', 'Haicheng Wang', 'haicheng wang')
('40456402', 'Haoyu Li', 'haoyu li')
626913b8fcbbaee8932997d6c4a78fe1ce646127Learning from Millions of 3D Scans for Large-scale 3D Face Recognition +
(This the preprint of the paper published in CVPR 2018) +
School of Computer Science and Software Engineering, +
The University of Western Australia
('1746166', 'Syed Zulqarnain Gilani', 'syed zulqarnain gilani')
('46332747', 'Ajmal Mian', 'ajmal mian')
{zulqarnain.gilani,ajmal.mian}@uwa.edu.au +
62374b9e0e814e672db75c2c00f0023f58ef442cFrontalfaceauthenticationusingdiscriminatinggridswith +
morphologicalfeaturevectors +
A.Tefas +
C.Kotropoulos +
I.Pitas +
AristotleUniversityofThessaloniki
Box,Thessaloniki,GREECE +
EDICSnumbers:-KNOWContentRecognitionandUnderstanding +
-MODAMultimodalandMultimediaEnvironments +
Anovelelasticgraphmatchingprocedurebasedonmultiscalemorphologicaloperations,thesocalled +
morphologicaldynamiclinkarchitecture,isdevelopedforfrontalfaceauthentication.Fastalgorithms +
forimplementingmathematicalmorphologyoperationsarepresented.Featureselectionbyemploying +
linearprojectionalgorithmsisproposed.Discriminatorypowercoe(cid:14)cientsthatweighthematching +
errorateachgridnodearederived.Theperformanceofmorphologicaldynamiclinkarchitecturein +
frontalfaceauthenticationisevaluatedintermsofthereceiveroperatingcharacteristicontheMVTS +
faceimagedatabase.Preliminaryresultsforfacerecognitionusingtheproposedtechniquearealso +
presented. +
Correspondingauthor:I.Pitas +
DRAFT +
September, +
E-mail:fcostas,tefas,pitasg@zeus.csd.auth.gr +
6257a622ed6bd1b8759ae837b50580657e676192
6226f2ea345f5f4716ac4ddca6715a47162d5b92PERSPECTIVE +
published: 19 November 2015 +
doi: 10.3389/frobt.2015.00029 +
Object Detection: Current and +
Future Directions +
1 Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile, 2 Department of Electrical Engineering, +
Universidad de Chile, Santiago, Chile +
Object detection is a key ability required by most computer and robot vision systems. +
The latest research on this area has been making great progress in many directions. In +
the current manuscript, we give an overview of past research on object detection, outline +
the current main research directions, and discuss open problems and possible future +
directions. +
Keywords: object detection, perspective, mini review, current directions, open problems +
1. INTRODUCTION +
During the last years, there has been a rapid and successful expansion on computer vision research. +
Parts of this success have come from adopting and adapting machine learning methods, while others +
from the development of new representations and models for specific computer vision problems +
or from the development of efficient solutions. One area that has attained great progress is object +
detection. The present works gives a perspective on object detection research. +
Given a set of object classes, object detection consists in determining the location and scale of all +
object instances, if any, that are present in an image. Thus, the objective of an object detector is to find +
all object instances of one or more given object classes regardless of scale, location, pose, view with +
respect to the camera, partial occlusions, and illumination conditions. +
In many computer vision systems, object detection is the first task being performed as it allows +
to obtain further information regarding the detected object and about the scene. Once an object +
instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i
to recognize the specific instance (e.g., to identify the subject’s face), (ii) to track the object over an +
image sequence (e.g., to track the face in a video), and (iii) to extract further information about the +
object (e.g., to determine the subject’s gender), while it is also possible to (a) infer the presence or +
location of other objects in the scene (e.g., a hand may be near a face and at a similar scale) and (b) to +
better estimate further information about the scene (e.g., the type of scene, indoor versus outdoor, +
etc.), among other contextual information. +
Object detection has been used in many applications, with the most popular ones being: (i) +
human-computer interaction (HCI), (ii) robotics (e.g., service robots), (iii) consumer electronics +
(e.g., smart-phones), (iv) security (e.g., recognition, tracking), (v) retrieval (e.g., search engines, +
photo management), and (vi) transportation (e.g., autonomous and assisted driving). Each of these +
applications has different requirements, including: processing time (off-line, on-line, or real-time
robustness to occlusions, invariance to rotations (e.g., in-plane rotations), and detection under pose +
changes. While many applications consider the detection of a single object class (e.g., faces) and from +
a single view (e.g., frontal faces), others require the detection of multiple object classes (humans, +
vehicles, etc.), or of a single class from multiple views (e.g., side and frontal view of vehicles). +
In general, most systems can detect only a single object class from a restricted set of views and +
poses. +
Edited by: +
Venkatesh Babu Radhakrishnan, +
Indian Institute of Science Bangalore
India +
Reviewed by: +
Juxi Leitner, +
Queensland University of Technology
Australia +
George Azzopardi, +
University of Groningen, Netherlands
Soma Biswas, +
Indian Institute of Science Bangalore
India +
*Correspondence: +
†Present address: +
Graduate School of Informatics, +
Kyoto University, Kyoto, Japan
Specialty section: +
This article was submitted to Vision +
Systems Theory, Tools and +
Applications, a section of the +
journal Frontiers in Robotics and AI +
Received: 20 July 2015 +
Accepted: 04 November 2015 +
Published: 19 November 2015 +
Citation: +
Verschae R and Ruiz-del-Solar J +
(2015) Object Detection: Current and +
Future Directions. +
Front. Robot. AI 2:29. +
doi: 10.3389/frobt.2015.00029 +
Frontiers in Robotics and AI | www.frontiersin.org +
November 2015 | Volume 2 | Article 29 +
('1689681', 'Rodrigo Verschae', 'rodrigo verschae')
('1737300', 'Javier Ruiz-del-Solar', 'javier ruiz-del-solar')
('1689681', 'Rodrigo Verschae', 'rodrigo verschae')
('1689681', 'Rodrigo Verschae', 'rodrigo verschae')
rodrigo@verschae.org +
62e913431bcef5983955e9ca160b91bb19d9de42Facial Landmark Detection with Tweaked Convolutional Neural Networks +
USC Information Sciences Institute
The Open University of Israel
('1746738', 'Yue Wu', 'yue wu')
('1756099', 'Tal Hassner', 'tal hassner')
626859fe8cafd25da13b19d44d8d9eb6f0918647Activity Recognition based on a +
Magnitude-Orientation Stream Network +
Smart Surveillance Interest Group, Department of Computer Science +
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +
('2119408', 'Carlos Caetano', 'carlos caetano')
('1679142', 'William Robson Schwartz', 'william robson schwartz')
{carlos.caetano,victorhcmelo,jefersson,william}@dcc.ufmg.br +
624e9d9d3d941bab6aaccdd93432fc45cac28d4bObject-Scene Convolutional Neural Networks for Event Recognition in Images +
The Chinese University of Hong Kong
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
('33345248', 'Limin Wang', 'limin wang')
('1915826', 'Zhe Wang', 'zhe wang')
('35031371', 'Wenbin Du', 'wenbin du')
('33427555', 'Yu Qiao', 'yu qiao')
07wanglimin@gmail.com, buptwangzhe2012@gmail.com, wb.du@siat.ac.cn, yu.qiao@siat.ac.cn +
620e1dbf88069408b008347cd563e16aeeebeb83
624496296af19243d5f05e7505fd927db02fd0ceGauss-Newton Deformable Part Models for Face Alignment in-the-Wild +
1. School of Computer Science +
University of Lincoln, U.K
2. Department of Computing +
Imperial College London, U.K
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')gtzimiropoulos@lincoln.ac.uk +
62fd622b3ca97eb5577fd423fb9efde9a849cbefTurning a Blind Eye: Explicit Removal of Biases and +
Variation from Deep Neural Network Embeddings +
Visual Geometry Group, University of Oxford
University of Oxford
Big Data Institute, University of Oxford
('1688869', 'Andrew Zisserman', 'andrew zisserman')
621ff353960d5d9320242f39f85921f72be69dc8Explicit Occlusion Detection based Deformable Fitting for +
Facial Landmark Localization +
1Department of Computer Science +
Rutgers University
617 Bowser Road, Piscataway, N.J, USA +
('39960064', 'Xiang Yu', 'xiang yu')
('1684164', 'Fei Yang', 'fei yang')
('1768190', 'Junzhou Huang', 'junzhou huang')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
{xiangyu,feiyang,dnm}@cs.rutgers.edu +
62007c30f148334fb4d8975f80afe76e5aef8c7fEye In-Painting with Exemplar Generative Adversarial Networks +
Facebook Inc. +
1 Hacker Way, Menlo Park (CA), USA +
('8277405', 'Brian Dolhansky', 'brian dolhansky'){bdol, ccanton}@fb.com +
62a30f1b149843860938de6dd6d1874954de24b7418 +
Fast Algorithm for Updating the Discriminant Vectors +
of Dual-Space LDA +
('40608983', 'Wenming Zheng', 'wenming zheng')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
621e8882c41cdaf03a2c4a986a6404f0272ba511On Robust Biometric Identity Verification via +
Sparse Encoding of Faces: Holistic vs Local Approaches +
The University of Queensland, School of ITEE, QLD 4072, Australia
('3026404', 'Yongkang Wong', 'yongkang wong')
('1781182', 'Conrad Sanderson', 'conrad sanderson')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
62e0380a86e92709fe2c64e6a71ed94d152c6643Facial Emotion Recognition With Expression Energy +
Albert Cruz +
Center for Research in +
Intelligent Systems +
216 Winston Chung Hall +
Center for Research in +
Intelligent Systems +
216 Winston Chung Hall +
Center for Research in +
Intelligent Systems +
216 Winston Chung Hall +
Riverside, CA, 92521-0425, +
Riverside, CA, 92521-0425, +
Riverside, CA, 92521-0425, +
USA +
USA +
USA +
('1707159', 'Bir Bhanu', 'bir bhanu')
('3254753', 'Ninad Thakoor', 'ninad thakoor')
acruz006@student.ucr.edu +
bhanu@ee.ucr.edu +
ninadt@ee.ucr.edu +
621f656fedda378ceaa9c0096ebb1556a42e5e0fSingle Sample Face Recognition from Video via +
Stacked Supervised Auto-encoder +
Ponti cal Catholic University of Rio de Janeiro, Brazil
Rio de Janeiro State University, Brazil
('8730918', 'Pedro J. Soto Vega', 'pedro j. soto vega')
('2017816', 'Raul Queiroz Feitosa', 'raul queiroz feitosa')
('2222679', 'Patrick Nigri Happ', 'patrick nigri happ')
{psoto, raul, vhaymaq, patrick}@ele.puc-rio.br +
965f8bb9a467ce9538dec6bef57438964976d6d9Recognizing Human Faces under Disguise and Makeup +
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong +
('17671202', 'Tsung Ying Wang', 'tsung ying wang')
('35680604', 'Ajay Kumar', 'ajay kumar')
cstywang@comp.polyu.edu.hk, csajaykr@comp.polyu.edu.hk +
961a5d5750f18e91e28a767b3cb234a77aac8305Face Detection without Bells and Whistles +
1 ESAT-PSI/VISICS, iMinds, KU Leuven, Belgium +
2 MPI Informatics, Saarbrücken, Germany +
3 D-ITET/CVL, ETH Zürich, Switzerland +
('11983029', 'Markus Mathias', 'markus mathias')
('1798000', 'Rodrigo Benenson', 'rodrigo benenson')
('3048367', 'Marco Pedersoli', 'marco pedersoli')
('1681236', 'Luc Van Gool', 'luc van gool')
96f0e7416994035c91f4e0dfa40fd45090debfc5Unsupervised Learning of Face Representations +
Georgia Institute of Technology, CVIT, IIIT Hyderabad, IIT Kanpur
('19200118', 'Samyak Datta', 'samyak datta')
('39396475', 'Gaurav Sharma', 'gaurav sharma')
9626bcb3fc7c7df2c5a423ae8d0a046b2f69180cUPTEC STS 17033 +
Examensarbete 30 hp +
November 2017 +
A deep learning approach for +
action classification in American +
football video sequences +
('5845058', 'Jacob Westerberg', 'jacob westerberg')
963d0d40de8780161b70d28d2b125b5222e75596Convolutional Experts Network for Facial Landmark Detection +
Carnegie Mellon University
Tadas Baltruˇsaitis∗ +
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
('1783029', 'Amir Zadeh', 'amir zadeh')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
abagherz@cs.cmu.edu +
tbaltrus@cs.cmu.edu +
morency@cs.cmu.edu +
968b983fa9967ff82e0798a5967920188a3590a82013, Vol. 139, No. 2, 271–299 +
© 2013 American Psychological Association +
0033-2909/13/$12.00 DOI: 10.1037/a0031640 +
Children’s Recognition of Disgust in Others +
Sherri C. Widen and James A. Russell +
Boston College
Disgust has been theorized to be a basic emotion with a facial signal that is easily, universally, +
automatically, and perhaps innately recognized by observers from an early age. This article questions one +
key part of that theory: the hypothesis that children recognize disgust from its purported facial signal. +
Over the first 5 years, children experience disgust, produce facial expressions of disgust, develop a +
concept of disgust, understand and produce the word disgust or a synonym, know about disgust’s causes +
and consequences, and infer disgust in others from a situation or a behavior. Yet, only gradually do these +
children come to “recognize” disgust specifically from the “disgust face” found in standardized sets of +
the facial expressions of basic emotions. Improvement is gradual, with more than half of children +
matching the standard disgust face to disgust only at around 9 years of age and with subsequent +
improvement continuing gradually until the late teens or early adulthood. Up to age 8, a majority of +
children studied believe that the standard disgust face indicates anger. Rather than relying on an already +
known signal value, children may be actively learning to interpret the expression. +
Keywords: facial expression, disgust, anger, emotion recognition, disgust face +
Disgust has been theorized to be important for many reasons: its +
status as one of only a handful of basic human emotions and hence +
as a building block of other emotions (Rozin, Haidt, & McCauley, +
2008); its role in avoidance of poisons, parasites, disease, and +
contaminants (Curtis, De Barra, & Aunger, 2011; Hart, 1990; +
Oaten, Stevenson, & Case, 2009; Schaller & Park, 2011); its role +
in determining food preferences (Rozin & Fallon, 1987); its rela- +
tion to psychiatric disorders, especially obsessive-compulsive dis- +
order, phobias, and other anxiety disorders (Olatunji & McKay, +
2007; Phillips, Fahy, David, & Senior, 1998); its diagnostic role in +
neurological disorders such as Huntington’s disease (Spren- +
gelmeyer et al., 1996); and, increasingly, its role in reactions to
cheating and other social and moral infractions (Haidt, 2003; +
Prinz, 2007). According to Giner-Sorolla, Bosson, Caswell, and +
Hettinger (2012), disgust plays “a powerful role in shaping cultural +
attitudes, policy, and law” (p. 1). Articles, books, and conferences +
demonstrate a surge of vigorous scientific theorizing and research +
on disgust. One result of this surge of research is that the idea of +
disgust as a simple reaction is giving way to a more complex story. +
As Herz (2012) summarized, “Our age, our personality, our cul- +
ture, our thoughts and beliefs, our mood, our morals, whom we’re +
with, where we are, and which of our senses is giving us the +
Sherri C. Widen and James A. Russell, Department of Psychology, +
Boston College
This article was funded by Grant 1025563 from the National Science +
Foundation. +
We thank Nicole Nelson, Mary Kayyal, Joe Pochedly, Alyssa McCarthy, +
Nicole Trauffer, Cara D’Arcy, Marissa DiGirolamo, Anne Yoder, and Erin +
Heitzman for their comments on a draft of this article. +
Correspondence concerning this article should be addressed to Sherri C. +
Widen, Department of Psychology, McGuinn Hall, 140 Commonwealth +
bc.edu +
271 +
feeling, all shape whether and how strongly we are able to feel +
disgusted” (p. 57). +
Much of the theorizing and research on disgust to date have +
been guided, explicitly or implicitly, by a research program cen- +
tered on the concept of basic emotions—indeed, that research +
program has provided the standard account of disgust. Theories +
within this research program (Ekman & Cordaro, 2011; Izard, +
1971, 1994; Tomkins, 1962) place facial expressions at the center +
of emotion. In this article, we question one key part of the standard +
account of disgust: the hypothesis that, from an early age, a child +
recognizes disgust in others from their facial expressions. Our +
review finds evidence that is inconsistent with this hypothesis, and +
we suggest that the field examine alternative accounts. To place +
this evidence in a broader context, we also review evidence on +
closely related topics, such as children’s disgust reactions, their +
acquisition of a word for disgust, their inference of disgust from +
nonfacial cues, and adults’ recognition of disgust from facial +
expressions. +
The Standard Account +
The widely assumed standard account of disgust stems from the +
classic work of Allport (1924) and Tomkins (1962) and those they +
influenced (Ekman & Cordaro, 2011; Izard, 2011; Levenson, +
2011). In this simple, elegant, and plausible account, so-called +
basic emotions—including disgust— have dedicated neural cir- +
cuitry, are triggered by specific releasing stimuli, and produce a +
coordinated response pattern that includes specific autonomic ner- +
vous system activation, a behavioral tendency, and a facial expres- +
sion. Ekman, Friesen, and Ellsworth (1972) described this last +
aspect of their theory as follows: +
Regardless of the language, of whether the culture is Western or +
Eastern, industrialized or preliterate, [certain] facial expressions are +
labeled with the same emotion terms . . . Our neuro-cultural theory +
postulates a facial affect program, located within the nervous system +
Avenue, Boston College, Chestnut Hill, MA 02467. E-mail: widensh@ +
969fd48e1a668ab5d3c6a80a3d2aeab77067c6ceEnd-to-End Spatial Transform Face Detection and Recognition +
Zhejiang University
Zhejiang University
Rokid.inc +
('39106061', 'Liying Chi', 'liying chi')
('35028106', 'Hongxin Zhang', 'hongxin zhang')
('9932177', 'Mingxiu Chen', 'mingxiu chen')
charrin0531@gmail.com +
zhx@cad.zju.edu.cn +
cmxnono@rokid.com +
96a9ca7a8366ae0efe6b58a515d15b44776faf6eGrid Loss: Detecting Occluded Faces +
Institute for Computer Graphics and Vision
Graz University of Technology
('34847524', 'Michael Opitz', 'michael opitz')
('1903921', 'Georg Waltner', 'georg waltner')
('1762885', 'Georg Poier', 'georg poier')
('1720811', 'Horst Possegger', 'horst possegger')
('3628150', 'Horst Bischof', 'horst bischof')
{michael.opitz,waltner,poier,possegger,bischof}@icg.tugraz.at +
9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4J Inf Process Syst, Vol.9, No.1, March 2013 +
pISSN 1976-913X +
eISSN 2092-805X +
Region-Based Facial Expression Recognition in +
Still Images +
('2648759', 'Gawed M. Nagi', 'gawed m. nagi')
('2057896', 'Fatimah Khalid', 'fatimah khalid')
964a3196d44f0fefa7de3403849d22bbafa73886
96e1ccfe96566e3c96d7b86e134fa698c01f2289Published in Proc. of 11th IAPR International Conference on Biometrics (ICB 2018). Gold Coast, Australia, Feb. 2018 +
Semi-Adversarial Networks: Convolutional Autoencoders for Imparting Privacy +
to Face Images +
Anoop Namboodiri 2 +
Michigan State University, East Lansing, USA
International Institute of Information Technology, Hyderabad, India
('5456235', 'Vahid Mirjalili', 'vahid mirjalili')
('2562040', 'Sebastian Raschka', 'sebastian raschka')
('1698707', 'Arun Ross', 'arun ross')
mirjalil@msu.edu +
raschkas@msu.edu +
anoop@iiit.ac.in +
rossarun@cse.msu.edu +
96f4a1dd1146064d1586ebe86293d02e8480d181COMPARATIVE ANALYSIS OF RERANKING +
TECHNIQUES FOR WEB IMAGE SEARCH +
Pune Institute of Computer Technology, Pune, ( India
9606b1c88b891d433927b1f841dce44b8d3af066Principal Component Analysis with Tensor Train +
Subspace +
('2329741', 'Wenqi Wang', 'wenqi wang')
('1732805', 'Vaneet Aggarwal', 'vaneet aggarwal')
('1980683', 'Shuchin Aeron', 'shuchin aeron')
9627f28ea5f4c389350572b15968386d7ce3fe49Load Balanced GANs for Multi-view Face Image Synthesis +
1National Laboratory of Pattern Recognition, CASIA +
2Center for Research on Intelligent Perception and Computing, CASIA +
3Center for Excellence in Brain Science and Intelligence Technology, CAS +
University of Chinese Academy of Sciences, Beijing, 100049, China
5Noah’s Ark Lab of Huawei Technologies +
('1680853', 'Jie Cao', 'jie cao')
('49995036', 'Yibo Hu', 'yibo hu')
('49828394', 'Bing Yu', 'bing yu')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
{jie.cao,yibo.hu}@cripac.ia.ac.cn, yubing5@huawei.com, {rhe, znsun}@nlpr.ia.ac.cn +
966e36f15b05ef8436afecf57a97b73d6dcada94Dimensionality Reduction using Relative +
Attributes +
Institute for Human-Machine Communication, Technische Universit at M unchen
Iran
The Remote Sensing Technology Institute (IMF), German Aerospace Center
1 Introduction +
Visual attributes are high-level semantic description of visual data that are close +
to the language of human. They have been intensively used in various appli- +
cations such as image classification [1,2], active learning [3,4], and interactive +
search [5]. However, the usage of attributes in dimensionality reduction has not +
been considered yet. In this work, we propose to utilize relative attributes as +
semantic cues in dimensionality reduction. To this end, we employ Non-negative +
Matrix Factorization (NMF) [6] constrained by embedded relative attributes to +
come up with a new algorithm for dimensionality reduction, namely attribute +
regularized NMF (ANMF). +
2 Approach +
We assume that X ∈ RD×N denotes N data points (e.g., images) represented by +
D dimensional low-level feature vectors. The NMF decomposes the non-negative +
matrix X into two non-negative matrices U ∈ RD×K and V ∈ RN×K such that +
the multiplication of U and V approximates the original matrix X. Here, U +
represents the bases and V contains the coefficients, which are considered as +
new representation of the original data. The NMF objective function is: +
F =(cid:13)(cid:13)X − U V T(cid:13)(cid:13)2 +
s.t. U = [uik] ≥ 0 +
V = [vjk] ≥ 0. +
(1) +
Additionally, we assume that M semantic attributes have been predefined +
for the data and the relative attributes of each image are available. Precisely, +
the matrix of relative attributes, Q ∈ RM×N , has been learned by some ranking +
function (e,.g, rankSVM). Intuitively, those images which own similar relative +
attributes have similar semantic contents and therefore belong to the same se- +
mantic class. This concept can be formulated as a regularizer to be added to the +
('2133342', 'Mohammadreza Babaee', 'mohammadreza babaee')
('2165157', 'Stefanos Tsoukalas', 'stefanos tsoukalas')
('3281049', 'Maryam Babaee', 'maryam babaee')
('1705843', 'Gerhard Rigoll', 'gerhard rigoll')
('1777167', 'Mihai Datcu', 'mihai datcu')
{reza.babaee,rigoll}@tum.de, s.tsoukalas@mytum.de +
babaee@eng.ui.ac.ir +
mihai.datcu@dlr.de +
96b1000031c53cd4c1c154013bb722ffd87fa7daContextVP: Fully Context-Aware Video +
Prediction +
1 NVIDIA, Santa Clara, CA, USA +
2 ETH Zurich, Zurich, Switzerland +
3 The Swiss AI Lab IDSIA, Manno, Switzerland +
4 NNAISENSE, Lugano, Switzerland +
('2387035', 'Wonmin Byeon', 'wonmin byeon')
('1794816', 'Qin Wang', 'qin wang')
('2100612', 'Rupesh Kumar Srivastava', 'rupesh kumar srivastava')
('1802604', 'Petros Koumoutsakos', 'petros koumoutsakos')
wbyeon@nvidia.com +
96578785836d7416bf2e9c154f687eed8f93b1e4Automated video-based facial expression analysis +
of neuropsychiatric disorders +
a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA
b Brain Behavior Center, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania
3400 Spruce Street, 10th Floor Gates Building Philadelphia, PA 19104, USA +
c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania
University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania
3400 Spruce Street, 10th Floor Gates Building Philadelphia, PA 19104, USA +
3400 Spruce Street, 10th Floor Gates Building Philadelphia, PA 19104, USA +
University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania
f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania
3400 Spruce Street, 10th Floor Gates Building Philadelphia, PA 19104, USA +
3400 Spruce Street, 10th Floor Gates Building Philadelphia, PA 19104, USA +
Received 16 July 2007; received in revised form 20 September 2007; accepted 20 September 2007 +
('37761073', 'Peng Wang', 'peng wang')
('28501509', 'Frederick Barrett', 'frederick barrett')
('2953329', 'Elizabeth Martin', 'elizabeth martin')
('5747394', 'Marina Milonova', 'marina milonova')
('1826037', 'Christian Kohler', 'christian kohler')
('7467718', 'Ragini Verma', 'ragini verma')
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0The MegaFace Benchmark: 1 Million Faces for Recognition at Scale +
Department of Computer Science and Engineering +
University of Washington
(a) FaceScrub + MegaFace +
(b) FGNET + MegaFace +
Figure 1. The MegaFace challenge evaluates identification and verification as a function of increasing number of gallery distractors (going +
from 10 to 1 Million). We use two different probe sets (a) FaceScrub–photos of celebrities, (b) FGNET–photos with a large variation in +
age per person. We present rank-1 identification of state of the art algorithms that participated in our challenge. On the left side of each +
plot is current major benchmark LFW scale (i.e., 10 distractors, see how all the top algorithms are clustered above 95%). On the right is +
mega-scale (with a million distractors). Observe that rates drop with increasing numbers of distractors, even though the probe set is fixed, +
and that algorithms trained on larger sets (dashed lines) generally perform better. Participate at: http://megaface.cs.washington.edu. +
('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')
('1679223', 'Steven M. Seitz', 'steven m. seitz')
('2721528', 'Evan Brossard', 'evan brossard')
968f472477a8afbadb5d92ff1b9c7fdc89f0c009Firefly-based Facial Expression Recognition +
96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28dDynamic Attention-controlled Cascaded Shape Regression Exploiting Training +
Data Augmentation and Fuzzy-set Sample Weighting +
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
School of IoT Engineering, Jiangnan University, Wuxi 214122, China
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('1748684', 'Josef Kittler', 'josef kittler')
{z.feng, j.kittler, w.christmas, p.huber}@surrey.ac.uk, wu xiaojun@jiangnan.edu.cn +
96e731e82b817c95d4ce48b9e6b08d2394937cf8Unconstrained Face Verification using Deep CNN Features +
University of Maryland, College Park
Rutgers, The State University of New Jersey
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
pullpull@cs.umd.edu, vishal.m.patel@rutgers.edu, rama@umiacs.umd.edu +
9686dcf40e6fdc4152f38bd12b929bcd4f3bbbccInternational Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015 +
ISSN 2091-2730 +
Emotion Based Music Player +
1Department of Computer Science and Engineering +
2Department of Computer Science and Engineering +
3Department of Computer Science and Engineering +
4Asst. Professor, Department of Computer Science and Engineering +
M.H Saboo Siddik College of Engineering, University of Mumbai, India
('9928295', 'Sharik Khan', 'sharik khan')
('1762886', 'Omar Khan', 'omar khan')
('16079307', 'Shabana Tadvi', 'shabana tadvi')
Email:-kabani152@gmail.com +
9636c7d3643fc598dacb83d71f199f1d2cc34415
3a27d164e931c422d16481916a2fa6401b74bcefAnti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant +
Face Verification +
National Laboratory of Pattern Recognition, CASIA +
Center for Research on Intelligent Perception and Computing, CASIA +
Center for Excellence in Brain Science and Intelligence Technology, CAS +
University of Chinese Academy of Sciences, Beijing 100190, China
('2496686', 'Yi Li', 'yi li')
('3051419', 'Lingxiao Song', 'lingxiao song')
('2225749', 'Xiang Wu', 'xiang wu')
('1705643', 'Ran He', 'ran he')
('1688870', 'Tieniu Tan', 'tieniu tan')
yi.li@cripac.ia.ac.cn, {lingxiao.song, rhe, tnt}@nlpr.ia.ac.cn, alfredxiangwu@gmail.com +
3af8d38469fb21368ee947d53746ea68cd64eeaeMultimodal Intelligent Affect Detection with Kinect +
(Doctoral Consortium) +
Northumbria University
United Kingdom +
Northumbria University
United Kingdom +
Northumbria University
United Kingdom +
('1886853', 'Li Zhang', 'li zhang')
('2004913', 'Alamgir Hossain', 'alamgir hossain')
('39617655', 'Yang Zhang', 'yang zhang')
li.zhang@northumbria.ac.uk +
Yang4.zhang@northumbria.ac.uk +
3a2fc58222870d8bed62442c00341e8c0a39ec87Probabilistic Local Variation +
Segmentation +
Technion - Computer Science Department - M.Sc. Thesis MSC-2014-02 - 2014
('3139600', 'Michael Baltaxe', 'michael baltaxe')
3a3f75e0ffdc0eef07c42b470593827fcd4020b4NORMAL SIMILARITY NETWORK FOR GENERATIVE MODELLING +
School of Computing, National University of Singapore
('40456486', 'Jay Nandy', 'jay nandy')
('1725063', 'Wynne Hsu', 'wynne hsu')
3a76e9fc2e89bdd10a9818f7249fbf61d216efc4Face Sketch Matching via Coupled Deep Transform Learning +
IIIT-Delhi, India, 2West Virginia University
('1925017', 'Shruti Nagpal', 'shruti nagpal')
('2220719', 'Maneet Singh', 'maneet singh')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('2487227', 'Afzel Noore', 'afzel noore')
('2641605', 'Angshul Majumdar', 'angshul majumdar')
{shrutin, maneets, rsingh, mayank, angshul}@iiitd.ac.in, afzel.noore@mail.wvu.edu +
3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2End-to-End Deep Learning for Steering Autonomous +
Vehicles Considering Temporal Dependencies +
The American University in Cairo, Egypt
2Valeo Schalter und Sensoren GmbH, Germany +
('2150605', 'Hesham M. Eraqi', 'hesham m. eraqi')
('2233511', 'Mohamed N. Moustafa', 'mohamed n. moustafa')
('11300101', 'Jens Honer', 'jens honer')
3a0ea368d7606030a94eb5527a12e6789f727994Categorization by Learning +
and Combining Object Parts +
Center for Biological and Computational Learning, M.I.T., Cambridge, MA, USA +
Tomaso Poggio +
Honda RandD Americas, Inc., Boston, MA, USA
University of Siena, Siena, Italy
Computer Graphics Research Group, University of Freiburg, Freiburg, Germany
 heisele,serre,tp +
('1684626', 'Bernd Heisele', 'bernd heisele')@ai.mit.edu pontil@ing.unisi.it +
vetter@informatik.uni-freiburg.de +
3a804cbf004f6d4e0b041873290ac8e07082b61fLanguage-Action Tools for Cognitive Artificial Agents: Papers from the 2011 AAAI Workshop (WS-11-14) +
A Corpus-Guided Framework for Robotic Visual Perception +
University of Maryland Institute for Advanced Computer Studies, College Park, MD
('7607499', 'Yezhou Yang', 'yezhou yang')
('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')
{cteo, yzyang, hal, fer, yiannis}@umiacs.umd.edu +
3a04eb72aa64760dccd73e68a3b2301822e4cdc3Scalable Sparse Subspace Clustering +
Machine Intelligence Laboratory, College of Computer Science, Sichuan University
Chengdu, 610065, China. +
('8249791', 'Xi Peng', 'xi peng')
('36794849', 'Lei Zhang', 'lei zhang')
('9276020', 'Zhang Yi', 'zhang yi')
pangsaai@gmail.com, {leizhang, zhangyi}@scu.edu.cn +
3af130e2fd41143d5fc49503830bbd7bafd01f8bHow Do We Evaluate the Quality of Computational Editing Systems? +
1 Inria, Univ. Grenoble Alpes & CNRS (LJK), Grenoble, France +
University of Wisconsin-Madison, Madison, WI, USA
('2869929', 'Christophe Lino', 'christophe lino')
('1810286', 'Quentin Galvane', 'quentin galvane')
('1776507', 'Michael Gleicher', 'michael gleicher')
3a2cf589f5e11ca886417b72c2592975ff1d8472Spontaneously Emerging Object Part Segmentation +
Machine Learning Department +
Carnegie Mellon University
Machine Learning Department +
Carnegie Mellon University
('1696365', 'Yijie Wang', 'yijie wang')
('1705557', 'Katerina Fragkiadaki', 'katerina fragkiadaki')
yijiewang@cmu.edu +
katef@cs.cmu.edu +
3ada7640b1c525056e6fcd37eea26cd638815cd6Abnormal Object Recognition: +
A Comprehensive Study +
Rutgers University
University of Washington
('3139794', 'Babak Saleh', 'babak saleh')
('2270286', 'Ali Farhadi', 'ali farhadi')
3abc833f4d689f37cc8a28f47fb42e32deaa4b17Noname manuscript No. +
(will be inserted by the editor) +
Large Scale Retrieval and Generation of Image Descriptions +
Received: date / Accepted: date +
('2004053', 'Vicente Ordonez', 'vicente ordonez')
('38390487', 'Margaret Mitchell', 'margaret mitchell')
('34176020', 'Jesse Dodge', 'jesse dodge')
('1699545', 'Yejin Choi', 'yejin choi')
3acb6b3e3f09f528c88d5dd765fee6131de931ea(cid:49)(cid:50)(cid:57)(cid:40)(cid:47)(cid:3)(cid:53)(cid:40)(cid:51)(cid:53)(cid:40)(cid:54)(cid:40)(cid:49)(cid:55)(cid:36)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:41)(cid:50)(cid:53)(cid:3)(cid:39)(cid:53)(cid:44)(cid:57)(cid:40)(cid:53)(cid:3)(cid:40)(cid:48)(cid:50)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:53)(cid:40)(cid:38)(cid:50)(cid:42)(cid:49)(cid:44)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:3) +
(cid:44)(cid:49)(cid:3)(cid:48)(cid:50)(cid:55)(cid:50)(cid:53)(cid:3)(cid:57)(cid:40)(cid:43)(cid:44)(cid:38)(cid:47)(cid:40)(cid:3)(cid:57)(cid:44)(cid:39)(cid:40)(cid:50)(cid:54)(cid:3) +
(cid:53)(cid:68)(cid:77)(cid:78)(cid:88)(cid:80)(cid:68)(cid:85)(cid:3)(cid:55)(cid:75)(cid:72)(cid:68)(cid:74)(cid:68)(cid:85)(cid:68)(cid:77)(cid:68)(cid:81)(cid:13)(cid:15)(cid:3)(cid:37)(cid:76)(cid:85)(cid:3)(cid:37)(cid:75)(cid:68)(cid:81)(cid:88)(cid:13)(cid:15)(cid:3)(cid:36)(cid:79)(cid:69)(cid:72)(cid:85)(cid:87)(cid:3)(cid:38)(cid:85)(cid:88)(cid:93)(cid:130)(cid:15)(cid:3)(cid:37)(cid:72)(cid:79)(cid:76)(cid:81)(cid:71)(cid:68)(cid:3)(cid:47)(cid:72)(cid:13)(cid:15)(cid:3)(cid:36)(cid:86)(cid:82)(cid:81)(cid:74)(cid:88)(cid:3)(cid:55)(cid:68)(cid:80)(cid:69)(cid:82)(cid:13)(cid:3) +
(cid:3) +
Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA
(cid:36)(cid:37)(cid:54)(cid:55)(cid:53)(cid:36)(cid:38)(cid:55)(cid:3) +
the background +
(cid:3) +
A novel feature representation of human facial expressions +
for emotion recognition is developed. The representation +
leveraged +
texture removal ability of +
Anisotropic Inhibited Gabor Filtering (AIGF) with the +
compact representation of spatiotemporal +
local binary +
patterns. The emotion recognition system incorporated face +
detection and registration followed by the proposed feature +
representation: Local Anisotropic Inhibited Binary Patterns +
in Three Orthogonal +
and +
classification. The system is evaluated on videos from Motor +
(cid:55)(cid:85)(cid:72)(cid:81)(cid:71)(cid:3)(cid:48)(cid:68)(cid:74)(cid:68)(cid:93)(cid:76)(cid:81)(cid:72)(cid:182)(cid:86)(cid:3)(cid:37)(cid:72)(cid:86)(cid:87)(cid:3)(cid:39)(cid:85)(cid:76)(cid:89)(cid:72)(cid:85)(cid:3)(cid:38)(cid:68)(cid:85)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:60)(cid:72)(cid:68)(cid:85) 2014-2016. +
The results showed improved performance compared to +
other state-of-the-art feature representations.(cid:3) +
(LAIBP-TOP) +
Index(cid:3)Terms(cid:178)(cid:3)Facial expression, emotion recognition, +
feature extraction, background texture, anisotropic Gabor +
filter.(cid:3) +
(cid:3) +
Planes +
(cid:20)(cid:17)(cid:3)(cid:44)(cid:49)(cid:55)(cid:53)(cid:50)(cid:39)(cid:56)(cid:38)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3) +
Facial expressions are crucial to non-verbal communication +
of emotion. Automatic facial emotion recognition software +
has applications in lie detection, human behavior analysis, +
medical applications, and human-computer interfaces. We +
develop a system to detect stress and inattention of a motor +
vehicle operator from a single camera. Previous work in +
observation of motor vehicle operators employed multiple +
cameras for 3-D reconstruction [1], but multi-camera +
systems may introduce too much complexity and too many +
constraints in the design of a system. Another possible +
solution is gaze, but as of yet there is no consensus on how +
to detect inattention from gaze [2]. The goal of our work is a +
system that can extrapolate high stress and inattention from +
valence and arousal measurements on a low-cost platform so +
as to prevent motor vehicle accidents. +
To this end, we present a novel dynamic local appearance +
feature that can compactly describe the spatiotemporal +
behavior of a local neighborhood in the video. The method +
is based on Local Binary Patterns in Three Orthogonal +
Planes (LBP-TOP) [3] and background suppressing Gabor +
Energy filtering [4], but it is significantly different. We +
demonstrate that the background suppression concept can be +
applied to LBP-TOP to improve performance. The system is +
tested on three data sets collected from the Motor Trend +
(cid:48)(cid:68)(cid:74)(cid:68)(cid:93)(cid:76)(cid:81)(cid:72)(cid:182)(cid:86)(cid:3) (cid:37)(cid:72)(cid:86)(cid:87)(cid:3) (cid:39)(cid:85)(cid:76)(cid:89)(cid:72)(cid:85)(cid:3) (cid:38)(cid:68)r of the Year 2014, 2015 and +
2016. +
(cid:21)(cid:17)(cid:3)(cid:53)(cid:40)(cid:47)(cid:36)(cid:55)(cid:40)(cid:39)(cid:3)(cid:58)(cid:50)(cid:53)(cid:46)(cid:3)(cid:36)(cid:49)(cid:39)(cid:3)(cid:38)(cid:50)(cid:49)(cid:55)(cid:53)(cid:44)(cid:37)(cid:56)(cid:55)(cid:44)(cid:50)(cid:49)(cid:54)(cid:3) +
(cid:3) +
The current challenge to dynamic facial emotion recognition +
is the detection of emotion despite the various extrinsic and +
intrinsic imaging conditions, and intra-personnel differences +
in expression. While deep learning has been a growing trend +
in image processing and computer vision, the effects of +
transfer learning (cid:178) using expression data from other +
datasets [5] (cid:178) are diminished possibly because of various +
factors [6]. Thus, hand-crafted features, not learned from the +
neural networks, are still of great interest to unconstrained +
facial emotion recognition. This work focuses on the +
development of a novel hand-crafted feature representation. +
Local Binary Pattern (LBP) is the most commonly used +
appearance-based feature extraction method [7]. LBP is a +
static texture descriptor and is not suitable for dynamic +
facial expressions in videos. +
A variation of LBP, Volume Local Binary Patterns +
(VLBP), was developed to capture dynamic textures [8]. +
VLBP uses 3 parallel planes in the spatiotemporal domain +
where the center pixel is on the center plane, and it records +
the dynamic patterns in the neighborhood of each pixel into +
a (3(cid:81)+2) dimensional histogram, where (cid:81) is the number of +
neighboring pixels. +
The high dimensionality of VLBP is 23(cid:81)+2, makes it +
impractical to use due to the rapid increase in dimensionality +
as the size of the neighborhood increases. An alternate +
solution to VLBP is the Local Binary Patterns in Three +
Orthogonal Planes (LBP-TOP). The dimensionality of LBP- +
TOP (3*2(cid:81)) is significantly lower than VLBP. The working +
of LBP-TOP is described in section 3. +
The other major type of appearance feature is the Gabor +
filter. Traditional Gabor filters are +
in +
unconstrained settings; it captures all edges within an image, +
noise included. Cruz (cid:72)(cid:87)(cid:3) (cid:68)(cid:79)(cid:17)(cid:3) [4] proposed Anisotropic +
Inhibited Gabor Filter (AIGF) that is robust to background +
noise and computationally efficient. Almaev (cid:72)(cid:87)(cid:3) (cid:68)(cid:79)(cid:17)(cid:3) [9] +
too sensitive +
(cid:28)(cid:26)(cid:27)(cid:16)(cid:20)(cid:16)(cid:24)(cid:19)(cid:28)(cid:19)(cid:16)(cid:21)(cid:20)(cid:26)(cid:24)(cid:16)(cid:27)(cid:18)(cid:20)(cid:26)(cid:18)(cid:7)(cid:22)(cid:20)(cid:17)(cid:19)(cid:19)(cid:3)(cid:139)(cid:21)(cid:19)(cid:20)(cid:26)(cid:3)(cid:44)(cid:40)(cid:40)(cid:40) +
(cid:27)(cid:20)(cid:19) +
(cid:44)(cid:38)(cid:44)(cid:51)(cid:3)(cid:21)(cid:19)(cid:20)(cid:26) +
3a60678ad2b862fa7c27b11f04c93c010cc6c430JANUARY-MARCH 2012 +
A Multimodal Database for +
Affect Recognition and Implicit Tagging +
('2463695', 'Mohammad Soleymani', 'mohammad soleymani')
('2796371', 'Jeroen Lichtenauer', 'jeroen lichtenauer')
('1809085', 'Thierry Pun', 'thierry pun')
('1694605', 'Maja Pantic', 'maja pantic')
3a591a9b5c6d4c62963d7374d58c1ae79e3a4039Driver Cell Phone Usage Detection From HOV/HOT NIR Images +
Xerox Research Center Webster
800 Phillips Rd. Webster NY 14580 +
('1762503', 'Yusuf Artan', 'yusuf artan')
('2415287', 'Orhan Bulan', 'orhan bulan')
('1736673', 'Robert P. Loce', 'robert p. loce')
('5942563', 'Peter Paul', 'peter paul')
yusuf.artan,orhan.bulan,robert.loce,peter.paul@xerox.com +
3aa9c8c65ce63eb41580ba27d47babb1100df8a3Annals of the   +
University of North Carolina Wilmington
Master of Science in   +
Computer Science and Information Systems  +
3a0a839012575ba455f2b84c2d043a35133285f9444 +
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 444–454, +
Edinburgh, Scotland, UK, July 27–31, 2011. c(cid:13)2011 Association for Computational Linguistics +
3af1a375c7c1decbcf5c3a29774e165cafce390cQuantifying Facial Expression Abnormality in Schizophrenia by Combining +
2D and 3D Features +
1 Department of Radiology +
University of Pennsylvania
2 Department of Psychiatry +
University of Pennsylvania
Philadelphia, PA 19104 +
Philadelphia, PA 19104 +
('1722767', 'Peng Wang', 'peng wang')
('15741672', 'Fred Barrett', 'fred barrett')
('7467718', 'Ragini Verma', 'ragini verma')
{wpeng@ieee.org, ragini.verma@uphs.upenn.edu } +
{kohler, fbarrett, raquel, gur}@bbl.med.upenn.edu +
3a9681e2e07be7b40b59c32a49a6ff4c40c962a2Biometrics & Biostatistics International Journal +
Comparing treatment means: overlapping standard +
errors, overlapping confidence intervals, and tests of +
hypothesis +
3a846704ef4792dd329a5c7a2cb8b330ab6b8b4ein any current or +
future media, +
for all other uses, +
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be +
obtained +
including +
reprinting/republishing this material for advertising or promotional purposes, creating +
new collective works, for resale or redistribution to servers or lists, or reuse of any +
copyrighted component of this work in other works. +
Pre-print of article that appeared at the IEEE Computer Society Workshop on Biometrics +
2010. +
The published article can be accessed from: +
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5544597 +
3a2a37ca2bdc82bba4c8e80b45d9f038fe697c7dHandling Uncertain Tags in Visual Recognition +
School of Computing Science, Simon Fraser University, Canada
('3214848', 'Arash Vahdat', 'arash vahdat')
('10771328', 'Greg Mori', 'greg mori')
{avahdat, mori}@cs.sfu.ca +
3a95eea0543cf05670e9ae28092a114e3dc3ab5cConstructing the L2-Graph for Robust Subspace +
Learning and Subspace Clustering +
('8249791', 'Xi Peng', 'xi peng')
('1751019', 'Zhiding Yu', 'zhiding yu')
('3134548', 'Huajin Tang', 'huajin tang')
('9276020', 'Zhang Yi', 'zhang yi')
3a4f522fa9d2c37aeaed232b39fcbe1b64495134ISSN (Online) 2321 – 2004 +
ISSN (Print) 2321 – 5526 +
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +
Vol. 4, Issue 5, May 2016 +
IJIREEICE +
Face Recognition and Retrieval Using Cross +
Age Reference Coding +
Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 +
BE, DSCE, Bangalore1 +
Assistant Professor, DSCE, Bangalore2 +
54948ee407b5d32da4b2eee377cc44f20c3a7e0cRight for the Right Reason: Training Agnostic +
Networks +
Intelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK
use of classifiers in “out of domain” situations, a problem that +
leads to research questions in domain adaptation [6], [18]. +
Other concerns are also created around issues of bias, e.g. +
classifiers incorporating biases that are present in the data +
and are not intended to be used [2], which run the risk of +
reinforcing or amplifying cultural (and other) biases [20]. +
Therefore, both predictive accuracy and fairness are heavily +
influenced by the choices made when developing black-box +
machine-learning models. +
('1805367', 'Sen Jia', 'sen jia')
('2031978', 'Thomas Lansdall-Welfare', 'thomas lansdall-welfare')
('1685083', 'Nello Cristianini', 'nello cristianini')
{sen.jia, thomas.lansdall-welfare, nello.cristianini}@bris.ac.uk +
540b39ba1b8ef06293ed793f130e0483e777e278ORIGINAL RESEARCH +
published: 13 July 2018 +
doi: 10.3389/fpsyg.2018.01191 +
Biologically Inspired Emotional +
Expressions for Artificial Agents +
Optics and Engineering Informatics, Budapest University of Technology and Economics
Budapest, Hungary, E tv s Lor nd University, Budapest, Hungary, 3 Institute for Computer Science
and Control, Hungarian Academy of Sciences, Budapest, Hungary, Chuo University
Tokyo, Japan, 5 MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary, 6 Department of Telecommunications +
and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
A special area of human-machine interaction, +
the expression of emotions gains +
importance with the continuous development of artificial agents such as social robots or +
('31575111', 'Beáta Korcsok', 'beáta korcsok')
('3410664', 'Veronika Konok', 'veronika konok')
('10791722', 'György Persa', 'györgy persa')
('2725581', 'Tamás Faragó', 'tamás faragó')
('1701851', 'Mihoko Niitsuma', 'mihoko niitsuma')
('1769570', 'Péter Baranyi', 'péter baranyi')
('3131165', 'Márta Gácsi', 'márta gácsi')
54bb25a213944b08298e4e2de54f2ddea890954aAgeDB: the first manually collected, in-the-wild age database +
Imperial College London
Imperial College London
Imperial College London, On do
Imperial College London
Middlesex University London
Imperial College London
('24278037', 'Stylianos Moschoglou', 'stylianos moschoglou')
('40598566', 'Athanasios Papaioannou', 'athanasios papaioannou')
('3320415', 'Christos Sagonas', 'christos sagonas')
('3234063', 'Jiankang Deng', 'jiankang deng')
('1754270', 'Irene Kotsia', 'irene kotsia')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
s.moschoglou@imperial.ac.uk +
a.papaioannou11@imperial.ac.uk +
c.sagonas@imperial.ac.uk +
j.deng16@imperial.ac.uk +
i.kotsia@mdx.ac.uk +
s.zafeiriou@imperial.ac.uk +
54bae57ed37ce50e859cbc4d94d70cc3a84189d5FACE RECOGNITION COMMITTEE MACHINE +
Department of Computer Science and Engineering +
The Chinese University of Hong Kong
Shatin, Hong Kong +
('2899702', 'Ho-Man Tang', 'ho-man tang')
('1681775', 'Michael R. Lyu', 'michael r. lyu')
('1706259', 'Irwin King', 'irwin king')
hmtang, lyu, king @cse.cuhk.edu.hk +
54f442c7fa4603f1814ebd8eba912a00dceb5cb2The Indian Buffet Process: +
Scalable Inference and Extensions +
A Thesis +
Presented to the Fellowship of +
The University of Cambridge
in Candidacy for the Degree of +
Master of Science +
Department of Engineering +
Zoubin Ghahramani, supervisor +
August 2009 +
('2292194', 'Finale Doshi-Velez', 'finale doshi-velez')
543f21d81bbea89f901dfcc01f4e332a9af6682dPublished as a conference paper at ICLR 2016 +
UNSUPERVISED AND SEMI-SUPERVISED LEARNING +
WITH CATEGORICAL GENERATIVE ADVERSARIAL +
NETWORKS +
University of Freiburg
79110 Freiburg, Germany +
('2060551', 'Jost Tobias Springenberg', 'jost tobias springenberg')springj@cs.uni-freiburg.de +
54969bcd728b0f2d3285866c86ef0b4797c2a74dIEEE TRANSACTION SUBMISSION +
Learning for Video Compression +
('31482866', 'Zhibo Chen', 'zhibo chen')
('50258851', 'Tianyu He', 'tianyu he')
('50562569', 'Xin Jin', 'xin jin')
('1697194', 'Feng Wu', 'feng wu')
5456166e3bfe78a353df988897ec0bd66cee937fImproved Boosting Performance by Exclusion +
of Ambiguous Positive Examples +
Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden +
Keywords: +
Boosting, Image Classification, Algorithm Evaluation, Dataset Pruning, VOC2007. +
('1750517', 'Miroslav Kobetski', 'miroslav kobetski')
('1736906', 'Josephine Sullivan', 'josephine sullivan')
{kobetski, sullivan}@kth.se +
54a9ed950458f4b7e348fa78a718657c8d3d0e05Learning Neural Models for End-to-End +
Clustering +
1 ZHAW Datalab & School of Engineering, Winterthur, Switzerland +
2 ARGUS DATA INSIGHTS Schweiz AG, Zurich, Switzerland +
Ca Foscari University of Venice, Venice, Italy
Institute of Neural Information Processing, Ulm University, Germany
Institute for Optical Systems, HTWG Konstanz, Germany
('50415299', 'Benjamin Bruno Meier', 'benjamin bruno meier')
('3469013', 'Ismail Elezi', 'ismail elezi')
('1985672', 'Mohammadreza Amirian', 'mohammadreza amirian')
('3238279', 'Oliver Dürr', 'oliver dürr')
('2793787', 'Thilo Stadelmann', 'thilo stadelmann')
541f1436c8ffef1118a0121088584ddbfd3a0a8aA Spatio-Temporal Feature based on Triangulation of Dense SURF +
The University of Electro-Communications, Tokyo
1-5-1 Chofu, Tokyo 182-0021 JAPAN +
('2274625', 'Do Hang Nga', 'do hang nga')
('1681659', 'Keiji Yanai', 'keiji yanai')
dohang@mm.cs.uec.ac.jp, yanai@cs.uec.ac.jp +
54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3A Joint Learning Framework for Attribute Models and Object Descriptions +
Dhruv Mahajan +
Yahoo! Labs, Bangalore, India +
('1779926', 'Sundararajan Sellamanickam', 'sundararajan sellamanickam')
('4989209', 'Vinod Nair', 'vinod nair')
{dkm,ssrajan,vnair}@yahoo-inc.com +
54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Local Centroids Structured Non-Negative Matrix Factorization +
University of Texas at Arlington, Texas, USA
School of Computer Science, OPTIMAL, Northwestern Polytechnical University, Xian 710072, Shaanxi, P. R. China
('2141896', 'Hongchang Gao', 'hongchang gao')
('1688370', 'Feiping Nie', 'feiping nie')
{hongchanggao, feipingnie}@gmail.com, heng@uta.edu +
541bccf19086755f8b5f57fd15177dc49e77d675('2154872', 'Lijin Aryananda', 'lijin aryananda')
5495e224ac7b45b9edc5cfeabbb754d8a40a879bFeature Reconstruction Disentangling for Pose-invariant Face Recognition +
Supplementary Material +
Rutgers, The State University of New Jersey
University of California, San Diego
‡ NEC Laboratories America +
1. Summary of The Supplementary +
This supplementary file includes two parts: (a) Addi- +
tional implementation details are presented to improve the +
reproducibility; (b) More experimental results are presented +
to validate our approach in different aspects, which are not +
shown in the main submission due to the space limitation. +
2. Additional Implementation Details +
Pose-variant face generation We designed a network to +
predict 3DMM parameters from a single face image. The +
design is mainly based on VGG16 [4]. We use the same num- +
ber of convolutional layers as VGG16 but replacing all max +
pooling layers with stride-2 convolutional operations. The +
fully connected (fc) layers are also different: we first use two +
fc layers, each of which has 1024 neurons, to connect with +
the convolutional modules; then, a fc layer of 30 neurons is +
used for identity parameters, a fc layer of 29 neurons is used +
for expression parameters, and a fc layer of 7 neurons is used +
for pose parameters. Different from [8] uses 199 parameters +
to represent the identity coefficients, we truncate the num- +
ber of identity eigenvectors to 30 which preserves 90% of +
variations. This truncation leads to fast convergence and less +
overfitting. For texture, we only generate non-frontal faces +
from frontal ones, which significantly mitigate the halluci- +
nating texture issue caused by self occlusion and guarantee +
high-fidelity reconstruction. We apply the Z-Buffer algo- +
rithm used in [8] to prevent ambiguous pixel intensities due +
to same image plane position but different depths. +
Rich feature embedding The design of the rich em- +
bedding network is mainly based on the architecture of +
CASIA-net [6] since it is wildly used in former approach +
and achieves strong performance in face recognition. During +
training, CASIA+MultiPIE or CASIA+300WLP are used. +
As shown in Figure 3 of the main submission, after the con- +
volutional layers of CASIA-net, we use a 512-d FC for the +
rich feature embedding, which is further branched into a +
256-d identity feature and a 128-d non-identity feature. The +
128-d non-identity feature is further connected with a 136-d +
landmark prediction and a 7-d pose prediction. Notice that +
in the face generation network, the number of pose parame- +
ters is 7 instead of 3 because we need to uniquely depict the +
projection matrix from the 3D model and the 2D face shape +
in image domain, which includes scale, pitch, yaw, roll, x +
translation, y translation, and z translations. +
Disentanglement by feature reconstruction Once the +
rich embedding network is trained, we feed genius pair that +
share the same identity but different viewpoints into the +
network to obtain the corresponding rich embedding, identity +
and non-identity features. To disentangle the identity and +
pose factors, we concatenate the identity and non-identity +
features and roll though two 512-d fully connected layers +
to output a reconstructed rich embedding depicted by 512 +
neurons. Both self and cross reconstruction loss are designed +
to eventually push the two identity features close to each +
other. At the same time, a cross-entropy loss is applied on the +
near-frontal identity feature to maintain the discriminative +
power of the learned representation. The disentanglement +
of the identity and pose is finally achieved by the proposed +
feature reconstruction based metric learning. +
3. Additional Experimental Results +
In addition to the main submission, we present more +
experimental results in this section to further validate our +
approach in different aspects. +
3.1. P1 and P2 protocol on MultiPIE +
In the main submission, due to space considerations, we +
only report the mean accuracy over 10 random training and +
testing splits, on MultiPIE and 300WLP separately. In Ta- +
ble 1, we report the standard deviation of our method as a +
more complete comparison. From the results, the standard +
deviation of our method is also very small, which suggests +
that the performance is consistent across all the trials. We +
('4340744', 'Xi Peng', 'xi peng')
('15644381', 'Xiang Yu', 'xiang yu')
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')
('2099305', 'Manmohan Chandraker', 'manmohan chandraker')
{xipeng.cs, dnm}@rutgers.edu, {xiangyu,ksohn,manu}@nec-labs.com +
54756f824befa3f0c2af404db0122f5b5bbf16e0Research Statement +
Computer Vision — Visual Recognition +
Computational visual recognition concerns identifying what is in an image, video, or other visual data, enabling +
applications such as measuring location, pose, size, activity, and identity as well as indexing for search by content. +
Recent progress in making economical sensors and improvements in network, storage, and computational power +
make visual recognition practical and relevant in almost all experimental sciences and commercial applications +
such as image search. My work in visual recognition brings together machine learning, insights from psychology +
and physiology, computer graphics, algorithms, and a great deal of computation. +
While I am best known for my work on general object category detection – creating techniques and building +
systems for some of the best performing approaches to categorizing and localizing objects in images, recognizing +
action in video, and searching large collections of video and images – my research extends widely across visual +
recognition including: +
• Creating low-level image descriptors – procedures for converting pixel values to features that can be used +
to model appearance for recognition. These include widely used descriptors for category recognition in +
images [4, 2], object detection in images and video [11, 10, 2], and optical flow based descriptors for action +
recognition in video [8]. +
• Developing models for recognition – ranging from what is becoming seminal work in recognizing human +
actions in video [8], to formulating object localization as approximate subgraph isomorphism [2], to models +
for parsing architectural images [3], to a novel approach for face recognition based on high level describable +
visual attributes [9]. +
• Deriving machine learning techniques – this includes both techniques for increasing the accuracy of clas- +
sification [15] and techniques that provide improvements in the trade-off between accuracy and efficiency +
of classification for detection and categorization [11, 10] – making some approaches exponentially faster +
and therefore useful for a new range of applications. +
• Applications to web scale visual data – introducing novel techniques to automatically extract useful in- +
formation from web-scale data. Successful applications include extracting models of face appearance [7] +
and representative iconic images [5]. Some of my work on machine learning techniques for visual recogni- +
tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including
a collaboration with the ImageNet (10 million images in 10 thousand categories) team at Princeton and +
Stanford, and efforts by other researchers in industry (Google and Yahoo!) and academia. +
• Applications to analyzing imagery of people – probably the most important type of content in images and +
video. Several of my projects address analyzing imagery of people, from detection [10], to identification by +
face recognition [9, 7, 6], to localizing limbs (pose estimation) [14], and recognizing actions [8]. +
All of this work is part of an attempt to understand the structure of visual data and build better systems +
for extracting information from visual signals. Such systems are useful in practice because, although for many +
application areas human perceptual abilities far outstrip the ability of computational systems, automated systems +
already have the upper hand in running constantly over vast amounts of data, e.g. surveillance systems and process +
monitoring, and in making metric decisions about specific quantities such as size, distance, or orientation, where +
humans have difficulty. Surveillance illustrates the need for recognition in order to increase performance. From +
watching cells under a microscope to observing research mice in habitats to guarding national borders, surveillance +
systems are limited by false detections produced due to spurious and unimportant activity. This cost can be reduced +
by visual recognition algorithms that identify either activities of interest or the commonly occurring unimportant +
activity. +
Part of my work at Yahoo! Research emphasized another key application area for visual recognition, extracting +
useful information from the vast and ever changing image and video data available on the world wide web. For +
some of this data people provide partial annotation in the form of tags, captions, and freeform text on web pages. +
One major challenge is to combine results from computational visual recognition with these partial annotations to +
('39668247', 'Alexander C. Berg', 'alexander c. berg')
54204e28af73c7aca073835a14afcc5d8f52a515Fine-Pruning: Defending Against Backdooring Attacks +
on Deep Neural Networks +
New York University, Brooklyn, NY, USA
('48087922', 'Kang Liu', 'kang liu')
('3337066', 'Brendan Dolan-Gavitt', 'brendan dolan-gavitt')
('1696125', 'Siddharth Garg', 'siddharth garg')
{kang.liu,brendandg,siddharth.garg}@nyu.edu +
549c719c4429812dff4d02753d2db11dd490b2aeYouTube-BoundingBoxes: A Large High-Precision +
Human-Annotated Data Set for Object Detection in Video +
Google Brain +
Google Brain +
Google Research +
Google Brain +
Google Brain +
('2892780', 'Esteban Real', 'esteban real')
('1789737', 'Jonathon Shlens', 'jonathon shlens')
('30554825', 'Stefano Mazzocchi', 'stefano mazzocchi')
('3165011', 'Xin Pan', 'xin pan')
('2657155', 'Vincent Vanhoucke', 'vincent vanhoucke')
ereal@google.com +
shlens@google.com +
stefanom@google.com +
xpan@google.com +
vanhoucke@google.com +
98b2f21db344b8b9f7747feaf86f92558595990c
98142103c311b67eeca12127aad9229d56b4a9ffGazeDirector: Fully Articulated Eye Gaze Redirection in Video +
University of Cambridge, UK 2Carnegie Mellon University, USA
Max Planck Institute for Informatics, Germany
4Microsoft +
('34399452', 'Erroll Wood', 'erroll wood')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
9820920d4544173e97228cb4ab8b71ecf4548475ORIGINAL RESEARCH +
published: 11 September 2015 +
doi: 10.3389/fpsyg.2015.01386 +
Automated facial coding software +
outperforms people in recognizing +
neutral faces as neutral from +
standardized datasets +
The Amsterdam School of Communication Research, University of Amsterdam
Amsterdam, Netherlands +
Little is known about people’s accuracy of recognizing neutral faces as neutral. In this +
paper, I demonstrate the importance of knowing how well people recognize neutral +
faces. I contrasted human recognition scores of 100 typical, neutral front-up facial +
images with scores of an arguably objective judge – automated facial coding (AFC) +
software. I hypothesized that the software would outperform humans in recognizing +
neutral faces because of the inherently objective nature of computer algorithms. Results +
confirmed this hypothesis. I provided the first-ever evidence that computer software +
(90%) was more accurate in recognizing neutral faces than people were (59%). I posited +
two theoretical mechanisms, i.e., smile-as-a-baseline and false recognition of emotion, +
as possible explanations for my findings. +
Keywords: non-verbal communication, facial expression, face recognition, neutral face, automated facial coding +
Introduction +
lack of anger, +
face should indicate lack of emotion, e.g., +
Recognizing a neutral face as neutral is vital in social interactions. By virtue of “expressing” +
“nothing” (for a separate discussion on faces “expressing” something, see Russell and Fernández- +
Dols, 1997), a neutral +
fear, or +
disgust. This article’s inspiration was the interesting observation that in the literature on +
facial recognition, little attention has been paid to neutral face recognition scores of human +
raters. Russell (1994) and Nelson and Russell (2013), who provided the two most important +
overviews on the topic, did not include or discuss recognition rates of lack of emotion +
(neutral) in neutral faces. They provided overviews of matching scores (i.e., accuracy) for +
six basic emotions, but they were silent on the issue of recognition accuracy of neutral +
faces. +
A distinct lack of articles that explicitly report accuracy scores for recognition of neutral face +
could explain the silence of researchers in this field. One notable exception is the Amsterdam +
Dynamic Facial Expression Set (ADFES; van der Schalk et al., 2011), where the authors provide +
an average matching score of 0.67 for their neutral faces. This score is considerably low when one +
considers that an average for six basic emotions is also in this range ( 0.67, see Nelson and Russell, +
2013, Table A1 for datasets between pre-1994 and 2010). +
Edited by: +
Paola Ricciardelli, +
University of Milano-Bicocca, Italy
Reviewed by: +
Luis J. Fuentes, +
Universidad de Murcia, Spain +
Francesca Gasparini, +
University of Milano-Bicocca, Italy
*Correspondence: +
The Amsterdam School +
of Communication Research, +
Department of Communication +
Science, University of Amsterdam
Postbus 15793, +
1001 NG Amsterdam, Netherlands +
Specialty section: +
This article was submitted to +
Cognition, +
a section of the journal +
Frontiers in Psychology +
Received: 22 April 2015 +
Accepted: 31 August 2015 +
Published: 11 September 2015 +
Citation: +
Lewinski P (2015) Automated facial +
coding software outperforms people +
in recognizing neutral faces as neutral +
from standardized datasets. +
Front. Psychol. 6:1386. +
doi: 10.3389/fpsyg.2015.01386 +
Frontiers in Psychology | www.frontiersin.org +
September 2015 | Volume 6 | Article 1386 +
('6402753', 'Peter Lewinski', 'peter lewinski')
('6402753', 'Peter Lewinski', 'peter lewinski')
p.lewinski@uva.nl +
9853136dbd7d5f6a9c57dc66060cab44a86cd662International Journal of Computer Applications (0975 – 8887) +
Volume 34– No.2, November 2011 +
Improving the Neural Network Training for Face +
Recognition using Adaptive Learning Rate, Resilient +
Back Propagation and Conjugate Gradient Algorithm +
M.Sc. Student +
Department of Electrical +
Engineering, Iran University
of Science and Technology, +
Tehran, Iran +
Saeid Sanei +
Associate Professor +
Department of Computing, +
Faculty of Engineering and +
Physical Sciences, University
of Surrey, UK +
Karim Mohammadi +
Professor +
Department of Electrical +
Engineering, Iran University
of Science and Technology, +
Tehran, Iran +
('47250218', 'Hamed Azami', 'hamed azami')
989332c5f1b22604d6bb1f78e606cb6b1f694e1aRecurrent Face Aging +
University of Trento, Italy
National University of Singapore
Research Center for Learning Science, Southeast University, Nanjing, China
Arti cial Intelligence Institute, China
('39792736', 'Wei Wang', 'wei wang')
('10338111', 'Zhen Cui', 'zhen cui')
('32059677', 'Yan Yan', 'yan yan')
('33221685', 'Jiashi Feng', 'jiashi feng')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('2287686', 'Xiangbo Shu', 'xiangbo shu')
('1703601', 'Nicu Sebe', 'nicu sebe')
{wei.wang,yan.yan,niculae.sebe}@unitn.it {elefjia,eleyans}@nus.edu.sg +
zhen.cui@seu.edu.cn shuxb104@gmail.com +
982f5c625d6ad0dac25d7acbce4dabfb35dd7f23Facial Expression Recognition by SVM-based Two-stage Classifier on +
Gabor Features +
School of Information Science +
Japan Advanced Institute of Science and Technology
Ashahi-dai 1-8, Nomi, Ishikawa 923-1292, Japan +
('1753878', 'Fan Chen', 'fan chen')
('1791753', 'Kazunori Kotani', 'kazunori kotani')
chen-fan@jaist.ac.jp +
ikko@jaist.ac.jp +
98af221afd64a23e82c40fd28d25210c352e41b7ISCA Archive +
http://www.isca-speech.org/archive +
AVSP 2010 -- International Conference +
on Audio-Visual Speech Processing +
Hakone, Kanagawa, Japan +
September 30--October 3, 2010 +
Exploring Visual Features Through Gabor Representations for Facial +
Expression Detection +
Image and Video Research Laboratory, Queensland University of Technology
GPO Box 2424, Brisbane 4001, Australia +
Robotics Institute, Carnegie Mellon University
University of Pittsburgh, Pittsburgh, USA
('2739248', 'Sien W. Chew', 'sien w. chew')
('1713496', 'Patrick Lucey', 'patrick lucey')
('1729760', 'Sridha Sridharan', 'sridha sridharan')
('3140440', 'Clinton Fookes', 'clinton fookes')
s4.chew@student.qut.edu.au, patlucey@andrew.cmu.edu, {s.sridharan;c.fookes}@qut.edu.au +
9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5Illumination Normalization Using Logarithm Transforms +
for Face Authentication +
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, USA +
('1794486', 'Marios Savvides', 'marios savvides')msavvid@ri.cmu.edu +
kumar@ece.cmu.edu +
988d1295ec32ce41d06e7cf928f14a3ee079a11eSemantic Deep Learning +
September 29, 2015 +
('36097730', 'Hao Wang', 'hao wang')
98c548a4be0d3b62971e75259d7514feab14f884Deep generative-contrastive networks for facial expression recognition +
Samsung Advanced Institute of Technology (SAIT), KAIST
('2310577', 'Youngsung Kim', 'youngsung kim')
('1757573', 'ByungIn Yoo', 'byungin yoo')
('9942811', 'Youngjun Kwak', 'youngjun kwak')
('36995891', 'Changkyu Choi', 'changkyu choi')
('1769295', 'Junmo Kim', 'junmo kim')
yo.s.ung.kim@samsung.com, byungin.yoo@kaist.ac.kr, yjk.kwak@samsung.com, changkyu choi@samsung.com, +
junmo.kim@ee.kaist.ac.kr +
9887ab220254859ffc7354d5189083a87c9bca6eGeneric Image Classification Approaches Excel on Face Recognition +
Nanjing University of Science and Technology, China
The University of Adelaide, Australia
('2731972', 'Fumin Shen', 'fumin shen')
('1780381', 'Chunhua Shen', 'chunhua shen')
985cd420c00d2f53965faf63358e8c13d1951fa8Pixel-Level Hand Detection with Shape-aware +
Structured Forests +
Department of Computer Science +
The University of Hong Kong
Pokfulam Road, Hong Kong +
('35130187', 'Xiaolong Zhu', 'xiaolong zhu')
('34760532', 'Xuhui Jia', 'xuhui jia')
{xlzhu,xhjia,kykwong}@cs.hku.hk +
981449cdd5b820268c0876477419cba50d5d1316Learning Deep Features for One-Class +
Classification +
('15206897', 'Pramuditha Perera', 'pramuditha perera')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
9821669a989a3df9d598c1b4332d17ae8e35e294Minimal Correlation Classification +
The Blavatnik School of Computer Science, Tel Aviv University, Israel
('21494706', 'Noga Levy', 'noga levy')
('1776343', 'Lior Wolf', 'lior wolf')
9854145f2f64d52aac23c0301f4bb6657e32e562An Improved Face Verification Approach based on +
Speedup Robust Features and Pairwise Matching +
Center for Electrical Engineering and Informatics (CEEI) +
Federal University of Campina Grande (UFCG
Campina Grande, Para´ıba, Brazil +
('2092178', 'Herman Martins Gomes', 'herman martins gomes')Email: {edumoura,hmg}@dsc.ufcg.edu.br, carvalho@dee.ufcg.edu.br +
9865fe20df8fe11717d92b5ea63469f59cf1635aYUCEL ET AL.: WILDEST FACES +
Wildest Faces: Face Detection and +
Recognition in Violent Settings +
Pinar Duygulu1 +
1 Department of Computer Science +
Hacettepe University
Ankara, Turkey +
2 Department of Computer Engineering +
Middle East Technical University
Ankara, Turkey +
* indicates equal contribution. +
('46234524', 'Mehmet Kerim Yucel', 'mehmet kerim yucel')
('39032755', 'Yunus Can Bilge', 'yunus can bilge')
('46437368', 'Oguzhan Oguz', 'oguzhan oguz')
('2011587', 'Nazli Ikizler-Cinbis', 'nazli ikizler-cinbis')
('1939006', 'Ramazan Gokberk Cinbis', 'ramazan gokberk cinbis')
mkerimyucel@hacettepe.edu.tr +
yunuscan.bilge@hacettepe.edu.tr +
oguzhan.oguz@hacettepe.edu.tr +
nazli@cs.hacettepe.edu.tr +
pinar@cs.hacettepe.edu.tr +
gcinbis@ceng.metu.edu.tr +
98c2053e0c31fab5bcb9ce5386335b647160cc09A Distributed Framework for Spatio-temporal Analysis on Large-scale Camera +
Networks +
Georgia Institute of Technology
University of Stuttgart
†SUNY Buffalo +
('5540701', 'Kirak Hong', 'kirak hong')
('1723877', 'Venu Govindaraju', 'venu govindaraju')
('1752885', 'Bharat Jayaraman', 'bharat jayaraman')
('1751741', 'Umakishore Ramachandran', 'umakishore ramachandran')
{khong9, rama}@cc.gatech.edu +
marco.voelz@ipvs.uni-stuttgart.de +
{govind, bharat}@buffalo.edu +
98127346920bdce9773aba6a2ffc8590b9558a4aNoname manuscript No. +
(will be inserted by the editor) +
Efficient Human Action Recognition using +
Histograms of Motion Gradients and +
VLAD with Descriptor Shape Information +
Received: date / Accepted: date +
('3429470', 'Ionut C. Duta', 'ionut c. duta')
('1796198', 'Bogdan Ionescu', 'bogdan ionescu')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
98a660c15c821ea6d49a61c5061cd88e26c18c65IOSR Journal of Engineering (IOSRJEN) +
e-ISSN: 2250-3021, p-ISSN: 2278-8719 +
Vol. 3, Issue 4 (April. 2013), ||V1 || PP 43-48 +
Face Databases for 2D and 3D Facial Recognition: A Survey +
R.Senthilkumar1, Dr.R.K.Gnanamurthy2 +
Institute of Road and
Odaiyappa College of
Transport Technology,Erode-638 316. +
Engineering and Technology,Theni-625 531. +
982fed5c11e76dfef766ad9ff081bfa25e62415a
98fb3890c565f1d32049a524ec425ceda1da5c24A Robust Learning Framework Using PSM and +
Ameliorated SVMs for Emotional Recognition +
Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan
('2866465', 'Jinhui Chen', 'jinhui chen')
('21172382', 'Yosuke Kitano', 'yosuke kitano')
('3207738', 'Yiting Li', 'yiting li')
('1744026', 'Tetsuya Takiguchi', 'tetsuya takiguchi')
('1678564', 'Yasuo Ariki', 'yasuo ariki')
{ianchen, kitano, liyiting }@me.cs.scitec.kobe-u.ac.jp +
{takigu, ariki}@kobe-u.ac.jp +
98519f3f615e7900578bc064a8fb4e5f429f3689Dictionary-based Domain Adaptation Methods +
for the Re-identification of Faces +
('2077648', 'Qiang Qiu', 'qiang qiu')
('38811046', 'Jie Ni', 'jie ni')
('9215658', 'Rama Chellappa', 'rama chellappa')
9825aa96f204c335ec23c2b872855ce0c98f9046International Journal of Ethics in Engineering & Management Education +
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014) +
FACE AND FACIAL EXPRESSION +
RECOGNITION IN 3-D USING MASKED +
PROJECTION UNDER OCCLUSION +
Jyoti patil * +
M.Tech (CSE) +
GNDEC Bidar-585401 +
BIDAR, INDIA +
M.Tech (CSE) +
GNDEC Bidar- 585401 +
BIDAR, INDIA +
M.Tech (CSE) +
VKIT, Bangalore- 560040 +
BANGALORE, INDIA +
('39365176', 'Gouri Patil', 'gouri patil')
('4787347', 'Snehalata Patil', 'snehalata patil')
Email-jyoti.spatil35@gmail.com Email-greatgouri@gmail.com +
Email-snehasharad09@gmail.com +
9825c4dddeb2ed7eaab668b55403aa2c38bc3320Aerial Imagery for Roof Segmentation: A Large-Scale Dataset +
towards Automatic Mapping of Buildings +
aCenter for Spatial Information Science, University of Tokyo, Kashiwa 277-8568, Japan
University of Waterloo, Waterloo, ON N2L 3G1, Canada
cFaculty of Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
dAtlasAI Inc., Waterloo, ON N2L 3G1, Canada +
('1783637', 'Qi Chen', 'qi chen')
('48169641', 'Lei Wang', 'lei wang')
('50117915', 'Yifan Wu', 'yifan wu')
('3043983', 'Guangming Wu', 'guangming wu')
('40477085', 'Zhiling Guo', 'zhiling guo')
980266ad6807531fea94252e8f2b771c20e173b3Continuous Regression for +
Non-Rigid Image Alignment +
Enrique S´anchez-Lozano1 +
Daniel Gonz´alez-Jim´enez1 +
1Multimodal Information Area, Gradiant, Vigo, Pontevedra, 36310. Spain. +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA
('1707876', 'Fernando De la Torre', 'fernando de la torre'){esanchez,dgonzalez}@gradiant.org +
ftorre@cs.cmu.edu +
53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9Discriminative vs. Generative Object Recognition: +
Objects, Faces, and the Web +
Thesis by +
In Partial Fulfillment of the Requirements +
for the Degree of +
Doctor of Philosophy +
California Institute of Technology
Pasadena, California +
2007 +
(Defended April 30, 2007) +
('3075121', 'Alex Holub', 'alex holub')
533d14e539ae5cdca0ece392487a2b19106d468aBidirectional Multirate Reconstruction for Temporal Modeling in Videos +
University of Technology Sydney
('2948393', 'Linchao Zhu', 'linchao zhu')
('2351434', 'Zhongwen Xu', 'zhongwen xu')
('1698559', 'Yi Yang', 'yi yang')
{zhulinchao7, zhongwen.s.xu, yee.i.yang}@gmail.com +
5334ac0a6438483890d5eef64f6db93f44aacdf4
53dd25350d3b3aaf19beb2104f1e389e3442df61
53e081f5af505374c3b8491e9c4470fe77fe7934Unconstrained Realtime Facial Performance Capture +
University of Southern California
† Industrial Light & Magic +
Figure 1: Calibration-free realtime facial performance capture on highly occluded subjects using an RGB-D sensor. +
('2519072', 'Pei-Lun Hsieh', 'pei-lun hsieh')
('1797422', 'Chongyang Ma', 'chongyang ma')
('2977637', 'Jihun Yu', 'jihun yu')
('1706574', 'Hao Li', 'hao li')
53698b91709112e5bb71eeeae94607db2aefc57cTwo-Stream Convolutional Networks +
for Action Recognition in Videos +
Visual Geometry Group, University of Oxford
('34838386', 'Karen Simonyan', 'karen simonyan')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
{karen,az}@robots.ox.ac.uk +
5394d42fd27b7e14bd875ec71f31fdd2fcc8f923Visual Recognition Using Directional Distribution Distance +
National Key Laboratory for Novel Software Technology +
Nanjing University, China
Minieye, Youjia Innovation LLC +
('1808816', 'Jianxin Wu', 'jianxin wu')
('2226422', 'Bin-Bin Gao', 'bin-bin gao')
('15527784', 'Guoqing Liu', 'guoqing liu')
guoqing@minieye.cc +
wujx2001@nju.edu.cn, gaobb@lamda.nju.edu.cn +
530243b61fa5aea19b454b7dbcac9f463ed0460e
5397c34a5e396658fa57e3ca0065a2878c3cced7Lighting Normalization with Generic Intrinsic Illumination Subspace for Face +
Recognition +
Institute of Information Science, Academia Sinica, Taipei, Taiwan
('1686057', 'Chia-Ping Chen', 'chia-ping chen')
('1720473', 'Chu-Song Chen', 'chu-song chen')
{cpchen, song}@iis.sinica.edu.tw +
539ca9db570b5e43be0576bb250e1ba7a727d640
539287d8967cdeb3ef60d60157ee93e8724efcacLearning Deep (cid:96)0 Encoders +
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
University of Science and Technology of China, Hefei, 230027, China
('2969311', 'Zhangyang Wang', 'zhangyang wang')
('1682497', 'Qing Ling', 'qing ling')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
532f7ec8e0c8f7331417dd4a45dc2e89308740666060 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
Box 451, Thessaloniki 54124, GREECE +
Aristotle University of Thessaloniki
Department of Informatics +
tel: +30 2310 996361 +
1. INTRODUCTION +
('1905139', 'Olga Zoidi', 'olga zoidi')
('1718330', 'Nikos Nikolaidis', 'nikos nikolaidis')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
{ozoidi, nikolaid, pitas}@aiia.csd.auth.gr +
53c8cbc4a3a3752a74f79b74370ed8aeed97db85
53c36186bf0ffbe2f39165a1824c965c6394fe0dI Know How You Feel: Emotion Recognition with Facial Landmarks +
Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology
('22188614', 'Ivona Tautkute', 'ivona tautkute')
('1760267', 'Tomasz Trzcinski', 'tomasz trzcinski')
('48657002', 'Adam Bielski', 'adam bielski')
{firstname.lastname}@tooploox.com +
5366573e96a1dadfcd4fd592f83017e378a0e185Böhlen, Chandola and Salunkhe +
Server, server in the cloud. +
Who is the fairest in the crowd? +
53a41c711b40e7fe3dc2b12e0790933d9c99a6e0Recurrent Memory Addressing for describing videos +
Indian Institute of Technology Kharagpur
('7284555', 'Arnav Kumar Jain', 'arnav kumar jain')
('6565766', 'Kumar Krishna Agrawal', 'kumar krishna agrawal')
('1781070', 'Pabitra Mitra', 'pabitra mitra')
{arnavkj95, abhinavagarawalla, kumarkrishna, pabitra}@iitkgp.ac.in +
53bfe2ab770e74d064303f3bd2867e5bf7b86379Learning to Synthesize and Manipulate Natural Images +
By +
A dissertation submitted in partial satisfaction of the +
requirements for the degree of +
Doctor of Philosophy +
in +
Engineering - Electrical Engineering and Computer Science +
in the +
Graduate Division +
of the +
University of California, Berkeley
Committee in charge: +
Professor Alexei A. Efros, Chair +
Professor Jitendra Malik +
Professor Ren Ng +
Professor Michael DeWeese +
Fall 2017 +
('3132726', 'Junyan Zhu', 'junyan zhu')
533bfb82c54f261e6a2b7ed7d31a2fd679c56d18Technical Report MSU-CSE-14-1 +
Unconstrained Face Recognition: Identifying a +
Person of Interest from a Media Collection +
('2180413', 'Lacey Best-Rowden', 'lacey best-rowden')
('34393045', 'Hu Han', 'hu han')
('40653304', 'Charles Otto', 'charles otto')
('1817623', 'Brendan Klare', 'brendan klare')
('6680444', 'Anil K. Jain', 'anil k. jain')
537d8c4c53604fd419918ec90d6ef28d045311d0Active Collaborative Ensemble Tracking +
Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo Ward, Kyoto 606–8501, Japan +
('2146623', 'Kourosh Meshgi', 'kourosh meshgi')
('31095396', 'Maryam Sadat Mirzaei', 'maryam sadat mirzaei')
('38809507', 'Shigeyuki Oba', 'shigeyuki oba')
('2851612', 'Shin Ishii', 'shin ishii')
meshgi-k@sys.i.kyoto-u.ac.jp +
530ce1097d0681a0f9d3ce877c5ba31617b1d709
53ce84598052308b86ba79d873082853022aa7e9Optimized Method for Real-Time Face Recognition System Based +
on PCA and Multiclass Support Vector Machine +
IEEE Member, Shahid Rajaee Teacher training University
Tehran, Iran +
Institute of Computer science, Shahid Bahonar University
Shiraz, Iran +
Islamic Azad University, Science and Research Campus
Hamedan, Iran +
('1763181', 'Reza Azad', 'reza azad')
('39864738', 'Babak Azad', 'babak azad')
('2904132', 'Iman Tavakoli Kazerooni', 'iman tavakoli kazerooni')
rezazad68@gmail.com +
babak.babi72@gmail.com +
iman_tavakoli2008@yahoo.com +
3fbd68d1268922ee50c92b28bd23ca6669ff87e5598 +
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 +
A Shape- and Texture-Based Enhanced Fisher +
Classifier for Face Recognition +
('39664966', 'Chengjun Liu', 'chengjun liu')
('1781577', 'Harry Wechsler', 'harry wechsler')
3fe4109ded039ac9d58eb9f5baa5327af30ad8b6Spatio-Temporal GrabCut Human Segmentation for Face and Pose Recovery +
Antonio Hern´andez1 +
University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
1 Computer Vision Center, Campus UAB, 08193 Bellaterra, Barcelona, Spain. +
('3276130', 'Miguel Reyes', 'miguel reyes')
('7855312', 'Sergio Escalera', 'sergio escalera')
('1724155', 'Petia Radeva', 'petia radeva')
ahernandez@cvc.uab.es +
mreyese@gmail.com +
sergio@maia.ub.es +
petia@cvc.uab.es +
3f22a4383c55ceaafe7d3cfed1b9ef910559d639JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Robust Kronecker Component Analysis +
('11352680', 'Mehdi Bahri', 'mehdi bahri')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
3fefc856a47726d19a9f1441168480cee6e9f5bbCarnegie Mellon University
Dissertations +
Summer 8-2014 +
Theses and Dissertations +
Perceptually Valid Dynamics for Smiles and Blinks +
Carnegie Mellon University
Follow this and additional works at: http://repository.cmu.edu/dissertations +
Recommended Citation +
Trutoiu, Laura, "Perceptually Valid Dynamics for Smiles and Blinks" (2014). Dissertations. Paper 428. +
('2048839', 'Laura Trutoiu', 'laura trutoiu')Research Showcase @ CMU +
This Dissertation is brought to you for free and open access by the Theses and Dissertations at Research Showcase @ CMU. It has been accepted for +
inclusion in Dissertations by an authorized administrator of Research Showcase @ CMU. For more information, please contact research- +
showcase@andrew.cmu.edu. +
3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001A top-down approach for a synthetic +
autobiographical memory system +
1Sheffield Centre for Robotics (SCentRo), Univ. of Sheffield, Sheffield, S10 2TN, UK +
2Dept. of Computer Science, Univ. of Sheffield, Sheffield, S1 4DP, UK +
3 CVAP Lab, KTH, Stockholm, Sweden +
('2484138', 'Carl Henrik Ek', 'carl henrik ek')
('1739851', 'Neil D. Lawrence', 'neil d. lawrence')
('1750570', 'Tony J. Prescott', 'tony j. prescott')
andreas.damianou@shef.ac.uk +
3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96Person identity label propagation in stereo videos +
Department of Informatics +
Aristotle University of Thessaloniki
Box 451, Thessaloniki 54124, GREECE +
tel: +30 2310 996361 +
('1905139', 'Olga Zoidi', 'olga zoidi')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('1718330', 'Nikos Nikolaidis', 'nikos nikolaidis')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
{tefas, nikolaid, pitas}@aiia.csd.auth.gr +
3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-spectral +
Hallucination and Low-rank Embedding +
IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA
('2077648', 'Qiang Qiu', 'qiang qiu')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
3f848d6424f3d666a1b6dd405a48a35a797dd147GHODRATI et al.: IS 2D INFORMATION ENOUGH FOR VIEWPOINT ESTIMATION? +
Is 2D Information Enough For Viewpoint +
Estimation? +
KU Leuven, ESAT - PSI, iMinds +
Leuven, Belgium +
('3060081', 'Amir Ghodrati', 'amir ghodrati')
('3048367', 'Marco Pedersoli', 'marco pedersoli')
('1704728', 'Tinne Tuytelaars', 'tinne tuytelaars')
amir.ghodrati@esat.kuleuven.be +
marco.pedersoli@esat.kuleuven.be +
tinne.tuytelaars@esat.kuleuven.be +
3fa738ab3c79eacdbfafa4c9950ef74f115a3d84DaMN – Discriminative and Mutually Nearest: +
Exploiting Pairwise Category Proximity +
for Video Action Recognition +
1 Center for Research in Computer Vision at UCF, Orlando, USA +
2 Google Research, Mountain View, USA +
http://crcv.ucf.edu/projects/DaMN/ +
('2099254', 'Rui Hou', 'rui hou')
('40029556', 'Amir Roshan Zamir', 'amir roshan zamir')
('1694199', 'Rahul Sukthankar', 'rahul sukthankar')
('1745480', 'Mubarak Shah', 'mubarak shah')
3fb26f3abcf0d287243646426cd5ddeee33624d4Joint Training of Cascaded CNN for Face Detection +
Grad. School at Shenzhen, Tsinghua University
Tsinghua University 4SenseTime
('2137185', 'Hongwei Qin', 'hongwei qin')
('1721677', 'Junjie Yan', 'junjie yan')
('2693308', 'Xiu Li', 'xiu li')
('1705418', 'Xiaolin Hu', 'xiaolin hu')
{qhw12@mails., li.xiu@sz., xlhu@}tsinghua.edu.cn yanjunjie@outlook.com +
3f9ca2526013e358cd8caeb66a3d7161f5507cbcImproving Sparse Representation-Based Classification +
Using Local Principal Component Analysis +
Department of Mathematics +
University of California, Davis
One Shields Avenue +
Davis, California, 95616, United States +
('32898818', 'Chelsea Weaver', 'chelsea weaver')
('3493752', 'Naoki Saito', 'naoki saito')
3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5Face Recognition Across Poses Using A Single 3D Reference Model +
National Taiwan University of Science and Technology
No. 43, Sec.4, Keelung Rd., Taipei, 106, Taiwan +
('38801529', 'Gee-Sern Hsu', 'gee-sern hsu')
('3329222', 'Hsiao-Chia Peng', 'hsiao-chia peng')
∗jison@mail.ntust.edu.tw +
3feb69531653e83d0986a0643e4a6210a088e3e5Using Group Prior to Identify People in Consumer Images +
Carnegie Mellon University
Pittsburgh, Pennsylvania +
Carnegie Mellon University
Pittsburgh, Pennsylvania +
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
agallagh@cmu.edu +
tsuhan@cmu.edu +
3f12701449a82a5e01845001afab3580b92da858Joint Object Class Sequencing and Trajectory +
Triangulation (JOST) +
The University of North Carolina, Chapel Hill
('2873326', 'Enliang Zheng', 'enliang zheng')
('1751643', 'Ke Wang', 'ke wang')
('29274093', 'Enrique Dunn', 'enrique dunn')
('40454588', 'Jan-Michael Frahm', 'jan-michael frahm')
3fb98e76ffd8ba79e1c22eda4d640da0c037e98aConvolutional Neural Networks for Crop Yield Prediction using Satellite Images +
H. Russello +
3fde656343d3fd4223e08e0bc835552bff4bda40Available Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IJCSMC, Vol. 2, Issue. 4, April 2013, pg.232 – 237 +
RESEARCH ARTICLE +
Character Identification Using Graph +
Matching Algorithm +
Anna University Chennai, India
5Assistant Professor, Department Of Computer Science and Engineering, +
K.S.R. College Of Engineering, Tiruchengode, India
('1795761', 'S. Bharathi', 's. bharathi')
('36510121', 'Ranjith Kumar', 'ranjith kumar')
1 rathiranya@gmail.com ; 2 manirathnam60@gmail.com ; 3 ramya1736@yahoo.com ; 4 ranjith.rhl@gmail.com +
3f957142ef66f2921e7c8c7eadc8e548dccc1327Merging SVMs with Linear Discriminant Analysis: A Combined Model +
Imperial College London, United Kingdom
EEMCS, University of Twente, Netherlands
('1793625', 'Symeon Nikitidis', 'symeon nikitidis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{s.nikitidis,s.zafeiriou,m.pantic}@imperial.ac.uk +
3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3Intensity-Depth Face Alignment Using Cascade +
Shape Regression +
1 Center for Brain-like Computing and Machine Intelligence +
Department of Computer Science and Engineering +
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
2 Key Laboratory of Shanghai Education Commission for +
Intelligent Interaction and Cognitive Engineering +
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
('1740511', 'Yang Cao', 'yang cao')
('1715839', 'Bao-Liang Lu', 'bao-liang lu')
3f540faf85e1f8de6ce04fb37e556700b67e4ad3Article +
Face Verification with Multi-Task and Multi-Scale +
Feature Fusion +
College of Sciences, Northeastern University, Shenyang 110819, China
New York University Shanghai, 1555 Century Ave, Pudong
Academic Editor: Maxim Raginsky +
Received: 18 March 2017; Accepted: 13 May 2017; Published: 17 May 2017 +
('26337951', 'Xiaojun Lu', 'xiaojun lu')
('1983143', 'Yue Yang', 'yue yang')
('8030754', 'Weilin Zhang', 'weilin zhang')
('40435166', 'Qi Wang', 'qi wang')
('2295608', 'Yang Wang', 'yang wang')
luxiaojun@mail.neu.edu.cn (X.L.); YangY1503@163.com (Y.Y.); wangy_neu@163.com (Y.W.) +
Shanghai 200122, China; wz723@nyu.edu +
* Correspondence: wangqi@mail.neu.edu.cn; Tel.: +86-24-8368-7680 +
3f4bfa4e3655ef392eb5ad609d31c05f29826b45ROBUST MULTI-CAMERA VIEW FACE RECOGNITION +
Department of Computer Science and Engineering +
Dr. B. C. Roy Engineering College
Durgapur - 713206 +
India +
Department of Computer Science and Engineering +
National Institute of Technology Rourkela
Rourkela – 769008 +
India +
Department of Computer Science and Engineering +
Indian Institute of Technology Kanpur
Kanpur – 208016 +
India +
Department of Computer Science and Engineering +
Jadavpur University
Kolkata – 700032, +
India +
face +
recognition +
to face +
filter banks +
system uses Gabor +
images produces Gabor +
('1810015', 'Dakshina Ranjan Kisku', 'dakshina ranjan kisku')
('1868921', 'Hunny Mehrotra', 'hunny mehrotra')
('1687389', 'Phalguni Gupta', 'phalguni gupta')
('1786127', 'Jamuna Kanta Sing', 'jamuna kanta sing')
drkisku@ieee.org; hunny04@gmail.com; pg@cse.iitk.ac.in; , jksing@ieee.org +
3f5cf3771446da44d48f1d5ca2121c52975bb3d3
3fb4bf38d34f7f7e5b3df36de2413d34da3e174aTHOMAS AND KOVASHKA: PERSUASIVE FACES: GENERATING FACES IN ADS +
Persuasive Faces: Generating Faces in +
Advertisements +
Department of Computer Science +
University of Pittsburgh
Pittsburgh, PA USA +
('40540691', 'Christopher Thomas', 'christopher thomas')
('1770205', 'Adriana Kovashka', 'adriana kovashka')
chris@cs.pitt.edu +
kovashka@cs.pitt.edu +
3f14b504c2b37a0e8119fbda0eff52efb2eb24615727 +
Joint Facial Action Unit Detection and Feature +
Fusion: A Multi-Conditional Learning Approach +
('2308430', 'Stefanos Eleftheriadis', 'stefanos eleftheriadis')
('1729713', 'Ognjen Rudovic', 'ognjen rudovic')
('1694605', 'Maja Pantic', 'maja pantic')
3fac7c60136a67b320fc1c132fde45205cd2ac66Remarks on Computational Facial Expression +
Recognition from HOG Features Using +
Quaternion Multi-layer Neural Network +
Information Systems Design, Doshisha University, Kyoto, Japan
Graduate School of Doshisha University, Kyoto, Japan
Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan
('39452921', 'Kazuhiko Takahashi', 'kazuhiko takahashi')
('10728256', 'Sae Takahashi', 'sae takahashi')
('1824476', 'Yunduan Cui', 'yunduan cui')
('2565962', 'Masafumi Hashimoto', 'masafumi hashimoto')
{katakaha@mail,buj1078@mail4}.doshisha.ac.jp +
dum3101@mail4.doshisha.ac.jp +
mhashimo@mail.doshisha.ac.jp +
3f9a7d690db82cf5c3940fbb06b827ced59ec01eVIP: Finding Important People in Images +
Virginia Tech +
Google Inc. +
Virginia Tech +
Project: https://computing.ece.vt.edu/~mclint/vip/ +
Demo: http://cloudcv.org/vip/ +
('3085140', 'Clint Solomon Mathialagan', 'clint solomon mathialagan')
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('1746610', 'Dhruv Batra', 'dhruv batra')
3fd90098551bf88c7509521adf1c0ba9b5dfeb57Page 1 of 21 +
*****For Peer Review Only***** +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 +
25 +
26 +
27 +
28 +
29 +
30 +
31 +
32 +
33 +
34 +
35 +
36 +
37 +
38 +
39 +
40 +
41 +
42 +
43 +
44 +
45 +
46 +
47 +
48 +
49 +
50 +
51 +
52 +
53 +
54 +
55 +
56 +
57 +
58 +
59 +
60 +
Attribute-Based Classification for Zero-Shot +
Visual Object Categorization +
('1787591', 'Christoph H. Lampert', 'christoph h. lampert')
('1748758', 'Hannes Nickisch', 'hannes nickisch')
('1734990', 'Stefan Harmeling', 'stefan harmeling')
3f623bb0c9c766a5ac612df248f4a59288e4d29fGenetic Programming for Region Detection, +
Feature Extraction, Feature Construction and +
Classification in Image Data +
School of Engineering and Computer Science, +
Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
('39251110', 'Andrew Lensen', 'andrew lensen')
('2480750', 'Harith Al-Sahaf', 'harith al-sahaf')
('1679067', 'Mengjie Zhang', 'mengjie zhang')
('1712740', 'Bing Xue', 'bing xue')
{Andrew.Lensen,Harith.Al-Sahaf,Mengjie.Zhang,Bing.Xue}@ecs.vuw.ac.nz +
3f4798c7701da044bdb7feb61ebdbd1d53df5cfeVECTOR QUANTIZATION WITH CONSTRAINED LIKELIHOOD FOR FACE +
RECOGNITION +
University of Geneva
Computer Science Department, Stochastic Information Processing Group +
7 Route de Drize, Geneva, Switzerland +
('36133844', 'Dimche Kostadinov', 'dimche kostadinov')
('8995309', 'Sviatoslav Voloshynovskiy', 'sviatoslav voloshynovskiy')
('2771643', 'Maurits Diephuis', 'maurits diephuis')
('1682792', 'Sohrab Ferdowsi', 'sohrab ferdowsi')
3f4c262d836b2867a53eefb959057350bf7219c9Eastern Mediterranean University
Gazimağusa, Mersin 10, TURKEY. +
+
Occlusions +
Recognizing Faces under Facial Expression Variations and Partial +
('2108310', 'TIWUYA H. FAAYA', 'tiwuya h. faaya')
3f7723ab51417b85aa909e739fc4c43c64bf3e84Improved Performance in Facial Expression +
Recognition Using 32 Geometric Features +
University of Bari, Bari, Italy
National Institute of Optics, National Research Council, Arnesano, LE, Italy
('2235498', 'Giuseppe Palestra', 'giuseppe palestra')
('39814343', 'Adriana Pettinicchio', 'adriana pettinicchio')
('33097940', 'Marco Del Coco', 'marco del coco')
('4730472', 'Marco Leo', 'marco leo')
('1741861', 'Cosimo Distante', 'cosimo distante')
giuseppe.palestra@gmail.com +
3f5e8f884e71310d7d5571bd98e5a049b8175075Making a Science of Model Search: Hyperparameter Optimization +
in Hundreds of Dimensions for Vision Architectures +
J. Bergstra +
Rowland Institute at Harvard
100 Edwin H. Land Boulevard +
Cambridge, MA 02142, USA +
D. Yamins +
Department of Brain and Cognitive Sciences +
Massachusetts Institute of Technology
Cambridge, MA 02139, USA +
D. D. Cox +
Rowland Institute at Harvard
100 Edwin H. Land Boulevard +
Cambridge, MA 02142, USA +
3f63f9aaec8ba1fa801d131e3680900680f14139Facial Expression Recognition using Local Binary +
Patterns and Kullback Leibler Divergence +
AnushaVupputuri, SukadevMeher +
+
divergence. +
role +
3f0e0739677eb53a9d16feafc2d9a881b9677b63Efficient Two-Stream Motion and Appearance 3D CNNs for +
Video Classification +
ESAT-KU Leuven +
Ali Pazandeh +
Sharif UTech +
ESAT-KU Leuven, ETH Zurich +
('3310120', 'Ali Diba', 'ali diba')
('1681236', 'Luc Van Gool', 'luc van gool')
ali.diba@esat.kuleuven.be +
pazandeh@ee.sharif.ir +
luc.vangool@esat.kuleuven.be +
3f5693584d7dab13ffc12122d6ddbf862783028bRanking CGANs: Subjective Control over Semantic Image +
Attributes +
University of Bath
('41020280', 'Yassir Saquil', 'yassir saquil')
('1808255', 'Kwang In Kim', 'kwang in kim')
30b15cdb72760f20f80e04157b57be9029d8a1abFace Aging with Identity-Preserved +
Conditional Generative Adversarial Networks +
Shanghaitech University
Baidu +
Shanghaitech University
('50219041', 'Zongwei Wang', 'zongwei wang')
('48785141', 'Xu Tang', 'xu tang')
('2074878', 'Weixin Luo', 'weixin luo')
('1702868', 'Shenghua Gao', 'shenghua gao')
wangzw@shanghaitech.edu.cn +
tangxu02@baidu.com +
{luowx, gaoshh}@shanghaitech.edu.cn +
3039627fa612c184228b0bed0a8c03c7f754748cRobust Regression on Image Manifolds for Ordered Label Denoising +
University of North Carolina at Charlotte
('1873911', 'Hui Wu', 'hui wu')
('1690110', 'Richard Souvenir', 'richard souvenir')
{hwu13,souvenir}@uncc.edu +
30870ef75aa57e41f54310283c0057451c8c822bOvercoming Catastrophic Forgetting with Hard Attention to the Task +('50101040', 'Marius Miron', 'marius miron')
303065c44cf847849d04da16b8b1d9a120cef73a
305346d01298edeb5c6dc8b55679e8f60ba97efbArticle +
Fine-Grained Face Annotation Using Deep +
Multi-Task CNN +
Systems and Communication, University of Milano-Bicocca
Received: 3 July 2018; Accepted: 13 August 2018; Published: 14 August 2018 +
('3390122', 'Luigi Celona', 'luigi celona')
('2217051', 'Simone Bianco', 'simone bianco')
('1743714', 'Raimondo Schettini', 'raimondo schettini')
viale Sarca, 336 Milano, Italy; bianco@disco.unimib.it (S.B.); schettini@disco.unimib.it (R.S.) +
* Correspondence: luigi.celona@disco.unimib.it +
303a7099c01530fa0beb197eb1305b574168b653Occlusion-free Face Alignment: Deep Regression Networks Coupled with +
De-corrupt AutoEncoders +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
3CAS Center for Excellence in Brain Science and Intelligence Technology +
('1698586', 'Jie Zhang', 'jie zhang')
('1693589', 'Meina Kan', 'meina kan')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{jie.zhang,meina.kan,shiguang.shan,xilin.chen}@vipl.ict.ac.cn +
30cd39388b5c1aae7d8153c0ab9d54b61b474ffeDeep Cascaded Regression for Face Alignment +
School of Data and Computer Science, Sun Yat-Sen University, China
National University of Singapore, Singapore
algorithm refines the shape by estimating a shape increment +
∆S. In particular, a shape increment at stage k is calculated +
as: +
('3124720', 'Shengtao Xiao', 'shengtao xiao')
('10338111', 'Zhen Cui', 'zhen cui')
('40080379', 'Yan Pan', 'yan pan')
('3029624', 'Chunyan Xu', 'chunyan xu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
303517dfc327c3004ae866a6a340f16bab2ee3e3Inte rnational Journal of Engineering Technology, Manage ment and Applied Sciences +
www.ijetmas.com August 2014, Volume 2 Issue 3, ISSN 2349-4476 +
+
Using Locality Preserving Projections in +
Face Recognition +
Galaxy Global Imperial Technical Campus +
Galaxy Global Imperial Technical Campus +
DIT UNIVERSITY, DEHRADUN
('34272062', 'PRACHI BANSAL', 'prachi bansal')
30fd1363fa14965e3ab48a7d6235e4b3516c1da1A Deep Semi-NMF Model for Learning Hidden Representations +
Stefanos Zafeiriou +
Bj¨orn W. Schuller +
Imperial College London, United Kingdom
('2814229', 'George Trigeorgis', 'george trigeorgis')
('2732737', 'Konstantinos Bousmalis', 'konstantinos bousmalis')
GEORGE.TRIGEORGIS08@IMPERIAL.AC.UK +
K.BOUSMALIS@IMPERIAL.AC.UK +
S.ZAFEIRIOU@IMPERIAL.AC.UK +
BJOERN.SCHULLER@IMPERIAL.AC.UK +
309e17e6223e13b1f76b5b0eaa123b96ef22f51bFace Recognition based on a 3D Morphable Model +
University of Siegen
H¤olderlinstr. 3 +
57068 Siegen, Germany +
('2880906', 'Volker Blanz', 'volker blanz')blanz@informatik.uni-siegen.de +
3046baea53360a8c5653f09f0a31581da384202eDeformable Face Alignment via Local +
Measurements and Global Constraints +
('2398245', 'Jason M. Saragih', 'jason m. saragih')
3026722b4cbe9223eda6ff2822140172e44ed4b1Jointly Estimating Demographics and Height with a Calibrated Camera +
Eastman Kodak Company +
Eastman Kodak Company +
Cornell University
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('2224373', 'Andrew C. Blose', 'andrew c. blose')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
andrew.gallagher@kodak.com +
andrew.blose@kodak.com +
tsuhan@ece.cornell.edu +
3028690d00bd95f20842d4aec84dc96de1db6e59Leveraging Union of Subspace Structure to Improve Constrained Clustering +('1782134', 'John Lipor', 'john lipor')
30c96cc041bafa4f480b7b1eb5c45999701fe0661090 +
Discrete Cosine Transform Locality-Sensitive +
Hashes for Face Retrieval +
('1784929', 'Mehran Kafai', 'mehran kafai')
('1745657', 'Kave Eshghi', 'kave eshghi')
('1707159', 'Bir Bhanu', 'bir bhanu')
306957285fea4ce11a14641c3497d01b46095989FACE RECOGNITION UNDER VARYING LIGHTING BASED ON +
DERIVATES OF LOG IMAGE +
2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing 100080, China +
1Graduate School, CAS, Beijing, 100039, China +
('2343895', 'Laiyun Qing', 'laiyun qing')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1698902', 'Wen Gao', 'wen gao')
304b1f14ca6a37552dbfac443f3d5b36dbe1a451Collaborative Low-Rank Subspace Clustering +
aSchool of Computing and Mathematics, Charles Sturt University, Bathurst, NSW
bDiscipline of Business Analytics, The University of Sydney Business School
The University of Sydney, NSW 2006, Australia
cCentre for Research in Mathematics, School of Computing, Engineering and Mathematics, +
Western Sydney University, Parramatta, NSW 2150, Australia
Australia +
('40635684', 'Stephen Tierney', 'stephen tierney')
('1767638', 'Yi Guo', 'yi guo')
('1750488', 'Junbin Gao', 'junbin gao')
306127c3197eb5544ab1e1bf8279a01e0df26120Sparse Coding and Dictionary Learning with Linear Dynamical Systems∗ +
Tsinghua University, State Key Lab. of Intelligent
Technology and Systems, Tsinghua National Lab. for Information Science and Technology (TNList); +
Australian National University and NICTA, Australia
('36823190', 'Fuchun Sun', 'fuchun sun')
('1678783', 'Deli Zhao', 'deli zhao')
('2641547', 'Huaping Liu', 'huaping liu')
('23911916', 'Mehrtash Harandi', 'mehrtash harandi')
1{huangwb12@mails, fcsun@mail, caoll12@mails, hpliu@mail}.tsinghua.edu.cn, +
2zhaodeli@gmail.com, 3Mehrtash.Harandi@nicta.com.au, +
307a810d1bf6f747b1bd697a8a642afbd649613dAn affordable contactless security system access +
for restricted area +
Laboratory Le2i +
University Bourgogne Franche-Comt , France
2 Odalid compagny, France +
Keywords – Smart Camera, Real-time Image Processing, Biometrics, Face Detection, Face Verifica- +
tion, EigenFaces, Support Vector Machine, +
We present in this paper a security system based on +
identity verification process and a low-cost smart cam- +
era, intended to avoid unauthorized access to restricted +
area. The Le2i laboratory has a longstanding experi- +
ence in smart cameras implementation and design [1], +
for example in the case of real-time classical face de- +
tection [2] or human fall detection [3]. +
The principle of the system, fully thought and designed +
in our laboratory, is as follows: the allowed user pre- +
sents a RFID card to the reader based on Odalid system +
[4]. The card ID, time and date of authorized access are +
checked using connection to an online server. In the +
same time, multi-modality identity verification is per- +
formed using the camera. +
There are many ways to perform face recognition and +
face verification. As a first approach, we implemented a +
standard face localization using Haar cascade [5] and +
verification process based on Eigenfaces (feature ex- +
traction), with the ORL face data base (or AT&T) [6], and +
SVM (verification) [7]. +
On the one hand, the training step has been performed +
with 10-folds cross validation using the 3000 first faces +
from LFW face database [8] as unauthorized class and +
20 known faces were used for the authorized class. On +
the other hand, the testing step has been performed us- +
ing the rest of the LFW data base and 40 other faces +
from the same known person. The false positive and +
false negative rates are respectively 0,004% and 1,39% +
with a standard deviation of respectively 0,006% and +
2,08%, considering a precision of 98,9% and a recall of +
98,6%. +
The current PC based implementation has been de- +
signed to be easily deployed on a Raspberry Pi3 or sim- +
ilar based target. A combination of Eigenfaces [9], Fish- +
erfaces [9] , Local Binary Patterns [9] and Generalized +
Fourier Descriptors [10] will be also studied. +
However, it is known that the use of single modality such +
as standard face luminosity for identity control leads of- +
ten to ergonomics problems due to the high intra-varia- +
bility of human faces [11]. Recent work published in the +
literature and developed in our laboratory showed that +
it is possible to extract precise multispectral body infor- +
mation from standard camera. +
The next step and originality of our system will resides +
in the fact that we will consider Near Infrared or multi- +
spectral approach in order to improve the security level +
(decrease false positive rate) as well as ergonomics +
(decrease false negative rate). +
The proposed platform enables security access to be +
improved and original solutions based on specific illumi- +
nation to be investigated. +
ACKNOWLEDGMENT +
This research was supported by the Conseil Regional +
de Bourgogne Franche-Comte, and institut Carnot +
ARTS +
REFERENCES +
[1] R. Mosqueron, J. Dubois, M. Mattavelli, D. Mauvilet, Smart camera +
based on embedded HW/SW coprocessor, EURASIP Journal on Em- +
bedded Systems, p.3:1-3:13, Hindawi Publishing Corp, 2008. +
[2] K. Khattab, J. Dubois, J. Miteran, Cascade Boosting Based Object +
Detection from High-Level Description to Hardware Implementation, +
EURASIP Journal on Embedded System, August 2009 +
[3] B. Senouci, I. Charfi, B. Barthelemy, J. Dubois, J. Miteran, Fast +
prototyping of a SoC-based smart-camera: a real-time fall detection +
case study, Journal of Real-Time Image Processing, p.1-14, 2014. +
[4] http://odalid.com/ +
[5] P. Viola, M.J. Jones, Robust Real-Time Face Detection, Interna- +
tional Journal of Computer Vision, p137-154, May 2004 +
[6] www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html +
[7] K. Jonsson, J. Kittler, Y.P. Li, J. Matas, Support Vector Machines +
for Face Authentication, Image and Vision Computing, p543-553, +
1999 +
[8] G.B. Huang, M. Ramesh, T. Berg, E. Learned-Miller, Labeled +
Faces in the Wild: A Database for Studying Face Recognition in Un- +
constrained Environments, Tehcnical Report p07-49, October 2007 +
[9] R. Jafri, H.R. Arabnia, A Survey of Face Recognition Techniques, +
Journal of Information Processing Systems, p41-68, June 2009 +
[10] F. Smach, C. Lemaitre, J-P. Gauthier, J. Miteran, M. Atri, Gener- +
alized Fourier Descriptors With Applications to Objects Recognition in +
SVM Context, Journal of Mathematical Imaging and Vision, p43-47, +
2007 +
[11] T. Bourlai, B. Cukic, Multi-Spectral Face Recognition: Identifica- +
tion of People in Difficult Environments, p196-201, June 2012 +
('2787483', 'Johel Mitéran', 'johel mitéran')
('2274333', 'Barthélémy Heyrman', 'barthélémy heyrman')
('1873153', 'Dominique Ginhac', 'dominique ginhac')
('33359945', 'Julien Dubois', 'julien dubois')
Contact julien.dubois@u-bourgogne.fr +
30180f66d5b4b7c0367e4b43e2b55367b72d6d2aTemplate Adaptation for Face Verification and Identification +
1 Systems and Technology Research, Woburn MA USA +
2 Visionary Systems and Research, Framingham, MA USA +
Visual Geometry Group, University of Oxford, Oxford UK
('3390731', 'Nate Crosswhite', 'nate crosswhite')
('36067742', 'Jeffrey Byrne', 'jeffrey byrne')
('34712076', 'Chris Stauffer', 'chris stauffer')
('1954340', 'Qiong Cao', 'qiong cao')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
3083d2c6d4f456e01cbb72930dc2207af98a624416 +
Perceived Age Estimation from Face Images +
1NEC Soft, Ltd. +
Tokyo Institute of Technology
Japan +
1. Introduction +
In recent years, demographic analysis in public places such as shopping malls and stations +
is attracting a great deal of attention. Such demographic information is useful for various +
purposes, e.g., designing effective marketing strategies and targeted advertisement based +
on customers’ gender and age. +
For this reason, a number of approaches have been +
explored for age estimation from face images (Fu et al., 2007; Geng et al., 2006; Guo et al., +
2009), and several databases became publicly available recently (FG-Net Aging Database, +
n.d.; Phillips et al., 2005; Ricanek & Tesafaye, 2006). +
It has been reported that age can be +
accurately estimated under controlled environment such as frontal faces, no expression, and +
static lighting conditions. However, it is not straightforward to achieve the same accuracy +
level in a real-world environment due to considerable variations in camera settings, facial +
poses, and illumination conditions. The recognition performance of age prediction systems is +
significantly influenced by such factors as the type of camera, camera calibration, and lighting +
variations. On the other hand, the publicly available databases were mainly collected in +
semi-controlled environments. For this reason, existing age prediction systems built upon +
such databases tend to perform poorly in a real-world environment. +
In this chapter, we address the problem of perceived age estimation from face images, and +
describe our new approaches proposed in Ueki et al. (2010) and Ueki et al. (2011), which +
involve three novel aspects. +
The first novelty of our proposed approaches is to take the heterogeneous characteristics of +
human age perception into account. +
It is rare to misjudge the age of a 5-year-old child as +
15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus, +
magnitude of the error is different depending on subjects’ age. We carried out a large-scale +
questionnaire survey for quantifying human age perception characteristics, and propose to +
utilize the quantified characteristics in the framework of weighted regression. +
The second is an efficient active learning strategy for reducing the cost of labeling face +
samples. Given a large number of unlabeled face samples, we reveal the cluster structure +
of the data and propose to label cluster-representative samples for covering as many +
clusters as possible. This simple sampling strategy allows us to boost the performance of +
a manifold-based semi-supervised learning method only with a relatively small number of +
labeled samples. +
The third contribution is to apply a recently proposed machine learning technique called +
covariate shift adaptation (Shimodaira, 2000; Sugiyama & Kawanabe, 2011; Sugiyama et al., +
('2163491', 'Kazuya Ueki', 'kazuya ueki')
('1853974', 'Yasuyuki Ihara', 'yasuyuki ihara')
('1719221', 'Masashi Sugiyama', 'masashi sugiyama')
30cbd41e997445745b6edd31f2ebcc7533453b61What Makes a Video a Video: Analyzing Temporal Information in Video +
Understanding Models and Datasets +
Stanford University, 2Facebook, 3Dartmouth College
('38485317', 'De-An Huang', 'de-an huang')
('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')
('49274550', 'Dhruv Mahajan', 'dhruv mahajan')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
('2210374', 'Manohar Paluri', 'manohar paluri')
('3216322', 'Li Fei-Fei', 'li fei-fei')
('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')
302c9c105d49c1348b8f1d8cc47bead70e2acf08This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE +
Transactions on Circuits and Systems for Video Technology +
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +
Unconstrained Face Recognition Using A Set-to-Set +
Distance Measure +
('4712803', 'Jiaojiao Zhao', 'jiaojiao zhao')
('1783847', 'Jungong Han', 'jungong han')
304a306d2a55ea41c2355bd9310e332fa76b3cb0
301b0da87027d6472b98361729faecf6e1d5e5f6HEAD POSE ESTIMATION IN FACE RECOGNITION ACROSS +
POSE SCENARIOS +
Computer vision and Remote Sensing, Berlin university of Technology
Sekr. FR-3-1, Franklinstr. 28/29, D-10587, Berlin, Germany. +
Keywords: +
Pose estimation, facial pose, face recognition, local energy models, shape description, local features, head +
pose classification. +
('4241648', 'M. Saquib Sarfraz', 'm. saquib sarfraz')
('2962236', 'Olaf Hellwich', 'olaf hellwich')
{saquib;hellwich}@fpk.tu-berlin.de +
30b103d59f8460d80bb9eac0aa09aaa56c98494fEnhancing Human Action Recognition with Region Proposals +
Australian Centre for Robotic Vision(ACRV), School of Electrical Engineering and Computer Science +
Queensland University of Technology(QUT
('2256817', 'Fahimeh Rezazadegan', 'fahimeh rezazadegan')
('34686772', 'Sareh Shirazi', 'sareh shirazi')
('1771913', 'Niko Sünderhauf', 'niko sünderhauf')
('1809144', 'Michael Milford', 'michael milford')
('1803115', 'Ben Upcroft', 'ben upcroft')
fahimeh.rezazadegan@qut.edu.au +
5e59193a0fc22a0c37301fb05b198dd96df94266Example-Based Modeling of Facial Texture from Deficient Data +
1 IMB / LaBRI, Universit´e de Bordeaux, France +
University of York, UK
('34895713', 'Arnaud Dessein', 'arnaud dessein')
('1679753', 'Edwin R. Hancock', 'edwin r. hancock')
('1687021', 'William A. P. Smith', 'william a. p. smith')
('1718243', 'Richard C. Wilson', 'richard c. wilson')
5e6f546a50ed97658be9310d5e0a67891fe8a102Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? +
National Institute of Advanced Industrial Science and Technology (AIST
Tsukuba, Ibaraki, Japan +
('2199251', 'Kensho Hara', 'kensho hara')
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('1732705', 'Yutaka Satoh', 'yutaka satoh')
{kensho.hara, hirokatsu.kataoka, yu.satou}@aist.go.jp +
5e0eb34aeb2b58000726540336771053ecd335fcLow-Quality Video Face Recognition with Deep +
Networks and Polygonal Chain Distance +
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
†Fraunhofer IOSB, Karlsruhe, Germany +
('37646107', 'Christian Herrmann', 'christian herrmann')
('1783486', 'Dieter Willersinn', 'dieter willersinn')
{christian.herrmann|dieter.willersinn|juergen.beyerer}@iosb.fraunhofer.de +
5e7e055ef9ba6e8566a400a8b1c6d8f827099553Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreadingprocess.Copyright © 2018 the authorsThis Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.Research Articles: Behavioral/CognitiveOn the role of cortex-basal ganglia interactions for category learning: Aneuro-computational approachFrancesc Villagrasa1, Javier Baladron1, Julien Vitay1, Henning Schroll1, Evan G. Antzoulatos2, Earl K.Miller3 and Fred H. Hamker11Chemnitz University of Technology, Department of Computer Science, 09107 Chemnitz, Germany2UC Davis Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, Davis, CA95616, United States3The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences,Massachusetts Institute of Technology, Cambridge, MA 02139, United StatesDOI: 10.1523/JNEUROSCI.0874-18.2018Received: 5 April 2018Revised: 7 August 2018Accepted: 28 August 2018Published: 18 September 2018Author contributions: F.V., J.V., E.G.A., and F.H.H. performed research; F.V., J.B., J.V., H.S., E.G.A., andE.K.M. analyzed data; F.V. wrote the first draft of the paper; J.B. and F.H.H. designed research; J.B., J.V., H.S.,E.G.A., E.K.M., and F.H.H. edited the paper; F.H.H. wrote the paper.Conflict of Interest: The authors declare no competing financial interests.This work has been supported by the German Research Foundation (DFG, grant agreements no. HA2630/4-2and HA2630/8-1), the European Social Fund and the Free State of Saxony (ESF, grant agreement no.ESF-100269974), the NIMH R01MH065252, and the MIT Picower Institute Innovation Fund.Corresponding author: Fred H. Hamker, fred.hamker@informatik.tu-chemnitz.de, 09107 Chemnitz, GermanyCite as: J. Neurosci ; 10.1523/JNEUROSCI.0874-18.2018Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formattedversion of this article is published.
5e28673a930131b1ee50d11f69573c17db8fff3eAuthor manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +
(2008)" +
5ea9063b44b56d9c1942b8484572790dff82731eMULTICLASS SUPPORT VECTOR MACHINES AND METRIC MULTIDIMENSIONAL +
SCALING FOR FACIAL EXPRESSION RECOGNITION +
Irene Kotsiay, Stefanos Zafeiriouy, Nikolaos Nikolaidisy and Ioannis Pitasy +
yAristotle University of Thessaloniki
Thessaloniki, Greece +
email: fekotsia, dralbert, nikolaid, pitasg@aiia.csd.auth.gr +
5e16f10f2d667d17c029622b9278b6b0a206d394Learning to Rank Binary Codes +
Columbia University
IBM T. J. Watson Research Center
Columbia University
('1710567', 'Jie Feng', 'jie feng')
('1722649', 'Wei Liu', 'wei liu')
('1678691', 'Yan Wang', 'yan wang')
5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7Rendering or normalization? +
An analysis of the 3D-aided pose-invariant face recognition +
Computational Biomedicine Lab +
University of Houston, Houston, TX, USA
('2461369', 'Yuhang Wu', 'yuhang wu')
('2700399', 'Shishir K. Shah', 'shishir k. shah')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
ywu36@uh.edu {sshah,ikakadia}@central.uh.edu +
5ea165d2bbd305dc125415487ef061bce75dac7dEfficient Human Action Recognition by Luminance Field Trajectory and Geometry Information +
Hong Kong Polytechnic University, Hong Kong, China
2BBN Technologies, Cambridge, MA 02138, USA +
('3079962', 'Haomian Zheng', 'haomian zheng')
('2659956', 'Zhu Li', 'zhu li')
('1708679', 'Yun Fu', 'yun fu')
{cshmzheng,cszli}@comp.polyu.edu.hk, yfu@bbn.com +
5e6ba16cddd1797853d8898de52c1f1f44a73279Face Identification with Second-Order Pooling +('2731972', 'Fumin Shen', 'fumin shen')
('1780381', 'Chunhua Shen', 'chunhua shen')
('1724393', 'Heng Tao Shen', 'heng tao shen')
5ea9cba00f74d2e113a10c484ebe4b5780493964Automated Drowsiness Detection For Improved +
Driving Safety +
Sabanci University
Faculty of +
Engineering and Natural Sciences +
Orhanli, Istanbul +
University of California San Diego
Institute of
Neural Computation +
La Jolla, San Diego +
('40322754', 'Esra Vural', 'esra vural')
('21691177', 'Mujdat Cetin', 'mujdat cetin')
('2724380', 'Gwen Littlewort', 'gwen littlewort')
('1858421', 'Marian Bartlett', 'marian bartlett')
('29794862', 'Javier Movellan', 'javier movellan')
5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43Naming Every Individual in News Video Monologues +
School of Computer Science +
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, USA +
1-412-268-{9747, 1448} +
('38936351', 'Jun Yang', 'jun yang')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
{juny, alex}@cs.cmu.edu +
5ec94adc9e0f282597f943ea9f4502a2a34ecfc2Leveraging the Power of Gabor Phase for Face +
Identification: A Block Matching Approach +
KTH, Royal Institute of Technology
('39750744', 'Yang Zhong', 'yang zhong')
('40565290', 'Haibo Li', 'haibo li')
5e0e516226413ea1e973f1a24e2fdedde98e7ec0The Invariance Hypothesis and the Ventral Stream +
by +
B.S./M.S. Brandeis University
Submitted to the Department of Brain and Cognitive Sciences +
in partial fulfillment of the requirements for the degree of +
Doctor of Philosophy +
at the +
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2014 +
Massachusetts Institute of Technology 2014. All rights reserved
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Department of Brain and Cognitive Sciences +
September 5, 2013 +
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Thesis Supervisor +
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Sherman Fairchild Professor of Neuroscience and Picower Scholar +
Director of Graduate Education for Brain and Cognitive Sciences +
('1700356', 'Joel Zaidspiner Leibo', 'joel zaidspiner leibo')
('5856191', 'Tomaso Poggio', 'tomaso poggio')
('1724891', 'Eugene McDermott', 'eugene mcdermott')
('3034182', 'Matthew Wilson', 'matthew wilson')
5e821cb036010bef259046a96fe26e681f20266e
5e7cb894307f36651bdd055a85fdf1e182b7db30A Comparison of Multi-class Support Vector Machine Methods for +
Face Recognition +
Department of Electrical and Computer Engineering +
The University of Maryland
December 6, 2007 +
Naotoshi Seo, sonots@umd.edu +
5b693cb3bedaa2f1e84161a4261df9b3f8e77353Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney +
Robust Face Localisation Using Motion, Colour +
& Fusion +
Speech, Audio, Image and Video Technologies Program +
Faculty of Built Environment and Engineering +
Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia +
http://www.bee.qut.edu.au/research/prog_saivt.shtml +
('1763662', 'Chris McCool', 'chris mccool')
('33258846', 'Matthew McKay', 'matthew mckay')
('40453073', 'Scott Lowther', 'scott lowther')
('1729760', 'Sridha Sridharan', 'sridha sridharan')
5b73b7b335f33cda2d0662a8e9520f357b65f3acIntensity Rank Estimation of Facial Expressions +
Based on A Single Image +
Institute of Information Science, Academia Sinica, Taipei, Taiwan
National Taiwan University, Taipei, Taiwan
Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
('34692779', 'Kuang-Yu Chang', 'kuang-yu chang')
('1720473', 'Chu-Song Chen', 'chu-song chen')
('1732064', 'Yi-Ping Hung', 'yi-ping hung')
Email: song@iis.sinica.edu.tw +
5b6d05ce368e69485cb08dd97903075e7f517aedRobust Active Shape Model for +
Landmarking Frontal Faces +
Department of Electrical and Computer Engineering +
Carnegie Mellon University Pittsburgh, PA - 15213, USA
June 15, 2009 +
('2363348', 'Keshav Seshadri', 'keshav seshadri')
('1794486', 'Marios Savvides', 'marios savvides')
kseshadr@andrew.cmu.edu, msavvid@cs.cmu.edu +
5b0bf1063b694e4b1575bb428edb4f3451d9bf04Facial shape tracking via spatio-temporal cascade shape regression +
Nanjing University of Information Science and Technology
Nanjing, China +
('37953909', 'Jing Yang', 'jing yang')
('3234063', 'Jiankang Deng', 'jiankang deng')
('3198263', 'Kaihua Zhang', 'kaihua zhang')
('1734954', 'Qingshan Liu', 'qingshan liu')
nuist yj@126.com +
jiankangdeng@gmail.com +
zhkhua@gmail.com +
qsliu@nuist.edu.cn +
5b59e6b980d2447b2f3042bd811906694e4b0843Two-stage Cascade Model for Unconstrained +
Face Detection +
Darijan Marčetić, Tomislav Hrkać, Slobodan Ribarić +
University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
{darijan.marcetic, tomislav.hrkac, slobodan.ribaric}@fer.hr +
5bb53fb36a47b355e9a6962257dd465cd7ad6827Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays +
University of Kentucky
North Carolina Central University
Figure 1: Our system automatically reconstruct photo-realistic face videos for users wearing HMD. (Left) Input NIR eye images. (Middle) +
Input face image with upper face blocked by HMD device. (Right) The output of our system. +
('2613340', 'Yajie Zhao', 'yajie zhao')
('8285167', 'Qingguo Xu', 'qingguo xu')
('2257812', 'Xinyu Huang', 'xinyu huang')
('38958903', 'Ruigang Yang', 'ruigang yang')
5b89744d2ac9021f468b3ffd32edf9c00ed7fed7Beyond Mahalanobis Metric: Cayley-Klein Metric Learning +
Institute of Automation, Chinese Academy of Sciences
Beijing, 100190, China +
('2495602', 'Yanhong Bi', 'yanhong bi')
('1684958', 'Bin Fan', 'bin fan')
('3104867', 'Fuchao Wu', 'fuchao wu')
{yanhong.bi, bfan, fcwu}@nlpr.ia.ac.cn +
5bfc32d9457f43d2488583167af4f3175fdcdc03International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 +
Local Gray Code Pattern (LGCP): A Robust +
Feature Descriptor for Facial Expression +
Recognition +
('7484236', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')
5b7cb9b97c425b52b2e6f41ba8028836029c4432Smooth Representation Clustering +
1State Key Laboratory on Intelligent Technology and Systems, TNList +
Tsinghua University
Key Lab. of Machine Perception, School of EECS, Peking University
('40234323', 'Han Hu', 'han hu')
('33383055', 'Zhouchen Lin', 'zhouchen lin')
('2632601', 'Jianjiang Feng', 'jianjiang feng')
('39491387', 'Jie Zhou', 'jie zhou')
huh04@mails.thu.edu.cn, zlin@pku.edu.cn, {jfeng,jzhou}@tsinghua.edu.cn +
5ba7882700718e996d576b58528f1838e5559225This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE +
Transactions on Affective Computing +
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016 +
Predicting Personalized Image Emotion +
Perceptions in Social Networks +
('1755487', 'Sicheng Zhao', 'sicheng zhao')
('1720100', 'Hongxun Yao', 'hongxun yao')
('33375873', 'Yue Gao', 'yue gao')
('38329336', 'Guiguang Ding', 'guiguang ding')
('1684968', 'Tat-Seng Chua', 'tat-seng chua')
5b6f0a508c1f4097dd8dced751df46230450b01aFinding Lost Children +
Ashley Michelle Eden +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2010-174 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.html +
December 20, 2010 +
5b9d41e2985fa815c0f38a2563cca4311ce82954Exploitation of 3D Images for Face Authentication Under Pose and Illumination +
Variations +
1Information Processing Laboratory, Electrical and Computer Engineering Department, +
Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
Informatics and Telematics Institute, Centre for Research and Technology Hellas
1st Km Thermi-Panorama Rd, Thessaloniki 57001, Greece +
('1807962', 'Filareti Tsalakanidou', 'filareti tsalakanidou')
('1744180', 'Sotiris Malassiotis', 'sotiris malassiotis')
('1721460', 'Michael G. Strintzis', 'michael g. strintzis')
Email: filareti@iti.gr, malasiot@iti.gr, strintzi@eng.auth.gr +
5b6593a6497868a0d19312952d2b753232414c23Face Recognition by 3D Registration for the +
Visually Impaired Using a RGB-D Sensor +
The City College of New York, New York, NY 10031, USA
Beihang University, Beijing 100191, China
3 The CUNY Graduate Center, New York, NY 10016, USA +
('40617554', 'Wei Li', 'wei li')
('3042950', 'Xudong Li', 'xudong li')
('40152663', 'Martin Goldberg', 'martin goldberg')
('4697712', 'Zhigang Zhu', 'zhigang zhu')
lwei000@citymail.cuny.edu, xdli@buaa.edu.cn, +
mgoldberg@gc.cuny.edu, zhu@cs.ccny.cuny.edu +
5bb684dfe64171b77df06ba68997fd1e8daffbe1
5b719410e7829c98c074bc2947697fac3b505b64ACTIVE APPEARANCE MODELS FOR AFFECT RECOGNITION USING FACIAL +
EXPRESSIONS +
Matthew Stephen Ratliff +
University of North Carolina Wilmington in Partial Ful llment
A Thesis Submitted to the +
of the Requirements for the Degree of +
Master of Science +
Department of Computer Science +
Department of Information Systems and Operations Management +
University of North Carolina Wilmington
2010 +
Approved by +
Advisory Committee +
Curry Guinn +
Thomas Janicki +
Eric Patterson +
Chair +
Accepted by +
Dean, Graduate School +
5bae9822d703c585a61575dced83fa2f4dea1c6dMOTChallenge 2015: +
Towards a Benchmark for Multi-Target Tracking +
('34761498', 'Anton Milan', 'anton milan')
('34493380', 'Stefan Roth', 'stefan roth')
('1803034', 'Konrad Schindler', 'konrad schindler')
5b0008ba87667085912ea474025d2323a14bfc90SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace +
Clustering Algorithms∗ +
Electrical and Computer Engineering +
Northeastern University, Boston, MA
('1687866', 'Mario Sznaier', 'mario sznaier'){msznaier,camps}@coe.neu.edu +
5b97e997b9b654373bd129b3baf5b82c2def13d13D Face Tracking and Texture Fusion in the Wild +
Centre for Vision, Speech and Signal Processing +
Image Understanding and Interactive Robotics +
University of Surrey
Guildford, GU2 7XH, United Kingdom +
Contact: http://www.patrikhuber.ch +
Reutlingen University
D-72762 Reutlingen, Germany +
('39976184', 'Patrik Huber', 'patrik huber')
('1748684', 'Josef Kittler', 'josef kittler')
('49330989', 'Philipp Kopp', 'philipp kopp')
5bd3d08335bb4e444a86200c5e9f57fd9d719e143D Face Morphable Models “In-the-Wild” +
,∗ +
Stefanos Zafeiriou1 +
Imperial College London, UK
2Amazon, Berlin, Germany +
University of Oulu, Finland
('47456731', 'James Booth', 'james booth')
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('2015036', 'Stylianos Ploumpis', 'stylianos ploumpis')
('2814229', 'George Trigeorgis', 'george trigeorgis')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
1{james.booth,s.ploumpis,g.trigeorgis,i.panagakis,s.zafeiriou}@imperial.ac.uk +
2antonak@amazon.com +
5babbad3daac5c26503088782fd5b62067b94fa5Are You Sure You Want To Do That? +
Classification with Verification +
('31920847', 'Harris Chan', 'harris chan')
('36964031', 'Atef Chaudhury', 'atef chaudhury')
('50715871', 'Kevin Shen', 'kevin shen')
hchan@cs.toronto.edu +
atef@cs.toronto.edu +
shenkev@cs.toronto.edu +
5bb87c7462c6c1ec5d60bde169c3a785ba5ea48fTargeting Ultimate Accuracy: Face Recognition via Deep Embedding +
Baidu Research Institute of Deep Learning
('2272123', 'Jingtuo Liu', 'jingtuo liu')
5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65Evolving Systems. manuscript No. +
(will be inserted by the editor) +
An evolving spatio-temporal approach for gender and age +
group classification with Spiking Neural Networks +
Received: date / Accepted: date +
('39323169', 'Fahad Bashir Alvi', 'fahad bashir alvi')
('2662466', 'Russel Pears', 'russel pears')
('1686744', 'Nikola Kasabov', 'nikola kasabov')
5bf70c1afdf4c16fd88687b4cf15580fd2f26102Accepted in Pattern Recognition Letters +
Pattern Recognition Letters +
journal homepage: www.elsevier.com +
Residual Codean Autoencoder for Facial Attribute Analysis +
IIIT-Delhi, New Delhi, India +
Article history: +
Received 29 March 2017 +
('40639989', 'Akshay Sethi', 'akshay sethi')
('2220719', 'Maneet Singh', 'maneet singh')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
5b2cfee6e81ef36507ebf3c305e84e9e0473575a
5b01d4338734aefb16ee82c4c59763d3abc008e6A Robust Face Recognition Algorithm Based on Kernel Regularized +
Relevance-Weighted Discriminant Analysis +
+
Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China
College of Electrical and Information Engineering
or +
In +
I. INTRODUCTION +
interface and security +
recognition +
their +
from +
this paper, we propose an effective +
('38296532', 'Di WU', 'di wu')
('38296532', 'Di WU', 'di wu')
[e-mail: wudi6152007@163.com] +
5b721f86f4a394f05350641e639a9d6cb2046c45A short version of this paper is accepted to ACM Asia Conference on Computer and Communications Security (ASIACCS) 2018 +
Detection under Privileged Information (Full Paper)∗ +
Pennsylvania State University
Patrick McDaniel +
Pennsylvania State University
Vencore Labs +
Pennsylvania State University
Army Research Laboratory
('2950892', 'Z. Berkay Celik', 'z. berkay celik')
('1804289', 'Rauf Izmailov', 'rauf izmailov')
('1967156', 'Nicolas Papernot', 'nicolas papernot')
('9541640', 'Ryan Sheatsley', 'ryan sheatsley')
('30792942', 'Raquel Alvarez', 'raquel alvarez')
('1703726', 'Ananthram Swami', 'ananthram swami')
zbc102@cse.psu.edu +
mcdaniel@cse.psu.edu +
rizmailov@appcomsci.com +
{ngp5056,rms5643,rva5120}@cse.psu.edu +
ananthram.swami.civ@mail.mil +
5b4b84ce3518c8a14f57f5f95a1d07fb60e58223Diagnosing Error in Object Detectors +
Department of Computer Science +
University of Illinois at Urbana-Champaign
('2433269', 'Derek Hoiem', 'derek hoiem')
('2918391', 'Yodsawalai Chodpathumwan', 'yodsawalai chodpathumwan')
('2279233', 'Qieyun Dai', 'qieyun dai')
5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79Improving 3D Face Details based on Normal Map of Hetero-source Images +
Tsinghua University
Beijing, 100084, China +
('8100333', 'Chang Yang', 'chang yang')
('1752427', 'Jiansheng Chen', 'jiansheng chen')
('1949216', 'Nan Su', 'nan su')
('7284296', 'Guangda Su', 'guangda su')
yangchang11@mails.tsinghua.edu.cn, jschenthu@tsinghua.edu.cn +
v377026@sina.com, susu@tsinghua.edu.cn +
5b86c36e3eb59c347b81125d5dd57dd2a2c377a9Name Identification of People in News Video +
by Face Matching +
Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
Japan Society for the Promotion of Science +
Nagoya University
School of Information Science, +
Nagoya University
('1679187', 'Ichiro IDE', 'ichiro ide')
('8027540', 'Takashi OGASAWARA', 'takashi ogasawara')
('1685524', 'Tomokazu TAKAHASHI', 'tomokazu takahashi')
('1725612', 'Hiroshi MURASE', 'hiroshi murase')
ide@is.nagoya-u.ac.jp, ide@nii.ac.jp +
toga@murase.m.is.nagoya-u.ac.jp +
ttakahashi@murase.m.is.nagoya-u.ac.jp +
murase@is.nagoya-u.ac.jp Graduate +
5be3cc1650c918da1c38690812f74573e66b1d32Relative Parts: Distinctive Parts for Learning Relative Attributes +
Center for Visual Information Technology, IIIT Hyderabad, India - 500032 +
('32337248', 'Ramachandruni N. Sandeep', 'ramachandruni n. sandeep')
('2169614', 'Yashaswi Verma', 'yashaswi verma')
('1694502', 'C. V. Jawahar', 'c. v. jawahar')
5bc0a89f4f73523967050374ed34d7bc89e4d9e1
On: 12 August 2015, At: 08:38 +
Publisher: Routledge +
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 +
Howick Place, London, SW1P 1WG +
Cognition and Emotion +
Publication details, including instructions for authors and subscription
information: +
http://www.tandfonline.com/loi/pcem20 +
The role of emotion transition for the +
perception of social dominance and +
affiliation +
University of Haifa, Haifa, Israel
b The Interdisciplinary Center for Research on Emotions, University of
Haifa, Haifa, Israel +
Humboldt-University, Berlin, Germany
Published online: 11 Aug 2015. +
Click for updates +
perception of social dominance and affiliation, Cognition and Emotion, DOI: 10.1080/02699931.2015.1056107 +
To link to this article: http://dx.doi.org/10.1080/02699931.2015.1056107 +
PLEASE SCROLL DOWN FOR ARTICLE +
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) +
contained in the publications on our platform. However, Taylor & Francis, our agents, and our +
licensors make no representations or warranties whatsoever as to the accuracy, completeness, or +
suitability for any purpose of the Content. Any opinions and views expressed in this publication +
are the opinions and views of the authors, and are not the views of or endorsed by Taylor & +
Francis. The accuracy of the Content should not be relied upon and should be independently +
verified with primary sources of information. Taylor and Francis shall not be liable for any +
losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities +
whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or +
arising out of the use of the Content. +
This article may be used for research, teaching, and private study purposes. Any substantial +
or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or +
distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use +
can be found at http://www.tandfonline.com/page/terms-and-conditions +
('3141618', 'Shlomo Hareli', 'shlomo hareli')
('6885116', 'Shlomo David', 'shlomo david')
('3141618', 'Shlomo Hareli', 'shlomo hareli')
('6885116', 'Shlomo David', 'shlomo david')
5b6bed112e722c0629bcce778770d1b28e42fc96FLOREA ET AL.:CANYOUREYESTELLMEHOWYOUTHINK? +
Can Your Eyes Tell Me How You Think? A +
Gaze Directed Estimation of the Mental +
Activity +
http://alpha.imag.pub.ro/common/staff/lflorea +
http://alpha.imag.pub.ro/common/staff/cflorea +
http://alpha.imag.pub.ro/common/staff/vertan +
Image Processing and Analysis +
Laboratory, LAPI +
University Politehnica of Bucharest
Bucharest, Romania +
('2143956', 'Laura Florea', 'laura florea')
('2760434', 'Corneliu Florea', 'corneliu florea')
('29723670', 'Ruxandra Vrânceanu', 'ruxandra vrânceanu')
('2905899', 'Constantin Vertan', 'constantin vertan')
rvranceanu@alpha.imag.pub.ro +
5bde1718253ec28a753a892b0ba82d8e553b6bf3JMLR: Workshop and Conference Proceedings 13: 79-94 +
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8{10, 2010. +
Variational Relevance Vector Machine for Tabular Data +
Dorodnicyn Computing Centre of the Russian Academy of Sciences +
119333, Russia, Moscow, Vavilov str., 40 +
Dmitry Vetrov +
Lomonosov Moscow State University
119992, Russia, Moscow, Leninskie Gory, 1, 2nd ed. bld., CMC department +
The Blavatnik School of Computer Science, The Tel-Aviv University
Schreiber Building, room 103, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv
Computer Science Division, The Open University of Israel
108 Ravutski Str. P.O.B. 808, Raanana 43107, Israel +
Editor: Masashi Sugiyama and Qiang Yang +
('3160602', 'Dmitry Kropotov', 'dmitry kropotov')
('1776343', 'Lior Wolf', 'lior wolf')
('1756099', 'Tal Hassner', 'tal hassner')
dmitry.kropotov@gmail.com +
hassner@openu.ac.il +
vetrovd@yandex.ru +
wolf@cs.tau.ac.il +
5b0ebb8430a04d9259b321fc3c1cc1090b8e600e
37c8514df89337f34421dc27b86d0eb45b660a5eFacial Landmark Tracking by Tree-based Deformable Part Model +
Based Detector +
Michal Uˇriˇc´aˇr, Vojtˇech Franc, and V´aclav Hlav´aˇc +
Center for Machine Perception, Department of Cybernetics +
Faculty of Electrical Engineering, Czech Technical University in Prague
166 27 Prague 6, Technick´a 2, Czech Republic +
{uricamic, xfrancv, hlavac}@cmp.felk.cvut.cz +
371f40f6d32ece05cc879b6954db408b3d4edaf3Mining Semantic Affordances of Visual Object Categories +
Computer Science and Engineering, University of Michigan, Ann Arbor
accelerate +
intervie w +
race +
h urt +
h u nt +
fe e d +
m a n ufacture +
o p erate +
drive +
rid e +
b o ard +
bicycle +
bird +
boat +
bottle +
car +
cat +
cow +
dining table +
horse +
person +
train +
tv +
15 +
10 +
−5 +
−10 +
−15 +
−20 +
−15 +
airplane +
boat +
car +
train +
bus +
motorcycle +
bicycle +
chair +
tv +
couch +
dining table +
bottle +
potted plant +
person +
horse +
dog +
cow +
sheep +
cat +
bird +
−10 +
−5 +
10 +
15 +
20 +
25 +
30 +
(a) +
(b) +
Figure 1: (a) “Affordance matrix” encoding the plausibility of each action- +
object pair. (b) 20 PASCAL VOC object classes in the semantic affordance +
space. +
Affordances are fundamental attributes of objects. Affordances reveal the +
functionalities of objects and the possible actions that can be performed on +
them. We can “hug” a dog, but not an ant. We can “turn on” a tv, but not a +
bottle. Acquiring such knowledge is crucial for recognizing human activities +
in visual data and for robots to interact with the world. The key question is: +
given an object, can an action be performed on it? While this might seem +
obvious to a human, there is no automated system that can readily answer +
this question and there is no knowledge base that provides comprehensive +
knowledge of object affordances. +
In this paper, we introduce the problem of mining the knowledge of +
semantic affordance: given an action and an object, determine whether the +
action can be applied to the object. For example, the action of “carry” form a +
valid combination with “bag”, but not with “skyscraper”. This is equivalent +
to establishing connections between action concepts and object concepts, +
or filling an “affordance matrix” encoding the plausibility of each action- +
object pair (Fig. 1). The key scientific question is: “how can we collect +
affordance knowledge”? We first introduce a new benchmark with crowd- +
sourced ground truth affordances on 20 PASCAL VOC object classes and +
957 action classes. We then study a variety of approaches including 1) text +
mining, 2) visual mining, and 3) collaborative filtering. We quantitatively +
evaluate all approaches using ground truth affordances collected through +
crowdsourcing. +
For our crowdsourcing study, we ask human annotators to label whether +
an action-object pair is a valid combination. We use the 20 object categories +
in PASCAL VOC [2]. We design experiments to obtain a list of action +
categories that are both common and “visual”. Our list contains 957 ac- +
tion categories extracted from the verb synsets on Wordnet [6] that has 1) a +
member verb that frequently occurs in text corpora, and 2) high “visualness +
score” determined by human labelers. Given the list of actions and objects, +
we set up a crowdsourcing task on Amazon Mechanical Turk (AMT). We +
ask crowd workers whether it is possible (for a human) to perform a given +
action on a given object. For instance, +
Is it possible to hunt (pursue for food or sport, as of wild animals) a car? +
For every possible action-object pair formed by the 20 PASCAL VOC ob- +
jects and the 957 visual verb synsets, we ask 5 workers to determine its +
plausibility. This gives a total of 19K action-object questions and 96K an- +
swers +
What is the distribution of 20 PASCAL object classes in their affordance +
space? We answer this by analyzing the human annotated affordances. Each +
object has a 957 dimensional“affordance vector“, where each dimension +
is the plausibility score with an action. We use PCA to project the affor- +
dance vectors to a 2-dimensional space and plot the coordinates of the object +
('2820136', 'Yu-Wei Chao', 'yu-wei chao')
('1718667', 'Zhan Wang', 'zhan wang')
('1738516', 'Rada Mihalcea', 'rada mihalcea')
('8342699', 'Jia Deng', 'jia deng')
374c7a2898180723f3f3980cbcb31c8e8eb5d7afFACIAL EXPRESSION RECOGNITION IN VIDEOS USING A NOVEL MULTI-CLASS +
SUPPORT VECTOR MACHINES VARIANT +
yAristotle University of Thessaloniki
Department of Informatics +
Box 451, 54124 Thessaloniki, Greece +
('1754270', 'Irene Kotsia', 'irene kotsia')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
37007af698b990a3ea8592b11d264b14d39c843fDCMSVM: Distributed Parallel Training For Single-Machine Multiclass +
Classifiers +
Computer Science Department +
Stony Brook University
('1682965', 'Xufeng Han', 'xufeng han')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
374a0df2aa63b26737ee89b6c7df01e59b4d8531Temporal Action Localization with Pyramid of Score Distribution Features +
National University of Singapore, 2Shanghai Jiao Tong University
('1746449', 'Jun Yuan', 'jun yuan')
('5796401', 'Bingbing Ni', 'bingbing ni')
('1795291', 'Xiaokang Yang', 'xiaokang yang')
yuanjun@nus.edu.sg, nibingbing@sjtu.edu.cn, xkyang@sjtu.edu.cn, ashraf@nus.edu.sg +
378ae5ca649f023003021f5a63e393da3a4e47f0Multi-Class Object Localization by Combining Local Contextual Interactions +
Serge Belongie† +
Gert Lanckriet‡ +
†Computer Science and Engineering Department +
‡Electrical and Computer Engineering Department +
University of California, San Diego
('1954793', 'Carolina Galleguillos', 'carolina galleguillos'){cgallegu,bmcfee,sjb}@cs.ucsd.edu, gert@ece.ucsd.edu +
37619564574856c6184005830deda4310d3ca580A Deep Pyramid Deformable Part Model for Face Detection +
Center for Automation Research +
University of Maryland, College Park, MD
('26988560', 'Rajeev Ranjan', 'rajeev ranjan')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
{rranjan1, pvishalm, rama}@umiacs.umd.edu +
372fb32569ced35eaf3740a29890bec2be1869faRunning head: MU RHYTHM MODULATION BY CLASSIFICATION OF EMOTION 1 +
Mu rhythm suppression is associated with the classification of emotion in faces +
University of Otago, Dunedin, New Zealand
Corresponding authors: +
Phone: +64 (3) 479 5269; Fax: +64 (3) 479 8335 +
Department of Psychology +
University of Otago
PO Box 56 +
Dunedin, New Zealand +
('2187036', 'Elizabeth A. Franz', 'elizabeth a. franz')Matthew Moore (matthew.moore@otago.ac.nz) & Liz Franz (lfranz@psy.otago.ac.nz) +
37ce1d3a6415d6fc1760964e2a04174c24208173Pose-Invariant 3D Face Alignment +
Department of Computer Science and Engineering +
Michigan State University, East Lansing MI
('2357264', 'Amin Jourabloo', 'amin jourabloo')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
{jourablo, liuxm}@msu.edu +
3765c26362ad1095dfe6744c6d52494ea106a42c
3727ac3d50e31a394b200029b2c350073c1b69e3
37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4eWACV +
#394 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
WACV 2015 Submission #394. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
Co-operative Pedestrians Group Tracking in Crowded Scenes using an MST +
Approach +
Anonymous WACV submission +
Paper ID 394 +
3795974e24296185d9b64454cde6f796ca235387Finding your Lookalike: +
Measuring Face Similarity Rather than Face Identity +
Lafayette College
Easton, PA +
Andrew Gallagher +
Google Research +
Mountain View, CA +
('1803066', 'Amir Sadovnik', 'amir sadovnik')
('50977255', 'Wassim Gharbi', 'wassim gharbi')
('2197717', 'Thanh Vu', 'thanh vu')
{sadovnia,gharbiw,vut}@lafayette.edu +
agallagher@google.com +
37278ffce3a0fe2c2bbf6232e805dd3f5267eba3Can we still avoid automatic face detection? +
Serge Belongie1,2 +
Cornell University 2 Cornell Tech
('3035230', 'Michael J. Wilber', 'michael j. wilber')
('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')
377a1be5113f38297716c4bb951ebef7a93f949aDear Faculty, IGERT Fellows, IGERT Associates and Students, +
You are cordially invited to attend a Seminar presented by Albert Cruz. Please +
plan to attend. +
Albert Cruz +
IGERT Fellow +
Electrical Engineering +
+
Date: Friday, October 11, 2013 +
Location: Bourns A265 +
Time: 11:00am +
Facial emotion recognition with anisotropic +
inhibited gabor energy histograms +
377c6563f97e76a4dc836a0bd23d7673492b1aae
370e0d9b89518a6b317a9f54f18d5398895a7046IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, XXXXXXX 20XX +
Cross-pollination of normalisation techniques +
from speaker to face authentication +
using Gaussian mixture models +
and S´ebastien Marcel, Member, IEEE +
('1843477', 'Roy Wallace', 'roy wallace')
37ba12271d09d219dd1a8283bc0b4659faf3a6c6Domain Transfer for Person Re-identification +
Queen Mary University of London
London, England +
('3264124', 'Ryan Layne', 'ryan layne')
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
('2073354', 'Shaogang Gong', 'shaogang gong')
{rlayne, tmh, sgg}@eecs.qmul.ac.uk +
3773e5d195f796b0b7df1fca6e0d1466ad84b5e7UNIVERSITY OF CALIFORNIA
RIVERSIDE +
Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised +
Approaches +
A Dissertation submitted in partial satisfaction +
of the requirements for the degree of +
Doctor of Philosophy +
in +
Computer Science +
by +
March 2008 +
Dissertation Committee: +
Dr. Eamonn Keogh, Chairperson +
Dr. Vassilis Tsotras +
('40564016', 'Dragomir Dimitrov', 'dragomir dimitrov')
('1736011', 'Stefano Lonardi', 'stefano lonardi')
37eb666b7eb225ffdafc6f318639bea7f0ba9a24MSU Technical Report (2014): MSU-CSE-14-5 +
Age, Gender and Race Estimation from +
Unconstrained Face Images +
('34393045', 'Hu Han', 'hu han')
('40437942', 'Anil K. Jain', 'anil k. jain')
377f2b65e6a9300448bdccf678cde59449ecd337Pushing the Limits of Unconstrained Face Detection: +
a Challenge Dataset and Baseline Results +
1Fujitsu Laboratories Ltd., Kanagawa, Japan +
Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
Rutgers University, 94 Brett Rd, Piscataway Township, NJ 08854, USA
('41018586', 'Hajime Nada', 'hajime nada')
('2577847', 'Vishwanath A. Sindagi', 'vishwanath a. sindagi')
('46197381', 'He Zhang', 'he zhang')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
nada.hajime@jp.fujitsu.com, vishwanath.sindagi@gmail.com, he.zhang92@rutgers.edu, +
vpatel36@jhu.edu +
375435fb0da220a65ac9e82275a880e1b9f0a557This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +
From Pixels to Response Maps: Discriminative Image +
Filtering for Face Alignment in the Wild +
('3183108', 'Akshay Asthana', 'akshay asthana')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1902288', 'Shiyang Cheng', 'shiyang cheng')
('1694605', 'Maja Pantic', 'maja pantic')
370b6b83c7512419188f5373a962dd3175a56a9bFace Alignment Refinement via Exploiting +
Low-Rank property and Temporal Stability +
Shuang LIU +
Bournemouth University
Bournemouth University
Wenyu HU +
Gannan Normal University
Xiaosong YANG +
Ruofeng TONG +
Zhejiang University
Jian J. ZHANG +
Bournemouth University
Bournemouth University
face +
and +
alignment +
('48708691', 'Zhao Wang', 'zhao wang')zwang@bournemouth.ac.uk +
sliu@bournemouth.ac.uk +
wenyu.huu@gmail.com +
trf@zju.edu.cn +
xyang@bournemouth.ac.uk +
jzhang@bournemouth.ac.uk +
37b6d6577541ed991435eaf899a2f82fdd72c790Vision-based Human Gender Recognition: A Survey +
Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia. +
('32877936', 'Choon Boon Ng', 'choon boon ng')
('9201065', 'Yong Haur Tay', 'yong haur tay')
{ngcb,tayyh,goibm}@utar.edu.my +
372a8bf0ef757c08551d41e40cb7a485527b6cd7Unsupervised Video Hashing by Exploiting +
Spatio-Temporal Feature +
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong
University, Shanghai, China
('46194894', 'Chao Ma', 'chao ma')
('46964428', 'Yun Gu', 'yun gu')
('46641573', 'Wei Liu', 'wei liu')
('39264954', 'Jie Yang', 'jie yang')
{sjtu_machao,geron762,liuwei.1989,jieyang}@sjtu.edu.cn +
37ef18d71c1ca71c0a33fc625ef439391926bfbbExtraction of Subject-Specific Facial Expression +
Categories and Generation of Facial Expression +
Feature Space using Self-Mapping +
Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, +
Akita Prefectural University, Yurihonjo, Japan
Department of Computer Science and Engineering, Faculty of Engineering and Resource Science, +
Akita University, Akita, Japan
('1932760', 'Masaki Ishii', 'masaki ishii')
('2052920', 'Kazuhito Sato', 'kazuhito sato')
('1738333', 'Hirokazu Madokoro', 'hirokazu madokoro')
('21063785', 'Makoto Nishida', 'makoto nishida')
Email: {ishii, ksato, madokoro}@akita-pu.ac.jp +
Email: nishida@ie.akita-u.ac.jp +
370b5757a5379b15e30d619e4d3fb9e8e13f3256Labeled Faces in the Wild: A Database for Studying +
Face Recognition in Unconstrained Environments +
('3219900', 'Gary B. Huang', 'gary b. huang')
('1685538', 'Tamara Berg', 'tamara berg')
('1714536', 'Erik Learned-Miller', 'erik learned-miller')
081189493ca339ca49b1913a12122af8bb431984Photorealistic Facial Texture Inference Using Deep Neural Networks +
Supplemental Material for +
*Pinscreen +
University of Southern California
USC Institute for Creative Technologies
Appendix I. Additional Results +
Our main results in the paper demonstrate successful in- +
ference of high-fidelity texture maps from unconstrained +
images. The input images have mostly low resolutions, non- +
frontal faces, and the subjects are often captured in chal- +
lenging lighting conditions. We provide additional results +
with pictures from the annotated faces-in-the-wild (AFW) +
dataset [10] to further demonstrate how photorealistic pore- +
level details can be synthesized using our deep learning ap- +
proach. We visualize in Figure 9 the input, the intermedi- +
ate low-frequency albedo map obtained using a linear PCA +
model, and the synthesized high-frequency albedo texture +
map. We also show several views of the final renderings us- +
ing the Arnold renderer [13]. We refer to the accompanying +
video for additional rotating views of the resulting textured +
3D face models. +
Figure 2: Even for largely downsized image resolutions, our +
algorithm can produce fine-scale details while preserving +
the person’s similarity. +
We also evaluate the robustness of our inference frame- +
work for downsized image resolutions in Figure 2. We crop +
a diffuse lit face from a Light Stage capture [5]. The re- +
sulting image has 435 × 652 pixels and we decrease its res- +
olution to 108 × 162 pixels. In addition to complex skin +
pigmentations, even the tiny mole on the lower left cheek is +
properly reconstructed from the reduced input image using +
our synthesis approach. +
Figure 1: Comparison between different convolutional neu- +
ral network architectures. +
Evaluation. As Figure 1 indicates, other deep convolu- +
tional neural networks can be used to extract mid-layer fea- +
ture correlations to characterize multi-scale details, but it +
seems that deeper architectures produce fewer artifacts and +
higher quality textures. All three convolutional neural net- +
works are pre-trained for classification tasks using images +
from the ImageNet object recognition dataset [4]. The re- +
sults of the 8 layer CaffeNet [2] show noticeable blocky ar- +
tifacts in the synthesized textures and the ones from the 16 +
layer VGG [12] are slightly noisy around boundaries, while +
the 19 layer VGG network performs the best. +
§- indicates equal contribution +
Comparison. We provide in Figure 3 additional visual- +
izations of our method when using the closest feature corre- +
lation, unconstrained linear combinations, and convex com- +
binations. We also compare against a PCA-based model +
fitting [3] approach and the state-of-the-art visio-lization +
framework [9]. We notice that only our proposed tech- +
nique using convex combinations is effective in generating +
mesoscopic-scale texture details. Both visio-lization and +
the PCA-based model result in lower frequency textures and +
less similar faces than the ground truth. Since our inference +
also fills holes, we compare our synthesis technique with +
a general inpainting solution for predicting unseen face re- +
gions. We test with the widely used PatchMatch [1] tech- +
nique as illustrated in Figure 4. Unsurprisingly, we observe +
unwanted repeating structures and semantically wrong fill- +
ings since this method is based on low-level vision cues. +
CaffeNetVGG-16VGG-19albedo mapinputrendering input (magnified)
('2059597', 'Shunsuke Saito', 'shunsuke saito')
('1792471', 'Lingyu Wei', 'lingyu wei')
('1808579', 'Liwen Hu', 'liwen hu')
('1897417', 'Koki Nagano', 'koki nagano')
('40348249', 'Hao Li', 'hao li')
08ee541925e4f7f376538bc289503dd80399536fRuntime Neural Pruning +
Department of Automation +
Tsinghua University
Department of Automation +
Tsinghua University
Department of Automation +
Tsinghua University
Department of Automation +
Tsinghua University
('2772283', 'Ji Lin', 'ji lin')
('39358728', 'Yongming Rao', 'yongming rao')
('1697700', 'Jiwen Lu', 'jiwen lu')
('39491387', 'Jie Zhou', 'jie zhou')
lin-j14@mails.tsinghua.edu.cn +
raoyongming95@gmail.com +
lujiwen@tsinghua.edu.cn +
jzhou@tsinghua.edu.cn +
08d2f655361335bdd6c1c901642981e650dff5ecThis is the published version:   +
 Arandjelovic, Ognjen and Cipolla, R. 2006, Automatic cast listing in feature‐length films with +
Anisotropic Manifold Space, in CVPR 2006 : Proceedings of the Computer Vision and Pattern +
Recognition Conference 2006, IEEE, Piscataway, New Jersey, pp. 1513‐1520. +
+
http://hdl.handle.net/10536/DRO/DU:30058435 +
Reproduced with the kind permission of the copyright owner. +
Copyright : 2006, IEEE +
Available from Deakin Research Online:  +
08fbe3187f31b828a38811cc8dc7ca17933b91e9MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com +
Statistical Computations on Grassmann and +
Stiefel Manifolds for Image and Video-Based +
Recognition +
Turaga, P.; Veeraraghavan, A.; Srivastava, A.; Chellappa, R. +
TR2011-084 April 2011 +
08ae100805d7406bf56226e9c3c218d3f9774d19Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing (2017) 2017:59 +
DOI 10.1186/s13640-017-0211-4 +
EURASIP Journal on Image +
and Video Processing +
R ES EAR CH +
Predicting the Sixteen Personality Factors +
(16PF) of an individual by analyzing facial +
features +
Open Access +
('2132188', 'Mihai Gavrilescu', 'mihai gavrilescu')
('1929703', 'Nicolae Vizireanu', 'nicolae vizireanu')
08c18b2f57c8e6a3bfe462e599a6e1ce03005876A Least-Squares Framework +
for Component Analysis +
('1707876', 'Fernando De la Torre', 'fernando de la torre')
08f6ad0a3e75b715852f825d12b6f28883f5ca05To appear in the 9th IEEE Int'l Conference on Automatic Face and Gesture Recognition, Santa Barbara, CA, March, 2011. +
Face Recognition: Some Challenges in Forensics +
Michigan State University
East Lansing, MI, U.S.A +
('6680444', 'Anil K. Jain', 'anil k. jain')
('1817623', 'Brendan Klare', 'brendan klare')
('2222919', 'Unsang Park', 'unsang park')
{jain, klarebre, parkunsa}@cse.msu.edu +
08ff81f3f00f8f68b8abd910248b25a126a4dfa4Papachristou, K., Tefas, A., & Pitas, I. (2014). Symmetric Subspace Learning +
5697. DOI: 10.1109/TIP.2014.2367321 +
Peer reviewed version +
Link to published version (if available): +
10.1109/TIP.2014.2367321 +
Link to publication record in Explore Bristol Research +
PDF-document +
This is the author accepted manuscript (AAM). The final published version (version of record) is available online +
via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to
any applicable terms of use of the publisher. +
University of Bristol - Explore Bristol Research
General rights +
This document is made available in accordance with publisher policies. Please cite only the published +
version using the reference above. Full terms of use are available: +
http://www.bristol.ac.uk/pure/about/ebr-terms +
081a431107eb38812b74a8cd036ca5e97235b499
084bd02d171e36458f108f07265386f22b34a1aeFace Alignment at 3000 FPS via Regressing Local Binary Features +
University of Science and Technology of China
Microsoft Research +
('2032273', 'Xudong Cao', 'xudong cao')
('3080683', 'Shaoqing Ren', 'shaoqing ren')
('1732264', 'Yichen Wei', 'yichen wei')
('40055995', 'Jian Sun', 'jian sun')
sqren@mail.ustc.edu.cn +
{xudongca,yichenw,jiansun}@microsoft.com +
081cb09791e7ff33c5d86fd39db00b2f29653fa8Square Loss based Regularized LDA for Face Recognition Using Image Sets +
Center for Information Science, Peking University, Beijing 100871, China
2Philips Research, High Tech Campus 36, 5656 AE Eindhoven, The Netherlands +
Queen Mary, University of London, London E1 4NS, UK
('37536447', 'Yanlin Geng', 'yanlin geng')
('10795229', 'Caifeng Shan', 'caifeng shan')
('1685266', 'Pengwei Hao', 'pengwei hao')
gengyanlin@cis.pku.edu.cn, caifeng.shan@philips.com, phao@dcs.qmul.ac.uk +
086131159999d79adf6b31c1e604b18809e70ba8Deep Action Unit Classification using a Binned +
Intensity Loss and Semantic Context Model +
Department of Computing Sciences +
Villanova University
Villanova, Pennsylvania 19085 +
Department of Computing Sciences +
Villanova University
Villanova, Pennsylvania 19085 +
('1904114', 'Edward Kim', 'edward kim')
('35266734', 'Shruthika Vangala', 'shruthika vangala')
Email: edward.kim@villanova.edu +
Email: svagal1@villanova.edu +
0831a511435fd7d21e0cceddb4a532c35700a622
0861f86fb65aa915fbfbe918b28aabf31ffba364International Journal of Computer Trends and Technology (IJCTT) – volume 22 Number 3–April 2015 +
An Efficient Facial Annotation with Machine Learning Approach +
1A.Anusha,2R.Srinivas +
1Final M.Tech Student, 2Associate Professor +
Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra Pradesh
089513ca240c6d672c79a46fa94a92cde28bd567RNN Fisher Vectors for Action Recognition and Image Annotation +
The Blavatnik School of Computer Science, Tel Aviv University, Israel
2IBM Research, Haifa, Israel +
('3004979', 'Guy Lev', 'guy lev')
('2251827', 'Gil Sadeh', 'gil sadeh')
('2205955', 'Benjamin Klein', 'benjamin klein')
('1776343', 'Lior Wolf', 'lior wolf')
089b5e8eb549723020b908e8eb19479ba39812f5A Cross Benchmark Assessment of A Deep Convolutional Neural +
Network for Face Recognition +
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA +
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
080c204edff49bf85b335d3d416c5e734a861151CLAD: A Complex and Long Activities +
Dataset with Rich Crowdsourced +
Annotations +
Journal Title +
XX(X):1–6 +
c(cid:13)The Author(s) 2016 +
Reprints and permission: +
sagepub.co.uk/journalsPermissions.nav +
DOI: 10.1177/ToBeAssigned +
www.sagepub.com/ +
('3280554', 'Jawad Tayyub', 'jawad tayyub')
('2762811', 'Majd Hawasly', 'majd hawasly')
('1967104', 'David C. Hogg', 'david c. hogg')
('1703235', 'Anthony G. Cohn', 'anthony g. cohn')
08f4832507259ded9700de81f5fd462caf0d5be8International Journal of Computer Applications (0975 – 8887) +
Volume 118 – No.14, May 2015 +
Geometric Approach for Human Emotion +
Recognition using Facial Expression +
S. S. Bavkar +
Assistant Professor +
J. S. Rangole +
Assistant Professor +
V. U. Deshmukh +
Assistant Professor +
08a1fc55d03e4a73cad447e5c9ec79a6630f3e2dBERG, BELHUMEUR: TOM-VS-PETE CLASSIFIERS AND IDENTITY-PRESERVING ALIGNMENT +
Tom-vs-Pete Classifiers and Identity-Preserving +
Alignment for Face Verification +
Columbia University
New York, NY +
('1778562', 'Thomas Berg', 'thomas berg')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
tberg@cs.columbia.edu +
belhumeur@cs.columbia.edu +
08d40ee6e1c0060d3b706b6b627e03d4b123377aHuman Action Localization +
with Sparse Spatial Supervision +
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
('3269403', 'Xavier Martin', 'xavier martin')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
08c1f8f0e69c0e2692a2d51040ef6364fb263a40
088aabe3da627432fdccf5077969e3f6402f0a80Under review as a conference paper at ICLR 2018 +
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +
Anonymous authors +
Paper under double-blind review +
087002ab569e35432cdeb8e63b2c94f1abc53ea9Looking at People +
CVPRW 2015 +
Spatio-temporal Analysis of RGB-D-T Facial +
Images for Multimodal Pain Level +
Recognition +
Visual Analysis of People Lab, Aalborg University, Denmark
Computer Vision Center, UAB, Barcelona, Spain +
Aalborg University, Denmark
('37541412', 'Ramin Irani', 'ramin irani')
('1803459', 'Kamal Nasrollahi', 'kamal nasrollahi')
('3321700', 'Ciprian A. Corneanu', 'ciprian a. corneanu')
('7855312', 'Sergio Escalera', 'sergio escalera')
('40526933', 'Tanja L. Pedersen', 'tanja l. pedersen')
('31627926', 'Maria-Louise Klitgaard', 'maria-louise klitgaard')
('35675498', 'Laura Petrini', 'laura petrini')
08903bf161a1e8dec29250a752ce9e2a508a711cJoint Dimensionality Reduction and Metric Learning: A Geometric Take +('2862871', 'Mathieu Salzmann', 'mathieu salzmann')
08cb294a08365e36dd7ed4167b1fd04f847651a9EXAMINING VISIBLE ARTICULATORY FEATURES IN CLEAR AND +
CONVERSATIONAL SPEECH +
Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada
Language and Brain Lab, Simon Fraser University, Canada
KU Phonetics and Psycholinguistics Lab, University of Kansas
('2664514', 'Lisa Tang', 'lisa tang')
('26839551', 'Beverly Hannah', 'beverly hannah')
('3200950', 'Allard Jongman', 'allard jongman')
('1723309', 'Yue Wang', 'yue wang')
('3049056', 'Ghassan Hamarneh', 'ghassan hamarneh')
lisat@sfu.ca, beverlyw@sfu.ca, jongman@ku.edu, sereno@ku.edu, yuew@sfu.ca, hamarneh@sfu.ca +
081286ede247c5789081502a700b378b6223f94bORIGINAL RESEARCH +
published: 06 February 2018 +
doi: 10.3389/fpsyg.2018.00052 +
Neural Correlates of Facial Mimicry: +
Simultaneous Measurements of EMG +
and BOLD Responses during +
Perception of Dynamic Compared to +
Static Facial Expressions +
Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social
Sciences and Humanities, Warsaw, Poland, 2 Laboratory of Psychophysiology, Department of Neurophysiology, Nencki +
Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
Facial mimicry (FM) is an automatic response to imitate the facial expressions of others. +
However, neural correlates of the phenomenon are as yet not well established. We +
investigated this issue using simultaneously recorded EMG and BOLD signals during +
perception of dynamic and static emotional facial expressions of happiness and anger. +
During display presentations, BOLD signals and zygomaticus major (ZM), corrugator +
supercilii (CS) and orbicularis oculi (OO) EMG responses were recorded simultaneously +
from 46 healthy individuals. Subjects reacted spontaneously to happy facial expressions +
with increased EMG activity in ZM and OO muscles and decreased CS activity, which +
was interpreted as FM. Facial muscle responses correlated with BOLD activity in regions +
associated with motor simulation of facial expressions [i.e., inferior frontal gyrus, a +
classical Mirror Neuron System (MNS)]. Further, we also found correlations for regions +
associated with emotional processing (i.e., insula, part of the extended MNS). It is +
concluded that FM involves both motor and emotional brain structures, especially during +
perception of natural emotional expressions. +
Keywords: facial mimicry, EMG, fMRI, mirror neuron system, emotional expressions, dynamic, happiness, anger +
INTRODUCTION +
Facial mimicry (FM) is an unconscious and unintentional automatic response to the facial +
expressions of others. Numerous studies have shown that observing the emotional states of others +
leads to congruent facial muscle activity. For example, observing angry facial expressions can result +
in enhanced activity in the viewer’s muscle responsible for frowning (CS), while viewing happy +
images leads to Increased activity in the facial muscle involved in smiling (ZM), and decreased +
activity of the CS (Hess et al., 1998; Dimberg and Petterson, 2000). However, it has recently been +
suggested that FM may not be an exclusive automatic reaction but rather a multifactorial response +
dependent on properties such as stimulus modality (e.g., static or dynamic) or interpersonal +
characteristics (e.g., emotional contagion susceptibility) (for review see Seibt et al., 2015). +
There are two main psychological approaches trying to explain the mechanisms of +
FM. One of +
these is the perception-behavior link model which assumes perception and +
execution of a specific action show a certain overlap (Chartrand and Bargh, 1999). +
Edited by: +
Alessio Avenanti, +
Università di Bologna, Italy +
Reviewed by: +
Sebastian Korb, +
University of Vienna, Austria
Frank A. Russo, +
Ryerson University, Canada
*Correspondence: +
Łukasz ˙Zurawski +
Specialty section: +
This article was submitted to +
Emotion Science, +
a section of the journal +
Frontiers in Psychology +
Received: 20 July 2017 +
Accepted: 12 January 2018 +
Published: 06 February 2018 +
Citation: +
Rymarczyk K, ˙Zurawski Ł, +
Jankowiak-Siuda K and Szatkowska I +
(2018) Neural Correlates of Facial +
Mimicry: Simultaneous Measurements +
of EMG and BOLD Responses during +
Perception of Dynamic Compared to +
Static Facial Expressions. +
Front. Psychol. 9:52. +
doi: 10.3389/fpsyg.2018.00052 +
Frontiers in Psychology | www.frontiersin.org +
February 2018 | Volume 9 | Article 52 +
('4079953', 'Krystyna Rymarczyk', 'krystyna rymarczyk')
('4022705', 'Kamila Jankowiak-Siuda', 'kamila jankowiak-siuda')
('4970569', 'Iwona Szatkowska', 'iwona szatkowska')
('4079953', 'Krystyna Rymarczyk', 'krystyna rymarczyk')
krymarczyk@swps.edu.pl +
l.zurawski@nencki.gov.pl +
08e995c080a566fe59884a527b72e13844b6f176A New KSVM + KFD Model for Improved +
Classification and Face Recognition +
School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P
('1687000', 'Riadh Ksantini', 'riadh ksantini')Email: {ksantini, boufama, imran}@uwindsor.ca +
08e24f9df3d55364290d626b23f3d42b4772efb6ENHANCING FACIAL EXPRESSION CLASSIFICATION BY INFORMATION +
FUSION +
I. Buciu1, Z. Hammal 2, A. Caplier2, N. Nikolaidis 1, and I. Pitas 1 +

GR-54124, Thessaloniki, Box 451, Greece +
2 Laboratoire des Images et des Signaux / Institut National Polytechnique de Grenoble +
web: http://www.aiia.csd.auth.gr +
38031 Grenoble, France +
web: http://www.lis.inpg.fr +
phone: + 30(2310)99.6361, fax: + 30(2310)99.8453, email: {nelu,nikolaid,pitas}@aiia.csd.auth.gr +
phone: + 33(0476)574363, fax: + 33(0476)57 47 90, email: alice.caplier@inpg.fr +
085ceda1c65caf11762b3452f87660703f914782Large-pose Face Alignment via CNN-based Dense 3D Model Fitting +
Department of Computer Science and Engineering +
Michigan State University, East Lansing MI
('2357264', 'Amin Jourabloo', 'amin jourabloo')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
{jourablo, liuxm}@msu.edu +
0830c9b9f207007d5e07f5269ffba003235e4eff
08d55271589f989d90a7edce3345f78f2468a7e0Quality Aware Network for Set to Set Recognition +
SenseTime Group Limited +
SenseTime Group Limited +
University of Sydney
('1715752', 'Yu Liu', 'yu liu')
('1721677', 'Junjie Yan', 'junjie yan')
('3001348', 'Wanli Ouyang', 'wanli ouyang')
liuyuisanai@gmail.com +
yanjunjie@sensetime.com +
wanli.ouyang@gmail.com +
081fb4e97d6bb357506d1b125153111b673cc128
08a98822739bb8e6b1388c266938e10eaa01d903SensorSift: Balancing Sensor Data Privacy and Utility in +
Automated Face Understanding +
University of Washington
**Microsoft Research, Redmond WA +
('3299424', 'Miro Enev', 'miro enev')
('33481800', 'Jaeyeon Jung', 'jaeyeon jung')
('1766509', 'Liefeng Bo', 'liefeng bo')
('1728501', 'Xiaofeng Ren', 'xiaofeng ren')
('1769675', 'Tadayoshi Kohno', 'tadayoshi kohno')
084bebc5c98872e9307cd8e7f571d39ef9c1b81eA Discriminative Feature Learning Approach +
for Deep Face Recognition +
1 Shenzhen Key Lab of Computer Vision and Pattern Recognition, +
Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, China
The Chinese University of Hong Kong, Sha Tin, Hong Kong
('2512949', 'Yandong Wen', 'yandong wen')
('3393556', 'Kaipeng Zhang', 'kaipeng zhang')
('1911510', 'Zhifeng Li', 'zhifeng li')
('33427555', 'Yu Qiao', 'yu qiao')
yandongw@andrew.cmu.edu, {kp.zhang,zhifeng.li,yu.qiao}@siat.ac.cn +
0857281a3b6a5faba1405e2c11f4e17191d3824dChude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102 +
http://asp.eurasipjournals.com/content/2014/1/102 +
R ES EAR CH +
Face recognition via edge-based Gabor feature +
representation for plastic surgery-altered images +
Open Access +
('2529988', 'Ghazali Sulong', 'ghazali sulong')
08f1e9e14775757298afd9039f46ec56e80677f9Attentional Push: Augmenting Salience with +
Shared Attention Modeling +
Centre for Intelligent Machines, Department of Electrical and Computer Engineering, +
McGill University
Montreal, Quebec, Canada +
('38111179', 'Siavash Gorji', 'siavash gorji')
('1713608', 'James J. Clark', 'james j. clark')
siagorji@cim.mcgill.ca clark@cim.mcgill.ca +
08d41d2f68a2bf0091dc373573ca379de9b16385Recursive Chaining of Reversible Image-to-Image +
Translators for Face Aging +
Aalto University, Espoo, Finland
1 GenMind Ltd, Finland +
{ari.heljakka,arno.solin,juho.kannala}aalto.fi +
('2622083', 'Ari Heljakka', 'ari heljakka')
('1768402', 'Arno Solin', 'arno solin')
('1776374', 'Juho Kannala', 'juho kannala')
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7Understanding Kin Relationships in a Photo +('2025056', 'Ming Shao', 'ming shao')
('33642939', 'Jiebo Luo', 'jiebo luo')
('1708679', 'Yun Fu', 'yun fu')
082ad50ac59fc694ba4369d0f9b87430553b11db
6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58dRobust Deep Appearance Models +
Concordia University, Montreal, Quebec, Canada
2 CyLab Biometrics Center and the Department of Electrical and Computer Engineering, +
Carnegie Mellon University, Pittsburgh, PA, USA
face images. In this approach, +
('2687827', 'Kha Gia Quach', 'kha gia quach')
('1876581', 'Chi Nhan Duong', 'chi nhan duong')
('1769788', 'Khoa Luu', 'khoa luu')
('1699922', 'Tien D. Bui', 'tien d. bui')
Email: {k q, c duon, bui}@encs.concordia.ca +
Email: kluu@andrew.cmu.edu +
6dbdb07ce2991db0f64c785ad31196dfd4dae721Seeing Small Faces from Robust Anchor’s Perspective +
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA +
('47894545', 'Chenchen Zhu', 'chenchen zhu')
('1794486', 'Marios Savvides', 'marios savvides')
('47599820', 'Ran Tao', 'ran tao')
('1769788', 'Khoa Luu', 'khoa luu')
{chenchez, rant, kluu, marioss}@andrew.cmu.edu +
6dd052df6b0e89d394192f7f2af4a3e3b8f89875International Journal of Engineering and Advanced Technology (IJEAT) +
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +
A literature survey on Facial Expression +
Recognition using Global Features +
 +
('9318822', 'Mahesh M. Goyani', 'mahesh m. goyani')
6d7a32f594d46f4087b71e2a2bb66a4b25da5e30Towards Person Authentication by Fusing Visual and Thermal Face +
Biometrics +
1 Department of Engineering +
University of Cambridge
Cambridge, CB2 1TQ +
UK +
2 Delphi Corporation +
Delphi Electronics and Safety +
Kokomo, IN 46901-9005 +
USA +
('2214319', 'Riad Hammoud', 'riad hammoud')
('1745672', 'Roberto Cipolla', 'roberto cipolla')
{oa214,cipolla}@eng.cam.ac.uk +
riad.hammoud@delphi.com +
6dd5dbb6735846b214be72983e323726ef77c7a9Josai Mathematical Monographs +
vol. 7 (2014), pp. 25-40 +
A Survey on Newer Prospective +
Biometric Authentication Modalities +
('3322335', 'Narishige Abe', 'narishige abe')
('2395689', 'Takashi Shinzaki', 'takashi shinzaki')
6d10beb027fd7213dd4bccf2427e223662e20b7dResearchArticleUserAdaptiveandContext-AwareSmartHomeUsingPervasiveandSemanticTechnologiesAggelikiVlachostergiou,1GeorgiosStratogiannis,1GeorgeCaridakis,1,2GeorgeSiolas,1andPhivosMylonas1,31IntelligentSystemsContentandInteractionLaboratory,NationalTechnicalUniversityofAthens,IroonPolytexneiou9,15780Zografou,Greece2DepartmentofCulturalTechnologyandCommunication,UniversityoftheAegean,Mytilene,Lesvos,Greece3DepartmentofInformatics,IonianUniversity,Corfu,GreeceCorrespondenceshouldbeaddressedtoAggelikiVlachostergiou;aggelikivl@image.ntua.grReceived17January2016;Revised6July2016;Accepted17July2016AcademicEditor:JohnN.SahalosCopyright©2016AggelikiVlachostergiouetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.UbiquitousComputingismovingtheinteractionawayfromthehuman-computerparadigmandtowardsthecreationofsmartenvironmentsthatusersandthings,fromtheIoTperspective,interactwith.Usermodelingandadaptationisconsistentlypresenthavingthehumanuserasaconstantbutpervasiveinteractionintroducestheneedforcontextincorporationtowardscontext-awaresmartenvironments.Thecurrentarticlediscussesbothaspectsoftheusermodelingandadaptationaswellascontextawarenessandincorporationintothesmarthomedomain.Usersaremodeledasfuzzypersonasandthesemodelsaresemanticallyrelated.Contextinformationiscollectedviasensorsandcorrespondstovariousaspectsofthepervasiveinteractionsuchastemperatureandhumidity,butalsosmartcitysensorsandservices.Thiscontextinformationenhancesthesmarthomeenvironmentviatheincorporationofuserdefinedhomerules.SemanticWebtechnologiessupporttheknowledgerepresentationofthisecosystemwhiletheoverallarchitecturehasbeenexperimentallyverifiedusinginputfromtheSmartSantandersmartcityandapplyingittotheSandSsmarthomewithinFIREandFIWAREframeworks.1.IntroductionAlthoughintheirinitialdefinitionanddevelopmentstagespervasivecomputingpracticesdidnotnecessarilyrelyontheuseoftheInternet,currenttrendsshowtheemergenceofmanyconvergencepointswiththeInternetofThings(IoT)paradigm,whereobjectsareidentifiedasInternetresourcesandcanbeaccessedandutilizedassuch.Inthesametime,theHuman-ComputerInteraction(HCI)paradigminthedomainofdomoticshaswideneditsscopeconsiderably,placingthehumaninhabitantinapervasiveenvironmentandinacontinuousinteractionwithsmartobjectsandappliances.SmarthomesthatadditionallyadheretotheIoTapproachconsiderthatthisdatacontinuouslyproducedbyappliances,sensors,andhumanscanbeprocessedandassessedcollaboratively,remotely,andevensocially.Inthepresentpaper,wetrytobuildanewknowledgerepresentationframeworkwherewefirstplacethehumanuserinthecenterofthisinteraction.Wethenproposetobreakdownthemultitudeofpossibleuserbehaviorstoafewprototypicalusermodelsandthentoresynthesizethemusingfuzzyreasoning.Then,wediscusstheubiquityofcontextinformationinrelationtotheuserandthedifficultyofproposingauniversalformalizationframeworkfortheopenworld.Weshowthat,byrestrictinguser-relatedcontexttothesmarthomeenvironment,wecanreliablydefinesimplerulestructuresthatcorrelatespecificsensorinputdataanduseractionsthatcanbeusedtotriggerarbitrarysmarthomeevents.ThisrationaleisthenevolvedtoahigherlevelsemanticrepresentationofthedomoticecosysteminwhichcomplexhomerulescanbedefinedusingSemanticWebtechnologies.Itisthusobservedthatasmarthomeusingpervasiveandsemantictechnologiesinwhichthehumanuserisinthecenteroftheinteractionhastobeadaptive(itsbehaviorcanchangeinresponsetoaperson’sactionsandenvironment)andpersonalized(itsbehaviorcanbetailoredtotheuser’sHindawi Publishing CorporationJournal of Electrical and Computer EngineeringVolume 2016, Article ID 4789803, 20 pageshttp://dx.doi.org/10.1155/2016/4789803
6d2ca1ddacccc8c865112bd1fbf8b931c2ee8e75ROC Speak: Semi-Automated Personalized Feedback on +
Nonverbal Behavior from Recorded Videos +
Rochester Human-Computer Interaction (ROC HCI), University of Rochester, NY
Figure 1. An overview of our system. Once the user finishes recording, the video is analyzed on the server for objective feedback +
and sent to Mechanical Turk for subjective feedback. The objective feedback is then combined with subjective feedback that is +
scored based on helpfulness, under which the sentiment is then classified. +
('1825866', 'Michelle Fung', 'michelle fung')
('2961433', 'Yina Jin', 'yina jin')
('2171034', 'RuJie Zhao', 'rujie zhao')
{mfung, yjin18, rzhao2, mehoque}@cs.rochester.edu +
6dddf1440617bf7acda40d4d75c7fb4bf9517dbbJOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY +
Beyond Counting: Comparisons of Density Maps for Crowd +
Analysis Tasks - Counting, Detection, and Tracking +
('41201301', 'Di Kang', 'di kang')
('1730232', 'Zheng Ma', 'zheng ma')
('3651407', 'Antoni B. Chan', 'antoni b. chan')
6de18708218988b0558f6c2f27050bb4659155e4
6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1Semi-Supervised Learning for Facial Expression +
Recognition +
1HP Labs, Palo Alto, CA, USA +
Faculty of Science, University of Amsterdam, The Netherlands
3Escola Polit´ecnica, Universidade de S˜ao Paulo, Brazil +
Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA
('1774778', 'Ira Cohen', 'ira cohen')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
Ira.cohen@hp.com +
nicu@science.uva.nl +
fgcozman@usp.br +
huang@ifp.uiuc.edu +
6d91da37627c05150cb40cac323ca12a91965759
6d07e176c754ac42773690d4b4919a39df85d7ecFace Attribute Prediction Using Off-The-Shelf Deep +
Learning Networks +
Computer Science and Communication +
KTH Royal Institute of Technology
100 44 Stockholm, Sweden +
('50262049', 'Yang Zhong', 'yang zhong')
('1736906', 'Josephine Sullivan', 'josephine sullivan')
('40565290', 'Haibo Li', 'haibo li')
{yzhong, sullivan, haiboli}@kth.se +
6dd2a0f9ca8a5fee12edec1485c0699770b4cfdfWebly-supervised Video Recognition by Mutually +
Voting for Relevant Web Images and Web Video Frames +
IIIS, Tsinghua University
2Google Research +
3Amazon +
CRCV, University of Central Florida
('2551285', 'Chuang Gan', 'chuang gan')
('1726241', 'Chen Sun', 'chen sun')
('2055900', 'Lixin Duan', 'lixin duan')
('40206014', 'Boqing Gong', 'boqing gong')
6d4b5444c45880517213a2fdcdb6f17064b3fa91Journal of Information Engineering and Applications +
ISSN 2224-5782 (print) ISSN 2225-0506 (online) +
Vol 2, No.3, 2012 +
www.iiste.org +
Harvesting Image Databases from The Web +
G.H.Raisoni College of Engg. and Mgmt., Pune, India
G.H.Raisoni College of Engg. and Mgmt., Pune, India
G.H.Raisoni College of Engg. and Mgmt., Pune, India
('2671016', 'Snehal M. Gaikwad', 'snehal m. gaikwad')
('40050646', 'Snehal S. Pathare', 'snehal s. pathare')
*gaikwad.snehal99@gmail.com +
*snehalpathare4@gmail.com +
*truptijachak311991@gmail.com +
6d8c9a1759e7204eacb4eeb06567ad0ef4229f93Face Alignment Robust to Pose, Expressions and +
Occlusions +
('2232940', 'Vishnu Naresh Boddeti', 'vishnu naresh boddeti')
('1767616', 'Myung-Cheol Roh', 'myung-cheol roh')
('2526145', 'Jongju Shin', 'jongju shin')
('3149566', 'Takaharu Oguri', 'takaharu oguri')
('1733113', 'Takeo Kanade', 'takeo kanade')
6dc1f94b852538d572e4919238ddb10e2ee449a4Objects as context for detecting their semantic parts +
University of Edinburgh
('20758701', 'Abel Gonzalez-Garcia', 'abel gonzalez-garcia')
('1996209', 'Davide Modolo', 'davide modolo')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
a.gonzalez-garcia@sms.ed.ac.uk +
davide.modolo@gmail.com +
vferrari@staffmail.ed.ac.uk +
6d4e3616d0b27957c4107ae877dc0dd4504b69abShuffle and Learn: Unsupervised Learning using +
Temporal Order Verification +
The Robotics Institute, Carnegie Mellon University
2 Facebook AI Research +
('1806773', 'Ishan Misra', 'ishan misra')
('1699161', 'C. Lawrence Zitnick', 'c. lawrence zitnick')
('1709305', 'Martial Hebert', 'martial hebert')
{imisra, hebert}@cs.cmu.edu, zitnick@fb.com +
6d5125c9407c7762620eeea7570af1a8ee7d76f3Video Frame Interpolation by Plug-and-Play +
Deep Locally Linear Embedding +
Yonsei University
('1886286', 'Anh-Duc Nguyen', 'anh-duc nguyen')
('47902684', 'Woojae Kim', 'woojae kim')
('2078790', 'Jongyoo Kim', 'jongyoo kim')
('39200200', 'Sanghoon Lee', 'sanghoon lee')
6d8e3f3a83514381f890ab7cd2a1f1c5be597b69University of Massachusetts - Amherst
Doctoral Dissertations 2014-current +
Dissertations and Theses +
2014 +
Improving Text Recognition in Images of Natural +
Scenes +
Jacqueline Feild +
Follow this and additional works at: http://scholarworks.umass.edu/dissertations_2 +
Recommended Citation +
Feild, Jacqueline, "Improving Text Recognition in Images of Natural Scenes" (2014). Doctoral Dissertations 2014-current. Paper 37. +
ScholarWorks@UMass Amherst +
University of Massachusetts - Amherst, jacqueline.feild@gmail.com +
This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has +
been accepted for inclusion in Doctoral Dissertations 2014-current by an authorized administrator of ScholarWorks@UMass Amherst. For more +
information, please contact scholarworks@library.umass.edu. +
6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19Understanding Representations and Reducing +
their Redundancy in Deep Networks +
Thesis submitted to the Faculty of +
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of +
Master of Science +
in +
Computer Science and Applications +
Chair +
Co-chair +
February 18, 2016 +
Blacksburg, Virginia +
Keywords: Computer Vision, Machine Learning, Object Recognition, Overfitting +
('3358085', 'Micheal Cogswell', 'micheal cogswell')
('40486307', 'Bert Huang', 'bert huang')
('1746610', 'Dhruv Batra', 'dhruv batra')
('38013066', 'B. Aditya Prakash', 'b. aditya prakash')
Copyright @ 2016 Michael Cogswell +
6d618657fa5a584d805b562302fe1090957194baFull Paper +
NNGT Int. J. of Artificial Intelligence , Vol. 1, July 2014 +
Human Facial Expression Recognition based +
on Principal Component Analysis and +
Artificial Neural Network +
Laboratory of Automatic and Signals Annaba (LASA) , Department of electronics, Faculty of Engineering, +
Zermi.Narima, Ramdani.M, Saaidia.M +
Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria
E-Mail : naili.narima@gmail.com, messaoud.ramdani@univ-annaba.org +
6d66c98009018ac1512047e6bdfb525c35683b16IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003 +
1063 +
Face Recognition Based on +
Fitting a 3D Morphable Model +
('2880906', 'Volker Blanz', 'volker blanz')
('1687079', 'Thomas Vetter', 'thomas vetter')
016cbf0878db5c40566c1fbc237686fbad666a33
016800413ebd1a87730a5cf828e197f43a08f4b3Learning Attributes Equals +
Multi-Source Domain Generalization +
IIIS, Tsinghua University
University of Iowa
CRCV, U. of Central Florida +
('2551285', 'Chuang Gan', 'chuang gan')
('40381920', 'Tianbao Yang', 'tianbao yang')
('40206014', 'Boqing Gong', 'boqing gong')
ganchuang1990@gmail.com +
tianbao-yang@uiowa.edu +
bgong@crcv.ucf.edu +
0172867f4c712b33168d9da79c6d3859b198ed4cTechnique for Face Recognition +
Faculty of Engineering, Ain Shams University, Cairo, Egypt
Expression and Illumination Invariant Preprocessing +
('1726416', 'A. Abbas', 'a. abbas')
('9159923', 'S. Abdel-Hay', 's. abdel-hay')
0145dc4505041bf39efa70ea6d95cf392cfe7f19Human Action Segmentation with Hierarchical Supervoxel Consistency +
University of Michigan
Detailed analysis of human action, such as classification, detection and lo- +
calization has received increasing attention from the community; datasets +
like J-HMDB [1] have made it plausible to conduct studies analyzing the +
impact that such deeper information has on the greater action understanding +
problem. However, detailed automatic segmentation of human action has +
comparatively been unexplored. In this paper, we introduce a hierarchical +
MRF model to automatically segment human action boundaries in videos +
“in-the-wild” (see Fig. 1). +
We first propose a human motion saliency representation which incor- +
porates two parts: foreground motion and human appearance information. +
For foreground motion estimation, we propose a new motion saliency fea- +
ture by using long-term trajectories to build a camera motion model, and +
then measure the motion saliency via the deviation from the camera model. +
For human appearance information, we use a DPM person detector trained +
on PASCAL VOC 2007 and construct a saliency map by averaging the nor- +
malized detection score of all the scale and all components. +
Then, to segment the human action, we start by applying hierarchical +
graph-based video segmentation [2] to form a hierarchy of supervoxels. On +
this hierarchy, we define an MRF model, using our novel human motion +
saliency as the unary term. We consider the joint information of temporal +
connections in the direction of optical flow and human appearance-aware +
spatial neighbors as pairwise potential. We design an innovative high-order +
potential between different supervoxels on different levels of the hierar- +
chy to alleviate leaks and sustain better semantic information. Given the +
graph structure G = (X ,E) induced by the supervoxel hierarchy (E is the +
set of edges in the graph hiearchy). We introduce an energy function over +
G = (X ,E) that enforces hierarchical supervoxel consistency through higher +
order potentials derived from supervoxel V. +
E(Y ) = ∑ +
i∈X +
Φi(yi) + ∑ +
(i, j)∈E +
Φi, j(yi,y j) + ∑ +
v∈V +
Φv(yv) +
(1) +
where Φi(yi) denotes unary potential for a supervoxel with index i, Φi, j(yi,y j) +
denotes pairwise potential between two supervoxels with edge, and Φv(yv) +
denotes high order potential of supervoxels between two layers. Unary po- +
tential: We encode the motion saliency and human saliency feature into +
supervoxels to get the unary potential components: +
Φi(yi) = γMMi(yi) + γPPi(yi) + γSSi(yi) +
(2) +
where γM, γP and γS are weights for the unary terms. Mi(yi) reflects the +
motion evidence, Pi(yi) and Si(yi) reflect the human evidence. Pairwise +
potential: we constrain the edge space with only two types of neighbors: +
temporal supervoxel neighbors and human-aware spatial neighbors, so we +
define the pairwise potential as: +
Φi, j(yi,y j) = γIIi, j(yi,y j) + γKKi, j(yi,y j)) +
(3) +
where γI and γK are pairwise potential weights. Ii, j(yi,y j) is the cost be- +
tween supervoxel i and supervoxel j with human detection constraints, which +
ensures the smoothness spatially. Note that i and j could be determined as +
neighbors without pixel-level connection. Ki, j(yi,y j) is the virtual dissim- +
ilarity which ensures the smoothness temporally. Higher order potential: +
We define the hierarchical supervoxel label consistency potential. We utilize +
the connection between different supervoxel hierarchical levels. In practice, +
we adopt the Robust Pn model [3] to define the potentials, +
if N(yv) (cid:54) Q +
otherwise +
(cid:26) N(yv) 1 +
Φv(yv) = +
Q γmax(v) +
γmax(v) +
('8553015', 'Jiasen Lu', 'jiasen lu')
('1856629', 'Ran Xu', 'ran xu')
01bef320b83ac4405b3fc5b1cff788c124109fb9de Lausanne +
RLC D1 740, CH-1015 +
Lausanne +
de Lausanne +
RLC D1 740, CH-1015 +
Lausanne +
de Lausanne +
RLC D1 740, CH-1015 +
Lausanne +
Translating Head Motion into Attention - Towards +
Processing of Student’s Body-Language +
CHILI Laboratory +
Łukasz Kidzi´nski +
CHILI Laboratory +
CHILI Laboratory +
École polytechnique fédérale +
École polytechnique fédérale +
École polytechnique fédérale +
('1850245', 'Mirko Raca', 'mirko raca')
('1799133', 'Pierre Dillenbourg', 'pierre dillenbourg')
mirko.raca@epfl.ch +
lukasz.kidzinski@epfl.ch +
pierre.dillenbourg@epfl.ch +
01c9dc5c677aaa980f92c4680229db482d5860dbTemporal Action Detection using a Statistical Language Model +
University of Bonn, Germany
('32774629', 'Alexander Richard', 'alexander richard')
('2946643', 'Juergen Gall', 'juergen gall')
{richard,gall}@iai.uni-bonn.de +
013909077ad843eb6df7a3e8e290cfd5575999d2A semi-automatic methodology for facial landmark annotation +
Imperial College London, UK
School of Computer Science, University of Lincoln, U.K
EEMCS, University of Twente, The Netherlands
('3320415', 'Christos Sagonas', 'christos sagonas')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{c.sagonas, gt204, s.zafeiriou, m.pantic}@imperial.ac.uk +
01c7a778cde86ad1b89909ea809d55230e569390A Supervised Low-rank Method for Learning Invariant Subspaces +
West Virginia University
Morgantown, WV 26508 +
('1803400', 'Farzad Siyahjani', 'farzad siyahjani')
('3360490', 'Ranya Almohsen', 'ranya almohsen')
('36911226', 'Sinan Sabri', 'sinan sabri')
('1736352', 'Gianfranco Doretto', 'gianfranco doretto')
{fsiyahja, ralmohse, sisabri, gidoretto}@mix.wvu.edu +
01c8d7a3460422412fba04e7ee14c4f6cdff9ad7(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 4, No. 7, 2013 +
Rule Based System for Recognizing Emotions Using +
Multimodal Approach +
Information System +
SBM, SVKM’s NMIMS +
Mumbai, India +
+
('9575671', 'Preeti Khanna', 'preeti khanna')
0115f260069e2e501850a14845feb400142e2443An On-Line Handwriting Recognizer +
with Fisher Matching, Hypotheses +
Propagation Network and Context +
Constraint Models +
By +
A dissertation submitted in partial fulfillment of +
the requirements for the degree of +
Doctor of Philosophy +
Department of Computer Science +
New York University
May 2001 +
_____________________ +
Davi Geiger +
('2034318', 'Jong Oh', 'jong oh')
01cc8a712e67384f9ef9f30580b7415bfd71e98014750 • The Journal of Neuroscience, November 3, 2010 • 30(44):14750 –14758 +
Behavioral/Systems/Cognitive +
Failing to Ignore: Paradoxical Neural Effects of Perceptual +
Load on Early Attentional Selection in Normal Aging +
2Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, Canada
We examined visual selective attention under perceptual load—simultaneous presentation of task-relevant and -irrelevant informa- +
tion—in healthy young and older adult human participants to determine whether age differences are observable at early stages of +
selection in the visual cortices. Participants viewed 50/50 superimposed face/place images and judged whether the faces were male or +
female, rendering places perceptible but task-irrelevant. Each stimulus was repeated, allowing us to index dynamic stimulus-driven +
competition from places. Consistent with intact early selection in young adults, we observed no adaptation to unattended places in +
parahippocampal place area (PPA) and significant adaptation to attended faces in fusiform face area (FFA). Older adults, however, +
exhibited both PPA adaptation to places and weak FFA adaptation to faces. We also probed participants’ associative recognition for +
face-place pairs post-task. Older adults with better place recognition memory scores were found to exhibit both the largest magnitudes of +
PPA adaptation and the smallest magnitudes of FFA adaptation on the attention task. In a control study, we removed the competing +
perceptual information to decrease perceptual load. These data revealed that the initial age-related impairments in selective attention +
were not due to a general decline in visual cortical selectivity; both young and older adults exhibited robust FFA adaptation and neither +
group exhibited PPA adaptation to repeated faces. Accordingly, distracting information does not merely interfere with attended input in +
older adults, but is co-encoded along with the contents of attended input, to the extent that this information can subsequently be +
recovered from recognition memory. +
Introduction +
Age-related changes in selective attention have traditionally been +
examined using manipulations of executive attention, e.g., the +
capacity to selectively maintain targets and suppress distractors +
in working memory (WM) (Hasher and Zacks, 1988; Gazzaley et +
al., 2005, 2008; Healey et al., 2008). Under cognitive load from +
WM, older adults appear more susceptible to interference from +
distracting stimuli compared with young controls. +
At the neural level, executive attention appears to reconcile +
interference from unattended distractors at stages of processing +
after encoding in the perceptual cortices, i.e., late selection, and +
relies on prefrontal control mechanisms (de Fockert et al., 2001; +
Gehring and Knight, 2002). Experimental tasks that manipulate +
executive attention, such as distractor exclusion (de Fockert et al., +
2001; Yi et al., 2004) and attentional blink (Luck et al., 1996; +
Marois et al., 2000) have routinely demonstrated late selection of +
unattended information. +
However, the focus of aging research on executive attention +
and distractor interference has left several questions unexplored. +
Executive attention appears to be dissociable from the type of +
perceptual attention used for reconciling distractor competition +
Received May 26, 2010; revised Aug. 28, 2010; accepted Sept. 11, 2010. +
This work was supported by Grant MOP102637 from the Canadian Institutes of Health Research to E.D.R. and the
Vanier National Science and Engineering Research Council Scholarship to T.W.S. We also thank Adam K. Anderson +
and Daniel H. Lee for helpful editorial input on the manuscript. +
DOI:10.1523/JNEUROSCI.2687-10.2010 +
Copyright © 2010 the authors +
0270-6474/10/3014750-09$15.00/0 +
within the visual field, which is thought to be embedded in pos- +
terior cortical subsystems (Treisman, 1969; Desimone and Dun- +
can, 1995; Lavie et al., 2004). For instance, Yi et al. (2004) +
observed that under perceptual load but not WM load, unat- +
tended distractors were suppressed at stages of visual processing +
before extrastriate encoding. These finding indicate that percep- +
tual attention relies on a distinct early selection mechanism. +
In the present study, we therefore explored with functional +
magnetic resonance imaging (fMRI) whether perceptual at- +
tention is also susceptible to an age-related impairment. We +
hypothesized that under perceptually demanding conditions, +
when task-relevant and -irrelevant stimuli were simultaneously +
presented in the visual field, early competitive perceptual inter- +
actions from task-irrelevant sensory information would be suc- +
cessfully filtered in younger adults before encoding (Lavie, 1995; +
Yi et al., 2004). By contrast, if older adults do exhibit impaired +
perceptual attention, then age-differences in distractor encoding +
should be observable in extrastriate cortex sensitive to the +
unattended stream of input. We were also interested in eluci- +
dating the precise neural fate of this unattended information +
in older adults. Specifically, do distractors merely interfere +
with attended input, or are distractors co-encoded along with +
the content of attended input to the extent that they can sub- +
sequently be recognized? +
To interrogate these hypotheses, we acquired fMRI while a +
group of healthy young (mean age ⫽ 22.2 years) and older (mean +
age ⫽ 77.4 years) adults viewed 50/50 threshold superimposed +
face and place images (O’Craven et al., 1999; Yi et al., 2006) (Fig. +
1a). Participants decided whether faces were male or female, ren- +
('4258285', 'Eve De Rosa', 'eve de rosa')
('4258285', 'Eve De Rosa', 'eve de rosa')
George Street, Toronto, ON M5S 3G3, Canada. E-mail: taylor@aclab.ca or derosa@psych.utoronto.ca. +
01e12be4097fa8c94cabeef0ad61498c8e7762f2
0163d847307fae508d8f40ad193ee542c1e051b4JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +
Classemes and Other Classifier-based +
Features for Efficient Object Categorization +
- Supplementary material - +
1 LOW-LEVEL FEATURES +
We extract the SIFT [1] features for our descriptor +
according to the following pipeline. We first convert +
each image to gray-scale, then we normalize the con- +
trast by forcing the 0.01% of lightest and darkest pixels +
to be mapped to white and black respectively, and +
linearly rescaling the values in between. All images +
exceeding 786,432 pixels of resolution are downsized +
to this maximum value while keeping the aspect ratio. +
The 128-dimensional SIFT descriptors are computed +
from the interest points returned by a DoG detec- +
tor [2]. We finally compute a Bag-Of-Word histogram +
of these descriptors, using a K-means vocabulary of +
500 words. +
2 CLASSEMES +
The LSCOM categories were developed specifically +
for multimedia annotation and retrieval, and have +
been used in the TRECVID video retrieval series. +
We took the LSCOM CYC ontology dated 2006-06-30, +
which contains 2832 unique categories. We removed +
('34338883', 'Alessandro Bergamo', 'alessandro bergamo')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
01dc1e03f39901e212bdf291209b7686266aeb13Actionness Estimation Using Hybrid Fully Convolutional Networks +
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
The Chinese University of Hong Kong, Hong Kong
3Computer Vision Lab, ETH Zurich, Switzerland +
('33345248', 'Limin Wang', 'limin wang')
('33427555', 'Yu Qiao', 'yu qiao')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1681236', 'Luc Van Gool', 'luc van gool')
016f49a54b79ec787e701cc8c7d0280273f9b1efSELF ORGANIZING MAPS FOR REDUCING THE NUMBER OF CLUSTERS BY ONE ON +
SIMPLEX SUBSPACES +
Aristotle University of Thessaloniki
Box 451, Thessaloniki 541 24, Greece +
('1736143', 'Constantine Kotropoulos', 'constantine kotropoulos')
('1762248', 'Vassiliki Moschou', 'vassiliki moschou')
E-mail: {costas, vmoshou}@aiia.csd.auth.gr +
01c4cf9c7c08f0ad3f386d88725da564f3c54679Interpretability Beyond Feature Attribution: +
Quantitative Testing with Concept Activation Vectors (TCAV) +
('3351164', 'Been Kim', 'been kim')
('2217654', 'Rory Sayres', 'rory sayres')
017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637FACE RECOGNITION WITH HARMONIC DE-LIGHTING +
2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +
1Graduate School, CAS, Beijing, China, 100080 +
Emails: {lyqing, sgshan, wgao}jdl.ac.cn +
('2343895', 'Laiyun Qing', 'laiyun qing')
('1685914', 'Shiguang Shan', 'shiguang shan')
('40049005', 'Wen Gao', 'wen gao')
014e3d0fa5248e6f4634dc237e2398160294edceInt J Comput Vis manuscript No. +
(will be inserted by the editor) +
What does 2D geometric information really tell us about +
3D face shape? +
Received: date / Accepted: date +
('39180407', 'Anil Bas', 'anil bas')
01125e3c68edb420b8d884ff53fb38d9fbe4f2b8Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric +
CNN Regression +
The University of Nottingham, UK
Kingston University, UK
Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions
('34596685', 'Aaron S. Jackson', 'aaron s. jackson')
('3458121', 'Adrian Bulat', 'adrian bulat')
('1689047', 'Vasileios Argyriou', 'vasileios argyriou')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
1{aaron.jackson, adrian.bulat, yorgos.tzimiropoulos}@nottingham.ac.uk +
2 vasileios.argyriou@kingston.ac.uk +
01c09acf0c046296643de4c8b55a9330e9c8a419MANIFOLD LEARNING USING EUCLIDEAN +
-NEAREST NEIGHBOR GRAPHS +
Department of Electrical Engineering and Computer Science +
University of Michigan, Ann Arbor, MI
('1759109', 'Jose A. Costa', 'jose a. costa')
('35806564', 'Alfred O. Hero', 'alfred o. hero')
Email: jcosta@umich.edu, hero@eecs.umich.edu +
01d23cbac762b0e46251f5dbde08f49f2d13b9f8Combining Face Verification Experts +
+Telecommunication laboratory, Universit´e catholique de Louvain, B-1348 Belgium +
⁄Center for Vision, Speech and Signal Processing, +
University of Surrey, Guildford, Surrey GU2 7XH, UK
('34964585', 'Jacek Czyz', 'jacek czyz')
('1748684', 'Josef Kittler', 'josef kittler')
('1698047', 'Luc Vandendorpe', 'luc vandendorpe')
czyz@tele.ucl.ac.be +
014143aa16604ec3f334c1407ceaa496d2ed726eLarge-Scale Manifold Learning +
Courant Institute
New York, NY +
Google Research +
New York, NY +
Henry Rowley +
Google Research +
Mountain View, CA +
('8395559', 'Ameet Talwalkar', 'ameet talwalkar')
('2794322', 'Sanjiv Kumar', 'sanjiv kumar')
ameet@cs.nyu.edu +
sanjivk@google.com +
har@google.com +
011e6146995d5d63c852bd776f782cc6f6e11b7bFast Training of Triplet-based Deep Binary Embedding Networks +
The University of Adelaide; and Australian Centre for Robotic Vision
('3194022', 'Bohan Zhuang', 'bohan zhuang')
('2604251', 'Guosheng Lin', 'guosheng lin')
('1780381', 'Chunhua Shen', 'chunhua shen')
0182d090478be67241392df90212d6cd0fb659e6Discovering Localized Attributes for Fine-grained Recognition +
Indiana University
Bloomington, IN +
TTI-Chicago +
Chicago, IL +
David Crandall +
Indiana University
Bloomington, IN +
University of Texas
Austin, TX +
('2481141', 'Kun Duan', 'kun duan')
('1713589', 'Devi Parikh', 'devi parikh')
('1794409', 'Kristen Grauman', 'kristen grauman')
kduan@indiana.edu +
dparikh@ttic.edu +
djcran@indiana.edu +
grauman@cs.utexas.edu +
016a8ed8f6ba49bc669dbd44de4ff31a799630781Graduate School, CAS, Beijing, 100039, China, +
2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +
Harbin Institute of Technology, Harbin, China
FACE RELIGHTING FOR FACE RECOGNTION UNDER GENERIC ILLUMINATION +
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
01beab8f8293a30cf48f52caea6ca0fb721c8489
0178929595f505ef7655272cc2c339d7ed0b9507
0181fec8e42d82bfb03dc8b82381bb329de00631Discriminative Subspace Clustering +
CVL, Link oping University, Link oping, Sweden
VSI Lab, Goethe University, Frankfurt, Germany
('1797883', 'Vasileios Zografos', 'vasileios zografos')
('34824636', 'Rudolf Mester', 'rudolf mester')
01b4b32c5ef945426b0396d32d2a12c69c282e29
0113b302a49de15a1d41ca4750191979ad756d2f1­4244­0367­7/06/$20.00 ©2006 IEEE +
537 +
ICME 2006 +
019e471667c72b5b3728b4a9ba9fe301a7426fb2Cross-Age Face Verification by Coordinating with Cross-Face Age Verification +
Temple University, Philadelphia, USA
('38909760', 'Liang Du', 'liang du')
('1805398', 'Haibin Ling', 'haibin ling')
{liang.du, hbling}@temple.edu +
0601416ade6707c689b44a5bb67dab58d5c27814Feature Selection in Face Recognition: A Sparse +
Representation Perspective +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2007-99 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-99.html +
August 14, 2007 +
('2223304', 'Allan Y. Yang', 'allan y. yang')
('1738310', 'John Wright', 'john wright')
('7777470', 'Yi Ma', 'yi ma')
('1717598', 'S. Shankar Sastry', 's. shankar sastry')
064b797aa1da2000640e437cacb97256444dee82Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
('18036051', 'Zhiao Huang', 'zhiao huang')
('1848243', 'Erjin Zhou', 'erjin zhou')
('2695115', 'Zhimin Cao', 'zhimin cao')
hza@megvii.com +
zej@megvii.com +
czm@megvii.com +
06f146dfcde10915d6284981b6b84b85da75acd4Scalable Face Image Retrieval using +
Attribute-Enhanced Sparse Codewords +
('33970300', 'Bor-Chun Chen', 'bor-chun chen')
('35081710', 'Yan-Ying Chen', 'yan-ying chen')
('1692811', 'Yin-Hsi Kuo', 'yin-hsi kuo')
('1716836', 'Winston H. Hsu', 'winston h. hsu')
067126ce1f1a205f98e33db7a3b77b7aec7fb45aOn Improving Dissimilarity-Based Classifications Using +
a Statistical Similarity Measure(cid:2) +
Myongji University
Yongin, 449-728 South Korea +
2 Faculty of Electrical Engineering, Mathematics and Computer Science, +
Delft University of Technology, The Netherlands
('34959719', 'Sang-Woon Kim', 'sang-woon kim')kimsw@mju.ac.kr +
r.p.w.duin@tudelft.nl +
06466276c4955257b15eff78ebc576662100f740Where Is Who: Large-Scale Photo Retrieval by Facial +
Attributes and Canvas Layout +
National Taiwan University, Taipei, Taiwan
('2476032', 'Yu-Heng Lei', 'yu-heng lei')
('35081710', 'Yan-Ying Chen', 'yan-ying chen')
('33970300', 'Bor-Chun Chen', 'bor-chun chen')
('2817570', 'Lime Iida', 'lime iida')
('1716836', 'Winston H. Hsu', 'winston h. hsu')
{siriushpa, limeiida}@gmail.com, winston@csie.ntu.edu.tw +
{ryanlei, yanying}@cmlab.csie.ntu.edu.tw, +
0697bd81844d54064d992d3229162fe8afcd82cbUser-driven mobile robot storyboarding: Learning image interest and +
saliency from pairwise image comparisons +
('1699287', 'Michael Burke', 'michael burke')
06262d6beeccf2784e4e36a995d5ee2ff73c8d11Recognize Actions by Disentangling Components of Dynamics +
CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition
('47827548', 'Yue Zhao', 'yue zhao')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('1807606', 'Dahua Lin', 'dahua lin')
{zy317,dhlin}@ie.cuhk.edu.hk {yuanjx}@amazon.com +
06f585a3a05dd3371cd600a40dc35500e2f82f9bBetter and Faster: Knowledge Transfer from Multiple Self-supervised Learning +
Tasks via Graph Distillation for Video Classification +
Institute of Computer Science and Technology, Peking University
Beijing 100871, China +
('2439211', 'Chenrui Zhang', 'chenrui zhang')
('1704081', 'Yuxin Peng', 'yuxin peng')
pengyuxin@pku.edu.cn +
06f8aa1f436a33014e9883153b93581eea8c5c70Leaving Some Stones Unturned: +
Dynamic Feature Prioritization +
for Activity Detection in Streaming Video +
The University of Texas at Austin
Current approaches for activity recognition often ignore con- +
straints on computational resources: 1) they rely on extensive +
feature computation to obtain rich descriptors on all frames, +
and 2) they assume batch-mode access to the entire test video at +
once. We propose a new active approach to activity recognition +
that prioritizes “what to compute when” in order to make timely +
predictions. The main idea is to learn a policy that dynamically +
schedules the sequence of features to compute on selected frames +
of a given test video. In contrast to traditional static feature +
selection, our approach continually re-prioritizes computation +
based on the accumulated history of observations and accounts +
for the transience of those observations in ongoing video. We +
develop variants to handle both the batch and streaming settings. +
On two challenging datasets, our method provides significantly +
better accuracy than alternative techniques for a wide range of +
computational budgets. +
I. INTRODUCTION +
Activity recognition in video is a core vision challenge. It +
has applications in surveillance, autonomous driving, human- +
robot interaction, and automatic tagging for large-scale video +
retrieval. In any such setting, a system that can both categorize +
and temporally localize activities would be of great value. +
Activity recognition has attracted a steady stream of in- +
teresting research [1]. Recent methods are largely learning- +
based, and tackle realistic everyday activities (e.g., making +
tea, riding a bike). Due to the complexity of the problem, +
as well as the density of raw data comprising even short +
videos, useful video representations are often computationally +
intensive—whether dense trajectories, interest points, object +
detectors, or convolutional neural network (CNN) features run +
on each frame [2]–[8]. In fact, the expectation is that the more +
features one extracts from the video, the better for accuracy. +
For a practitioner wanting reliable activity recognition, then, +
the message is to “leave no stone unturned”, ideally extracting +
complementary descriptors from all video frames. +
However, the “no stone unturned” strategy is problematic. +
Not only does it assume virtually unbounded computational +
resources, it also assumes that an entire video is available +
at once for batch processing. In reality, a recognition system +
will have some computational budget. Further, it may need +
to perform in a streaming manner, with access to only a short +
buffer of recent frames. Together, these considerations suggest +
some form of feature triage is needed. +
Yet prioritizing features for activity in video is challenging, +
for two key reasons. First, +
informative features +
may depend critically on what has been observed so far in +
the most +
the specific test video, making traditional fixed/static feature +
selection methods inadequate. In other words, the recognition +
system’s belief state must evolve over time, and its priorities of +
which features to extract next must evolve too. Second, when +
processing streaming video, the entire video is never available +
to the algorithm at once. This puts limits on what features can +
even be considered each time step, and requires accounting +
for the feature extractors’ framerates when allocating compu- +
tation. +
In light of these challenges, we propose a dynamic approach +
to prioritize which features to compute when for activity +
recognition. We formulate the problem as policy learning in a +
Markov decision process. In particular, we learn a non-myopic +
policy that maps the accumulated feature history (state) to the +
subsequent feature and space-time location (action) that, once +
extracted, is most expected to improve recognition accuracy +
(reward) over a sequence of such actions. We develop two +
variants of our approach: one for batch processing, where +
we are free to “jump” around the video to get +
the next +
desired feature, and one for streaming video, where we are +
confined to a buffer of newly received frames. By dynamically +
allocating feature extraction effort, our method wisely leaves +
some stones unturned—that is, some features unextracted—in +
order to meet real computational budget constraints. +
To our knowledge, our work is the first to actively triage +
feature computation for streaming activity recognition.1 While +
recent work explores ways to intelligently order feature com- +
putation in a static image for the sake of object or scene +
recognition [10]–[17] or offline batch activity detection [18], +
streaming video presents unique challenges, as we explain in +
detail below. While methods for “early” detection can fire on +
an action prior to its completion [19]–[21], they nonetheless +
passively extract all features in each incoming frame. +
We validate our approach on two public datasets consist- +
ing of third- and first-person video from over 120 activity +
categories. We show its impact in both the streaming and +
batch settings, and we further consider scenarios where the test +
video is “untrimmed”. Comparisons with status quo passive +
feature extraction, traditional feature selection approaches, and +
a state-of-the-art early event detector demonstrate the clear +
advantages of our approach. +
1This paper extends our earlier technical report [9]. +
('39523296', 'Yu-Chuan Su', 'yu-chuan su')
('1794409', 'Kristen Grauman', 'kristen grauman')
061c84a4143e859a7caf6e6d283dfb30c23ee56eDEEP-CARVING : Discovering Visual Attributes by Carving Deep Neural Nets +
Machine Intelligence Lab (MIL), Cambridge University
∗Computer Science & Artificial Intelligence Lab (CSAIL), MIT +
Most of the approaches for discovering visual attributes in images de- +
mand significant supervision, which is cumbersome to obtain. In this paper, +
we aim to discover visual attributes in a weakly supervised setting that is +
commonly encountered with contemporary image search engines. +
For instance, given a noun (say forest) and its associated attributes (say +
dense, sunlit, autumn), search engines can now generate many valid im- +
ages for any attribute-noun pair (dense forests, autumn forests, etc). How- +
ever, images for an attribute-noun pair do not contain any information about +
other attributes (like which forests in the autumn are dense too). Thus, a +
weakly supervised scenario occurs. Let A = {a1, . . . ,aM} be the set of +
M attributes under consideration. We have a weakly supervised training +
set, S = {(x1,y1), . . . , (xN,yN )} of N images x1, . . . ,xN ∈ X having labels +
y1, . . . ,yN ∈ A respectively. Equivalently, segregating the training images +
based on their label, we obtain M sets Sm = Xm × am, where Xm = {x ∈ +
X|(x,am) ∈ S} denotes the set of Nm = |Xm| images each having the (sin- +
gle) positive training label am,m ∈ {1, . . . ,M}. For a test image xt, the task +
is to predict yt ⊆ A, i.e. all the attributes present in xt. The aforemen- +
tioned weakly supervised problem setting is more challenging for attributes +
as compared to object and scene detection, because attributes can highly co- +
('1808862', 'Sukrit Shankar', 'sukrit shankar')
('3307138', 'Vikas K. Garg', 'vikas k. garg')
('1745672', 'Roberto Cipolla', 'roberto cipolla')
06d93a40365da90f30a624f15bf22a90d9cfe6bbLearning from Candidate Labeling Sets +
Idiap Research Institute and EPF Lausanne
Luo Jie +
DSI, Universit`a degli Studi di Milano +
('1721068', 'Francesco Orabona', 'francesco orabona')jluo@idiap.ch +
orabona@dsi.unimi.it +
061e29eae705f318eee703b9e17dc0989547ba0cEnhancing Expression Recognition in the Wild +
with Unlabeled Reference Data +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing 100190, China
Graduate University of Chinese Academy of Sciences, Beijing 100049, China
('1730228', 'Mengyi Liu', 'mengyi liu')
('1688086', 'Shaoxin Li', 'shaoxin li')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{mengyi.liu, shaoxin.li, shiguang.shan, xilin.chen}@vipl.ict.ac.cn; +
06850b60e33baa4ea9473811d58c0d5015da079eA SURVEY OF THE TRENDS IN FACIAL AND +
EXPRESSION RECOGNITION DATABASES AND +
METHODS +
University of Washington, Bothell
University of Washington, Bothell
('2971095', 'Sohini Roychowdhury', 'sohini roychowdhury')
('31448697', 'Michelle Emmons', 'michelle emmons')
roych@uw.edu +
memmons1442@gmail.com +
06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32WhittleSearch: Image Search with Relative Attribute Feedback +
(Supplementary Material) +
1 Comparative Qualitative Search Results +
We present three qualitative search results for human-generated feedback, in addition to those +
shown in the paper. Each example shows one search iteration, where the 20 reference images are +
randomly selected (rather than ones that match a keyword search, as the image examples in the +
main paper illustrate). For each result, the first figure shows our method and the second figure +
shows the binary feedback result for the corresponding target image. Note that for our method, +
“more/less X” (where X is an attribute) means that the target image is more/less X than the +
reference image which is shown. +
Figures 1 and 2 show results for human-generated relative attribute and binary feedback, re- +
spectively, when both methods are used to target the same “mental image” of a shoe shown in the +
top left bubble. The top right grid of 20 images are the reference images displayed to the user, and +
those outlined and annotated with constraints are the ones chosen by the user to give feedback. +
The bottom row of images in either figure shows the top-ranked images after integrating the user’s +
feedback into the scoring function, revealing the two methods’ respective performance. We see that +
while both methods retrieve high-heeled shoes, only our method retrieves images that are as “open” +
as the target image. This is because using the proposed approach, the user was able to comment +
explicitly on the desired openness property. +
('1770205', 'Adriana Kovashka', 'adriana kovashka')
('1713589', 'Devi Parikh', 'devi parikh')
('1794409', 'Kristen Grauman', 'kristen grauman')
06a6347ac14fd0c6bb3ad8190cbe9cdfa5d59efcActive Image Clustering: Seeking Constraints from Humans to Complement +
Algorithms +
Computer Science Department +
University of Maryland, College Park
('2221075', 'Arijit Biswas', 'arijit biswas')arijitbiswas87@gmail.com, djacobs@umiacs.umd.edu +
066d71fcd997033dce4ca58df924397dfe0b5fd1(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:3)(cid:4)(cid:14)(cid:6)(cid:15)(cid:16)(cid:3)(cid:17)(cid:18)(cid:3)(cid:11)(cid:5)(cid:19)(cid:4) (cid:20)(cid:5)(cid:11)(cid:21)(cid:6)(cid:3)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:9)(cid:11)(cid:9)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)(cid:6)(cid:23)(cid:17)(cid:24)(cid:19)(cid:2)(cid:5)(cid:11)(cid:21)(cid:25) +
(cid:26)(cid:11)(cid:5)(cid:8)(cid:17)(cid:6)(cid:27)(cid:1)(cid:9)(cid:22)(cid:8)(cid:18)(cid:1)(cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)!(cid:8) (cid:8)(cid:6)(cid:4)(cid:1)"(cid:16)(cid:8)(cid:16)(cid:20)(cid:14)(cid:1)(cid:3)(cid:15)(cid:8)(cid:22)(cid:4)(cid:12)(cid:1)(cid:23)(cid:5)(cid:29)(cid:18)(cid:14)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)(cid:26)!(cid:9)(cid:13)(cid:14)(cid:1)#(cid:17)(cid:8)(cid:6)(cid:5)$(cid:1)(cid:17)(cid:4)(cid:5)%(cid:8)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)&(cid:30)(cid:8)(cid:16)(cid:15)(cid:15)(cid:21)(cid:27)(cid:15)(cid:17) +
(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)(cid:1)(cid:13)(cid:6)(cid:7)(cid:14) (cid:3)(cid:15)(cid:16)(cid:8)(cid:17)(cid:17)(cid:8)(cid:18)(cid:1)(cid:3)(cid:8)(cid:16)(cid:18)(cid:6)(cid:1)(cid:19)(cid:4)(cid:16)(cid:11)(cid:16)(cid:6)(cid:10)(cid:6)(cid:14)(cid:1)(cid:19)(cid:20)(cid:21)(cid:1)(cid:9)(cid:22)(cid:8)(cid:17)(cid:1)(cid:23)(cid:8)(cid:11)(cid:24)(cid:8)(cid:12)(cid:25)(cid:8)(cid:20)(cid:18) +
(cid:23)(cid:12)(cid:13)(cid:11)(cid:2)(cid:3)(cid:8)(cid:11)$(cid:1)’(cid:16)(cid:6)(cid:11) ((cid:8)((cid:4)(cid:20)(cid:1)(cid:6)(cid:12)(cid:24)(cid:20)(cid:15)(cid:18))(cid:27)(cid:4)(cid:11)(cid:1)(cid:8)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:15)(cid:25)(cid:1)(cid:15)(cid:29)(cid:4)(cid:20)(cid:1)*(cid:14)+,,(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)+(cid:2)+(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:16))(cid:17)(cid:8)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:11) (cid:6)(cid:12)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/ +
(cid:8)(cid:12)(cid:18) 01(cid:21)(cid:1)2(cid:4)(cid:1)(cid:12)(cid:8)(cid:17)(cid:4)(cid:18)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:21)(cid:1)’(cid:15)(cid:1)(cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:4)6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)(cid:20)(cid:4)(cid:11))(cid:5)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:12)(cid:4).(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:1)(cid:6)(cid:11)(cid:1)(cid:20)(cid:4)((cid:15)(cid:20)(cid:24)(cid:4)(cid:18)(cid:21) +
(cid:26)(cid:9)(cid:27) (cid:28)(cid:19)(cid:2)(cid:14)(cid:13)$(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1)3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)3(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:19)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:9)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:9)-(cid:4)(cid:1)7(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21) +
(cid:29) (cid:1)(cid:4)(cid:11)(cid:2)(cid:19)(cid:14)(cid:18)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4) +
8)(cid:17)(cid:8)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:17)(cid:15)(cid:11)(cid:24)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) )(cid:11)(cid:4)(cid:25))(cid:5)(cid:1) (cid:7)(cid:4)(cid:30)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:1) +
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)9(cid:11)(cid:1) (cid:6)(cid:18)(cid:4)(cid:12)(cid:24)(cid:6)(cid:24)(cid:30)(cid:21)(cid:1) (cid:9)(cid:11)(cid:1) (cid:16))(cid:17)(cid:8)(cid:12)(cid:11)(cid:14)(cid:1) .(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:24)(cid:15)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:22)(cid:4)(cid:1) (cid:8)(cid:1) +
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:8)-(cid:4)(cid:1)-(cid:20)(cid:15))((cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:8)(cid:1)((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:15)(cid:25)(cid:24)(cid:4)(cid:12)(cid:1) +
(cid:8)(cid:10)(cid:5)(cid:4)(cid:1)(cid:24)(cid:15)(cid:1)(cid:10)(cid:4)(cid:1);)(cid:6)(cid:24)(cid:4)(cid:1)((cid:20)(cid:4)(cid:27)(cid:6)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:4)(cid:11)(cid:24)(cid:6)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)<(cid:2)=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)(cid:20)(cid:4)(cid:27)(cid:4)(cid:12)(cid:24)(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:14)(cid:1) +
(cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) .(cid:15)(cid:20)(cid:7)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:4)(cid:6)(cid:29)(cid:4)(cid:18)(cid:1) (cid:11))(cid:10)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:8)(cid:24)(cid:24)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) (cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) (cid:6)(cid:12)(cid:1) (cid:10)(cid:6)(cid:15)(cid:17)(cid:4)(cid:24)(cid:20)(cid:6)(cid:27)(cid:11)(cid:14)(cid:1) ((cid:8)(cid:24)(cid:24)(cid:4)(cid:20)(cid:12)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) +
(cid:8)(cid:12)(cid:18)(cid:1) (cid:27)(cid:15)(cid:17)()(cid:24)(cid:4)(cid:20) (cid:29)(cid:6)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17))(cid:12)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) (cid:8)(cid:12)(cid:18) 1=(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:11)(cid:4)(cid:1) +
(cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:20)(cid:4)(cid:11)(cid:24)(cid:11)(cid:1)(cid:8)(cid:17)(cid:15)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1)(cid:17)(cid:15)(cid:24)(cid:6)(cid:29)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1))(cid:11)(cid:1)(cid:24)(cid:15)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:1)(cid:8)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21) ’(cid:16)(cid:4)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:12)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)(cid:11)(cid:24)(cid:20)(cid:6)(cid:10))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:24)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:21) +
’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:17)(cid:8)(cid:12)(cid:30)(cid:1) ()(cid:10)(cid:5)(cid:6)(cid:27)(cid:8)(cid:5)(cid:5)(cid:30)(cid:1) (cid:8)(cid:29)(cid:8)(cid:6)(cid:5)(cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) +
(cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:21)(cid:1) (cid:23)(cid:4)(cid:11)(cid:6)(cid:18)(cid:4)(cid:1) (cid:8)(cid:10)(cid:15)(cid:29)(cid:4)(cid:1) +
(cid:8)(((cid:5)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:14)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:1)(cid:27)(cid:8)(cid:12)(cid:1)(cid:10)(cid:4)(cid:1))(cid:11)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:8)-(cid:4)(cid:1) +
(cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:11))(cid:20)-(cid:4)(cid:20)(cid:30)(cid:14)(cid:1) (cid:20)(cid:8)(cid:27)(cid:4)(cid:1) (cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) 4(cid:10)(cid:4)(cid:11)(cid:6)(cid:18)(cid:4)(cid:1) (cid:15)(cid:24)(cid:16)(cid:4)(cid:20)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)5(cid:14)(cid:1) (cid:11)(cid:24))(cid:18)(cid:30)(cid:6)(cid:12)-(cid:1) (cid:6)(cid:12)(cid:25)(cid:5))(cid:4)(cid:12)(cid:27)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:27)(cid:8)(cid:20)(cid:4)(cid:4)(cid:20)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:7)(cid:6)(cid:12)(cid:18)(cid:1) (cid:15)(cid:25)(cid:1) (cid:11)(cid:7)(cid:6)(cid:12)(cid:1) (cid:15)(cid:12)(cid:1) +
(cid:8)-(cid:6)(cid:12)-(cid:14)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:15)(cid:24)(cid:16)(cid:4)(cid:20)(cid:1)(cid:11)(cid:6)(cid:17)(cid:6)(cid:5)(cid:8)(cid:20)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:11)(cid:21) +
(cid:26)(cid:12)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:20)(cid:4)(cid:17)(cid:8)(cid:6)(cid:12)(cid:6)(cid:12)-(cid:1) ((cid:8)(cid:20)(cid:24)(cid:11) (cid:18)(cid:4)(cid:24)(cid:8)(cid:6)(cid:5)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:4)6(cid:6)(cid:11)(cid:24)(cid:6)(cid:12)-(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11) (cid:8)(cid:12)(cid:18) (cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)-(cid:6)(cid:29)(cid:4)(cid:12)(cid:21) (cid:9)(cid:5)(cid:11)(cid:15)(cid:1) +
(cid:24)(cid:16)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) (cid:10)(cid:30)(cid:1) (cid:8)(((cid:5)(cid:30)(cid:6)(cid:12)- (cid:8)(cid:1) (cid:12)(cid:4).(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1) +
(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:21)(cid:1) +
(cid:30) (cid:15)(cid:31)(cid:5)(cid:13)(cid:11)(cid:5)(cid:4)(cid:24)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:1)(cid:25)(cid:3)(cid:24)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9)(cid:13) +
(cid:3)(cid:8)(cid:12)(cid:30)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)(cid:20)(cid:18)(cid:4)(cid:18)(cid:1) )(cid:12)(cid:18)(cid:4)(cid:20)(cid:1) (cid:8)(cid:1) (cid:29)(cid:8)(cid:20)(cid:6)(cid:4)(cid:24)(cid:30)(cid:1) (cid:15)(cid:25)(cid:1) +
(cid:27)(cid:15)(cid:12)(cid:18)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1).(cid:6)(cid:24)(cid:16)(cid:1)(cid:29)(cid:8)(cid:20)(cid:6)(cid:15))(cid:11)(cid:1)(cid:8)(((cid:5)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1)(cid:17)(cid:6)(cid:12)(cid:18)(cid:21)(cid:1)(cid:9)(cid:5)(cid:15)(cid:12)-(cid:1).(cid:6)(cid:24)(cid:16)(cid:1) +
(cid:24)(cid:16)(cid:4)(cid:1) (cid:18)(cid:4)(cid:29)(cid:4)(cid:5)(cid:15)((cid:17)(cid:4)(cid:12)(cid:24)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) +
(cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:1) (cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1) (cid:8)(cid:1) (cid:27)(cid:15)(cid:17)((cid:8)(cid:20)(cid:8)(cid:24)(cid:6)(cid:29)(cid:4)(cid:5)(cid:30)(cid:1) (cid:5)(cid:8)(cid:20)-(cid:4)(cid:1) (cid:12))(cid:17)(cid:10)(cid:4)(cid:20)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) +
A(cid:8)(cid:5)(cid:4)(cid:1)<0=(cid:14)(cid:1)(cid:3)(cid:26)’(cid:1)(cid:2)/=(cid:21)(cid:1)8(cid:4)(cid:20)(cid:4)(cid:1)3#!#’(cid:1)<(cid:2)*= (cid:8)(cid:12)(cid:18)(cid:1)3DE(cid:13)#’(cid:1)<(cid:2)>=(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:20)(cid:4)(cid:29)(cid:6)(cid:4).(cid:4)(cid:18)(cid:21) +
(cid:30) (cid:29) (cid:7)(cid:15)!(cid:15)"(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
’(cid:16)(cid:4)(cid:1) 3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) !(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) ’(cid:4)(cid:27)(cid:16)(cid:12)(cid:15)(cid:5)(cid:15)-(cid:30)(cid:1) 43#!#’5(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) +
.(cid:8)(cid:11)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1) (cid:8)(cid:24)(cid:1) D(cid:4)(cid:15)(cid:20)-(cid:4)(cid:1)(cid:3)(cid:8)(cid:11)(cid:15)(cid:12)(cid:1) (cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1) (cid:28)"(cid:1) (cid:9)(cid:20)(cid:17)(cid:30)(cid:1) +
!(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:1)F(cid:8)(cid:10)(cid:15)(cid:20)(cid:8)(cid:24)(cid:15)(cid:20)(cid:30)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:5)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) (cid:8)(cid:11)(cid:1)((cid:8)(cid:20)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1)3#!#’(cid:1) ((cid:20)(cid:15)-(cid:20)(cid:8)(cid:17)(cid:1) +
<(cid:2)*=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)3#!#’(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)(cid:2)(cid:2)BB(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:1)(cid:4)6(cid:6)(cid:11)(cid:24)(cid:1)(cid:6)(cid:12)(cid:1)BE/, +
(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) ((cid:15)(cid:11)(cid:4)(cid:11)(cid:14)(cid:1) /(cid:1) +
(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) /(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) +
(cid:6)(cid:5)(cid:5))(cid:17)(cid:6)(cid:12)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1)/(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:24)(cid:6)(cid:17)(cid:4)(cid:11)(cid:21)(cid:1)(cid:1)’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1)(cid:8)(cid:20)(cid:4) (cid:2)>(cid:14),1(cid:2)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1) +
/1+G*0>(cid:1)((cid:6)6(cid:4)(cid:5)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1)(cid:11)(cid:6)(cid:22)(cid:4)(cid:21)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:20)(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:8)(cid:24)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:25)(cid:15)(cid:5)(cid:5)(cid:15).(cid:6)(cid:12)-(cid:1) +
((cid:15)(cid:11)(cid:4)(cid:11)$(cid:1)(cid:20)(cid:6)-(cid:16)(cid:24)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:5)(cid:4)(cid:25)(cid:24)(cid:1)((cid:20)(cid:15)(cid:25)(cid:6)(cid:5)(cid:4)(cid:14)(cid:1)(cid:20)(cid:6)-(cid:16)(cid:24)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:5)(cid:4)(cid:25)(cid:24)(cid:1);)(cid:8)(cid:20)(cid:24)(cid:4)(cid:20)(cid:1)((cid:20)(cid:15)(cid:25)(cid:6)(cid:5)(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:20)(cid:6)-(cid:16)(cid:24)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:5)(cid:4)(cid:25)(cid:24)(cid:1) (cid:16)(cid:8)(cid:5)(cid:25)(cid:1) ((cid:20)(cid:15)(cid:25)(cid:6)(cid:5)(cid:4)(cid:21)(cid:1) (cid:26)(cid:12)(cid:1) (cid:24)(cid:16)(cid:4)(cid:11)(cid:4)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:4)(cid:11)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) .(cid:4)(cid:20)(cid:4)(cid:1) +
(cid:20)(cid:4)(cid:27)(cid:15)(cid:20)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)1,0(cid:1)(cid:24)(cid:15)(cid:1)B0,(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:21) +
(cid:30) (cid:30)(cid:6)(cid:7)#$(cid:22)(cid:15)"(cid:6)(cid:23)(cid:24)(cid:5)(cid:4)(cid:24)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:2) +
’(cid:16)(cid:4)(cid:1)3DE(cid:13)#’(cid:1)(cid:9)-(cid:6)(cid:12)-(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1).(cid:8)(cid:11)(cid:1)-(cid:4)(cid:12)(cid:4)(cid:20)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1)(cid:8)(cid:11)(cid:1)((cid:8)(cid:20)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1) +
#)(cid:20)(cid:15)((cid:4)(cid:8)(cid:12)(cid:1) (cid:28)(cid:12)(cid:6)(cid:15)(cid:12)(cid:1) ((cid:20)(cid:15) (cid:4)(cid:27)(cid:24)(cid:1) 3DE(cid:13)#’(cid:1) +
43(cid:8)(cid:27)(cid:4)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) D(cid:4)(cid:11)(cid:24))(cid:20)(cid:4)(cid:1) +
!(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) !(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:1) (cid:13)(cid:4)(cid:24).(cid:15)(cid:20)(cid:7)5(cid:21)’(cid:16)(cid:6)(cid:11)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:6)(cid:12)-(cid:1) +
(cid:2),,/(cid:1) (cid:11)(cid:27)(cid:8)(cid:12)(cid:12)(cid:4)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:11)(cid:16)(cid:15).(cid:6)(cid:12)-(cid:1) 0/(cid:1) (cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1) (cid:8)(cid:24)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) +
(cid:8)-(cid:4)(cid:11)(cid:21)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:16)(cid:8)(cid:29)(cid:4)(cid:1)(cid:29)(cid:8)(cid:20)(cid:30)(cid:6)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)?(cid:1)(cid:8)(((cid:20)(cid:15)6(cid:6)(cid:17)(cid:8)(cid:24)(cid:4)(cid:5)(cid:30)(cid:1)>,,G1,, +
((cid:6)6(cid:4)(cid:5)(cid:11)(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) .(cid:8)(cid:11)(cid:1) (cid:18)(cid:4)(cid:29)(cid:4)(cid:5)(cid:15)((cid:4)(cid:18)(cid:1) (cid:6)(cid:12)(cid:1) (cid:8)(cid:12)(cid:1) (cid:8)(cid:24)(cid:24)(cid:4)(cid:17)((cid:24)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:11)(cid:11)(cid:6)(cid:11)(cid:24)(cid:1) +
(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) .(cid:16)(cid:15)(cid:1) (cid:6)(cid:12)(cid:29)(cid:4)(cid:11)(cid:24)(cid:6)-(cid:8)(cid:24)(cid:4)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:4)(cid:25)(cid:25)(cid:4)(cid:27)(cid:24)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) (cid:8)-(cid:6)(cid:12)-(cid:1) (cid:15)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:8)(((cid:4)(cid:8)(cid:20)(cid:8)(cid:12)(cid:27)(cid:4)(cid:1)<(cid:2)> =(cid:21) +
(cid:30) % (cid:22)(cid:9)(cid:9)(cid:14)(cid:6)(cid:7)(cid:19)(cid:2)(cid:6)(cid:23)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:26)(cid:12)(cid:1)(cid:15)(cid:20)(cid:18)(cid:4)(cid:20)(cid:1)(cid:24)(cid:15)(cid:1) (cid:10))(cid:6)(cid:5)(cid:18)(cid:14)(cid:1) (cid:24)(cid:20)(cid:8)(cid:6)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:6)(cid:8)(cid:10)(cid:5)(cid:30)(cid:1) (cid:24)(cid:4)(cid:11)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:1) (cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) +
(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1).(cid:6)(cid:24)(cid:16)(cid:1)(cid:27)(cid:15)(cid:12)(cid:24)(cid:20)(cid:15)(cid:5)(cid:5)(cid:4)(cid:18)(cid:1)(cid:29)(cid:8)(cid:20)(cid:6)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)(cid:25)(cid:8)(cid:27)(cid:24)(cid:15)(cid:20)(cid:11)(cid:1)(cid:11))(cid:27)(cid:16)(cid:1) +
(cid:8)(cid:11)(cid:1)(cid:8)-(cid:4)(cid:14)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)((cid:15)(cid:11)(cid:4)(cid:14)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)(cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)(cid:15)(cid:27)(cid:27)(cid:5))(cid:11)(cid:6)(cid:15)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)(cid:16)(cid:8)(cid:6)(cid:20)(cid:14)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:6)(cid:5)(cid:5))(cid:17)(cid:6)(cid:12)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:6)(cid:11)(cid:1) (cid:12)(cid:4)(cid:4)(cid:18)(cid:4)(cid:18)(cid:21)(cid:1) (cid:26)(cid:12)(cid:1) (cid:11)((cid:6)(cid:24)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:29)(cid:8)(cid:20)(cid:6)(cid:15))(cid:11)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:14)(cid:1) (cid:24)(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) +
(cid:12)(cid:15)(cid:24)(cid:1)(cid:8)(cid:12)(cid:1)(cid:8)(((cid:20)(cid:15)((cid:20)(cid:6)(cid:8)(cid:24)(cid:4)(cid:1)(cid:15)(cid:12)(cid:4)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:8)-(cid:4)(cid:1)(cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21)(cid:1)(cid:3)(cid:15)(cid:11)(cid:24)(cid:1)(cid:27))(cid:20)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:1) +
(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1)(cid:18)(cid:15)(cid:12):(cid:24)(cid:1)(cid:16)(cid:8)(cid:29)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)((cid:4)(cid:15)((cid:5)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:14)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:6)(cid:25)(cid:1)(cid:24)(cid:16)(cid:4)(cid:30)(cid:1) +
(cid:16)(cid:8)(cid:29)(cid:4)(cid:14)(cid:1) (cid:24)(cid:16)(cid:4)(cid:30)(cid:1) (cid:18)(cid:15)(cid:1) (cid:12)(cid:15)(cid:24)(cid:1) (cid:17)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:24)(cid:16)(cid:4)(cid:6)(cid:20)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21)(cid:1) 3DE(cid:13)#’(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) +
(cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:11)(cid:1) (cid:11)(cid:27)(cid:8)(cid:12)(cid:12)(cid:4)(cid:18)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) ((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)(cid:11)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:1) (cid:17)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:6)(cid:12)-(cid:1) (cid:24)(cid:16)(cid:4)(cid:6)(cid:20)(cid:1) +
(cid:8)-(cid:4)(cid:11)?(cid:1)(cid:10))(cid:24)(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:5)(cid:6)-(cid:16)(cid:24)(cid:6)(cid:12)-(cid:1)(cid:27)(cid:15)(cid:12)(cid:18)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:14)(cid:1)(cid:10)(cid:8)(cid:27)(cid:7)-(cid:20)(cid:15))(cid:12)(cid:18)(cid:14)(cid:1)((cid:15)(cid:11)(cid:4)(cid:11)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:11)(cid:21)(cid:1)(cid:23)(cid:30)(cid:1)(cid:11)(cid:24))(cid:18)(cid:30)(cid:6)(cid:12)-(cid:1)(cid:15)(cid:24)(cid:16)(cid:4)(cid:20)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1)(cid:6)(cid:24)(cid:1) .(cid:8)(cid:11)(cid:1) (cid:27)(cid:15)(cid:12)(cid:27)(cid:5))(cid:18)(cid:4)(cid:18)(cid:1)(cid:24)(cid:15)(cid:1) +
((cid:20)(cid:15)(cid:29)(cid:6)(cid:18)(cid:4)(cid:1) (cid:8)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:1) (cid:27)(cid:15)(cid:12)(cid:18)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) (cid:8)(cid:12)(cid:1) (cid:8)-(cid:4)(cid:1) (cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1) +
((cid:20)(cid:15) (cid:4)(cid:27)(cid:24)(cid:21)(cid:1) (cid:9)-(cid:4)(cid:14)(cid:1) (cid:4)(cid:12)(cid:15))-(cid:16)(cid:1) (cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) .(cid:20)(cid:6)(cid:12)(cid:7)(cid:5)(cid:4)(cid:1) (cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) +
(cid:25)(cid:20)(cid:15)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)((cid:15)(cid:11)(cid:4)(cid:11)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:10)(cid:8)(cid:11)(cid:6)(cid:27)(cid:1)(cid:12)(cid:4)(cid:4)(cid:18)(cid:11)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:25)(cid:6)(cid:4)(cid:5)(cid:18)(cid:21)(cid:1) +
% (cid:10)(cid:9)(cid:13)(cid:8)(cid:2)(cid:5)&(cid:11)(cid:5)(cid:19)(cid:4)(cid:6) ’((cid:6) +
(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6) (cid:7)(cid:3)(cid:8)(cid:9)(cid:6) +
’(cid:16)(cid:4)(cid:1) (cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1) 3(cid:8)(cid:27)(cid:4)(cid:1) (cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:25)(cid:6)(cid:20)(cid:11)(cid:24)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) +
(cid:17)(cid:6)(cid:18)(cid:18)(cid:5)(cid:4)E(cid:4)(cid:8)(cid:11)(cid:24)(cid:14)(cid:1)(cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:11)(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:20)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:5)(cid:8)(cid:20)-(cid:4)(cid:1)(cid:12))(cid:17)(cid:10)(cid:4)(cid:20)(cid:1)(cid:15)(cid:25)(cid:1) +
(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11) (cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)01(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:1)(cid:15)(cid:5)(cid:18)(cid:21) +
(cid:26)3(cid:19)(cid:23)(cid:1)(cid:6)(cid:11)(cid:1)(cid:8)(cid:1)(cid:5)(cid:8)(cid:20)-(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:8)(cid:24)(cid:1)(cid:27)(cid:8)(cid:12)(cid:1)(cid:11))(((cid:15)(cid:20)(cid:24)(cid:1)(cid:11)(cid:24))(cid:18)(cid:6)(cid:4)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:8)-(cid:4)(cid:1) +
(cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:11)(cid:30)(cid:11)(cid:24)(cid:4)(cid:17)(cid:11)(cid:21)(cid:1) (cid:26)(cid:24)(cid:1) (cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:11)(cid:1) (cid:15)(cid:29)(cid:4)(cid:20)(cid:1) *(cid:14)+,,(cid:1) (cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) +
(cid:13)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:24)(cid:20)(cid:6)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:15)(cid:12)(cid:1).(cid:4)(cid:8)(cid:20)(cid:1)4(cid:27)(cid:5)(cid:15)(cid:24)(cid:16)(cid:4)(cid:11)(cid:14)(cid:1)-(cid:5)(cid:8)(cid:11)(cid:11)(cid:4)(cid:11)(cid:14)(cid:1)(cid:4)(cid:24)(cid:27)(cid:21)5(cid:14)(cid:1) (cid:17)(cid:8)(cid:7)(cid:4)E)((cid:14)(cid:1)(cid:16)(cid:8)(cid:6)(cid:20)(cid:1) +
(cid:11)(cid:24)(cid:30)(cid:5)(cid:4)(cid:14)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:16)(cid:8)(cid:6)(cid:20)(cid:1) .(cid:4)(cid:20)(cid:4)(cid:1) (cid:6)(cid:17)((cid:15)(cid:11)(cid:4)(cid:18)(cid:1) (cid:24)(cid:15)(cid:1) ((cid:8)(cid:20)(cid:24)(cid:6)(cid:27)(cid:6)((cid:8)(cid:12)(cid:24)(cid:11)(cid:21)(cid:1) D(cid:20)(cid:15))(cid:12)(cid:18)E(cid:24)(cid:20))(cid:24)(cid:16)(cid:1) +
(cid:6)(cid:12)(cid:25)(cid:15)(cid:20)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)(cid:6)(cid:12)(cid:27)(cid:5))(cid:18)(cid:6)(cid:12)-(cid:1)(cid:26)(cid:19)(cid:14)(cid:1)(cid:8)-(cid:4)(cid:14)(cid:1)(cid:7)(cid:6)(cid:12)(cid:18)(cid:1)(cid:15)(cid:25) ((cid:15)(cid:11)(cid:4)(cid:1)(cid:15)(cid:20)(cid:1)(cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:6)(cid:25)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:1) (cid:16)(cid:8)(cid:11)(cid:1) -(cid:5)(cid:8)(cid:11)(cid:11)(cid:4)(cid:11)(cid:1) (cid:6)(cid:11)(cid:1) ((cid:20)(cid:15)(cid:29)(cid:6)(cid:18)(cid:4)(cid:18)(cid:21)(cid:1) #6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1) (cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1) +
.(cid:4)(cid:20)(cid:4)(cid:1)((cid:16)(cid:15)(cid:24)(cid:15)-(cid:20)(cid:8)((cid:16)(cid:4)(cid:18)(cid:1).(cid:6)(cid:24)(cid:16)(cid:1)(cid:8)(cid:1)(cid:25)(cid:6)(cid:12)(cid:4)E(cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)-(cid:6)(cid:24)(cid:8)(cid:5)(cid:1)(cid:27)(cid:8)(cid:17)(cid:4)(cid:20)(cid:8)(cid:1) +
(cid:6)(cid:12)(cid:1)(cid:18)(cid:8)(cid:30)(cid:5)(cid:6)-(cid:16)(cid:24)(cid:21)(cid:1)’(cid:16)(cid:4)(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1).(cid:4)(cid:20)(cid:4)(cid:1)(cid:11)(cid:4)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1)(cid:15)(cid:12)(cid:1)(cid:8)(cid:1)(cid:11)(cid:24)(cid:15)(cid:15)(cid:5)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:6)(cid:12)(cid:11)(cid:24)(cid:20))(cid:27)(cid:24)(cid:4)(cid:18)(cid:1) +
(cid:24)(cid:15)(cid:1) (cid:17)(cid:8)(cid:6)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:1) (cid:8)(cid:1) (cid:27)(cid:15)(cid:12)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:1) (cid:16)(cid:4)(cid:8)(cid:18)(cid:1) ((cid:15)(cid:11)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) 4(cid:8)(cid:5)(cid:24)(cid:16)(cid:15))-(cid:16)(cid:1) (cid:11)(cid:5)(cid:6)-(cid:16)(cid:24)(cid:1) +
(cid:17)(cid:15)(cid:29)(cid:4)(cid:17)(cid:4)(cid:12)(cid:24)(cid:11)(cid:1).(cid:4)(cid:20)(cid:4)(cid:1))(cid:12)(cid:8)(cid:29)(cid:15)(cid:6)(cid:18)(cid:8)(cid:10)(cid:5)(cid:4)5(cid:21) +
’(cid:16)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)>0,G+>,(cid:1)((cid:6)6(cid:4)(cid:5)(cid:11)(cid:1)(cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)/>(cid:1)(cid:10)(cid:6)(cid:24)(cid:1)(cid:18)(cid:4)((cid:24)(cid:16) (cid:14)(cid:1) +
(cid:8)(cid:10)(cid:15))(cid:24)(cid:1)>,(cid:1)(cid:31)(cid:10)(cid:30)(cid:24)(cid:4)(cid:11)(cid:1)(cid:11)(cid:6)(cid:22)(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)CHD(cid:1)(cid:25)(cid:15)(cid:20)(cid:17)(cid:8)(cid:24) (cid:21)(cid:1) +
#(cid:12)(cid:15))-(cid:16)(cid:1) (cid:5))(cid:17)(cid:6)(cid:12)(cid:15)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) .(cid:20)(cid:6)(cid:12)(cid:7)(cid:5)(cid:4)(cid:1) ((cid:20)(cid:15)(cid:27)(cid:4)(cid:11)(cid:11)(cid:6)(cid:12)-(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:11)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:15))(cid:24)(cid:1) (cid:11)(cid:16)(cid:8)(cid:18)(cid:15).(cid:11)(cid:1) (cid:6)(cid:11)(cid:1) (cid:12)(cid:4)(cid:4)(cid:18)(cid:4)(cid:18)(cid:1) 4(cid:6)(cid:12)(cid:1) (cid:8)-(cid:4)(cid:1) (cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) +
.(cid:20)(cid:6)(cid:12)(cid:7)(cid:5)(cid:4)(cid:1) (cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:1) +
(cid:24)(cid:16)(cid:4)(cid:1) +
(cid:18)(cid:6)(cid:11)(cid:24)(cid:6)(cid:12)-)(cid:6)(cid:11)(cid:16)(cid:6)(cid:12)-(cid:1)(cid:15)(cid:25)(cid:1)(cid:11)(cid:4)(cid:12)(cid:6)(cid:15)(cid:20)(cid:11)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:24)(cid:16)(cid:15)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:30)(cid:15))(cid:12)-(cid:4)(cid:20)(cid:1)(cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:4)(cid:11)(cid:1) +
<(cid:2)=5(cid:21)(cid:1) ")(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1) .(cid:4)(cid:20)(cid:4)(cid:1) ((cid:16)(cid:15)(cid:24)(cid:15)-(cid:20)(cid:8)((cid:16)(cid:4)(cid:18)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:15))(cid:24)(cid:1) (cid:8)(cid:12)(cid:30)(cid:1) ((cid:20)(cid:15) (cid:4)(cid:27)(cid:24)(cid:15)(cid:20)(cid:11)(cid:1) (cid:15)(cid:20)(cid:1) +
(cid:6)(cid:17)((cid:15)(cid:20)(cid:24)(cid:8)(cid:12)(cid:24)(cid:1) +
(cid:25)(cid:15)(cid:20)(cid:1) +
(cid:6)(cid:11)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:10)(cid:4)(cid:4)(cid:12)(cid:1) (cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)?(cid:1) (cid:11))(cid:27)(cid:16)(cid:1) (cid:8)(cid:11)(cid:1) (cid:9)!(cid:1) <+=(cid:14)(cid:1) (cid:23)(cid:9)(cid:13)7(cid:9)(cid:1) <@=(cid:14)(cid:1) +
(cid:27)(cid:15)(cid:20)(cid:20)(cid:4)(cid:11)((cid:15)(cid:12)(cid:18)(cid:6)(cid:12)-(cid:1) (cid:24)(cid:15)(cid:1) +(cid:2)+(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)9(cid:11)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:11)(cid:1) 4>0@(cid:1) (cid:17)(cid:4)(cid:12)(cid:14)(cid:1) (cid:2)/B(cid:1) .(cid:15)(cid:17)(cid:4)(cid:12)5(cid:21)(cid:1) +
06560d5721ecc487a4d70905a485e22c9542a522SUN, YU: DEEP FACIAL ATTRIBUTE DETECTION IN THE WILD +
Deep Facial Attribute Detection in the Wild: +
From General to Specific +
Department of Automation +
University of Science and Technology
of China +
Hefei, China +
('4364455', 'Yuechuan Sun', 'yuechuan sun')
('1720236', 'Jun Yu', 'jun yu')
ycsun@mail.ustc.edu.cn +
harryjun@ustc.edu.cn +
06526c52a999fdb0a9fd76e84f9795a69480cecf
06bad0cdda63e3fd054e7b334a5d8a46d8542817Sharing Features Between Objects and Their Attributes +
1Department of Computer Science +
University of Texas at Austin
2Computer Science Department +
University of Southern California
('35788904', 'Sung Ju Hwang', 'sung ju hwang')
('1693054', 'Fei Sha', 'fei sha')
('1794409', 'Kristen Grauman', 'kristen grauman')
{sjhwang,grauman}@cs.utexas.edu +
feisha@usc.edu +
06fe63b34fcc8ff68b72b5835c4245d3f9b8a016Mach Learn +
DOI 10.1007/s10994-013-5336-9 +
Learning semantic representations of objects +
and their parts +
Received: 24 May 2012 / Accepted: 26 February 2013 +
© The Author(s) 2013 +
('1935910', 'Grégoire Mesnil', 'grégoire mesnil')
('1732280', 'Gal Chechik', 'gal chechik')
06aab105d55c88bd2baa058dc51fa54580746424Image Set based Collaborative Representation for +
Face Recognition +
('2873638', 'Pengfei Zhu', 'pengfei zhu')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('36685537', 'Lei Zhang', 'lei zhang')
('1698371', 'David Zhang', 'david zhang')
0641dbee7202d07b6c78a39eecd312c17607412e283 +
978-1-4799-5751-4/14/$31.00 ©2014 IEEE +
ICIP 2014 +
WITH APPLICATIONS TO MOTION SEGMENTATION AND FACE CLUSTERING +
NULL SPACE CLUSTERING +
Australian National University, Canberra
2NICTA, Canberra +
('2744345', 'Pan Ji', 'pan ji')
('2015152', 'Yiran Zhong', 'yiran zhong')
('40124570', 'Hongdong Li', 'hongdong li')
('2862871', 'Mathieu Salzmann', 'mathieu salzmann')
fpan.ji,hongdong.lig@anu.edu.au,mathieu.salzmann@nicta.com.au +
06262d14323f9e499b7c6e2a3dec76ad9877ba04Real-Time Pose Estimation Piggybacked on Object Detection +
Brno, Czech Republic +
('1785162', 'Adam Herout', 'adam herout')Graph@FIT, Brno University of Technology +
ijuranek,herout,idubska,zemcik@fit.vutbr.cz +
062c41dad67bb68fefd9ff0c5c4d296e796004dcTemporal Generative Adversarial Nets with Singular Value Clipping +
Preferred Networks inc., Japan +
('49160719', 'Masaki Saito', 'masaki saito')
('8252749', 'Eiichi Matsumoto', 'eiichi matsumoto')
('3083107', 'Shunta Saito', 'shunta saito')
{msaito, matsumoto, shunta}@preferred.jp +
06400a24526dd9d131dfc1459fce5e5189b7baecEvent Recognition in Photo Collections with a Stopwatch HMM +
1Computer Vision Lab +
ETH Z¨urich, Switzerland +
2ESAT, PSI-VISICS +
K.U. Leuven, Belgium +
('1696393', 'Lukas Bossard', 'lukas bossard')
('2737253', 'Matthieu Guillaumin', 'matthieu guillaumin')
('1681236', 'Luc Van Gool', 'luc van gool')
lastname@vision.ee.ethz.ch +
vangool@esat.kuleuven.be +
062d67af7677db086ef35186dc936b4511f155d7They Are Not Equally Reliable: Semantic Event Search +
using Differentiated Concept Classifiers +
Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney
Carnegie Mellon University
('1729163', 'Xiaojun Chang', 'xiaojun chang')
('1698559', 'Yi Yang', 'yi yang')
('1752601', 'Eric P. Xing', 'eric p. xing')
cxj273@gmail.com, yaoliang@cs.cmu.edu, yi.yang@uts.edu.au, epxing@cs.cmu.edu +
06c2086f7f72536bf970ca629151b16927104df3PALMERO ET AL.: MULTI-MODAL RECURRENT CNN FOR 3D GAZE ESTIMATION +
Recurrent CNN for 3D Gaze Estimation +
using Appearance and Shape Cues +
1 Dept. Mathematics and Informatics +
Universitat de Barcelona, Spain +
2 Computer Vision Center +
Campus UAB, Bellaterra, Spain +
3 Dept. Electrical and Computer Eng. +
University of Calgary, Canada
4 Dept. Engineering +
University of Larestan, Iran
('3413560', 'Cristina Palmero', 'cristina palmero')
('38081877', 'Javier Selva', 'javier selva')
('1921285', 'Mohammad Ali Bagheri', 'mohammad ali bagheri')
('7855312', 'Sergio Escalera', 'sergio escalera')
crpalmec7@alumnes.ub.edu +
javier.selva.castello@est.fib.upc.edu +
mohammadali.bagheri@ucalgary.ca +
sergio@maia.ub.es +
0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0Iosifidis, A., Tefas, A., & Pitas, I. (2014). Exploiting Local Class Information +
in Extreme Learning Machine. Paper presented at International Joint +
Conference on Computational Intelligence (IJCCI), Rome, Italy. +
Peer reviewed version +
Link to publication record in Explore Bristol Research +
PDF-document +
University of Bristol - Explore Bristol Research
General rights +
This document is made available in accordance with publisher policies. Please cite only the published +
version using the reference above. Full terms of use are available: +
http://www.bristol.ac.uk/pure/about/ebr-terms +
060034b59275c13746413ca9c67d6304cba50da6Ordered Trajectories for Large Scale Human Action Recognition +
1Vision & Sensing, HCC Lab, +
ESTeM, University of Canberra
2IHCC, RSCS, CECS, +
Australian National University
('1793720', 'O. V. Ramana Murthy', 'o. v. ramana murthy')
('1717204', 'Roland Goecke', 'roland goecke')
O.V.RamanaMurthy@ieee.org +
roland.goecke@ieee.org +
060820f110a72cbf02c14a6d1085bd6e1d994f6aFine-Grained Classification of Pedestrians in Video: Benchmark and State of the Art +
California Institute of Technology
The dataset was labelled with bounding boxes, tracks, pose and fine- +
grained labels. To achieve this, crowdsourcing, using workers from Ama- +
zon’s Mechanical Turk (MTURK) was used. A summary of the dataset’s +
statistics can be found in Table 1. +
Number of Frames Sent to MTURK +
Number of Frames with at least 1 Pedestrian +
Number of Bounding Box Labels +
Number of Pose Labels +
Number of Tracks +
38,708 +
20,994 +
32,457 +
27,454 +
4,222 +
Table 1: Dataset Statistics +
A state-of-the-art algorithm for fine-grained classification was tested us- +
ing the dataset. The results are reported as a useful performance baseline. +
The dataset is split into a training/validation set containing 4 videos, with +
the remaining 3 videos forming the test set. Since each video was collected +
on a unique day, different images of the same person do not appear in both +
the training and testing sets. +
The fine-grained categorisation benchmark uses ’pose normalised deep +
convolutional nets’ as proposed by Branson et al. [1]. In this framework, +
features are extracted by applying deep convolutional nets to image re- +
gions that are normalised by pose. It has state-of the-art performance on +
bird species categorisation and we believe that it will generalise to the CRP +
dataset. Results can be found in Figure 2 +
Figure 2: Fine-grained classification results. We report the mean average +
accuracy across 10 different train/test splits, for each of the subcategories +
in CRP, using the method of [1]. Average accuracy is computed assuming +
that there is a uniform prior across the classes. The reference value for +
each subcategory corresponds to chance. The results suggest that CRP is a +
challenging dataset. +
A novel feature of our dataset is the occlusion labelling of the keypoints. +
Exploiting this information may be the first step towards improving perfor- +
mance for fine-grained classification. Using temporal information is another +
alternative. Most pedestrians in CRP appear multiple times over large inter- +
vals of time. We are planning on adding an identity label for each individ- +
ual, to make our dataset useful for studying individual re-identification from +
a moving camera. +
Improved Bird Species Recognition Using Pose Normalized Deep Con- +
volutional Nets. In BMVC, 2014. +
Figure 1: Three examples from the CRP dataset. Annotations include a +
bounding box, tracks, parts, occlusion, sex, age, weight and clothing style. +
People are an important component of a machine’s environment. De- +
tecting, tracking, and recognising people, interpreting their behaviour and +
interacting with them is a valuable capability for machines. Using vision to +
estimate human attributes such as: age, sex, activity, social status, health, +
pose and motion patterns is useful for interpreting and predicting behaviour. +
This motivates our interest in fine-grained categorisation of people. +
In this work, we introduce a public video dataset—Caltech Roadside +
Pedestrians (CRP)—to further advance the state-of-the-art in fine-grained +
categorisation of people using the entire human body. This dataset is also +
useful for benchmarking tracking, detection and pose estimation of pedes- +
trians. +
Its novel and distinctive features are: +
1. Size (27,454 bounding box and pose labels) – making it suitable for +
training deep-networks. +
2. Natural behaviour – subjects are recorded “in-the-wild” so are un- +
aware, and behave naturally. +
3. Viewpoint – Pedestrians are viewed from front, profile, back and ev- +
erything in between. +
4. Moving camera – More general and challenging than surveillance +
video with static background. +
5. Realism – There is a variety of outdoor background and lighting con- +
ditions +
6. Multi-class subcategories – age, clothing style and body shape. +
7. Detailed annotation – bounding boxes, tracks and 14 keypoints with +
occlusion information; examples can be found in Figure 1. Each +
bounding box is also labelled with the fine-grained categories of age +
(5 classes), sex (2 classes), weight (3 classes) and clothing type (4 +
classes). +
8. Availability – All videos and annotations are publicly available +
CRP contains seven, twenty-one minute videos. Each video is captured +
by mounting a rightwards-pointing, GoPro Hero3 camera to the roof of a +
car. The car then completes three laps of a ring road within a park where +
there are many walkers and joggers. Each video was recorded on a different +
day. +
('1990633', 'David Hall', 'david hall')
('1690922', 'Pietro Perona', 'pietro perona')
('1690922', 'Pietro Perona', 'pietro perona')
0653dcdff992ad980cd5ea5bc557efb6e2a53ba1
063a3be18cc27ba825bdfb821772f9f59038c207This is a repository copy of The development of spontaneous facial responses to others’ +
emotions in infancy. An EMG study. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/125231/ +
Version: Published Version +
Article: +
Kaiser, Jakob, Crespo-Llado, Maria Magdalena, Turati, Chiara et al. (1 more author) +
(2017) The development of spontaneous facial responses to others’ emotions in infancy. +
An EMG study. Scientific Reports. ISSN 2045-2322 +
https://doi.org/10.1038/s41598-017-17556-y +
Reuse +
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +
authors for the original work. More information and the full terms of the licence here: +
https://creativecommons.org/licenses/ +
Takedown +
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +
https://eprints.whiterose.ac.uk/ +
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. +
eprints@whiterose.ac.uk +
064cd41d323441209ce1484a9bba02a22b625088Selective Transfer Machine for Personalized Facial Action Unit Detection +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
University of Pittsburgh, Pittsburgh, PA
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
06c2dfe1568266ad99368fc75edf79585e29095fBayesian Active Appearance Models +
Imperial College London, United Kingdom
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
{ja310,s.zafeiriou}@imperial.ac.uk +
06f39834e870278243dda826658319be2d5d8dedRECOGNIZING UNSEEN ACTIONS IN A DOMAIN-ADAPTED EMBEDDING SPACE +
Arizona State University
('2180892', 'Yikang Li', 'yikang li')
('8060096', 'Sheng-hung Hu', 'sheng-hung hu')
('2913552', 'Baoxin Li', 'baoxin li')
06d7ef72fae1be206070b9119fb6b61ce4699587On One-Shot Similarity Kernels: explicit feature maps and properties +
†Department of Computing +
Imperial College London
,†,(cid:2) +
∗Electronics Laboratory, Department of Physics, +
University of Patras, Greece
(cid:2)School of Science and Technology, +
Middlesex University, London
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1754270', 'Irene Kotsia', 'irene kotsia')
s.zafeiriou@imperial.ac.uk +
062d0813815c2b9864cd9bb4f5a1dc2c580e0d90Encouraging LSTMs to Anticipate Actions Very Early +
Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO
('2862871', 'Mathieu Salzmann', 'mathieu salzmann')
('1688071', 'Basura Fernando', 'basura fernando')
('2370776', 'Lars Petersson', 'lars petersson')
('34234277', 'Lars Andersson', 'lars andersson')
firstname.lastname@data61.csiro.au, mathieu.salzmann@epfl.ch, basura.fernando@anu.edu.au +
06a9ed612c8da85cb0ebb17fbe87f5a137541603Deep Learning of Player Trajectory Representations for Team +
Activity Analysis +
('10386960', 'Nazanin Mehrasa', 'nazanin mehrasa')
('19198359', 'Yatao Zhong', 'yatao zhong')
('2123865', 'Frederick Tung', 'frederick tung')
('3004771', 'Luke Bornn', 'luke bornn')
('10771328', 'Greg Mori', 'greg mori')
('2190580', 'Simon Fraser', 'simon fraser')
{nmehrasa, yataoz, ftung, lbornn}@sfu.ca, mori@cs.sfu.ca +
06ad99f19cf9cb4a40741a789e4acbf4433c19aeSenTion: A framework for Sensing Facial +
Expressions +
('31623038', 'Rahul Islam', 'rahul islam')
('3451315', 'Karan Ahuja', 'karan ahuja')
('1784438', 'Sandip Karmakar', 'sandip karmakar')
{rahul.islam, karan.ahuja, sandip, ferdous}@iiitg.ac.in +
6c27eccf8c4b22510395baf9f0d0acc3ee547862Using CMU PIE Human Face Database to a +
Convolutional Neural Network - Neocognitron +

Rodovia Washington Luis, Km 235, São Carlos – SP - Brazil +
Systems and Telematics - Neurolab
Via Opera Pia, 13 – I-16145 – Genoa - Italy +
('2231336', 'José Hiroki Saito', 'josé hiroki saito')
('3261775', 'Marcelo Hirakuri', 'marcelo hirakuri')
('2558289', 'André Saunite', 'andré saunite')
('36243877', 'Alessandro Noriaki Ide', 'alessandro noriaki ide')
('40209065', 'Sandra Abib', 'sandra abib')
{saito,hirakuri,sabib}@dc.ufscar.br, tiagocarvalho@uol.com.br, saunite@fai.com.br +
noriaki@dist.unige.it +
6c66ae815e7e508e852ecb122fb796abbcda16a8International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.5, October 2015 +
A SURVEY OF THE TRENDS IN FACIAL AND +
EXPRESSION RECOGNITION DATABASES AND +
METHODS +
University of Washington, Bothell, USA
('2971095', 'Sohini Roychowdhury', 'sohini roychowdhury')
('33073434', 'Michelle Emmons', 'michelle emmons')
6ca2c5ff41e91c34696f84291a458d1312d15bf2LIPNET: SENTENCE-LEVEL LIPREADING +
University of Oxford, Oxford, UK
Google DeepMind, London, UK 2 +
CIFAR, Canada 3 +
{yannis.assael,brendan.shillingford, +
('3365565', 'Yannis M. Assael', 'yannis m. assael')
('3144580', 'Brendan Shillingford', 'brendan shillingford')
('1766767', 'Shimon Whiteson', 'shimon whiteson')
shimon.whiteson,nando.de.freitas}@cs.ox.ac.uk +
6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365Privacy-Preserving Deep Inference for Rich User +
Data on The Cloud +
Sharif University of Technology
Queen Mary University of London
Nokia Bell Labs and University of Oxford
('9920557', 'Ali Shahin Shamsabadi', 'ali shahin shamsabadi')
('2251846', 'Ali Taheri', 'ali taheri')
('2226725', 'Kleomenis Katevas', 'kleomenis katevas')
('1688652', 'Hamid R. Rabiee', 'hamid r. rabiee')
('2772904', 'Nicholas D. Lane', 'nicholas d. lane')
('1763096', 'Hamed Haddadi', 'hamed haddadi')
6c690af9701f35cd3c2f6c8d160b8891ad85822aMulti-Task Learning with Low Rank Attribute Embedding for Person +
Re-identification +
Peking University
University of Maryland College Park
University of Texas at San Antonio
('20798990', 'Chi Su', 'chi su')
('1752128', 'Fan Yang', 'fan yang')
('1776581', 'Shiliang Zhang', 'shiliang zhang')
('1693428', 'Larry S. Davis', 'larry s. davis')
6c5fbf156ef9fc782be0089309074cc52617b868Controllable Video Generation with Sparse Trajectories +
Cornell University
('19235216', 'Zekun Hao', 'zekun hao')
('47932904', 'Xun Huang', 'xun huang')
('50172592', 'Serge Belongie', 'serge belongie')
{hz472,xh258,sjb344}@cornell.edu +
6c304f3b9c3a711a0cca5c62ce221fb098dccff0Attentive Semantic Video Generation using Captions +
IIT Hyderabad +
IIT Hyderabad +
('8268761', 'Tanya Marwah', 'tanya marwah')
('47351893', 'Gaurav Mittal', 'gaurav mittal')
('1699429', 'Vineeth N. Balasubramanian', 'vineeth n. balasubramanian')
ee13b1044@iith.ac.in +
gaurav.mittal.191013@gmail.com +
vineethnb@iith.ac.in +
6ce23cf4f440021b7b05aa3c1c2700cc7560b557Learning Local Convolutional Features for Face +
Recognition with 2D-Warping +
Human Language Technology and Pattern Recognition Group, +
RWTH Aachen University
('1804963', 'Harald Hanselmann', 'harald hanselmann')
('1685956', 'Hermann Ney', 'hermann ney')
surname@cs.rwth-aachen.de +
6c80c834d426f0bc4acd6355b1946b71b50cbc0bPose-Based Two-Stream Relational Networks for +
Action Recognition in Videos +
1Center for Research on Intelligent Perception and Computing (CRIPAC), +
National Laboratory of Pattern Recognition (NLPR) +
2Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), +
Institute of Automation, Chinese Academy of Sciences (CASIA
University of Chinese Academy of Sciences (UCAS
('47824598', 'Wei Wang', 'wei wang')
('47539600', 'Jinjin Zhang', 'jinjin zhang')
('39927579', 'Chenyang Si', 'chenyang si')
('1693997', 'Liang Wang', 'liang wang')
{wangwei, wangliang}@nlpr.ia.ac.cn, {jinjin.zhang, +
chenyang.si}@cripac.ia.ac.cn +
6cb7648465ba7757ecc9c222ac1ab6402933d983Visual Forecasting by Imitating Dynamics in Natural Sequences +
Stanford University National Tsing Hua University
('32970572', 'Kuo-Hao Zeng', 'kuo-hao zeng'){khzeng, bshen88, dahuang, jniebles}@cs.stanford.edu sunmin@ee.nthu.edu.tw +
6c2b392b32b2fd0fe364b20c496fcf869eac0a98DOI 10.1007/s00138-012-0423-7 +
ORIGINAL PAPER +
Fully automatic face recognition framework based +
on local and global features +
Received: 30 May 2011 / Revised: 21 February 2012 / Accepted: 29 February 2012 / Published online: 22 March 2012 +
© Springer-Verlag 2012 +
('36048866', 'Cong Geng', 'cong geng')
6c6bb85a08b0bdc50cf8f98408d790ccdb418798Recognition of facial expressions in presence of +
partial occlusion +
AIIA Laboratory +
Computer Vision and Image Processing Group +
Department of Informatics +
Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
Phone: +30 2310 996361 +
Fax: +30 2310 998453 +
Web: http://poseidon.csd.auth.gr +
('2336758', 'Ioan Buciu', 'ioan buciu')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
E-mail: {nelu,ekotsia,pitas}@zeus.csd.auth.gr +
6c705285c554985ecfe1117e854e1fe1323f8c21DIY Human Action Data Set Generation +
Illya Zharkov +
Simon Fraser University
Microsoft +
Microsoft +
Microsoft +
('1916516', 'Mehran Khodabandeh', 'mehran khodabandeh')
('3227254', 'Hamid Reza Vaezi Joze', 'hamid reza vaezi joze')
('3811436', 'Vivek Pradeep', 'vivek pradeep')
mkhodaba@sfu.ca +
hava@microsoft.com +
zharkov@microsoft.com +
vpradeep@microsoft.com +
6cddc7e24c0581c50adef92d01bb3c73d8b80b41Face Verification Using the LARK +
Representation +
('3326805', 'Hae Jong Seo', 'hae jong seo')
('1718280', 'Peyman Milanfar', 'peyman milanfar')
6cfc337069868568148f65732c52cbcef963f79dAudio-Visual Speaker Localization via Weighted +
Clustering +
To cite this version: +
Localization via Weighted Clustering. IEEE Workshop on Machine Learning for Signal Processing, +
Sep 2014, Reims, France. pp.1-6, 2014, <10.1109/MLSP.2014.6958874>. +
HAL Id: hal-01053732 +
https://hal.archives-ouvertes.fr/hal-01053732 +
Submitted on 11 Aug 2014 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')
('1794229', 'Radu Horaud', 'radu horaud')
('1785817', 'Florence Forbes', 'florence forbes')
('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')
('1794229', 'Radu Horaud', 'radu horaud')
('1785817', 'Florence Forbes', 'florence forbes')
6cd96f2b63c6b6f33f15c0ea366e6003f512a951A New Approach in Solving Illumination and Facial Expression Problems +
for Face Recognition +
a The University of Nottingham Malaysia Campus
Tel : 03-89248358, Fax : 03-89248017 +
Jalan Broga +
43500 Semenyih, Selangor +
('1968167', 'Yee Wan Wong', 'yee wan wong')
('9273662', 'Kah Phooi Seng', 'kah phooi seng')
('2808528', 'Li-Minn Ang', 'li-minn ang')
E-mail : yeewan.wong@nottingham.edu.my +
6c8c7065d1041146a3604cbe15c6207f486021baAttention Modeling for Face Recognition via Deep Learning +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 999077 CHINA +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 99907 CHINA +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 99907 CHINA +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 99907 CHINA +
Sheng-hua Zhong (csshzhong@comp.polyu.edu.hk) +
Yan Liu (csyliu@comp.polyu.edu.hk) +
Yao Zhang (csyaozhang@comp.polyu.edu.hk) +
Fu-lai Chung (cskchung@comp.polyu.edu.hk) +
390f3d7cdf1ce127ecca65afa2e24c563e9db93bLearning Deep Representation for Face +
Alignment with Auxiliary Attributes +
('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')
('1693209', 'Ping Luo', 'ping luo')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
39ed31ced75e6151dde41944a47b4bdf324f922bPose-Guided Photorealistic Face Rotation +
CRIPAC and NLPR and CEBSIT, CASIA 2University of Chinese Academy of Sciences
3Noah’s Ark Laboratory, Huawei Technologies Co., Ltd. +
('49995036', 'Yibo Hu', 'yibo hu')
('47150161', 'Xiang Wu', 'xiang wu')
('46806278', 'Bing Yu', 'bing yu')
('50361927', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
{yibo.hu, xiang.wu}@cripac.ia.ac.cn, yubing5@huawei.com, {rhe, znsun}@nlpr.ia.ac.cn +
3918b425bb9259ddff9eca33e5d47bde46bd40aaCopyright +
by +
David Lieh-Chiang Chen +
2012 +
39ce143238ea1066edf0389d284208431b53b802
39ce2232452c0cd459e32a19c1abe2a2648d0c3f
3998c5aa6be58cce8cb65a64cb168864093a9a3e
39dc2ce4cce737e78010642048b6ed1b71e8ac2fRecognition of Six Basic Facial Expressions by Feature-Points Tracking using +
RBF Neural Network and Fuzzy Inference System +
Islamic Azad University of AHAR
Elect. Eng. Faculty, Tabriz University, Tabriz, Iran
+
('3210269', 'Hadi Seyedarabi', 'hadi seyedarabi')
('2488201', 'Ali Aghagolzadeh', 'ali aghagolzadeh')
('1766050', 'Sohrab Khanmohammadi', 'sohrab khanmohammadi')
seyedarabi@tabrizu.ac.ir , aghagol@tabrizu.ac.ir , khan@tabrizu.ac.ir +
397aeaea61ecdaa005b09198942381a7a11cd129
3991223b1dc3b87883cec7af97cf56534178f74aA Unified Framework for Context Assisted Face Clustering +
Department of Computer Science +
University of California, Irvine
('3338094', 'Liyan Zhang', 'liyan zhang')
('1818681', 'Dmitri V. Kalashnikov', 'dmitri v. kalashnikov')
('1686199', 'Sharad Mehrotra', 'sharad mehrotra')
39b22bcbd452d5fea02a9ee63a56c16400af2b83
399a2c23bd2592ebe20aa35a8ea37d07c14199da
396a19e29853f31736ca171a3f40c506ef418a9fReal World Real-time Automatic Recognition of Facial Expressions +
Exploratory Computer Vision Group, IBM T. J. Watson Research Center
PO Box 704, Yorktown Heights, NY 10598 +
('8193125', 'Ying-li Tian', 'ying-li tian')
('1773140', 'Ruud Bolle', 'ruud bolle')
{yltian,lisabr,arunh,sharat,aws,bolle}@us.ibm.com +
392d35bb359a3b61cca1360272a65690a97a2b3fYAN, YAP, MORI: ONE-SHOT MULTI-TASK LEARNING FOR VIDEO EVENT DETECTION 1 +
Multi-Task Transfer Methods to Improve +
One-Shot Learning for Multimedia Event +
Detection +
School of Computing Science +
Simon Fraser University
Burnaby, BC, CANADA +
('34289418', 'Wang Yan', 'wang yan')
('32874186', 'Jordan Yap', 'jordan yap')
('10771328', 'Greg Mori', 'greg mori')
wyan@sfu.ca +
jjyap@sfu.ca +
mori@cs.sfu.ca +
397085122a5cade71ef6c19f657c609f0a4f7473GHIASI, FOWLKES: USING SEGMENTATION TO DETECT OCCLUSION +
Using Segmentation to Predict the Absence +
of Occluded Parts +
Dept. of Computer Science +
University of California
Irvine, CA +
('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')
('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')
gghiasi@ics.uci.edu +
fowlkes@ics.uci.edu +
39c48309b930396a5a8903fdfe781d3e40d415d0Learning Spatial and Temporal Cues for Multi-label Facial Action Unit Detection +
Robotics Institute, Carnegie Mellon University, Pittsburgh PA
University of Pittsburgh, Pittsburgh PA
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
39c8b34c1b678235b60b648d0b11d241a34c8e32Learning to Deblur Images with Exemplars +('9416825', 'Jinshan Pan', 'jinshan pan')
('2776845', 'Wenqi Ren', 'wenqi ren')
('1786024', 'Zhe Hu', 'zhe hu')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
3986161c20c08fb4b9b791b57198b012519ea58bInternational Journal of Soft Computing and Engineering (IJSCE) +
ISSN: 2231-2307, Volume-4 Issue-4, September 2014 +
An Efficient Method for Face Recognition based on +
Fusion of Global and Local Feature Extraction +
('9218646', 'E. Gomathi', 'e. gomathi')
('1873007', 'K. Baskaran', 'k. baskaran')
392425be1c9d9c2ee6da45de9df7bef0d278e85f
392c3cabe516c0108b478152902a9eee94f4c81eComputer Science and Artificial Intelligence Laboratory +
Technical Report +
MIT-CSAIL-TR-2007-024 +
April 23, 2007 +
Tiny images +
m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u +
('34943293', 'Antonio Torralba', 'antonio torralba')
('2276554', 'Rob Fergus', 'rob fergus')
('1768236', 'William T. Freeman', 'william t. freeman')
39f525f3a0475e6bbfbe781ae3a74aca5b401125Deep Joint Face Hallucination and Recognition +
Sun Yat-sen University
Sun Yat-sen University
Sun Yat-sen University
Sun Yat-sen University
November 28, 2016 +
('4080607', 'Junyu Wu', 'junyu wu')
('2442939', 'Shengyong Ding', 'shengyong ding')
('1723992', 'Wei Xu', 'wei xu')
('38255852', 'Hongyang Chao', 'hongyang chao')
wujunyu2@mail2.sysu.edu.cn +
1633615231@qq.com +
xuwei1993@qq.com +
isschhy@mail.sysu.edu.cn +
3946b8f862ecae64582ef0912ca2aa6d3f6f84dcWho and Where: People and Location Co-Clustering +
Electrical Engineering +
Stanford University
('8491578', 'Zixuan Wang', 'zixuan wang')zxwang@stanford.edu +
3933416f88c36023a0cba63940eb92f5cef8001aLearning Robust Subspace Clustering +
Department of Electrical and Computer Engineering +
Duke University
Durham, NC, 27708 +
May 11, 2014 +
('2077648', 'Qiang Qiu', 'qiang qiu')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
{qiang.qiu, guillermo.sapiro}@duke.edu +
39150acac6ce7fba56d54248f9c0badbfaeef0eaProceedings, Digital Signal Processing for in-Vehicle and mobile systems, Istanbul, Turkey, June 2007. +
Sabanci University
Faculty of +
Engineering and Natural Sciences +
Orhanli, Istanbul +
('40322754', 'Esra Vural', 'esra vural')
('21691177', 'Mujdat Cetin', 'mujdat cetin')
('31849282', 'Aytul Ercil', 'aytul ercil')
('2724380', 'Gwen Littlewort', 'gwen littlewort')
('1858421', 'Marian Bartlett', 'marian bartlett')
('29794862', 'Javier Movellan', 'javier movellan')
3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1
3965d61c4f3b72044f43609c808f8760af8781a2
39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bcSimultaneous Local Binary Feature Learning and Encoding for Face Recognition +
Tsinghua University, Beijing, China
2Rapid-Rich Object Search (ROSE) Lab, Interdisciplinary Graduate School, +
Nanyang Technological University, Singapore
('1697700', 'Jiwen Lu', 'jiwen lu')
('1754854', 'Venice Erin Liong', 'venice erin liong')
('39491387', 'Jie Zhou', 'jie zhou')
elujiwen@gmail.com; veniceer001@e.ntu.edu.sg; jzhou@tsinghua.edu.cn +
395bf182983e0917f33b9701e385290b64e22f9a
3983637022992a329f1d721bed246ae76bc934f7Wide-Baseline Stereo for Face Recognition with Large Pose Variation +
Computer Science Department +
University of Maryland, College Park
('38171682', 'Carlos D. Castillo', 'carlos d. castillo')
('34734622', 'David W. Jacobs', 'david w. jacobs')
{carlos,djacobs}@cs.umd.edu +
3933e323653ff27e68c3458d245b47e3e37f52fdEvaluation of a 3D-aided Pose Invariant 2D Face Recognition System +
Computational Biomedicine Lab +
4800 Calhoun Rd. Houston, TX, USA +
('26401746', 'Ha A. Le', 'ha a. le')
('39634395', 'Pengfei Dou', 'pengfei dou')
('2461369', 'Yuhang Wu', 'yuhang wu')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
{xxu18, hale4, pdou, ywu35, ikakadia}@central.uh.edu +
39b452453bea9ce398613d8dd627984fd3a0d53c
3958db5769c927cfc2a9e4d1ee33ecfba86fe054Describable Visual Attributes for +
Face Verification and Image Search +
('40631426', 'Neeraj Kumar', 'neeraj kumar')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
('1750470', 'Shree K. Nayar', 'shree k. nayar')
39ecdbad173e45964ffe589b9ced9f1ebfe2d44eAutomatic Recognition of Lower Facial Action Units +
Joint Research Group on Audio Visual Signal Processing (AVSP), +
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels +
lower +
recognize +
('1802474', 'Werner Verhelst', 'werner verhelst')
('34068333', 'Isabel Gonzalez', 'isabel gonzalez')
('1970907', 'Hichem Sahli', 'hichem sahli')
igonzale@etro.vub.ac.be +
hichem.sahli@etro.vub.ac.be +
wverhels@etro.vub.ac.be +
39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df
99ced8f36d66dce20d121f3a29f52d8b27a1da6cOrganizing Multimedia Data in Video +
Surveillance Systems Based on Face Verification +
with Convolutional Neural Networks +
National Research University Higher School of Economics, Nizhny Novgorod, Russian
Federation +
('26376584', 'Anastasiia D. Sokolova', 'anastasiia d. sokolova')
('26427828', 'Angelina S. Kharchevnikova', 'angelina s. kharchevnikova')
('35153729', 'Andrey V. Savchenko', 'andrey v. savchenko')
adsokolova96@mail.ru +
994f7c469219ccce59c89badf93c0661aae342641 +
Model Based Face Recognition Across Facial +
Expressions +
+
screens, embedded into mobiles and installed into everyday +
living and working environments they become valuable tools +
for human system interaction. A particular important aspect of +
this interaction is detection and recognition of faces and +
interpretation of facial expressions. These capabilities are +
deeply rooted in the human visual system and a crucial +
building block for social interaction. Consequently, these +
capabilities are an important step towards the acceptance of +
many technical systems. +
trees as a classifier +
lies not only +
('1725709', 'Zahid Riaz', 'zahid riaz')
('50565622', 'Christoph Mayer', 'christoph mayer')
('32131501', 'Matthias Wimmer', 'matthias wimmer')
('1699132', 'Bernd Radig', 'bernd radig')
('31311898', 'Senior Member', 'senior member')
9949ac42f39aeb7534b3478a21a31bc37fe2ffe3Parametric Stereo for Multi-Pose Face Recognition and +
3D-Face Modeling +
PSI ESAT-KUL +
Leuven, Belgium +
('2733505', 'Rik Fransens', 'rik fransens')
('2404667', 'Christoph Strecha', 'christoph strecha')
('1681236', 'Luc Van Gool', 'luc van gool')
999289b0ef76c4c6daa16a4f42df056bf3d68377The Role of Color and Contrast in Facial Age Estimation +
Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands
Pattern Recognition and Bioinformatics Group, Delft University of Technology, The Netherlands
Bo gazic i University, Istanbul, Turkey
('1695527', 'Theo Gevers', 'theo gevers')
('1764521', 'Albert Ali Salah', 'albert ali salah')
{h.dibeklioglu,th.gevers,m.p.Lucassen}@uva.nl +
salah@boun.edu.tr +
9958942a0b7832e0774708a832d8b7d1a5d287aeThe Sparse Matrix Transform for Covariance +
Estimation and Analysis of High Dimensional +
Signals +
('1696925', 'Guangzhi Cao', 'guangzhi cao')
('1709256', 'Leonardo R. Bachega', 'leonardo r. bachega')
('1745655', 'Charles A. Bouman', 'charles a. bouman')
995d55fdf5b6fe7fb630c93a424700d4bc566104The One Triangle Three Parallelograms Sampling Strategy and Its Application +
in Shape Regression +
Centre of Mathematical Sciences +
Lund University, Lund, Sweden
('38481779', 'Mikael Nilsson', 'mikael nilsson')mikael.nilsson@math.lth.se +
99726ad232cef837f37914b63de70d8c5101f4e2International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 570 +
ISSN 2229-5518 +
Facial Expression Recognition Using PCA & Distance Classifier +
Dept. of Electronics & Telecomm. Engg. +
Ph.D Scholar,VSSUT +
BURLA, ODISHA, INDIA +
Nilamani Bhoi +
Reader in Dept. of Electronics & Telecomm. Engg. +
VEER SURENDRA SAI UNIVERSITY OF
TECHNOLOGY +
BURLA, ODISHA, INDIA +
alpesh.d123@gmail.com +
nilamanib@gmail.com +
993d189548e8702b1cb0b02603ef02656802c92bHighly-Economized Multi-View Binary +
Compression for Scalable Image Clustering +
Harbin Institute of Technology (Shenzhen), China
The University of Queensland, Australia
Inception Institute of Arti cial Intelligence, UAE
4 Computer Vision Laboratory, ETH Zurich, Switzerland +
University of Electronic Science and Technology of China, China
('38448016', 'Zheng Zhang', 'zheng zhang')
('40241836', 'Li Liu', 'li liu')
('1747229', 'Jie Qin', 'jie qin')
('39986542', 'Fan Zhu', 'fan zhu')
('2731972', 'Fumin Shen', 'fumin shen')
('1725160', 'Yong Xu', 'yong xu')
('40799321', 'Ling Shao', 'ling shao')
('1724393', 'Heng Tao Shen', 'heng tao shen')
9931c6b050e723f5b2a189dd38c81322ac0511de
994b52bf884c71a28b4f5be4eda6baaacad1beeeCategorizing Big Video Data on the Web: +
Challenges and Opportunities +
School of Computer Science +
Fudan University
Shanghai, China +
http://www.yugangjiang.info +
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
99001ac9fdaf7649c0d0bd8d2078719bafd216d9> TPAMI-0571-1005< +
General Tensor Discriminant Analysis and +
Gabor Features for Gait Recognition +
School of Computer Science and Information Systems, Birkbeck College, University of London
University of Vermont, 33 Colchester Avenue, Burlington
Malet Street, London WC1E 7HX, United Kingdom. +
Vermont 05405, United States of America. +
('1692693', 'Dacheng Tao', 'dacheng tao')
('1720243', 'Xuelong Li', 'xuelong li')
('1748808', 'Xindong Wu', 'xindong wu')
('1740503', 'Stephen J. Maybank', 'stephen j. maybank')
{dacheng, xuelong, sjmaybank}@dcs.bbk.ac.uk; xwu@cs.uvm.edu. +
9993f1a7cfb5b0078f339b9a6bfa341da76a3168JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
A Simple, Fast and Highly-Accurate Algorithm to +
Recover 3D Shape from 2D Landmarks on a Single +
Image +
('39071836', 'Ruiqi Zhao', 'ruiqi zhao')
('1678691', 'Yan Wang', 'yan wang')
9901f473aeea177a55e58bac8fd4f1b086e575a4Human and Sheep Facial Landmarks Localisation +
by Triplet Interpolated Features +
University of Cambridge
('2966679', 'Heng Yang', 'heng yang')
('2271111', 'Renqiao Zhang', 'renqiao zhang')
('39626495', 'Peter Robinson', 'peter robinson')
hy306, rz264, pr10@cam.ac.uk +
992ebd81eb448d1eef846bfc416fc929beb7d28bExemplar-Based Face Parsing +
Supplementary Material +
University of Wisconsin Madison
Adobe Research +
http://www.cs.wisc.edu/~lizhang/projects/face-parsing/ +
1. Additional Selected Results +
Figures 1 and 2 supplement Figure 4 in our paper. In all cases, the input images come from our Helen [1] test set. We note +
that our algorithm generally produces accurate results, as shown in Figures 1. However, our algorithm is not perfect and makes +
mistakes on especially challenging input images, as shown in Figure 2. +
In our view, the mouth is the most challenging region of the face to segment: the shape and appearance of the lips vary +
widely from subject to subject, mouths deform significantly, and the overall appearance of the mouth region changes depending +
on whether the inside of the mouth is visible or not. Unusual mouth expressions, like those shown in Figure 2, are not repre- +
sented well in the exemplar images, which results in poor label transfer from the top exemplars to the test image. Despite these +
challenges, our algorithm generally performs well on the mouth, with large segmentation errors occurring infrequently. +
2. Comparisons with Liu et al. [2] +
The scene parsing approach by Liu et al. [2] shares sevaral similarities with our work. Like our approach, they propose a +
nonparametric system that transfers labels from exemplars in a database to annotate a test image. This begs the question, Why +
not simply apply the approach from Liu et al. to face images? +
To help answer this question, we used the code provided by Liu et al. on our Helen [1] images; our exemplar set is used for +
training their system, and our test set is used for testing. Please see Section 4.3 in our paper for more details. Figure 3 shows +
several selected results for qualitative comparison. In general, our algorithm performs much better than Liu et al.’s algorithm. +
References +
[1] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. Interactive facial feature localization. In ECCV, 2012. +
[2] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. In PAMI, December 2011. +
('2721523', 'Brandon M. Smith', 'brandon m. smith')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
99c20eb5433ed27e70881d026d1dbe378a12b342ISCA Archive +
http://www.isca-speech.org/archive +
First Workshop on Speech, Language +
and Audio in Multimedia +
Marseille, France +
August 22-23, 2013 +
Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013. +
78 +
99facca6fc50cc30f13b7b6dd49ace24bc94f702Front.Comput.Sci. +
DOI +
RESEARCH ARTICLE +
VIPLFaceNet: An Open Source Deep Face Recognition SDK +
1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
c(cid:13) Higher Education Press and Springer-Verlag Berlin Heidelberg 2016 +
('46522348', 'Xin Liu', 'xin liu')
('1693589', 'Meina Kan', 'meina kan')
('3468240', 'Wanglong Wu', 'wanglong wu')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
9990e0b05f34b586ffccdc89de2f8b0e5d427067International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013 +
Auto-Optimized Multimodal Expression Recognition +
Framework Using 3D Kinect Data for ASD Therapeutic +
Aid +
 +
regarding +
emotion +
and +
to +
recognize +
('25833279', 'Amira E. Youssef', 'amira e. youssef')
('1720250', 'Ahmed S. Ibrahim', 'ahmed s. ibrahim')
('1731164', 'A. Lynn Abbott', 'a. lynn abbott')
99d7678039ad96ee29ab520ff114bb8021222a91Political image analysis with deep neural +
networks +
November 28, 2017 +
('41096358', 'L. Jason Anastasopoulos', 'l. jason anastasopoulos')
('2361255', 'Shiry Ginosar', 'shiry ginosar')
('2007721', 'Dhruvil Badani', 'dhruvil badani')
('2459453', 'Jake Ryland Williams', 'jake ryland williams')
('50521070', 'Crystal Lee', 'crystal lee')
52012b4ecb78f6b4b9ea496be98bcfe0944353cd +
JOURNAL OF COMPUTATION IN BIOSCIENCES AND ENGINEERING +
+
Journal homepage: http://scienceq.org/Journals/JCLS.php +
+
Research Article +
Using Support Vector Machine and Local Binary Pattern for Facial Expression +
Recognition +
Open Access +
Federal University Technology Akure, PMB 704, Akure, Nigeria
2. Department of computer science, Kwara state polytechnic Ilorin, Kwara-State, Nigeria. +
Received: September 22, 2015, Accepted: December 14, 2015, Published: December 14, 2015. +
('10698338', 'Alese Boniface Kayode', 'alese boniface kayode'). *Corresponding author: Ayeni Olaniyi Abiodun Mail Id: oaayeni@futa.edu.ng +
523854a7d8755e944bd50217c14481fe1329a969A Differentially Private Kernel Two-Sample Test +
MPI-IS +
University Of Oxford
University Of Oxford
MPI-IS +
April 17, 2018 +
('39565862', 'Anant Raj', 'anant raj')
('35142231', 'Ho Chung Leon Law', 'ho chung leon law')
('1698032', 'Dino Sejdinovic', 'dino sejdinovic')
('37292171', 'Mijung Park', 'mijung park')
anant.raj@tuebingen.mpg.de +
ho.law@stats.ox.ac.uk +
dino.sejdinovic@stats.ox.ac.uk +
mijung.park@tuebingen.mpg.de +
521cfbc1949289a7ffc3ff90af7c55adeb43db2aAction Recognition with Coarse-to-Fine Deep Feature Integration and +
Asynchronous Fusion +
Shanghai Jiao Tong University, China
National Key Laboratory for Novel Software Technology, Nanjing University, China
University of Chinese Academy of Sciences, China
('8131625', 'Weiyao Lin', 'weiyao lin')
('1926641', 'Yang Mi', 'yang mi')
('1808816', 'Jianxin Wu', 'jianxin wu')
('1875882', 'Ke Lu', 'ke lu')
('37028145', 'Hongkai Xiong', 'hongkai xiong')
{wylin, deyangmiyang, xionghongkai}@sjtu.edu.cn, wujx2001@nju.edu.cn, luk@ucas.ac.cn +
529e2ce6fb362bfce02d6d9a9e5de635bde81191This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +
> TIP-05732-2009< +
1 +
Normalization of Face Illumination Based +
on Large- and Small- Scale Features +
('2002129', 'Xiaohua Xie', 'xiaohua xie')
('3333315', 'Wei-Shi Zheng', 'wei-shi zheng')
('1768574', 'Pong C. Yuen', 'pong c. yuen')
('1713795', 'Ching Y. Suen', 'ching y. suen')
52887969107956d59e1218abb84a1f834a3145781283 +
Travel Recommendation by Mining People +
Attributes and Travel Group Types From +
Community-Contributed Photos +
('35081710', 'Yan-Ying Chen', 'yan-ying chen')
('2363522', 'An-Jung Cheng', 'an-jung cheng')
('1716836', 'Winston H. Hsu', 'winston h. hsu')
521482c2089c62a59996425603d8264832998403
521b625eebea73b5deb171a350e3709a4910eebf
52258ec5ec73ce30ca8bc215539c017d279517cfRecognizing Faces with Expressions: Within-class Space and Between-class Space +
Zhejang University, Hangzhou 310027, P.R.China
Yu Bing Chen Ping Jin Lianfu +
Email: BingbingYu@21cn.com Pchen@mail.hz.zj.cn Lfjin@mail.hz.zj.cn +
5253c94f955146ba7d3566196e49fe2edea1c8f4Internet-based Morphable Model +
University of Washington
   +
 +
 +
 +
 +
   +
 +
 +
 +
 +
 +
 +
 +
 +
  +
  +
 +
 +
 +
   +
 +
  +
  +
  +
 +
  +
 +
! +
! +
 +
 +
Figure 1. Overview of the method. We construct a morphable +
model directly from Internet photos, the model is then used for +
single view reconstruction from any new input image (Face An- +
alyzer) and further for shape modification (Face Modifier), e.g., +
from neutral to smile in 3D. +
('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')kemelmi@cs.washington.edu +
527dda77a3864d88b35e017d542cb612f275a4ec
529b1f33aed49dbe025a99ac1d211c777ad881ecFAST AND EXACT BI-DIRECTIONAL FITTING OF ACTIVE APPEARANCE MODELS +
Jean Kossaifi(cid:63) +
cid:63) Imperial College London, UK
University of Nottingham, UK, School of Computer Science
University of Twente, The Netherlands
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1694605', 'Maja Pantic', 'maja pantic')
523b2cbc48decfabffb66ecaeced4fe6a6f2ac78Photorealistic Facial Expression Synthesis by the Conditional Difference Adversarial +
Autoencoder +
Department of Electronic and Computer Engineering +
The Hong Kong University of Science and Technology
HKSAR, China +
('1698743', 'Yuqian Zhou', 'yuqian zhou')yzhouas@ust.hk, eebert@ust.hk +
52472ec859131844f38fc7d57944778f01d109acImproving speaker turn embedding by +
crossmodal transfer learning from face embedding +
Idiap Research Institute, Martigny, Switzerland
2 ´Ecole Polytechnique F´ed´eral de Lausanne, Switzerland +
('39560344', 'Nam Le', 'nam le')
('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')
{nle, odobez}@idiap.ch +
5287d8fef49b80b8d500583c07e935c7f9798933Generative Adversarial Text to Image Synthesis +
University of Michigan, Ann Arbor, MI, USA (UMICH.EDU
Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE
REEDSCOT1, AKATA2, XCYAN1, LLAJAN1 +
HONGLAK1, SCHIELE2 +
('2893664', 'Zeynep Akata', 'zeynep akata')
('3084614', 'Xinchen Yan', 'xinchen yan')
('2876316', 'Lajanugen Logeswaran', 'lajanugen logeswaran')
('1697141', 'Honglak Lee', 'honglak lee')
('1697100', 'Bernt Schiele', 'bernt schiele')
52c59f9f4993c8248dd3d2d28a4946f1068bcbbeStructural Similarity and Distance in Learning +
Dept. of Electrical and +
Computer Engineering +
Boston University
Boston, MA 02215 +
Dept. of Electrical and +
Computer Engineering +
Boston University
Boston, MA 02215 +
David A. Casta˜n´on +
Dept. of Electrical and +
Computer Engineering +
Boston University
Boston, MA 02215 +
information, +
('1928419', 'Joseph Wang', 'joseph wang')
('1699322', 'Venkatesh Saligrama', 'venkatesh saligrama')
Email: joewang@bu.edu +
Email: srv@bu.edu +
Email: dac@bu.edu +
52bf00df3b970e017e4e2f8079202460f1c0e1bdLearning High-level Prior with Convolutional Neural Networks +
for Semantic Segmentation +
University of Science and Technology of China
Hefei, China +
Tsinghua University
Beijing, China +
The Hong Kong University of Science and Technology
HongKong, China +
('2743695', 'Haitian Zheng', 'haitian zheng')
('1697194', 'Feng Wu', 'feng wu')
('39987643', 'Lu Fang', 'lu fang')
('1680777', 'Yebin Liu', 'yebin liu')
('1916870', 'Mengqi Ji', 'mengqi ji')
{zhenght,fengwu,fanglu}@mail.ustc.edu.cn +
liuyebin@mail.tsinghua.edu.cn +
mji@ust.hk +
52c91fcf996af72d191520d659af44e310f86ef9Interactive Image Search with Attribute-based Guidance and Personalization +
The University of Texas at Austin
('1770205', 'Adriana Kovashka', 'adriana kovashka')
('1794409', 'Kristen Grauman', 'kristen grauman')
{adriana, grauman}@cs.utexas.edu +
52885fa403efbab5ef21274282edd98b9ca70cbfDiscriminant Graph Structures for Facial +
Expression Recognition +
Aristotle University of Thessaloniki
Department of Informatics +
Box 451 +
54124 Thessaloniki, Greece +
Address for correspondence : +
Aristotle University of Thessaloniki
54124 Thessaloniki +
GREECE +
Tel. ++ 30 231 099 63 04 +
Fax ++ 30 231 099 63 04 +
April 2, 2008 +
DRAFT +
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
email: pitas@zeus.csd.auth.gr +
52f23e1a386c87b0dab8bfdf9694c781cd0a3984
52d7eb0fbc3522434c13cc247549f74bb9609c5dWIDER FACE: A Face Detection Benchmark +
The Chinese University of Hong Kong
('1692609', 'Shuo Yang', 'shuo yang')
('47571885', 'Ping Luo', 'ping luo')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{ys014, pluo, ccloy, xtang}@ie.cuhk,edu.hk +
528069963f0bd0861f380f53270c96c269a3ea1cCardi University
School of Computer Science and Informatics +
Visual Computing Group +
4D (3D Dynamic) Statistical Models of +
Conversational Expressions and the +
Synthesis of Highly-Realistic 4D Facial +
Expression Sequences +
Submitted in part fulfilment of the requirements for the degree of +
Doctor of Philosophy in Computer Science at Cardi University, July 24th
('1812779', 'Jason Vandeventer', 'jason vandeventer')
529baf1a79cca813f8c9966ceaa9b3e42748c058Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image +
+
{tag} {/tag} +
+
International Journal of Computer Applications +
+
© 2014 by IJCA Journal +
Volume 87 - Number 6 +
+
Year of Publication: 2014 +
+
+
+
Authors: +
+
Bhogeswar Borah +
+
+
+
+
+
+
+
+
+
+
10.5120/15209-3714 +
{bibtex}pxc3893714.bib{/bibtex} +
5239001571bc64de3e61be0be8985860f08d7e7eSUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 +
Deep Appearance Models: A Deep Boltzmann +
Machine Approach for Face Modeling +
('1876581', 'Chi Nhan Duong', 'chi nhan duong')
('1769788', 'Khoa Luu', 'khoa luu')
('2687827', 'Kha Gia Quach', 'kha gia quach')
('1699922', 'Tien D. Bui', 'tien d. bui')
556b9aaf1bc15c928718bc46322d70c691111158Exploiting Qualitative Domain Knowledge for Learning Bayesian +
Network Parameters with Incomplete Data +
Thomson-Reuters Corporation +
Rensselaer Polytechnic Institute
('2460793', 'Wenhui Liao', 'wenhui liao')
('1726583', 'Qiang Ji', 'qiang ji')
wenhui.liao@thomsonreuters.com +
qji@ecse.rpi.edu +
55ea0c775b25d9d04b5886e322db852e86a556cdDOCK: Detecting Objects +
by transferring Common-sense Knowledge +
University of California, Davis 2University of Washington 3Allen Institute for AI
https://dock-project.github.io +
('2270286', 'Ali Farhadi', 'ali farhadi')
('19553871', 'Krishna Kumar Singh', 'krishna kumar singh')
('1883898', 'Yong Jae Lee', 'yong jae lee')
550858b7f5efaca2ebed8f3969cb89017bdb739f
554b9478fd285f2317214396e0ccd81309963efdSpatio-Temporal Action Localization For Human Action +
Recognition in Large Dataset +
1L2TI, Institut Galil´ee, Universit´e Paris 13, France; +
2SERCOM, Ecole Polytechnique de Tunisie +
('3240115', 'Sameh MEGRHI', 'sameh megrhi')
('2504338', 'Marwa JMAL', 'marwa jmal')
('1731553', 'Azeddine BEGHDADI', 'azeddine beghdadi')
('14521102', 'Wided Mseddi', 'wided mseddi')
55c68c1237166679d2cb65f266f496d1ecd4bec6Learning to Score Figure Skating Sport Videos +('2708397', 'Chengming Xu', 'chengming xu')
('35782003', 'Yanwei Fu', 'yanwei fu')
('10110775', 'Zitian Chen', 'zitian chen')
('40379722', 'Bing Zhang', 'bing zhang')
('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
558fc9a2bce3d3993a9c1f41b6c7f290cefcf92fDEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE +
ICT International Doctoral School +
Efficient and Effective Solutions +
for Video Classification +
Advisor: +
Prof. Nicu Sebe +
University of Trento
Co-Advisor: +
Prof. Bogdan Ionescu +
University Politehnica of Bucharest
November 2017 +
('28957796', 'Ionut Cosmin Duta', 'ionut cosmin duta')
55138c2b127ebdcc508503112bf1d1eeb5395604Ensemble Nystr¨om Method +
Google Research +
New York, NY +
Courant Institute and Google Research
New York, NY +
Courant Institute of Mathematical Sciences
New York, NY +
('2794322', 'Sanjiv Kumar', 'sanjiv kumar')
('1709415', 'Mehryar Mohri', 'mehryar mohri')
('8395559', 'Ameet Talwalkar', 'ameet talwalkar')
sanjivk@google.com +
mohri@cs.nyu.edu +
ameet@cs.nyu.edu +
5502dfe47ac26e60e0fb25fc0f810cae6f5173c0Affordance Prediction via Learned Object Attributes +('2749326', 'Tucker Hermans', 'tucker hermans')
('1692956', 'James M. Rehg', 'james m. rehg')
('1688328', 'Aaron Bobick', 'aaron bobick')
55e18e0dde592258882134d2dceeb86122b366abJournal of Artificial Intelligence Research 37 (2010) 397-435 +
Submitted 11/09; published 03/10 +
Training a Multilingual Sportscaster: +
Using Perceptual Context to Learn Language +
Department of Computer Science +
The University of Texas at Austin
University Station C0500, Austin TX 78712, USA
('39230960', 'David L. Chen', 'david l. chen')
('1765656', 'Joohyun Kim', 'joohyun kim')
('1797655', 'Raymond J. Mooney', 'raymond j. mooney')
DLCC@CS.UTEXAS.EDU +
SCIMITAR@CS.UTEXAS.EDU +
MOONEY@CS.UTEXAS.EDU +
55a158f4e7c38fe281d06ae45eb456e05516af50The 22nd International Conference on Computer Graphics and Vision +
108 +
GraphiCon’2012 +
5506a1a1e1255353fde05d9188cb2adc20553af5
55966926e7c28b1eee1c7eb7a0b11b10605a1af0Surpassing Human-Level Face Verification Performance on LFW with +
GaussianFace +
The Chinese University of Hong Kong
('2312486', 'Chaochao Lu', 'chaochao lu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{lc013, xtang}@ie.cuhk.edu.hk +
552c55c71bccfc6de7ce1343a1cd12208e9a63b3Accurate Eye Center Location and Tracking Using Isophote Curvature +
Intelligent Systems Lab Amsterdam +
University of Amsterdam, The Netherlands
('9301018', 'Roberto Valenti', 'roberto valenti')
('1695527', 'Theo Gevers', 'theo gevers')
{rvalenti,gevers}@science.uva.nl +
5517b28795d7a68777c9f3b2b46845dcdb425b2cDeep video gesture recognition using illumination invariants +
Massachusetts Institute of Technology
Figure 1: Automated facial gesture recognition is a fundamental problem in human computer interaction. While tackling real world tasks of +
expression recognition sudden changes in illumination from multiple sources can be expected. We show how to build a robust system to detect +
human emotions while showing invariance to illumination. +
('37381309', 'Otkrist Gupta', 'otkrist gupta')
('2283049', 'Dan Raviv', 'dan raviv')
('1717566', 'Ramesh Raskar', 'ramesh raskar')
55c81f15c89dc8f6eedab124ba4ccab18cf38327
5550a6df1b118a80c00a2459bae216a7e8e3966cISSN: 0974-2115 +
www.jchps.com Journal of Chemical and Pharmaceutical Sciences +
A perusal on Facial Emotion Recognition System (FERS) +
School of Information Technology and Engineering, VIT University, Vellore, 632014, India
*Corresponding author: E-Mail: krithika.lb@vit.ac.in +
55e87050b998eb0a8f0b16163ef5a28f984b01faCAN YOU FIND A FACE IN A HEVC BITSTREAM? +
School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
('3393216', 'Saeed Ranjbar Alvar', 'saeed ranjbar alvar')
('3320198', 'Hyomin Choi', 'hyomin choi')
55bc7abcef8266d76667896bbc652d081d00f797Impact of Facial Cosmetics on Automatic Gender and Age Estimation +
Algorithms +
Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA
Computer Science and Engineering, Michigan State University, East Lansing, USA
Keywords: +
Biometrics, Face Recognition, Facial Cosmetics, Makeup, Gender Spoofing, Age Alteration, Automatic +
Gender Estimation, Automatic Age Estimation +
('1751335', 'Cunjian Chen', 'cunjian chen')
('3299530', 'Antitza Dantcheva', 'antitza dantcheva')
('1698707', 'Arun Ross', 'arun ross')
cchen10@csee.wvu.edu, {antitza, rossarun}@msu.edu +
55b4b1168c734eeb42882082bd131206dbfedd5bLearning to Align from Scratch +
University of Massachusetts, Amherst, MA
University of Michigan, Ann Arbor, MI
('3219900', 'Gary B. Huang', 'gary b. huang'){gbhuang,mmattar,elm}@cs.umass.edu +
honglak@eecs.umich.edu +
55079a93b7d1eb789193d7fcdcf614e6829fad0fEfficient and Robust Inverse Lighting of a Single Face Image using Compressive +
Sensing +
Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen
57076 Siegen, Germany +
('1747804', 'Miguel Heredia Conde', 'miguel heredia conde')
('1967283', 'Davoud Shahlaei', 'davoud shahlaei')
('2880906', 'Volker Blanz', 'volker blanz')
('1698728', 'Otmar Loffeld', 'otmar loffeld')
heredia@zess.uni-siegen.de +
55804f85613b8584d5002a5b0ddfe86b0d0e3325Data Complexity in Machine Learning +
Learning Systems Group, California Institute of Technology
('37715538', 'Ling Li', 'ling li')
('1817975', 'Yaser S. Abu-Mostafa', 'yaser s. abu-mostafa')
551fa37e8d6d03b89d195a5c00c74cc52ff1c67aGeThR-Net: A Generalized Temporally Hybrid +
Recurrent Neural Network for Multimodal +
Information Fusion +
1 Xerox Research Centre India; 2 Amazon Development Center India +
('2757149', 'Ankit Gandhi', 'ankit gandhi')
('34751361', 'Arjun Sharma', 'arjun sharma')
('2221075', 'Arijit Biswas', 'arijit biswas')
('2116262', 'Om Deshmukh', 'om deshmukh')
{ankit.g1290,arjunsharma.iitg,arijitbiswas87}@gmail.com; +
om.deshmukh@xerox.com (*-equal contribution) +
55eb7ec9b9740f6c69d6e62062a24bfa091bbb0cCAS(ME)2: A Database of Spontaneous +
Macro-expressions and Micro-expressions +
State Key Laboratory of Brain and Cognitive Science, Institute of Psychology
Chinese Academy of Sciences, Beijing, China +
University of Chinese Academy of Sciences, Beijing, China
Key Laboratory of Behavior Sciences, Institute of Psychology
Chinese Academy of Sciences, Beijing, China +
Institute of Psychology and Behavioral Sciences
Wenzhou University, Wenzhou, China
('34495371', 'Fangbing Qu', 'fangbing qu')
('9185305', 'Wen-Jing Yan', 'wen-jing yan')
('1684007', 'Xiaolan Fu', 'xiaolan fu')
{qufb,fuxl}@psych.ac.cn +
wangsujing@psych.ac.cn +
yanwj@wzu.edu.cn +
55b9b1c1c5487f5f62b44340104a9c4cc2ed7c961 Million Full-Sentences Visual Question Answering (FSVQA) +
The Color of the Cat is Gray: +
The University of Tokyo
7 Chome-3-1 Hongo, Bunkyo +
Tokyo 113-8654, Japan +
('2518695', 'Andrew Shin', 'andrew shin')
('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')
('1790553', 'Tatsuya Harada', 'tatsuya harada')
55c40cbcf49a0225e72d911d762c27bb1c2d14aaIndian Face Age Database: A Database for Face Recognition with Age Variation +
{tag} {/tag} +
International Journal of Computer Applications +
+
Foundation of Computer Science (FCS), NY, USA +
+
+
Volume 126 +
- +
Number 5 +
+
+
Year of Publication: 2015 +
+
+
+
+
Authors: +
+
+
+
+
+
+
+
+
+
+
+
10.5120/ijca2015906055 +
{bibtex}2015906055.bib{/bibtex} +
('2029759', 'Reecha Sharma', 'reecha sharma')
9788b491ddc188941dadf441fc143a4075bff764LOGAN: Membership Inference Attacks Against Generative Models∗ +
University College London
('9200194', 'Jamie Hayes', 'jamie hayes')
('2008164', 'Luca Melis', 'luca melis')
('1722262', 'George Danezis', 'george danezis')
('1728207', 'Emiliano De Cristofaro', 'emiliano de cristofaro')
{j.hayes, l.melis, g.danezis, e.decristofaro}@cs.ucl.ac.uk +
973e3d9bc0879210c9fad145a902afca07370b86(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 7, No. 7, 2016 +
From Emotion Recognition to Website +
Customizations +
O.B. Efremides +
School of Web Media +
Bahrain Polytechnic +
Isa Town, Kingdom of Bahrain +
970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +
Discriminative Log-Euclidean Feature Learning for Sparse +
Representation-Based Recognition of Faces from Videos +
Center for Automation Research, University of Maryland
College Park, MD
{mefathy, azadeh, rama} (at) umiacs.umd.edu +
('4570075', 'Mohammed E. Fathy', 'mohammed e. fathy')
('2943431', 'Azadeh Alavi', 'azadeh alavi')
('9215658', 'Rama Chellappa', 'rama chellappa')
97b8249914e6b4f8757d22da51e8347995a4063728 +
Large-Scale Vehicle Detection, Indexing, +
and Search in Urban Surveillance Videos +
('1832513', 'Behjat Siddiquie', 'behjat siddiquie')
('3151405', 'James Petterson', 'james petterson')
('2029646', 'Yun Zhai', 'yun zhai')
('3233207', 'Ankur Datta', 'ankur datta')
('34609371', 'Lisa M. Brown', 'lisa m. brown')
('1767897', 'Sharath Pankanti', 'sharath pankanti')
972ef9ddd9059079bdec17abc8b33039ed25c99cInternational Journal of Innovations in Engineering and Technology (IJIET) +
A Novel on understanding How IRIS +
Recognition works +
Dept. of Comp. Science +
M.P.M. College, Bhopal, India
Asst. Professor CSE +
M.P.M. College, Bhopal, India
('37930830', 'Vijay Shinde', 'vijay shinde')
('9345591', 'Prakash Tanwar', 'prakash tanwar')
97032b13f1371c8a813802ade7558e816d25c73fTotal Recall Final Report +
Supervisor: Professor Duncan Gillies +
January 11, 2006 +
('2561350', 'Peter Collingbourne', 'peter collingbourne')
('3036326', 'Khilan Gudka', 'khilan gudka')
('15490561', 'Steve Lovegrove', 'steve lovegrove')
('35260800', 'Jiefei Ma', 'jiefei ma')
97137d5154a9f22a5d9ecc32e8e2b95d07a5a571The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3418-y +
Facial Expression Recognition based on Local Region +
Specific Features and Support Vector Machines +
Park1 +
Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of Korea; E
Division of Computer Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do
Tel.: +82-63-270-2406; Fax: +82-63-270-2394. +
('32322842', 'Deepak Ghimire', 'deepak ghimire')
('31984909', 'SungHwan Jeong', 'sunghwan jeong')
('2034182', 'Joonwhoan Lee', 'joonwhoan lee')
Mails: (deepak, shjeong, shpark)@keti.re.kr +
756, Rep. of Korea; E-Mail: chlee@jbnu.ac.kr +
♣ Corresponding Author; E-Mail: chlee@jbnu.ac.kr; +
9730b9cd998c0a549601c554221a596deda8af5bSpatio-temporal Person Retrieval via Natural Language Queries +
Graduate School of Information Science and Technology, The University of Tokyo
('3369734', 'Masataka Yamaguchi', 'masataka yamaguchi')
('8915348', 'Kuniaki Saito', 'kuniaki saito')
('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')
('1790553', 'Tatsuya Harada', 'tatsuya harada')
{yamaguchi, ksaito, ushiku, harada}@mi.t.u-tokyo.ac.jp +
978a219e07daa046244821b341631c41f91daccdEmotional Intelligence: Giving Computers +
Effective Emotional Skills to Aid Interaction +
School of Computer Science, University of Birmingham, UK
1 Introduction +
Why do computers need emotional intelligence? Science fiction often por- +
trays emotional computers as dangerous and frightening, and as a serious +
threat to human life. One of the most famous examples is HAL, the supercom- +
puter onboard the spaceship Discovery, in the movie 2001: A Space Odyssey. +
HAL could express, recognize and respond to human emotion, and generally +
had strong emotional skills – the consequences of which were catastrophic. +
However, since the movie’s release almost 40 years ago, the traditional view +
of emotions as contributing to irrational and unpredictable behaviour has +
changed. Recent research has suggested that emotions play an essential role +
in important areas such as learning, memory, motivation, attention, creativ- +
ity, and decision making. These findings have prompted a large number of +
research groups around the world to start examining the role of emotions and +
emotional intelligence in human-computer interaction (HCI). +
For almost half a century, computer scientists have been attempting to build +
machines that can interact intelligently with us, and despite initial optimism, +
they are still struggling to do so. For much of this time, the role of emotion in +
developing intelligent computers was largely overlooked, and it is only recently +
that interest in this area has risen dramatically. This increased interest can +
largely be attributed to the work of [6] and [85] who were amongst the first to +
bring emotion to the attention of computer scientists. The former highlighted +
emotion as a fundamental component required in building believable agents, +
while the latter further raised the awareness of emotion and its potential +
importance in HCI. Since these publications, the literature on emotions and +
computing has grown considerably with progress being made on a number of +
different fronts. +
The concept of designing computers to have emotional intelligence may seem +
strange, but equipping computers with this type of intelligence may provide +
a number of important advantages. For example, in spite of a computer’s +
('3134697', 'Chris Creed', 'chris creed')
('2282865', 'Russell Beale', 'russell beale')
cpc@cs.bham.ac.uk +
r.beale@cs.bham.ac.uk +
976e0264bb57786952a987d4456850e274714fb8Improving Semantic Concept Detection through the +
Dictionary of Visually-distinct Elements +
Center for Research in Computer Vision, University of Central Florida
('1707795', 'Afshin Dehghan', 'afshin dehghan')
('1803711', 'Haroon Idrees', 'haroon idrees')
('1745480', 'Mubarak Shah', 'mubarak shah')
{adehghan, haroon, shah}@cs.ucf.edu +
9758f3fd94239a8d974217fe12599f88fb413f3dUC-HCC Submission to Thumos 2014 +
Vision and Sensing, HCC, ESTeM, University of Canberra
('1793720', 'O. V. Ramana Murthy', 'o. v. ramana murthy')
('1717204', 'Roland Goecke', 'roland goecke')
97f9c3bdb4668f3e140ded2da33fe704fc81f3eaAnExperimentalComparisonofAppearance +
andGeometricModelBasedRecognition +
J.Mundy,A.Liu,N.Pillow,A.Zisserman,S.Abdallah,S.Utcke, +
S.NayarandC.Rothwell +
GeneralElectricCorporateResearchandDevelopment,Schenectady,NY,USA +
RoboticsResearchGroup, UniversityofOxford, Oxford, UK
ColumbiaUniversity, NY, USA
INRIA,SophiaAntipolis,France +
97e569159d5658760eb00ca9cb662e6882d2ab0eCorrelation Filters for Object Alignment +
Carnegie Mellon University
Carnegie Mellon University
B.V.K. Vijaya Kumar +
Carnegie Mellon University
('2232940', 'Vishnu Naresh Boddeti', 'vishnu naresh boddeti')
('1733113', 'Takeo Kanade', 'takeo kanade')
naresh@cmu.edu +
tk@cs.cmu.edu +
kumar@ece.cmu.edu +
97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5manuscript No. +
(will be inserted by the editor) +
Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, +
Deep Architectures, and Beyond +
Zafeiriou4 +
('1811396', 'Dimitrios Kollias', 'dimitrios kollias')
('1757287', 'Guoying Zhao', 'guoying zhao')
97d1d561362a8b6beb0fdbee28f3862fb48f13801955 +
Age Synthesis and Estimation via Faces: +
A Survey +
('1708679', 'Yun Fu', 'yun fu')
('1822413', 'Guodong Guo', 'guodong guo')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
97540905e4a9fdf425989a794f024776f28a3fa9
97865d31b5e771cf4162bc9eae7de6991ceb8bbfFace and Gender Classification in Crowd Video +
IIIT-D-MTech-CS-GEN-13-100 +
July 16, 2015 +
Indraprastha Institute of Information Technology
New Delhi +
Thesis Advisors +
Dr. Richa Singh +
Submitted in partial fulfillment of the requirements +
for the Degree of M.Tech. in Computer Science +
c(cid:13) Verma, 2015 +
Keywords : Face Recognition, Gender Classification, Crowd database +
('2578160', 'Priyanka Verma', 'priyanka verma')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
975978ee6a32383d6f4f026b944099e7739e5890Privacy-Preserving Age Estimation +
for Content Rating +
Binglin Li∗ +
University of Manitoba
Simon Fraser University
Winnipeg, Canada +
Burnaby, Canada +
Noman Mohammed +
University of Manitoba
Winnipeg, Canada +
Yang Wang +
Jie Liang +
University of Manitoba
Simon Fraser University
Winnipeg, Canada +
Burnaby, Canada +
('2373631', 'Linwei Ye', 'linwei ye')yel3@cs.umanitoba.ca +
binglinl@sfu.ca +
noman@cs.umanitoba.ca +
ywang@cs.umanitoba.ca +
jiel@sfu.ca +
9755554b13103df634f9b1ef50a147dd02eab02fHow Transferable are CNN-based Features for +
Age and Gender Classification? +
1 +
('2850086', 'Gökhan Özbulak', 'gökhan özbulak')
('3152281', 'Yusuf Aytar', 'yusuf aytar')
635158d2da146e9de559d2742a2fa234e06b52db
63d8110ac76f57b3ba8a5947bc6bdbb86f25a342On Modeling Variations for Face Authentication +
Carnegie Mellon University, Pittsburgh, PA
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
xiaoming@andrew.cmu.edu tsuhan@cmu.edu kumar@ece.cmu.edu +
63cf5fc2ee05eb9c6613043f585dba48c5561192Prototype Selection for +
Classification in Standard +
and Generalized +
Dissimilarity Spaces +
632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6cReal-Time Facial Segmentation +
and Performance Capture from RGB Input +
Pinscreen +
University of Southern California
('2059597', 'Shunsuke Saito', 'shunsuke saito')
('50290121', 'Tianye Li', 'tianye li')
('1706574', 'Hao Li', 'hao li')
6324fada2fb00bd55e7ff594cf1c41c918813030Uncertainty Reduction For Active Image Clustering +
via a Hybrid Global-Local Uncertainty Model +
State University of New York at Buffalo
Department of Computer Science and Engineering +
338 Davis Hall, Buffalo, NY, 14260-2500 +
('2228109', 'Caiming Xiong', 'caiming xiong')
('34187462', 'David M. Johnson', 'david m. johnson')
('3587688', 'Jason J. Corso', 'jason j. corso')
{cxiong,davidjoh,jcorso}@buffalo.edu +
6308e9c991125ee6734baa3ec93c697211237df8LEARNING THE SPARSE REPRESENTATION FOR CLASSIFICATION +
Beckman Institute, University of Illinois at Urbana-Champaign, USA
('1706007', 'Jianchao Yang', 'jianchao yang')
('7898154', 'Jiangping Wang', 'jiangping wang')
{jyang29, jwang63, huang}@ifp.illinois.edu +
6342a4c54835c1e14159495373ab18b4233d2d9bTOWARDS POSE-ROBUST +
FACE RECOGNITION ON VIDEO +
Submitted as a requirement of the degree +
of doctor of philosophy +
at the +
Science and Engineering Faculty +
Queensland University of Technology
September, 2014 +
('23168868', 'Moh Edi Wibowo', 'moh edi wibowo')
63d8d69e90e79806a062cb8654ad78327c8957bb
63c109946ffd401ee1195ed28f2fb87c2159e63d14-1 +
MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN +
Robust Facial Feature Localization using Improved Active Shape +
Model and Gabor Filter +
Engineering, National Formosa University
Taiwan +
('1711364', 'Hui-Yu Huang', 'hui-yu huang')E-mail: hyhuang@nfu.edu.tw +
63b29886577a37032c7e32d8899a6f69b11a90deImage-set based Face Recognition Using Boosted Global +
and Local Principal Angles +
Xi an Jiaotong University, China
University of Tsukuba, Japan
('6916241', 'Xi Li', 'xi li')
('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')
('1715389', 'Nanning Zheng', 'nanning zheng')
lxaccv09@yahoo.com, +
znn@xjtu.edu.cn +
kf@cs.tsukuba.ac.jp +
631483c15641c3652377f66c8380ff684f3e365cSync-DRAW: Automatic Video Generation using Deep Recurrent +
A(cid:130)entive Architectures +
Gaurav Mi(cid:138)al∗ +
IIT Hyderabad +
Vineeth N Balasubramanian +
IIT Hyderabad +
('8268761', 'Tanya Marwah', 'tanya marwah')gaurav.mi(cid:138)al.191013@gmail.com +
ee13b1044@iith.ac.in +
vineethnb@iith.ac.in +
63a6c256ec2cf2e0e0c9a43a085f5bc94af84265Complexity of Multiverse Networks and +
their Multilayer Generalization +
The Blavatnik School of Computer Science +
Tel Aviv University
('1762320', 'Etai Littwin', 'etai littwin')
('1776343', 'Lior Wolf', 'lior wolf')
63213d080a43660ac59ea12e3c35e6953f6d7ce8ActionVLAD: Learning spatio-temporal aggregation for action classification +
Robotics Institute, Carnegie Mellon University
2Adobe Research +
3INRIA +
http://rohitgirdhar.github.io/ActionVLAD +
('3102850', 'Rohit Girdhar', 'rohit girdhar')
('1770537', 'Deva Ramanan', 'deva ramanan')
('1782755', 'Josef Sivic', 'josef sivic')
('2015670', 'Bryan Russell', 'bryan russell')
630d1728435a529d0b0bfecb0e7e335f8ea2596dFacial Action Unit Detection by Cascade of Tasks +
School of Information Science and Engineering, Southeast University, Nanjing, China
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
University of Pittsburgh, Pittsburgh, PA
('2499751', 'Xiaoyu Ding', 'xiaoyu ding')
('18870591', 'Qiao Wang', 'qiao wang')
63eefc775bcd8ccad343433fc7a1dd8e1e5ee796
632fa986bed53862d83918c2b71ab953fd70d6ccGÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT +
What Face and Body Shapes Can Tell +
About Height +
CVLab +
EPFL, +
Lausanne, Switzerland +
('46211822', 'Semih Günel', 'semih günel')
('2933543', 'Helge Rhodin', 'helge rhodin')
('1717736', 'Pascal Fua', 'pascal fua')
semih.gunel@epfl.ch +
helge.rhodin@epfl.ch +
pascal.fua@epfl.ch +
63340c00896d76f4b728dbef85674d7ea8d5ab261732 +
Discriminant Subspace Analysis: +
A Fukunaga-Koontz Approach +
('40404906', 'Sheng Zhang', 'sheng zhang')
('1715286', 'Terence Sim', 'terence sim')
633101e794d7b80f55f466fd2941ea24595e10e6In submission to IEEE conference +
Face Attribute Prediction with classification CNN +
FACE ATTRIBUTE PREDICTION WITH +
CLASSIFICATION CNN +
Computer Science and Communication +
KTH Royal Institute of Technology
100 44 Stockholm, Sweden +
('50262049', 'Yang Zhong', 'yang zhong')
('1736906', 'Josephine Sullivan', 'josephine sullivan')
('40565290', 'Haibo Li', 'haibo li')
{yzhong, sullivan, haiboli}@kth.se +
63a2e2155193dc2da9764ae7380cdbd044ff2b94A Dense SURF and Triangulation based +
Spatio-Temporal Feature for Action Recognition +
The University of Electro-Communications
Chofu, Tokyo 182-8585 JAPAN +
('2274625', 'Do Hang Nga', 'do hang nga')
('1681659', 'Keiji Yanai', 'keiji yanai')
fdohang,yanaig@mm.cs.uec.ac.jp +
63d865c66faaba68018defee0daf201db8ca79edDeep Regression for Face Alignment +
1Dept. of Electronics and Information Engineering, Huazhong Univ. of Science and Technology, China +
2Microsoft Research, Beijing, China +
('2276155', 'Baoguang Shi', 'baoguang shi')
('1688516', 'Jingdong Wang', 'jingdong wang')
shibaoguang@gmail.com,{xbai,liuwy}@hust.edu.cn,jingdw@microsoft.com +
63cff99eff0c38b633c8a3a2fec8269869f81850Feature Correlation Filter for Face Recognition +
Center for Biometrics and Security Research & National Laboratory of Pattern +
Recognition, +
Institute of Automation, Chinese Academy of Sciences
95 Zhongguancun East Road, 100080 Beijing, China +
http://www.cbsr.ia.ac.cn +
('32015491', 'XiangXin Zhu', 'xiangxin zhu')
('40397682', 'Shengcai Liao', 'shengcai liao')
('1718623', 'Zhen Lei', 'zhen lei')
('3168566', 'Rong Liu', 'rong liu')
('34679741', 'Stan Z. Li', 'stan z. li')
{xxzhu,scliao,zlei,rliu,szli}@nlpr.ia.ac.cn +
634541661d976c4b82d590ef6d1f3457d2857b19AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa +
in cotutela con Università di Sassari +
DOTTORATO DI RICERCA IN +
INGEGNERIA ELETTRONICA, INFORMATICA E DELLE +
TELECOMUNICAZIONI +
Ciclo XXVI +
Settore Concorsuale di afferenza: 09/H1 +
Settore Scientifico disciplinare: ING-INF/05 +
ADVANCED TECHNIQUES FOR FACE RECOGNITION +
UNDER CHALLENGING ENVIRONMENTS +
TITOLO TESI +
Presentata da: +
Coordinatore Dottorato +
ALESSANDRO VANELLI-CORALLI +
+
Relatore +
DAVIDE MALTONI +
Relatore +
MASSIMO TISTARELLI +
Esame finale anno 2014 +
('2384894', 'Yunlian Sun', 'yunlian sun')
6332a99e1680db72ae1145d65fa0cccb37256828MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE +
REPORT OF THE RESEARCH PROJECT +
OPTION: COMPUTER VISION +
Pose and Face Recovery via +
Spatio-temporal GrabCut Human +
Segmentation +
Date: 13/07/2010 +
('4765407', 'Antonio Hernández Vela', 'antonio hernández vela')
('10722928', 'Sergio Escalera Guerrero', 'sergio escalera guerrero')
63488398f397b55552f484409b86d812dacde99aLearning Universal Multi-view Age Estimator by Video Contexts +
2 School of Computing, National University of Singapore
3 Advanced Digital Sciences Center, Singapore; 4 Facebook +
('1964516', 'Zheng Song', 'zheng song')
('5796401', 'Bingbing Ni', 'bingbing ni')
('39034731', 'Dong Guo', 'dong guo')
('1715286', 'Terence Sim', 'terence sim')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
{zheng.s, eleyans}@nus.edu.sg, bingbing.ni@adsc.com.sg, dnguo@fb.com, tsim@comp.nus.edu.sg +
6341274aca0c2977c3e1575378f4f2126aa9b050A Multi-Scale Cascade Fully Convolutional +
Network Face Detector +
Institute for Robotics and Intelligent Systems
University of Southern California
Los Angeles, California 90089 +
('3469030', 'Zhenheng Yang', 'zhenheng yang')
('1694832', 'Ramakant Nevatia', 'ramakant nevatia')
Email:(cid:8)zhenheny,nevatia(cid:9)@usc.edu +
63c022198cf9f084fe4a94aa6b240687f21d8b41425 +
632441c9324cd29489cee3da773a9064a46ae26bVideo-based Cardiac Physiological Measurements Using +
Joint Blind Source Separation Approaches +
by +
B. Eng., Zhejiang University
A THESIS SUBMITTED IN PARTIAL FULFILLMENT +
OF THE REQUIREMENTS FOR THE DEGREE OF +
Master of Applied Science +
in +
THE FACULTY OF GRADUATE AND POSTDOCTORAL +
STUDIES +
(Electrical and Computer Engineering) +
The University of British Columbia
(Vancouver) +
July 2015 +
('33064881', 'Huan Qi', 'huan qi')
('33064881', 'Huan Qi', 'huan qi')
0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dabMulti-Directional Multi-Level Dual-Cross +
Patterns for Robust Face Recognition +
('37990555', 'Changxing Ding', 'changxing ding')
('3826759', 'Jonghyun Choi', 'jonghyun choi')
('1692693', 'Dacheng Tao', 'dacheng tao')
('1693428', 'Larry S. Davis', 'larry s. davis')
0f112e49240f67a2bd5aaf46f74a924129f03912947 +
Age-Invariant Face Recognition +
('2222919', 'Unsang Park', 'unsang park')
('3225345', 'Yiying Tong', 'yiying tong')
('6680444', 'Anil K. Jain', 'anil k. jain')
0fc254272db096a9305c760164520ad9914f4c9eUNSUPERVISED CONVOLUTIONAL NEURAL NETWORKS FOR MOTION ESTIMATION +
School of Electronic Engineering and Computer Science +
Queen Mary University of London
Mile End road, E1 4NS, London, UK +
('29946980', 'Aria Ahmadi', 'aria ahmadi')
('1744405', 'Ioannis Patras', 'ioannis patras')
0fae5d9d2764a8d6ea691b9835d497dd680bbccdFace Recognition using Canonical Correlation Analysis +
Department of Electrical Engineering +
Indian Institute of Technology, Madras
Department of Electrical Engineering +
Indian Institute of Technology, Madras
('37274547', 'Amit C. Kale', 'amit c. kale')
('4436239', 'R. Aravind', 'r. aravind')
ee04s043@ee.iitm.ac.in +
aravind@tenet.res.in +
0f4cfcaca8d61b1f895aa8c508d34ad89456948eLOCAL APPEARANCE BASED FACE RECOGNITION USING +
DISCRETE COSINE TRANSFORM (WedPmPO4) +
Author(s) : +
0fdcfb4197136ced766d538b9f505729a15f0dafMultiple Pattern Classification by Sparse Subspace Decomposition +
Institute of Media and Information Technology, Chiba University
1-33 Yayoi, Inage, Chiba, Japan +
('1688743', 'Tomoya Sakai', 'tomoya sakai')tsakai@faculty.chiba-u.jp +
0fad544edfc2cd2a127436a2126bab7ad31ec333Decorrelating Semantic Visual Attributes by Resisting the Urge to Share +
UT Austin +
USC +
UT Austin +
('2228235', 'Dinesh Jayaraman', 'dinesh jayaraman')
('1693054', 'Fei Sha', 'fei sha')
('1794409', 'Kristen Grauman', 'kristen grauman')
dineshj@cs.utexas.edu +
feisha@usc.edu +
grauman@cs.utexas.edu +
0f32df6ae76402b98b0823339bd115d33d3ec0a0Emotion recognition from embedded bodily +
expressions and speech during dyadic interactions +
('40404576', 'Sikandar Amin', 'sikandar amin')
('2766593', 'Prateek Verma', 'prateek verma')
('1906895', 'Mykhaylo Andriluka', 'mykhaylo andriluka')
('3194727', 'Andreas Bulling', 'andreas bulling')
∗Max Planck Institute for Informatics, Germany, {pmueller,andriluk,bulling}@mpi-inf.mpg.de +
†Stanford University, USA, prateekv@stanford.edu +
‡Technical University of Munich, Germany, sikandar.amin@in.tum.de +
0fd1715da386d454b3d6571cf6d06477479f54fcJ Intell Robot Syst (2016) 82:101–133 +
DOI 10.1007/s10846-015-0259-2 +
A Survey of Autonomous Human Affect Detection Methods +
for Social Robots Engaged in Natural HRI +
Received: 10 December 2014 / Accepted: 11 August 2015 / Published online: 23 August 2015 +
© Springer Science+Business Media Dordrecht 2015 +
('2929516', 'Derek McColl', 'derek mccoll')
('31839336', 'Naoaki Hatakeyama', 'naoaki hatakeyama')
('1719617', 'Beno Benhabib', 'beno benhabib')
0f9bf5d8f9087fcba419379600b86ae9e9940013
0f829fee12e86f980a581480a9e0cefccb59e2c5Bird Part Localization Using Exemplar-Based Models with Enforced +
Pose and Subcategory Consistency +
Columbia University
Problem +
The goal of our work is to localize the parts au- +
tomatically and accurately for fine-grained cate- +
gories. We evaluate our method on bird images in +
the CUB-200-2011 [1] dataset. +
Pipeline +
Approach +
Subcategory Detectors +
Localization Examples +
(1) Sliding-window detection. (2) Matching and ranking exemplars. (3) Predicting the final part configuration. +
Does Xk,t match the image I? ⇐⇒ P (Xk,t|I) =? +
k, si +
k,t|di +
k,t])} +
P (Xk,t|I) = P (Xk,t|Dp)αP (Xk,t|Ds)1−α +
P (Xk,t|Dp) = Gavg{P (xi +
P (Xk,t|Ds) = max +
P (Xk,t|l, Ds) = Gavg{P (xi +
(1) +
(2) +
(3) +
k,t])} (4) +
We use the most likely models M to predict the +
part locations of the testing sample: +
k,t)P (xi|di +
p[ci +
P (Xk,t|l, Ds) +
s[l, si +
ˆxi = arg max +
(cid:88) +
P ((cid:52)xi +
k,t]) (5) +
k,t|di +
p[ci +
k, si +
k,t, θi +
xi +
k,t∈M +
Species 1 +
Species 2 +
Species 3 +
Subcategory clusters of Back +
For each species l of part i, we build a detector after +
aligning the samples. Assuming the detector scans +
the image over scales and orientations, then the re- +
sponse map of this detector at a particular scale si +
and orientation θi is denoted as di +
Enforcing Consistency +
P (xi +
P (xi +
s[l, si, θi]. +
s[l, si +
k,t, θi +
k,t|di +
k,t|di +
p[ci +
k, si +
k,t]) +
k,t]) +
Pose Detectors +
Pose 1 +
Pose 2 +
Pose 3 +
Poses clusters of Back +
For each pose cluster ci of part i, we build a de- +
tector. The detector scans the image over scales, +
and the response map of this detector at a particu- +
lar scale si is denoted as di +
p[ci, si]. +
References +
[1] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie. The +
Caltech-UCSD Birds-200-2011 Dataset. Computation & Neu- +
ral Systems Technical Report, CNS-TR-2011-001, 2011 +
[2] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, N. Kumar. +
Localizing Parts of Faces Using a Consensus of Exemplars. +
In CVPR ’11 +
Comparisons +
PCP +
Back +
Beak +
Belly +
Breast +
Crown +
Forehead +
Left Eye +
Left Leg +
Left Wing +
Nape +
Right Eye +
Right Leg +
Right Wing +
Tail +
Throat +
Average +
CoE [2] Ours +
62.08 +
46.29 +
49.02 +
43.08 +
69.02 +
54.44 +
66.98 +
54.19 +
72.85 +
64.69 +
58.46 +
51.48 +
55.78 +
47.53 +
40.94 +
29.67 +
71.57 +
59.58 +
70.78 +
58.91 +
55.51 +
46.50 +
40.52 +
29.03 +
71.56 +
58.47 +
40.16 +
27.77 +
70.83 +
58.89 +
59.74 +
48.70 +
mAP +
Birdlets +
Template bagging +
Pose pooling +
Ours +
200 species +
14 species +
28.18 +
44.13 +
40.25 +
44.73 +
57.44 +
62.42 +
('2454675', 'Jiongxin Liu', 'jiongxin liu')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
{liujx09, belhumeur}@cs.columbia.edu +
0faee699eccb2da6cf4307ded67ba8434368257bTAIGMAN: MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION +
Multiple One-Shots for Utilizing Class Label +
Information +
1 The Blavatnik School of Computer +
Science, +
Tel-Aviv University, Israel
2 Computer Science Division, +
The Open University of Israel
3 face.com +
Tel-Aviv, Israel +
('2188620', 'Yaniv Taigman', 'yaniv taigman')
('1776343', 'Lior Wolf', 'lior wolf')
('1756099', 'Tal Hassner', 'tal hassner')
yaniv@face.com +
wolf@cs.tau.ac.il +
hassner@openu.ac.il +
0fabb4a40f2e3a2502cd935e54e090a304006c1cRegularized Robust Coding for Face Recognition +
The Hong Kong Polytechnic University, Hong Kong, China
bSchool of Computer Science and Technology, Nanjing Univ. of Science and Technology, Nanjing, China +
('5828998', 'Meng Yang', 'meng yang')
('36685537', 'Lei Zhang', 'lei zhang')
('37081450', 'Jian Yang', 'jian yang')
('1698371', 'David Zhang', 'david zhang')
0f92e9121e9c0addc35eedbbd25d0a1faf3ab529MORPH-II: A Proposed Subsetting Scheme +
NSF-REU Site at UNC Wilmington, Summer 2017 +
('1940145', 'K. Park', 'k. park')
('11134292', 'Y. Wang', 'y. wang')
('1693283', 'C. Chen', 'c. chen')
('3369885', 'T. Kling', 't. kling')
0f0366070b46972fcb2976775b45681e62a94a26Reliable Posterior Probability Estimation for Streaming Face Recognition +
University of Colorado at Colorado Springs
Terrance Boult +
University of Colorado at Colorado Springs
('3274223', 'Abhijit Bendale', 'abhijit bendale')abendale@vast.uccs.edu +
tboult@vast.uccs.edu +
0ff23392e1cb62a600d10bb462d7a1f171f579d0Toward Sparse Coding on Cosine +
Distance +
Jonghyun Choi, Hyunjong Cho, Jungsuk Kwak#, +
Larry S. Davis +
UMIACS | University of Maryland, College Park
Stanford University
0fd3a7ee228bbc3dd4a111dae04952a1ee58a8cdHair Style Retrieval by Semantic Mapping on +
Informative Patches +
Tsinghua University, Beijing, China
('38081719', 'Nan Wang', 'nan wang')
('1679380', 'Haizhou Ai', 'haizhou ai')
wang-n04@mails.tsinghua.edu.cn, ahz@mail.tsinghua.edu.cn +
0f533bc9fdfb75a3680d71c84f906bbd59ee48f1Illumination Invariant Feature Extraction Based on Natural Images Statistics – +
Taking Face Images as An Example +
Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
National Taiwan University, Taipei, Taiwan
('2314709', 'Lu-Hung Chen', 'lu-hung chen')
('1934873', 'Yao-Hsiang Yang', 'yao-hsiang yang')
('1720473', 'Chu-Song Chen', 'chu-song chen')
('2809590', 'Ming-Yen Cheng', 'ming-yen cheng')
luhung.chen,yhyang@statistics.twbbs.org song@iis.sincia.edu.tw +
cheng@math.ntu.edu.tw +
0f4eb63402a4f3bae8f396e12133684fb760def1LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 +
Attribute Embedding with Visual-Semantic +
Ambiguity Removal for Zero-shot Learning +
1 Department of Electronic and Electrical +
Engineering +
The University of Shef eld
Sheffield , UK +
2 Department of Computer and +
Information Sciences +
Northumbria University
Newcastle upon Tyne, UK +
('39650869', 'Yang Long', 'yang long')
('40017778', 'Li Liu', 'li liu')
('40799321', 'Ling Shao', 'ling shao')
ylong2@sheffield.ac.uk +
li2.liu@northumbria.ac.uk +
ling.shao@ieee.org +
0fba39bf12486c7684fd3d51322e3f0577d3e4e8Task Specific Local Region Matching +
Department of Computer Science and Engineering +
University of California, San Diego
('2490700', 'Boris Babenko', 'boris babenko'){bbabenko,pdollar,sjb}@cs.ucsd.edu +
0f395a49ff6cbc7e796656040dbf446a40e300aaORIGINAL RESEARCH +
published: 22 December 2015 +
doi: 10.3389/fpsyg.2015.01937 +
The Change of Expression +
Configuration Affects +
Identity-Dependent Expression +
Aftereffect but Not +
Identity-Independent Expression +
Aftereffect +
College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University
of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science
and Technology, Kunming, China +
The present study examined the influence of expression configuration on cross-identity +
expression aftereffect. The expression configuration refers to the spatial arrangement +
of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs. +
a closed-mouth smile. In the first of two experiments, the expression aftereffect is +
measured using a cross-identity/cross-expression configuration factorial design. The +
facial +
identities of test faces were the same or different from the adaptor, while +
orthogonally, the expression configurations of those facial identities were also the same +
or different. The results show that the change of expression configuration impaired +
the expression aftereffect when the facial +
identities of adaptor and tests were the +
same; however, the impairment effect disappears when facial identities were different, +
indicating the identity-independent expression representation is more robust to the +
change of the expression configuration in comparison with the identity-dependent +
expression representation. In the second experiment, we used schematic line faces +
as adaptors and real faces as tests to minimize the similarity between the adaptor +
and tests, which is expected to exclude the contribution from the identity-dependent +
expression representation to expression aftereffect. The second experiment yields a +
similar result as the identity-independent expression aftereffect observed in Experiment 1. +
The findings indicate the different neural sensitivities to expression configuration for +
identity-dependent and identity-independent expression systems. +
Keywords: facial expression, adaptation, aftereffect, visual representation, vision +
INTRODUCTION +
One key issue in face study is to understand how emotional expression is represented in the +
human visual system. According to the classical cognitive model (Bruce and Young, 1986) and +
neural model (Haxby et al., 2000), emotional expression is consider to be represented and +
processed independent of facial identity. This view is supported by several lines of evidence. +
Edited by: +
Wenfeng Chen, +
Institute of Psychology, Chinese
Academy of Sciences, China +
Reviewed by: +
Marianne Latinus, +
Aix Marseille Université, France +
Jan Van den Stock, +
KU Leuven, Belgium +
*Correspondence: +
Specialty section: +
This article was submitted to +
Emotion Science, +
a section of the journal +
Frontiers in Psychology +
Received: 03 January 2015 +
Accepted: 02 December 2015 +
Published: 22 December 2015 +
Citation: +
Song M, Shinomori K, Qian Q, Yin J +
and Zeng W (2015) The Change of +
Expression Configuration Affects +
Identity-Dependent Expression +
Aftereffect but Not +
Identity-Independent Expression +
Aftereffect. Front. Psychol. 6:1937. +
doi: 10.3389/fpsyg.2015.01937 +
Frontiers in Psychology | www.frontiersin.org +
December 2015 | Volume 6 | Article 1937 +
('1692572', 'Miao Song', 'miao song')
('1970678', 'Keizo Shinomori', 'keizo shinomori')
('2431558', 'Qian Qian', 'qian qian')
('40596849', 'Jun Yin', 'jun yin')
('2161630', 'Weiming Zeng', 'weiming zeng')
('1692572', 'Miao Song', 'miao song')
songmiaolm@gmail.com +
0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277Detecting Hands in Egocentric Videos: Towards +
Action Recognition +
Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain +
University of Barcelona
2 Computer Vision Centre, +
Campus UAB, 08193 Cerdanyola del Valls, Barcelona, Spain +
('1901010', 'Alejandro Cartas', 'alejandro cartas')
('2837527', 'Mariella Dimiccoli', 'mariella dimiccoli')
('1724155', 'Petia Radeva', 'petia radeva')
alejandro.cartas@ub.edu +
0fe96806c009e8d095205e8f954d41b2b9fd5dcfOn-the-Job Learning with Bayesian Decision Theory +
Department of Computer Science +
Stanford University
Arun Chaganty +
Department of Computer Science +
Stanford University
Department of Computer Science +
Stanford University
Department of Computer Science +
Stanford University
('2795219', 'Keenon Werling', 'keenon werling')
('40085065', 'Percy Liang', 'percy liang')
('1812612', 'Christopher D. Manning', 'christopher d. manning')
keenon@cs.stanford.edu +
chaganty@cs.stanford.edu +
pliang@cs.stanford.edu +
manning@cs.stanford.edu +
0f940d2cdfefc78c92ec6e533a6098985f47a377A Hierarchical Framework for Simultaneous Facial Activity Tracking +
Department of Electrical,Computer and System Engineering +
Rensselaer Polytechnic Institute
Troy, NY 12180 +
('1713712', 'Jixu Chen', 'jixu chen')
('1726583', 'Qiang Ji', 'qiang ji')
chenj4@rpi.edu +
qji@ecse.rpi.edu +
0f21a39fa4c0a19c4a5b4733579e393cb1d04f71Evaluation of optimization +
components of a 3D to 2D +
landmark fitting algorithm for +
head pose estimation +
11029668 +
Bachelor thesis +
Credits: 18 EC +
Bachelor Opleiding Kunstmatige Intelligentie +
University of Amsterdam
Faculty of Science +
Science Park 904 +
1098 XH Amsterdam +
Supervisors +
dr. Sezer Karaoglu +
MSc. Minh Ngo +
Informatics Institute
Faculty of Science +
University of Amsterdam
Science Park 904 +
1090 GH Amsterdam +
June 29th, 2018 +
0fd1bffb171699a968c700f206665b2f8837d953Weakly Supervised Object Localization with +
Multi-fold Multiple Instance Learning +
('1939006', 'Ramazan Gokberk Cinbis', 'ramazan gokberk cinbis')
('34602236', 'Jakob Verbeek', 'jakob verbeek')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
0faeec0d1c51623a511adb779dabb1e721a6309bSeeing is Worse than Believing: Reading +
People’s Minds Better than Computer-Vision +
Methods Recognize Actions +
1 MIT, Cambridge, MA, USA +
Purdue University, West Lafayette, IN, USA
3 SUNY Buffalo, Buffalo, NY, USA +
Stanford University, Stanford, CA, USA
University of California at Los Angeles, Los Angeles, CA, USA
University of Michigan, Ann Arbor, MI, USA
Princeton University, Princeton, NJ, USA
Rutgers University, Newark, NJ, USA
University of Texas at Arlington, Arlington, TX, USA
National University of Ireland Maynooth, Co. Kildare, Ireland
('21570451', 'Andrei Barbu', 'andrei barbu')
('1728624', 'Wei Chen', 'wei chen')
('2228109', 'Caiming Xiong', 'caiming xiong')
('3587688', 'Jason J. Corso', 'jason j. corso')
('2663295', 'Christiane D. Fellbaum', 'christiane d. fellbaum')
('32218165', 'Catherine Hanson', 'catherine hanson')
('20009336', 'Evguenia Malaia', 'evguenia malaia')
('1700974', 'Barak A. Pearlmutter', 'barak a. pearlmutter')
('2465833', 'Ronnie B. Wilbur', 'ronnie b. wilbur')
andrei@0xab.com +
{dpbarret,shelie,qobi,tmt,wilbur}@purdue.edu +
wchen23@buffalo.edu +
nsid@stanford.edu +
caimingxiong@ucla.edu +
jjcorso@eecs.umich.edu +
fellbaum@princeton.edu +
{cat,jose}@psychology.rutgers.edu +
malaia@uta.edu +
barak@cs.nuim.ie +
0f81b0fa8df5bf3fcfa10f20120540342a0c92e5Mirror, mirror on the wall, tell me, is the error small? +
Queen Mary University of London
Queen Mary University of London
('2966679', 'Heng Yang', 'heng yang')
('1744405', 'Ioannis Patras', 'ioannis patras')
heng.yang@qmul.ac.uk +
i.patras@qmul.ac.uk +
0f0241124d6092a0bb56259ac091467c2c6938caAssociating Faces and Names in Japanese Photo News Articles on the Web +
The University of Electro-Communications, JAPAN
('32572703', 'Akio Kitahara', 'akio kitahara')
('2558848', 'Taichi Joutou', 'taichi joutou')
('1681659', 'Keiji Yanai', 'keiji yanai')
0a6d344112b5af7d1abbd712f83c0d70105211d0Constrained Local Neural Fields for robust facial landmark detection in the wild +
Tadas Baltruˇsaitis +
University of Cambridge Computer Laboratory
USC Institute for Creative Technologies
15 JJ Thomson Avenue +
12015 Waterfront Drive +
('40609287', 'Peter Robinson', 'peter robinson')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
tb346@cl.cam.ac.uk +
pr10@cl.cam.ac.uk +
morency@ict.usc.edu +
0a64f4fec592662316764283575d05913eb2135bJoint Pixel and Feature-level Domain Adaptation in the Wild +
Michigan State University
2NEC Labs America +
3UC San Diego +
('1849929', 'Luan Tran', 'luan tran')
0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Learning Invariant Deep Representation +
for NIR-VIS Face Recognition +
National Laboratory of Pattern Recognition, CASIA +
Center for Research on Intelligent Perception and Computing, CASIA +
Center for Excellence in Brain Science and Intelligence Technology, CAS +
University of Chinese Academy of Sciences, Beijing 100190, China
('1705643', 'Ran He', 'ran he')
('2225749', 'Xiang Wu', 'xiang wu')
('1757186', 'Zhenan Sun', 'zhenan sun')
('1688870', 'Tieniu Tan', 'tieniu tan')
{rhe,znsun,tnt}@nlpr.ia.ac.cn, alfredxiangwu@gmail.com +
0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112Patch-based Models For Visual Object Classes +
A dissertation submitted in partial fulfilment +
of the requirements for the degree of +
Doctor of Philosophy +
at +
University College London
Department of Computer Science +
University College London
February 24, 2011 +
('1904148', 'Jania Aghajanian', 'jania aghajanian')
0a5ffc55b584da7918c2650f9d8602675d256023Efficient Face Alignment via Locality-constrained Representation for Robust +
Recognition +
School of Electronic and Information Engineering, South China University of Technology
School of Electronic and Computer Engineering, Peking University
School of Computer Science and Software Engineering, Shenzhen University
4SIAT, Chinese Academy of Sciences +
('36326884', 'Weiyang Liu', 'weiyang liu')
0aeb5020003e0c89219031b51bd30ff1bceea363Sparsifying Neural Network Connections for Face Recognition +
1SenseTime Group +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('1681656', 'Yi Sun', 'yi sun')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
sunyi@sensetime.com +
xgwang@ee.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
0a511058edae582e8327e8b9d469588c25152dc6
0a4f3a423a37588fde9a2db71f114b293fc09c50
0aa74ad36064906e165ac4b79dec298911a7a4dbVariational Inference for the Indian Buffet Process +
Engineering Department +
Cambridge University
Cambridge, UK +
Engineering Department +
Cambridge University
Cambridge, UK +
Gatsby Unit +
University College London
London, UK +
Kurt T. Miller∗ +
Computer Science Division +
University of California, Berkeley
Berkeley, CA +
('2292194', 'Finale Doshi-Velez', 'finale doshi-velez')
('1689857', 'Jurgen Van Gael', 'jurgen van gael')
('1725303', 'Yee Whye Teh', 'yee whye teh')
0abf67e7bd470d9eb656ea2508beae13ca173198Going Deeper into First-Person Activity Recognition +
Carnegie Mellon University
Pittsburgh, PA 15213, USA +
('2238622', 'Minghuang Ma', 'minghuang ma')
('2681569', 'Haoqi Fan', 'haoqi fan')
('37991449', 'Kris M. Kitani', 'kris m. kitani')
minghuam@andrew.cmu.edu haoqif@andrew.cmu.edu kkitani@cs.cmu.edu +
0af33f6b5fcbc5e718f24591b030250c6eec027aText Analysis for Automatic Image Annotation +
Interdisciplinary Centre for Law & IT +
Department of Computer Science +
Katholieke Universiteit Leuven
Tiensestraat 41, 3000 Leuven, Belgium +
('1797588', 'Koen Deschacht', 'koen deschacht')
('1802161', 'Marie-Francine Moens', 'marie-francine moens')
{koen.deschacht,marie-france.moens}@law.kuleuven.ac.be +
0a3863a0915256082aee613ba6dab6ede962cdcdEarly and Reliable Event Detection Using Proximity Space Representation +
LTCI, CNRS, T´el´ecom ParisTech, Universit´e Paris-Saclay, 75013, Paris, France +
J´erˆome Gauthier +
LADIS, CEA, LIST, 91191, Gif-sur-Yvette, France +
Normandie Universit´e, UR, LITIS EA 4108, Avenue de l’universit´e, 76801, Saint-Etienne-du-Rouvray, France +
('2527457', 'Maxime Sangnier', 'maxime sangnier')
('1792962', 'Alain Rakotomamonjy', 'alain rakotomamonjy')
MAXIME.SANGNIER@TELECOM-PARISTECH.FR +
JEROME.GAUTHIER@CEA.FR +
ALAIN.RAKOTO@INSA-ROUEN.FR +
0a60d9d62620e4f9bb3596ab7bb37afef0a90a4fChimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. GCPR 2016 +
c(cid:13) Copyright by Springer. The final publication will be available at link.springer.com +
A. Freytag, E. Rodner, M. Simon, A. Loos, H. K¨uhl and J. Denzler +
Chimpanzee Faces in the Wild: +
Log-Euclidean CNNs for Predicting Identities +
and Attributes of Primates +
Computer Vision Group, Friedrich Schiller University Jena, Germany
2Michael Stifel Center Jena, Germany +
Fraunhofer Institute for Digital Media Technology, Germany
Max Planck Institute for Evolutionary Anthropology, Germany
5German Centre for Integrative Biodiversity Research (iDiv), Germany +
('1720839', 'Alexander Freytag', 'alexander freytag')
('1679449', 'Erik Rodner', 'erik rodner')
('49675890', 'Marcel Simon', 'marcel simon')
('4572597', 'Alexander Loos', 'alexander loos')
('1728382', 'Joachim Denzler', 'joachim denzler')
0a34fe39e9938ae8c813a81ae6d2d3a325600e5cFacePoseNet: Making a Case for Landmark-Free Face Alignment +
Institute for Robotics and Intelligent Systems, USC, CA, USA
Information Sciences Institute, USC, CA, USA
The Open University of Israel, Israel
('1752756', 'Feng-Ju Chang', 'feng-ju chang')
('46634688', 'Anh Tuan Tran', 'anh tuan tran')
('1756099', 'Tal Hassner', 'tal hassner')
('11269472', 'Iacopo Masi', 'iacopo masi')
{fengjuch,anhttran,iacopoma,nevatia,medioni}@usc.edu, hassner@isi.edu +
0ad8149318912b5449085187eb3521786a37bc78CP-mtML: Coupled Projection multi-task Metric Learning +
for Large Scale Face Retrieval +
Frederic Jurie1,∗ +
University of Caen, France
2MPI for Informatics, Germany +
3IIT Kanpur, India +
('2078892', 'Binod Bhattarai', 'binod bhattarai')
('2515597', 'Gaurav Sharma', 'gaurav sharma')
0a9d204db13d395f024067cf70ac19c2eeb5f942Viewpoint-aware Video Summarization +
The University of Tokyo, 2RIKEN, 3ETH Z urich, 4KU Leuven
('2551640', 'Atsushi Kanehira', 'atsushi kanehira')
('1681236', 'Luc Van Gool', 'luc van gool')
('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')
('1790553', 'Tatsuya Harada', 'tatsuya harada')
0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7Imperial College of Science, Technology and Medicine
Department of Computing +
Timing is everything +
A spatio-temporal approach to the analysis of facial +
actions +
Michel Fran¸cois Valstar +
Submitted in part fulfilment of the requirements for the degree of +
Doctor of Philosophy in Computing of Imperial College, February
0aae88cf63090ea5b2c80cd014ef4837bcbaadd83D Face Structure Extraction from Images at Arbitrary Poses and under +
Arbitrary Illumination Conditions +
A Thesis +
Submitted to the Faculty +
Of +
Drexel University
By +
In partial fulfillment of the +
Requirements for the degree +
Of +
Doctor of Philosophy +
October 2006 +
('40531119', 'Cuiping Zhang', 'cuiping zhang')
0a87d781fe2ae2e700237ddd00314dbc10b1429cDistribution Statement A: Approved for public release; distribution unlimited. +
Multi-scale HOG Prescreening Algorithm for Detection of Buried +
Explosive Hazards in FL-IR and FL-GPR Data +
University of Missouri, Columbia, MO
('2741325', 'K. Stone', 'k. stone')
('9187168', 'J. M. Keller', 'j. m. keller')
0ad90118b4c91637ee165f53d557da7141c3fde0
0a82860d11fcbf12628724333f1e7ada8f3cd255Action Temporal Localization in Untrimmed Videos via Multi-stage CNNs +
Columbia University
New York, NY, USA +
('2195345', 'Zheng Shou', 'zheng shou')
('2704179', 'Dongang Wang', 'dongang wang')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{zs2262,dw2648,sc250}@columbia.edu +
0a4fc9016aacae9cdf40663a75045b71e64a70c9JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (201X) +
Illumination Normalization Based on +
Homomorphic Wavelet Filtering for Face Recognition +
1School of Electronic and Information Engineering +
Beijing Jiaotong University
No.3 Shang Yuan Cun,Hai Dian District +
Beijing 100044,China +
2School of Physics Electrical Information Engineering +
Ningxia University
Yinchuan Ningxia 750021,China +
Phone number: 086-010-51688165 +
The performance of face recognition techniques is greatly challenged by the pose, +
expression and illumination of the image. For most existing systems, the recognition rate +
will decrease due to changes in environmental illumination. In this paper, a +
Homomorphic Wavelet-based Illumination Normalization (HWIN) method is proposed. +
The purpose of this method is to normalize the uneven illumination of the facial image. +
The image is analyzed in the logarithm domain with wavelet transform, the +
approximation coefficients of the image are mapped according to the reference +
illumination map in order to normalize the distribution of illumination energy resulting +
from different lighting effects, and the detail components are enhanced to achieve detail +
information emphasis. Then, a Difference of Gaussian (DoG) filter is also applied to +
reduce the noise resulting from different lighting effects, which exists on detail +
components. The proposed methods are implemented on Yale B and Extended Yale B +
facial databases. The experimental results show that the methods described in this study +
are capable of effectively eliminating the effects of uneven illumination and of greatly +
improving the recognition rate, and are therefore more effective than other popular +
methods. +
Keywords: face recognition; homomorphic filtering; wavelet transfer; illumination +
mapping +
1. INTRODUCTION +
Automatic face recognition has received significant attention over the past several +
decades due to its numerous potential applications, such as human-computer interfaces, +
access control, security and surveillance, e-commerce, entertainment, and so on. Related +
research performed in recent years has made great progress, and a number of face +
recognition systems have achieved strong results, as shown in the latest report of Face +
Recognition Vendor Test (FRVT, 2006). Despite this remarkable progress, face +
recognition still faces a challenging problem, which is its sensitivity to the dramatic +
variations among images of the same face. For example, facial expression, pose, ageing, +
make-up, background and illumination variations are all factors which may result in +
significant variations [1-26]. +
Illumination variation is one of the most significant factors limiting the performance +
of face recognition. Since several images of the same person appear to be dramatically +
1 +
('2613621', 'Xue Yuan', 'xue yuan')
('47884608', 'Yifei Meng', 'yifei meng')
E-mail: 10111045@bjtu.edu.cn +
0a85afebaa19c80fddb660110a4352fd22eb2801Neural Animation and Reenactment of Human Actor Videos +
Fig. 1. We propose a novel learning-based approach for the animation and reenactment of human actor videos. The top row shows some frames of the video +
We propose a method for generating (near) video-realistic animations of +
real humans under user control. In contrast to conventional human char- +
acter rendering, we do not require the availability of a production-quality +
photo-realistic 3D model of the human, but instead rely on a video sequence +
in conjunction with a (medium-quality) controllable 3D template model +
of the person. With that, our approach significantly reduces production +
cost compared to conventional rendering approaches based on production- +
quality 3D models, and can also be used to realistically edit existing videos. +
Technically, this is achieved by training a neural network that translates +
simple synthetic images of a human character into realistic imagery. For +
training our networks, we first track the 3D motion of the person in the +
video using the template model, and subsequently generate a synthetically +
mpg.de, Max Planck Institute for Informatics
Permission to make digital or hard copies of part or all of this work for personal or +
classroom use is granted without fee provided that copies are not made or distributed +
for profit or commercial advantage and that copies bear this notice and the full citation +
on the first page. Copyrights for third-party components of this work must be honored. +
For all other uses, contact the owner/author(s). +
© 2018 Copyright held by the owner/author(s). +
XXXX-XXXX/2018/9-ART282 +
https://doi.org/10.475/123_4 +
rendered version of the video. These images are then used to train a con- +
ditional generative adversarial network that translates synthetic images of +
the 3D model into realistic imagery of the human. We evaluate our method +
for the reenactment of another person that is tracked in order to obtain the +
motion data, and show video results generated from artist-designed skeleton +
motion. Our results outperform the state-of-the-art in learning-based human +
image synthesis. +
CCS Concepts: • Computing methodologies → Computer graphics; +
Neural networks; Appearance and texture representations; Animation; Ren- +
dering; +
Additional Key Words and Phrases: Video-based Characters, Deep Learning, +
Conditional GAN, Rendering-to-Video Translation +
ACM Reference Format: +
Animation and Reenactment of Human Actor Videos. 1, 1, Article 282 +
(September 2018), 13 pages. https://doi.org/10.475/123_4 +
INTRODUCTION +
The creation of realistically rendered and controllable animations +
of human characters is a crucial task in many computer graphics +
applications. Virtual actors play a key role in games and visual ef- +
fects, in telepresence, or in virtual and augmented reality. Today, the +
plausible rendition of video-realistic characters—i.e., animations in- +
distinguishable from a video of a human—under user control is also +
Submission ID: 282. 2018-09-12 00:32. Page 1 of 1–13. +
, Vol. 1, No. 1, Article 282. Publication date: September 2018. +
('46458089', 'Lingjie Liu', 'lingjie liu')
('9765909', 'Weipeng Xu', 'weipeng xu')
('1699058', 'Michael Zollhöfer', 'michael zollhöfer')
('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')
('39600032', 'Florian Bernard', 'florian bernard')
('14210288', 'Marc Habermann', 'marc habermann')
('1698520', 'Wenping Wang', 'wenping wang')
('1680185', 'Christian Theobalt', 'christian theobalt')
('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')
('46458089', 'Lingjie Liu', 'lingjie liu')
('9765909', 'Weipeng Xu', 'weipeng xu')
('1699058', 'Michael Zollhöfer', 'michael zollhöfer')
('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')
('39600032', 'Florian Bernard', 'florian bernard')
('14210288', 'Marc Habermann', 'marc habermann')
('1698520', 'Wenping Wang', 'wenping wang')
('1680185', 'Christian Theobalt', 'christian theobalt')
Authors’ addresses: Lingjie Liu, liulingjie0206@gmail.com, University of Hong Kong, +
Max Planck Institute for Informatics; Weipeng Xu, wxu@mpi-inf.mpg.de, Max Planck +
Institute for Informatics; Michael Zollhöfer, zollhoefer@cs.stanford.edu, Stanford +
kim@mpi-inf.mpg.de; Florian Bernard, fbernard@mpi-inf.mpg.de; Marc Habermann, +
mhaberma@mpi-inf.mpg.de, Max Planck Institute for Informatics; Wenping Wang, +
wenping@cs.hku.hk, University of Hong Kong; Christian Theobalt, theobalt@mpi-inf. +
0ac442bb570b086d04c4d51a8410fcbfd0b1779dWarpNet: Weakly Supervised Matching for Single-view Reconstruction +
University of Maryland, College Park
Manmohan Chandraker +
NEC Labs America +
('20615377', 'Angjoo Kanazawa', 'angjoo kanazawa')
('34734622', 'David W. Jacobs', 'david w. jacobs')
0af48a45e723f99b712a8ce97d7826002fe4d5a52982 +
Toward Wide-Angle Microvision Sensors +
Todd Zickler, Member, IEEE +
('2724462', 'Sanjeev J. Koppal', 'sanjeev j. koppal')
('2407724', 'Ioannis Gkioulekas', 'ioannis gkioulekas')
('3091204', 'Travis Young', 'travis young')
('2070262', 'Hyunsung Park', 'hyunsung park')
('2140759', 'Kenneth B. Crozier', 'kenneth b. crozier')
('40431923', 'Geoffrey L. Barrows', 'geoffrey l. barrows')
0aa8a0203e5f406feb1815f9b3dd49907f5fd05bMixture subclass discriminant analysis +('1827419', 'Nikolaos Gkalelis', 'nikolaos gkalelis')
('1737436', 'Vasileios Mezaris', 'vasileios mezaris')
0ac664519b2b8abfb8966dafe60d093037275573Facial Action Unit Detection Using Kernel Partial Least Squares - +
Supplemental Material +
Facial Image Processing and Analysis Group, Institute for Anthropomatics
Karlsruhe Institute of Technology
D-76131 Karlsruhe, P.O. Box 6980 Germany +
1. Introduction +
In this document we present additional results corre- +
sponding to the experiments shown in [1]. +
A. ROC Curves +
The ROC curves for the AU estimates are shown in this +
section. +
A.1. Evaluation on a Single Dataset +
A.1.1 Experiment on the CK+ Dataset with Eye Labels +
See Figure 1. +
A.1.2 Experiment on the CK+ Dataset with Automatic +
Eye Detection +
See Figure 2. +
A.1.3 Experiment on the GEMEP-FERA Dataset +
See Figure 3. +
A.2. Evaluation across Datasets +
A.2.1 Generalization from Constrained to less Con- +
strained Condition +
See Figure 4. +
A.2.2 Generalization from less Constrained to Con- +
strained Condition +
See Figure 5. +
B. F1-Score +
The F1-Scores for the AU estimates are shown in this +
section. If no threshold optimization is performed then the +
thresholds are set to 0.5 for the PLS-based approaches and +
Table 1. F1 scores in % on CK+ using eye labels. AVG is the +
weighted average over the individual results, depending on the +
number of positive samples given by in the column N. +
linear PLS +
RBF PLS +
linear SVM RBF SVM +
176 +
117 +
193 +
102 +
123 +
120 +
75 +
34 +
131 +
94 +
201 +
79 +
60 +
58 +
324 +
50 +
81 +
AU +
11 +
12 +
15 +
17 +
20 +
23 +
24 +
25 +
26 +
27 +
AVG +
78.1 +
80.4 +
74.2 +
77.5 +
72.8 +
64.0 +
84.3 +
15.0 +
84.7 +
60.3 +
77.4 +
64.8 +
35.2 +
38.2 +
85.4 +
15.6 +
85.9 +
72.3 +
77.5 +
76.2 +
75.9 +
76.2 +
68.2 +
51.0 +
84.2 +
5.7 +
81.9 +
51.5 +
78.3 +
57.1 +
28.6 +
26.7 +
86.5 +
7.4 +
83.0 +
69.5 +
69.6 +
78.9 +
72.8 +
74.3 +
67.0 +
51.9 +
84.5 +
14.6 +
78.3 +
52.6 +
73.6 +
49.6 +
28.9 +
14.1 +
86.5 +
5.9 +
84.6 +
67.4 +
71.5 +
76.7 +
68.0 +
73.8 +
65.7 +
42.3 +
83.0 +
0.0 +
80.0 +
49.6 +
76.8 +
28.0 +
14.3 +
9.0 +
86.1 +
0.0 +
77.7 +
64.4 +
0.0 for the SVM-based approaches. Otherwise thresholds +
are optimized using equal error rate (EER) or F1 score as +
metrics [2] on either the training folds of the LOSO scheme +
or the whole training data in case of the cross-dataset tests. +
B.1. Evaluation on a Single Dataset +
B.1.1 Experiment on the CK+ Dataset with Eye Labels +
See Table 1 for F1 scores without threshold optimization, +
Table 2 for F1 scores using threshold optimization based on +
EER and Table 3 for F1 scores using threshold optimization +
based on F1 score. +
B.1.2 Experiment on the CK+ Dataset with Automatic +
Eye Detection +
See Table 4 for F1 scores without threshold optimization, +
Table 5 for F1 scores using threshold optimization based on +
EER and Table 6 for F1 scores using threshold optimization +
based on F1 score. +
('40303076', 'Tobias Gehrig', 'tobias gehrig'){tobias.gehrig, ekenel}@kit.edu +
0a9345ea6e488fb936e26a9ba70b0640d3730ba7Deep Bi-directional Cross-triplet Embedding for +
Cross-Domain Clothing Retrieval +
Northeastern University, Boston, USA
College of Computer and Information Science, Northeastern University, Boston, USA
('3343578', 'Shuhui Jiang', 'shuhui jiang')
('1746738', 'Yue Wu', 'yue wu')
('37771688', 'Yun Fu', 'yun fu')
{shjiang, yuewu, yunfu}@ece.neu.edu +
0a79d0ba1a4876086e64fc0041ece5f0de90fbeaFACE ILLUMINATION NORMALIZATION +
WITH SHADOW CONSIDERATION +
By +
SUBMITTED IN PARTIAL FULFILLMENT OF THE +
REQUIREMENTS FOR THE DEGREE OF +
MASTER OF SCIENCE +
AT +
CARNEGIE MELLON UNIVERSITY
5000 FORBES AVENUE PITTSBURGH PA 15213-3890 +
MAY 2004 +
('3039721', 'Avinash B. Baliga', 'avinash b. baliga')
('3039721', 'Avinash B. Baliga', 'avinash b. baliga')
0a7309147d777c2f20f780a696efe743520aa2dbStories for Images-in-Sequence by using Visual +
and Narrative Components (cid:63) +
Ss. Cyril and Methodius University, Skopje, Macedonia
2 Pendulibrium, Skopje, Macedonia +
3 Elevate Global, Skopje, Macedonia +
('46205557', 'Marko Smilevski', 'marko smilevski')
('46242132', 'Ilija Lalkovski', 'ilija lalkovski')
{marko.smilevski,ilija}@webfactory.mk, gjorgji.madjarov@finki.ukim.mk +
0a11b82aa207d43d1b4c0452007e9388a786be12Feature Level Multiple Model Fusion Using Multilinear +
Subspace Analysis with Incomplete Training Set +
and Its Application to Face Image Analysis +
School of IoT Engineering, Jiangnan University, Wuxi, 214122, China
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH
United Kingdom +
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('1748684', 'Josef Kittler', 'josef kittler')
xiaojun wu jnu@163.com +
{Z.Feng,J.Kittler,W.Christmas}@surrey.ac.uk +
0a1138276c52c734b67b30de0bf3f76b0351f097This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +
The final version of record is available at +
http://dx.doi.org/10.1109/TIP.2016.2539502 +
Discriminant Incoherent Component Analysis +
('2812961', 'Christos Georgakis', 'christos georgakis')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1694605', 'Maja Pantic', 'maja pantic')
0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a('1802883', 'Soufiane Belharbi', 'soufiane belharbi')
0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7Noname manuscript No. +
(will be inserted by the editor) +
Multi-task, multi-label and multi-domain learning with +
residual convolutional networks for emotion recognition +
Received: date / Accepted: date +
('10157512', 'Gerard Pons', 'gerard pons')
0acf23485ded5cb9cd249d1e4972119239227ddbDual coordinate solvers for large-scale structural SVMs +
UC Irvine +
This manuscript describes a method for training linear SVMs (including binary SVMs, SVM regression, +
and structural SVMs) from large, out-of-core training datasets. Current strategies for large-scale learning fall +
into one of two camps; batch algorithms which solve the learning problem given a finite datasets, and online +
algorithms which can process out-of-core datasets. The former typically requires datasets small enough to fit +
in memory. The latter is often phrased as a stochastic optimization problem [4, 15]; such algorithms enjoy +
strong theoretical properties but often require manual tuned annealing schedules, and may converge slowly +
for problems with large output spaces (e.g., structural SVMs). We discuss an algorithm for an “intermediate” +
regime in which the data is too large to fit in memory, but the active constraints (support vectors) are small +
enough to remain in memory. +
In this case, one can design rather efficient learning algorithms that are +
as stable as batch algorithms, but capable of processing out-of-core datasets. We have developed such a +
MATLAB-based solver and used it to train a series of recognition systems [19, 7, 21, 12] for articulated pose +
estimation, facial analysis, 3D object recognition, and action classification, all with publicly-available code. +
This writeup describes the solver in detail. +
Approach: Our approach is closely based on data-subsampling algorithms for collecting hard exam- +
ples [9, 10, 6], combined with the dual coordinate quadratic programming (QP) solver described in liblinear +
[8]. The latter appears to be current fastest method for learning linear SVMs. We make two extensions (1) +
We show how to generalize the solver to other types of SVM problems such as (latent) structural SVMs (2) +
We show how to modify it to behave as a partially-online algorithm, which only requires access to small +
amounts of data at a time. +
Overview: Sec. 1 describes a general formulation of an SVM problem that encompasses many standard +
tasks such as multi-class classification and (latent) structural prediction. Sec. 2 derives its dual QP, and Sec. 3 +
describes a dual coordinate descent optimization algorithm. Sec. 4 describes modifications for optimizing +
in an online fashion, allowing one to learn near-optimal models with a single pass over large, out-of-core +
datasets. Sec. 5 briefly touches on some theoretical issues that are necessary to ensure convergence. Finally, +
Sec. 6 and Sec. 7 describe modifications to our basic formulation to accommodate non-negativity constraints +
and flexible regularization schemes during learning. +
1 Generalized SVMs +
We first describe a general formulation of a SVM which encompasses various common problems such as +
binary classification, regression, and structured prediction. Assume we are given training data where the ith +
example is described by a set of Ni vectors {xij} and a set of Ni scalars {lij}, where j varies from 1 to Ni. +
We wish to solve the following optimization problem: +
(0, lij − wT xij) +
max +
j∈Ni +
(1) +
(cid:88) +
argmin +
L(w) = +
||w||2 + +
('1770537', 'Deva Ramanan', 'deva ramanan')
0ad4a814b30e096ad0e027e458981f812c835aa0
6448d23f317babb8d5a327f92e199aaa45f0efdc
6412d8bbcc01f595a2982d6141e4b93e7e982d0fDeep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and +
Score-level Fusion for Face Recognition +
1Department of Creative IT Engineering, POSTECH, Korea +
2Department of Computer Science and Engineering, POSTECH, Korea +
('2794366', 'Bong-Nam Kang', 'bong-nam kang')
('1804861', 'Yonghyun Kim', 'yonghyun kim')
('1695669', 'Daijin Kim', 'daijin kim')
{bnkang, gkyh0805, dkim}@postech.ac.kr +
641f0989b87bf7db67a64900dcc9568767b7b50fReconstructing Faces from their Signatures using RBF +
Regression +
To cite this version: +
sion. British Machine Vision Conference 2013, Sep 2013, Bristol, United Kingdom. pp.103.1– +
103.12, 2013, <10.5244/C.27.103>. +
HAL Id: hal-00943426 +
https://hal.archives-ouvertes.fr/hal-00943426 +
Submitted on 13 Feb 2014 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('34723309', 'Alexis Mignon', 'alexis mignon')
('34723309', 'Alexis Mignon', 'alexis mignon')
6409b8879c7e61acf3ca17bcc62f49edca627d4cLearning Finite Beta-Liouville Mixture Models via +
Variational Bayes for Proportional Data Clustering +
Electrical and Computer Engineering +
Institute for Information Systems Engineering
Concordia University, Canada
Concordia University, Canada
('2038786', 'Wentao Fan', 'wentao fan')
('1729109', 'Nizar Bouguila', 'nizar bouguila')
wenta fa@encs.concordia.ca +
nizar.bouguila@concordia.ca +
64153df77fe137b7c6f820a58f0bdb4b3b1a879bShape Invariant Recognition of Segmented Human +
Faces using Eigenfaces +
Department of Informatics +
Technical University of Munich, Germany
('1725709', 'Zahid Riaz', 'zahid riaz')
('1746229', 'Michael Beetz', 'michael beetz')
('1699132', 'Bernd Radig', 'bernd radig')
{riaz,beetz,radig}@in.tum.de +
649eb674fc963ce25e4e8ce53ac7ee20500fb0e3
64ec0c53dd1aa51eb15e8c2a577701e165b8517bOnline Regression with Feature Selection in +
Stochastic Data Streams +
Florida State University
Florida State University
('5517409', 'Lizhe Sun', 'lizhe sun')
('2455529', 'Adrian Barbu', 'adrian barbu')
lizhe.sun@stat.fsu.edu +
abarbu@stat.fsu.edu +
642c66df8d0085d97dc5179f735eed82abf110d0
6459f1e67e1ea701b8f96177214583b0349ed964GENERALIZED SUBSPACE BASED HIGH DIMENSIONAL DENSITY ESTIMATION +
University of California Santa Barbara
University of California Santa Barbara
('3231876', 'Karthikeyan Shanmuga Vadivel', 'karthikeyan shanmuga vadivel')(cid:63){karthikeyan,msargin,sjoshi,manj}@ece.ucsb.edu +
†grafton@psych.ucsb.edu +
64cf86ba3b23d3074961b485c16ecb99584401deSingle Image 3D Interpreter Network +
Massachusetts Institute of Technology
Stanford University
3Facebook AI Research +
4Google Research +
('3045089', 'Jiajun Wu', 'jiajun wu')
('3222730', 'Tianfan Xue', 'tianfan xue')
('35198686', 'Joseph J. Lim', 'joseph j. lim')
('39402399', 'Yuandong Tian', 'yuandong tian')
('1763295', 'Joshua B. Tenenbaum', 'joshua b. tenenbaum')
('1690178', 'Antonio Torralba', 'antonio torralba')
('1768236', 'William T. Freeman', 'william t. freeman')
6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4Deep Learning Face Attributes in the Wild∗ +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
('3243969', 'Ziwei Liu', 'ziwei liu')
('1693209', 'Ping Luo', 'ping luo')
{lz013,pluo,xtang}@ie.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk +
6479b61ea89e9d474ffdefa71f068fbcde22cc44University of Exeter
Department of Computer Science +
Some Topics on Similarity Metric Learning +
June 2015 +
Supervised by Dr. Yiming Ying +
Philosophy in Computer Science , June 2015. +
This thesis is available for Library use on the understanding that it is copyright material +
and that no quotation from the thesis may be published without proper acknowledgement. +
I certify that all material in this thesis which is not my own work has been identified and +
that no material has previously been submitted and approved for the award of a degree by this or +
any other University
(signature) ................................................................................................. +
('1954340', 'Qiong Cao', 'qiong cao')
('1954340', 'Qiong Cao', 'qiong cao')
64e75f53ff3991099c3fb72ceca55b76544374e5Simultaneous Feature Selection and Classifier Training via Linear +
Programming: A Case Study for Face Expression Recognition +
Computer Sciences Department +
University of Wisconsin-Madison
Madison, WI 53706 +
('1822413', 'Guodong Guo', 'guodong guo')
('1724754', 'Charles R. Dyer', 'charles r. dyer')
fgdguo, dyerg@cs.wisc.edu +
64f9519f20acdf703984f02e05fd23f5e2451977Learning Temporal Alignment Uncertainty for +
Efficient Event Detection +
Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia
The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA
('2838646', 'Iman Abbasnejad', 'iman abbasnejad')
('1729760', 'Sridha Sridharan', 'sridha sridharan')
('1980700', 'Simon Denman', 'simon denman')
('3140440', 'Clinton Fookes', 'clinton fookes')
('1820249', 'Simon Lucey', 'simon lucey')
Email:{i.abbasnejad, s.sridharan, s.denman, c.fookes}@qut.edu.au, slucey@cs.cmu.edu +
641f34deb3bdd123c6b6e7b917519c3e56010cb7
64782a2bc5da11b1b18ca20cecf7bdc26a538d68JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (2011) +
Facial Expression Recognition using +
Spectral Supervised Canonical Correlation Analysis* +
Institute of Information Science
Beijing Jiaotong University
Beijing, 100044 P.R. China +
Feature extraction plays an important role in facial expression recognition. Canoni- +
cal correlation analysis (CCA), which studies the correlation between two random vec- +
tors, is a major linear feature extraction method based on feature fusion. Recent studies +
have shown that facial expression images often reside on a latent nonlinear manifold. +
However, either CCA or its kernel version KCCA, which is globally linear or nonlinear, +
cannot effectively utilize the local structure information to discover the low-dimensional +
manifold embedded in the original data. Inspired by the successful application of spectral +
graph theory in classification, we proposed spectral supervised canonical correlation +
analysis (SSCCA) to overcome the shortcomings of CCA and KCCA. In SSCCA, we +
construct an affinity matrix, which incorporates both the class information and local +
structure information of the data points, as the supervised matrix. The spectral feature of +
covariance matrices is used to extract a new combined feature with more discriminative +
information, and it can reveal the nonlinear manifold structure of the data. Furthermore, +
we proposed a unified framework for CCA to offer an effective methodology for +
non-empirical structural comparison of different forms of CCA as well as providing a +
way to extend the CCA algorithm. The correlation feature extraction power is then pro- +
posed to evaluate the effectiveness of our method. Experimental results on two facial ex- +
pression databases validate the effectiveness of our method. +
Keywords: spectral supervised canonical correlation analysis, spectral classification, fea- +
ture fusion, feature extraction, facial expression recognition +
1. INTRODUCTION +
Facial expression conveys visual human emotions, which makes the facial expres- +
sion recognition (FER) plays an important role in human–computer interaction, image +
retrieval, synthetic face animation, video conferencing, human emotion analysis [1, 2]. +
Due to its wide range of applications, FER has attracted much attention in recent years. +
Generally speaking, a FER system consists of three major components: face detection, +
facial expression feature extraction and facial expression classification [1, 2]. Since ap- +
propriate facial expression representation can effectively alleviate the complexity of the +
design of classification and improve the performance of the FER system, most researches +
currently concentrate on how to extract effective facial expression features. +
A variety of methods have been proposed for facial expression feature extraction +
[3-7], and there are generally two common approaches: single feature extraction and +
feature fusion. Single feature extraction is based on a particular method, i.e. principal +
component analysis (PCA) [3], fisher’s linear discriminant (FLD) [4], locality preserving +
*This paper was supported by the National Natural Science Foundation of China (Grant No.60973060), Spe- +
cialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800040008), Beijing +
Program (Grant No. YB20081000401) and the Fundamental Research Funds for the Central Universities +
(Grant No. 2011JBM022). +
1 +
('1701978', 'Song Guo', 'song guo')
('1738408', 'Qiuqi Ruan', 'qiuqi ruan')
('1718667', 'Zhan Wang', 'zhan wang')
('1702894', 'Shuai Liu', 'shuai liu')
645de797f936cb19c1b8dba3b862543645510544Deep Temporal Linear Encoding Networks +
1ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich +
('3310120', 'Ali Diba', 'ali diba')
('50633941', 'Vivek Sharma', 'vivek sharma')
('1681236', 'Luc Van Gool', 'luc van gool')
{firstname.lastname}@esat.kuleuven.be +
6462ef39ca88f538405616239471a8ea17d76259
64d5772f44efe32eb24c9968a3085bc0786bfca7Morphable Displacement Field Based Image +
Matching for Face Recognition across Pose +
1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
Graduate University of Chinese Academy of Sciences, Beijing 100049, China
3 Omron Social Solutions Co., LTD., Kyoto, Japan +
('1688086', 'Shaoxin Li', 'shaoxin li')
('1731144', 'Xin Liu', 'xin liu')
('1695600', 'Xiujuan Chai', 'xiujuan chai')
('1705483', 'Haihong Zhang', 'haihong zhang')
('1710195', 'Shihong Lao', 'shihong lao')
('1685914', 'Shiguang Shan', 'shiguang shan')
{shaoxin.li,xiujuan.chai,xin.liu,shiguang.shan}@vipl.ict.ac.cn, +
lao@ari.ncl.omron.co.jp, angelazhang@ssb.kusatsu.omron.co.jp +
64d7e62f46813b5ad08289aed5dc4825d7ec5cffYAMAGUCHI et al.: MIX AND MATCH +
Mix and Match: Joint Model for Clothing and +
Attribute Recognition +
http://vision.is.tohoku.ac.jp/~kyamagu +
Tohoku University
Sendai, Japan +
2 NTT +
Yokosuka, Japan +
Tokyo University of Science
Tokyo, Japan +
('1721910', 'Kota Yamaguchi', 'kota yamaguchi')
('1718872', 'Takayuki Okatani', 'takayuki okatani')
('1745497', 'Kyoko Sudo', 'kyoko sudo')
('2023568', 'Kazuhiko Murasaki', 'kazuhiko murasaki')
('2113938', 'Yukinobu Taniguchi', 'yukinobu taniguchi')
okatani@vision.is.tohoku.ac.jp +
sudo.kyoko@lab.ntt.co.jp +
murasaki.kazuhiko@lab.ntt.co.jp +
ytaniguti@ms.kagu.tus.ac.jp +
90ac0f32c0c29aa4545ed3d5070af17f195d015f
90d735cffd84e8f2ae4d0c9493590f3a7d99daf1Original Research Paper +
American Journal of Engineering and Applied Sciences +
Recognition of Faces using Efficient Multiscale Local Binary +
Pattern and Kernel Discriminant Analysis in Varying +
Environment +
V.H. Mankar +
Priyadarshini College of Engg, Nagpur, India
2Department of Electronics Engg, Government Polytechnic, Nagpur, India +
Article history +
Received: 20-06-2017 +
Revised: 18-07-2017 +
Accepted: 21-08-2017 +
Corresponding Author: +
Department of Electronics +
Engg, Priyadarshini College of
Engg, Nagpur, India +
face +
('9128944', 'Sujata G. Bhele', 'sujata g. bhele')
('9128944', 'Sujata G. Bhele', 'sujata g. bhele')
Email: sujata_bhele@yahoo.co.in +
90298f9f80ebe03cb8b158fd724551ad711d4e71A Pursuit of Temporal Accuracy in General Activity Detection +
The Chinese University of Hong Kong
2Computer Vision Laboratory, ETH Zurich, Switzerland +
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('1695765', 'Yue Zhao', 'yue zhao')
('33345248', 'Limin Wang', 'limin wang')
('1807606', 'Dahua Lin', 'dahua lin')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
900207b3bc3a4e5244cae9838643a9685a84fee0Reconstructing Geometry from Its Latent Structures +
A Thesis +
Submitted to the Faculty +
of +
Drexel University
by +
Geoffrey Oxholm +
in partial fulfillment of the +
requirements for the degree +
of +
Doctor of Philosophy +
June 2014 +
90498b95fe8b299ce65d5cafaef942aa58bd68b7Face Recognition: Primates in the Wild∗ +
Michigan State University, East Lansing, MI, USA
University of Chester, UK, 3Conservation Biologist
('32623642', 'Debayan Deb', 'debayan deb')
('46516859', 'Susan Wiper', 'susan wiper')
('9658130', 'Sixue Gong', 'sixue gong')
('9644181', 'Yichun Shi', 'yichun shi')
('41022894', 'Cori Tymoszek', 'cori tymoszek')
E-mail: 1{debdebay, gongsixu, shiyichu, tymoszek, jain}@cse.msu.edu, +
2s.wiper@chester.ac.uk, 3alexandra.h.russo@gmail.com +
90cc2f08a6c2f0c41a9dd1786bae097f9292105eTop-down Attention Recurrent VLAD Encoding +
for Action Recognition in Videos +
1 Fondazione Bruno Kessler, Trento, Italy +
University of Trento, Trento, Italy
('1756362', 'Swathikiran Sudhakaran', 'swathikiran sudhakaran')
('1717522', 'Oswald Lanz', 'oswald lanz')
{sudhakaran,lanz}@fbk.eu +
90fb58eeb32f15f795030c112f5a9b1655ba3624INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS +
www.ijrcar.com +
Vol.4 Issue 6, Pg.: 12-27 +
June 2016 +
INTERNATIONAL JOURNAL OF +
RESEARCH IN COMPUTER +
APPLICATIONS AND ROBOTICS +
ISSN 2320-7345 +
FACE AND IRIS RECOGNITION IN A +
VIDEO SEQUENCE USING DBPNN AND +
ADAPTIVE HAMMING DISTANCE +
PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India
Hindusthan College of Engineering and Technology, Coimbatore, India
('3406423', 'S. Revathy', 's. revathy')Email id: revathysreeni14@gmail.com +
90c4f15f1203a3a8a5bf307f8641ba54172ead30A 2D Morphable Model of Craniofacial Profile +
and Its Application to Craniosynostosis +
University of York, York, UK
2 Alder Hey Craniofacial Unit, Liverpool, UK +
https://www-users.cs.york.ac.uk/~nep/research/LYHM/ +
('1694260', 'Hang Dai', 'hang dai')
('1737428', 'Nick Pears', 'nick pears')
('14154312', 'Christian Duncan', 'christian duncan')
{hd816,nick.pears}@york.ac.uk +
Christian.Duncan@alderhey.nhs.uk +
902114feaf33deac209225c210bbdecbd9ef33b1KAN et al.: SIDE-INFORMATION BASED LDA FOR FACE RECOGNITION +
Side-Information based Linear +
Discriminant Analysis for Face +
Recognition +
Digital Media Research Center
Institute of Computing
Technology, CAS, Beijing, China +
2 Key Laboratory of Intelligent +
Information Processing, Chinese +
Academy of Sciences, Beijing, +
China +
3 School of Computer Engineering, +
Nanyang Technological +
University, Singapore
('1693589', 'Meina Kan', 'meina kan')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1714390', 'Dong Xu', 'dong xu')
('1710220', 'Xilin Chen', 'xilin chen')
mnkan@jdl.ac.cn +
sgshan@jdl.ac.cn +
dongxu@ntu.edu.sg +
xlchen@jdl.ac.cn +
90ad0daa279c3e30b360f9fe9371293d68f4cebfSPATIO-TEMPORAL FRAMEWORK AND +
ALGORITHMS FOR VIDEO-BASED FACE +
RECOGNITION +
DOCTOR OF PHILOSOPHY +
MULTIMEDIA UNIVERSITY
MAY 2014 +
('2339975', 'JOHN SEE', 'john see')
90a754f597958a2717862fbaa313f67b25083bf9REVIEW +
published: 16 November 2015 +
doi: 10.3389/frobt.2015.00028 +
A Review of Human Activity +
Recognition Methods +
University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine
Laboratory, University of Houston, Houston, TX, USA
Recognizing human activities from video sequences or still images is a challenging task +
due to problems, such as background clutter, partial occlusion, changes in scale, view- +
point, lighting, and appearance. Many applications, including video surveillance systems
human-computer interaction, and robotics for human behavior characterization, require +
a multiple activity recognition system. In this work, we provide a detailed review of recent +
and state-of-the-art research advances in the field of human activity classification. We +
propose a categorization of human activity methodologies and discuss their advantages +
and limitations. In particular, we divide human activity classification methods into two large +
categories according to whether they use data from different modalities or not. Then, each +
of these categories is further analyzed into sub-categories, which reflect how they model +
human activities and what type of activities they are interested in. Moreover, we provide +
a comprehensive analysis of the existing, publicly available human activity classification +
datasets and examine the requirements for an ideal human activity recognition dataset. +
Finally, we report the characteristics of future research directions and present some open +
issues on human activity recognition. +
Keywords: human activity recognition, activity categorization, activity datasets, action representation, +
review, survey +
1. INTRODUCTION +
Human activity recognition plays a significant role in human-to-human interaction and interper- +
sonal relations. Because it provides information about the identity of a person, their personality, +
and psychological state, it is difficult to extract. The human ability to recognize another person’s +
activities is one of the main subjects of study of the scientific areas of computer vision and machine +
learning. As a result of this research, many applications, including video surveillance systems
human-computer interaction, and robotics for human behavior characterization, require a multiple +
activity recognition system. +
Among various classification techniques two main questions arise: “What action?” (i.e., the +
recognition problem) and “Where in the video?” (i.e., the localization problem). When attempting to +
recognize human activities, one must determine the kinetic states of a person, so that the computer +
can efficiently recognize this activity. Human activities, such as “walking” and “running,” arise very +
naturally in daily life and are relatively easy to recognize. On the other hand, more complex activities, +
such as “peeling an apple,” are more difficult to identify. Complex activities may be decomposed into +
other simpler activities, which are generally easier to recognize. Usually, the detection of objects in +
a scene may help to better understand human activities as it may provide useful information about +
the ongoing event (Gupta and Davis, 2007). +
Edited by: +
Venkatesh Babu Radhakrishnan, +
Indian Institute of Science, India
Reviewed by: +
Stefano Berretti, +
University of Florence, Italy
Xinlei Chen, +
Carnegie Mellon University, USA
*Correspondence: +
Specialty section: +
This article was submitted to Vision +
Systems Theory, Tools and +
Applications, a section of the +
journal Frontiers in Robotics and AI +
Received: 09 July 2015 +
Accepted: 29 October 2015 +
Published: 16 November 2015 +
Citation: +
Vrigkas M, Nikou C and Kakadiaris IA +
(2015) A Review of Human Activity +
Recognition Methods. +
Front. Robot. AI 2:28. +
doi: 10.3389/frobt.2015.00028 +
Frontiers in Robotics and AI | www.frontiersin.org +
November 2015 | Volume 2 | Article 28 +
('2045915', 'Michalis Vrigkas', 'michalis vrigkas')
('1727495', 'Christophoros Nikou', 'christophoros nikou')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
('1727495', 'Christophoros Nikou', 'christophoros nikou')
cnikou@cs.uoi.gr +
90d9209d5dd679b159051a8315423a7f796d704dTemporal Sequence Distillation: Towards Few-Frame Action +
Recognition in Videos +
Wuhan University
SenseTime Research +
SenseTime Research +
The Chinese University of Hong Kong
SenseTime Research +
SenseTime Research +
('40192003', 'Zhaoyang Zhang', 'zhaoyang zhang')
('1874900', 'Zhanghui Kuang', 'zhanghui kuang')
('47571885', 'Ping Luo', 'ping luo')
('1739512', 'Litong Feng', 'litong feng')
('1726357', 'Wei Zhang', 'wei zhang')
zhangzhaoyang@whu.edu.cn +
kuangzhanghui@sensetime.com +
pluo@ie.cuhk.edu.hk +
fenglitong@sensetime.com +
wayne.zhang@sensetime.com +
90dd2a53236b058c79763459b9d8a7ba5e58c4f1Capturing Correlations Among Facial Parts for +
Facial Expression Analysis +
Department of Computer Science +
Queen Mary, University of London
Mile End Road, London E1 4NS, UK +
('10795229', 'Caifeng Shan', 'caifeng shan')
('2073354', 'Shaogang Gong', 'shaogang gong')
('2803283', 'Peter W. McOwan', 'peter w. mcowan')
{cfshan, sgg, pmco}@dcs.qmul.ac.uk +
90cb074a19c5e7d92a1c0d328a1ade1295f4f311MIT. Media Laboratory Affective Computing Technical Report #571 +
Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003 +
Fully Automatic Upper Facial Action Recognition +
MIT Media Laboratory +
Cambridge, MA 02139 +
('2189118', 'Ashish Kapoor', 'ashish kapoor')
90b11e095c807a23f517d94523a4da6ae6b12c76
90c2d4d9569866a0b930e91713ad1da01c2a6846528 +
The Open Automation and Control Systems Journal, 2014, 6, 528-534 +
Dimensionality Reduction Based on Low Rank Representation +
Open Access +
School of Electronic and Information Engineering, Tongji University, Shanghai, China
('40328872', 'Cheng Luo', 'cheng luo')
('40174994', 'Yang Xiang', 'yang xiang')
Send Orders for Reprints to reprints@benthamscience.ae +
907475a4febf3f1d4089a3e775ea018fbec895feSTATISTICAL MODELING FOR FACIAL EXPRESSION ANALYSIS AND SYNTHESIS +
Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne
BP 20529, 60205 COMPIEGNE Cedex, FRANCE. +
('2371236', 'Bouchra Abboud', 'bouchra abboud')
('1742818', 'Franck Davoine', 'franck davoine')
E-mail: Franck.Davoine@hds.utc.fr +
9028fbbd1727215010a5e09bc5758492211dec19Solving the Uncalibrated Photometric Stereo +
Problem using Total Variation +
1 IRIT, UMR CNRS 5505, Toulouse, France +
2 Dept. of Computer Science, Univ. of Copenhagen, Denmark +
('2233590', 'Jean-Denis Durou', 'jean-denis durou')yvain.queau@enseeiht.fr +
durou@irit.fr +
francois@diku.dk +
bff77a3b80f40cefe79550bf9e220fb82a74c084Facial Expression Recognition Based on Local Binary Patterns and +
Local Fisher Discriminant Analysis +
1School of Physics and Electronic Engineering +
Taizhou University
Taizhou 318000 +
CHINA +
2Department of Computer Science +
Taizhou University
Taizhou 318000 +
CHINA +
('1695589', 'SHIQING ZHANG', 'shiqing zhang')
('1730594', 'XIAOMING ZHAO', 'xiaoming zhao')
('38909691', 'BICHENG LEI', 'bicheng lei')
tzczsq@163.com, leibicheng@163.com +
tzxyzxm@163.com +
bf03f0fe8f3ba5b118bdcbb935bacb62989ecb11EFFECT OF FACIAL EXPRESSIONS ON FEATURE-BASED +
LANDMARK LOCALIZATION IN STATIC GREY SCALE +
IMAGES +
Research Group for Emotions, Sociality, and Computing, Tampere Unit for Computer-Human Interaction (TAUCHI) +
University of Tampere, Kanslerinnrinne 1, 33014, Tampere, Finland
Keywords: +
Image processing and computer vision, segmentation, edge detection, facial landmark localization, facial +
expressions, action units. +
('2935367', 'Yulia Gizatdinova', 'yulia gizatdinova')
('1718377', 'Veikko Surakka', 'veikko surakka')
{yulia.gizatdinova, veikko.surakka}@cs.uta.fi +
bf961e4a57a8f7e9d792e6c2513ee1fb293658e9EURASIP Journal on Applied Signal Processing 2004:16, 2533–2543 +
c(cid:1) 2004 Hindawi Publishing Corporation +
Robust Face Image Matching under +
Illumination Variations +
National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan
National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan
National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan
Received 1 September 2003; Revised 21 September 2004 +
Face image matching is an essential step for face recognition and face verification. It is difficult to achieve robust face matching +
under various image acquisition conditions. In this paper, a novel face image matching algorithm robust against illumination +
variations is proposed. The proposed image matching algorithm is motivated by the characteristics of high image gradient along +
the face contours. We define a new consistency measure as the inner product between two normalized gradient vectors at the +
corresponding locations in two images. The normalized gradient is obtained by dividing the computed gradient vector by the +
corresponding locally maximal gradient magnitude. Then we compute the average consistency measures for all pairs of the corre- +
sponding face contour pixels to be the robust matching measure between two face images. To alleviate the problem due to shadow +
and intensity saturation, we introduce an intensity weighting function for each individual consistency measure to form a weighted +
average of the consistency measure. This robust consistency measure is further extended to integrate multiple face images of the +
same person captured under different illumination conditions, thus making our robust face matching algorithm. Experimental +
results of applying the proposed face image matching algorithm on some well-known face datasets are given in comparison with +
some existing face recognition methods. The results show that the proposed algorithm consistently outperforms other methods +
and achieves higher than 93% recognition rate with three reference images for different datasets under different lighting condi- +
tions. +
Keywords and phrases: robust image matching, face recognition, illumination variations, normalized gradient. +
INTRODUCTION +
1. +
Face recognition has attracted the attention of a number +
of researchers from academia and industry because of its +
challenges and related applications, such as security access +
control, personal ID verification, e-commerce, video surveil- +
lance, and so forth. The details of these applications are re- +
ferred to in the surveys [1, 2, 3]. Face matching is the most +
important and crucial component in face recognition. Al- +
though there have been many efforts in previous works to +
achieve robust face matching under a wide variety of dif- +
ferent image capturing conditions, such as lighting changes, +
head pose or view angle variations, expression variations, +
and so forth, these problems are still difficult to overcome. +
It is a great challenge to achieve robust face matching under +
all kinds of different face imaging variations. A practical face +
recognition system needs to work under different imaging +
conditions, such as different face poses, or different illumi- +
nation conditions. Therefore, a robust face matching method +
is essential to the development of an illumination-insensitive +
face recognition system. In this paper, we particularly focus +
on robust face matching under different illumination condi- +
tions. +
Many researchers have proposed face recognition meth- +
ods or face verification systems under different illumination +
conditions. Some of these methods extracted representative +
features from face images to compute the distance between +
these features. In general, these methods can be categorized +
into the feature-based approach [4, 5, 6, 7, 8, 9, 10, 11], the +
appearance-based approach [12, 13, 14, 15, 16, 17, 18, 19, 20, +
21, 22, 23], and the hybrid approach [22, 24]. +
('2393568', 'Chyuan-Huei Thomas Yang', 'chyuan-huei thomas yang')
('1696527', 'Shang-Hong Lai', 'shang-hong lai')
('39505245', 'Long-Wen Chang', 'long-wen chang')
Email: chyang@cs.nthu.edu.tw +
Email: lai@cs.nthu.edu.tw +
Email: lchang@cs.nthu.edu.tw +
bf54b5586cdb0b32f6eed35798ff91592b03fbc4Journal of Signal and Information Processing, 2017, 8, 78-98 +
http://www.scirp.org/journal/jsip +
ISSN Online: 2159-4481 +
ISSN Print: 2159-4465 +
Methodical Analysis of Western-Caucasian and +
East-Asian Basic Facial Expressions of Emotions +
Based on Specific Facial Regions +
The University of Electro-Communications, Tokyo, Japan
How to cite this paper: Benitez-Garcia, G., +
Nakamura, T. and Kaneko, M. (2017) Me- +
thodical Analysis of Western-Caucasian and +
East-Asian Basic Facial Expressions of Emo- +
tions Based on Specific Facial Regions. Jour- +
nal of Signal and Information Processing, 8, +
78-98. +
https://doi.org/10.4236/jsip.2017.82006 +
Received: March 30, 2017 +
Accepted: May 15, 2017 +
Published: May 18, 2017 +
Copyright © 2017 by authors and +
Scientific Research Publishing Inc. +
This work is licensed under the Creative +
Commons Attribution International +
License (CC BY 4.0). +
http://creativecommons.org/licenses/by/4.0/ +
+
Open Access +
('2567776', 'Gibran Benitez-Garcia', 'gibran benitez-garcia')
('1693821', 'Tomoaki Nakamura', 'tomoaki nakamura')
('49061848', 'Masahide Kaneko', 'masahide kaneko')
bf1e0279a13903e1d43f8562aaf41444afca4fdc International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +
Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 +
Different Viewpoints of Recognizing Fleeting Facial Expressions with +
DWT +
information +
to get desired +
information +
Introduction +
---------------------------------------------------------------------***--------------------------------------------------------------------- +
('1848141', 'SANJEEV SHRIVASTAVA', 'sanjeev shrivastava')
('34417227', 'MOHIT GANGWAR', 'mohit gangwar')
bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103Brain Sci. 2015, 5, 369-386; doi:10.3390/brainsci5030369 +
OPEN ACCESS +
brain sciences +
ISSN 2076-3425 +
www.mdpi.com/journal/brainsci/ +
Article +
Emotion Regulation in Adolescent Males with Attention-Deficit +
Hyperactivity Disorder: Testing the Effects of Comorbid +
Conduct Disorder +
School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK
MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff
Tel.: +44-2920-874630; Fax: +44-2920-874545. +
Received: 17 July 2015 / Accepted: 25 August 2015 / Published: 7 September 2015 +
('5383377', 'Clare Northover', 'clare northover')
('4094135', 'Anita Thapar', 'anita thapar')
('39373878', 'Kate Langley', 'kate langley')
('4552820', 'Stephanie van Goozen', 'stephanie van goozen')
('2928107', 'Derek G.V. Mitchell', 'derek g.v. mitchell')
E-Mails: NorthoverC@cardiff.ac.uk (C.N.); LangleyK@cardiff.ac.uk (K.L.) +
CF24 4HQ, UK; E-Mail: Thapar@cardiff.ac.uk +
* Author to whom correspondence should be addressed; E-Mail: vangoozens@cardiff.ac.uk; +
bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5Visual face scanning and emotion +
perception analysis between Autistic +
and Typically Developing children +
University of Dhaka
University of Dhaka
Dhaka, Bangladesh +
Dhaka, Bangladesh +
('24613724', 'Uzma Haque Syeda', 'uzma haque syeda')
('24572640', 'Syed Mahir Tazwar', 'syed mahir tazwar')
bf4825474673246ae855979034c8ffdb12c80a98UNIVERSITY OF CALIFORNIA
RIVERSIDE +
Active Learning in Multi-Camera Networks, With Applications in Person +
Re-Identification +
A Dissertation submitted in partial satisfaction +
of the requirements for the degree of +
Doctor of Philosophy +
in +
Electrical Engineering +
by +
December 2015 +
Dissertation Committee: +
('40521893', 'Abir Das', 'abir das')
('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')
('1751869', 'Anastasios Mourikis', 'anastasios mourikis')
('1778860', 'Walid Najjar', 'walid najjar')
bf8a520533f401347e2f55da17383a3e567ef6d8Bounded-Distortion Metric Learning +
The Chinese University of Hong Kong
University of Chinese Academy of Sciences
Tsinghua University
The Chinese University of Hong Kong
('2246396', 'Renjie Liao', 'renjie liao')
('1788070', 'Jianping Shi', 'jianping shi')
('2376789', 'Ziyang Ma', 'ziyang ma')
('37670465', 'Jun Zhu', 'jun zhu')
('1729056', 'Jiaya Jia', 'jiaya jia')
rjliao,jpshi@cse.cuhk.edu.hk +
maziyang08@gmail.com +
dcszj@mail.tsinghua.edu.cn +
leojia@cse.cuhk.edu.hk +
bf5940d57f97ed20c50278a81e901ae4656f0f2cQuery-free Clothing Retrieval via Implicit +
Relevance Feedback +
('26331884', 'Zhuoxiang Chen', 'zhuoxiang chen')
('1691461', 'Zhe Xu', 'zhe xu')
('48380192', 'Ya Zhang', 'ya zhang')
('48531192', 'Xiao Gu', 'xiao gu')
bff567c58db554858c7f39870cff7c306523dfeeNeural Task Graphs: Generalizing to Unseen +
Tasks from a Single Video Demonstration +
Stanford University
('38485317', 'De-An Huang', 'de-an huang')
('4734949', 'Suraj Nair', 'suraj nair')
('2068265', 'Danfei Xu', 'danfei xu')
('2117748', 'Yuke Zhu', 'yuke zhu')
('1873736', 'Animesh Garg', 'animesh garg')
('3216322', 'Li Fei-Fei', 'li fei-fei')
('1702137', 'Silvio Savarese', 'silvio savarese')
('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')
bfb98423941e51e3cd067cb085ebfa3087f3bfbeSparseness helps: Sparsity Augmented +
Collaborative Representation for Classification +
('2941543', 'Naveed Akhtar', 'naveed akhtar')
('1688013', 'Faisal Shafait', 'faisal shafait')
bffbd04ee5c837cd919b946fecf01897b2d2d432Boston University Computer Science Technical Report No
Facial Feature Tracking and Occlusion +
Recovery in American Sign Language +
1 Department of Computer Science, 2 Department of Modern Foreign Languages +
Boston University
Facial features play an important role in expressing grammatical information +
in signed languages, including American Sign Language (ASL). Gestures such
as raising or furrowing the eyebrows are key indicators of constructions such +
as yes-no questions. Periodic head movements (nods and shakes) are also an +
essential part of the expression of syntactic information, such as negation +
(associated with a side-to-side headshake). Therefore, identification of these +
facial gestures is essential to sign language recognition. One problem with +
detection of such grammatical indicators is occlusion recovery. If the signer’s +
hand blocks his/her eyebrows during production of a sign, it becomes difficult +
to track the eyebrows. We have developed a system to detect such grammatical +
markers in ASL that recovers promptly from occlusion. +
Our system detects and tracks evolving templates of facial features, which +
are based on an anthropometric face model, and interprets the geometric +
relationships of these templates to identify grammatical markers. It was tested +
on a variety of ASL sentences signed by various Deaf 1native signers and +
detected facial gestures used to express grammatical information, such as +
raised and furrowed eyebrows as well as headshakes. +
1 Introduction +
A computer-based translator of American Sign Language (ASL) would be +
useful in enabling people who do not know ASL to communicate with Deaf1 +
individuals. Facial gesture interpretation would be an essential part of an in- +
terface that eliminates the language barrier between Deaf and hearing people. +
Our work focuses on facial feature detection and tracking in ASL, specifically +
in occlusion processing and recovery. +
1 The word “Deaf” is capitalized to designate those individuals who are linguisti- +
cally and culturally deaf and who use ASL as their primary language, whereas +
“deaf” refers to the status of those who cannot hear [25]. +
('2313369', 'Thomas J. Castelli', 'thomas j. castelli')
('1723703', 'Margrit Betke', 'margrit betke')
('1732359', 'Carol Neidle', 'carol neidle')
d35534f3f59631951011539da2fe83f2844ca245Published as a conference paper at ICLR 2018 +
SEMANTICALLY DECOMPOSING THE LATENT SPACES +
OF GENERATIVE ADVERSARIAL NETWORKS +
Department of Music +
University of California, San Diego
Department of Genetics +
Stanford University
Zachary C. Lipton +
Carnegie Mellon University
Amazon AI +
Department of Computer Science +
University of California, San Diego
('1872307', 'Chris Donahue', 'chris donahue')
('1693411', 'Akshay Balsubramani', 'akshay balsubramani')
('1814008', 'Julian McAuley', 'julian mcauley')
cdonahue@ucsd.edu +
abalsubr@stanford.edu +
zlipton@cmu.edu +
jmcauley@eng.ucsd.edu +
d3edbfe18610ce63f83db83f7fbc7634dde1eb40Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +
Large Graph Hashing with Spectral Rotation +
School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), +
Northwestern Polytechnical University
Xi’an 710072, Shaanxi, P. R. China +
('1720243', 'Xuelong Li', 'xuelong li')
('48080389', 'Di Hu', 'di hu')
('1688370', 'Feiping Nie', 'feiping nie')
xuelong li@opt.ac.cn, hdui831@mail.nwpu.edu.cn, feipingnie@gmail.com +
d3424761e06a8f5f3c1f042f1f1163a469872129Pose-invariant, model-based object +
recognition, using linear combination of views +
and Bayesian statistics. +
A dissertation submitted in partial fulfillment +
of the requirements for the degree of +
Doctor of Philosophy +
of the +
University of London
Department of Computer Science +
University College London
2009 +
('1797883', 'Vasileios Zografos', 'vasileios zografos')
d33b26794ea6d744bba7110d2d4365b752d7246fTransfer Feature Representation via Multiple Kernel Learning +
1. Science and Technology on Integrated Information System Laboratory +
2. State Key Laboratory of Computer Science +
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
('40451597', 'Wei Wang', 'wei wang')
('39483391', 'Hao Wang', 'hao wang')
('1783918', 'Chen Zhang', 'chen zhang')
('34532334', 'Fanjiang Xu', 'fanjiang xu')
weiwangpenny@gmail.com +
d3b73e06d19da6b457924269bb208878160059daProceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015 +
11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my ) +
Paper No. +
065 +
IMPLEMENTATION OF AN AUTOMATED SMART HOME +
CONTROL FOR DETECTING HUMAN EMOTIONS VIA FACIAL +
DETECTION +
Osman4 +
('9164797', 'Lim Teck Boon', 'lim teck boon')
('2229534', 'Mohd Heikal Husin', 'mohd heikal husin')
('1881455', 'Zarul Fitri Zaaba', 'zarul fitri zaaba')
1Universiti Sains Malaysia, Malaysia, ltboon.ucom10@student.usm.my +
2Universiti Sains Malaysia, Malaysia, heikal@usm.my +
3Universiti Sains Malaysia, Malaysia, zarulfitri@usm.my +
4Universiti Sains Malaysia, Malaysia, azam@usm.my +
d3d5d86afec84c0713ec868cf5ed41661fc96edcA Comprehensive Analysis of Deep Learning Based Representation +
for Face Recognition +
Mostafa Mehdipour Ghazi +
Faculty of Engineering and Natural Sciences +
Sabanci University, Istanbul, Turkey
Hazım Kemal Ekenel +
Department of Computer Engineering +
Istanbul Technical University, Istanbul, Turkey
mehdipour@sabanciuniv.edu +
ekenel@itu.edu.tr +
d3e04963ff42284c721f2bc6a90b7a9e20f0242fOn Forensic Use of Biometrics +
University of Southampton, UK, 2University of Warwick, UK
This chapter discusses the use of biometrics techniques within forensic science. It outlines the +
historic connections between the subjects and then examines face and ear biometrics as two +
case studies to demonstrate the application, the challenges and the acceptability of biometric +
features and techniques in forensics. The detailed examination starts with one of the most +
common and familiar biometric features, face, and then examines an emerging biometric +
feature, ear. +
1.1 Introduction +
Forensic science largely concerns the analysis of crime: its existence, the perpetrator(s) and +
the modus operandi. The science of biometrics has been developing approaches that can +
be used to automatically identify individuals by personal characteristics. The relationship +
of biometrics and forensics centers primarily on identifying people: the central question is +
whether a perpetrator can reliably be identified from scene-of-crime data or can reliably +
be excluded, wherein the reliability concerns reasonable doubt. The personal characteristics +
which can be used as biometrics include face, finger, iris, gait, ear, electroencephalogram +
(EEG), handwriting, voice and palm. Those which are suited to forensic use concern traces +
left at a scene-of-crime, such as latent fingerprints, palmprints or earprints, or traces which +
have been recorded, such as face, gait or ear in surveillance video. +
Biometrics is generally concerned with the recognition of individuals based on their +
physical or behavioral attributes. So far, biometric techniques have primarily been used to +
assure identity (in immigration and commerce etc.). These techniques are largely automatic +
or semi-automatic approaches steeped in pattern recognition and computer vision. The main +
steps of a biometric recognition approach are: (1) acquisition of the biometric data; (2) +
localization and alignment of the data; (3) feature extraction; and (4) matching. Feature +
This is a Book Title Name of the Author/Editor +
c(cid:13) XXXX John Wiley & Sons, Ltd +
('2804800', 'Banafshe Arbab-Zavar', 'banafshe arbab-zavar')
('40655450', 'Xingjie Wei', 'xingjie wei')
('2365596', 'John D. Bustard', 'john d. bustard')
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('1799504', 'Chang-Tsun Li', 'chang-tsun li')
1{baz10v,jdb,msn}@ecs.soton.ac.uk, 2{x.wei, c-t.li}@warwick.ac.uk +
d3d71a110f26872c69cf25df70043f7615edcf922736 +
Learning Compact Feature Descriptor and Adaptive +
Matching Framework for Face Recognition +
improvements +
('1911510', 'Zhifeng Li', 'zhifeng li')
('2856494', 'Dihong Gong', 'dihong gong')
('1720243', 'Xuelong Li', 'xuelong li')
('1692693', 'Dacheng Tao', 'dacheng tao')
d35c82588645b94ce3f629a0b98f6a531e4022a3Scalable Online Annotation & +
Object Localisation +
For Broadcast Media Production +
Submitted for the Degree of +
Master of Philosophy +
from the +
University of Surrey
Centre for Vision, Speech and Signal Processing +
Faculty of Engineering and Physical Sciences +
University of Surrey
Guildford, Surrey GU2 7XH, U.K. +
August 2016 +
('39222045', 'Charles Gray', 'charles gray')
('39222045', 'Charles Gray', 'charles gray')
d3b18ba0d9b247bfa2fb95543d172ef888dfff95Learning and Using the Arrow of Time +
Harvard University 2University of Southern California
University of Oxford 4Massachusetts Institute of Technology 5Google Research
(a) +
(c) +
(b) +
(d) +
Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer +
below1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level +
reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn +
and exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on +
large-scale video datasets. +
('1766333', 'Donglai Wei', 'donglai wei')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
('1768236', 'William T. Freeman', 'william t. freeman')
donglai@seas.harvard.edu, limjj@usc.edu, az@robots.ox.ac.uk, billf@mit.edu +
d309e414f0d6e56e7ba45736d28ee58ae2bad478Efficient Two-Stream Motion and Appearance 3D CNNs for +
Video Classification +
Ali Diba +
ESAT-KU Leuven +
Ali Pazandeh +
Sharif UTech +
Luc Van Gool +
ESAT-KU Leuven, ETH Zurich +
ali.diba@esat.kuleuven.be +
pazandeh@ee.sharif.ir +
luc.vangool@esat.kuleuven.be +
d394bd9fbaad1f421df8a49347d4b3fca307db83Recognizing Facial Expressions at Low Resolution +
Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK
('10795229', 'Caifeng Shan', 'caifeng shan')
('2073354', 'Shaogang Gong', 'shaogang gong')
('2803283', 'Peter W. McOwan', 'peter w. mcowan')
{cfshan, sgg, pmco}@dcs.qmul.ac.uk +
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9
d3b550e587379c481392fb07f2cbbe11728cf7a6Small Sample Size Face Recognition using Random Quad-Tree based +
Ensemble Algorithm +
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
('7923772', 'Cuicui Zhang', 'cuicui zhang')
('2735528', 'Xuefeng Liang', 'xuefeng liang')
('1731351', 'Takashi Matsuyama', 'takashi matsuyama')
zhang@vision.kuee.kyoto-u.ac.jp, fxliang, tmg@i.kyoto-u.ac.jp +
d307a766cc9c728a24422313d4c3dcfdb0d16dd5Deep Keyframe Detection in Human Action Videos +
School of Physics and Optoelectronic Engineering, Xidian University, China
School of Computer Science and Software Engineering, University of Western Australia
College of Electrical and Information Engineering, Hunan University, China
School of Software, Xidian University, China
('46580760', 'Xiang Yan', 'xiang yan')
('1746166', 'Syed Zulqarnain Gilani', 'syed zulqarnain gilani')
('2404621', 'Hanlin Qin', 'hanlin qin')
('3446916', 'Mingtao Feng', 'mingtao feng')
('48570713', 'Liang Zhang', 'liang zhang')
('46332747', 'Ajmal Mian', 'ajmal mian')
xyan@stu.xidian.edu.cn, hlqin@mail.xidian.edu.cn +
{zulqarnain.gilani, ajmal.mian}@uwa.edu.au +
mintfeng@hnu.edu.cn +
liangzhang@xidian.edu.cn +
d31af74425719a3840b496b7932e0887b35e9e0dArticle +
A Multimodal Deep Log-Based User Experience (UX) +
Platform for UX Evaluation +
Ubiquitous Computing Lab, Kyung Hee University
College of Electronics and Information Engineering, Sejong University
Received: 16 March 2018; Accepted: 15 May 2018; Published: 18 May 2018 +
('33081617', 'Jamil Hussain', 'jamil hussain')
('2794241', 'Wajahat Ali Khan', 'wajahat ali khan')
('27531310', 'Anees Ul Hassan', 'anees ul hassan')
('1765947', 'Muhammad Afzal', 'muhammad afzal')
('1700806', 'Sungyoung Lee', 'sungyoung lee')
Giheung-gu, Yongin-si, Gyeonggi-do, Seoul 446-701, Korea; jamil@oslab.khu.ac.kr (J.H.); +
wajahat.alikhan@oslab.khu.ac.kr (W.A.K.); hth@oslab.khu.ac.kr (T.H.); bilalrizvi@oslab.khu.ac.kr (H.S.M.B.); +
jhb@oslab.khu.ac.kr (J.B.); anees@oslab.khu.ac.kr (A.U.H.) +
Seoul 05006, Korea; mafzal@sejong.ac.kr +
* Correspondence: sylee@oslab.khu.ac.kr; Tel.: +82-31-201-2514 +
d3b0839324d0091e70ce34f44c979b9366547327Precise Box Score: Extract More Information from Datasets to Improve the +
Performance of Face Detection +
1School of Information and Communication Engineering +
2Beijing Key Laboratory of Network System and Network Culture +
Beijing University of Posts and Telecommunications, Beijing, China
('49712251', 'Ce Qi', 'ce qi')
('1684263', 'Fei Su', 'fei su')
('8120542', 'Pingyu Wang', 'pingyu wang')
d30050cfd16b29e43ed2024ae74787ac0bbcf2f7Facial Expression Classification Using +
Convolutional Neural Network and Support Vector +
Machine +
Graduate Program in Electrical and Computer Engineering +
Federal University of Technology - Paran a
Department of Electrical and Computer Engineering +
Opus College of Engineering
Marquette University
('11857183', 'Cristian Bortolini', 'cristian bortolini')
('2357308', 'Humberto R. Gamba', 'humberto r. gamba')
('2432946', 'Gustavo Benvenutti Borba', 'gustavo benvenutti borba')
('2767912', 'Henry Medeiros', 'henry medeiros')
Email: vpillajr@mail.com +
d3faed04712b4634b47e1de0340070653546deb2Neural Best-Buddies: Sparse Cross-Domain Correspondence +
Fig. 1. Top 5 Neural Best-Buddies for two cross-domain image pairs. Using deep features of a pre-trained neural network, our coarse-to-fine sparse +
correspondence algorithm first finds high-level, low resolution, semantically matching areas (indicated by the large blue circles), then narrows down the search +
area to intermediate levels (middle green circles), until precise localization on well-defined edges in the pixel space (colored in corresponding unique colors). +
Correspondence between images is a fundamental problem in computer +
vision, with a variety of graphics applications. This paper presents a novel +
method for sparse cross-domain correspondence. Our method is designed for +
pairs of images where the main objects of interest may belong to different +
semantic categories and differ drastically in shape and appearance, yet still +
contain semantically related or geometrically similar parts. Our approach +
operates on hierarchies of deep features, extracted from the input images +
by a pre-trained CNN. Specifically, starting from the coarsest layer in both +
hierarchies, we search for Neural Best Buddies (NBB): pairs of neurons +
that are mutual nearest neighbors. The key idea is then to percolate NBBs +
through the hierarchy, while narrowing down the search regions at each +
level and retaining only NBBs with significant activations. Furthermore, in +
order to overcome differences in appearance, each pair of search regions is +
transformed into a common appearance. +
We evaluate our method via a user study, in addition to comparisons +
with alternative correspondence approaches. The usefulness of our method +
is demonstrated using a variety of graphics applications, including cross
domain image alignment, creation of hybrid images, automatic image mor- +
phing, and more. +
CCS Concepts: • Computing methodologies → Interest point and salient +
region detections; Matching; Image manipulation; +
University
© 2018 Association for Computing Machinery. +
This is the author’s version of the work. It is posted here for your personal use. Not for +
redistribution. The definitive Version of Record was published in ACM Transactions on +
Graphics, https://doi.org/10.1145/3197517.3201332. +
Additional Key Words and Phrases: cross-domain correspondence, image +
hybrids, image morphing +
ACM Reference Format: +
Cohen-Or. 2018. Neural Best-Buddies: Sparse Cross-Domain Correspon- +
//doi.org/10.1145/3197517.3201332 +
INTRODUCTION +
Finding correspondences between a pair of images has been a long +
standing problem, with a multitude of applications in computer +
vision and graphics. In particular, sparse sets of corresponding point +
pairs may be used for tasks such as template matching, image align- +
ment, and image morphing, to name a few. Over the years, a variety +
of dense and sparse correspondence methods have been developed, +
most of which assume that the input images depict the same scene +
or object (with differences in viewpoint, lighting, object pose, etc.), +
or a pair of objects from the same class. +
In this work, we are concerned with sparse cross-domain corre- +
spondence: a more general and challenging version of the sparse +
correspondence problem, where the object of interest in the two +
input images can differ more drastically in their shape and appear- +
ance, such as objects belonging to different semantic categories +
(domains). It is, however, assumed that the objects contain at least +
some semantically related parts or geometrically similar regions, oth- +
erwise the correspondence task cannot be considered well-defined. +
Two examples of cross-domain scenarios and the results of our ap- +
proach are shown in Figure 1. We focus on sparse correspondence, +
since in many cross-domain image pairs, dense correspondence +
ACM Transactions on Graphics, Vol. 37, No. 4, Article 69. Publication date: August 2018. +
('3451442', 'Kfir Aberman', 'kfir aberman')
('39768043', 'Jing Liao', 'jing liao')
('5807605', 'Mingyi Shi', 'mingyi shi')
('1684384', 'Dani Lischinski', 'dani lischinski')
('1748939', 'Baoquan Chen', 'baoquan chen')
('1701009', 'Daniel Cohen-Or', 'daniel cohen-or')
('3451442', 'Kfir Aberman', 'kfir aberman')
('39768043', 'Jing Liao', 'jing liao')
('5807605', 'Mingyi Shi', 'mingyi shi')
('1684384', 'Dani Lischinski', 'dani lischinski')
('1748939', 'Baoquan Chen', 'baoquan chen')
('1701009', 'Daniel Cohen-Or', 'daniel cohen-or')
('3451442', 'Kfir Aberman', 'kfir aberman')
('39768043', 'Jing Liao', 'jing liao')
('5807605', 'Mingyi Shi', 'mingyi shi')
('1684384', 'Dani Lischinski', 'dani lischinski')
('1748939', 'Baoquan Chen', 'baoquan chen')
d3c004125c71942846a9b32ae565c5216c068d1eRESEARCH ARTICLE +
Recognizing Age-Separated Face Images: +
Humans and Machines +
West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi
Delhi, India +
('3017294', 'Daksha Yadav', 'daksha yadav')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('2487227', 'Afzel Noore', 'afzel noore')
*mayank@iiitd.ac.in +
d350a9390f0818703f886138da27bf8967fe8f51LIGHTING DESIGN FOR PORTRAITS WITH A VIRTUAL LIGHT STAGE +
Institute for Vision and Graphics, University of Siegen, Germany
('1967283', 'Davoud Shahlaei', 'davoud shahlaei')
('2712313', 'Marcel Piotraschke', 'marcel piotraschke')
('2880906', 'Volker Blanz', 'volker blanz')
d33fcdaf2c0bd0100ec94b2c437dccdacec66476Neurons with Paraboloid Decision Boundaries for +
Improved Neural Network Classification +
Performance +
('2320550', 'Nikolaos Tsapanos', 'nikolaos tsapanos')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
d4a5eaf2e9f2fd3e264940039e2cbbf08880a090An Occluded Stacked Hourglass Approach to Facial +
Landmark Localization and Occlusion Estimation +
University of California San Diego
('2812409', 'Kevan Yuen', 'kevan yuen')kcyuen@eng.ucsd.edu, mtrivedi@eng.ucsd.edu +
d46b790d22cb59df87f9486da28386b0f99339d3Learning Face Deblurring Fast and Wide +
University of Bern
Switzerland +
Amazon Research +
Germany +
University of Bern
Switzerland +
('39866194', 'Meiguang Jin', 'meiguang jin')
('36266446', 'Michael Hirsch', 'michael hirsch')
('1739080', 'Paolo Favaro', 'paolo favaro')
jin@inf.unibe.ch +
hirsch@amazon.com +
favaro@inf.unibe.ch +
d41c11ebcb06c82b7055e2964914b9af417abfb2CDI-Type I: Unsupervised and Weakly-Supervised +
1 Introduction +
Discovery of Facial Events +
The face is one of the most powerful channels of nonverbal communication. Facial expression has been a +
focus of emotion research for over a hundred years [12]. It is central to several leading theories of emotion +
[18, 31, 54] and has been the focus of at times heated debate about issues in emotion science [19, 24, 50]. +
Facial expression gures prominently in research on almost every aspect of emotion, including psychophys
iology [40], neural correlates [20], development [11], perception [4], addiction [26], social processes [30], +
depression [49] and other emotion disorders [55], to name a few. In general, facial expression provides cues +
about emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology. +
Because of its importance to behavioral science and the emerging fields of computational behavior +
science, perceptual computing, and human-robot interaction, significant efforts have been applied toward +
developing algorithms that automatically detect facial expression. With few exceptions, previous work on +
facial expression relies on supervised approaches to learning (i.e. event categories are defined in advance +
in labeled training data). While supervised learning has important advantages, two critical limitations may +
be noted. One, because labeling facial expression is highly labor intensive, progress in automated facial +
expression recognition and analysis is slowed. For the most detailed and comprehensive labeling or coding +
systems, such as Facial Action Coding System (FACS), three to four months is typically required to train +
a coder (’coding’ refers to the labeling of video using behavioral descriptors). Once trained, each minute +
of video may require 1 hour or more to code [9]. No wonder relatively few databases are yet available, +
especially those of real-world rather than posed behavior [61]. Second, research has been limited to the +
perceptual categories used by human observers. Those categories were operationalized in large part based +
on technology available in the past [36]. While a worthy goal of computer vision and machine learning +
is to efficiently replicate human-based measurement, should that be our only goal? New measurement +
approaches make possible new scientific discoveries. Two in particular, unsupervised and weakly-supervised +
learning have the potential to inform new ways of perceiving and modeling human behavior, to impact the +
infrastructure of science, and contribute to the design of perceptual computing applications. +
We propose that unsupervised and weakly-supervised approaches to automatic facial expression analysis +
can increase the efficiency of current measurement approaches in behavioral science, demonstrate conver- +
gent validity with supervised approaches, and lead to new knowledge in clinical and developmental science. +
Specifically, we will: +
• Develop two novel non-parametric algorithms for unsupervised and weakly-supervised time-series +
analysis. The proposed approaches are general and can be applied to a myriad of problems in behav- +
ioral science and computer vision (e.g., gesture or activity recognition). +
• Exploit the potential of these algorithms in four applications: +
1) New tools to improve the reliability and utility of human FACS coding. Using unsupervised learn- +
ing, we will develop and validate a computer-assisted approach to FACS coding that doubles the +
efficiency of human FACS coding. +
2) At present, taxonomies of facial expression are based on FACS or other observer-based schemes. +
Consequently, approaches to automatic facial expression recognition are dependent on access to cor- +
puses of FACS or similarly labeled video. In the proposed work we raise the question of whether +
d444e010049944c1b3438c9a25ae09b292b17371Structure Preserving Video Prediction +
Shanghai Institute for Advanced Communication and Data Science
Shanghai Key Laboratory of Digital Media Processing and Transmission +
Shanghai Jiao Tong University, Shanghai 200240, China
('47882735', 'Jingwei Xu', 'jingwei xu')
('47889348', 'Shuo Cheng', 'shuo cheng')
{xjwxjw,nibingbing,Leezf,xkyang}@sjtu.edu.cn, acccheng94@gmail.com +
d46fda4b49bbc219e37ef6191053d4327e66c74bFacial Expression Recognition Based on Complexity Perception Classification +
Algorithm +
School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
('36047279', 'Tianyuan Chang', 'tianyuan chang')
('9725901', 'Guihua Wen', 'guihua wen')
('39946628', 'Yang Hu', 'yang hu')
('35847383', 'JiaJiong Ma', 'jiajiong ma')
tianyuan_chang@163.com, crghwen@scut.edu.cn +
d448d67c6371f9abf533ea0f894ef2f022b12503Weakly Supervised Collective Feature Learning from Curated Media +
1. NTT Communication Science Laboratories, Japan. +
University of Cambridge, United Kingdom
The University of Tokyo, Japan
Technical University of Munich, Germany
5. Uber AI Labs, USA. +
('2374364', 'Yusuke Mukuta', 'yusuke mukuta')
('34454585', 'Akisato Kimura', 'akisato kimura')
('2584289', 'David B. Adrian', 'david b. adrian')
('1983575', 'Zoubin Ghahramani', 'zoubin ghahramani')
mukuta@mi.t.u-tokyo.ac.jp, akisato@ieee.org, david.adrian@tum.de, zoubin@eng.cam.ac.uk +
d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1dDeep Cost-Sensitive and Order-Preserving Feature Learning for +
Cross-Population Age Estimation +
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
University of Chinese Academy of Sciences
3 KingSoft Ltd. +
4 CAS Center for Excellence in Brain Science and Intelligence Technology +
5 Vimicro AI Chip Technology Corporation +
Birkbeck University of London
('2168945', 'Kai Li', 'kai li')
('1757173', 'Junliang Xing', 'junliang xing')
('49734675', 'Chi Su', 'chi su')
('40506509', 'Weiming Hu', 'weiming hu')
('2373307', 'Yundong Zhang', 'yundong zhang')
{kai.li,jlxing,wmhu}@nlpr.ia.ac.cn suchi@kingsoft.com raymond@vimicro.com sjmaybank@dcs.bbk.ac.uk +
d444368421f456baf8c3cb089244e017f8d32c41CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR +('3414588', 'Martin Velas', 'martin velas')
('2131298', 'Michal Spanel', 'michal spanel')
('1700956', 'Michal Hradis', 'michal hradis')
('1785162', 'Adam Herout', 'adam herout')
d4885ca24189b4414031ca048a8b7eb2c9ac646cEfficient Facial Representations for Age, Gender +
and Identity Recognition in Organizing Photo +
Albums using Multi-output CNN +
Samsung-PDMI Joint AI Center
Mathematics +
National Research University Higher School of Economics
Nizhny Novgorod, Russia +
('35153729', 'Andrey V. Savchenko', 'andrey v. savchenko')
d4c7d1a7a03adb2338704d2be7467495f2eb6c7b
d4001826cc6171c821281e2771af3a36dd01ffc0Modélisation de contextes pour l’annotation sémantique +
de vidéos +
To cite this version: +
Ecole Nationale Supérieure des Mines de Paris, 2013. Français. . 00958135> +
HAL Id: pastel-00958135 +
https://pastel.archives-ouvertes.fr/pastel-00958135 +
Submitted on 11 Mar 2014 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('2482072', 'Nicolas Ballas', 'nicolas ballas')
('2482072', 'Nicolas Ballas', 'nicolas ballas')
d46b4e6871fc9974542215f001e92e3035aa08d9A Gabor Quotient Image for Face Recognition +
under Varying Illumination +
Mahanakorn University of Technology
51 Cheum-Sampan Rd., Nong Chok, Bangkok, THAILAND 10530 +
('1805935', 'Sanun Srisuk', 'sanun srisuk')
('2337544', 'Amnart Petpon', 'amnart petpon')
sanun@mut.ac.th, amnartpe@dtac.co.th +
d458c49a5e34263c95b3393386b5d76ba770e497Middle-East Journal of Scientific Research 20 (1): 01-13, 2014 +
ISSN 1990-9233 +
© IDOSI Publications, 2014 +
DOI: 10.5829/idosi.mejsr.2014.20.01.11434 +
A Comparative Analysis of Gender Classification Techniques +
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan
('46883468', 'Sajid Ali Khan', 'sajid ali khan')
('48767110', 'Maqsood Ahmad', 'maqsood ahmad')
('2521631', 'Naveed Riaz', 'naveed riaz')
d454ad60b061c1a1450810a0f335fafbfeceecccDeep Regression Forests for Age Estimation +
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, +
Shanghai Institute for Advanced Communication and Data Science
School of Communication and Information Engineering, Shanghai University
Johns Hopkins University
College of Computer and Control Engineering, Nankai University 4 Hikvision Research
('41187410', 'Wei Shen', 'wei shen')
('9544564', 'Yilu Guo', 'yilu guo')
('47906413', 'Yan Wang', 'yan wang')
('1681247', 'Kai Zhao', 'kai zhao')
('49292319', 'Bo Wang', 'bo wang')
{shenwei1231,gyl.luan0,wyanny.9,zhaok1206,wangbo.yunze,alan.l.yuille}@gmail.com +
d40cd10f0f3e64fd9b0c2728089e10e72bea9616Article +
Enhancing Face Identification Using Local Binary +
Patterns and K-Nearest Neighbors +
School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone
Received: 21 March 2017; Accepted: 29 August 2017; Published: 5 September 2017 +
('11249315', 'Idelette Laure Kambi Beli', 'idelette laure kambi beli')
('2826297', 'Chunsheng Guo', 'chunsheng guo')
Hangzhou 310018, China; guo.chsh@gmail.com +
* Correspondence: kblaure@yahoo.fr +
d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d
d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4eA Lightened CNN for Deep Face Representation +
School of Computer and Communication Engineering +
University of Science and Technology Beijing, Beijing, China
National Laboratory of Pattern Recognition +
Institute of Automation Chinese Academy of Sciences, Beijing, China
('2225749', 'Xiang Wu', 'xiang wu')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
aflredxiangwu@gmail.com +
{rhe, znsun}@nlpr.ia.ac.cn +
d46e793b945c4f391031656357625e902c4405e8Face-off: Automatic Alteration of Facial Features +
Department of Information Management +
National Taiwan University of Science and Technology
No. 43, Sec. 4, Keelung Road +
Taipei, 106, Taiwan, ROC +
('40119465', 'Jia-Kai Chou', 'jia-kai chou')
('2241272', 'Chuan-Kai Yang', 'chuan-kai yang')
('2553196', 'Sing-Dong Gong', 'sing-dong gong')
A9409004@mail.ntust.edu.tw,ckyang@cs.ntust.edu.tw,hgznrn@uj.com.tw +
d44a93027208816b9e871101693b05adab576d89
d4c2d26523f577e2d72fc80109e2540c887255c8Face-space Action Recognition by Face-Object Interactions +
Weizmann Institute of Science
Rehovot, 7610001, Israel +
('32928116', 'Amir Rosenfeld', 'amir rosenfeld')
('1743045', 'Shimon Ullman', 'shimon ullman')
{amir.rosenfeld,shimon.ullman}@weizmann.ac.il +
d4b88be6ce77164f5eea1ed2b16b985c0670463aTECHNICAL REPORT JAN.15.2016 +
A Survey of Different 3D Face Reconstruction +
Methods +
Department of Computer Science and Engineering +
('2357264', 'Amin Jourabloo', 'amin jourabloo')jourablo@msu.edu +
d44ca9e7690b88e813021e67b855d871cdb5022fQUT Digital Repository: +
http://eprints.qut.edu.au/ +
Zhang, Ligang and Tjondronegoro, Dian W. (2009) Selecting, optimizing and +
fusing ‘salient’ Gabor features for facial expression recognition. In: Neural +
Information Processing (Lecture Notes in Computer Science), 1-5 December +
2009, Hotel Windsor Suites Bangkok, Bangkok. +
+
© Copyright 2009 Springer-Verlag GmbH Berlin Heidelberg +
+
baaaf73ec28226d60d923bc639f3c7d507345635Stanford University
CS229 : Machine Learning techniques +
Project report +
Emotion Classification on face images +
Authors: +
Instructor +
December 12, 2015 +
('40503018', 'Mikael Jorda', 'mikael jorda')
('2765850', 'Nina Miolane', 'nina miolane')
('34699434', 'Andrew Ng', 'andrew ng')
ba2bbef34f05551291410103e3de9e82fdf9ddddA Study on Cross-Population Age Estimation +
LCSEE, West Virginia University
LCSEE, West Virginia University
('1822413', 'Guodong Guo', 'guodong guo')
('1720735', 'Chao Zhang', 'chao zhang')
guodong.guo@mai1.wvu.edu +
cazhang@mix.wvu.edu +
bafb8812817db7445fe0e1362410a372578ec1fc805 +
Image-Quality-Based Adaptive Face Recognition +
('2284264', 'Harin Sellahewa', 'harin sellahewa')
baa0fe4d0ac0c7b664d4c4dd00b318b6d4e09143International Journal of Signal Processing, Image Processing and Pattern Recognition +
Vol. 8, No. 1 (2015), pp. 9-22 +
http://dx.doi.org/10.14257/ijsip.2015.8.1.02 +
Facial Expression Analysis using Active Shape Model +
School of Engineering, University of Portsmouth, United Kingdom
('2226048', 'Reda Shbib', 'reda shbib')
('32991189', 'Shikun Zhou', 'shikun zhou')
reda.shbib@port.ac.uk, Shikun.zhou@port.ac.uk +
ba99c37a9220e08e1186f21cab11956d3f4fccc2A Fast Factorization-based Approach to Robust PCA +
Southern Illinois University, Carbondale, IL 62901 USA
('33048613', 'Chong Peng', 'chong peng')
('1686710', 'Zhao Kang', 'zhao kang')
('39951979', 'Qiang Cheng', 'qiang cheng')
Email: {pchong,zhao.kang,qcheng}@siu.edu +
ba816806adad2030e1939450226c8647105e101cMindLAB at the THUMOS Challenge +
Fabi´an P´aez +
Fabio A. Gonz´alez +
MindLAB Research Group +
MindLAB Research Group +
MindLAB Research Group +
Bogot´a, Colombia +
Bogot´a, Colombia +
Bogot´a, Colombia +
('1939861', 'Jorge A. Vanegas', 'jorge a. vanegas')fmpaezri@unal.edu.co +
javanegasr@unal.edu.co +
fagonzalezo@unal.edu.co +
badcd992266c6813063c153c41b87babc0ba36a3Recent Advances in Object Detection in the Age +
of Deep Convolutional Neural Networks +
,1,2), Fr´ed´eric Jurie(1) +
(∗) equal contribution +
(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS +
(2)Safran Electronics and Defense +
September 11, 2018 +
('51443250', 'Shivang Agarwal', 'shivang agarwal')
('35527701', 'Jean Ogier Du Terrail', 'jean ogier du terrail')
ba788365d70fa6c907b71a01d846532ba3110e31
badcfb7d4e2ef0d3e332a19a3f93d59b4f85668eThe Application of Extended Geodesic Distance +
in Head Poses Estimation +
Institute of Computing Technology
Chinese Academy of Sciences, Beijing 100080, China +
2 Department of Computer Science and Engineering, +
Harbin Institute of Technology, Harbin, China
3 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China +
('1798982', 'Bingpeng Ma', 'bingpeng ma')
('1684164', 'Fei Yang', 'fei yang')
('1698902', 'Wen Gao', 'wen gao')
('1740430', 'Baochang Zhang', 'baochang zhang')
ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011 +
EXISTING SEPARATE ENGLISH EDITION +
Uporaba emotivno pogojenega raˇcunalniˇstva v +
priporoˇcilnih sistemih +
Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc +
1Univerza v Ljubljani, Fakulteta za elektrotehniko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +
2Univerza v Ljubljani, Fakulteta za raˇcunalniˇstvo in informatiko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +
Povzetek. V ˇclanku predstavljamo rezultate treh raziskav, vezanih na izboljˇsanje delovanja multimedijskih +
priporoˇcilnih sistemov s pomoˇcjo metod emotivno pogojenega raˇcunalniˇstva (ang. affective computing). +
Vsebinski priporoˇcilni sistem smo izboljˇsali s pomoˇcjo metapodatkov, ki opisujejo emotivne odzive uporabnikov. +
Pri skupinskem priporoˇcilnem sistemu smo dosegli znaˇcilno izboljˇsanje v obmoˇcju hladnega zagona z uvedbo +
nove mere podobnosti, ki temelji na osebnostnem modelu velikih pet (ang. five factor model). Razvili smo tudi +
sistem za neinvazivno oznaˇcevanje vsebin z emotivnimi parametri, ki pa ˇse ni zrel za uporabo v priporoˇcilnih +
sistemih. +
Kljuˇcne besede: priporoˇcilni sistemi, emotivno pogojeno raˇcunalniˇstvo, strojno uˇcenje, uporabniˇski profil, +
emocije +
Uporaba emotivnega raˇcunalniˇstva v priporoˇcilnih +
sistemih +
In this paper we present the results of three investigations of +
our broad research on the usage of affect and personality in +
recommender systems. We improved the accuracy of content- +
based recommender system with the inclusion of affective +
parameters of user and item modeling. We improved the +
accuracy of a content filtering recommender system under the +
cold start conditions with the introduction of a personality +
based user similarity measure. Furthermore we developed a +
system for implicit tagging of content with affective metadata. +
1 UVOD +
Uporabniki (porabniki) multimedijskih (MM) vsebin so +
v ˇcedalje teˇzjem poloˇzaju, saj v veliki koliˇcini vse- +
bin teˇzko najdejo zanje primerne. Pomagajo si s pri- +
poroˇcilnimi sistemi, ki na podlagi osebnih preferenc +
uporabnikov izberejo manjˇso koliˇcino relevantnih MM +
vsebin, med katerimi uporabnik laˇze izbira. Noben danes +
znan priporoˇcilni sistem ne zadoˇsˇca v celoti potrebam +
uporabnikov, saj je izbor priporoˇcenih vsebin obiˇcajno +
nezadovoljive kakovosti [10]. Cilj tega ˇclanka je pred- +
staviti metode emotivno pogojenega raˇcunalniˇstva (ang. +
affective computing - glej [12]) za izboljˇsanje kakovosti +
priporoˇcilnih sistemov in utrditi za slovenski prostor +
novo terminologijo. +
1.1 Opis problema +
Za izboljˇsanje kakovosti priporoˇcilnih sistemov sta +
na voljo dve poti: (i) optimizacija algoritmov ali (ii) +
uporaba boljˇsih znaˇcilk, ki bolje razloˇzijo neznano +
Prejet 13. oktober, 2010 +
Odobren 1. februar, 2011 +
varianco [8]. V tem ˇclanku predstavljamo izboljˇsanje +
priporoˇcilnih sistemov z uporabo novih znaˇcilk, ki te- +
meljijo na emotivnih odzivih uporabnikov in na njiho- +
vih osebnostnih lastnostih. Te znaˇcilke razloˇzijo velik +
del uporabnikovih preferenc, ki se izraˇzajo v obliki +
ocen posameznih vsebin (npr. Likertova lestvica, binarne +
ocene itd.). Ocene vsebin se pri priporoˇcilnih sistemih +
zajemajo eksplicitno (ocena) ali implicitno, pri ˇcemer o +
oceni sklepamo na podlagi opazovanj (npr. ˇcas gledanja +
kot indikator vˇseˇcnosti [7]. +
Izboljˇsanja uˇcinkovitosti priporoˇcilnih sistemov smo +
se lotili na treh podroˇcjih: (i) uporaba emotivnega +
modeliranja uporabnikov v vsebinskem priporoˇcilnem +
sistemu, (ii) neinvazivna (implicitna) detekcija emocij za +
emotivno modeliranje in (iii) uporaba osebnostne mere +
podobnosti v skupinskem priporoˇcilnem sistemu. Slika 1 +
prikazuje arhitekturo emotivnega priporoˇcilnega sistema +
in mesta, kjer smo vnesli opisane izboljˇsave. +
Preostanek ˇclanka je strukturiran tako: v razdelku +
2 je predstavljen zajem podatkov. V razdelku 3 je +
predstavljen vsebinski priporoˇcilni sistem z emotivnimi +
metapodatki. V razdelku 4 je predstavljen skupinski +
priporoˇcilni sistem, ki uporablja mero podobnosti na +
podlagi osebnosti, v razdelku 5 pa algoritem za razpo- +
znavo emocij. Vsak od teh razdelov je sestavljen iz opisa +
eksperimenta in predstavitve rezultatov. V razdelku 6 so +
predstavljeni sklepi. +
1.2 Sorodno delo +
Najbolj groba delitev priporoˇcilnih sistemov je na vse- +
binske, skupinske ter hibridne sisteme [1]. Z izjemo vse- +
binskih priporoˇcilnih sistemov, ki sta ga razvila Arapakis +
[2] in Tkalˇciˇc [14], sorodnega dela na podroˇcju emotivno +
pogojenih priporoˇcilnih sistemov takorekoˇc ni. Panti´c in +
E-poˇsta: avtor@naslov.com +
bac11ce0fb3e12c466f7ebfb6d036a9fe62628eaWeakly Supervised Learning of Heterogeneous +
Concepts in Videos +
Larry Davis1 +
University of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre
India +
('36861219', 'Sohil Shah', 'sohil shah')
('40222634', 'Kuldeep Kulkarni', 'kuldeep kulkarni')
('2221075', 'Arijit Biswas', 'arijit biswas')
('2757149', 'Ankit Gandhi', 'ankit gandhi')
('2116262', 'Om Deshmukh', 'om deshmukh')
ba29ba8ec180690fca702ad5d516c3e43a7f0bb8
ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8febNatural and Effective Obfuscation by Head Inpainting +
Max Planck Institute for Informatics, Saarland Informatics Campus
2KU-Leuven/PSI, Toyota Motor Europe (TRACE) +
3ETH Zurich +
('32222907', 'Qianru Sun', 'qianru sun')
('1681236', 'Luc Van Gool', 'luc van gool')
('1697100', 'Bernt Schiele', 'bernt schiele')
{qsun, joon, schiele, mfritz}@mpi-inf.mpg.de +
{liqian.ma, luc.vangool}@esat.kuleuven.be +
vangool@vision.ee.ethz.ch +
bab88235a30e179a6804f506004468aa8c28ce4f
badd371a49d2c4126df95120902a34f4bee01b00GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION +
Parallel Separable 3D Convolution for Video +
and Volumetric Data Understanding +
Harvard John A. Paulson School of +
Engineering and Applied Sciences +
Camabridge MA, USA +
Toufiq Parag +
Hanspeter Pfister +
('49147616', 'Felix Gonda', 'felix gonda')
('1766333', 'Donglai Wei', 'donglai wei')
fgonda@g.harvard.edu +
donglai@seas.harvard.edu +
paragt@seas.harvard.edu +
pfister@g.harvard.edu +
a065080353d18809b2597246bb0b48316234c29aFHEDN: A based on context modeling Feature Hierarchy +
Encoder-Decoder Network for face detection +
College of Computer Science, Chongqing University, Chongqing, China
College of Medical Informatics, Chongqing Medical University, Chongqing, China
Sichuan Fine Arts Institute, Chongqing, China
('6030130', 'Zexun Zhou', 'zexun zhou')
('7686690', 'Zhongshi He', 'zhongshi he')
('2685579', 'Ziyu Chen', 'ziyu chen')
('33458882', 'Yuanyuan Jia', 'yuanyuan jia')
('1768826', 'Haiyan Wang', 'haiyan wang')
('8784203', 'Jinglong Du', 'jinglong du')
('2961485', 'Dingding Chen', 'dingding chen')
{zexunzhou,zshe,chenziyu,yyjia,jldu,dingding}@cqu.edu.cn;{why}@scfai.edu.cn +
a0f94e9400938cbd05c4b60b06d9ed58c34583031118 +
Value-Directed Human Behavior Analysis +
from Video Using Partially Observable +
Markov Decision Processes +
('1773895', 'Jesse Hoey', 'jesse hoey')
('1710980', 'James J. Little', 'james j. little')
a022eff5470c3446aca683eae9c18319fd2406d52017-ENST-0071 +
EDITE - ED 130 +
Doctorat ParisTech +
T H È S E +
pour obtenir le grade de docteur délivré par +
TÉLÉCOM ParisTech +
Spécialité « SIGNAL et IMAGES » +
présentée et soutenue publiquement par +
le 15 décembre 2017 +
Apprentissage Profond pour la Description Sémantique des Traits +
Visuels Humains +
Directeur de thèse : Jean-Luc DUGELAY +
Co-encadrement de la thèse : Moez BACCOUCHE +
Jury +
Mme Bernadette DORIZZI, PRU, Télécom SudParis +
Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux +
M. Christian WOLF, MC/HDR, INSA de Lyon +
M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes +
M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes +
M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis +
M. Sid-Ahmed BERRANI, Directeur de l’Innovation/HDR, Algérie Télécom +
Présidente +
Rapporteur +
Rapporteur +
Examinateur +
Encadrant +
Directeur de Thèse +
Invité +
TÉLÉCOM ParisTech +
école de l’Institut Télécom - membre de ParisTech +
N°: 2009 ENAM XXXX T H È S E
('3116433', 'Grigory Antipov', 'grigory antipov')
a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 21, 819-828 (2005) +
Short Paper_________________________________________________ +
A New Classification Approach using +
Discriminant Functions +
Department of Computer Engineering +
+Department of Electrical and Electronic Engineering +
Sakarya University
54187 Sakarya, Turkey +
In this study, an approach involving new types of cost functions is given for the +
construction of discriminant functions. Centers of mass, not specified a priori, around +
feature vectors are clustered using cost function. Thus, the algorithms yield both the +
centers of mass and the distinct classes. +
Keywords: classification, feature vectors, linear discriminant function, Fisher’s LDF, +
dimension reduction +
1. INTRODUCTION +
There are many algorithms for, and many applications of classification and dis- +
crimination (grouping of a set of objects into subsets of similar objects where the objects +
in different subsets are different) in several diverse fields [2-15, 23, 24], ranging from +
engineering to medicine, to econometrics, etc. Some examples are automatic target rec- +
ognition (ATR), fault and maintenance-time recognition, optical character recognition +
(OCR), speech and speaker recognition, etc. +
In this study, a new approach and algorithm to the classification problem are de- +
scribed with the goal of finding a single (possibly vector-valued) linear discriminant +
function. This approach is in terms of some optimal centers of mass for the transformed +
feature vectors of each class, the transforms being performed via the discriminant func- +
tions. As such, it follows the same philosophy which is behind the approaches such as +
principal component analysis (PCA), Fisher’s linear discriminant functions (LDF), and +
minimum total covariance (MTC) [1-16, 22, 25-28], providing alternatives which extend +
this work. +
Linear discriminant functions (LDF) are often used in pattern recognition to classify +
a given object or pattern, based on its features, into one of several given classes. For sim- +
plicity, consider the discrimination problem for two classes. Let x = [x1, x2, …, xm] be the +
Received April 28, 2003; revised March 1 and March 29, 2004; accepted May 3, 2004. +
Communicated by H. Y. Mark Liao. +
819 +
('7605725', 'Zafer Demir', 'zafer demir')
('2279264', 'Erol Emre', 'erol emre')
E-mail: {askind, zdemir, eemre}@sakarya.edu.tr +
a0c37f07710184597befaa7e6cf2f0893ff440e9
a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4fFusing with Context: a Bayesian Approach to Combining Descriptive Attributes +
University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA
Columbia University, New York, NY, USA
University of North Carolina Wilmington, Wilmington, NC, USA
('2613438', 'Walter J. Scheirer', 'walter j. scheirer')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
a0021e3bbf942a88e13b67d83db7cf52e013abfdHuman concerned object detecting in video +
School of Computer Science and Technology, Shandong Institute of Business and Technology
Yantai, Shandong, 264005, China +
School of Computer Science and Technology, Shandong University
Jinan, Shandong, 250101, China +
Received 11 December 2014 +
('2525711', 'Jinjiang LI', 'jinjiang li')
('1733582', 'Jie GUO', 'jie guo')
('9242942', 'Hui FAN', 'hui fan')
E-mail: lijinjiang@gmail.com +
a0d6390dd28d802152f207940c7716fe5fae8760Bayesian Face Revisited: A Joint Formulation +
University of Science and Technology of China
The Chinese University of Hong Kong
3 Microsoft Research Asia, Beijing, China +
('39447786', 'Dong Chen', 'dong chen')
('2032273', 'Xudong Cao', 'xudong cao')
('34508239', 'Liwei Wang', 'liwei wang')
('1716835', 'Fang Wen', 'fang wen')
('40055995', 'Jian Sun', 'jian sun')
chendong@mail.ustc.edu.cn +
lwwang@cse.cuhk.edu.hk +
{xudongca,fangwen,jiansun}@microsoft.com +
a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670
a0fd85b3400c7b3e11122f44dc5870ae2de9009aLearning Deep Representation for Face +
Alignment with Auxiliary Attributes +
('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')
('47571885', 'Ping Luo', 'ping luo')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
a0dfb8aae58bd757b801e2dcb717a094013bc178Reconocimiento de expresiones faciales con base +
en la din´amica de puntos de referencia faciales +
Instituto Nacional de Astrof´ısica ´Optica y Electr´onica, +
Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla, +
M´exico +
Resumen. Las expresiones faciales permiten a las personas comunicar +
emociones, y es pr´acticamente lo primero que observamos al interactuar +
con alguien. En el ´area de computaci´on, el reconocimiento de expresiones +
faciales es importante debido a que su an´alisis tiene aplicaci´on directa en +
´areas como psicolog´ıa, medicina, educaci´on, entre otras. En este articulo +
se presenta el proceso de dise˜no de un sistema para el reconocimiento de +
expresiones faciales utilizando la din´amica de puntos de referencia ubi- +
cados en el rostro, su implementaci´on, experimentos realizados y algunos +
de los resultados obtenidos hasta el momento. +
Palabras clave: Expresiones faciales, clasificaci´on, m´aquinas de soporte +
vectorial,modelos activos de apariencia. +
Facial Expressions Recognition Based on Facial +
Landmarks Dynamics +
('40452660', 'E. Morales-Vargas', 'e. morales-vargas')
('2737777', 'Hayde Peregrina-Barreto', 'hayde peregrina-barreto')
emoralesv@inaoep.mx, kargaxxi@inaoep.mx, hperegrina@inaoep.mx +
a0aa32bb7f406693217fba6dcd4aeb6c4d5a479bCascaded Regressor based 3D Face Reconstruction +
from a Single Arbitrary View Image +
College of Computer Science, Sichuan University, Chengdu, China
('50207647', 'Feng Liu', 'feng liu')
('39422721', 'Dan Zeng', 'dan zeng')
('1723081', 'Jing Li', 'jing li')
('7345195', 'Qijun Zhao', 'qijun zhao')
qjzhao@scu.edu.cn +
a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60Simultaneous Learning and Alignment: +
Multi-Instance and Multi-Pose Learning? +
1 Comp. Science & Eng. +
Univ. of CA, San Diego +
2 Electrical Engineering +
California Inst. of Tech. +
3 Lab of Neuro Imaging +
Univ. of CA, Los Angeles +
('2490700', 'Boris Babenko', 'boris babenko')
('1736745', 'Zhuowen Tu', 'zhuowen tu')
('1769406', 'Serge Belongie', 'serge belongie')
{bbabenko,sjb}@cs.ucsd.edu +
pdollar@caltech.edu +
zhuowen.tu@loni.ucla.edu +
a06b6d30e2b31dc600f622ab15afe5e2929581a7Robust Joint and Individual Variance Explained +
Imperial College London, UK
2Onfido, UK +
Middlesex University London, UK
('3320415', 'Christos Sagonas', 'christos sagonas')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('28943361', 'Alina Leidinger', 'alina leidinger')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
christos.sagonas@onfido.com, {i.panagakis, s.zafeiriou}@imperial.ac.uk +
a0b1990dd2b4cd87e4fd60912cc1552c34792770Deep Constrained Local Models for Facial Landmark Detection +
Carnegie Mellon University
Tadas Baltruaitis +
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
('1783029', 'Amir Zadeh', 'amir zadeh')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
abagherz@cs.cmu.edu +
tbaltrus@cs.cmu.edu +
morency@cs.cmu.edu +
a090d61bfb2c3f380c01c0774ea17929998e0c96On the Dimensionality of Video Bricks under Varying Illumination +
Beijing Lab of Intelligent Information Technology, School of Computer Science, +
Beijing Institute of Technology, Beijing 100081, PR China
('2852150', 'Youdong Zhao', 'youdong zhao')
('38150687', 'Xi Song', 'xi song')
('7415267', 'Yunde Jia', 'yunde jia')
{zyd458, songxi, jiayunde}@bit.edu.cn +
a0e7f8771c7d83e502d52c276748a33bae3d5f81Ensemble Nystr¨om +
A common problem in many areas of large-scale machine learning involves ma- +
nipulation of a large matrix. This matrix may be a kernel matrix arising in Support +
Vector Machines [9, 15], Kernel Principal Component Analysis [47] or manifold +
learning [43,51]. Large matrices also naturally arise in other applications, e.g., clus- +
tering, collaborative filtering, matrix completion, and robust PCA. For these large- +
scale problems, the number of matrix entries can easily be in the order of billions +
or more, making them hard to process or even store. An attractive solution to this +
problem involves the Nystr¨om method, in which one samples a small number of +
columns from the original matrix and generates its low-rank approximation using +
the sampled columns [53]. The accuracy of the Nystr¨om method depends on the +
number columns sampled from the original matrix. Larger the number of samples, +
higher the accuracy but slower the method. +
In the Nystr¨om method, one needs to perform SVD on a l × l matrix where l is +
the number of columns sampled from the original matrix. This SVD operation is +
typically carried out on a single machine. Thus, the maximum value of l used for an +
application is limited by the capacity of the machine. That is why in practice, one +
restricts l to be less than 20K or 30K, even when the size of matrix is in millions. +
This restricts the accuracy of the Nystr¨om method in very large-scale settings. +
This chapter describes a family of algorithms based on mixtures of Nystr¨om +
approximations called, Ensemble Nystr¨om algorithms, which yields more accurate +
low-rank approximations than the standard Nystr¨om method. The core idea of En- +
semble Nystr¨om is to sample many subsets of columns from the original matrix, +
each containing a relatively small number of columns. Then, Nystr¨om method is +
Division of Computer Science, University of California, Berkeley, CA, USA e-mail
('2794322', 'Sanjiv Kumar', 'sanjiv kumar')
('1709415', 'Mehryar Mohri', 'mehryar mohri')
('8395559', 'Ameet Talwalkar', 'ameet talwalkar')
('2794322', 'Sanjiv Kumar', 'sanjiv kumar')
('1709415', 'Mehryar Mohri', 'mehryar mohri')
('8395559', 'Ameet Talwalkar', 'ameet talwalkar')
Google Research, New York, NY, USA e-mail: sanjivk@google.com +
Courant Institute, New York, NY, USA e-mail: mohri@cs.nyu.edu +
ameet@eecs.berkeley.edu +
a0061dae94d916f60a5a5373088f665a1b54f673Research Article +
Lensless computational imaging through deep +
learning +
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
3Singapore-MIT Alliance for Research and Technology (SMART) Centre, One Create Way, Singapore 117543, Singapore +
†These authors contributed equally +
Compiled March 1, 2017 +
Deep learning has been proven to yield reliably generalizable answers to numerous classification and +
decision tasks. Here, we demonstrate for the first time, to our knowledge, that deep neural networks +
(DNNs) can be trained to solve inverse problems in computational imaging. We experimentally demon- +
strate a lens-less imaging system where a DNN was trained to recover a phase object given a raw +
intensity image recorded some distance away. © +
OCIS codes: +
(110.1758) Computational imaging. +
(100.3190) Inverse problems; (100.4996) Pattern recognition, neural networks; (100.5070) Phase retrieval; +
http://dx.doi.org/10.1364/optica.XX.XXXXXX +
1. INTRODUCTION +
Neural network training can be thought of as generic function approxi- +
mation, as follows: given a training set (i.e., examples of matched input +
and output data obtained from a hitherto-unknown model), generate +
the computational architecture that most accurately maps all inputs in +
In this paper, we propose that deep neural networks may “learn” to +
approximate solutions to inverse problems in computational imaging. +
A general computational imaging system consists of a physical part +
where light propagates through one or more objects of interest as well +
as optical elements such as lenses, prisms, etc. finally producing a +
raw intensity image on a digital camera. The raw intensity image is +
then computationally processed to yield object attributes, e.g. a spatial +
map of light attenuation and/or phase delay through the object—what +
we call traditionally “intensity image” and “quantitative phase image,” +
respectively. The computational part of the system is then said to solve +
the inverse problem. +
The study of inverse problems is traced back at least a century ago +
to Tikhonov [1] and Wiener [2]. A good introductory book with rigor- +
ous but not overwhelming discussion of the underlying mathematical +
concepts, especially regularization, is [3]. During the past decade, the +
field experienced a renaissance due to the almost simultaneous matura- +
tion of two related mathematics disciplines: convex optimization and +
harmonic analysis, especially sparse representations. A light technical +
introduction to these fascinating developments is in [4]. +
Neural networks have their own history of legendary ups-and-downs +
[5] culminating with an even more recent renaissance. This was driven +
by Hinton’s insight that multi-layer architectures with numerous layers, +
dubbed as “deep networks,” DNNs, can generalize better than had been +
previously thought after some simple but ingenious changes in the +
nonlinearity and training algorithms [6]. Even more recently developed +
architectures [7–9] have enabled neural networks to “learn deeper;” +
and modern DNNs have shown spectacular success at solving “hard” +
computational problems, such as: playing complex games like Atari +
[17] and Go [18], object detection [19], and image restoration (e.g., +
colorization [20], deblurring [21–23], in-painting [24]). +
The idea of using neural networks to clean up images isn’t exactly +
new: for example, Hopfield’s associative memory network [25] was +
capable of retrieving entire faces from partially obscured inputs, and +
was implemented in an all-optical architecture [26] when computers +
weren’t nearly as powerful as they are now. Recently, Horisaki et al. +
[27] used support-vector machines, a form of bi-layer neural network +
with nonlinear discriminant functions, also to recover face images +
when the obscuration is caused by scattering media. +
The hypothesis that we set out to test in this paper is whether +
a neural network can be trained by being presented pairs of known +
objects and their raw intensity image representations on the digital +
camera of a computational imaging system; and then be used to produce +
object estimates given raw intensity images from hitherto unknown +
test objects, thus solving the inverse problem. This is a rather general +
question and may take several flavors, depending on the nature of the +
object, the physical design of the imaging system, etc. We chose to +
('3365480', 'Ayan Sinha', 'ayan sinha')
('2371140', 'Justin Lee', 'justin lee')
('1804684', 'Shuai Li', 'shuai li')
('2455899', 'George Barbastathis', 'george barbastathis')
a0848d7b1bb43f4b4f1b4016e58c830f40944817Face matching for post-disaster family reunification +
Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health
8600 Rockville Pike, Bethesda, MD USA +
('1744255', 'Eugene Borovikov', 'eugene borovikov')
('2075836', 'Girish Lingappa', 'girish lingappa')
FaceMatch@NIH.gov +
a000149e83b09d17e18ed9184155be140ae1266eChapter 9 +
Action Recognition in Realistic +
Sports Videos +
('1799979', 'Khurram Soomro', 'khurram soomro')
('40029556', 'Amir R. Zamir', 'amir r. zamir')
a01f9461bc8cf8fe40c26d223ab1abea5d8e2812Facial Age Estimation Through the Fusion of Texture +
and local appearance Descriptors +
DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy
2 Herta Security, Pau Claris 165 4-B, 08037 Barcelona, Spain +
('1733945', 'Andrea Prati', 'andrea prati')huertacasado@iuav.it, aprati@iuav.it +
carles.fernandez@hertasecurity.com +
a702fc36f0644a958c08de169b763b9927c175ebFACIAL EXPRESSION RECOGNITION USING HOUGH FOREST +
National Tsing-Hua University, Hsin-Chu, Taiwan
Asia University, Taichung, Taiwan
('2867389', 'Chi-Ting Hsu', 'chi-ting hsu')
('2790846', 'Shih-Chung Hsu', 'shih-chung hsu')
('1793389', 'Chung-Lin Huang', 'chung-lin huang')
Email: s9961601@m99.nthu.edu.tw, d9761817@oz.nthu.edu.tw, clhuang@ee.nthu.edu.tw +
a7267bc781a4e3e79213bb9c4925dd551ea1f5c4Proceedings of eNTERFACE’15 +
The 11th Summer Workshop +
on Multimodal Interfaces +
August 10th - September 4th, 2015 +
Numediart Institute, University of Mons
Mons, Belgium +
+
a784a0d1cea26f18626682ab108ce2c9221d1e53Anchored Regression Networks applied to Age Estimation and Super Resolution +
D-ITET, ETH Zurich +
Switzerland +
D-ITET, ETH Zurich +
Merantix GmbH +
D-ITET, ETH Zurich +
ESAT, KU Leuven +
('2794259', 'Eirikur Agustsson', 'eirikur agustsson')
('1732855', 'Radu Timofte', 'radu timofte')
('1681236', 'Luc Van Gool', 'luc van gool')
aeirikur@vision.ee.ethz.ch +
timofter@vision.ee.ethz.ch +
vangool@vision.ee.ethz.ch +
a77e9f0bd205a7733431a6d1028f09f57f9f73b0Multimodal feature fusion for CNN-based gait recognition: an +
empirical comparison +
F.M. Castroa,, M.J. Mar´ın-Jim´enezb, N. Guila, N. P´erez de la Blancac +
University of Malaga, Spain
University of Cordoba, Spain
University of Granada, Spain
a74251efa970b92925b89eeef50a5e37d9281ad0
a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51Postgraduate Annual Research Seminar 2007 (3-4 July 2007) +
A Summary of literature review : Face Recognition +
Faculty of Computer Science & Information System, +
University Technology of Malaysia, 81310 Skudai, Johor, Malaysia
kittmee@yahoo.com; dzulkifli@fsksm.utm.my +
a70e36daf934092f40a338d61e0fe27be633f577Enhanced Facial Feature Tracking of Spontaneous and Continuous Expressions +
A.Goneid and R. El Kaliouby +
The American University in Cairo, Egypt
goneid@aucegypt.edu, ranak@aucegypt.edu +
a7664247a37a89c74d0e1a1606a99119cffc41d4Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
3287 +
a7191958e806fce2505a057196ccb01ea763b6eaConvolutional Neural Network based +
Age Estimation from Facial Image and +
Depth Prediction from Single Image +
B. Eng. (Honours) +
Australian National University
January 2016 +
A thesis submitted for the degree of Master of Philosophy +
at The Australian National University
Computer Vision Group +
Research School of Engineering +
College of Engineering and Computer Science
The Australian National University
('2124180', 'Jiayan Qiu', 'jiayan qiu')
a7e1327bd76945a315f2869bfae1ce55bb94d165Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and +
Recognition +
School of Information Engineering, Guangdong Medical College, Song Shan Hu
Dongguan, Guangdong, China +
Shaoguan University, Da Tang Lu
Shaoguan, Guangdong, China +
School of Information Engineering, Guangdong Medical College, Song Shan Hu
Dongguan, Guangdong, China +
('2588058', 'Di Zhang', 'di zhang')
('2007270', 'Jiazhong He', 'jiazhong he')
('20374749', 'Yun Zhao', 'yun zhao')
E-mail: changnuode@163.com +
E-mail: hejiazhong@126.com +
E-mail: zyun@gdmc.edu.cn +
a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b911th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003 +
Face Recognition Using Multi-viewpoint Patterns for +
Robot Vision +
Corporate Research and Development Center, TOSHIBA Corporation +
1, KomukaiToshiba-cho, Saiwai-ku, Kawasaki 212-8582 Japan +
('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')
('1708862', 'Osamu Yamaguchi', 'osamu yamaguchi')
kazuhiro.fukui@toshiba.co.jp / osamu1.yamaguchi@toshiba.co.jp +
a758b744a6d6962f1ddce6f0d04292a0b5cf8e07 +
ISSN XXXX XXXX © 2017 IJESC +
+
+
Research Article Volume 7 Issue No.4 +
Study on Human Face Recognition under Invariant Pose, Illumination +
and Expression using LBP, LoG and SVM +
Amrutha +
Depart ment of Co mputer Science & Engineering +
Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore, India
INTRODUCTION +
RELATED WORK +
Abstrac t: +
Face recognition system uses human face for the identification of the user. Face recognition is a difficu lt task there is no unique +
method that provide accurate an accurate and effic ient solution in all the situations like the face image with differen t pose , +
illu mination and exp ression. Local Binary Pattern (LBP) and Laplac ian of Gaussian (Lo G) operators. Support Vector Machine +
classifier is used to recognize the human face. The Lo G algorith m is used to preprocess the image to detect the edges of the face +
image to get the image information. The LBP operator divides the face image into several blocks to generate the features informat ion +
on pixe l level by creating LBP labels for all the blocks of image is obtained by concatenating all the individual local histo grams. +
Support Vector Machine classifier (SVM ) is used to classify t he image. The a lgorith m performances is verified under the constraints +
like illu mination, e xp ression and pose variation +
Ke ywor ds: Face Recognition, Local Binary Pattern, Laplac ian of Gaussian, histogram, illu mination, pose angle, exp ression +
variations, SVM . +
1. +
The Technology used for recognizing the face under security +
systems works on the bio metric principles. There are many +
human characteristics which can be used +
for biometric +
identification such that palm, finger print, face, and iris etc. one +
of these biometrics methods face recognition is advantageous +
because of it can be detected fro m much more d istance without +
need of scanning devices this provides easy observation to +
identify indiv iduals in group of persons. Most of the military +
application security systems, attendance systems, authentication, +
criminal identity etc. are performed using this technology. The +
computer uses this recognition technology to identify or to +
compare the person with same person or with some other person. +
The human faces are very important factor to identify who the +
person is and how the people will ma ke out his/her face. The +
images of faces are taken fro m the distance without having +
contact with a person, capturing the face images. Verification +
and Identification s teps are used for comparison. The first +
method is verification wh ich co mpares the face image with +
his/her image wh ich is a lready stored in database. It is one to one +
matching because it tries to match individual against same +
person's image stored in database. The second method is +
called one to n matching because it matches individual person's +
face image with every person's face images. If the face images +
are effected by lightning condition, different posing angle or +
diffe rent expression then it is difficult to identify the human +
face. Many algorithms are used to extract features of face and to +
match the face images such as Principal Co mponent Analysis +
(PCA) and Independent Component Analysis (ICA) [1], Elastic +
Bunch Graph Matching (EBGM) [2], K -nearest neighbor +
algorith m classifier and Linear Discriminant Analysis (LDA) +
[3]. Th is paper is organized as fo llo ws: Section II revie ws the +
related works done on data security in cloud. Section III +
describes the proposed system and assumptions. Section IV +
provides the conclusion of the paper +
2. +
the most biometrics +
Face Recognition becomes one of +
authentication +
the past few years. Face +
recognition is an interesting and successful application of Pattern +
recognition and Image analysis. It co mpares a query face image +
against all image te mplates in a face database. Face recognition +
is very important due to its wide range of commercia l and law +
enforcement applicat ions, which include forensic identificat ion, +
access control, border surveillance and human interactions and +
availability of low cost recording devices. Principa l Co mponent +
Analysis and Independent Component Analysis [1], Elastic +
Bunch Graph Matching [2], K-nearest neighbor algorithm +
classifier and Linear Discriminant Analysis [3], Loca l Derivative +
pattern and Local Binary Pattern [4]. These algorithms are still +
having some proble ms +
the +
constraints like variations in pose, expression and illu mination. +
This variation in the image degrades the performance of +
recognition rate. Local Binary Pattern (LBP) and Laplac ian of +
Gaussian (Lo G) is used to reduce the illu mination effects by +
increasing the contrast of the image which does not effect to the +
original +
image and diffe rential e xc itation pixe l used for +
preprocessing which is to make the algorithm invariant to the +
illu mination changes +
[4]. The Local Direct ional Pattern +
descriptor (LDP) uses the edge values of surrounding pixe l of +
the center pixe l and Two Dimensional Principal Analysis (2D- +
PCA) is used for feature extraction which uses Euclidean +
distance to measure the simila rity between tra ining database +
images and test image features. The nearest neighbor classifier is +
used to classify the images [5]. To reduce the influence of +
illu mination fro m an input image an adaptive homo morphic +
filtering is used in adaptive homo morphic eight local d irectional +
to recognize +
the face under +
techniques from +
International Journal of Engineering Science and Computing, April 2017 10081 http://ije sc.org/ +
a7c39a4e9977a85673892b714fc9441c959bf078Automated Individualization of Deformable Eye Region Model and Its +
Application to Eye Motion Analysis +
Dept. of Media and Image Technology, +
Tokyo Polytechnic University
1583 Iiyama, Atsugi, +
Kanagawa 243-0297, Japan +
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue Pittsburgh, +
PA 15213-3891, USA +
('1683262', 'Tsuyoshi Moriyama', 'tsuyoshi moriyama')
('1733113', 'Takeo Kanade', 'takeo kanade')
moriyama@mega.t-kougei.ac.jp +
tk@cs.cmu.edu +
a75edf8124f5b52690c08ff35b0c7eb8355fe950Authentic Emotion Detection in Real-Time Video +
School of Computer Science and Engineering, Sichuan University, China
Faculty of Science, University of Amsterdam, The Netherlands
LIACS Media Lab, Leiden University, The Netherlands
('1840164', 'Yafei Sun', 'yafei sun')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1731570', 'Michael S. Lew', 'michael s. lew')
('1695527', 'Theo Gevers', 'theo gevers')
a75ee7f4c4130ef36d21582d5758f953dba03a01DD2427 Final Project Report +
DD2427 Final Project Report +
Human face attributes prediction with Deep +
Learning +
moaah@kth.se +
a775da3e6e6ea64bffab7f9baf665528644c7ed3International Journal of Computer Applications (0975 – 8887) +
Volume 142 – No.9, May 2016 +
Human Face Pose Estimation based on Feature +
Extraction Points +
Research scholar, +
Department of ECE +
SBSSTC, Moga Road, +
Ferozepur, Punjab, India +
a703d51c200724517f099ee10885286ddbd8b587Fuzzy Neural Networks(FNN)-based Approach for +
Personalized Facial Expression Recognition with +
Novel Feature Selection Method +
Div. of EE, Dept. of EECS, KAIST +
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea +
Human-friendly Welfare Robotic System Engineering Research Center, KAIST
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea +
('1793114', 'Dae-Jin Kim', 'dae-jin kim')
('5960489', 'Kwang-Hyun Park', 'kwang-hyun park')
djkim@mail.kaist.ac.kr, zbien@ee.kaist.ac.kr +
akaii@robotian.net +
a75dfb5a839f0eb4b613d150f54a418b7812aa90MULTIBIOMETRIC SECURE SYSTEM BASED ON DEEP LEARNING +
West Virginia University, Morgantown, USA
('23980155', 'Veeru Talreja', 'veeru talreja')
('1709360', 'Matthew C. Valenti', 'matthew c. valenti')
('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')
b88ceded6467e9b286f048bb1b17be5998a077bdSparse Subspace Clustering via Diffusion Process +
Curtin University, Perth, Australia
('2191968', 'Qilin Li', 'qilin li')
('1919769', 'Ling Li', 'ling li')
('1713220', 'Wanquan Liu', 'wanquan liu')
kylinlovesummer@gmail.com +
b871d1b8495025ff8a6255514ed39f7765415935Application of Completed Local Binary Pattern for Facial Expression +
Recognition on Gabor Filtered Facial Images +
University of Ulsan, Ulsan, Republic of Korea
('2288674', 'Tanveer Ahsan', 'tanveer ahsan')1tanveerahsan@gmail.com, 2rsbdce@yahoo.com, *3upchong@ulsan.ac.kr +
b8375ff50b8a6f1a10dd809129a18df96888ac8bPublished as a conference paper at ICLR 2017 +
DECOMPOSING MOTION AND CONTENT FOR +
NATURAL VIDEO SEQUENCE PREDICTION +
University of Michigan, Ann Arbor, USA
2Adobe Research, San Jose, CA 95110 +
3POSTECH, Pohang, Korea +
Beihang University, Beijing, China
5Google Brain, Mountain View, CA 94043 +
('2241528', 'Seunghoon Hong', 'seunghoon hong')
('10668384', 'Xunyu Lin', 'xunyu lin')
('1697141', 'Honglak Lee', 'honglak lee')
('1768964', 'Jimei Yang', 'jimei yang')
('1711926', 'Ruben Villegas', 'ruben villegas')
b88d5e12089f6f598b8c72ebeffefc102cad1fc0Robust 2DPCA and Its Application +
Xidian University
Xi’an China +
Xidian University
Xi’an China +
('40326660', 'Qianqian Wang', 'qianqian wang')
('38469552', 'Quanxue Gao', 'quanxue gao')
610887187@qq.com +
xd ste pr@163.com +
b84b7b035c574727e4c30889e973423fe15560d7Human Age Estimation Using Ranking SVM +
HoHai University
2Center for Biometrics and Security Research & National Laboratory of Pattern +
Recognition, Institute of Automation, Chinese Academy of Sciences
3China Research and Development Center for Internet of Thing +
('40478348', 'Dong Cao', 'dong cao')
('1718623', 'Zhen Lei', 'zhen lei')
('1959072', 'Zhiwei Zhang', 'zhiwei zhang')
('39189280', 'Jun Feng', 'jun feng')
('34679741', 'Stan Z. Li', 'stan z. li')
fdcao,zlei,zwzhang,szlig@cbsr.ia.ac.cn, fengjun@hhu.edu.cn +
b8dba0504d6b4b557d51a6cf4de5507141db60cfComparing Performances of Big Data Stream +
Processing Platforms with RAM3S +
b89862f38fff416d2fcda389f5c59daba56241dbA Web Survey for Facial Expressions Evaluation +
Ecole Polytechnique Federale de Lausanne +
Signal Processing Institute
Ecublens, 1015 Lausanne, Switzerland +
Ecole Polytechnique Federale de Lausanne, Operation Research Group +
Ecublens, 1015 Lausanne, Switzerland +
June 9, 2008 +
('2916630', 'Matteo Sorci', 'matteo sorci')
('1794461', 'Gianluca Antonini', 'gianluca antonini')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
('1690395', 'Michel Bierlaire', 'michel bierlaire')
{Matteo.Sorci,Gianluca.Antonini,JP.Thiran}@epfl.ch +
Michel.Bierlaire@epfl.ch +
b8caf1b1bc3d7a26a91574b493c502d2128791f6RESEARCH ARTICLE +
As Far as the Eye Can See: Relationship +
between Psychopathic Traits and Pupil +
Response to Affective Stimuli +
Daniel T. Burley1*, Nicola S. Gray2,3, Robert J. Snowden1* +
School of Psychology, Cardiff University, Cardiff, United Kingdom, College of
Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg
University Health Board, Swansea, United Kingdom
* BurleyD2@Cardiff.ac.uk (DTB); Snowden@Cardiff.ac.uk (RJS) +
b8084d5e193633462e56f897f3d81b2832b72dffDeepID3: Face Recognition with Very Deep Neural Networks +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2SenseTime Group +
('1681656', 'Yi Sun', 'yi sun')
('1865674', 'Ding Liang', 'ding liang')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
sy011@ie.cuhk.edu.hk +
xgwang@ee.cuhk.edu.hk +
liangding@sensetime.com +
xtang@ie.cuhk.edu.hk +
b8378ab83bc165bc0e3692f2ce593dcc713df34a
b8f3f6d8f188f65ca8ea2725b248397c7d1e662dSelfie Detection by Synergy-Constriant Based +
Convolutional Neural Network +
Electrical and Electronics Engineering, NITK-Surathkal, India. +
('7245071', 'Yashas Annadani', 'yashas annadani')
('8341302', 'Akshay Kumar Jagadish', 'akshay kumar jagadish')
('2139966', 'Krishnan Chemmangat', 'krishnan chemmangat')
b8ebda42e272d3617375118542d4675a0c0e501dDeep Hashing Network for Unsupervised Domain Adaptation +
Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA
('3151995', 'Hemanth Venkateswara', 'hemanth venkateswara')
('30443430', 'Jose Eusebio', 'jose eusebio')
('2471253', 'Shayok Chakraborty', 'shayok chakraborty')
('1743991', 'Sethuraman Panchanathan', 'sethuraman panchanathan')
{hemanthv, jeusebio, shayok.chakraborty, panch}@asu.edu +
b85580ff2d8d8be0a2c40863f04269df4cd766d9HCMUS team at the Multimodal Person Discovery in +
Broadcast TV Task of MediaEval 2016 +
Faculty of Information Technology +
University of Science, Vietnam National University-Ho Chi Minh city
('34453615', 'Vinh-Tiep Nguyen', 'vinh-tiep nguyen')
('30097677', 'Manh-Tien H. Nguyen', 'manh-tien h. nguyen')
('8176737', 'Quoc-Huu Che', 'quoc-huu che')
('7736164', 'Van-Tu Ninh', 'van-tu ninh')
('38994364', 'Tu-Khiem Le', 'tu-khiem le')
('7213584', 'Thanh-An Nguyen', 'thanh-an nguyen')
('1780348', 'Minh-Triet Tran', 'minh-triet tran')
nvtiep@fit.hcmus.edu.vn, {nhmtien, cqhuu, nvtu, ltkhiem}@apcs.vn, +
1312016@student.hcmus.edu.vn, tmtriet@fit.hcmus.edu.vn +
b87b0fa1ac0aad0ca563844daecaeecb2df8debfComputational Aesthetics in Graphics, Visualization, and Imaging +
EXPRESSIVE 2015 +
Non-Photorealistic Rendering of Portraits +
Cardiff University, UK
Figure 1: President Obama re-rendered in “puppet” style and in the style of Julian Opie. +
('1734823', 'Paul L. Rosin', 'paul l. rosin')
('1734823', 'Paul L. Rosin', 'paul l. rosin')
('7827503', 'Yu-Kun Lai', 'yu-kun lai')
b87db5ac17312db60e26394f9e3e1a51647cca66Semi-definite Manifold Alignment +
Tsinghua University
Beijing, China +
('2066355', 'Liang Xiong', 'liang xiong')
('34410258', 'Fei Wang', 'fei wang')
('1700883', 'Changshui Zhang', 'changshui zhang')
{xiongl,feiwang03}@mails.tsinghua.edu.cn, zcs@mail.tsinghua.edu.cn +
b81cae2927598253da37954fb36a2549c5405cdbExperiments on Visual Information Extraction with the Faces of Wikipedia +
D´epartement de g´enie informatique et g´enie logiciel, Polytechnique Montr´eal +
2500, Chemin de Polytechnique, Universit´e de Montr´eal, Montr`eal, Qu´ebec, Canada +
('2811524', 'Md. Kamrul Hasan', 'md. kamrul hasan')
b8a829b30381106b806066d40dd372045d49178d1872 +
A Probabilistic Framework for Joint Pedestrian Head +
and Body Orientation Estimation +
('2869660', 'Fabian Flohr', 'fabian flohr')
('1898318', 'Madalin Dumitru-Guzu', 'madalin dumitru-guzu')
('34846285', 'Julian F. P. Kooij', 'julian f. p. kooij')
b1d89015f9b16515735d4140c84b0bacbbef19acToo Far to See? Not Really! +
— Pedestrian Detection with Scale-aware +
Localization Policy +
('47957574', 'Xiaowei Zhang', 'xiaowei zhang')
('50791064', 'Li Cheng', 'li cheng')
('49729740', 'Bo Li', 'bo li')
('2938403', 'Hai-Miao Hu', 'hai-miao hu')
b191aa2c5b8ece06c221c3a4a0914e8157a16129: DEEP SPATIO-TEMPORAL MANIFOLD NETWORK FOR ACTION RECOGNITION +
Deep Spatio-temporal Manifold Network for +
Action Recognition +
Department of Computer Science +
China University of Mining and Technol
ogy, Beijing, China +
Center for Research in Computer +
Vision (CRCV) +
University of Central Florida, Orlando
FL, USA +
School of Automation Science and +
electrical engineering +
Beihang University, Beijing, China
University of Chinese Academy of
Sciences +
Beijing, China +
Nortumbria Univesity +
Newcastle, UK +
Xiamen Univesity +
Xiamen, China +
('2606761', 'Ce Li', 'ce li')
('9497155', 'Chen Chen', 'chen chen')
('1740430', 'Baochang Zhang', 'baochang zhang')
('1694936', 'Qixiang Ye', 'qixiang ye')
('1783847', 'Jungong Han', 'jungong han')
('1725599', 'Rongrong Ji', 'rongrong ji')
celi@cumtb.edu.cn +
chenchen870713@gmail.com +
bczhang@139.com +
qxye@ucas.ac.cn +
jungonghan77@gmail.com +
rrji@xmu.edu.cn +
b13bf657ca6d34d0df90e7ae739c94a7efc30dc3Attribute and Simile Classifiers for Face Verification (In submission please do +
not distribute.) +
Columbia University
New York, NY +
Columbia University
New York, NY +
Columbia University
Columbia University
New York, NY +
('3586464', 'Neeraj Kumar', 'neeraj kumar')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
('1750470', 'Shree K. Nayar', 'shree k. nayar')
belhumeur@cs.columbia.edu +
neeraj@cs.columbia.edu +
aberg@cs.columbia.edu +
nayar@cs.columbia.edu +
b13a882e6168afc4058fe14cc075c7e41434f43eRecognition of Humans and Their Activities Using Video +
Center for Automation Research +
University of Maryland
College Park, MD
Dept. of Electrical Engineering +
University of California
Riverside, CA 92521 +
Shaohua K. Zhou +
Siemens Research +
Princeton, NJ 08540 +
('9215658', 'Rama Chellappa', 'rama chellappa')
('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')
b14b672e09b5b2d984295dfafb05604492bfaec5LearningImageClassificationandRetrievalModelsThomasMensink
b1665e1ddf9253dcaebecb48ac09a7ab4095a83eEMOTION RECOGNITION USING FACIAL EXPRESSIONS WITH ACTIVE +
APPEARANCE MODELS +
Department of Computer Science +
University of North Carolina Wilmington
South College Road
Wilmington, NC, USA +
Department of Computer Science +
University of North Carolina Wilmington
South College Road
Wilmington, NC, USA +
('12675740', 'Matthew S. Ratliff', 'matthew s. ratliff')
('37804931', 'Eric Patterson', 'eric patterson')
msr3520@uncw.edu +
pattersone@uncw.edu +
b16580d27bbf4e17053f2f91bc1d0be12045e00bPose-invariant Face Recognition with a +
Two-Level Dynamic Programming Algorithm +
1 Human Language Technology and Pattern Recognition Group +
RWTH Aachen University, Aachen, Germany
2 Robert Bosch GmbH, Hildesheim, Germany +
('1804963', 'Harald Hanselmann', 'harald hanselmann')
('1685956', 'Hermann Ney', 'hermann ney')
('1967060', 'Philippe Dreuw', 'philippe dreuw')
@cs.rwth-aachen.de +
philippe.dreuw@de.bosch.com +
b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000Deep Variation-structured Reinforcement Learning for Visual Relationship and +
Attribute Detection +
School of Computer Science, Carnegie Mellon University
('40250403', 'Xiaodan Liang', 'xiaodan liang')
('1752601', 'Eric P. Xing', 'eric p. xing')
('49441821', 'Lisa Lee', 'lisa lee')
{xiaodan1,lslee,epxing}@cs.cmu.edu +
b11bb6bd63ee6f246d278dd4edccfbe470263803Joint Voxel and Coordinate Regression for Accurate +
3D Facial Landmark Localization +
†Center for Research on Intelligent Perception and Computing (CRIPAC) +
Institute of Automation, Chinese Academy of Sciences (CASIA
†National Laboratory of Pattern Recognition (NLPR) +
University of Chinese Academy of Sciences (UCAS
§Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), CAS +
('37536613', 'Hongwen Zhang', 'hongwen zhang')
('39763795', 'Qi Li', 'qi li')
('1757186', 'Zhenan Sun', 'zhenan sun')
Email: hongwen.zhang@cripac.ia.ac.cn, {qli, znsun}@nlpr.ia.ac.cn +
b171f9e4245b52ff96790cf4f8d23e822c260780
b1a3b19700b8738b4510eecf78a35ff38406df22This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE +
Transactions on Affective Computing +
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +
Automatic Analysis of Facial Actions: A Survey +
and Maja Pantic, Fellow, IEEE +
('1680608', 'Brais Martinez', 'brais martinez')
('1795528', 'Michel F. Valstar', 'michel f. valstar')
('39532631', 'Bihan Jiang', 'bihan jiang')
b166ce267ddb705e6ed855c6b679ec699d62e9cbTurk J Elec Eng & Comp Sci +
(2017) 25: 4421 { 4430 +
c⃝ T (cid:127)UB_ITAK +
doi:10.3906/elk-1702-49 +
Sample group and misplaced atom dictionary learning for face recognition +
Faculty of Electronics and Communication, Yanshan University
Faculty of Electronics and Communication, Taishan University
Qinhuangdao, P.R. China +
Tai’an, P.R. China +
Received: 04.02.2017 +
(cid:15) +
Accepted/Published Online: 01.06.2017 +
(cid:15) +
Final Version: 05.10.2017 +
('39980529', 'Meng Wang', 'meng wang')
('49576759', 'Zhe Sun', 'zhe sun')
('6410069', 'Mei Zhu', 'mei zhu')
('49632877', 'Mei Sun', 'mei sun')
b13e2e43672e66ba45d1b852a34737e4ce04226bCROWLEY, PARKHI, ZISSERMAN: FACE PAINTING +
Face Painting: querying art with photos +
Elliot J. Crowley +
Visual Geometry Group +
Department of Engineering Science +
University of Oxford
('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
elliot@robots.ox.ac.uk +
omkar@robots.ox.ac.uk +
az@robots.ox.ac.uk +
b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87cRESEARCH ARTICLE +
Conveying facial expressions to blind and +
visually impaired persons through a wearable +
vibrotactile device +
MIRA Institute, University of Twente, Enschede, The
Netherlands, Donders Institute, Radboud University, Nijmegen, The
Netherlands, 3 VicarVision, Amsterdam, The Netherlands, 4 Department of Media, Communication, & +
Organization, University of Twente, Enschede, The Netherlands, HAN
University of Applied Sciences, Arnhem, The Netherlands
('1950480', 'Hendrik P. Buimer', 'hendrik p. buimer')
('25188062', 'Marian Bittner', 'marian bittner')
('3427220', 'Tjerk Kostelijk', 'tjerk kostelijk')
('49432294', 'Abdellatif Nemri', 'abdellatif nemri')
('2968885', 'Richard J. A. van Wezel', 'richard j. a. van wezel')
* h.buimer@donders.ru.nl +
b1301c722886b6028d11e4c2084ee96466218be4
b15a06d701f0a7f508e3355a09d0016de3d92a6dRunning head: FACIAL CONTRAST LOOKS HEALTHY +
1 +
Facial contrast is a cue for perceiving health from the face +
Mauger2, Frederique Morizot2 +
Gettysburg College, Gettysburg, PA, USA
2 CHANEL Recherche et Technologie, Chanel PB +
3 Université Grenoble Alpes +
Author Note +
Psychologie et NeuroCognition, Université Grenoble Alpes. +
This is a prepublication copy. This article may not exactly replicate the authoritative document +
published in the APA journal. It is not the copy of record. The authoritative document can be +
found through this DOI: http://psycnet.apa.org/doi/10.1037/xhp0000219 +
('40482411', 'Richard Russell', 'richard russell')
('4556101', 'Aurélie Porcheron', 'aurélie porcheron')
('40482411', 'Richard Russell', 'richard russell')
('4556101', 'Aurélie Porcheron', 'aurélie porcheron')
('6258499', 'Emmanuelle Mauger', 'emmanuelle mauger')
('4556101', 'Aurélie Porcheron', 'aurélie porcheron')
('40482411', 'Richard Russell', 'richard russell')
College, Gettysburg, PA 17325, USA. Email: rrussell@gettysburg.edu +
b1c5581f631dba78927aae4f86a839f43646220c
b18858ad6ec88d8b443dffd3e944e653178bc28bPurdue University
Purdue e-Pubs +
Department of Computer Science Technical +
Reports +
Department of Computer Science +
2017 +
Trojaning Attack on Neural Networks +
See next page for additional authors +
Report Number: +
17-002 +
Liu, Yingqi; Ma, Shiqing; Aafer, Yousra; Lee, Wen-Chuan; Zhai, Juan; Wang, Weihang; and Zhang, Xiangyu, "Trojaning Attack on +
Neural Networks" (2017). Department of Computer Science Technical Reports. Paper 1781. +
https://docs.lib.purdue.edu/cstech/1781 +
additional information. +
('3347155', 'Yingqi Liu', 'yingqi liu')
('40306181', 'Shiqing Ma', 'shiqing ma')
('3216258', 'Yousra Aafer', 'yousra aafer')
('2547748', 'Wen-Chuan Lee', 'wen-chuan lee')
('3293342', 'Juan Zhai', 'juan zhai')
Purdue University, liu1751@purdue.edu +
Purdue University, ma229@purdue.edu +
Purdue University, yaafer@purdue.edu +
Purdue University, lee1938@purdue.edu +
Nanjing University, China, zhaijuan@nju.edu.cn +
This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for +
b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1LOCAL DIRECTIONAL RELATION PATTERN +
Local Directional Relation Pattern for +
Unconstrained and Robust Face Retrieval +
('34992579', 'Shiv Ram Dubey', 'shiv ram dubey')
b133b2d7df9b848253b9d75e2ca5c68e21eba008Kobe University, NICT and University of Siegen
at TRECVID 2017 AVS Task +
Graduate School of System Informatics, Kobe University
Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT
Pattern Recognition Group, University of Siegen
('2240008', 'Zhenying He', 'zhenying he')
('8183718', 'Takashi Shinozaki', 'takashi shinozaki')
('1707938', 'Kimiaki Shirahama', 'kimiaki shirahama')
('1727057', 'Marcin Grzegorzek', 'marcin grzegorzek')
('1711781', 'Kuniaki Uehara', 'kuniaki uehara')
jennyhe@ai.cs.kobe-u.ac.jp, uehara@kobe-u.ac.jp +
tshino@nict.go.jp +
kimiaki.shirahama@uni-siegen.de, marcin.grzegorzek@uni-siegen.de +
b1451721864e836069fa299a64595d1655793757Criteria Sliders: Learning Continuous +
Database Criteria via Interactive Ranking +
Brown University 2University of Bath
Harvard University 4Max Planck Institute for Informatics
('1854493', 'James Tompkin', 'james tompkin')
('1808255', 'Kwang In Kim', 'kwang in kim')
('1680185', 'Christian Theobalt', 'christian theobalt')
b1df214e0f1c5065f53054195cd15012e660490aSupplementary Material to Sparse Coding and Dictionary Learning with Linear +
Dynamical Systems∗ +
Tsinghua University, State Key Lab. of Intelligent
Technology and Systems, Tsinghua National Lab. for Information Science and Technology (TNList); +
Australian National University and NICTA, Australia
In this supplementary material, we present the proofs of Theorems (1-3), the algorithm for learning the transition matrix +
of LDSST, and the reconstruction error approach for classification in LDS-SC, LDSST-SC and covLDSST-SC. In addition, +
we describe the details of the benchmark datasets that are applied in our experiments. Our dictionary learning algorithm for +
anormaly detection is also explored in this supplementary material. +
1. Proofs +
Theorem 1. Suppose V1, V2, · · · , VM ∈ S(n, ∞), and y1, y2, · · · , yM ∈ R, we have +
Xi=1 +
yiΠ(Vi) k2 +
F = +
Xi,j=1 +
yiyj k VT +
i Vj k2 +
F , +
i Oj can be computed with the Lyapunov equation defined in Equation (2), Li and Lj +
i Vj = L−1 +
where VT +
are Cholesky decomposition matrices for OT +
i Oj L−T +
i OT +
. OT +
i Oi and OT +
j Oj , respectively. +
i)]T by +
Proof. We denote the sub-matrix of the extended observability matrix Oi as Oi(t) = [CT +
taking the first t rows. We suppose that the Cholesky decomposition matrix for Oi is Li and denote that Vi(t) = Oi(t)L−T +
Then, we derive +
i , (CiAi)T, · · · , (CiAt +
Xi=1 +
yiΠ(Vi) k2 +
F = lim +
t→∞ +
= lim +
t→∞ +
= lim +
t→∞ +
yiVi(t)Vi(t)T +
yiVi(t)Vi(t)T k2 +
Xi=1 +
Tr +
Xi=1 +
Xi,j=1 +
yiyjTr(cid:0)Vi(t)TVj(t)Vj(t)TVi(t)(cid:1) +
yj Vj(t)Vj(t)T +
Xj=1 +
yiyj lim +
t→∞ +
k Vi(t)TVj(t) k2 +
yiyj lim +
t→∞ +
k L−1 +
(Oi(t)TOj(t))L−T +
k2 +
yiyj k L−1 +
i Oij L−T +
k2 +
F , +
(13) +
Xi,j=1 +
Xi,j=1 +
Xi,j=1 +
∗This work is jointly supported by National Natural Science Foundation of China under Grant No. 61327809, 61210013, 91420302 and 91520201. +
('8984539', 'Wenbing Huang', 'wenbing huang')
('40203750', 'Fuchun Sun', 'fuchun sun')
('2507718', 'Lele Cao', 'lele cao')
('1678783', 'Deli Zhao', 'deli zhao')
('31833173', 'Huaping Liu', 'huaping liu')
('23911916', 'Mehrtash Harandi', 'mehrtash harandi')
1{huangwb12@mails, fcsun@mail, caoll12@mails, hpliu@mail}.tsinghua.edu.cn, +
zhaodeli@gmail.com, +
Mehrtash.Harandi@nicta.com.au, +
b185f0a39384ceb3c4923196aeed6d68830a069fDescribing Clothing by Semantic Attributes +
Stanford University, Stanford, California
Kodak Research Laboratories, Rochester, New York
Cornell University, Ithaca, New York
('2896700', 'Huizhong Chen', 'huizhong chen')
('1739786', 'Bernd Girod', 'bernd girod')
b19e83eda4a602abc5a8ef57467c5f47f493848dJOURNAL OF LATEX CLASS FILES +
Heat Kernel Based Local Binary Pattern for +
Face Representation +
('38979129', 'Xi Li', 'xi li')
('40506509', 'Weiming Hu', 'weiming hu')
('1720488', 'Zhongfei Zhang', 'zhongfei zhang')
('37414077', 'Hanzi Wang', 'hanzi wang')
b1429e4d3dd3412e92a37d2f9e0721ea719a9b9ePerson Re-identification Using Multiple First-Person-Views on Wearable Devices +
Nanyang Technological University, Singapore
Institute for Infocomm Research (I2R), A*STAR, Singapore
Istituto Italiano di Tecnologia (IIT), Genova, 16163, Italy +
('37287044', 'Anirban Chakraborty', 'anirban chakraborty')
('1709001', 'Bappaditya Mandal', 'bappaditya mandal')
('2860592', 'Hamed Kiani Galoogahi', 'hamed kiani galoogahi')
a.chakraborty@ntu.edu.sg +
bmandal@i2r.a-star.edu.sg +
kiani.galoogahi@iit.it +
b1fdd4ae17d82612cefd4e78b690847b071379d3Supervised Descent Method +
CMU-RI-TR-15-28 +
September 2015 +
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213 +
Thesis Committee: +
Fernando De la Torre, Chair +
Srinivasa Narasimhan +
Kris Kitani +
Aleix Martinez +
Submitted in partial fulfillment of the requirements +
for the degree of Doctor of Philosophy in Robotics. +
('3182065', 'Xuehan Xiong', 'xuehan xiong')
('3182065', 'Xuehan Xiong', 'xuehan xiong')
dde5125baefa1141f1ed50479a3fd67c528a965fSynthesizing Normalized Faces from Facial Identity Features +
Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL
('39578349', 'Forrester Cole', 'forrester cole')
('1707347', 'Dilip Krishnan', 'dilip krishnan')
{fcole, dbelanger, dilipkay, sarna, inbarm, wfreeman}@google.com +
dd8084b2878ca95d8f14bae73e1072922f0cc5daModel Distillation with Knowledge Transfer from +
Face Classification to Alignment and Verification +
Beijing Orion Star Technology Co., Ltd. Beijing, China +
('1747751', 'Chong Wang', 'chong wang')
('26403761', 'Xipeng Lan', 'xipeng lan')
{chongwang.nlpr, xipeng.lan, caveman1984}@gmail.com +
ddf55fc9cf57dabf4eccbf9daab52108df5b69aaInternational Journal of Grid and Distributed Computing +
Vol. 4, No. 3, September, 2011 +
Methodology and Performance Analysis of 3-D Facial Expression +
Recognition Using Statistical Shape Representation +
ADSIP Research Centre, University of Central Lancashire
School of Psychology, University of Central Lancashire
('2343120', 'Wei Quan', 'wei quan')
('2647218', 'Bogdan J. Matuszewski', 'bogdan j. matuszewski')
('2550166', 'Lik-Kwan Shark', 'lik-kwan shark')
('2942330', 'Charlie Frowd', 'charlie frowd')
{WQuan, BMatuszewski1, LShark}@uclan.ac.uk +
CFrowd@uclan.ac.uk +
dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335Unsupervised Learning and Segmentation of Complex Activities from Video +
University of Bonn, Germany
('34678431', 'Fadime Sener', 'fadime sener')
('2569989', 'Angela Yao', 'angela yao')
{sener,yao}@cs.uni-bonn.de +
dda35768681f74dafd02a667dac2e6101926a279MULTI-LAYER TEMPORAL GRAPHICAL MODEL +
FOR HEAD POSE ESTIMATION IN REAL-WORLD VIDEOS +
McGill University
Centre for Intelligent Machines, +
('2515930', 'Meltem Demirkus', 'meltem demirkus')
('1724729', 'Doina Precup', 'doina precup')
('1713608', 'James J. Clark', 'james j. clark')
('1699104', 'Tal Arbel', 'tal arbel')
dd0760bda44d4e222c0a54d41681f97b3270122b
ddea3c352f5041fb34433b635399711a90fde0e8Facial Expression Classification using Visual Cues and Language +
Department of Computer Science and Engineering, IIT Kanpur +
('2094658', 'Abhishek Kar', 'abhishek kar')
('1803835', 'Amitabha Mukerjee', 'amitabha mukerjee')
{akar,amit}@iitk.ac.in +
dd033d4886f2e687b82d893a2c14dae02962ea70Electronic Letters on Computer Vision and Image Analysis 11(1):41-54; 2012 +
Facial Expression Recognition Using New Feature Extraction +
Algorithm +
National Cheng Kung University, Tainan, Taiwan
Received 10th Oct. 2011; accepted 5th Sep. 2012 +
('2499819', 'Hung-Fu Huang', 'hung-fu huang')
('1751725', 'Shen-Chuan Tai', 'shen-chuan tai')
ddbd24a73ba3d74028596f393bb07a6b87a469c0Multi-region two-stream R-CNN +
for action detection +
Inria(cid:63) +
('1766837', 'Xiaojiang Peng', 'xiaojiang peng')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
{xiaojiang.peng,cordelia.schmid}@inria.fr +
ddf099f0e0631da4a6396a17829160301796151cIEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY +
Learning Face Image Quality from +
Human Assessments +
('2180413', 'Lacey Best-Rowden', 'lacey best-rowden')
('40217643', 'Anil K. Jain', 'anil k. jain')
dd0a334b767e0065c730873a95312a89ef7d1c03Eigenexpressions: Emotion Recognition using Multiple +
Eigenspaces +
Luis Marco-Gim´enez1, Miguel Arevalillo-Herr´aez1, and Cristina Cuhna-P´erez2 +

Burjassot. Valencia 46100, Spain, +
2 Universidad Cat´olica San Vicente M´artir de Valencia (UCV), +
Burjassot. Valencia. Spain +
margi4@alumni.uv.es +
dd2f6a1ba3650075245a422319d86002e1e87808
ddaa8add8528857712424fd57179e5db6885df7cMETTES, SNOEK, CHANG: ACTION LOCALIZATION WITH PSEUDO-ANNOTATIONS +
Localizing Actions from Video Labels +
and Pseudo-Annotations +
Cees G.M. Snoek1 +
University of Amsterdam
Amsterdam, NL +
Columbia University
New York, USA +
('2606260', 'Pascal Mettes', 'pascal mettes')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
dd8d53e67668067fd290eb500d7dfab5b6f730dd69 +
A Parameter-Free Framework for General +
Supervised Subspace Learning +
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('7137861', 'Jianzhuang Liu', 'jianzhuang liu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
ddbb6e0913ac127004be73e2d4097513a8f02d37264 +
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999 +
Face Detection Using Quantized Skin Color +
Regions Merging and Wavelet Packet Analysis +
('34798028', 'Christophe Garcia', 'christophe garcia')
('2441655', 'Georgios Tziritas', 'georgios tziritas')
dd600e7d6e4443ebe87ab864d62e2f4316431293
dc550f361ae82ec6e1a0cf67edf6a0138163382e +
ISSN XXXX XXXX © 2018 IJESC +
+
+
Research Article Volume 8 Issue No.3 +
Emotion Based Music Player +
Professor1, UG Student2, 3, 4, 5, 6 +
Department of Electronics Engineering +
K.D.K. College of Engineering Nagpur, India
('9217928', 'Vijay Chakole', 'vijay chakole')
('48228560', 'Kalyani Trivedi', 'kalyani trivedi')
dcf71245addaf66a868221041aabe23c0a074312S3FD: Single Shot Scale-invariant Face Detector +
CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
('3220556', 'Shifeng Zhang', 'shifeng zhang'){shifeng.zhang,xiangyu.zhu,zlei,hailin.shi,xiaobo.wang,szli}@nlpr.ia.ac.cn +
dcb44fc19c1949b1eda9abe998935d567498467dProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
1916 +
dcc38db6c885444694f515d683bbb50521ff3990Learning to hallucinate face images via Component Generation and Enhancement +
City University of Hong Kong
South China University of Technology
3Tencent AI Lab +
University of Science and Technology of China
('2255687', 'Yibing Song', 'yibing song')
('1718428', 'Jiawei Zhang', 'jiawei zhang')
('2548483', 'Shengfeng He', 'shengfeng he')
('2780029', 'Linchao Bao', 'linchao bao')
('1777434', 'Qingxiong Yang', 'qingxiong yang')
dc5cde7e4554db012d39fc41ac8580f4f6774045FAKTOR, IRANI: VIDEO SEGMENTATION BY NON-LOCAL CONSENSUS VOTING +
Video Segmentation by Non-Local +
Consensus Voting +
http://www.wisdom.weizmann.ac.il/~alonf/ +
http://www.wisdom.weizmann.ac.il/~irani/ +
Dept. of Computer Science and +
Applied Math +
The Weizmann Institute of Science
ISRAEL +
('2859022', 'Alon Faktor', 'alon faktor')
('1696887', 'Michal Irani', 'michal irani')
dc7df544d7c186723d754e2e7b7217d38a12fcf7Facial expression recognition using salient facial patches +
MIRACL-ENET’COM +
University of Sfax
Tunisia (3018), Sfax +
MIRACL-FSS +
University of Sfax
Tunisia (3018), Sfax +
('2049116', 'Hazar Mliki', 'hazar mliki')
('1749733', 'Mohamed Hammami', 'mohamed hammami')
mliki.hazar@gmail.com +
mohamed.hammami@fss.rnu.tn +
dc77287bb1fcf64358767dc5b5a8a79ed9abaa53Fashion Conversation Data on Instagram +
∗Graduate School of Culture Technology, KAIST, South Korea +
†Department of Communication Studies, UCLA, USA +
('3459091', 'Yu-i Ha', 'yu-i ha')
('2399803', 'Sejeong Kwon', 'sejeong kwon')
('1775511', 'Meeyoung Cha', 'meeyoung cha')
('1834047', 'Jungseock Joo', 'jungseock joo')
dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb
dced05d28f353be971ea2c14517e85bc457405f3Multimodal Priority Verification of Face and Speech +
Using Momentum Back-Propagation Neural Network +
1 Image Processing and Intelligent Systems Laboratory, Department of Image Engineering, +
Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University
221 Huksuk-dong, Tongjak-Ku, Seoul 156-756, Korea, +
2 Broadcasting Media Research Group, Digital Broadcasting Research Division, ETRI, 161 +
Gajeong-dong, Yuseong-Gu, Daejeon 305-700, Korea, +
3 Intelligent Image Communication Laboratory, Department of Computer Engineering, +
Kwangwoon University, 447-1 Wolge-dong, Nowon-Gu, Seoul 139-701, Korea
('1727735', 'Changhan Park', 'changhan park')
('1722181', 'Myungseok Ki', 'myungseok ki')
('1723542', 'Jaechan Namkung', 'jaechan namkung')
('1684329', 'Joonki Paik', 'joonki paik')
initialchp@wm.cau.ac.kr, http://ipis.cau.ac.kr, +
kkim@etri.re.kr, http://www.etri.re.kr, +
namjc@daisy.kw.ac.kr, http://vision.kw.ac.kr. +
dce5e0a1f2cdc3d4e0e7ca0507592860599b0454Facelet-Bank for Fast Portrait Manipulation +
The Chinese University of Hong Kong
2Tencent Youtu Lab +
Johns Hopkins University
('2070527', 'Ying-Cong Chen', 'ying-cong chen')
('40898180', 'Yangang Ye', 'yangang ye')
('1729056', 'Jiaya Jia', 'jiaya jia')
{ycchen, linhj, ryli, xtao}@cse.cuhk.edu.hk +
goodshenxy@gmail.com +
Mshu1@jhu.edu +
yangangye@tecent.com +
leojia9@gmail.com +
dc9d62087ff93a821e6bb8a15a8ae2da3e39dcddLearning with Confident Examples: +
Rank Pruning for Robust Classification with Noisy Labels +
Massachusetts Institute of Technology
Cambridge, MA 02139 +
('39972987', 'Curtis G. Northcutt', 'curtis g. northcutt')
('3716141', 'Tailin Wu', 'tailin wu')
('1706040', 'Isaac L. Chuang', 'isaac l. chuang')
{cgn, tailin, ichuang}@mit.edu +
dcce3d7e8d59041e84fcdf4418702fb0f8e35043Probabilistic Identity Characterization for Face Recognition∗ +
Center for Automation Research (CfAR) and +
Department of Electrical and Computer Engineering +
University of Maryland, College Park, MD
('1682187', 'Shaohua Kevin Zhou', 'shaohua kevin zhou')
('9215658', 'Rama Chellappa', 'rama chellappa')
{shaohua, rama}@cfar.umd.edu +
dce3dff9216d63c4a77a2fcb0ec1adf6d2489394Manifold Learning for Gender Classification +
from Face Sequences +
Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland
('1751372', 'Abdenour Hadid', 'abdenour hadid')
dc974c31201b6da32f48ef81ae5a9042512705feAm I done? Predicting Action Progress in Video +
1 Media Integration and Communication Center, Univ. of Florence, Italy +
2 Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy +
('41172759', 'Federico Becattini', 'federico becattini')
('1789269', 'Tiberio Uricchio', 'tiberio uricchio')
('2831602', 'Lorenzo Seidenari', 'lorenzo seidenari')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
('1795847', 'Lamberto Ballan', 'lamberto ballan')
b6f758be954d34817d4ebaa22b30c63a4b8ddb35A Proximity-Aware Hierarchical Clustering of Faces +
University of Maryland, College Park
('3329881', 'Wei-An Lin', 'wei-an lin')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('9215658', 'Rama Chellappa', 'rama chellappa')
walin@terpmail.umd.edu, pullpull@cs.umd.edu, rama@umiacs.umd.edu +
b62571691a23836b35719fc457e093b0db187956 Volume 3, Issue 5, May 2013 ISSN: 2277 128X +
International Journal of Advanced Research in +
Computer Science and Software Engineering +
Research Paper +
Available online at: www.ijarcsse.com +
A Novel approach for securing biometric template +
Dr.Chander Kant +
Department of computer Science & applications Department of computer Science & applications +
Kurukshetra University, Kurukshetra, India
Kurukshetra University, Kurukshetra, India
+
('3384880', 'Shweta Malhotra', 'shweta malhotra')
b69b239217d4e9a20fe4fe1417bf26c94ded9af9A Temporally-Aware Interpolation Network for +
Video Frame Inpainting +
University of Michigan, Ann Arbor, USA
('2582303', 'Ximeng Sun', 'ximeng sun')
('34246012', 'Ryan Szeto', 'ryan szeto')
('3587688', 'Jason J. Corso', 'jason j. corso')
{sunxm,szetor,jjcorso}@umich.edu +
b6c047ab10dd86b1443b088029ffe05d79bbe257
b6052dc718c72f2506cfd9d29422642ecf3992efA Survey on Human Motion Analysis from +
Depth Data +
University of Kentucky, 329 Rose St., Lexington, KY, 40508, U.S.A
2 Microsoft, One Microsoft Way, Redmond, WA, 98052, U.S.A +
3 SRI International Sarnoff, 201 Washington Rd, Princeton, NJ, 08540, U.S.A +
University of Bonn, Roemerstrasse 164, 53117 Bonn, Germany
('3876303', 'Mao Ye', 'mao ye')
('1681771', 'Qing Zhang', 'qing zhang')
('40476140', 'Liang Wang', 'liang wang')
('2446676', 'Jiejie Zhu', 'jiejie zhu')
('38958903', 'Ruigang Yang', 'ruigang yang')
('2946643', 'Juergen Gall', 'juergen gall')
mao.ye@uky.edu, qing.zhang@uky.edu, ryang@cs.uky.edu +
liangwan@microsoft.com +
jiejie.zhu@sri.com +
gall@iai.uni-bonn.de +
b6145d3268032da70edc9cfececa1f9ffa4e3f11c(cid:2) 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. +
Face Recognition Using the Discrete Cosine Transform +
Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A
('1693521', 'Ziad M. Hafed', 'ziad m. hafed')
('3631473', 'Martin D. Levine', 'martin d. levine')
zhafed@cim.mcgill.ca +
levine@cim.mcgill.ca +
b6c53891dff24caa1f2e690552a1a5921554f994
b6ef158d95042f39765df04373c01546524c9ccdIm2vid: Future Video Prediction for Static Image Action +
Recognition +
Badour Ahmad AlBahar +
Thesis submitted to the Faculty of the +
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of +
Master of Science +
in +
Computer Engineering +
Jia-Bin Huang, Chair +
A. Lynn Abbott +
Pratap Tokekar +
May 9, 2018 +
Blacksburg, Virginia +
Keywords: Human Action Recognition, Static Image Action Recognition, Video Action +
Recognition, Future Video Prediction. +
Copyright 2018, Badour Ahmad AlBahar +
b68150bfdec373ed8e025f448b7a3485c16e3201Adversarial Image Perturbation for Privacy Protection +
A Game Theory Perspective +
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbr cken, Germany
('2390510', 'Seong Joon Oh', 'seong joon oh')
('1739548', 'Mario Fritz', 'mario fritz')
('1697100', 'Bernt Schiele', 'bernt schiele')
{joon,mfritz,schiele}@mpi-inf.mpg.de +
b613b30a7cbe76700855479a8d25164fa7b6b9f11 +
Identifying User-Specific Facial Affects from +
Spontaneous Expressions with Minimal Annotation +
('23417737', 'Michael Xuelin Huang', 'michael xuelin huang')
('1706729', 'Grace Ngai', 'grace ngai')
('1730455', 'Kien A. Hua', 'kien a. hua')
('1714454', 'Hong Va Leong', 'hong va leong')
b64cfb39840969b1c769e336a05a30e7f9efcd61ORIGINAL RESEARCH +
published: 15 June 2016 +
doi: 10.3389/fict.2016.00009 +
CRF-Based Context Modeling for +
Person Identification in Broadcast +
Videos +
LIUM Laboratory, Le Mans, France, 2 Idiap Research Institute, Martigny, Switzerland
We are investigating the problem of speaker and face identification in broadcast videos. +
Identification is performed by associating automatically extracted names from overlaid +
texts with speaker and face clusters. We aimed at exploiting the structure of news +
videos to solve name/cluster association ambiguities and clustering errors. The proposed +
approach combines iteratively two conditional random fields (CRF). The first CRF performs +
the person diarization (joint temporal segmentation, clustering, and association of voices +
jointly over the speech segments and the face tracks. It benefits from +
and faces) +
contextual +
information being extracted from the image backgrounds and the overlaid +
texts. The second CRF associates names with person clusters, thanks to co-occurrence +
statistics. Experiments conducted on a recent and substantial public dataset containing +
reports and debates demonstrate the interest and complementarity of the different +
modeling steps and information sources: the use of these elements enables us to obtain +
better performances in clustering and identification, especially in studio scenes. +
Keywords: face identification, speaker identification, broadcast videos, conditional random field, face clustering, +
speaker diarization +
1. INTRODUCTION +
For the last two decades, researchers have been trying to create indexing and fast search and +
browsing tools capable of handling the growing amount of available video collections. Among the +
associated possibilities, person identification is an important one. Indeed, video contents can often +
be browsed through the appearances of their different actors. Moreover, the availability of each +
person intervention allows easier access to video structure elements, such as the scene segmentation. +
Both motivations are especially verified in the case of news collections. The focus of this paper is, +
therefore, to develop a program able to identify persons in broadcast videos. That is, the program +
must be able to provide all temporal segments corresponding to each face and speaker. +
Person identification can be supervised. A face and/or a speaker model of the queried person is +
then learned over manually labeled training data. However, this raises the problem of annotation +
cost. An unsupervised and complementary approach consists of using the naming information +
already present in the documents. Such resources include overlaid texts, speech transcripts, and +
metadata. Motivated by this opportunity, unsupervised identification has been investigated for +
15 years from the early work of Satoh et al. (1999) to the development of more complex news- +
browsing systems exploiting this paradigm (Jou et al., 2013), or thanks to sponsored competitions +
(Giraudel et al., 2012). Whatever the source of naming information, it must tackle two main +
obstacles: associate the names to co-occurring speech and face segments and propagate this naming +
information from the co-occurring segments to the other segments of this person. +
Edited by: +
Shin’Ichi Satoh, +
National Institute of Informatics, Japan
Reviewed by: +
Thanh Duc Ngo, +
Vietnam National University Ho Chi
Minh City, Vietnam +
Ichiro Ide, +
Nagoya University, Japan
*Correspondence: +
Specialty section: +
This article was submitted to +
Computer Image Analysis, a section +
of the journal Frontiers in ICT +
Received: 16 October 2015 +
Accepted: 12 May 2016 +
Published: 15 June 2016 +
Citation: +
Gay P, Meignier S, Deléglise P and +
Odobez J-M (2016) CRF-Based +
Context Modeling for Person +
Identification in Broadcast Videos. +
doi: 10.3389/fict.2016.00009 +
Frontiers in ICT | www.frontiersin.org +
June 2016 | Volume 3 | Article 9 +
('14556501', 'Paul Gay', 'paul gay')
('2446815', 'Sylvain Meignier', 'sylvain meignier')
('1682046', 'Paul Deléglise', 'paul deléglise')
('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')
('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')
odobez@idiap.ch +
b6f682648418422e992e3ef78a6965773550d36bFebruary 8, 2017 +
b689d344502419f656d482bd186a5ee6b01408912009, Vol. 9, No. 2, 260 –264 +
© 2009 American Psychological Association +
1528-3542/09/$12.00 DOI: 10.1037/a0014681 +
CORRECTED JULY 1, 2009; SEE LAST PAGE +
BRIEF REPORTS +
Christopher P. Said +
Princeton University
University of Amsterdam, University of Trento, Italy
Princeton University
People make trait inferences based on facial appearance despite little evidence that these inferences +
accurately reflect personality. The authors tested the hypothesis that these inferences are driven in part +
neutral faces on a set of trait dimensions. The authors then submitted the face images to a Bayesian +
expression. In general, neutral faces that are perceived to have positive valence resemble happiness, faces +
that are perceived to have negative valence resemble disgust and fear, and faces that are perceived to be +
threatening resemble anger. These results support the idea that trait inferences are in part the result of an +
then be misattributed as traits. +
People evaluate neutral faces on multiple trait dimensions and +
these evaluations have social consequences (Hassin & Trope, +
2000). For instance, political candidates whose faces are perceived +
as more competent are more likely to win elections (Ballew & +
Todorov, 2007; Todorov, Mandisodza, Goren, & Hall, 2005), and +
cadets whose faces are perceived as more dominant are more likely +
to be promoted to higher military ranks (Mazur, Mazur, & Keating, +
1984). +
Although inferences about traits based on facial appearance are +
made reliably across observers, there is little evidence that these +
inferences accurately reflect the personality of the observed face. +
Most correlations between perceived traits and actual traits are +
weak though positive (Bond, Berry, & Omar, 1994), some are +
inconsistent for men and women (Zebrowitz, Voinescu, & Collins, +
1996), and some are negative (Zebrowitz, Andreoletti, Collins, +
ogy and the Center for the Study of Brain, Mind and Behavior at +
versity of Amsterdam, Amsterdam and University of Trento
We thank Valerie Loehr for her assistance with the acquisition of trait +
ratings, and Nick Oosterhof for helpful discussions. This research was +
supported by National Science Foundation Grant BCS-0446846. +
Correspondence should be addressed to Christopher P. Said, Department +
of Psychology, Princeton University, Princeton, NJ 08540. E-mail
260 +
Lee, & Blumenthal, 1998). It is therefore puzzling that people +
make reliable and rapid trait inferences from faces (Willis & +
Todorov, 2006) when only little accurate information, at best, is +
provided about personality. One intriguing explanation is that +
neutral faces may contain structural properties that cause them to +
resemble faces with more accurate and ecologically relevant in- +
son, 1996; Montepare & Dobish, 2003). +
Under this hypothesis, the adaptive ability to recognize emo- +
tions overgeneralizes to neutral faces that merely bear a subtle +
faces vary on trait dimensions such as trustworthiness (Engell, +
Haxby, & Todorov, 2007). One possibility is that the source of +
consensus in judging faces on social dimensions is the similarity of +
the face to expressions corresponding to the dimension of trait +
judgment (e.g., aggressiveness and anger). When given the task of +
could base their judgments on this similarity. Evidence for this +
hypothesis comes from research showing that the more a neutral +
face is rated as happy by one group of participants the higher it is +
rated on dominance and affiliation by another group of partici- +
pants, and the more a face is rated as angry the higher it is rated on +
dominance and the lower on affiliation (Montepare & Dobish, +
2003). One interpretation of these findings is that people misat- +
('1703601', 'Nicu Sebe', 'nicu sebe')
('2913698', 'Alexander Todorov', 'alexander todorov')
('2913698', 'Alexander Todorov', 'alexander todorov')
('1703601', 'Nicu Sebe', 'nicu sebe')
csaid@princeton.edu +
b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks ∗ +
University of Science and Technology of China, Hefei, China
‡ Microsoft Research, Beijing, China +
('3430743', 'Zhaofan Qiu', 'zhaofan qiu')
('2053452', 'Ting Yao', 'ting yao')
('1724211', 'Tao Mei', 'tao mei')
zhaofanqiu@gmail.com, {tiyao, tmei}@microsoft.com +
b6d0e461535116a675a0354e7da65b2c1d2958d4Deep Directional Statistics: +
Pose Estimation with +
Uncertainty Quantification +
Max Planck Institute for Intelligent Systems, T ubingen, Germany
2 Amazon, T¨ubingen, Germany +
3 Microsoft Research, Cambridge, UK +
('15968671', 'Sergey Prokudin', 'sergey prokudin')
('2388416', 'Sebastian Nowozin', 'sebastian nowozin')
sergey.prokudin@tuebingen.mpg.de +
b656abc4d1e9c8dc699906b70d6fcd609fae8182
b6a01cd4572b5f2f3a82732ef07d7296ab0161d3Kernel-Based Supervised Discrete Hashing for +
Image Retrieval +
University of Florida, Gainesville, FL, 32611, USA
('2766473', 'Xiaoshuang Shi', 'xiaoshuang shi')
('2082604', 'Fuyong Xing', 'fuyong xing')
('3457945', 'Jinzheng Cai', 'jinzheng cai')
('2476328', 'Zizhao Zhang', 'zizhao zhang')
('1877955', 'Yuanpu Xie', 'yuanpu xie')
('1705066', 'Lin Yang', 'lin yang')
xsshi2015@ufl.edu +
a9791544baa14520379d47afd02e2e7353df87e5Technical Note +
The Need for Careful Data Collection for Pattern Recognition in +
Digital Pathology +
Montefiore Institute, University of Li ge, 4000 Li ge, Belgium
Received: 08 December 2016 +
Accepted: 15 March 2017 +
Published: 10 April 2017 +
('1689882', 'Raphaël Marée', 'raphaël marée')
a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd(IJARAI) International Journal of Advanced Research in Artificial Intelligence, +
Vol. 5, No.6, 2016 +
A Model for Facial Emotion Inference Based on +
Planar Dynamic Emotional Surfaces +
Ruivo, J. P. P. +
Escola Polit´ecnica +
Negreiros, T. +
Escola Polit´ecnica +
Barretto, M. R. P. +
Escola Polit´ecnica +
Tinen, B. +
Escola Polit´ecnica +
Universidade de S˜ao Paulo +
Universidade de S˜ao Paulo +
Universidade de S˜ao Paulo +
Universidade de S˜ao Paulo +
S˜ao Paulo, Brazil +
S˜ao Paulo, Brazil +
S˜ao Paulo, Brazil +
S˜ao Paulo, Brazil +
a955033ca6716bf9957b362b77092592461664b4 ISSN(Online): 2320-9801 +
ISSN (Print): 2320-9798 +
International Journal of Innovative Research in Computer +
and Communication Engineering +
(An ISO 3297: 2007 Certified Organization) +
Video Based Face Recognition Using Artificial +
Vol. 3, Issue 6, June 2015 +
Neural Network +
Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India
Caarmel Engineering College, MG University, Kerala, India
a956ff50ca958a3619b476d16525c6c3d17ca264A Novel Bidirectional Neural Network for Face Recognition +
JalilMazloum, Ali Jalali and Javad Amiryan +
Electrical and Computer Engineering Department +
ShahidBeheshti University
Tehran, Iran +
J_Mazloum@sbu.ac.ir, A_Jalali@sbu.ac.ir, Amiryan.j@robocyrus.ir +
a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f
a98316980b126f90514f33214dde51813693fe0dCollaborations on YouTube: From Unsupervised Detection to the +
Impact on Video and Channel Popularity +
Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany +
('49495293', 'Christian Koch', 'christian koch')
('46203604', 'Moritz Lode', 'moritz lode')
('2214486', 'Denny Stohr', 'denny stohr')
('2869441', 'Amr Rizk', 'amr rizk')
('1725298', 'Ralf Steinmetz', 'ralf steinmetz')
E-Mail: {Christian.Koch | Denny.Stohr | Amr.Rizk | Ralf.Steinmetz}@kom.tu-darmstadt.de +
a93781e6db8c03668f277676d901905ef44ae49fRecent Datasets on Object Manipulation: A Survey +('3112203', 'Yongqiang Huang', 'yongqiang huang')
('39545911', 'Matteo Bianchi', 'matteo bianchi')
('2646612', 'Minas Liarokapis', 'minas liarokapis')
('1681376', 'Yu Sun', 'yu sun')
a9fc23d612e848250d5b675e064dba98f05ad0d9(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 9, No. 2, 2018 +
Face Age Estimation Approach based on Deep +
Learning and Principle Component Analysis +
Faculty of Computers and +
Informatics, +
Benha University, Egypt
Faculty of Computers and +
Information, +
Minia University, Egypt
Faculty of Computers and +
Informatics, +
Benha University, Egypt
('3488856', 'Essam H. Houssein', 'essam h. houssein')
('33680569', 'Hala H. Zayed', 'hala h. zayed')
a9adb6dcccab2d45828e11a6f152530ba8066de6Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma +
Illumination Subspaces based Robust Face Recognition +
Interactive Systems Labs, Universität Karlsruhe (TH) +
76131 Karlsruhe, Almanya +
web: http://isl.ira.uka.de/face_recognition +
Özetçe +
yönlerine +
aydınlanma +
kaynaklanan +
sonra, yüz uzayı +
Bu çalışmada aydınlanma alt-uzaylarına dayalı bir yüz tanıma +
sistemi sunulmuştur. Bu sistemde, +
ilk olarak, baskın +
aydınlanma yönleri, bir topaklandırma algoritması kullanılarak +
öğrenilmiştir. Topaklandırma algoritması sonucu önden, sağ +
ve sol yanlardan olmak üzere üç baskın aydınlanma yönü +
gözlemlenmiştir. Baskın +
karar +
-yüzün görünümündeki +
kılındıktan +
aydınlanmadan +
kişi +
kimliklerinden kaynaklanan değişimlerden ayırmak için- bu üç +
aydınlanma uzayına bölünmüştür. Daha sonra, ek aydınlanma +
yönü bilgisinden faydalanmak için aydınlanma alt-uzaylarına +
dayalı yüz +
tanıma algoritması kullanılmıştır. Önerilen +
yaklaşım, CMU PIE veritabanında, “illumination” ve +
“lighting” kümelerinde yer alan yüz +
imgeleri üzerinde +
sınanmıştır. Elde edilen deneysel sonuçlar, aydınlanma +
yönünden yararlanmanın ve aydınlanma alt-uzaylarına dayalı +
yüz tanıma algoritmasının yüz tanıma başarımını önemli +
ölçüde arttırdığını göstermiştir. +
değişimleri, +
farklı +
('1770336', 'D. Kern', 'd. kern')
('1742325', 'R. Stiefelhagen', 'r. stiefelhagen')
ekenel@ira.uka.de +
a967426ec9b761a989997d6a213d890fc34c5fe3Relative Ranking of Facial Attractiveness +
Department of Computer Science and Engineering +
University of California, San Diego
('3079766', 'Hani Altwaijry', 'hani altwaijry'){haltwaij,sjb}@cs.ucsd.edu +
a95dc0c4a9d882a903ce8c70e80399f38d2dcc89 TR-IIS-14-003 +
Review and Implementation of +
High-Dimensional Local Binary +
Patterns and Its Application to +
Face Recognition +
July. 24, 2014 || Technical Report No. TR-IIS-14-003 +
http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html +
('33970300', 'Bor-Chun Chen', 'bor-chun chen')
('1720473', 'Chu-Song Chen', 'chu-song chen')
a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6Learning to Succeed while Teaching to Fail: +
Privacy in Closed Machine Learning Systems +
('2077648', 'Qiang Qiu', 'qiang qiu')
('4838771', 'Miguel R. D. Rodrigues', 'miguel r. d. rodrigues')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
a949b8700ca6ba96ee40f75dfee1410c5bbdb3dbInstance-weighted Transfer Learning of Active Appearance Models +
Computer Vision Group, Friedrich Schiller University of Jena, Germany
Ernst-Abbe-Platz 2-4, 07743 Jena, Germany +
('1708249', 'Daniel Haase', 'daniel haase')
('1679449', 'Erik Rodner', 'erik rodner')
('1728382', 'Joachim Denzler', 'joachim denzler')
{daniel.haase,erik.rodner,joachim.denzler}@uni-jena.de +
a92b5234b8b73e06709dd48ec5f0ec357c1aabed
a9be20954e9177d8b2bc39747acdea4f5496f394Event-specific Image Importance +
University of California, San Diego
2Adobe Research +
('35259685', 'Yufei Wang', 'yufei wang'){yuw176, gary}@ucsd.edu +
{zlin, xshen, rmech, gmiller}@adobe.com +
d5afd7b76f1391321a1340a19ba63eec9e0f9833Journal of Information Hiding and Multimedia Signal Processing +
Ubiquitous International +
c⃝2010 ISSN 2073-4212 +
Volume 1, Number 3, July 2010 +
Statistical Analysis of Human Facial Expressions +
Department of Informatics +
Aristotle University of Thessaloniki
Box 451, 54124 Thessaloniki, Greece +
Department of Informatics +
Aristotle University of Thessaloniki
Box 451, 54124 Thessaloniki, Greece +
Informatics and Telematics Institute
CERTH, Greece +
Received March 2010; revised June 2010 +
('2764130', 'Stelios Krinidis', 'stelios krinidis')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
stelios.krinidis@mycosmos.gr +
pitas@aiia.csd.auth.gr +
d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12Manifold Ranking-Based Locality Preserving Projections +
School of Computer Science and Engineering, South China University of Technology
Guangzhou 510006, Guangdong, China +
('2132230', 'Jia Wei', 'jia wei')
('3231018', 'Zewei Chen', 'zewei chen')
('1837988', 'Pingyang Niu', 'pingyang niu')
('2524825', 'Yishun Chen', 'yishun chen')
('7307608', 'Wenhui Chen', 'wenhui chen')
csjwei@scut.edu.cn +
d5d7e89e6210fcbaa52dc277c1e307632cd91dabDOTA: A Large-scale Dataset for Object Detection in Aerial Images∗ +
State Key Lab. LIESMARS, Wuhan University, China
2EIS, Huazhong Univ. Sci. and Tech., China +
Computer Science Depart., Cornell University, USA
Computer Science Depart., Rochester University, USA
5German Aerospace Center (DLR), Germany +
DAIS, University of Venice, Italy
January 30, 2018 +
('39943835', 'Gui-Song Xia', 'gui-song xia')
('1686737', 'Xiang Bai', 'xiang bai')
('1749386', 'Jian Ding', 'jian ding')
('48148046', 'Zhen Zhu', 'zhen zhu')
('33642939', 'Jiebo Luo', 'jiebo luo')
('1777167', 'Mihai Datcu', 'mihai datcu')
('8111020', 'Marcello Pelillo', 'marcello pelillo')
('1733213', 'Liangpei Zhang', 'liangpei zhang')
{guisong.xia, jding, zlp62}@whu.edu.cn +
{xbai, zzhu}@hust.edu.cn +
sjb344@cornell.edu +
jiebo.luo@gmail.com +
mihai.datcu@dlr.de +
pelillo@dsi.unive.it +
d50c6d22449cc9170ab868b42f8c72f8d31f9b6cProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
1668 +
d522c162bd03e935b1417f2e564d1357e98826d2He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19 +
http://asp.eurasipjournals.com/content/2013/1/19 +
RESEARCH +
Open Access +
Weakly supervised object extraction with +
iterative contour prior for remote sensing +
images +
('2456383', 'Chu He', 'chu he')
('40382947', 'Yu Zhang', 'yu zhang')
('1813780', 'Bo Shi', 'bo shi')
('1727252', 'Xin Su', 'xin su')
('32514309', 'Xin Xu', 'xin xu')
('2048631', 'Mingsheng Liao', 'mingsheng liao')
d59f18fcb07648381aa5232842eabba1db52383eInternational Conference on Systemics, Cybernetics and Informatics, February 12–15, 2004 +
ROBUST FACIAL EXPRESSION RECOGNITION USING SPATIALLY +
LOCALIZED GEOMETRIC MODEL +
Department of Electrical Engineering +
Dept. of Computer Sc. and Engg. +
IIT Kanpur +
Kanpur 208016, India +
Kanpur 208016, India +
IIT Kanpur +
Dept. of Computer Sc. and Engg. +
IIT Kanpur +
Kanpur 208016, India +
While approaches based on 3D deformable facial model have +
achieved expression recognition rates of as high as 98% [2], they +
are computationally inefficient and require considerable apriori +
training based on 3D information, which is often unavailable. +
Recognition from 2D images remains a difficult yet important +
problem for areas such as +
image database querying and +
classification. The accuracy rates achieved for 2D images are +
around 90% [3,4,5,11]. In a recent review of expression +
recognition, Fasel [1] considers the problem along several +
dimensions: whether features such as lips or eyebrows are first +
identified in the face (local [4] vs holistic [11]), or whether the +
image model used is 2D or 3D. Methods proposed for expression +
recognition from 2D images include the Gabor-Wavelet [5] or +
Holistic Optical flow [11] approach. +
This paper describes a more robust system for facial expression +
recognition from image sequences using 2D appearance-based +
local approach for the extraction of intransient facial features, i.e. +
features such as eyebrows, lips, or mouth, which are always +
present in the image, but may be deformed [1] (in contrast, +
transient features are wrinkles or bulges that disappear at other +
times). The main advantages of such an approach is low +
computational requirements, ability to work with both colored and +
grayscale images and robustness in handling partial occlusions +
[3]. +
Edge projection analysis which is used here for feature extraction +
(eyebrows and lips) is well known [6]. Unlike [6] which describes +
a template based matching as an essential starting point, we use +
contours analysis. Our system computes a feature vector based on +
geometrical model of the face and then classifies it into four +
expression classes using a feed-forward basis function net. The +
system detects open and closed state of the mouth as well. The +
algorithm presented here works on both color and grayscale image +
sequences. An important aspect of our work is the use of color +
information for robust and more accurate segmentation of lip +
region in case of color images. The novel lip-enhancement +
transform is based on Gaussian modeling of skin and lip color. +
To place the work in a larger context of face analysis and +
recognition, the overall task requires that the part of the image +
involving the face be detected and segmented. We assume that a +
near-frontal view of the face is available. Tests on a grayscale +
and two color face image databases ([8] and [9,10]) demonstrate a +
superior recognition rate for four facial expressions (smile, +
surprise, disgust and sad against neutral). +
image sequences +
('1681995', 'Ashutosh Saxena', 'ashutosh saxena')
('40101676', 'Ankit Anand', 'ankit anand')
('1803835', 'Amitabha Mukerjee', 'amitabha mukerjee')
ashutosh.saxena@ieee.org +
ankanand@cse.iitk.ac.in +
amit@cse.iitk.ac.in +
d5fa9d98c8da54a57abf353767a927d662b7f026 VOL. 1, NO. 2, Oct 2010 E-ISSN 2218-6301 +
Journal of Emerging Trends in Computing and Information Sciences +
©2009-2010 CIS Journal. All rights reserved. +
http://www.cisjournal.org +
Age Estimation based on Neural Networks using Face Features +
+
Corresponding Author: Faculty of Information Technology +
Islamic University of Gaza - Palestine
Email +
: +
edu. +
ps. +
('1714298', 'Nabil Hewahi', 'nabil hewahi')nhewahi@iugaza +
d588dd4f305cdea37add2e9bb3d769df98efe880 +
Audio-Visual Authentication System over the +
Internet Protocol +
abandoned. +
in +
illumination based +
is developed with the objective to +
('1968167', 'Yee Wan Wong', 'yee wan wong')
d5444f9475253bbcfef85c351ea9dab56793b9eaIEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS +
BoxCars: Improving Fine-Grained Recognition +
of Vehicles using 3D Bounding Boxes +
in Traffic Surveillance +
in contrast +
('34891870', 'Jakub Sochor', 'jakub sochor')
('1785162', 'Adam Herout', 'adam herout')
d5ab6aa15dad26a6ace5ab83ce62b7467a18a88eWorld Journal of Computer Application and Technology 2(7): 133-138, 2014 +
DOI: 10.13189/wjcat.2014.020701 +
http://www.hrpub.org +
Optimized Structure for Facial Action Unit Relationship +
Using Bayesian Network +
Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau +
Pinang, Malaysia +
Copyright © 2014 Horizon Research Publishing All rights reserved. +
('9115930', 'Yee Koon Loh', 'yee koon loh')
('3120408', 'Shahrel A. Suandi', 'shahrel a. suandi')
*Corresponding Author: lyk10_eee045@student.usm.my +
d5b0e73b584be507198b6665bcddeba92b62e1e5CHEN ET AL.: MULTI-REGION ENSEMBLE CNNS FOR AGE ESTIMATION +
Multi-Region Ensemble Convolutional Neural +
Networks for High-Accuracy Age Estimation +
1 Faculty of Information Technology +
Macau University of Science and
Technology, Macau SAR +
2 National Laboratory of Pattern +
Recognition, Institute of Automation
Chinese Academy of Sciences +
University of Chinese Academy of
Sciences +
4 Computing, School of Science and +
Engineering, University of Dundee
('38141486', 'Yiliang Chen', 'yiliang chen')
('9645431', 'Zichang Tan', 'zichang tan')
('1916793', 'Alex Po Leung', 'alex po leung')
('1756538', 'Jun Wan', 'jun wan')
('40539612', 'Jianguo Zhang', 'jianguo zhang')
elichan5168@gmail.com +
tanzichang2016@ia.ac.cn +
pleung@must.edu.mo +
jun.wan@ia.ac.cn +
jnzhang@dundee.ac.uk +
d56fe69cbfd08525f20679ffc50707b738b88031Training of multiple classifier systems utilizing +
partially labelled sequences +

89069 Ulm - Germany +
('3037635', 'Martin Schels', 'martin schels')
('2307794', 'Patrick Schillinger', 'patrick schillinger')
('1685857', 'Friedhelm Schwenker', 'friedhelm schwenker')
d5de42d37ee84c86b8f9a054f90ddb4566990ec0Asynchronous Temporal Fields for Action Recognition +
Carnegie Mellon University 2University of Washington 3Allen Institute for Arti cial Intelligence
github.com/gsig/temporal-fields/ +
('34280810', 'Gunnar A. Sigurdsson', 'gunnar a. sigurdsson')
('2270286', 'Ali Farhadi', 'ali farhadi')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
d50751da2997e7ebc89244c88a4d0d18405e8507
d511e903a882658c9f6f930d6dd183007f508eda
d50a40f2d24363809a9ac57cf7fbb630644af0e5END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE +
STEGANOGRAPHY +
National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan
Reveal.ai (Recognition, Vision & Learning) Lab +
('9205693', 'Atique ur Rehman', 'atique ur rehman')
('2695106', 'Sibt ul Hussain', 'sibt ul hussain')
d5b5c63c5611d7b911bc1f7e161a0863a34d44eaExtracting Scene-dependent Discriminant +
Features for Enhancing Face Recognition +
under Severe Conditions +
Information and Media Processing Research Laboratories, NEC Corporation
1753, Shimonumabe, Nakahara-Ku, Kawasaki 211-8666 Japan +
('1709089', 'Rui Ishiyama', 'rui ishiyama')
('35577655', 'Nobuyuki Yasukawa', 'nobuyuki yasukawa')
d59404354f84ad98fa809fd1295608bf3d658bdcInternational Journal of Computer Vision manuscript No. +
(will be inserted by the editor) +
Face Synthesis from Visual Attributes via Sketch using +
Conditional VAEs and GANs +
Received: date / Accepted: date +
('29673017', 'Xing Di', 'xing di')
d5e1173dcb2a51b483f86694889b015d55094634
d28d32af7ef9889ef9cb877345a90ea85e70f7f12017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
Local-Global Landmark Confidences for Face Recognition +
Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA
Language Technologies Institute, Carnegie Mellon University, PA, USA
('2792633', 'KangGeon Kim', 'kanggeon kim')
('1752756', 'Feng-Ju Chang', 'feng-ju chang')
('1689391', 'Jongmoo Choi', 'jongmoo choi')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
('1694832', 'Ramakant Nevatia', 'ramakant nevatia')
d28d697b578867500632b35b1b19d3d76698f4a9Appears in the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR’99, Fort Collins, Colorado, USA, June 23-25, 1999. +
Face Recognition Using Shape and Texture +
Department of Computer Science +
George Mason University
Fairfax, VA 22030-4444 +
cliu, wechsler +
('39664966', 'Chengjun Liu', 'chengjun liu')
('1781577', 'Harry Wechsler', 'harry wechsler')
@cs.gmu.edu +
d231a81b38fde73bdbf13cfec57d6652f8546c3cSUPERRESOLUTION TECHNIQUES +
FOR FACE RECOGNITION FROM VIDEO +
by +
B.S., E.E., Bo azi i University
Submitted to the Graduate School of Engineering +
and Natural Sciences in partially fulfillment of +
the requirement for the degree of +
Master of Science +
Graduate Program in Electronics Engineering and Computer Science +
Sabanc University
Spring 2005 +
('2258053', 'Osman Gökhan Sezer', 'osman gökhan sezer')
d22785eae6b7503cb16402514fd5bd9571511654Evaluating Facial Expressions with Different +
Occlusion around Image Sequence +
+
Department of Computer Science +
Sanghvi Institute of Management and Science
Indore (MP), India +
I. +
local +
INTRODUCTION +
+
('2890210', 'Ramchand Hablani', 'ramchand hablani')
d2eb1079552fb736e3ba5e494543e67620832c52ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1 +
DeSTNet: Densely Fused Spatial +
Transformer Networks1 +
Onfido Research +
3 Finsbury Avenue +
London, UK +
('31336510', 'Roberto Annunziata', 'roberto annunziata')
('3320415', 'Christos Sagonas', 'christos sagonas')
('1997807', 'Jacques Calì', 'jacques calì')
roberto.annunziata@onfido.com +
christos.sagonas@onfido.com +
jacques.cali@onfido.com +
d24dafe10ec43ac8fb98715b0e0bd8e479985260J Nonverbal Behav (2018) 42:81–99 +
https://doi.org/10.1007/s10919-017-0266-z +
O R I G I N A L P A P E R +
Effects of Social Anxiety on Emotional Mimicry +
and Contagion: Feeling Negative, but Smiling Politely +
• Gerben A. van Kleef2 +
• Agneta H. Fischer2 +
Published online: 25 September 2017 +
Ó The Author(s) 2017. This article is an open access publication +
('4041392', 'Corine Dijk', 'corine dijk')
('35427440', 'Charlotte van Eeuwijk', 'charlotte van eeuwijk')
('1878851', 'Nexhmedin Morina', 'nexhmedin morina')
d29eec5e047560627c16803029d2eb8a4e61da75Feature Transfer Learning for Deep Face +
Recognition with Long-Tail Data +
Michigan State University, NEC Laboratories America
('39708770', 'Xi Yin', 'xi yin')
('15644381', 'Xiang Yu', 'xiang yu')
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
('40022363', 'Xiaoming Liu', 'xiaoming liu')
('2099305', 'Manmohan Chandraker', 'manmohan chandraker')
{yinxi1,liuxm}@cse.msu.edu,{xiangyu,ksohn,manu}@nec-labs.com +
d280bcbb387b1d548173917ae82cb6944e3ceca6FACIAL GRID TRANSFORMATION: A NOVEL FACE REGISTRATION APPROACH FOR +
IMPROVING FACIAL ACTION UNIT RECOGNITION +
University of South Carolina, Columbia, USA
('3225915', 'Shizhong Han', 'shizhong han')
('3091647', 'Zibo Meng', 'zibo meng')
('40205868', 'Ping Liu', 'ping liu')
('1686235', 'Yan Tong', 'yan tong')
d278e020be85a1ccd90aa366b70c43884dd3f798Learning From Less Data: Diversified Subset Selection and +
Active Learning in Image Classification Tasks +
IIT Bombay +
Mumbai, Maharashtra, India +
AITOE Labs +
Mumbai, Maharashtra, India +
AITOE Labs +
Mumbai, Maharashtra, India +
Rishabh Iyer +
AITOE Labs +
Seattle, Washington, USA +
AITOE Labs +
Seattle, Washington, USA +
Narsimha Raju +
IIT Bombay +
Mumbai, Maharashtra, India +
IIT Bombay +
Mumbai, Maharashtra, India +
IIT Bombay +
Mumbai, Maharashtra, India +
May 30, 2018 +
('3333118', 'Vishal Kaushal', 'vishal kaushal')
('40224337', 'Khoshrav Doctor', 'khoshrav doctor')
('33911191', 'Suyash Shetty', 'suyash shetty')
('10710354', 'Anurag Sahoo', 'anurag sahoo')
('49613683', 'Pankaj Singh', 'pankaj singh')
('1697088', 'Ganesh Ramakrishnan', 'ganesh ramakrishnan')
vkaushal@cse.iitb.ac.in +
khoshrav@gmail.com +
suyashshetty29@gmail.com +
rishabh@aitoelabs.com +
anurag@aitoelabs.com +
uavnraju@cse.iitb.ac.in +
pr.pankajsingh@gmail.com +
ganesh@cse.iitb.ac.in +
d26b443f87df76034ff0fa9c5de9779152753f0cA GPU-Oriented Algorithm Design for +
Secant-Based Dimensionality Reduction +
Department of Mathematics +
Colorado State University
Fort Collins, CO 80523-1874 +
tool +
for extracting useful +
('51042250', 'Henry Kvinge', 'henry kvinge')
('51121534', 'Elin Farnell', 'elin farnell')
('41211081', 'Michael Kirby', 'michael kirby')
('30383278', 'Chris Peterson', 'chris peterson')
d2cd9a7f19600370bce3ea29aba97d949fe0ceb9Separability Oriented Preprocessing for +
Illumination-Insensitive Face Recognition +
1 Key Lab of Intelligent Information Processing +
of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing 100190, China
2 Department of Computer Science and Engineering, +
Michigan State University, East Lansing, MI 48824, U.S.A
3 Omron Social Solutions Co., LTD., Kyoto, Japan +
Institute of Digital Media, Peking University, Beijing 100871, China
some +
last decade, +
('34393045', 'Hu Han', 'hu han')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
('1710195', 'Shihong Lao', 'shihong lao')
('1698902', 'Wen Gao', 'wen gao')
{hhan,sgshan,xlchen}@jdl.ac.cn, lao@ari.ncl.omron.co.jp, wgao@pku.edu.cn +
d22b378fb4ef241d8d210202893518d08e0bb213Random Faces Guided Sparse Many-to-One Encoder +
for Pose-Invariant Face Recognition +
Polytechnic Institute of NYU, NY, USA
College of Computer and Information Science, Northeastern University, MA, USA
Northeastern University, MA, USA
('3272356', 'Yizhe Zhang', 'yizhe zhang')zhangyizhe1987@gmail.com, mingshao@ccs.neu.edu, wong@poly.edu, yunfu@ece.neu.edu +
aac39ca161dfc52aade063901f02f56d01a1693cThe Analysis of Parameters t and k of LPP on +
Several Famous Face Databases +
College of Computer Science and Technology
Jilin University, Changchun 130012, China
('7489436', 'Sujing Wang', 'sujing wang')
('1758249', 'Na Zhang', 'na zhang')
('3028807', 'Mingfang Sun', 'mingfang sun')
('8239114', 'Chunguang Zhou', 'chunguang zhou')
{wangsj08, nazhang08}@mails.jlu.edu.cn; cgzhou@jlu.edu.cn +
aadf4b077880ae5eee5dd298ab9e79a1b0114555Dynamics-based Facial Emotion Recognition and Pain Detection +
Using Hankel Matrices for +
DICGIM - University of Palermo
V.le delle Scienze, Ed. 6, 90128 Palermo (Italy) +
('1711610', 'Liliana Lo Presti', 'liliana lo presti')
('9127836', 'Marco La Cascia', 'marco la cascia')
liliana.lopresti@unipa.it +
aa127e6b2dc0aaccfb85e93e8b557f83ebee816bAdvancing Human Pose and +
Gesture Recognition +
DPhil Thesis +
Supervisor: Professor Andrew Zisserman +
Tomas Pfister +
Visual Geometry Group +
Department of Engineering Science +
University of Oxford
Wolfson College
April 2015 +
aafb271684a52a0b23debb3a5793eb618940c5dd
aae742779e8b754da7973949992d258d6ca26216Robust Facial Expression Classification Using Shape +
and Appearance Features +
Department of Electrical Engineering, +
Indian Institute of Technology Kharagpur, India
('2680543', 'Aurobinda Routray', 'aurobinda routray')
aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52Improved Face Tracking Thanks to Local Features +
Correspondence +
Department of Information Engineering +
University of Brescia
('3134795', 'Alberto Piacenza', 'alberto piacenza')
('1806359', 'Fabrizio Guerrini', 'fabrizio guerrini')
('1741369', 'Riccardo Leonardi', 'riccardo leonardi')
aab3561acbd19f7397cbae39dd34b3be33220309Quantization Mimic: Towards Very Tiny CNN +
for Object Detection +
Tsinghua University, Beijing, China
The Chinese University of Hong Kong, Hong Kong, China
3SenseTime, Beijing, China +
The University of Sydney, SenseTime Computer Vision Research Group, Sydney
New South Wales, Australia +
('49019561', 'Yi Wei', 'yi wei')
('7418754', 'Xinyu Pan', 'xinyu pan')
('46636770', 'Hongwei Qin', 'hongwei qin')
('1721677', 'Junjie Yan', 'junjie yan')
wei-y15@mails.tsinghua.edu.cn,THUSEpxy@gmail.com +
qinhongwei@sensetime.com,wanli.ouyang@sydney.edu.au +
yanjunjie@sensetime.com +
aa912375eaf50439bec23de615aa8a31a3395ad3International Journal on Cryptography and Information Security(IJCIS),Vol.2, No.2, June 2012 +
Implementation of a New Methodology to Reduce +
the Effects of Changes of Illumination in Face +
Recognition-based Authentication +
Howard University, Washington DC
Howard University, Washington DC
('3437323', 'Andres Alarcon-Ramirez', 'andres alarcon-ramirez')
('2522254', 'Mohamed F. Chouikha', 'mohamed f. chouikha')
alarconramirezandr@bison.howard.edu +
mchouikha@howard.edu +
aa52910c8f95e91e9fc96a1aefd406ffa66d797dFACE RECOGNITION SYSTEM BASED +
ON 2DFLD AND PCA +
E&TC Department +
Sinhgad Academy of Engineering +
Pune, India +
Mr. Hulle Rohit Rajiv +
ME E&TC [Digital System] +
Sinhgad Academy of Engineering +
Pune, India +
('2985198', 'Sachin D. Ruikar', 'sachin d. ruikar')ruikarsachin@gmail.com +
rohithulle@gmail.com +
aaeb8b634bb96a372b972f63ec1dc4db62e7b62aISSN (e): 2250 – 3005 || Vol, 04 || Issue, 12 || December – 2014 || +
International Journal of Computational Engineering Research (IJCER) +
Facial Expression Recognition System: A Digital Printing +
Application +
Jadavpur University, India
Jadavpur University, India
('2226316', 'Somnath Banerjee', 'somnath banerjee')
aafb8dc8fda3b13a64ec3f1ca7911df01707c453Excitation Backprop for RNNs +
Boston University 2Pattern Analysis and Computer Vision (PAVIS
Istituto Italiano di Tecnologia 3Adobe Research 4Computer Science Department, Universit`a di Verona +
Figure 1: Our proposed framework spatiotemporally highlights/grounds the evidence that an RNN model used in producing a class label +
or caption for a given input video. In this example, by using our proposed back-propagation method, the evidence for the activity class +
CliffDiving is highlighted in a video that contains CliffDiving and HorseRiding. Our model employs a single backward pass to produce +
saliency maps that highlight the evidence that a given RNN used in generating its outputs. +
('3298267', 'Sarah Adel Bargal', 'sarah adel bargal')
('40063519', 'Andrea Zunino', 'andrea zunino')
('40622560', 'Donghyun Kim', 'donghyun kim')
('1701293', 'Jianming Zhang', 'jianming zhang')
('1727204', 'Vittorio Murino', 'vittorio murino')
('1749590', 'Stan Sclaroff', 'stan sclaroff')
{sbargal,donhk,sclaroff}@bu.edu, {andrea.zunino,vittorio.murino}@iit.it, jianmzha@adobe.com +
aa0c30bd923774add6e2f27ac74acd197b9110f2DYNAMIC PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS FOR VIDEO +
CLASSIFICATION +
Deparment of Computing, Imperial College London, UK
Deparment of Computing, Goldsmiths, University of London, UK
Middlesex University London, 4International Hellenic University
Center for Machine Vision and Signal Analysis, University of Oulu, Finland
('35340264', 'Alessandro Fabris', 'alessandro fabris')
('1752913', 'Mihalis A. Nicolaou', 'mihalis a. nicolaou')
('1754270', 'Irene Kotsia', 'irene kotsia')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
aadfcaf601630bdc2af11c00eb34220da59b7559Multi-view Hybrid Embedding: +
A Divide-and-Conquer Approach +
('30443690', 'Jiamiao Xu', 'jiamiao xu')
('2462771', 'Shujian Yu', 'shujian yu')
('1744228', 'Xinge You', 'xinge you')
('3381421', 'Mengjun Leng', 'mengjun leng')
('15132338', 'Xiao-Yuan Jing', 'xiao-yuan jing')
('1697202', 'C. L. Philip Chen', 'c. l. philip chen')
aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5Biometrics in Ambient Intelligence +('1725688', 'Massimo Tistarelli', 'massimo tistarelli')
aac934f2eed758d4a27562dae4e9c5415ff4cdb7TS-LSTM and Temporal-Inception: +
Exploiting Spatiotemporal Dynamics for Activity Recognition +
Georgia Institute of Technology
2Georgia Tech Research Institution +
('7437104', 'Chih-Yao Ma', 'chih-yao ma')
('1960668', 'Min-Hung Chen', 'min-hung chen')
('1746245', 'Zsolt Kira', 'zsolt kira')
{cyma, cmhungsteve, zkira, alregib}@gatech.edu +
aa331fe378056b6d6031bb8fe6676e035ed60d6d
aae0e417bbfba701a1183d3d92cc7ad550ee59c3844 +
A Statistical Method for 2-D Facial Landmarking +
('1764521', 'Albert Ali Salah', 'albert ali salah')
('1695527', 'Theo Gevers', 'theo gevers')
aa577652ce4dad3ca3dde44f881972ae6e1acce7Deep Attribute Networks +
Department of EE, KAIST +
Daejeon, South Korea +
Department of EE, KAIST +
Daejeon, South Korea +
Department of EE, KAIST +
Daejeon, South Korea +
Department of EE, KAIST +
Daejeon, South Korea +
('8270717', 'Junyoung Chung', 'junyoung chung')
('2350325', 'Donghoon Lee', 'donghoon lee')
('2397884', 'Youngjoo Seo', 'youngjoo seo')
('5578091', 'Chang D. Yoo', 'chang d. yoo')
jych@kaist.ac.kr +
iamdh@kaist.ac.kr +
minerrba@kaist.ac.kr +
cdyoo@ee.kaist.ac.kr +
aa3c9de34ef140ec812be85bb8844922c35eba47Reducing Gender Bias Amplification using Corpus-level Constraints +
Men Also Like Shopping: +
University of Virginia
University of Washington
('3456473', 'Tianlu Wang', 'tianlu wang')
('2064210', 'Mark Yatskar', 'mark yatskar')
('33524946', 'Jieyu Zhao', 'jieyu zhao')
('2782886', 'Kai-Wei Chang', 'kai-wei chang')
('2004053', 'Vicente Ordonez', 'vicente ordonez')
{jz4fu, tw8cb, vicente, kc2wc}@virginia.edu +
my89@cs.washington.edu +
aa94f214bb3e14842e4056fdef834a51aecef39cReconhecimento de padrões faciais: Um estudo +
Universidade Federal +
Rural do Semi-Árido +
Departamento de Ciências Naturais +
Mossoró, RN - 59625-900 +
Resumo—O reconhecimento facial tem sido utilizado em di- +
versas áreas para identificação e autenticação de usuários. Um +
dos principais mercados está relacionado a segurança, porém há +
uma grande variedade de aplicações relacionadas ao uso pessoal, +
conveniência, aumento de produtividade, etc. O rosto humano +
possui um conjunto de padrões complexos e mutáveis. Para +
reconhecer esses padrões, são necessárias técnicas avançadas de +
reconhecimento de padrões capazes, não apenas de reconhecer, +
mas de se adaptar às mudanças constantes das faces das pessoas. +
Este documento apresenta um método de reconhecimento facial +
proposto a partir da análise comparativa de trabalhos encontra- +
dos na literatura. +
biométrica é o uso da biometria para reconhecimento, identi- +
ficação ou verificação, de um ou mais traços biométricos de +
um indivíduo com o objetivo de autenticar sua identidade. Os +
traços biométricos são os atributos analisados pelas técnicas +
de reconhecimento biométrico. +
A tarefa de reconhecimento facial é composta por três +
processos distintos: Registro, verificação e identificação bio- +
métrica. Os processos se diferenciam pela forma de determinar +
a identidade de um indivíduo. Na Figura 1 são descritos os +
processos de registro, verificação e identificação biométrica. +
I. INTRODUÇÃO +
Biometria é a ciência que estabelece a identidade de um +
indivíduo baseada em seus atributos físicos, químicos ou +
comportamentais [1]. Possui inúmeras aplicações em diver- +
sas áreas, se destacando mais na área de segurança, como +
por exemplo sistemas de gerenciamento de identidade, cuja +
funcionalidade é autenticar a identidade de um indivíduo no +
contexto de uma aplicação. +
O reconhecimento facial é uma técnica biométrica que +
consiste em identificar padrões em características faciais como +
formato da boca, do rosto, distância dos olhos, entre outros. +
Um humano é capaz de reconhecer uma pessoa familiar +
mesmo com muitos obstáculos com distância, sombras ou +
apenas a visão parcial do rosto. Uma máquina, no entanto, +
precisa realizar inúmeros processos para detectar e reconhecer +
um conjunto de padrões específicos para rotular uma face +
como conhecida ou desconhecida. Para isso, exitem métodos +
capazes de detectar, extrair e classificar as características +
faciais, fornecendo um reconhecimento automático de pessoas. +
II. RECONHECIMENTO FACIAL +
A tecnologia biométrica oferece vantagens em relação a +
outros métodos tradicionais de identificação como senhas, +
documentos e tokens. Entre elas estão o fato de que os +
traços biométricos não podem ser perdidos ou esquecidos, são +
difíceis de serem copiados, compartilhados ou distribuídos. Os +
métodos requerem que a pessoa autenticada esteja presente +
na hora e lugar da autenticação, evitando que pessoas má +
intencionadas tenham acesso sem autorização. +
A autenticação é o ato de estabelecer ou confirmar alguém, +
ou alguma coisa, como autêntico, isto é, que as alegações +
feitas por ou sobre a coisa é verdadeira [2]. Autenticação +
(a) +
(b) +
(c) +
Figura 1: Registro biométrico (a), identificação biométrica (b) +
e verificação biométrica (c) +
A Figura 1a descreve o processo de registro de dados +
('2545499', 'Marcos Evandro Cintra', 'marcos evandro cintra')Email: alexdemise@gmail.com, mecintra@gmail.com +
aac101dd321e6d2199d8c0b48c543b541c181b66USING CONTEXT TO ENHANCE THE +
UNDERSTANDING OF FACE IMAGES +
A Dissertation Presented +
by +
VIDIT JAIN +
Submitted to the Graduate School of the +
University of Massachusetts Amherst in partial ful llment
of the requirements for the degree of +
DOCTOR OF PHILOSOPHY +
September 2010 +
Department of Computer Science +
af8fe1b602452cf7fc9ecea0fd4508ed4149834e
af6e351d58dba0962d6eb1baf4c9a776eb73533fHow to Train Your Deep Neural Network with +
Dictionary Learning +
*IIIT Delhi +
Okhla Phase 3 +
Delhi, 110020, India +
+IIIT Delhi +
Okhla Phase 3 +
#IIIT Delhi +
Okhla Phase 3 +
Delhi, 110020, India +
Delhi, 110020, India +
('30255052', 'Vanika Singhal', 'vanika singhal')
('38608015', 'Shikha Singh', 'shikha singh')
('2641605', 'Angshul Majumdar', 'angshul majumdar')
vanikas@iiitd.ac.in +
shikhas@iiitd.ac.in +
angshul@iiitd.ac.in +
aff92784567095ee526a705e21be4f42226bbaabFace Recognition in Uncontrolled +
Environments +
A dissertation submitted in partial fulfillment +
of the requirements for the degree of +
Doctor of Philosophy +
at +
University College London
Department of Computer Science +
University College London
May 26, 2015 +
('38098063', 'Yun Fu', 'yun fu')
aff8705fb2f2ae460cb3980b47f2e85c2e6dd41aAttributes in Multiple Facial Images +
West Virginia University, Morgantown
WV 26506, USA +
('1767347', 'Xudong Liu', 'xudong liu')
('1822413', 'Guodong Guo', 'guodong guo')
xdliu@mix.wvu.edu, guodong.guo@mail.wvu.edu +
af13c355a2a14bb74847aedeafe990db3fc9cbd4Happy and Agreeable? Multi-Label Classification of +
Impressions in Social Video +
Idiap Research Institute
Switzerland +
Instituto Potosino de +
Investigación Científica y +
Tecnológica +
Mexico +
Idiap Research Institute
École Polytechnique Fédérale +
de Lausanne +
Switzerland +
('2389354', 'Gilberto Chávez-Martínez', 'gilberto chávez-martínez')
('1934619', 'Salvador Ruiz-Correa', 'salvador ruiz-correa')
('1698682', 'Daniel Gatica-Perez', 'daniel gatica-perez')
gchavez@idiap.ch +
src@cmls.pw +
gatica@idiap.ch +
af6cae71f24ea8f457e581bfe1240d5fa63faaf7
af62621816fbbe7582a7d237ebae1a4d68fcf97dInternational Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +
International Conference on Humming Bird ( 01st March 2014) +
RESEARCH ARTICLE +
OPEN ACCESS +
Active Shape Model Based Recognition Of Facial Expression +
AncyRija V , Gayathri. S2 +
AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of
Engineering, +
Gayathri.S, M.E., Vins Christian college of Engineering
e-mail: ancyrija@gmail.com. +
afdf9a3464c3b015f040982750f6b41c048706f5A Recurrent Encoder-Decoder Network for Sequential Face Alignment +
Rutgers University
Rogerio Feris +
IBM T. J. Watson +
Snapchat Research +
Dimitris Metaxas +
Rutgers University
('4340744', 'Xi Peng', 'xi peng')
('48631738', 'Xiaoyu Wang', 'xiaoyu wang')
xipeng.cs@rutgers.edu +
rsferis@us.ibm.com +
fanghuaxue@gmail.com +
dnm@cs.rutgers.edu +
af54dd5da722e104740f9b6f261df9d4688a9712
afa57e50570a6599508ee2d50a7b8ca6be04834aMotion in action : optical flow estimation and action +
localization in videos +
To cite this version: +
Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. 2016GREAM013>. +
HAL Id: tel-01407258 +
https://tel.archives-ouvertes.fr/tel-01407258 +
Submitted on 1 Dec 2016 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
afe9cfba90d4b1dbd7db1cf60faf91f24d12b286Principal Directions of Synthetic Exact Filters +
for Robust Real-Time Eye Localization +
Vitomir ˇStruc1;2, Jerneja ˇZganec Gros1, and Nikola Paveˇsi´c2 +
1 Alpineon Ltd, Ulica Iga Grudna 15, SI-1000 Ljubljana, Slovenia, +
Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta
SI-1000 Ljubljana, Slovenia, +
fvitomir.struc, jerneja.grosg@alpineon.com, +
fvitomir.struc, nikola.pavesicg@fe.uni-lj.si +
afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3Two-stream Flow-guided Convolutional Attention Networks for Action +
Recognition +
National University of Singapore
Loong-Fah Cheong +
('25205026', 'An Tran', 'an tran')an.tran@u.nus.edu +
eleclf@nus.edu.sg +
af278274e4bda66f38fd296cfa5c07804fbc26eeRESEARCH ARTICLE +
A Novel Maximum Entropy Markov Model for +
Human Facial Expression Recognition +
College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi
do, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea
Innopolis University, Kazan, Russia
a11111 +
☯ These authors contributed equally to this work. +
('1711083', 'Muhammad Hameed Siddiqi', 'muhammad hameed siddiqi')
('2401685', 'Md. Golam Rabiul Alam', 'md. golam rabiul alam')
('1683244', 'Choong Seon Hong', 'choong seon hong')
('1734679', 'Hyunseung Choo', 'hyunseung choo')
* choo@skku.edu +
af654a7ec15168b16382bd604889ea07a967dac6FACE RECOGNITION COMMITTEE MACHINE +
Department of Computer Science and Engineering +
The Chinese University of Hong Kong
Shatin, Hong Kong +
('2899702', 'Ho-Man Tang', 'ho-man tang')
('1681775', 'Michael R. Lyu', 'michael r. lyu')
('1706259', 'Irwin King', 'irwin king')
hmtang, lyu, king @cse.cuhk.edu.hk +
afc7092987f0d05f5685e9332d83c4b27612f964Person-Independent Facial Expression Detection using Constrained +
Local Models +
('1713496', 'Patrick Lucey', 'patrick lucey')
('1820249', 'Simon Lucey', 'simon lucey')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('1729760', 'Sridha Sridharan', 'sridha sridharan')
b730908bc1f80b711c031f3ea459e4de09a3d3242024 +
Active Orientation Models for Face +
Alignment In-the-Wild +
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')
('1694605', 'Maja Pantic', 'maja pantic')
b7426836ca364603ccab0e533891d8ac54cf2429Hindawi +
Journal of Healthcare Engineering +
Volume 2017, Article ID 3090343, 31 pages +
https://doi.org/10.1155/2017/3090343 +
Review Article +
A Review on Human Activity Recognition Using +
Vision-Based Method +
College of Information Science and Engineering, Ocean University of China, Qingdao, China
Tsinghua University, Beijing, China
Received 22 February 2017; Accepted 11 June 2017; Published 20 July 2017 +
Academic Editor: Dong S. Park +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the +
environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health +
care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition +
approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a +
chronological research trajectory from global representations to local representations, and recent depth-based representations. +
For the classification methods, we conform to the categorization of template-based methods, discriminative models, and +
generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to +
provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed +
taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the +
directions for future research. +
1. Introduction +
Human activity recognition (HAR) is a widely studied com- +
puter vision problem. Applications of HAR include video +
surveillance, health care, and human-computer interaction. +
As the imaging technique advances and the camera device +
upgrades, novel approaches for HAR constantly emerge. This +
review aims to provide a comprehensive introduction to the +
video-based human activity recognition, giving an overview +
of various approaches as well as their evolutions by covering +
both the representative classical literatures and the state-of- +
the-art approaches. +
Human activities have an inherent hierarchical structure +
that indicates the different levels of it, which can be consid- +
ered as a three-level categorization. First, for the bottom level, +
there is an atomic element and these action primitives consti- +
tute more complex human activities. After the action primi- +
tive level, the action/activity comes as the second level. +
Finally, the complex interactions form the top level, which +
refers to the human activities that involve more than two +
persons and objects. In this paper, we follow this three-level +
categorization namely action primitives, actions/activities, +
and interactions. This three-level categorization varies a little +
from previous surveys [1–4] and maintains a consistent +
theme. Action primitives are those atomic actions at the limb +
level, such as “stretching the left arm,” and “raising the right +
leg.” Atomic actions are performed by a specific part of the +
human body, such as the hands, arms, or upper body part +
[4]. Actions and activities are used interchangeably in this +
review, referring to the whole-body movements composed +
of several action primitives in temporal sequential order +
and performed by a single person with no more person or +
additional objects. Specifically, we refer the terminology +
human activities as all movements of the three layers and +
the activities/actions as the middle level of human activities. +
Human activities like walking, running, and waving hands +
are categorized in the actions/activities level. Finally, similar +
to Aggarwal et al.’s review [2], interactions are human activ- +
ities that involve two or more persons and objects. The +
additional person or object is an important characteristic of +
('7671146', 'Shugang Zhang', 'shugang zhang')
('39868595', 'Zhiqiang Wei', 'zhiqiang wei')
('2896895', 'Jie Nie', 'jie nie')
('40284611', 'Lei Huang', 'lei huang')
('40658604', 'Shuang Wang', 'shuang wang')
('40166799', 'Zhen Li', 'zhen li')
('7671146', 'Shugang Zhang', 'shugang zhang')
Correspondence should be addressed to Zhen Li; lizhen0130@gmail.com +
b73795963dc623a634d218d29e4a5b74dfbc79f1ZHAO, YANG: IDENTITY PRESERVING FACE COMPLETION FOR LARGE OCULAR RO +
Identity Preserving Face Completion for +
Large Ocular Region Occlusion +
1 Computer Science Department +
University of Kentucky
Lexington, KY, USA +
Institute for Creative Technologies
University of Southern California
Playa Vista, California, USA +
3 School of Computer Science and +
Technology +
Harbin Institute of Technology
Harbin, China +
Hangzhou Institute of Service
Engineering +
Hangzhou Normal University
Hangzhou, China +
('2613340', 'Yajie Zhao', 'yajie zhao')
('47483055', 'Weikai Chen', 'weikai chen')
('1780032', 'Jun Xing', 'jun xing')
('21515518', 'Xiaoming Li', 'xiaoming li')
('3408065', 'Zach Bessinger', 'zach bessinger')
('1752129', 'Fuchang Liu', 'fuchang liu')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('38958903', 'Ruigang Yang', 'ruigang yang')
yajie.zhao@uky.edu +
wechen@ict.usc.edu +
junxnui@gmail.com +
hit.xmshr@gmail.com +
zach.bessinger@gmail.com +
20140022@hznu.edu.cn +
cswmzuo@gmail.com +
ryang@cs.uky.edu +
b7cf7bb574b2369f4d7ebc3866b461634147041aNeural Comput & Applic (2012) 21:1575–1583 +
DOI 10.1007/s00521-011-0728-x +
O R I G I N A L A R T I C L E +
From NLDA to LDA/GSVD: a modified NLDA algorithm +
Received: 2 August 2010 / Accepted: 3 August 2011 / Published online: 19 August 2011 +
Ó Springer-Verlag London Limited 2011 +
('1692984', 'Jun Yin', 'jun yin')
b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24Unified Solution to Nonnegative Data Factorization Problems +
Huazhong University of Science and Technology, Wuhan, China
National University of Singapore, Singapore
('1817910', 'Xiaobai Liu', 'xiaobai liu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('2156156', 'Hai Jin', 'hai jin')
b7894c1f805ffd90ab4ab06002c70de68d6982abBiomedical Research 2017; Special Issue: S610-S618 +
ISSN 0970-938X +
www.biomedres.info +
A comprehensive age estimation on face images using hybrid filter based +
feature extraction. +
Karthikeyan D1*, Balakrishnan G2 +
Srinivasan Engineering College, Perambalur, India
Indra Ganesan College of Engineering, Trichy, India
b7eead8586ffe069edd190956bd338d82c69f880A VIDEO DATABASE FOR FACIAL +
BEHAVIOR UNDERSTANDING +
D. Freire-Obreg´on and M. Castrill´on-Santana. +
SIANI, Universidad de Las Palmas de Gran Canaria, Spain +
dfreire@iusiani.ulpgc.es, mcastrillon@iusiani.ulpgc.es +
b75cee96293c11fe77ab733fc1147950abbe16f9
b7774c096dc18bb0be2acef07ff5887a22c2a848Distance metric learning for image and webpage +
comparison +
To cite this version: +
versité Pierre et Marie Curie - Paris VI, 2015. English. . +
HAL Id: tel-01135698 +
https://tel.archives-ouvertes.fr/tel-01135698v2 +
Submitted on 18 Mar 2015 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('32868306', 'Marc Teva Law', 'marc teva law')
('32868306', 'Marc Teva Law', 'marc teva law')
b7f05d0771da64192f73bdb2535925b0e238d233 MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +
4-3 +
Robust Active Shape Model using AdaBoosted Histogram Classifiers +
W ataru Ito +
Imaging Software Technology Center +
Imaging Software Technology Center +
FUJI PHOTO FILM CO., LTD. +
FUJI PHOTO FILM CO., LTD. +
('1724928', 'Yuanzhong Li', 'yuanzhong li')li_yuanzhong@ fujifilm.co.jp +
wataru_ito@ fujifilm.co.jp +
b755505bdd5af078e06427d34b6ac2530ba69b12To appear in the International Joint Conf. Biometrics, Washington D.C., October, 2011 +
NFRAD: Near-Infrared Face Recognition at a Distance +
aDept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea +
bDept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824 +
('2429013', 'Hyunju Maeng', 'hyunju maeng')
('2131755', 'Hyun-Cheol Choi', 'hyun-cheol choi')
('2222919', 'Unsang Park', 'unsang park')
('1703007', 'Seong-Whan Lee', 'seong-whan lee')
('6680444', 'Anil K. Jain', 'anil k. jain')
{hjmaeng, hcchoi}@korea.ac.kr, parkunsa@cse.msu.edu, swlee@image.korea.ac.kr , jain@cse.msu.edu +
b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89Visual Data Synthesis via GAN for Zero-Shot Video Classification +
Institute of Computer Science and Technology, Peking University
Beijing 100871, China +
('2439211', 'Chenrui Zhang', 'chenrui zhang')
('1704081', 'Yuxin Peng', 'yuxin peng')
pengyuxin@pku.edu.cn +
b7b461f82c911f2596b310e2b18dd0da1d5d44912961 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
K-MAPPINGS AND REGRESSION TREES +
SAMSI and Duke University
1. INTRODUCTION +
argminM1,...,MK +
P1,...PK +
2.1. Partitioning Y +
K(cid:2) +
(cid:2) +
(cid:3) +
(cid:4) +
('3149531', 'Arthur Szlam', 'arthur szlam')
b73fdae232270404f96754329a1a18768974d3f6
b76af8fcf9a3ebc421b075b689defb6dc4282670Face Mask Extraction in Video Sequence +('2563750', 'Yujiang Wang', 'yujiang wang')
b7c5f885114186284c51e863b58292583047a8b4GAdaBoost: Accelerating Adaboost Feature Selection with Genetic +
Algorithms +
The American University In Cairo, Road 90, New Cairo, Cairo, Egypt
Keywords: +
Object Detection, Genetic Algorithms, Haar Features, Adaboost, Face Detection. +
('3468033', 'Mai F. Tolba', 'mai f. tolba')
('27045559', 'Mohamed Moustafa', 'mohamed moustafa')
maitolba@aucegypt.edu, m.moustafa@aucegypt.edu +
b73d9e1af36aabb81353f29c40ecdcbdf731dbedSensors 2015, 15, 20945-20966; doi:10.3390/s150920945 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
Head Pose Estimation on Top of Haar-Like Face Detection: +
A Study Using the Kinect Sensor +
Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University
College of Computer Science and Information Sciences
College of Science, Menou a University, Menou a 32721, Egypt
Tel.: +49-391-67-11033; Fax: +49-391-67-11231. +
Academic Editor: Vittorio M. N. Passaro +
Received: 3 July 2015 / Accepted: 6 August 2015 / Published: 26 August 2015 +
('2712124', 'Anwar Saeed', 'anwar saeed')
('1741165', 'Ayoub Al-Hamadi', 'ayoub al-hamadi')
('1889194', 'Ahmed Ghoneim', 'ahmed ghoneim')
Magdeburg, Magdeburg D-39016, Germany; E-Mail: Ayoub.Al-Hamadi@ovgu.de +
King Saud University, Riyadh 11451, Saudi Arabia; E-Mail: ghoneim@KSU.EDU.SA +
* Author to whom correspondence should be addressed; E-Mail: anwar.saeed@ovgu.de; +
b747fcad32484dfbe29530a15776d0df5688a7db
b7f7a4df251ff26aca83d66d6b479f1dc6cd1085Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55 +
http://jivp.eurasipjournals.com/content/2013/1/55 +
RESEARCH +
Open Access +
Handling missing weak classifiers in boosted +
cascade: application to multiview and +
occluded face detection +
('3212236', 'Pierre Bouges', 'pierre bouges')
('1865978', 'Thierry Chateau', 'thierry chateau')
('32323470', 'Christophe Blanc', 'christophe blanc')
('1685767', 'Gaëlle Loosli', 'gaëlle loosli')
db848c3c32464d12da33b2f4c3a29fe293fc35d1Pose Guided Human Video Generation +
1 CUHK-SenseTime Joint Lab, CUHK, Hong Kong S.A.R. +
2 SenseTime Research, Beijing, China +
Carnegie Mellon University
('49984891', 'Ceyuan Yang', 'ceyuan yang')
('1915826', 'Zhe Wang', 'zhe wang')
('22689408', 'Xinge Zhu', 'xinge zhu')
('2000034', 'Chen Huang', 'chen huang')
('1788070', 'Jianping Shi', 'jianping shi')
('1807606', 'Dahua Lin', 'dahua lin')
yangceyuan@sensetime.com +
db1f48a7e11174d4a724a4edb3a0f1571d649670Joint Constrained Clustering and Feature +
Learning based on Deep Neural Networks +
by +
B.Sc., University of Science and Technology of China
Thesis Submitted in Partial Fulfillment of the +
Requirements for the Degree of +
Master of Science +
in the +
School of Computing Science +
Faculty of Applied Sciences +
SIMON FRASER UNIVERSITY
Summer 2017 +
However, in accordance with the Copyright Act of Canada, this work may be +
reproduced without authorization under the conditions for “Fair Dealing.” +
Therefore, limited reproduction of this work for the purposes of private study, +
research, education, satire, parody, criticism, review and news reporting is likely +
All rights reserved. +
to be in accordance with the law, particularly if cited appropriately. +
('1707706', 'Xiaoyu Liu', 'xiaoyu liu')
('1707706', 'Xiaoyu Liu', 'xiaoyu liu')
db227f72bb13a5acca549fab0dc76bce1fb3b948International Refereed Journal of Engineering and Science (IRJES) +
ISSN (Online) 2319-183X, (Print) 2319-1821 +
Volume 4, Issue 6 (June 2015), PP.169-169-174 +
Characteristic Based Image Search using Re-Ranking method +
1Chitti Babu, 2Yasmeen Jaweed, 3G.Vijay Kumar +
dbb16032dd8f19bdfd045a1fc0fc51f29c70f70aPARKHI et al.: DEEP FACE RECOGNITION +
Deep Face Recognition +
Visual Geometry Group +
Department of Engineering Science +
University of Oxford
('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')
('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
omkar@robots.ox.ac.uk +
vedaldi@robots.ox.ac.uk +
az@robots.ox.ac.uk +
dbaf89ca98dda2c99157c46abd136ace5bdc33b3Nonlinear Cross-View Sample Enrichment for +
Action Recognition +
Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI +
('1695223', 'Ling Wang', 'ling wang')
('1692389', 'Hichem Sahbi', 'hichem sahbi')
dbab6ac1a9516c360cdbfd5f3239a351a64adde7
dbe255d3d2a5d960daaaba71cb0da292e0af36a7Evolutionary Cost-sensitive Extreme Learning +
Machine +
1 +
('36904370', 'Lei Zhang', 'lei zhang')
dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8Chapter 7 +
Machine Learning Techniques +
for Face Analysis +
('9301018', 'Roberto Valenti', 'roberto valenti')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1695527', 'Theo Gevers', 'theo gevers')
('1774778', 'Ira Cohen', 'ira cohen')
db5a00984fa54b9d2a1caad0067a9ff0d0489517Multi-Task Adversarial Network for Disentangled Feature Learning +
Ian Wassell1 +
University of Cambridge
2Adobe Research +
('49421489', 'Yang Liu', 'yang liu')
('48707577', 'Zhaowen Wang', 'zhaowen wang')
1{yl504,ijw24}@cam.ac.uk +
2{zhawang,hljin}@adobe.com +
dbd958ffedc3eae8032be67599ec281310c05630Automated Restyling of Human Portrait Based on Facial Expression Recognition +
and 3D Reconstruction +
Stanford University
350 Serra Mall, Stanford, CA 94305, USA +
('46740443', 'Cheng-Han Wu', 'cheng-han wu')1chw0208@stanford.edu +
2hsinc@stanford.edu +
dbed26cc6d818b3679e46677abc9fa8e04e8c6a6A Hierarchical Generative Model for Eye Image Synthesis and Eye Gaze +
Estimation +
ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA
('1771700', 'Kang Wang', 'kang wang')
('49832825', 'Rui Zhao', 'rui zhao')
('1726583', 'Qiang Ji', 'qiang ji')
{wangk10, zhaor, jiq}@rpi.edu +
db3545a983ffd24c97c18bf7f068783102548ad7Enriching the Student Model in an +
Intelligent Tutoring System +
Submitted in partial fulfillment of the requirements for the degree +
of Doctor of Philosophy +
of the +
Indian Institute of Technology, Bombay, India
and +
Monash University, Australia
by +
Supervisors: +
The course of study for this award was developed jointly by +
the Indian Institute of Technology, Bombay and Monash University, Australia
and given academic recognition by each of them. +
The programme was administered by The IITB-Monash Research Academy. +
2014 +
('2844237', 'Ramkumar Rajendran', 'ramkumar rajendran')
('1946438', 'Sridhar Iyer', 'sridhar iyer')
('1791910', 'Sahana Murthy', 'sahana murthy')
('38751653', 'Campbell Wilson', 'campbell wilson')
('1727078', 'Judithe Sheard', 'judithe sheard')
dba493caf6647214c8c58967a8251641c2bda4c2Automatic 3D Facial Expression Editing in Videos +
University of California, Santa Barbara
2IMPA – Instituto de Matematica Pura e Aplicada +
('13303219', 'Ya Chang', 'ya chang')
('2428542', 'Marcelo Vieira', 'marcelo vieira')
('1752714', 'Matthew Turk', 'matthew turk')
('1705620', 'Luiz Velho', 'luiz velho')
dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57Face Image Analysis With +
Convolutional Neural Networks +
Dissertation +
Zur Erlangung des Doktorgrades +
der Fakult¨at f¨ur Angewandte Wissenschaften +
an der Albert-Ludwigs-Universit¨at Freiburg im Breisgau +
von +
Stefan Duffner +
2007 +
db36e682501582d1c7b903422993cf8d70bb0b42Deep Trans-layer Unsupervised Networks for +
Representation Learning +
aKey Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing 100190, China
bSchool of Computer and Control Engineering, University of Chinese Academy of Sciences
Beijing 100049, China +
('1778018', 'Wentao Zhu', 'wentao zhu')
('35048816', 'Jun Miao', 'jun miao')
('2343895', 'Laiyun Qing', 'laiyun qing')
('1710220', 'Xilin Chen', 'xilin chen')
dbe0e533d715f8543bcf197f3b8e5cffa969dfc0International Journal of Advanced Research in Electrical, +
Electronics and Instrumentation Engineering +
ISSN (Print) : 2320 – 3765 +
ISSN (Online): 2278 – 8875 +
(An ISO 3297: 2007 Certified Organization) +
Vol. 3, Issue 5, May 2014 +
A Comprehensive Comparative Performance +
Analysis of Eigenfaces, Laplacianfaces and +
Orthogonal Laplacianfaces for Face Recognition +
UG student, Amity school of Engineering and Technology, Amity University, Haryana, India
Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India
dbd5e9691cab2c515b50dda3d0832bea6eef79f2Image-basedFaceRecognition:IssuesandMethods +
WenYiZhao +
RamaChellappa +
Sarno(cid:11)Corporation +
CenterforAutomationResearch +
WashingtonRoad +
UniversityofMaryland
Princeton,NJ +
CollegePark, MD
Email:wzhao@sarno(cid:11).com +
Email:rama@cfar.umd.edu +
db67edbaeb78e1dd734784cfaaa720ba86ceb6d2SPECFACE - A Dataset of Human Faces Wearing Spectacles +
Indian Institute of Technology Kharagpur
India +
('30654921', 'Anirban Dasgupta', 'anirban dasgupta')
('30572870', 'Shubhobrata Bhattacharya', 'shubhobrata bhattacharya')
('2680543', 'Aurobinda Routray', 'aurobinda routray')
db82f9101f64d396a86fc2bd05b352e433d88d02A Spatio-Temporal Probabilistic Framework for +
Dividing and Predicting Facial Action Units +
Electrical and Computer Engineering, The University of Memphis
('2497319', 'Md. Iftekhar Tanveer', 'md. iftekhar tanveer')
('1828610', 'Mohammed Yeasin', 'mohammed yeasin')
db428d03e3dfd98624c23e0462817ad17ef14493Oxford TRECVID 2006 – Notebook paper +
Department of Engineering Science +
University of Oxford
United Kingdom +
('2276542', 'James Philbin', 'james philbin')
('8873555', 'Anna Bosch', 'anna bosch')
('1720149', 'Jan-Mark Geusebroek', 'jan-mark geusebroek')
('1782755', 'Josef Sivic', 'josef sivic')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
a83fc450c124b7e640adc762e95e3bb6b423b310Deep Face Feature for Face Alignment +('15679675', 'Boyi Jiang', 'boyi jiang')
('2938279', 'Juyong Zhang', 'juyong zhang')
('2964129', 'Bailin Deng', 'bailin deng')
('8280113', 'Yudong Guo', 'yudong guo')
('1724542', 'Ligang Liu', 'ligang liu')
a85e9e11db5665c89b057a124547377d3e1c27efDynamics of Driver’s Gaze: Explorations in +
Behavior Modeling & Maneuver Prediction +
('1841835', 'Sujitha Martin', 'sujitha martin')
('22254044', 'Sourabh Vora', 'sourabh vora')
('2812409', 'Kevan Yuen', 'kevan yuen')
a8117a4733cce9148c35fb6888962f665ae65b1eIEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X +
A Good Practice Towards Top Performance of Face +
Recognition: Transferred Deep Feature Fusion +
('33419682', 'Lin Xiong', 'lin xiong')
('1785111', 'Jayashree Karlekar', 'jayashree karlekar')
('2052311', 'Jian Zhao', 'jian zhao')
('33221685', 'Jiashi Feng', 'jiashi feng')
('2668358', 'Sugiri Pranata', 'sugiri pranata')
('3493398', 'Shengmei Shen', 'shengmei shen')
a87ab836771164adb95d6744027e62e05f47fd96Understanding human-human interactions: a survey +
Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands
Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands
('26936326', 'Alexandros Stergiou', 'alexandros stergiou')
('1754666', 'Ronald Poppe', 'ronald poppe')
a896ddeb0d253739c9aaef7fc1f170a2ba8407d3SSH: Single Stage Headless Face Detector +
University of Maryland
('40465379', 'Mahyar Najibi', 'mahyar najibi')
('3383048', 'Pouya Samangouei', 'pouya samangouei')
('1693428', 'Larry S. Davis', 'larry s. davis')
{pouya,rama,lsd}@umiacs.umd.edu +
najibi@cs.umd.edu +
a820941eaf03077d68536732a4d5f28d94b5864aLeveraging Datasets with Varying Annotations for Face Alignment +
via Deep Regression Network +
1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
3CAS Center for Excellence in Brain Science and Intelligence Technology +
('1698586', 'Jie Zhang', 'jie zhang')
('1693589', 'Meina Kan', 'meina kan')
('1710220', 'Xilin Chen', 'xilin chen')
{jie.zhang,meina.kan,shiguang.shan,xilin.chen}@vipl.ict.ac.cn +
a8035ca71af8cc68b3e0ac9190a89fed50c92332000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
IIIT-CFW: A Benchmark Database of +
Cartoon Faces in the Wild +
1 IIIT Chittoor, Sri City, India +
2 CVIT, KCIS, IIIT Hyderabad, India +
('2154430', 'Ashutosh Mishra', 'ashutosh mishra')
('31821293', 'Shyam Nandan Rai', 'shyam nandan rai')
('39719398', 'Anand Mishra', 'anand mishra')
('1694502', 'C. V. Jawahar', 'c. v. jawahar')
a88640045d13fc0207ac816b0bb532e42bcccf36ARXIV VERSION +
Simultaneously Learning Neighborship and +
Projection Matrix for Supervised +
Dimensionality Reduction +
('34116743', 'Yanwei Pang', 'yanwei pang')
('2521321', 'Bo Zhou', 'bo zhou')
('1688370', 'Feiping Nie', 'feiping nie')
a803453edd2b4a85b29da74dcc551b3c53ff17f9Pose Invariant Face Recognition Under Arbitrary +
Illumination Based on 3D Face Reconstruction +
School of Computer Science and Technology, Harbin Institute of Technology
150001 Harbin, China +
2 ICT-ISVISION Joint R&D Lab for Face Recognition, ICT, CAS, 100080 Beijing, China +
('1695600', 'Xiujuan Chai', 'xiujuan chai')
('2343895', 'Laiyun Qing', 'laiyun qing')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
('1698902', 'Wen Gao', 'wen gao')
{xjchai,xlchen,wgao}@jdl.ac.cn +
{lyqing,sgshan}@jdl.ac.cn +
a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8This is a repository copy of Modelling of Orthogonal Craniofacial Profiles. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/131767/ +
Version: Published Version +
Article: +
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian +
(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X +
https://doi.org/10.3390/jimaging3040055 +
Reuse +
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +
authors for the original work. More information and the full terms of the licence here: +
https://creativecommons.org/licenses/ +
Takedown +
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +
https://eprints.whiterose.ac.uk/ +
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. +
eprints@whiterose.ac.uk +
a8638a07465fe388ae5da0e8a68e62a4ee322d68How to predict the global instantaneous feeling induced +
by a facial picture? +
To cite this version: +
feeling induced by a facial picture?. Signal Processing: Image Communication, Elsevier, 2015, +
pp.1-30. . +
HAL Id: hal-01198718 +
https://hal.archives-ouvertes.fr/hal-01198718 +
Submitted on 14 Sep 2015 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('25030249', 'Arnaud Lienhard', 'arnaud lienhard')
('2216412', 'Patricia Ladret', 'patricia ladret')
('1788869', 'Alice Caplier', 'alice caplier')
('25030249', 'Arnaud Lienhard', 'arnaud lienhard')
('2216412', 'Patricia Ladret', 'patricia ladret')
('1788869', 'Alice Caplier', 'alice caplier')
a8e75978a5335fd3deb04572bb6ca43dbfad4738Sparse Graphical Representation based Discriminant +
Analysis for Heterogeneous Face Recognition +
('2299758', 'Chunlei Peng', 'chunlei peng')
('10699750', 'Xinbo Gao', 'xinbo gao')
('2870173', 'Nannan Wang', 'nannan wang')
('38158055', 'Jie Li', 'jie li')
a8d52265649c16f95af71d6f548c15afc85ac905Situation Recognition with Graph Neural Networks +
The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent
Uber Advanced Technologies Group, 5Vector Institute
('8139953', 'Ruiyu Li', 'ruiyu li')
('2103464', 'Makarand Tapaswi', 'makarand tapaswi')
('2246396', 'Renjie Liao', 'renjie liao')
('1729056', 'Jiaya Jia', 'jiaya jia')
('2422559', 'Raquel Urtasun', 'raquel urtasun')
('37895334', 'Sanja Fidler', 'sanja fidler')
ryli@cse.cuhk.edu.hk, {makarand,rjliao,urtasun,fidler}@cs.toronto.edu, leojia9@gmail.com +
a8583e80a455507a0f146143abeb35e769d25e4eA DISTANCE-ACCURACY HYBRID WEIGHTED VOTING SCHEME +
FOR PARTIAL FACE RECOGNITION +
1Dept. of Information Engineering and Computer Science, +
Feng Chia University, Taichung, Taiwan
2Department of Photonics, +
National Chiao Tung University, Taiwan
('40609876', 'Yung-Hui Li', 'yung-hui li')
('3072232', 'Bo-Ren Zheng', 'bo-ren zheng')
('2532474', 'Wei-Cheng Huang', 'wei-cheng huang')
ayunghui@gmail.com, bzawdcx@gmail.com, cs75757775@gmail.com, dchtien@mail.nctu.edu.tw +
a87e37d43d4c47bef8992ace408de0f872739efcReview +
A Comprehensive Review on Handcrafted and +
Learning-Based Action Representation Approaches +
for Human Activity Recognition +
School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK
COMSATS Institute of Information Technology, Lahore 54000, Pakistan
Academic Editor: José Santamaria +
Received: 5 September 2016; Accepted: 13 January 2017; Published: 23 January 2017 +
('2145942', 'Allah Bux Sargano', 'allah bux sargano')
('5736243', 'Plamen Angelov', 'plamen angelov')
p.angelov@lancaster.ac.uk +
drzhabib@ciitlahore.edu.pk +
* Correspondence: a.bux@lancaster.ac.uk; Tel.: +44-152-451-0525 +
a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 8, No. 4, 2017 +
3D Human Action Recognition using Hu Moment +
Invariants and Euclidean Distance Classifier +
System Engineering Department +
System Engineering Department +
Computer Science Department +
University of Arkansas at Little Rock
University of Arkansas at Little Rock
University of Arkansas at Little Rock
Arkansas, USA +
Arkansas, USA +
Arkansas, USA +
('19305764', 'Fadwa Al-Azzo', 'fadwa al-azzo')
('22768683', 'Arwa Mohammed Taqi', 'arwa mohammed taqi')
('1795699', 'Mariofanna Milanova', 'mariofanna milanova')
a8748a79e8d37e395354ba7a8b3038468cb37e1fSeeing the Forest from the Trees: A Holistic Approach to Near-infrared +
Heterogeneous Face Recognition +
U.S. Army Research Laboratory
University of Maryland, College Park
West Virginia University
('39412489', 'Christopher Reale', 'christopher reale')
('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')
('1688527', 'Heesung Kwon', 'heesung kwon')
('9215658', 'Rama Chellappa', 'rama chellappa')
reale@umiacs.umd.edu +
heesung.kwon.civ@mail.mil +
nasser.nasrabadi@mail.wvu.edu +
rama@umiacs.umd.edu +
a8a61badec9b8bc01f002a06e1426a623456d121JOINT SPATIO-TEMPORAL ACTION LOCALIZATION +
IN UNTRIMMED VIDEOS WITH PER-FRAME SEGMENTATION +
Xi an Jiaotong University
2HERE Technologies +
3Alibaba Group +
4Microsoft Research +
('46809347', 'Xuhuan Duan', 'xuhuan duan')
('40367806', 'Le Wang', 'le wang')
('51262903', 'Changbo Zhai', 'changbo zhai')
('46324995', 'Qilin Zhang', 'qilin zhang')
('1786361', 'Zhenxing Niu', 'zhenxing niu')
('1715389', 'Nanning Zheng', 'nanning zheng')
('1745420', 'Gang Hua', 'gang hua')
a8154d043f187c6640cb6aedeaa8385a323e46cfMURRUGARRA, KOVASHKA: IMAGE RETRIEVAL WITH MIXED INITIATIVE +
Image Retrieval with Mixed Initiative and +
Multimodal Feedback +
Department of Computer Science +
University of Pittsburgh
Pittsburgh, PA, USA +
('1916866', 'Nils Murrugarra-Llerena', 'nils murrugarra-llerena')
('1770205', 'Adriana Kovashka', 'adriana kovashka')
nineil@cs.pitt.edu +
kovashka@cs.pitt.edu +
a812368fe1d4a186322bf72a6d07e1cf60067234Imperial College London
Department of Computing +
Gaussian Processes +
for Modeling of Facial Expressions +
September, 2016 +
Supervised by Prof. Maja Pantic +
Submitted in part fulfilment of the requirements for the degree of PhD in Computing and +
the Diploma of Imperial College London. This thesis is entirely my own work, and, except
where otherwise indicated, describes my own research. +
('2308430', 'Stefanos Eleftheriadis', 'stefanos eleftheriadis')
de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0Merge or Not? Learning to Group Faces via Imitation Learning +
SenseTime +
SenseTime +
SenseTime +
Chen Chang Loy +
The Chinese University of Hong Kong
('49990550', 'Yue He', 'yue he')
('9963152', 'Kaidi Cao', 'kaidi cao')
('46651787', 'Cheng Li', 'cheng li')
heyue@sensetime.com +
caokaidi@sensetime.com +
chengli@sensetime.com +
ccloy@ie.cuhk.edu.hk +
de8381903c579a4fed609dff3e52a1dc51154951Graz University of Technology
Institute for Computer Graphics and Vision
Dissertation +
Shape and Appearance Based Analysis +
of Facial Images for Assessing ICAO +
Compliance +
Graz, Austria, December 2010 +
Thesis supervisors +
Prof. Dr. Horst Bischof +
Prof. Dr. Fernando De la Torre +
('3464430', 'Markus Storer', 'markus storer')
ded968b97bd59465d5ccda4f1e441f24bac7ede5Noname manuscript No. +
(will be inserted by the editor) +
Large scale 3D Morphable Models +
Zafeiriou +
Received: date / Accepted: date +
('47456731', 'James Booth', 'james booth')
de0eb358b890d92e8f67592c6e23f0e3b2ba3f66ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL. +
Inference-Based Similarity Search in +
Randomized Montgomery Domains for +
Privacy-Preserving Biometric Identification +
('46393453', 'Yi Wang', 'yi wang')
('2087574', 'Jianwu Wan', 'jianwu wan')
('39954962', 'Jun Guo', 'jun guo')
('32840387', 'Yiu-ming Cheung', 'yiu-ming cheung')
def569db592ed1715ae509644444c3feda06a536Discovery and usage of joint attention in images +
Weizmann Institute of Science, Rehovot, Israel
The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA USA
Massachusetts Institute of Technology, Cambridge, MA USA
Weizmann Institute of Science, Rehovot, Israel
Daniel Harari (hararid@weizmann.ac.il) +
Joshua B. Tenenbaum (jbt@mit.edu) +
Shimon Ullman (shimon.ullman@weizmann.ac.il) +
dee406a7aaa0f4c9d64b7550e633d81bc66ff451Content-Adaptive Sketch Portrait Generation by +
Decompositional Representation Learning +
('8335563', 'Dongyu Zhang', 'dongyu zhang')
('1737218', 'Liang Lin', 'liang lin')
('1765674', 'Tianshui Chen', 'tianshui chen')
('1738906', 'Xian Wu', 'xian wu')
('1989769', 'Wenwei Tan', 'wenwei tan')
('1732655', 'Ebroul Izquierdo', 'ebroul izquierdo')
de15af84b1257211a11889b6c2adf0a2bcf59b42Anomaly Detection in Non-Stationary and +
Distributed Environments +
Colin O’Reilly +
Submitted for the Degree of +
Doctor of Philosophy +
from the +
University of Surrey
Institute for Communication Systems
Faculty of Engineering and Physical Sciences +
University of Surrey
Guildford, Surrey GU2 7XH, U.K. +
November 2014 +
© Colin O’Reilly 2014 +
de3285da34df0262a4548574c2383c51387a24bfTwo-Stream Convolutional Networks for Dynamic Texture Synthesis +
Department of Electrical Engineering and Computer Science +
York University, Toronto
('19251410', 'Matthew Tesfaldet', 'matthew tesfaldet'){mtesfald,mab}@eecs.yorku.ca +
dedabf9afe2ae4a1ace1279150e5f1d495e565da3294 +
Robust Face Recognition With Structurally +
Incoherent Low-Rank Matrix Decomposition +
('2017922', 'Chia-Po Wei', 'chia-po wei')
('2624492', 'Chih-Fan Chen', 'chih-fan chen')
('2733735', 'Yu-Chiang Frank Wang', 'yu-chiang frank wang')
dec0c26855da90876c405e9fd42830c3051c2f5fSupplementary Material: Learning Compositional Visual Concepts with Mutual +
Consistency +
School of Electrical and Computer Engineering, Cornell University, Ithaca NY
3Siemens Corporate Technology, Princeton NJ +
Contents +
1. Objective functions +
1.1. Adversarial loss +
1.2. Extended cycle-consistency loss . +
1.3. Commutative loss +
. . . +
. . . +
. . . +
2. Additional implementation details +
3. Additional results +
4. Discussion +
5. Generalizing ConceptGAN +
5.1. Assumption: Concepts have distinct states . . +
5.2. Assumption: Concepts are mutually compatible +
5.3. Generalization . +
. . . +
1. Objective functions +
In this section, we provide complete mathematical +
expressions for each of the three terms in our loss func- +
tion, following the notation defined in Section 3 of the main +
paper and the assumption that no training data is available +
in subdomain Σ11. +
1.1. Adversarial loss +
For generator G1 and discriminator D10, for example, +
the adversarial loss is expressed as: +
Ladv(G1, D10, Σ00, Σ10) = Eσ10∼P10 [log D10(σ10)] +
+Eσ00∼P00[log(1 − D10(G1(σ00)))] +
(1) +
where the generator G1 and discriminator D10 are +
learned to optimize a minimax objective such that +
G∗ +
1 = arg min +
G1 +
max +
D10 +
Ladv(G1, D10, Σ00, Σ10) +
(2) +
For generator G2 and discriminator D01, the adversarial +
loss is expressed as: +
Ladv(G2, D01, Σ00, Σ01) = Eσ01∼P01 [log D01(σ01)] +
+Eσ00∼P00[log(1 − D01(G2(σ00)))] +
For generator F1 and discriminator D00, the adversarial +
loss is expressed as: +
Ladv(F1, D00, Σ10, Σ00) = Eσ00∼P00 [log D00(σ00)] +
+Eσ10∼P10 [log(1 − D00(F1(σ10)))] +
For generator F2 and discriminator D00, the adversarial +
loss is expressed as: +
Ladv(F2, D00, Σ01, Σ00) = Eσ00∼P00 [log D00(σ00)] +
+Eσ01∼P01 [log(1 − D00(F2(σ01)))] +
(5) +
The overall adversarial loss LADV is the sum of these four +
terms. +
(3) +
(4) +
(6) +
LADV =Ladv(G1, D10, Σ00, Σ10) +
+ Ladv(G2, D01, Σ00, Σ01) +
+ Ladv(F1, D00, Σ10, Σ00) +
+ Ladv(F2, D00, Σ01, Σ00) +
1.2. Extended cycle-consistency loss +
Following our discussion in Section 3.2 of the main +
paper, for any data sample σ00 in subdomain Σ00, a +
distance-4 cycle consistency constraint is defined in the +
clockwise direction (F2 ◦ F1 ◦ G2 ◦ G1)(σ00) ≈ σ00 and in +
the counterclockwise direction (F1 ◦ F2 ◦ G1 ◦ G2)(σ00) ≈ +
σ00. Such constraints are implemented by the penalty func- +
tion: +
Lcyc4(G, F, Σ00) +
= Eσ00∼P00[(cid:107)(F2 ◦ F1 ◦ G2 ◦ G1)(σ00) − σ00(cid:107)1] +
+ Eσ00∼P00[(cid:107)(F1 ◦ F2 ◦ G1 ◦ G2)(σ00) − σ00(cid:107)1]. +
(7) +
('3303727', 'Yunye Gong', 'yunye gong')
('1976152', 'Srikrishna Karanam', 'srikrishna karanam')
('3311781', 'Ziyan Wu', 'ziyan wu')
('2692770', 'Kuan-Chuan Peng', 'kuan-chuan peng')
('39497207', 'Jan Ernst', 'jan ernst')
('1767099', 'Peter C. Doerschuk', 'peter c. doerschuk')
{yg326,pd83}@cornell.edu,{first.last}@siemens.com +
de398bd8b7b57a3362c0c677ba8bf9f1d8ade583Hierarchical Bayesian Theme Models for +
Multi-pose Facial Expression Recognition +
('3069077', 'Qirong Mao', 'qirong mao')
('1851510', 'Qiyu Rao', 'qiyu rao')
('1770550', 'Yongbin Yu', 'yongbin yu')
('1710341', 'Ming Dong', 'ming dong')
ded41c9b027c8a7f4800e61b7cfb793edaeb2817
defa8774d3c6ad46d4db4959d8510b44751361d8FEBEI - Face Expression Based Emoticon Identification +
CS - B657 Computer Vision +
Robert J Henderson - rojahend +
('1854614', 'Nethra Chandrasekaran', 'nethra chandrasekaran')
('1830695', 'Prashanth Kumar Murali', 'prashanth kumar murali')
b0c512fcfb7bd6c500429cbda963e28850f2e948
b08203fca1af7b95fda8aa3d29dcacd182375385OBJECT AND TEXT-GUIDED SEMANTICS FOR CNN-BASED ACTIVITY RECOGNITION +
U.S. Army Research Laboratory, Adelphi, MD, USA
§Booz Allen Hamilton Inc., McLean, VA, USA +
('3090299', 'Sungmin Eum', 'sungmin eum')
('39412489', 'Christopher Reale', 'christopher reale')
('1688527', 'Heesung Kwon', 'heesung kwon')
('3202888', 'Claire Bonial', 'claire bonial')
b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89Deep Alternative Neural Network: Exploring +
Contexts as Early as Possible for Action Recognition +
School of Electronics Engineering and Computer Science, Peking University
School of Electronics and Computer Engineering, Peking University
('3258842', 'Jinzhuo Wang', 'jinzhuo wang')
('1788029', 'Wenmin Wang', 'wenmin wang')
('8082703', 'Xiongtao Chen', 'xiongtao chen')
('1702330', 'Ronggang Wang', 'ronggang wang')
('1698902', 'Wen Gao', 'wen gao')
jzwang@pku.edu.cn, wangwm@ece.pku.edu.cn +
cxt@pku.edu.cn, rgwang@ece.pku.edu.cn, wgao@pku.edu.cn +
b09b693708f412823053508578df289b8403100aWANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS +
Two-Stream SR-CNNs for Action +
Recognition in Videos +
1 Advanced Interactive Technologies Lab +
ETH Zurich +
Zurich, Switzerland +
2 Computer Vision Lab +
ETH Zurich +
Zurich, Switzerland +
('46394691', 'Yifan Wang', 'yifan wang')
('40403685', 'Jie Song', 'jie song')
('33345248', 'Limin Wang', 'limin wang')
('1681236', 'Luc Van Gool', 'luc van gool')
('2531379', 'Otmar Hilliges', 'otmar hilliges')
yifan.wang@student.ethz.ch +
jsong@inf.ethz.ch +
07wanglimin@gmail.com +
vangool@vision.ee.ethz.ch +
otmar.hilliges@inf.ethz.ch +
b013cce42dd769db754a57351d49b7410b8e82adAutomatic Point-based Facial Trait Judgments Evaluation +
1Computer Vision Center, Edifici O, Campus UAB, Spain +
2Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018, Barcelona, Spain +
Princeton University, Princeton, New Jersey, USA
4Department de Matematica Aplicada i Analisi, Universitat de Barcelona, Spain +
('1863902', 'David Masip', 'david masip')
('2913698', 'Alexander Todorov', 'alexander todorov')
mrojas@cvc.uab.es, dmasipr@uoc.edu, atodorov@princeton.edu, jordi.vitria@ub.edu +
b07582d1a59a9c6f029d0d8328414c7bef64dca0Employing Fusion of Learned and Handcrafted +
Features for Unconstrained Ear Recognition +
Maur´ıcio Pamplona Segundo∗† +
October 24, 2017 +
('26977067', 'Earnest E. Hansley', 'earnest e. hansley')
('1715991', 'Sudeep Sarkar', 'sudeep sarkar')
b017963d83b3edf71e1673d7ffdec13a6d350a87View Independent Face Detection Based on +
Combination of Local and Global Kernels +
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, JAPAN +
('2510362', 'Kazuhiro HOTTA', 'kazuhiro hotta')hotta@ice.uec.ac.jp, +
b03d6e268cde7380e090ddaea889c75f64560891
b084683e5bab9b2bc327788e7b9a8e049d5fff8fUsing LIP to Gloss Over Faces in Single-Stage Face Detection +
Networks +
The University of Queensland, School of ITEE, QLD 4072, Australia
('1973322', 'Siqi Yang', 'siqi yang')
('2331880', 'Arnold Wiliem', 'arnold wiliem')
('3104113', 'Shaokang Chen', 'shaokang chen')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
{siqi.yang, a.wiliem, s.chen2}@uq.edu.au, lovell@itee.uq.edu.au +
b0c1615ebcad516b5a26d45be58068673e2ff217How Image Degradations Affect Deep CNN-based Face +
Recognition? +
S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1 +
G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2 +
b03446a2de01126e6a06eb5d526df277fa36099fA Torch Library for Action Recognition and Detection Using CNNs and LSTMs +
Stanford University
('4910251', 'Helen Jiang', 'helen jiang'){gthung, helennn}@stanford.edu +
b0de0892d2092c8c70aa22500fed31aa7eb4dd3f(will be inserted by the editor) +
A robust and efficient video representation for action recognition +
Received: date / Accepted: date +
('1804138', 'Heng Wang', 'heng wang')
b018fa5cb9793e260b8844ae155bd06380988584Project STAR IST-2000-28764 +
Deliverable D6.3 Enhanced face and arm/hand +
detector +
Date: August 29th, 2003 +
Katholieke Universiteit Leuven, ESAT/VISICS
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium +
Tel. +32-16-32.10.61 and Fax. +32-16-32.17.23 +
http://www.esat.kuleuven.ac.be/ knummiar/star/star.html +
To: STAR project partners +
Siemens CT PP6, +
Otto-Hahn-Ring 6, 81730 Munich, Germany +
Tel. +49-89-636.49.851, Fax. +49-89-636.481.00 +
Introduction +
KU Leuven is responsible for the work package number 6, Automated view selection and +
camera hand-over. The main goal is to build an intelligent virtual editor that produces as +
an output a single video stream from multiple input streams. The selection should be made +
in such a way that the resulting stream is pleasant to watch and informative about what is +
going on in the scene. Face detection and object tracking is needed to select the best camera +
view from the multi-camera system. +
KUL has delivered the STAR deliverables D6.1 Initial face detection software and D6.2 Initial +
arm/hand tracking software from work package 6, July 2002 (month 12). The integration of +
the detection and tracking has been needed to successfully provide this deliverable D6.3 +
Enhanced face and arm/hand detector. +
We explain (cid:12)rst the enhanced face detection, followed by the enhanced tracking software and +
(cid:12)nally the integration. Also the hand tracking results with simple histogram-based detection +
is presented. The results will be shown using the common STAR data sequencies, from +
di(cid:11)erent Siemens factories, in Germany. +
('2381884', 'Katja Nummiaro', 'katja nummiaro')
('2733505', 'Rik Fransens', 'rik fransens')
('1681236', 'Luc Van Gool', 'luc van gool')
fknummiar, fransen, vangoolg@esat.kuleuven.ac.be +
artur.raczynski@mchp.siemens.de +
b073313325b6482e22032e259d7311fb9615356cRobust and Accurate Cancer Classification with Gene Expression Profiling +
Dept. of Computer Science +
Human Interaction Research Lab
Dept. of Computer Science +
University of California
Riverside, CA 92521 +
Motorola, Inc
Tempe, AZ 85282 +
University of California
Riverside, CA 92521 +
('31947043', 'Haifeng Li', 'haifeng li')
('1749400', 'Keshu Zhang', 'keshu zhang')
('6820989', 'Tao Jiang', 'tao jiang')
hli@cs.ucr.edu +
keshu.zhang@motorola.com +
jiang@cs.ucr.edu +
a6f81619158d9caeaa0863738ab400b9ba2d77c2Face Recognition using Convolutional Neural Network +
and Simple Logistic Classifier +
Intelligent Systems Laboratory (ISLAB), +
Faculty of Electrical & Computer Engineering +
K.N. Toosi University of Technology, Tehran, Iran
('2040276', 'Hurieh Khalajzadeh', 'hurieh khalajzadeh')
('10694774', 'Mohammad Mansouri', 'mohammad mansouri')
('1709359', 'Mohammad Teshnehlab', 'mohammad teshnehlab')
hurieh.khalajzadeh@gmail.com, +
mohammad.mansouri@ee.kntu.ac.ir, +
teshnehlab@eetd.kntu.ac.ir +
a66d89357ada66d98d242c124e1e8d96ac9b37a0Failure Detection for Facial Landmark Detectors +
Computer Vision Lab, D-ITET, ETH Zurich, Switzerland +
('33028242', 'Andreas Steger', 'andreas steger')
('1732855', 'Radu Timofte', 'radu timofte')
stegeran@ethz.ch, {radu.timofte, vangool}@vision.ee.ethz.ch +
a6d7cf29f333ea3d2aeac67cde39a73898e270b7Gender Classification from Facial Images Using Texture Descriptors +
801 +
Gender Classification from Facial Images Using Texture Descriptors +
King Saud University, KSA
King Saud University, KSA
King Saud University, KSA
University of Nevada at Reno, USA
('1758125', 'Ihsan Ullah', 'ihsan ullah')
('1966959', 'Hatim Aboalsamh', 'hatim aboalsamh')
('2363759', 'Muhammad Hussain', 'muhammad hussain')
('1758305', 'Ghulam Muhammad', 'ghulam muhammad')
('1808451', 'George Bebis', 'george bebis')
{ihsanullah, hatim, mhussain, ghulam}@ksu.edu.sa, bebis@cse.unr.edu +
a611c978e05d7feab01fb8a37737996ad6e88bd9Benchmarking 3D pose estimation for +
face recognition +
Computational Biomedicine Lab, University of Houston, TX, USA
('39634395', 'Pengfei Dou', 'pengfei dou')
('2461369', 'Yuhang Wu', 'yuhang wu')
('2700399', 'Shishir K. Shah', 'shishir k. shah')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
{pengfei,yuhang}@cbl.uh.edu, {sshah,IKakadia}@central.uh.edu +
a608c5f8fd42af6e9bd332ab516c8c2af7063c612408 +
Age Estimation via Grouping and Decision Fusion +
('3006921', 'Kuan-Hsien Liu', 'kuan-hsien liu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('9363144', 'C.-C. Jay Kuo', 'c.-c. jay kuo')
a6e8a8bb99e30a9e80dbf80c46495cf798066105Ranking Generative Adversarial Networks: +
Subjective Control over Semantic Image Attributes +
University of Bath
('41020280', 'Yassir Saquil', 'yassir saquil')
('1808255', 'Kwang In Kim', 'kwang in kim')
a6eb6ad9142130406fb4ffd4d60e8348c2442c29Video Description: A Survey of Methods, +
Datasets and Evaluation Metrics +
('50978260', 'Nayyer Aafaq', 'nayyer aafaq')
('1746166', 'Syed Zulqarnain Gilani', 'syed zulqarnain gilani')
('46641573', 'Wei Liu', 'wei liu')
('46332747', 'Ajmal Mian', 'ajmal mian')
a6ffe238eaf8632b4a8a6f718c8917e7f3261546 Australasian Medical Journal [AMJ 2011, 4, 10, 555-562] +
Dynamic Facial Prosthetics for Sufferers of Facial Paralysis +
Nottingham Trent University, Nottingham, UK
Nottingham University Hospital, Nottingham, UK
RESEARCH +
+
Please cite this paper as: Coulter F, Breedon P, Vloeberghs +
M. Dynamic facial prosthetics for sufferers of facial +
paralysis. +
AMJ 2011, 4, 10, 555-562 +
http//dx.doi.org/10.4066/AMJ.2011.921 +
Corresponding Author: +
Nottingham Trent University
+
United Kingdom +
('6930559', 'Fergal Coulter', 'fergal coulter')
('3214667', 'Philip Breedon', 'philip breedon')
('40436855', 'Michael Vloeberghs', 'michael vloeberghs')
('3214667', 'Philip Breedon', 'philip breedon')
philip.breedon@ntu.ac.uk +
a6583c8daa7927eedb3e892a60fc88bdfe89a486
a660390654498dff2470667b64ea656668c98eccFACIAL EXPRESSION RECOGNITION BASED ON GRAPH-PRESERVING SPARSE +
NON-NEGATIVE MATRIX FACTORIZATION +
Institute of Information Science
Beijing Jiaotong University
Beijing 100044, P.R. China +
, Bastiaan Kleijn +
ACCESS Linnaeus Center +
KTH Royal Institute of Technology, Stockholm
School of Electrical Engineering +
('3247912', 'Ruicong Zhi', 'ruicong zhi')
('1749334', 'Markus Flierl', 'markus flierl')
('1738408', 'Qiuqi Ruan', 'qiuqi ruan')
{05120370, qqruan}@bjtu.edu.cn +
{ruicong, mflierl, bastiaan}@kth.se +
a60907b7ee346b567972074e3e03c82f64d7ea30Head Motion Signatures from Egocentric Videos +
The Hebrew University of Jerusalem, Israel
2 IIIT Delhi, India +
('2926663', 'Yair Poleg', 'yair poleg')
('1897733', 'Chetan Arora', 'chetan arora')
('1796055', 'Shmuel Peleg', 'shmuel peleg')
a6e43b73f9f87588783988333997a81b4487e2d5Facial Age Estimation by Total Ordering +
Preserving Projection +
National Key Laboratory for Novel Software Technology +
Nanjing University, Nanjing 210023, China
('39527177', 'Xiao-Dong Wang', 'xiao-dong wang')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
{wangxd,zhouzh}@lamda.nju.edu.cn +
a6496553fb9ab9ca5d69eb45af1bdf0b60ed86dcSemi-supervised Neighborhood Preserving +
Discriminant Embedding: +
A Semi-supervised Subspace Learning +
Algorithm +
1 Department of Computer Science and Software Engineering, +

University of Western Australia
('2067346', 'Maryam Mehdizadeh', 'maryam mehdizadeh')
('1766400', 'Cara MacNish', 'cara macnish')
('39128433', 'R. Nazim Khan', 'r. nazim khan')
('1698675', 'Mohammed Bennamoun', 'mohammed bennamoun')
a6b5ffb5b406abfda2509cae66cdcf56b4bb3837One Shot Similarity Metric Learning +
for Action Recognition +
The Weizmann Institute of
The Open University
Science, Rehovot, Israel. +
Raanana, Israel. +
The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
('3294355', 'Orit Kliper-Gross', 'orit kliper-gross')
('1756099', 'Tal Hassner', 'tal hassner')
('1776343', 'Lior Wolf', 'lior wolf')
orit.kliper@weizmann.ac.il +
hassner@openu.ac.il +
wolf@cs.tau.ac.il +
a6590c49e44aa4975b2b0152ee21ac8af3097d80https://doi.org/10.1007/s11263-018-1074-6 +
3D Interpreter Networks for Viewer-Centered Wireframe Modeling +
Received: date / Accepted: date +
('3045089', 'Jiajun Wu', 'jiajun wu')
('1763295', 'Joshua B. Tenenbaum', 'joshua b. tenenbaum')
a694180a683f7f4361042c61648aa97d222602dbFace Recognition using Scattering Wavelet under Illicit Drug Abuse Variations +
IIIT-Delhi India +
('2503967', 'Prateekshit Pandey', 'prateekshit pandey')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
fprateekshit12078, rsingh, mayankg@iiitd.ac.in +
a6db73f10084ce6a4186363ea9d7475a9a658a11
a6e25cab2251a8ded43c44b28a87f4c62e3a548aLet’s Dance: Learning From Online Dance Videos +
Georgia Institute of Technology
Irfan Essa +
('40333356', 'Daniel Castro', 'daniel castro')
('2935619', 'Steven Hickson', 'steven hickson')
('3430745', 'Patsorn Sangkloy', 'patsorn sangkloy')
('40506496', 'Bhavishya Mittal', 'bhavishya mittal')
('35459529', 'Sean Dai', 'sean dai')
('1945508', 'James Hays', 'james hays')
shickson@gatech.edu +
patsorn sangkloy@gatech.edu +
dcastro9@gatech.edu +
bmittal6@gatech.edu +
sdai@gatech.edu +
hays@gatech.edu +
irfan@gatech.edu +
a6634ff2f9c480e94ed8c01d64c9eb70e0d98487
a6270914cf5f60627a1332bcc3f5951c9eea3be0Joint Attention in Driver-Pedestrian Interaction: from +
Theory to Practice +
Department of Electrical Engineering and Computer Science +
York University, Toronto, ON, Canada
March 28, 2018 +
('26902477', 'Amir Rasouli', 'amir rasouli')
('1727853', 'John K. Tsotsos', 'john k. tsotsos')
{aras,tsotsos}@eecs.yorku.ca +
a6ce2f0795839d9c2543d64a08e043695887e0ebDriver Gaze Region Estimation +
Without Using Eye Movement +
Massachusetts Institute of Technology (MIT
('49925254', 'Philipp Langhans', 'philipp langhans')
('7137846', 'Joonbum Lee', 'joonbum lee')
('1901227', 'Bryan Reimer', 'bryan reimer')
a6b1d79bc334c74cde199e26a7ef4c189e9acd46bioRxiv preprint first posted online Aug. 17, 2017; +
doi: +
http://dx.doi.org/10.1101/177196 +
. +
The copyright holder for this preprint (which was +
not peer-reviewed) is the author/funder. It is made available under a +
CC-BY-NC 4.0 International license +
Deep Recurrent Neural Network Reveals a Hierarchy of +
Process Memory during Dynamic Natural Vision +
1Weldon School of Biomedical Engineering +
2School of Electrical and Computer Engineering +
Purdue Institute for Integrative Neuroscience
Purdue University, West Lafayette, Indiana, 47906, USA
*Correspondence +
Assistant Professor of Biomedical Engineering +
Assistant Professor of Electrical and Computer Engineering +
College of Engineering, Purdue University
206 S. Martin Jischke Dr. +
West Lafayette, IN 47907, USA +
Phone: +1 765 496 1872 +
Fax: +1 765 496 1459 +
('4416237', 'Junxing Shi', 'junxing shi')
('4431043', 'Haiguang Wen', 'haiguang wen')
('3334748', 'Yizhen Zhang', 'yizhen zhang')
('3418794', 'Kuan Han', 'kuan han')
('1799110', 'Zhongming Liu', 'zhongming liu')
('1799110', 'Zhongming Liu', 'zhongming liu')
Email: zmliu@purdue.edu +
a6ebe013b639f0f79def4c219f585b8a012be04fFacial Expression Recognition Based on Hybrid +
Approach +
Graduate School of Science and Engineering, Saitama University
255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan +
E-mail +
('13403748', 'Md. Abdul Mannan', 'md. abdul mannan')
('34949901', 'Antony Lam', 'antony lam')
('2367471', 'Yoshinori Kobayashi', 'yoshinori kobayashi')
('1737913', 'Yoshinori Kuno', 'yoshinori kuno')
a6e21438695dbc3a184d33b6cf5064ddf655a9baPKU-MMD: A Large Scale Benchmark for Continuous Multi-Modal Human +
Action Understanding +
Institiude of Computer Science and Technology, Peking University
('2994549', 'Jiaying Liu', 'jiaying liu')
('1708754', 'Chunhui Liu', 'chunhui liu')
{liuchunhui, huyy, lyttonhao, ssj940929, liujiaying}@pku.edu.cn +
b9081856963ceb78dcb44ac410c6fca0533676a3UntrimmedNets for Weakly Supervised Action Recognition and Detection +
1Computer Vision Laboratory, ETH Zurich, Switzerland +
The Chinese University of Hong Kong, Hong Kong
('33345248', 'Limin Wang', 'limin wang')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('1807606', 'Dahua Lin', 'dahua lin')
('1681236', 'Luc Van Gool', 'luc van gool')
b97f694c2a111b5b1724eefd63c8d64c8e19f6c9Group Affect Prediction Using Multimodal Distributions +
Aspiring Minds +
Univeristy of Massachusetts, Amherst +
Johns Hopkins University
('40997180', 'Saqib Nizam Shamsi', 'saqib nizam shamsi')
('47679973', 'Bhanu Pratap Singh', 'bhanu pratap singh')
('7341605', 'Manya Wadhwa', 'manya wadhwa')
shamsi.saqib@gmail.com +
bhanupratap.mnit@gmail.com +
mwadhwa1@jhu.edu +
b9d0774b0321a5cfc75471b62c8c5ef6c15527f5Fishy Faces: Crafting Adversarial Images to Poison Face Authentication +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
('4412412', 'Giuseppe Garofalo', 'giuseppe garofalo')
('23974422', 'Vera Rimmer', 'vera rimmer')
('19243432', 'Tim Van hamme', 'tim van hamme')
('1722184', 'Davy Preuveneers', 'davy preuveneers')
('1752104', 'Wouter Joosen', 'wouter joosen')
b9cad920a00fc0e997fc24396872e03f13c0bb9cFACE LIVENESS DETECTION UNDER BAD ILLUMINATION CONDITIONS +
University of Campinas (Unicamp
Campinas, SP, Brazil +
('2826093', 'Bruno Peixoto', 'bruno peixoto')
('34629204', 'Carolina Michelassi', 'carolina michelassi')
('2145405', 'Anderson Rocha', 'anderson rocha')
b908edadad58c604a1e4b431f69ac8ded350589aDeep Face Feature for Face Alignment +('15679675', 'Boyi Jiang', 'boyi jiang')
('2938279', 'Juyong Zhang', 'juyong zhang')
('2964129', 'Bailin Deng', 'bailin deng')
('8280113', 'Yudong Guo', 'yudong guo')
('47968194', 'Ligang Liu', 'ligang liu')
b93bf0a7e449cfd0db91a83284d9eba25a6094d8Supplementary Material for: Active Pictorial Structures +
Epameinondas Antonakos +
Joan Alabort-i-Medina +
Stefanos Zafeiriou +
Imperial College London
180 Queens Gate, SW7 2AZ, London, U.K. +
In the following sections, we provide additional material for the paper “Active Pictorial Structures”. Section 1 explains in +
more detail the differences between the proposed Active Pictorial Structures (APS) and Pictorial Structures (PS). Section 2 +
presents the proofs about the structure of the precision matrices of the Gaussian Markov Random Filed (GMRF) (Eqs. 10 +
and 12 of the main paper). Section 3 gives an analysis about the forward Gauss-Newton optimization of APS and shows that +
the inverse technique with fixed Jacobian and Hessian, which is used in the main paper, is much faster. Finally, Sec. 4 shows +
additional experimental results and conducts new experiments on different objects (human eyes and cars). An open-source +
implementation of APS is available within the Menpo Project [1] in http://www.menpo.org/. +
1. Differences between Active Pictorial Structures and Pictorial Structures +
As explained in the main paper, the proposed model is partially motivated by PS [4, 8]. In the original formulation of PS, +
the cost function to be optimized has the form +
(cid:88) +
n(cid:88) +
n(cid:88) +
i=1 +
arg min +
= arg min +
i=1 +
mi((cid:96)i) + +
dij((cid:96)i, (cid:96)j) = +
i,j:(vi,vj )∈E +
[A((cid:96)i) − µa +
i ]T (Σa +
i )−1[A((cid:96)i) − µa +
i ] + +
(cid:88) +
i,j:(vi,vj )∈E +
[(cid:96)i − (cid:96)j − µd +
ij]T (Σd +
ij)−1[(cid:96)i − (cid:96)j − µd +
ij] +
(1) +
1 , . . . , (cid:96)T +
n ]T is the vector of landmark coordinates ((cid:96)i = [xi, yi]T , ∀i = 1, . . . , n), A((cid:96)i) is a feature vector +
where s = [(cid:96)T +
ij} denote the mean +
extracted from the image location (cid:96)i and we have assumed a tree G = (V, E). {µa +
and covariances of the appearance and deformation respectively. In Eq. 1, mi((cid:96)i) is a function measuring the degree of +
mismatch when part vi is placed at location (cid:96)i in the image. Moreover, dij((cid:96)i, (cid:96)j) denotes a function measuring the degree +
of deformation of the model when part vi is placed at location (cid:96)i and part vj is placed at location (cid:96)j. The authors show +
an inference algorithm based on distance transform [3] that can find a global minimum of Eq. 1 without any initialization. +
However, this algorithm imposes two important restrictions: (1) appearance of each part is independent of the rest of them +
and (2) G must always be acyclic (a tree). Additionally, the computation of mi((cid:96)i) for all parts (i = 1, . . . , n) and all possible +
image locations (response maps) has a high computational cost, which makes the algorithm very slow. Finally, in [8], the +
authors only use a diagonal covariance for the relative locations (deformation) of each edge of the graph, which restricts the +
flexibility of the model. +
i } and {µd +
ij, Σd +
i , Σa +
In the proposed APS, we aim to minimize the cost function (Eq. 19 of the main paper) +
(cid:107)A(S(¯s, p)) − ¯a(cid:107)2 +
[A(S(¯s, p)) − ¯a]T Qa[A(S(¯s, p)) − ¯a] + [S(¯s, p) − ¯s]T Qd[S(¯s, p) − ¯s] +
Qa + (cid:107)S(¯s, p) − ¯s(cid:107)2 +
Qd = +
arg min +
= arg min +
(2) +
There are two main differences between APS and PS: (1) we employ a statistical shape model and optimize with respect +
to its parameters and (2) we use the efficient Gauss-Newton optimization technique. However, these differences introduce +
some important advantages, as also mentioned in the main paper. The proposed formulation allows to define a graph (not +
only tree) between the object’s parts. This means that we can assume dependencies between any pair of landmarks for both +
{e.antonakos, ja310, s.zafeiriou}@imperial.ac.uk +
b9c9c7ef82f31614c4b9226e92ab45de4394c5f611 +
Face Recognition under Varying Illumination +
Nanyang Technological University
Singapore +
1. Introduction +
Face Recognition by a robot or machine is one of the challenging research topics in the +
recent years. It has become an active research area which crosscuts several disciplines such +
as image processing, pattern recognition, computer vision, neural networks and robotics. +
For many applications, the performances of face recognition systems in controlled +
environments have achieved a satisfactory level. However, there are still some challenging +
issues to address in face recognition under uncontrolled conditions. The variation in +
illumination is one of the main challenging problems that a practical face recognition system +
needs to deal with. It has been proven that in face recognition, differences caused by +
illumination variations are more significant than differences between individuals (Adini et +
al., 1997). Various methods have been proposed to solve the problem. These methods can be +
classified into three categories, named face and illumination modeling, illumination +
invariant feature extraction and preprocessing and normalization. In this chapter, an +
extensive and state-of-the-art study of existing approaches to handle illumination variations +
is presented. Several latest and representative approaches of each category are presented in +
detail, as well as the comparisons between them. Moreover, to deal with complex +
environment where illumination variations are coupled with other problems such as pose +
and expression variations, a good feature representation of human face should not only be +
illumination invariant, but also robust enough against pose and expression variations. Local +
binary pattern (LBP) is such a local texture descriptor. In this chapter, a detailed study of the +
LBP and its several important extensions is carried out, as well as its various combinations +
with other techniques to handle illumination invariant face recognition under a complex +
environment. By generalizing different strategies in handling illumination variations and +
evaluating their performances, several promising directions for future research have been +
suggested. +
This chapter is organized as follows. Several famous methods of face and illumination +
modeling are introduced in Section 2. In Section 3, latest and representative approaches of +
illumination invariant feature extraction are presented in detail. More attentions are paid on +
quotient-image-based methods. In Section 4, the normalization methods on discarding low +
frequency coefficients in various transformed domains are introduced with details. In +
Section 5, a detailed introduction of the LBP and its several important extensions is +
presented, as well as its various combinations with other face recognition techniques. In +
Section 6, comparisons between different methods and discussion of their advantages and +
disadvantages are presented. Finally, several promising directions as the conclusions are +
drawn in Section 7. +
www.intechopen.com +
('9244425', 'Lian Zhichao', 'lian zhichao')
('9224769', 'Er Meng Joo', 'er meng joo')
b9f2a755940353549e55690437eb7e13ea226bbfUnsupervised Feature Learning from Videos for Discovering and Recognizing Actions +('3296857', 'Carolina Redondo-Cabrera', 'carolina redondo-cabrera')
('2941882', 'Roberto J. López-Sastre', 'roberto j. lópez-sastre')
carolina.redondoc@edu.uah.es +
robertoj.lopez@uah.es +
b9cedd1960d5c025be55ade0a0aa81b75a6efa61INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE +
MATRIX EXPONENTIAL EIGENPROBLEM FROM +
DIMENSIONALITY REDUCTION +
('1685951', 'Gang Wu', 'gang wu')
('7139289', 'Ting-ting Feng', 'ting-ting feng')
('9472022', 'Li-jia Zhang', 'li-jia zhang')
('5828998', 'Meng Yang', 'meng yang')
b971266b29fcecf1d5efe1c4dcdc2355cb188ab0MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES +
On the Reconstruction of Face Images from +
Deep Face Templates +
('3391550', 'Guangcan Mai', 'guangcan mai')
('1684684', 'Kai Cao', 'kai cao')
('1768574', 'Pong C. Yuen', 'pong c. yuen')
('6680444', 'Anil K. Jain', 'anil k. jain')
a1af7ec84472afba0451b431dfdb59be323e35b7LikeNet: A Siamese Motion Estimation +
Network Trained in an Unsupervised Way +
Multimedia and Vision Research Group +
Queen Mary University of London
London, UK +
('49505678', 'Aria Ahmadi', 'aria ahmadi')
('2000297', 'Ioannis Marras', 'ioannis marras')
('1744405', 'Ioannis Patras', 'ioannis patras')
('49505678', 'Aria Ahmadi', 'aria ahmadi')
('2000297', 'Ioannis Marras', 'ioannis marras')
('1744405', 'Ioannis Patras', 'ioannis patras')
a.ahmadi@qmul.ac.uk +
i.marras@qmul.ac.uk +
i.patras@qmul.ac.uk +
a1dd806b8f4f418d01960e22fb950fe7a56c18f1Interactively Building a Discriminative Vocabulary of Nameable Attributes +
Toyota Technological Institute, Chicago (TTIC
University of Texas at Austin
('1713589', 'Devi Parikh', 'devi parikh')
('1794409', 'Kristen Grauman', 'kristen grauman')
dparikh@ttic.edu +
grauman@cs.utexas.edu +
a158c1e2993ac90a90326881dd5cb0996c20d4f3OPEN ACCESS +
ISSN 2073-8994 +
Article +
1 DMA, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy +
2 CITC, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Itlay +
3 Istituto Nazionale di Ricerche Demopolis, via Col. Romey 7, 91100 Trapani, Italy +
† Deceased on 15 March 2009. +
Received: 4 March 2010; in revised form: 23 March 2010 / Accepted: 29 March 2010 / +
Published: 1 April 2010 +
('1716744', 'Bertrand Zavidovique', 'bertrand zavidovique')4 IEF, Université Paris IX–Orsay, Paris, France; E-Mail: bertrand.zavidovique@u-psud.fr (B.Z.) +
* Author to whom correspondence should be addressed; E-Mail: metabacchi@demopolis.it. +
a15d9d2ed035f21e13b688a78412cb7b5a04c469Object Detection Using +
Strongly-Supervised Deformable Part Models +
1Computer Vision and Active Perception Laboratory (CVAP), KTH, Sweden +
2INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Superieure +
('2622491', 'Hossein Azizpour', 'hossein azizpour')
('1785596', 'Ivan Laptev', 'ivan laptev')
azizpour@kth.se,ivan.laptev@inria.fr +
a1b1442198f29072e907ed8cb02a064493737158456 +
Crowdsourcing Facial Responses +
to Online Videos +
('1801452', 'Daniel McDuff', 'daniel mcduff')
('1754451', 'Rana El Kaliouby', 'rana el kaliouby')
('1719389', 'Rosalind W. Picard', 'rosalind w. picard')
a14db48785d41cd57d4eac75949a6b79fc684e70Fast High Dimensional Vector Multiplication Face Recognition +
Tel Aviv University
Tel Aviv University
Tel Aviv University
IBM Research +
('2109324', 'Oren Barkan', 'oren barkan')
('40389676', 'Jonathan Weill', 'jonathan weill')
('1776343', 'Lior Wolf', 'lior wolf')
('2580470', 'Hagai Aronowitz', 'hagai aronowitz')
orenbarkan@post.tau.ac.il +
yonathanw@post.tau.ac.il +
wolf@cs.tau.ac.il +
hagaia@il.ibm.com +
a15c728d008801f5ffc7898568097bbeac8270a4Concise Preservation by Combining Managed Forgetting +
and Contextualized Remembering +
Grant Agreement No. 600826 +
Deliverable D4.4 +
Work-package +
Deliverable +
Deliverable Leader +
Quality Assessor +
Dissemination level +
Delivery date in Annex I +
Actual delivery date +
Revisions +
Status +
Keywords +
Information Consolidation and Con- +
WP4: +
centration +
D4.4: +
Information analysis, consolidation +
and concentration techniques, and evalua- +
tion - Final release. +
Vasileios Mezaris (CERTH) +
Walter Allasia (EURIX) +
PU +
31-01-2016 (M36) +
31-01-2016 +
Final +
multidocument summarization, semantic en- +
richment, +
feature extraction, concept de- +
tection, event detection, image/video qual- +
ity, image/video aesthetic quality, face de- +
tection/clustering, +
im- +
age/video summarization, image/video near +
duplicate detection, data deduplication, con- +
densation, consolidation +
image clustering, +
a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1Longitudinal Study of Child Face Recognition +
Michigan State University
East Lansing, MI, USA +
Malaviya National Institute of Technology
Jaipur, India +
Michigan State University
East Lansing, MI, USA +
('32623642', 'Debayan Deb', 'debayan deb')
('2117075', 'Neeta Nain', 'neeta nain')
('6680444', 'Anil K. Jain', 'anil k. jain')
debdebay@msu.edu +
nnain.cse@mnit.ac.in +
jain@cse.msu.edu +
a14ed872503a2f03d2b59e049fd6b4d61ab4d6caAttentional Pooling for Action Recognition +
The Robotics Institute, Carnegie Mellon University
http://rohitgirdhar.github.io/AttentionalPoolingAction +
('3102850', 'Rohit Girdhar', 'rohit girdhar')
('1770537', 'Deva Ramanan', 'deva ramanan')
a1132e2638a8abd08bdf7fc4884804dd6654fa636 +
Real-Time Video Face Recognition +
for Embedded Devices +
Tessera, Galway, +
Ireland +
1. Introduction +
This chapter will address the challenges of real-time video face recognition systems +
implemented in embedded devices. Topics to be covered include: the importance and +
challenges of video face recognition in real life scenarios, describing a general architecture of +
a generic video face recognition system and a working solution suitable for recognizing +
faces in real-time using low complexity devices. Each component of the system will be +
described together with the system’s performance on a database of video samples that +
resembles real life conditions. +
2. Video face recognition +
Face recognition remains a very active topic in computer vision and receives attention from +
a large community of researchers in that discipline. Many reasons feed this interest; the +
main being the wide range of commercial, law enforcement and security applications that +
require authentication. The progress made in recent years on the methods and algorithms +
for data processing as well as the availability of new technologies makes it easier to study +
these algorithms and turn them into commercially viable product. Biometric based security +
systems are becoming more popular due to their non-invasive nature and their increasing +
reliability. Surveillance applications based on face recognition are gaining increasing +
attention after the United States’ 9/11 events and with the ongoing security threats. The +
Face Recognition Vendor Test (FRVT) (Phillips et al., 2003) includes video face recognition +
testing starting with the 2002 series of tests. +
Recently, face recognition technology was deployed in consumer applications such as +
organizing a collection of images using the faces present in the images (Picassa; Corcoran & +
Costache, 2005), prioritizing family members for best capturing conditions when taking +
pictures, or directly annotating the images as they are captured (Costache et al., 2006). +
Video face recognition, compared with more traditional still face recognition, has the main +
advantage of using multiple instances of the same individual in sequential frames for +
recognition to occur. In still recognition case, the system has only one input image to make +
the decision if the person is or is not in the database. If the image is not suitable for +
recognition (due to face orientation, expression, quality or facial occlusions) the recognition +
result will most likely be incorrect. In the video image there are multiple frames which can +
www.intechopen.com +
('1706790', 'Petronel Bigioi', 'petronel bigioi')
('1734172', 'Peter Corcoran', 'peter corcoran')
a125bc55bdf4bec7484111eea9ae537be314ec62Real-time Facial Expression Recognition in Image +
Sequences Using an AdaBoost-based Multi-classifier +
National Taiwan University of Science and Technology, Taipei 10607, Taiwan
National Taiwan University of Science and Technology, Taipei 10607, Taiwan
National Taiwan University of Science and Technology, Taipei 10607, Taiwan
To surmount the shortcomings as stated above, we +
attempt to develop an automatic facial expression recognition +
system that detects human faces and extracts facial features +
from an image sequence. This system is employed for +
recognizing six kinds of facial expressions: joy, anger, +
surprise, fear, sadness, and neutral of a computer user. In the +
expression classification procedure, we mainly compare the +
performance of different classifiers using multi-layer +
perceptions (MLPs), SVMs, and AdaBoost algorithms +
(ABAs). Through evaluating experimental +
the +
performance of ABAs is superior to that of the other two. +
According to this, we develop an AdaBoost-based multi- +
classifier used in our facial expression recognition system. +
results, +
II. FACE AND FACIAL FEATURE DETECTION +
In our system design philosophy, the skin color cue is an +
obvious characteristic to detect human faces. To begin with, +
we will execute skin color detection, then the morphological +
dilation operation, and facial feature detection. Subsequently, +
a filtering operation based on geometrical properties is +
applied to eliminate the skin color regions that do not pertain +
to human faces. +
A. Color Space Transformation +
Face detection is dependent on skin color detection +
techniques which work in one of frequently used color spaces. +
In the past, three color spaces YCbCr, HSI, and RGB have +
been extensively applied for skin color detection. Accordingly, +
we extract the common attribute from skin color regions to +
perform face detection. +
The color model of an image captured from the +
experimental camera is composed of RGB values, but it’s +
easy to be influenced by lighting. Herein, we adopt the HSI +
color space to replace the traditional RGB color space for skin +
color detection. We distinguish skin color regions from non- +
skin color ones by means of lower and upper bound +
thresholds. Via many experiments of detecting human faces, +
we choose the H value between 3 and 38 as the range of skin +
colors. +
B. Connected Component Labeling +
After the processing of skin color detection, we employ +
linear-time connected-component +
technique +
labeling +
the +
('2574621', 'Chin-Shyurng Fahn', 'chin-shyurng fahn')
('2604646', 'Ming-Hui Wu', 'ming-hui wu')
('2309647', 'Chang-Yi Kao', 'chang-yi kao')
E-mail: csfahn@mail.ntust.edu.tw Tel: +886-02-2730-1215 +
E-mail: M9415054@mail.ntust.edu.tw Tel: +886-02-2733-3141 ext.7425 +
E-mail: D9515011@mail.ntust.edu.tw Tel: +886-02-2733-3141 ext.7425 +
a14ae81609d09fed217aa12a4df9466553db4859REVISED VERSION, JUNE 2011 +
Face Identification Using Large Feature Sets +
('1679142', 'William Robson Schwartz', 'william robson schwartz')
('2723427', 'Huimin Guo', 'huimin guo')
('3826759', 'Jonghyun Choi', 'jonghyun choi')
('1693428', 'Larry S. Davis', 'larry s. davis')
a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892Latent Embeddings for Zero-shot Classification +
1MPI for Informatics +
2IIT Kanpur +
Saarland University
('3370667', 'Yongqin Xian', 'yongqin xian')
('2893664', 'Zeynep Akata', 'zeynep akata')
('2515597', 'Gaurav Sharma', 'gaurav sharma')
('33460941', 'Matthias Hein', 'matthias hein')
('1697100', 'Bernt Schiele', 'bernt schiele')
a1ee0176a9c71863d812fe012b5c6b9c15f9aa8aAffective recommender systems: the role of emotions in +
recommender systems +
Jurij Tasiˇc +
University of Ljubljana Faculty
University of Ljubljana Faculty
University of Ljubljana Faculty
of electrical engineering +
Tržaška 25, Ljubljana, +
Slovenia +
of electrical engineering +
Tržaška 25, Ljubljana, +
Slovenia +
of electrical engineering +
Tržaška 25, Ljubljana, +
Slovenia +
('1717186', 'Andrej Košir', 'andrej košir')marko.tkalcic@fe.uni-lj.si +
andrej.kosir@fe.uni-lj.si +
jurij.tasic@fe.uni-lj.si +
a1dd9038b1e1e59c9d564e252d3e14705872fdecAttributes as Operators: +
Factorizing Unseen Attribute-Object Compositions +
The University of Texas at Austin
2 Facebook AI Research +
('38661780', 'Tushar Nagarajan', 'tushar nagarajan')
('1794409', 'Kristen Grauman', 'kristen grauman')
tushar@cs.utexas.edu, grauman@fb.com∗ +
a1e97c4043d5cc9896dc60ae7ca135782d89e5fcIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Re-identification of Humans in Crowds using +
Personal, Social and Environmental Constraints +
('2963501', 'Shayan Modiri Assari', 'shayan modiri assari')
('1803711', 'Haroon Idrees', 'haroon idrees')
('1745480', 'Mubarak Shah', 'mubarak shah')
a16fb74ea66025d1f346045fda00bd287c20af0eA Coupled Evolutionary Network for Age Estimation +
National Laboratory of Pattern Recognition, CASIA, Beijing, China 100190 +
Center for Research on Intelligent Perception and Computing, CASIA, Beijing, China 100190 +
University of Chinese Academy of Sciences, Beijing, China
('2112221', 'Peipei Li', 'peipei li')
('49995036', 'Yibo Hu', 'yibo hu')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
Email: {peipei.li, yibo.hu}@cripac.ia.ac.cn, {rhe, znsun}@nlpr.ia.ac.cn +
ef940b76e40e18f329c43a3f545dc41080f68748 +
+
Research Article Volume 7 Issue No.3 +
ISSN XXXX XXXX © 2017 IJESC +
+
A Face Recognition and Spoofing Detection Adapted to Visually- +
Impaired People +
K.K Wagh Institute of Engineering and Education Research, Nashik, India
Depart ment of Co mputer Engineering +
Abstrac t: +
According to estimates by the world Health organization, about 285 million people suffer fro m so me kind of v isual disabilit ies of +
which 39 million are blind, resulting in 0.7 of the word population. As many v isual impaired peoples in the word they are unable +
to recognize the people who is standing in front of them and some peoples who have problem to re me mbe r na me of the person. +
They can easily recognize the person using this system. A co mputer vision technique and image ana lysis can help v isually +
the home using face identification and spoofing detection system. This system also provide feature to add newly known people +
and keep records of all peoples visiting their ho me. +
Ke ywor ds: face-recognition, spoofing detection, visually-impaired, system architecture. +
I. +
INTRODUCTION +
The facia l ana lysis can be used to e xtract very useful and +
relevant information in order to help people with visual +
impairment in several of its tasks daily providing them with a +
greater degree of autonomy and security. Facia l recognition +
has received many improve ments recent years and today is +
approaching perfection. The advances in facia l recognition +
have not been outside the People with disab ilities. For +
e xa mple , recently it has an intelligent walking stick for the +
blind that uses facial recognition [5]. The cane co mes +
equipped with a fac ial recognition system, GPS and Bluetooth. +
at the sight the face of any acquaintance or friend whose +
picture is stored on the SD card stick, this will v ibrate and give +
to Bluetooth headset through a necessary instructions to reach +
this person. The system works with anyone who is at 10 +
meters or less. And thanks to the GPS, the user will rece ive +
instructions for reach wherever, as with any GPS navigator. +
However, in addition to the task of recognition today have +
biometric systems to deal with other problems, such as +
spoofing. In network security terms, this term re fers to Using +
techniques through which an attacker, usually with malic ious +
use, it is passed by a other than through the falsification of +
data entity in a co mmun ication. Motivation of the p roject is to +
propose, build and validate an architecture based on face +
recognition and anti-spoofing system that both can be +
integrated in a video entry as a mobile app. In this way, we +
want to give the blind and visually impaired an instrument or +
tool to allo w an ult imate goal to improve the quality of life +
and increase both safety and the feel of it in your ho me or +
when you +
interact with other people. The p roposed +
architecture has been validated with rea l users and a real +
environment simulating the same conditions as could give +
both the images captured by a video portero as images taken +
by a person visually impa ired through their mobile device. +
Contributions are d iscussed below: First an algorith m is +
proposed for the normalization face robust user as to rotations +
and misalignments in the face detection algorith m. It is shown +
that a robust norma lizat ion algorithm you can significantly +
increase the rate of success in a face detection algorithm +
The organizat ion of this document is as follo ws. In Section 2 +
gives literature survey, Section 3 gives details of system +
architecture. In Section 4 gives imp le mentation details. +
Section 5 presents research findings and your analysis of those +
findings. Section 6 concludes the paper. +
II. LITERATURE S URVEY +
A. Facial Rec ognition oriente d visual i mpair ment +
The proble m of face recognition adapted to visually impaired +
people has been investigated in their d ifferent ways. Belo w are +
summarized the work impo rtant, indicating for each the most +
important features that have been motivating development of +
the architecture proposed here. In [6] fac ia l recognition system +
is presented in mobile devices for the visually impaired, but +
meet ings main ly focused on what aspects as visual fie ld +
captured by the mobile focus much of the subject. In [7] +
system developed facial recognition based on Local Binary +
Pattern (LBP) [8]. They co mpared this with other a lternatives +
descriptor (Local Te rnary Pattern [9] or Histogram of +
Gradients [10]) and arrived It concluded that the performance +
is slightly LBP superior, its computational cost is lower and +
representation information is more co mpact. As has been +
mentioned above, in [5] it has developed a system fac ial +
recognition integrated into a cane. In none of these methods is +
carried out detection spoofing, making the system has a +
vulnerability high against such attacks. We believe it is a point +
very important especially in people with visual d isabilities. +
Moreover, none of the alternatives above mentioned is video +
porters oriented. +
B. De tection S poofing +
As none of the above has been studied spoofing detection to +
help people with visual impairment, we will discuss the +
results more significant as +
refers. There are many different methods +
for detecting +
spoofing. However, one o f the key factors in an application +
that must run in rea l time and in a device Embedded is what +
the method be co mputationally lightweight. Most algorith ms +
or proposed are very comple x and are therefo re unfit for rea l, +
far as detecting spoofing +
International Journal of Engineering Science and Computing, March 2017 6051 http://ijesc.org/ +
efd308393b573e5410455960fe551160e1525f49Tracking Persons-of-Interest via +
Unsupervised Representation Adaptation +
('2481388', 'Shun Zhang', 'shun zhang')
('3068086', 'Jia-Bin Huang', 'jia-bin huang')
('33047058', 'Jongwoo Lim', 'jongwoo lim')
('1698965', 'Yihong Gong', 'yihong gong')
('32014778', 'Jinjun Wang', 'jinjun wang')
('1752333', 'Narendra Ahuja', 'narendra ahuja')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
ef230e3df720abf2983ba6b347c9d46283e4b690Page 1 of 20 +
QUIS-CAMPI: An Annotated Multi-biometrics Data Feed From +
Surveillance Scenarios +
IT - Instituto de Telecomunica es, University of Beira Interior
University of Beira Interior
IT - Instituto de Telecomunica es, University of Beira Interior
('1712429', 'Hugo Proença', 'hugo proença')*jcneves@ubi.pt +
ef4ecb76413a05c96eac4c743d2c2a3886f2ae07Modeling the Importance of Faces in Natural Images +
Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a +
aEPFL, Lausanne, Switzerland; +
bOc´e, Paris, France +
efd28eabebb9815e34031316624e7f095c7dfcfeA. Uhl and P. Wild. Combining Face with Face-Part Detectors under Gaussian Assumption. In A. Campilho and M. Kamel, +
editors, Proceedings of the 9th International Conference on Image Analysis and Recognition (ICIAR’12), volume 7325 of +
LNCS, pages 80{89, Aveiro, Portugal, June 25{27, 2012. c⃝ Springer. doi: 10.1007/978-3-642-31298-4 10. The original +
publication is available at www.springerlink.com. +
Combining Face with Face-part Detectors +
under Gaussian Assumption⋆ +
Multimedia Signal Processing and Security Lab +
University of Salzburg, Austria
('1689850', 'Andreas Uhl', 'andreas uhl')
('2242291', 'Peter Wild', 'peter wild')
fuhl,pwildg@cosy.sbg.ac.at +
eff87ecafed67cc6fc4f661cb077fed5440994bbEvaluation of Expression Recognition +
Techniques +
Beckman Institute, University of Illinois at Urbana-Champaign, USA
Faculty of Science, University of Amsterdam, The Netherlands
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
('1774778', 'Ira Cohen', 'ira cohen')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1840164', 'Yafei Sun', 'yafei sun')
('1731570', 'Michael S. Lew', 'michael s. lew')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
ef458499c3856a6e9cd4738b3e97bef010786adbLearning Type-Aware Embeddings for Fashion +
Compatibility +
Department of Computer Science, +
University of Illinois at Urbana-Champaign
('47087718', 'Mariya I. Vasileva', 'mariya i. vasileva')
('2856622', 'Bryan A. Plummer', 'bryan a. plummer')
('40895028', 'Krishna Dusad', 'krishna dusad')
('9560882', 'Shreya Rajpal', 'shreya rajpal')
('40439276', 'Ranjitha Kumar', 'ranjitha kumar')
{mvasile2,bplumme2,dusad2,srajpal2,ranjitha,daf}@illnois.edu +
ef032afa4bdb18b328ffcc60e2dc5229cc1939bcFang and Yuan EURASIP Journal on Image and Video +
Processing (2018) 2018:44 +
https://doi.org/10.1186/s13640-018-0282-x +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
Attribute-enhanced metric learning for +
face retrieval +
('8589942', 'Yuchun Fang', 'yuchun fang')
('30438417', 'Qiulong Yuan', 'qiulong yuan')
ef2a5a26448636570986d5cda8376da83d96ef87Recurrent Neural Networks and Transfer Learning for Action Recognition +
Stanford University
Stanford University
('11647121', 'Andrew Giel', 'andrew giel')
('32426361', 'Ryan Diaz', 'ryan diaz')
agiel@stanford.edu +
ryandiaz@stanford.edu +
ef5531711a69ed687637c48930261769465457f0Studio2Shop: from studio photo shoots to fashion articles +
Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany +
Keywords: +
computer vision, deep learning, fashion, item recognition, street-to-shop +
('46928510', 'Julia Lasserre', 'julia lasserre')
('1724791', 'Katharina Rasch', 'katharina rasch')
('2742129', 'Roland Vollgraf', 'roland vollgraf')
julia.lasserre@zalando.de +
ef559d5f02e43534168fbec86707915a70cd73a0DING, HUO, HU, LU: DEEPINSIGHT +
DeepInsight: Multi-Task Multi-Scale Deep +
Learning for Mental Disorder Diagnosis +
1 School of Information +
Renmin University of China
Beijing, 100872, China +
2 Beijing Key Laboratory +
of Big Data Management +
and Analysis Methods +
Beijing, 100872, China +
('5535865', 'Mingyu Ding', 'mingyu ding')
('4140493', 'Yuqi Huo', 'yuqi huo')
('1745787', 'Jun Hu', 'jun hu')
('1776220', 'Zhiwu Lu', 'zhiwu lu')
d130143597@163.com +
bnhony@163.com +
junhu@ruc.edu.cn +
luzhiwu@ruc.edu.cn +
efa08283656714911acff2d5022f26904e451113Active Object Localization in Visual Situations +('3438473', 'Max H. Quinn', 'max h. quinn')
('13739397', 'Anthony D. Rhodes', 'anthony d. rhodes')
('4421478', 'Melanie Mitchell', 'melanie mitchell')
ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98Fine-grained Activity Recognition +
with Holistic and Pose based Features +
Max Planck Institute for Informatics, Germany
Stanford University, USA
('2299109', 'Leonid Pishchulin', 'leonid pishchulin')
('1906895', 'Mykhaylo Andriluka', 'mykhaylo andriluka')
('1697100', 'Bernt Schiele', 'bernt schiele')
ef999ab2f7b37f46445a3457bf6c0f5fd7b5689dCalhoun: The NPS Institutional Archive +
DSpace Repository +
Theses and Dissertations +
1. Thesis and Dissertation Collection, all items +
2017-12 +
Improving face verification in photo albums by +
combining facial recognition and metadata +
with cross-matching +
Monterey, California: Naval Postgraduate School +
http://hdl.handle.net/10945/56868 +
Downloaded from NPS Archive: Calhoun +
c32fb755856c21a238857b77d7548f18e05f482dMultimodal Emotion Recognition for Human- +
Computer Interaction: A Survey +
School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China
('10692633', 'Michele Mukeshimana', 'michele mukeshimana')
('1714904', 'Xiaojuan Ban', 'xiaojuan ban')
('17056027', 'Nelson Karani', 'nelson karani')
('7247643', 'Ruoyi Liu', 'ruoyi liu')
c3beae515f38daf4bd8053a7d72f6d2ed3b05d88
c3dc4f414f5233df96a9661609557e341b71670dTao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4 +
http://asp.eurasipjournals.com/content/2011/1/4 +
RESEARCH +
Utterance independent bimodal emotion +
recognition in spontaneous communication +
Open Access +
('37670752', 'Jianhua Tao', 'jianhua tao')
('48027528', 'Shifeng Pan', 'shifeng pan')
('2740129', 'Minghao Yang', 'minghao yang')
('3295988', 'Kaihui Mu', 'kaihui mu')
('2253805', 'Jianfeng Che', 'jianfeng che')
c3b3636080b9931ac802e2dd28b7b684d6cf4f8bInternational Journal of Security and Its Applications +
Vol. 7, No. 2, March, 2013 +
Face Recognition via Local Directional Pattern +
Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology
50-1, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu, Korea. +
('2437301', 'Dong-Ju Kim', 'dong-ju kim')
('38107412', 'Sang-Heon Lee', 'sang-heon lee')
('2735120', 'Myoung-Kyu Sohn', 'myoung-kyu sohn')
*radioguy@dgist.ac.kr +
c398684270543e97e3194674d9cce20acaef3db3Chapter 2 +
Comparative Face Soft Biometrics for +
Human Identification +
('19249411', 'Nawaf Yousef Almudhahka', 'nawaf yousef almudhahka')
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('31534955', 'Jonathon S. Hare', 'jonathon s. hare')
c3285a1d6ec6972156fea9e6dc9a8d88cd001617
c3418f866a86dfd947c2b548cbdeac8ca5783c15
c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +
8-10 +
A New Scheme for Image Recognition Using Higher-Order Local +
Autocorrelation and Factor Analysis +
yThe University of Tokyo
Tokyo, Japan +
yyyAIST +
Tukuba, Japan +
('29737626', 'Naoyuki Nomoto', 'naoyuki nomoto')
('2163494', 'Yusuke Shinohara', 'yusuke shinohara')
('2981587', 'Takayoshi Shiraki', 'takayoshi shiraki')
('1800592', 'Takumi Kobayashi', 'takumi kobayashi')
('1809629', 'Nobuyuki Otsu', 'nobuyuki otsu')
f shiraki, takumi, otsug @isi.imi.i.u-tokyo.ac.jp +
c34532fe6bfbd1e6df477c9ffdbb043b77e7804dA 3D Morphable Eye Region Model +
for Gaze Estimation +
University of Cambridge, Cambridge, UK
Carnegie Mellon University, Pittsburgh, USA
Max Planck Institute for Informatics, Saarbr ucken, Germany
('34399452', 'Erroll Wood', 'erroll wood')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
('39626495', 'Peter Robinson', 'peter robinson')
('3194727', 'Andreas Bulling', 'andreas bulling')
{eww23,pr10}@cl.cam.ac.uk +
{tbaltrus,morency}@cs.cmu.edu +
bulling@mpi-inf.mpg.de +
c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0Person Reidentification and Recognition in +
Video +
Computer Science and Engineering, +
University of South Florida, Tampa, Florida, USA
http://figment.csee.usf.edu/ +
('3110392', 'Rangachar Kasturi', 'rangachar kasturi')R1K@cse.usf.edu,rajmadhan@mail.usf.edu +
c32383330df27625592134edd72d69bb6b5cff5c422 +
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012 +
Intrinsic Illumination Subspace for Lighting +
Insensitive Face Recognition +
('1686057', 'Chia-Ping Chen', 'chia-ping chen')
('1720473', 'Chu-Song Chen', 'chu-song chen')
c3a3f7758bccbead7c9713cb8517889ea6d04687
c32f04ccde4f11f8717189f056209eb091075254Analysis and Synthesis of Behavioural Specific +
Facial Motion +
A dissertation submitted to the University of Bristol in accordance with the requirements
for the degree of Doctor of Philosophy in the Faculty of Engineering, Department of +
Computer Science. +
February 2007 +
71657 words +
('2903159', 'Lisa Nanette Gralewski', 'lisa nanette gralewski')
c30982d6d9bbe470a760c168002ed9d66e1718a2Multi-Camera Head Pose Estimation +
Using an Ensemble of Exemplars +
University City Blvd., Charlotte, NC
Department of Computer Science +
University of North Carolina at Charlotte
('1715594', 'Scott Spurlock', 'scott spurlock')
('2549750', 'Peter Malmgren', 'peter malmgren')
('1873911', 'Hui Wu', 'hui wu')
('1690110', 'Richard Souvenir', 'richard souvenir')
{sspurloc, ptmalmyr, hwu13, souvenir}@uncc.edu +
c39ffc56a41d436748b9b57bdabd8248b2d28a32Residual Attention Network for Image Classification +
SenseTime Group Limited, 2Tsinghua University
The Chinese University of Hong Kong, 4Beijing University of Posts and Telecommunications
('1682816', 'Fei Wang', 'fei wang')
('9563639', 'Mengqing Jiang', 'mengqing jiang')
('40110742', 'Chen Qian', 'chen qian')
('1692609', 'Shuo Yang', 'shuo yang')
('49672774', 'Cheng Li', 'cheng li')
('1720776', 'Honggang Zhang', 'honggang zhang')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
1{wangfei, qianchen, chengli}@sensetime.com, 2jmq14@mails.tsinghua.edu.cn +
3{ys014, xtang}@ie.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, 4zhhg@bupt.edu.cn +
c32cd207855e301e6d1d9ddd3633c949630c793aOn the Effect of Illumination and Face Recognition +
Jeffrey Ho +
Department of CISE +
University of Florida
Gainesville, FL 32611 +
Department of Computer Science +
University of California at San Diego
La Jolla, CA 92093 +
('38998440', 'David Kriegman', 'david kriegman')Email: jho@cise.ufl.edu +
Email: kriegman@cs.ucsd.edu +
c317181fa1de2260e956f05cd655642607520a4fResearch Article +
Research +
Article for submission to journal +
Subject Areas: +
computer vision, pattern recognition, +
feature descriptor +
Keywords: +
micro-facial expression, expression +
recognition, action unit +
Objective Classes for +
Micro-Facial Expression +
Recognition +
Centre for Imaging Sciences, University of
Manchester, Manchester, United Kingdom +
Sudan University of Science and Technology
Khartoum, Sudan +
3School of Computing, Mathematics and Digital +
Technology, Manchester Metropolitan University
Manchester, United Kingdom +
instead of predicted emotion, +
Micro-expressions are brief spontaneous facial expressions +
that appear on a face when a person conceals an emotion, +
making them different +
to normal facial expressions in +
subtlety and duration. Currently, emotion classes within +
the CASME II dataset are based on Action Units and +
self-reports, creating conflicts during machine learning +
training. We will show that classifying expressions using +
Action Units, +
removes +
the potential bias of human reporting. The proposed +
classes are tested using LBP-TOP, HOOF and HOG 3D +
feature descriptors. The experiments are evaluated on +
two benchmark FACS coded datasets: CASME II and +
SAMM. The best result achieves 86.35% accuracy when +
classifying the proposed 5 classes on CASME II using +
HOG 3D, outperforming the result of the state-of-the- +
art 5-class emotional-based classification in CASME II. +
Results indicate that classification based on Action Units +
provides an objective method to improve micro-expression +
recognition. +
1. Introduction +
A micro-facial expression is revealed when someone attempts +
to conceal their true emotion [1,2]. When they consciously +
realise that a facial expression is occurring, the person may try +
to suppress the facial expression because showing the emotion +
may not be appropriate [3]. Once the suppression has occurred, +
the person may mask over the original facial expression and +
cause a micro-facial expression. In a high-stakes environment, +
these expressions tend to become more likely as there is more +
risk to showing the emotion. +
('3125772', 'Moi Hoon Yap', 'moi hoon yap')
('36059631', 'Adrian K. Davison', 'adrian k. davison')
('23986818', 'Walied Merghani', 'walied merghani')
('3125772', 'Moi Hoon Yap', 'moi hoon yap')
e-mail: M.Yap@mmu.ac.uk +
c30e4e4994b76605dcb2071954eaaea471307d80
c37a971f7a57f7345fdc479fa329d9b425ee02beA Novice Guide towards Human Motion Analysis and Understanding +('40360970', 'Ahmed Nabil Mohamed', 'ahmed nabil mohamed')dr.ahmed.mohamed@ieee.org +
c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af
c32c8bfadda8f44d40c6cd9058a4016ab1c27499Unconstrained Face Recognition From a Single +
Image +
Siemens Corporate Research, 755 College Road East, Princeton, NJ
Center for Automation Research (CfAR), University of Maryland, College Park, MD
I. INTRODUCTION +
In most situations, identifying humans using faces is an effortless task for humans. Is this true for computers? +
This very question defines the field of automatic face recognition [10], [38], [79], one of the most active research +
areas in computer vision, pattern recognition, and image understanding. Over the past decade, the problem of face +
recognition has attracted substantial attention from various disciplines and has witnessed a skyrocketing growth of +
the literature. Below, we mainly emphasize some key perspectives of the face recognition problem. +
A. Biometric perspective +
Face is a biometric. As a consequence, face recognition finds wide applications in authentication, security, and +
so on. One recent application is the US-VISIT system by the Department of Homeland Security (DHS), collecting +
foreign passengers’ fingerprints and face images. +
Biometric signatures of a person characterize the physiological or behavioral characteristics. Physiological bio- +
metrics are innate or naturally occuring, while behavioral biometrics arise from mannerisms or traits that are learned +
or acquired. Table I lists commonly used biometrics. Biometric technologies provide the foundation for an extensive +
array of highly secure identification and personal verification solutions. Compared to conventional identification and +
verification methods based on personal identification numbers (PINs) or passwords, biometric technologies offer +
many advantages. First, biometrics are individualized traits while passwords may be used or stolen by someone +
other than the authorized user. Also, biometric is very convenient since there is nothing to carry or remember. In +
addition, biometric technologies are becoming more accurate and less expensive. +
Among all biometrics listed in Table I, face is a very unique one because it is the only biometric belonging to +
both physiological and behavioral categories. While the physiological part of the face has been widely exploited +
for face recognition, the behavioral part has not yet been fully investigated. In addition, as reported in [23], [51], +
face enjoys many advantages over other biometrics because it is a natural, non-intrusive, and easy-to-use biometric. +
For example [23], among six biometrics of face, finger, hand, voice, eye, and signature, face biometric ranks the +
June 10, 2008 +
DRAFT +
('1682187', 'Shaohua Kevin Zhou', 'shaohua kevin zhou')
('9215658', 'Rama Chellappa', 'rama chellappa')
('34713849', 'Narayanan Ramanathan', 'narayanan ramanathan')
Email: {shaohua.zhou}@siemens.com, {rama, ramanath}@cfar.umd.edu +
c3fb2399eb4bcec22723715556e31c44d086e054499 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
1. INTRODUCTION +
c37de914c6e9b743d90e2566723d0062bedc9e6a©2016 Society for Imaging Science and Technology +
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455 +
Joint and Discriminative Dictionary Learning +
Expression Recognition +
for Facial +
('38611433', 'Sriram Kumar', 'sriram kumar')
('3168309', 'Behnaz Ghoraani', 'behnaz ghoraani')
('32219349', 'Andreas Savakis', 'andreas savakis')
c418a3441f992fea523926f837f4bfb742548c16A Computer Approach for Face Aging Problems +
Centre for Pattern Recognition and Machine Intelligence, +
Concordia University, Canada
('1769788', 'Khoa Luu', 'khoa luu')kh_lu@cenparmi.concordia.ca +
c4fb2de4a5dc28710d9880aece321acf68338fdeInteractive Generative Adversarial Networks for Facial Expression Generation +
in Dyadic Interactions +
University of Central Florida
Educational Testing Service +
Saad Khan +
Educational Testing Service +
('2974242', 'Behnaz Nojavanasghari', 'behnaz nojavanasghari')
('2224875', 'Yuchi Huang', 'yuchi huang')
behnaz@eecs.ucf.edu +
yhuang001@ets.org +
skhan002@ets.org +
c44c84540db1c38ace232ef34b03bda1c81ba039Cross-Age Reference Coding for Age-Invariant +
Face Recognition and Retrieval +
Institute of Information Science, Academia Sinica, Taipei, Taiwan
National Taiwan University, Taipei, Taiwan
('33970300', 'Bor-Chun Chen', 'bor-chun chen')
('1720473', 'Chu-Song Chen', 'chu-song chen')
('1716836', 'Winston H. Hsu', 'winston h. hsu')
c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4Int J Comput Vis (2014) 108:3–29 +
DOI 10.1007/s11263-014-0698-4 +
The Ignorant Led by the Blind: A Hybrid Human–Machine Vision +
System for Fine-Grained Categorization +
Received: 7 March 2013 / Accepted: 8 January 2014 / Published online: 20 February 2014 +
© Springer Science+Business Media New York 2014 +
('3251767', 'Steve Branson', 'steve branson')
('1690922', 'Pietro Perona', 'pietro perona')
c46a4db7247d26aceafed3e4f38ce52d54361817A CNN Cascade for Landmark Guided Semantic +
Part Segmentation +
School of Computer Science, The University of Nottingham, Nottingham, UK
('34596685', 'Aaron S. Jackson', 'aaron s. jackson')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
{aaron.jackson, michel.valstar, yorgos.tzimiropoulos}@nottingham.ac.uk +
c43862db5eb7e43e3ef45b5eac4ab30e318f2002Provable Self-Representation Based Outlier Detection in a Union of Subspaces +
Johns Hopkins University, Baltimore, MD, 21218, USA
('1878841', 'Chong You', 'chong you')
('1780452', 'Daniel P. Robinson', 'daniel p. robinson')
c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad Understanding Activity: Learning the Language of Action +
Univ. of Rochester and Maryland +
1.1 Overview +
Understanding observed activity is an important +
problem, both from the standpoint of practical applications, +
and as a central issue in attempting to describe the +
phenomenon of intelligence. On the practical side, there are a +
large number of applications that would benefit from +
improved machine ability to analyze activity. The most +
prominent are various surveillance scenarios. The current +
emphasis on homeland security has brought this issue to the +
forefront, and resulted in considerable work on mostly low- +
level detection schemes. There are also applications in +
medical diagnosis and household assistants that, in the long +
run, may be even more important. In addition, there are +
numerous scientific projects, ranging from monitoring of +
weather conditions to observation of animal behavior that +
would be facilitated by automatic understanding of activity. +
From a scientific standpoint, understanding activity +
understanding is central to understanding intelligence. +
Analyzing what is happening in the environment, and acting +
on the results of that analysis is, to a large extent, what +
natural intelligent systems do, whether they are human or +
animal. Artificial intelligences, if we want them to work with +
people in the natural world, will need commensurate abilities. +
The importance of the problem has not gone unrecognized. +
There is a substantial body of work on various components of +
the problem, most especially on change detection, motion +
analysis, and tracking. More recently, in the context of +
surveillance applications, there have been some preliminary +
efforts to come up with a general ontology of human activity. +
These efforts have largely been top-down in the classic AI +
tradition, and, as with earlier analogous effort in areas such +
as object recognition and scene understanding, have seen +
limited practical application because of the difficulty in +
robustly extracting the putative primitives on which the top- +
down formalism is based. We propose a novel alternative +
approach, where understanding activity is centered on +
('34344092', 'Randal Nelson', 'randal nelson')
('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')
c42a8969cd76e9f54d43f7f4dd8f9b08da566c5fTowards Unconstrained Face Recognition +
Using 3D Face Model +
Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching
Computer Vision Research Group, COMSATS Institute of Information
Technology, Lahore +
1Germany +
2Pakistan +
1. Introduction +
Over the last couple of decades, many commercial systems are available to identify human +
faces. However, face recognition is still an outstanding challenge against different kinds of +
real world variations especially facial poses, non-uniform lightings and facial expressions. +
Meanwhile the face recognition technology has extended its role from biometrics and security +
applications to human robot interaction (HRI). Person identity is one of the key tasks while +
interacting with intelligent machines/robots, exploiting the non intrusive system security +
and authentication of the human interacting with the system. This capability further helps +
machines to learn person dependent traits and interaction behavior to utilize this knowledge +
for tasks manipulation. In such scenarios acquired face images contain large variations which +
demands an unconstrained face recognition system. +
Fig. 1. Biometric analysis of past few years has been shown in figure showing the +
contribution of revenue generated by various biometrics. Although AFIS are getting popular +
in current biometric industry but faces are still considered as one of the widely used +
biometrics. +
www.intechopen.com +
('1725709', 'Zahid Riaz', 'zahid riaz')
('4241648', 'M. Saquib Sarfraz', 'm. saquib sarfraz')
('1746229', 'Michael Beetz', 'michael beetz')
c41de506423e301ef2a10ea6f984e9e19ba091b4Modeling Attributes from Category-Attribute Proportions +
Columbia University
2IBM Research +
('1815972', 'Felix X. Yu', 'felix x. yu')
('29889388', 'Tao Chen', 'tao chen')
{yuxinnan, taochen, sfchang}@ee.columbia.edu +
{liangliang.cao, mimerler, nccodell, jsmith}@us.ibm.com +
c4934d9f9c41dbc46f4173aad2775432fe02e0e6Workshop track - ICLR 2017 +
GENERALIZATION TO NEW COMPOSITIONS OF KNOWN +
ENTITIES IN IMAGE UNDERSTANDING +
Bar Ilan University, Israel
Jonathan Berant & +
Amir Globerson +
Tel Aviv University
Israel +
Vahid Kazemi & +
Gal Chechik +
Google Research, +
Mountain View CA, USA +
('34815079', 'Yuval Atzmon', 'yuval atzmon')yuval.atzmon@biu.ac.il +
c40c23e4afc81c8b119ea361e5582aa3adecb157Coupled Marginal Fisher Analysis for +
Low-resolution Face Recognition +
Carnegie Mellon University, Electrical and Computer Engineering
5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213 +
('2883809', 'Stephen Siena', 'stephen siena')
('2232940', 'Vishnu Naresh Boddeti', 'vishnu naresh boddeti')
ssiena@andrew.cmu.edu +
naresh@cmu.edu +
kumar@ece.cmu.edu +
c49aed65fcf9ded15c44f9cbb4b161f851c6fa88Multiscale Facial Expression Recognition using Convolutional Neural Networks +
IDIAP, Martigny, Switzerland +
('8745904', 'Beat Fasel', 'beat fasel')Beat.Fasel@idiap.ch +
c466ad258d6262c8ce7796681f564fec9c2b143d14-21 +
MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN +
Pose-Invariant Face Recognition +
Using A Single 3D Reference Model +
National Taiwan University of Science and Technology
No. 43, Sec.4, Keelung Rd., Taipei, 106, Taiwan +
('38801529', 'Gee-Sern Hsu', 'gee-sern hsu')
('3329222', 'Hsiao-Chia Peng', 'hsiao-chia peng')
*jison@mail.ntust.edu.tw +
ea46951b070f37ad95ea4ed08c7c2a71be2daedcUsing phase instead of optical flow +
for action recognition +
Computer Vision Lab, Delft University of Technology, Netherlands
Intelligent Sensory Interactive Systems, University of Amsterdam, Netherlands
('9179750', 'Omar Hommos', 'omar hommos')
('37041694', 'Silvia L. Pintea', 'silvia l. pintea')
('1738975', 'Jan C. van Gemert', 'jan c. van gemert')
eac6aee477446a67d491ef7c95abb21867cf71fcJOURNAL +
A survey of sparse representation: algorithms and +
applications +
('38448016', 'Zheng Zhang', 'zheng zhang')
('38649019', 'Yong Xu', 'yong xu')
('37081450', 'Jian Yang', 'jian yang')
('1720243', 'Xuelong Li', 'xuelong li')
('1698371', 'David Zhang', 'david zhang')
ea079334121a0ba89452036e5d7f8e18f6851519UNSUPERVISED INCREMENTAL LEARNING OF DEEP DESCRIPTORS +
FROM VIDEO STREAMS +
MICC University of Florence
('2619131', 'Federico Pernici', 'federico pernici')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
federico.pernici@unifi.it, alberto.delbimbo@unifi.it +
eac1b644492c10546a50f3e125a1f790ec46365fChained Multi-stream Networks Exploiting Pose, Motion, and Appearance for +
Action Classification and Detection +
University of Freiburg
Freiburg im Breisgau, Germany +
('2890820', 'Mohammadreza Zolfaghari', 'mohammadreza zolfaghari')
('2371771', 'Gabriel L. Oliveira', 'gabriel l. oliveira')
('31656404', 'Nima Sedaghat', 'nima sedaghat')
('1710872', 'Thomas Brox', 'thomas brox')
{zolfagha,oliveira,nima,brox}@cs.uni-freiburg.de +
ea80a050d20c0e24e0625a92e5c03e5c8db3e786Face Verification and Face Image Synthesis +
under Illumination Changes +
using Neural Networks +
by +
Under the supervision of +
Prof. Daphna Weinshall +
School of Computer Science and Engineering +
The Hebrew University of Jerusalem
Israel +
Submitted in partial fulfillment of the +
requirements of the degree of +
Master of Science +
December, 2017 +
eacba5e8fbafb1302866c0860fc260a2bdfff232VOS-GAN: Adversarial Learning of Visual-Temporal +
Dynamics for Unsupervised Dense Prediction in Videos +
∗ Pattern Recognition and Computer Vision (PeRCeiVe) Lab +
University of Catania, Italy
www.perceivelab.com +
§ Center for Research in Computer Vision +
University of Central Florida, USA
http://crcv.ucf.edu +
('31411067', 'C. Spampinato', 'c. spampinato')
('35323264', 'S. Palazzo', 's. palazzo')
('2004177', 'F. Murabito', 'f. murabito')
('1690194', 'D. Giordano', 'd. giordano')
('1797029', 'M. Shah', 'm. shah')
ea482bf1e2b5b44c520fc77eab288caf8b3f367aProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
2592 +
ea6f5c8e12513dbaca6bbdff495ef2975b8001bdApplying a Set of Gabor Filter to 2D-Retinal Fundus Image +
to Detect the Optic Nerve Head (ONH) +
1Higher National School of engineering of Tunis, ENSIT, Laboratory LATICE (Information Technology and Communication and +
Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab
Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master
ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis
ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address
Rue Djebel Lakhdhar. La Rabta. 1007, Tunis - Tunisia +
Corresponding author: +
High Institute of Medical Technologies
of Tunis, ISTMT, and High National +
School Engineering of Tunis, +
Information Technology and +
Communication Technology and +
Electrical Engineering, University of
Tunis El-Manar, ENSIT 5, Avenue Taha +
Hussein, B. P.: 56, Bab Menara, 1008 +
Tunis, Tunisia, +
Tel: 9419010363; +
('9304667', 'Hédi Trabelsi', 'hédi trabelsi')
('2281259', 'Ines Malek', 'ines malek')
('31649078', 'Imed Jabri', 'imed jabri')
E-mail: rabelg@live.fr +
eafda8a94e410f1ad53b3e193ec124e80d57d095Jeffrey F. Cohn +
13 +
Observer-Based Measurement of Facial Expression +
With the Facial Action Coding System +
Facial expression has been a focus of emotion research for over +
a hundred years (Darwin, 1872/1998). It is central to several +
leading theories of emotion (Ekman, 1992; Izard, 1977; +
Tomkins, 1962) and has been the focus of at times heated +
debate about issues in emotion science (Ekman, 1973, 1993; +
Fridlund, 1992; Russell, 1994). Facial expression figures +
prominently in research on almost every aspect of emotion, +
including psychophysiology (Levenson, Ekman, & Friesen, +
1990), neural bases (Calder et al., 1996; Davidson, Ekman, +
Saron, Senulis, & Friesen, 1990), development (Malatesta, +
Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993), +
perception (Ambadar, Schooler, & Cohn, 2005), social pro- +
cesses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac, +
2000), and emotion disorder (Kaiser, 2002; Sloan, Straussa, +
Quirka, & Sajatovic, 1997), to name a few. +
Because of its importance to the study of emotion, a num- +
ber of observer-based systems of facial expression measure- +
ment have been developed (Ekman & Friesen, 1978, 1982; +
Ekman, Friesen, & Tomkins, 1971; Izard, 1979, 1983; Izard +
& Dougherty, 1981; Kring & Sloan, 1991; Tronick, Als, & +
Brazelton, 1980). Of these various systems for describing +
facial expression, the Facial Action Coding System (FACS; +
Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002) is +
the most comprehensive, psychometrically rigorous, and +
widely used (Cohn & Ekman, 2005; Ekman & Rosenberg, +
2005). Using FACS and viewing video-recorded facial behav- +
ior at frame rate and slow motion, coders can manually code +
nearly all possible facial expressions, which are decomposed +
into action units (AUs). Action units, with some qualifica- +
tions, are the smallest visually discriminable facial move- +
ments. By comparison, other systems are less thorough +
(Malatesta et al., 1989), fail to differentiate between some +
anatomically distinct movements (Oster, Hegley, & Nagel, +
1992), consider movements that are not anatomically dis- +
tinct as separable (Oster et al., 1992), and often assume a one- +
to-one mapping between facial expression and emotion (for +
a review of these systems, see Cohn & Ekman, in press). +
Unlike systems that use emotion labels to describe ex- +
pression, FACS explicitly distinguishes between facial actions +
and inferences about what they mean. FACS itself is descrip- +
tive and includes no emotion-specified descriptors. Hypoth- +
eses and inferences about the emotional meaning of facial +
actions are extrinsic to FACS. If one wishes to make emo- +
tion-based inferences from FACS codes, a variety of related +
resources exist. These include the FACS Investigators’ Guide +
(Ekman et al., 2002), the FACS interpretive database (Ekman, +
Rosenberg, & Hager, 1998), and a large body of empirical +
research.(Ekman & Rosenberg, 2005). These resources sug- +
gest combination rules for defining emotion-specified expres- +
sions from FACS action units, but this inferential step remains +
extrinsic to FACS. Because of its descriptive power, FACS +
is regarded by many as the standard measure for facial be- +
havior and is used widely in diverse fields. Beyond emo- +
tion science, these include facial neuromuscular disorders +
(Van Swearingen & Cohn, 2005), neuroscience (Bruce & +
Young, 1998; Rinn, 1984, 1991), computer vision (Bartlett, +
203 +
UNPROOFED PAGES
('2059653', 'Zara Ambadar', 'zara ambadar')
('21451088', 'Paul Ekman', 'paul ekman')
ea85378a6549bb9eb9bcc13e31aa6a61b655a9afDiplomarbeit +
Template Protection for PCA-LDA-based 3D +
Face Recognition System +
von +
Technische Universität Darmstadt +
Fachbereich Informatik +
Fachgebiet Graphisch-Interaktive Systeme +
Fraunhoferstraße 5 +
64283 Darmstadt +
('1788102', 'Daniel Hartung', 'daniel hartung')
('35069235', 'Xuebing Zhou', 'xuebing zhou')
('1734569', 'Dieter W. Fellner', 'dieter w. fellner')
ea2ee5c53747878f30f6d9c576fd09d388ab0e2bViola-Jones based Detectors: How much affects +
the Training Set? +
SIANI +
Edif. Central del Parque Cient´ıfico Tecnol´ogico +
Universidad de Las Palmas de Gran Canaria +
35017 - Spain +
('4643134', 'Javier Lorenzo-Navarro', 'javier lorenzo-navarro')
ea890846912f16a0f3a860fce289596a7dac575fORIGINAL RESEARCH ARTICLE +
published: 09 October 2014 +
doi: 10.3389/fpsyg.2014.01154 +
Benefits of social vs. non-social feedback on learning and +
generosity. Results from theTipping Game +
Tilburg Center for Logic, General Ethics, and Philosophy of Science, Tilburg University, Tilburg, Netherlands
Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
Edited by: +
Giulia Andrighetto, Institute of
Cognitive Science and Technologies – +
National Research Council, Italy +
Reviewed by: +
David R. Simmons, University of
Glasgow, UK +
Aron Szekely, University of Oxford, UK
*Correspondence: +
Logic, General Ethics, and Philosophy +
of Science, Tilburg University
P. O. Box 90153, 5000 LE +
Tilburg, Netherlands +
Stankevicius have contributed equally +
to this work. +
Although much work has recently been directed at understanding social decision-making, +
relatively little is known about how different types of feedback impact adaptive changes +
in social behavior. To address this issue quantitatively, we designed a novel associative +
learning task called the “Tipping Game,” in which participants had to learn a social norm +
of tipping in restaurants. Participants were found to make more generous decisions +
from feedback in the form of facial expressions, +
in comparison to feedback in the +
form of symbols such as ticks and crosses. Furthermore, more participants displayed +
learning in the condition where they received social feedback than participants in the non- +
social condition. Modeling results showed that the pattern of performance displayed by +
participants receiving social feedback could be explained by a lower sensitivity to economic +
costs. +
Keywords: social/non-social feedback, facial expressions, social norms, tipping behavior, associative learning +
INTRODUCTION +
Several behavioral, neurobiological and theoretical studies have +
shown that social norm compliance, and more generally adap- +
tive changes in social behavior, often require the effective use and +
weighing of different types of information, including expected
economic costs and benefits, the potential impact of our behavior +
on the welfare of others and our own reputation, as well as feed- +
back information (Bicchieri, 2006; Adolphs, 2009; Frith and Frith, +
2012). Relatively little attention has been paid to how different +
types of feedback (or reward) may impact the way social norms +
are learned. The present study addresses this issue with behavioral +
and modeling results from a novel associative learning task called +
the “Tipping Game.” We take the example of tipping and ask: how +
do social feedback in the form of facial expressions, as opposed +
to non-social feedback in the form of such conventional signs as +
ticks and crosses, affect the way participants learn a social norm +
of tipping? +
Recent findings indicate that people’s decision-making is often +
biased by social stimuli. For example, images of a pair of eyes can +
significantly increase pro-social behavior in laboratory conditions +
as well as in real-world contexts (Haley and Fessler, 2005; Bateson +
et al., 2006; Rigdon et al., 2009; Ernest-Jones et al., 2011). Fur- +
thermore, decision-making can be systematically biased by facial +
emotional expressions used as predictors of monetary reward +
(Averbeck and Duchaine, 2009; Evans et al., 2011; Shore and +
Heerey, 2011). Facial expressions of happiness elicit approach- +
ing behavior, whereas angry faces elicit avoidance (Seidel et al., +
2010; for a review seeBlair, 2003). Because they can function as +
signals to others, eliciting specific behavioral responses, emotional +
facial expressions play a major role in socialization practices that +
help individuals to adapt to the norms and values of their culture +
(Keltner and Haidt, 1999; Frith, 2009). +
Despite this body of findings, the literature does not pro- +
vide an unambiguous answer to the question of how learning +
performance is affected by social stimuli in comparison to differ- +
ent types of non-social stimuli used as feedback about previous +
decisions in a learning task (Ruff and Fehr, 2014). Consistent +
with the view that social reinforcement is a powerful facili- +
tator of human learning (Zajonc, 1965; Bandura, 1977), one +
recent study using a feedback-guided item-category association +
task found that learning performance in control groups was +
improved when social (smiling or angry faces) instead of non- +
social (green or red lights) reinforcement was used (Hurlemann +
et al., 2010). +
However, the paradigm used in this study did not distin- +
guish between two conditions in which social-facilitative effects +
on learning performance have been observed: first, a condition +
characterized by the mere presence of others (Allport, 1920); and +
second, a condition where others provide reinforcing feedback +
(Zajonc, 1965). In the task used by Hurlemann et al. (2010), faces +
were present onscreen throughout each trial, changing from a +
neutral to a happy expression for correct responses or angry for +
incorrect responses. So, this study could not identify the specific +
effect of social feedback on learning. +
Consistent with the assumption oft made in economics and +
psychology that optimal decisions and learning are based on an +
assessment of the evidence that is unbiased by the social or non- +
social nature of the evidence itself (Becker, 1976; Oaksford and +
Chater, 2007), Lin et al. (2012a) found that, instead of boosting +
learning performance, social reward (smiling or angry faces) made +
www.frontiersin.org +
October 2014 | Volume 5 | Article 1154 | 1 +
('37157064', 'Matteo Colombo', 'matteo colombo')
('25749361', 'Aistis Stankevicius', 'aistis stankevicius')
('2771872', 'Peggy Seriès', 'peggy seriès')
('37157064', 'Matteo Colombo', 'matteo colombo')
('37157064', 'Matteo Colombo', 'matteo colombo')
e-mail: m.colombo@uvt.nl +
eaaed082762337e7c3f8a1b1dfea9c0d3ca281bfVICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui +
School of Mathematics, Statistics and Computer Science +
Computer Science +
Algebraic Simplification of Genetic +
Programs during Evolution +
Technical Report CS-TR-06/7 +
February 2006 +
School of Mathematics, Statistics and Computer Science +
Victoria University
PO Box 600, Wellington +
New Zealand +
Tel: +64 4 463 5341 +
Fax: +64 4 463 5045 +
http://www.mcs.vuw.ac.nz/research +
('1679067', 'Mengjie Zhang', 'mengjie zhang')Email: Tech.Reports@mcs.vuw.ac.nz +
ea218cebea2228b360680cb85ca133e8c2972e56Recover Canonical-View Faces in the 明Tild with Deep +
Neural Networks +
Departm nt of Information Engin ering Th Chines University of Hong Kong
The Chinese University ofHong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
zz 012 日 ie . cuh k. edu . h k +
('2042558', 'Zhenyao Zhu', 'zhenyao zhu')
('1693209', 'Ping Luo', 'ping luo')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
xgwang@ee . cuhk . edu . hk +
p 1 uo .1 h 工 @gm a i l . com +
xtang@ i e . cuhk. edu . hk +
ea96bc017fb56593a59149e10d5f14011a3744a0
e1630014a5ae3d2fb7ff6618f1470a567f4d90f5Look, Listen and Learn - A Multimodal LSTM for Speaker Identification +
SenseTime Group Limited1 +
The University of Hong Kong
Project page: http://www.deeplearning.cc/mmlstm +
('46972608', 'Yongtao Hu', 'yongtao hu'){rensijie, yuwing, xuli, sunwenxiu, yanqiong}@sensetime.com +
{herohuyongtao, wangchuan2400}@gmail.com +
e19fb22b35c352f57f520f593d748096b41a4a7bModeling Context for Image +
Understanding: +
When, For What, and How? +
Department of Electrical and Computer Engineering, +
Carnegie Mellon University
A thesis submitted for the degree of +
Doctor of Philosophy +
April 3, 2009 +
('1713589', 'Devi Parikh', 'devi parikh')
e10a257f1daf279e55f17f273a1b557141953ce2
e171fba00d88710e78e181c3e807c2fdffc6798a
e1c59e00458b4dee3f0e683ed265735f33187f77Spectral Rotation versus K-Means in Spectral Clustering +
Computer Science and Engineering Department +
University of Texas at Arlington
Arlington,TX,76019 +
('39122448', 'Jin Huang', 'jin huang')
('1688370', 'Feiping Nie', 'feiping nie')
('1748032', 'Heng Huang', 'heng huang')
huangjinsuzhou@gmail.com, feipingnie@gmail.com, heng@uta.edu +
e1f790bbedcba3134277f545e56946bc6ffce48d +
International Journal of Innovative Research in Science, +
Engineering and Technology +
(An ISO 3297: 2007 Certified Organization) +
Vol. 3, Issue 5, May 2014 +
Sparse Code Words +
+
+
ISSN: 2319-8753 +
Image Retrieval Using Attribute Enhanced +
SRV Engineering College, sembodai, india
P.G. Student, SRV Engineering College, sembodai, India
('5768860', 'M.Balaganesh', 'm.balaganesh')
('14176059', 'N.Arthi', 'n.arthi')
e1ab3b9dee2da20078464f4ad8deb523b5b1792ePre-Training CNNs Using Convolutional +
Autoencoders +
TU Berlin +
TU Berlin +
Sabbir Ahmmed +
TU Berlin +
TU Berlin +
('16258861', 'Maximilian Kohlbrenner', 'maximilian kohlbrenner')
('40805229', 'Russell Hofmann', 'russell hofmann')
('3196053', 'Youssef Kashef', 'youssef kashef')
m.kohlbrenner@campus.tu-berlin.de +
r.hofmann@campus.tu-berlin.de +
ahmmed@campus.tu-berlin.de +
kashefy@ni.tu-berlin.de +
e16efd2ae73a325b7571a456618bfa682b51aef8
e19ebad4739d59f999d192bac7d596b20b887f78Learning Gating ConvNet for Two-Stream based Methods in Action +
Recognition +
('1696573', 'Jiagang Zhu', 'jiagang zhu')
('1726367', 'Wei Zou', 'wei zou')
('48147901', 'Zheng Zhu', 'zheng zhu')
e13360cda1ebd6fa5c3f3386c0862f292e4dbee4
e1f6e2651b7294951b5eab5d2322336af1f676dcAppl. Math. Inf. Sci. 9, No. 2L, 461-469 (2015) +
461 +
Applied Mathematics & Information Sciences +
An International Journal +
http://dx.doi.org/10.12785/amis/092L21 +
Emotional Avatars: Appearance Augmentation and +
Animation based on Facial Expression Analysis +
Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea
Received: 22 May 2014, Revised: 23 Jul. 2014, Accepted: 24 Jul. 2014 +
Published online: 1 Apr. 2015 +
('2137943', 'Taehoon Cho', 'taehoon cho')
('4027010', 'Jin-Ho Choi', 'jin-ho choi')
('2849238', 'Hyeon-Joong Kim', 'hyeon-joong kim')
('7236280', 'Soo-Mi Choi', 'soo-mi choi')
e1d726d812554f2b2b92cac3a4d2bec678969368J Electr Eng Technol.2015; 10(?): 30-40 +
http://dx.doi.org/10.5370/JEET.2015.10.2.030 +
ISSN(Print) +
1975-0102 +
ISSN(Online) 2093-7423 +
Human Action Recognition Bases on Local Action Attributes +
and Mohan S Kankanhalli** +
('3132751', 'Weizhi Nie', 'weizhi nie')
('3026404', 'Yongkang Wong', 'yongkang wong')
e1256ff535bf4c024dd62faeb2418d48674ddfa2Towards Open-Set Identity Preserving Face Synthesis +
University of Science and Technology of China
2Microsoft Research +
('3093568', 'Jianmin Bao', 'jianmin bao')
('39447786', 'Dong Chen', 'dong chen')
('1716835', 'Fang Wen', 'fang wen')
('7179232', 'Houqiang Li', 'houqiang li')
('1745420', 'Gang Hua', 'gang hua')
{doch, fangwen, ganghua}@microsoft.com +
lihq@ustc.edu.cn +
jmbao@mail.ustc.edu.cn +
e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2TSINGHUA SCIENCE AND TECHNOLOGY +
ISSNll1007-0214 +
0?/?? pp???–??? +
DOI: 10.26599/TST.2018.9010000 +
Volume 1, Number 1, Septembelr 2018 +
Ranking with Adaptive Neighbors +
('39021559', 'Muge Li', 'muge li')
('2897748', 'Liangyue Li', 'liangyue li')
('1688370', 'Feiping Nie', 'feiping nie')
cd9666858f6c211e13aa80589d75373fd06f6246A Novel Time Series Kernel for +
Sequences Generated by LTI Systems +
V.le delle Scienze Ed.6, DIID, Universit´a degli studi di Palermo, Italy +
('1711610', 'Liliana Lo Presti', 'liliana lo presti')
('9127836', 'Marco La Cascia', 'marco la cascia')
cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66What Makes a Video a Video: Analyzing Temporal Information in Video +
Understanding Models and Datasets +
Stanford University, 2Facebook, 3Dartmouth College
('38485317', 'De-An Huang', 'de-an huang')
('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')
('49274550', 'Dhruv Mahajan', 'dhruv mahajan')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
('2210374', 'Manohar Paluri', 'manohar paluri')
('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')
cd4941cbef1e27d7afdc41b48c1aff5338aacf06MovieGraphs: Towards Understanding Human-Centric Situations from Videos +
University of Toronto
Vector Institute
Lluís Castrejón3 +
Montreal Institute for Learning Algorithms
http://moviegraphs.cs.toronto.edu +
Figure 1: An example from the MovieGraphs dataset. Each of the 7637 video clips is annotated with: 1) a graph that captures the characters +
in the scene and their attributes, interactions (with topics and reasons), relationships, and time stamps; 2) a situation label that captures the +
overarching theme of the interactions; 3) a scene label showing where the action takes place; and 4) a natural language description of the +
clip. The graphs at the bottom show situations that occur before and after the one depicted in the main panel. +
('2039154', 'Paul Vicol', 'paul vicol')
('2103464', 'Makarand Tapaswi', 'makarand tapaswi')
('37895334', 'Sanja Fidler', 'sanja fidler')
{pvicol, makarand, fidler}@cs.toronto.edu, lluis.enric.castrejon.subira@umontreal.ca +
cd4c047f4d4df7937aff8fc76f4bae7718004f40
cdef0eaff4a3c168290d238999fc066ebc3a93e8CONTRASTIVE-CENTER LOSS FOR DEEP NEURAL NETWORKS +
1School of Information and Communication Engineering +
2Beijing Key Laboratory of Network System and Network Culture +
Beijing University of Posts and Telecommunications, Beijing, China
('49712251', 'Ce Qi', 'ce qi')
('1684263', 'Fei Su', 'fei su')
cd444ee7f165032b97ee76b21b9ff58c10750570UNIVERSITY OF CALIFORNIA
IRVINE +
Relational Models for Human-Object Interactions and Object Affordances +
DISSERTATION +
submitted in partial satisfaction of the requirements +
for the degree of +
DOCTOR OF PHILOSOPHY +
in Computer Science +
by +
Dissertation Committee: +
Professor Deva Ramanan, Chair +
Professor Charless Fowlkes +
Professor Padhraic Smyth +
Professor Serge Belongie +
2013 +
('40277674', 'Chaitanya Desai', 'chaitanya desai')
cd23dc3227ee2a3ab0f4de1817d03ca771267aebWU, KAMATA, BRECKON: FACE RECOGNITION VIA DSGNN +
Face Recognition via Deep Sparse Graph +
Neural Networks +
Renjie WU1 +
Toby Breckon2 +
1 Graduate School of Information, +
Production and Systems +
Waseda University
Kitakyushu-shi, Japan +
2 Engineering and Computing Sciences +
Durham University, Durham, UK
('35222422', 'Sei-ichiro Kamata', 'sei-ichiro kamata')wurj-sjtu-waseda@ruri.waseda.jp +
kam@waseda.jp +
toby.breckon@durham.ac.uk +
cd596a2682d74bdfa7b7160dd070b598975e89d9Mood Detection: Implementing a facial +
expression recognition system +
1. Introduction +
Facial expressions play a significant role in human dialogue. As a result, there has been +
considerable work done on the recognition of emotional expressions and the application of this +
research will be beneficial in improving human-machine dialogue. One can imagine the +
improvements to computer interfaces, automated clinical (psychological) research or even +
interactions between humans and autonomous robots. +
Unfortunately, a lot of the literature does not focus on trying to achieve high recognition rates +
across multiple databases. In this project we develop our own mood detection system that +
addresses this challenge. The system involves pre-processing image data by normalizing and +
applying a simple mask, extracting certain (facial) features using PCA and Gabor filters and then +
using SVMs for classification and recognition of expressions. Eigenfaces for each class are used +
to determine class-specific masks which are then applied to the image data and used to train +
multiple, one against the rest, SVMs. We find that simply using normalized pixel intensities +
works well with such an approach. +
Figure 1 – Overview of our system design +
2. Image pre-processing +
We performed pre-processing on the images used to train and test our algorithms as follows: +
1. The location of the eyes is first selected manually +
2. Images are scaled and cropped to a fixed size (170 x 130) keeping the eyes in all images +
aligned +
3. The image is histogram equalized using the mean histogram of all the training images to +
make it invariant to lighting, skin color etc. +
4. A fixed oval mask is applied to the image to extract face region. This serves to eliminate +
the background, hair, ears and other extraneous features in the image which provide no +
information about facial expression. +
This approach works reasonably well in capturing expression-relevant facial information across +
all databases. Examples of pre-processed images from the various datasets are shown in Figure- +
2a below. +
('1906123', 'Neeraj Agrawal', 'neeraj agrawal')
('2929557', 'Rob Cosgriff', 'rob cosgriff')
('2594170', 'Ritvik Mudur', 'ritvik mudur')
cdb1d32bc5c1a9bb0d9a5b9c9222401eab3e9ca0Functional Faces: Groupwise Dense Correspondence using Functional Maps +
The University of York, UK
2IMB/LaBRI, Universit´e de Bordeaux, France +
('1720735', 'Chao Zhang', 'chao zhang')
('34895713', 'Arnaud Dessein', 'arnaud dessein')
('1737428', 'Nick Pears', 'nick pears')
('1694260', 'Hang Dai', 'hang dai')
{cz679, william.smith, nick.pears, hd816}@york.ac.uk +
arnaud.dessein@u-bordeaux.fr +
cda4fb9df653b5721ad4fe8b4a88468a410e55ecGabor wavelet transform and its application +('38784892', 'Wei-lun Chao', 'wei-lun chao')
cd3005753012409361aba17f3f766e33e3a7320dMultilinear Biased Discriminant Analysis: A Novel Method for Facial +
Action Unit Representation +
('1736464', 'Mahmoud Khademi', 'mahmoud khademi')
('2179339', 'Mehran Safayani', 'mehran safayani')
†: Sharif University of Tech., DSP Lab, {khademi@ce, safayani@ce, manzuri@}.sharif.edu +
cd687ddbd89a832f51d5510c478942800a3e6854A Game to Crowdsource Data for Affective Computing +
Games Studio, Faculty of Engineering and IT, University of Technology, Sydney
('1733360', 'Chek Tien Tan', 'chek tien tan')
('2117735', 'Hemanta Sapkota', 'hemanta sapkota')
('2823535', 'Daniel Rosser', 'daniel rosser')
('3141633', 'Yusuf Pisan', 'yusuf pisan')
chek@gamesstudio.org +
hemanta.sapkota@student.uts.edu.au +
daniel.j.rosser@gmail.com +
yusuf.pisan@gamesstudio.org +
cd436f05fb4aeeda5d1085f2fe0384526571a46eInformation Bottleneck Domain Adaptation with +
Privileged Information for Visual Recognition +
Lane Department of Computer Science and Electrical Engineering +
West Virginia University
('2897426', 'Saeid Motiian', 'saeid motiian')
('1736352', 'Gianfranco Doretto', 'gianfranco doretto')
{samotiian,gidoretto}@mix.wvu.edu +
cd2c54705c455a4379f45eefdf32d8d10087e521A Hybrid Model for Identity Obfuscation by +
Face Replacement +
Max Planck Institute for Informatics, Saarland Informatics Campus
('32222907', 'Qianru Sun', 'qianru sun')
('1739548', 'Mario Fritz', 'mario fritz')
{qsun, atewari, wxu, mfritz, theobalt, schiele}@mpi-inf.mpg.de +
cd7a7be3804fd217e9f10682e0c0bfd9583a08dbWomen also Snowboard: +
Overcoming Bias in Captioning Models +
('40895688', 'Kaylee Burns', 'kaylee burns')
cd023d2d067365c83d8e27431e83e7e66082f718Real-Time Rotation-Invariant Face Detection with +
Progressive Calibration Networks +
1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
3 CAS Center for Excellence in Brain Science and Intelligence Technology +
('41017549', 'Xuepeng Shi', 'xuepeng shi')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1693589', 'Meina Kan', 'meina kan')
('3126238', 'Shuzhe Wu', 'shuzhe wu')
('1710220', 'Xilin Chen', 'xilin chen')
{xuepeng.shi, shiguang.shan, meina.kan, shuzhe.wu, xilin.chen}@vipl.ict.ac.cn +
cca9ae621e8228cfa787ec7954bb375536160e0dLearning to Collaborate for User-Controlled Privacy +
Martin Bertran 1† +
Natalia Martinez 1†* +
Afroditi Papadaki 2 +
Miguel Rodrigues 2 +
Duke University, Durham, NC, USA
University College London, London, UK
†These authors contributed equally to this work. +
Privacy is a human right. Tim Cook, Apple CEO. +
('2077648', 'Qiang Qiu', 'qiang qiu')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
martin.bertran@duke.edu +
natalia.martinez@duke.edu +
a.papadaki.17@ucl.ac.uk +
qiuqiang@gmail.com +
m.rodrigues@ucl.ac.uk +
guillermo.sapiro@duke.edu +
cc589c499dcf323fe4a143bbef0074c3e31f9b60A 3D Facial Expression Database For Facial Behavior Research +
State University of New York at Binghamton
('8072251', 'Lijun Yin', 'lijun yin')
ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011 +
A Dynamic Appearance Descriptor Approach to +
Facial Actions Temporal Modelling +
('39532631', 'Bihan Jiang', 'bihan jiang')
('1694605', 'Maja Pantic', 'maja pantic')
cc2eaa182f33defbb33d69e9547630aab7ed9c9cSurpassing Humans and Computers with JELLYBEAN: +
Crowd-Vision-Hybrid Counting Algorithms +
Stanford University
University of Illinois
The Ohio State University
Aditya Parameswaran +
University of Illinois
('32953042', 'Akash Das Sarma', 'akash das sarma')
('2636295', 'Ayush Jain', 'ayush jain')
('39393264', 'Arnab Nandi', 'arnab nandi')
akashds@stanford.edu +
ajain42@illinois.edu +
arnab@cse.osu.edu +
adityagp@illinois.edu +
ccbfc004e29b3aceea091056b0ec536e8ea7c47e
ccdea57234d38c7831f1e9231efcb6352c801c55Illumination Processing in Face Recognition +
187 +
11 +
X +
Illumination Processing in Face Recognition +
Yongping Li, Chao Wang and Xinyu Ao +
Shanghai Institute of Applied Physics, Chinese Academy of Sciences
China +
1. Introduction +
Driven by the demanding of public security, face recognition has emerged as a viable +
solution and achieved comparable accuracies to fingerprint system under controlled +
lightning environment. In recent years, with wide installing of camera in open area, the +
automatic face recognition in watch-list application is facing a serious problem. Under the +
open environment, lightning changes is unpredictable, and the performance of face +
recognition degrades seriously. +
Illumination processing is a necessary step for face recognition to be useful in the +
uncontrolled environment. NIST has started a test called FRGC to boost the research in +
improving the performance under changing illumination. In this chapter, we will focus on +
the research effort made in this direction and the influence on face recognition caused by +
illumination. +
First of all, we will discuss the quest on the image formation mechanism under various +
illumination situations, and the corresponding mathematical modelling. The Lambertian +
lighting model, bilinear illuminating model and some recent model are reviewed. Secondly, +
under different state of face, like various head pose and different facial expression, how +
illumination influences the recognition result, where the different pose and illuminating will +
be examined carefully. Thirdly, the current methods researcher employ to counter the change +
of illumination to maintain good performance on face recognition are assessed briefly. The +
processing technique in video and how it will improve face recognition on video, where +
Wang’s (Wang & Li, 2009) work will be discussed to give an example on the related +
advancement in the fourth part. And finally, the current state-of-art of illumination +
processing and its future trends will be discussed. +
2. The formation of camera imaging and its difference from the human visual +
system +
With the camera invented in 1814 by Joseph N, recording of human face began its new era. +
Since we do not need to hire a painter to draw our figures, as the nobles did in the middle +
age. And the machine recorded our image as it is, if the camera is in good condition. +
Currently, the imaging system is mostly to be digital format. The central part is CCD +
(charge-coupled device) or CMOS (complimentary metal-oxide semiconductor). The +
CCD/CMOS operates just like the human eyes. Both CCD and CMOS image sensors operate +
www.intechopen.com +
cc38942825d3a2c9ee8583c153d2c56c607e61a7Database Cross Matching: A Novel Source of +
Fictitious Forensic Cases +
Signals and Systems Group, EEMCS, +
University of Twente, Netherlands
('34214663', 'Abhishek Dutta', 'abhishek dutta')
('39128850', 'Raymond Veldhuis', 'raymond veldhuis')
('1745742', 'Luuk Spreeuwers', 'luuk spreeuwers')
{a.dutta,r.n.j.veldhuis,l.j.spreeuwers}@utwente.nl +
cc3c273bb213240515147e8be68c50f7ea22777cGaining Insight Into Films +
Via Topic Modeling & Visualization +
KEYWORDS Collaboration, computer vision, cultural +
analytics, economy of abundance, interactive data +
visualization +
We moved beyond misuse when the software actually +
became useful for film analysis with the addition of audio +
analysis, subtitle analysis, facial recognition, and topic +
modeling. Using multiple types of visualizations and +
a back-and-fourth workflow between people and AI +
we arrived at an approach for cultural analytics that +
can be used to review and develop film criticism. Finally, +
we present ways to apply these techniques to Database +
Cinema and other aspects of film and video creation. +
PROJECT DATE 2014 +
URL http://misharabinovich.com/soyummy.html +
('40462877', 'MISHA RABINOVICH', 'misha rabinovich')
('1679896', 'Yogesh Girdhar', 'yogesh girdhar')
cc8e378fd05152a81c2810f682a78c5057c8a735International Journal of Computer Sciences and Engineering Open Access +
Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693 +
Expression Invariant Face Recognition System based on Topographic +
Independent Component Analysis and Inner Product Classifier +
+
Department of Electrical Engineering, IIT Delhi, New Delhi, India +
Available online at: www.ijcseonline.org +
Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017 +
('40258123', 'Aruna Bhat', 'aruna bhat')*Corresponding Author: abigit06@yahoo.com +
ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50bAmerican Journal of Food Science and Health +
Vol. 2, No. 2, 2016, pp. 7-17 +
http://www.aiscience.org/journal/ajfsh +
ISSN: 2381-7216 (Print); ISSN: 2381-7224 (Online) +
Nutraceuticals and Cosmeceuticals for Human +
Beings–An Overview +
Narayana Pharmacy College, Nellore, India
('40179150', 'R. Ramasubramania Raja', 'r. ramasubramania raja')
cc31db984282bb70946f6881bab741aa841d3a7cALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV +
Learning Grimaces by Watching TV +
http://www.robots.ox.ac.uk/~albanie +
http://www.robots.ox.ac.uk/~vedaldi +
Engineering Science Department +
Univeristy of Oxford +
Oxford, UK +
('7641268', 'Samuel Albanie', 'samuel albanie')
('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
cc8bf03b3f5800ac23e1a833447c421440d92197
cc91001f9d299ad70deb6453d55b2c0b967f8c0dOPEN ACCESS +
ISSN 2073-8994 +
Article +
Performance Enhancement of Face Recognition in Smart TV +
Using Symmetrical Fuzzy-Based Quality Assessment +
Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu
Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735. +
Academic Editor: Christopher Tyler +
Received: 31 March 2015 / Accepted: 21 August 2015 / Published: 25 August 2015 +
('3021526', 'Yeong Gon Kim', 'yeong gon kim')
('2026806', 'Won Oh Lee', 'won oh lee')
('1922686', 'Hyung Gil Hong', 'hyung gil hong')
('4634733', 'Kang Ryoung Park', 'kang ryoung park')
Seoul 100-715, Korea; E-Mails: csokyg@dongguk.edu (Y.G.K.); 215p8@hanmail.net (W.O.L.); +
yawara18@hotmail.com (K.W.K.); hell@dongguk.edu (H.G.H.) +
* Author to whom correspondence should be addressed; E-Mail: parkgr@dgu.edu; +
cc96eab1e55e771e417b758119ce5d7ef1722b43An Empirical Study of Recent +
Face Alignment Methods +
('2966679', 'Heng Yang', 'heng yang')
('34760532', 'Xuhui Jia', 'xuhui jia')
('1717179', 'Chen Change Loy', 'chen change loy')
('39626495', 'Peter Robinson', 'peter robinson')
cc7e66f2ba9ac0c639c80c65534ce6031997acd7Facial Descriptors for Identity-Preserving +
Multiple People Tracking +
CVLab, School of Computer and Communication Sciences +
Swiss Federal Institute of Technology, Lausanne (EPFL
EPFL-REPORT-187534 +
July 2013 +
Michalis Zervos1 (michail.zervos@epfl.ch) +
Horesh Ben Shitrit1 (horesh.benshitrit@epfl.ch) +
Franc¸ois Fleuret(cid:63) (francois.fleuret@idiap.ch) +
Pascal Fua (pascal.fua@epfl.ch) +
cc9057d2762e077c53e381f90884595677eceafaOn the Exploration of Joint Attribute Learning +
for Person Re-identification +
Michigan State University
('38993748', 'Joseph Roth', 'joseph roth')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
{rothjos1,liuxm}@cse.msu.edu +
ccf16bcf458e4d7a37643b8364594656287f5bfcA CNN Cascade for Landmark Guided Semantic +
Part Segmentation +
School of Computer Science, The University of Nottingham, Nottingham, UK
('34596685', 'Aaron S. Jackson', 'aaron s. jackson')
('46637307', 'Michel Valstar', 'michel valstar')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
{aaron.jackson, michel.valstar, yorgos.tzimiropoulos}@nottingham.ac.uk +
e64b683e32525643a9ddb6b6af8b0472ef5b6a37Face Recognition and Retrieval in Video +('10795229', 'Caifeng Shan', 'caifeng shan')
e69ac130e3c7267cce5e1e3d9508ff76eb0e0eefResearch Article +
Addressing the illumination challenge in two- +
dimensional face recognition: a survey +
ISSN 1751-9632 +
Received on 31st March 2014 +
Revised on 7th January 2015 +
Accepted on 9th April 2015 +
doi: 10.1049/iet-cvi.2014.0086 +
www.ietdl.org +
Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA
2Department of Computer Science, Cybersecurity Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, +
NL 64840, Mexico +
('2899018', 'Miguel A. Ochoa-Villegas', 'miguel a. ochoa-villegas')
('1905427', 'Olivia Barron-Cano', 'olivia barron-cano')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
✉ E-mail: ioannisk@uh.edu +
e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227Pairwise Relational Networks for Face +
Recognition +
1 Department of Creative IT Engineering, POSTECH, Korea +
2 Department of Computer Science and Engineering, POSTECH, Korea +
('2794366', 'Bong-Nam Kang', 'bong-nam kang')
('50682377', 'Yonghyun Kim', 'yonghyun kim')
('1695669', 'Daijin Kim', 'daijin kim')
{bnkang,gkyh0805,dkim}@postech.ac.kr +
e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaecChapter 15. The critical role of the +
cold-start problem and incentive systems +
in emotional Web 2.0 services +
('2443050', 'Tobias Siebenlist', 'tobias siebenlist')
('2153585', 'Kathrin Knautz', 'kathrin knautz')
e6d689054e87ad3b8fbbb70714d48712ad84dc1cRobust Facial Feature Tracking +
School of Computing, Staffordshire University
Stafford ST18 0DG +
('2155770', 'Fabrice Bourel', 'fabrice bourel')
('1919849', 'Claude C. Chibelushi', 'claude c. chibelushi')
('32890308', 'Adrian A. Low', 'adrian a. low')
F.Bourel@staffs.ac.uk +
C.C.Chibelushi@staffs.ac.uk +
A.A.Low@staffs.ac.uk +
e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd1921 +
Flexible Manifold Embedding: A Framework +
for Semi-Supervised and Unsupervised +
Dimension Reduction +
0 = +
, the linear regression function ( +
('1688370', 'Feiping Nie', 'feiping nie')
('1714390', 'Dong Xu', 'dong xu')
('1700883', 'Changshui Zhang', 'changshui zhang')
e6f20e7431172c68f7fce0d4595100445a06c117Searching Action Proposals via Spatial +
Actionness Estimation and Temporal Path +
Inference and Tracking +
cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China
DISI, University of Trento, Trento, Italy
('40147776', 'Dan Xu', 'dan xu')
('3238696', 'Zhihao Li', 'zhihao li')
('1684933', 'Ge Li', 'ge li')
e6e5a6090016810fb902b51d5baa2469ae28b8a1Title +
Energy-Efficient Deep In-memory Architecture for NAND +
Flash Memories +
Archived version +
Accepted manuscript: the content is same as the published +
paper but without the final typesetting by the publisher +
Published version +
DOI +
Published paper +
URL +
Authors (contact) +
10.1109/ISCAS.2018.8351458 +
e6540d70e5ffeed9f447602ea3455c7f0b38113e
e6ee36444038de5885473693fb206f49c1369138
e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5Improving Facial Landmark Detection via a +
Super-Resolution Inception Network +
Institute for Human-Machine Communication
Technical University of Munich, Germany
('38746426', 'Martin Knoche', 'martin knoche')
('3044182', 'Daniel Merget', 'daniel merget')
('1705843', 'Gerhard Rigoll', 'gerhard rigoll')
f913bb65b62b0a6391ffa8f59b1d5527b7eba948
f9784db8ff805439f0a6b6e15aeaf892dba47ca0Comparing the performance of Emotion-Recognition Implementations +
in OpenCV, Cognitive Services, and Google Vision APIs +
Department of Informatics and Artificial Intelligence +
Tomas Bata University in Zl n
Nad Stráněmi 4511, 76005, Zlín +
CZECH REPUBLIC +
beltran_prieto@fai.utb.cz +
f935225e7811858fe9ef6b5fd3fdd59aec9abd1awww.elsevier.com/locate/ynimg +
Spatiotemporal dynamics and connectivity pattern differences +
between centrally and peripherally presented faces +
Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan
Received 4 May 2005; revised 26 January 2006; accepted 6 February 2006 +
Available online 24 March 2006 +
Most neuroimaging studies on face processing used centrally presented +
images with a relatively large visual field. Images presented in this way +
activate widespread striate and extrastriate areas and make it difficult +
to study spatiotemporal dynamics and connectivity pattern differences +
from various parts of the visual field. Here we studied magneto- +
encephalographic responses in humans to centrally and peripherally +
presented faces for testing the hypothesis that processing of visual +
stimuli with facial expressions of emotions depends on where the +
stimuli are presented in the visual field. Using our tomographic and +
statistical parametric mapping analyses, we identified occipitotemporal +
areas activated by face stimuli more than by control conditions. V1/V2 +
activity was significantly stronger for lower than central and upper +
visual field presentation. Fusiform activity, however, was significantly +
stronger for central than for peripheral presentation. Both the V1/V2 +
and fusiform areas activated earlier for peripheral than for central +
presentation. Fast responses in the fusiform were found at 70 – 80 ms +
after image onset, as well as a response at 130 – 160 ms. For peripheral +
presentation, contralateral V1/V2 and fusiform activated earlier (10 ms +
and 23 ms, respectively) and significantly stronger than their ipsilateral +
counterparts. Mutual +
information analysis further showed linked +
activity from bilateral V1/V2 to fusiform for central presentation and +
from contralateral V1/V2 to fusiform for lower visual field presenta- +
tion. In the upper visual field, the linkage was from fusiform to V1/V2. +
Our results showed that face stimuli are processed predominantly in +
the hemisphere contralateral to the stimulation and demonstrated for +
the first time early fusiform activation leading V1/V2 activation for +
upper visual field stimulation. +
D 2006 Elsevier Inc. All rights reserved. +
Keywords: Magnetoencephalography (MEG); Striate cortex; Extrastriate +
cortex; Fusiform gyrus; Face perception; Connectivity +
Introduction +
It is well established that visual stimuli presented in one part of +
the visual field are projected to the contralateral part of the visual +
cortex such that images presented in the right visual field are +
* Corresponding author. Fax: +81 48 467 9731. +
Available online on ScienceDirect (www.sciencedirect.com). +
1053-8119/$ - see front matter D 2006 Elsevier Inc. All rights reserved. +
projected to the left visual cortex. It is, however, unclear whether +
stimuli presented in different parts of the visual field are processed +
differently in extrastriate areas that specialize for processing +
complex properties of stimuli and whether different connectivity +
patterns are produced between striate and extrastriate cortices when +
such complex stimuli are presented to different quadrants. To +
address these questions, one needs to incorporate three ingredients +
in the experimental design and analysis. First, one must use stimuli +
that are known to excite at least one specific extrastriate area well. +
Second, one must present stimuli at positions in the visual field +
known to project to specific parts of the visual cortex so that the +
early entry into the visual system via V1 can be reliably extracted +
for connectivity analysis. Third, one must use a technique that can +
provide refined spatial and temporal +
information about brain +
activity. The information can then be used in follow-up analysis of +
spatiotemporal dynamics and connectivity patterns in the brain. +
The choice of faces is obvious because many studies have +
shown that faces are effective stimuli for exciting extrastriate areas. +
The posterior fusiform gyrus was first associated with cortical face +
processing from lesion studies on patients with specific recognition +
deficits of familiar faces (Meadows, 1974; Damasio et al., 1990; +
Sergent and Poncet, 1990). Neuroimaging studies have shown that +
extrastriate areas are involved in face processing in normal subjects +
using techniques such as positron emission tomography (PET) +
(Sergent et al., 1992; Haxby et al., 1994), functional magnetic +
resonance imaging (fMRI) (Puce et al., 1995; McCarthy et al., +
1997; Kanwisher et al., 1997; Halgren et al., 1999), electroen- +
cephalography (EEG) (Allison et al., 1994; Bentin et al., 1996; +
George et al., 1996) and magnetoencephalography (MEG) (Link- +
enkaer-Hansen et al., 1998; Halgren et al., 2000). In the present +
study, we chose the same face stimuli from our earlier MEG study +
on complex object and face affect recognition that were shown to +
activate extrastriate areas well (Liu et al., 1999; Ioannides et al., +
2000). +
Most of the earlier studies mentioned above, including ours
have presented facial images centrally with a relatively large visual +
field covering both the fovea and parafovea. Central presentation +
of images activates widespread striate and extrastriate areas. Low +
order visual areas (V1/V2) corresponding to left – right – upper – +
lower visual field stimulation are therefore activated by the same +
('2259342', 'Lichan Liu', 'lichan liu')E-mail address: ioannides@postman.riken.jp (A.A. Ioannides). +
f963967e52a5fd97fa3ebd679fd098c3cb70340eAnalysis, Interpretation, and Recognition of Facial +
Action Units and Expressions Using Neuro-Fuzzy +
Modeling +
and Ali A. Kiaei1 +
DSP Lab, Sharif University of Technology, Tehran, Iran
Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran
('1736464', 'Mahmoud Khademi', 'mahmoud khademi')
('1702826', 'Mohammad Hadi Kiapour', 'mohammad hadi kiapour')
{khademi@ce.,kiapour@ee.,manzuri@,kiaei@ce.}sharif.edu +
f9e0209dc9e72d64b290d0622c1c1662aa2cc771CONTRIBUTIONS TO BIOMETRIC RECOGNITION: +
MATCHING IDENTICAL TWINS AND LATENT FINGERPRINTS +
By +
A DISSERTATION +
Submitted +
to Michigan State University
in partial fulfillment of the requirements +
for the degree of +
Computer Science– Doctor of Philosophy +
2013 +
('31508481', 'Alessandra Aparecida Paulino', 'alessandra aparecida paulino')
f92ade569cbe54344ffd3bb25efd366dcd8ad659EFFECT OF SUPER RESOLUTION ON HIGH DIMENSIONAL FEATURES FOR +
UNSUPERVISED FACE RECOGNITION IN THE WILD +
University of Bridgeport, Bridgeport, CT 06604, USA
('40373065', 'Ahmed ElSayed', 'ahmed elsayed')
('37374395', 'Ausif Mahmood', 'ausif mahmood')
Emails: aelsayed@my.bridgeport.edu, {mahmood,sobh}@bridgeport.edu +
f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1
f93606d362fcbe62550d0bf1b3edeb7be684b000The Computer Journal Advance Access published February 1, 2012 +
The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved
doi:10.1093/comjnl/bxs001 +
Nearest Neighbor Classifier Based +
on Nearest Feature Decisions +
Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and
Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University
Management, Kerala, India +
Nathan, Australia +
High feature dimensionality of realistic datasets adversely affects the recognition accuracy of nearest +
neighbor (NN) classifiers. To address this issue, we introduce a nearest feature classifier that shifts +
the NN concept from the global-decision level to the level of individual features. Performance +
comparisons with 12 instance-based classi ers on 13 benchmark University of California Irvine
classification datasets show average improvements of 6 and 3.5% in recognition accuracy and +
area under curve performance measures, respectively. The statistical significance of the observed +
performance improvements is verified by the Friedman test and by the post hoc Bonferroni–Dunn +
test. In addition, the application of the classifier is demonstrated on face recognition databases, a +
character recognition database and medical diagnosis problems for binary and multi-class diagnosis +
on databases including morphological and gene expression features. +
Keywords: nearest neighbors; classification; local features; local ranking +
Received 2 September 2011; revised 3 December 2011 +
Handling editor: Ethem Alpaydin +
1. +
INTRODUCTION +
Automatic classification of patterns has been continuously and +
rigorously investigated for the last 30 years. Simple classifiers, +
based on the nearest neighbor (NN) principle, have been used +
to solve a wide range of classification problems [1–5]. The NN +
classification works on the idea of calculating global distances +
between patterns, followed by ranking to determine the NNs +
that best represent the class of a test pattern. Usually, distance +
metric measures are used to compute the distances between +
feature vectors. The accuracy of the calculated distances is +
affected by the quality of the features, which can be degraded by +
natural variability and measurement noise. Furthermore, some +
distance calculations are affected by falsely assumed correlation +
between different features. For example, Mahalanobis distance +
will include the comparison between poorly or uncorrelated +
features. This problem is more pronounced when the number +
of features in a pattern is very large because the irrelevant +
distance calculations can accumulate to a large value (for +
example, +
there will be many false correlations in gene +
expressions data that can have dimensionality higher than 104 +
features). In addition to this problem, a considerable increase +
in dimensionality complicates the classifier implementations +
resulting in ‘curse of dimensionality’, where a possible +
convergence to a classification solution becomes very slow +
and inaccurate [6, 7]. The conventional solution to address +
these problems is to rely on feature extraction and feature +
selection methods [8–10]. However, unpredictability of natural +
variability in patterns makes processing a specific feature +
inapplicable to diverse pattern-recognition problems. Another +
approach to improve the classifier performance is by using +
machine learning techniques to learn the distance metrics +
[11–13]. These methods attempt to reduce the inaccuracies +
that occur with distance calculations. However, this solution +
tends to include optimization problems that suffer from +
high computational complexity and require reduced feature +
dimensionality, resulting in low accuracies when the feature +
vectors are highly dimensional and the number of intra-class +
gallery objects is low. Learning distance metrics can completely +
fail in high- and ultra-high-dimensional databases when the +
relevance and redundancy of features often become impossible +
to trace even with feature weighting or selection schemes. +
Owing to these reasons, performance improvement of the NN +
The Computer Journal, 2012 +
('1744784', 'Alex Pappachen James', 'alex pappachen james')
('1697594', 'Sima Dimitrijev', 'sima dimitrijev')
For Permissions, please email: journals.permissions@oup.com +
Corresponding author: apj@ieee.org +
f94f366ce14555cf0d5d34248f9467c18241c3eeDeep Convolutional Neural Network in +
Deformable Part Models for Face Detection +
University of Science, Vietnam National University, HCMC
School of Information Science, Japan Advanced Institute of Science and Technology
('2187730', 'Dinh-Luan Nguyen', 'dinh-luan nguyen')
('34453615', 'Vinh-Tiep Nguyen', 'vinh-tiep nguyen')
('1780348', 'Minh-Triet Tran', 'minh-triet tran')
('2854896', 'Atsuo Yoshitaka', 'atsuo yoshitaka')
1212223@student.hcmus.edu.vn +
{nvtiep,tmtriet}@fit.hcmus.edu.vn +
ayoshi@jaist.ac.jp +
f997a71f1e54d044184240b38d9dc680b3bbbbc0Deep Cross Modal Learning for Caricature Verification and +
Identification(CaVINet) +
https://lsaiml.github.io/CaVINet/ +
Indian Institute of Technology Ropar
Indian Institute of Technology Ropar
Indian Institute of Technology Ropar
Narayanan C Krishnan +
Indian Institute of Technology Ropar
('6220011', 'Jatin Garg', 'jatin garg')
('51152207', 'Himanshu Tolani', 'himanshu tolani')
('41021778', 'Skand Vishwanath Peri', 'skand vishwanath peri')
2014csb1017@iitrpr.ac.in +
2014csb1015@iitrpr.ac.in +
pvskand@gmail.com +
ckn@iitrpr.ac.in +
f909d04c809013b930bafca12c0f9a8192df9d92Single Image Subspace for Face Recognition +
Nanjing University of Aeronautics and Astronautics, China
1 Department of Computer Science and Engineering, +
2 National Key Laboratory for Novel Software Technology, +
Nanjing University, China
('39497343', 'Jun Liu', 'jun liu')
('1680768', 'Songcan Chen', 'songcan chen')
('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')
('2248421', 'Xiaoyang Tan', 'xiaoyang tan')
{j.liu, s.chen, x.tan}@nuaa.edu.cn +
zhouzh@nju.edu.cn +
f9d1f12070e5267afc60828002137af949ff1544Maximum Entropy Binary Encoding for Face Template Protection +
Rohit Kumar Pandey +
University at Buffalo, SUNY
('34872128', 'Yingbo Zhou', 'yingbo zhou')
('3352136', 'Bhargava Urala Kota', 'bhargava urala kota')
('1723877', 'Venu Govindaraju', 'venu govindaraju')
{rpandey, yingbozh, buralako, govind}@buffalo.edu +
f9ccfe000092121a2016639732cdb368378256d5Cognitive behaviour analysis based on facial +
information using depth sensors +
Kingston University London, University of Westminster London
Imperial College London
('1686887', 'Juan Manuel Fernandez Montenegro', 'juan manuel fernandez montenegro')
('2866802', 'Barbara Villarini', 'barbara villarini')
('2140622', 'Athanasios Gkelias', 'athanasios gkelias')
('1689047', 'Vasileios Argyriou', 'vasileios argyriou')
Juan.Fernandez@kingston.ac.uk,B.Villarini@westminster.ac.uk,A.Gkelias@ +
imperial.ac.uk,Vasileios.Argyriou@kingston.ac.uk +
f08e425c2fce277aedb51d93757839900d591008Neural Motifs: Scene Graph Parsing with Global Context +
Paul G. Allen School of Computer Science and Engineering, University of Washington
Allen Institute for Arti cial Intelligence
School of Computer Science, Carnegie Mellon University
https://rowanzellers.com/neuralmotifs +
('2545335', 'Rowan Zellers', 'rowan zellers')
('38094552', 'Sam Thomson', 'sam thomson')
{rowanz, my89, yejin}@cs.washington.edu, sthomson@cs.cmu.edu +
f02f0f6fcd56a9b1407045de6634df15c60a85cdLearning Low-shot facial representations via 2D warping +
RWTH Aachen University
('35362682', 'Shen Yan', 'shen yan')shen.yan@rwth-aachen.de +
f0cee87e9ecedeb927664b8da44b8649050e1c86
f0f4f16d5b5f9efe304369120651fa688a03d495Temporal Generative Adversarial Nets +
Preferred Networks inc., Japan +
('49160719', 'Masaki Saito', 'masaki saito')
('8252749', 'Eiichi Matsumoto', 'eiichi matsumoto')
{msaito, matsumoto}@preferred.jp +
f0ca31fd5cad07e84b47d50dc07db9fc53482a46Advances in Pure Mathematics, 2012, 2, 226-242 +
http://dx.doi.org/10.4236/apm.2012.24033 Published Online July 2012 (http://www.SciRP.org/journal/apm) +
Feature Patch Illumination Spaces and Karcher +
Compression for Face Recognition via +
Grassmannians +
California State University, Long Beach, USA
Colorado State University, Fort Collins, USA
Received January 7, 2012; revised February 20, 2012; accepted February 27, 2012 +
('2640182', 'Jen-Mei Chang', 'jen-mei chang')
('30383278', 'Chris Peterson', 'chris peterson')
('41211081', 'Michael Kirby', 'michael kirby')
Email: jen-mei.chang@csulb.edu, {peterson, Kirby}@math.colostate.edu +
f0ae807627f81acb63eb5837c75a1e895a92c376International Journal of Emerging Engineering Research and Technology +
Volume 3, Issue 12, December 2015, PP 128-133 +
ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) +
Facial Landmark Detection using Ensemble of Cascaded +
Regressions +
Faculty of Telecommunications, Technical University, Sofia, Bulgaria
Faculty of Telecommunications, Technical University, Sofia, Bulgaria
('6203133', 'Martin Penev', 'martin penev')
('1734848', 'Ognian Boumbarov', 'ognian boumbarov')
f074e86e003d5b7a3b6e1780d9c323598d93f3bcOPEN ACCESS +
ISSN 2075-1680 +
Article +
Characteristic Number: Theory and Its Application to +
Shape Analysis +
School of Software, Dalian University of Technology, Tuqiang St. 321, Dalian 116620, China
School of Mathematical Sciences, Dalian University of Technology, Linggong Rd. 2, Dalian
Tel.: +86-411-87571777; Fax: +86-411-87571567. +
Received: 27 March 2014; in revised form: 28 April 2014 / Accepted: 28 April 2014 / +
Published: 15 May 2014 +
('1710408', 'Xin Fan', 'xin fan')
('7864960', 'Zhongxuan Luo', 'zhongxuan luo')
('1732068', 'Jielin Zhang', 'jielin zhang')
('2758604', 'Xinchen Zhou', 'xinchen zhou')
('2235253', 'Qi Jia', 'qi jia')
('3136305', 'Daiyun Luo', 'daiyun luo')
E-Mails: xin.fan@ieee.org (X.F.); jiaqi7166@gmail.com (Q.J.) +
China; E-Mails: jielinzh@dlut.edu.cn (J.Z.); dasazxc@gmail.com (X.Z.); 419524597@qq.com (D.L.) +
* Author to whom correspondence should be addressed; E-Mail: zxluo@dlut.edu.cn; +
f0a4a3fb6997334511d7b8fc090f9ce894679fafGenerative Face Completion +
University of California, Merced
2Adobe Research +
('1754382', 'Yijun Li', 'yijun li')
('2391885', 'Sifei Liu', 'sifei liu')
('1768964', 'Jimei Yang', 'jimei yang')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
{yli62,sliu32,mhyang}@ucmerced.edu +
jimyang@adobe.com +
f0681fc08f4d7198dcde803d69ca62f09f3db6c5Spatiotemporal Features for Effective Facial +
Expression Recognition +
Hatice C¸ ınar Akakın and B¨ulent Sankur +
Bogazici University, Bebek
Istanbul +
http://www.ee.boun.edu.tr +
{hatice.cinar,bulent.sankur}@boun.edu.tr +
f0f501e1e8726148d18e70c8e9f6feea9360d119OULU 2015 +
C 537 +
U N I V E R S I TAT I S O U L U E N S I S +
U N I V E R S I TAT I S O U L U E N S I S +
CTECHNICA +
CTECHNICA +
C537etukansi.kesken.fm Page 1 Thursday, June 18, 2015 3:57 PM +
UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND
A C T A U N I V E R S I T A T I S O U L U E N S I S +
ACTA +
ACTA +
Professor Esa Hohtola +
University Lecturer Veli-Matti Ulvinen
University Lecturer Anu Soikkeli
Publications Editor Kirsti Nurkkala +
ISBN 978-952-62-0872-5 (Paperback) +
ISBN 978-952-62-0873-2 (PDF) +
ISSN 0355-3213 (Print) +
ISSN 1796-2226 (Online) +
SOFTWARE-BASED +
COUNTERMEASURES TO 2D +
FACIAL SPOOFING ATTACKS +
UNIVERSITY OF OULU GRADUATE SCHOOL
UNIVERSITY OF OULU
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING, +
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING; +
INFOTECH OULU +
('6433503', 'Santeri Palviainen', 'santeri palviainen')
('3797304', 'Sanna Taskila', 'sanna taskila')
('5451992', 'Olli Vuolteenaho', 'olli vuolteenaho')
('6238085', 'Sinikka Eskelinen', 'sinikka eskelinen')
('2165962', 'Jari Juga', 'jari juga')
('5451992', 'Olli Vuolteenaho', 'olli vuolteenaho')
('35709493', 'Jukka Komulainen', 'jukka komulainen')
f0398ee5291b153b716411c146a17d4af9cb0edcLEARNING OPTICAL FLOW VIA DILATED NETWORKS AND OCCLUSION REASONING +
University of California, Merced
5200 N Lake Rd, Merced, CA, US +
('1749901', 'Yi Zhu', 'yi zhu'){yzhu25, snewsam}@ucmerced.edu +
f0f0e94d333b4923ae42ee195df17c0df62ea0b1Scaling Manifold Ranking Based Image Retrieval +
†NTT Software Innovation Center, 3-9-11 Midori-cho Musashino-shi, Tokyo, Japan +
‡NTT Service Evolution Laboratories, 1-1 Hikarinooka Yokosuka-shi, Kanagawa, Japan +
California Institute of Technology, 1200 East California Boulevard Pasadena, California, USA
Osaka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan
('32130106', 'Yasuhiro Fujiwara', 'yasuhiro fujiwara')
('32285163', 'Go Irie', 'go irie')
('46593534', 'Shari Kuroyama', 'shari kuroyama')
('48075831', 'Makoto Onizuka', 'makoto onizuka')
{fujiwara.yasuhiro, irie.go}@lab.ntt.co.jp, kuroyama@caltech.edu, oni@acm.org +
f06b015bb19bd3c39ac5b1e4320566f8d83a0c84
f0a3f12469fa55ad0d40c21212d18c02be0d1264Sparsity Sharing Embedding for Face +
Verification +
Department of Electrical Engineering, KAIST, Daejeon, Korea +
('2350325', 'Donghoon Lee', 'donghoon lee')
('2857402', 'Hyunsin Park', 'hyunsin park')
('8270717', 'Junyoung Chung', 'junyoung chung')
('2126465', 'Youngook Song', 'youngook song')
f05ad40246656a977cf321c8299158435e3f3b61Face Recognition Using Face Patch Networks +
The Chinese University of Hong Kong
('2312486', 'Chaochao Lu', 'chaochao lu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1678783', 'Deli Zhao', 'deli zhao')
{cclu,dlzhao,xtang}@ie.cuhk.edu.hk +
f02a6bccdaee14ab55ad94263539f4f33f1b15bbArticle +
Segment-Tube: Spatio-Temporal Action Localization +
in Untrimmed Videos with Per-Frame Segmentation +
Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an, Shannxi 710049, China
Received: 23 April 2018; Accepted: 16 May 2018; Published: 22 May 2018 +
('40367806', 'Le Wang', 'le wang')
('46809347', 'Xuhuan Duan', 'xuhuan duan')
('46324995', 'Qilin Zhang', 'qilin zhang')
('1786361', 'Zhenxing Niu', 'zhenxing niu')
('1745420', 'Gang Hua', 'gang hua')
('1715389', 'Nanning Zheng', 'nanning zheng')
duanxuhuan0123@stu.xjtu.edu.cn (X.D.); nnzheng@xjtu.edu.cn (N.Z.) +
2 HERE Technologies, Chicago, IL 60606, USA; qilin.zhang@here.com +
3 Alibaba Group, Hangzhou 311121, China; zhenxing.nzx@alibaba-inc.com +
4 Microsoft Research, Redmond, WA 98052, USA; ganghua@microsoft.com +
* Correspondence: lewang@xjtu.edu.cn; Tel.: +86-29-8266-8672 +
f7dea4454c2de0b96ab5cf95008ce7144292e52a
f781e50caa43be13c5ceb13f4ccc2abc7d1507c5MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +
12-1 +
Towards Flexible and Intelligent Vision Systems +
– From Thresholding to CHLAC – +
University of Tokyo
AISTy +
y National Institute of Advanced Industrial Science and Technology
Umezono 1-1-1, Tsukuba-shi, Ibaraki-ken, 305-8568 Japan +
('1809629', 'Nobuyuki Otsu', 'nobuyuki otsu')Email: otsu.n@aist.go.jp +
f7b4bc4ef14349a6e66829a0101d5b21129dcf55LONG ET AL.: TOWARDS LIGHT-WEIGHT ANNOTATIONS: FIR FOR ZSL +
Towards Light-weight Annotations: Fuzzy +
Interpolative Reasoning for Zero-shot Image +
Classification +
1 Open Lab, School of Computing +
Newcastle University, UK
2 Department of Computer Science and +
Digital Technologies, Northumbria Uni- +
versity, UK +
Inception Institute of Arti cial
gence, UAE +
Intelli- +
('50363618', 'Yang Long', 'yang long')
('48272923', 'Yao Tan', 'yao tan')
('34975328', 'Daniel Organisciak', 'daniel organisciak')
('1706028', 'Longzhi Yang', 'longzhi yang')
('40799321', 'Ling Shao', 'ling shao')
yang.long@ieee.org +
yao.tan@northumbria.ac.uk +
d.organisciak@gmail.com +
longzhi.yang@northumbria.ac.uk +
ling.shao@ieee.org +
f7b422df567ce9813926461251517761e3e6cda0FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS +
(cid:63) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +
† Eurecom, 450 route des Chappes, 06410 Biot, France +
('3116433', 'Grigory Antipov', 'grigory antipov')
('2341854', 'Moez Baccouche', 'moez baccouche')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
f7824758800a7b1a386db5bd35f84c81454d017aKEPLER: Keypoint and Pose Estimation of Unconstrained Faces by +
Learning Efficient H-CNN Regressors +
Department of Electrical and Computer Engineering, CFAR and UMIACS +
University of Maryland-College Park, USA
('50333013', 'Amit Kumar', 'amit kumar')
('2943431', 'Azadeh Alavi', 'azadeh alavi')
('9215658', 'Rama Chellappa', 'rama chellappa')
{akumar14,azadeh,rama}@umiacs.umd.edu +
f74917fc0e55f4f5682909dcf6929abd19d33e2eWorkshop track - ICLR 2018 +
GAN QUALITY INDEX (GQI) BY GAN-INDUCED +
CLASSIFIER +
The City College and the Graduate Center
The City University of New York
Department of Electrical & Computer Engineering +
Northeastern University
Microsoft Research +
('3105254', 'Yuancheng Ye', 'yuancheng ye')
('39092100', 'Yue Wu', 'yue wu')
('1689145', 'Lijuan Wang', 'lijuan wang')
('2249952', 'Yinpeng Chen', 'yinpeng chen')
('3419208', 'Zicheng Liu', 'zicheng liu')
yye@gradcenter.cuny.edu +
ytian@ccny.cuny.edu +
yuewu@ece.neu.edu +
{lijuanw, yiche, zliu, zhang}@microsoft.com +
f740bac1484f2f2c70777db6d2a11cf4280081d6Soft Locality Preserving Map (SLPM) for Facial Expression +
Recognition +
a Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong +
Kong Polytechnic University, Kowloon, Hong Kong
b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney
Australia +
('13671251', 'Cigdem Turan', 'cigdem turan')
('1703078', 'Kin-Man Lam', 'kin-man lam')
('1706670', 'Xiangjian He', 'xiangjian he')
E-mail addresses: cigdem.turan@connect.polyu.hk (C. Turan), enkmlam@polyu.edu.hk (K.-M. Lam), +
xiangjian.he@uts.edu.au (X. He) +
f78fe101b21be36e98cd3da010051bb9b9829a1eHindawi +
Computational Intelligence and Neuroscience +
Volume 2018, Article ID 7208794, 10 pages +
https://doi.org/10.1155/2018/7208794 +
Research Article +
Unsupervised Domain Adaptation for Facial Expression +
Recognition Using Generative Adversarial Networks +
1,2 +
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China
Key Laboratory of MOEMS of the Ministry of Education, Tianjin University, 300072, China
Received 14 April 2018; Accepted 19 June 2018; Published 9 July 2018 +
Academic Editor: Ant´onio D. P. Correia +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
In the facial expression recognition task, a good-performing convolutional neural network (CNN) model trained on one dataset +
(source dataset) usually performs poorly on another dataset (target dataset). This is because the feature distribution of the same +
emotion varies in different datasets. To improve the cross-dataset accuracy of the CNN model, we introduce an unsupervised +
domain adaptation method, which is especially suitable for unlabelled small target dataset. In order to solve the problem of lack of +
samples from the target dataset, we train a generative adversarial network (GAN) on the target dataset and use the GAN generated +
samples to fine-tune the model pretrained on the source dataset. In the process of fine-tuning, we give the unlabelled GAN generated +
samples distributed pseudolabels dynamically according to the current prediction probabilities. Our method can be easily applied +
to any existing convolutional neural networks (CNN). We demonstrate the effectiveness of our method on four facial expression +
recognition datasets with two CNN structures and obtain inspiring results. +
1. Introduction +
Facial expressions recognition (FER) has a wide spectrum of +
application potentials in human-computer interaction, cog- +
nitive psychology, computational neuroscience, and medical +
healthcare. In recent years, convolutional neural networks +
(CNN) have achieved many exciting results in artificial +
intelligent and pattern recognition and have been successfully +
used in facial expression recognition [1]. Jaiswal et al. [2] +
present a novel approach to facial action unit detection +
using a combination of Convolutional and Bidirectional +
Long Short-Term Memory Neural Networks (CNN-BLSTM), +
which jointly learns shape, appearance, and dynamics in a +
deep learning manner. You et al. [3] introduce a new data +
set, which contains more than 3 million weakly labelled +
images of different emotions. Esser et al. [4] develop a model +
for efficient neuromorphic computing using the Deep CNN +
technique. H-W.Ng et al. [5] develop a cascading fine-tuning +
approach for emotion recognition. Neagoe et al. [6] propose +
a model for subject independent emotion recognition from +
facial expressions using combined CNN and DBN. However, +
these CNN models are often trained and tested on the +
same dataset, whereas the cross-dataset performance is less +
concerned. Although the basic emotions defined by Ekman +
and Friesen [7], anger, disgust, fear, happy, sadness, and +
surprise, are believed to be universal, the way of expressing +
these emotions can be quite diverse across different cultures, +
ages, and genders [8]. As a result, a well-trained CNN model, +
having high recognition accuracy on the training dataset, +
usually performs poorly on other datasets. In order to make +
the facial expression recognition system more practical, it +
is necessary to improve the generalization ability of the +
recognition model. +
In this paper, we aim at improving the cross-dataset +
accuracy of a CNN model on facial expression recognition. +
One way to solve this problem is to rebuild models from +
scratch using large-scale newly collected samples. Large +
amounts of training samples, such as the dataset ImageNet [9] +
containing over 15 million images, can reduce the overfitting +
problem and help to train a reliable model. However, for +
facial expression recognition, +
it is expensive and some- +
times even impossible to get enough labelled training data. +
Therefore, we proposed an unsupervised domain adaptation +
method, which is especially suitable for unlabelled small +
('47119020', 'Xiaoqing Wang', 'xiaoqing wang')
('36142058', 'Xiangjun Wang', 'xiangjun wang')
('3332231', 'Yubo Ni', 'yubo ni')
('47119020', 'Xiaoqing Wang', 'xiaoqing wang')
Correspondence should be addressed to Xiangjun Wang; tjuxjw@126.com +
f79c97e7c3f9a98cf6f4a5d2431f149ffacae48fProvided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +
version when available. +
Title +
On color texture normalization for active appearance models +
Author(s) +
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +
Publication +
Date +
2009-05-12 +
Publication +
Information +
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +
Texture Normalization for Active Appearance Models. Image +
Processing, IEEE Transactions on, 18(6), 1372-1378. +
Publisher +
IEEE +
Link to +
publisher's +
version +
http://dx.doi.org/10.1109/TIP.2009.2017163 +
Item record +
http://hdl.handle.net/10379/1350 +
Some rights reserved. For more information, please see the item record link above. +
Downloaded 2017-06-17T22:38:27Z +
f7452a12f9bd927398e036ea6ede02da79097e6e
f7a271acccf9ec66c9b114d36eec284fbb89c7efOpen Access +
Research +
Does attractiveness influence condom +
use intentions in heterosexual men? +
An experimental study +
To cite: Eleftheriou A, +
Bullock S, Graham CA, et al. +
Does attractiveness influence +
condom use intentions in +
heterosexual men? +
An experimental study. BMJ +
Open 2016;6:e010883. +
doi:10.1136/bmjopen-2015- +
010883 +
▸ Prepublication history for +
this paper is available online. +
To view these files please +
visit the journal online +
(http://dx.doi.org/10.1136/ +
bmjopen-2015-010883). +
Received 17 December 2015 +
Revised 1 March 2016 +
Accepted 7 April 2016 +
1Department of Electronics +
and Computer Science, +
University of Southampton
Southampton, UK +
Institute for Complex
Systems Simulation, +
University of Southampton
Southampton, UK +
3Department of Computer +
Science, University of Bristol
Bristol, UK +
4Centre for Sexual Health +
Research, Department of +
Psychology, University of
Southampton, Southampton, +
UK +
Correspondence to +
('6093065', 'Anastasia Eleftheriou', 'anastasia eleftheriou')
('1733871', 'Seth Bullock', 'seth bullock')
('4712904', 'Cynthia A Graham', 'cynthia a graham')
('48479171', 'Nicole Stone', 'nicole stone')
('50227141', 'Roger Ingham', 'roger ingham')
('6093065', 'Anastasia Eleftheriou', 'anastasia eleftheriou')
ae2n12@soton.ac.uk +
f7093b138fd31956e30d411a7043741dcb8ca4aaHierarchical Clustering in Face Similarity Score +
Space +
Jason Grant and Patrick Flynn +
Department of Computer Science and Engineering +
University of Notre Dame
Notre Dame, IN 46556 +
f7dcadc5288653ec6764600c7c1e2b49c305dfaaCopyright +
by +
Adriana Ivanova Kovashka +
2014 +
f7de943aa75406fe5568fdbb08133ce0f9a765d4Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross +
Project 1.5 +
Biometric Identification and Surveillance1 +
Year 5 Deliverable  +
Technical Report:  +
and +
Research Challenges in Biometrics +
Indexed biography of relevant biometric research literature +
Donald Adjeroh, Bojan Cukic, Arun Ross  +
April, 2014   +
                                                             +
1 "This research was supported by the United States Department of Homeland Security through the National Center for Border Security +
and Immigration (BORDERS) under grant number 2008-ST-061-BS0002. However, any opinions, findings, and conclusions or +
recommendations in this document are those of the authors and do not necessarily reflect views of the United States Department of +
Homeland Security." +
('4800511', 'Don Adjeroh', 'don adjeroh')
('1702603', 'Bojan Cukic', 'bojan cukic')
('1698707', 'Arun Ross', 'arun ross')
donald.adjeroh@mail.wvu.edu; bojan.cukic@mail.wvu.edu; arun.ross@mail.wvu.edu +
f75852386e563ca580a48b18420e446be45fcf8dILLUMINATION INVARIANT FACE RECOGNITION +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
ENEE 631: Digital Image and Video Processing +
Instructor: Dr. K. J. Ray Liu +
Term Project - Spring 2006 +
1. +
INTRODUCTION +
+
+
The performance of the Face Recognition algorithms is severely affected by two +
important factors: the change in Pose and Illumination conditions of the subjects. The +
changes in Illumination conditions of the subjects can be so drastic that, the variation in +
lighting will be of the similar order as that of the variation due to the change in subjects +
[1] and this can result in misclassification. +
+
For example, in the acquisition of the face of a person from a real time video, the +
ambient conditions will cause different lighting variations on the tracked face. Some +
examples of images with different illumination conditions are shown in Fig. 1. In this +
project, we study some algorithms that are capable of performing Illumination Invariant +
Face Recognition. The performances of these algorithms were compared on the CMU- +
Illumination dataset [13], by using the entire face as the input to the algorithms. Then, a +
model of dividing the face into four regions is proposed and the performance of the +
algorithms on these new features is analyzed. +
+
+
('33692583', 'Raghuraman Gopalan', 'raghuraman gopalan')raghuram@umd.edu +
f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3Large Margin Multi-Metric Learning for Face +
and Kinship Verification in the Wild +
School of EEE, Nanyang Technological University, Singapore
2Advanced Digital Sciences Center, Singapore +
('34651153', 'Junlin Hu', 'junlin hu')
('1697700', 'Jiwen Lu', 'jiwen lu')
('34316743', 'Junsong Yuan', 'junsong yuan')
('1689805', 'Yap-Peng Tan', 'yap-peng tan')
f78863f4e7c4c57744715abe524ae4256be884a9
f77c9bf5beec7c975584e8087aae8d679664a1ebLocal Deep Neural Networks for Age and Gender Classification +
March 27, 2017 +
('9949538', 'Zukang Liao', 'zukang liao')
('2403354', 'Stavros Petridis', 'stavros petridis')
('1694605', 'Maja Pantic', 'maja pantic')
f7ba77d23a0eea5a3034a1833b2d2552cb42fb7aThis is a pre-print of the original paper accepted at the International Joint Conference on Biometrics (IJCB) 2017. +
LOTS about Attacking Deep Features +
Vision and Security Technology (VAST) Lab +
University of Colorado, Colorado Springs, USA
('2974221', 'Andras Rozsa', 'andras rozsa')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
{arozsa,mgunther,tboult}@vast.uccs.edu +
e8686663aec64f4414eba6a0f821ab9eb9f93e38IMPROVING SHAPE-BASED FACE RECOGNITION BY MEANS OF A SUPERVISED +
DISCRIMINANT HAUSDORFF DISTANCE +
J.L. Alba +
, A. Pujol +
†† +
, A. L´opez +
††† +
and J.J. Villanueva +
††† +
University of Vigo, Spain
†††Centre de Visio per Computador, Universitat Autonoma de Barcelona, Spain +
††Digital Pointer MVT +
e82360682c4da11f136f3fccb73a31d7fd195694AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY +
Faculty of Information and Natural Science +
Department of Information and Computer Science +
Online Face Recognition with +
Application to Proactive Augmented +
Reality +
Master’s Thesis submitted in partial fulfillment of the requirements for the +
degree of Master of Science in Technology. +
Espoo, May 25, 2010 +
Supervisor: +
Instructor: +
Professor Erkki Oja +
('1700492', 'Jing Wu', 'jing wu')
('1758971', 'Markus Koskela', 'markus koskela')
e8410c4cd1689829c15bd1f34995eb3bd4321069
e8fdacbd708feb60fd6e7843b048bf3c4387c6dbDeep Learning +
Hinnerup Net A/S +
www.hinnerup.net +
July 4, 2014 +
Introduction +
Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively +
new research area although based on the popular artificial neural networks (supposedly +
mirroring brain function). With the development of the perceptron in the 1950s and +
1960s by Frank RosenBlatt, research began on artificial neural networks. To further +
mimic the architectural depth of the brain, researchers wanted to train a deep multi- +
layer neural network – this, however, did not happen until Geoffrey Hinton in 2006 +
introduced Deep Belief Networks [1]. +
Recently, the topic of deep learning has gained public interest. Large web companies such +
as Google and Facebook have a focused research on AI and an ever increasing amount +
of compute power, which has led to researchers finally being able to produce results +
that are of interest to the general public. In July 2012 Google trained a deep learning +
network on YouTube videos with the remarkable result that the network learned to +
recognize humans as well as cats [6], and in January this year Google successfully used +
deep learning on Street View images to automatically recognize house numbers with +
an accuracy comparable to that of a human operator [5]. In March this year Facebook +
announced their DeepFace algorithm that is able to match faces in photos with Facebook +
users almost as accurately as a human can do [9]. +
Deep learning and other AI are here to stay and will become more and more present in +
our daily lives, so we had better make ourselves acquainted with the technology. Let’s +
dive into the deep water and try not to drown! +
Data Representations +
Before presenting data to an AI algorithm, we would normally prepare the data to make +
it feasible to work with. For instance, if the data consists of images, we would take each +
e8f0f9b74db6794830baa2cab48d99d8724e8cb6Active Image Labeling and Its Application to +
Facial Action Labeling +
Electrical, Computer, Rensselaer Polytechnic Institute
Visualization and Computer Vision Lab, GE Global Research Center
('40396543', 'Lei Zhang', 'lei zhang')
('1686235', 'Yan Tong', 'yan tong')
('1726583', 'Qiang Ji', 'qiang ji')
zhangl2@rpi.edu,tongyan@research.ge.com,qji@ecse.rpi.edu +
e8b2a98f87b7b2593b4a046464c1ec63bfd13b51CMS-RCNN: Contextual Multi-Scale +
Region-based CNN for Unconstrained Face +
Detection +
('3117715', 'Chenchen Zhu', 'chenchen zhu')
('3049981', 'Yutong Zheng', 'yutong zheng')
('1769788', 'Khoa Luu', 'khoa luu')
('1794486', 'Marios Savvides', 'marios savvides')
e87d6c284cdd6828dfe7c092087fbd9ff5091ee4Unsupervised Creation of Parameterized Avatars +
1Facebook AI Research +
School of Computer Science, Tel Aviv University
('1776343', 'Lior Wolf', 'lior wolf')
('2188620', 'Yaniv Taigman', 'yaniv taigman')
('33964593', 'Adam Polyak', 'adam polyak')
e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7Towards End-to-End Face Recognition through Alignment Learning +
Tsinghua University
Beijing, China, 100084 +
('8802368', 'Yuanyi Zhong', 'yuanyi zhong')
('1752427', 'Jiansheng Chen', 'jiansheng chen')
('39071060', 'Bo Huang', 'bo huang')
zhongyy13@mails.tsinghua.edu.cn, jschenthu@mail.tsinghua.edu.cn, huangb14@mails.tsinghua.edu.cn +
e85a255a970ee4c1eecc3e3d110e157f3e0a4629Fusing Hierarchical Convolutional Features for Human Body Segmentation and +
Clothing Fashion Classification +
School of Computer Science, Wuhan University, P.R. China
('47294008', 'Zheng Zhang', 'zheng zhang')
('3127916', 'Chengfang Song', 'chengfang song')
('4793870', 'Qin Zou', 'qin zou')
E-mails: {zhangzheng, songchf, qzou}@whu.edu.cn +
e8c9dcbf56714db53063b9c367e3e44300141ff6Automated FACS face analysis benefits from the addition of velocity +
Get The FACS Fast: +
Timothy R. Brick +
University of Virginia
Charlottesville, VA 22904 +
Michael D. Hunter +
University of Virginia
Charlottesville, VA 22904 +
Jeffrey F. Cohn +
University of Pittsburgh
Pittsburgh, PA 15260 +
tbrick@virginia.edu +
mhunter@virginia.edu +
jeffcohn@cs.cmu.edu +
e8d1b134d48eb0928bc999923a4e092537e106f6WEIGHTED MULTI-REGION CONVOLUTIONAL NEURAL NETWORK FOR ACTION +
RECOGNITION WITH LOW-LATENCY ONLINE PREDICTION +
cid:63)University of Science and Technology of China, Hefei, Anhui, China
†HERE Technologies, Chicago, Illinois, USA +
('49417387', 'Yunfeng Wang', 'yunfeng wang')
('38272296', 'Wengang Zhou', 'wengang zhou')
('46324995', 'Qilin Zhang', 'qilin zhang')
('49897466', 'Xiaotian Zhu', 'xiaotian zhu')
('7179232', 'Houqiang Li', 'houqiang li')
e8c6c3fc9b52dffb15fe115702c6f159d955d30813 +
Linear Subspace Learning for +
Facial Expression Analysis +
Philips Research +
The Netherlands +
1. Introduction +
Facial expression, resulting from movements of the facial muscles, is one of the most +
powerful, natural, and immediate means for human beings to communicate their emotions +
and intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was +
the first to describe in detail the specific facial expressions associated with emotions in +
animals and humans; he argued that all mammals show emotions reliably in their faces. +
Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial +
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face +
communication. +
Fig. 1. Facial expressions of George W. Bush. +
Machine analysis of facial expressions, enabling computers to analyze and interpret facial +
expressions as humans do, has many important applications including intelligent human- +
computer interaction, computer animation, surveillance and security, medical diagnosis, +
law enforcement, and awareness system (Shan, 2007). Driven by its potential applications +
and theoretical interests of cognitive and psychological scientists, automatic facial +
expression analysis has attracted much attention in last two decades (Pantic & Rothkrantz, +
2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic & Bartlett, 2007). It has been studied in +
multiple disciplines such as psychology, cognitive science, computer vision, pattern +
Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira, +
ISBN 978-3-902613-56-1, pp. 450, February 2009, I-Tech, Vienna, Austria +
www.intechopen.com +
('10795229', 'Caifeng Shan', 'caifeng shan')
e8b3a257a0a44d2859862cdec91c8841dc69144dLiquid Pouring Monitoring via +
Rich Sensory Inputs +
National Tsing Hua University, Taiwan
Stanford University, USA
('27555915', 'Tz-Ying Wu', 'tz-ying wu')
('9618379', 'Juan-Ting Lin', 'juan-ting lin')
('27538483', 'Chan-Wei Hu', 'chan-wei hu')
('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')
('46611107', 'Min Sun', 'min sun')
{gina9726, brade31919, johnsonwang0810, huchanwei1204}@gmail.com, +
sunmin@ee.nthu.edu.tw +
jniebles@cs.stanford.edu +
fa90b825346a51562d42f6b59a343b98ea2e501aModeling Naive Psychology of Characters in Simple Commonsense Stories +
Paul G. Allen School of Computer Science and Engineering, University of Washington
Allen Institute for Arti cial Intelligence
Information Sciences Institute and Computer Science, University of Southern California
('2516777', 'Hannah Rashkin', 'hannah rashkin')
('2691021', 'Antoine Bosselut', 'antoine bosselut')
('2729164', 'Maarten Sap', 'maarten sap')
('1710034', 'Kevin Knight', 'kevin knight')
('1699545', 'Yejin Choi', 'yejin choi')
{hrashkin,msap,antoineb,yejin}@cs.washington.edu +
knight@isi.edu +
fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6Draft: Evaluation Guidelines for Gender +
Classification and Age Estimation +
July 1, 2011 +
Introduction +
In previous research on gender classification and age estimation did not use a +
standardised evaluation procedure. This makes comparison the different ap- +
proaches difficult. +
Thus we propose here a benchmarking and evaluation protocol for gender +
classification as well as age estimation to set a common ground for future re- +
search in these two areas. +
The evaluations are designed such that there is one scenario under controlled +
labratory conditions and one under uncontrolled real life conditions. +
The datasets were selected with the criteria of being publicly available for +
research purposes. +
File lists for the folds corresponding to the individual benchmarking proto- +
cols will be provided over our website at http://face.cs.kit.edu/befit. We +
will provide two kinds of folds for each of the tasks and conditions: one set of +
folds using the whole dataset and one set of folds using a reduced dataset, which +
is approximately balanced in terms of age, gender and ethnicity. +
2 Gender Classification +
In this task the goal is to determine the gender of the persons depicted in the +
individual images. +
2.1 Data +
In previous works one of the most commonly used databases is the Feret database [1, +
2]. We decided here not to take this database, because of its low number of im- +
ages. +
('40303076', 'Tobias Gehrig', 'tobias gehrig')
('39504159', 'Matthias Steiner', 'matthias steiner')
{tobias.gehrig, ekenel}@kit.edu +
faeefc5da67421ecd71d400f1505cfacb990119cOriginal research +
published: 20 November 2017 +
doi: 10.3389/frobt.2017.00061 +
PastVision+: Thermovisual inference +
of recent Medicine intake by +
Detecting heated Objects and +
cooled lips +
Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden
This article addresses the problem of how a robot can infer what a person has done +
recently, with a focus on checking oral medicine intake in dementia patients. We present +
PastVision+, an approach showing how thermovisual cues in objects and humans can +
be leveraged to infer recent unobserved human–object interactions. Our expectation +
is that this approach can provide enhanced speed and robustness compared to exist- +
ing methods, because our approach can draw inferences from single images without +
needing to wait to observe ongoing actions and can deal with short-lasting occlusions; +
when combined, we expect a potential improvement in accuracy due to the extra infor- +
mation from knowing what a person has recently done. To evaluate our approach, we +
obtained some data in which an experimenter touched medicine packages and a glass +
of water to simulate intake of oral medicine, for a challenging scenario in which some +
touches were conducted in front of a warm background. Results were promising, with +
a detection accuracy of touched objects of 50% at the 15 s mark and 0% at the 60 s +
mark, and a detection accuracy of cooled lips of about 100 and 60% at the 15 s mark +
for cold and tepid water, respectively. Furthermore, we conducted a follow-up check for +
another challenging scenario in which some participants pretended to take medicine or +
otherwise touched a medicine package: accuracies of inferring object touches, mouth +
touches, and actions were 72.2, 80.3, and 58.3% initially, and 50.0, 81.7, and 50.0% +
at the 15 s mark, with a rate of 89.0% for person identification. The results suggested +
some areas in which further improvements would be possible, toward facilitating robot +
inference of human actions, in the context of medicine intake monitoring. +
Keywords: thermovisual inference, touch detection, medicine intake, action recognition, monitoring, near past +
inference +
1. inTrODUcTiOn +
This article addresses the problem of how a robot can detect what a person has touched recently, +
with a focus on checking oral medicine intake in dementia patients. +
Detecting recent touches would be useful because touch is a typical component of many human– +
object interactions; moreover, knowing which objects have been touched allows inference into +
what actions have been conducted, which is an important requirement for robots to collaborate +
effectively with people (Vernon et al., 2016). For example, touches to a stove, door handle, or pill +
bottle can occur as a result of cooking, leaving one’s house, or taking medicine, all of which could +
potentially be dangerous for a person with dementia, if they forget to turn off the heat, lose their +
way, or make a mistake. Here, we focus on the latter problem of medicine adherence—whose +
Edited by: +
Alberto Montebelli, +
University of Sk vde, Sweden
Reviewed by: +
Sam Neymotin, +
Brown University, United States
Per Backlund, +
University of Sk vde, Sweden
Fernando Bevilacqua, +
University of Sk vde, Sweden
(in collaboration with Per Backlund) +
*Correspondence: +
Specialty section: +
This article was submitted to +
Computational Intelligence, +
a section of the journal +
Frontiers in Robotics and AI +
Received: 15 May 2017 +
Accepted: 02 November 2017 +
Published: 20 November 2017 +
Citation: +
Cooney M and Bigun J (2017) +
PastVision+: Thermovisual Inference +
of Recent Medicine Intake by +
Detecting Heated Objects +
and Cooled Lips. +
Front. Robot. AI 4:61. +
doi: 10.3389/frobt.2017.00061 +
Frontiers in Robotics and AI | www.frontiersin.org +
November 2017 | Volume 4 | Article 61 +
('7149684', 'Martin Cooney', 'martin cooney')
('5058247', 'Josef Bigun', 'josef bigun')
('7149684', 'Martin Cooney', 'martin cooney')
martin.daniel.cooney@gmail.com +
fa4f59397f964a23e3c10335c67d9a24ef532d5cDAP3D-Net: Where, What and How Actions Occur in Videos? +
Department of Computer Science and Digital Technologies +
Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
('40241836', 'Li Liu', 'li liu')
('47942896', 'Yi Zhou', 'yi zhou')
('40799321', 'Ling Shao', 'ling shao')
li2.liu@northumbria.ac.uk, m.y.yu@ieee.org, ling.shao@ieee.org +
fa08a4da5f2fa39632d90ce3a2e1688d147ece61Supplementary material for +
“Unsupervised Creation of Parameterized Avatars” +
1 Summary of Notations +
Tab. 1 itemizes the symbols used in the submission. Fig. 2,3,4 of the main text illustrate many of these +
symbols. +
2 DANN results +
Fig. 1 shows side by side samples of the original image and the emoji generated by the method of [1]. +
As can be seen, these results do not preserve the identity very well, despite considerable effort invested in +
finding suitable architectures. +
3 Multiple Images Per Person +
Following [4], we evaluate the visual quality that is obtained per person and not just per image, by testing +
TOS on the Facescrub dataset [3]. For each person p, we considered the set of their images Xp, and selected +
the emoji that was most similar to their source image, i.e., the one for which: +
||f (x) − f (e(c(G(x))))||. +
argmin +
x∈Xp +
(1) +
Fig. 2 depicts the results obtained by this selection method on sample images form the Facescrub dataset +
(it is an extension of Fig. 7 of the main text). The figure also shows, for comparison, the DTN [4] result for +
the same image. +
4 Detailed Architecture of the Various Networks +
In this section we describe the architectures of the networks used in for the emoji and avatar experiments. +
4.1 TOS +
Network g maps DeepFace’s 256-dimensional representation [5] into 64 × 64 RGB emoji images. Follow- +
ing [4], this is done through a network with 9 blocks, each consisting of a convolution, batch-normalization +
and ReLU, except the last layer which employs Tanh activation. The odd blocks 1,3,5,7,9 perform upscaling +
convolutions with 512-256-128-64-3 filters respectively of spatial size 4 × 4. The even ones perform 1 × 1 +
convolutions [2]. The odd blocks use a stride of 2 and padding of 1, excluding the first one which does not +
use stride or padding. +
Network e maps emoji parameterization into the matching 64× 64 RGB emoji. The parameterization is +
given as binary vectors in R813 for emojis; Avatar parameterization is in R354. While there are dependencies +
among the various dimensions (an emoji cannot have two hairstyles at once), the binary representation is +
chosen for its simplicity and generality. e is trained in a fully supervised way, using pairs of matching +
parameterization vectors and images in a supervised manner. +
The architecture of e employs five upscaling convolutions with 512-256-128-64-3 filters respectively, +
each of spatial size 4×4. All layers except the last one are batch normalized followed by a ReLU activation. +
The last layer is followed by Tanh activation, generating an RGB image with values in range [−1, 1]. All +
the layers use a stride of 2 and padding of 1, excluding the first one which does not use stride or padding. +
fab2fc6882872746498b362825184c0fb7d810e4RESEARCH ARTICLE +
Right wing authoritarianism is associated with +
race bias in face detection +
1 Univ. Grenoble Alpes, LPNC, Grenoble, France, 2 CNRS, LPNC UMR 5105, Grenoble, France, 3 IPSY, +
Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The
University of Queensland, St Lucia QLD Australia, 5 Institut Universitaire de France, Paris, France
('3128194', 'Brice Beffara', 'brice beffara')
('2066203', 'Jessica McFadyen', 'jessica mcfadyen')
('2634712', 'Martial Mermillod', 'martial mermillod')
* amelie.bret@univ-grenoble-alpes.fr +
faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b
fa24bf887d3b3f6f58f8305dcd076f0ccc30272aJMLR: Workshop and Conference Proceedings 39:189–204, 2014 +
ACML 2014 +
Interval Insensitive Loss for Ordinal Classification +
Vojtˇech Franc +
V´aclav Hlav´aˇc +
Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech +
Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic
Editor: Dinh Phung and Hang Li +
('2742026', 'Kostiantyn Antoniuk', 'kostiantyn antoniuk')antonkos@cmp.felk.cvut.cz +
xfrancv@cmp.felk.cvut.cz +
hlavac@fel.cvut.cz +
fac8cff9052fc5fab7d5ef114d1342daba5e4b82(CV last updated Oct. 5th, 2009.) +
www.stat.cmu.edu/~abrock +
1-412-478-3609 +
Citizenship: U.S., Australia (dual) +
Education +
1994-1998 +
: Ph.D., Department of Statistics and Department of of Electrical Engineering at +
Melbourne University, Advisors: K. Borovkov, R. Evans
1993 +
: Honours Science Degree (in the Department of Statistics) completed at Melbourne +
University (H
1988-92 +
: Bachelor of Science and Bachelor of Engineering with Honours completed at Mel- +
bourne University
Employment +
2007+ +
Carnegie Mellon University
2007-2009 +
: Senior Analyst, Horton Point LLC (Hedge Fund Management Company) +
2006-2007 +
: Associate Professor, Department of Statistics, Carnegie Mellon Uniuversity +
2005-2007 +
: Affiliated faculty member, Machine Learning Department (formerly known as the +
Center for Automated Learning and Discovery), Carnegie Mellon University
2003-2007 +
Faculty member, Parallel Data Lab (PDL), Carnegie Mellon University
2002-2005 +
Carnegie Mellon University
1999-2002 +
Carnegie Mellon University
1998-1999 +
: Research Fellow, Department of Electrical and Electronic Engineering, The Univer- +
sity of Melbourne +
1993-1995 +
Sessional Tutor, The University of Melbourne
('1680307', 'Anthony Brockwell', 'anthony brockwell')anthony.brockwell@gmail.com +
faa29975169ba3bbb954e518bc9814a5819876f6Evolution-Preserving Dense Trajectory Descriptors +
Stony Brook University, Stony Brook, NY 11794, USA
('2295608', 'Yang Wang', 'yang wang')
('3482497', 'Vinh Tran', 'vinh tran')
('2356016', 'Minh Hoai', 'minh hoai')
{wang33, tquangvinh, minhhoai}@cs.stonybrook.edu +
fafe69a00565895c7d57ad09ef44ce9ddd5a6caaApplied Mathematics, 2012, 3, 2071-2079 +
http://dx.doi.org/10.4236/am.2012.312A286 Published Online December 2012 (http://www.SciRP.org/journal/am) +
Gaussian Mixture Models for Human Face Recognition +
under Illumination Variations +
Mihaylo College of Business and Economics
California State University, Fullerton, USA
Received August 18, 2012; revised September 18, 2012; accepted September 25, 2012 +
('2046854', 'Sinjini Mitra', 'sinjini mitra')Email: smitra@fullerton.edu +
faf5583063682e70dedc4466ac0f74eeb63169e7HolisticPersonProcessing:FacesWithBodiesTelltheWholeStoryHillelAviezerPrincetonUniversityandNewYorkUniversityYaacovTropeNewYorkUniversityAlexanderTodorovPrincetonUniversityFacesandbodiesaretypicallyencounteredsimultaneously,yetlittleresearchhasexploredthevisualprocessingofthefullperson.Specifically,itisunknownwhetherthefaceandbodyareperceivedasdistinctcomponentsorasanintegrated,gestalt-likeunit.Toexaminethisquestion,weinvestigatedwhetheremotionalface–bodycompositesareprocessedinaholistic-likemannerbyusingavariantofthecompositefacetask,ameasureofholisticprocessing.Participantsjudgedfacialexpressionscombinedwithemotionallycongruentorincongruentbodiesthathavebeenshowntoinfluencetherecognitionofemotionfromtheface.Critically,thefaceswereeitheralignedwiththebodyinanaturalpositionormisalignedinamannerthatbreakstheecologicalpersonform.Convergingdatafrom3experimentsconfirmthatbreakingthepersonformreducesthefacilitatinginfluenceofcongruentbodycontextaswellastheimpedinginfluenceofincongruentbodycontextontherecognitionofemotionfromtheface.Theseresultsshowthatfacesandbodiesareprocessedasasingleunitandsupportthenotionofacompositepersoneffectanalogoustotheclassiceffectdescribedforfaces.Keywords:emotionperception,contexteffects,facialandbodyexpressions,holisticperception,com-positeeffectAglanceisusuallysufficientforextractingagreatdealofsocialinformationfromotherpeople(Adolphs,2002).Perceptualcuestocharacteristicssuchasgender,sexualorientation,emotionalex-pression,attractiveness,andpersonalitytraitscanbefoundinboththefaceandthebody(e.g.,facecues,Adolphs,2003;Calder&Young,2005;Ekman,1993;Elfenbein&Ambady,2002;Haxby,Hoffman,&Gobbini,2000;Rule,Ambady,&Hallett,2009;Thornhill&Gangestad,1999;Todorov&Duchaine,2008;Todo-rov,Pakrashi,&Oosterhof,2009;Willis&Todorov,2006;Ze-browitz,Hall,Murphy,&Rhodes,2002;Zebrowitz&Montepare,2008;bodycues,deGelderetal.,2006;Johnson,Gill,Reichman,&Tassinary,2007;Peelen&Downing,2005;Stevenage,Nixon,&Vince,1999;Wallbott,1998).Todate,mostresearchershaveinvestigatedthefaceandthebodyasdiscreteperceptualunits,focusingontheprocessingofeachsourceinisolation.Althoughthisapproachhasprovedex-tremelyfruitfulforcharacterizingtheuniqueperceptualcontribu-tionsofthefaceandbody,surprisinglylittleisknownabouttheprocessingofbothsourcescombined.Theaimofthecurrentstudywastoshedlightontheperceptualprocessingofthefullpersonbyexaminingwhetherthefaceandbodyinconjunctionareprocessedasaholistic“personunit.”Onthebasisofpreviousaccounts,onemaypredictthatfacesandbodiesareprocessedastwovisualcomponentsofsocialinformation(Wallbott,1998).Theseviewsarguethatfacesandbodiesmaydifferinvalue,intensity,andclarity,andconsequentlytheinformationfromeachmustbeweightedandcombinedbythecognitivesysteminordertoreachaconclusionaboutthetarget(Ekman,Friesen,&Ellsworth,1982;Ellison&Massaro,1997;Trope,1986;Wallbott,1998).Accordingtothisapproach,thefaceandbodymayinfluenceeachother.However,theinfluenceisnotsynergistic,andtheperceptionofthefaceandbodyisequaltotheweightedsumoftheirparts(Wallbott,1998).Bycontrast,thehypothesisofferedhereisthatthefaceandbodyaresubcomponentsofalargerperceptualpersonunit.Fromanecologicalperspectivethisseemslikelybecauseundernaturalconditions,thevisualsystemrarelyencountersisolatedfacesandbodies(McArthur&Baron,1983;Russell,1997).Accordingtothisview,thefaceandbodyformaunitaryperceptthatmayencompassdifferentpropertiesthanthetwosourcesofinformationseparately.Inotherwords,theinformationreadoutfromthefullpersonmaybemorethanthesumofthefaceandbodyalone.HolisticProcessingandtheCompositeEffectPastresearchonsocialperceptionexaminingunitizedgestaltprocessinghasfocusedprimarilyontheface.Indeed,ahallmarkoffaceperceptionisholisticprocessingbywhichindividualfacialcomponentsbecomeintegratedintoawhole-faceunit(Farah,Wilson,Drain,&Tanaka,1995;Tanaka&Farah,1993).Althoughisolatedfacialcomponentsdobearspecificinformation(Smith,Cottrell,Gosselin,&Schyns,2005;Whalenetal.,2004),theirarrangementinthenaturalfaceconfigurationresultsinaninte-ThisarticlewaspublishedOnlineFirstFebruary20,2012.HillelAviezer,DepartmentofPsychology,PrincetonUniversity,andDepartmentofPsychology,NewYorkUniversity;YaacovTrope,Depart-mentofPsychology,NewYorkUniversity;AlexanderTodorov,Depart-mentofPsychology,PrincetonUniversity.CorrespondenceconcerningthisarticleshouldbeaddressedtoHillelAviezer,DepartmentofPsychology,PrincetonUniversity,Princeton,NJ08540-1010.E-mail:haviezer@princeton.eduJournalofPersonalityandSocialPsychology©2012AmericanPsychologicalAssociation2012,Vol.103,No.1,20–370022-3514/12/$12.00DOI:10.1037/a002741120
faca1c97ac2df9d972c0766a296efcf101aaf969Sympathy for the Details: Dense Trajectories and Hybrid +
Classification Architectures for Action Recognition +
Computer Vision Group, Xerox Research Center Europe, Meylan, France
2Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain +
3German Aerospace Center, Wessling, Germany +
('1799820', 'Adrien Gaidon', 'adrien gaidon')
('2286630', 'Eleonora Vig', 'eleonora vig')
{cesar.desouza, adrien.gaidon}@xrce.xerox.com, +
eleonora.vig@dlr.de, antonio@cvc.uab.es +
fab60b3db164327be8588bce6ce5e45d5b882db6Maximum A Posteriori Estimation of Distances +
Between Deep Features in Still-to-Video Face +
Recognition +
National Research University Higher School of Economics
Laboratory of Algorithms and Technologies for Network Analysis, +
36 Rodionova St., Nizhny Novgorod, Russia +
National Research University Higher School of Economics
20 Myasnitskaya St., Moscow, Russia +
September 2, 2018 +
('35153729', 'Andrey V. Savchenko', 'andrey v. savchenko')
('2080292', 'Natalya S. Belova', 'natalya s. belova')
avsavchenko@hse.ru +
nbelova@hse.ru +
fad895771260048f58d12158a4d4d6d0623f4158Audio-Visual Emotion +
Recognition For Natural +
Human-Robot Interaction +
Dissertation zur Erlangung des akademischen Grades +
Doktor der Ingenieurwissenschaften (Dr.-Ing.) +
vorgelegt von +
an der Technischen Fakultät der Universität Bielefeld +
15. März 2010 +
('32382494', 'Ahmad Rabie', 'ahmad rabie')
fae83b145e5eeda8327de9f19df286edfaf5e60cReadings in Technology and Education: Proceedings of ICICTE 2010 +
367 +
TOWARDS AN INTERACTIVE E-LEARNING SYSTEM BASED ON +
EMOTIONS AND AFFECTIVE COGNITION +
Department of Informatics +
Department of Audiovisual Arts +
Department of Informatics +
Konstantinos Ch. Drossos +
Department of Audiovisual Arts +
Ionian University
Greece +
('25189167', 'Panagiotis Vlamos', 'panagiotis vlamos')
('2284118', 'Andreas Floros', 'andreas floros')
('1761403', 'Michail N. Giannakos', 'michail n. giannakos')
ffea8775fc9c32f573d1251e177cd283b4fe09c9Accepted to be Published in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME) 2018, San Diego, USA +
TRANSFORMATION ON COMPUTER–GENERATED FACIAL IMAGE TO AVOID DETECTION +
BY SPOOFING DETECTOR +
Graduate University for Advanced Studies, Kanagawa, Japan
National Institute of Informatics, Tokyo, Japan
The University of Edinburgh, Edinburgh, UK
('47321045', 'Huy H. Nguyen', 'huy h. nguyen')
('9328269', 'Ngoc-Dung T. Tieu', 'ngoc-dung t. tieu')
('2912817', 'Hoang-Quoc Nguyen-Son', 'hoang-quoc nguyen-son')
('1716857', 'Junichi Yamagishi', 'junichi yamagishi')
('1678602', 'Isao Echizen', 'isao echizen')
{nhhuy, dungtieu, nshquoc, jyamagishi, iechizen}@nii.ac.jp +
ff8315c1a0587563510195356c9153729b533c5b432 +
Zapping Index:Using Smile to Measure +
Advertisement Zapping Likelihood +
('1803478', 'Songfan Yang', 'songfan yang')
('1784929', 'Mehran Kafai', 'mehran kafai')
('39776603', 'Le An', 'le an')
('1707159', 'Bir Bhanu', 'bir bhanu')
ff44d8938c52cfdca48c80f8e1618bbcbf91cb2aTowards Video Captioning with Naming: a +
Novel Dataset and a Multi-Modal Approach +
Dipartimento di Ingegneria “Enzo Ferrari” +
Universit`a degli Studi di Modena e Reggio Emilia +
('2035969', 'Stefano Pini', 'stefano pini')
('3468983', 'Marcella Cornia', 'marcella cornia')
('1843795', 'Lorenzo Baraldi', 'lorenzo baraldi')
('1741922', 'Rita Cucchiara', 'rita cucchiara')
{name.surname}@unimore.it +
fffefc1fb840da63e17428fd5de6e79feb726894Fine-Grained Age Estimation in the wild with +
Attention LSTM Networks +
('47969038', 'Ke Zhang', 'ke zhang')
('49229283', 'Na Liu', 'na liu')
('3451660', 'Xingfang Yuan', 'xingfang yuan')
('46910049', 'Xinyao Guo', 'xinyao guo')
('35038034', 'Ce Gao', 'ce gao')
('2626320', 'Zhenbing Zhao', 'zhenbing zhao')
ff398e7b6584d9a692e70c2170b4eecaddd78357
ffc5a9610df0341369aa75c0331ef021de0a02a9Transferred Dimensionality Reduction +
State Key Laboratory on Intelligent Technology and Systems +
Tsinghua National Laboratory for Information Science and Technology (TNList) +
Tsinghua University, Beijing 100084, China
('39747687', 'Zheng Wang', 'zheng wang')
('1809614', 'Yangqiu Song', 'yangqiu song')
('1700883', 'Changshui Zhang', 'changshui zhang')
ffd81d784549ee51a9b0b7b8aaf20d5581031b74Performance Analysis of Retina and DoG +
Filtering Applied to Face Images for Training +
Correlation Filters +
Everardo Santiago Ram(cid:19)(cid:16)rez1, Jos(cid:19)e (cid:19)Angel Gonz(cid:19)alez Fraga1, Omar (cid:19)Alvarez +
1 Facultad de Ciencias, Universidad Aut(cid:19)onoma de Baja California, +
Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia Playitas, +
Ensenada, Baja California, C.P. 22860 +
{everardo.santiagoramirez,angel_fraga, +
2 Facultad de Ingenier(cid:19)(cid:16)a, Arquitectura y Dise~no, Universidad Aut(cid:19)onoma de Baja +
California, Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia +
Playitas, Ensenada, Baja California, C.P. 22860 +
('2973536', 'Sergio Omar Infante Prieto', 'sergio omar infante prieto')aomar,everardo.gutierrez}@uabc.edu.mx +
sinfante@uabc.edu.mx +
ff01bc3f49130d436fca24b987b7e3beedfa404dArticle +
Fuzzy System-Based Face Detection Robust to +
In-Plane Rotation Based on Symmetrical +
Characteristics of a Face +
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu
Academic Editor: Angel Garrido +
Received: 15 June 2016; Accepted: 29 July 2016; Published: 3 August 2016 +
('1922686', 'Hyung Gil Hong', 'hyung gil hong')
('2026806', 'Won Oh Lee', 'won oh lee')
('3021526', 'Yeong Gon Kim', 'yeong gon kim')
('4634733', 'Kang Ryoung Park', 'kang ryoung park')
Seoul 100-715, Korea; hell@dongguk.edu (H.G.H.); 215p8@hanmail.net (W.O.L.); csokyg@dongguk.edu (Y.G.K.); +
yawara18@hotmail.com (K.W.K.); nguyentiendat@dongguk.edu (D.T.N.) +
* Correspondence: parkgr@dongguk.edu; Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +
ff061f7e46a6213d15ac2eb2c49d9d3003612e49Morphable Human Face Modelling +
by +
Thesis +
for fulfillment of the Requirements for the Degree of +
Doctor of Philosophy (0190) +
Clayton School of Information Technology +
Monash University
February, 2008 +
('1695402', 'Nathan Faggian', 'nathan faggian')
('1695402', 'Nathan Faggian', 'nathan faggian')
('1728337', 'Andrew Paplinski', 'andrew paplinski')
('2696169', 'Jamie Sherrah', 'jamie sherrah')
ff1f45bdad41d8b35435098041e009627e60d208NAGRANI, ZISSERMAN: FROM BENEDICT CUMBERBATCH TO SHERLOCK HOLMES +
From Benedict Cumberbatch to Sherlock +
Holmes: Character Identification in TV +
series without a Script +
Visual Geometry Group, +
Department of Engineering Science, +
University of Oxford, UK
('19263506', 'Arsha Nagrani', 'arsha nagrani')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
arsha@robots.ox.ac.uk/ +
az@robots.ox.ac.uk/ +
ff60d4601adabe04214c67e12253ea3359f4e082
ffe4bb47ec15f768e1744bdf530d5796ba56cfc1AFIF4: Deep Gender Classification based on +
AdaBoost-based Fusion of Isolated Facial Features and +
Foggy Faces +
aDepartment of Electrical Engineering and Computer Science, Lassonde School of +
Engineering, York University, Canada
bFaculty of Computers and Information, Assiut University, Egypt
('40239027', 'Abdelrahman Abdelhamed', 'abdelrahman abdelhamed')
ffc9d6a5f353e5aec3116a10cf685294979c63d9Eigenphase-based face recognition: a comparison of phase- +
information extraction methods +
Faculty of Electrical Engineering and Computing, +
University of Zagreb, Unska 3, 10 000 Zagreb
('35675021', 'Slobodan Ribarić', 'slobodan ribarić')
('3069572', 'Marijo Maračić', 'marijo maračić')
E-mail: slobodan.ribaric@fer.hr +
ff8ef43168b9c8dd467208a0b1b02e223b731254BreakingNews: Article Annotation by +
Image and Text Processing +
('1780343', 'Arnau Ramisa', 'arnau ramisa')
('47242882', 'Fei Yan', 'fei yan')
('1994318', 'Francesc Moreno-Noguer', 'francesc moreno-noguer')
('1712041', 'Krystian Mikolajczyk', 'krystian mikolajczyk')
ff9195f99a1a28ced431362f5363c9a5da47a37bJournal of Vision (2016) 16(15):28, 1–8 +
Serial dependence in the perception of attractiveness +
University of California
Berkeley, CA, USA +
University of California
Berkeley, CA, USA +
David Whitney +
University of California
Berkeley, CA, USA +
Helen Wills Neuroscience Institute, University of
California, Berkeley, CA, USA +
Vision Science Group, University of California
Berkeley, CA, USA +
The perception of attractiveness is essential for choices +
of food, object, and mate preference. Like perception of +
other visual features, perception of attractiveness is +
stable despite constant changes of image properties due +
to factors like occlusion, visual noise, and eye +
movements. Recent results demonstrate that perception +
of low-level stimulus features and even more complex +
attributes like human identity are biased towards recent +
percepts. This effect is often called serial dependence. +
Some recent studies have suggested that serial +
dependence also exists for perceived facial +
attractiveness, though there is also concern that the +
reported effects are due to response bias. Here we used +
an attractiveness-rating task to test the existence of +
serial dependence in perceived facial attractiveness. Our +
results demonstrate that perceived face attractiveness +
was pulled by the attractiveness level of facial images +
encountered up to 6 s prior. This effect was not due to +
response bias and did not rely on the previous motor +
response. This perceptual pull increased as the difference +
in attractiveness between previous and current stimuli +
increased. Our results reconcile previously conflicting +
findings and extend previous work, demonstrating that +
sequential dependence in perception operates across +
different levels of visual analysis, even at the highest +
levels of perceptual interpretation. +
Introduction +
Humans make aesthetic judgments all the time about +
the attractiveness or desirability of objects and scenes. +
Aesthetic judgments are not merely about judging +
works of art; they are constantly involved in our daily +
activity, influencing or determining our choices of food, +
object (Creusen & Schoormans, 2005), and mate +
preference (Rhodes, Simmons, & Peters, 2005). +
Aesthetic judgments are based on perceptual pro- +
cessing (Arnheim, 1954; Livingstone & Hubel, 2002; +
Solso, 1996). These judgments, like other perceptual +
experiences, are thought to be relatively stable in spite +
of fluctuations in the raw visual input we receive due to +
factors like occlusion, visual noise, and eye movements. +
One mechanism that allows the visual system to achieve +
this stability is serial dependence. Recent results have +
revealed that the perception of visual features such as +
orientation (Fischer & Whitney, 2014), numerosity +
(Cicchini, Anobile, & Burr, 2014), and facial identity +
(Liberman, Fischer, & Whitney, 2014) are systemati- +
cally assimilated toward visual input from the recent +
past. This perceptual pull has been distinguished from +
hysteresis in motor responses or decision processes, and +
has been shown to be tuned by the magnitude of the +
difference between previous and current visual inputs +
(Fischer & Whitney, 2014; Liberman, Fischer, & +
Whitney, 2014). +
Is aesthetics perception similarly stable like feature +
perception? Some previous studies have suggested that +
the answer is yes. It has been shown that there is a +
positive correlation between observers’ successive +
attractiveness ratings of facial images (Kondo, Taka- +
hashi, & Watanabe, 2012; Taubert, Van der Burg, & +
Alais, 2016). This suggests that there is an assimilative +
sequential dependence in attractiveness judgments. +
Citation: Xia, Y., Leib, A. Y., & Whitney, D. (2016). Serial dependence in the perception of attractiveness. Journal of Vision, +
16(15):28, 1–8, doi:10.1167/16.15.28. +
doi: 10 .116 7 /1 6. 15 . 28 +
Received July 13, 2016; published December 22, 2016 +
ISSN 1534-7362 +
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. +
('27678837', 'Ye Xia', 'ye xia')
('6931574', 'Allison Yamanashi Leib', 'allison yamanashi leib')
ffaad0204f4af763e3390a2f6053c0e9875376beArticle +
Non-Convex Sparse and Low-Rank Based Robust +
Subspace Segmentation for Data Mining +
School of Information Science and Technology, Donghua University, Shanghai 200051, China
City University of Hong Kong, Kowloon 999077, Hong Kong, China
School of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA
Received: 16 June 2017; Accepted: 10 July 2017; Published: 15 July 2017 +
('1743434', 'Wenlong Cheng', 'wenlong cheng')
('2482149', 'Mingbo Zhao', 'mingbo zhao')
('1691742', 'Naixue Xiong', 'naixue xiong')
('1977592', 'Kwok Tai Chui', 'kwok tai chui')
cheng.python@gmail.com +
ktchui3-c@my.cityu.edu.hk +
xiongnaixue@gmail.com +
* Correspondence: mbzhao4@gmail.com; Tel.: +86-131-0684-8616 +
ffcbedb92e76fbab083bb2c57d846a2a96b5ae30
ff7bc7a6d493e01ec8fa2b889bcaf6349101676eFacial expression recognition with spatiotemporal local +
descriptors +
Machine Vision Group, Infotech Oulu and Department of Electrical and +
Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland
('1757287', 'Guoying Zhao', 'guoying zhao')
('1714724', 'Matti Pietikäinen', 'matti pietikäinen')
{gyzhao, mkp}@ee.oulu.fi +
fffa2943808509fdbd2fc817cc5366752e57664aCombined Ordered and Improved Trajectories for Large Scale Human Action +
Recognition +
1Vision & Sensing, HCC Lab, +
ESTeM, University of Canberra
2IHCC, RSCS, CECS, +
Australian National University
('1793720', 'O. V. Ramana Murthy', 'o. v. ramana murthy')
('1717204', 'Roland Goecke', 'roland goecke')
O.V.RamanaMurthy@ieee.org +
roland.goecke@ieee.org +
ff46c41e9ea139d499dd349e78d7cc8be19f936cInternational Journal of Modern Engineering Research (IJMER) +
www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1339-1342 ISSN: 2249-6645 +
A Novel Method for Movie Character Identification and its +
Facial Expression Recognition +
M.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli
Sri Sunflower College of Engineering and Technology, Lankapalli
('6339174', 'N. Praveen', 'n. praveen')
ff5dd6f96e108d8233220cc262bc282229c1a582Applications (IJERA) ISSN: 2248-9622 www.ijera.com +
Vol. 2, Issue 6, November- December 2012, pp.708-715 +
Robust Facial Marks Detection Method Using AAM And SURF +
B.S. Abdur Rahman University, Chennai-48, India
B.S. Abdur Rahman University, Chennai-48, India
+
('9401261', 'Ziaul Haque Choudhury', 'ziaul haque choudhury')
('9401261', 'Ziaul Haque Choudhury', 'ziaul haque choudhury')
c5468665d98ce7349d38afb620adbf51757ab86fPose-Encoded Spherical Harmonics for Robust Face +
Recognition Using a Single Image +
Center for Automation Research, University of Maryland, College Park, MD 20742, USA
2 Vision Technologies Lab, Sarnoff Corporation, Princeton, NJ 08873, USA +
('39265975', 'Zhanfeng Yue', 'zhanfeng yue')
('38480590', 'Wenyi Zhao', 'wenyi zhao')
('9215658', 'Rama Chellappa', 'rama chellappa')
c588c89a72f89eed29d42f34bfa5d4cffa530732Attributes2Classname: A discriminative model for attribute-based +
unsupervised zero-shot learning +
HAVELSAN Inc., 2Bilkent University, 3Hacettepe University
('9424554', 'Berkan Demirel', 'berkan demirel')
('1939006', 'Ramazan Gokberk Cinbis', 'ramazan gokberk cinbis')
('2011587', 'Nazli Ikizler-Cinbis', 'nazli ikizler-cinbis')
bdemirel@havelsan.com.tr, gcinbis@cs.bilkent.edu.tr, nazli@cs.hacettepe.edu.tr +
c5d13e42071813a0a9dd809d54268712eba7883fFace Recognition Robust to Head Pose Changes Based on the RGB-D Sensor +
West Virginia University, Morgantown, WV
('2997432', 'Cesare Ciaccio', 'cesare ciaccio')
('2671284', 'Lingyun Wen', 'lingyun wen')
('1822413', 'Guodong Guo', 'guodong guo')
cciaccio@mix.wvu.edu, lwen@mix.wvu.edu, guodong.guo@mail.wvu.edu +
c50d73557be96907f88b59cfbd1ab1b2fd696d41JournalofElectronicImaging13(3),474–485(July2004). +
Semiconductor sidewall shape estimation +
Oak Ridge National Laboratory +
Oak Ridge, Tennessee 37831-6010 +
('3078522', 'Philip R. Bingham', 'philip r. bingham')
('3211433', 'Jeffery R. Price', 'jeffery r. price')
('2019731', 'Kenneth W. Tobin', 'kenneth w. tobin')
('1970334', 'Thomas P. Karnowski', 'thomas p. karnowski')
E-mail: binghampr@ornl.gov +
c54f9f33382f9f656ec0e97d3004df614ec56434
c574c72b5ef1759b7fd41cf19a9dcd67e5473739Zlatintsi et al. EURASIP Journal on Image and Video Processing (2017) 2017:54 +
DOI 10.1186/s13640-017-0194-1 +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
COGNIMUSE: a multimodal video +
database annotated with saliency, events, +
semantics and emotion with application to +
summarization +
('2641229', 'Athanasia Zlatintsi', 'athanasia zlatintsi')
('27687205', 'Niki Efthymiou', 'niki efthymiou')
('2861393', 'Katerina Pastra', 'katerina pastra')
('1791187', 'Alexandros Potamianos', 'alexandros potamianos')
('1750686', 'Petros Maragos', 'petros maragos')
('2539459', 'Petros Koutras', 'petros koutras')
('1710606', 'Georgios Evangelopoulos', 'georgios evangelopoulos')
c5a561c662fc2b195ff80d2655cc5a13a44ffd2dUsing Language to Learn Structured Appearance +
Models for Image Annotation +
('37894231', 'Michael Jamieson', 'michael jamieson')
('1775745', 'Afsaneh Fazly', 'afsaneh fazly')
('1792908', 'Suzanne Stevenson', 'suzanne stevenson')
('1724954', 'Sven Wachsmuth', 'sven wachsmuth')
c5fe40875358a286594b77fa23285fcfb7bda68e
c5c379a807e02cab2e57de45699ababe8d13fb6d Facial Expression Recognition Using Sparse Representation +
1School of Physics and Electronic Engineering +
Taizhou University
Taizhou 318000 +
CHINA +
2Department of Computer Science +
Taizhou University
Taizhou 318000 +
CHINA +
('1695589', 'SHIQING ZHANG', 'shiqing zhang')
('1730594', 'XIAOMING ZHAO', 'xiaoming zhao')
('38909691', 'BICHENG LEI', 'bicheng lei')
tzczsq@163.com, leibicheng@163.com +
tzxyzxm@163.com +
c5ea084531212284ce3f1ca86a6209f0001de9d1Audio-Visual Speech Processing for +
Multimedia Localisation +
by +
Matthew Aaron Benatan +
Submitted in accordance with the requirements +
for the degree of Doctor of Philosophy +
The University of Leeds
School of Computing +
September 2016 +
c5935b92bd23fd25cae20222c7c2abc9f4caa770Spatiotemporal Multiplier Networks for Video Action Recognition +
Graz University of Technology
Graz University of Technology
York University, Toronto
('2322150', 'Christoph Feichtenhofer', 'christoph feichtenhofer')
('1718587', 'Axel Pinz', 'axel pinz')
('1709096', 'Richard P. Wildes', 'richard p. wildes')
feichtenhofer@tugraz.at +
axel.pinz@tugraz.at +
wildes@cse.yorku.ca +
c5421a18583f629b49ca20577022f201692c4f5dFacial Age Classification using Subpattern-based +
Approaches +
Eastern Mediterranean University, Gazima usa, Northern Cyprus
Mersin 10, Turkey +
+
are +
(mPCA) +
examined +
('3437942', 'Fatemeh Mirzaei', 'fatemeh mirzaei')
('2907423', 'Önsen Toygar', 'önsen toygar')
{fatemeh.mirzaei, onsen.toygar}@emu.edu.tr +
c5be0feacec2860982fbbb4404cf98c654142489Semi-Qualitative Probabilistic Networks in Computer +
Vision Problems +
Troy, NY 12180, USA. +
Troy, NY 12180, USA. +
Troy, NY 12180, USA. +
Troy, NY 12180, USA. +
Received: *** +
Revised: *** +
('1680860', 'Cassio P. de Campos', 'cassio p. de campos')
('1684635', 'Lei Zhang', 'lei zhang')
('1686235', 'Yan Tong', 'yan tong')
('1726583', 'Qiang Ji', 'qiang ji')
Email: decamc@rpi.edu +
Email: zhangl2@rpi.edu +
Email: tongy2@rpi.edu +
Email: jiq@rpi.edu +
c5844de3fdf5e0069d08e235514863c8ef900eb7Lam S K et al. / (IJCSE) International Journal on Computer Science and Engineering +
Vol. 02, No. 08, 2010, 2659-2665 +
A Study on Similarity Computations in Template +
Matching Technique for Identity Verification +
Lam, S. K., Yeong, C. Y., Yew, C. T., Chai, W. S., Suandi, S. A. +
Intelligent Biometric Group, School of Electrical and Electronic Engineering +
Engineering Campus, Universiti Sains Malaysia +
14300 Nibong Tebal, Pulau Pinang, MALAYSIA +
Email: shahrel@eng.usm.my +
c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1Ultra-Resolving Face Images by Discriminative +
Generative Networks(cid:63) +
Australian National University
('4092561', 'Xin Yu', 'xin yu'){xin.yu, fatih.porikli}@anu.edu.au +
c590c6c171392e9f66aab1bce337470c43b48f39Emotion Recognition by Machine Learning Algorithms using +
Psychophysiological Signals +
1, 2, 3 BT Convergence Technology Research Department, Electronics and Telecommunications +
Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea
Chungnam National University
('2329242', 'Eun-Hye Jang', 'eun-hye jang')
('1696731', 'Byoung-Jun Park', 'byoung-jun park')
('2030031', 'Sang-Hyeob Kim', 'sang-hyeob kim')
('2615387', 'Jin-Hun Sohn', 'jin-hun sohn')
cleta4u@etri.re.kr, bj_park@etri.re.kr, shk1028@etri.re.kr +
Gung-dong, Yuseong-gu, Daejeon, 305-765, Republic of Korea, jhsohn@cnu.ac.kr +
c5f1ae9f46dc44624591db3d5e9f90a6a8391111Application of non-negative and local non negative matrix factorization to facial +
expression recognition +
Dept. of Informatics +
Aristotle University of Thessaloniki
GR-541 24, Thessaloniki, Box 451, Greece +
('2336758', 'Ioan Buciu', 'ioan buciu')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
{nelu,pitas}@zeus.csd.auth.gr +
c53352a4239568cc915ad968aff51c49924a3072Transfer Representation-Learning for Anomaly Detection +
Lewis D. Griffin† +
University College London, UK
University College London, UK
(cid:63)Rapiscan Systems Ltd, USA +
('3451382', 'Thomas Tanay', 'thomas tanay')
('13736095', 'Edward J. Morton', 'edward j. morton')
JERONE.ANDREWS@CS.UCL.AC.UK +
THOMAS.TANAY.13@UCL.AC.UK +
EMORTON@RAPISCANSYSTEMS.COM +
L.GRIFFIN@CS.UCL.AC.UK +
c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4Affective Computing: A Review +
National Laboratory of Pattern Recognition (NLPR), Institute of Automation
Chinese Academy of Sciences, P.O.X. 2728, Beijing 100080 +
('37670752', 'Jianhua Tao', 'jianhua tao')
('1688870', 'Tieniu Tan', 'tieniu tan')
{jhtao, tnt}@nlpr.ia.ac.cn +
c2fa83e8a428c03c74148d91f60468089b80c328Optimal Mean Robust Principal Component Analysis +
University of Texas at Arlington, Arlington, TX
('1688370', 'Feiping Nie', 'feiping nie')
('40034801', 'Jianjun Yuan', 'jianjun yuan')
('1748032', 'Heng Huang', 'heng huang')
FEIPINGNIE@GMAIL.COM +
WRIYJJ@GMAIL.COM +
HENG@UTA.EDU +
c2c3ff1778ed9c33c6e613417832505d33513c55Multimodal Biometric Person Authentication +
Using Fingerprint, Face Features +
University of Lac Hong 10 Huynh Van Nghe
DongNai 71000, Viet Nam +
Ho Chi Minh City University of Science
227 Nguyen Van Cu, HoChiMinh 70000, Viet Nam +
('2009230', 'Tran Binh Long', 'tran binh long')
('2710459', 'Le Hoang Thai', 'le hoang thai')
('1971778', 'Tran Hanh', 'tran hanh')
tblong@lhu.edu.vn +
lhthai@fit.hcmus.edu.vn +
c27f64eaf48e88758f650e38fa4e043c16580d26Title of the proposed research project: Subspace analysis using Locality Preserving +
Projection and its applications for image recognition +
Research area: Data manifold learning for pattern recognition +
Contact Details: +
University: Dhirubhai Ambani Institute of Information and Communication Technology
(DA-IICT), Gandhinagar. +
+
('2050838', 'Gitam C Shikkenawis', 'gitam c shikkenawis')Email Address: 201221004@daiict.ac.in +
c23153aade9be0c941390909c5d1aad8924821dbEfficient and Accurate Tracking +
for Face Diarization via Periodical Detection +
∗Ecole Polytechnique Federal de Lausanne, Switzerland +
Idiap Research Institute, Martigny, Switzerland
('39560344', 'Nam Le', 'nam le')
('30790014', 'Alexander Heili', 'alexander heili')
('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')
Email: { nle, aheili, dwu, odobez }@idiap.ch +
c207fd762728f3da4cddcfcf8bf19669809ab284Face Alignment Using Boosting and Evolutionary +
Search +
College of Software Engineering, Southeast University, Nanjing 210096, China
Lab of Science and Technology, Southeast University, Nanjing 210096, China
Human Media Interaction, University of Twente, P.O. Box
7500 AE Enschede, The Netherlands +
('39063774', 'Hua Zhang', 'hua zhang')
('2779570', 'Duanduan Liu', 'duanduan liu')
('1688157', 'Mannes Poel', 'mannes poel')
('1745198', 'Anton Nijholt', 'anton nijholt')
reynzhang@sina.com +
liuduanduan@seu.edu.cn +
{anijholt,mpoel}@cs.utwente.nl +
c220f457ad0b28886f8b3ef41f012dd0236cd91aJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Crystal Loss and Quality Pooling for +
Unconstrained Face Verification and Recognition +
('40497884', 'Rajeev Ranjan', 'rajeev ranjan')
('2068427', 'Ankan Bansal', 'ankan bansal')
('2680836', 'Hongyu Xu', 'hongyu xu')
('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('9215658', 'Rama Chellappa', 'rama chellappa')
c254b4c0f6d5a5a45680eb3742907ec93c3a222bA Fusion-based Gender Recognition Method +
Using Facial Images +
('24033665', 'Benyamin Ghojogh', 'benyamin ghojogh')
('1779028', 'Saeed Bagheri Shouraki', 'saeed bagheri shouraki')
('1782221', 'Hoda Mohammadzade', 'hoda mohammadzade')
('22395643', 'Ensieh Iranmehr', 'ensieh iranmehr')
c2e03efd8c5217188ab685e73cc2e52c54835d1aDeep Tree-structured Face: A Unified Representation for Multi-task Facial +
Biometrics +
Department of Electrical Engineering and Computer Science +
University of Tennessee, Knoxville
('1691576', 'Rui Guo', 'rui guo')
('9120475', 'Liu Liu', 'liu liu')
('40560485', 'Wei Wang', 'wei wang')
('2885826', 'Ali Taalimi', 'ali taalimi')
('1690083', 'Chi Zhang', 'chi zhang')
('1698645', 'Hairong Qi', 'hairong qi')
{rguo1, lliu25, wwang34, ataalimi, czhang24, hqi} @utk.edu +
c28461e266fe0f03c0f9a9525a266aa3050229f0Automatic Detection of Facial Feature Points via +
HOGs and Geometric Prior Models +
1 Computer Vision Center , Universitat Aut`onoma de Barcelona +
2 Universitat Oberta de Catalunya +
3 Dept. de Matem`atica Aplicada i An`alisi +
Universitat de Barcelona +
('1863902', 'David Masip', 'david masip')mrojas@cvc.uab.es, dmasipr@uoc.edu, jordi.vitria@ub.edu +
c29e33fbd078d9a8ab7adbc74b03d4f830714cd0
c2e6daebb95c9dfc741af67464c98f10391276275-1 +
MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN +
Efficient Measuring of Facial Action Unit Activation Intensities +
using Active Appearance Models +
Computer Vision Group, Friedrich Schiller University of Jena, Germany
University Hospital Jena, Germany
('1708249', 'Daniel Haase', 'daniel haase')
('8993584', 'Michael Kemmler', 'michael kemmler')
('1814631', 'Orlando Guntinas-Lichius', 'orlando guntinas-lichius')
('1728382', 'Joachim Denzler', 'joachim denzler')
f60a85bd35fa85739d712f4c93ea80d31aa7de07VisDA: The Visual Domain Adaptation Challenge +
Boston University
EECS, University of California Berkeley
('2960713', 'Xingchao Peng', 'xingchao peng')
('39058756', 'Ben Usman', 'ben usman')
('34836903', 'Neela Kaushik', 'neela kaushik')
('50196944', 'Judy Hoffman', 'judy hoffman')
('2774612', 'Dequan Wang', 'dequan wang')
('2903226', 'Kate Saenko', 'kate saenko')
xpeng,usmn,nkaushik,saenko@bu.edu, jhoffman,dqwang@eecs.berkeley.edu +
f6f06be05981689b94809130e251f9e4bf932660An Approach to Illumination and Expression Invariant +
International Journal of Computer Applications (0975 – 8887) +
Volume 91 – No.15, April 2014 +
Multiple Classifier Face Recognition +
Dalton Meitei Thounaojam +
National Institute of Technology
Silchar +
Assam: 788010 +
India +
National Institute of Technology
Silchar +
Assam: 788010 +
India +
Romesh Laishram +
Manipur Institute of Technology
Imphal West: 795001 +
India +
f68ed499e9d41f9c3d16d843db75dc12833d988d
f6742010372210d06e531e7df7df9c01a185e241Dimensional Affect and Expression in +
Natural and Mediated Interaction +
Ritsumeikan, University
Kyoto, Japan +
October, 2007 +
('1709339', 'Michael J. Lyons', 'michael j. lyons')lyons@im.ritsumei.ac.jp +
f69de2b6770f0a8de6d3ec1a65cb7996b3c99317Research Journal of Applied Sciences, Engineering and Technology 8(22): 2265-2271, 2014 +
ISSN: 2040-7459; e-ISSN: 2040-7467 +
© Maxwell Scientific Organization, 2014 +
Submitted: September ‎13, ‎2014 +
Accepted: ‎September ‎20, ‎2014 +
Published: December 15, 2014 +
Face Recognition System Based on Sparse Codeword Analysis +
St.Joseph s College of Engineering, Old Mamallapuram Road, Kamaraj Nagar, Semmencherry, Chennai
Anna University, Chennai
Tamil Nadu 600119, India +
('2508896', 'P. Geetha', 'p. geetha')
('40574934', 'Vasumathi Narayanan', 'vasumathi narayanan')
f6ca29516cce3fa346673a2aec550d8e671929a6International Journal of Engineering and Advanced Technology (IJEAT) +
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +
Algorithm for Face Matching Using Normalized +
Cross-Correlation +
 +
('2426695', 'C. Saravanan', 'c. saravanan')
('14289238', 'M. Surender', 'm. surender')
f67a73c9dd1e05bfc51219e70536dbb49158f7bcJournal of Computer Science 10 (11): 2292-2298, 2014 +
ISSN: 1549-3636 +
© 2014 Nithyashri and Kulanthaivel, This open access article is distributed under a Creative Commons Attribution +
(CC-BY) 3.0 license +
A GAUSSIAN MIXTURE MODEL FOR CLASSIFYING THE +
HUMAN AGE USING DWT AND SAMMON MAP +
Sathyabama University, Chennai, India
2Department of Electronics Engineering, NITTTR, Chennai, India +
Received 2014-05-08; Revised 2014-05-23; Accepted 2014-11-28 +
('9513864', 'J. Nithyashri', 'j. nithyashri')
('5014650', 'G. Kulanthaivel', 'g. kulanthaivel')
f6c70635241968a6d5fd5e03cde6907022091d64
f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4aSyn2Real: A New Benchmark for +
Synthetic-to-Real Visual Domain Adaptation +
Boston University1, University of Tokyo
University of California Berkeley
('2960713', 'Xingchao Peng', 'xingchao peng')
('39058756', 'Ben Usman', 'ben usman')
('8915348', 'Kuniaki Saito', 'kuniaki saito')
('34836903', 'Neela Kaushik', 'neela kaushik')
('2903226', 'Kate Saenko', 'kate saenko')
f66f3d1e6e33cb9e9b3315d3374cd5f121144213The Journal of Neuroscience, October 30, 2013 • 33(44):17435–17443 • 17435 +
Behavioral/Cognitive +
Top-Down Control of Visual Responses to Fear by the +
Amygdala +
1Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 7EF, United Kingdom, and 2Wellcome Centre for Imaging Neuroscience, +
University College London, London WC1N 3BG, United Kingdom
The visual cortex is sensitive to emotional stimuli. This sensitivity is typically assumed to arise when amygdala modulates visual cortex +
via backwards connections. Using human fMRI, we compared dynamic causal connectivity models of sensitivity with fearful faces. This +
model comparison tested whether amygdala modulates distinct cortical areas, depending on dynamic or static face presentation. The +
ventral temporal fusiform face area showed sensitivity to fearful expressions in static faces. However, for dynamic faces, we found fear +
sensitivity in dorsal motion-sensitive areas within hMT⫹/V5 and superior temporal sulcus. The model with the greatest evidence +
included connections modulated by dynamic and static fear from amygdala to dorsal and ventral temporal areas, respectively. According +
to this functional architecture, amygdala could enhance encoding of fearful expression movements from video and the form of fearful +
expressions from static images. The amygdala may therefore optimize visual encoding of socially charged and salient information. +
Introduction +
Emotional images enhance responses in visual areas, an effect +
typically observed in the fusiform gyrus for static fearful faces and +
ascribed to backwards connections from amygdala (Morris et al., +
1998; Vuilleumier and Pourtois, 2007). Although support for +
amygdala influence comes from structural connectivity (Amaral +
and Price, 1984; Catani et al., 2003), functional connectivity +
(Morris et al., 1998; Foley et al., 2012), and path analysis (Lim et +
al., 2009), directed connectivity measures and formal model +
comparison are still needed to show that backwards connections +
from amygdala are more likely than other architectures to gener- +
ate cortical emotion sensitivity. +
Moreover, it is surprising that the putative amygdala feedback +
would enhance fusiform cortex responses. According to the pre- +
vailing view, a face-selective area in fusiform cortex, the fusiform +
face area (FFA), is associated with processing facial identity, +
whereas dorsal temporal regions, particularly in the superior +
temporal sulcus (STS), are associated with processing facial ex- +
pression (Haxby et al., 2000). An alternative position is that fusi- +
form and STS areas both contribute to facial expression +
processing but contribute to encoding structural forms and dy- +
namic features, respectively (Calder and Young, 2005; Calder, +
2011). In this case, static fearful expressions may enhance FFA +
Received July 11, 2013; revised Sept. 7, 2013; accepted Sept. 12, 2013. +
Author contributions: N.F., R.N.H., K.J.F., and A.J.C. designed research; N.F. performed research; N.F. analyzed +
data; N.F., R.N.H., K.J.F., and A.J.C. wrote the paper. +
This work was supported by the United Kingdom Economic and Social Research Council Grant RES-062-23-2925 +
to N.F. and the Medical Research Council Grant MC_US_A060_5PQ50 to A.J.C. and Grant MC_US_A060_0046 to +
R.N.H. We thank Christopher Fox for supplying the dynamic object stimuli and James Rowe and Francesca Carota for +
contributing useful comments. +
The authors declare no competing financial interests. +
DOI:10.1523/JNEUROSCI.2992-13.2013 +
Copyright © 2013 the authors +
0270-6474/13/3317435-09$15.00/0 +
encoding of structural cues associated with emotional expres- +
sion. We therefore characterized the conditions under which +
amygdala mediates fear sensitivity in fusiform cortex, compared +
with dorsal temporal areas (Sabatinelli et al., 2011). +
We asked whether dynamic and static fearful expressions en- +
hance responses in dorsal temporal and ventral fusiform areas, re- +
spectively. One dorsal temporal area, hMT⫹/V5, is sensitive to low +
level and facial motion and may be homologous to the middle tem- +
poral (MT), medial superior temporal (MST), and fundus of the +
super temporal (FST) areas in the macaque (Kolster et al., 2010). +
Another dorsal area, the posterior STS, is responsive generally to +
biological motion (Giese and Poggio, 2003). Compared with dorsal +
areas, the fusiform gyrus shows less sensitivity to facial motion +
(Schultz and Pilz, 2009; Trautmann et al., 2009; Pitcher et al., 2011; +
Foley et al., 2012; Schultz et al., 2012). Despite its association with +
facial identity processing, many studies have shown that FFA con- +
tributes to processing facial expressions (Ganel et al., 2005; Fox et al., +
2009b; Cohen Kadosh et al., 2010; Harris et al., 2012) and may have +
a general role in processing facial form (O’Toole et al., 2002; Calder, +
2011). Sensitivity to static fearful expressions in the FFA may reflect +
this role in processing static form. If so, then dynamic fearful expres- +
sions may evoke fear sensitivity in dorsal temporal areas instead, +
reflecting the role of these areas to processing motion. +
Our fMRI results confirmed our hypothesis that dorsal +
motion-sensitive areas showed fear sensitivity for dynamic facial +
expressions, whereas the FFA showed fear sensitivity for static +
expressions. To explore connectivity mechanisms that mediate +
fear sensitivity, we used dynamic causal modeling (DCM) to ex- +
plore 508 plausible connectivity architectures. Our Bayesian +
model comparison identified the most likely model, which +
showed that dynamic and static fear modulated connections +
from amygdala to dorsal or ventral areas, respectively. Amygdala +
therefore may control how behaviorally relevant information is +
visually coded in a context-sensitive fashion. +
('3162581', 'Nicholas Furl', 'nicholas furl')
('3162581', 'Nicholas Furl', 'nicholas furl')
Unit, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom. E-mail: nick.furl@mrc-cbu.cam.ac.uk. +
f6ce34d6e4e445cc2c8a9b8ba624e971dd4144caCross-label Suppression: A Discriminative and Fast +
Dictionary Learning with Group Regularization +
April 24, 2017 +
('9293691', 'Xiudong Wang', 'xiudong wang')
('2080215', 'Yuantao Gu', 'yuantao gu')
f6abecc1f48f6ec6eede4143af33cc936f14d0d0
f61d5f2a082c65d5330f21b6f36312cc4fab8a3bMulti-Level Variational Autoencoder: +
Learning Disentangled Representations from +
Grouped Observations +
OVAL Group +
University of Oxford
Machine Intelligence and Perception Group +
Microsoft Research +
Cambridge, UK +
('3365029', 'Diane Bouchacourt', 'diane bouchacourt')
('2870603', 'Ryota Tomioka', 'ryota tomioka')
('2388416', 'Sebastian Nowozin', 'sebastian nowozin')
diane@robots.ox.ac.uk +
{ryoto,Sebastian.Nowozin}@microsoft.com +
f6fa97fbfa07691bc9ff28caf93d0998a767a5c1k2-means for fast and accurate large scale clustering +
Computer Vision Lab +
D-ITET +
ETH Zurich +
Computer Vision Lab +
D-ITET +
ETH Zurich +
ESAT, KU Leuven +
D-ITET, ETH Zurich +
('2794259', 'Eirikur Agustsson', 'eirikur agustsson')
('1732855', 'Radu Timofte', 'radu timofte')
('1681236', 'Luc Van Gool', 'luc van gool')
aeirikur@vision.ee.ethz.ch +
timofter@vision.ee.ethz.ch +
vangool@vision.ee.ethz.ch +
f6cf2108ec9d0f59124454d88045173aa328bd2eRobust user identification based on facial action units +
unaffected by users’ emotions +
Aalen University, Germany
('3114281', 'Ricardo Buettner', 'ricardo buettner')ricardo.buettner@hs-aalen.de +
f68f20868a6c46c2150ca70f412dc4b53e6a03c2157 +
Differential Evolution to Optimize +
Hidden Markov Models Training: +
Application to Facial Expression +
Recognition +
Ars`ene Simbabawe +
MISC Laboratory, Constantine 2 University, Constantine, Algeria
The base system in this paper uses Hidden Markov +
Models (HMMs) to model dynamic relationships among +
facial features in facial behavior interpretation and un- +
derstanding field. The input of HMMs is a new set +
of derived features from geometrical distances obtained +
from detected and automatically tracked facial points. +
Numerical data representation which is in the form of +
multi-time series is transformed to a symbolic repre- +
sentation in order to reduce dimensionality, extract the +
most pertinent information and give a meaningful repre- +
sentation to humans. The main problem of the use of +
HMMs is that the training is generally trapped in local +
minima, so we used the Differential Evolution (DE) +
algorithm to offer more diversity and so limit as much as +
possible the occurrence of stagnation. For this reason, +
this paper proposes to enhance HMM learning abilities +
by the use of DE as an optimization tool, instead of the +
classical Baum and Welch algorithm. Obtained results +
are compared against the traditional learning approach +
and significant improvements have been obtained. +
Keywords: facial expressions, occurrence order, Hidden +
Markov Model, Baum-Welch, optimization, differential +
evolution +
1. Introduction +
Analyzing the dynamics of facial features and +
(or) the changes in the appearance of facial fea- +
tures (eyes, eyebrows and mouth) is a very im- +
portant step in facial expression understanding +
and interpretation. Many researchers attempt to +
study the dynamic facial behavior. Timing, du- +
ration, speed and occurrence order of face/body +
actions are crucial parameters related to dy- +
namic behavior (Ekman, & Rosenberg, 2005). +
For instance, facial expression temporal dynam- +
ics are essential for recognition of either full ex- +
pressions (Kotsia & Pitas, 2007; Littlewort & +
al, 2006), or components of expressions such +
as facial Action Units (AUs) (Pantic & Patras, +
2006; Valstar & Pantic, 2007). They are essen- +
tial for categorization of complex psychologi- +
cal states like various types of pain and mood +
(Williams, 2002) and are highly important cues +
for distinguishing posed from spontaneous fa- +
cial expressions (Cohn & Schmidt, 2004; Val- +
star & al, 2006). Timing, duration and speed +
have been analyzed in several studies (Cohn & +
Schmidt, 2004; Valstar & al, 2006; Valstar & al +
2007). However, little attention has been given +
to occurrence order (Valstar & al, 2006; Valstar +
& al 2007). +
Several efforts have been recently reported on +
automatic analysis of facial expression data +
(Zeng & al, 2009; Sandbach & al, 2012; Gunes +
that most recent methods employ probabilistic +
(Hidden Markov Models, Dynamic Bayesian +
Network), statistical (Support Vector Machine), +
and ensemble learning techniques (Gentle- +
-Boost), which seem to be particularly suitable +
for automatic facial expression recognition from +
face image sequences. Because we want to ex- +
HMM (Koelstra & al, 2010; Cohen & al, 2003) +
and DBN (Tong & al, 2007; Tong & al, 2010) +
can be used. +
The presented work in this paper is a part of +
a project which aims to construct “An Optimal +
('2654160', 'Khadoudja Ghanem', 'khadoudja ghanem')
('1749675', 'Amer Draa', 'amer draa')
('2483552', 'Elvis Vyumvuhore', 'elvis vyumvuhore')
f6e00d6430cbbaa64789d826d093f7f3e323b082Visual Object Recognition +
University of Texas at Austin
RWTH Aachen University
SYNTHESIS LECTURES ON COMPUTER +
VISION # 1 +
('1794409', 'Kristen Grauman', 'kristen grauman')
('1789756', 'Bastian Leibe', 'bastian leibe')
e9a5a38e7da3f0aa5d21499149536199f2e0e1f7Article +
A Bayesian Scene-Prior-Based Deep Network Model +
for Face Verification +
North China University of Technology
Curtin University, Perth, WA 6102, Australia
† These authors contributed equally to this work. +
Received: 12 May 2018; Accepted: 8 June 2018 ; Published: 11 June 2018 +
('2104779', 'Huafeng Wang', 'huafeng wang')
('2239474', 'Haixia Pan', 'haixia pan')
('3229158', 'Wenfeng Song', 'wenfeng song')
('1713220', 'Wanquan Liu', 'wanquan liu')
('47311804', 'Ning Song', 'ning song')
('2361868', 'Yuehai Wang', 'yuehai wang')
Beijing 100144, China; wangyuehai@ncut.edu.cn +
2 Department of Software, Beihang University, Beijing 100191, China; swfbuaa@163.com +
* Correspondence: wanghuafeng@ncut.edu.cn (H.W.); W.Liu@curtin.edu.au (W.L.); zy1621125@buaa.edu.cn +
(N.S.); haixiapan@buaa.edu.cn (H.P.); Tel.: +86-189-1192-4121 (H.W.) +
e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 +
Vol. 3 Issue 1, January-2014, pp: (362-365), Impact Factor: 1.252, Available online at: www.erpublications.com +
Cognitive Learning for Social Robot through +
Facial Expression from Video Input +
1Department of Automation & Robotics, 2Department of Computer Science & Engg. +
('26944751', 'Neeraj Rai', 'neeraj rai')
('2586264', 'Deepak Rai', 'deepak rai')
('26477055', 'Ajay Kumar Garg', 'ajay kumar garg')
e988be047b28ba3b2f1e4cdba3e8c94026139fcfMulti-Task Convolutional Neural Network for +
Pose-Invariant Face Recognition +
('2399004', 'Xi Yin', 'xi yin')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
e9d43231a403b4409633594fa6ccc518f035a135Deformable Part Models with CNN Features +
Kokkinos1,2 +
1 Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63) +
('2381485', 'Stavros Tsogkas', 'stavros tsogkas')
('2776496', 'George Papandreou', 'george papandreou')
e90e12e77cab78ba8f8f657db2bf4ae3dabd5166Nonconvex Sparse Spectral Clustering by Alternating Direction Method of +
Multipliers and Its Convergence Analysis +
National University of Singapore
Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
Cooperative Medianet Innovation Center, Shanghai Jiao Tong University
AI Institute
('33224509', 'Canyi Lu', 'canyi lu')
('33221685', 'Jiashi Feng', 'jiashi feng')
('33383055', 'Zhouchen Lin', 'zhouchen lin')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
canyilu@gmail.com, elefjia@nus.edu.sg, zlin@pku.edu.cn, eleyans@nus.edu.sg +
e9c008d31da38d9eef67a28d2c77cb7daec941fbNoisy Softmax: Improving the Generalization Ability of DCNN via Postponing +
the Early Softmax Saturation +
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing China
('3450321', 'Binghui Chen', 'binghui chen')
('1774956', 'Weihong Deng', 'weihong deng')
('8491162', 'Junping Du', 'junping du')
chenbinghui@bupt.edu.cn, whdeng@bupt.edu.cn, junpingd@bupt.edu.cn +
e9e40e588f8e6510fa5537e0c9e083ceed5d07adFast Face Detection Using Graphics Processor +
National Institute of Technology Karnataka
Surathkal, India +
('36598334', 'K.Vinay Kumar', 'k.vinay kumar')
e9bb045e702ee38e566ce46cc1312ed25cb59ea7Integrating Geometric and Textural Features for +
Facial Emotion Classification using SVM +
Frameworks +
1 Department of Computer Science and Engineering, +
Indian Institute of Technology, Roorkee
2 Department of Electronics and Electrical Communication Engineering, +
Indian Institute of Technology, Kharagpur
('19200118', 'Samyak Datta', 'samyak datta')
('3165117', 'Debashis Sen', 'debashis sen')
('1726184', 'R. Balasubramanian', 'r. balasubramanian')
e9fcd15bcb0f65565138dda292e0c71ef25ea8bbRepositorio Institucional de la Universidad Autónoma de Madrid +
https://repositorio.uam.es +
Esta es la versión de autor de la comunicación de congreso publicada en: +
This is an author produced version of a paper published in: +
Highlights on Practical Applications of Agents and Multi-Agent Systems: +
International Workshops of PAAMS. Communications in Computer and +
Information Science, Volumen 365. Springer, 2013. 223-230 +
DOI: http://dx.doi.org/10.1007/978-3-642-38061-7_22 +
Copyright: © 2013 Springer-Verlag +
El acceso a la versión del editor puede requerir la suscripción del recurso +
Access to the published version may require subscription +
e9f1cdd9ea95810efed306a338de9e0de25990a0FEPS: An Easy-to-Learn Sensory Substitution System to +
Perceive Facial Expressions +
Electrical and Computer Engineering +
University of Memphis
Memphis, TN 38152, USA +
('2497319', 'M. Iftekhar Tanveer', 'm. iftekhar tanveer')
('2464507', 'Sreya Ghosh', 'sreya ghosh')
('33019079', 'A.K.M. Mahbubur Rahman', 'a.k.m. mahbubur rahman')
('1828610', 'Mohammed Yeasin', 'mohammed yeasin')
{mtanveer,aanam,sghosh,arahman,myeasin}@memphis.edu +
e9363f4368b04aeaa6d6617db0a574844fc59338BENCHIP: Benchmarking Intelligence +
Processors +
1ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group +
4IFLYTEK,5JD,6RDA Microelectronics,7AMD +
('2631042', 'Jinhua Tao', 'jinhua tao')
('1678776', 'Zidong Du', 'zidong du')
('50770616', 'Qi Guo', 'qi guo')
('4304175', 'Huiying Lan', 'huiying lan')
('48571185', 'Lei Zhang', 'lei zhang')
('7523063', 'Shengyuan Zhou', 'shengyuan zhou')
('49046597', 'Cong Liu', 'cong liu')
('49343896', 'Shan Tang', 'shan tang')
('38253244', 'Allen Rush', 'allen rush')
('47482936', 'Willian Chen', 'willian chen')
('39419985', 'Shaoli Liu', 'shaoli liu')
('7377735', 'Yunji Chen', 'yunji chen')
('7934735', 'Tianshi Chen', 'tianshi chen')
f1250900074689061196d876f551ba590fc0a064Learning to Recognize Actions from Limited Training +
Examples Using a Recurrent Spiking Neural Model +
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
2Intel Labs, Hillsboro, OR, USA 97124 +
('9352814', 'Priyadarshini Panda', 'priyadarshini panda')
('1753812', 'Narayan Srinivasa', 'narayan srinivasa')
*Correspondence: narayan.srinivasa@intel.com +
f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network +
Approach in Unconstrained Poses +
Carnegie Mellon University
Pittsburgh, PA +
('47894545', 'Chenchen Zhu', 'chenchen zhu')
('1769788', 'Khoa Luu', 'khoa luu')
('1794486', 'Marios Savvides', 'marios savvides')
cbhagava@andrew.cmu.edu, zcckernel@cmu.edu, kluu@andrew.cmu.edu, msavvid@ri.cmu.edu +
f16a605abb5857c39a10709bd9f9d14cdaa7918fFast greyscale road sign model matching +
and recognition +
Centre de Visió per Computador +
Edifici O – Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain +
('7855312', 'Sergio Escalera', 'sergio escalera')
('1724155', 'Petia Radeva', 'petia radeva')
{sescalera,petia}@cvc.uab.es +
f1aa120fb720f6cfaab13aea4b8379275e6d40a2InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image +
Max-Planck-Institute for Informatics
University of Erlangen-Nuremberg 3 University of Bath
Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate +
from just a single input image. We jointly recover the face pose, shape, expression, reflectance and incident scene illumination. From left to +
right: input photo, our estimated face model, its geometry, and the pointwise Euclidean error compared to Garrido et al. [14]. +
('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')
('34105638', 'Justus Thies', 'justus thies')
('1699058', 'Michael Zollhöfer', 'michael zollhöfer')
('1819028', 'Christian Richardt', 'christian richardt')
('1680185', 'Christian Theobalt', 'christian theobalt')
('9102722', 'Ayush Tewari', 'ayush tewari')
f1748303cc02424704b3a35595610890229567f9
f1ba2fe3491c715ded9677862fea966b32ca81f0ISSN: 2321-7782 (Online) +
Volume 1, Issue 7, December 2013 +
International Journal of Advance Research in +
Computer Science and Management Studies +
Research Paper +
Available online at: www.ijarcsms.com +
Face Tracking and Recognition in Videos: +
HMM Vs KNN +
Assistant Professor +
Department of Computer Engineering +
MIT College of Engineering (Pune University
Pune - India +
f1d090fcea63d9f9e835c49352a3cd576ec899c1Iosifidis, A., Tefas, A., & Pitas, I. (2015). Single-Hidden Layer Feedforward +
Neual Network Training Using Class Geometric Information. In . J. J. +
Computational Intelligence: International Joint Conference, IJCCI 2014 +
Rome, Italy, October 22-24, 2014 Revised Selected Papers. (Vol. III, pp. +
351-364). (Studies in Computational Intelligence; Vol. 620). Springer. DOI: +
10.1007/978-3-319-26393-9_21 +
Peer reviewed version +
Link to published version (if available): +
10.1007/978-3-319-26393-9_21 +
Link to publication record in Explore Bristol Research +
PDF-document +
University of Bristol - Explore Bristol Research
General rights +
This document is made available in accordance with publisher policies. Please cite only the published +
version using the reference above. Full terms of use are available: +
http://www.bristol.ac.uk/pure/about/ebr-terms.html +
('1685469', 'A. Rosa', 'a. rosa')
('9246794', 'J. M. Cadenas', 'j. m. cadenas')
('2092535', 'A. Dourado', 'a. dourado')
('39545211', 'K. Madani', 'k. madani')
f113aed343bcac1021dc3e57ba6cc0647a8f5ce1International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +
A Survey on Mining of Weakly Labeled Web Facial +
Images and Annotation +
Pune Institute of Computer Technology, Pune, India
Pune Institute of Computer Technology, Pune, India
the +
the proposed system which +
f19777e37321f79e34462fc4c416bd56772031bfInternational Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 +
ISSN 2229-5518 +
Literature Review of Image Compression Algorithm +
Dr. B. Chandrasekhar +
Padmaja.V.K +
Jawaharlal Technological University, Anantapur
email: padmaja_vk@yahoo.co.in email:: drchandrasekhar@gmail.com +
f19ab817dd1ef64ee94e94689b0daae0f686e849TECHNISCHE UNIVERSIT¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Blickrichtungsunabh¨angige Erkennung von +
Personen in Bild- und Tiefendaten +
Andre St¨ormer +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr.-Ing. Thomas Eibert +
Pr¨ufer der Dissertation: +
1. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Univ.-Prof. Dr.-Ing. Horst-Michael Groß, +
Technische Universit¨at Ilmenau +
Die Dissertation wurde am 16.06.2009 bei der Technischen Universit¨at M¨unchen einge- +
reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009 +
angenommen. +
e76798bddd0f12ae03de26b7c7743c008d505215
e7cac91da51b78eb4a28e194d3f599f95742e2a2RESEARCH ARTICLE +
Positive Feeling, Negative Meaning: +
Visualizing the Mental Representations of In- +
Group and Out-Group Smiles +
Saarland University, Saarbr cken, Germany, 2 Utrecht University, Utrecht, the Netherlands
Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
☯ These authors contributed equally to this work. +
('34533048', 'Andrea Paulus', 'andrea paulus')
('40358273', 'Michaela Rohr', 'michaela rohr')
('2365875', 'Ron Dotsch', 'ron dotsch')
('3905267', 'Dirk Wentura', 'dirk wentura')
* a.paulus@mx.uni-saarland.de +
e793f8644c94b81b7a0f89395937a7f8ad428a89LPM for Action Recognition in Temporally +
Untrimmed Videos +
School of Electrical Engineering and Computer Scinece +
University of Ottawa, Ottawa, On, Canada
('36047295', 'Feng Shi', 'feng shi')
('1745632', 'Emil Petriu', 'emil petriu')
{fshi098, laganier, petriu}@site.uottawa.ca +
e726174d516605f80ff359e71f68b6e8e6ec6d5dInstitute of Information Science
Beijing Jiaotong University
Beijing, 100044 P.R. China +
A novel Patched Locality Preserving Projections for 3D face recognition was pre- +
sented in this paper. In this paper, we firstly patched each image to get the spatial infor- +
mation, and then Gabor filter was used extract intrinsic discriminative information em- +
bedded in each patch. Finally Locality Preserving Projections, which was improved by +
Principle Components Analysis, was utilized to the corresponding patches to obtain lo- +
cality preserving information. The feature was constructed by connecting all these pro- +
jections. Recognition was achieved by using a Nearest Neighbor classifier finally. The +
novelty of this paper came from: (1) The method was robust to changes in facial expres- +
sions and poses, because Gabor filters promoted their useful properties, such as invari- +
ance to rotation, scale and translations, in feature extraction; (2) The method not only +
preserved spatial information, but also preserved locality information of the correspond- +
ing patches. Experiments demonstrated the efficiency and effectiveness of the new +
method. The experimental results showed that the new algorithm outperformed the other +
popular approaches reported in the literature and achieved a much higher accurate recog- +
nition rate. +
Keywords: 3D face recognition, Gabor filters, locality preserving projections, principle +
components analysis, nearest neighbor +
1. INTRODUCTION +
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 26, 2297-2307 (2010) +
Short Paper__________________________________________________ +
3D Face Recognition Using Patched +
Locality Preserving Projections* +
Face recognition is a very challenging subject. So far, studies in 2D face recognition +
have gained significant development, such as Principal Component Analysis (PCA) [1], +
Linear Discriminant Analysis (LDA) [2], and Independent Component Analysis (ICA) [3] +
and so on. But it still bears limitations mostly due to pose variation, illumination, and +
facial expression. 3D face recognition stood out due to the use of face depth information +
which can overcome such limitations. Recently with the development of 3D acquisition +
system, 3D face recognition has attracted more and more interest and a great deal of re- +
search effort has been devoted to this topic [4-7]. +
Many methods have been proposed for 3D face recognition over the last two dec- +
ades. Beumier et al. [8] proposed two methods of surface matching. Central and lateral +
profiles were compared in the curvature space to achieve recognition. However, the me- +
Received October 19, 2009; revised January 8, 2010; accepted March 5, 2010. +
Communicated by Tyng-Luh Liu. +
* This work was also partially supported by the National Natural Science Foundation of China under Grant No. +
60973060 and the Doctorial Foundation of Ministry of Education of China under Grant No. 200800040008. +
2297 +
('3282147', 'Xue-Qiao Wang', 'xue-qiao wang')
('2383779', 'Qiu-Qi Ruan', 'qiu-qi ruan')
e78394213ae07b682ce40dc600352f674aa4cb05Expression-invariant three-dimensional face recognition +
Computer Science Department, +
Technion Israel Institute of Technology
Haifa 32000, Israel +
One of the hardest problems in face recognition is dealing with facial expressions. Finding an +
expression-invariant representation of the face could be a remedy for this problem. We suggest +
treating faces as deformable surfaces in the context of Riemannian geometry, and propose to ap- +
proximate facial expressions as isometries of the facial surface. This way, we can define geometric +
invariants of a given face under different expressions. One such invariant is constructed by iso- +
metrically embedding the facial surface structure into a low-dimensional flat space. Based on this +
approach, we built an accurate three-dimensional face recognition system that is able to distinguish +
between identical twins under various facial expressions. In this chapter we show how under the +
near-isometric model assumption, the difficult problem of face recognition in the presence of facial +
expressions can be solved in a relatively simple way. +
0.1 Introduction +
It is well-known that some characteristics or behavior patterns of the human body are strictly +
individual and can be observed in two different people with a very low probability – a few such +
examples include the DNA code, fingerprints, structure of retinal veins and iris, individual’s written +
signature or face. The term biometrics refers to a variety of methods that attempt to uniquely +
identify a person according to a set of such features. +
While many of today’s biometric technologies are based on the discoveries of the last century (like +
the DNA, for example), some of them have been exploited from the dawn of the human civilization +
[17]. One of the oldest written testimonies of a biometric technology and the first identity theft +
dates back to biblical times, when Jacob fraudulently used the identity of his twin brother Esau to +
benefit from their father’s blessing. The Genesis book describes a combination of hand scan and +
voice recognition that Isaac used to attempt to verify his son’s identity, without knowing that the +
smooth-skinned Jacob had wrapped his hands in kidskin: +
“And Jacob went near unto Isaac his father; and he felt him, and said, ’The voice is Jacob’s +
voice, but the hands are the hands of Esau’. And he recognized him not, because his hands +
were hairy, as his brother Esau’s hands.” +
The false acceptance which resulted from this very inaccurate biometric test had historical conse- +
quences of unmatched proportions. +
Face recognition is probably the most natural biometric method. The remarkable ability of the +
human vision to recognize faces is widely used for biometric authentication from prehistoric times. +
These days, almost every identification document contains a photograph of its bearer, which allows +
the respective officials to verify a person’s identity by comparing his actual face with the one on the +
photo. +
Unlike many other biometrics, face recognition does not require physical contact with the individ- +
ual (like fingerprint recognition) or taking samples of the body (like DNA-based identification) or the +
individual’s behavior (like signature recognition). For these reasons, face recognition is considered a +
natural, less intimidating, and widely accepted biometric identification method [4, 47], and as such, +
has the potential of becoming the leading biometric technology. The great technological challenge is +
to perform face recognition automatically, by means of computer algorithms that work without any +
('1731883', 'Alexander M. Bronstein', 'alexander m. bronstein')
('1732570', 'Michael M. Bronstein', 'michael m. bronstein')
('1692832', 'Ron Kimmel', 'ron kimmel')
Email: alexbron@ieee.org +
bronstein@ieee.org +
ron@cs.technion.ac.il +
e7b2b0538731adaacb2255235e0a07d5ccf09189Learning Deep Representations with +
Probabilistic Knowledge Transfer +
Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
('3200630', 'Nikolaos Passalis', 'nikolaos passalis')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
passalis@csd.auth.gr, tefas@aiia.csd.auth.gr +
e726acda15d41b992b5a41feabd43617fab6dc23
e74816bc0803460e20edbd30a44ab857b06e288eSemi-Automated Annotation of Discrete States +
in Large Video Datasets +
Lex Fridman +
Massachusetts Institute of Technology
Massachusetts Institute of Technology
('1901227', 'Bryan Reimer', 'bryan reimer')fridman@mit.edu +
reimer@mit.edu +
e7b6887cd06d0c1aa4902335f7893d7640aef823Modelling of Facial Aging and Kinship: A Survey +('34291068', 'Markos Georgopoulos', 'markos georgopoulos')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1694605', 'Maja Pantic', 'maja pantic')
e73b9b16adcf4339ff4d6723e61502489c50c2d9Informatics Engineering, an International Journal (IEIJ) ,Vol.2, No.1, March 2014 +
AN EFFICIENT FEATURE EXTRACTION METHOD WITH +
LOCAL REGION ZERNIKE MOMENT FOR FACIAL +
RECOGNITION OF IDENTICAL TWINS +
1Department of Electrical,Computer and Biomedical Engineering, Qazvin branch, Islamic +
Amirkabir University of Technology, Tehran
Azad University, Qazvin, Iran
Iran +
('1692435', 'Karim Faez', 'karim faez')
cbca355c5467f501d37b919d8b2a17dcb39d3ef9CANSIZOGLU, JONES: SUPER-RESOLUTION OF VERY LR FACES FROM VIDEOS +
Super-resolution of Very Low-Resolution +
Faces from Videos +
Esra Ataer-Cansizoglu +
Mitsubishi Electric Research Labs
(MERL) +
Cambridge, MA, USA +
('1961683', 'Michael Jones', 'michael jones')cansizoglu@merl.com +
mjones@merl.com +
cbbd13c29d042743f0139f1e044b6bca731886d0Not-So-CLEVR: learning same–different relations strains +
feedforward neural networks +
†equal contributions +
Department of Cognitive, Linguistic & Psychological Sciences +
Carney Institute for Brain Science
Brown University, Providence, RI 02912, USA
('5546699', 'Junkyung Kim', 'junkyung kim')
cbcf5da9f09b12f53d656446fd43bc6df4b2fa48ISSN: 2277-3754 +
ISO 9001:2008 Certified +
International Journal of Engineering and Innovative Technology (IJEIT) +
Volume 2, Issue 6, December 2012 +
Face Recognition using Gray level Co-occurrence +
Matrix and Snap Shot Method of the Eigen Face +
Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India
M. Madhu, R. Amutha +
SSN College of Engineering, Chennai, India
cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7aEmotion AI, Real-Time Emotion Detection using CNN +
M.S. Computer Science +
Stanford University
B.S. Computer Science +
Stanford University
tanner12@stanford.edu +
bakis@stanford.edu +
cb004e9706f12d1de83b88c209ac948b137caae0Face Aging Effect Simulation using Hidden Factor +
Analysis Joint Sparse Representation +
('1787137', 'Hongyu Yang', 'hongyu yang')
('31454775', 'Di Huang', 'di huang')
('40013375', 'Yunhong Wang', 'yunhong wang')
('46506697', 'Heng Wang', 'heng wang')
('2289713', 'Yuanyan Tang', 'yuanyan tang')
cb2917413c9b36c3bb9739bce6c03a1a6eb619b3MiCT: Mixed 3D/2D Convolutional Tube for Human Action Recognition +
University of Science and Technology of China
2Microsoft Research Asia +
('49455479', 'Yizhou Zhou', 'yizhou zhou')
('48305246', 'Xiaoyan Sun', 'xiaoyan sun')
('2057216', 'Zheng-Jun Zha', 'zheng-jun zha')
('8434337', 'Wenjun Zeng', 'wenjun zeng')
zyz0205@mail.ustc.edu.cn, zhazj@ustc.edu.cn +
{xysun,wezeng}@microsoft.com +
cb9092fe74ea6a5b2bb56e9226f1c88f96094388
cb13e29fb8af6cfca568c6dc523da04d1db1fff5Paper accepted to Frontiers in Psychology +
Received: 02 Dec 2017 +
Accepted: 12 June 2018 +
DOI: 10.3389/fpsyg.2018.01128 +
A Survey of Automatic Facial +
Micro-expression Analysis: +
Databases, Methods and Challenges +
Multimedia University, Faculty of Engineering, Cyberjaya, 63100 Selangor, Malaysia
Multimedia University, Faculty of Computing and Informatics, Cyberjaya
Selangor, Malaysia +
University of Nottingham, School of Psychology, University Park, Nottingham NG
2RD, United Kingdom +
Multimedia University, Research Institute for Digital Security, Cyberjaya
Selangor, Malaysia +
Monash University Malaysia, School of Information Technology, Sunway
Selangor, Malaysia +
Correspondence*: +
('2154760', 'Yee-Hui Oh', 'yee-hui oh')
('2339975', 'John See', 'john see')
('35256518', 'Anh Cat Le Ngo', 'anh cat le ngo')
('6633183', 'Raphael C.-W. Phan', 'raphael c.-w. phan')
('34287833', 'Vishnu Monn Baskaran', 'vishnu monn baskaran')
('2339975', 'John See', 'john see')
johnsee@mmu.edu.my +
cb08f679f2cb29c7aa972d66fe9e9996c8dfae00JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +
Action Understanding +
with Multiple Classes of Actors +
('2026123', 'Chenliang Xu', 'chenliang xu')
('2228109', 'Caiming Xiong', 'caiming xiong')
('3587688', 'Jason J. Corso', 'jason j. corso')
cb84229e005645e8623a866d3d7956c197f85e11IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 201X +
Disambiguating Visual Verbs +
('2921001', 'Spandana Gella', 'spandana gella')
('2505673', 'Frank Keller', 'frank keller')
('1747893', 'Mirella Lapata', 'mirella lapata')
cb1b5e8b35609e470ce519303915236b907b13b6On the Vulnerability of ECG Verification to Online Presentation Attacks +
University of Connecticut
Electrical & Computer Engineering +
University of Florida
Electrical & Computer Engineering +
('3445153', 'Nima Karimian', 'nima karimian')
('2171076', 'Damon L. Woodard', 'damon l. woodard')
('2925373', 'Domenic Forte', 'domenic forte')
nima@engr.uconn.edu +
dwoodard, dforte@ece.ufl.edu +
cbb27980eb04f68d9f10067d3d3c114efa9d0054An Attention Model for group-level emotion recognition +
Indian Institute of Technology
Roorkee +
Roorkee, India +
Indian Institute of Technology
Roorkee +
Roorkee, India +
Indian Institute of Technology
Roorkee +
Roorkee, India +
École de Technologie Supérieure +
Montreal, Canada +
École de Technologie Supérieure +
Montreal, Canada +
('51127375', 'Aarush Gupta', 'aarush gupta')
('51134535', 'Dakshit Agrawal', 'dakshit agrawal')
('51118849', 'Hardik Chauhan', 'hardik chauhan')
('3055538', 'Jose Dolz', 'jose dolz')
('3048367', 'Marco Pedersoli', 'marco pedersoli')
agupta1@cs.iitr.ac.in +
dagrawal@cs.iitr.ac.in +
haroi.uee2014@iitr.ac.in +
jose.dolz@livia.etsmtl.ca +
Marco.Pedersoli@etsmtl.ca +
cbe859d151466315a050a6925d54a8d3dbad591fGAZE SHIFTS AS DYNAMICAL RANDOM SAMPLING +
Dipartimento di Scienze dell’Informazione +
Universit´a di Milano +
Via Comelico 39/41 +
20135 Milano, Italy +
('1715361', 'Giuseppe Boccignone', 'giuseppe boccignone')
('3241931', 'Mario Ferraro', 'mario ferraro')
boccignone@dsi.unimi.it +
f86ddd6561f522d115614c93520faad122eb3b56PACS2016 +
Beyond AlphaGo +
October 27-28, 2016 +
Visual Imagination from Texts +
School of Computer Science and Engineering +
Seoul National University
Seoul 151-744, Korea +
('3434480', 'Hanock Kwak', 'hanock kwak')
('1692756', 'Byoung-Tak Zhang', 'byoung-tak zhang')
Email: (hnkwak, btzhang)@bi.snu.ac.kr +
f8015e31d1421f6aee5e17fc3907070b8e0a5e59April 19, 2016 +
DRAFT +
Towards Usable Multimedia Event Detection +
from Web Videos +
April, 2016 +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
Thesis Committee: +
Alexander G. Hauptmann, Chair +
Submitted in partial fulfillment of the requirements +
for the degree of Doctor of Philosophy. +
('34692532', 'Zhenzhong Lan', 'zhenzhong lan')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
('14517812', 'Leonid Sigal', 'leonid sigal')
('34692532', 'Zhenzhong Lan', 'zhenzhong lan')
f842b13bd494be1bbc1161dc6df244340b28a47fAn Improved Face Recognition Technique Based +
on Modular Multi-directional Two-dimensional +
Principle Component Analysis Approach +
Hanshan Normal University, Chaozhou, 521041, China
Hanshan Normal University, Chaozhou, 521041, China
('48477766', 'Xiaoqing Dong', 'xiaoqing dong')
('2747115', 'Hongcai Chen', 'hongcai chen')
Email: dxqzq110@163.com +
Email: czhschc@126.com +
f83dd9ff002a40228bbe3427419b272ab9d5c9e4Facial Features Matching using a Virtual Structuring Element +
Intelligent Systems Lab Amsterdam, +
University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands +
('9301018', 'Roberto Valenti', 'roberto valenti')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1695527', 'Theo Gevers', 'theo gevers')
f8c94afd478821681a1565d463fc305337b02779 +
www.semargroup.org, +
www.ijsetr.com +
+
ISSN 2319-8885 +
Vol.03,Issue.25 +
September-2014, +
Pages:5079-5085 +
Design and Implementation of Robust Face Recognition System for +
Uncontrolled Pose and Illumination Changes +
2 +
1PG Scholar, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email: bhaskar.t60@gmail.com. +
2Assistant Professor, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email: venky999v@gmail.com. +
f8f2d2910ce8b81cb4bbf84239f9229888158b34Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +
A Generative Model for Recognizing +
Mixed Group Activities in Still Images +
School of Computer, Beijing Institute of Technology, Beijing, China
School of Computing and Communications, University of Technology Sydney, Sydney, Australia
('32056779', 'Zheng Zhou', 'zheng zhou')
('1780081', 'Kan Li', 'kan li')
('1706670', 'Xiangjian He', 'xiangjian he')
('3225703', 'Mengmeng Li', 'mengmeng li')
{zz24, likan}@bit.edu.cn, xiangjian.he@uts.edu.au, limengmeng93@163.com +
f8ec92f6d009b588ddfbb47a518dd5e73855547dJ Inf Process Syst, Vol.10, No.3, pp.443~458, September 2014 +
+
ISSN 1976-913X (Print) +
ISSN 2092-805X (Electronic) +
Extreme Learning Machine Ensemble Using +
Bagging for Facial Expression Recognition +
('32322842', 'Deepak Ghimire', 'deepak ghimire')
('2034182', 'Joonwhoan Lee', 'joonwhoan lee')
f869601ae682e6116daebefb77d92e7c5dd2cb15
f8ddb2cac276812c25021b5b79bf720e97063b1eA Comprehensive Empirical Study on Linear Subspace Methods for Facial +
Expression Analysis +
Queen Mary, University of London
Mile End Road, London E1 4NS +
('10795229', 'Caifeng Shan', 'caifeng shan')
('2073354', 'Shaogang Gong', 'shaogang gong')
('2803283', 'Peter W. McOwan', 'peter w. mcowan')
{cfshan, sgg, pmco}@dcs.qmul.ac.uk +
f8ed5f2c71e1a647a82677df24e70cc46d2f12a8International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 1 +
ISSN 2229-5518 +
Artificial Neural Network Design and Parameter +
Optimization for Facial Expressions Recognition +
f8f872044be2918de442ba26a30336d80d200c42IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613 +
Facial Emotion Recognition Techniques: A Survey +
1,2Department of Computer Science and Engineering +
Dr C V Raman Institute of Science and Technology
defense +
systems, +
surveillance +
f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464ORIGINAL RESEARCH +
published: 19 December 2017 +
doi: 10.3389/fpsyg.2017.02181 +
KDEF-PT: Valence, Emotional +
Intensity, Familiarity and +
Attractiveness Ratings of Angry, +
Neutral, and Happy Faces +
Instituto Universitário de Lisboa (ISCTE-IUL), CIS – IUL, Lisboa, Portugal +
The Karolinska Directed Emotional Faces (KDEF) +
is one of the most widely used +
human facial expressions database. Almost a decade after the original validation study +
(Goeleven et al., 2008), we present subjective rating norms for a sub-set of 210 pictures +
which depict 70 models (half female) each displaying an angry, happy and neutral facial +
expressions. Our main goals were to provide an additional and updated validation +
to this database, using a sample from a different nationality (N = 155 Portuguese +
students, M = 23.73 years old, SD = 7.24) and to extend the number of subjective +
dimensions used to evaluate each image. Specifically, participants reported emotional +
labeling (forced-choice task) and evaluated the emotional intensity and valence of the +
expression, as well as the attractiveness and familiarity of the model (7-points rating +
scales). Overall, results show that happy faces obtained the highest ratings across +
evaluative dimensions and emotion labeling accuracy. Female (vs. male) models were +
perceived as more attractive, familiar and positive. The sex of the model also moderated +
the accuracy of emotional +
labeling and ratings of different facial expressions. Each +
picture of the set was categorized as low, moderate, or high for each dimension. +
Normative data for each stimulus (hits proportion, means, standard deviations, and +
confidence intervals per evaluative dimension) is available as supplementary material +
(available at https://osf.io/fvc4m/). +
Keywords: facial expressions, normative data, subjective ratings, emotion labeling, sex differences +
INTRODUCTION +
The human face conveys important information for social interaction. For example, it is a major +
source for forming first impressions, and to make fast and automatic personality trait inferences +
(for a review, see Zebrowitz, 2017). Indeed, facial expressions have been the most studied non- +
verbal emotional cue (for a review, see Schirmer and Adolphs, 2017). In addition to their physical +
component (i.e., morphological changes in the face such as frowning or opening the mouth), +
emotional facial expressions also have an affective component that conveys information about the +
internal feelings of the person expressing it (for a review, see Calvo and Nummenmaa, 2016). +
Moreover, facial expressions communicate a social message that informs about the behavioral +
intentions of the expresser, which in turn prompt responses in the perceiver such approach and +
avoidance reactions (for a review, see Paulus and Wentura, 2016). +
Edited by: +
Sergio Machado, +
Salgado de Oliveira University, Brazil
Reviewed by: +
Pietro De Carli, +
Dipartimento di Psicologia dello +
Sviluppo e della Socializzazione, +
Università degli Studi di Padova, Italy +
Sylvie Berthoz, +
Institut National de la Santé et de la +
Recherche Médicale, France +
*Correspondence: +
Specialty section: +
This article was submitted to +
Quantitative Psychology +
and Measurement, +
a section of the journal +
Frontiers in Psychology +
Received: 18 July 2017 +
Accepted: 30 November 2017 +
Published: 19 December 2017 +
Citation: +
Garrido MV and Prada M (2017) +
KDEF-PT: Valence, Emotional +
Intensity, Familiarity +
and Attractiveness Ratings of Angry, +
Neutral, and Happy Faces. +
Front. Psychol. 8:2181. +
doi: 10.3389/fpsyg.2017.02181 +
Frontiers in Psychology | www.frontiersin.org +
December 2017 | Volume 8 | Article 2181 +
('28239829', 'Margarida V. Garrido', 'margarida v. garrido')
('38831356', 'Marília Prada', 'marília prada')
('28239829', 'Margarida V. Garrido', 'margarida v. garrido')
margarida.garrido@iscte-iul.pt +
f87b22e7f0c66225824a99cada71f9b3e66b5742Robust Emotion Recognition from Low Quality and Low Bit Rate Video: +
A Deep Learning Approach +
Beckman Institute, University of Illinois at Urbana-Champaign
Texas AandM University
University of Missouri, Kansas City
§ Snap Inc, USA +
University of Washington
('50563570', 'Bowen Cheng', 'bowen cheng')
('2969311', 'Zhangyang Wang', 'zhangyang wang')
('4622305', 'Zhaobin Zhang', 'zhaobin zhang')
('49970050', 'Zhu Li', 'zhu li')
('1771885', 'Ding Liu', 'ding liu')
('1706007', 'Jianchao Yang', 'jianchao yang')
('47156875', 'Shuai Huang', 'shuai huang')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
{bcheng9, dingliu2, t-huang1}@illinois.edu +
atlaswang@tamu.edu +
{zzktb@mail., lizhu@}umkc.edu +
jianchao.yang@snap.com +
shuaih@uw.edu +
cef841f27535c0865278ee9a4bc8ee113b4fb9f3
ce6d60b69eb95477596535227958109e07c61e1eUnconstrained Face Verification Using Fisher Vectors +
Computed From Frontalized Faces +
Center for Automation Research +
University of Maryland, College Park, MD
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
{pullpull, swamiviv, pvishalm, rama}@umiacs.umd.edu +
ceb763d6657a07b47e48e8a2956bcfdf2cf10818International Journal of Computational Science and Information Technology (IJCSITY) Vol.2, No.1, February 2014 +
AN EFFICIENT FEATURE EXTRACTION METHOD +
WITH PSEUDO-ZERNIKE MOMENT FOR FACIAL +
RECOGNITION OF IDENTICAL TWINS +
1Department of Electrical, Computer and Biomedical Engineering, Qazvin branch, +
Amirkabir University of Technology, Tehran
Islamic Azad University, Qazvin, Iran
Iran +
('13302047', 'Hoda Marouf', 'hoda marouf')
('1692435', 'Karim Faez', 'karim faez')
cefd9936e91885ba7af9364d50470f6cb54315a4The Journal of Neuroscience, December 8, 2010 • 30(49):16601–16608 • 16601 +
Behavioral/Systems/Cognitive +
Expectation and Surprise Determine Neural Population +
Responses in the Ventral Visual Stream +
and 2Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
Psychology, University of Illinois, Beckman Institute, Urbana-Champaign, Illinois 61801, University of
Oxford, Oxford OX1 3UD, United Kingdom +
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by +
bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two +
computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and +
provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and +
forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category- +
selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and +
prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature +
detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently +
varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high +
face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was +
indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, +
we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented +
with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation +
and surprise rather than by stimulus features per se. +
Introduction +
“Predictive coding” models of visual cognition propose that per- +
ceptual inference proceeds as an iterative matching process of +
top-down predictions against bottom-up evidence along the vi- +
sual cortical hierarchy (Mumford, 1992; Rao and Ballard, 1999; +
Lee and Mumford, 2003; Friston, 2005; Spratling, 2008). Specif- +
ically, each stage of the visual cortical hierarchy is thought to +
harbor two computationally distinct classes of processing unit: +
representational units that encode the conditional probability of +
a stimulus (“expectation”) and provide predictions regarding ex- +
pected inputs to the next lower level; and error units that encode +
the mismatch between predictions and bottom-up evidence +
(“surprise”), and forward this prediction error to the next higher +
level, where representations are adjusted to eliminate prediction +
error (Friston, 2005). These assumptions contrast sharply with +
more traditional views that cast visual neurons primarily as fea- +
ture detectors (Hubel and Wiesel, 1965; Riesenhuber and Poggio, +
2000), but explicit empirical tests adjudicating between these ri- +
val conceptions are lacking. +
Received June 1, 2010; revised Sept. 21, 2010; accepted Sept. 28, 2010. +
This work was supported by funds granted by the Cognitive Neurology and Alzheimer’s Disease Center +
Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of
this manuscript. +
DOI:10.1523/JNEUROSCI.2770-10.2010 +
Copyright © 2010 the authors +
0270-6474/10/3016601-08$15.00/0 +
Here, we exploited the fact that the two models make diver- +
gent predictions regarding determinants of neural population +
responses in category-selective visual regions, like the fusiform +
face area (FFA) (Kanwisher et al., 1997). Predictive coding sug- +
gests that FFA population responses should reflect a summation +
of activity related to representational units (“face expectation”) +
and error units (“face surprise”), whereas feature detection mod- +
els suppose the population response to be driven by physical +
stimulus characteristics (“face features”) alone. We adjudicated +
between these hypotheses by acquiring functional magnetic res- +
onance imaging (fMRI) data from the FFA while independently +
varying both stimulus features (faces vs houses) and subjects’ +
perceptual expectations regarding those features (low vs medium +
vs high face expectation) (Fig. 1A,C). Of note, both the feature +
detection and predictive coding views also allow for visual neural +
responses to be scaled by attention. Therefore, the above manip- +
ulations were orthogonal to the task demands (the detection of +
occasional inverted “target” stimuli) (Fig. 1B) to control for po- +
tential differences in attention across the conditions of interest. +
According to predictive coding, FFA activity in this experi- +
ment should vary as an additive function of face expectation +
(high ⬎ low) (Fig. 2A, left) and face surprise (unexpected ⬎ +
expected faces) (Fig. 2A, middle). This would result in an inter- +
action between stimulus and expectation factors (Fig. 2A right +
panel), whereby FFA responses to face and house stimuli should +
be similar under high face expectation, because both of these +
conditions would be associated with activity related to face ex- +
('1900710', 'Tobias Egner', 'tobias egner')
('2372244', 'Christopher Summerfield', 'christopher summerfield')
('1900710', 'Tobias Egner', 'tobias egner')
Box 90999, Durham, NC 27708. E-mail: tobias.egner@duke.edu. +
ce85d953086294d989c09ae5c41af795d098d5b2This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Bilinear Analysis for Kernel Selection and +
Nonlinear Feature Extraction +
('1718245', 'Shu Yang', 'shu yang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('1720735', 'Chao Zhang', 'chao zhang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
ce5eac297174c17311ee28bda534faaa1d559baeAutomatic analysis of malaria infected red +
blood cell digitized microscope images +
A dissertation submitted in partial fulfilment +
of the requirements for the degree of +
Doctor of Philosophy +
of +
University College London
Department of Computer Science +
University College London
Supervisor: Prof. Bernard F. Buxton +
February 2016 +
('2768033', 'Houari Abdallahi', 'houari abdallahi')
ce691a37060944c136d2795e10ed7ba751cd8394
ce3f3088d0c0bf236638014a299a28e492069753
ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6UC San Diego +
UC San Diego Electronic Theses and Dissertations +
Title +
Inhibitions of ascorbate fatty acid derivatives on three rabbit muscle glycolytic enzymes +
Permalink +
https://escholarship.org/uc/item/8x33n1gj +
Author +
Pham, Duyen-Anh +
Publication Date +
2011-01-01 +
Peer reviewed|Thesis/dissertation +
eScholarship.org +
Powered by the California Digital Library +
University of California
ce450e4849490924488664b44769b4ca57f1bc1aProcedural Generation of Videos to Train Deep Action Recognition Networks +
1Computer Vision Group, NAVER LABS Europe, Meylan, France +
2Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain +
Toyota Research Institute, Los Altos, CA, USA
('1799820', 'Adrien Gaidon', 'adrien gaidon')
('3407519', 'Yohann Cabon', 'yohann cabon')
{cesar.desouza, yohann.cabon}@europe.naverlabs.com, adrien.gaidon@tri.global, antonio@cvc.uab.es +
ceeb67bf53ffab1395c36f1141b516f893bada27Face Alignment by Local Deep Descriptor Regression +
University of Maryland
College Park, MD
University of Maryland
College Park, MD
University of Maryland
College Park, MD
Rutgers University
New Brunswick, NJ 08901 +
('40080979', 'Amit Kumar', 'amit kumar')
('26988560', 'Rajeev Ranjan', 'rajeev ranjan')
('9215658', 'Rama Chellappa', 'rama chellappa')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
akumar14@umd.edu +
rranjan1@umd.edu +
rama@umiacs.umd.edu +
vishal.m.patel@rutgers.edu +
ce032dae834f383125cdd852e7c1bc793d4c3ba3Motion Interchange Patterns for Action +
Recognition in Unconstrained Videos +
The Weizmann Institute of Science, Israel
Tel-Aviv University, Israel
The Open University, Israel
('3294355', 'Orit Kliper-Gross', 'orit kliper-gross')
('2916582', 'Yaron Gurovich', 'yaron gurovich')
('1756099', 'Tal Hassner', 'tal hassner')
('1776343', 'Lior Wolf', 'lior wolf')
ce9e1dfa7705623bb67df3a91052062a0a0ca456Deep Feature Interpolation for Image Content Changes +
Kilian Weinberger1 +
Cornell University
George Washington University
*Authors contributed equally +
('3222840', 'Paul Upchurch', 'paul upchurch')
('1791337', 'Kavita Bala', 'kavita bala')
ce9a61bcba6decba72f91497085807bface02dafEigen-Harmonics Faces: Face Recognition under Generic Lighting +
1Graduate School, CAS, Beijing, China, 100080 +
2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +
Emails: {lyqing, sgshan, wgao}jdl.ac.cn +
('2343895', 'Laiyun Qing', 'laiyun qing')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1698902', 'Wen Gao', 'wen gao')
cef6cffd7ad15e7fa5632269ef154d32eaf057afEmotion Detection Through Facial Feature +
Recognition +
through consistent +
('4959365', 'James Pao', 'james pao')jpao@stanford.edu +
cebfafea92ed51b74a8d27c730efdacd65572c40JANUARY 2006 +
31 +
Matching 2.5D Face Scans to 3D Models +
('2637547', 'Xiaoguang Lu', 'xiaoguang lu')
('6680444', 'Anil K. Jain', 'anil k. jain')
('2205218', 'Dirk Colbry', 'dirk colbry')
ce56be1acffda599dec6cc2af2b35600488846c9Inferring Sentiment from Web Images with Joint Inference on Visual and Social +
Cues: A Regulated Matrix Factorization Approach +
Arizona State University, Tempe AZ
IBM Almaden Research Center, San Jose CA
('33513248', 'Yilin Wang', 'yilin wang'){ywang370,rao,baoxin.li}@asu.edu yuhenghu@us.ibm.com +
ce54e891e956d5b502a834ad131616786897dc91International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +
Face Recognition Using LTP Algorithm +
1ECE & KUK +
2Assistant Professor (ECE) +
Volume 4 Issue 12, December 2015 +
Licensed Under Creative Commons Attribution CC BY +
www.ijsr.net +
 Variation in luminance: Third main challenge that +
appears in face recognition process is the luminance. Due +
to variation in the luminance the representation get varied +
from the original image. The person with same poses +
expression and seen from same viewpoint can be appear +
very different due to variation in lightening. +
('1781253', 'Richa Sharma', 'richa sharma')
('1887206', 'Rohit Arora', 'rohit arora')
ce6f459462ea9419ca5adcc549d1d10e616c0213A Survey on Face Identification Methodologies in +
Videos +
Student, M.Tech CSE ,Department of Computer Science +
Engineering, G.H.Raisoni College of Engineering
Technology for Women, Nagpur, Maharashtra, India. +
('2776196', 'Deepti Yadav', 'deepti yadav')
ce933821661a0139a329e6c8243e335bfa1022b1Temporal Modeling Approaches for Large-scale +
Youtube-8M Video Understanding +
Baidu IDL and Tsinghua University
('9921390', 'Fu Li', 'fu li')
('2551285', 'Chuang Gan', 'chuang gan')
('3025977', 'Xiao Liu', 'xiao liu')
('38812373', 'Yunlong Bian', 'yunlong bian')
('1716690', 'Xiang Long', 'xiang long')
('2653177', 'Yandong Li', 'yandong li')
('2027571', 'Zhichao Li', 'zhichao li')
('1743129', 'Jie Zhou', 'jie zhou')
('35247507', 'Shilei Wen', 'shilei wen')
e03bda45248b4169e2a20cb9124ae60440cad2deLearning a Dictionary of Shape-Components in Visual Cortex: +
Comparison with Neurons, Humans and Machines +
by +
Ing´enieur de l’Ecole Nationale Sup´erieure +
des T´el´ecommunications de Bretagne, 2000 +
and +
MS, Universit´e de Rennes, 2000 +
Submitted to the Department of Brain and Cognitive Sciences +
in partial fulfillment of the requirements for the degree of +
Doctor of Philosophy +
at the +
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2006 +
c(cid:13) Massachusetts Institute of Technology 2006. All rights reserved
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Department of Brain and Cognitive Sciences +
April 24, 2006 +
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Tomaso Poggio +
Eugene McDermott Professor in the Brain Sciences and Human Behavior +
Thesis Supervisor +
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Matt Wilson +
Professor of Neurobiology and +
Chairman, Department Graduate Committee +
('1981539', 'Thomas Serre', 'thomas serre')
e03e86ac61cfac9148b371d75ce81a55e8b332caUnsupervised Learning using Sequential +
Verification for Action Recognition +
cid:63)The Robotics Institute, Carnegie Mellon University
†Facebook AI Research +
('1806773', 'Ishan Misra', 'ishan misra')
('1709305', 'Martial Hebert', 'martial hebert')
('1699161', 'C. Lawrence Zitnick', 'c. lawrence zitnick')
e0dedb6fc4d370f4399bf7d67e234dc44deb4333Supplementary Material: Multi-Task Video Captioning with Video and +
Entailment Generation +
UNC Chapel Hill +
1 Experimental Setup +
1.1 Datasets +
1.1.1 Video Captioning Datasets +
YouTube2Text or MSVD The Microsoft Re- +
search Video Description Corpus (MSVD) or +
YouTube2Text (Chen and Dolan, 2011) is used +
for our primary video captioning experiments. It +
has 1970 YouTube videos in the wild with many +
diverse captions in multiple languages for each +
video. Caption annotations to these videos are +
collected using Amazon Mechanical Turk (AMT). +
All our experiments use only English captions. On +
average, each video has 40 captions, and the over- +
all dataset has about 80, 000 unique video-caption +
pairs. The average clip duration is roughly 10 sec- +
onds. We used the standard split as stated in Venu- +
gopalan et al. (2015), i.e., 1200 videos for training, +
100 videos for validation, and 670 for testing. +
MSR-VTT MSR-VTT is a recent collection of +
10, 000 video clips of 41.2 hours duration (i.e., +
average duration of 15 seconds), which are an- +
notated by AMT workers. It has 200, 000 video +
clip-sentence pairs covering diverse content from +
a commercial video search engine. On average, +
each clip is annotated with 20 natural language +
captions. We used the standard split as provided +
in (Xu et al., 2016), i.e., 6, 513 video clips for +
training, 497 for validation, and 2, 990 for testing. +
M-VAD M-VAD is a movie description dataset +
with 49, 000 video clips collected from 92 movies, +
with the average clip duration being 6 seconds. +
Alignment of descriptions to video clips is done +
through an automatic procedure using Descrip- +
tive Video Service (DVS) provided for the movies. +
Each video clip description has only 1 or 2 sen- +
tences, making most evaluation metrics (except +
paraphrase-based METEOR) infeasible. Again, +
we used the standard train/val/test split as pro- +
vided in Torabi et al. (2015). +
1.1.2 Video Prediction Dataset +
For our unsupervised video representation learn- +
ing task, we use the UCF-101 action videos +
dataset (Soomro et al., 2012), which contains +
13, 320 video clips of 101 action categories and +
with an average clip length of 7.21 seconds each. +
This dataset suits our video captioning task well +
because both contain short video clips of a sin- +
gle action or few actions, and hence using future +
frame prediction on UCF-101 helps learn more ro- +
bust and context-aware video representations for +
our short clip video captioning task. We use the +
standard split of 9, 500 videos for training (we +
don’t need any validation set in our setup because +
we directly tune on the validation set of the video +
captioning task). +
the +
three +
video +
captioning +
1.2 Pre-trained Visual Frame Features +
For +
datasets +
(Youtube2Text, MSR-VTT, M-VAD) and the +
unsupervised video prediction dataset (UCF-101), +
we fix our sampling rate to 3f ps to bring uni- +
formity in the temporal representation of actions +
across all videos. These sampled frames are then +
converted into features using several state-of-the- +
art pre-trained models on ImageNet (Deng et al., +
2009) – VGGNet +
(Simonyan and Zisserman, +
2015), GoogLeNet (Szegedy et al., 2015; Ioffe +
and Szegedy, 2015), and Inception-v4 (Szegedy +
et al., 2016). For VGGNet, we use its f c7 layer +
features with dimension 4096. For GoogLeNet +
and Inception-v4, we use the layer before the fully +
connected layer with dimensions 1024 and 1536, +
respectively. We follow standard preprocessing +
and convert all the natural language descriptions +
to lower case and tokenize the sentences and +
remove punctuations. +
('10721120', 'Ramakanth Pasunuru', 'ramakanth pasunuru')
('7736730', 'Mohit Bansal', 'mohit bansal')
{ram, mbansal}@cs.unc.edu +
e096b11b3988441c0995c13742ad188a80f2b461Noname manuscript No. +
(will be inserted by the editor) +
DeepProposals: Hunting Objects and Actions by Cascading +
Deep Convolutional Layers +
Van Gool +
Received: date / Accepted: date +
('3060081', 'Amir Ghodrati', 'amir ghodrati')
e0638e0628021712ac76e3472663ccc17bd8838c VOL. 9, NO. 2, FEBRUARY 2014 ISSN 1819-6608 +
ARPN Journal of Engineering and Applied Sciences +
©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. +
www.arpnjournals.com +
SIGN LANGUAGE RECOGNITION: STATE OF THE ART +
Sharda University, Greater Noida, India
('27105713', 'Ashok K Sahoo', 'ashok k sahoo')
('40867787', 'Gouri Sankar Mishra', 'gouri sankar mishra')
('3017041', 'Kiran Kumar Ravulakollu', 'kiran kumar ravulakollu')
E-Mail: ashoksahoo2000@yahoo.com +
e0c081a007435e0c64e208e9918ca727e2c1c44e
e0d878cc095eaae220ad1f681b33d7d61eb5e425Article +
Temporal and Fine-Grained Pedestrian Action +
Recognition on Driving Recorder Database +
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
Keio University, Yokohama 223-8522, Japan
Received: 5 January 2018; Accepted: 8 February 2018; Published: 20 February 2018 +
('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')
('1732705', 'Yutaka Satoh', 'yutaka satoh')
('1716469', 'Yoshimitsu Aoki', 'yoshimitsu aoki')
('6881850', 'Shoko Oikawa', 'shoko oikawa')
('1720770', 'Yasuhiro Matsui', 'yasuhiro matsui')
yu.satou@aist.go.jp +
aoki@elec.keio.ac.jp +
Tokyo Metropolitan University, Tokyo 192-0364, Japan; shoko_o@hotmail.com +
4 National Traffic Safety and Environment Laboratory, Tokyo 182-0012, Japan; ymatsui@ntsel.go.jp +
* Correspondence: hirokatsu.kataoka@aist.go.jp; Tel.: +81-29-861-2267 +
e00d4e4ba25fff3583b180db078ef962bf7d6824Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2017 doi:10.20944/preprints201703.0152.v1 +
Article +
Face Verification with Multi-Task and Multi-Scale +
Features Fusion +
('39198322', 'Xiaojun Lu', 'xiaojun lu')
('39683642', 'Yue Yang', 'yue yang')
('8030754', 'Weilin Zhang', 'weilin zhang')
('36286794', 'Qi Wang', 'qi wang')
('37622915', 'Yang Wang', 'yang wang')
1 College of Sciences, Northeastern University, Shenyang 110819, China; luxiaojun@mail.neu.edu.cn (X.L.); +
YangY1503@163.com (Y.Y.); wangy_neu@163.com (Y.W.) +
2 New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China; wz723@nyu.edu +
* Correspondence: wangqimath@mail.neu.edu.cn; Tel.: +86-024-8368-7680 +
e01bb53b611c679141494f3ffe6f0b91953af658FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors +
Nanjing University of Science and Technology
2Youtu Lab, Tencent +
Michigan State University
University of Adelaide
Figure 1: Visual results of different super-resolution methods on scale factor 8. +
('50579509', 'Yu Chen', 'yu chen')
('49499405', 'Jian Yang', 'jian yang')
e0bfcf965b402f3f209f26ae20ee88bc4d0002abAI Thinking for Cloud Education Platform with Personalized Learning +
University of Texas at San Antonio
University of Texas at San Antonio
University of Texas at San Antonio
University of Texas at San Antonio
University of Texas at San Antonio
('2055316', 'Paul Rad', 'paul rad')
('2918902', 'Mehdi Roopaei', 'mehdi roopaei')
('1716725', 'Nicole Beebe', 'nicole beebe')
('9324267', 'Mehdi Shadaram', 'mehdi shadaram')
('1839489', 'Yoris A. Au', 'yoris a. au')
Paul.rad@utsa.edu +
Mehdi.roopaei@utsa.edu +
Nicole.beebe@utsa.edu +
Mehdi.shadaram@utsa.edu +
Yoris.au@utsa.edu +
e0939b4518a5ad649ba04194f74f3413c793f28eTechnical Report +
UCAM-CL-TR-636 +
ISSN 1476-2986 +
Number 636 +
Computer Laboratory +
Mind-reading machines: +
automated inference +
of complex mental states +
July 2005 +
15 JJ Thomson Avenue +
Cambridge CB3 0FD +
United Kingdom +
phone +44 1223 763500 +
http://www.cl.cam.ac.uk/ +
e0ed0e2d189ff73701ec72e167d44df4eb6e864dRecognition of static and dynamic facial expressions: a study review +
Estudos de Psicologia, 18(1), janeiro-março/2013, 125-130 +
Federal University of Para ba
('39169435', 'Nelson Torro Alves', 'nelson torro alves')
e00d391d7943561f5c7b772ab68e2bb6a85e64c4Robust continuous clustering +
University of Maryland, College Park, MD 20740; and bIntel Labs, Santa Clara, CA
Edited by David L. Donoho, Stanford University, Stanford, CA, and approved August 7, 2017 (received for review January
Clustering is a fundamental procedure in the analysis of scientific +
data. It is used ubiquitously across the sciences. Despite decades +
of research, existing clustering algorithms have limited effective- +
ness in high dimensions and often require tuning parameters for +
different domains and datasets. We present a clustering algo- +
rithm that achieves high accuracy across multiple domains and +
scales efficiently to high dimensions and large datasets. The pre- +
sented algorithm optimizes a smooth continuous objective, which +
is based on robust statistics and allows heavily mixed clusters to +
be untangled. The continuous nature of the objective also allows +
clustering to be integrated as a module in end-to-end feature +
learning pipelines. We demonstrate this by extending the algo- +
rithm to perform joint clustering and dimensionality reduction +
by efficiently optimizing a continuous global objective. The pre- +
sented approach is evaluated on large datasets of faces, hand- +
written digits, objects, newswire articles, sensor readings from +
the Space Shuttle, and protein expression levels. Our method +
achieves high accuracy across all datasets, outperforming the best +
prior algorithm by a factor of 3 in average rank. +
clustering | data analysis | unsupervised learning +
Clustering is one of the fundamental experimental procedures +
in data analysis. It is used in virtually all natural and social +
sciences and has played a central role in biology, astronomy, +
psychology, medicine, and chemistry. Data-clustering algorithms +
have been developed for more than half a century (1). Significant +
advances in the last two decades include spectral clustering (2–4), +
generalizations of classic center-based methods (5, 6), mixture +
models (7, 8), mean shift (9), affinity propagation (10), subspace +
clustering (11–13), nonparametric methods (14, 15), and feature +
selection (16–20). +
Despite these developments, no single algorithm has emerged +
to displace the k-means scheme and its variants (21). This +
is despite the known drawbacks of such center-based meth- +
ods, including sensitivity to initialization, limited effectiveness in
high-dimensional spaces, and the requirement that the number +
of clusters be set in advance. The endurance of these methods +
is in part due to their simplicity and in part due to difficulties +
associated with some of the new techniques, such as additional +
hyperparameters that need to be tuned, high computational cost, +
and varying effectiveness across domains. Consequently, scien- +
tists who analyze large high-dimensional datasets with unknown +
distribution must maintain and apply multiple different cluster- +
ing algorithms in the hope that one will succeed. Books have +
been written to guide practitioners through the landscape of +
data-clustering techniques (22). +
We present a clustering algorithm that is fast, easy to use, and +
effective in high dimensions. The algorithm optimizes a clear +
continuous objective, using standard numerical methods that +
scale to massive datasets. The number of clusters need not be +
known in advance. +
The operation of the algorithm can be understood by contrast- +
ing it with other popular clustering techniques. In center-based +
algorithms such as k-means (1, 24), a small set of putative cluster +
centers is initialized from the data and then iteratively refined. In +
affinity propagation (10), data points communicate over a graph +
structure to elect a subset of the points as representatives. In the +
presented algorithm, each data point has a dedicated representa- +
tive, initially located at the data point. Over the course of the algo- +
rithm, the representatives move and coalesce into easily separable +
clusters. The progress of the algorithm is visualized in Fig. 1. +
Our formulation is based on recent convex relaxations for clus- +
tering (25, 26). However, our objective is deliberately not convex. +
We use redescending robust estimators that allow even heavily +
mixed clusters to be untangled by optimizing a single contin- +
uous objective. Despite the nonconvexity of the objective, the +
optimization can still be performed using standard linear least- +
squares solvers, which are highly efficient and scalable. Since the +
algorithm expresses clustering as optimization of a continuous +
objective based on robust estimation, we call it robust continu- +
ous clustering (RCC). +
One of the characteristics of the presented formulation is that +
clustering is reduced to optimization of a continuous objective. +
This enables the integration of clustering in end-to-end fea- +
ture learning pipelines. We demonstrate this by extending RCC +
to perform joint clustering and dimensionality reduction. The +
extended algorithm, called RCC-DR, learns an embedding of +
the data into a low-dimensional space in which it is clustered. +
Embedding and clustering are performed jointly, by an algorithm +
that optimizes a clear global objective. +
We evaluate RCC and RCC-DR on a large number of datasets +
from a variety of domains. These include image datasets, docu- +
ment datasets, a dataset of sensor readings from the Space Shut- +
tle, and a dataset of protein expression levels in mice. Exper- +
iments demonstrate that our method significantly outperforms +
prior state-of-the-art techniques. RCC-DR is particularly robust +
across datasets from different domains, outperforming the best +
prior algorithm by a factor of 3 in average rank. +
Formulation +
We consider the problem of clustering a set of n data points. +
The input is denoted by X = [x1, x2, . . . , xn ], where xi ∈ RD. +
Our approach operates on a set of representatives U = +
[u1, u2, . . . , un ], where ui ∈ RD. The representatives U are ini- +
tialized at the corresponding data points X. The optimization +
operates on the representation U, which coalesces to reveal the +
cluster structure latent in the data. Thus, the number of clusters +
Significance +
Clustering is a fundamental experimental procedure in data +
analysis. It is used in virtually all natural and social sciences +
and has played a central role in biology, astronomy, psychol- +
ogy, medicine, and chemistry. Despite the importance and +
ubiquity of clustering, existing algorithms suffer from a vari- +
ety of drawbacks and no universal solution has emerged. We +
present a clustering algorithm that reliably achieves high accu- +
racy across domains, handles high data dimensionality, and +
scales to large datasets. The algorithm optimizes a smooth +
global objective, using efficient numerical methods. Experi- +
ments demonstrate that our method outperforms state-of- +
the-art clustering algorithms by significant factors in multiple +
domains. +
Author contributions: S.A.S. and V.K. designed research, performed research, analyzed +
data, and wrote the paper. +
The authors declare no conflict of interest. +
This article is a PNAS Direct Submission. +
Freely available online through the PNAS open access option. +
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. +
1073/pnas.1700770114/-/DCSupplemental. +
9814–9819 | PNAS | September 12, 2017 | vol. 114 | no. 37 +
www.pnas.org/cgi/doi/10.1073/pnas.1700770114 +
('49485254', 'Sohil Atul Shah', 'sohil atul shah')
('1770944', 'Vladlen Koltun', 'vladlen koltun')
1To whom correspondence should be addressed. Email: sohilas@umd.edu. +
e0765de5cabe7e287582532456d7f4815acd74c1
e065a2cb4534492ccf46d0afc81b9ad8b420c5ecSFace: An Efficient Network for Face Detection +
in Large Scale Variations +
College of Software, Beihang University
Megvii Inc. (Face++)† +
('38504661', 'Jianfeng Wang', 'jianfeng wang')
('48009795', 'Ye Yuan', 'ye yuan')
('2789329', 'Boxun Li', 'boxun li')
('2352391', 'Gang Yu', 'gang yu')
('2017810', 'Sun Jian', 'sun jian')
{wjfwzzc}@buaa.edu.cn, {yuanye,liboxun,yugang,sunjian}@megvii.com +
e00241f00fb31c660df6c6f129ca38370e6eadb3What have we learned from deep representations for action recognition? +
TU Graz +
TU Graz +
York University, Toronto
University of Oxford
('2322150', 'Christoph Feichtenhofer', 'christoph feichtenhofer')
('1718587', 'Axel Pinz', 'axel pinz')
('1709096', 'Richard P. Wildes', 'richard p. wildes')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
feichtenhofer@tugraz.at +
axel.pinz@tugraz.at +
wildes@cse.yorku.ca +
az@robots.ox.ac.uk +
e013c650c7c6b480a1b692bedb663947cd9d260f860 +
Robust Image Analysis With Sparse Representation +
on Quantized Visual Features +
('8180253', 'Bing-Kun Bao', 'bing-kun bao')
('36601906', 'Guangyu Zhu', 'guangyu zhu')
('38203359', 'Jialie Shen', 'jialie shen')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
e0244a8356b57a5721c101ead351924bcfb2eef4Journal of Experimental Psychology: General +
2017, Vol. 146, No. 10, 1379 –1401 +
0096-3445/17/$12.00 +
© 2017 American Psychological Association +
http://dx.doi.org/10.1037/xge0000292 +
Power as an Emotional Liability: Implications for Perceived Authenticity +
and Trust After a Transgression +
University of Southern California
Webster University
University of Haifa
Alexandra Mislin +
American University
University of Washington, Seattle
Gerben A. van Kleef +
University of Amsterdam
People may express a variety of emotions after committing a transgression. Through 6 empirical studies and +
a meta-analysis, we investigate how the perceived authenticity of such emotional displays and resulting levels +
of trust are shaped by the transgressor’s power. Past findings suggest that individuals with power tend to be +
more authentic because they have more freedom to act on the basis of their own personal inclinations. Yet, +
our findings reveal that (a) a transgressor’s display of emotion is perceived to be less authentic when that +
party’s power is high rather than low; (b) this perception of emotional authenticity, in turn, directly influences +
(and mediates) the level of trust in that party; and (c) perceivers ultimately exert less effort when asked to make +
a case for leniency toward high rather than low-power transgressors. This tendency to discount the emotional +
authenticity of the powerful was found to arise from power increasing the transgressor’s perceived level of +
emotional control and strategic motivation, rather than a host of alternative mechanisms. These results were +
also found across different types of emotions (sadness, anger, fear, happiness, and neutral), expressive +
modalities, operationalizations of the transgression, and participant populations. Altogether, our findings +
demonstrate that besides the wealth of benefits power can afford, it also comes with a notable downside. The +
findings, furthermore, extend past research on perceived emotional authenticity, which has focused on how +
and when specific emotions are expressed, by revealing how this perception can depend on considerations that +
have nothing to do with the expression itself. +
Keywords: trust, emotion, power, authenticity, perception +
Supplemental materials: http://dx.doi.org/10.1037/xge0000292.supp +
Research suggests that those who attain positions of power tend +
to be more emotionally skilled (Côté, Lopes, Salovey, & Miners, +
2010; George, 2000). Indeed, it is the very possession of such +
skills that has been suggested to help these parties attain and +
succeed in leadership positions (e.g., Lewis, 2000; Rubin, Munz, +
School of Business, University of Southern California; Alexandra Mislin
Department of Management, Kogod School of Business, American Uni- +
chael G. Foster School of Business, University of Washington, Seattle
A. van Kleef, University of Amsterdam
This research was supported in part by a faculty research grant from +
Webster University
Correspondence concerning this article should be addressed to Peter H. +
Kim, Marshall School of Business, Department of Management and Or- +
ganization, University of Southern California, Hoffman Hall 515, Los
1379 +
& Bommer, 2005). Yet, this tendency for the powerful to be +
emotionally skilled may not necessarily prove beneficial, to the +
extent that those evaluating such powerful individuals subscribe to +
this notion as well, and may even undermine the effectiveness of +
high-power parties’ emotional expressions when they might need +
them most. In particular, through six empirical studies and a +
meta-analysis, we investigate the possibility that perceivers’ gen- +
eral beliefs about the powerful as emotionally skilled would lead +
perceivers to discount the authenticity of the emotions the power- +
ful express, and that this would ultimately impair the effectiveness +
of those emotional displays for addressing a transgression. +
Theoretical Background +
Power, which has been defined as an individual’s capacity to +
modify others’ states by providing or withholding resources or +
administering punishments (Keltner, Gruenfeld, & Anderson, +
2003), has been widely recognized to offer numerous benefits to +
those who possess it, including the ability to act based on one s
own inclinations, perceive greater choice, and obtain greater ben- +
efits from both work and nonwork interactions (e.g., Galinsky, +
('34770901', 'Peter H. Kim', 'peter h. kim')
('47847686', 'Ece Tuncel', 'ece tuncel')
('3198839', 'Arik Cheshin', 'arik cheshin')
('50222018', 'Ryan Fehr', 'ryan fehr')
('34770901', 'Peter H. Kim', 'peter h. kim')
('47847686', 'Ece Tuncel', 'ece tuncel')
('50222018', 'Ryan Fehr', 'ryan fehr')
('3198839', 'Arik Cheshin', 'arik cheshin')
Angeles, CA 90089-1421. E-mail: kimpeter@usc.edu +
e0dc6f1b740479098c1d397a7bc0962991b5e294快速人脸检测技术综述 +
李月敏 1 陈杰 2 高文 1,2,3 尹宝才 1 +
1(北京工业大学计算机学院多媒体与智能软件技术实验室 北京 100022) +
2(哈尔滨工业大学计算机科学与技术学院 哈尔滨 150001) +
3(中国科学院计算技术研究所先进人机通信技术联合实验室 北京 100080) +
摘 要 人脸检测问题研究具有很重要的意义,可以应用到人脸识别、新一代的人机界 +
面、安全访问和视觉监控以及基于内容的检索等领域,近年来受到研究者的普遍重视。人脸 +
检测要走向实际应用,精度和速度是亟需解决的两个关键问题。经过 20 世纪 90 年代以来十 +
多年的发展,人脸检测的精度得到了大幅度的提高,但是速度却一直是阻挠人脸检测走向实 +
用的绊脚石。为此研究者们也作了艰辛的努力。直到 21 世纪 Viola 基于 AdaBoost 算法的人 +
脸检测器的发表,人脸检测的速度才得到了实质性的提高。该算法的发表也促进了人脸检测 +
研究的进一步蓬勃发展,在这方面先后涌现出了一批优秀的文献。基于此,本文在系统地整 +
理分析了人脸检测领域内的相关文献之后,从速度的角度将人脸检测的各种算法大致划分为 +
初始期,发展期,转折点和综合期等四类,并在此基础上进行了全新的总结和论述,最后给 +
出了人脸检测研究的一些可能的发展方向。 +
关键词 人脸检测,速度,人脸识别,模式识别,Boosting +
图法分类号:TP391.4 +
Face Detection: a Survey +
1(Multimedia and Intelligent Software Technology Laboratory +
Beijing University of Technology, Beijing 100022, China
School of Computer Science and Technology, Harbin Institute of
Technology, Harbin, 150001, China) +
Institute of Computing Technology, Chinese Academy of Sciences
Beijing, 100080, China) +
('7771395', 'Yuemin Li', 'yuemin li')
('1714354', 'Baocai Yin', 'baocai yin')
ymli@jdl.ac.cn, chenjie@jdl.ac.cn, +
wgao@jdl.ac.cn, ybc@bjut.edu.cn +
468c8f09d2ad8b558b65d11ec5ad49208c4da2f2MSR-CNN: Applying Motion Salient Region Based +
Descriptors for Action Recognition +
School of Computing, Informatics, +
Decision System Engineering +
Arizona State University
Tempe, USA +
Intel Corp. +
Tempe, USA +
School of Computing, Informatics, +
Decision System Engineering +
Arizona State University
Tempe, USA +
('3334478', 'Zhigang Tu', 'zhigang tu')
('4244188', 'Jun Cao', 'jun cao')
('2180892', 'Yikang Li', 'yikang li')
('2913552', 'Baoxin Li', 'baoxin li')
Email: Zhigang.Tu@asu.edu +
Email: jun.cao@intel.com +
Email: YikangLi,Baoxin.Li@asu.edu +
46a4551a6d53a3cd10474ef3945f546f45ef76ee2014 IEEE Intelligent Vehicles Symposium (IV) +
June 8-11, 2014. Dearborn, Michigan, USA +
978-1-4799-3637-3/14/$31.00 ©2014 IEEE +
344 +
4686bdcee01520ed6a769943f112b2471e436208Utsumi et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:11 +
DOI 10.1186/s41074-017-0024-5 +
IPSJ Transactions on Computer +
Vision and Applications +
EXPRESS PAPER +
Open Access +
Fast search based on generalized +
similarity measure +
('40142989', 'Yuzuko Utsumi', 'yuzuko utsumi')
('4629425', 'Tomoya Mizuno', 'tomoya mizuno')
('35613969', 'Masakazu Iwamura', 'masakazu iwamura')
('3277321', 'Koichi Kise', 'koichi kise')
4688787d064e59023a304f7c9af950d192ddd33eInvestigating the Discriminative Power of Keystroke +
Sound +
and Dimitris Metaxas, Member, IEEE +
('38993748', 'Joseph Roth', 'joseph roth')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('1698707', 'Arun Ross', 'arun ross')
466184b10fb7ce9857e6b5bd6b4e5003e09a0b16Extended Grassmann Kernels for +
Subspace-Based Learning +
GRASP Laboratory +
University of Pennsylvania
Philadelphia, PA 19104 +
GRASP Laboratory +
University of Pennsylvania
Philadelphia, PA 19104 +
('2720935', 'Jihun Ham', 'jihun ham')
('1732066', 'Daniel D. Lee', 'daniel d. lee')
jhham@seas.upenn.edu +
ddlee@seas.upenn.edu +
46e86cdb674440f61b6658ef3e84fea95ea51fb4
46f2611dc4a9302e0ac00a79456fa162461a8c80for Action Classification +
ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai
('3310120', 'Ali Diba', 'ali diba')
('3169187', 'Mohsen Fayyaz', 'mohsen fayyaz')
('50633941', 'Vivek Sharma', 'vivek sharma')
('2946643', 'Juergen Gall', 'juergen gall')
('1681236', 'Luc Van Gool', 'luc van gool')
1{firstname.lastname}@kuleuven.be, 2{firstname.lastname}@kit.edu, +
3{lastname}@iai.uni-bonn.de, 4{firstname.lastname}@sensifai.com +
46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d43D FACIAL GEOMETRIC FEATURES FOR CONSTRAINED LOCAL MODEL +
cid:2) Imperial College London, United Kingdom
University of Twente, EEMCS, Netherlands
('1694605', 'Maja Pantic', 'maja pantic')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('3183108', 'Akshay Asthana', 'akshay asthana')
('1902288', 'Shiyang Cheng', 'shiyang cheng')
{shiyang.cheng11, s.zafeiriou, a.asthana, m.pantic}@imperial.ac.uk +
46ae4d593d89b72e1a479a91806c39095cd96615A CONDITIONAL RANDOM FIELD APPROACH FOR FACE IDENTIFICATION IN +
BROADCAST NEWS USING OVERLAID TEXT +
(1,2)Gay Paul, 1Khoury Elie, 2Meignier Sylvain, 1Odobez Jean-Marc, 2Deleglise Paul +
Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France
467b602a67cfd7c347fe7ce74c02b38c4bb1f332Large Margin Local Metric Learning +
University College London, London, UK
2 Safran Morpho, Issy-les-Moulineaux, France +
University of Exceter, Exceter, UK
('38954213', 'Yiming Ying', 'yiming ying')
('1704699', 'Massimiliano Pontil', 'massimiliano pontil')
m.pontil@cs.ucl.ac.uk +
{julien.bohne,stephane.gentric}@morpho.com +
y.ying@exeter.ac.uk +
466f80b066215e85da63e6f30e276f1a9d7c843b2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
Joint Head Pose Estimation and Face Alignment Framework +
Using Global and Local CNN Features +
Computational Biomedicine Lab +
University of Houston, Houston, TX, USA
('5084124', 'Xiang Xu', 'xiang xu')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
{xxu18, ikakadia}@central.uh.edu +
464de30d3310123644ab81a1f0adc51598586fd2
466a5add15bb5f91e0cfd29a55f5fb159a7980e5Video Repeat Recognition and Mining by Visual +
Features +
('4052001', 'Xianfeng Yang', 'xianfeng yang')
46f3b113838e4680caa5fc8bda6e9ae0d35a038cCancers 2010, 2, 262-273; doi:10.3390/cancers2020262 +
OPEN ACCESS +
cancers +
ISSN 2072-6694 +
www.mdpi.com/journal/cancers +
Review +
Automated Dermoscopy Image Analysis of Pigmented Skin +
Lesions +
Section of Pathology, Second University of Naples, Via L. Armanni
5, 80138 Naples, Italy +
3 ACS, Advanced Computer Systems, Via della Bufalotta 378, 00139 Rome, Italy +
Fax: +390815569693. +
Received: 23 February 2010; in revised form: 15 March 2010 / Accepted: 25 March 2010 / +
Published: 26 March 2010 +
('32152948', 'Alfonso Baldi', 'alfonso baldi')
('1705562', 'Marco Quartulli', 'marco quartulli')
('3899127', 'Raffaele Murace', 'raffaele murace')
('5703272', 'Emanuele Dragonetti', 'emanuele dragonetti')
('38220535', 'Mario Manganaro', 'mario manganaro')
('2237329', 'Oscar Guerra', 'oscar guerra')
('4108084', 'Stefano Bizzi', 'stefano bizzi')
2 Futura-onlus, Via Pordenone 2, 00182 Rome, Italy; E-Mail: raffaele@murace.it +
* Author to whom correspondence should be addressed; E-Mail: alfonsobaldi@tiscali.it; +
465d5bb11912005f0a4f0569c6524981df18a7deIMOTION – Searching for Video Sequences +
using Multi-Shot Sketch Queries +
Metin Sezgin3, Ozan Can Altıok3, and Yusuf Sahillio˘glu3 +
1 Databases and Information Systems Research Group, +
University of Basel, Switzerland
Research Center in Information Technologies, Universit e de Mons, Belgium
Intelligent User Interfaces Lab, Ko c University, Turkey
('27401642', 'Luca Rossetto', 'luca rossetto')
('2155883', 'Ivan Giangreco', 'ivan giangreco')
('34588610', 'Silvan Heller', 'silvan heller')
('1806643', 'Heiko Schuldt', 'heiko schuldt')
('3272087', 'Omar Seddati', 'omar seddati')
{luca.rossetto|ivan.giangreco|c.tanase|silvan.heller|heiko.schuldt}@unibas.ch +
{stephane.dupont|omar.seddati}@umons.ac.be +
{mtsezgin|oaltiok15|ysahillioglu}@ku.edu.tr +
46c87fded035c97f35bb991fdec45634d15f9df2Spatial-Aware Object Embeddings for Zero-Shot Localization +
and Classification of Actions +
University of Amsterdam
('2606260', 'Pascal Mettes', 'pascal mettes')
46e72046a9bb2d4982d60bcf5c63dbc622717f0fLearning Discriminative Features with Class Encoder +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences
University of Chinese Academy of Science
('1704812', 'Hailin Shi', 'hailin shi')
('8362374', 'Xiangyu Zhu', 'xiangyu zhu')
('1718623', 'Zhen Lei', 'zhen lei')
('40397682', 'Shengcai Liao', 'shengcai liao')
('34679741', 'Stan Z. Li', 'stan z. li')
{hailin.shi, xiangyu.zhu, zlei, scliao, szli}@nlpr.ia.ac.cn +
46f32991ebb6235509a6d297928947a8c483f29eIn Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Madison (WI), June 2003 +
Recognizing Expression Variant Faces +
from a Single Sample Image per Class +
Aleix M. Mart(cid:19)(cid:16)nez +
Department of Electrical Engineering +
The Ohio State University, OH
aleix@ee.eng.ohio-state.edu +
46538b0d841654a0934e4c75ccd659f6c5309b72Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.1, February 2014 +
A NOVEL APPROACH TO GENERATE FACE +
BIOMETRIC TEMPLATE USING BINARY +
DISCRIMINATING ANALYSIS +
1P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +
2Associate Professor, Department of Computer Engineering, +
MCERC, Nashik (M.S.), India +
('40075681', 'Shraddha S. Shinde', 'shraddha s. shinde')
('2590072', 'Anagha P. Khedkar', 'anagha p. khedkar')
4641986af5fc8836b2c883ea1a65278d58fe4577Scene Graph Generation by Iterative Message Passing +
Stanford University
Stanford University
('2068265', 'Danfei Xu', 'danfei xu'){danfei, yukez, chrischoy, feifeili}@cs.stanford.edu +
464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05aDeep Adaptive Temporal Pooling for Activity Recognition +
Singapore University of Technology and Design
Singapore University of Technology and Design
Singapore, Singapore +
Singapore, Singapore +
Institute for Infocomm Research
Singapore, Singapore +
Keele University
Keele, Staffordshire, United Kingdom +
('1729827', 'Ngai-Man Cheung', 'ngai-man cheung')
('2527741', 'Sibo Song', 'sibo song')
('1802086', 'Vijay Chandrasekhar', 'vijay chandrasekhar')
('1709001', 'Bappaditya Mandal', 'bappaditya mandal')
ngaiman_cheung@sutd.edu.sg +
sibo_song@mymail.sutd.edu.sg +
vijay@i2r.a-star.edu.sg +
b.mandal@keele.ac.uk +
469ee1b00f7bbfe17c698ccded6f48be398f2a44MIT International Journal of Computer Science and Information Technology, Vol. 4, No. 2, August 2014, pp. 82-88 +
ISSN 2230-7621©MIT Publications +
82 +
SURVEy: Techniques for +
Aging Problems in Face Recognition +
Aashmi +
Scholar, Computer Science Engg. Dept. +
Moradabad Institute of Technology
Scholar, Computer Science Engg. Dept. +
Moradabad Institute of Technology
Scholar, Computer Science Engg. Dept. +
Moradabad Institute of Technology
Moradabad, U.P., INDIA +
Moradabad, U.P., INDIA +
Moradabad, U.P., INDIA +
('40062749', 'Sakshi Sahni', 'sakshi sahni')
('9186211', 'Sakshi Saxena', 'sakshi saxena')
E-mail: aashmichaudhary@gmail.com +
E-mail: sakshisahni92@gmail.com +
E-mail: saxena.sakshi2511992@gmail.com +
46196735a201185db3a6d8f6e473baf05ba7b68f
4682fee7dc045aea7177d7f3bfe344aabf153bd5Tabula Rasa: Model Transfer for +
Object Category Detection +
Department of Engineering Science +
Oxford +
(Presented by Elad Liebman) +
('3152281', 'Yusuf Aytar', 'yusuf aytar')
4657d87aebd652a5920ed255dca993353575f441Image Normalization for +
Illumination Compensation in Facial Images +
by +
Department of Electrical & Computer Engineering +
& Center for Intelligent Machines +
McGill University, Montreal, Canada
August 2004 +
('3631473', 'Martin D. Levine', 'martin d. levine')
('35712223', 'Jisnu Bhattacharyya', 'jisnu bhattacharyya')
4622b82a8aff4ac1e87b01d2708a333380b5913bMulti-label CNN Based Pedestrian Attribute Learning for Soft Biometrics +
Center for Biometrics and Security Research, +
Institute of Automation, Chinese Academy of Sciences
95 Zhongguancun Donglu, Beijing 100190, China +
('1739258', 'Jianqing Zhu', 'jianqing zhu')
('40397682', 'Shengcai Liao', 'shengcai liao')
('1716143', 'Dong Yi', 'dong yi')
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
jianqingzhu@foxmail.com, {scliao, dyi, zlei, szli}@nlpr.ia.ac.cn +
46e866f58419ff4259c65e8256c1d4f14927b2c6On the Generalization Power of Face and Gait Gender +
Recognition Methods +
University of Warwick
Gibbet Hill Road, Coventry, CV4 7AL, UK +
('1735787', 'Yu Guan', 'yu guan')
('1799504', 'Chang-Tsun Li', 'chang-tsun li')
{g.yu, x.wei, c-t.li}@warwick.ac.uk +
46072f872eee3413f9d05482be6446f6b96b6c09Trace Quotient Problems Revisited +
1 Department of Information Engineering, +
The Chinese University of Hong Kong, Hong Kong
2 Microsoft Research Asia, Beijing, China +
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
4698a599425c3a6bae1c698456029519f8f2befeTransferring Rich Deep Features +
for Facial Beauty Prediction +
College of Informatics
College of Informatics
Department of Computer Science and Engineering +
Huazhong Agricultural University
Huazhong Agricultural University
Wuhan, China +
Wuhan, China +
University of North Texas
Denton, USA +
('40557104', 'Lu Xu', 'lu xu')
('2697879', 'Jinhai Xiang', 'jinhai xiang')
('1982703', 'Xiaohui Yuan', 'xiaohui yuan')
Email: xulu coi@webmail.hzau.edu.cn +
Email: jimmy xiang@mail.hzau.edu.cn +
Email: Xiaohui.Yuan@unt.edu +
2c424f21607ff6c92e640bfe3da9ff105c08fac4Learning Structured Output Representation +
using Deep Conditional Generative Models +
NEC Laboratories America, Inc
University of Michigan, Ann Arbor
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
('3084614', 'Xinchen Yan', 'xinchen yan')
('1697141', 'Honglak Lee', 'honglak lee')
ksohn@nec-labs.com, {xcyan,honglak}@umich.edu +
2c258eec8e4da9e65018f116b237f7e2e0b2ad17Deep Quantization: Encoding Convolutional Activations +
with Deep Generative Model ∗ +
University of Science and Technology of China, Hefei, China
Microsoft Research, Beijing, China +
('3430743', 'Zhaofan Qiu', 'zhaofan qiu')
('2053452', 'Ting Yao', 'ting yao')
('1724211', 'Tao Mei', 'tao mei')
zhaofanqiu@gmail.com, {tiyao, tmei}@microsoft.com +
2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58
2c8743089d9c7df04883405a31b5fbe494f175b4Washington State Convention Center +
Seattle, Washington, May 26-30, 2015 +
978-1-4799-6922-7/15/$31.00 ©2015 IEEE +
3039 +
2c61a9e26557dd0fe824909adeadf22a6a0d86b0
2c93c8da5dfe5c50119949881f90ac5a0a4f39feAdvanced local motion patterns for macro and micro facial +
expression recognition +
B. Allaerta,∗, IM. Bilascoa, C. Djerabaa +
aUniv. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - +
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +
2c34bf897bad780e124d5539099405c28f3279acRobust Face Recognition via Block Sparse Bayesian Learning +
School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu
China +
Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China
University of California at San Diego, La Jolla, CA
USA +
Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA
('2775350', 'Taiyong Li', 'taiyong li')
('1791667', 'Zhilin Zhang', 'zhilin zhang')
2c203050a6cca0a0bff80e574bda16a8c46fe9c2Discriminative Deep Hashing for Scalable Face Image Retrieval +
School of Computer Science and Engineering, Nanjing University of Science and Technology
('1699053', 'Jie Lin', 'jie lin')
('3233021', 'Zechao Li', 'zechao li')
('8053308', 'Jinhui Tang', 'jinhui tang')
jinhuitang@njust.edu.cn +
2cc4ae2e864321cdab13c90144d4810464b2427523 +
Face Recognition Using Optimized 3D +
Information from Stereo Images +
1Advanced Technology R&D Center, Samsung Thales Co., Ltd., 2Graduate School of +
Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul
Korea +
1. Introduction +
Human biometric characteristics are unique, so it can not be easily duplicated [1]. Such +
information +
includes; facial, hands, torso, fingerprints, etc. Potential applications, +
economical efficiency, and user convenience make the face detection and recognition +
technique an important commodity compared to other biometric features [2], [3]. It can also +
use a low-cost personal computer (PC) camera instead of expensive equipments, and require +
minimal user interface. Recently, extensive research using 3D face data has been carried out +
in order to overcome the limits of 2D face detection and feature extraction [2], which +
includes PCA [3], neural networks (NN) [4], support vector machines (SVM) [5], hidden +
markov models (HMM) [6], and linear discriminant analysis (LDA) [7]. Among them, PCA +
and LDA methods with self-learning method are most widely used [3]. The frontal face +
image database provides fairly high recognition rate. However, if the view data of facial +
rotation, illumination and pose change is not acquired, the correct recognition rate +
remarkably drops because of the entire face modeling. Such performance degradation +
problem can be solved by using a new recognition method based on the optimized 3D +
information in the stereo face images. +
This chapter presents a new face detection and recognition method using optimized 3D +
information from stereo images. The proposed method can significantly improve the +
recognition rate and is robust against object’s size, distance, motion, and depth using the +
PCA algorithm. By using the optimized 3D information, we estimate the position of the eyes +
in the stereo face images. As a result, we can accurately detect the facial size, depth, and +
rotation in the stereo face images. For efficient detection of face area, we adopt YCbCr color +
format. The biggest object can be chosen as a face candidate among the candidate areas +
which are extracted by the morphological opening for the Cb and Cr components [8]. In +
order to detect the face characteristics such as eyes, nose, and mouth, a pre-processing is +
performed, which utilizes brightness information in the estimated face area. For fast +
processing, we train the partial face region segmented by estimating the position of eyes, +
instead of the entire face region. Figure 1. shows the block diagram of proposed algorithm. +
This chapter is organized as follows: Section 2 and 3 describe proposed stereo vision system +
and pos estimation for face recognition, respectively. Section 4 presents experimental, and +
section 5 concludes the chapter. +
Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007 +
('1727735', 'Changhan Park', 'changhan park')
('1684329', 'Joonki Paik', 'joonki paik')
2c3430e0cbe6c8d7be3316a88a5c13a50e90021dMulti-feature Spectral Clustering with Minimax Optimization +
School of Electrical and Electronic Engineering +
Nanyang Technological University, Singapore
('19172541', 'Hongxing Wang', 'hongxing wang')
('1764228', 'Chaoqun Weng', 'chaoqun weng')
('34316743', 'Junsong Yuan', 'junsong yuan')
{hwang8, weng0018}@e.ntu.edu.sg, jsyuan@ntu.edu.sg +
2cac8ab4088e2bdd32dcb276b86459427355085cA Face-to-Face Neural Conversation Model +
Hang Chu1 +
University of Toronto 2Vector Institute
('46598920', 'Daiqing Li', 'daiqing li'){chuhang1122, daiqing, fidler}@cs.toronto.edu +
2cde051e04569496fb525d7f1b1e5ce6364c8b21Sparse 3D convolutional neural networks +
University of Warwick
August 26, 2015 +
('39294240', 'Ben Graham', 'ben graham')b.graham@warwick.ac.uk +
2c2786ea6386f2d611fc9dbf209362699b104f83('31914125', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')
2c92839418a64728438c351a42f6dc5ad0c6e686Pose-Aware Face Recognition in the Wild +
Prem Natarajan2 +
USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA
G´erard Medioni1 +
USC Information Sciences Institute (ISI), Marina Del Rey, CA
('11269472', 'Iacopo Masi', 'iacopo masi')
('38696444', 'Stephen Rawls', 'stephen rawls')
{srawls,pnataraj}@isi.edu +
{iacopo.masi,medioni}@usc.edu +
2c848cc514293414d916c0e5931baf1e8583eabcAn automatic facial expression recognition system +
evaluated by different classifiers +
∗Programa de P´os-Graduac¸˜ao em Mecatrˆonica +
Universidade Federal da Bahia, +
†Department of Electrical Engineering - EESC/USP +
('3797834', 'Caroline Silva', 'caroline silva')
('2105008', 'Raissa Tavares Vieira', 'raissa tavares vieira')
Email: lolyne.pacheco@gmail.com +
Email: andrewssobral@gmail.com +
Email: raissa@ieee.org, +
2c883977e4292806739041cf8409b2f6df171aeeAalborg Universitet +
Are Haar-like Rectangular Features for Biometric Recognition Reducible? +
Nasrollahi, Kamal; Moeslund, Thomas B. +
Published in: +
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications +
DOI (link to publication from Publisher): +
10.1007/978-3-642-41827-3_42 +
Publication date: +
2013 +
Document Version +
Early version, also known as pre-print +
Link to publication from Aalborg University
Citation for published version (APA): +
Nasrollahi, K., & Moeslund, T. B. (2013). Are Haar-like Rectangular Features for Biometric Recognition +
Reducible? In J. Ruiz-Shulcloper, & G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis, +
Computer Vision, and Applications (Vol. 8259, pp. 334-341). Springer Berlin Heidelberg: Springer Publishing +
Company. Lecture Notes in Computer Science, DOI: 10.1007/978-3-642-41827-3_42 +
General rights +
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. +
? You may not further distribute the material or use it for any profit-making activity or commercial gain +
? You may freely distribute the URL identifying the publication in the public portal ? +
Take down policy +
the work immediately and investigate your claim. +
Downloaded from vbn.aau.dk on: oktober 28, 2017 +
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to +
2cdd9e445e7259117b995516025fcfc02fa7eebbTitle +
Temporal Exemplar-based Bayesian Networks for facial +
expression recognition +
Author(s) +
Shang, L; Chan, KP +
Citation +
Proceedings - 7Th International Conference On Machine +
Learning And Applications, Icmla 2008, 2008, p. 16-22 +
Issued Date +
2008 +
URL +
http://hdl.handle.net/10722/61208 +
Rights +
This work is licensed under a Creative Commons Attribution- +
NonCommercial-NoDerivatives 4.0 International License.; +
International Conference on Machine Learning and Applications +
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +
this material is permitted. However, permission to +
reprint/republish this material for advertising or promotional +
purposes or for creating new collective works for resale or +
redistribution to servers or lists, or to reuse any copyrighted +
component of this work in other works must be obtained from +
the IEEE. +
2c1ffb0feea5f707c890347d2c2882be0494a67aLearning to learn high capacity generative models from few examples +
The Variational Homoencoder: +
Tommi Jaakkola1 +
Massachusetts Institute of Technology
2MIT-IBM Watson AI Lab +
('51152627', 'Luke B. Hewitt', 'luke b. hewitt')
('51150953', 'Maxwell I. Nye', 'maxwell i. nye')
('3071104', 'Andreea Gane', 'andreea gane')
('1763295', 'Joshua B. Tenenbaum', 'joshua b. tenenbaum')
2cdc40f20b70ca44d9fd8e7716080ee05ca7924aReal-time Convolutional Neural Networks for +
Emotion and Gender Classification +
Hochschule Bonn-Rhein-Sieg +
Sankt Augustin Germany +
Paul G. Pl¨oger +
Hochschule Bonn-Rhein-Sieg +
Sankt Augustin Germany +
Matias Valdenegro +
Heriot-Watt University
Edinburgh, UK +
('27629437', 'Octavio Arriaga', 'octavio arriaga')Email: octavio.arriaga@smail.inf.h-brs.de +
Email: paul.ploeger@h-brs.de +
Email: m.valdenegro@hw.ac.uk +
2cac70f9c8140a12b6a55cef834a3d7504200b62Reconstructing High Quality Face-Surfaces using Model Based Stereo +
University of Basel, Switzerland
Contribution +
We present a method to fit a detailed 3D morphable +
model to multiple images. Our formulation allows +
the fitting of the model without determining the +
lighting conditions and albedo of the face, mak- +
ing the system robust against difficult lighting sit- +
uations and unmodelled albedo variations such as +
skin colour, moles, freckles and cast shadows. +
The cost function employs +
Microsoft Research, Cambridge‡ +
Ambient Lighting +
Evaluation: Gold Standard +
Ambient Only Dataset (20 Subjects) +
Stereo: Landmarks + Silhouette + Colour +
Stereo: Landmarks + Silhouette +
Stereo: Landmarks +
Monocular +
The model shape prior +
A small number of landmarks for initialization +
A monocular silhouette distance cost +
A stereo colour cost +
The optimisation consists of multiple runs of a non- +
linear minimizer. During each run the visibility of +
all sample points is assumed to stay constant. After +
some iterations the minimizer is stopped and visi- +
bility is reevaluated. +
Model +
The linear morphable face model was created by +
registering 200 face scans and performing a PCA on +
the data matrix to fit a Gaussian probability to the +
data and reduce the dimensionality of the model. +
Input Images +
Multiview +
Landmarks +
Multiview +
L.+Silhouette +
Multiview +
L.+S.+Colour +
Ground Truth +
Monocular [1] +
Each cue increases the reconstruction accuracy, lead- +
ing to significantly better result than possible with +
the state of the art monocular system [1]. Recon- +
structions of the face surface are compared to ground +
truth data acquired with a structured light system. +
The point wise distance from the reconstruction to +
the ground truth is shown in the inset head render- +
ings. Here green is a perfect match, and red denotes +
a distance of 3mm or more. +
The best of the three monocular results is shown. +
Silhouette Cost +
Directed Lighting +
The silhouette cost measures +
the distance of the silhouette +
to image edges. An edge cost +
surface is created from the im- +
age, by combining the distance +
transforms of edge detections +
with different thresholds. The +
cost ist integrated over the pro- +
jection of 3D sample points at +
the silhouette of the hypotheses. +
Edge Cost Surface +
Colour Reprojection Cost +
The colour +
reprojection cost +
measures the image colour dif- +
ference between the projected +
positions of sample points in +
two images. The sample points +
are spaced out regularly in the +
projected images. +
Multiview Ground Truth Monocular +
Input Images +
The new stereo algorithm is robust under directed +
lighting and yields significantly more accurate sur- +
face reconstructions than the monocular algorithm. +
Again the distance to the ground truth is shown +
Funding +
This work was supported in part by Microsoft Research through +
the European PhD Scholarship Programme. +
Multiview Ground Truth Monocular +
Input Images +
for green=0mm and red=3mm in the insets. Future +
work will include a skin and lighting model, hope- +
fully improving speed and accuracy of the method. +
All cues were used. +
References +
[1] S. Romdhani and T. Vetter. Estimating 3D Shape and Texture +
Using Pixel Intensity, Edges, Specular Highlights, Texture +
Constraints and a Prior. In CVPR 2005 +
Distance to Ground Truth (mm) +
Directed Light Dataset (5 Subjects) +
Stereo: Landmarks + Silhouette + Colour +
Stereo: Landmarks + Silhouette +
Stereo: Landmarks +
Monocular +
Distance to Ground Truth (mm) +
The use of multi-view information results in a +
much higher accuracy than achievable by the +
monocular method. A higher frequency of lower +
residuals is better. +
Evaluation: Face Recognition +
To test the method on a difficult dataset, a face +
recognition experiment on the PIE dataset was per- +
formed. The results show, that the extracted sur- +
faces are consistent over variations in viewpoint +
and that the reconstruction quality increases with +
an increasing number of images. +
View- +
points +
Landmark +
+ Silhouette +
+ Colour +
2nd +
2nd +
1st +
1st +
2nd +
1st +
68% 63% 82% +
10% 18% 50% +
74% 74% 85% +
7% 18% 62% +
82% 87% 94% +
19% 37% 76% +
The columns labelled “1st” show the frequency of +
correct results, “2nd” is the frequency with which +
the correct result was within the first two subjects +
returned. The angle between the shape coefficients +
was used as the distance measure. +
Texture information should be used to achieve state +
of the art recognition results. +
FaceCamera1Camera2SamplePoint
('1994157', 'Brian Amberg', 'brian amberg')
('1745076', 'Andrew Blake', 'andrew blake')
('3293655', 'Sami Romdhani', 'sami romdhani')
('1687079', 'Thomas Vetter', 'thomas vetter')
2c5d1e0719f3ad7f66e1763685ae536806f0c23bAENet: Learning Deep Audio Features for Video +
Analysis +
('47893464', 'Naoya Takahashi', 'naoya takahashi')
('3037160', 'Michael Gygli', 'michael gygli')
('7329802', 'Luc van Gool', 'luc van gool')
2c8f24f859bbbc4193d4d83645ef467bcf25adc2845 +
Classification in the Presence of +
Label Noise: a Survey +
('1786603', 'Benoît Frénay', 'benoît frénay')
('1782629', 'Michel Verleysen', 'michel verleysen')
2c1f8ddbfbb224271253a27fed0c2425599dfe47Understanding and Comparing Deep Neural Networks +
for Age and Gender Classification +
Fraunhofer Heinrich Hertz Institute
Singapore University of Technology and Design
10587 Berlin, Germany +
Klaus-Robert M¨uller +
Berlin Institute of Technology
10623 Berlin, Germany +
Singapore 487372, Singapore +
Fraunhofer Heinrich Hertz Institute
10587 Berlin, Germany +
('3633358', 'Sebastian Lapuschkin', 'sebastian lapuschkin')
('40344011', 'Alexander Binder', 'alexander binder')
('1699054', 'Wojciech Samek', 'wojciech samek')
sebastian.lapuschkin@hhi.fraunhofer.de +
alexander binder@sutd.edu.sg +
klaus-robert.mueller@tu-berlin.de +
wojciech.samek@hhi.fraunhofer.de +
2ca43325a5dbde91af90bf850b83b0984587b3ccFor Your Eyes Only – Biometric Protection of PDF Documents +
Faculty of ETI, Gdansk University of Technology, Gdansk, Poland
('2026734', 'J. Siciarek', 'j. siciarek')
2cfc28a96b57e0817cc9624a5d553b3aafba56f3P2F2: Privacy-Preserving Face Finder +
New Jersey Institute of Technology
('9037517', 'Nora Almalki', 'nora almalki')
('1692516', 'Reza Curtmola', 'reza curtmola')
('34645435', 'Xiaoning Ding', 'xiaoning ding')
('1690806', 'Cristian Borcea', 'cristian borcea')
Email: {naa34, crix, xiaoning.ding, narain.gehani, borcea}@njit.edu +
2cdd5b50a67e4615cb0892beaac12664ec53b81fTo appear in ACM TOG 33(6). +
Mirror Mirror: Crowdsourcing Better Portraits +
Jun-Yan Zhu1 +
Aseem Agarwala2 +
Jue Wang2 +
University of California, Berkeley1 Adobe
Figure 1: We collect thousands of portraits by capturing video of a subject while they watch movie clips designed to elicit a range of positive +
emotions. We use crowdsourcing and machine learning to train models that can predict attractiveness scores of different expressions. These +
models can be used to select a subject’s best expressions across a range of emotions, from more serious professional portraits to big smiles. +
('1763086', 'Alexei A. Efros', 'alexei a. efros')
('2177801', 'Eli Shechtman', 'eli shechtman')
2cae619d0209c338dc94593892a787ee712d9db0Selective Hidden Random Fields: Exploiting Domain-Specific Saliency for Event +
Classification +
University of Massachusetts Amherst
Amherst MA USA +
('2246870', 'Vidit Jain', 'vidit jain')vidit@cs.umass.edu +
2c0acaec54ab2585ff807e18b6b9550c44651eabFace Quality Assessment for Face Verification in Video +
Lomonosov Moscow State University, 2Video Analysis Technologies, LLC
fusion of +
facial +
('38982797', 'M. Nikitin', 'm. nikitin')
('2943115', 'V. Konushin', 'v. konushin')
('1934937', 'A. Konushin', 'a. konushin')
mnikitin@graphics.cs.msu.ru, vadim@tevian.ru, ktosh@graphics.cs.msu.ru +
2cdde47c27a8ecd391cbb6b2dea64b73282c7491ORDER-AWARE CONVOLUTIONAL POOLING FOR VIDEO BASED ACTION RECOGNITION +
Order-aware Convolutional Pooling for Video Based +
Action Recognition +
('1722767', 'Peng Wang', 'peng wang')
('2161037', 'Lingqiao Liu', 'lingqiao liu')
('1780381', 'Chunhua Shen', 'chunhua shen')
('1724393', 'Heng Tao Shen', 'heng tao shen')
2c62b9e64aeddf12f9d399b43baaefbca8e11148Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild +
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
Biometrics Research Lab, College of Computer Science, Sichuan University, Chengdu 610065, China
Image Understanding and Interactive Robotics, Reutlingen University, 72762 Reutlingen, Germany
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('1748684', 'Josef Kittler', 'josef kittler')
('7345195', 'Qijun Zhao', 'qijun zhao')
{z.feng, j.kittler, p.koppen}@surrey.ac.uk, patrikhuber@gmail.com, +
wu_xiaojun@jiangnan.edu.cn, p.j.b.hancock@stir.ac.uk, qjzhao@scu.edu.cn +
2c7c3a74da960cc76c00965bd3e343958464da45
2cf5f2091f9c2d9ab97086756c47cd11522a6ef3MPIIGaze: Real-World Dataset and Deep +
Appearance-Based Gaze Estimation +
('2520795', 'Xucong Zhang', 'xucong zhang')
('1751242', 'Yusuke Sugano', 'yusuke sugano')
('1739548', 'Mario Fritz', 'mario fritz')
('3194727', 'Andreas Bulling', 'andreas bulling')
2c19d3d35ef7062061b9e16d040cebd7e45f281dEnd-to-end Video-level Representation Learning for Action Recognition +
Institute of Automation, Chinese Academy of Sciences (CASIA
University of Chinese Academy of Sciences (UCAS
('1696573', 'Jiagang Zhu', 'jiagang zhu')
('1726367', 'Wei Zou', 'wei zou')
('48147901', 'Zheng Zhu', 'zheng zhu')
{zhujiagang2015, wei.zou}@ia.ac.cn, zhuzheng14@mails.ucas.ac.cn +
2c17d36bab56083293456fe14ceff5497cc97d75Unconstrained Face Alignment via Cascaded Compositional Learning +
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2SenseTime Group Limited +
('2226254', 'Shizhan Zhu', 'shizhan zhu')
('40475617', 'Cheng Li', 'cheng li')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
zs014@ie.cuhk.edu.hk, chengli@sensetime.com, ccloy@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk +
2c4b96f6c1a520e75eb37c6ee8b844332bc0435cAutomatic Emotion Recognition in Robot-Children Interaction for ASD +
Treatment +
ISASI UOS Lecce +
Campus Universitario via Monteroni sn, 73100 Lecce Italy +
ISASI UOS Messina +
Univerisita’ di Bari +
Marine Institute, via Torre Bianca, 98164 Messina Italy
Via Orabona 4, 70126 Bari, Italy +
('4730472', 'Marco Leo', 'marco leo')
('33097940', 'Marco Del Coco', 'marco del coco')
('1741861', 'Cosimo Distante', 'cosimo distante')
('3049247', 'Giovanni Pioggia', 'giovanni pioggia')
('2235498', 'Giuseppe Palestra', 'giuseppe palestra')
marco.leo@cnr.it +
2cd7821fcf5fae53a185624f7eeda007434ae037Exploring the Geo-Dependence of Human Face Appearance +
Computer Science +
University of Kentucky
Computer Science +
UNC Charlotte +
Computer Science +
University of Kentucky
('2142962', 'Mohammad T. Islam', 'mohammad t. islam')
('38792670', 'Scott Workman', 'scott workman')
('1873911', 'Hui Wu', 'hui wu')
('1690110', 'Richard Souvenir', 'richard souvenir')
('1990750', 'Nathan Jacobs', 'nathan jacobs')
{tarik,scott}@cs.uky.edu +
{hwu13,souvenir}@uncc.edu +
jacobs@cs.uky.edu +
79581c364cefe53bff6bdd224acd4f4bbc43d6d4
794ddb1f3b7598985d4d289b5b0664be736a50c4Exploiting Competition Relationship for Robust Visual Recognition +
Center for Data Analytics and Biomedical Informatics +
Department of Computer and Information Science +
Temple University
Philadelphia, PA, 19122, USA +
('38909760', 'Liang Du', 'liang du')
('1805398', 'Haibin Ling', 'haibin ling')
{liang.du, hbling}@temple.edu +
790aa543151312aef3f7102d64ea699a1d15cb29Confidence-Weighted Local Expression Predictions for +
Occlusion Handling in Expression Recognition and Action +
Unit detection +
1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIR UMR 7222 +
4 place Jussieu 75005 Paris +
('3190846', 'Arnaud Dapogny', 'arnaud dapogny')
('2521061', 'Kevin Bailly', 'kevin bailly')
('1701986', 'Séverine Dubuisson', 'séverine dubuisson')
arnaud.dapogny@isir.upmc.fr +
kevin.bailly@isir.upmc.fr +
severine.dubuisson@isir.upmc.fr +
79f6a8f777a11fd626185ab549079236629431acCopyright +
by +
2013 +
('35788904', 'Sung Ju Hwang', 'sung ju hwang')
795ea140df2c3d29753f40ccc4952ef24f46576c
79dc84a3bf76f1cb983902e2591d913cee5bdb0e
79744fc71bea58d2e1918c9e254b10047472bd76Disentangling 3D Pose in A Dendritic CNN +
for Unconstrained 2D Face Alignment +
Department of Electrical and Computer Engineering, CFAR and UMIACS +
University of Maryland-College Park, USA
('50333013', 'Amit Kumar', 'amit kumar')
('9215658', 'Rama Chellappa', 'rama chellappa')
akumar14@umiacs.umd.edu, rama@umiacs.umd.edu +
79b669abf65c2ca323098cf3f19fa7bdd837ff31 Deakin Research Online +
This is the published version: +
Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor +
based face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on +
Pattern Recognition, IEEE, Washington, D. C., pp. 1-4. +
Available from Deakin Research Online: +
http://hdl.handle.net/10536/DRO/DU:30044585 +
+
Reproduced with the kind permissions of the copyright owner. +
Personal use of this material is permitted. However, permission to reprint/republish this +
material for advertising or promotional purposes or for creating new collective works for +
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +
in other works must be obtained from the IEEE. +
Copyright : 2008, IEEE +
794c0dc199f0bf778e2d40ce8e1969d4069ffa7bOdd Leaf Out +
Improving visual recognition with games +
Preece +
School of Information +
University of Maryland
College Park, United States
('6519022', 'Darcy Lewis', 'darcy lewis')
('2662457', 'Dana Rotman', 'dana rotman')
79c3a7131c6c176b02b97d368cd0cd0bc713ff7e
79dd787b2877cf9ce08762d702589543bda373beFace Detection Using SURF Cascade +
Intel Labs China +
('35423937', 'Jianguo Li', 'jianguo li')
('40279370', 'Tao Wang', 'tao wang')
('2470865', 'Yimin Zhang', 'yimin zhang')
799c02a3cde2c0805ea728eb778161499017396bPersonRank: Detecting Important People in Images +
School of Electronics and Information Technology, Sun Yat-Sen University, GuangZhou, China
School of Data and Computer Science, Sun Yat-Sen University, GuangZhou, China
('9186191', 'Benchao Li', 'benchao li')
('3333315', 'Wei-Shi Zheng', 'wei-shi zheng')
7966146d72f9953330556baa04be746d18702047Harnessing Human Manipulation +
NSF/ARL Workshop on Cloud Robotics: Challenges and Opportunities +
February 27-28, 2013 +
The Robotics Institute Carnegie Mellon University
Georgia Institute of Technology
('1781040', 'Matthew T. Mason', 'matthew t. mason')
('1735665', 'Nancy Pollard', 'nancy pollard')
('1760708', 'Alberto Rodriguez', 'alberto rodriguez')
('38637733', 'Ryan Kerwin', 'ryan kerwin')
@cs.cmu.edu +
ryankerwin@gatech.edu +
79fa57dedafddd3f3720ca26eb41c82086bfb332Modeling Facial Expression Space for Recognition * +
National Lab. on Machine Perception +
Peking University
Beijing, China +
National Lab. on Machine Perception +
Peking University
Beijing, China +
National Lab. on Machine Perception +
Peking University
Beijing, China +
('2086289', 'Hong Liu', 'hong liu')
('1687248', 'Hongbin Zha', 'hongbin zha')
('2976781', 'Yuwen Wu', 'yuwen wu')
wuyw@cis.pku.edu.cn +
liuhong@cis.pku.edu.cn +
zha@cis.pku.edu.cn +
793e7f1ba18848908da30cbad14323b0389fd2a8
79db191ca1268dc88271abef3179c4fe4ee92aedFacial Expression Based Automatic Album +
Creation +
School of Computer Science, CECS, Australian National University, Canberra
School of Engineering, CECS, Australian National University, Canberra, Australia
3 Vision & Sensing, Faculty of Information Sciences and Engineering, +
Australia +
University of Canberra, Australia
('1735697', 'Abhinav Dhall', 'abhinav dhall')
('3183108', 'Akshay Asthana', 'akshay asthana')
('1717204', 'Roland Goecke', 'roland goecke')
abhinav.dhall@anu.edu.au, aasthana@rsise.anu.edu.au, +
roland.goecke@ieee.org +
2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359Discriminative Dictionary Learning with +
Pairwise Constraints +
University of Maryland, College Park, MD
('2723427', 'Huimin Guo', 'huimin guo')
('34145947', 'Zhuolin Jiang', 'zhuolin jiang')
('1693428', 'Larry S. Davis', 'larry s. davis')
{hmguo,zhuolin,lsd}@umiacs.umd.edu +
2d25045ec63f9132371841c0beccd801d3733908Sensors 2015, 15, 6719-6739; doi:10.3390/s150306719 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
Multi-Layer Sparse Representation for Weighted LBP-Patches +
Based Facial Expression Recognition +
School of Software, Dalian University of Technology, Dalian 116621, China
Tel.: +86-411-8757-1516. +
Academic Editor: Vittorio M.N. Passaro +
Received: 15 December 2014 / Accepted: 10 March 2015 / Published: 19 March 2015 +
('2235253', 'Qi Jia', 'qi jia')
('3459398', 'Xinkai Gao', 'xinkai gao')
('2736880', 'He Guo', 'he guo')
('7864960', 'Zhongxuan Luo', 'zhongxuan luo')
('1734275', 'Yi Wang', 'yi wang')
E-Mails: jiaqi7166@gmail.com (Q.J.); gaoxinkai@mail.dlut.edu.cn (X.G.); zxluo@dlut.edu.cn (Z.L.); +
wangyi_dlut@126.com (Y.W.) +
* Author to whom correspondence should be addressed; E-Mail: guohe@dlut.edu.cn; +
2dd6c988b279d89ab5fb5155baba65ce4ce53c1e
2d080662a1653f523321974a57518e7cb67ecb41On Constrained Local Model Feature +
Normalization for Facial Expression Recognition +
School of Computing and Info. Sciences, Florida International University
11200 SW 8th St, Miami, FL 33199, USA +
http://ascl.cis.fiu.edu/ +
('3489972', 'Zhenglin Pan', 'zhenglin pan')
('2008564', 'Mihai Polceanu', 'mihai polceanu')
zpan004@fiu.edu,{mpolcean,lisetti}@cs.fiu.edu +
2d4b9fe3854ccce24040074c461d0c516c46baf4Temporal Action Localization by Structured Maximal Sums +
State Key Laboratory for Novel Software Technology, Nanjing University, China
University of Michigan, Ann Arbor
('40188401', 'Jonathan C. Stroud', 'jonathan c. stroud')
('2285916', 'Tong Lu', 'tong lu')
('8342699', 'Jia Deng', 'jia deng')
2d294c58b2afb529b26c49d3c92293431f5f98d04413 +
Maximum Margin Projection Subspace Learning +
for Visual Data Analysis +
('1793625', 'Symeon Nikitidis', 'symeon nikitidis')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
2d1f86e2c7ba81392c8914edbc079ac64d29b666
2d9e58ea582e054e9d690afca8b6a554c3687ce6Learning Local Feature Aggregation Functions +
with Backpropagation +
Multimedia Understanding Group +
Aristotle University of Thessaloniki, Greece
('3493855', 'Angelos Katharopoulos', 'angelos katharopoulos')
('3493472', 'Despoina Paschalidou', 'despoina paschalidou')
('1789830', 'Christos Diou', 'christos diou')
('1708199', 'Anastasios Delopoulos', 'anastasios delopoulos')
{katharas, pdespoin}@auth.gr; diou@mug.ee.auth.gr; adelo@eng.auth.gr +
2d164f88a579ba53e06b601d39959aaaae9016b7Dynamic Facial Expression Recognition Using +
A Bayesian Temporal Manifold Model +
Department of Computer Science +
Queen Mary University of London
Mile End Road, London E1 4NS, UK +
('10795229', 'Caifeng Shan', 'caifeng shan')
('2073354', 'Shaogang Gong', 'shaogang gong')
('2803283', 'Peter W. McOwan', 'peter w. mcowan')
{cfshan, sgg, pmco}@dcs.qmul.ac.uk +
2d8001ffee6584b3f4d951d230dc00a06e8219f8Feature Agglomeration Networks for Single Stage Face Detection +
School of Information Systems, Singapore Management University, Singapore
College of Computer Science and Technology, Zhejiang University, Hangzhou, China
§DeepIR Inc., Beijing, China +
('1826176', 'Jialiang Zhang', 'jialiang zhang')
('2791484', 'Xiongwei Wu', 'xiongwei wu')
('1704030', 'Jianke Zhu', 'jianke zhu')
{chhoi,xwwu.2015@phdis}@smu.edu.sg;{zjialiang,jkzhu}@zju.edu.cn +
2d23fa205acca9c21e3e1a04674f1e5a9528550eThe Fast and the Flexible: +
Extended Pseudo Two-Dimensional Warping for +
Face Recognition +
1Computer Vision and Multimodal Computing +
2 Computer Vision Laboratory +
MPI Informatics, Saarbruecken +
ETH Zurich +
3Human Language Technology and Pattern Recognition Group, +
RWTH Aachen University
('2299109', 'Leonid Pishchulin', 'leonid pishchulin')
('1948162', 'Tobias Gass', 'tobias gass')
('1967060', 'Philippe Dreuw', 'philippe dreuw')
('1685956', 'Hermann Ney', 'hermann ney')
leonid@mpi-inf.mpg.de +
gasst@vision.ee.ethz.ch +
@cs.rwth-aachen.de +
2d244d70ed1a2ba03d152189f1f90ff2b4f16a79An Analytical Mapping for LLE and Its +
Application in Multi-Pose Face Synthesis +
State Key Lab of Intelligent Technology and Systems +
Tsinghua University
Beijing, 100084, China +
('1715001', 'Jun Wang', 'jun wang')wangjun00@mails.tsinghua.edu.cn +
zcs@mail.tsinghua.edu.cn +
kzb98@mails.tsinghua.edu.cn +
2d88e7922d9f046ace0234f9f96f570ee848a5b5Building Better Detection with Privileged Information +
Department of CSE +
The Pennsylvania State +
University
Department of CSE +
The Pennsylvania State +
University
Applied Communication +
Sciences +
Basking Ridge, NJ, US +
Department of CSE +
The Pennsylvania State +
University
Army Research +
Laboratory +
Adelphi, MD, USA +
('2950892', 'Z. Berkay Celik', 'z. berkay celik')
('4108832', 'Patrick McDaniel', 'patrick mcdaniel')
('1804289', 'Rauf Izmailov', 'rauf izmailov')
('1967156', 'Nicolas Papernot', 'nicolas papernot')
('1703726', 'Ananthram Swami', 'ananthram swami')
zbc102@cse.psu.edu +
mcdaniel@cse.psu.edu +
rizmailov@appcomsci.com +
npg5056@cse.psu.edu +
ananthram.swami.civ@mail.mil +
2d31ab536b3c8a05de0d24e0257ca4433d5a7c75Materials Discovery: Fine-Grained Classification of X-ray Scattering Images +
Kevin Yager† +
University of North Carolina at Chapel Hill, NC, USA
†Brookhaven National Lab, NY, USA +
('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')
('39668247', 'Alexander C. Berg', 'alexander c. berg')
('1685538', 'Tamara L. Berg', 'tamara l. berg')
{hadi,aberg,tlberg}@cs.unc.edu +
kyager@bnl.gov +
2dbde64ca75e7986a0fa6181b6940263bcd70684Pose Independent Face Recognition by Localizing +
Local Binary Patterns via Deformation Components +
MICC, University of Florence
Italy +
http://www.micc.unifi.it/vim +
G´erard Medioni +
USC IRIS Lab, University of Southern California
Los Angeles, USA +
http://iris.usc.edu/USC-Computer-Vision.html +
('11269472', 'Iacopo Masi', 'iacopo masi')
('35220006', 'Claudio Ferrari', 'claudio ferrari')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
2d0363a3ebda56d91d704d5ff5458a527775b609Attribute2Image: Conditional Image Generation from Visual Attributes +
1Computer Science and Engineering Division +
2Adobe Research +
3NEC Labs +
University of Michigan, Ann Arbor
('3084614', 'Xinchen Yan', 'xinchen yan')
('1768964', 'Jimei Yang', 'jimei yang')
('1729571', 'Kihyuk Sohn', 'kihyuk sohn')
('1697141', 'Honglak Lee', 'honglak lee')
{xcyan,kihyuks,honglak}@umich.edu +
jimyang@adobe.com +
ksohn@nec-labs.com +
2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8Perceptual Reward Functions +
College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
Waseda University, Tokyo, Japan
('1737432', 'Atsuo Takanishi', 'atsuo takanishi')aedwards8@gatech.edu, isbell@cc.gatech.edu +
takanisi@waseda.jp +
2dd2c7602d7f4a0b78494ac23ee1e28ff489be88Large Scale Metric Learning from Equivalence Constraints ∗ +
Institute for Computer Graphics and Vision, Graz University of Technology
('2918450', 'Martin Hirzer', 'martin hirzer')
('3202367', 'Paul Wohlhart', 'paul wohlhart')
('1791182', 'Peter M. Roth', 'peter m. roth')
('3628150', 'Horst Bischof', 'horst bischof')
{koestinger,hirzer,wohlhart,pmroth,bischof}@icg.tugraz.at +
2d84e30c61281d3d7cdd11676683d6e66a68aea6Automatic Construction of Action Datasets +
using Web videos with Density-based Cluster +
Analysis and Outlier Detection +
The University of Electro-Communications
185-8585 , Japan Tokyo Chofu Chofugaoka 1-5-1 +
('1681659', 'Keiji Yanai', 'keiji yanai')
2d98a1cb0d1a37c79a7ebcb727066f9ccc781703Coupled Support Vector Machines for Supervised +
Domain Adaptation +
∗Center for Cognitive Ubiquitous Computing, Arizona State Univeristy +
† Bosch Research and Technology Center, Palo Alto +
University of Michigan, Ann Arbor
('3151995', 'Hemanth Venkateswara', 'hemanth venkateswara')
('2929090', 'Prasanth Lade', 'prasanth lade')
('37513601', 'Jieping Ye', 'jieping ye')
('1743991', 'Sethuraman Panchanathan', 'sethuraman panchanathan')
hemanthv@asu.edu, prasanth.lade@us.bosch.com, jpye@umich.edu, +
panch@asu.edu +
2dced31a14401d465cd115902bf8f508d79de076ORIGINAL RESEARCH +
published: 26 May 2015 +
doi: 10.3389/fbioe.2015.00064 +
Can a humanoid face be expressive? +
A psychophysiological investigation +
Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy
University of Pisa, Pisa, Italy
Non-verbal signals expressed through body language play a crucial role in multi-modal +
human communication during social relations. Indeed, in all cultures, facial expressions +
are the most universal and direct signs to express innate emotional cues. A human face +
conveys important information in social interactions and helps us to better understand +
our social partners and establish empathic links. Latest researches show that humanoid +
and social robots are becoming increasingly similar to humans, both esthetically and +
expressively. However, their visual expressiveness is a crucial issue that must be improved +
to make these robots more realistic and intuitively perceivable by humans as not different +
from them. This study concerns the capability of a humanoid robot to exhibit emotions +
through facial expressions. More specifically, emotional signs performed by a humanoid +
robot have been compared with corresponding human facial expressions in terms of +
recognition rate and response time. The set of stimuli +
included standardized human +
expressions taken from an Ekman-based database and the same facial expressions +
performed by the robot. Furthermore, participants’ psychophysiological responses have +
been explored to investigate whether there could be differences induced by interpreting +
robot or human emotional stimuli. Preliminary results show a trend to better recognize +
expressions performed by the robot than 2D photos or 3D models. Moreover, no +
significant differences in the subjects’ psychophysiological state have been found during +
the discrimination of facial expressions performed by the robot in comparison with the +
same task performed with 2D photos and 3D models. +
Keywords: facial expressions, emotion perception, humanoid robot, expression recognition, social robots, +
psychophysiological signals, affective computing +
1. Introduction +
Human beings communicate in a rich and sophisticated way through many different channels, +
e.g., sound, vision, and touch. In human social relationships, visual information plays a crucial +
role. Human faces convey important information both from static features, such as identity, age, +
and gender, and from dynamic changes, such as expressions, eye blinking, and muscular micro- +
movements. The ability to recognize and understand facial expressions of the social partner allows +
us to establish and manage the empathic links that drive our social relationships. +
Charles Darwin was the first to observe that basic expressions, such as anger, disgust, contempt, +
fear, surprise, sadness, and happiness, are universal and innate (Darwin, 1872). Since the publication +
of his book “The Expression of the Emotions in Man and Animals” in 1872, a strong debate over the +
Edited by: +
Cecilia Laschi, +
Scuola Superiore Sant’Anna, Italy +
Reviewed by: +
John-John Cabibihan, +
Qatar University, Qatar
Egidio Falotico, +
Scuola Superiore Sant’Anna, Italy +
*Correspondence: +
Research Center E. Piaggio
University of Pisa, Largo Lucio
Lazzarino 1, Pisa 56122, Italy +
Specialty section: +
This article was submitted to Bionics +
and Biomimetics, a section of the +
journal Frontiers in Bioengineering and +
Biotechnology +
Received: 24 November 2014 +
Accepted: 27 April 2015 +
Published: 26 May 2015 +
Citation: +
Lazzeri N, Mazzei D, Greco A, Rotesi +
A, Lanatà A and De Rossi DE (2015) +
Can a humanoid face be expressive? +
A psychophysiological investigation. +
Front. Bioeng. Biotechnol. 3:64. +
doi: 10.3389/fbioe.2015.00064 +
Frontiers in Bioengineering and Biotechnology | www.frontiersin.org +
May 2015 | Volume 3 | Article 64 +
('35440863', 'Nicole Lazzeri', 'nicole lazzeri')
('34573296', 'Daniele Mazzei', 'daniele mazzei')
('32070391', 'Alberto Greco', 'alberto greco')
('6284325', 'Annalisa Rotesi', 'annalisa rotesi')
('1730665', 'Antonio Lanatà', 'antonio lanatà')
('20115987', 'Danilo Emilio De Rossi', 'danilo emilio de rossi')
('34573296', 'Daniele Mazzei', 'daniele mazzei')
mazzei@di.unipi.it +
2d05e768c64628c034db858b7154c6cbd580b2d5Available Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
IJCSMC, Vol. 4, Issue. 8, August 2015, pg.431 – 446 +
RESEARCH ARTICLE +
ISSN 2320–088X +
FACIAL EXPRESSION RECOGNITION: +
Machine Learning using C# +
Author: Neda Firoz (nedafiroz1910@gmail.com) +
Advisor: Dr. Prashant Ankur Jain (prashant.jain@shiats.edu.in) +
2dfe0e7e81f65716b09c590652a4dd8452c10294ORIGINAL RESEARCH +
published: 06 June 2018 +
doi: 10.3389/fpsyg.2018.00864 +
Incongruence Between Observers’ +
and Observed Facial Muscle +
Activation Reduces Recognition of +
Emotional Facial Expressions From +
Video Stimuli +
Centre for Applied Autism Research, University of Bath, Bath, United Kingdom, 2 Social and
Cognitive Neuroscience Laboratory, Centre of Biology and Health Sciences, Mackenzie Presbyterian University, S o Paulo
Brazil, University Hospital Zurich, Z rich
Switzerland, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt
Frankfurt, Germany +
According to embodied cognition accounts, viewing others’ facial emotion can elicit +
the respective emotion representation in observers which entails simulations of sensory, +
motor, and contextual experiences. In line with that, published research found viewing +
others’ +
facial emotion to elicit automatic matched facial muscle activation, which +
was further found to facilitate emotion recognition. Perhaps making congruent facial +
muscle activity explicit produces an even greater recognition advantage. If there is +
con icting sensory information, i.e., incongruent facial muscle activity, this might impede
recognition. The effects of actively manipulating facial muscle activity on facial emotion +
recognition from videos were investigated across three experimental conditions: (a) +
explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), +
(b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing +
(control condition). It was hypothesised that (1) experimental condition (a) and (b) result +
in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion +
recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) +
lowers recognition accuracy for expressions with a salient facial feature in the lower, +
but not the upper face area, compared to (c). Participants (42 males, 42 females) +
underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography +
(EMG) was recorded from five facial muscle sites. The experimental conditions’ order +
was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity +
for expressions with facial feature saliency in the lower face region, which reduced +
recognition of lower face region emotions. Explicit imitation caused stimulus-congruent +
facial muscle activity without modulating recognition. Methodological +
implications are +
discussed. +
Keywords: facial emotion recognition, imitation, facial muscle activity, facial EMG, embodiment, videos, dynamic +
stimuli, facial expressions of emotion +
Edited by: +
Eva G. Krumhuber, +
University College London
United Kingdom +
Reviewed by: +
Sebastian Korb, +
Universität Wien, Austria +
Michal Olszanowski, +
SWPS University of Social Sciences
and Humanities, Poland +
*Correspondence: +
Tanja S. H. Wingenbach +
Specialty section: +
This article was submitted to +
Emotion Science, +
a section of the journal +
Frontiers in Psychology +
Received: 15 December 2017 +
Accepted: 14 May 2018 +
Published: 06 June 2018 +
Citation: +
Wingenbach TSH, Brosnan M, +
Pfaltz MC, Plichta MM and Ashwin C +
(2018) Incongruence Between +
Observers’ and Observed Facial +
Muscle Activation Reduces +
Recognition of Emotional Facial +
Expressions From Video Stimuli. +
Front. Psychol. 9:864. +
doi: 10.3389/fpsyg.2018.00864 +
Frontiers in Psychology | www.frontiersin.org +
June 2018 | Volume 9 | Article 864 +
('39455300', 'Mark Brosnan', 'mark brosnan')
('34495803', 'Monique C. Pfaltz', 'monique c. pfaltz')
('2976177', 'Michael M. Plichta', 'michael m. plichta')
('2708124', 'Chris Ashwin', 'chris ashwin')
tanja.wingenbach@bath.edu +
2d072cd43de8d17ce3198fae4469c498f97c6277Random Cascaded-Regression Copse for Robust +
Facial Landmark Detection +
and Xiao-Jun Wu +
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('39976184', 'Patrik Huber', 'patrik huber')
('1748684', 'Josef Kittler', 'josef kittler')
2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b320 +
Machine Analysis of Facial Expressions +
Imperial College London
Inst. Neural Computation, University of California
1 UK, 2 USA +
1. Human Face and Its Expression +
The human face is the site for major sensory inputs and major communicative outputs. It +
houses the majority of our sensory apparatus as well as our speech production apparatus. It +
is used to identify other members of our species, to gather information about age, gender, +
attractiveness, and personality, and to regulate conversation by gazing or nodding. +
Moreover, the human face is our preeminent means of communicating and understanding +
somebody’s affective state and intentions on the basis of the shown facial expression +
(Keltner & Ekman, 2000). Thus, the human face +
input-output +
communicative system capable of tremendous flexibility and specificity (Ekman & Friesen, +
1975). In general, the human face conveys information via four kinds of signals. +
(a) Static facial signals represent relatively permanent features of the face, such as the bony +
structure, the soft tissue, and the overall proportions of the face. These signals +
contribute to an individual’s appearance and are usually exploited for person +
identification. +
is a multi-signal +
(b) Slow facial signals represent changes in the appearance of the face that occur gradually +
over time, such as development of permanent wrinkles and changes in skin texture. +
These signals can be used for assessing the age of an individual. Note that these signals +
might diminish the distinctness of the boundaries of the facial features and impede +
recognition of the rapid facial signals. +
(c) Artificial signals are exogenous features of the face such as glasses and cosmetics. These +
signals provide additional information that can be used for gender recognition. Note +
that these signals might obscure facial features or, conversely, might enhance them. +
(d) Rapid facial signals represent temporal changes in neuromuscular activity that may lead +
to visually detectable changes in facial appearance, including blushing and tears. These
(atomic facial) signals underlie facial expressions. +
All four classes of signals contribute to person identification, gender recognition, +
attractiveness assessment, and personality prediction. In Aristotle’s time, a theory was +
proposed about mutual dependency between static facial signals (physiognomy) and +
personality: “soft hair reveals a coward, strong chin a stubborn person, and a smile a happy +
person”. Today, few psychologists share the belief about the meaning of soft hair and strong +
chin, but many believe that rapid facial signals (facial expressions) communicate emotions +
(Ekman & Friesen, 1975; Ambady & Rosenthal, 1992; Keltner & Ekman, 2000) and +
personality traits (Ambady & Rosenthal, 1992). More specifically, types of messages +
Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007 +
('1694605', 'Maja Pantic', 'maja pantic')
('2218905', 'Marian Stewart Bartlett', 'marian stewart bartlett')
2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3International Journal of Computer Applications (0975 – 8887) +
National Conference on Advancements in Computer & Information Technology (NCACIT-2016) +
A Survey on: Image Process using Two- Stage Crawler +
Assistant Professor +
SPPU, Pune +
Department of Computer Engg +
Department of Computer Engg +
Department of Computer Engg +
BE Student +
SPPU, Pune +
BE Student +
SPPU, Pune +
BE Student +
Department of Computer Engg +
SPPU, Pune +
additional +
analysis +
for +
information +
('15156505', 'Nilesh Wani', 'nilesh wani')
('1936852', 'Savita Gunjal', 'savita gunjal')
2d38fd1df95f5025e2cee5bc439ba92b369a93dfScalable Object-Class Search +
via Sparse Retrieval Models and Approximate Ranking +
Dartmouth Computer Science Technical Report TR2011-700 +
Computer Science Department +
Dartmouth College
Hanover, NH 03755, U.S.A. +
July 5, 2011 +
('2563325', 'Mohammad Rastegari', 'mohammad rastegari')
('2442612', 'Chen Fang', 'chen fang')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
{mrastegari, chenfang, lorenzo}@cs.dartmouth.edu +
2d83ba2d43306e3c0587ef16f327d59bf4888dc3Large-scale Video Classification with Convolutional Neural Networks +
Stanford University
1Google Research +
http://cs.stanford.edu/people/karpathy/deepvideo +
('2354728', 'Andrej Karpathy', 'andrej karpathy')
('1805076', 'George Toderici', 'george toderici')
('24792872', 'Sanketh Shetty', 'sanketh shetty')
('1893833', 'Thomas Leung', 'thomas leung')
('1694199', 'Rahul Sukthankar', 'rahul sukthankar')
('3216322', 'Li Fei-Fei', 'li fei-fei')
karpathy@cs.stanford.edu +
gtoderici@google.com +
sanketh@google.com +
leungt@google.com +
sukthankar@google.com +
feifeili@cs.stanford.edu +
2d84c0d96332bb4fbd8acced98e726aabbf15591UNIVERSITY OF CALIFORNIA
RIVERSIDE +
Investigating the Role of Saliency for Face Recognition +
A Dissertation submitted in partial satisfaction +
of the requirements for the degree of +
Doctor of Philosophy +
in +
Electrical Engineering +
by +
March 2015 +
Dissertation Committee: +
Professor Conrad Rudolph +
('11012197', 'Ramya Malur Srinivasan', 'ramya malur srinivasan')
('1688416', 'Amit K Roy-Chowdhury', 'amit k roy-chowdhury')
('1686303', 'Ertem Tuncel', 'ertem tuncel')
('2357146', 'Tamar Shinar', 'tamar shinar')
2d8d089d368f2982748fde93a959cf5944873673Proceedings of NAACL-HLT 2018, pages 788–794 +
New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +
788 +
2d79d338c114ece1d97cde1aa06ab4cf17d38254iLab-20M: A large-scale controlled object dataset to investigate deep learning +
Center for Research in Computer Vision, University of Central Florida
Amirkabir University of Technology, University of Southern California
('3177797', 'Ali Borji', 'ali borji')
('2391309', 'Saeed Izadi', 'saeed izadi')
('7326223', 'Laurent Itti', 'laurent itti')
aborji@crcv.ucf.edu, sizadi@aut.ac.ir, itti@usc.edu +
2df4d05119fe3fbf1f8112b3ad901c33728b498aFacial landmark detection using structured output deep +
neural networks +
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +
Adam∗2 +
1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +
2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +
September 24, 2015 +
2d3482dcff69c7417c7b933f22de606a0e8e42d4Labeled Faces in the Wild: Updates and +
New Reporting Procedures +
University of Massachusetts, Amherst Technical Report UM-CS
('3219900', 'Gary B. Huang', 'gary b. huang')
('1714536', 'Erik Learned-Miller', 'erik learned-miller')
2d4a3e9361505616fa4851674eb5c8dd18e0c3cfTowards Privacy-Preserving Visual Recognition +
via Adversarial Training: A Pilot Study +
Texas AandM University, College Station TX 77843, USA
2 Adobe Research, San Jose CA 95110, USA +
('1733940', 'Zhenyu Wu', 'zhenyu wu')
('2969311', 'Zhangyang Wang', 'zhangyang wang')
('8056043', 'Zhaowen Wang', 'zhaowen wang')
('39909162', 'Hailin Jin', 'hailin jin')
{wuzhenyu sjtu,atlaswang}@tamu.edu +
{zhawang,hljin}@adobe.com +
2d748f8ee023a5b1fbd50294d176981ded4ad4eeTRIPLET SIMILARITY EMBEDDING FOR FACE VERIFICATION +
Center for Automation Research, UMIACS, University of Maryland, College Park, MD
1Department of Electrical and Computer Engineering, +
('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')
('2943431', 'Azadeh Alavi', 'azadeh alavi')
('9215658', 'Rama Chellappa', 'rama chellappa')
{swamiviv, azadeh, rama}@umiacs.umd.edu +
2d3c17ced03e4b6c4b014490fe3d40c62d02e914COMPUTER ANIMATION AND VIRTUAL WORLDS +
Comp.Anim.VirtualWorlds2012; 23:167–178 +
Published online 30 May 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1455 +
SPECIAL ISSUE PAPER +
Video-driven state-aware facial animation +
State Key Lab of CADandCG, Zhejiang University, Hangzhou, Zhejiang, China
2 Microsoft Corporation, Seattle, WA, USA +
('2894564', 'Ming Zeng', 'ming zeng')
('1680293', 'Lin Liang', 'lin liang')
('3227032', 'Xinguo Liu', 'xinguo liu')
('1679542', 'Hujun Bao', 'hujun bao')
41f26101fed63a8d149744264dd5aa79f1928265Spot On: Action Localization from +
Pointly-Supervised Proposals +
University of Amsterdam
Delft University of Technology
('2606260', 'Pascal Mettes', 'pascal mettes')
('1738975', 'Jan C. van Gemert', 'jan c. van gemert')
4188bd3ef976ea0dec24a2512b44d7673fd4ad261050 +
Nonlinear Non-Negative Component +
Analysis Algorithms +
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('2871609', 'Maria Petrou', 'maria petrou')
416b559402d0f3e2b785074fcee989d44d82b8e5Multi-View Super Vector for Action Recognition +
1Shenzhen Key Lab of Computer Vision and Pattern Recognition, +
Shenzhen Institutes of Advanced Technology, CAS, China
The Chinese University of Hong Kong, Hong Kong
('2985266', 'Zhuowei Cai', 'zhuowei cai')
('33345248', 'Limin Wang', 'limin wang')
('1766837', 'Xiaojiang Peng', 'xiaojiang peng')
('33427555', 'Yu Qiao', 'yu qiao')
{iamcaizhuowei, 07wanglimin, xiaojiangp}@gmail.com, yu.qiao@siat.ac.cn +
416364cfdbc131d6544582e552daf25f585c557dSynthesis and Recognition of Facial Expressions in Virtual 3D Views +
Queen Mary, University of London, E1 4NS, UK
('34780294', 'Lukasz Zalewski', 'lukasz zalewski')
('2073354', 'Shaogang Gong', 'shaogang gong')
[lukas|sgg]@dcs.qmul.ac.uk +
41000c3a3344676513ef4bfcd392d14c7a9a7599A NOVEL APPROACH FOR GENERATING FACE +
TEMPLATE USING BDA +
1P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +
2Associate Professor, Department of Computer Engineering, MCERC, Nashik (M.S.), +
India +
('40075681', 'Shraddha S. Shinde', 'shraddha s. shinde')
('2590072', 'Anagha P. Khedkar', 'anagha p. khedkar')
shraddhashinde@gmail.com +
anagha_p2@yahoo.com +
411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8Vol.59: e16161057, January-December 2016 +
http://dx.doi.org/10.1590/1678-4324-2016161057 +
ISSN 1678-4324 Online Edition +
1 +
Biological and Applied Sciences +
BRAZILIAN ARCHIVES OF +
BIOLOGY AND TECHNOLOGY +
A N I N T E R N A T I O N A L J O U R N A L +
An Empirical Evaluation of the Local Texture Description +
Framework-Based Modified Local Directional Number +
Pattern with Various Classifiers for Face Recognition +
St. Xavier s Catholic College of Engineering, Nagercoil, India
VelTech Dr. R.R. and Dr. S.R. Technical University, Chennai
Manonmaniam Sundaranar University, Tirunelveli
India. +
('9375880', 'R. Reena Rose', 'r. reena rose')
411318684bd2d42e4b663a37dcf0532a48f0146dImproved Face Verification with Simple +
Weighted Feature Combination +
College of Electronics and Information Engineering, Tongji University
4800 Cao’an Highway, Shanghai 201804, People’s Republic of China +
('1775391', 'Xinyu Zhang', 'xinyu zhang')
('48566761', 'Jiang Zhu', 'jiang zhu')
('34647494', 'Mingyu You', 'mingyu you')
{1510464,zhujiang,myyou}@tongji.edu.cn +
4140498e96a5ff3ba816d13daf148fffb9a2be3f2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +
Constrained Ensemble Initialization for Facial Landmark +
Tracking in Video +
Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
41f8477a6be9cd992a674d84062108c68b7a9520An Automated System for Visual Biometrics +
Dept. of Electrical Engineering and Computer Science +
Northwestern University
Evanston, IL 60208-3118 +
('2563314', 'Derek J. Shiell', 'derek j. shiell')
('3271105', 'Louis H. Terry', 'louis h. terry')
('2691927', 'Petar S. Aleksic', 'petar s. aleksic')
('1695338', 'Aggelos K. Katsaggelos', 'aggelos k. katsaggelos')
d-shiell@northwestern.edu, l-terry@northwestern.edu, +
apetar@eecs.northwestern.edu, aggk@eecs.northwestern.edu +
414715421e01e8c8b5743c5330e6d2553a08c16dPoTion: Pose MoTion Representation for Action Recognition +
1Inria∗ +
2NAVER LABS Europe +
('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
41aa8c1c90d74f2653ef4b3a2e02ac473af61e47Compositional Structure Learning for Action Understanding +
1Department of Computer Science and Engineering, SUNY at Buffalo +
2Department of Statistics, UCLA +
University of Michigan
October 23, 2014 +
('1856629', 'Ran Xu', 'ran xu')
('1690235', 'Gang Chen', 'gang chen')
('2228109', 'Caiming Xiong', 'caiming xiong')
('1728624', 'Wei Chen', 'wei chen')
('3587688', 'Jason J. Corso', 'jason j. corso')
41ab4939db641fa4d327071ae9bb0df4a612dc89Interpreting Face Images by Fitting a Fast +
Illumination-Based 3D Active Appearance +
Model +
Instituto Nacional de Astrof´ısica, ´Optica y Electr´onica, +
Luis Enrique Erro #1, 72840 Sta Ma. Tonantzintla. Pue., M´exico +
Coordinaci´on de Ciencias Computacionales +
('2349309', 'Salvador E. Ayala-Raggi', 'salvador e. ayala-raggi'){saraggi, robles, jcruze}@ccc.inaoep.mx +
41971dfbf404abeb8cf73fea29dc37b9aae12439Detection of Facial Feature Points Using +
Anthropometric Face Model +
+
Concordia University
1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8, Canada +
('8018736', 'Abu Sayeed', 'abu sayeed')
('1715620', 'Prabir Bhattacharya', 'prabir bhattacharya')
E-mails: a_sohai@encs.concordia.ca, prabir@ciise.concordia.ca +
4157e45f616233a0874f54a59c3df001b9646cd7elifesciences.org +
RESEARCH ARTICLE +
Diagnostically relevant facial gestalt +
information from ordinary photos +
University of Oxford, Oxford, United Kingdom
2Medical Research Council Functional Genomics Unit, Department of Physiology, +
Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome
Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular
Medicine, Edinburgh, United Kingdom +
('4569459', 'Quentin Ferry', 'quentin ferry')
('1985983', 'Julia Steinberg', 'julia steinberg')
('39722750', 'Caleb Webber', 'caleb webber')
('1880309', 'David R FitzPatrick', 'david r fitzpatrick')
('2500371', 'Chris P Ponting', 'chris p ponting')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
('2204967', 'Christoffer Nellåker', 'christoffer nellåker')
41a6196f88beced105d8bc48dd54d5494cc156fb2015 International Conference on +
Communications, Signal +
Processing, and their Applications +
(ICCSPA 2015) +
Sharjah, United Arab Emirates +
17-19 February 2015 +
IEEE Catalog Number: +
ISBN: +
CFP1574T-POD +
978-1-4799-6533-5 +
41de109bca9343691f1d5720df864cdbeeecd9d0Article +
Facial Emotion Recognition: A Survey and +
Real-World User Experiences in Mixed Reality +
Received: 10 December 2017; Accepted: 26 January 2018; Published: 1 Febuary 2018 +
('38085139', 'Dhwani Mehta', 'dhwani mehta')
('3655354', 'Mohammad Faridul Haque Siddiqui', 'mohammad faridul haque siddiqui')
('39803999', 'Ahmad Y. Javaid', 'ahmad y. javaid')
EECS Department, The University of Toledo, Toledo, OH 43606, USA; dhwani.mehta@utoledo.edu (D.M.); +
mohammadfaridulhaque.siddiqui@utoledo.edu (M.F.H.S.) +
* Correspondence: ahmad.javaid@utoledo.edu; Tel.: +1-419-530-8260 +
41d9a240b711ff76c5448d4bf4df840cc5dad5fcJOURNAL DRAFT, VOL. X, NO. X, APR 2013 +
Image Similarity Using Sparse Representation +
and Compression Distance +
('1720741', 'Tanaya Guha', 'tanaya guha')
419a6fca4c8d73a1e43003edc3f6b610174c41d2A Component Based Approach Improves Classification of Discrete +
Facial Expressions Over a Holistic Approach +
('2370974', 'Kenny Hong', 'kenny hong')
('1716539', 'Stephan K. Chalup', 'stephan k. chalup')
4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2cMULTI-MODAL PERSON-PROFILES FROM BROADCAST NEWS VIDEO +
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL 61801 +
('1804874', 'Charlie K. Dagli', 'charlie k. dagli')
('25639435', 'Sharad V. Rao', 'sharad v. rao')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
{dagli,svrao,huang}@ifp.uiuc.edu +
4180978dbcd09162d166f7449136cb0b320adf1fReal-time head pose classification in uncontrolled environments +
with Spatio-Temporal Active Appearance Models +
∗ Matematica Aplicada i Analisi ,Universitat de Barcelona, Barcelona, Spain +
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain +
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain +
('3276130', 'Miguel Reyes', 'miguel reyes')
('7855312', 'Sergio Escalera', 'sergio escalera')
('1724155', 'Petia Radeva', 'petia radeva')
E-mail:mreyes@cvc.uab.es +
E-mail:sergio@maia.ub.es +
E-mail:petia@cvc.uab.es +
41b997f6cec7a6a773cd09f174cb6d2f036b36cd
41aa209e9d294d370357434f310d49b2b0baebebBEYOND CAPTION TO NARRATIVE: +
VIDEO CAPTIONING WITH MULTIPLE SENTENCES +
Grad. School of Information Science and Technology, The University of Tokyo, Japan
('2518695', 'Andrew Shin', 'andrew shin')
('8197937', 'Katsunori Ohnishi', 'katsunori ohnishi')
('1790553', 'Tatsuya Harada', 'tatsuya harada')
413a184b584dc2b669fbe731ace1e48b22945443Human Pose Co-Estimation and Applications +('31786895', 'Marcin Eichner', 'marcin eichner')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
83b7578e2d9fa60d33d9336be334f6f2cc4f218fThe S-HOCK Dataset: Analyzing Crowds at the Stadium +
University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento
The topic of crowd modeling in computer vision usually assumes a sin- +
gle generic typology of crowd, which is very simplistic. In this paper we +
adopt a taxonomy that is widely accepted in sociology, focusing on a partic- +
ular category, the spectator crowd, which is formed by people “interested in +
watching something specific that they came to see” [1]. This can be found +
at the stadiums, amphitheaters, cinema, etc. +
In particular, we propose a +
novel dataset, the Spectators Hockey (S-HOCK), which deals with 4 hockey +
matches during an international tournament. +
The dataset is unique in the crowd literature, and in general in the +
surveillance realm. The dataset analyzes the crowd at different levels of +
detail. At the highest level, it models the network of social connections +
among the public (who knows whom in the neighborhood), what is the sup- +
ported team and what has been the best action in the match; all of this has +
been obtained by interviews at the stadium. At a medium level, spectators +
are localized, and information regarding the pose of their heads and body is +
given. Finally, at a lowest level, a fine grained specification of all the actions +
performed by each single person is available. This information is summa- +
rized by a large number of annotations collected over a year of work: more +
than 100 millions of double checked annotations. This permits potentially +
to deal with hundreds of tasks, some of which are documented in the full +
paper. +
Furthermore, the dataset is multidimensional, in the sense that offers +
not only the view of the crowd (at different resolutions, with 4 cameras) but +
also on the matches. This multiplies the number of possible applications that +
could be assessed, investigating the reactions of the crowd to the actions of +
the game, opening up to applications of summarization and content analysis. +
Besides these figures, S-HOCK is significantly different from all the other +
crowd datasets, since the crowd as a whole is mostly static and the motion +
of each spectator is constrained within a limited space in the surrounding of +
his position. +
Annotation +
People detection +
Head detection +
Head pose∗ +
Body position +
Posture +
Locomotion +
Action / Interaction +
Supported team +
Best action +
Social relation +
Typical Values +
full body bounding box [x,y,width,height] +
head bounding box [x,y,width,height] +
left, frontal, right, away, down +
sitting, standing, (locomotion) +
crossed arms, hands in pocket, crossed legs . . . +
walking, jumping (each jump), rising pelvis slightly up +
waving arms, pointing toward game, applauding, . . . +
the team supported in this game +
the most exciting action of the game +
If he/she did know the person seated at his/her right +
Table 1: Some of the annotations provided for each person and each frame +
of the videos. +
Together with the annotations, in the paper we discuss issues related to +
low and high level detail of the crowd analysis, namely, people detection +
and head pose estimation for the low level analysis, and the spectator cate- +
gorization for the high level analysis. For all of these applications, we define +
the experimental protocols, promoting future comparisons. +
For people detection task we provide five different baselines, from the +
simplest algorithms to the state of the art method for object detection, show- +
ing how in this scenario the simplest method gets very high scores. +
Regarding head pose estimation, we tested two state of the art methods +
which work in a low resolution domain. Furthermore, we propose two novel +
approaches based on Deep Learning. In particular, we evaluate the perfor- +
mance of the Convolutional Neural Network and the Stacked Auto-encoder +
Neural Network architecture. Here the results are comparable with state of +
the art but are obtainable at a much higher speed. +
Spectator categorization is a kind of crowd segmentation, where the goal +
is to find the team supported by each spectator. This task is intuitively use- +
('1843683', 'Davide Conigliaro', 'davide conigliaro')
('39337007', 'Paolo Rota', 'paolo rota')
('2793423', 'Francesco Setti', 'francesco setti')
('1919464', 'Chiara Bassetti', 'chiara bassetti')
('3058987', 'Nicola Conci', 'nicola conci')
('1703601', 'Nicu Sebe', 'nicu sebe')
('1723008', 'Marco Cristani', 'marco cristani')
839a2155995acc0a053a326e283be12068b35cb8Under review as a conference paper at ICLR 2016 +
HANDCRAFTED LOCAL FEATURES ARE CONVOLU- +
TIONAL NEURAL NETWORKS +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213, USA +
('2927024', 'Shoou-I Yu', 'shoou-i yu')
('2735055', 'Ming Lin', 'ming lin')
('1681921', 'Bhiksha Raj', 'bhiksha raj')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
{lanzhzh, iyu, minglin, bhiksha, alex}@cs.cmu.edu +
83fd2d2d5ad6e4e153672c9b6d1a3785f754b60eRESEARCH ARTICLE +
Neuropsychiatric Genetics +
Quantifying Naturalistic Social Gaze in Fragile X +
Syndrome Using a Novel Eye Tracking Paradigm +
and Allan L. Reiss1 +
1Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, California +
Stanford University, Stanford, California
Manuscript Received: 7 November 2014; Manuscript Accepted: 22 May 2015 +
A hallmark behavioral feature of fragile X syndrome (FXS) is +
the propensity for individuals with the syndrome to exhibit +
significant impairments in social gaze during interactions +
with others. However, previous studies employing eye tracking +
methodology to investigate this phenomenon have been limited +
to presenting static photographs or videos of social interactions +
rather than employing a real-life social partner. To improve +
upon previous studies, we used a customized eye tracking +
configuration to quantify the social gaze of 51 individuals +
with FXS and 19 controls, aged 14–28 years, while they engaged +
in a naturalistic face-to-face social interaction with a female +
experimenter. Importantly, our control group was matched to +
the FXS group on age, developmental functioning, and degree of +
autistic symptomatology. Results showed that participants with +
FXS spent significantly less time looking at the face and had +
shorter episodes (and longer inter-episodes) of social gaze than +
controls. Regression analyses indicated that communication +
ability predicted higher levels of social gaze in individuals +
with FXS, but not in controls. Conversely, degree of autistic +
symptoms predicted lower levels of social gaze in controls, but +
not in individuals with FXS. Taken together, these data indicate +
that naturalistic social gaze in FXS can be measured objectively +
using existing eye tracking technology during face-to-face social +
interactions. Given that impairments in social gaze were specific +
to FXS, this paradigm could be employed as an objective and +
ecologically valid outcome measure in ongoing Phase II/Phase +
III clinical trials of FXS-specific interventions. +
2015 Wiley Periodicals, Inc
Key words: eye tracking; social gaze; autism; +
syndrome +
fragile X +
INTRODUCTION +
Children diagnosed with genetic syndromes associated with intel- +
lectual and developmental disability (e.g., fragile X syndrome, +
Williams syndrome) often engage in highly specific forms of aber- +
rant social behavior that can interfere with everyday functioning. For +
How to Cite this Article: +
Hall SS, Frank MC, Pusiol GT, Farzin F, +
Lightbody AA, Reiss AL. 2015. Quantifying +
Naturalistic Social Gaze in Fragile X +
Syndrome Using a Novel Eye Tracking +
Paradigm. +
Am J Med Genet Part B 9999:1–9. +
example, individuals diagnosed with Williams syndrome show a +
particular form of hypersociability in which they actively seek out +
social interactions with others [Jones et al., 2000; Frigerio et al., +
2006]. Conversely, children with fragile X syndrome (FXS) com- +
monly show deficits in social gaze behavior in which interactions +
with others are actively avoided [Cohen et al., 1988; Cohen et al., +
1989; Cohen et al., 1991; Hall et al., 2006; Hall et al., 2009]. These +
contrasting behavioral phenotypes have been considered useful +
and important models for investigations examining the interplay +
between genes and environment [Kennedy et al., 2001; Schroeder +
et al., 2001]. +
FXS is a particularly interesting model of potential gene-envi- +
ronment interactions because it is a “single-gene” disorder. The +
disease affects approximately 1 in 3,000 individuals in the United +
States (approx. 100,000 people) and is the most common known +
form of inherited intellectual disability [Hagerman, 2008]. First +
described by Martin and Bell in 1943 as a “pedigree of mental defect +
showing sex linkage” [Martin and Bell, 1943], FXS is caused by +
mutations to the FMR1 gene at locus 27.3 on the long arm of the X +
chromosome [Verkerk et al., 1991]. Excessive methylation of the +
gene results in reduced or absent Fragile X Mental Retardation +
Protein (FMRP), a key protein involved in synaptic plasticity and +
Grant sponsor: NIH grants; Grant numbers: MH050047, MH081998. +
Correspondence to: +
Scott S. Hall, PhD, Department of Psychiatry and Behavioral Sciences, +
Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA
Article first published online in Wiley Online Library +
(wileyonlinelibrary.com): 00 Month 2015 +
DOI 10.1002/ajmg.b.32331 +
2015 Wiley Periodicals, Inc
('4708625', 'Faraz Farzin', 'faraz farzin')E-mail: hallss@stanford.edu +
83ca4cca9b28ae58f461b5a192e08dffdc1c76f3DETECTING EMOTIONAL STRESS FROM FACIAL EXPRESSIONS FOR DRIVING SAFETY +
Signal Processing Laboratory (LTS5), +
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +
('1697965', 'Hua Gao', 'hua gao')
('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')
8356832f883207187437872742d6b7dc95b51fdeAdversarial Perturbations Against Real-Time Video +
Classification Systems +
University of California, Riverside
University of California, Riverside
University of California, Riverside
Riverside, California +
Riverside, California +
University of California, Riverside
Riverside, California +
Riverside, California +
University of California, Riverside
Riverside, California +
Amit K. Roy Chowdhury +
University of California, Riverside
Riverside, California +
United States Army Research +
Laboratory +
('26576993', 'Shasha Li', 'shasha li')
('2252367', 'Chengyu Song', 'chengyu song')
('1718484', 'Ajaya Neupane', 'ajaya neupane')
('49616225', 'Sujoy Paul', 'sujoy paul')
('38774813', 'Srikanth V. Krishnamurthy', 'srikanth v. krishnamurthy')
('1703726', 'Ananthram Swami', 'ananthram swami')
sli057@ucr.edu +
csong@cs.ucr.edu +
ajaya@ucr.edu +
spaul003@ucr.edu +
krish@cs.ucr.edu +
amitrc@ece.ucr.edu +
ananthram.swami.civ@mail.mil +
831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9
835e510fcf22b4b9097ef51b8d0bb4e7b806bdfdUnsupervised Learning of Sequence Representations by +
Autoencoders +
aPattern Recognition Laboratory, Delft University of Technology
('1678473', 'Wenjie Pei', 'wenjie pei')
832e1d128059dd5ed5fa5a0b0f021a025903f9d5Pairwise Conditional Random Forests for Facial Expression Recognition +
S´everine Dubuisson1 +
1 Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, ISIR UMR 7222, 4 place Jussieu 75005 Paris +
('3190846', 'Arnaud Dapogny', 'arnaud dapogny')
('2521061', 'Kevin Bailly', 'kevin bailly')
arnaud.dapogny@isir.upmc.fr +
kevin.bailly@isir.upmc.fr +
severine.dubuisson@isir.upmc.fr +
83e093a07efcf795db5e3aa3576531d61557dd0dFacial Landmark Localization using Robust +
Relationship Priors and Approximative Gibbs +
Sampling +
Institut f¨ur Informationsverarbeitung (tnt) +
Leibniz Universit¨at Hannover, Germany +
('35033145', 'Karsten Vogt', 'karsten vogt'){vogt, omueller, ostermann}@tnt.uni-hannover.de +
831d661d657d97a07894da8639a048c430c5536dWeakly Supervised Facial Analysis with Dense Hyper-column Features +
CyLab Biometrics Center and the Department of Electrical and Computer Engineering, +
Carnegie Mellon University, Pittsburgh, PA, USA
('3117715', 'Chenchen Zhu', 'chenchen zhu')
('3049981', 'Yutong Zheng', 'yutong zheng')
('1769788', 'Khoa Luu', 'khoa luu')
('6131978', 'T. Hoang Ngan Le', 't. hoang ngan le')
('2043374', 'Chandrasekhar Bhagavatula', 'chandrasekhar bhagavatula')
('1794486', 'Marios Savvides', 'marios savvides')
{chenchez, yutongzh, kluu, thihoanl, cbhagava}@andrew.cmu.edu, msavvid@ri.cmu.edu +
83b4899d2899dd6a8d956eda3c4b89f27f1cd3081-4244-1437-7/07/$20.00 ©2007 IEEE +
I - 377 +
ICIP 2007 +
83295bce2340cb87901499cff492ae6ff3365475Deep Multi-Center Learning for Face Alignment +
Shanghai Jiao Tong University, China
School of Computer Science and Software Engineering, East China Normal University, China
('3403352', 'Zhiwen Shao', 'zhiwen shao')
('7296339', 'Hengliang Zhu', 'hengliang zhu')
('1767677', 'Xin Tan', 'xin tan')
('2107352', 'Yangyang Hao', 'yangyang hao')
('8452947', 'Lizhuang Ma', 'lizhuang ma')
{shaozhiwen, hengliang zhu, tanxin2017, haoyangyang2014}@sjtu.edu.cn, ma-lz@cs.sjtu.edu.cn +
83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05ARANDJELOVI´C:RECOGNITIONFROMAPPEARANCESUBSPACESACROSSSCALE +
Recognition from Appearance Subspaces +
Across Image Sets of Variable Scale +
Ognjen Arandjelovi´c +
http://mi.eng.cam.ac.uk/~oa214 +
Trinity College
University of Cambridge
CB2 1TQ, UK +
830e5b1043227fe189b3f93619ef4c58868758a7
8323af714efe9a3cadb31b309fcc2c36c8acba8fAutomatic Real-Time +
Facial Expression Recognition +
for Signed Language Translation +
A thesis submitted in partial fulfillment of the requirements for the de- +
gree of Magister Scientiae in the Department of Computer Science, +
University of the Western Cape
May 2006 +
('1775637', 'Jacob Richard Whitehill', 'jacob richard whitehill')
831226405bb255527e9127b84e8eaedd7eb8e9f9ORIGINAL RESEARCH +
published: 04 January 2017 +
doi: 10.3389/fnins.2016.00594 +
A Motion-Based Feature for +
Event-Based Pattern Recognition +
Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, Institut de la Vision, +
Sorbonne Universit s, UPMC University Paris 06, Paris, France
This paper introduces an event-based luminance-free feature from the output of +
asynchronous event-based neuromorphic retinas. The feature consists in mapping the +
distribution of the optical flow along the contours of the moving objects in the visual +
scene into a matrix. Asynchronous event-based neuromorphic retinas are composed +
of autonomous pixels, each of them asynchronously generating “spiking” events that +
encode relative changes in pixels’ illumination at high temporal resolutions. The optical +
flow is computed at each event, and is integrated locally or globally in a speed and +
direction coordinate frame based grid, using speed-tuned temporal kernels. The latter +
ensures that the resulting feature equitably represents the distribution of the normal +
motion along the current moving edges, whatever their respective dynamics. The +
usefulness and the generality of the proposed feature are demonstrated in pattern +
recognition applications: local corner detection and global gesture recognition. +
Keywords: neuromorphic sensor, event-driven vision, pattern recognition, motion-based feature, speed-tuned +
integration time, histogram of oriented optical flow, corner detection, gesture recognition +
1. INTRODUCTION +
In computer vision, a feature is a more or less compact representation of visual information that is +
relevant to solve a task related to a given application (see Laptev, 2005; Mikolajczyk and Schmid, +
2005; Mokhtarian and Mohanna, 2006; Moreels and Perona, 2007; Gil et al., 2010; Dickscheid et al., +
2011; Gauglitz et al., 2011). Building a feature consists in encoding information contained in the +
visual scene (global approach) or in a neighborhood of a point (local approach). It can represent +
static information (e.g., shape of an object, contour, etc.), dynamic information (e.g., speed and +
direction at the point, dynamic deformations, etc.) or both simultaneously. +
In this article, we propose a motion-based feature computed on visual information provided by +
asynchronous image sensors known as neuromorphic retinas (see Delbrück et al., 2010; Posch, +
2015). These cameras provide visual information as asynchronous event-based streams while +
conventional cameras output it as synchronous frame-based streams. The ATIS (“Asynchronous +
Time-based Image Sensor,” Posch et al., 2010; Posch, 2015), one of the neuromorphic visual +
sensors used in this work, is a time-domain encoding image sensor with QVGA resolution. It +
contains an array of fully autonomous pixels that combine an illuminance change detector circuit, +
associated to the PD1 photodiode, see Figure 1A and a conditional exposure measurement block, +
associated to the PD2 photodiode. The change detector individually and asynchronously initiates +
the measurement of an exposure/gray scale value only if a brightness change of a certain magnitude +
has been detected in the field-of-view of the respective pixel, as shown in the functional diagram +
of the ATIS pixel in Figures 1B, 2. The exposure measurement circuit encodes the absolute +
instantaneous pixel illuminance into the timing of asynchronous event pulses, more precisely +
Edited by: +
Tobi Delbruck, +
ETH Zurich, Switzerland +
Reviewed by: +
Dan Hammerstrom, +
Portland State University, USA
Rodrigo Alvarez-Icaza, +
IBM, USA +
*Correspondence: +
Specialty section: +
This article was submitted to +
Neuromorphic Engineering, +
a section of the journal +
Frontiers in Neuroscience +
Received: 07 September 2016 +
Accepted: 13 December 2016 +
Published: 04 January 2017 +
Citation: +
Clady X, Maro J-M, Barré S and +
Benosman RB (2017) A Motion-Based +
Feature for Event-Based Pattern +
Recognition. Front. Neurosci. 10:594. +
doi: 10.3389/fnins.2016.00594 +
Frontiers in Neuroscience | www.frontiersin.org +
January 2017 | Volume 10 | Article 594 +
('1804748', 'Xavier Clady', 'xavier clady')
('24337536', 'Jean-Matthieu Maro', 'jean-matthieu maro')
('2133648', 'Sébastien Barré', 'sébastien barré')
('1750848', 'Ryad B. Benosman', 'ryad b. benosman')
('1804748', 'Xavier Clady', 'xavier clady')
xavier.clady@upmc.fr +
83fd5c23204147844a0528c21e645b757edd7af9USDOT Number Localization and Recognition From Vehicle Side-View NIR +
Images +
Palo Alto Research Center (PARC
800 Phillips Rd. Webster NY 14580 +
('2415287', 'Orhan Bulan', 'orhan bulan')
('1732789', 'Safwan Wshah', 'safwan wshah')
('3195726', 'Ramesh Palghat', 'ramesh palghat')
('2978081', 'Vladimir Kozitsky', 'vladimir kozitsky')
('34801919', 'Aaron Burry', 'aaron burry')
orhan.bulan,safwan.wshah,ramesh.palghat,vladimir.kozitsky,aaron.burry@parc.com +
8384e104796488fa2667c355dd15b65d6d5ff957A Discriminative Latent Model of Image Region and +
Object Tag Correspondence +
Department of Computer Science +
University of Illinois at Urbana-Champaign
School of Computing Science +
Simon Fraser University
('40457160', 'Yang Wang', 'yang wang')
('10771328', 'Greg Mori', 'greg mori')
yangwang@uiuc.edu +
mori@cs.sfu.ca +
8323529cf37f955fb3fc6674af6e708374006a28Evaluation of Face Resolution for Expression Analysis +
IBM T. J. Watson Research Center
PO Box 704, Yorktown Heights, NY 10598 +
('40383812', 'Ying-li Tian', 'ying-li tian')Email: yltian@us.ibm.com +
8395cf3535a6628c3bdc9b8d0171568d551f5ff0Entropy Non-increasing Games for the +
Improvement of Dataflow Programming +
Norbert B´atfai, Ren´at´o Besenczi, Gerg˝o Bogacsovics, +
February 16, 2017 +
('9544536', 'Fanny Monori', 'fanny monori')
83ac942d71ba908c8d76fc68de6173151f012b38
834f5ab0cb374b13a6e19198d550e7a32901a4b2Face Translation between Images and Videos using Identity-aware CycleGAN +
†Computer Vision Lab, ETH Zurich, Switzerland +
‡VISICS, KU Leuven, Belgium +
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('2208488', 'Bernhard Kratzwald', 'bernhard kratzwald')
('35268081', 'Danda Pani Paudel', 'danda pani paudel')
('1839268', 'Jiqing Wu', 'jiqing wu')
('1681236', 'Luc Van Gool', 'luc van gool')
{zhiwu.huang, paudel, jwu, vangool}@vision.ee.ethz.ch, bkratzwald@ethz.ch +
8320dbdd3e4712cca813451cd94a909527652d63EAR BIOMETRICS +
and Wilhelm Burger +
Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) Linz(cid:1) Austria(cid
burge(cid:1)cast(cid:2)uni(cid:3)linz(cid:2)ac(cid:2)at +
('12811570', 'Mark Burge', 'mark burge')
837e99301e00c2244023a8a48ff98d7b521c93acLocal Feature Evaluation for a Constrained +
Local Model Framework +
Graduate School of Engineering, Tottori University
101 Minami 4-chome, Koyama-cho, Tottori 680-8550, Japan +
('1770332', 'Maiya Hori', 'maiya hori')
('48532779', 'Shogo Kawai', 'shogo kawai')
('2020088', 'Hiroki Yoshimura', 'hiroki yoshimura')
('1679437', 'Yoshio Iwai', 'yoshio iwai')
hori@ike.tottori-u.ac.jp +
834b15762f97b4da11a2d851840123dbeee51d33Landmark-free smile intensity estimation +
IMAGO Research Group - Universidade Federal do Paran´a +
Fig. 1. Overview of our method for smile intensity estimation +
('1800955', 'Olga R. P. Bellon', 'olga r. p. bellon'){julio.batista,olga,luciano}@ufpr.br +
833f6ab858f26b848f0d747de502127406f06417978-1-4244-5654-3/09/$26.00 ©2009 IEEE +
61 +
ICIP 2009 +
8334da483f1986aea87b62028672836cb3dc6205Fully Associative Patch-based 1-to-N Matcher for Face Recognition +
Computational Biomedicine Lab +
University of Houston
('39089616', 'Lingfeng Zhang', 'lingfeng zhang')
('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')
{lzhang34, ioannisk}@uh.edu +
831b4d8b0c0173b0bac0e328e844a0fbafae6639Consensus-Driven Propagation in +
Massive Unlabeled Data for Face Recognition +
CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong
2 SenseTime Group Limited +
Nanyang Technological University
('31818765', 'Xiaohang Zhan', 'xiaohang zhan')
('3243969', 'Ziwei Liu', 'ziwei liu')
('1721677', 'Junjie Yan', 'junjie yan')
('1807606', 'Dahua Lin', 'dahua lin')
('1717179', 'Chen Change Loy', 'chen change loy')
{zx017, zwliu, dhlin}@ie.cuhk.edu.hk +
yanjunjie@sensetime.com +
ccloy@ieee.org +
8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ffGeneric versus Salient Region-based Partitioning +
for Local Appearance Face Recognition +
Computer Science Depatment, Universit¨at Karlsruhe (TH) +
Am Fasanengarten 5, Karlsruhe 76131, Germany +
http://isl.ira.uka.de/cvhci +
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen'){ekenel,stiefel}@ira.uka.de +
1b02b9413b730b96b91d16dcd61b2420aef97414Détection de marqueurs affectifs et attentionnels de +
personnes âgées en interaction avec un robot +
To cite this version: +
avec un robot. +
Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2015. Français. 2015SACLS081>. +
HAL Id: tel-01280505 +
https://tel.archives-ouvertes.fr/tel-01280505 +
Submitted on 29 Feb 2016 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('47829802', 'Fan Yang', 'fan yang')
('47829802', 'Fan Yang', 'fan yang')
1b55c4e804d1298cbbb9c507497177014a923d22Incremental Class Representation +
Learning for Face Recognition +
Degree’s Thesis +
Audiovisual Systems Engineering +
Author: +
Universitat Politècnica de Catalunya (UPC) +
2016 - 2017 +
('2470219', 'Elisa Sayrol', 'elisa sayrol')
('2585946', 'Josep Ramon Morros', 'josep ramon morros')
1b635f494eff2e5501607ebe55eda7bdfa8263b8USC at THUMOS 2014 +
University of Southern California, Institute for Robotics and Intelligent Systems
Los Angeles, CA 90089, USA +
('1726241', 'Chen Sun', 'chen sun')
('27735100', 'Ram Nevatia', 'ram nevatia')
1b6394178dbc31d0867f0b44686d224a19d61cf4EPML: Expanded Parts based Metric Learning for +
Occlusion Robust Face Verification +
To cite this version: +
for Occlusion Robust Face Verification. Asian Conference on Computer Vision, Nov 2014, -, +
Singapore. pp.1-15, 2014. +
HAL Id: hal-01070657 +
https://hal.archives-ouvertes.fr/hal-01070657 +
Submitted on 2 Oct 2014 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('2515597', 'Gaurav Sharma', 'gaurav sharma')
('2515597', 'Gaurav Sharma', 'gaurav sharma')
1bd50926079e68a6e32dc4412e9d5abe331daefb
1bdef21f093c41df2682a07f05f3548717c7a3d1Towards Automated Classification of Emotional Facial Expressions +
1Department of Mathematics and Computer Science, 2Department of Psychology +
Rutgers University Newark, 101 Warren St., Newark, NJ, 07102 USA
Lewis J. Baker (lewis.j.baker@rutgers.edu)1, Vanessa LoBue (vlobue@rutgers.edu)2, +
Elizabeth Bonawitz (elizabeth.bonawitz@rutgers.edu)2, & Patrick Shafto (patrick.shafto@gmail.com)1 +
1b150248d856f95da8316da868532a4286b9d58eAnalyzing 3D Objects in Cluttered Images +
UC Irvine +
UC Irvine +
('1888731', 'Mohsen Hejrati', 'mohsen hejrati')
('1770537', 'Deva Ramanan', 'deva ramanan')
shejrati@ics.uci.edu +
dramanan@ics.uci.edu +
1be498d4bbc30c3bfd0029114c784bc2114d67c0Age and Gender Estimation of Unfiltered Faces +('2037829', 'Eran Eidinger', 'eran eidinger')
('1792038', 'Roee Enbar', 'roee enbar')
('1756099', 'Tal Hassner', 'tal hassner')
1bbec7190ac3ba34ca91d28f145e356a11418b67Action Recognition with Dynamic Image Networks +
Citation for published version: +
Bilen, H, Fernando, B, Gravves, E & Vedaldi, A 2017, 'Action Recognition with Dynamic Image Networks' +
IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2017.2769085 +
Digital Object Identifier (DOI): +
10.1109/TPAMI.2017.2769085 +
Link: +
Link to publication record in Edinburgh Research Explorer +
Document Version: +
Peer reviewed version +
Published In: +
IEEE Transactions on Pattern Analysis and Machine Intelligence +
General rights +
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) +
and / or other copyright owners and it is a condition of accessing these publications that users recognise and +
abide by the legal requirements associated with these rights. +
Take down policy +
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please +
investigate your claim. +
Download date: 25. Dec. 2017 +
Edinburgh Research Explorer
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and +
1b3587363d37dd197b6adbcfa79d49b5486f27d8Multimodal Grounding for Language Processing +
Language Technology Lab, University of Duisburg-Essen
(cid:52) Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES +
Department of Computer Science, Technische Universit¨at Darmstadt +
www.ukp.tu-darmstadt.de +
('2752573', 'Lisa Beinborn', 'lisa beinborn')
('25080314', 'Teresa Botschen', 'teresa botschen')
('1730400', 'Iryna Gurevych', 'iryna gurevych')
1b5875dbebc76fec87e72cee7a5263d325a77376Learnt Quasi-Transitive Similarity for Retrieval from Large Collections of Faces +
Ognjen Arandjelovi´c +
University of St Andrews, United Kingdom
ognjen.arandjelovic@gmail.com +
1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9Groupwise Constrained Reconstruction for Subspace Clustering +
Ke Zhang† +
School of Computer Science, Fudan University, Shanghai, 200433, China
QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia
('1736607', 'Ruijiang Li', 'ruijiang li')
('1713520', 'Bin Li', 'bin li')
('1751513', 'Cheng Jin', 'cheng jin')
('1713721', 'Xiangyang Xue', 'xiangyang xue')
rjli@fudan.edu.cn +
bin.li-1@uts.edu.au +
k_zhang@fudan.edu.cn +
jc@fudan.edu.cn +
xyxue@fudan.edu.cn +
1b300a7858ab7870d36622a51b0549b1936572d4This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2537215, IEEE +
Transactions on Image Processing +
Dynamic Facial Expression Recognition with Atlas +
Construction and Sparse Representation +
('1734663', 'Yimo Guo', 'yimo guo')
('1757287', 'Guoying Zhao', 'guoying zhao')
1b90507f02967ff143fce993a5abbfba173b1ed0Image Processing Theory, Tools and Applications +
Gradient-DCT (G-DCT) Descriptors +
Technical University of Ostrava, FEECS
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic +
('2467747', 'Radovan Fusek', 'radovan fusek')
('2557877', 'Eduard Sojka', 'eduard sojka')
e-mail: radovan.fusek@vsb.cz, eduard.sojka@vsb.cz +
1b794b944fd462a2742b6c2f8021fecc663004c9A Hierarchical Probabilistic Model for Facial Feature Detection +
Rensselaer Polytechnic Institute
('1746738', 'Yue Wu', 'yue wu')
('2860279', 'Ziheng Wang', 'ziheng wang')
('1726583', 'Qiang Ji', 'qiang ji')
{wuy9,wangz10,jiq}@rpi.edu +
1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2From Few to Many: Generative Models for Recognition +
Under Variable Pose and Illumination +
Departments of Electrical Engineering +
Beckman Institute
and Computer Science +
Yale University
New Haven, CT - +
University of Illinois, Urbana-Champaign
Urbana, IL  +
('3230391', 'Athinodoros S. Georghiades', 'athinodoros s. georghiades')
('1765887', 'David J. Kriegman', 'david j. kriegman')
1b41d4ffb601d48d7a07dbbae01343f4eb8cc38cExploiting Temporal Information for DCNN-based Fine-Grained Object Classification +
Australian Centre for Robotic Vision, Australia +
Queensland University of Technology, Australia
Data61, CSIRO, Australia +
University of Queensland, Australia
University of Adelaide, Australia
('1808390', 'ZongYuan Ge', 'zongyuan ge')
('1763662', 'Chris McCool', 'chris mccool')
('1781182', 'Conrad Sanderson', 'conrad sanderson')
('1722767', 'Peng Wang', 'peng wang')
('2161037', 'Lingqiao Liu', 'lingqiao liu')
1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913dDICTA +
#147 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
DICTA 2010 Submission #147. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
Registration Invariant Representations for Expression Detection +
Anonymous DICTA submission +
Paper ID 147 +
1b0a071450c419138432c033f722027ec88846eaWindsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016 +
978-1-5090-1889-5/16/$31.00 ©2016 IEEE +
649 +
1b60b8e70859d5c85ac90510b370b501c5728620Using Detailed Independent 3D Sub-models to Improve +
Facial Feature Localisation and Pose Estimation +
Imaging Science and Biomedical Engineering, The University of Manchester, UK
('1753123', 'Angela Caunce', 'angela caunce')
1b3b01513f99d13973e631c87ffa43904cd8a821HMM RECOGNITION OF EXPRESSIONS IN UNRESTRAINED VIDEO INTERVALS +
Universitat Politècnica de Catalunya, Barcelona, Spain +
('3067467', 'José Luis Landabaso', 'josé luis landabaso')
('1767549', 'Montse Pardàs', 'montse pardàs')
('2868058', 'Antonio Bonafonte', 'antonio bonafonte')
1bc214c39536c940b12c3a2a6b78cafcbfddb59a
1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113Article +
k-Same-Net: k-Anonymity with Generative Deep +
Neural Networks for Face Deidentification † +
Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana
Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia
† This paper is an extended version of our paper published in Meden B.; Emeršiˇc Ž.; Štruc V.; Peer P. +
k-Same-Net: Neural-Network-Based Face Deidentification. In the Proceedings of the International +
Conference and Workshop on Bioinspired Intelligence (IWOBI), Funchal Madeira, Portugal, 10–12 July 2017. +
Received: 1 December 2017 ; Accepted: 9 January 2018; Published: 13 January 2018 +
('34862665', 'Peter Peer', 'peter peer')Slovenia; ziga.emersic@fri.uni-lj.si (Z.E.); peter.peer@fri.uni-lj.si (P.P.) +
vitomir.struc@fe.uni-lj.si +
* Correspondence: blaz.meden@fri.uni-lj.si; Tel.: +386-1-479-8245 +
1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3ENHANCEMENT OF FAST FACE DETECTION ALGORITHM BASED ON A CASCADE OF +
DECISION TREES +
Commission II, WG II/5 +
KEY WORDS: Face Detection, Cascade Algorithm, Decision Trees. +
('40293010', 'V. V. Khryashchev', 'v. v. khryashchev')
('32423989', 'A. A. Lebedev', 'a. a. lebedev')
('3414890', 'A. L. Priorov', 'a. l. priorov')
a YSU, Yaroslavl, Russia - lebedevdes@gmail.com, (vhr, andcat)@yandex.ru +
1b79628af96eb3ad64dbb859dae64f31a09027d5
1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61Computer Vision and Pattern Recognition 2005 +
Recognizing Facial Expression: Machine Learning and Application to +
Spontaneous Behavior +
Institute for Neural Computation, University of California, San Diego
Ian Fasel1, Javier Movellan1 +
Rutgers University, New Brunswick, NJ
('2218905', 'Marian Stewart Bartlett', 'marian stewart bartlett')
('2724380', 'Gwen Littlewort', 'gwen littlewort')
('2767464', 'Claudia Lainscsek', 'claudia lainscsek')
mbartlett@ucsd.edu +
1b70bbf7cdfc692873ce98dd3c0e191580a1b041 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +
Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072 +
Enhancing Performance of Face Recognition +
System Using Independent Component Analysis +
Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India
Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India
Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India
---------------------------------------------------------------------***--------------------------------------------------------------------- +
cards, tokens and keys. Biometric based methods examine +
('32330340', 'Manimala Mahato', 'manimala mahato')
1b71d3f30238cb6621021a95543cce3aab96a21bFine-grained Video Classification and Captioning +
University of Toronto1, Twenty Billion Neurons
('2454800', 'Farzaneh Mahdisoltani', 'farzaneh mahdisoltani')
('40586522', 'Guillaume Berger', 'guillaume berger')
('3462264', 'Waseem Gharbieh', 'waseem gharbieh')
('1710604', 'Roland Memisevic', 'roland memisevic')
1 {farzaneh, fleet}@cs.toronto.edu, {firstname.lastname}@twentybn.com +
1b4f6f73c70353869026e5eec1dd903f9e26d43fRobust Subjective Visual Property Prediction +
from Crowdsourced Pairwise Labels +
('35782003', 'Yanwei Fu', 'yanwei fu')
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
('1700927', 'Tao Xiang', 'tao xiang')
('3081531', 'Jiechao Xiong', 'jiechao xiong')
('2073354', 'Shaogang Gong', 'shaogang gong')
('1717863', 'Yizhou Wang', 'yizhou wang')
('1746280', 'Yuan Yao', 'yuan yao')
1bc23c771688109bed9fd295ce82d7e702726327('1706007', 'Jianchao Yang', 'jianchao yang')
1bad8a9640cdbc4fe7de12685651f44c4cff35ceTHETIS: THree Dimensional Tennis Shots +
A human action dataset +
Sofia Gourgari +
Konstantinos Karpouzis +
Stefanos Kollias +
National Technical University of Athens
Image Video and Multimedia Systems Laboratory +
('2123731', 'Georgios Goudelis', 'georgios goudelis')
1b589016fbabe607a1fb7ce0c265442be9caf3a9
1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8EXMOVES: Classifier-based Features for Scalable Action Recognition +
Dartmouth College, NH 03755 USA
('1687325', 'Du Tran', 'du tran')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
{DUTRAN,LORENZO}@CS.DARTMOUTH.EDU +
1b4bc7447f500af2601c5233879afc057a5876d8Facial Action Unit Classification with Hidden Knowledge +
under Incomplete Annotation +
University of Science and
Technology of China +
Hefei, Anhui +
University of Science and
Technology of China +
Hefei, Anhui +
Rensselaer Polytechnic +
Institute
Troy, NY +
P.R.China, 230027 +
P.R.China, 230027 +
USA, 12180 +
('1715001', 'Jun Wang', 'jun wang')
('1791319', 'Shangfei Wang', 'shangfei wang')
('1726583', 'Qiang Ji', 'qiang ji')
junwong@mail.ustc.edu.cn +
sfwang@ustc.edu.cn +
qji@ecse.rpi.edu +
1b27ca161d2e1d4dd7d22b1247acee5c53db5104
1badfeece64d1bf43aa55c141afe61c74d0bd25eOL ´E: Orthogonal Low-rank Embedding, +
A Plug and Play Geometric Loss for Deep Learning +
1Universidad de la Rep´ublica +
Uruguay +
Duke University
USA +
('2077648', 'Qiang Qiu', 'qiang qiu')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
7711a7404f1f1ac3a0107203936e6332f50ac30cAction Classification and Highlighting in Videos +
Disney Research Pittsburgh +
Disney Research Pittsburgh +
('1730844', 'Atousa Torabi', 'atousa torabi')
('14517812', 'Leonid Sigal', 'leonid sigal')
atousa.torabi@disneyresearch.com +
lsigal@disneyresearch.com +
778c9f88839eb26129427e1b8633caa4bd4d275ePose Pooling Kernels for Sub-category Recognition +
ICSI & UC Berkeley +
ICSI & UC Berkeley +
Trever Darrell +
ICSI & UC Berkeley +
('40565777', 'Ning Zhang', 'ning zhang')
('2071606', 'Ryan Farrell', 'ryan farrell')
nzhang@eecs.berkeley.edu +
farrell@eecs.berkeley.edu +
trevor@eecs.berkeley.edu +
7735f63e5790006cb3d989c8c19910e40200abfcMultispectral Imaging For Face +
Recognition Over Varying +
Illumination +
A Dissertation +
Presented for the +
Doctor of Philosophy Degree +
The University of Tennessee, Knoxville
December 2008 +
('21051127', 'Hong Chang', 'hong chang')
7789a5d87884f8bafec8a82085292e87d4e2866fA Unified Tensor-based Active Appearance Face +
Model +
Member, IEEE +
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('1748684', 'Josef Kittler', 'josef kittler')
77b1db2281292372c38926cc4aca32ef056011dc451492 EMR0010.1177/1754073912451492Widen Children’s Interpretation of Facial ExpressionsEmotion Review +
2012 +
SPECIAL SECTION: FACIAL EXPRESSIONS +
Children’s Interpretation of Facial Expressions: +
The Long Path from Valence-Based to Specific +
Discrete Categories +
Emotion Review +
Vol. 0, No. 0 (2012) 1 –6 +
© The Author(s) 2012 +
ISSN 1754-0739 +
DOI: 10.1177/1754073912451492 +
er.sagepub.com +
Boston College, USA
('3947094', 'Sherri C. Widen', 'sherri c. widen')
776835eb176ed4655d6e6c308ab203126194c41e
77c53ec6ea448db4dad586e002a395c4a47ecf66Research Journal of Applied Sciences, Engineering and Technology 4(17): 2879-2886, 2012 +
ISSN: 2040-7467 +
© Maxwell Scientific Organization, 2012 +
Submitted: November 25, 2011 +
Accepted: January 13, 2012 +
Published: September 01, 2012 +
Face Recognition Based on Facial Features +
COMSATS Institute of Information Technology Wah Cantt
47040, Pakistan +
National University of Science and Technology
Peshawar Road, Rawalpindi, 46000, Pakistan +
('33088042', 'Muhammad Sharif', 'muhammad sharif')
('3349608', 'Muhammad Younas Javed', 'muhammad younas javed')
('32805529', 'Sajjad Mohsin', 'sajjad mohsin')
778bff335ae1b77fd7ec67404f71a1446624331bHough Forest-based Facial Expression Recognition from +
Video Sequences +
BIWI, ETH Zurich http://www.vision.ee.ethz.ch +
VISICS, K.U. Leuven http://www.esat.kuleuven.be/psi/visics +
('3092828', 'Gabriele Fanelli', 'gabriele fanelli')
('2569989', 'Angela Yao', 'angela yao')
('40324831', 'Pierre-Luc Noel', 'pierre-luc noel')
('2946643', 'Juergen Gall', 'juergen gall')
('1681236', 'Luc Van Gool', 'luc van gool')
{gfanelli,yaoa,gall,vangool}@vision.ee.ethz.ch +
noelp@student.ethz.ch +
7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0dCONTENT-AWARE COMPRESSION USING SALIENCY-DRIVEN IMAGE RETARGETING +
*Disney Research Zurich +
†ETH Zurich +
('1782328', 'Yael Pritch', 'yael pritch')
('2893744', 'Alexander Sorkine-Hornung', 'alexander sorkine-hornung')
('1712877', 'Stefan Mangold', 'stefan mangold')
774cbb45968607a027ae4729077734db000a1ec5I. KWAK ET AL.: VISUAL RECOGNITION OF URBAN TRIBES +
From Bikers to Surfers: +
Visual Recognition of Urban Tribes +
Ana C. Murillo2 +
David Kriegman1 +
Serge Belongie1 +
1 Dept. of Computer Science and +
Engineering +
University of California, San Diego
San Diego, CA, USA +
2 Dpt. Informática e Ing. Sistemas - Inst. +
Investigación en Ingeniería de Aragón. +
University of Zaragoza, Spain
3 Department of Computer Science +
Columbia University, USA
('2064392', 'Iljung S. Kwak', 'iljung s. kwak')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
iskwak@cs.ucsd.edu +
acm@unizar.es +
belhumeur@cs.columbia.edu +
kriegman@cs.ucsd.edu +
sjb@cs.ucsd.edu +
7754b708d6258fb8279aa5667ce805e9f925dfd0Facial Action Unit Recognition by Exploiting +
Their Dynamic and Semantic Relationships +
('1686235', 'Yan Tong', 'yan tong')
('2460793', 'Wenhui Liao', 'wenhui liao')
('1726583', 'Qiang Ji', 'qiang ji')
77db171a523fc3d08c91cea94c9562f3edce56e1Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17 +
http://jivp.eurasipjournals.com/content/2012/1/17 +
R ES EAR CH +
Open Access +
Gauss–Laguerre wavelet textural feature fusion +
with geometrical information for facial expression +
identification +
('1786383', 'Ahmad Poursaberi', 'ahmad poursaberi')
('1870195', 'Hossein Ahmadi', 'hossein ahmadi')
77037a22c9b8169930d74d2ce6f50f1a999c1221Robust Face Recognition With Kernelized +
Locality-Sensitive Group Sparsity Representation +
('1907978', 'Shoubiao Tan', 'shoubiao tan')
('2796142', 'Xi Sun', 'xi sun')
('2710497', 'Wentao Chan', 'wentao chan')
('33306018', 'Lei Qu', 'lei qu')
779ad364cae60ca57af593c83851360c0f52c7bfSteerable Pyramids Feature Based Classification Using Fisher +
Linear Discriminant for Face Recognition +
EL HASSOUNI MOHAMMED12 +
GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco
DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco
PO.Box 1014, Rabat, Morocco +
('37917405', 'ABOUTAJDINE DRISS', 'aboutajdine driss')moha387@yahoo.fr +
7792fbc59f3eafc709323cdb63852c5d3a4b23e9Pose from Action: Unsupervised Learning of +
Pose Features based on Motion +
Robotics Institute
Carnegie Mellon University
('3234247', 'Senthil Purushwalkam', 'senthil purushwalkam')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
{spurushw@andrew,abhinavg@cs}.cmu.edu +
77fbbf0c5729f97fcdbfdc507deee3d388cd4889SMITH & DYER: 3D FACIAL LANDMARK ESTIMATION +
Pose-Robust 3D Facial Landmark Estimation +
from a Single 2D Image +
http://www.cs.wisc.edu/~bmsmith +
http://www.cs.wisc.edu/~dyer +
Department of Computer Sciences +
University of Wisconsin-Madison
Madison, WI USA +
('2721523', 'Brandon M. Smith', 'brandon m. smith')
('1724754', 'Charles R. Dyer', 'charles r. dyer')
776362314f1479f5319aaf989624ac604ba42c65Attribute learning in large-scale datasets +
Stanford University
('2192178', 'Olga Russakovsky', 'olga russakovsky')
('3216322', 'Li Fei-Fei', 'li fei-fei')
{olga,feifeili}@cs.stanford.edu +
77d31d2ec25df44781d999d6ff980183093fb3deThe Multiverse Loss for Robust Transfer Learning +
Supplementary +
1. Omitted proofs +
for which the joint loss: +
m(cid:88) +
r=1 +
L(F r, br, D, y) +
(2) +
J(F 1, b1...F m, bm, D, y) = +
is bounded by: +
mL∗(D, y) ≤ J(F 1, b1...F m, bm, D, y) +
m−1(cid:88) +
≤ mL∗(D, y) + +
Alλd−j+1 +
(3) +
l=1 +
where [A1 . . . Am−1] are bounded parameters. +
We provide proofs that were omitted from the paper for +
lack of space. We follow the same theorem numbering as in +
the paper. +
Lemma 1. The minimizers F ∗, b∗ of L are not unique, and +
it holds that for any vector v ∈ Rc and scalar s, the solu- +
tions F ∗ + v1(cid:62) +
Proof. denoting V = v1(cid:62) +
c , b∗ + s1c are also minimizers of L. +
c , s = s1c, +
i v+byi +s +
i v+bj +s +
i fyi +byi +
i v+sed(cid:62) +
i fj +bj +
i=1 +
log( +
L(F ∗ + V, b∗ + s, D, y) = +
i fyi +d(cid:62) +
ed(cid:62) +
i fj +d(cid:62) +
j=1 ed(cid:62) +
i v+sed(cid:62) +
ed(cid:62) +
j=1 ed(cid:62) +
i v+sed(cid:62) +
ed(cid:62) +
(cid:80)c +
(cid:80)c +
i v+s(cid:80)c +
− n(cid:88) +
= − n(cid:88) +
= − n(cid:88) +
(cid:80)c +
= − n(cid:88) +
ed(cid:62) +
i fyi +byi +
j=1 ed(cid:62) +
i fj +bj +
ed(cid:62) +
log( +
log( +
log( +
i=1 +
i=1 +
i=1 +
i fj +bj +
i fyi +byi +
j=1 ed(cid:62) +
) = L(F ∗, b∗, D, y) +
The following simple lemma was not part of the paper. +
However, it is the reasoning behind the statement at the end +
of the proof of Thm. 1. “Since ∀i, j pi(j) > 0 and since +
rank(D) is full,(cid:80)n +
Lemma 2. Let K =(cid:80)n +
such that ∀i qi > 0, the matrix ˆK =(cid:80)n +
i be a full rank d×d matrix, +
i.e., it is PD and not just PSD, then for all vector q ∈ Rn +
is also +
i pi(j)pi(j(cid:48)) is PD.” +
i=1 did(cid:62) +
i=1 did(cid:62) +
i=1 qidid(cid:62) +
full rank. +
Proof. For +
(miniqi)v(cid:62)Kv > 0. +
every vector v +
(cid:2)f 1 +
(cid:3) , b1, F 2 = (cid:2)f 2 +
Theorem 3. There exist a set of weights F 1 = +
j ⊥ f s +
C ] , bm which are orthogonal ∀jrs f r +
2 , ..., f 1 +
2 , ..., f m +
1 , f 1 +
1 , f m +
2 , ..., f 2 +
1 , f 2 +
[f m +
(cid:3) , b2...F m = +
Proof. We again prove the theorem by constructing such a +
solution. Denoting by vd−m+2...vd the eigenvectors of K +
corresponding to λd−m+2 . . . λd. Given F 1 = F ∗, b1 = b∗, +
we can construct each pair F r, br as follows: +
(1) +
∀j, r +
fj +
r = f1 +
1 + +
m−1(cid:88) +
l=1 +
αjlrvd−l+1 +
br = b1 +
(4) +
The tensor of parameters αjlr is constructed to insure the +
orthogonality condition. Formally, αjlr has to satisfy: +
Rd, +
v(cid:62) ˆKv +
∀j, r (cid:54)= s +
(f 1 +
j + +
m−1(cid:88) +
l=1 +
αjlrvd−l+1)(cid:62)f s +
j = 0 +
(5) +
2 m(m− 1) equations, it +
Noticing that 5 constitutes a set of 1 +
can be satisfied by the tensor αjlr which contains m(m − +
c ] = F r − +
1)c parameters. Defining Ψr = [ψr +
1, ψr +
2, . . . , ψr +
77fb9e36196d7bb2b505340b6b94ba552a58b01bDetecting the Moment of Completion: +
Temporal Models for Localising Action Completion +
University of Bristol, Bristol, BS8 1UB, UK
('10007321', 'Farnoosh Heidarivincheh', 'farnoosh heidarivincheh')
('1728108', 'Majid Mirmehdi', 'majid mirmehdi')
('1728459', 'Dima Damen', 'dima damen')
farnoosh.heidarivincheh@bristol.ac.uk +
486840f4f524e97f692a7f6b42cd19019ee71533DeepVisage: Making face recognition simple yet with powerful generalization +
skills +
1Laboratoire LIRIS, ´Ecole centrale de Lyon, 69134 Ecully, France. +
2Safran Identity & Security, 92130 Issy-les-Moulineaux, France. +
('34767162', 'Jonathan Milgram', 'jonathan milgram')
('34086868', 'Liming Chen', 'liming chen')
md-abul.hasnat@ec-lyon.fr, {julien.bohne, stephane.gentric, jonathan.milgram}@safrangroup.com, +
liming.chen@ec-lyon.fr +
48463a119f67ff2c43b7c38f0a722a32f590dfebInternational Journal of Computer Applications (0975 – 8887) +
Volume 52– No.4, August 2012 +
Intelligent Method for Face Recognition of Infant +
Department of Computer +
Engineering +
Indian Institute of Technology
Banaras Hindu University
Varanasi, India-221005 +
Department of Computer +
Engineering +
Indian Institute of Technology
Banaras Hindu University
Varanasi, India-221005 +
+
Department of Computer +
Engineering +
Indian Institute of Technology
Banaras Hindu University
Varanasi, India-221005 +
('2829597', 'Shrikant Tiwari', 'shrikant tiwari')
('1920426', 'Aruni Singh', 'aruni singh')
('32120516', 'Sanjay Kumar Singh', 'sanjay kumar singh')
488d3e32d046232680cc0ba80ce3879f92f35cacJournal of Information Systems and Telecommunication, Vol. 2, No. 4, October-December 2014 +
205 +
Facial Expression Recognition Using Texture Description of +
Displacement Image +
Amirkabir University of Technology, Tehran. Iran
Abolghasem-Asadollah Raie* +
Amirkabir University of Technology, Tehran. Iran
Sharif University of Technology, Tehran. Iran
Received: 14/Sep/2013 Revised: 15/Mar/2014 Accepted: 10/Aug/2014 +
('3295771', 'Hamid Sadeghi', 'hamid sadeghi')
('1697809', 'Mohammad-Reza Mohammadi', 'mohammad-reza mohammadi')
hamid.sadeghi@aut.ac.ir +
raie@aut.ac.ir +
mrmohammadi@ee.sharif.edu +
48186494fc7c0cc664edec16ce582b3fcb5249c0P-CNN: Pose-based CNN Features for Action Recognition +
Guilhem Ch´eron∗ † +
INRIA +
('1785596', 'Ivan Laptev', 'ivan laptev')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
48499deeaa1e31ac22c901d115b8b9867f89f952Interim Report of Final Year Project +
HKU-Face: A Large Scale Dataset for +
Deep Face Recognition +
3035140108 +
Haoyu Li +
3035141841 +
COMP4801 Final Year Project +
Project Code: 17007 +
('3347561', 'Haicheng Wang', 'haicheng wang')
486a82f50835ea888fbc5c6babf3cf8e8b9807bcMSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 +
Face Search at Scale: 80 Million Gallery +
('7496032', 'Dayong Wang', 'dayong wang')
('40653304', 'Charles Otto', 'charles otto')
('6680444', 'Anil K. Jain', 'anil k. jain')
48fea82b247641c79e1994f4ac24cad6b6275972Mining Discriminative Components With Low-Rank And +
Sparsity Constraints for Face Recognition +
Computer Science and Engineering +
Arizona State University
Tempe, AZ, 85281 +
('1689161', 'Qiang Zhang', 'qiang zhang')
('2913552', 'Baoxin Li', 'baoxin li')
qzhang53, baoxin.li@asu.edu +
48734cb558b271d5809286447ff105fd2e9a6850Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural +
Networks +
Department of Electrical and Computer Engineering +
University of Denver, Denver, CO
('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')behzad.hasani@du.edu and mmahoor@du.edu +
48a417cfeba06feb4c7ab30f06c57ffbc288d0b5Robust Dictionary Learning by Error Source Decomposition +
Northwestern University
2145 Sheridan Road, Evanston, IL 60208 +
('2240134', 'Zhuoyuan Chen', 'zhuoyuan chen')
('39955137', 'Ying Wu', 'ying wu')
zhuoyuanchen2014@u.northwestern.edu,yingwu@eecs.northwestern.edu +
4850af6b54391fc33c8028a0b7fafe05855a96ffDiscovering Useful Parts for Pose Estimation in Sparsely Annotated Datasets +
1Department of Computer Science and 2Department of Biology +
Boston University and 2University of North Carolina
('2025025', 'Mikhail Breslav', 'mikhail breslav')
('1711465', 'Tyson L. Hedrick', 'tyson l. hedrick')
('1749590', 'Stan Sclaroff', 'stan sclaroff')
('1723703', 'Margrit Betke', 'margrit betke')
breslav@bu.edu, thedrick@bio.unc.edu, sclaroff@bu.edu, betke@bu.edu +
48c41ffab7ff19d24e8df3092f0b5812c1d3fb6eMulti-Modal Embedding for Main Product Detection in Fashion +
1Institut de Robtica i Informtica Industrial (CSIC-UPC) +
2Wide Eyes Technologies +
Waseda University
('1737881', 'Antonio Rubio', 'antonio rubio')
('9072783', 'LongLong Yu', 'longlong yu')
('3114470', 'Edgar Simo-Serra', 'edgar simo-serra')
('1994318', 'Francesc Moreno-Noguer', 'francesc moreno-noguer')
arubio@iri.upc.edu, longyu@wide-eyes.it, esimo@aoni.waseda.jp, fmoreno@iri.upc.edu +
488a61e0a1c3768affdcd3c694706e5bb17ae548FITTING A 3D MORPHABLE MODEL TO EDGES: +
A COMPARISON BETWEEN HARD AND SOFT CORRESPONDENCES +
Multimodal Computing and Interaction, Saarland University, Germany
University of York, UK
‡ Morpheo Team, INRIA Grenoble Rhˆone-Alpes, France +
('39180407', 'Anil Bas', 'anil bas')
('1687021', 'William A. P. Smith', 'william a. p. smith')
('1780750', 'Timo Bolkart', 'timo bolkart')
('1792200', 'Stefanie Wuhrer', 'stefanie wuhrer')
48910f9b6ccc40226cd4f105ed5291571271b39eLearning Discriminative Fisher Kernels +
Pattern Recognition and Bio-informatics Laboratory, Delft University of Technology, THE NETHERLANDS
('1803520', 'Laurens van der Maaten', 'laurens van der maaten')lvdmaaten@gmail.com +
48a9241edda07252c1aadca09875fabcfee32871Convolutional Experts Network for Facial Landmark Detection +
Carnegie Mellon University
Tadas Baltruˇsaitis∗ +
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213, USA +
('1783029', 'Amir Zadeh', 'amir zadeh')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
abagherz@cs.cmu.edu +
tbaltrus@cs.cmu.edu +
morency@cs.cmu.edu +
48f0055295be7b175a06df5bc6fa5c6b69725785International Journal of Computer Applications (0975 – 8887) +
Volume 96– No.19, June 2014 +
Facial Action Unit Recognition from Video Streams +
with Recurrent Neural Networks +
University of the Witwatersrand
Braamfontein, Johannesburg +
South Africa +
('3122515', 'Hima Vadapalli', 'hima vadapalli')
48729e4de8aa478ee5eeeb08a72a446b0f5367d5COMPRESSED FACE HALLUCINATION +
Electrical Engineering and Computer Science +
University of California, Merced, CA 95344, USA
('2391885', 'Sifei Liu', 'sifei liu')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
48e6c6d981efe2c2fb0ae9287376fcae59da9878Sidekick Policy Learning +
for Active Visual Exploration +
The University of Texas at Austin, Austin, TX
2 Facebook AI Research, 300 W. Sixth St. Austin, TX 78701 +
('21810992', 'Santhosh K. Ramakrishnan', 'santhosh k. ramakrishnan')
('1794409', 'Kristen Grauman', 'kristen grauman')
srama@cs.utexas.edu, grauman@fb.com(cid:63) +
48174c414cfce7f1d71c4401d2b3d49ba91c5338Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes +
Rutgers University, USA
Hong Kong Polytechnic University, Hong Kong
School of Computer Engineering, Nanyang Technological University, Singapore
('1965812', 'Chongyu Chen', 'chongyu chen')
('40643777', 'Luc N. Dao', 'luc n. dao')
('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')
('1688642', 'Jianfei Cai', 'jianfei cai')
('1775268', 'Tat-Jen Cham', 'tat-jen cham')
{hxp1,vladimir}@cs.rutgers.edu +
{nldao,asjfcai,astfcham}@ntu.edu.sg +
cscychen@comp.polyu.edu.hk +
48a5b6ee60475b18411a910c6084b3a32147b8cdPedestrian attribute recognition with part-based CNN +
and combined feature representations +
Baskurt +
To cite this version: +
recognition with part-based CNN and combined feature representations. VISAPP2018, Jan 2018, +
Funchal, Portugal. +
HAL Id: hal-01625470 +
https://hal.archives-ouvertes.fr/hal-01625470 +
Submitted on 21 Jun 2018 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destinée au dépôt et à la diffusion de documents +
scientifiques de niveau recherche, publiés ou non, +
émanant des établissements d’enseignement et de +
recherche français ou étrangers, des laboratoires +
publics ou privés. +
('1705461', 'Yiqiang Chen', 'yiqiang chen')
('1762557', 'Stefan Duffner', 'stefan duffner')
('10469201', 'Andrei Stoian', 'andrei stoian')
('1733569', 'Jean-Yves Dufour', 'jean-yves dufour')
('1705461', 'Yiqiang Chen', 'yiqiang chen')
('1762557', 'Stefan Duffner', 'stefan duffner')
('10469201', 'Andrei Stoian', 'andrei stoian')
('1733569', 'Jean-Yves Dufour', 'jean-yves dufour')
('1739898', 'Atilla Baskurt', 'atilla baskurt')
488375ae857a424febed7c0347cc9590989f01f7Convolutional neural networks for the analysis of broadcasted +
tennis games +
Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece
(cid:63) NantVision Inc., Culver City, CA, 90230, USA. +
University of Crete, Crete, 73100, Greece
('2272443', 'Grigorios Tsagkatakis', 'grigorios tsagkatakis')
('40495798', 'Mustafa Jaber', 'mustafa jaber')
('1694755', 'Panagiotis Tsakalides', 'panagiotis tsakalides')
4836b084a583d2e794eb6a94982ea30d7990f663Cascaded Face Alignment via Intimacy Definition Feature +
The Hong Kong Polytechnic University
Hong Kong Applied Science and Technology Research Institute Company Limited
Hong Kong, China +
 +
('2116302', 'Hailiang Li', 'hailiang li')
('1703078', 'Kin-Man Lam', 'kin-man lam')
('2233216', 'Kangheng Wu', 'kangheng wu')
('1982263', 'Zhibin Lei', 'zhibin lei')
harley.li@connect.polyu.hk,{harleyli, edmondchiu, khwu, lei}@astri.org, enkmlam@polyu.edu.hk +
4866a5d6d7a40a26f038fc743e16345c064e9842
488e475eeb3bb39a145f23ede197cd3620f1d98aPedestrian Attribute Classification in Surveillance: Database and Evaluation +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences (CASIA
95 Zhongguancun East Road, 100190, Beijing, China +
('1739258', 'Jianqing Zhu', 'jianqing zhu')
('40397682', 'Shengcai Liao', 'shengcai liao')
('1718623', 'Zhen Lei', 'zhen lei')
('1716143', 'Dong Yi', 'dong yi')
('34679741', 'Stan Z. Li', 'stan z. li')
{jqzhu, scliao, zlei, dyi, szli}@cbsr.ia.ac.cn +
487df616e981557c8e1201829a1d0ec1ecb7d275Acoustic Echo Cancellation Using a Vector-Space-Based +
Adaptive Filtering Algorithm +
('1742704', 'Yu Tsao', 'yu tsao')
('1757214', 'Shih-Hau Fang', 'shih-hau fang')
('40466874', 'Yao Shiao', 'yao shiao')
48f211a9764f2bf6d6dda4a467008eda5680837a
4858d014bb5119a199448fcd36746c413e60f295
48319e611f0daaa758ed5dcf5a6496b4c6ef45f2Non Binary Local Gradient Contours for Face Recognition +
P.A. College of Engnineering, Mangalore
bSenior IEEE Member, Department of Electrical and Electronics Engineering, Aligarh Muslim +
P A College of Engineering, Nadupadavu
As the features from the traditional Local Binary patterns (LBP) and Local Directional Patterns (LDP) are +
found to be ineffective for face recognition, we have proposed a new approach derived on the basis of Information +
sets whereby the loss of information that occurs during the binarization is eliminated. The information sets +
as a product. Since face is having smooth texture in a limited area, the extracted features must be highly +
discernible. To limit the number of features, we consider only the non overlapping windows. By the application +
of the information set theory we can reduce the number of feature of an image. The derived features are shown +
to work fairly well over eigenface, fisherface and LBP methods. +
Keywords: Local Binary Pattern, Local Directional Pattern, Information Sets, Gradient Contour, Support +
Vector Machine, KNN, Face Recognition. +
1. INTRODUCTION +
In face recognition, the major issue to be ad- +
dressed is the extraction of features which are +
discriminating in nature [1], [2]. The accuracy +
of classification depends upon which texture fea- +
ture of the face are extracted e.g., geometrical, +
statistical, local or global features in addition to +
representation of these features and the design +
extraction algorithm should produce little vari- +
ance of features within the class and large vari- +
ance between the classes. There are typically +
two common approaches to extract facial fea- +
tures: geometric-feature-based and appearance- +
based methods. The geometric-feature-based [[3], +
[4]] method encodes the shape and locations of +
different facial components, which are combined +
into a feature vector that represents the face. +
An illustration of this method is the graph-based +
method [5], that uses several facial components +
to create a representation of the face and pro- +
cess it. The Local-Global Graph algorithm [5] ap- +
proach makes use Voronoi tessellation and Delau- +
nay graphs to segment local features and builds +
a graph. These features are combined into a lo- +
cal graph, and then the skeleton (global graph) +
is created by interrelating the local graphs to +
represent the topology of the face. The major +
requirements of geometric-feature-based methods +
is accurate and reliable facial feature detection +
and tracking, which is difficult to accommodate +
in many situations. +
In the case of appearance +
based methods, there are many methods for the +
holistic classes such as, Eigenfaces [6] and Fisher- +
faces [7], which are built on Principal Component +
Analysis (PCA) [6], to the more recent 2D-PCA +
[8], and Linear Discriminant Analysis [9] are also +
examples of holistic methods. The [10] and [11] +
makes use of image filters, either on the whole +
face to create holistic features, or some specific +
face-region to create local features, to extract the +
('1913846', 'Abdullah Gubbi', 'abdullah gubbi')
('2093112', 'Mohammad Fazle Azeem', 'mohammad fazle azeem')
Nadupadavu, Mangalore, India, Contact: abdullahgubbi@yahoo.com +
University, India, Contact: mf.azeem@gmail.com +
Mangalore, India. Contact: sharmilabp@gmail.com +
4896909796f9bd2f70a2cb24bf18daacd6a12128Spatial Bag of Features Learning for Large Scale +
Face Image Retrieval +
Aristotle University of Thessaloniki, Thessaloniki, Greece
('3200630', 'Nikolaos Passalis', 'nikolaos passalis')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
passalis@csd.auth.gr, tefas@aiia.csd.auth.gr +
48cfc5789c246c6ad88ff841701204fc9d6577edJ Inf Process Syst, Vol.12, No.3, pp.392~409, September 2016 +
+
+
ISSN 1976-913X (Print) +
ISSN 2092-805X (Electronic) +
Age Invariant Face Recognition Based on DCT +
Feature Extraction and Kernel Fisher Analysis +
('17349931', 'Leila Boussaad', 'leila boussaad')
('2411455', 'Mohamed Benmohammed', 'mohamed benmohammed')
('2123013', 'Redha Benzid', 'redha benzid')
481fb0a74528fa7706669a5cce6a212ac46eaea3Recognizing RGB Images by Learning from RGB-D Data +
Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore
School of Computer Engineering, Nanyang Technological University, Singapore
('39253009', 'Lin Chen', 'lin chen')
('38188040', 'Dong Xu', 'dong xu')
70f189798c8b9f2b31c8b5566a5cf3107050b349The Challenge of Face Recognition from Digital Point-and-Shoot Cameras +
David Bolme‡ +
('1757322', 'J. Ross Beveridge', 'j. ross beveridge')
('1750370', 'Geof H. Givens', 'geof h. givens')
('2067993', 'W. Todd Scruggs', 'w. todd scruggs')
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
('1733571', 'Yui Man Lui', 'yui man lui')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
('36903861', 'Mohammad Nayeem Teli', 'mohammad nayeem teli')
('1704876', 'Patrick J. Flynn', 'patrick j. flynn')
('1694404', 'Bruce A. Draper', 'bruce a. draper')
('40370804', 'Hao Zhang', 'hao zhang')
('9099328', 'Su Cheng', 'su cheng')
70580ed8bc482cad66e059e838e4a779081d1648Acta Polytechnica Hungarica +
Vol. 10, No. 4, 2013 +
Gender Classification using Multi-Level +
Wavelets on Real World Face Images +
Shaheed Zulfikar Ali Bhutto Institute of
Science and Technology, Plot # 67, Street # 9, H/8-4 Islamabad, 44000, Pakistan +
isb.edu.pk +
('35332495', 'Sajid Ali Khan', 'sajid ali khan')
('1723986', 'Muhammad Nazir', 'muhammad nazir')
('2521631', 'Naveed Riaz', 'naveed riaz')
sajid.ali@szabist-isb.edu.pk, nazir@szabist-isb.edu.pk, n.r.ansari@szabist- +
70109c670471db2e0ede3842cbb58ba6be804561Noname manuscript No. +
(will be inserted by the editor) +
Zero-Shot Visual Recognition via Bidirectional Latent Embedding +
Received: date / Accepted: date +
('47599321', 'Qian Wang', 'qian wang')
703890b7a50d6535900a5883e8d2a6813ead3a03
703dc33736939f88625227e38367cfb2a65319feLabeling Temporal Bounds for Object Interactions in Egocentric Video +
Trespassing the Boundaries: +
University of Bristol, United Kingdom
Walterio Mayol-Cuevas +
('3420479', 'Davide Moltisanti', 'davide moltisanti')
('2052236', 'Michael Wray', 'michael wray')
('1728459', 'Dima Damen', 'dima damen')
.@bristol.ac.uk +
70db3a0d2ca8a797153cc68506b8650908cb0adaAn Overview of Research Activities in Facial +
Age Estimation Using the FG-NET Aging +
Database +
Visual Media Computing Lab, +
Dept. of Multimedia and Graphic Arts, +
Cyprus University of Technology, Cyprus
('31950370', 'Gabriel Panis', 'gabriel panis')
('1830709', 'Andreas Lanitis', 'andreas lanitis')
gpanis@gmail.com, andreas.lanitis@cut.ac.cy +
706236308e1c8d8b8ba7749869c6b9c25fa9f957Crowdsourced Data Collection of Facial Responses +
MIT Media Lab +
Cambridge +
02139, USA +
Rosalind Picard +
MIT Media Lab +
Cambridge +
02139, USA +
MIT Media Lab +
Cambridge +
02139, USA +
('1801452', 'Daniel McDuff', 'daniel mcduff')
('1754451', 'Rana El Kaliouby', 'rana el kaliouby')
djmcduff@media.mit.edu +
kaliouby@media.mit.edu +
picard@media.mit.edu +
701f56f0eac9f88387de1f556acef78016b05d52Direct Shape Regression Networks for End-to-End Face Alignment +
1 ∗ +
University of Texas at Arlington, TX, USA, 2Beihang University, Beijing, China
Xidian University, Xi an, China, 4 University of Pittsburgh, PA, USA
('6050999', 'Xin Miao', 'xin miao')
('34798935', 'Xiantong Zhen', 'xiantong zhen')
('1720747', 'Vassilis Athitsos', 'vassilis athitsos')
('6820648', 'Xianglong Liu', 'xianglong liu')
('1748032', 'Heng Huang', 'heng huang')
('50542664', 'Cheng Deng', 'cheng deng')
xin.miao@mavs.uta.edu, zhenxt@gmail.com, xlliu@nlsde.edu.cn, chdeng.xd@gmail.com +
athitsos@uta.edu, heng.huang@pitt.edu +
7002d6fc3e0453320da5c863a70dbb598415e7aaElectrical Engineering +
University of California, Riverside
Date: Friday, October 21, 2011 +
Location: EBU2 Room 205/206 +
Time: 12:10am +
Understanding Discrete Facial +
Expression in Video Using Emotion +
Avatar Image +
('1803478', 'Songfan Yang', 'songfan yang')
7071cd1ee46db4bc1824c4fd62d36f6d13cad08aFace Detection through Scale-Friendly Deep Convolutional Networks +
The Chinese University of Hong Kong
('1692609', 'Shuo Yang', 'shuo yang')
('3331521', 'Yuanjun Xiong', 'yuanjun xiong')
('1717179', 'Chen Change Loy', 'chen change loy')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{ys014, yjxiong, ccloy, xtang}@ie.cuhk,edu.hk +
706b9767a444de4fe153b2f3bff29df7674c3161Fast Metric Learning For Deep Neural Networks +
University of Waikato, Hamilton, New Zealand
School of Engineering, University of Waikato, Hamilton, New Zealand
('2319565', 'Henry Gouk', 'henry gouk')
('1737420', 'Bernhard Pfahringer', 'bernhard pfahringer')
hgrg1@students.waikato.ac.nz, bernhard@waikato.ac.nz +
cree@waikato.ac.nz +
70c58700eb89368e66a8f0d3fc54f32f69d423e1INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE +
LEARNING +
University of California, Riverside, CA
('49616225', 'Sujoy Paul', 'sujoy paul')
('2177805', 'Sourya Roy', 'sourya roy')
('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')
707a542c580bcbf3a5a75cce2df80d75990853ccDisentangled Variational Representation for Heterogeneous Face Recognition +
1 Center for Research on Intelligent Perception and Computing (CRIPAC), CASIA, Beijing, China +
2 National Laboratory of Pattern Recognition (NLPR), CASIA, Beijing, China +
School of Arti cial Intelligence, University of Chinese Academy of Sciences, Beijing, China
Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
('2225749', 'Xiang Wu', 'xiang wu')
('32885778', 'Huaibo Huang', 'huaibo huang')
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('1705643', 'Ran He', 'ran he')
('1757186', 'Zhenan Sun', 'zhenan sun')
alfredxiangwu@gmail.com, huaibo.huang@cripac.ia.ac.cn, +
vpatel36@jhu.edu, {rhe, znsun}@nlpr.ia.ac.cn +
70569810e46f476515fce80a602a210f8d9a2b95Apparent Age Estimation from Face Images Combining General and +
Children-Specialized Deep Learning Models +
1Orange Labs – France Telecom, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +
2Eurecom, 450 route des Chappes, 06410 Biot, France +
('3116433', 'Grigory Antipov', 'grigory antipov')
('2341854', 'Moez Baccouche', 'moez baccouche')
('1708844', 'Sid-Ahmed Berrani', 'sid-ahmed berrani')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
{grigory.antipov,moez.baccouche,sidahmed.berrani}@orange.com, jean-luc.dugelay@eurecom.fr +
704d88168bdfabe31b6ff484507f4a2244b8c52bMLtuner: System Support for Automatic Machine Learning Tuning +
Carnegie Mellon University
('1874200', 'Henggang Cui', 'henggang cui')
('1707164', 'Gregory R. Ganger', 'gregory r. ganger')
('1974678', 'Phillip B. Gibbons', 'phillip b. gibbons')
70e79d7b64f5540d309465620b0dab19d9520df1International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 +
ISSN 2229-5518 +
Facial Expression Recognition System +
Using Extreme Learning Machine +
('3274320', 'Firoz Mahmud', 'firoz mahmud')
('2376022', 'Md. Al Mamun', 'md. al mamun')
7003d903d5e88351d649b90d378f3fc5f211282bInternational Journal of Computer Applications (0975 – 8887) +
Volume 68– No.23, April 2013 +
Facial Expression Recognition using Gabor Wavelet +
ENTC SVERI’S COE (Poly), +
Pandharpur, +
Solapur, India +
ENTC SVERI’S COE, +
Pandharpur, +
Solapur, India +
ENTC SVERI’S COE (Poly), +
Pandharpur, +
Solapur, India +
('2730988', 'Mahesh Kumbhar', 'mahesh kumbhar')
('10845943', 'Manasi Patil', 'manasi patil')
('2707920', 'Ashish Jadhav', 'ashish jadhav')
703c9c8f20860a1b1be63e6df1622b2021b003caFlip-Invariant Motion Representation +
National Institute of Advanced Industrial Science and Technology
Umezono 1-1-1, Tsukuba, Japan +
('1800592', 'Takumi Kobayashi', 'takumi kobayashi')takumi.kobayashi@aist.go.jp +
70a69569ba61f3585cd90c70ca5832e838fa1584Friendly Faces: +
Weakly supervised character identification +
CVSSP, University of Surrey, UK
('2735914', 'Matthew Marter', 'matthew marter')
('1695195', 'Richard Bowden', 'richard bowden')
{m.marter, s.hadfield, r.bowden} @surrey.ac.uk +
70bf1769d2d5737fc82de72c24adbb7882d2effdFace detection in intelligent ambiences with colored illumination +
Department of Intelligent Systems +
TU Delft +
Delft, The Netherlands +
('3137870', 'Christina Katsimerou', 'christina katsimerou')
('1728396', 'Ingrid Heynderickx', 'ingrid heynderickx')
70c9d11cad12dc1692a4507a97f50311f1689dbfVideo Frame Synthesis using Deep Voxel Flow +
The Chinese University of Hong Kong
3Pony.AI Inc. +
University of Illinois at Urbana-Champaign
4Google Inc. +
('3243969', 'Ziwei Liu', 'ziwei liu'){lz013,xtang}@ie.cuhk.edu.hk +
yiming@pony.ai +
yeh17@illinois.edu +
aseemaa@google.com +
1e5ca4183929929a4e6f09b1e1d54823b8217b8eClassification in the Presence of Heavy +
Label Noise: A Markov Chain Sampling +
Framework +
by +
B.Eng., Nankai University
Thesis Submitted in Partial Fulfillment of the +
Requirements for the Degree of +
Master of Science +
in the +
School of Computing Science +
Faculty of Applied Sciences +
SIMON FRASER UNIVERSITY
Summer 2017 +
However, in accordance with the Copyright Act of Canada, this work may be +
reproduced without authorization under the conditions for “Fair Dealing.” +
Therefore, limited reproduction of this work for the purposes of private study, +
research, education, satire, parody, criticism, review and news reporting is likely +
All rights reserved. +
to be in accordance with the law, particularly if cited appropriately. +
('3440173', 'Zijin Zhao', 'zijin zhao')
('3440173', 'Zijin Zhao', 'zijin zhao')
1e058b3af90d475bf53b3f977bab6f4d9269e6e8Manifold Relevance Determination +
University of Shef eld, UK
KTH Royal Institute of Technology, CVAP Lab, Stockholm, Sweden
Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK +
University of Shef eld, UK
('3106771', 'Andreas C. Damianou', 'andreas c. damianou')
('2484138', 'Carl Henrik Ek', 'carl henrik ek')
('1722732', 'Michalis K. Titsias', 'michalis k. titsias')
('1739851', 'Neil D. Lawrence', 'neil d. lawrence')
ANDREAS.DAMIANOU@SHEFFIELD.AC.UK +
CHEK@CSC.KTH.SE +
MTITSIAS@WELL.OX.AC.UK +
N.LAWRENCE@SHEFFIELD.AC.UK +
1e799047e294267087ec1e2c385fac67074ee5c8IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999 +
1357 +
Short Papers___________________________________________________________________________________________________ +
Automatic Classification of +
Single Facial Images +
('1709339', 'Michael J. Lyons', 'michael j. lyons')
('2240088', 'Julien Budynek', 'julien budynek')
('34801422', 'Shigeru Akamatsu', 'shigeru akamatsu')
1ef4815f41fa3a9217a8a8af12cc385f6ed137e1Rendering of Eyes for Eye-Shape Registration and Gaze Estimation +('34399452', 'Erroll Wood', 'erroll wood')
('2520795', 'Xucong Zhang', 'xucong zhang')
('1751242', 'Yusuke Sugano', 'yusuke sugano')
('39626495', 'Peter Robinson', 'peter robinson')
('3194727', 'Andreas Bulling', 'andreas bulling')
University of Cambridge, United Kingdom {eww23,tb346,pr10}@cam.ac.uk +
Max Planck Institute for Informatics, Germany {xczhang,sugano,bulling}@mpi-inf.mpg.de +
1eb4ea011a3122dc7ef3447e10c1dad5b69b0642Contextual Visual Recognition from Images and Videos +
Jitendra Malik +
Electrical Engineering and Computer Sciences +
University of California at Berkeley
Technical Report No. UCB/EECS-2016-132 +
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-132.html +
July 19, 2016 +
('2082991', 'Georgia Gkioxari', 'georgia gkioxari')
1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3Article +
A Brief Review of Facial Emotion Recognition Based +
on Visual Information +
Byoung Chul Ko ID +
Tel.: +82-10-3559-4564 +
Received: 6 December 2017; Accepted: 25 January 2018; Published: 30 January 2018 +
Department of Computer Engineering, Keimyung University, Daegu 42601, Korea; niceko@kmu.ac.kr; +
1e8eee51fd3bf7a9570d6ee6aa9a09454254689dThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE +
Transactions on Pattern Analysis and Machine Intelligence +
Face Search at Scale +
('7496032', 'Dayong Wang', 'dayong wang')
('40653304', 'Charles Otto', 'charles otto')
('6680444', 'Anil K. Jain', 'anil k. jain')
1ea8085fe1c79d12adffb02bd157b54d799568e4
1ea74780d529a458123a08250d8fa6ef1da47a25Videos from the 2013 Boston Marathon: +
An Event Reconstruction Dataset for +
Synchronization and Localization +
CMU-LTI-018 +
Language Technologies Institute
School of Computer Science +
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 +
www.lti.cs.cmu.edu +
© October 1, 2016 +
('49252656', 'Jia Chen', 'jia chen')
('1915796', 'Junwei Liang', 'junwei liang')
('47896638', 'Han Lu', 'han lu')
('2927024', 'Shoou-I Yu', 'shoou-i yu')
('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')
1ebdfceebad642299e573a8995bc5ed1fad173e3
1eec03527703114d15e98ef9e55bee5d6eeba736UNIVERSITÄT KARLSRUHE (TH) +
FAKULTÄT FÜR INFORMATIK +
INTERACTIVE SYSTEMS LABS +
DIPLOMA THESIS +
Automatic identification +
of persons in TV series +
SUBMITTED BY +
MAY 2008 +
ADVISORS +
('12141635', 'A. Waibel', 'a. waibel')
('2284204', 'Mika Fischer', 'mika fischer')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
1e07500b00fcd0f65cf30a11f9023f74fe8ce65cWHOLE SPACE SUBCLASS DISCRIMINANT ANALYSIS FOR FACE RECOGNITION +
Institute for Infocomm Research, A*STAR, Singapore
('1709001', 'Bappaditya Mandal', 'bappaditya mandal')
('35718875', 'Liyuan Li', 'liyuan li')
('1802086', 'Vijay Chandrasekhar', 'vijay chandrasekhar')
Email: {bmandal, lyli, vijay, joohwee}@i2r.a-star.edu.sg +
1e19ea6e7f1c04a18c952ce29386252485e4031eInternational Association of Scientific Innovation and Research (IASIR) +
(An Association Unifying the Sciences, Engineering, and Applied Research) +
ISSN (Print): 2279-0047 +
ISSN (Online): 2279-0055 +
International Journal of Emerging Technologies in Computational +
and Applied Sciences (IJETCAS) +
www.iasir.net +
MATLAB Based Face Recognition System Using PCA and Neural Network +
1Faculty of Computer Science & Engineering, 2Research Scholar +
University Institute of Engineering and Technology
Kurukshetra University, Kurukshetra-136 119, Haryana, INDIA
('1989126', 'Sanjeev Dhawan', 'sanjeev dhawan')
('7940433', 'Himanshu Dogra', 'himanshu dogra')
E-mail (s): rsdhawan@rediffmail.com, himanshu.dogra.13@gmail.com +
1ec98785ac91808455b753d4bc00441d8572c416Curriculum Learning for Facial Expression Recognition +
Language Technologies Institute, School of Computer Science
Carnegie Mellon University, USA
few years, +
('1970583', 'Liangke Gui', 'liangke gui')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177Face Detection with a 3D Model +
Department of Statistics +
Florida State University
National Institutes of Health
('2455529', 'Adrian Barbu', 'adrian barbu')
('2230628', 'Nathan Lay', 'nathan lay')
abarbu@stat.fsu.edu +
nathan.lay@nih.gov +
1efacaa0eaa7e16146c34cd20814d1411b35538eHEIDARIVINCHEHET AL: ACTIONCOMPLETION:A TEMPORALMODEL.. +
Action Completion: +
A Temporal Model for Moment Detection +
Department of Computer Science +
University of Bristol
Bristol, UK +
('10007321', 'Farnoosh Heidarivincheh', 'farnoosh heidarivincheh')
('1728108', 'Majid Mirmehdi', 'majid mirmehdi')
('1728459', 'Dima Damen', 'dima damen')
Farnoosh.Heidarivincheh@bristol.ac.uk +
M.Mirmehdi@bristol.ac.uk +
Dima.Damen@bristol.ac.uk +
1eba6fc35a027134aa8997413647b49685f6fbd1Superpower Glass: Delivering +
Unobtrusive Real-time Social Cues +
in Wearable Systems +
Dennis Wall +
Stanford University
Stanford, CA 94305, USA +
Permission to make digital or hard copies of part or all of this work for +
personal or classroom use is granted without fee provided that copies are +
not made or distributed for profit or commercial advantage and that copies +
bear this notice and the full citation on the first page. Copyrights for third- +
party components of this work must be honored. For all other uses, contact +
the Owner/Author. +
Copyright is held by the owner/author(s). +
Ubicomp/ISWC'16 Adjunct , September 12-16, 2016, Heidelberg, Germany +
ACM 978-1-4503-4462-3/16/09. +
http://dx.doi.org/10.1145/2968219.2968310 +
('21701693', 'Catalin Voss', 'catalin voss')
('40026202', 'Peter Washington', 'peter washington')
('32551479', 'Nick Haber', 'nick haber')
('40494635', 'Aaron Kline', 'aaron kline')
('34240128', 'Jena Daniels', 'jena daniels')
('3407835', 'Azar Fazel', 'azar fazel')
('3457025', 'Titas De', 'titas de')
('3456914', 'Beth McCarthy', 'beth mccarthy')
('34925386', 'Carl Feinstein', 'carl feinstein')
('1699245', 'Terry Winograd', 'terry winograd')
catalin@cs.stanford.edu +
peterwashington@stanford.edu +
nhaber@stanford.edu +
akline@stanford.edu +
danielsj@stanford.edu +
azarf@stanford.edu +
titasde@stanford.edu +
bethmac@stanford.edu +
carlf@stanford.edu +
winograd@cs.stanford.edu +
dpwall@stanford.edu +
1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacfA Multi-Level Contextual Model For Person Recognition in Photo Albums +
Stevens Institute of Technology
‡Adobe Research +
(cid:92)Microsoft Research +
('3131569', 'Haoxiang Li', 'haoxiang li')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
('1720987', 'Xiaohui Shen', 'xiaohui shen')
('1745420', 'Gang Hua', 'gang hua')
†hli18@stevens.edu +
‡{jbrandt, zlin, xshen}@adobe.com +
(cid:92)ganghua@microsoft.com +
1ef1f33c48bc159881c5c8536cbbd533d31b0e9aZ. ZHANG ET AL.: ADVERSARIAL TRAINING FOR ACTION UNIT RECOGNITION +
Identity-based Adversarial Training of Deep +
CNNs for Facial Action Unit Recognition +
Department of Computer Science +
State University of New York at
Binghamton +
NY, USA. +
('47294008', 'Zheng Zhang', 'zheng zhang')
('2443456', 'Shuangfei Zhai', 'shuangfei zhai')
('8072251', 'Lijun Yin', 'lijun yin')
zzhang27@cs.binghamton.edu +
szhai2@cs.binghamton.edu +
lijun@cs.binghamton.edu +
1ef5ce743a44d8a454dbfc2657e1e2e2d025e366Global Journal of Computer Science & Technology +
Volume 11 Issue Version 1.0 April 2011 +
Type: Double Blind Peer Reviewed International Research Journal +
Publisher: Global Journals Inc. (USA) +
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 +
+
Accurate Corner Detection Methods using Two Step Approach +
Thapar University
('1765523', 'Nitin Bhatia', 'nitin bhatia')
('9180065', 'Megha Chhabra', 'megha chhabra')
1e58d7e5277288176456c66f6b1433c41ca77415Bootstrapping Fine-Grained Classifiers: +
Active Learning with a Crowd in the Loop +
Brown University, 2University of California, San Diego, 3California Institute of Technology
('40541456', 'Genevieve Patterson', 'genevieve patterson'){gen, hays}@cs.brown.edu gvanhorn@ucsd.edu sjb@cs.ucsd.edu +
perona@caltech.edu +
1e5a1619fe5586e5ded2c7a845e73f22960bbf5aGroup Membership Prediction +
Boston University
('7969330', 'Ziming Zhang', 'ziming zhang')
('9772059', 'Yuting Chen', 'yuting chen')
('1699322', 'Venkatesh Saligrama', 'venkatesh saligrama')
{zzhang14, yutingch, srv}@bu.edu +
1e9f1bbb751fe538dde9f612f60eb946747defaaJournal of Systems Engineering and Electronics +
Vol. 28, No. 4, August 2017, pp.784 – 792 +
Identity-aware convolutional neural networks for +
facial expression recognition +
The Big Data Research Center, Henan University, Kaifeng 475001, China
Tampere University of Technology, Tampere 33720, Finland
('34461878', 'Chongsheng Zhang', 'chongsheng zhang')
('39720477', 'Pengyou Wang', 'pengyou wang')
('40611812', 'Ke Chen', 'ke chen')
1e917fe7462445996837934a7e46eeec14ebc65fExpression Classification using +
Wavelet Packet Method +
on Asymmetry Faces +
CMU-RI-TR-06-03 +
January 2006 +
Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 +
Carnegie Mellon University
('1689241', 'Yanxi Liu', 'yanxi liu')
1e8394cc9fe7c2392aa36fb4878faf7e78bbf2deTO APPEAR IN IEEE THMS +
Zero-Shot Object Recognition System +
based on Topic Model +
('2800072', 'Wai Lam Hoo', 'wai lam hoo')
('2863960', 'Chee Seng Chan', 'chee seng chan')
1ef4aac0ebc34e76123f848c256840d89ff728d0
1ecb56e7c06a380b3ce582af3a629f6ef0104457List of Contents Vol.8 +
Contents of +
Journal of Advanced Computational +
Intelligence and Intelligent Informatics +
Volume 8 +
Vol.8 No.1, January 2004 +
Editorial: +
o Special Issue on Selected Papers from Humanoid, +
Papers: +
o Dynamic Color Object Recognition Using Fuzzy +
Nano-technology, Information Technology, +
Communication and Control, Environment, and +
Management (HNICEM’03). +
. 1 +
Elmer P. Dadios +
Papers: +
o A New Way of Discovery of Belief, Desire and +
Intention in the BDI Agent-Based Software +
Modeling . +
. 2 +
o Integration of Distributed Robotic Systems +
. 7 +
Fakhri Karray, Rogelio Soto, Federico Guedea, +
and Insop Song +
o A Searching and Tracking Framework for +
Multi-Robot Observation of Multiple Moving +
Targets . +
. 14 +
Zheng Liu, Marcelo H. Ang Jr., and Winston +
Khoon Guan Seah +
Development Paper: +
o Possibilistic Uncertainty Propagation and +
Compromise Programming in the Life Cycle +
Analysis of Alternative Motor Vehicle Fuels +
Raymond R. Tan, Alvin B. Culaba, and +
Michael R. I. Purvis +
. 23 +
Logic . +
Napoleon H. Reyes, and Elmer P. Dadios +
. 29 +
o A Optical Coordinate Measuring Machine for +
Nanoscale Dimensional Metrology . +
. 39 +
Eric Kirkland, Thomas R. Kurfess, and Steven +
Y. Liang +
o Humanoid Robot HanSaRam: Recent Progress +
and Developments . +
. 45 +
Jong-Hwan Kim, Dong-Han Kim, Yong-Jae +
Kim, Kui-Hong Park, Jae-Ho Park, +
Choon-Kyoung Moon, Jee-Hwan Ryu, Kiam +
Tian Seow, and Kyoung-Chul Koh +
o Generalized Associative Memory Models: Their +
Memory Capacities and Potential Application +
. 56 +
Teddy N. Yap, Jr., and Arnulfo P. Azcarraga +
o Hybrid Fuzzy Logic Strategy for Soccer Robot +
Game. +
. 65 +
Elmer A. Maravillas , Napoleon H. Reyes, and +
Elmer P. Dadios +
o Image Compression and Reconstruction Based on +
Fuzzy Relation and Soft Computing +
Technology . +
. 72 +
Kaoru Hirota, Hajime Nobuhara, Kazuhiko +
Kawamoto, and Shin’ichi Yoshida +
Vol.8 No.2, March 2004 +
Editorial: +
o Special Issue on Pattern Recognition . +
. 83 +
Papers: +
o Operation of Spatiotemporal Patterns Stored in +
Osamu Hasegawa +
Review: +
o Support Vector Machine and Generalization . 84 +
Takio Kurita +
o Bayesian Network: Probabilistic Reasoning, +
Statistical Learning, and Applications . +
. 93 +
Yoichi Motomura +
Living Neuronal Networks Cultured on a +
Microelectrode Array . +
Suguru N. Kudoh, and Takahisa Taguchi +
o Rapid Discriminative Learning . +
. 100 +
. 108 +
Jun Rokui +
o Robust Fuzzy Clustering Based on Similarity +
between Data . +
Kohei Inoue, and Kiichi Urahama +
Vol.8 No.6, 2004 +
Journal of Advanced Computational Intelligence +
and Intelligent Informatics +
. 115 +
I-1 +
('33358236', 'Chang-Hyun Jo', 'chang-hyun jo')
1e64b2d2f0a8a608d0d9d913c4baee6973995952DOMINANT AND +
COMPLEMENTARY MULTI- +
EMOTIONAL FACIAL +
EXPRESSION RECOGNITION +
USING C-SUPPORT VECTOR +
CLASSIFICATION +
('19172816', 'Christer Loob', 'christer loob')
('2303909', 'Pejman Rasti', 'pejman rasti')
('7855312', 'Sergio Escalera', 'sergio escalera')
('2531522', 'Tomasz Sapinski', 'tomasz sapinski')
('34969391', 'Dorota Kaminska', 'dorota kaminska')
('3087532', 'Gholamreza Anbarjafari', 'gholamreza anbarjafari')
1e21b925b65303ef0299af65e018ec1e1b9b8d60Under review as a conference paper at ICLR 2017 +
UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION +
Facebook AI Research +
Tel-Aviv, Israel +
('2188620', 'Yaniv Taigman', 'yaniv taigman')
('33964593', 'Adam Polyak', 'adam polyak')
{yaniv,adampolyak,wolf}@fb.com +
1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9Entropy Regularization +
The problem of semi-supervised induction consists in learning a decision rule from +
labeled and unlabeled data. This task can be undertaken by discriminative methods, +
provided that learning criteria are adapted consequently. In this chapter, we moti- +
vate the use of entropy regularization as a means to bene(cid:12)t from unlabeled data in +
the framework of maximum a posteriori estimation. The learning criterion is derived +
from clearly stated assumptions and can be applied to any smoothly parametrized +
model of posterior probabilities. The regularization scheme favors low density sep- +
aration, without any modeling of the density of input features. The contribution +
of unlabeled data to the learning criterion induces local optima, but this problem +
can be alleviated by deterministic annealing. For well-behaved models of posterior +
probabilities, deterministic annealing EM provides a decomposition of the learning +
problem in a series of concave subproblems. Other approaches to the semi-supervised +
problem are shown to be close relatives or limiting cases of entropy regularization. +
A series of experiments illustrates the good behavior of the algorithm in terms of +
performance and robustness with respect to the violation of the postulated low den- +
sity separation assumption. The minimum entropy solution bene(cid:12)ts from unlabeled +
data and is able to challenge mixture models and manifold learning in a number of +
situations. +
9.1 Introduction +
semi-supervised +
induction +
This chapter addresses semi-supervised induction, which refers to the learning of +
a decision rule, on the entire input domain X, from labeled and unlabeled data. +
The objective is identical to the one of supervised classi(cid:12)cation: generalize from +
examples. The problem di(cid:11)ers in the respect that the supervisor’s responses are +
missing for some training examples. This characteristic is shared with transduction, +
which has however a di(cid:11)erent goal, that is, of predicting labels on a set of prede(cid:12)ned +
('1802711', 'Yves Grandvalet', 'yves grandvalet')
('1751762', 'Yoshua Bengio', 'yoshua bengio')
1ee3b4ba04e54bfbacba94d54bf8d05fd202931dIndonesian Journal of Electrical Engineering and Computer Science +
Vol. 12, No. 2, November 2018, pp. 476~481 +
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481 +
 476 +
Celebrity Face Recognition using Deep Learning +
1,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +
4Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +
Shah Alam, Selangor, Malaysia +
Campus Jasin, Melaka, Malaysia +
Article Info +
Article history: +
Received May 29, 2018 +
Revised Jul 30, 2018 +
Accepted Aug 3, 2018 +
Keywords: +
AlexNet +
Convolutional neural network +
Deep learning +
Face recognition +
GoogLeNet +
('2743254', 'Zaidah Ibrahim', 'zaidah ibrahim')
1e41a3fdaac9f306c0ef0a978ae050d884d77d2a411 +
Robust Object Recognition with +
Cortex-Like Mechanisms +
Tomaso Poggio, Member, IEEE +
('1981539', 'Thomas Serre', 'thomas serre')
('1776343', 'Lior Wolf', 'lior wolf')
('1996960', 'Maximilian Riesenhuber', 'maximilian riesenhuber')
1e94cc91c5293c8fc89204d4b881552e5b2ce672Unsupervised Alignment of Actions in Video with Text Descriptions +
University of Rochester, Rochester, NY, USA
Indian Institute of Technology Delhi, New Delhi, India
('3193978', 'Young Chol Song', 'young chol song')
('2296971', 'Iftekhar Naim', 'iftekhar naim')
('1782355', 'Abdullah Al Mamun', 'abdullah al mamun')
('38370357', 'Kaustubh Kulkarni', 'kaustubh kulkarni')
('35108153', 'Parag Singla', 'parag singla')
('33642939', 'Jiebo Luo', 'jiebo luo')
('1793218', 'Daniel Gildea', 'daniel gildea')
1e1e66783f51a206509b0a427e68b3f6e40a27c8SEMI-SUPERVISED ESTIMATION OF PERCEIVED AGE +
FROM FACE IMAGES +
VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan +
Keywords: +
('2163491', 'Kazuya Ueki', 'kazuya ueki')
('1719221', 'Masashi Sugiyama', 'masashi sugiyama')
ueki@mxf.nes.nec.co.jp +
1efaa128378f988965841eb3f49d1319a102dc36JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Hierarchical binary CNNs for landmark +
localization with limited resources +
('3458121', 'Adrian Bulat', 'adrian bulat')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
1e8eec6fc0e4538e21909ab6037c228547a678baIMPERIAL COLLEGE
University of London
enVisage : Face Recognition in +
Videos +
Supervisor : Dr. Stefan Rüeger +
June 14, 2006 +
('23558890', 'Ashwin Venkatraman', 'ashwin venkatraman')
('35805861', 'Ian Harries', 'ian harries')
(av102@doc.ic.ac.uk) +
1e6ed6ca8209340573a5e907a6e2e546a3bf2d28Pooling Faces: Template based Face Recognition with Pooled Face Images +
Prem Natarajan1 +
Gérard Medioni3 +
Information Sciences Institute, USC, CA, USA
The Open University of Israel, Israel
Institute for Robotics and Intelligent Systems, USC, CA, USA
('1756099', 'Tal Hassner', 'tal hassner')
('11269472', 'Iacopo Masi', 'iacopo masi')
('5911467', 'Jungyeon Kim', 'jungyeon kim')
('1689391', 'Jongmoo Choi', 'jongmoo choi')
('35840854', 'Shai Harel', 'shai harel')
8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2Consensual and Privacy-Preserving Sharing of +
Multi-Subject and Interdependent Data +
EPFL, UNIL–HEC Lausanne +
K´evin Huguenin +
UNIL–HEC Lausanne +
EPFL +
EPFL +
('1862343', 'Alexandra-Mihaela Olteanu', 'alexandra-mihaela olteanu')
('2461431', 'Italo Dacosta', 'italo dacosta')
('1757221', 'Jean-Pierre Hubaux', 'jean-pierre hubaux')
alexandramihaela.olteanu@epfl.ch +
kevin.huguenin@unil.ch +
italo.dacosta@epfl.ch +
jean-pierre.hubaux@epfl.ch +
841855205818d3a6d6f85ec17a22515f4f062882Low Resolution Face Recognition in the Wild +
Patrick Flynn1 +
1Department of Computer Science and Engineering +
University of Notre Dame
2Department of Computer Science +
Pontificia Universidad Cat´olica de Chile +
('50492554', 'Pei Li', 'pei li')
('47522390', 'Loreto Prieto', 'loreto prieto')
('1797475', 'Domingo Mery', 'domingo mery')
84c0f814951b80c3b2e39caf3925b56a9b2e1733Manifesto from Dagstuhl Perspectives Workshop 12382 +
Computation and Palaeography: Potentials and Limits∗ +
Edited by +
The Open University of
University of Nebraska Lincoln, USA
King s College London, UK
The Blavatnik School of Computer Science, Tel Aviv University, IL
('1756099', 'Tal Hassner', 'tal hassner')
('34564710', 'Malte Rehbein', 'malte rehbein')
('34876976', 'Peter A. Stokes', 'peter a. stokes')
('1776343', 'Lior Wolf', 'lior wolf')
Israel, IL, hassner@openu.ac.il +
malte.rehbein@unl.edu +
peter.stokes@kcl.ac.uk +
wolf@cs.tau.ac.il +
84fe5b4ac805af63206012d29523a1e033bc827e
84e4b7469f9c4b6c9e73733fa28788730fd30379Duong et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:10 +
DOI 10.1186/s13634-017-0521-9 +
EURASIP Journal on Advances +
in Signal Processing +
R ES EAR CH +
Projective complex matrix factorization for +
facial expression recognition +
Open Access +
('2345136', 'Viet-Hang Duong', 'viet-hang duong')
('2033188', 'Yuan-Shan Lee', 'yuan-shan lee')
('1782417', 'Jian-Jiun Ding', 'jian-jiun ding')
('34759060', 'Bach-Tung Pham', 'bach-tung pham')
('30065390', 'Manh-Quan Bui', 'manh-quan bui')
('35196812', 'Pham The Bao', 'pham the bao')
('3205648', 'Jia-Ching Wang', 'jia-ching wang')
84dcf04802743d9907b5b3ae28b19cbbacd97981
841bf196ee0086c805bd5d1d0bddfadc87e424ecInternational Journal of Signal Processing, Image Processing and Pattern Recognition +
Vol. 5, No. 4, December, 2012 +
Locally Kernel-based Nonlinear Regression for Face Recognition +
South Tehran Branch, Electrical Engineering Department, Tehran, Iran +
Islamic Azad University
Amirkabir University of Technology
Electrical Engineering Department,Tehran, Iran +
('3345810', 'Yaser Arianpour', 'yaser arianpour')
('2630546', 'Sedigheh Ghofrani', 'sedigheh ghofrani')
('1685153', 'Hamidreza Amindavar', 'hamidreza amindavar')
st_y_arianpour@azad.ac.ir, s_ghofrani@azad.ac.ir and hamidami@aut.ac.ir +
842d82081f4b27ca2d4bc05c6c7e389378f0c7b8ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011 +
ENGLISH EDITION +
Usage of affective computing in recommender systems +
Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc +
University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia
E-mail: marko.tkalcic@fe.uni-lj.si +
84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1Improved Boosting Performance by Explicit +
Handling of Ambiguous Positive Examples +
('1750517', 'Miroslav Kobetski', 'miroslav kobetski')
('1736906', 'Josephine Sullivan', 'josephine sullivan')
84508e846af3ac509f7e1d74b37709107ba48bdeUse of the Septum as a Reference Point in a Neurophysiologic Approach to +
Facial Expression Recognition +
Department of Computer Engineering, Faculty of Engineering, +
Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
Telephone: (66)080-7045015, (66)074-287-357 +
('38928684', 'Igor Stankovic', 'igor stankovic')
('2799130', 'Montri Karnjanadecha', 'montri karnjanadecha')
E-mail: bizmut@neobee.net, montri@coe.psu.ac.th +
841a5de1d71a0b51957d9be9d9bebed33fb5d9fa5017 +
PCANet: A Simple Deep Learning Baseline for +
Image Classification? +
('1926757', 'Tsung-Han Chan', 'tsung-han chan')
('2370507', 'Kui Jia', 'kui jia')
('1702868', 'Shenghua Gao', 'shenghua gao')
('1697700', 'Jiwen Lu', 'jiwen lu')
('1920683', 'Zinan Zeng', 'zinan zeng')
('1700297', 'Yi Ma', 'yi ma')
84e6669b47670f9f4f49c0085311dce0e178b685Face frontalization for Alignment and Recognition +
∗Department of Computing, +
Imperial College London
180 Queens Gate, +
†EEMCS, +
University of Twente
Drienerlolaan 5, +
London SW7 2AZ, U.K. +
7522 NB Enschede, The Netherlands +
('3320415', 'Christos Sagonas', 'christos sagonas')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{c.sagonas, i.panagakis, s.zafeiriou, m.pantic}@imperial.ac.uk +
847e07387142c1bcc65035109ccce681ef88362cFeature Synthesis Using Genetic Programming for Face +
Expression Recognition +
Center for research in intelligent systems +
University of California, Riverside CA 92521-0425, USA
('1707159', 'Bir Bhanu', 'bir bhanu')
('1723555', 'Jiangang Yu', 'jiangang yu')
('1711543', 'Xuejun Tan', 'xuejun tan')
('1742735', 'Yingqiang Lin', 'yingqiang lin')
{bhanu, jyu, xtan, yqlin}@cris.ucr.edu +
8411fe1142935a86b819f065cd1f879f16e77401International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 6, November 2013 +
Facial Recognition using Modified Local Binary +
Pattern and Random Forest +
Department of Computer Science, +
North Carolina AandT State University
Greensboro, NC 27411 +
('3536162', 'Brian O’Connor', 'brian o’connor')
('34999544', 'Kaushik Roy', 'kaushik roy')
843e6f1e226480e8a6872d8fd7b7b2cd74b637a4Research Journal of Applied Sciences, Engineering and Technology 4(22): 4724-4728, 2012 +
ISSN: 2040-7467 +
© Maxwell Scientific Organization, 2012 +
Submitted: March 31, 2012 +
Accepted: April 30, 2012 +
Published: November 15, 2012 +
Palmprint Recognition Using Directional Representation and +
Compresses Sensing +
1Shandong Provincial Key Laboratory of computer Network, Shandong Computer +
Science Center, Jinan 250014, China +
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
('2112738', 'Hengjian Li', 'hengjian li')
84f904a71bee129a1cf00dc97f6cdbe1011657e6Fashioning with Networks: Neural Style Transfer to Design +
Clothes +
University Of Maryland
Baltimore County (UMBC), +
University Of Maryland
Baltimore County (UMBC), +
University Of Maryland
Baltimore County (UMBC), +
Baltimore, MD, +
USA +
Baltimore, MD, +
USA +
Baltimore, MD, +
USA +
('30834050', 'Prutha Date', 'prutha date')
('2116290', 'Ashwinkumar Ganesan', 'ashwinkumar ganesan')
('1756624', 'Tim Oates', 'tim oates')
dprutha1@umbc.edu +
gashwin1@umbc.edu +
oates@cs.umbc.edu +
849f891973ad2b6c6f70d7d43d9ac5805f1a1a5bDetecting Faces Using Region-based Fully +
Convolutional Networks +
Tencent AI Lab, China +
('1996677', 'Yitong Wang', 'yitong wang'){yitongwang,denisji,encorezhou,hawelwang,michaelzfli}@tencent.com +
846c028643e60fefc86bae13bebd27341b87c4d1Face Recognition Under Varying Illumination +
Based on MAP Estimation Incorporating +
Correlation Between Surface Points +
1 Panasonic Tokyo (Matsushita Electric Industrial Co., Ltd.,) +
4–3–1 Tsunashima-higashi, Kohoku-ku, Yokohama City, Kanagawa 223–8639, Japan +
Institute of Industrial Science, The University of Tokyo
4–6–1 Komaba, Meguro-ku Tokyo 153–8505, Japan +
National Institute of Informatics
2–1–2 Hitotsubashi, Chiyoda-ku Tokyo 101–8430, Japan +
('20877506', 'Mihoko Shimano', 'mihoko shimano')
('1977815', 'Kenji Nagao', 'kenji nagao')
('1706742', 'Takahiro Okabe', 'takahiro okabe')
('1746794', 'Imari Sato', 'imari sato')
('9467266', 'Yoichi Sato', 'yoichi sato')
shimano.mhk@jp.panasonic.com +
{takahiro, ysato}@iis.u-tokyo.ac.jp +
imarik@nii.ac.jp +
4a14a321a9b5101b14ed5ad6aa7636e757909a7cLearning Semi-Supervised Representation Towards a Unified Optimization +
Framework for Semi-Supervised Learning +
School of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications
Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
Cooperative Medianet Innovation Center, Shanghai Jiaotong University
('9171002', 'Chun-Guang Li', 'chun-guang li')
('33383055', 'Zhouchen Lin', 'zhouchen lin')
('1720776', 'Honggang Zhang', 'honggang zhang')
('39954962', 'Jun Guo', 'jun guo')
{lichunguang, zhhg, guojun}@bupt.edu.cn; zlin@pku.edu.cn +
4adca62f888226d3a16654ca499bf2a7d3d11b71Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 572–582, +
Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics +
572 +
4aa286914f17cd8cefa0320e41800a99c142a1cdLeveraging Context to Support Automated Food Recognition in Restaurants +
School of Interactive Computing +
Georgia Institute of Technology, Atlanta, Georgia, USA
http://www.vbettadapura.com/egocentric/food +
('3115428', 'Vinay Bettadapura', 'vinay bettadapura')
('39642711', 'Edison Thomaz', 'edison thomaz')
('2943897', 'Aman Parnami', 'aman parnami')
('9267108', 'Gregory D. Abowd', 'gregory d. abowd')
4a9d906935c9de019c61aedc10b77ee10e3aec63Cross Modal Distillation for Supervision Transfer +
University of California, Berkeley
('3134457', 'Saurabh Gupta', 'saurabh gupta')
('4742485', 'Judy Hoffman', 'judy hoffman')
('1689212', 'Jitendra Malik', 'jitendra malik')
{sgupta, jhoffman, malik}@eecs.berkeley.edu +
4a2d54ea1da851151d43b38652b7ea30cdb6dfb2Direct Recognition of Motion Blurred Faces +('39487011', 'Kaushik Mitra', 'kaushik mitra')
('2715270', 'Priyanka Vageeswaran', 'priyanka vageeswaran')
('9215658', 'Rama Chellappa', 'rama chellappa')
4ae59d2a28abd76e6d9fb53c9e7ece833dce7733A Survey on Mobile Affective Computing +
Shengkai Zhang and Pan Hui +
Department of Computer Science and Engineering +
The Hong Kong University of Science and Technology
{szhangaj, panhui}@cse.ust.hk +
4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8Graz University of Technology
Institute for Computer Graphics and Vision
Dissertation +
Efficient Metric Learning for +
Real-World Face Recognition +
Graz, Austria, December 2013 +
Thesis supervisors +
Prof. Dr. Horst Bischof +
Prof. Dr. Fernando De la Torre +
('1993853', 'Martin Köstinger', 'martin köstinger')
4ab84f203b0e752be83f7f213d7495b04b1c4c79CONCAVE LOSSES FOR ROBUST DICTIONARY LEARNING +
University of S ao Paulo
Institute of Mathematics and Statistics
Rua do Mat˜ao, 1010 – 05508-090 – S˜ao Paulo-SP, Brazil +
Universit´e de Rouen Normandie +
LITIS EA 4108 +
76800 Saint- ´Etienne-du-Rouvray, France +
('30146203', 'Rafael Will M. de Araujo', 'rafael will m. de araujo')
('1792962', 'Alain Rakotomamonjy', 'alain rakotomamonjy')
4a484d97e402ed0365d6cf162f5a60a4d8000ea0A Crowdsourcing Approach for Finding Misidentifications of Bibliographic Records +
University of Tsukuba
2 National Diet Library +
3 Doshisha Univeristy +
('34573158', 'Atsuyuki Morishima', 'atsuyuki morishima')
('32857584', 'Takanori Kawashima', 'takanori kawashima')
('23161591', 'Takashi Harada', 'takashi harada')
('2406721', 'Sho Sato', 'sho sato')
4a3758f283b7c484d3f164528d73bc8667eb1591Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial +
Networks +
Center for Research on Intelligent Perception and Computing, CASIA +
National Laboratory of Pattern Recognition, CASIA +
('1860829', 'Yunfan Liu', 'yunfan liu')
('1682467', 'Qi Li', 'qi li')
('1757186', 'Zhenan Sun', 'zhenan sun')
yunfan,liu@cripac.ia.ac.cn, {qli, znsun}@nlpr.ia.ac.cn +
4a4da3d1bbf10f15b448577e75112bac4861620aFACE, EXPRESSION, AND IRIS RECOGNITION +
USING LEARNING-BASED APPROACHES +
by +
A dissertation submitted in partial fulfillment of +
the requirements for the degree of +
Doctor of Philosophy +
(Computer Sciences) +
at the +
UNIVERSITY OF WISCONSIN MADISON
2006 +
('1822413', 'Guodong Guo', 'guodong guo')
4abd49538d04ea5c7e6d31701b57ea17bc349412Recognizing Fine-Grained and Composite Activities +
using Hand-Centric Features and Script Data +
('34849128', 'Marcus Rohrbach', 'marcus rohrbach')
('40404576', 'Sikandar Amin', 'sikandar amin')
4aa093d1986b4ad9b073ac9edfb903f62c00e0b0Facial Recognition with +
Encoded Local Projections +
Mechanincal and Mechatronics Engineering +
University of Waterloo
Waterloo, Canada +
Kimia Lab +
University of Waterloo
Waterloo, Canada +
('34139904', 'Dhruv Sharma', 'dhruv sharma')
('7641396', 'Sarim Zafar', 'sarim zafar')
('38685017', 'Morteza Babaie', 'morteza babaie')
4a0f98d7dbc31497106d4f652968c708f7da6692Real-time Eye Gaze Direction Classification Using +
Convolutional Neural Network +
('3110004', 'Anjith George', 'anjith george')
('2680543', 'Aurobinda Routray', 'aurobinda routray')
4aabd6db4594212019c9af89b3e66f39f3108aacUniversity of Colorado, Boulder
CU Scholar +
Undergraduate Honors Theses +
Honors Program +
Spring 2015 +
The Mere Exposure Effect and Classical +
Conditioning +
Follow this and additional works at: http://scholar.colorado.edu/honr_theses +
Part of the Cognition and Perception Commons, and the Cognitive Psychology Commons +
Recommended Citation +
Wong, Rosalyn, "The Mere Exposure Effect and Classical Conditioning" (2015). Undergraduate Honors Theses. Paper 937. +
This Thesis is brought to you for free and open access by Honors Program at CU Scholar. It has been accepted for inclusion in Undergraduate Honors +
('10191508', 'Rosalyn Wong', 'rosalyn wong')University of Colorado Boulder, Rosalyn.Wong@Colorado.EDU +
Theses by an authorized administrator of CU Scholar. For more information, please contact cuscholaradmin@colorado.edu. +
4adb97b096b700af9a58d00e45a2f980136fcbb5Exploring Temporal Preservation Networks for Precise Temporal Action +
Localization +
National Laboratory for Parallel and Distributed Processing, +
National University of Defense Technology
Changsha, China +
('40520103', 'Ke Yang', 'ke yang')
('2292038', 'Peng Qiao', 'peng qiao')
('40252278', 'Dongsheng Li', 'dongsheng li')
('1893776', 'Shaohe Lv', 'shaohe lv')
('1791001', 'Yong Dou', 'yong dou')
{yangke13,pengqiao,dongshengli,yongdou,shaohelv}@nudt.edu.cn +
4a5592ae1f5e9fa83d9fa17451c8ab49608421e4Multi-modal Social Signal Analysis for Predicting +
Agreement in Conversation Settings +
IN3, Open University of
Catalonia, Roc Boronat, 117, +
08018 Barcelona, Spain. +
University of
Barcelona, Gran Via, 585, +
08007 Barcelona, Spain. +
Computer Vision Center, UAB, +
08193 Barcelona, Spain. +
University of
Barcelona, Gran Via, 585, +
08007 Barcelona, Spain. +
Computer Vision Center, UAB, +
08193 Barcelona, Spain. +
EIMT, Open University of
Catalonia, Rbla. Poblenou, +
156, 08018 Barcelona, Spain. +
Computer Vision Center, UAB, +
08193 Barcelona, Spain. +
('1960768', 'Víctor Ponce-López', 'víctor ponce-lópez')
('7855312', 'Sergio Escalera', 'sergio escalera')
('1857280', 'Xavier Baró', 'xavier baró')
vponcel@uoc.edu +
sergio@maia.ub.es +
xbaro@uoc.edu +
4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +
3-22 +
Face Recognition using Local Features based on Two-layer Block M odel +
W onjun Hwang1 Ji-Yeun Kim Seokcheol Kee +
Computing Lab., +
Samsung Advanced Institute of Technology
combined by Yang and etc [7]. The sparsification of LFA +
helps the reduction of dimension of image in LDA scheme +
and local topological property is more useful than holistic +
property of PCA in recognition, but there is still structural +
problem because the method to select the features is +
designed for minimization of reconstruction error, not for +
increasing discriminability in face model. +
In this paper, we proposed the novel recognition +
algorithm to merge LFA and LDA method. We do not use +
the existing sparsification method for selecting features but +
adopt the two-layer block model to make several groups +
with topographic local features in similar position. Each +
local block, flocked local features, can represent its own +
local property and at +
time holistic face +
information. Flocks of local features can easily solve the +
small sample size problem in LDA without discarding +
unselected local features, and LDA scheme can extract the +
important information for recognition not in focus of +
representation. M oreover, we can extract lots of vectors on +
separated viewpoint from different layer model in one face +
image and they have the property robust to environmental +
changes and overfitting problem as compared with limited +
number of features vectors. +
the same +
The rest of this paper is organized as follows: the brief +
description on LFA and LDA is explained in Section 2.1 +
and Section 2.2, respectively and proposed algorithm - +
local feature based on two-layer block model is given in +
Section 2.3. The experimental results are given in Section 3. +
Conclusion is summarized in Section 4. +
2 LFA and LDA M ethod based on Two- +
Layer Block M odel +
2.1 Theory of local feature analysis +
A topographic representation based on second-order +
image dependencies called local features analysis (LFA) +
was developed by Penev and Atick [4]. Local feature +
analysis can makes a set of topographic and local kernels +
that are optimally matched to the second-order statistics of +
the input ensemble. Local features are basically derived +
from principal component eigenvectors, and consist of +
sphering principal component eigenvalues to equalize their +
variance. +
Suppose that we are given a set of M training +
M , each represented by an +
images, +
i(cid:77) , =1,(cid:133) , +
dimensional vector obtained by a raster scan. The mean +
4ae291b070ad7940b3c9d3cb10e8c05955c9e269Automatic Detection of Naturalistic Hand-over-Face +
Gesture Descriptors +
University of Cambridge, Computer Laboratory, UK
('2022940', 'Marwa Mahmoud', 'marwa mahmoud')
('39626495', 'Peter Robinson', 'peter robinson')
{marwa.mahmoud, tadas.baltrusaitis, peter.robinson}@cl.cam.ac.uk +
4aa8db1a3379f00db2403bba7dade5d6e258b9e9Recognizing Combinations of Facial Action Units with +
Different Intensity Using a Mixture of Hidden Markov +
Models and Neural Network +
DSP Lab, Sharif University of Technology, Tehran, Iran
('1736464', 'Mahmoud Khademi', 'mahmoud khademi')
('1702826', 'Mohammad Hadi Kiapour', 'mohammad hadi kiapour')
('1707281', 'Ali Akbar Kiaei', 'ali akbar kiaei')
{khademi@ce.,manzuri@,kiapour@ee.,kiaei@ce.}sharif.edu +
4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9Fusing Deep Convolutional Networks for Large +
Scale Visual Concept Classification +
Department of Computer Engineering +
Bas kent University
06810 Ankara, TURKEY +
('2140386', 'Hilal Ergun', 'hilal ergun')
('1700011', 'Mustafa Sert', 'mustafa sert')
21020005@mail.baskent.edu.tr, Bmsert@baskent.edu.tr +
4ac4e8d17132f2d9812a0088594d262a9a0d339bRank Constrained Recognition under Unknown Illuminations +
Center for Automation Research (CfAR) +
Department of Electrical and Computer Engineering +
University of Maryland, College Park, MD
('9215658', 'Rama Chellappa', 'rama chellappa'){shaohua, rama}@cfar.umd.edu +
4ac3cd8b6c50f7a26f27eefc64855134932b39beRobust Facial Landmark Detection +
via a Fully-Convolutional Local-Global Context Network +
Technical University of Munich
('3044182', 'Daniel Merget', 'daniel merget')
('28096417', 'Matthias Rock', 'matthias rock')
('46343645', 'Gerhard Rigoll', 'gerhard rigoll')
daniel.merget@tum.de +
matthias.rock@tum.de +
mmk@ei.tum.de +
4abaebe5137d40c9fcb72711cdefdf13d9fc3e62Dimension Reduction for Regression +
with Bottleneck Neural Networks +
BECS, Aalto University School of Science and Technology, Finland
('2504988', 'Elina Parviainen', 'elina parviainen')
4acd683b5f91589002e6f50885df51f48bc985f4BRIDGING COMPUTER VISION AND SOCIAL SCIENCE : A MULTI-CAMERA VISION +
SYSTEM FOR SOCIAL INTERACTION TRAINING ANALYSIS +
Peter Tu +
GE Global Research, Niskayuna NY USA +
('1713712', 'Jixu Chen', 'jixu chen')
('39643145', 'Ming-Ching Chang', 'ming-ching chang')
('2095482', 'Tai-Peng Tian', 'tai-peng tian')
('1689202', 'Ting Yu', 'ting yu')
4a1d640f5e25bb60bb2347d36009718249ce9230Towards Multi-view and Partially-occluded Face Alignment +
National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, P. R. China
National University of Singapore, Singapore
('1757173', 'Junliang Xing', 'junliang xing')
('1773437', 'Zhiheng Niu', 'zhiheng niu')
('1753492', 'Junshi Huang', 'junshi huang')
('40506509', 'Weiming Hu', 'weiming hu')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
{jlxing,wmhu}@nlpr.ia.ac.cn +
{niuzhiheng,junshi.huang,eleyans}@nus.edu.sg +
4aeb87c11fb3a8ad603311c4650040fd3c088832Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
1816 +
4a3d96b2a53114da4be3880f652a6eef3f3cc0352666 +
A Dictionary Learning-Based +
3D Morphable Shape Model +
('35220006', 'Claudio Ferrari', 'claudio ferrari')
('2973738', 'Giuseppe Lisanti', 'giuseppe lisanti')
('2507859', 'Stefano Berretti', 'stefano berretti')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
4a6fcf714f663618657effc341ae5961784504c7Scaling up Class-Specific Kernel Discriminant +
Analysis for large-scale Face Verification +
('9219875', 'Moncef Gabbouj', 'moncef gabbouj')
24b37016fee57057cf403fe2fc3dda78476a8262Automatic Recognition of Eye Blinking in Spontaneously Occurring Behavior +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
University of Pittsburgh, Pittsburgh
('1683262', 'Tsuyoshi Moriyama', 'tsuyoshi moriyama')
('1724419', 'Jing Xiao', 'jing xiao')
24115d209e0733e319e39badc5411bbfd82c5133Long-term Recurrent Convolutional Networks for +
Visual Recognition and Description +
('7408951', 'Jeff Donahue', 'jeff donahue')
('2234342', 'Lisa Anne Hendricks', 'lisa anne hendricks')
('34849128', 'Marcus Rohrbach', 'marcus rohrbach')
('1811430', 'Subhashini Venugopalan', 'subhashini venugopalan')
('1687120', 'Sergio Guadarrama', 'sergio guadarrama')
('2903226', 'Kate Saenko', 'kate saenko')
('1753210', 'Trevor Darrell', 'trevor darrell')
24c442ac3f6802296d71b1a1914b5d44e48b4f29Pose and expression-coherent face recovery in the wild +
Technicolor, Cesson-S´evign´e, France +
Franc¸ois Le Clerc +
Patrick P´erez +
('2232848', 'Xavier P. Burgos-Artizzu', 'xavier p. burgos-artizzu')
('2045531', 'Joaquin Zepeda', 'joaquin zepeda')
xavier.burgos,joaquin.zepeda,francois.leclerc,patrick.perez@technicolor.com +
247cab87b133bd0f4f9e8ce5e7fc682be6340eacRESEARCH ARTICLE +
Robust Eye Center Localization through Face +
Alignment and Invariant Isocentric Patterns +
School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China, 2 School of Information
Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International
Joint Research Institute, Foshan, China
☯ These authors contributed equally to this work. +
('36721307', 'Zhiyong Pang', 'zhiyong pang')
('2940388', 'Chuansheng Wei', 'chuansheng wei')
('2127322', 'Dongdong Teng', 'dongdong teng')
('2547930', 'Dihu Chen', 'dihu chen')
('31912378', 'Hongzhou Tan', 'hongzhou tan')
* issthz@mail.sysu.edu.cn (HT); stspzy@mail.sysu.edu.cn (ZP) +
245f8ec4373e0a6c1cae36cd6fed5a2babed1386J. Appl. Environ. Biol. Sci., 7(3S)1-10, 2017 +
© 2017, TextRoad Publication +
ISSN: 2090-4274 +
Journal of Applied Environmental +
and Biological Sciences +
www.textroad.com +
Lucas Kanade Optical Flow Computation from Superpixel based Intensity +
Region for Facial Expression Feature Extraction +
1Intelligent Biometric Group, School of Electrical and Electronics Engineering, Universiti Sains Malaysia, +
Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute
Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia +
Kulim Hi-Tech Park, Kedah, Malaysia +
Received: February 21, 2017 +
Accepted: May 14, 2017 +
('9114862', 'Halina Hassan', 'halina hassan')
('2583099', 'Abduljalil Radman', 'abduljalil radman')
('2612367', 'Shahrel Azmin Suandi', 'shahrel azmin suandi')
('1685966', 'Sazali Yaacob', 'sazali yaacob')
24cb375a998f4af278998f8dee1d33603057e525Projection Metric Learning on Grassmann Manifold with Application to Video based Face Recognition +
1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100049, China
seek to learn a generic mapping f : G(q,D) → G(q,d) that is defined as +
f (YYY iYYY T +
i ) = WWW TYYY iYYY T +
i WWW = (WWW TYYY i)(WWW TYYY i)T . +
(1) +
where WWW ∈ RD×d (d ≤ D), is a transformation matrix of column full rank. +
With this mapping, the original Grassmann manifold G(q,D) can be trans- +
formed into a lower-dimensional Grassmann manifold G(q,d). However, +
except the case WWW is an orthogonal matrix, WWW TYYY i is not generally an or- +
thonormal basis matrix. Note that only the linear subspaces spanned by or- +
thonormal basis matrix can form a valid Grassmann manifold. To tackle this +
problem, we temporarily use the orthonormal components of WWW TYYY i defined +
(cid:48) +
by WWW TYYY +
i to represent an orthonormal basis matrix of the transformed pro- +
(cid:48) +
jection matrices. As for the approach to get the WWW TYYY +
i, we give more details +
in the original paper. Here, we briefly describe the formulation of the Pro- +
jection Metric on the new Grassmann manifold and the proposed objection +
function in the following. +
Learned Projection Metric. The Projection Metric of any pair of trans- +
formed projection operators WWW TYYY +
(cid:48)T +
j WWW is defined by: +
(cid:48) +
jYYY +
(cid:48) +
iYYY +
(cid:48) +
iYYY +
(cid:48) +
jYYY +
(cid:48)T +
i WWW ,WWW TYYY +
(cid:48)T +
i WWW , WWW TYYY +
(cid:48)T +
p(WWW TYYY +
d2 +
j WWW ) +
= 2−1/2(cid:107)WWW TYYY +
(cid:48)T +
(cid:48) +
i WWW −WWW TYYY +
iYYY +
= 2−1/2tr(PPPAAAi jAAAT +
i jPPP). +
i −YYY +
(cid:48)T +
(cid:48) +
jYYY +
(cid:48)T +
j WWW(cid:107)2 +
(2) +
(cid:48) +
iYYY +
(cid:48) +
jYYY +
(cid:48)T +
j and PPP = WWWWWW T . Since WWW is required to be a +
where AAAi j = YYY +
matrix with column full rank, PPP is a rank-d symmetric positive semidefinite +
matrix of size D× D, which has a similar form as Mahalanobis matrix. +
Discriminant Function. The discriminant function is designed to minimize +
the projection distances of any within-class subspace pairs while to maxi- +
mize the projection distances of between-class subspace pairs. The matrix +
PPP is thus achieved by the objective function J(PPP) as: +
PPP∗ = argmin +
PPP +
J(PPP) = argmin +
PPP +
(Jw(PPP)− αJb(PPP)). +
(3) +
where α reflects the trade-off between the within-class compactness term +
Jw(PPP) and between-class dispersion term Jb(PPP), which are measured by av- +
erage within-class scatter and average between-class scatter respectively as: +
Jw(PPP) = +
Jb(PPP) = +
Nw +
i=1 +
Nb +
i=1 +
j:Ci=Cj +
j:Ci(cid:54)=Cj +
2−1/2tr(PPPAAAi jAAAT +
i jPPP). +
2−1/2tr(PPPAAAi jAAAT +
i jPPP). +
(4) +
(5) +
where Nw is the number of pairs of samples from the same class, Nb is the +
(cid:48)T +
number of pairs of samples from different classes, AAAi j = YYY +
j and +
PPP is the PSD matrix that needs to be learned. +
i −YYY +
(cid:48)T +
(cid:48) +
jYYY +
(cid:48) +
iYYY +
[1] J. Hamm and D. D. Lee. Grassmann discriminant analysis: a unifying +
view on subspace-based learning. In ICML, 2008. +
[2] Jihun Hamm and Daniel D Lee. Extended grassmann kernels for +
subspace-based learning. In NIPS, 2008. +
[3] Mehrtash Tafazzoli Harandi, C. Sanderson, S. Shirazi, and B. C. Lovell. +
Graph embedding discriminant analysis on grassmannian manifolds for +
improved image set matching. In CVPR, 2011. +
[4] Mehrtash Tafazzoli Harandi, Mathieu Salzmann, Sadeep Jayasumana, +
Richard Hartley, and Hongdong Li. Expanding the family of grassman- +
nian kernels: An embedding perspective. In ECCV. 2014. +
[5] R. Vemulapalli, J. Pillai, and R. Chellappa. Kernel learning for extrinsic +
classification of manifold features. In CVPR, 2013. +
Figure 1: Conceptual illustration of the proposed Projection Metric Learn- +
ing (PML) on the Grassmann Manifold. Traditional Grassmann discrimi- +
nant analysis methods take the away (a)-(b)-(d)-(e) to first embed the origi- +
nal Grassmann manifold G(q,D) (b) into high dimensional Hilbert space H +
(d) and then learn a map from the Hilbert space to a lower-dimensional, op- +
tionally more discriminative space Rd (e). In contrast, the newly proposed +
approach goes the way (a)-(b)-(c) to learn the metric/mapping from the orig- +
inal Grassmann manifold G(q,D) (b) to a new more discriminant Grssmann +
manifold G(q,d) (c). +
In video based face recognition, great success has been made by represent- +
ing videos as linear subspaces, which typically reside on Grassmann mani- +
fold endowed with the well-studied projection metric. Under the projection +
metric framework, most of recent studies [1, 2, 3, 4, 5] exploited a series of +
positive definite kernel functions on Grassmann manifold to first embed the +
manifold into a high dimensional Hilbert space, and then map the flattened +
manifold into a lower-dimensional Euclidean space (see Fig.1 (a)-(b)-(d)- +
(e)). Although these methods can be employed for supervised classification, +
they are limited to the Mercer kernels which yields implicit projection, and +
thus restricted to use only kernel-based classifiers. Moreover, the computa- +
tional complexity of these kernel-based methods increases with the number +
of training sample. +
To overcome the limitations of existing Grassmann discriminant anal- +
ysis methods, by endowing the well-studied Projection Metric with Grass- +
mann manifold, this paper attempt to learn a Mahalanobis-like matrix on the +
Grassmann manifold without resorting to kernel Hilbert space embedding. +
In contrast to the kernelization scheme, our approach directly works on the +
original manifold and exploits its geometry to learn a representation that stil- +
l benefits from useful properties of the Grassmann manifold. Furthermore, +
the learned Mahalanobis-like matrix can be decomposed into the transfor- +
mation for dimensionality reduction, which maps the original Grassmann +
manifold to a lower-dimensional, more discriminative Grassmann manifold +
(see Fig.1 (a)-(b)-(c)). +
Formally, assume m video sequences are given as {XXX 1,XXX 2, . . . ,XXX m}, +
where XXX i ∈ RD×ni describes a data matrix of the i-th video containing ni +
frames, each frame being expressed as a D-dimensional feature vector. In +
these data, each video belongs to one of face classes denoted by Ci. The +
i-th video XXX i is represented by a q-dimensional linear subspace spanned by +
an orthonormal basis matrix YYY i ∈ RD×q, s.t. XXX iXXX T +
i , where ΛΛΛi, +
YYY i correspond to the matrices of the q largest eigenvalues and eigenvectors +
respectively. +
i (cid:39) YYY iΛΛΛiYYY T +
Given a linear subspace span(YYY i) on Grassmann manifold (as discussed +
i as the elements on the manifold), we +
in the original paper, we denote YYY iYYY T +
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
24aac045f1e1a4c13a58eab4c7618dccd4c0e671
240d5390af19bb43761f112b0209771f19bfb696
24f9248f01df3020351347c2a3f632e01de72090Reconstructing a Fragmented Face from a +
Cryptographic Identification Protocol +
The University of Texas at Austin
('39573884', 'Andy Luong', 'andy luong')
('2499821', 'Michael Gerbush', 'michael gerbush')
('1715120', 'Brent Waters', 'brent waters')
('1794409', 'Kristen Grauman', 'kristen grauman')
aluong,mgerbush,bwaters,grauman@cs.utexas.edu +
24e099e77ae7bae3df2bebdc0ee4e00acca71250Robust face alignment under occlusion via regional predictive power +
estimation. +
© 2015 IEEE +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22467 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
('2966679', 'Heng Yang', 'heng yang')more information contact scholarlycommunications@qmul.ac.uk +
24959d1a9c9faf29238163b6bcaf523e2b05a053High accuracy head pose tracking survey +
Warsaw University of Technology, Poland
('1899063', 'Adam Strupczewski', 'adam strupczewski')
24f1febcdf56cd74cb19d08010b6eb5e7c81c362Synergistic Methods for using Language in Robotics +
Ching L. Teo +
University of Maryland
Dept of Computer Science +
College Park, Maryland
+01 3014051762 +
University of Maryland
Dept of Computer Science +
College Park, Maryland
+01 3014051762 +
University of Maryland
Institute for Advanced
Computer Studies +
College Park, Maryland
+01 3014051743 +
University of Maryland
Dept of Computer Science +
College Park, Maryland
+01 3014051768 +
('7607499', 'Yezhou Yang', 'yezhou yang')
('1759899', 'Cornelia Fermüller', 'cornelia fermüller')
('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')
cteo@cs.umd.edu +
yzyang@cs.umd.edu +
fer@umiacs.umd.edu +
yiannis@cs.umd.edu +
2450c618cca4cbd9b8cdbdb05bb57d67e63069b1A Connexionist Approach for Robust and Precise Facial Feature Detection in +
Complex Scenes +
Stefan Duffner and Christophe Garcia +
France Telecom Research & Development +
4, rue du Clos Courtel +
35512 Cesson-S´evign´e, France +
fstefan.duffner, christophe.garciag@francetelecom.com +
244b57cc4a00076efd5f913cc2833138087e1258Warped Convolutions: Efficient Invariance to Spatial Transformations +('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
24cf9fe9045f50c732fc9c602358af89ae40a9f7YANG et al.: ATTRIBUTE RECOGNITION FROM ADAPTIVE PARTS +
Attribute Recognition from Adaptive Parts +
Ligeng Zhu2 +
Simon Fraser University
Vancouver, Canada +
Zhejiang University
Hangzhou, China +
3 Microsoft Research Asia +
Beijing, China +
Tongji University
Shanghai, China +
('3202074', 'Luwei Yang', 'luwei yang')
('1732264', 'Yichen Wei', 'yichen wei')
('1729017', 'Shuang Liang', 'shuang liang')
('37291674', 'Ping Tan', 'ping tan')
luweiy@sfu.ca +
zhuligeng@zju.edu.cn +
yichenw@microsoft.com +
shuangliang@tongji.edu.cn +
pingtan@sfu.ca +
24f022d807352abf071880877c38e53a98254dcdAre screening methods useful in feature selection? An +
empirical study +
Florida State University, Tallahassee, Florida, U.S.A
('6693611', 'Mingyuan Wang', 'mingyuan wang')
('2455529', 'Adrian Barbu', 'adrian barbu')
* abarbu@stat.fsu.edu +
241d2c517dbc0e22d7b8698e06ace67de5f26fdfOnline, Real-Time Tracking +
Using a Category-to-Individual Detector(cid:2) +
California Institute of Technology, USA
('1990633', 'David Hall', 'david hall')
('1690922', 'Pietro Perona', 'pietro perona')
{dhall,perona}@vision.caltech.edu +
24869258fef8f47623b5ef43bd978a525f0af60eUNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur
24e6a28c133b7539a57896393a79d43dba46e0f6ROBUST BAYESIAN METHOD FOR SIMULTANEOUS BLOCK SPARSE SIGNAL +
RECOVERY WITH APPLICATIONS TO FACE RECOGNITION +
Department of Electrical and Computer Engineering +
University of California, San Diego
('32352411', 'Igor Fedorov', 'igor fedorov')
('3291075', 'Ritwik Giri', 'ritwik giri')
('1748319', 'Bhaskar D. Rao', 'bhaskar d. rao')
('1690269', 'Truong Q. Nguyen', 'truong q. nguyen')
248db911e3a6a63ecd5ff6b7397a5d48ac15e77aEnriching Texture Analysis with Semantic Data +
Communications, Signal Processing and Control Group +
School of Electronics and Computer Science +
University of Southampton
('28637223', 'Tim Matthews', 'tim matthews')
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('1697360', 'Mahesan Niranjan', 'mahesan niranjan')
{tm1e10,msn,mn}@soton.ac.uk +
24d376e4d580fb28fd66bc5e7681f1a8db3b6b78
24f1e2b7a48c2c88c9e44de27dc3eefd563f6d39Recognition of Action Units in the Wild +
with Deep Nets and a New Global-Local Loss +
C. Fabian Benitez-Quiroz +
Aleix M. Martinez +
Dept. Electrical and Computer Engineering +
The Ohio State University
('1678691', 'Yan Wang', 'yan wang'){benitez-quiroz.1,wang.9021,martinez.158}@osu.edu +
243e9d490fe98d139003bb8dc95683b366866c57Distinctive Parts for Relative attributes +
Thesis submitted in partial fulfillment +
of the requirements for the degree of +
Master of science( by research) +
in +
Computer Science Engineering +
by +
Ramachandruni Naga Sandeep +
201207582 +
Center for Visual Information Technology +
International Institute of Information Technology
Hyderabad - 500 032, INDIA +
December 2014 +
nsandeep.ramachandruni@research.iiit.ac.in +
2465fc22e03faf030e5a319479a95ef1dfc46e14______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION +
Influence of Different Feature Selection Approaches +
on the Performance of Emotion Recognition +
Methods Based on SVM +
Ural Federal University (UrFU
Yekaterinburg, Russia +
('11063038', 'Daniil Belkov', 'daniil belkov')
('3457868', 'Konstantin Purtov', 'konstantin purtov')
d.d.belkov, k.s.purtov@gmail.com, kublanov@mail.ru +
24ff832171cb774087a614152c21f54589bf7523Beat-Event Detection in Action Movie Franchises +
Jerome Revaud +
Zaid Harchaoui +
('2319574', 'Danila Potapov', 'danila potapov')
('3271933', 'Matthijs Douze', 'matthijs douze')
('2462253', 'Cordelia Schmid', 'cordelia schmid')
247a6b0e97b9447850780fe8dbc4f94252251133Facial Action Unit Detection: 3D versus 2D Modality +
Electrical and Electronics Engineering +
Bo gazic i University, Istanbul, Turkey
B¨ulent Sankur +
Electrical and Electronics Engineering +
Bo gazic i University, Istanbul, Turkey
Department of Psychology +
Bo gazic i University, Istanbul, Turkey
('1839621', 'Arman Savran', 'arman savran')
('27414819', 'M. Taha Bilge', 'm. taha bilge')
arman.savran@boun.edu.tr +
bulent.sankur@boun.edu.tr +
taha.bilge@boun.edu.tr +
24bf94f8090daf9bda56d54e42009067839b20df
240eb0b34872c431ecf9df504671281f59e7da37Cutout-Search: Putting a Name to the Picture +
Carnegie Mellon University
Cornell University
('1746610', 'Dhruv Batra', 'dhruv batra')
('2371390', 'Adarsh Kowdle', 'adarsh kowdle')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
('1713589', 'Devi Parikh', 'devi parikh')
batradhruv@cmu.edu +
apk64@cornell.edu dparikh@cmu.edu tsuhan@ece.cornell.edu +
230527d37421c28b7387c54e203deda64564e1b7Person Re-identification: System Design and +
Evaluation Overview +
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('40156369', 'Rui Zhao', 'rui zhao')
23fdbef123bcda0f07d940c72f3b15704fd49a98
23ebbbba11c6ca785b0589543bf5675883283a57
23aef683f60cb8af239b0906c45d11dac352fb4eIncorporating Context Information into Deep +
Neural Network Acoustic Models +
July 2016 +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
Thesis Committee: +
Florian Metze, Chair (Carnegie Mellon University
Alan W Black (Carnegie Mellon University
Alex Waibel (Carnegie Mellon University
Jinyu Li (Microsoft) +
Submitted in partial fulfillment of the requirements +
for the degree of Doctor of Philosophy. +
('37467623', 'Yajie Miao', 'yajie miao')
('37467623', 'Yajie Miao', 'yajie miao')
235d5620d05bb7710f5c4fa6fceead0eb670dec5Who’s Doing What: Joint Modeling of Names and +
Verbs for Simultaneous Face and Pose Annotation +
Luo Jie +
Idiap and EPF Lausanne +
Idiap Research Institute
ETH Zurich +
('3033284', 'Barbara Caputo', 'barbara caputo')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
jluo@idiap.ch +
bcaputo@idiap.ch +
ferrari@vision.ee.ethz.ch +
23ce6f404c504592767b8bec7d844d87b462de71A Deep Face Identification Network Enhanced by Facial Attributes Prediction +
West Virginia University
('34708406', 'Fariborz Taherkhani', 'fariborz taherkhani')
('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')
ft0009@mix.wvu.edu, nasser.nasrabadi@mail.wvu.edu, Jeremy.Dawson@mail.wvu.edu +
23fd653b094c7e4591a95506416a72aeb50a32b5Emotion Recognition using Fuzzy Rule-based System +
International Journal of Computer Applications (0975 – 8887) +
Volume 93 – No.11, May 2014 +
Department of Computer Science +
Amity University, Lucknow, India
Faculty in Department Of Computer Science +
Amity University, Lucknow, India
+
+
('14559473', 'Akanksha Chaturvedi', 'akanksha chaturvedi')
23172f9a397f13ae1ecb5793efd81b6aba9b4537Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 10–17, +
Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics. +
10 +
231a6d2ee1cc76f7e0c5912a530912f766e0b459Shape Primitive Histogram: A Novel Low-Level Face Representation for Face +
Recognition +
aCollege of Computer Science at Chongqing University, 400044, Chongqing, P.R.C
bSchool of Software Engineering at Chongqing Univeristy,400044,Chongqing,P.R.C +
cSchool of Astronautics at Beihang University, 100191, Beijing, P.R.C
dState Key Laboratory of Management and Control for Complex Systems +
Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C
eMinistry of Education Key Laboratory of Dependable Service Computing in Cyber Physical Society, 400044, Chongqing, P.R.C +
('1786011', 'Sheng Huang', 'sheng huang')
('1698431', 'Dan Yang', 'dan yang')
('1737368', 'Haopeng Zhang', 'haopeng zhang')
236a4f38f79a4dcc2183e99b568f472cf45d27f41632 +
Randomized Clustering Forests +
for Image Classification +
Frederic Jurie, Member, IEEE Computer Society +
('3128253', 'Frank Moosmann', 'frank moosmann')
('1975110', 'Eric Nowak', 'eric nowak')
230c4a30f439700355b268e5f57d15851bcbf41fEM Algorithms for Weighted-Data Clustering +
with Application to Audio-Visual Scene Analysis +
('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')
('1785817', 'Florence Forbes', 'florence forbes')
('1794229', 'Radu Horaud', 'radu horaud')
237fa91c8e8098a0d44f32ce259ff0487aec02cfIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +
863 +
Bidirectional PCA With Assembled Matrix +
Distance Metric for Image Recognition +
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('1711542', 'Kuanquan Wang', 'kuanquan wang')
23fc83c8cfff14a16df7ca497661264fc54ed746The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA, USA 15213 +
http://www.cs.cmu.edu/~face +
Department of Psychology +
University of Pittsburgh
The Robotics Institute
Carnegie Mellon University
4015 O'Hara Street +
Pittsburgh, PA, USA 15260 +
Yingli Tian +
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA, USA 15213 +
Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition +
(FG'00), pp. 484-490, Grenoble, France. +
Comprehensive Database for Facial Expression Analysis +
('1733113', 'Takeo Kanade', 'takeo kanade')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
tk@cs.cmu.edu +
yltian@cs.cmu.edu +
jeffcohn+@pitt.edu +
2331df8ca9f29320dd3a33ce68a539953fa87ff5Extended Isomap for Pattern Classification +
Honda Fundamental Research Labs
Mountain View, CA 94041 +
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')myang@hra.com +
232b6e2391c064d483546b9ee3aafe0ba48ca519Optimization problems for fast AAM fitting in-the-wild +
1. School of Computer Science +
University of Lincoln, U.K
2. Department of Computing +
Imperial College London, U.K
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')gtzimiropoulos@lincoln.ac.uk +
23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3CS 229 Project, Fall 2014 +
Determining Mood from Facial Expressions +
Introduction +
I +
Facial expressions play an extremely important role in human communication. As +
society continues to make greater use of human-machine interactions, it is important for +
machines to be able to interpret facial expressions in order to improve their +
authenticity. If machines can be trained to determine mood to a better extent than +
humans can, especially for more subtle moods, then this could be useful in fields such as +
counseling. This could also be useful for gauging reactions of large audiences in various +
contexts, such as political talks. +
The results of this project could also be applied to recognizing other features of facial +
expressions, such as determining when people are purposefully suppressing emotions or +
lying. The ability to recognize different facial expressions could also improve technology +
that recognizes to whom specific faces belong. This could in turn be used to search a +
large number of pictures for a specific photo, which is becoming increasingly difficult, as +
storing photos digitally has been extremely common in the past decade. The possibilities +
are endless. +
II Data and Features +
2.1 Data +
Our data consists of 1166 frontal images of +
people’s faces from three databases, with each +
image labeled with one of eight emotions: +
anger, contempt, disgust, fear, happiness, +
neutral, sadness, and surprise. The TFEID [1], +
CK+ [2], and JAFFE [3] databases primarily +
consist of Taiwanese, Caucasian, and Japanese +
subjects, respectively. The TFEID and JAFFE +
images are both cropped with the faces +
centered. Each image has a subject posing with +
one of the emotions. The JAFFE database does +
not have any images for contempt. +
2.2 Features +
On each face, there are many different facial landmarks. While some of these landmarks +
(pupil position, nose tip, and face contour) are not as indicative of emotion, others +
(eyebrow, mouth, and eye shape) are. To extract landmark data from images, we used +
Happiness +
Figure 1 +
Anger +
('34482382', 'Matthew Wang', 'matthew wang')mmwang@stanford.edu +
spencery@stanford.edu +
237eba4822744a9eabb121fe7b50fd2057bf744cFacial Expression Synthesis Using PAD Emotional +
Parameters for a Chinese Expressive Avatar +
1 Department of Computer Science and Technology +
Tsinghua University, 100084 Beijing, China
2 Department of Systems Engineering and Engineering Management +
The Chinese University of Hong Kong, HKSAR, China
('2180849', 'Shen Zhang', 'shen zhang')
('3860920', 'Zhiyong Wu', 'zhiyong wu')
('1702243', 'Helen M. Meng', 'helen m. meng')
('7239047', 'Lianhong Cai', 'lianhong cai')
zhangshen05@mails.tsinghua.edu.cn, john.zy.wu@gmail.com +
hmmeng@se.cuhk.edu.hk, clh-dcs@tsinghua.edu.cn +
238fc68b2e0ef9f5ec043d081451902573992a032656 +
Enhanced Local Gradient Order Features and +
Discriminant Analysis for Face Recognition +
role in robust face recognition [5]. Many algorithms have +
been proposed to deal with the effectiveness of feature design +
and extraction [6], [7]; however, the performance of many +
existing methods is still highly sensitive to variations of +
imaging conditions, such as outdoor illumination, exaggerated +
expression, and continuous occlusion. These complex varia- +
tions are significantly affecting the recognition accuracy in +
recent years [8]–[10]. +
Appearance-based subspace learning is one of the sim- +
plest approach for feature extraction, and many methods +
are usually based on linear correlation of pixel intensities. +
For example, Eigenface [11] uses eigen system of pixel +
intensities to estimate the lower rank linear subspace of +
a set of training face images by minimizing the (cid:2)2 dis- +
tance metric. The solution enjoys optimality properties when +
noise is independent +
identically distributed Gaussian only. +
Fisherface [12] will suffer more due to the estimation of +
inverse within-class covariance matrix [13], +
thus the per- +
formance will degenerate rapidly in the cases of occlusion +
and small sample size. Laplacianfaces [14] refer to another +
appearance-based approach which learns a locality preserv- +
ing subspace and seeks to capture the intrinsic geometry +
and local structure of the data. Other methods such as those +
in [5] and [15] also provide valuable approaches to supervised +
or unsupervised dimension reduction tasks. +
A fundamental problem of appearance-based methods for +
face recognition, however, is that they are sensitive to imag- +
ing conditions [10]. As for data corrupted by illumination +
changes, occlusions, and inaccurate alignment, the estimated +
subspace will be biased, thus much of the efforts concentrate +
on removing/shrinking the noise components. In contrast, local +
feature descriptors [15]–[19] have certain advantages as they +
are more stable to local changes. In the view of image pro- +
cessing and vision, the basic imaging system can be simply +
formulated as +
(x, y) = A(x, y) × L(x, y) +
(1) +
('1688667', 'Chuan-Xian Ren', 'chuan-xian ren')
('1718623', 'Zhen Lei', 'zhen lei')
('1726138', 'Dao-Qing Dai', 'dao-qing dai')
('34679741', 'Stan Z. Li', 'stan z. li')
2322ec2f3571e0ddc593c4e2237a6a794c61251dJack, R. E. , Sun, W., Delis, I., Garrod, O. G. B. and Schyns, P. G. (2016) +
Four not six: revealing culturally common facial expressions of +
emotion.Journal of Experimental Psychology: General, 145(6), pp. 708- +
730. (doi:10.1037/xge0000162) +
This is the author’s final accepted version. +
There may be differences between this version and the published version. +
You are advised to consult the publisher’s version if you wish to cite from +
it. +
http://eprints.gla.ac.uk/116592/ +
+
Deposited on: 20 April 2016 +
Enlighten Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk +
23e75f5ce7e73714b63f036d6247fa0172d97cb6BioMed Central +
Research +
Facial expression (mood) recognition from facial images using +
committee neural networks +
Open Access +
University of Akron, Akron
Engineering, University of Akron, Akron, OH 44325-3904, USA
* Corresponding author +
Published: 5 August 2009 +
doi:10.1186/1475-925X-8-16 +
Received: 24 September 2008 +
Accepted: 5 August 2009 +
This article is available from: http://www.biomedical-engineering-online.com/content/8/1/16 +
© 2009 Kulkarni et al; licensee BioMed Central Ltd. +
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
('39890387', 'Saket S Kulkarni', 'saket s kulkarni')
('2484370', 'Narender P Reddy', 'narender p reddy')
('32173165', 'SI Hariharan', 'si hariharan')
Email: Saket S Kulkarni - saketkulkarni@gmail.com; Narender P Reddy* - npreddy@uakron.edu; SI Hariharan - hari@uakron.edu +
23429ef60e7a9c0e2f4d81ed1b4e47cc2616522fA Domain Based Approach to Social Relation Recognition +
Max Planck Institute for Informatics, Saarland Informatics Campus
Figure 1: We investigate the recognition of social relations in a domain-based approach. Our study is based on Bugental’s +
social psychology theory [1] that partitions social life into 5 domains from which we derive 16 social relations. +
('32222907', 'Qianru Sun', 'qianru sun')
('1697100', 'Bernt Schiele', 'bernt schiele')
('1739548', 'Mario Fritz', 'mario fritz')
{qsun, schiele, mfritz}@mpi-inf.mpg.de +
23aba7b878544004b5dfa64f649697d9f082b0cfLocality-Constrained Discriminative Learning and Coding +
1Department of Electrical & Computer Engineering, +
College of Computer and Information Science
Northeastern University, Boston, MA, USA
('7489165', 'Shuyang Wang', 'shuyang wang')
('37771688', 'Yun Fu', 'yun fu')
{shuyangwang, yunfu}@ece.neu.edu +
23120f9b39e59bbac4438bf4a8a7889431ae8adbAalborg Universitet +
Improved RGB-D-T based Face Recognition +
Nikisins, Olegs; Sun, Yunlian; Li, Haiqing; Sun, Zhenan; Moeslund, Thomas B.; Greitans, +
Modris +
Published in: +
DOI (link to publication from Publisher): +
10.1049/iet-bmt.2015.0057 +
Publication date: +
2016 +
Document Version +
Accepted manuscript, peer reviewed version +
Link to publication from Aalborg University
Citation for published version (APA): +
Oliu Simon, M., Corneanu, C., Nasrollahi, K., Guerrero, S. E., Nikisins, O., Sun, Y., ... Greitans, M. (2016). +
General rights +
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. +
? You may not further distribute the material or use it for any profit-making activity or commercial gain +
? You may freely distribute the URL identifying the publication in the public portal ? +
Take down policy +
the work immediately and investigate your claim. +
Downloaded from vbn.aau.dk on: October 11, 2016 +
('7855312', 'Sergio Escalera', 'sergio escalera')If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to +
2303d07d839e8b20f33d6e2ec78d1353cac256cfSqueeze-and-Excitation on Spatial and Temporal +
Deep Feature Space for Action Recognition +
Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China +
('2896701', 'Gaoyun An', 'gaoyun an')
('3027947', 'Wen Zhou', 'wen zhou')
('47095962', 'Yuxuan Wu', 'yuxuan wu')
('4464686', 'ZhenXing Zheng', 'zhenxing zheng')
('46398737', 'Yongwen Liu', 'yongwen liu')
Email:{gyan, 16125155, 16120307, zhxzheng, 17120314}@bjtu.edu.cn +
23d55061f7baf2ffa1c847d356d8f76d78ebc8c1Solmaz et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:22 +
DOI 10.1186/s41074-017-0033-4 +
IPSJ Transactions on Computer +
Vision and Applications +
RESEARCH PAPER +
Open Access +
Generic and attribute-specific deep +
representations for maritime vessels +
('2827750', 'Berkan Solmaz', 'berkan solmaz')
('2131286', 'Erhan Gundogdu', 'erhan gundogdu')
('32499620', 'Aykut Koc', 'aykut koc')
23c3eb6ad8e5f18f672f187a6e9e9b0d94042970Deep Domain Adaptation for Describing People Based on +
Fine-Grained Clothing Attributes +
IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore
Source domain +
RCNN +
body +
detection +
Alignment +
cost layer +
Multi-label +
attributes +
objective +
Target domain +
Alignment cost layer +
Extra Info +
(e.g. Labels) +
Figure 1: Our proposed Deep Domain Adaptation Network (DDAN). +
Source and target domains are modeled jointly with knowledge transfer oc- +
curring at multiple levels of the hierarchy through alignment cost layers. +
Describing people in detail is an important task for many applications. +
For instance, criminal investigation processes often involve searching for +
suspects based on detailed descriptions provided by eyewitnesses or com- +
piled from images captured by surveillance cameras. The FBI list of na- +
tionwide wanted bank robbers (https://bankrobbers.fbi.gov/) has clear exam- +
ples of such ne-grained descriptions, including attributes covering detailed
color information (e.g., “light blue” “khaki”, “burgundy”), a variety of cloth- +
ing types (e.g., ‘leather jacket”, “polo-style shirt”, “zip-up windbreaker”) +
and also detailed clothing patterns (e.g., “narrow horizontal stripes”, “LA +
printed text”, “checkered”). +
Traditional computer vision methods for describing people, however, +
have only focused on a small set of coarse-grained attributes. As an exam- +
ple, the recent work of Zhang et al. [7] achieves impressive attribute predic- +
tion performance in unconstrained scenarios, but only considers nine human +
attributes. Existing systems for fashion analysis [1, 4, 6] and people search +
in surveillance videos [2, 5] also rely on a relatively small set of clothing +
attributes. Our work instead addresses the problem of describing people +
with very fine-grained clothing attributes. A natural question that arises in +
this setting is how to obtain a sufficient number of training samples for each +
attribute without significant annotation cost. +
Data collection: We observe that online shopping stores such as Ama- +
zon.com and TMALL.com have a large set of garment images with associ- +
ated descriptions. We created a huge dataset of clothing images with fine- +
grained attribute labels by crawling data from these shopping websites. Our +
dataset contains 1,108,013 clothing images with 25 different kinds attribute +
categories (e.g. +
type, color, pattern, season, occasion). The attribute la- +
bels are very fine-detailed. For instance, we can find thousands of different +
values for the “color” category. After data curation, we considered a subset +
of this data that is meaningful from our application perspective. +
Deep Domain Adaptation: Although we have collected a large-scale +
dataset with fine-grained attributes, these images are taken in ideal pose / +
lighting / background conditions, so it is unreliable to directly use them as +
training data for attribute prediction in the domain of unconstrained images +
captured, for example, by mobile phones or surveillance cameras. In or- +
der to bridge this gap, we design a specific double-path deep convolutional +
neural network for the domain adaptation problem. Each path receives one +
domain image as the input, i.e., the street domain and the shop domain im- +
ages. Each path consists of several convolutional layers which are stacked +
layer-by-layer and normally higher layers represent higher-level concept ab- +
stractions. Both of the two network paths share the same architecture, e.g., +
the same number of convolutional filters and number of middle layers. This +
('35370244', 'Qiang Chen', 'qiang chen')
('1753492', 'Junshi Huang', 'junshi huang')
('2106286', 'Jian Dong', 'jian dong')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
23dd8d17ce09c22d367e4d62c1ccf507bcbc64daDeep Density Clustering of Unconstrained Faces +
(Supplementary Material) +
University of Maryland, College Park
A. Mathematical Details +
Let S = {i | 0 < αi < C}. We have the following results: +
nV(cid:88) +
nV(cid:88) +
i=1 +
c∗ = +
w∗ = +
αiΨθ(xi), +
¯R∗ = (cid:107)Ψθ(xs) − c∗(cid:107)2 , +
αiΨθ(xi), +
ρ∗ = w∗T Ψθ(xs), +
where s ∈ S. Substituting into (3) and (4), we obtain +
hSVDD(x) = 2 · hOC-SVM(x) = 2 +
αiK(xi, x) − ρ∗ +
(cid:34) nV(cid:88) +
i=1 +
(1) +
(2) +
(5) +
(6) +
(cid:35) +
(7) +
A.2. Proof of Theorem 1 +
Theorem 1. If 1/nV < ν ≤ 1 and c∗T Ψθ(xs) (cid:54)= 0 for +
some support vector xs, hSVDD(x) defined in (3) is asymp- +
totically a Parzen window density estimator in the feature +
space with Epanechnikov kernel. +
Proof. Given the condition, according to Lemma 1, +
hSVDD(x) is equivalent to hOC-SVM(x) with ρ∗ (cid:54)= 0. From +
the results in [10] and the fact that(cid:80) αi = 1, we obtain: +
(cid:21) +
(cid:20) +
hOC-SVM(x) = +
αi +
1 − 1 +
(cid:107)Ψθ(x) − Ψθ(xi)(cid:107)2 +
(cid:18)(cid:107)Ψθ(x) − Ψθ(xi)(cid:107) +
(cid:19) +
− ρ∗ +
− ρ∗ − 1, +
αiKE +
nV(cid:88) +
nV(cid:88) +
i=1 +
i=1 +
4 (1 − u2), |u| ≤ 1 is the Epanechnikov +
where KE(u) = 3 +
kernel. As a consequence of Proposition 4 in [10] and the +
proof of Proposition 1 in [11], as nV → ∞, the fraction +
of support vector is ν, and the fraction of points with 0 < +
αi < 1/(ν · nV ) vanishes. Therefore, either αi = 0 or +
αi = 1/(ν · nV ). We introduce the notation ¯S = {i | αi = +
ξ(z) +
i=1 +
In this section, we first provide the two core mathe- +
matical formulations and then present detailed proofs for +
Lemma 1 and Theorem 1. +
SVDD formulation: +
(cid:88) +
z∈V (x) +
¯R + +
ν · nV +
min +
c, ¯R, ξ +
s.t. +
(cid:107)Ψθ(z) − c(cid:107)2 ≤ ¯R + ξ(z), +
ξ ≥ 0, ∀z ∈ V (x), +
OC-SVM formulation: +
(cid:88) +
min +
w, ρ, ξ +
s.t. +
(cid:107)w(cid:107)2 + +
ν · nV +
wT Ψθ(z) ≥ ρ − ξz, +
z∈V (x) +
ξz − ρ +
ξz ≥ 0, ∀z ∈ V (x). +
A.1. Proof of Lemma 1 +
Lemma 1. If 1/nV < ν ≤ 1, the SVDD formulation in (1) +
is equivalent to the OC-SVM formulation in (2) when the +
evaluation functions for the two are given by +
hSVDD(x) = ¯R∗ − (cid:107)Ψθ(x) − c∗(cid:107)2 , +
hOC-SVM(x) = w∗T Ψθ(x) − ρ∗, +
(3) +
(4) +
with the correspondence w∗ = c∗, and ρ∗ = c∗T Ψθ(xs), +
where xs is a support vector in (1) that lies on the learned +
enclosing sphere. +
Proof. The condition corresponds to the case 1/nV ≤ C < +
1 in [1] with C = 1/(ν · nV ). We introduce the kernel +
function K(xi, xj) = Ψθ(xi)T Ψθ(xj). Since K(xi, xi) +
is constant in our setting, the same dual formulation for (1) +
and (2) can be written as: +
(cid:88) +
min +
αiαjK(xi, xj) +
s.t. +
0 ≤ αi ≤ C, +
ij +
i=1 +
nV(cid:88) +
αi = 1. +
('3329881', 'Wei-An Lin', 'wei-an lin')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
walin@umd.edu pullpull@cs.umd.edu carlos@cs.umd.edu rama@umiacs.umd.edu +
23a8d02389805854cf41c9e5fa56c66ee4160ce3Multimed Tools Appl +
DOI 10.1007/s11042-013-1568-8 +
Influence of low resolution of images on reliability +
of face detection and recognition +
© The Author(s) 2013. This article is published with open access at SpringerLink.com +
('2553748', 'Tomasz Marciniak', 'tomasz marciniak')
('2009993', 'Radoslaw Weychan', 'radoslaw weychan')
('40397247', 'Adam Dabrowski', 'adam dabrowski')
23b37c2f803a2d4b701e2f39c5f623b2f3e14d8eAvailable Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
ISSN 2320–088X +
IJCSMC, Vol. 2, Issue. 4, April 2013, pg.646 – 649 +
RESEARCH ARTICLE +
Modified Approaches on Face Recognition +
By using Multisensory Image +
Bharath University, India
Bharath University, India
4f9e00aaf2736b79e415f5e7c8dfebda3043a97dMachine Audition: +
Principles, Algorithms +
and Systems +
University of Surrey, UK
InformatIon scIence reference +
Hershey • New York +
('46314841', 'WenWu Wang', 'wenwu wang')
4fd29e5f4b7186e349ba34ea30738af7860cf21f
4f0d9200647042e41dea71c35eb59e598e6018a7
Experiments of Image Retrieval Using Weak Attributes +
Columbia University, New York, NY
('1815972', 'Felix X. Yu', 'felix x. yu')
('1725599', 'Rongrong Ji', 'rongrong ji')
('3138710', 'Ming-Hen Tsai', 'ming-hen tsai')
('35984288', 'Guangnan Ye', 'guangnan ye')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
yfyuxinnan, rrji, yegng@ee.columbia.edu +
xfminghen, sfchangg@cs.columbia.edu +
4f051022de100241e5a4ba8a7514db9167eabf6eFace Parsing via a Fully-Convolutional Continuous +
CRF Neural Network +
('48207414', 'Lei Zhou', 'lei zhou')
('36300239', 'Zhi Liu', 'zhi liu')
('1706670', 'Xiangjian He', 'xiangjian he')
4faded442b506ad0f200a608a69c039e92eaff11STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY
FACE RECOGNITION UNDER VARYING +
ILLUMINATION +
Master Thesis by +
Department : Computer Engineering +
Programme: Computer Engineering +
JUNE 2006 +
('1968256', 'Erald VUÇINI', 'erald vuçini')
('1766445', 'Muhittin GÖKMEN', 'muhittin gökmen')
4f7967158b257e86d66bdabfdc556c697d917d24Guaranteed Parameter Estimation of Discrete Energy +
Minimization for 3D Scene Parsing +
CMU-RI-TR-16-49 +
July 2016 +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
Thesis Committee: +
Daniel Huber, Advisor +
Submitted in partial fulfillment of the requirements +
for the degree of Master of Science in Robotics. +
('3439037', 'Mengtian Li', 'mengtian li')
('1691629', 'Alexander J. Smola', 'alexander j. smola')
('1786435', 'David Fouhey', 'david fouhey')
('3439037', 'Mengtian Li', 'mengtian li')
4fc936102e2b5247473ea2dd94c514e320375abbGuess Where? Actor-Supervision for Spatiotemporal Action Localization +
KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc
('2795139', 'Victor Escorcia', 'victor escorcia')
('3409955', 'Cuong D. Dao', 'cuong d. dao')
('40027484', 'Mihir Jain', 'mihir jain')
('2931652', 'Bernard Ghanem', 'bernard ghanem')
('1706203', 'Cees Snoek', 'cees snoek')
4f6adc53798d9da26369bea5a0d91ed5e1314df2IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016 +
Online Nonnegative Matrix Factorization with +
General Divergences +
('2345985', 'Renbo Zhao', 'renbo zhao')
('1678675', 'Huan Xu', 'huan xu')
4fbef7ce1809d102215453c34bf22b5f9f9aab26
4fa0d73b8ba114578744c2ebaf610d2ca9694f45
4fcd19b0cc386215b8bd0c466e42934e5baaa4b7Human Action Recognition using Factorized Spatio-Temporal +
Convolutional Networks +
Hong Kong University of Science and Technology
Hong Kong University of Science and Technology
cid:93) Faculty of Science and Technology, University of Macau
§ Lenovo Corporate Research Hong Kong Branch +
('1750501', 'Lin Sun', 'lin sun')
('2370507', 'Kui Jia', 'kui jia')
('1739816', 'Dit-Yan Yeung', 'dit-yan yeung')
('2131088', 'Bertram E. Shi', 'bertram e. shi')
lsunece@ust.hk, kuijia@gmail.com, dyyeung@cse.ust.hk, eebert@ust.hk +
4f591e243a8f38ee3152300bbf42899ac5aae0a5SUBMITTED TO TPAMI +
Understanding Higher-Order Shape +
via 3D Shape Attributes +
('1786435', 'David F. Fouhey', 'david f. fouhey')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
4f9958946ad9fc71c2299847e9ff16741401c591Facial Expression Recognition with Recurrent Neural Networks +
Robotics and Embedded Systems Lab, Department of Computer Science +
Image Understanding and Knowledge-Based Systems, Department of Computer Science +
Technische Universit¨at M¨unchen, Germany +
('1753223', 'Alex Graves', 'alex graves')
('1685773', 'Christoph Mayer', 'christoph mayer')
('32131501', 'Matthias Wimmer', 'matthias wimmer')
('1699132', 'Bernd Radig', 'bernd radig')
[graves,juergen.schmidhuber]@in.tum.de +
[mayerc,wimmerm,radig]@informatik.tu-muenchen.de +
4f773c8e7ca98ece9894ba3a22823127a70c6e6cA Real-Time System for Head Tracking +
and Pose Estimation +
Robotics Institute, Carnegie Mellon University
2 Electrical & Controls Integration Lab, General Motors R&D +
('29915644', 'Zengyin Zhang', 'zengyin zhang')
('2918263', 'Minyoung Kim', 'minyoung kim')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
('9399514', 'Wende Zhang', 'wende zhang')
4ff11512e4fde3d1a109546d9c61a963d4391addProceedings of the Twenty-Ninth International +
Florida Artificial Intelligence Research Society Conference +
Selecting Vantage Points for an Autonomous Quadcopter Videographer +
Google +
Mountain View, CA +
Gita Sukthankar +
University of Central Florida
Orlando, FL +
Google +
Mountain View, CA +
('3391381', 'Rey Coaguila', 'rey coaguila')
('1694199', 'Rahul Sukthankar', 'rahul sukthankar')
reyc@google.com +
gitars@eecs.ucf.edu +
sukthankar@google.com +
4f028efe6708fc252851eee4a14292b7ce79d378An Integrated Shape and Intensity Coding Scheme for Face Recognition +
Department of Computer Science +
George Mason University
Fairfax, VA 22030-4444 +
('39664966', 'Chengjun Liu', 'chengjun liu')
('1781577', 'Harry Wechsler', 'harry wechsler')
fcliu, wechslerg@cs.gmu.edu +
4f0bf2508ae801aee082b37f684085adf0d06d23
4ff4c27e47b0aa80d6383427642bb8ee9d01c0acDeep Convolutional Neural Networks and Support +
Vector Machines for Gender Recognition +
Institute of Arti cial Intelligence and Cognitive Engineering
Faculty of Mathematics and Natural Sciences +
University of Groningen, The Netherlands
('3405120', 'Jos van de Wolfshaar', 'jos van de wolfshaar')
4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7Fashion Landmark Detection in the Wild +
The Chinese University of Hong Kong
Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced
Technology, CAS, China +
('3243969', 'Ziwei Liu', 'ziwei liu')
('1979911', 'Sijie Yan', 'sijie yan')
('1693209', 'Ping Luo', 'ping luo')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{lz013,siyan,pluo,xtang}@ie.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk +
4f4f920eb43399d8d05b42808e45b56bdd36a929International Journal of Computer Applications (0975 – 8887) +
Volume 123 – No.4, August 2015 +
A Novel Method for 3D Image Segmentation with Fusion +
of Two Images using Color K-means Algorithm +
Neelam Kushwah +
Dept. of CSE +
ITM Universe +
Gwalior +
Priusha Narwariya +
Dept. of CSE +
ITM Universe +
Gwalior +
two +
4f0b8f730273e9f11b2bfad2415485414b96299fBDD100K: A Diverse Driving Video Database with +
Scalable Annotation Tooling +
1UC Berkeley +
Georgia Institute of Technology
Peking University
4Uber AI Labs +
('1807197', 'Fisher Yu', 'fisher yu')
('32324034', 'Fangchen Liu', 'fangchen liu')
('8309711', 'Vashisht Madhavan', 'vashisht madhavan')
('1753210', 'Trevor Darrell', 'trevor darrell')
4f77a37753c03886ca9c9349723ec3bbfe4ee967Localizing Facial Keypoints with Global Descriptor Search, +
Neighbour Alignment and Locally Linear Models +
1 ´Ecole Polytechnique de Montr´eal, Universit´e de Montr´eal +
University of Toronto and Recognyz Systems Technologies
also focused on emotion recognition in the wild [9]. +
('1972076', 'Christopher Pal', 'christopher pal')
('9422894', 'Sharon Moalem', 'sharon moalem')
md-kamrul.hasan@polymtl.ca, christohper.pal@polymtl.ca, sharon@recognyz.com +
4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8eDeep Density Clustering of Unconstrained Faces +
University of Maryland, College Park
('3329881', 'Wei-An Lin', 'wei-an lin')
('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')
walin@umd.edu pullpull@cs.umd.edu carlos@cs.umd.edu rama@umiacs.umd.edu +
4f36c14d1453fc9d6481b09c5a09e91d8d9ee47aDU,CHELLAPPA: VIDEO-BASED FACE RECOGNITION +
Video-Based Face Recognition Using the +
Intra/Extra-Personal Difference Dictionary +
Department of Electrical and Computer +
Engineering +
University of Maryland
College Park, USA
('35554856', 'Ming Du', 'ming du')
('9215658', 'Rama Chellappa', 'rama chellappa')
mingdu@umd.edu +
rama@umiacs.umd.edu +
8d71872d5877c575a52f71ad445c7e5124a4b174
8de06a584955f04f399c10f09f2eed77722f6b1cAuthor manuscript, published in "International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)" +
8d4f0517eae232913bf27f516101a75da3249d15ARXIV SUBMISSION, MARCH 2018 +
Event-based Dynamic Face Detection and +
Tracking Based on Activity +
('2500521', 'Gregor Lenz', 'gregor lenz')
('1773138', 'Sio-Hoi Ieng', 'sio-hoi ieng')
('1750848', 'Ryad Benosman', 'ryad benosman')
8de2dbe2b03be8a99628ffa000ac78f8b66a1028´Ecole Nationale Sup´erieure dInformatique et de Math´ematiques Appliqu´ees de Grenoble +
INP Grenoble – ENSIMAG +
UFR Informatique et Math´ematiques Appliqu´ees de Grenoble +
Rapport de stage de Master 2 et de projet de fin d’´etudes +
Effectu´e au sein de l’´equipe LEAR, I.N.R.I.A., Grenoble +
Action Recognition in Videos +
3e ann´ee ENSIMAG – Option I.I.I. +
M2R Informatique – sp´ecialit´e I.A. +
04 f´evrier 2008 – 04 juillet 2008 +
LEAR, +
I.N.R.I.A., Grenoble +
655 avenue de l’Europe +
38 334 Montbonnot +
France +
Responsable de stage +
Mme. Cordelia Schmid +
Tuteur ´ecole +
Jury +
('16585941', 'Gaidon Adrien', 'gaidon adrien')
('31899928', 'M. Augustin Lux', 'm. augustin lux')
('12844736', 'Roger Mohr', 'roger mohr')
('40419740', 'M. James Crowley', 'm. james crowley')
8d3fbdb9783716c1832a0b7ab1da6390c2869c1412 +
Discriminant Subspace Analysis for Uncertain +
Situation in Facial Recognition +
School of Computing and Communications University of Technology, Sydney
Australia +
1. Introduction +
Facial analysis and recognition have received substential attention from researchers in +
biometrics, pattern recognition, and computer vision communities. They have a large +
number of applications, such as security, communication, and entertainment. Although a +
great deal of efforts has been devoted to automated face recognition systems, it still remains +
a challenging uncertainty problem. This is because human facial appearance has potentially +
of very large intra-subject variations of head pose, illumination, facial expression, occlusion +
due to other objects or accessories, facial hair and aging. These misleading variations may +
cause classifiers to degrade generalization performance. +
It is important for face recognition systems to employ an effective feature extraction scheme +
to enhance separability between pattern classes which should maintain and enhance +
features of the input data that make distinct pattern classes separable (Jan, 2004). In general, +
there exist a number of different feature extraction methods. The most common feature +
extraction methods are subspace analysis methods such as principle component analysis +
(PCA) (Kirby & Sirovich, 1990) (Jolliffe, 1986) (Turk & Pentland, 1991b), kernel principle +
component analysis (KPCA) (Schölkopf et al., 1998) (Kim et al., 2002) (all of which extract +
the most informative features and reduce the feature dimensionality), Fisher’s linear +
discriminant analysis (FLD) (Duda et al., 2000) (Belhumeur et al., 1997), and kernel Fisher’s +
discriminant analysis (KFLD) (Mika et al., 1999) (Scholkopf & Smola, 2002) (which +
discriminate different patterns; that is, they minimize the intra-class pattern compactness +
while enhancing the extra-class separability). The discriminant analysis is necessary because +
the patterns may overlap in decision space. +
Recently, Lu et al. (Lu et al., 2003) stated that PCA and LDA are the most widely used +
conventional tools for dimensionality reduction and feature extraction in the appearance- +
based face recognition. However, because facial features are naturally non-linear and the +
inherent linear nature of PCA and LDA, there are some limitations when applying these +
methods to the facial data distribution (Bichsel & Pentland, 1994) (Lu et al., 2003). To +
overcome such problems, nonlinear methods can be applied to better construct the most +
discriminative subspace. +
In real world applications, overlapping classes and various environmental variations can +
significantly impact face recognition accuracy and robustness. Such misleading information +
make Machine Learning difficult in modelling facial data. According to Adini et al. (Adini et +
al., 1997), it is desirable to have a recognition system which is able to recognize a face +
insensitive to these within-personal variations. +
('3333820', 'Pohsiang Tsai', 'pohsiang tsai')
('2184946', 'Tich Phuoc Tran', 'tich phuoc tran')
('1801256', 'Tom Hintz', 'tom hintz')
('2567343', 'Tony Jan', 'tony jan')
8d42a24d570ad8f1e869a665da855628fcb1378fCVPR +
#987 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
An Empirical Study of Context in Object Detection +
Anonymous CVPR submission +
Paper ID 987 +
8d8461ed57b81e05cc46be8e83260cd68a2ebb4dAge identification of Facial Images using Neural +
Network +
CSE Department,CSVTU +
RIT, Raipur, Chhattisgarh , INDIA +
('7530203', 'Sneha Thakur', 'sneha thakur')
8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3Cascaded Pose Regression +
Piotr Doll´ar +
California Institute of Technology
('2930640', 'Peter Welinder', 'peter welinder')
('1690922', 'Pietro Perona', 'pietro perona')
{pdollar,welinder,perona}@caltech.edu +
8de6deefb90fb9b3f7d451b9d8a1a3264b768482Multibiometric Systems: Fusion Strategies and +
Template Security +
By +
A Dissertation +
Submitted to +
Michigan State University
in partial fulfillment of the requirements +
for the degree of +
Doctor of Philosophy +
Department of Computer Science and Engineering +
2008 +
('34633765', 'Karthik Nandakumar', 'karthik nandakumar')
8d2c0c9155a1ed49ba576ac0446ec67725468d87A Study of Two Image Representations for Head Pose Estimation +
Dept. of Computer Science and Technology, +
Tsinghua University, Beijing, China
('1968464', 'Ligeng Dong', 'ligeng dong')
('3265275', 'Linmi Tao', 'linmi tao')
('1797002', 'Guangyou Xu', 'guangyou xu')
dongligeng99@mails.thu.edu.cn, +
{linmi, xgy-dcs}@tsinghua.edu.cn +
8d384e8c45a429f5c5f6628e8ba0d73c60a51a89Temporal Dynamic Graph LSTM for Action-driven Video Object Detection +
The Hong Kong University of Science and Technology 2 Carneige Mellon University
('38937910', 'Yuan Yuan', 'yuan yuan')yyuanad@ust.hk, xiaodan1@cs.cmu.edu, xiaolonw@cs.cmu.edu, dyyeung@cse.ust.hk, abhinavg@cs.cmu.edu +
8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152Development of Optical Computer Recognition (OCR) for Monitoring Stress and Emotions in Space +
Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ
USA, 2Unit for Experimental Psychiatry, University of Pennsylvania School of Medicine
Philadelphia, PA, USA +
INTRODUCTION. While in space, astronauts are required to perform mission-critical tasks on very expensive +
equipment at a high level of functional capability. Stressors can compromise their ability to do so, thus it is very +
important to have a system that can unobtrusively and objectively detect neurobehavioral problems involving +
elevated levels of behavioral stress and negative emotions. Computerized approaches involving inexpensive cameras +
offer an unobtrusive way to detect distress and to monitor observable emotions of astronauts during critical +
operations in space, by tracking and analyzing facial expressions and body gestures in video streams. Such systems +
can have applications beyond space flight, e.g., surveillance, law enforcement and human computer interaction. +
TECHNOLOGY DEVELOPMENT. We developed a framework [1-9] that is capable of real time tracking of faces +
and skin blobs of heads and hands. Face tracking uses a group of deformable statistical models of facial shape +
variation and local texture distribution to robustly track facial landmarks (e.g., eyes, eyebrows, nose, mouth). The +
model tolerates partial occlusions, it automatically detects and recovers from lost track, and it handles head rotations +
up to full profile view. The skin blob tracker is initialized with a generic skin color model, dynamically learning the +
specific color distribution online for adaptive tracking. Detected facial landmarks and blobs are filtered online, both +
in terms of shape and motion, using eigenspace analysis and temporal dynamical models to prune false detections. +
We then extract geometric and appearance features to learn models that detect relevant gestures and facial +
expressions. In particular, our method utilizes the relative intensity ordering of facial expressions (i.e., neutral, onset, +
apex, offset) found in the training set to learn a ranking model (Rankboost) for their recognition and intensity +
estimation, which improves our average recognition rate (~87.5% on CMU benchmark database [4,10]). In relation +
to stress detection, we piloted an experiment to learn subject-specific models of deception detection using behavioral +
cues to discriminate stressed and relaxed behaviors. We video recorded 147 subjects in 12-question interviews after +
a mock crime scenario, tracking their facial expressions and body gestures using our algorithm. Using leave-one-out +
cross validation we acquired separate Nearest Neighbor models per subject, discriminating deceptive from truthful +
responses with an average accuracy of 81.6% [7, 9]. We are currently experimenting with structured sparsity [14] +
and super-resolution [11-13] techniques to obtain better quality image features to improve tracking and recognition +
('11788023', 'N. Michael', 'n. michael')
('1748881', 'F. Yang', 'f. yang')
('29384491', 'D. Metaxas', 'd. metaxas')
8d6c4af9d4c01ff47fe0be48155174158a9a5e08Labeling, Discovering, and Detecting Objects in +
Images +
by +
Bryan Christopher Russell +
A.B., Computer Science +
Dartmouth College
S.M., Electrical Engineering and Computer Science +
Massachusetts Institute of Technology
Submitted to the Department of Electrical Engineering and Computer +
in partial fulfillment of the requirements for the degree of +
Doctor of Philosophy in Electrical Engineering and Computer Science +
Science +
at the +
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2008 +
c(cid:13) Bryan Christopher Russell, MMVIII. All rights reserved. +
The author hereby grants to MIT permission to reproduce and +
distribute publicly paper and electronic copies of this thesis document +
in whole or in part. +
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Department of Electrical Engineering and Computer Science +
January 28, 2007 +
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
William T. Freeman +
Professor +
Thesis Supervisor +
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Terry P. Orlando +
Chairman, Department Committee on Graduate Students +
8dcc95debd07ebab1721c53fa50d846fef265022MicroExpNet: An Extremely Small and Fast Model For Expression Recognition +
From Frontal Face Images +
˙Ilke C¸ u˘gu, Eren S¸ener, Emre Akbas¸ +
Middle East Technical University
06800 Ankara, Turkey +
{cugu.ilke, sener.eren}@metu.edu.tr, emre@ceng.metu.edu.tr +
8dbe79830713925affc48d0afa04ed567c54724b
8d1adf0ac74e901a94f05eca2f684528129a630aFacial Expression Recognition Using Facial +
Movement Features +
8d91f06af4ef65193f3943005922f25dbb483ee4Facial Expression Classification Using Rotation +
Slepian-based Moment Invariants +
Faculty of Science and Technology, University of Macau
Macao, China +
('2888882', 'Cuiming Zou', 'cuiming zou')
('3369665', 'Kit Ian Kou', 'kit ian kou')
8dc9de0c7324d098b537639c8214543f55392a6bPose-invariant 3d object recognition using linear combination of 2d views and +
evolutionary optimisation +
Department of Computer Science, +
University College London
Malet Place, London, WC1E 6BT +
('1797883', 'Vasileios Zografos', 'vasileios zografos')
('31557997', 'Bernard F. Buxton', 'bernard f. buxton')
{v.zografos, b.buxton}@cs.ucl.ac.uk +
8d712cef3a5a8a7b1619fb841a191bebc2a17f15
8d646ac6e5473398d668c1e35e3daa964d9eb0f6MEMORY-EFFICIENT GLOBAL REFINEMENT OF DECISION-TREE ENSEMBLES AND +
ITS APPLICATION TO FACE ALIGNMENT +
Nenad Markuˇs† +
Ivan Gogi´c† +
Igor S. Pandˇzi´c† +
J¨orgen Ahlberg‡ +
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden
8dffbb6d75877d7d9b4dcde7665888b5675deee1Emotion Recognition with Deep-Belief +
Networks +
Introduction +
For our CS229 project, we studied the problem of +
reliable computerized emotion recognition in images of +
human +
faces. First, we performed a preliminary +
exploration using SVM classifiers, and then developed an +
approach based on Deep Belief Nets. Deep Belief Nets, or +
DBNs, are probabilistic generative models composed of +
multiple layers of stochastic latent variables, where each +
“building block” layer is a Restricted Boltzmann Machine +
(RBM). DBNs have a greedy layer-wise unsupervised +
learning algorithm as well as a discriminative fine-tuning +
procedure for optimizing performance on classification +
tasks. [1]. +
We trained our classifier on three databases: the +
Cohn-Kanade Extended Database (CK+) [2], the Japanese +
Female Facial Expression Database (JAFFE) [3], and the +
Yale Face Database (YALE) [4]. We tested several +
different database configurations, image pre-processing +
settings, and DBN parameters, and obtained test errors as +
low as 20% on a limited subset of the emotion labels. +
Finally, we created a real-time system which takes +
images of a single subject using a computer webcam and +
classifies the emotion shown by the subject. +
Part 1: Exploration of SVM-based approaches +
To set a baseline for comparison, we applied an +
SVM classifier to the emotion images in the CK+ +
database, using the LIBLINEAR library and its MATLAB +
interface [5]. This database contains 593 image sequences +
across 123 human subjects, beginning with a “neutral +
“expression and showing the progression to one of seven +
“peak” emotions. When given both a neutral and an +
expressive face to compare, the SVM obtained accuracy +
as high as 90%. This +
the +
implementation of the SVM classifier. For additional +
details on this stage of the project, please see our +
Milestone document. +
Part 1.1 Choice of labels (emotion numbers vs. FACS +
features) +
The CK+ database offers two sets of emotion +
features: “emotion numbers” and FACS features. Emotion +
numbers are integer values representing the main emotion +
shown in the “peak emotion” image. The emotions are +
coded as follows: 1=anger, 2=contempt, 3=disgust, +
4=fear, 5=happiness, 6=sadness, and 7=surprise. +
The other labeling option is called FACS, or the +
Facial Action Coding System. FACS decomposes every +
summarizes +
section +
facial emotion into a set of Action Units (AUs), which +
describe the specific muscle groups involved in forming +
the emotion. We chose not to use FACS because accurate +
labeling currently requires trained human experts [8], and +
we are interesting in creating an automated system. +
+
Part 1.2 Features +
Part 1.2.1 Norm of differences between neutral face +
and full emotion +
Each of the CK+ images has been hand-labeled with +
68 standard Active Appearance Models (AAM) face +
landmarks that describe the X and Y position of these +
landmarks on the image (Figure 1). +
Figure 1. AAM Facial Landmarks +
We initially trained the SVM on the norm of the +
vector differences in landmark positions between the +
neutral and peak expressions. With this approach, the +
training error was approximately 35% for hold out cross +
validation (see Figure 2). +
with +
Figure 3. Accuracy of +
SVM with separate X, Y +
displacement features. +
Figure 2. Accuracy of +
SVM +
norm- +
displacement features. +
Part 1.2.2 Separate X and Y differences between +
neutral face and full emotion +
Because the initial approach did not differentiate +
between displacements of +
in different +
directions, we also provided the differences in the X and +
Y components of each landmark separately. This doubled +
the size of our feature vector, and resulting in a significant +
(about 20%) improvement in accuracy (Figure 3). +
Part 1.2.3 Feature Selection +
landmarks +
Finally, we visualized which features were the most +
important for classifying each emotion; the results can be +
seen in Figure 4. The figure shows the X and Y +
('39818775', 'Tom McLaughlin', 'tom mclaughlin')
8d5998cd984e7cce307da7d46f155f9db99c6590ChaLearn Looking at People: +
A Review of Events and Resources +
1 Dept. Mathematics and Computer Science, UB, Spain, +
2 Computer Vision Center, UAB, Barcelona, Spain, +
EIMT, Open University of Catalonia, Barcelona, Spain
4 ChaLearn, California, USA, 5 INAOE, Puebla, Mexico, +
6 Universit´e Paris-Saclay, Paris, France, +
http://chalearnlap.cvc.uab.es +
('7855312', 'Sergio Escalera', 'sergio escalera')
('1742688', 'Hugo Jair Escalante', 'hugo jair escalante')
('1743797', 'Isabelle Guyon', 'isabelle guyon')
sergio.escalera.guerrero@gmail.com +
8dce38840e6cf5ab3e0d1b26e401f8143d2a6bffTowards large scale multimedia indexing: +
A case study on person discovery in broadcast news +
Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay
3 CNRS, Irisa & Inria Rennes, 4 PUC de Minas Gerais, Belo Horizonte, +
Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine
('39560344', 'Nam Le', 'nam le')
('2578933', 'Hervé Bredin', 'hervé bredin')
('2710421', 'Gabriel Sargent', 'gabriel sargent')
('2613332', 'Miquel India', 'miquel india')
('1794658', 'Paula Lopez-Otero', 'paula lopez-otero')
('1802247', 'Claude Barras', 'claude barras')
('1804407', 'Camille Guinaudeau', 'camille guinaudeau')
('1708671', 'Guillaume Gravier', 'guillaume gravier')
('23556030', 'Gabriel Barbosa da Fonseca', 'gabriel barbosa da fonseca')
('32255257', 'Izabela Lyon Freire', 'izabela lyon freire')
('37401316', 'Gerard Martí', 'gerard martí')
('2585946', 'Josep Ramon Morros', 'josep ramon morros')
('1726311', 'Javier Hernando', 'javier hernando')
('2446815', 'Sylvain Meignier', 'sylvain meignier')
('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')
nle@idiap.ch,bredin@limsi.fr,gabriel.sargent@irisa.fr,miquel.india@tsc.upc.edu,plopez@gts.uvigo.es +
153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4Overview of algorithms for face detection and +
tracking +
Nenad Markuˇs +
155199d7f10218e29ddaee36ebe611c95cae68c4Towards Scalable Visual Navigation of +
Micro Aerial Vehicles +
Robotics Institute
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
April 2016 +
Thesis Supervisors: +
Prof. Dr. Martial Hebert +
Prof. Dr. J. Andrew Bagnell +
Submitted in partial fulfillment of the requirements +
for the degree of Master of Science in Robotics. +
CMU-RI-TR-16-07 +
('2739544', 'Shreyansh Daftry', 'shreyansh daftry')
('2739544', 'Shreyansh Daftry', 'shreyansh daftry')
daftry@cmu.edu +
15cd05baa849ab058b99a966c54d2f0bf82e7885Structured Sparse Subspace Clustering: A Unified Optimization Framework +
SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University
In many real-world applications, we need to deal with high-dimensional +
datasets, such as images, videos, text, and more. In practice, such high- +
dimensional datasets can be well approximated by multiple low-dimensional +
subspaces corresponding to multiple classes or categories. For example, the +
feature point trajectories associated with a rigidly moving object in a video +
lie in an affine subspace (of dimension up to 4), and face images of a subject +
under varying illumination lie in a linear subspace (of dimension up to 9). +
Therefore, the task, known in the literature as subspace clustering [6], is +
to segment the data into the corresponding subspaces and finds multiple +
applications in computer vision. +
State of the art approaches [1, 2, 3, 4, 5, 7] for solving this problem fol- +
low a two-stage approach: a) Construct an affinity matrix between points by +
exploiting the ‘self-expressiveness’ property of the data, which allows any +
data point to be represented as a linear (or affine) combination of the other +
data points; b) Apply spectral clustering on the affinity matrix to recover +
the data segmentation. Dividing the problem in two steps is, on the one +
hand, appealing because the first step can be solved using convex optimiza- +
tion techniques, while the second one can be solved using existing spectral +
clustering techniques. On the other hand, its major disadvantage is that the +
natural relationship between the affinity matrix and the segmentation of the +
data is not explicitly captured. +
In this paper, we attempt to integrate the two separate stages into one +
unified optimization framework. One important motivating observation is +
that a perfect subspace clustering can often be obtained from an imperfec- +
t affinity matrix. In other words, the spectral clustering step can clean up +
the disturbance in the affinity matrix – which can be viewed as a process of +
information gain by denoising. Because of this, if we feed back the infor- +
mation gain properly, it may help the self-expressiveness model to yield a +
better affinity matrix. +
To jointly estimate the clustering and affinity matrix, we define a sus- +
pace structured (cid:96)1 norm as follows: +
(cid:107)Z(cid:107)1,Q +
= (cid:107)(11(cid:62) + αΘ)(cid:12) Z(cid:107)1 +
(1) +
where α > 0 is a tradeoff parameter, Θi j ∈ {0,1} indicates whether two data +
points belong to the same subspace in which Θi j = 0 if point i and j lie in +
the same subspace and otherwise Θi j = 1, and 1 is the vector of all ones of +
appropriate dimension. +
Equipped with the subspace structured (cid:96)1 norm of Z, we then define the +
unified optimization framework for subspace clustering as follows: +
min +
Z,E,Q +
(cid:107)Z(cid:107)1,Q + λ(cid:107)E(cid:107)(cid:96) s.t. X = XZ + E, diag(Z) = 0, Q ∈ Q, +
where Q is the set of all valid binary segmentation matrices defined as +
(2) +
Q = {Q ∈ {0,1}N×k : Q1 = 1 and rank(Q) = k}, +
(3) +
and the norm (cid:107)·(cid:107)(cid:96) on the error term E depends upon the prior knowledge +
about the pattern of noise or corruptions. We call problem (2) Structured +
Sparse Subspace Clustering (SSSC or S3C). +
The solution to the optimization problem in (2) is based on solving the +
following two subproblems alternatively: a) Find Z and E given Q by solv- +
ing a weighted sparse representation problem; b) Find Q given Z and E by +
spectral clustering. We solve this problem efficiently via a combination of an +
alternating direction method of multipliers with spectral clustering. Experi- +
ments on a synthetic data, the Hopkins 155 motion segmentation database, +
and the Extended Yale B data set demonstrate its effectiveness. +
Some results are presented in Figure 1, Table 1 and 2. Figure 1 shows +
the improvement in both the affinity matrix and the subspace clustering us- +
ing S3C over SSC on a subset of face images of three subjects from the +
('9171002', 'Chun-Guang Li', 'chun-guang li')
('1745721', 'René Vidal', 'rené vidal')
15136c2f94fd29fc1cb6bedc8c1831b7002930a6Deep Learning Architectures for Face +
Recognition in Video Surveillance +
('2805645', 'Saman Bashbaghi', 'saman bashbaghi')
('1697195', 'Eric Granger', 'eric granger')
('1744351', 'Robert Sabourin', 'robert sabourin')
('3046171', 'Mostafa Parchami', 'mostafa parchami')
15affdcef4bb9d78b2d3de23c9459ee5b7a43fcbSemi-Supervised Classification Using Linear +
Neighborhood Propagation +
Tsinghua University, Beijing 100084, P.R.China
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
Semi-Supervised Classi(cid:12)cation +
A Toy Example +
Shape Ranking +
Digits Ranking +
(a) +
(b) +
Interactive Image Segmentation +
1.2 +
0.8 +
0.6 +
0.4 +
0.2 +
−0.2 +
−0.4 +
−0.6 +
−0.8 +
−1.5 +
1.2 +
0.8 +
0.6 +
0.4 +
0.2 +
−0.2 +
−0.4 +
−0.6 +
−0.8 +
−1.5 +
4−NN Connected Graph +
−1 +
−0.5 +
0.5 +
(a) +
1.5 +
2.5 +
Classification Results By Nearst Neighbor +
class 1 +
class 2 +
−1 +
−0.5 +
0.5 +
(c) +
1.5 +
2.5 +
1.2 +
0.8 +
0.6 +
0.4 +
0.2 +
−0.2 +
−0.4 +
−0.6 +
−0.8 +
−1.5 +
1.2 +
0.8 +
0.6 +
0.4 +
0.2 +
−0.2 +
−0.4 +
−0.6 +
−0.8 +
−1.5 +
Classification Results By LNP +
class 1 +
class 2 +
−1 +
−0.5 +
0.5 +
(b) +
1.5 +
2.5 +
Classification Results By Transductive SVM +
class 1 +
class 2 +
−1 +
−0.5 +
0.5 +
(d) +
1.5 +
2.5 +
Multi-Class Semi-Supervised Classi(cid:12)cation +
(cid:15) Label set: L = f1; 2; (cid:1) (cid:1) (cid:1) ; cg +
(cid:15) M be a set of n (cid:2) c matrices with non-negative real-value entries +
(cid:15) F = [f1; f2; (cid:1) (cid:1) (cid:1) ; fc] 2 M corresponds to a speci(cid:12)c classi(cid:12)cation on X +
(cid:15) The entry of Fij can be regarded as the likelihood that xi belongs to +
class j +
(cid:15) The label of xi can be computed by yi = arg maxj6c Fij +
Induction +
minimize (cid:17)?(xt) = (cid:13)(cid:13)(cid:13)(cid:13) +
ft (cid:0) Xxj2N (xt) +
(cid:15) plug a test example xt into the cost function +
(cid:15) keep the labels of all xi 2 X (cid:12)xed when inducing the label of xt +
w(xt; xj)fj(cid:13)(cid:13)(cid:13)(cid:13) +
(5) +
Learning from partially labeled data +
(cid:15) Face/object recognition +
(cid:15) Image / video retrieval +
(cid:15) Interactive image segmentation +
Graph-Based Semi-Supervised Classi(cid:12)cation +
Represent the dataset as an weighted undirected graph G =< V; E > +
(cid:15) V: the node set, corresponding to the dataset +
(cid:15) E: the edge set, corresponding to the pairwise relationships +
wij = expn(cid:0)2(cid:12)kxi (cid:0) xjk2o +
(1) +
Cluster Assumption +
(cid:15) nearby points are likely to have the same label +
(cid:15) points on the same structure (such as a cluster or a submanifold) are +
prone to have the same label +
=) Similar to manifold analysis (ISOMAP, LLE, Laplacian Eigen- +
map(cid:1) (cid:1) (cid:1) ) +
=) Incorporate the neighborhood information into graph construction +
Linear Neighborhoods +
The data point can be linearly reconstructed from its k-nearest neigh- +
bors. +
minimize "i = (cid:13)(cid:13)(cid:13)(cid:13) +
s:t: Xj +
xi (cid:0) Xxj2N (xi) +
wij = 1; wij > 0 +
wij xj(cid:13)(cid:13)(cid:13)(cid:13) +
(2) +
(cid:15) wij re(cid:13)ects the similarity between xj and xi +
(cid:15) How to solve it?=)Quadratic programming. +
Collaborative Label Prediction +
The label of an unlabeled point can be linearly reconstructed from its +
neighbors’ labels +
minimize (cid:17) = Xn +
i=1 +
fi (cid:0) Xxj2N (xi) +
(cid:13)(cid:13)(cid:13)(cid:13) +
wijfj(cid:13)(cid:13)(cid:13)(cid:13) +
s:t: +
fi = li (f or all labeled point xi) +
(3) +
(cid:15) wij is calculated through solving Eq.(2). +
(cid:15) The neighborhood information are incorporated into label prediction. +
How to solve Eq.(3)? +
i=1 +
fi (cid:0) Xxj2N (xi) +
(cid:17) = Xn +
=) minimize (cid:17) ()(I (cid:0) W)f = 0; s:t: fi = li +
(cid:15) Refer to the following paper +
wijfj(cid:13)(cid:13)(cid:13)(cid:13) +
(cid:13)(cid:13)(cid:13)(cid:13) +
= f T (I (cid:0) W)T (I (cid:0) W)f (4) +
Recognition +
Recognition accuracies on ORL database +
LNP +
Consistency +
Kernel Eigenface +
Fisherface +
Eigenface +
0.9 +
0.8 +
0.7 +
0.6 +
0.5 +
0.4 +
Recognition accuracies on COIL database +
LNP +
Consistency +
Kernel PCA +
PCA+LDA +
PCA +
10 +
12 +
14 +
16 +
18 +
References +
(cid:15) S.T. Roweis and L.K. Saul, Noninear Dimensionality Reduction by +
Locally Linear Embedding. Science: vol. 290, 2323-2326. 2000. +
(cid:15) O. Chapelle, et al. (eds.): Semi-Supervised Learning. MIT Press: +
Cambridge, MA. 2006. +
(cid:15) A. Levin D. Lischinski and Y. Weiss. Colorization using Optimization. +
SIGGRAPH, ACM Transactions on Graphics, Aug 2004. +
Data Ranking +
Ranking Result by Euclidean Distance +
1.5 +
0.5 +
−0.5 +
Ranking Result by LNP +
0.95 +
0.9 +
0.85 +
0.8 +
0.75 +
0.7 +
0.65 +
1.5 +
0.5 +
−0.5 +
Zhu, X., Ghahramani, Z., & La(cid:11)erty, J.(2003). Semi-Supervised Learn- +
ing Using Gaussian Fields and Harmonic Functions. In Proceedings of +
the 20th International Conference on Machine Learning +
−1 +
−1.5 +
−1 +
−0.5 +
0.5 +
(a) +
1.5 +
2.5 +
−1 +
−1.5 +
−1 +
−0.5 +
0.5 +
(b) +
1.5 +
2.5 +
('34410258', 'Fei Wang', 'fei wang')
('1688516', 'Jingdong Wang', 'jingdong wang')
('1700883', 'Changshui Zhang', 'changshui zhang')
('7969645', 'Helen C. Shen', 'helen c. shen')
15d653972d176963ef0ad2cc582d3b35ca542673CSVideoNet: A Real-time End-to-end Learning Framework for +
High-frame-rate Video Compressive Sensing +
School of Computing, Informatics, and Decision Systems Engineering +
Arizona State University, Tempe AZ
('47831601', 'Kai Xu', 'kai xu')
('40615963', 'Fengbo Ren', 'fengbo ren')
{kaixu, renfengbo}@asu.edu +
159e792096756b1ec02ec7a980d5ef26b434ff78Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence +
Signed Laplacian Embedding for Supervised Dimension Reduction +
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University
Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney
('1710691', 'Chen Gong', 'chen gong')
('1692693', 'Dacheng Tao', 'dacheng tao')
('39264954', 'Jie Yang', 'jie yang')
('1847070', 'Keren Fu', 'keren fu')
{goodgongchen, jieyang, fkrsuper}@sjtu.edu.cn +
dacheng.tao@uts.edu.au +
153e5cddb79ac31154737b3e025b4fb639b3c9e7PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS +
Active Dictionary Learning in Sparse +
Representation Based Classification +
('1935596', 'Jin Xu', 'jin xu')
('2198278', 'Haibo He', 'haibo he')
('1881104', 'Hong Man', 'hong man')
1586871a1ddfe031b885b94efdbff647cf03eff1A Visual Historical Record of American High School Yearbooks +
A Century of Portraits: +
University of California Berkeley
Brown University
University of California Berkeley
('2361255', 'Shiry Ginosar', 'shiry ginosar')
('2660664', 'Kate Rakelly', 'kate rakelly')
('33385802', 'Sarah Sachs', 'sarah sachs')
('2130100', 'Brian Yin', 'brian yin')
('1763086', 'Alexei A. Efros', 'alexei a. efros')
15cf7bdc36ec901596c56d04c934596cf7b43115(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 8, No. 9, 2017 +
Face Extraction from Image based on K-Means +
Clustering Algorithms +
Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran
('2062871', 'Yousef Farhang', 'yousef farhang')
1576ed0f3926c6ce65e0ca770475bca6adcfdbb4Keep it Accurate and Diverse: Enhancing Action Recognition Performance by +
Ensemble Learning +
Faculty of Computer Science, Dalhousie University, Halifax, Canada
Computer Vision Center, UAB +
Edificio O, Campus UAB, 08193, Bellaterra (Cerdanyola), Barcelona, Spain +
University of Barcelona
Gran Via de les Corts Catalanes, 585, 08007, Barcelona +
Visual Analysis of People (VAP) Laboratory +
Rendsburggade 14, 9000 Aalborg, Denmark +
('1921285', 'Mohammad Ali Bagheri', 'mohammad ali bagheri')
('3212432', 'Qigang Gao', 'qigang gao')
('7855312', 'Sergio Escalera', 'sergio escalera')
('1803459', 'Kamal Nasrollahi', 'kamal nasrollahi')
('1876184', 'Michael B. Holte', 'michael b. holte')
('1700569', 'Thomas B. Moeslund', 'thomas b. moeslund')
bagheri@cs.dal.ca +
sergio@maia.ub.es, aclapes@cvc.uab.cat +
{kn, mbh, tbm}@create.aau.dk +
156cd2a0e2c378e4c3649a1d046cd080d3338bcaExemplar based approaches on Face Fiducial Detection and +
Frontalization +
Thesis submitted in partial fulfillment +
of the requirements for the degree of +
MS by Research +
in +
Computer Science & Engineering +
by +
Mallikarjun B R +
201307681 +
International Institute of Information Technology
Hyderabad - 500 032, India +
May 2017 +
mallikarjun.br@research.iiit.ac.in +
157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com +
Connecting the Dots in Multi-Class Classification: From +
Nearest Subspace to Collaborative Representation +
Chi, Y.; Porikli, F. +
TR2012-043 +
June 2012 +
15e0b9ba3389a7394c6a1d267b6e06f8758ab82bXu et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:24 +
DOI 10.1186/s41074-017-0035-2 +
IPSJ Transactions on Computer +
Vision and Applications +
TECHNICAL NOTE +
Open Access +
The OU-ISIR Gait Database comprising the +
Large Population Dataset with Age and +
performance evaluation of age estimation +
('7513255', 'Chi Xu', 'chi xu')
('1689334', 'Yasushi Makihara', 'yasushi makihara')
('12881056', 'Gakuto Ogi', 'gakuto ogi')
('1737850', 'Xiang Li', 'xiang li')
('1715071', 'Yasushi Yagi', 'yasushi yagi')
('6120396', 'Jianfeng Lu', 'jianfeng lu')
151481703aa8352dc78e2577f0601782b8c41b34Appearance Manifold of Facial Expression +
Queen Mary, University of London, London E1 4NS, UK
Department of Computer Science +
('10795229', 'Caifeng Shan', 'caifeng shan')
('2073354', 'Shaogang Gong', 'shaogang gong')
('2803283', 'Peter W. McOwan', 'peter w. mcowan')
{cfshan,sgg,pmco}@dcs.qmul.ac.uk +
15aa6c457678e25f6bc0e818e5fc39e42dd8e533
15cf1f17aeba62cd834116b770f173b0aa614bf4International Journal of Computer Applications (0975 – 8887) +
Volume 77 – No.5, September 2013 +
Facial Expression Recognition using Neural Network with +
Regularized Back-propagation Algorithm +
Research Scholar +
Department of ECE, +

Phagwara, India +
Assistant Professor +
Department of ECE, +

Phagwara, India +
Research Scholar +
Department of ECE, +
Gyan Ganga Institute of
Technology & Sciences, +
Jabalpur, India +
('35358999', 'Ashish Kumar Dogra', 'ashish kumar dogra')
('50227570', 'Nikesh Bajaj', 'nikesh bajaj')
1565721ebdbd2518224f54388ed4f6b21ebd26f3Face and Landmark Detection by Using Cascade of Classifiers +
Eskisehir Osmangazi University
Eskisehir, Turkey +
Laboratoire Jean Kuntzmann +
Grenoble Cedex 9, France +
Czech Technical University
Praha, Czech Republic +
('2277308', 'Hakan Cevikalp', 'hakan cevikalp')
('1756114', 'Bill Triggs', 'bill triggs')
('1778663', 'Vojtech Franc', 'vojtech franc')
hakan.cevikalp@gmail.com +
Bill.Triggs@imag.fr +
xfrancv@cmp.felk.cvut.cz +
15f3d47b48a7bcbe877f596cb2cfa76e798c6452Automatic face analysis tools for interactive digital games +
Anonymised for blind review +
Anonymous +
Anonymous +
Anonymous +
15728d6fd5c9fc20b40364b733228caf63558c31('2831988', 'IAN N. ENDRES', 'ian n. endres')
15252b7af081761bb00535aac6bd1987391f9b79ESTIMATION OF EYE GAZE DIRECTION ANGLES BASED ON ACTIVE APPEARANCE +
MODELS +
School of E.C.E., National Technical University of Athens, 15773 Athens, Greece
('2539459', 'Petros Koutras', 'petros koutras')
('1750686', 'Petros Maragos', 'petros maragos')
Email: {pkoutras, maragos}@cs.ntua.gr +
1513949773e3a47e11ab87d9a429864716aba42d
15ee80e86e75bf1413dc38f521b9142b28fe02d1Towards a Deep Learning Framework for +
Unconstrained Face Detection +
CyLab Biometrics Center and the Department of Electrical and Computer Engineering, +
Carnegie Mellon University, Pittsburgh, PA, USA
('3049981', 'Yutong Zheng', 'yutong zheng')
('3117715', 'Chenchen Zhu', 'chenchen zhu')
('6131978', 'T. Hoang Ngan Le', 't. hoang ngan le')
('1769788', 'Khoa Luu', 'khoa luu')
('2043374', 'Chandrasekhar Bhagavatula', 'chandrasekhar bhagavatula')
('1794486', 'Marios Savvides', 'marios savvides')
{yutongzh, chenchez, kluu, cbhagava, thihoanl}@andrew.cmu.edu, msavvid@ri.cmu.edu +
153c8715f491272b06dc93add038fae62846f498('33047058', 'JONGWOO LIM', 'jongwoo lim')
15e27f968458bf99dd34e402b900ac7b34b1d5758362 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
University of Toronto
1. INTRODUCTION +
('2030736', 'Mohammad Shahin Mahanta', 'mohammad shahin mahanta')
('1705037', 'Konstantinos N. Plataniotis', 'konstantinos n. plataniotis')
Email: {mahanta, kostas} @ece.utoronto.ca +
15f70a0ad8903017250927595ae2096d8b263090Learning Robust Deep Face Representation +
University of Science and Technology Beijing
Beijing, China +
('2225749', 'Xiang Wu', 'xiang wu')alfredxiangwu@gmail.com +
1564bf0a268662df752b68bee5addc4b08868739With Whom Do I Interact? +
Detecting Social Interactions in Egocentric +
Photo-streams +
University of Barcelona
Barcelona, Spain +
Computer Vision Center and +
University of Barcelona
Barcelona, Spain +
Computer Vision Center and +
University of Barcelona
Barcelona, Spain +
('2084534', 'Maedeh Aghaei', 'maedeh aghaei')
('2837527', 'Mariella Dimiccoli', 'mariella dimiccoli')
('1724155', 'Petia Radeva', 'petia radeva')
Email:maghaeigavari@ub.edu +
158e32579e38c29b26dfd33bf93e772e6211e188Automated Real Time Emotion Recognition using +
Facial Expression Analysis +
by +
A thesis submitted to the Faculty of Graduate and Postdoctoral +
Affairs in partial fulfillment of the requirements for the degree of +
Master +
of +
Computer Science +
Carleton University
Ottawa, Ontario +
122f51cee489ba4da5ab65064457fbe104713526Long Short Term Memory Recurrent Neural Network based +
Multimodal Dimensional Emotion Recognition +
Recognition +
Recognition +
Recognition +
National Laboratory of Pattern +
National Laboratory of Pattern +
National Laboratory of Pattern +
Institute of Automation
Chinese Academy of Sciences +
Institute of Automation
Chinese Academy of Sciences +
Institute of Automation
Chinese Academy of Sciences +
National Laboratory of Pattern Recognition +
National Laboratory of Pattern Recognition +
Institute of Automation
Chinese Academy of Sciences +
+
('1850313', 'Linlin Chao', 'linlin chao')
('37670752', 'Jianhua Tao', 'jianhua tao')
('2740129', 'Minghao Yang', 'minghao yang')
('1704841', 'Ya Li', 'ya li')
linlin.chao@nlpr.ia.ac.cn +
jhtao@nlpr.ia.ac.cn +
mhyang@nlpr.ia.ac.cn +
yli@nlpr.ia.ac.cn +
121503705689f46546cade78ff62963574b4750bWe don’t need no bounding-boxes: +
Training object class detectors using only human verification +
University of Edinburgh
('1749373', 'Dim P. Papadopoulos', 'dim p. papadopoulos')
('1823362', 'Jasper R. R. Uijlings', 'jasper r. r. uijlings')
('48716849', 'Frank Keller', 'frank keller')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
dim.papadopoulos@ed.ac.uk +
jrr.uijlings@ed.ac.uk +
keller@inf.ed.ac.uk +
vferrari@inf.ed.ac.uk +
125d82fee1b9fbcc616622b0977f3d06771fc152Hierarchical Face Parsing via Deep Learning +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('1693209', 'Ping Luo', 'ping luo')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
pluo.lhi@gmail.com +
xgwang@ee.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
1255afbf86423c171349e874b3ac297de19f00cdRobust Face Recognition by Computing Distances +
from Multiple Histograms of Oriented Gradients +
Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen
Nijenborgh 9, Groningen, The Netherlands +
('3351361', 'Mahir Faik Karaaba', 'mahir faik karaaba')
('1728531', 'Olarik Surinta', 'olarik surinta')
('1799278', 'Lambert Schomaker', 'lambert schomaker')
Email: {m.f.karaaba, o.surinta, l.r.b.schomaker, m.a.wiering}@rug.nl +
1275d6a800f8cf93c092603175fdad362b69c191Deep Face Recognition: A Survey +
School of Information and Communication Engineering, +
Beijing University of Posts and Telecommunications, Beijing, China
still have an inevitable limitation on robustness against the +
complex nonlinear facial appearance variations. +
In general, traditional methods attempted to solve FR prob- +
lem by one or two layer representation, such as filtering +
responses or histogram of the feature codes. The research com- +
munity studied intensively to separately improve the prepro- +
cessing, local descriptors, and feature transformation, which +
improve face recognition accuracy slowly. By the continuous +
improvement of a decade, “shallow” methods only improve the +
accuracy of the LFW benchmark to about 95% [26], which +
indicates that “shallow” methods are insufficient to extract +
stable identity feature against unconstrained facial variations. +
Due to the technical insufficiency, facial recognition systems +
were often reported with unstable performance or failures with +
countless false alarms in real-world applications. +
('2285767', 'Mei Wang', 'mei wang')
('1774956', 'Weihong Deng', 'weihong deng')
wm0245@126.com, whdeng@bupt.edu.cn +
126535430845361cd7a3a6f317797fe6e53f5a3bRobust Photometric Stereo via Low-Rank Matrix +
Completion and Recovery (cid:63) +
School of Optics and Electronics, Beijing Institute of Technology, Beijing
Coordinated Science Lab, University of Illinois at Urbana-Champaign
Key Laboratory of Machine Perception, Peking University, Beijing
§Visual Computing Group, Microsoft Research Asia, Beijing +
('2417838', 'Lun Wu', 'lun wu')
('1701028', 'Arvind Ganesh', 'arvind ganesh')
('35580784', 'Boxin Shi', 'boxin shi')
('1774618', 'Yasuyuki Matsushita', 'yasuyuki matsushita')
('1692621', 'Yongtian Wang', 'yongtian wang')
('1700297', 'Yi Ma', 'yi ma')
lun.wu@hotmail.com, abalasu2@illinois.edu, shiboxin@cis.pku.edu.cn, +
yasumat@microsoft.com, wyt@bit.edu.cn, mayi@microsoft.com +
122ee00cc25c0137cab2c510494cee98bd504e9fThe Application of +
Active Appearance Models to +
Comprehensive Face Analysis +
Technical Report +
TU M¨unchen +
April 5, 2007 +
('2866162', 'Simon Kriegel', 'simon kriegel')kriegel@mmer-systems.eu +
1287bfe73e381cc8042ac0cc27868ae086e1ce3b
121fe33daf55758219e53249cf8bcb0eb2b4db4bCHAKRABARTI et al.: EMPIRICAL CAMERA MODEL +
An Empirical Camera Model +
for Internet Color Vision +
http://www.eecs.harvard.edu/~ayanc/ +
http://www.cs.middlebury.edu/~schar/ +
Todd Zickler1 +
http://www.eecs.harvard.edu/~zickler/ +
1 Harvard School of Engineering and +
Applied Sciences +
Cambridge, MA, USA 02139 +
2 Department of Computer Science +
Middlebury College
Middlebury, VT, USA 05753 +
('38534744', 'Ayan Chakrabarti', 'ayan chakrabarti')
('1709053', 'Daniel Scharstein', 'daniel scharstein')
12408baf69419409d228d96c6f88b6bcde303505Temporal Tessellation: A Unified Approach for Video Analysis +
The Blavatnik School of Computer Science, Tel Aviv University, Israel
Information Sciences Institute, USC, CA, USA
The Open University of Israel, Israel
4Facebook AI Research +
('48842639', 'Dotan Kaufman', 'dotan kaufman')
('36813724', 'Gil Levi', 'gil levi')
('1756099', 'Tal Hassner', 'tal hassner')
('1776343', 'Lior Wolf', 'lior wolf')
120bcc9879d953de7b2ecfbcd301f72f3a96fb87Report on the FG 2015 Video Person Recognition Evaluation +
Zhenhua Feng +
Colorado State University
Fort Collins, CO, USA +
University of Notre Dame
Notre Dame, IN, USA +
University of Surrey
United Kingdom +
1 Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences +
Institute of Computing Technology, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Stevens Institute of Technology
Hoboken, NJ, USA +
Vitomir ˇStruc +
Janez Kriˇzaj +
University of Ljubljana
Ljubljana, Slovenia +
University of Technology, Sydney
Sydney, Australia +
National Institute of Standards and Technology
Gaithersburg, MD, USA +
('1757322', 'J. Ross Beveridge', 'j. ross beveridge')
('1694404', 'Bruce A. Draper', 'bruce a. draper')
('1704876', 'Patrick J. Flynn', 'patrick j. flynn')
('39976184', 'Patrik Huber', 'patrik huber')
('1748684', 'Josef Kittler', 'josef kittler')
('7945869', 'Zhiwu Huang', 'zhiwu huang')
('1688086', 'Shaoxin Li', 'shaoxin li')
('38751558', 'Yan Li', 'yan li')
('1693589', 'Meina Kan', 'meina kan')
('3373117', 'Ruiping Wang', 'ruiping wang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('3131569', 'Haoxiang Li', 'haoxiang li')
('37990555', 'Changxing Ding', 'changxing ding')
('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')
ross@cs.colostate.edu +
12cb3bf6abf63d190f849880b1703ccc183692feGuess Who?: A game to crowdsource the labeling of affective facial +
expressions is comparable to expert ratings. +
Graduation research project, june 2012 +
Supervised by: Dr. Joost Broekens +
mail@barryborsboom.nl +
12095f9b35ee88272dd5abc2d942a4f55804b31eDenseReg: Fully Convolutional Dense Shape Regression In-the-Wild +
Rıza Alp G¨uler1 +
1INRIA-CentraleSup´elec, France +
Imperial College London, UK
Stefanos Zafeiriou2 +
3Amazon, Berlin, Germany +
University College London, UK
('2814229', 'George Trigeorgis', 'george trigeorgis')
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('2796644', 'Patrick Snape', 'patrick snape')
('48111527', 'Iasonas Kokkinos', 'iasonas kokkinos')
riza.guler@inria.fr +
2{g.trigeorgis, p.snape, s.zafeiriou}@imperial.ac.uk +
antonak@amazon.com +
i.kokkinos@cs.ucl.ac.uk +
12cd96a419b1bd14cc40942b94d9c4dffe5094d229 +
Proceedings of the 5th Workshop on Vision and Language, pages 29–38, +
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics +
1275852f2e78ed9afd189e8b845fdb5393413614A Transfer Learning based Feature-Weak-Relevant Method for +
Image Clustering +
Dalian Maritime University
Dalian, China +
('3852923', 'Bo Dong', 'bo dong')
('2860808', 'Xinnian Wang', 'xinnian wang')
{dukedong,wxn}@dlmu.edu.cn +
1297ee7a41aa4e8499c7ddb3b1fed783eba19056University of Nebraska - Lincoln
US Army Research +
2015 +
U.S. Department of Defense +
Effects of emotional expressions on persuasion +
Gale Lucas +
University of Southern California
University of Southern California
University of Southern California
University of Southern California
Follow this and additional works at: http://digitalcommons.unl.edu/usarmyresearch +
Wang, Yuqiong; Lucas, Gale; Khooshabeh, Peter; de Melo, Celso; and Gratch, Jonathan, "Effects of emotional expressions on +
persuasion" (2015). US Army Research. 340. +
http://digitalcommons.unl.edu/usarmyresearch/340 +
('49416640', 'Yuqiong Wang', 'yuqiong wang')
('2635945', 'Peter Khooshabeh', 'peter khooshabeh')
('1977901', 'Celso de Melo', 'celso de melo')
('1730824', 'Jonathan Gratch', 'jonathan gratch')
DigitalCommons@University of Nebraska - Lincoln +
University of Southern California, wangyuqiong@ymail.com +
This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has +
been accepted for inclusion in US Army Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. +
12055b8f82d5411f9ad196b60698d76fbd07ac1e1475 +
Multiview Facial Landmark Localization in RGB-D +
Images via Hierarchical Regression +
With Binary Patterns +
('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')
('40647981', 'Wei Zhang', 'wei zhang')
('7137861', 'Jianzhuang Liu', 'jianzhuang liu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
126214ef0dcef2b456cb413905fa13160c73ec8eModelling human perception of static facial expressions +
M.Sorci,J.Ph.Thiran +
J.Cruz,T.Robin,M.Bierlaire +
Electrical Engineering Institute, EPFL
Transport and Mobility Laboratory,EPFL +
Station 11, CH-1015, Lausanne +
Station 11, CH-1015, Lausanne +
G.Antonini +
IBM Zurich Lab +
Saumerstrasse 4 ,Ruschlikon +
B.Cerretani +
University of Siena
DII,Siena +
{matteo.sorci,JP.Thiran}@epfl.ch +
{javier.cruz,thomas.robin,michel.bierlaire}@epfl.ch +
gan@zurich.ibm.com +
barbara.cerretani@gmail.com +
120785f9b4952734818245cc305148676563a99bDiagnostic automatique de l’état dépressif +
S. Cholet +
H. Paugam-Moisy +
Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540) +
Université des Antilles, Campus de Fouillole - Guadeloupe +
Résumé +
Les troubles psychosociaux sont un problème de santé pu- +
blique majeur, pouvant avoir des conséquences graves sur +
le court ou le long terme, tant sur le plan professionnel que +
personnel ou familial. Le diagnostic de ces troubles doit +
être établi par un professionnel. Toutefois, l’IA (l’Intelli- +
gence Artificielle) peut apporter une contribution en four- +
nissant au praticien une aide au diagnostic, et au patient +
un suivi permanent rapide et peu coûteux. Nous proposons +
une approche vers une méthode de diagnostic automatique +
de l’état dépressif à partir d’observations du visage en +
temps réel, au moyen d’une simple webcam. A partir de +
vidéos du challenge AVEC’2014, nous avons entraîné un +
classifieur neuronal à extraire des prototypes de visages +
selon différentes valeurs du score de dépression de Beck +
(BDI-II). +
Stephane.Cholet@univ-antilles.fr +
12692fbe915e6bb1c80733519371bbb90ae07539Object Bank: A High-Level Image Representation for Scene +
Classification & Semantic Feature Sparsification +
Stanford University
Carnegie Mellon University
('33642044', 'Li-Jia Li', 'li-jia li')
('2888806', 'Hao Su', 'hao su')
('1752601', 'Eric P. Xing', 'eric p. xing')
('3216322', 'Li Fei-Fei', 'li fei-fei')
1251deae1b4a722a2155d932bdfb6fe4ae28dd22A Large-scale Attribute Dataset for Zero-shot Learning +
1 National Engineering Laboratory for Video Technology, +
Key Laboratory of Machine Perception (MoE), +
Cooperative Medianet Innovation Center, Shanghai, +
School of EECS, Peking University, Beijing, 100871, China
School of Data Science, Fudan University
3 Sinovation Ventures +
('49217762', 'Bo Zhao', 'bo zhao')
('35782003', 'Yanwei Fu', 'yanwei fu')
('1705512', 'Rui Liang', 'rui liang')
('3165417', 'Jiahong Wu', 'jiahong wu')
('47904050', 'Yonggang Wang', 'yonggang wang')
('36637369', 'Yizhou Wang', 'yizhou wang')
bozhao, yizhou.wang@pku.edu.cn, yanweifu@fudan.edu.cn +
liangrui, wujiahong, wangyonggang@chuangxin.com +
12ccfc188de0b40c84d6a427999239c6a379cd66Sparse Adversarial Perturbations for Videos +
1 Tsinghua National Lab for Information Science and Technology +
1 State Key Lab of Intelligent Technology and Systems +
Tsinghua University
1 Center for Bio-Inspired Computing Research +
('2769710', 'Xingxing Wei', 'xingxing wei')
('40062221', 'Jun Zhu', 'jun zhu')
('37409747', 'Hang Su', 'hang su')
{xwei11, dcszj, suhangss}@mail.tsinghua.edu.cn +
12c713166c46ac87f452e0ae383d04fb44fe4eb2
12ebeb2176a5043ad57bc5f3218e48a96254e3e9International Journal of Computer Applications (0975 – 8887) +
Volume 120 – No.24, June 2015 +
Traffic Road Sign Detection and Recognition for +
Automotive Vehicles +
Zakir Hyder +
Department of Electrical Engineering and +
Department of Electrical Engineering and +
Computer Science North South University, Dhaka
Computer Science North South University, Dhaka
Bangladesh +
Bangladesh +
1270044a3fa1a469ec2f4f3bd364754f58a1cb56Video-Based Face Recognition Using Probabilistic Appearance Manifolds +
yComputer Science +
Urbana, IL 61801 +
zComputer Science & Engineering +
University of Illinois, Urbana-Champaign University of California, San Diego
La Jolla, CA 92093 +
David Kriegmanz +
Honda Research Institute
800 California Street +
Mountain View, CA 94041 +
('2457452', 'Kuang-chih Lee', 'kuang-chih lee')
('1788818', 'Jeffrey Ho', 'jeffrey ho')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
klee10@uiuc.edu +
jho@cs.ucsd.edu myang@honda-ri.com kriegman@cs.ucsd.edu +
12150d8b51a2158e574e006d4fbdd3f3d01edc93Deep End2End Voxel2Voxel Prediction +
Presented by: Ahmed Osman +
Ahmed Osman +
('1687325', 'Du Tran', 'du tran')
('2276554', 'Rob Fergus', 'rob fergus')
('2210374', 'Manohar Paluri', 'manohar paluri')
12003a7d65c4f98fb57587fd0e764b44d0d10125Face Recognition in the Wild with the Probabilistic Gabor-Fisher +
Classifier +
Simon Dobriˇsek, Vitomir ˇStruc, Janez Kriˇzaj, France Miheliˇc +
Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia
124538b3db791e30e1b62f81d4101be435ee12efORIGINAL RESEARCH ARTICLE +
published: 29 August 2013 +
doi: 10.3389/fpsyg.2013.00506 +
Basic level scene understanding: categories, attributes and +
structures +
Computer Science, Princeton University, Princeton, NJ, USA
Computer Science, Brown University, Providence, RI, USA
Computer Science and Engineering, University of Washington, Seattle, WA, USA
Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
Edited by: +
Tamara Berg, Stony Brook +
University, USA
Reviewed by: +
Andrew M. Haun, Harvard Medical +
School, USA +
Devi Parikh, Virginia Tech, USA +
*Correspondence: +
Brown University
115 Waterman Street, Box 1910, +
Providence, RI 02912, USA +
A longstanding goal of computer vision is to build a system that can automatically +
understand a 3D scene from a single image. This requires extracting semantic concepts +
and 3D information from 2D images which can depict an enormous variety of +
environments that comprise our visual world. This paper summarizes our recent efforts +
toward these goals. First, we describe the richly annotated SUN database which is a +
collection of annotated images spanning 908 different scene categories with object, +
attribute, and geometric labels for many scenes. This database allows us to systematically +
study the space of scenes and to establish a benchmark for scene and object recognition. +
We augment the categorical SUN database with 102 scene attributes for every image and +
explore attribute recognition. Finally, we present an integrated system to extract the 3D +
structure of the scene and objects depicted in an image. +
Keywords: SUN database, basic level scene understanding, scene recognition, scene attributes, geometry +
recognition, 3D context +
1. INTRODUCTION +
The ability to understand a 3D scene depicted in a static 2D image +
goes to the very heart of the computer vision problem. By “scene” +
we mean a place in which a human can act within or navigate. +
What does it mean to understand a scene? There is no univer- +
sal answer as it heavily depends on the task involved, and this +
seemingly simple question hides a lot of complexity. +
The dominant view in the current computer vision literature +
is to name the scene and objects present in an image. However, +
this level of understanding is rather superficial. If we can reason +
about a larger variety of semantic properties and structures of +
scenes it will enable richer applications. Furthermore, working on +
an over-simplified task may distract us from exploiting the natu- +
ral structures of the problem (e.g., relationships between objects +
and 3d surfaces or the relationship between scene attributes and +
object presence), which may be critical for a complete scene +
understanding solution. +
What is the ultimate goal of computational scene under- +
standing? One goal might be to pass the Turing test for scene +
understanding: Given an image depicting a static scene, a human +
judge will ask a human or a machine questions about the picture. +
If the judge cannot reliably tell the machine from the human, the +
machine is said to have passed the test. This task is beyond the +
current state-of-the-art as humans could ask a huge variety of +
meaningful visual questions about an image, e.g., Is it safe to cross +
this road? Who ate the last cupcake? Is this a fun place to vacation? +
Are these people frustrated? Where can I set these groceries? etc. +
Therefore, we propose a set of goals that are suitable for the +
current state of research in computer vision that are not too +
simplistic nor challenging and lead to a natural representation of +
scenes. Based on these considerations, we define the task of scene +
understanding as predicting the scene category, scene attributes, +
the 3D enclosure of the space, and all the objects in the images. +
For each object, we want to know its category and 3D bound- +
ing box, as well as its 3D orientation relative to the scene. As an +
image is a viewer-centric observation of the space, we also want +
to recover the camera parameters, such as observer viewpoint +
and field of view. We call this taskbasic level scene understand- +
ing, with analogy to basic level in cognitive categorization (Rosch, +
1978). It has practical applications for providing sufficient infor- +
mation for simple interaction with the scene, such as navigation +
and object manipulation. +
1.1. OUTLINE +
In this paper we discuss several aspects of basic level scene under- +
standing. First, we quickly review our recent work on categorical +
(section 2) and attribute-based scene representations (section 3). +
Finally, we go into greater detail about novel work in 3d scene +
understanding using structured learning to simultaneously rea- +
son about many aspects of scenes (section 4). +
Supporting these research efforts is the Scene UNderstanding +
(SUN) database. By modern standards, the SUN database is not +
especially large, containing on the order of 100,000 scenes. But +
the SUN database is, instead, richly annotated with scene cat- +
egories, scene attributes, geometric properties, “memorability” +
measurements (Isola et al., 2011), and object segmentations. +
There are 326,582 manually segmented objects for the 5650 +
object categories labeled (Barriuso and Torralba, 2012). Object +
www.frontiersin.org +
August 2013 | Volume 4 | Article 506 | 1 +
('40599257', 'Jianxiong Xiao', 'jianxiong xiao')
('12532254', 'James Hays', 'james hays')
('2537592', 'Bryan C. Russell', 'bryan c. russell')
('40541456', 'Genevieve Patterson', 'genevieve patterson')
('1865091', 'Krista A. Ehinger', 'krista a. ehinger')
('38611723', 'Antonio Torralba', 'antonio torralba')
('31735139', 'Aude Oliva', 'aude oliva')
('12532254', 'James Hays', 'james hays')
e-mail: hays@cs.brown.edu +
12d8730da5aab242795bdff17b30b6e0bac82998Persistent Evidence of Local Image Properties in Generic ConvNets +
CVAP, KTH (Royal Institute of Technology), Stockholm, SE
('2835963', 'Ali Sharif Razavian', 'ali sharif razavian')
('2622491', 'Hossein Azizpour', 'hossein azizpour')
('1801052', 'Atsuto Maki', 'atsuto maki')
('1736906', 'Josephine Sullivan', 'josephine sullivan')
('2484138', 'Carl Henrik Ek', 'carl henrik ek')
('1826607', 'Stefan Carlsson', 'stefan carlsson')
{razavian,azizpour,atsuto,sullivan,chek,stefanc}@csc.kth.se +
8c13f2900264b5cf65591e65f11e3f4a35408b48A GENERIC FACE REPRESENTATION APPROACH FOR +
LOCAL APPEARANCE BASED FACE VERIFICATION +
Interactive Systems Labs, Universität Karlsruhe (TH) +
76131 Karlsruhe, Germany +
web: http://isl.ira.uka.de/face_recognition/ +
('3025777', 'Hazim Kemal Ekenel', 'hazim kemal ekenel')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
{ekenel, stiefel}@ira.uka.de +
8cb3f421b55c78e56c8a1c1d96f23335ebd4a5bf
8c955f3827a27e92b6858497284a9559d2d0623aBuletinul Ştiinţific al Universităţii "Politehnica" din Timişoara +
Seria ELECTRONICĂ şi TELECOMUNICAŢII +
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS +
Tom 53(67), Fascicola 1-2, 2008 +
Facial Expression Recognition under Noisy Environment +
Using Gabor Filters +
('2336758', 'Ioan Buciu', 'ioan buciu')
('2526319', 'I. Nafornita', 'i. nafornita')
('29835181', 'I. Pitas', 'i. pitas')
8c8525e626c8857a4c6c385de34ffea31e7e41d1Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network +
National University of Singapore, Singapore
2IBM Research +
('1753492', 'Junshi Huang', 'junshi huang')
('35370244', 'Qiang Chen', 'qiang chen')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
{a0092558, eleyans}@nus.edu.sg +
rsferis@us.ibm.com +
qiangchen@au1.ibm.com +
8c66378df977606d332fc3b0047989e890a6ac76Hierarchical-PEP Model for Real-world Face Recognition +
Stevens Institute of Technology
Pose variation remains one of the major factors adversely affect the accuracy +
of real-world face recognition systems. The same face in different poses +
can look drastically different to each other. Belhumeur et al. [1] empiri- +
cally demonstrate that frontal faces can be projected to a low-dimensional +
subspace invariant to variation in illumination and facial expressions. This +
observation highlights the importance of addressing pose variation because +
it can greatly help relieve the adverse effects of the other visual variations. +
A set of methods build pose-invariant face representations by locating +
the facial landmarks. For example, Chen et al. [2] concatenate dense fea- +
tures around the facial landmarks to build the face representation. The pose- +
invariance is achieved in this way, because it always extracts features from +
the face part surrounded around the facial landmarks regardless of their loca- +
tions in the image. The elastic matching methods [5] generalize this design +
with a probabilistic elastic part (PEP) model unsupervisedly learned from +
face image patches. +
While this procedure – locating the face parts and stacking the face part +
features to build face representation – is empirically demonstrated to be ef- +
fective by both Chen et al. [2] and Li et al. [5], we argue that directly de- +
scribing the face parts with naive dense extraction of low-level features may +
not be optimal. +
In this work, we propose to build a better face part model to construct +
an improved face representation. Inspired by the probabilistic elastic part +
(PEP) model and the success of the deep hierarchical architecture in a num- +
ber of visual tasks, we propose the Hierarchical-PEP model to approach the +
unconstrained face recognition problem. +
As shown in Figure 1, we apply the PEP model hierarchically to decom- +
pose a face image into face parts at different levels of details to build pose- +
invariant part-based face representations. Following the hierarchy from bottom- +
up, we stack the face part representations at each layer, discriminatively re- +
duce its dimensionality, and hence aggregate the face part representations +
layer-by-layer to build a compact and invariant face representation. The +
Hierarchical-PEP model exploits the fine-grained structures of the face parts +
at different levels of details to address the pose variations. It is also guided +
by supervised information in constructing the face part/face representations. +
We empirically verify the Hierarchical-PEP model on two public bench- +
marks and a face recognition challenge for image-based and video-based +
face verification. The state-of-the-art performance demonstrates the poten- +
tial of our method. We show the performance comparison on the YouTube +
faces dataset [9] in Table 1. +
Table 1: Performance comparison on YouTube Faces dataset under the re- +
stricted with no outside data protocol. +
Algorithm +
MBGS [9] +
MBGS+SVM- [8] +
STFRD+PMML [10] +
VF2 [7] +
DDML (combined) [3] +
Eigen-PEP [6] +
LM3L [4] +
Hierarchical-PEP (layers fusion) +
Accuracy ± Error(%) +
76.4± 1.8 +
78.9± 1.9 +
79.5± 2.5 +
84.7± 1.4 +
82.3± 1.5 +
84.8± 1.4 +
81.3± 1.2 +
87.00± 1.50 +
[1] Peter N. Belhumeur, Jo ˜ao P. Hespanha, and David J. Kriegman. Eigen- +
faces vs. Fisherfaces: Recognition using class specific linear projec- +
tion. PAMI, 1997. +
[2] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of di- +
mensionality: High dimensional feature and its efficient compression +
for face verification. In CVPR, 2013. +
[3] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative deep metric +
learning for face verification in the wild. In CVPR, 2014. +
[4] Junlin Hu, Jiwen Lu, Junsong Yuan, and Yap-Peng Tan. Large margin +
multi-metric learning for face and kinship verification in the wild. In +
ACCV, 2014. +
Yang. Probabilistic elastic matching for pose variant face verification. +
In CVPR, 2013. +
Eigen-pep for video face recognition. In ACCV, 2014. +
[7] O. M. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman. A compact +
and discriminative face track descriptor. In CVPR, 2014. +
[8] Lior Wolf and Noga Levy. The svm-minus similarity score for video +
face recognition. In CVPR, 2013. +
[9] Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in uncon- +
strained videos with matched background similarity. In CVPR, 2011. +
[10] Cui Zhen, Wen Li, Dong Xu, Shiguang Shan, and Xilin Chen. Fus- +
ing robust face region descriptors via multiple metric learning for face +
recognition in the wild. In CVPR, 2013. +
Figure 1: Construction of the face representation with an example 2-layer Hierarchical-PEP model: PCA at layer t keeps dt dimensions. +
('3131569', 'Haoxiang Li', 'haoxiang li')
('1745420', 'Gang Hua', 'gang hua')
('3131569', 'Haoxiang Li', 'haoxiang li')
('1745420', 'Gang Hua', 'gang hua')
('3131569', 'Haoxiang Li', 'haoxiang li')
('1745420', 'Gang Hua', 'gang hua')
8c9c8111e18f8798a612e7386e88536dfe26455eCOMPARING BAYESIAN NETWORKS TO CLASSIFY FACIAL +
EXPRESSIONS +
Institute of Systems and Robotics
University of Coimbra, Portugal
Institute Polythechnic of Leiria, Portugal
Jorge Dias +
Institute of Systems and Robotics
University of Coimbra, Portugal
Institute of Systems and Robotics
University of Coimbra, Portugal
('2700157', 'Carlos Simplício', 'carlos simplício')
('40031257', 'José Prado', 'josé prado')
carlos.simplicio@ipleiria.pt +
jaugusto@isr.uc.pt +
jorge@isr.uc.pt +
8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431faDataset Augmentation for Pose and Lighting +
Invariant Face Recognition +
Vision Systems, Inc
†Systems and Technology Research +
('2103732', 'Octavian Biris', 'octavian biris')
('3390731', 'Nate Crosswhite', 'nate crosswhite')
('36067742', 'Jeffrey Byrne', 'jeffrey byrne')
('3453447', 'Joseph L. Mundy', 'joseph l. mundy')
8c81705e5e4a1e2068a5bd518adc6955d49ae4343D Object Recognition with Enhanced +
Grassmann Discriminant Analysis +
Graduate School of Systems and Information Engineering, +
University of Tsukuba, Japan
('9641567', 'Lincon Sales de Souza', 'lincon sales de souza')
('34581814', 'Hideitsu Hino', 'hideitsu hino')
('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')
lincons@cvlab.cs.tsukuba.ac.jp, {hinohide, kfukui}@cs.tsukuba.ac.jp +
8cb403c733a5f23aefa6f583a17cf9b972e35c90Learning the semantic structure of objects +
from Web supervision +
David Novotny1 +
1Visual Geometry Group +
University of Oxford
2Computer Vision Group +
Xerox Research Centre Europe +
('2295553', 'Diane Larlus', 'diane larlus')
('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
{david,andrea}@robots.ox.ac.uk +
diane.larlus@xrce.xerox.com +
8ccde9d80706a59e606f6e6d48d4260b60ccc736RotDCF: Decomposition of Convolutional Filters for +
Rotation-Equivariant Deep Networks +
Duke University
Duke University
('1823644', 'Xiuyuan Cheng', 'xiuyuan cheng')
('2077648', 'Qiang Qiu', 'qiang qiu')
('1699339', 'Guillermo Sapiro', 'guillermo sapiro')
8c6b9c9c26ead75ce549a57c4fd0a12b46142848Facial expression recognition using shape and +
texture information +
I. Kotsia1 and I. Pitas1 +
Aristotle University of Thessaloniki
Department of Informatics +
Box 451 54124 +
Thessaloniki, Greece +
Summary. A novel method based on shape and texture information is proposed in +
this paper for facial expression recognition from video sequences. The Discriminant +
Non-negative Matrix Factorization (DNMF) algorithm is applied at the image cor- +
responding to the greatest intensity of the facial expression (last frame of the video +
sequence), extracting that way the texture information. A Support Vector Machines +
(SVMs) system is used for the classi(cid:12)cation of the shape information derived from +
tracking the Candide grid over the video sequence. The shape information consists +
of the di(cid:11)erences of the node coordinates between the (cid:12)rst (neutral) and last (fully +
expressed facial expression) video frame. Subsequently, fusion of texture and shape +
information obtained is performed using Radial Basis Function (RBF) Neural Net- +
works (NNs). The accuracy achieved is equal to 98,2% when recognizing the six +
basic facial expressions. +
1.1 Introduction +
During the past two decades, many studies regarding facial expression recog- +
nition, which plays a vital role in human centered interfaces, have been +
conducted. Psychologists have de(cid:12)ned the following basic facial expressions: +
anger, disgust, fear, happiness, sadness and surprise [?]. A set of muscle move- +
ments, known as Action Units, was created. These movements form the so +
called F acial Action Coding System (F ACS) [?]. A survey on auto- +
matic facial expression recognition can be found in [?]. +
In the current paper, a novel method for video based facial expression +
recognition by fusing texture and shape information is proposed. The texture +
information is obtained by applying the DNMF algorithm [?] on the last +
frame of the video sequence, i.e. the one that corresponds to the greatest +
intensity of the facial expression depicted. The shape information is calculated +
as the di(cid:11)erence of Candide facial model grid node coordinates between the +
(cid:12)rst and the last frame of a video sequence [?]. The decision made regarding +
pitas@aiia.csd.auth.gr +
8ce9b7b52d05701d5ef4a573095db66ce60a7e1cStructured Sparse Subspace Clustering: A Joint +
Affinity Learning and Subspace Clustering +
Framework +
('9171002', 'Chun-Guang Li', 'chun-guang li')
('1878841', 'Chong You', 'chong you')
8cb6daba2cb1e208e809633133adfee0183b8dd2Know Before You Do: Anticipating Maneuvers +
via Learning Temporal Driving Models +
Cornell University and Stanford University
('1726066', 'Ashesh Jain', 'ashesh jain')
('3282281', 'Bharad Raghavan', 'bharad raghavan')
('1681995', 'Ashutosh Saxena', 'ashutosh saxena')
{ashesh,hema,asaxena}@cs.cornell.edu {bharad,shanesoh}@stanford.edu +
8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82Article +
Gated Convolutional Neural Network for Semantic +
Segmentation in High-Resolution Images +
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
University of Chinese Academy of Sciences, Beijing 101408, China
Academic Editors: Qi Wang, Xiaofeng Li and Prasad S. Thenkabail +
Received: 2 April 2017; Accepted: 1 May 2017; Published: 5 May 2017 +
('2206625', 'Hongzhen Wang', 'hongzhen wang')
('1738352', 'Ying Wang', 'ying wang')
('1737486', 'Qian Zhang', 'qian zhang')
('1683738', 'Shiming Xiang', 'shiming xiang')
('3364363', 'Chunhong Pan', 'chunhong pan')
95 Zhongguancun East Road, Beijing 100190, China; hongzhen.wang@nlpr.ia.ac.cn (H.W.); +
ywang@nlpr.ia.ac.cn (Y.W.); chpan@nlpr.ia.ac.cn (C.P.) +
3 Alibaba Group, Beijing 100102, China; zhangqiancsuia@163.com +
* Correspondence: smxiang@nlpr.ia.ac.cn; Tel.: +86-136-7118-9070 +
8c6c0783d90e4591a407a239bf6684960b72f34eSESSION +
KNOWLEDGE ENGINEERING AND +
MANAGEMENT + KNOWLEDGE ACQUISITION +
Chair(s) +
TBA +
Int'l Conf. Information and Knowledge Engineering | IKE'13 |1
8cb55413f1c5b6bda943697bba1dc0f8fc880d28Video-based Face Recognition on Real-World Data +
Hazım K. Ekenel +
Interactive System Labs +
University of Karlsruhe, Germany
('1842921', 'Johannes Stallkamp', 'johannes stallkamp')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
{jstallkamp,ekenel,stiefel}@ira.uka.de +
8cc07ae9510854ec6e79190cc150f9f1fe98a238Article +
Using Deep Learning to Challenge Safety Standard +
for Highly Autonomous Machines in Agriculture +
Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark
† These authors contributed equally to this work. +
Academic Editors: Francisco Rovira-Más and Gonzalo Pajares Martinsanz +
Received: 18 December 2015; Accepted: 2 February 2016; Published: 15 February 2016 +
('32688812', 'Kim Arild Steen', 'kim arild steen')
('2139204', 'Peter Christiansen', 'peter christiansen')
('2550309', 'Henrik Karstoft', 'henrik karstoft')
pech@eng.au.dk (P.C.); hka@eng.au.dk (H.K.); rnj@eng.au.dk (R.N.J.) +
* Correspondence: kim.steen@eng.au.dk; Tel.: +45-3116-8628 +
8509abbde2f4b42dc26a45cafddcccb2d370712fImproving precision and recall of face recognition in SIPP with combination of +
modified mean search and LSH +
Xihua.Li +
lixihua9@126.com +
855bfc17e90ec1b240efba9100fb760c068a8efa
858ddff549ae0a3094c747fb1f26aa72821374ecSurvey on RGB, 3D, Thermal, and Multimodal +
Approaches for Facial Expression Recognition: +
History, Trends, and Affect-related Applications +
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('7855312', 'Sergio Escalera', 'sergio escalera')
85041e48b51a2c498f22850ce7228df4e2263372Subspace Regression: Predicting +
a Subspace from One Sample +
Robotics Institute, Carnegie Mellon University
‡ Electrical & Controls Integration Lab, General Motors R&D +
('34299925', 'Minyoung Kim', 'minyoung kim')
85fd2bda5eb3afe68a5a78c30297064aec1361f6702003 PSSXXX10.1177/0956797617702003Carr et al.Are You Smiling, or Have I Seen You Before? +
research-article2017 +
Research Article +
Are You Smiling, or Have I Seen You +
Before? Familiarity Makes Faces Look +
Happier +
2017, Vol. 28(8) 1087 –1102 +
© The Author(s) 2017 +
Reprints and permissions: +
sagepub.com/journalsPermissions.nav +
DOI: 10.1177/0956797617702003 +
https://doi.org/10.1177/0956797617702003 +
www.psychologicalscience.org/PS +
Columbia Business School, University of California, San Diego
Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology
SWPS University of Social Sciences and Humanities
('5907729', 'Evan W. Carr', 'evan w. carr')
('3122131', 'Piotr Winkielman', 'piotr winkielman')
857ad04fca2740b016f0066b152bd1fa1171483fSample Images can be Independently Restored from +
Face Recognition Templates +
School of Information Technology and Engineering, University of Ottawa, Ontario, Canada
are being piloted or implemented at airports, for +
government identification systems such as passports +
and drivers licenses, and in surveillance applications. +
In this paper, we consider the identifiability of stored +
biometric +
information, and +
for +
biometric privacy and security. +
implications +
its +
Biometric authentication is typically performed by +
a sophisticated software application, which manages +
the user interface and database, and interacts with a +
vendor specific, proprietary biometric algorithm. +
Algorithms undertake the following processing steps: +
1) acquisition of a biometric sample image, 2) +
conversion of the sample image to a biometric +
template, 3) comparison of the new (or "live") +
template to previously stored templates, to calculate a +
match score. High match scores indicate a likelihood +
that the corresponding images are from the same +
individual. The biometric template is a (typically +
vendor specific) compact digital representation of the +
essential features of the sample image. Biometric +
algorithm vendors have uniformly claimed that it is +
impossible or infeasible to recreate the image from the +
template. [2, 3, 4, 7] These claims are supported by: 1) +
the template records features (such as fingerprint +
minutiae) and not image primitives, 2) templates are +
typically calculated using only a small portion of the +
image, 3) templates are small − a few hundred bytes − +
much smaller than the sample image, and 4) the +
proprietary nature of +
the storage format makes +
templates infeasible to "hack". For these reasons, +
biometric templates are considered to be effectively +
non-identifiable data, much like a password hash [7]. +
In fact, these arguments are not valid: this paper +
demonstrates a simple algorithm to recreate sample +
images from templates using only match score results. +
2. METHODS +
A software application (figure 1) was designed with +
the goal of recreating a face image of a specific person +
in a face recognition database. The application has +
local access to a database of face images, and has +
network access to a Face Recognition Server (FRS) +
('2478519', 'Andy Adler', 'andy adler')aadler@uottawa.ca +
858901405086056361f8f1839c2f3d65fc86a748ON TENSOR TUCKER DECOMPOSITION: THE CASE FOR AN +
ADJUSTABLE CORE SIZE +
('2424633', 'BILIAN CHEN', 'bilian chen')
('1792785', 'ZHENING LI', 'zhening li')
('1789588', 'SHUZHONG ZHANG', 'shuzhong zhang')
85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : +
France (2008)" +
858b51a8a8aa082732e9c7fbbd1ea9df9c76b013Can Computer Vision Problems Benefit from +
Structured Hierarchical Classification? +
Sandor Szedmak2 +
INTELSIG, Monte ore Institute, University of Li`ege, Belgium
Intelligent and Interactive Systems, Institute of Computer Science, University of
Innsbruck, Austria +
('3104165', 'Thomas Hoyoux', 'thomas hoyoux')
('1772389', 'Justus H. Piater', 'justus h. piater')
856317f27248cdb20226eaae599e46de628fb696A Method Based on Convex Cone Model for +
Image-Set Classification with CNN Features +
Graduate School of Systems and Information Engineering, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan +
('46230115', 'Naoya Sogi', 'naoya sogi')
('2334316', 'Taku Nakayama', 'taku nakayama')
('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')
Email: {sogi, nakayama}@cvlab.cs.tsukuba.ac.jp, kfukui@cs.tsukuba.ac.jp +
8518b501425f2975ea6dcbf1e693d41e73d0b0afRelative Hidden Markov Models for Evaluating Motion Skills +
Computer Science and Engineering +
Arizona State Univerisity, Tempe, AZ 85281 +
('1689161', 'Qiang Zhang', 'qiang zhang')
('2913552', 'Baoxin Li', 'baoxin li')
qzhang53,baoxin.li@asu.edu +
855184c789bca7a56bb223089516d1358823db0bAutomatic Procedure to Fix Closed-Eyes Image +
University of California, Berkeley
Figure 1: Pipeline to Fix Closed-Eyes Image +
('31781046', 'Hung Vu', 'hung vu')
853bd61bc48a431b9b1c7cab10c603830c488e39Learning Face Representation from Scratch +
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences (CASIA
('1716143', 'Dong Yi', 'dong yi')
('1718623', 'Zhen Lei', 'zhen lei')
('40397682', 'Shengcai Liao', 'shengcai liao')
('34679741', 'Stan Z. Li', 'stan z. li')
dong.yi, zlei, scliao, szli@nlpr.ia.ac.cn +
85639cefb8f8deab7017ce92717674d6178d43ccAutomatic Analysis of Spontaneous Facial Behavior: +
A Final Project Report +
(UCSD MPLab TR 2001.08, October 31 2001) +
cid:1)Institute for Neural Computation
(cid:2)Department of Cognitive Science +
University of California, San Diego
cid:3)The Salk Institute and Howard Hughes Medical Institute
('2218905', 'Marian S. Bartlett', 'marian s. bartlett')
('33937541', 'Bjorn Braathen', 'bjorn braathen')
('2039025', 'Ian Fasel', 'ian fasel')
('1714528', 'Terrence J. Sejnowski', 'terrence j. sejnowski')
('1741200', 'Javier R. Movellan', 'javier r. movellan')
854dbb4a0048007a49df84e3f56124d387588d99JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +
Spatial-Temporal Recurrent Neural Network for +
Emotion Recognition +
('38144094', 'Tong Zhang', 'tong zhang')
('40608983', 'Wenming Zheng', 'wenming zheng')
('10338111', 'Zhen Cui', 'zhen cui')
('2378869', 'Yuan Zong', 'yuan zong')
('1678662', 'Yang Li', 'yang li')
85674b1b6007634f362cbe9b921912b697c0a32cOptimizing Facial Landmark Detection by +
Facial Attribute Learning +
The Chinese University of Hong Kong
('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')
('1693209', 'Ping Luo', 'ping luo')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
1d21e5beef23eecff6fff7d4edc16247f0fd984aFace Recognition from Video using the Generic +
Shape-Illumination Manifold +
Department of Engineering +
University of Cambridge
Cambridge, CB2 1PZ, UK +
('1745672', 'Roberto Cipolla', 'roberto cipolla'){oa214,cipolla}@eng.cam.ac.uk +
1dbbec4ad8429788e16e9f3a79a80549a0d7ac7b
1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de91860 +
The Hidden Sides of Names—Face Modeling +
with First Name Attributes +
('2896700', 'Huizhong Chen', 'huizhong chen')
('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('1739786', 'Bernd Girod', 'bernd girod')
1d846934503e2bd7b8ea63b2eafe00e29507f06a
1d19c6857e798943cd0ecd110a7a0d514c671fecDo Deep Neural Networks Learn Facial Action Units +
When Doing Expression Recognition? +
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
('1911177', 'Pooya Khorrami', 'pooya khorrami')
('40470211', 'Tom Le Paine', 'tom le paine')
('1739208', 'Thomas S. Huang', 'thomas s. huang')
{pkhorra2,paine1,t-huang1}@illinois.edu +
1d1a7ef193b958f9074f4f236060a5f5e7642fc1Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 \ +
675 +
Ensemble of Patterns of Oriented Edge Magnitudes +
Descriptors For Face Recognition +
Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA
faces; and 3) face tagging, which is a particular case of face +
identification. +
('1804258', 'Loris Nanni', 'loris nanni')
('1707759', 'Alessandra Lumini', 'alessandra lumini')
('2292370', 'Sheryl Brahnam', 'sheryl brahnam')
*DEI, University o f Padua, viale Gradenigo 6, Padua, Italy, {loris.nanni, mauro.migliardi}@unipd.it; +
2DEI, Universita di Bologna, Via Venezia 52, 47521 Cesena, Italy, alessandra.lumini@ unibo.it; +
sbrahnam@missouristate.edu +
1d696a1beb42515ab16f3a9f6f72584a41492a03Deeply learned face representations are sparse, selective, and robust +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('1681656', 'Yi Sun', 'yi sun')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
sy011@ie.cuhk.edu.hk +
xgwang@ee.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
1d1caaa2312390260f7d20ad5f1736099818d358Resource-Allocating Codebook for Patch-based Face Recognition +
School of Electronics and Computer Science +
University of Southampton, SO17 1BJ, UK
('34672932', 'Amirthalingam Ramanan', 'amirthalingam ramanan')
('1697360', 'Mahesan Niranjan', 'mahesan niranjan')
{ar07r,mn}@ecs.soton.ac.uk +
1dc241ee162db246882f366644171c11f7aed96dDeep Action- and Context-Aware Sequence Learning for Activity Recognition +
and Anticipation +
Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL
('35441838', 'Fatemehsadat Saleh', 'fatemehsadat saleh')
('1688071', 'Basura Fernando', 'basura fernando')
('2862871', 'Mathieu Salzmann', 'mathieu salzmann')
('2370776', 'Lars Petersson', 'lars petersson')
('34234277', 'Lars Andersson', 'lars andersson')
firstname.lastname@data61.csiro.au, basura.fernando@anu.edu.au, mathieu.salzmann@epfl.ch +
1d0128b9f96f4c11c034d41581f23eb4b4dd7780Automatic Construction Of Robust Spherical Harmonic Subspaces +
Imperial College London
('2796644', 'Patrick Snape', 'patrick snape')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
{p.snape,i.panagakis,s.zafeiriou}@imperial.ac.uk +
1d3dd9aba79a53390317ec1e0b7cd742cba43132A Maximum Entropy Feature Descriptor for Age Invariant Face Recognition +
(cid:31) +
1Shenzhen Key Lab of Computer Vision and Pattern Recognition +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of
Technology, Sydney, NSW 2007, Australia +
the Chinese University of Hong Kong
4Media Lab, Huawei Technologies Co. Ltd., China +
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
('2856494', 'Dihong Gong', 'dihong gong')
('7137861', 'Jianzhuang Liu', 'jianzhuang liu')
('1911510', 'Zhifeng Li', 'zhifeng li')
('1692693', 'Dacheng Tao', 'dacheng tao')
('1720243', 'Xuelong Li', 'xuelong li')
dh.gong@siat.ac.cn +
zhifeng.li@siat.ac.cn +
dacheng.tao@uts.edu.au +
liu.jianzhuang@huawei.com +
xuelong_li@opt.ac.cn +
1d0dd20b9220d5c2e697888e23a8d9163c7c814bNEGREL ET AL.: BOOSTED METRIC LEARNING FOR FACE RETRIEVAL +
Boosted Metric Learning for Efficient +
Identity-Based Face Retrieval +
Frederic Jurie +
GREYC, CNRS UMR 6072, ENSICAEN +
Université de Caen Basse-Normandie +
France +
('2838835', 'Romain Negrel', 'romain negrel')
('2504258', 'Alexis Lechervy', 'alexis lechervy')
romain.negrel@unicaen.fr +
alexis.lechervy@unicaen.fr +
frederic.jurie@unicaen.fr +
1d5aad4f7fae6d414ffb212cec1f7ac876de48bfFace Retriever: Pre-filtering the Gallery via Deep Neural Net +
Department of Computer Science and Engineering +
Michigan State University, East Lansing, MI 48824, U.S.A
('7496032', 'Dayong Wang', 'dayong wang')
('6680444', 'Anil K. Jain', 'anil k. jain')
{dywang, jain}@msu.edu +
1db23a0547700ca233aef9cfae2081cd8c5a04d7www.ijecs.in +
International Journal Of Engineering And Computer Science ISSN:2319-7242 +
Volume 4 Issue 5 May 2015, Page No. 11945-11951 +
Comparative study and evaluation of various data classification +
techniques in data mining +
1Research scholar +
Department of computer science +
Raipur institute of technology
Raipur, India +
2Asst. professor +
Department of computer science +
Raipur institute of technology
Raipur, India +
('1977125', 'Vivek Verma', 'vivek verma')E-mail: vivekverma.exe@gmail.com +
1d776bfe627f1a051099997114ba04678c45f0f5Deployment of Customized Deep Learning based +
Video Analytics On Surveillance Cameras +
AitoeLabs (www.aitoelabs.com) +
('46175439', 'Pratik Dubal', 'pratik dubal')
('22549601', 'Rohan Mahadev', 'rohan mahadev')
('9745898', 'Suraj Kothawade', 'suraj kothawade')
('46208440', 'Kunal Dargan', 'kunal dargan')
1d97735bb0f0434dde552a96e1844b064af08f62Weber Binary Pattern and Weber Ternary Pattern +
for Illumination-Robust Face Recognition +
Tsinghua University, China
Shenzhen Key Laboratory of Information Science and Technology, Guangdong, China +
('35160104', 'Zuodong Yang', 'zuodong yang')
('2312541', 'Yinyan Jiang', 'yinyan jiang')
('40398990', 'Yong Wu', 'yong wu')
('2265693', 'Zongqing Lu', 'zongqing lu')
('1718891', 'Weifeng Li', 'weifeng li')
('2883861', 'Qingmin Liao', 'qingmin liao')
(cid:3) E-mail: yangzd13@mails.tsinghua.edu.cn +
y E-mail: Li.Weifeng@sz.tsinghua.edu.cn +
1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb
1dff919e51c262c22630955972968f38ba385d8aToward an Affect-Sensitive Multimodal +
Human–Computer Interaction +
Invited Paper +
The ability to recognize affective states of a person we are com- +
municating with is the core of emotional intelligence. Emotional +
intelligenceisa facet of human intelligence thathas been argued to be +
indispensable and perhaps the most important for successful inter- +
personal social interaction. This paper argues that next-generation +
human–computer interaction (HCI) designs need to include the +
essence of emotional intelligence—the ability to recognize a user’s +
affective states—in order to become more human-like, more effec- +
tive, and more efficient. Affective arousal modulates all nonverbal +
communicative cues (facial expressions, body movements, and vocal +
and physiological reactions). In a face-to-face interaction, humans +
detect and interpret those interactive signals of their communicator +
with little or no effort. Yet design and development of an automated +
system that accomplishes these tasks is rather difficult. This paper +
surveys the past work in solving these problems by a computer +
and provides a set of recommendations for developing the first +
part of an intelligent multimodal HCI—an automatic personalized +
analyzer of a user’s nonverbal affective feedback. +
Keywords—Affective computing, affective states, automatic +
analysis of nonverbal communicative cues, human–computer +
interaction (HCI), multimodal human–computer +
interaction, +
personalized human–computer interaction. +
I. INTRODUCTION +
The exploration of how we as human beings react to the +
world and interact with it and each other remains one of +
the greatest scientific challenges. Perceiving, learning, and +
adapting to the world around us are commonly labeled as +
“intelligent” behavior. But what does it mean being intelli- +
gent? Is IQ a good measure of human intelligence and the +
best predictor of somebody’s success in life? There is now +
growing research in the fields of neuroscience, psychology, +
and cognitive science which argues that our common view of +
intelligence is too narrow, ignoring a crucial range of abilities +
Manuscript received October 25, 2002; revised March 5, 2003. The work +
of M. Pantic was supported by the Netherlands Organization for Scientific +
Research (NWO) Grant EW-639.021.202. +
The authors are with the Delft University of Technology, Data and Knowl
edge Systems Group, Mediamatics Department, 2600 AJ Delft, The Nether- +
Digital Object Identifier 10.1109/JPROC.2003.817122 +
that matter immensely to how we do in life. This range +
of abilities is called emotional intelligence [44], [96] and +
includes the ability to have, express, and recognize affective +
states, coupled with the ability to regulate them, employ them +
for constructive purpose, and skillfully handle the affective +
arousal of others. The skills of emotional intelligence have +
been argued to be a better predictor than IQ for measuring +
aspects of success in life [44], especially in interpersonal +
communication, and learning and adapting to what +
is +
important [10], [96]. +
When it comes to the world of computers, not all of them +
will need emotional skills and probably none will need all +
of the skills that humans need. Yet there are situations where +
the man–machine interaction could be improved by having +
machines capable of adapting to their users and where the in- +
formation about how, when, and how important it is to adapt +
involves information on the user’s affective state. In addition, +
it seems that people regard computers as social agents with +
whom “face-to-(inter)face” interaction may be most easy and +
serviceable [11], [75], [90], [101], [110]. Human–computer +
interaction (HCI) systems capable of sensing and responding +
appropriately to the user’s affective feedback are, therefore, +
likely to be perceived as more natural [73], more efficacious +
and persuasive [93], and more trustworthy [14], [78]. +
These findings, together with recent advances in sensing, +
tracking, analyzing, and animating human nonverbal com- +
municative signals, have produced a surge of interest in +
affective computing by researchers of advanced HCI. This +
intriguing new field focuses on computational modeling of +
human perception of affective states, synthesis/animation of +
affective expressions, and design of affect-sensitive HCI. +
Indeed, the first step toward an intelligent HCI having the +
abilities to sense and respond appropriately to the user’s af- +
fective feedback is to detect and interpret affective states +
shown by the user in an automatic way. This paper focuses +
further on surveying the past work done on solving these +
problems and providing an advanced HCI with one of the +
key skills of emotional intelligence: the ability to recognize +
the user’s nonverbal affective feedback. +
0018-9219/03$17.00 © 2003 IEEE +
1370 +
PROCEEDINGS OF THE IEEE, VOL. 91, NO. 9, SEPTEMBER 2003 +
('1694605', 'MAJA PANTIC', 'maja pantic')lands (e-mail: M.Pantic@cs.tudelft.nl; L.J.M.Rothkrantz@cs.tudelft.nl). +
1de8f38c35f14a27831130060810cf9471a62b45Int J Comput Vis +
DOI 10.1007/s11263-017-0989-7 +
A Branch-and-Bound Framework for Unsupervised Common +
Event Discovery +
Received: 3 June 2016 / Accepted: 12 January 2017 +
© Springer Science+Business Media New York 2017 +
('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
('1874236', 'Daniel S. Messinger', 'daniel s. messinger')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
1da83903c8d476c64c14d6851c85060411830129Iterated Support Vector Machines for Distance +
Metric Learning +
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('6292353', 'Faqiang Wang', 'faqiang wang')
('1698371', 'David Zhang', 'david zhang')
('1737218', 'Liang Lin', 'liang lin')
('2224875', 'Yuchi Huang', 'yuchi huang')
('1803714', 'Deyu Meng', 'deyu meng')
('36685537', 'Lei Zhang', 'lei zhang')
1d6068631a379adbcff5860ca2311b790df3a70f
1dacc2f4890431d867a038fd81c111d639cf4d7e2016, Vol. 125, No. 2, 310 –321 +
0021-843X/16/$12.00 +
© 2016 American Psychological Association +
http://dx.doi.org/10.1037/abn0000139 +
Using Social Outcomes to Inform Decision-Making in Schizophrenia: +
Relationships With Symptoms and Functioning +
Timothy R. Campellone, Aaron J. Fisher, and Ann M. Kring +
University of California, Berkeley
The outcomes of the decisions we make can be used to inform subsequent choices and behavior. We +
investigated whether and how people with and without schizophrenia use positive and negative social +
outcomes and emotional displays to inform decisions to place trust in social partners. We also investi- +
gated the impact of reversals in social partners’ behavior on decisions to trust. Thirty-two people with +
schizophrenia and 29 control participants completed a task in which they decided how much trust to place +
in social partners’ showing either a dynamic emotional (smiling, scowling) or neutral display. Interac- +
tions were predetermined to result in positive (trust reciprocated) or negative (trust abused) outcomes, +
and we modeled changes in trust decisions over the course of repeated interactions. Compared to +
controls, people with schizophrenia were less sensitive to positive social outcomes in that they placed less +
trust in trustworthy social partners during initial interactions. By contrast, people with schizophrenia were +
more sensitive to negative social outcomes during initial interactions with untrustworthy social partners, +
placing less trust in these partners compared to controls. People with schizophrenia did not differ from +
controls in detecting social partner behavior reversals from trustworthy to untrustworthy; however, they +
had difficulties detecting reversals from untrustworthy to trustworthy. Importantly, decisions to trust +
were associated with real-world social functioning. We discuss the implications of these findings for +
understanding social engagement among people with schizophrenia and the development of psychosocial +
interventions for social functioning. +
General Scientific Summary +
People with schizophrenia can have difficulties using decision outcomes to guide subsequent +
decision-making and behavior. This study extends previous work by showing that people with +
schizophrenia also have difficulties using social interaction outcomes to guide subsequent social +
decision-making and behavior. These findings have implications for understanding decreased social +
networks common among people with schizophrenia. +
Keywords: schizophrenia, decision-making, social interactions, trust +
Decision-making is an important part of daily life, with the +
outcomes of decisions influencing subsequent choices and deci- +
sions. While prior research has shown that people with schizo- +
phrenia have difficulty using monetary outcomes to guide subse- +
quent decisions (Heerey & Gold, 2007; Barch & Dowd, 2010), we +
know considerably less about whether people with schizophrenia +
have difficulty using social outcomes to inform decision-making +
in the context of social interactions. We investigated the extent to +
Timothy R. Campellone, Aaron J. Fisher, and Ann M. Kring, Depart- +
ment of Psychology, University of California, Berkeley
Funding was provided by the U.S. National Institutes of Mental
Health (Grant 5T32MH089919 to Timothy R. Campellone and Grant +
1R01MH082890 to Ann M. Kring). We are grateful to Janelle Painter, +
Erin Moran, and Jasmine Mote for their help in collecting this data. We are +
also grateful to Stephen Hinshaw for reading a previous version of this +
article. We would also like to thank all the participants in this study. +
Correspondence concerning this article should be addressed to Timothy +
R. Campellone, 3210 Tolman Hall, University of California, Berkeley
310 +
which people with schizophrenia use social outcomes to inform +
decision-making, and how this is related to motivation/pleasure +
negative symptoms and psychosocial functioning. Because social +
interactions often involve emotion, we also examined whether and +
how people with schizophrenia use social partners’ emotional +
displays to guide learning from social outcomes and inform sub- +
sequent decision-making. +
Monetary Decision-Making and Reversal Learning +
in Schizophrenia +
Studies using reward-learning paradigms with monetary out- +
comes have consistently shown that compared to controls, people +
with schizophrenia have difficulty using positive outcomes to +
inform decision-making (Strauss et al., 2011; Gold et al., 2012). +
These difficulties are associated with poorer functioning (Somlai, +
Moustafa, Kéri, Myers, & Gluck, 2011) as well as greater moti- +
vation/pleasure negative symptoms (Strauss et al., 2011; Gold et +
al., 2012), which are part of the two-factor solution of negative +
symptoms and refer to diminished engagement in and/or pleasure +
derived from social, vocational, and recreational life domains +
(Kring, Gur, Blanchard, Horan, & Reise, 2013). By contrast, +
Berkeley, CA 94720-1690. E-mail: tcampellone@berkeley.edu +
1de690714f143a8eb0d6be35d98390257a3f4a47Face Detection Using Spectral Histograms and SVMs +
The Florida State University
Tallahassee, FL 32306 +
('3209925', 'Christopher A. Waring', 'christopher a. waring')
('1800002', 'Xiuwen Liu', 'xiuwen liu')
chwaring@cs.fsu.edu liux@cs.fsu.edu +
1d7df3df839a6aa8f5392310d46b2a89080a3c25Large-Margin Softmax Loss for Convolutional Neural Networks +
Meng Yang4 +
School of ECE, Peking University 2School of EIE, South China University of Technology
Carnegie Mellon University 4College of CS and SE, Shenzhen University
('36326884', 'Weiyang Liu', 'weiyang liu')
('2512949', 'Yandong Wen', 'yandong wen')
('1751019', 'Zhiding Yu', 'zhiding yu')
WYLIU@PKU.EDU.CN +
WEN.YANDONG@MAIL.SCUT.EDU.CN +
YZHIDING@ANDREW.CMU.EDU +
YANG.MENG@SZU.EDU.CN +
1d6c09019149be2dc84b0c067595f782a5d17316Encoding Video and Label Priors for Multi-label Video Classification +
on YouTube-8M dataset +
Seoul National University
Seoul National University
Seoul National University
SK Telecom Video Tech. Lab +
Seoul National University
('19255603', 'Seil Na', 'seil na')
('7877122', 'Youngjae Yu', 'youngjae yu')
('1693291', 'Sangho Lee', 'sangho lee')
('2077253', 'Jisung Kim', 'jisung kim')
('1743920', 'Gunhee Kim', 'gunhee kim')
seil.na@vision.snu.ac.kr +
yj.yu@vision.snu.ac.kr +
sangho.lee@vision.snu.ac.kr +
joyful.kim@sk.com +
gunhee@snu.ac.kr +
1d58d83ee4f57351b6f3624ac7e727c944c0eb8dEnhanced Local Texture +
Feature Sets for Face +
Recognition under Difficult +
Lighting Conditions +
INRIA & Laboratoire Jean +
Kuntzmann, +
655 avenue de l'Europe, Montbonnot 38330, France +
('2248421', 'Xiaoyang Tan', 'xiaoyang tan')
('1756114', 'Bill Triggs', 'bill triggs')
1d729693a888a460ee855040f62bdde39ae273afPhotorealistic Face de-Identification by Aggregating +
Donors’ Face Components +
To cite this version: +
gating Donors’ Face Components. Asian Conference on Computer Vision, Nov 2014, Singapore. +
pp.1-16, 2014. +
HAL Id: hal-01070658 +
https://hal.archives-ouvertes.fr/hal-01070658 +
Submitted on 2 Oct 2014 +
HAL is a multi-disciplinary open access +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
lished or not. The documents may come from +
teaching and research institutions in France or +
abroad, or from public or private research centers
L’archive ouverte pluridisciplinaire HAL, est +
destin´ee au d´epˆot et `a la diffusion de documents +
scientifiques de niveau recherche, publi´es ou non, +
´emanant des ´etablissements d’enseignement et de +
recherche fran¸cais ou ´etrangers, des laboratoires +
publics ou priv´es. +
('3095534', 'Saleh Mosaddegh', 'saleh mosaddegh')
('3095534', 'Saleh Mosaddegh', 'saleh mosaddegh')
1d4c25f9f8f08f5a756d6f472778ab54a7e6129dInternational Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2014): 6.14 | Impact Factor (2014): 4.438 +
An Innovative Mean Approach for Plastic Surgery +
Face Recognition +
1 Student of M.E., Department of Electronics & Telecommunication Engineering, +
P. R. Patil College of Engineering, Amravati Maharashtra India
2 Assistant Professor, Department of Electronics & Telecommunication Engineering, +
P. R. Patil College of Engineering, Amravati Maharashtra India
('2936550', 'Umesh W. Hore', 'umesh w. hore')
71b376dbfa43a62d19ae614c87dd0b5f1312c966The Temporal Connection Between Smiles and Blinks +('2048839', 'Laura C. Trutoiu', 'laura c. trutoiu')
('1788773', 'Jessica K. Hodgins', 'jessica k. hodgins')
('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')
71b07c537a9e188b850192131bfe31ef206a39a0Image and Vision Computing 47 (2016) 3–18 +
Contents lists available at ScienceDirect +
Image and Vision Computing +
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i m a v i s +
300 Faces In-The-Wild Challenge: database and results夽,夽夽 +
aImperial College London, London, UK
bUniversity of Nottingham, School of Computer Science, Nottingham, UK
cFaculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands
A R T I C L E +
I N F O +
A B S T R A C T +
Article history: +
Received 19 March 2015 +
Received in revised form 2 October 2015 +
Accepted 4 January 2016 +
Available online 25 January 2016 +
Keywords: +
Facial landmark localization +
Challenge +
Semi-automatic annotation tool +
Facial database +
Computer Vision has recently witnessed great research advance towards automatic facial points detection. +
Numerous methodologies have been proposed during the last few years that achieve accurate and efficient +
performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. +
(a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions +
have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) +
Most published works report experimental results using different training/testing sets, different error met- +
rics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome +
the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed +
to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In- +
The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in +
2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme +
of massive databases and a fair experimental comparison of existing facial landmark localization systems. +
The images and annotations of the new testing database that was used in the 300-W challenge are available +
from http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/. +
© 2016 Elsevier B.V. All rights reserved. +
1. Introduction +
During the last decades we notice a wealth of scientific research +
in computer vision for the problem of facial landmark points localiza- +
tion using visual deformable models. The main reason behind this are +
the countless applications that the problem has in human-computer +
interaction and facial expression recognition. Numerous methodolo- +
gies have been proposed that are shown to achieve great accuracy +
and efficiency. They can be roughly divided into two categories: +
generative and discriminative. The generative techniques, which aim +
to find the parameters that maximize the probability of the test +
image being generated by the model, include Active Appearance
Models (AAMs) [1,2], their improved extensions [3–10] and Pictorial +
夽 The contribution of the first two authors on writing this paper is equal, with +
various steps needed to run 300-W successfully including data annotation, annotation +
tool development, and running the experiments. +
夽夽 This paper has been recommended for acceptance by Richard Bowden, PhD. +
* Corresponding author. +
http://dx.doi.org/10.1016/j.imavis.2016.01.002 +
0262-8856/© 2016 Elsevier B.V. All rights reserved. +
Structures [11–13]. The discriminative techniques can be further +
divided to those that use discriminative response map functions, +
such as Active Shape Models (ASMs) [14], Constrained Local Models +
(CLMs) [15–17] and Deformable Part Models (DPMs) [18], those that +
learn a cascade of regression functions, such as Supervised Descent +
Method (SDM) [19] and others [20–22], and, finally, those that +
employ random forests [23,24]. +
Arguably, the main reason why many researchers of the field +
focus on the problem of face alignment is the plethora of publicly +
available annotated facial databases. These databases can be sepa- +
rated in two major categories: (a) those captured under controlled +
conditions, e.g. Multi-PIE [25], XM2VTS [26], FRGC-V2 [27], and +
AR [28], and (b) those captured under totally unconstrained condi- +
tions (in-the-wild), e.g. LFPW [29], HELEN [30], AFW[18], AFLW[31], +
and IBUG [32]. All of them cover large variations, including different
subjects, poses, illumination conditions, expressions and occlusions. +
However, for most of them, the provided annotations appear to have +
several limitations. Specifically: +
• The majority of them provide annotations for a relatively small +
subset of images. +
('3320415', 'Christos Sagonas', 'christos sagonas')
('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
('3320415', 'Christos Sagonas', 'christos sagonas')
E-mail address: c.sagonas@imperial.ac.uk (C. Sagonas). +
71fd29c2ae9cc9e4f959268674b6b563c06d9480End-to-end 3D shape inverse rendering of different classes +
of objects from a single input image +
1Computer Science and Engineering and Information Technology, Shiraz +
university, Shiraz, Iran
November 17, 2017 +
('34649340', 'Shima Kamyab', 'shima kamyab')
('2014752', 'Zohreh Azimifar', 'zohreh azimifar')
7142ac9e4d5498037aeb0f459f278fd28dae8048Semi-Supervised Learning for Optical Flow +
with Generative Adversarial Networks +
University of California, Merced
2Virginia Tech +
3Nvidia Research +
('2268189', 'Wei-Sheng Lai', 'wei-sheng lai')
('3068086', 'Jia-Bin Huang', 'jia-bin huang')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
1{wlai24|mhyang}@ucmerced.edu +
2jbhuang@vt.edu +
71f36c8e17a5c080fab31fce1ffea9551fc49e47Predicting Failures of Vision Systems +
1Virginia Tech +
2Univ. of Texas at Austin +
3Univ. of Washington +
Carnegie Mellon University
('40409467', 'Peng Zhang', 'peng zhang')
('2537394', 'Jiuling Wang', 'jiuling wang')
1{zhangp, parikh}@vt.edu +
2jiuling@utexas.edu +
3ali@cs.uw.edu +
4hebert@ri.cmu.edu +
7117ed0be436c0291bc6fb6ea6db18de74e2464aUnder review as a conference paper at ICLR 2017 +
WARPED CONVOLUTIONS: EFFICIENT INVARIANCE TO +
SPATIAL TRANSFORMATIONS +
Visual Geometry Group +
University of Oxford
('36478254', 'João F. Henriques', 'joão f. henriques'){joao,vedaldi}@robots.ox.ac.uk +
71e6a46b32a8163c9eda69e1badcee6348f1f56aVisually Interpreting Names as Demographic Attributes +
by Exploiting Click-Through Data +
National Taiwan University, Taipei, Taiwan
FX Palo Alto Laboratory, Inc., California, USA
('35081710', 'Yan-Ying Chen', 'yan-ying chen')
('1692811', 'Yin-Hsi Kuo', 'yin-hsi kuo')
('2580465', 'Chun-Che Wu', 'chun-che wu')
('1716836', 'Winston H. Hsu', 'winston h. hsu')
{yanying,kuonini,kenwu0721}@gmail.com, whsu@ntu.edu.tw +
713594c18978b965be87651bb553c28f8501df0aFast Proximal Linearized Alternating Direction Method of Multiplier with +
Parallel Splitting +
National University of Singapore
Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
Cooperative Medianet Innovation Center, Shanghai Jiaotong University
('33224509', 'Canyi Lu', 'canyi lu')
('1775194', 'Huan Li', 'huan li')
('33383055', 'Zhouchen Lin', 'zhouchen lin')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
canyilu@gmail.com, lihuan ss@126.com, zlin@pku.edu.cn, eleyans@nus.edu.sg +
718824256b4461d62d192ab9399cfc477d3660b4Selecting Training Data for Cross-Corpus Speech Emotion Recognition: +
Prototypicality vs. Generalization +
Institute for Human-Machine Communication, Technische Universit at M unchen, Germany
('30512170', 'Zixing Zhang', 'zixing zhang')
('1740602', 'Felix Weninger', 'felix weninger')
('1705843', 'Gerhard Rigoll', 'gerhard rigoll')
{schuller|zixing.zhang|weninger|rigoll}@tum.de +
718d3137adba9e3078fa1f698020b666449f3336(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 8, No. 10, 2017 +
Accuracy Based Feature Ranking Metric for +
Multi-Label Text Classification +
Al-Khwarizmi Institute of Computer Science
University of Engineering and Technology
Department of Computer +
Science, +
Department of Computer +
Science, +
Lahore, Pakistan +
University of Gujrat, Pakistan
University of Gujrat, Pakistan
('35637737', 'Muhammad Nabeel Asim', 'muhammad nabeel asim')
('3245405', 'Abdur Rehman', 'abdur rehman')
('1981732', 'Umar Shoaib', 'umar shoaib')
714d487571ca0d676bad75c8fa622d6f50df953beBear: An Expressive Bear-Like Robot +('49470290', 'Xiao Zhang', 'xiao zhang')
('2314025', 'Ali Mollahosseini', 'ali mollahosseini')
('29764067', 'Evan Boucher', 'evan boucher')
('1783240', 'Richard M. Voyles', 'richard m. voyles')
716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0SMITH & DYER: 3D FACIAL LANDMARK ESTIMATION +
Pose-Robust 3D Facial Landmark Estimation +
from a Single 2D Image +
http://www.cs.wisc.edu/~bmsmith +
http://www.cs.wisc.edu/~dyer +
Department of Computer Sciences +
University of Wisconsin-Madison
Madison, WI USA +
('2721523', 'Brandon M. Smith', 'brandon m. smith')
('1724754', 'Charles R. Dyer', 'charles r. dyer')
7143518f847b0ec57a0ff80e0304c89d7e924d9aSpeeding-up Age Estimation in Intelligent +
Demographics System via Network Optimization +
School of Computer and Information, Hefei University of Technology, Hefei, China
School of Computer Science and Engineering, Nanyang Technological University, Singapore
('49941674', 'Zhenzhen Hu', 'zhenzhen hu')
('7739626', 'Peng Sun', 'peng sun')
('40096128', 'Yonggang Wen', 'yonggang wen')
huzhen.ice@gmail.com, {sunp0003, ygwen}@ntu.edu.sg +
710011644006c18291ad512456b7580095d628a2Learning Residual Images for Face Attribute Manipulation +
Fujitsu Research & Development Center, Beijing, China. +
('48157627', 'Wei Shen', 'wei shen')
('2113095', 'Rujie Liu', 'rujie liu')
{shenwei, rjliu}@cn.fujitsu.com +
713db3874b77212492d75fb100a345949f3d3235Deep Semantic Face Deblurring +
Beijing Institute of Technology
University of California, Merced
3Nvidia +
4Google Cloud +
https://sites.google.com/site/ziyishenmi/cvpr18_face_deblur +
('2182388', 'Ziyi Shen', 'ziyi shen')
('2268189', 'Wei-Sheng Lai', 'wei-sheng lai')
('39001620', 'Tingfa Xu', 'tingfa xu')
('1690538', 'Jan Kautz', 'jan kautz')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
715b69575dadd7804b4f8ccb419a3ad8b7b7ca891 +
Testing separability and independence of perceptual +
dimensions with general recognition theory: A tutorial and +
new R package (grtools)1 +
Florida International University
University of California, Santa Barbara
Florida International University
University of California, Santa Barbara
('2850756', 'Fabian A. Soto', 'fabian a. soto')
('33897174', 'Johnny Fonseca', 'johnny fonseca')
('5854837', 'F. Gregory Ashby', 'f. gregory ashby')
71e56f2aebeb3c4bb3687b104815e09bb4364102Video Co-segmentation for Meaningful Action Extraction +
National University of Singapore, Singapore
National University of Singapore Research Institute, Suzhou, China
('3036190', 'Jiaming Guo', 'jiaming guo')
('3119455', 'Zhuwen Li', 'zhuwen li')
('1809333', 'Steven Zhiying Zhou', 'steven zhiying zhou')
{guo.jiaming, lizhuwen, eleclf, elezzy}@nus.edu.sg +
711bb5f63139ee7a9b9aef21533f959671a7d80eHelsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja +
Espoo 2007 +
REPORT B68 +
OBJECTS EXTRACTION AND RECOGNITION FOR +
CAMERA-BASED INTERACTION: HEURISTIC AND +
STATISTICAL APPROACHES +
TEKNILLINEN KORKEAKOULU +
TEKNILLINEN KORKEAKOULU +
TEKNISKA HÖGSKOLAN +
TEKNISKA HÖGSKOLAN +
HELSINKI UNIVERSITY OF TECHNOLOGY
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI +
TECHNISCHE UNIVERSITÄT HELSINKI +
UNIVERSITE DE TECHNOLOGIE D'HELSINKI +
UNIVERSITE DE TECHNOLOGIE D'HELSINKI +
('37522511', 'Hao Wang', 'hao wang')
76fd801981fd69ff1b18319c450cb80c4bc78959Proceedings of the 11th International Conference on Computational Semantics, pages 76–81, +
London, UK, April 15-17 2015. c(cid:13)2015 Association for Computational Linguistics +
76 +
76dc11b2f141314343d1601635f721fdeef86fdbWeighted Decoding ECOC for Facial +
Action Unit Classification +
('1732556', 'Terry Windeatt', 'terry windeatt')
76673de6d81bedd6b6be68953858c5f1aa467e61Discovering a Lexicon of Parts and Attributes +
Toyota Technological Institute at Chicago
Chicago, IL 60637, USA +
('35208858', 'Subhransu Maji', 'subhransu maji')smaji@ttic.edu +
76cd5e43df44e389483f23cb578a9015d1483d70BORGHI ET AL.: FACE VERIFICATION FROM DEPTH +
Face Verification from Depth using +
Privileged Information +
Department of Engineering +
"Enzo Ferrari" +
University of Modena and Reggio
Emilia +
Modena, Italy +
('12010968', 'Guido Borghi', 'guido borghi')
('2035969', 'Stefano Pini', 'stefano pini')
('32044032', 'Filippo Grazioli', 'filippo grazioli')
('1723285', 'Roberto Vezzani', 'roberto vezzani')
('1741922', 'Rita Cucchiara', 'rita cucchiara')
guido.borghi@unimore.it +
stefano.pini@unimore.it +
filippo.grazioli@unimore.it +
roberto.vezzani@unimore.it +
rita.cucchiara@unimore.it +
7643861bb492bf303b25d0306462f8fb7dc29878Speeding up 2D-Warping for Pose-Invariant Face Recognition +
Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany
('1804963', 'Harald Hanselmann', 'harald hanselmann')
('1685956', 'Hermann Ney', 'hermann ney')
surname@cs.rwth-aachen.de +
760a712f570f7a618d9385c0cee7e4d0d6a78ed2
76b11c281ac47fe6d95e124673a408ee9eb568e3International Journal of Latest Engineering and Management Research (IJLEMR) +
ISSN: 2455-4847 +
www.ijlemr.com || Volume 02 - Issue 03 || March 2017 || PP. 59-71 +
REAL-TIME MULTI VIEW FACE DETECTION AND POSE +
ESTIMATION +
U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI
ALPHA COLLEGE OF ENGINEERING, CHENNAI
76ce3d35d9370f0e2e27cfd29ea0941f1462895fHindawi Publishing Corporation +
e Scientific World Journal +
Volume 2014, Article ID 528080, 13 pages +
http://dx.doi.org/10.1155/2014/528080 +
Research Article +
Efficient Parallel Implementation of Active Appearance +
Model Fitting Algorithm on GPU +
School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
Received 25 August 2013; Accepted 19 January 2014; Published 2 March 2014 +
Academic Editors: I. Lanese and G. Wei +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which +
has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming +
computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing +
units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the +
computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. +
Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU +
threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the +
compute unified device architecture (CUDA) on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare +
the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. +
The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very +
high-dimensional textures. +
1. Introduction +
Detecting and tracking moving deformable objects in a video +
sequence is a complex and difficult task and has been a +
very important part of many applications, such as human +
computer interaction [1], automated surveillance [2], and +
emotion recognition [3]. This task allows us to determine the +
state of objects and helps us analyze their behaviors. +
The active appearance model (AAM) [4], first proposed +
by Cootes et al. [5], is one of the most powerful model-based +
object detecting and tracking algorithms. It is a nonlinear, +
generative, and parametric model and can be traced back +
to the active contour model (or “snakes,” [6]) and the active +
shape model (ASM) [7]. Particularly, the AAM decouples and +
models the shape and the texture of the deformable object +
to generate a variety of instant photos realistically. Therefore, +
the AAM has been widely used in various situations [8–10]. +
The most frequent application of AAMs to date has been face +
modeling and tracking [11]. +
Although the AAM possesses powerful modeling and +
efficient fitting ability, the high computational complexity +
caused by the high-dimensional texture representation limits +
its application in many conditions, for example, real-time +
systems. To make the AAM more applicable to practical +
applications, additional effort must be spent to accelerate the +
computation of the AAM. Therefore, several improvements +
are proposed to achieve this aim. Some methods are proposed +
to reduce the dimension of the texture, such as the Haar +
wavelet [12], the wedgelet-based regression tree [13], and +
the local sampling [14]. However, these methods improve +
efficiency at the expense of decreasing accuracy or losing +
detail information. From another perspective, researchers +
[15, 16] suggest reformulating the AAM in an analytic way to +
speed up the model fitting. A famous method is the inverse +
compositional image alignment (ICIA) [17] algorithm that +
avoids updating texture parameters every frame and is a very +
fast-fitting algorithm for the AAM. However, the limitation +
of this algorithm is that it cannot be applied to the AAMs +
('1762397', 'Jinwei Wang', 'jinwei wang')
('2518530', 'Xirong Ma', 'xirong ma')
('34854285', 'Yuanping Zhu', 'yuanping zhu')
('35900806', 'Jizhou Sun', 'jizhou sun')
('1762397', 'Jinwei Wang', 'jinwei wang')
Correspondence should be addressed to Jinwei Wang; wangjinwei@tju.edu.cn +
76b9fe32d763e9abd75b427df413706c4170b95c
768c332650a44dee02f3d1d2be1debfa90a3946cBayesian Face Recognition Using Support Vector Machine and Face Clustering +
Department of Information Engineering +
The Chinese University of Hong Kong
Shatin, Hong Kong +
('1911510', 'Zhifeng Li', 'zhifeng li')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{zli0, xtang}@ie.cuhk.edu.hk +
769461ff717d987482b28b32b1e2a6e46570e3ffMIC-TJU in MediaEval 2017 Emotional Impact of Movies Task +
Gannan Normal University, Ganzhou 341000, China
Tongji University, Shanghai 201804, China
('40290178', 'Yun Yi', 'yun yi')
('2774427', 'Hanli Wang', 'hanli wang')
('28933059', 'Jiangchuan Wei', 'jiangchuan wei')
76d9f5623d3a478677d3f519c6e061813e58e833FAST ALGORITHMS FOR THE GENERALIZED FOLEY-SAMMON +
DISCRIMINANT ANALYSIS +
('35789819', 'Lei-Hong Zhang', 'lei-hong zhang')
('14372428', 'Li-Zhi Liao', 'li-zhi liao')
('1678715', 'Michael K. Ng', 'michael k. ng')
76e2d7621019bd45a5851740bd2742afdcf62837Article +
Real-Time Detection and Measurement of Eye +
Features from Color Images +
Technical University of Cluj Napoca, 28 Memorandumului Street
Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca
Academic Editors: Changzhi Li, Roberto Gómez-García and José-María Muñoz-Ferreras +
Received: 28 April 2016; Accepted: 14 July 2016; Published: 16 July 2016 +
('31630857', 'Diana Borza', 'diana borza')
('1821352', 'Adrian Sergiu Darabant', 'adrian sergiu darabant')
('3331727', 'Radu Danescu', 'radu danescu')
Cluj Napoca 400114, Romania; borza_diana@yahoo.com +
Romania; adrian.darabant@tvarita.ro +
* Correspondence: Radu.Danescu@cs.utcluj.ro; Tel.: +40-740-502-223 +
765b2cb322646c52e20417c3b44b81f89860ff71PoseShop: Human Image Database +
Construction and Personalized +
Content Synthesis +
('29889388', 'Tao Chen', 'tao chen')
('37291674', 'Ping Tan', 'ping tan')
('1678872', 'Li-Qian Ma', 'li-qian ma')
('37535930', 'Ming-Ming Cheng', 'ming-ming cheng')
('2947946', 'Ariel Shamir', 'ariel shamir')
('1686809', 'Shi-Min Hu', 'shi-min hu')
7644d90efef157e61fe4d773d8a3b0bad5feccec
763158cef9d1e4041f24fce4cf9d6a3b7a7f08ffHierarchical Modeling and +
Applications to Recognition Tasks +
Thesis submitted for the degree of +
”Doctor of Philosophy” +
by +
Submitted to the Senate of the Hebrew University
August / 2013 +
('39161025', 'Alon Zweig', 'alon zweig')
764882e6779fbee29c3d87e00302befc52d2ea8dDeep Approximately Orthogonal Nonnegative +
Matrix Factorization for Clustering +
School of Automation +
School of Automation +
School of Automation +
Guangdong University of Technology
Guangdong University of Technology
Guangdong University of Technology
Guangzhou, China +
Guangzhou, China +
Guangzhou, China +
('30185240', 'Yuning Qiu', 'yuning qiu')
('1764724', 'Guoxu Zhou', 'guoxu zhou')
('2454506', 'Kan Xie', 'kan xie')
yn.qiu@foxmail.com +
guoxu.zhou@qq.com +
kanxiegdut@gmail.com +
76d939f73a327bf1087d91daa6a7824681d76ea1A Thermal Facial Emotion Database +
and Its Analysis +
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, Japan +
University of Science, Ho Chi Minh city
227 Nguyen Van Cu, Ho Chi Minh city, Vietnam +
('2319415', 'Hung Nguyen', 'hung nguyen')
('1791753', 'Kazunori Kotani', 'kazunori kotani')
('1753878', 'Fan Chen', 'fan chen')
{nvhung,ikko,chen-fan}@jaist.ac.jp +
lhbac@hcmuns.edu.vn +
760ba44792a383acd9ca8bef45765d11c55b48d4~ +
I . +
INTRODUCTION AND BACKGROUND +
The purpose of this article is to introduce the +
reader to the basic principles of classification with +
class-specific features. It is written both for readers +
interested in only the basic concepts as well as those +
interested in getting started in applying the method. +
For in-depth coverage, the reader is referred to a more +
detailed article [l]. +
Class-Specific Classifier: +
Avoiding the Curse of +
Dimensionality +
PAUL M. BAGGENSTOSS, Member. lEEE +
US. Naval Undersea Warfare Center +
This article describes a new probabilistic method called the +
“class-specific method” (CSM). CSM has the potential to avoid +
the “curse of dimensionality” which plagues most clmiiiers +
which attempt to determine the decision boundaries in a +
highdimensional featue space. In contrast, in CSM, it is possible +
to build classifiers without a ” n o n feature space. Separate +
Law-dimensional features seta may be de6ned for each class, while +
the decision funetions are projected back to the common raw data +
space. CSM eflectively extends the classical classification theory +
to handle multiple feature spaw.. It is completely general, and +
requires no s i m p l i n g assumption such as Gaussianity or that +
data lies in linear subspaces. +
Manuscript received September 26, 2W2; revised February 12, +
2003. +
This work was supported by the Office of Naval Research. +
Author’s address: US. Naval Undersea Warfare Center, Newport +
Classification is the process of assigning data +
to one of a set of pre-determined class labels [2]. +
Classification is a fundamental problem that has +
to be solved if machines are to approximate the +
human functions of recognizing sounds, images, or +
other sensory inputs. This is why classification is so +
important for automation in today’s commercial and +
military arenas. +
Many of us have first-hand knowledge of +
successful automated recognition systems from +
cameras that recognize faces in airports to computers +
that can scan and read printed and handwritten text, +
or systems that can recognize human speech. These +
systems are becoming more and more reliable and +
accurate. Given reasonably clean input data, the +
performance is often quite good if not perfect. But +
many of these systems fail in applications where +
clean, uncorrupted data is not available or if the +
problem is complicated by variability of conditions +
or by proliferation of inputs from unknown sources. +
In military environments, the targets to he recognized +
are often uncooperative and hidden in clutter and +
interference. In short, military uses of such systems +
still fall far short of what a well-trained alert human +
operator can achieve. +
We are often perplexed by the wide gap of +
as a car door slamming. From +
performance between humans and automated systems. +
Allow a human listener to hear two or three examples +
of a sound-such +
these few examples, the human can recognize +
the sound again and not confuse it with similar +
interfering sounds. But try the same experiment with +
general-purpose classifiers using neural networks +
and the story is quite different. Depending on the +
problem, the automated system may require hundreds, +
thousands, even millions of examples for training +
before it becomes both robust and reliable. +
Why? The answer lies in what is known as the +
“curse of dimensionality.” General-purpose classifiers +
need to extract a large number of measurements, +
or features, from the data to account for all the +
different possibilities of data types. The large +
collection of features form a high-dimensional space +
that the classifier has to sub-divide into decision +
boundaries. It is well-known that the complexity of +
a high-dimensional space increases exponentially +
with the number of measurements [31-and +
so does +
the difficulty of finding the hest decision boundaries +
from a fixed amount of training data. Unless a lot +
EEE A&E SYSTEMS MAGAZINE VOL. 19, NO. 1 JANUARY 2004 PART 2: TUTORIALS-BAGGENSTOSS +
37 +
RI, 02841, E-mail: (p.m.baggenstoss@ieee.arg). +
766728bac030b169fcbc2fbafe24c6e22a58ef3cA survey of deep facial landmark detection +
Yongzhe Yan1,2 +
Thierry Chateau1 +
1 Université Clermont Auvergne, France +
2 Wisimage, France +
3 Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France +
Résumé +
La détection de landmarks joue un rôle crucial dans de +
nombreuses applications d’analyse du visage comme la +
reconnaissance de l’identité, des expressions, l’animation +
d’avatar, la reconstruction 3D du visage, ainsi que pour +
les applications de réalité augmentée comme la pose de +
masque ou de maquillage virtuel. L’avènement de l’ap- +
prentissage profond a permis des progrès très importants +
dans ce domaine, y compris sur les corpus non contraints +
(in-the-wild). Nous présentons ici un état de l’art cen- +
tré sur la détection 2D dans une image fixe, et les mé- +
thodes spécifiques pour la vidéo. Nous présentons ensuite +
les corpus existants pour ces trois tâches, ainsi que les mé- +
triques d’évaluations associées. Nous exposons finalement +
quelques résultats, ainsi que quelques pistes de recherche. +
Mots Clef +
Détection de landmark facial, Alignement de visage, Deep +
learning +
('3015472', 'Xavier Naturel', 'xavier naturel')
('50493659', 'Christophe Garcia', 'christophe garcia')
('48601809', 'Christophe Blanc', 'christophe blanc')
('1762557', 'Stefan Duffner', 'stefan duffner')
yongzhe.yan@etu.uca.fr +
7697295ee6fc817296bed816ac5cae97644c2d5bDetecting and Recognizing Human-Object Interactions +
Facebook AI Research (FAIR) +
('2082991', 'Georgia Gkioxari', 'georgia gkioxari')
('39353098', 'Kaiming He', 'kaiming he')
7636f94ddce79f3dea375c56fbdaaa0f4d9854aaAppl. Math. Inf. Sci. 6 No. 2S pp. 403S-408S (2012) +
An International Journal +
© 2012 NSP +
Applied Mathematics & Information Sciences +
Robust Facial Expression Recognition Using +
a Smartphone Working against Illumination Variation +
Natural Sciences Publishing Cor. +
Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea
Received June 22, 2010; Revised March 21, 2011; Accepted 11 June 2011 +
Published online: 1 January 2012 +
('2413560', 'Kyoung-Sic Cho', 'kyoung-sic cho')
('9270794', 'In-Ho Choi', 'in-ho choi')
('2706430', 'Yong-Guk Kim', 'yong-guk kim')
@ 2012 NSP +
Corresponding author: Email: ykim@sejong.ac.kr +
1c80bc91c74d4984e6422e7b0856cf3cf28df1fbNoname manuscript No. +
(will be inserted by the editor) +
Hierarchical Adaptive Structural SVM for Domain Adaptation +
Received: date / Accepted: date +
('2470198', 'Jiaolong Xu', 'jiaolong xu')
1ce3a91214c94ed05f15343490981ec7cc810016Exploring Photobios +
University of Washington
2Adobe Systems† +
3Google Inc. +
('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')
('2177801', 'Eli Shechtman', 'eli shechtman')
('9748713', 'Rahul Garg', 'rahul garg')
('1679223', 'Steven M. Seitz', 'steven m. seitz')
1c9efb6c895917174ac6ccc3bae191152f90c625Unifying Identification and Context Learning for Person Recognition +
CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
('39360892', 'Qingqiu Huang', 'qingqiu huang')
('50446092', 'Yu Xiong', 'yu xiong')
('1807606', 'Dahua Lin', 'dahua lin')
{hq016, xy017, dhlin}@ie.cuhk.edu.hk +
1c2724243b27a18a2302f12dea79d9a1d4460e35Fisher+Kernel Criterion for Discriminant Analysis* +
National Laboratory on Machine Perception, Peking University, Beijing, P.R. China
the Chinese University of Hong Kong, Shatin, Hong Kong
3 MOE-Microsoft Key Laboratory of Multimedia Computing and Communication & Department of EEIS, +
University of Science and Technology of China, Hefei, Anhui, P. R. China
4Microsoft Research Asia, Beijing, P.R. China +
+
('1718245', 'Shu Yang', 'shu yang')
('1698982', 'Shuicheng Yan', 'shuicheng yan')
('38188040', 'Dong Xu', 'dong xu')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
('1720735', 'Chao Zhang', 'chao zhang')
Contact: yangshu@cis.pku.edu.cn +
1ca8c09abb73a02519d8db77e4fe107acfc589b6Automatic Understanding of Image and Video Advertisements +
University of Pittsburgh
IEEE 2017 Conference on +
Computer Vision and Pattern +
Recognition +
Introduction +
Dataset Overview +
Answering Questions about Ads +
• Advertisements implicitly persuade viewers to take certain actions. +
• Understanding ads requires more than recognizing physical content. +
Recognized Concepts (Clarifai): +
Car, Street, Transportation System, Traffic, Road, City, +
Pavement, Crossing, … +
Image Caption (Vinyals et al.): +
A red car driving down a street next to a traffic light. +
True Meaning in Advertisement: +
Automobile drivers should be cautious to avoid crashing +
into cyclists as they share the road. +
• We propose the novel problem of automatic advertisement +
understanding, and provide two datasets with rich annotations. +
• We analyze the common persuasive strategies: symbolism, atypical +
objects, physical processes, cultural knowledge, surprise/shock, etc. +
• We present baseline experiment results for several prediction tasks. +
Dataset Collection +
• 38 topics including commercials and public service announcements +
• 30 sentiments indicating how ads emotionally impress viewers +
• Questions and answers revealing the messages behind the visual ads +
I should stop smoking because my +
lungs are extremely sensitive and +
could go up in smoke. +
I should buy this candy because it +
is unique and rises above the rest, +
like the Swiss Alps. +
• Our dataset contains 64,832 image ads and 3,477 video ads, each +
annotated by 3-5 human workers from Amazon Mechanical Turk. +
Symbolism Detection +
Image +
Video +
Topic +
Symbol +
Topic +
Fun/Exciting +
204,340 +
64,131 +
17,345 +
17,374 +
Sentiment +
Strategy +
Sentiment +
English? +
102,340 +
20,000 +
17,345 +
15,380 +
Q + A Pairs +
Slogan +
Q + A Pairs +
Effectiveness +
202,090 +
11,130 +
17,345 +
16,721 +
('1996796', 'Zaeem Hussain', 'zaeem hussain')
('2365530', 'Mingda Zhang', 'mingda zhang')
('3186356', 'Xiaozhong Zhang', 'xiaozhong zhang')
('9085797', 'Keren Ye', 'keren ye')
('40540691', 'Christopher Thomas', 'christopher thomas')
('6004292', 'Zuha Agha', 'zuha agha')
('34493995', 'Nathan Ong', 'nathan ong')
('1770205', 'Adriana Kovashka', 'adriana kovashka')
1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4ccRecognition of Facial Gestures based on Support +
Vector Machines +
Faculty of Informatics, University of Debrecen, Hungary
H-4010 Debrecen P.O.Box 12. +
('47547897', 'Attila Fazekas', 'attila fazekas')Attila.Fazekas@inf.unideb.hu +
1ce4587e27e2cf8ba5947d3be7a37b4d1317fbeeDeep fusion of visual signatures +
for client-server facial analysis +
Normandie Univ, UNICAEN, +
ENSICAEN, CNRS, GREYC +
Computer Sc. & Engg. +
IIT Kanpur, India +
Frederic Jurie +
Normandie Univ, UNICAEN, +
ENSICAEN, CNRS, GREYC +
Facial analysis is a key technology for enabling human- +
machine interaction. +
In this context, we present a client- +
server framework, where a client transmits the signature of +
a face to be analyzed to the server, and, in return, the server +
sends back various information describing the face e.g. is the +
person male or female, is she/he bald, does he have a mus- +
tache, etc. We assume that a client can compute one (or a +
combination) of visual features; from very simple and effi- +
cient features, like Local Binary Patterns, to more complex +
and computationally heavy, like Fisher Vectors and CNN +
based, depending on the computing resources available. The +
challenge addressed in this paper is to design a common uni- +
versal representation such that a single merged signature is +
transmitted to the server, whatever be the type and num- +
ber of features computed by the client, ensuring nonetheless +
an optimal performance. Our solution is based on learn- +
ing of a common optimal subspace for aligning the different +
face features and merging them into a universal signature. +
We have validated the proposed method on the challenging +
CelebA dataset, on which our method outperforms existing +
state-of-art methods when rich representation is available at +
test time, while giving competitive performance when only +
simple signatures (like LBP) are available at test time due +
to resource constraints on the client. +
1. +
INTRODUCTION +
We propose a novel method in a heterogeneous server- +
client framework for the challenging and important task of +
analyzing images of faces. Facial analysis is a key ingredient +
for assistive computer vision and human-machine interaction +
methods, and systems and incorporating high-performing +
methods in daily life devices is a challenging task. The ob- +
jective of the present paper is to develop state-of-the-art +
technologies for recognizing facial expressions and facial at- +
tributes on mobile and low cost devices. Depending on their +
computing resources, the clients (i.e. the devices on which +
the face image is taken) are capable of computing different +
types of face signatures, from the simplest ones (e.g. LPB) +
to the most complex ones (e.g. very deep CNN features), and +
should be able to eventually combine them into a single rich +
signature. Moreover, it is convenient if the face analyzer, +
which might require significant computing resources, is im- +
plemented on a server receiving face signatures and comput- +
ing facial expressions and attributes from these signatures. +
Keeping the computation of the signatures on the client is +
safer in terms of privacy, as the original images are not trans- +
mitted, and keeping the analysis part on the server is also +
beneficial for easy model upgrades in the future. To limit +
the transmission costs, the signatures have to be made as +
compact as possible. +
In summary, the technology needed +
for this scenario has to be able to merge the different avail- +
able features – the number of features available at test time +
is not known in advance but is dependent on the computing +
resources available on the client – producing a unique rich +
and compact signature of the face, which can be transmitted +
and analyzed by a server. Ideally, we would like the univer- +
sal signature to have the following properties: when all the +
features are available, we would like the performance of the +
signature to be better than the one of a system specifically +
optimized for any single type of feature. +
In addition, we +
would like to have reasonable performance when only one +
type of feature is available at test time. +
For developing such a system, we propose a hybrid deep +
neural network and give a method to carefully fine-tune the +
network parameters while learning with all or a subset of +
features available. Thus, the proposed network can process a +
number of wide ranges of feature types such as hand-crafted +
LBP and FV, or even CNN features which are learned end- +
to-end. +
While CNNs have been quite successful in computer vi- +
sion [1], representing images with CNN features is relatively +
time consuming, much more than some simple hand-crafted +
features such as LBP. Thus, the use of CNN in real-time ap- +
plications is still not feasible. In addition, the use of robust +
hand-crafted features such as FV in hybrid architectures can +
give performance comparable to Deep CNN features [2]. The +
main advantage of learning hybrid architectures is to avoid +
having large numbers of convolutional and pooling layers. +
Again from [2], we can also observe that hybrid architec- +
tures improve the performance of hand-crafted features e.g. +
FVs. Therefore, hybrid architectures are useful for the cases +
where only hand-crafted features, and not the original im- +
ages, are available during training and testing time. This +
scenario is useful when it is not possible to share training +
images due to copyright or privacy issues. +
Hybrid networks are particularly adapted to our client- +
('2078892', 'Binod Bhattarai', 'binod bhattarai')
('2515597', 'Gaurav Sharma', 'gaurav sharma')
binod.bhattarai@unicaen.fr +
grv@cse.iitk.ac.in +
frederic.jurie@unicaen.fr +
1c30bb689a40a895bd089e55e0cad746e343d1e2Learning Spatiotemporal Features with 3D Convolutional Networks +
Facebook AI Research, 2Dartmouth College
('1687325', 'Du Tran', 'du tran')
('2276554', 'Rob Fergus', 'rob fergus')
('1732879', 'Lorenzo Torresani', 'lorenzo torresani')
('2210374', 'Manohar Paluri', 'manohar paluri')
{dutran,lorenzo}@cs.dartmouth.edu +
{lubomir,robfergus,mano}@fb.com +
1c4ceae745fe812d8251fda7aad03210448ae25eEURASIP Journal on Applied Signal Processing 2004:4, 522–529 +
c(cid:1) 2004 Hindawi Publishing Corporation +
Optimization of Color Conversion for Face Recognition +
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0111, USA +
Seattle Paci c University, Seattle, WA 98119-1957, USA
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0111, USA +
Received 5 November 2002; Revised 16 October 2003 +
This paper concerns the conversion of color images to monochromatic form for the purpose of human face recognition. Many +
face recognition systems operate using monochromatic information alone even when color images are available. In such cases, +
simple color transformations are commonly used that are not optimal for the face recognition task. We present a framework +
for selecting the transformation from face imagery using one of three methods: Karhunen-Lo`eve analysis, linear regression of +
color distribution, and a genetic algorithm. Experimental results are presented for both the well-known eigenface method and for +
extraction of Gabor-based face features to demonstrate the potential for improved overall system performance. Using a database +
of 280 images, our experiments using these methods resulted in performance improvements of approximately 4% to 14%. +
Keywords and phrases: face recognition, color image analysis, color conversion, Karhunen-Lo`eve analysis. +
1. +
INTRODUCTION +
Most single-view face recognition systems operate using in- +
tensity (monochromatic) information alone. This is true +
even for systems that accept color imagery as input. The +
reason for this is not +
that multispectral data is lack- +
ing in information content, but often because of practical +
considerations—difficulties associated with illumination and +
color balancing, for example, as well as compatibility with +
legacy systems. Associated with this is a lack of color image +
databases with which to develop and test new algorithms. Al- +
though work is in progress that will eventually aid in color- +
based tasks (e.g., through color constancy [1]), those efforts +
are still in the research stage. +
When color information is present, most of today’s face +
recognition systems convert the image to monochromatic +
form using simple transformations. For example, a common +
mapping [2, 3] produces an intensity value Ii by taking the +
average of red, green, and blue (RGB) values (Ir, Ig, and Ib, +
resp.): +
Ii(x, y) = Ir(x, y) + Ig(x, y) + Ib(x, y) +
(1) +
The resulting image is then used for feature extraction and +
analysis. +
We argue that more effective system performance is pos- +
sible if a color transformation is chosen that better matches +
the task at hand. For example, the mapping in (1) implic- +
itly assumes a uniform distribution of color values over the +
entire color space. For a task such as face recognition, color +
values tend to be more tightly confined to a small portion of +
the color space, and it is possible to exploit this narrow con- +
centration during color conversion. If the transformation is +
selected based on the expected color distribution, then it is +
reasonable to expect improved recognition accuracies. +
This paper presents a task-oriented approach for select- +
ing the color-to-grayscale image transformation. Our in- +
tended application is face recognition, although the frame- +
work that we present is applicable to other problem domains. +
We assume that frontal color views of the human face +
are available, and we develop a method for selecting alter- +
nate weightings of the separate color values in computing a +
single monochromatic value. Given the rich color content +
of the human face, it is desirable to maximize the use of +
this content even when full-color computation and match- +
ing is not used. As an illustration of this framework, we +
have used the Karhunen-Lo`eve (KL) transformation (also +
known as principal components analysis) of observed distri- +
butions in the color space to determine the improved map- +
ping. +
('1719681', 'Creed F. Jones', 'creed f. jones')
('1731164', 'A. Lynn Abbott', 'a. lynn abbott')
Email: crjones4@vt.edu +
Email: abbott@vt.edu +
1c3073b57000f9b6dbf1c5681c52d17c55d60fd7THÈSEprésentéepourl’obtentiondutitredeDOCTEURDEL’ÉCOLENATIONALEDESPONTSETCHAUSSÉESSpécialité:InformatiqueparCharlotteGHYSAnalyse,Reconstruction3D,&AnimationduVisageAnalysis,3DReconstruction,&AnimationofFacesSoutenancele19mai2010devantlejurycomposéde:Rapporteurs:MajaPANTICDimitrisSAMARASExaminateurs:MichelBARLAUDRenaudKERIVENDirectiondethèse:NikosPARAGIOSBénédicteBASCLE
1cee993dc42626caf5dbc26c0a7790ca6571d01aOptimal Illumination for Image and Video Relighting +
Shree K.Nayar +
Peter N.Belhumeur +
Columbia University
It has been shown in the literature that image-based relighting of +
scenes with unknown geometry can be achieved through linear +
combinations of a set of pre-acquired reference images. Since the +
placement and brightness of the light sources can be controlled, it +
is natural to ask: what is the optimal way to illuminate the scene to +
reduce the number of reference images that are needed? +
In this work we show that the best way to light the scene (i.e., the +
way that minimizes the number of reference images) is not using +
a sequence of single, compact light sources as is most commonly +
done, but rather to use a sequence of lighting patterns as given by an +
object-dependent lighting basis. While this lighting basis, which we +
call the optimal lighting basis (OLB), depends on camera and scene +
properties, we show that it can be determined as a simple calibration +
procedure before acquisition, through the SVD decomposition of +
the images of the object lighted by single light sources (Fig. 1). +
of basis images used, and for a set of four experiments (relighting +
of a sphere, a face, a buddha statue, and a dragon). For any given +
number of optimal lighting basis images, the corresponding num- +
ber of images of any other lighting basis that are needed to achieve +
the same reconstruction error equals the gain value. For instance, in +
the ‘buddha’ experiment instead of 6 optimal basis images, we will +
need to use 6× 1.8 ≈ 11 SHLB images, 6× 1.5 ≈ 9 FLB images or +
6× 2.3 ≈ 14 HaLB images. +
Figure 1: Computing the optimal lighting basis using SVD. First row: Images of the +
object illuminated by a single light source in different positions. Second row: Lighting +
patterns from the optimal lighting basis, containing both positive values, shown in +
grey, and negative values, shown in blue. Third row: Offset and scaling of the optimal +
lighting basis in order to make all its values positive. +
We demonstrate with experiments on real and synthetic data that +
the optimal lighting basis significantly reduces the number of refer- +
ence images that are needed to achieve a desired level of accuracy +
in the relit images. In particular, we show that the scene-dependent +
optimal lighting basis (OBL) performs much better than the Fourier +
lighting basis (FLB), Haar lighting basis (HaLB) and spherical har- +
monic lighting basis (SHLB). +
In Fig. 2 we show some reconstructed images of synthetic objects +
which have been illuminated by SHLB and OLB. Observe how +
when we reconstruct from images illuminated by OLB, the error is +
significantly smaller. In Fig. 3 we plot the gains of the optimal light- +
ing basis with respect the other basis, as a function of the number +
Figure 3: Gains of the OLB with respect all the other lighting basis, (for a set of 4 +
experiments), plotted as a function of the number of basis images used. +
This reduction in the number of needed images is particularly criti- +
cal in the problem of relighting in video, as corresponding points on +
moving objects must be aligned from frame to frame during each +
cycle of the lighting basis. We show, however, that the efficiencies +
gained by the optimal lighting basis makes relighting in video pos- +
sible using only a simple optical flow alignment. Furthermore, in +
our experiments we verify that although the optimal lighting basis +
is computed for an initial orientation of the object, the reconstruc- +
tion error does not increase noticeably as the object changes its pose +
along the video sequence. +
We have performed several relighting experiments on real video se- +
quences of moving objects, moving faces, and scenes containing +
both. In each case, although a single video clip was captured, we +
are able to relight again and again, controlling the lighting direc- +
tion, extent, and color. Fig. 4 shows some frames of one of these +
sequences. +
Ground Truth +
FLB 16 basis OLB 16 basis +
Error FLB +
Error OLB +
SHLB 3 basis OLB 3 basis +
Ground Truth +
Figure 2: Examples of reconstructed images and reconstruction errors, for different +
lighting basis. Note that OLB performs much better. +
Error SHLB +
Error OLB +
Figure 4: Two frames of a video sequence, illuminated with the optimal lighting +
basis (first row), and relighted with a point light source (second row) and with an +
environmental light (third row). +
('1994318', 'Francesc Moreno-Noguer', 'francesc moreno-noguer')
1c147261f5ab1b8ee0a54021a3168fa191096df8Journal of Information Security, 2016, 7, 141-151 +
Published Online April 2016 in SciRes. http://www.scirp.org/journal/jis +
http://dx.doi.org/10.4236/jis.2016.73010 +
Face Recognition across Time Lapse Using +
Convolutional Neural Networks +
George Mason University, Fairfax, VA, USA
Received 12 February 2016; accepted 8 April 2016; published 11 April 2016 +
Copyright © 2016 by authors and Scientific Research Publishing Inc. +
This work is licensed under the Creative Commons Attribution International License (CC BY). +
http://creativecommons.org/licenses/by/4.0/ +
+
+
('2710867', 'Hachim El Khiyari', 'hachim el khiyari')
('1781577', 'Harry Wechsler', 'harry wechsler')
1c17450c4d616e1e1eece248c42eba4f87de9e0dYANG, LIN, CHANG, CHEN: AUTOMATIC AGE ESTIMATION VIA DEEP RANKING +
Automatic Age Estimation from Face Images +
via Deep Ranking +
Research Center for Information
Technology Innovation +
Academia Sinica +
Taipei, Taiwan +
Institute of Information Science
Academia Sinica +
Taipei, Taiwan +
('35436145', 'Huei-Fang Yang', 'huei-fang yang')
('36181124', 'Bo-Yao Lin', 'bo-yao lin')
('34692779', 'Kuang-Yu Chang', 'kuang-yu chang')
('1720473', 'Chu-Song Chen', 'chu-song chen')
hfyang@citi.sinica.edu.tw +
boyaolin@iis.sinica.edu.tw +
kuangyu@iis.sinica.edu.tw +
song@iis.sinica.edu.tw +
1c93b48abdd3ef1021599095a1a5ab5e0e020dd5JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009 +
A Compositional and Dynamic Model for Face Aging +
('3133970', 'Song-Chun Zhu', 'song-chun zhu')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
1c41965c5e1f97b1504c1bdde8037b5e0417da5eInteraction-aware Spatio-temporal Pyramid +
Attention Networks for Action Classification +
University of Chinese Academy of Sciences
2 CAS Center for Excellence in Brain Science and Intelligence Technology, National +
Laboratory of Pattern Recognition, Institute of Automation, CAS
3 Meitu, 4 National Computer network Emergency Response technical +
Team/Coordination Center of China +
('1807325', 'Yang Du', 'yang du')
('2034987', 'Chunfeng Yuan', 'chunfeng yuan')
('46708348', 'Bing Li', 'bing li')
('40027215', 'Lili Zhao', 'lili zhao')
('2082374', 'Yangxi Li', 'yangxi li')
('40506509', 'Weiming Hu', 'weiming hu')
duyang2014@ia.ac.cn,{cfyuan,bli,wmhu}@nlpr.ia.ac.cn, +
lili.zhao@meitu.com, liyangxi@outlook.com +
1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16Fusion of audio-visual features using hierarchical classifier systems for +
the recognition of affective states and the state of depression +
Institute of Neural Information Processing, Ulm University, Ulm, Germany
Keywords: +
Emotion Recognition, Multiple Classifier Systems, Affective Computing, Information Fusion +
('1860319', 'Michael Glodek', 'michael glodek')
('3243891', 'Sascha Meudt', 'sascha meudt')
('1685857', 'Friedhelm Schwenker', 'friedhelm schwenker')
firstname.lastname@uni-ulm.de +
1cad5d682393ffbb00fd26231532d36132582bb4Spatio-Temporal Action Detection with +
Cascade Proposal and Location Anticipation +
Institute for Robotics and Intelligent
Systems +
University of Southern California
Los Angeles, CA, USA +
('3469030', 'Zhenheng Yang', 'zhenheng yang')
('3029956', 'Jiyang Gao', 'jiyang gao')
('27735100', 'Ram Nevatia', 'ram nevatia')
('3469030', 'Zhenheng Yang', 'zhenheng yang')
('3029956', 'Jiyang Gao', 'jiyang gao')
('27735100', 'Ram Nevatia', 'ram nevatia')
zhenheny@usc.edu +
jiyangga@usc.edu +
nevatia@usc.edu +
1c1a98df3d0d5e2034ea723994bdc85af45934dbGuided Unsupervised Learning of Mode Specific Models for Facial Point +
Detection in the Wild +
School of Computer Science, The University of Nottingham
('2736086', 'Shashank Jaiswal', 'shashank jaiswal')
('2449665', 'Timur R. Almaev', 'timur r. almaev')
{psxsj3,psxta4,michel.valstar}@nottingham.ac.uk +
1ca815327e62c70f4ee619a836e05183ef629567Global Supervised Descent Method +
Carnegie Mellon University, Pittsburgh PA
('3182065', 'Xuehan Xiong', 'xuehan xiong')
('1707876', 'Fernando De la Torre', 'fernando de la torre')
{xxiong,ftorre}@andrew.cmu.edu +
1c6be6874e150898d9db984dd546e9e85c85724e
1c65f3b3c70e1ea89114f955624d7adab620a013
1c530de1a94ac70bf9086e39af1712ea8d2d2781Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +
Sparsity Conditional Energy Label +
Distribution Learning for Age Estimation +
Key Lab of Computer Network and Information Integration (Ministry of Education) +
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
('2442058', 'Xu Yang', 'xu yang')
('1735299', 'Xin Geng', 'xin geng')
('1725992', 'Deyu Zhou', 'deyu zhou')
{x.yang,xgeng,d.zhou}@seu.edu.cn +
1c6e22516ceb5c97c3caf07a9bd5df357988ceda
82f8652c2059187b944ce65e87bacb6b765521f6Discriminative Object Categorization with +
External Semantic Knowledge +
Dissertation Proposal +
by +
Department of Computer Science +
University of Texas at Austin
Committee: +
Prof. Kristen Grauman (Advisor) +
Prof. Fei Sha +
Prof. J. K. Aggarwal +
('35788904', 'Sung Ju Hwang', 'sung ju hwang')
('1797655', 'Raymond Mooney', 'raymond mooney')
('2302443', 'Pradeep Ravikumar', 'pradeep ravikumar')
82bef8481207de9970c4dc8b1d0e17dced706352
825f56ff489cdd3bcc41e76426d0070754eab1a8Making Convolutional Networks Recurrent for Visual Sequence Learning +
NVIDIA +
('40058797', 'Xiaodong Yang', 'xiaodong yang'){xiaodongy,pmolchanov,jkautz}@nvidia.com +
82d2af2ffa106160a183371946e466021876870dA Novel Space-Time Representation on the Positive Semidefinite Cone +
for Facial Expression Recognition +
1IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL – +
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +
2Univ. Lille, CNRS, UMR 8524, Laboratoire Paul Painlev´e, F-59000 Lille, France. +
('37809060', 'Anis Kacem', 'anis kacem')
('2909056', 'Mohamed Daoudi', 'mohamed daoudi')
('2125606', 'Boulbaba Ben Amor', 'boulbaba ben amor')
824d1db06e1c25f7681e46199fd02cb5fc343784Representing Relative Visual Attributes +
with a Reference-Point-Based Decision Model +
Marc T. Law +
University of Toronto
Shanghai Jiao Tong University
University of Michigan-Shanghai Jiao Tong University Joint Institute
('38481975', 'Paul Weng', 'paul weng')
82ccd62f70e669ec770daf11d9611cab0a13047eSparse Variation Pattern for Texture Classification +
Electrical Engineering Department +
Computer Science and Software Engineering +
Electrical Engineering Department +
Tafresh University
Tafresh, Iran +
The University of Western Australia
Central Tehran Branch, Azad University
WA 6009, Australia +
Tehran, Iran +
('2014145', 'Mohammad Tavakolian', 'mohammad tavakolian')
('3046235', 'Farshid Hajati', 'farshid hajati')
('1747500', 'Ajmal S. Mian', 'ajmal s. mian')
('2997971', 'Soheila Gheisari', 'soheila gheisari')
m tavakolian,hajati@tafreshu.ac.ir +
ajmal.mian@uwa.edu.au +
gheisari.s@iauctb.ac.ir +
82eff71af91df2ca18aebb7f1153a7aed16ae7ccMSU-AVIS dataset: +
Fusing Face and Voice Modalities for Biometric +
Recognition in Indoor Surveillance Videos +
Michigan State University, USA
Yarmouk University, Jordan
('39617163', 'Anurag Chowdhury', 'anurag chowdhury')
('2447931', 'Yousef Atoum', 'yousef atoum')
('1849929', 'Luan Tran', 'luan tran')
('49543771', 'Xiaoming Liu', 'xiaoming liu')
('1698707', 'Arun Ross', 'arun ross')
82c303cf4852ad18116a2eea31e2291325bc19c3Journal of Image and Graphics, Volume 2, No.1, June, 2014 +
Fusion Based FastICA Method: Facial Expression +
Recognition +
Computer Science, Engineering and Mathematics School, Flinders University, Australia
('3105876', 'Humayra B. Ali', 'humayra b. ali')
('1739260', 'David M W Powers', 'david m w powers')
Email: {ali0041, david.powers}@flinders.edu.au +
8210fd10ef1de44265632589f8fc28bc439a57e6Single Sample Face Recognition via Learning Deep +
Supervised Auto-Encoders +
Shenghua Gao, Yuting Zhang, Kui Jia, Jiwen Lu, Yingying Zhang +
82a4a35b2bae3e5c51f4d24ea5908c52973bd5beReal-time emotion recognition for gaming using +
deep convolutional network features +
S´ebastien Ouellet +
82a610a59c210ff77cfdde7fd10c98067bd142daUC San Diego +
UC San Diego Electronic Theses and Dissertations +
Title +
Human attention and intent analysis using robust visual cues in a Bayesian framework +
Permalink +
https://escholarship.org/uc/item/1cb8d7vw +
Author +
McCall, Joel Curtis +
Publication Date +
2006-01-01 +
Peer reviewed|Thesis/dissertation +
eScholarship.org +
Powered by the California Digital Library +
University of California
829f390b3f8ad5856e7ba5ae8568f10cee0c7e6aInternational Journal of Computer Applications (0975 – 8887) +
Volume 57– No.20, November 2012 +
A Robust Rotation Invariant Multiview Face Detection in +
Erratic Illumination Condition +
G.Nirmala Priya +
Associate Professor, Department of ECE +
Sona College of Technology
('48201570', 'Salem', 'salem')
82f4e8f053d20be64d9318529af9fadd2e3547efTechnical Report: +
Multibiometric Cryptosystems +
('2743820', 'Abhishek Nagar', 'abhishek nagar')
('34633765', 'Karthik Nandakumar', 'karthik nandakumar')
('40437942', 'Anil K. Jain', 'anil k. jain')
82b43bc9213230af9db17322301cbdf81e2ce8ccAttention-Set based Metric Learning for Video Face Recognition +
Center for Research on Intelligent Perception and Computing, +
Institute of Automation, Chinese Academy of Sciences
('33079499', 'Yibo Hu', 'yibo hu')
('33680526', 'Xiang Wu', 'xiang wu')
('1705643', 'Ran He', 'ran he')
yibo.hu@cripac.ia.ac.cn, alfredxiangwu@gmail.com, rhe@nlpr.ia.ac.cn +
82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d141 +
REFERENCES +
1. +
2. +
3. +
4. +
5. +
6. +
7. +
8. +
9. +
Adler A., Youmaran R. and Loyka S., “Towards a Measure of +
Biometric Information”, Canadian Conference on Electrical and +
Computer Engineering, pp. 210-213, 2006. +
Military Academy, West Point, New York, pp. 452-458, 2005. +
Security and Trust, St. Andrews, New Brunswick, Canada, pp. 1-8, +
2005. +
Structural Model for Biometric Sketch Recognition”, Proceedings of +
DAGM, Magdeburg, Germany, Vol. 2781, pp. 187-195, 2003. +
of Security”, The First UAE International Conference on Biological +
and Medical Physics, pp. 1-4, 2005. +
Avraam Kasapis., “MLPs and Pose, Expression Classification”, +
Proceedings of UNiS Report, pp. 1-87, 2003. +
Detection for Storage Area Networks (SANs)”, Proceedings of 22nd +
IEEE / 13th NASA Goddard Conference on Mass Storage Systems and +
Technologies, pp. 118-127, 2005. +
Black M.J. and Yacoob Y., “Recognizing Facial Expressions in Image +
Sequences using Local Parameterized Models of Image Motion”, Int. +
Journal Computer Vision, Vol. 25, No. 1, pp. 23-48, 1997. +
10. +
Recognition using a State-Based Model of Spatially-Localized Facial +
('1689298', 'Ahmed', 'ahmed')
('1689298', 'Ahmed', 'ahmed')
('29977973', 'Angle', 'angle')
('20765969', 'Bolle', 'bolle')
('16848439', 'Bourel', 'bourel')
82417d8ec8ac6406f2d55774a35af2a1b3f4b66eSome faces are more equal than others: +
Hierarchical organization for accurate and +
efficient large-scale identity-based face retrieval +
GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1 +
Technicolor, Rennes, France2 +
('48467774', 'Binod Bhattarai', 'binod bhattarai')
('2515597', 'Gaurav Sharma', 'gaurav sharma')
82e66c4832386cafcec16b92ac88088ffd1a1bc9OpenFace: A general-purpose face recognition +
library with mobile applications +
June 2016 +
CMU-CS-16-118 +
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA 15213 +
Poznan University of Technology
('1773498', 'Brandon Amos', 'brandon amos')
('1747303', 'Mahadev Satyanarayanan', 'mahadev satyanarayanan')
82eb267b8e86be0b444e841b4b4ed4814b6f1942Single Image 3D Interpreter Network +
Massachusetts Institute of Technology
Stanford University
3Facebook AI Research +
4Google Research +
('3045089', 'Jiajun Wu', 'jiajun wu')
('3222730', 'Tianfan Xue', 'tianfan xue')
('35198686', 'Joseph J. Lim', 'joseph j. lim')
('39402399', 'Yuandong Tian', 'yuandong tian')
('1763295', 'Joshua B. Tenenbaum', 'joshua b. tenenbaum')
('1690178', 'Antonio Torralba', 'antonio torralba')
('1768236', 'William T. Freeman', 'william t. freeman')
826c66bd182b54fea3617192a242de1e4f16d020978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
1602 +
ICASSP 2017 +
499f1d647d938235e9186d968b7bb2ab20f2726dFace Recognition via Archetype Hull Ranking +
The Chinese University of Hong Kong, Hong Kong
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
('3331521', 'Yuanjun Xiong', 'yuanjun xiong'){yjxiong,xtang}@ie.cuhk.edu.hk +
weiliu@us.ibm.com +
zhaodeli@gmail.com +
4919663c62174a9bc0cc7f60da8f96974b397ad2HUMAN AGE ESTIMATION USING ENHANCED BIO-INSPIRED FEATURES (EBIF) +
Faculty of Computers and Information, Cairo University, Cairo, Egypt
('3144122', 'Motaz El-Saban', 'motaz el-saban'){mohamed.y.eldib,motaz.elsaban}@gmail.com +
49f70f707c2e030fe16059635df85c7625b5dc7ewww.ietdl.org +
Received on 29th May 2014 +
Revised on 29th August 2014 +
Accepted on 23rd September 2014 +
doi: 10.1049/iet-bmt.2014.0033 +
ISSN 2047-4938 +
Face recognition under illumination variations based +
on eight local directional patterns +
Utah State University, Logan, UT 84322-4205, USA
('2147212', 'Mohammad Reza Faraji', 'mohammad reza faraji')
('1725739', 'Xiaojun Qi', 'xiaojun qi')
E-mail: Mohammadreza.Faraji@aggiemail.usu.edu +
4967b0acc50995aa4b28e576c404dc85fefb0601 Vol. 4, No. 1 Jan 2013 ISSN 2079-8407 +
Journal of Emerging Trends in Computing and Information Sciences +
©2009-2013 CIS Journal. All rights reserved. +
An Automatic Face Detection and Gender Classification from +
http://www.cisjournal.org +
Color Images using Support Vector Machine +
1, 2, 3 Department of Electrical & Electronic Engineering, International +
University of Business Agriculture and Technology, Dhaka-1230, Bangladesh
+
('2832495', 'Md. Hafizur Rahman', 'md. hafizur rahman')
('2226529', 'Suman Chowdhury', 'suman chowdhury')
('36231591', 'Md. Abul Bashar', 'md. abul bashar')
49820ae612b3c0590a8a78a725f4f378cb605cd1Evaluation of Smile Detection Methods with +
Images in Real-world Scenarios +
Beijing University of Posts and Telecommunications, Beijing, China
('22550265', 'Zhoucong Cui', 'zhoucong cui')
('1678529', 'Shuo Zhang', 'shuo zhang')
('23224233', 'Jiani Hu', 'jiani hu')
('1774956', 'Weihong Deng', 'weihong deng')
4972aadcce369a8c0029e6dc2f288dfd0241e144Multi-target Unsupervised Domain Adaptation +
without Exactly Shared Categories +
('2076460', 'Huanhuan Yu', 'huanhuan yu')
('27096523', 'Menglei Hu', 'menglei hu')
('1680768', 'Songcan Chen', 'songcan chen')
49dd4b359f8014e85ed7c106e7848049f852a304
49e975a4c60d99bcc42c921d73f8d89ec7130916Human and computer recognition of facial expressions of emotion +
J.M. Susskind a, G. Littlewort b, M.S. Bartlett b, J. Movellan b, A.K. Anderson a,c,∗ +
b Machine Perception Laboratory, Institute of Neural Computation, University of California, San Diego, United States
c Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ont. M6A 2E1, Canada
University of Toronto, Canada
Available online 12 June 2006 +
49e85869fa2cbb31e2fd761951d0cdfa741d95f3253 +
Adaptive Manifold Learning +
('2923061', 'Zhenyue Zhang', 'zhenyue zhang')
('1697912', 'Jing Wang', 'jing wang')
('1750350', 'Hongyuan Zha', 'hongyuan zha')
49659fb64b1d47fdd569e41a8a6da6aa76612903
490a217a4e9a30563f3a4442a7d04f0ea34442c8International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.4, August 2013 +
An SOM-based Automatic Facial Expression +
Recognition System +
Hsieh1, andPa-Chun Wang2 +
1Department of Computer Science &InformationEngineering,National Central +
University, Taiwan, R.O.C
2Cathay General Hospital, Taiwan, R.O.C. +
('1720774', 'Mu-Chun Su', 'mu-chun su')
('4226881', 'Chun-Kai Yang', 'chun-kai yang')
('40179526', 'Shih-Chieh Lin', 'shih-chieh lin')
E-mail: muchun@csie.ncu.edu.tw +
49a7949fabcdf01bbae1c2eb38946ee99f491857A CONCATENATING FRAMEWORK OF SHORTCUT +
CONVOLUTIONAL NEURAL NETWORKS +
Yujian Li (liyujian@bjut.edu.cn), Ting Zhang, Zhaoying Liu, Haihe Hu +
4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1A Deep Sum-Product Architecture for Robust Facial Attributes Analysis +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('1693209', 'Ping Luo', 'ping luo')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
pluo.lhi@gmail.com +
xgwang@ee.cuhk.edu.hk +
xtang@ie.cuhk.edu.hk +
499343a2fd9421dca608d206e25e53be84489f44Anil Kumar.C, et.al, International Journal of Technology and Engineering Science [IJTES]TM +
+
Volume 1[9], pp: 1371-1375, December 2013 +
Face Recognition with Name Using Local Weber‟s +
Law Descriptor +
1C.Anil kumar,2A.Rajani,3I.Suneetha +
1M.Tech Student,2Assistant Professor,3Associate Professor +
Annamacharya Institute of Technology and Sciences, Tirupati, India
on FERET +
1Anilyadav.kumar7@gmail.com,2rajanirevanth446@gmail.com,3iralasuneetha.aits@gmail.com +
498fd231d7983433dac37f3c97fb1eafcf065268LINEAR DISENTANGLED REPRESENTATION LEARNING FOR FACIAL ACTIONS +
1Dept. of Computer Science +
2Dept. of Electrical & Computer Engineering +
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
Fig. 1. The separability of the neutral face yn and expression +
component ye. We find yn is better for identity recognition +
than y and ye is better for expression recognition than y. +
('40031188', 'Xiang Xiang', 'xiang xiang')
('1709073', 'Trac D. Tran', 'trac d. tran')
49e1aa3ecda55465641b2c2acc6583b32f3f1fc6International Journal of Emerging Technology and Advanced Engineering +
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +
Support Vector Machine for age classification +
1Assistant Professor, CSE, RSR RCET, Kohka Bhilai +
2,3 Sr. Assistant Professor, CSE, SSCET, Junwani Bhilai +
('6552360', 'Sangeeta Agrawal', 'sangeeta agrawal')
('40618181', 'Rohit Raja', 'rohit raja')
('40323262', 'Sonu Agrawal', 'sonu agrawal')
1agrawal.sans@gmail.com +
2rohitraja4u@gmail.com +
3agrawalsonu@gmail.com +
499f2b005e960a145619305814a4e9aa6a1bba6aRobust human face recognition based on locality preserving +
sparse overcomplete block approximation +
University of Geneva
7 Route de Drize, Geneva, Switzerland +
('36133844', 'Dimche Kostadinov', 'dimche kostadinov')
('8995309', 'Sviatoslav Voloshynovskiy', 'sviatoslav voloshynovskiy')
('1682792', 'Sohrab Ferdowsi', 'sohrab ferdowsi')
497bf2df484906e5430aa3045cf04a40c9225f94Sensors 2013, 13, 16682-16713; doi:10.3390/s131216682 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
Hierarchical Recognition Scheme for Human Facial Expression +
Recognition Systems +
UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea
Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea
Tel.: +82-31-201-2514. +
Received: 28 October 2013; in revised form: 30 November 2013 / Accepted: 2 December 2013 / +
Published: 5 December 2013 +
('1711083', 'Muhammad Hameed Siddiqi', 'muhammad hameed siddiqi')
('1700806', 'Sungyoung Lee', 'sungyoung lee')
('1750915', 'Young-Koo Lee', 'young-koo lee')
('1714762', 'Adil Mehmood Khan', 'adil mehmood khan')
('34601872', 'Phan Tran Ho Truc', 'phan tran ho truc')
E-Mails: siddiqi@oslab.khu.ac.kr (M.H.S.); sylee@oslab.khu.ac.kr (S.L.); yklee@khu.ac.kr (Y.-K.L.) +
E-Mail: amtareen@ajou.ac.kr +
* Author to whom correspondence should be addressed; E-Mail: pthtruc@oslab.khu.ac.kr; +
492f41e800c52614c5519f830e72561db205e86cA Deep Regression Architecture with Two-Stage Re-initialization for +
High Performance Facial Landmark Detection +
Jiangjing Lv1 +
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Institute of Automation, Chinese Academy of Sciences
('3492237', 'Xiaohu Shao', 'xiaohu shao')
('1757173', 'Junliang Xing', 'junliang xing')
('2095535', 'Cheng Cheng', 'cheng cheng')
('39959302', 'Xi Zhou', 'xi zhou')
{lvjiangjing,shaoxiaohu,chengcheng,zhouxi}@cigit.ac.cn +
jlxing@nlpr.ia.ac.cn +
49df381ea2a1e7f4059346311f1f9f45dd9971642018 +
On the Use of Client-Specific Information for Face +
Presentation Attack Detection Based on Anomaly +
Detection +
('1690611', 'Shervin Rahimzadeh Arashloo', 'shervin rahimzadeh arashloo')
('1748684', 'Josef Kittler', 'josef kittler')
493ec9e567c5587c4cbeb5f08ca47408ca2d6571You et al. Complex Adapt Syst Model (2016) 4:22 +
DOI 10.1186/s40294‑016‑0034‑7 +
RESEARCH +
Combining graph embedding +
and sparse regression with structure low‑rank +
representation for semi‑supervised learning +
Open Access +
*Correspondence: +
1 School of IoT Engineering, +
Jiangnan University, Wuxi
China +
Full list of author information +
is available at the end of the +
article +
('1766488', 'Vasile Palade', 'vasile palade')youcongzhe@gmail.com +
49570b41bd9574bd9c600e24b269d945c645b7bdA Framework for Performance Evaluation +
of Face Recognition Algorithms +
Visual Computing and Communications Lab, Arizona State University
('40401270', 'John A. Black', 'john a. black')
('1743991', 'Sethuraman Panchanathan', 'sethuraman panchanathan')
496074fcbeefd88664b7bd945012ca22615d812eReview +
Driver Distraction Using Visual-Based Sensors +
and Algorithms +
1 Grupo TSK, Technological Scientific Park of Gijón, 33203 Gijón, Asturias, Spain; +
University of Oviedo, Campus de Viesques, 33204 Gij n
Academic Editor: Gonzalo Pajares Martinsanz +
Received: 14 July 2016; Accepted: 24 October 2016; Published: 28 October 2016 +
('8306548', 'Rubén Usamentiaga', 'rubén usamentiaga')
('27666409', 'Juan Luis Carús', 'juan luis carús')
juanluis.carus@grupotsk.com +
Asturias, Spain; rusamentiaga@uniovi.es (R.U.); rcasado@lsi.uniovi.es (R.C.) +
* Corrospondence: alberto.fernandez@grupotsk.com; Tel.: +34-984-29-12-12; Fax: +34-984-39-06-12 +
40205181ed1406a6f101c5e38c5b4b9b583d06bcUsing Context to Recognize People in Consumer Images +('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')
('1746230', 'Tsuhan Chen', 'tsuhan chen')
40dab43abef32deaf875c2652133ea1e2c089223Noname manuscript No. +
(will be inserted by the editor) +
Facial Communicative Signals +
Valence Recognition in Task-Oriented Human-Robot Interaction +
Received: date / Accepted: date +
('33734208', 'Christian Lang', 'christian lang')
40b0fced8bc45f548ca7f79922e62478d2043220Do Convnets Learn Correspondence? +
University of California Berkeley
('1753210', 'Trevor Darrell', 'trevor darrell')
('34703740', 'Jonathan Long', 'jonathan long')
('40565777', 'Ning Zhang', 'ning zhang')
{jonlong, nzhang, trevor}@cs.berkeley.edu +
405b43f4a52f70336ac1db36d5fa654600e9e643What can we learn about CNNs from a large scale controlled object dataset? +
UWM +
AUT +
USC +
('3177797', 'Ali Borji', 'ali borji')
('2391309', 'Saeed Izadi', 'saeed izadi')
('7326223', 'Laurent Itti', 'laurent itti')
borji@uwm.edu +
sizadi@aut.ac.ir +
itti@usc.edu +
40b86ce698be51e36884edcc8937998979cd02ecYüz ve İsim İlişkisi kullanarak Haberlerdeki Kişilerin Bulunması +
Finding Faces in News Photos Using Both Face and Name Information +
Derya Ozkan, Pınar Duygulu +
Bilgisayar Mühendisliği Bölümü, Bilkent Üniversitesi, 06800, Ankara +
Özetçe +
Bu çalışmada, haber fotoğraflarından oluşan geniş veri +
kümelerinde kişilerin sorgulanmasını sağlayan bir yöntem +
sunulmuştur. Yöntem isim ve yüzlerin ilişkilendirilmesine +
dayanmaktadır. Haber başlığında kişinin ismi geçiyor ise +
fotoğrafta da o kişinin yüzünün bulunacağı varsayımıyla, ilk +
olarak sorgulanan isim ile ilişkilendirilmiş, fotoğraflardaki +
tüm yüzler seçilir. Bu yüzler arasında sorgu kişisine ait farklı +
koşul, poz ve zamanlarda çekilmiş pek çok resmin yanında, +
haberde ismi geçen başka kişilere ait yüzler ya da kullanılan +
yüz bulma yönteminin hatasından kaynaklanan yüz olmayan +
resimler de bulunabilir. Yine de, çoğu zaman, sorgu kişisine +
ait resimler daha çok olup, bu resimler birbirine diğerlerine +
olduğundan daha çok benzeyeceklerdir. Bu nedenle, yüzler +
arasındaki benzerlikler çizgesel olarak betimlendiğinde , +
birbirine en çok benzeyen yüzler bu çizgede en yoğun bileşen +
olacaktır. Bu çalışmada, sorgu ismiyle ilişkilendirilmiş, +
yüzler arasında birbirine en çok benzeyen alt kümeyi bulan, +
çizgeye dayalı bir yöntem sunulmaktadır. +
deryao@cs.bilkent.edu.tr, duygulu@cs.bilkent.edu.tr +
40a74eea514b389b480d6fe8b359cb6ad31b644aDiscrete Deep Feature Extraction: A Theory and New Architectures +
Aleksandar Stani´c1 +
Helmut B¨olcskei1 +
1Dept. IT & EE, ETH Zurich, Switzerland +
University of Vienna, Austria
('2076040', 'Thomas Wiatowski', 'thomas wiatowski')
('2208878', 'Michael Tschannen', 'michael tschannen')
('1690644', 'Philipp Grohs', 'philipp grohs')
403a108dec92363fd1f465340bd54dbfe65af870describing images with statistics of local non-binarized pixel patterns +
Local Higher-Order Statistics (LHS) +
aGREYC CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France +
bMax Planck Institute for Informatics, Germany
('2515597', 'Gaurav Sharma', 'gaurav sharma')
40ee38d7ff2871761663d8634c3a4970ed1dc058Three-Dimensional Face Recognition: A Fishersurface +
Approach +
The University of York, United Kingdom
('2023950', 'Thomas Heseltine', 'thomas heseltine')
('1737428', 'Nick Pears', 'nick pears')
('2405628', 'Jim Austin', 'jim austin')
402f6db00251a15d1d92507887b17e1c50feebca3D Facial Action Units Recognition for Emotional +
Expression +
1Department of Information Technology and Communication, Politeknik Kuching, Sarawak, Malaysia +
2Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia +
The muscular activities caused the activation of certain AUs for every facial expression at the certain duration of time +
throughout the facial expression. This paper presents the methods to recognise facial Action Unit (AU) using facial distance +
of the facial features which activates the muscles. The seven facial action units involved are AU1, AU4, AU6, AU12, AU15, +
AU17 and AU25 that characterises happy and sad expression. The recognition is performed on each AU according to rules +
defined based on the distance of each facial points. The facial distances chosen are extracted from twelve facial features. +
Then the facial distances are trained using Support Vector Machine (SVM) and Neural Network (NN). Classification result +
using SVM is presented with several different SVM kernels while result using NN is presented for each training, validation +
and testing phase. +
Keywords: Facial action units recognition, 3D AU recognition, facial expression +
+
('2801456', 'Hamimah Ujir', 'hamimah ujir')
('3310557', 'Jacey-Lynn Minoi', 'jacey-lynn minoi')
404042a1dcfde338cf24bc2742c57c0fb1f48359中国图象图形学报 vol.8, no.8, pp.849-859, 2003. +
脸部特征定位方法综述1 +
林维训 潘纲 吴朝晖 潘云鹤 +
(浙江大学计算机系 310027) +
摘 要 脸部特征定位是人脸分析技术的一个重要组成部分,其目标是在图像或图像序列中的指定 +
区域内搜索人脸特征(如眼、鼻、嘴、耳等)的位置。它可广泛应用于人脸检测和定位、人脸识别、 +
姿态识别、表情识别、头部像压缩及重构、脸部动画等领域。近年来该领域的研究有了较大的发展, +
为了让相关领域内的理论研究和开发人员对目前的进展有一个全面的了解,本文将近年来提出的脸 +
部特征定位方法根据其所依据的基本信息类型分为基于先验知识、几何形状、色彩、外观和关联信 +
息等五类并分别作了介绍,对各类方法的性能作了一些比较和讨论,对未来的发展作了展望。 +
关键词 脸部特征定位 脸部特征提取 +
中图法分类号:TP391.41 +
A Survey on Facial Features Localization +
College of Computer Science, Zhejiang University
4015e8195db6edb0ef8520709ca9cb2c46f29be7UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE +
Institute of Computer Science
Computer Science Curriculum +
Smile Detector Based on the Motion of +
Face Reference Points +
Bachelor’s Thesis (6 ECTS) +
Supervisor: Gholamreza Anbarjafari, PhD +
Tartu 2014 +
('3168586', 'Andres Traumann', 'andres traumann')
407bb798ab153bf6156ba2956f8cf93256b6910aFisher Pruning of Deep Nets for Facial Trait +
Classification +
McGill University
University Street, Montreal, QC H3A 0E9, Canada
('1992537', 'Qing Tian', 'qing tian')
('1699104', 'Tal Arbel', 'tal arbel')
('1713608', 'James J. Clark', 'james j. clark')
40fb4e8932fb6a8fef0dddfdda57a3e142c3e823A Mixed Generative-Discriminative Framework for Pedestrian Classification +
Dariu M. Gavrila2,3 +
1 Image & Pattern Analysis Group, Dept. of Math. and Comp. Sc., Univ. of Heidelberg, Germany +
2 Environment Perception, Group Research, Daimler AG, Ulm, Germany +
3 Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands +
('1765022', 'Markus Enzweiler', 'markus enzweiler'){uni-heidelberg.enzweiler,dariu.gavrila}@daimler.com +
40dd2b9aace337467c6e1e269d0cb813442313d7This thesis has been submitted in fulfilment of the requirements for a postgraduate degree +
e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use: +
This work is protected by copyright and other intellectual property rights, which are +
retained by the thesis author, unless otherwise stated. +
A copy can be downloaded for personal non-commercial research or study, without +
prior permission or charge. +
This thesis cannot be reproduced or quoted extensively from without first obtaining +
permission in writing from the author. +
The content must not be changed in any way or sold commercially in any format or +
medium without the formal permission of the author. +
When referring to this work, full bibliographic details including the author, title, +
awarding institution and date of the thesis must be given. +
407de9da58871cae7a6ded2f3a6162b9dc371f38TraMNet - Transition Matrix Network for +
Efficient Action Tube Proposals +
Oxford Brookes University, UK
('1931660', 'Gurkirt Singh', 'gurkirt singh')
('49348905', 'Suman Saha', 'suman saha')
('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')
gurkirt.singh-2015@brookes.ac.uk +
405526dfc79de98f5bf3c97bf4aa9a287700f15dMegaFace: A Million Faces for Recognition at Scale +
D. Miller +
E. Brossard +
S. Seitz +
Dept. of Computer Science and Engineering +
University of Washington
I. Kemelmacher-Shlizerman +
Figure 1: We evaluate how recognition performs with increasing numbers of faces in the database: (a) shows rank-1 iden- +
tification rates, and (b) rank-10. Recognition rates drop once the number of distractors increases. We also present first +
large-scale human recognition results (up to 10K distractors). Interestingly, Google’s deep learning based FaceNet is more +
robust at scale than humans. See http://megaface.cs.washington.edu to participate in the challenge. +
40cd062438c280c76110e7a3a0b2cf5ef675052c
40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5bBeyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy +
Beihang University, 2The Chinese University of Hong Kong, 3Sensetime Group Limited
('12920342', 'Guanglu Song', 'guanglu song')
('1715752', 'Yu Liu', 'yu liu')
('40452812', 'Ming Jiang', 'ming jiang')
('33598672', 'Yujie Wang', 'yujie wang')
('1721677', 'Junjie Yan', 'junjie yan')
('2858789', 'Biao Leng', 'biao leng')
{guanglusong,jiangming1406,yujiewang,lengbiao}@buaa.edu.cn, +
yuliu@ee.cuhk.edu.hk, yanjunjie@sensetime.com +
40a5b32e261dc5ccc1b5df5d5338b7d3fe10370dFeedback-Controlled Sequential Lasso Screening +
Department of Electrical Engineering +
Princeton University
('1719525', 'Yun Wang', 'yun wang')
('1734498', 'Xu Chen', 'xu chen')
('1693135', 'Peter J. Ramadge', 'peter j. ramadge')
40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a80 +
40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60AUTOMATIC LIP TRACKING AND ACTION UNITS CLASSIFICATION USING +
TWO-STEP ACTIVE CONTOURS AND PROBABILISTIC NEURAL NETWORKS +
Faculty of Electrical and +
Computer Engineering +
University of Tabriz, Tabriz, Iran
WonSook LEE +
School of Information Technology +
and Engineering (SITE) +
Faculty of Engineering, +
University of Ottawa, Canada
Faculty of Electrical and +
Computer Engineering +
University of Tabriz, Tabriz, Iran
+
+
('3210269', 'Hadi Seyedarabi', 'hadi seyedarabi')
('2488201', 'Ali Aghagolzadeh', 'ali aghagolzadeh')
email: hadis@discover.uottawa.ca +
email: wslee@uottawa.ca +
email: aghagol@tabrizu.ac.ir +
40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cdBridging Heterogeneous Domains With Parallel Transport For Vision and +
Multimedia Applications +
Dept. of Video and Multimedia Technologies Research +
AT&T Labs-Research +
San Francisco, CA 94108 +
('33692583', 'Raghuraman Gopalan', 'raghuraman gopalan')
40389b941a6901c190fb74e95dc170166fd7639dAutomatic Facial Expression Recognition +
Emotient +
http://emotient.com +
February 12, 2014 +
Imago animi vultus est, indices oculi. (Cicero) +
Introduction +
The face is innervated by two different brain systems that compete for control of its muscles: +
a cortical brain system related to voluntary and controllable behavior, and a sub-cortical +
system responsible for involuntary expressions. The interplay between these two systems +
generates a wealth of information that humans constantly use to read the emotions, inten- +
tions, and interests [25] of others. +
Given the critical role that facial expressions play in our daily life, technologies that can +
interpret and respond to facial expressions automatically are likely to find a wide range of +
applications. For example, in pharmacology, the effect of new anti-depression drugs could +
be assessed more accurately based on daily records of the patients’ facial expressions than +
asking the patients to fill out a questionnaire, as it is currently done [7]. Facial expression +
recognition may enable a new generation of teaching systems to adapt to the expression +
of their students in the way good teachers do [61]. Expression recognition could be used +
to assess the fatigue of drivers and air-pilots [58, 59]. Daily-life robots with automatic +
expression recognition will be able to assess the states and intentions of humans and respond +
accordingly [41]. Smart phones with expression analysis may help people to prepare for +
important meetings and job interviews. +
Thanks to the introduction of machine learning methods, recent years have seen great +
progress in the field of automatic facial expression recognition. Commercial real-time ex- +
pression recognition systems are starting to be used in consumer applications, e.g., smile +
detectors embedded in digital cameras [62]. Nonetheless, considerable progress has yet to be +
made: Methods for face detection and tracking (the first step of automated face analysis) +
work well for frontal views of adult Caucasian and Asian faces [50], but their performance +
('1775637', 'Jacob Whitehill', 'jacob whitehill')
('40648952', 'Marian Stewart', 'marian stewart')
('1741200', 'Javier R. Movellan', 'javier r. movellan')
40e1743332523b2ab5614bae5e10f7a7799161f4Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural +
Networks +
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
School of IoT Engineering, Jiangnan University, Wuxi 214122, China
('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')
('1748684', 'Josef Kittler', 'josef kittler')
{z.feng, j.kittler, m.a.rana}@surrey.ac.uk, patrikhuber@gmail.com, wu xiaojun@jiangnan.edu.cn +
40c8cffd5aac68f59324733416b6b2959cb668fdPooling Facial Segments to Face: The Shallow and Deep Ends +
Department of Electrical and Computer Engineering and the Center for Automation Research, +
UMIACS, University of Maryland, College Park, MD
('3152615', 'Upal Mahbub', 'upal mahbub')
('40599829', 'Sayantan Sarkar', 'sayantan sarkar')
('9215658', 'Rama Chellappa', 'rama chellappa')
{umahbub, ssarkar2, rama}@umiacs.umd.edu +
40273657e6919455373455bd9a5355bb46a7d614Anonymizing k-Facial Attributes via Adversarial Perturbations +
1 IIIT Delhi, New Delhi, India +
2 Ministry of Electronics and Information Technology, New Delhi, India +
('24380882', 'Saheb Chhabra', 'saheb chhabra')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('50046315', 'Gaurav Gupta', 'gaurav gupta')
{sahebc, rsingh, mayank@iiitd.ac.in}, gauravg@gov.in +
40b10e330a5511a6a45f42c8b86da222504c717fImplementing the Viola-Jones +
Face Detection Algorithm +
Kongens Lyngby 2008 +
IMM-M.Sc.-2008-93 +
('24007383', 'Ole Helvig Jensen', 'ole helvig jensen')
40bb090a4e303f11168dce33ed992f51afe02ff7Marginal Loss for Deep Face Recognition +
Imperial College London
Imperial College London
Imperial College London
UK +
UK +
UK +
('3234063', 'Jiankang Deng', 'jiankang deng')
('2321938', 'Yuxiang Zhou', 'yuxiang zhou')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
j.deng16@imperial.ac.uk +
yuxiang.zhou10@imperial.ac.uk +
s.zafeiriou@imperial.ac.uk +
40ca925befa1f7e039f0cd40d57dbef6007b4416Sampling Matters in Deep Embedding Learning +
UT Austin +
A9/Amazon +
Amazon +
Philipp Kr¨ahenb¨uhl +
UT Austin +
('2978413', 'Chao-Yuan Wu', 'chao-yuan wu')
('1758550', 'R. Manmatha', 'r. manmatha')
('1691629', 'Alexander J. Smola', 'alexander j. smola')
cywu@cs.utexas.edu +
manmatha@a9.com +
smola@amazon.com +
philkr@cs.utexas.edu +
4042bbb4e74e0934f4afbedbe92dd3e37336b2f4
4026dc62475d2ff2876557fc2b0445be898cd380An Affective User Interface Based on Facial Expression +
Recognition and Eye-Gaze Tracking +
School of Computer Engineering, Sejong University, Seoul, Korea
('7236280', 'Soo-Mi Choi', 'soo-mi choi')
('2706430', 'Yong-Guk Kim', 'yong-guk kim')
{smchoi,ykim}@sejong.ac.kr +
40f127fa4459a69a9a21884ee93d286e99b54c5fOptimizing Apparent Display Resolution +
Enhancement for Arbitrary Videos +
('2267017', 'Michael Stengel', 'michael stengel')
('1701306', 'Martin Eisemann', 'martin eisemann')
('34751565', 'Stephan Wenger', 'stephan wenger')
('2765149', 'Benjamin Hell', 'benjamin hell')
401e6b9ada571603b67377b336786801f5b54eeeActive Image Clustering: Seeking Constraints from +
Humans to Complement Algorithms +
November 22, 2011 +
406431d2286a50205a71f04e0b311ba858fc7b6c3D FACIAL EXPRESSION CLASSIFICATION USING +
A STATISTICAL MODEL OF SURFACE NORMALS +
AND A MODULAR APPROACH +
A thesis submitted to +
University of Birmingham
for the degree of +
DOCTOR OF PHILOSOPHY +
School of Electronic, Electrical & Computer Engineering +
University of Birmingham
August 2012 +
('2801456', 'Hamimah Ujir', 'hamimah ujir')
40217a8c60e0a7d1735d4f631171aa6ed146e719Part-Pair Representation for Part Localization +
Columbia University
('2454675', 'Jiongxin Liu', 'jiongxin liu')
('3173493', 'Yinxiao Li', 'yinxiao li')
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
{liujx09, yli, belhumeur}@cs.columbia.edu +
2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9
2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87International Journal of Computer Vision manuscript No. +
(will be inserted by the editor) +
Pointly-Supervised Action Localization +
Received: date / Accepted: date +
('2606260', 'Pascal Mettes', 'pascal mettes')
2eb37a3f362cffdcf5882a94a20a1212dfed25d94 +
Local Feature Based Face Recognition +
R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded +
India +
1. Introduction +
A reliable automatic face recognition (AFR) system is a need of time because in today's +
networked world, maintaining the security of private information or physical property is +
becoming increasingly important and difficult as well. Most of the time criminals have been +
taking the advantage of fundamental flaws in the conventional access control systems i.e. +
the systems operating on credit card, ATM etc. do not grant access by "who we are", but by +
"what we have”. The biometric based access control systems have a potential to overcome +
most of the deficiencies of conventional access control systems and has been gaining the +
importance in recent years. These systems can be designed with biometric traits such as +
fingerprint, face, iris, signature, hand geometry etc. But comparison of different biometric +
traits shows that face is very attractive biometric because of its non-intrusiveness and social +
acceptability. It provides automated methods of verifying or recognizing the identity of a +
living person based on its facial characteristics. +
In last decade, major advances occurred in face recognition, with many systems capable of +
achieving recognition rates greater than 90%. However real-world scenarios remain a +
challenge, because face acquisition process can undergo to a wide range of variations. Hence +
the AFR can be thought as a very complex object recognition problem, where the object to be +
recognized is the face. This problem becomes even more difficult because the search is done +
among objects belonging to the same class and very few images of each class are available to +
train the system. Moreover different problems arise when images are acquired under +
uncontrolled conditions such as illumination variations, pose changes, occlusion, person +
appearance at different ages, expression changes and face deformations. The numbers of +
approaches has been proposed by various researchers to deal with these problems but still +
reported results cannot suffice the need of the reliable AFR system in presence of all facial +
image variations. A recent survey paper (Abate et al., 2007) states that the sensibility of the +
AFR systems to illumination and pose variations are the main problems researchers have +
been facing up till. +
2. Face recognition methods +
The existing face recognition methods can be divided into two categories: holistic matching +
methods and local matching methods.The holistic matching methods use complete face +
region as a input to face recognition system and constructs a lower dimensional subspace +
using principal component analysis (PCA) (Turk & Pentland, 1991), linear discriminant +
www.intechopen.com +
('2321206', 'Sanjay A. Pardeshi', 'sanjay a. pardeshi')
('3092481', 'Sanjay N. Talbar', 'sanjay n. talbar')
2e0addeffba4be98a6ad0460453fbab52616b139Face View Synthesis +
Using A Single Image +
Thesis Proposal +
May 2006 +
Committee Members +
Henry Schneiderman (Chair) +
Alexei (Alyosha) Efros +
Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 +
c(cid:13) Carnegie Mellon University
('2989714', 'Jiang Ni', 'jiang ni')
('1709305', 'Martial Hebert', 'martial hebert')
('38998440', 'David Kriegman', 'david kriegman')
2e5cfa97f3ecc10ae8f54c1862433285281e6a7c
2e091b311ac48c18aaedbb5117e94213f1dbb529Collaborative Facial Landmark Localization +
for Transferring Annotations Across Datasets +
University of Wisconsin Madison
http://www.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/ +
('1893050', 'Brandon M. Smith', 'brandon m. smith')
('40396555', 'Li Zhang', 'li zhang')
2e1415a814ae9abace5550e4893e13bd988c7ba1International Journal of Engineering Trends and Technology (IJETT) – Volume 21 Number 3 – March 2015 +
Dictionary Based Face Recognition in Video Using +
Fuzzy Clustering and Fusion +
#1IInd year M.E. Student, #2Assistant Professor +
Dhanalakshmi Srinivasan College of Engineering
Coimbatore,Tamilnadu,India. +
Anna University
2e0e056ed5927a4dc6e5c633715beb762628aeb0
2e8a0cc071017845ee6f67bd0633b8167a47abedSpatio-Temporal Covariance Descriptors for Action and Gesture Recognition +
NICTA, PO Box 6020, St Lucia, QLD 4067, Australia ∗ +
University of Queensland, School of ITEE, QLD 4072, Australia
('2706642', 'Andres Sanin', 'andres sanin')
('1781182', 'Conrad Sanderson', 'conrad sanderson')
('2270092', 'Brian C. Lovell', 'brian c. lovell')
2e68190ebda2db8fb690e378fa213319ca915cf8Generating Videos with Scene Dynamics +
MIT +
UMBC +
MIT +
('1856025', 'Carl Vondrick', 'carl vondrick')
('2367683', 'Hamed Pirsiavash', 'hamed pirsiavash')
('1690178', 'Antonio Torralba', 'antonio torralba')
vondrick@mit.edu +
hpirsiav@umbc.edu +
torralba@mit.edu +
2e0d56794379c436b2d1be63e71a215dd67eb2caImproving precision and recall of face recognition in SIPP with combination of +
modified mean search and LSH +
Xihua.Li +
lixihua9@126.com +
2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd
2e475f1d496456831599ce86d8bbbdada8ee57edGroupsourcing: Team Competition Designs for +
Crowdsourcing +
L3S Research Center, Hannover, Germany
('2993225', 'Markus Rokicki', 'markus rokicki')
('2553718', 'Sergej Zerr', 'sergej zerr')
('1745880', 'Stefan Siersdorfer', 'stefan siersdorfer')
{rokicki,siersdorfer,zerr}@L3S.de +
2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522Leveraging Billions of Faces to Overcome +
Performance Barriers in Unconstrained Face +
Recognition +
face.com +
('2188620', 'Yaniv Taigman', 'yaniv taigman')
('1776343', 'Lior Wolf', 'lior wolf')
{yaniv, wolf}@face.com +
2e231f1e7e641dd3619bec59e14d02e91360ac01FUSION NETWORK FOR FACE-BASED AGE ESTIMATION +
The University of Warwick, Coventry, UK
School of Management, University of Bath, Bath, UK
School of Computing and Mathematics, Charles Sturt University, Wagga Wagga, Australia
('1750506', 'Haoyi Wang', 'haoyi wang')
('40655450', 'Xingjie Wei', 'xingjie wei')
('1901920', 'Victor Sanchez', 'victor sanchez')
('1799504', 'Chang-Tsun Li', 'chang-tsun li')
{h.wang.16, vsanchez, C-T.Li}@warwick.ac.uk, x.wei@bath.ac.uk +
2e6cfeba49d327de21ae3186532e56cadeb57c02Real Time Eye Gaze Tracking with 3D Deformable Eye-Face Model +
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY, USA +
('1771700', 'Kang Wang', 'kang wang')
('1726583', 'Qiang Ji', 'qiang ji')
{wangk10, jiq}@rpi.edu +
2ee817981e02c4709d65870c140665ed25b005ccSparse Representations and Random Projections for +
Robust and Cancelable Biometrics +
(Invited Paper) +
Center for Automation Research +
University of Maryland
College Park, MD 20742 USA
DAP - University of Sassari
piazza Duomo, 6 +
Alghero 07041 Italy +
robust and secure physiological biometrics recognition such +
as face and iris [6], [7], [9], [1]. In this paper, we categorize +
approaches to biometrics based on sparse representations. +
('1741177', 'Vishal M. Patel', 'vishal m. patel')
('9215658', 'Rama Chellappa', 'rama chellappa')
('1725688', 'Massimo Tistarelli', 'massimo tistarelli')
{pvishalm,rama}@umiacs.umd.edu +
tista@uniss.it +
2e98329fdec27d4b3b9b894687e7d1352d828b1dUsing Affect Awareness to Modulate Task Experience: +
A Study Amongst Pre-Elementary School Kids +
Carnegie Mellon University
5000 Forbes Avenue, +
Pittsburgh, PA 15213 +
('29120285', 'Vivek Pai', 'vivek pai')
('1760345', 'Raja Sooriamurthi', 'raja sooriamurthi')
2e19371a2d797ab9929b99c80d80f01a1fbf9479
2ed4973984b254be5cba3129371506275fe8a8eb +
THE EFFECTS OF MOOD ON +
EMOTION RECOGNITION AND +
ITS RELATIONSHIP WITH THE +
GLOBAL VS LOCAL +
INFORMATION PROCESSING +
STYLES +
BASIC RESEARCH PROGRAM +
WORKING PAPERS +
SERIES: PSYCHOLOGY +
WP BRP 60/PSY/2016 +
This Working Paper is an output of a research project implemented at the National Research +
University Higher School of Economics (HSE). Any opinions or claims contained in this
Working Paper do not necessarily reflect the views of HSE +
+
('15615673', 'Victoria Ovsyannikova', 'victoria ovsyannikova')
2e9c780ee8145f29bd1a000585dd99b14d1f5894Simultaneous Adversarial Training - Learn from +
Others’ Mistakes +
Lite-On Singapore Pte. Ltd, 2Imperial College London
('9949538', 'Zukang Liao', 'zukang liao')
2ebc35d196cd975e1ccbc8e98694f20d7f52faf3This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Towards Wide-angle Micro Vision Sensors +
('2724462', 'Sanjeev J. Koppal', 'sanjeev j. koppal')
('2407724', 'Ioannis Gkioulekas', 'ioannis gkioulekas')
('2140759', 'Kenneth B. Crozier', 'kenneth b. crozier')
2e3d081c8f0e10f138314c4d2c11064a981c1327
2e86402b354516d0a8392f75430156d629ca6281
2ea78e128bec30fb1a623c55ad5d55bb99190bd2Residual vs. Inception vs. Classical Networks for +
Low-Resolution Face Recognition +
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
2Fraunhofer IOSB, Karlsruhe, Germany +
{christian.herrmann,dieter.willersinn, +
('37646107', 'Christian Herrmann', 'christian herrmann')
('1783486', 'Dieter Willersinn', 'dieter willersinn')
juergen.beyerer}@iosb.fraunhofer.de +
2e8eb9dc07deb5142a99bc861e0b6295574d1fbdAnalysis by Synthesis: 3D Object Recognition by Object Reconstruction +
University of California, Irvine
University of California, Irvine
('1888731', 'Mohsen Hejrati', 'mohsen hejrati')
('1770537', 'Deva Ramanan', 'deva ramanan')
shejrati@ics.uci.edu +
dramanan@ics.uci.edu +
2e0f5e72ad893b049f971bc99b67ebf254e194f7Apparel Classification with Style +
1ETH Z¨urich, Switzerland 2Microsoft, Austria 3Kooaba AG, Switzerland +
4KU Leuven, Belgium +
('1696393', 'Lukas Bossard', 'lukas bossard')
('1727791', 'Matthias Dantone', 'matthias dantone')
('1695579', 'Christian Leistner', 'christian leistner')
('1793359', 'Christian Wengert', 'christian wengert')
('1726249', 'Till Quack', 'till quack')
('1681236', 'Luc Van Gool', 'luc van gool')
2e3c893ac11e1a566971f64ae30ac4a1f36f5bb5Simultaneous Object Detection and Ranking with +
Weak Supervision +
Department of Engineering Science +
University of Oxford
United Kingdom +
('1758219', 'Matthew B. Blaschko', 'matthew b. blaschko')
('1687524', 'Andrea Vedaldi', 'andrea vedaldi')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
2ed3ce5cf9e262bcc48a6bd998e7fb70cf8a971cPreprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2017 doi:10.20944/preprints201701.0120.v1 +
Peer-reviewed version available at Sensors 2017, 17, 275; doi:10.3390/s17020275 +
Article +
Active AU Based Patch Weighting for Facial +
Expression Recognition +
School of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen
Guangdong 518060, China +
('34181727', 'Weicheng Xie', 'weicheng xie')
('1687690', 'LinLin Shen', 'linlin shen')
('5828998', 'Meng Yang', 'meng yang')
('5383601', 'Zhihui Lai', 'zhihui lai')
* Correspondence: llshen@szu.edu.cn; Tel.: +86-755-8693-5089 +
2edc6df161f6aadbef9c12408bdb367e72c3c967Improved Spatiotemporal Local Monogenic Binary Pattern +
for Emotion Recognition in The Wild +
Center for Machine Vision +
Research +
Department of Computer +
Science and Engineering +
University of Oulu, Finland
Center for Machine Vision +
Research +
Department of Computer +
Science and Engineering +
University of Oulu, Finland
Center for Machine Vision +
Research +
Department of Computer +
Science and Engineering +
University of Oulu, Finland
Center for Machine Vision +
Research +
Department of Computer +
Science and Engineering +
University of Oulu, Finland
Matti Pietikänen +
Center for Machine Vision +
Research +
Department of Computer +
Science and Engineering +
University of Oulu, Finland
('18780812', 'Xiaohua Huang', 'xiaohua huang')
('2512942', 'Qiuhai He', 'qiuhai he')
('1836646', 'Xiaopeng Hong', 'xiaopeng hong')
('1757287', 'Guoying Zhao', 'guoying zhao')
huang.xiaohua@ee.oulu.fi +
qiuhai.he@ee.oulu.fi +
xhong@ee.oulu.fi +
gyzhao@ee.oulu.fi +
mkp@ee.oulu.fi +
2ec7d6a04c8c72cc194d7eab7456f73dfa501c8cInternational Journal of Scientific Research and Management Studies (IJSRMS) +
ISSN: 2349-3771 +
+
Volume 3 Issue 4, pg: 164-169 +
A REVIEW ON TEXTURE BASED EMOTION RECOGNITION +
FROM FACIAL EXPRESSION +
1U.G. Scholars, 2Assistant Professor, +
Dept. of E & C Engg., MIT Moradabad, Ram Ganga Vihar, Phase II, Moradabad, India. +
('5255436', 'Shubham Kashyap', 'shubham kashyap')
('2036732', 'Pankaj Pandey', 'pankaj pandey')
('36216996', 'Prashant Kumar', 'prashant kumar')
2eb9f1dbea71bdc57821dedbb587ff04f3a25f07Face for Ambient Interface +
Imperial College, 180 Queens Gate
London SW7 2AZ, U.K. +
('1694605', 'Maja Pantic', 'maja pantic')m.pantic@imperial.ac.uk +
2e1fd8d57425b727fd850d7710d38194fa6e2654Learning Structured Appearance Models +
from Captioned Images of Cluttered Scenes ∗ +
University of Toronto
Bielefeld University
('37894231', 'Michael Jamieson', 'michael jamieson')
('1724954', 'Sven Wachsmuth', 'sven wachsmuth')
{jamieson, afsaneh, sven, suzanne}@cs.toronto.edu +
swachsmu@techfak.uni-bielefeld.de +
2e1b1969ded4d63b69a5ec854350c0f74dc4de36
2e832d5657bf9e5678fd45b118fc74db07dac9daRunning head: RECOGNITION OF FACIAL EXPRESSIONS OF EMOTION  +
1  +
Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative  +
Evaluation  +
Rachel Merchak  +
Wittenberg University
Rachel Merchak, Wittenberg University
Author Note  +
This research was conducted in collaboration with Dr. Stephanie Little, Psychology Department,  +
Wittenberg University, and Dr. Michael Anes, Wittenberg University
Correspondence concerning this article should be addressed to Rachel Merchak, 10063 Fox  +
Chase Drive, Loveland, OH 45140.   +
E‐mail: merchakr@wittenberg.edu  +
2be0ab87dc8f4005c37c523f712dd033c0685827RELAXED LOCAL TERNARY PATTERN FOR FACE RECOGNITION +
BeingThere Centre +
Institute of Media Innovation
Nanyang Technological University
50 Nanyang Drive, Singapore 637553. +
School of Electrical & Electronics Engineering +
Nanyang Technological University
50 Nanyang Avenue, Singapore 639798 +
('1690809', 'Jianfeng Ren', 'jianfeng ren')
('3307580', 'Xudong Jiang', 'xudong jiang')
('34316743', 'Junsong Yuan', 'junsong yuan')
2bb2ba7c96d40e269fc6a2d5384c739ff9fa16ebImage-based recommendations on styles and substitutes +
Julian McAuley +
UC San Diego +
University of Adelaide
Qinfeng (‘Javen’) Shi +
University of Adelaide
('2110208', 'Christopher Targett', 'christopher targett')jmcauley@ucsd.edu +
christopher.targett@student.adelaide.edu.au +
javen.shi@adelaide.edu.au +
2b339ece73e3787f445c5b92078e8f82c9b1c522Human Re-identification in Crowd Videos Using +
Personal, Social and Environmental Constraints +
University of Central Florida, Orlando, USA
Center for Research in Computer Vision, +
('2963501', 'Shayan Modiri Assari', 'shayan modiri assari')
('1803711', 'Haroon Idrees', 'haroon idrees')
('1745480', 'Mubarak Shah', 'mubarak shah')
{smodiri,haroon,shah}@cs.ucf.edu +
2b4d092d70efc13790d0c737c916b89952d4d8c7JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2016) +
Robust Facial Expression Recognition using Local Haar +
Mean Binary Pattern +
1,2 Department of Computer Engineering +
Charotar University of Science and Technology, Changa, India
Gujarat Technological University, V.V.Nagar, India
In this paper, we propose a hybrid statistical feature extractor, Local Haar Mean Bina- +
ry Pattern (LHMBP). It extracts level-1 haar approximation coefficients and computes Local +
Mean Binary Pattern (LMBP) of it. LMBP code of pixel is obtained by weighting the +
thresholded neighbor value of 3  3 patch on its mean. LHMBP produces highly discrimina- +
tive code compared to other state of the art methods. To localize appearance features, ap- +
proximation subband is divided into M  N regions. LHMBP feature descriptor is derived +
by concatenating LMBP distribution of each region. We also propose a novel template +
matching strategy called Histogram Normalized Absolute Difference (HNAD) for histogram +
based feature comparison. Experiments prove the superiority of HNAD over well-known +
template matching techniques such as L2 norm and Chi-Square. We also investigated +
LHMBP for expression recognition in low resolution. The performance of the proposed ap- +
proach is tested on well-known CK, JAFFE, and SFEW facial expression datasets in diverse +
situations. +
Keywords: affective computing, appearance based feature, local binary pattern, Gabor filter, +
support vector machine. +
1. INTRODUCTION +
Facial Expression Recognition (FER) is a classical problem of pattern recognition +
and machine learning. It plays a vital role in social communication and in conveying +
emotions [1]. In the earlier development stage, the scope of FER was confined to psy- +
chological studies only, but nowadays it covers a broad range of applications including +
human-computer interfaces (HCI), industrial automation, surveillance systems, senti- +
ment identification, etc. Precise recognition of facial expressions can become a driving +
force for the future automation interfaces like car driving, robotics, driver alert systems, +
etc. +
According to input, expression recognition systems can be classified as static or +
dynamic. In static approaches, features are computed from given still image only. +
Whereas in dynamic approaches, temporal relationships between features over the +
image sequence is extracted. Temporal relationships play a major role in expression +
recognition from an image sequence. In last decade, many video-based methods have +
been studied [2]. Research is also focused on detecting micro-expressions [2], [3], [4], +
[5], recognition of spontaneous expressions [6], analysis of multi-views or profile views +
[7] and fusion of geometric and appearance features [8], [9], [10]. Nowadays, deep +
1249 +
('9318822', 'MAHESH GOYANI', 'mahesh goyani')
('11384332', 'NARENDRA PATEL', 'narendra patel')
E-mail: mgoyani@gmail.com, nmpatel@bvmengineerring.ac.in +
2bb53e66aa9417b6560e588b6235e7b8ebbc294cSEMANTIC EMBEDDING SPACE FOR ZERO-SHOT ACTION RECOGNITION +
School of EECS, Queen Mary University of London, London, UK
('47158489', 'Xun Xu', 'xun xu')
('2073354', 'Shaogang Gong', 'shaogang gong')
2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23fAn Effective Approach for Facial Expression Recognition with Local Binary +
Pattern and Support Vector Machine +
('20656805', 'Thi Nhan', 'thi nhan')
('9872793', 'Il Choi', 'il choi')
*1School of Media, Soongsil University, ctnhen@yahoo.com +
2School of Media, Soongsil University, an_tth@yahoo.com +
3School of Media, Soongsil University, hic@ssu.ac.kr +
2b3ceb40dced78a824cf67054959e250aeaa573b
2be8e06bc3a4662d0e4f5bcfea45631b8beca4d0Watch and Learn: Semi-Supervised Learning of Object Detectors From Videos +
Robotics Institute, Carnegie Mellon University
The availability of large labeled image datasets [1, 2] has been one of the +
key factors for advances in recognition. These datasets have not only helped +
boost performance, but have also fostered the development of new tech- +
niques. However, compared to images, videos seem like a more natural +
source of training data because of the additional temporal continuity they +
offer for both learning and labeling. The available video datasets lack the +
richness and variety of annotations offered by benchmark image datasets. +
It also seems unlikely that human per-image labeling will scale to the web- +
scale video data without using temporal constraints. In this paper, we show +
how to exploit the temporal information provided by videos to enable semi- +
supervised learning. +
We present a scalable framework that discovers and localizes multiple ob- +
jects in video using semi-supervised learning (see Figure 1). It tackles this +
challenging problem in long video (a million frames in our experiments) +
starting from only a few labeled examples. +
In addition, we present our +
algorithm in a realistic setting of sparse labels [3], i.e., in the few initial +
“labeled” frames, not all objects are annotated. This setting relaxes the as- +
sumption that in a given frame all object instances have been exhaustively +
annotated. It also implies that we do not know if any unannotated region +
in the frame is an instance of the object category or the background, and +
thus cannot use any region from our input as negative data. While much of +
the past work has ignored this type of sparse labeling and lack of explicit +
negatives, we show ways to overcome this handicap. +
Contributions: Our semi-supervised learning (SSL) framework localizes +
multiple unknown objects in videos. Starting from sparsely labeled objects, +
it iteratively labels new training examples in the videos. Our key contribu- +
tions are: 1) We tackle the SSL problem for discovering multiple objects in +
sparsely labeled videos; 2) We present an approach to constrain SSL [6] by +
combining multiple weak cues in videos and exploiting decorrelated errors +
by modeling data in multiple feature spaces. We demonstrate its effective- +
ness as compared to traditional tracking-by-detection approaches. 3) Given +
the redundancy in video data, we need a method that can automatically de- +
termine the relevance of training examples to the target detection task. We +
present a way to include relevance and diversity of the training examples in +
each iteration of the SSL, leading to scalable incremental learning. +
Our algorithm starts with a few sparsely annotated video frames (L) and +
iteratively discovers new instances in the large unlabeled set of videos (U ). +
Simply put, we first train detectors on annotated objects, followed by de- +
tection on input videos. We determine good detections (removing confident +
false positives) which serve as starting points for short-term tracking. The +
short-term tracking aims to label unseen examples reliably. Amongst these +
newly labeled examples, we identify diverse examples which are used to +
update the detector without re-training from scratch. We iteratively repeat +
this process to label new examples. We now describe our algorithm. +
Sparse Annotations (lack of explicit negatives): We start with a few sparsely +
annotated frames in a random subset of U . Sparse labeling implies that un- +
like standard tracking-by-detection approaches, we cannot sample negatives +
from the vicinity of labeled positives. We use random images from the in- +
ternet as negative data for training object detectors on these sparse labels. +
We use these detectors to detect objects on a subset of the video, e.g., every +
30 frames. Training on a few positives without domain negatives results in +
high confidence false positives. Removing such false positives is important +
because if we track them, we will add many more bad training examples, +
thus degrading the detector’s performance over iterations. +
Temporally consistent detections: We first remove detections that are tem- +
porally inconsistent using a smoothness prior on the motion of detections. +
Decorrelated errors: To remove high confidence false positives, we rely +
on the principle of decorrelated errors (similar to multi-view SSL [5]). The +
intuition is that the detector makes mistakes that are related to its feature +
('1806773', 'Ishan Misra', 'ishan misra')
('1781242', 'Abhinav Shrivastava', 'abhinav shrivastava')
('1709305', 'Martial Hebert', 'martial hebert')
2bcec23ac1486f4106a3aa588b6589e9299aba70An Uncertain Future: Forecasting from Static +
Images using Variational Autoencoders +
The Robotics Institute, Carnegie Mellon University
('14192361', 'Jacob Walker', 'jacob walker')
('2786693', 'Carl Doersch', 'carl doersch')
('1737809', 'Abhinav Gupta', 'abhinav gupta')
('1709305', 'Martial Hebert', 'martial hebert')
2b773fe8f0246536c9c40671dfa307e98bf365adHindawi Publishing Corporation +
Computational and Mathematical Methods in Medicine +
Volume 2013, Article ID 106867, 14 pages +
http://dx.doi.org/10.1155/2013/106867 +
Research Article +
Fast Discriminative Stochastic Neighbor Embedding Analysis +
School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Received 9 February 2013; Accepted 22 March 2013 +
Academic Editor: Carlo Cattani +
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +
Feature is important for many applications in biomedical signal analysis and living system analysis. A fast discriminative stochastic +
neighbor embedding analysis (FDSNE) method for feature extraction is proposed in this paper by improving the existing DSNE +
method. The proposed algorithm adopts an alternative probability distribution model constructed based on its K-nearest neighbors +
from the interclass and intraclass samples. Furthermore, FDSNE is extended to nonlinear scenarios using the kernel trick and +
then kernel-based methods, that is, KFDSNE1 and KFDSNE2. FDSNE, KFDSNE1, and KFDSNE2 are evaluated in three aspects: +
visualization, recognition, and elapsed time. Experimental results on several datasets show that, compared with DSNE and MSNP, +
the proposed algorithm not only significantly enhances the computational efficiency but also obtains higher classification accuracy. +
1. Introduction +
In recent years, dimensional reduction which can reduce the +
curse of dimensionality [1] and remove irrelevant attributes in +
high-dimensional space plays an increasingly important role +
in many areas. It promotes the classification, visualization, +
and compression of the high dimensional data. In machine +
learning, dimension reduction is used to reduce the dimen- +
sion by mapping the samples from the high-dimensional +
space to the low-dimensional space. There are many purposes +
of studying it: firstly, to reduce the amount of storage, sec- +
ondly, to remove the influence of noise, thirdly, to understand +
data distribution easily, and last but not least, to achieve good +
results in classification or clustering. +
Currently, many dimensional reduction methods have +
been proposed, and they can be classified variously from dif- +
ferent perspectives. Based on the nature of the input data, +
they are broadly categorized into two classes: linear subspace +
methods which try to find a linear subspace as feature space +
so as to preserve certain kind of characteristics of observed +
data, and nonlinear approaches such as kernel-based tech- +
niques and geometry-based techniques; from the class labels’ +
perspective, they are divided into supervised learning and +
unsupervised learning; furthermore, the purpose of the for- +
mer is to maximize the recognition rate between classes while +
the latter is for making the minimum of information loss. In +
addition, judging whether samples utilize local information +
or global information, we divide them into local method and +
global method. +
We briefly introduce several existing dimensional reduc- +
tion techniques. In the main linear techniques, principal +
component analysis (PCA) [2] aims at maximizing the vari- +
ance of the samples in the low-dimensional representation +
with a linear mapping matrix. It is global and unsupervised. +
Different from PCA, linear discriminant analysis (LDA) [3] +
learns a linear projection with the assistance of class labels. +
It computes the linear transformation by maximizing the +
amount of interclass variance relative to the amount of intra- +
class variance. Based on LDA, marginal fisher analysis (MFA) +
[4], local fisher discriminant analysis (LFDA) [5], and max- +
min distance analysis (MMDA) [6] are proposed. All of the +
three are linear supervised dimensional reduction methods. +
MFA utilizes the intrinsic graph to characterize the intraclass +
compactness and uses meanwhile the penalty graph to char- +
acterize interclass separability. LFDA introduces the locality +
to the LFD algorithm and is particularly useful for samples +
consisting of intraclass separate clusters. MMDA considers +
maximizing the minimum pairwise samples of interclass. +
To deal with nonlinear structural data, which can often be +
found in biomedical applications [7–10], a number of nonlin- +
ear approaches have been developed for dimensional reduc- +
tion. Among these kernel-based techniques and geometry- +
based techniques are two hot issues. Kernel-based techniques +
('1807755', 'Jianwei Zheng', 'jianwei zheng')
('1767635', 'Hong Qiu', 'hong qiu')
('2587047', 'Xinli Xu', 'xinli xu')
('7634945', 'Wanliang Wang', 'wanliang wang')
('1802128', 'Qiongfang Huang', 'qiongfang huang')
('1807755', 'Jianwei Zheng', 'jianwei zheng')
Correspondence should be addressed to Jianwei Zheng; zjw@zjut.edu.cn +
2bab44d3a4c5ca79fb8f87abfef4456d326a0445Player Identification in Soccer Videos +
Dipartimento di Sistemi e Informatica, University of Florence
Via S. Marta, 3 - 50139 Florence, Italy +
('1801509', 'Marco Bertini', 'marco bertini')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
('2308851', 'Walter Nunziati', 'walter nunziati')
bertini@dsi.unifi.it, delbimbo@dsi.unifi.it, nunziati@dsi.unifi.it +
2b0102d77d3d3f9bc55420d862075934f5c85becSlicing Convolutional Neural Network for Crowd Video Understanding +
The Chinese University of Hong Kong
The Chinese University of Hong Kong
('2205438', 'Jing Shao', 'jing shao')jshao@ee.cuhk.edu.hk, ccloy@ie.cuhk.edu.hk, kkang@ee.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk +
2b435ee691718d0b55d057d9be4c3dbb8a81526eDREUW ET AL.: SURF-FACE RECOGNITION +
SURF-Face: Face Recognition Under +
Viewpoint Consistency Constraints +
Human Language Technology and +
Pattern Recognition +
RWTH Aachen University
Aachen, Germany +
('1967060', 'Philippe Dreuw', 'philippe dreuw')
('2044128', 'Pascal Steingrube', 'pascal steingrube')
('1804963', 'Harald Hanselmann', 'harald hanselmann')
('1685956', 'Hermann Ney', 'hermann ney')
dreuw@cs.rwth-aachen.de +
steingrube@cs.rwth-aachen.de +
hanselmann@cs.rwth-aachen.de +
ney@cs.rwth-aachen.de +
2b1327a51412646fcf96aa16329f6f74b42aba89Under review as a conference paper at ICLR 2016 +
IMPROVING PERFORMANCE OF RECURRENT NEURAL +
NETWORK WITH RELU NONLINEARITY +
Qualcomm Research +
San Diego, CA 92121, USA +
('2390504', 'Sachin S. Talathi', 'sachin s. talathi'){stalathi,avartak}@qti.qualcomm.com +
2b5cb5466eecb131f06a8100dcaf0c7a0e30d391A Comparative Study of Active Appearance Model +
Annotation Schemes for the Face +
Face Aging Group +
UNCW, USA +
Face Aging Group +
UNCW, USA +
Face Aging Group +
UNCW, USA +
('2401418', 'Amrutha Sethuram', 'amrutha sethuram')
('1710348', 'Karl Ricanek', 'karl ricanek')
('37804931', 'Eric Patterson', 'eric patterson')
sethurama@uncw.edu +
ricanekk@uncw.edu +
pattersone@uncw.edu +
2b64a8c1f584389b611198d47a750f5d74234426Deblurring Face Images with Exemplars +
Dalian University of Technology, Dalian, China
University of California, Merced, USA
('1786024', 'Zhe Hu', 'zhe hu')
('4642456', 'Zhixun Su', 'zhixun su')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
2b632f090c09435d089ff76220fd31fd314838aeEarly Adaptation of Deep Priors in Age Prediction from Face Images +
Computer Vision Lab +
D-ITET, ETH Zurich +
Computer Vision Lab +
D-ITET, ETH Zurich +
CVL, D-ITET, ETH Zurich +
Merantix GmbH +
('35647143', 'Mahdi Hajibabaei', 'mahdi hajibabaei')
('5328844', 'Anna Volokitin', 'anna volokitin')
('1732855', 'Radu Timofte', 'radu timofte')
hmahdi@student.ethz.ch +
voanna@vision.ee.ethz.ch +
timofter@vision.ee.ethz.ch +
2b10a07c35c453144f22e8c539bf9a23695e85fcStandardization of Face Image Sample Quality(cid:63) +
University of Science and Technology of China
Hefei 230026, China +
2Center for Biometrics and Security Research & +
National Laboratory of Pattern Recognition +
Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
http://www.cbsr.ia.ac.cn +
('39609587', 'Xiufeng Gao', 'xiufeng gao')
('34679741', 'Stan Z. Li', 'stan z. li')
('3168566', 'Rong Liu', 'rong liu')
('2777824', 'Peiren Zhang', 'peiren zhang')
2b84630680e2c906f8d7ac528e2eb32c99ef203aWe are not All Equal: Personalizing Models for +
Facial Expression Analysis +
with Transductive Parameter Transfer +
DISI, University of Trento, Italy
DIEI, University of Perugia, Italy
3 Fondazione Bruno Kessler (FBK), Italy +
('1716310', 'Enver Sangineto', 'enver sangineto')
('2933565', 'Gloria Zen', 'gloria zen')
('40811261', 'Elisa Ricci', 'elisa ricci')
('1703601', 'Nicu Sebe', 'nicu sebe')
2b507f659b341ed0f23106446de8e4322f4a3f7eDeep Identity-aware Transfer of Facial Attributes +
The Hong Kong Polytechnic University 2Harbin Institute of Technology
('1701799', 'Mu Li', 'mu li')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('1698371', 'David Zhang', 'david zhang')
csmuli@comp.polyu.edu.hk cswmzuo@gmail.com csdzhang@comp.polyu.edu.hk +
2b7ef95822a4d577021df16607bf7b4a4514eb4bEmergence of Object-Selective Features in +
Unsupervised Feature Learning +
Computer Science Department +
Stanford University
Stanford, CA 94305 +
('5574038', 'Adam Coates', 'adam coates')
('2354728', 'Andrej Karpathy', 'andrej karpathy')
('1701538', 'Andrew Y. Ng', 'andrew y. ng')
{acoates,karpathy,ang}@cs.stanford.edu +
2b8dfbd7cae8f412c6c943ab48c795514d53c4a7529 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
RECOGNITION +
1. INTRODUCTION +
(d1,d2)∈[0;d]2 +
d1+d2≤d +
e-mail: firstname.lastname@technicolor.com +
e-mail: firstname.lastname@univ-poitiers.fr +
2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4Ring loss: Convex Feature Normalization for Face Recognition +
Department of Electrical and Computer Engineering +
Carnegie Mellon University
('3049981', 'Yutong Zheng', 'yutong zheng')
('2628116', 'Dipan K. Pal', 'dipan k. pal')
('1794486', 'Marios Savvides', 'marios savvides')
{yutongzh, dipanp, marioss}@andrew.cmu.edu +
2bae810500388dd595f4ebe992c36e1443b048d2International Journal of Bioelectromagnetism +
Vol. 18, No. 1, pp. 13 - 18, 2016 +
www.ijbem.org +
Analysis of Facial Expression Recognition +
by Event-related Potentials +
Department of Information and Computer Engineering, +
National Institute of Technology, Toyota College, Japan
Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan
('2179262', 'Taichi Hayasaka', 'taichi hayasaka')
('2179262', 'Taichi Hayasaka', 'taichi hayasaka')
E-mail: hayasaka@toyota-ct.ac.jp, phone +81 565 36 5861, fax +81 565 36 5926 +
2b42f83a720bd4156113ba5350add2df2673daf0Action Recognition and Detection by Combining +
Motion and Appearance Features +
The Chinese University of Hong Kong
Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences, Shenzhen, China +
('33345248', 'Limin Wang', 'limin wang')
('39843569', 'Yu Qiao', 'yu qiao')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
07wanglimin@gmail.com, yu.qiao@siat.ac.cn, xtang@ie.cuhk.edu.hk +
2bbbbe1873ad2800954058c749a00f30fe61ab17 +
ISSN(Online): 2320-9801 +
ISSN (Print): 2320-9798 +
International Journal of Innovative Research in Computer and Communication Engineering +
(An ISO 3297: 2007 Certified Organization) +
Vol.2, Special Issue 1, March 2014 +
Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14) +
Organized by +
Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014 +
Face Verification across Ages Using Self +
Organizing Map +
B.Mahalakshmi1, K.Duraiswamy2, P.Gnanasuganya3, P.Aruldhevi4, R.Sundarapandiyan5 +
K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India
Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India
B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India
2baec98c19804bf19b480a9a0aa814078e28bb3d
47fdbd64edd7d348713253cf362a9c21f98e4296FACIAL POINT DETECTION BASED ON A CONVOLUTIONAL NEURAL NETWORK WITH +
OPTIMAL MINI-BATCH PROCEDURE +
Chubu University
1200, Matsumoto-cho, Kasugai, AICHI +
('2488607', 'Masatoshi Kimura', 'masatoshi kimura')
('35008538', 'Yuji Yamauchi', 'yuji yamauchi')
47382cb7f501188a81bb2e10cfd7aed20285f376Articulated Pose Estimation Using Hierarchical Exemplar-Based Models +
Columbia University in the City of New York
('2454675', 'Jiongxin Liu', 'jiongxin liu')
('3173493', 'Yinxiao Li', 'yinxiao li')
{liujx09, yli, allen, belhumeur}@cs.columbia.edu +
473366f025c4a6e0783e6174ca914f9cb328fe70Review of +
Action Recognition and Detection +
Methods +
Department of Electrical Engineering and Computer Science +
York University
Toronto, Ontario +
Canada +
('1709096', 'Richard P. Wildes', 'richard p. wildes')
477236563c6a6c6db922045453b74d3f9535bfa1International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +
Attribute Based Image Search Re-Ranking +
Snehal S Patil1, Ajay Dani2 +
Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune
G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune
integrating +
images by +
4793f11fbca4a7dba898b9fff68f70d868e2497cKinship Verification through Transfer Learning +
Siyu Xia∗ +
CSE, SUNY at Buffalo, USA +
and Southeast University, China
CSE +
CSE +
SUNY at Buffalo, USA +
SUNY at Buffalo, USA +
('2025056', 'Ming Shao', 'ming shao')
('1708679', 'Yun Fu', 'yun fu')
xsy@seu.edu.cn +
mingshao@buffalo.edu +
yunfu@buffalo.edu +
470dbd3238b857f349ebf0efab0d2d6e9779073aUnsupervised Simultaneous Orthogonal Basis Clustering Feature Selection +
School of Electrical Engineering, KAIST, South Korea +
In this paper, we propose a novel unsupervised feature selection method: Si- +
multaneous Orthogonal basis Clustering Feature Selection (SOCFS). To per- +
form feature selection on unlabeled data effectively, a regularized regression- +
based formulation with a new type of target matrix is designed. The target +
matrix captures latent cluster centers of the projected data points by per- +
forming the orthogonal basis clustering, and then guides the projection ma- +
trix to select discriminative features. Unlike the recent unsupervised feature +
selection methods, SOCFS does not explicitly use the pre-computed local +
structure information for data points represented as additional terms of their +
objective functions, but directly computes latent cluster information by the +
target matrix conducting orthogonal basis clustering in a single unified term +
of the proposed objective function. +
Since the target matrix is put in a single unified term for regression of +
the proposed objective function, feature selection and clustering are simul- +
taneously performed. In this way, the projection matrix for feature selection +
is more properly computed by the estimated latent cluster centers of the +
projected data points. To the best of our knowledge, this is the first valid +
formulation to consider feature selection and clustering together in a sin- +
gle unified term of the objective function. The proposed objective function +
has fewer parameters to tune and does not require complicated optimization +
tools so just a simple optimization algorithm is sufficient. Substantial ex- +
periments are performed on several publicly available real world datasets, +
which shows that SOCFS outperforms various unsupervised feature selec- +
tion methods and that latent cluster information by the target matrix is ef- +
fective for regularized regression-based feature selection. +
Problem Formulation: Given training data, let X = [x1, . . . ,xn] ∈ Rd×n +
denote the data matrix with n instances where dimension is d and T = +
[t1, . . . ,tn] ∈ Rm×n denote the corresponding target matrix where dimension +
is m. We start from the regularized regression-based formulation to select +
maximum r features is minW (cid:107)WT X− T(cid:107)2 +
s.t. (cid:107)W(cid:107)2,0 ≤ r. To exploit +
such formulation on unlabeled data more effectively, it is crucial for the tar- +
get matrix T to have discriminative destinations for projected clusters. To +
this end, a new type of target matrix T is proposed to conduct clustering di- +
rectly on the projected data points WT X. We allow extra degrees of freedom +
to T by decomposing it into two other matrices B ∈ Rm×c and E ∈ Rn×c as +
T = BET with additional constraints as +
(1) +
F + λ(cid:107)W(cid:107)2,1 +
(cid:107)WT X− BET(cid:107)2 +
s.t. BT B = I, ET E = I, E ≥ 0, +
min +
W,B,E +
where λ > 0 is a weighting parameter for the relaxed regularizer (cid:107)W(cid:107)2,1 +
that induces row sparsity of the projection matrix W. The meanings of the +
constraints BT B = I,ET E = I,E ≥ 0 are as follows: 1) the orthogonal con- +
straint of B lets each column of B be independent; 2) the orthogonal and +
the nonnegative constraint of E make each row of E has only one non-zero +
element [2]. From 1) and 2), we can clearly interpret B as the basis matrix, +
which has orthogonality and E as the encoding matrix, where the non-zero +
element of each column of ET selects one column in B. +
While optimizing problem (1), T = BET acts like clustering of projected +
data points WT X with orthogonal basis B and encoder E, so T can estimate +
latent cluster centers of the WT X. Then, W successively projects X close +
to corresponding latent cluster centers, which are estimated by T. Note that +
the orthogonal constraint of B makes each projected cluster in WT X be sep- +
arated (independent of each other), and it helps W to be a better projection +
matrix for selecting more discriminative features. If the clustering is directly +
performed on X not on WT X, the orthogonal constraint of B extremely re- +
stricts the degree of freedom of B. However, since features are selected by +
W and the clustering is carried out on WT X in our formulation, so the or- +
thogonal constraint of B is highly reasonable. A schematic illustration of +
the proposed method is shown in Figure 1. +
('2086576', 'Dongyoon Han', 'dongyoon han')
('1769295', 'Junmo Kim', 'junmo kim')
473031328c58b7461753e81251379331467f7a69Exploring Fisher Vector and Deep Networks for Action Spotting +
Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
The Chinese University of Hong Kong
('1915826', 'Zhe Wang', 'zhe wang')
('33345248', 'Limin Wang', 'limin wang')
('35031371', 'Wenbin Du', 'wenbin du')
('33427555', 'Yu Qiao', 'yu qiao')
buptwangzhe2012@gmail.com, 07wanglimin@gmail.com, wb.du@siat.ac.cn, yu.qiao@siat.ac.cn +
47638197d83a8f8174cdddc44a2c7101fa8301b7Object-Centric Anomaly Detection by Attribute-Based Reasoning +
Rutgers University
University of Washington
Ahmed Elgammal +
Rutgers University
('3139794', 'Babak Saleh', 'babak saleh')
('2270286', 'Ali Farhadi', 'ali farhadi')
babaks@cs.rutgers.edu +
ali@cs.uw.edu +
elgammal@cs.rutgers.edu +
47541d04ec24662c0be438531527323d983e958eAffective Information Processing +
476f177b026830f7b31e94bdb23b7a415578f9a4INTRA-CLASS MULTI-OUTPUT REGRESSION BASED SUBSPACE ANALYSIS +
University of California Santa Barbara
University of California Santa Barbara
('32919393', 'Swapna Joshi', 'swapna joshi')(cid:63){karthikeyan,swapna,manj}@ece.ucsb.edu +
†{grafton}@psych.ucsb.edu +
474b461cd12c6d1a2fbd67184362631681defa9e2014 IEEE International +
Conference on Systems, Man +
and Cybernetics +
(SMC 2014) +
San Diego, California, USA +
5-8 October 2014 +
Pages 1-789 +
IEEE Catalog Number: +
ISBN: +
CFP14SMC-POD +
978-1-4799-3841-4 +
1/5 +
472ba8dd4ec72b34e85e733bccebb115811fd726Cosine Similarity Metric Learning +
for Face Verication +
School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK +
http://www.nottingham.ac.uk/cs/ +
('2243665', 'Hieu V. Nguyen', 'hieu v. nguyen')
('1735386', 'Li Bai', 'li bai')
{vhn,bai}@cs.nott.ac.uk +
47ca2df3d657d7938d7253bed673505a6a819661UNIVERSITY OF CALIFORNIA
Santa Barbara +
Facial Expression Analysis on Manifolds +
A Dissertation submitted in partial satisfaction of the +
requirements for the degree Doctor of Philosophy +
in Computer Science +
by +
Committee in charge: +
Professor B.S. Manjunath +
September 2006 +
('13303219', 'Ya Chang', 'ya chang')
('1752714', 'Matthew Turk', 'matthew turk')
('1706938', 'Yuan-Fang Wang', 'yuan-fang wang')
('2875421', 'Andy Beall', 'andy beall')
47d4838087a7ac2b995f3c5eba02ecdd2c28ba14JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +
Automatic Recognition of Facial Displays of +
Unfelt Emotions +
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +
('38370357', 'Kaustubh Kulkarni', 'kaustubh kulkarni')
('22197083', 'Ciprian Adrian Corneanu', 'ciprian adrian corneanu')
('22211769', 'Ikechukwu Ofodile', 'ikechukwu ofodile')
('3087532', 'Gholamreza Anbarjafari', 'gholamreza anbarjafari')
47eba2f95679e106e463e8296c1f61f6ddfe815bDeep Co-occurrence Feature Learning for Visual Object Recognition +
Research Center for Information Technology Innovation, Academia Sinica
National Taiwan University
Graduate Institute of Electronics Engineering, National Taiwan University
Smart Network System Institute, Institute for Information Industry
('28990604', 'Ya-Fang Shih', 'ya-fang shih')
('28982867', 'Yang-Ming Yeh', 'yang-ming yeh')
('1744044', 'Yen-Yu Lin', 'yen-yu lin')
('34779427', 'Ming-Fang Weng', 'ming-fang weng')
('2712675', 'Yi-Chang Lu', 'yi-chang lu')
('37761361', 'Yung-Yu Chuang', 'yung-yu chuang')
47a2727bd60e43f3253247b6d6f63faf2b67c54bSemi-supervised Vocabulary-informed Learning +
Disney Research +
('35782003', 'Yanwei Fu', 'yanwei fu')
('14517812', 'Leonid Sigal', 'leonid sigal')
y.fu@qmul.ac.uk, lsigal@disneyresearch.com +
47d3b923730746bfaabaab29a35634c5f72c3f04ISSN : 2248-9622, Vol. 7, Issue 7, ( Part -3) July 2017, pp.30-38 +
RESEARCH ARTICLE +
OPEN ACCESS +
Real-Time Facial Expression Recognition App Development on +
Smart Phones +
Florida Institute Of Technology, Melbourne Fl
USA +
('7155812', 'Humaid Alshamsi', 'humaid alshamsi')
('7155812', 'Humaid Alshamsi', 'humaid alshamsi')
47190d213caef85e8b9dd0d271dbadc29ed0a953The Devil of Face Recognition is in the Noise +
1 SenseTime Research +
University of California San Diego
Nanyang Technological University
('1682816', 'Fei Wang', 'fei wang')
('3203648', 'Liren Chen', 'liren chen')
('46651787', 'Cheng Li', 'cheng li')
('1937119', 'Shiyao Huang', 'shiyao huang')
('47557603', 'Yanjie Chen', 'yanjie chen')
('49215552', 'Chen Qian', 'chen qian')
('1717179', 'Chen Change Loy', 'chen change loy')
{wangfei, chengli, huangshiyao, chenyanjie, qianchen}@sensetime.com, +
lic002@eng.ucsd.edu, ccloy@ieee.org +
47e3029a3d4cf0a9b0e96252c3dc1f646e750b14International Conference on Computer Systems and Technologies - CompSysTech’07 +
Facial Expression Recognition in still pictures and videos using Active +
Appearance Models. A comparison approach. +
Drago(cid:1) Datcu +
Léon Rothkrantz +
475e16577be1bfc0dd1f74f67bb651abd6d63524DAiSEE: Towards User Engagement Recognition in the Wild +
Microsoft +
Vineeth N Balasubramanian +
Indian Institution of Technology Hyderabad +
('38330340', 'Abhay Gupta', 'abhay gupta')abhgup@microsoft.com +
vineethnb@iith.ac.in +
471befc1b5167fcfbf5280aa7f908eff0489c72b570 +
Class-Specific Kernel-Discriminant +
Analysis for Face Verification +
class problems ( +
('2123731', 'Georgios Goudelis', 'georgios goudelis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
47f8b3b3f249830b6e17888df4810f3d189daac1
47e8db3d9adb79a87c8c02b88f432f911eb45dc5MAGMA: Multi-level accelerated gradient mirror descent algorithm for +
large-scale convex composite minimization +
July 15, 2016 +
('39984225', 'Vahan Hovhannisyan', 'vahan hovhannisyan')
('3112745', 'Panos Parpas', 'panos parpas')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
47aeb3b82f54b5ae8142b4bdda7b614433e69b9a
47dabb566f2bdd6b3e4fa7efc941824d8b923a13Probabilistic Temporal Head Pose Estimation +
Using a Hierarchical Graphical Model +
Centre for Intelligent Machines, McGill University, Montreal, Canada
('2515930', 'Meltem Demirkus', 'meltem demirkus')
('1724729', 'Doina Precup', 'doina precup')
('1713608', 'James J. Clark', 'james j. clark')
('1699104', 'Tal Arbel', 'tal arbel')
47f5f740e225281c02c8a2ae809be201458a854fSimultaneous Unsupervised Learning of Disparate Clusterings +
University of Texas, Austin, TX 78712-1188, USA
Received 14 April 2008; accepted 05 May 2008 +
DOI:10.1002/sam.10007 +
Published online 3 November 2008 in Wiley InterScience (www.interscience.wiley.com). +
('3164102', 'Prateek Jain', 'prateek jain')
('1751621', 'Raghu Meka', 'raghu meka')
('1783667', 'Inderjit S. Dhillon', 'inderjit s. dhillon')
47bf7a8779c68009ea56a7c20e455ccdf0e3a8faInternational Journal of Computer Applications (0975 – 8887) +
Volume 83 – No 5, December 2013 +
Automatic Face Recognition System using Pattern +
Recognition Techniques: A Survey +
Department of Computer Science Department of Computer Science +
Assam University, Silchar-788011 Assam University, Silchar
('37792796', 'Ningthoujam Sunita Devi', 'ningthoujam sunita devi')
47b508abdaa5661fe14c13e8eb21935b8940126b Volume 4, Issue 12, December 2014 ISSN: 2277 128X +
International Journal of Advanced Research in +
Computer Science and Software Engineering +
Research Paper +
Available online at: www.ijarcsse.com +
An Efficient Method for Feature Extraction of Face +
Recognition Using PCA +
(M.Tech. Student) +
Computer Science & Engineering +
Iftm University, Moradabad-244001 U.P
('9247488', 'Tara Prasad Singh', 'tara prasad singh')
477811ff147f99b21e3c28309abff1304106dbbe
47e14fdc6685f0b3800f709c32e005068dfc8d47
473cbc5ec2609175041e1410bc6602b187d03b23Semantic Audio-Visual Data Fusion for Automatic Emotion Recognition +
Man-Machine Interaction Group +
Delft University of Technology
2628 CD, Delft, +
The Netherlands +
KEYWORDS +
Data fusion, automatic emotion recognition, speech analysis, +
face detection, facial feature extraction, facial characteristic +
point extraction, Active Appearance Models, Support Vector +
Machines. +
('2866326', 'Dragos Datcu', 'dragos datcu')E-mail: {D.Datcu ; L.J.M.Rothkrantz}@tudelft.nl +
782188821963304fb78791e01665590f0cd869e8
78a4cabf0afc94da123e299df5b32550cd638939
78f08cc9f845dc112f892a67e279a8366663e26dTECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Semi-Autonomous Data Enrichment and +
Optimisation for Intelligent Speech Analysis +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Alexander W. Koch +
Pr¨ufer der Dissertation: +
1. +
Univ.-Prof. Dr.-Ing. habil. Bj¨orn W. Schuller, +
Universit¨at Passau +
2. Univ.-Prof. Gordon Cheng, Ph.D. +
Die Dissertation wurde am 30.09.2014 bei der Technischen Universit¨at M¨unchen einge- +
reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 07.04.2015 +
angenommen. +
('1742291', 'Zixing Zhang', 'zixing zhang')
78d645d5b426247e9c8f359694080186681f57dbGender Classification by LUT Based Boosting +
of Overlapping Block Patterns +
Tampere University of Technology, Tampere, Finland
Idiap Research Institute, Martigny, Switzerland
('3350574', 'Rakesh Mehta', 'rakesh mehta')rakesh.mehta@tut.fi +
{manuel.guenther,marcel}@idiap.ch +
7862d40da0d4e33cd6f5c71bbdb47377e4c6b95aDemography-based Facial Retouching Detection using Subclass Supervised +
Sparse Autoencoder +
University of Notre Dame, 2IIIT-Delhi
('5014060', 'Aparna Bharati', 'aparna bharati')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
('39129417', 'Richa Singh', 'richa singh')
('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')
('1743927', 'Xin Tong', 'xin tong')
1{abharati, kwb, xtong1}@nd.edu, 2{mayank, rsingh}@iiitd.ac.in +
783f3fccde99931bb900dce91357a6268afecc52Hindawi Publishing Corporation +
EURASIP Journal on Image and Video Processing +
Volume 2009, Article ID 945717, 14 pages +
doi:10.1155/2009/945717 +
Research Article +
Adapted Active Appearance Models +
1 SUP ´ELEC/IETR, Avenue de la Boulaie, 35511 Cesson-S´evign´e, France +
2 Orange Labs—TECH/IRIS, 4 rue du clos courtel, 35 512 Cesson S´evign´e, France +
Received 5 January 2009; Revised 2 September 2009; Accepted 20 October 2009 +
Recommended by Kenneth M. Lam +
Active Appearance Models (AAMs) are able to align efficiently known faces under duress, when face pose and illumination are +
controlled. We propose Adapted Active Appearance Models to align unknown faces in unknown poses and illuminations. Our +
proposal is based on the one hand on a specific transformation of the active model texture in an oriented map, which changes the +
AAM normalization process; on the other hand on the research made in a set of different precomputed models related to the most +
adapted AAM for an unknown face. Tests on public and private databases show the interest of our approach. It becomes possible +
to align unknown faces in real-time situations, in which light and pose are not controlled. +
Copyright © 2009 Renaud S´eguier et al. This is an open access article distributed under the Creative Commons Attribution +
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +
cited. +
1. Introduction +
All applications related to face analysis and synthesis (Man- +
Machine Interaction, compression in video communication, +
augmented reality) need to detect and then to align the user’s +
face. This latest process consists in the precise localization of +
the eyes, nose, and mouth gravity center. Face detection can +
now be realized in real time and in a rather efficient manner +
[1, 2]; the technical bottleneck lies now in the face alignment +
when it is done in real conditions, which is precisely the +
object of this paper. +
Since such Active Appearance Models (AAMs) as those +
described in [3] exist, it is therefore possible to align faces +
in real time. The AAMs exploit a set of face examples in +
order to extract a statistical model. To align an unknown +
face in new image, the models parameters must be tuned, in +
order to match the analyzed face features in the best possible +
way. There is no difficulty to align a face featuring the same +
characteristics (same morphology, illumination, and pose) +
as those constituting the example data set. Unfortunately, +
AAMs are less outstanding when illumination, pose, and +
face type changes. We suggest in this paper a robust Active +
Appearance Model allowing a real-time implementation. In +
the next section, we will survey the different techniques, +
which aim to increase the AAM robustness. We will see +
that none of them address at the same time the three types +
of robustness, we are interested in pose, illumination, and +
identity. It must be pointed out that we do not consider the +
robustness against occlusion as [4] does, for example, when +
a person moves his hand around the face. +
After a quick introduction of the Active Appearance +
Models and their limitations (Section 3), we will present our +
two main contributions in Section 4.1 in order to improve +
AAM robustness in illumination, pose, and identity. Exper- +
iments will be conducted and discussed in Section 5 before +
drawing a conclusion, suggesting new research directions in +
the last section. +
2. State of the Art +
We propose to classify the methods which lead to an increase +
of the AAM robustness as follows. The specific types of +
dedicated robustness are in italic. +
(i) Preprocess +
(1) Invariant features (illumination) +
(2) Canonical representation (illumination) +
(ii) Parameter space extension +
(1) Light modeling (illumination) +
(2) 3D modeling (pose) +
('3353560', 'Sylvain Le Gallou', 'sylvain le gallou')
('40427923', 'Gaspard Breton', 'gaspard breton')
('34798028', 'Christophe Garcia', 'christophe garcia')
Correspondence should be addressed to Renaud S´eguier, renaud.seguier@supelec.fr +
7897c8a9361b427f7b07249d21eb9315db189496
7859667ed6c05a467dfc8a322ecd0f5e2337db56Web-Scale Transfer Learning for Unconstrained 1:N Face Identification +
Facebook AI Research +
Menlo Park, CA 94025, USA +
Tel Aviv University
Tel Aviv, Israel +
('2188620', 'Yaniv Taigman', 'yaniv taigman')
('32447229', 'Ming Yang', 'ming yang')
('1776343', 'Lior Wolf', 'lior wolf')
{yaniv, mingyang, ranzato}@fb.com +
wolf@cs.tau.ac.il +
78c1ad33772237bf138084220d1ffab800e1200dState Key Laboratory of Software Development Environment, Beihang University, P.R.China
University of Michigan, Ann Arbor
('48545182', 'Lei Huang', 'lei huang')
('8342699', 'Jia Deng', 'jia deng')
78436256ff8f2e448b28e854ebec5e8d8306cf21Measuring and Understanding Sensory Representations within +
Deep Networks Using a Numerical Optimization Framework +
Harvard University, Cambridge, MA
USA +
Center for Brain Science, Harvard University, Cambridge, MA, USA
Harvard University, Cambridge, MA, USA
('1739108', 'Chuan-Yung Tsai', 'chuan-yung tsai')
('2042941', 'David D. Cox', 'david d. cox')
∗ E-mail: davidcox@fas.harvard.edu +
78f438ed17f08bfe71dfb205ac447ce0561250c6
78f79c83b50ff94d3e922bed392737b47f93aa06The Computer Expression Recognition Toolbox (CERT) +
Mark Frank3, Javier Movellan1, and Marian Bartlett1 +
Machine Perception Laboratory, University of California, San Diego
University of Arizona
University of Buffalo
('2724380', 'Gwen Littlewort', 'gwen littlewort')
('1775637', 'Jacob Whitehill', 'jacob whitehill')
('4072965', 'Tingfan Wu', 'tingfan wu')
{gwen, jake, ting, movellan}@mplab.ucsd.edu, +
ianfasel@cs.arizona.edu, mfrank83@buffalo.edu, marni@salk.edu +
78fede85d6595e7a0939095821121f8bfae05da6KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, Feb. 2015 742 +
Copyright © 2015 KSII +
Discriminant Metric Learning Approach for +
Face Verification +
1 Department of Computer Science and Information Engineering +
National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC
2 Department of Computer Science and Information Engineering +
National Cheng Kung University, Tainan, Taiwan, ROC
Received September 3, 2014; revised November 12, 2014; accepted December 13, 2014; +
published February 28, 2015 +
('37284667', 'Ju-Chin Chen', 'ju-chin chen')
('36612683', 'Pei-Hsun Wu', 'pei-hsun wu')
('3461535', 'Jenn-Jier James Lien', 'jenn-jier james lien')
('37284667', 'Ju-Chin Chen', 'ju-chin chen')
[e-mail: jc.chen@cc.kuas.edu.tw] +
[e-mail: jjlien@csie.ncku.edu.tw] +
78598e7005f7c96d64cc47ff47e6f13ae52245b8Hand2Face: Automatic Synthesis and Recognition of Hand Over Face Occlusions +
Synthetic Reality Lab +
Department of Computer Science +
University of Central Florida
Orlando, Florida +
Synthetic Reality Lab +
Department of Computer Science +
University of Central Florida
Orlando, Florida +
Tadas Baltruˇsaitis +
Language Technology Institute
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA +
Language Technology Institute
School of Computer Science +
Carnegie Mellon University
Pittsburgh, PA +
('2974242', 'Behnaz Nojavanasghari', 'behnaz nojavanasghari')
('32827434', 'Charles E. Hughes', 'charles e. hughes')
('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')
Email: behnaz@eecs.ucf.edu +
Email: ceh@cs.ucf.edu +
Email: tbaltrus@cs.cmu.edu +
Email: morency@cs.cmu.edu +
7862f646d640cbf9f88e5ba94a7d642e2a552ec9Being John Malkovich +
University of Washington
2 Adobe Systems +
3 Google Inc. +
('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')
('40416141', 'Aditya Sankar', 'aditya sankar')
('2177801', 'Eli Shechtman', 'eli shechtman')
('1679223', 'Steven M. Seitz', 'steven m. seitz')
{kemelmi,aditya,seitz}@cs.washington.edu +
elishe@adobe.com +
78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c
78a4eb59ec98994bebcf3a5edf9e1d34970c45f6Conveying Shape and Features with Image-Based Relighting +
Stanford University
Stanford University
Stanford University
Stanford University
Microsoft Research +
Stanford University
('36475465', 'David Akers', 'david akers')
('1967534', 'Frank Losasso', 'frank losasso')
('37133509', 'John Rick', 'john rick')
('2367620', 'Jeff Klingner', 'jeff klingner')
('1820412', 'Maneesh Agrawala', 'maneesh agrawala')
('1689128', 'Pat Hanrahan', 'pat hanrahan')
781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7edInt J Comput Vis +
DOI 10.1007/s11263-017-1023-9 +
Tubelets: Unsupervised Action Proposals from Spatiotemporal +
Super-Voxels +
Cees G. M. Snoek1 +
Received: 25 June 2016 / Accepted: 18 May 2017 +
© The Author(s) 2017. This article is an open access publication +
('40027484', 'Mihir Jain', 'mihir jain')
('1681054', 'Hervé Jégou', 'hervé jégou')
78174c2be084e67f48f3e8ea5cb6c9968615a42cPeriocular Recognition Using CNN Features +
Off-the-Shelf +
School of Information Technology (ITE), Halmstad University, Box 823, 30118 Halmstad, Sweden
('51446244', 'Kevin Hernandez-Diaz', 'kevin hernandez-diaz')
('2847751', 'Fernando Alonso-Fernandez', 'fernando alonso-fernandez')
('5058247', 'Josef Bigun', 'josef bigun')
Email: kevin.hernandez-diaz@hh.se, feralo@hh.se, josef.bigun@hh.se +
78df7d3fdd5c32f037fb5cc2a7c104ac1743d74eTEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION +
Temporal Pyramid Pooling Based Convolutional +
Neural Network for Action Recognition +
('40378631', 'Peng Wang', 'peng wang')
('2572430', 'Yuanzhouhan Cao', 'yuanzhouhan cao')
('40529029', 'Chunhua Shen', 'chunhua shen')
('2161037', 'Lingqiao Liu', 'lingqiao liu')
('1724393', 'Heng Tao Shen', 'heng tao shen')
780557daaa39a445b24c41f637d5fc9b216a0621Large Video Event Ontology Browsing, Search and +
Tagging (EventNet Demo) +
Columbia University, New York, NY 10027, USA
('2368325', 'Hongliang Xu', 'hongliang xu')
('35984288', 'Guangnan Ye', 'guangnan ye')
('2664705', 'Yitong Li', 'yitong li')
('40313086', 'Dong Liu', 'dong liu')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
{hx2168, gy2179, yl3029, dl2713, sc250}@columbia.edu +
78fdf2b98cf6380623b0e20b0005a452e736181e
788a7b59ea72e23ef4f86dc9abb4450efefeca41
787c1bb6d1f2341c5909a0d6d7314bced96f4681Face Detection and Verification in Unconstrained +
Videos: Challenges, Detection, and Benchmark +
Evaluation +
IIIT-D-MTech-CS-GEN-13-106 +
July 16, 2015 +
Indraprastha Institute of Information Technology, Delhi
Thesis Advisors +
Dr. Mayank Vatsa +
Dr. Richa Singh +
Submitted in partial fulfillment of the requirements +
for the Degree of M.Tech. in Computer Science +
c(cid:13) Shah, 2015 +
Keywords: face recognition, face detection, face verification +
('25087736', 'Mahek Shah', 'mahek shah')
7808937b46acad36e43c30ae4e9f3fd57462853dDescribing People: A Poselet-Based Approach to Attribute Classification ∗ +
1EECS, U.C. Berkeley, Berkeley, CA 94720 +
Adobe Systems, Inc., 345 Park Ave, San Jose, CA
('35208858', 'Subhransu Maji', 'subhransu maji')
('1689212', 'Jitendra Malik', 'jitendra malik')
{lbourdev,smaji,malik}@eecs.berkeley.edu +
8b2c090d9007e147b8c660f9282f357336358061Lake Forest College
Lake Forest College Publications
Senior Theses +
4-23-2018 +
Student Publications +
Emotion Classification based on Expressions and +
Body Language using Convolutional Neural +
Networks +
Follow this and additional works at: https://publications.lakeforest.edu/seniortheses +
Part of the Neuroscience and Neurobiology Commons +
Recommended Citation +
Tanveer, Aasimah S., "Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks" +
(2018). Senior Theses. +
This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for
inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact
Lake Forest College, tanveeras@lakeforest.edu +
levinson@lakeforest.edu. +
8ba67f45fbb1ce47a90df38f21834db37c840079People Search and Activity Mining in Large-Scale +
Community-Contributed Photos +
National Taiwan University, Taipei, Taiwan
Winston H. Hsu, Hong-Yuan Mark Liao +
Advised by +
('35081710', 'Yan-Ying Chen', 'yan-ying chen')yanying@cmlab.csie.ntu.edu.tw +
8b547b87fd95c8ff6a74f89a2b072b60ec0a3351Initial Perceptions of a Casual Game to Crowdsource +
Facial Expressions in the Wild +
Games Studio, Faculty of Engineering and IT, University of Technology, Sydney
('1733360', 'Chek Tien Tan', 'chek tien tan')
('2117735', 'Hemanta Sapkota', 'hemanta sapkota')
('2823535', 'Daniel Rosser', 'daniel rosser')
('3141633', 'Yusuf Pisan', 'yusuf pisan')
chek@gamesstudio.org +
hemanta.sapkota@student.uts.edu.au +
daniel.j.rosser@gmail.com +
yusuf.pisan@gamesstudio.org +
8bed7ff2f75d956652320270eaf331e1f73efb35Emotion Recognition in the Wild using +
Deep Neural Networks and Bayesian Classifiers +
Elena Ba(cid:138)ini S¨onmez +
University of Calabria - DeMACS
Via Pietro Bucci +
Rende (CS), Italy +
Plymouth University - CRNS
Portland Square PL4 8AA +
Plymouth, United Kingdom +
ac.uk +
Istanbul Bilgi University - DCE
Eski Silahtaraa Elektrik Santral Kazm +
Karabekir Cad. No: 2/13 34060 Eyp +
Istanbul, Turkey +
University of Calabria - DeMACS
Via Pietro Bucci +
Rende (CS), Italy +
Plymouth University - CRNS
Portland Square PL4 8AA +
Plymouth, United Kingdom +
('32751441', 'Luca Surace', 'luca surace')
('3366919', 'Massimiliano Patacchiola', 'massimiliano patacchiola')
('3205804', 'William Spataro', 'william spataro')
('1692929', 'Angelo Cangelosi', 'angelo cangelosi')
lucasurace11@gmail.com +
massimiliano.patacchiola@plymouth. +
ebsonmez@bilgi.edu.tr +
william.spataro@unical.it +
angelo.cangelosi@plymouth.ac.uk +
8b7191a2b8ab3ba97423b979da6ffc39cb53f46bSearch Pruning in Video Surveillance Systems: Efficiency-Reliability Tradeoff +
EURECOM +
Sophia Antipolis, France +
('3299530', 'Antitza Dantcheva', 'antitza dantcheva')
('1688531', 'Petros Elia', 'petros elia')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
{Antitza.Dantcheva, Arun.Singh, Petros.Elia, Jean-Luc.Dugelay}@eurecom.fr +
8bf57dc0dd45ed969ad9690033d44af24fd18e05Subject-Independent Emotion Recognition from Facial Expressions +
using a Gabor Feature RBF Neural Classifier Trained with Virtual +
Samples Generated by Concurrent Self-Organizing Maps +
VICTOR-EMIL NEAGOE, ADRIAN-DUMITRU CIOTEC +
Depart. Electronics, Telecommunications & Information Technology +
Polytechnic University of Bucharest
Splaiul Independentei No. 313, Sector 6, Bucharest, +
ROMANIA +
victoremil@gmail.com, adryyandc@yahoo.com +
8bf243817112ac0aa1348b40a065bb0b735cdb9cLEARNING A REPRESSION NETWORK FOR PRECISE VEHICLE SEARCH +
Institute of Digital Media
School of Electrical Engineering and Computer Science, Peking University
No.5 Yiheyuan Road, 100871, Beijing, China +
('17872416', 'Qiantong Xu', 'qiantong xu')
('13318784', 'Ke Yan', 'ke yan')
('1705972', 'Yonghong Tian', 'yonghong tian')
{xuqiantong, keyan, yhtian}@pku.edu.cn +
8bfada57140aa1aa22a575e960c2a71140083293Can we match Ultraviolet Face Images against their Visible +
Counterparts? +
aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA
('33240042', 'Neeru Narang', 'neeru narang')
('1731727', 'Thirimachos Bourlai', 'thirimachos bourlai')
('1678573', 'Lawrence A. Hornak', 'lawrence a. hornak')
('11898042', 'Paul D. Coverdell', 'paul d. coverdell')
8b8728edc536020bc4871dc66b26a191f6658f7c
8befcd91c24038e5c26df0238d26e2311b21719aA Joint Sequence Fusion Model for Video +
Question Answering and Retrieval +
Department of Computer Science and Engineering, +
Seoul National University, Seoul, Korea
http://vision.snu.ac.kr/projects/jsfusion/ +
('7877122', 'Youngjae Yu', 'youngjae yu')
('2175130', 'Jongseok Kim', 'jongseok kim')
{yj.yu,js.kim}@vision.snu.ac.kr, gunhee@snu.ac.kr +
8bbbdff11e88327816cad3c565f4ab1bb3ee20dbAutomatic Semantic Face Recognition +
University of Southampton
Southampton, United Kingdom +
('19249411', 'Nawaf Yousef Almudhahka', 'nawaf yousef almudhahka')
('1727698', 'Mark S. Nixon', 'mark s. nixon')
('31534955', 'Jonathon S. Hare', 'jonathon s. hare')
{nya1g14,msn,jsh2}@ecs.soton.ac.uk +
8bdf6f03bde08c424c214188b35be8b2dec7cdeaExploiting Unintended Feature Leakage in Collaborative Learning∗ +
UCL +
Cornell University
UCL and Alan Turing Institute
Cornell Tech +
('2008164', 'Luca Melis', 'luca melis')
('3469125', 'Congzheng Song', 'congzheng song')
('1728207', 'Emiliano De Cristofaro', 'emiliano de cristofaro')
('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')
luca.melis.14@alumni.ucl.ac.uk +
cs2296@cornell.edu +
e.decristofaro@ucl.ac.uk +
shmat@cs.cornell.edu +
8b744786137cf6be766778344d9f13abf4ec0683978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2697 +
ICASSP 2016 +
8b10383ef569ea0029a2c4a60cc2d8c87391b4dbZHOU,MILLERANDZHANG:AGECLASSIFICATIONUSINGRADONTRANSFORM... +
Age classification using Radon transform +
and entropy based scaling SVM +
Paul Miller1 +
The Institute of Electronics
Communications +
and Information Technology +
Queen s University Belfast
2 School of Computing +
University of Dundee
United Kingdom +
('2040772', 'Huiyu Zhou', 'huiyu zhou')
('1744844', 'Jianguo Zhang', 'jianguo zhang')
h.zhou@ecit.qub.ac.uk +
p.miller@ecit.qub.ac.uk +
jgzhang@computing.dundee.ac.uk +
8b30259a8ab07394d4dac971f3d3bd633beac811Representing Sets of Instances for Visual Recognition +
1 National Key Laboratory for Novel Software Technology +
Nanjing University, China
2 Minieye, Youjia Innovation LLC, China +
('1808816', 'Jianxin Wu', 'jianxin wu')
('2226422', 'Bin-Bin Gao', 'bin-bin gao')
('15527784', 'Guoqing Liu', 'guoqing liu')
∗ wujx2001@nju.edu.cn, gaobb@lamda.nju.edu.cn +
guoqing@minieye.cc +
8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8HU, LIU, LI, LIU: TEMPORAL PERCEPTIVE NETWORK FOR ACTION RECOGNITION +
Temporal Perceptive Network for +
Skeleton-Based Action Recognition +
Institute of Computer Science and
Technology +
Peking University
Beijing, China +
Sijie Song +
('9956463', 'Yueyu Hu', 'yueyu hu')
('49046516', 'Chunhui Liu', 'chunhui liu')
('3128506', 'Yanghao Li', 'yanghao li')
('41127426', 'Jiaying Liu', 'jiaying liu')
huyy@pku.edu.cn +
liuchunhui@pku.edu.cn +
lyttonhao@pku.edu.cn +
ssj940920@pku.edu.cn +
liujiaying@pku.edu.cn +
8b19efa16a9e73125ab973429eb769d0ad5a8208SCAR: Dynamic adaptation for person detection and +
persistence analysis in unconstrained videos +
Department of Computer Science +
Stevens Institute of Technology
Hoboken, NJ 07030, USA +
('2789357', 'George Kamberov', 'george kamberov')
('3219999', 'Matt Burlick', 'matt burlick')
('2283008', 'Lazaros Karydas', 'lazaros karydas')
('3228177', 'Olga Koteoglou', 'olga koteoglou')
gkambero,mburlick,lkarydas,okoteogl@stevens.edu (cid:63) +
8b6fded4d08bf0b7c56966b60562ee096af1f0c4International Journal of Computer Applications (0975 – 8887) +
Volume 59– No.3, December 2012 +
A Neural Network based Facial Expression Recognition +
using Fisherface +
Department of Mathematics +
Semarang State University
Semarang, 50229, Indonesia +
+
('39807349', 'Zaenal Abidin', 'zaenal abidin')
8bf647fed40bdc9e35560021636dfb892a46720eLearning to Hash-tag Videos with Tag2Vec +
CVIT, KCIS, IIIT Hyderabad, India +
P J Narayanan +
http://cvit.iiit.ac.in/research/projects/tag2vec +
Figure 1. Learning a direct mapping from videos to hash-tags : sample frames from short video clips with user-given hash-tags +
(left); a sample frame from a query video and hash-tags suggested by our system for this query (right). +
('2461059', 'Aditya Singh', 'aditya singh')
('3448416', 'Saurabh Saini', 'saurabh saini')
('1962817', 'Rajvi Shah', 'rajvi shah')
{(aditya.singh,saurabh.saini,rajvi.shah)@research.,pjn@}iiit.ac.in +
8b2704a5218a6ef70e553eaf0a463bd55129b69dSensors 2013, 13, 7714-7734; doi:10.3390/s130607714 +
OPEN ACCESS +
sensors +
ISSN 1424-8220 +
www.mdpi.com/journal/sensors +
Article +
Geometric Feature-Based Facial Expression Recognition in +
Image Sequences Using Multi-Class AdaBoost and Support +
Vector Machines +
Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do
Tel.: +82-63-270-2406; Fax: +82-63-270-2394. +
Received: 3 May 2013; in revised form: 29 May 2013 / Accepted: 3 June 2013 / +
Published: 14 June 2013 +
('32322842', 'Deepak Ghimire', 'deepak ghimire')
('2034182', 'Joonwhoan Lee', 'joonwhoan lee')
Korea; E-Mail: deep@jbnu.ac.kr +
* Author to whom correspondence should be addressed; E-Mail: chlee@jbnu.ac.kr; +
8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0Methoden +
at 11/2013 +
(cid:2)(cid:2)(cid:2) +
Multimodale Interaktion +
auf einer sozialen Roboterplattform +
Multimodal Interaction on a Social Robotic Platform +
Zusammenfassung Dieser Beitrag beschreibt die multimo- +
dalen Interaktionsmöglichkeiten mit der Forschungsroboter- +
plattform ELIAS. Zunächst wird ein Überblick über die Ro- +
boterplattform sowie die entwickelten Verarbeitungskompo- +
nenten gegeben, die Einteilung dieser Komponenten erfolgt +
nach dem Konzept von wahrnehmenden und agierenden Mo- +
dalitäten. Anschließend wird das Zusammenspiel der Kom- +
ponenten in einem multimodalen Spieleszenario näher be- +
trachtet. (cid:2)(cid:2)(cid:2) Summary +
This paper presents the mul- +
timodal +
interaction capabilities of the robotic research plat- +
form ELIAS. An overview of the robotic platform as well +
as the developed processing components is presented, the +
classification of the components follows the concept of sen- +
sing and acting modalities. Finally, +
the interplay between +
those components within a multimodal gaming scenario is +
described. +
Schlagwörter Mensch-Roboter-Interaktion, Multimodalität, Gesten, Blick (cid:2)(cid:2)(cid:2) Keywords Human-robot interaction, +
multimodal, gestures, gaze +
1 Einleitung +
Eine intuitive und natürliche Bedienbarkeit der zuneh- +
mend komplexeren Technik wird für den Menschen +
immer wichtiger, da im heutigen Alltag eine Vielzahl an +
technischen Geräten mit wachsendem Funktionsumfang +
anzutreffen ist. Unterschiedliche Aktivitäten in der For- +
schungsgemeinschaft haben sich schon seit längerer Zeit +
mit verbalen sowie nonverbalen Kommunikationsformen +
(bspw. Emotions- und Gestenerkennung) in der Mensch- +
Maschine-Interaktion beschäftigt. Gerade in der jüngeren +
Zeit trugen auf diesem Forschungsfeld unterschiedliche +
Innovationen (bspw. Touchscreen, Gestensteuerung im +
Fernseher) dazu bei, dass intuitive und natürliche Bedien- +
konzepte mehr und mehr im Alltag Verwendung finden. +
Auch Möglichkeiten zur Sprach- und Gestensteuerung +
von Konsolen und Mobiltelefonen finden heute vermehr- +
ten Einsatz in der Gerätebedienung. Diese natürlicheren +
und multimodalen Benutzerschnittstellen sind dem Nut- +
zer schnell zugänglich und erlauben eine intuitivere +
Interaktion mit komplexen technischen Geräten. +
Auch für Robotersysteme bietet sich eine multimodale +
Interaktion an, um die Benutzung und den Zugang zu +
den Funktionalitäten zu vereinfachen. Der Mensch soll +
in seiner Kommunikation idealerweise vollkommene Ent- +
scheidungsfreiheit bei der Wahl der Modalitäten haben, +
um sein gewünschtes Ziel zu erreichen. Dafür werden +
in diesem Beitrag die wahrnehmenden und agieren- +
den Modalitäten einer, rein auf Kommunikationsaspekte +
reduzierten, Forschungsroboterplattform beispielhaft in +
einer Spieleanwendung untersucht. +
1.1 Struktur des Beitrags +
In diesem Beitrag wird zunächst ein kurzer Über- +
blick über die multimodale Interaktion im Allgemeinen +
gegeben, hierbei erfolgt eine Betrachtung nach wahr- +
nehmenden und agierenden Modalitäten. Im nächsten +
Abschnitt werden Arbeiten vorgestellt, die sich auch mit +
multimodalen Robotersystemen beschäftigen. Im darauf +
folgenden Abschnitt wird die Roboterplattform ELIAS +
mit den wahrnehmenden, verarbeitenden und agierenden +
at – Automatisierungstechnik 61 (2013) 11 / DOI 10.1515/auto.2013.1062 © Oldenbourg Wissenschaftsverlag +
- 10.1515/auto.2013.1062 +
Downloaded from De Gruyter Online at 09/27/2016 10:08:34PM +
via Technische Universität München +
737 +
('35116429', 'Jürgen Blume', 'jürgen blume')
('1682283', 'Tobias Rehrl', 'tobias rehrl')
('1705843', 'Gerhard Rigoll', 'gerhard rigoll')
Korrespondenzautor: blume@tum.de +
8b1db0894a23c4d6535b5adf28692f795559be90Biometric and Surveillance Technology for Human and Activity Identification X, edited by Ioannis Kakadiaris, +
Walter J. Scheirer, Laurence G. Hassebrook, Proc. of SPIE Vol. 8712, 87120Q · © 2013 SPIE +
CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2018974 +
Proc. of SPIE Vol. 8712 87120Q-1 +
8b2e3805b37c18618b74b243e7a6098018556559Workshop track - ICLR 2018 +
IMPROVING VARIATIONAL AUTOENCODER WITH DEEP +
University of Nottingham, Nottingham, UK
Shenzhen University, Shenzhen, China
('3468964', 'Xianxu Hou', 'xianxu hou')
('1698461', 'Guoping Qiu', 'guoping qiu')
xianxu.hou@nottingham.edu.cn +
guoping.qiu@nottingham.ac.uk +
8b74252625c91375f55cbdd2e6415e752a281d10Using Convolutional 3D Neural Networks for +
User-Independent Continuous Gesture Recognition +
Necati Cihan Camgoz, Simon Hadfield +
University of Surrey
Guildford, GU2 7XH, UK +
Human Technology & Pattern Recognition +
RWTH Aachen University, Germany
University of Surrey
Guildford, GU2 7XH, UK +
('2309364', 'Oscar Koller', 'oscar koller')
('1695195', 'Richard Bowden', 'richard bowden')
{n.camgoz, s.hadfield}@surrey.ac.uk +
koller@cs.rwth-aachen.de +
r.bowden@surrey.ac.uk +
8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259Real-time 3D Face Fitting and Texture Fusion +
on In-the-wild Videos +
Centre for Vision, Speech and Signal Processing +
Image Understanding and Interactive Robotics +
University of Surrey
Guildford, GU2 7XH, United Kingdom +
Contact: http://www.patrikhuber.ch +
Reutlingen University
D-72762 Reutlingen, Germany +
('39976184', 'Patrik Huber', 'patrik huber')
('49759031', 'William Christmas', 'william christmas')
('1748684', 'Josef Kittler', 'josef kittler')
('49330989', 'Philipp Kopp', 'philipp kopp')
134f1cee8408cca648d8b4ca44b38b0a7023af71Partially Shared Multi-Task Convolutional Neural Network with Local +
Constraint for Face Attribute Learning +
College of Information Science and Electronic Engineering
Zhejiang University, China
('41021477', 'Jiajiong Cao', 'jiajiong cao')
('2367491', 'Yingming Li', 'yingming li')
('1720488', 'Zhongfei Zhang', 'zhongfei zhang')
{jiajiong, yingming, zhongfei}@zju.edu.cn +
13719bbb4bb8bbe0cbcdad009243a926d93be433Deep LDA-Pruned Nets for Efficient Facial Gender Classification +
McGill University
University Street, Montral, QC H3A 0E9, Canada
('1992537', 'Qing Tian', 'qing tian')
('1699104', 'Tal Arbel', 'tal arbel')
('1713608', 'James J. Clark', 'james j. clark')
{qtian,arbel,clark}@cim.mcgill.ca +
134db6ca13f808a848321d3998e4fe4cdc52fbc2IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006 +
433 +
Dynamics of Facial Expression: Recognition of +
Facial Actions and Their Temporal Segments +
From Face Profile Image Sequences +
('1694605', 'Maja Pantic', 'maja pantic')
('1744405', 'Ioannis Patras', 'ioannis patras')
133dd0f23e52c4e7bf254e8849ac6f8b17fcd22dThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +
Active Clustering with Model-Based +
Uncertainty Reduction +
('2228109', 'Caiming Xiong', 'caiming xiong')
('34187462', 'David M. Johnson', 'david m. johnson')
('3587688', 'Jason J. Corso', 'jason j. corso')
1329206dbdb0a2b9e23102e1340c17bd2b2adcf5Part-based R-CNNs for +
Fine-grained Category Detection +
University of California, Berkeley
('40565777', 'Ning Zhang', 'ning zhang')
('1753210', 'Trevor Darrell', 'trevor darrell')
{nzhang,jdonahue,rbg,trevor}@eecs.berkeley.edu +
1369e9f174760ea592a94177dbcab9ed29be1649Geometrical Facial Modeling for Emotion Recognition +('3250085', 'Giampaolo L. Libralon', 'giampaolo l. libralon')
133900a0e7450979c9491951a5f1c2a403a180f0JOURNAL OF LATEX CLASS FILES +
Social Grouping for Multi-target Tracking and +
Head Pose Estimation in Video +
('12561781', 'Zhen Qin', 'zhen qin')
('3564227', 'Christian R. Shelton', 'christian r. shelton')
13bda03fc8984d5943ed8d02e49a779d27c84114Efficient Object Detection Using Cascades of Nearest Convex Model Classifiers +
Eskisehir Osmangazi University
Laboratoire Jean Kuntzmann +
Meselik Kampusu, 26480, Eskisehir Turkey +
B.P. 53, 38041 Grenoble Cedex 9, France +
('2277308', 'Hakan Cevikalp', 'hakan cevikalp')
('1756114', 'Bill Triggs', 'bill triggs')
hakan.cevikalp@gmail.com +
Bill.Triggs@imag.fr +
13db9466d2ddf3c30b0fd66db8bfe6289e880802I.J. Image, Graphics and Signal Processing, 2017, 1, 27-32 +
Published Online January 2017 in MECS (http://www.mecs-press.org/) +
DOI: 10.5815/ijigsp.2017.01.04 +
Transfer Subspace Learning Model for Face +
Recognition at a Distance +
MIT, Pune ,India +
AISSM’S IOT,India +
College of Engineering Pune, India
learning algorithms work +
('3335915', 'Alwin Anuse', 'alwin anuse')
('32032353', 'Vibha Vyas', 'vibha vyas')
Email: alwin.anuse@mitpune.edu.in +
Email: deshmukhnilima@gmail.com +
Email: vsv.extc@coep.ac.in +
13a994d489c15d440c1238fc1ac37dad06dd928cLearning Discriminant Face Descriptor for Face +
Recognition +
Center for Biometrics and Security Research & National Laboratory of Pattern +
Recognition, Institute of Automation, Chinese Academy of Sciences
('1718623', 'Zhen Lei', 'zhen lei')
('34679741', 'Stan Z. Li', 'stan z. li')
fzlei,szlig@nlpr.ia.ac.cn +
131178dad3c056458e0400bed7ee1a36de1b2918Visual Reranking through Weakly Supervised Multi-Graph Learning +
Xidian University, Xi an, China
Xiamen University, Xiamen, China
IBM Watson Research Center, Armonk, NY, USA
University of Technology, Sydney, Australia
('1715156', 'Cheng Deng', 'cheng deng')
('1725599', 'Rongrong Ji', 'rongrong ji')
('39059457', 'Wei Liu', 'wei liu')
('1692693', 'Dacheng Tao', 'dacheng tao')
('10699750', 'Xinbo Gao', 'xinbo gao')
{chdeng.xd, jirongrong, wliu.cu, dacheng.tao, xbgao.xidian}@gmail.com +
13141284f1a7e1fe255f5c2b22c09e32f0a4d465Object Tracking by +
Oversampling Local Features +
('2619131', 'Federico Pernici', 'federico pernici')
('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')
132527383890565d18f1b7ad50d76dfad2f14972JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 1033-1046 (2006) +
Facial Expression Classification Using PCA and +
Hierarchical Radial Basis Function Network* +
Department of Computer Science and Information Engineering +
National Taipei University
Sanshia, 237 Taiwan +
Intelligent human-computer interaction (HCI) integrates versatile tools such as per- +
ceptual recognition, machine learning, affective computing, and emotion cognition to +
enhance the ways humans interact with computers. Facial expression analysis is one of +
the essential medium of behavior interpretation and emotion modeling. In this paper, we +
modify and develop a reconstruction method utilizing Principal Component Analysis +
(PCA) to perform facial expression recognition. A framework of hierarchical radial basis +
function network (HRBFN) is further proposed to classify facial expressions based on +
local features extraction by PCA technique from lips and eyes images. It decomposes the +
acquired data into a small set of characteristic features. The objective of this research is +
to develop a more efficient approach to discriminate between seven prototypic facial ex- +
pressions, such as neutral, smile, anger, surprise, fear, disgust, and sadness. A construc- +
tive procedure is detailed and the system performance is evaluated on a public database +
“Japanese Females Facial Expression (JAFFE).” We conclude that local images of lips +
and eyes can be treated as cues for facial expression. As anticipated, the experimental +
results demonstrate the potential capabilities of the proposed approach. +
Keywords: intelligent human-computer interaction, facial expression classification, hier- +
archical radial basis function network, principal component analysis, local features +
1. INTRODUCTION +
The intelligent human-computer interaction (HCI) technologies play important roles +
in the development of advanced and ambient communication/computation. In contrast to +
the conventional mechanisms of passive manipulation, intelligent HCI integrates versa- +
tile tools such as perceptual recognition, machine learning, affective computing, and +
emotion cognition to enhance the ways humans interact with computers. Migrating from +
W4 (what, where, when, who) to W5+ (what, where, when, who, why, how), novel intel- +
ligent interface design has placed emphasis on both apparent and internal behavior of +
users [1]. Nonverbal information such as facial expression, posture, gesture, and eye gaze +
is suitable for behavior interpretation. Facial data analysis is one of the essential medium +
of perceptual processing and emotion modeling. +
Received August 16, 2005; accepted January 17, 2006. +
Communicated by Jhing-Fa Wang, Pau-Choo Chung and Mark Billinghurst. +
* This work was supported in part by the National Science Council of Taiwan, R.O.C., under grants No. NSC +
88-2213-E216-010 and No. NSC 89-2213-E216-016. +
* The preliminary content of this paper has been presented in “International Conference on Neural Information +
Processing,” Perth, Australia, November 1999. Acknowledgement also due to Mr. Der-Chen Pan at the Na- +
tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming
Shon Chen at Ulead System Inc., Taipei, Taiwan, for his early work and assistance in this research. +
1033 +
('39548632', 'Daw-Tung Lin', 'daw-tung lin')
13604bbdb6f04a71dea4bd093794e46730b0a488Robust Loss Functions under Label Noise for +
Deep Neural Networks +
Microsoft, Bangalore +
Indian Institute of Science, Bangalore
Indian Institute of Science, Bangalore
('3201314', 'Aritra Ghosh', 'aritra ghosh')
('47602083', 'Himanshu Kumar', 'himanshu kumar')
('1711348', 'P. S. Sastry', 'p. s. sastry')
arghosh@microsoft.com +
himanshukr@ee.iisc.ernet.in +
sastry@ee.iisc.ernet.in +
1394ca71fc52db972366602a6643dc3e65ee8726See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308407783 +
EmoReact: A Multimodal Approach and Dataset +
for Recognizing Emotional Responses in Children +
Conference Paper · November 2016 +
DOI: 10.1145/2993148.2993168 +
CITATIONS +
READS +
95 +
4 authors, including: +
Behnaz Nojavanasghari +
University of Central Florida
4 PUBLICATIONS 20 CITATIONS +
Tadas Baltrusaitis +
Carnegie Mellon University
30 PUBLICATIONS 247 CITATIONS +
SEE PROFILE +
SEE PROFILE +
Charles E. Hughes +
University of Central Florida
185 PUBLICATIONS 1,248 CITATIONS +
SEE PROFILE +
All in-text references underlined in blue are linked to publications on ResearchGate, +
letting you access and read them immediately. +
Available from: Behnaz Nojavanasghari +
Retrieved on: 13 October 2016 +
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34Is the Eye Region More Reliable Than the Face? A Preliminary Study of +
Face-based Recognition on a Transgender Dataset +
Institute of Interdisciplinary Studies in Identity Sciences (IISIS
University of North Carolina Wilmington
('1805620', 'Gayathri Mahalingam', 'gayathri mahalingam')
('3275890', 'Karl Ricanek', 'karl ricanek')
{mahalingamg, ricanekk}@uncw.edu +
13b1b18b9cfa6c8c44addb9a81fe10b0e89db32aA Hierarchical Deep Temporal Model for +
Group Activity Recognition +
by +
B. Tech., Indian Institute of Technology Jodhpur
Thesis Submitted in Partial Fulfillment of the +
Requirements for the Degree of +
Master of Science +
in the +
School of Computing Science +
Faculty of Applied Sciences +
SIMON FRASER UNIVERSITY
Spring 2016 +
However, in accordance with the Copyright Act of Canada, this work may be +
reproduced without authorization under the conditions for “Fair Dealing.” +
Therefore, limited reproduction of this work for the purposes of private study, +
research, education, satire, parody, criticism, review and news reporting is likely +
All rights reserved. +
to be in accordance with the law, particularly if cited appropriately. +
('2716937', 'Srikanth Muralidharan', 'srikanth muralidharan')
('2716937', 'Srikanth Muralidharan', 'srikanth muralidharan')
1329bcac5ebd0b08ce33ae1af384bd3e7a0deacaDataset Issues in Object Recognition +
J. Ponce1,2, T.L. Berg3, M. Everingham4, D.A. Forsyth1, M. Hebert5, +
S. Lazebnik1, M. Marszalek6, C. Schmid6, B.C. Russell7, A. Torralba7, +
C.K.I. Williams8, J. Zhang6, and A. Zisserman4 +
University of Illinois at Urbana-Champaign, USA
2 Ecole Normale Sup´erieure, Paris, France +
University of California at Berkeley, USA
Oxford University, UK
Carnegie Mellon University, Pittsburgh, USA
6 INRIA Rhˆone-Alpes, Grenoble, France +
7 MIT, Cambridge, USA +
University of Edinburgh, Edinburgh, UK
133da0d8c7719a219537f4a11c915bf74c320da7International Journal of Computer Applications (0975 – 8887) +
Volume 123 – No.4, August 2015 +
A Novel Method for 3D Image Segmentation with Fusion +
of Two Images using Color K-means Algorithm +
Dept. of CSE +
ITM Universe +
Gwalior +
Dept. of CSE +
ITM Universe +
Gwalior +
two +
13c250fb740cb5616aeb474869db6ab11560e2a6LEARNING LANGUAGE–VISION CORRESPONDENCES +
by +
A thesis submitted in conformity with the requirements +
for the degree of Doctor of Philosophy +
Graduate Department of Computer Science +
University of Toronto
('38986168', 'Michael Jamieson', 'michael jamieson')
('38986168', 'Michael Jamieson', 'michael jamieson')
13940d0cc90dbf854a58f92d533ce7053aac024aBoston University
OpenBU +
Theses & Dissertations +
http://open.bu.edu +
Boston University Theses and Dissertations
2015 +
Local learning by partitioning +
http://hdl.handle.net/2144/15204 +
Boston University
('2870611', 'Wang', 'wang')
('17099457', 'Joseph', 'joseph')
133f01aec1534604d184d56de866a4bd531dac87Effective Unconstrained Face Recognition by +
Combining Multiple Descriptors and Learned +
Background Statistics +
('1776343', 'Lior Wolf', 'lior wolf')
('1756099', 'Tal Hassner', 'tal hassner')
('2188620', 'Yaniv Taigman', 'yaniv taigman')
131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1Elastic Graph Matching versus Linear Subspace +
Methods for Frontal Face Verification +
Dept. of Informatics +
Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece
Tel: +30-2310-996361, Fax: +30-2310-998453 +
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1737071', 'Anastasios Tefas', 'anastasios tefas')
('1698588', 'Ioannis Pitas', 'ioannis pitas')
E-mail: pitas@zeus.csd.auth.gr +
13841d54c55bd74964d877b4b517fa94650d9b65Generalised Ambient Reflection Models for Lambertian and +
Phong Surfaces +
Author +
Zhang, Paul, Gao, Yongsheng +
Published +
2009 +
Conference Title +
Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009) +
DOI +
https://doi.org/10.1109/ICIP.2009.5413812 +
Copyright Statement +
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/ +
republish this material for advertising or promotional purposes or for creating new collective +
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +
this work in other works must be obtained from the IEEE. +
Downloaded from +
http://hdl.handle.net/10072/30001 +
Griffith Research Online +
https://research-repository.griffith.edu.au +
1389ba6c3ff34cdf452ede130c738f37dca7e8cbA Convolution Tree with Deconvolution Branches: Exploiting Geometric +
Relationships for Single Shot Keypoint Detection +
Department of Electrical and Computer Engineering, CFAR and UMIACS +
University of Maryland-College Park, USA
('40080979', 'Amit Kumar', 'amit kumar')
('9215658', 'Rama Chellappa', 'rama chellappa')
akumar14@umiacs.umd.edu, rama@umiacs.umd.edu +
131e395c94999c55c53afead65d81be61cd349a4
1384a83e557b96883a6bffdb8433517ec52d0bea
13fd0a4d06f30a665fc0f6938cea6572f3b496f7
132f88626f6760d769c95984212ed0915790b625UC Irvine +
UC Irvine Electronic Theses and Dissertations +
Title +
Exploring Entity Resolution for Multimedia Person Identification +
Permalink +
https://escholarship.org/uc/item/9t59f756 +
Author +
Zhang, Liyan +
Publication Date +
2014-01-01 +
Peer reviewed|Thesis/dissertation +
eScholarship.org +
Powered by the California Digital Library +
University of California
13aef395f426ca8bd93640c9c3f848398b189874Image Preprocessing and Complete 2DPCA with Feature +
Extraction for Gender Recognition +
NSF REU 2017: Statistical Learning and Data Mining +
University of North Carolina Wilmington
13f6ab2f245b4a871720b95045c41a4204626814RESEARCH ARTICLE +
Cortex commands the performance of +
skilled movement +
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United
States +
('13837962', 'Jian-Zhong Guo', 'jian-zhong guo')
('35466277', 'Austin R Graves', 'austin r graves')
('31262308', 'Wendy W Guo', 'wendy w guo')
('12009815', 'Jihong Zheng', 'jihong zheng')
('3031589', 'Allen Lee', 'allen lee')
('38033405', 'Nuo Li', 'nuo li')
('40634144', 'John J Macklin', 'john j macklin')
('34447371', 'James W Phillips', 'james w phillips')
('1875164', 'Brett D Mensh', 'brett d mensh')
('2424812', 'Kristin Branson', 'kristin branson')
('5832202', 'Adam W Hantman', 'adam w hantman')
13be4f13dac6c9a93f969f823c4b8c88f607a8c4Families in the Wild (FIW): Large-Scale Kinship Image +
Database and Benchmarks +
Dept. of Electrical and Computer Engineering +
Northeastern University
Boston, MA, USA +
('14802538', 'Joseph P. Robinson', 'joseph p. robinson')
('2025056', 'Ming Shao', 'ming shao')
('1746738', 'Yue Wu', 'yue wu')
('1708679', 'Yun Fu', 'yun fu')
{jrobins1, mingshao, yuewu, yunfu}@ece.neu.edu +
13afc4f8d08f766479577db2083f9632544c7ea6Multiple Kernel Learning for +
Emotion Recognition in the Wild +
Machine Perception Laboratory +
UCSD +
EmotiW Challenge, ICMI, 2013 +
1 +
('39707211', 'Karan Sikka', 'karan sikka')
('1963167', 'Karmen Dykstra', 'karmen dykstra')
('1924458', 'Suchitra Sathyanarayana', 'suchitra sathyanarayana')
('2724380', 'Gwen Littlewort', 'gwen littlewort')
13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bdHOD, St. Joseph College of Information Technology, Songea, Tanzania
13d9da779138af990d761ef84556e3e5c1e0eb94Int J Comput Vis (2008) 77: 3–24 +
DOI 10.1007/s11263-007-0093-5 +
Learning to Locate Informative Features for Visual Identification +
Received: 18 August 2005 / Accepted: 11 September 2007 / Published online: 9 November 2007 +
© Springer Science+Business Media, LLC 2007 +
('3236352', 'Andras Ferencz', 'andras ferencz')
('1689212', 'Jitendra Malik', 'jitendra malik')
1316296fae6485c1510f00b1b57fb171b9320ac2FaceID-GAN: Learning a Symmetry Three-Player GAN +
for Identity-Preserving Face Synthesis +
CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong
2SenseTime Research +
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
('8035201', 'Yujun Shen', 'yujun shen')
('47571885', 'Ping Luo', 'ping luo')
('1721677', 'Junjie Yan', 'junjie yan')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
{sy116, pluo, xtang}@ie.cuhk.edu.hk, yanjunjie@sensetime.com, xgwang@ee.cuhk.edu.hk +
7f57e9939560562727344c1c987416285ef76cdaAccessorize to a Crime: Real and Stealthy Attacks on +
State-of-the-Art Face Recognition +
Carnegie Mellon University
Pittsburgh, PA, USA +
Carnegie Mellon University
Pittsburgh, PA, USA +
Carnegie Mellon University
Pittsburgh, PA, USA +
University of North Carolina
Chapel Hill, NC, USA +
('36301492', 'Mahmood Sharif', 'mahmood sharif')
('38572260', 'Lujo Bauer', 'lujo bauer')
('38181360', 'Sruti Bhagavatula', 'sruti bhagavatula')
('1746214', 'Michael K. Reiter', 'michael k. reiter')
mahmoods@cmu.edu +
lbauer@cmu.edu +
srutib@cmu.edu +
reiter@cs.unc.edu +
7fc5b6130e9d474dfb49d9612b6aa0297d481c8eDimensionality Reduction on Grassmannian via Riemannian +
Optimization: +
A Generalized Perspective +
Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
University of Chinese Academy of Sciences, Beijing, 100049, China
3Key Laboratory of Optical-Electronics Information Processing +
November 20, 2017 +
('1803285', 'Tianci Liu', 'tianci liu')
('2172914', 'Zelin Shi', 'zelin shi')
('2556853', 'Yunpeng Liu', 'yunpeng liu')
7f511a6a2b38a26f077a5aec4baf5dffc981d881LOW-LATENCY HUMAN ACTION RECOGNITION WITH WEIGHTED MULTI-REGION +
CONVOLUTIONAL NEURAL NETWORK +
cid:63)University of Science and Technology of China, Hefei, Anhui, China
†HERE Technologies, Chicago, Illinois, USA +
('49417387', 'Yunfeng Wang', 'yunfeng wang')
('38272296', 'Wengang Zhou', 'wengang zhou')
('46324995', 'Qilin Zhang', 'qilin zhang')
('49897466', 'Xiaotian Zhu', 'xiaotian zhu')
('7179232', 'Houqiang Li', 'houqiang li')
7f21a7441c6ded38008c1fd0b91bdd54425d3f80Real Time System for Facial Analysis +
Tampere University of Technology, Finland
I. +
INTRODUCTION +
Most signal or image processing algorithms should be +
designed with real-time execution in mind. Most use cases +
compute on an embedded platform while receiving streaming +
data as a constant data flow. In machine learning, however, the +
real time deployment and streaming data processing are less +
often a design criterion. Instead, the bulk of machine learning is +
executed offline on the cloud without any real time restrictions. +
However, the real time use is rapidly becoming more important +
as deep learning systems are appearing into, for example, +
autonomous vehicles and working machines. +
In this work, we describe the functionality of our demo +
system integrating a number of common real time machine +
learning systems together. The demo system consists of a +
screen, webcam and a computer, and it estimates the age, +
gender and facial expression of all faces seen by the webcam. +
A picture of the system in use is shown in Figure 1. There is +
also a Youtube video at https://youtu.be/Kfe5hKNwrCU and +
the code is freely available at https://github.com/mahehu/TUT- +
live-age-estimator. +
Apart from serving as an illustrative example of modern +
human level machine learning for the general public, the +
system also highlights several aspects that are common in real +
time machine learning systems. First, the subtasks needed to +
achieve the three recognition results represent a wide variety of +
machine learning problems: (1) object detection is used to find +
the faces, (2) age estimation represents a regression problem +
with a real-valued target output (3) gender prediction is a +
binary classification problem, and (4) facial expression +
prediction is a multi-class classification problem. Moreover, all +
these tasks should operate in unison, such that each task will +
receive enough resources from a limited pool. +
In the remainder of this paper, we first describe the system +
level multithreaded architecture for real time processing in +
Section II. This is followed by detailed discussion individual +
components of the system in Section III. Next, we report +
experimental results on the accuracy of each individual +
recognition component in Section IV, and finally, discuss the +
benefits of demonstrating the potential of modern machine +
learning to both general public and experts in the field. +
II. SYSTEM LEVEL FUNCTIONALITY +
The challenge in real-time operation is that there are +
numerous components in the system, and each uses different +
amount of execution time. The system should be designed +
such that the operation appears smooth, which means that the +
most visible tasks should be fast and have the priority in +
scheduling. +
Figure 1. Demo system recognizes the age, gender and facial +
expression in real time. +
The system is running in threads, as illustrated in Figure 2. +
The whole system is controlled by the upper level controller +
and visualization thread, which owns and starts the sub- +
threads dedicated for individual tasks. The main thread holds +
all data and executes the visualization loop showing the +
recognition results to the user at 25 frames per second. +
The recognition process starts from the grabber thread, +
which is connected to a webcam. The thread requests video +
frames from camera for feeding them into a FIFO buffer +
located inside the controller thread. At grab time, each frame is +
wrapped inside a class object, which holds the necessary meta +
data related to each frame. More specifically, each frame is +
linked with a timestamp and a flag indicating whether the face +
detection has already been executed and +
locations +
(bounding boxes) of all found faces in the scene. +
the +
The actual face analysis consists of two parts: face +
detection and face analysis. The detection is executed in the +
detection thread, which operates asynchronously, requesting +
new non-processed frames from the controller thread. After +
face detection, the locations of found faces are sent to the +
controller thread, which then matches each new face with all +
face objects from the previous frames using straightforward +
centroid tracking. Tracking allows us to average the estimates +
for each face over a number of recent frames. +
The detection thread operates on the average faster than the +
frame rate, but sometimes there are delays due to high load on +
the other threads. Therefore, the controller thread holds a +
buffer of the most recent frames, in order to increase the +
flexibility of processing time. +
The recognition thread is responsible for assessing the age, +
gender and facial expression of each face crop found from the +
image. The thread operates also in an asynchronous mode, +
requesting new non-processed (but face-detected) frames from +
('51232696', 'Janne Tommola', 'janne tommola')
('51149972', 'Pedram Ghazi', 'pedram ghazi')
('51131997', 'Bishwo Adhikari', 'bishwo adhikari')
('1847889', 'Heikki Huttunen', 'heikki huttunen')
7fce5769a7d9c69248178989a99d1231daa4fce9(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 7, No. 5, 2016 +
Towards Face Recognition Using Eigenface +
Department of Computer Engineering +
King Faisal University
Hofuf, Al-Ahsa 31982, Saudi Arabia +
('39604645', 'Md. Al-Amin Bhuiyan', 'md. al-amin bhuiyan')
7fa2605676c589a7d1a90d759f8d7832940118b5A New Approach to Clothing Classification using Mid-Level Layers +
Department of Electrical and Computer Engineering +
Clemson University, Clemson, SC
('2181472', 'Bryan Willimon', 'bryan willimon'){rwillim,iwalker,stb}@clemson.edu +
7ff42ee09c9b1a508080837a3dc2ea780a1a839bData Fusion for Real-time Multimodal Emotion Recognition through Webcams +
and Microphones in E-Learning +
Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of
Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg
177, 6419 AT Heerlen, The Netherlands +
('2565070', 'Kiavash Bahreini', 'kiavash bahreini')
('1717772', 'Rob Nadolski', 'rob nadolski')
('3235367', 'Wim Westera', 'wim westera')
{kiavash.bahreini, rob.nadolski, wim.westera}@ou.nl +
7fb5006b6522436ece5bedf509e79bdb7b79c9a7Multi-Task Convolutional Neural Network for Face Recognition +
Department of Computer Science and Engineering +
Michigan State University, East Lansing MI
('2399004', 'Xi Yin', 'xi yin')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
{yinxi1,liuxm}@msu.edu +
7f533bd8f32525e2934a66a5b57d9143d7a89ee1Audio-Visual Identity Grounding for Enabling Cross Media Search +
Paper ID 22 +
('1950685', 'Kevin Brady', 'kevin brady')
7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5Int J Comput Vis (2016) 119:60–75 +
DOI 10.1007/s11263-015-0839-4 +
Sparse Output Coding for Scalable Visual Recognition +
Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015 +
© Springer Science+Business Media New York 2015 +
('1729034', 'Bin Zhao', 'bin zhao')
7f4bc8883c3b9872408cc391bcd294017848d0cf +
+
Computer +
Sciences +
Department +
The Multimodal Focused Attribute Model: A Nonparametric +
Bayesian Approach to Simultaneous Object Classification and +
Attribute Discovery +
Technical Report #1697 +
January 2012 +
+
('6256616', 'Jake Rosin', 'jake rosin')
('1724754', 'Charles R. Dyer', 'charles r. dyer')
('1832364', 'Xiaojin Zhu', 'xiaojin zhu')
7f6061c83dc36633911e4d726a497cdc1f31e58aYouTube-8M: A Large-Scale Video Classification +
Benchmark +
Paul Natsev +
Google Research +
('2461984', 'Sami Abu-El-Haija', 'sami abu-el-haija')
('1805076', 'George Toderici', 'george toderici')
('32575647', 'Nisarg Kothari', 'nisarg kothari')
('2119006', 'Joonseok Lee', 'joonseok lee')
('2758088', 'Balakrishnan Varadarajan', 'balakrishnan varadarajan')
('2259154', 'Sudheendra Vijayanarasimhan', 'sudheendra vijayanarasimhan')
haija@google.com +
gtoderici@google.com +
ndk@google.com +
joonseok@google.com +
natsev@google.com +
balakrishnanv@google.com +
svnaras@google.com +
7fa3d4be12e692a47b991c0b3d3eba3a31de4d05Efficient Online Spatio-Temporal Filtering +
for Video Event Detection +
1 Department of Computer Science and Engineering, +
Shanghai Jiao Tong University, Shanghai 200240, China
2 School of Electrical and Electronic Engineering, +
Nanyang Technological University, Singapore 639798, Singapore
3 Computer Science and Engineering Division, +
University of Michigan
Ann Arbor, MI 48105, USA +
('3084614', 'Xinchen Yan', 'xinchen yan')
('34316743', 'Junsong Yuan', 'junsong yuan')
('2574445', 'Hui Liang', 'hui liang')
skywalkeryxc@gmail.com +
jsyuan@ntu.edu.sg, hliang1@e.ntu.edu.sg +
7f445191fa0475ff0113577d95502a96dc702ef9Towards an Unequivocal Representation of Actions +
University of Bristol
University of Bristol
University of Bristol
('2052236', 'Michael Wray', 'michael wray')
('3420479', 'Davide Moltisanti', 'davide moltisanti')
('1728459', 'Dima Damen', 'dima damen')
firstname.surname@bristol.ac.uk +
7f82f8a416170e259b217186c9e38a9b05cb3eb4Multi-Attribute Robust Component Analysis for Facial UV Maps +
Imperial College London, London, UK
Middlesex University London, London, UK
Goldsmiths, University of London, London, UK
('24278037', 'Stylianos Moschoglou', 'stylianos moschoglou')
('31243357', 'Evangelos Ververas', 'evangelos ververas')
('1780393', 'Yannis Panagakis', 'yannis panagakis')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
{s.moschoglou, e.ververas16, i.panagakis, s.zafeiriou}@imperial.ac.uk, m.nicolaou@gold.ac.uk +
7f36dd9ead29649ed389306790faf3b390dc0aa2MOVEMENT DIFFERENCES BETWEEN DELIBERATE +
AND SPONTANEOUS FACIAL EXPRESSIONS: +
ZYGOMATICUS MAJOR ACTION IN SMILING +
('2059653', 'Zara Ambadar', 'zara ambadar')
7f6cd03e3b7b63fca7170e317b3bb072ec9889e0A Face Recognition Signature Combining Patch-based +
Features with Soft Facial Attributes +
L. Zhang, P. Dou, I.A. Kakadiaris +
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204 +
7fab17ef7e25626643f1d55257a3e13348e435bdAge Progression/Regression by Conditional Adversarial Autoencoder +
The University of Tennessee, Knoxville, TN, USA
('1786391', 'Zhifei Zhang', 'zhifei zhang')
('46970616', 'Yang Song', 'yang song')
('1698645', 'Hairong Qi', 'hairong qi')
{zzhang61, ysong18, hqi}@utk.edu +
7f6599e674a33ed64549cd512ad75bdbd28c7f6cKernel Alignment Inspired +
Linear Discriminant Analysis +
Department of Computer Science and Engineering, +
University of Texas at Arlington, TX, USA
('1747268', 'Shuai Zheng', 'shuai zheng')zhengs123@gmail.com, chqding@uta.edu +
7f9260c00a86a0d53df14469f1fa10e318ee2a3cHOW IRIS RECOGNITION WORKS +
University of Cambridge, The Computer Laboratory, Cambridge CB3 0FD, U.K
('1781325', 'John Daugman', 'john daugman')
7f97a36a5a634c30de5a8e8b2d1c812ca9f971aeIncremental Classifier Learning with Generative Adversarial Networks +
Northeastern University 2Microsoft Research 3City University of New York
('1746738', 'Yue Wu', 'yue wu')
('1691128', 'Zicheng Liu', 'zicheng liu')
{yuewu,yunfu}@ece.neu.edu, yye@gradcenter.cuny.edu +
{yiche,lijuanw,zliu,yandong.guo,zhang}@microsoft.com +
7f2a4cd506fe84dee26c0fb41848cb219305173fInternational Journal of Hybrid Information Technology +
Vol.8, No.2 (2015), pp.109-120 +
http://dx.doi.org/10.14257/ijhit.2015.8.2.10 +
Face Detection and Pose Estimation Based on Evaluating Facial +
Feature Selection +
School of Information Science and Engineering, Central South University, Changsha
410083, China +
Huazhong University of
Science and Technology, Wuhan, China +
Collage of Sciences, Baghdad University, Iraq
('2759156', 'Hiyam Hatem', 'hiyam hatem')
('2742321', 'Mohammed Lutf', 'mohammed lutf')
('2462860', 'Jumana Waleed', 'jumana waleed')
hiamhatim2005@yahoo.com, bjzou@vip.163.com, aed.m.muttasher@gmail.com, +
jumana_waleed@yahoo.com, mohammed.lutf@gmail.com1 +
7fd700f4a010d765c506841de9884df394c1de1cCorrelational Spectral Clustering +
Max Planck Institute for Biological Cybernetics
72076 T¨ubingen, Germany +
('1758219', 'Matthew B. Blaschko', 'matthew b. blaschko')
('1787591', 'Christoph H. Lampert', 'christoph h. lampert')
{blaschko,chl}@tuebingen.mpg.de +
7f59657c883f77dc26393c2f9ed3d19bdf51137bUniversity of Wollongong
Research Online +
Faculty of Informatics - Papers (Archive) +
Faculty of Engineering and Information Sciences +
2006 +
Facial expression recognition for multiplayer online +
games +
Publication Details +
Zhan, C., Li, W., Ogunbona, P. O. & Safaei, F. (2006). Facial expression recognition for multiplayer online games. Joint International +
Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university
Research Online is the open access institutional repository for the +
University of Wollongong. For further information contact the UOW
('3283367', 'Ce Zhan', 'ce zhan')
('1685696', 'Wanqing Li', 'wanqing li')
('1719314', 'Philip O. Ogunbona', 'philip o. ogunbona')
('1803733', 'Farzad Safaei', 'farzad safaei')
University of Wollongong, czhan@uow.edu.au +
University of Wollongong, wanqing@uow.edu.au +
University of Wollongong, philipo@uow.edu.au +
University of Wollongong, farzad@uow.edu.au +
Library: research-pubs@uow.edu.au +
7f23a4bb0c777dd72cca7665a5f370ac7980217eImproving Person Re-identification by Attribute and Identity Learning +
University of Technology Sydney
('9919679', 'Yutian Lin', 'yutian lin')
('14904242', 'Liang Zheng', 'liang zheng')
('7435343', 'Zhedong Zheng', 'zhedong zheng')
('1887625', 'Yu Wu', 'yu wu')
('1698559', 'Yi Yang', 'yi yang')
yutianlin477,liangzheng06,zdzheng12,wu08yu,yee.i.yang@gmail.com +
7f268f29d2c8f58cea4946536f5e2325777fa8faFacial Emotion Recognition in Curvelet Domain +
Indian Institute of Informaiton Technology, Allahabad, India
Allahabad, India - 211012 +
('35077572', 'Gyanendra K Verma', 'gyanendra k verma')
('30102998', 'Bhupesh Kumar Singh', 'bhupesh kumar singh')
gyanendra@iiita.ac.in , rs65@iiita.ac.in +
7fc3442c8b4c96300ad3e860ee0310edb086de94Similarity Scores based on Background Samples +
The School of Computer Science, Tel-Aviv University, Israel
Computer Science Division, The Open University of Israel, Israel
3 face.com +
('1776343', 'Lior Wolf', 'lior wolf')
('1756099', 'Tal Hassner', 'tal hassner')
('2188620', 'Yaniv Taigman', 'yaniv taigman')
7f3a73babe733520112c0199ff8d26ddfc7038a0
7f8d44e7fd2605d580683e47bb185de7f9ea9e28Predicting Personal Traits from Facial Images using Convolutional Neural +
Networks Augmented with Facial Landmark Information +
The Hebrew University of Jerusalem, Israel
2Microsoft Research, Cambridge, United Kingdom +
Machine Intelligence Lab (MIL), Cambridge University
('2291654', 'Yoad Lewenberg', 'yoad lewenberg')
('1698412', 'Yoram Bachrach', 'yoram bachrach')
('1808862', 'Sukrit Shankar', 'sukrit shankar')
('1716777', 'Antonio Criminisi', 'antonio criminisi')
yoadlew@cs.huji.ac.il +
yobach@microsoft.com +
ss965@cam.ac.uk +
antcrim@microsoft.com +
7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3aProc. of IEEE International +
Symposium on Computational +
Intelligence in Robotics and +
Automation (CIRA), July.16-20, +
2003, Kobe Japan, pp. 954-959 +
Multi-Subregion Based Probabilistic Approach Toward +
Pose-Invariant Face Recognition +
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
2SANYO Electric Co., Ltd., Osaka, Japan 573-8534 +
('1733113', 'Takeo Kanade', 'takeo kanade')
('3151943', 'Akihiko Yamada', 'akihiko yamada')
E-mail: tk@ri.cmu.edu, aki-yamada@rd.sanyo.co.jp, +
7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2Robust FEC-CNN: A High Accuracy Facial Landmark Detection System +
1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +
Institute of Computing Technology, CAS, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
3 CAS Center for Excellence in Brain Science and Intelligence Technology +
('3469114', 'Zhenliang He', 'zhenliang he')
('1698586', 'Jie Zhang', 'jie zhang')
('1693589', 'Meina Kan', 'meina kan')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1710220', 'Xilin Chen', 'xilin chen')
{zhenliang.he,jie.zhang,meina.kan,shiguang.shan,xilin.chen}@vipl.ict.ac.cn +
7f205b9fca7e66ac80758c4d6caabe148deb8581Page 1 of 47 +
Computing Surveys +
A Survey on Mobile Social Signal Processing +
Understanding human behaviour in an automatic but non-intrusive manner is an important area for various applications. This requires the +
collaboration of information technology with human sciences to transfer existing knowledge of human behaviour into self-acting tools. These +
tools will reduce human error that is introduced by current obtrusive methods such as questionnaires. To achieve unobtrusiveness, we focus on +
exploiting the pervasive and ubiquitous character of mobile devices. +
In this article, a survey of existing techniques for extracting social behaviour through mobile devices is provided. Initially we expose the +
terminology used in the area and introduce a concrete architecture for social signal processing applications on mobile phones, constituted by +
sensing, social interaction detection, behavioural cues extraction, social signal inference and social behaviour understanding. Furthermore, we +
present state-of-the-art techniques applied to each stage of the process. Finally, potential applications are shown while arguing about the main +
challenges of the area. +
Categories and Subject Descriptors: General and reference [Document Types]: Surveys and Overviews; Human-centered computing [Collab- +
orative and social computing, Ubiquitous and mobile computing] +
General Terms: Design, Theory, Human Factors, Performance +
Additional Key Words and Phrases: Social Signal Processing, mobile phones, social behaviour +
ACM Reference Format: +
Processing. ACM V, N, Article A (January YYYY), 35 pages. +
DOI:http://dx.doi.org/10.1145/0000000.0000000 +
1. INTRODUCTION +
Human behaviour understanding has received a great deal of interest since the beginning of the previous century. +
People initially conducted research on the way animals behave when they are surrounded by creatures of the same +
species. Acquiring basic underlying knowledge of animal relations led to extending this information to humans +
in order to understand social behaviour, social relations etc. Initial experiments were conducted by empirically +
observing people and retrieving feedback from them. These methods gave rise to well-established psychological +
approaches for understanding human behaviour, such as surveys, questionnaires, camera recordings and human +
observers. Nevertheless, these methods introduce several limitations including various sources of error. Complet- +
ing surveys and questionnaires induces partiality, unconcern etc. [Groves 2004], human error [Reason 1990], and +
additional restrictions in scalability of the experiments. Accumulating these research problems leads to a common +
challenge, the lack of automation in an unobtrusive manner. +
An area that has focussed on detecting social behaviour automatically and has received a great amount of at- +
tention is Social Signal Processing (SSP). The main target of the field is to model, analyse and synthesise human +
behaviour with limited user intervention. To achieve these targets, researchers presented three key terms which +
('23537960', 'NIKLAS PALAGHIAS', 'niklas palaghias')
('3339833', 'SEYED AMIR HOSEINITABATABAEI', 'seyed amir hoseinitabatabaei')
('2082222', 'MICHELE NATI', 'michele nati')
('1929850', 'ALEXANDER GLUHAK', 'alexander gluhak')
('1693389', 'KLAUS MOESSNER', 'klaus moessner')
('23537960', 'NIKLAS PALAGHIAS', 'niklas palaghias')
('3339833', 'SEYED AMIR HOSEINITABATABAEI', 'seyed amir hoseinitabatabaei')
('2082222', 'MICHELE NATI', 'michele nati')
('1929850', 'ALEXANDER GLUHAK', 'alexander gluhak')
('1693389', 'KLAUS MOESSNER', 'klaus moessner')
7fc76446d2b11fc0479df6e285723ceb4244d4efJRPIT 42.1.QXP:Layout 1 12/03/10 2:11 PM Page 3 +
Laplacian MinMax Discriminant Projection and its +
Applications +
Zhejiang Normal University, Jinhua, China
Jie Yang +
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
A new algorithm, Laplacian MinMax Discriminant Projection (LMMDP), is proposed in this paper +
for supervised dimensionality reduction. LMMDP aims at learning a discriminant linear +
transformation. Specifically, we define the within-class scatter and the between-class scatter using +
similarities which are based on pairwise distances in sample space. After the transformation, the +
considered pairwise samples within the same class are as close as possible, while those between +
classes are as far as possible. The structural information of classes is contained in the within-class +
and the between-class Laplacian matrices. Therefore, the discriminant projection subspace can be +
derived by controlling the structural evolution of Laplacian matrices. The performance on several +
data sets demonstrates the competence of the proposed algorithm. +
ACM Classification: I.5 +
Keywords: Manifold Learning; Dimensionality Reduction; Supervised Learning; Discriminant +
Analysis +
1. INTRODUCTION +
Dimensionality reduction has attracted tremendous attention in the pattern recognition community +
over the past few decades and many new algorithms have been developed. Among these algorithms, +
linear dimensionality reduction is widely spread for its simplicity and effectiveness. Principal +
component analysis (PCA), as a classic linear method for unsupervised dimensionality reduction, +
aims at learning a kind of subspaces where the maximum covariance of all training samples are +
preserved (Turk,1991). Locality Preserving Projections, as another typical approach for +
unsupervised dimensionality reduction, seeks projections to preserve the local structure of the +
sample space (He, 2005). However, unsupervised learning algorithms cannot properly model the +
underlying structures and characteristics of different classes (Zhao, 2007). Discriminant features are +
often obtained by supervised dimensionality reduction. Linear discriminant analysis (LDA) is one +
of the most popular supervised techniques for classification (Fukunaga, 1990; Belhumeur, 1997). +
LDA aims at learning discriminant subspace where the within-class scatter is minimized and the +
between-class scatter of samples is maximized at the same time. Many improved LDAs up to date +
have demonstrated competitive performance in object classification (Howland, 2004; Liu, 2007; +
Martinez, 2006; Wang and Tang, 2004a; Yang, 2005). +
Copyright© 2010, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this +
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its +
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc. +
Manuscript received: 15 April 2008 +
Communicating Editor: Tele Tan +
('3185576', 'Zhonglong Zheng', 'zhonglong zheng')
('3140483', 'Xueping Chang', 'xueping chang')
Email: zhonglong@sjtu.org +
7a9ef21a7f59a47ce53b1dff2dd49a8289bb5098
7af38f6dcfbe1cd89f2307776bcaa09c54c30a8beaig i C e Vii ad Beyd: +
Devee +
h . Weg +
Deae f C e Sciece +
ichiga Sae Uiveiy +
Ea aig  48824 +
Abac +
Thi chae id ce wha i caed he deveea aach  c e vii i +
aic a ad ai(cid:12)cia ieigece i geea.  dic e he c e baic aadig f de +
veig a ye ad i f daea iiai. The deveea aach i ivaed +
by h a cgiive devee f ifacy  ad hd. A deveea eaig ag +
ih i deeied befe he \bih" f he ye. Afe he \bih" i eabe he ye +
 ea ew ak wih  a eed f egaig. The aj ga f he deveea +
aach i  eaize a ai f geea  e eaig ha eabe achie  ef +
deveea eaig ve a g eid. S ch eaig i cd ced i a de iia  he +
way aia ad h a ea. The achie   ea diecy f ci   ey i +
  ea whie ieacig wih he evie ic dig h a eache.  hi eaig +
de deveig ieige ga f vai  ak i eaized h gh ea ie ieac +
weg@c. .ed +
7a81967598c2c0b3b3771c1af943efb1defd4482Do We Need More Training Data? +('32542103', 'Xiangxin Zhu', 'xiangxin zhu')
7ae0212d6bf8a067b468f2a78054c64ea6a577ceHuman Face Processing Techniques +
With Application To +
Large Scale Video Indexing +
DOCTOR OF +
PHILOSOPHY +
Department of Informatics, +
School of Multidisciplinary Sciences, +
The Graduate University for Advanced Studies (SOKENDAI
2006 (School Year) +
September 2006 +
7a9c317734acaf4b9bd8e07dd99221c457b94171Lorentzian Discriminant Projection and Its Applications +
Dalian University of Technology, Dalian 116024, China
2 Microsoft Research Asia, Beijing 100080, China +
('34469457', 'Risheng Liu', 'risheng liu')
('4642456', 'Zhixun Su', 'zhixun su')
('33383055', 'Zhouchen Lin', 'zhouchen lin')
('40290490', 'Xiaoyu Hou', 'xiaoyu hou')
zxsu@dlut.edu.cn +
7a0fb972e524cb9115cae655e24f2ae0cfe448e0Facial Expression Classification Using RBF AND Back-Propagation Neural Networks +
R.Q.Feitosa1,2, +
M.M.B.Vellasco1,2, +
D.T.Oliveira1, +
D.V.Andrade1, +
S.A.R.S.Maffra1 +
Catholic University of Rio de Janeiro, Brazil
Department of Electric Engineering +
State University of Rio de Janeiro, Brazil
Department of Computer Engineering +
e-mail: [raul, marley]@ele.puc -rio.br, tuler@inf.puc-rio.br, [diogo, sam]@tecgraf.puc-rio.br +
7ad77b6e727795a12fdacd1f328f4f904471233fSupervised Local Descriptor Learning +
for Human Action Recognition +
('34798935', 'Xiantong Zhen', 'xiantong zhen')
('40255667', 'Feng Zheng', 'feng zheng')
('40799321', 'Ling Shao', 'ling shao')
('1720247', 'Xianbin Cao', 'xianbin cao')
('40147776', 'Dan Xu', 'dan xu')
7a3d46f32f680144fd2ba261681b43b86b702b85Multi-label Learning Based Deep Transfer Neural Network for Facial Attribute +
Classification +
School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
bSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
aFujian Key Laboratory of Sensing and Computing for Smart City, +
cSchool of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
('41034942', 'Ni Zhuang', 'ni zhuang')
('40461734', 'Yan Yan', 'yan yan')
('47336404', 'Si Chen', 'si chen')
('37414077', 'Hanzi Wang', 'hanzi wang')
('1780381', 'Chunhua Shen', 'chunhua shen')
7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b
7a7f2403e3cc7207e76475e8f27a501c21320a44Emotion Recognition from Multi-Modal Information +
Department of Computer Science and Information Engineering, +
National Cheng Kung University, Tainan, Taiwan, R.O.C
('1681512', 'Chung-Hsien Wu', 'chung-hsien wu')
('1709777', 'Jen-Chun Lin', 'jen-chun lin')
('1691390', 'Wen-Li Wei', 'wen-li wei')
('2891156', 'Kuan-Chun Cheng', 'kuan-chun cheng')
E-mail: chunghsienwu@gmail.com, jenchunlin@gmail.com, lilijinjin@gmail.com, davidcheng817@gmail.com +
7aafeb9aab48fb2c34bed4b86755ac71e3f00338Article +
Real Time 3D Facial Movement Tracking Using a +
Monocular Camera +
School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai
Kumamoto University, 2-39-1 Kurokami, Kumamoto shi
Academic Editor: Vittorio M. N. Passaro +
Received: 9 May 2016; Accepted: 20 July 2016; Published: 25 July 2016 +
('2576907', 'Yanchao Dong', 'yanchao dong')
('1715838', 'Yanming Wang', 'yanming wang')
('2721582', 'Jiguang Yue', 'jiguang yue')
('3256415', 'Zhencheng Hu', 'zhencheng hu')
China; 11wanggyanming@tongji.edu.cn (Y.W.); yuejiguang@tongji.edu.cn (J.Y.) +
Japan; hu@cs.kumamoto-u.ac.jp +
* Correspondence: dongyanchao@tongji.edu.cn; Tel.: +86-21-6958-3806 +
7a84368ebb1a20cc0882237a4947efc81c56c0c0Robust and Efficient Parametric Face Alignment +
†Dept. of Computing, +
Imperial College London
180 Queen’s Gate +
London SW7 2AZ, U.K. +
∗EEMCS +
University of Twente
Drienerlolaan 5 +
7522 NB Enschede +
The Netherlands ∗ +
('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')
('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')
('1694605', 'Maja Pantic', 'maja pantic')
{gt204,s.zafeiriou,m.pantic}@imperial.ac.uk +
7aa4c16a8e1481629f16167dea313fe9256abb42978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
2981 +
ICASSP 2017 +
7a85b3ab0efb6b6fcb034ce13145156ee9d10598
7ab930146f4b5946ec59459f8473c700bcc89233
7a65fc9e78eff3ab6062707deaadde024d2fad40A Study on Apparent Age Estimation +
West Virginia University, Morgantown WV 26506, USA
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of
Computing Technology, CAS, Beijing, 100190, China +
('1736182', 'Yu Zhu', 'yu zhu')
('1698571', 'Yan Li', 'yan li')
('2501850', 'Guowang Mu', 'guowang mu')
('1822413', 'Guodong Guo', 'guodong guo')
yzhu4@mix.wvu.edu, yan.li@vipl.ict.ac.cn, guowang.mu@mail.wvu.edu , +
Guodong.Guo@mail.wvu.edu (corresponding author) +
7ad7897740e701eae455457ea74ac10f8b307bedRandom Subspace Two-dimensional LDA for Face Recognition* +('29980351', 'Garrett Bingham', 'garrett bingham')
7ac9aaafe4d74542832c273acf9d631cb8ea6193Deep Micro-Dictionary Learning and Coding Network +
University of Trento, Trento, Italy
2Department of Electrical Engineering, Hong Kong Polytechnic Unversity, Hong Kong, China +
3Lingxi Artificial Interlligence Co., Ltd, Shen Zhen, China +
4Computer Vision Laboratory, ´Ecole Polytechnique F´ed´erale de Lausanne, Lausanne, Switzerland +
University of Oxford, Oxford, UK
Texas State University, San Marcos, USA
('46666325', 'Hao Tang', 'hao tang')
('49567679', 'Heng Wei', 'heng wei')
('38505394', 'Wei Xiao', 'wei xiao')
('47824598', 'Wei Wang', 'wei wang')
('40147776', 'Dan Xu', 'dan xu')
('1703601', 'Nicu Sebe', 'nicu sebe')
{hao.tang, niculae.sebe}@unitn.it, 15102924d@connect.polyu.hk, xiaoweithu@163.com +
wei.wang@epfl.ch, danxu@robots.ox.ac.uk, y y34@txstate.edu +
7a1ce696e260899688cb705f243adf73c679f0d9Predicting Missing Demographic Information in +
Biometric Records using Label Propagation +
Techniques +
Department of Computer Science and Engineering +
Department of Computer Science and Engineering +
Michigan State University
East Lansing, Michigan 48824 +
Michigan State University
East Lansing, Michigan 48824 +
('3153117', 'Thomas Swearingen', 'thomas swearingen')
('1698707', 'Arun Ross', 'arun ross')
Email: swearin3@msu.edu +
Email: rossarun@msu.edu +
7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697Attend and Rectify: a Gated Attention +
Mechanism for Fine-Grained Recovery +
†Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB), +
Campus UAB, 08193 Bellaterra, Catalonia Spain +
‡Visual Tagging Services, Parc de Recerca, Campus UAB +
('1739551', 'Josep M. Gonfaus', 'josep m. gonfaus')
('7153363', 'Guillem Cucurull', 'guillem cucurull')
('1696387', 'F. Xavier Roca', 'f. xavier roca')
7aa062c6c90dba866273f5edd413075b90077b51I.J. Information Technology and Computer Science, 2017, 5, 40-51 +
Published Online May 2017 in MECS (http://www.mecs-press.org/) +
DOI: 10.5815/ijitcs.2017.05.06 +
Minimizing Separability: A Comparative Analysis +
of Illumination Compensation Techniques in Face +
Recognition +
Baze University, Abuja, Nigeria
('7392398', 'Chollette C. Olisah', 'chollette c. olisah')E-mail: chollette.olisah@bazeuniversity.edu.ng +
7a131fafa7058fb75fdca32d0529bc7cb50429bdBeyond Face Rotation: Global and Local Perception GAN for Photorealistic and +
Identity Preserving Frontal View Synthesis +
1National Laboratory of Pattern Recognition, CASIA +
2Center for Research on Intelligent Perception and Computing, CASIA +
University of Chinese Academy of Sciences, Beijing, China
('48241673', 'Rui Huang', 'rui huang')
('50202300', 'Shu Zhang', 'shu zhang')
('50290162', 'Tianyu Li', 'tianyu li')
('1705643', 'Ran He', 'ran he')
huangrui@cmu.edu, tianyu.lizard@gmail.com, {shu.zhang, rhe}@nlpr.ia.ac.cn +
1451e7b11e66c86104f9391b80d9fb422fb11c01IET Signal Processing +
Research Article +
Image privacy protection with secure JPEG +
transmorphing +
ISSN 1751-9675 +
Received on 30th December 2016 +
Revised 13th July 2017 +
Accepted on 11th August 2017 +
doi: 10.1049/iet-spr.2016.0756 +
www.ietdl.org +
1Multimedia Signal Processing Group, Electrical Engineering Department, EPFL, Station 11, Lausanne, Switzerland +
('1681498', 'Touradj Ebrahimi', 'touradj ebrahimi') E-mail: lin.yuan@epfl.ch +
14761b89152aa1fc280a33ea4d77b723df4e3864
14b87359f6874ff9b8ee234b18b418e57e75b762H. GAO ET AL: FACE ALIGNMENT USING A RANKING MODEL BASED ON RT +
Face Alignment Using a Ranking Model +
based on Regression Trees +
Hazım Kemal Ekenel1,2 +
Institute for Anthropomatics
Karlsruhe Institute of Technology
Karlsruhe, Germany +
2 Faculty of Computer and Informatics +
Istanbul Technical University
Istanbul, Turkey +
('1697965', 'Hua Gao', 'hua gao')
('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')
gao@kit.edu +
ekenel@kit.edu +
rainer.stiefelhagen@kit.edu +
14fdec563788af3202ce71c021dd8b300ae33051Social Influence Analysis based on Facial Emotions +
Department of Computer Science and Engineering +
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
('2159044', 'Pankaj Mishra', 'pankaj mishra')
('1679044', 'Takayuki Ito', 'takayuki ito')
{pankaj.mishra, rafik}@itolab.nitech.ac.jp, +
ito.takayuki@nitech.ac.jp +
142e5b4492bc83b36191be4445ef0b8b770bf4b0Discriminative Analysis of Brain Function +
at Resting-State for Attention-Deficit/Hyperactivity +
Disorder +
Y.F. Wang2, and T. Z. Jiang1 +
National Laboratory of Pattern Recognition, Institute of Automation
Chinese Academy of Sciences, P.R. China +
Institute of Mental Health, Peking University, P.R. China
('2339602', 'M. Liang', 'm. liang')czzhu@nlpr.ia.ac.cn +
14b016c7a87d142f4b9a0e6dc470dcfc073af517Modest proposals for improving biometric recognition papers +
NIST, Gaithersburg MD +
San Jose State University, San Jose, CA
('2145366', 'James R. Matey', 'james r. matey')
('34958610', 'George W. Quinn', 'george w. quinn')
('2136478', 'Patrick Grother', 'patrick grother')
('2326261', 'Elham Tabassi', 'elham tabassi')
('1707135', 'James L. Wayman', 'james l. wayman')
POC: james.matey@NIST.gov +
jlwayman@aol.com +
14b66748d7c8f3752dca23991254fca81b6ee86cA. RICHARD, J. GALL: A BOW-EQUIVALENT NEURAL NETWORK +
A BoW-equivalent Recurrent Neural Network +
for Action Recognition +
Institute of Computer Science III
University of Bonn
Bonn, Germany +
('32774629', 'Alexander Richard', 'alexander richard')
('2946643', 'Juergen Gall', 'juergen gall')
richard@iai.uni-bonn.de +
gall@iai.uni-bonn.de +
14e8dbc0db89ef722c3c198ae19bde58138e88bfHapFACS: an Open Source API/Software to +
Generate FACS-Based Expressions for ECAs +
Animation and for Corpus Generation +
Christine Lisetti +
School of Computing and Information Sciences +
School of Computing and Information Sciences +
Florida International University
Miami, Florida, USA +
Florida International University
Miami, Florida, USA +
('1809087', 'Reza Amini', 'reza amini')Email: ramin001@fiu.edu +
Email: lisetti@cis.fiu.edu +
14fa27234fa2112014eda23da16af606db7f3637
1459d4d16088379c3748322ab0835f50300d9a38Cross-Domain Visual Matching via Generalized +
Similarity Measure and Feature Learning +
('40461403', 'Liang Lin', 'liang lin')
('2749191', 'Guangrun Wang', 'guangrun wang')
('1724520', 'Wangmeng Zuo', 'wangmeng zuo')
('2340559', 'Xiangchu Feng', 'xiangchu feng')
('40396552', 'Lei Zhang', 'lei zhang')
14e949f5754f9e5160e8bfa3f1364dd92c2bb8d6
146bbf00298ee1caecde3d74e59a2b8773d2c0fcUniversity of Groningen
4D Unconstrained Real-time Face Recognition Using a Commodity Depthh Camera +
Schimbinschi, Florin; Wiering, Marco; Mohan, R.E.; Sheba, J.K. +
Published in: +
7th IEEE Conference on Industrial Electronics and Applications +
IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to +
cite from it. Please check the document version below. +
Document Version +
Final author's version (accepted by publisher, after peer review) +
Publication date: +
2012 +
Link to publication in University of Groningen/UMCG research database
Citation for published version (APA): +
Schimbinschi, F., Wiering, M., Mohan, R. E., & Sheba, J. K. (2012). 4D Unconstrained Real-time Face +
Recognition Using a Commodity Depthh Camera. In 7th IEEE Conference on Industrial Electronics and +
Applications : ICIEA +
Copyright +
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the +
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). +
Take-down policy +
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately +
and investigate your claim. +
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum. +
Download date: 03-09-2017 +
14e9158daf17985ccbb15c9cd31cf457e5551990ConvNets with Smooth Adaptive Activation Functions for +
Regression +
Tahsin M. Kurc1,2 +
Stony Brook University
2Oak Ridge National Laboratory +
Stony Brook University Hospital
('2321406', 'Le Hou', 'le hou')
('1686020', 'Dimitris Samaras', 'dimitris samaras')
('1735710', 'Joel H. Saltz', 'joel h. saltz')
('1755448', 'Yi Gao', 'yi gao')
14ce7635ff18318e7094417d0f92acbec6669f1cDeepFace: Closing the Gap to Human-Level Performance in Face Verification +
Marc’Aurelio Ranzato +
Facebook AI Group +
Menlo Park, CA, USA +
Tel Aviv University
Tel Aviv, Israel +
('2188620', 'Yaniv Taigman', 'yaniv taigman')
('2909406', 'Ming Yang', 'ming yang')
('1776343', 'Lior Wolf', 'lior wolf')
{yaniv, mingyang, ranzato}@fb.com +
wolf@cs.tau.ac.il +
1450296fb936d666f2f11454cc8f0108e2306741Learning to Discover Cross-Domain Relations +
with Generative Adversarial Networks +
('2509132', 'Taeksoo Kim', 'taeksoo kim')
140438a77a771a8fb656b39a78ff488066eb6b50Localizing Parts of Faces Using a Consensus of Exemplars +
(cid:63)Kriegman-Belhumeur Vision Technologies∗ +
University of Maryland, College Park
University of California, San Diego
Columbia University
('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')
('34734622', 'David W. Jacobs', 'david w. jacobs')
('1765887', 'David J. Kriegman', 'david j. kriegman')
('40631426', 'Neeraj Kumar', 'neeraj kumar')
143bee9120bcd7df29a0f2ad6f0f0abfb23977b8Shared Gaussian Process Latent Variable Model +
for Multi-view Facial Expression Recognition +
Imperial College London, UK
EEMCS, University of Twente, The Netherlands
('2308430', 'Stefanos Eleftheriadis', 'stefanos eleftheriadis')
('1729713', 'Ognjen Rudovic', 'ognjen rudovic')
('1694605', 'Maja Pantic', 'maja pantic')
14d72dc9f78d65534c68c3ed57305f14bd4b5753Exploiting Multi-Grain Ranking Constraints for Precisely Searching +
Visually-similar Vehicles +
1National Engineering Laboratory for Video Technology, School of EE&CS, +
Peking University, Beijing, China
2Cooperative Medianet Innovation Center, China +
Beijing Institute of Technology, China
('13318784', 'Ke Yan', 'ke yan')
('5765799', 'Yaowei Wang', 'yaowei wang')
('1687907', 'Wei Zeng', 'wei zeng')
('1705972', 'Yonghong Tian', 'yonghong tian')
('34097174', 'Tiejun Huang', 'tiejun huang')
{keyan, yhtian, weizeng, tjhuang}@pku.edu.cn;yaoweiwang@bit.edu.cn +
14b162c2581aea1c0ffe84e7e9273ab075820f52Training Object Class Detectors from Eye Tracking Data +
School of Informatics, University of Edinburgh, UK
('1749373', 'Dim P. Papadopoulos', 'dim p. papadopoulos')
('2505673', 'Frank Keller', 'frank keller')
('1749692', 'Vittorio Ferrari', 'vittorio ferrari')
14ff9c89f00dacc8e0c13c94f9fadcd90e4e604dCorrelation Filter Cascade for Facial Landmark Localization +
Pattern Analysis and Computer Vision Department +
School of Computing +
Istituto Italiano di Tecnologia, Genova, Italy +
National University of Singapore, Singapore
('2860592', 'Hamed Kiani Galoogahi', 'hamed kiani galoogahi')
('1715286', 'Terence Sim', 'terence sim')
hamed.kiani@iit.it +
tsim@comp.nus.edu.sg +
14fdce01c958043140e3af0a7f274517b235adf3
14b69626b64106bff20e17cf8681790254d1e81cHybrid Super Vector with Improved Dense Trajectories for Action Recognition +
Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China
Southwest Jiaotong University, Chengdu, P.R. China
The Chinese University of Hong Kong, Hong Kong
('1766837', 'Xiaojiang Peng', 'xiaojiang peng')
('40795365', 'LiMin Wang', 'limin wang')
('2985266', 'Zhuowei Cai', 'zhuowei cai')
('40285012', 'Yu Qiao', 'yu qiao')
('39657084', 'Qiang Peng', 'qiang peng')
fxiaojiangp,07wanglimin,iamcaizhuoweig@gmail.com, yu.qiao@siat.ac.cn, qpeng@swjtu.edu.cn +
14070478b8f0d84e5597c3e67c30af91b5c3a917Detecting Social Actions of Fruit Flies +
California Institute of Technology, Pasadena, California, USA
Howard Hughes Medical Institute (HHMI
('2948199', 'Eyrun Eyjolfsdottir', 'eyrun eyjolfsdottir')
('3251767', 'Steve Branson', 'steve branson')
('2232848', 'Xavier P. Burgos-Artizzu', 'xavier p. burgos-artizzu')
('2954028', 'Eric D. Hoopfer', 'eric d. hoopfer')
('20299567', 'Jonathan Schor', 'jonathan schor')
('30334638', 'David J. Anderson', 'david j. anderson')
('1690922', 'Pietro Perona', 'pietro perona')
14fb3283d4e37760b7dc044a1e2906e3cbf4d23aWeak Attributes for Large-Scale Image Retrieval∗ +
Columbia University, New York, NY
('1815972', 'Felix X. Yu', 'felix x. yu')
('1725599', 'Rongrong Ji', 'rongrong ji')
('3138710', 'Ming-Hen Tsai', 'ming-hen tsai')
('35984288', 'Guangnan Ye', 'guangnan ye')
('9546964', 'Shih-Fu Chang', 'shih-fu chang')
y{yuxinnan, rrji, yegn, sfchang}@ee.columbia.edu +
xminghen@cs.columbia.edu +
14811696e75ce09fd84b75fdd0569c241ae02f12Margin-Based Discriminant Dimensionality Reduction for Visual Recognition +
Eskisehir Osmangazi University
Laboratoire Jean Kuntzmann +
Meselik Kampusu 26480 Eskisehir Turkey +
B.P. 53, 38041 Grenoble Cedex 9, France +
Fr´ed´eric Jurie +
University of Caen
Universit´e de Caen - F-14032 Caen, France +
Rowan University
201 Mullica Hill Road, Glassboro NJ USA +
('2277308', 'Hakan Cevikalp', 'hakan cevikalp')
('1756114', 'Bill Triggs', 'bill triggs')
('1780024', 'Robi Polikar', 'robi polikar')
Hakan.Cevikalp@gmail.com +
Bill.Triggs@imag.fr +
Frederic.Jurie@unicaen.fr +
polikar@rowan.edu +
141eab5f7e164e4ef40dd7bc19df9c31bd200c5e
14e759cb019aaf812d6ac049fde54f40c4ed1468Subspace Methods +
Synonyms +
{ Multiple similarity method +
Related Concepts +
{ Principal component analysis (PCA) +
{ Subspace analysis +
{ Dimensionality reduction +
De(cid:12)nition +
Subspace analysis in computer vision is a generic name to describe a general +
framework for comparison and classification of subspaces. A typical approach in +
subspace analysis is the subspace method (SM) that classify an input pattern +
vector into several classes based on the minimum distance or angle between the +
input pattern vector and each class subspace, where a class subspace corresponds +
to the distribution of pattern vectors of the class in high dimensional vector +
space. +
Background +
Comparison and classification of subspaces has been one of the central prob- +
lems in computer vision, where an image set of an object to be classified is +
compactly represented by a subspace in high dimensional vector space. +
The subspace method is one of the most effective classification method in +
subspace analysis, which was developed by two Japanese researchers, Watanabe +
and Iijima around 1970, independently [1, 2]. Watanabe and Iijima named their +
methods the CLAFIC [3] and the multiple similarity method [4], respectively. +
The concept of the subspace method is derived from the observation that pat- +
terns belonging to a class forms a compact cluster in high dimensional vector +
space, where, for example, a w×h pixels image pattern is usually represented as a +
vector in w×h-dimensional vector space. The compact cluster can be represented +
by a subspace, which is generated by using Karhunen-Lo`eve (KL) expansion, also +
known as the principal component analysis (PCA). Note that a subspace is gen- +
erated for each class, unlike the Eigenface Method [5] in which only one subspace +
(called eigenspace) is generated. +
The SM has been known as one of the most useful methods in pattern recog- +
nition field, since its algorithm is very simple and it can handle classification +
of multiple classes. However, its classification performance was not sufficient for +
many applications in practice, because class subspaces are generated indepen- +
dently of each other [1]. There is no reason to assume a priori that each class +
('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')
1442319de86d171ce9595b20866ec865003e66fcVision-Based Fall Detection with Convolutional +
Neural Networks +
DeustoTech - University of Deusto
Avenida de las Universidades, 24 - 48007, Bilbao, Spain +
2 Dept. of Computer Science and Artificial Intelligence, Basque +
Country University, San Sebastian, Spain
P. Manuel Lardizabal, 1 - 20018, San Sebastian, Spain +
3 Ikerbasque, Basque Foundation for Science, Bilbao, Spain +
Maria Diaz de Haro, 3 - 48013 Bilbao, Spain +
4 Donostia International Physics Center (DIPC), San Sebastian, Spain +
P. Manuel Lardizabal, 4 - 20018, San Sebastian, Spain +
('2481918', 'Gorka Azkune', 'gorka azkune')
('3147227', 'Ignacio Arganda-Carreras', 'ignacio arganda-carreras')
{adrian.nunez@deusto.es, gorka.azkune@deusto.es, ignacio.arganda@ehu.es} +
146a7ecc7e34b85276dd0275c337eff6ba6ef8c0This is a pre-print of the original paper submitted for review in FG 2017. +
AFFACT - Alignment Free Facial Attribute Classification Technique +
Vision and Security Technology (VAST) Lab, +
University of Colorado Colorado Springs
∗ authors with equal contribution +
('2974221', 'Andras Rozsa', 'andras rozsa')
('1760117', 'Terrance E. Boult', 'terrance e. boult')
{mgunther,arozsa,tboult}@vast.uccs.edu +
148eb413bede35487198ce7851997bf8721ea2d6People Search in Surveillance Videos +
Four Eyes Lab, UCSB +
IBM Research +
IBM Research +
IBM Research +
Four Eyes Lab, UCSB +
INTRODUCTION +
1. +
In traditional surveillance scenarios, users are required to +
watch video footage corresponding to extended periods of +
time in order to find events of interest. However, this pro- +
cess is resource-consuming, and suffers from high costs of +
employing security personnel. The field of intelligent vi- +
sual surveillance [2] seeks to address these issues by applying +
computer vision techniques to automatically detect specific +
events in long video streams. The events can then be pre- +
sented to the user or be indexed into a database to allow +
queries such as “show me the red cars that entered a given +
parking lot from 7pm to 9pm on Monday” or “show me the +
faces of people who left the city’s train station last week.” +
In this work, we are interested in analyzing people, by ex- +
tracting information that can be used to search for them in +
surveillance videos. Current research on this topic focuses +
on approaches based on face recognition, where the goal is +
to establish the identity of a person given an image of a +
face. However, face recognition is still a very challenging +
problem, especially in low resolution images with variations +
in pose and lighting, which is often the case in surveillance +
data. State-of-the-art face recognition systems [1] require +
a fair amount of resolution in order to produce reliable re- +
sults, but in many cases this level of detail is not available +
in surveillance applications. +
We approach the problem in an alternative way, by avoiding +
face recognition and proposing a framework for finding peo- +
ple based on parsing the human body and exploiting part +
attributes. Those include visual attributes such as facial hair +
type (beards, mustaches, absence of facial hair), type of eye- +
wear (sunglasses, eyeglasses, absence of glasses), hair type +
(baldness, hair, wearing a hat), and clothing color. While +
face recognition is still a difficult problem, accurate and ef- +
ficient face detectors1 based on learning approaches [6] are +
available. Those have been demonstrated to work well on +
challenging low-resolution images, with variations in pose +
and lighting. In our method, we employ this technology to +
design detectors for facial attributes from large sets of train- +
ing data. +
1The face detection problem consists of localizing faces in +
images, while face recognition aims to establish the identity +
of a person given an image of a face. Face detection is a +
challenging problem, but it is arguably not as complex as +
face recognition. +
Our technique falls into the category of short term recogni- +
tion methods, taking advantage of features present in brief +
intervals in time, such as clothing color, hairstyle, and makeup, +
which are generally considered an annoyance in face recogni- +
tion methods. There are several applications that naturally +
fit within a short term recognition framework. An example +
is in criminal investigation, when the police are interested in +
locating a suspect. In those cases, eyewitnesses typically fill +
out a suspect description form, where they indicate personal +
traits of the suspect as seen at the moment when the crime +
was committed. Those include facial hair type, hair color, +
clothing type, etc. Based on that description, the police +
manually scan the entire video archive looking for a person +
with similar characteristics. This process is tedious and time +
consuming, and could be drastically accelerated by the use +
of our technique. Another application is on finding missing +
people. Parents looking for their children in an amusement +
park could provide a description including clothing and eye- +
wear type, and videos from multiple cameras in the park +
would then be automatically searched. +
('2000950', 'Daniel A. Vaquero', 'daniel a. vaquero')
('1723233', 'Rogerio S. Feris', 'rogerio s. feris')
('11081274', 'Lisa Brown', 'lisa brown')
('1690709', 'Arun Hampapur', 'arun hampapur')
('1752714', 'Matthew Turk', 'matthew turk')
daniel@cs.ucsb.edu +
rsferis@us.ibm.com +
lisabr@us.ibm.com +
arunh@us.ibm.com +
mturk@cs.ucsb.edu +
1462bc73834e070201acd6e3eaddd23ce3c1a114International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 4, April 2014 +
FACE AUTHENTICATION /RECOGNITION +
SYSTEM FOR FORENSIC APPLICATION +
USING SKETCH BASED ON THE SIFT +
FEATURES APPROACH +
Department of Electronics Engineering KITS, +
RTMNU Nagpur University, India
+
14014a1bdeb5d63563b68b52593e3ac1e3ce7312ALNAJAR et al.: EXPRESSION-INVARIANT AGE ESTIMATION +
Expression-Invariant Age Estimation +
Jose Alvarez2 +
ISLA Lab, Informatics Institute
University of Amsterdam
Amsterdam, The Netherlands +
2 NICTA +
Canberra ACT 2601 +
Australia +
('1765602', 'Fares Alnajar', 'fares alnajar')
('39793067', 'Zhongyu Lou', 'zhongyu lou')
('1695527', 'Theo Gevers', 'theo gevers')
F.alnajar@uva.nl +
z.lou@uva.nl +
jose.alvarez@nicta.com.au +
th.gevers@uva.nl +
1473a233465ea664031d985e10e21de927314c94
140c95e53c619eac594d70f6369f518adfea12efPushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A +
The development of accurate and scalable unconstrained face recogni- +
tion algorithms is a long term goal of the biometrics and computer vision +
communities. The term “unconstrained” implies a system can perform suc- +
cessful identifications regardless of face image capture presentation (illumi- +
nation, sensor, compression) or subject conditions (facial pose, expression, +
occlusion). While automatic, as well as human, face identification in certain +
scenarios may forever be elusive, such as when a face is heavily occluded or +
captured at very low resolutions, there still remains a large gap between au- +
tomated systems and human performance on familiar faces. In order to close +
this gap, large annotated sets of imagery are needed that are representative +
of the end goals of unconstrained face recognition. This will help continue +
to push the frontiers of unconstrained face detection and recognition, which +
are the primary goals of the IARPA Janus program. +
The current state of the art in unconstrained face recognition is high +
accuracy (roughly 99% true accept rate at a false accept rate of 1.0%) on +
faces that can be detected with a commodity face detectors, but unknown +
accuracy on other faces. Despite the fact that face detection and recognition +
research generally has advanced somewhat independently, the frontal face +
detector filtering approach used for key in the wild face recognition datasets +
means that progress in face recognition is currently hampered by progress +
in face detection. Hence, a major need exists for a face recognition dataset +
that captures as wide of a range of variations as possible to offer challenges +
to both face detection as well as face recognition. +
In this paper we introduce the IARPA Janus Benchmark A (IJB-A), +
which is publicly available for download. The IJB-A contains images and +
videos from 500 subjects captured from “in the wild” environment. All la- +
belled subjects have been manually localized with bounding boxes for face +
detection, as well as fiducial landmarks for the center of the two eyes (if +
visible) and base of the nose. Manual bounding box annotations for all non- +
labelled subjects (i.e., other persons captured in the imagery) have been cap- +
tured as well. All imagery is Creative Commons licensed, which is a license +
that allows open re-distribution provided proper attribution is made to the +
data creator. The subjects have been intentionally sampled to contain wider +
geographic distribution than previous datasets. Recognition and detection +
protocols are provided which are motivated by operational deployments of +
face recognition systems. An example of images and video from IJB-A can +
be found in Figure 3. +
The IJB-A dataset has the following claimed contributions: (i) The most +
unconstrained database released to date; (ii) The first joint face detection and +
face recognition benchmark dataset collected in the wild; (iii) Meta-data +
providing subject gender and skin color, and occlusion (eyes, mouth/nose, +
and forehead), facial hear, and coarse pose information for each imagery +
instance; (iv) Widest geographic distribution of any public face dataset; (v) +
The first in the wild dataset to contain a mixture of images and videos; (vi) +
Clear authority for re-distribution; (vii) Protocols for identification (search) +
and verification (compare); (viii) Baseline accuracies from off the shelf de- +
tectors and recognition algorithms; and (ix) Protocols for both template and +
model-based face recognition. +
Every subject in the dataset contains at least five images and one video. +
IJB-A consists of a total of 5,712 images and 2,085 videos, with an average +
of 11.4 images and 4.2 videos per subject. +
('1885566', 'Emma Taborsky', 'emma taborsky')
('1917247', 'Austin Blanton', 'austin blanton')
('39403529', 'Jordan Cheney', 'jordan cheney')
('2040584', 'Kristen Allen', 'kristen allen')
('2136478', 'Patrick Grother', 'patrick grother')
('2578654', 'Alan Mah', 'alan mah')
('6680444', 'Anil K. Jain', 'anil k. jain')
14418ae9a6a8de2b428acb2c00064da129632f3eDiscovering the Spatial Extent of Relative Attributes +
University of California Davis
Introduction +
Visual attributes are human-nameable object properties that serve as an in- +
termediate representation between low-level image features and high-level +
objects or scenes [3, 4, 5]. They can offer a great gateway for human- +
object interaction. For example, when we want to interact with an unfa- +
miliar object, it is likely that we first infer its attributes from its appear- +
ance (e.g., is it furry or slippery?) and then decide how to interact with +
it. Thus, modelling visual attributes would be valuable for understanding +
human-object interactions. Researchers have developed systems that model +
binary attributes [3, 4, 5]—a property’s presence/absence (e.g., “is furry/not +
furry”)—and relative attributes [6, 8]—a property’s relative strength (e.g., +
“furrier than”). In this work, we focus on relative attributes since they of- +
ten describe object properties better than binary ones [6], especially if the +
property exhibits large appearance variations (see Fig. 1). +
While most existing work use global image representations to model +
attributes (e.g., [5, 6]), recent work demonstrates the effectiveness of using +
localized part-based representations [1, 7, 9]. They show that attributes—be +
it global (“is male”) or local (“smiling”)—can be more accurately learned +
by first bringing the underlying object-parts into correspondence, and then +
modeling the attributes conditioned on those object-parts. To compute such +
correspondences, pre-trained part detectors are used (e.g., faces [7] and peo- +
ple [1, 9]). However, because the part detectors are trained independently of +
the attribute, the learned parts may not necessarily be useful for modeling +
the desired attribute. Furthermore, some objects do not naturally have well- +
defined parts, which means modeling the part-based detector itself becomes +
a challenge. The approach of [2] address these issues by discovering useful +
and localized attributes. However, it requires a human-in-the-loop, which +
limits its scalability. +
So, how can we develop robust visual representations for relative at- +
tributes, without expensive and potentially uninformative pre-trained part +
detectors or humans-in-the-loop? To do so, we will need to automatically +
identify the visual patterns in each image whose appearance correlates with +
attribute strength. +
In this work, we propose a method that automatically +
discovers the spatial extent of relative attributes in images across varying at- +
tribute strengths. The main idea is to leverage the fact that the visual concept +
underlying the attribute undergos a gradual change in appearance across +
the attribute spectrum. In this way, we propose to discover a set of local, +
transitive connections (“visual chains”) that establish correspondences be- +
tween the same object-part, even when its appearance changes drastically +
over long ranges. Given the candidate set of visual chains, we then automat- +
ically select those that together best model the changing appearance of the +
attribute across the attribute spectrum. Importantly, by combining a subset +
of the most-informative discovered visual chains, our approach aims to dis- +
cover the full spatial extent of the attribute, whether it be concentrated on a +
particular object-part or spread across a larger spatial area. +
2 Approach +
Given an image collection S={I1, . . . ,IN} with pairwise ordered and un- +
ordered image-level relative comparisons of an attribute (i.e., in the form of +
Ω(Ii)>Ω(Ij) and Ω(Ii)≈Ω(Ij), where i, j∈{1, . . . ,N} and Ω(Ii) is Ii’s at- +
tribute strength), our goal is to discover the spatial extent of the attribute in +
each image and learn a ranking function that predicts the attribute strength +
for any new image. +
There are three main steps to our approach: (1) initializing a candidate +
set of visual chains; (2) iteratively growing each visual chain along the at- +
tribute spectrum; and (3) ranking the chains according to their relevance to +
the target attribute to create an ensemble image representation. +
Initializing candidate visual chains: A visual attribute can potentially +
exhibit large appearance variations across the attribute spectrum. Take the +
(top) Given pairs of images, each ordered according to rela- +
Figure 1: +
tive attribute strength (e.g., “higher/lower-at-the-heel”), (bottom) our ap- +
proach automatically discovers the attribute’s spatial extent in each image, +
and learns a ranking function that orders the image collection according to +
predicted attribute strength. +
high-at-the-heel attribute as an example: high-heeled shoes have strong +
vertical gradients while flat-heeled shoes have strong horizontal gradients. +
However, the attribute’s appearance will be quite similar in any local region +
of the attribute spectrum. Therefore, we start with multiple short but visu- +
ally homogeneous chains of image regions in a local region of the attribute +
spectrum, and smoothly grow them out to cover the entire spectrum. +
We start by first sorting the images in S in descending order of predicted +
attribute strength—with ˜I1 as the strongest image and ˜IN as the weakest— +
using a linear SVM-ranker trained with global image features. To initialize +
a single chain, we take the top Ninit images and select a set of patches (one +
from each image) whose appearance varies smoothly with its neighbors in +
the chain, by minimizing the following objective function: +
Ninit∑ +
||φ (Pi)− φ (Pi−1)||2, +
i=2 +
min +
C(P) = +
(1) +
where φ (Pi) is the appearance feature of patch Pi in ˜Ii, and P ={P1, . . . ,PNinit} +
is the set of patches in a chain. Candidate patches for each image are densely +
sampled at multiple scales. This objective enforces local smoothness: the +
appearances of the patches in the images with neighboring indices should +
vary smoothly within a chain. Given the objective’s chain structure, we can +
efficiently find its global optimum using Dynamic Programming (DP). +
In the backtracking stage of DP, we obtain a large number of K-best +
solutions. We then perform a chain-level non-maximum-suppression (NMS) +
to remove redundant chains to retain a set of Kinit diverse candidate chains. +
Iteratively growing each visual chain: The initial set of Kinit chains are +
visually homogeneous but cover only a tiny fraction of the attribute spec- +
trum. We next iteratively grow each chain to cover the entire attribute spec- +
trum by training a model that adapts to the attribute’s smoothly changing +
appearance. Specifically, for each chain, we iteratively train a detector and +
in each iteration and use it to grow the chain while simultaneously refining +
it. To grow the chain, we again minimize Eqn. 1 but now with an additional +
term: +
t∗Niter∑ +
t∗Niter∑ +
wT +
t φ (Pi), +
||φ (Pi)− φ (Pi−1)||2 − λ +
i=2 +
i=1 +
min +
C(P) = +
(2) +
where wt is a linear SVM detector learned from the patches in the chain +
from the (t−1)-th iteration, P = {P1, . . . ,Pt∗Niter} is the set of patches in a +
chain, and Niter is the number of images considered in each iteration. As +
before, the first term enforces local smoothness. The second term is the +
detection term: since the ordering of the images in the chain is only a rough +
estimate and thus possibly noisy, wt prevents the inference from drifting in +
the cases where local smoothness does not strictly hold. λ is a constant that +
trades-off the two terms. We use the same DP inference procedure used to +
optimize Eqn. 1. +
Once P is found, we train a new detector with all of its patches as posi- +
tive instances. The negative instances consist of randomly sampled patches +
strongweak,Attribute: “high-at-the-heel”,,
('2299381', 'Fanyi Xiao', 'fanyi xiao')
('1883898', 'Yong Jae Lee', 'yong jae lee')
14ba910c46d659871843b31d5be6cba59843a8b8Face Recognition in Movie Trailers via Mean Sequence Sparse +
Representation-based Classification +
Center for Research in Computer Vision, University of Central Florida, Orlando, FL
('16131262', 'Enrique G. Ortiz', 'enrique g. ortiz')
('2003981', 'Alan Wright', 'alan wright')
('1745480', 'Mubarak Shah', 'mubarak shah')
eortiz@cs.ucf.edu, alanwright@knights.ucf.edu, shah@crcv.ucf.edu +
1467c4ab821c3b340abe05a1b13a19318ebbce98Multitask and Transfer Learning for +
Multi-Aspect Data +
Bernardino Romera Paredes +
UCL +
A dissertation submitted in partial fulfillment +
of the requirements for the degree of +
Doctor of Philosophy of University College London
14318d2b5f2cf731134a6964d8193ad761d86942FaceDNA: Intelligent Face Recognition +
System with Intel RealSense 3D Camera +
National Taiwan University
+
('1678531', 'Dan Ye', 'dan ye')
('40063567', 'Shih-Wei Liao', 'shih-wei liao')
142dcfc3c62b1f30a13f1f49c608be3e62033042Adaptive Region Pooling for Object Detection +
UC Merced +
Qualcomm Research, San Diego +
UC Merced +
('2580349', 'Yi-Hsuan Tsai', 'yi-hsuan tsai')
('1872879', 'Onur C. Hamsici', 'onur c. hamsici')
('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')
ytsai2@ucmerced.edu +
ohamsici@qti.qualcomm.com +
mhyang@ucmerced.edu +
14c0f9dc9373bea1e27b11fa0594c86c9e632c8dAdaptive Exponential Smoothing for Online Filtering of Pixel Prediction Maps +
School of Electrical and Electronic Engineering, +
Nanyang Technological University, Singapore
('3064975', 'Kang Dang', 'kang dang')
('1691251', 'Jiong Yang', 'jiong yang')
('34316743', 'Junsong Yuan', 'junsong yuan')
{dang0025, yang0374}@e.ntu.edu.sg, jsyuan@ntu.edu.sg +
1439bf9ba7ff97df9a2da6dae4784e68794da184LGE-KSVD: Flexible Dictionary Learning for Optimized Sparse +
Representation Classification +
Raymond Ptucha +
Rochester Institute of Technology
Rochester, NY, USA +
rwpeec@rit.edu +
141768ab49a5a9f5adcf0cf7e43a23471a7e5d82Relative Facial Action Unit Detection +
Department of Computing and Software +
McMaster University
Hamilton, Canada +
('1736464', 'Mahmoud Khademi', 'mahmoud khademi')khademm@mcmaster.ca +
14e428f2ff3dc5cf96e5742eedb156c1ea12ece1Facial Expression Recognition Using Neural Network Trained with Zernike +
Moments +
Dept. Génie-Electrique +
Université M.C.M Souk-Ahras +
Souk-Ahras, Algeria +
('3112602', 'Mohammed Saaidia', 'mohammed saaidia')mohamed.saaidia@univ-soukahras.dz +
14bca107bb25c4dce89210049bf39ecd55f18568X.HUANG:EMOTIONRECOGNITIONFROMFACIALIMAGES +
Emotion recognition from facial images with +
arbitrary views +
Center for Machine Vision Research +
Department of Computer Science and +
Engineering +
University of Oulu
Oulu, Finland +
('18780812', 'Xiaohua Huang', 'xiaohua huang')
('1757287', 'Guoying Zhao', 'guoying zhao')
('1714724', 'Matti Pietikäinen', 'matti pietikäinen')
huang.xiaohua@ee.oulu.fi +
gyzhao@ee.oulu.fi +
mkp@ee.oulu.fi +
14a5feadd4209d21fa308e7a942967ea7c13b7b6978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1025 +
ICASSP 2012 +
14fee990a372bcc4cb6dc024ab7fc4ecf09dba2bModeling Spatio-Temporal Human Track Structure for Action +
Localization +
('2926143', 'Anton Osokin', 'anton osokin')
14ee4948be56caeb30aa3b94968ce663e7496ce4Jang, Y; Gunes, H; Patras, I +
© Copyright 2018 IEEE +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
more information contact scholarlycommunications@qmul.ac.uk +
8ec82da82416bb8da8cdf2140c740e1574eaf84fCHUNG AND ZISSERMAN: BMVC AUTHOR GUIDELINES +
Lip Reading in Profile +
http://www.robots.ox.ac.uk/~joon +
http://www.robots.ox.ac.uk/~az +
Visual Geometry Group +
Department of Engineering Science +
University of Oxford
Oxford, UK +
('2863890', 'Joon Son Chung', 'joon son chung')
('1688869', 'Andrew Zisserman', 'andrew zisserman')
8ee62f7d59aa949b4a943453824e03f4ce19e500Robust Head-Pose Estimation Based on +
Partially-Latent Mixture of Linear Regression +
∗INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +
†INRIA Rennes Bretagne Atlantique, Rennes, France +
('2188660', 'Vincent Drouard', 'vincent drouard')
('1794229', 'Radu Horaud', 'radu horaud')
('3307172', 'Antoine Deleforge', 'antoine deleforge')
('1690536', 'Georgios Evangelidis', 'georgios evangelidis')
8e0ede53dc94a4bfcf1238869bf1113f2a37b667Joint Patch and Multi-label Learning for Facial Action Unit Detection +
School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
University of Pittsburgh, Pittsburgh, PA
('2393320', 'Kaili Zhao', 'kaili zhao')
('1720776', 'Honggang Zhang', 'honggang zhang')
8e33183a0ed7141aa4fa9d87ef3be334727c76c0– COS429 Written Report, Fall 2017 – +
Robustness of Face Recognition to Image Manipulations +
1. Motivation +
We can often recognize pictures of people we know even if the image has low resolution or obscures +
part of the face, if the camera angle resulted in a distorted image of the subject’s face, or if the +
subject has aged or put on makeup since we last saw them. Although this is a simple recognition task +
for a human, when we think about how we accomplish this task, it seems non-trivial for computer +
algorithms to recognize faces despite visual changes. +
Computer facial recognition is relied upon for many application where accuracy is important. +
Facial recognition systems have applications ranging from airport security and suspect identification +
to personal device authentication and face tagging [7]. In these real-world applications, the system +
must continue to recognize images of a person who looks slightly different due to the passage of +
time, a change in environment, or a difference in clothing. +
Therefore, we are interested in investigating face recognition algorithms and their robustness to +
image changes resulting from realistically plausible manipulations. Furthermore, we are curious +
about whether the impact of image manipulations on computer algorithms’ face recognition ability +
mirrors related insights from neuroscience about humans’ face recognition abilities. +
2. Goal +
In this project, we implement both face recognition algorithms and image manipulations. We then +
analyze the impact of each image manipulation on the recognition accuracy each algorithm, and +
how these influences depend on the accuracy of each algorithm on non-manipulated images. +
3. Background and Related Work +
Researchers have developed a wide variety of face recognition algorithms, such as traditional +
statistical methods such as PCA, more opaque methods such as deep neural networks, and proprietary +
systems used by governments and corporations [1][13][14]. +
Similarly, others have developed image manipulations using principles from linear algebra, such +
as mimicking distortions from lens distortions, as well as using neural networks, such as a system +
for transforming images according to specified characteristics [12][16]. +
Furthermore, researchers in psychology have studied face recognition in humans. A study of +
“super-recognizers” (people with extraordinarily high powers of face recognition) and “developmen- +
tal prosopagnosics” (people with severely impaired face recognition abilities) found that inverting +
images of faces impaired recognition ability more for people with stronger face recognition abilities +
[11]. This could indicate that image manipulations tend to equalize face recognition abilities, and +
we investigate whether this is the case with the manipulations and face recognition algorithms we +
test. +
('1897270', 'Cathy Chen', 'cathy chen')
8e3d0b401dec8818cd0245c540c6bc032f169a1dMcGan: Mean and Covariance Feature Matching GAN +('2211263', 'Youssef Mroueh', 'youssef mroueh')
8e3c97e420e0112c043929087d6456d8ab61e95cSAFDARNEJAD et al.: ROBUST GLOBAL MOTION COMPENSATION +
Robust Global Motion Compensation in +
Presence of Predominant Foreground +
https://www.msu.edu/~safdarne/ +
http://www.cse.msu.edu/~liuxm/ +
http://www.egr.msu.edu/ndel/profile/lalita-udpa +
Michigan State University
East Lansing +
Michigan, USA +
('2941187', 'Seyed Morteza Safdarnejad', 'seyed morteza safdarnejad')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
('1938832', 'Lalita Udpa', 'lalita udpa')
8e0ab1b08964393e4f9f42ca037220fe98aad7acUV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face +
Recognition +
Imperial College London
('3234063', 'Jiankang Deng', 'jiankang deng')
('1902288', 'Shiyang Cheng', 'shiyang cheng')
('4091869', 'Niannan Xue', 'niannan xue')
('47943220', 'Yuxiang Zhou', 'yuxiang zhou')
j.deng16, shiyang.cheng11,n.xue15,yuxiang.zhou10,s.zafeiriou@imperial.ac.uk +
8e94ed0d7606408a0833e69c3185d6dcbe22bbbe© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE +
must be obtained for all other uses, in any current or future media, including +
reprinting/republishing this material for advertising or promotional purposes, +
creating new collective works, for resale or redistribution to servers or lists, or +
reuse of any copyrighted component of this work in other works. +
Pre-print of article that will appear at WACV 2012. +
8e461978359b056d1b4770508e7a567dbed49776LOMo: Latent Ordinal Model for Facial Analysis in Videos +
Marian Bartlett1,∗,‡ +
1UCSD, USA +
2MPI for Informatics, Germany +
3IIT Kanpur, India +
('39707211', 'Karan Sikka', 'karan sikka')
('39396475', 'Gaurav Sharma', 'gaurav sharma')
8e4808e71c9b9f852dc9558d7ef41566639137f3Adversarial Generative Nets: Neural Network +
Attacks on State-of-the-Art Face Recognition +
Carnegie Mellon University
University of North Carolina at Chapel Hill
('36301492', 'Mahmood Sharif', 'mahmood sharif')
('38181360', 'Sruti Bhagavatula', 'sruti bhagavatula')
('38572260', 'Lujo Bauer', 'lujo bauer')
('1746214', 'Michael K. Reiter', 'michael k. reiter')
{mahmoods, srutib, lbauer}@cmu.edu +
reiter@cs.unc.edu +
8ea30ade85880b94b74b56a9bac013585cb4c34bFROM TURBO HIDDEN MARKOV MODELS TO TURBO STATE-SPACE MODELS +
Institut Eur´ecom +
Multimedia Communications Department +
BP 193, 06904 Sophia Antipolis Cedex, France +
('1723883', 'Florent Perronnin', 'florent perronnin')
('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')
fflorent.perronnin, jean-luc.dugelayg@eurecom.fr +
8ed32c8fad924736ebc6d99c5c319312ba1fa80b
8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958Segment-based SVMs for +
Time Series Analysis +
CMU-RI-TR-12-1 +
Submitted in partial fulfillment of the +
requirements for the degree of +
Doctor of Philosophy in Robotics +
The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 +
Version: 20 Jan 2012 +
Thesis Committee: +
Fernando De la Torre (chair) +
('1698158', 'Minh Hoai Nguyen', 'minh hoai nguyen')
('1709305', 'Martial Hebert', 'martial hebert')
('1730156', 'Carlos Guestrin', 'carlos guestrin')
('2038264', 'Frank Dellaert', 'frank dellaert')
('1698158', 'Minh Hoai Nguyen', 'minh hoai nguyen')
8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125in any current or +
future media, +
for all other uses, +
 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be +
obtained +
including +
reprinting/republishing this material for advertising or promotional purposes, creating +
new collective works, for resale or redistribution to servers or lists, or reuse of any +
copyrighted component of this work in other works. +
Pre-print of article that will appear at BTAS 2012.!! +
8e378ef01171b33c59c17ff5798f30293fe30686Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
der Technischen Universit¨at M¨unchen +
A System for Automatic Face Analysis +
Based on +
Statistical Shape and Texture Models +
Ronald M¨uller +
Vollst¨andiger Abdruck der von der Fakult¨at +
f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen +
zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs +
genehmigten Dissertation +
Vorsitzender: Prof. Dr. rer. nat. Bernhard Wolf +
Pr¨ufer der Dissertation: +
1. Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Prof. Dr.-Ing. habil. Alexander W. Koch +
Die Dissertation wurde am 28.02.2008 bei der Technischen Universit¨at M¨unchen +
eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
am 18.09.2008 angenommen. +
8ed051be31309a71b75e584bc812b71a0344a019Class-based feature matching across unrestricted +
transformations +
('1938475', 'Evgeniy Bart', 'evgeniy bart')
('1743045', 'Shimon Ullman', 'shimon ullman')
8e36100cb144685c26e46ad034c524b830b8b2f2Modeling Facial Geometry using Compositional VAEs +
1 ´Ecole Polytechnique F´ed´erale de Lausanne +
2Facebook Reality Labs, Pittsburgh +
('33846296', 'Chenglei Wu', 'chenglei wu')
('14373499', 'Jason Saragih', 'jason saragih')
('1717736', 'Pascal Fua', 'pascal fua')
('1774867', 'Yaser Sheikh', 'yaser sheikh')
{firstname.lastname}@epfl.ch, {firstname.lastname}@fb.com +
8ed33184fccde677ec8413ae06f28ea9f2ca70f3Multimodal Visual Concept Learning with Weakly Supervised Techniques +
School of E.C.E., National Technical University of Athens, Greece
('7311172', 'Giorgos Bouritsas', 'giorgos bouritsas')
('2539459', 'Petros Koutras', 'petros koutras')
('2641229', 'Athanasia Zlatintsi', 'athanasia zlatintsi')
('1750686', 'Petros Maragos', 'petros maragos')
gbouritsas@gmail.com, {pkoutras, nzlat, maragos}@cs.ntua.gr +
8ee5b1c9fb0bded3578113c738060290403ed472Extending Explicit Shape Regression with +
Mixed Feature Channels and Pose Priors +
Karlsruhe Institute of
Technology (KIT) +
Karlsruhe, Germany +
Hazım Kemal Ekenel +
´Ecole Polytechnique F´ed´erale +
de Lausanne (EPFL) +
Lausanne, Switzerland +
Istanbul Technical +
University (ITU
Istanbul, Turkey +
('39610204', 'Matthias Richter', 'matthias richter')
('1697965', 'Hua Gao', 'hua gao')
matthias.richter@kit.edu +
hua.gao@epfl.ch +
ekenel@itu.edu.tr +
8e0becfc5fe3ecdd2ac93fabe34634827b21ef2bInternational Journal of Computer Vision manuscript No. +
(will be inserted by the editor) +
Learning from Longitudinal Face Demonstration - +
Where Tractable Deep Modeling Meets Inverse Reinforcement Learning +
Savvides · Tien D. Bui +
Received: date / Accepted: date +
('1876581', 'Chi Nhan Duong', 'chi nhan duong')
8efda5708bbcf658d4f567e3866e3549fe045bbbPre-trained Deep Convolutional Neural Networks +
for Face Recognition +
Siebert Looije +
S2209276 +
January 2018 +
MSc. Thesis +
Artificial Intelligence +
University of Groningen, The Netherlands
Supervisors +
Dr. M.A. (Marco) Wiering +
K. (Klaas) Dijkstra, MSc. +
ALICE Institute
University of Groningen
Nijenborgh 9, 9747 AG, Groningen, The Netherlands +
facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty
2227f978f084ebb18cb594c0cfaf124b0df6bf95Pillar Networks for action recognition +
B Sengupta +
Cortexica Vision Systems Limited +
Imperial College London
London, UK +
Y Qian +
Cortexica Vision Systems Limited +
30 Stamford Street SE1 9LQ +
London, UK +
b.sengupta@imperial.ac.uk +
yu.qian@cortexica.com +
225fb9181545f8750061c7693661b62d715dc542
22043cbd2b70cb8195d8d0500460ddc00ddb1a62Separability-Oriented Subclass Discriminant +
Analysis +
('2986129', 'Huan Wan', 'huan wan')
('27838939', 'Hui Wang', 'hui wang')
('35009947', 'Gongde Guo', 'gongde guo')
('10803956', 'Xin Wei', 'xin wei')
22137ce9c01a8fdebf92ef35407a5a5d18730dde
22e2066acfb795ac4db3f97d2ac176d6ca41836cCoarse-to-Fine Auto-Encoder Networks (CFAN) +
for Real-Time Face Alignment +
1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences +
CAS), Institute of Computing Technology, CAS, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
('1698586', 'Jie Zhang', 'jie zhang')
('1685914', 'Shiguang Shan', 'shiguang shan')
('1693589', 'Meina Kan', 'meina kan')
('1710220', 'Xilin Chen', 'xilin chen')
{jie.zhang,shiguang.shan,meina.kan,xilin.chen}@vipl.ict.ac.cn +
22717ad3ad1dfcbb0fd2f866da63abbde9af0b09A Learning-based Control Architecture for Socially +
Assistive Robots Providing Cognitive Interventions +
by +
A thesis submitted in conformity with the requirements +
for the degree of Masters of Applied Science +
Mechanical and Industrial Engineering +
University of Toronto
('39999379', 'Jeanie Chan', 'jeanie chan')
('39999379', 'Jeanie Chan', 'jeanie chan')
2288696b6558b7397bdebe3aed77bedec7b9c0a9WU, WANG, YANG, JI: JOINT ATTENTION ON MULTI-LEVEL DEEP FEATURES 1 +
Action Recognition with Joint Attention +
on Multi-Level Deep Features +
Dept of Automation +
Tsinghua University
Beijing, China +
('35585536', 'Jialin Wu', 'jialin wu')
('29644358', 'Gu Wang', 'gu wang')
('3432961', 'Wukui Yang', 'wukui yang')
('7807689', 'Xiangyang Ji', 'xiangyang ji')
wujl13@mails.tsinghua.edu.cn +
wangg12@mails.tsinghua.edu.cn +
yang-wk15@mails.tsinghua.edu.cn +
xyji@mail.tsinghua.edu.cn +
22264e60f1dfbc7d0b52549d1de560993dd96e46UnitBox: An Advanced Object Detection Network +
Thomas Huang1 +
University of Illinois at Urbana Champaign
2Megvii Inc +
('3451838', 'Jiahui Yu', 'jiahui yu')
('1691963', 'Yuning Jiang', 'yuning jiang')
('2969311', 'Zhangyang Wang', 'zhangyang wang')
('2695115', 'Zhimin Cao', 'zhimin cao')
{jyu79, zwang119, t-huang1}@illinois.edu, {jyn, czm}@megvii.com +
22dada4a7ba85625824489375184ba1c3f7f0c8f
221252be5d5be3b3e53b3bbbe7a9930d9d8cad69ZHU, VONDRICK, RAMANAN, AND FOWLKES: MORE DATA OR BETTER MODELS +
Do We Need More Training Data or Better +
Models for Object Detection? +
1 Computer Science Department +
University of California
Irvine, CA, USA +
2 CSAIL +
Massachusetts Institute of Technology
Cambridge, MA, USA +
(Work performed while at UC Irvine) +
('32542103', 'Xiangxin Zhu', 'xiangxin zhu')
('1856025', 'Carl Vondrick', 'carl vondrick')
('1770537', 'Deva Ramanan', 'deva ramanan')
('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')
xzhu@ics.uci.edu +
vondrick@mit.edu +
dramanan@ics.uci.edu +
fowlkes@ics.uci.edu +
223ec77652c268b98c298327d42aacea8f3ce23fTR-CS-11-02 +
Acted Facial Expressions In The Wild +
Database +
September 2011 +
ANU Computer Science Technical Report Series +
('1735697', 'Abhinav Dhall', 'abhinav dhall')
('1717204', 'Roland Goecke', 'roland goecke')
('27011207', 'Tom Gedeon', 'tom gedeon')
22df6b6c87d26f51c0ccf3d4dddad07ce839deb0Fast Action Proposals for Human Action Detection and Search +
School of Electrical and Electronic Engineering +
Nanyang Technological University, Singapore
('2352391', 'Gang Yu', 'gang yu')
('34316743', 'Junsong Yuan', 'junsong yuan')
iskicy@gmail.com, jsyuan@ntu.edu.sg +
228558a2a38a6937e3c7b1775144fea290d65d6cNonparametric Context Modeling of Local Appearance +
for Pose- and Expression-Robust Facial Landmark Localization +
University of Wisconsin Madison
Zhe Lin2 +
2Adobe Research +
http://www.cs.wisc.edu/~lizhang/projects/face-landmark-localization/ +
('1893050', 'Brandon M. Smith', 'brandon m. smith')
('1721019', 'Jonathan Brandt', 'jonathan brandt')
('40396555', 'Li Zhang', 'li zhang')
22fdd8d65463f520f054bf4f6d2d216b54fc5677International Journal of Emerging Technology and Advanced Engineering +
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013) +
Efficient Small and Capital Handwritten Character +
Recognition with Noise Reduction +
IES College of Technology, Bhopal
('1926347', 'Shailendra Tiwari', 'shailendra tiwari')
('2152231', 'Sandeep Kumar', 'sandeep kumar')
2251a88fbccb0228d6d846b60ac3eeabe468e0f1Matrix-Based Kernel Subspace Methods +
Integrated Data Systems Department +
Siemens Corporate Research +
College Road East, Princeton, NJ
('1682187', 'S. Kevin Zhou', 's. kevin zhou')Email: {kzhou}@scr.siemens.com +
22e678d3e915218a7c09af0d1602e73080658bb7Adventures in Archiving and Using Three Years of Webcam Images +
Department of Computer Science and Engineering +
Washington University, St. Louis, MO, USA
('1990750', 'Nathan Jacobs', 'nathan jacobs')
('39795519', 'Walker Burgin', 'walker burgin')
('1761429', 'Robert Pless', 'robert pless')
{jacobsn,wsb1,rzs1,dyr1,pless}@cse.wustl.edu +
2201f187a7483982c2e8e2585ad9907c5e66671dJoint Face Alignment and 3D Face Reconstruction +
College of Computer Science, Sichuan University, Chengdu, China
2 Department of Computer Science and Engineering +
Michigan State University, East Lansing, MI, U.S.A
('50207647', 'Feng Liu', 'feng liu')
('39422721', 'Dan Zeng', 'dan zeng')
('7345195', 'Qijun Zhao', 'qijun zhao')
('1759169', 'Xiaoming Liu', 'xiaoming liu')
227b18fab568472bf14f9665cedfb95ed33e5fceCompositional Dictionaries for Domain Adaptive +
Face Recognition +
('2077648', 'Qiang Qiu', 'qiang qiu')
('9215658', 'Rama Chellappa', 'rama chellappa')
227b1a09b942eaf130d1d84cdcabf98921780a22Yang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:51 +
https://doi.org/10.1186/s13634-018-0572-6 +
EURASIP Journal on Advances +
in Signal Processing +
R ES EAR CH +
Multi-feature shape regression for face +
alignment +
Open Access +
('3413708', 'Wei-jong Yang', 'wei-jong yang')
('49070426', 'Yi-Chen Chen', 'yi-chen chen')
('1789917', 'Pau-Choo Chung', 'pau-choo chung')
('1749263', 'Jar-Ferr Yang', 'jar-ferr yang')
2241eda10b76efd84f3c05bdd836619b4a3df97eOne-to-many face recognition with bilinear CNNs +
Aruni RoyChowdhury +
University of Massachusetts, Amherst
Erik Learned-Miller +
('2144284', 'Tsung-Yu Lin', 'tsung-yu lin')
('35208858', 'Subhransu Maji', 'subhransu maji')
{arunirc,tsungyulin,smaji,elm}@cs.umass.edu +
22646cf884cc7093b0db2c1731bd52f43682eaa8Human Action Adverb Recognition: ADHA Dataset and A Three-Stream +
Hybrid Model +
Shanghai Jiao Tong University, China
('1717692', 'Bo Pang', 'bo pang')
('15376265', 'Kaiwen Zha', 'kaiwen zha')
('1830034', 'Cewu Lu', 'cewu lu')
pangbo@sjtu.edu.cn,Kevin zha@sjtu.edu.cn,lucewu@cs.sjtu.edu.cn +
22f94c43dd8b203f073f782d91e701108909690bMovieScope: Movie trailer classification using Deep Neural Networks +
Dept of Computer Science +
University of Virginia
{ks6cq, gs9ed}@virginia.edu +
22dabd4f092e7f3bdaf352edd925ecc59821e168 Deakin Research Online +
This is the published version: +
An, Senjian, Liu, Wanquan and Venkatesh, Svetha 2008, Exploiting side information in +
locality preserving projection, in CVPR 2008 : Proceedings of the 26th IEEE Conference on +
Computer Vision and Pattern Recognition, IEEE, Washington, D. C., pp. 1-8. +
Available from Deakin Research Online: +
http://hdl.handle.net/10536/DRO/DU:30044576 +
+
Reproduced with the kind permissions of the copyright owner. +
Personal use of this material is permitted. However, permission to reprint/republish this +
material for advertising or promotional purposes or for creating new collective works for +
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +
in other works must be obtained from the IEEE. +
Copyright : 2008, IEEE +
22f656d0f8426c84a33a267977f511f127bfd7f3
22143664860c6356d3de3556ddebe3652f9c912aFacial Expression Recognition for Human-robot +
Interaction – A Prototype +
1 Department of Informatics, Technische Universitat M¨unchen, Germany +
Electrical and Computer Engineering, University of Auckland, New Zealand
('32131501', 'Matthias Wimmer', 'matthias wimmer')
('1761487', 'Bruce A. MacDonald', 'bruce a. macdonald')
('3235721', 'Dinuka Jayamuni', 'dinuka jayamuni')
('2607879', 'Arpit Yadav', 'arpit yadav')
2271d554787fdad561fafc6e9f742eea94d35518TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Multimodale Mensch-Roboter-Interaktion +
f¨ur Ambient Assisted Living +
Tobias F. Rehrl +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzende: +
Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Univ.-Prof. Dr.-Ing. Horst-Michael Groß +
Univ.-Prof. Dr.-Ing. Sandra Hirche +
(Technische Universit¨at Ilmenau) +
Die Dissertation wurde am 17. April 2013 bei der Technischen Universit¨at M¨unchen +
eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am +
8. Oktober 2013 angenommen. +
22ec256400e53cee35f999244fb9ba6ba11c1d06
22a7f1aebdb57eecd64be2a1f03aef25f9b0e9a7
22e189a813529a8f43ad76b318207d9a4b6de71aWhat will Happen Next? +
Forecasting Player Moves in Sports Videos +
UC Berkeley, STATS +
UC Berkeley +
UC Berkeley +
('2986395', 'Panna Felsen', 'panna felsen')
('33932184', 'Pulkit Agrawal', 'pulkit agrawal')
('1689212', 'Jitendra Malik', 'jitendra malik')
panna@berkeley.edu +
pulkitag@berkeley.edu +
malik@berkeley.edu +
25ff865460c2b5481fa4161749d5da8501010aa0Seeing What Is Not There: +
Learning Context to Determine Where Objects Are Missing +
Department of Computer Science +
University of Maryland
Figure 1: When curb ramps (green rectangle) are missing from a segment of sidewalks in an intersection (orange rectangle), +
people with mobility impairments are unable to cross the street. We propose an approach to determine where objects are +
missing by learning a context model so that it can be combined with object detection results. +
('39516880', 'Jin Sun', 'jin sun')
('34734622', 'David W. Jacobs', 'david w. jacobs')
{jinsun,djacobs}@cs.umd.edu +
25d514d26ecbc147becf4117512523412e1f060bAnnotated Crowd Video Face Database +
IIIT-Delhi, India +
('2952437', 'Tejas I. Dhamecha', 'tejas i. dhamecha')
('2578160', 'Priyanka Verma', 'priyanka verma')
('3239512', 'Mahek Shah', 'mahek shah')
('39129417', 'Richa Singh', 'richa singh')
('2338122', 'Mayank Vatsa', 'mayank vatsa')
{tejasd,priyanka13100,mahek13106,rsingh,mayank}@iiitd.ac.in +
25c19d8c85462b3b0926820ee5a92fc55b81c35aNoname manuscript No. +
(will be inserted by the editor) +
Pose-Invariant Facial Expression Recognition +
Using Variable-Intensity Templates +
Received: date / Accepted: date +
('3325574', 'Shiro Kumano', 'shiro kumano')
('38178548', 'Eisaku Maeda', 'eisaku maeda')
258a8c6710a9b0c2dc3818333ec035730062b1a5Benelearn 2005 +
Annual Machine Learning Conference of +
Belgium and the Netherlands +
CTIT PROCEEDINGS OF THE FOURTEENTH +
ANNUAL MACHINE LEARNING CONFERENCE +
OF BELGIUM AND THE NETHERLANDS +
('2541098', 'Martijn van Otterlo', 'martijn van otterlo')
('1688157', 'Mannes Poel', 'mannes poel')
('1745198', 'Anton Nijholt', 'anton nijholt')
25695abfe51209798f3b68fb42cfad7a96356f1fAN INVESTIGATION INTO COMBINING +
BOTH FACIAL DETECTION AND +
LANDMARK LOCALISATION INTO A +
UNIFIED PROCEDURE USING GPU +
COMPUTING +
MSc by Research +
2016 +
('32464788', 'J M McDonagh', 'j m mcdonagh')
250ebcd1a8da31f0071d07954eea4426bb80644cDenseBox: Unifying Landmark Localization with +
End to End Object Detection +
Institute of Deep Learning
Baidu Research +
('3168646', 'Lichao Huang', 'lichao huang')
('1698559', 'Yi Yang', 'yi yang')
('1987538', 'Yafeng Deng', 'yafeng deng')
('2278628', 'Yinan Yu', 'yinan yu')
2{huanglichao01,yangyi05,dengyafeng}@baidu.com +
1alanhuang1990@gmail.com +
3bebekifis@gmail.com +
25337690fed69033ef1ce6944e5b78c4f06ffb81STRATEGIC ENGAGEMENT REGULATION: +
AN INTEGRATION OF SELF-ENHANCEMENT AND ENGAGEMENT +
by +
A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology +
Spring 2014 +
All Rights Reserved +
('2800616', 'Jordan B. Leitner', 'jordan b. leitner')
('2800616', 'Jordan B. Leitner', 'jordan b. leitner')
25c3cdbde7054fbc647d8be0d746373e7b64d150ForgetMeNot: Memory-Aware Forensic Facial Sketch Matching +
Beijing University of Posts and Telecommunications
Queen Mary University of London, UK
('2961830', 'Shuxin Ouyang', 'shuxin ouyang')
('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')
('1705408', 'Yi-Zhe Song', 'yi-zhe song')
('7823169', 'Xueming Li', 'xueming li')
{s.ouyang, t.hospedales, yizhe.song}@qmul.ac.uk +
lixm@bupt.edu.cn +
25bf288b2d896f3c9dab7e7c3e9f9302e7d6806bNeural Networks with Smooth Adaptive Activation Functions +
for Regression +
Stony Brook University, NY, USA
Stony Brook University, NY, USA
3Oak Ridge National Laboratory, USA +
4Department of Applied Mathematics and Statistics, NY, USA +
5Department of Pathology, Stony Brook Hospital, NY, USA +
6Cancer Center, Stony Brook Hospital, NY, USA +
August 24, 2016 +
('2321406', 'Le Hou', 'le hou')
('1686020', 'Dimitris Samaras', 'dimitris samaras')
('1755448', 'Yi Gao', 'yi gao')
('1735710', 'Joel H. Saltz', 'joel h. saltz')
{lehhou,samaras}@cs.stonybrook.edu +
{tahsin.kurc,joel.saltz}@stonybrook.edu +
yi.gao@stonybrookmedicine.edu +
25d3e122fec578a14226dc7c007fb1f05ddf97f7The First Facial Expression Recognition and Analysis Challenge +('1795528', 'Michel F. Valstar', 'michel f. valstar')
('39532631', 'Bihan Jiang', 'bihan jiang')
('1875347', 'Marc Mehu', 'marc mehu')
('1694605', 'Maja Pantic', 'maja pantic')
2597b0dccdf3d89eaffd32e202570b1fbbedd1d6Towards predicting the likeability of fashion images +('2569065', 'Jinghua Wang', 'jinghua wang')
('2613790', 'Abrar Abdul Nabi', 'abrar abdul nabi')
('22804340', 'Gang Wang', 'gang wang')
('2737180', 'Chengde Wan', 'chengde wan')
('2475944', 'Tian-Tsong Ng', 'tian-tsong ng')
2588acc7a730d864f84d4e1a050070ff873b03d5Article +
Action Recognition by an Attention-Aware Temporal +
Weighted Convolutional Neural Network +
Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an 710049, China
Received: 27 April 2018; Accepted: 19 June 2018; Published: 21 June 2018 +
('40367806', 'Le Wang', 'le wang')
('14800230', 'Jinliang Zang', 'jinliang zang')
('46324995', 'Qilin Zhang', 'qilin zhang')
('1786361', 'Zhenxing Niu', 'zhenxing niu')
('1745420', 'Gang Hua', 'gang hua')
('1715389', 'Nanning Zheng', 'nanning zheng')
zjl19920904@stu.xjtu.edu.cn (J.Z.); nnzheng@xjtu.edu.cn (N.Z.) +
2 HERE Technologies, Chicago, IL 60606, USA; qilin.zhang@here.com +
3 Alibaba Group, Hangzhou 311121, China; zhenxing.nzx@alibaba-inc.com +
4 Microsoft Research, Redmond, WA 98052, USA; ganghua@microsoft.com +
* Correspondence: lewang@xjtu.edu.cn; Tel.: +86-29-8266-8672 +
25982e2bef817ebde7be5bb80b22a9864b979fb0
25c108a56e4cb757b62911639a40e9caf07f1b4fRecurrent Scale Approximation for Object Detection in CNN +
Multimedia Laboratory at The Chinese University of Hong Kong
1SenseTime Group Limited +
('1715752', 'Yu Liu', 'yu liu')
('1929886', 'Hongyang Li', 'hongyang li')
('1721677', 'Junjie Yan', 'junjie yan')
('22181490', 'Fangyin Wei', 'fangyin wei')
('31843833', 'Xiaogang Wang', 'xiaogang wang')
('1741901', 'Xiaoou Tang', 'xiaoou tang')
liuyuisanai@gmail.com,{yangli,xgwang}@ee.cuhk.edu.hk, +
{yanjunjie,weifangyin}@sensetime.com, xtang@ie.cuhk.edu.hk +
2594a77a3f0dd5073f79ba620e2f287804cec630TRANSFERRING FACE VERIFICATION NETS TO PAIN AND EXPRESSION REGRESSION +
Dept. of {Computer Science1, Electrical & Computer Engineering2, Radiation Oncology3, Cognitive Science4} +
Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
5Dept. of EE, UESTC, 2006 Xiyuan Ave, Chengdu, Sichuan 611731, China +
Tsinghua University, Beijing 100084, China
('1713335', 'Feng Wang', 'feng wang')
('40031188', 'Xiang Xiang', 'xiang xiang')
('1692867', 'Chang Liu', 'chang liu')
('1709073', 'Trac D. Tran', 'trac d. tran')
('3207112', 'Austin Reiter', 'austin reiter')
('1678633', 'Gregory D. Hager', 'gregory d. hager')
('2095823', 'Harry Quon', 'harry quon')
('1709439', 'Jian Cheng', 'jian cheng')
('1746141', 'Alan L. Yuille', 'alan l. yuille')
25e2d3122d4926edaab56a576925ae7a88d68a77ORIGINAL RESEARCH +
published: 23 February 2016 +
doi: 10.3389/fpsyg.2016.00166 +
Communicative-Pragmatic +
Treatment in Schizophrenia: A Pilot +
Study +
Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin
Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu
Finland, 4 AslTo2 Department of Mental Health, Turin, Italy, 5 Brain Imaging Group, Turin, Italy +
This paper aims to verify the efficacy of Cognitive Pragmatic Treatment (CPT), a new +
remediation training for the improvement of the communicative-pragmatic abilities, in +
patients with schizophrenia. The CPT program is made up of 20 group sessions, +
focused on a number of communication modalities, i.e., linguistic, extralinguistic and +
paralinguistic, theory of mind (ToM) and other cognitive functions able to play a role +
on the communicative performance, such as awareness and planning. A group of 17 +
patients with schizophrenia took part in the training program. They were evaluated +
before and after training, through the equivalent forms of the Assessment Battery for +
Communication (ABaCo), a tool for testing, both in comprehension and in production, +
a wide range of pragmatic phenomena such as direct and indirect speech acts, +
irony and deceit, and a series of neuropsychological and ToM tests. The results +
showed a significant improvement in patients’ performance on both production and +
comprehension tasks following the program, and in all the communication modalities +
evaluated through the ABaCo, i.e., linguistic, extralinguistic, paralinguistic, and social +
appropriateness. This improvement persisted after 3 months from the end of the training +
program, as shown by the follow-up tests. These preliminary findings provide evidence +
of the efficacy of the CPT program in improving communicative-pragmatic abilities in +
schizophrenic individuals. +
Keywords: rehabilitation, schizophrenia, pragmatic, communication, training +
INTRODUCTION +
People with schizophrenia experience symptoms such as delusions, hallucinations, disorganized +
speech and behavior, that cause difficulty in social relationships (DSM 5; American Psychiatric +
Association [APA], 2013). In the clinical pragmatic domain (Cummings, 2014), the area of study +
of pragmatic impairment in patients with communicative disorders, several studies have reported +
that communicative ability is impaired in patients with schizophrenia (Langdon et al., 2002; Bazin +
et al., 2005; Linscott, 2005; Marini et al., 2008; Colle et al., 2013). For example, Bazin et al. (2005), +
created a structured interview, the Schizophrenia Communication Disorder Scale, which they +
administered to patients with schizophrenia. The authors observed that these patients performed +
less well than those affected by mania or depression in managing a conversation on everyday +
topics, such as family, job, hobbies, and so on. Likewise, non-compliance with conversational +
rules, such as consistency with the agreed purpose of the interaction, giving the partner too little +
Edited by: +
Sayyed Mohsen Fatemi, +
Harvard University, USA
Reviewed by: +
Silvia Serino, +
IRCCS Istituto Auxologico Italiano, +
Italy +
Michelle Dow Keawphalouk, +
Harvard and Massachusetts Institute
of Technology, USA +
*Correspondence: +
Specialty section: +
This article was submitted to +
Psychology for Clinical Settings, +
a section of the journal +
Frontiers in Psychology +
Received: 07 October 2015 +
Accepted: 28 January 2016 +
Published: 23 February 2016 +
Citation: +
Bosco FM, Gabbatore I, Gastaldo L +
and Sacco K (2016) +
Communicative-Pragmatic Treatment +
in Schizophrenia: A Pilot Study. +
Front. Psychol. 7:166. +
doi: 10.3389/fpsyg.2016.00166 +
Frontiers in Psychology | www.frontiersin.org +
February 2016 | Volume 7 | Article 166 +
('2261858', 'Francesca M. Bosco', 'francesca m. bosco')
('3175646', 'Ilaria Gabbatore', 'ilaria gabbatore')
('39551201', 'Luigi Gastaldo', 'luigi gastaldo')
('2159033', 'Katiuscia Sacco', 'katiuscia sacco')
('3175646', 'Ilaria Gabbatore', 'ilaria gabbatore')
ilaria.gabbatore@oulu.fi; +
ilariagabbatore@gmail.com +
25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8Label Distribution Learning +('1735299', 'Xin Geng', 'xin geng')
2559b15f8d4a57694a0a33bdc4ac95c479a3c79a570 +
Contextual Object Localization With Multiple +
Kernel Nearest Neighbor +
Gert Lanckriet, Member, IEEE +
('3215419', 'Brian McFee', 'brian mcfee')
('1954793', 'Carolina Galleguillos', 'carolina galleguillos')
2574860616d7ffa653eb002bbaca53686bc71cdd
25f1f195c0efd84c221b62d1256a8625cb4b450c1-4244-1017-7/07/$25.00 ©2007 IEEE +
1091 +
ICME 2007 +
25885e9292957feb89dcb4a30e77218ffe7b9868JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2016 +
Analyzing the Affect of a Group of People Using +
Multi-modal Framework +
('18780812', 'Xiaohua Huang', 'xiaohua huang')
('1735697', 'Abhinav Dhall', 'abhinav dhall')
('40357816', 'Xin Liu', 'xin liu')
('1757287', 'Guoying Zhao', 'guoying zhao')
('2473859', 'Jingang Shi', 'jingang shi')
259706f1fd85e2e900e757d2656ca289363e74aaImproving People Search Using Query Expansions +
How Friends Help To Find People +
LEAR - INRIA Rhˆone Alpes - Grenoble, France +
('1722052', 'Thomas Mensink', 'thomas mensink')
('34602236', 'Jakob Verbeek', 'jakob verbeek')
{thomas.mensink,jakob.verbeek}@inria.fr +
25728e08b0ee482ee6ced79c74d4735bb5478e29
258a2dad71cb47c71f408fa0611a4864532f5ebaDiscriminative Optimization +
of Local Features for Face Recognition +
+
H O S S E I N A Z I Z P O U R +
+
Master of Science Thesis +
Stockholm, Sweden 2011 +
+
25127c2d9f14d36f03d200a65de8446f6a0e3bd6Journal of Theoretical and Applied Information Technology +
20th May 2016. Vol.87. No.2 +
© 2005 - 2016 JATIT & LLS. All rights reserved. +
ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 +
EVALUATING THE PERFORMANCE OF DEEP SUPERVISED +
AUTO ENCODER IN SINGLE SAMPLE FACE RECOGNITION +
PROBLEM USING KULLBACK-LEIBLER DIVERGENCE +
SPARSITY REGULARIZER +
Faculty of Computer of Computer Science, Universitas Indonesia, Kampus UI Depok, Indonesia +
('9324684', 'ARIDA F. SYAFIANDINI', 'arida f. syafiandini')E-mail: 1otniel.yosi@ui.ac.id , 2ito.wasito@cs.ui.ac.id, 2arida.ferti@ui.ac.id +
\ No newline at end of file diff --git a/scraper/reports/institution_names-1.csv b/scraper/reports/institution_names-1.csv new file mode 100644 index 00000000..d667654f --- /dev/null +++ b/scraper/reports/institution_names-1.csv @@ -0,0 +1,714 @@ +"Johns Hopkins University, Center for Speech and Language Processing" +"Gri th University, QLD-4111, Brisbane, Australia" +"Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions" +Alan W Black (Carnegie Mellon University +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of" +"Computer Science Division, The Open University of Israel" +"The authors are with the Delft University of Technology, Data and Knowl" +"St.Joseph s College of Engineering, Old Mamallapuram Road, Kamaraj Nagar, Semmencherry, Chennai" +University of Colorado Colorado Springs +"College of Engineering Pune, India" +"University of Maryland, CFAR" +"University of Tampere, Kanslerinnrinne 1, 33014, Tampere, Finland" +"St. Xavier s Catholic College of Engineering, India" +"University of Surrey, United Kingdom" +"Toyota Research Institute, Cambridge, MA 2 University of Michigan, Ann Arbor, MI" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD" +M.S. University of Central Florida +Computer Vision and Robotics Research Laboratory +Kyung Hee University +"School of Games, Hongik University, Seoul, Korea" +"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +"MRC Laboratory For Molecular Cell Biology, University College London" +"National Chiao Tung University, Taiwan" +"Shenzhen University, Shenzhen, China" +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +THE UNIVERSITY OF CHICAGO +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"University of Houston, Houston, TX 77204, USA" +"Aalborg University, Denmark" +"Wenzhou University, China" +"University Street, Montral, QC H3A 0E9, Canada" +"School of Software, Sun Yat-sen University, China" +"Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network" +"Beckman Institute, University of Illinois at Urbana-Champaign, USA" +Sun Yat-Sen (Zhongshan) University +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +"University of North Carolina at Chapel Hill, Chapel Hill, NC" +RWTH Aachen University +University Drive +"Smart Network System Institute, Institute for Information Industry" +"Goldsmiths, University of London, London, UK" +"Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay" +"of Maryland, College Park, MD 20742, USA" +"Harvard University, Cambridge, MA, USA" +College of Engineering and Mineral Resources +"School of EEE, Nanyang Technological University, Singapore" +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"School of Mathematical Sciences, Monash University, VIC 3800, Australia" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +"School of Computer Science and Technology, Tianjin University" +"UG student, Amity school of Engineering and Technology, Amity University, Haryana, India" +"Computer and Systems Engineering, Rensselaer Polytechnic Institute" +University of Caen +"University of Groningen, Netherlands" +"Carnegie Mellon University, Pittsburgh, PA" +"School of Computer Engineering, Sejong University, Seoul, Korea" +Michigan State University +"University of Catania, Italy" +"University Health Board, Swansea, United Kingdom" +Princeton University +"Carnegie Mellon University, Electrical and Computer Engineering" +"Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan" +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"subsection a table summarizing the key features of the database is provided, including (where available) the number of" +"University of Tokyo, Japan" +"our analysis to stereotypes beyond gender, including those" +"School of Computer Science, Fudan University, Shanghai, 200433, China" +Cornell University 2 Cornell Tech +"Stanford University, USA" +Massachusetts Institute of Technology 2014. All rights reserved +ment. Oxford University Press Series in Affective Science. New York: Oxford +College of Computer and Information Sciences +"College of Computing, Georgia Institute of Technology, Atlanta, GA, USA" +"gies (Bughin et al. 2017). A range of other sectors, includ" +"he University of Hong Kong, Pokfulam" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +"University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada" +"Salgado de Oliveira University, Brazil" +"Helsinki Institute for Information Technology, Aalto University, Finland" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"COMSATS Institute of Information Technology, Lahore 54000, Pakistan" +"Graduate Institute of Networking and Multimedia, National Taiwan University" +"2Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, Canada" +"the face, including negative affect and distress, dates" +"Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia" +Bilkent University +"Hong Kong Polytechnic University, Hong Kong, China" +Yaroslavl State University +in the College of Engineering and Computer Science +"University of California, Santa Barbara" +"Uber Advanced Technologies Group, 5Vector Institute" +"College of Information Science and Engineering, Ocean University of China, Qingdao, China" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +IBM T.J. Watson Research Center +Central Washington University +"University of California, San Diego" +University of Tsukuba +The University of the Humanities +DISI - University of Trento +Savitribai Phule Pune University +"College of Software Engineering, Southeast University, Nanjing 210096, China" +"Key Lab of Intelligent Information Processing, Institute of Computing Technology" +in the Graduate School of Duke University +"B.S., Computer Engineering, Bo gazi ci University" +"Kodak Research Laboratories, Rochester, NY" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"Hindusthan College of Engineering and Technology, Coimbatore, India" +Zhejiang University of Technology +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +ShahidBeheshti University +cThe Open University +College of Information and Control Engineering in China University of Petroleum +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"aTurgut Ozal University, Ankara Turkey" +"School of Medicine, Shenzhen University, Shenzhen 518060, China" +"DISI, University of Trento, Italy" +"University of Texas at Arlington, TX, USA" +"Computer Science and Engineering, Michigan State University, East Lansing, USA" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China" +"Islamic Azad University, Shahrood, Iran" +"Faculty of Electrical Engineering, University of Ljubljana" +"Multimedia University, Cyberjaya, Malaysia" +"and quantify distinct social behaviors, including those involving" +"College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China" +The University of Nottingham +Dr. Babasaheb Ambedkar Marathwada University +"The University of York, United Kingdom" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"DPDCE, University IUAV" +"University of Vigo, Spain" +"Pathological anxiety is associated with disrupted cognitive processing, including working memory and" +"School of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen" +"George Mason University, Fairfax, VA, USA" +"Institute of Neural Information Processing, Ulm University, Ulm, Germany" +William Marsh Rice University +"Center for Research in Computer Vision, University of Central Florida, Orlando, FL" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +India +Institute of Systems and Robotics +"DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia" +"University of Zagreb, Faculty of Electrical Engineering and Computing" +"Bioinformatics Institute, A*STAR, Singapore" +"National University of Ireland Maynooth, Co. Kildare, Ireland" +The Allen Institute for AI +"Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School" +The open University of Israel. 2Adience +"Baidu Research, USA 3John Hopkins University" +"Other uses, including reproduction and distribution, or selling or" +"Viswajyothi College of Engineering and Technology Kerala, India" +"Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran" +"University of Miami, Coral Gables, FL" +Queen s University Belfast +Portland State University +"Cornell University, Ithaca, NY, U.S.A" +"University of Colorado, Colorado Springs" +of Cornell University +University of Texas at San Antonio +"University of North Texas, Denton, Texas, USA" +"Institute for Computer Graphics and Vision, Graz University of Technology" +"School of Engineering, University of Guelph" +Tokyo Denki University +"KTH Royal Institute of Technology, CVAP Lab, Stockholm, Sweden" +Villanova University +"University of North Carolina at Chapel Hill, USA" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University" +"The City College of New York, New York, NY 10031, USA" +"School of Software, Tsinghua University, Beijing 100084, China" +"Arts, Science and Commerce College, Chopda" +"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University" +"Sri Manakula Vinayagar Engineering College, Pondicherry" +Institute of Information Science +"Michigan State University, E. Lansing, MI 48823, USA" +"School of Computer Science and Technology, University of Science and Technology of China" +"CISE, University of Florida, Gainesville, FL" +"aCollege of Computer Science at Chongqing University, 400044, Chongqing, P.R.C" +University of Illinois at Urbana-Champaign 2Adobe Research +"Gujarat Technological University, India" +"Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de" +"University of Dschang, Cameroon" +Informatics and Telematics Institute +University of West Bohemia +"Graduate School of System Informatics, Kobe University" +"Amity University, Lucknow, India" +"Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT" +"The Institute of Scienti c and Industrial Research, Osaka University" +"The University of Nottingham, UK" +Macau University of Science and Technology +"Computer Science and Software Engineering, The University of Western Australia" +Oxford University +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"Arti cial Intelligence Institute, China" +"University of California, Merced, USA" +University of Chinese Academy of Sciences (UCAS +"New Jersey Institute of Technology, USA" +"Sharif University of Technology, Tehran. Iran" +"The University of Queensland, School of ITEE" +"Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden" +"Kingston University London, University of Westminster London" +Charles Sturt University +The University of Manchester +"Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United" +"MICC, University of Florence" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China" +Simon Fraser University +University of Buffalo +"Student, Amal Jyothi College of Engineering, Kanjirappally, India" +"Computational Biomedicine Lab, University of Houston, TX, USA" +"Akita Prefectural University, Yurihonjo, Japan" +"Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States" +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +"School of Computer Science, South China Normal University, China" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The" +"Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria" +"Institute of Microelectronics, Tsinghua University, Beijing 100084, China" +"bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A" +"University of Pittsburgh, Pittsburgh PA" +"Arts, Commerce and Science College, Gangakhed, M.S, India" +"Augsburg University, Germany" +"Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada" +University of Brescia +"University of Technology, Sydney" +Seoul National University +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; E-Mail" +"Warsaw University of Technology, Poland" +Federal University of Bahia (UFBA +University of Beira Interior +"University of Kentucky, USA" +The Hong Kong Polytechnic University +"Beijing Institute of Technology University, P. R. China" +"Research School of Computer Science, The Australian National University, ACT 2601, Australia" +ICSI / UC Berkeley 2Brigham Young University +"IN3, Open University of" +"School of Computer Science, University of Nottingham" +"The University of North Carolina, Chapel Hill" +"California Institute of Technology, Pasadena, CA, USA" +Link to publication record in Queen's University Belfast Research Portal +"Amirkabir University of Technology, University of Southern California" +"School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China, 2 School of Information" +"University of Rochester, Rochester, NY, USA" +"Beijing Institute of Technology, Beijing 100081 CHINA" +West Virginia University +"Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan" +"Polytechnic Institute of NYU, NY, USA" +University of Washington 4The Allen Institute for AI +"Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India" +"Center for Arti cial Vision Research, Korea University" +"The University of Newcastle, Callaghan 2308, Australia" +Human Interaction Research Lab +University of Rochester +"Tohoku University, Sendai, Japan" +"Grad. School of Information Science and Technology, The University of Tokyo, Japan" +"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences" +"Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A" +"Southern Illinois University, Carbondale, IL 62901 USA" +Doctor of Philosophy of University College London +"Technical University of Munich, Germany" +"Computer Vision Lab, Delft University of Technology" +"University of Missouri, Columbia, MO" +"Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece" +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"University of Central Punjab, Pakistan" +"Ryerson University, Canada" +Eastern University +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +"Samsung Advanced Institute of Technology (SAIT), KAIST" +Institute for Numerical Mathematics +The University of Cambridge +"Gayathri.S, M.E., Vins Christian college of Engineering" +"North China Electric Power University, Baoding, China" +"The Big Data Research Center, Henan University, Kaifeng 475001, China" +Myongji University +comparisons with 12 instance-based classi ers on 13 benchmark University of California Irvine +Sun Yat-Sen University +"Link oping University, Computer Vision Laboratory" +"Institute of Mental Health, Peking University, P.R. China" +Halmstad University +"University of Ottawa, Ottawa, On, Canada" +"School of Electronic and Information Engineering, South China University of Technology" +"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA" +"Chulalongkorn University, Bangkok" +a The University of Nottingham Malaysia Campus +COLUMBIA UNIVERSITY +Hong Kong Applied Science and Technology Research Institute Company Limited +"University of Pittsburgh, PA, USA" +"Computer Science and Engineering, University of Washington" +"University of Oulu, Finland" +"University of Genoa, Italy" +"VHNSN College, Virudhunagar, ANJA College" +"Clemson University, Clemson, SC" +"Stony Brook University, Stony Brook, NY 11794, USA" +"methods, including graph matching, optical- ow-based" +"Biometric Research Center, The Hong Kong Polytechnic University" +"Ruhr-University Bochum, Germany" +University of Abertay +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, P. R. China" +"Queen Mary College, London" +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +UNIVERSITY IN PRAGUE +"School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China" +"Vision and Security Technology Lab, University of Colorado at Colorado Springs, Colorado" +"The University of Adelaide, Australia" +"CISUC, University of Coimbra" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +Harbin Institute of Technology +"Microsystems Design Lab, The Pennsylvania State University" +"a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +International Institute of Information Technology +"LCSEE, West Virginia University" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +"University Bourgogne Franche-Comt , France" +"Eastern Mediterranean University, Gazima usa, Northern Cyprus" +University of Massachusetts - Amherst +"University of T ubingen, T ubingen, Germany" +"gelmeyer et al., 1996); and, increasingly, its role in reactions to" +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +"School of Computing, National University of Singapore, Singapore" +"National University of Singapore, 2Shanghai Jiao Tong University" +Computer Vision Laboratory. University of Nottingham +"Electrical Engineering, University of" +"Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA" +Sabanc University +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +Institute of Media Innovation +University of Houston +"Alexandria University, Alexandria, Egypt" +The University of North Carolina at Charlotte +"Graduate School of Informatics, Kyoto University" +"Annamacharya Institute of Technology and Sciences, Tirupati, India" +SUS college of Engineering and Technology +"Stony Brook University, NY, USA" +National Taiwan University +"Nottingham University Hospital, Nottingham, UK" +"Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China" +"P A College of Engineering, Nadupadavu" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +"Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA" +"Idiap Research Institute, Martigny, Switzerland" +"Sendai National College of Technology, Natori, Japan" +"Visual Analysis of People Lab, Aalborg University, Denmark" +"School of ICE, Beijing University of Posts and Telecommunications, Beijing, China" +"University City Blvd., Charlotte, NC" +"University of Texas at Arlington, Arlington, TX" +University of Wollongong +CVSSP University of Surrey +"Hengyang Normal University, Hengyang, China" +"Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +"Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran" +"Michigan State University, East Lansing, MI, USA" +"b The Interdisciplinary Center for Research on Emotions, University of" +Tongji University +"PSGR Krishnammal College for Women, Coimbatore" +"F.Ferraro, University of Rochester" +"Columbia University, New York, NY 10027, USA" +"Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran" +"Zhengzhou University, Zhengzhou, Henan 450052, China" +Tripura University (A Central University +"Medical School, University of Ioannina, Ioannina, Greece" +"Helsinki Collegium for Advanced Studies, University of Helsinki, Finland" +"UMIACS, University of Maryland, College Park, USA" +Cornell University 2Eastman Kodak Company +"University of S ao Paulo, S ao Paulo, Brazil" +"University of Gujrat, Pakistan" +"Friedrich Schiller University, D-07740 Jena" +"Ph.D student Zaid Shhedi, Doctoral School of Automatic Control and Computers, University" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced" +"Harbin Institute of Technology, School of Computer Science and Technology" +"Benha University, Egypt" +"Aristotle University of Thessaloniki, Greece" +Raipur institute of technology +"The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel" +University of Illinois at Urbana-Champaign +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK" +SungKyunKwan University +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +"Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland" +"Research Scholar, PSGR Krishnammal College for Women, Coimbatore" +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +Institute of Psychology and Behavioral Sciences +"USC IRIS Lab, University of Southern California" +"Google, Inc" +"b School of Applied Mathematics, Xidian University, Xi an, China" +"Rutgers, The State University of New Jersey" +at the Delft University of Technology +"University of Illinois at Urbana-Champaign, Urbana, IL, USA" +"obtained for all other uses, in any current or future media, including reprinting/republishing" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen" +"B.Eng., Nankai University" +Dhanalakshmi Srinivasan College of Engineering +Shandong University of Science and Technology +"Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA" +CUNY City College +"Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master" +"bTsinghua University, Beijing, China" +"West Virginia University, Morgantown, USA" +"Information Sciences Institute, USC, CA, USA" +"College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China" +"School of Information Technology and Engineering, University of Ottawa, Ontario, Canada" +"Machine Intelligence Lab (MIL), Cambridge University" +"University of Ottawa, Canada" +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +"Vision and Security Technology Lab, University of Colorado Colorado Springs" +Bahcesehir University +"Computer Vision Laboratory, The University of Nottingham" +"Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia" +"Research Center for Information Technology Innovation, Academia Sinica" +"Jiangnan University, Wuxi" +"Shri Shivaji College, Parbhani, M.S, India" +"College Road East, Princeton, NJ" +University of California San Diego +"China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology" +"GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology" +University of Adelaide +"c School of Computational Science, Florida State University, Tallahassee, FL 32306, USA" +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +Swiss Federal Institute of Technology +"University B.D.T.College of Engineering, Visvesvaraya" +"University of Nevada, Reno, USA" +"Machine Vision Lab, Faculty of Environment and Technology, University of the West of England" +"University of California, Riverside, California 92521, USA" +"College of Information, Yunnan Normal University, Kunming, China" +"Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands" +"School of Computer and Information Science, Chongqing Normal University 401331, China" +USC Information Sciences Institute +"University of Maryland, Center for Automation Research" +"cFaculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands" +"College of Computer Science, Chongqing University, Chongqing, 400030, China" +"Manchester University, UK" +"Allen Institute for Arti cial Intelligence (AI2), Seattle, WA" +"Pattern Recognition and Bio-informatics Laboratory, Delft University of Technology, THE NETHERLANDS" +"University of S ao Paulo - USP, S ao Paulo - Brazil" +"Tokyo Institute of Technology, Japan" +Georgia Institute of Technology +"University of Ioannina, Ioannina, Greece" +"Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 USA" +Iran +"King Saud University, Riyadh 11543, Saudi Arabia" +"School of IoT Engineering, Jiangnan University, Wuxi 214122, China" +Sarhad University of Science and Information Technology +"Islamic Azad University, Gonabad, Iran" +"College of Engineering, Mathematics and Physical Sciences" +"College of Computer and Information Science, Northeastern University, Boston, USA" +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"Monash University, Victoria, Australia" +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"University of Northern British Columbia, Canada" +"University of Nevada at Reno, USA" +"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of" +"University of Pittsburgh, Pittsburgh, PA, USA" +Queen Mary University +Odaiyappa College of +"University of Nottingham, Ningbo, China" +"M.Tech Student, SSG Engineering College, Odisha, India" +"Xidian University, Xi an, China" +University of Minnesota +University of Nebraska - Lincoln +"SSESA, Science College, Congress Nagar, Nagpur, (MS)-India" +Institute of Information Technology +"Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO" +"School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P" +"Wenzhou University, Wenzhou, China" +Vienna University of Technology +"Imperial College London, United Kingdom" +"Charotar University of Science and Technology, Changa, India" +"School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China" +"Visual Geometry Group, University of Oxford, Oxford UK" +"Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China" +"Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +"University of Maryland-College Park, USA" +Northumbria University +Courant Institute and Google Research +Harbin Institute of Technology;Shenzhen University +"University of South Carolina, USA" +Rowland Institute +"Final Year, PanimalarInstitute of Technology" +University of Arkansas at Little Rock +"Human Development and Applied Psychology, University of Toronto, Ontario, Canada" +"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan" +"R.C.Patel Institute of Technology, Shirpur, Dist.Dhule.Maharashtra, India" +"York University, Toronto" +"Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +South China University of Technology +"Beijing University of Technology, Beijing 100022, China" +University of Arizona +"Sri Sunflower College of Engineering and Technology, Lankapalli" +Japan Advanced Institute of Science and Technology +"University of York, York, United Kingdom" +"Proto Labs, Inc" +"Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany" +The University of Sydney +The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved +The Florida State University +"Engineering, National Formosa University" +Amirkabir University of Technology +"National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce" +"Institute of Automation, Chinese Academy of Sciences" +Institute of Digital Media +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +"Temple University, Philadelphia, USA" +"University of Salzburg, Austria" +"CMR Institute of Technology, Hyderabad, (India" +"Carnegie Mellon University Pittsburgh, PA - 15213, USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA" +"The Robotics Inistitute, Carnegie Mellon University" +"Center for Brain Science, Harvard University, Cambridge, MA, USA" +Submitted to the Senate of the Hebrew University +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of" +"Key Laboratory of Behavior Sciences, Institute of Psychology" +Graz University of Technology +"University of California, San Diego 2 Carnegie Mellon University" +University of Sfax +Bangladesh University of Engineering and Technology(BUET +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +"Xiamen University, Xiamen, China" +"CVIP Lab, University of Louisville, Louisville, KY 40292, USA" +"Chandigarh University, Gharuan, Punjab, India" +"Education, Yunnan Normal University, Kunming, China" +"Vickram College of Engineering, Enathi, Tamil Nadu, India" +National Technical University of Athens +"University College London, UK" +Muhlenberg College +"School of Mathematical Sciences, Dalian University of Technology, Linggong Rd. 2, Dalian" +"Informatization Office, National University of Defense Technology, Changsha 410073, China" +Acharya Institute Of Technology +"Rutgers University, Newark, NJ, USA" +"and Southeast University, China" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +"McGill University, Montreal, Canada" +"State University of New York Polytechnic Institute, Utica, New York" +"UNIVERSITY OF CALIFORNIA, SAN DIEGO" +"VISLab, EBUII-216, University of California Riverside" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +Institute of Electrical and Electronics Engineers +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +University of Tampere +Drexel University +"LIACS Media Lab, Leiden University, The Netherlands" +Indian Institute of Technology +University Institute of Engineering and Technology +"Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab" +University of Notre Dame +"University of Massachusetts, Amherst" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"Moscow State University, dept. of Computational Mathematics and Cybernetics" +"Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA" +"College of Information Science and Engineering, Xinjiang University" +"Korea University, Seoul 136-713, Korea" +"R. Campellone, 3210 Tolman Hall, University of California, Berkeley" +University of Florida +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu" +"Shanghai Jiao Tong University, CloudWalk Technology" +"School of Computer Science, Carnegie Mellon University, PA 15213, USA" +Tokyo Polytechnic University +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +Hong Kong Baptist University +"School of Computer and Information, Hefei University of Technology, China" +Victoria University of Wellington +The University of Shef eld +University of Caen Basse-Normandie +"Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India" +"uses, in any current or future media, including" +"Psychology and Psychiatry, University of Pittsburgh, USA" +Institute of Graduate Studies and Research +"University of Science, VNU-HCM, Viet Nam" +"Carnegie Mellon University, USA" +"Electrical Eng. Dep., Central Tehran Branch, Islamic Azad University, Tehran, Iran" +"Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj" +University of the Western Cape +"University of California, Berkeley1 Adobe" +"UMIACS, University of Maryland, College Park, MD" +"e ects of di erence factors, including age group, age gap" +"Governance, Keio University" +National Chiao-Tung University +"University, China" +"Electrical and Computer Engineering, The University of Memphis" +"University of Maryland Institute for Advanced Computer Studies, College Park, MD" +"Research Center for Learning Science, Southeast University, China" +"College Park, MD" +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +Aristotle University of Thessaloniki GR +"Faculty of ETI, Gdansk University of Technology, Gdansk, Poland" +"University of Pittsburgh, Pittsburgh" +"University of Oxford, United Kingdom" +VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College +ICMC University of S ao Paulo +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +"University of North Carolina Wilmington, Wilmington, NC, USA" +"School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran" +"College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China" +"Grif th University, QLD, Australia" +"Anna University Chennai, India" +George Mason University +"Language Technologies Institute, School of Computer Science" +Shanghai Jiao Tong University +The Hong Kong University of Science and Technology +"York University, Toronto, Canada" +University of Iowa +"B. Eng., Zhejiang University" +"University of Aizu, Japan" +"International Institute of Information Technology, Hyderabad, India" +"IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands" +c(cid:13) Carnegie Mellon University +"University of Queensland, Australia" +"North China University of Technology, Beijing 100144 CHINA" +UniversityofMaryland +"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of" +"University of Adelaide, Australia" +"Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos" +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +Hanyang University +"Computer Vision Laboratory, Link oping University, Sweden" +Boston University / **Rutgers University / ***Gallaudet University +"Center for Automation Research, University of Maryland, College Park, MD" +South College Road +Korea Advanced institute of Science and Technology +"National Taichung University of Science and Technology, Taichung, Taiwan, R.O.C" +Courant Institute of Mathematical Sciences +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +ARISTOTLE UNIVERSITY OF THESSALONIKI +"Asia University, Taichung, Taiwan" +University of Siegen +"Bharathidasan University, Trichy, India" +"Gdansk University of Technology, Faculty of Electronics, Telecommunication" +Institute for Information Systems Engineering +"National Institute of Informatics, Japan" +"Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ" +Institute of Arti cial Intelligence and Cognitive Engineering +"M.Tech Student, Mount Zion College of Engineering, Pathanamthitta, Kerala, India" +"Schreiber Building, room 103, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv" +Stony Brook University +Rowan University +"University of Bari, Bari, Italy" +"University of Amsterdam, University of Trento, Italy" +Interactive and Digital Media Institute +"University of Illinois, Urbana-Champaign University of California, San Diego" +Politehnica University of Timisoara +"Southwest University, China" +Mihaylo College of Business and Economics +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad" +"Lund University, Lund, Sweden" +"Brown University, United States" +"Bilkent University, 06800 Cankaya, Turkey" +"Goldsmiths, University of London, UK" +"University, USA" +University of Central Florida +"of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science" +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"Rochester Human-Computer Interaction (ROC HCI), University of Rochester, NY" +Institute for Robotics and Intelligent +"Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra Pradesh" +"Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +College of Informatics +UNIVERSITY OF TARTU +"Rayalaseema University Kurnool, Andhra Pradesh" +"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China" +National Institute of Development Administration +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers" +"CRCV, University of Central Florida" +"RTM Nagpur University, Campus Nagpur, (MS)-India" +"IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY" +"Bharti Vidyapeeth Deemed University, Pune, India" +"King Saud University, KSA" +Reutlingen University +"Rutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ" +University of Milan +"Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA" +The University of Hong Kong +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +"College of Computer Science and Technology, Zhejiang University, China" +University of Frankfurt +"DIEI, University of Perugia, Italy" +"Michigan State University, East Lansing, MI 48824, U.S.A" +Jadavpur University +"Collage of Sciences, Baghdad University, Iraq" +The City College and the Graduate Center +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"Institute for Infocomm Research, A*STAR" +"University of Bonn, Roemerstrasse 164, 53117 Bonn, Germany" +MITSUBISHI ELECTRIC RESEARCH LABORATORIES +"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia" +Azad University of Qazvin +"Florida Institute Of Technology, Melbourne Fl" +"Center for Research in Computer Vision, University of Central Florida" +"Harvard University, USA" +"and Engineering, Beihang University, Beijing, China" +"National Institute of Technology, Toyota College, Japan" +"Ritsumeikan, University" +"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea" +Beijing University of Posts and Telecommunications +"Shenzhen Institutes of Advanced Technology, CAS, China" +"University of York, York, UK" +"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune" +Honda Fundamental Research Labs +"Computer Science and Engineering, University of Washington, Seattle, WA" +"University of Nottingham, UK, School of Computer Science" +University of Tokyo +"School of Computer Science and Information Systems, Birkbeck College, University of London" +"University of Business Agriculture and Technology, Dhaka-1230, Bangladesh" +"State University of New York at Binghamton, Binghamton, NY" +"Indraprastha Institute of Information Technology, Delhi" +UNIVERSITY OF WISCONSIN MADISON +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China" +Huazhong Agricultural University +"Computer Graphics Research Group, University of Freiburg, Freiburg, Germany" +"Nanjing University, China" +"University of Akron, Akron" +"TNLIST, Tsinghua University, Beijing, 100084, China" diff --git a/scraper/reports/institution_names-2.csv b/scraper/reports/institution_names-2.csv new file mode 100644 index 00000000..eee63d57 --- /dev/null +++ b/scraper/reports/institution_names-2.csv @@ -0,0 +1,714 @@ +University of Wisconsin Madison +"Eindhoven University of Technology, The Netherlands" +"Graduate School of Science and Engineering, Saitama University" +"Gallaudet University, Technology Access Program, 800 Florida Ave NE, Washington, DC" +"University of Minnesota-Twin Cities, Minneapolis" +"Technology, University of Oradea 410087, Universitatii 1, Romania" +University +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China" +Departm nt of Information Engin ering Th Chines University of Hong Kong +"Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing" +"University Street, Montreal, QC H3A 0E9, Canada" +Sinhgad College of +"National Cheng Kung University, Tainan, Taiwan, R.O.C" +"University of California, Santa Cruz" +"USC Information Sciences Institute (ISI), Marina Del Rey, CA" +"Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain" +The Rockefeller University +"Centre for Intelligent Machines, McGill University, Montreal, Canada" +Compi`egne University of Technology +"University at Buffalo, SUNY" +"Institute for Human-Machine Communication, Technische Universit at M unchen" +"Lund University, Cognimatics AB" +National Institutes of Health +Intelligence Computing Research Center +"Rutgers University, Piscataway, NJ 08854, USA" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +"PES Institute of Technology, Bangalore, Karnataka, India" +"University of Tennessee, Knoxville" +"School of Computer Science, CECS, Australian National University, Australia" +"Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India" +"Tarbiat Modarres University, Tehran, Iran" +Glyndwr University +University of Technology Sydney +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"Cornell University, Ithaca, New York" +"University of Southampton, United Kingdom" +Akita University +"Intelligent Recognition and Image Processing Lab, Beihang University, Beijing" +"National University of Defense Technology, Changsha 410073, China" +Nqtional Institute of Standards and Technology +"Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA" +University of Pennsylvania +"cid:2)Imperial College London, U.K" +"Delft University of Technology, The Netherlands" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +"Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France" +"University of Illinois at Urbana-Champaign, Urbana, IL" +"cid:63)Queen Mary University of London, Imperial College London" +"Kitware, Inc" +University of Sydney +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +"ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai" +McGill University +"RCC Institute of Information Technology, Kolkata, India" +"Australian National University and NICTA, Australia" +"University of Dhaka, Bangladesh" +Arizona State University +Tsinghua University 4SenseTime +University of Virginia +"Fudan University, Shanghai, China" +"RIEB, Kobe University, Kobe, 657-8501, Japan" +"Pattern Recognition Group, University of Siegen" +California Institute of Technology +"general term, including collaboration. Interaction determines action on someone" +"Kwangwoon University, 447-1 Wolge-dong, Nowon-Gu, Seoul 139-701, Korea" +"Address correspondence to: Karen L. Schmidt, University of" +cid:1)Institute for Neural Computation +"The Ohio State University, Columbus, OH, USA" +University of Geneva +University of Glasgow +St. Anne s College +"PSG College of Technology, Coimbatore, Tamil Nadu, India" +"Wayne State University, Detroit, MI 48202, USA" +University of Toronto and Recognyz Systems Technologies +"Myongji University, Yongin, 449-728 South" +"FI-90014 University of Oulu, Finland" +Khulna University of Engineering and Technology +"Akita University, Akita, Japan" +University of Stuttgart +"B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"School of Electronics and Information, Northwestern Polytechnical University, China" +Macau University of Science and +"University of California, Riverside" +"California Institute of Technology, Pasadena, CA" +"Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal" +"University of Science and Technology of China, Hefei, Anhui, P. R. China" +Psychiatry at the University of Pittsburgh +"University of Pittsburgh, Pittsburgh, USA" +University of California Berkeley +University of London +"Nam k Kemal University, Tekirda g, Turkey" +"Information Systems Design, Doshisha University, Kyoto, Japan" +Information Technologies Institute +"Faculty of Electrical Engineering, Czech Technical University" +"Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA" +"Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +"Concordia University, Canada" +"Purdue University, West Lafayette, IN, USA" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia" +Kyung Hee University South of Korea +ATR Human Information Processing Research Laboratory +"The University of Tennessee, Knoxville" +"CVSSP, University of Surrey, UK" +"Center for Cognitive Neuroscience, Duke University, Durham, North Carolina" +"University of Adelaide, SA, Australia" +Hanoi University of Science and Technology +"The Chinese University of Hong Kong, China" +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology" +"University of California, Irvine" +"Middlesex University, London" +Xerox Research Center Webster +"China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of" +"Foundation University Rawalpindi Campus, Pakistan" +TechnicalUniversityofDenmark +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +Toyota Technological Institute at Chicago +"Rensselaer Polytechnic Institute, Troy, NY 12180, USA" +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"Vision Science Group, University of California" +"University of Southern California, Los Angeles, CA 90089, USA" +"University of California, Merced, CA" +"Innopolis University, Kazan, Russia" +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada" +University of Campinas +"University of Twente, EEMCS, Netherlands" +Tomas Bata University in Zl n +"National Laboratory of Pattern Recognition, Institute of Automation" +UNIVERSITY OF CALIFORNIA +"School of EECS, Queen Mary University of London, UK" +"Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"Beckman Institute, University of Illinois at Urbana-Champaign, IL USA" +Shenzhen Institutes of Advanced Technology +"The Hong Kong Polytechnic University, Hong Kong, SAR, 2University of Technology Sydney, Australia" +"Savitri Bai Phule Pune University, Maharashtra India" +Institute for Communication Systems +"Shanghai Institute of Applied Physics, Chinese Academy of Sciences" +IBM Thomas J. Watson Research Center +"The Blavatnik School of Computer Science, The Tel-Aviv University" +Florida State University +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +University of Toulouse +"University of Illinois at Urbana-Champaign, IL USA" +"West Virginia University, Morgantown WV 26506, USA" +"Beijing University of Posts and Telecommunications, Beijing, China" +"Ritsumeikan University, Kyoto, Japan" +"Graduate School of Doshisha University, Kyoto, Japan" +"Much is known on how facial expressions of emotion are produced, including which individual muscles are most active in" +"College of Computer and Information Science, Northeastern University, MA, USA" +"Section of Pathology, Second University of Naples, Via L. Armanni" +Bangalore Institute of Technology +Liverpool John Moores University +"University of Bristol, Bristol, UK" +"Electrical Engineering Institute, EPFL" +"Computer Laboratory, University of Cambridge, Cambridge, UK" +The Hong Kong Polytechnic University 2Harbin Institute of Technology +"University of Science, Vietnam National University-Ho Chi Minh city" +"Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea" +"Kyung Hee University, Yongin, Rep. of Korea" +"Queen Mary, University of London, London E1 4NS, UK" +"Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India" +"University, Taiwan, R.O.C" +"Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey" +Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university +"University of California, Merced, CA 95344, USA" +"Sensor-enhanced Social Media (SeSaMe) Centre, National University of Singapore, Singapore" +Dietrich College Honors Theses +"Dalian University of Technology, Dalian, China" +The Australian National University Queensland University of Technology +"University College London, London WC1N 3BG, United Kingdom" +"University of Freiburg, Germany" +"Moscow Institute of Physics and Technology, Russia" +"Recognition, Institute of Automation, Chinese Academy of Sciences" +"university, Shiraz, Iran" +"University of Bath, Bath, Somerset, United Kingdom" +"Portland State University, USA" +"College of Computer Science, Chongqing University, Chongqing, China" +"University of Pennsylvania, 2Ryerson University" +"National Cheng Kung University, Tainan, Taiwan, ROC" +"School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu" +"University of Queensland, St Lucia QLD Australia, 5 Institut Universitaire de France, Paris, France" +"School of Computer Science, University of Lincoln, U.K" +"Marine Institute, via Torre Bianca, 98164 Messina Italy" +"Key Laboratory of Machine Perception (MOE), School of EECS, Peking University" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +"Jadavpur University, India" +Virginia Tech Carilion Research Institute +Boston University Computer Science Technical Report No +"Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University" +University of Toulouse II Le Mirail +"Key Lab. of Machine Perception, School of EECS, Peking University" +University of Massachusetts +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia" +University of Illinois at Urbana +"Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan" +CARNEGIE MELLON UNIVERSITY +Sridevi Women's Engineering College +Yale University +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +"Bo gazi ci University, Turkey" +"Language Technologies Institute, Carnegie Mellon University, PA, USA" +"Elect. Eng. Faculty, Tabriz University, Tabriz, Iran" +"Kent State University, Kent, Ohio, USA" +"School of Information Engineering, Nanchang University, China" +"JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"aLawrence Technological University, 21000 W Ten Mile Rd., South eld, MI 48075, United States" +"Max Planck Institute for Informatics, Germany" +"Stanford University, CA, United States" +AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of +"University Station C0500, Austin TX 78712, USA" +"Tafresh University, Tafresh, Iran" +"Illinois Institute of Technology, Chicago, Illinois, USA" +"University of Texas at Arlington, Arlington, Texas 76019, USA" +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +"Middlesex University London, London, UK" +Kent State University +"Assam University, Silchar-788011 Assam University, Silchar" +"Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences" +University of Lac Hong 10 Huynh Van Nghe +"University of Central Florida, Orlando, USA" +"Zhejang University, Hangzhou 310027, P.R.China" +"Columbia University, New York, NY" +Mahatma Gandhi Institute of Technology +University of Aberdeen +"DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK" +"DISI, University of Trento, Trento, Italy" +"Nagaoka University of Technology, Japan" +Federal University of Technology - Paran a +"Electrical, Computer, Rensselaer Polytechnic Institute" +"University of Peshawar, Pakistan" +of the University of Notre Dame +"IHCC, RSCS, CECS, Australian National University" +"Institute of Computing Technology, CAS, Beijing 100190, China" +The Open University of Israel +"Tsinghua University, Beijing 100084, China" +"Leiden, the Netherlands, 3 Delft University of Technology" +"University of Malaya, Kuala Lumpur, Malaysia" +"University of Pittsburgh, Pittsburgh, PA 15260, USA" +college of Engineering +"Recognition, Institute of Automation" +"Kogakuin University, Tokyo, Japan" +"Recanati Genetic Institute, Rabin Medical Center and Schneider Children s Medical Center, Petah Tikva, Israel" +"Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India" +"Islamic Azad University, Mashhad Branch, Mashhad, Iran" +"The School of Computer Science, Tel-Aviv University, Israel" +Eastern Mediterranean University +"New York University Shanghai, 1555 Century Ave, Pudong" +DVMM Lab - Columbia University +"Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece" +Honda Research Institute +University of Bridgeport +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China" +University of Colorado at Colorado Springs +"Electronics and Communication Engineering, Chuo University" +"School of Computer Science, Fudan University, Shanghai, China" +"Statistics, University of" +"EEMCS, University of Twente" +"Imperial College London, U.K" +"School of Computer and Information, Hefei University of Technology, Hefei" +"University of Tabriz, Tabriz, Iran" +"Brown University, 2University of California, San Diego, 3California Institute of Technology" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China" +Concordia University +Oxford Brookes University +"Shanghai Jiao Tong University, China" +"Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA" +"Rio de Janeiro State University, Brazil" +"College of Computer Science, Zhejiang University, Zhejiang, China" +Indian Institute of Technology Kanpur +"College Heights Blvd, Bowling Green, KY" +Polytechnic University of Bucharest +University of Cagliari +"Mackenzie Presbyterian University, S o Paulo, S o Paulo, Brazil" +"t2i Lab, Chalmers University of Technology, Gothenburg, Sweden" +"University of Maryland, College Park" +"P.A. College of Engnineering, Mangalore" +"B.Tech (C.S.E), Bharath University, Chennai" +"b Computer Technology Institute, Beijing Union University, 100101, China" +"Sri krishna College of Technology, Coimbatore, India" +"Metron, Inc" +"cCentre of Intelligent Machines, McGill University, Montr eal, QC H3A 0E9, Canada" +"School of Information Science and Technology, Donghua University, Shanghai 200051, China" +HELSINKI UNIVERSITY OF TECHNOLOGY +Kingston University +"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China" +Institute for studies in theoretical Physics and Mathematics(IPM +"School of Computing and Info. Sciences, Florida International University" +Hong Kong University of Science and Technology +by grants from the National Institute of Mental Health (MH 15279 and MH067976 (K. Schmidt +Chungnam National University +"Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand" +"Jilin University, Changchun 130012, China" +"Kumamoto University, 2-39-1 Kurokami, Kumamoto shi" +"cid:63) Imperial College London, UK" +"Psychology, University of Illinois, Beckman Institute, Urbana-Champaign, Illinois 61801, University of" +"University of telecommunications and post, Sofia, Bulgaria" +Zhejiang University +"Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China" +"Faculty of Computers and Information, Cairo University, Cairo, Egypt" +"National Taiwan University of Science and Technology, Taipei 10607, Taiwan" +"Washington University, St. Louis, MO, USA" +"The Chinese University of Hong Kong, Hong Kong" +"Institute of Psychology, Chinese" +"B.A. Earlham College, Richmond Indiana" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"Several methods exists to induce anxiety in healthy individuals, including threat of shock (ToS), the Trier" +"Multimodal Computing and Interaction, Saarland University, Germany" +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +"Gonda Brain Research Center, Bar Ilan University, Israel" +Tokyo Metropolitan University +"Faculty of EEMCS, University of Twente, The Netherlands" +"University of Pisa, Pisa, Italy" +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"Stony Brook University, Stony Brook NY 11794, USA" +"Beijing Union University, 100101, China" +"School of Computer Science, Tianjin University" +"Georgia Institute of Technology, Atlanta, Georgia, USA" +"University of Southampton, SO17 1BJ, UK" +"Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne" +"The Amsterdam School of Communication Research, University of Amsterdam" +"Cambridge University, Trumpington Street, Cambridge CB21PZ, UK" +"Dayananda Sagar College of Engg., India" +"Toyota Technological Institute (Chicago, US" +Baidu Research Institute of Deep Learning +Southwest Jiaotong University +"applications, including texture classification [16], face recognition [12], object detection [10], and" +Firat University +Institute for Advanced +"University of Lincoln, UK" +Fudan University +"Anna University, Chennai" +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +The Chinese University of Hong Kong +College of Information Engineering +"bSchool of Computer and Control Engineering, University of Chinese Academy of Sciences" +Slovak University of Technology in +"Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh" +cid:3)The Salk Institute and Howard Hughes Medical Institute +Institute of Computing +"Rochester Institute of Technology, Rochester, NY" +Queen's University Belfast - Research Portal +massachusetts institute of technology artificial intelligence laboratory +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"School of Computing and Communications, University of Technology Sydney, Sydney, Australia" +b Institute for Robotics and Intelligent Systems +Samsung Advanced Institute of Technology +"University, Singapore" +"Nanjing University, Nanjing 210093, P.R.China" +"University, Guangzhou, China" +"National Institute of Informatics, Tokyo, Japan" +"Research Center for Intelligent Security Technology, CIGIT" +"Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"University of Delaware, Newark, DE. USA" +"Institute of Data Science and Technology, Alibaba Group" +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +"Intelligent User Interfaces Lab, Ko c University, Turkey" +"University of Edinburgh, Edinburgh, UK" +National University +"University of Washington, Bothell" +Dietrich College of Humanities and Social Sciences +International University of +Beihang University +Colorado State University +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney" +"Most of the earlier studies mentioned above, including ours" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China" +"MATS University, MATS School of Engineering and Technology, Arang, Raipur, India" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of" +Xidian University 2Xi an Jiaotong University 3Microsoft Research Asia +"University of York, UK" +Huazhong University of +"Foundation University, Rawalpindi 46000, Pakistan" +CUNY Graduate Center and City College +Toyota Technological Institute Chicago (TTIC +"Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA" +University of Western Australia +"State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China" +"Institute Polythechnic of Leiria, Portugal" +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +"School of Engineering, Taylor s University" +"Boston University, Boston, MA" +"ples of such ne-grained descriptions, including attributes covering detailed" +"School of Computer Science and Technology, Shandong University" +The University of Queensland in +"National Key Laboratory for Novel Software Technology, Nanjing University, China" +MULTIMEDIA UNIVERSITY +"VSI Lab, Goethe University, Frankfurt, Germany" +"NICTA , Queensland Research Laboratory, QLD, Australia" +"Joint Research Institute, Foshan, China" +Beckman Institute for Advanced Science and Technology +"University of Illinois at Urbana-Champaign, USA" +"University of Exceter, Exceter, UK" +University of Toronto +"State Key Lab of CADandCG, Zhejiang University, Hangzhou, Zhejiang, China" +"IBM T. J. Watson Research Center, Yorktown Heights, NY, USA" +"and Mathematical Biosciences Institute, The Ohio State University" +"Robotics Institute, Carnegie Mellon University 3University of Pittsburgh, USA" +"Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT" +"University of Chinese Academy of Sciences, Beijing 100190, China" +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India" +Huazhong University of Science and Technology +"University of Chinese Academy of Sciences, Beijing, China" +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyd" +"University of California, San Diego, USA" +Vietnam National University of Agriculture +"Motorola, Inc" +IBM T. J. Watson Research Center +"IBM Almaden Research Center, San Jose CA" +"College Park, Maryland" +cid:1) Honda Research Institute +University of Freiburg +Ruhr University Bochum +Al-Khwarizmi Institute of Computer Science +Electronic Engineering and Computer Science Queen Mary University of London +The Weizmann Institute of Science +Coburg University +University of Birmingham +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"Beihang University, Beijing, China" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"University of Patras, Greece" +"Istanbul Technical University, Istanbul, Turkey" +"atry, University of Pennsylvania School of Medicine, Philadelphia, PA" +"Colorado State University, Fort Collins, Colorado, USA" +"D Research Center, Kwangwoon University and Springer" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +University of Illinois at Urbana Champaign +"Manonmaniam Sundaranar University, Tirunelveli, India" +"Purdue University, West Lafayette, IN. 47907, USA" +National Institute of Technology Rourkela +Duke University +"Michigan State University, NEC Laboratories America" +"National Technical University of Athens, 15780 Athens, Greece" +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"cid:93) Faculty of Science and Technology, University of Macau" +"Ferdowsi University of Mashhad, Mashhad, Iran" +"Jaipur, Rajasthan, India" +"K.N. Toosi University of Technology, Tehran, Iran" +"Computer Vision Laboratory, University of Nottingham, Nottingham, UK" +"Program of Computational Science and Engineering, Bo gazi ci University" +"Florian Metze, Chair (Carnegie Mellon University" +"Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada" +"University of Coimbra, Portugal" +"P.S.R Engineering College, Sivakasi, Tamilnadu, India" +"University Drive, Fairfax, VA 22030-4444, USA" +"University of Kentucky, 329 Rose St., Lexington, KY, 40508, U.S.A" +"Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea" +"University of Rochester, NY 14627, USA" +"Aditya College of Engineering, Surampalem, East Godavari" +McGovern Institute for Brain Research +"Hiroshima University, Japan" +"School of Mathematics and Computational Science, Sun Yat-sen University, China" +GE Global Research Center +Allen Institute for Arti cial Intelligence (AI +"Hong Kong University of Science and Technology, Hong Kong" +"Western Sydney University, Parramatta, NSW 2150, Australia" +"ment of Psychology, University of California, Berkeley" +University of California Berkeley +"Beijing Institute of Technology, Beijing 100081, PR China" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"EEMCS, University of Twente, The Netherlands" +Indian Institute of Science +"Informatics and Telematics Institute, Centre for Research and Technology Hellas" +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"Human Genome Center, Institute of Medical Science" +"ADSIP Research Centre, University of Central Lancashire" +"Computer Science, Princeton University, Princeton, NJ, USA" +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"School, The University of Sydney, Sydney, NSW, Australia" +"Facial Image Processing and Analysis Group, Institute for Anthropomatics" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China" +"Computer Science and Engineering, University of Washington, Seattle, WA, USA" +Purdue Institute for Integrative Neuroscience +The University of Adelaide; and Australian Centre for Robotic Vision +Ministry of Higher Education and Scientific Research / The University of Mustsnsiriyah/Baghdad IRAQ +"Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching" +National Institute of Advanced Industrial Science and Technology (AIST +"Visual Geometry Group, University of Oxford" +years. According to the definition by the National Institute +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +Nokia Bell Labs and University of Oxford +"University of California at Berkeley, USA" +"Nanyang Technological University, 2University of California San Diego" +Federal University of Campina Grande (UFCG +"Institute for Infocomm Research (I2R), A*STAR, Singapore" +Institute of Informatics - ISLA +"University of Colorado, Boulder" +Ho Chi Minh City University of +"Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia" +"Imperial College London, On do" +Mitsubishi Electric Research Labs (MERL +Federal University of Para ba +"Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu" +Nottingham Trent University +"Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB" +"School of Information Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India" +"Columbia University, United States" +Aristotle University of Thessaloniki +University of Edinburgh +"Nottingham Trent University, Nottingham, UK" +"School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China" +Institute of Electrical and Electronics Engineers (IEEE). DOI +"Technical University of Ostrava, FEECS" +City University of Hong Kong +"G.H.Raisoni College of Engg. and Mgmt., Pune, India" +Institute of Industrial Science +"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA" +Stanford University +Max Planck Institute for Informatics +Peking University +Heriot-Watt University +"Sapienza University of Rome, Italy" +"King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia" +"University of California at Los Angeles, Los Angeles, CA, USA" +University of Copenhagen +"Human Media Interaction, University of Twente, P.O. Box" +"Center for Machine Vision Research, University of Oulu, Finland" +Shaheed Zulfikar Ali Bhutto Institute of +This work was supported by Grant MOP102637 from the Canadian Institutes of Health Research to E.D.R. and the +"Middlesex University London, UK" +"Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India" +"Institute of Automation, Chinese Academy of Sciences, China" +"Computer Vision Group, Xerox Research Center Europe, Meylan, France" +"Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China" +"University of Sk vde, Sweden" +"LIUM Laboratory, Le Mans, France, 2 Idiap Research Institute, Martigny, Switzerland" +"MTech Student 1, 2, Disha Institute of" +at The Australian National University +"Graduate Institute of Electronics Engineering, National Taiwan University" +Institute for Anthropomatics +Indiana University Bloomington +"cSchool of Astronautics at Beihang University, 100191, Beijing, P.R.C" +"QCIS, University of Technology Sydney, Sydney, Australia" +"IDIAP Research Institute, Martigny, Switzerland" +"Sathyabama University, Chennai, India" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +Democritus University of Thrace +"FX Palo Alto Laboratory, Inc., California, USA" +"School of Software, Dalian University of Technology, Tuqiang St. 321, Dalian 116620, China" +ATR Interpreting Telecommunications Research Laboratories +"University of Surrey, Guildford, Surrey GU2 7XH, UK" +"Michigan State University, 3115 Engineering Building" +St. Francis Institute of Technology +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"do, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea" +Signal Processing Institute +"Numediart Institute, University of Mons" +University Politehnica of Bucharest +"Imperial College, 180 Queens Gate" +"University, Hong Kong" +"2015 Wiley Periodicals, Inc" +"Research Center in Information Technologies, Universit e de Mons, Belgium" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +"Carnegie Mellon University, Pittsburgh, PA 15213, USA" +Poznan University of Technology +"B.S., E.E., Bo azi i University" +"cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China" +"Engg, Priyadarshini College of" +"Institute of Media and Information Technology, Chiba University" +"Bilgi University, Dolapdere, Istanbul, TR" +"Kurukshetra University, Kurukshetra, India" +Idiap Research Institute +University of Basel +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +"University of Vermont, 33 Colchester Avenue, Burlington" +"Virginia Polytechnic Institute and State University, Blacksburg" +University of Ljubljana Faculty +Northwestern University +"School of Electrical and Computer Engineering, Cornell University" +Rowland Institute at Harvard +"School of Information Technology and Electrical Engineering, The University of Queensland" +Xidian University +"University of Cambridge, The Computer Laboratory, Cambridge CB3 0FD, U.K" +The Chinese University of Hong Kong holds the copyright of this thesis. Any +"NEC Laboratories America, Inc., Cupertino, CA" +University of North Texas +"Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan" +"University of Michigan, Ann Arbor, MI, USA" +"School of Software, Dalian University of Technology, Dalian 116621, China" +"State Key Laboratory of Brain and Cognitive Science, Institute of Psychology" +National University of Technology Technology +Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the +"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA" +"Columbia University, New York, NY, USA" +"Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan" +"University of Zagreb, Unska 3, 10 000 Zagreb" +"Boston University, USA" +Otto-von-Guericke University Magdeburg +cid:63)Stanford University +"School of Computer Science and Technology, Harbin Institute of Technology, China" +University of Piraeus +"American University, Washington, DC, USA" +"Courant Institute of Mathematical Sciences, New York, NY" +Fraser University +"Asian University, Taichung, Taiwan" +"University at Buffalo, State University of New York" +National University of Science and Technology +"School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China" +"Sighthound, Inc" +"College of Sciences, Northeastern University, Shenyang 110819, China" +"Link oping University, SE-581 83 Link oping, Sweden" +"instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i" +"Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan" +METs Institute of Engineering +Sanghvi Institute of Management and Science +"Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China" +"Institute for Robotics and Intelligent Systems, USC, CA, USA" +"Tampere University of Technology, Finland" +"Institute AIFB, Karlsruhe Institute of Technology, Germany" +"School of Computer Science and Engineering, Southeast University, Nanjing 210096, China" +Opus College of Engineering +"Human Centered Multimedia, Augsburg University, Germany" +College of Information Science and Engineering +The University of Maryland +"Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin" +Electronics and Telecommunications Research Institute +Akita Prefectural University +"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +"1E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2R" +"Anjuman College of Engineering and Technology, Sadar, Nagpur, India" +Carnegie Mellon University (CMU +Indraprastha Institute of Information Technology +"Faculty of Electrical Engineering, Czech Technical University in Prague" +AALTO UNIVERSITY +"MIRACL-FSEG, University of Sfax" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +"Nanjing University, Nanjing 210093, China" +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Scienti c Visualization and Computer Graphics, University of Groningen, Nijenborgh 9, Groningen, The Netherlands" +"Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany" +"Bogazici University, Bebek" +"Technical University of Cluj Napoca, 28 Memorandumului Street" +The Institute of Electronics +Xerox Research Center India +"German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany" +Louisiana State University +In the Graduate College +"Australian National University, Canberra, ACT 0200, Australia" +"Visualization and Computer Vision Lab, GE Global Research Center" +"Rutgers University, Piscataway NJ 08854, USA" +"College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan" +"aResearch Scholar, Anna University, Chennai, Inida" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"Gujarat Technological University, V.V.Nagar, India" +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +Massachusetts Institute of Technology (MIT +"IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore" +The University of Western Australia +"Mangalore Institute of Engineering and Technology, Badaga" +"Normal University, Kunming, China" +University of Dhaka +"Information and Media Processing Research Laboratories, NEC Corporation" +Cambridge University +"School of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA" +"Oxford Brookes University, Oxford, United Kingdom" +VEER SURENDRA SAI UNIVERSITY OF +"Cyprus University of Technology, Cyprus" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Beihang University, Beijing 100191, China" +"Florida State University, Tallahassee, FL 32306, USA" +in The University of Michigan +"Deva Ramanan, University of California at Irvine" +"Stanford University, Stanford, California" +"Graduate School of Information Science and Technology, The University of Tokyo" +"SSN College of Engineering, Chennai, India" +National Institute of Informatics +"School of Psychology, Cardiff University, Cardiff, United Kingdom, College of" +Canadian Institute for Advanced Research +"Facebook AI Research, 2Dartmouth College" +MICC - University of Florence +"National Cheng Kung University, Tainan, Taiwan" +"Computer Vision Group, Friedrich Schiller University Jena" +"Montreal Institute for Learning Algorithms, Universit e de Montr eal" +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"Dipartimento di Sistemi e Informatica, University of Florence" +"Hong Kong Polytechnic University, Hong Kong" +"Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College" +"Electronics Engineering, National Institute of Technical Teachers" +Baidu IDL and Tsinghua University +King Faisal University +"Tel Aviv University, Israel" +"Head and Neck Surgery, Seoul National University" +Helsinki University of Technology Laboratory of Computational Engineering Publications +"Humboldt-University, Berlin, Germany" +"Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of" +"University of Milano-Bicocca, Italy" +"Utah State University, Logan, UT 84322-4205, USA" +"aSchool of Computing and Mathematics, Charles Sturt University, Bathurst, NSW" +"Institute for Human-Machine Communication, Technische Universit at M unchen, Germany" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"University of California, San Diego, California, USA" +University of Southampton +"Institiude of Computer Science and Technology, Peking University" +"School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China" +"Chalmers University of Technology, SAFER" +"College of Computer and Information Engineering, Nanyang Institute of Technology" +Institute of Computer Science III +"The Robotics Institute, Carnegie Mellon University" +"Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan" +"University of Barcelona and Computer Vision Centre, Barcelona, Spain" +"University of Cape Town, South Africa" +Yeungnam University +University of Pittsburgh +"School of Computer Science, The University of Nottingham, Nottingham, UK" +"School of Information Technology and Management, University of International" +"MIRACL-FS, University of Sfax" diff --git a/scraper/reports/institution_names-3.csv b/scraper/reports/institution_names-3.csv new file mode 100644 index 00000000..fa865c1c --- /dev/null +++ b/scraper/reports/institution_names-3.csv @@ -0,0 +1,712 @@ +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +"Temple University, Philadelphia, PA 19122, USA" +"Indian Institute of Technology, Madras" +"School of Computer Science and Engineering, Nanjing University of Science and Technology" +"School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China" +University of Wollongong. For further information contact the UOW +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA" +"Research Center CENTIA, Electronics and Mechatronics" +Bielefeld University +"National University of Singapore, Singapore" +Datta Meghe College of Engineering +"Korean Research Institute of Standards and Science (KRISS), Korea" +Pondicherry Engineering College +Jahangirnagar University +Australian National University and NICTA +Tsinghua University +University of Texas +"Islamic Azad University, Qazvin, Iran" +Banaras Hindu University +"Beijing Institute of Technology, China" +"North Dakota State University, Fargo, ND 58108-6050, USA" +"Northeastern University, MA, USA" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam" +State University of Feira de Santana (UEFS +"College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China" +"Adobe Systems, Inc., 345 Park Ave, San Jose, CA" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +"Institute for Neural Computation, University of California, San Diego" +"engineering, Government College of Engineering Kannur, Kerala, India" +Massachusetts Institute of Technology Rapporteur +University of Memphis +"Computer Vision Group, Friedrich Schiller University of Jena, Germany" +"Faculty of Computer Science, Dalhousie University, Halifax, Canada" +"University of Ulsan, Ulsan, Republic of Korea" +"Chandigarh Engg. College, Mohali, Punjab, India" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"Technical University Munich, Germany" +"Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of" +University of Illinois at +"Institute of Child Health, University College London, UK" +Purdue University +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +"Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland" +"The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA" +"Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom" +"State Key Lab of CADandCG, College of Computer Science, Zhejiang University, Hangzhou, China" +"UNIVERSITY OF CALIFORNIA, BERKELEY" +Ho Chi Minh City University of Science +c(cid:13)The Chinese University of Hong Kong +"Institute of Deep Learning, Baidu Research" +"Faculty of Science, University of Amsterdam, The Netherlands" +"University of Washington, Seattle, WA 98195, United States" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"University of Tokyo, 4-6-1 Shirokanedai" +"Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark" +"aDivision of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA" +"Lab of Science and Technology, Southeast University, Nanjing 210096, China" +"Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands" +"M.P.M. College, Bhopal, India" +"School of Computing Sciences, University of East Anglia, Norwich, UK" +"NEC Laboratories America, Inc" +"CAS), Institute of Computing Technology, CAS, Beijing 100190, China" +"State Key Lab. LIESMARS, Wuhan University, China" +"Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +"Peking University, Beijing, China" +"The University of Electro-Communications, JAPAN" +IBM China Research Lab +Formerly: Texas AandM University +"DIT UNIVERSITY, DEHRADUN" +"IslamicAzad University, Qazvin, Iran" +"University of Central Florida, Orlando" +"Nokia Research Center, Tampere, Finland" +"Sharda University, Greater Noida, India" +"Science, University of Amsterdam" +"University of St Andrews, United Kingdom" +"Tsinghua University, Beijing, China" +"Universit Paris-Dauphine, PSL Research University, CNRS, UMR" +"ITEE, The University of Queensland, Australia" +Plymouth University +"The Blavatnik School of Computer Science, Tel-Aviv University, Israel" +Rensselaer Polytechnic Institute +Institute of Interdisciplinary Studies in Identity Sciences (IISIS +"West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi" +Mans eld College +"University of Barcelona, Spain" +"Indian Institute of Technology, Roorkee" +"Engineering and Natural Science, Sabanci University, Istanbul, Turkey" +Gangnung-Wonju National University +"Tsinghua University, 100084 Beijing, China" +"Khalifa University, Abu Dhabi, United Arab Emirates" +Queensland University of Technology (QUT +Taizhou University +"University of Oviedo, Campus de Viesques, 33204 Gij n" +"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China" +Computer and Vision Research Center +Thesis. Rochester Institute of Technology. Accessed from +"Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China" +"ZHAW Datalab, Zurich University of Applied Sciences" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +B.S. University of Central Florida +"BECS, Aalto University School of Science and Technology, Finland" +"University of Notre Dame. Notre Dame, IN 46556.USA" +"Brown University, Providence, RI" +"Grad. School at Shenzhen, Tsinghua University" +"Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest" +"University of Cambridge, UK 2Carnegie Mellon University, USA" +"The University of North Carolina at Charlotte, USA" +"Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology" +"iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium" +"Princeton University, Princeton, New Jersey, USA" +"School of Information Science and Engineering, Southeast University, Nanjing, China" +University of Wisconsin-Madison +"Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China" +"GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA" +"School of Information Science and Engineering, Central South University, Changsha" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +"School of Data and Computer Science, Sun Yat-sen University" +"National Taiwan University, Taipei, Taiwan" +"University Hospital Jena, Germany" +"University of Oradea 410087, Universitatii 1, Romania" +Institute of control science and engineering +"to process in all the illumination conditions, including total" +"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University" +Guangdong Medical College +"Columbia University, New York NY 10027, USA" +"Tsinghua University, State Key Lab. of Intelligent" +"Technology, Nanjing University of Aero" +"Computer Science Division, The Open University of Israel, Israel" +Wayne State University +University of Nottingham +Massachusettes Institute of Technology +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +"University of Technology, Sydney, Australia" +"Pompeu Fabra University, Spain" +"University Politehnica of Bucharest, Romania" +Queen Mary University of London +Nanjing University of Information Science and Technology +"School of Computing Science, Simon Fraser University, Canada" +Shandong Women s University +"University of the South Paci c, Fiji" +"Chu Hai College of Higher Education, Hong Kong" +"Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems" +"University of Chinese Academy of Sciences, Beijing 101408, China" +University of Michigan +University of California at Berkeley +University of Cambridge +"University of South Carolina, Columbia, USA" +University of Leeds +The University of Texas at Austin +Semarang State University +University of North Carolina at Charlotte +"MISC Laboratory, Constantine 2 University, Constantine, Algeria" +"School of Electronic and Computer Engineering, Peking University" +"School of Electrical Engineering and Automation, Harbin Institute of Technology" +"School of Electronics and Computer Engineering, Peking University" +Northeastern University 2Microsoft Research 3City University of New York +"EECS, Syracuse University, Syracuse, NY, USA" +"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia" +"Waseda University, Tokyo, Japan" +Cambridge Research Laboratory +National Institute of Advanced Industrial Science and Technology +"Faculty of Science and Engineering, Waseda University, Tokyo, Japan" +"Center for Brain Science, Harvard University, Cambridge, MA 02138 USA" +"Queen Mary University of London, London E1 4NS, UK" +"School of Information Systems, Singapore Management University, Singapore" +"Key Lab. of Machine Perception, School of EECS, Peking University, China" +"Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute" +"Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"Faculty of Computer Science, University of A Coru na, Coru na, Spain" +"Bar Ilan University, Israel" +"University of Freiburg, Instit ut f ur Informatik" +National University of singapore +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +"S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India" +"School of Computer Science, Northwestern Polytechnical University, China" +"Qihoo 360 AI Institute, Beijing, China" +University of Barcelona +"Bo gazic i University, Istanbul, Turkey" +"Key Laboratory of Machine Perception, Peking University, Beijing" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences" +Hacettepe University +Bas kent University +Vector Institute for Arti cial Intelligence +"School of Computer Science and Engineering, Sichuan University, China" +"USA, 2Unit for Experimental Psychiatry, University of Pennsylvania School of Medicine" +"Sun Yat-Sen University, Guangzhou, P.R. China" +"ECE, National University of Singapore, Singapore" +The University of York +"Nanjing, 210094, China, 3 School of Automation, Nanjing University of Posts and Telecommunications" +"cid:2) Imperial College London, United Kingdom" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"School of Computer Science and Technology, Harbin Institute of" +Okayama University +"Center for Automation Research (CfAR), University of Maryland, College Park, MD" +Korea Advanced Institute of Science and Technology (KAIST +Dalle Molle Institute for Arti cial Intelligence +"School of Computer Science, Carnegie Mellon University, PA, USA" +"United States of America, State University of New York Albany, Albany, New York" +"Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Mancha, Spain, Imperial College, London, UK" +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"School of IoT Engineering, Jiangnan University, Wuxi, 214122, China" +"University of Cambridge, Computer Laboratory, UK" +"West Virginia University, Morgantown, WV 26506, USA" +The Open University +"Xi an Jiaotong University, China" +"Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"Asian Institute of Technology, Pathumthani, Thailand" +"Columbia University, USA" +"Chonbuk National University, Jeonju 561-756, Korea" +The Weizmann Institute of +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +"Institute of Systems and Robotics - University of Coimbra, Portugal" +"Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India" +"Graduate School of Information Science, Nagoya University, Japan" +"College of Medical Informatics, Chongqing Medical University, Chongqing, China" +"Curtin University, Perth, Australia" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +"King Saud University, Riyadh" +"Y ld z Teknik University, Istanbul, TR" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh" +Institute of Automatic Control Engineering (LSR +"Faculty of Engineering, Ain Shams University, Cairo, Egypt" +"School of Computer Science, University of Birmingham, UK" +University of Oxford +"Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA" +University of Information +"University of Queensland, School of ITEE, QLD 4072, Australia" +The Ohio State University +"Amazon, Inc" +Research Center E. Piaggio +"University of Vienna, Austria" +AI Institute +"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA" +University of Oulu +"Center for Research in Computer Vision (CRCV), University of Central Florida (UCF" +University of Washington +"IIIS, Tsinghua University" +Monash University +A dissertation submitted to the University of Bristol in accordance with the requirements +Malaviya National Institute of Technology +"Cooperative Medianet Innovation Center, Shanghai Jiaotong University" +OF PRINCETON UNIVERSITY +M. Mark Everingham University of Leeds +Sakarya University +Otto von Guericke University +"L3S Research Center, Hannover, Germany" +University of Science and Technology of China +"School of Data Science, Fudan University, China" +Nanyang Technological University +"Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea" +"College of Computer Science and Technology, Chongqing" +The University of Electro-Communications +OF STANFORD UNIVERSITY +"University of Groningen, The Netherlands" +"Manonmaniam Sundaranar University, India" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +Korea University +"Istanbul Technical University, Istanbul, 34469, TURKEY" +"School of Computer Science, University of Adelaide, Australia" +"Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland" +"Center for Automation Research, University of Maryland, College Park, MD 20740, USA" +"School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China" +University of Science and +"School of Data and Computer Science, Sun Yat-Sen University, China" +"Iftm University, Moradabad-244001 U.P" +Institute of Automation +Moradabad Institute of Technology +University of California Santa Barbara +University of California Davis +"VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic" +"University of Denver, Denver, CO" +Vrije Universiteit Brussel +University of California at Berkeley / ICSI +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"University of Notre Dame, USA" +"School of Electronic Engineering and Computer Science, Peking University, 100871, China" +"Imperial College London, London, UK" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY +Chubu University +University of Posts and Telecommunications +IMPERIAL COLLEGE +"The school of Data Science, Fudan University" +Rutgers University +"IBM Watson Research Center, Armonk, NY, USA" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA" +University of Groningen +"Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA" +Cyprus University of Technology +"S J B Institute of Technology, Bangalore, Karnataka, India" +"Nanyang Technological University, Singapore" +"Oxford University, UK" +"Tsinghua University, Beijing 100084, P.R.China" +"Dnyanopasak College Parbhani, M.S, India" +"Hankuk University of Foreign Studies, South Korea" +"Exploratory Computer Vision Group, IBM T. J. Watson Research Center" +"Laboratory, University of Houston, Houston, TX, USA" +"Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai" +c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +Middlesex University London +"Harbin Institute of Technology, Harbin 150001, China" +"Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 T bingen, Germany" +FL +"University of Peshawar, Peshawar, Pakistan" +"DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy" +Gdansk University of Technology +Rice University +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +"Nanjing University of Science and Technology, China" +"Zhejiang Normal University, Jinhua, China" +Queensland University of Technology(QUT +Amherst College +"LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France" +"Institute of Software, Chinese Academy of Sciences, Beijing 100190, China" +"Paran a Federal University, Curitiba, Brazil" +"University of Crete, Crete, 73100, Greece" +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +Japan +"University of Twente, The Netherlands" +"Kurukshetra University, Kurukshetra-136 119, Haryana, INDIA" +"The School of Electrical Electronic and Control Engineering, Kongju National University" +the Chinese University of Hong Kong +University of Amsterdam +"Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein" +"Language and Brain Lab, Simon Fraser University, Canada" +"Image Processing Center, Beihang University" +East China Normal University +"Rowland Institute at Harvard, Cambridge, MA 02142, USA" +"United States of America, State University of New York Albany, Albany" +"Shanghai Jiao Tong University, Shanghai 200240, China" +"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China" +Northeastern University +"University POLITEHNICA Timisoara, Timisoara, 300223, Romania" +"National University of Kaohsiung, 811 Kaohsiung, Taiwan" +University of Northern British Columbia +"Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic" +"California Institute of Technology, USA" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +"Computer Vision Research Group, COMSATS Institute of Information" +Temple University +"International Islamic University, Islamabad 44000, Pakistan" +"University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +"Australian National University, and NICTA" +"Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK" +"Engineering, University of Dundee" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China" +"School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China" +"Interactive and Digital Media Institute, National University of Singapore, SG" +Islamic Azad University +Institute of Computing Technology +"Ultra College of Engineering and Technology for Women, India" +via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to +"University of California, Riverside CA 92521-0425, USA" +"Caarmel Engineering College, MG University, Kerala, India" +University of Wisconsin Madison +Meiji University +Digital Media Research Center +"Kong Polytechnic University, Kowloon, Hong Kong" +Achariya college of Engineering Technology +"Graz University of Technology, Austria" +UNIVERSITY OF OULU +"School of Informatics, University of Edinburgh, UK" +Sun Yat-sen University +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"Faculty of EEMCS, Delft University of Technology, The Netherlands" +"Najafabad Branch, Islamic Azad University" +"Shaoguan University, Da Tang Lu" +"Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran" +"Indian Institute of Technology, Madras, Chennai 600036, INDIA" +Brown University +Nanjing University of Science and +"University of California at Irvine, Irvine, CA" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"PanimalarInstitute of Technology, Tamilnadu, India" +Imperial College London / Twente University +University of Oradea +Submitted to the Institute for Graduate Studies in +"Computer vision and Remote Sensing, Berlin university of Technology" +"Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"School of Computer Science and Technology, Tianjin University, China" +"State Key Laboratory of Integrated Services Networks, Xidian University, Xi an 710071 China" +Xiamen University +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"Federal University Technology Akure, PMB 704, Akure, Nigeria" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"Aberystwyth University, UK" +"University of Pisa, Largo Lucio" +Institute of Computer Science +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +"University of Florence, Italy" +Punjabi University Patiala +"Institute of Automation, Chinese Academy of" +"University of Technology, Baghdad, Iraq" +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"School of Computer Science and Technology, Shandong Institute of Business and Technology" +"COMSATS Institute of Information Technology, Pakistan" +"University of California, San Diego, La Jolla" +K. N. Toosi University of +Institute of +"Institute of Biochemistry, University of Balochistan, Quetta" +DUBLIN CITY UNIVERSITY +"School of Engineering, University of Portsmouth, United Kingdom" +"University POLITEHNICA of Bucharest, Bucharest, Romania" +"P.G. Student, SRV Engineering College, sembodai, India" +Sungkyunkwan University +"Vision Systems, Inc" +"Center for Brains, Minds and Machines, McGovern Institute, MIT" +Central Mechanical Engineering Research Institute +"University of Science and Technology of China, Hefei, China" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"bDiscipline of Business Analytics, The University of Sydney Business School" +Bournemouth University +"CVSSP, University of Surrey" +The University of Tokyo +"GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin" +"School of Data and Computer Science, Sun Yat-sen University, P.R.China" +"School of Computing, Staffordshire University" +"VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain" +"IIIT-Delhi, India, 2West Virginia University" +Stony Brook University Hospital +"Graduate University of Chinese Academy of Sciences, Beijing 100049, China" +"School of Psychology, University of Central Lancashire" +Tokyo Institute of Technology +Ural Federal University (UrFU +"Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India" +any other University +"ECE dept, University of Miami" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +Indiana University +"Kingston University, UK" +"The Open University of Israel, Israel" +"Michigan State University, East Lansing MI" +"School of Computer Science and Engineering, South China University of Technology" +"Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain" +Research Center and Laboratoire +"UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea" +"Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland" +"aSchool of Technology, University of Campinas" +University of Waterloo +"Birkbeck College, University of London" +Istanbul Technical University +"Y. Li, University of Maryland" +"Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia" +"Indian Institute of Informaiton Technology, Allahabad, India" +"Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA" +"EEMCS, University of Twente Enschede, The Netherlands" +"Gatsby Computational Neuroscience Unit, University College London, London, UK" +"College of Computer Science, Zhejiang University, Hangzhou, China" +"Baingio Pinna, University of" +B.S. (Cornell University +"National Tsing Hua University, Hsin-Chu, Taiwan" +"Advanced Engineering, The Chinese University of Hong Kong" +"Catholic University of Rio de Janeiro, Brazil" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"Idiap Research Institute, Switzerland" +Mitsubishi Electric Research Laboratory +National Institute of Standards and Technology +"Southwest University, Chongqing 400715, China" +"Dalian University of Technology, China" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"RMIT University, Australia" +"China-Singapore Institute of Digital Media, Singapore" +Curtin University of Technology +"Center for Automation Research, University of Maryland" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA" +Massachusetts Institute +"School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China" +"SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University" +"Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia" +"Tampere University of Technology, Tampere, Finland" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany" +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"Virginia Polytechnic Institute and State University, Blacksburg, Virginia" +"B.S. Abdur Rahman University, Chennai-48, India" +"College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +University of Bristol - Explore Bristol Research +"University of Texas, Austin, TX 78712-1188, USA" +"b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney" +"San Jose State University, San Jose, CA" +"University of Exeter, UK" +"Research Center for Learning Science, Southeast University, Nanjing 210096, China" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China" +Katholieke Universiteit Leuven +"Jawaharlal Technological University, Anantapur" +"University of Toronto, Toronto, ON M5S 2G4, Canada" +"Division of Computer Science, University of California, Berkeley, CA, USA e-mail" +"Sogang University, Seoul 121-742, Republic of Korea" +"University of California at San Diego, La Jolla, CA" +"Nanyang Technological University, Singapore 639798, Singapore" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +China University of Mining and Technol +"Northeastern University, Boston, USA" +"UniversityofMaryland, CollegePark, MD" +"Sorbonne Universit s, UPMC University Paris 06, Paris, France" +to Michigan State University +University of Kentucky +"Beijing Normal University, China" +University of North Carolina Wilmington +HoHai University +"University of Technology, Guangzhou, 510640, P.R.China" +"CollegePark, MD" +"Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea" +National Taiwan University of Science and +"University of Bristol, Bristol, BS8 1UB, UK" +"M.Tech Scholar, MES College of Engineering, Kuttippuram" +"Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China" +UNIVERSITY OF TAMPERE +"School of Mathematical Science, Peking University, China" +"Dartmouth College, NH 03755 USA" +"MES College of Engineering, Kuttippuram" +yAristotle University of Thessaloniki +"The University of Texas at Dallas, Richardson, TX" +"State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia" +"Australian National University, Canberra" +"SRI International, Menlo Park California / *Brooklyn College, Brooklyn New York" +"School of Electrical and Computer Engineering, RMIT University" +"Stony Brook University, NY 11794, USA" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan" +"Computer Science, Brown University, Providence, RI, USA" +COMSATS Institute of Information Technology Wah Cantt +"University of Houston, Houston, TX, USA" +"School of Information Science and Technology, Sun Yat-sen University, China" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Institute for Vision and Graphics, University of Siegen, Germany" +Oregon State University +"University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia" +"SRV Engineering College, sembodai, india" +"Siemens Corporate Research, 755 College Road East, Princeton, NJ" +Imperial College London +"in signed languages, including American Sign Language (ASL). Gestures such" +"Karlsruhe Institute of Technology, Germany" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +Middle East Technical University +"Robotics Institute, Carnegie Mellon University, USA" +The Author 2014. Published by Oxford University Press +North Carolina AandT State University +National Institute of Advanced Industrial +"National Tsing-Hua University, Hsin-Chu, Taiwan" +"California State University, Fullerton, USA" +"School of Electronics Engineering and Computer Science, Peking University" +"Queen Mary University of London, UK" +"Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea" +Institute +Xerox Research Center +University of Southern California +University of Iceland +"KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc" +"Electronics and Computer Science, University of Southampton, Southampton, Hampshire" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +Max Planck Institute f ur biologische Kybernetik +"Imperial College, London, UK" +"and IBUG [32]. All of them cover large variations, including different" +"Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada" +PES Modern College of Engg +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"Center for Automation Research, University of Maryland, College Park, MD 20742, USA" +"K.S.R. College Of Engineering, Tiruchengode, India" +Multimedia University +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"Research Reports of CMP, Czech Technical University in Prague, No" +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +"Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen" +"University of Illinois at Urbana Champaign, Urbana" +"Beihang University 2Gri th University 3University of York, UK" +"College of Computing, Georgia Institute of Technology" +"Carnegie Mellon University, Pittsburgh, PA, USA" +"Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht" +"School of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications" +Courant Institute +"Carnegie Mellon University, Pittsburgh, PA, 15213, USA" +yThe University of Tokyo +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +"Heilongjiang University, College of Computer Science and Technology, China" +"Amirkabir University of Technology, Tehran. Iran" +Beijing Jiaotong University +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +"Queensland University of Technology, Australia" +"Computer Science and Engineering, Anna University, India" +"College of Computer and Information Science, Southwest University, Chongqing 400715, China" +"University of Santiago de Compostela, Santiago de Compostela, Spain" +University of Chinese Academy of +"Biometric and Image Processing Lab, University of Salerno, Italy" +"Sathyabama University Old Mamallapuram Road, Chennai, India" +"Beijing University of Posts and Telecommunications, Beijing, China. 2School of" +and the institute of engineering and science +"Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India" +National Taipei University +Swansea University +"Center for Information Science, Peking University, Beijing 100871, China" +"School of Computer Science, The University of Adelaide, Australia" +Tel Aviv University +"Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey" +"School of Computer Science, The University of Nottingham" +Shiraz University +"Nanjing University, Nanjing 210023, China" +Middlebury College +University of Massachusetts Amherst +Ionian University +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"RGPV University, Indore" +COMSATS Institute of Information Technology +"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong" +"Engineering, G.H.Raisoni College of Engineering" +"University of California, Los Angeles" +National University of Singapore +Santa Fe Institute +"PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan" +"Middlesex University London, 4International Hellenic University" +University of North Carolina at Chapel Hill +"Howard University, Washington DC" +This work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E +"The Remote Sensing Technology Institute (IMF), German Aerospace Center" +Indian Institute of Science Bangalore +Portugal +"Ulm University, Germany" +B.S. University of Indonesia +"University of Malaya, 50603 Kuala Lumpur, Malaysia" +"Institute of Industrial Science, The University of Tokyo" +"LIP6, UPMC - Sorbonne University, Paris, France" +"Learning Systems Group, California Institute of Technology" +College of Electrical and Information Engineering +Nanjing University of Science and Technology +University (ITU +"Indian Institute of Science, India" +University of Applied Sciences Darmstadt - CASED +"Intelligent Systems Group, University of Groningen, The Netherlands" +"and 2Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708" +"Newcastle University, Newcastle upon Tyne" +Czech Technical University +"Bournemouth University, UK" +Palo Alto Research Center (PARC +College of Image Arts and Sciences +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +"School of Computing, National University of Singapore, SG" +"University of Zaragoza, Spain" +University of Ottawa +National Institute of Technology Karnataka +Stevens Institute of Technology +"Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ" +"School of Computer Science, Wuhan University, P.R. China" +"School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China" +"Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +"Chonbuk National University, Jeonju-si" +National Taiwan University of Science and Technology +Sponsors: Machine Intelligence Research Labs (MIR Labs +"Federal Institute of Science and Technology, Mookkannoor" +"and education use, including for instruction at the authors institution" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +M.S. Brunel University of West London +"b School of Business, Reykjavik University, Reykjavik, Iceland" +"University of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre" +"P. O. Box 4500 Fin-90014 University of Oulu, Finland" +"College of Medicine, Seoul National University" +"The Ohio State University, OH" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"Current Address: Research Institute of Child Development and Education, University of Amsterdam" +"Kurukshetra University, Kurukshetra" +University of Washington and Google Inc +"Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA" +"School of Computer Science, Sichuan University, Chengdu, China" +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"Narayana Pharmacy College, Nellore, India" +College of Computer Science and Technology +German Research Center for Arti cial Intelligence (DFKI +"University of Michigan, Ann Arbor, MI" +Research Center for Information +Carnegie Mellon University +"Chung-Ang University, Seoul, Korea" +"Assiut University, Assiut 71515, Egypt" +"ITCS, Tsinghua University" +"Technological University, Davanagere, Karnataka, India" +"abroad, or from public or private research centers" +"Qatar University, Qatar" +Facebook 4Texas AandM University 5IBM Research +"School of Computer Science and Software Engineering, Shenzhen University" +"K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China" +"University of Lincoln, School of Computer Science, U.K" +"Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan" +"School of Computer Science, The University of Manchester" +"University of Notre Dame, 2IIIT-Delhi" +"University of Lincoln, U.K" +"Southeast University, Nanjing 211189, China" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore" +"The University of Tokyo, Japan" +"Tohoku University, Japan" +"BECS, Aalto University, Helsinki, Finland" +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"Visual Computing and Communications Lab, Arizona State University" +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +at West Virginia University +University of Engineering and Technology diff --git a/scraper/reports/institution_names-4.csv b/scraper/reports/institution_names-4.csv new file mode 100644 index 00000000..394751e3 --- /dev/null +++ b/scraper/reports/institution_names-4.csv @@ -0,0 +1,711 @@ +"cid:63)Sharif University of Technology, University College London, Queen Mary University of London" +Dhaka University +"Center for Machine Vision and Signal Analysis, University of Oulu, Finland" +College of Engineering and Computer Science +"Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +University of California at San Diego +"University of Central Florida, USA" +"Neurological Institute, USA" +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"Texas AandM University, College Station, TX, USA" +IDIAP Research Institute +Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT +"Faculty of Informatics, E otv os Lor and University, Budapest, Hungary" +"Computer Science and Engineering, Easwari Engineering College, India" +Institute for Robotics and Intelligent Systems +"Queensland University of Technology, Brisbane, QLD, Australia" +"SBK Women s University, Quetta, Balochistan" +"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania" +"George Mason University, Fairfax Virginia, USA" +Istanbul University +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Institute for Infocomm Research, A*STAR, Singapore" +Institute for Human-Machine Communication +Delft University of Technology +"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece" +"Psychopharmacology Unit, Educational and Health Psychology, University College" +"Bogazici University, Turkey" +"Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India" +"Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada" +University of Surrey +"King Saud University, Riyadh, Saudi Arabia" +"Ritsumeikan University, Japan" +"IIIS, Tsinghua University, Beijing, China" +"Carnegie Mellon University, Pittsburgh PA" +"2 School of Computing, National University of Singapore" +University of North Carolina +"National Lab of Pattern Recognition, Institute of Automation" +Lomonosov Moscow State University +"H. He, Honkong Polytechnic University" +"The University of Electro-Communications, Tokyo" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"School of Business, Aalto University, Finland" +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"West Virginia University, Morgantown, WV" +"Utah State University, Logan UT" +"Gannan Normal University, Ganzhou 341000, China" +"Southeast University, Nanjing 210096, China" +"Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany" +"aIBM China Research Lab, Beijing, China" +"Karlsruhe Institute of Technology, Karlsruhe, Germany" +"B.Sc., University of Science and Technology of China" +"University of Nevada, Reno, Reno, NV, USA" +Institute of Electronics and Computer Science +"of Psychology, Princeton University, Princeton, NJ 08540. E-mail" +"the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam" +"Hua Zhong University of Science and Technology, Wuhan, China" +University College London +"College of Computer Science and Information Technology, Northeast Normal University, Changchun" +"University of Texas at Arlington, Arlington, TX, USA" +Funding was provided by the U.S. National Institutes of Mental +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +"Southwest Jiaotong University, Chengdu, China" +"The Australian National University Canberra ACT 2601, Australia" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +Bharath Institute of Science and Technology +"Stanford University, CA" +Columbia University in the City of New York +Zaragoza University +Institute of Communications Engineering +"Amirkabir University of Technology, Tehran" +"GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco" +"Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh" +"Institute ofInformation Science, Academia Sinica, Taipei, Taiwan" +"aImperial College London, London, UK" +University of North Carolina Wilmington in Partial Ful llment +"point, lighting, and appearance. Many applications, including video surveillance systems" +University of Texas at +The Australian National University +"Beijing Institute of Technology, Beijing, China" +"MIT, McGovern Institute, Center for Brains, Minds and Machines" +"Imperial College, South Kensington Campus, London SW7 2AZ, UK" +"University of Michigan, Ann Arbor" +"Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan" +Max-Planck Institute for Informatics +Harvard University +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Deparment of Computing, Imperial College London, UK" +"additional details of DCS descriptors, including visualization. For extending the evaluation" +"University of Plymouth, UK" +"ISLA Lab, Informatics Institute, University of Amsterdam" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology, The Netherlands" +AristotleUniversityofThessaloniki +UNIVERSITY OF OULU GRADUATE SCHOOL +"Katholieke Universiteit Leuven, ESAT/VISICS" +"College Park, MD, 20740, USA" +"City University of Hong Kong, Hong Kong, China" +Waseda University +The University of Texas +"Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq" +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"VelTech Dr. R.R. and Dr. S.R. Technical University, Chennai" +"Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China" +The University of Newcastle +"University of Canterbury, New Zealand" +Dr. B. C. Roy Engineering College +"the Chinese University of Hong Kong, Shatin, Hong Kong" +"Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India" +Institute for Advanced Computer Studies +"National University of Singapore Research Institute, Suzhou, China" +"CNRS , Institute of Automation of the Chinese Academy of Sciences" +Cornell University +University of Miami +"University of North Carolina at Chapel Hill, NC, USA" +McMaster University +SAMSI and Duke University +"University of Miami, USA" +University of Texas at Austin +University of Bristol +"The University of Queensland, School of ITEE, QLD 4072, Australia" +"College of Electronics and Information, Northwestern Polytechnic University" +"Tampere University of Technology, Tampere 33720, Finland" +University of Illinois Urbana Champaign +The Graduate University for Advanced Studies (SOKENDAI +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +"Minia University, Egypt" +"University of Karlsruhe, Germany" +Boston College +National Cheng Kung University +Tomsk Polytechnic University +"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK" +"University of Massachusetts, Amherst, MA" +"SenseTime, 2Tsinghua University" +Anna University +"ISLA Lab, Informatics Institute" +"Indraprastha Institute of Information Technology (Delhi, India" +"University of Science and Technology of China, Hefei 230026, P. R. China" +"Rutgers University, USA" +"School of Computing and Communications University of Technology, Sydney" +"University of Florida, Gainesville, FL, 32611, USA" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"Indian Institute of Technology Delhi, New Delhi, India" +"University of Oxford, UK" +"Toyota Technological Institute, Chicago (TTIC" +Thapar University +"University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA" +"College of Computer Science, Sichuan University, Chengdu 610065, P.R. China" +Islamic Azad University of AHAR +"Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA" +eBay Research Labs +"University of Maryland, College Park, MD" +"Information Technology, Madras Institute of Technology, TamilNadu, India, email" +"University College London, London, UK" +"Research Scholar (M.Tech, IT), Institute of Engineering and Technology" +Sabanci University +"ESAT, Katholieke Universiteit Leuven, Leuven, Belgium" +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore" +"of Psychology, University of Michigan, Ann Arbor, MI, United States, University of Michigan, Ann" +York University +The State University of New Jersey +"University of Georgia, Athens, GA, U.S.A" +"Vrije Universiteit Brussel, 1050 Brussels, Belgium" +College of Computing +K S Rangasamy College of Technology +"of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China" +"Institute of Computing Technology, CAS, Beijing, 100190, China" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +College of Computer and Information Science +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +"The University of York, Heslington, York YO10 5DD, United Kingdom" +"Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Purdue University, West Lafayette, IN 47907, USA" +DICGIM - University of Palermo +"Computer Science and Technology, Tsinghua University, Beijing, China" +THE UNIVERSITY OF ARIZONA +College of Computer Science and Information Sciences +"Nanjing University of Aeronautics and Astronautics, China" +Sharif University of Technology +McGovern Institute +University of Chinese Academy of Sciences +"Machine Perception Laboratory, University of California, San Diego" +"Cardiff University, UK" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA" +"Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand" +"Tsinghua University, China" +Karlsruhe Institute of Technology +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Electrical and Computer Engineering, National University of Singapore, Singapore" +DAP - University of Sassari +University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento +"University of Amsterdam, Amsterdam, The Netherlands" +"The Chinese University of Hong Kong, New Territories, Hong Kong" +"Visual Geometry Group, University of Oxford, UK" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +"b Brain Behavior Center, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +y National Institute of Advanced Industrial Science and Technology +"College Park, United States" +"ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis" +"aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia" +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +Illinois Institute of Technology +"Princeton University, Princeton, NJ, USA" +"M.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli" +IDIAP RESEARCH INSTITUTE +"Harvard University, Cambridge, MA" +"Boston College, USA" +"Stony Brook University, Stony Brook, USA" +"image being generated by the model, include Active Appearance" +Massachusetts Institute of Technology +"MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +"Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy" +"University of Michigan, Ann Arbor, MI, USA (UMICH.EDU" +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +"La Trobe University, Australia" +Institute for Vision Systems Engineering +Carnegie Melon University +"Rice University, Houston, TX, 77005, USA" +"Research School of Engineering, The Australian National University, ACT 2601, Australia" +"Huazhong University of Science and Technology, Wuhan, China" +"Central Tehran Branch, Azad University" +"Aditya institute of Technology and Management, Tekkalli-532 201, A.P" +"State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China" +"University of Amsterdam, The Netherlands" +Tampere University of Technology +"Nagoya University, Japan" +B.S./M.S. Brandeis University +"University of Maryland, College Park, USA" +"University of Pennsylvania School of Medicine, 1013 Blockley Hall" +"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"College of Mechatronic Engineering and Automation, National University of Defense Technology" +"Imaging Science and Biomedical Engineering, The University of Manchester, UK" +Hong Kong Polytechnic University +"Arts Media and Engineering, Arizona State University" +University of Illinois at Chicago +"Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China" +"National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences" +"School of Computer Science and Engineering, Nanyang Technological University, Singapore" +"cid:3) School of Software, Tsinghua University" +"Center for Healthy Aging, University of" +University of Connecticut +"Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore" +"Dalian University of Technology, Dalian 116024, China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China" +"Faculty of Engineering and Technology, Multimedia University (Melaka Campus" +"EIMT, Open University of" +University of Cape Town +University of Cambridge Computer Laboratory +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +University of Maryland +"aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA" +"CVL, Link oping University, Link oping, Sweden" +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"Inst. Neural Computation, University of California" +New York University +"The Chinese University of Hong Kong, Hong Kong SAR, China" +"College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +Autonomous University of Barcelona +"Kongju National University, South Korea" +"Sri SidarthaInstitute of Technology, Tumkur" +University Of California San Diego +The American University in Cairo +"Psychology, American University" +"University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"Institute for Infocomm Research, Singapore" +Hunan University +"School of Computer Science, Nanjing University of Science and Technology" +Technical University of Kaiserslautern +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"School of EECS, Queen Mary University of London" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +"Helen Wills Neuroscience Institute, University of" +"Carnegie Mellon University, Pittsburgh, USA" +"School of Optics and Electronics, Beijing Institute of Technology, Beijing" +"System Research Center, NOKIA Research Center, Beijing, 100176, China" +"Kyung Hee University, South Korea" +IstanbulTechnicalUniversity +Technion Israel Institute of Technology +"School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK" +"University of Tsukuba, Japan" +"ColumbiaUniversity, NY, USA" +"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India" +CALIFORNIA INSTITUTE OF TECHNOLOGY +University of Dundee +University of Twente +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan" +"University of Wisconsin-Madison, Madison, WI, USA" +"National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China" +University of Witwatersrand +"Institute of Automation, Chinese Academy of Sciences (CASIA" +Marquette University +"ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences" +"School of Control Science and Engineering, Shandong University, Jinan 250061, China" +University of Perugia +"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan" +"NICTA, and Australian National University" +"RWTH Aachen University, Germany" +"College of Computer Science, Zhejiang University" +"Computer Engineering and Computer Science, Duthie Center for Engineering, University of" +University of Ljubljana +"College of Science, Menou a University, Menou a 32721, Egypt" +High Institute of Medical Technologies +Vietnam National University Ho Chi +University of Newcastle +"University of Dammam, Saudi Arabia" +"Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +"Queen Mary, University of London, E1 4NS, UK" +Engineering Chaoyang University Nankai Institute of +"Feng Chia University, Taichung, Taiwan" +"Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA" +"EEMCS, University of Twente, Netherlands" +"Netherlands, Utrecht University, Utrecht, The Netherlands" +University of Siena +"Queen Mary, University of London" +"Manonmaniam Sundaranar University, Tirunelveli" +University of Thessaloniki +B. S. Rochester Institute of Technology +"California Institute of Technology, Pasadena, California, USA" +"University of Haifa, Haifa, Israel" +"Tamkang University, Taipei, Taiwan" +"Imperial College of Science, Technology and Medicine" +"Tel-Aviv University, Israel" +"c Cardiff Business School, Cardiff University, Cardiff, United Kingdom" +"RWTH Aachen University, Aachen, Germany" +"Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands" +Wolfson College +Honda Research Institute USA +"School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China" +"Beijing, China" +"Graduate University of Chinese Academy of Sciences(CAS), 100190, China" +"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University" +"University of Caen, France" +"Northeastern University, Boston, MA, USA" +"Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden" +"National Taiwan University, Taiwan" +"University of Southern California, Institute for Robotics and Intelligent Systems" +South China University of China +Harvard and Massachusetts Institute +"College Park, MD 20742 USA" +"School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China" +"Montefiore Institute, University of Li ge, 4000 Li ge, Belgium" +"School of Computer, Beijing Institute of Technology, Beijing, China" +"Honda RandD Americas, Inc., Boston, MA, USA" +"School of Computer Science, Fudan University, Shanghai 200433, China" +"School of Computer Science and Technology, Tianjin University, Tianjin, China" +Kobe University +"Indian Institute of Technology, Kharagpur" +"The Australian National University, Canberra, Australia" +"University of Virginia, Charlottesville, VA" +"University of California, Irvine, USA" +Biometric Research Center +"School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology" +"Motorola China Research Center, Shanghai, 210000, P.R.China" +"Institute for Electronics, Signal Processing and Communications" +"Rutgers University, New Brunswick, NJ" +"College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China" +"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"KTH Royal Institute of Technology, Stockholm" +Mahanakorn University of Technology +"Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia" +"of Engineering and Information Technology, University of Technology, Sydney, Australia" +"University of Washington, Seattle, USA" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +Howard Hughes Medical Institute (HHMI +"University of California, Berkeley, Berkeley CA 94720, USA" +"Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA" +"COMSATS Institute of Information Technology, Islamabad" +"Azad University, Qazvin, Iran" +Islamic University of Gaza - Palestine +University of Malta +Tafresh University +Stevens Institute of Technology Adobe Systems Inc +"IES College of Technology, Bhopal" +"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India" +"University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of" +North Carolina Central University +"University of Trento, Italy" +"The University of Sydney, NSW 2006, Australia" +"University Technology of Malaysia, 81310 Skudai, Johor, Malaysia" +"University of Science, Ho Chi Minh city" +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD +"recognition, such as human computer interfaces and e-services, including e-home" +Australian Institute of Sport +The University of British Columbia +"Institute of Computing Technology, Chinese Academy of Sciences" +U.S. Army Research Laboratory +"Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas" +ATR Human Information Processing Research Laboratories +"Integrated Research Center, Universit`a Campus Bio-Medico di Roma" +"Institute for Arts, Science and Technology" +"Bo gazici University, Istanbul, TR" +"versity of Amsterdam, Amsterdam and University of Trento" +"Information Technology University (ITU), Punjab, Lahore, Pakistan" +"School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand" +"Santa Clara University, Santa Clara, CA. 95053, USA" +"School of Computer Science and Technology, Tianjin University, Tianjin 300072, China" +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +Korea Advanced Institute of Science and Technology +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +"ESTeM, University of Canberra" +"Rutgers University, Piscataway, NJ" +"College of Science, Baghdad University, Baghdad, Iraq" +"Center for Research in Computer Vision, University of Central Florida, Orlando, USA" +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +"University of Siena, Siena, Italy" +"University of Zurich, Zurich, Switzerland" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +"The American University in Cairo, Egypt" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"Informatics and Telematics Institute, Centre of Research and Technology - Hellas" +"Lotus Hill Institute for Computer Vision and Information Science, 436000, China" +"State University of Rio de Janeiro, Brazil" +A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER +University of +"Doctor of Philosophy in Computing of Imperial College, February" +"National Laboratory of Pattern Recognition (NLPR), Institute of Automation" +"Public University of Navarra, Spain" +"Hector Research Institute of Education Sciences and Psychology, T ubingen" +"University of Chinese Academy of Sciences, Beijing 100049, China" +University Politehnica of Bucharest +Western Kentucky University +"University of Balochistan, Quetta" +Pennsylvania +"Electronic and Information Engineering, University of Bologna, Italy" +"The Hong Kong Polytechnic University, Hong Kong, China" +"Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of" +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +"Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany" +Jacobs University +"Carnegie Mellon University Pittsburgh, PA, USA" +Weizmann Institute of Science +Institute for Computer Graphics and Vision +"University of Science and Technology of China, Hefei, 230027, China" +Link to publication in University of Groningen/UMCG research database +"University of Cambridge, United Kingdom" +"School of Computer Engineering, Nanyang Technological University, Singapore" +"Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health" +"School of Mathematical Science, Dalian University of Technology, Dalian, China" +Idiap Research Institute and EPF Lausanne +"Vision and Sensing, HCC, ESTeM, University of Canberra" +"Priyadarshini College of Engg, Nagpur, India" +"School of Software, Tianjin University" +"Information, Keio University" +"Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara" +"University of Chinese Academy of Sciences, China" +"Institute of Digital Media, Peking University, Beijing 100871, China" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of" +University of Science and Technology Beijing +"University of California, Berkeley" +"The University of Sydney, Sydney, Australia" +at the University of Central Florida +University of Campinas (Unicamp +"CVAP, KTH (Royal Institute of Technology), Stockholm, SE" +"University of Verona, Verona, Italy" +"The Chinese University of Hong Kong, HKSAR, China" +University of Exeter +University of Maryland College Park +"Purdue University, West Lafayette, Indiana, 47906, USA" +"Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan" +"University of Washington, Seattle, WA, USA" +"Faculty of Science and Technology, University of Macau" +"Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen" +ALICE Institute +University of California +Clemson University +University: Dhirubhai Ambani Institute of Information and Communication Technology +"learning. As a result of this research, many applications, including video surveillance systems" +"Harbin Institute of Technology, Harbin, China" +of bilkent university +"School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA" +"GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS" +NSS College of Engineering +Cardi University +The City University of New York +"Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria" +"Universitat Polit`ecnica de Catalunya, Columbia University" +University of Texas at Arlington +"University Campus, 54124, Thessaloniki, Greece" +Australian National University +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +"Publication details, including instructions for authors and subscription information" +"University of Amsterdam, the Netherlands" +Robotics Institute +"University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine" +"face processing, including age (Berry, 1990), sex (Hill" +Queensland University of Technology +Language Technologies Institute +Transilvania University +"Intelligent Systems Lab Amsterdam, University of Amsterdam" +"University of Bath, Bath, United Kingdom" +"College of Engineering, Pune, India" +"University of Pittsburgh, Pittsburgh, PA" +University of Nottingham Ningbo China +Math Institute +"SASTRA University, Thanjavur, Tamil Nadu, India" +College of Engineering (Poly +"MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry" +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +University of Venezia +Institute of Road and +"University of Basel, Departement Informatik, Basel, Switzerland" +"Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA" +"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany" +"Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA" +"School of Computer Science, Carnegie Mellon University, USA" +"Istanbul Technical University, Turkey" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University" +"Solapur University, INDIA" +Dartmouth College +"School of Electrical Engineering and Computer Science, Peking University" +"RTMNU Nagpur University, India" +University of Massachusetts Amherst in partial ful llment +University of Canberra +University of Bath +Research Center +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany" +"B. Tech., Indian Institute of Technology Jodhpur" +Karlsruhe Institute of +"Lille 1 University, France" +University of Bonn +"University of Szeged, 2 E tv s Lor nd University" +"State Key Laboratory for Novel Software Technology, Nanjing University, China" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, USA" +D.J. Sanghvi College of Engineering +"KTH, Royal Institute of Technology" +University of British Columbia +Alex Waibel (Carnegie Mellon University +Systems and Telematics - Neurolab +Florida International University +"Government College of Engineering, Aurangabad" +Institute for Neural Computation +"University of the Basque Country, San Sebastian, Spain" +University of the Witwatersrand +"University of Alberta, Edmonton, Canada" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"North Dakota State University, Fargo, ND58105, USA" +"Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands" +"University Library, Singapore" +"University of Victoria, Victoria, Canada" +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +Tsinghua-CUHK Joint Research Center for Media Sciences +"Michigan State University, East Lansing, MI, U.S.A" +Oakland University +"Stanford University, Stanford, CA, USA" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology" +University of Trento +"Springer Science + Business Media, Inc. Manufactured in The Netherlands" +"Intelligence, Concordia University, Montreal" +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Institute of Computing Technology, CAS" +"Kobe University, NICT and University of Siegen" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany" +"School of Computer Science, Northwestern Polytechnical University, Xi an China" +"Institute of Systems Engineering, Southeast University, Nanjing, China" +"School of Computer Science, Carnegie Mellon University, 15213, USA" +"Southwest Jiaotong University, Chengdu, P.R. China" +"Michigan State University, East Lansing, MI 48824, USA" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +College of Information and Electrical Engineering +"Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn" +"Institute for Advanced Computer Studies, University of Maryland, College Park, MD" +"The University of York, UK" +Chosun University +"Rensselaer Polytechnic Institute, USA" +"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran" +"University of Southampton, UK, 2University of Warwick, UK" +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Government College of Engineering, Aurangabad [Autonomous" +"Research Center for Learning Science, Southeast University, Nanjing, China" +"Imperial College London, UK" +"Quantitative Employee unit, Finnish Institute of Occupational Health" +Multimedia Laboratory at The Chinese University of Hong Kong +"The American University In Cairo, Road 90, New Cairo, Cairo, Egypt" +"University of California, Merced" +The Education University of Hong Kong +Institute for System Programming +"National Research University Higher School of Economics, Nizhny Novgorod, Russian" +Max Planck Institute for Biological Cybernetics +Pohang University of Science and Technology +"Key Laboratory of Transient Optics and Photonics, Xi an Institute of Optics and Precision Mechanics, Chi" +"University of Nottingham, Nottingham, UK" +"M.S. (University of California, Berkeley" +Rochester Institute of Technology +USC Institute for Creative Technologies +"QCIS, University of Technology, Sydney" +A Thesis submitted to McGill University in partial fulfillment of the requirements for the +"and especially light angle, drastically change the appearance of a face [1]. Facial expressions, including" +"College Park, USA" +"University of Twente, Netherlands" +"Arizona State University, Tempe AZ" +STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY +"University of Basel, Switzerland" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +University Lecturer Veli-Matti Ulvinen +University of Insubria +Bo gazi ci University +"Hasan Kalyoncu University, Gaziantep, Turkey" +aInformation Sciences Institute +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +Fraunhofer Institute for Integrated Circuits IIS +Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part +University Of Maryland +Kyushu University +Boston University Theses and Dissertations +The University of Texas at +"Kulhare, Sourabh, ""Deep Learning for Semantic Video Understanding"" (2017). Thesis. Rochester Institute of Technology. Accessed" +"Institute of Computer Science and Technology, Chongqing University of Posts and" +"University of Oxford, Oxford, United Kingdom" +"Psychonomic Society, Inc" +"University of Chinese Academy of Sciences, Beijing, 100049, China" +State University of New York at Binghamton +"Pune Institute of Computer Technology, Pune, ( India" +"School of Computer Science, University of Lincoln, United Kingdom" +"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India" +"University, Xi an Shaanxi Province, Xi an 710049, China" +"Keio University, Yokohama 223-8522, Japan" +"Rutgers University, Computer and Information Sciences, 110 Frelinghuysen Road, Piscataway, NJ" +"UMIACS | University of Maryland, College Park" +"Swiss Federal Institute of Technology, Lausanne (EPFL" +"University of Shef eld, UK" +State University of New York at Buffalo +"Australian Centre for Visual Technologies, The University of Adelaide, Australia (b" +"School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave" +Columbia University +University of Warwick +"College of Engineering, Purdue University" +"National Institute of Technology, Durgapur, West Bengal, India" +New Jersey Institute of Technology +The Robotics Institute Carnegie Mellon University +"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece" +"C.L. Teo, University of Maryland" +"University of Massachusetts, Amherst Technical Report UM-CS" +Beckman Institute +"Lomonosov Moscow State University, 2Video Analysis Technologies, LLC" +The Chinese University ofHong Kong +"School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN" +"University of Alberta, Edmonton, AB T6G 2E8, Canada" +"Robotics Institute, Carnegie Mellon University" +University of Twente 2Dublin City University 3Oxford University +"Southeast University, Nanjing, China" +"University of Massachusetts, Amherst MA, USA" +Virginia Polytechnic Institute and State University +Link to publication from Aalborg University +"the Diploma of Imperial College London. This thesis is entirely my own work, and, except" +University of Manitoba +B.S.Abdur Rahman University B.S.Abdur Rahman University +"University of Michigan, Ann Arbor, USA" +"National Chung Cheng University, Chiayi, Taiwan, R.O.C" +"College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan" +Boston University +"and Modeling, Rutgers University" +"Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +"applications has different requirements, including: processing time (off-line, on-line, or real-time" +Nam k Kemal University +"Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany" +"Kyoto University, Kyoto, Japan" +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +"Multimedia University (MMU), Cyberjaya, Malaysia" +Eskisehir Osmangazi University +University of Illinois +A dissertation submitted to the Faculty of the University of Delaware in partial +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +Institute of Deep Learning +"The Hebrew University of Jerusalem, Israel" +"University of Illinois, Urbana-Champaign" +The Robotics Institute +"Northumbria University, Newcastle Upon-Tyne NE21XE, UK" +"Macau University of Science and Technology, Macau" +"Tongji University, Shanghai 201804, China" +"Virudhunagar Hindu Nadars Senthikumara Nadar College, Virudhunagar" +National University of Defense Technology +"Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul" +"Image and Video Research Laboratory, Queensland University of Technology" +"Arizona State University, AZ, USA" +"University Center of FEI, S ao Bernardo do Campo, Brazil" +"KU Phonetics and Psycholinguistics Lab, University of Kansas" +"Publication details, including instructions for authors and subscription" +"Kodak Research Laboratories, Rochester, New York" +"J. P. College of Engineering, India" +"University of Amsterdam, Amsterdam, The" +"Deparment of Computing, Goldsmiths, University of London, UK" +Carleton University +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +"The Hong Kong Polytechnic University, Hong Kong" +"Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C" +"University of Bonn, Germany" +"Technological Educational Institute of Athens, 12210 Athens, Greece" +"Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic" +University Lecturer Anu Soikkeli +"Quanti ed Employee unit, Finnish Institute of Occupational Health" +"Center for Automation Research, UMIACS, University of Maryland, College Park" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"Amal Jyothi College of Engineering, Kanjirappally, India" +"Graduate University of CAS, 100190, Beijing, China" +SIMON FRASER UNIVERSITY +"Capital Normal University, 100048, China" +No Institute Given +"Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan" +Nagoya University +"Sichuan Fine Arts Institute, Chongqing, China" diff --git a/scraper/reports/institution_names.csv b/scraper/reports/institution_names.csv new file mode 100644 index 00000000..7010cb87 --- /dev/null +++ b/scraper/reports/institution_names.csv @@ -0,0 +1,3563 @@ +"1E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2R" +"2 School of Computing, National University of Singapore" +"2015 Wiley Periodicals, Inc" +"2Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, Canada" +A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER +A Thesis submitted to McGill University in partial fulfillment of the requirements for the +A dissertation submitted to the Faculty of the University of Delaware in partial +A dissertation submitted to the University of Bristol in accordance with the requirements +"A. van Kleef, University of Amsterdam" +AALTO UNIVERSITY +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"ADSIP Research Centre, University of Central Lancashire" +AI Institute +ALICE Institute +"ALPHA COLLEGE OF ENGINEERING, CHENNAI" +ARISTOTLE UNIVERSITY OF THESSALONIKI +ATR Human Information Processing Research Laboratories +ATR Human Information Processing Research Laboratory +ATR Interpreting Telecommunications Research Laboratories +"Aalborg University, Denmark" +"Aalen University, Germany" +"Aalto University, Espoo, Finland" +"Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark" +"Abdul WaliKhan University, Mardan, KPK, Pakistan" +"Aberystwyth University, UK" +"Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India" +"Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan" +"Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of" +Achariya college of Engineering Technology +Acharya Institute Of Technology +"Address correspondence to: Karen L. Schmidt, University of" +"Aditya College of Engineering, Surampalem, East Godavari" +"Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra Pradesh" +"Aditya institute of Technology and Management, Tekkalli-532 201, A.P" +"Adobe Systems, Inc., 345 Park Ave, San Jose, CA" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore" +"Advanced Engineering, The Chinese University of Hong Kong" +"Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul" +"Affiliated to Anna university, Chennai" +"Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India" +AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of +Akita Prefectural University +"Akita Prefectural University, Yurihonjo, Japan" +Akita University +"Akita University, Akita, Japan" +Al-Khwarizmi Institute of Computer Science +Alan W Black (Carnegie Mellon University +Alex Waibel (Carnegie Mellon University +"Alexandria University, Alexandria, Egypt" +"Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest" +Allen Institute for Arti cial Intelligence +Allen Institute for Arti cial Intelligence (AI +"Allen Institute for Arti cial Intelligence (AI2), Seattle, WA" +"Amal Jyothi College of Engineering, Kanjirappally, India" +"Amazon, Inc" +American University +"American University, Washington, DC, USA" +Amherst College +Amirkabir University of Technology +"Amirkabir University of Technology, University of Southern California" +"Amirkabir University of Technology, Tehran" +"Amirkabir University of Technology, Tehran, Iran" +"Amirkabir University of Technology, Tehran. Iran" +Amity University +"Amity University, Lucknow, India" +"Amity University, Noida, India" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of" +"Anjuman College of Engineering and Technology, Sadar, Nagpur, India" +Anna University +"Anna University Chennai, India" +"Anna University, Chennai" +"Annamacharya Institute of Technology and Sciences, Tirupati, India" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +Aristotle University of Thessaloniki +Aristotle University of Thessaloniki GR +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece" +"Aristotle University of Thessaloniki, Greece" +"Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece" +"Aristotle University of Thessaloniki, Thessaloniki, Greece" +AristotleUniversityofThessaloniki +Arizona State University +"Arizona State University, AZ, USA" +"Arizona State University, Phoenix, Arizona" +"Arizona State University, Tempe AZ" +Army Research Laboratory +"Aron Szekely, University of Oxford, UK" +"Arti cial Intelligence Institute, China" +"Arts Media and Engineering, Arizona State University" +"Arts, Commerce and Science College, Gangakhed, M.S, India" +"Arts, Science and Commerce College, Chopda" +"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia" +"Asia University, Taichung, Taiwan" +"Asian Institute of Technology, Pathumthani, Thailand" +"Asian University, Taichung, Taiwan" +"Assam University, Silchar-788011 Assam University, Silchar" +"Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq" +"Assiut University, Assiut 71515, Egypt" +"Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany" +"Augsburg University, Germany" +"Australian Centre for Visual Technologies, The University of Adelaide, Australia (b" +Australian Institute of Sport +Australian National University +Australian National University and NICTA +"Australian National University and NICTA, Australia" +"Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO" +"Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL" +"Australian National University, Canberra" +"Australian National University, Canberra, ACT 0200, Australia" +"Australian National University, Canberra, Australia" +"Australian National University, and NICTA" +"Author s addresses: X. Peng, University of Rochester; L. Chi" +"Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy" +Autonomous University of Barcelona +Azad University of Qazvin +"Azad University, Qazvin, Iran" +"B. Eng., Zhejiang University" +B. S. Rochester Institute of Technology +"B. Tech., Indian Institute of Technology Jodhpur" +"B.A. Earlham College, Richmond Indiana" +"B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"B.Eng., Nankai University" +B.S. (Cornell University +"B.S. Abdur Rahman University, Chennai-48, India" +B.S. University of Central Florida +B.S. University of Indonesia +"B.S., Computer Engineering, Bo gazi ci University" +"B.S., E.E., Bo azi i University" +"B.S., Pennsylvania State University" +B.S./M.S. Brandeis University +B.S.Abdur Rahman University B.S.Abdur Rahman University +"B.Sc., University of Science and Technology of China" +"B.Tech (C.S.E), Bharath University, Chennai" +"B.Tech., Electronics Engineering, Institute of Technology, Banaras Hindu University" +"BECS, Aalto University School of Science and Technology, Finland" +"BECS, Aalto University, Helsinki, Finland" +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"Bacha Khan University, Charsadda, KPK, Pakistan" +"Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria" +"Bahc es ehir University, Istanbul, Turkey" +Bahcesehir University +Baidu IDL and Tsinghua University +Baidu Research Institute of Deep Learning +"Baidu Research, USA 3John Hopkins University" +"Baingio Pinna, University of" +Banaras Hindu University +Bangalore Institute of Technology +Bangladesh University of Engineering and Technology(BUET +"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India" +"Bar Ilan University, Israel" +Bas kent University +"Baze University, Abuja, Nigeria" +Beckman Institute +Beckman Institute for Advanced Science and Technology +"Beckman Institute, University of Illinois at Urbana-Champaign" +"Beckman Institute, University of Illinois at Urbana-Champaign, IL USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA" +"Beckmann Institute, University of Illinois at Urbana-Champaign, USA" +"Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology" +"Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands" +Beihang University +"Beihang University 2Gri th University 3University of York, UK" +"Beihang University, 2The Chinese University of Hong Kong, 3Sensetime Group Limited" +"Beihang University, Beijing 100191, China" +"Beihang University, Beijing, China" +Beijing Institute of Technology +"Beijing Institute of Technology University, P. R. China" +"Beijing Institute of Technology, Beijing 100081 CHINA" +"Beijing Institute of Technology, Beijing 100081, PR China" +"Beijing Institute of Technology, Beijing, China" +"Beijing Institute of Technology, China" +Beijing Jiaotong University +"Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China" +"Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China" +Beijing National Research Center for Information Science and Technology +"Beijing Normal University, China" +"Beijing Union University, 100101, China" +"Beijing University of Chemical Technology, China" +Beijing University of Posts and Telecommunications +"Beijing University of Posts and Telecommunications, Beijing, China" +"Beijing University of Posts and Telecommunications, Beijing, China. 2School of" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China" +"Beijing University of Technology, Beijing 100022, China" +"Beijing, China" +"BeingTogether Centre, Institute for Media Innovation, Singapore 637553, Singapore" +"Benha University, Egypt" +Berlin Institute of Technology +Bharath Institute of Science and Technology +"Bharath University, India" +"Bharathidasan University, Trichy, India" +"Bharti Vidyapeeth Deemed University, Pune, India" +"Bibliographic details for the item, including a URL" +Bielefeld University +"Big Data Institute, University of Oxford" +"Big Data Research Center, University of Electronic Science and Technology of China" +"Bilgi University, Dolapdere, Istanbul, TR" +Bilkent University +"Bilkent University, 06800 Cankaya, Turkey" +"Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network" +"Bioinformatics Institute, A*STAR, Singapore" +Biometric Research Center +"Biometric Research Center, The Hong Kong Polytechnic University" +"Biometric and Image Processing Lab, University of Salerno, Italy" +"Biometrics Research Lab, College of Computer Science, Sichuan University, Chengdu 610065, China" +"Birkbeck College, University of London" +Birkbeck University of London +Bo gazi ci University +"Bo gazi ci University, Turkey" +"Bo gazic i University, Istanbul, Turkey" +"Bo gazici University, Istanbul, TR" +"Bogazici University, Bebek" +"Bogazici University, Turkey" +Boston College +"Boston College, USA" +"Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos" +Boston University +Boston University / **Rutgers University / ***Gallaudet University +Boston University 2Pattern Analysis and Computer Vision (PAVIS +Boston University Computer Science Technical Report No +Boston University Theses and Dissertations +Boston University and 2University of North Carolina +"Boston University, Boston, MA" +"Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA" +"Boston University, USA" +"Boston University1, University of Tokyo" +Bournemouth University +"Bournemouth University, UK" +"Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA" +"Brazil, University Hospital Zurich, Z rich" +Brown University +Brown University 2University of Bath +"Brown University, 2University of California, San Diego, 3California Institute of Technology" +"Brown University, Providence, RI" +"Brown University, Providence, RI 02912, USA" +"Brown University, United States" +"Budapest, Hungary, E tv s Lor nd University, Budapest, Hungary, 3 Institute for Computer Science" +"C.L. Teo, University of Maryland" +CALIFORNIA INSTITUTE OF TECHNOLOGY +CARNEGIE MELLON UNIVERSITY +"CAS), Institute of Computing Technology, CAS, Beijing 100190, China" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China" +"CBSRandNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China" +"CISE, University of Florida, Gainesville, FL" +"CISUC, University of Coimbra" +"CMR Institute of Technology, Hyderabad, (India" +"CNRS , Institute of Automation of the Chinese Academy of Sciences" +COLUMBIA UNIVERSITY +COMSATS Institute of Information Technology +COMSATS Institute of Information Technology Wah Cantt +"COMSATS Institute of Information Technology, Islamabad" +"COMSATS Institute of Information Technology, Lahore 54000, Pakistan" +"COMSATS Institute of Information Technology, Pakistan" +"CRCV, University of Central Florida" +"CRIPAC and NLPR and CEBSIT, CASIA 2University of Chinese Academy of Sciences" +"CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong" +"CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition" +"CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong" +CUNY City College +CUNY Graduate Center and City College +"CVAP, KTH (Royal Institute of Technology), Stockholm, SE" +"CVIP Lab, University of Louisville, Louisville, KY 40292, USA" +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"CVL, Link oping University, Link oping, Sweden" +CVSSP University of Surrey +"CVSSP, University of Surrey" +"CVSSP, University of Surrey, UK" +"Ca Foscari University of Venice, Venice, Italy" +"Caarmel Engineering College, MG University, Kerala, India" +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +California Institute of Technology +"California Institute of Technology, 1200 East California Boulevard Pasadena, California, USA" +"California Institute of Technology, Pasadena, CA" +"California Institute of Technology, Pasadena, CA, USA" +"California Institute of Technology, Pasadena, California, USA" +"California Institute of Technology, USA" +"California State University, Fullerton, USA" +"California State University, Long Beach, USA" +Cambridge Research Laboratory +Cambridge University +"Cambridge University, Trumpington Street, Cambridge CB21PZ, UK" +Canadian Institute for Advanced Research +"Capital Normal University, 100048, China" +Cardi University +"Cardiff University, UK" +Carleton University +Carnegie Mellon University +Carnegie Mellon University (CMU +Carnegie Mellon University 2University of Washington 3Allen Institute for Arti cial Intelligence +"Carnegie Mellon University 4College of CS and SE, Shenzhen University" +"Carnegie Mellon University Pittsburgh, PA - 15213, USA" +"Carnegie Mellon University Pittsburgh, PA, USA" +"Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +"Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA" +"Carnegie Mellon University, Electrical and Computer Engineering" +"Carnegie Mellon University, Pittsburgh PA" +"Carnegie Mellon University, Pittsburgh, PA" +"Carnegie Mellon University, Pittsburgh, PA 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA, USA" +"Carnegie Mellon University, Pittsburgh, USA" +"Carnegie Mellon University, USA" +Carnegie Melon University +Carney Institute for Brain Science +"Catholic University of Rio de Janeiro, Brazil" +"Center For Automation Research, University of Maryland, College Park" +"Center for Arti cial Vision Research, Korea University" +"Center for Automated Learning and Discovery), Carnegie Mellon University" +"Center for Automation Research (CfAR), University of Maryland, College Park, MD" +"Center for Automation Research, UMIACS, University of Maryland, College Park" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA" +"Center for Automation Research, University of Maryland" +"Center for Automation Research, University of Maryland, College Park, MD" +"Center for Automation Research, University of Maryland, College Park, MD 20740, USA" +"Center for Automation Research, University of Maryland, College Park, MD 20742, USA" +"Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +"Center for Brain Science, Harvard University, Cambridge, MA 02138 USA" +"Center for Brain Science, Harvard University, Cambridge, MA, USA" +"Center for Brains, Minds and Machines, McGovern Institute, MIT" +"Center for Cognitive Neuroscience, Duke University, Durham, North Carolina" +"Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin" +"Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA" +"Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ" +"Center for Computational Intelligence, Nanyang Technology University, Singapore" +"Center for Healthy Aging, University of" +"Center for Information Science, Peking University, Beijing 100871, China" +"Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT" +"Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A" +"Center for Machine Vision Research, University of Oulu, Finland" +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"Center for Machine Vision and Signal Analysis, University of Oulu, Finland" +"Center for Research in Computer Vision (CRCV), University of Central Florida (UCF" +"Center for Research in Computer Vision, University of Central Florida" +"Center for Research in Computer Vision, University of Central Florida, Orlando, FL" +"Center for Research in Computer Vision, University of Central Florida, Orlando, USA" +"Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA" +"Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen" +"Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA" +Central Mechanical Engineering Research Institute +"Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India" +"Central Tehran Branch, Azad University" +"Central University of Finance and Economics, Beijing, China" +Central Washington University +"Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA" +"Centre for Applied Autism Research, University of Bath, Bath, United Kingdom, 2 Social and" +"Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de" +"Centre for Imaging Sciences, University of" +"Centre for Intelligent Machines, McGill University, Montreal, Canada" +"Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia" +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK" +"Centre for Vision, Speech and Signal Processing, University of Surrey, UK" +"Chalmers University of Technology, SAFER" +"Chandigarh Engg. College, Mohali, Punjab, India" +"Chandigarh University, Gharuan, Punjab, India" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +Charles Sturt University +"Charotar University of Science and Technology, Changa, India" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +China University of Mining and Technol +"China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of" +"China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology" +"China-Singapore Institute of Digital Media, Singapore" +Chinese University of Hong Kong +Chittagong University of Engineering and Technology +"Chonbuk National University, Jeonju 561-756, Korea" +"Chonbuk National University, Jeonju-si" +"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences" +Chosun University +"Chu Hai College of Higher Education, Hong Kong" +Chubu University +"Chulalongkorn University, Bangkok" +"Chung-Ang University, Seoul, Korea" +Chungnam National University +City University of Hong Kong +"City University of Hong Kong, Hong Kong, China" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +Clemson University +"Clemson University, Clemson, SC" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +Coburg University +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of" +"Cognitive Neuroscience Laboratory, Centre of Biology and Health Sciences, Mackenzie Presbyterian University, S o Paulo" +"Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany" +"Collage of Sciences, Baghdad University, Iraq" +"College Heights Blvd, Bowling Green, KY" +"College Park, MD" +"College Park, MD 20742 USA" +"College Park, MD, 20740, USA" +"College Park, MD, USA" +"College Park, Maryland" +"College Park, USA" +"College Park, United States" +"College Road East, Princeton, NJ" +"College of Automation, Harbin Engineering University, Heilongjiang, China" +College of Computer Science +College of Computer Science and Information Sciences +"College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China" +"College of Computer Science and Information Technology, Northeast Normal University, Changchun" +"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China" +College of Computer Science and Technology +"College of Computer Science and Technology, Chongqing" +"College of Computer Science and Technology, Zhejiang University, China" +"College of Computer Science and Technology, Zhejiang University, Hangzhou, China" +"College of Computer Science, Chongqing University, Chongqing, 400030, China" +"College of Computer Science, Chongqing University, Chongqing, China" +"College of Computer Science, Sichuan University" +"College of Computer Science, Sichuan University, Chengdu 610065, P.R. China" +"College of Computer Science, Sichuan University, Chengdu, China" +"College of Computer Science, Zhejiang University" +"College of Computer Science, Zhejiang University, Hangzhou 310027, China" +"College of Computer Science, Zhejiang University, Hangzhou, China" +"College of Computer Science, Zhejiang University, Zhejiang, China" +"College of Computer and Control Engineering, Nankai University 4 Hikvision Research" +"College of Computer and Control Engineering, Nankai University 4: Hikvision Research" +"College of Computer and Information Engineering, Nanyang Institute of Technology" +"College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China" +College of Computer and Information Science +"College of Computer and Information Science, Northeastern University, Boston, MA, USA" +"College of Computer and Information Science, Northeastern University, Boston, USA" +"College of Computer and Information Science, Northeastern University, MA, USA" +"College of Computer and Information Science, Southwest University, Chongqing 400715, China" +College of Computer and Information Sciences +"College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +College of Computing +"College of Computing, Georgia Institute of Technology" +"College of Computing, Georgia Institute of Technology, Atlanta, GA, USA" +College of Electrical and Information Engineering +"College of Electrical and Information Engineering, Hunan University, China" +"College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China" +"College of Electronics and Information Engineering, Sejong University" +"College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China" +"College of Electronics and Information Engineering, Tongji University" +"College of Electronics and Information, Northwestern Polytechnic University" +College of Engineering (Poly +"College of Engineering Pune, India" +College of Engineering and Computer Science +College of Engineering and Mineral Resources +"College of Engineering, Mathematics and Physical Sciences" +"College of Engineering, Northeastern University, Boston, MA, USA" +"College of Engineering, Pune, India" +"College of Engineering, Purdue University" +College of Image Arts and Sciences +College of Informatics +College of Information Engineering +"College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University" +College of Information Science and Electronic Engineering +College of Information Science and Engineering +"College of Information Science and Engineering, Ocean University of China, Qingdao, China" +"College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan" +"College of Information Science and Engineering, Xinjiang University" +College of Information Science and Technology +"College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi" +"College of Information and Computer Sciences, University of Massachusetts, Amherst" +College of Information and Control Engineering in China University of Petroleum +"College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China" +College of Information and Electrical Engineering +"College of Information and Engineering, Hunan University, Changsha, China" +"College of Information, Yunnan Normal University, Kunming, China" +"College of Mechatronic Engineering and Automation, National University of Defense Technology" +"College of Medical Informatics, Chongqing Medical University, Chongqing, China" +"College of Medicine, Seoul National University" +"College of Science, Baghdad University, Baghdad, Iraq" +"College of Science, Menou a University, Menou a 32721, Egypt" +"College of Sciences, Northeastern University, Shenyang 110819, China" +"College of Software Engineering, Southeast University, Nanjing 210096, China" +"College of Software, Beihang University" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"CollegePark, MD" +Colorado State University +"Colorado State University, Fort Collins, CO 80523, USA" +"Colorado State University, Fort Collins, Colorado, USA" +"Colorado State University, Fort Collins, USA" +"Columbia Business School, University of California, San Diego" +Columbia University +Columbia University in the City of New York +"Columbia University, National University of Singapore" +"Columbia University, New York NY 10027, USA" +"Columbia University, New York, NY" +"Columbia University, New York, NY 10027, USA" +"Columbia University, New York, NY, USA" +"Columbia University, USA" +"Columbia University, United States" +"ColumbiaUniversity, NY, USA" +Compi`egne University of Technology +"Computational Biomedicine Lab, University of Houston, TX, USA" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas" +"Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey" +"Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India" +"Computer Engineering and Computer Science, Duthie Center for Engineering, University of" +"Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran" +"Computer Graphics Research Group, University of Freiburg, Freiburg, Germany" +"Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA" +"Computer Laboratory, University of Cambridge, Cambridge, UK" +"Computer School, University of South China, Hengyang, China" +"Computer Science Depart., Cornell University, USA" +"Computer Science Depart., Rochester University, USA" +"Computer Science Division, The Open University of Israel" +"Computer Science Division, The Open University of Israel, Israel" +"Computer Science North South University, Dhaka" +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +"Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA" +"Computer Science and Engineering, Anna University, India" +"Computer Science and Engineering, Easwari Engineering College, India" +"Computer Science and Engineering, Michigan State University, East Lansing, USA" +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"Computer Science and Engineering, University of Texas at Arlington, USA" +"Computer Science and Engineering, University of Washington" +"Computer Science and Engineering, University of Washington, Seattle, WA" +"Computer Science and Engineering, University of Washington, Seattle, WA, USA" +"Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada" +"Computer Science and Software Engineering, The University of Western Australia" +"Computer Science and Technology, Tsinghua University, Beijing, China" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +"Computer Science, Brown University, Providence, RI, USA" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Computer Science, Princeton University, Princeton, NJ, USA" +"Computer Vision Group, Friedrich Schiller University Jena" +"Computer Vision Group, Friedrich Schiller University Jena, Germany" +"Computer Vision Group, Friedrich Schiller University of Jena, Germany" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +"Computer Vision Group, Xerox Research Center Europe, Meylan, France" +"Computer Vision Lab, Delft University of Technology" +"Computer Vision Lab, Delft University of Technology, Netherlands" +"Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden" +"Computer Vision Laboratory, Link oping University, Sweden" +"Computer Vision Laboratory, The University of Nottingham" +"Computer Vision Laboratory, University of Nottingham, Nottingham, UK" +Computer Vision Laboratory. University of Nottingham +"Computer Vision Research Group, COMSATS Institute of Information" +Computer Vision and Robotics Research Laboratory +"Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany" +"Computer and Systems Engineering, Rensselaer Polytechnic Institute" +Computer and Vision Research Center +"Computer vision and Remote Sensing, Berlin university of Technology" +Concordia University +"Concordia University, Canada" +"Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada" +"Concordia University, Montreal, Quebec, Canada" +Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university +"Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, China" +"Cooperative Medianet Innovation Center, Shanghai Jiao Tong University" +"Cooperative Medianet Innovation Center, Shanghai Jiaotong University" +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +"Copyright c(cid:2) 2017 The Institute of Electronics, Information and Communication Engineers" +"Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers" +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +Cornell University +Cornell University 2 Cornell Tech +Cornell University 2Eastman Kodak Company +Cornell University and Stanford University +"Cornell University, Ithaca, NY, U.S.A" +"Cornell University, Ithaca, New York" +"Cornell University, Washington University in St. Louis" +"Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein" +"Country University, San Sebastian, Spain" +Courant Institute +Courant Institute and Google Research +Courant Institute of Mathematical Sciences +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +"Courant Institute of Mathematical Sciences, New York, NY" +"Current Address: Research Institute of Child Development and Education, University of Amsterdam" +Curtin University of Technology +"Curtin University, Perth, Australia" +"Curtin University, Perth, WA 6102, Australia" +Cyprus University of Technology +"Cyprus University of Technology, Cyprus" +Czech Technical University +"D Research Center, Kwangwoon University and Springer" +D.J. Sanghvi College of Engineering +"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune" +"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University" +"DAIS, University of Venice, Italy" +DAP - University of Sassari +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +DICGIM - University of Palermo +"DIEI, University of Perugia, Italy" +DISI - University of Trento +"DISI, University of Trento, Italy" +"DISI, University of Trento, Trento, Italy" +"DIT UNIVERSITY, DEHRADUN" +"DPDCE, University IUAV" +"DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK" +DUBLIN CITY UNIVERSITY +"DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China" +DVMM Lab - Columbia University +Dalian Maritime University +Dalian University of Technology +"Dalian University of Technology, China" +"Dalian University of Technology, Dalian 116024, China" +"Dalian University of Technology, Dalian, China" +"Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College" +Dalle Molle Institute for Arti cial Intelligence +"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea" +Dartmouth College +"Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA" +"Dartmouth College, NH 03755 USA" +Datta Meghe College of Engineering +"David R. Simmons, University of" +"Dayananda Sagar College of Engg., India" +"Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +Delft University of Technology +"Delft University of Technology, The Netherlands" +Democritus University of Thrace +"Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain" +"Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK" +"Deparment of Computing, Goldsmiths, University of London, UK" +"Deparment of Computing, Imperial College London, UK" +Departm nt of Information Engin ering Th Chines University of Hong Kong +"Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India" +DeustoTech - University of Deusto +"Deva Ramanan, University of California at Irvine" +"Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA" +Dhaka University +Dhanalakshmi Srinivasan College of Engineering +Dietrich College Honors Theses +Dietrich College of Humanities and Social Sciences +Digital Media Research Center +"Dipartimento di Sistemi e Informatica, University of Florence" +"Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India" +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"Division of Computer Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do" +"Division of Computer Science and Engineering, Hanyang University" +"Division of Computer Science, University of California, Berkeley, CA, USA e-mail" +"Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +"Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea" +"Dnyanopasak College Parbhani, M.S, India" +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Doctor of Philosophy in Computing of Imperial College, February" +Doctor of Philosophy of University College London +"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania" +Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the +Dr C V Raman Institute of Science and Technology +Dr. B. C. Roy Engineering College +Dr. Babasaheb Ambedkar Marathwada University +"Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India" +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +Drexel University +"Drexel University, Philadelphia, PA" +Duke University +"Duke University, Durham, NC, USA" +"Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom" +"Durham University, Durham, UK" +"ECE dept, University of Miami" +"ECE, National University of Singapore, Singapore" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA" +"EECS, Syracuse University, Syracuse, NY, USA" +"EECS, University of California Berkeley" +"EEMCS, University of Twente" +"EEMCS, University of Twente Enschede, The Netherlands" +"EEMCS, University of Twente, Netherlands" +"EEMCS, University of Twente, The Netherlands" +"EIMT, Open University of" +"EIMT, Open University of Catalonia, Barcelona, Spain" +"ESAT, Katholieke Universiteit Leuven, Leuven, Belgium" +"ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai" +"ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai" +"ESTeM, University of Canberra" +East China Normal University +Eastern Mediterranean University +"Eastern Mediterranean University, Gazima usa, Northern Cyprus" +Eastern University +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT +"Edited by David L. Donoho, Stanford University, Stanford, CA, and approved August 7, 2017 (received for review January" +"Education, Yunnan Normal University, Kunming, China" +"Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan" +"Eindhoven University of Technology, The Netherlands" +"Elect. Eng. Faculty, Tabriz University, Tabriz, Iran" +"Electrical Eng. Dep., Central Tehran Branch, Islamic Azad University, Tehran, Iran" +"Electrical Engineering Institute, EPFL" +"Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab" +"Electrical Engineering, University of" +"Electrical and Computer Engineering, National University of Singapore, Singapore" +"Electrical and Computer Engineering, Northeastern University, Boston, MA" +"Electrical and Computer Engineering, The University of Memphis" +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"Electrical and Computer Engineering, University of Pittsburgh, USA" +"Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada" +"Electrical and Space Engineering, Lule University of Technology" +"Electrical, Computer, Rensselaer Polytechnic Institute" +"Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute" +Electronic Engineering and Computer Science Queen Mary University of London +"Electronic Engineering and Computer Science, Queen Mary University of London, UK" +"Electronic and Information Engineering, University of Bologna, Italy" +"Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India" +"Electronics Engineering, National Institute of Technical Teachers" +"Electronics and Communication Engineering, Chuo University" +"Electronics and Computer Science, University of Southampton, Southampton, Hampshire" +Electronics and Telecommunications Research Institute +Emory University +"Emory University, USA" +"Engg, Priyadarshini College of" +Engineering Chaoyang University Nankai Institute of +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +"Engineering and Applied Science, SUNY Binghamton University, NY, USA" +"Engineering and Natural Science, Sabanci University, Istanbul, Turkey" +"Engineering, G.H.Raisoni College of Engineering" +"Engineering, Iran University" +"Engineering, National Formosa University" +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"Engineering, University of Dundee" +"Engineering, York University, Canada" +Enlighten Research publications by members of the University of Glasgow +"Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom" +Eskisehir Osmangazi University +"Exploratory Computer Vision Group, IBM T. J. Watson Research Center" +"F.Ferraro, University of Rochester" +"FI-90014 University of Oulu, Finland" +FL +"FX Palo Alto Laboratory, Inc., California, USA" +"FaceTec, Inc" +Facebook 4Texas AandM University 5IBM Research +"Facebook AI Research, 2Dartmouth College" +"Facial Image Processing and Analysis Group, Institute for Anthropomatics" +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"Faculty member, Parallel Data Lab (PDL), Carnegie Mellon University" +"Faculty of Computer Science, Dalhousie University, Halifax, Canada" +"Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands" +"Faculty of Computer Science, University of A Coru na, Coru na, Spain" +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran" +"Faculty of Computers and Information, Cairo University, Cairo, Egypt" +"Faculty of Computing and Informatics, Multimedia University, Malaysia" +"Faculty of EEMCS, Delft University of Technology, The Netherlands" +"Faculty of EEMCS, University of Twente, The Netherlands" +"Faculty of ETI, Gdansk University of Technology, Gdansk, Poland" +"Faculty of Electrical Engineering, Czech Technical University" +"Faculty of Electrical Engineering, Czech Technical University in Prague" +"Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The" +"Faculty of Electrical Engineering, University of Ljubljana" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +"Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran" +"Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran" +"Faculty of Electronics and Communication, Taishan University" +"Faculty of Electronics and Communication, Yanshan University" +"Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland" +"Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia" +"Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey" +"Faculty of Engineering and Technology, Multimedia University (Melaka Campus" +"Faculty of Engineering, Ain Shams University, Cairo, Egypt" +"Faculty of Engineering, Al Azhar University, Qena, Egypt" +"Faculty of Engineering, Bar-Ilan University, Israel" +"Faculty of Engineering, Ferdowsi University, Mashhad, Iran" +"Faculty of Engineering, Multimedia University, Malaysia" +"Faculty of Informatics, E otv os Lor and University, Budapest, Hungary" +"Faculty of Informatics, University of Debrecen, Hungary" +"Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia" +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK" +"Faculty of Science and Engineering, Waseda University, Tokyo, Japan" +"Faculty of Science and Technology, University of Macau" +"Faculty of Science, University of Amsterdam, The Netherlands" +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +"Federal Institute of Science and Technology, Mookkannoor" +"Federal University Technology Akure, PMB 704, Akure, Nigeria" +Federal University of Bahia (UFBA +Federal University of Campina Grande (UFCG +Federal University of Para ba +Federal University of Technology - Paran a +"Feng Chia University, Taichung, Taiwan" +"Ferdowsi University of Mashhad, Mashhad, Iran" +"Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions" +"Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai" +"Final Year, PanimalarInstitute of Technology" +Firat University +"Florian Metze, Chair (Carnegie Mellon University" +"Florida Institute Of Technology, Melbourne Fl" +Florida International University +Florida State University +"Florida State University, Tallahassee, FL 32306, USA" +"Florida State University, Tallahassee, Florida, U.S.A" +"Florida State University, USA" +Formerly: Texas AandM University +"Foundation University Rawalpindi Campus, Pakistan" +"Foundation University, Rawalpindi 46000, Pakistan" +"Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India" +Franklin. W. Olin College of Engineering +Fraser University +Fraunhofer Heinrich Hertz Institute +"Fraunhofer Institute for Digital Media Technology, Germany" +Fraunhofer Institute for Integrated Circuits IIS +"Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB" +"Friedrich Schiller University, D-07740 Jena" +Fudan University +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +"Fudan University, Shanghai, China" +Funding was provided by the U.S. National Institutes of Mental +"G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune" +"G.H.Raisoni College of Engg. and Mgmt., Pune, India" +GE Global Research Center +"GIPSA-lab, Institute of Engineering, Universit Grenoble Alpes, Centre National de la Recherche Scienti que, Grenoble INP" +"GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology" +"GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA" +"GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS" +GREYC Research Lab +"GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin" +"GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco" +"Gallaudet University, Technology Access Program, 800 Florida Ave NE, Washington, DC" +"Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +Gangnung-Wonju National University +Gannan Normal University +"Gannan Normal University, Ganzhou 341000, China" +"Gatsby Computational Neuroscience Unit, University College London, London, UK" +"Gayathri.S, M.E., Vins Christian college of Engineering" +Gdansk University of Technology +"Gdansk University of Technology, Faculty of Electronics, Telecommunication" +George Mason University +"George Mason University, Fairfax Virginia, USA" +"George Mason University, Fairfax, VA, USA" +George Washington University +Georgia Institute of Technology +Georgia Institute of Technology 2Emory University +"Georgia Institute of Technology, CVIT, IIIT Hyderabad, IIT Kanpur" +"Georgia Institute of Technology, 2NEC Laboratories America, 3Georgia Tech Research Institute" +"Georgia Institute of Technology, Atlanta, Georgia, USA" +German Research Center for Arti cial Intelligence (DFKI +"German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany" +"Germany, University of Oldenburg, Oldenburg, Germany" +"Gettysburg College, Gettysburg, PA, USA" +Ghent University +"Giulia Andrighetto, Institute of" +"Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia" +Glyndwr University +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyd" +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad" +"Goldsmiths, University of London" +"Goldsmiths, University of London, London, UK" +"Goldsmiths, University of London, UK" +"Gonda Brain Research Center, Bar Ilan University, Israel" +"Google, Inc" +"Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL" +"Governance, Keio University" +Government College of Engineering +"Government College of Engineering, Aurangabad" +"Government College of Engineering, Aurangabad [Autonomous" +"Grad. School at Shenzhen, Tsinghua University" +"Grad. School of Information Science and Technology, The University of Tokyo, Japan" +"Graduate Institute of Electronics Engineering, National Taiwan University" +"Graduate Institute of Networking and Multimedia, National Taiwan University" +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China" +"Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University" +"Graduate School of Doshisha University, Kyoto, Japan" +"Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan" +"Graduate School of Engineering, Tottori University" +"Graduate School of Informatics, Kyoto University" +"Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan" +"Graduate School of Information Science and Technology, The University of Tokyo" +"Graduate School of Information Science, Nagoya University, Japan" +"Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan" +"Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara" +"Graduate School of Science and Engineering, Saitama University" +"Graduate School of System Informatics, Kobe University" +"Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan" +"Graduate School of Systems and Information Engineering, University of Tsukuba" +"Graduate University for Advanced Studies, Kanagawa, Japan" +"Graduate University of CAS, 100190, Beijing, China" +"Graduate University of Chinese Academy of Sciences(CAS), 100190, China" +"Graduate University of Chinese Academy of Sciences, Beijing 100049, China" +"Gravis Research Group, University of Basel" +Graz University of Technology +"Graz University of Technology, Austria" +"Gri th University, QLD-4111, Brisbane, Australia" +"Grif th University, Australia" +"Grif th University, QLD, Australia" +"Grove School of Engineering, CUNY City College, NY, USA" +Guangdong Medical College +Guangdong University of Technology +"Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Gujarat Technological University, India" +"Gujarat Technological University, V.V.Nagar, India" +Gyan Ganga Institute of +"H. He, Honkong Polytechnic University" +"HAVELSAN Inc., 2Bilkent University, 3Hacettepe University" +"HCI Lab., Samsung Advanced Institute of Technology, Yongin, Korea" +HELSINKI UNIVERSITY OF TECHNOLOGY +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +Hacettepe University +Halmstad University +Hangzhou Institute of Service +Hangzhou Normal University +"Hankuk University of Foreign Studies, South Korea" +Hanoi University of Science and Technology +"Hanshan Normal University, Chaozhou, 521041, China" +Hanyang University +Harbin Institute of Technology +"Harbin Institute of Technology (Shenzhen), China" +"Harbin Institute of Technology, Harbin 150001, China" +"Harbin Institute of Technology, Harbin, China" +"Harbin Institute of Technology, School of Computer Science and Technology" +Harbin Institute of Technology;Shenzhen University +Harvard University +Harvard University 2University of Southern California +"Harvard University 3Perceptive Automata, Inc" +Harvard University 4Max Planck Institute for Informatics +"Harvard University, Cambridge, MA" +"Harvard University, Cambridge, MA 02138, USA" +"Harvard University, Cambridge, MA, USA" +"Harvard University, USA" +Harvard and Massachusetts Institute +"Hasan Kalyoncu University, Gaziantep, Turkey" +"Head and Neck Surgery, Seoul National University" +"Hector Research Institute of Education Sciences and Psychology, T ubingen" +"Heilongjiang University, College of Computer Science and Technology, China" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"Helen Wills Neuroscience Institute, University of" +"Helsinki Collegium for Advanced Studies, University of Helsinki, Finland" +"Helsinki Institute for Information Technology, Aalto University, Finland" +Helsinki University of Technology Laboratory of Computational Engineering Publications +"Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China" +"Hengyang Normal University, Hengyang, China" +Heriot-Watt University +"Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne" +High Institute of Medical Technologies +Hikvision Research Institute +"Hindusthan College of Engineering and Technology, Coimbatore, India" +"Hiroshima University, Japan" +Ho Chi Minh City University of +Ho Chi Minh City University of Science +HoHai University +Honda Fundamental Research Labs +"Honda RandD Americas, Inc., Boston, MA, USA" +Honda Research Institute +Honda Research Institute USA +Hong Kong Applied Science and Technology Research Institute Company Limited +"Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China" +Hong Kong Baptist University +Hong Kong Polytechnic University +"Hong Kong Polytechnic University, Hong Kong" +"Hong Kong Polytechnic University, Hong Kong, China" +Hong Kong University of Science and Technology +"Hong Kong University of Science and Technology, Hong Kong" +Howard Hughes Medical Institute (HHMI +"Howard University, Washington DC" +"Hua Zhong University of Science and Technology, Wuhan, China" +Huazhong Agricultural University +Huazhong University of +Huazhong University of Science and Technology +"Huazhong University of Science and Technology, Wuhan, China" +"Human Centered Multimedia, Augsburg University, Germany" +"Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea" +"Human Development and Applied Psychology, University of Toronto, Ontario, Canada" +"Human Genome Center, Institute of Medical Science" +Human Interaction Research Lab +"Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand" +"Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany" +"Human Media Interaction, University of Twente, P.O. Box" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +"Humboldt-University, Berlin, Germany" +"Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China" +Hunan University +"IBM Almaden Research Center, San Jose CA" +IBM China Research Lab +"IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore" +IBM T. J. Watson Research Center +"IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY" +"IBM T. J. Watson Research Center, Yorktown Heights, NY, USA" +IBM T.J. Watson Research Center +"IBM TJ Watson Research Center, USA" +IBM Thomas J. Watson Research Center +"IBM Watson Research Center, Armonk, NY, USA" +ICMC University of S ao Paulo +ICSI / UC Berkeley 2Brigham Young University +"ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences" +IDIAP RESEARCH INSTITUTE +IDIAP Research Institute +"IDIAP Research Institute, Martigny, Switzerland" +"IEEE Member, Shahid Rajaee Teacher training University" +"IES College of Technology, Bhopal" +"IHCC, RSCS, CECS, Australian National University" +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"IIIS, Tsinghua University" +"IIIS, Tsinghua University, Beijing, China" +"IIIT-Delhi, India, 2West Virginia University" +"IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands" +IMPERIAL COLLEGE +"IN3, Open University of" +"INTELSIG, Monte ore Institute, University of Li`ege, Belgium" +ISISTAN Research Institute - CONICET - UNICEN +"ISLA Lab, Informatics Institute" +"ISLA Lab, Informatics Institute, University of Amsterdam" +"ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"IT Instituto de Telecomunica es, University of Beira Interior, Covilh , Portugal" +"IT - Instituto de Telecomunica es, University of Beira Interior" +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +"ITCS, Tsinghua University" +"ITEE, The University of Queensland, Australia" +"ITIC Research Institute, National University of Cuyo" +Idiap Research Institute +Idiap Research Institute and EPF Lausanne +"Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay" +"Idiap Research Institute, Martigny, Switzerland" +"Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France" +"Idiap Research Institute, Switzerland" +"Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland" +"Iftm University, Moradabad-244001 U.P" +Illinois Institute of Technology +"Illinois Institute of Technology, Chicago, Illinois, USA" +"Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany" +"Image Processing Center, Beihang University" +"Image Understanding and Interactive Robotics, Reutlingen University, 72762 Reutlingen, Germany" +"Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia" +"Image and Video Research Laboratory, Queensland University of Technology" +"Imaging Science and Biomedical Engineering, The University of Manchester, UK" +Imperial College London +Imperial College London / Twente University +"Imperial College London, London, UK" +"Imperial College London, On do" +"Imperial College London, U.K" +"Imperial College London, UK" +"Imperial College London, United Kingdom" +"Imperial College of Science, Technology and Medicine" +"Imperial College, 180 Queens Gate" +"Imperial College, London, UK" +"Imperial College, South Kensington Campus, London SW7 2AZ, UK" +In the Graduate College +Inception Institute of Arti cial +"Inception Institute of Arti cial Intelligence (IIAI), Abu Dhabi, UAE" +"Inception Institute of Arti cial Intelligence, UAE" +India +"Indian Institute of Informaiton Technology, Allahabad, India" +Indian Institute of Science +Indian Institute of Science Bangalore +"Indian Institute of Science, Bangalore" +"Indian Institute of Science, India" +Indian Institute of Technology +"Indian Institute of Technology Delhi, New Delhi, India" +Indian Institute of Technology Kanpur +Indian Institute of Technology Kharagpur +"Indian Institute of Technology Kharagpur, India" +"Indian Institute of Technology Madras, Chennai 600036, India" +"Indian Institute of Technology Madras, Chennai, India" +Indian Institute of Technology Ropar +"Indian Institute of Technology, Bombay, India" +"Indian Institute of Technology, Kharagpur" +"Indian Institute of Technology, Madras" +"Indian Institute of Technology, Madras, Chennai 600036, INDIA" +"Indian Institute of Technology, Roorkee" +Indiana University +Indiana University Bloomington +"Indra Ganesan College of Engineering, Trichy, India" +Indraprastha Institute of Information Technology +"Indraprastha Institute of Information Technology (Delhi, India" +"Indraprastha Institute of Information Technology, Delhi" +Informatics Institute +Informatics and Telematics Institute +"Informatics and Telematics Institute, Centre for Research and Technology Hellas" +"Informatics and Telematics Institute, Centre of Research and Technology - Hellas" +"Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland" +"Information Sciences Institute and Computer Science, University of Southern California" +"Information Sciences Institute, USC, CA, USA" +"Information Systems Design, Doshisha University, Kyoto, Japan" +"Information Systems, University of Wisconsin-River Falls, Wisconsin, WI, United States of America" +Information Technologies Institute +"Information Technology University (ITU), Punjab, Lahore, Pakistan" +"Information Technology, Madras Institute of Technology, TamilNadu, India, email" +"Information and Media Processing Research Laboratories, NEC Corporation" +"Information, Keio University" +"Informatization Office, National University of Defense Technology, Changsha 410073, China" +"Innopolis University, Kazan, Russia" +"Inst. Neural Computation, University of California" +"Institiude of Computer Science and Technology, Peking University" +Institute +"Institute AIFB, Karlsruhe Institute of Technology, Germany" +"Institute Polythechnic of Leiria, Portugal" +"Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK" +Institute for Advanced +Institute for Advanced Computer Studies +"Institute for Advanced Computer Studies, University of Maryland, College Park, MD" +Institute for Anthropomatics +"Institute for Arts, Science and Technology" +Institute for Communication Systems +Institute for Complex +Institute for Computer Graphics and Vision +"Institute for Computer Graphics and Vision, Graz University of Technology" +Institute for Creative Technologies +"Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States" +"Institute for Electronics, Signal Processing and Communications" +"Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn" +Institute for Human-Machine +Institute for Human-Machine Communication +"Institute for Human-Machine Communication, Technische Universit at M unchen" +"Institute for Human-Machine Communication, Technische Universit at M unchen, Germany" +Institute for Infocomm Research +"Institute for Infocomm Research (I2R), A*STAR, Singapore" +"Institute for Infocomm Research, A*STAR" +"Institute for Infocomm Research, A*STAR, Singapore" +"Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore" +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore" +"Institute for Infocomm Research, Singapore" +Institute for Information Systems Engineering +"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University" +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +"Institute for Language, Cognition and Computation" +Institute for Media Technology +"Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +Institute for Neural Computation +"Institute for Neural Computation, University of California, San Diego" +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +Institute for Numerical Mathematics +"Institute for Optical Systems, HTWG Konstanz, Germany" +"Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan" +Institute for Robotics and Intelligent +Institute for Robotics and Intelligent Systems +"Institute for Robotics and Intelligent Systems, USC, CA, USA" +"Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA" +"Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran" +Institute for System Programming +Institute for Vision Systems Engineering +"Institute for Vision and Graphics, University of Siegen, Germany" +Institute for studies in theoretical Physics and Mathematics(IPM +Institute of +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +Institute of Arti cial Intelligence and Cognitive Engineering +"Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen" +"Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an 710049, China" +"Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an, Shannxi 710049, China" +Institute of Automatic Control +Institute of Automatic Control Engineering (LSR +Institute of Automation +"Institute of Automation Chinese Academy of Sciences, Beijing, China" +"Institute of Automation, Chinese Academy of" +"Institute of Automation, Chinese Academy of Sciences" +"Institute of Automation, Chinese Academy of Sciences (CASIA" +"Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China" +"Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China" +"Institute of Automation, Chinese Academy of Sciences, China" +"Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School" +"Institute of Biochemistry, University of Balochistan, Quetta" +"Institute of Child Health, University College London, UK" +"Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China" +"Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain" +"Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social" +Institute of Communications Engineering +Institute of Computer Science +Institute of Computer Science III +Institute of Computer Science and +"Institute of Computer Science and Technology, Chongqing University of Posts and" +"Institute of Computer Science and Technology, Peking University" +"Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece" +"Institute of Computer science, Shahid Bahonar University" +Institute of Computing +Institute of Computing Technology +"Institute of Computing Technology, CAS" +"Institute of Computing Technology, CAS, Beijing 100190, China" +"Institute of Computing Technology, CAS, Beijing, 100190, China" +"Institute of Computing Technology, Chinese Academy of Sciences" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"Institute of Data Science and Technology, Alibaba Group" +Institute of Deep Learning +"Institute of Deep Learning, Baidu Research" +Institute of Digital Media +"Institute of Digital Media, Peking University, Beijing 100871, China" +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria" +Institute of Electrical and Electronics Engineers +Institute of Electrical and Electronics Engineers (IEEE). DOI +Institute of Electronics and Computer Science +"Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj" +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +Institute of Graduate Studies and Research +"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany" +"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China" +Institute of Industrial Science +"Institute of Industrial Science, The University of Tokyo" +Institute of Informatics - ISLA +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +Institute of Information Science +"Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy" +"Institute of Information Science, Academia Sinica, Taipei" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China" +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +Institute of Information Technology +Institute of Interdisciplinary Studies in Identity Sciences (IISIS +Institute of Mathematics and Statistics +Institute of Media Innovation +"Institute of Media and Information Technology, Chiba University" +"Institute of Mental Health, Peking University, P.R. China" +"Institute of Mental Health, The University of Nottingham" +"Institute of Microelectronics, Tsinghua University, Beijing 100084, China" +"Institute of Neural Information Processing, Ulm University, Germany" +"Institute of Neural Information Processing, Ulm University, Ulm, Germany" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +Institute of Psychology and Behavioral Sciences +"Institute of Psychology, Chinese" +"Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland" +Institute of Road and +"Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan" +"Institute of Software, Chinese Academy of Sciences" +"Institute of Software, Chinese Academy of Sciences (CAS" +"Institute of Software, Chinese Academy of Sciences, Beijing 100190, China" +"Institute of Systems Engineering, Southeast University, Nanjing, China" +Institute of Systems and Robotics +"Institute of Systems and Robotics - University of Coimbra, Portugal" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +"Institute of Technology, Banaras Hindu" +"Institute of Telecommunications, TU Wien" +"Institute of Transportation Systems, German Aerospace Center (DLR), Braunschweig" +Institute of control science and engineering +"Institute ofInformation Science, Academia Sinica, Taipei, Taiwan" +"Institute, CAS, China" +"Integrated Research Center, Universit`a Campus Bio-Medico di Roma" +"Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA" +Intelligence Computing Research Center +"Intelligence, Concordia University, Montreal" +"Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching" +"Intelligent Behaviour Understanding Group, Imperial College London, London, UK" +"Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan" +"Intelligent Recognition and Image Processing Lab, Beihang University, Beijing" +"Intelligent Sensory Interactive Systems, University of Amsterdam, Netherlands" +"Intelligent Systems Group, University of Groningen, The Netherlands" +"Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht" +"Intelligent Systems Lab Amsterdam, University of Amsterdam" +"Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands" +"Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden" +"Intelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK" +"Intelligent User Interfaces Lab, Ko c University, Turkey" +"Intelligent and Interactive Systems, Institute of Computer Science, University of" +Interactive and Digital Media Institute +"Interactive and Digital Media Institute, National University of Singapore, SG" +"Interactive and Digital Media Institute, National University of Singapore, Singapore" +"Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea" +"Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea" +International Institute of Information Technology +"International Institute of Information Technology, Hyderabad, India" +"International Islamic University, Islamabad 44000, Pakistan" +International University of +Ionian University +Iran +Islamic Azad University +Islamic Azad University of AHAR +"Islamic Azad University, Gonabad, Iran" +"Islamic Azad University, Mashhad Branch, Mashhad, Iran" +"Islamic Azad University, Qazvin, Iran" +"Islamic Azad University, Science and Research Campus" +"Islamic Azad University, Shahrood, Iran" +Islamic University of Gaza - Palestine +"IslamicAzad University, Qazvin, Iran" +Istanbul Bilgi University - DCE +Istanbul Technical University +"Istanbul Technical University, Istanbul, 34469, TURKEY" +"Istanbul Technical University, Istanbul, Turkey" +"Istanbul Technical University, Turkey" +Istanbul University +IstanbulTechnicalUniversity +"Italian Institute of Technology, 5Mapillary Research" +"J. P. College of Engineering, India" +"JACOB GOLDBERGER, Bar-Ilan University" +"JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China" +Jacobs University +Jadavpur University +"Jadavpur University, India" +Jahangirnagar University +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh" +"Jaipur, Rajasthan, India" +"Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United" +Japan +Japan Advanced Institute of Science and Technology +"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +"Jawaharlal Technological University, Anantapur" +"Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA" +"Jiangnan University, Wuxi" +"Jilin University, Changchun 130012, China" +"Jo ef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia" +"Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) Linz(cid:1) Austria(cid" +Johns Hopkins University +"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"Johns Hopkins University, Baltimore, MD, 21218, USA" +"Johns Hopkins University, Center for Speech and Language Processing" +"Joint Research Institute, Foshan, China" +K S Rangasamy College of Technology +K. N. Toosi University of +"K.D.K. College of Engineering Nagpur, India" +"K.K Wagh Institute of Engineering and Education Research, Nashik, India" +"K.N. Toosi University of Technology, Tehran, Iran" +"K.S.R. College Of Engineering, Tiruchengode, India" +"K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +"KTH Royal Institute of Technology, CVAP Lab, Stockholm, Sweden" +"KTH Royal Institute of Technology, Stockholm" +KTH Royal Institute of Technology +"KTH, Royal Institute of Technology" +"KU Phonetics and Psycholinguistics Lab, University of Kansas" +Karlsruhe Institute of +Karlsruhe Institute of Technology +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany" +"Karlsruhe Institute of Technology, Germany" +"Karlsruhe Institute of Technology, Karlsruhe, Germany" +"Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany" +Katholieke Universiteit Leuven +"Katholieke Universiteit Leuven, ESAT/VISICS" +Keele University +"Keio University, Yokohama 223-8522, Japan" +Kent State University +"Kent State University, Kent, Ohio, USA" +"Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of" +"Key Lab of Intelligent Information Processing, Institute of Computing Technology" +"Key Lab. of Machine Perception, School of EECS, Peking University" +"Key Lab. of Machine Perception, School of EECS, Peking University, China" +"Key Laboratory of Behavior Sciences, Institute of Psychology" +"Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing" +"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China" +"Key Laboratory of MOEMS of the Ministry of Education, Tianjin University, 300072, China" +"Key Laboratory of Machine Perception (MOE), School of EECS, Peking University" +"Key Laboratory of Machine Perception, Peking University, Beijing" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +"Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University" +"Key Laboratory of Transient Optics and Photonics, Xi an Institute of Optics and Precision Mechanics, Chi" +"Khalifa University, Abu Dhabi, United Arab Emirates" +Khulna University of Engineering and Technology +"King Abdullah University of Science and Technology (KAUST), Saudi Arabia" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia" +King Faisal University +"King Saud University, KSA" +"King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia" +"King Saud University, Riyadh" +"King Saud University, Riyadh 11543, Saudi Arabia" +"King Saud University, Riyadh, Saudi Arabia" +"King s College London, UK" +Kingston University +"Kingston University London, University of Westminster London" +"Kingston University, UK" +"Kitware, Inc" +Kobe University +"Kobe University, NICT and University of Siegen" +"Kodak Research Laboratories, Rochester, NY" +"Kodak Research Laboratories, Rochester, New York" +"Kogakuin University, Tokyo, Japan" +"Kong Polytechnic University, Kowloon, Hong Kong" +"Kongju National University, South Korea" +Korea Advanced Institute of Science and Technology +Korea Advanced Institute of Science and Technology (KAIST +Korea Advanced institute of Science and Technology +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of Korea; E" +Korea University +"Korea University, Seoul 136-713, Korea" +"Korean Research Institute of Standards and Science (KRISS), Korea" +"Kota University, Kota(INDIA" +"Kulhare, Sourabh, ""Deep Learning for Semantic Video Understanding"" (2017). Thesis. Rochester Institute of Technology. Accessed" +"Kumamoto University, 2-39-1 Kurokami, Kumamoto shi" +"Kurukshetra University, Kurukshetra" +"Kurukshetra University, Kurukshetra, India" +"Kurukshetra University, Kurukshetra-136 119, Haryana, INDIA" +"Kwangwoon University, 447-1 Wolge-dong, Nowon-Gu, Seoul 139-701, Korea" +"Kyoto University, Kyoto, Japan" +Kyung Hee University +Kyung Hee University South of Korea +"Kyung Hee University, South Korea" +"Kyung Hee University, Yongin, Rep. of Korea" +Kyushu University +"L3S Research Center, Hannover, Germany" +"L3S Research Center, Leibniz Universit at Hannover, Germany" +"LCSEE, West Virginia University" +"LIACS Media Lab, Leiden University, The Netherlands" +"LIMSI, CNRS, University of Paris-Sud, Orsay, France" +"LIP6, UPMC - Sorbonne University, Paris, France" +"LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France" +"LIUM Laboratory, Le Mans, France, 2 Idiap Research Institute, Martigny, Switzerland" +"La Trobe University, Australia" +"Lab of Science and Technology, Southeast University, Nanjing 210096, China" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan" +"Laboratory of Pattern Recognition, Institute of Automation, CAS" +"Laboratory, University of Houston, Houston, TX, USA" +Lafayette College +Lake Forest College +Lake Forest College Publications +Language Technologies Institute +"Language Technologies Institute, Carnegie Mellon University" +"Language Technologies Institute, Carnegie Mellon University, PA, USA" +"Language Technologies Institute, School of Computer Science" +Language Technology Institute +"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"Language Technology Institute, Carnegie Mellon Universty" +"Language Technology Lab, University of Duisburg-Essen" +"Language and Brain Lab, Simon Fraser University, Canada" +"Laval University, Qu bec, Canada" +"Learning Systems Group, California Institute of Technology" +"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India" +Leeds Beckett University +"Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands" +"Leiden University, Netherlands" +"Leiden, the Netherlands, 3 Delft University of Technology" +"Lille 1 University, France" +"Link oping University, Computer Vision Laboratory" +"Link oping University, SE-581 83 Link oping, Sweden" +Link ping University +Link to publication from Aalborg University +Link to publication in University of Groningen/UMCG research database +Link to publication record in Queen's University Belfast Research Portal +"Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health" +"Lite-On Singapore Pte. Ltd, 2Imperial College London" +Liverpool John Moores University +Lomonosov Moscow State University +"Lomonosov Moscow State University, 2Video Analysis Technologies, LLC" +"Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics" +"Lotus Hill Institute for Computer Vision and Information Science, 436000, China" +Louisiana State University +"Lund University, Cognimatics AB" +"Lund University, Lund, Sweden" +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India" +M. Mark Everingham University of Leeds +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +"M.P.M. College, Bhopal, India" +"M.S. (University of California, Berkeley" +M.S. Brunel University of West London +M.S. University of Central Florida +"M.S., Electrical and Computer Engineering, Carnegie Mellon University" +"M.S., University of Memphis" +"M.Tech Scholar, MES College of Engineering, Kuttippuram" +"M.Tech Student, Mount Zion College of Engineering, Pathanamthitta, Kerala, India" +"M.Tech Student, SSG Engineering College, Odisha, India" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +"M.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli" +"M.tech.student, Arya College of" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT +"MATS University, MATS School of Engineering and Technology, Arang, Raipur, India" +"MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry" +"MES College of Engineering, Kuttippuram" +METs Institute of Engineering +MICC University of Florence +MICC - University of Florence +"MICC, University of Florence" +"MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research" +"MIRA Institute, University of Twente, Enschede, The" +"MIRACL-FS, University of Sfax" +"MIRACL-FSEG, University of Sfax" +"MISC Laboratory, Constantine 2 University, Constantine, Algeria" +MIT College of Engineering (Pune University +"MIT, McGovern Institute, Center for Brains, Minds and Machines" +MITSUBISHI ELECTRIC RESEARCH LABORATORIES +"MOE Key Laboratory of Computer Network and Information Integration, Southeast University, China" +"MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff" +"MRC Laboratory For Molecular Cell Biology, University College London" +"MTech Student 1, 2, Disha Institute of" +MULTIMEDIA UNIVERSITY +Macau University of Science and +Macau University of Science and Technology +"Macau University of Science and Technology, Macau" +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +"Machine Intelligence Lab (MIL), Cambridge University" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"Machine Perception Laboratory, University of California, San Diego" +"Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland" +"Machine Vision Lab, Faculty of Environment and Technology, University of the West of England" +"Mackenzie Presbyterian University, S o Paulo, S o Paulo, Brazil" +"Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh" +Mahanakorn University of Technology +Mahatma Gandhi Institute of Technology +Malaviya National Institute of Technology +"Mancha, Spain, Imperial College, London, UK" +"Manchester University, UK" +"Mangalore Institute of Engineering and Technology, Badaga" +"Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore, India" +Manipur Institute of Technology +"Manonmaniam Sundaranar University, India" +"Manonmaniam Sundaranar University, Tirunelveli" +"Manonmaniam Sundaranar University, Tirunelveli, India" +Mans eld College +"Marine Institute, via Torre Bianca, 98164 Messina Italy" +Marquette University +Massachusettes Institute of Technology +Massachusetts Institute +Massachusetts Institute of Technology +Massachusetts Institute of Technology (MIT +Massachusetts Institute of Technology 2013. All rights reserved +Massachusetts Institute of Technology 2014. All rights reserved +Massachusetts Institute of Technology Rapporteur +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA" +"Massachusetts Institute of Technology, Cambridge, MA USA" +"Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune" +Math Institute +Max Planck Institute f ur biologische Kybernetik +Max Planck Institute for Biological Cybernetics +"Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 T bingen, Germany" +"Max Planck Institute for Evolutionary Anthropology, Germany" +Max Planck Institute for Informatics +"Max Planck Institute for Informatics, Germany" +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +"Max Planck Institute for Informatics, Saarland Informatics Campus" +"Max Planck Institute for Informatics, Saarland Informatics Campus, Germany" +"Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbr cken, Germany" +"Max Planck Institute for Intelligent Systems, T ubingen, Germany" +Max-Planck Institute for Informatics +Max-Planck-Institute for Informatics +McGill University +"McGill University, Montreal, Canada" +McGovern Institute +McGovern Institute for Brain Research +McMaster University +"Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada" +"Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular" +"Medical School, University of Ioannina, Ioannina, Greece" +Meiji University +"Melbourne University, Advisors: K. Borovkov, R. Evans" +"Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master" +"Metron, Inc" +Michigan State University +"Michigan State University, 3115 Engineering Building" +"Michigan State University, E. Lansing, MI 48823, USA" +"Michigan State University, East Lansing MI" +"Michigan State University, East Lansing, MI 48824, U.S.A" +"Michigan State University, East Lansing, MI 48824, USA" +"Michigan State University, East Lansing, MI, U.S.A" +"Michigan State University, East Lansing, MI, USA" +"Michigan State University, East Lansing, USA" +"Michigan State University, MI" +"Michigan State University, NEC Laboratories America" +"Michigan State University, USA" +"Microsystems Design Lab, The Pennsylvania State University" +Middle East Technical University +Middlebury College +Middlesex University London +"Middlesex University London, 4International Hellenic University" +"Middlesex University London, London, UK" +"Middlesex University London, UK" +"Middlesex University, London" +Mihaylo College of Business and Economics +"Minia University, Egypt" +Ministry of Higher Education and Scientific Research / The University of Mustsnsiriyah/Baghdad IRAQ +Mitsubishi Electric Research Laboratory +Mitsubishi Electric Research Labs +Mitsubishi Electric Research Labs (MERL +"Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA" +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +Monash University +"Monash University Malaysia, School of Information Technology, Sunway" +"Monash University, Australia" +"Monash University, Victoria, Australia" +"Montefiore Institute, University of Li ge, 4000 Li ge, Belgium" +Montreal Institute for Learning Algorithms +"Montreal Institute for Learning Algorithms, Universit e de Montr eal" +Moradabad Institute of Technology +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +"Moscow Institute of Physics and Technology, Russia" +"Moscow State University, dept. of Computational Mathematics and Cybernetics" +"Most of the earlier studies mentioned above, including ours" +"Motorola China Research Center, Shanghai, 210000, P.R.China" +"Motorola, Inc" +"Much is known on how facial expressions of emotion are produced, including which individual muscles are most active in" +Muhlenberg College +Multimedia Laboratory at The Chinese University of Hong Kong +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +Multimedia University +"Multimedia University (MMU), Cyberjaya, Malaysia" +"Multimedia University, Cyberjaya, Malaysia" +"Multimedia University, Faculty of Computing and Informatics, Cyberjaya" +"Multimedia University, Faculty of Engineering, Cyberjaya, 63100 Selangor, Malaysia" +"Multimedia University, Research Institute for Digital Security, Cyberjaya" +"Multimedia, Vision and Graphics Laboratory, Koc University, Istanbul, Turkey" +"Multimodal Computing and Interaction, Saarland University, Germany" +Murdoch University +Myongji University +"Myongji University, Yongin, 449-728 South" +"NEC Laboratories America, Inc" +"NEC Laboratories America, Inc., Cupertino, CA" +"NICTA , Queensland Research Laboratory, QLD, Australia" +"NICTA, and Australian National University" +NSS College of Engineering +"Nagaoka University of Technology, Japan" +"Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan" +Nagoya University +"Nagoya University, Japan" +"Najafabad Branch, Islamic Azad University" +Nam k Kemal University +"Nam k Kemal University, Tekirda g, Turkey" +"Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca NY" +"Nanjing University of Aeronautics and Astronautics, China" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China" +Nanjing University of Information Science and Technology +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +Nanjing University of Science and +Nanjing University of Science and Technology +"Nanjing University of Science and Technology, China" +"Nanjing University, China" +"Nanjing University, Nanjing 210023, China" +"Nanjing University, Nanjing 210093, China" +"Nanjing University, Nanjing 210093, P.R.China" +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"Nanjing, 210094, China, 3 School of Automation, Nanjing University of Posts and Telecommunications" +Nanyang Technological University +"Nanyang Technological University, 2University of California San Diego" +"Nanyang Technological University, Singapore" +"Nanyang Technological University, Singapore 639798, Singapore" +"Nanyang Technological University, Singapore, Singapore" +"Narayana Pharmacy College, Nellore, India" +National Cheng Kung University +"National Cheng Kung University, Tainan, Taiwan" +"National Cheng Kung University, Tainan, Taiwan, R.O.C" +"National Cheng Kung University, Tainan, Taiwan, ROC" +"National Chiao Tung University, Taiwan" +National Chiao-Tung University +"National Chung Cheng University, Chiayi, Taiwan, R.O.C" +"National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University" +"National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China" +"National Formosa University, Taiwan" +National Institute of Advanced Industrial +National Institute of Advanced Industrial Science and Technology +National Institute of Advanced Industrial Science and Technology (AIST +"National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan" +National Institute of Development Administration +National Institute of Informatics +"National Institute of Informatics, Japan" +"National Institute of Informatics, Tokyo, Japan" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +National Institute of Standards and Technology +"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA" +National Institute of Technology +National Institute of Technology Karnataka +National Institute of Technology Rourkela +"National Institute of Technology, Durgapur, West Bengal, India" +"National Institute of Technology, Toyota College, Japan" +National Institutes of Health +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +"National Key Laboratory for Novel Software Technology, Nanjing University, China" +"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China" +"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China" +"National Lab of Pattern Recognition, Institute of Automation" +"National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha, China" +"National Laboratory of Pattern Recognition (NLPR), Institute of Automation" +"National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences" +"National Laboratory of Pattern Recognition, Institute of Automation" +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, P. R. China" +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce" +National Research University Higher +National Research University Higher School of Economics +"National Research University Higher School of Economics, Nizhny Novgorod, Russian" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan" +"National Taichung University of Science and Technology, Taichung, Taiwan, R.O.C" +National Taipei University +National Taiwan University +National Taiwan University of Science and +National Taiwan University of Science and Technology +"National Taiwan University of Science and Technology, Taipei 10607, Taiwan" +"National Taiwan University, Taipei, Taiwan" +"National Taiwan University, Taiwan" +National Technical University of Athens +"National Technical University of Athens, 15780 Athens, Greece" +"National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan" +"National Tsing Hua University, Hsin-Chu, Taiwan" +"National Tsing Hua University, Taiwan" +"National Tsing-Hua University, Hsin-Chu, Taiwan" +National University +"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan" +National University of Defense +National University of Defense Technology +"National University of Defense Technology, Changsha 410073, China" +"National University of Defense Technology, Changsha, China" +"National University of Ireland Maynooth, Co. Kildare, Ireland" +"National University of Kaohsiung, 811 Kaohsiung, Taiwan" +National University of Science and Technology +"National University of Sciences and Technology (NUST), Islamabad, Pakistan" +National University of Singapore +"National University of Singapore Research Institute, Suzhou, China" +"National University of Singapore, 2Shanghai Jiao Tong University" +"National University of Singapore, Singapore" +National University of Technology Technology +National University of singapore +"Netherlands, Donders Institute, Radboud University, Nijmegen, The" +"Netherlands, Utrecht University, Utrecht, The Netherlands" +"Neurological Institute, USA" +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +New Jersey Institute of Technology +"New Jersey Institute of Technology, USA" +New York University +"New York University Shanghai, 1555 Century Ave, Pudong" +"New York University, Brooklyn, NY, USA" +"Newcastle University, Newcastle upon Tyne" +"Newcastle University, UK" +Ningxia University +No Institute Given +Nokia Bell Labs and University of Oxford +"Nokia Research Center, Tampere, Finland" +"Normal University, Kunming, China" +North Carolina AandT State University +North Carolina Central University +"North Carolina State University, Raleigh, NC, USA" +"North Carolina State University, Raleigh, USA" +"North China Electric Power University, Baoding, China" +North China University of Technology +"North China University of Technology, Beijing 100144 CHINA" +"North Dakota State University, Fargo, ND 58108-6050, USA" +"North Dakota State University, Fargo, ND58105, USA" +Northeastern University +Northeastern University 2Microsoft Research 3City University of New York +"Northeastern University, Boston, MA" +"Northeastern University, Boston, MA, USA" +"Northeastern University, Boston, USA" +"Northeastern University, MA, USA" +Northumbria University +"Northumbria University, Newcastle Upon-Tyne NE21XE, UK" +"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK" +Northwestern Polytechnical University +Northwestern University +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +Nottingham Trent University +"Nottingham Trent University, Nottingham, UK" +"Nottingham University Hospital, Nottingham, UK" +Nqtional Institute of Standards and Technology +"Numediart Institute, University of Mons" +OF PRINCETON UNIVERSITY +OF STANFORD UNIVERSITY +Oakland University +Odaiyappa College of +Okayama University +"Open Lab, School of Computing, Newcastle University, UK" +"Optics and Engineering Informatics, Budapest University of Technology and Economics" +Opus College of Engineering +Oregon State University +"Organization, University of Twente, Enschede, The Netherlands, HAN" +"Osaka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan" +"Other uses, including reproduction and distribution, or selling or" +Otto von Guericke University +Otto-von-Guericke University Magdeburg +Oxford Brookes University +"Oxford Brookes University, Oxford, United Kingdom" +"Oxford Brookes University, UK" +Oxford University +"Oxford University, UK" +"Ozye gin University, Istanbul, Turkey" +"P A College of Engineering, Nadupadavu" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +"P. O. Box 4500 Fin-90014 University of Oulu, Finland" +"P. R. Patil College of Engineering, Amravati Maharashtra India" +"P.A. College of Engnineering, Mangalore" +"P.G. Student, SRV Engineering College, sembodai, India" +"P.S.R Engineering College, Sivakasi, Tamilnadu, India" +"PES Institute of Technology, Bangalore, Karnataka, India" +PES Modern College of Engg +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India" +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +"PSG College of Technology, Coimbatore, Tamil Nadu, India" +"PSGR Krishnammal College for Women, Coimbatore" +Palo Alto Research Center (PARC +"PanimalarInstitute of Technology, Tamilnadu, India" +"Paran a Federal University, Curitiba, Brazil" +Parisutham Institute of Technology and Science +"Pathological anxiety is associated with disrupted cognitive processing, including working memory and" +"Pattern Recognition Group, University of Siegen" +"Pattern Recognition and Bio-informatics Laboratory, Delft University of Technology, THE NETHERLANDS" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology, The Netherlands" +"Paul G. Allen School of Computer Science and Engineering, University of Washington" +Peking University +"Peking University, Beijing, China" +"Peking University, China" +Pennsylvania +Pennsylvania State University +"Perceptive Automata, Inc" +"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India" +"Ph.D student Zaid Shhedi, Doctoral School of Automatic Control and Computers, University" +"Phiar Technologies, Inc" +"Physical Sciences, University" +Plymouth University +Plymouth University - CRNS +Pohang University of Science and Technology +Politehnica University of Timisoara +"Polytechnic Institute of NYU, NY, USA" +Polytechnic University of Bucharest +"Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of" +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"Pompeu Fabra University, Spain" +Pondicherry Engineering College +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +Portland State University +"Portland State University, USA" +Portugal +Poznan University of Technology +"Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand" +Princeton University +"Princeton University, Princeton, NJ, USA" +"Princeton University, Princeton, New Jersey, USA" +"Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India" +"Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India" +"Priyadarshini College of Engg, Nagpur, India" +Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE +"Program of Computational Science and Engineering, Bo gazi ci University" +"Proto Labs, Inc" +Psychiatry at the University of Pittsburgh +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +"Psychology and Psychiatry, University of Pittsburgh, USA" +"Psychology, American University" +"Psychology, University of" +"Psychology, University of Illinois, Beckman Institute, Urbana-Champaign, Illinois 61801, University of" +"Psychonomic Society, Inc" +"Psychopharmacology Unit, Educational and Health Psychology, University College" +"Public University of Navarra, Spain" +"Publication details, including instructions for authors and subscription" +"Publication details, including instructions for authors and subscription information" +"Pune Institute of Computer Technology, Pune, ( India" +"Pune Institute of Computer Technology, Pune, India" +Punjabi University Patiala +Purdue Institute for Integrative Neuroscience +Purdue University +"Purdue University, 2Nanjing University" +"Purdue University, West Lafayette, IN 47907, USA" +"Purdue University, West Lafayette, IN, USA" +"Purdue University, West Lafayette, IN. 47907, USA" +"Purdue University, West Lafayette, Indiana, 47906, USA" +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +"QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia" +"QCIS, University of Technology Sydney, Sydney, Australia" +"QCIS, University of Technology, Sydney" +"Qatar Computing Research Institute, HBKU" +"Qatar University, Qatar" +Qihoo 360 AI Institute +"Qihoo 360 AI Institute, Beijing, China" +"Quanti ed Employee unit, Finnish Institute of Occupational Health" +"Quantitative Employee unit, Finnish Institute of Occupational Health" +"Queen Mary College, London" +Queen Mary University +Queen Mary University of London +"Queen Mary University of London, London E1 4NS, UK" +"Queen Mary University of London, UK" +"Queen Mary, University of London" +"Queen Mary, University of London, E1 4NS, UK" +"Queen Mary, University of London, London E1 4NS, UK" +Queen s University Belfast +Queen's University Belfast - Research Portal +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +Queensland University of Technology +Queensland University of Technology (QUT +Queensland University of Technology(QUT +"Queensland University of Technology, Australia" +"Queensland University of Technology, Brisbane, QLD, Australia" +"Queensland University of Technology, Brisbane, Queensland, Australia" +"R. Campellone, 3210 Tolman Hall, University of California, Berkeley" +"R.C.Patel Institute of Technology, Shirpur, Dist.Dhule.Maharashtra, India" +"RCC Institute of Information Technology, Kolkata, India" +"RGPV University, Indore" +"RIEB, Kobe University, Kobe, 657-8501, Japan" +"RMIT University, Australia" +"RTM Nagpur University, Campus Nagpur, (MS)-India" +"RTMNU Nagpur University, India" +RWTH Aachen University +"RWTH Aachen University, Aachen, Germany" +"RWTH Aachen University, Germany" +"Rachel Merchak, Wittenberg University" +"Ragon Institute of MGH, MIT and Harvard" +Raipur institute of technology +"Rayalaseema University Kurnool, Andhra Pradesh" +"Recanati Genetic Institute, Rabin Medical Center and Schneider Children s Medical Center, Petah Tikva, Israel" +"Recognition, Institute of Automation" +"Recognition, Institute of Automation, Chinese Academy of Sciences" +"Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China" +"Remote Sensing Unit Optics, Optometry and Vision Sciences Group, University of Beira Interior" +Renmin University of China +Rensselaer Polytechnic Institute +"Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 USA" +"Rensselaer Polytechnic Institute, Troy, NY 12180, USA" +"Rensselaer Polytechnic Institute, USA" +Research Center +Research Center E. Piaggio +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"Research Center CENTIA, Electronics and Mechatronics" +Research Center and Laboratoire +"Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran" +Research Center for Information +"Research Center for Information Technology Innovation, Academia Sinica" +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Research Center for Intelligent Security Technology, CIGIT" +"Research Center for Learning Science, Southeast University, China" +"Research Center for Learning Science, Southeast University, Nanjing 210096, China" +"Research Center for Learning Science, Southeast University, Nanjing, China" +"Research Center in Information Technologies, Universit e de Mons, Belgium" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea" +"Research Institute, Watchdata Inc., Beijing, China" +"Research Reports of CMP, Czech Technical University in Prague, No" +"Research Scholar (M.Tech, IT), Institute of Engineering and Technology" +"Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India" +"Research Scholar, PSGR Krishnammal College for Women, Coimbatore" +"Research School of Computer Science, The Australian National University, ACT 2601, Australia" +"Research School of Engineering, The Australian National University, ACT 2601, Australia" +"Research University, ENS/INRIA/CNRS UMR 8548, Paris, France" +Reutlingen University +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany" +Rice University +"Rice University, Houston, TX, 77005, USA" +"Rio de Janeiro State University, Brazil" +"Ritsumeikan University, Japan" +"Ritsumeikan University, Kyoto, Japan" +"Ritsumeikan, University" +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Robotic Research Centre, Nanyang Technological University, Singapore 639798, Singapore" +Robotics Institute +"Robotics Institute, Carnegie Mellon University" +"Robotics Institute, Carnegie Mellon University 3University of Pittsburgh, USA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"Robotics Institute, Carnegie Mellon University, USA" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"Rochester Human-Computer Interaction (ROC HCI), University of Rochester, NY" +Rochester Institute of Technology +"Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA" +"Rochester Institute of Technology, Rochester, NY" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +Rowan University +Rowland Institute +Rowland Institute at Harvard +"Rowland Institute at Harvard, Cambridge, MA 02142, USA" +Ruhr University Bochum +"Ruhr-University Bochum, Germany" +Rutgers University +"Rutgers University Newark, 101 Warren St., Newark, NJ, 07102 USA" +"Rutgers University, 94 Brett Rd, Piscataway Township, NJ 08854, USA" +"Rutgers University, Computer and Information Sciences, 110 Frelinghuysen Road, Piscataway, NJ" +"Rutgers University, NJ, USA" +"Rutgers University, New Brunswick, NJ" +"Rutgers University, Newark, NJ, USA" +"Rutgers University, Piscataway NJ 08854, USA" +"Rutgers University, Piscataway, NJ" +"Rutgers University, Piscataway, NJ 08854, USA" +"Rutgers University, USA" +"Rutgers, The State University of New Jersey" +"Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ" +"Rutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +"Ryerson University, Canada" +"Ryerson University, Toronto, Canada" +"S J B Institute of Technology, Bangalore, Karnataka, India" +"S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India" +SAMSI and Duke University +"SASTRA University, Thanjavur, Tamil Nadu, India" +"SBK Women s University, Quetta, Balochistan" +"SHIRI AZENKOT, Information Science, Cornell Tech, Cornell University" +"SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University" +SIMON FRASER UNIVERSITY +"SRI International, Menlo Park California / *Brooklyn College, Brooklyn New York" +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"SRV Engineering College, sembodai, india" +"SSESA, Science College, Congress Nagar, Nagpur, (MS)-India" +"SSN College of Engineering, Chennai, India" +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY +SUS college of Engineering and Technology +SWPS University of Social Sciences +SWPS University of Social Sciences and Humanities +Saarland University +"Saarland University, Saarbr cken, Germany, 2 Utrecht University, Utrecht, the Netherlands" +Sabanc University +Sabanci University +"Sabanci University, Istanbul, Turkey" +"Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel" +Sakarya University +"Salgado de Oliveira University, Brazil" +Samsung Advanced Institute of Technology +"Samsung Advanced Institute of Technology (SAIT), KAIST" +"Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA" +"Samsung Telecommunication Research Institute, Beijing, China" +Samsung-PDMI Joint AI Center +"San Jose State University, San Jose, CA" +Sanghvi Institute of Management and Science +"Santa Clara University, Santa Clara, CA. 95053, USA" +Santa Fe Institute +"Sapienza University of Rome, 2Fondazione Bruno Kessler, 3University of Trento" +"Sapienza University of Rome, Italy" +Sarhad University of Science and Information Technology +"Sathyabama University Old Mamallapuram Road, Chennai, India" +"Sathyabama University, Chennai, India" +"Savitri Bai Phule Pune University, Maharashtra India" +Savitribai Phule Pune University +"Sch l of EECS, Peking University, Beijing, 100871, China" +"School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran" +"School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand" +"School of Arti cial Intelligence, University of Chinese Academy of Sciences, Beijing, China" +"School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave" +"School of Automation Science and Electrical Engineering, Beihang University, Beijing, China" +"School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China" +"School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA" +"School of Business, Aalto University, Finland" +"School of Business, University of Southern California; Alexandra Mislin" +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom" +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +"School of Communication and Information Engineering, Shanghai University" +"School of Computer Engineering, Nanyang Technological University, Singapore" +"School of Computer Engineering, Sejong University, Seoul, Korea" +"School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN" +"School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China" +"School of Computer Science and Engineering, Nanjing University of Science and Technology" +"School of Computer Science and Engineering, Nanyang Technological University, Singapore" +"School of Computer Science and Engineering, Sichuan University, China" +"School of Computer Science and Engineering, South China University of Technology" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"School of Computer Science and Engineering, Southeast University, Nanjing 210096, China" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam" +"School of Computer Science and Information Systems, Birkbeck College, University of London" +"School of Computer Science and Software Engineering, East China Normal University, China" +"School of Computer Science and Software Engineering, Shenzhen University" +"School of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen" +"School of Computer Science and Software Engineering, University of Western Australia" +"School of Computer Science and Technology, Harbin Institute of" +"School of Computer Science and Technology, Harbin Institute of Technology" +"School of Computer Science and Technology, Harbin Institute of Technology, China" +"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China" +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +"School of Computer Science and Technology, Shandong Institute of Business and Technology" +"School of Computer Science and Technology, Shandong University" +"School of Computer Science and Technology, Shandong University, China" +"School of Computer Science and Technology, Tianjin University" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +"School of Computer Science and Technology, Tianjin University, China" +"School of Computer Science and Technology, Tianjin University, Tianjin 300072, China" +"School of Computer Science and Technology, Tianjin University, Tianjin, China" +"School of Computer Science and Technology, University of Science and Technology of China" +"School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China" +"School of Computer Science, Beijing University of Posts and Telecommunications, Beijing China" +"School of Computer Science, CECS, Australian National University, Australia" +"School of Computer Science, CECS, Australian National University, Canberra" +"School of Computer Science, Carnegie Mellon University" +"School of Computer Science, Carnegie Mellon University, 15213, USA" +"School of Computer Science, Carnegie Mellon University, PA 15213, USA" +"School of Computer Science, Carnegie Mellon University, PA, USA" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, USA" +"School of Computer Science, Carnegie Mellon University, USA" +"School of Computer Science, Fudan University, Shanghai 200433, China" +"School of Computer Science, Fudan University, Shanghai, 200433, China" +"School of Computer Science, Fudan University, Shanghai, China" +"School of Computer Science, Nanjing University of Science and Technology" +"School of Computer Science, National University of Defense Technology, Changsha, China" +"School of Computer Science, Northwestern Polytechnical University, China" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"School of Computer Science, Northwestern Polytechnical University, Xi an China" +"School of Computer Science, OPTIMAL, Northwestern Polytechnical University, Xian 710072, Shaanxi, P. R. China" +"School of Computer Science, Sichuan University, Chengdu, China" +"School of Computer Science, South China Normal University, China" +"School of Computer Science, Tel Aviv University" +"School of Computer Science, The Hebrew University, Israel" +"School of Computer Science, The University of Adelaide, Australia" +"School of Computer Science, The University of Manchester" +"School of Computer Science, The University of Nottingham" +"School of Computer Science, The University of Nottingham, Nottingham, UK" +"School of Computer Science, Tianjin University" +"School of Computer Science, University of Adelaide, Australia" +"School of Computer Science, University of Birmingham, UK" +"School of Computer Science, University of Lincoln, U.K" +"School of Computer Science, University of Lincoln, United Kingdom" +"School of Computer Science, University of Nottingham" +"School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P" +"School of Computer Science, Wuhan University, P.R. China" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China" +"School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China" +"School of Computer and Information Science, Chongqing Normal University 401331, China" +"School of Computer and Information Technology, Beijing Jiaotong University, Beijing" +"School of Computer and Information, Hefei University of Technology, China" +"School of Computer and Information, Hefei University of Technology, Hefei" +"School of Computer and Information, Hefei University of Technology, Hefei, China" +"School of Computer, Beijing Institute of Technology, Beijing, China" +"School of Computer, National University of Defense Technology" +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada" +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; E-Mail" +"School of Computing Science, Simon Fraser University, Canada" +"School of Computing Sciences, University of East Anglia, Norwich, UK" +"School of Computing and Communications University of Technology, Sydney" +"School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK" +"School of Computing and Communications, University of Technology Sydney, Sydney, Australia" +"School of Computing and Info. Sciences, Florida International University" +"School of Computing and Mathematics, Charles Sturt University, Wagga Wagga, Australia" +"School of Computing, National University of Singapore" +"School of Computing, National University of Singapore, SG" +"School of Computing, National University of Singapore, Singapore" +"School of Computing, Staffordshire University" +"School of Control Science and Engineering, Shandong University, Jinan 250061, China" +"School of Data Science, Fudan University" +"School of Data Science, Fudan University, China" +"School of Data and Computer Science, Sun Yat-Sen University, China" +"School of Data and Computer Science, Sun Yat-Sen University, GuangZhou, China" +"School of Data and Computer Science, Sun Yat-sen University" +"School of Data and Computer Science, Sun Yat-sen University, China" +"School of Data and Computer Science, Sun Yat-sen University, P.R.China" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece" +"School of E.C.E., National Technical University of Athens, Greece" +"School of ECE, Peking University 2School of EIE, South China University of Technology" +"School of EECS, Peking University, Beijing, 100871, China" +"School of EECS, Queen Mary University of London" +"School of EECS, Queen Mary University of London, London, UK" +"School of EECS, Queen Mary University of London, UK" +"School of EEE, Nanyang Technological University, Singapore" +"School of Electrical Engineering and Automation, Anhui University, Hefei, China, Hong Kong Polytechnic" +"School of Electrical Engineering and Automation, Harbin Institute of Technology" +"School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT" +"School of Electrical Engineering and Computer Science, Peking University" +"School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran" +"School of Electrical and Computer Engineering, Cornell University" +"School of Electrical and Computer Engineering, Cornell University, Ithaca NY" +"School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA" +"School of Electrical and Computer Engineering, RMIT University" +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore" +"School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008 china" +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"School of Electronic Engineering and Computer Science, Peking University, 100871, China" +"School of Electronic Information Engineering, Tianjin University, China" +"School of Electronic and Computer Engineering, Peking University" +"School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China" +"School of Electronic and Information Engineering, South China University of Technology" +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"School of Electronic and Information, Yangtze University, Jingzhou 434023, China" +"School of Electronics Engineering and Computer Science, Peking University" +"School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China" +"School of Electronics and Computer Engineering, Peking University" +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"School of Electronics and Information Technology, Sun Yat-Sen University, GuangZhou, China" +"School of Electronics and Information, Northwestern Polytechnical University, China" +"School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada" +"School of Engineering, CECS, Australian National University, Canberra, Australia" +"School of Engineering, Taylor s University" +"School of Engineering, University of Guelph" +"School of Engineering, University of Portsmouth, United Kingdom" +"School of Engineering, University of Waikato, Hamilton, New Zealand" +"School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu" +"School of Games, Hongik University, Seoul, Korea" +"School of ICE, Beijing University of Posts and Telecommunications, Beijing, China" +"School of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications" +"School of Informatics, University of Edinburgh" +"School of Informatics, University of Edinburgh, UK" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"School of Information Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"School of Information Engineering, Nanchang University, China" +"School of Information Engineering, Wuyi University, Jiangmen 529020, China" +"School of Information Science and Engineering, Central South University, Changsha" +"School of Information Science and Engineering, Southeast University, Nanjing, China" +"School of Information Science and Engineering, Xiamen University, Xiamen 361005, China" +"School of Information Science and Technology, Donghua University, Shanghai 200051, China" +"School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"School of Information Science and Technology, Sun Yat-sen University, China" +"School of Information Science, Japan Advanced Institute of Science and Technology" +"School of Information Systems, Singapore Management University, Singapore" +"School of Information Technology (ITE), Halmstad University, Box 823, 30118 Halmstad, Sweden" +"School of Information Technology and Electrical Engineering, The University of Queensland" +"School of Information Technology and Engineering, University of Ottawa, Ontario, Canada" +"School of Information Technology and Engineering, VIT University, Vellore, 632014, India" +"School of Information Technology and Management, University of International" +"School of Information and Communication Engineering, Beijing University of Posts and Telecommunications" +"School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China" +"School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China" +"School of IoT Engineering, Jiangnan University, Wuxi 214122, China" +"School of IoT Engineering, Jiangnan University, Wuxi, 214122, China" +"School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China" +"School of Management, University of Bath, Bath, UK" +"School of Mathematical Science, Dalian University of Technology, Dalian, China" +"School of Mathematical Science, Peking University, China" +"School of Mathematical Sciences, Dalian University of Technology, Linggong Rd. 2, Dalian" +"School of Mathematical Sciences, Monash University, VIC 3800, Australia" +"School of Mathematical Sciences, Peking University, China" +"School of Mathematics and Computational Science, Sun Yat-sen University, China" +"School of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA" +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +"School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China" +"School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China" +"School of Medicine, Shenzhen University, Shenzhen 518060, China" +"School of Medicine, Tehran University of Medical Sciences, Tehran, Iran" +"School of Optics and Electronics, Beijing Institute of Technology, Beijing" +"School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China" +"School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China, 2 School of Information" +"School of Physics and Optoelectronic Engineering, Xidian University, China" +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"School of Psychology, Cardiff University, Cardiff, United Kingdom, College of" +"School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"School of Psychology, University of Central Lancashire" +"School of Software, Dalian University of Technology, Dalian 116621, China" +"School of Software, Dalian University of Technology, Tuqiang St. 321, Dalian 116620, China" +"School of Software, Sun Yat-sen University, China" +"School of Software, Tianjin University" +"School of Software, Tsinghua University, Beijing 100084, China" +"School of Software, Xidian University, China" +"School, The University of Sydney, Sydney, NSW, Australia" +"Schreiber Building, room 103, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part +"Science, University of Amsterdam" +"Science, University of Bristol" +"Scienti c Visualization and Computer Graphics, University of Groningen, Nijenborgh 9, Groningen, The Netherlands" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +"Section of Pathology, Second University of Naples, Via L. Armanni" +"Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea" +"Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea" +Semarang State University +"Sendai National College of Technology, Natori, Japan" +"SenseTime Group Limited, 2Tsinghua University" +"SenseTime Group Limited, 3Peking University" +"SenseTime, 2Tsinghua University" +"SenseTime-NTU Joint AI Research Centre, Nanyang Technological University" +"Sensor-enhanced Social Media (SeSaMe) Centre, National University of Singapore, Singapore" +Seoul National University +"Seoul National University, Seoul, Korea" +"Seoul National University, Seoul, South Korea" +"Sessional Tutor, The University of Melbourne" +"Several methods exists to induce anxiety in healthy individuals, including threat of shock (ToS), the Trier" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +Shaheed Zulfikar Ali Bhutto Institute of +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan" +ShahidBeheshti University +Shandong University of Science and Technology +Shandong Women s University +Shanghai Institute for Advanced Communication and Data Science +"Shanghai Institute of Applied Physics, Chinese Academy of Sciences" +Shanghai Jiao Tong University +"Shanghai Jiao Tong University, CloudWalk Technology" +"Shanghai Jiao Tong University, 2Zhejiang University, 3Massachusetts Institute of Technology" +"Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China" +"Shanghai Jiao Tong University, China" +"Shanghai Jiao Tong University, China. 2Columbia University, USA" +"Shanghai Jiao Tong University, Shanghai 200240, China" +"Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China" +ShanghaiTech University +Shanghaitech University +"Shaoguan University, Da Tang Lu" +"Sharda University, Greater Noida, India" +Sharif University of Technology +"Sharif University of Technology, Tehran. Iran" +"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China" +Shenzhen Institutes of Advanced Technology +"Shenzhen Institutes of Advanced Technology, CAS, China" +"Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +"Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology" +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +"Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China" +"Shenzhen University, China" +"Shenzhen University, Shenzhen China" +"Shenzhen University, Shenzhen, China" +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology" +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +Shiraz University +"Shri Shivaji College, Parbhani, M.S, India" +"Sichuan Fine Arts Institute, Chongqing, China" +"Siemens Corporate Research, 755 College Road East, Princeton, NJ" +"Sighthound, Inc" +Signal Processing Institute +Simon Fraser University +"Simon Fraser University, Burnaby, Canada" +Singapore University of Technology and Design +Sinhgad College of +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +Slovak University of Technology in +"Smart Network System Institute, Institute for Information Industry" +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"Sogang University, Seoul 121-742, Republic of Korea" +"Solapur University, INDIA" +Sona College of Technology +"Sorbonne Universit s, UPMC University Paris 06, Paris, France" +South China University of China +South China University of Technology +South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial +"South China University of Technology, Guangzhou 510640, China" +South College Road +"Southeast University, Nanjing 210096, China" +"Southeast University, Nanjing 211189, China" +"Southeast University, Nanjing, China" +"Southern Illinois University, Carbondale, IL 62901 USA" +Southwest Jiaotong University +"Southwest Jiaotong University, Chengdu, China" +"Southwest Jiaotong University, Chengdu, P.R. China" +"Southwest University, China" +"Southwest University, Chongqing 400715, China" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"Springer Science + Business Media, Inc. Manufactured in The Netherlands" +"Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India" +"Sri Manakula Vinayagar Engineering College, Pondicherry" +"Sri SidarthaInstitute of Technology, Tumkur" +"Sri Sunflower College of Engineering and Technology, Lankapalli" +"Sri krishna College of Technology, Coimbatore, India" +Sridevi Women's Engineering College +"Srinivasan Engineering College, Perambalur, India" +"Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India" +"Ss. Cyril and Methodius University, Skopje, Macedonia" +"St. Ann s College of Engineering and Technology, Andhra Pradesh, India" +St. Anne s College +St. Francis Institute of Technology +"St. Xavier s Catholic College of Engineering, India" +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"St.Joseph s College of Engineering, Old Mamallapuram Road, Kamaraj Nagar, Semmencherry, Chennai" +"Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh" +Stanford University +Stanford University National Tsing Hua University +"Stanford University, 2Facebook, 3Dartmouth College" +"Stanford University, 2Simon Fraser University" +"Stanford University, CA" +"Stanford University, CA, United States" +"Stanford University, Stanford, CA, USA" +"Stanford University, Stanford, California" +"Stanford University, USA" +"State Key Lab of CADandCG, College of Computer Science, Zhejiang University, Hangzhou, China" +"State Key Lab of CADandCG, Zhejiang University, Hangzhou, Zhejiang, China" +"State Key Lab. LIESMARS, Wuhan University, China" +"State Key Laboratory for Novel Software Technology, Nanjing University, China" +"State Key Laboratory of Brain and Cognitive Science, Institute of Psychology" +"State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China" +"State Key Laboratory of ISN, Xidian University" +"State Key Laboratory of Integrated Services Networks, Xidian University, Xi an 710071 China" +"State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China" +"State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China" +"State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China" +"State Key Laboratory of Software Development Environment, Beihang University, P.R.China" +"State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia" +State University of Feira de Santana (UEFS +"State University of New York Polytechnic Institute, Utica, New York" +State University of New York at +State University of New York at Binghamton +"State University of New York at Binghamton, Binghamton, NY" +"State University of New York at Binghamton, USA" +State University of New York at Buffalo +"State University of Rio de Janeiro, Brazil" +"Statistics, University of" +Stevens Institute of Technology +Stevens Institute of Technology Adobe Systems Inc +Stony Brook University +"Stony Brook University 2Adobe Research 3 CentraleSup elec, Universit e Paris-Saclay" +Stony Brook University Hospital +"Stony Brook University, NY 11794, USA" +"Stony Brook University, NY, USA" +"Stony Brook University, Stony Brook NY 11794, USA" +"Stony Brook University, Stony Brook, NY 11794, USA" +"Stony Brook University, Stony Brook, USA" +"Student, Amal Jyothi College of Engineering, Kanjirappally, India" +"Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +Submitted to the Institute for Graduate Studies in +Submitted to the Senate of the Hebrew University +Sudan University of Science and Technology +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +Sun Yat-Sen (Zhongshan) University +Sun Yat-Sen University +"Sun Yat-Sen University, Guangzhou, P.R. China" +Sun Yat-sen University +SungKyunKwan University +Sungkyunkwan University +Swansea University +Swiss Federal Institute of Technology +"Swiss Federal Institute of Technology, Lausanne (EPFL" +"Switzerland, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"System Research Center, NOKIA Research Center, Beijing, 100176, China" +"Systems and Communication, University of Milano-Bicocca" +Systems and Telematics - Neurolab +THE UNIVERSITY OF ARIZONA +THE UNIVERSITY OF CHICAGO +"TNLIST, Tsinghua University, Beijing, 100084, China" +Tafresh University +"Tafresh University, Tafresh, Iran" +Taizhou University +"Taizhou University, Taizhou 317000, China" +"Tamkang University, Taipei, Taiwan" +Tampere University of Technology +"Tampere University of Technology, Finland" +"Tampere University of Technology, Tampere 33720, Finland" +"Tampere University of Technology, Tampere, Finland" +"Tarbiat Modarres University, Tehran, Iran" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +"Technical University Munich, Germany" +"Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic" +"Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic" +"Technical University of Cluj Napoca, 28 Memorandumului Street" +Technical University of Kaiserslautern +Technical University of Munich +"Technical University of Munich, Germany" +"Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm" +"Technical University of Ostrava, FEECS" +TechnicalUniversityofDenmark +Technion Israel Institute of Technology +Technion - Israel Institute of Technology +"Technological Educational Institute of Athens, 12210 Athens, Greece" +"Technological University, Davanagere, Karnataka, India" +"Technology, Manchester Metropolitan University" +"Technology, Nanjing University of Aero" +"Technology, University of Oradea 410087, Universitatii 1, Romania" +Tel Aviv University +"Tel Aviv University, Columbia University" +"Tel Aviv University, Cornell Tech" +"Tel Aviv University, Israel" +"Tel-Aviv University, Israel" +Temple University +"Temple University, Philadelphia, PA 19122, USA" +"Temple University, Philadelphia, USA" +Texas AandM University +"Texas AandM University, College Station TX 77843, USA" +"Texas AandM University, College Station, TX, USA" +"Texas State University, San Marcos, USA" +Thapar University +The Allen Institute for AI +"The American University In Cairo, Road 90, New Cairo, Cairo, Egypt" +The American University in Cairo +"The American University in Cairo, Egypt" +"The American University in Cairo, New Cairo 11835, Egypt" +"The Amsterdam School of Communication Research, University of Amsterdam" +The Australian National University +"The Australian National University Canberra ACT 2601, Australia" +The Australian National University Queensland University of Technology +"The Australian National University, Australia" +"The Australian National University, Canberra, Australia" +The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved +The Author 2014. Published by Oxford University Press +"The Big Data Research Center, Henan University, Kaifeng 475001, China" +"The Blavatnik School of Computer Science, Tel Aviv University, IL" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"The Blavatnik School of Computer Science, Tel-Aviv University, Israel" +"The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel" +"The Blavatnik School of Computer Science, The Tel-Aviv University" +"The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA USA" +The Chinese University of Hong Kong +The Chinese University of Hong Kong 3 SenseTime Group Limited +The Chinese University of Hong Kong holds the copyright of this thesis. Any +"The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent" +"The Chinese University of Hong Kong, 4Beijing University of Posts and Telecommunications" +"The Chinese University of Hong Kong, China" +"The Chinese University of Hong Kong, HKSAR, China" +"The Chinese University of Hong Kong, Hong Kong" +"The Chinese University of Hong Kong, Hong Kong SAR, China" +"The Chinese University of Hong Kong, Hong Kong, China" +"The Chinese University of Hong Kong, New Territories, Hong Kong" +"The Chinese University of Hong Kong, Sha Tin, Hong Kong" +The Chinese University ofHong Kong +The City College and the Graduate Center +"The City College of New York, New York, NY 10031, USA" +The City University of New York +The Education University of Hong Kong +The Florida State University +The Graduate University for Advanced Studies (SOKENDAI +The Hebrew University of Jerusalem +"The Hebrew University of Jerusalem, Israel" +The Hong Kong Polytechnic University +The Hong Kong Polytechnic University 2Harbin Institute of Technology +"The Hong Kong Polytechnic University, Hong Kong" +"The Hong Kong Polytechnic University, Hong Kong SAR, China" +"The Hong Kong Polytechnic University, Hong Kong, China" +"The Hong Kong Polytechnic University, Hong Kong, SAR, 2University of Technology Sydney, Australia" +The Hong Kong University of Science and Technology +The Hong Kong University of Science and Technology 2 Carneige Mellon University +"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +The Institute of Electronics +"The Institute of Scienti c and Industrial Research, Osaka University" +The Ohio State University +"The Ohio State University, Columbus, OH, USA" +"The Ohio State University, OH" +The Open University +The Open University of +The Open University of Israel +"The Open University of Israel, Israel" +"The Open University, Israel" +"The Remote Sensing Technology Institute (IMF), German Aerospace Center" +"The Robotics Inistitute, Carnegie Mellon University" +The Robotics Institute +The Robotics Institute Carnegie Mellon University +"The Robotics Institute, Carnegie Mellon University" +"The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA" +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +The Rockefeller University +"The School of Computer Science, Tel-Aviv University, Israel" +"The School of Electrical Electronic and Control Engineering, Kongju National University" +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +The State University of New Jersey +"The University of Adelaide, Australia" +The University of Adelaide; and Australian Centre for Robotic Vision +The University of British Columbia +The University of Cambridge +The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer +"The University of Edinburgh, Edinburgh, UK" +The University of Electro-Communications +"The University of Electro-Communications, JAPAN" +"The University of Electro-Communications, Tokyo" +"The University of Electro-Communications, Tokyo, Japan" +The University of Hong Kong +The University of Leeds +The University of Manchester +The University of Maryland +The University of Newcastle +"The University of Newcastle, Callaghan 2308, Australia" +The University of North Carolina at Chapel Hill +The University of North Carolina at Charlotte +"The University of North Carolina at Charlotte, USA" +"The University of North Carolina, Chapel Hill" +The University of Nottingham +"The University of Nottingham, UK" +The University of Queensland in +"The University of Queensland, Australia" +"The University of Queensland, School of ITEE" +"The University of Queensland, School of ITEE, QLD 4072, Australia" +The University of Shef eld +The University of Sydney +The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong +"The University of Sydney, NSW 2006, Australia" +"The University of Sydney, SenseTime Computer Vision Research Group" +"The University of Sydney, SenseTime Computer Vision Research Group, Sydney" +"The University of Sydney, Sydney, Australia" +"The University of Tennessee, Knoxville" +"The University of Tennessee, Knoxville, TN, USA" +The University of Texas +The University of Texas at +The University of Texas at Arlington +The University of Texas at Austin +"The University of Texas at Austin, 2Carnegie Mellon University" +"The University of Texas at Austin, 78701 Austin, USA" +"The University of Texas at Austin, Austin, TX" +"The University of Texas at Dallas, Richardson, TX" +The University of Tokyo +The University of Tokyo / RIKEN +"The University of Tokyo, 2RIKEN, 3ETH Z urich, 4KU Leuven" +"The University of Tokyo, Japan" +"The University of Warwick, Coventry, UK" +The University of Western Australia +The University of York +"The University of York, Heslington, York YO10 5DD, United Kingdom" +"The University of York, UK" +"The University of York, United Kingdom" +The University of the Humanities +The Weizmann Institute of +The Weizmann Institute of Science +"The Weizmann Institute of Science, Israel" +"The authors are with Hiroshima University, Higashihiroshima" +"The authors are with the Delft University of Technology, Data and Knowl" +The open University of Israel. 2Adience +"The school of Data Science, Fudan University" +Thesis. Rochester Institute of Technology. Accessed from +This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for +"This is an Open Access document downloaded from ORCA, Cardiff University's institutional" +This work is downloaded from Delft University of Technology +This work was supported by Grant MOP102637 from the Canadian Institutes of Health Research to E.D.R. and the +This work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E +"Tilburg Center for Logic, General Ethics, and Philosophy of Science, Tilburg University, Tilburg, Netherlands" +Tohoku University +"Tohoku University, Japan" +"Tohoku University, Sendai, Japan" +Tokyo Denki University +Tokyo Institute of Technology +"Tokyo Institute of Technology, Japan" +Tokyo Metropolitan University +Tokyo Polytechnic University +Tokyo University of Science +"Tokyo, Tokyo, 6National Institute of Informatics, Tokyo" +Tomas Bata University in Zl n +Tomsk Polytechnic University +Tongji University +"Tongji University, Shanghai 201804, China" +Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology +"Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan" +"Toyota Research Institute, Cambridge, MA 2 University of Michigan, Ann Arbor, MI" +"Toyota Research Institute, Los Altos, CA, USA" +"Toyota Technological Institute (Chicago, US" +Toyota Technological Institute Chicago (TTIC +Toyota Technological Institute at Chicago +"Toyota Technological Institute, Chicago" +"Toyota Technological Institute, Chicago (TTIC" +Transilvania University +Trinity College +Tripura University (A Central University +"Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom" +Tsinghua University +Tsinghua University 4SenseTime +"Tsinghua University, 100084 Beijing, China" +"Tsinghua University, 2Rutgers University, 3Baidu IDL" +"Tsinghua University, 2Rutgers University, 3Massachusetts Institute of Technology, 4Baidu IDL" +"Tsinghua University, Beijing 100084, China" +"Tsinghua University, Beijing 100084, P.R.China" +"Tsinghua University, Beijing, China" +"Tsinghua University, China" +"Tsinghua University, State Key Lab. of Intelligent" +Tsinghua-CUHK Joint Research Center for Media Sciences +"Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +"U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI" +U.S. Army Research Laboratory +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"U.S. Army Research Laboratory, Adelphi, MD, USA" +"UC Irvine1, INRIA2, Carnegie Mellon University" +"UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea" +UCL and Alan Turing Institute +"UG student, Amity school of Engineering and Technology, Amity University, Haryana, India" +"UMIACS | University of Maryland, College Park" +"UMIACS, University of Maryland" +"UMIACS, University of Maryland, College Park, MD" +"UMIACS, University of Maryland, College Park, USA" +UNIVERSITY IN PRAGUE +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD +UNIVERSITY OF CALIFORNIA +"UNIVERSITY OF CALIFORNIA, BERKELEY" +"UNIVERSITY OF CALIFORNIA, SAN DIEGO" +UNIVERSITY OF OULU +UNIVERSITY OF OULU GRADUATE SCHOOL +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +UNIVERSITY OF TAMPERE +UNIVERSITY OF TARTU +UNIVERSITY OF WISCONSIN MADISON +"USA, 2Unit for Experimental Psychiatry, University of Pennsylvania School of Medicine" +"USC IRIS Lab, University of Southern California" +USC Information Sciences Institute +"USC Information Sciences Institute (ISI), Marina Del Rey, CA" +USC Institute for Creative Technologies +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +"USHER Institute, University of Edinburgh, United Kingdom" +"Uber Advanced Technologies Group, 5Vector Institute" +"Ubiquitous Computing Lab, Kyung Hee University" +"UiT The Arctic University of Norway, Troms , Norway" +"Ulm University, Germany" +"Ultra College of Engineering and Technology for Women, India" +"United States of America, State University of New York Albany, Albany" +"United States of America, State University of New York Albany, Albany, New York" +"Universit Paris-Dauphine, PSL Research University, CNRS, UMR" +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"Universitat Polit`ecnica de Catalunya, Columbia University" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +University +University Politehnica of Bucharest +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +University (H +University (ITU +"University B.D.T.College of Engineering, Visvesvaraya" +"University Bourgogne Franche-Comt , France" +"University Campus, 54124, Thessaloniki, Greece" +"University Center of FEI, S ao Bernardo do Campo, Brazil" +"University City Blvd., Charlotte, NC" +University College London +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"University College London, London WC1N 3BG, United Kingdom" +"University College London, London, UK" +"University College London, UK" +University Drive +"University Drive, Fairfax, VA 22030-4444, USA" +"University Health Board, Swansea, United Kingdom" +University Higher School of Economics (HSE). Any opinions or claims contained in this +"University Hospital Jena, Germany" +University Institute of Engineering and Technology +University Lecturer Anu Soikkeli +University Lecturer Veli-Matti Ulvinen +"University Library, Singapore" +University Of California San Diego +University Of Maryland +University Of Oxford +"University POLITEHNICA Timisoara, Timisoara, 300223, Romania" +"University POLITEHNICA of Bucharest, Bucharest, Romania" +University Politehnica of Bucharest +"University Politehnica of Bucharest, Romania" +"University Station C0500, Austin TX 78712, USA" +"University Street, Montral, QC H3A 0E9, Canada" +"University Street, Montreal, QC H3A 0E9, Canada" +"University Technology of Malaysia, 81310 Skudai, Johor, Malaysia" +"University at Albany, SUNY" +"University at Buffalo, SUNY" +"University at Buffalo, State University of New York" +University of +University of Aberdeen +University of Abertay +University of Adelaide +"University of Adelaide, Australia" +"University of Adelaide, SA, Australia" +"University of Aizu, Japan" +"University of Akron, Akron" +"University of Alabama, Tuscaloosa, AL" +"University of Alberta, Edmonton, AB T6G 2E8, Canada" +"University of Alberta, Edmonton, Canada" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +University of Amsterdam +University of Amsterdam (UvA +University of Amsterdam and Renmin University at TRECVID +"University of Amsterdam, Amsterdam, The" +"University of Amsterdam, Amsterdam, The Netherlands" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +"University of Amsterdam, The Netherlands" +"University of Amsterdam, University of Trento, Italy" +"University of Amsterdam, the Netherlands" +"University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of" +University of Applied Sciences Darmstadt - CASED +"University of Applied Sciences, Arnhem, The Netherlands" +University of Arizona +University of Arkansas at Little Rock +"University of Balochistan, Quetta" +University of Barcelona +"University of Barcelona and Computer Vision Centre, Barcelona, Spain" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +"University of Barcelona, Spain" +"University of Bari, Bari, Italy" +University of Basel +"University of Basel, Departement Informatik, Basel, Switzerland" +"University of Basel, Switzerland" +University of Bath +"University of Bath, Bath, Somerset, United Kingdom" +"University of Bath, Bath, United Kingdom" +University of Beira Interior +University of Bern +University of Birmingham +University of Bonn +"University of Bonn, Germany" +"University of Bonn, Roemerstrasse 164, 53117 Bonn, Germany" +University of Brescia +University of Bridgeport +"University of Bridgeport, Bridgeport, CT 06604, USA" +University of Bristol +University of Bristol - Explore Bristol Research +"University of Bristol, Bristol, BS8 1UB, UK" +"University of Bristol, Bristol, UK" +"University of Bristol, United Kingdom" +University of British Columbia +University of Buffalo +"University of Business Agriculture and Technology, Dhaka-1230, Bangladesh" +University of Caen +University of Caen Basse-Normandie +"University of Caen, France" +University of Cagliari +University of Calabria - DeMACS +"University of Calgary, Canada" +University of California +University of California Berkeley +University of California Berkeley +University of California Davis +University of California San Diego +"University of California San Diego, La Jolla, California, USA" +University of California Santa Barbara +University of California at Berkeley +University of California at Berkeley / ICSI +"University of California at Berkeley, USA" +"University of California at Irvine, Irvine, CA" +"University of California at Los Angeles, Los Angeles, CA, USA" +University of California at San Diego +"University of California at San Diego, La Jolla, CA" +"University of California, Berkeley" +"University of California, Berkeley, Berkeley CA 94720, USA" +"University of California, Berkeley1 Adobe" +"University of California, Davis" +"University of California, Davis 2University of Washington 3Allen Institute for AI" +"University of California, Irvine" +"University of California, Irvine, USA" +"University of California, Los Angeles" +"University of California, Los Angeles, California, USA" +"University of California, Los Angeles, USA" +"University of California, Merced" +"University of California, Merced, CA" +"University of California, Merced, CA 95344, USA" +"University of California, Merced, USA" +"University of California, Riverside" +"University of California, Riverside CA 92521-0425, USA" +"University of California, Riverside, CA" +"University of California, Riverside, California 92521, USA" +"University of California, San Diego" +"University of California, San Diego 2 Carnegie Mellon University" +"University of California, San Diego, California, USA" +"University of California, San Diego, La Jolla" +"University of California, San Diego, USA" +"University of California, Santa Barbara" +"University of California, Santa Cruz" +University of Cambridge +University of Cambridge Computer Laboratory +"University of Cambridge, Cambridge, UK" +"University of Cambridge, Computer Laboratory, UK" +"University of Cambridge, The Computer Laboratory, Cambridge CB3 0FD, U.K" +"University of Cambridge, UK 2Carnegie Mellon University, USA" +"University of Cambridge, United Kingdom" +University of Campinas +University of Campinas (Unicamp +University of Canberra +"University of Canberra, Australia" +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +"University of Canterbury, New Zealand" +University of Cape Town +"University of Cape Town, South Africa" +"University of Catania, Italy" +University of Central Florida +"University of Central Florida, Orlando" +"University of Central Florida, Orlando FL 32816, USA" +"University of Central Florida, Orlando, USA" +"University of Central Florida, USA" +"University of Central Punjab, Pakistan" +"University of Chester, UK, 3Conservation Biologist" +University of Chinese Academy of +University of Chinese Academy of Science +University of Chinese Academy of Sciences +University of Chinese Academy of Sciences (UCAS +"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China" +"University of Chinese Academy of Sciences, Beijing 100049, China" +"University of Chinese Academy of Sciences, Beijing 100190, China" +"University of Chinese Academy of Sciences, Beijing 101408, China" +"University of Chinese Academy of Sciences, Beijing, 100049, China" +"University of Chinese Academy of Sciences, Beijing, China" +"University of Chinese Academy of Sciences, China" +"University of Coimbra, Portugal" +University of Colorado +"University of Colorado Boulder, 2U.S. Army Research Lab" +University of Colorado Colorado Springs +University of Colorado at Colorado Springs +"University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA" +"University of Colorado, Boulder" +"University of Colorado, Colorado Springs" +"University of Colorado, Colorado Springs, USA" +University of Connecticut +University of Copenhagen +"University of Cordoba, Spain" +"University of Crete, Crete, 73100, Greece" +"University of Dammam, Saudi Arabia" +"University of Delaware, Newark, DE. USA" +"University of Denver, Denver, CO" +University of Dhaka +"University of Dhaka, Bangladesh" +"University of Dschang, Cameroon" +University of Dundee +University of Edinburgh +"University of Edinburgh, Edinburgh, UK" +University of Electronic Science and Technology of China +"University of Electronic Science and Technology of China, China" +University of Engineering and Technology +University of Erlangen-Nuremberg +University of Erlangen-Nuremberg 3 University of Bath +"University of Exceter, Exceter, UK" +University of Exeter +"University of Exeter, UK" +University of Florence +"University of Florence, Italy" +University of Florida +"University of Florida, Gainesville, FL, 32611, USA" +University of Frankfurt +University of Freiburg +"University of Freiburg, Germany" +"University of Freiburg, Instit ut f ur Informatik" +University of Geneva +"University of Genoa, Italy" +"University of Georgia, Athens, GA, U.S.A" +University of Glasgow +"University of Granada, Granada, Spain" +"University of Granada, Spain" +University of Groningen +"University of Groningen, Netherlands" +"University of Groningen, The Netherlands" +"University of Gujrat, Pakistan" +University of Haifa +"University of Haifa, Haifa, Israel" +"University of Helsinki, Finland" +University of Houston +"University of Houston, Houston, TX 77204, USA" +"University of Houston, Houston, TX, USA" +University of Iceland +University of Illinois +University of Illinois Urbana Champaign +University of Illinois at +University of Illinois at Chicago +University of Illinois at Urbana +University of Illinois at Urbana Champaign +"University of Illinois at Urbana Champaign, Urbana" +"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA" +University of Illinois at Urbana-Champaign +University of Illinois at Urbana-Champaign 2Adobe Research +"University of Illinois at Urbana-Champaign, IL USA" +"University of Illinois at Urbana-Champaign, USA" +"University of Illinois at Urbana-Champaign, Urbana, IL" +"University of Illinois at Urbana-Champaign, Urbana, IL, USA" +"University of Illinois, Urbana-Champaign" +"University of Illinois, Urbana-Champaign University of California, San Diego" +University of Information +University of Insubria +"University of Ioannina, Ioannina, Greece" +"University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine" +University of Iowa +"University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +"University of Karlsruhe, Germany" +University of Kentucky +"University of Kentucky, 329 Rose St., Lexington, KY, 40508, U.S.A" +"University of Kentucky, USA" +University of Lac Hong 10 Huynh Van Nghe +"University of Larestan, Iran" +University of Leeds +"University of Lincoln, School of Computer Science, U.K" +"University of Lincoln, U.K" +"University of Lincoln, UK" +University of Liverpool +University of Ljubljana +University of Ljubljana Faculty +"University of Ljubljana, Faculty of Electrical Engineering" +"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia" +University of London +"University of Malaga, Spain" +"University of Malaya, 50603 Kuala Lumpur, Malaysia" +"University of Malaya, Kuala Lumpur, Malaysia" +University of Malta +University of Manitoba +University of Maryland +University of Maryland College Park +"University of Maryland Institute for Advanced Computer Studies, College Park, MD" +"University of Maryland, CFAR" +"University of Maryland, Center for Automation Research" +"University of Maryland, College Park" +"University of Maryland, College Park, MD" +"University of Maryland, College Park, MD 20740; and bIntel Labs, Santa Clara, CA" +"University of Maryland, College Park, MD, USA" +"University of Maryland, College Park, USA" +"University of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre" +"University of Maryland-College Park, USA" +University of Massachusetts +University of Massachusetts - Amherst +University of Massachusetts Amherst +University of Massachusetts Amherst in partial ful llment +"University of Massachusetts, Amherst" +"University of Massachusetts, Amherst MA, USA" +"University of Massachusetts, Amherst Technical Report UM-CS" +"University of Massachusetts, Amherst, MA" +University of Memphis +University of Miami +"University of Miami, Coral Gables, FL" +"University of Miami, USA" +University of Michigan +"University of Michigan, Ann Arbor" +"University of Michigan, Ann Arbor, MI" +"University of Michigan, Ann Arbor, MI, USA" +"University of Michigan, Ann Arbor, MI, USA (UMICH.EDU" +"University of Michigan, Ann Arbor, USA" +University of Michigan-Shanghai Jiao Tong University Joint Institute +University of Milan +"University of Milano-Bicocca, Italy" +University of Minnesota +"University of Minnesota-Twin Cities, Minneapolis" +"University of Missouri, Columbia, MO" +"University of Missouri, Kansas City" +University of Modena and Reggio +"University of Modena and Reggio Emilia, Italy" +"University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR" +"University of Nebraska Lincoln, USA" +University of Nebraska - Lincoln +University of Nevada Las Vegas +"University of Nevada at Reno, USA" +"University of Nevada, Reno, Reno, NV, USA" +"University of Nevada, Reno, USA" +University of Newcastle +University of North Carolina +University of North Carolina Wilmington +University of North Carolina Wilmington in Partial Ful llment +"University of North Carolina Wilmington, Wilmington, NC, USA" +University of North Carolina at Chapel Hill +"University of North Carolina at Chapel Hill, 2Adobe Research" +"University of North Carolina at Chapel Hill, Chapel Hill, NC" +"University of North Carolina at Chapel Hill, NC, USA" +"University of North Carolina at Chapel Hill, USA" +University of North Carolina at Charlotte +University of North Texas +"University of North Texas, Denton, Texas, USA" +University of Northern British Columbia +"University of Northern British Columbia, Canada" +University of Notre Dame +"University of Notre Dame, 2IIIT-Delhi" +"University of Notre Dame, Notre Dame, IN, 46556, USA" +"University of Notre Dame, USA" +"University of Notre Dame. Notre Dame, IN 46556.USA" +University of Nottingham +University of Nottingham Ningbo China +"University of Nottingham, Ningbo China" +"University of Nottingham, Ningbo, China" +"University of Nottingham, Nottingham, UK" +"University of Nottingham, School of Psychology, University Park, Nottingham NG" +"University of Nottingham, UK, School of Computer Science" +University of Ontario Institute +University of Oradea +"University of Oradea 410087, Universitatii 1, Romania" +University of Otago +"University of Otago, Dunedin, New Zealand" +University of Ottawa +"University of Ottawa, Canada" +"University of Ottawa, Ottawa, On, Canada" +University of Oulu +"University of Oulu, Finland" +"University of Oviedo, Campus de Viesques, 33204 Gij n" +University of Oxford +University of Oxford 4Massachusetts Institute of Technology 5Google Research +"University of Oxford, Oxford, UK" +"University of Oxford, Oxford, United Kingdom" +"University of Oxford, UK" +"University of Oxford, United Kingdom" +"University of Paderborn, Germany" +"University of Patras, Greece" +University of Pennsylvania +"University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"University of Pennsylvania School of Medicine, 1013 Blockley Hall" +"University of Pennsylvania, 2Ryerson University" +University of Perugia +"University of Peshawar, Pakistan" +"University of Peshawar, Peshawar, Pakistan" +University of Piraeus +"University of Pisa, Largo Lucio" +"University of Pisa, Pisa, Italy" +University of Pittsburgh +"University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada" +"University of Pittsburgh, PA, USA" +"University of Pittsburgh, Pittsburgh" +"University of Pittsburgh, Pittsburgh PA" +"University of Pittsburgh, Pittsburgh, PA" +"University of Pittsburgh, Pittsburgh, PA 15260, USA" +"University of Pittsburgh, Pittsburgh, PA, USA" +"University of Pittsburgh, Pittsburgh, USA" +"University of Plymouth, UK" +University of Posts and Telecommunications +"University of Queensland, Australia" +"University of Queensland, Brisbane, Australia" +"University of Queensland, School of ITEE, QLD 4072, Australia" +"University of Queensland, St Lucia QLD Australia, 5 Institut Universitaire de France, Paris, France" +University of Rochester +"University of Rochester and J. Luo, University of Rochester" +"University of Rochester, NY 14627, USA" +"University of Rochester, Rochester, NY, USA" +University of S ao Paulo +"University of S ao Paulo - USP, S ao Paulo - Brazil" +"University of S ao Paulo, S ao Paulo, Brazil" +"University of Salzburg, Austria" +"University of Santiago de Compostela, Santiago de Compostela, Spain" +University of Science and +University of Science and Technology +University of Science and Technology Beijing +"University of Science and Technology Beijing, Beijing, China" +University of Science and Technology of China +"University of Science and Technology of China, Hefei 230026, P. R. China" +"University of Science and Technology of China, Hefei, 230027, China" +"University of Science and Technology of China, Hefei, Anhui, China" +"University of Science and Technology of China, Hefei, Anhui, P. R. China" +"University of Science and Technology of China, Hefei, China" +"University of Science and Technology of China, Key Laboratory of Electromagnetic" +"University of Science and Technology, Wuhan, 430074, China" +"University of Science, Ho Chi Minh city" +"University of Science, VNU-HCM, Viet Nam" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"University of Science, Vietnam National University, HCMC" +"University of Science, Vietnam National University-Ho Chi Minh city" +University of Sfax +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"University of Shef eld, UK" +University of Siegen +University of Siena +"University of Siena, Siena, Italy" +"University of Sk vde, Sweden" +"University of South Carolina, Columbia, USA" +"University of South Carolina, USA" +"University of South Florida, Tampa, Florida, USA" +University of Southampton +"University of Southampton, SO17 1BJ, UK" +"University of Southampton, UK, 2University of Warwick, UK" +"University of Southampton, United Kingdom" +University of Southern California +"University of Southern California, 4A9, 5Amazon" +"University of Southern California, Institute for Robotics and Intelligent Systems" +"University of Southern California, Los Angeles, CA 90089, USA" +"University of St Andrews, United Kingdom" +University of Stuttgart +University of Surrey +"University of Surrey, Guildford, Surrey GU2 7XH, UK" +"University of Surrey, UK" +"University of Surrey, United Kingdom" +University of Sydney +"University of Szeged, 2 E tv s Lor nd University" +"University of T ubingen, T ubingen, Germany" +"University of Tabriz, Tabriz, Iran" +University of Tampere +"University of Tampere, Kanslerinnrinne 1, 33014, Tampere, Finland" +University of Technology Sydney +"University of Technology Sydney, 2 The University of Sydney" +"University of Technology, Australia" +"University of Technology, Baghdad, Iraq" +"University of Technology, Guangzhou, 510640, P.R.China" +"University of Technology, Sydney" +"University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia" +"University of Technology, Sydney, Australia" +"University of Tennessee, Knoxville" +University of Texas +University of Texas at +University of Texas at Arlington +"University of Texas at Arlington, Arlington, TX" +"University of Texas at Arlington, Arlington, TX, USA" +"University of Texas at Arlington, Arlington, Texas 76019, USA" +"University of Texas at Arlington, TX, USA" +"University of Texas at Arlington, TX, USA, 2Beihang University, Beijing, China" +"University of Texas at Arlington, Texas, USA" +University of Texas at Austin +University of Texas at San Antonio +"University of Texas at San Antonio, USA" +"University of Texas, Austin" +"University of Texas, Austin, TX 78712-1188, USA" +University of Thessaloniki +University of Tokyo +"University of Tokyo, 4-6-1 Shirokanedai" +"University of Tokyo, Japan" +University of Toronto +University of Toronto 2Vector Institute +University of Toronto and Recognyz Systems Technologies +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"University of Toronto, Canada" +"University of Toronto, Toronto, ON M5S 2G4, Canada" +"University of Toronto1, Twenty Billion Neurons" +University of Toulouse +University of Toulouse II Le Mirail +University of Trento +"University of Trento, Italy" +"University of Trento, Trento, Italy" +University of Tsukuba +"University of Tsukuba, Japan" +University of Twente +University of Twente 2Dublin City University 3Oxford University +"University of Twente, EEMCS, Netherlands" +"University of Twente, Netherlands" +"University of Twente, The Netherlands" +"University of Ulsan, Ulsan, Republic of Korea" +University of Venezia +"University of Vermont, 33 Colchester Avenue, Burlington" +University of Verona +"University of Verona, Verona, Italy" +University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento +"University of Victoria, Victoria, Canada" +"University of Vienna, Austria" +"University of Vigo, Spain" +University of Virginia +"University of Virginia, Charlottesville, VA" +"University of Waikato, Hamilton, New Zealand" +University of Warwick +University of Washington +University of Washington 4The Allen Institute for AI +University of Washington and Google Inc +"University of Washington, Bothell" +"University of Washington, Bothell, USA" +"University of Washington, Seattle" +"University of Washington, Seattle, USA" +"University of Washington, Seattle, WA 98195, United States" +"University of Washington, Seattle, WA, USA" +University of Waterloo +"University of Waterloo, ON, Canada" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +"University of Waterloo, Waterloo, ON N2L 3G1, Canada" +University of West Bohemia +University of Western Australia +University of Wisconsin Madison +"University of Wisconsin Madison, USA" +University of Wisconsin Madison +University of Wisconsin-Madison +"University of Wisconsin-Madison, Madison, WI, USA" +University of Witwatersrand +University of Wollongong +University of Wollongong. For further information contact the UOW +University of York +"University of York, Heslington, York YO10 5GH, UK" +"University of York, UK" +"University of York, York, UK" +"University of York, York, United Kingdom" +"University of Zagreb, Faculty of Electrical Engineering and Computing" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +"University of Zagreb, Unska 3, 10 000 Zagreb" +"University of Zaragoza, Spain" +"University of Zurich, Zurich, Switzerland" +"University of at Urbana-Champaign, Illinois, USA" +"University of telecommunications and post, Sofia, Bulgaria" +"University of the Basque Country, San Sebastian, Spain" +"University of the South Paci c, Fiji" +University of the Western Cape +University of the Witwatersrand +"University, China" +"University, Chitorgarh. (INDIA" +"University, Guangzhou, China" +"University, Hong Kong" +"University, Japan" +"University, Shanghai, China" +"University, Singapore" +"University, Taiwan, R.O.C" +"University, USA" +"University, Varanasi, 221005, India" +"University, Xi an Shaanxi Province, Xi an 710049, China" +University: Dhirubhai Ambani Institute of Information and Communication Technology +UniversityofMaryland +"UniversityofMaryland, CollegePark, MD" +Ural Federal University (UrFU +Usman Institute of Technology +"Utah State University, Logan UT" +"Utah State University, Logan, UT 84322-4205, USA" +"Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands" +"Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands" +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +VEER SURENDRA SAI UNIVERSITY OF +"VHNSN College, Virudhunagar, ANJA College" +VICTORIA UNIVERSITY OF WELLINGTON +"VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain" +"VISLab, EBUII-216, University of California Riverside" +"VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic" +"VSI Lab, Goethe University, Frankfurt, Germany" +"VU University Amsterdam, Computational Lexicology and Terminology Lab, De" +Vector Institute +Vector Institute for Arti cial Intelligence +"Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India" +"VelTech Dr. R.R. and Dr. S.R. Technical University, Chennai" +VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College +"Vickram College of Engineering, Enathi, Tamil Nadu, India" +Victoria University +Victoria University of Wellington +"Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand" +Vienna University of Technology +Vietnam National University Ho Chi +Vietnam National University of Agriculture +Villanova University +Virginia Polytechnic Institute and State University +"Virginia Polytechnic Institute and State University, Blacksburg" +"Virginia Polytechnic Institute and State University, Blacksburg, Virginia" +Virginia Tech Carilion Research Institute +"Virudhunagar Hindu Nadars Senthikumara Nadar College, Virudhunagar" +"Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal" +"Vision Science Group, University of California" +"Vision Systems, Inc" +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany" +"Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT" +"Vision and Security Technology Lab, University of Colorado Colorado Springs" +"Vision and Security Technology Lab, University of Colorado at Colorado Springs, Colorado" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Vision and Sensing, HCC, ESTeM, University of Canberra" +"Visual Analysis of People Lab, Aalborg University, Denmark" +"Visual Computing Center, King Abdullah University of Science and Technology (KAUST" +"Visual Computing Institute, RWTH Aachen University" +"Visual Computing and Communications Lab, Arizona State University" +"Visual Geometry Group, University of Oxford" +"Visual Geometry Group, University of Oxford, Oxford UK" +"Visual Geometry Group, University of Oxford, UK" +"Visualization and Computer Vision Lab, GE Global Research Center" +"Viswajyothi College of Engineering and Technology Kerala, India" +Vrije Universiteit Brussel +"Vrije Universiteit Brussel, 1050 Brussels, Belgium" +Warsaw University of Technology +"Warsaw University of Technology, Poland" +Waseda University +"Waseda University, Tokyo, Japan" +Washington University in St. Louis +"Washington University, St. Louis, MO, USA" +Wayne State University +"Wayne State University, Detroit, MI 48202, USA" +"We thank the support of New York State through the Goergen Institute for Data Science, our corporate research sponsors" +Webster University +Weizmann Institute of Science +"Weizmann Institute of Science, Rehovot, Israel" +"Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of" +"Wenzhou University, China" +"Wenzhou University, Wenzhou, China" +West Virginia University +"West Virginia University, Morgantown" +"West Virginia University, Morgantown WV 26506, USA" +"West Virginia University, Morgantown, USA" +"West Virginia University, Morgantown, WV" +"West Virginia University, Morgantown, WV 26506, USA" +"West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi" +Western Kentucky University +"Western Sydney University, Parramatta, NSW 2150, Australia" +"While visual features in single frames are vague and limited, multi-frame information, including deformation and pose" +William Marsh Rice University +Wittenberg University +"Wittenberg University, and Dr. Michael Anes, Wittenberg University" +Wolfson College +Wuhan University +"Wuhan University, Tencent AI Lab, National University of Singapore, University of Rochester" +Xerox Research Center +Xerox Research Center India +Xerox Research Center Webster +Xi an Jiaotong University +"Xi an Jiaotong University, China" +"Xi an Jiaotong University, Xi an, Shannxi 710049, P.R.China" +"Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences" +Xiamen University +"Xiamen University, Xiamen, China" +"Xiamen University, Xiamen, Fujian, China" +Xidian University +Xidian University 2Xi an Jiaotong University 3Microsoft Research Asia +"Xidian University, Xi an, China" +"Xidian University, Xi an, China, 4 University of Pittsburgh, PA, USA" +"Y ld z Teknik University, Istanbul, TR" +"Y. Li, University of Maryland" +"YUHANG ZHAO, Information Science, Cornell Tech, Cornell University" +Yale University +"Yarmouk University, Jordan" +Yaroslavl State University +Yeshiva University +Yeungnam University +Yonsei University +York University +"York University, Toronto" +"York University, Toronto, Canada" +"York University, Toronto, ON, Canada" +"Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran" +"ZHAW Datalab, Zurich University of Applied Sciences" +Zaragoza University +"Zhejang University, Hangzhou 310027, P.R.China" +"Zhejiang Normal University, Jinhua, China" +Zhejiang University +Zhejiang University of Technology +"Zhejiang University, 2Southwest Jiaotong University, 3Carnegie Mellon University" +"Zhejiang University, China" +"Zhejiang University, Hangzhou, China" +"Zhengzhou University, Zhengzhou, Henan 450052, China" +"Zurich University of Applied Sciences, School of Engineering" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"a School of Computer and Information Technology, Beijing Jiaotong University, Beijing" +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +"a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +a The University of Nottingham Malaysia Campus +"aCenter for Combinatorics, Nankai University, Tianjin 300071, China" +"aCenter for Spatial Information Science, University of Tokyo, Kashiwa 277-8568, Japan" +"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India" +"aCollege of Computer Science at Chongqing University, 400044, Chongqing, P.R.C" +"aDivision of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA" +"aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia" +"aIBM China Research Lab, Beijing, China" +"aImperial College London, London, UK" +aInformation Sciences Institute +"aLawrence Technological University, 21000 W Ten Mile Rd., South eld, MI 48075, United States" +"aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA" +"aNo. 238 Songling Road, Ocean University of" +"aPattern Recognition Laboratory, Delft University of Technology" +"aResearch Scholar, Anna University, Chennai, Inida" +"aSchool of Computing and Mathematics, Charles Sturt University, Bathurst, NSW" +"aSchool of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China" +"aSchool of Engineering and Technology, University of Hertfordshire, Hat eld AL10 9AB, UK" +"aSchool of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China" +"aSchool of Technology, University of Campinas" +"aTurgut Ozal University, Ankara Turkey" +"abroad, or from public or private research centers" +"additional details of DCS descriptors, including visualization. For extending the evaluation" +"and 2Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708" +"and Control, Hungarian Academy of Sciences, Budapest, Hungary, Chuo University" +"and Engineering, Beihang University, Beijing, China" +"and IBUG [32]. All of them cover large variations, including different" +"and Mathematical Biosciences Institute, The Ohio State University" +"and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary" +"and Modeling, Rutgers University" +"and Southeast University, China" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +"and education use, including for instruction at the authors institution" +"and especially light angle, drastically change the appearance of a face [1]. Facial expressions, including" +"and quantify distinct social behaviors, including those involving" +and the institute of engineering and science +any other University +"applications has different requirements, including: processing time (off-line, on-line, or real-time" +"applications, including texture classification [16], face recognition [12], object detection [10], and" +at The Australian National University +at West Virginia University +at the Delft University of Technology +at the University of Central Florida +"atry, University of Pennsylvania School of Medicine, Philadelphia, PA" +"b Brain Behavior Center, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney" +"b Computer Technology Institute, Beijing Union University, 100101, China" +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +b Institute for Robotics and Intelligent Systems +"b Machine Perception Laboratory, Institute of Neural Computation, University of California, San Diego, United States" +"b Research Institute, Watchdata Inc., Beijing, China" +"b School of Applied Mathematics, Xidian University, Xi an, China" +"b School of Business, Reykjavik University, Reykjavik, Iceland" +"b The Interdisciplinary Center for Research on Emotions, University of" +"bCVSSP, University of Surrey, Guildford, GU2 7XH, UK" +"bCenter for Applied Mathematics, Tianjin University, Tianjin 300072, China" +"bDiscipline of Business Analytics, The University of Sydney Business School" +"bFaculty of Computers and Information, Assiut University, Egypt" +"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +"bMax Planck Institute for Informatics, Germany" +"bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A" +"bSchool of Automation, China University of Geosciences, Wuhan, Hubei 430074, China" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +"bSchool of Computer and Control Engineering, University of Chinese Academy of Sciences" +"bSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China" +"bTsinghua University, Beijing, China" +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +bourne University +by grants from the National Institute of Mental Health (MH 15279 and MH067976 (K. Schmidt +"c Cardiff Business School, Cardiff University, Cardiff, United Kingdom" +"c Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ont. M6A 2E1, Canada" +"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"c School of Computational Science, Florida State University, Tallahassee, FL 32306, USA" +c(cid:13) Carnegie Mellon University +c(cid:13) Massachusetts Institute of Technology 2006. All rights reserved +c(cid:13)The Chinese University of Hong Kong +c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved +"c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting" +"cCentre of Intelligent Machines, McGill University, Montr eal, QC H3A 0E9, Canada" +"cFaculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands" +"cFaculty of Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China" +"cHuizhou School Affiliated to Beijing Normal University, Huizhou 516002, China" +"cSchool of Astronautics at Beihang University, 100191, Beijing, P.R.C" +"cSchool of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia" +cThe Open University +"chael G. Foster School of Business, University of Washington, Seattle" +cid:1) Honda Research Institute +cid:1)Institute for Neural Computation +cid:107)Chongqing University of Posts and Telecommunications +"cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA" +"cid:2) Imperial College London, United Kingdom" +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +"cid:2)Imperial College London, U.K" +"cid:3) School of Software, Tsinghua University" +cid:3)The Salk Institute and Howard Hughes Medical Institute +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +"cid:63) Imperial College London, UK" +"cid:63)Queen Mary University of London, Imperial College London" +"cid:63)Sharif University of Technology, University College London, Queen Mary University of London" +cid:63)Stanford University +"cid:63)The Robotics Institute, Carnegie Mellon University" +"cid:63)University of Science and Technology of China, Hefei, Anhui, China" +"cid:92)School of Information Technologies, University of Sydney, Australia" +"cid:93) Faculty of Science and Technology, University of Macau" +"cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China" +"cid:93)School of Electronic Engineering, Xidian University, China" +cid:93)University of North Carolina at Charlotte +college of Engineering +comparisons with 12 instance-based classi ers on 13 benchmark University of California Irvine +"con icting sensory information, i.e., incongruent facial muscle activity, this might impede" +"do, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea" +"e ects of di erence factors, including age group, age gap" +"e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following" +eBay Research Labs +"engineering, Government College of Engineering Kannur, Kerala, India" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"face processing, including age (Berry, 1990), sex (Hill" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"ganization, University of Southern California, Hoffman Hall 515, Los" +"gelmeyer et al., 1996); and, increasingly, its role in reactions to" +"general term, including collaboration. Interaction determines action on someone" +"gies (Bughin et al. 2017). A range of other sectors, includ" +"he University of Hong Kong, Pokfulam" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium" +"image being generated by the model, include Active Appearance" +in The University of Michigan +"in signed languages, including American Sign Language (ASL). Gestures such" +in the College of Engineering and Computer Science +in the Graduate School of Duke University +"inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact" +"instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i" +"is demonstrated using a variety of graphics applications, including cross" +"learning. As a result of this research, many applications, including video surveillance systems" +massachusetts institute of technology artificial intelligence laboratory +"media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or" +"ment of Psychology, University of California, Berkeley" +ment. Oxford University Press Series in Affective Science. New York: Oxford +"methods, including graph matching, optical- ow-based" +"mpg.de, Max Planck Institute for Informatics" +"obtained for all other uses, in any current or future media, including reprinting/republishing" +"ods, including sensitivity to initialization, limited effectiveness in" +of Cornell University +"of Engineering and Information Technology, University of Technology, Sydney, Australia" +"of Maryland, College Park, MD 20742, USA" +"of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China" +"of Psychology, Princeton University, Princeton, NJ 08540. E-mail" +"of Psychology, University of Michigan, Ann Arbor, MI, United States, University of Michigan, Ann" +of Saarland University +"of Science, Tilburg University" +"of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science" +of bilkent university +of the University of Notre Dame +"other uses, in any current or future media, including reprinting/republishing this material for" +"our analysis to stereotypes beyond gender, including those" +"pelling applications, including cognitive assistance [29], life" +"ples of such ne-grained descriptions, including attributes covering detailed" +"point, lighting, and appearance. Many applications, including video surveillance systems" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"recognition, such as human computer interfaces and e-services, including e-home" +"subsection a table summarizing the key features of the database is provided, including (where available) the number of" +"t2i Lab, Chalmers University of Technology, Gothenburg, Sweden" +the Chinese University of Hong Kong +"the Chinese University of Hong Kong, Shatin, Hong Kong" +"the Diploma of Imperial College London. This thesis is entirely my own work, and, except" +"the Indian Institute of Technology, Bombay and Monash University, Australia" +"the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam" +"the face, including negative affect and distress, dates" +"those who possess it, including the ability to act based on one s" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"tional functions, including the effective assessment of" +to Michigan State University +"to process in all the illumination conditions, including total" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"university, Shiraz, Iran" +"uses, in any current or future media, including" +"versity of Amsterdam, Amsterdam and University of Trento" +via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to +"weighing of different types of information, including expected" +y National Institute of Advanced Industrial Science and Technology +yAristotle University of Thessaloniki +yThe University of Tokyo +years. According to the definition by the National Institute diff --git a/scraper/reports/institutions.html b/scraper/reports/institutions.html new file mode 100644 index 00000000..da79f6e5 --- /dev/null +++ b/scraper/reports/institutions.html @@ -0,0 +1 @@ +Institutions

Institutions

9f6d04ce617d24c8001a9a31f11a594bd6fe35101E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2RDepartment of Psychiatry
63488398f397b55552f484409b86d812dacde99a2 School of Computing, National University of SingaporeDepartment of Electrical and Computer Engineering
83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e2015 Wiley Periodicals, Inc
83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e2015 Wiley Periodicals, Inc
01cc8a712e67384f9ef9f30580b7415bfd71e9802Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, CanadaDepartment of Psychology
c7f752eea91bf5495a4f6e6a67f14800ec246d08A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER
3d68cedd80babfbb04ab197a0b69054e3c196cd9A Thesis submitted to McGill University in partial fulfillment of the requirements for the
25337690fed69033ef1ce6944e5b78c4f06ffb81A dissertation submitted to the Faculty of the University of Delaware in partial
c32f04ccde4f11f8717189f056209eb091075254A dissertation submitted to the University of Bristol in accordance with the requirements
e0244a8356b57a5721c101ead351924bcfb2eef4A. van Kleef, University of AmsterdamDepartment of Social Psychology
e82360682c4da11f136f3fccb73a31d7fd195694AALTO UNIVERSITY
33402ee078a61c7d019b1543bb11cc127c2462d2ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam
0559fb9f5e8627fecc026c8ee6f7ad30e54ee929ADSIP Research Centre, University of Central Lancashire
ddf55fc9cf57dabf4eccbf9daab52108df5b69aaADSIP Research Centre, University of Central Lancashire
0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58AI Institute
3661a34f302883c759b9fa2ce03de0c7173d2bb2AI Institute
e90e12e77cab78ba8f8f657db2bf4ae3dabd5166AI Institute
361c9ba853c7d69058ddc0f32cdbe94fbc2166d5ALICE Institute
8efda5708bbcf658d4f567e3866e3549fe045bbbALICE Institute
76b11c281ac47fe6d95e124673a408ee9eb568e3ALPHA COLLEGE OF ENGINEERING, CHENNAI
1fd3dbb6e910708fa85c8a86e17ba0b6fef5617cARISTOTLE UNIVERSITY OF THESSALONIKI
8aae23847e1beb4a6d51881750ce36822ca7ed0bATR Human Information Processing Research Laboratories
45c31cde87258414f33412b3b12fc5bec7cb3ba9ATR Human Information Processing Research Laboratory
8aae23847e1beb4a6d51881750ce36822ca7ed0bATR Interpreting Telecommunications Research Laboratories
7ef44b7c2b5533d00001ae81f9293bdb592f1146Aalborg University, Denmark
087002ab569e35432cdeb8e63b2c94f1abc53ea9Aalborg University, DenmarkDepartment of Communication and Psychology
f6cf2108ec9d0f59124454d88045173aa328bd2eAalen University, Germany
08d41d2f68a2bf0091dc373573ca379de9b16385Aalto University, Espoo, FinlandDepartment of Computer Science
8cc07ae9510854ec6e79190cc150f9f1fe98a238Aarhus University, Finlandsgade 22 8200 Aarhus N, DenmarkDepartment of Engineering
032825000c03b8ab4c207e1af4daeb1f225eb025Abdul WaliKhan University, Mardan, KPK, PakistanDepartment of Computer Science
9264b390aa00521f9bd01095ba0ba4b42bf84d7eAberystwyth University, UK
d9ef1a80738bbdd35655c320761f95ee609b8f49Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India
3d143cfab13ecd9c485f19d988242e7240660c86Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan
16bce9f940bb01aa5ec961892cc021d4664eb9e4Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of
458677de7910a5455283a2be99f776a834449f61Achariya college of Engineering Technology
078d507703fc0ac4bf8ca758be101e75ea286c80Acharya Institute Of Technology
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6Address correspondence to: Karen L. Schmidt, University ofDepartment of Psychiatry
1134a6be0f469ff2c8caab266bbdacf482f32179Aditya College of Engineering, Surampalem, East GodavariDepartment of Computer Science and Engineering
0861f86fb65aa915fbfbe918b28aabf31ffba364Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra PradeshDepartment of CSE
68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5Aditya institute of Technology and Management, Tekkalli-532 201, A.P
7808937b46acad36e43c30ae4e9f3fd57462853dAdobe Systems, Inc., 345 Park Ave, San Jose, CA
0d3bb75852098b25d90f31d2f48fd0cb4944702bAdvanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore
34ce703b7e79e3072eed7f92239a4c08517b0c55Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore
16bce9f940bb01aa5ec961892cc021d4664eb9e4Advanced Engineering, The Chinese University of Hong Kong
2cc4ae2e864321cdab13c90144d4810464b24275Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul
5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6Affiliated to Anna university, Chennai
beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India
68d40176e878ebffbc01ffb0556e8cb2756dd9e9AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of
eeb6d084f9906c53ec8da8c34583105ab5ab8284Akita Prefectural University
37ef18d71c1ca71c0a33fc625ef439391926bfbbAkita Prefectural University, Yurihonjo, Japan
eeb6d084f9906c53ec8da8c34583105ab5ab8284Akita University
37ef18d71c1ca71c0a33fc625ef439391926bfbbAkita University, Akita, Japan
718d3137adba9e3078fa1f698020b666449f3336Al-Khwarizmi Institute of Computer Science
23aef683f60cb8af239b0906c45d11dac352fb4eAlan W Black (Carnegie Mellon University
23aef683f60cb8af239b0906c45d11dac352fb4eAlex Waibel (Carnegie Mellon University
6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2Alexandria University, Alexandria, Egypt
9a4c45e5c6e4f616771a7325629d167a38508691Alexandria University, Alexandria, EgyptElectrical Engineering Department
bd0201b32e7eca7818468f2b5cb1fb4374de75b9Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest
f08e425c2fce277aedb51d93757839900d591008Allen Institute for Arti cial Intelligence
fa90b825346a51562d42f6b59a343b98ea2e501aAllen Institute for Arti cial Intelligence
057d5f66a873ec80f8ae2603f937b671030035e6Allen Institute for Arti cial Intelligence (AI
51eba481dac6b229a7490f650dff7b17ce05df73Allen Institute for Arti cial Intelligence (AI2), Seattle, WA
02239ae5e922075a354169f75f684cad8fdfd5abAllen Institute for Arti cial Intelligence (AI2), Seattle, WA
38f7f3c72e582e116f6f079ec9ae738894785b96Amal Jyothi College of Engineering, Kanjirappally, IndiaDepartment of CSE
009a18d04a5e3ec23f8ffcfc940402fd8ec9488fAmazon, Inc
e0244a8356b57a5721c101ead351924bcfb2eef4American University
4b7c110987c1d89109355b04f8597ce427a7cd72American University, Washington, DC, USADepartment of Psychology and Center for Behavioral Neuroscience
00075519a794ea546b2ca3ca105e2f65e2f5f471Amherst College
841bf196ee0086c805bd5d1d0bddfadc87e424ecAmirkabir University of Technology
2d79d338c114ece1d97cde1aa06ab4cf17d38254Amirkabir University of Technology, University of Southern California
0ce8a45a77e797e9d52604c29f4c1e227f604080Amirkabir University of Technology, TehranDepartment of Electrical Engineering
e73b9b16adcf4339ff4d6723e61502489c50c2d9Amirkabir University of Technology, TehranDepartment of Electrical Engineering
ceb763d6657a07b47e48e8a2956bcfdf2cf10818Amirkabir University of Technology, TehranDepartment of Electrical Engineering
ae2c71080b0e17dee4e5a019d87585f2987f0508Amirkabir University of Technology, Tehran, IranDepartment of Biomedical Engineering
ae2c71080b0e17dee4e5a019d87585f2987f0508Amirkabir University of Technology, Tehran, IranAddress: Department of Biomedical Engineering
488d3e32d046232680cc0ba80ce3879f92f35cacAmirkabir University of Technology, Tehran. IranDepartment of Electrical Engineering
488d3e32d046232680cc0ba80ce3879f92f35cacAmirkabir University of Technology, Tehran. IranDepartment of Electrical Engineering
33548531f9ed2ce6f87b3a1caad122c97f1fd2e9Amity University
33548531f9ed2ce6f87b3a1caad122c97f1fd2e9Amity University
33548531f9ed2ce6f87b3a1caad122c97f1fd2e9Amity University
23fd653b094c7e4591a95506416a72aeb50a32b5Amity University, Lucknow, India
23fd653b094c7e4591a95506416a72aeb50a32b5Amity University, Lucknow, India
312b2566e315dd6e65bd42cfcbe4d919159de8a1Amity University, Noida, India
44fbbaea6271e47ace47c27701ed05e15da8f7cfAmsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam
4157e45f616233a0874f54a59c3df001b9646cd7Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome
af62621816fbbe7582a7d237ebae1a4d68fcf97dAncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of
27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0baAnjuman College of Engineering and Technology, Sadar, Nagpur, India
2e1415a814ae9abace5550e4893e13bd988c7ba1Anna University
3fde656343d3fd4223e08e0bc835552bff4bda40Anna University Chennai, IndiaDepartment of Computer Science and Engineering
f69de2b6770f0a8de6d3ec1a65cb7996b3c99317Anna University, Chennai
499343a2fd9421dca608d206e25e53be84489f44Annamacharya Institute of Technology and Sciences, Tirupati, IndiaDepartment of ECE
a57ee5a8fb7618004dd1def8e14ef97aadaaeef5Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
0dbacb4fd069462841ebb26e1454b4d147cd8e98Aristotle University of ThessalonikiDepartment of Informatics
3cc46bf79fb9225cf308815c7d41c8dd5625cc29Aristotle University of Thessaloniki
0be2245b2b016de1dcce75ffb3371a5e4b1e731bAristotle University of ThessalonikiDepartment of Informatics
b3658514a0729694d86a8b89c875a66cde20480cAristotle University of ThessalonikiDepartment of Informatics
b43b6551ecc556557b63edb8b0dc39901ed0343bAristotle University of ThessalonikiDepartment of Informatics
c00df53bd46f78ae925c5768d46080159d4ef87dAristotle University of Thessaloniki
205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffaAristotle University of ThessalonikiDepartment of Informatics
8f5ce25e6e1047e1bf5b782d045e1dac29ca747eAristotle University of Thessaloniki
8f92cccacf2c84f5d69db3597a7c2670d93be781Aristotle University of Thessaloniki
09cf3f1764ab1029f3a7d57b70ae5d5954486d69Aristotle University of ThessalonikiDepartment of Informatics
532f7ec8e0c8f7331417dd4a45dc2e8930874066Aristotle University of Thessaloniki
3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96Aristotle University of Thessaloniki
016f49a54b79ec787e701cc8c7d0280273f9b1efAristotle University of ThessalonikiDepartment of Informatics
52885fa403efbab5ef21274282edd98b9ca70cbfAristotle University of Thessaloniki
52885fa403efbab5ef21274282edd98b9ca70cbfAristotle University of Thessaloniki
d5afd7b76f1391321a1340a19ba63eec9e0f9833Aristotle University of Thessaloniki
d5afd7b76f1391321a1340a19ba63eec9e0f9833Aristotle University of Thessaloniki
c5f1ae9f46dc44624591db3d5e9f90a6a8391111Aristotle University of Thessaloniki
8c6b9c9c26ead75ce549a57c4fd0a12b46142848Aristotle University of Thessaloniki
3e04feb0b6392f94554f6d18e24fadba1a28b65fAristotle University of Thessaloniki GRDepartment of Informatics
131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece
a2eb90e334575d9b435c01de4f4bf42d2464effcAristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
6c6bb85a08b0bdc50cf8f98408d790ccdb418798Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7Aristotle University of Thessaloniki, Greece
2a65d7d5336b377b7f5a98855767dd48fa516c0fAristotle University of Thessaloniki, GreeceECE Department
2d9e58ea582e054e9d690afca8b6a554c3687ce6Aristotle University of Thessaloniki, GreeceECE Department
5b9d41e2985fa815c0f38a2563cca4311ce82954Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
e7b2b0538731adaacb2255235e0a07d5ccf09189Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
4896909796f9bd2f70a2cb24bf18daacd6a12128Aristotle University of Thessaloniki, Thessaloniki, Greece
62374b9e0e814e672db75c2c00f0023f58ef442cAristotleUniversityofThessalonikiDepartmentofInformatics
5f6ab4543cc38f23d0339e3037a952df7bcf696bArizona State University
5f6ab4543cc38f23d0339e3037a952df7bcf696bArizona State University
5f6ab4543cc38f23d0339e3037a952df7bcf696bArizona State University
9f499948121abb47b31ca904030243e924585d5fArizona State University
9f499948121abb47b31ca904030243e924585d5fArizona State University
9f499948121abb47b31ca904030243e924585d5fArizona State University
06f39834e870278243dda826658319be2d5d8dedArizona State University
468c8f09d2ad8b558b65d11ec5ad49208c4da2f2Arizona State University
468c8f09d2ad8b558b65d11ec5ad49208c4da2f2Arizona State University
48fea82b247641c79e1994f4ac24cad6b6275972Arizona State University
4b4ecc1cb7f048235605975ab37bb694d69f63e5Arizona State University, AZ, USA
bd9c9729475ba7e3b255e24e7478a5acb393c8e9Arizona State University, Phoenix, Arizona
ce56be1acffda599dec6cc2af2b35600488846c9Arizona State University, Tempe AZDepartment of Computer Science
15d653972d176963ef0ad2cc582d3b35ca542673Arizona State University, Tempe AZ
5b721f86f4a394f05350641e639a9d6cb2046c45Army Research Laboratory
ea890846912f16a0f3a860fce289596a7dac575fAron Szekely, University of Oxford, UK
989332c5f1b22604d6bb1f78e606cb6b1f694e1aArti cial Intelligence Institute, China
45215e330a4251801877070c85c81f42c2da60fbArts Media and Engineering, Arizona State University
ed08ac6da6f8ead590b390b1d14e8a9b97370794Arts, Commerce and Science College, Gangakhed, M.S, IndiaDepartment of C.S.
35e87e06cf19908855a16ede8c79a0d3d7687b5cArts, Science and Commerce College, Chopda
656aeb92e4f0e280576cbac57d4abbfe6f9439eaAsia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia
a702fc36f0644a958c08de169b763b9927c175ebAsia University, Taichung, TaiwanDepartment of Applied Informatics and Multimedia
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfAsian Institute of Technology, Pathumthani, Thailand
3cd8ab6bb4b038454861a36d5396f4787a21cc68Asian University, Taichung, TaiwanDepartment of Applied Informatics and Multimedia
47bf7a8779c68009ea56a7c20e455ccdf0e3a8faAssam University, Silchar-788011 Assam University, Silchar
50eb2ee977f0f53ab4b39edc4be6b760a2b05f96Assistant Lecturer, College of Science, Baghdad University, Baghdad, IraqComputer Science Department
9a4c45e5c6e4f616771a7325629d167a38508691Assiut University, Assiut 71515, EgyptElectrical Engineering Department
df054fa8ee6bb7d2a50909939d90ef417c73604cAugmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany
182470fd0c18d0c5979dff75d089f1da176ceeebAugsburg University, Germany
11a2ef92b6238055cf3f6dcac0ff49b7b803aee3Australian Centre for Visual Technologies, The University of Adelaide, Australia (b
8820d1d3fa73cde623662d92ecf2e3faf1e3f328Australian Institute of Sport
0d781b943bff6a3b62a79e2c8daf7f4d4d6431adAustralian National University
9b684e2e2bb43862f69b12c6be94db0e7a756187Australian National University
0573f3d2754df3a717368a6cbcd940e105d67f0bAustralian National University
0573f3d2754df3a717368a6cbcd940e105d67f0bAustralian National University
0573f3d2754df3a717368a6cbcd940e105d67f0bAustralian National University
060034b59275c13746413ca9c67d6304cba50da6Australian National University
a7191958e806fce2505a057196ccb01ea763b6eaAustralian National University
fffa2943808509fdbd2fc817cc5366752e57664aAustralian National University
c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1Australian National University
33695e0779e67c7722449e9a3e2e55fde64cfd99Australian National University and NICTA
306127c3197eb5544ab1e1bf8279a01e0df26120Australian National University and NICTA, Australia
b1df214e0f1c5065f53054195cd15012e660490aAustralian National University and NICTA, Australia
062d0813815c2b9864cd9bb4f5a1dc2c580e0d90Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO
1dc241ee162db246882f366644171c11f7aed96dAustralian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL
0641dbee7202d07b6c78a39eecd312c17607412eAustralian National University, Canberra
87309bdb2b9d1fb8916303e3866eca6e3452c27dAustralian National University, Canberra, ACT 0200, Australia
8724fc4d6b91eebb79057a7ce3e9dfffd3b1426fAustralian National University, Canberra, Australia
b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3Australian National University, and NICTA
b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3Australian National University, and NICTA
682760f2f767fb47e1e2ca35db3becbb6153756fAuthor s addresses: X. Peng, University of Rochester; L. ChiData Science Department
16bce9f940bb01aa5ec961892cc021d4664eb9e4Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy
d671a210990f67eba9b2d3dda8c2cb91575b4a7aAutonomous University of Barcelona
4439746eeb7c7328beba3f3ef47dc67fbb52bcb3Azad University of Qazvin
e73b9b16adcf4339ff4d6723e61502489c50c2d9Azad University, Qazvin, Iran
632441c9324cd29489cee3da773a9064a46ae26bB. Eng., Zhejiang University
00dc942f23f2d52ab8c8b76b6016d9deed8c468dB. S. Rochester Institute of Technology
13b1b18b9cfa6c8c44addb9a81fe10b0e89db32aB. Tech., Indian Institute of Technology Jodhpur
87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5B.A. Earlham College, Richmond Indiana
2bbbbe1873ad2800954058c749a00f30fe61ab17B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, IndiaDepartment of CSE
1e5ca4183929929a4e6f09b1e1d54823b8217b8eB.Eng., Nankai University
348a16b10d140861ece327886b85d96cce95711eB.S. (Cornell University
ff5dd6f96e108d8233220cc262bc282229c1a582B.S. Abdur Rahman University, Chennai-48, IndiaDepartment of Information Technology
ff5dd6f96e108d8233220cc262bc282229c1a582B.S. Abdur Rahman University, Chennai-48, IndiaDepartment of Computer Science and Engineering
d082f35534932dfa1b034499fc603f299645862dB.S. University of Central Florida
580e48d3e7fe1ae0ceed2137976139852b1755dfB.S. University of Indonesia
80135ed7e34ac1dcc7f858f880edc699a920bf53B.S., Computer Engineering, Bo gazi ci University
d231a81b38fde73bdbf13cfec57d6652f8546c3cB.S., E.E., Bo azi i University
eed7920682789a9afd0de4efd726cd9a706940c8B.S., Pennsylvania State University
5e0e516226413ea1e973f1a24e2fdedde98e7ec0B.S./M.S. Brandeis University
287795991fad3c61d6058352879c7d7ae1fdd2b6B.S.Abdur Rahman University B.S.Abdur Rahman University
db1f48a7e11174d4a724a4edb3a0f1571d649670B.Sc., University of Science and Technology of China
363ca0a3f908859b1b55c2ff77cc900957653748B.Tech (C.S.E), Bharath University, Chennai
363ca0a3f908859b1b55c2ff77cc900957653748B.Tech (C.S.E), Bharath University, Chennai
eb70c38a350d13ea6b54dc9ebae0b64171d813c9B.Tech., Electronics Engineering, Institute of Technology, Banaras Hindu University
4abaebe5137d40c9fcb72711cdefdf13d9fc3e62BECS, Aalto University School of Science and Technology, Finland
3e3a87eb24628ab075a3d2bde3abfd185591aa4cBECS, Aalto University, Helsinki, Finland
60a006bdfe5b8bf3243404fae8a5f4a9d58fa892BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
5f676d6eca4c72d1a3f3acf5a4081c29140650fbBRIC, University of North Carolina at Chapel Hill, NC 27599, USA
76e2d7621019bd45a5851740bd2742afdcf62837Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj NapocaComputer Science Department
032825000c03b8ab4c207e1af4daeb1f225eb025Bacha Khan University, Charsadda, KPK, PakistanDepartment of Computer Science
ec90d333588421764dff55658a73bbd3ea3016d2Bacha Khan University, Charsadda, KPK, PakistanDepartment of Computer Science
6d618657fa5a584d805b562302fe1090957194baBadji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria
c7de0c85432ad17a284b5b97c4f36c23f506d9d1Bahc es ehir University, Istanbul, TurkeyDepartment of Electrical and Electronics Engineering
9dcc6dde8d9f132577290d92a1e76b5decc6d755Bahcesehir UniversityDepartment of Electrical and Electronics Eng
ce933821661a0139a329e6c8243e335bfa1022b1Baidu IDL and Tsinghua University
5bb87c7462c6c1ec5d60bde169c3a785ba5ea48fBaidu Research Institute of Deep Learning
56a677c889e0e2c9f68ab8ca42a7e63acf986229Baidu Research, USA 3John Hopkins University
4cc681239c8fda3fb04ba7ac6a1b9d85b68af31dBaidu Research, USA 3John Hopkins University
4b7c110987c1d89109355b04f8597ce427a7cd72Baingio Pinna, University of
48463a119f67ff2c43b7c38f0a722a32f590dfebBanaras Hindu University
48463a119f67ff2c43b7c38f0a722a32f590dfebBanaras Hindu University
48463a119f67ff2c43b7c38f0a722a32f590dfebBanaras Hindu University
8f5facdc0a2a79283864aad03edc702e2a400346Bangalore Institute of TechnologyDepartment of Elecronics and Instrumentation Engg
e5eb7fa8c9a812d402facfe8e4672670541ed108Bangladesh University of Engineering and Technology(BUET
fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5Bapuji Institute of Engineering and Technology Davanagere, Karnataka, IndiaDepartment of Biomedical Engineering
c4934d9f9c41dbc46f4173aad2775432fe02e0e6Bar Ilan University, Israel
4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9Bas kent University
7aa062c6c90dba866273f5edd413075b90077b51Baze University, Abuja, NigeriaDepartment of Computer Science and IT
56f812661c3248ed28859d3b2b39e033b04ae6aeBeckman Institute
56f812661c3248ed28859d3b2b39e033b04ae6aeBeckman Institute
5185f2a40836a754baaa7419a1abdd1e7ffaf2adBeckman Institute
5185f2a40836a754baaa7419a1abdd1e7ffaf2adBeckman Institute
5185f2a40836a754baaa7419a1abdd1e7ffaf2adBeckman Institute
75d2ecbbcc934563dff6b39821605dc6f2d5ffccBeckman Institute
1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2Beckman Institute
4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2cBeckman Institute for Advanced Science and Technology
1d19c6857e798943cd0ecd110a7a0d514c671fecBeckman Institute for Advanced Science and Technology
f87b22e7f0c66225824a99cada71f9b3e66b5742Beckman Institute, University of Illinois at Urbana-Champaign
9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493Beckman Institute, University of Illinois at Urbana-Champaign, IL USA
0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dcBeckman Institute, University of Illinois at Urbana-Champaign, IL, USA
6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA
102b968d836177f9c436141e382915a4f8549276Beckman Institute, University of Illinois at Urbana-Champaign, USA
6308e9c991125ee6734baa3ec93c697211237df8Beckman Institute, University of Illinois at Urbana-Champaign, USA
eff87ecafed67cc6fc4f661cb077fed5440994bbBeckman Institute, University of Illinois at Urbana-Champaign, USA
288d2704205d9ca68660b9f3a8fda17e18329c13Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
539287d8967cdeb3ef60d60157ee93e8724efcacBeckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
9ac43a98fe6fde668afb4fcc115e4ee353a6732dBeckmann Institute, University of Illinois at Urbana-Champaign, USA
85fd2bda5eb3afe68a5a78c30297064aec1361f6Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology
e7cac91da51b78eb4a28e194d3f599f95742e2a2Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
7c2c9b083817f7a779d819afee383599d2e97ed8Beihang University
d7d166aee5369b79ea2d71a6edd73b7599597aaaBeihang University 2Gri th University 3University of York, UK
40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5bBeihang University, 2The Chinese University of Hong Kong, 3Sensetime Group Limited
5b6593a6497868a0d19312952d2b753232414c23Beihang University, Beijing 100191, China
570308801ff9614191cfbfd7da88d41fb441b423Beihang University, Beijing, China
457cf73263d80a1a1338dc750ce9a50313745d1dBeihang University, Beijing, China
86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cdBeihang University, Beijing, China
b8375ff50b8a6f1a10dd809129a18df96888ac8bBeihang University, Beijing, China
b191aa2c5b8ece06c221c3a4a0914e8157a16129Beihang University, Beijing, China
928b8eb47288a05611c140d02441660277a7ed54Beijing Institute of Technology
713db3874b77212492d75fb100a345949f3d3235Beijing Institute of Technology
0ea7b7fff090c707684fd4dc13e0a8f39b300a97Beijing Institute of Technology University, P. R. China
2a35d20b2c0a045ea84723f328321c18be6f555cBeijing Institute of Technology, Beijing 100081 CHINA
2a35d20b2c0a045ea84723f328321c18be6f555cBeijing Institute of Technology, Beijing 100081 CHINA
2a35d20b2c0a045ea84723f328321c18be6f555cBeijing Institute of Technology, Beijing 100081 CHINA
a090d61bfb2c3f380c01c0774ea17929998e0c96Beijing Institute of Technology, Beijing 100081, PR China
b3b532e8ea6304446b1623e83b0b9a96968f926cBeijing Institute of Technology, Beijing, China
c829be73584966e3162f7ccae72d9284a2ebf358Beijing Institute of Technology, Beijing, China
14d72dc9f78d65534c68c3ed57305f14bd4b5753Beijing Institute of Technology, ChinaDepartment of Electronic Engineering
b5968e7bb23f5f03213178c22fd2e47af3afa04cBeijing Jiaotong University
b5930275813a7e7a1510035a58dd7ba7612943bcBeijing Jiaotong University
b42a97fb47bcd6bfa72e130c08960a77ee96f9abBeijing Jiaotong University
0a4fc9016aacae9cdf40663a75045b71e64a70c9Beijing Jiaotong University
64782a2bc5da11b1b18ca20cecf7bdc26a538d68Beijing Jiaotong University
a660390654498dff2470667b64ea656668c98eccBeijing Jiaotong University
e726174d516605f80ff359e71f68b6e8e6ec6d5dBeijing Jiaotong University
35e0256b33212ddad2db548484c595334f15b4daBeijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China
6fbb179a4ad39790f4558dd32316b9f2818cd106Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China
3bb6570d81685b769dc9e74b6e4958894087f3f1Beijing National Research Center for Information Science and Technology
7e18b5f5b678aebc8df6246716bf63ea5d8d714eBeijing Normal University, China
16e95a907b016951da7c9327927bb039534151daBeijing Union University, 100101, China
571b83f7fc01163383e6ca6a9791aea79cafa7ddBeijing University of Chemical Technology, China
3dfb822e16328e0f98a47209d7ecd242e4211f82Beijing University of Posts and Telecommunications
25c3cdbde7054fbc647d8be0d746373e7b64d150Beijing University of Posts and Telecommunications
0294f992f8dfd8748703f953925f9aee14e1b2a2Beijing University of Posts and Telecommunications, Beijing, China
80be8624771104ff4838dcba9629bacfe6b3ea09Beijing University of Posts and Telecommunications, Beijing, China
5c820e47981d21c9dddde8d2f8020146e600368fBeijing University of Posts and Telecommunications, Beijing, China
d3b0839324d0091e70ce34f44c979b9366547327Beijing University of Posts and Telecommunications, Beijing, China
cdef0eaff4a3c168290d238999fc066ebc3a93e8Beijing University of Posts and Telecommunications, Beijing, China
1275d6a800f8cf93c092603175fdad362b69c191Beijing University of Posts and Telecommunications, Beijing, China
49820ae612b3c0590a8a78a725f4f378cb605cd1Beijing University of Posts and Telecommunications, Beijing, China
a51882cfd0706512bf50e12c0a7dd0775285030dBeijing University of Posts and Telecommunications, Beijing, China. 2School of
17579791ead67262fcfb62ed8765e115fb5eca6fBeijing University of Posts and Telecommunications, Beijing, P.R. China
e0dc6f1b740479098c1d397a7bc0962991b5e294Beijing University of Technology, Beijing 100022, China
7d9fe410f24142d2057695ee1d6015fb1d347d4aBeijing, ChinaComputer and Information Engineering Department of Beijing Technology and Business University
7d9fe410f24142d2057695ee1d6015fb1d347d4aBeijing, ChinaComputer and Information Engineering Department of Beijing Technology and Business University
1feeab271621128fe864e4c64bab9b2e2d0ed1f1BeingTogether Centre, Institute for Media Innovation, Singapore 637553, Singapore
a9fc23d612e848250d5b675e064dba98f05ad0d9Benha University, Egypt
a9fc23d612e848250d5b675e064dba98f05ad0d9Benha University, Egypt
2c1f8ddbfbb224271253a27fed0c2425599dfe47Berlin Institute of Technology
363ca0a3f908859b1b55c2ff77cc900957653748Bharath Institute of Science and TechnologyMCA Department
363ca0a3f908859b1b55c2ff77cc900957653748Bharath Institute of Science and TechnologyMCA Department
23b37c2f803a2d4b701e2f39c5f623b2f3e14d8eBharath University, IndiaComputer Science Department
23b37c2f803a2d4b701e2f39c5f623b2f3e14d8eBharath University, IndiaComputer Science Department
9c7444c6949427994b430787a153d5cceff46d5cBharathidasan University, Trichy, India
18cd79f3c93b74d856bff6da92bfc87be1109f80Bharti Vidyapeeth Deemed University, Pune, IndiaDepartment of Information Tech.
0da4c3d898ca2fff9e549d18f513f4898e960acaBibliographic details for the item, including a URL
4ed54d5093d240cc3644e4212f162a11ae7d1e3bBielefeld University
1921e0a97904bdf61e17a165ab159443414308edBielefeld University
2e1fd8d57425b727fd850d7710d38194fa6e2654Bielefeld University
62fd622b3ca97eb5577fd423fb9efde9a849cbefBig Data Institute, University of Oxford
928b8eb47288a05611c140d02441660277a7ed54Big Data Research Center, University of Electronic Science and Technology of China
202d8d93b7b747cdbd6e24e5a919640f8d16298aBilgi University, Dolapdere, Istanbul, TRComputer Science Department
0b6616f3ebff461e4b6c68205fcef1dae43e2a1aBilkent University
0b6616f3ebff461e4b6c68205fcef1dae43e2a1aBilkent University
887745c282edf9af40d38425d5fdc9b3fe139c08Bilkent University
887745c282edf9af40d38425d5fdc9b3fe139c08Bilkent University
1a6c9ef99bf0ab9835a91fe5f1760d98a0606243Bilkent University, 06800 Cankaya, Turkey
95f26d1c80217706c00b6b4b605a448032b93b75Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network
17d01f34dfe2136b404e8d7f59cebfb467b72b26Bioinformatics Institute, A*STAR, Singapore
353b6c1f431feac6edde12b2dde7e6e702455abdBiometric Research CenterDepartment of Computing
74f643579949ccd566f2638b85374e7a6857a9fcBiometric Research Center, The Hong Kong Polytechnic UniversityDepartment of Computing
757e4cb981e807d83539d9982ad325331cb59b16Biometric and Image Processing Lab, University of Salerno, Italy
2c62b9e64aeddf12f9d399b43baaefbca8e11148Biometrics Research Lab, College of Computer Science, Sichuan University, Chengdu 610065, China
5ca23ceb0636dfc34c114d4af7276a588e0e8dacBirkbeck College, University of London
d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1dBirkbeck University of London
ac12ba5bf81de83991210b4cd95b4ad048317681Bo gazi ci UniversityDepartment of Computer Engineering
80135ed7e34ac1dcc7f858f880edc699a920bf53Bo gazi ci University
fbf196d83a41d57dfe577b3a54b1b7fa06666e3bBo gazi ci University, TurkeyDepartment of Computer Engineering
4c81c76f799c48c33bb63b9369d013f51eaf5adaBo gazic i University, Istanbul, TurkeyDepartment of Computer Engineering
6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0Bo gazic i University, Istanbul, TurkeyDepartment of Computer Engineering
999289b0ef76c4c6daa16a4f42df056bf3d68377Bo gazic i University, Istanbul, TurkeyDepartment of Computer Engineering
247a6b0e97b9447850780fe8dbc4f94252251133Bo gazic i University, Istanbul, Turkey
247a6b0e97b9447850780fe8dbc4f94252251133Bo gazic i University, Istanbul, Turkey
247a6b0e97b9447850780fe8dbc4f94252251133Bo gazic i University, Istanbul, Turkey
202d8d93b7b747cdbd6e24e5a919640f8d16298aBo gazici University, Istanbul, TRElectric and Electronic Engineering Department
f0681fc08f4d7198dcde803d69ca62f09f3db6c5Bogazici University, BebekElectrical and Electronics Engineering Department
ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7Bogazici University, Turkey
968b983fa9967ff82e0798a5967920188a3590a8Boston College
968b983fa9967ff82e0798a5967920188a3590a8Boston College
77b1db2281292372c38926cc4aca32ef056011dcBoston College, USADepartment of Psychology
0d3882b22da23497e5de8b7750b71f3a4b0aac6bBoston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos
5050807e90a925120cbc3a9cd13431b98965f4b9Boston UniversityDepartment of Computer Science
6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180aBoston UniversityDepartment of Computer Science
52c59f9f4993c8248dd3d2d28a4946f1068bcbbeBoston University
52c59f9f4993c8248dd3d2d28a4946f1068bcbbeBoston University
52c59f9f4993c8248dd3d2d28a4946f1068bcbbeBoston University
bffbd04ee5c837cd919b946fecf01897b2d2d432Boston University
f60a85bd35fa85739d712f4c93ea80d31aa7de07Boston UniversityDepartment of Computer Science
1e5a1619fe5586e5ded2c7a845e73f22960bbf5aBoston UniversityDepartment of Electrical and Computer Engineering
13940d0cc90dbf854a58f92d533ce7053aac024aBoston University
13940d0cc90dbf854a58f92d533ce7053aac024aBoston University
fe961cbe4be0a35becd2d722f9f364ec3c26bd34Boston University / **Rutgers University / ***Gallaudet University
aafb8dc8fda3b13a64ec3f1ca7911df01707c453Boston University 2Pattern Analysis and Computer Vision (PAVISDepartment of Computer Science
bffbd04ee5c837cd919b946fecf01897b2d2d432Boston University Computer Science Technical Report No
13940d0cc90dbf854a58f92d533ce7053aac024aBoston University Theses and Dissertations
4850af6b54391fc33c8028a0b7fafe05855a96ffBoston University and 2University of North Carolina
d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2fBoston University, Boston, MADepartment of Computer Science
fe961cbe4be0a35becd2d722f9f364ec3c26bd34Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA
33f7e78950455c37236b31a6318194cfb2c302a4Boston University, USAComputer Science Department
f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4aBoston University1, University of Tokyo
199c2df5f2847f685796c2523221c6436f022464Bournemouth University
370b6b83c7512419188f5373a962dd3175a56a9bBournemouth University
370b6b83c7512419188f5373a962dd3175a56a9bBournemouth University
370b6b83c7512419188f5373a962dd3175a56a9bBournemouth University
370b6b83c7512419188f5373a962dd3175a56a9bBournemouth University
dfd934ae448a1b8947d404b01303951b79b13801Bournemouth University, UK
124538b3db791e30e1b62f81d4101be435ee12efBrain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
2dfe0e7e81f65716b09c590652a4dd8452c10294Brazil, University Hospital Zurich, Z rich3 Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine
df2841a1d2a21a0fc6f14fe53b6124519f3812f9Brown University
df2841a1d2a21a0fc6f14fe53b6124519f3812f9Brown University
e572c42d8ef2e0fadedbaae77c8dfe05c4933fbfBrown University
1586871a1ddfe031b885b94efdbff647cf03eff1Brown University
124538b3db791e30e1b62f81d4101be435ee12efBrown UniversityDepartment
b1451721864e836069fa299a64595d1655793757Brown University 2University of Bath
1e58d7e5277288176456c66f6b1433c41ca77415Brown University, 2University of California, San Diego, 3California Institute of Technology
334ac2a459190b41923be57744aa6989f9a54a51Brown University, Providence, RI
cbbd13c29d042743f0139f1e044b6bca731886d0Brown University, Providence, RI 02912, USA
faeefc5da67421ecd71d400f1505cfacb990119cBrown University, United States
540b39ba1b8ef06293ed793f130e0483e777e278Budapest, Hungary, E tv s Lor nd University, Budapest, Hungary, 3 Institute for Computer Science2 Department of Ethology
68f89c1ee75a018c8eff86e15b1d2383c250529bC.L. Teo, University of Maryland
7b43326477795a772c08aee750d3e433f00f20beCALIFORNIA INSTITUTE OF TECHNOLOGY
514a74aefb0b6a71933013155bcde7308cad2b46CARNEGIE MELLON UNIVERSITY
652aac54a3caf6570b1c10c993a5af7fa2ef31ffCARNEGIE MELLON UNIVERSITY
0a79d0ba1a4876086e64fc0041ece5f0de90fbeaCARNEGIE MELLON UNIVERSITY
32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6bCAS), Institute of Computing Technology, CAS, Beijing 100190, China
c03e01717b2d93f04cce9b5fd2dcfd1143bcc180CAS), Institute of Computing Technology, CAS, Beijing 100190, China
090ff8f992dc71a1125636c1adffc0634155b450CAS), Institute of Computing Technology, CAS, Beijing 100190, China
061e29eae705f318eee703b9e17dc0989547ba0cCAS), Institute of Computing Technology, CAS, Beijing 100190, China
22e2066acfb795ac4db3f97d2ac176d6ca41836cCAS), Institute of Computing Technology, CAS, Beijing 100190, China
d05513c754966801f26e446db174b7f2595805baCAS), Institute of Computing Technology, CAS, Beijing, 100190, China
80bd795930837330e3ced199f5b9b75398336b87CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
64d5772f44efe32eb24c9968a3085bc0786bfca7CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
d69271c7b77bc3a06882884c21aa1b609b3f76ccCBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
dcf71245addaf66a868221041aabe23c0a074312CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
4cdb6144d56098b819076a8572a664a2c2d27f72CBSRandNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
21258aa3c48437a2831191b71cd069c05fb84cf7CISE, University of Florida, Gainesville, FL
3dbfd2fdbd28e4518e2ae05de8374057307e97b3CISUC, University of CoimbraDepartment of Informatics Engineering
45efd6c2dd4ca19eed38ceeb7c2c5568231451e1CMR Institute of Technology, Hyderabad, (India
32925200665a1bbb4fc8131cd192cb34c2d7d9e3CNRS , Institute of Automation of the Chinese Academy of Sciences
0c7f27d23a162d4f3896325d147f412c40160b52COLUMBIA UNIVERSITY
abac0fa75281c9a0690bf67586280ed145682422COLUMBIA UNIVERSITY
280bc9751593897091015aaf2cab39805768b463COMSATS Institute of Information Technology
77c53ec6ea448db4dad586e002a395c4a47ecf66COMSATS Institute of Information Technology Wah CanttDepartment of Computer Sciences
bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9COMSATS Institute of Information Technology, Islamabad
a87e37d43d4c47bef8992ace408de0f872739efcCOMSATS Institute of Information Technology, Lahore 54000, PakistanDepartment of Computer Science
5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0COMSATS Institute of Information Technology, PakistanDepartment of Computer Science
6dd2a0f9ca8a5fee12edec1485c0699770b4cfdfCRCV, University of Central Florida
39ed31ced75e6151dde41944a47b4bdf324f922bCRIPAC and NLPR and CEBSIT, CASIA 2University of Chinese Academy of Sciences
831b4d8b0c0173b0bac0e328e844a0fbafae6639CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong
1316296fae6485c1510f00b1b57fb171b9320ac2CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong
06262d6beeccf2784e4e36a995d5ee2ff73c8d11CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition
51faacfa4fb1e6aa252c6970e85ff35c5719f4ffCUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
d78734c54f29e4474b4d47334278cfde6efe963aCUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
c97a5f2241cc6cd99ef0c4527ea507a50841f60bCUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
1c9efb6c895917174ac6ccc3bae191152f90c625CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
59be98f54bb4ed7a2984dc6a3c84b52d1caf44ebCUNY City College
91495c689e6e614247495c3f322d400d8098de43CUNY City College
59be98f54bb4ed7a2984dc6a3c84b52d1caf44ebCUNY Graduate Center and City College
91495c689e6e614247495c3f322d400d8098de43CUNY Graduate Center and City College
12d8730da5aab242795bdff17b30b6e0bac82998CVAP, KTH (Royal Institute of Technology), Stockholm, SE
9a4c45e5c6e4f616771a7325629d167a38508691CVIP Lab, University of Louisville, Louisville, KY 40292, USA
6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2CVIP Lab, University of Louisville, Louisville, KY, USA
0181fec8e42d82bfb03dc8b82381bb329de00631CVL, Link oping University, Link oping, SwedenDepartment of Electrical Engineering
bb489e4de6f9b835d70ab46217f11e32887931a2CVSSP University of Surrey
c74b1643a108939c6ba42ae4de55cb05b2191be5CVSSP, University of Surrey
c74b1643a108939c6ba42ae4de55cb05b2191be5CVSSP, University of Surrey
c74b1643a108939c6ba42ae4de55cb05b2191be5CVSSP, University of Surrey
70a69569ba61f3585cd90c70ca5832e838fa1584CVSSP, University of Surrey, UK
54a9ed950458f4b7e348fa78a718657c8d3d0e05Ca Foscari University of Venice, Venice, Italy
a955033ca6716bf9957b362b77092592461664b4Caarmel Engineering College, MG University, Kerala, IndiaDepartment of CSE
9f6d04ce617d24c8001a9a31f11a594bd6fe3510Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel
0e73d2b0f943cf8559da7f5002414ccc26bc77cdCalifornia Institute of Technology
34108098e1a378bc15a5824812bdf2229b938678California Institute of Technology
100da509d4fa74afc6e86a49352751d365fceee5California Institute of Technology
384945abd53f6a6af51faf254ba8ef0f0fb3f338California Institute of Technology
38bbca5f94d4494494860c5fe8ca8862dcf9676eCalifornia Institute of Technology
53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9California Institute of Technology
060820f110a72cbf02c14a6d1085bd6e1d994f6aCalifornia Institute of Technology
8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3California Institute of Technology
f0f0e94d333b4923ae42ee195df17c0df62ea0b1California Institute of Technology, 1200 East California Boulevard Pasadena, California, USA
00f1e5e954f9eb7ffde3ca74009a8c3c27358b58California Institute of Technology, Pasadena, CA
56ae6d94fc6097ec4ca861f0daa87941d1c10b70California Institute of Technology, Pasadena, CA, USA
72282287f25c5419dc6fd9e89ec9d86d660dc0b5California Institute of Technology, Pasadena, CA, USA
14070478b8f0d84e5597c3e67c30af91b5c3a917California Institute of Technology, Pasadena, California, USA
241d2c517dbc0e22d7b8698e06ace67de5f26fdfCalifornia Institute of Technology, USA
fafe69a00565895c7d57ad09ef44ce9ddd5a6caaCalifornia State University, Fullerton, USA
f0ca31fd5cad07e84b47d50dc07db9fc53482a46California State University, Long Beach, USADepartment of Mathematics and Statistics
4ba38262fe20fab3e4c80215147b498f83843b93Cambridge Research Laboratory
0aa74ad36064906e165ac4b79dec298911a7a4dbCambridge University
0aa74ad36064906e165ac4b79dec298911a7a4dbCambridge University
05a312478618418a2efb0a014b45acf3663562d7Cambridge University, Trumpington Street, Cambridge CB21PZ, UK
e2d265f606cd25f1fd72e5ee8b8f4c5127b764dfCanadian Institute for Advanced Research
16e95a907b016951da7c9327927bb039534151daCapital Normal University, 100048, China
528069963f0bd0861f380f53270c96c269a3ea1cCardi University
b87b0fa1ac0aad0ca563844daecaeecb2df8debfCardiff University, UK
5df376748fe5ccd87a724ef31d4fdb579dab693fCarleton University
158e32579e38c29b26dfd33bf93e772e6211e188Carleton University
0daf696253a1b42d2c9d23f1008b32c65a9e4c1eCarnegie Mellon University
0c30f6303dc1ff6d05c7cee4f8952b74b9533928Carnegie Mellon University
3b37d95d2855c8db64bd6b1ee5659f87fce36881Carnegie Mellon University
6f84e61f33564e5188136474f9570b1652a0606fCarnegie Mellon University
9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0Carnegie Mellon University
6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4dCarnegie Mellon University
6ae96f68187f1cdb9472104b5431ec66f4b2470fCarnegie Mellon University
35f921def890210dda4b72247849ad7ba7d35250Carnegie Mellon University
51683eac8bbcd2944f811d9074a74d09d395c7f3Carnegie Mellon University
3df8cc0384814c3fb05c44e494ced947a7d43f36Carnegie Mellon University
0e36ada8cb9c91f07c9dcaf196d036564e117536Carnegie Mellon University
34c594abba9bb7e5813cfae830e2c4db78cf138cCarnegie Mellon UniversityCarnegie Mellon University. 2Department of Electrical and Computer Engineering
050eda213ce29da7212db4e85f948b812a215660Carnegie Mellon University
a36c8a4213251d3fd634e8893ad1b932205ad1caCarnegie Mellon University
d9c4586269a142faee309973e2ce8cde27bda718Carnegie Mellon University
b3b467961ba66264bb73ffe00b1830d7874ae8ceCarnegie Mellon University
df9269657505fcdc1e10cf45bbb8e325678a40f5Carnegie Mellon University
daa52dd09b61ee94945655f0dde216cce0ebd505Carnegie Mellon University
bd236913cfe07896e171ece9bda62c18b8c8197eCarnegie Mellon University
bd8f77b7d3b9d272f7a68defc1412f73e5ac3135Carnegie Mellon University
eb70c38a350d13ea6b54dc9ebae0b64171d813c9Carnegie Mellon University
e3bb83684817c7815f5005561a85c23942b1f46bCarnegie Mellon University
e3bb83684817c7815f5005561a85c23942b1f46bCarnegie Mellon University
e3bb83684817c7815f5005561a85c23942b1f46bCarnegie Mellon University
ca37eda56b9ee53610c66951ee7ca66a35d0a846Carnegie Mellon UniversityMachine Learning Department
c88c21eb9a8e08b66c981db35f6556f4974d27a8Carnegie Mellon University
edff76149ec44f6849d73f019ef9bded534a38c2Carnegie Mellon University
c6096986b4d6c374ab2d20031e026b581e7bf7e9Carnegie Mellon University
20a16efb03c366fa4180659c2b2a0c5024c679daCarnegie Mellon University
20c02e98602f6adf1cebaba075d45cef50de089fCarnegie Mellon University
4b61d8490bf034a2ee8aa26601d13c83ad7f843aCarnegie Mellon University
11b3877df0213271676fa8aa347046fd4b1a99adCarnegie Mellon University
29479bb4fe8c04695e6f5ae59901d15f8da6124bCarnegie Mellon University
29479bb4fe8c04695e6f5ae59901d15f8da6124bCarnegie Mellon University
29479bb4fe8c04695e6f5ae59901d15f8da6124bCarnegie Mellon University
7c825562b3ff4683ed049a372cb6807abb09af2aCarnegie Mellon University
45f858f9e8d7713f60f52618e54089ba68dfcd6dCarnegie Mellon University
1f89439524e87a6514f4fbe7ed34bda4fd1ce286Carnegie Mellon University
1f89439524e87a6514f4fbe7ed34bda4fd1ce286Carnegie Mellon University
87e6cb090aecfc6f03a3b00650a5c5f475dfebe1Carnegie Mellon University
74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8Carnegie Mellon University
176bd61cc843d0ed6aa5af83c22e3feb13b89fe1Carnegie Mellon University
107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53Carnegie Mellon University
192235f5a9e4c9d6a28ec0d333e36f294b32f764Carnegie Mellon University
4d15254f6f31356963cc70319ce416d28d8924a3Carnegie Mellon University
4d16337cc0431cd43043dfef839ce5f0717c3483Carnegie Mellon University
4d16337cc0431cd43043dfef839ce5f0717c3483Carnegie Mellon University
4d16337cc0431cd43043dfef839ce5f0717c3483Carnegie Mellon University
4d16337cc0431cd43043dfef839ce5f0717c3483Carnegie Mellon University
4d16337cc0431cd43043dfef839ce5f0717c3483Carnegie Mellon University
86ed5b9121c02bcf26900913f2b5ea58ba23508fCarnegie Mellon University
9fc04a13eef99851136eadff52e98eb9caac919dCarnegie Mellon University
9f4078773c8ea3f37951bf617dbce1d4b3795839Carnegie Mellon University
6b3e360b80268fda4e37ff39b7f303e3684e8719Carnegie Mellon UniversityDepartment of Electrical and Computer Engineering
6b17b219bd1a718b5cd63427032d93c603fcf24fCarnegie Mellon University
6b17b219bd1a718b5cd63427032d93c603fcf24fCarnegie Mellon University
6b17b219bd1a718b5cd63427032d93c603fcf24fCarnegie Mellon University
6b17b219bd1a718b5cd63427032d93c603fcf24fCarnegie Mellon University
6b17b219bd1a718b5cd63427032d93c603fcf24fCarnegie Mellon University
07de8371ad4901356145722aa29abaeafd0986b9Carnegie Mellon University
6eece104e430829741677cadc1dfacd0e058d60fCarnegie Mellon University
5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934Carnegie Mellon University
3146fabd5631a7d1387327918b184103d06c2211Carnegie Mellon University
963d0d40de8780161b70d28d2b125b5222e75596Carnegie Mellon University
963d0d40de8780161b70d28d2b125b5222e75596Carnegie Mellon University
963d0d40de8780161b70d28d2b125b5222e75596Carnegie Mellon University
3a2cf589f5e11ca886417b72c2592975ff1d8472Carnegie Mellon University
3a2cf589f5e11ca886417b72c2592975ff1d8472Carnegie Mellon University
9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5Carnegie Mellon UniversityDepartment of Electrical and Computer Engineering
3fefc856a47726d19a9f1441168480cee6e9f5bbCarnegie Mellon University
3fefc856a47726d19a9f1441168480cee6e9f5bbCarnegie Mellon University
3feb69531653e83d0986a0643e4a6210a088e3e5Carnegie Mellon University
3feb69531653e83d0986a0643e4a6210a088e3e5Carnegie Mellon University
5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43Carnegie Mellon University
6dbdb07ce2991db0f64c785ad31196dfd4dae721Carnegie Mellon University
062d67af7677db086ef35186dc936b4511f155d7Carnegie Mellon UniversityMachine Learning Department
97e569159d5658760eb00ca9cb662e6882d2ab0eCarnegie Mellon University
97e569159d5658760eb00ca9cb662e6882d2ab0eCarnegie Mellon University
97e569159d5658760eb00ca9cb662e6882d2ab0eCarnegie Mellon University
0abf67e7bd470d9eb656ea2508beae13ca173198Carnegie Mellon University
d35534f3f59631951011539da2fe83f2844ca245Carnegie Mellon University
a0b1990dd2b4cd87e4fd60912cc1552c34792770Carnegie Mellon University
a0b1990dd2b4cd87e4fd60912cc1552c34792770Carnegie Mellon University
a0b1990dd2b4cd87e4fd60912cc1552c34792770Carnegie Mellon University
a7c39a4e9977a85673892b714fc9441c959bf078Carnegie Mellon University
b1fdd4ae17d82612cefd4e78b690847b071379d3Carnegie Mellon University
db848c3c32464d12da33b2f4c3a29fe293fc35d1Carnegie Mellon University
e19fb22b35c352f57f520f593d748096b41a4a7bCarnegie Mellon University
fac8cff9052fc5fab7d5ef114d1342daba5e4b82Carnegie Mellon UniversityDepartment of Statistics
fac8cff9052fc5fab7d5ef114d1342daba5e4b82Carnegie Mellon UniversityDepartment of Statistics
fac8cff9052fc5fab7d5ef114d1342daba5e4b82Carnegie Mellon UniversityDepartment of Statistics
f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53Carnegie Mellon University
f8015e31d1421f6aee5e17fc3907070b8e0a5e59Carnegie Mellon University
839a2155995acc0a053a326e283be12068b35cb8Carnegie Mellon University
7792fbc59f3eafc709323cdb63852c5d3a4b23e9Carnegie Mellon University
48a9241edda07252c1aadca09875fabcfee32871Carnegie Mellon University
48a9241edda07252c1aadca09875fabcfee32871Carnegie Mellon University
48a9241edda07252c1aadca09875fabcfee32871Carnegie Mellon University
704d88168bdfabe31b6ff484507f4a2244b8c52bCarnegie Mellon University
1ea74780d529a458123a08250d8fa6ef1da47a25Carnegie Mellon University
1e917fe7462445996837934a7e46eeec14ebc65fCarnegie Mellon University
1e917fe7462445996837934a7e46eeec14ebc65fCarnegie Mellon University
240eb0b34872c431ecf9df504671281f59e7da37Carnegie Mellon University
23aef683f60cb8af239b0906c45d11dac352fb4eCarnegie Mellon University
23fc83c8cfff14a16df7ca497661264fc54ed746Carnegie Mellon University
23fc83c8cfff14a16df7ca497661264fc54ed746Carnegie Mellon University
23fc83c8cfff14a16df7ca497661264fc54ed746Carnegie Mellon University
4f7967158b257e86d66bdabfdc556c697d917d24Carnegie Mellon University
155199d7f10218e29ddaee36ebe611c95cae68c4Carnegie Mellon University
12692fbe915e6bb1c80733519371bbb90ae07539Carnegie Mellon UniversityMachine Learning Department
71f36c8e17a5c080fab31fce1ffea9551fc49e47Carnegie Mellon University
82e66c4832386cafcec16b92ac88088ffd1a1bc9Carnegie Mellon University
2e0addeffba4be98a6ad0460453fbab52616b139Carnegie Mellon University
2e98329fdec27d4b3b9b894687e7d1352d828b1dCarnegie Mellon University
2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4Carnegie Mellon University
78598e7005f7c96d64cc47ff47e6f13ae52245b8Carnegie Mellon University
78598e7005f7c96d64cc47ff47e6f13ae52245b8Carnegie Mellon University
1394ca71fc52db972366602a6643dc3e65ee8726Carnegie Mellon University
7f57e9939560562727344c1c987416285ef76cdaCarnegie Mellon University
7f57e9939560562727344c1c987416285ef76cdaCarnegie Mellon University
7f57e9939560562727344c1c987416285ef76cdaCarnegie Mellon University
8e4808e71c9b9f852dc9558d7ef41566639137f3Carnegie Mellon University
8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958Carnegie Mellon University
74325f3d9aea3a810fe4eab8863d1a48c099de11Carnegie Mellon University (CMU
d5de42d37ee84c86b8f9a054f90ddb4566990ec0Carnegie Mellon University 2University of Washington 3Allen Institute for Arti cial Intelligence
1d7df3df839a6aa8f5392310d46b2a89080a3c25Carnegie Mellon University 4College of CS and SE, Shenzhen UniversityDepartment of ECE
5b6d05ce368e69485cb08dd97903075e7f517aedCarnegie Mellon University Pittsburgh, PA - 15213, USA
ec05078be14a11157ac0e1c6b430ac886124589bCarnegie Mellon University Pittsburgh, PA, USA
b51b4ef97238940aaa4f43b20a861eaf66f67253Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USADepartment of Electrical and Computer Engineering
266ed43dcea2e7db9f968b164ca08897539ca8ddCarnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA
c40c23e4afc81c8b119ea361e5582aa3adecb157Carnegie Mellon University, Electrical and Computer Engineering
1ca815327e62c70f4ee619a836e05183ef629567Carnegie Mellon University, Pittsburgh PA
c71217b2b111a51a31cf1107c71d250348d1ff68Carnegie Mellon University, Pittsburgh, PA
e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6Carnegie Mellon University, Pittsburgh, PADepartment of Electrical and Computer Engineering
2679e4f84c5e773cae31cef158eb358af475e22fCarnegie Mellon University, Pittsburgh, PADepartment of Electrical and Computer Engineering
63d8110ac76f57b3ba8a5947bc6bdbb86f25a342Carnegie Mellon University, Pittsburgh, PADepartment of Electrical and Computer Engineering
c660500b49f097e3af67bb14667de30d67db88e3Carnegie Mellon University, Pittsburgh, PA 15213, USAc Statistics Department
61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8Carnegie Mellon University, Pittsburgh, PA, 15213, USA
622daa25b5e6af69f0dac3a3eaf4050aa0860396Carnegie Mellon University, Pittsburgh, PA, 15213, USA
9487cea80f23afe9bccc94deebaa3eefa6affa99Carnegie Mellon University, Pittsburgh, PA, USA
b234cd7788a7f7fa410653ad2bafef5de7d5ad29Carnegie Mellon University, Pittsburgh, PA, USA
eb8519cec0d7a781923f68fdca0891713cb81163Carnegie Mellon University, Pittsburgh, PA, USA
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6Carnegie Mellon University, Pittsburgh, PA, USA
17670b60dcfb5cbf8fdae0b266e18cf995f6014cCarnegie Mellon University, Pittsburgh, PA, USA
6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58dCarnegie Mellon University, Pittsburgh, PA, USA
831d661d657d97a07894da8639a048c430c5536dCarnegie Mellon University, Pittsburgh, PA, USA
15ee80e86e75bf1413dc38f521b9142b28fe02d1Carnegie Mellon University, Pittsburgh, PA, USA
00b29e319ff8b3a521b1320cb8ab5e39d7f42281Carnegie Mellon University, Pittsburgh, USA
c34532fe6bfbd1e6df477c9ffdbb043b77e7804dCarnegie Mellon University, Pittsburgh, USA
1329bcac5ebd0b08ce33ae1af384bd3e7a0deacaCarnegie Mellon University, Pittsburgh, USA
4d625677469be99e0a765a750f88cfb85c522cceCarnegie Mellon University, USA
656531036cee6b2c2c71954bb6540ef6b2e016d0Carnegie Mellon University, USA
90a754f597958a2717862fbaa313f67b25083bf9Carnegie Mellon University, USA
1ec98785ac91808455b753d4bc00441d8572c416Carnegie Mellon University, USA
f4ebbeb77249d1136c355f5bae30f02961b9a359Carnegie Melon University
cbbd13c29d042743f0139f1e044b6bca731886d0Carney Institute for Brain Science
7a0fb972e524cb9115cae655e24f2ae0cfe448e0Catholic University of Rio de Janeiro, Brazil
8981be3a69cd522b4e57e9914bf19f034d4b530cCenter For Automation Research, University of Maryland, College Park
3d0f9a3031bee4b89fab703ff1f1d6170493dc01Center for Arti cial Vision Research, Korea University
fac8cff9052fc5fab7d5ef114d1342daba5e4b82Center for Automated Learning and Discovery), Carnegie Mellon University
c32c8bfadda8f44d40c6cd9058a4016ab1c27499Center for Automation Research (CfAR), University of Maryland, College Park, MD
45215e330a4251801877070c85c81f42c2da60fbCenter for Automation Research, UMIACS, University of Maryland, College Park
0db36bf08140d53807595b6313201a7339470cfeCenter for Automation Research, UMIACS, University of Maryland, College Park, MD
93420d9212dd15b3ef37f566e4d57e76bb2fab2fCenter for Automation Research, UMIACS, University of Maryland, College Park, MD
872dfdeccf99bbbed7c8f1ea08afb2d713ebe085Center for Automation Research, UMIACS, University of Maryland, College Park, MD
2d748f8ee023a5b1fbd50294d176981ded4ad4eeCenter for Automation Research, UMIACS, University of Maryland, College Park, MD
b239a756f22201c2780e46754d06a82f108c1d03Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA
c8e84cdff569dd09f8d31e9f9ba3218dee65e961Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA
970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3Center for Automation Research, University of Maryland
8983485996d5d9d162e70d66399047c5d01ac451Center for Automation Research, University of Maryland, College Park, MD
100105d6c97b23059f7aa70589ead2f61969fbc3Center for Automation Research, University of Maryland, College Park, MD 20740, USA
4b71d1ff7e589b94e0f97271c052699157e6dc4aCenter for Automation Research, University of Maryland, College Park, MD 20742, USA
c5468665d98ce7349d38afb620adbf51757ab86fCenter for Automation Research, University of Maryland, College Park, MD 20742, USA
add50a7d882eb38e35fe70d11cb40b1f0059c96fCenter for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
8f6263e4d3775757e804796e104631c7a2bb8679Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
8f6263e4d3775757e804796e104631c7a2bb8679Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
78436256ff8f2e448b28e854ebec5e8d8306cf21Center for Brain Science, Harvard University, Cambridge, MA, USA
0b242d5123f79defd5f775d49d8a7047ad3153bcCenter for Brains, Minds and Machines, McGovern Institute, MIT
030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3fCenter for Cognitive Neuroscience, Duke University, Durham, North Carolina
25e2d3122d4926edaab56a576925ae7a88d68a77Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of TurinDepartment of Psychology
75bf3b6109d7a685236c8589f8ead7d769ea863fCenter for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA
b8ebda42e272d3617375118542d4675a0c0e501dCenter for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA
8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ
73b90573d272887a6d835ace89bfaf717747c59bCenter for Computational Intelligence, Nanyang Technology University, Singapore
3ca5d3b8f5f071148cb50f22955fd8c1c1992719Center for Healthy Aging, University ofDepartment of Cellular and Molecular Medicine
081cb09791e7ff33c5d86fd39db00b2f29653fa8Center for Information Science, Peking University, Beijing 100871, China
b133b2d7df9b848253b9d75e2ca5c68e21eba008Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT
b6145d3268032da70edc9cfececa1f9ffa4e3f11Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A
29b86534d4b334b670914038c801987e18eb5532Center for Machine Vision Research, University of Oulu, Finland
ac2e44622efbbab525d4301c83cb4d5d7f6f0e55Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland
27eb7a6e1fb6b42516041def6fe64bd028b7614dCenter for Machine Vision and Signal Analysis, University of Oulu, Finland
7492c611b1df6bce895bee6ba33737e7fc7f60a6Center for Machine Vision and Signal Analysis, University of Oulu, Finland
193debca0be1c38dabc42dc772513e6653fd91d8Center for Machine Vision and Signal Analysis, University of Oulu, Finland
aa0c30bd923774add6e2f27ac74acd197b9110f2Center for Machine Vision and Signal Analysis, University of Oulu, Finland
c73dd452c20460f40becb1fd8146239c88347d87Center for Research in Computer Vision (CRCV), University of Central Florida (UCF
7ee53d931668fbed1021839db4210a06e4f33190Center for Research in Computer Vision (CRCV), University of Central Florida (UCF
8fe38962c24300129391f6d7ac24d7783e0fddd0Center for Research in Computer Vision, University of Central Florida
976e0264bb57786952a987d4456850e274714fb8Center for Research in Computer Vision, University of Central Florida
2d79d338c114ece1d97cde1aa06ab4cf17d38254Center for Research in Computer Vision, University of Central Florida
ad2339c48ad4ffdd6100310dcbb1fb78e72fac98Center for Research in Computer Vision, University of Central Florida, Orlando, FL
2910fcd11fafee3f9339387929221f4fc1160973Center for Research in Computer Vision, University of Central Florida, Orlando, FL
14ba910c46d659871843b31d5be6cba59843a8b8Center for Research in Computer Vision, University of Central Florida, Orlando, FL
4205cb47ba4d3c0f21840633bcd49349d1dc02c1Center for Research in Computer Vision, University of Central Florida, Orlando, USA
60a006bdfe5b8bf3243404fae8a5f4a9d58fa892Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
5f676d6eca4c72d1a3f3acf5a4081c29140650fbCenter for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
3acb6b3e3f09f528c88d5dd765fee6131de931eaCenter for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
55079a93b7d1eb789193d7fcdcf614e6829fad0fCenter for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen
81bfe562e42f2eab3ae117c46c2e07b3d142dadeCenter of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA
0b9ce839b3c77762fff947e60a0eb7ebbf261e84Central Mechanical Engineering Research Institute
81e11e33fc5785090e2d459da3ac3d3db5e43f65Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India
82ccd62f70e669ec770daf11d9611cab0a13047eCentral Tehran Branch, Azad University
fd10b0c771a2620c0db294cfb82b80d65f73900dCentral University of Finance and Economics, Beijing, China
56c2fb2438f32529aec604e6fc3b06a595ddbfccCentral Washington University
56c2fb2438f32529aec604e6fc3b06a595ddbfccCentral Washington University
56c2fb2438f32529aec604e6fc3b06a595ddbfccCentral Washington University
56c2fb2438f32529aec604e6fc3b06a595ddbfccCentral Washington University
c88ce5ef33d5e544224ab50162d9883ff6429aa3Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA
2dfe0e7e81f65716b09c590652a4dd8452c10294Centre for Applied Autism Research, University of Bath, Bath, United Kingdom, 2 Social andDepartment of Psychology
6f26ab7edd971148723d9b4dc8ddf71b36be9bf7Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de
c317181fa1de2260e956f05cd655642607520a4fCentre for Imaging Sciences, University of
47dabb566f2bdd6b3e4fa7efc941824d8b923a13Centre for Intelligent Machines, McGill University, Montreal, Canada
e4e3faa47bb567491eaeaebb2213bf0e1db989e1Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia
1d3dd9aba79a53390317ec1e0b7cd742cba43132Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of
ca37eda56b9ee53610c66951ee7ca66a35d0a846Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney
062d67af7677db086ef35186dc936b4511f155d7Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney
159e792096756b1ec02ec7a980d5ef26b434ff78Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney
d0d7671c816ed7f37b16be86fa792a1b29ddd79bCentre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia
438e7999c937b94f0f6384dbeaa3febff6d283b6Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28dCentre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
2c62b9e64aeddf12f9d399b43baaefbca8e11148Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
40e1743332523b2ab5614bae5e10f7a7799161f4Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
0a11b82aa207d43d1b4c0452007e9388a786be12Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH
bd70f832e133fb87bae82dfaa0ae9d1599e52e4bCentre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
ed07856461da6c7afa4f1782b5b607b45eebe9f6Centre for Vision, Speech and Signal Processing, University of Surrey, UK
c146aa6d56233ce700032f1cb179700778557601Centre for Vision, Speech and Signal Processing, University of Surrey, UK
7df268a3f4da7d747b792882dfb0cbdb7cc431bcCentre for Vision, Speech and Signal Processing, University of Surrey, UK
7224d58a7e1f02b84994b60dc3b84d9fe6941ff5Centre for Vision, Speech and Signal Processing, University of Surrey, UK
0cbe059c181278a373292a6af1667c54911e7925Chalmers University of Technology, SAFER
5a86842ab586de9d62d5badb2ad8f4f01eada885Chandigarh Engg. College, Mohali, Punjab, IndiaDepartment . of CSE
94b9c0a6515913bad345f0940ee233cdf82fffe1Chandigarh University, Gharuan, Punjab, IndiaDepartment of Computer Science Engineering
2679e4f84c5e773cae31cef158eb358af475e22fChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science
60970e124aa5fb964c9a2a5d48cd6eee769c73efCharles Sturt University
2b4d092d70efc13790d0c737c916b89952d4d8c7Charotar University of Science and Technology, Changa, India
fd96432675911a702b8a4ce857b7c8619498bf9fChina Mobile Research Institute, Xuanwu Men West Street, Beijing
b191aa2c5b8ece06c221c3a4a0914e8157a16129China University of Mining and Technol
df2494da8efa44d70c27abf23f73387318cf1ca8China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of
bbcb4920b312da201bf4d2359383fb4ee3b17ed9China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology
c089c7d8d1413b54f59fc410d88e215902e51638China-Singapore Institute of Digital Media, Singapore
f3a59d85b7458394e3c043d8277aa1ffe3cdac91Chinese University of Hong Kong
f3a59d85b7458394e3c043d8277aa1ffe3cdac91Chinese University of Hong Kong
eed93d2e16b55142b3260d268c9e72099c53d5bcChittagong University of Engineering and Technology
89e7d23e0c6a1d636f2da68aaef58efee36b718bChonbuk National University, Jeonju 561-756, Korea
29fc4de6b680733e9447240b42db13d5832e408fChonbuk National University, Jeonju-siDepartment of Computer Engineering
492f41e800c52614c5519f830e72561db205e86cChongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4Chosun University
677ebde61ba3936b805357e27fce06c44513a455Chu Hai College of Higher Education, Hong KongDepartment of Computer Science
b503f481120e69b62e076dcccf334ee50559451eChu Hai College of Higher Education, Hong KongDepartment of Computer Science
5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70cChubu University
62f0d8446adee6a5e8102053a63a61af07ac4098Chubu University
47fdbd64edd7d348713253cf362a9c21f98e4296Chubu University
009cd18ff06ff91c8c9a08a91d2516b264eee48eChulalongkorn University, BangkokDepartment of Electrical Engineering
17cf6195fd2dfa42670dc7ada476e67b381b8f69Chung-Ang University, Seoul, Korea
c590c6c171392e9f66aab1bce337470c43b48f39Chungnam National UniversityDepartment of Psychology/Brain Research Institute
fc20149dfdff5fdf020647b57e8a09c06e11434bCity University of Hong Kong
dcc38db6c885444694f515d683bbb50521ff3990City University of Hong Kong
2af2b74c3462ccff3a6881ff7cf4f321b3242fa9City University of Hong Kong, Hong Kong, ChinaDepartment of Computer Science
ffaad0204f4af763e3390a2f6053c0e9875376beCity University of Hong Kong, Kowloon 999077, Hong Kong, ChinaDepartment of Electronic Engineering
5f453a35d312debfc993d687fd0b7c36c1704b16Clemson University
ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9Clemson University
367a786cfe930455cd3f6bd2492c304d38f6f488Clemson University
7fa2605676c589a7d1a90d759f8d7832940118b5Clemson University, Clemson, SC
1b70bbf7cdfc692873ce98dd3c0e191580a1b041Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India
c7f0c0636d27a1d45b8fcef37e545b902195d937Coburg University
c7f0c0636d27a1d45b8fcef37e545b902195d937Coburg University
26d407b911d1234e8e3601e586b49316f0818c95Coburg University
beb4546ae95f79235c5f3c0e9cc301b5d6fc9374Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht
b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of
2dfe0e7e81f65716b09c590652a4dd8452c10294Cognitive Neuroscience Laboratory, Centre of Biology and Health Sciences, Mackenzie Presbyterian University, S o Paulo
751970d4fb6f61d1b94ca82682984fd03c74f127Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany
7f2a4cd506fe84dee26c0fb41848cb219305173fCollage of Sciences, Baghdad University, IraqDepartment Of Computer Science
ab427f0c7d4b0eb22c045392107509451165b2baCollege Heights Blvd, Bowling Green, KY
053931267af79a89791479b18d1b9cde3edcb415College Park, MD
9cd6a81a519545bf8aa9023f6e879521f85d4cd1College Park, MD
b5f4e617ac3fc4700ec8129fcd0dcf5f71722923College Park, MD
b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8College Park, MD
bbc4b376ebd296fb9848b857527a72c82828fc52College Park, MD
297d3df0cf84d24f7efea44f87c090c7d9be4bedCollege Park, MD
7ca7255c2e0c86e4adddbbff2ce74f36b1dc522dCollege Park, MD
970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3College Park, MD
b13a882e6168afc4058fe14cc075c7e41434f43eCollege Park, MD
ceeb67bf53ffab1395c36f1141b516f893bada27College Park, MD
ceeb67bf53ffab1395c36f1141b516f893bada27College Park, MD
ceeb67bf53ffab1395c36f1141b516f893bada27College Park, MD
2ee817981e02c4709d65870c140665ed25b005ccCollege Park, MD 20742 USA
38a9ca2c49a77b540be52377784b9f734e0417e4College Park, MD, 20740, USA
f571fe3f753765cf695b75b1bd8bed37524a52d2College Park, MD, USA
f571fe3f753765cf695b75b1bd8bed37524a52d2College Park, MD, USA
24f1febcdf56cd74cb19d08010b6eb5e7c81c362College Park, Maryland
24f1febcdf56cd74cb19d08010b6eb5e7c81c362College Park, Maryland
24f1febcdf56cd74cb19d08010b6eb5e7c81c362College Park, Maryland
24f1febcdf56cd74cb19d08010b6eb5e7c81c362College Park, Maryland
29d3ed0537e9ef62fd9ccffeeb72c1beb049e1eaCollege Park, USA
0058cbe110933f73c21fa6cc9ae0cd23e974a9c7College Park, USA
4f36c14d1453fc9d6481b09c5a09e91d8d9ee47aCollege Park, USA
794c0dc199f0bf778e2d40ce8e1969d4069ffa7bCollege Park, United States
4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99College Road East, Princeton, NJ
2251a88fbccb0228d6d846b60ac3eeabe468e0f1College Road East, Princeton, NJ
cfa931e6728a825caada65624ea22b840077f023College of Automation, Harbin Engineering University, Heilongjiang, China
656531036cee6b2c2c71954bb6540ef6b2e016d0College of Computer Science
b73d9e1af36aabb81353f29c40ecdcbdf731dbedCollege of Computer Science and Information SciencesDepartment of Software Engineering
1a41e5d93f1ef5b23b95b7163f5f9aedbe661394College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China
df2494da8efa44d70c27abf23f73387318cf1ca8College of Computer Science and Information Technology, Northeast Normal University, Changchun
50e45e9c55c9e79aaae43aff7d9e2f079a2d787bCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
bd6099429bb7bf248b1fd6a1739e744512660d55College of Computer Science and Technology
aac39ca161dfc52aade063901f02f56d01a1693cCollege of Computer Science and Technology
86b6de59f17187f6c238853810e01596d37f63cdCollege of Computer Science and Technology, Chongqing
86b6de59f17187f6c238853810e01596d37f63cdCollege of Computer Science and Technology, Chongqing
86b6de59f17187f6c238853810e01596d37f63cdCollege of Computer Science and Technology, Chongqing
86b6de59f17187f6c238853810e01596d37f63cdCollege of Computer Science and Technology, Chongqing
edbb8cce0b813d3291cae4088914ad3199736aa0College of Computer Science and Technology, Zhejiang University, China
2d8001ffee6584b3f4d951d230dc00a06e8219f8College of Computer Science and Technology, Zhejiang University, Hangzhou, China
0517d08da7550241fb2afb283fc05d37fce5d7b7College of Computer Science, Chongqing University, Chongqing, 400030, China
a065080353d18809b2597246bb0b48316234c29aCollege of Computer Science, Chongqing University, Chongqing, China
4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ecCollege of Computer Science, Sichuan University
0bf3513d18ec37efb1d2c7934a837dabafe9d091College of Computer Science, Sichuan University, Chengdu 610065, P.R. China
5cbe1445d683d605b31377881ac8540e1d17adf0College of Computer Science, Sichuan University, Chengdu, China
a0aa32bb7f406693217fba6dcd4aeb6c4d5a479bCollege of Computer Science, Sichuan University, Chengdu, China
2201f187a7483982c2e8e2585ad9907c5e66671dCollege of Computer Science, Sichuan University, Chengdu, China
404042a1dcfde338cf24bc2742c57c0fb1f48359College of Computer Science, Zhejiang University
9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfdCollege of Computer Science, Zhejiang University, Hangzhou 310027, China
9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfdCollege of Computer Science, Zhejiang University, Hangzhou 310027, China
7c36afc9828379de97f226e131390af719dbc18dCollege of Computer Science, Zhejiang University, Hangzhou, China
d0d7671c816ed7f37b16be86fa792a1b29ddd79bCollege of Computer Science, Zhejiang University, Zhejiang, China
d454ad60b061c1a1450810a0f335fafbfeceecccCollege of Computer and Control Engineering, Nankai University 4 Hikvision Research
5f0d4a0b5f72d8700cdf8cb179263a8fa866b59bCollege of Computer and Control Engineering, Nankai University 4: Hikvision Research
5db075a308350c083c3fa6722af4c9765c4b8fefCollege of Computer and Information Engineering, Nanyang Institute of Technology
76ce3d35d9370f0e2e27cfd29ea0941f1462895fCollege of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
f58d584c4ac93b4e7620ef6e5a8f20c6f6da295eCollege of Computer and Information Science
23aba7b878544004b5dfa64f649697d9f082b0cfCollege of Computer and Information Science
07fa153b8e6196ee6ef6efd8b743de8485a07453College of Computer and Information Science, Northeastern University, Boston, MA, USA
e3c8e49ffa7beceffca3f7f276c27ae6d29b35dbCollege of Computer and Information Science, Northeastern University, Boston, USA
0a9345ea6e488fb936e26a9ba70b0640d3730ba7College of Computer and Information Science, Northeastern University, Boston, USA
090e4713bcccff52dcd0c01169591affd2af7e76College of Computer and Information Science, Northeastern University, MA, USA
d22b378fb4ef241d8d210202893518d08e0bb213College of Computer and Information Science, Northeastern University, MA, USA
0969e0dc05fca21ff572ada75cb4b703c8212e80College of Computer and Information Science, Southwest University, Chongqing 400715, China
5aadd85e2a77e482d44ac2a215c1f21e4a30d91bCollege of Computer and Information Sciences
feb6e267923868bff6e2108603d00fdfd65251caCollege of Computer and Information SciencesComputer Science Department
feb6e267923868bff6e2108603d00fdfd65251caCollege of Computer and Information SciencesComputer Engineering Department
feb6e267923868bff6e2108603d00fdfd65251caCollege of Computer and Information SciencesComputer Engineering Department
81bfe562e42f2eab3ae117c46c2e07b3d142dadeCollege of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA
69eb6c91788e7c359ddd3500d01fb73433ce2e65College of Computing
93af36da08bf99e68c9b0d36e141ed8154455ac2College of Computing
5fa04523ff13a82b8b6612250a39e1edb5066521College of Computing
b33e8db8ccabdfc49211e46d78d09b14557d4cbaCollege of Computing, Georgia Institute of Technology
2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
5b01d4338734aefb16ee82c4c59763d3abc008e6College of Electrical and Information Engineering
d307a766cc9c728a24422313d4c3dcfdb0d16dd5College of Electrical and Information Engineering, Hunan University, China
5ae970294aaba5e0225122552c019eb56f20af74College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
d31af74425719a3840b496b7932e0887b35e9e0dCollege of Electronics and Information Engineering, Sejong UniversityDepartment of Software
5f676d6eca4c72d1a3f3acf5a4081c29140650fbCollege of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
411318684bd2d42e4b663a37dcf0532a48f0146dCollege of Electronics and Information Engineering, Tongji University
3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07College of Electronics and Information, Northwestern Polytechnic University
accbd6cd5dd649137a7c57ad6ef99232759f7544College of Electronics and Information, Northwestern Polytechnic University
bb451dc2420e1a090c4796c19716f93a9ef867c9College of Engineering (Poly
bb451dc2420e1a090c4796c19716f93a9ef867c9College of Engineering (Poly
13db9466d2ddf3c30b0fd66db8bfe6289e880802College of Engineering Pune, India
a7191958e806fce2505a057196ccb01ea763b6eaCollege of Engineering and Computer Science
d9810786fccee5f5affaef59bc58d2282718af9bCollege of Engineering and Mineral Resources
3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3College of Engineering, Mathematics and Physical Sciences
07fa153b8e6196ee6ef6efd8b743de8485a07453College of Engineering, Northeastern University, Boston, MA, USA
cfd933f71f4a69625390819b7645598867900eabCollege of Engineering, Pune, IndiaDepartment of Electronics and Telecommunication
a6b1d79bc334c74cde199e26a7ef4c189e9acd46College of Engineering, Purdue University
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfCollege of Image Arts and Sciences
4698a599425c3a6bae1c698456029519f8f2befeCollege of Informatics
4698a599425c3a6bae1c698456029519f8f2befeCollege of Informatics
66dcd855a6772d2731b45cfdd75f084327b055c2College of Information Engineering
0f395a49ff6cbc7e796656040dbf446a40e300aaCollege of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University
134f1cee8408cca648d8b4ca44b38b0a7023af71College of Information Science and Electronic Engineering
1fe990ca6df273de10583860933d106298655ec8College of Information Science and Engineering
b7426836ca364603ccab0e533891d8ac54cf2429College of Information Science and Engineering, Ocean University of China, Qingdao, China
1a41e5d93f1ef5b23b95b7163f5f9aedbe661394College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan
a29a22878e1881d6cbf6acff2d0b209c8d3f778bCollege of Information Science and Engineering, Xinjiang University
571b83f7fc01163383e6ca6a9791aea79cafa7ddCollege of Information Science and Technology
af278274e4bda66f38fd296cfa5c07804fbc26eeCollege of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi
8986585975c0090e9ad97bec2ba6c4b437419daeCollege of Information and Computer Sciences, University of Massachusetts, Amherst
04f55f81bbd879773e2b8df9c6b7c1d324bc72d8College of Information and Control Engineering in China University of Petroleum
19868a469dc25ee0db00947e06c804b88ea94fd0College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China
b5930275813a7e7a1510035a58dd7ba7612943bcCollege of Information and Electrical Engineering
86d0127e1fd04c3d8ea78401c838af621647dc95College of Information and Engineering, Hunan University, Changsha, China
74eae724ef197f2822fb7f3029c63014625ce1caCollege of Information, Yunnan Normal University, Kunming, China
a32d4195f7752a715469ad99cb1e6ebc1a099de6College of Mechatronic Engineering and Automation, National University of Defense TechnologyDepartment of Automatic Control
a065080353d18809b2597246bb0b48316234c29aCollege of Medical Informatics, Chongqing Medical University, Chongqing, China
b4362cd87ad219790800127ddd366cc465606a78College of Medicine, Seoul National UniversityDepartment of Biomedical Engineering
50eb2ee977f0f53ab4b39edc4be6b760a2b05f96College of Science, Baghdad University, Baghdad, IraqComputer Science Department
b73d9e1af36aabb81353f29c40ecdcbdf731dbedCollege of Science, Menou a University, Menou a 32721, EgyptDepartment of Computer Science
3f540faf85e1f8de6ce04fb37e556700b67e4ad3College of Sciences, Northeastern University, Shenyang 110819, China
c207fd762728f3da4cddcfcf8bf19669809ab284College of Software Engineering, Southeast University, Nanjing 210096, China
e065a2cb4534492ccf46d0afc81b9ad8b420c5ecCollege of Software, Beihang University
0517d08da7550241fb2afb283fc05d37fce5d7b7College of software, Chongqing University of Posts and Telecommunications Chongqing
72bf9c5787d7ff56a1697a3389f11d14654b4fcfCollegePark, MD
dbd5e9691cab2c515b50dda3d0832bea6eef79f2CollegePark, MD
a481e394f58f2d6e998aa320dad35c0d0e15d43cColorado State University
ae5bb02599244d6d88c4fe466a7fdd80aeb91af4Colorado State University
ae5bb02599244d6d88c4fe466a7fdd80aeb91af4Colorado State University
38a2661b6b995a3c4d69e7d5160b7596f89ce0e6Colorado State University
d26b443f87df76034ff0fa9c5de9779152753f0cColorado State University
120bcc9879d953de7b2ecfbcd301f72f3a96fb87Colorado State University
3294e27356c3b1063595885a6d731d625b15505aColorado State University, Fort Collins, CO 80523, USADepartments of Computer Science2 and Mathematics1
7d306512b545df98243f87cb8173df83b4672b18Colorado State University, Fort Collins, Colorado, USA
f0ca31fd5cad07e84b47d50dc07db9fc53482a46Colorado State University, Fort Collins, USADepartment of Mathematics
85fd2bda5eb3afe68a5a78c30297064aec1361f6Columbia Business School, University of California, San DiegoColumbia University; 2Psychology Department
61f93ed515b3bfac822deed348d9e21d5dffe373Columbia UniversityDepartment of Computer Science
61f93ed515b3bfac822deed348d9e21d5dffe373Columbia UniversityDepartment of Electrical Engineering
03c48d8376990cff9f541d542ef834728a2fcda2Columbia University
35f03f5cbcc21a9c36c84e858eeb15c5d6722309Columbia University
670637d0303a863c1548d5b19f705860a23e285cColumbia University
0ec2049a1dd7ae14c7a4c22c5bcd38472214f44dColumbia UniversityEE Department
33030c23f6e25e30b140615bb190d5e1632c3d3bColumbia University
bbfe0527e277e0213aafe068113d719b2e62b09cColumbia University
df0e280cae018cebd5b16ad701ad101265c369faColumbia University
4b507a161af8a7dd41e909798b9230f4ac779315Columbia University
4c170a0dcc8de75587dae21ca508dab2f9343974Columbia University
217de4ff802d4904d3f90d2e24a29371307942feColumbia University
217de4ff802d4904d3f90d2e24a29371307942feColumbia University
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dColumbia University
2a88541448be2eb1b953ac2c0c54da240b47dd8aColumbia University
5e16f10f2d667d17c029622b9278b6b0a206d394Columbia UniversityDepartment of Computer Science
5e16f10f2d667d17c029622b9278b6b0a206d394Columbia UniversityDepartment of Electrical Engineering
08a1fc55d03e4a73cad447e5c9ec79a6630f3e2dColumbia University
0f829fee12e86f980a581480a9e0cefccb59e2c5Columbia University
0a82860d11fcbf12628724333f1e7ada8f3cd255Columbia University
b13bf657ca6d34d0df90e7ae739c94a7efc30dc3Columbia University
b13bf657ca6d34d0df90e7ae739c94a7efc30dc3Columbia University
b13bf657ca6d34d0df90e7ae739c94a7efc30dc3Columbia University
b13bf657ca6d34d0df90e7ae739c94a7efc30dc3Columbia University
ddaa8add8528857712424fd57179e5db6885df7cColumbia University
c41de506423e301ef2a10ea6f984e9e19ba091b4Columbia University
1cee993dc42626caf5dbc26c0a7790ca6571d01aColumbia UniversityDepartment of Computer Science
40217a8c60e0a7d1735d4f631171aa6ed146e719Columbia University
140438a77a771a8fb656b39a78ff488066eb6b50Columbia University
47382cb7f501188a81bb2e10cfd7aed20285f376Columbia University in the City of New York
3240c9359061edf7a06bfeb7cc20c103a65904c2Columbia University, National University of Singapore
be86d88ecb4192eaf512f29c461e684eb6c35257Columbia University, New York NY 10027, USA
4f0d9200647042e41dea71c35eb59e598e6018a7Columbia University, New York, NY
14fb3283d4e37760b7dc044a1e2906e3cbf4d23aColumbia University, New York, NY
780557daaa39a445b24c41f637d5fc9b216a0621Columbia University, New York, NY 10027, USADepartment of Electrical Engineering
a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4fColumbia University, New York, NY, USA
774cbb45968607a027ae4729077734db000a1ec5Columbia University, USA
7e18b5f5b678aebc8df6246716bf63ea5d8d714eColumbia University, United States
97f9c3bdb4668f3e140ded2da33fe704fc81f3eaColumbiaUniversity, NY, USADepartment ofComputerScience
66aad5b42b7dda077a492e5b2c7837a2a808c2faCompi`egne University of Technology
a611c978e05d7feab01fb8a37737996ad6e88bd9Computational Biomedicine Lab, University of Houston, TX, USA
e69ac130e3c7267cce5e1e3d9508ff76eb0e0eefComputational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USADepartment of Computer Science
e30dc2abac4ecc48aa51863858f6f60c7afdf82aComputational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas
6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey
d687fa99586a9ad229284229f20a157ba2d41aeaComputer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India
3ca5d3b8f5f071148cb50f22955fd8c1c1992719Computer Engineering and Computer Science, Duthie Center for Engineering, University of
ad247138e751cefa3bb891c2fe69805da9c293d7Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran
3a0ea368d7606030a94eb5527a12e6789f727994Computer Graphics Research Group, University of Freiburg, Freiburg, Germany
1d1a7ef193b958f9074f4f236060a5f5e7642fc1Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA
2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40Computer Laboratory, University of Cambridge, Cambridge, UK
511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7Computer School, University of South China, Hengyang, China
d5d7e89e6210fcbaa52dc277c1e307632cd91dabComputer Science Depart., Cornell University, USA
d5d7e89e6210fcbaa52dc277c1e307632cd91dabComputer Science Depart., Rochester University, USA
560e0e58d0059259ddf86fcec1fa7975dee6a868Computer Science Division, The Open University of Israel
5bde1718253ec28a753a892b0ba82d8e553b6bf3Computer Science Division, The Open University of Israel
7fc3442c8b4c96300ad3e860ee0310edb086de94Computer Science Division, The Open University of Israel, Israel
12ebeb2176a5043ad57bc5f3218e48a96254e3e9Computer Science North South University, Dhaka
12ebeb2176a5043ad57bc5f3218e48a96254e3e9Computer Science North South University, Dhaka
124538b3db791e30e1b62f81d4101be435ee12efComputer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USADepartment of EECS
124538b3db791e30e1b62f81d4101be435ee12efComputer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
55bc7abcef8266d76667896bbc652d081d00f797Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA
a25106a76af723ba9b09308a7dcf4f76d9283589Computer Science and Engineering, Anna University, India
a25106a76af723ba9b09308a7dcf4f76d9283589Computer Science and Engineering, Easwari Engineering College, India
e22adcd2a6a7544f017ec875ce8f89d5c59e09c8Computer Science and Engineering, Michigan State University, East Lansing, USA
55bc7abcef8266d76667896bbc652d081d00f797Computer Science and Engineering, Michigan State University, East Lansing, USA
371f40f6d32ece05cc879b6954db408b3d4edaf3Computer Science and Engineering, University of Michigan, Ann Arbor
f3ca2c43e8773b7062a8606286529c5bc9b3ce25Computer Science and Engineering, University of Texas at Arlington, USA
345bea5f7d42926f857f395c371118a00382447fComputer Science and Engineering, University of Washington
51eba481dac6b229a7490f650dff7b17ce05df73Computer Science and Engineering, University of Washington, Seattle, WA
02239ae5e922075a354169f75f684cad8fdfd5abComputer Science and Engineering, University of Washington, Seattle, WA
124538b3db791e30e1b62f81d4101be435ee12efComputer Science and Engineering, University of Washington, Seattle, WA, USA
eb8519cec0d7a781923f68fdca0891713cb81163Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada
17670b60dcfb5cbf8fdae0b266e18cf995f6014cComputer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada
210b98394c3be96e7fd75d3eb11a391da1b3a6caComputer Science and Software Engineering, The University of Western Australia
ebb1c29145d31c4afa3c9be7f023155832776cd3Computer Science and Technology, Tsinghua University, Beijing, China
fd96432675911a702b8a4ce857b7c8619498bf9fComputer Science, Beijing Institute of Technology, Beijing 100081, P.R.China
124538b3db791e30e1b62f81d4101be435ee12efComputer Science, Brown University, Providence, RI, USA
0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0bafComputer Science, Engineering and Mathematics School, Flinders University, Australia
0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0bafComputer Science, Engineering and Mathematics School, Flinders University, Australia
82c303cf4852ad18116a2eea31e2291325bc19c3Computer Science, Engineering and Mathematics School, Flinders University, Australia
124538b3db791e30e1b62f81d4101be435ee12efComputer Science, Princeton University, Princeton, NJ, USA
6ef1996563835b4dfb7fda1d14abe01c8bd24a05Computer Vision Group, Friedrich Schiller University Jena
0a60d9d62620e4f9bb3596ab7bb37afef0a90a4fComputer Vision Group, Friedrich Schiller University Jena, Germany
a949b8700ca6ba96ee40f75dfee1410c5bbdb3dbComputer Vision Group, Friedrich Schiller University of Jena, Germany
c2e6daebb95c9dfc741af67464c98f1039127627Computer Vision Group, Friedrich Schiller University of Jena, Germany
0435a34e93b8dda459de49b499dd71dbb478dc18Computer Vision Group, L. D. College of Engineering, Ahmedabad, India
7cee802e083c5e1731ee50e731f23c9b12da7d36Computer Vision Group, L. D. College of Engineering, Ahmedabad, India
faca1c97ac2df9d972c0766a296efcf101aaf969Computer Vision Group, Xerox Research Center Europe, Meylan, France
0d0b880e2b531c45ee8227166a489bf35a528cb9Computer Vision Lab, Delft University of Technology
ea46951b070f37ad95ea4ed08c7c2a71be2daedcComputer Vision Lab, Delft University of Technology, Netherlands
8d646ac6e5473398d668c1e35e3daa964d9eb0f6Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, SwedenDepartment of Electrical Engineering
264a84f4d27cd4bca94270620907cffcb889075cComputer Vision Laboratory, Link oping University, SwedenDepartment of Electrical Engineering
4cd0da974af9356027a31b8485a34a24b57b8b90Computer Vision Laboratory, The University of Nottingham
02e628e99f9a1b295458cb453c09863ea1641b67Computer Vision Laboratory, University of Nottingham, Nottingham, UK
056ba488898a1a1b32daec7a45e0d550e0c51ae4Computer Vision Laboratory. University of Nottingham
c42a8969cd76e9f54d43f7f4dd8f9b08da566c5fComputer Vision Research Group, COMSATS Institute of Information
acee2201f8a15990551804dd382b86973eb7c0a8Computer Vision and Robotics Research Laboratory
19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54Computer Vision and Robotics Research Laboratory
29b86534d4b334b670914038c801987e18eb5532Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany
5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49Computer and Systems Engineering, Rensselaer Polytechnic InstituteDepartment of Electrical
a255a54b8758050ea1632bf5a88a201cd72656e1Computer and Vision Research Center
0b02bfa5f3a238716a83aebceb0e75d22c549975Computer vision and Remote Sensing, Berlin university of Technology
301b0da87027d6472b98361729faecf6e1d5e5f6Computer vision and Remote Sensing, Berlin university of Technology
ec05078be14a11157ac0e1c6b430ac886124589bConcordia University
ec05078be14a11157ac0e1c6b430ac886124589bConcordia University
ec05078be14a11157ac0e1c6b430ac886124589bConcordia University
41971dfbf404abeb8cf73fea29dc37b9aae12439Concordia University
6409b8879c7e61acf3ca17bcc62f49edca627d4cConcordia University, Canada
6409b8879c7e61acf3ca17bcc62f49edca627d4cConcordia University, Canada
c418a3441f992fea523926f837f4bfb742548c16Concordia University, CanadaDepartment of Computer Science and Software Engineering
266ed43dcea2e7db9f968b164ca08897539ca8ddConcordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada
6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58dConcordia University, Montreal, Quebec, CanadaDepartment of Computer Science and Software Engineering
7f59657c883f77dc26393c2f9ed3d19bdf51137bConference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university
fd33df02f970055d74fbe69b05d1a7a1b9b2219bCooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, China
e90e12e77cab78ba8f8f657db2bf4ae3dabd5166Cooperative Medianet Innovation Center, Shanghai Jiao Tong University
4a14a321a9b5101b14ed5ad6aa7636e757909a7cCooperative Medianet Innovation Center, Shanghai Jiaotong University
713594c18978b965be87651bb553c28f8501df0aCooperative Medianet Innovation Center, Shanghai Jiaotong University
126535430845361cd7a3a6f317797fe6e53f5a3bCoordinated Science Lab, University of Illinois at Urbana-Champaign
bcf19b964e7d1134d00332cf1acf1ee6184aff00Copyright c(cid:2) 2017 The Institute of Electronics, Information and Communication Engineers
b216040f110d2549f61e3f5a7261cab128cab361Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers
04317e63c08e7888cef480fe79f12d3c255c5b00Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
aba770a7c45e82b2f9de6ea2a12738722566a149Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
38215c283ce4bf2c8edd597ab21410f99dc9b094Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
32d8e555441c47fc27249940991f80502cb70bd5Cornell University
5aad56cfa2bac5d6635df4184047e809f8fecca2Cornell UniversityDepartment of Electrical and Computer Engineering
053b263b4a4ccc6f9097ad28ebf39c2957254dfbCornell University
053b263b4a4ccc6f9097ad28ebf39c2957254dfbCornell University
28d06fd508d6f14cd15f251518b36da17909b79eCornell University
8a8861ad6caedc3993e31d46e7de6c251a8cda22Cornell University
192235f5a9e4c9d6a28ec0d333e36f294b32f764Cornell University
192235f5a9e4c9d6a28ec0d333e36f294b32f764Cornell University
9fc04a13eef99851136eadff52e98eb9caac919dCornell University
9fc04a13eef99851136eadff52e98eb9caac919dCornell University
6577c76395896dd4d352f7b1ee8b705b1a45fa90Cornell UniversityDepartment of Electrical and Computer Engineering
6577c76395896dd4d352f7b1ee8b705b1a45fa90Cornell UniversityDepartment of Computer Science
3026722b4cbe9223eda6ff2822140172e44ed4b1Cornell University
6c5fbf156ef9fc782be0089309074cc52617b868Cornell UniversityDepartment of Computer Science and Cornell Tech
ce9e1dfa7705623bb67df3a91052062a0a0ca456Cornell University
240eb0b34872c431ecf9df504671281f59e7da37Cornell University
8bdf6f03bde08c424c214188b35be8b2dec7cdeaCornell University
37278ffce3a0fe2c2bbf6232e805dd3f5267eba3Cornell University 2 Cornell TechDepartment of Computer Science
e5799fd239531644ad9270f49a3961d7540ce358Cornell University 2Eastman Kodak CompanyDepartment of Elec. and Computer Eng.
8cb6daba2cb1e208e809633133adfee0183b8dd2Cornell University and Stanford University
09f58353e48780c707cf24a0074e4d353da18934Cornell University, Ithaca, NY, U.S.A
b185f0a39384ceb3c4923196aeed6d68830a069fCornell University, Ithaca, New York
345cc31c85e19cea9f8b8521be6a37937efd41c2Cornell University, Washington University in St. Louis
93747de3d40376761d1ef83ffa72ec38cd385833Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, WeesperpleinDepartment of Psychology
1442319de86d171ce9595b20866ec865003e66fcCountry University, San Sebastian, Spain
014143aa16604ec3f334c1407ceaa496d2ed726eCourant Institute
55138c2b127ebdcc508503112bf1d1eeb5395604Courant Institute and Google Research
55138c2b127ebdcc508503112bf1d1eeb5395604Courant Institute of Mathematical Sciences
05d80c59c6fcc4652cfc38ed63d4c13e2211d944Courant Institute of Mathematical Sciences and Google Research, New York, NY
05d80c59c6fcc4652cfc38ed63d4c13e2211d944Courant Institute of Mathematical Sciences, New York, NY
07e639abf1621ceff27c9e3f548fadfa2052c912Current Address: Research Institute of Child Development and Education, University of Amsterdam
3df7401906ae315e6aef3b4f13126de64b894a54Curtin University of TechnologyDepartment of Computing
1048c753e9488daa2441c50577fe5fdba5aa5d7cCurtin University of TechnologyDepartment of Computing
b88ceded6467e9b286f048bb1b17be5998a077bdCurtin University, Perth, Australia
e9a5a38e7da3f0aa5d21499149536199f2e0e1f7Curtin University, Perth, WA 6102, AustraliaDepartment of Computing
3cc46bf79fb9225cf308815c7d41c8dd5625cc29Cyprus University of Technology
9d3aa3b7d392fad596b067b13b9e42443bbc377cCyprus University of TechnologyDepartment of Multimedia and Graphic Arts
70db3a0d2ca8a797153cc68506b8650908cb0adaCyprus University of Technology, Cyprus
1565721ebdbd2518224f54388ed4f6b21ebd26f3Czech Technical University
276dbb667a66c23545534caa80be483222db7769D Research Center, Kwangwoon University and Springer
88850b73449973a34fefe491f8836293fc208580D.J. Sanghvi College of Engineering
88850b73449973a34fefe491f8836293fc208580D.J. Sanghvi College of Engineering
88850b73449973a34fefe491f8836293fc208580D.J. Sanghvi College of Engineering
88850b73449973a34fefe491f8836293fc208580D.J. Sanghvi College of Engineering
9d757c0fede931b1c6ac344f67767533043cba14D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune
9d757c0fede931b1c6ac344f67767533043cba14D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune
c81ee278d27423fd16c1a114dcae486687ee27ffD.Y.Patil Institute of Engineering and Technology, Pimpri, Pune
c81ee278d27423fd16c1a114dcae486687ee27ffD.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University
d5d7e89e6210fcbaa52dc277c1e307632cd91dabDAIS, University of Venice, Italy
2ee817981e02c4709d65870c140665ed25b005ccDAP - University of Sassari
568cff415e7e1bebd4769c4a628b90db293c1717DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA
779ad364cae60ca57af593c83851360c0f52c7bfDESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco
aadf4b077880ae5eee5dd298ab9e79a1b0114555DICGIM - University of Palermo
2b84630680e2c906f8d7ac528e2eb32c99ef203aDIEI, University of Perugia, Italy
43bb20ccfda7b111850743a80a5929792cb031f0DISI - University of Trento
2b84630680e2c906f8d7ac528e2eb32c99ef203aDISI, University of Trento, Italy
e6f20e7431172c68f7fce0d4595100445a06c117DISI, University of Trento, Trento, Italy
303517dfc327c3004ae866a6a340f16bab2ee3e3DIT UNIVERSITY, DEHRADUN
5058a7ec68c32984c33f357ebaee96c59e269425DPDCE, University IUAV
a01f9461bc8cf8fe40c26d223ab1abea5d8e2812DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy
f963967e52a5fd97fa3ebd679fd098c3cb70340eDSP Lab, Sharif University of Technology, Tehran, Iran
4aa8db1a3379f00db2403bba7dade5d6e258b9e9DSP Lab, Sharif University of Technology, Tehran, Iran
72f4aaf7e2e3f215cd8762ce283988220f182a5bDTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK
f5af4e9086b0c3aee942cb93ece5820bdc9c9748DUBLIN CITY UNIVERSITY
ae0765ebdffffd6e6cc33c7705df33b7e8478627DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China
0b4c4ea4a133b9eab46b217e22bda4d9d13559e6DVMM Lab - Columbia University
1275852f2e78ed9afd189e8b845fdb5393413614Dalian Maritime University
052f994898c79529955917f3dfc5181586282cf8Dalian University of Technology
38f06a75eb0519ae1d4582a86ef4730cc8fb8d7fDalian University of Technology, China
7a9c317734acaf4b9bd8e07dd99221c457b94171Dalian University of Technology, Dalian 116024, China
2b64a8c1f584389b611198d47a750f5d74234426Dalian University of Technology, Dalian, China
9391618c09a51f72a1c30b2e890f4fac1f595ebdDalio Institute of Cardiovascular Imaging, Weill Cornell Medical College
8f3e120b030e6c1d035cb7bd9c22f6cc75782025Dalle Molle Institute for Arti cial Intelligence
1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, KoreaDepartment of Applied Computer Engineering
9b246c88a0435fd9f6d10dc88f47a1944dd8f89eDartmouth College
3328413ee9944de1cc7c9c1d1bf2fece79718ba1Dartmouth College
3328413ee9944de1cc7c9c1d1bf2fece79718ba1Dartmouth College
df71a00071d5a949f9c31371c2e5ee8b478e7dc8Dartmouth College
df71a00071d5a949f9c31371c2e5ee8b478e7dc8Dartmouth College
df71a00071d5a949f9c31371c2e5ee8b478e7dc8Dartmouth College
fd7b6c77b46420c27725757553fcd1fb24ea29a8Dartmouth CollegeDepartment of Computer Science
86374bb8d309ad4dbde65c21c6fda6586ae4147aDartmouth College
2af620e17d0ed67d9ccbca624250989ce372e255Dartmouth College
2d38fd1df95f5025e2cee5bc439ba92b369a93dfDartmouth College
8d6c4af9d4c01ff47fe0be48155174158a9a5e08Dartmouth College
0cbc4dcf2aa76191bbf641358d6cecf38f644325Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA
1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8Dartmouth College, NH 03755 USAComputer Science Department
e43cc682453cf3874785584fca813665878adaa7Datta Meghe College of Engineering
ea890846912f16a0f3a860fce289596a7dac575fDavid R. Simmons, University of
574705812f7c0e776ad5006ae5e61d9b071eebdbDayananda Sagar College of Engg., India¹Department rtment of Telecommunication Engg.
574705812f7c0e776ad5006ae5e61d9b071eebdbDayananda Sagar College of Engg., India²Department of Telecommunication Engg.
2bbbbe1873ad2800954058c749a00f30fe61ab17Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India
738a985fba44f9f5acd516e07d0d9578f2ffaa4eDelft University of Technology
361d6345919c2edc5c3ce49bb4915ed2b4ee49beDelft University of Technology
41f26101fed63a8d149744264dd5aa79f1928265Delft University of Technology
473cbc5ec2609175041e1410bc6602b187d03b23Delft University of Technology
067126ce1f1a205f98e33db7a3b77b7aec7fb45aDelft University of Technology, The Netherlands
42765c170c14bd58e7200b09b2e1e17911eed42bDemocritus University of Thrace
4d6462fb78db88afff44561d06dd52227190689cDep. of Applied Mathematics and Analysis, University of Barcelona, Spain
d394bd9fbaad1f421df8a49347d4b3fca307db83Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK
aa0c30bd923774add6e2f27ac74acd197b9110f2Deparment of Computing, Goldsmiths, University of London, UK
aa0c30bd923774add6e2f27ac74acd197b9110f2Deparment of Computing, Imperial College London, UK
ea218cebea2228b360680cb85ca133e8c2972e56Departm nt of Information Engin ering Th Chines University of Hong Kong
68003e92a41d12647806d477dd7d20e4dcde1354Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India
1442319de86d171ce9595b20866ec865003e66fcDeustoTech - University of Deusto
74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8Deva Ramanan, University of California at Irvine
89bc311df99ad0127383a9149d1684dfd8a5aa34Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA
026e4ee480475e63ae68570d73388f8dfd4b4cdeDhaka University
2e1415a814ae9abace5550e4893e13bd988c7ba1Dhanalakshmi Srinivasan College of EngineeringECE Department
6ae96f68187f1cdb9472104b5431ec66f4b2470fDietrich College Honors Theses
6ae96f68187f1cdb9472104b5431ec66f4b2470fDietrich College of Humanities and Social Sciences
1f89439524e87a6514f4fbe7ed34bda4fd1ce286Dietrich College of Humanities and Social Sciences
902114feaf33deac209225c210bbdecbd9ef33b1Digital Media Research Center
2bab44d3a4c5ca79fb8f87abfef4456d326a0445Dipartimento di Sistemi e Informatica, University of Florence
a3dc109b1dff3846f5a2cc1fe2448230a76ad83fDirector, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India
273b0511588ab0a81809a9e75ab3bd93d6a0f1e3Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do
8b2704a5218a6ef70e553eaf0a463bd55129b69dDivision of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do
97137d5154a9f22a5d9ecc32e8e2b95d07a5a571Division of Computer Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do
59e9934720baf3c5df3a0e1e988202856e1f83ceDivision of Computer Science and Engineering, Hanyang University
a0e7f8771c7d83e502d52c276748a33bae3d5f81Division of Computer Science, University of California, Berkeley, CA, USA e-mail
cc91001f9d299ad70deb6453d55b2c0b967f8c0dDivision of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu
ff01bc3f49130d436fca24b987b7e3beedfa404dDivision of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu
6f3054f182c34ace890a32fdf1656b583fbc7445Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu
d00c335fbb542bc628642c1db36791eae24e02b7Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu
c3b3636080b9931ac802e2dd28b7b684d6cf4f8bDivision of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology
497bf2df484906e5430aa3045cf04a40c9225f94Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea
ed08ac6da6f8ead590b390b1d14e8a9b97370794Dnyanopasak College Parbhani, M.S, IndiaDepartment of C.S.
528069963f0bd0861f380f53270c96c269a3ea1cDoctor of Philosophy in Computer Science at Cardi University, July 24th
0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7Doctor of Philosophy in Computing of Imperial College, February
1467c4ab821c3b340abe05a1b13a19318ebbce98Doctor of Philosophy of University College London
6e782073a013ce3dbc5b9b56087fd0300c510f67Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania
146bbf00298ee1caecde3d74e59a2b8773d2c0fcDownloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
f8f872044be2918de442ba26a30336d80d200c42Dr C V Raman Institute of Science and Technology
3f4bfa4e3655ef392eb5ad609d31c05f29826b45Dr. B. C. Roy Engineering College
35e87e06cf19908855a16ede8c79a0d3d7687b5cDr. Babasaheb Ambedkar Marathwada University
1910f5f7ac81d4fcc30284e88dee3537887acdf3Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India
e5342233141a1d3858ed99ccd8ca0fead519f58bDr.Pauls Engineering College, Villupuram District, Tamilnadu, IndiaDepartment of CSE
59e75aad529b8001afc7e194e21668425119b864Drexel University
0aae88cf63090ea5b2c80cd014ef4837bcbaadd8Drexel University
900207b3bc3a4e5244cae9838643a9685a84fee0Drexel University
17a8d1b1b4c23a630b051f35e47663fc04dcf043Drexel University, Philadelphia, PADepartment of Computer Science
0be764800507d2e683b3fb6576086e37e56059d1Duke University
9cd6a81a519545bf8aa9023f6e879521f85d4cd1Duke University
9cd6a81a519545bf8aa9023f6e879521f85d4cd1Duke University
2742a61d32053761bcc14bd6c32365bfcdbefe35Duke University
2742a61d32053761bcc14bd6c32365bfcdbefe35Duke University
3933416f88c36023a0cba63940eb92f5cef8001aDuke University
1badfeece64d1bf43aa55c141afe61c74d0bd25eDuke University
8ccde9d80706a59e606f6e6d48d4260b60ccc736Duke UniversityDepartment of Mathematics
8ccde9d80706a59e606f6e6d48d4260b60ccc736Duke UniversityDepartment of Electrical and Computer Engineering
cca9ae621e8228cfa787ec7954bb375536160e0dDuke University, Durham, NC, USA
f412d9d7bc7534e7daafa43f8f5eab811e7e4148Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom
cd23dc3227ee2a3ab0f4de1817d03ca771267aebDurham University, Durham, UK
c1f07ec629be1c6fe562af0e34b04c54e238dcd1ECE dept, University of Miami
4e8c608fc4b8198f13f8a68b9c1a0780f6f50105ECE, National University of Singapore, Singapore
7c4c442e9c04c6b98cd2aa221e9d7be15efd8663ECSE, Rensselaer Polytechnic Institute, Troy, NY
dbed26cc6d818b3679e46677abc9fa8e04e8c6a6ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA
7b9961094d3e664fc76b12211f06e12c47a7e77dEECS, Syracuse University, Syracuse, NY, USA
f60a85bd35fa85739d712f4c93ea80d31aa7de07EECS, University of California Berkeley
88bef50410cea3c749c61ed68808fcff84840c37EEMCS, University of Twente
1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6EEMCS, University of Twente Enschede, The Netherlands
3f957142ef66f2921e7c8c7eadc8e548dccc1327EEMCS, University of Twente, Netherlands
044d9a8c61383312cdafbcc44b9d00d650b21c70EEMCS, University of Twente, The Netherlands
4c87aafa779747828054cffee3125fcea332364dEEMCS, University of Twente, The Netherlands
013909077ad843eb6df7a3e8e290cfd5575999d2EEMCS, University of Twente, The Netherlands
143bee9120bcd7df29a0f2ad6f0f0abfb23977b8EEMCS, University of Twente, The Netherlands
4a5592ae1f5e9fa83d9fa17451c8ab49608421e4EIMT, Open University of
8d5998cd984e7cce307da7d46f155f9db99c6590EIMT, Open University of Catalonia, Barcelona, Spain
b5d7c5aba7b1ededdf61700ca9d8591c65e84e88ESAT, Katholieke Universiteit Leuven, Leuven, Belgium
46f2611dc4a9302e0ac00a79456fa162461a8c80ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai
071135dfb342bff884ddb9a4d8af0e70055c22a1ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai
060034b59275c13746413ca9c67d6304cba50da6ESTeM, University of Canberra
fffa2943808509fdbd2fc817cc5366752e57664aESTeM, University of Canberra
9b1bcef8bfef0fb5eb5ea9af0b699aa0534fcecaEast China Normal University
d93baa5ecf3e1196b34494a79df0a1933fd2b4ecEast China Normal University
d93baa5ecf3e1196b34494a79df0a1933fd2b4ecEast China Normal University
d93baa5ecf3e1196b34494a79df0a1933fd2b4ecEast China Normal University
d961617db4e95382ba869a7603006edc4d66ac3bEast China Normal University
03baf00a3d00887dd7c828c333d4a29f3aacd5f5Eastern Mediterranean University
3f4c262d836b2867a53eefb959057350bf7219c9Eastern Mediterranean UniversityComputer Engineering Department
c5421a18583f629b49ca20577022f201692c4f5dEastern Mediterranean University, Gazima usa, Northern CyprusDepartment of Computer Engineering
026e4ee480475e63ae68570d73388f8dfd4b4cdeEastern University
0cd8895b4a8f16618686f622522726991ca2a324Ecole Polytechnique Federale de Lausanne, Signal Processing Institute
b55d0c9a022874fb78653a0004998a66f8242cadEconomy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT
e00d391d7943561f5c7b772ab68e2bb6a85e64c4Edited by David L. Donoho, Stanford University, Stanford, CA, and approved August 7, 2017 (received for review January
74eae724ef197f2822fb7f3029c63014625ce1caEducation, Yunnan Normal University, Kunming, China
0ba0f000baf877bc00a9e144b88fa6d373db2708Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan
d185f4f05c587e23c0119f2cdfac8ea335197ac0Eindhoven University of Technology, The Netherlands
7e00fb79576fe213853aeea39a6bc51df9fdca16Eindhoven University of Technology, The Netherlands
1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2Eindhoven University of Technology, The Netherlands
39dc2ce4cce737e78010642048b6ed1b71e8ac2fElect. Eng. Faculty, Tabriz University, Tabriz, Iran
210b98394c3be96e7fd75d3eb11a391da1b3a6caElectrical Eng. Dep., Central Tehran Branch, Islamic Azad University, Tehran, Iran
126214ef0dcef2b456cb413905fa13160c73ec8eElectrical Engineering Institute, EPFL
ea6f5c8e12513dbaca6bbdff495ef2975b8001bdElectrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab
ea6f5c8e12513dbaca6bbdff495ef2975b8001bdElectrical Engineering, University of
0ea7b7fff090c707684fd4dc13e0a8f39b300a97Electrical and Computer Engineering, National University of Singapore, Singapore
e38371b69be4f341baa95bc854584e99b67c6d3aElectrical and Computer Engineering, Northeastern University, Boston, MA
db82f9101f64d396a86fc2bd05b352e433d88d02Electrical and Computer Engineering, The University of Memphis
22143664860c6356d3de3556ddebe3652f9c912aElectrical and Computer Engineering, University of Auckland, New Zealand
f3ca2c43e8773b7062a8606286529c5bc9b3ce25Electrical and Computer Engineering, University of Pittsburgh, USA
ac75c662568cbb7308400cc002469a14ff25edfdElectrical and Computer Engineering, University of Toronto, M5S 3G4, Canada
03ac1c694bc84a27621da6bfe73ea9f7210c6d45Electrical and Space Engineering, Lule University of TechnologyDepartment of Computer Science
e8f0f9b74db6794830baa2cab48d99d8724e8cb6Electrical, Computer, Rensselaer Polytechnic Instituteand Systems Engineering Department
245f8ec4373e0a6c1cae36cd6fed5a2babed1386Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute
a51882cfd0706512bf50e12c0a7dd0775285030dElectronic Engineering and Computer Science Queen Mary University of London
7224d58a7e1f02b84994b60dc3b84d9fe6941ff5Electronic Engineering and Computer Science, Queen Mary University of London, UK
b375db63742f8a67c2a7d663f23774aedccc84e5Electronic and Information Engineering, University of Bologna, ItalyDepartment of Electrical
191674c64f89c1b5cba19732869aa48c38698c84Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India
d82b93f848d5442f82154a6011d26df8a9cd00e7Electronics Engineering, National Institute of Technical Teachers
31d60b2af2c0e172c1a6a124718e99075818c408Electronics and Communication Engineering, Chuo UniversityDepartment of Electrical
3bd1d41a656c8159305ba2aa395f68f41ab84f31Electronics and Computer Science, University of Southampton, Southampton, Hampshire
887b7676a4efde616d13f38fcbfe322a791d1413Electronics and Telecommunications Research Institute
7cf579088e0456d04b531da385002825ca6314e2Emory University
7cf579088e0456d04b531da385002825ca6314e2Emory University
656531036cee6b2c2c71954bb6540ef6b2e016d0Emory University, USA
90d735cffd84e8f2ae4d0c9493590f3a7d99daf1Engg, Priyadarshini College of
9c1860de6d6e991a45325c997bf9651c8a9d716fEngineering Chaoyang University Nankai Institute of
d02c54192dbd0798b43231efe1159d6b4375ad36Engineering Chaoyang University Nankai Institute of
5d185d82832acd430981ffed3de055db34e3c653Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez
ee815f60dc4a090fa9fcfba0135f4707af21420dEngineering and Applied Science, SUNY Binghamton University, NY, USA
3dabf7d853769cfc4986aec443cc8b6699136ed0Engineering and Natural Science, Sabanci University, Istanbul, Turkey
ce6f459462ea9419ca5adcc549d1d10e616c0213Engineering, G.H.Raisoni College of Engineering
9853136dbd7d5f6a9c57dc66060cab44a86cd662Engineering, Iran University
9853136dbd7d5f6a9c57dc66060cab44a86cd662Engineering, Iran University
63c109946ffd401ee1195ed28f2fb87c2159e63dEngineering, National Formosa University
2f78e471d2ec66057b7b718fab8bfd8e5183d8f4Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman
23e75f5ce7e73714b63f036d6247fa0172d97cb6Engineering, University of Akron, Akron, OH 44325-3904, USA
d5b0e73b584be507198b6665bcddeba92b62e1e5Engineering, University of Dundee
ffe4bb47ec15f768e1744bdf530d5796ba56cfc1Engineering, York University, Canada
2322ec2f3571e0ddc593c4e2237a6a794c61251dEnlighten Research publications by members of the University of Glasgow
b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom
1565721ebdbd2518224f54388ed4f6b21ebd26f3Eskisehir Osmangazi University
13bda03fc8984d5943ed8d02e49a779d27c84114Eskisehir Osmangazi University
14811696e75ce09fd84b75fdd0569c241ae02f12Eskisehir Osmangazi University
396a19e29853f31736ca171a3f40c506ef418a9fExploratory Computer Vision Group, IBM T. J. Watson Research Center
68f89c1ee75a018c8eff86e15b1d2383c250529bF.Ferraro, University of Rochester
214ac8196d8061981bef271b37a279526aab5024FI-90014 University of Oulu, Finland
5121f42de7cb9e41f93646e087df82b573b23311FLDepartment of Mechanical and Aerospace Engineering - University of Florida - Gainesville
71e6a46b32a8163c9eda69e1badcee6348f1f56aFX Palo Alto Laboratory, Inc., California, USA
df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbbFaceTec, Inc
e378ce25579f3676ca50c8f6454e92a886b9e4d7Facebook 4Texas AandM University 5IBM Research
1c30bb689a40a895bd089e55e0cad746e343d1e2Facebook AI Research, 2Dartmouth College
0ac664519b2b8abfb8966dafe60d093037275573Facial Image Processing and Analysis Group, Institute for Anthropomatics
34d484b47af705e303fc6987413dc0180f5f04a9Facial expression gures prominently in research on almost every aspect of emotion, including psychophys
d41c11ebcb06c82b7055e2964914b9af417abfb2Facial expression gures prominently in research on almost every aspect of emotion, including psychophys
fac8cff9052fc5fab7d5ef114d1342daba5e4b82Faculty member, Parallel Data Lab (PDL), Carnegie Mellon University
1576ed0f3926c6ce65e0ca770475bca6adcfdbb4Faculty of Computer Science, Dalhousie University, Halifax, Canada
9be94fa0330dd493f127d51e4ef7f9fd64613cfcFaculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands
3dbfd2fdbd28e4518e2ae05de8374057307e97b3Faculty of Computer Science, University of A Coru na, Coru na, Spain
1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana
15cf7bdc36ec901596c56d04c934596cf7b43115Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran
4919663c62174a9bc0cc7f60da8f96974b397ad2Faculty of Computers and Information, Cairo University, Cairo, Egypt
20b994a78cd1db6ba86ea5aab7211574df5940b3Faculty of Computing and Informatics, Multimedia University, Malaysia
102b968d836177f9c436141e382915a4f8549276Faculty of EEMCS, Delft University of Technology, The Netherlands
42afe6d016e52c99e2c0d876052ade9c192d91e7Faculty of EEMCS, University of Twente, The Netherlands
2ca43325a5dbde91af90bf850b83b0984587b3ccFaculty of ETI, Gdansk University of Technology, Gdansk, PolandDepartment of Intelligent Interactive Systems
023ed32ac3ea6029f09b8c582efbe3866de7d00aFaculty of Electrical Engineering, Czech Technical University
37c8514df89337f34421dc27b86d0eb45b660a5eFaculty of Electrical Engineering, Czech Technical University in Prague
7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719dFaculty of Electrical Engineering, Mathematics and Computer Science, Delft University of
e42998bbebddeeb4b2bedf5da23fa5c4efc976faFaculty of Electrical Engineering, Mathematics and Computer Science, University
3505c9b0a9631539e34663310aefe9b05ac02727Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The
ac9dfbeb58d591b5aea13d13a83b1e23e7ef1feaFaculty of Electrical Engineering, University of Ljubljana
368d59cf1733af511ed8abbcbeb4fb47afd4da1cFaculty of Electrical Engineering, University of Ljubljana, Slovenia
1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia
02e39f23e08c2cb24d188bf0ca34141f3cc72d47Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia
afe9cfba90d4b1dbd7db1cf60faf91f24d12b286Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta
12003a7d65c4f98fb57587fd0e764b44d0d10125Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia
32728e1eb1da13686b69cc0bd7cce55a5c963cddFaculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran
32728e1eb1da13686b69cc0bd7cce55a5c963cddFaculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
32728e1eb1da13686b69cc0bd7cce55a5c963cddFaculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
b166ce267ddb705e6ed855c6b679ec699d62e9cbFaculty of Electronics and Communication, Taishan UniversityDepartment of Physics and Electronics Engineering
b166ce267ddb705e6ed855c6b679ec699d62e9cbFaculty of Electronics and Communication, Yanshan UniversityDepartment of Information Science and Engineering
fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9fFaculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland
a308077e98a611a977e1e85b5a6073f1a9bae6f0Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, MalaysiaDepartment of Biomedical Engineering
3dcebd4a1d66313dcd043f71162d677761b07a0dFaculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey
89c51f73ec5ebd1c2a9000123deaf628acf3cdd8Faculty of Engineering and Technology, Multimedia University (Melaka Campus
0172867f4c712b33168d9da79c6d3859b198ed4cFaculty of Engineering, Ain Shams University, Cairo, EgyptComputer and System Engineering Department
03ac1c694bc84a27621da6bfe73ea9f7210c6d45Faculty of Engineering, Al Azhar University, Qena, Egypt
33ef419dffef85443ec9fe89a93f928bafdc922eFaculty of Engineering, Bar-Ilan University, Israel
5f7c4c20ae2731bfb650a96b69fd065bf0bb950eFaculty of Engineering, Ferdowsi University, Mashhad, IranDepartment of Computer Engineering
20b994a78cd1db6ba86ea5aab7211574df5940b3Faculty of Engineering, Multimedia University, Malaysia
0b183f5260667c16ef6f640e5da50272c36d599bFaculty of Informatics, E otv os Lor and University, Budapest, Hungary
1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4ccFaculty of Informatics, University of Debrecen, Hungary
e4df83b7424842ff5864c10fa55d38eae1c45facFaculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia
3daf1191d43e21a8302d98567630b0e2025913b0Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan
50e45e9c55c9e79aaae43aff7d9e2f079a2d787bFaculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam
59e2037f5079794cb9128c7f0900a568ced14c2aFaculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
2c62b9e64aeddf12f9d399b43baaefbca8e11148Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
6eb1e006b7758b636a569ca9e15aafd038d2c1b1Faculty of Science and Engineering, Waseda University, Tokyo, Japan
8d91f06af4ef65193f3943005922f25dbb483ee4Faculty of Science and Technology, University of MacauDepartment of Mathematics
102b968d836177f9c436141e382915a4f8549276Faculty of Science, University of Amsterdam, The Netherlands
6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1Faculty of Science, University of Amsterdam, The Netherlands
a75edf8124f5b52690c08ff35b0c7eb8355fe950Faculty of Science, University of Amsterdam, The Netherlands
eff87ecafed67cc6fc4f661cb077fed5440994bbFaculty of Science, University of Amsterdam, The Netherlands
f0ae807627f81acb63eb5837c75a1e895a92c376Faculty of Telecommunications, Technical University, Sofia, Bulgaria
f0ae807627f81acb63eb5837c75a1e895a92c376Faculty of Telecommunications, Technical University, Sofia, Bulgaria
26af867977f90342c9648ccf7e30f94470d40a73Federal Institute of Science and Technology, Mookkannoor
26af867977f90342c9648ccf7e30f94470d40a73Federal Institute of Science and Technology, Mookkannoor
52012b4ecb78f6b4b9ea496be98bcfe0944353cdFederal University Technology Akure, PMB 704, Akure, NigeriaDepartment of Computer Science
21b16df93f0fab4864816f35ccb3207778a51952Federal University of Bahia (UFBA
9854145f2f64d52aac23c0301f4bb6657e32e562Federal University of Campina Grande (UFCG
e0ed0e2d189ff73701ec72e167d44df4eb6e864dFederal University of Para ba
d30050cfd16b29e43ed2024ae74787ac0bbcf2f7Federal University of Technology - Paran a
a8583e80a455507a0f146143abeb35e769d25e4eFeng Chia University, Taichung, Taiwan
11a210835b87ccb4989e9ba31e7559bb7a9fd292Ferdowsi University of Mashhad, Mashhad, Iranb Department of Computer Engineering
01125e3c68edb420b8d884ff53fb38d9fbe4f2b8Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions
89d7cc9bbcd2fdc4f4434d153ecb83764242227bFinal Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai
1a6c3c37c2e62b21ebc0f3533686dde4d0103b3fFinal Year, PanimalarInstitute of TechnologyDepartment of Computer Science and Engineering
5cfbeae360398de9e20e4165485837bd42b93217Firat University
5cfbeae360398de9e20e4165485837bd42b93217Firat University
23aef683f60cb8af239b0906c45d11dac352fb4eFlorian Metze, Chair (Carnegie Mellon University
47d3b923730746bfaabaab29a35634c5f72c3f04Florida Institute Of Technology, Melbourne FlElectrical And Computer Engineering Department
68f69e6c6c66cfde3d02237a6918c9d1ee678e1bFlorida International University
33ac7fd3a622da23308f21b0c4986ae8a86ecd2bFlorida International University
715b69575dadd7804b4f8ccb419a3ad8b7b7ca89Florida International UniversityDepartment of Psychology
715b69575dadd7804b4f8ccb419a3ad8b7b7ca89Florida International UniversityDepartment of Mathematics and Statistics
14e8dbc0db89ef722c3c198ae19bde58138e88bfFlorida International University
14e8dbc0db89ef722c3c198ae19bde58138e88bfFlorida International University
26a44feb7a64db7986473ca801c251aa88748477Florida State University
26a44feb7a64db7986473ca801c251aa88748477Florida State University
64ec0c53dd1aa51eb15e8c2a577701e165b8517bFlorida State University
64ec0c53dd1aa51eb15e8c2a577701e165b8517bFlorida State University
1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177Florida State University
2878b06f3c416c98496aad6fc2ddf68d2de5b8f6Florida State University, Tallahassee, FL 32306, USAa Department of Computer Science
2878b06f3c416c98496aad6fc2ddf68d2de5b8f6Florida State University, Tallahassee, FL 32306, USAb Department of Mathematics
24f022d807352abf071880877c38e53a98254dcdFlorida State University, Tallahassee, Florida, U.S.AStatistics Department
42ea8a96eea023361721f0ea34264d3d0fc49ebdFlorida State University, USAaDepartment of Statistics
0742d051caebf8a5d452c03c5d55dfb02f84baabFormerly: Texas AandM University
7c42371bae54050dbbf7ded1e7a9b4109a23a482Foundation University Rawalpindi Campus, PakistanDepartment of Software Engineering
0c3f7272a68c8e0aa6b92d132d1bf8541c062141Foundation University, Rawalpindi 46000, PakistanDepartment of Software Engineering
8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09Francis Xavier Engineering College, Tirunelveli, Tamilnadu, IndiaDepartment of Computer Science and Engineering
c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3dFranklin. W. Olin College of Engineering
1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43Fraser University
2c1f8ddbfbb224271253a27fed0c2425599dfe47Fraunhofer Heinrich Hertz Institute
2c1f8ddbfbb224271253a27fed0c2425599dfe47Fraunhofer Heinrich Hertz Institute
0a60d9d62620e4f9bb3596ab7bb37afef0a90a4fFraunhofer Institute for Digital Media Technology, Germany
749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7Fraunhofer Institute for Integrated Circuits IIS
50ccc98d9ce06160cdf92aaf470b8f4edbd8b899Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB
346dbc7484a1d930e7cc44276c29d134ad76dc3fFriedrich Schiller University, D-07740 Jenab Department of Computer Science
7df4f96138a4e23492ea96cf921794fc5287ba72Fudan University
994b52bf884c71a28b4f5be4eda6baaacad1beeeFudan University
1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6Fudan University, 2Microsoft Research Asia, 3University of Maryland
0dfa460a35f7cab4705726b6367557b9f7842c65Fudan University, Shanghai, China
a46086e210c98dcb6cb9a211286ef906c580f4e8Fudan University, Shanghai, China
b5c749f98710c19b6c41062c60fb605e1ef4312aFudan University, Shanghai, China
ee6b503ab512a293e3088fdd7a1c893a77902acbFudan University, Shanghai, China
1dacc2f4890431d867a038fd81c111d639cf4d7eFunding was provided by the U.S. National Institutes of Mental
477236563c6a6c6db922045453b74d3f9535bfa1G. H .Raisoni Collage of Engg and Technology, Wagholi, PuneComputer and Science Department Savitribai Phule Pune University
6d4b5444c45880517213a2fdcdb6f17064b3fa91G.H.Raisoni College of Engg. and Mgmt., Pune, India
6d4b5444c45880517213a2fdcdb6f17064b3fa91G.H.Raisoni College of Engg. and Mgmt., Pune, India
6d4b5444c45880517213a2fdcdb6f17064b3fa91G.H.Raisoni College of Engg. and Mgmt., Pune, India
6515fe829d0b31a5e1f4dc2970a78684237f6edbGE Global Research Center
c87d5036d3a374c66ec4f5870df47df7176ce8b9GIPSA-lab, Institute of Engineering, Universit Grenoble Alpes, Centre National de la Recherche Scienti que, Grenoble INP
69ff40fd5ce7c3e6db95a2b63d763edd8db3a102GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of TechnologyDepartment of Computer Engineering
18166432309000d9a5873f989b39c72a682932f5GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA
5860cf0f24f2ec3f8cbc39292976eed52ba2eafdGREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS
eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6GREYC Research Lab
42dc36550912bc40f7faa195c60ff6ffc04e7cd6GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin
779ad364cae60ca57af593c83851360c0f52c7bfGSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco
fe961cbe4be0a35becd2d722f9f364ec3c26bd34Gallaudet University, Technology Access Program, 800 Florida Ave NE, Washington, DC
cd687ddbd89a832f51d5510c478942800a3e6854Games Studio, Faculty of Engineering and IT, University of Technology, Sydney
8b547b87fd95c8ff6a74f89a2b072b60ec0a3351Games Studio, Faculty of Engineering and IT, University of Technology, Sydney
0c8a0a81481ceb304bd7796e12f5d5fa869ee448Gangnung-Wonju National UniversityDepartment of Electronics Engineering
370b6b83c7512419188f5373a962dd3175a56a9bGannan Normal University
769461ff717d987482b28b32b1e2a6e46570e3ffGannan Normal University, Ganzhou 341000, ChinaDepartment of Mathematics and Computer Science
0b183f5260667c16ef6f640e5da50272c36d599bGatsby Computational Neuroscience Unit, University College London, London, UK
af62621816fbbe7582a7d237ebae1a4d68fcf97dGayathri.S, M.E., Vins Christian college of EngineeringDepartment of Information Technology
81e366ed1834a8d01c4457eccae4d57d169cb932Gdansk University of Technology
6821113166b030d2123c3cd793dd63d2c909a110Gdansk University of Technology, Faculty of Electronics, Telecommunication
9c4cc11d0df2de42d6593f5284cfdf3f05da402aGeorge Mason UniversityDepartment of Computer Science
20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6George Mason UniversityDepartment of Computer Science
d28d697b578867500632b35b1b19d3d76698f4a9George Mason University
4f028efe6708fc252851eee4a14292b7ce79d378George Mason University
757e4cb981e807d83539d9982ad325331cb59b16George Mason University, Fairfax Virginia, USADepartment of Computer Science
1c147261f5ab1b8ee0a54021a3168fa191096df8George Mason University, Fairfax, VA, USADepartment of Computer Science
ce9e1dfa7705623bb67df3a91052062a0a0ca456George Washington University
59d225486161b43b7bf6919b4a4b4113eb50f039Georgia Institute of Technology
69eb6c91788e7c359ddd3500d01fb73433ce2e65Georgia Institute of Technology
93af36da08bf99e68c9b0d36e141ed8154455ac2Georgia Institute of Technology
5a87bc1eae2ec715a67db4603be3d1bb8e53ace2Georgia Institute of Technology
5fa04523ff13a82b8b6612250a39e1edb5066521Georgia Institute of Technology
bd8f77b7d3b9d272f7a68defc1412f73e5ac3135Georgia Institute of Technology
e293a31260cf20996d12d14b8f29a9d4d99c4642Georgia Institute of Technology
f4f9697f2519f1fe725ee7e3788119ed217dca34Georgia Institute of Technology
e4bc529ced68fae154e125c72af5381b1185f34eGeorgia Institute of Technology
fb85867c989b9ee6b7899134136f81d6372526a9Georgia Institute of Technology
20c02e98602f6adf1cebaba075d45cef50de089fGeorgia Institute of Technology
20c02e98602f6adf1cebaba075d45cef50de089fGeorgia Institute of Technology
1fdeba9c4064b449231eac95e610f3288801fd3eGeorgia Institute of Technology
5c8ae37d532c7bb8d7f00dfde84df4ba63f46297Georgia Institute of Technology
5c8ae37d532c7bb8d7f00dfde84df4ba63f46297Georgia Institute of Technology
91df860368cbcebebd83d59ae1670c0f47de171dGeorgia Institute of Technology
98c2053e0c31fab5bcb9ce5386335b647160cc09Georgia Institute of Technology
aac934f2eed758d4a27562dae4e9c5415ff4cdb7Georgia Institute of Technology
a6e25cab2251a8ded43c44b28a87f4c62e3a548aGeorgia Institute of Technology
7966146d72f9953330556baa04be746d18702047Georgia Institute of Technology
4f0b8f730273e9f11b2bfad2415485414b96299fGeorgia Institute of Technology
4dca3d6341e1d991c902492952e726dc2a443d1cGeorgia Institute of Technology 2Emory University
96f0e7416994035c91f4e0dfa40fd45090debfc5Georgia Institute of Technology, CVIT, IIIT Hyderabad, IIT Kanpur
106092fafb53e36077eba88f06feecd07b9e78e7Georgia Institute of Technology, 2NEC Laboratories America, 3Georgia Tech Research Institute
4aa286914f17cd8cefa0320e41800a99c142a1cdGeorgia Institute of Technology, Atlanta, Georgia, USA
20a3ce81e7ddc1a121f4b13e439c4cbfb01adfbaGerman Research Center for Arti cial Intelligence (DFKI
5da740682f080a70a30dc46b0fc66616884463ecGerman Research Center for Arti cial Intelligence (DFKI
df054fa8ee6bb7d2a50909939d90ef417c73604cGerman Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany
434bf475addfb580707208618f99c8be0c55cf95German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany
fdbacf2ff0fc21e021c830cdcff7d347f2fddd8eGermany, University of Oldenburg, Oldenburg, Germany2Department of Psychology
b15a06d701f0a7f508e3355a09d0016de3d92a6dGettysburg College, Gettysburg, PA, USA
9d58e8ab656772d2c8a99a9fb876d5611fe2fe20Ghent University
ea890846912f16a0f3a860fce289596a7dac575fGiulia Andrighetto, Institute of
c92bb26238f6e30196b0c4a737d8847e61cfb7d4Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia
ae4390873485c9432899977499c3bf17886fa149Glyndwr University
80c8d143e7f61761f39baec5b6dfb8faeb814be9Gokaraju Rangaraju Institute of Engineering and Technology, Hyd
0ced7b814ec3bb9aebe0fcf0cac3d78f36361eaeGokaraju Rangaraju Institute of Engineering and Technology, HyderabadCSE Department
7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922Goldsmiths, University of London
7f82f8a416170e259b217186c9e38a9b05cb3eb4Goldsmiths, University of London, London, UKDepartment of Computing
193debca0be1c38dabc42dc772513e6653fd91d8Goldsmiths, University of London, UKDepartment of Computing
936227f7483938097cc1cdd3032016df54dbd5b6Gonda Brain Research Center, Bar Ilan University, Israel
51cb09ee04831b95ae02e1bee9b451f8ac4526e3Google, Inc
113c22eed8383c74fe6b218743395532e2897e71Google, Inc
3634b4dd263c0f330245c086ce646c9bb748cd6bGoogle, Inc
dde5125baefa1141f1ed50479a3fd67c528a965fGoogle, Inc. 2University of Massachusetts Amherst 3MIT CSAIL
924b14a9e36d0523a267293c6d149bca83e73f3bGovernance, Keio University
bc6de183cd8b2baeebafeefcf40be88468b04b74Government College of Engineering
28bcf31f794dc27f73eb248e5a1b2c3294b3ec9dGovernment College of Engineering, Aurangabad
bd78a853df61d03b7133aea58e45cd27d464c3cfGovernment College of Engineering, Aurangabad [Autonomous
3fb26f3abcf0d287243646426cd5ddeee33624d4Grad. School at Shenzhen, Tsinghua UniversityTsinghua University 2Department of Automation
41aa209e9d294d370357434f310d49b2b0baebebGrad. School of Information Science and Technology, The University of Tokyo, Japan
47eba2f95679e106e463e8296c1f61f6ddfe815bGraduate Institute of Electronics Engineering, National Taiwan University
91e507d2d8375bf474f6ffa87788aa3e742333ceGraduate Institute of Networking and Multimedia, National Taiwan University
6ab33fa51467595f18a7a22f1d356323876f8262Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
5b73b7b335f33cda2d0662a8e9520f357b65f3acGraduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
2afdda6fb85732d830cea242c1ff84497cd5f3cbGraduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan
9110c589c6e78daf4affd8e318d843dc750fb71aGraduate School at Shenzhen, Tsinghua University, Shenzhen
207798603e3089a1c807c93e5f36f7767055ec06Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
dced05d28f353be971ea2c14517e85bc457405f3Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University
3fac7c60136a67b320fc1c132fde45205cd2ac66Graduate School of Doshisha University, Kyoto, Japan
11408af8861fb0a977412e58c1a23d61b8df458cGraduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
837e99301e00c2244023a8a48ff98d7b521c93acGraduate School of Engineering, Tottori University
537d8c4c53604fd419918ec90d6ef28d045311d0Graduate School of Informatics, Kyoto University
d3b550e587379c481392fb07f2cbbe11728cf7a6Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
09b0ef3248ff8f1a05b8704a1b4cf64951575be9Graduate School of Information Science and Technology, The University of Tokyo
9730b9cd998c0a549601c554221a596deda8af5bGraduate School of Information Science and Technology, The University of Tokyo
c0723e0e154a33faa6ff959d084aebf07770ffafGraduate School of Information Science, Nagoya University, Japan
5b86c36e3eb59c347b81125d5dd57dd2a2c377a9Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
5865e824e3d8560e07840dd5f75cfe9bf68f9d96Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara
a6ebe013b639f0f79def4c219f585b8a012be04fGraduate School of Science and Engineering, Saitama University
b133b2d7df9b848253b9d75e2ca5c68e21eba008Graduate School of System Informatics, Kobe University
9cbb6e42a35f26cf1d19f4875cd7f6953f10b95dGraduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan
11408af8861fb0a977412e58c1a23d61b8df458cGraduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan
98fb3890c565f1d32049a524ec425ceda1da5c24Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan
856317f27248cdb20226eaae599e46de628fb696Graduate School of Systems and Information Engineering, University of Tsukuba
ffea8775fc9c32f573d1251e177cd283b4fe09c9Graduate University for Advanced Studies, Kanagawa, Japan
449808b7aa9ee6b13ad1a21d9f058efaa400639aGraduate University of CAS, 100190, Beijing, China
bd8b7599acf53e3053aa27cfd522764e28474e57Graduate University of Chinese Academy of Sciences(CAS), 100190, China
32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6bGraduate University of Chinese Academy of Sciences, Beijing 100049, China
80bd795930837330e3ced199f5b9b75398336b87Graduate University of Chinese Academy of Sciences, Beijing 100049, China
061e29eae705f318eee703b9e17dc0989547ba0cGraduate University of Chinese Academy of Sciences, Beijing 100049, China
64d5772f44efe32eb24c9968a3085bc0786bfca7Graduate University of Chinese Academy of Sciences, Beijing 100049, China
ac86ccc16d555484a91741e4cb578b75599147b2Gravis Research Group, University of BaselDepartment for Mathematics and Computer Science
44f23600671473c3ddb65a308ca97657bc92e527Graz University of Technology
44f23600671473c3ddb65a308ca97657bc92e527Graz University of Technology
96a9ca7a8366ae0efe6b58a515d15b44776faf6eGraz University of Technology
de8381903c579a4fed609dff3e52a1dc51154951Graz University of Technology
c5935b92bd23fd25cae20222c7c2abc9f4caa770Graz University of Technology
c5935b92bd23fd25cae20222c7c2abc9f4caa770Graz University of Technology
4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8Graz University of Technology
fc2bad3544c7c8dc7cd182f54888baf99ed75e53Graz University of Technology, Austria
80277fb3a8a981933533cf478245f262652a33b5Graz University of Technology, Austria
5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48Graz University of Technology, Austria
9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6Gri th University, QLD-4111, Brisbane, Australia
7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922Grif th University, Australia
05f3d1e9fb254b275354ca69018e9ed321dd8755Grif th University, QLD, Australia
ee815f60dc4a090fa9fcfba0135f4707af21420dGrove School of Engineering, CUNY City College, NY, USA
d72973a72b5d891a4c2d873daeb1bc274b48cddfGuangdong Medical College
764882e6779fbee29c3d87e00302befc52d2ea8dGuangdong University of Technology
764882e6779fbee29c3d87e00302befc52d2ea8dGuangdong University of Technology
764882e6779fbee29c3d87e00302befc52d2ea8dGuangdong University of Technology
1b70bbf7cdfc692873ce98dd3c0e191580a1b041Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India
9d36c81b27e67c515df661913a54a797cd1260bbGujarat Technological University, IndiaDepartment of Information Technology
9d36c81b27e67c515df661913a54a797cd1260bbGujarat Technological University, IndiaDepartment of Computer Engineering
2b4d092d70efc13790d0c737c916b89952d4d8c7Gujarat Technological University, V.V.Nagar, India
15cf1f17aeba62cd834116b770f173b0aa614bf4Gyan Ganga Institute of
68f89c1ee75a018c8eff86e15b1d2383c250529bH. He, Honkong Polytechnic University
c588c89a72f89eed29d42f34bfa5d4cffa530732HAVELSAN Inc., 2Bilkent University, 3Hacettepe University
bd70f832e133fb87bae82dfaa0ae9d1599e52e4bHCI Lab., Samsung Advanced Institute of Technology, Yongin, Korea
711bb5f63139ee7a9b9aef21533f959671a7d80eHELSINKI UNIVERSITY OF TECHNOLOGY
711bb5f63139ee7a9b9aef21533f959671a7d80eHELSINKI UNIVERSITY OF TECHNOLOGY
13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bdHOD, St. Joseph College of Information Technology, Songea, TanzaniaDepartment of Computer Science
5050807e90a925120cbc3a9cd13431b98965f4b9Hacettepe UniversityDepartment of Computer Engineering
9865fe20df8fe11717d92b5ea63469f59cf1635aHacettepe University
4bd088ba3f42aa1e43ae33b1988264465a643a1fHalmstad University
b73795963dc623a634d218d29e4a5b74dfbc79f1Hangzhou Institute of Service
b73795963dc623a634d218d29e4a5b74dfbc79f1Hangzhou Normal University
8af411697e73f6cfe691fe502d4bfb42510b4835Hankuk University of Foreign Studies, South Korea
a59cdc49185689f3f9efdf7ee261c78f9c180789Hanoi University of Science and Technology
f842b13bd494be1bbc1161dc6df244340b28a47fHanshan Normal University, Chaozhou, 521041, ChinaDepartment of Physics and Electronic Engineering
f842b13bd494be1bbc1161dc6df244340b28a47fHanshan Normal University, Chaozhou, 521041, ChinaDepartment of Physics and Electronic Engineering
946017d5f11aa582854ac4c0e0f1b18b06127ef1Hanyang University
7d53678ef6009a68009d62cd07c020706a2deac3Hanyang UniversityDepartment of Electronics and Computer Engineering
f5149fb6b455a73734f1252a96a9ce5caa95ae02Harbin Institute of Technology
f5149fb6b455a73734f1252a96a9ce5caa95ae02Harbin Institute of Technology
b73795963dc623a634d218d29e4a5b74dfbc79f1Harbin Institute of Technology
993d189548e8702b1cb0b02603ef02656802c92bHarbin Institute of Technology (Shenzhen), China
a52581a7b48138d7124afc7ccfcf8ec3b48359d0Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Computer Science and Technology
ad784332cc37720f03df1c576e442c9c828a587aHarbin Institute of Technology, Harbin, ChinaDepartment of Computer Science
016a8ed8f6ba49bc669dbd44de4ff31a79963078Harbin Institute of Technology, Harbin, ChinaDepartment of Computer Science
badcfb7d4e2ef0d3e332a19a3f93d59b4f85668eHarbin Institute of Technology, Harbin, China
c9e955cb9709f16faeb0c840f4dae92eb875450aHarbin Institute of Technology, School of Computer Science and Technology
f5149fb6b455a73734f1252a96a9ce5caa95ae02Harbin Institute of Technology;Shenzhen University
591a737c158be7b131121d87d9d81b471c400dbaHarvard University
3d0379688518cc0e8f896e30815d0b5e8452d4cdHarvard University
3d0379688518cc0e8f896e30815d0b5e8452d4cdHarvard University
0ba402af3b8682e2aa89f76bd823ddffdf89fa0aHarvard University
023be757b1769ecb0db810c95c010310d7daf00bHarvard University
4b74f2d56cd0dda6f459319fec29559291c61bffHarvard University
d3b18ba0d9b247bfa2fb95543d172ef888dfff95Harvard University 2University of Southern California
17479e015a2dcf15d40190e06419a135b66da4e0Harvard University 3Perceptive Automata, IncDepartment of Psychology
b1451721864e836069fa299a64595d1655793757Harvard University 4Max Planck Institute for Informatics
20cfb4136c1a984a330a2a9664fcdadc2228b0bcHarvard University, Cambridge, MA
78436256ff8f2e448b28e854ebec5e8d8306cf21Harvard University, Cambridge, MADepartment of Molecular and Cellular Biology
d0509afe9c2c26fe021889f8efae1d85b519452aHarvard University, Cambridge, MA 02138, USA
78436256ff8f2e448b28e854ebec5e8d8306cf21Harvard University, Cambridge, MA, USADepartment of Computer Science
25e2d3122d4926edaab56a576925ae7a88d68a77Harvard University, USA
25e2d3122d4926edaab56a576925ae7a88d68a77Harvard and Massachusetts Institute
31182c5ffc8c5d8772b6db01ec98144cd6e4e897Hasan Kalyoncu University, Gaziantep, TurkeyDepartment of Electrical and Electronic Engineering
b4362cd87ad219790800127ddd366cc465606a78Head and Neck Surgery, Seoul National UniversityDepartment of Otorhinolaryngology
581e920ddb6ecfc2a313a3aa6fed3d933b917ab0Hector Research Institute of Education Sciences and Psychology, T ubingen
c9e955cb9709f16faeb0c840f4dae92eb875450aHeilongjiang University, College of Computer Science and Technology, China
03adcf58d947a412f3904a79f2ab51cfdf0e838aHeld at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India
587c48ec417be8b0334fa39075b3bfd66cc29dbeHelen Wills Neuroscience Institute, University of
ff9195f99a1a28ced431362f5363c9a5da47a37bHelen Wills Neuroscience Institute, University of
b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807Helsinki Collegium for Advanced Studies, University of Helsinki, Finland
b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807Helsinki Institute for Information Technology, Aalto University, Finland
711bb5f63139ee7a9b9aef21533f959671a7d80eHelsinki University of Technology Laboratory of Computational Engineering Publications
0b87d91fbda61cdea79a4b4dcdcb6d579f063884Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China
17045163860fc7c38a0f7d575f3e44aaa5fa40d7Hengyang Normal University, Hengyang, China
2cdc40f20b70ca44d9fd8e7716080ee05ca7924aHeriot-Watt University
7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632bHeudiasyc Laboratory, CNRS, University of Technology of Compi`egne
907475a4febf3f1d4089a3e775ea018fbec895feHeudiasyc Laboratory, CNRS, University of Technology of Compi`egne
ea6f5c8e12513dbaca6bbdff495ef2975b8001bdHigh Institute of Medical Technologies
ac559873b288f3ac28ee8a38c0f3710ea3f986d9Hikvision Research Institute
bd21109e40c26af83c353a3271d0cd0b5c4b4adeHikvision Research Institute
90fb58eeb32f15f795030c112f5a9b1655ba3624Hindusthan College of Engineering and Technology, Coimbatore, India
44c9b5c55ca27a4313daf3760a3f24a440ce17adHiroshima University, Japan
44c9b5c55ca27a4313daf3760a3f24a440ce17adHiroshima University, Japan
167736556bea7fd57cfabc692ec4ae40c445f144Ho Chi Minh City University of
c2c3ff1778ed9c33c6e613417832505d33513c55Ho Chi Minh City University of ScienceDepartment of Computer Science
b84b7b035c574727e4c30889e973423fe15560d7HoHai University
2331df8ca9f29320dd3a33ce68a539953fa87ff5Honda Fundamental Research Labs
3a0ea368d7606030a94eb5527a12e6789f727994Honda RandD Americas, Inc., Boston, MA, USA
1270044a3fa1a469ec2f4f3bd364754f58a1cb56Honda Research Institute
f2b13946d42a50fa36a2c6d20d28de2234aba3b4Honda Research Institute USA
f2b13946d42a50fa36a2c6d20d28de2234aba3b4Honda Research Institute USA
4836b084a583d2e794eb6a94982ea30d7990f663Hong Kong Applied Science and Technology Research Institute Company Limited
4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China
439647914236431c858535a2354988dde042ef4dHong Kong Baptist UniversityDepartment of Computer Science
11c04c4f0c234a72f94222efede9b38ba6b2306cHong Kong Polytechnic University
38f06a75eb0519ae1d4582a86ef4730cc8fb8d7fHong Kong Polytechnic University, Hong KongDepartment of Computing
48174c414cfce7f1d71c4401d2b3d49ba91c5338Hong Kong Polytechnic University, Hong KongDepartment of Computing
5ea165d2bbd305dc125415487ef061bce75dac7dHong Kong Polytechnic University, Hong Kong, ChinaDepartment of Computing
8000c4f278e9af4d087c0d0895fff7012c5e3d78Hong Kong University of Science and TechnologyDepartment of Computer Science and Engineering
4fcd19b0cc386215b8bd0c466e42934e5baaa4b7Hong Kong University of Science and TechnologyDepartment of Electronic and Computer Engineering
4fcd19b0cc386215b8bd0c466e42934e5baaa4b7Hong Kong University of Science and TechnologyDepartment of Computer Science and Engineering
585260468d023ffc95f0e539c3fa87254c28510bHong Kong University of Science and Technology, Hong Kong
14070478b8f0d84e5597c3e67c30af91b5c3a917Howard Hughes Medical Institute (HHMI
aa912375eaf50439bec23de615aa8a31a3395ad3Howard University, Washington DCDepartment of Electrical Engineering
aa912375eaf50439bec23de615aa8a31a3395ad3Howard University, Washington DCDepartment of Electrical Engineering
a3f684930c5c45fcb56a2b407d26b63879120cbfHua Zhong University of Science and Technology, Wuhan, China
4698a599425c3a6bae1c698456029519f8f2befeHuazhong Agricultural University
4698a599425c3a6bae1c698456029519f8f2befeHuazhong Agricultural University
7f2a4cd506fe84dee26c0fb41848cb219305173fHuazhong University ofDepartment of Electronics and information Engineering
6a0368b4e132f4aa3bbdeada8d894396f201358aHuazhong University of Science and Technology
51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6Huazhong University of Science and Technology
b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24Huazhong University of Science and Technology, Wuhan, China
6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9Human Centered Multimedia, Augsburg University, Germany
0efdd82a4753a8309ff0a3c22106c570d8a84c20Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea
3dabf7d853769cfc4986aec443cc8b6699136ed0Human Development and Applied Psychology, University of Toronto, Ontario, Canada
9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6Human Genome Center, Institute of Medical Science
b073313325b6482e22032e259d7311fb9615356cHuman Interaction Research Lab
6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand
950171acb24bb24a871ba0d02d580c09829de372Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany
7643861bb492bf303b25d0306462f8fb7dc29878Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany
c207fd762728f3da4cddcfcf8bf19669809ab284Human Media Interaction, University of Twente, P.O. Box
b8caf1b1bc3d7a26a91574b493c502d2128791f6Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg
a703d51c200724517f099ee10885286ddbd8b587Human-friendly Welfare Robotic System Engineering Research Center, KAIST
5bc0a89f4f73523967050374ed34d7bc89e4d9e1Humboldt-University, Berlin, Germanyc Department of Psychology
5b01d4338734aefb16ee82c4c59763d3abc008e6Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China
1fe990ca6df273de10583860933d106298655ec8Hunan University
ce56be1acffda599dec6cc2af2b35600488846c9IBM Almaden Research Center, San Jose CA
59be98f54bb4ed7a2984dc6a3c84b52d1caf44ebIBM China Research Lab
91495c689e6e614247495c3f322d400d8098de43IBM China Research Lab
23c3eb6ad8e5f18f672f187a6e9e9b0d94042970IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore
2a88541448be2eb1b953ac2c0c54da240b47dd8aIBM T. J. Watson Research Center
5e16f10f2d667d17c029622b9278b6b0a206d394IBM T. J. Watson Research Center
8323529cf37f955fb3fc6674af6e708374006a28IBM T. J. Watson Research Center
66b9d954dd8204c3a970d86d91dd4ea0eb12db47IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY
499f1d647d938235e9186d968b7bb2ab20f2726dIBM T. J. Watson Research Center, Yorktown Heights, NY, USA
3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264fIBM T.J. Watson Research Center
cfd8c66e71e98410f564babeb1c5fd6f77182c55IBM T.J. Watson Research Center
7e9df45ece7843fe050033c81014cc30b3a8903aIBM T.J. Watson Research Center
c1298120e9ab0d3764512cbd38b47cd3ff69327bIBM TJ Watson Research Center, USA
350da18d8f7455b0e2920bc4ac228764f8fac292IBM Thomas J. Watson Research Center
131178dad3c056458e0400bed7ee1a36de1b2918IBM Watson Research Center, Armonk, NY, USA
bb489e4de6f9b835d70ab46217f11e32887931a2ICMC University of S ao Paulo
0d538084f664b4b7c0e11899d08da31aead87c32ICSI / UC Berkeley 2Brigham Young University
a52581a7b48138d7124afc7ccfcf8ec3b48359d0ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences
89cabb60aa369486a1ebe586dbe09e3557615ef8IDIAP RESEARCH INSTITUTE
816bd8a7f91824097f098e4f3e0f4b69f481689dIDIAP Research Institute
816bd8a7f91824097f098e4f3e0f4b69f481689dIDIAP Research Institute
5160569ca88171d5fa257582d161e9063c8f898dIDIAP Research Institute, Martigny, Switzerland
53ce84598052308b86ba79d873082853022aa7e9IEEE Member, Shahid Rajaee Teacher training UniversityElectrical and Computer Engineering Department
22fdd8d65463f520f054bf4f6d2d216b54fc5677IES College of Technology, BhopalDepartment of Computer Science Engg.
69fb98e11df56b5d7ec7d45442af274889e4be52IHCC, RSCS, CECS, Australian National University
3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA
a301ddc419cbd900b301a95b1d9e4bb770afc6a3IIIS, Tsinghua University
6dd2a0f9ca8a5fee12edec1485c0699770b4cfdfIIIS, Tsinghua University
016800413ebd1a87730a5cf828e197f43a08f4b3IIIS, Tsinghua University
568cff415e7e1bebd4769c4a628b90db293c1717IIIS, Tsinghua University, Beijing, China
3a76e9fc2e89bdd10a9818f7249fbf61d216efc4IIIT-Delhi, India, 2West Virginia University
00d931eccab929be33caea207547989ae7c1ef39IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The NetherlandsDepartment of Computer Science
00d931eccab929be33caea207547989ae7c1ef39IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The NetherlandsDepartment of Computer Science
1e8eec6fc0e4538e21909ab6037c228547a678baIMPERIAL COLLEGE
4a5592ae1f5e9fa83d9fa17451c8ab49608421e4IN3, Open University of
858b51a8a8aa082732e9c7fbbd1ea9df9c76b013INTELSIG, Monte ore Institute, University of Li`ege, Belgium
7bbaa09c9e318da4370a83b126bcdb214e7f8428ISISTAN Research Institute - CONICET - UNICEN
14014a1bdeb5d63563b68b52593e3ac1e3ce7312ISLA Lab, Informatics Institute
935a7793cbb8f102924fa34fce1049727de865c2ISLA Lab, Informatics Institute, University of Amsterdam
ea6f5c8e12513dbaca6bbdff495ef2975b8001bdISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis
ea6f5c8e12513dbaca6bbdff495ef2975b8001bdISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address
178a82e3a0541fa75c6a11350be5bded133a59fdIT Instituto de Telecomunica es, University of Beira Interior, Covilh , PortugalDepartment of Computer Science
ef230e3df720abf2983ba6b347c9d46283e4b690IT - Instituto de Telecomunica es, University of Beira Interior
ef230e3df720abf2983ba6b347c9d46283e4b690IT - Instituto de Telecomunica es, University of Beira Interior
b56f3a7c50bfcd113d0ba84e6aa41189e262d7aeITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing
6043006467fb3fd1e9783928d8040ee1f1db1f3aITCS, Tsinghua University
4e8c608fc4b8198f13f8a68b9c1a0780f6f50105ITEE, The University of Queensland, Australia
7bbaa09c9e318da4370a83b126bcdb214e7f8428ITIC Research Institute, National University of Cuyo
93971a49ef6cc88a139420349a1dfd85fb5d3f5cIdiap Research Institute
939123cf21dc9189a03671484c734091b240183eIdiap Research Institute
b59cee1f647737ec3296ccb3daa25c890359c307Idiap Research Institute
d7593148e4319df7a288180d920f2822eeecea0bIdiap Research Institute
af13c355a2a14bb74847aedeafe990db3fc9cbd4Idiap Research Institute
af13c355a2a14bb74847aedeafe990db3fc9cbd4Idiap Research Institute
235d5620d05bb7710f5c4fa6fceead0eb670dec5Idiap Research Institute
06d93a40365da90f30a624f15bf22a90d9cfe6bbIdiap Research Institute and EPF Lausanne
8dce38840e6cf5ab3e0d1b26e401f8143d2a6bffIdiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay
0b642f6d48a51df64502462372a38c50df2051b1Idiap Research Institute, Martigny, Switzerland
52472ec859131844f38fc7d57944778f01d109acIdiap Research Institute, Martigny, Switzerland
c23153aade9be0c941390909c5d1aad8924821dbIdiap Research Institute, Martigny, Switzerland
78d645d5b426247e9c8f359694080186681f57dbIdiap Research Institute, Martigny, Switzerland
46ae4d593d89b72e1a479a91806c39095cd96615Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France
167736556bea7fd57cfabc692ec4ae40c445f144Idiap Research Institute, Switzerland
68484ae8a042904a95a8d284a7f85a4e28e37513Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland
47b508abdaa5661fe14c13e8eb21935b8940126bIftm University, Moradabad-244001 U.P
9d66de2a59ec20ca00a618481498a5320ad38481Illinois Institute of Technologyy Department of Computer Science
27846b464369095f4909f093d11ed481277c8bbaIllinois Institute of Technology, Chicago, Illinois, USADepartment of Electrical and Computer Engineering
1149c6ac37ae2310fe6be1feb6e7e18336552d95Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany
df0e280cae018cebd5b16ad701ad101265c369faImage Processing Center, Beihang University
2c62b9e64aeddf12f9d399b43baaefbca8e11148Image Understanding and Interactive Robotics, Reutlingen University, 72762 Reutlingen, Germany
64f9519f20acdf703984f02e05fd23f5e2451977Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia
98af221afd64a23e82c40fd28d25210c352e41b7Image and Video Research Laboratory, Queensland University of Technology
0d14261e69a4ad4140ce17c1d1cea76af6546056Imaging Science and Biomedical Engineering, The University of Manchester, UK
1b60b8e70859d5c85ac90510b370b501c5728620Imaging Science and Biomedical Engineering, The University of Manchester, UK
0de91641f37b0a81a892e4c914b46d05d33fd36eImperial College London
59d8fa6fd91cdb72cd0fa74c04016d79ef5a752bImperial College London
5040f7f261872a30eec88788f98326395a44db03Imperial College London
03b03f5a301b2ff88ab3bb4969f54fd9a35c7271Imperial College London
046a694bbb3669f2ff705c6c706ca3af95db798cImperial College LondonDepartment of Electrical and Electronic Engineering
56e079f4eb40744728fd1d7665938b06426338e5Imperial College London
33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13Imperial College London
a2bcfba155c990f64ffb44c0a1bb53f994b68a15Imperial College LondonDepartment of Computing
a2bcfba155c990f64ffb44c0a1bb53f994b68a15Imperial College LondonDepartment of Electrical and Electronic Engineering
d140c5add2cddd4a572f07358d666fe00e8f4fe1Imperial College London
4bbe460ab1b279a55e3c9d9f488ff79884d01608Imperial College London
29c340c83b3bbef9c43b0c50b4d571d5ed037cbdImperial College London
7cffcb4f24343a924a8317d560202ba9ed26cd0bImperial College London
809ea255d144cff780300440d0f22c96e98abd53Imperial College London
809ea255d144cff780300440d0f22c96e98abd53Imperial College London
1a85956154c170daf7f15f32f29281269028ff69Imperial College LondonDepartment of Computing
1afdedba774f6689eb07e048056f7844c9083be9Imperial College London
8f08b2101d43b1c0829678d6a824f0f045d57da5Imperial College LondonDepartment of Computing
7e0c75ce731131e613544e1a85ae0f2c28ee4c1fImperial College London
88bef50410cea3c749c61ed68808fcff84840c37Imperial College LondonDepartment of Computing
38cbb500823057613494bacd0078aa0e57b30af8Imperial College London
38cbb500823057613494bacd0078aa0e57b30af8Imperial College London
9af9a88c60d9e4b53e759823c439fc590a4b5bc5Imperial College London
54bb25a213944b08298e4e2de54f2ddea890954aImperial College London
54bb25a213944b08298e4e2de54f2ddea890954aImperial College London
54bb25a213944b08298e4e2de54f2ddea890954aImperial College London
54bb25a213944b08298e4e2de54f2ddea890954aImperial College London
06d7ef72fae1be206070b9119fb6b61ce4699587Imperial College London
a812368fe1d4a186322bf72a6d07e1cf60067234Imperial College London
b93bf0a7e449cfd0db91a83284d9eba25a6094d8Imperial College LondonDepartment of Computing
f9ccfe000092121a2016639732cdb368378256d5Imperial College London
2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3Imperial College LondonComputing Department
84e6669b47670f9f4f49c0085311dce0e178b685Imperial College London
1d0128b9f96f4c11c034d41581f23eb4b4dd7780Imperial College London
40bb090a4e303f11168dce33ed992f51afe02ff7Imperial College London
40bb090a4e303f11168dce33ed992f51afe02ff7Imperial College London
40bb090a4e303f11168dce33ed992f51afe02ff7Imperial College London
7a84368ebb1a20cc0882237a4947efc81c56c0c0Imperial College London
8e0ab1b08964393e4f9f42ca037220fe98aad7acImperial College London
2227f978f084ebb18cb594c0cfaf124b0df6bf95Imperial College London
aeeea6eec2f063c006c13be865cec0c350244e5bImperial College London / Twente University
1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6Imperial College London, London, UK
090ff8f992dc71a1125636c1adffc0634155b450Imperial College London, London, UK
7f82f8a416170e259b217186c9e38a9b05cb3eb4Imperial College London, London, UKDepartment of Computing
54bb25a213944b08298e4e2de54f2ddea890954aImperial College London, On do
624496296af19243d5f05e7505fd927db02fd0ceImperial College London, U.K
232b6e2391c064d483546b9ee3aafe0ba48ca519Imperial College London, U.K
9b0489f2d5739213ef8c3e2e18739c4353c3a3b7Imperial College London, UKDepartment of Computing
044d9a8c61383312cdafbcc44b9d00d650b21c70Imperial College London, UKComp. Department
3505c9b0a9631539e34663310aefe9b05ac02727Imperial College London, UKDepartment of Computing
0ba1d855cd38b6a2c52860ae4d1a85198b304be4Imperial College London, UKComputing Department
055de0519da7fdf27add848e691087e0af166637Imperial College London, UKComputing Department
0209389b8369aaa2a08830ac3b2036d4901ba1f1Imperial College London, UK
ac2e44622efbbab525d4301c83cb4d5d7f6f0e55Imperial College London, UK
27eb7a6e1fb6b42516041def6fe64bd028b7614dImperial College London, UK
7df268a3f4da7d747b792882dfb0cbdb7cc431bcImperial College London, UKDepartment of Electrical and Electronic Engineering
42afe6d016e52c99e2c0d876052ade9c192d91e7Imperial College London, UKComputing Department
7492c611b1df6bce895bee6ba33737e7fc7f60a6Imperial College London, UKDepartment of Computing
193debca0be1c38dabc42dc772513e6653fd91d8Imperial College London, UKcid:63)Department of Computing
1921795408345751791b44b379f51b7dd54ebfa2Imperial College London, UK
4c87aafa779747828054cffee3125fcea332364dImperial College London, UKComp. Department
5bd3d08335bb4e444a86200c5e9f57fd9d719e14Imperial College London, UK
013909077ad843eb6df7a3e8e290cfd5575999d2Imperial College London, UKComp. Department
a06b6d30e2b31dc600f622ab15afe5e2929581a7Imperial College London, UK
12095f9b35ee88272dd5abc2d942a4f55804b31eImperial College London, UK
143bee9120bcd7df29a0f2ad6f0f0abfb23977b8Imperial College London, UKComp. Department
f4210309f29d4bbfea9642ecadfb6cf9581ccec7Imperial College London, United KingdomDepartment of Computing
e42998bbebddeeb4b2bedf5da23fa5c4efc976faImperial College London, United KingdomDepartment of Computing
3f957142ef66f2921e7c8c7eadc8e548dccc1327Imperial College London, United KingdomDepartment of Computing
30fd1363fa14965e3ab48a7d6235e4b3516c1da1Imperial College London, United KingdomDepartment of Computing
06c2dfe1568266ad99368fc75edf79585e29095fImperial College London, United KingdomDepartment of Computing
0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7Imperial College of Science, Technology and Medicine
2eb9f1dbea71bdc57821dedbb587ff04f3a25f07Imperial College, 180 Queens GateComputing Department
d65b82b862cf1dbba3dee6541358f69849004f30Imperial College, London, UKDepartment of Electrical and Electronic Engineering
292c6b743ff50757b8230395c4a001f210283a34Imperial College, South Kensington Campus, London SW7 2AZ, UKDepartment of Electrical and Electronic Engineering
283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43In the Graduate College
f7b4bc4ef14349a6e66829a0101d5b21129dcf55Inception Institute of Arti cial
d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5Inception Institute of Arti cial Intelligence (IIAI), Abu Dhabi, UAE
993d189548e8702b1cb0b02603ef02656802c92bInception Institute of Arti cial Intelligence, UAE
7553fba5c7f73098524fbb58ca534a65f08e91e7IndiaCSE Department and CSVTU University
7553fba5c7f73098524fbb58ca534a65f08e91e7IndiaCSE Department and CSVTU University
7f268f29d2c8f58cea4946536f5e2325777fa8faIndian Institute of Informaiton Technology, Allahabad, India
d79365336115661b0e8dbbcd4b2aa1f504b91af6Indian Institute of Science
4be774af78f5bf55f7b7f654f9042b6e288b64bdIndian Institute of Science
4542273a157bfd4740645a6129d1784d1df775d2Indian Institute of Science
6226f2ea345f5f4716ac4ddca6715a47162d5b92Indian Institute of Science Bangalore
6226f2ea345f5f4716ac4ddca6715a47162d5b92Indian Institute of Science Bangalore
13604bbdb6f04a71dea4bd093794e46730b0a488Indian Institute of Science, Bangalore
13604bbdb6f04a71dea4bd093794e46730b0a488Indian Institute of Science, Bangalore
90a754f597958a2717862fbaa313f67b25083bf9Indian Institute of Science, India
1fe1bd6b760e3059fff73d53a57ce3a6079adea1Indian Institute of Technology
cbb27980eb04f68d9f10067d3d3c114efa9d0054Indian Institute of Technology
cbb27980eb04f68d9f10067d3d3c114efa9d0054Indian Institute of Technology
cbb27980eb04f68d9f10067d3d3c114efa9d0054Indian Institute of Technology
48463a119f67ff2c43b7c38f0a722a32f590dfebIndian Institute of Technology
48463a119f67ff2c43b7c38f0a722a32f590dfebIndian Institute of Technology
48463a119f67ff2c43b7c38f0a722a32f590dfebIndian Institute of Technology
1e94cc91c5293c8fc89204d4b881552e5b2ce672Indian Institute of Technology Delhi, New Delhi, India
3f4bfa4e3655ef392eb5ad609d31c05f29826b45Indian Institute of Technology Kanpur
53a41c711b40e7fe3dc2b12e0790933d9c99a6e0Indian Institute of Technology Kharagpur
db67edbaeb78e1dd734784cfaaa720ba86ceb6d2Indian Institute of Technology Kharagpur
aae742779e8b754da7973949992d258d6ca26216Indian Institute of Technology Kharagpur, India
68f61154a0080c4aae9322110c8827978f01ac2eIndian Institute of Technology Madras, Chennai 600036, IndiaDepartment of Electrical Engineering
959bcb16afdf303c34a8bfc11e9fcc9d40d76b1cIndian Institute of Technology Madras, Chennai, India
59efb1ac77c59abc8613830787d767100387c680Indian Institute of Technology Ropar
59efb1ac77c59abc8613830787d767100387c680Indian Institute of Technology Ropar
f997a71f1e54d044184240b38d9dc680b3bbbbc0Indian Institute of Technology Ropar
f997a71f1e54d044184240b38d9dc680b3bbbbc0Indian Institute of Technology Ropar
f997a71f1e54d044184240b38d9dc680b3bbbbc0Indian Institute of Technology Ropar
f997a71f1e54d044184240b38d9dc680b3bbbbc0Indian Institute of Technology Ropar
db3545a983ffd24c97c18bf7f068783102548ad7Indian Institute of Technology, Bombay, India
e9bb045e702ee38e566ce46cc1312ed25cb59ea7Indian Institute of Technology, Kharagpur
0fae5d9d2764a8d6ea691b9835d497dd680bbccdIndian Institute of Technology, Madras
0fae5d9d2764a8d6ea691b9835d497dd680bbccdIndian Institute of Technology, Madras
86c5478f21c4a9f9de71b5ffa90f2a483ba5c497Indian Institute of Technology, Madras, Chennai 600036, INDIADepartment of Computer Science and Engineering
e9bb045e702ee38e566ce46cc1312ed25cb59ea7Indian Institute of Technology, Roorkee
f3a59d85b7458394e3c043d8277aa1ffe3cdac91Indiana University
0182d090478be67241392df90212d6cd0fb659e6Indiana University
0182d090478be67241392df90212d6cd0fb659e6Indiana University
0b835284b8f1f45f87b0ce004a4ad2aca1d9e153Indiana University Bloomington
b7894c1f805ffd90ab4ab06002c70de68d6982abIndra Ganesan College of Engineering, Trichy, IndiaDepartment of Computer Science and Engineering
97865d31b5e771cf4162bc9eae7de6991ceb8bbfIndraprastha Institute of Information Technology
8fa3478aaf8e1f94e849d7ffbd12146946badabaIndraprastha Institute of Information Technology (Delhi, India
869a2fbe42d3fdf40ed8b768edbf54137be7ac71Indraprastha Institute of Information Technology, Delhi
787c1bb6d1f2341c5909a0d6d7314bced96f4681Indraprastha Institute of Information Technology, Delhi
0f21a39fa4c0a19c4a5b4733579e393cb1d04f71Informatics Institute
205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffaInformatics and Telematics Institute
d5afd7b76f1391321a1340a19ba63eec9e0f9833Informatics and Telematics Institute
5b9d41e2985fa815c0f38a2563cca4311ce82954Informatics and Telematics Institute, Centre for Research and Technology Hellas
a2bcfba155c990f64ffb44c0a1bb53f994b68a15Informatics and Telematics Institute, Centre of Research and Technology - Hellas
ff7bc7a6d493e01ec8fa2b889bcaf6349101676eInformation Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland
fa90b825346a51562d42f6b59a343b98ea2e501aInformation Sciences Institute and Computer Science, University of Southern California
582edc19f2b1ab2ac6883426f147196c8306685aInformation Sciences Institute, USC, CA, USA
c75e6ce54caf17b2780b4b53f8d29086b391e839Information Sciences Institute, USC, CA, USA
870433ba89d8cab1656e57ac78f1c26f4998edfbInformation Sciences Institute, USC, CA, USA
0a34fe39e9938ae8c813a81ae6d2d3a325600e5cInformation Sciences Institute, USC, CA, USA
1e6ed6ca8209340573a5e907a6e2e546a3bf2d28Information Sciences Institute, USC, CA, USA
12408baf69419409d228d96c6f88b6bcde303505Information Sciences Institute, USC, CA, USA
3fac7c60136a67b320fc1c132fde45205cd2ac66Information Systems Design, Doshisha University, Kyoto, Japan
892c911ca68f5b4bad59cde7eeb6c738ec6c4586Information Systems, University of Wisconsin-River Falls, Wisconsin, WI, United States of America
182470fd0c18d0c5979dff75d089f1da176ceeebInformation Technologies Institute
bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9Information Technology University (ITU), Punjab, Lahore, Pakistan
e4bf70e818e507b54f7d94856fecc42cc9e0f73dInformation Technology, Madras Institute of Technology, TamilNadu, India, email
d5b5c63c5611d7b911bc1f7e161a0863a34d44eaInformation and Media Processing Research Laboratories, NEC Corporation
924b14a9e36d0523a267293c6d149bca83e73f3bInformation, Keio University
ac51d9ddbd462d023ec60818bac6cdae83b66992Informatization Office, National University of Defense Technology, Changsha 410073, China
af278274e4bda66f38fd296cfa5c07804fbc26eeInnopolis University, Kazan, RussiaDepartment of Computer Science
2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3Inst. Neural Computation, University of California
a6e21438695dbc3a184d33b6cf5064ddf655a9baInstitiude of Computer Science and Technology, Peking University
31afdb6fa95ded37e5871587df38976fdb8c0d67Institute
1b4bc7447f500af2601c5233879afc057a5876d8Institute
66330846a03dcc10f36b6db9adf3b4d32e7a3127Institute AIFB, Karlsruhe Institute of Technology, Germany
8c9c8111e18f8798a612e7386e88536dfe26455eInstitute Polythechnic of Leiria, Portugal
ea890846912f16a0f3a860fce289596a7dac575fInstitute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
24f1febcdf56cd74cb19d08010b6eb5e7c81c362Institute for Advanced
4377b03bbee1f2cf99950019a8d4111f8de9c34aInstitute for Advanced Computer Studies
074af31bd9caa61fea3c4216731420bd7c08b96aInstitute for Advanced Computer Studies, University of Maryland, College Park, MD
507c9672e3673ed419075848b4b85899623ea4b0Institute for Anthropomatics
9ed4ad41cbad645e7109e146ef6df73f774cd75dInstitute for Anthropomatics
a5ade88747fa5769c9c92ffde9b7196ff085a9ebInstitute for Anthropomatics
a5ade88747fa5769c9c92ffde9b7196ff085a9ebInstitute for Anthropomatics
10f66f6550d74b817a3fdcef7fdeba13ccdba51cInstitute for Anthropomatics
656ef752b363a24f84cc1aeba91e4fa3d5dd66baInstitute for Anthropomatics
14b87359f6874ff9b8ee234b18b418e57e75b762Institute for Anthropomatics
ae4390873485c9432899977499c3bf17886fa149Institute for Arts, Science and Technology
de15af84b1257211a11889b6c2adf0a2bcf59b42Institute for Communication Systems
f7a271acccf9ec66c9b114d36eec284fbb89c7efInstitute for Complex
fc2bad3544c7c8dc7cd182f54888baf99ed75e53Institute for Computer Graphics and Vision
80277fb3a8a981933533cf478245f262652a33b5Institute for Computer Graphics and Vision
5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48Institute for Computer Graphics and Vision
96a9ca7a8366ae0efe6b58a515d15b44776faf6eInstitute for Computer Graphics and Vision
de8381903c579a4fed609dff3e52a1dc51154951Institute for Computer Graphics and Vision
4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8Institute for Computer Graphics and Vision
3137a3fedf23717c411483c7b4bd2ed646258401Institute for Computer Graphics and Vision, Graz University of Technology
2dd2c7602d7f4a0b78494ac23ee1e28ff489be88Institute for Computer Graphics and Vision, Graz University of Technology
b73795963dc623a634d218d29e4a5b74dfbc79f1Institute for Creative Technologies
e35b09879a7df814b2be14d9102c4508e4db458bInstitute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States
910524c0d0fe062bf806bb545627bf2c9a236a03Institute for Electronics, Signal Processing and Communications
561ae67de137e75e9642ab3512d3749b34484310Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn
fe464b2b54154d231671750053861f5fd14454f5Institute for Human-Machine
e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5Institute for Human-Machine Communication
966e36f15b05ef8436afecf57a97b73d6dcada94Institute for Human-Machine Communication, Technische Universit at M unchen
718824256b4461d62d192ab9399cfc477d3660b4Institute for Human-Machine Communication, Technische Universit at M unchen, Germany
464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05aInstitute for Infocomm Research
b1429e4d3dd3412e92a37d2f9e0721ea719a9b9eInstitute for Infocomm Research (I2R), A*STAR, Singapore
3b557c4fd6775afc80c2cf7c8b16edde125b270eInstitute for Infocomm Research, A*STAR
3d948e4813a6856e5b8b54c20e50cc5050e66abeInstitute for Infocomm Research, A*STAR, Singapore
1e07500b00fcd0f65cf30a11f9023f74fe8ce65cInstitute for Infocomm Research, A*STAR, Singapore
0bf3513d18ec37efb1d2c7934a837dabafe9d091Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore
481fb0a74528fa7706669a5cce6a212ac46eaea3Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore
c7c03324833ba262eeaada0349afa1b5990c1ea7Institute for Infocomm Research, SingaporeVisual Computing Department
1f9b2f70c24a567207752989c5bd4907442a9d0fInstitute for Infocomm Research, Singapore
6409b8879c7e61acf3ca17bcc62f49edca627d4cInstitute for Information Systems Engineering
b73d9e1af36aabb81353f29c40ecdcbdf731dbedInstitute for Information Technology and Communications (IIKT), Otto-von-Guericke-University
d0d7671c816ed7f37b16be86fa792a1b29ddd79bInstitute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
fdfd57d4721174eba288e501c0c120ad076cdca8Institute for Language, Cognition and Computation
fe464b2b54154d231671750053861f5fd14454f5Institute for Media Technology
a0061dae94d916f60a5a5373088f665a1b54f673Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
9547a7bce2b85ef159b2d7c1b73dea82827a449fInstitute for Neural Computation
57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1Institute for Neural Computation
9a1a9dd3c471bba17e5ce80a53e52fcaaad4373eInstitute for Neural Computation, University of California, San Diego
1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61Institute for Neural Computation, University of California, San Diego
3dabf7d853769cfc4986aec443cc8b6699136ed0Institute for Neural Computation, University of California, San Diego, La Jolla, CA
50f0c495a214b8d57892d43110728e54e413d47dInstitute for Numerical Mathematics
54a9ed950458f4b7e348fa78a718657c8d3d0e05Institute for Optical Systems, HTWG Konstanz, Germany
c78fdd080df01fff400a32fb4cc932621926021fInstitute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan
c78fdd080df01fff400a32fb4cc932621926021fInstitute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan
87e6cb090aecfc6f03a3b00650a5c5f475dfebe1Institute for Robotics and Intelligent
1cad5d682393ffbb00fd26231532d36132582bb4Institute for Robotics and Intelligent
6341274aca0c2977c3e1575378f4f2126aa9b050Institute for Robotics and Intelligent Systems
582edc19f2b1ab2ac6883426f147196c8306685aInstitute for Robotics and Intelligent Systems, USC, CA, USA
c75e6ce54caf17b2780b4b53f8d29086b391e839Institute for Robotics and Intelligent Systems, USC, CA, USA
870433ba89d8cab1656e57ac78f1c26f4998edfbInstitute for Robotics and Intelligent Systems, USC, CA, USA
0a34fe39e9938ae8c813a81ae6d2d3a325600e5cInstitute for Robotics and Intelligent Systems, USC, CA, USA
1e6ed6ca8209340573a5e907a6e2e546a3bf2d28Institute for Robotics and Intelligent Systems, USC, CA, USA
d28d32af7ef9889ef9cb877345a90ea85e70f7f1Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA
f963967e52a5fd97fa3ebd679fd098c3cb70340eInstitute for Studies in Fundamental Sciences (IPM), Tehran, Iran
d1881993c446ea693bbf7f7d6e750798bf958900Institute for System Programming
d1881993c446ea693bbf7f7d6e750798bf958900Institute for System Programming
0ef96d97365899af797628e80f8d1020c4c7e431Institute for Vision Systems Engineering
87bee0e68dfc86b714f0107860d600fffdaf7996Institute for Vision and Graphics, University of Siegen, Germany
d350a9390f0818703f886138da27bf8967fe8f51Institute for Vision and Graphics, University of Siegen, Germany
b4f4b0d39fd10baec34d3412d53515f1a4605222Institute for studies in theoretical Physics and Mathematics(IPM
0515e43c92e4e52254a14660718a9e498bd61cf5Institute of
5ea9cba00f74d2e113a10c484ebe4b5780493964Institute of
bbcb4920b312da201bf4d2359383fb4ee3b17ed9Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing
bbe949c06dc4872c7976950b655788555fe513b8Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany
4ff4c27e47b0aa80d6383427642bb8ee9d01c0acInstitute of Arti cial Intelligence and Cognitive Engineering
d8896861126b7fd5d2ceb6fed8505a6dff83414fInstitute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen
1255afbf86423c171349e874b3ac297de19f00cdInstitute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen
2588acc7a730d864f84d4e1a050070ff873b03d5Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an 710049, China
f02a6bccdaee14ab55ad94263539f4f33f1b15bbInstitute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an, Shannxi 710049, China
fe464b2b54154d231671750053861f5fd14454f5Institute of Automatic Control
d074b33afd95074d90360095b6ecd8bc4e5bb6a2Institute of Automatic Control Engineering (LSR
6691dfa1a83a04fdc0177d8d70e3df79f606b10fInstitute of Automation
171d8a39b9e3d21231004f7008397d5056ff23afInstitute of Automation
122f51cee489ba4da5ab65064457fbe104713526Institute of Automation
122f51cee489ba4da5ab65064457fbe104713526Institute of Automation
122f51cee489ba4da5ab65064457fbe104713526Institute of Automation
122f51cee489ba4da5ab65064457fbe104713526Institute of Automation
d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4eInstitute of Automation Chinese Academy of Sciences, Beijing, China
b3c398da38d529b907b0bac7ec586c81b851708fInstitute of Automation, Chinese Academy of
3d18ce183b5a5b4dcaa1216e30b774ef49eaa46fInstitute of Automation, Chinese Academy of Sciences
d04d5692461d208dd5f079b98082eda887b62323Institute of Automation, Chinese Academy of Sciences
bc910ca355277359130da841a589a36446616262Institute of Automation, Chinese Academy of Sciences
ca54d0a128b96b150baef392bf7e498793a6371fInstitute of Automation, Chinese Academy of Sciences
4e6c17966efae956133bf8f22edeffc24a0470c1Institute of Automation, Chinese Academy of Sciences
2654ef92491cebeef0997fd4b599ac903e48d07aInstitute of Automation, Chinese Academy of Sciences
2a4153655ad1169d482e22c468d67f3bc2c49f12Institute of Automation, Chinese Academy of Sciences
3661a34f302883c759b9fa2ce03de0c7173d2bb2Institute of Automation, Chinese Academy of Sciences
5b89744d2ac9021f468b3ffd32edf9c00ed7fed7Institute of Automation, Chinese Academy of Sciences
63cff99eff0c38b633c8a3a2fec8269869f81850Institute of Automation, Chinese Academy of Sciences
46e72046a9bb2d4982d60bcf5c63dbc622717f0fInstitute of Automation, Chinese Academy of Sciences
4622b82a8aff4ac1e87b01d2708a333380b5913bInstitute of Automation, Chinese Academy of Sciences
82b43bc9213230af9db17322301cbdf81e2ce8ccInstitute of Automation, Chinese Academy of Sciences
492f41e800c52614c5519f830e72561db205e86cInstitute of Automation, Chinese Academy of Sciences
6c80c834d426f0bc4acd6355b1946b71b50cbc0bInstitute of Automation, Chinese Academy of Sciences (CASIA
b11bb6bd63ee6f246d278dd4edccfbe470263803Institute of Automation, Chinese Academy of Sciences (CASIA
2c19d3d35ef7062061b9e16d040cebd7e45f281dInstitute of Automation, Chinese Academy of Sciences (CASIA
488e475eeb3bb39a145f23ede197cd3620f1d98aInstitute of Automation, Chinese Academy of Sciences (CASIA
853bd61bc48a431b9b1c7cab10c603830c488e39Institute of Automation, Chinese Academy of Sciences (CASIA
231a6d2ee1cc76f7e0c5912a530912f766e0b459Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C
2b10a07c35c453144f22e8c539bf9a23695e85fcInstitute of Automation, Chinese Academy of Sciences, Beijing 100080, China
2af2b74c3462ccff3a6881ff7cf4f321b3242fa9Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
212608e00fc1e8912ff845ee7a4a67f88ba938fcInstitute of Automation, Chinese Academy of Sciences, Beijing, P. R. China
506c2fbfa9d16037d50d650547ad3366bb1e1cdeInstitute of Automation, Chinese Academy of Sciences, China
321c8ba38db118d8b02c0ba209be709e6792a2c7Institute of Automation, Chinese Academy of Sciences, China
c94b3a05f6f41d015d524169972ae8fd52871b67Institute of Automation, Chinese Academy of Sciences, China
45e616093a92e5f1e61a7c6037d5f637aa8964afInstitute of Automation, Chinese Academy of Sciences, China
19a9f658ea14701502d169dc086651b1d9b2a8eaInstitute of Automation, Chinese Academy of Sciences, China
4c6233765b5f83333f6c675d3389bbbf503805e3Institute of Automation, Chinese Academy of Sciences, China
2f04ba0f74df046b0080ca78e56898bd4847898bInstitute of Automation, Chinese Academy of Sciences, China
199c2df5f2847f685796c2523221c6436f022464Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School
4ea53e76246afae94758c1528002808374b75cfaInstitute of Biochemistry, University of Balochistan, Quetta
0b85b50b6ff03a7886c702ceabad9ab8c8748fdcInstitute of Child Health, University College London, UK
2c34bf897bad780e124d5539099405c28f3279acInstitute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain
081286ede247c5789081502a700b378b6223f94bInstitute of Cognitive and Behavioural Neuroscience, SWPS University of SocialDepartment of Experimental Psychology
182470fd0c18d0c5979dff75d089f1da176ceeebInstitute of Communications Engineering
81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0fInstitute of Computer Science
4015e8195db6edb0ef8520709ca9cb2c46f29be7Institute of Computer Science
14b66748d7c8f3752dca23991254fca81b6ee86cInstitute of Computer Science III
8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8Institute of Computer Science and
0517d08da7550241fb2afb283fc05d37fce5d7b7Institute of Computer Science and Technology, Chongqing University of Posts and
06f585a3a05dd3371cd600a40dc35500e2f82f9bInstitute of Computer Science and Technology, Peking University
b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89Institute of Computer Science and Technology, Peking University
488375ae857a424febed7c0347cc9590989f01f7Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece
53ce84598052308b86ba79d873082853022aa7e9Institute of Computer science, Shahid Bahonar University
9d24179aa33a94c8c61f314203bf9e906d6b64deInstitute of Computing
4b74f2d56cd0dda6f459319fec29559291c61bffInstitute of Computing
38a9ca2c49a77b540be52377784b9f734e0417e4Institute of Computing
902114feaf33deac209225c210bbdecbd9ef33b1Institute of Computing
badcfb7d4e2ef0d3e332a19a3f93d59b4f85668eInstitute of Computing Technology
51a8dabe4dae157aeffa5e1790702d31368b9161Institute of Computing Technology, CAS
2969f822b118637af29d8a3a0811ede2751897b5Institute of Computing Technology, CAS, Beijing 100190, China
449808b7aa9ee6b13ad1a21d9f058efaa400639aInstitute of Computing Technology, CAS, Beijing 100190, China
303a7099c01530fa0beb197eb1305b574168b653Institute of Computing Technology, CAS, Beijing 100190, China
d2cd9a7f19600370bce3ea29aba97d949fe0ceb9Institute of Computing Technology, CAS, Beijing 100190, China
db36e682501582d1c7b903422993cf8d70bb0b42Institute of Computing Technology, CAS, Beijing 100190, China
a820941eaf03077d68536732a4d5f28d94b5864aInstitute of Computing Technology, CAS, Beijing 100190, China
cd023d2d067365c83d8e27431e83e7e66082f718Institute of Computing Technology, CAS, Beijing 100190, China
7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2Institute of Computing Technology, CAS, Beijing 100190, China
68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090Institute of Computing Technology, CAS, Beijing, 100190, China
56359d2b4508cc267d185c1d6d310a1c4c2cc8c2Institute of Computing Technology, CAS, Beijing, 100190, China
0595d18e8d8c9fb7689f636341d8a55cc15b3e6aInstitute of Computing Technology, CAS, Beijing, 100190, China
0568fc777081cbe6de95b653644fec7b766537b2Institute of Computing Technology, CAS, Beijing, 100190, China
adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6Institute of Computing Technology, CAS, Beijing, 100190, China
bd8b7599acf53e3053aa27cfd522764e28474e57Institute of Computing Technology, CAS, Beijing, 100190, China
ab734bac3994b00bf97ce22b9abc881ee8c12918Institute of Computing Technology, CAS, Beijing, 100190, China
11dc744736a30a189f88fa81be589be0b865c9faInstitute of Computing Technology, CAS, Beijing, 100190, China
7c9622ad1d8971cd74cc9e838753911fe27ccac4Institute of Computing Technology, CAS, Beijing, 100190, China
288964068cd87d97a98b8bc927d6e0d2349458a2Institute of Computing Technology, CAS, Beijing, 100190, China
5d88702cdc879396b8b2cc674e233895de99666bInstitute of Computing Technology, CAS, Beijing, 100190, China
99facca6fc50cc30f13b7b6dd49ace24bc94f702Institute of Computing Technology, CAS, Beijing, 100190, China
24cb375a998f4af278998f8dee1d33603057e525Institute of Computing Technology, CAS, Beijing, 100190, China
120bcc9879d953de7b2ecfbcd301f72f3a96fb87Institute of Computing Technology, CAS, Beijing, 100190, China
e0dc6f1b740479098c1d397a7bc0962991b5e294Institute of Computing Technology, Chinese Academy of Sciences
2af2b74c3462ccff3a6881ff7cf4f321b3242fa9Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
3b7f6035a113b560760c5e8000540fc46f91fed5Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
ed388878151a3b841f95a62c42382e634d4ab82eInstitute of Computing Technology, Chinese Academy of Sciences, Beijing, China
ac1d97a465b7cc56204af5f2df0d54f819eef8a6Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander
74875368649f52f74bfc4355689b85a724c3db47Institute of Data Science and Technology, Alibaba Group
250ebcd1a8da31f0071d07954eea4426bb80644cInstitute of Deep Learning
74875368649f52f74bfc4355689b85a724c3db47Institute of Deep Learning, Baidu Research
8bf243817112ac0aa1348b40a065bb0b735cdb9cInstitute of Digital Media
32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6bInstitute of Digital Media, Peking University, Beijing 100871, China
d2cd9a7f19600370bce3ea29aba97d949fe0ceb9Institute of Digital Media, Peking University, Beijing 100871, China
449808b7aa9ee6b13ad1a21d9f058efaa400639aInstitute of Digital Media, Peking University, Beijing, 100871, China
1130c38e88108cf68b92ecc61a9fc5aeee8557c9Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria
be07f2950771d318a78d2b64de340394f7d6b717Institute of Electrical and Electronics Engineers
162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5eInstitute of Electrical and Electronics Engineers (IEEE). DOI
daa02cf195818cbf651ef81941a233727f71591fInstitute of Electronics and Computer Science
511b06c26b0628175c66ab70dd4c1a4c0c19aee9Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj
081286ede247c5789081502a700b378b6223f94bInstitute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
03baf00a3d00887dd7c828c333d4a29f3aacd5f5Institute of Graduate Studies and Research
561ae67de137e75e9642ab3512d3749b34484310Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University
372a8bf0ef757c08551d41e40cb7a485527b6cd7Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong
159e792096756b1ec02ec7a980d5ef26b434ff78Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University
7fc76446d2b11fc0479df6e285723ceb4244d4efInstitute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
4d625677469be99e0a765a750f88cfb85c522cceInstitute of Industrial Science
4d625677469be99e0a765a750f88cfb85c522cceInstitute of Industrial Science
846c028643e60fefc86bae13bebd27341b87c4d1Institute of Industrial Science, The University of Tokyo
1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6Institute of Informatics - ISLA
72f4aaf7e2e3f215cd8762ce283988220f182a5bInstitute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY
5f57a1a3a1e5364792b35e8f5f259f92ad561c1fInstitute of Information Science
b5930275813a7e7a1510035a58dd7ba7612943bcInstitute of Information Science
b42a97fb47bcd6bfa72e130c08960a77ee96f9abInstitute of Information Science
64782a2bc5da11b1b18ca20cecf7bdc26a538d68Institute of Information Science
a660390654498dff2470667b64ea656668c98eccInstitute of Information Science
e726174d516605f80ff359e71f68b6e8e6ec6d5dInstitute of Information Science
1c17450c4d616e1e1eece248c42eba4f87de9e0dInstitute of Information Science
266766818dbc5a4ca1161ae2bc14c9e269ddc490Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy
0951f42abbf649bb564a21d4ff5dddf9a5ea54d9Institute of Information Science, Academia Sinica, Taipei
6ab33fa51467595f18a7a22f1d356323876f8262Institute of Information Science, Academia Sinica, Taipei, Taiwan
5397c34a5e396658fa57e3ca0065a2878c3cced7Institute of Information Science, Academia Sinica, Taipei, Taiwan
5b73b7b335f33cda2d0662a8e9520f357b65f3acInstitute of Information Science, Academia Sinica, Taipei, Taiwan
c44c84540db1c38ace232ef34b03bda1c81ba039Institute of Information Science, Academia Sinica, Taipei, Taiwan
2303d07d839e8b20f33d6e2ec78d1353cac256cfInstitute of Information Science, Beijing Jiaotong University, Beijing 100044, China
739d400cb6fb730b894182b29171faaae79e3f01Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China
8af411697e73f6cfe691fe502d4bfb42510b4835Institute of Information Technology
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34Institute of Interdisciplinary Studies in Identity Sciences (IISIS
4ab84f203b0e752be83f7f213d7495b04b1c4c79Institute of Mathematics and Statistics
2be0ab87dc8f4005c37c523f712dd033c0685827Institute of Media Innovation
0fdcfb4197136ced766d538b9f505729a15f0dafInstitute of Media and Information Technology, Chiba University
142e5b4492bc83b36191be4445ef0b8b770bf4b0Institute of Mental Health, Peking University, P.R. China
614079f1a0d0938f9c30a1585f617fa278816d53Institute of Mental Health, The University of Nottingham
bc866c2ced533252f29cf2111dd71a6d1724bd49Institute of Microelectronics, Tsinghua University, Beijing 100084, China
54a9ed950458f4b7e348fa78a718657c8d3d0e05Institute of Neural Information Processing, Ulm University, Germany
50c0de2cccf7084a81debad5fdb34a9139496da0Institute of Neural Information Processing, Ulm University, Ulm, Germany
1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16Institute of Neural Information Processing, Ulm University, Ulm, Germany
a35dd69d63bac6f3296e0f1d148708cfa4ba80f6Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain
55eb7ec9b9740f6c69d6e62062a24bfa091bbb0cInstitute of Psychology and Behavioral Sciences
0f395a49ff6cbc7e796656040dbf446a40e300aaInstitute of Psychology, Chinese
b3b4a7e29b9186e00d2948a1d706ee1605fe5811Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland
98a660c15c821ea6d49a61c5061cd88e26c18c65Institute of Road andDepartment of Electronics and Communication Engineering
3d143cfab13ecd9c485f19d988242e7240660c86Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan
c9367ed83156d4d682cefc59301b67f5460013e0Institute of Software, Chinese Academy of Sciences
cf805d478aeb53520c0ab4fcdc9307d093c21e52Institute of Software, Chinese Academy of Sciences (CAS
19e62a56b6772bbd37dfc6b8f948e260dbb474f5Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
d33b26794ea6d744bba7110d2d4365b752d7246fInstitute of Software, Chinese Academy of Sciences, Beijing 100190, China
feb6e267923868bff6e2108603d00fdfd65251caInstitute of Systems Engineering, Southeast University, Nanjing, China
8c9c8111e18f8798a612e7386e88536dfe26455eInstitute of Systems and Robotics
8c9c8111e18f8798a612e7386e88536dfe26455eInstitute of Systems and Robotics
8c9c8111e18f8798a612e7386e88536dfe26455eInstitute of Systems and Robotics
11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5Institute of Systems and Robotics - University of Coimbra, Portugal
3802c97f925cb03bac91d9db13d8b777dfd29dccInstitute of Systems and Robotics, University of Coimbra, Portugal
81706277ed180a92d2eeb94ac0560f7dc591ee13Institute of Technology, Banaras Hindu
81706277ed180a92d2eeb94ac0560f7dc591ee13Institute of Technology, Banaras Hindu
d9bad7c3c874169e3e0b66a031c8199ec0bc2c1fInstitute of Telecommunications, TU Wien
fdbacf2ff0fc21e021c830cdcff7d347f2fddd8eInstitute of Transportation Systems, German Aerospace Center (DLR), BraunschweigDepartment of Human Factors
29e793271370c1f9f5ac03d7b1e70d1efa10577cInstitute of control science and engineering
2afdda6fb85732d830cea242c1ff84497cd5f3cbInstitute ofInformation Science, Academia Sinica, Taipei, Taiwan
d93baa5ecf3e1196b34494a79df0a1933fd2b4ecInstitute, CAS, China
d93baa5ecf3e1196b34494a79df0a1933fd2b4ecInstitute, CAS, China
c91103e6612fa7e664ccbc3ed1b0b5deac865b02Integrated Research Center, Universit`a Campus Bio-Medico di Roma
0cbc4dcf2aa76191bbf641358d6cecf38f644325Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA
7c119e6bdada2882baca232da76c35ae9b5277f8Intelligence Computing Research Center
3b2d5585af59480531616fe970cb265bbdf63f5bIntelligence, Concordia University, Montreal
c42a8969cd76e9f54d43f7f4dd8f9b08da566c5fIntelligent Autonomous Systems (IAS), Technical University of Munich, Garching
c87f7ee391d6000aef2eadb49f03fc237f4d1170Intelligent Behaviour Understanding Group, Imperial College London, London, UKDepartment of Computing
3fac7c60136a67b320fc1c132fde45205cd2ac66Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan
bd8f3fef958ebed5576792078f84c43999b1b207Intelligent Recognition and Image Processing Lab, Beihang University, Beijing
ea46951b070f37ad95ea4ed08c7c2a71be2daedcIntelligent Sensory Interactive Systems, University of Amsterdam, Netherlands
4c8ef4f98c6c8d340b011cfa0bb65a9377107970Intelligent Systems Group, University of Groningen, The Netherlands
beb4546ae95f79235c5f3c0e9cc301b5d6fc9374Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht
937ffb1c303e0595317873eda5ce85b1a17f9943Intelligent Systems Lab Amsterdam, University of Amsterdam
999289b0ef76c4c6daa16a4f42df056bf3d68377Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands
faeefc5da67421ecd71d400f1505cfacb990119cIntelligent Systems Laboratory, Halmstad University, Halmstad, Sweden
54948ee407b5d32da4b2eee377cc44f20c3a7e0cIntelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK
465d5bb11912005f0a4f0569c6524981df18a7deIntelligent User Interfaces Lab, Ko c University, Turkey
858b51a8a8aa082732e9c7fbbd1ea9df9c76b013Intelligent and Interactive Systems, Institute of Computer Science, University of
2f2aa67c5d6dbfaf218c104184a8c807e8b29286Interactive and Digital Media Institute
ee7093e91466b81d13f4d6933bcee48e4ee63a16Interactive and Digital Media Institute, National University of Singapore, SG
38c901a58244be9a2644d486f9a1284dc0edbf8aInteractive and Digital Media Institute, National University of Singapore, Singapore
c0ee89dc2dad76147780f96294de9e421348c1f4Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea
b4362cd87ad219790800127ddd366cc465606a78Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea
d02b32b012ffba2baeb80dca78e7857aaeececb0International Institute of Information Technology
f5eb411217f729ad7ae84bfd4aeb3dedb850206aInternational Institute of Information Technology
185263189a30986e31566394680d6d16b0089772International Institute of Information Technology
243e9d490fe98d139003bb8dc95683b366866c57International Institute of Information Technology
156cd2a0e2c378e4c3649a1d046cd080d3338bcaInternational Institute of Information Technology
0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1International Institute of Information Technology, Hyderabad, India
96e1ccfe96566e3c96d7b86e134fa698c01f2289International Institute of Information Technology, Hyderabad, India
0c3f7272a68c8e0aa6b92d132d1bf8541c062141International Islamic University, Islamabad 44000, PakistanDepartment of Computer Science and Software Engineering
fde0180735699ea31f6c001c71eae507848b190fInternational University of
fde0180735699ea31f6c001c71eae507848b190fInternational University of
fae83b145e5eeda8327de9f19df286edfaf5e60cIonian University
966e36f15b05ef8436afecf57a97b73d6dcada94IranComputer Engineering Department University of Isfahan
6fda12c43b53c679629473806c2510d84358478fIslamic Azad UniversityDepartment of Computer Science
ad8540379884ec03327076b562b63bc47e64a2c7Islamic Azad University
7cffcb4f24343a924a8317d560202ba9ed26cd0bIslamic Azad University
841bf196ee0086c805bd5d1d0bddfadc87e424ecIslamic Azad University
39dc2ce4cce737e78010642048b6ed1b71e8ac2fIslamic Azad University of AHAR
19f076998ba757602c8fec04ce6a4ca674de0e25Islamic Azad University, Gonabad, IranDepartment of Control and Electrical Engineering
11a210835b87ccb4989e9ba31e7559bb7a9fd292Islamic Azad University, Mashhad Branch, Mashhad, Irana Department of Artificial Intelligence
ceb763d6657a07b47e48e8a2956bcfdf2cf10818Islamic Azad University, Qazvin, Iran
53ce84598052308b86ba79d873082853022aa7e9Islamic Azad University, Science and Research CampusDepartment of Computer Engineering Hamedan Branch
ad247138e751cefa3bb891c2fe69805da9c293d7Islamic Azad University, Shahrood, IranDepartment of Electrical and Computer Engineering
d5fa9d98c8da54a57abf353767a927d662b7f026Islamic University of Gaza - Palestine
0ce8a45a77e797e9d52604c29f4c1e227f604080IslamicAzad University, Qazvin, Iran
8bed7ff2f75d956652320270eaf331e1f73efb35Istanbul Bilgi University - DCE
fd53be2e0a9f33080a9db4b5a5e416e24ae8e198Istanbul Technical University
26f03693c50eb50a42c9117f107af488865f3dc1Istanbul Technical University
09733129161ca7d65cf56a7ad63c17f493386027Istanbul Technical University
14b87359f6874ff9b8ee234b18b418e57e75b762Istanbul Technical University
72f4aaf7e2e3f215cd8762ce283988220f182a5bIstanbul Technical University, Istanbul, 34469, TURKEYDepartment of Computer Engineering
2050847bc7a1a0453891f03aeeb4643e360fde7dIstanbul Technical University, Istanbul, Turkey
d3d5d86afec84c0713ec868cf5ed41661fc96edcIstanbul Technical University, Istanbul, Turkey
3d9db1cacf9c3bb7af57b8112787b59f45927355Istanbul Technical University, Turkey
a5ade88747fa5769c9c92ffde9b7196ff085a9ebIstanbul Technical University, Turkey
9dcc6dde8d9f132577290d92a1e76b5decc6d755Istanbul UniversityDepartment of Electrical and Electronics Eng
070ab604c3ced2c23cce2259043446c5ee342fd6IstanbulTechnicalUniversity
097340d3ac939ce181c829afb6b6faff946cdce0Italian Institute of Technology, 5Mapillary Research
18a9f3d855bd7728ed4f988675fa9405b5478845J. P. College of Engineering, IndiaDepartment of Electronics and Communication Engineering
f28b7d62208fdaaa658716403106a2b0b527e763JACOB GOLDBERGER, Bar-Ilan University
ad784332cc37720f03df1c576e442c9c828a587aJDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3Jacobs University
6f0900a7fe8a774a1977c5f0a500b2898bcbe149Jadavpur UniversityDepartment of Computer Science and Engineering
3f4bfa4e3655ef392eb5ad609d31c05f29826b45Jadavpur University
aaeb8b634bb96a372b972f63ec1dc4db62e7b62aJadavpur University, IndiaDepartment of Printing Engineering
aaeb8b634bb96a372b972f63ec1dc4db62e7b62aJadavpur University, IndiaDepartment of Computer Science and Engineering
4d01d78544ae0de3075304ff0efa51a077c903b7Jahangirnagar University
8f8a5be9dc16d73664285a29993af7dc6a598c83Jahangirnagar University, Savar, Dhaka 1342, BangladeshDepartment of Computer Science and Engineering
58db008b204d0c3c6744f280e8367b4057173259Jaipur, Rajasthan, IndiaaDepartment of Computer Engineering Malaviya National Institute of Technology
13f6ab2f245b4a871720b95045c41a4204626814Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United
c0723e0e154a33faa6ff959d084aebf07770ffafJapanDepartment of Life System Science and Technology Chukyo University
9ed943f143d2deaac2efc9cf414b3092ed482610Japan Advanced Institute of Science and Technology
26c884829897b3035702800937d4d15fef7010e4Japan Advanced Institute of Science and Technology
982f5c625d6ad0dac25d7acbce4dabfb35dd7f23Japan Advanced Institute of Science and Technology
76d939f73a327bf1087d91daa6a7824681d76ea1Japan Advanced Institute of Science and Technology
c180f22a9af4a2f47a917fd8f15121412f2d0901Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan
5865e824e3d8560e07840dd5f75cfe9bf68f9d96Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara
f19777e37321f79e34462fc4c416bd56772031bfJawaharlal Technological University, Anantapur
0229829e9a1eed5769a2b5eccddcaa7cd9460b92Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
493ec9e567c5587c4cbeb5f08ca47408ca2d6571Jiangnan University, Wuxi
aac39ca161dfc52aade063901f02f56d01a1693cJilin University, Changchun 130012, China
f5fae7810a33ed67852ad6a3e0144cb278b24b41Jo ef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
8320dbdd3e4712cca813451cd94a909527652d63Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) Linz(cid:1) Austria(cid
5f0d4a0b5f72d8700cdf8cb179263a8fa866b59bJohns Hopkins UniversityDepartment of Computer Science
16b9d258547f1eccdb32111c9f45e2e4bbee79afJohns Hopkins University
16b9d258547f1eccdb32111c9f45e2e4bbee79afJohns Hopkins University
d454ad60b061c1a1450810a0f335fafbfeceecccJohns Hopkins UniversityDepartment of Computer Science
dce5e0a1f2cdc3d4e0e7ca0507592860599b0454Johns Hopkins University
b97f694c2a111b5b1724eefd63c8d64c8e19f6c9Johns Hopkins University
92be73dffd3320fe7734258961fe5a5f2a43390eJohns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
672fae3da801b2a0d2bad65afdbbbf1b2320623eJohns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
10e0e6f1ec00b20bc78a5453a00c792f1334b016Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
377f2b65e6a9300448bdccf678cde59449ecd337Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
707a542c580bcbf3a5a75cce2df80d75990853ccJohns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
2594a77a3f0dd5073f79ba620e2f287804cec630Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
498fd231d7983433dac37f3c97fb1eafcf065268Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
c43862db5eb7e43e3ef45b5eac4ab30e318f2002Johns Hopkins University, Baltimore, MD, 21218, USA
68f89c1ee75a018c8eff86e15b1d2383c250529bJohns Hopkins University, Center for Speech and Language Processing
247cab87b133bd0f4f9e8ce5e7fc682be6340eacJoint Research Institute, Foshan, China
d1dae2993bdbb2667d1439ff538ac928c0a593dcK S Rangasamy College of Technology
d1dae2993bdbb2667d1439ff538ac928c0a593dcK S Rangasamy College of Technology
c0ff7dc0d575658bf402719c12b676a34271dfcdK. N. Toosi University ofElectrical Engineering Department
dc550f361ae82ec6e1a0cf67edf6a0138163382eK.D.K. College of Engineering Nagpur, India
ef940b76e40e18f329c43a3f545dc41080f68748K.K Wagh Institute of Engineering and Education Research, Nashik, India
a6f81619158d9caeaa0863738ab400b9ba2d77c2K.N. Toosi University of Technology, Tehran, Iran
3fde656343d3fd4223e08e0bc835552bff4bda40K.S.R. College Of Engineering, Tiruchengode, India
2bbbbe1873ad2800954058c749a00f30fe61ab17K.S.Rangasamy College of Technology, Namakkal, TamilNadu, IndiaDepartment of CSE
4fc936102e2b5247473ea2dd94c514e320375abbKAUST1, University of Amsterdam2, Qualcomm Technologies, Inc
507c9672e3673ed419075848b4b85899623ea4b0KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association
1e058b3af90d475bf53b3f977bab6f4d9269e6e8KTH Royal Institute of Technology, CVAP Lab, Stockholm, Sweden
b42a97fb47bcd6bfa72e130c08960a77ee96f9abKTH Royal Institute of Technology, Stockholm
a660390654498dff2470667b64ea656668c98eccKTH Royal Institute of Technology, Stockholm
6d07e176c754ac42773690d4b4919a39df85d7ecKTH Royal Institute of Technology
633101e794d7b80f55f466fd2941ea24595e10e6KTH Royal Institute of Technology
1824b1ccace464ba275ccc86619feaa89018c0adKTH, Royal Institute of Technology
5ec94adc9e0f282597f943ea9f4502a2a34ecfc2KTH, Royal Institute of Technology
08cb294a08365e36dd7ed4167b1fd04f847651a9KU Phonetics and Psycholinguistics Lab, University of KansasDepartment of Linguistics
8ee5b1c9fb0bded3578113c738060290403ed472Karlsruhe Institute of
9ed4ad41cbad645e7109e146ef6df73f774cd75dKarlsruhe Institute of Technology
7c30ea47f5ae1c5abd6981d409740544ed16ed16Karlsruhe Institute of Technology
10f66f6550d74b817a3fdcef7fdeba13ccdba51cKarlsruhe Institute of Technology
656ef752b363a24f84cc1aeba91e4fa3d5dd66baKarlsruhe Institute of Technology
0ac664519b2b8abfb8966dafe60d093037275573Karlsruhe Institute of Technology
14b87359f6874ff9b8ee234b18b418e57e75b762Karlsruhe Institute of Technology
17e563af203d469c456bb975f3f88a741e43fb71Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
4db0968270f4e7b3fa73e41c50d13d48e20687beKarlsruhe Institute of Technology, 76131 Karlsruhe, Germany
a5ade88747fa5769c9c92ffde9b7196ff085a9ebKarlsruhe Institute of Technology, Germany
a5ade88747fa5769c9c92ffde9b7196ff085a9ebKarlsruhe Institute of Technology, Germany
2050847bc7a1a0453891f03aeeb4643e360fde7dKarlsruhe Institute of Technology, Karlsruhe, Germany
cfdc4d0f8e1b4b9ced35317d12b4229f2e3311abKarlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
c65a394118d34beda5dd01ae0df163c3db88fcebKatholieke Universiteit LeuvenDepartment of Computer Science
0af33f6b5fcbc5e718f24591b030250c6eec027aKatholieke Universiteit Leuven
b018fa5cb9793e260b8844ae155bd06380988584Katholieke Universiteit Leuven, ESAT/VISICS
464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05aKeele University
e0d878cc095eaae220ad1f681b33d7d61eb5e425Keio University, Yokohama 223-8522, JapanDepartment of Electronics and Electrical Engineering
5ac80e0b94200ee3ecd58a618fe6afd077be0a00Kent State UniversityComputer Science Department
c0cdaeccff78f49f4604a6d263dc6eb1bb8707d5Kent State University, Kent, Ohio, USADepartment of Computer Science
7a65fc9e78eff3ab6062707deaadde024d2fad40Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of
a29a22878e1881d6cbf6acff2d0b209c8d3f778bKey Lab of Intelligent Information Processing, Institute of Computing Technology
5b7cb9b97c425b52b2e6f41ba8028836029c4432Key Lab. of Machine Perception, School of EECS, Peking University
daf05febbe8406a480306683e46eb5676843c424Key Lab. of Machine Perception, School of EECS, Peking University, China
55eb7ec9b9740f6c69d6e62062a24bfa091bbb0cKey Laboratory of Behavior Sciences, Institute of Psychology
9d55ec73cab779403cd933e6eb557fb04892b634Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing
2717998d89d34f45a1cca8b663b26d8bf10608a9Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China
f78fe101b21be36e98cd3da010051bb9b9829a1eKey Laboratory of MOEMS of the Ministry of Education, Tianjin University, 300072, China
e90e12e77cab78ba8f8f657db2bf4ae3dabd5166Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
4a14a321a9b5101b14ed5ad6aa7636e757909a7cKey Laboratory of Machine Perception (MOE), School of EECS, Peking University
713594c18978b965be87651bb553c28f8501df0aKey Laboratory of Machine Perception (MOE), School of EECS, Peking University
126535430845361cd7a3a6f317797fe6e53f5a3bKey Laboratory of Machine Perception, Peking University, Beijing
0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education
5f0d4a0b5f72d8700cdf8cb179263a8fa866b59bKey Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University
16bce9f940bb01aa5ec961892cc021d4664eb9e4Key Laboratory of Transient Optics and Photonics, Xi an Institute of Optics and Precision Mechanics, Chi
0c1d85a197a1f5b7376652a485523e616a406273Khalifa University, Abu Dhabi, United Arab Emirates
026e4ee480475e63ae68570d73388f8dfd4b4cdeKhulna University of Engineering and Technology
11691f1e7c9dbcbd6dfd256ba7ac710581552baaKing Abdullah University of Science and Technology (KAUST), Saudi Arabia
ac21c8aceea6b9495574f8f9d916e571e2fc497fKing Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia
7fce5769a7d9c69248178989a99d1231daa4fce9King Faisal University
a6d7cf29f333ea3d2aeac67cde39a73898e270b7King Saud University, KSADepartment of Computer Science
a6d7cf29f333ea3d2aeac67cde39a73898e270b7King Saud University, KSADepartment of Software Engineering
a6d7cf29f333ea3d2aeac67cde39a73898e270b7King Saud University, KSADepartment of Computer Engineering
feb6e267923868bff6e2108603d00fdfd65251caKing Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
5aadd85e2a77e482d44ac2a215c1f21e4a30d91bKing Saud University, Riyadh
feb6e267923868bff6e2108603d00fdfd65251caKing Saud University, Riyadh 11543, Saudi Arabia
feb6e267923868bff6e2108603d00fdfd65251caKing Saud University, Riyadh 11543, Saudi Arabia
65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220King Saud University, Riyadh, Saudi ArabiaDepartment of Information Technology
84c0f814951b80c3b2e39caf3925b56a9b2e1733King s College London, UKDepartment of Digital Humanities
27c66b87e0fbb39f68ddb783d11b5b7e807c76e8Kingston University
f9ccfe000092121a2016639732cdb368378256d5Kingston University London, University of Westminster London
01125e3c68edb420b8d884ff53fb38d9fbe4f2b8Kingston University, UK
7d7be6172fc2884e1da22d1e96d5899a29831ad2Kitware, Inc
11269e98f072095ff94676d3dad34658f4876e0eKobe University
11269e98f072095ff94676d3dad34658f4876e0eKobe University
11269e98f072095ff94676d3dad34658f4876e0eKobe University
b133b2d7df9b848253b9d75e2ca5c68e21eba008Kobe University, NICT and University of Siegen
291f527598c589fb0519f890f1beb2749082ddfdKodak Research Laboratories, Rochester, NY
b185f0a39384ceb3c4923196aeed6d68830a069fKodak Research Laboratories, Rochester, New York
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfKogakuin University, Tokyo, Japan
f740bac1484f2f2c70777db6d2a11cf4280081d6Kong Polytechnic University, Kowloon, Hong Kong
27169761aeab311a428a9dd964c7e34950a62a6bKongju National University, South KoreaDepartment of Electrical Engineering
2911e7f0fb6803851b0eddf8067a6fc06e8eadd6Korea Advanced Institute of Science and Technology
887b7676a4efde616d13f38fcbfe322a791d1413Korea Advanced Institute of Science and Technology
6e9a8a34ab5b7cdc12ea52d94e3462225af2c32cKorea Advanced Institute of Science and Technology (KAIST
72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114Korea Advanced institute of Science and Technology
076d3fc800d882445c11b9af466c3af7d2afc64fKorea Advanced institute of Science and Technology
17cf6195fd2dfa42670dc7ada476e67b381b8f69Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong
273b0511588ab0a81809a9e75ab3bd93d6a0f1e3Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep
29fc4de6b680733e9447240b42db13d5832e408fKorea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of
97137d5154a9f22a5d9ecc32e8e2b95d07a5a571Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of Korea; E
c0ee89dc2dad76147780f96294de9e421348c1f4Korea UniversityDepartment of Computer and Radio Communications Engineering
4b519e2e88ccd45718b0fc65bfd82ebe103902f7Korea University, Seoul 136-713, KoreaDepartment of Brain and Cognitive Engineering
27169761aeab311a428a9dd964c7e34950a62a6bKorean Research Institute of Standards and Science (KRISS), Korea
6b6ff9d55e1df06f8b3e6f257e23557a73b2df96Kota University, Kota(INDIA
d1959ba4637739dcc6cc6995e10fd41fd6604713Kulhare, Sourabh, "Deep Learning for Semantic Video Understanding" (2017). Thesis. Rochester Institute of Technology. Accessed
7aafeb9aab48fb2c34bed4b86755ac71e3f00338Kumamoto University, 2-39-1 Kurokami, Kumamoto shiDepartment of Electrical and Electronics
28de411a5b3eb8411e7bcb0003c426aa91f33e97Kurukshetra University, Kurukshetra
28de411a5b3eb8411e7bcb0003c426aa91f33e97Kurukshetra University, Kurukshetra
b62571691a23836b35719fc457e093b0db187956Kurukshetra University, Kurukshetra, India
b62571691a23836b35719fc457e093b0db187956Kurukshetra University, Kurukshetra, India
1e19ea6e7f1c04a18c952ce29386252485e4031eKurukshetra University, Kurukshetra-136 119, Haryana, INDIA
dced05d28f353be971ea2c14517e85bc457405f3Kwangwoon University, 447-1 Wolge-dong, Nowon-Gu, Seoul 139-701, Korea
6226f2ea345f5f4716ac4ddca6715a47162d5b92Kyoto University, Kyoto, Japan
73c5bab5c664afa96b1c147ff21439135c7d968bKyung Hee University
73c5bab5c664afa96b1c147ff21439135c7d968bKyung Hee University
adf5caca605e07ee40a3b3408f7c7c92a09b0f70Kyung Hee University South of Korea
28a900a07c7cbce6b6297e4030be3229e094a950Kyung Hee University, South KoreaDepartment of Computer Engineering
57bf9888f0dfcc41c5ed5d4b1c2787afab72145aKyung Hee University, Yongin, Rep. of KoreaDepartment of Computer Engineering
45c31cde87258414f33412b3b12fc5bec7cb3ba9Kyushu UniversityPsychology Department
1a5b39a4b29afc5d2a3cd49087ae23c6838eca2bL3S Research Center, Hannover, Germany
2e475f1d496456831599ce86d8bbbdada8ee57edL3S Research Center, Hannover, Germany
38f1fac3ed0fd054e009515e7bbc72cdd4cf801aL3S Research Center, Leibniz Universit at Hannover, Germany
ba2bbef34f05551291410103e3de9e82fdf9ddddLCSEE, West Virginia University
ba2bbef34f05551291410103e3de9e82fdf9ddddLCSEE, West Virginia University
a75edf8124f5b52690c08ff35b0c7eb8355fe950LIACS Media Lab, Leiden University, The Netherlands
75308067ddd3c53721430d7984295838c81d4106LIMSI, CNRS, University of Paris-Sud, Orsay, France
004e3292885463f97a70e1f511dc476289451ed5LIP6, UPMC - Sorbonne University, Paris, France
42dc36550912bc40f7faa195c60ff6ffc04e7cd6LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France
b64cfb39840969b1c769e336a05a30e7f9efcd61LIUM Laboratory, Le Mans, France, 2 Idiap Research Institute, Martigny, Switzerland
8820d1d3fa73cde623662d92ecf2e3faf1e3f328La Trobe University, AustraliaDepartment of Mathematics and Computer Science
c207fd762728f3da4cddcfcf8bf19669809ab284Lab of Science and Technology, Southeast University, Nanjing 210096, China
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8Lab, University College London, London WC1H 0AP, UK. 3ClinicalDepartment of Experimental Psychology
f935225e7811858fe9ef6b5fd3fdd59aec9abd1aLaboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan
1c41965c5e1f97b1504c1bdde8037b5e0417da5eLaboratory of Pattern Recognition, Institute of Automation, CAS
90a754f597958a2717862fbaa313f67b25083bf9Laboratory, University of Houston, Houston, TX, USADepartment of Computer Science
3795974e24296185d9b64454cde6f796ca235387Lafayette College
8b2c090d9007e147b8c660f9282f357336358061Lake Forest College
8b2c090d9007e147b8c660f9282f357336358061Lake Forest College Publications
a36c8a4213251d3fd634e8893ad1b932205ad1caLanguage Technologies Institute
87e6cb090aecfc6f03a3b00650a5c5f475dfebe1Language Technologies Institute
6b17b219bd1a718b5cd63427032d93c603fcf24fLanguage Technologies Institute
1ea74780d529a458123a08250d8fa6ef1da47a25Language Technologies Institute
ca37eda56b9ee53610c66951ee7ca66a35d0a846Language Technologies Institute, Carnegie Mellon University
d28d32af7ef9889ef9cb877345a90ea85e70f7f1Language Technologies Institute, Carnegie Mellon University, PA, USA
1ec98785ac91808455b753d4bc00441d8572c416Language Technologies Institute, School of Computer Science
78598e7005f7c96d64cc47ff47e6f13ae52245b8Language Technology Institute
78598e7005f7c96d64cc47ff47e6f13ae52245b8Language Technology Institute
4140498e96a5ff3ba816d13daf148fffb9a2be3fLanguage Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA
6b3e360b80268fda4e37ff39b7f303e3684e8719Language Technology Institute, Carnegie Mellon Universty
1b3587363d37dd197b6adbcfa79d49b5486f27d8Language Technology Lab, University of Duisburg-Essen
08cb294a08365e36dd7ed4167b1fd04f847651a9Language and Brain Lab, Simon Fraser University, CanadaDepartment of Linguistics
95ea564bd983129ddb5535a6741e72bb1162c779Laval University, Qu bec, Canada
55804f85613b8584d5002a5b0ddfe86b0d0e3325Learning Systems Group, California Institute of Technology
dbe0e533d715f8543bcf197f3b8e5cffa969dfc0Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, IndiaDepartment of ECE
7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922Leeds Beckett University
eff87ecafed67cc6fc4f661cb077fed5440994bbLeiden Institute of Advanced Computer Science, Leiden University, The Netherlands
fdbacf2ff0fc21e021c830cdcff7d347f2fddd8eLeiden University, Netherlands
3b38c06caf54f301847db0dd622a6622c3843957Leiden, the Netherlands, 3 Delft University of TechnologyDepartment of
167736556bea7fd57cfabc692ec4ae40c445f144Lille 1 University, France
9513503867b29b10223f17c86e47034371b6eb4fLink oping University, Computer Vision Laboratory
ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430cLink oping University, SE-581 83 Link oping, SwedenDepartment of Electrical Engineering
685f8df14776457c1c324b0619c39b3872df617bLink ping UniversityDepartment of Electrical Engineering
ebf204e0a3e137b6c24e271b0d55fa49a6c52b41Link ping UniversityDepartment of Electrical Engineering
744fa8062d0ae1a11b79592f0cd3fef133807a03Link to publication from Aalborg University
2c883977e4292806739041cf8409b2f6df171aeeLink to publication from Aalborg University
23120f9b39e59bbac4438bf4a8a7889431ae8adbLink to publication from Aalborg University
146bbf00298ee1caecde3d74e59a2b8773d2c0fcLink to publication in University of Groningen/UMCG research database
04317e63c08e7888cef480fe79f12d3c255c5b00Link to publication record in Queen's University Belfast Research Portal
aba770a7c45e82b2f9de6ea2a12738722566a149Link to publication record in Queen's University Belfast Research Portal
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290Link to publication record in Queen's University Belfast Research Portal
38215c283ce4bf2c8edd597ab21410f99dc9b094Link to publication record in Queen's University Belfast Research Portal
a0848d7b1bb43f4b4f1b4016e58c830f40944817Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health
2e9c780ee8145f29bd1a000585dd99b14d1f5894Lite-On Singapore Pte. Ltd, 2Imperial College London
4b321065f6a45e55cb7f9d7b1055e8ac04713b41Liverpool John Moores University
5bde1718253ec28a753a892b0ba82d8e553b6bf3Lomonosov Moscow State University
2c0acaec54ab2585ff807e18b6b9550c44651eabLomonosov Moscow State University, 2Video Analysis Technologies, LLC
4e30107ee6a2e087f14a7725e7fc5535ec2f5a5fLomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
bd8b7599acf53e3053aa27cfd522764e28474e57Lotus Hill Institute for Computer Vision and Information Science, 436000, China
9f65319b8a33c8ec11da2f034731d928bf92e29dLouisiana State University
31835472821c7e3090abb42e57c38f7043dc3636Lund University, Cognimatics AB
995d55fdf5b6fe7fb630c93a424700d4bc566104Lund University, Lund, Sweden
e510f2412999399149d8635a83eca89c338a99a1M S Ramaiah Institute of Technology, Bangalore, Karnataka, India
16c884be18016cc07aec0ef7e914622a1a9fb59dM. Mark Everingham University of Leeds
9686dcf40e6fdc4152f38bd12b929bcd4f3bbbccM.H Saboo Siddik College of Engineering, University of Mumbai, India
972ef9ddd9059079bdec17abc8b33039ed25c99cM.P.M. College, Bhopal, India
972ef9ddd9059079bdec17abc8b33039ed25c99cM.P.M. College, Bhopal, India
348a16b10d140861ece327886b85d96cce95711eM.S. (University of California, Berkeley
580e48d3e7fe1ae0ceed2137976139852b1755dfM.S. Brunel University of West London
d082f35534932dfa1b034499fc603f299645862dM.S. University of Central Florida
87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5M.S. University of Central Florida
eb70c38a350d13ea6b54dc9ebae0b64171d813c9M.S., Electrical and Computer Engineering, Carnegie Mellon University
eed7920682789a9afd0de4efd726cd9a706940c8M.S., University of Memphis
73f467b4358ac1cafb57f58e902c1cab5b15c590M.Tech Scholar, MES College of Engineering, Kuttippuram
294bd7eb5dc24052237669cdd7b4675144e22306M.Tech Student, Mount Zion College of Engineering, Pathanamthitta, Kerala, IndiaDepartment of Computer Science and Engineering
334166a942acb15ccc4517cefde751a381512605M.Tech Student, SSG Engineering College, Odisha, India
e4bf70e818e507b54f7d94856fecc42cc9e0f73dM.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India
ff46c41e9ea139d499dd349e78d7cc8be19f936cM.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli
6b6ff9d55e1df06f8b3e6f257e23557a73b2df96M.tech.student, Arya College of
67c3c1194ee72c54bc011b5768e153a035068c43MASSACHUSETTS INSTITUTE OF TECHNOLOGY
eed7920682789a9afd0de4efd726cd9a706940c8MASSACHUSETTS INSTITUTE OF TECHNOLOGY
5e0e516226413ea1e973f1a24e2fdedde98e7ec0MASSACHUSETTS INSTITUTE OF TECHNOLOGY
e03bda45248b4169e2a20cb9124ae60440cad2deMASSACHUSETTS INSTITUTE OF TECHNOLOGY
8d6c4af9d4c01ff47fe0be48155174158a9a5e08MASSACHUSETTS INSTITUTE OF TECHNOLOGY
29c7dfbbba7a74e9aafb6a6919629b0a7f576530MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT
951f21a5671a4cd14b1ef1728dfe305bda72366fMATS University, MATS School of Engineering and Technology, Arang, Raipur, India
951f21a5671a4cd14b1ef1728dfe305bda72366fMATS University, MATS School of Engineering and Technology, Arang, Raipur, India
919d3067bce76009ce07b070a13728f549ebba49MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry
73f467b4358ac1cafb57f58e902c1cab5b15c590MES College of Engineering, Kuttippuram
d122d66c51606a8157a461b9d7eb8b6af3d819b0METs Institute of EngineeringDepartment of Computer Engineering
ea079334121a0ba89452036e5d7f8e18f6851519MICC University of Florence
0b4c4ea4a133b9eab46b217e22bda4d9d13559e6MICC - University of Florence
2dbde64ca75e7986a0fa6181b6940263bcd70684MICC, University of Florence
4c4e49033737467e28aa2bb32f6c21000deda2efMILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research
b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87cMIRA Institute, University of Twente, Enschede, TheDepartment of Biomedical Signals and Systems
748e72af01ba4ee742df65e9c030cacec88ce506MIRACL-FS, University of Sfax
748e72af01ba4ee742df65e9c030cacec88ce506MIRACL-FSEG, University of Sfax
f68f20868a6c46c2150ca70f412dc4b53e6a03c2MISC Laboratory, Constantine 2 University, Constantine, Algeria
f1ba2fe3491c715ded9677862fea966b32ca81f0MIT College of Engineering (Pune University
316d51aaa37891d730ffded7b9d42946abea837fMIT, McGovern Institute, Center for Brains, Minds and Machines
57246142814d7010d3592e3a39a1ed819dd01f3bMITSUBISHI ELECTRIC RESEARCH LABORATORIES
4350bb360797a4ade4faf616ed2ac8e27315968eMITSUBISHI ELECTRIC RESEARCH LABORATORIES
08fbe3187f31b828a38811cc8dc7ca17933b91e9MITSUBISHI ELECTRIC RESEARCH LABORATORIES
157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6MITSUBISHI ELECTRIC RESEARCH LABORATORIES
8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8MOE Key Laboratory of Computer Network and Information Integration, Southeast University, China
bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff
4c523db33c56759255b2c58c024eb6112542014eMRC Laboratory For Molecular Cell Biology, University College London
b261439b5cde39ec52d932a222450df085eb5a91MTech Student 1, 2, Disha Institute ofDepartment of Computer Science and Engineeringt1
90ad0daa279c3e30b360f9fe9371293d68f4cebfMULTIMEDIA UNIVERSITY
d5b0e73b584be507198b6665bcddeba92b62e1e5Macau University of Science and
4e6c17966efae956133bf8f22edeffc24a0470c1Macau University of Science and Technology
56f231fc40424ed9a7c93cbc9f5a99d022e1d242Macau University of Science and Technology, Macau
f93606d362fcbe62550d0bf1b3edeb7be684b000Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and
061c84a4143e859a7caf6e6d283dfb30c23ee56eMachine Intelligence Lab (MIL), Cambridge University
7f8d44e7fd2605d580683e47bb185de7f9ea9e28Machine Intelligence Lab (MIL), Cambridge University
3a04eb72aa64760dccd73e68a3b2301822e4cdc3Machine Intelligence Laboratory, College of Computer Science, Sichuan University
78f79c83b50ff94d3e922bed392737b47f93aa06Machine Perception Laboratory, University of California, San Diego
dce3dff9216d63c4a77a2fcb0ec1adf6d2489394Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland
a2bcfba155c990f64ffb44c0a1bb53f994b68a15Machine Vision Lab, Faculty of Environment and Technology, University of the West of England
4e4d034caa72dce6fca115e77c74ace826884c66Mackenzie Presbyterian University, S o Paulo, S o Paulo, Brazil
ed28e8367fcb7df7e51963add9e2d85b46e2d5d6Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh
d67dcaf6e44afd30c5602172c4eec1e484fc7fb7Mahanakorn University of TechnologyDepartment of Computer Engineering
5cb83eba8d265afd4eac49eb6b91cdae47def26dMahanakorn University of TechnologyDepartment of Computer Engineering
d46b4e6871fc9974542215f001e92e3035aa08d9Mahanakorn University of TechnologyDepartment of Computer Engineering
571f493c0ade12bbe960cfefc04b0e4607d8d4b2Mahatma Gandhi Institute of Technology
b446bcd7fb78adfe346cf7a01a38e4f43760f363Malaviya National Institute of Technology
a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1Malaviya National Institute of Technology
a546fd229f99d7fe3cf634234e04bae920a2ec33Mancha, Spain, Imperial College, London, UK2 Department of Electrical and Electronic Engineering
0ec67c69e0975cfcbd8ba787cc0889aec4cc5399Manchester University, UK
91067f298e1ece33c47df65236853704f6700a0bMangalore Institute of Engineering and Technology, Badaga
91067f298e1ece33c47df65236853704f6700a0bMangalore Institute of Engineering and Technology, Badaga
a758b744a6d6962f1ddce6f0d04292a0b5cf8e07Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore, India
f6f06be05981689b94809130e251f9e4bf932660Manipur Institute of Technology
18a9f3d855bd7728ed4f988675fa9405b5478845Manonmaniam Sundaranar University, IndiaDepartment of Computer Science and Engineering
411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8Manonmaniam Sundaranar University, TirunelveliIndia; 3Department of Computer Science and Engineering
3e69ed088f588f6ecb30969bc6e4dbfacb35133eManonmaniam Sundaranar University, Tirunelveli, India
f5aee1529b98136194ef80961ba1a6de646645feMans eld College
2c4b96f6c1a520e75eb37c6ee8b844332bc0435cMarine Institute, via Torre Bianca, 98164 Messina Italy
d30050cfd16b29e43ed2024ae74787ac0bbcf2f7Marquette University
0b79356e58a0df1d0efcf428d0c7c4651afa140dMassachusettes Institute of Technology
9e8d87dc5d8a6dd832716a3f358c1cdbfa97074cMassachusetts Institute
0e652a99761d2664f28f8931fee5b1d6b78c2a82Massachusetts Institute of Technology
026e4ee480475e63ae68570d73388f8dfd4b4cdeMassachusetts Institute of Technology
a4876b7493d8110d4be720942a0f98c2d116d2a0Massachusetts Institute of Technology
18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaaeMassachusetts Institute of Technology
4b74f2d56cd0dda6f459319fec29559291c61bffMassachusetts Institute of Technology
42ded74d4858bea1070dadb08b037115d9d15db5Massachusetts Institute of Technology
732e4016225280b485c557a119ec50cffb8fee98Massachusetts Institute of Technology
732e4016225280b485c557a119ec50cffb8fee98Massachusetts Institute of Technology
732e4016225280b485c557a119ec50cffb8fee98Massachusetts Institute of Technology
732e4016225280b485c557a119ec50cffb8fee98Massachusetts Institute of Technology
19c0069f075b5b2d8ac48ad28a7409179bd08b86Massachusetts Institute of Technology
751b26e7791b29e4e53ab915bfd263f96f531f56Massachusetts Institute of Technology
007250c2dce81dd839a55f9108677b4f13f2640aMassachusetts Institute of Technology
3f5e8f884e71310d7d5571bd98e5a049b8175075Massachusetts Institute of Technology
5517b28795d7a68777c9f3b2b46845dcdb425b2cMassachusetts Institute of Technology
64cf86ba3b23d3074961b485c16ecb99584401deMassachusetts Institute of Technology
dc9d62087ff93a821e6bb8a15a8ae2da3e39dcddMassachusetts Institute of Technology
e74816bc0803460e20edbd30a44ab857b06e288eMassachusetts Institute of Technology
e74816bc0803460e20edbd30a44ab857b06e288eMassachusetts Institute of Technology
2c1ffb0feea5f707c890347d2c2882be0494a67aMassachusetts Institute of Technology
8d6c4af9d4c01ff47fe0be48155174158a9a5e08Massachusetts Institute of Technology
82eb267b8e86be0b444e841b4b4ed4814b6f1942Massachusetts Institute of Technology
221252be5d5be3b3e53b3bbbe7a9930d9d8cad69Massachusetts Institute of Technology
0cbe059c181278a373292a6af1667c54911e7925Massachusetts Institute of Technology (MIT
a6ce2f0795839d9c2543d64a08e043695887e0ebMassachusetts Institute of Technology (MIT
eed7920682789a9afd0de4efd726cd9a706940c8Massachusetts Institute of Technology 2013. All rights reserved
5e0e516226413ea1e973f1a24e2fdedde98e7ec0Massachusetts Institute of Technology 2014. All rights reserved
16c884be18016cc07aec0ef7e914622a1a9fb59dMassachusetts Institute of Technology Rapporteur
bd9157331104a0708aa4f8ae79b7651a5be797c6Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College
a0061dae94d916f60a5a5373088f665a1b54f673Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MADepartment of Mechanical Engineering
2020e8c0be8fa00d773fd99b6da55029a6a83e3dMassachusetts Institute of Technology, Cambridge, MA 02139, USA
def569db592ed1715ae509644444c3feda06a536Massachusetts Institute of Technology, Cambridge, MA USADepartment of Brain and Cognitive Science
477236563c6a6c6db922045453b74d3f9535bfa1Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune
21b16df93f0fab4864816f35ccb3207778a51952Math Institute
6afed8dc29bc568b58778f066dc44146cad5366cMax Planck Institute f ur biologische Kybernetik
6aa61d28750629febe257d1cb69379e14c66c67fMax Planck Institute for Biological Cybernetics
7fd700f4a010d765c506841de9884df394c1de1cMax Planck Institute for Biological Cybernetics
949699d0b865ef35b36f11564f9a4396f5c9cddbMax Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 T bingen, GermanyDepartment of Bülthoff
0a60d9d62620e4f9bb3596ab7bb37afef0a90a4fMax Planck Institute for Evolutionary Anthropology, Germany
0c59071ddd33849bd431165bc2d21bbe165a81e0Max Planck Institute for Informatics
3e0a1884448bfd7f416c6a45dfcdfc9f2e617268Max Planck Institute for Informatics
3b73f8a2b39751efb7d7b396bf825af2aaadee24Max Planck Institute for Informatics
51d048b92f6680aca4a8adf07deb380c0916c808Max Planck Institute for Informatics
ed0cf5f577f5030ac68ab62fee1cf065349484ccMax Planck Institute for Informatics
ed0cf5f577f5030ac68ab62fee1cf065349484ccMax Planck Institute for Informatics
42eda7c20db9dc0f42f72bb997dd191ed8499b10Max Planck Institute for Informatics
fd892e912149e3f5ddd82499e16f9ea0f0063fa3Max Planck Institute for Informatics, Germany
808b685d09912cbef4a009e74e10476304b4cccfMax Planck Institute for Informatics, Germany
98142103c311b67eeca12127aad9229d56b4a9ffMax Planck Institute for Informatics, Germany
ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98Max Planck Institute for Informatics, Germany
0df0d1adea39a5bef318b74faa37de7f3e00b452Max Planck Institute for Informatics, Saarbr ucken, Germany
593234ba1d2e16a887207bf65d6b55bbc7ea2247Max Planck Institute for Informatics, Saarbr ucken, Germany
0ee5c4112208995bf2bb0fb8a87efba933a94579Max Planck Institute for Informatics, Saarbr ucken, Germany
c34532fe6bfbd1e6df477c9ffdbb043b77e7804dMax Planck Institute for Informatics, Saarbr ucken, Germany
5287d8fef49b80b8d500583c07e935c7f9798933Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE
ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8febMax Planck Institute for Informatics, Saarland Informatics Campus
cd2c54705c455a4379f45eefdf32d8d10087e521Max Planck Institute for Informatics, Saarland Informatics Campus
23429ef60e7a9c0e2f4d81ed1b4e47cc2616522fMax Planck Institute for Informatics, Saarland Informatics Campus
07377c375ac76a34331c660fe87ebd7f9b3d74c4Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
b68150bfdec373ed8e025f448b7a3485c16e3201Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbr cken, Germany
b6d0e461535116a675a0354e7da65b2c1d2958d4Max Planck Institute for Intelligent Systems, T ubingen, Germany
050a3346e44ca720a54afbf57d56b1ee45ffbe49Max-Planck Institute for Informatics
bc27434e376db89fe0e6ef2d2fabc100d2575ec6Max-Planck Institute for Informatics
f1aa120fb720f6cfaab13aea4b8379275e6d40a2Max-Planck-Institute for Informatics
0c30f6303dc1ff6d05c7cee4f8952b74b9533928McGill University
0c30f6303dc1ff6d05c7cee4f8952b74b9533928McGill University
3d68cedd80babfbb04ab197a0b69054e3c196cd9McGill University
f2b13946d42a50fa36a2c6d20d28de2234aba3b4McGill University
f2b13946d42a50fa36a2c6d20d28de2234aba3b4McGill University
ed9d11e995baeec17c5d2847ec1a8d5449254525McGill UniversityCentre for Intelligent Machines and ECE Department
0773c320713dae62848fceac5a0ac346ba224ecaMcGill University
08f1e9e14775757298afd9039f46ec56e80677f9McGill University
dda35768681f74dafd02a667dac2e6101926a279McGill UniversityDepartment of Electrical and Computer Engineering
407bb798ab153bf6156ba2956f8cf93256b6910aMcGill UniversityCentre for Intelligent Machines and ECE Department
13719bbb4bb8bbe0cbcdad009243a926d93be433McGill UniversityCentre for Intelligent Machines and ECE Department
4657d87aebd652a5920ed255dca993353575f441McGill University, Montreal, Canada
4b74f2d56cd0dda6f459319fec29559291c61bffMcGovern Institute
18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaaeMcGovern Institute for Brain Research
141768ab49a5a9f5adcf0cf7e43a23471a7e5d82McMaster University
08cb294a08365e36dd7ed4167b1fd04f847651a9Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada
4157e45f616233a0874f54a59c3df001b9646cd7Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular
455204fa201e9936b42756d362f62700597874c4Medical School, University of Ioannina, Ioannina, GreeceDepartment of Medical Physics
9c25e89c80b10919865b9c8c80aed98d223ca0c6Meiji University
9c25e89c80b10919865b9c8c80aed98d223ca0c6Meiji University
fac8cff9052fc5fab7d5ef114d1342daba5e4b82Melbourne University, Advisors: K. Borovkov, R. Evans
ea6f5c8e12513dbaca6bbdff495ef2975b8001bdMenara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master
89c84628b6f63554eec13830851a5d03d740261aMetron, Inc
3270b2672077cc345f188500902eaf7809799466Michigan State University
3d18ce183b5a5b4dcaa1216e30b774ef49eaa46fMichigan State UniversityDepartment of Computer Science and Engineering
056d5d942084428e97c374bb188efc386791e36dMichigan State University
02467703b6e087799e04e321bea3a4c354c5487dMichigan State University
02d650d8a3a9daaba523433fbe93705df0a7f4b1Michigan State University
b446bcd7fb78adfe346cf7a01a38e4f43760f363Michigan State University
b446bcd7fb78adfe346cf7a01a38e4f43760f363Michigan State University
e506cdb250eba5e70c5147eb477fbd069714765bMichigan State University
c035c193eed5d72c7f187f0bc880a17d217dada0Michigan State Universityb Department of Computer Science and Engineering
fc798314994bf94d1cde8d615ba4d5e61b6268b6Michigan State University
edff76149ec44f6849d73f019ef9bded534a38c2Michigan State University
ec8ec2dfd73cf3667f33595fef84c95c42125945Michigan State UniversityDepartment of Computer Science and Engineering
4b605e6a9362485bfe69950432fa1f896e7d19bfMichigan State University
7c80d91db5977649487388588c0c823080c9f4b4Michigan State University
4217473596b978f13a211cdf47b7d3f6588c785fMichigan State University
4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ecMichigan State UniversityDepartment of Computer Science and Engineering
450c6a57f19f5aa45626bb08d7d5d6acdb863b4bMichigan State University
2a4153655ad1169d482e22c468d67f3bc2c49f12Michigan State UniversityDepartment of Computer Science and Engineering
2f2406551c693d616a840719ae1e6ea448e2f5d3Michigan State University
08f6ad0a3e75b715852f825d12b6f28883f5ca05Michigan State University
0a64f4fec592662316764283575d05913eb2135bMichigan State University
a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1Michigan State University
a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1Michigan State University
cc9057d2762e077c53e381f90884595677eceafaMichigan State UniversityDepartment of Computer Science and Engineering
e01bb53b611c679141494f3ffe6f0b91953af658Michigan State University
8de6deefb90fb9b3f7d451b9d8a1a3264b768482Michigan State University
7a1ce696e260899688cb705f243adf73c679f0d9Michigan State University
7a1ce696e260899688cb705f243adf73c679f0d9Michigan State University
8e3c97e420e0112c043929087d6456d8ab61e95cMichigan State University
29f0414c5d566716a229ab4c5794eaf9304d78b6Michigan State University, 3115 Engineering BuildingDepartment of Computer Science and Engineering
4b519e2e88ccd45718b0fc65bfd82ebe103902f7Michigan State University, E. Lansing, MI 48823, USADepartment of Computer Science and Engineering
9db4b25df549555f9ffd05962b5adf2fd9c86543Michigan State University, East Lansing MI
37ce1d3a6415d6fc1760964e2a04174c24208173Michigan State University, East Lansing MI
085ceda1c65caf11762b3452f87660703f914782Michigan State University, East Lansing MI
7fb5006b6522436ece5bedf509e79bdb7b79c9a7Michigan State University, East Lansing MI
051f03bc25ec633592aa2ff5db1d416b705eac6cMichigan State University, East Lansing, MI 48824, U.S.A
d2cd9a7f19600370bce3ea29aba97d949fe0ceb9Michigan State University, East Lansing, MI 48824, U.S.A
1d5aad4f7fae6d414ffb212cec1f7ac876de48bfMichigan State University, East Lansing, MI 48824, U.S.A
69c2ac04693d53251500557316c854a625af84eeMichigan State University, East Lansing, MI 48824, USAa Department of Computer Science and Engineering
27961bc8173ac84fdbecacd01e5ed6f7ed92d4bdMichigan State University, East Lansing, MI, U.S.A
09f58353e48780c707cf24a0074e4d353da18934Michigan State University, East Lansing, MI, U.S.A
2201f187a7483982c2e8e2585ad9907c5e66671dMichigan State University, East Lansing, MI, U.S.A
1a40092b493c6b8840257ab7f96051d1a4dbfeb2Michigan State University, East Lansing, MI, USA
90498b95fe8b299ce65d5cafaef942aa58bd68b7Michigan State University, East Lansing, MI, USADepartment of Computer Science and Engineering
96e1ccfe96566e3c96d7b86e134fa698c01f2289Michigan State University, East Lansing, USA
9b2c359c36c38c289c5bacaeb5b1dd06b464f301Michigan State University, MIDepartment of Computer Science and Engineering
d29eec5e047560627c16803029d2eb8a4e61da75Michigan State University, NEC Laboratories America
82eff71af91df2ca18aebb7f1153a7aed16ae7ccMichigan State University, USA
10550ee13855bd7403946032354b0cd92a10d0aaMicrosystems Design Lab, The Pennsylvania State University
c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3Middle East Technical University
9865fe20df8fe11717d92b5ea63469f59cf1635aMiddle East Technical University
8dcc95debd07ebab1721c53fa50d846fef265022Middle East Technical UniversityDepartment of Computer Engineering
121fe33daf55758219e53249cf8bcb0eb2b4db4bMiddlebury College
4bbe460ab1b279a55e3c9d9f488ff79884d01608Middlesex University London
54bb25a213944b08298e4e2de54f2ddea890954aMiddlesex University London
aa0c30bd923774add6e2f27ac74acd197b9110f2Middlesex University London, 4International Hellenic University
7f82f8a416170e259b217186c9e38a9b05cb3eb4Middlesex University London, London, UKDepartment of Computing
9b0489f2d5739213ef8c3e2e18739c4353c3a3b7Middlesex University London, UKDepartment of Computer Science
a06b6d30e2b31dc600f622ab15afe5e2929581a7Middlesex University London, UK
06d7ef72fae1be206070b9119fb6b61ce4699587Middlesex University, London
fafe69a00565895c7d57ad09ef44ce9ddd5a6caaMihaylo College of Business and EconomicsInformation Systems and Decision Sciences Department
a9fc23d612e848250d5b675e064dba98f05ad0d9Minia University, Egypt
6e782073a013ce3dbc5b9b56087fd0300c510f67Ministry of Higher Education and Scientific Research / The University of Mustsnsiriyah/Baghdad IRAQ
0b79356e58a0df1d0efcf428d0c7c4651afa140dMitsubishi Electric Research Laboratory
8adb2fcab20dab5232099becbd640e9c4b6a905aMitsubishi Electric Research Laboratory
cbca355c5467f501d37b919d8b2a17dcb39d3ef9Mitsubishi Electric Research Labs
9ef2b2db11ed117521424c275c3ce1b5c696b9b3Mitsubishi Electric Research Labs (MERL
17cf838720f7892dbe567129dcf3f7a982e0b56eMitsubishi Electric Research Labs (MERL), Cambridge, MA, USA
16c884be18016cc07aec0ef7e914622a1a9fb59dMme Tinne Tuytelaars Katholieke Universiteit Leuven
ff061f7e46a6213d15ac2eb2c49d9d3003612e49Monash University
cb13e29fb8af6cfca568c6dc523da04d1db1fff5Monash University Malaysia, School of Information Technology, Sunway
db3545a983ffd24c97c18bf7f068783102548ad7Monash University, Australia
0ef96d97365899af797628e80f8d1020c4c7e431Monash University, Victoria, Australia
a9791544baa14520379d47afd02e2e7353df87e5Montefiore Institute, University of Li ge, 4000 Li ge, BelgiumDepartment of Electrical Engineering and Computer Science
cd4941cbef1e27d7afdc41b48c1aff5338aacf06Montreal Institute for Learning Algorithms
4e97b53926d997f451139f74ec1601bbef125599Montreal Institute for Learning Algorithms, Universit e de Montr eal
469ee1b00f7bbfe17c698ccded6f48be398f2a44Moradabad Institute of Technology
469ee1b00f7bbfe17c698ccded6f48be398f2a44Moradabad Institute of Technology
469ee1b00f7bbfe17c698ccded6f48be398f2a44Moradabad Institute of Technology
3ca5d3b8f5f071148cb50f22955fd8c1c1992719Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia
5c3dce55c61ee86073575ac75cc882a215cb49e6Moscow Institute of Physics and Technology, Russia
60496b400e70acfbbf5f2f35b4a49de2a90701b5Moscow State University, dept. of Computational Mathematics and Cybernetics
f935225e7811858fe9ef6b5fd3fdd59aec9abd1aMost of the earlier studies mentioned above, including ours
9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7Motorola China Research Center, Shanghai, 210000, P.R.China
c696c9bbe27434cb6279223a79b17535cd6e88c8Motorola China Research Center, Shanghai, 210000, P.R.China
b073313325b6482e22032e259d7311fb9615356cMotorola, Inc
208a2c50edb5271a050fa9f29d3870f891daa4dcMuch is known on how facial expressions of emotion are produced, including which individual muscles are most active in
66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5Muhlenberg College
25c108a56e4cb757b62911639a40e9caf07f1b4fMultimedia Laboratory at The Chinese University of Hong Kong
3b9c08381282e65649cd87dfae6a01fe6abea79bMultimedia Laboratory, The Chinese University of Hong Kong, Hong Kong
2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1Multimedia University
0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698Multimedia University (MMU), Cyberjaya, Malaysia
0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698Multimedia University (MMU), Cyberjaya, Malaysia
3d0c21d4780489bd624a74b07e28c16175df6355Multimedia University, Cyberjaya, Malaysia
3d0c21d4780489bd624a74b07e28c16175df6355Multimedia University, Cyberjaya, Malaysia
e328d19027297ac796aae2470e438fe0bd334449Multimedia University, Cyberjaya, Malaysia
e328d19027297ac796aae2470e438fe0bd334449Multimedia University, Cyberjaya, Malaysia
cb13e29fb8af6cfca568c6dc523da04d1db1fff5Multimedia University, Faculty of Computing and Informatics, Cyberjaya
cb13e29fb8af6cfca568c6dc523da04d1db1fff5Multimedia University, Faculty of Engineering, Cyberjaya, 63100 Selangor, Malaysia
cb13e29fb8af6cfca568c6dc523da04d1db1fff5Multimedia University, Research Institute for Digital Security, Cyberjaya
c7de0c85432ad17a284b5b97c4f36c23f506d9d1Multimedia, Vision and Graphics Laboratory, Koc University, Istanbul, Turkey
488a61e0a1c3768affdcd3c694706e5bb17ae548Multimodal Computing and Interaction, Saarland University, Germany
e43045a061421bd79713020bc36d2cf4653c044dMurdoch University
067126ce1f1a205f98e33db7a3b77b7aec7fb45aMyongji UniversityDepartment of Computer Science and Engineering
7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719dMyongji University, Yongin, 449-728 SouthDepartment of Computer Science and Engineering
4568063b7efb66801e67856b3f572069e774ad33NEC Laboratories America, Inc
214db8a5872f7be48cdb8876e0233efecdcb6061NEC Laboratories America, Inc
2c424f21607ff6c92e640bfe3da9ff105c08fac4NEC Laboratories America, Inc
aefc7c708269b874182a5c877fb6dae06da210d4NEC Laboratories America, Inc., Cupertino, CA
05f3d1e9fb254b275354ca69018e9ed321dd8755NICTA , Queensland Research Laboratory, QLD, Australia
b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3NICTA, and Australian National University
9d42df42132c3d76e3447ea61e900d3a6271f5feNSS College of Engineering
205b34b6035aa7b23d89f1aed2850b1d3780de35Nagaoka University of Technology, Japan
6a52e6fce541126ff429f3c6d573bc774f5b8d89Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
14fdec563788af3202ce71c021dd8b300ae33051Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
5b86c36e3eb59c347b81125d5dd57dd2a2c377a9Nagoya University
5b86c36e3eb59c347b81125d5dd57dd2a2c377a9Nagoya University
b64cfb39840969b1c769e336a05a30e7f9efcd61Nagoya University, Japan
7b63ed54345d8c06523f6b03c41a09b5c8f227e2Najafabad Branch, Islamic Azad University
ac12ba5bf81de83991210b4cd95b4ad048317681Nam k Kemal UniversityDepartment of Computer Engineering
4c81c76f799c48c33bb63b9369d013f51eaf5adaNam k Kemal University, Tekirda g, TurkeyDepartment of Computer Engineering
bd379f8e08f88729a9214260e05967f4ca66cd65Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
f909d04c809013b930bafca12c0f9a8192df9d92Nanjing University of Aeronautics and Astronautics, China
0ed0e48b245f2d459baa3d2779bfc18fee04145bNanjing University of Aeronautics and Astronautics, Nanjing 210016, China
ae836e2be4bb784760e43de88a68c97f4f9e44a1Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
65b1760d9b1541241c6c0222cc4ee9df078b593aNanjing University of Aeronautics and Astronautics, Nanjing 210016, China
5b0bf1063b694e4b1575bb428edb4f3451d9bf04Nanjing University of Information Science and Technology
d785fcf71cb22f9c33473cba35f075c1f0f06ffcNanjing University of Information Science and Technology, Nanjing, 210044, China
b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172Nanjing University of Science and
66aad5b42b7dda077a492e5b2c7837a2a808c2faNanjing University of Science and Technology
e01bb53b611c679141494f3ffe6f0b91953af658Nanjing University of Science and Technology
9887ab220254859ffc7354d5189083a87c9bca6eNanjing University of Science and Technology, China
34bb11bad04c13efd575224a5b4e58b9249370f3Nanjing University, China
5394d42fd27b7e14bd875ec71f31fdd2fcc8f923Nanjing University, China
f909d04c809013b930bafca12c0f9a8192df9d92Nanjing University, China
8b30259a8ab07394d4dac971f3d3bd633beac811Nanjing University, China
a6e43b73f9f87588783988333997a81b4487e2d5Nanjing University, Nanjing 210023, China
0ed0e48b245f2d459baa3d2779bfc18fee04145bNanjing University, Nanjing 210093, China
ae836e2be4bb784760e43de88a68c97f4f9e44a1Nanjing University, Nanjing 210093, China
65b1760d9b1541241c6c0222cc4ee9df078b593aNanjing University, Nanjing 210093, China
f2ad9b43bac8c2bae9dea694f6a4e44c760e63daNanjing University, Nanjing 210093, P.R.China
bbcb4920b312da201bf4d2359383fb4ee3b17ed9Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and
bbcb4920b312da201bf4d2359383fb4ee3b17ed9Nanjing, 210094, China, 3 School of Automation, Nanjing University of Posts and Telecommunications
6fea198a41d2f6f73e47f056692f365c8e6b04ceNanyang Technological University
6fea198a41d2f6f73e47f056692f365c8e6b04ceNanyang Technological University
6fea198a41d2f6f73e47f056692f365c8e6b04ceNanyang Technological University
6fea198a41d2f6f73e47f056692f365c8e6b04ceNanyang Technological University
34bb11bad04c13efd575224a5b4e58b9249370f3Nanyang Technological University
a322479a6851f57a3d74d017a9cb6d71395ed806Nanyang Technological University
d0471d5907d6557cf081edf4c7c2296c3c221a38Nanyang Technological University
271df16f789bd2122f0268c3e2fa46bc0cb5f195Nanyang Technological University
8164ebc07f51c9e0db4902980b5ac3f5a8d8d48cNanyang Technological University
5ca23ceb0636dfc34c114d4af7276a588e0e8dacNanyang Technological University
b9c9c7ef82f31614c4b9226e92ab45de4394c5f6Nanyang Technological University
831b4d8b0c0173b0bac0e328e844a0fbafae6639Nanyang Technological University
2be0ab87dc8f4005c37c523f712dd033c0685827Nanyang Technological University
2be0ab87dc8f4005c37c523f712dd033c0685827Nanyang Technological University
47190d213caef85e8b9dd0d271dbadc29ed0a953Nanyang Technological University
7eb85bcb372261bad707c05e496a09609e27fdb3Nanyang Technological University, 2University of California San Diego
4ed2d7ecb34a13e12474f75d803547ad2ad811b2Nanyang Technological University, Singapore
80be8624771104ff4838dcba9629bacfe6b3ea09Nanyang Technological University, Singapore
39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bcNanyang Technological University, Singapore
b1429e4d3dd3412e92a37d2f9e0721ea719a9b9eNanyang Technological University, Singapore
2c3430e0cbe6c8d7be3316a88a5c13a50e90021dNanyang Technological University, Singapore
14c0f9dc9373bea1e27b11fa0594c86c9e632c8dNanyang Technological University, Singapore
22df6b6c87d26f51c0ccf3d4dddad07ce839deb0Nanyang Technological University, Singapore
7fa3d4be12e692a47b991c0b3d3eba3a31de4d05Nanyang Technological University, Singapore 639798, Singapore
5134353bd01c4ea36bd007c460e8972b1541d0adNanyang Technological University, Singapore, Singapore
ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50bNarayana Pharmacy College, Nellore, IndiaDepartment of Pharmacognosy
eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5aNational Cheng Kung UniversityDepartment of Electrical Engineering
dd033d4886f2e687b82d893a2c14dae02962ea70National Cheng Kung University, Tainan, TaiwanDepartment of Electrical Engineering
7a7f2403e3cc7207e76475e8f27a501c21320a44National Cheng Kung University, Tainan, Taiwan, R.O.C
78fede85d6595e7a0939095821121f8bfae05da6National Cheng Kung University, Tainan, Taiwan, ROC
a8583e80a455507a0f146143abeb35e769d25e4eNational Chiao Tung University, Taiwan
c92da368a6a886211dc759fe7b1b777a64d8b682National Chiao-Tung University
c92da368a6a886211dc759fe7b1b777a64d8b682National Chiao-Tung University
8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4National Chung Cheng University, Chiayi, Taiwan, R.O.CDepartment of Computer Science and Information Engineering
2f17f6c460e02bd105dcbf14c9b73f34c5fb59bdNational Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University
4205cb47ba4d3c0f21840633bcd49349d1dc02c1National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China
911505a4242da555c6828509d1b47ba7854abb7aNational Formosa University, Taiwan
66886f5af67b22d14177119520bd9c9f39cdd2e6National Institute of Advanced Industrial
703c9c8f20860a1b1be63e6df1622b2021b003caNational Institute of Advanced Industrial Science and Technology
666300af8ffb8c903223f32f1fcc5c4674e2430bNational Institute of Advanced Industrial Science and Technology (AIST
0290523cabea481e3e147b84dcaab1ef7a914612National Institute of Advanced Industrial Science and Technology (AIST
f2a7f9bd040aa8ea87672d38606a84c31163e171National Institute of Advanced Industrial Science and Technology (AIST
07c83f544d0604e6bab5d741b0bf9a3621d133daNational Institute of Advanced Industrial Science and Technology (AIST
31625522950e82ad4dffef7ed0df00fdd2401436National Institute of Advanced Industrial Science and Technology (AIST
5e6f546a50ed97658be9310d5e0a67891fe8a102National Institute of Advanced Industrial Science and Technology (AIST
e0d878cc095eaae220ad1f681b33d7d61eb5e425National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
d6c7092111a8619ed7a6b01b00c5f75949f137bfNational Institute of Development Administration
d6c7092111a8619ed7a6b01b00c5f75949f137bfNational Institute of Development Administration
9b6d0b3fbf7d07a7bb0d86290f97058aa6153179National Institute of Informatics
d86fabd4498c8feaed80ec342d254fb877fb92f5National Institute of Informatics
846c028643e60fefc86bae13bebd27341b87c4d1National Institute of Informatics
b64cfb39840969b1c769e336a05a30e7f9efcd61National Institute of Informatics, Japan
4dd71a097e6b3cd379d8c802460667ee0cbc8463National Institute of Informatics, Tokyo, Japan
ffea8775fc9c32f573d1251e177cd283b4fe09c9National Institute of Informatics, Tokyo, Japan
3f7723ab51417b85aa909e739fc4c43c64bf3e84National Institute of Optics, National Research Council, Arnesano, LE, Italy
f571fe3f753765cf695b75b1bd8bed37524a52d2National Institute of Standards and Technology
2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44National Institute of Standards and Technology
07f31bef7a7035792e3791473b3c58d03928abbfNational Institute of Standards and Technology
38a2661b6b995a3c4d69e7d5160b7596f89ce0e6National Institute of Standards and Technology
089b5e8eb549723020b908e8eb19479ba39812f5National Institute of Standards and Technology
120bcc9879d953de7b2ecfbcd301f72f3a96fb87National Institute of Standards and Technology
c8e84cdff569dd09f8d31e9f9ba3218dee65e961National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
f6f06be05981689b94809130e251f9e4bf932660National Institute of Technology
f6f06be05981689b94809130e251f9e4bf932660National Institute of Technology
e9e40e588f8e6510fa5537e0c9e083ceed5d07adNational Institute of Technology KarnatakaDepartment of Computer Science and Engineering
3f4bfa4e3655ef392eb5ad609d31c05f29826b45National Institute of Technology Rourkela
81e11e33fc5785090e2d459da3ac3d3db5e43f65National Institute of Technology, Durgapur, West Bengal, India
2bae810500388dd595f4ebe992c36e1443b048d2National Institute of Technology, Toyota College, Japan
1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177National Institutes of Health
78fede85d6595e7a0939095821121f8bfae05da6National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC
8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8National Key Laboratory for Novel Software Technology, Nanjing University, China
521cfbc1949289a7ffc3ff90af7c55adeb43db2aNational Key Laboratory for Novel Software Technology, Nanjing University, China
0c741fa0966ba3ee4fc326e919bf2f9456d0cd74National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China
c089c7d8d1413b54f59fc410d88e215902e51638National Lab of Pattern Recognition, Institute of Automation
511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha, China
c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4National Laboratory of Pattern Recognition (NLPR), Institute of Automation
a35dd69d63bac6f3296e0f1d148708cfa4ba80f6National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences
1fd6004345245daf101c98935387e6ef651cbb55National Laboratory of Pattern Recognition, Institute of Automation
142e5b4492bc83b36191be4445ef0b8b770bf4b0National Laboratory of Pattern Recognition, Institute of Automation
4a1d640f5e25bb60bb2347d36009718249ce9230National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, P. R. China
56359d2b4508cc267d185c1d6d310a1c4c2cc8c2National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China
666939690c564641b864eed0d60a410b31e49f80National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of
a322479a6851f57a3d74d017a9cb6d71395ed806National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
4e4fa167d772f34dfffc374e021ab3044566afc3National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1dNational Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
1c2724243b27a18a2302f12dea79d9a1d4460e35National Laboratory on Machine Perception, Peking University, Beijing, P.R. China
e496d6be415038de1636bbe8202cac9c1cea9dbeNational Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce
c87d5036d3a374c66ec4f5870df47df7176ce8b9National Research University Higher
d4885ca24189b4414031ca048a8b7eb2c9ac646cNational Research University Higher School of Economics
fab60b3db164327be8588bce6ce5e45d5b882db6National Research University Higher School of Economics
fab60b3db164327be8588bce6ce5e45d5b882db6National Research University Higher School of Economics
99ced8f36d66dce20d121f3a29f52d8b27a1da6cNational Research University Higher School of Economics, Nizhny Novgorod, Russian
07d986b1005593eda1aeb3b1d24078db864f8f6aNational Sun Yat Sen University, 804 Kaohsiung, TaiwanDepartment of Electrical Engineering
8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4National Taichung University of Science and Technology, Taichung, Taiwan, R.O.CDepartment of Multimedia Design
132527383890565d18f1b7ad50d76dfad2f14972National Taipei University
47eba2f95679e106e463e8296c1f61f6ddfe815bNational Taiwan UniversityDepartment of Computer Science and Information Engineering
14318d2b5f2cf731134a6964d8193ad761d86942National Taiwan UniversityDepartment of Computer Science and Information Engineering
91e507d2d8375bf474f6ffa87788aa3e742333ceNational Taiwan University of Science andDepartment of Mechanical Engineering
9326d1390e8601e2efc3c4032152844483038f3fNational Taiwan University of Science and Technology
27c6cd568d0623d549439edc98f6b92528d39bfeNational Taiwan University of Science and Technology
3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5National Taiwan University of Science and Technology
d46e793b945c4f391031656357625e902c4405e8National Taiwan University of Science and Technology
c466ad258d6262c8ce7796681f564fec9c2b143dNational Taiwan University of Science and Technology
a125bc55bdf4bec7484111eea9ae537be314ec62National Taiwan University of Science and Technology, Taipei 10607, Taiwan
a125bc55bdf4bec7484111eea9ae537be314ec62National Taiwan University of Science and Technology, Taipei 10607, Taiwan
a125bc55bdf4bec7484111eea9ae537be314ec62National Taiwan University of Science and Technology, Taipei 10607, Taiwan
046865a5f822346c77e2865668ec014ec3282033National Taiwan University, Taipei, Taiwan
6ab33fa51467595f18a7a22f1d356323876f8262National Taiwan University, Taipei, TaiwanDepartment of Computer Science and Information Engineering
346c9100b2fab35b162d7779002c974da5f069eeNational Taiwan University, Taipei, Taiwan
5b73b7b335f33cda2d0662a8e9520f357b65f3acNational Taiwan University, Taipei, TaiwanDepartment of Computer Science and Information Engineering
06466276c4955257b15eff78ebc576662100f740National Taiwan University, Taipei, Taiwan
0f533bc9fdfb75a3680d71c84f906bbd59ee48f1National Taiwan University, Taipei, TaiwanDepartment of Mathematics
c44c84540db1c38ace232ef34b03bda1c81ba039National Taiwan University, Taipei, Taiwan
71e6a46b32a8163c9eda69e1badcee6348f1f56aNational Taiwan University, Taipei, Taiwan
8ba67f45fbb1ce47a90df38f21834db37c840079National Taiwan University, Taipei, Taiwan
cf09e2cb82961128302b99a34bff91ec7d198c7cNational Taiwan University, Taiwan
cf09e2cb82961128302b99a34bff91ec7d198c7cNational Taiwan University, Taiwan
1bad8a9640cdbc4fe7de12685651f44c4cff35ceNational Technical University of Athens
bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4National Technical University of Athens, 15780 Athens, Greece
bf961e4a57a8f7e9d792e6c2513ee1fb293658e9National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, TaiwanDepartment of Computer Science
bf961e4a57a8f7e9d792e6c2513ee1fb293658e9National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, TaiwanDepartment of Computer Science
bf961e4a57a8f7e9d792e6c2513ee1fb293658e9National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, TaiwanDepartment of Computer Science
3cd8ab6bb4b038454861a36d5396f4787a21cc68National Tsing Hua University, Hsin-Chu, TaiwanDepartment of Electrical Engineering
e8b3a257a0a44d2859862cdec91c8841dc69144dNational Tsing Hua University, TaiwanDepartment of Electrical Engineering
a702fc36f0644a958c08de169b763b9927c175ebNational Tsing-Hua University, Hsin-Chu, TaiwanDepartment of Electrical Engineering
a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529National University
d50a40f2d24363809a9ac57cf7fbb630644af0e5National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan
fb87045600da73b07f0757f345a937b1c8097463National University of Defense
9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32National University of Defense Technology
5f771fed91c8e4b666489ba2384d0705bcf75030National University of Defense Technology
a322479a6851f57a3d74d017a9cb6d71395ed806National University of Defense Technology
c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3dNational University of Defense Technology
28f5138d63e4acafca49a94ae1dc44f7e9d84827National University of Defense Technology
4adb97b096b700af9a58d00e45a2f980136fcbb5National University of Defense Technology
ac51d9ddbd462d023ec60818bac6cdae83b66992National University of Defense Technology, Changsha 410073, China
6e00a406edb508312108f683effe6d3c1db020fbNational University of Defense Technology, Changsha, China
0faeec0d1c51623a511adb779dabb1e721a6309bNational University of Ireland Maynooth, Co. Kildare, Ireland
07d986b1005593eda1aeb3b1d24078db864f8f6aNational University of Kaohsiung, 811 Kaohsiung, TaiwanDepartment of Electrical Engineering
07d986b1005593eda1aeb3b1d24078db864f8f6aNational University of Kaohsiung, 811 Kaohsiung, TaiwanDepartment of Computer Science and Information Engineering
77c53ec6ea448db4dad586e002a395c4a47ecf66National University of Science and TechnologyDepartment of Computer Engineering
bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9National University of Sciences and Technology (NUST), Islamabad, Pakistan
0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58National University of Singapore
504028218290d68859f45ec686f435f473aa326cNational University of Singapore
046a694bbb3669f2ff705c6c706ca3af95db798cNational University of SingaporeDepartment of Electrical and Computer Engineering
3411ef1ff5ad11e45106f7863e8c7faf563f4ee1National University of SingaporeDepartment of Electrical and Computer Engineering
5f771fed91c8e4b666489ba2384d0705bcf75030National University of Singapore
5f94969b9491db552ffebc5911a45def99026afeNational University of Singapore
5f94969b9491db552ffebc5911a45def99026afeNational University of Singapore
a322479a6851f57a3d74d017a9cb6d71395ed806National University of Singapore
b5968e7bb23f5f03213178c22fd2e47af3afa04cNational University of Singapore
aea4128ba18689ff1af27b90c111bbd34013f8d5National University of SingaporeDepartment of Electrical and Computer Engineering
c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3dNational University of Singapore
11c04c4f0c234a72f94222efede9b38ba6b2306cNational University of Singapore
4223666d1b0b1a60c74b14c2980069905088edc6National University of Singapore
1fe59275142844ce3ade9e2aed900378dd025880National University of SingaporeDepartment of Electrical and Computer Engineering
2836d68c86f29bb87537ea6066d508fde838ad71National University of SingaporeDepartment of Electrical and Computer Engineering
21765df4c0224afcc25eb780bef654cbe6f0bc3aNational University of Singapore
21765df4c0224afcc25eb780bef654cbe6f0bc3aNational University of Singapore
3661a34f302883c759b9fa2ce03de0c7173d2bb2National University of Singapore
989332c5f1b22604d6bb1f78e606cb6b1f694e1aNational University of SingaporeDepartment of Electrical and Computer Engineering
afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3National University of SingaporeDepartment of Electrical and Computer Engineering
e90e12e77cab78ba8f8f657db2bf4ae3dabd5166National University of SingaporeDepartment of Electrical and Computer Engineering
713594c18978b965be87651bb553c28f8501df0aNational University of SingaporeDepartment of Electrical and Computer Engineering
71e56f2aebeb3c4bb3687b104815e09bb4364102National University of Singapore Research Institute, Suzhou, China
374a0df2aa63b26737ee89b6c7df01e59b4d8531National University of Singapore, 2Shanghai Jiao Tong University
3be8f1f7501978287af8d7ebfac5963216698249National University of Singapore, SingaporeDepartment of Electronic and Computer Engineering
56359d2b4508cc267d185c1d6d310a1c4c2cc8c2National University of Singapore, SingaporeDepartment of Electrical and Computer Engineering
3d948e4813a6856e5b8b54c20e50cc5050e66abeNational University of Singapore, Singapore
0ebc50b6e4b01eb5eba5279ce547c838890b1418National University of Singapore, SingaporeDepartment of Electrical and Computer Engineering
daf05febbe8406a480306683e46eb5676843c424National University of Singapore, SingaporeDepartment of ECE
daf05febbe8406a480306683e46eb5676843c424National University of Singapore, SingaporeDepartment of ME
edbb8cce0b813d3291cae4088914ad3199736aa0National University of Singapore, SingaporeDepartment of Electrical and Computer Engineering
2042aed660796b14925db17c0a8b9fbdd7f3ebacNational University of Singapore, Singapore
182f3aa4b02248ff9c0f9816432a56d3c8880706National University of Singapore, SingaporeDepartment of Mathematics
1f24cef78d1de5aa1eefaf344244dcd1972797e8National University of Singapore, Singapore
2f2aa67c5d6dbfaf218c104184a8c807e8b29286National University of Singapore, Singapore
30cd39388b5c1aae7d8153c0ab9d54b61b474ffeNational University of Singapore, SingaporeDepartment of Electronic and Computer Engineering
b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24National University of Singapore, Singapore
4a1d640f5e25bb60bb2347d36009718249ce9230National University of Singapore, SingaporeDepartment of Electrical and Computer Engineering
8c8525e626c8857a4c6c385de34ffea31e7e41d1National University of Singapore, Singapore
71e56f2aebeb3c4bb3687b104815e09bb4364102National University of Singapore, SingaporeDepartment of ECE
14ff9c89f00dacc8e0c13c94f9fadcd90e4e604dNational University of Singapore, Singapore
9c1860de6d6e991a45325c997bf9651c8a9d716fNational University of Technology Technology
d02c54192dbd0798b43231efe1159d6b4375ad36National University of Technology Technology
b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172National University of singapore
b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87cNetherlands, Donders Institute, Radboud University, Nijmegen, The2 Department of Biophysics
07e639abf1621ceff27c9e3f548fadfa2052c912Netherlands, Utrecht University, Utrecht, The Netherlands3 Department of Child and Adolescent Studies
4b7c110987c1d89109355b04f8597ce427a7cd72Neurological Institute, USA
4b7c110987c1d89109355b04f8597ce427a7cd72Neurological Institute, USA
7e18b5f5b678aebc8df6246716bf63ea5d8d714eNeuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States3 Department
abb396490ba8b112f10fbb20a0a8ce69737cd492New Jersey Institute of TechnologyDepartment of Computer Science
2cfc28a96b57e0817cc9624a5d553b3aafba56f3New Jersey Institute of TechnologyDepartment of Computer Science
3d948e4813a6856e5b8b54c20e50cc5050e66abeNew Jersey Institute of Technology, USA
66e9fb4c2860eb4a15f713096020962553696e12New York University
17fa1c2a24ba8f731c8b21f1244463bc4b465681New York University
0115f260069e2e501850a14845feb400142e2443New York University
3f540faf85e1f8de6ce04fb37e556700b67e4ad3New York University Shanghai, 1555 Century Ave, PudongDepartment of Mathematics
54204e28af73c7aca073835a14afcc5d8f52a515New York University, Brooklyn, NY, USA
36c2db5ff76864d289781f93cbb3e6351f11984cNewcastle University, Newcastle upon Tyne
f7b4bc4ef14349a6e66829a0101d5b21129dcf55Newcastle University, UK
0a4fc9016aacae9cdf40663a75045b71e64a70c9Ningxia University
3c0bbfe664fb083644301c67c04a7f1331d9515fNo Institute Given
898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7cNo Institute Given
6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365Nokia Bell Labs and University of Oxford
00b08d22abc85361e1c781d969a1b09b97bc7010Nokia Research Center, Tampere, Finland
0ba0f000baf877bc00a9e144b88fa6d373db2708Normal University, Kunming, China
8411fe1142935a86b819f065cd1f879f16e77401North Carolina AandT State University
5bb53fb36a47b355e9a6962257dd465cd7ad6827North Carolina Central University
dfd8602820c0e94b624d02f2e10ce6c798193a25North Carolina State University, Raleigh, NC, USA
9bd35145c48ce172b80da80130ba310811a44051North Carolina State University, Raleigh, USA
56f86bef26209c85f2ef66ec23b6803d12ca6cd6North China Electric Power University, Baoding, ChinaDepartment of Electronic and Communication Engineering
e9a5a38e7da3f0aa5d21499149536199f2e0e1f7North China University of TechnologyDepartment of Electronics and Information Engineering
2a35d20b2c0a045ea84723f328321c18be6f555cNorth China University of Technology, Beijing 100144 CHINA
9be94fa0330dd493f127d51e4ef7f9fd64613cfcNorth Dakota State University, Fargo, ND 58108-6050, USAElectrical and Computer Engineering Department
f2ad9b43bac8c2bae9dea694f6a4e44c760e63daNorth Dakota State University, Fargo, ND58105, USA
c9f588d295437009994ddaabb64fd4e4c499b294Northeastern University
f74917fc0e55f4f5682909dcf6929abd19d33e2eNortheastern University
13be4f13dac6c9a93f969f823c4b8c88f607a8c4Northeastern University
7f97a36a5a634c30de5a8e8b2d1c812ca9f971aeNortheastern University 2Microsoft Research 3City University of New York
5b0008ba87667085912ea474025d2323a14bfc90Northeastern University, Boston, MA
f58d584c4ac93b4e7620ef6e5a8f20c6f6da295eNortheastern University, Boston, MA, USA
07fa153b8e6196ee6ef6efd8b743de8485a07453Northeastern University, Boston, MA, USADepartment of Electrical and Computer Engineering
23aba7b878544004b5dfa64f649697d9f082b0cfNortheastern University, Boston, MA, USA
e3c8e49ffa7beceffca3f7f276c27ae6d29b35dbNortheastern University, Boston, USADepartment of Electrical and Computer Engineering
0a9345ea6e488fb936e26a9ba70b0640d3730ba7Northeastern University, Boston, USADepartment of Electrical and Computer Engineering
090e4713bcccff52dcd0c01169591affd2af7e76Northeastern University, MA, USADepartment of Electrical and Computer Engineering
d22b378fb4ef241d8d210202893518d08e0bb213Northeastern University, MA, USADepartment of Electrical and Computer Engineering
508702ed2bf7d1b0655ea7857dd8e52d6537e765Northumbria University
31c34a5b42a640b824fa4e3d6187e3675226143eNorthumbria University
3af8d38469fb21368ee947d53746ea68cd64eeaeNorthumbria University
3af8d38469fb21368ee947d53746ea68cd64eeaeNorthumbria University
3af8d38469fb21368ee947d53746ea68cd64eeaeNorthumbria University
0f4eb63402a4f3bae8f396e12133684fb760def1Northumbria University
d06c8e3c266fbae4026d122ec9bd6c911fcdf51dNorthumbria University, Newcastle Upon-Tyne NE21XE, UKDepartment of Computer and Information Sciences
2642810e6c74d900f653f9a800c0e6a14ca2e1c7Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
fa4f59397f964a23e3c10335c67d9a24ef532d5cNorthumbria University, Newcastle upon Tyne, NE1 8ST, UK
d3edbfe18610ce63f83db83f7fbc7634dde1eb40Northwestern Polytechnical University
611961abc4dfc02b67edd8124abb08c449f5280aNorthwestern University
271df16f789bd2122f0268c3e2fa46bc0cb5f195Northwestern University
4b61d8490bf034a2ee8aa26601d13c83ad7f843aNorthwestern UniversityEECS Department
7c953868cd51f596300c8231192d57c9c514ae17Northwestern University
41f8477a6be9cd992a674d84062108c68b7a9520Northwestern University
48a417cfeba06feb4c7ab30f06c57ffbc288d0b5Northwestern University
cefd9936e91885ba7af9364d50470f6cb54315a4Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of
a6ffe238eaf8632b4a8a6f718c8917e7f3261546Nottingham Trent University
a6ffe238eaf8632b4a8a6f718c8917e7f3261546Nottingham Trent University, Nottingham, UK
a6ffe238eaf8632b4a8a6f718c8917e7f3261546Nottingham University Hospital, Nottingham, UK
6bcee7dba5ed67b3f9926d2ae49f9a54dee64643Nqtional Institute of Standards and Technology
a7267bc781a4e3e79213bb9c4925dd551ea1f5c4Numediart Institute, University of Mons
adfaf01773c8af859faa5a9f40fb3aa9770a8aa7OF PRINCETON UNIVERSITY
a472d59cff9d822f15f326a874e666be09b70cfdOF STANFORD UNIVERSITY
209324c152fa8fab9f3553ccb62b693b5b10fb4dOF STANFORD UNIVERSITY
727ecf8c839c9b5f7b6c7afffe219e8b270e7e15OF STANFORD UNIVERSITY
07ea3dd22d1ecc013b6649c9846d67f2bf697008OF STANFORD UNIVERSITY
be07f2950771d318a78d2b64de340394f7d6b717Oakland University
98a660c15c821ea6d49a61c5061cd88e26c18c65Odaiyappa College ofDepartment of Electronics and Communication Engineering
94e259345e82fa3015a381d6e91ec6cded3971b4Okayama UniversityDepartment of Computer Science
d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5Open Lab, School of Computing, Newcastle University, UK
540b39ba1b8ef06293ed793f130e0483e777e278Optics and Engineering Informatics, Budapest University of Technology and EconomicsDepartment of Mechatronics
d30050cfd16b29e43ed2024ae74787ac0bbcf2f7Opus College of Engineering
516d0d9eb08825809e4618ca73a0697137ebabd5Oregon State University
b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87cOrganization, University of Twente, Enschede, The Netherlands, HAN5 Department of Media and Design
f0f0e94d333b4923ae42ee195df17c0df62ea0b1Osaka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan
6f08885b980049be95a991f6213ee49bbf05c48dOther uses, including reproduction and distribution, or selling or
c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6Other uses, including reproduction and distribution, or selling or
7d1688ce0b48096e05a66ead80e9270260cb8082Otto von Guericke University
910524c0d0fe062bf806bb545627bf2c9a236a03Otto-von-Guericke University Magdeburg
910524c0d0fe062bf806bb545627bf2c9a236a03Otto-von-Guericke University Magdeburg
3e3f305dac4fbb813e60ac778d6929012b4b745aOxford Brookes UniversityDepartment of Computing and Communications Technology
fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81Oxford Brookes University
170a5f5da9ac9187f1c88f21a88d35db38b4111aOxford Brookes University
8895d6ae9f095a8413f663cc83f5b7634b3dc805Oxford Brookes University
0055c7f32fa6d4b1ad586d5211a7afb030ca08ccOxford Brookes University
3107085973617bbfc434c6cb82c87f2a952021b7Oxford Brookes University
5fac62a3de11125fc363877ba347122529b5aa50Oxford Brookes University, Oxford, United Kingdom
407de9da58871cae7a6ded2f3a6162b9dc371f38Oxford Brookes University, UK
170a5f5da9ac9187f1c88f21a88d35db38b4111aOxford University
1329bcac5ebd0b08ce33ae1af384bd3e7a0deacaOxford University, UK
c7de0c85432ad17a284b5b97c4f36c23f506d9d1Ozye gin University, Istanbul, TurkeyDepartment of Electrical and Computer Engineering
48319e611f0daaa758ed5dcf5a6496b4c6ef45f2P A College of Engineering, NadupadavucDepartment of Computer Science and Engineering
2654ef92491cebeef0997fd4b599ac903e48d07aP. O. Box 4500 FI-90014 University of Oulu, Finland
3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07P. O. Box 4500 Fin-90014 University of Oulu, Finland
accbd6cd5dd649137a7c57ad6ef99232759f7544P. O. Box 4500 Fin-90014 University of Oulu, Finland
1d4c25f9f8f08f5a756d6f472778ab54a7e6129dP. R. Patil College of Engineering, Amravati Maharashtra India
1d4c25f9f8f08f5a756d6f472778ab54a7e6129dP. R. Patil College of Engineering, Amravati Maharashtra India
48319e611f0daaa758ed5dcf5a6496b4c6ef45f2P.A. College of Engnineering, MangaloreaDepartment of Electronics and Communication
e1f790bbedcba3134277f545e56946bc6ffce48dP.G. Student, SRV Engineering College, sembodai, IndiaDepartment of Computer Science and Engineering
8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09P.S.R Engineering College, Sivakasi, Tamilnadu, IndiaDepartment of Computer Science and Engineering
6a7e464464f70afea78552c8386f4d2763ea1d9cPES Institute of Technology, Bangalore, Karnataka, IndiaȦDepartment of Information Science and Engineering
36fc4120fc0638b97c23f97b53e2184107c52233PES Modern College of Engg
36fc4120fc0638b97c23f97b53e2184107c52233PES Modern College of Engg
36fc4120fc0638b97c23f97b53e2184107c52233PES Modern College of Engg
e5342233141a1d3858ed99ccd8ca0fead519f58bPG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, IndiaDepartment of CSE
90fb58eeb32f15f795030c112f5a9b1655ba3624PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India
191674c64f89c1b5cba19732869aa48c38698c84PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India
053c2f592a7f153e5f3746aa5ab58b62f2cf1d21PSG College of Technology, Coimbatore, Tamil Nadu, IndiaDepartment of Information Technology
9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6PSGR Krishnammal College for Women, CoimbatoreDepartment of Information Technology
83fd5c23204147844a0528c21e645b757edd7af9Palo Alto Research Center (PARC
1a6c3c37c2e62b21ebc0f3533686dde4d0103b3fPanimalarInstitute of Technology, Tamilnadu, IndiaDepartment of Computer Science and Engineering
ae1de0359f4ed53918824271c888b7b36b8a5d41Paran a Federal University, Curitiba, BrazilDepartment of Computing
5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6Parisutham Institute of Technology and Science
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8Pathological anxiety is associated with disrupted cognitive processing, including working memory and
b133b2d7df9b848253b9d75e2ca5c68e21eba008Pattern Recognition Group, University of Siegen
48910f9b6ccc40226cd4f105ed5291571271b39ePattern Recognition and Bio-informatics Laboratory, Delft University of Technology, THE NETHERLANDS
1862cb5728990f189fa91c67028f6d77b5ac94f6Pattern Recognition and Bioinformatics Group, Delft University of Technology
999289b0ef76c4c6daa16a4f42df056bf3d68377Pattern Recognition and Bioinformatics Group, Delft University of Technology, The Netherlands
be28ed1be084385f5d389db25fd7f56cd2d7f7bfPaul G. Allen School of Computer Science and Engineering, University of Washington
f08e425c2fce277aedb51d93757839900d591008Paul G. Allen School of Computer Science and Engineering, University of Washington
fa90b825346a51562d42f6b59a343b98ea2e501aPaul G. Allen School of Computer Science and Engineering, University of Washington
60c699b9ec71f7dcbc06fa4fd98eeb08e915eb09Peking University
beb49072f5ba79ed24750108c593e8982715498ePeking University
eed93d2e16b55142b3260d268c9e72099c53d5bcPeking University
36b9f46c12240898bafa10b0026a3fb5239f72f3Peking University
36b9f46c12240898bafa10b0026a3fb5239f72f3Peking University
6c690af9701f35cd3c2f6c8d160b8891ad85822aPeking University
79fa57dedafddd3f3720ca26eb41c82086bfb332Peking University
79fa57dedafddd3f3720ca26eb41c82086bfb332Peking University
79fa57dedafddd3f3720ca26eb41c82086bfb332Peking University
4f0b8f730273e9f11b2bfad2415485414b96299fPeking University
8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8Peking University
b3b532e8ea6304446b1623e83b0b9a96968f926cPeking University, Beijing, China
c829be73584966e3162f7ccae72d9284a2ebf358Peking University, Beijing, China
14d72dc9f78d65534c68c3ed57305f14bd4b5753Peking University, Beijing, China
656531036cee6b2c2c71954bb6540ef6b2e016d0Peking University, China
0066caed1238de95a431d836d8e6e551b3cde391PennsylvaniaUniversity of Pittsburgh. Department of Psychology. Pittsburgh
5b721f86f4a394f05350641e639a9d6cb2046c45Pennsylvania State University
5b721f86f4a394f05350641e639a9d6cb2046c45Pennsylvania State University
5b721f86f4a394f05350641e639a9d6cb2046c45Pennsylvania State University
d0509afe9c2c26fe021889f8efae1d85b519452aPerceptive Automata, Inc
a3dc109b1dff3846f5a2cc1fe2448230a76ad83fPh.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India
bd0201b32e7eca7818468f2b5cb1fb4374de75b9Ph.D student Zaid Shhedi, Doctoral School of Automatic Control and Computers, University
1190cba0cae3c8bb81bf80d6a0a83ae8c41240bcPhiar Technologies, Inc
9853136dbd7d5f6a9c57dc66060cab44a86cd662Physical Sciences, University
dfd934ae448a1b8947d404b01303951b79b13801Plymouth University
8bed7ff2f75d956652320270eaf331e1f73efb35Plymouth University - CRNS
8bed7ff2f75d956652320270eaf331e1f73efb35Plymouth University - CRNS
56e6f472090030a6f172a3e2f46ef9daf6cad757Pohang University of Science and Technology
6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6Politehnica University of Timisoara
d22b378fb4ef241d8d210202893518d08e0bb213Polytechnic Institute of NYU, NY, USADepartment of Computer Science and Engineering
650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772Polytechnic University of Bucharest
8bf57dc0dd45ed969ad9690033d44af24fd18e05Polytechnic University of Bucharest
bd0e100a91ff179ee5c1d3383c75c85eddc81723Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of
fb084b1fe52017b3898c871514cffcc2bdb40b73Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied ElectronicsDepartment of Mechanics
182470fd0c18d0c5979dff75d089f1da176ceeebPompeu Fabra University, Spain
d893f75206b122973cdbf2532f506912ccd6fbe0Pondicherry Engineering College
621f656fedda378ceaa9c0096ebb1556a42e5e0fPonti cal Catholic University of Rio de Janeiro, Brazil
58628e64e61bd2776a2a7258012eabe3c79ca90cPortland State University
831226405bb255527e9127b84e8eaedd7eb8e9f9Portland State University, USA
11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5PortugalDepartment of Mathematics - University of Coimbra
82e66c4832386cafcec16b92ac88088ffd1a1bc9Poznan University of Technology
84508e846af3ac509f7e1d74b37709107ba48bdePrince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efffPrinceton University
34b42bcf84d79e30e26413f1589a9cf4b37076f9Princeton UniversityDepartment of Electrical Engineering
b689d344502419f656d482bd186a5ee6b0140891Princeton University
b689d344502419f656d482bd186a5ee6b0140891Princeton University
40a5b32e261dc5ccc1b5df5d5338b7d3fe10370dPrinceton University
0faeec0d1c51623a511adb779dabb1e721a6309bPrinceton University, Princeton, NJ, USA
b013cce42dd769db754a57351d49b7410b8e82adPrinceton University, Princeton, New Jersey, USADepartment of Psychology
50d961508ec192197f78b898ff5d44dc004ef26dPrincipal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India
50d961508ec192197f78b898ff5d44dc004ef26dPrincipal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India
90d735cffd84e8f2ae4d0c9493590f3a7d99daf1Priyadarshini College of Engg, Nagpur, IndiaDepartment of Electronics Engg
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE
ac12ba5bf81de83991210b4cd95b4ad048317681Program of Computational Science and Engineering, Bo gazi ci University
0ec2049a1dd7ae14c7a4c22c5bcd38472214f44dProto Labs, Inc
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6Psychiatry at the University of Pittsburghin collaboration with the Department of Computer
7ff42ee09c9b1a508080837a3dc2ea780a1a839bPsychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg
42afe6d016e52c99e2c0d876052ade9c192d91e7Psychology and Psychiatry, University of Pittsburgh, USA
102b968d836177f9c436141e382915a4f8549276Psychology and Psychiatry, University of Pittsburgh, USA
4b7c110987c1d89109355b04f8597ce427a7cd72Psychology, American University
f7a271acccf9ec66c9b114d36eec284fbb89c7efPsychology, University of
cefd9936e91885ba7af9364d50470f6cb54315a4Psychology, University of Illinois, Beckman Institute, Urbana-Champaign, Illinois 61801, University ofand 4Department of Experimental Psychology
a3a97bb5131e7e67316b649bbc2432aaa1a6556ePsychonomic Society, Inc
4df3143922bcdf7db78eb91e6b5359d6ada004d2Psychonomic Society, Inc
814d091c973ff6033a83d4e44ab3b6a88cc1cb66Psychonomic Society, Inc
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8Psychopharmacology Unit, Educational and Health Psychology, University CollegeDepartment of Clinical
d79f9ada35e4410cd255db39d7cc557017f8111aPublic University of Navarra, Spain
d79f9ada35e4410cd255db39d7cc557017f8111aPublic University of Navarra, Spain
d79f9ada35e4410cd255db39d7cc557017f8111aPublic University of Navarra, Spain
5bc0a89f4f73523967050374ed34d7bc89e4d9e1Publication details, including instructions for authors and subscription
346dbc7484a1d930e7cc44276c29d134ad76dc3fPublication details, including instructions for authors and subscription information
96f4a1dd1146064d1586ebe86293d02e8480d181Pune Institute of Computer Technology, Pune, ( IndiaDepartment of Information Technology
f113aed343bcac1021dc3e57ba6cc0647a8f5ce1Pune Institute of Computer Technology, Pune, India
f113aed343bcac1021dc3e57ba6cc0647a8f5ce1Pune Institute of Computer Technology, Pune, India
5ca14fa73da37855bfa880b549483ee2aba26669Punjabi University PatialaDepartment of Electronics and Communication
5ca14fa73da37855bfa880b549483ee2aba26669Punjabi University PatialaDepartment of Electronics and Communication
a6b1d79bc334c74cde199e26a7ef4c189e9acd46Purdue Institute for Integrative Neuroscience
a5c8fc1ca4f06a344b53dc81ebc6d87f54896722Purdue University
c7c53d75f6e963b403057d8ba5952e4974a779adPurdue University
c7c53d75f6e963b403057d8ba5952e4974a779adPurdue University
b18858ad6ec88d8b443dffd3e944e653178bc28bPurdue University
6193c833ad25ac27abbde1a31c1cabe56ce1515bPurdue University, 2Nanjing University
1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1dPurdue University, West Lafayette, IN 47907, USADepartment of Computer Science
0faeec0d1c51623a511adb779dabb1e721a6309bPurdue University, West Lafayette, IN, USA
19868a469dc25ee0db00947e06c804b88ea94fd0Purdue University, West Lafayette, IN. 47907, USAcid:63)Department of Computer Science
a6b1d79bc334c74cde199e26a7ef4c189e9acd46Purdue University, West Lafayette, Indiana, 47906, USA
a955033ca6716bf9957b362b77092592461664b4Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, IndiaDepartment of CSE
1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia
568cff415e7e1bebd4769c4a628b90db293c1717QCIS, University of Technology Sydney, Sydney, Australia
1f9b2f70c24a567207752989c5bd4907442a9d0fQCIS, University of Technology, Sydney
36939e6a365e9db904d81325212177c9e9e76c54Qatar Computing Research Institute, HBKU
2dced31a14401d465cd115902bf8f508d79de076Qatar University, Qatar
504028218290d68859f45ec686f435f473aa326cQihoo 360 AI Institute
5f771fed91c8e4b666489ba2384d0705bcf75030Qihoo 360 AI Institute
a322479a6851f57a3d74d017a9cb6d71395ed806Qihoo 360 AI Institute
c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3dQihoo 360 AI Institute
b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172Qihoo 360 AI Institute, Beijing, China
601834a4150e9af028df90535ab61d812c45082cQuanti ed Employee unit, Finnish Institute of Occupational Health
b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807Quantitative Employee unit, Finnish Institute of Occupational Health
b340f275518aa5dd2c3663eed951045a5b8b0ab1Queen Mary College, London
b340f275518aa5dd2c3663eed951045a5b8b0ab1Queen Mary College, London
b340f275518aa5dd2c3663eed951045a5b8b0ab1Queen Mary College, London
0e7f277538142fb50ce2dd9179cffdc36b794054Queen Mary University
0e7f277538142fb50ce2dd9179cffdc36b794054Queen Mary University
5778d49c8d8d127351eee35047b8d0dc90defe85Queen Mary University of London
3bcd72be6fbc1a11492df3d36f6d51696fd6bdadQueen Mary University of London
0e93a5a7f6dbdb3802173dca05717d27d72bfec0Queen Mary University of London
023be757b1769ecb0db810c95c010310d7daf00bQueen Mary University of London
5dd496e58cfedfc11b4b43c4ffe44ac72493bf55Queen Mary University of London
37ba12271d09d219dd1a8283bc0b4659faf3a6c6Queen Mary University of London
6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365Queen Mary University of London
0fc254272db096a9305c760164520ad9914f4c9eQueen Mary University of London
0f81b0fa8df5bf3fcfa10f20120540342a0c92e5Queen Mary University of London
0f81b0fa8df5bf3fcfa10f20120540342a0c92e5Queen Mary University of London
a1af7ec84472afba0451b431dfdb59be323e35b7Queen Mary University of London
2d164f88a579ba53e06b601d39959aaaae9016b7Queen Mary University of London
75259a613285bdb339556ae30897cb7e628209faQueen Mary University of London, London E1 4NS, UK
25c3cdbde7054fbc647d8be0d746373e7b64d150Queen Mary University of London, UK
31ea88f29e7f01a9801648d808f90862e066f9eaQueen Mary, University of London
90dd2a53236b058c79763459b9d8a7ba5e58c4f1Queen Mary, University of London
f8ddb2cac276812c25021b5b79bf720e97063b1eQueen Mary, University of LondonDepartment of Computer Science
416364cfdbc131d6544582e552daf25f585c557dQueen Mary, University of London, E1 4NS, UKDepartment of Computer Science
081cb09791e7ff33c5d86fd39db00b2f29653fa8Queen Mary, University of London, London E1 4NS, UKDepartment Computer Science
151481703aa8352dc78e2577f0601782b8c41b34Queen Mary, University of London, London E1 4NS, UK
8b10383ef569ea0029a2c4a60cc2d8c87391b4dbQueen s University Belfast
04317e63c08e7888cef480fe79f12d3c255c5b00Queen's University Belfast - Research Portal
aba770a7c45e82b2f9de6ea2a12738722566a149Queen's University Belfast - Research Portal
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290Queen's University Belfast - Research Portal
38215c283ce4bf2c8edd597ab21410f99dc9b094Queen's University Belfast - Research Portal
f93606d362fcbe62550d0bf1b3edeb7be684b000Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University
59d45281707b85a33d6f50c6ac6b148eedd71a25Queensland University of Technology
6226f2ea345f5f4716ac4ddca6715a47162d5b92Queensland University of Technology
5b693cb3bedaa2f1e84161a4261df9b3f8e77353Queensland University of Technology
6342a4c54835c1e14159495373ab18b4233d2d9bQueensland University of Technology
74325f3d9aea3a810fe4eab8863d1a48c099de11Queensland University of Technology (QUT
30b103d59f8460d80bb9eac0aa09aaa56c98494fQueensland University of Technology(QUT
1b41d4ffb601d48d7a07dbbae01343f4eb8cc38cQueensland University of Technology, Australia
b234cd7788a7f7fa410653ad2bafef5de7d5ad29Queensland University of Technology, Brisbane, QLD, Australia
9487cea80f23afe9bccc94deebaa3eefa6affa99Queensland University of Technology, Brisbane, Queensland, Australia
1dacc2f4890431d867a038fd81c111d639cf4d7eR. Campellone, 3210 Tolman Hall, University of California, Berkeley
03adcf58d947a412f3904a79f2ab51cfdf0e838aR.C.Patel Institute of Technology, Shirpur, Dist.Dhule.Maharashtra, IndiaDepartment of Electronics and Telecommunication
6859b891a079a30ef16f01ba8b85dc45bd22c352RCC Institute of Information Technology, Kolkata, India
27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5RGPV University, IndoreDepartment of Computer Science
27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5RGPV University, IndoreDepartment of Computer Science
9cbb6e42a35f26cf1d19f4875cd7f6953f10b95dRIEB, Kobe University, Kobe, 657-8501, Japan
f3f77b803b375f0c63971b59d0906cb700ea24edRMIT University, Australia
365866dc937529c3079a962408bffaa9b87c1f06RTM Nagpur University, Campus Nagpur, (MS)-IndiaDepartment of Electronics and Computer Science
1462bc73834e070201acd6e3eaddd23ce3c1a114RTMNU Nagpur University, India
c10b0a6ba98aa95d740a0d60e150ffd77c7895adRWTH Aachen University
6ce23cf4f440021b7b05aa3c1c2700cc7560b557RWTH Aachen University
f02f0f6fcd56a9b1407045de6634df15c60a85cdRWTH Aachen University
f6e00d6430cbbaa64789d826d093f7f3e323b082RWTH Aachen University
2d23fa205acca9c21e3e1a04674f1e5a9528550eRWTH Aachen University
2b435ee691718d0b55d057d9be4c3dbb8a81526eRWTH Aachen University
b16580d27bbf4e17053f2f91bc1d0be12045e00bRWTH Aachen University, Aachen, Germany
8b74252625c91375f55cbdd2e6415e752a281d10RWTH Aachen University, Germany
2e832d5657bf9e5678fd45b118fc74db07dac9daRachel Merchak, Wittenberg UniversityPsychology Department
65b1209d38c259fe9ca17b537f3fb4d1857580aeRagon Institute of MGH, MIT and Harvard
1db23a0547700ca233aef9cfae2081cd8c5a04d7Raipur institute of technology
1db23a0547700ca233aef9cfae2081cd8c5a04d7Raipur institute of technology
ed28e8367fcb7df7e51963add9e2d85b46e2d5d6Rayalaseema University Kurnool, Andhra Pradesh
561ae67de137e75e9642ab3512d3749b34484310Recanati Genetic Institute, Rabin Medical Center and Schneider Children s Medical Center, Petah Tikva, Israel
d5b0e73b584be507198b6665bcddeba92b62e1e5Recognition, Institute of Automation
b84b7b035c574727e4c30889e973423fe15560d7Recognition, Institute of Automation, Chinese Academy of Sciences
13a994d489c15d440c1238fc1ac37dad06dd928cRecognition, Institute of Automation, Chinese Academy of Sciences
575141e42740564f64d9be8ab88d495192f5b3bcRecognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
56f231fc40424ed9a7c93cbc9f5a99d022e1d242Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
178a82e3a0541fa75c6a11350be5bded133a59fdRemote Sensing Unit Optics, Optometry and Vision Sciences Group, University of Beira InteriorDepartment of Physics
cfc4aa456d9da1a6fabd7c6ca199332f03e35b29Renmin University of China
ef559d5f02e43534168fbec86707915a70cd73a0Renmin University of China
0c435e7f49f3e1534af0829b7461deb891cf540aRensselaer Polytechnic InstituteECSE Department
0b7d1386df0cf957690f0fe330160723633d2305Rensselaer Polytechnic Institute
0b7d1386df0cf957690f0fe330160723633d2305Rensselaer Polytechnic Institute
938ae9597f71a21f2e47287cca318d4a2113feb2Rensselaer Polytechnic Institute
171d8a39b9e3d21231004f7008397d5056ff23afRensselaer Polytechnic Institute
171d8a39b9e3d21231004f7008397d5056ff23afRensselaer Polytechnic Institute
8f3e120b030e6c1d035cb7bd9c22f6cc75782025Rensselaer Polytechnic Institute
094357c1a2ba3fda22aa6dd9e496530d784e1721Rensselaer Polytechnic Institute
6515fe829d0b31a5e1f4dc2970a78684237f6edbRensselaer Polytechnic Institute
556b9aaf1bc15c928718bc46322d70c691111158Rensselaer Polytechnic Institute
0f940d2cdfefc78c92ec6e533a6098985f47a377Rensselaer Polytechnic Institute
1b794b944fd462a2742b6c2f8021fecc663004c9Rensselaer Polytechnic InstituteECSE Department
2e6cfeba49d327de21ae3186532e56cadeb57c02Rensselaer Polytechnic InstituteECSE Department
0db43ed25d63d801ce745fe04ca3e8b363bf3147Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 USA
0e21c9e5755c3dab6d8079d738d1188b03128a31Rensselaer Polytechnic Institute, Troy, NY 12180, USA
11b89011298e193d9e6a1d99302221c1d8645bdaRensselaer Polytechnic Institute, USADepartment of ECSE
6a2b83c4ae18651f1a3496e48a35b0cd7a2196dfResearch Center
2dced31a14401d465cd115902bf8f508d79de076Research Center E. Piaggio
2dced31a14401d465cd115902bf8f508d79de076Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy
5d185d82832acd430981ffed3de055db34e3c653Research Center CENTIA, Electronics and MechatronicsDepartment of Computing
5c435c4bc9c9667f968f891e207d241c3e45757aResearch Center and Laboratoire
ae2c71080b0e17dee4e5a019d87585f2987f0508Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
1c17450c4d616e1e1eece248c42eba4f87de9e0dResearch Center for Information
47eba2f95679e106e463e8296c1f61f6ddfe815bResearch Center for Information Technology Innovation, Academia Sinica
6ab33fa51467595f18a7a22f1d356323876f8262Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
17370f848801871deeed22af152489e39b6e1454Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
5b73b7b335f33cda2d0662a8e9520f357b65f3acResearch Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
0f533bc9fdfb75a3680d71c84f906bbd59ee48f1Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
8f60c343f76913c509ce623467bf086935bcadacResearch Center for Intelligent Security Technology, CIGIT
4e1836914bbcf94dc00e604b24b1b0d6d7b61e66Research Center for Learning Science, Southeast University, China
72a5e181ee8f71b0b153369963ff9bfec1c6b5b0Research Center for Learning Science, Southeast University, China
9294739e24e1929794330067b84f7eafd286e1c8Research Center for Learning Science, Southeast University, Nanjing 210096, China
989332c5f1b22604d6bb1f78e606cb6b1f694e1aResearch Center for Learning Science, Southeast University, Nanjing, China
465d5bb11912005f0a4f0569c6524981df18a7deResearch Center in Information Technologies, Universit e de Mons, Belgium
0319332ded894bf1afe43f174f5aa405b49305f0Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia
100428708e4884300e4c1ac1f84cbb16e7644ccfResearch Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia
07e639abf1621ceff27c9e3f548fadfa2052c912Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The
4205cb47ba4d3c0f21840633bcd49349d1dc02c1Research Institute of Shenzhen, Wuhan University, Shenzhen, China
c590c6c171392e9f66aab1bce337470c43b48f39Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea
d7cbedbee06293e78661335c7dd9059c70143a28Research Institute, Watchdata Inc., Beijing, China
023ed32ac3ea6029f09b8c582efbe3866de7d00aResearch Reports of CMP, Czech Technical University in Prague, No
511b06c26b0628175c66ab70dd4c1a4c0c19aee9Research Scholar (M.Tech, IT), Institute of Engineering and Technology
94b9c0a6515913bad345f0940ee233cdf82fffe1Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India
9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6Research Scholar, PSGR Krishnammal College for Women, CoimbatoreDepartment of Computer Science
60d4cef56efd2f5452362d4d9ac1ae05afa970d1Research School of Computer Science, The Australian National University, ACT 2601, Australia
60d4cef56efd2f5452362d4d9ac1ae05afa970d1Research School of Engineering, The Australian National University, ACT 2601, Australia
88a898592b4c1dfd707f04f09ca58ec769a257deResearch University, ENS/INRIA/CNRS UMR 8548, Paris, France
8862a573a42bbaedd392e9e634c1ccbfd177a01dReutlingen University
5b97e997b9b654373bd129b3baf5b82c2def13d1Reutlingen University
8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259Reutlingen University
561ae67de137e75e9642ab3512d3749b34484310Rheinische-Friedrich-Wilhelms University, Bonn, Germany
518edcd112991a1717856841c1a03dd94a250090Rice University
61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8Rice University, Houston, TX, 77005, USA
61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8Rice University, Houston, TX, 77005, USA
622daa25b5e6af69f0dac3a3eaf4050aa0860396Rice University, Houston, TX, 77005, USA
622daa25b5e6af69f0dac3a3eaf4050aa0860396Rice University, Houston, TX, 77005, USA
621f656fedda378ceaa9c0096ebb1556a42e5e0fRio de Janeiro State University, Brazil
d185f4f05c587e23c0119f2cdfac8ea335197ac0Ritsumeikan University, Japan
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfRitsumeikan University, Kyoto, Japan
f6742010372210d06e531e7df7df9c01a185e241Ritsumeikan, University
83fd2d2d5ad6e4e153672c9b6d1a3785f754b60eRm 1365, Stanford University, 401 Quarry Road, Stanford, CA
1feeab271621128fe864e4c64bab9b2e2d0ed1f1Robotic Research Centre, Nanyang Technological University, Singapore 639798, Singapore
0daf696253a1b42d2c9d23f1008b32c65a9e4c1eRobotics Institute
050eda213ce29da7212db4e85f948b812a215660Robotics Institute
b3b467961ba66264bb73ffe00b1830d7874ae8ceRobotics Institute
7c825562b3ff4683ed049a372cb6807abb09af2aRobotics Institute
4d625677469be99e0a765a750f88cfb85c522cceRobotics Institute
4d15254f6f31356963cc70319ce416d28d8924a3Robotics Institute
6eece104e430829741677cadc1dfacd0e058d60fRobotics Institute
a7c39a4e9977a85673892b714fc9441c959bf078Robotics Institute
7792fbc59f3eafc709323cdb63852c5d3a4b23e9Robotics Institute
1e917fe7462445996837934a7e46eeec14ebc65fRobotics Institute
155199d7f10218e29ddaee36ebe611c95cae68c4Robotics Institute
2e0addeffba4be98a6ad0460453fbab52616b139Robotics Institute
3bd56f4cf8a36dd2d754704bcb71415dcbc0a165Robotics Institute, Carnegie Mellon University
0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5Robotics Institute, Carnegie Mellon University
5a5f9e0ed220ce51b80cd7b7ede22e473a62062cRobotics Institute, Carnegie Mellon University
d69719b42ee53b666e56ed476629a883c59ddf66Robotics Institute, Carnegie Mellon University
98af221afd64a23e82c40fd28d25210c352e41b7Robotics Institute, Carnegie Mellon University
63213d080a43660ac59ea12e3c35e6953f6d7ce8Robotics Institute, Carnegie Mellon University
4f773c8e7ca98ece9894ba3a22823127a70c6e6cRobotics Institute, Carnegie Mellon University
85041e48b51a2c498f22850ce7228df4e2263372Robotics Institute, Carnegie Mellon University
2be8e06bc3a4662d0e4f5bcfea45631b8beca4d0Robotics Institute, Carnegie Mellon University
570308801ff9614191cfbfd7da88d41fb441b423Robotics Institute, Carnegie Mellon University 3University of Pittsburgh, USA
39c48309b930396a5a8903fdfe781d3e40d415d0Robotics Institute, Carnegie Mellon University, Pittsburgh PA
66b9d954dd8204c3a970d86d91dd4ea0eb12db47Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
2910fcd11fafee3f9339387929221f4fc1160973Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
19878141fbb3117d411599b1a74a44fc3daf296dRobotics Institute, Carnegie Mellon University, Pittsburgh, PA
064cd41d323441209ce1484a9bba02a22b625088Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
630d1728435a529d0b0bfecb0e7e335f8ea2596dRobotics Institute, Carnegie Mellon University, Pittsburgh, PA
24b37016fee57057cf403fe2fc3dda78476a8262Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3aRobotics Institute, Carnegie Mellon University, Pittsburgh, PA
8e0ede53dc94a4bfcf1238869bf1113f2a37b667Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
16572c545384174f8136d761d2b0866e968120a8Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA
980266ad6807531fea94252e8f2b771c20e173b3Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA
0b183f5260667c16ef6f640e5da50272c36d599bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
fdff2da5bdca66e0ab5874ef58ac2205fb088ed7Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
1ac2882559a4ff552a1a9956ebeadb035cb6df5bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
0066caed1238de95a431d836d8e6e551b3cde391Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
0021f46bda27ea105d722d19690f5564f2b8869eRobotics Institute, Carnegie Mellon University, USA
97f9c3bdb4668f3e140ded2da33fe704fc81f3eaRoboticsResearchGroup, UniversityofOxford, Oxford, UK
6d2ca1ddacccc8c865112bd1fbf8b931c2ee8e75Rochester Human-Computer Interaction (ROC HCI), University of Rochester, NY
66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5Rochester Institute of Technology
66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5Rochester Institute of Technology
d1959ba4637739dcc6cc6995e10fd41fd6604713Rochester Institute of Technology
38cc2f1c13420170c7adac30f9dfac69b297fb76Rochester Institute of Technology
00dc942f23f2d52ab8c8b76b6016d9deed8c468dRochester Institute of Technology
1439bf9ba7ff97df9a2da6dae4784e68794da184Rochester Institute of Technology
a5e5094a1e052fa44f539b0d62b54ef03c78bf6aRochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA
189b1859f77ddc08027e1e0f92275341e5c0fdc6Rochester Institute of Technology, Rochester, NY
93747de3d40376761d1ef83ffa72ec38cd385833Ross School of Business, University of Michigan, Ann Arbor, MI, USA
14811696e75ce09fd84b75fdd0569c241ae02f12Rowan University
4b74f2d56cd0dda6f459319fec29559291c61bffRowland Institute
0e652a99761d2664f28f8931fee5b1d6b78c2a82Rowland Institute at Harvard
3f5e8f884e71310d7d5571bd98e5a049b8175075Rowland Institute at Harvard
3f5e8f884e71310d7d5571bd98e5a049b8175075Rowland Institute at Harvard
2020e8c0be8fa00d773fd99b6da55029a6a83e3dRowland Institute at Harvard, Cambridge, MA 02142, USA
7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83Ruhr University Bochum
b249f10a30907a80f2a73582f696bc35ba4db9e2Ruhr-University Bochum, Germany
04ff69aa20da4eeccdabbe127e3641b8e6502ec0Rutgers University
04ff69aa20da4eeccdabbe127e3641b8e6502ec0Rutgers University
d647099e571f9af3a1762f895fd8c99760a3916eRutgers UniversityComputer Science Department
eee06d68497be8bf3a8aba4fde42a13aa090b301Rutgers University
c8ca6a2dc41516c16ea0747e9b3b7b1db788dbddRutgers University
89002a64e96a82486220b1d5c3f060654b24ef2aRutgers University
31f1e711fcf82c855f27396f181bf5e565a2f58dRutgers University
621ff353960d5d9320242f39f85921f72be69dc8Rutgers University
3ada7640b1c525056e6fcd37eea26cd638815cd6Rutgers University
afdf9a3464c3b015f040982750f6b41c048706f5Rutgers University
afdf9a3464c3b015f040982750f6b41c048706f5Rutgers University
ceeb67bf53ffab1395c36f1141b516f893bada27Rutgers University
47638197d83a8f8174cdddc44a2c7101fa8301b7Rutgers University
47638197d83a8f8174cdddc44a2c7101fa8301b7Rutgers University
1bdef21f093c41df2682a07f05f3548717c7a3d1Rutgers University Newark, 101 Warren St., Newark, NJ, 07102 USA
377f2b65e6a9300448bdccf678cde59449ecd337Rutgers University, 94 Brett Rd, Piscataway Township, NJ 08854, USA
fe961cbe4be0a35becd2d722f9f364ec3c26bd34Rutgers University, Computer and Information Sciences, 110 Frelinghuysen Road, Piscataway, NJ
92e464a5a67582d5209fa75e3b29de05d82c7c86Rutgers University, NJ, USADepartment of Computer Science
1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61Rutgers University, New Brunswick, NJ
0faeec0d1c51623a511adb779dabb1e721a6309bRutgers University, Newark, NJ, USA
4d8ce7669d0346f63b20393ffaa438493e7adfecRutgers University, Piscataway NJ 08854, USA
3167f415a861f19747ab5e749e78000179d685bcRutgers University, Piscataway NJ 08854, USAComputer Science Department
d785fcf71cb22f9c33473cba35f075c1f0f06ffcRutgers University, Piscataway, NJDepartment of Computer Science
8983485996d5d9d162e70d66399047c5d01ac451Rutgers University, Piscataway, NJDepartment of Electrical and Computer Engineering
17a8d1b1b4c23a630b051f35e47663fc04dcf043Rutgers University, Piscataway, NJDepartment of Electrical and Computer Engineering
3b470b76045745c0ef5321e0f1e0e6a4b1821339Rutgers University, Piscataway, NJ 08854, USA
0ba1d855cd38b6a2c52860ae4d1a85198b304be4Rutgers University, USADepartment of Computer Science
e3b324101157daede3b4d16bdc9c2388e849c7d4Rutgers University, USA
1610d2d4947c03a89c0fda506a74ba1ae2bc54c2Rutgers University, USA
439ca6ded75dffa5ddea203dde5e621dc4a88c3eRutgers University, USADepartment of Computer Science
48174c414cfce7f1d71c4401d2b3d49ba91c5338Rutgers University, USADepartment of Computer Science
676f9eabf4cfc1fd625228c83ff72f6499c67926Rutgers, The State University of New Jersey
bbc5f4052674278c96abe7ff9dc2d75071b6e3f3Rutgers, The State University of New Jersey
d8bf148899f09a0aad18a196ce729384a4464e2bRutgers, The State University of New Jersey
438c4b320b9a94a939af21061b4502f4a86960e3Rutgers, The State University of New Jersey
96e731e82b817c95d4ce48b9e6b08d2394937cf8Rutgers, The State University of New Jersey
5495e224ac7b45b9edc5cfeabbb754d8a40a879bRutgers, The State University of New Jersey
02820c1491b10a1ff486fed32c269e4077c36551Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ
0d746111135c2e7f91443869003d05cde3044bebRutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ
0ca66283f4fb7dbc682f789fcf6d6732006befd5Rutgers, The State University of New Jersey, Piscataway, NJ
081286ede247c5789081502a700b378b6223f94bRyerson University, Canada
892c911ca68f5b4bad59cde7eeb6c738ec6c4586Ryerson University, Toronto, Canada2 Department of Computer Science and
e510f2412999399149d8635a83eca89c338a99a1S J B Institute of Technology, Bangalore, Karnataka, India
4de757faa69c1632066391158648f8611889d862S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, IndiaDepartment of Electronics and Communication
b7b461f82c911f2596b310e2b18dd0da1d5d4491SAMSI and Duke University
b3330adb131fb4b6ebbfacce56f1aec2a61e0869SASTRA University, Thanjavur, Tamil Nadu, India
4ea53e76246afae94758c1528002808374b75cfaSBK Women s University, Quetta, BalochistanDepartment of Computer Science
0da75b0d341c8f945fae1da6c77b6ec345f47f2aSHIRI AZENKOT, Information Science, Cornell Tech, Cornell University
15cd05baa849ab058b99a966c54d2f0bf82e7885SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University
db1f48a7e11174d4a724a4edb3a0f1571d649670SIMON FRASER UNIVERSITY
1e5ca4183929929a4e6f09b1e1d54823b8217b8eSIMON FRASER UNIVERSITY
13b1b18b9cfa6c8c44addb9a81fe10b0e89db32aSIMON FRASER UNIVERSITY
34ccdec6c3f1edeeecae6a8f92e8bdb290ce40fdSRI International, Menlo Park California / *Brooklyn College, Brooklyn New York
9c7444c6949427994b430787a153d5cceff46d5cSRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India
e1f790bbedcba3134277f545e56946bc6ffce48dSRV Engineering College, sembodai, indiaDepartment of Computer Science and Engineering
365866dc937529c3079a962408bffaa9b87c1f06SSESA, Science College, Congress Nagar, Nagpur, (MS)-IndiaDepartment of Computer Science
cbcf5da9f09b12f53d656446fd43bc6df4b2fa48SSN College of Engineering, Chennai, India
5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0SSN College of Engineering, Kalavakkam, Tamil Nadu, India
4faded442b506ad0f200a608a69c039e92eaff11STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY
a2fbaa0b849ecc74f34ebb36d1442d63212b29d2SUS college of Engineering and Technology
2dfe0e7e81f65716b09c590652a4dd8452c10294SWPS University of Social Sciences
85fd2bda5eb3afe68a5a78c30297064aec1361f6SWPS University of Social Sciences and Humanities
a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892Saarland University
e7cac91da51b78eb4a28e194d3f599f95742e2a2Saarland University, Saarbr cken, Germany, 2 Utrecht University, Utrecht, the Netherlands
d231a81b38fde73bdbf13cfec57d6652f8546c3cSabanc University
0515e43c92e4e52254a14660718a9e498bd61cf5Sabanci University
5ea9cba00f74d2e113a10c484ebe4b5780493964Sabanci University
39150acac6ce7fba56d54248f9c0badbfaeef0eaSabanci University
d3d5d86afec84c0713ec868cf5ed41661fc96edcSabanci University, Istanbul, Turkey
561ae67de137e75e9642ab3512d3749b34484310Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4Sakarya University
f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464Salgado de Oliveira University, Brazil
7d53678ef6009a68009d62cd07c020706a2deac3Samsung Advanced Institute of Technology
4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5cSamsung Advanced Institute of Technology
98c548a4be0d3b62971e75259d7514feab14f884Samsung Advanced Institute of Technology (SAIT), KAIST
2c34bf897bad780e124d5539099405c28f3279acSamsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA
58d47c187b38b8a2bad319c789a09781073d052dSamsung Telecommunication Research Institute, Beijing, China
d4885ca24189b4414031ca048a8b7eb2c9ac646cSamsung-PDMI Joint AI CenterSt. Petersburg Department of Steklov Institute of
14b016c7a87d142f4b9a0e6dc470dcfc073af517San Jose State University, San Jose, CA
d22785eae6b7503cb16402514fd5bd9571511654Sanghvi Institute of Management and Science
19868a469dc25ee0db00947e06c804b88ea94fd0Santa Clara University, Santa Clara, CA. 95053, USADepartment of Computer Engineering
58628e64e61bd2776a2a7258012eabe3c79ca90cSanta Fe Institute
097340d3ac939ce181c829afb6b6faff946cdce0Sapienza University of Rome, 2Fondazione Bruno Kessler, 3University of Trento
757e4cb981e807d83539d9982ad325331cb59b16Sapienza University of Rome, ItalyDepartment of Computer Science
3d1a6a5fd5915e0efb953ede5af0b23debd1fc7fSarhad University of Science and Information TechnologyDepartment of Electrical Engineering
367f2668b215e32aff9d5122ce1f1207c20336c8Sarhad University of Science and Information TechnologyDepartment of Electrical Engineering
d82b93f848d5442f82154a6011d26df8a9cd00e7Sathyabama University Old Mamallapuram Road, Chennai, India
f67a73c9dd1e05bfc51219e70536dbb49158f7bcSathyabama University, Chennai, IndiaDepartment of Computer Science and Engineering
610a4451423ad7f82916c736cd8adb86a5a64c59Savitri Bai Phule Pune University, Maharashtra India
9d757c0fede931b1c6ac344f67767533043cba14Savitribai Phule Pune UniversityComputer Department
c81ee278d27423fd16c1a114dcae486687ee27ffSavitribai Phule Pune UniversityComputer Department
9bd35145c48ce172b80da80130ba310811a44051Sch l of EECS, Peking University, Beijing, 100871, China
ae2c71080b0e17dee4e5a019d87585f2987f0508School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IranDepartment of Neurosciences and Addiction Studies
9e4b052844d154c3431120ec27e78813b637b4fcSchool of Applied Statistics, National Institute of Development Administration, Bangkok, ThailandDepartment of Computer Science
707a542c580bcbf3a5a75cce2df80d75990853ccSchool of Arti cial Intelligence, University of Chinese Academy of Sciences, Beijing, China
21a2f67b21905ff6e0afa762937427e92dc5aa0bSchool of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave
88e2574af83db7281c2064e5194c7d5dfa649846School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave
c73dd452c20460f40becb1fd8146239c88347d87School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
0be80da851a17dd33f1e6ffdd7d90a1dc7475b96School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China
4e8168fbaa615009d1618a9d6552bfad809309e9School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807School of Business, Aalto University, Finland
e0244a8356b57a5721c101ead351924bcfb2eef4School of Business, University of Southern California; Alexandra Mislin
d69719b42ee53b666e56ed476629a883c59ddf66School of Comm. and Info. Engineering, Beijing University of Posts and Telecom
0021f46bda27ea105d722d19690f5564f2b8869eSchool of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China
8e0ede53dc94a4bfcf1238869bf1113f2a37b667School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China
d40cd10f0f3e64fd9b0c2728089e10e72bea9616School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone
d454ad60b061c1a1450810a0f335fafbfeceecccSchool of Communication and Information Engineering, Shanghai University
32c9ebd2685f522821eddfc19c7c91fd6b3caf22School of Computer Engineering, Nanyang Technological University, Singapore
1f9b2f70c24a567207752989c5bd4907442a9d0fSchool of Computer Engineering, Nanyang Technological University, Singapore
28be652db01273289499bc6e56379ca0237506c0School of Computer Engineering, Nanyang Technological University, Singapore
48174c414cfce7f1d71c4401d2b3d49ba91c5338School of Computer Engineering, Nanyang Technological University, Singapore
481fb0a74528fa7706669a5cce6a212ac46eaea3School of Computer Engineering, Nanyang Technological University, Singapore
51cc78bc719d7ff2956b645e2fb61bab59843d2bSchool of Computer Engineering, Sejong University, Seoul, Korea
4026dc62475d2ff2876557fc2b0445be898cd380School of Computer Engineering, Sejong University, Seoul, Korea
9b164cef4b4ad93e89f7c1aada81ae7af802f3a4School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN
c03f48e211ac81c3867c0e787bea3192fcfe323eSchool of Computer Information Engineering, Jiangxi Normal University, Nanchang, China
2836d68c86f29bb87537ea6066d508fde838ad71School of Computer Science and Engineering, Nanjing University of Science and Technology
2c203050a6cca0a0bff80e574bda16a8c46fe9c2School of Computer Science and Engineering, Nanjing University of Science and Technology
abba1bf1348a6f1b70a26aac237338ee66764458School of Computer Science and Engineering, Nanyang Technological University, Singapore
439ca6ded75dffa5ddea203dde5e621dc4a88c3eSchool of Computer Science and Engineering, Nanyang Technological University, Singapore
7143518f847b0ec57a0ff80e0304c89d7e924d9aSchool of Computer Science and Engineering, Nanyang Technological University, Singapore
a75edf8124f5b52690c08ff35b0c7eb8355fe950School of Computer Science and Engineering, Sichuan University, China
9d941a99e6578b41e4e32d57ece580c10d578b22School of Computer Science and Engineering, South China University of Technology
d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12School of Computer Science and Engineering, South China University of Technology
4e5dc3b397484326a4348ccceb88acf309960e86School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
d46fda4b49bbc219e37ef6191053d4327e66c74bSchool of Computer Science and Engineering, South China University of Technology, Guangzhou, China
0c741fa0966ba3ee4fc326e919bf2f9456d0cd74School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
1c530de1a94ac70bf9086e39af1712ea8d2d2781School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
50e45e9c55c9e79aaae43aff7d9e2f079a2d787bSchool of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam
99001ac9fdaf7649c0d0bd8d2078719bafd216d9School of Computer Science and Information Systems, Birkbeck College, University of London
abba1bf1348a6f1b70a26aac237338ee66764458School of Computer Science and Software Engineering, East China Normal University, China
83295bce2340cb87901499cff492ae6ff3365475School of Computer Science and Software Engineering, East China Normal University, China
0a5ffc55b584da7918c2650f9d8602675d256023School of Computer Science and Software Engineering, Shenzhen University
2ed3ce5cf9e262bcc48a6bd998e7fb70cf8a971cSchool of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen
d307a766cc9c728a24422313d4c3dcfdb0d16dd5School of Computer Science and Software Engineering, University of Western Australia
e0dc6f1b740479098c1d397a7bc0962991b5e294School of Computer Science and Technology, Harbin Institute of
a803453edd2b4a85b29da74dcc551b3c53ff17f9School of Computer Science and Technology, Harbin Institute of Technology
574b62c845809fd54cc168492424c5fac145bc83School of Computer Science and Technology, Harbin Institute of Technology, China
38f06a75eb0519ae1d4582a86ef4730cc8fb8d7fSchool of Computer Science and Technology, Harbin Institute of Technology, China
6afeb764ee97fbdedfa8f66810dfc22feae3fa1fSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
80840df0802399838fe5725cce829e1b417d7a2eSchool of Computer Science and Technology, Nanjing University of Science and Technology, China
a0021e3bbf942a88e13b67d83db7cf52e013abfdSchool of Computer Science and Technology, Shandong Institute of Business and Technology
a0021e3bbf942a88e13b67d83db7cf52e013abfdSchool of Computer Science and Technology, Shandong University
59a6c9333c941faf2540979dcfcb5d503a49b91eSchool of Computer Science and Technology, Shandong University, China
353b6c1f431feac6edde12b2dde7e6e702455abdSchool of Computer Science and Technology, Tianjin University
9cadd166893f1b8aaecb27280a0915e6694441f5School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China
33f2b44742cc828347ccc5ec488200c25838b664School of Computer Science and Technology, Tianjin University, China
aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9School of Computer Science and Technology, Tianjin University, China
abba1bf1348a6f1b70a26aac237338ee66764458School of Computer Science and Technology, Tianjin University, China
76ce3d35d9370f0e2e27cfd29ea0941f1462895fSchool of Computer Science and Technology, Tianjin University, Tianjin 300072, China
3411ef1ff5ad11e45106f7863e8c7faf563f4ee1School of Computer Science and Technology, Tianjin University, Tianjin, China
0c435e7f49f3e1534af0829b7461deb891cf540aSchool of Computer Science and Technology, University of Science and Technology of China
5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49School of Computer Science and Technology, University of Science and Technology of China
2b773fe8f0246536c9c40671dfa307e98bf365adSchool of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
e9c008d31da38d9eef67a28d2c77cb7daec941fbSchool of Computer Science, Beijing University of Posts and Telecommunications, Beijing China
0d3068b352c3733c9e1cc75e449bf7df1f7b10a4School of Computer Science, CECS, Australian National University, Australia
79db191ca1268dc88271abef3179c4fe4ee92aedSchool of Computer Science, CECS, Australian National University, Canberra
10af69f11301679b6fbb23855bf10f6af1f3d2e6School of Computer Science, Carnegie Mellon University
b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000School of Computer Science, Carnegie Mellon University
f08e425c2fce277aedb51d93757839900d591008School of Computer Science, Carnegie Mellon University
5d88702cdc879396b8b2cc674e233895de99666bSchool of Computer Science, Carnegie Mellon University, 15213, USA
d05513c754966801f26e446db174b7f2595805baSchool of Computer Science, Carnegie Mellon University, PA 15213, USA
d0ac9913a3b1784f94446db2f1fb4cf3afda151fSchool of Computer Science, Carnegie Mellon University, PA, USA
4e5dc3b397484326a4348ccceb88acf309960e86School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
d0d7671c816ed7f37b16be86fa792a1b29ddd79bSchool of Computer Science, Carnegie Mellon University, Pittsburgh, USA
4e8c608fc4b8198f13f8a68b9c1a0780f6f50105School of Computer Science, Carnegie Mellon University, USA
2af2b74c3462ccff3a6881ff7cf4f321b3242fa9School of Computer Science, Fudan University, Shanghai 200433, China
1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9School of Computer Science, Fudan University, Shanghai, 200433, China
6261eb75066f779e75b02209fbd3d0f02d3e1e45School of Computer Science, Fudan University, Shanghai, China
4e4fa167d772f34dfffc374e021ab3044566afc3School of Computer Science, Nanjing University of Science and Technology
86d0127e1fd04c3d8ea78401c838af621647dc95School of Computer Science, National University of Defense Technology, Changsha, China
34c8de02a5064e27760d33b861b7e47161592e65School of Computer Science, Northwestern Polytechnical University, China
c92bb26238f6e30196b0c4a737d8847e61cfb7d4School of Computer Science, Northwestern Polytechnical University, P.R.China
9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493School of Computer Science, Northwestern Polytechnical University, Xi an China
54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7School of Computer Science, OPTIMAL, Northwestern Polytechnical University, Xian 710072, Shaanxi, P. R. China
b29b42f7ab8d25d244bfc1413a8d608cbdc51855School of Computer Science, Sichuan University, Chengdu, China
aea4128ba18689ff1af27b90c111bbd34013f8d5School of Computer Science, South China Normal University, China
e87d6c284cdd6828dfe7c092087fbd9ff5091ee4School of Computer Science, Tel Aviv University
653d19e64bd75648cdb149f755d59e583b8367e3School of Computer Science, The Hebrew University, Israel
80840df0802399838fe5725cce829e1b417d7a2eSchool of Computer Science, The University of Adelaide, Australia
1667a77db764e03a87a3fd167d88b060ef47bb56School of Computer Science, The University of Manchester
614079f1a0d0938f9c30a1585f617fa278816d53School of Computer Science, The University of Nottingham
1c1a98df3d0d5e2034ea723994bdc85af45934dbSchool of Computer Science, The University of Nottingham
c46a4db7247d26aceafed3e4f38ce52d54361817School of Computer Science, The University of Nottingham, Nottingham, UK
ccf16bcf458e4d7a37643b8364594656287f5bfcSchool of Computer Science, The University of Nottingham, Nottingham, UK
4223917177405eaa6bdedca061eb28f7b440ed8eSchool of Computer Science, Tianjin University
4223917177405eaa6bdedca061eb28f7b440ed8eSchool of Computer Science, Tianjin University
6e97a99b2879634ecae962ddb8af7c1a0a653a82School of Computer Science, University of Adelaide, Australia
978a219e07daa046244821b341631c41f91daccdSchool of Computer Science, University of Birmingham, UK
044d9a8c61383312cdafbcc44b9d00d650b21c70School of Computer Science, University of Lincoln, U.K
013909077ad843eb6df7a3e8e290cfd5575999d2School of Computer Science, University of Lincoln, U.K
e42998bbebddeeb4b2bedf5da23fa5c4efc976faSchool of Computer Science, University of Lincoln, United Kingdom
75fd9acf5e5b7ed17c658cc84090c4659e5de01dSchool of Computer Science, University of Nottingham
472ba8dd4ec72b34e85e733bccebb115811fd726School of Computer Science, University of Nottingham
08e995c080a566fe59884a527b72e13844b6f176School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P
3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8School of Computer Science, Wuhan University, P.R. China
e85a255a970ee4c1eecc3e3d110e157f3e0a4629School of Computer Science, Wuhan University, P.R. China
4e5dc3b397484326a4348ccceb88acf309960e86School of Computer Science, Wuyi University, Jiangmen 529020, China
9cadd166893f1b8aaecb27280a0915e6694441f5School of Computer Software, Tianjin University, 300072 Tianjin, China
c32fb755856c21a238857b77d7548f18e05f482dSchool of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China
89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
0b87d91fbda61cdea79a4b4dcdcb6d579f063884School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R
cff911786b5ac884bb71788c5bc6acf6bf569effSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
0badf61e8d3b26a0d8b60fe94ba5c606718daf0bSchool of Computer and Information Science, Chongqing Normal University 401331, China
d7cbedbee06293e78661335c7dd9059c70143a28School of Computer and Information Technology, Beijing Jiaotong University, Beijing
33f2b44742cc828347ccc5ec488200c25838b664School of Computer and Information, Hefei University of Technology, China
e4e3faa47bb567491eaeaebb2213bf0e1db989e1School of Computer and Information, Hefei University of Technology, China
d963e640d0bf74120f147329228c3c272764932bSchool of Computer and Information, Hefei University of Technology, Hefei
7143518f847b0ec57a0ff80e0304c89d7e924d9aSchool of Computer and Information, Hefei University of Technology, Hefei, China
f8f2d2910ce8b81cb4bbf84239f9229888158b34School of Computer, Beijing Institute of Technology, Beijing, China
59dac8b460a89e03fa616749a08e6149708dcc3aSchool of Computer, National University of Defense Technology
29fc4de6b680733e9447240b42db13d5832e408fSchool of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
273b0511588ab0a81809a9e75ab3bd93d6a0f1e3School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; E-Mail
fc23a386c2189f221b25dbd0bb34fcd26ccf60faSchool of Computing Science, Simon Fraser University, Canada
3a2a37ca2bdc82bba4c8e80b45d9f038fe697c7dSchool of Computing Science, Simon Fraser University, Canada
05a0d04693b2a51a8131d195c68ad9f5818b2ce1School of Computing Sciences, University of East Anglia, Norwich, UK
8d3fbdb9783716c1832a0b7ab1da6390c2869c14School of Computing and Communications University of Technology, Sydney
a87e37d43d4c47bef8992ace408de0f872739efcSchool of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK
f8f2d2910ce8b81cb4bbf84239f9229888158b34School of Computing and Communications, University of Technology Sydney, Sydney, Australia
2d080662a1653f523321974a57518e7cb67ecb41School of Computing and Info. Sciences, Florida International University
2e231f1e7e641dd3619bec59e14d02e91360ac01School of Computing and Mathematics, Charles Sturt University, Wagga Wagga, Australia
3a3f75e0ffdc0eef07c42b470593827fcd4020b4School of Computing, National University of Singapore
ee7093e91466b81d13f4d6933bcee48e4ee63a16School of Computing, National University of Singapore, SG
0ea7b7fff090c707684fd4dc13e0a8f39b300a97School of Computing, National University of Singapore, Singapore
17d01f34dfe2136b404e8d7f59cebfb467b72b26School of Computing, National University of Singapore, Singapore
43010792bf5cdb536a95fba16b8841c534ded316School of Computing, National University of Singapore, Singapore
38c901a58244be9a2644d486f9a1284dc0edbf8aSchool of Computing, National University of Singapore, Singapore
e6d689054e87ad3b8fbbb70714d48712ad84dc1cSchool of Computing, Staffordshire University
3463f12ad434d256cd5f94c1c1bfd2dd6df36947School of Control Science and Engineering, Shandong University, Jinan 250061, China
1251deae1b4a722a2155d932bdfb6fe4ae28dd22School of Data Science, Fudan University
00e3957212517a252258baef833833921dd308d4School of Data Science, Fudan University, China
3be8f1f7501978287af8d7ebfac5963216698249School of Data and Computer Science, Sun Yat-Sen University, China
30cd39388b5c1aae7d8153c0ab9d54b61b474ffeSchool of Data and Computer Science, Sun Yat-Sen University, China
799c02a3cde2c0805ea728eb778161499017396bSchool of Data and Computer Science, Sun Yat-Sen University, GuangZhou, China
57b052cf826b24739cd7749b632f85f4b7bcf90bSchool of Data and Computer Science, Sun Yat-sen University
574b62c845809fd54cc168492424c5fac145bc83School of Data and Computer Science, Sun Yat-sen University, China
725c3605c2d26d113637097358cd4c08c19ff9e1School of Data and Computer Science, Sun Yat-sen University, China
c92bb26238f6e30196b0c4a737d8847e61cfb7d4School of Data and Computer Science, Sun Yat-sen University, P.R.China
3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8School of Data of Computer Science, Sun Yat-sen University, P.R. China
15252b7af081761bb00535aac6bd1987391f9b79School of E.C.E., National Technical University of Athens, 15773 Athens, Greece
8ed33184fccde677ec8413ae06f28ea9f2ca70f3School of E.C.E., National Technical University of Athens, Greece
1d7df3df839a6aa8f5392310d46b2a89080a3c25School of ECE, Peking University 2School of EIE, South China University of Technology
1251deae1b4a722a2155d932bdfb6fe4ae28dd22School of EECS, Peking University, Beijing, 100871, China
1a140d9265df8cf50a3cd69074db7e20dc060d14School of EECS, Queen Mary University of London
2bb53e66aa9417b6560e588b6235e7b8ebbc294cSchool of EECS, Queen Mary University of London, London, UK
be4f7679797777f2bc1fd6aad8af67cce5e5ce87School of EECS, Queen Mary University of London, UK
29921072d8628544114f68bdf84deaf20a8c8f91School of EECS, Queen Mary University of London, UK
f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3School of EEE, Nanyang Technological University, Singapore
5134353bd01c4ea36bd007c460e8972b1541d0adSchool of Electrical Engineering and Automation, Anhui University, Hefei, China, Hong Kong Polytechnic2 Department of Electronic and Information Engineering
0c435e7f49f3e1534af0829b7461deb891cf540aSchool of Electrical Engineering and Automation, Harbin Institute of Technology
cf805d478aeb53520c0ab4fcdc9307d093c21e52School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT
8bf243817112ac0aa1348b40a065bb0b735cdb9cSchool of Electrical Engineering and Computer Science, Peking University
8796f2d54afb0e5c924101f54d469a1d54d5775dSchool of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
b3154d981eca98416074538e091778cbc031ca29School of Electrical and Computer Engineering, Cornell University
bd379f8e08f88729a9214260e05967f4ca66cd65School of Electrical and Computer Engineering, Cornell University, Ithaca NY
dec0c26855da90876c405e9fd42830c3051c2f5fSchool of Electrical and Computer Engineering, Cornell University, Ithaca NY
f1250900074689061196d876f551ba590fc0a064School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
360d66e210f7011423364327b7eccdf758b5fdd2School of Electrical and Computer Engineering, RMIT University
6bb0425baac448297fbd29a00e9c9b9926ce8870School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
1177977134f6663fff0137f11b81be9c64c1f424School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
09b43b59879d59493df2a93c216746f2cf50f4acSchool of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore
89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008 china
3d9db1cacf9c3bb7af57b8112787b59f45927355School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical
9c1305383ce2c108421e9f5e75f092eaa4a5aa3cSchool of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China
10550ee13855bd7403946032354b0cd92a10d0aaSchool of Electrical, Computer and Energy Engineering, Arizona State University
4b02387c2db968a70b69d98da3c443f139099e91School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China
bd8b7599acf53e3053aa27cfd522764e28474e57School of Electronic Engineering and Computer Science, Peking University, 100871, China
38c901a58244be9a2644d486f9a1284dc0edbf8aSchool of Electronic Information Engineering, Tianjin University, China
0a5ffc55b584da7918c2650f9d8602675d256023School of Electronic and Computer Engineering, Peking University
fb084b1fe52017b3898c871514cffcc2bdb40b73School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
4bd3de97b256b96556d19a5db71dda519934fd53School of Electronic and Information Engineering, South China University of Technology
0a5ffc55b584da7918c2650f9d8602675d256023School of Electronic and Information Engineering, South China University of Technology
90c2d4d9569866a0b930e91713ad1da01c2a6846School of Electronic and Information Engineering, Tongji University, Shanghai, China
2f17f6c460e02bd105dcbf14c9b73f34c5fb59bdSchool of Electronic and Information, Yangtze University, Jingzhou 434023, China
b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89School of Electronics Engineering and Computer Science, Peking University
d9327b9621a97244d351b5b93e057f159f24a21eSchool of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China
b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89School of Electronics and Computer Engineering, Peking University
7aafeb9aab48fb2c34bed4b86755ac71e3f00338School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai
799c02a3cde2c0805ea728eb778161499017396bSchool of Electronics and Information Technology, Sun Yat-Sen University, GuangZhou, China
4d9c02567e7b9e065108eb83ea3f03fcff880462School of Electronics and Information, Northwestern Polytechnical University, China
7eb895e7de883d113b75eda54389460c61d63f67School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
55e87050b998eb0a8f0b16163ef5a28f984b01faSchool of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
79db191ca1268dc88271abef3179c4fe4ee92aedSchool of Engineering, CECS, Australian National University, Canberra, Australia
656aeb92e4f0e280576cbac57d4abbfe6f9439eaSchool of Engineering, Taylor s University
e2d265f606cd25f1fd72e5ee8b8f4c5127b764dfSchool of Engineering, University of Guelph
baa0fe4d0ac0c7b664d4c4dd00b318b6d4e09143School of Engineering, University of Portsmouth, United Kingdom
706b9767a444de4fe153b2f3bff29df7674c3161School of Engineering, University of Waikato, Hamilton, New Zealand
2c34bf897bad780e124d5539099405c28f3279acSchool of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu
c0ee89dc2dad76147780f96294de9e421348c1f4School of Games, Hongik University, Seoul, Korea
1177977134f6663fff0137f11b81be9c64c1f424School of ICE, Beijing University of Posts and Telecommunications, Beijing, China
4a14a321a9b5101b14ed5ad6aa7636e757909a7cSchool of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications
fdfd57d4721174eba288e501c0c120ad076cdca8School of Informatics, University of Edinburgh
14b162c2581aea1c0ffe84e7e9273ab075820f52School of Informatics, University of Edinburgh, UK
a7e1327bd76945a315f2869bfae1ce55bb94d165School of Information Engineering, Guangdong Medical College, Song Shan Hu
a7e1327bd76945a315f2869bfae1ce55bb94d165School of Information Engineering, Guangdong Medical College, Song Shan Hu
4b02387c2db968a70b69d98da3c443f139099e91School of Information Engineering, Guangdong University of Technology, 510006 Guangzhou, China
34c8de02a5064e27760d33b861b7e47161592e65School of Information Engineering, Nanchang University, China
2004afb2276a169cdb1f33b2610c5218a1e47332School of Information Engineering, Wuyi University, Jiangmen 529020, China
7f2a4cd506fe84dee26c0fb41848cb219305173fSchool of Information Science and Engineering, Central South University, Changsha
630d1728435a529d0b0bfecb0e7e335f8ea2596dSchool of Information Science and Engineering, Southeast University, Nanjing, China
cff911786b5ac884bb71788c5bc6acf6bf569effSchool of Information Science and Engineering, Xiamen University, Xiamen 361005, China
7a3d46f32f680144fd2ba261681b43b86b702b85School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
ffaad0204f4af763e3390a2f6053c0e9875376beSchool of Information Science and Technology, Donghua University, Shanghai 200051, China
0badf61e8d3b26a0d8b60fe94ba5c606718daf0bSchool of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China
0badf61e8d3b26a0d8b60fe94ba5c606718daf0bSchool of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China
adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China
aea4128ba18689ff1af27b90c111bbd34013f8d5School of Information Science and Technology, Sun Yat-sen University, China
439647914236431c858535a2354988dde042ef4dSchool of Information Science and Technology, Sun Yat-sen University, China
f94f366ce14555cf0d5d34248f9467c18241c3eeSchool of Information Science, Japan Advanced Institute of Science and Technology
edbb8cce0b813d3291cae4088914ad3199736aa0School of Information Systems, Singapore Management University, Singapore
2d8001ffee6584b3f4d951d230dc00a06e8219f8School of Information Systems, Singapore Management University, Singapore
78174c2be084e67f48f3e8ea5cb6c9968615a42cSchool of Information Technology (ITE), Halmstad University, Box 823, 30118 Halmstad, Sweden
aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9School of Information Technology and Electrical Engineering, The University of Queensland
857ad04fca2740b016f0066b152bd1fa1171483fSchool of Information Technology and Engineering, University of Ottawa, Ontario, Canada
5550a6df1b118a80c00a2459bae216a7e8e3966cSchool of Information Technology and Engineering, VIT University, Vellore, 632014, India
bd8f3fef958ebed5576792078f84c43999b1b207School of Information Technology and Management, University of International
e9c008d31da38d9eef67a28d2c77cb7daec941fbSchool of Information and Communication Engineering, Beijing University of Posts and Telecommunications
1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1dSchool of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
438e7999c937b94f0f6384dbeaa3febff6d283b6School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
2c62b9e64aeddf12f9d399b43baaefbca8e11148School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8School of IoT Engineering, Jiangnan University, Wuxi 214122, China
96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28dSchool of IoT Engineering, Jiangnan University, Wuxi 214122, China
40e1743332523b2ab5614bae5e10f7a7799161f4School of IoT Engineering, Jiangnan University, Wuxi 214122, China
0a11b82aa207d43d1b4c0452007e9388a786be12School of IoT Engineering, Jiangnan University, Wuxi, 214122, China
739d400cb6fb730b894182b29171faaae79e3f01School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China
2e231f1e7e641dd3619bec59e14d02e91360ac01School of Management, University of Bath, Bath, UK
ae0765ebdffffd6e6cc33c7705df33b7e8478627School of Mathematical Science, Dalian University of Technology, Dalian, China
9d61b0beb3c5903fc3032655dc0fd834ec0b2af3School of Mathematical Science, Peking University, China
f074e86e003d5b7a3b6e1780d9c323598d93f3bcSchool of Mathematical Sciences, Dalian University of Technology, Linggong Rd. 2, Dalian
0c741fa0966ba3ee4fc326e919bf2f9456d0cd74School of Mathematical Sciences, Monash University, VIC 3800, Australia
be4f7679797777f2bc1fd6aad8af67cce5e5ce87School of Mathematical Sciences, Peking University, China
439647914236431c858535a2354988dde042ef4dSchool of Mathematics and Computational Science, Sun Yat-sen University, China
ffaad0204f4af763e3390a2f6053c0e9875376beSchool of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA
d0ac9913a3b1784f94446db2f1fb4cf3afda151fSchool of Mathematics and Statistics, Xi an Jiaotong University, P. R. China
6afeb764ee97fbdedfa8f66810dfc22feae3fa1fSchool of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China
edf98a925bb24e39a6e6094b0db839e780a77b08School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China
843e6f1e226480e8a6872d8fd7b7b2cd74b637a4School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
9d941a99e6578b41e4e32d57ece580c10d578b22School of Medicine, Shenzhen University, Shenzhen 518060, China
ae2c71080b0e17dee4e5a019d87585f2987f0508School of Medicine, Tehran University of Medical Sciences, Tehran, IranDepartment of Psychiatry
126535430845361cd7a3a6f317797fe6e53f5a3bSchool of Optics and Electronics, Beijing Institute of Technology, Beijing
a285b6edd47f9b8966935878ad4539d270b406d1School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China
247cab87b133bd0f4f9e8ce5e7fc682be6340eacSchool of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China, 2 School of Information
d307a766cc9c728a24422313d4c3dcfdb0d16dd5School of Physics and Optoelectronic Engineering, Xidian University, China
bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK
b8caf1b1bc3d7a26a91574b493c502d2128791f6School of Psychology, Cardiff University, Cardiff, United Kingdom, College of2 Department of Psychology
29631ca6cff21c9199c70bcdbbcd5f812d331a96School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology
28c9198d30447ffe9c96176805c1cd81615d98c8School of Psychology, University of Auckland, Auckland, New Zealand
ddf55fc9cf57dabf4eccbf9daab52108df5b69aaSchool of Psychology, University of Central Lancashire
2d25045ec63f9132371841c0beccd801d3733908School of Software, Dalian University of Technology, Dalian 116621, China
f074e86e003d5b7a3b6e1780d9c323598d93f3bcSchool of Software, Dalian University of Technology, Tuqiang St. 321, Dalian 116620, China
aea4128ba18689ff1af27b90c111bbd34013f8d5School of Software, Sun Yat-sen University, China
4223917177405eaa6bdedca061eb28f7b440ed8eSchool of Software, Tianjin University
73fd7e74457e0606704c5c3d3462549f1b2de1adSchool of Software, Tsinghua University, Beijing 100084, China
d307a766cc9c728a24422313d4c3dcfdb0d16dd5School of Software, Xidian University, China
3d9db1cacf9c3bb7af57b8112787b59f45927355School, The University of Sydney, Sydney, NSW, Australia
5bde1718253ec28a753a892b0ba82d8e553b6bf3Schreiber Building, room 103, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv
a35dd69d63bac6f3296e0f1d148708cfa4ba80f6Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS
247cab87b133bd0f4f9e8ce5e7fc682be6340eacScience and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part
9820920d4544173e97228cb4ab8b71ecf4548475Science, University of Amsterdam
f7a271acccf9ec66c9b114d36eec284fbb89c7efScience, University of Bristol
ae1de0359f4ed53918824271c888b7b36b8a5d41Scienti c Visualization and Computer Graphics, University of Groningen, Nijenborgh 9, Groningen, The Netherlands
1c4ceae745fe812d8251fda7aad03210448ae25eSeattle Paci c University, Seattle, WA 98119-1957, USADepartment of Computer Science
46f3b113838e4680caa5fc8bda6e9ae0d35a038cSection of Pathology, Second University of Naples, Via L. ArmanniDepartment of Biochemistry
e1f6e2651b7294951b5eab5d2322336af1f676dcSejong University, 98 Gunja, Gwangjin, Seoul 143-747, KoreaDepartment of Computer Science and Engineering
7636f94ddce79f3dea375c56fbdaaa0f4d9854aaSejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, KoreaDepartment of Computer Engineering
8b6fded4d08bf0b7c56966b60562ee096af1f0c4Semarang State University
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfSendai National College of Technology, Natori, Japan
c39ffc56a41d436748b9b57bdabd8248b2d28a32SenseTime Group Limited, 2Tsinghua University
d78734c54f29e4474b4d47334278cfde6efe963aSenseTime Group Limited, 3Peking University
38183fe28add21693729ddeaf3c8a90a2d5caea3SenseTime, 2Tsinghua University
51faacfa4fb1e6aa252c6970e85ff35c5719f4ffSenseTime-NTU Joint AI Research Centre, Nanyang Technological University
34c8de02a5064e27760d33b861b7e47161592e65Sensor-enhanced Social Media (SeSaMe) Centre, National University of Singapore, Singapore
5feb1341a49dd7a597f4195004fe9b59f67e6707Seoul National University
ad0d4d5c61b55a3ab29764237cd97be0ebb0ddffSeoul National University
282503fa0285240ef42b5b4c74ae0590fe169211Seoul National University
282503fa0285240ef42b5b4c74ae0590fe169211Seoul National University
f86ddd6561f522d115614c93520faad122eb3b56Seoul National University
1d6c09019149be2dc84b0c067595f782a5d17316Seoul National University
1d6c09019149be2dc84b0c067595f782a5d17316Seoul National University
1d6c09019149be2dc84b0c067595f782a5d17316Seoul National University
1d6c09019149be2dc84b0c067595f782a5d17316Seoul National University
8befcd91c24038e5c26df0238d26e2311b21719aSeoul National University, Seoul, Korea
09507f1f1253101d04a975fc5600952eac868602Seoul National University, Seoul, South Korea
fac8cff9052fc5fab7d5ef114d1342daba5e4b82Sessional Tutor, The University of MelbourneDepartment of Statistics
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8Several methods exists to induce anxiety in healthy individuals, including threat of shock (ToS), the Trier
acc548285f362e6b08c2b876b628efceceeb813eShaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China
70580ed8bc482cad66e059e838e4a779081d1648Shaheed Zulfikar Ali Bhutto Institute ofDepartment of Computer Science
0c3f7272a68c8e0aa6b92d132d1bf8541c062141Shaheed Zulfikar Ali Bhutto Institute of Science and Technology IslamabadDepartment of Computer Science
d458c49a5e34263c95b3393386b5d76ba770e497Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan
a956ff50ca958a3619b476d16525c6c3d17ca264ShahidBeheshti University
b5930275813a7e7a1510035a58dd7ba7612943bcShandong University of Science and Technology
743e582c3e70c6ec07094887ce8dae7248b970adShandong Women s University
d444e010049944c1b3438c9a25ae09b292b17371Shanghai Institute for Advanced Communication and Data Science
d454ad60b061c1a1450810a0f335fafbfeceecccShanghai Institute for Advanced Communication and Data Science
ccdea57234d38c7831f1e9231efcb6352c801c55Shanghai Institute of Applied Physics, Chinese Academy of Sciences
3c1aef7c2d32a219bdbc89a44d158bc2695e360aShanghai Jiao Tong University
3c1aef7c2d32a219bdbc89a44d158bc2695e360aShanghai Jiao Tong University
3c1aef7c2d32a219bdbc89a44d158bc2695e360aShanghai Jiao Tong University
3c1aef7c2d32a219bdbc89a44d158bc2695e360aShanghai Jiao Tong University
34bb11bad04c13efd575224a5b4e58b9249370f3Shanghai Jiao Tong University
281486d172cf0c78d348ce7d977a82ff763efccdShanghai Jiao Tong University
86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cdShanghai Jiao Tong University
824d1db06e1c25f7681e46199fd02cb5fc343784Shanghai Jiao Tong University
8f60c343f76913c509ce623467bf086935bcadacShanghai Jiao Tong University, CloudWalk Technology
673d4885370b27c863e11a4ece9189a6a45931ccShanghai Jiao Tong University, 2Zhejiang University, 3Massachusetts Institute of Technology
3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
abba1bf1348a6f1b70a26aac237338ee66764458Shanghai Jiao Tong University, ChinaDepartment of Computer Science and Engineering
c00f402b9cfc3f8dd2c74d6b3552acbd1f358301Shanghai Jiao Tong University, ChinaDepartment of Computer Science and Engineering
20b994a78cd1db6ba86ea5aab7211574df5940b3Shanghai Jiao Tong University, ChinaDepartment of Electronic Engineering
521cfbc1949289a7ffc3ff90af7c55adeb43db2aShanghai Jiao Tong University, ChinaDepartment of Electronic Engineering
83295bce2340cb87901499cff492ae6ff3365475Shanghai Jiao Tong University, ChinaDepartment of Computer Science and Engineering
22646cf884cc7093b0db2c1731bd52f43682eaa8Shanghai Jiao Tong University, China
fd33df02f970055d74fbe69b05d1a7a1b9b2219bShanghai Jiao Tong University, China. 2Columbia University, USADepartment of Automation
d444e010049944c1b3438c9a25ae09b292b17371Shanghai Jiao Tong University, Shanghai 200240, China
7fa3d4be12e692a47b991c0b3d3eba3a31de4d05Shanghai Jiao Tong University, Shanghai 200240, China
00e3957212517a252258baef833833921dd308d4Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China
05891725f5b27332836cf058f04f18d74053803fShanghaiTech University
30b15cdb72760f20f80e04157b57be9029d8a1abShanghaitech University
30b15cdb72760f20f80e04157b57be9029d8a1abShanghaitech University
a7e1327bd76945a315f2869bfae1ce55bb94d165Shaoguan University, Da Tang LuDepartment of Physics
e0638e0628021712ac76e3472663ccc17bd8838cSharda University, Greater Noida, IndiaDepartment of Computer Science and Engineering
c74aba9a096379b3dbe1ff95e7af5db45c0fd680Sharif University of Technology
6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365Sharif University of Technology
488d3e32d046232680cc0ba80ce3879f92f35cacSharif University of Technology, Tehran. IranDepartment of Electrical Engineering
7fc5b6130e9d474dfb49d9612b6aa0297d481c8eShenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
6043006467fb3fd1e9783928d8040ee1f1db1f3aShenzhen Institutes of Advanced Technology
3b9c08381282e65649cd87dfae6a01fe6abea79bShenzhen Institutes of Advanced Technology, CAS, China
4c822785c29ceaf67a0de9c699716c94fefbd37dShenzhen Institutes of Advanced Technology, CAS, China
36c473fc0bf3cee5fdd49a13cf122de8be736977Shenzhen Institutes of Advanced Technology, CAS, China
416b559402d0f3e2b785074fcee989d44d82b8e5Shenzhen Institutes of Advanced Technology, CAS, China
084bebc5c98872e9307cd8e7f571d39ef9c1b81eShenzhen Institutes of Advanced Technology, CAS, Shenzhen, China
4b519e2e88ccd45718b0fc65bfd82ebe103902f7Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China
57ebeff9273dea933e2a75c306849baf43081a8cShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
69a68f9cf874c69e2232f47808016c2736b90c35Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
ac6c3b3e92ff5fbcd8f7967696c7aae134bea209Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
cf5c9b521c958b84bb63bea9d5cbb522845e4ba7Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
177bc509dd0c7b8d388bb47403f28d6228c14b5cShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
1922ad4978ab92ce0d23acc4c7441a8812f157e5Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
4d3c4c3fe8742821242368e87cd72da0bd7d3783Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
0aeb5020003e0c89219031b51bd30ff1bceea363Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
b8084d5e193633462e56f897f3d81b2832b72dffShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
ea218cebea2228b360680cb85ca133e8c2972e56Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2c17d36bab56083293456fe14ceff5497cc97d75Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
125d82fee1b9fbcc616622b0977f3d06771fc152Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
1d696a1beb42515ab16f3a9f6f72584a41492a03Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
1316296fae6485c1510f00b1b57fb171b9320ac2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
f3015be0f9dbc1a55b6f3dc388d97bb566ff94feShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China
691964c43bfd282f6f4d00b8b0310c554b613e3bShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
164b0e2a03a5a402f66c497e6c327edf20f8827bShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
217a21d60bb777d15cd9328970cab563d70b5d23Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
1d3dd9aba79a53390317ec1e0b7cd742cba43132Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
1768909f779869c0e83d53f6c91764f41c338ab5Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology
2b42f83a720bd4156113ba5350add2df2673daf0Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology
896f4d87257abd0f628c1ffbbfdac38c86a56f50Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS
17045163860fc7c38a0f7d575f3e44aaa5fa40d7Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS
0ccc535d12ad2142a8310d957cc468bbe4c63647Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China
14b69626b64106bff20e17cf8681790254d1e81cShenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China
4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced
04661729f0ff6afe4b4d6223f18d0da1d479accfShenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
4bd3de97b256b96556d19a5db71dda519934fd53Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
435642641312364e45f4989fac0901b205c49d53Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
50e45e9c55c9e79aaae43aff7d9e2f079a2d787bShenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology
3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China
9d941a99e6578b41e4e32d57ece580c10d578b22Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
656531036cee6b2c2c71954bb6540ef6b2e016d0Shenzhen University, China
7c1cfab6b60466c13f07fe028e5085a949ec8b30Shenzhen University, Shenzhen China
66dcd855a6772d2731b45cfdd75f084327b055c2Shenzhen University, Shenzhen, China
32ecbbd76fdce249f9109594eee2d52a1cafdfc7Shenzhen University, Shenzhen, China
8b2e3805b37c18618b74b243e7a6098018556559Shenzhen University, Shenzhen, China
356b431d4f7a2a0a38cf971c84568207dcdbf189Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology
b2e5df82c55295912194ec73f0dca346f7c113f6Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
c6241e6fc94192df2380d178c4c96cf071e7a3acShenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
2717998d89d34f45a1cca8b663b26d8bf10608a9Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
1f05473c587e2a3b587f51eb808695a1c10bc153Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
624e9d9d3d941bab6aaccdd93432fc45cac28d4bShenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
01dc1e03f39901e212bdf291209b7686266aeb13Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
473031328c58b7461753e81251379331467f7a69Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China
2f53b97f0de2194d588bc7fb920b89cd7bcf7663Shiraz University
2f53b97f0de2194d588bc7fb920b89cd7bcf7663Shiraz University
ed08ac6da6f8ead590b390b1d14e8a9b97370794Shri Shivaji College, Parbhani, M.S, IndiaDepartment of C.S.
a065080353d18809b2597246bb0b48316234c29aSichuan Fine Arts Institute, Chongqing, China
c32c8bfadda8f44d40c6cd9058a4016ab1c27499Siemens Corporate Research, 755 College Road East, Princeton, NJ
009a18d04a5e3ec23f8ffcfc940402fd8ec9488fSighthound, Inc
d930ec59b87004fd172721f6684963e00137745fSignal Processing Institute
07da958db2e561cc7c24e334b543d49084dd1809Signal Processing Institute
b89862f38fff416d2fcda389f5c59daba56241dbSignal Processing Institute
3b2a2357b12cf0a5c99c8bc06ef7b46e40dd888eSimon Fraser University
03fe3d031afdcddf38e5cc0d908b734884542eebSimon Fraser University
03fe3d031afdcddf38e5cc0d908b734884542eebSimon Fraser University
03fe3d031afdcddf38e5cc0d908b734884542eebSimon Fraser University
5141cf2e59fb2ec9bb489b9c1832447d3cd93110Simon Fraser University
7c61d21446679776f7bdc7afd13aedc96f9acac1Simon Fraser University
7c61d21446679776f7bdc7afd13aedc96f9acac1Simon Fraser University
7c61d21446679776f7bdc7afd13aedc96f9acac1Simon Fraser University
6c705285c554985ecfe1117e854e1fe1323f8c21Simon Fraser University
392d35bb359a3b61cca1360272a65690a97a2b3fSimon Fraser University
975978ee6a32383d6f4f026b944099e7739e5890Simon Fraser University
975978ee6a32383d6f4f026b944099e7739e5890Simon Fraser University
8384e104796488fa2667c355dd15b65d6d5ff957Simon Fraser University
24cf9fe9045f50c732fc9c602358af89ae40a9f7Simon Fraser University
6e00a406edb508312108f683effe6d3c1db020fbSimon Fraser University, Burnaby, Canada
464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05aSingapore University of Technology and Design
464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05aSingapore University of Technology and Design
2c1f8ddbfbb224271253a27fed0c2425599dfe47Singapore University of Technology and Design
bb451dc2420e1a090c4796c19716f93a9ef867c9Sinhgad College of
bb451dc2420e1a090c4796c19716f93a9ef867c9Sinhgad College of
5c3dce55c61ee86073575ac75cc882a215cb49e6Skolkovo Institute of Science and Technology (Skoltech), Russia
50c0de2cccf7084a81debad5fdb34a9139496da0Slovak University of Technology in
47eba2f95679e106e463e8296c1f61f6ddfe815bSmart Network System Institute, Institute for Information Industry
df2494da8efa44d70c27abf23f73387318cf1ca8Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of
e48e94959c4ce799fc61f3f4aa8a209c00be8d7fSogang University, Seoul 121-742, Republic of KoreaDepartment of Electronic Engineering
bb451dc2420e1a090c4796c19716f93a9ef867c9Solapur University, INDIA
bb451dc2420e1a090c4796c19716f93a9ef867c9Solapur University, INDIA
829f390b3f8ad5856e7ba5ae8568f10cee0c7e6aSona College of Technology
831226405bb255527e9127b84e8eaedd7eb8e9f9Sorbonne Universit s, UPMC University Paris 06, Paris, France
7d7be6172fc2884e1da22d1e96d5899a29831ad2South China University of China
7d7be6172fc2884e1da22d1e96d5899a29831ad2South China University of China
7d7be6172fc2884e1da22d1e96d5899a29831ad2South China University of China
d72973a72b5d891a4c2d873daeb1bc274b48cddfSouth China University of Technology
f22d6d59e413ee255e5e0f2104f1e03be1a6722eSouth China University of Technology
dcc38db6c885444694f515d683bbb50521ff3990South China University of Technology
4dca3d6341e1d991c902492952e726dc2a443d1cSouth China University of Technology 4NVIDIA 5Google Brain 6Ant Financial
bd26dabab576adb6af30484183c9c9c8379bf2e0South China University of Technology, Guangzhou 510640, China
b1665e1ddf9253dcaebecb48ac09a7ab4095a83eSouth College Road
b1665e1ddf9253dcaebecb48ac09a7ab4095a83eSouth College Road
9294739e24e1929794330067b84f7eafd286e1c8Southeast University, Nanjing 210096, ChinaDepartment of Radio Engineering
3cb488a3b71f221a8616716a1fc2b951dd0de549Southeast University, Nanjing 211189, China
162dfd0d2c9f3621d600e8a3790745395ab25ebcSoutheast University, Nanjing, China
ba99c37a9220e08e1186f21cab11956d3f4fccc2Southern Illinois University, Carbondale, IL 62901 USADepartment of Computer Science
0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58Southwest Jiaotong University
896f4d87257abd0f628c1ffbbfdac38c86a56f50Southwest Jiaotong University, Chengdu, China
17045163860fc7c38a0f7d575f3e44aaa5fa40d7Southwest Jiaotong University, Chengdu, China
14b69626b64106bff20e17cf8681790254d1e81cSouthwest Jiaotong University, Chengdu, P.R. China
7e18b5f5b678aebc8df6246716bf63ea5d8d714eSouthwest University, China
11a47a91471f40af5cf00449954474fd6e9f7694Southwest University, Chongqing 400715, China
11a210835b87ccb4989e9ba31e7559bb7a9fd292Sponsors: Machine Intelligence Research Labs (MIR Labs
0052de4885916cf6949a6904d02336e59d98544cSpringer Science + Business Media, Inc. Manufactured in The Netherlands
cbcf5da9f09b12f53d656446fd43bc6df4b2fa48Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India
919d3067bce76009ce07b070a13728f549ebba49Sri Manakula Vinayagar Engineering College, Pondicherry
91067f298e1ece33c47df65236853704f6700a0bSri SidarthaInstitute of Technology, Tumkur
ff46c41e9ea139d499dd349e78d7cc8be19f936cSri Sunflower College of Engineering and Technology, LankapalliDepartment of ECE
56e4dead93a63490e6c8402a3c7adc493c230da5Sri krishna College of Technology, Coimbatore, IndiaDepartment of Electronics and Communication
571f493c0ade12bbe960cfefc04b0e4607d8d4b2Sridevi Women's Engineering College
b7894c1f805ffd90ab4ab06002c70de68d6982abSrinivasan Engineering College, Perambalur, IndiaDepartment of ECE
c614450c9b1d89d5fda23a54dbf6a27a4b821ac0Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India
0a7309147d777c2f20f780a696efe743520aa2dbSs. Cyril and Methodius University, Skopje, Macedonia
69a55c30c085ad1b72dd2789b3f699b2f4d3169fSt. Ann s College of Engineering and Technology, Andhra Pradesh, IndiaDepartment of MCA
ada42b99f882ba69d70fff68c9ccbaff642d5189St. Anne s College
28fe6e785b32afdcd2c366c9240a661091b850cfSt. Francis Institute of Technology
28fe6e785b32afdcd2c366c9240a661091b850cfSt. Francis Institute of Technology
18a9f3d855bd7728ed4f988675fa9405b5478845St. Xavier s Catholic College of Engineering, IndiaDepartment of Computer Applications
3e69ed088f588f6ecb30969bc6e4dbfacb35133eSt. Xavier s Catholic College of Engineering, Nagercoil, India
411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8St. Xavier s Catholic College of Engineering, Nagercoil, IndiaDepartment of Computer Applications
f69de2b6770f0a8de6d3ec1a65cb7996b3c99317St.Joseph s College of Engineering, Old Mamallapuram Road, Kamaraj Nagar, Semmencherry, Chennai
656aeb92e4f0e280576cbac57d4abbfe6f9439eaStaffordshire University, Beaconside Stafford ST18 0AB, United Kingdom
72160aae43cd9b2c3aae5574acc0d00ea0993b9eStamford University Bangladesh, Dhaka-1209, Bangladesh
72160aae43cd9b2c3aae5574acc0d00ea0993b9eStamford University Bangladesh, Dhaka-1209, Bangladesh
72160aae43cd9b2c3aae5574acc0d00ea0993b9eStamford University Bangladesh, Dhaka-1209, Bangladesh
59420fd595ae745ad62c26ae55a754b97170b01fStanford UniversityComputer Science Department
51d048b92f6680aca4a8adf07deb380c0916c808Stanford University
580f86f1ace1feed16b592d05c2b07f26c429b4bStanford University
3419af6331e4099504255a38de6f6b7b3b1e5c14Stanford UniversityDepartment of Electrical Engineering
334e65b31ad51b1c1f84ce12ef235096395f1ca7Stanford University
d915e634aec40d7ee00cbea96d735d3e69602f1aStanford University
d915e634aec40d7ee00cbea96d735d3e69602f1aStanford University
a2429cc2ccbabda891cc5ae340b24ad06fcdbed5Stanford University
a2429cc2ccbabda891cc5ae340b24ad06fcdbed5Stanford University
a2429cc2ccbabda891cc5ae340b24ad06fcdbed5Stanford University
a2429cc2ccbabda891cc5ae340b24ad06fcdbed5Stanford University
f22d6d59e413ee255e5e0f2104f1e03be1a6722eStanford University
4e0636a1b92503469b44e2807f0bb35cc0d97652Stanford University
4e0636a1b92503469b44e2807f0bb35cc0d97652Stanford University
27a299b834a18e45d73e0bf784bbb5b304c197b3Stanford UniversityComputer Science Department
2983efadb1f2980ab5ef20175f488f77b6f059d7Stanford University
16d6737b50f969247339a6860da2109a8664198aStanford University
42c9394ca1caaa36f535721fa9a64b2c8d4e0deeStanford University
42f6f5454dda99d8989f9814989efd50fe807ee8Stanford University
28d06fd508d6f14cd15f251518b36da17909b79eStanford University
28d06fd508d6f14cd15f251518b36da17909b79eStanford University
8a1ed5e23231e86216c9bdd62419c3b05f1e0b4dStanford University
3852968082a16db8be19b4cb04fb44820ae823d4Stanford University
00f7f7b72a92939c36e2ef9be97397d8796ee07cStanford University
65bba9fba03e420c96ec432a2a82521ddd848c09Stanford UniversityComputer Science Department
3946b8f862ecae64582ef0912ca2aa6d3f6f84dcStanford University
0ff23392e1cb62a600d10bb462d7a1f171f579d0Stanford University
0fe96806c009e8d095205e8f954d41b2b9fd5dcfStanford University
0fe96806c009e8d095205e8f954d41b2b9fd5dcfStanford University
0fe96806c009e8d095205e8f954d41b2b9fd5dcfStanford University
0fe96806c009e8d095205e8f954d41b2b9fd5dcfStanford University
64cf86ba3b23d3074961b485c16ecb99584401deStanford University
bff567c58db554858c7f39870cff7c306523dfeeStanford UniversityComputer Science Department
d35534f3f59631951011539da2fe83f2844ca245Stanford University
baaaf73ec28226d60d923bc639f3c7d507345635Stanford University
dbd958ffedc3eae8032be67599ec281310c05630Stanford UniversityDepartment of Electrical Engineering1 and Department of Mechanical Engineering2
b03446a2de01126e6a06eb5d526df277fa36099fStanford University
ef2a5a26448636570986d5cda8376da83d96ef87Stanford University
ef2a5a26448636570986d5cda8376da83d96ef87Stanford University
cc2eaa182f33defbb33d69e9547630aab7ed9c9cStanford University
cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7aStanford University
cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7aStanford University
4641986af5fc8836b2c883ea1a65278d58fe4577Stanford UniversityDepartment of Computer Science
4641986af5fc8836b2c883ea1a65278d58fe4577Stanford UniversityDepartment of Electrical Engineering
2d83ba2d43306e3c0587ef16f327d59bf4888dc3Stanford UniversityComputer Science Department
776362314f1479f5319aaf989624ac604ba42c65Stanford University
1eba6fc35a027134aa8997413647b49685f6fbd1Stanford University
12692fbe915e6bb1c80733519371bbb90ae07539Stanford UniversityComputer Science Department
82eb267b8e86be0b444e841b4b4ed4814b6f1942Stanford University
2b7ef95822a4d577021df16607bf7b4a4514eb4bStanford University
78a4eb59ec98994bebcf3a5edf9e1d34970c45f6Stanford University
78a4eb59ec98994bebcf3a5edf9e1d34970c45f6Stanford University
78a4eb59ec98994bebcf3a5edf9e1d34970c45f6Stanford University
78a4eb59ec98994bebcf3a5edf9e1d34970c45f6Stanford University
78a4eb59ec98994bebcf3a5edf9e1d34970c45f6Stanford University
6cb7648465ba7757ecc9c222ac1ab6402933d983Stanford University National Tsing Hua University
30cbd41e997445745b6edd31f2ebcc7533453b61Stanford University, 2Facebook, 3Dartmouth College
cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66Stanford University, 2Facebook, 3Dartmouth College
16fdd6d842475e6fbe58fc809beabbed95f0642eStanford University, 2Simon Fraser University
aefc7c708269b874182a5c877fb6dae06da210d4Stanford University, CADepartment of Electrical Engineering
aefc7c708269b874182a5c877fb6dae06da210d4Stanford University, CADepartment of Computer Science
4307e8f33f9e6c07c8fc2aeafc30b22836649d8cStanford University, CA, United States
0faeec0d1c51623a511adb779dabb1e721a6309bStanford University, Stanford, CA, USA
b185f0a39384ceb3c4923196aeed6d68830a069fStanford University, Stanford, CaliforniaDepartment of Electrical Engineering
83fd2d2d5ad6e4e153672c9b6d1a3785f754b60eStanford University, Stanford, CaliforniaDepartment of Psychology
e3a6e9ddbbfc4c5160082338d46808cea839848aStanford University, USADepartment of Computer Science
e3a6e9ddbbfc4c5160082338d46808cea839848aStanford University, USADepartment of Electrical Engineering
e3a6e9ddbbfc4c5160082338d46808cea839848aStanford University, USADepartment of Psychiatry
e3a6e9ddbbfc4c5160082338d46808cea839848aStanford University, USADepartment of Psychology
e3a6e9ddbbfc4c5160082338d46808cea839848aStanford University, USADepartment of Medicine
5d479f77ecccfac9f47d91544fd67df642dfab3cStanford University, USADepartment of Electrical Engineering
5d479f77ecccfac9f47d91544fd67df642dfab3cStanford University, USAComputer Science Department
ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98Stanford University, USA
e8b3a257a0a44d2859862cdec91c8841dc69144dStanford University, USADepartment of Computer Science
7c36afc9828379de97f226e131390af719dbc18dState Key Lab of CADandCG, College of Computer Science, Zhejiang University, Hangzhou, China
2d3c17ced03e4b6c4b014490fe3d40c62d02e914State Key Lab of CADandCG, Zhejiang University, Hangzhou, Zhejiang, China
81da427270c100241c07143885ba3051ec4a2ecbState Key Lab. LIESMARS, Wuhan University, China
d5d7e89e6210fcbaa52dc277c1e307632cd91dabState Key Lab. LIESMARS, Wuhan University, China
ae5f32e489c4d52e7311b66060c7381d932f4193State Key Laboratory for Novel Software Technology, Nanjing University, China
2d4b9fe3854ccce24040074c461d0c516c46baf4State Key Laboratory for Novel Software Technology, Nanjing University, China
55eb7ec9b9740f6c69d6e62062a24bfa091bbb0cState Key Laboratory of Brain and Cognitive Science, Institute of Psychology
27883967d3dac734c207074eed966e83afccb8c3State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China
8fed5ea3b69ea441a8b02f61473eafee25fb2374State Key Laboratory of ISN, Xidian University
8fed5ea3b69ea441a8b02f61473eafee25fb2374State Key Laboratory of ISN, Xidian University
27883967d3dac734c207074eed966e83afccb8c3State Key Laboratory of Integrated Services Networks, Xidian University, Xi an 710071 China
f78fe101b21be36e98cd3da010051bb9b9829a1eState Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China
4e5dc3b397484326a4348ccceb88acf309960e86State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
741485741734a99e933dd0302f457158c6842adfState Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
78c1ad33772237bf138084220d1ffab800e1200dState Key Laboratory of Software Development Environment, Beihang University, P.R.China
72a55554b816b66a865a1ec1b4a5b17b5d3ba784State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia
21b16df93f0fab4864816f35ccb3207778a51952State University of Feira de Santana (UEFS
69b18d62330711bfd7f01a45f97aaec71e9ea6a5State University of New York Polytechnic Institute, Utica, New YorkDepartment of Computer Science
1ef1f33c48bc159881c5c8536cbbd533d31b0e9aState University of New York at
cc589c499dcf323fe4a143bbef0074c3e31f9b60State University of New York at BinghamtonDepartment of Computer Science
271e2856e332634eccc5e80ba6fa9bbccf61f1beState University of New York at Binghamton, Binghamton, NY
264f7ab36ff2e23a1514577a6404229d7fe1242bState University of New York at Binghamton, USA
6324fada2fb00bd55e7ff594cf1c41c918813030State University of New York at Buffalo
7a0fb972e524cb9115cae655e24f2ae0cfe448e0State University of Rio de Janeiro, Brazil
0e7f277538142fb50ce2dd9179cffdc36b794054Statistics, University of
0e7f277538142fb50ce2dd9179cffdc36b794054Statistics, University of
0e7f277538142fb50ce2dd9179cffdc36b794054Statistics, University of
861c650f403834163a2c27467a50713ceca37a3eStevens Institute of Technology
1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacfStevens Institute of Technology
120bcc9879d953de7b2ecfbcd301f72f3a96fb87Stevens Institute of Technology
8c66378df977606d332fc3b0047989e890a6ac76Stevens Institute of Technology
8b19efa16a9e73125ab973429eb769d0ad5a8208Stevens Institute of Technology
3393459600368be2c4c9878a3f65a57dcc0c2cfaStevens Institute of Technology Adobe Systems Inc
0ba402af3b8682e2aa89f76bd823ddffdf89fa0aStony Brook University
0ba402af3b8682e2aa89f76bd823ddffdf89fa0aStony Brook University
33030c23f6e25e30b140615bb190d5e1632c3d3bStony Brook University
33030c23f6e25e30b140615bb190d5e1632c3d3bStony Brook University
33030c23f6e25e30b140615bb190d5e1632c3d3bStony Brook University
33030c23f6e25e30b140615bb190d5e1632c3d3bStony Brook University
9d896605fbf93315b68d4ee03be0770077f84e40Stony Brook University
1190cba0cae3c8bb81bf80d6a0a83ae8c41240bcStony Brook University
19e0cc41b9f89492b6b8c2a8a58d01b8242ce00bStony Brook University
19d3b02185ad36fb0b792f2a15a027c58ac91e8eStony Brook University
37007af698b990a3ea8592b11d264b14d39c843fStony Brook University
14e9158daf17985ccbb15c9cd31cf457e5551990Stony Brook University
d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576Stony Brook University 2Adobe Research 3 CentraleSup elec, Universit e Paris-Saclay
14e9158daf17985ccbb15c9cd31cf457e5551990Stony Brook University Hospital
9d896605fbf93315b68d4ee03be0770077f84e40Stony Brook University, NY 11794, USA
25bf288b2d896f3c9dab7e7c3e9f9302e7d6806bStony Brook University, NY, USADepartment of Computer Science
25bf288b2d896f3c9dab7e7c3e9f9302e7d6806bStony Brook University, NY, USADepartment of Biomedical Informatics
be86d88ecb4192eaf512f29c461e684eb6c35257Stony Brook University, Stony Brook NY 11794, USA
5a07945293c6b032e465d64f2ec076b82e113fa6Stony Brook University, Stony Brook, NY 11794, USA
f257300b2b4141aab73f93c146bf94846aef5fa1Stony Brook University, Stony Brook, NY 11794, USA
faa29975169ba3bbb954e518bc9814a5819876f6Stony Brook University, Stony Brook, NY 11794, USA
6fbb179a4ad39790f4558dd32316b9f2818cd106Stony Brook University, Stony Brook, USADepartment of Applied Mathematics and Statistics
38f7f3c72e582e116f6f079ec9ae738894785b96Student, Amal Jyothi College of Engineering, Kanjirappally, IndiaDepartment of CSE
1b70bbf7cdfc692873ce98dd3c0e191580a1b041Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India
80135ed7e34ac1dcc7f858f880edc699a920bf53Submitted to the Institute for Graduate Studies in
763158cef9d1e4041f24fce4cf9d6a3b7a7f08ffSubmitted to the Senate of the Hebrew University
c317181fa1de2260e956f05cd655642607520a4fSudan University of Science and Technology
50eb2ee977f0f53ab4b39edc4be6b760a2b05f96Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, IraqComputer Science Department
fc20149dfdff5fdf020647b57e8a09c06e11434bSun Yat-Sen (Zhongshan) University
bd8f77b7d3b9d272f7a68defc1412f73e5ac3135Sun Yat-Sen University
4c078c2919c7bdc26ca2238fa1a79e0331898b56Sun Yat-Sen University
17579791ead67262fcfb62ed8765e115fb5eca6fSun Yat-Sen University, Guangzhou, P.R. China
44f48a4b1ef94a9104d063e53bf88a69ff0f55f3Sun Yat-sen University
39f525f3a0475e6bbfbe781ae3a74aca5b401125Sun Yat-sen University
39f525f3a0475e6bbfbe781ae3a74aca5b401125Sun Yat-sen University
39f525f3a0475e6bbfbe781ae3a74aca5b401125Sun Yat-sen University
39f525f3a0475e6bbfbe781ae3a74aca5b401125Sun Yat-sen University
73c5bab5c664afa96b1c147ff21439135c7d968bSungKyunKwan University
055530f7f771bb1d5f352e2758d1242408d34e4dSungkyunkwan University
d115c4a66d765fef596b0b171febca334cea15b5Swansea UniversityDepartment of Computer Science
9ed4ad41cbad645e7109e146ef6df73f774cd75dSwiss Federal Institute of Technology
07da958db2e561cc7c24e334b543d49084dd1809Swiss Federal Institute of Technology
cc7e66f2ba9ac0c639c80c65534ce6031997acd7Swiss Federal Institute of Technology, Lausanne (EPFL
2dfe0e7e81f65716b09c590652a4dd8452c10294Switzerland, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt4 Department of Psychiatry
16bce9f940bb01aa5ec961892cc021d4664eb9e4Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong
449808b7aa9ee6b13ad1a21d9f058efaa400639aSystem Research Center, NOKIA Research Center, Beijing, 100176, China
305346d01298edeb5c6dc8b55679e8f60ba97efbSystems and Communication, University of Milano-BicoccaDepartment of Informatics
6c27eccf8c4b22510395baf9f0d0acc3ee547862Systems and Telematics - NeurolabUniversity of Genoa - Department of Informatics
283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43THE UNIVERSITY OF ARIZONA
0b51197109813d921835cb9c4153b9d1e12a9b34THE UNIVERSITY OF CHICAGO
074af31bd9caa61fea3c4216731420bd7c08b96aTNLIST, Tsinghua University, Beijing, 100084, ChinaDepartment of Automation
82ccd62f70e669ec770daf11d9611cab0a13047eTafresh University
210b98394c3be96e7fd75d3eb11a391da1b3a6caTafresh University, Tafresh, IranElectrical Engineering Department
bff77a3b80f40cefe79550bf9e220fb82a74c084Taizhou University
bff77a3b80f40cefe79550bf9e220fb82a74c084Taizhou University
c5c379a807e02cab2e57de45699ababe8d13fb6dTaizhou University
c5c379a807e02cab2e57de45699ababe8d13fb6dTaizhou University
a285b6edd47f9b8966935878ad4539d270b406d1Taizhou University, Taizhou 317000, ChinaDepartment of Computer Science
2afdda6fb85732d830cea242c1ff84497cd5f3cbTamkang University, Taipei, TaiwanDepartment of Computer Science and Information Engineering
b20cfbb2348984b4e25b6b9174f3c7b65b6aed9eTampere University of Technology
9be653e1bc15ef487d7f93aad02f3c9552f3ee4aTampere University of Technology, Finland
27dafedccd7b049e87efed72cabaa32ec00fdd45Tampere University of Technology, FinlandDepartment of Signal Processing
7f21a7441c6ded38008c1fd0b91bdd54425d3f80Tampere University of Technology, Finland
1e9f1bbb751fe538dde9f612f60eb946747defaaTampere University of Technology, Tampere 33720, FinlandDepartment of Signal Processing
0708059e3bedbea1cbfae1c8cd6b7259d4b56b5bTampere University of Technology, Tampere, FinlandDepartment of Signal Processing
00b08d22abc85361e1c781d969a1b09b97bc7010Tampere University of Technology, Tampere, FinlandDepartment of Signal Processing
78d645d5b426247e9c8f359694080186681f57dbTampere University of Technology, Tampere, Finland
512b4c8f0f3fb23445c0c2dab768bcd848fa8392Tarbiat Modarres University, Tehran, Iran
0badf61e8d3b26a0d8b60fe94ba5c606718daf0bTeaching Affairs Office, Chongqing Normal University, Chongqing 401331, China
bc12715a1ddf1a540dab06bf3ac4f3a32a26b135Technical University Munich, Germany
4dd71a097e6b3cd379d8c802460667ee0cbc8463Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic
fa24bf887d3b3f6f58f8305dcd076f0ccc30272aTechnical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic
76e2d7621019bd45a5851740bd2742afdcf62837Technical University of Cluj Napoca, 28 Memorandumului StreetComputer Science Department
20a3ce81e7ddc1a121f4b13e439c4cbfb01adfbaTechnical University of Kaiserslautern
5da740682f080a70a30dc46b0fc66616884463ecTechnical University of Kaiserslautern
51d048b92f6680aca4a8adf07deb380c0916c808Technical University of Munich
4ac3cd8b6c50f7a26f27eefc64855134932b39beTechnical University of Munich
64153df77fe137b7c6f820a58f0bdb4b3b1a879bTechnical University of Munich, Germany
d448d67c6371f9abf533ea0f894ef2f022b12503Technical University of Munich, Germany
e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5Technical University of Munich, Germany
bd0e100a91ff179ee5c1d3383c75c85eddc81723Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm
047f6afa87f48de7e32e14229844d1587185ce45Technical University of Ostrava, FEECSDepartment of Computer Science
ec12f805a48004a90e0057c7b844d8119cb21b4aTechnical University of Ostrava, FEECSDepartment of Computer Science
1b90507f02967ff143fce993a5abbfba173b1ed0Technical University of Ostrava, FEECSDepartment of Computer Science
070ab604c3ced2c23cce2259043446c5ee342fd6TechnicalUniversityofDenmark
e78394213ae07b682ce40dc600352f674aa4cb05Technion Israel Institute of Technology
c83a05de1b4b20f7cd7cd872863ba2e66ada4d3fTechnion - Israel Institute of Technology
bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4Technological Educational Institute of Athens, 12210 Athens, GreeceDepartment of Informatics
fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5Technological University, Davanagere, Karnataka, India
c317181fa1de2260e956f05cd655642607520a4fTechnology, Manchester Metropolitan University
1630e839bc23811e340bdadad3c55b6723db361dTechnology, Nanjing University of Aero
3e04feb0b6392f94554f6d18e24fadba1a28b65fTechnology, University of Oradea 410087, Universitatii 1, Romania
584909d2220b52c0d037e8761d80cb22f516773fTel Aviv University
584909d2220b52c0d037e8761d80cb22f516773fTel Aviv University
2f16baddac6af536451b3216b02d3480fc361ef4Tel Aviv University
63a6c256ec2cf2e0e0c9a43a085f5bc94af84265Tel Aviv University
a14db48785d41cd57d4eac75949a6b79fc684e70Tel Aviv University
a14db48785d41cd57d4eac75949a6b79fc684e70Tel Aviv University
a14db48785d41cd57d4eac75949a6b79fc684e70Tel Aviv University
c4934d9f9c41dbc46f4173aad2775432fe02e0e6Tel Aviv University
7859667ed6c05a467dfc8a322ecd0f5e2337db56Tel Aviv University
14ce7635ff18318e7094417d0f92acbec6669f1cTel Aviv University
fb54d3c37dc82891ff9dc7dd8caf31de00c40d6aTel Aviv University, Columbia University
fb54d3c37dc82891ff9dc7dd8caf31de00c40d6aTel Aviv University, Cornell Tech
936227f7483938097cc1cdd3032016df54dbd5b6Tel Aviv University, Israel
0faee699eccb2da6cf4307ded67ba8434368257bTel-Aviv University, Israel
ce032dae834f383125cdd852e7c1bc793d4c3ba3Tel-Aviv University, Israel
0cf2eecf20cfbcb7f153713479e3206670ea0e9cTemple University
794ddb1f3b7598985d4d289b5b0664be736a50c4Temple University
f24e379e942e134d41c4acec444ecf02b9d0d3a9Temple University, Philadelphia, PA 19122, USADepartment of Computer and Information Sciences
f24e379e942e134d41c4acec444ecf02b9d0d3a9Temple University, Philadelphia, PA 19122, USADepartment of Psychology
1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1dTemple University, Philadelphia, PA 19122, USA
019e471667c72b5b3728b4a9ba9fe301a7426fb2Temple University, Philadelphia, USADepartment of Computer and Information Sciences
f87b22e7f0c66225824a99cada71f9b3e66b5742Texas AandM UniversityDepartment of Computer Science and Engineering
2d4a3e9361505616fa4851674eb5c8dd18e0c3cfTexas AandM University, College Station TX 77843, USA
6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9Texas AandM University, College Station, TX, USA
7ac9aaafe4d74542832c273acf9d631cb8ea6193Texas State University, San Marcos, USADepartment of Computer Science
1ef5ce743a44d8a454dbfc2657e1e2e2d025e366Thapar University
107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53The Allen Institute for AI
86ed5b9121c02bcf26900913f2b5ea58ba23508fThe Allen Institute for AI
b7c5f885114186284c51e863b58292583047a8b4The American University In Cairo, Road 90, New Cairo, Cairo, EgyptComputer Science and Engineering Department
d0e895a272d684a91c1b1b1af29747f92919d823The American University in Cairo
d0e895a272d684a91c1b1b1af29747f92919d823The American University in Cairo
4b3dd18882ff2738aa867b60febd2b35ab34dffcThe American University in Cairo
3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2The American University in Cairo, EgyptDepartment of Computer Science and Engineering
a70e36daf934092f40a338d61e0fe27be633f577The American University in Cairo, EgyptDepartment of Computer Science
759cf57215fcfdd8f59c97d14e7f3f62fafa2b30The American University in Cairo, New Cairo 11835, Egypt
9820920d4544173e97228cb4ab8b71ecf4548475The Amsterdam School of Communication Research, University of AmsterdamDepartment of Communication Science
05891725f5b27332836cf058f04f18d74053803fThe Australian National University
05891725f5b27332836cf058f04f18d74053803fThe Australian National University
a7191958e806fce2505a057196ccb01ea763b6eaThe Australian National University
69063f7e0a60ad6ce16a877bc8f11b59e5f7348eThe Australian National University Canberra ACT 2601, Australia
57c59011614c43f51a509e10717e47505c776389The Australian National University Queensland University of Technology
b3200539538eca54a85223bf0ec4f3ed132d0493The Australian National University, Australia
eee2d2ac461f46734c8e674ae14ed87bbc8d45c6The Australian National University, Canberra, Australia
2f7fc778e3dec2300b4081ba2a1e52f669094fcdThe Australian National University, Canberra, Australia
1afd481036d57320bf52d784a22dcb07b1ca95e2The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved
f93606d362fcbe62550d0bf1b3edeb7be684b000The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved
28b26597a7237f9ea6a9255cde4e17ee18122904The Author 2014. Published by Oxford University Press
1e9f1bbb751fe538dde9f612f60eb946747defaaThe Big Data Research Center, Henan University, Kaifeng 475001, China
84c0f814951b80c3b2e39caf3925b56a9b2e1733The Blavatnik School of Computer Science, Tel Aviv University, IL
9821669a989a3df9d598c1b4332d17ae8e35e294The Blavatnik School of Computer Science, Tel Aviv University, Israel
089513ca240c6d672c79a46fa94a92cde28bd567The Blavatnik School of Computer Science, Tel Aviv University, Israel
12408baf69419409d228d96c6f88b6bcde303505The Blavatnik School of Computer Science, Tel Aviv University, Israel
560e0e58d0059259ddf86fcec1fa7975dee6a868The Blavatnik School of Computer Science, Tel-Aviv University, Israel
a6b5ffb5b406abfda2509cae66cdcf56b4bb3837The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
5bde1718253ec28a753a892b0ba82d8e553b6bf3The Blavatnik School of Computer Science, The Tel-Aviv University
def569db592ed1715ae509644444c3feda06a536The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA USA
57ebeff9273dea933e2a75c306849baf43081a8cThe Chinese University of Hong KongDepartment of Information Engineering
57ebeff9273dea933e2a75c306849baf43081a8cThe Chinese University of Hong KongDepartment of Electronic Engineering
9e182e0cd9d70f876f1be7652c69373bcdf37fb4The Chinese University of Hong Kong
04661729f0ff6afe4b4d6223f18d0da1d479accfThe Chinese University of Hong KongDepartment of Information Engineering
329d58e8fb30f1bf09acb2f556c9c2f3e768b15cThe Chinese University of Hong Kong
356b431d4f7a2a0a38cf971c84568207dcdbf189The Chinese University of Hong KongDepartment of Information Engineering
69a68f9cf874c69e2232f47808016c2736b90c35The Chinese University of Hong KongDepartment of Information Engineering
6043006467fb3fd1e9783928d8040ee1f1db1f3aThe Chinese University of Hong Kong
9d941a99e6578b41e4e32d57ece580c10d578b22The Chinese University of Hong KongDepartment of Computer Science and Engineering
d949fadc9b6c5c8b067fa42265ad30945f9caa99The Chinese University of Hong Kong
ac6c3b3e92ff5fbcd8f7967696c7aae134bea209The Chinese University of Hong KongDepartment of Information Engineering
d80a3d1f3a438e02a6685e66ee908446766fefa9The Chinese University of Hong Kong
abdd17e411a7bfe043f280abd4e560a04ab6e992The Chinese University of Hong KongDepartment of Information Engineering
eb100638ed73b82e1cce8475bb8e180cb22a09a2The Chinese University of Hong KongDepartment of Information Engineering
c9bbd7828437e70cc3e6863b278aa56a7d545150The Chinese University of Hong Kong
cf5c9b521c958b84bb63bea9d5cbb522845e4ba7The Chinese University of Hong KongDepartment of Information Engineering
c822bd0a005efe4ec1fea74de534900a9aa6fb93The Chinese University of Hong Kong
c6241e6fc94192df2380d178c4c96cf071e7a3acThe Chinese University of Hong KongDepartment of Information Engineering
7d8c2d29deb80ceed3c8568100376195ce0914cbThe Chinese University of Hong KongDepartment of Electronic Engineering
896f4d87257abd0f628c1ffbbfdac38c86a56f50The Chinese University of Hong KongDepartment of Information Engineering
1768909f779869c0e83d53f6c91764f41c338ab5The Chinese University of Hong KongDepartment of Information Engineering
17045163860fc7c38a0f7d575f3e44aaa5fa40d7The Chinese University of Hong KongDepartment of Information Engineering
177bc509dd0c7b8d388bb47403f28d6228c14b5cThe Chinese University of Hong KongDepartment of Information Engineering
177bc509dd0c7b8d388bb47403f28d6228c14b5cThe Chinese University of Hong KongDepartment of Electronic Engineering
8a3c5507237957d013a0fe0f082cab7f757af6eeThe Chinese University of Hong KongDepartment of Information Engineering
1922ad4978ab92ce0d23acc4c7441a8812f157e5The Chinese University of Hong KongDepartment of Information Engineering
217a21d60bb777d15cd9328970cab563d70b5d23The Chinese University of Hong KongDepartment of Information Engineering
4d3c4c3fe8742821242368e87cd72da0bd7d3783The Chinese University of Hong KongDepartment of Information Engineering
4d3c4c3fe8742821242368e87cd72da0bd7d3783The Chinese University of Hong KongDepartment of Electronic Engineering
44d23df380af207f5ac5b41459c722c87283e1ebThe Chinese University of Hong KongDepartment of Information Engineering
2a171f8d14b6b8735001a11c217af9587d095848The Chinese University of Hong KongDepartment of Information Engineering
435642641312364e45f4989fac0901b205c49d53The Chinese University of Hong KongDepartment of Information Engineering
435642641312364e45f4989fac0901b205c49d53The Chinese University of Hong KongDepartment of Electronic Engineering
434d6726229c0f556841fad20391c18316806f73The Chinese University of Hong KongDepartment of Information Engineering
433a6d6d2a3ed8a6502982dccc992f91d665b9b3The Chinese University of Hong KongDepartment of Information Engineering
36c473fc0bf3cee5fdd49a13cf122de8be736977The Chinese University of Hong KongDepartment of Information Engineering
624e9d9d3d941bab6aaccdd93432fc45cac28d4bThe Chinese University of Hong KongDepartment of Information Engineering
54bae57ed37ce50e859cbc4d94d70cc3a84189d5The Chinese University of Hong Kong
52d7eb0fbc3522434c13cc247549f74bb9609c5dThe Chinese University of Hong KongDepartment of Information Engineering
55966926e7c28b1eee1c7eb7a0b11b10605a1af0The Chinese University of Hong KongDepartment of Information Engineering
0aeb5020003e0c89219031b51bd30ff1bceea363The Chinese University of Hong KongDepartment of Electronic Engineering
0aeb5020003e0c89219031b51bd30ff1bceea363The Chinese University of Hong KongDepartment of Information Engineering
6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4The Chinese University of Hong KongDepartment of Information Engineering
6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4The Chinese University of Hong KongDepartment of Electronic Engineering
90298f9f80ebe03cb8b158fd724551ad711d4e71The Chinese University of Hong KongDepartment of Information Engineering
90d9209d5dd679b159051a8315423a7f796d704dThe Chinese University of Hong Kong
bf8a520533f401347e2f55da17383a3e567ef6d8The Chinese University of Hong Kong
bf8a520533f401347e2f55da17383a3e567ef6d8The Chinese University of Hong Kong
a0d6390dd28d802152f207940c7716fe5fae8760The Chinese University of Hong Kong
b8084d5e193633462e56f897f3d81b2832b72dffThe Chinese University of Hong KongDepartment of Information Engineering
b8084d5e193633462e56f897f3d81b2832b72dffThe Chinese University of Hong KongDepartment of Electronic Engineering
dce5e0a1f2cdc3d4e0e7ca0507592860599b0454The Chinese University of Hong Kong
af654a7ec15168b16382bd604889ea07a967dac6The Chinese University of Hong Kong
de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0The Chinese University of Hong Kong
f05ad40246656a977cf321c8299158435e3f3b61The Chinese University of Hong KongDepartment of Information Engineering
2c17d36bab56083293456fe14ceff5497cc97d75The Chinese University of Hong KongDepartment of Information Engineering
7071cd1ee46db4bc1824c4fd62d36f6d13cad08aThe Chinese University of Hong KongDepartment of Information Engineering
70c9d11cad12dc1692a4507a97f50311f1689dbfThe Chinese University of Hong Kong
4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7The Chinese University of Hong KongDepartment of Information Engineering
125d82fee1b9fbcc616622b0977f3d06771fc152The Chinese University of Hong KongDepartment of Information Engineering
125d82fee1b9fbcc616622b0977f3d06771fc152The Chinese University of Hong KongDepartment of Electronic Engineering
85674b1b6007634f362cbe9b921912b697c0a32cThe Chinese University of Hong KongDepartment of Information Engineering
1d696a1beb42515ab16f3a9f6f72584a41492a03The Chinese University of Hong KongDepartment of Information Engineering
1d696a1beb42515ab16f3a9f6f72584a41492a03The Chinese University of Hong KongDepartment of Electronic Engineering
768c332650a44dee02f3d1d2be1debfa90a3946cThe Chinese University of Hong Kong
4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1The Chinese University of Hong KongDepartment of Information Engineering
4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1The Chinese University of Hong KongDepartment of Electronic Engineering
2b0102d77d3d3f9bc55420d862075934f5c85becThe Chinese University of Hong KongDepartment of Electronic Engineering
2b0102d77d3d3f9bc55420d862075934f5c85becThe Chinese University of Hong KongDepartment of Information Engineering
2b42f83a720bd4156113ba5350add2df2673daf0The Chinese University of Hong KongDepartment of Information Engineering
473031328c58b7461753e81251379331467f7a69The Chinese University of Hong KongDepartment of Information Engineering
691964c43bfd282f6f4d00b8b0310c554b613e3bThe Chinese University of Hong Kong 3 SenseTime Group Limited
fec6648b4154fc7e0892c74f98898f0b51036dfeThe Chinese University of Hong Kong holds the copyright of this thesis. Any
8f3da45ff0c3e1777c3a7830f79c10f5896bcc21The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent
a8d52265649c16f95af71d6f548c15afc85ac905The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent
c39ffc56a41d436748b9b57bdabd8248b2d28a32The Chinese University of Hong Kong, 4Beijing University of Posts and Telecommunications
0ce3a786aed896d128f5efdf78733cc675970854The Chinese University of Hong Kong, China
9110c589c6e78daf4affd8e318d843dc750fb71aThe Chinese University of Hong Kong, HKSAR, China
237eba4822744a9eabb121fe7b50fd2057bf744cThe Chinese University of Hong Kong, HKSAR, China
b2e5df82c55295912194ec73f0dca346f7c113f6The Chinese University of Hong Kong, Hong KongDepartment of Information Engineering
27883967d3dac734c207074eed966e83afccb8c3The Chinese University of Hong Kong, Hong KongDepartment of Electrical Engineering
164b0e2a03a5a402f66c497e6c327edf20f8827bThe Chinese University of Hong Kong, Hong Kong
1f05473c587e2a3b587f51eb808695a1c10bc153The Chinese University of Hong Kong, Hong KongDepartment of Information Engineering
01dc1e03f39901e212bdf291209b7686266aeb13The Chinese University of Hong Kong, Hong KongDepartment of Information Engineering
b9081856963ceb78dcb44ac410c6fca0533676a3The Chinese University of Hong Kong, Hong KongDepartment of Information Engineering
46072f872eee3413f9d05482be6446f6b96b6c09The Chinese University of Hong Kong, Hong Kong
416b559402d0f3e2b785074fcee989d44d82b8e5The Chinese University of Hong Kong, Hong Kong
499f1d647d938235e9186d968b7bb2ab20f2726dThe Chinese University of Hong Kong, Hong KongInformation Engineering Department
14b69626b64106bff20e17cf8681790254d1e81cThe Chinese University of Hong Kong, Hong KongDepartment of Information Engineering
58d47c187b38b8a2bad319c789a09781073d052dThe Chinese University of Hong Kong, Hong Kong SAR, China
207798603e3089a1c807c93e5f36f7767055ec06The Chinese University of Hong Kong, Hong Kong SAR, China
aab3561acbd19f7397cbae39dd34b3be33220309The Chinese University of Hong Kong, Hong Kong, China
6fed504da4e192fe4c2d452754d23d3db4a4e5e3The Chinese University of Hong Kong, New Territories, Hong Kong
084bebc5c98872e9307cd8e7f571d39ef9c1b81eThe Chinese University of Hong Kong, Sha Tin, Hong Kong
ea218cebea2228b360680cb85ca133e8c2972e56The Chinese University ofHong KongDepartment ofElectronic Engineering
f74917fc0e55f4f5682909dcf6929abd19d33e2eThe City College and the Graduate Center
5b6593a6497868a0d19312952d2b753232414c23The City College of New York, New York, NY 10031, USA
f74917fc0e55f4f5682909dcf6929abd19d33e2eThe City University of New York
7d7be6172fc2884e1da22d1e96d5899a29831ad2The Education University of Hong Kong
1de690714f143a8eb0d6be35d98390257a3f4a47The Florida State UniversityDepartment of Computer Science
7ae0212d6bf8a067b468f2a78054c64ea6a577ceThe Graduate University for Advanced Studies (SOKENDAI
ea80a050d20c0e24e0625a92e5c03e5c8db3e786The Hebrew University of Jerusalem
a60907b7ee346b567972074e3e03c82f64d7ea30The Hebrew University of Jerusalem, Israel
7f8d44e7fd2605d580683e47bb185de7f9ea9e28The Hebrew University of Jerusalem, Israel
353b6c1f431feac6edde12b2dde7e6e702455abdThe Hong Kong Polytechnic University
4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7The Hong Kong Polytechnic UniversityDepartment of Electronic and Information Engineering
965f8bb9a467ce9538dec6bef57438964976d6d9The Hong Kong Polytechnic UniversityDepartment of Computing
4836b084a583d2e794eb6a94982ea30d7990f663The Hong Kong Polytechnic UniversityDepartment of Electronic and Information Engineering
2b507f659b341ed0f23106446de8e4322f4a3f7eThe Hong Kong Polytechnic University 2Harbin Institute of Technology
677ebde61ba3936b805357e27fce06c44513a455The Hong Kong Polytechnic University, Hong KongDepartment of Electronic and Information Engineering
d61e794ec22a4d4882181da17316438b5b24890fThe Hong Kong Polytechnic University, Hong KongDepartment of Computing
7d94fd5b0ca25dd23b2e36a2efee93244648a27bThe Hong Kong Polytechnic University, Hong KongaDepartment of Computing
1677d29a108a1c0f27a6a630e74856e7bddcb70dThe Hong Kong Polytechnic University, Hong KongDepartment of Computing
edf98a925bb24e39a6e6094b0db839e780a77b08The Hong Kong Polytechnic University, Hong Kong SAR, ChinaDepartment of Computing
6afeb764ee97fbdedfa8f66810dfc22feae3fa1fThe Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Computing
1938d85feafdaa8a65cb9c379c9a81a0b0dcd3c4The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Computing
2679e4f84c5e773cae31cef158eb358af475e22fThe Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Computing
00ebc3fa871933265711558fa9486057937c416eThe Hong Kong Polytechnic University, Hong Kong, Chinaa Department of Computing
0fabb4a40f2e3a2502cd935e54e090a304006c1cThe Hong Kong Polytechnic University, Hong Kong, ChinaaDepartment of Computing
4c5b38ac5d60ab0272145a5a4d50872c7b89fe1bThe Hong Kong Polytechnic University, Hong Kong, SAR, 2University of Technology Sydney, Australia
f22d6d59e413ee255e5e0f2104f1e03be1a6722eThe Hong Kong University of Science and Technology
523b2cbc48decfabffb66ecaeced4fe6a6f2ac78The Hong Kong University of Science and Technology
52bf00df3b970e017e4e2f8079202460f1c0e1bdThe Hong Kong University of Science and Technology
4ae59d2a28abd76e6d9fb53c9e7ece833dce7733The Hong Kong University of Science and Technology
8d384e8c45a429f5c5f6628e8ba0d73c60a51a89The Hong Kong University of Science and Technology 2 Carneige Mellon University
15affdcef4bb9d78b2d3de23c9459ee5b7a43fcbThe Hong Kong University of Science and Technology, Clear Water Bay, Hong KongDepartment of Computer Science
0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania
8b10383ef569ea0029a2c4a60cc2d8c87391b4dbThe Institute of Electronics
94e259345e82fa3015a381d6e91ec6cded3971b4The Institute of Scienti c and Industrial Research, Osaka University
d69719b42ee53b666e56ed476629a883c59ddf66The Ohio State UniversityDepartment of Electrical and Computer Engineering
270e5266a1f6e76954dedbc2caf6ff61a5fbf8d0The Ohio State University
cc2eaa182f33defbb33d69e9547630aab7ed9c9cThe Ohio State University
24f1e2b7a48c2c88c9e44de27dc3eefd563f6d39The Ohio State University
208a2c50edb5271a050fa9f29d3870f891daa4dcThe Ohio State University, Columbus, OH, USA
208a2c50edb5271a050fa9f29d3870f891daa4dcThe Ohio State University, Columbus, OH, USA
46f32991ebb6235509a6d297928947a8c483f29eThe Ohio State University, OH
584909d2220b52c0d037e8761d80cb22f516773fThe Open University
a6b5ffb5b406abfda2509cae66cdcf56b4bb3837The Open UniversityThe Department of Mathematics and Computer Science
84c0f814951b80c3b2e39caf3925b56a9b2e1733The Open University ofDepartment of Mathematics and Computer Science
566a39d753c494f57b4464d6bde61bf3593f7cebThe Open University of Israel
62e913431bcef5983955e9ca160b91bb19d9de42The Open University of Israel
0faee699eccb2da6cf4307ded67ba8434368257bThe Open University of Israel
32c20afb5c91ed7cdbafb76408c3a62b38dd9160The Open University of Israel, Israel
582edc19f2b1ab2ac6883426f147196c8306685aThe Open University of Israel, Israel
c75e6ce54caf17b2780b4b53f8d29086b391e839The Open University of Israel, Israel
870433ba89d8cab1656e57ac78f1c26f4998edfbThe Open University of Israel, Israel
0a34fe39e9938ae8c813a81ae6d2d3a325600e5cThe Open University of Israel, Israel
1e6ed6ca8209340573a5e907a6e2e546a3bf2d28The Open University of Israel, Israel
12408baf69419409d228d96c6f88b6bcde303505The Open University of Israel, Israel
ce032dae834f383125cdd852e7c1bc793d4c3ba3The Open University, Israel
966e36f15b05ef8436afecf57a97b73d6dcada94The Remote Sensing Technology Institute (IMF), German Aerospace Center
e379e73e11868abb1728c3acdc77e2c51673eb0dThe Robotics Inistitute, Carnegie Mellon University
0c30f6303dc1ff6d05c7cee4f8952b74b9533928The Robotics Institute
51683eac8bbcd2944f811d9074a74d09d395c7f3The Robotics Institute
d9c4586269a142faee309973e2ce8cde27bda718The Robotics Institute
74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8The Robotics Institute
9f4078773c8ea3f37951bf617dbce1d4b3795839The Robotics Institute
b1fdd4ae17d82612cefd4e78b690847b071379d3The Robotics Institute
23fc83c8cfff14a16df7ca497661264fc54ed746The Robotics Institute
23fc83c8cfff14a16df7ca497661264fc54ed746The Robotics Institute
23fc83c8cfff14a16df7ca497661264fc54ed746The Robotics Institute
8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958The Robotics Institute
7966146d72f9953330556baa04be746d18702047The Robotics Institute Carnegie Mellon University
3d0f9a3031bee4b89fab703ff1f1d6170493dc01The Robotics Institute, Carnegie Mellon University
297d3df0cf84d24f7efea44f87c090c7d9be4bedThe Robotics Institute, Carnegie Mellon University
86374bb8d309ad4dbde65c21c6fda6586ae4147aThe Robotics Institute, Carnegie Mellon University
07c90e85ac0f74b977babe245dea0f0abcf177e3The Robotics Institute, Carnegie Mellon University
6d4e3616d0b27957c4107ae877dc0dd4504b69abThe Robotics Institute, Carnegie Mellon University
a14ed872503a2f03d2b59e049fd6b4d61ab4d6caThe Robotics Institute, Carnegie Mellon University
2bcec23ac1486f4106a3aa588b6589e9299aba70The Robotics Institute, Carnegie Mellon University
64f9519f20acdf703984f02e05fd23f5e2451977The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA
03f98c175b4230960ac347b1100fbfc10c100d0cThe Robotics Institute, Carnegie Mellon University, Pittsburgh PA
3d42e17266475e5d34a32103d879b13de2366561The Rockefeller University
7fc3442c8b4c96300ad3e860ee0310edb086de94The School of Computer Science, Tel-Aviv University, Israel
5173a20304ea7baa6bfe97944a5c7a69ea72530fThe School of Electrical Electronic and Control Engineering, Kongju National University
5173a20304ea7baa6bfe97944a5c7a69ea72530fThe School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong
100105d6c97b23059f7aa70589ead2f61969fbc3The State University of New JerseyDepartment of Electrical and Computer Engineering Rutgers
3d24b386d003bee176a942c26336dbe8f427aaddThe University of Adelaide, Australia
9887ab220254859ffc7354d5189083a87c9bca6eThe University of Adelaide, Australia
011e6146995d5d63c852bd776f782cc6f6e11b7bThe University of Adelaide; and Australian Centre for Robotic Vision
632441c9324cd29489cee3da773a9064a46ae26bThe University of British Columbia
54f442c7fa4603f1814ebd8eba912a00dceb5cb2The University of Cambridge
1bbec7190ac3ba34ca91d28f145e356a11418b67The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ffea8775fc9c32f573d1251e177cd283b4fe09c9The University of Edinburgh, Edinburgh, UK
63a2e2155193dc2da9764ae7380cdbd044ff2b94The University of Electro-CommunicationsDepartment of Informatics
b017963d83b3edf71e1673d7ffdec13a6d350a87The University of Electro-Communications
2d84e30c61281d3d7cdd11676683d6e66a68aea6The University of Electro-Communications
0f0241124d6092a0bb56259ac091467c2c6938caThe University of Electro-Communications, JAPANDepartment of Computer Science
d794ffece3533567d838f1bd7f442afee13148fdThe University of Electro-Communications, TokyoDepartment of Informatics
541f1436c8ffef1118a0121088584ddbfd3a0a8aThe University of Electro-Communications, TokyoDepartment of Informatics
bf54b5586cdb0b32f6eed35798ff91592b03fbc4The University of Electro-Communications, Tokyo, JapanDepartment of Mechanical Engineering and Intelligent Systems
fb87045600da73b07f0757f345a937b1c8097463The University of Hong Kong
985cd420c00d2f53965faf63358e8c13d1951fa8The University of Hong Kong
e1630014a5ae3d2fb7ff6618f1470a567f4d90f5The University of Hong Kong
c5ea084531212284ce3f1ca86a6209f0001de9d1The University of Leeds
dff838ba0567ef0a6c8fbfff9837ea484314efc6The University of Manchester
5e7cb894307f36651bdd055a85fdf1e182b7db30The University of Maryland
3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bdThe University of Newcastle
3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bdThe University of Newcastle, Callaghan 2308, Australia
45e459462a80af03e1bb51a178648c10c4250925The University of North Carolina at Chapel Hill
89002a64e96a82486220b1d5c3f060654b24ef2aThe University of North Carolina at Charlotte
ee6b503ab512a293e3088fdd7a1c893a77902acbThe University of North Carolina at Charlotte, USADepartment of Computer Science
3f12701449a82a5e01845001afab3580b92da858The University of North Carolina, Chapel Hill
04f0292d9a062634623516edd01d92595f03bd3fThe University of Nottingham
04f0292d9a062634623516edd01d92595f03bd3fThe University of Nottingham
04f0292d9a062634623516edd01d92595f03bd3fThe University of Nottingham
01125e3c68edb420b8d884ff53fb38d9fbe4f2b8The University of Nottingham, UK
2965d092ed72822432c547830fa557794ae7e27bThe University of Queensland in
993d189548e8702b1cb0b02603ef02656802c92bThe University of Queensland, Australia
9a0c7a4652c49a177460b5d2fbbe1b2e6535e50aThe University of Queensland, School of ITEE
0486214fb58ee9a04edfe7d6a74c6d0f661a7668The University of Queensland, School of ITEE, QLD 4072, Australia
3c563542db664321aa77a9567c1601f425500f94The University of Queensland, School of ITEE, QLD 4072, Australia
621e8882c41cdaf03a2c4a986a6404f0272ba511The University of Queensland, School of ITEE, QLD 4072, Australia
b084683e5bab9b2bc327788e7b9a8e049d5fff8fThe University of Queensland, School of ITEE, QLD 4072, Australia
0f4eb63402a4f3bae8f396e12133684fb760def1The University of Shef eld
f5149fb6b455a73734f1252a96a9ce5caa95ae02The University of Sydney
04b851f25d6d49e61a528606953e11cfac7df2b2The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong
304b1f14ca6a37552dbfac443f3d5b36dbe1a451The University of Sydney, NSW 2006, Australia
58d47c187b38b8a2bad319c789a09781073d052dThe University of Sydney, SenseTime Computer Vision Research Group
aab3561acbd19f7397cbae39dd34b3be33220309The University of Sydney, SenseTime Computer Vision Research Group, Sydney
29631ca6cff21c9199c70bcdbbcd5f812d331a96The University of Sydney, Sydney, Australia
17cf6195fd2dfa42670dc7ada476e67b381b8f69The University of Tennessee, Knoxville
7735f63e5790006cb3d989c8c19910e40200abfcThe University of Tennessee, Knoxville
7fab17ef7e25626643f1d55257a3e13348e435bdThe University of Tennessee, Knoxville, TN, USA
66029f1be1a5cee9a4e3e24ed8fcb65d5d293720The University of Texas
3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0The University of Texas at
c8ca6a2dc41516c16ea0747e9b3b7b1db788dbddThe University of Texas at Arlington
a255a54b8758050ea1632bf5a88a201cd72656e1The University of Texas at Austin
e3a6e5a573619a97bd6662b652ea7d088ec0b352The University of Texas at Austin
7be60f8c34a16f30735518d240a01972f3530e00The University of Texas at Austin
103c8eaca2a2176babab2cc6e9b25d48870d6928The University of Texas at Austin
098a1ccc13b8d6409aa333c8a1079b2c9824705bThe University of Texas at Austin
3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4The University of Texas at Austin
3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4The University of Texas at Austin
06f8aa1f436a33014e9883153b93581eea8c5c70The University of Texas at AustinDepartment of Computer Science
52c91fcf996af72d191520d659af44e310f86ef9The University of Texas at Austin
55e18e0dde592258882134d2dceeb86122b366abThe University of Texas at Austin
a1dd9038b1e1e59c9d564e252d3e14705872fdecThe University of Texas at Austin
24f9248f01df3020351347c2a3f632e01de72090The University of Texas at AustinDepartment of Computer Science
93f37c69dd92c4e038710cdeef302c261d3a4f92The University of Texas at Austin, 2Carnegie Mellon University
4db0968270f4e7b3fa73e41c50d13d48e20687beThe University of Texas at Austin, 78701 Austin, USA
48e6c6d981efe2c2fb0ae9287376fcae59da9878The University of Texas at Austin, Austin, TX
6fa0c206873dcc5812f7ea74a48bb4bf4b273494The University of Texas at Dallas, Richardson, TX
9b684e2e2bb43862f69b12c6be94db0e7a756187The University of Tokyo
9b684e2e2bb43862f69b12c6be94db0e7a756187The University of Tokyo
b3154d981eca98416074538e091778cbc031ca29The University of TokyoDepartment of Information and Communication Engineering
daa52dd09b61ee94945655f0dde216cce0ebd505The University of Tokyo
daa52dd09b61ee94945655f0dde216cce0ebd505The University of Tokyo
edff76149ec44f6849d73f019ef9bded534a38c2The University of Tokyo
edff76149ec44f6849d73f019ef9bded534a38c2The University of Tokyo
2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9aThe University of Tokyo
2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9aThe University of Tokyo
2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9aThe University of Tokyo
31d60b2af2c0e172c1a6a124718e99075818c408The University of TokyoDepartment of Electrical Engineering
55b9b1c1c5487f5f62b44340104a9c4cc2ed7c96The University of Tokyo
2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9aThe University of Tokyo / RIKEN
0a9d204db13d395f024067cf70ac19c2eeb5f942The University of Tokyo, 2RIKEN, 3ETH Z urich, 4KU Leuven
02f4b900deabbe7efa474f2815dc122a4ddb5b76The University of Tokyo, Japan
4d625677469be99e0a765a750f88cfb85c522cceThe University of Tokyo, Japan
4d625677469be99e0a765a750f88cfb85c522cceThe University of Tokyo, Japan
d448d67c6371f9abf533ea0f894ef2f022b12503The University of Tokyo, Japan
2e231f1e7e641dd3619bec59e14d02e91360ac01The University of Warwick, Coventry, UKDepartment of Computer Science
e43045a061421bd79713020bc36d2cf4653c044dThe University of Western Australia
626913b8fcbbaee8932997d6c4a78fe1ce646127The University of Western Australia
82ccd62f70e669ec770daf11d9611cab0a13047eThe University of Western Australia
c71f36c9376d444075de15b1102b4974481be84dThe University of York
261c3e30bae8b8bdc83541ffa9331b52fcf015e6The University of York
20be15dac7d8a5ba4688bf206ad24cab57d532d6The University of York, Heslington, York YO10 5DD, United Kingdom
cdb1d32bc5c1a9bb0d9a5b9c9222401eab3e9ca0The University of York, UKDepartment of Computer Science
40ee38d7ff2871761663d8634c3a4970ed1dc058The University of York, United KingdomDepartment of Computer Science
59319c128c8ac3c88b4ab81088efe8ae9c458e07The University of the Humanities
a6b5ffb5b406abfda2509cae66cdcf56b4bb3837The Weizmann Institute ofThe Department of Mathematic and Computer Science
dc5cde7e4554db012d39fc41ac8580f4f6774045The Weizmann Institute of Science
ce032dae834f383125cdd852e7c1bc793d4c3ba3The Weizmann Institute of Science, Israel
bcf19b964e7d1134d00332cf1acf1ee6184aff00The authors are with Hiroshima University, Higashihiroshima
1dff919e51c262c22630955972968f38ba385d8aThe authors are with the Delft University of Technology, Data and Knowl
0dccc881cb9b474186a01fd60eb3a3e061fa6546The open University of Israel. 2Adience
862d17895fe822f7111e737cbcdd042ba04377e8The school of Data Science, Fudan University
38cc2f1c13420170c7adac30f9dfac69b297fb76Thesis. Rochester Institute of Technology. Accessed from
8b2c090d9007e147b8c660f9282f357336358061This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for
5da2ae30e5ee22d00f87ebba8cd44a6d55c6855eThis is an Open Access document downloaded from ORCA, Cardiff University's institutional
361d6345919c2edc5c3ce49bb4915ed2b4ee49beThis work is downloaded from Delft University of Technology
01cc8a712e67384f9ef9f30580b7415bfd71e980This work was supported by Grant MOP102637 from the Canadian Institutes of Health Research to E.D.R. and the
030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3fThis work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E
ea890846912f16a0f3a860fce289596a7dac575fTilburg Center for Logic, General Ethics, and Philosophy of Science, Tilburg University, Tilburg, Netherlands
64d7e62f46813b5ad08289aed5dc4825d7ec5cffTohoku University
04c2cda00e5536f4b1508cbd80041e9552880e67Tohoku University, Japan
f35a493afa78a671b9d2392c69642dcc3dd2cdc2Tohoku University, Japan
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfTohoku University, Sendai, Japan
666300af8ffb8c903223f32f1fcc5c4674e2430bTokyo Denki University
0290523cabea481e3e147b84dcaab1ef7a914612Tokyo Denki University
20e505cef6d40f896e9508e623bfc01aa1ec3120Tokyo Institute of Technology
3083d2c6d4f456e01cbb72930dc2207af98a6244Tokyo Institute of Technology
435dc062d565ce87c6c20a5f49430eb9a4b573c4Tokyo Institute of Technology, Japan
3e51d634faacf58e7903750f17111d0d172a0bf1Tokyo Metropolitan UniversityDepartment of Information and Communication Systems
a7c39a4e9977a85673892b714fc9441c959bf078Tokyo Polytechnic University
64d7e62f46813b5ad08289aed5dc4825d7ec5cffTokyo University of Science
bd0e100a91ff179ee5c1d3383c75c85eddc81723Tokyo, Tokyo, 6National Institute of Informatics, Tokyo
f9784db8ff805439f0a6b6e15aeaf892dba47ca0Tomas Bata University in Zl n
17ded725602b4329b1c494bfa41527482bf83a6fTomsk Polytechnic University
17ded725602b4329b1c494bfa41527482bf83a6fTomsk Polytechnic University
24cf9fe9045f50c732fc9c602358af89ae40a9f7Tongji University
769461ff717d987482b28b32b1e2a6e46570e3ffTongji University, Shanghai 201804, ChinaDepartment of Computer Science and Technology
53c36186bf0ffbe2f39165a1824c965c6394fe0dTooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology
2bae810500388dd595f4ebe992c36e1443b048d2Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan
118ca3b2e7c08094e2a50137b1548ada7935e505Toyota Research Institute, Cambridge, MA 2 University of Michigan, Ann Arbor, MI
ce450e4849490924488664b44769b4ca57f1bc1aToyota Research Institute, Los Altos, CA, USA
8fa3478aaf8e1f94e849d7ffbd12146946badabaToyota Technological Institute (Chicago, US
0ea38a5ba0c8739d1196da5d20efb13406bb6550Toyota Technological Institute Chicago (TTIC
0e73d2b0f943cf8559da7f5002414ccc26bc77cdToyota Technological Institute at Chicago
217a21d60bb777d15cd9328970cab563d70b5d23Toyota Technological Institute at Chicago
76673de6d81bedd6b6be68953858c5f1aa467e61Toyota Technological Institute at Chicago
869a2fbe42d3fdf40ed8b768edbf54137be7ac71Toyota Technological Institute, Chicago
a1dd806b8f4f418d01960e22fb950fe7a56c18f1Toyota Technological Institute, Chicago (TTIC
56c2fb2438f32529aec604e6fc3b06a595ddbfccTransilvania University
83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05Trinity College
6f0900a7fe8a774a1977c5f0a500b2898bcbe149Tripura University (A Central UniversityDepartment of Computer Science and Engineering
4157e45f616233a0874f54a59c3df001b9646cd7Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
3bb6570d81685b769dc9e74b6e4958894087f3f1Tsinghua UniversityDepartment of Electronic Engineering
329d58e8fb30f1bf09acb2f556c9c2f3e768b15cTsinghua University
0b78fd881d0f402fd9b773249af65819e48ad36dTsinghua UniversityDepartment of Computer Science and Technology
60737db62fb5fab742371709485e4b2ddf64b7b2Tsinghua UniversityDepartment of Computer Science
34863ecc50722f0972e23ec117f80afcfe1411a9Tsinghua University
bebb8a97b2940a4e5f6e9d3caf6d71af21585edaTsinghua UniversityDepartment of Computer Science and Technology
c97a5f2241cc6cd99ef0c4527ea507a50841f60bTsinghua UniversityDepartment of Computer Science and Technology
4e0636a1b92503469b44e2807f0bb35cc0d97652Tsinghua University
4ea4116f57c5d5033569690871ba294dc3649ea5Tsinghua UniversityComputer Science and Technology Department
1a65cc5b2abde1754b8c9b1d932a68519bcb1adaTsinghua University
4c822785c29ceaf67a0de9c699716c94fefbd37dTsinghua University
433a6d6d2a3ed8a6502982dccc992f91d665b9b3Tsinghua UniversityDepartment of Physics
5b7cb9b97c425b52b2e6f41ba8028836029c4432Tsinghua UniversityDepartment of Automation
5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79Tsinghua UniversityDepartment of Electronic Engineering
08ee541925e4f7f376538bc289503dd80399536fTsinghua University
08ee541925e4f7f376538bc289503dd80399536fTsinghua University
08ee541925e4f7f376538bc289503dd80399536fTsinghua University
08ee541925e4f7f376538bc289503dd80399536fTsinghua University
52bf00df3b970e017e4e2f8079202460f1c0e1bdTsinghua University
bf8a520533f401347e2f55da17383a3e567ef6d8Tsinghua University
b87db5ac17312db60e26394f9e3e1a51647cca66Tsinghua UniversityDepartment Automation
e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7Tsinghua UniversityDepartment of Electronic Engineering
2d244d70ed1a2ba03d152189f1f90ff2b4f16a79Tsinghua UniversityDepartment of Automation
12ccfc188de0b40c84d6a427999239c6a379cd66Tsinghua UniversityDepartment of Computer Science and Technology
2288696b6558b7397bdebe3aed77bedec7b9c0a9Tsinghua University
3fb26f3abcf0d287243646426cd5ddeee33624d4Tsinghua University 4SenseTimeDepartment of Computer Science and Technology
237eba4822744a9eabb121fe7b50fd2057bf744cTsinghua University, 100084 Beijing, China
5c493c42bfd93e4d08517438983e3af65e023a87Tsinghua University, 2Rutgers University, 3Baidu IDL
03ce2ff688f9b588b6f264ca79c6857f0d80ceaeTsinghua University, 2Rutgers University, 3Massachusetts Institute of Technology, 4Baidu IDL
92be73dffd3320fe7734258961fe5a5f2a43390eTsinghua University, Beijing 100084, ChinaDepartment of CS
9e1c3b8b1653337094c1b9dba389e8533bc885b0Tsinghua University, Beijing 100084, China
0ebc50b6e4b01eb5eba5279ce547c838890b1418Tsinghua University, Beijing 100084, ChinaDepartment of Computer Science and Technology
207798603e3089a1c807c93e5f36f7767055ec06Tsinghua University, Beijing 100084, ChinaDepartment of Computer Science and Technology
6b8d0569fffce5cc221560d459d6aa10c4db2f03Tsinghua University, Beijing 100084, China
9110c589c6e78daf4affd8e318d843dc750fb71aTsinghua University, Beijing 100084, China
ffc5a9610df0341369aa75c0331ef021de0a02a9Tsinghua University, Beijing 100084, ChinaDepartment of Automation
2594a77a3f0dd5073f79ba620e2f287804cec630Tsinghua University, Beijing 100084, ChinaDepartment of CS
0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64Tsinghua University, Beijing 100084, P.R.ChinaDepartment of Computer Science and Technology
15affdcef4bb9d78b2d3de23c9459ee5b7a43fcbTsinghua University, Beijing 100084, P.R.ChinaA(cid:14)liation: 1Department of Automation
9e42d44c07fbd800f830b4e83d81bdb9d106ed6bTsinghua University, Beijing, ChinaDepartment of Automation
a3a2f3803bf403262b56ce88d130af15e984fff0Tsinghua University, Beijing, ChinaComputer Science and Technology Department
f5eb0cf9c57716618fab8e24e841f9536057a28aTsinghua University, Beijing, ChinaDepartment of Electronic Engineering
1177977134f6663fff0137f11b81be9c64c1f424Tsinghua University, Beijing, ChinaDepartment of Automation
6e94c579097922f4bc659dd5d6c6238a428c4d22Tsinghua University, Beijing, ChinaDepartment of Automation
39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bcTsinghua University, Beijing, ChinaDepartment of Automation
0fd3a7ee228bbc3dd4a111dae04952a1ee58a8cdTsinghua University, Beijing, ChinaComputer Science and Technology Department
aab3561acbd19f7397cbae39dd34b3be33220309Tsinghua University, Beijing, China
b7426836ca364603ccab0e533891d8ac54cf2429Tsinghua University, Beijing, ChinaDepartment of Computer Science and Technology
8d2c0c9155a1ed49ba576ac0446ec67725468d87Tsinghua University, Beijing, China
1d97735bb0f0434dde552a96e1844b064af08f62Tsinghua University, ChinaDepartment of Electronic Engineering/Graduate School at Shenzhen
306127c3197eb5544ab1e1bf8279a01e0df26120Tsinghua University, State Key Lab. of IntelligentDepartment of Computer Science and Technology
b1df214e0f1c5065f53054195cd15012e660490aTsinghua University, State Key Lab. of IntelligentDepartment of Computer Science and Technology
9110c589c6e78daf4affd8e318d843dc750fb71aTsinghua-CUHK Joint Research Center for Media Sciences
207798603e3089a1c807c93e5f36f7767055ec06Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems
25e2d3122d4926edaab56a576925ae7a88d68a77Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu
76b11c281ac47fe6d95e124673a408ee9eb568e3U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI
0019925779bff96448f0c75492717e4473f88377U.S. Army Research Laboratory
a8748a79e8d37e395354ba7a8b3038468cb37e1fU.S. Army Research Laboratory
9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA
b08203fca1af7b95fda8aa3d29dcacd182375385U.S. Army Research Laboratory, Adelphi, MD, USA
5c4d4fd37e8c80ae95c00973531f34a6d810ea3aUC Irvine1, INRIA2, Carnegie Mellon University
497bf2df484906e5430aa3045cf04a40c9225f94UC Lab, Kyung Hee University, Yongin-Si 446-701, KoreaDepartment of Computer Engineering
8bdf6f03bde08c424c214188b35be8b2dec7cdeaUCL and Alan Turing Institute
dbe0e533d715f8543bcf197f3b8e5cffa969dfc0UG student, Amity school of Engineering and Technology, Amity University, Haryana, IndiaDepartment of ECE
0ff23392e1cb62a600d10bb462d7a1f171f579d0UMIACS | University of Maryland, College Park
f571fe3f753765cf695b75b1bd8bed37524a52d2UMIACS, University of Maryland
f571fe3f753765cf695b75b1bd8bed37524a52d2UMIACS, University of Maryland
0d746111135c2e7f91443869003d05cde3044bebUMIACS, University of Maryland, College Park, MD
02820c1491b10a1ff486fed32c269e4077c36551UMIACS, University of Maryland, College Park, MD
81fc86e86980a32c47410f0ba7b17665048141ecUMIACS, University of Maryland, College Park, MD
40c8cffd5aac68f59324733416b6b2959cb668fdUMIACS, University of Maryland, College Park, MD
676a136f5978783f75b5edbb38e8bb588e8efbbeUMIACS, University of Maryland, College Park, USADepartment of Electrical and Computer Engineering and the Center for Automation Research
023ed32ac3ea6029f09b8c582efbe3866de7d00aUNIVERSITY IN PRAGUE
29c7dfbbba7a74e9aafb6a6919629b0a7f576530UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD
b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57UNIVERSITY OF CALIFORNIA
d8f0bda19a345fac81a1d560d7db73f2b4868836UNIVERSITY OF CALIFORNIA
d850aff9d10a01ad5f1d8a1b489fbb3998d0d80eUNIVERSITY OF CALIFORNIA
3773e5d195f796b0b7df1fca6e0d1466ad84b5e7UNIVERSITY OF CALIFORNIA
bf4825474673246ae855979034c8ffdb12c80a98UNIVERSITY OF CALIFORNIA
cd444ee7f165032b97ee76b21b9ff58c10750570UNIVERSITY OF CALIFORNIA
2d84c0d96332bb4fbd8acced98e726aabbf15591UNIVERSITY OF CALIFORNIA
47ca2df3d657d7938d7253bed673505a6a819661UNIVERSITY OF CALIFORNIA
348a16b10d140861ece327886b85d96cce95711eUNIVERSITY OF CALIFORNIA, BERKELEY
7bf0a1aa1d0228a51d24c0c3a83eceb937a6ae25UNIVERSITY OF CALIFORNIA, SAN DIEGO
f0f501e1e8726148d18e70c8e9f6feea9360d119UNIVERSITY OF OULU
f0f501e1e8726148d18e70c8e9f6feea9360d119UNIVERSITY OF OULU GRADUATE SCHOOL
f0f501e1e8726148d18e70c8e9f6feea9360d119UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND
9e5acdda54481104aaf19974dca6382ed5ff21edUNIVERSITY OF TAMPERE
81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0fUNIVERSITY OF TARTU
4015e8195db6edb0ef8520709ca9cb2c46f29be7UNIVERSITY OF TARTU
4a4da3d1bbf10f15b448577e75112bac4861620aUNIVERSITY OF WISCONSIN MADISON
8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152USA, 2Unit for Experimental Psychiatry, University of Pennsylvania School of MedicineDepartment of Psychiatry
2dbde64ca75e7986a0fa6181b6940263bcd70684USC IRIS Lab, University of Southern California
62e913431bcef5983955e9ca160b91bb19d9de42USC Information Sciences Institute
2c92839418a64728438c351a42f6dc5ad0c6e686USC Information Sciences Institute (ISI), Marina Del Rey, CA
4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56USC Institute for Creative Technologies
43e99b76ca8e31765d4571d609679a689afdc99eUSC Institute for Creative Technologies
081189493ca339ca49b1913a12122af8bb431984USC Institute for Creative Technologies
0a6d344112b5af7d1abbd712f83c0d70105211d0USC Institute for Creative Technologies
2c92839418a64728438c351a42f6dc5ad0c6e686USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA
f5fae7810a33ed67852ad6a3e0144cb278b24b41USHER Institute, University of Edinburgh, United Kingdom
bb6bf94bffc37ef2970410e74a6b6dc44a7f4febUber Advanced Technologies Group, 5Vector Institute
8f3da45ff0c3e1777c3a7830f79c10f5896bcc21Uber Advanced Technologies Group, 5Vector Institute
a8d52265649c16f95af71d6f548c15afc85ac905Uber Advanced Technologies Group, 5Vector Institute
d31af74425719a3840b496b7932e0887b35e9e0dUbiquitous Computing Lab, Kyung Hee UniversityDepartment of Computer Science and Engineering
7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922UiT The Arctic University of Norway, Troms , NorwayDepartment of Psychology
182470fd0c18d0c5979dff75d089f1da176ceeebUlm University, Germany
600025c9a13ff09c6d8b606a286a79c823d89db8Ultra College of Engineering and Technology for Women, India
69b18d62330711bfd7f01a45f97aaec71e9ea6a5United States of America, State University of New York Albany, Albany3 Department of Computer Science
69b18d62330711bfd7f01a45f97aaec71e9ea6a5United States of America, State University of New York Albany, Albany, New York2 Department of Biology
abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72Universit Paris-Dauphine, PSL Research University, CNRS, UMR
8dce38840e6cf5ab3e0d1b26e401f8143d2a6bffUniversitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine
0bce54bfbd8119c73eb431559fc6ffbba741e6aaUniversitat Polit`ecnica de Catalunya, Columbia University
ae8d5be3caea59a21221f02ef04d49a86cb80191Universitat Polit`ecnica de Catalunya, Columbia University
19841b721bfe31899e238982a22257287b9be66aUniversitat Polit`ecnica de Catalunya, Columbia University
fab2fc6882872746498b362825184c0fb7d810e4Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The
00d931eccab929be33caea207547989ae7c1ef39Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The NetherlandsDepartment of Psychology
56f812661c3248ed28859d3b2b39e033b04ae6aeUniversity
bed06e7ff0b510b4a1762283640b4233de4c18e0University
f20e0eefd007bc310d2a753ba526d33a8aba812cUniversity
74618fb4ce8ce0209db85cc6069fe64b1f268ff4University
74618fb4ce8ce0209db85cc6069fe64b1f268ff4UniversityDepartment
1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43UniversityDepartment of Computer Science
2f13dd8c82f8efb25057de1517746373e05b04c4UniversityDepartment of Electrical and Computer Engineering and Center for Automation Research
6ee64c19efa89f955011531cde03822c2d1787b8University
31afdb6fa95ded37e5871587df38976fdb8c0d67University
31afdb6fa95ded37e5871587df38976fdb8c0d67University
91e507d2d8375bf474f6ffa87788aa3e742333ceUniversity
d3faed04712b4634b47e1de0340070653546deb2University
2d88e7922d9f046ace0234f9f96f570ee848a5b5University
2d88e7922d9f046ace0234f9f96f570ee848a5b5University
2d88e7922d9f046ace0234f9f96f570ee848a5b5University
5b6bed112e722c0629bcce778770d1b28e42fc96University Politehnica of Bucharest
7c47da191f935811f269f9ba3c59556c48282e80University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
7c47da191f935811f269f9ba3c59556c48282e80University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
7c47da191f935811f269f9ba3c59556c48282e80University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
4c1ce6bced30f5114f135cacf1a37b69bb709ea1University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
4c1ce6bced30f5114f135cacf1a37b69bb709ea1University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
4c1ce6bced30f5114f135cacf1a37b69bb709ea1University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
4c1ce6bced30f5114f135cacf1a37b69bb709ea1University Politehnica of Bucharest, Romania, Address Splaiul Independent ei
fac8cff9052fc5fab7d5ef114d1342daba5e4b82University (H
8ee5b1c9fb0bded3578113c738060290403ed472University (ITU
fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5University B.D.T.College of Engineering, VisvesvarayaDepartment of Electronics and Instrumentation Engineering
307a810d1bf6f747b1bd697a8a642afbd649613dUniversity Bourgogne Franche-Comt , France
00e9011f58a561500a2910a4013e6334627dee60University Campus, 54124, Thessaloniki, Greece
ae1de0359f4ed53918824271c888b7b36b8a5d41University Center of FEI, S ao Bernardo do Campo, BrazilDepartment of Artificial Intelligence Applied on Automation
c30982d6d9bbe470a760c168002ed9d66e1718a2University City Blvd., Charlotte, NC
56e079f4eb40744728fd1d7665938b06426338e5University College London
fdbacf2ff0fc21e021c830cdcff7d347f2fddd8eUniversity College London
c87d5036d3a374c66ec4f5870df47df7176ce8b9University College London
c8829013bbfb19ccb731bd54c1a885c245b6c7d7University College London
28f5138d63e4acafca49a94ae1dc44f7e9d84827University College London
7ed2c84fdfc7d658968221d78e745dfd1def6332University College London
4c523db33c56759255b2c58c024eb6112542014eUniversity College LondonDepartment of Computer Science
9788b491ddc188941dadf441fc143a4075bff764University College London
0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112University College London
0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112University College London
0aa74ad36064906e165ac4b79dec298911a7a4dbUniversity College London
d3424761e06a8f5f3c1f042f1f1163a469872129University College London
aff92784567095ee526a705e21be4f42226bbaabUniversity College London
aff92784567095ee526a705e21be4f42226bbaabUniversity College London
ce5eac297174c17311ee28bda534faaa1d559baeUniversity College London
ce5eac297174c17311ee28bda534faaa1d559baeUniversity College London
2dfe0e7e81f65716b09c590652a4dd8452c10294University College London
8dc9de0c7324d098b537639c8214543f55392a6bUniversity College London
28b26597a7237f9ea6a9255cde4e17ee18122904University College London, 12 Queen Square, London WC1N 3BG, UK
f66f3d1e6e33cb9e9b3315d3374cd5f121144213University College London, London WC1N 3BG, United Kingdom
cca9ae621e8228cfa787ec7954bb375536160e0dUniversity College London, London, UK
467b602a67cfd7c347fe7ce74c02b38c4bb1f332University College London, London, UKDepartment of Computer Science
0209389b8369aaa2a08830ac3b2036d4901ba1f1University College London, UK
c53352a4239568cc915ad968aff51c49924a3072University College London, UKDepartment of Computer Science
c53352a4239568cc915ad968aff51c49924a3072University College London, UKDepartment of Statistical Science
12095f9b35ee88272dd5abc2d942a4f55804b31eUniversity College London, UK
4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6fUniversity Drive
4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6fUniversity Drive
9c4cc11d0df2de42d6593f5284cfdf3f05da402aUniversity Drive, Fairfax, VA 22030-4444, USA
20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6University Drive, Fairfax, VA 22030-4444, USA
b8caf1b1bc3d7a26a91574b493c502d2128791f6University Health Board, Swansea, United Kingdom
2ed4973984b254be5cba3129371506275fe8a8ebUniversity Higher School of Economics (HSE). Any opinions or claims contained in this
c2e6daebb95c9dfc741af67464c98f1039127627University Hospital Jena, GermanyDepartment of Otolaryngology
1e19ea6e7f1c04a18c952ce29386252485e4031eUniversity Institute of Engineering and TechnologyDepartment of Computer Science and Engineering
f0f501e1e8726148d18e70c8e9f6feea9360d119University Lecturer Anu Soikkeli
f0f501e1e8726148d18e70c8e9f6feea9360d119University Lecturer Veli-Matti Ulvinen
7373c4a23684e2613f441f2236ed02e3f9942dd4University Library, Singapore
190d8bd39c50b37b27b17ac1213e6dde105b21b8University Library, Singapore
6ed738ff03fd9042965abdfaa3ed8322de15c116University Library, Singapore
0515e43c92e4e52254a14660718a9e498bd61cf5University Of California San Diego
84f904a71bee129a1cf00dc97f6cdbe1011657e6University Of Maryland
84f904a71bee129a1cf00dc97f6cdbe1011657e6University Of Maryland
84f904a71bee129a1cf00dc97f6cdbe1011657e6University Of Maryland
523854a7d8755e944bd50217c14481fe1329a969University Of Oxford
523854a7d8755e944bd50217c14481fe1329a969University Of Oxford
fb084b1fe52017b3898c871514cffcc2bdb40b73University POLITEHNICA Timisoara, Timisoara, 300223, RomaniaDepartment
bd0201b32e7eca7818468f2b5cb1fb4374de75b9University POLITEHNICA of Bucharest, Bucharest, Romania
558fc9a2bce3d3993a9c1f41b6c7f290cefcf92fUniversity Politehnica of Bucharest
be5276e9744c4445fe5b12b785650e8f173f56ffUniversity Politehnica of Bucharest, Romania
1a167e10fe57f6d6eff0bb9e45c94924d9347a3eUniversity Politehnica of Bucharest, Romania
55e18e0dde592258882134d2dceeb86122b366abUniversity Station C0500, Austin TX 78712, USA
13719bbb4bb8bbe0cbcdad009243a926d93be433University Street, Montral, QC H3A 0E9, Canada
407bb798ab153bf6156ba2956f8cf93256b6910aUniversity Street, Montreal, QC H3A 0E9, Canada
a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51University Technology of Malaysia, 81310 Skudai, Johor, Malaysia
59e9934720baf3c5df3a0e1e988202856e1f83ceUniversity at Albany, SUNYComputer Science Department
59e9934720baf3c5df3a0e1e988202856e1f83ceUniversity at Albany, SUNYComputer Engineering Department
f9d1f12070e5267afc60828002137af949ff1544University at Buffalo, SUNY
9a1a9dd3c471bba17e5ce80a53e52fcaaad4373eUniversity at Buffalo, State University of New YorkDepartment of Communication
9f6d04ce617d24c8001a9a31f11a594bd6fe3510University ofCorresponding author. Address: Department of Psychology
4a5592ae1f5e9fa83d9fa17451c8ab49608421e4University ofDepartment MAiA
4a5592ae1f5e9fa83d9fa17451c8ab49608421e4University ofDepartment MAiA
33030c23f6e25e30b140615bb190d5e1632c3d3bUniversity of Aberdeen
ad08c97a511091e0f59fc6a383615c0cc704f44aUniversity of Abertay
ad08c97a511091e0f59fc6a383615c0cc704f44aUniversity of Abertay
ad08c97a511091e0f59fc6a383615c0cc704f44aUniversity of Abertay
ad08c97a511091e0f59fc6a383615c0cc704f44aUniversity of Abertay
e01bb53b611c679141494f3ffe6f0b91953af658University of Adelaide
2bb2ba7c96d40e269fc6a2d5384c739ff9fa16ebUniversity of Adelaide
2bb2ba7c96d40e269fc6a2d5384c739ff9fa16ebUniversity of Adelaide
bc12715a1ddf1a540dab06bf3ac4f3a32a26b135University of Adelaide, Australia
1b41d4ffb601d48d7a07dbbae01343f4eb8cc38cUniversity of Adelaide, Australia
05f3d1e9fb254b275354ca69018e9ed321dd8755University of Adelaide, SA, Australia
57f7d8c6ec690bd436e70d7761bc5f46e993be4cUniversity of Aizu, Japan
23e75f5ce7e73714b63f036d6247fa0172d97cb6University of Akron, AkronOH 44325-0302; USA and 2Department of Electrical and Computer
ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9University of Alabama, Tuscaloosa, ALDepartment of Mathematics
0e5dcc6ae52625fd0637c6bba46a973e46d58b9cUniversity of Alberta, Edmonton, AB T6G 2E8, CanadaaDepartment of Computing Science
c95cd36779fcbe45e3831ffcd3314e19c85defc5University of Alberta, Edmonton, CanadaDepartment of Computing Science
fdb33141005ca1b208a725796732ab10a9c37d75University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
5ac946fc6543a445dd1ee6d5d35afd3783a31353University of Amsterdam
b5cd9e5d81d14868f1a86ca4f3fab079f63a366dUniversity of Amsterdam
b4d209845e1c67870ef50a7c37abaf3770563f3eUniversity of Amsterdam
cfc4aa456d9da1a6fabd7c6ca199332f03e35b29University of Amsterdam
202dc3c6fda654aeb39aee3e26a89340fb06802aUniversity of Amsterdam
2912c3ea67678a1052d7d5cbe734a6ad90fc360eUniversity of Amsterdam
42eda7c20db9dc0f42f72bb997dd191ed8499b10University of Amsterdam
171ca25bc2cdfc79cad63933bcdd420d35a541abUniversity of Amsterdam
0f21a39fa4c0a19c4a5b4733579e393cb1d04f71University of Amsterdam
0f21a39fa4c0a19c4a5b4733579e393cb1d04f71University of Amsterdam
ddaa8add8528857712424fd57179e5db6885df7cUniversity of Amsterdam
f83dd9ff002a40228bbe3427419b272ab9d5c9e4University of Amsterdam
e0244a8356b57a5721c101ead351924bcfb2eef4University of Amsterdam
46c87fded035c97f35bb991fdec45634d15f9df2University of Amsterdam
41f26101fed63a8d149744264dd5aa79f1928265University of Amsterdam
14014a1bdeb5d63563b68b52593e3ac1e3ce7312University of Amsterdam
101d4cfbd6f8a7a10bd33505e2b183183f1d8770University of Amsterdam (UvA
cfc4aa456d9da1a6fabd7c6ca199332f03e35b29University of Amsterdam and Renmin University at TRECVID
93747de3d40376761d1ef83ffa72ec38cd385833University of Amsterdam, Amsterdam, TheDepartment of Work and Organizational Psychology
93747de3d40376761d1ef83ffa72ec38cd385833University of Amsterdam, Amsterdam, The NetherlandsDepartment of Social Psychology
1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6University of Amsterdam, Amsterdam, The Netherlands
3b38c06caf54f301847db0dd622a6622c3843957University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden UniversityDepartment of Psychology
552c55c71bccfc6de7ce1343a1cd12208e9a63b3University of Amsterdam, The Netherlands
b689d344502419f656d482bd186a5ee6b0140891University of Amsterdam, University of Trento, Italy
679b7fa9e74b2aa7892eaea580def6ed4332a228University of Amsterdam, the Netherlands
679b7fa9e74b2aa7892eaea580def6ed4332a228University of Amsterdam, the Netherlands
44fbbaea6271e47ace47c27701ed05e15da8f7cfUniversity of Amsterdam; 2Amsterdam Brain and Cognition Center, University ofPsychology Department
9e8637a5419fec97f162153569ec4fc53579c21eUniversity of Applied Sciences Darmstadt - CASED
b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87cUniversity of Applied Sciences, Arnhem, The Netherlands
b56530be665b0e65933adec4cc5ed05840c37fc4University of Arizona
78f79c83b50ff94d3e922bed392737b47f93aa06University of ArizonaDepartment of Computer Science
a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531University of Arkansas at Little Rock
a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531University of Arkansas at Little Rock
a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531University of Arkansas at Little Rock
4ea53e76246afae94758c1528002808374b75cfaUniversity of Balochistan, QuettaDepartment of CS and IT
4ea53e76246afae94758c1528002808374b75cfaUniversity of Balochistan, QuettaDepartment of Physics
500fbe18afd44312738cab91b4689c12b4e0eeeeUniversity of Barcelona
500fbe18afd44312738cab91b4689c12b4e0eeeeUniversity of Barcelona
500fbe18afd44312738cab91b4689c12b4e0eeeeUniversity of Barcelona
0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277University of Barcelona
1576ed0f3926c6ce65e0ca770475bca6adcfdbb4University of BarcelonaDepartment Applied Methematics
1564bf0a268662df752b68bee5addc4b08868739University of Barcelona
1564bf0a268662df752b68bee5addc4b08868739University of Barcelona
1564bf0a268662df752b68bee5addc4b08868739University of Barcelona
b37f57edab685dba5c23de00e4fa032a3a6e8841University of Barcelona and Computer Vision Centre, Barcelona, Spain
3fe4109ded039ac9d58eb9f5baa5327af30ad8b6University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, SpainDepartment Matem`atica Aplicada i An`alisi
4c8ef4f98c6c8d340b011cfa0bb65a9377107970University of Barcelona, SpainDepartment of Mathematics and Computer Science
3f7723ab51417b85aa909e739fc4c43c64bf3e84University of Bari, Bari, ItalyDepartment of Computer Science
043efe5f465704ced8d71a067d2b9d5aa5b59c29University of Basel
35ec9b8811f2d755c7ad377bdc29741b55b09356University of BaselComputer Science Department
0081e2188c8f34fcea3e23c49fb3e17883b33551University of Basel
9c9ef6a46fb6395702fad622f03ceeffbada06e5University of Basel, Departement Informatik, Basel, Switzerland
0c20fd90d867fe1be2459223a3cb1a69fa3d44bfUniversity of Basel, Switzerland
5789f8420d8f15e7772580ec373112f864627c4bUniversity of Basel, Switzerland
f3fed71cc4fc49b02067b71c2df80e83084b2a82University of Basel, Switzerland
465d5bb11912005f0a4f0569c6524981df18a7deUniversity of Basel, SwitzerlandDepartment of Mathematics and Computer Science
2cac70f9c8140a12b6a55cef834a3d7504200b62University of Basel, Switzerland
d01303062b21cd9ff46d5e3ff78897b8499480deUniversity of Bath
d01303062b21cd9ff46d5e3ff78897b8499480deUniversity of Bath
d01303062b21cd9ff46d5e3ff78897b8499480deUniversity of Bath
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3University of Bath
3f5693584d7dab13ffc12122d6ddbf862783028bUniversity of Bath
a6e8a8bb99e30a9e80dbf80c46495cf798066105University of Bath
4e4d034caa72dce6fca115e77c74ace826884c66University of Bath, Bath, Somerset, United KingdomDepartment of Psychology
28e1668d7b61ce21bf306009a62b06593f1819e3University of Bath, Bath, United KingdomDepartment of Psychology
5c6de2d9f93b90034f07860ae485a2accf529285University of Beira Interior
ef230e3df720abf2983ba6b347c9d46283e4b690University of Beira InteriorDepartment of Computer Science
d46b790d22cb59df87f9486da28386b0f99339d3University of Bern
d46b790d22cb59df87f9486da28386b0f99339d3University of Bern
406431d2286a50205a71f04e0b311ba858fc7b6cUniversity of Birmingham
406431d2286a50205a71f04e0b311ba858fc7b6cUniversity of Birmingham
14b66748d7c8f3752dca23991254fca81b6ee86cUniversity of Bonn
edd7504be47ebc28b0d608502ca78c0aea6a65a2University of Bonn, Germany
451b6409565a5ad18ea49b063561a2645fa4281bUniversity of Bonn, Germany
01c9dc5c677aaa980f92c4680229db482d5860dbUniversity of Bonn, Germany
dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335University of Bonn, Germany
b6052dc718c72f2506cfd9d29422642ecf3992efUniversity of Bonn, Roemerstrasse 164, 53117 Bonn, Germany
aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52University of Brescia
ac9a331327cceda4e23f9873f387c9fd161fad76University of BridgeportDepartment of Computer Science and Engineering
ac9a331327cceda4e23f9873f387c9fd161fad76University of BridgeportDepartment of Electrical Engineering
f92ade569cbe54344ffd3bb25efd366dcd8ad659University of Bridgeport, Bridgeport, CT 06604, USADepartment of Computer Science and Engineering
3b408a3ca6fb39b0fda4d77e6a9679003b2dc9abUniversity of Bristol
3c78b642289d6a15b0fb8a7010a1fb829beceee2University of Bristol
3c78b642289d6a15b0fb8a7010a1fb829beceee2University of Bristol
3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3University of Bristol
1efacaa0eaa7e16146c34cd20814d1411b35538eUniversity of Bristol
7f445191fa0475ff0113577d95502a96dc702ef9University of Bristol
7f445191fa0475ff0113577d95502a96dc702ef9University of Bristol
7f445191fa0475ff0113577d95502a96dc702ef9University of Bristol
0da4c3d898ca2fff9e549d18f513f4898e960acaUniversity of Bristol - Explore Bristol Research
162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5eUniversity of Bristol - Explore Bristol Research
08ff81f3f00f8f68b8abd910248b25a126a4dfa4University of Bristol - Explore Bristol Research
0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0University of Bristol - Explore Bristol Research
f1d090fcea63d9f9e835c49352a3cd576ec899c1University of Bristol - Explore Bristol Research
77fb9e36196d7bb2b505340b6b94ba552a58b01bUniversity of Bristol, Bristol, BS8 1UB, UKComputer Science Department
503db524b9a99220d430e741c44cd9c91ce1ddf8University of Bristol, Bristol, UK
703dc33736939f88625227e38367cfb2a65319feUniversity of Bristol, United Kingdom
04522dc16114c88dfb0ebd3b95050fdbd4193b90University of British Columbia
78f79c83b50ff94d3e922bed392737b47f93aa06University of BuffaloDepartment of Communication
4967b0acc50995aa4b28e576c404dc85fefb0601University of Business Agriculture and Technology, Dhaka-1230, Bangladesh
14811696e75ce09fd84b75fdd0569c241ae02f12University of Caen
5a93f9084e59cb9730a498ff602a8c8703e5d8a5University of Caen Basse-Normandie
0ad8149318912b5449085187eb3521786a37bc78University of Caen, France
dad7b8be074d7ea6c3f970bd18884d496cbb0f91University of CagliariDepartment of Electrical and Electronic Engineering
8bed7ff2f75d956652320270eaf331e1f73efb35University of Calabria - DeMACS
8bed7ff2f75d956652320270eaf331e1f73efb35University of Calabria - DeMACS
06c2086f7f72536bf970ca629151b16927104df3University of Calgary, Canada
587c48ec417be8b0334fa39075b3bfd66cc29dbeUniversity of CaliforniaDepartment of Psychology
587c48ec417be8b0334fa39075b3bfd66cc29dbeUniversity of CaliforniaDepartment of Psychology
587c48ec417be8b0334fa39075b3bfd66cc29dbeUniversity of CaliforniaDepartment of Psychology
94eeae23786e128c0635f305ba7eebbb89af0023University of California
94eeae23786e128c0635f305ba7eebbb89af0023University of California
ad0d4d5c61b55a3ab29764237cd97be0ebb0ddffUniversity of California
bd6099429bb7bf248b1fd6a1739e744512660d55University of California
193ec7bb21321fcf43bbe42233aed06dbdecbc5cUniversity of California
397085122a5cade71ef6c19f657c609f0a4f7473University of California
b13a882e6168afc4058fe14cc075c7e41434f43eUniversity of California
b073313325b6482e22032e259d7311fb9615356cUniversity of California
b073313325b6482e22032e259d7311fb9615356cUniversity of California
ff9195f99a1a28ced431362f5363c9a5da47a37bUniversity of CaliforniaDepartment of Psychology
ff9195f99a1a28ced431362f5363c9a5da47a37bUniversity of CaliforniaDepartment of Psychology
ff9195f99a1a28ced431362f5363c9a5da47a37bUniversity of CaliforniaDepartment of Psychology
ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6University of California
82a610a59c210ff77cfdde7fd10c98067bd142daUniversity of California
132f88626f6760d769c95984212ed0915790b625University of California
221252be5d5be3b3e53b3bbbe7a9930d9d8cad69University of California
40b0fced8bc45f548ca7f79922e62478d2043220University of California Berkeley
e572c42d8ef2e0fadedbaae77c8dfe05c4933fbfUniversity of California Berkeley
e572c42d8ef2e0fadedbaae77c8dfe05c4933fbfUniversity of California Berkeley
f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4aUniversity of California Berkeley
1586871a1ddfe031b885b94efdbff647cf03eff1University of California Berkeley
1586871a1ddfe031b885b94efdbff647cf03eff1University of California Berkeley
14418ae9a6a8de2b428acb2c00064da129632f3eUniversity of California DavisDepartment of Computer Science
04522dc16114c88dfb0ebd3b95050fdbd4193b90University of California San Diego
acee2201f8a15990551804dd382b86973eb7c0a8University of California San Diego
d700aedcb22a4be374c40d8bee50aef9f85d98efUniversity of California San Diego
1fa3948af1c338f9ae200038c45adadd2b39a3e4University of California San DiegoDepartment of Computer Science and Engineering
1fa3948af1c338f9ae200038c45adadd2b39a3e4University of California San DiegoDepartment of Cognitive Science
2a3e19d7c54cba3805115497c69069dd5a91da65University of California San Diego
5ea9cba00f74d2e113a10c484ebe4b5780493964University of California San Diego
d4a5eaf2e9f2fd3e264940039e2cbbf08880a090University of California San Diego
47190d213caef85e8b9dd0d271dbadc29ed0a953University of California San Diego
a5f11c132eaab258a7cea2d681875af09cddba65University of California San Diego, La Jolla, California, USA
6459f1e67e1ea701b8f96177214583b0349ed964University of California Santa Barbaracid:63) Department of ECE
6459f1e67e1ea701b8f96177214583b0349ed964University of California Santa BarbaraDepartment of Psychology
476f177b026830f7b31e94bdb23b7a415578f9a4University of California Santa Barbaracid:63) Department of ECE
476f177b026830f7b31e94bdb23b7a415578f9a4University of California Santa BarbaraDepartment of Psychology
6180bc0816b1776ca4b32ced8ea45c3c9ce56b47University of California at Berkeley
a3f1db123ce1818971a57330d82901683d7c2b67University of California at Berkeley
b5cd8151f9354ee38b73be1d1457d28e39d3c2c6University of California at Berkeley
a52d9e9daf2cb26b31bf2902f78774bd31c0dd88University of California at Berkeley
d1f58798db460996501f224fff6cceada08f59f9University of California at Berkeley
d6a9ea9b40a7377c91c705f4c7f206a669a9eea2University of California at Berkeley
1a878e4667fe55170252e3f41d38ddf85c87fcafUniversity of California at Berkeley
86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663University of California at Berkeley
88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320University of California at Berkeley
366595171c9f4696ec5eef7c3686114fd3f116adUniversity of California at Berkeley
5b6f0a508c1f4097dd8dced751df46230450b01aUniversity of California at Berkeley
0601416ade6707c689b44a5bb67dab58d5c27814University of California at Berkeley
1eb4ea011a3122dc7ef3447e10c1dad5b69b0642University of California at Berkeley
34108098e1a378bc15a5824812bdf2229b938678University of California at Berkeley / ICSI
1329bcac5ebd0b08ce33ae1af384bd3e7a0deacaUniversity of California at Berkeley, USA
bd13f50b8997d0733169ceba39b6eb1bda3eb1aaUniversity of California at Irvine, Irvine, CA
0faeec0d1c51623a511adb779dabb1e721a6309bUniversity of California at Los Angeles, Los Angeles, CA, USA
9d06d43e883930ddb3aa6fe57c6a865425f28d44University of California at San Diego
c32cd207855e301e6d1d9ddd3633c949630c793aUniversity of California at San Diego
2c34bf897bad780e124d5539099405c28f3279acUniversity of California at San Diego, La Jolla, CADepartment of Electrical and Computer Engineering
036c41d67b49e5b0a578a401eb31e5f46b3624e0University of California, Berkeley
d666ce9d783a2d31550a8aa47da45128a67304a7University of California, Berkeley
d666ce9d783a2d31550a8aa47da45128a67304a7University of California, Berkeley
d666ce9d783a2d31550a8aa47da45128a67304a7University of California, Berkeley
167ea1631476e8f9332cef98cf470cb3d4847bc6University of California, Berkeley
42c9394ca1caaa36f535721fa9a64b2c8d4e0deeUniversity of California, Berkeley
1a7a17c4f97c68d68fbeefee1751d349b83eb14aUniversity of California, Berkeley
8a0d10a7909b252d0e11bf32a7f9edd0c9a8030bUniversity of California, Berkeley
2ff9ffedfc59422a8c7dac418a02d1415eec92f1University of California, Berkeley
65b1209d38c259fe9ca17b537f3fb4d1857580aeUniversity of California, BerkeleyDepartment of Electrical Engineering and Computer Sciences
65b1209d38c259fe9ca17b537f3fb4d1857580aeUniversity of California, BerkeleyDepartment of Statistics
53bfe2ab770e74d064303f3bd2867e5bf7b86379University of California, Berkeley
0aa74ad36064906e165ac4b79dec298911a7a4dbUniversity of California, Berkeley
4a9d906935c9de019c61aedc10b77ee10e3aec63University of California, Berkeley
855184c789bca7a56bb223089516d1358823db0bUniversity of California, Berkeley
1dacc2f4890431d867a038fd81c111d639cf4d7eUniversity of California, Berkeley
1329206dbdb0a2b9e23102e1340c17bd2b2adcf5University of California, Berkeley
be86d88ecb4192eaf512f29c461e684eb6c35257University of California, Berkeley, Berkeley CA 94720, USA
2cdd5b50a67e4615cb0892beaac12664ec53b81fUniversity of California, Berkeley1 Adobe
923ec0da8327847910e8dd71e9d801abcbc93b08University of California, Davis
3b84d074b8622fac125f85ab55b63e876fed4628University of California, Davis
fdf8e293a7618f560e76bd83e3c40a0788104547University of California, Davis
fdf8e293a7618f560e76bd83e3c40a0788104547University of California, Davis
c678920facffd35853c9d185904f4aebcd2d8b49University of California, Davis
3f9ca2526013e358cd8caeb66a3d7161f5507cbcUniversity of California, Davis
55ea0c775b25d9d04b5886e322db852e86a556cdUniversity of California, Davis 2University of Washington 3Allen Institute for AI
0e986f51fe45b00633de9fd0c94d082d2be51406University of California, IrvineDepartment of Computer Science
2f5e057e35a97278a9d824545d7196c301072ebfUniversity of California, Irvine
2f5e057e35a97278a9d824545d7196c301072ebfUniversity of California, Irvine
65126e0b1161fc8212643b8ff39c1d71d262fbc1University of California, IrvineDepartment of Computer Science
3991223b1dc3b87883cec7af97cf56534178f74aUniversity of California, Irvine
2e8eb9dc07deb5142a99bc861e0b6295574d1fbdUniversity of California, Irvine
2e8eb9dc07deb5142a99bc861e0b6295574d1fbdUniversity of California, Irvine
09dd01e19b247a33162d71f07491781bdf4bfd00University of California, Irvine, USA
56a677c889e0e2c9f68ab8ca42a7e63acf986229University of California, Los Angeles
1a65cc5b2abde1754b8c9b1d932a68519bcb1adaUniversity of California, Los Angeles
281486d172cf0c78d348ce7d977a82ff763efccdUniversity of California, Los Angeles
195d331c958f2da3431f37a344559f9bce09c0f7University of California, Los Angeles
4cc681239c8fda3fb04ba7ac6a1b9d85b68af31dUniversity of California, Los Angeles
cfa931e6728a825caada65624ea22b840077f023University of California, Los Angeles, California, USADepartment of Statistics
35e0256b33212ddad2db548484c595334f15b4daUniversity of California, Los Angeles, USADepartment of Computer Science and Statistics
951368a1a8b3c5cd286726050b8bdf75a80f7c37University of California, Merced
946017d5f11aa582854ac4c0e0f1b18b06127ef1University of California, Merced
ac6c3b3e92ff5fbcd8f7967696c7aae134bea209University of California, Merced
d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5University of California, Merced
169618b8dc9b348694a31c6e9e17b989735b4d39University of California, Merced
9abd35b37a49ee1295e8197aac59bde802a934f3University of California, Merced
f0a4a3fb6997334511d7b8fc090f9ce894679fafUniversity of California, Merced
f0398ee5291b153b716411c146a17d4af9cb0edcUniversity of California, Merced
7142ac9e4d5498037aeb0f459f278fd28dae8048University of California, Merced
713db3874b77212492d75fb100a345949f3d3235University of California, Merced
ab0f9bc35b777eaefff735cb0dd0663f0c34ad31University of California, Merced, CA
48729e4de8aa478ee5eeeb08a72a446b0f5367d5University of California, Merced, CA 95344, USA
2b64a8c1f584389b611198d47a750f5d74234426University of California, Merced, USA
8356832f883207187437872742d6b7dc95b51fdeUniversity of California, Riverside
8356832f883207187437872742d6b7dc95b51fdeUniversity of California, Riverside
8356832f883207187437872742d6b7dc95b51fdeUniversity of California, Riverside
8356832f883207187437872742d6b7dc95b51fdeUniversity of California, Riverside
8356832f883207187437872742d6b7dc95b51fdeUniversity of California, Riverside
8356832f883207187437872742d6b7dc95b51fdeUniversity of California, Riverside
7002d6fc3e0453320da5c863a70dbb598415e7aaUniversity of California, Riverside
847e07387142c1bcc65035109ccce681ef88362cUniversity of California, Riverside CA 92521-0425, USA
362bfeb28adac5f45b6ef46c07c59744b4ed6a52University of California, Riverside, CADepartment of Electrical and Computer Engineering
70c58700eb89368e66a8f0d3fc54f32f69d423e1University of California, Riverside, CADepartment of Electrical and Computer Engineering
3b3482e735698819a6a28dcac84912ec01a9eb8aUniversity of California, Riverside, California 92521, USA
951368a1a8b3c5cd286726050b8bdf75a80f7c37University of California, San Diego
951368a1a8b3c5cd286726050b8bdf75a80f7c37University of California, San Diego
57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1University of California, San Diego
57fd229097e4822292d19329a17ceb013b2cb648University of California, San DiegoDepartment of Electrical and Computer Engineering
57fd229097e4822292d19329a17ceb013b2cb648University of California, San DiegoDepartment of Mathematics
0e73d2b0f943cf8559da7f5002414ccc26bc77cdUniversity of California, San Diego
053b263b4a4ccc6f9097ad28ebf39c2957254dfbUniversity of California, San Diego
a5c8fc1ca4f06a344b53dc81ebc6d87f54896722University of California, San Diego
a5c8fc1ca4f06a344b53dc81ebc6d87f54896722University of California, San Diego
a5c8fc1ca4f06a344b53dc81ebc6d87f54896722University of California, San Diego
d68dbb71b34dfe98dee0680198a23d3b53056394University of California, San Diego
c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774University of California, San DiegoDepartment of Cognitive Science
ee418372b0038bd3b8ae82bd1518d5c01a33a7ecUniversity of California, San Diego
c8292aa152a962763185e12fd7391a1d6df60d07University of California, San Diego
100da509d4fa74afc6e86a49352751d365fceee5University of California, San Diego
19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54University of California, San Diego
438c4b320b9a94a939af21061b4502f4a86960e3University of California, San Diego
43776d1bfa531e66d5e9826ff5529345b792def7University of California, San Diego
384945abd53f6a6af51faf254ba8ef0f0fb3f338University of California, San Diego
09628e9116e7890bc65ebeabaaa5f607c9847baeUniversity of California, San Diego
5495e224ac7b45b9edc5cfeabbb754d8a40a879bUniversity of California, San Diego
378ae5ca649f023003021f5a63e393da3a4e47f0University of California, San Diego
0fba39bf12486c7684fd3d51322e3f0577d3e4e8University of California, San Diego
d35534f3f59631951011539da2fe83f2844ca245University of California, San Diego
d35534f3f59631951011539da2fe83f2844ca245University of California, San Diego
a967426ec9b761a989997d6a213d890fc34c5fe3University of California, San Diego
a9be20954e9177d8b2bc39747acdea4f5496f394University of California, San Diego
774cbb45968607a027ae4729077734db000a1ec5University of California, San Diego
24e6a28c133b7539a57896393a79d43dba46e0f6University of California, San Diego
85639cefb8f8deab7017ce92717674d6178d43ccUniversity of California, San Diego
140438a77a771a8fb656b39a78ff488066eb6b50University of California, San Diego
3661a34f302883c759b9fa2ce03de0c7173d2bb2University of California, San Diego 2 Carnegie Mellon University
561ae67de137e75e9642ab3512d3749b34484310University of California, San Diego, California, USADepartment of Pediatrics
b56f3a7c50bfcd113d0ba84e6aa41189e262d7aeUniversity of California, San Diego, La JollaDepartment of Cognitive Science
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfUniversity of California, San Diego, USA
512befa10b9b704c9368c2fbffe0dc3efb1ba1bfUniversity of California, San Diego, USA
07a472ea4b5a28b93678a2dcf89028b086e481a2University of California, San Diego, USA
3cc3cf57326eceb5f20a02aefae17108e8c8ab57University of California, Santa Barbara
dba493caf6647214c8c58967a8251641c2bda4c2University of California, Santa Barbara
715b69575dadd7804b4f8ccb419a3ad8b7b7ca89University of California, Santa BarbaraDepartment of Statistics and Applied Probability
715b69575dadd7804b4f8ccb419a3ad8b7b7ca89University of California, Santa BarbaraDepartment of Psychological and Brain Sciences
036c41d67b49e5b0a578a401eb31e5f46b3624e0University of California, Santa Cruz
68a04a3ae2086986877fee2c82ae68e3631d0356University of Cambridge
023be757b1769ecb0db810c95c010310d7daf00bUniversity of Cambridge
be57d2aaab615ec8bc1dd2dba8bee41a4d038b85University of Cambridge
be4f18e25b06f430e2de0cc8fddcac8585b00bebUniversity of Cambridge
4ba38262fe20fab3e4c80215147b498f83843b93University of Cambridge
4b3dd18882ff2738aa867b60febd2b35ab34dffcUniversity of Cambridge
2ac21d663c25d11cda48381fb204a37a47d2a574University of Cambridge
6eddea1d991e81c1c3024a6cea422bc59b10a1dcUniversity of Cambridge
6eddea1d991e81c1c3024a6cea422bc59b10a1dcUniversity of Cambridge
6d7a32f594d46f4087b71e2a2bb66a4b25da5e30University of Cambridge
9901f473aeea177a55e58bac8fd4f1b086e575a4University of Cambridge
db5a00984fa54b9d2a1caad0067a9ff0d0489517University of Cambridge
83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05University of Cambridge
1d21e5beef23eecff6fff7d4edc16247f0fd984aUniversity of Cambridge
0a6d344112b5af7d1abbd712f83c0d70105211d0University of Cambridge Computer Laboratory
c34532fe6bfbd1e6df477c9ffdbb043b77e7804dUniversity of Cambridge, Cambridge, UK
4ae291b070ad7940b3c9d3cb10e8c05955c9e269University of Cambridge, Computer Laboratory, UK
7f9260c00a86a0d53df14469f1fa10e318ee2a3cUniversity of Cambridge, The Computer Laboratory, Cambridge CB3 0FD, U.K
fd892e912149e3f5ddd82499e16f9ea0f0063fa3University of Cambridge, UK 2Carnegie Mellon University, USA
98142103c311b67eeca12127aad9229d56b4a9ffUniversity of Cambridge, UK 2Carnegie Mellon University, USA
d448d67c6371f9abf533ea0f894ef2f022b12503University of Cambridge, United KingdomDepartment of Engineering
4b74f2d56cd0dda6f459319fec29559291c61bffUniversity of Campinas
38a9ca2c49a77b540be52377784b9f734e0417e4University of Campinas
9d24179aa33a94c8c61f314203bf9e906d6b64deUniversity of Campinas (Unicamp
b9cad920a00fc0e997fc24396872e03f13c0bb9cUniversity of Campinas (Unicamp
0d781b943bff6a3b62a79e2c8daf7f4d4d6431adUniversity of Canberra
0573f3d2754df3a717368a6cbcd940e105d67f0bUniversity of Canberra
0573f3d2754df3a717368a6cbcd940e105d67f0bUniversity of Canberra
0573f3d2754df3a717368a6cbcd940e105d67f0bUniversity of Canberra
79db191ca1268dc88271abef3179c4fe4ee92aedUniversity of Canberra, Australia
0c1d85a197a1f5b7376652a485523e616a406273University of Canberra, Australia, Data61 - CSIRO and ANU, Australia
6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9University of Canterbury, New ZealandMathematics and Statistics Department
36e8ef2e5d52a78dddf0002e03918b101dcdb326University of Cape Town
36e8ef2e5d52a78dddf0002e03918b101dcdb326University of Cape Town
3bc376f29bc169279105d33f59642568de36f17fUniversity of Cape Town, South AfricaDepartment of Electrical Engineering
eacba5e8fbafb1302866c0860fc260a2bdfff232University of Catania, Italy
9b93406f3678cf0f16451140ea18be04784faeeeUniversity of Central Florida
a40edf6eb979d1ddfe5894fac7f2cf199519669fUniversity of Central Florida
b5f2846a506fc417e7da43f6a7679146d99c5e96University of Central Florida
7c17280c9193da3e347416226b8713b99e7825b8University of Central Florida
2ff9ffedfc59422a8c7dac418a02d1415eec92f1University of Central Florida
2ff9ffedfc59422a8c7dac418a02d1415eec92f1University of Central Florida
009a18d04a5e3ec23f8ffcfc940402fd8ec9488fUniversity of Central Florida
c4fb2de4a5dc28710d9880aece321acf68338fdeUniversity of Central Florida
4ff11512e4fde3d1a109546d9c61a963d4391addUniversity of Central Florida
78598e7005f7c96d64cc47ff47e6f13ae52245b8University of Central Florida
78598e7005f7c96d64cc47ff47e6f13ae52245b8University of Central Florida
1394ca71fc52db972366602a6643dc3e65ee8726University of Central Florida
1394ca71fc52db972366602a6643dc3e65ee8726University of Central Florida
b191aa2c5b8ece06c221c3a4a0914e8157a16129University of Central Florida, Orlando
e5d53a335515107452a30b330352cad216f88fc3University of Central Florida, Orlando FL 32816, USA
2b339ece73e3787f445c5b92078e8f82c9b1c522University of Central Florida, Orlando, USA
eacba5e8fbafb1302866c0860fc260a2bdfff232University of Central Florida, USA
7c42371bae54050dbbf7ded1e7a9b4109a23a482University of Central Punjab, PakistanDepartment of Information Technology
90498b95fe8b299ce65d5cafaef942aa58bd68b7University of Chester, UK, 3Conservation Biologist
b191aa2c5b8ece06c221c3a4a0914e8157a16129University of Chinese Academy of
d5b0e73b584be507198b6665bcddeba92b62e1e5University of Chinese Academy of
46e72046a9bb2d4982d60bcf5c63dbc622717f0fUniversity of Chinese Academy of Science
575141e42740564f64d9be8ab88d495192f5b3bcUniversity of Chinese Academy of Sciences
56f231fc40424ed9a7c93cbc9f5a99d022e1d242University of Chinese Academy of Sciences
938ae9597f71a21f2e47287cca318d4a2113feb2University of Chinese Academy of Sciences
4e6c17966efae956133bf8f22edeffc24a0470c1University of Chinese Academy of Sciences
bf8a520533f401347e2f55da17383a3e567ef6d8University of Chinese Academy of Sciences
d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1dUniversity of Chinese Academy of Sciences
1c41965c5e1f97b1504c1bdde8037b5e0417da5eUniversity of Chinese Academy of Sciences
492f41e800c52614c5519f830e72561db205e86cUniversity of Chinese Academy of Sciences
6c80c834d426f0bc4acd6355b1946b71b50cbc0bUniversity of Chinese Academy of Sciences (UCAS
b11bb6bd63ee6f246d278dd4edccfbe470263803University of Chinese Academy of Sciences (UCAS
2c19d3d35ef7062061b9e16d040cebd7e45f281dUniversity of Chinese Academy of Sciences (UCAS
0568fc777081cbe6de95b653644fec7b766537b2University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
50e45e9c55c9e79aaae43aff7d9e2f079a2d787bUniversity of Chinese Academy of Sciences, Beijing 100049, China
d05513c754966801f26e446db174b7f2595805baUniversity of Chinese Academy of Sciences, Beijing 100049, China
a29a22878e1881d6cbf6acff2d0b209c8d3f778bUniversity of Chinese Academy of Sciences, Beijing 100049, China
c03e01717b2d93f04cce9b5fd2dcfd1143bcc180University of Chinese Academy of Sciences, Beijing 100049, China
11dc744736a30a189f88fa81be589be0b865c9faUniversity of Chinese Academy of Sciences, Beijing 100049, China
090ff8f992dc71a1125636c1adffc0634155b450University of Chinese Academy of Sciences, Beijing 100049, China
303a7099c01530fa0beb197eb1305b574168b653University of Chinese Academy of Sciences, Beijing 100049, China
99facca6fc50cc30f13b7b6dd49ace24bc94f702University of Chinese Academy of Sciences, Beijing 100049, China
a820941eaf03077d68536732a4d5f28d94b5864aUniversity of Chinese Academy of Sciences, Beijing 100049, China
cd023d2d067365c83d8e27431e83e7e66082f718University of Chinese Academy of Sciences, Beijing 100049, China
7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2University of Chinese Academy of Sciences, Beijing 100049, China
22e2066acfb795ac4db3f97d2ac176d6ca41836cUniversity of Chinese Academy of Sciences, Beijing 100049, China
0b8b8776684009e537b9e2c0d87dbd56708ddcb4University of Chinese Academy of Sciences, Beijing 100190, China
72cbbdee4f6eeee8b7dd22cea6092c532271009fUniversity of Chinese Academy of Sciences, Beijing 100190, China
3a27d164e931c422d16481916a2fa6401b74bcefUniversity of Chinese Academy of Sciences, Beijing 100190, China
0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457University of Chinese Academy of Sciences, Beijing 100190, China
8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82University of Chinese Academy of Sciences, Beijing 101408, China
0595d18e8d8c9fb7689f636341d8a55cc15b3e6aUniversity of Chinese Academy of Sciences, Beijing, 100049, China
adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6University of Chinese Academy of Sciences, Beijing, 100049, China
ab734bac3994b00bf97ce22b9abc881ee8c12918University of Chinese Academy of Sciences, Beijing, 100049, China
c62c910264658709e9bf0e769e011e7944c45c90University of Chinese Academy of Sciences, Beijing, 100049, China
288964068cd87d97a98b8bc927d6e0d2349458a2University of Chinese Academy of Sciences, Beijing, 100049, China
9627f28ea5f4c389350572b15968386d7ce3fe49University of Chinese Academy of Sciences, Beijing, 100049, China
24cb375a998f4af278998f8dee1d33603057e525University of Chinese Academy of Sciences, Beijing, 100049, China
120bcc9879d953de7b2ecfbcd301f72f3a96fb87University of Chinese Academy of Sciences, Beijing, 100049, China
7fc5b6130e9d474dfb49d9612b6aa0297d481c8eUniversity of Chinese Academy of Sciences, Beijing, 100049, China
b5da4943c348a6b4c934c2ea7330afaf1d655e79University of Chinese Academy of Sciences, Beijing, China
d69271c7b77bc3a06882884c21aa1b609b3f76ccUniversity of Chinese Academy of Sciences, Beijing, China
d84a48f7d242d73b32a9286f9b148f5575acf227University of Chinese Academy of Sciences, Beijing, China
ed388878151a3b841f95a62c42382e634d4ab82eUniversity of Chinese Academy of Sciences, Beijing, China
4cdb6144d56098b819076a8572a664a2c2d27f72University of Chinese Academy of Sciences, Beijing, China
2679e4f84c5e773cae31cef158eb358af475e22fUniversity of Chinese Academy of Sciences, Beijing, China
55eb7ec9b9740f6c69d6e62062a24bfa091bbb0cUniversity of Chinese Academy of Sciences, Beijing, China
dcf71245addaf66a868221041aabe23c0a074312University of Chinese Academy of Sciences, Beijing, China
a16fb74ea66025d1f346045fda00bd287c20af0eUniversity of Chinese Academy of Sciences, Beijing, China
7a131fafa7058fb75fdca32d0529bc7cb50429bdUniversity of Chinese Academy of Sciences, Beijing, China
521cfbc1949289a7ffc3ff90af7c55adeb43db2aUniversity of Chinese Academy of Sciences, China
8c9c8111e18f8798a612e7386e88536dfe26455eUniversity of Coimbra, Portugal
8c9c8111e18f8798a612e7386e88536dfe26455eUniversity of Coimbra, Portugal
8c9c8111e18f8798a612e7386e88536dfe26455eUniversity of Coimbra, Portugal
b59cee1f647737ec3296ccb3daa25c890359c307University of Colorado
ee463f1f72a7e007bae274d2d42cd2e5d817e751University of Colorado Boulder, 2U.S. Army Research Lab
7cffcb4f24343a924a8317d560202ba9ed26cd0bUniversity of Colorado Colorado Springs
146a7ecc7e34b85276dd0275c337eff6ba6ef8c0University of Colorado Colorado Springs
3312eb79e025b885afe986be8189446ba356a507University of Colorado at Colorado Springs
e3e2c106ccbd668fb9fca851498c662add257036University of Colorado at Colorado Springs
07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1University of Colorado at Colorado Springs
0f0366070b46972fcb2976775b45681e62a94a26University of Colorado at Colorado Springs
0f0366070b46972fcb2976775b45681e62a94a26University of Colorado at Colorado Springs
a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4fUniversity of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA
4aabd6db4594212019c9af89b3e66f39f3108aacUniversity of Colorado, Boulder
198b6beb53e0e61357825d57938719f614685f75University of Colorado, Colorado Springs
f7ba77d23a0eea5a3034a1833b2d2552cb42fb7aUniversity of Colorado, Colorado Springs, USA
cb1b5e8b35609e470ce519303915236b907b13b6University of Connecticut
3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0University of Copenhagen
a77e9f0bd205a7733431a6d1028f09f57f9f73b0University of Cordoba, SpainbDepartment of Computing and Numerical Analysis
488375ae857a424febed7c0347cc9590989f01f7University of Crete, Crete, 73100, GreeceDepartment of Computer Science
7c42371bae54050dbbf7ded1e7a9b4109a23a482University of Dammam, Saudi ArabiaDepartment of Computer Science
19da9f3532c2e525bf92668198b8afec14f9efeaUniversity of Delaware, Newark, DE. USA
926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0University of Denver, Denver, CO
0359f7357ea8191206b9da45298902de9f054c92University of Denver, Denver, CO
f3df296de36b7c114451865778e211350d153727University of Denver, Denver, CODepartment of Electrical and Computer Engineering
16f940b4b5da79072d64a77692a876627092d39cUniversity of Denver, Denver, CODepartment of Electrical and Computer Engineering
2a9b398d358cf04dc608a298d36d305659e8f607University of Denver, Denver, CODepartment of Electrical and Computer Engineering
48734cb558b271d5809286447ff105fd2e9a6850University of Denver, Denver, CO
bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5University of Dhaka
bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5University of Dhaka
8af411697e73f6cfe691fe502d4bfb42510b4835University of Dhaka, Bangladesh
d78fbd11f12cbc194e8ede761d292dc2c02d38a2University of Dschang, Cameroon
d78fbd11f12cbc194e8ede761d292dc2c02d38a2University of Dschang, Cameroon
8b10383ef569ea0029a2c4a60cc2d8c87391b4dbUniversity of Dundee
3e207c05f438a8cef7dd30b62d9e2c997ddc0d3fUniversity of Edinburgh
17027a05c1414c9a06a1c5046899abf382a1142dUniversity of Edinburgh
432d8cba544bf7b09b0455561fea098177a85db1University of Edinburgh
432d8cba544bf7b09b0455561fea098177a85db1University of Edinburgh
6dc1f94b852538d572e4919238ddb10e2ee449a4University of Edinburgh
121503705689f46546cade78ff62963574b4750bUniversity of Edinburgh
1329bcac5ebd0b08ce33ae1af384bd3e7a0deacaUniversity of Edinburgh, Edinburgh, UK
93af36da08bf99e68c9b0d36e141ed8154455ac2University of Electronic Science and Technology of China
93af36da08bf99e68c9b0d36e141ed8154455ac2University of Electronic Science and Technology of China
16b9d258547f1eccdb32111c9f45e2e4bbee79afUniversity of Electronic Science and Technology of China
16b9d258547f1eccdb32111c9f45e2e4bbee79afUniversity of Electronic Science and Technology of China
993d189548e8702b1cb0b02603ef02656802c92bUniversity of Electronic Science and Technology of China, China
3d1a6a5fd5915e0efb953ede5af0b23debd1fc7fUniversity of Engineering and TechnologyDepartment of Electrical Engineering
367f2668b215e32aff9d5122ce1f1207c20336c8University of Engineering and TechnologyDepartment of Electrical Engineering
718d3137adba9e3078fa1f698020b666449f3336University of Engineering and Technology
51d048b92f6680aca4a8adf07deb380c0916c808University of Erlangen-Nuremberg
f1aa120fb720f6cfaab13aea4b8379275e6d40a2University of Erlangen-Nuremberg 3 University of Bath
467b602a67cfd7c347fe7ce74c02b38c4bb1f332University of Exceter, Exceter, UKDepartment of Computer Science
3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3University of Exeter
6479b61ea89e9d474ffdefa71f068fbcde22cc44University of Exeter
7492c611b1df6bce895bee6ba33737e7fc7f60a6University of Exeter, UKDepartment of Computer Science
7ed3b79248d92b255450c7becd32b9e5c834a31eUniversity of Florence
7ed3b79248d92b255450c7becd32b9e5c834a31eUniversity of Florence
7ed3b79248d92b255450c7becd32b9e5c834a31eUniversity of Florence
7ed3b79248d92b255450c7becd32b9e5c834a31eUniversity of Florence
90a754f597958a2717862fbaa313f67b25083bf9University of Florence, Italy
441bf5f7fe7d1a3939d8b200eca9b4bb619449a9University of Florida
441bf5f7fe7d1a3939d8b200eca9b4bb619449a9University of Florida
c32cd207855e301e6d1d9ddd3633c949630c793aUniversity of Florida
cb1b5e8b35609e470ce519303915236b907b13b6University of Florida
fcf91995dc4d9b0cee84bda5b5b0ce5b757740acUniversity of Florida, Gainesville, FL, 32611, USA
b6a01cd4572b5f2f3a82732ef07d7296ab0161d3University of Florida, Gainesville, FL, 32611, USA
57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1University of Frankfurt
a3a34c1b876002e0393038fcf2bcb00821737105University of Freiburg
f42dca4a4426e5873a981712102aa961be34539aUniversity of Freiburg
e3144f39f473e238374dd4005c8b83e19764ae9eUniversity of Freiburg
543f21d81bbea89f901dfcc01f4e332a9af6682dUniversity of Freiburg
eac1b644492c10546a50f3e125a1f790ec46365fUniversity of Freiburg
92115b620c7f653c847f43b6c4ff0470c8e55dabUniversity of Freiburg, Germany
9d357bbf014289fb5f64183c32aa64dc0bd9f454University of Freiburg, Instit ut f ur Informatik
3f4798c7701da044bdb7feb61ebdbd1d53df5cfeUniversity of Geneva
499f2b005e960a145619305814a4e9aa6a1bba6aUniversity of GenevaComputer Science Department
3d9db1cacf9c3bb7af57b8112787b59f45927355University of Genoa, Italy
65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220University of Georgia, Athens, GA, U.S.ADepartment of Computer Science
1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6University of GlasgowDepartment of Computing Science
18941b52527e6f15abfdf5b86a0086935706e83bUniversity of Granada, Granada, Spain
a77e9f0bd205a7733431a6d1028f09f57f9f73b0University of Granada, SpaincDepartment of Computer Science and Artificial Intelligence
361c9ba853c7d69058ddc0f32cdbe94fbc2166d5University of Groningen
146bbf00298ee1caecde3d74e59a2b8773d2c0fcUniversity of Groningen
8efda5708bbcf658d4f567e3866e3549fe045bbbUniversity of Groningen
6226f2ea345f5f4716ac4ddca6715a47162d5b92University of Groningen, Netherlands
361c9ba853c7d69058ddc0f32cdbe94fbc2166d5University of Groningen, The Netherlands
4ff4c27e47b0aa80d6383427642bb8ee9d01c0acUniversity of Groningen, The Netherlands
8efda5708bbcf658d4f567e3866e3549fe045bbbUniversity of Groningen, The Netherlands
718d3137adba9e3078fa1f698020b666449f3336University of Gujrat, Pakistan
718d3137adba9e3078fa1f698020b666449f3336University of Gujrat, Pakistan
e0244a8356b57a5721c101ead351924bcfb2eef4University of Haifa
5bc0a89f4f73523967050374ed34d7bc89e4d9e1University of Haifa, Haifa, Israela Department of Business Administration
c87d5036d3a374c66ec4f5870df47df7176ce8b9University of Helsinki, Finland
3cb2841302af1fb9656f144abc79d4f3d0b27380University of Houston
3cb2841302af1fb9656f144abc79d4f3d0b27380University of Houston
3cb2841302af1fb9656f144abc79d4f3d0b27380University of Houston
3cb2841302af1fb9656f144abc79d4f3d0b27380University of Houston
286812ade95e6f1543193918e14ba84e5f8e852eUniversity of Houston
38d8ff137ff753f04689e6b76119a44588e143f3University of Houston
8334da483f1986aea87b62028672836cb3dc6205University of Houston
0319332ded894bf1afe43f174f5aa405b49305f0University of Houston, Houston, TX 77204, USADepartment of Mathematics
100428708e4884300e4c1ac1f84cbb16e7644ccfUniversity of Houston, Houston, TX 77204, USADepartment of Mathematics
5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7University of Houston, Houston, TX, USADepartment of Computer Science
466f80b066215e85da63e6f30e276f1a9d7c843bUniversity of Houston, Houston, TX, USADepartment of Computer Science
4bfce41cc72be315770861a15e467aa027d91641University of Iceland
0c05f60998628884a9ac60116453f1a91bcd9ddaUniversity of Illinois
5185f2a40836a754baaa7419a1abdd1e7ffaf2adUniversity of Illinois
5185f2a40836a754baaa7419a1abdd1e7ffaf2adUniversity of Illinois
5185f2a40836a754baaa7419a1abdd1e7ffaf2adUniversity of Illinois
edde81b2bdd61bd757b71a7b3839b6fef81f4be4University of Illinois
cc2eaa182f33defbb33d69e9547630aab7ed9c9cUniversity of Illinois
cc2eaa182f33defbb33d69e9547630aab7ed9c9cUniversity of Illinois
29f4ac49fbd6ddc82b1bb697820100f50fa98ab6University of Illinois Urbana Champaign
56f812661c3248ed28859d3b2b39e033b04ae6aeUniversity of Illinois at
56f812661c3248ed28859d3b2b39e033b04ae6aeUniversity of Illinois at
3b37d95d2855c8db64bd6b1ee5659f87fce36881University of Illinois at Chicago
3b37d95d2855c8db64bd6b1ee5659f87fce36881University of Illinois at Chicago
11c04c4f0c234a72f94222efede9b38ba6b2306cUniversity of Illinois at Urbana
0241513eeb4320d7848364e9a7ef134a69cbfd55University of Illinois at Urbana Champaign
22264e60f1dfbc7d0b52549d1de560993dd96e46University of Illinois at Urbana Champaign
177d1e7bbea4318d379f46d8d17720ecef3086acUniversity of Illinois at Urbana Champaign, UrbanaDepartment of Electrical and Computer Engineering
95f12d27c3b4914e0668a268360948bce92f7db3University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
0c2875bb47db3698dbbb3304aca47066978897a4University of Illinois at Urbana-Champaign
0b50e223ad4d9465bb92dbf17a7b79eccdb997fbUniversity of Illinois at Urbana-Champaign
9d06d43e883930ddb3aa6fe57c6a865425f28d44University of Illinois at Urbana-Champaign
b2c60061ad32e28eb1e20aff42e062c9160786beUniversity of Illinois at Urbana-Champaign
becd5fd62f6301226b8e150e1a5ec3180f748ff8University of Illinois at Urbana-ChampaignDepartment Elec. and Comp. Eng.
b4f4b0d39fd10baec34d3412d53515f1a4605222University of Illinois at Urbana-Champaign
e5e5f31b81ed6526c26d277056b6ab4909a56c6cUniversity of Illinois at Urbana-Champaign
75d2ecbbcc934563dff6b39821605dc6f2d5ffccUniversity of Illinois at Urbana-Champaign
09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081University of Illinois at Urbana-Champaign
5b4b84ce3518c8a14f57f5f95a1d07fb60e58223University of Illinois at Urbana-Champaign
ef458499c3856a6e9cd4738b3e97bef010786adbUniversity of Illinois at Urbana-Champaign
4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2cUniversity of Illinois at Urbana-Champaign
8384e104796488fa2667c355dd15b65d6d5ff957University of Illinois at Urbana-Champaign
70c9d11cad12dc1692a4507a97f50311f1689dbfUniversity of Illinois at Urbana-Champaign
1d19c6857e798943cd0ecd110a7a0d514c671fecUniversity of Illinois at Urbana-Champaign
e378ce25579f3676ca50c8f6454e92a886b9e4d7University of Illinois at Urbana-Champaign 2Adobe Research
80be8624771104ff4838dcba9629bacfe6b3ea09University of Illinois at Urbana-Champaign, IL USA
1329bcac5ebd0b08ce33ae1af384bd3e7a0deacaUniversity of Illinois at Urbana-Champaign, USA
291f527598c589fb0519f890f1beb2749082ddfdUniversity of Illinois at Urbana-Champaign, Urbana, IL
1177977134f6663fff0137f11b81be9c64c1f424University of Illinois at Urbana-Champaign, Urbana, IL, USADepartment of ECE
946017d5f11aa582854ac4c0e0f1b18b06127ef1University of Illinois, Urbana-Champaign
8a0d10a7909b252d0e11bf32a7f9edd0c9a8030bUniversity of Illinois, Urbana-Champaign
1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2University of Illinois, Urbana-Champaign
1270044a3fa1a469ec2f4f3bd364754f58a1cb56University of Illinois, Urbana-Champaign University of California, San Diego
fde0180735699ea31f6c001c71eae507848b190fUniversity of Information
9f65319b8a33c8ec11da2f034731d928bf92e29dUniversity of Insubria
455204fa201e9936b42756d362f62700597874c4University of Ioannina, Ioannina, Greece
90a754f597958a2717862fbaa313f67b25083bf9University of Ioannina, Ioannina, Greece, 2 Computational BiomedicineDepartment of Computer Science and Engineering
016800413ebd1a87730a5cf828e197f43a08f4b3University of Iowa
434bf475addfb580707208618f99c8be0c55cf95University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany
8cb55413f1c5b6bda943697bba1dc0f8fc880d28University of Karlsruhe, Germany
f52efc206432a0cb860155c6d92c7bab962757deUniversity of Kentucky
17b46e2dad927836c689d6787ddb3387c6159eceUniversity of Kentucky
17b46e2dad927836c689d6787ddb3387c6159eceUniversity of Kentucky
9a3535cabf5d0f662bff1d897fb5b777a412d82eUniversity of Kentucky
9a3535cabf5d0f662bff1d897fb5b777a412d82eUniversity of Kentucky
5bb53fb36a47b355e9a6962257dd465cd7ad6827University of Kentucky
b73795963dc623a634d218d29e4a5b74dfbc79f1University of Kentucky
2cd7821fcf5fae53a185624f7eeda007434ae037University of Kentucky
2cd7821fcf5fae53a185624f7eeda007434ae037University of Kentucky
b6052dc718c72f2506cfd9d29422642ecf3992efUniversity of Kentucky, 329 Rose St., Lexington, KY, 40508, U.S.A
574b62c845809fd54cc168492424c5fac145bc83University of Kentucky, USADepartment of Computer Science
171389529df11cc5a8b1fbbe659813f8c3be024dUniversity of Kentucky, USA
c2c3ff1778ed9c33c6e613417832505d33513c55University of Lac Hong 10 Huynh Van NgheDepartment of Computer Science
06c2086f7f72536bf970ca629151b16927104df3University of Larestan, Iran
519a724426b5d9ad384d38aaf2a4632d3824f243University of Leeds
6a4ebd91c4d380e21da0efb2dee276897f56467aUniversity of Lincoln, School of Computer Science, U.K
624496296af19243d5f05e7505fd927db02fd0ceUniversity of Lincoln, U.K
232b6e2391c064d483546b9ee3aafe0ba48ca519University of Lincoln, U.K
4b3eaedac75ac419c2609e131ea9377ba8c3d4b8University of Lincoln, UKDepartment of Computing
2ab034e1f54c37bfc8ae93f7320160748310dc73University of Liverpool
7cffcb4f24343a924a8317d560202ba9ed26cd0bUniversity of Ljubljana
120bcc9879d953de7b2ecfbcd301f72f3a96fb87University of Ljubljana
a1ee0176a9c71863d812fe012b5c6b9c15f9aa8aUniversity of Ljubljana Faculty
a1ee0176a9c71863d812fe012b5c6b9c15f9aa8aUniversity of Ljubljana Faculty
a1ee0176a9c71863d812fe012b5c6b9c15f9aa8aUniversity of Ljubljana Faculty
69adbfa7b0b886caac15ebe53b89adce390598a3University of Ljubljana, Faculty of Electrical Engineering
842d82081f4b27ca2d4bc05c6c7e389378f0c7b8University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia
d3424761e06a8f5f3c1f042f1f1163a469872129University of London
1e8eec6fc0e4538e21909ab6037c228547a678baUniversity of London
a77e9f0bd205a7733431a6d1028f09f57f9f73b0University of Malaga, SpainaDepartment of Computer Architecture
68c5238994e3f654adea0ccd8bca29f2a24087fcUniversity of Malaya, 50603 Kuala Lumpur, Malaysia
e328d19027297ac796aae2470e438fe0bd334449University of Malaya, Kuala Lumpur, Malaysia
3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0University of Malta
0b2966101fa617b90510e145ed52226e79351072University of Manitoba
0b2966101fa617b90510e145ed52226e79351072University of Manitoba
975978ee6a32383d6f4f026b944099e7739e5890University of Manitoba
975978ee6a32383d6f4f026b944099e7739e5890University of Manitoba
975978ee6a32383d6f4f026b944099e7739e5890University of Manitoba
33030c23f6e25e30b140615bb190d5e1632c3d3bUniversity of Maryland
33030c23f6e25e30b140615bb190d5e1632c3d3bUniversity of Maryland
9cd6a81a519545bf8aa9023f6e879521f85d4cd1University of Maryland
b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8University of Maryland
bbc4b376ebd296fb9848b857527a72c82828fc52University of Maryland
bbfe0527e277e0213aafe068113d719b2e62b09cUniversity of Maryland
29d3ed0537e9ef62fd9ccffeeb72c1beb049e1eaUniversity of Maryland
7ca7255c2e0c86e4adddbbff2ce74f36b1dc522dUniversity of Maryland
4ccf64fc1c9ca71d6aefdf912caf8fea048fb211University of Maryland
38a9ca2c49a77b540be52377784b9f734e0417e4University of Maryland
0058cbe110933f73c21fa6cc9ae0cd23e974a9c7University of Maryland
31f1e711fcf82c855f27396f181bf5e565a2f58dUniversity of Maryland
b13a882e6168afc4058fe14cc075c7e41434f43eUniversity of Maryland
a896ddeb0d253739c9aaef7fc1f170a2ba8407d3University of Maryland
ceeb67bf53ffab1395c36f1141b516f893bada27University of Maryland
ceeb67bf53ffab1395c36f1141b516f893bada27University of Maryland
ceeb67bf53ffab1395c36f1141b516f893bada27University of Maryland
794c0dc199f0bf778e2d40ce8e1969d4069ffa7bUniversity of Maryland
24f1febcdf56cd74cb19d08010b6eb5e7c81c362University of Maryland
24f1febcdf56cd74cb19d08010b6eb5e7c81c362University of Maryland
24f1febcdf56cd74cb19d08010b6eb5e7c81c362University of Maryland
24f1febcdf56cd74cb19d08010b6eb5e7c81c362University of Maryland
4f36c14d1453fc9d6481b09c5a09e91d8d9ee47aUniversity of Maryland
2ee817981e02c4709d65870c140665ed25b005ccUniversity of Maryland
25ff865460c2b5481fa4161749d5da8501010aa0University of Maryland
6c690af9701f35cd3c2f6c8d160b8891ad85822aUniversity of Maryland College Park
3a804cbf004f6d4e0b041873290ac8e07082b61fUniversity of Maryland Institute for Advanced Computer Studies, College Park, MD
b5f4e617ac3fc4700ec8129fcd0dcf5f71722923University of Maryland, CFAR
297d3df0cf84d24f7efea44f87c090c7d9be4bedUniversity of Maryland, Center for Automation Research
5003754070f3a87ab94a2abb077c899fcaf936a6University of Maryland, College Park
3b092733f428b12f1f920638f868ed1e8663fe57University of Maryland, College Park
0334a8862634988cc684dacd4279c5c0d03704daUniversity of Maryland, College Park
03264e2e2709d06059dd79582a5cc791cbef94b1University of Maryland, College Park
03264e2e2709d06059dd79582a5cc791cbef94b1University of Maryland, College Park
6993bca2b3471f26f2c8a47adfe444bfc7852484University of Maryland, College Park
51cb09ee04831b95ae02e1bee9b451f8ac4526e3University of Maryland, College Park
053931267af79a89791479b18d1b9cde3edcb415University of Maryland, College Park
4e4fa167d772f34dfffc374e021ab3044566afc3University of Maryland, College Park
87147418f863e3d8ff8c97db0b42695a1c28195bUniversity of Maryland, College Park
4cac9eda716a0addb73bd7ffea2a5fb0e6ec2367University of Maryland, College Park
3896c62af5b65d7ba9e52f87505841341bb3e8dfUniversity of Maryland, College Park
0019925779bff96448f0c75492717e4473f88377University of Maryland, College Park
09b80d8eea809529b08a8b0ff3417950c048d474University of Maryland, College Park
96e731e82b817c95d4ce48b9e6b08d2394937cf8University of Maryland, College Park
06a6347ac14fd0c6bb3ad8190cbe9cdfa5d59efcUniversity of Maryland, College Park
3983637022992a329f1d721bed246ae76bc934f7University of Maryland, College Park
0ac442bb570b086d04c4d51a8410fcbfd0b1779dUniversity of Maryland, College Park
b6f758be954d34817d4ebaa22b30c63a4b8ddb35University of Maryland, College Park
a8748a79e8d37e395354ba7a8b3038468cb37e1fUniversity of Maryland, College Park
23dd8d17ce09c22d367e4d62c1ccf507bcbc64daUniversity of Maryland, College Park
4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8eUniversity of Maryland, College Park
140438a77a771a8fb656b39a78ff488066eb6b50University of Maryland, College Park
fcbec158e6a4ace3d4311b26195482b8388f0ee9University of Maryland, College Park, MD
fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1University of Maryland, College Park, MD
4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99University of Maryland, College Park, MD
4377b03bbee1f2cf99950019a8d4111f8de9c34aUniversity of Maryland, College Park, MD
6e60536c847ac25dba4c1c071e0355e5537fe061University of Maryland, College Park, MD
37619564574856c6184005830deda4310d3ca580University of Maryland, College Park, MD
dcce3d7e8d59041e84fcdf4418702fb0f8e35043University of Maryland, College Park, MD
ce6d60b69eb95477596535227958109e07c61e1eUniversity of Maryland, College Park, MD
2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359University of Maryland, College Park, MD
4ac4e8d17132f2d9812a0088594d262a9a0d339bUniversity of Maryland, College Park, MD
e00d391d7943561f5c7b772ab68e2bb6a85e64c4University of Maryland, College Park, MD 20740; and bIntel Labs, Santa Clara, CAaDepartment of Electrical and Computer Engineering
88e090ffc1f75eed720b5afb167523eb2e316f7fUniversity of Maryland, College Park, MD, USA
c1298120e9ab0d3764512cbd38b47cd3ff69327bUniversity of Maryland, College Park, USA
4e8168fbaa615009d1618a9d6552bfad809309e9University of Maryland, College Park, USADepartment of Electrical Engineering
bac11ce0fb3e12c466f7ebfb6d036a9fe62628eaUniversity of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre
f7824758800a7b1a386db5bd35f84c81454d017aUniversity of Maryland-College Park, USA
79744fc71bea58d2e1918c9e254b10047472bd76University of Maryland-College Park, USA
1389ba6c3ff34cdf452ede130c738f37dca7e8cbUniversity of Maryland-College Park, USA
922838dd98d599d1d229cc73896d55e7a769aa7cUniversity of Massachusetts
922838dd98d599d1d229cc73896d55e7a769aa7cUniversity of Massachusetts
e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07faUniversity of Massachusetts - Amherst
fe5df5fe0e4745d224636a9ae196649176028990University of Massachusetts - Amherst
6d8e3f3a83514381f890ab7cd2a1f1c5be597b69University of Massachusetts - Amherst
3c97c32ff575989ef2869f86d89c63005fc11ba9University of Massachusetts Amherst
3c97c32ff575989ef2869f86d89c63005fc11ba9University of Massachusetts Amherst
c98983592777952d1751103b4d397d3ace00852dUniversity of Massachusetts Amherst
2784d9212dee2f8a660814f4b85ba564ec333720University of Massachusetts Amherst
7c45339253841b6f0efb28c75f2c898c79dfd038University of Massachusetts Amherst
10f17534dba06af1ddab96c4188a9c98a020a459University of Massachusetts Amherst
75da1df4ed319926c544eefe17ec8d720feef8c0University of Massachusetts Amherst
75da1df4ed319926c544eefe17ec8d720feef8c0University of Massachusetts Amherst
2cae619d0209c338dc94593892a787ee712d9db0University of Massachusetts Amherst
87f285782d755eb85d8922840e67ed9602cfd6b9University of Massachusetts Amherst in partial ful llment
aac101dd321e6d2199d8c0b48c543b541c181b66University of Massachusetts Amherst in partial ful llment
368e99f669ea5fd395b3193cd75b301a76150f9dUniversity of Massachusetts, Amherst
2241eda10b76efd84f3c05bdd836619b4a3df97eUniversity of Massachusetts, Amherst
174f46eccb5852c1f979d8c386e3805f7942baceUniversity of Massachusetts, Amherst MA, USA
2d3482dcff69c7417c7b933f22de606a0e8e42d4University of Massachusetts, Amherst Technical Report UM-CS
55b4b1168c734eeb42882082bd131206dbfedd5bUniversity of Massachusetts, Amherst, MA
e9f1cdd9ea95810efed306a338de9e0de25990a0University of Memphis
68f69e6c6c66cfde3d02237a6918c9d1ee678e1bUniversity of Miami
33ac7fd3a622da23308f21b0c4986ae8a86ecd2bUniversity of Miami
dfb6aa168177d4685420fcb184def0aa7db7cddbUniversity of Miami, Coral Gables, FL
16f940b4b5da79072d64a77692a876627092d39cUniversity of Miami, Coral Gables, FLDepartment of Electrical and Computer Engineering
16f940b4b5da79072d64a77692a876627092d39cUniversity of Miami, Coral Gables, FLDepartment of Psychology
570308801ff9614191cfbfd7da88d41fb441b423University of Miami, USA
922838dd98d599d1d229cc73896d55e7a769aa7cUniversity of Michigan
c76f64e87f88475069f7707616ad9df1719a6099University of Michigan
0145dc4505041bf39efa70ea6d95cf392cfe7f19University of MichiganSUNY at Buffalo. 2Department of EECS
41aa8c1c90d74f2653ef4b3a2e02ac473af61e47University of MichiganDepartment of Electrical Engineering and Computer Science
7fa3d4be12e692a47b991c0b3d3eba3a31de4d05University of MichiganElectrical Engineering and Computer Science Department
60542b1a857024c79db8b5b03db6e79f74ec8f9fUniversity of Michigan, Ann Arbor
05e3acc8afabc86109d8da4594f3c059cf5d561fUniversity of Michigan, Ann Arbor
f4aed1314b2d38fd8f1b9d2bc154295bbd45f523University of Michigan, Ann Arbor
286adff6eff2f53e84fe5b4d4eb25837b46cae23University of Michigan, Ann Arbor
860588fafcc80c823e66429fadd7e816721da42aUniversity of Michigan, Ann Arbor
2c424f21607ff6c92e640bfe3da9ff105c08fac4University of Michigan, Ann Arbor
2d4b9fe3854ccce24040074c461d0c516c46baf4University of Michigan, Ann Arbor
2d0363a3ebda56d91d704d5ff5458a527775b609University of Michigan, Ann Arbor
2d98a1cb0d1a37c79a7ebcb727066f9ccc781703University of Michigan, Ann Arbor
78c1ad33772237bf138084220d1ffab800e1200dUniversity of Michigan, Ann Arbor
01c09acf0c046296643de4c8b55a9330e9c8a419University of Michigan, Ann Arbor, MI
55b4b1168c734eeb42882082bd131206dbfedd5bUniversity of Michigan, Ann Arbor, MI
0faeec0d1c51623a511adb779dabb1e721a6309bUniversity of Michigan, Ann Arbor, MI, USA
5287d8fef49b80b8d500583c07e935c7f9798933University of Michigan, Ann Arbor, MI, USA (UMICH.EDU
457cf73263d80a1a1338dc750ce9a50313745d1dUniversity of Michigan, Ann Arbor, USA
b8375ff50b8a6f1a10dd809129a18df96888ac8bUniversity of Michigan, Ann Arbor, USA
b69b239217d4e9a20fe4fe1417bf26c94ded9af9University of Michigan, Ann Arbor, USA
824d1db06e1c25f7681e46199fd02cb5fc343784University of Michigan-Shanghai Jiao Tong University Joint Institute
d912b8d88d63a2f0cb5d58164e7414bfa6b41dfaUniversity of Milan
9820920d4544173e97228cb4ab8b71ecf4548475University of Milano-Bicocca, Italy
9820920d4544173e97228cb4ab8b71ecf4548475University of Milano-Bicocca, Italy
0ec2049a1dd7ae14c7a4c22c5bcd38472214f44dUniversity of MinnesotaMath Department
0ec2049a1dd7ae14c7a4c22c5bcd38472214f44dUniversity of MinnesotaMath Department
7dd578878e84337d6d0f5eb593f22cabeacbb94cUniversity of Minnesota
7de386bf2a1b2436c836c0cc1f1f23fccb24aad6University of Minnesota
7ca337735ec4c99284e7c98f8d61fb901dbc9015University of Minnesota
0052de4885916cf6949a6904d02336e59d98544cUniversity of Minnesota-Twin Cities, MinneapolisDepartment of Computer Science and Engineering
0a87d781fe2ae2e700237ddd00314dbc10b1429cUniversity of Missouri, Columbia, MOElectrical and Computer Engineering Department
f87b22e7f0c66225824a99cada71f9b3e66b5742University of Missouri, Kansas CityDepartment of Computer Science and Electrical Engineering
76cd5e43df44e389483f23cb578a9015d1483d70University of Modena and Reggio
e4abc40f79f86dbc06f5af1df314c67681dedc51University of Modena and Reggio Emilia, Italy
3176ee88d1bb137d0b561ee63edf10876f805cf0University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR
84c0f814951b80c3b2e39caf3925b56a9b2e1733University of Nebraska Lincoln, USADepartment of History
0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2University of Nebraska - Lincoln
2914e8c62f0432f598251fae060447f98141e935University of Nebraska - Lincoln
1297ee7a41aa4e8499c7ddb3b1fed783eba19056University of Nebraska - Lincoln
a38045ed82d6800cbc7a4feb498e694740568258University of Nevada Las Vegas
a6d7cf29f333ea3d2aeac67cde39a73898e270b7University of Nevada at Reno, USADepartment of Computer Science and Engineering
4b7c110987c1d89109355b04f8597ce427a7cd72University of Nevada, Reno, Reno, NV, USADepartment of Psychology
feb6e267923868bff6e2108603d00fdfd65251caUniversity of Nevada, Reno, USADepartment of Computer Science and Engineering
7c6dbaebfe14878f3aee400d1378d90d61373921University of Newcastle
7f57e9939560562727344c1c987416285ef76cdaUniversity of North Carolina
3aa9c8c65ce63eb41580ba27d47babb1100df8a3University of North Carolina Wilmington
5b719410e7829c98c074bc2947697fac3b505b64University of North Carolina Wilmington
b1665e1ddf9253dcaebecb48ac09a7ab4095a83eUniversity of North Carolina Wilmington
b1665e1ddf9253dcaebecb48ac09a7ab4095a83eUniversity of North Carolina Wilmington
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34University of North Carolina Wilmington
13aef395f426ca8bd93640c9c3f848398b189874University of North Carolina Wilmington
5b719410e7829c98c074bc2947697fac3b505b64University of North Carolina Wilmington in Partial Ful llment
a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4fUniversity of North Carolina Wilmington, Wilmington, NC, USA
5fba1b179ac80fee80548a0795d3f72b1b6e49cdUniversity of North Carolina at Chapel HillDepartment of Computer Science
2a14b6d9f688714dc60876816c4b7cf763c029a9University of North Carolina at Chapel Hill
09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081University of North Carolina at Chapel Hill
8e4808e71c9b9f852dc9558d7ef41566639137f3University of North Carolina at Chapel Hill
86f191616423efab8c0d352d986126a964983219University of North Carolina at Chapel Hill, 2Adobe Research
d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2fUniversity of North Carolina at Chapel Hill, Chapel Hill, NCDepartment of Biology
04c2cda00e5536f4b1508cbd80041e9552880e67University of North Carolina at Chapel Hill, NC, USA
2d31ab536b3c8a05de0d24e0257ca4433d5a7c75University of North Carolina at Chapel Hill, NC, USA
f35a493afa78a671b9d2392c69642dcc3dd2cdc2University of North Carolina at Chapel Hill, USA
eee06d68497be8bf3a8aba4fde42a13aa090b301University of North Carolina at Charlotte
9a3535cabf5d0f662bff1d897fb5b777a412d82eUniversity of North Carolina at Charlotte
3039627fa612c184228b0bed0a8c03c7f754748cUniversity of North Carolina at Charlotte
c30982d6d9bbe470a760c168002ed9d66e1718a2University of North Carolina at Charlotte
4698a599425c3a6bae1c698456029519f8f2befeUniversity of North Texas
17d5e5c9a9ee4cf85dfbb9d9322968a6329c3735University of North Texas, Denton, Texas, USA
683ec608442617d11200cfbcd816e86ce9ec0899University of Northern British Columbia
9264b390aa00521f9bd01095ba0ba4b42bf84d7eUniversity of Northern British Columbia, Canada
69adbfa7b0b886caac15ebe53b89adce390598a3University of Notre DameDepartment of Computer Science and Engineering
0235b2d2ae306b7755483ac4f564044f46387648University of Notre Dame
17479e015a2dcf15d40190e06419a135b66da4e0University of Notre DameDepartment of Computer Science and Engineering
8fbec9105d346cd23d48536eb20c80b7c2bbbe30University of Notre Dame
2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44University of Notre Dame
07f31bef7a7035792e3791473b3c58d03928abbfUniversity of Notre Dame
f7093b138fd31956e30d411a7043741dcb8ca4aaUniversity of Notre Dame
841855205818d3a6d6f85ec17a22515f4f062882University of Notre Dame
120bcc9879d953de7b2ecfbcd301f72f3a96fb87University of Notre Dame
7862d40da0d4e33cd6f5c71bbdb47377e4c6b95aUniversity of Notre Dame, 2IIIT-Delhi
d0509afe9c2c26fe021889f8efae1d85b519452aUniversity of Notre Dame, Notre Dame, IN, 46556, USA
df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbbUniversity of Notre Dame, USADepartment of Computer Science and Engineering
368d59cf1733af511ed8abbcbeb4fb47afd4da1cUniversity of Notre Dame, USADepartment of Computer Science and Engineering
6bcee7dba5ed67b3f9926d2ae49f9a54dee64643University of Notre Dame. Notre Dame, IN 46556.USA
721e5ba3383b05a78ef1dfe85bf38efa7e2d611dUniversity of Nottingham
66dcd855a6772d2731b45cfdd75f084327b055c2University of Nottingham Ningbo China
66dcd855a6772d2731b45cfdd75f084327b055c2University of Nottingham Ningbo China
7c1cfab6b60466c13f07fe028e5085a949ec8b30University of Nottingham, Ningbo China
7c1cfab6b60466c13f07fe028e5085a949ec8b30University of Nottingham, Ningbo China
7c1cfab6b60466c13f07fe028e5085a949ec8b30University of Nottingham, Ningbo China
32ecbbd76fdce249f9109594eee2d52a1cafdfc7University of Nottingham, Ningbo, China
32ecbbd76fdce249f9109594eee2d52a1cafdfc7University of Nottingham, Ningbo, China
32ecbbd76fdce249f9109594eee2d52a1cafdfc7University of Nottingham, Ningbo, China
8b2e3805b37c18618b74b243e7a6098018556559University of Nottingham, Nottingham, UK
cb13e29fb8af6cfca568c6dc523da04d1db1fff5University of Nottingham, School of Psychology, University Park, Nottingham NG
529b1f33aed49dbe025a99ac1d211c777ad881ecUniversity of Nottingham, UK, School of Computer Science
8acdc4be8274e5d189fb67b841c25debf5223840University of Ontario Institute
6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6University of Oradea
09cf3f1764ab1029f3a7d57b70ae5d5954486d69University of Oradea 410087, Universitatii 1, Romania
372fb32569ced35eaf3740a29890bec2be1869faUniversity of Otago
372fb32569ced35eaf3740a29890bec2be1869faUniversity of Otago, Dunedin, New ZealandDepartment of Psychology
16820ccfb626dcdc893cc7735784aed9f63cbb70University of Ottawa
65293ecf6a4c5ab037a2afb4a9a1def95e194e5fUniversity of Ottawa
40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60University of Ottawa, Canada
a3f684930c5c45fcb56a2b407d26b63879120cbfUniversity of Ottawa, Ottawa, On, Canada
e793f8644c94b81b7a0f89395937a7f8ad428a89University of Ottawa, Ottawa, On, Canada
1fe121925668743762ce9f6e157081e087171f4cUniversity of Oulu
14bca107bb25c4dce89210049bf39ecd55f18568University of Oulu
6fef65bd7287b57f0c3b36bf8e6bc987fd161b7dUniversity of Oulu, Finland
0568fc777081cbe6de95b653644fec7b766537b2University of Oulu, FinlandDepartment of Computer Science and Engineering
4e1836914bbcf94dc00e604b24b1b0d6d7b61e66University of Oulu, Finland
72a5e181ee8f71b0b153369963ff9bfec1c6b5b0University of Oulu, Finland
5bd3d08335bb4e444a86200c5e9f57fd9d719e14University of Oulu, Finland
2edc6df161f6aadbef9c12408bdb367e72c3c967University of Oulu, Finland
2edc6df161f6aadbef9c12408bdb367e72c3c967University of Oulu, Finland
2edc6df161f6aadbef9c12408bdb367e72c3c967University of Oulu, Finland
2edc6df161f6aadbef9c12408bdb367e72c3c967University of Oulu, Finland
2edc6df161f6aadbef9c12408bdb367e72c3c967University of Oulu, Finland
496074fcbeefd88664b7bd945012ca22615d812eUniversity of Oviedo, Campus de Viesques, 33204 Gij nDepartment of Computer Science and Engineering
61e9e180d3d1d8b09f1cc59bdd9f98c497707effUniversity of OxfordDepartment of Engineering Science
3e3f305dac4fbb813e60ac778d6929012b4b745aUniversity of OxfordDepartment of Engineering Science
03b99f5abe0e977ff4c902412c5cb832977cf18eUniversity of Oxford
56e079f4eb40744728fd1d7665938b06426338e5University of Oxford
56e079f4eb40744728fd1d7665938b06426338e5University of Oxford
0e1a18576a7d3b40fe961ef42885101f4e2630f8University of Oxford
ada42b99f882ba69d70fff68c9ccbaff642d5189University of Oxford
e569f4bd41895028c4c009e5b46b935056188e91University of Oxford
e5fbffd3449a2bfe0acb4ec339a19f5b88fff783University of Oxford
f5aee1529b98136194ef80961ba1a6de646645feUniversity of Oxford
187d4d9ba8e10245a34f72be96dd9d0fb393b1aaUniversity of Oxford
4b0a2937f64df66cadee459a32ad7ae6e9fd7ed2University of OxfordDepartment of Engineering Science
75ebe1e0ae9d42732e31948e2e9c03d680235c39University of OxfordDepartment of Engineering Science
44f23600671473c3ddb65a308ca97657bc92e527University of Oxford
8895d6ae9f095a8413f663cc83f5b7634b3dc805University of Oxford
0055c7f32fa6d4b1ad586d5211a7afb030ca08ccUniversity of Oxford
3619a9b46ad4779d0a63b20f7a6a8d3d49530339University of Oxford
3107085973617bbfc434c6cb82c87f2a952021b7University of Oxford
62fd622b3ca97eb5577fd423fb9efde9a849cbefUniversity of OxfordNuffield Department of Obstetrics and Gynaecology
b13e2e43672e66ba45d1b852a34737e4ce04226bUniversity of Oxford
aa127e6b2dc0aaccfb85e93e8b557f83ebee816bUniversity of Oxford
dbb16032dd8f19bdfd045a1fc0fc51f29c70f70aUniversity of Oxford
db428d03e3dfd98624c23e0462817ad17ef14493University of Oxford
f61d5f2a082c65d5330f21b6f36312cc4fab8a3bUniversity of Oxford
e00241f00fb31c660df6c6f129ca38370e6eadb3University of Oxford
8cb403c733a5f23aefa6f583a17cf9b972e35c90University of Oxford
7117ed0be436c0291bc6fb6ea6db18de74e2464aUniversity of Oxford
2e3c893ac11e1a566971f64ae30ac4a1f36f5bb5University of Oxford
8ec82da82416bb8da8cdf2140c740e1574eaf84fUniversity of Oxford
d3b18ba0d9b247bfa2fb95543d172ef888dfff95University of Oxford 4Massachusetts Institute of Technology 5Google Research
3e40991ab1daa2a4906eb85a5d6a01a958b6e674University of Oxford, Oxford, UKDepartment of Computer Science
6ca2c5ff41e91c34696f84291a458d1312d15bf2University of Oxford, Oxford, UKDepartment of Computer Science
7ac9aaafe4d74542832c273acf9d631cb8ea6193University of Oxford, Oxford, UKDepartment of Engineering Science
3ca5d3b8f5f071148cb50f22955fd8c1c1992719University of Oxford, Oxford, United KingdomComputer Science Department
4157e45f616233a0874f54a59c3df001b9646cd7University of Oxford, Oxford, United KingdomDepartment of Engineering Science
27a00f2490284bc0705349352d36e9749dde19abUniversity of Oxford, UK
28c0cb56e7f97046d6f3463378d084e9ea90a89aUniversity of Oxford, UKEngineering Department
7ebb153704706e457ab57b432793d2b6e5d12592University of Oxford, UK
ff1f45bdad41d8b35435098041e009627e60d208University of Oxford, UK
36df81e82ea5c1e5edac40b60b374979a43668a5University of Oxford, United KingdomDepartment of Engineering Science
9be653e1bc15ef487d7f93aad02f3c9552f3ee4aUniversity of Paderborn, Germany
06d7ef72fae1be206070b9119fb6b61ce4699587University of Patras, Greece
0729628db4bb99f1f70dd6cb2353d7b76a9fce47University of PennsylvaniaDepartment of Electrical and Systems Engineering
3af1a375c7c1decbcf5c3a29774e165cafce390cUniversity of Pennsylvania
3af1a375c7c1decbcf5c3a29774e165cafce390cUniversity of Pennsylvania
466184b10fb7ce9857e6b5bd6b4e5003e09a0b16University of Pennsylvania
466184b10fb7ce9857e6b5bd6b4e5003e09a0b16University of Pennsylvania
96578785836d7416bf2e9c154f687eed8f93b1e4University of Pennsylvania Medical Center, Hospital of the University of Pennsylvaniad Department of Psychiatry
96578785836d7416bf2e9c154f687eed8f93b1e4University of Pennsylvania Medical Center, Hospital of the University of Pennsylvaniae Department of Neurology and Radiology
f43eeb578e0ca48abfd43397bbd15825f94302e4University of Pennsylvania School of Medicine, 1013 Blockley Hall
8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2bUniversity of Pennsylvania, 2Ryerson University
3506518d616343d3083f4fe257a5ee36b376b9e1University of Perugia
367f2668b215e32aff9d5122ce1f1207c20336c8University of Peshawar, PakistanDepartment of Electronics
3d1a6a5fd5915e0efb953ede5af0b23debd1fc7fUniversity of Peshawar, Peshawar, PakistanDepartment of Electronics
3d1a6a5fd5915e0efb953ede5af0b23debd1fc7fUniversity of Peshawar, Peshawar, PakistanDepartment of Computer Science
367f2668b215e32aff9d5122ce1f1207c20336c8University of Peshawar, Peshawar, PakistanDepartment of Computer Science
38787338ba659f0bfbeba11ec5b7748ffdbb1c3dUniversity of PiraeusDepartment of Informatics
2dced31a14401d465cd115902bf8f508d79de076University of Pisa, Largo Lucio
2dced31a14401d465cd115902bf8f508d79de076University of Pisa, Pisa, ItalyInformation Engineering Department
6a657995b02bc9dee130701138ea45183c18f4aeUniversity of Pittsburgh
580e48d3e7fe1ae0ceed2137976139852b1755dfUniversity of Pittsburgh
c72e6992f44ce75a40f44be4365dc4f264735cfbUniversity of Pittsburgh
4c8e5fc0877d066516bb63e6c31eb1b8b5f967ebUniversity of Pittsburgh
4d15254f6f31356963cc70319ce416d28d8924a3University of Pittsburgh
4d0b3921345ae373a4e04f068867181647d57d7dUniversity of Pittsburgh
6eece104e430829741677cadc1dfacd0e058d60fUniversity of Pittsburgh
3146fabd5631a7d1387327918b184103d06c2211University of Pittsburgh
3fb4bf38d34f7f7e5b3df36de2413d34da3e174aUniversity of Pittsburgh
a8154d043f187c6640cb6aedeaa8385a323e46cfUniversity of Pittsburgh
e8c9dcbf56714db53063b9c367e3e44300141ff6University of Pittsburgh
23fc83c8cfff14a16df7ca497661264fc54ed746University of Pittsburgh
1ca8c09abb73a02519d8db77e4fe107acfc589b6University of Pittsburgh
ae9257f3be9f815db8d72819332372ac59c1316bUniversity of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6University of Pittsburgh, PA, USA
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6University of Pittsburgh, PA, USA
24b37016fee57057cf403fe2fc3dda78476a8262University of Pittsburgh, PittsburghDepartment of Psychology
39c48309b930396a5a8903fdfe781d3e40d415d0University of Pittsburgh, Pittsburgh PADepartment of Psychology
66b9d954dd8204c3a970d86d91dd4ea0eb12db47University of Pittsburgh, Pittsburgh, PADepartment of Psychology
16f940b4b5da79072d64a77692a876627092d39cUniversity of Pittsburgh, Pittsburgh, PADepartment of Psychology
19878141fbb3117d411599b1a74a44fc3daf296dUniversity of Pittsburgh, Pittsburgh, PADepartment of Psychology
2a9b398d358cf04dc608a298d36d305659e8f607University of Pittsburgh, Pittsburgh, PADepartment of Psychology
064cd41d323441209ce1484a9bba02a22b625088University of Pittsburgh, Pittsburgh, PADepartment of Psychology
630d1728435a529d0b0bfecb0e7e335f8ea2596dUniversity of Pittsburgh, Pittsburgh, PADepartment of Psychology
8e0ede53dc94a4bfcf1238869bf1113f2a37b667University of Pittsburgh, Pittsburgh, PADepartment of Psychology
03167776e17bde31b50f294403f97ee068515578University of Pittsburgh, Pittsburgh, PA 15260, USADepartment of Psychology
c660500b49f097e3af67bb14667de30d67db88e3University of Pittsburgh, Pittsburgh, PA 15260, USAb Department of Psychology
0b183f5260667c16ef6f640e5da50272c36d599bUniversity of Pittsburgh, Pittsburgh, PA, USADepartment of Psychology
fdff2da5bdca66e0ab5874ef58ac2205fb088ed7University of Pittsburgh, Pittsburgh, PA, USADepartment of Psychology
1ac2882559a4ff552a1a9956ebeadb035cb6df5bUniversity of Pittsburgh, Pittsburgh, PA, USADepartment of Psychology
05a0d04693b2a51a8131d195c68ad9f5818b2ce1University of Pittsburgh, Pittsburgh, USADepartment of Electrical and Computer Engineering
98af221afd64a23e82c40fd28d25210c352e41b7University of Pittsburgh, Pittsburgh, USADepartment of Psychology
dfd934ae448a1b8947d404b01303951b79b13801University of Plymouth, UK
86b6de59f17187f6c238853810e01596d37f63cdUniversity of Posts and Telecommunications
86b6de59f17187f6c238853810e01596d37f63cdUniversity of Posts and Telecommunications
86b6de59f17187f6c238853810e01596d37f63cdUniversity of Posts and Telecommunications
86b6de59f17187f6c238853810e01596d37f63cdUniversity of Posts and Telecommunications
1b41d4ffb601d48d7a07dbbae01343f4eb8cc38cUniversity of Queensland, Australia
86f3552b822f6af56cb5079cc31616b4035ccc4eUniversity of Queensland, Brisbane, Australia
0cdb49142f742f5edb293eb9261f8243aee36e12University of Queensland, School of ITEE, QLD 4072, Australia
2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5ccUniversity of Queensland, School of ITEE, QLD 4072, Australia
2e8a0cc071017845ee6f67bd0633b8167a47abedUniversity of Queensland, School of ITEE, QLD 4072, Australia
fab2fc6882872746498b362825184c0fb7d810e4University of Queensland, St Lucia QLD Australia, 5 Institut Universitaire de France, Paris, France
d6ca3dc01de060871839d5536e8112b551a7f9ffUniversity of Rochester
d6ca3dc01de060871839d5536e8112b551a7f9ffUniversity of Rochester
d6ca3dc01de060871839d5536e8112b551a7f9ffUniversity of Rochester
d6ca3dc01de060871839d5536e8112b551a7f9ffUniversity of Rochester
c6608fdd919f2bc4f8d7412bab287527dcbcf505University of Rochester
682760f2f767fb47e1e2ca35db3becbb6153756fUniversity of Rochester and J. Luo, University of RochesterComputer Science Department
1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9University of Rochester, NY 14627, USA
1e94cc91c5293c8fc89204d4b881552e5b2ce672University of Rochester, Rochester, NY, USADepartment of Computer Science
4ab84f203b0e752be83f7f213d7495b04b1c4c79University of S ao Paulo
66e9fb4c2860eb4a15f713096020962553696e12University of S ao Paulo - USP, S ao Paulo - Brazil
a3c8c7da177cd08978b2ad613c1d5cb89e0de741University of S ao Paulo, S ao Paulo, Brazil
efd28eabebb9815e34031316624e7f095c7dfcfeUniversity of Salzburg, AustriaDepartment of Computer Sciences
4526992d4de4da2c5fae7a5ceaad6b65441adf9dUniversity of Santiago de Compostela, Santiago de Compostela, Spain
1b4bc7447f500af2601c5233879afc057a5876d8University of Science and
1b4bc7447f500af2601c5233879afc057a5876d8University of Science and
06560d5721ecc487a4d70905a485e22c9542a522University of Science and Technology
29e793271370c1f9f5ac03d7b1e70d1efa10577cUniversity of Science and Technology Beijing
15f70a0ad8903017250927595ae2096d8b263090University of Science and Technology Beijing
d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4eUniversity of Science and Technology Beijing, Beijing, China
56c700693b63e3da3b985777da6d9256e2e0dc21University of Science and Technology of China
6754c98ba73651f69525c770fb0705a1fae78eb5University of Science and Technology of China
0ec1673609256b1e457f41ede5f21f05de0c054fUniversity of Science and Technology of China
19e62a56b6772bbd37dfc6b8f948e260dbb474f5University of Science and Technology of ChinaDepartment of Automation
3107316f243233d45e3c7e5972517d1ed4991f91University of Science and Technology of China
084bd02d171e36458f108f07265386f22b34a1aeUniversity of Science and Technology of China
52bf00df3b970e017e4e2f8079202460f1c0e1bdUniversity of Science and Technology of China
a0d6390dd28d802152f207940c7716fe5fae8760University of Science and Technology of China
dcc38db6c885444694f515d683bbb50521ff3990University of Science and Technology of China
e1256ff535bf4c024dd62faeb2418d48674ddfa2University of Science and Technology of China
cb2917413c9b36c3bb9739bce6c03a1a6eb619b3University of Science and Technology of China
2b10a07c35c453144f22e8c539bf9a23695e85fcUniversity of Science and Technology of China
1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9University of Science and Technology of China, Hefei 230026, P. R. China
539287d8967cdeb3ef60d60157ee93e8724efcacUniversity of Science and Technology of China, Hefei, 230027, ChinaDepartment of Automation
aeaf5dbb3608922246c7cd8a619541ea9e4a7028University of Science and Technology of China, Hefei, Anhui, China
1c2724243b27a18a2302f12dea79d9a1d4460e35University of Science and Technology of China, Hefei, Anhui, P. R. China
b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3University of Science and Technology of China, Hefei, China
2c258eec8e4da9e65018f116b237f7e2e0b2ad17University of Science and Technology of China, Hefei, China
51faacfa4fb1e6aa252c6970e85ff35c5719f4ffUniversity of Science and Technology of China, Key Laboratory of Electromagnetic
b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4University of Science and Technology, Wuhan, 430074, China
76d939f73a327bf1087d91daa6a7824681d76ea1University of Science, Ho Chi Minh city
67c703a864aab47eba80b94d1935e6d244e00bcbUniversity of Science, VNU-HCM, Viet NamDepartment of Computer Vision and Robotics
a5625cfe16d72bd00e987857d68eb4d8fc3ce4fbUniversity of Science, VNU-HCMC, Ho Chi Minh city, Vietnam
f94f366ce14555cf0d5d34248f9467c18241c3eeUniversity of Science, Vietnam National University, HCMC
b85580ff2d8d8be0a2c40863f04269df4cd766d9University of Science, Vietnam National University-Ho Chi Minh city
8a3bb63925ac2cdf7f9ecf43f71d65e210416e17University of Sfax
dc7df544d7c186723d754e2e7b7217d38a12fcf7University of Sfax
dc7df544d7c186723d754e2e7b7217d38a12fcf7University of Sfax
3bd1d41a656c8159305ba2aa395f68f41ab84f31University of Shef eld, Regent Court, 211 Portobello, Shef eldDepartment of Computer Science
a51d5c2f8db48a42446cc4f1718c75ac9303cb7aUniversity of Shef eld, UK
1e058b3af90d475bf53b3f977bab6f4d9269e6e8University of Shef eld, UKDepartment of Computer Science and Sheffield Institute for Translational Neuroscience
1e058b3af90d475bf53b3f977bab6f4d9269e6e8University of Shef eld, UKDepartment of Computer Science and Sheffield Institute for Translational Neuroscience
309e17e6223e13b1f76b5b0eaa123b96ef22f51bUniversity of Siegen
126214ef0dcef2b456cb413905fa13160c73ec8eUniversity of Siena
3ebce6710135d1f9b652815e59323858a7c60025University of Siena, Siena, Italycid:3)Department of Information Engineering
3a0ea368d7606030a94eb5527a12e6789f727994University of Siena, Siena, ItalyDepartment of Information Engineering
faeefc5da67421ecd71d400f1505cfacb990119cUniversity of Sk vde, Sweden
faeefc5da67421ecd71d400f1505cfacb990119cUniversity of Sk vde, Sweden
faeefc5da67421ecd71d400f1505cfacb990119cUniversity of Sk vde, Sweden
d280bcbb387b1d548173917ae82cb6944e3ceca6University of South Carolina, Columbia, USADepartment of Computer Science and Engineering
3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8University of South Carolina, USADepartment of Computer Science and Engineering
73b90573d272887a6d835ace89bfaf717747c59bUniversity of South Carolina, USADepartment of Computer Science
c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0University of South Florida, Tampa, Florida, USA
6f9824c5cb5ac08760b08e374031cbdabc953baeUniversity of Southampton
f7a271acccf9ec66c9b114d36eec284fbb89c7efUniversity of Southampton
f7a271acccf9ec66c9b114d36eec284fbb89c7efUniversity of Southampton
248db911e3a6a63ecd5ff6b7397a5d48ac15e77aUniversity of Southampton
8bbbdff11e88327816cad3c565f4ab1bb3ee20dbUniversity of Southampton
1d1caaa2312390260f7d20ad5f1736099818d358University of Southampton, SO17 1BJ, UK
d3e04963ff42284c721f2bc6a90b7a9e20f0242fUniversity of Southampton, UK, 2University of Warwick, UK
7d41b67a641426cb8c0f659f0ba74cdb60e7159aUniversity of Southampton, United Kingdom
443acd268126c777bc7194e185bec0984c3d1ae7University of Southampton, United Kingdom
0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2University of Southern California
0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2University of Southern California
0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2University of Southern California
0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2University of Southern California
59d225486161b43b7bf6919b4a4b4113eb50f039University of Southern California
a301ddc419cbd900b301a95b1d9e4bb770afc6a3University of Southern California
b5cd9e5d81d14868f1a86ca4f3fab079f63a366dUniversity of Southern California
4e7ed13e541b8ed868480375785005d33530e06dUniversity of Southern California
4e7ed13e541b8ed868480375785005d33530e06dUniversity of Southern California
87e6cb090aecfc6f03a3b00650a5c5f475dfebe1University of Southern California
74ce7e5e677a4925489897665c152a352c49d0a2University of Southern California
101d4cfbd6f8a7a10bd33505e2b183183f1d8770University of Southern California
4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56University of Southern California
43e99b76ca8e31765d4571d609679a689afdc99eUniversity of Southern California
3634b4dd263c0f330245c086ce646c9bb748cd6bUniversity of Southern California
53e081f5af505374c3b8491e9c4470fe77fe7934University of Southern California
081189493ca339ca49b1913a12122af8bb431984University of Southern California
06bad0cdda63e3fd054e7b334a5d8a46d8542817University of Southern California
632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6cUniversity of Southern California
6341274aca0c2977c3e1575378f4f2126aa9b050University of Southern California
b73795963dc623a634d218d29e4a5b74dfbc79f1University of Southern California
e0244a8356b57a5721c101ead351924bcfb2eef4University of Southern California
1297ee7a41aa4e8499c7ddb3b1fed783eba19056University of Southern California
1297ee7a41aa4e8499c7ddb3b1fed783eba19056University of Southern California
1297ee7a41aa4e8499c7ddb3b1fed783eba19056University of Southern California
1297ee7a41aa4e8499c7ddb3b1fed783eba19056University of Southern California
1cad5d682393ffbb00fd26231532d36132582bb4University of Southern California
93f37c69dd92c4e038710cdeef302c261d3a4f92University of Southern California, 4A9, 5Amazon
88f7a3d6f0521803ca59fde45601e94c3a34a403University of Southern California, Institute for Robotics and Intelligent Systems
1b635f494eff2e5501607ebe55eda7bdfa8263b8University of Southern California, Institute for Robotics and Intelligent Systems
eb6ee56e085ebf473da990d032a4249437a3e462University of Southern California, Los Angeles, CA 90089, USA
1b5875dbebc76fec87e72cee7a5263d325a77376University of St Andrews, United Kingdom
98c2053e0c31fab5bcb9ce5386335b647160cc09University of Stuttgart
57f5711ca7ee5c7110b7d6d12c611d27af37875fUniversity of Surrey
57f5711ca7ee5c7110b7d6d12c611d27af37875fUniversity of Surrey
3c6cac7ecf546556d7c6050f7b693a99cc8a57b3University of Surrey
3c6cac7ecf546556d7c6050f7b693a99cc8a57b3University of Surrey
c79cf7f61441195404472102114bcf079a72138aUniversity of Surrey
c79cf7f61441195404472102114bcf079a72138aUniversity of Surrey
89f4bcbfeb29966ab969682eae235066a89fc151University of Surrey
8a0159919ee4e1a9f4cbfb652a1be212bf0554fdUniversity of Surrey
2a0623ae989f2236f5e1fe3db25ab708f5d02955University of Surrey
2a0623ae989f2236f5e1fe3db25ab708f5d02955University of Surrey
8862a573a42bbaedd392e9e634c1ccbfd177a01dUniversity of Surrey
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3University of Surrey
9103148dd87e6ff9fba28509f3b265e1873166c9University of Surrey
9103148dd87e6ff9fba28509f3b265e1873166c9University of Surrey
5b97e997b9b654373bd129b3baf5b82c2def13d1University of Surrey
d35c82588645b94ce3f629a0b98f6a531e4022a3University of Surrey
d35c82588645b94ce3f629a0b98f6a531e4022a3University of Surrey
de15af84b1257211a11889b6c2adf0a2bcf59b42University of Surrey
de15af84b1257211a11889b6c2adf0a2bcf59b42University of Surrey
120bcc9879d953de7b2ecfbcd301f72f3a96fb87University of Surrey
8b74252625c91375f55cbdd2e6415e752a281d10University of Surrey
8b74252625c91375f55cbdd2e6415e752a281d10University of Surrey
8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259University of Surrey
01d23cbac762b0e46251f5dbde08f49f2d13b9f8University of Surrey, Guildford, Surrey GU2 7XH, UK
4f9e00aaf2736b79e415f5e7c8dfebda3043a97dUniversity of Surrey, UK
11cc0774365b0cc0d3fa1313bef3d32c345507b1University of Surrey, United Kingdom
08d55271589f989d90a7edce3345f78f2468a7e0University of Sydney
26437fb289cd7caeb3834361f0cc933a02267766University of Szeged, 2 E tv s Lor nd University
581e920ddb6ecfc2a313a3aa6fed3d933b917ab0University of T ubingen, T ubingen, Germany
512b4c8f0f3fb23445c0c2dab768bcd848fa8392University of Tabriz, Tabriz, Iran
40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60University of Tabriz, Tabriz, Iran
40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60University of Tabriz, Tabriz, Iran
75fcbb01bc7e53e9de89cb1857a527f97ea532ceUniversity of Tampere
bf03f0fe8f3ba5b118bdcbb935bacb62989ecb11University of Tampere, Kanslerinnrinne 1, 33014, Tampere, Finland
0b84f07af44f964817675ad961def8a51406dd2eUniversity of Technology Sydney
bd21109e40c26af83c353a3271d0cd0b5c4b4adeUniversity of Technology Sydney
bd21109e40c26af83c353a3271d0cd0b5c4b4adeUniversity of Technology Sydney
533d14e539ae5cdca0ece392487a2b19106d468aUniversity of Technology Sydney
7f23a4bb0c777dd72cca7665a5f370ac7980217eUniversity of Technology Sydney
bbf28f39e5038813afd74cf1bc78d55fcbe630f1University of Technology Sydney, 2 The University of Sydney
73b90573d272887a6d835ace89bfaf717747c59bUniversity of Technology, Australia
d963e640d0bf74120f147329228c3c272764932bUniversity of Technology, Baghdad, IraqComputer Science Department
9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7University of Technology, Guangzhou, 510640, P.R.China
c696c9bbe27434cb6279223a79b17535cd6e88c8University of Technology, Guangzhou, 510640, P.R.China
3b64efa817fd609d525c7244a0e00f98feacc8b4University of Technology, Sydney
28f5138d63e4acafca49a94ae1dc44f7e9d84827University of Technology, Sydney
28f5138d63e4acafca49a94ae1dc44f7e9d84827University of Technology, Sydney
120bcc9879d953de7b2ecfbcd301f72f3a96fb87University of Technology, Sydney
57f7d8c6ec690bd436e70d7761bc5f46e993be4cUniversity of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
131178dad3c056458e0400bed7ee1a36de1b2918University of Technology, Sydney, Australia
c2e03efd8c5217188ab685e73cc2e52c54835d1aUniversity of Tennessee, Knoxville
0182d090478be67241392df90212d6cd0fb659e6University of Texas
60040e4eae81ab6974ce12f1c789e0c05be00303University of Texas atPresent address: Mechanical Engineering Department
04ff69aa20da4eeccdabbe127e3641b8e6502ec0University of Texas at Arlington
6a5fe819d2b72b6ca6565a0de117c2b3be448b02University of Texas at Arlington
10e12d11cb98ffa5ae82343f8904cfe321ae8004University of Texas at Arlington
86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cdUniversity of Texas at Arlington
e1c59e00458b4dee3f0e683ed265735f33187f77University of Texas at Arlington
d785fcf71cb22f9c33473cba35f075c1f0f06ffcUniversity of Texas at Arlington, Arlington, TXDepartment of Computer Science and Engineering
c2fa83e8a428c03c74148d91f60468089b80c328University of Texas at Arlington, Arlington, TXComputer Science and Engineering Department
0faeec0d1c51623a511adb779dabb1e721a6309bUniversity of Texas at Arlington, Arlington, TX, USA
33ba256d59aefe27735a30b51caf0554e5e3a1dfUniversity of Texas at Arlington, Arlington, Texas 76019, USA
612075999e82596f3b42a80e6996712cc52880a3University of Texas at Arlington, TX, USAComputer Science and Engineering Department
7f6599e674a33ed64549cd512ad75bdbd28c7f6cUniversity of Texas at Arlington, TX, USA
701f56f0eac9f88387de1f556acef78016b05d52University of Texas at Arlington, TX, USA, 2Beihang University, Beijing, China
54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7University of Texas at Arlington, Texas, USADepartment of Computer Science and Engineering
3be027448ad49a79816cd21dcfcce5f4e1cec8a8University of Texas at Austin
51cb09ee04831b95ae02e1bee9b451f8ac4526e3University of Texas at Austin
0ea38a5ba0c8739d1196da5d20efb13406bb6550University of Texas at Austin
5fea26746f3140b12317fcf3bc1680f2746e172eUniversity of Texas at Austin
5fea26746f3140b12317fcf3bc1680f2746e172eUniversity of Texas at Austin
a2b9cee7a3866eb2db53a7d81afda72051fe9732University of Texas at Austin
1862bfca2f105fddfc79941c90baea7db45b8b16University of Texas at AustinDepartment of Computer Science
27218ff58c3f0e7d7779fba3bb465d746749ed7cUniversity of Texas at Austin
4bb03b27bc625e53d8d444c0ba3ee235d2f17e86University of Texas at Austin
45513d0f2f5c0dac5b61f9ff76c7e46cce62f402University of Texas at Austin
1aef6f7d2e3565f29125a4871cd60c4d86c48361University of Texas at Austin
28f311b16e4fe4cc0ff6560aae3bbd0cb6782966University of Texas at Austin
21104bcf07ef0269ab133471a3200b9bf94b2948University of Texas at Austin
06bad0cdda63e3fd054e7b334a5d8a46d8542817University of Texas at Austin
a1dd806b8f4f418d01960e22fb950fe7a56c18f1University of Texas at Austin
f6e00d6430cbbaa64789d826d093f7f3e323b082University of Texas at Austin
82f8652c2059187b944ce65e87bacb6b765521f6University of Texas at Austin
6c690af9701f35cd3c2f6c8d160b8891ad85822aUniversity of Texas at San Antonio
e0bfcf965b402f3f209f26ae20ee88bc4d0002abUniversity of Texas at San Antonio
e0bfcf965b402f3f209f26ae20ee88bc4d0002abUniversity of Texas at San Antonio
e0bfcf965b402f3f209f26ae20ee88bc4d0002abUniversity of Texas at San Antonio
e0bfcf965b402f3f209f26ae20ee88bc4d0002abUniversity of Texas at San Antonio
e0bfcf965b402f3f209f26ae20ee88bc4d0002abUniversity of Texas at San Antonio
86d0127e1fd04c3d8ea78401c838af621647dc95University of Texas at San Antonio, USADepartment of Computer Science
869a2fbe42d3fdf40ed8b768edbf54137be7ac71University of Texas, Austin
47f5f740e225281c02c8a2ae809be201458a854fUniversity of Texas, Austin, TX 78712-1188, USADepartment of Computer Sciences
00e9011f58a561500a2910a4013e6334627dee60University of Thessaloniki
329394480fc5e9e96de4250cc1a2b060c3677c94University of Tokyo
329394480fc5e9e96de4250cc1a2b060c3677c94University of Tokyo
329394480fc5e9e96de4250cc1a2b060c3677c94University of Tokyo
f781e50caa43be13c5ceb13f4ccc2abc7d1507c5University of Tokyo
9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6University of Tokyo, 4-6-1 Shirokanedai
be5276e9744c4445fe5b12b785650e8f173f56ffUniversity of Tokyo, Japan
1a167e10fe57f6d6eff0bb9e45c94924d9347a3eUniversity of Tokyo, Japan
1a167e10fe57f6d6eff0bb9e45c94924d9347a3eUniversity of Tokyo, Japan
611961abc4dfc02b67edd8124abb08c449f5280aUniversity of Toronto
57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1University of Toronto
ad9cb522cc257e3c5d7f896fe6a526f6583ce46fUniversity of Toronto
fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192University of TorontoDepartment of Computer Science
ed96f2eb1771f384df2349879970065a87975ca7University of Toronto
ed96f2eb1771f384df2349879970065a87975ca7University of Toronto
4ed54d5093d240cc3644e4212f162a11ae7d1e3bUniversity of Toronto
117f164f416ea68e8b88a3005e55a39dbdf32ce4University of Toronto
7d2556d674ad119cf39df1f65aedbe7493970256University of Toronto
36a3a96ef54000a0cd63de867a5eb7e84396de09University of Toronto
cd4941cbef1e27d7afdc41b48c1aff5338aacf06University of Toronto
15e27f968458bf99dd34e402b900ac7b34b1d575University of Toronto
824d1db06e1c25f7681e46199fd02cb5fc343784University of Toronto
2e1fd8d57425b727fd850d7710d38194fa6e2654University of Toronto
13c250fb740cb5616aeb474869db6ab11560e2a6University of Toronto
22717ad3ad1dfcbb0fd2f866da63abbde9af0b09University of Toronto
2cac8ab4088e2bdd32dcb276b86459427355085cUniversity of Toronto 2Vector Institute
4f77a37753c03886ca9c9349723ec3bbfe4ee967University of Toronto and Recognyz Systems Technologies
025720574ef67672c44ba9e7065a83a5d6075c36University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA
49e975a4c60d99bcc42c921d73f8d89ec7130916University of Toronto, Canadaa Department of Psychology
a538b05ebb01a40323997629e171c91aa28b8e2fUniversity of Toronto, Toronto, ON M5S 2G4, CanadaDepartment of Computer Science
1b71d3f30238cb6621021a95543cce3aab96a21bUniversity of Toronto1, Twenty Billion Neurons
b3f3d6be11ace907c804c2d916830c85643e468dUniversity of Toulouse
b3f3d6be11ace907c804c2d916830c85643e468dUniversity of Toulouse II Le Mirail
3506518d616343d3083f4fe257a5ee36b376b9e1University of Trento
3506518d616343d3083f4fe257a5ee36b376b9e1University of Trento
4bc9a767d7e63c5b94614ebdc24a8775603b15c9University of Trento
650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772University of Trento
558fc9a2bce3d3993a9c1f41b6c7f290cefcf92fUniversity of Trento
679b7fa9e74b2aa7892eaea580def6ed4332a228University of Trento, Italy
be5276e9744c4445fe5b12b785650e8f173f56ffUniversity of Trento, Italy
b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172University of Trento, Italy
1a167e10fe57f6d6eff0bb9e45c94924d9347a3eUniversity of Trento, Italy
1a167e10fe57f6d6eff0bb9e45c94924d9347a3eUniversity of Trento, Italy
989332c5f1b22604d6bb1f78e606cb6b1f694e1aUniversity of Trento, ItalyDepartment of Information Engineering and Computer Science
18941b52527e6f15abfdf5b86a0086935706e83bUniversity of Trento, Trento, Italy
90cc2f08a6c2f0c41a9dd1786bae097f9292105eUniversity of Trento, Trento, Italy
7ac9aaafe4d74542832c273acf9d631cb8ea6193University of Trento, Trento, ItalyDepartment of Information Engineering and Computer Science
4a484d97e402ed0365d6cf162f5a60a4d8000ea0University of Tsukuba
63b29886577a37032c7e32d8899a6f69b11a90deUniversity of Tsukuba, Japan
8c81705e5e4a1e2068a5bd518adc6955d49ae434University of Tsukuba, Japan
0de91641f37b0a81a892e4c914b46d05d33fd36eUniversity of Twente
d8722ffbca906a685abe57f3b7b9c1b542adfa0cUniversity of Twente
fd9feb21b3d1fab470ff82e3f03efce6a0e67a1fUniversity of Twente
740e095a65524d569244947f6eea3aefa3cca526University of Twente
1afdedba774f6689eb07e048056f7844c9083be9University of Twente
84e6669b47670f9f4f49c0085311dce0e178b685University of Twente
7a84368ebb1a20cc0882237a4947efc81c56c0c0University of Twente
34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4cUniversity of Twente 2Dublin City University 3Oxford University
46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4University of Twente, EEMCS, Netherlands
cc38942825d3a2c9ee8583c153d2c56c607e61a7University of Twente, Netherlands
27eb7a6e1fb6b42516041def6fe64bd028b7614dUniversity of Twente, The Netherlands
4b3eaedac75ac419c2609e131ea9377ba8c3d4b8University of Twente, The Netherlands
529b1f33aed49dbe025a99ac1d211c777ad881ecUniversity of Twente, The Netherlands
b871d1b8495025ff8a6255514ed39f7765415935University of Ulsan, Ulsan, Republic of KoreaDepartment of Electrical and Computer Engineering
500fbe18afd44312738cab91b4689c12b4e0eeeeUniversity of Venezia
99001ac9fdaf7649c0d0bd8d2078719bafd216d9University of Vermont, 33 Colchester Avenue, BurlingtonDepartment of Computer Science
6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180aUniversity of VeronaDepartment of Computer Science
59e2037f5079794cb9128c7f0900a568ced14c2aUniversity of Verona, Verona, ItalyDepartment of Computer Science
83b7578e2d9fa60d33d9336be334f6f2cc4f218fUniversity of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento
7ebd323ddfe3b6de8368c4682db6d0db7b70df62University of Victoria, Victoria, Canada
081286ede247c5789081502a700b378b6223f94bUniversity of Vienna, Austria
40a74eea514b389b480d6fe8b359cb6ad31b644aUniversity of Vienna, AustriaDepartment Math.
e8686663aec64f4414eba6a0f821ab9eb9f93e38University of Vigo, SpainSignal Theory and Communications Department
aa3c9de34ef140ec812be85bb8844922c35eba47University of Virginia
e8c9dcbf56714db53063b9c367e3e44300141ff6University of Virginia
e8c9dcbf56714db53063b9c367e3e44300141ff6University of Virginia
22f94c43dd8b203f073f782d91e701108909690bUniversity of Virginia
02239ae5e922075a354169f75f684cad8fdfd5abUniversity of Virginia, Charlottesville, VADepartment of Computer Science
706b9767a444de4fe153b2f3bff29df7674c3161University of Waikato, Hamilton, New ZealandDepartment of Computer Science
0bc53b338c52fc635687b7a6c1e7c2b7191f42e5University of Warwick
46e866f58419ff4259c65e8256c1d4f14927b2c6University of WarwickDepartment of Computer Science
2cde051e04569496fb525d7f1b1e5ce6364c8b21University of Warwick
33030c23f6e25e30b140615bb190d5e1632c3d3bUniversity of Washington
057d5f66a873ec80f8ae2603f937b671030035e6University of Washington
d93baa5ecf3e1196b34494a79df0a1933fd2b4ecUniversity of Washington
be28ed1be084385f5d389db25fd7f56cd2d7f7bfUniversity of WashingtonDepartment of Electrical Engineering
b3ba7ab6de023a0d58c741d6abfa3eae67227cafUniversity of Washington
e5b301ee349ba8e96ea6c71782295c4f06be6c31University of Washington
f2c30594d917ea915028668bc2a481371a72a14dUniversity of Washington
113c22eed8383c74fe6b218743395532e2897e71University of Washington
459960be65dd04317dd325af5b7cbb883d822ee4University of Washington
107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53University of Washington
10ca2e03ff995023a701e6d8d128455c6e8db030University of WashingtonDepartment of Computer Science and Engineering
86ed5b9121c02bcf26900913f2b5ea58ba23508fUniversity of Washington
09b80d8eea809529b08a8b0ff3417950c048d474University of Washington
09ce14b84af2dc2f76ae1cf227356fa0ba337d07University of Washington
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0University of Washington
3ada7640b1c525056e6fcd37eea26cd638815cd6University of Washington
08a98822739bb8e6b1388c266938e10eaa01d903University of WashingtonDepartment of Computer Science and Engineering
5253c94f955146ba7d3566196e49fe2edea1c8f4University of Washington
aa3c9de34ef140ec812be85bb8844922c35eba47University of Washington
f87b22e7f0c66225824a99cada71f9b3e66b5742University of Washingtoncid:91) Department of Industrial and Systems Engineering
1ce3a91214c94ed05f15343490981ec7cc810016University of Washington
405526dfc79de98f5bf3c97bf4aa9a287700f15dUniversity of Washington
47638197d83a8f8174cdddc44a2c7101fa8301b7University of Washington
7862f646d640cbf9f88e5ba94a7d642e2a552ec9University of Washington
0e36ada8cb9c91f07c9dcaf196d036564e117536University of Washington 4The Allen Institute for AI
09ce14b84af2dc2f76ae1cf227356fa0ba337d07University of Washington and Google Inc
06850b60e33baa4ea9473811d58c0d5015da079eUniversity of Washington, BothellDepartment of Electrical Engineering
06850b60e33baa4ea9473811d58c0d5015da079eUniversity of Washington, BothellDepartment of Electrical Engineering
6c66ae815e7e508e852ecb122fb796abbcda16a8University of Washington, Bothell, USADepartment of Electrical Engineering
e0244a8356b57a5721c101ead351924bcfb2eef4University of Washington, Seattle
00b29e319ff8b3a521b1320cb8ab5e39d7f42281University of Washington, Seattle, USA
bd0265ba7f391dc3df9059da3f487f7ef17144dfUniversity of Washington, Seattle, WA 98195, United StatesDepartment of Applied Mathematics
bd0265ba7f391dc3df9059da3f487f7ef17144dfUniversity of Washington, Seattle, WA 98195, United StatesDepartment of Biology
bd0265ba7f391dc3df9059da3f487f7ef17144dfUniversity of Washington, Seattle, WA 98195, United StatesDepartment of Mechanical Engineering
e35b09879a7df814b2be14d9102c4508e4db458bUniversity of Washington, Seattle, WA 98195, United StatesDepartment of Applied Mathematics
e35b09879a7df814b2be14d9102c4508e4db458bUniversity of Washington, Seattle, WA 98195, United StatesDepartment of Biology
5c7adde982efb24c3786fa2d1f65f40a64e2afbfUniversity of Washington, Seattle, WA, USA
0d781b943bff6a3b62a79e2c8daf7f4d4d6431adUniversity of Waterloo
0d781b943bff6a3b62a79e2c8daf7f4d4d6431adUniversity of Waterloo
0d781b943bff6a3b62a79e2c8daf7f4d4d6431adUniversity of Waterloo
fc0f5859a111fb17e6dcf6ba63dd7b751721ca61University of Waterloo
4aa093d1986b4ad9b073ac9edfb903f62c00e0b0University of Waterloo
4aa093d1986b4ad9b073ac9edfb903f62c00e0b0University of Waterloo
cfeb26245b57dd10de8f187506d4ed5ce1e2b7ddUniversity of Waterloo, ON, Canada
fbb6ee4f736519f7231830a8e337b263e91f06feUniversity of Waterloo, Waterloo ON N2L3G1, Canada
9825c4dddeb2ed7eaab668b55403aa2c38bc3320University of Waterloo, Waterloo, ON N2L 3G1, CanadabMechanical and Mechatronics Engineering Department
4b4106614c1d553365bad75d7866bff0de6056edUniversity of West Bohemia
4b4106614c1d553365bad75d7866bff0de6056edUniversity of West Bohemia
a6496553fb9ab9ca5d69eb45af1bdf0b60ed86dcUniversity of Western Australia
fd615118fb290a8e3883e1f75390de8a6c68bfdeUniversity of Wisconsin Madison
2e091b311ac48c18aaedbb5117e94213f1dbb529University of Wisconsin Madison
e22adcd2a6a7544f017ec875ce8f89d5c59e09c8University of Wisconsin Madison, USADepartment of Statistics
0eac652139f7ab44ff1051584b59f2dc1757f53bUniversity of Wisconsin Madison
992ebd81eb448d1eef846bfc416fc929beb7d28bUniversity of Wisconsin Madison
228558a2a38a6937e3c7b1775144fea290d65d6cUniversity of Wisconsin Madison
64e75f53ff3991099c3fb72ceca55b76544374e5University of Wisconsin-Madison
77fbbf0c5729f97fcdbfdc507deee3d388cd4889University of Wisconsin-Madison
716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0University of Wisconsin-Madison
3af130e2fd41143d5fc49503830bbd7bafd01f8bUniversity of Wisconsin-Madison, Madison, WI, USADepartment of Computer Sciences
c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3University of Witwatersrand
e59813940c5c83b1ce63f3f451d03d34d2f68082University of Wollongong
7f59657c883f77dc26393c2f9ed3d19bdf51137bUniversity of Wollongong
e59813940c5c83b1ce63f3f451d03d34d2f68082University of Wollongong. For further information contact the UOW
7f59657c883f77dc26393c2f9ed3d19bdf51137bUniversity of Wollongong. For further information contact the UOW
6a4419ce2338ea30a570cf45624741b754fa52cbUniversity of YorkDepartment of Computer Science
0bf0029c9bdb0ac61fda35c075deb1086c116956University of York, Heslington, York YO10 5GH, UKDepartment of Computer Science
dfd934ae448a1b8947d404b01303951b79b13801University of York, UK
ed07856461da6c7afa4f1782b5b607b45eebe9f6University of York, UKDepartment of Computer Science
c146aa6d56233ce700032f1cb179700778557601University of York, UKDepartment of Computer Science
2902f62457fdf7e8e8ee77a9155474107a2f423eUniversity of York, UKDepartment of Computer Science
5e59193a0fc22a0c37301fb05b198dd96df94266University of York, UKDepartment of Computer Science
488a61e0a1c3768affdcd3c694706e5bb17ae548University of York, UKcid:63) Department of Computer Science
fd10b0c771a2620c0db294cfb82b80d65f73900dUniversity of York, York, UK
90c4f15f1203a3a8a5bf307f8641ba54172ead30University of York, York, UKDepartment of Computer Science
877100f430b72c5d60de199603ab5c65f611ce17University of York, York, United KingdomDepartment of Psychology
5c02bd53c0a6eb361972e8a4df60cdb30c6e3930University of Zagreb, Faculty of Electrical Engineering and Computing
59bece468ed98397d54865715f40af30221aa08cUniversity of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
5b59e6b980d2447b2f3042bd811906694e4b0843University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430cUniversity of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
8d646ac6e5473398d668c1e35e3daa964d9eb0f6University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
ffc9d6a5f353e5aec3116a10cf685294979c63d9University of Zagreb, Unska 3, 10 000 Zagreb
774cbb45968607a027ae4729077734db000a1ec5University of Zaragoza, Spain
949699d0b865ef35b36f11564f9a4396f5c9cddbUniversity of Zurich, Zurich, SwitzerlandDepartment of Psychology
f5eb0cf9c57716618fab8e24e841f9536057a28aUniversity of at Urbana-Champaign, Illinois, USADepartment of Computer Science
d142e74c6a7457e77237cf2a3ded4e20f8894e1aUniversity of telecommunications and post, Sofia, Bulgaria
d142e74c6a7457e77237cf2a3ded4e20f8894e1aUniversity of telecommunications and post, Sofia, Bulgaria
72450d7e5cbe79b05839c30a4f0284af5aa80053University of the Basque Country, San Sebastian, Spain
9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6University of the South Paci c, Fiji
c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3University of the Western Cape
8323af714efe9a3cadb31b309fcc2c36c8acba8fUniversity of the Western Cape
48f0055295be7b175a06df5bc6fa5c6b69725785University of the Witwatersrand
b216040f110d2549f61e3f5a7261cab128cab361University, China
6b6ff9d55e1df06f8b3e6f257e23557a73b2df96University, Chitorgarh. (INDIA
3b2d5585af59480531616fe970cb265bbdf63f5bUniversity, Guangzhou, China
b503f481120e69b62e076dcccf334ee50559451eUniversity, Hong Kong
ed0cf5f577f5030ac68ab62fee1cf065349484ccUniversity, Japan
372a8bf0ef757c08551d41e40cb7a485527b6cd7University, Shanghai, China
902114feaf33deac209225c210bbdecbd9ef33b1University, Singapore
490a217a4e9a30563f3a4442a7d04f0ea34442c8University, Taiwan, R.O.C
124538b3db791e30e1b62f81d4101be435ee12efUniversity, USA
81706277ed180a92d2eeb94ac0560f7dc591ee13University, Varanasi, 221005, India
81706277ed180a92d2eeb94ac0560f7dc591ee13University, Varanasi, 221005, India
324f39fb5673ec2296d90142cf9a909e595d82cfUniversity, Xi an Shaanxi Province, Xi an 710049, China
c27f64eaf48e88758f650e38fa4e043c16580d26University: Dhirubhai Ambani Institute of Information and Communication Technology
72bf9c5787d7ff56a1697a3389f11d14654b4fcfUniversityofMaryland
dbd5e9691cab2c515b50dda3d0832bea6eef79f2UniversityofMaryland
2a0efb1c17fbe78470acf01e4601a75735a805ccUniversityofMaryland, CollegePark, MD
2465fc22e03faf030e5a319479a95ef1dfc46e14Ural Federal University (UrFU
c68ec931585847b37cde9f910f40b2091a662e83Usman Institute of Technology
c68ec931585847b37cde9f910f40b2091a662e83Usman Institute of Technology
c68ec931585847b37cde9f910f40b2091a662e83Usman Institute of Technology
7cf8a841aad5b7bdbea46a7bb820790e9ce12d0bUtah State University, Logan UTComputer Science Department
c05441dd1bc418fb912a6fafa84c0659a6850bf0Utah State University, Logan, UT 84322-4205, USADepartment of Computer Science
49f70f707c2e030fe16059635df85c7625b5dc7eUtah State University, Logan, UT 84322-4205, USADepartment of Computer Science
07e639abf1621ceff27c9e3f548fadfa2052c912Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands
a87ab836771164adb95d6744027e62e05f47fd96Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, NetherlandsDepartment of Information and Computing Sciences
a87ab836771164adb95d6744027e62e05f47fd96Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, NetherlandsDepartment of Information and Computing Sciences
57a14a65e8ae15176c9afae874854e8b0f23dca7UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
b32cf547a764a4efa475e9c99a72a5db36eeced6UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
e52be9a083e621d9ed29c8e9914451a6a327ff59UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
893239f17dc2d17183410d8a98b0440d98fa2679UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
99726ad232cef837f37914b63de70d8c5101f4e2VEER SURENDRA SAI UNIVERSITY OF
bc98027b331c090448492eb9e0b9721e812fac84VHNSN College, Virudhunagar, ANJA CollegeIndia; 2Department of Computer Applications
eaaed082762337e7c3f8a1b1dfea9c0d3ca281bfVICTORIA UNIVERSITY OF WELLINGTON
292c6b743ff50757b8230395c4a001f210283a34VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain
7bce4f4e85a3bfcd6bfb3b173b2769b064fce0edVISLab, EBUII-216, University of California Riverside
2f78e471d2ec66057b7b718fab8bfd8e5183d8f4VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
0181fec8e42d82bfb03dc8b82381bb329de00631VSI Lab, Goethe University, Frankfurt, GermanyComputer Science Department
ac8e09128e1e48a2eae5fa90f252ada689f6eae7VU University Amsterdam, Computational Lexicology and Terminology Lab, De
7d2556d674ad119cf39df1f65aedbe7493970256Vector Institute
cd4941cbef1e27d7afdc41b48c1aff5338aacf06Vector Institute
e2d265f606cd25f1fd72e5ee8b8f4c5127b764dfVector Institute for Arti cial Intelligence
2ffcd35d9b8867a42be23978079f5f24be8d3e35Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India
411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8VelTech Dr. R.R. and Dr. S.R. Technical University, ChennaiDepartment of Computer Science and Engineering
89d7cc9bbcd2fdc4f4434d153ecb83764242227bVelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering CollegeDepartment of IT
600025c9a13ff09c6d8b606a286a79c823d89db8Vickram College of Engineering, Enathi, Tamil Nadu, India
eaaed082762337e7c3f8a1b1dfea9c0d3ca281bfVictoria University
3d9db1cacf9c3bb7af57b8112787b59f45927355Victoria University of Wellington
7eaa97be59019f0d36aa7dac27407b004cad5e93Victoria University of Wellington
3f623bb0c9c766a5ac612df248f4a59288e4d29fVictoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
09733129161ca7d65cf56a7ad63c17f493386027Vienna University of Technology
09733129161ca7d65cf56a7ad63c17f493386027Vienna University of Technology
b64cfb39840969b1c769e336a05a30e7f9efcd61Vietnam National University Ho Chi
a59cdc49185689f3f9efdf7ee261c78f9c180789Vietnam National University of Agriculture
086131159999d79adf6b31c1e604b18809e70ba8Villanova University
086131159999d79adf6b31c1e604b18809e70ba8Villanova University
6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19Virginia Polytechnic Institute and State University
b6ef158d95042f39765df04373c01546524c9ccdVirginia Polytechnic Institute and State University
1c4ceae745fe812d8251fda7aad03210448ae25eVirginia Polytechnic Institute and State UniversityBradley Department of Electrical and Computer Engineering
1c4ceae745fe812d8251fda7aad03210448ae25eVirginia Polytechnic Institute and State UniversityBradley Department of Electrical and Computer Engineering
0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056Virginia Polytechnic Institute and State University, BlacksburgDepartment of Psychology
0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056Virginia Polytechnic Institute and State University, BlacksburgDepartment of Computer Science
0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056Virginia Polytechnic Institute and State University, Blacksburg, VirginiaDepartment of Statistics
0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056Virginia Tech Carilion Research InstituteDepartment of Biomedical Engineering and Sciences
d687fa99586a9ad229284229f20a157ba2d41aeaVirudhunagar Hindu Nadars Senthikumara Nadar College, VirudhunagarIndia; 2Department of
bcee40c25e8819955263b89a433c735f82755a03Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal
587c48ec417be8b0334fa39075b3bfd66cc29dbeVision Science Group, University of California
ff9195f99a1a28ced431362f5363c9a5da47a37bVision Science Group, University of California
8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431faVision Systems, Inc
5e0eb34aeb2b58000726540336771053ecd335fcVision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
2ea78e128bec30fb1a623c55ad5d55bb99190bd2Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
50ccc98d9ce06160cdf92aaf470b8f4edbd8b899Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT
4b3f425274b0c2297d136f8833a31866db2f2aecVision and Security Technology Lab, University of Colorado Colorado Springs
ac1d97a465b7cc56204af5f2df0d54f819eef8a6Vision and Security Technology Lab, University of Colorado at Colorado Springs, Colorado
69fb98e11df56b5d7ec7d45442af274889e4be52Vision and Sensing, HCC Lab, ESTeM, University of Canberra
9758f3fd94239a8d974217fe12599f88fb413f3dVision and Sensing, HCC, ESTeM, University of Canberra
087002ab569e35432cdeb8e63b2c94f1abc53ea9Visual Analysis of People Lab, Aalborg University, Denmark
cf805d478aeb53520c0ab4fcdc9307d093c21e52Visual Computing Center, King Abdullah University of Science and Technology (KAUST
599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0aVisual Computing Institute, RWTH Aachen University
49570b41bd9574bd9c600e24b269d945c645b7bdVisual Computing and Communications Lab, Arizona State University
eb027969f9310e0ae941e2adee2d42cdf07d938cVisual Geometry Group, University of OxfordDepartment of Engineering Science
7e467e686f9468b826133275484e0a1ec0f5bde6Visual Geometry Group, University of OxfordDepartment of Engineering Science
62fd622b3ca97eb5577fd423fb9efde9a849cbefVisual Geometry Group, University of OxfordDepartment of Engineering Science
53698b91709112e5bb71eeeae94607db2aefc57cVisual Geometry Group, University of Oxford
30180f66d5b4b7c0367e4b43e2b55367b72d6d2aVisual Geometry Group, University of Oxford, Oxford UKDepartment of Engineering Science
29b86534d4b334b670914038c801987e18eb5532Visual Geometry Group, University of Oxford, UKDepartment of Engineering Science
313d5eba97fe064bdc1f00b7587a4b3543ef712aVisual Geometry Group, University of Oxford, UKDepartment of Engineering Science
e8f0f9b74db6794830baa2cab48d99d8724e8cb6Visualization and Computer Vision Lab, GE Global Research Center
d61578468d267c2d50672077918c1cda9b91429bViswajyothi College of Engineering and Technology Kerala, IndiaDepartment of Computer Science
d61578468d267c2d50672077918c1cda9b91429bViswajyothi College of Engineering and Technology Kerala, India
39ecdbad173e45964ffe589b9ced9f1ebfe2d44eVrije Universiteit BrusselDepartment ETRO
acc548285f362e6b08c2b876b628efceceeb813eVrije Universiteit Brussel, 1050 Brussels, BelgiumDepartment of Electronics and Informatics
acc548285f362e6b08c2b876b628efceceeb813eVrije Universiteit Brussel, 1050 Brussels, BelgiumDepartment of Physical Therapy
acc548285f362e6b08c2b876b628efceceeb813eVrije Universiteit Brussel, 1050 Brussels, BelgiumDepartment of Experimental and Applied Psychology
ed1886e233c8ecef7f414811a61a83e44c8bbf50Warsaw University of Technology
20b437dc4fc44c17f131713ffcbb4a8bd672ef00Warsaw University of Technology, Poland
24959d1a9c9faf29238163b6bcaf523e2b05a053Warsaw University of Technology, Poland
cd23dc3227ee2a3ab0f4de1817d03ca771267aebWaseda University
48c41ffab7ff19d24e8df3092f0b5812c1d3fb6eWaseda University
420782499f38c1d114aabde7b8a8104c9e40a974Waseda University, Tokyo, Japan
2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8Waseda University, Tokyo, JapanDepartment of Modern Mechanical Engineering
60542b1a857024c79db8b5b03db6e79f74ec8f9fWashington University in St. Louis
22e678d3e915218a7c09af0d1602e73080658bb7Washington University, St. Louis, MO, USA
bec31269632c17206deb90cd74367d1e6586f75fWayne State UniversityComputer Science Department
28d99dc2d673d62118658f8375b414e5192eac6fWayne State University
28d99dc2d673d62118658f8375b414e5192eac6fWayne State University
177d1e7bbea4318d379f46d8d17720ecef3086acWayne State University, Detroit, MI 48202, USADepartment of Computer Science
682760f2f767fb47e1e2ca35db3becbb6153756fWe thank the support of New York State through the Goergen Institute for Data Science, our corporate research sponsors
e0244a8356b57a5721c101ead351924bcfb2eef4Webster University
e0244a8356b57a5721c101ead351924bcfb2eef4Webster University
f4d30896c5f808a622824a2d740b3130be50258eWeizmann Institute of Science
4cb8a691a15e050756640c0a35880cdd418e2b87Weizmann Institute of Science
d4c2d26523f577e2d72fc80109e2540c887255c8Weizmann Institute of Science
def569db592ed1715ae509644444c3feda06a536Weizmann Institute of Science, Rehovot, IsraelDepartment of Computer Science and Applied Mathematics
def569db592ed1715ae509644444c3feda06a536Weizmann Institute of Science, Rehovot, IsraelDepartment of Computer Science and Applied Mathematics
7ff42ee09c9b1a508080837a3dc2ea780a1a839bWelten Institute, Research Centre for Learning, Teaching and Technology, Faculty of
9264b390aa00521f9bd01095ba0ba4b42bf84d7eWenzhou University, China
55eb7ec9b9740f6c69d6e62062a24bfa091bbb0cWenzhou University, Wenzhou, China
3b9b200e76a35178da940279d566bbb7dfebb787West Virginia University
ac855f0de9086e9e170072cb37400637f0c9b735West Virginia University
e20e2db743e8db1ff61279f4fda32bf8cf381f8eWest Virginia University
c035c193eed5d72c7f187f0bc880a17d217dada0West Virginia Universitya Department of Computer Science and Electrical Engineering
01c7a778cde86ad1b89909ea809d55230e569390West Virginia University
a8748a79e8d37e395354ba7a8b3038468cb37e1fWest Virginia University
cd436f05fb4aeeda5d1085f2fe0384526571a46eWest Virginia University
23ce6f404c504592767b8bec7d844d87b462de71West Virginia University
aff8705fb2f2ae460cb3980b47f2e85c2e6dd41aWest Virginia University, MorgantownLane Department of Computer Science and Electrical Engineering
7a65fc9e78eff3ab6062707deaadde024d2fad40West Virginia University, Morgantown WV 26506, USALane Department of CSEE
a75dfb5a839f0eb4b613d150f54a418b7812aa90West Virginia University, Morgantown, USA
dfb6aa168177d4685420fcb184def0aa7db7cddbWest Virginia University, Morgantown, WV
86a8b3d0f753cb49ac3250fa14d277983e30a4b7West Virginia University, Morgantown, WVLane Department of CSEE
c5d13e42071813a0a9dd809d54268712eba7883fWest Virginia University, Morgantown, WVDepartment of Computer Science and Electrical Engineering
f24e379e942e134d41c4acec444ecf02b9d0d3a9West Virginia University, Morgantown, WV 26506, USACSEE Department
d3c004125c71942846a9b32ae565c5216c068d1eWest Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi
ab427f0c7d4b0eb22c045392107509451165b2baWestern Kentucky University
304b1f14ca6a37552dbfac443f3d5b36dbe1a451Western Sydney University, Parramatta, NSW 2150, Australia
9b684e2e2bb43862f69b12c6be94db0e7a756187While visual features in single frames are vague and limited, multi-frame information, including deformation and pose
096eb8b4b977aaf274c271058feff14c99d46af3William Marsh Rice University
096eb8b4b977aaf274c271058feff14c99d46af3William Marsh Rice University
2e832d5657bf9e5678fd45b118fc74db07dac9daWittenberg University
2e832d5657bf9e5678fd45b118fc74db07dac9daWittenberg University, and Dr. Michael Anes, Wittenberg UniversityPsychology Department
aa127e6b2dc0aaccfb85e93e8b557f83ebee816bWolfson College
90d9209d5dd679b159051a8315423a7f796d704dWuhan University
5f758a29dae102511576c0a5c6beda264060a401Wuhan University, Tencent AI Lab, National University of Singapore, University of Rochester
9c373438285101d47ab9332cdb0df6534e3b93d1Xerox Research Center
9c373438285101d47ab9332cdb0df6534e3b93d1Xerox Research Center
3802da31c6d33d71b839e260f4022ec4fbd88e2dXerox Research Center India2Department of Computer Science
3a591a9b5c6d4c62963d7374d58c1ae79e3a4039Xerox Research Center Webster
946017d5f11aa582854ac4c0e0f1b18b06127ef1Xi an Jiaotong University
a8a61badec9b8bc01f002a06e1426a623456d121Xi an Jiaotong University
63b29886577a37032c7e32d8899a6f69b11a90deXi an Jiaotong University, China
18b9dc55e5221e704f90eea85a81b41dab51f7daXi an Jiaotong University, Xi an, Shannxi 710049, P.R.China
1d3dd9aba79a53390317ec1e0b7cd742cba43132Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
6a2b83c4ae18651f1a3496e48a35b0cd7a2196dfXiamen University
131178dad3c056458e0400bed7ee1a36de1b2918Xiamen University, Xiamen, China
fd10b0c771a2620c0db294cfb82b80d65f73900dXiamen University, Xiamen, Fujian, China
6a2b83c4ae18651f1a3496e48a35b0cd7a2196dfXidian University
5ca23ceb0636dfc34c114d4af7276a588e0e8dacXidian University
5ca23ceb0636dfc34c114d4af7276a588e0e8dacXidian University
b88d5e12089f6f598b8c72ebeffefc102cad1fc0Xidian University
b88d5e12089f6f598b8c72ebeffefc102cad1fc0Xidian University
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4cXidian University 2Xi an Jiaotong University 3Microsoft Research Asia
131178dad3c056458e0400bed7ee1a36de1b2918Xidian University, Xi an, China
701f56f0eac9f88387de1f556acef78016b05d52Xidian University, Xi an, China, 4 University of Pittsburgh, PA, USA
202d8d93b7b747cdbd6e24e5a919640f8d16298aY ld z Teknik University, Istanbul, TRComputer Engineering Department
68f89c1ee75a018c8eff86e15b1d2383c250529bY. Li, University of Maryland
0da75b0d341c8f945fae1da6c77b6ec345f47f2aYUHANG ZHAO, Information Science, Cornell Tech, Cornell University
1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2Yale University
82eff71af91df2ca18aebb7f1153a7aed16ae7ccYarmouk University, Jordan
05318a267226f6d855d83e9338eaa9e718b2a8ddYaroslavl State University
61efeb64e8431cfbafa4b02eb76bf0c58e61a0faYeshiva University
4dd2be07b4f0393995b57196f8fc79d666b3aec5Yeungnam University
fde41dc4ec6ac6474194b99e05b43dd6a6c4f06fYonsei University
6d5125c9407c7762620eeea7570af1a8ee7d76f3Yonsei University
473366f025c4a6e0783e6174ca914f9cb328fe70York University
de3285da34df0262a4548574c2383c51387a24bfYork University, Toronto
c5935b92bd23fd25cae20222c7c2abc9f4caa770York University, Toronto
e00241f00fb31c660df6c6f129ca38370e6eadb3York University, Toronto
1130c38e88108cf68b92ecc61a9fc5aeee8557c9York University, Toronto, CanadaDepartment of Electrical Engineering and Computer Science
a6270914cf5f60627a1332bcc3f5951c9eea3be0York University, Toronto, ON, Canada
5f7c4c20ae2731bfb650a96b69fd065bf0bb950eYoung Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2ZHAW Datalab, Zurich University of Applied Sciences
27c66b87e0fbb39f68ddb783d11b5b7e807c76e8Zaragoza University
52258ec5ec73ce30ca8bc215539c017d279517cfZhejang University, Hangzhou 310027, P.R.ChinaDepartment of Computer Science and Engineering
7fc76446d2b11fc0479df6e285723ceb4244d4efZhejiang Normal University, Jinhua, ChinaDepartment of Computer Science
bd6099429bb7bf248b1fd6a1739e744512660d55Zhejiang University
bd21109e40c26af83c353a3271d0cd0b5c4b4adeZhejiang University
bd21109e40c26af83c353a3271d0cd0b5c4b4adeZhejiang University
fdf8e293a7618f560e76bd83e3c40a0788104547Zhejiang University
cfc4aa456d9da1a6fabd7c6ca199332f03e35b29Zhejiang University
969fd48e1a668ab5d3c6a80a3d2aeab77067c6ceZhejiang University
969fd48e1a668ab5d3c6a80a3d2aeab77067c6ceZhejiang University
370b6b83c7512419188f5373a962dd3175a56a9bZhejiang University
24cf9fe9045f50c732fc9c602358af89ae40a9f7Zhejiang University
b2e6944bebab8e018f71f802607e6e9164ad3537Zhejiang University of Technology
2717b044ae9933f9ab87f16d6c611352f66b2033Zhejiang University, 2Southwest Jiaotong University, 3Carnegie Mellon University
134f1cee8408cca648d8b4ca44b38b0a7023af71Zhejiang University, China
bd9c9729475ba7e3b255e24e7478a5acb393c8e9Zhejiang University, Hangzhou, China
b5402c03a02b059b76be829330d38db8e921e4b5Zhengzhou University, Zhengzhou, Henan 450052, ChinaChemistry Department
7bbaa09c9e318da4370a83b126bcdb214e7f8428Zurich University of Applied Sciences, School of Engineering
346dbc7484a1d930e7cc44276c29d134ad76dc3fa Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany
7e2cfbfd43045fbd6aabd9a45090a5716fc4e179a School of Computer and Information Technology, Beijing Jiaotong University, Beijing
96578785836d7416bf2e9c154f687eed8f93b1e4a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USADepartment of Radiology
c660500b49f097e3af67bb14667de30d67db88e3a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
6cd96f2b63c6b6f33f15c0ea366e6003f512a951a The University of Nottingham Malaysia Campus
5180df9d5eb26283fb737f491623395304d57497aCenter for Combinatorics, Nankai University, Tianjin 300071, China
9825c4dddeb2ed7eaab668b55403aa2c38bc3320aCenter for Spatial Information Science, University of Tokyo, Kashiwa 277-8568, Japan
6e173ad91b288418c290aa8891193873933423b3aCentre for Neuroscience, Indian Institute of Science, Bangalore, India
231a6d2ee1cc76f7e0c5912a530912f766e0b459aCollege of Computer Science at Chongqing University, 400044, Chongqing, P.R.C
11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1daDivision of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA
948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia
956e9b69b3366ed3e1670609b53ba4a7088b8b7eaIBM China Research Lab, Beijing, China
71b07c537a9e188b850192131bfe31ef206a39a0aImperial College London, London, UKDepartment of Computing
4e7ed13e541b8ed868480375785005d33530e06daInformation Sciences Institute
0e49a23fafa4b2e2ac097292acf00298458932b4aLawrence Technological University, 21000 W Ten Mile Rd., South eld, MI 48075, United States
8bfada57140aa1aa22a575e960c2a71140083293aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA
d7fe2a52d0ad915b78330340a8111e0b5a66513aaNo. 238 Songling Road, Ocean University ofDepartment of Electronic Engineering
835e510fcf22b4b9097ef51b8d0bb4e7b806bdfdaPattern Recognition Laboratory, Delft University of Technology
5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0aResearch Scholar, Anna University, Chennai, InidaDepartment of Inormation and Communication Engineering
304b1f14ca6a37552dbfac443f3d5b36dbe1a451aSchool of Computing and Mathematics, Charles Sturt University, Bathurst, NSW
b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4aSchool of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China
3baa3d5325f00c7edc1f1427fcd5bdc6a420a63faSchool of Engineering and Technology, University of Hertfordshire, Hat eld AL10 9AB, UK
9d57c4036a0e5f1349cd11bc342ac515307b6720aSchool of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
a2bd81be79edfa8dcfde79173b0a895682d62329aSchool of Technology, University of Campinas
43ed518e466ff13118385f4e5d039ae4d1c000fbaTurgut Ozal University, Ankara TurkeyDepartment of Computer Engineering
927ba64123bd4a8a31163956b3d1765eb61e4426abroad, or from public or private research centers
6f957df9a7d3fc4eeba53086d3d154fc61ae88dfabroad, or from public or private research centers
047d7cf4301cae3d318468fe03a1c4ce43b086edabroad, or from public or private research centers
0470b0ab569fac5bbe385fa5565036739d4c37f8abroad, or from public or private research centers
9ce0d64125fbaf625c466d86221505ad2aced7b1abroad, or from public or private research centers
ae89b7748d25878c4dc17bdaa39dd63e9d442a0dabroad, or from public or private research centers
cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150abroad, or from public or private research centers
27a0a7837f9114143717fc63294a6500565294c2abroad, or from public or private research centers
8f6d05b8f9860c33c7b1a5d704694ed628db66c7abroad, or from public or private research centers
8a54f8fcaeeede72641d4b3701bab1fe3c2f730aabroad, or from public or private research centers
7ef0cc4f3f7566f96f168123bac1e07053a939b2abroad, or from public or private research centers
72a87f509817b3369f2accd7024b2e4b30a1f588abroad, or from public or private research centers
6cfc337069868568148f65732c52cbcef963f79dabroad, or from public or private research centers
641f0989b87bf7db67a64900dcc9568767b7b50fabroad, or from public or private research centers
d4001826cc6171c821281e2771af3a36dd01ffc0abroad, or from public or private research centers
afa57e50570a6599508ee2d50a7b8ca6be04834aabroad, or from public or private research centers
b7774c096dc18bb0be2acef07ff5887a22c2a848abroad, or from public or private research centers
a8638a07465fe388ae5da0e8a68e62a4ee322d68abroad, or from public or private research centers
1b02b9413b730b96b91d16dcd61b2420aef97414abroad, or from public or private research centers
1b6394178dbc31d0867f0b44686d224a19d61cf4abroad, or from public or private research centers
48a5b6ee60475b18411a910c6084b3a32147b8cdabroad, or from public or private research centers
1d729693a888a460ee855040f62bdde39ae273afabroad, or from public or private research centers
167736556bea7fd57cfabc692ec4ae40c445f144additional details of DCS descriptors, including visualization. For extending the evaluation
cefd9936e91885ba7af9364d50470f6cb54315a4and 2Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 277083Department of
540b39ba1b8ef06293ed793f130e0483e777e278and Control, Hungarian Academy of Sciences, Budapest, Hungary, Chuo University4 Department of Precision Mechanics
3411ef1ff5ad11e45106f7863e8c7faf563f4ee1and Engineering, Beihang University, Beijing, China
71b07c537a9e188b850192131bfe31ef206a39a0and IBUG [32]. All of them cover large variations, including different
9b07084c074ba3710fee59ed749c001ae70aa408and Mathematical Biosciences Institute, The Ohio State University
540b39ba1b8ef06293ed793f130e0483e777e278and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
f43eeb578e0ca48abfd43397bbd15825f94302e4and Modeling, Rutgers UniversityDepartment of Computer Science
4793f11fbca4a7dba898b9fff68f70d868e2497cand Southeast University, China
11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1dand bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA
6f08885b980049be95a991f6213ee49bbf05c48dand education use, including for instruction at the authors institution
c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6and education use, including for instruction at the authors institution
74de03923a069ffc0fb79e492ee447299401001fand especially light angle, drastically change the appearance of a face [1]. Facial expressions, including
11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1dand quantify distinct social behaviors, including those involving
955e2a39f51c0b6f967199942d77625009e580f9and the institute of engineering and science
6479b61ea89e9d474ffdefa71f068fbcde22cc44any other University
6226f2ea345f5f4716ac4ddca6715a47162d5b92applications has different requirements, including: processing time (off-line, on-line, or real-time
60bffecd79193d05742e5ab8550a5f89accd8488applications, including texture classification [16], face recognition [12], object detection [10], and
a7191958e806fce2505a057196ccb01ea763b6eaat The Australian National University
d9810786fccee5f5affaef59bc58d2282718af9bat West Virginia University
a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3at the Delft University of Technology
b599f323ee17f12bf251aba928b19a09bfbb13bbat the University of Central Florida
d082f35534932dfa1b034499fc603f299645862dat the University of Central Florida
87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5at the University of Central Florida
f43eeb578e0ca48abfd43397bbd15825f94302e4atry, University of Pennsylvania School of Medicine, Philadelphia, PA
96578785836d7416bf2e9c154f687eed8f93b1e4b Brain Behavior Center, University of Pennsylvania Medical Center, Hospital of the University of PennsylvaniaDepartment of Psychiatry
f740bac1484f2f2c70777db6d2a11cf4280081d6b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney
16e95a907b016951da7c9327927bb039534151dab Computer Technology Institute, Beijing Union University, 100101, China
61542874efb0b4c125389793d8131f9f99995671b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy
4e7ed13e541b8ed868480375785005d33530e06db Institute for Robotics and Intelligent Systems
49e975a4c60d99bcc42c921d73f8d89ec7130916b Machine Perception Laboratory, Institute of Neural Computation, University of California, San Diego, United States
7e2cfbfd43045fbd6aabd9a45090a5716fc4e179b Research Institute, Watchdata Inc., Beijing, China
00ebc3fa871933265711558fa9486057937c416eb School of Applied Mathematics, Xidian University, Xi an, China
ae71f69f1db840e0aa17f8c814316f0bd0f6fbbfb School of Business, Reykjavik University, Reykjavik, Iceland
5bc0a89f4f73523967050374ed34d7bc89e4d9e1b The Interdisciplinary Center for Research on Emotions, University of
9d57c4036a0e5f1349cd11bc342ac515307b6720bCVSSP, University of Surrey, Guildford, GU2 7XH, UK
5180df9d5eb26283fb737f491623395304d57497bCenter for Applied Mathematics, Tianjin University, Tianjin 300072, China
304b1f14ca6a37552dbfac443f3d5b36dbe1a451bDiscipline of Business Analytics, The University of Sydney Business School
ffe4bb47ec15f768e1744bdf530d5796ba56cfc1bFaculty of Computers and Information, Assiut University, Egypt
948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
403a108dec92363fd1f465340bd54dbfe65af870bMax Planck Institute for Informatics, Germany
0e5dcc6ae52625fd0637c6bba46a973e46d58b9cbRobotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4bSchool of Automation, China University of Geosciences, Wuhan, Hubei 430074, China
7d94fd5b0ca25dd23b2e36a2efee93244648a27bbSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
db36e682501582d1c7b903422993cf8d70bb0b42bSchool of Computer and Control Engineering, University of Chinese Academy of Sciences
7a3d46f32f680144fd2ba261681b43b86b702b85bSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
956e9b69b3366ed3e1670609b53ba4a7088b8b7ebTsinghua University, Beijing, China
71b07c537a9e188b850192131bfe31ef206a39a0bUniversity of Nottingham, School of Computer Science, Nottingham, UK
fac8cff9052fc5fab7d5ef114d1342daba5e4b82bourne University
4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6by grants from the National Institute of Mental Health (MH 15279 and MH067976 (K. Schmidt
ae71f69f1db840e0aa17f8c814316f0bd0f6fbbfc Cardiff Business School, Cardiff University, Cardiff, United Kingdom
49e975a4c60d99bcc42c921d73f8d89ec7130916c Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ont. M6A 2E1, Canada
96578785836d7416bf2e9c154f687eed8f93b1e4c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania
2878b06f3c416c98496aad6fc2ddf68d2de5b8f6c School of Computational Science, Florida State University, Tallahassee, FL 32306, USA
0daf696253a1b42d2c9d23f1008b32c65a9e4c1ec(cid:13) Carnegie Mellon University
2e0addeffba4be98a6ad0460453fbab52616b139c(cid:13) Carnegie Mellon University
e03bda45248b4169e2a20cb9124ae60440cad2dec(cid:13) Massachusetts Institute of Technology 2006. All rights reserved
fec6648b4154fc7e0892c74f98898f0b51036dfec(cid:13)The Chinese University of Hong Kong
67c3c1194ee72c54bc011b5768e153a035068c43c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved
aba770a7c45e82b2f9de6ea2a12738722566a149c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting
0e5dcc6ae52625fd0637c6bba46a973e46d58b9ccCentre of Intelligent Machines, McGill University, Montr eal, QC H3A 0E9, Canada
71b07c537a9e188b850192131bfe31ef206a39a0cFaculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands
9825c4dddeb2ed7eaab668b55403aa2c38bc3320cFaculty of Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4cHuizhou School Affiliated to Beijing Normal University, Huizhou 516002, China
231a6d2ee1cc76f7e0c5912a530912f766e0b459cSchool of Astronautics at Beihang University, 100191, Beijing, P.R.C
7a3d46f32f680144fd2ba261681b43b86b702b85cSchool of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
4e7ed13e541b8ed868480375785005d33530e06dcThe Open University
e0244a8356b57a5721c101ead351924bcfb2eef4chael G. Foster School of Business, University of Washington, Seattle
9d06d43e883930ddb3aa6fe57c6a865425f28d44cid:1) Honda Research Institute
85639cefb8f8deab7017ce92717674d6178d43cccid:1)Institute for Neural Computation
281486d172cf0c78d348ce7d977a82ff763efccdcid:107)Chongqing University of Posts and Telecommunications
3acb6b3e3f09f528c88d5dd765fee6131de931eacid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA
46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4cid:2) Imperial College London, United KingdomDepartment of Computing
3ebce6710135d1f9b652815e59323858a7c60025cid:2)Honda RandD Americas, Inc., Boston, MA, USA
6a4ebd91c4d380e21da0efb2dee276897f56467acid:2)Imperial College London, U.KDepartment of Computing
9d66de2a59ec20ca00a618481498a5320ad38481cid:3) School of Software, Tsinghua University
85639cefb8f8deab7017ce92717674d6178d43cccid:3)The Salk Institute and Howard Hughes Medical Institute
19868a469dc25ee0db00947e06c804b88ea94fd0cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA
a2bcfba155c990f64ffb44c0a1bb53f994b68a15cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London
4b3eaedac75ac419c2609e131ea9377ba8c3d4b8cid:63) Imperial College London, UKDepartment of Computing
529b1f33aed49dbe025a99ac1d211c777ad881eccid:63) Imperial College London, UKDepartment of Computing
e4c2f8e4aace8cb851cb74478a63d9111ca550aecid:63)Queen Mary University of London, Imperial College London
3c4f6d24b55b1fd3c5b85c70308d544faef3f69acid:63)Sharif University of Technology, University College London, Queen Mary University of London
0c05f60998628884a9ac60116453f1a91bcd9ddacid:63)Stanford University
e03e86ac61cfac9148b371d75ce81a55e8b332cacid:63)The Robotics Institute, Carnegie Mellon University
e8d1b134d48eb0928bc999923a4e092537e106f6cid:63)University of Science and Technology of China, Hefei, Anhui, China
7f511a6a2b38a26f077a5aec4baf5dffc981d881cid:63)University of Science and Technology of China, Hefei, Anhui, China
f3ca2c43e8773b7062a8606286529c5bc9b3ce25cid:92)School of Information Technologies, University of Sydney, Australia
4fcd19b0cc386215b8bd0c466e42934e5baaa4b7cid:93) Faculty of Science and Technology, University of Macau
e6f20e7431172c68f7fce0d4595100445a06c117cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China
f3ca2c43e8773b7062a8606286529c5bc9b3ce25cid:93)School of Electronic Engineering, Xidian University, China
bbc5f4052674278c96abe7ff9dc2d75071b6e3f3cid:93)University of North Carolina at Charlotte
68d40176e878ebffbc01ffb0556e8cb2756dd9e9college of Engineering
f93606d362fcbe62550d0bf1b3edeb7be684b000comparisons with 12 instance-based classi ers on 13 benchmark University of California Irvine
2dfe0e7e81f65716b09c590652a4dd8452c10294con icting sensory information, i.e., incongruent facial muscle activity, this might impede
af278274e4bda66f38fd296cfa5c07804fbc26eedo, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea2 Department of Computer Engineering
f24e379e942e134d41c4acec444ecf02b9d0d3a9e ects of di erence factors, including age group, age gap
40dd2b9aace337467c6e1e269d0cb813442313d7e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
9e8d87dc5d8a6dd832716a3f358c1cdbfa97074ceBay Research Labs
cacd51221c592012bf2d9e4894178c1c1fa307caengineering, Government College of Engineering Kannur, Kerala, India
96578785836d7416bf2e9c154f687eed8f93b1e4f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania
0b85b50b6ff03a7886c702ceabad9ab8c8748fdcface processing, including age (Berry, 1990), sex (Hill
8efda5708bbcf658d4f567e3866e3549fe045bbbfacultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty
e0244a8356b57a5721c101ead351924bcfb2eef4ganization, University of Southern California, Hoffman Hall 515, Los
968b983fa9967ff82e0798a5967920188a3590a8gelmeyer et al., 1996); and, increasingly, its role in reactions to
d074b33afd95074d90360095b6ecd8bc4e5bb6a2general term, including collaboration. Interaction determines action on someone
3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4gies (Bughin et al. 2017). A range of other sectors, includ
9117fd5695582961a456bd72b157d4386ca6a174he University of Hong Kong, Pokfulam
31182c5ffc8c5d8772b6db01ec98144cd6e4e897iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia
fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium
71b07c537a9e188b850192131bfe31ef206a39a0image being generated by the model, include Active Appearance
6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94in The University of Michigan
bffbd04ee5c837cd919b946fecf01897b2d2d432in signed languages, including American Sign Language (ASL). Gestures such
b599f323ee17f12bf251aba928b19a09bfbb13bbin the College of Engineering and Computer Science
d082f35534932dfa1b034499fc603f299645862din the College of Engineering and Computer Science
87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5in the College of Engineering and Computer Science
0be764800507d2e683b3fb6576086e37e56059d1in the Graduate School of Duke University
8b2c090d9007e147b8c660f9282f357336358061inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact
6226f2ea345f5f4716ac4ddca6715a47162d5b92instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i
d3faed04712b4634b47e1de0340070653546deb2is demonstrated using a variety of graphics applications, including cross
90a754f597958a2717862fbaa313f67b25083bf9learning. As a result of this research, many applications, including video surveillance systems
1a41831a3d7b0e0df688fb6d4f861176cef97136massachusetts institute of technology artificial intelligence laboratory
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
1dacc2f4890431d867a038fd81c111d639cf4d7ement of Psychology, University of California, Berkeley
6eece104e430829741677cadc1dfacd0e058d60fment. Oxford University Press Series in Affective Science. New York: Oxford
26c884829897b3035702800937d4d15fef7010e4methods, including graph matching, optical- ow-based
0a85afebaa19c80fddb660110a4352fd22eb2801mpg.de, Max Planck Institute for Informatics
02e43d9ca736802d72824892c864e8cfde13718eobtained for all other uses, in any current or future media, including reprinting/republishing
1f8e44593eb335c2253d0f22f7f9dc1025af8c0dobtained for all other uses, in any current or future media, including reprinting/republishing
e00d391d7943561f5c7b772ab68e2bb6a85e64c4ods, including sensitivity to initialization, limited effectiveness in
cffebdf88e406c27b892857d1520cb2d7ccda573of Cornell University
28be652db01273289499bc6e56379ca0237506c0of Engineering and Information Technology, University of Technology, Sydney, Australia
2f13dd8c82f8efb25057de1517746373e05b04c4of Maryland, College Park, MD 20742, USA
9c1cdb795fd771003da4378f9a0585730d1c3784of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
b689d344502419f656d482bd186a5ee6b0140891of Psychology, Princeton University, Princeton, NJ 08540. E-mail
7e18b5f5b678aebc8df6246716bf63ea5d8d714eof Psychology, University of Michigan, Ann Arbor, MI, United States, University of Michigan, Ann4 Department of Psychiatry
ab1719f573a6c121d7d7da5053fe5f12de0182e7of Saarland University
ea890846912f16a0f3a860fce289596a7dac575fof Science, Tilburg University
0f395a49ff6cbc7e796656040dbf446a40e300aaof Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science
955e2a39f51c0b6f967199942d77625009e580f9of bilkent university
6bca0d1f46b0f7546ad4846e89b6b842d538ee4eof the University of Notre Dame
35e6f6e5f4f780508e5f58e87f9efe2b07d8a864other uses, in any current or future media, including reprinting/republishing this material for
3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4our analysis to stereotypes beyond gender, including those
be4a20113bc204019ea79c6557a0bece23da1121pelling applications, including cognitive assistance [29], life
23c3eb6ad8e5f18f672f187a6e9e9b0d94042970ples of such ne-grained descriptions, including attributes covering detailed
90a754f597958a2717862fbaa313f67b25083bf9point, lighting, and appearance. Many applications, including video surveillance systems
03bd58a96f635059d4bf1a3c0755213a51478f12puter Engineering, National University of Singapore, Singapore (e-mails
51a8dabe4dae157aeffa5e1790702d31368b9161recognition, such as human computer interfaces and e-services, including e-home
e379e73e11868abb1728c3acdc77e2c51673eb0dsubsection a table summarizing the key features of the database is provided, including (where available) the number of
6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9t2i Lab, Chalmers University of Technology, Gothenburg, Sweden
1d3dd9aba79a53390317ec1e0b7cd742cba43132the Chinese University of Hong KongDepartment of Information Engineering
1c2724243b27a18a2302f12dea79d9a1d4460e35the Chinese University of Hong Kong, Shatin, Hong KongDepartment of Information Engineering
33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13the Diploma of Imperial College London. This thesis is entirely my own work, and, except
7e0c75ce731131e613544e1a85ae0f2c28ee4c1fthe Diploma of Imperial College London. This thesis is entirely my own work, and, except
a812368fe1d4a186322bf72a6d07e1cf60067234the Diploma of Imperial College London. This thesis is entirely my own work, and, except
db3545a983ffd24c97c18bf7f068783102548ad7the Indian Institute of Technology, Bombay and Monash University, Australia
57a14a65e8ae15176c9afae874854e8b0f23dca7the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
b32cf547a764a4efa475e9c99a72a5db36eeced6the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
e52be9a083e621d9ed29c8e9914451a6a327ff59the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
893239f17dc2d17183410d8a98b0440d98fa2679the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam
f43eeb578e0ca48abfd43397bbd15825f94302e4the face, including negative affect and distress, dates
e0244a8356b57a5721c101ead351924bcfb2eef4those who possess it, including the ability to act based on one s
54756f824befa3f0c2af404db0122f5b5bbf16e0tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including
132527383890565d18f1b7ad50d76dfad2f14972tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming
ae2c71080b0e17dee4e5a019d87585f2987f0508tional functions, including the effective assessment of
f9e0209dc9e72d64b290d0622c1c1662aa2cc771to Michigan State University
42dc36550912bc40f7faa195c60ff6ffc04e7cd6to process in all the illumination conditions, including total
2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3to visually detectable changes in facial appearance, including blushing and tears. These
16bce9f940bb01aa5ec961892cc021d4664eb9e4tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University
71fd29c2ae9cc9e4f959268674b6b563c06d9480university, Shiraz, Iran
7373c4a23684e2613f441f2236ed02e3f9942dd4uses, in any current or future media, including
190d8bd39c50b37b27b17ac1213e6dde105b21b8uses, in any current or future media, including
6ed738ff03fd9042965abdfaa3ed8322de15c116uses, in any current or future media, including
b689d344502419f656d482bd186a5ee6b0140891versity of Amsterdam, Amsterdam and University of Trento
08ff81f3f00f8f68b8abd910248b25a126a4dfa4via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to
ea890846912f16a0f3a860fce289596a7dac575fweighing of different types of information, including expected
f781e50caa43be13c5ceb13f4ccc2abc7d1507c5y National Institute of Advanced Industrial Science and Technology
ca0363d29e790f80f924cedaf93cb42308365b3dyAristotle University of Thessaloniki
8f5ce25e6e1047e1bf5b782d045e1dac29ca747eyAristotle University of Thessaloniki
5ea9063b44b56d9c1942b8484572790dff82731eyAristotle University of ThessalonikiDepartment of Informatics
374c7a2898180723f3f3980cbcb31c8e8eb5d7afyAristotle University of Thessaloniki
c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0yThe University of Tokyo
4e5dc3b397484326a4348ccceb88acf309960e86years. According to the definition by the National Institute
\ No newline at end of file diff --git a/scraper/reports/institutions_found.csv b/scraper/reports/institutions_found.csv new file mode 100644 index 00000000..d1fce0a4 --- /dev/null +++ b/scraper/reports/institutions_found.csv @@ -0,0 +1,1042 @@ +AALTO UNIVERSITY,60.18558755,24.824273298775,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi" +AI Institute,-34.6102167,-58.3752244291708,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina" +ALICE Institute,-8.82143045,13.2347076178375,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola" +ARISTOTLE UNIVERSITY OF THESSALONIKI,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aalborg University, Denmark",57.01590275,9.97532826658991,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark" +"Aberystwyth University, UK",52.4107358,-4.05295500914411,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK" +Akita Prefectural University,39.8011499,140.045911602376,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本" +"Akita Prefectural University, Yurihonjo, Japan",39.39325745,140.073500465928,"秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本" +Akita University,39.7278142,140.133225661449,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本" +"Akita University, Akita, Japan",39.7291921,140.136565773585,"秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本" +"Alexandria University, Alexandria, Egypt",31.21051105,29.9131456239399,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر" +"American University, Washington, DC, USA",38.93804505,-77.0893922365193,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA" +Amherst College,42.37289,-72.518814,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA" +Amirkabir University of Technology,35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"Amirkabir University of Technology, Tehran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"Amity University, Lucknow, India",26.85095965,81.0495096452828,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India" +Anna University,13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +"Anna University Chennai, India",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +"Anna University, Chennai",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +Aristotle University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Aristotle University of Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +Arizona State University,33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia",3.0552109,101.7005831,"Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia" +Australian Institute of Sport,-35.24737535,149.104454269689,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"Australian National University, Canberra",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Australian National University, Canberra, ACT 0200, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Azad University, Qazvin, Iran",36.3173432,50.0367286,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎" +B.S. University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +Bahcesehir University,41.02451875,28.9769795349346,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye" +Banaras Hindu University,25.2662887,82.9927969,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India" +Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India" +"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India",14.4443949,75.9027655185535,"Bapuji Institute of Engineering and Technology, 2nd Cross Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Bas kent University,52.08340265,5.14828494152362,"University College Utrecht 'Babel', 7, Campusplein, Utrecht, Nederland, 3584 ED, Nederland" +Beckman Institute,40.11571585,-88.2275077179639,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA" +Beihang University,39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +"Beihang University, Beijing 100191, China",39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +"Beijing Institute of Technology University, P. R. China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +"Beijing Institute of Technology, Beijing 100081 CHINA",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +"Beijing Institute of Technology, Beijing, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +"Beijing Institute of Technology, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"Beijing Normal University, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国" +"Beijing Union University, 100101, China",39.9890068,116.420677175386,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国" +Beijing University of Posts and Telecommunications,39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Beijing University of Technology, Beijing 100022, China",39.87391435,116.477222846574,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国" +"Beijing, China",39.906217,116.3912757,"北京市, 东城区, 北京市, 100010, 中国" +"Benha University, Egypt",30.0818727,31.2445484105016,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر" +"Bharathidasan University, Trichy, India",10.7778845,78.6966319,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India" +Bielefeld University,52.0280421,8.51148270115395,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland" +"Bilkent University, 06800 Cankaya, Turkey",39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye" +"Bogazici University, Turkey",41.08327335,29.0503931951846,"Boğaziçi Üniversitesi Güney Yerleşkesi, Sehitlikdergahı Sokağı, Beşiktaş, İstanbul, Marmara Bölgesi, 33345, Türkiye" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +Boston University,42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +"Boston University, Boston, MA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +"Boston University, USA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +Bournemouth University,50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +"Bournemouth University, UK",50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +Brown University,41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +"Brown University, Providence, RI",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +"Brown University, United States",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +CARNEGIE MELLON UNIVERSITY,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +COLUMBIA UNIVERSITY,40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +COMSATS Institute of Information Technology,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +"COMSATS Institute of Information Technology, Lahore 54000, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +"COMSATS Institute of Information Technology, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +CUNY City College,45.5546608,5.4065255,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France" +California Institute of Technology,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, Pasadena, CA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, Pasadena, CA, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, Pasadena, California, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"California Institute of Technology, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +Cambridge Research Laboratory,52.17333465,0.149899463173698,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK" +Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK" +"Capital Normal University, 100048, China",39.92864575,116.30104052087,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国" +Cardi University,10.6435074,-61.4022996445292,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +Carleton University,45.3860843,-75.6953926739404,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada" +Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +"Carnegie Mellon University Pittsburgh, PA - 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA, 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Carnegie Mellon University, USA",37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +"Central Tehran Branch, Azad University",35.753318,51.370631,"دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ‏ایران‎" +Central Washington University,47.00646895,-120.53673039883,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA" +Charles Sturt University,-35.0636071,147.3552234,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia" +"Chonbuk National University, Jeonju-si",35.84658875,127.135013303058,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국" +Chosun University,35.1441031,126.9257858,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국" +"Chu Hai College of Higher Education, Hong Kong",22.3760643,113.987153890134,"珠海學院 Chu Hai College of Higher Education, 80, 青盈路 Tsing Ying Road, 嘉和里 Ka Wo Lei, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国" +Chubu University,35.2742655,137.013278412463,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本" +"Chulalongkorn University, Bangkok",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Chungnam National University,36.37029045,127.347804575184,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국" +City University of Hong Kong,22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +Clemson University,34.66869155,-82.837434756078,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA" +"Clemson University, Clemson, SC",34.67871075,-82.8346790794026,"E-06 Parking, Parkway Drive, Pickens County, South Carolina, SC, USA" +Coburg University,50.26506145,10.9519648264628,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland" +"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA" +"College Park, MD",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, MD 20742 USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, Maryland",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"College Park, United States",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +College of Computer and Information Science,42.3192923,-83.2343465549018,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA" +College of Computing,-6.1992922,39.3081862,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania" +College of Electrical and Information Engineering,42.0049791,21.40834315,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија" +"College of Engineering Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India" +College of Engineering and Computer Science,25.7589624,-80.3738881489383,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA" +"College of Engineering, Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India" +College of Informatics,14.6173885,121.101327315511,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines" +Colorado State University,40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA" +"Colorado State University, Fort Collins, Colorado, USA",40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"Columbia University, New York, NY",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, New York, NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Columbia University, United States",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +Concordia University,45.57022705,-122.637093463826,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA" +"Concordia University, Canada",45.4955911,-73.5775043,"FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +Courant Institute,40.7286994,-73.9957151,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +Courant Institute of Mathematical Sciences,40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"Courant Institute of Mathematical Sciences, New York, NY",40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"Curtin University, Perth, Australia",-32.00574155,115.892864389257,"Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia" +Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +"Cyprus University of Technology, Cyprus",34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +DUBLIN CITY UNIVERSITY,53.38522185,-6.25740874081493,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland" +"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dalian University of Technology, Dalian, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea",37.3219575,127.1250723,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +"Dartmouth College, NH 03755 USA",43.7070046,-72.2869048,"Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA" +Delft University of Technology,51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +"Delft University of Technology, The Netherlands",51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +Democritus University of Thrace,40.84941785,25.8344493892098,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα" +Dhaka University,23.7317915,90.3805625,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +Dr. Babasaheb Ambedkar Marathwada University,19.8960918,75.3089470267316,"Boys Hostel No. 3, Shantipura road, Cantonment, Bidri workshop, Aurangabad, Maharashtra, 431004, India" +Drexel University,39.9574,-75.1902670552555,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA" +Duke University,35.9990522,-78.9290629011139,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA" +East China Normal University,31.2284923,121.402113889769,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国" +Eastern Mediterranean University,35.14479945,33.90492318497,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs" +Eastern University,40.0505672,-75.3710932636663,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA" +"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland" +"Electrical Engineering, University of",47.6532412,-122.3061707,"Electrical Engineering, 185, Loading Dock, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +FL,27.7567667,-81.4639835,"Florida, USA" +"Feng Chia University, Taichung, Taiwan",24.18005755,120.648360719503,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣" +"Ferdowsi University of Mashhad, Mashhad, Iran",36.3076616,59.5269051097667,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎" +Firat University,39.7275037,39.4712703382844,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye" +"Florida Institute Of Technology, Melbourne Fl",28.0642296,-80.6230097241205,"Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +"Florida State University, Tallahassee, FL 32306, USA",30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎" +Fraser University,44.9689836,-93.2094162948556,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA" +Fudan University,31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +GE Global Research Center,42.8298248,-73.8771938492793,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA" +Gdansk University of Technology,54.37086525,18.6171601574695,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP" +George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"George Mason University, Fairfax Virginia, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"George Mason University, Fairfax, VA, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +Georgia Institute of Technology,33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA" +"Georgia Institute of Technology, Atlanta, Georgia, USA",33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA" +Glyndwr University,53.05373795,-3.00482075353073,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK" +Graz University of Technology,47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich" +"Graz University of Technology, Austria",47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich" +Guangdong Medical College,23.1294489,113.343761097683,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国" +Hacettepe University,39.86742125,32.7351907206768,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +Halmstad University,56.66340325,12.8792972689712,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam" +Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국" +Harbin Institute of Technology,45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Harbin Institute of Technology, Harbin 150001, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Harbin Institute of Technology, Harbin, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +Harbin Institute of Technology;Shenzhen University,22.5895016,113.965710495775,"哈工大(深圳), 平山一路, 深圳大学城, 珠光村, 南山区, 深圳市, 广东省, 518000, 中国" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, Cambridge, MA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, Cambridge, MA, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +Harvard and Massachusetts Institute,42.5268445,-71.6525446,"Massachusetts Correctional Institute Shirley Minimum Security Library, Harvard Road, Shaker Village, Shirley, Middlesex County, Massachusetts, 01464, USA" +"Hengyang Normal University, Hengyang, China",26.8661136,112.620921219792,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国" +Heriot-Watt University,55.91029135,-3.32345776559167,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK" +"Hiroshima University, Japan",34.4019766,132.7123195,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本" +HoHai University,32.05765485,118.755000398628,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国" +Hong Kong Baptist University,22.3874201,114.2082222,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国" +Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"Hong Kong University of Science and Technology, Hong Kong",22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"Howard University, Washington DC",38.921525,-77.019535656678,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA" +Huazhong University of,22.53367445,113.917874206261,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国" +Huazhong University of Science and Technology,30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国" +"Huazhong University of Science and Technology, Wuhan, China",30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国" +"Humboldt-University, Berlin, Germany",52.51875685,13.3935604936378,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland" +Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国" +"IBM Almaden Research Center, San Jose CA",37.21095605,-121.807486683178,"IBM Almaden Research Center, San José, Santa Clara County, California, USA" +IBM Thomas J. Watson Research Center,41.21002475,-73.8040705573196,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA" +IDIAP RESEARCH INSTITUTE,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +IDIAP Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +IMPERIAL COLLEGE,39.9458551,116.406973072869,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国" +Idiap Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Idiap Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Illinois Institute of Technology,41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +"Illinois Institute of Technology, Chicago, Illinois, USA",41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +Imperial College London,51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, U.K",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College London, United Kingdom",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Imperial College, London, UK",51.5004171,-0.1782711,"Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK" +India,22.3511148,78.6677428,India +Indian Institute of Science,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +Indian Institute of Science Bangalore,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +Indian Institute of Technology,28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India" +"Indian Institute of Technology Delhi, New Delhi, India",28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India" +Indian Institute of Technology Kanpur,26.513188,80.2365194538339,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India" +"Indian Institute of Technology, Roorkee",29.8662461,77.8958708109136,"Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India" +Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA" +Indiana University Bloomington,39.17720475,-86.5154003022128,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA" +Information Technologies Institute,33.5934539,130.3557837,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +"Information, Keio University",35.5416969,139.6347184,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本" +Institute,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Institute for Advanced,38.7468877,139.824707282407,"Institute for Advanced Biosciences, 鶴岡市, 山形県, 東北地方, 日本" +Institute for Communication Systems,51.2433692,-0.593220895014599,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK" +Institute for System Programming,55.7449881,37.6645042069876,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Institute of Automation,54.1720834,12.0790983,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland" +Institute of Communications Engineering,54.1718573,12.0784417,"Institut für Nachrichtentechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland" +Institute of Computer Science,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +Institute of Computing,43.47878995,-80.5548480959375,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada" +Institute of Computing Technology,34.6988529,135.1936779,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本" +Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India" +Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija" +Institute of Industrial Science,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣" +Institute of Information Technology,23.7289899,90.3982682,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +Institute of Media Innovation,1.3433937,103.6793303,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore" +Institute of Road and,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland" +International Institute of Information Technology,17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +"International Institute of Information Technology, Hyderabad, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +International University of,11.5744201,104.8775841,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រ​កម្ពុជា" +Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +Iran,32.9407495,52.9471344,‏ایران‎ +Islamic Azad University,34.8452999,48.5596212013643,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎" +Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية" +Istanbul Technical University,41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Istanbul Technical University, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +Istanbul University,41.0132424,28.9637609,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye" +Jacobs University,53.4129148,-2.96897915394896,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK" +Jadavpur University,22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India" +"Jadavpur University, India",22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India" +Jahangirnagar University,23.883312,90.2693921,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +"Jaipur, Rajasthan, India",26.916194,75.820349,"Jaipur, Rajasthan, 302001, India" +Japan,36.5748441,139.2394179,日本 +Japan Advanced Institute of Science and Technology,36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本" +"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan",36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本" +"Jiangnan University, Wuxi",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国" +"Joint Research Institute, Foshan, China",22.83388935,113.285418245471,"广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国" +"K.N. Toosi University of Technology, Tehran, Iran",35.76427925,51.409702762313,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎" +"KTH Royal Institute of Technology, Stockholm",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige" +Karlsruhe Institute of,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Karlsruhe Institute of Technology, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Karlsruhe Institute of Technology, Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"Keio University, Yokohama 223-8522, Japan",35.55536215,139.654582444136,"慶應義塾大学 (矢上キャンパス), 理工坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-8522, 日本" +Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"Kent State University, Kent, Ohio, USA",41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"Khalifa University, Abu Dhabi, United Arab Emirates",24.4469025,54.3942563,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية" +King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +"King Saud University, Riyadh",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"King Saud University, Riyadh 11543, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +Kingston University,51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK" +"Kingston University, UK",51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +"Kogakuin University, Tokyo, Japan",35.6902784,139.695400958171,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本" +Korea Advanced Institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +Korea Advanced institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +"Kurukshetra University, Kurukshetra",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India" +"Kurukshetra University, Kurukshetra, India",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India" +"Kyoto University, Kyoto, Japan",35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +Kyung Hee University,32.8536333,-117.2035286,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA" +"Kyung Hee University, South Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국" +Kyushu University,33.59914655,130.223598480987,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +Liverpool John Moores University,53.4050747,-2.97030028586709,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK" +Lomonosov Moscow State University,55.70229715,37.5317977694291,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ" +Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA" +"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige" +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India",13.0309553,77.5648559396817,"M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +METs Institute of Engineering,28.2140454,83.9607104993073,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल" +MULTIMEDIA UNIVERSITY,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +Macau University of Science and,22.3358031,114.265903983304,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +Macau University of Science and Technology,22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +"Manchester University, UK",53.47020165,-2.23932183309859,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK" +"Manonmaniam Sundaranar University, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +"Manonmaniam Sundaranar University, Tirunelveli",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +"Manonmaniam Sundaranar University, Tirunelveli, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +Marquette University,43.03889625,-87.9315544990507,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA" +Massachusetts Institute,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Massachusetts Institute of Technology (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA",42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Math Institute,43.65879595,-79.3975504060101,"Fields Institute for Research in Math Science, 222, College Street, Kensington Market, Old Toronto, Toronto, Ontario, M5T 3A1, Canada" +Max Planck Institute for Biological Cybernetics,48.5369125,9.05922532743396,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland" +Max Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +"Max Planck Institute for Informatics, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +Max-Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +McGill University,45.5039761,-73.5749687,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada" +"McGill University, Montreal, Canada",45.50691775,-73.5791162596496,"McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada" +McGovern Institute,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +McGovern Institute for Brain Research,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +McMaster University,43.26336945,-79.9180968401692,"McMaster University, Westdale, Hamilton, Ontario, Canada" +Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本" +Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, E. Lansing, MI 48823, USA",42.7337998,-84.4804243,"Dero Fixit Bike Station, Grand River Avenue, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing, MI 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Middlesex University London, London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Middlesex University London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Middlesex University, London",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +Monash University,-37.78397455,144.958674326093,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia" +"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia" +"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ" +Muhlenberg College,40.5967637,-75.5124062,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA" +Multimedia University,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +"Multimedia University, Cyberjaya, Malaysia",2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국" +"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"Nagoya University, Japan",43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"Nanjing University of Aeronautics and Astronautics, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +Nanjing University of Science and Technology,32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +"Nanjing University of Science and Technology, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +"Nanjing University, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Nanjing University, Nanjing 210023, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Nanjing University, Nanjing 210093, P.R.China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Nanyang Technological University, Singapore 639798, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +National Cheng Kung University,22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +"National Cheng Kung University, Tainan, Taiwan",22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +"National Chiao Tung University, Taiwan",24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣" +National Chiao-Tung University,24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +National Institute of Standards and Technology,39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA" +"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA",39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +National Institute of Technology Rourkela,22.2501589,84.9066855698087,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India" +"National Institute of Technology, Durgapur, West Bengal, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India" +National Institutes of Health,39.00041165,-77.1032777503325,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +National Taiwan University,25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +National Taiwan University of Science and Technology,25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"National Taiwan University of Science and Technology, Taipei 10607, Taiwan",25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"National Taiwan University, Taipei, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +"National Taiwan University, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +National Technical University of Athens,37.98782705,23.7317973260904,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα" +National University,14.6042947,120.994285201104,"National University, M.F. Jocson, Royal Plaza, Sampaloc, Fourth District, Manila, Metro Manila, 1008, Philippines" +National University of Defense Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +"National University of Defense Technology, Changsha 410073, China",28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland" +"National University of Kaohsiung, 811 Kaohsiung, Taiwan",22.73424255,120.283497550993,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣" +National University of Science and Technology,33.6450855,72.9915892221655,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +National University of Singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"National University of Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +National University of Technology Technology,33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +National University of singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"Neurological Institute, USA",40.84211085,-73.9428460313244,"Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA" +New Jersey Institute of Technology,40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +"New Jersey Institute of Technology, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"Newcastle University, Newcastle upon Tyne",54.98023235,-1.61452627035949,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK" +"Normal University, Kunming, China",25.0580509,102.6955241,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国" +North Carolina Central University,35.97320905,-78.897550537484,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA" +"North China Electric Power University, Baoding, China",38.8760446,115.4973873,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国" +"North Dakota State University, Fargo, ND 58108-6050, USA",46.897155,-96.8182760282419,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA" +Northeastern University,42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, Boston, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, Boston, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Northeastern University, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +Northumbria University,55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK" +"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK",54.9781026,-1.6067699,"Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK" +Northwestern University,42.0551164,-87.6758111348217,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA" +Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +"Nottingham Trent University, Nottingham, UK",52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +"Nottingham University Hospital, Nottingham, UK",52.9434967,-1.18631123153121,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK" +OF PRINCETON UNIVERSITY,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +OF STANFORD UNIVERSITY,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Oakland University,42.66663325,-83.2065575175658,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA" +Okayama University,34.6893393,133.9222272,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本" +Oregon State University,45.5198289,-122.677979643331,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA" +Otto von Guericke University,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +Oxford University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK" +"Oxford University, UK",51.7488051,-1.23874457456279,"James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK" +"PSG College of Technology, Coimbatore, Tamil Nadu, India",11.0246833,77.0028424564731,"PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +Peking University,39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +"Peking University, Beijing, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +Pennsylvania,40.9699889,-77.7278831,"Pennsylvania, USA" +Plymouth University,50.3755269,-4.13937687442817,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +Pohang University of Science and Technology,36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국" +Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +Pondicherry Engineering College,12.0148693,79.8480910431981,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India" +Portland State University,45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA" +"Portland State University, USA",45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA" +Portugal,40.033265,-7.8896263,Portugal +Poznan University of Technology,52.4004837,16.9515808278647,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP" +Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Princeton University, Princeton, NJ, USA",40.34725815,-74.6513455119257,"Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA" +"Princeton University, Princeton, New Jersey, USA",40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Pune Institute of Computer Technology, Pune, ( India",18.4575638,73.8507352,"Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +Purdue University,40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, IN 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, IN, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, IN. 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Purdue University, West Lafayette, Indiana, 47906, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Qatar University, Qatar",25.37461295,51.4898035392337,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎" +Queen Mary University,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +Queen Mary University of London,51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Queen Mary University of London, London E1 4NS, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Queensland University of Technology (QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Queensland University of Technology, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Queensland University of Technology, Brisbane, QLD, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"RMIT University, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +RWTH Aachen University,50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland" +"RWTH Aachen University, Aachen, Germany",50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland" +Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India" +Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Rensselaer Polytechnic Institute, Troy, NY 12180, USA",42.73280325,-73.6622354488153,"Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +Research Center,24.7261991,46.6365468966391,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"Rice University, Houston, TX, 77005, USA",29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"Rio de Janeiro State University, Brazil",-22.91117105,-43.2357797110467,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil" +"Ritsumeikan University, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本" +"Ritsumeikan University, Kyoto, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本" +"Ritsumeikan, University",49.26007165,-123.253442836235,"Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +Rochester Institute of Technology,43.08250655,-77.6712166264273,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA" +Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA" +Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA" +Ruhr University Bochum,51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +Rutgers University,40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +"Rutgers University, New Brunswick, NJ",40.50007595,-74.4457915242934,"Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA" +"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA" +"Rutgers University, Piscataway NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, Piscataway, NJ",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, Piscataway, NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, USA",40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +"Ryerson University, Canada",43.65815275,-79.3790801045263,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada" +"SASTRA University, Thanjavur, Tamil Nadu, India",10.9628655,79.3853065130097,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India" +SIMON FRASER UNIVERSITY,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +Sabanci University,40.8927159,29.3786332263582,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye" +Sakarya University,40.76433515,30.3940787517111,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye" +"San Jose State University, San Jose, CA",37.3351908,-121.881260081527,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +Santa Fe Institute,35.7002878,-105.908648471331,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA" +"School, The University of Sydney, Sydney, NSW, Australia",-33.8893229,151.180068,"Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia" +"Science, University of Amsterdam",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +Semarang State University,-7.00349485,110.417749486905,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia" +Seoul National University,37.26728,126.9841151,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국" +Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎" +Shandong University of Science and Technology,36.00146435,120.116240565627,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国" +Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"Sharif University of Technology, Tehran. Iran",35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +Shenzhen Institutes of Advanced Technology,22.59805605,113.985337841399,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国" +"Shenzhen University, Shenzhen, China",22.53521465,113.931591101679,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国" +Shiraz University,29.6385474,52.5245706,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎" +Simon Fraser University,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +Sinhgad College of,19.0993293,74.7691424,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India" +South China University of China,23.0490047,113.3971571,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +South China University of Technology,23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +South College Road,39.2715228,-76.6936807,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA" +"Southeast University, Nanjing, China",32.0575279,118.786822520439,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国" +Southwest Jiaotong University,30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Southwest University, Chongqing 400715, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +Stanford University,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, CA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, CA, United States",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, Stanford, California",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Stanford University, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"State University of New York Polytechnic Institute, Utica, New York",43.13800205,-75.2294359077068,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA" +State University of New York at Binghamton,42.08779975,-75.9706606561486,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA" +State University of New York at Buffalo,42.95485245,-78.8178238693065,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA" +"Statistics, University of",32.0731522,72.6814703364947,"Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, ‏پاکستان‎" +Stevens Institute of Technology,40.742252,-74.0270949,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA" +Stony Brook University,40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +Stony Brook University Hospital,40.90826665,-73.1152089127966,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, NY, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, Stony Brook NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, Stony Brook, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Stony Brook University, Stony Brook, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Sun Yat-Sen University, Guangzhou, P.R. China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +Sun Yat-sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +SungKyunKwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +Sungkyunkwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +Swansea University,51.6091578,-3.97934429228629,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK" +Swiss Federal Institute of Technology,47.3764534,8.54770931489751,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra" +THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +THE UNIVERSITY OF CHICAGO,41.78468745,-87.6007493265106,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"Tafresh University, Tafresh, Iran",34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"Tamkang University, Taipei, Taiwan",25.17500615,121.450767514156,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣" +Tampere University of Technology,61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Tampere University of Technology, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Tampere University of Technology, Tampere 33720, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +Technion Israel Institute of Technology,32.7767536,35.0241452903301,"הטכניון - מכון טכנולוגי לישראל, דוד רוז, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל" +"Technological University, Davanagere, Karnataka, India",14.4525199,75.9179512,"UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India" +Tel Aviv University,32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +"Tel-Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Temple University,39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA" +"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +"Temple University, Philadelphia, USA",39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA" +Thapar University,30.35566105,76.3658164148513,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India" +The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"The American University in Cairo, Egypt",30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +The Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"The Australian National University, Canberra, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"The Chinese University of Hong Kong, China",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"The Chinese University of Hong Kong, Hong Kong",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"The Chinese University of Hong Kong, New Territories, Hong Kong",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +The City College and the Graduate Center,37.76799565,-122.400099572569,"Graduate Center, 184, Hooper Street, Mission Bay, SF, California, 94158, USA" +"The City College of New York, New York, NY 10031, USA",40.81819805,-73.9510089793336,"CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA" +The City University of New York,40.8722825,-73.8948917141949,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA" +The Education University of Hong Kong,22.46935655,114.19474193618,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国" +The Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +"The Hebrew University of Jerusalem, Israel",31.7918555,35.244723,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל" +The Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"The Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +The Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India" +The Ohio State University,40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +"The Ohio State University, Columbus, OH, USA",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +"The Ohio State University, OH",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +The Open University of Israel,32.77824165,34.9956567288188,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל" +The Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +The State University of New Jersey,40.51865195,-74.4409980124119,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"The University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +The University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +The University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"The University of Electro-Communications, JAPAN",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"The University of Electro-Communications, Tokyo",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +The University of Hong Kong,22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国" +The University of Manchester,53.46600455,-2.23300880782987,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK" +The University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +The University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +"The University of Newcastle, Callaghan 2308, Australia",-32.8930923,151.705656,"University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia" +The University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +"The University of North Carolina at Charlotte, USA",35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +"The University of North Carolina, Chapel Hill",35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA" +The University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"The University of Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"The University of Sydney, NSW 2006, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"The University of Sydney, Sydney, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"The University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +The University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +The University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +The University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +"The University of Texas at Dallas, Richardson, TX",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +The University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia" +The University of York,53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"The University of York, Heslington, York YO10 5DD, United Kingdom",53.94830175,-1.05154975017361,"Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK" +"The University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"The University of York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +The University of the Humanities,47.9218937,106.919552402206,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс" +The Weizmann Institute of,31.904187,34.807378,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל" +The Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל" +"Tohoku University, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本" +"Tohoku University, Sendai, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本" +Tokyo Denki University,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +Tokyo Institute of Technology,35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +"Tokyo Institute of Technology, Japan",35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +Tokyo Metropolitan University,35.6200925,139.38296706394,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本" +Tomsk Polytechnic University,56.46255985,84.955654946724,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ" +Tongji University,31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +"Tongji University, Shanghai 201804, China",31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +"Toyota Technological Institute (Chicago, US",41.7847112,-87.5926056707507,"Toyota Technological Institute, 6045, South Kenwood Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA" +Tsinghua University,40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +UNIVERSITY IN PRAGUE,50.0714761,14.4542642,"Business Institut EDU, Kodaňská, Vršovice, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 10100, Česko" +UNIVERSITY OF CALIFORNIA,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"UNIVERSITY OF CALIFORNIA, BERKELEY",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"UNIVERSITY OF CALIFORNIA, SAN DIEGO",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +UNIVERSITY OF TARTU,58.38131405,26.7207808104523,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti" +UNIVERSITY OF WISCONSIN MADISON,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland" +University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University (ITU,55.65965525,12.5910768893446,"IT-Universitetet i København, Emil Holms Kanal, Christianshavn, København, Københavns Kommune, Region Hovedstaden, 1424, Danmark" +"University City Blvd., Charlotte, NC",35.312224,-80.7084736,"University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +University College London,51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"University College London, London WC1N 3BG, United Kingdom",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"University College London, London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"University College London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +University Drive,-21.1753214,149.1432747,"University Drive, Ooralea, Mackay, QLD, 4740, Australia" +"University Drive, Fairfax, VA 22030-4444, USA",38.835411,-77.316447,"University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA" +University Institute of Engineering and Technology,26.9302879,80.9278433,"Maharishi University Of Information Technology, NH230, Jankipuram, Lucknow, Uttar Pradesh, 226021, India" +"University Library, Singapore",1.30604775,103.7728987705,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore" +University Of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"University POLITEHNICA Timisoara, Timisoara, 300223, Romania",45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"University Politehnica of Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University of,29.3758342,71.7528712910287,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, ‏پاکستان‎" +University of Aberdeen,57.1646143,-2.10186013407315,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK" +University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK" +University of Adelaide,-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University of Adelaide, SA, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University of Aizu, Japan",37.5236728,139.938072464124,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本" +"University of Akron, Akron",41.0789035,-81.5197127229943,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA" +"University of Alberta, Edmonton, Canada",53.5238572,-113.522826652346,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada" +University of Amsterdam,52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Amsterdam, the Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +University of Arizona,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA" +University of Barcelona,41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"University of Basel, Switzerland",47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +University of Bath,51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"University of Bath, Bath, Somerset, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"University of Bath, Bath, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +University of Birmingham,52.45044325,-1.93196134052244,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK" +University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +University of Brescia,37.7689374,-87.1113859,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA" +University of Bridgeport,41.1664858,-73.1920564,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA" +University of Bristol,51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK" +"University of Bristol, Bristol, BS8 1UB, UK",51.4562363,-2.602779,"University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK" +"University of Bristol, Bristol, UK",51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK" +University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +University of Buffalo,40.7021766,-99.0985061173294,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA" +University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +University of California,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +University of California Davis,38.5336349,-121.790772639747,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA" +University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"University of California, Berkeley, Berkeley CA 94720, USA",37.8756681,-122.257979979865,"Goldman School of Public Policy, Hearst Avenue, Northside, Berkeley, Alameda County, California, 94720, USA" +"University of California, Irvine",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +"University of California, Merced",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +"University of California, Merced, CA 95344, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +"University of California, Merced, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +"University of California, Riverside",33.98071305,-117.332610354677,"University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA" +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +"University of California, Riverside, California 92521, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, San Diego, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of California, Santa Barbara",34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"University of Cambridge, United Kingdom",52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +University of Campinas,-27.5953995,-48.6154218,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil" +University of Campinas (Unicamp,-22.8224781,-47.0642599309425,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"University of Canterbury, New Zealand",-43.5240528,172.580306253669,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa" +University of Cape Town,-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +"University of Cape Town, South Africa",-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Central Florida, Orlando",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"University of Central Florida, Orlando, USA",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Central Punjab, Pakistan",31.4466149,74.2679762,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎" +University of Chinese Academy of Sciences,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +University of Chinese Academy of Sciences (UCAS,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, Beijing, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal" +University of Colorado Colorado Springs,38.8920756,-104.797163894584,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA" +"University of Colorado, Boulder",40.01407945,-105.266959437621,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA" +University of Connecticut,41.8093779,-72.2536414,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA" +University of Copenhagen,55.6801502,12.5723270014063,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark" +"University of Crete, Crete, 73100, Greece",35.3713024,24.4754408,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα" +"University of Dammam, Saudi Arabia",26.39793625,50.1980792430511,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +"University of Delaware, Newark, DE. USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA" +"University of Denver, Denver, CO",39.6766541,-104.962203,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA" +University of Dhaka,23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +"University of Dhaka, Bangladesh",23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +"University of Dschang, Cameroon",5.4409448,10.0712056113589,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun" +University of Dundee,56.45796755,-2.98214831353755,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK" +University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +"University of Edinburgh, Edinburgh, UK",55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +University of Engineering and Technology,31.6914689,74.2465617,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, ‏پاکستان‎" +University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +"University of Exeter, UK",50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +University of Florida,29.6328784,-82.3490133048243,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA" +"University of Florida, Gainesville, FL, 32611, USA",29.6447739,-82.3575193392276,"University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA" +University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland" +University of Geneva,42.57054745,-88.5557862661765,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA" +University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK" +University of Groningen,53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"University of Groningen, Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"University of Gujrat, Pakistan",32.63744845,74.1617455759799,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎" +"University of Haifa, Haifa, Israel",32.76162915,35.0198630428453,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל" +University of Houston,29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +"University of Houston, Houston, TX 77204, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +"University of Houston, Houston, TX, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +University of Iceland,64.137274,-21.9456145356869,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland" +University of Illinois,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois Urbana Champaign,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +University of Illinois at Urbana,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at Urbana Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana Champaign, Urbana",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA",40.1066501,-88.2240260725426,"University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, Urbana, IL",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois at Urbana-Champaign, Urbana, IL, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"University of Illinois, Urbana-Champaign",40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Information,34.17980475,-117.325843648456,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA" +"University of Ioannina, Ioannina, Greece",39.6162306,20.8396301098796,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα" +University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA" +"University of Karlsruhe, Germany",49.00664235,8.39405151637065,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"University of Kentucky, USA",38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +University of Leeds,53.80387185,-1.55245712031677,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK" +"University of Lincoln, U.K",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +"University of Lincoln, UK",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +University of Ljubljana,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija" +University of Ljubljana Faculty,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija" +University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK" +"University of Malaya, 50603 Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia" +"University of Malaya, Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia" +University of Malta,35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +University of Maryland College Park,38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA" +"University of Maryland-College Park, USA",38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Massachusetts - Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Massachusetts Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Massachusetts, Amherst",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Massachusetts, Amherst, MA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Memphis,35.1189387,-89.9372195996589,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"University of Miami, Coral Gables, FL",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"University of Miami, USA",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +University of Michigan,42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor, MI, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Michigan, Ann Arbor, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +University of Milan,38.6796662,-90.3262816,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA" +University of Minnesota,44.97308605,-93.2370881262941,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA" +"University of Missouri, Columbia, MO",38.926761,-92.2919378337447,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA" +University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA" +"University of Nevada, Reno, Reno, NV, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA" +"University of Nevada, Reno, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +University of North Carolina,35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA" +University of North Carolina Wilmington,34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA" +"University of North Carolina Wilmington, Wilmington, NC, USA",34.2377352,-77.92673494788,"Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA" +University of North Carolina at Chapel Hill,35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of North Carolina at Chapel Hill, NC, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of North Carolina at Chapel Hill, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +University of North Texas,33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA" +"University of North Texas, Denton, Texas, USA",33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA" +University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"University of Northern British Columbia, Canada",53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"University of Notre Dame, USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"University of Notre Dame. Notre Dame, IN 46556.USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +University of Oradea,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +University of Ottawa,45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"University of Ottawa, Ottawa, On, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +University of Oulu,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +"University of Oulu, Finland",65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +University of Oxford,51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Oxford, Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Oxford, UK",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Patras, Greece",38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +University of Pennsylvania,39.9492344,-75.191989851901,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"University of Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +"University of Peshawar, Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +University of Piraeus,37.94173275,23.6530326182197,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα" +"University of Pisa, Pisa, Italy",43.7201299,10.4078976,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia" +University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Pittsburgh, PA, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Pittsburgh, Pittsburgh",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Pittsburgh, Pittsburgh PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Pittsburgh, Pittsburgh, PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Pittsburgh, Pittsburgh, PA 15260, USA",40.4437547,-79.9529557,"Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA" +"University of Pittsburgh, Pittsburgh, PA, USA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +University of Posts and Telecommunications,32.11527165,118.925956600436,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国" +"University of Queensland, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +University of Rochester,43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +"University of Rochester, NY 14627, USA",43.1242954,-77.6288352530005,"Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA" +"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +"University of Salzburg, Austria",47.79475945,13.0541752486067,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich" +University of Science and,5.35755715,100.303850375,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia" +University of Science and Technology of China,31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei, Anhui, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University of Science and Technology of China, Hefei, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"University of South Carolina, Columbia, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +University of Southampton,50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +"University of Southampton, SO17 1BJ, UK",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +"University of Southampton, United Kingdom",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +"University of Southern California, Los Angeles, CA 90089, USA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +"University of St Andrews, United Kingdom",56.3411984,-2.7930938,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK" +University of Stuttgart,48.9095338,9.1831892,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland" +University of Surrey,51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"University of Surrey, Guildford, Surrey GU2 7XH, UK",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"University of Surrey, United Kingdom",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"University of Tabriz, Tabriz, Iran",38.0612553,46.3298484,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎" +University of Tampere,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +University of Technology Sydney,-33.8809651,151.201072985483,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology, Baghdad, Iraq",33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +"University of Technology, Sydney",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +University of Texas at Arlington,32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, Arlington, TX",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, Arlington, Texas 76019, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Texas at Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +University of Texas at San Antonio,29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA" +"University of Texas, Austin, TX 78712-1188, USA",30.284458,-97.7342106,"University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +University of Toronto,43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada" +University of Toulouse,30.1781816,-93.2360581,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA" +University of Trento,46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +"University of Trento, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +University of Tsukuba,36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +"University of Tsukuba, Japan",36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +University of Twente,52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"University of Twente, Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"University of Twente, The Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +University of Venezia,45.4312742,12.3265377,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia" +"University of Vermont, 33 Colchester Avenue, Burlington",44.48116865,-73.2002178989123,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA" +"University of Vienna, Austria",48.2131302,16.3606865338016,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich" +University of Virginia,38.0353682,-78.5035322,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA" +"University of Virginia, Charlottesville, VA",38.0410576,-78.5054996018357,"University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA" +University of Warwick,52.3793131,-1.5604252,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"University of Washington, Seattle, WA 98195, United States",47.6547795,-122.305818,"University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"University of Washington, Seattle, WA, USA",47.65249975,-122.2998748,"University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA" +University of Waterloo,43.47061295,-80.5472473165632,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada" +University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +University of Wisconsin-Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"University of Wisconsin-Madison, Madison, WI, USA",43.0705257,-89.4059387,"UW Geology Museum, 1215, West Dayton Street, South Campus, Madison, Dane County, Wisconsin, 53715, USA" +University of Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +"University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"University of York, York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"University of York, York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"University of Zurich, Zurich, Switzerland",47.4968476,8.72981767380829,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra" +"University of telecommunications and post, Sofia, Bulgaria",42.6560524,23.3476108351659,"Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия" +"University of the Basque Country, San Sebastian, Spain",43.30927695,-2.01066784661227,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España" +University of the Western Cape,-33.9327762,18.6291540714825,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa" +University of the Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +"University, China",22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"University, Guangzhou, China",23.1314851,113.2852239,"中山大学第一课室, 74号大院, 中山二路, 马棚岗, 农林街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国" +"University, Hong Kong",54.0856448,13.389089,"Hong-Kong, Feldstraße, Greifswald, Südliche Mühlenvorstadt, Greifswald, Vorpommern-Greifswald, Mecklenburg-Vorpommern, 17489, Deutschland" +"University, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"University, USA",25.7147949,-80.276947,"University, South Dixie Highway, Coral Gables, Miami-Dade County, Florida, 33124-6310, USA" +"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国" +Ural Federal University (UrFU,56.8435083,60.6454805,"УрФУ, улица Гагарина, Эврика, Втузгородок, Кировский район, Екатеринбург, городской округ Екатеринбург, Свердловская область, Уральский федеральный округ, 620062, РФ" +"Utah State University, Logan UT",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA" +"Utah State University, Logan, UT 84322-4205, USA",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA" +Victoria University of Wellington,-41.29052775,174.768469187426,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa" +Vienna University of Technology,48.19853965,16.3698616762866,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich" +Villanova University,40.0367774,-75.342023320028,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA" +Virginia Polytechnic Institute and State University,37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +"Virginia Polytechnic Institute and State University, Blacksburg",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +"Virginia Polytechnic Institute and State University, Blacksburg, Virginia",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +Virginia Tech Carilion Research Institute,37.2579548,-79.9423329131356,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA" +Vrije Universiteit Brussel,50.8411007,4.32377555279953,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien" +"Vrije Universiteit Brussel, 1050 Brussels, Belgium",50.8223021,4.3967361,"Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien" +"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +"Washington University, St. Louis, MO, USA",38.6480445,-90.3099667,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA" +Wayne State University,42.357757,-83.0628671134125,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA" +"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל" +West Virginia University,39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown, WV",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"West Virginia University, Morgantown, WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +Western Kentucky University,36.9845317,-86.4576443016944,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA" +"Western Sydney University, Parramatta, NSW 2150, Australia",-33.8160848,151.00560034186,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia" +Wolfson College,51.7711076,-1.25361700492597,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK" +Xerox Research Center,43.5129109,-79.6664076152913,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada" +Xiamen University,24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +"Xiamen University, Xiamen, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +Xidian University,34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +"Xidian University, Xi an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA" +Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA" +Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ" +Yeungnam University,35.8365403,128.7534309,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국" +York University,43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"York University, Toronto",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"York University, Toronto, Canada",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +Zaragoza University,41.6406218,-0.900793992168927,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España" +"Zhejiang Normal University, Jinhua, China",29.13646725,119.637686517179,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国" +Zhejiang University,30.19331415,120.119308216677,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国" +Zhejiang University of Technology,30.2931534,120.1620458,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国" +"Zhengzhou University, Zhengzhou, Henan 450052, China",34.8088168,113.5352664,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国" +a The University of Nottingham Malaysia Campus,2.9438432,101.8736196,"The University of Nottingham Malaysia Campus, Jalan Broga, Bandar Rinching, Semenyih, Selangor, 43500, Malaysia" +any other University,53.8012316,-1.5476213,"Northern Film School, Millennium Square, Steander, Woodhouse, Leeds, Yorkshire and the Humber, England, LS1 3DW, UK" +college of Engineering,13.0110912,80.2354520862161,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +of bilkent university,39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +of the University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +the Chinese University of Hong Kong,22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA" +"university, Shiraz, Iran",29.6284395,52.5181728343761,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ‏ایران‎" +y National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" diff --git a/scraper/reports/institutions_found/found-1.csv b/scraper/reports/institutions_found/found-1.csv new file mode 100644 index 00000000..e76145e5 --- /dev/null +++ b/scraper/reports/institutions_found/found-1.csv @@ -0,0 +1,479 @@ +"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA" +"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal" +"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige" +Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland" +Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Peking University, Beijing, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国" +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India" +Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ" +"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국" +University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +New Jersey Institute of Technology,40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Bristol, Bristol, BS8 1UB, UK",51.4562363,-2.602779,"University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK" +Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本" +Kyushu University,33.59914655,130.223598480987,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国" +Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia" +FL,27.7567667,-81.4639835,"Florida, USA" +Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA" +"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA" +University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland" +Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam" +"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA" +Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye" +King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣" +University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA" +University of Trento,46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +College of Electrical and Information Engineering,42.0049791,21.40834315,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија" +Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India" +University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India" +"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本" +"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK" +"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"University of Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Chulalongkorn University, Bangkok",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย" +University of Arizona,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"University of California, Riverside, California 92521, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +University of the Western Cape,-33.9327762,18.6291540714825,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa" +"Electrical Engineering, University of",47.6532412,-122.3061707,"Electrical Engineering, 185, Loading Dock, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA" +Vienna University of Technology,48.19853965,16.3698616762866,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich" +"Hengyang Normal University, Hengyang, China",26.8661136,112.620921219792,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国" +Courant Institute of Mathematical Sciences,40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"International Institute of Information Technology, Hyderabad, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India" +"Bilkent University, 06800 Cankaya, Turkey",39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"Tokyo Institute of Technology, Japan",35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +College of Informatics,14.6173885,121.101327315511,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines" +"Akita Prefectural University, Yurihonjo, Japan",39.39325745,140.073500465928,"秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本" +Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ" +Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA" +"University of Ottawa, Ottawa, On, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +Muhlenberg College,40.5967637,-75.5124062,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +National Technical University of Athens,37.98782705,23.7317973260904,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα" +Amirkabir University of Technology,35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +Zhejiang University of Technology,30.2931534,120.1620458,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国" +"Harvard University, Cambridge, MA, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +South China University of Technology,23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +"University, China",22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"The University of Newcastle, Callaghan 2308, Australia",-32.8930923,151.705656,"University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia" +University of Minnesota,44.97308605,-93.2370881262941,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA" +"University of Nevada, Reno, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA" +"Anna University Chennai, India",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +"Carnegie Mellon University Pittsburgh, PA - 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Idiap Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣" +"University of York, York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA",39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA" +University Drive,-21.1753214,149.1432747,"University Drive, Ooralea, Mackay, QLD, 4740, Australia" +"University City Blvd., Charlotte, NC",35.312224,-80.7084736,"University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +"University, USA",25.7147949,-80.276947,"University, South Dixie Highway, Coral Gables, Miami-Dade County, Florida, 33124-6310, USA" +"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +"The University of York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +Harbin Institute of Technology,45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"University of North Texas, Denton, Texas, USA",33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA" +"Nanjing University, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Carnegie Mellon University, Pittsburgh, PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +Beijing University of Posts and Telecommunications,39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +University of Chinese Academy of Sciences (UCAS,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Xidian University, Xi an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +University of Colorado Colorado Springs,38.8920756,-104.797163894584,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA" +The Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +University of Brescia,37.7689374,-87.1113859,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA" +The University of Hong Kong,22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国" +"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"Benha University, Egypt",30.0818727,31.2445484105016,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر" +Jadavpur University,22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India" +Indian Institute of Technology,28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India" +UNIVERSITY OF WISCONSIN MADISON,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Alexandria University, Alexandria, Egypt",31.21051105,29.9131456239399,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر" +Charles Sturt University,-35.0636071,147.3552234,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia" +"Aristotle University of Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA" +Institute of Information Technology,23.7289899,90.3982682,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +"University of York, York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"Beijing University of Technology, Beijing 100022, China",39.87391435,116.477222846574,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国" +University of Houston,29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +The University of the Humanities,47.9218937,106.919552402206,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +Stony Brook University,40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +University of Rochester,43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +The University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +Eastern University,40.0505672,-75.3710932636663,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA" +"The University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"State University of New York Polytechnic Institute, Utica, New York",43.13800205,-75.2294359077068,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA" +"University of Technology, Sydney",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"University of Miami, Coral Gables, FL",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +Institute of Media Innovation,1.3433937,103.6793303,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore" +"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +"University of North Carolina at Chapel Hill, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"Beijing Institute of Technology University, P. R. China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +The Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +University of Milan,38.6796662,-90.3262816,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA" +Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia" +RWTH Aachen University,50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland" +"University of Surrey, United Kingdom",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA" +"North China Electric Power University, Baoding, China",38.8760446,115.4973873,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国" +"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan",36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本" +Harbin Institute of Technology;Shenzhen University,22.5895016,113.965710495775,"哈工大(深圳), 平山一路, 深圳大学城, 珠光村, 南山区, 深圳市, 广东省, 518000, 中国" +"University of California, Merced, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +Central Washington University,47.00646895,-120.53673039883,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA" +CUNY City College,45.5546608,5.4065255,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France" +University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +"Multimedia University, Cyberjaya, Malaysia",2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +"University of Ioannina, Ioannina, Greece",39.6162306,20.8396301098796,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα" +"Stony Brook University, NY, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"Amity University, Lucknow, India",26.85095965,81.0495096452828,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India" +"University of Northern British Columbia, Canada",53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"Carnegie Mellon University, USA",37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +"The University of Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea",37.3219575,127.1250723,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국" +Simon Fraser University,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +"University of Texas at Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Groningen, Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"Bharathidasan University, Trichy, India",10.7778845,78.6966319,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India" +"University of Aizu, Japan",37.5236728,139.938072464124,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本" +"University of California, Santa Barbara",34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +Bahcesehir University,41.02451875,28.9769795349346,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye" +University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA" +"University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +Kyung Hee University,32.8536333,-117.2035286,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA" +"University of Kentucky, USA",38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +West Virginia University,39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"Jiangnan University, Wuxi",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国" +Japan Advanced Institute of Science and Technology,36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本" +University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK" +"York University, Toronto",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"University College London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"University of Missouri, Columbia, MO",38.926761,-92.2919378337447,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA" +Iran,32.9407495,52.9471344,‏ایران‎ +"University of Houston, Houston, TX 77204, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" +The University of Manchester,53.46600455,-2.23300880782987,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK" +COLUMBIA UNIVERSITY,40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"University of Oulu, Finland",65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +Korea Advanced institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +"University of Pittsburgh, Pittsburgh PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국" +Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland" +"Nottingham University Hospital, Nottingham, UK",52.9434967,-1.18631123153121,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK" +"Zhengzhou University, Zhengzhou, Henan 450052, China",34.8088168,113.5352664,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国" +Graz University of Technology,47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich" +"University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +Villanova University,40.0367774,-75.342023320028,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA" +"Imperial College London, United Kingdom",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"George Mason University, Fairfax, VA, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"COMSATS Institute of Information Technology, Lahore 54000, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +Queen Mary University,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +India,22.3511148,78.6677428,India +University of Buffalo,40.7021766,-99.0985061173294,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA" +"Stanford University, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +International Institute of Information Technology,17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India" +University of Tampere,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +Seoul National University,37.26728,126.9841151,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국" +"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia",3.0552109,101.7005831,"Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia" +"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland" +ARISTOTLE UNIVERSITY OF THESSALONIKI,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +University of Florida,29.6328784,-82.3490133048243,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA" +a The University of Nottingham Malaysia Campus,2.9438432,101.8736196,"The University of Nottingham Malaysia Campus, Jalan Broga, Bandar Rinching, Semenyih, Selangor, 43500, Malaysia" +"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige" +The University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +Dr. Babasaheb Ambedkar Marathwada University,19.8960918,75.3089470267316,"Boys Hostel No. 3, Shantipura road, Cantonment, Bidri workshop, Aurangabad, Maharashtra, 431004, India" +"The City College of New York, New York, NY 10031, USA",40.81819805,-73.9510089793336,"CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA" +"Manchester University, UK",53.47020165,-2.23932183309859,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK" +"University of Massachusetts, Amherst",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +UNIVERSITY IN PRAGUE,50.0714761,14.4542642,"Business Institut EDU, Kodaňská, Vršovice, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 10100, Česko" +"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA" +University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +"Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"California Institute of Technology, Pasadena, CA, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"McGill University, Montreal, Canada",45.50691775,-73.5791162596496,"McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada" +"Temple University, Philadelphia, USA",39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA" +"Florida Institute Of Technology, Melbourne Fl",28.0642296,-80.6230097241205,"Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA" +"University of Salzburg, Austria",47.79475945,13.0541752486067,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich" +Northumbria University,55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK" +"Sharif University of Technology, Tehran. Iran",35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +The City College and the Graduate Center,37.76799565,-122.400099572569,"Graduate Center, 184, Hooper Street, Mission Bay, SF, California, 94158, USA" +"University of Queensland, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia" +"Tohoku University, Sendai, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本" +"Brown University, United States",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국" +"Stony Brook University, Stony Brook, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +Georgia Institute of Technology,33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA" +"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"University of Pittsburgh, PA, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +Hong Kong Baptist University,22.3874201,114.2082222,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国" +"University of Pittsburgh, Pittsburgh",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +"University of Akron, Akron",41.0789035,-81.5197127229943,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA" +Halmstad University,56.66340325,12.8792972689712,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige" +George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +Shandong University of Science and Technology,36.00146435,120.116240565627,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国" +University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland" +"University of Pittsburgh, Pittsburgh, PA, USA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"Ritsumeikan, University",49.26007165,-123.253442836235,"Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +UNIVERSITY OF TARTU,58.38131405,26.7207808104523,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti" +"Clemson University, Clemson, SC",34.67871075,-82.8346790794026,"E-06 Parking, Parkway Drive, Pickens County, South Carolina, SC, USA" +Oxford University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK" +National Chiao-Tung University,24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣" +THE UNIVERSITY OF CHICAGO,41.78468745,-87.6007493265106,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA" +Victoria University of Wellington,-41.29052775,174.768469187426,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa" +"New Jersey Institute of Technology, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +"West Virginia University, Morgantown, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"Aalborg University, Denmark",57.01590275,9.97532826658991,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark" +University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA" +"The University of North Carolina, Chapel Hill",35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA" +University Institute of Engineering and Technology,26.9302879,80.9278433,"Maharishi University Of Information Technology, NH230, Jankipuram, Lucknow, Uttar Pradesh, 226021, India" +"King Saud University, Riyadh 11543, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India" +"Michigan State University, E. Lansing, MI 48823, USA",42.7337998,-84.4804243,"Dero Fixit Bike Station, Grand River Avenue, East Lansing, Ingham County, Michigan, 48824, USA" +"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +Drexel University,39.9574,-75.1902670552555,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA" +"University of North Carolina Wilmington, Wilmington, NC, USA",34.2377352,-77.92673494788,"Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA" +"Harvard University, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +Macau University of Science and Technology,22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +University of Massachusetts - Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"UNIVERSITY OF CALIFORNIA, SAN DIEGO",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Columbia University, New York, NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"University of Texas at Arlington, Arlington, TX",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +Tongji University,31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +National Taiwan University,25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +South College Road,39.2715228,-76.6936807,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA" +"College Park, MD",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +SungKyunKwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +"University of Gujrat, Pakistan",32.63744845,74.1617455759799,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎" +The Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"National Chiao Tung University, Taiwan",24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣" +Portland State University,45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA" +"Xiamen University, Xiamen, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +Swiss Federal Institute of Technology,47.3764534,8.54770931489751,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra" +"University of Illinois at Urbana-Champaign, Urbana, IL, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"College of Engineering Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India" +"Shenzhen University, Shenzhen, China",22.53521465,113.931591101679,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国" +"University of Central Punjab, Pakistan",31.4466149,74.2679762,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎" +University of Texas at San Antonio,29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA" +"York University, Toronto, Canada",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"University of Maryland-College Park, USA",38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA" +Tokyo Denki University,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +University of Adelaide,-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"Ryerson University, Canada",43.65815275,-79.3790801045263,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada" +"University of Dschang, Cameroon",5.4409448,10.0712056113589,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun" +University of Tsukuba,36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +The University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"Beijing Institute of Technology, Beijing 100081 CHINA",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" diff --git a/scraper/reports/institutions_found/found-2.csv b/scraper/reports/institutions_found/found-2.csv new file mode 100644 index 00000000..1b4d5911 --- /dev/null +++ b/scraper/reports/institutions_found/found-2.csv @@ -0,0 +1,510 @@ +"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA" +"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal" +"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige" +Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland" +Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Peking University, Beijing, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国" +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India" +Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ" +"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국" +University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +New Jersey Institute of Technology,40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Bristol, Bristol, BS8 1UB, UK",51.4562363,-2.602779,"University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK" +Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本" +Kyushu University,33.59914655,130.223598480987,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国" +Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia" +FL,27.7567667,-81.4639835,"Florida, USA" +Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA" +"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA" +University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland" +Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam" +"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA" +Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye" +King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣" +University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA" +University of Trento,46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +College of Electrical and Information Engineering,42.0049791,21.40834315,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија" +Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India" +University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India" +"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本" +"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK" +"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"University of Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +"Chulalongkorn University, Bangkok",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย" +The University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"University of Texas at Arlington, Arlington, TX",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"Imperial College London, United Kingdom",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"The City College of New York, New York, NY 10031, USA",40.81819805,-73.9510089793336,"CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA" +"PSG College of Technology, Coimbatore, Tamil Nadu, India",11.0246833,77.0028424564731,"PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +"Nottingham Trent University, Nottingham, UK",52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +National Institute of Technology Rourkela,22.2501589,84.9066855698087,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India" +Arizona State University,33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"National Taiwan University of Science and Technology, Taipei 10607, Taiwan",25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +Beihang University,39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +"Middlesex University, London",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"University of Science and Technology of China, Hefei, Anhui, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"University College London, London WC1N 3BG, United Kingdom",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +The University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India",13.0309553,77.5648559396817,"M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India" +"University of Vermont, 33 Colchester Avenue, Burlington",44.48116865,-73.2002178989123,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +Stanford University,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Virginia Polytechnic Institute and State University, Blacksburg",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +Fudan University,31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +"Hong Kong University of Science and Technology, Hong Kong",22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +Institute of Industrial Science,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +AALTO UNIVERSITY,60.18558755,24.824273298775,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi" +"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Information Technologies Institute,33.5934539,130.3557837,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本" +University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK" +"University of Bath, Bath, Somerset, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"University of Central Florida, Orlando, USA",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia" +"The University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +University of Birmingham,52.45044325,-1.93196134052244,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK" +"University of Southampton, United Kingdom",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +Yeungnam University,35.8365403,128.7534309,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국" +Beihang University,39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية" +Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA" +Heriot-Watt University,55.91029135,-3.32345776559167,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK" +Indiana University Bloomington,39.17720475,-86.5154003022128,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA" +"PSG College of Technology, Coimbatore, Tamil Nadu, India",11.0246833,77.0028424564731,"PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +Max Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +"University of Michigan, Ann Arbor, MI, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +University of Technology Sydney,-33.8809651,151.201072985483,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia" +National University of Science and Technology,33.6450855,72.9915892221655,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +Duke University,35.9990522,-78.9290629011139,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA" +The Open University of Israel,32.77824165,34.9956567288188,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל" +IBM Thomas J. Watson Research Center,41.21002475,-73.8040705573196,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA" +King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +University of Copenhagen,55.6801502,12.5723270014063,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark" +"Middlesex University, London",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"Dalian University of Technology, Dalian, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Illinois Institute of Technology, Chicago, Illinois, USA",41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India" +The Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל" +Sinhgad College of,19.0993293,74.7691424,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India" +"University, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"Rutgers University, Piscataway, NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +Zhejiang University,30.19331415,120.119308216677,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国" +University of Piraeus,37.94173275,23.6530326182197,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα" +"Concordia University, Canada",45.4955911,-73.5775043,"FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada" +"Normal University, Kunming, China",25.0580509,102.6955241,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国" +"Toyota Technological Institute (Chicago, US",41.7847112,-87.5926056707507,"Toyota Technological Institute, 6045, South Kenwood Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA" +"University of Malaya, Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia" +"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎" +"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +University of Bridgeport,41.1664858,-73.1920564,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA" +"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University of Edinburgh, Edinburgh, UK",55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +"Manonmaniam Sundaranar University, Tirunelveli, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +"Kent State University, Kent, Ohio, USA",41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"College Park, Maryland",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +California Institute of Technology,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"Akita University, Akita, Japan",39.7291921,140.136565773585,"秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本" +"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye" +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India",13.0309553,77.5648559396817,"M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India" +"University of California, San Diego, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +Ruhr University Bochum,51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India",14.4443949,75.9027655185535,"Bapuji Institute of Engineering and Technology, 2nd Cross Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India" +"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"National University of Defense Technology, Changsha 410073, China",28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +"University Drive, Fairfax, VA 22030-4444, USA",38.835411,-77.316447,"University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA" +Peking University,39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +"University of Tabriz, Tabriz, Iran",38.0612553,46.3298484,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎" +"University of Illinois at Urbana-Champaign, Urbana, IL",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +Colorado State University,40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA" +"Portland State University, USA",45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA" +University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK" +Glyndwr University,53.05373795,-3.00482075353073,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK" +Chungnam National University,36.37029045,127.347804575184,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국" +"Statistics, University of",32.0731522,72.6814703364947,"Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, ‏پاکستان‎" +"University of Pittsburgh, Pittsburgh, PA 15260, USA",40.4437547,-79.9529557,"Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA" +Institute for Advanced,38.7468877,139.824707282407,"Institute for Advanced Biosciences, 鶴岡市, 山形県, 東北地方, 日本" +Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +GE Global Research Center,42.8298248,-73.8771938492793,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA" +Massachusetts Institute of Technology (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Idiap Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"University of Adelaide, SA, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia" +"University, Guangzhou, China",23.1314851,113.2852239,"中山大学第一课室, 74号大院, 中山二路, 马棚岗, 农林街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国" +City University of Hong Kong,22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +"Utah State University, Logan, UT 84322-4205, USA",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA" +Indian Institute of Technology Kanpur,26.513188,80.2365194538339,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA" +"The Chinese University of Hong Kong, China",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"University of Delaware, Newark, DE. USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA" +"university, Shiraz, Iran",29.6284395,52.5181728343761,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ‏ایران‎" +University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"The Ohio State University, Columbus, OH, USA",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +The University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia" +"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎" +"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal" +"University of telecommunications and post, Sofia, Bulgaria",42.6560524,23.3476108351659,"Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия" +"Jaipur, Rajasthan, India",26.916194,75.820349,"Jaipur, Rajasthan, 302001, India" +"Australian National University, Canberra, ACT 0200, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +Shenzhen Institutes of Advanced Technology,22.59805605,113.985337841399,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国" +Akita Prefectural University,39.8011499,140.045911602376,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本" +Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK" +"Kogakuin University, Tokyo, Japan",35.6902784,139.695400958171,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本" +University of Ljubljana Faculty,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija" +Institute for Communication Systems,51.2433692,-0.593220895014599,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK" +"University of Bristol, Bristol, UK",51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK" +National Institute of Technology Rourkela,22.2501589,84.9066855698087,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India" +"Stanford University, Stanford, California",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"Rensselaer Polytechnic Institute, Troy, NY 12180, USA",42.73280325,-73.6622354488153,"Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +Huazhong University of Science and Technology,30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国" +Stanford University,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India" +"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ" +Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +Kingston University,51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK" +University of Dhaka,23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +Institute of Computing,43.47878995,-80.5548480959375,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada" +Macau University of Science and,22.3358031,114.265903983304,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"University of Patras, Greece",38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +"Beijing Union University, 100101, China",39.9890068,116.420677175386,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国" +"University of Texas at Arlington, Arlington, Texas 76019, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +University of Virginia,38.0353682,-78.5035322,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA" +"Nottingham Trent University, Nottingham, UK",52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +CARNEGIE MELLON UNIVERSITY,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +Aristotle University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +Democritus University of Thrace,40.84941785,25.8344493892098,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα" +"University, Hong Kong",54.0856448,13.389089,"Hong-Kong, Feldstraße, Greifswald, Südliche Mühlenvorstadt, Greifswald, Vorpommern-Greifswald, Mecklenburg-Vorpommern, 17489, Deutschland" +"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Middlesex University London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +McGill University,45.5039761,-73.5749687,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada" +University of Pennsylvania,39.9492344,-75.191989851901,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA" +of the University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本" +"University of Chinese Academy of Sciences, Beijing, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Humboldt-University, Berlin, Germany",52.51875685,13.3935604936378,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland" +University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK" +"California Institute of Technology, Pasadena, CA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +University of Illinois at Urbana,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA" +Firat University,39.7275037,39.4712703382844,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye" +"Middlesex University London, London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"University of Cape Town, South Africa",-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +"University of Illinois at Urbana-Champaign, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +Northwestern University,42.0551164,-87.6758111348217,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA" +"University of Lincoln, UK",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +"Columbia University, New York, NY",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Colorado State University, Fort Collins, Colorado, USA",40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA" +"University of Southern California, Los Angeles, CA 90089, USA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +University of Toulouse,30.1781816,-93.2360581,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA" +"University of Rochester, NY 14627, USA",43.1242954,-77.6288352530005,"Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA" +"University of Dhaka, Bangladesh",23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ" +"Max Planck Institute for Informatics, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +"American University, Washington, DC, USA",38.93804505,-77.0893922365193,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA" +"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +"The Chinese University of Hong Kong, Hong Kong",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国" +"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +"Jadavpur University, India",22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India" +"University of Surrey, Guildford, Surrey GU2 7XH, UK",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"Tampere University of Technology, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Purdue University, West Lafayette, IN. 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Tafresh University, Tafresh, Iran",34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"University of Southampton, SO17 1BJ, UK",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Ferdowsi University of Mashhad, Mashhad, Iran",36.3076616,59.5269051097667,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎" +"K.N. Toosi University of Technology, Tehran, Iran",35.76427925,51.409702762313,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎" +"University of Vermont, 33 Colchester Avenue, Burlington",44.48116865,-73.2002178989123,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA" +"University of California, Merced, CA 95344, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +"Stony Brook University, Stony Brook NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +Indian Institute of Science,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +Fraser University,44.9689836,-93.2094162948556,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA" +National University of Technology Technology,33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +UNIVERSITY OF CALIFORNIA,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +University of Illinois at Urbana Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"Western Sydney University, Parramatta, NSW 2150, Australia",-33.8160848,151.00560034186,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia" +"Hiroshima University, Japan",34.4019766,132.7123195,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本" +International University of,11.5744201,104.8775841,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រ​កម្ពុជា" +"Cyprus University of Technology, Cyprus",34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +McGovern Institute for Brain Research,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +National University,14.6042947,120.994285201104,"National University, M.F. Jocson, Royal Plaza, Sampaloc, Fourth District, Manila, Metro Manila, 1008, Philippines" +Virginia Tech Carilion Research Institute,37.2579548,-79.9423329131356,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA" +University of Geneva,42.57054745,-88.5557862661765,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA" +Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +Liverpool John Moores University,53.4050747,-2.97030028586709,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK" +"Stanford University, CA, United States",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +University of Aberdeen,57.1646143,-2.10186013407315,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK" +"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +MULTIMEDIA UNIVERSITY,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +National Institutes of Health,39.00041165,-77.1032777503325,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA" +"Ritsumeikan University, Kyoto, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本" +"Nanjing University, Nanjing 210093, P.R.China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland" +Tokyo Metropolitan University,35.6200925,139.38296706394,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本" +Xidian University,34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国" +"National Cheng Kung University, Tainan, Taiwan",22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +Coburg University,50.26506145,10.9519648264628,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland" +Poznan University of Technology,52.4004837,16.9515808278647,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP" +University of Campinas,-27.5953995,-48.6154218,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil" +"Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +Huazhong University of,22.53367445,113.917874206261,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国" +"Purdue University, West Lafayette, IN, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Delft University of Technology, The Netherlands",51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +"University of Pisa, Pisa, Italy",43.7201299,10.4078976,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia" +"University College London, London WC1N 3BG, United Kingdom",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"Boston University, USA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +University of Toronto,43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada" +"Rio de Janeiro State University, Brazil",-22.91117105,-43.2357797110467,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil" +"University of California, Irvine",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +University of Southampton,50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK" +Arizona State University,33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +Southwest Jiaotong University,30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"School, The University of Sydney, Sydney, NSW, Australia",-33.8893229,151.180068,"Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia" +Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam" +"Anna University, Chennai",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +"Florida State University, Tallahassee, FL 32306, USA",30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +"Courant Institute of Mathematical Sciences, New York, NY",40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"University of Colorado, Boulder",40.01407945,-105.266959437621,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA" +"West Virginia University, Morgantown WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Beihang University, Beijing 100191, China",39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国" +University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +University of North Texas,33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA" +"Joint Research Institute, Foshan, China",22.83388935,113.285418245471,"广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国" +"National Taiwan University of Science and Technology, Taipei 10607, Taiwan",25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"Columbia University, United States",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +"Imperial College London, U.K",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"University of Science and Technology of China, Hefei, Anhui, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"Washington University, St. Louis, MO, USA",38.6480445,-90.3099667,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA" +college of Engineering,13.0110912,80.2354520862161,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +"Rutgers University, Piscataway NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +"University of California, Riverside",33.98071305,-117.332610354677,"University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA" +"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA" +Akita University,39.7278142,140.133225661449,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本" +METs Institute of Engineering,28.2140454,83.9607104993073,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल" +"IBM Almaden Research Center, San Jose CA",37.21095605,-121.807486683178,"IBM Almaden Research Center, San José, Santa Clara County, California, USA" +"Boston University, Boston, MA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +"Carnegie Mellon University, Pittsburgh, PA 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +The University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"Georgia Institute of Technology, Atlanta, Georgia, USA",33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA" +Eastern Mediterranean University,35.14479945,33.90492318497,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs" +Concordia University,45.57022705,-122.637093463826,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA" +"Kurukshetra University, Kurukshetra, India",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India" +University of Stuttgart,48.9095338,9.1831892,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland" diff --git a/scraper/reports/institutions_found/found-3.csv b/scraper/reports/institutions_found/found-3.csv new file mode 100644 index 00000000..2e682380 --- /dev/null +++ b/scraper/reports/institutions_found/found-3.csv @@ -0,0 +1,811 @@ +"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA" +"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal" +"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige" +Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland" +Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Peking University, Beijing, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国" +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India" +Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ" +"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국" +University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +New Jersey Institute of Technology,40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Bristol, Bristol, BS8 1UB, UK",51.4562363,-2.602779,"University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK" +Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本" +Kyushu University,33.59914655,130.223598480987,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国" +Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia" +FL,27.7567667,-81.4639835,"Florida, USA" +Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA" +"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA" +University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland" +Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam" +"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA" +Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye" +King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣" +University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA" +University of Trento,46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +College of Electrical and Information Engineering,42.0049791,21.40834315,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија" +Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India" +University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India" +"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本" +"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK" +"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"University of Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +"Chulalongkorn University, Bangkok",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย" +The University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"University of Texas at Arlington, Arlington, TX",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"Imperial College London, United Kingdom",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"The City College of New York, New York, NY 10031, USA",40.81819805,-73.9510089793336,"CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA" +Vrije Universiteit Brussel,50.8411007,4.32377555279953,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien" +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA",42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Otto von Guericke University,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +University of Illinois at,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA" +Bournemouth University,50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +"Karlsruhe Institute of Technology, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"Nanyang Technological University, Singapore 639798, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Nanjing University of Science and Technology, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +University of Ottawa,45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +Tokyo Institute of Technology,35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +University of Leeds,53.80387185,-1.55245712031677,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK" +"Khalifa University, Abu Dhabi, United Arab Emirates",24.4469025,54.3942563,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة" +"Northeastern University, Boston, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +University of Oradea,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +"Dartmouth College, NH 03755 USA",43.7070046,-72.2869048,"Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA" +to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA" +Plymouth University,50.3755269,-4.13937687442817,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +"National University of Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"University of Malaya, 50603 Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +University of Posts and Telecommunications,32.11527165,118.925956600436,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣" +Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +Bielefeld University,52.0280421,8.51148270115395,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland" +HoHai University,32.05765485,118.755000398628,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国" +University of California Davis,38.5336349,-121.790772639747,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA" +"Queensland University of Technology, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +University of Iceland,64.137274,-21.9456145356869,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland" +National University of singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"University of Denver, Denver, CO",39.6766541,-104.962203,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA" +"Queen Mary University of London, London E1 4NS, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +"Nanjing University, Nanjing 210023, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +University of Science and Technology of China,31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University of Wisconsin-Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +University of Barcelona,41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +"University of South Carolina, Columbia, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +Jahangirnagar University,23.883312,90.2693921,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +Institute of Computer Science,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +"University of Illinois at Urbana Champaign, Urbana",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"Aberystwyth University, UK",52.4107358,-4.05295500914411,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +Sungkyunkwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +Santa Fe Institute,35.7002878,-105.908648471331,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA" +"North Dakota State University, Fargo, ND 58108-6050, USA",46.897155,-96.8182760282419,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA" +University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +University of Amsterdam,52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +Northeastern University,42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +Okayama University,34.6893393,133.9222272,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本" +Swansea University,51.6091578,-3.97934429228629,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +University of Waterloo,43.47061295,-80.5472473165632,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada" +Courant Institute,40.7286994,-73.9957151,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +DUBLIN CITY UNIVERSITY,53.38522185,-6.25740874081493,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +Ural Federal University (UrFU,56.8435083,60.6454805,"УрФУ, улица Гагарина, Эврика, Втузгородок, Кировский район, Екатеринбург, городской округ Екатеринбург, Свердловская область, Уральский федеральный округ, 620062, РФ" +"Science, University of Amsterdam",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +National University of Singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"Brown University, Providence, RI",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +"Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Chu Hai College of Higher Education, Hong Kong",22.3760643,113.987153890134,"珠海學院 Chu Hai College of Higher Education, 80, 青盈路 Tsing Ying Road, 嘉和里 Ka Wo Lei, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +University of Oxford,51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +Shiraz University,29.6385474,52.5245706,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎" +"Sun Yat-Sen University, Guangzhou, P.R. China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +FL,27.7567667,-81.4639835,"Florida, USA" +"Princeton University, Princeton, New Jersey, USA",40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA" +Amherst College,42.37289,-72.518814,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA" +"University Politehnica of Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"Beijing Normal University, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国" +"Newcastle University, Newcastle upon Tyne",54.98023235,-1.61452627035949,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK" +"University of Washington, Seattle, WA 98195, United States",47.6547795,-122.305818,"University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Hacettepe University,39.86742125,32.7351907206768,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"Carnegie Mellon University, Pittsburgh, PA, 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +COMSATS Institute of Information Technology,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +University (ITU,55.65965525,12.5910768893446,"IT-Universitetet i København, Emil Holms Kanal, Christianshavn, København, Københavns Kommune, Region Hovedstaden, 1424, Danmark" +Oregon State University,45.5198289,-122.677979643331,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA" +"University of Vienna, Austria",48.2131302,16.3606865338016,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich" +OF STANFORD UNIVERSITY,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Bas kent University,52.08340265,5.14828494152362,"University College Utrecht 'Babel', 7, Campusplein, Utrecht, Nederland, 3584 ED, Nederland" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"King Saud University, Riyadh",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +University of Oulu,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland" +"Australian National University, Canberra",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +University of North Carolina Wilmington,34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA" +"The Ohio State University, OH",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +"University of Central Florida, Orlando",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +Institute,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Chubu University,35.2742655,137.013278412463,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本" +"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Memphis,35.1189387,-89.9372195996589,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA" +Imperial College London,51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +Sun Yat-sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"University of Texas, Austin, TX 78712-1188, USA",30.284458,-97.7342106,"University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +"Qatar University, Qatar",25.37461295,51.4898035392337,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎" +"UNIVERSITY OF CALIFORNIA, BERKELEY",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +Rutgers University,40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +AI Institute,-34.6102167,-58.3752244291708,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina" +"West Virginia University, Morgantown, WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Graz University of Technology, Austria",47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich" +"University of Exeter, UK",50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +Nanjing University of Science and Technology,32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +Institute of Automation,54.1720834,12.0790983,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"RMIT University, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"Harbin Institute of Technology, Harbin 150001, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +The Ohio State University,40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA" +"University POLITEHNICA Timisoara, Timisoara, 300223, Romania",45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +"University of Lincoln, U.K",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"Chonbuk National University, Jeonju-si",35.84658875,127.135013303058,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국" +"University of Technology, Baghdad, Iraq",33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +Monash University,-37.78397455,144.958674326093,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia" +"Michigan State University, East Lansing MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +"University of Notre Dame. Notre Dame, IN 46556.USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +Guangdong Medical College,23.1294489,113.343761097683,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"Harbin Institute of Technology, Harbin 150001, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"Dartmouth College, NH 03755 USA",43.7070046,-72.2869048,"Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA" +"Manonmaniam Sundaranar University, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA",40.1066501,-88.2240260725426,"University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +Rutgers University,40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +Sun Yat-sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA" +Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +University of Illinois at,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA" +"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University Politehnica of Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +"Kurukshetra University, Kurukshetra",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +Swansea University,51.6091578,-3.97934429228629,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +University of California Davis,38.5336349,-121.790772639747,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA" +"Michigan State University, East Lansing MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Zhejiang Normal University, Jinhua, China",29.13646725,119.637686517179,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国" +East China Normal University,31.2284923,121.402113889769,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国" +to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA" +Massachusetts Institute,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Brown University,41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +Islamic Azad University,34.8452999,48.5596212013643,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎" +"University of St Andrews, United Kingdom",56.3411984,-2.7930938,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +Japan,36.5748441,139.2394179,日本 +Amherst College,42.37289,-72.518814,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA" +"Technological University, Davanagere, Karnataka, India",14.4525199,75.9179512,"UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India" +"University of Central Florida, Orlando",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"University of Notre Dame. Notre Dame, IN 46556.USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"National University of Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"West Virginia University, Morgantown, WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +"Southwest University, Chongqing 400715, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +Istanbul Technical University,41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +"Khalifa University, Abu Dhabi, United Arab Emirates",24.4469025,54.3942563,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة" +"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Tsinghua University, Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +any other University,53.8012316,-1.5476213,"Northern Film School, Millennium Square, Steander, Woodhouse, Leeds, Yorkshire and the Humber, England, LS1 3DW, UK" +"University Politehnica of Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"Nanyang Technological University, Singapore 639798, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Carnegie Mellon University, Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +University of North Carolina at Chapel Hill,35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland" +"Beijing Normal University, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国" +University (ITU,55.65965525,12.5910768893446,"IT-Universitetet i København, Emil Holms Kanal, Christianshavn, København, Københavns Kommune, Region Hovedstaden, 1424, Danmark" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +Otto von Guericke University,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +"Newcastle University, Newcastle upon Tyne",54.98023235,-1.61452627035949,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK" +"National University of Kaohsiung, 811 Kaohsiung, Taiwan",22.73424255,120.283497550993,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣" +"UNIVERSITY OF CALIFORNIA, BERKELEY",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"University of Peshawar, Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"Northeastern University, Boston, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +IMPERIAL COLLEGE,39.9458551,116.406973072869,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国" +"University of Denver, Denver, CO",39.6766541,-104.962203,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Institute,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +"Virginia Polytechnic Institute and State University, Blacksburg, Virginia",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +"Chonbuk National University, Jeonju-si",35.84658875,127.135013303058,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국" +"California Institute of Technology, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +Nanjing University of Science and Technology,32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +"Carnegie Mellon University, Pittsburgh, PA, 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +Oregon State University,45.5198289,-122.677979643331,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA" +"Bournemouth University, UK",50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +Sungkyunkwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +Semarang State University,-7.00349485,110.417749486905,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +"Imperial College London, London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +Cambridge Research Laboratory,52.17333465,0.149899463173698,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +University of Oradea,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +Sun Yat-sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +University of Iceland,64.137274,-21.9456145356869,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"King Saud University, Riyadh",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +Banaras Hindu University,25.2662887,82.9927969,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +University of Leeds,53.80387185,-1.55245712031677,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK" +"The University of Electro-Communications, JAPAN",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Nanjing University of Science and Technology, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +Guangdong Medical College,23.1294489,113.343761097683,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国" +"Imperial College, London, UK",51.5004171,-0.1782711,"Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK" +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA",42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +"Oxford University, UK",51.7488051,-1.23874457456279,"James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK" +Otto von Guericke University,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +University of Wisconsin-Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Sun Yat-Sen University, Guangzhou, P.R. China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"University of St Andrews, United Kingdom",56.3411984,-2.7930938,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK" +"University POLITEHNICA Timisoara, Timisoara, 300223, Romania",45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +Gdansk University of Technology,54.37086525,18.6171601574695,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP" +"Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +Chubu University,35.2742655,137.013278412463,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +OF PRINCETON UNIVERSITY,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Beijing Normal University, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国" +"University of Texas, Austin, TX 78712-1188, USA",30.284458,-97.7342106,"University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland" +University of Michigan,42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"Bournemouth University, UK",50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +Institute of Computer Science,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +Queen Mary University of London,51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"North Dakota State University, Fargo, ND 58108-6050, USA",46.897155,-96.8182760282419,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA" +AI Institute,-34.6102167,-58.3752244291708,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +University of Amsterdam,52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +University of California Davis,38.5336349,-121.790772639747,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA" +Sakarya University,40.76433515,30.3940787517111,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye" +"Beijing Institute of Technology, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +University of Engineering and Technology,31.6914689,74.2465617,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, ‏پاکستان‎" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +Jahangirnagar University,23.883312,90.2693921,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +Indian Institute of Science Bangalore,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"Manonmaniam Sundaranar University, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +Hacettepe University,39.86742125,32.7351907206768,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +Monash University,-37.78397455,144.958674326093,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +"University of Notre Dame. Notre Dame, IN 46556.USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +"The University of Texas at Dallas, Richardson, TX",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +"Khalifa University, Abu Dhabi, United Arab Emirates",24.4469025,54.3942563,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة" +"University of Science and Technology of China, Hefei, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"Imperial College London, London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Carnegie Mellon University, Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +Institute,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +DUBLIN CITY UNIVERSITY,53.38522185,-6.25740874081493,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +Imperial College London,51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"Nanjing University, Nanjing 210023, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"National Taiwan University, Taipei, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +National Institute of Standards and Technology,39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA" +University of Oxford,51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +B.S. University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +University of Science and Technology of China,31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +Sungkyunkwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국" +"Nanjing University of Science and Technology, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +University of Iceland,64.137274,-21.9456145356869,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +University of North Carolina Wilmington,34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA" +"Aberystwyth University, UK",52.4107358,-4.05295500914411,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +Santa Fe Institute,35.7002878,-105.908648471331,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +Temple University,39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA" +Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +"Graz University of Technology, Austria",47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich" +"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University of Notre Dame, USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +National Taiwan University of Science and Technology,25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"Zhejiang Normal University, Jinhua, China",29.13646725,119.637686517179,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Dartmouth College, NH 03755 USA",43.7070046,-72.2869048,"Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA" +"University of Illinois at Urbana Champaign, Urbana",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"Nanyang Technological University, Singapore 639798, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +Tokyo Institute of Technology,35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +"Australian National University, Canberra",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"University of Crete, Crete, 73100, Greece",35.3713024,24.4754408,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"Curtin University, Perth, Australia",-32.00574155,115.892864389257,"Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia" +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"West Virginia University, Morgantown, WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +National University of singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +East China Normal University,31.2284923,121.402113889769,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国" +Wayne State University,42.357757,-83.0628671134125,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA" +"Queensland University of Technology, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Islamic Azad University,34.8452999,48.5596212013643,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎" +University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +The Weizmann Institute of,31.904187,34.807378,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל" +"University of Lincoln, U.K",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK" +University of Science and,5.35755715,100.303850375,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia" +Rutgers University,40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +Tsinghua University,40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +COMSATS Institute of Information Technology,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +Istanbul Technical University,41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Michigan State University, East Lansing MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"University Politehnica of Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +Massachusetts Institute,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +OF STANFORD UNIVERSITY,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Stevens Institute of Technology,40.742252,-74.0270949,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA" +"University of Central Florida, Orlando",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"Southwest University, Chongqing 400715, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +The Ohio State University,40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +Japan,36.5748441,139.2394179,日本 +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +Sun Yat-sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +"University of Vienna, Austria",48.2131302,16.3606865338016,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"University of Malaya, 50603 Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia" +"Kingston University, UK",51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK" +University of Massachusetts Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA" +Institute of Automation,54.1720834,12.0790983,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland" +"Harbin Institute of Technology, Harbin 150001, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +"University of Exeter, UK",50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +Vrije Universiteit Brussel,50.8411007,4.32377555279953,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien" +University of Information,34.17980475,-117.325843648456,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +Xiamen University,24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国" +the Chinese University of Hong Kong,22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +HoHai University,32.05765485,118.755000398628,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国" +University of Barcelona,41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"University of Twente, The Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +"Carnegie Mellon University, Pittsburgh, PA, 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"University of South Carolina, Columbia, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +"University of Washington, Seattle, WA 98195, United States",47.6547795,-122.305818,"University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"The Ohio State University, OH",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +"Queen Mary University of London, London E1 4NS, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Courant Institute,40.7286994,-73.9957151,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣" +University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"King Saud University, Riyadh",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +"National University of Kaohsiung, 811 Kaohsiung, Taiwan",22.73424255,120.283497550993,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣" +to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA" +Plymouth University,50.3755269,-4.13937687442817,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +"University of Twente, The Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +Brown University,41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +The Weizmann Institute of,31.904187,34.807378,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל" +University of Oradea,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România" +Tokyo Institute of Technology,35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +"The University of North Carolina at Charlotte, USA",35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +"Northeastern University, Boston, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"The University of Electro-Communications, JAPAN",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"Imperial College, London, UK",51.5004171,-0.1782711,"Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK" +University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"Nanjing University of Science and Technology, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国" +"University of Illinois at Urbana Champaign, Urbana",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +Wayne State University,42.357757,-83.0628671134125,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA" +"Qatar University, Qatar",25.37461295,51.4898035392337,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎" +Shiraz University,29.6385474,52.5245706,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"Oxford University, UK",51.7488051,-1.23874457456279,"James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK" +"Queen Mary University of London, London E1 4NS, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"University of Technology, Baghdad, Iraq",33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +Stevens Institute of Technology,40.742252,-74.0270949,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA" +"Chonbuk National University, Jeonju-si",35.84658875,127.135013303058,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국" +"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣" +"COMSATS Institute of Information Technology, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +"Khalifa University, Abu Dhabi, United Arab Emirates",24.4469025,54.3942563,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +University of Information,34.17980475,-117.325843648456,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +"Kingston University, UK",51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK" +"Australian National University, Canberra",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Aberystwyth University, UK",52.4107358,-4.05295500914411,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK" +COMSATS Institute of Information Technology,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Queensland University of Technology, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Bas kent University,52.08340265,5.14828494152362,"University College Utrecht 'Babel', 7, Campusplein, Utrecht, Nederland, 3584 ED, Nederland" +"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland" +"The University of Texas at Dallas, Richardson, TX",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +National University of Singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +Multimedia University,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia" +"North Dakota State University, Fargo, ND 58108-6050, USA",46.897155,-96.8182760282419,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA" +National Taiwan University of Science and Technology,25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本" +Northeastern University,42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA" +Gdansk University of Technology,54.37086525,18.6171601574695,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP" +"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +Vrije Universiteit Brussel,50.8411007,4.32377555279953,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien" +B.S. University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA" +Santa Fe Institute,35.7002878,-105.908648471331,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA" +Massachusetts Institute,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Banaras Hindu University,25.2662887,82.9927969,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India" +"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +University of Engineering and Technology,31.6914689,74.2465617,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, ‏پاکستان‎" +"Tsinghua University, Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University of Central Florida, Orlando",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +Tsinghua University,40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +University of Memphis,35.1189387,-89.9372195996589,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA" +"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +University of Massachusetts Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Information,34.17980475,-117.325843648456,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA" +Stony Brook University Hospital,40.90826665,-73.1152089127966,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"University of Technology, Baghdad, Iraq",33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق" +Tel Aviv University,32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +"National University of Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA" +"University of Notre Dame, USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +"Northeastern University, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"University of South Carolina, Columbia, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +"Massachusetts Institute of Technology, Cambridge, MA 02139, USA",42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +Istanbul Technical University,41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +The Ohio State University,40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"Princeton University, Princeton, New Jersey, USA",40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +IMPERIAL COLLEGE,39.9458551,116.406973072869,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国" +"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA" +"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"The University of Texas at Dallas, Richardson, TX",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +COMSATS Institute of Information Technology,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"Bournemouth University, UK",50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +"National University of Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore" +"Imperial College London, London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Zhejiang Normal University, Jinhua, China",29.13646725,119.637686517179,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国" +Istanbul Technical University,41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA" +"The University of Texas at Dallas, Richardson, TX",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA" +Tokyo Institute of Technology,35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本" +"Northeastern University, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"Indian Institute of Technology, Roorkee",29.8662461,77.8958708109136,"Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India" +National Taiwan University of Science and Technology,25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +Japan,36.5748441,139.2394179,日本 +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +The University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +Massachusetts Institute,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"Nanjing University, Nanjing 210023, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA",40.1066501,-88.2240260725426,"University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA" +National Taiwan University of Science and Technology,25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +"Queensland University of Technology, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Northeastern University, Boston, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +"University of Twente, The Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"Dartmouth College, NH 03755 USA",43.7070046,-72.2869048,"Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"University of Science and Technology of China, Hefei, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +National Institute of Standards and Technology,39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA" +"Tsinghua University, Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Michigan State University, East Lansing MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Columbia University, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +University of Groningen,53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland" +"Brown University, Providence, RI",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +"Sun Yat-Sen University, Guangzhou, P.R. China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +Pondicherry Engineering College,12.0148693,79.8480910431981,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India" +University of Science and Technology of China,31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"Princeton University, Princeton, New Jersey, USA",40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA" +University of Engineering and Technology,31.6914689,74.2465617,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, ‏پاکستان‎" +Hacettepe University,39.86742125,32.7351907206768,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +Cambridge Research Laboratory,52.17333465,0.149899463173698,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK" +"Imperial College London, London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Carnegie Mellon University, Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +Bournemouth University,50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +Guangdong Medical College,23.1294489,113.343761097683,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国" +Institute of Computer Science,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +"The Ohio State University, OH",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA" +Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +"Nanyang Technological University, Singapore 639798, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +Xerox Research Center,43.5129109,-79.6664076152913,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada" +"Howard University, Washington DC",38.921525,-77.019535656678,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA" +Purdue University,40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"San Jose State University, San Jose, CA",37.3351908,-121.881260081527,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA" +"Tohoku University, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本" +Portugal,40.033265,-7.8896263,Portugal +The University of York,53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +Queensland University of Technology (QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Institute of Computing Technology,34.6988529,135.1936779,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本" +"University of Houston, Houston, TX, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA" diff --git a/scraper/reports/institutions_found/found-4.csv b/scraper/reports/institutions_found/found-4.csv new file mode 100644 index 00000000..0c379d61 --- /dev/null +++ b/scraper/reports/institutions_found/found-4.csv @@ -0,0 +1,896 @@ +"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA" +"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India" +Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal" +"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国" +"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada" +"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige" +Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA" +"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国" +"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland" +Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국" +"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India" +The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Peking University, Beijing, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国" +Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK" +"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA" +Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国" +"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA" +Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎" +Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi" +Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA" +University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK" +"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA" +Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India" +Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ" +"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국" +University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada" +"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ" +"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎" +University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK" +University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +New Jersey Institute of Technology,40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA" +Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA" +Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国" +Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA" +The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland" +University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"University of Bristol, Bristol, BS8 1UB, UK",51.4562363,-2.602779,"University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK" +Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本" +Kyushu University,33.59914655,130.223598480987,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية" +"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK" +Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA" +"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国" +Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România" +Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko" +Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia" +Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国" +"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia" +FL,27.7567667,-81.4639835,"Florida, USA" +Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국" +"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK" +"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA" +Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα" +University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA" +"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA" +University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien" +"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España" +"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland" +Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam" +"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA" +Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija" +"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국" +Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国" +"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA" +Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye" +King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India" +"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣" +University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA" +University of Trento,46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA" +"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India" +"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore" +College of Electrical and Information Engineering,42.0049791,21.40834315,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија" +Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi" +University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA" +The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India" +University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国" +"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל" +Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India" +"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本" +"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK" +"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国" +"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣" +"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA" +"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland" +"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +"University of Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎" +"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎" +"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK" +University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA" +"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland" +"Chulalongkorn University, Bangkok",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย" +The University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"University of Texas at Arlington, Arlington, TX",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"Imperial College London, United Kingdom",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"The City College of New York, New York, NY 10031, USA",40.81819805,-73.9510089793336,"CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA" +University of Malta,35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta" +"University of Basel, Switzerland",47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +Max Planck Institute for Biological Cybernetics,48.5369125,9.05922532743396,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland" +Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +University of Campinas (Unicamp,-22.8224781,-47.0642599309425,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"University of Oxford, Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"University of Haifa, Haifa, Israel",32.76162915,35.0198630428453,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל" +"University of Amsterdam, the Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +Illinois Institute of Technology,41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"University of Michigan, Ann Arbor",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +Research Center,24.7261991,46.6365468966391,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية" +"Southeast University, Nanjing, China",32.0575279,118.786822520439,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国" +"University of Florida, Gainesville, FL, 32611, USA",29.6447739,-82.3575193392276,"University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA" +"Pune Institute of Computer Technology, Pune, ( India",18.4575638,73.8507352,"Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India" +"Carnegie Mellon University, Pittsburgh PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"University of Washington, Seattle, WA, USA",47.65249975,-122.2998748,"University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA" +University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +"The University of York, Heslington, York YO10 5DD, United Kingdom",53.94830175,-1.05154975017361,"Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK" +Chosun University,35.1441031,126.9257858,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국" +"University of North Carolina at Chapel Hill, NC, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University College London, London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"Purdue University, West Lafayette, Indiana, 47906, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"University of Karlsruhe, Germany",49.00664235,8.39405151637065,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland" +THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"Information, Keio University",35.5416969,139.6347184,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本" +Rochester Institute of Technology,43.08250655,-77.6712166264273,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA" +"University of Bath, Bath, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +University of Illinois Urbana Champaign,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +Delft University of Technology,51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +University of the Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +"Michigan State University, East Lansing, MI 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Pittsburgh, Pittsburgh, PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +Clemson University,34.66869155,-82.837434756078,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Tampere University of Technology, Tampere 33720, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +Tomsk Polytechnic University,56.46255985,84.955654946724,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ" +University of Warwick,52.3793131,-1.5604252,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +ALICE Institute,-8.82143045,13.2347076178375,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola" +"University of Alberta, Edmonton, Canada",53.5238572,-113.522826652346,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada" +"University of Dammam, Saudi Arabia",26.39793625,50.1980792430511,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +SIMON FRASER UNIVERSITY,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +Pohang University of Science and Technology,36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국" +"University of Oxford, UK",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"University of Texas at Arlington, Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Nagoya University, Japan",43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"University of Amsterdam, Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"California Institute of Technology, Pasadena, California, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"The Chinese University of Hong Kong, New Territories, Hong Kong",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +"University of Nevada, Reno, Reno, NV, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA" +University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +National Cheng Kung University,22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +The Education University of Hong Kong,22.46935655,114.19474193618,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国" +"KTH Royal Institute of Technology, Stockholm",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige" +"The Hebrew University of Jerusalem, Israel",31.7918555,35.244723,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל" +University of Dundee,56.45796755,-2.98214831353755,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK" +Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +University Of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +The Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +Institute for System Programming,55.7449881,37.6645042069876,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +University of Illinois Urbana Champaign,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +Chosun University,35.1441031,126.9257858,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국" +"Carnegie Mellon University Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"West Virginia University, Morgantown, WV",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"University of Virginia, Charlottesville, VA",38.0410576,-78.5054996018357,"University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +University of Illinois,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"The Hebrew University of Jerusalem, Israel",31.7918555,35.244723,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל" +"Istanbul Technical University, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"Nagoya University, Japan",43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +Anna University,13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +Clemson University,34.66869155,-82.837434756078,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +"Indian Institute of Technology Delhi, New Delhi, India",28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India" +"The University of Sydney, Sydney, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +"College Park, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"University of Tsukuba, Japan",36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +Rochester Institute of Technology,43.08250655,-77.6712166264273,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA" +"Princeton University, Princeton, NJ, USA",40.34725815,-74.6513455119257,"Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA" +"University of Cambridge, United Kingdom",52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +Carleton University,45.3860843,-75.6953926739404,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada" +Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +"Purdue University, West Lafayette, Indiana, 47906, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"University of California, Berkeley, Berkeley CA 94720, USA",37.8756681,-122.257979979865,"Goldman School of Public Policy, Hearst Avenue, Northside, Berkeley, Alameda County, California, 94720, USA" +Wolfson College,51.7711076,-1.25361700492597,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK" +Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija" +"The Chinese University of Hong Kong, New Territories, Hong Kong",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国" +"Rutgers University, USA",40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" +Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +"Northeastern University, Boston, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +SIMON FRASER UNIVERSITY,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +The University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +Max Planck Institute for Biological Cybernetics,48.5369125,9.05922532743396,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland" +McMaster University,43.26336945,-79.9180968401692,"McMaster University, Westdale, Hamilton, Ontario, Canada" +"The University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"The University of Electro-Communications, Tokyo",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国" +College of Engineering and Computer Science,25.7589624,-80.3738881489383,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA" +University of Maryland College Park,38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA" +Technion Israel Institute of Technology,32.7767536,35.0241452903301,"הטכניון - מכון טכנולוגי לישראל, דוד רוז, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"University of Washington, Seattle, WA, USA",47.65249975,-122.2998748,"University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA" +"Beijing Institute of Technology, Beijing, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +University of Venezia,45.4312742,12.3265377,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia" +"Rice University, Houston, TX, 77005, USA",29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"University of North Carolina at Chapel Hill, NC, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +"National Taiwan University, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +Pennsylvania,40.9699889,-77.7278831,"Pennsylvania, USA" +"Feng Chia University, Taichung, Taiwan",24.18005755,120.648360719503,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +"University of Zurich, Zurich, Switzerland",47.4968476,8.72981767380829,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra" +"University of Basel, Switzerland",47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +College of Computer and Information Science,42.3192923,-83.2343465549018,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +Math Institute,43.65879595,-79.3975504060101,"Fields Institute for Research in Math Science, 222, College Street, Kensington Market, Old Toronto, Toronto, Ontario, M5T 3A1, Canada" +University of Surrey,51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"University of Amsterdam, Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +y National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +Research Center,24.7261991,46.6365468966391,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية" +Illinois Institute of Technology,41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +"University Library, Singapore",1.30604775,103.7728987705,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore" +The University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +University of Texas at Arlington,32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"The American University in Cairo, Egypt",30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国" +CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +Boston University,42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"Ritsumeikan University, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本" +The Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +"Neurological Institute, USA",40.84211085,-73.9428460313244,"Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA" +University of Illinois Urbana Champaign,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +Korea Advanced Institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر" +"University of Bath, Bath, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"Azad University, Qazvin, Iran",36.3173432,50.0367286,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎" +University of Warwick,52.3793131,-1.5604252,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK" +"The Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +University of Dundee,56.45796755,-2.98214831353755,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK" +"University College London, London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +Institute for System Programming,55.7449881,37.6645042069876,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ" +"Karlsruhe Institute of Technology, Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +"Manonmaniam Sundaranar University, Tirunelveli",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +"Southeast University, Nanjing, China",32.0575279,118.786822520439,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国" +Thapar University,30.35566105,76.3658164148513,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India" +"University of Michigan, Ann Arbor",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +Tomsk Polytechnic University,56.46255985,84.955654946724,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ" +Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Rutgers University, New Brunswick, NJ",40.50007595,-74.4457915242934,"Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"The University of Sydney, NSW 2006, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +University of Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +Sabanci University,40.8927159,29.3786332263582,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye" +"Harbin Institute of Technology, Harbin, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +Institute of Communications Engineering,54.1718573,12.0784417,"Institut für Nachrichtentechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland" +Tampere University of Technology,61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"KTH Royal Institute of Technology, Stockholm",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige" +Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย" +The City University of New York,40.8722825,-73.8948917141949,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA" +Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +National Cheng Kung University,22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA" +The State University of New Jersey,40.51865195,-74.4409980124119,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +"Tsinghua University, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"Tel-Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +Harvard and Massachusetts Institute,42.5268445,-71.6525446,"Massachusetts Correctional Institute Shirley Minimum Security Library, Harvard Road, Shaker Village, Shirley, Middlesex County, Massachusetts, 01464, USA" +North Carolina Central University,35.97320905,-78.897550537484,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA" +Karlsruhe Institute of,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +University of Bristol,51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK" +University of Twente,52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"University of Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +The University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"Capital Normal University, 100048, China",39.92864575,116.30104052087,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国" +Delft University of Technology,51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +The University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +Dhaka University,23.7317915,90.3805625,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ" +"Nanjing University of Aeronautics and Astronautics, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +College of Computing,-6.1992922,39.3081862,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania" +"RWTH Aachen University, Aachen, Germany",50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland" +"Bogazici University, Turkey",41.08327335,29.0503931951846,"Boğaziçi Üniversitesi Güney Yerleşkesi, Sehitlikdergahı Sokağı, Beşiktaş, İstanbul, Marmara Bölgesi, 33345, Türkiye" +Cardi University,10.6435074,-61.4022996445292,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"College Park, United States",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +Institute of Road and,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA" +Australian Institute of Sport,-35.24737535,149.104454269689,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"California Institute of Technology, Pasadena, California, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"Vrije Universiteit Brussel, 1050 Brussels, Belgium",50.8223021,4.3967361,"Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK",54.9781026,-1.6067699,"Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK" +"Beijing, China",39.906217,116.3912757,"北京市, 东城区, 北京市, 100010, 中国" +"University of Oxford, Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +of bilkent university,39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +"College Park, MD 20742 USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"The Australian National University, Canberra, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +University of Chinese Academy of Sciences,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Keio University, Yokohama 223-8522, Japan",35.55536215,139.654582444136,"慶應義塾大学 (矢上キャンパス), 理工坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-8522, 日本" +Jacobs University,53.4129148,-2.96897915394896,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK" +"George Mason University, Fairfax Virginia, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA" +"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +University of Cape Town,-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"College of Engineering, Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India" +"Central Tehran Branch, Azad University",35.753318,51.370631,"دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ‏ایران‎" +"University of the Basque Country, San Sebastian, Spain",43.30927695,-2.01066784661227,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España" +"Kyung Hee University, South Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국" +University of California,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA" +"Tongji University, Shanghai 201804, China",31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +"University of Pittsburgh, Pittsburgh, PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Dammam, Saudi Arabia",26.39793625,50.1980792430511,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +"University of Alberta, Edmonton, Canada",53.5238572,-113.522826652346,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada" +"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国" +"University of Oxford, UK",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK" +"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +"SASTRA University, Thanjavur, Tamil Nadu, India",10.9628655,79.3853065130097,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India" +"Carnegie Mellon University, Pittsburgh PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +National University of Defense Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +University of Malta,35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta" +"University of California, Merced",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA" +IDIAP RESEARCH INSTITUTE,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Amirkabir University of Technology, Tehran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +Lomonosov Moscow State University,55.70229715,37.5317977694291,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"Harvard University, Cambridge, MA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +The Education University of Hong Kong,22.46935655,114.19474193618,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国" +"University of Canterbury, New Zealand",-43.5240528,172.580306253669,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa" +"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +"University of Michigan, Ann Arbor, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"Purdue University, West Lafayette, IN 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +University Of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA" +Oakland University,42.66663325,-83.2065575175658,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA" +Virginia Polytechnic Institute and State University,37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +"University of Twente, Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK" +"University of Florida, Gainesville, FL, 32611, USA",29.6447739,-82.3575193392276,"University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA" +Zaragoza University,41.6406218,-0.900793992168927,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"University of Massachusetts, Amherst, MA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +University of,29.3758342,71.7528712910287,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, ‏پاکستان‎" +"University of Karlsruhe, Germany",49.00664235,8.39405151637065,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland" +State University of New York at Buffalo,42.95485245,-78.8178238693065,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA" +"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Huazhong University of Science and Technology, Wuhan, China",30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国" +"Utah State University, Logan UT",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Stanford University, CA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"University Library, Singapore",1.30604775,103.7728987705,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore" +State University of New York at Buffalo,42.95485245,-78.8178238693065,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA" +State University of New York at Binghamton,42.08779975,-75.9706606561486,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +College of Computer and Information Science,42.3192923,-83.2343465549018,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"The Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +University College London,51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"Michigan State University, East Lansing, MI 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +The University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +The Education University of Hong Kong,22.46935655,114.19474193618,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国" +Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +"The University of Sydney, NSW 2006, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +Thapar University,30.35566105,76.3658164148513,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +"University of Miami, USA",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"University of Florida, Gainesville, FL, 32611, USA",29.6447739,-82.3575193392276,"University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA" +Beckman Institute,40.11571585,-88.2275077179639,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA" +Wolfson College,51.7711076,-1.25361700492597,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK" +"University of Massachusetts, Amherst, MA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Amirkabir University of Technology, Tehran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +University of Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +York University,43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +"College of Engineering, Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"National Institute of Technology, Durgapur, West Bengal, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +National University of Defense Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"University of Zurich, Zurich, Switzerland",47.4968476,8.72981767380829,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra" +University of North Carolina,35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA" +"University of Pittsburgh, Pittsburgh, PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"The University of York, Heslington, York YO10 5DD, United Kingdom",53.94830175,-1.05154975017361,"Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK" +"University of Wisconsin-Madison, Madison, WI, USA",43.0705257,-89.4059387,"UW Geology Museum, 1215, West Dayton Street, South Campus, Madison, Dane County, Wisconsin, 53715, USA" +"Tampere University of Technology, Tampere 33720, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +Tampere University of Technology,61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +University of Ljubljana,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija" +Delft University of Technology,51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"Harbin Institute of Technology, Harbin, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国" +CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA" +"University of Cambridge, United Kingdom",52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +"Northeastern University, Boston, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +Dhaka University,23.7317915,90.3805625,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ" +"University of Trento, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +McGovern Institute,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA" +University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +IDIAP Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +University of Dundee,56.45796755,-2.98214831353755,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK" +University of Surrey,51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK" +"The Australian National University, Canberra, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +Boston University,42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +University of Cape Town,-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +"Harvard University, Cambridge, MA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +The State University of New Jersey,40.51865195,-74.4409980124119,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Rutgers University, Piscataway, NJ",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +Wolfson College,51.7711076,-1.25361700492597,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Tamkang University, Taipei, Taiwan",25.17500615,121.450767514156,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣" +"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎" +The City University of New York,40.8722825,-73.8948917141949,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA" +McMaster University,43.26336945,-79.9180968401692,"McMaster University, Westdale, Hamilton, Ontario, Canada" +University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"University of North Carolina at Chapel Hill, NC, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +College of Computer and Information Science,42.3192923,-83.2343465549018,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA" +y National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +Marquette University,43.03889625,-87.9315544990507,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA" +"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"University of Dammam, Saudi Arabia",26.39793625,50.1980792430511,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية" +University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +of bilkent university,39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +"Tel-Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל" +"Central Tehran Branch, Azad University",35.753318,51.370631,"دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ‏ایران‎" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +Carleton University,45.3860843,-75.6953926739404,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada" +"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +The University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +"National Institute of Technology, Durgapur, West Bengal, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India" +"The Chinese University of Hong Kong, New Territories, Hong Kong",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国" +Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA" +"Information, Keio University",35.5416969,139.6347184,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本" +"University of Miami, USA",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +Western Kentucky University,36.9845317,-86.4576443016944,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA" +Cardi University,10.6435074,-61.4022996445292,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago" +"University of Twente, Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Carnegie Mellon University Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Queensland University of Technology, Brisbane, QLD, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Stony Brook University, Stony Brook, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University of Tsukuba, Japan",36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"University of Massachusetts, Amherst, MA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +University of Campinas (Unicamp,-22.8224781,-47.0642599309425,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil" +University of,29.3758342,71.7528712910287,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, ‏پاکستان‎" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +College of Engineering and Computer Science,25.7589624,-80.3738881489383,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA" +York University,43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada" +"University of Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"Nanjing University of Aeronautics and Astronautics, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +"Kyoto University, Kyoto, Japan",35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本" +Oakland University,42.66663325,-83.2065575175658,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA" +University of Venezia,45.4312742,12.3265377,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia" +The Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +"Manonmaniam Sundaranar University, Tirunelveli",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +Jacobs University,53.4129148,-2.96897915394896,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK" +"Tsinghua University, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国" +"College Park, MD 20742 USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Tomsk Polytechnic University,56.46255985,84.955654946724,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ" +"The University of Electro-Communications, Tokyo",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本" +"California Institute of Technology, Pasadena, California, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +The University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +University of Malta,35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta" +Thapar University,30.35566105,76.3658164148513,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India" +"The Hebrew University of Jerusalem, Israel",31.7918555,35.244723,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל" +"Purdue University, West Lafayette, Indiana, 47906, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +University of Bath,51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +Max Planck Institute for Biological Cybernetics,48.5369125,9.05922532743396,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland" +"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية" +"The University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +Zaragoza University,41.6406218,-0.900793992168927,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España" +"College Park, United States",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +The University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +University of Illinois,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada" +University of Bath,51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"University of Nevada, Reno, Reno, NV, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA" +"The University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK" +THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +"Rice University, Houston, TX, 77005, USA",29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"University of Bath, Bath, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"University Library, Singapore",1.30604775,103.7728987705,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore" +University of Venezia,45.4312742,12.3265377,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA" +University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"SASTRA University, Thanjavur, Tamil Nadu, India",10.9628655,79.3853065130097,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India" +Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA" +Thapar University,30.35566105,76.3658164148513,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India" +"University of Karlsruhe, Germany",49.00664235,8.39405151637065,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland" +"Vrije Universiteit Brussel, 1050 Brussels, Belgium",50.8223021,4.3967361,"Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien" +Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +Illinois Institute of Technology,41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +Rochester Institute of Technology,43.08250655,-77.6712166264273,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA" +Oakland University,42.66663325,-83.2065575175658,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA" +Wolfson College,51.7711076,-1.25361700492597,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"RWTH Aachen University, Aachen, Germany",50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland" +Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל" +"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国" +Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Michigan State University, East Lansing, MI 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA" +"Istanbul Technical University, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国" +University of Twente,52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye" +"University of Cambridge, United Kingdom",52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK" +University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"University Library, Singapore",1.30604775,103.7728987705,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore" +University of Maryland College Park,38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA" +"Amirkabir University of Technology, Tehran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Rice University, Houston, TX, 77005, USA",29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA" +"Beijing, China",39.906217,116.3912757,"北京市, 东城区, 北京市, 100010, 中国" +University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +University of Cape Town,-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية" +University of Bath,51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA" +"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎" +University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia" +"The University of Sydney, Sydney, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia" +Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"KTH Royal Institute of Technology, Stockholm",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige" +Sabanci University,40.8927159,29.3786332263582,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye" +Marquette University,43.03889625,-87.9315544990507,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA" +National University of Defense Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国" +"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA" +"Manonmaniam Sundaranar University, Tirunelveli",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India" +"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +Pennsylvania,40.9699889,-77.7278831,"Pennsylvania, USA" +Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本" +College of Computing,-6.1992922,39.3081862,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania" +Boston University,42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA" +"University of Canterbury, New Zealand",-43.5240528,172.580306253669,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa" +National Cheng Kung University,22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣" +University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"The University of Electro-Communications, Tokyo",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +Tomsk Polytechnic University,56.46255985,84.955654946724,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ" +University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA" +"University of Virginia, Charlottesville, VA",38.0410576,-78.5054996018357,"University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA" +"Pune Institute of Computer Technology, Pune, ( India",18.4575638,73.8507352,"Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India" +College of Computer and Information Science,42.3192923,-83.2343465549018,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +"Tampere University of Technology, Tampere 33720, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"University of Pittsburgh, Pittsburgh, PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA" +THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA" +CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA" +SIMON FRASER UNIVERSITY,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +"University of Alberta, Edmonton, Canada",53.5238572,-113.522826652346,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada" +Beckman Institute,40.11571585,-88.2275077179639,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA" +y National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本" +"University of Amsterdam, the Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA" +South China University of China,23.0490047,113.3971571,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国" +"Northeastern University, Boston, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +"University of Amsterdam, Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"University of Florida, Gainesville, FL, 32611, USA",29.6447739,-82.3575193392276,"University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA" +"Azad University, Qazvin, Iran",36.3173432,50.0367286,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎" +"University of Massachusetts, Amherst, MA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA" +University of Illinois Urbana Champaign,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +The State University of New Jersey,40.51865195,-74.4409980124119,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +"University of Illinois, Urbana-Champaign",40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +Max-Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +"Feng Chia University, Taichung, Taiwan",24.18005755,120.648360719503,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣" +University of Texas at Arlington,32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA" +"Stony Brook University, Stony Brook, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +"Carnegie Mellon University Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +"Istanbul Technical University, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎" +University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada" +"Kyung Hee University, South Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국" +"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA" +"University of Trento, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia" +University of Bristol,51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK" +"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国" +"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK",54.9781026,-1.6067699,"Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK" +The Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本" +"University of Michigan, Ann Arbor",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Amsterdam, Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +"Beijing Institute of Technology, Beijing, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国" +"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK" +"National Taiwan University, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣" +"Rutgers University, New Brunswick, NJ",40.50007595,-74.4457915242934,"Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA" +The Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia" +"University of Alberta, Edmonton, Canada",53.5238572,-113.522826652346,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada" +University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK" +"University of Basel, Switzerland",47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra" +CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA" +University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA" +Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย" +"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国" +Illinois Institute of Technology,41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA" +"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland" +"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA" +"Tamkang University, Taipei, Taiwan",25.17500615,121.450767514156,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣" +Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA" +Beckman Institute,40.11571585,-88.2275077179639,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA" +"Carnegie Mellon University Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia" +"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland" +University of Illinois,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA" +"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA" +Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA" +Max Planck Institute for Biological Cybernetics,48.5369125,9.05922532743396,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland" +Delft University of Technology,51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland" +"Princeton University, Princeton, NJ, USA",40.34725815,-74.6513455119257,"Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA" +Institute for System Programming,55.7449881,37.6645042069876,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ" +"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK" +University of Venezia,45.4312742,12.3265377,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia" +University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA" +Cardi University,10.6435074,-61.4022996445292,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago" +Australian Institute of Sport,-35.24737535,149.104454269689,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia" +"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA" +University of Campinas (Unicamp,-22.8224781,-47.0642599309425,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil" +"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA" +"National Institute of Technology, Durgapur, West Bengal, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India" +"The University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK" +Pennsylvania,40.9699889,-77.7278831,"Pennsylvania, USA" +"Tampere University of Technology, Tampere 33720, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi" +"The Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国" +SIMON FRASER UNIVERSITY,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada" +Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India" +"Nanjing University of Aeronautics and Astronautics, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国" +University of Cape Town,-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa" +"The University of Electro-Communications, Tokyo",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本" +"University of Karlsruhe, Germany",49.00664235,8.39405151637065,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland" +Karlsruhe Institute of,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα" +"University of Twente, Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland" +Clemson University,34.66869155,-82.837434756078,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA" +Oakland University,42.66663325,-83.2065575175658,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA" +Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia" +"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ" +Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland" +"Tongji University, Shanghai 201804, China",31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国" +"Feng Chia University, Taichung, Taiwan",24.18005755,120.648360719503,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣" +"Istanbul Technical University, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye" +"University of Tsukuba, Japan",36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本" +Anna University,13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India" +Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA" +"Amirkabir University of Technology, Tehran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎" +"University of Michigan, Ann Arbor, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA" +"University of Bath, Bath, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK" +Jacobs University,53.4129148,-2.96897915394896,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK" +"Neurological Institute, USA",40.84211085,-73.9428460313244,"Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA" +Research Center,24.7261991,46.6365468966391,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية" +"Central Tehran Branch, Azad University",35.753318,51.370631,"دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ‏ایران‎" +"SASTRA University, Thanjavur, Tamil Nadu, India",10.9628655,79.3853065130097,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India" +Virginia Polytechnic Institute and State University,37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA" +Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎" +College of Engineering and Computer Science,25.7589624,-80.3738881489383,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA" +"Indian Institute of Technology Delhi, New Delhi, India",28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India" +New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA" +The State University of New Jersey,40.51865195,-74.4409980124119,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA" +University of Connecticut,41.8093779,-72.2536414,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA" +Chosun University,35.1441031,126.9257858,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국" +"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA" +"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia" +The City University of New York,40.8722825,-73.8948917141949,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA" +Istanbul University,41.0132424,28.9637609,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye" diff --git a/scraper/reports/institutions_missing.html b/scraper/reports/institutions_missing.html new file mode 100644 index 00000000..93a26238 --- /dev/null +++ b/scraper/reports/institutions_missing.html @@ -0,0 +1,11693 @@ +Institutions

Institutions

61084a25ebe736e8f6d7a6e53b2c20d9723c4608
61f04606528ecf4a42b49e8ac2add2e9f92c0defDeep Deformation Network for Object Landmark +
Localization +
NEC Laboratories America, Department of Media Analytics +
614a7c42aae8946c7ad4c36b53290860f62564411 +
Joint Face Detection and Alignment using +
Multi-task Cascaded Convolutional Networks +
0d88ab0250748410a1bc990b67ab2efb370ade5dAuthor(s) : +
ERROR HANDLING IN MULTIMODAL BIOMETRIC SYSTEMS USING +
RELIABILITY MEASURES (ThuPmOR6) +
(EPFL, Switzerland) +
(EPFL, Switzerland) +
(EPFL, Switzerland) +
(EPFL, Switzerland) +
Plamen Prodanov +
0d467adaf936b112f570970c5210bdb3c626a717
0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306Review of Perceptual Resemblance of Local +
Plastic Surgery Facial Images using Near Sets +
1,2 Department of Computer Technology, +
YCCE Nagpur, India +
0db8e6eb861ed9a70305c1839eaef34f2c85bbaf
0dbf4232fcbd52eb4599dc0760b18fcc1e9546e9
0d760e7d762fa449737ad51431f3ff938d6803feLCDet: Low-Complexity Fully-Convolutional Neural Networks for +
Object Detection in Embedded Systems +
UC San Diego ∗ +
Gokce Dane +
Qualcomm Inc. +
UC San Diego +
Qualcomm Inc. +
UC San Diego +
0dd72887465046b0f8fc655793c6eaaac9c03a3dReal-time Head Orientation from a Monocular +
Camera using Deep Neural Network +
KAIST, Republic of Korea +
0d087aaa6e2753099789cd9943495fbbd08437c0
0d8415a56660d3969449e77095be46ef0254a448
0d735e7552af0d1dcd856a8740401916e54b7eee
0d06b3a4132d8a2effed115a89617e0a702c957a
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e
0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1aDetection and Tracking of Faces in Videos: A Review +
© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939 +
of Related Work +
1Student, 2Assistant Professor +
1, 2Dept. of Electronics & Comm., S S I E T, Punjab, India +
________________________________________________________________________________________________________ +
956317de62bd3024d4ea5a62effe8d6623a64e53Lighting Analysis and Texture Modification of 3D Human +
Face Scans +
Author +
Zhang, Paul, Zhao, Sanqiang, Gao, Yongsheng +
Published +
2007 +
Conference Title +
Digital Image Computing Techniques and Applications +
DOI +
https://doi.org/10.1109/DICTA.2007.4426825 +
Copyright Statement +
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/ +
republish this material for advertising or promotional purposes or for creating new collective +
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +
this work in other works must be obtained from the IEEE. +
Downloaded from +
http://hdl.handle.net/10072/17889 +
Link to published version +
http://www.ieee.org/ +
Griffith Research Online +
https://research-repository.griffith.edu.au +
956c634343e49319a5e3cba4f2bd2360bdcbc075IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +
873 +
A Novel Incremental Principal Component Analysis +
and Its Application for Face Recognition +
958c599a6f01678513849637bec5dc5dba592394Noname manuscript No. +
(will be inserted by the editor) +
Generalized Zero-Shot Learning for Action +
Recognition with Web-Scale Video Data +
Received: date / Accepted: date +
59fc69b3bc4759eef1347161e1248e886702f8f7Final Report of Final Year Project +
HKU-Face: A Large Scale Dataset for +
Deep Face Recognition +
3035141841 +
COMP4801 Final Year Project +
Project Code: 17007 +
59bfeac0635d3f1f4891106ae0262b81841b06e4Face Verification Using the LARK Face +
Representation +
590628a9584e500f3e7f349ba7e2046c8c273fcf
59eefa01c067a33a0b9bad31c882e2710748ea24IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +
Fast Landmark Localization +
with 3D Component Reconstruction and CNN for +
Cross-Pose Recognition +
5945464d47549e8dcaec37ad41471aa70001907fNoname manuscript No. +
(will be inserted by the editor) +
Every Moment Counts: Dense Detailed Labeling of Actions in Complex +
Videos +
Received: date / Accepted: date +
59c9d416f7b3d33141cc94567925a447d0662d80Universität des Saarlandes +
Max-Planck-Institut für Informatik +
AG5 +
Matrix factorization over max-times +
algebra for data mining +
Masterarbeit im Fach Informatik +
Master’s Thesis in Computer Science +
von / by +
angefertigt unter der Leitung von / supervised by +
begutachtet von / reviewers +
November 2013 +
UNIVERSITASSARAVIENSIS
59a35b63cf845ebf0ba31c290423e24eb822d245The FaceSketchID System: Matching Facial +
Composites to Mugshots +
tedious, and may not +
59f325e63f21b95d2b4e2700c461f0136aecc1713070 +
978-1-4577-1302-6/11/$26.00 ©2011 IEEE +
FOR FACE RECOGNITION +
1. INTRODUCTION +
5922e26c9eaaee92d1d70eae36275bb226ecdb2eBoosting Classification Based Similarity +
Learning by using Standard Distances +
Departament d’Informàtica, Universitat de València +
Av. de la Universitat s/n. 46100-Burjassot (Spain) +
59031a35b0727925f8c47c3b2194224323489d68Sparse Variation Dictionary Learning for Face Recognition with A Single +
Training Sample Per Person +
ETH Zurich +
Switzerland +
926c67a611824bc5ba67db11db9c05626e79de961913 +
Enhancing Bilinear Subspace Learning +
by Element Rearrangement +
923ede53b0842619831e94c7150e0fc4104e62f7978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
1293 +
ICASSP 2016 +
92b61b09d2eed4937058d0f9494d9efeddc39002Under review in IJCV manuscript No. +
(will be inserted by the editor) +
BoxCars: Improving Vehicle Fine-Grained Recognition using +
3D Bounding Boxes in Traffic Surveillance +
Received: date / Accepted: date +
920a92900fbff22fdaaef4b128ca3ca8e8d54c3eLEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM +
SELECTION +
Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +
Signal Processing Laboratory (LTS4) +
Switzerland-1015 Lausanne +
9207671d9e2b668c065e06d9f58f597601039e5eFace Detection Using a 3D Model on +
Face Keypoints +
9282239846d79a29392aa71fc24880651826af72Antonakos et al. EURASIP Journal on Image and Video Processing 2014, 2014:14 +
http://jivp.eurasipjournals.com/content/2014/1/14 +
RESEARCH +
Open Access +
Classification of extreme facial events in sign +
language videos +
92c2dd6b3ac9227fce0a960093ca30678bceb364Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +
version when available. +
Title +
On color texture normalization for active appearance models +
Author(s) +
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +
Publication +
Date +
2009-05-12 +
Publication +
Information +
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +
Texture Normalization for Active Appearance Models. Image +
Processing, IEEE Transactions on, 18(6), 1372-1378. +
Publisher +
IEEE +
Link to +
publisher's +
version +
http://dx.doi.org/10.1109/TIP.2009.2017163 +
Item record +
http://hdl.handle.net/10379/1350 +
Some rights reserved. For more information, please see the item record link above. +
Downloaded 2018-11-06T00:40:53Z +
92fada7564d572b72fd3be09ea3c39373df3e27c
927ad0dceacce2bb482b96f42f2fe2ad1873f37aInterest-Point based Face Recognition System +
87 +
X +
Interest-Point based Face Recognition System +
Spain +
1. Introduction +
Among all applications of face recognition systems, surveillance is one of the most +
challenging ones. In such an application, the goal is to detect known criminals in crowded +
environments, like airports or train stations. Some attempts have been made, like those of +
Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success. +
The first task to be carried out in an automatic surveillance system involves the detection of +
all the faces in the images taken by the video cameras. Current face detection algorithms are +
highly reliable and thus, they will not be the focus of our work. Some of the best performing +
examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade +
algorithm (Schneiderman & Kanade, 2000). +
The second task to be carried out involves the comparison of all detected faces among the +
database of known criminals. The ideal behaviour of an automatic system performing this +
task would be to get a 100% correct identification rate, but this behaviour is far from the +
capabilities of current face recognition algorithms. Assuming that there will be false +
identifications, supervised surveillance systems seem to be the most realistic option: the +
automatic system issues an alarm whenever it detects a possible match with a criminal, and +
a human decides whether it is a false alarm or not. Figure 1 shows an example. +
However, even in a supervised scenario the requirements for the face recognition algorithm +
are extremely high: the false alarm rate must be low enough as to allow the human operator +
to cope with it; and the percentage of undetected criminals must be kept to a minimum in +
order to ensure security. Fulfilling both requirements at the same time is the main challenge, +
as a reduction in false alarm rate usually implies an increase of the percentage of undetected +
criminals. +
We propose a novel face recognition system based in the use of interest point detectors and +
local descriptors. In order to check the performances of our system, and particularly its +
performances in a surveillance application, we present experimental results in terms of +
Receiver Operating Characteristic curves or ROC curves. From the experimental results, it +
becomes clear that our system outperforms classical appearance based approaches. +
www.intechopen.com +
929bd1d11d4f9cbc638779fbaf958f0efb82e603This is the author’s version of a work that was submitted/accepted for pub- +
lication in the following source: +
Zhang, Ligang & Tjondronegoro, Dian W. (2010) Improving the perfor- +
mance of facial expression recognition using dynamic, subtle and regional +
features. +
In Kok, WaiWong, B. Sumudu, U. Mendis, & Abdesselam , +
Bouzerdoum (Eds.) Neural Information Processing. Models and Applica- +
tions, Lecture Notes in Computer Science, Sydney, N.S.W, pp. 582-589. +
This file was downloaded from: http://eprints.qut.edu.au/43788/ +
c(cid:13) Copyright 2010 Springer-Verlag +
Conference proceedings published, by Springer Verlag, will be available +
via Lecture Notes in Computer Science http://www.springer.de/comp/lncs/ +
Notice: Changes introduced as a result of publishing processes such as +
copy-editing and formatting may not be reflected in this document. For a +
definitive version of this work, please refer to the published source: +
http://dx.doi.org/10.1007/978-3-642-17534-3_72 +
0c36c988acc9ec239953ff1b3931799af388ef70Face Detection Using Improved Faster RCNN +
Huawei Cloud BU, China +
Figure1.Face detection results of FDNet1.0 +
0c5ddfa02982dcad47704888b271997c4de0674b
0cccf576050f493c8b8fec9ee0238277c0cfd69a
0c069a870367b54dd06d0da63b1e3a900a257298Author manuscript, published in "ICANN 2011 - International Conference on Artificial Neural Networks (2011)" +
0c75c7c54eec85e962b1720755381cdca3f57dfb2212 +
Face Landmark Fitting via Optimized Part +
Mixtures and Cascaded Deformable Model +
0ca36ecaf4015ca4095e07f0302d28a5d9424254Improving Bag-of-Visual-Words Towards Effective Facial Expressive +
Image Classification +
1Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France +
Keywords: +
BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF. +
0cfca73806f443188632266513bac6aaf6923fa8Predictive Uncertainty in Large Scale Classification +
using Dropout - Stochastic Gradient Hamiltonian +
Monte Carlo. +
Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4. +
∗Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile. +
∗∗German Research Centre for Artificial Intelligence, Bremen, Germany. +
0c54e9ac43d2d3bab1543c43ee137fc47b77276e
0c5afb209b647456e99ce42a6d9d177764f9a0dd97 +
Recognizing Action Units for +
Facial Expression Analysis +
0c377fcbc3bbd35386b6ed4768beda7b5111eec6258 +
A Unified Probabilistic Framework +
for Spontaneous Facial Action Modeling +
and Understanding +
0cb2dd5f178e3a297a0c33068961018659d0f443
0cf7da0df64557a4774100f6fde898bc4a3c4840Shape Matching and Object Recognition using Low Distortion Correspondences +
Department of Electrical Engineering and Computer Science +
U.C. Berkeley +
0c4659b35ec2518914da924e692deb37e96d62061236 +
Registering a MultiSensor Ensemble of Images +
0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926dSUBMITTED TO JOURNAL +
Weakly Supervised PatchNets: Describing and +
Aggregating Local Patches for Scene Recognition +
0c60eebe10b56dbffe66bb3812793dd514865935
6601a0906e503a6221d2e0f2ca8c3f544a4adab7SRTM-2 2/9/06 3:27 PM Page 321 +
Detection of Ancient Settlement Mounds: +
Archaeological Survey Based on the +
SRTM Terrain Model +
B.H. Menze, J.A. Ur, and A.G. Sherratt +
660b73b0f39d4e644bf13a1745d6ee74424d4a16
66d512342355fb77a4450decc89977efe7e55fa2Under review as a conference paper at ICLR 2018 +
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +
INATIVE AND MINIMUM INFORMATION LOSS PRIORS +
Anonymous authors +
Paper under double-blind review +
6643a7feebd0479916d94fb9186e403a4e5f7cbfChapter 8 +
3D Face Recognition +
661ca4bbb49bb496f56311e9d4263dfac8eb96e9Datasheets for Datasets +
66d087f3dd2e19ffe340c26ef17efe0062a59290Dog Breed Identification +
Brian Mittl +
Vijay Singh +
66a2c229ac82e38f1b7c77a786d8cf0d7e369598Proceedings of the 2016 Industrial and Systems Engineering Research Conference +
H. Yang, Z. Kong, and MD Sarder, eds. +
A Probabilistic Adaptive Search System +
for Exploring the Face Space +
Escuela Superior Politecnica del Litoral (ESPOL) +
Guayaquil-Ecuador +
66886997988358847615375ba7d6e9eb0f1bb27f
66837add89caffd9c91430820f49adb5d3f40930
66a9935e958a779a3a2267c85ecb69fbbb75b8dcFAST AND ROBUST FIXED-RANK MATRIX RECOVERY +
Fast and Robust Fixed-Rank Matrix +
Recovery +
Antonio Lopez +
66533107f9abdc7d1cb8f8795025fc7e78eb1122Vi a Sevig f a Ue  h wih E(cid:11)ecive ei Readig +
i a Wheechai baed Rbic A +
W y g Sgy Dae i iy g S g iz ad Ze ga Biey +
y EECS AST 373 1  g Dg Y g G  Taej 305 701 REA +
z VR Cee ETR 161 ajg Dg Y g G  Taej 305 350 REA +
Abac +
Thee exi he c eaive aciviy bewee a h +
a beig ad ehabiiai b beca e he h +
a eae ehabiiai b i he ae evi +
e ad ha he bee(cid:12) f ehabiiai b +
 ch a ai ay  bie f ci. ei +
eadig i e f he eeia f ci f h a +
fiedy ehabiiai b i de  ie he +
cf ad afey f a wh eed he. Fi f +
a he vea  c e f a ew wheechai baed +
bic a ye ARES  ad i h a b +
ieaci echgie ae eeed. Ag he +
echgie we cceae  vi a evig ha +
aw hi bic a  eae a  y via +
vi a feedback. E(cid:11)ecive iei eadig  ch a +
ecgizig he iive ad egaive eaig f he +
e i efed  he bai f chage f he facia +
exei a d i ha i gy eaed  he +
e iei whie hi bic a vide he +
e wih a beveage. F he eÆcie vi a ifa +
i ceig g a aed iage ae ed  +
c he ee caea head ha i caed i he +
ed e(cid:11)ec f he bic a. The vi a evig +
wih e(cid:11)ecive iei eadig i  ccef y aied +
 eve a beveage f he e. +
d ci +
Wheechai baed bic ye ae aiy ed  +
ai he edey ad he diabed wh have hadi +
ca i ey ad  f ci i ib. S ch a +
ye ci f a weed wheechai ad a bic +
a ad ha  y a bie caabiiy h gh +
he wheechai b  a a ai ay f ci via +
he bic a ad h  ake ibe he c +
exiece f a e ad a b i he ae evi +
e. +
 hi cae he e eed  ieac wih +
he bic a i cfabe ad afe way. w +
Fig e 1: The wheechai baed bic a ad i +
h a b ieaci echgie. +
eve i ha bee eed ha ay diÆc ie exi +
i h a bf ieaci i exiig ehabiiai +
b. F exae a a c f he bic +
a ake a high cgiive ad  he e a whie +
hyicay diabed e ay have diÆc ie i  +
eaig jyick dexe y   hig b  f +
deicae vee [4].  addii AUS eva +
ai e eed ha he  diÆc  hig  +
ig ehabiiai b i  ay cad f a +
a adj e ad  ay f ci  kee i +
id a he begiig [4]. Theefe h a fiedy +
h a b ieaci i e f eeia echi e +
i a wheechai baed bic a. +
 hi ae we cide he wheechai baed +
bic ye ARES AST Rehabiiai E +
gieeig Sevice ye  which we ae deveig +
a a evice bic ye f he diabed ad he +
edey ad dic  i h a b ieaci ech +
i e Fig. 1. Ag h a b ieaci ech +
i e vi a evig i dea wih a a aj ic. +
66810438bfb52367e3f6f62c24f5bc127cf92e56Face Recognition of Illumination Tolerance in 2D +
Subspace Based on the Optimum Correlation +
Filter +
Xu Yi +
Department of Information Engineering, Hunan Industry Polytechnic, Changsha, China +
images will be tested to project +
66af2afd4c598c2841dbfd1053bf0c386579234eNoname manuscript No. +
(will be inserted by the editor) +
Context Assisted Face Clustering Framework with +
Human-in-the-Loop +
Received: date / Accepted: date +
66e6f08873325d37e0ec20a4769ce881e04e964eInt J Comput Vis (2014) 108:59–81 +
DOI 10.1007/s11263-013-0695-z +
The SUN Attribute Database: Beyond Categories for Deeper Scene +
Understanding +
Received: 27 February 2013 / Accepted: 28 December 2013 / Published online: 18 January 2014 +
© Springer Science+Business Media New York 2014 +
661da40b838806a7effcb42d63a9624fcd68497653 +
An Illumination Invariant Accurate +
Face Recognition with Down Scaling +
of DCT Coefficients +
Department of Computer Science and Engineering, Amity School of Engineering and Technology, New Delhi, India +
In this paper, a novel approach for illumination normal- +
ization under varying lighting conditions is presented. +
Our approach utilizes the fact that discrete cosine trans- +
form (DCT) low-frequency coefficients correspond to +
illumination variations in a digital image. Under varying +
illuminations, the images captured may have low con- +
trast; initially we apply histogram equalization on these +
for contrast stretching. Then the low-frequency DCT +
coefficients are scaled down to compensate the illumi- +
nation variations. The value of scaling down factor and +
the number of low-frequency DCT coefficients, which +
are to be rescaled, are obtained experimentally. The +
classification is done using k−nearest neighbor classi- +
fication and nearest mean classification on the images +
obtained by inverse DCT on the processed coefficients. +
The correlation coefficient and Euclidean distance ob- +
tained using principal component analysis are used as +
distance metrics in classification. We have tested our +
face recognition method using Yale Face Database B. +
The results show that our method performs without any +
error (100% face recognition performance), even on the +
most extreme illumination variations. There are different +
schemes in the literature for illumination normalization +
under varying lighting conditions, but no one is claimed +
to give 100% recognition rate under all illumination +
variations for this database. The proposed technique is +
computationally efficient and can easily be implemented +
for real time face recognition system. +
Keywords: discrete cosine transform, correlation co- +
efficient, face recognition, illumination normalization, +
nearest neighbor classification +
1. Introduction +
Two-dimensional pattern classification plays a +
crucial role in real-world applications. To build +
high-performance surveillance or information +
security systems, face recognition has been +
known as the key application attracting enor- +
mous researchers highlighting on related topics +
[1,2]. Even though current machine recognition +
systems have reached a certain level of matu- +
rity, their success is limited by the real appli- +
cations constraints, like pose, illumination and +
expression. The FERET evaluation shows that +
the performance of a face recognition system +
decline seriously with the change of pose and +
illumination conditions [31]. +
To solve the variable illumination problem a +
variety of approaches have been proposed [3, 7- +
11, 26-29]. Early work in illumination invariant +
face recognition focused on image representa- +
tions that are mostly insensitive to changes in +
illumination. There were approaches in which +
the image representations and distance mea- +
sures were evaluated on a tightly controlled face +
database that varied the face pose, illumination, +
and expression. The image representations in- +
clude edge maps, 2D Gabor-like filters, first and +
second derivatives of the gray-level image, and +
the logarithmic transformations of the intensity +
image along with these representations [4]. +
The different approaches to solve the prob- +
lem of illumination invariant face recognition +
can be broadly classified into two main cate- +
gories. The first category is named as passive +
approach in which the visual spectrum images +
are analyzed to overcome this problem. The +
approaches belonging to other category named +
active, attempt to overcome this problem by +
employing active imaging techniques to obtain +
face images captured in consistent illumina- +
tion condition, or images of illumination invari- +
ant modalities. There is a hierarchical catego- +
rization of these two approaches. An exten- +
sive review of both approaches is given in [5]. +
3edb0fa2d6b0f1984e8e2c523c558cb026b2a983Automatic Age Estimation Based on +
Facial Aging Patterns +
3ee7a8107a805370b296a53e355d111118e96b7c
3e4acf3f2d112fc6516abcdddbe9e17d839f5d9bDeep Value Networks Learn to +
Evaluate and Iteratively Refine Structured Outputs +
3ea8a6dc79d79319f7ad90d663558c664cf298d4
3e4f84ce00027723bdfdb21156c9003168bc1c801979 +
© EURASIP, 2011 - ISSN 2076-1465 +
19th European Signal Processing Conference (EUSIPCO 2011) +
INTRODUCTION +
3e685704b140180d48142d1727080d2fb9e52163Single Image Action Recognition by Predicting +
Space-Time Saliency +
3e687d5ace90c407186602de1a7727167461194aPhoto Tagging by Collection-Aware People Recognition +
UFF +
UFF +
Asla S´a +
FGV +
IMPA +
501096cca4d0b3d1ef407844642e39cd2ff86b37Illumination Invariant Face Image +
Representation using Quaternions +
Dayron Rizo-Rodr´ıguez, Heydi M´endez-V´azquez, and Edel Garc´ıa-Reyes +
Advanced Technologies Application Center. 7a # 21812 b/ 218 and 222, +
Rpto. Siboney, Playa, P.C. 12200, La Habana, Cuba. +
501eda2d04b1db717b7834800d74dacb7df58f91
5083c6be0f8c85815ead5368882b584e4dfab4d1 Please do not quote. In press, Handbook of affective computing. New York, NY: Oxford +
Automated Face Analysis for Affective Computing +
500b92578e4deff98ce20e6017124e6d2053b451
50ff21e595e0ebe51ae808a2da3b7940549f4035IEEE TRANSACTIONS ON LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2017 +
Age Group and Gender Estimation in the Wild with +
Deep RoR Architecture +
5042b358705e8d8e8b0655d07f751be6a1565482International Journal of +
Emerging Research in Management &Technology +
ISSN: 2278-9359 (Volume-4, Issue-8) +
Research Article +
August +
2015 +
Review on Emotion Detection in Image +
CSE & PCET, PTU HOD, CSE & PCET, PTU +
Punjab, India Punj ab, India +
50e47857b11bfd3d420f6eafb155199f4b41f6d7International Journal of Computer, Consumer and Control (IJ3C), Vol. 2, No.1 (2013) +
3D Human Face Reconstruction Using a Hybrid of Photometric +
Stereo and Independent Component Analysis +
50eb75dfece76ed9119ec543e04386dfc95dfd13Learning Visual Entities and their Visual Attributes from Text Corpora +
Dept. of Computer Science +
K.U.Leuven, Belgium +
Dept. of Computer Science +
K.U.Leuven, Belgium +
Dept. of Computer Science +
K.U.Leuven, Belgium +
50a0930cb8cc353e15a5cb4d2f41b365675b5ebf
50d15cb17144344bb1879c0a5de7207471b9ff74Divide, Share, and Conquer: Multi-task +
Attribute Learning with Selective Sharing +
5028c0decfc8dd623c50b102424b93a8e9f2e390Published as a conference paper at ICLR 2017 +
REVISITING CLASSIFIER TWO-SAMPLE TESTS +
1Facebook AI Research, 2WILLOW project team, Inria / ENS / CNRS +
505e55d0be8e48b30067fb132f05a91650666c41A Model of Illumination Variation for Robust Face Recognition +
Institut Eur´ecom +
Multimedia Communications Department +
BP 193, 06904 Sophia Antipolis Cedex, France +
680d662c30739521f5c4b76845cb341dce010735Int J Comput Vis (2014) 108:82–96 +
DOI 10.1007/s11263-014-0716-6 +
Part and Attribute Discovery from Relative Annotations +
Received: 25 February 2013 / Accepted: 14 March 2014 / Published online: 26 April 2014 +
© Springer Science+Business Media New York 2014 +
68d2afd8c5c1c3a9bbda3dd209184e368e4376b9Representation Learning by Rotating Your Faces +
68a3f12382003bc714c51c85fb6d0557dcb15467
68d08ed9470d973a54ef7806318d8894d87ba610Drive Video Analysis for the Detection of Traffic Near-Miss Incidents +
68caf5d8ef325d7ea669f3fb76eac58e0170fff0
68d4056765c27fbcac233794857b7f5b8a6a82bfExample-Based Face Shape Recovery Using the +
Zenith Angle of the Surface Normal +
Mario Castel´an1, Ana J. Almaz´an-Delf´ın2, Marco I. Ram´ırez-Sosa-Mor´an3, +
and Luz A. Torres-M´endez1 +
1 CINVESTAV Campus Saltillo, Ramos Arizpe 25900, Coahuila, M´exico +
2 Universidad Veracruzana, Facultad de F´ısica e Inteligencia Artificial, Xalapa 91000, +
3 ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico +
Veracruz, M´exico +
684f5166d8147b59d9e0938d627beff8c9d208ddIEEE TRANS. NNLS, JUNE 2017 +
Discriminative Block-Diagonal Representation +
Learning for Image Recognition +
68cf263a17862e4dd3547f7ecc863b2dc53320d8
68e9c837431f2ba59741b55004df60235e50994dDetecting Faces Using Region-based Fully +
Convolutional Networks +
Tencent AI Lab, China +
687e17db5043661f8921fb86f215e9ca2264d4d2A Robust Elastic and Partial Matching Metric for Face Recognition +
Microsoft Corporate +
One Microsoft Way, Redmond, WA 98052 +
688754568623f62032820546ae3b9ca458ed0870bioRxiv preprint first posted online Sep. 27, 2016; +
doi: +
http://dx.doi.org/10.1101/077784 +
. +
The copyright holder for this preprint (which was not +
peer-reviewed) is the author/funder. It is made available under a +
CC-BY-NC-ND 4.0 International license +
. +
Resting high frequency heart rate variability is not associated with the +
recognition of emotional facial expressions in healthy human adults. +
1 Univ. Grenoble Alpes, LPNC, F-38040, Grenoble, France +
2 CNRS, LPNC UMR 5105, F-38040, Grenoble, France +
3 IPSY, Université Catholique de Louvain, Louvain-la-Neuve, Belgium +
4 Fund for Scientific Research (FRS-FNRS), Brussels, Belgium +
Correspondence concerning this article should be addressed to Brice Beffara, Office E250, Institut +
de Recherches en Sciences Psychologiques, IPSY - Place du Cardinal Mercier, 10 bte L3.05.01 B-1348 +
Author note +
This study explores whether the myelinated vagal connection between the heart and the brain +
is involved in emotion recognition. The Polyvagal theory postulates that the activity of the +
myelinated vagus nerve underlies socio-emotional skills. It has been proposed that the perception +
of emotions could be one of this skills dependent on heart-brain interactions. However, this +
assumption was differently supported by diverging results suggesting that it could be related to +
confounded factors. In the current study, we recorded the resting state vagal activity (reflected by +
High Frequency Heart Rate Variability, HF-HRV) of 77 (68 suitable for analysis) healthy human +
adults and measured their ability to identify dynamic emotional facial expressions. Results show +
that HF-HRV is not related to the recognition of emotional facial expressions in healthy human +
adults. We discuss this result in the frameworks of the polyvagal theory and the neurovisceral +
integration model. +
Keywords: HF-HRV; autonomic flexibility; emotion identification; dynamic EFEs; Polyvagal +
theory; Neurovisceral integration model +
Word count: 9810 +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 +
Introduction +
The behavior of an animal is said social when involved in in- +
teractions with other animals (Ward & Webster, 2016). These +
interactions imply an exchange of information, signals, be- +
tween at least two animals. In humans, the face is an efficient +
communication channel, rapidly providing a high quantity of +
information. Facial expressions thus play an important role +
in the transmission of emotional information during social +
interactions. The result of the communication is the combina- +
tion of transmission from the sender and decoding from the +
receiver (Jack & Schyns, 2015). As a consequence, the quality +
of the interaction depends on the ability to both produce and +
identify facial expressions. Emotions are therefore a core +
feature of social bonding (Spoor & Kelly, 2004). Health +
of individuals and groups depend on the quality of social +
bonds in many animals (Boyer, Firat, & Leeuwen, 2015; S. L. +
Brown & Brown, 2015; Neuberg, Kenrick, & Schaller, 2011), +
18 +
19 +
20 +
21 +
22 +
23 +
24 +
25 +
26 +
27 +
28 +
29 +
30 +
31 +
32 +
33 +
34 +
35 +
especially in highly social species such as humans (Singer & +
Klimecki, 2014). +
The recognition of emotional signals produced by others is +
not independent from its production by oneself (Niedenthal, +
2007). The muscles of the face involved in the production of +
a facial expressions are also activated during the perception of +
the same facial expressions (Dimberg, Thunberg, & Elmehed, +
2000). In other terms, the facial mimicry of the perceived +
emotional facial expression (EFE) triggers its sensorimotor +
simulation in the brain, which improves the recognition abili- +
ties (Wood, Rychlowska, Korb, & Niedenthal, 2016). Beyond +
that, the emotion can be seen as the body -including brain- +
dynamic itself (Gallese & Caruana, 2016) which helps to un- +
derstand why behavioral simulation is necessary to understand +
the emotion. +
The interplay between emotion production, emotion percep- +
tion, social communication and body dynamics has been sum- +
marized in the framework of the polyvagal theory (Porges, +
68f9cb5ee129e2b9477faf01181cd7e3099d1824ALDA Algorithms for Online Feature Extraction +
68bf34e383092eb827dd6a61e9b362fcba36a83a
6889d649c6bbd9c0042fadec6c813f8e894ac6ccAnalysis of Robust Soft Learning Vector +
Quantization and an application to Facial +
Expression Recognition +
68c17aa1ecbff0787709be74d1d98d9efd78f410International Journal of Optomechatronics, 6: 92–119, 2012 +
Copyright # Taylor & Francis Group, LLC +
ISSN: 1559-9612 print=1559-9620 online +
DOI: 10.1080/15599612.2012.663463 +
GENDER CLASSIFICATION FROM FACE IMAGES +
USING MUTUAL INFORMATION AND FEATURE +
FUSION +
Department of Electrical Engineering and Advanced Mining Technology +
Center, Universidad de Chile, Santiago, Chile +
In this article we report a new method for gender classification from frontal face images +
using feature selection based on mutual information and fusion of features extracted from +
intensity, shape, texture, and from three different spatial scales. We compare the results of +
three different mutual information measures: minimum redundancy and maximal relevance +
(mRMR), normalized mutual information feature selection (NMIFS), and conditional +
mutual information feature selection (CMIFS). We also show that by fusing features +
extracted from six different methods we significantly improve the gender classification +
results relative to those previously published, yielding 99.13% of the gender classification +
rate on the FERET database. +
Keywords: Feature fusion, feature selection, gender classification, mutual information, real-time gender +
classification +
1. INTRODUCTION +
During the 90’s, one of the main issues addressed in the area of computer +
vision was face detection. Many methods and applications were developed including +
the face detection used in many digital cameras nowadays. Gender classification is +
important in many possible applications including electronic marketing. Displays +
at retail stores could show products and offers according to the person gender as +
the person passes in front of a camera at the store. This is not a simple task since +
faces are not rigid and depend on illumination, pose, gestures, facial expressions, +
occlusions (glasses), and other facial features (makeup, beard). The high variability +
in the appearance of the face directly affects their detection and classification. Auto- +
matic classification of gender from face images has a wide range of possible applica- +
tions, ranging from human-computer interaction to applications in real-time +
electronic marketing in retail stores (Shan 2012; Bekios-Calfa et al. 2011; Chu +
et al. 2010; Perez et al. 2010a). +
Automatic gender classification has a wide range of possible applications for +
improving human-machine interaction and face identification methods (Irick et al. +
ing.uchile.cl +
92 +
6888f3402039a36028d0a7e2c3df6db94f5cb9bbUnder review as a conference paper at ICLR 2018 +
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +
Anonymous authors +
Paper under double-blind review +
574751dbb53777101502419127ba8209562c4758
57b8b28f8748d998951b5a863ff1bfd7ca4ae6a5
57101b29680208cfedf041d13198299e2d396314
57893403f543db75d1f4e7355283bdca11f3ab1b
57f8e1f461ab25614f5fe51a83601710142f8e88Region Selection for Robust Face Verification using UMACE Filters +
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering, +
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. +
In this paper, we investigate the verification performances of four subdivided face images with varying expressions. The +
objective of this study is to evaluate which part of the face image is more tolerant to facial expression and still retains its personal +
characteristics due to the variations of the image. The Unconstrained Minimum Average Correlation Energy (UMACE) filter is +
implemented to perform the verification process because of its advantages such as shift–invariance, ability to trade-off between +
discrimination and distortion tolerance, e.g. variations in pose, illumination and facial expression. The database obtained from the +
facial expression database of Advanced Multimedia Processing (AMP) Lab at CMU is used in this study. Four equal +
sizes of face regions i.e. bottom, top, left and right halves are used for the purpose of this study. The results show that the bottom +
half of the face region gives the best performance in terms of the PSR values with zero false accepted rate (FAR) and zero false +
rejection rate (FRR) compared to the other three regions. +
1. Introduction +
Face recognition is a well established field of research, +
and a large number of algorithms have been proposed in the +
literature. Various classifiers have been explored to improve +
the accuracy of face classification. The basic approach is to +
use distance-base methods which measure Euclidean distance +
between any two vectors and then compare it with the preset +
threshold. Neural Networks are often used as classifiers due +
to their powerful generation ability [1]. Support Vector +
Machines (SVM) have been applied with encouraging results +
[2]. +
In biometric applications, one of the important tasks is the +
matching process between an individual biometrics against +
the database that has been prepared during the enrolment +
stage. For biometrics systems such as face authentication that +
use images as personal characteristics, biometrics sensor +
output and image pre-processing play an important role since +
the quality of a biometric input can change significantly due +
to illumination, noise and pose variations. Over the years, +
researchers have studied the role of illumination variation, +
pose variation, facial expression, and occlusions in affecting +
the performance of face verification systems [3]. +
The Minimum Average Correlation Energy (MACE) +
filters have been reported to be an alternative solution to these +
problems because of the advantages such as shift-invariance, +
close-form expressions and distortion-tolerance. MACE +
filters have been successfully applied in the field of automatic +
target recognition as well as in biometric verification [3][4]. +
Face and fingerprint verification using correlation filters have +
been investigated in [5] and [6], respectively. Savvides et.al +
performed face authentication and identification using +
correlation filters based on illumination variation [7]. In the +
process of implementing correlation filters, the number of +
training images used depends on the level of distortions +
applied to the images [5], [6]. +
In this study, we investigate which part of a face image is +
more tolerant to facial expression and retains its personal +
characteristics for the verification process. Four subdivided +
face images, i.e. bottom, top, left and right halves, with +
varying expressions are investigated. By identifying only the +
region of the face that gives the highest verification +
performance, that region can be used instead of the full-face +
to reduce storage requirements. +
2. Unconstrained Minimum Average Correlation +
Energy (UMACE) Filter +
Correlation filter theory and the descriptions of the design +
of the correlation filter can be found in a tutorial survey paper +
[8]. According to [4][6], correlation filter evolves from +
matched filters which are optimal for detecting a known +
reference image in the presence of additive white Gaussian +
noise. However, the detection rate of matched filters +
decreases significantly due to even the small changes of scale, +
rotation and pose of the reference image. +
the pre-specified peak values +
In an effort to solve this problem, the Synthetic +
Discriminant Function (SDF) filter and the Equal Correlation +
Peak SDF (ECP SDF) filter ware introduced which allowed +
several training images to be represented by a single +
correlation filter. SDF filter produces pre-specified values +
called peak constraints. These peak values correspond to the +
authentic class or impostor class when an image is tested. +
However, +
to +
misclassifications when the sidelobes are larger than the +
controlled values at the origin. +
Savvides et.al developed +
the Minimum Average +
Correlation Energy (MACE) filters [5]. This filter reduces the +
large sidelobes and produces a sharp peak when the test +
image is from the same class as the images that have been +
used to design the filter. There are two kinds of variants that +
can be used in order to obtain a sharp peak when the test +
image belongs to the authentic class. The first MACE filter +
variant minimizes the average correlation energy of the +
training images while constraining the correlation output at +
the origin to a specific value for each of the training images. +
The second MACE filter variant is the Unconstrained +
Minimum Average Correlation Energy (UMACE) filter +
which also minimizes the average correlation output while +
maximizing the correlation output at the origin [4]. +
lead +
Proceedings of the International Conference onElectrical Engineering and InformaticsInstitut Teknologi Bandung, Indonesia June 17-19, 2007B-67ISBN 978-979-16338-0-2611
57a1466c5985fe7594a91d46588d969007210581A Taxonomy of Face-models for System Evaluation +
Motivation and Data Types +
Synthetic Data Types +
Unverified – Have no underlying physical or +
statistical basis +
Physics -Based – Based on structure and +
materials combined with the properties +
formally modeled in physics. +
Statistical – Use statistics from real +
data/experiments to estimate/learn model +
parameters. Generally have measurements +
of accuracy +
Guided Synthetic – Individual models based +
on individual people. No attempt to capture +
properties of large groups, a unique model +
per person. For faces, guided models are +
composed of 3D structure models and skin +
textures, capturing many artifacts not +
easily parameterized. Can be combined with +
physics-based rendering to generate samples +
under different conditions. +
Semi–Synethetic – Use measured data such +
as 2D images or 3D facial scans. These are +
not truly synthetic as they are re-rendering’s +
of real measured data. +
Semi and Guided Synthetic data provide +
higher operational relevance while +
maintaining a high degree of control. +
Generating statistically significant size +
datasets for face matching system +
evaluation is both a laborious and +
expensive process. +
There is a gap in datasets that allow for +
evaluation of system issues including: +
 Long distance recognition +
 Blur caused by atmospherics +
 Various weather conditions +
 End to end systems evaluation +
Our contributions: +
 Define a taxonomy of face-models +
for controlled experimentations +
 Show how Synthetic addresses gaps +
in system evaluation +
 Show a process for generating and +
validating synthetic models +
 Use these models in long distance +
face recognition system evaluation +
Experimental Setup +
Results and Conclusions +
Example Models +
Original Pie +
Semi- +
Synthetic +
FaceGen +
Animetrics +
http://www.facegen.com +
http://www.animetrics.com/products/Forensica.php +
Guided- +
Synthetic +
Models +
 Models generated using the well +
known CMU PIE [18] dataset. Each of +
the 68 subjects of PIE were modeled +
using a right profile and frontal +
image from the lights subset. +
 Two modeling programs were used, +
Facegen and Animetrics. Both +
programs create OBJ files and +
textures +
 Models are re-rendered using +
custom display software built with +
OpenGL, GLUT and DevIL libraries +
 Custom Display Box housing a BENQ SP820 high +
powered projector rated at 4000 ANSI Lumens +
 Canon EOS 7D withd a Sigma 800mm F5.6 EX APO +
DG HSM lens a 2x adapter imaging the display +
from 214 meters +
Normalized Example Captures +
Real PIE 1 Animetrics +
FaceGen +
81M inside 214M outside +
Real PIE 2 +
 Pre-cropped images were used for the +
commercial core +
 Ground truth eye points + geometric/lighting +
normalization pre processing before running +
through the implementation of the V1 +
recognition algorithm found in [1]. +
 Geo normalization highlights how the feature +
region of the models looks very similar to +
that of the real person. +
Each test consisted of using 3 approximately frontal gallery images NOT used to +
make the 3D model used as the probe, best score over 3 images determined score. +
Even though the PIE-3D-20100224A–D sets were imaged on the same day, the V1 +
core scored differently on each highlighting the synthetic data’s ability to help +
evaluate data capture methods and effects of varying atmospherics. The ISO setting +
varied which effects the shutter speed, with higher ISO generally yielding less blur. +
Dataset +
Range(m) +
Iso +
V1 +
Comm. +
Original PIE Images +
FaceGen ScreenShots +
Animetrics Screenshots +
PIE-3D-20100210B +
PIE-3D-20100224A +
PIE-3D-20100224B +
PIE-3D-20100224C +
PIE-3D-20100224D +
N/A +
N/A +
N/A +
81m +
214m +
214m +
214m +
214m +
N/A +
N/A +
N/A +
500 +
125 +
125 +
250 +
400 +
100 +
47.76 +
100 +
100 +
58.82 +
45.59 +
81.82 +
79.1 +
100 +
100 +
100 +
100 +
100 +
100 +
 The same (100 percent) recognition rate on screenshots as original images +
validate the Anmetrics guided synthetic models and fails FaceGen Models. +
 100% recognition means dataset is too small/easy; exapanding pose and models +
underway. +
 Expanded the photohead methodology into 3D +
 Developed a robust modeling system allowing for multiple configurations of a +
single real life data set. +
 Gabor+SVM based V1[15] significantly more impacted by atmospheric blur than +
the commercial algorithm +
Key References: +
[6 of 21] R. Bevridge, D. Bolme, M Teixeira, and B. Draper. The CSU Face Identification Evaluation System Users Guide: Version 5.0. Technical report, CSU 2003 +
[8 of 21] T. Boult and W. Scheirer. Long range facial image acquisition and quality. In M. Tisarelli, S. Li, and R. Chellappa. +
[15 of 21] N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you get with a modern face recognition test set using only simple features? In IEEE CVPR, 2009. +
[18 of 21] T. Sim, S. Baker, and M. Bsat. The CMU Pose, Illumination and Expression (PIE) Database. In Proceedings of the IEEE F&G, May 2002. +
5721216f2163d026e90d7cd9942aeb4bebc92334
5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725
574ad7ef015995efb7338829a021776bf9daaa08AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks +
for Human Action Recognition in Videos +
1IIT Kanpur‡ +
2SRI International +
3UCSD +
57d37ad025b5796457eee7392d2038910988655aGEERATVEEETATF +
ERARCCAVETYDETECTR +
by +
DagaEha +
UdeheS eviif +
f.DahaWeiha +
ATheiS biediaiaF (cid:28)efhe +
Re ieefheDegeef +
aefSciece +
a +
TheSchfC eScieceadEgieeig +
ebewUiveiyfe aeae91904 +
Decebe2009 +
3b1260d78885e872cf2223f2c6f3d6f6ea254204
3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5Sparse Representation-based Open Set Recognition +
3bc776eb1f4e2776f98189e17f0d5a78bb755ef4
3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10Glimpse: Continuous, Real-Time Object Recognition on +
Mobile Devices +
MIT CSAIL +
Microsoft Research +
MIT CSAIL +
Microsoft Research +
MIT CSAIL +
3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0On Knowledge Transfer in +
Object Class Recognition +
A dissertation approved by +
TECHNISCHE UNIVERSITÄT DARMSTADT +
Fachbereich Informatik +
for the degree of +
Doktor-Ingenieur (Dr.-Ing.) +
presented by +
Dipl.-Inform. +
born in Mainz, Germany +
Prof. Dr.-Ing. Michael Goesele, examiner +
Prof. Martial Hebert, Ph.D., co-examiner +
Prof. Dr. Bernt Schiele, co-examiner +
Date of Submission: 12th of August, 2010 +
Date of Defense: 23rd of September, 2010 +
Darmstadt, 2010 +
D17 +
3ba8f8b6bfb36465018430ffaef10d2caf3cfa7eLocal Directional Number Pattern for Face +
Analysis: Face and Expression Recognition +
3b80bf5a69a1b0089192d73fa3ace2fbb52a4ad5
3b9d94752f8488106b2c007e11c193f35d941e92CVPR +
#2052 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2013 Submission #2052. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#2052 +
Appearance, Visual and Social Ensembles for +
Face Recognition in Personal Photo Collections +
Anonymous CVPR submission +
Paper ID 2052 +
3be7b7eb11714e6191dd301a696c734e8d07435f
3b410ae97e4564bc19d6c37bc44ada2dcd608552Scalability Analysis of Audio-Visual Person +
Identity Verification +
1 Communications Laboratory, +
Universit´e catholique de Louvain, B-1348 Belgium, +
2 IDIAP, CH-1920 Martigny, +
Switzerland +
6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cbLow Resolution Face Recognition Using a +
Two-Branch Deep Convolutional Neural Network +
Architecture +
6f288a12033fa895fb0e9ec3219f3115904f24deLearning Expressionlets via Universal Manifold +
Model for Dynamic Facial Expression Recognition +
6f2dc51d607f491dbe6338711c073620c85351ac
6f75697a86d23d12a14be5466a41e5a7ffb79fad
6f7d06ced04ead3b9a5da86b37e7c27bfcedbbddPages 51.1-51.12 +
DOI: https://dx.doi.org/10.5244/C.30.51 +
6f7a8b3e8f212d80f0fb18860b2495be4c363eacCreating Capsule Wardrobes from Fashion Images +
UT-Austin +
UT-Austin +
6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81Structured Output SVM Prediction of Apparent Age, +
Gender and Smile From Deep Features +
Michal Uˇriˇc´aˇr +
CMP, Dept. of Cybernetics +
FEE, CTU in Prague +
Computer Vision Lab +
D-ITET, ETH Zurich +
Computer Vision Lab +
D-ITET, ETH Zurich +
PSI, ESAT, KU Leuven +
CVL, D-ITET, ETH Zurich +
Jiˇr´ı Matas +
CMP, Dept. of Cybernetics +
FEE, CTU in Prague +
6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3DOI 10.1007/s00530-005-0177-4 +
R E G U L A R PA P E R +
Learning probabilistic classifiers for human–computer +
interaction applications +
Published online: 10 May 2005 +
c(cid:1) Springer-Verlag 2005 +
intelligent +
interaction, +
6fa3857faba887ed048a9e355b3b8642c6aab1d8Face Recognition in Challenging Environments: +
An Experimental and Reproducible Research +
Survey +
6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
937 +
ICASSP 2012 +
6fe2efbcb860767f6bb271edbb48640adbd806c3SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS +
Soft Biometrics; Human Identification using +
Comparative Descriptions +
6fdc0bc13f2517061eaa1364dcf853f36e1ea5aeDAISEE: Dataset for Affective States in +
E-Learning Environments +
1 Microsoft India R&D Pvt. Ltd. +
2 Department of Computer Science, IIT Hyderabad +
6f5151c7446552fd6a611bf6263f14e729805ec75KHHAO /7 %:0 7 +
)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA +
FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI +
?=IIIAF=H=>EEJO MAECDJEC +
/=>H M=LAAJI H FHE?EF= ?FAJI ==OIEI 2+) ! 1 JDEI F=FAH MA +
03c56c176ec6377dddb6a96c7b2e95408db65a7aA Novel Geometric Framework on Gram Matrix +
Trajectories for Human Behavior Understanding +
03d9ccce3e1b4d42d234dba1856a9e1b28977640
0322e69172f54b95ae6a90eb3af91d3daa5e36eaFace Classification using Adjusted Histogram in +
Grayscale +
03f7041515d8a6dcb9170763d4f6debd50202c2bClustering Millions of Faces by Identity +
038ce930a02d38fb30d15aac654ec95640fe5cb0Approximate Structured Output Learning for Constrained Local +
Models with Application to Real-time Facial Feature Detection and +
Tracking on Low-power Devices +
03c1fc9c3339813ed81ad0de540132f9f695a0f8Proceedings of Machine Learning Research 81:1–15, 2018 +
Conference on Fairness, Accountability, and Transparency +
Gender Shades: Intersectional Accuracy Disparities in +
Commercial Gender Classification∗ +
MIT Media Lab 75 Amherst St. Cambridge, MA 02139 +
Microsoft Research 641 Avenue of the Americas, New York, NY 10011 +
Editors: Sorelle A. Friedler and Christo Wilson +
0339459a5b5439d38acd9c40a0c5fea178ba52fbD|C|I&I 2009 Prague +
Multimodal recognition of emotions in car +
environments +
03a8f53058127798bc2bc0245d21e78354f6c93bMax-Margin Additive Classifiers for Detection +
Sam Hare +
VGG Reading Group +
October 30, 2009 +
03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20A Real Time System for Model-based Interpretation of +
the Dynamics of Facial Expressions +
Technische Universit¨at M¨unchen +
Boltzmannstr. 3, 85748 Garching +
1. Motivation +
Recent progress in the field of Computer Vision allows +
intuitive interaction via speech, gesture or facial expressions +
between humans and technical systems.Model-based tech- +
niques facilitate accurately interpreting images with faces +
by exploiting a priori knowledge, such as shape and texture +
information. This renders them an inevitable component +
to realize the paradigm of intuitive human-machine interac- +
tion. +
Our demonstration shows model-based recognition of +
facial expressions in real-time via the state-of-the-art +
Candide-3 face model [1] as visible in Figure 1. This three- +
dimensional and deformable model is highly appropriate +
for real-world face interpretation applications. However, +
its complexity challenges the task of model fitting and we +
tackle this challenge with an algorithm that has been auto- +
matically learned from a large set of images. This solution +
provides both, high accuracy and runtime. Note, that our +
system is not limited to facial expression estimation. Gaze +
direction, gender and age are also estimated. +
2. Face Model Fitting +
Models reduce the large amount of image data to a +
small number of model parameters to describe the im- +
age content, which facilitates and accelerates the subse- +
quent interpretation task. Cootes et al. [3] introduced mod- +
elling shapes with Active Contours. Further enhancements +
emerged the idea of expanding shape models with texture +
information [2]. Recent research considers modelling faces +
in 3D space [1, 10]. +
Fitting the face model is the computational challenge of +
finding the parameters that best describe the face within a +
given image. This task is often addressed by minimizing +
an objective function, such as the pixel error between the +
model’s rendered surface and the underlying image content. +
This section describes the four main components of model- +
based techniques, see [9]. +
The face model contains a parameter vector p that repre- +
sents its configurations. We integrate the complex and de- +
formable 3D wire frame Candide-3 face model [1]. The +
model consists of 116 anatomical landmarks and its param- +
eter vector p = (rx, ry, rz, s, tx, ty, σ, α)T describes the +
affine transformation (rx, ry, rz, s, tx, ty) and the deforma- +
tion (σ, α). The 79 deformation parameters indicate the +
shape of facial components such as the mouth, the eyes, or +
the eye brows, etc., see Figure 2. +
The localization algorithm computes an initial estimate of +
the model parameters that is further refined by the subse- +
quent fitting algorithm. Our system integrates the approach +
of [8], which detects the model’s affine transformation in +
case the image shows a frontal view face. +
The objective function yields a comparable value that +
specifies how accurately a parameterized model matches an +
image. Traditional approaches manually specify the objec- +
tive function in a laborious and erroneous task. In contrast, +
we automatically learn the objective function from a large +
set of training data based on objective information theoretic +
measures [9]. This approach does not require expert knowl- +
edge and it is domain-independently applicable. As a re- +
sult, this approach yields more robust and accurate objective +
functions, which greatly facilitate the task of the associated +
fitting algorithms. Accurately estimated model parameters +
in turn are required to infer correct high-level information, +
such as facial expression or gaze direction. +
Figure 1. Interpreting expressions with the Candide-3 face model. +
03b98b4a2c0b7cc7dae7724b5fe623a43eaf877bAcume: A Novel Visualization Tool for Understanding Facial +
Expression and Gesture Data +
03104f9e0586e43611f648af1132064cadc5cc07
03f14159718cb495ca50786f278f8518c0d8c8c92015 IEEE International Conference on Control System, Computing and Engineering, Nov 27 – Nov 29, 2015 Penang, Malaysia +
2015 IEEE International Conference on Control System, +
Computing and Engineering (ICCSCE2015) +
Technical Session 1A – DAY 1 – 27th Nov 2015 +
Time: 3.00 pm – 4.30 pm +
Venue: Jintan +
Topic: Signal and Image Processing +
3.00 pm – 3.15pm +
3.15 pm – 3.30pm +
3.30 pm – 3.45pm +
3.45 pm – 4.00pm +
4.00 pm – 4.15pm +
4.15 pm – 4.30pm +
4.30 pm – 4.45pm +
1A 01 ID3 +
Can Subspace Based Learning Approach Perform on Makeup Face +
Recognition? +
Khor Ean Yee, Pang Ying Han, Ooi Shih Yin and Wee Kuok Kwee +
1A 02 ID35 +
Performance Evaluation of HOG and Gabor Features for Vision-based +
Vehicle Detection +
1A 03 ID23 +
Experimental Method to Pre-Process Fuzzy Bit Planes before Low-Level +
Feature Extraction in Thermal Images +
Chan Wai Ti and Sim Kok Swee +
1A 04 ID84 +
Fractal-based Texture and HSV Color Features for Fabric Image Retrieval +
Nanik Suciati, Darlis Herumurti and Arya Yudhi Wijaya +
1A 05 ID168 +
Study of Automatic Melody Extraction Methods for Philippine Indigenous +
Music +
Jason Disuanco, Vanessa Tan, Franz de Leon +
1A 06 ID211 +
Acoustical Comparison between Voiced and Voiceless Arabic Phonemes of +
Malay +
Speakers +
Ali Abd Almisreb, Ahmad Farid Abidin, Nooritawati Md Tahir +
*shaded cell is the proposed session chair +
viii +
©Faculty of Electrical Engineering, Universiti Teknologi MARA +
0394040749195937e535af4dda134206aa830258Geodesic Entropic Graphs for Dimension and +
Entropy Estimation in Manifold Learning +
December 16, 2003 +
0334cc0374d9ead3dc69db4816d08c917316c6c4
0394e684bd0a94fc2ff09d2baef8059c2652ffb0Median Robust Extended Local Binary Pattern +
for Texture Classification +
Index Terms— Texture descriptors, rotation invariance, local +
binary pattern (LBP), feature extraction, texture analysis. +
how the texture recognition process works in humans as +
well as in the important role it plays in the wide variety of +
applications of computer vision and image analysis [1], [2]. +
The many applications of texture classification include medical +
image analysis and understanding, object recognition, biomet- +
rics, content-based image retrieval, remote sensing, industrial +
inspection, and document classification. +
As a classical pattern recognition problem, texture classifi- +
cation primarily consists of two critical subproblems: feature +
extraction and classifier designation [1], [2]. It is generally +
agreed that the extraction of powerful texture features plays a +
relatively more important role, since if poor features are used +
even the best classifier will fail to achieve good recognition +
results. Consequently, most research in texture classification +
focuses on the feature extraction part and numerous texture +
feature extraction methods have been developed, with excellent +
surveys given in [1]–[5]. Most existing methods have not, +
however, been capable of performing sufficiently well for +
real-world applications, which have demanding requirements +
including database size, nonideal environmental conditions, +
and running in real-time. +
03e88bf3c5ddd44ebf0e580d4bd63072566613ad
03f4c0fe190e5e451d51310bca61c704b39dcac8J Ambient Intell Human Comput +
DOI 10.1007/s12652-016-0406-z +
O R I G I N A L R E S E A R C H +
CHEAVD: a Chinese natural emotional audio–visual database +
Received: 30 March 2016 / Accepted: 22 August 2016 +
Ó Springer-Verlag Berlin Heidelberg 2016 +
031055c241b92d66b6984643eb9e05fd605f24e2Multi-fold MIL Training for Weakly Supervised Object Localization +
Inria∗ +
0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136Int J Comput Vis +
DOI 10.1007/s11263-017-1009-7 +
Large Scale 3D Morphable Models +
Received: 15 March 2016 / Accepted: 24 March 2017 +
© The Author(s) 2017. This article is an open access publication +
034addac4637121e953511301ef3a3226a9e75fdImplied Feedback: Learning Nuances of User Behavior in Image Search +
Virginia Tech +
03701e66eda54d5ab1dc36a3a6d165389be0ce79179 +
Improved Principal Component Regression for Face +
Recognition Under Illumination Variations +
9b318098f3660b453fbdb7a579778ab5e9118c4c3931 +
Joint Patch and Multi-label Learning for Facial +
Action Unit and Holistic Expression Recognition +
classifiers without +
9b000ccc04a2605f6aab867097ebf7001a52b459
9b474d6e81e3b94e0c7881210e249689139b3e04VG-RAM Weightless Neural Networks for +
Face Recognition +
Departamento de Inform´atica +
Universidade Federal do Esp´ırito Santo +
Av. Fernando Ferrari, 514, 29075-910 - Vit´oria-ES +
Brazil +
1. Introduction +
Computerized human face recognition has many practical applications, such as access control, +
security monitoring, and surveillance systems, and has been one of the most challenging and +
active research areas in computer vision for many decades (Zhao et al.; 2003). Even though +
current machine recognition systems have reached a certain level of maturity, the recognition +
of faces with different facial expressions, occlusions, and changes in illumination and/or pose +
is still a hard problem. +
A general statement of the problem of machine recognition of faces can be formulated as fol- +
lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene +
using a database of faces. In identification problems, given a face as input, the system reports +
back the identity of an individual based on a database of known individuals; whereas in veri- +
fication problems, the system confirms or rejects the claimed identity of the input face. In both +
cases, the solution typically involves segmentation of faces from scenes (face detection), fea- +
ture extraction from the face regions, recognition, or verification. In this chapter, we examine +
the recognition of frontal face images required in the context of identification problems. +
Many approaches have been proposed to tackle the problem of face recognition. One can +
roughly divide these into (i) holistic approaches, (ii) feature-based approaches, and (iii) hybrid +
approaches (Zhao et al.; 2003). Holistic approaches use the whole face region as the raw input +
to a recognition system (a classifier). In feature-based approaches, local features, such as the +
eyes, nose, and mouth, are first extracted and their locations and local statistics (geometric +
and/or appearance based) are fed into a classifier. Hybrid approaches use both local features +
and the whole face region to recognize a face. +
Among +
fisher- +
faces (Belhumeur et al.; 1997; Etemad and Chellappa; 1997) have proved to be effective +
(Turk and Pentland; +
eigenfaces +
holistic +
approaches, +
1991) +
and +
9bc01fa9400c231e41e6a72ec509d76ca797207c
9bcfadd22b2c84a717c56a2725971b6d49d3a804How to Detect a Loss of Attention in a Tutoring System +
using Facial Expressions and Gaze Direction +
9bac481dc4171aa2d847feac546c9f7299cc5aa0Matrix Product State for Higher-Order Tensor +
Compression and Classification +
9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7Faical Expression Recognition by Combining +
Texture and Geometrical Features +
9ea73660fccc4da51c7bc6eb6eedabcce7b5ceadTalking Head Detection by Likelihood-Ratio Test† +
MIT Lincoln Laboratory, +
Lexington MA 02420, USA +
9e9052256442f4e254663ea55c87303c85310df9International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) +
Volume 4 Issue 10, October 2015 +
Review On Attribute-assisted Reranking for +
Image Search +
 +
9e0285debd4b0ba7769b389181bd3e0fd7a02af6From face images and attributes to attributes +
Computer Vision Laboratory, ETH Zurich, Switzerland +
9e5c2d85a1caed701b68ddf6f239f3ff941bb707
04bb3fa0824d255b01e9db4946ead9f856cc0b59
040dc119d5ca9ea3d5fc39953a91ec507ed8cc5dNoname manuscript No. +
(will be inserted by the editor) +
Large-scale Bisample Learning on ID vs. Spot Face Recognition +
Received: date / Accepted: date +
04470861408d14cc860f24e73d93b3bb476492d0
0447bdb71490c24dd9c865e187824dee5813a676Manifold Estimation in View-based Feature +
Space for Face Synthesis Across Pose +
Paper 27 +
044ba70e6744e80c6a09fa63ed6822ae241386f2TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION +
Early Prediction for Physical Human Robot +
Collaboration in the Operating Room +
04dcdb7cb0d3c462bdefdd05508edfcff5a6d315Assisting the training of deep neural networks +
with applications to computer vision +
tesi doctoral està subjecta a +
la +
Aquesta +
CompartirIgual 4.0. Espanya de Creative Commons. +
Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual +
4.0. España de Creative Commons. +
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- +
ShareAlike 4.0. Spain License. +
llicència Reconeixement- NoComercial – +
044fdb693a8d96a61a9b2622dd1737ce8e5ff4faDynamic Texture Recognition Using Local Binary +
Patterns with an Application to Facial Expressions +
04250e037dce3a438d8f49a4400566457190f4e2
0431e8a01bae556c0d8b2b431e334f7395dd803aLearning Localized Perceptual Similarity Metrics for Interactive Categorization +
Google Inc. +
google.com +
04b4c779b43b830220bf938223f685d1057368e9Video retrieval based on deep convolutional +
neural network +
Yajiao Dong +
School of Information and Electronics, +
Beijing Institution of Technology, Beijing, China +
Jianguo Li +
School of Information and Electronics, +
Beijing Institution of Technology, Beijing, China +
04616814f1aabe3799f8ab67101fbaf9fd115ae4UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese
6a3a07deadcaaab42a0689fbe5879b5dfc3ede52Learning to Estimate Pose by Watching Videos +
Department of Computer Science and Engineering +
IIT Kanpur +
6ad107c08ac018bfc6ab31ec92c8a4b234f67d49
6a184f111d26787703f05ce1507eef5705fdda83
6a16b91b2db0a3164f62bfd956530a4206b23feaA Method for Real-Time Eye Blink Detection and Its Application +
Mahidol Wittayanusorn School +
Puttamonton, Nakornpatom 73170, Thailand +
6a806978ca5cd593d0ccd8b3711b6ef2a163d810Facial feature tracking for Emotional Dynamic +
Analysis +
1ISIR, CNRS UMR 7222 +
Univ. Pierre et Marie Curie, Paris +
2LAMIA, EA 4540 +
Univ. of Fr. West Indies & Guyana +
6a8a3c604591e7dd4346611c14dbef0c8ce9ba54ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS. +
58 +
An Affect-Responsive Interactive Photo Frame +
6aa43f673cc42ed2fa351cbc188408b724cb8d50
6aefe7460e1540438ffa63f7757c4750c844764dNon-rigid Segmentation using Sparse Low Dimensional Manifolds and +
Deep Belief Networks ∗ +
Instituto de Sistemas e Rob´otica +
Instituto Superior T´ecnico, Portugal +
6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2
322c063e97cd26f75191ae908f09a41c534eba90Noname manuscript No. +
(will be inserted by the editor) +
Improving Image Classification using Semantic Attributes +
Received: date / Accepted: date +
325b048ecd5b4d14dce32f92bff093cd744aa7f8CVPR +
#2670 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2008 Submission #2670. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#2670 +
Multi-Image Graph Cut Clothing Segmentation for Recognizing People +
Anonymous CVPR submission +
Paper ID 2670 +
321bd4d5d80abb1bae675a48583f872af3919172Wang et al. EURASIP Journal on Image and Video Processing (2016) 2016:44 +
DOI 10.1186/s13640-016-0152-3 +
EURASIP Journal on Image +
and Video Processing +
R EV I E W +
Entropy-weighted feature-fusion method +
for head-pose estimation +
Open Access +
32b8c9fd4e3f44c371960eb0074b42515f318ee7
32575ffa69d85bbc6aef5b21d73e809b37bf376d-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61 +
7ELAHIEJO B JJ=M= +
)*564)+6 +
IKHA L=HE=JEI E >EAJHE? I=FA GK=EJO 9A >ACE MEJD +
IKHAAJI 9A JDA IDM JD=J JDA >EAJHE? EBH=JE BH +
JA EI JDA A= D(p(cid:107)q) BH = FAHII E JDA FFK=JE 1 +
BH I= ALAI B >KH MEJD = =IOFJJE? >AD=LEH =J =HCAH +
>KH +
 164,7+61 +
*EAJHE? I=FA GK=EJO EI = A=IKHA B JDA KIABKAII B = +
GK=EJO +
F=FAH MA FHFIA = AM =FFH=?D J A=IKHA JDEI GK=JEJO +
JDA EJKEJELA >IAHL=JE JD=J = DECD GK=EJO >EAJHE? E=CA +
>EAJHE? EBH=JE +
EIIKAI E >EAJHE? JA?DCO .H AN=FA A B JDA IJ +
? >EAJHE? GKAIJEI EI JD=J B KEGKAAII AC J MD=J +
ANJAJ =HA CAHFHEJI KEGKA .H JDA FEJ B LEAM B +
=>A EBH=JE EI =L=E=>A BH = CELA JA?DCO IK?D +
  $  " +
1 JDEI F=FAH MA A=>H=JA = =FFH=?D J +
BMI +
AJI +
 >ABHA = >EAJHE? A=IKHAAJ t0 =J MDE?D JEA MA O +
M = FAHI p EI F=HJ B = FFK=JE q MDE?D =O >A JDA +
324b9369a1457213ec7a5a12fe77c0ee9aef1ad4Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network +
NVIDIA +
32df63d395b5462a8a4a3c3574ae7916b0cd4d1d978-1-4577-0539-7/11/$26.00 ©2011 IEEE +
1489 +
ICASSP 2011 +
35308a3fd49d4f33bdbd35fefee39e39fe6b30b7
352d61eb66b053ae5689bd194840fd5d33f0e9c0Analysis Dictionary Learning based +
Classification: Structure for Robustness +
3538d2b5f7ab393387ce138611ffa325b6400774A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION +
ALGORITHMS +
A. U. Batur +
B. E. Flinchbaugh +
M. H. Hayes IIl +
Center for Signal and Image Proc. +
Georgia Inst. Of Technology +
Atlanta, GA +
Imaging and Audio Lab. +
Texas Instruments +
Dallas, TX +
Center for Signal and Image Proc. +
Georgia Inst. Of Technology +
Atlanta, CA +
3504907a2e3c81d78e9dfe71c93ac145b1318f9cNoname manuscript No. +
(will be inserted by the editor) +
Unconstrained Still/Video-Based Face Verification with Deep +
Convolutional Neural Networks +
Received: date / Accepted: date +
35b1c1f2851e9ac4381ef41b4d980f398f1aad68Geometry Guided Convolutional Neural Networks for +
Self-Supervised Video Representation Learning +
351c02d4775ae95e04ab1e5dd0c758d2d80c3dddActionSnapping: Motion-based Video +
Synchronization +
Disney Research +
35e4b6c20756cd6388a3c0012b58acee14ffa604Gender Classification in Large Databases +
E. Ram´on-Balmaseda, J. Lorenzo-Navarro, and M. Castrill´on-Santana (cid:63) +
Universidad de Las Palmas de Gran Canaria +
SIANI +
Spain +
357963a46dfc150670061dbc23da6ba7d6da786e
35f1bcff4552632419742bbb6e1927ef5e998eb4
35c973dba6e1225196566200cfafa150dd231fa8
35f084ddee49072fdb6e0e2e6344ce50c02457efA Bilinear Illumination Model +
for Robust Face Recognition +
The Harvard community has made this +
article openly available. Please share how +
this access benefits you. Your story matters +
Citation +
Machiraju. 2005. A bilinear illumination model for robust face +
recognition. Proceedings of the Tenth IEEE International Conference +
on Computer Vision: October 17-21, 2005, Beijing, China. 1177-1184. +
Los Almamitos, C.A.: IEEE Computer Society. +
Published Version +
doi:10.1109/ICCV.2005.5 +
Citable link +
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4238979 +
Terms of Use +

repository, and is made available under the terms and conditions +
applicable to Other Posted Material, as set forth at http:// +
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- +
use#LAA +
353a89c277cca3e3e4e8c6a199ae3442cdad59b5
352110778d2cc2e7110f0bf773398812fd905eb1TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014 +
Matrix Completion for Weakly-supervised +
Multi-label Image Classification +
6964af90cf8ac336a2a55800d9c510eccc7ba8e1Temporal Relational Reasoning in Videos +
MIT CSAIL +
697b0b9630213ca08a1ae1d459fabc13325bdcbb
69d29012d17cdf0a2e59546ccbbe46fa49afcd68Subspace clustering of dimensionality-reduced data +
ETH Zurich, Switzerland +
69de532d93ad8099f4d4902c4cad28db958adfea
69526cdf6abbfc4bcd39616acde544568326d856636 +
[17] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recogni- +
tion,” Pattern Recognit., vol. 33, no. 11, pp. 1771–1782, Nov. 2000. +
[18] A. Nefian, “A hidden Markov model-based approach for face detection +
and recognition,” Ph.D. dissertation, Dept. Elect. Comput. Eng. Elect. +
Eng., Georgia Inst. Technol., Atlanta, 1999. +
[19] P. J. Phillips et al., “Overview of the face recognition grand challenge,” +
presented at the IEEE CVPR, San Diego, CA, Jun. 2005. +
[20] H. T. Tanaka, M. Ikeda, and H. Chiaki, “Curvature-based face surface +
recognition using spherical correlation-principal direction for curved +
object recognition,” in Proc. Int. Conf. Automatic Face and Gesture +
Recognition, 1998, pp. 372–377. +
[21] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit. Sci., +
pp. 71–86, 1991. +
[22] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998. +
[23] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips, “Face recogni- +
tion: A literature survey,” ACM Comput. Surveys, vol. 35, no. 44, pp. +
399–458, 2003. +
[24] W. Zhao, R. Chellappa, and P. J. Phillips, “Subspace linear discrimi- +
nant analysis for face recognition,” UMD TR4009, 1999. +
Face Verification Using Template Matching +
690d669115ad6fabd53e0562de95e35f1078dfbbProgressive versus Random Projections for Compressive Capture of Images, +
Lightfields and Higher Dimensional Visual Signals +
MIT Media Lab +
75 Amherst St, Cambridge, MA +
MERL +
201 Broadway, Cambridge MA +
MIT Media Lab +
75 Amherst St, Cambridge, MA +
69a9da55bd20ce4b83e1680fbc6be2c976067631
6974449ce544dc208b8cc88b606b03d95c8fd368
3cfbe1f100619a932ba7e2f068cd4c41505c9f58A Realistic Simulation Tool for Testing Face Recognition +
Systems under Real-World Conditions∗ +
M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae +
Department of Electrical Engineering, Universidad de Chile +
Advanced Mining Technology Center, Universidad de Chile +
3c03d95084ccbe7bf44b6d54151625c68f6e74d0
3cd7b15f5647e650db66fbe2ce1852e00c05b2e4
3ce2ecf3d6ace8d80303daf67345be6ec33b3a93
3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8Measuring Gaze Orientation for Human-Robot +
Interaction +
∗ CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France +
† Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France +
Introduction +
In the context of Human-Robot interaction estimating gaze orientation brings +
useful information about human focus of attention. This is a contextual infor- +
mation : when you point something you usually look at it. Estimating gaze +
orientation requires head pose estimation. There are several techniques to esti- +
mate head pose from images, they are mainly based on training [3, 4] or on local +
face features tracking [6]. The approach described here is based on local face +
features tracking in image space using online learning, it is a mixed approach +
since we track face features using some learning at feature level. It uses SURF +
features [2] to guide detection and tracking. Such key features can be matched +
between images, used for object detection or object tracking [10]. Several ap- +
proaches work on fixed size images like training techniques which mainly work +
on low resolution images because of computation costs whereas approaches based +
on local features tracking work on high resolution images. Tracking face features +
such as eyes, nose and mouth is a common problem in many applications such as +
detection of facial expression or video conferencing [8] but most of those appli- +
cations focus on front face images [9]. We developed an algorithm based on face +
features tracking using a parametric model. First we need face detection, then +
we detect face features in following order: eyes, mouth, nose. In order to achieve +
full profile detection we use sets of SURF to learn what eyes, mouth and nose +
look like once tracking is initialized. Once those sets of SURF are known they +
are used to detect and track face features. SURF have a descriptor which is often +
used to identify a key point and here we add some global geometry information +
by using the relative position between key points. Then we use a particle filter to +
track face features using those SURF based detectors, we compute the head pose +
angles from features position and pass the results through a median filter. This +
paper is organized as follows. Section 2 describes our modeling of visual features, +
section 3 presents our tracking implementation. Section 4 presents results we get +
with our implementation and future works in section 5. +
2 Visual features +
We use some basic properties of facial features to initialize our algorithm : eyes +
are dark and circular, mouth is an horizontal dark line with a specific color,... +
3cb64217ca2127445270000141cfa2959c84d9e7
3cd5da596060819e2b156e8b3a28331ef633036b
3c56acaa819f4e2263638b67cea1ec37a226691dBody Joint guided 3D Deep Convolutional +
Descriptors for Action Recognition +
3c8da376576938160cbed956ece838682fa50e9fChapter 4 +
Aiding Face Recognition with +
Social Context Association Rule +
based Re-Ranking +
Humans are very efficient at recognizing familiar face images even in challenging condi- +
tions. One reason for such capabilities is the ability to understand social context between +
individuals. Sometimes the identity of the person in a photo can be inferred based on the +
identity of other persons in the same photo, when some social context between them is +
known. This chapter presents an algorithm to utilize the co-occurrence of individuals as +
the social context to improve face recognition. Association rule mining is utilized to infer +
multi-level social context among subjects from a large repository of social transactions. +
The results are demonstrated on the G-album and on the SN-collection pertaining to 4675 +
identities prepared by the authors from a social networking website. The results show that +
association rules extracted from social context can be used to augment face recognition and +
improve the identification performance. +
4.1 +
Introduction +
Face recognition capabilities of humans have inspired several researchers to understand +
the science behind it and use it in developing automated algorithms. Recently, it is also +
argued that encoding social context among individuals can be leveraged for improved +
automatic face recognition [175]. As shown in Figure 4.1, often times a person’s identity +
can be inferred based on the identity of other persons in the same photo, when some social +
context between them is known. A subject’s face in consumer photos generally co-occur +
along with their socially relevant people. With the advent of social networking services, +
the social context between individuals is readily available. Face recognition performance +
105 +
56e885b9094391f7d55023a71a09822b38b26447FREQUENCY DECODED LOCAL BINARY PATTERN +
Face Retrieval using Frequency Decoded Local +
Descriptor +
56a653fea5c2a7e45246613049fb16b1d204fc963287 +
Quaternion Collaborative and Sparse Representation +
With Application to Color Face Recognition +
representation-based +
5666ed763698295e41564efda627767ee55cc943Manuscript +
Click here to download Manuscript: template.tex +
Click here to view linked References +
Noname manuscript No. +
(will be inserted by the editor) +
Relatively-Paired Space Analysis: Learning a Latent Common +
Space from Relatively-Paired Observations +
Received: date / Accepted: date +
5615d6045301ecbc5be35e46cab711f676aadf3aDiscriminatively Learned Hierarchical Rank Pooling Networks +
Received: date / Accepted: date +
566038a3c2867894a08125efe41ef0a40824a090978-1-4244-2354-5/09/$25.00 ©2009 IEEE +
1945 +
ICASSP 2009 +
56dca23481de9119aa21f9044efd7db09f618704Riemannian Dictionary Learning and Sparse +
Coding for Positive Definite Matrices +
516a27d5dd06622f872f5ef334313350745eadc3> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +
1 +
Fine-Grained Facial Expression Analysis Us- +
ing Dimensional Emotion Model +
 +
51c3050fb509ca685de3d9ac2e965f0de1fb21ccFantope Regularization in Metric Learning +
Marc T. Law +
Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France +
51c7c5dfda47647aef2797ac3103cf0e108fdfb4CS 395T: Celebrity Look-Alikes ∗ +
519f4eb5fe15a25a46f1a49e2632b12a3b18c94dNon-Lambertian Reflectance Modeling and +
Shape Recovery of Faces using Tensor Splines +
51528cdce7a92835657c0a616c0806594de7513b
5161e38e4ea716dcfb554ccb88901b3d97778f64SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR +
FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON +
School of Computing, KAIST, Republic of Korea +
51d1a6e15936727e8dd487ac7b7fd39bd2baf5eeJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
A Fast and Accurate System for Face Detection, +
Identification, and Verification +
5157dde17a69f12c51186ffc20a0a6c6847f1a29Evolutionary Cost-sensitive Extreme Learning +
Machine +
1 +
51dc127f29d1bb076d97f515dca4cc42dda3d25b
3daafe6389d877fe15d8823cdf5ac15fd919676fHuman Action Localization +
with Sparse Spatial Supervision +
3db75962857a602cae65f60f202d311eb4627b41
3d36f941d8ec613bb25e80fb8f4c160c1a2848dfOut-of-sample generalizations for supervised +
manifold learning for classification +
3d5a1be4c1595b4805a35414dfb55716e3bf80d8Hidden Two-Stream Convolutional Networks for +
Action Recognition +
3d62b2f9cef997fc37099305dabff356d39ed477Joint Face Alignment and 3D Face +
Reconstruction with Application to Face +
Recognition +
3dc522a6576c3475e4a166377cbbf4ba389c041f
3dd4d719b2185f7c7f92cc97f3b5a65990fcd5ddEnsemble of Hankel Matrices for +
Face Emotion Recognition +
DICGIM, Universit´a degli Studi di Palermo, +
V.le delle Scienze, Ed. 6, 90128 Palermo, Italy, +
DRAFT +
To appear in ICIAP 2015 +
3dda181be266950ba1280b61eb63ac11777029f9
3d6ee995bc2f3e0f217c053368df659a5d14d5b5
3dd906bc0947e56d2b7bf9530b11351bbdff2358
3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a1892 +
Random Multispace Quantization as +
an Analytic Mechanism for BioHashing +
of Biometric and Random Identity Inputs +
3d6943f1573f992d6897489b73ec46df983d776c
3d94f81cf4c3a7307e1a976dc6cb7bf38068a3813846 +
Data-Dependent Label Distribution Learning +
for Age Estimation +
5859774103306113707db02fe2dd3ac9f91f1b9e
5892f8367639e9c1e3cf27fdf6c09bb3247651edEstimating Missing Features to Improve Multimedia Information Retrieval +
5850aab97e1709b45ac26bb7d205e2accc798a87
587f81ae87b42c18c565694c694439c65557d6d5DeepFace: Face Generation using Deep Learning +
580054294ca761500ada71f7d5a78acb0e622f191331 +
A Subspace Model-Based Approach to Face +
Relighting Under Unknown Lighting and Poses +
58081cb20d397ce80f638d38ed80b3384af76869Embedded Real-Time Fall Detection Using Deep +
Learning For Elderly Care +
Samsung Research, Samsung Electronics +
58fa85ed57e661df93ca4cdb27d210afe5d2cdcdCancún Center, Cancún, México, December 4-8, 2016 +
978-1-5090-4847-2/16/$31.00 ©2016 IEEE +
4118 +
58bf72750a8f5100e0c01e55fd1b959b31e7dbcePyramidBox: A Context-assisted Single Shot +
Face Detector. +
Baidu Inc. +
58542eeef9317ffab9b155579256d11efb4610f2International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +
Face Recognition Revisited on Pose, Alignment, +
Color, Illumination and Expression-PyTen +
Computer Science, BIT Noida, India +
58823377757e7dc92f3b70a973be697651089756Technical Report +
UCAM-CL-TR-861 +
ISSN 1476-2986 +
Number 861 +
Computer Laboratory +
Automatic facial expression analysis +
October 2014 +
15 JJ Thomson Avenue +
Cambridge CB3 0FD +
United Kingdom +
phone +44 1223 763500 +
http://www.cl.cam.ac.uk/ +
58bb77dff5f6ee0fb5ab7f5079a5e788276184ccFacial Expression Recognition with PCA and LBP +
Features Extracting from Active Facial Patches +
 +
58cb1414095f5eb6a8c6843326a6653403a0ee17
677585ccf8619ec2330b7f2d2b589a37146ffad7A flexible model for training action localization +
with varying levels of supervision +
677477e6d2ba5b99633aee3d60e77026fb0b9306
6789bddbabf234f31df992a3356b36a47451efc7Unsupervised Generation of Free-Form and +
Parameterized Avatars +
675b2caee111cb6aa7404b4d6aa371314bf0e647AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions +
Carl Vondrick∗ +
679b72d23a9cfca8a7fe14f1d488363f2139265f
67484723e0c2cbeb936b2e863710385bdc7d5368Anchor Cascade for Efficient Face Detection +
6742c0a26315d7354ab6b1fa62a5fffaea06da14BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE? +
What does 2D geometric information +
really tell us about 3D face shape? +
67a50752358d5d287c2b55e7a45cc39be47bf7d0
67ba3524e135c1375c74fe53ebb03684754aae56978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
1767 +
ICASSP 2017 +
6769cfbd85329e4815bb1332b118b01119975a95Tied factor analysis for face recognition across +
large pose changes +
0be43cf4299ce2067a0435798ef4ca2fbd255901Title +
A temporal latent topic model for facial expression recognition +
Author(s) +
Shang, L; Chan, KP +
Citation +
The 10th Asian Conference on Computer Vision (ACCV 2010), +
Queenstown, New Zealand, 8-12 November 2010. In Lecture +
Notes in Computer Science, 2010, v. 6495, p. 51-63 +
Issued Date +
2011 +
URL +
http://hdl.handle.net/10722/142604 +
Rights +
Creative Commons: Attribution 3.0 Hong Kong License +
0b2277a0609565c30a8ee3e7e193ce7f79ab48b0944 +
Cost-Sensitive Semi-Supervised Discriminant +
Analysis for Face Recognition +
0ba64f4157d80720883a96a73e8d6a5f5b9f1d9b
0b605b40d4fef23baa5d21ead11f522d7af1df06Label-Embedding for Attribute-Based Classification +
a Computer Vision Group∗, XRCE, France +
b LEAR†, INRIA, France +
0b0eb562d7341231c3f82a65cf51943194add0bb> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +
Facial Image Analysis Based on Local Binary +
Patterns: A Survey +
+
0b3a146c474166bba71e645452b3a8276ac05998Who’s in the Picture? +
Berkeley, CA 94720 +
Computer Science Division +
U.C. Berkeley +
0b5bd3ce90bf732801642b9f55a781e7de7fdde0
0b0958493e43ca9c131315bcfb9a171d52ecbb8aA Unified Neural Based Model for Structured Output Problems +
Soufiane Belharbi∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien Adam∗2 +
1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +
2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +
April 13, 2015 +
0b20f75dbb0823766d8c7b04030670ef7147ccdd1 +
Feature selection using nearest attributes +
0b5a82f8c0ee3640503ba24ef73e672d93aeebbfOn Learning 3D Face Morphable Model +
from In-the-wild Images +
0b174d4a67805b8796bfe86cd69a967d357ba9b6 Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +
Vol. 3(4), 56-62, April (2014) +
Res.J.Recent Sci. +
0ba449e312894bca0d16348f3aef41ca01872383
0b572a2b7052b15c8599dbb17d59ff4f02838ff7Automatic Subspace Learning via Principal +
Coefficients Embedding +
0ba99a709cd34654ac296418a4f41a9543928149
0b8c92463f8f5087696681fb62dad003c308ebe2On Matching Sketches with Digital Face Images +
in local +
0bc0f9178999e5c2f23a45325fa50300961e0226Recognizing facial expressions from videos using Deep +
Belief Networks +
CS 229 Project +
0b3f354e6796ef7416bf6dde9e0779b2fcfabed2
93675f86d03256f9a010033d3c4c842a732bf661Universit´edesSciencesetTechnologiesdeLilleEcoleDoctoraleSciencesPourl’ing´enieurUniversit´eLilleNord-de-FranceTHESEPr´esent´ee`al’Universit´edesSciencesetTechnologiesdeLillePourobtenirletitredeDOCTEURDEL’UNIVERSIT´ESp´ecialit´e:MicroetNanotechnologieParTaoXULocalizedgrowthandcharacterizationofsiliconnanowiresSoutenuele25Septembre2009Compositiondujury:Pr´esident:TuamiLASRIRapporteurs:ThierryBARONHenriMARIETTEExaminateurs:EricBAKKERSXavierWALLARTDirecteurdeth`ese:BrunoGRANDIDIER
936c7406de1dfdd22493785fc5d1e5614c6c28822012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 762–772, +
Montr´eal, Canada, June 3-8, 2012. c(cid:13)2012 Association for Computational Linguistics +
762 +
93721023dd6423ab06ff7a491d01bdfe83db7754ROBUST FACE ALIGNMENT USING CONVOLUTIONAL NEURAL +
NETWORKS +
Orange Labs, 4, Rue du Clos Courtel, 35512 Cesson-S´evign´e, France +
Keywords: +
Face alignment, Face registration, Convolutional Neural Networks. +
93cbb3b3e40321c4990c36f89a63534b506b6dafIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +
477 +
Learning From Examples in the Small Sample Case: +
Face Expression Recognition +
944faf7f14f1bead911aeec30cc80c861442b610Action Tubelet Detector for Spatio-Temporal Action Localization +
9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b735967 +
A Benchmark and Comparative Study of +
Video-Based Face Recognition +
on COX Face Database +
94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81
94325522c9be8224970f810554611d6a73877c13
9441253b638373a0027a5b4324b4ee5f0dffd670A Novel Scheme for Generating Secure Face +
Templates Using BDA +
P.G. Student, Department of Computer Engineering, +
Associate Professor, Department of Computer +
MCERC, +
Nashik (M.S.), India +
94ac3008bf6be6be6b0f5140a0bea738d4c75579
94a11b601af77f0ad46338afd0fa4ccbab909e82
0e8760fc198a7e7c9f4193478c0e0700950a86cd
0e50fe28229fea45527000b876eb4068abd6ed8cProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
2936 +
0eff410cd6a93d0e37048e236f62e209bc4383d1Anchorage Convention District +
May 3-8, 2010, Anchorage, Alaska, USA +
978-1-4244-5040-4/10/$26.00 ©2010 IEEE +
4803 +
0ee737085af468f264f57f052ea9b9b1f58d7222SiGAN: Siamese Generative Adversarial Network +
for Identity-Preserving Face Hallucination +
0ee661a1b6bbfadb5a482ec643573de53a9adf5eJOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR +
On the Use of Discriminative Cohort Score +
Normalization for Unconstrained Face Recognition +
0e3840ea3227851aaf4633133dd3cbf9bbe89e5b
0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a
0e2ea7af369dbcaeb5e334b02dd9ba5271b10265
0e7c70321462694757511a1776f53d629a1b38f3NIST Special Publication 1136 +
2012 Proceedings of the +
Performance Metrics for Intelligent +
Systems (PerMI ‘12) Workshop +
+
http://dx.doi.org/10.6028/NIST.SP.1136 +
6080f26675e44f692dd722b61905af71c5260af8
60d765f2c0a1a674b68bee845f6c02741a49b44e
60c24e44fce158c217d25c1bae9f880a8bd19fc3Controllable Image-to-Video Translation: +
A Case Study on Facial Expression Generation +
MIT CSAIL +
Wenbing Huang +
Tencent AI Lab +
MIT-Waston Lab +
Tencent AI Lab +
Tencent AI Lab +
60e2b9b2e0db3089237d0208f57b22a3aac932c1Frankenstein: Learning Deep Face Representations +
using Small Data +
60ce4a9602c27ad17a1366165033fe5e0cf68078TECHNICAL NOTE +
DIGITAL & MULTIMEDIA SCIENCES +
J Forensic Sci, 2015 +
doi: 10.1111/1556-4029.12800 +
Available online at: onlinelibrary.wiley.com +
Ph.D. +
Combination of Face Regions in Forensic +
Scenarios* +
6097ea6fd21a5f86a10a52e6e4dd5b78a436d5bf
60efdb2e204b2be6701a8e168983fa666feac1beInt J Comput Vis +
DOI 10.1007/s11263-017-1043-5 +
Transferring Deep Object and Scene Representations for Event +
Recognition in Still Images +
Received: 31 March 2016 / Accepted: 1 September 2017 +
© Springer Science+Business Media, LLC 2017 +
60824ee635777b4ee30fcc2485ef1e103b8e7af9Cascaded Collaborative Regression for Robust Facial +
Landmark Detection Trained using a Mixture of Synthetic and +
Real Images with Dynamic Weighting +
Life Member, IEEE, William Christmas, and Xiao-Jun Wu +
60643bdab1c6261576e6610ea64ea0c0b200a28d
60a20d5023f2bcc241eb9e187b4ddece695c2b9bInvertible Nonlinear Dimensionality Reduction +
via Joint Dictionary Learning +
Department of Electrical and Computer Engineering +
Technische Universit¨at M¨unchen, Germany +
60cdcf75e97e88638ec973f468598ae7f75c59b486 +
Face Annotation Using Transductive +
Kernel Fisher Discriminant +
60b3601d70f5cdcfef9934b24bcb3cc4dde663e7SUBMITTED TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Binary Gradient Correlation Patterns +
for Robust Face Recognition +
34a41ec648d082270697b9ee264f0baf4ffb5c8d
341002fac5ae6c193b78018a164d3c7295a495e4von Mises-Fisher Mixture Model-based Deep +
learning: Application to Face Verification +
34ec83c8ff214128e7a4a4763059eebac59268a6Action Anticipation By Predicting Future +
Dynamic Images +
Australian Centre for Robotic Vision, ANU, Canberra, Australia +
34b7e826db49a16773e8747bc8dfa48e344e425d
341ed69a6e5d7a89ff897c72c1456f50cfb23c96DAGER: Deep Age, Gender and Emotion +
Recognition Using Convolutional Neural +
Networks +
Computer Vision Lab, Sighthound Inc., Winter Park, FL +
340d1a9852747b03061e5358a8d12055136599b0Audio-Visual Recognition System Insusceptible +
to Illumination Variation over Internet Protocol +
+
5a3da29970d0c3c75ef4cb372b336fc8b10381d7CNN-based Real-time Dense Face Reconstruction +
with Inverse-rendered Photo-realistic Face Images +
5a34a9bb264a2594c02b5f46b038aa1ec3389072Label-Embedding for Image Classification +
5a4c6246758c522f68e75491eb65eafda375b701978-1-4244-4296-6/10/$25.00 ©2010 IEEE +
1118 +
ICASSP 2010 +
5aad5e7390211267f3511ffa75c69febe3b84cc7Driver Gaze Estimation +
Without Using Eye Movement +
MIT AgeLab +
5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372
5a4ec5c79f3699ba037a5f06d8ad309fb4ee682cDownloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605.
5a7520380d9960ff3b4f5f0fe526a00f63791e99The Indian Spontaneous Expression +
Database for Emotion Recognition +
5fff61302adc65d554d5db3722b8a604e62a8377Additive Margin Softmax for Face Verification +
UESTC +
Georgia Tech +
UESTC +
UESTC +
5fa6e4a23da0b39e4b35ac73a15d55cee8608736IJCV special issue (Best papers of ECCV 2016) manuscript No. +
(will be inserted by the editor) +
RED-Net: +
A Recurrent Encoder-Decoder Network for Video-based Face Alignment +
Submitted: April 19 2017 / Revised: December 12 2017 +
5f871838710a6b408cf647aacb3b198983719c311716 +
Locally Linear Regression for Pose-Invariant +
Face Recognition +
5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9
5f344a4ef7edfd87c5c4bc531833774c3ed23542c Copyright by Ira Cohen, 2003 +
5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a
5f27ed82c52339124aa368507d66b71d96862cb7Semi-supervised Learning of Classifiers: Theory, Algorithms +
and Their Application to Human-Computer Interaction +
This work has been partially funded by NSF Grant IIS 00-85980. +
DRAFT +
5fa932be4d30cad13ea3f3e863572372b915bec8
5f5906168235613c81ad2129e2431a0e5ef2b6e4Noname manuscript No. +
(will be inserted by the editor) +
A Unified Framework for Compositional Fitting of +
Active Appearance Models +
Received: date / Accepted: date +
5fc664202208aaf01c9b62da5dfdcd71fdadab29arXiv:1504.05308v1 [cs.CV] 21 Apr 2015 +
5fa1724a79a9f7090c54925f6ac52f1697d6b570Proceedings of the Workshop on Grammar and Lexicon: Interactions and Interfaces, +
pages 41–47, Osaka, Japan, December 11 2016. +
41 +
33aff42530c2fd134553d397bf572c048db12c28From Emotions to Action Units with Hidden and Semi-Hidden-Task Learning +
Universitat Pompeu Fabra +
Centre de Visio per Computador +
Universitat Pompeu Fabra +
Barcelona +
Barcelona +
Barcelona +
33a1a049d15e22befc7ddefdd3ae719ced8394bfFULL PAPER +
International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009 +
An Efficient Approach to Facial Feature Detection +
for Expression Recognition +
S.P. Khandait1, P.D. Khandait2 and Dr.R.C.Thool2 +
1Deptt. of Info.Tech., K.D.K.C.E., Nagpur, India +
2Deptt.of Electronics Engg., K.D.K.C.E., Nagpur, India, 2Deptt. of Info.Tech., SGGSIET, Nanded +
3399f8f0dff8fcf001b711174d29c9d4fde89379Face R-CNN +
Tencent AI Lab, China +
333aa36e80f1a7fa29cf069d81d4d2e12679bc67Suggesting Sounds for Images +
from Video Collections +
1Computer Science Department, ETH Z¨urich, Switzerland +
2Disney Research, Switzerland +
33792bb27ef392973e951ca5a5a3be4a22a0d0c6Two-dimensional Whitening Reconstruction for +
Enhancing Robustness of Principal Component +
Analysis +
3328674d71a18ed649e828963a0edb54348ee598IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004 +
2405 +
A Face and Palmprint Recognition Approach Based +
on Discriminant DCT Feature Extraction +
339937141ffb547af8e746718fbf2365cc1570c8Facial Emotion Recognition in Real Time +
33aa980544a9d627f305540059828597354b076c
33ae696546eed070717192d393f75a1583cd8e2c
3352426a67eabe3516812cb66a77aeb8b4df4d1bJOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015 +
Joint Multi-view Face Alignment in the Wild +
334d6c71b6bce8dfbd376c4203004bd4464c2099BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN +
COMPUTER VISION +
33e20449aa40488c6d4b430a48edf5c4b43afdabTRANSACTIONS ON AFFECTIVE COMPUTING +
The Faces of Engagement: Automatic +
Recognition of Student Engagement from Facial +
Expressions +
333e7ad7f915d8ee3bb43a93ea167d6026aa3c22This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2014.2309851 +
DRAFT +
3D Assisted Face Recognition: Dealing With +
Expression Variations +
+
33403e9b4bbd913ae9adafc6751b52debbd45b0e
33ad23377eaead8955ed1c2b087a5e536fecf44eAugmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling +
∗ indicates equal contribution +
05b8673d810fadf888c62b7e6c7185355ffa4121(will be inserted by the editor) +
A Comprehensive Survey to Face Hallucination +
Received: date / Accepted: date +
05e658fed4a1ce877199a4ce1a8f8cf6f449a890
05ad478ca69b935c1bba755ac1a2a90be6679129Attribute Dominance: What Pops Out? +
Georgia Tech +
0562fc7eca23d47096472a1d42f5d4d086e21871
054738ce39920975b8dcc97e01b3b6cc0d0bdf32Towards the Design of an End-to-End Automated +
System for Image and Video-based Recognition +
05e03c48f32bd89c8a15ba82891f40f1cfdc7562Scalable Robust Principal Component +
Analysis using Grassmann Averages +
050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371Contents +
Scale Space and PDE Methods +
Spatio-Temporal Scale Selection in Video Data . . . . . . . . . . . . . . . . . . . . . +
Dynamic Texture Recognition Using Time-Causal Spatio-Temporal +
Scale-Space Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Corner Detection Using the Affine Morphological Scale Space . . . . . . . . . . . +
Luis Alvarez +
Nonlinear Spectral Image Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger, +
Daniel Cremers, Guy Gilboa, and Carola-Bibiane Schönlieb +
16 +
29 +
41 +
Tubular Structure Segmentation Based on Heat Diffusion. . . . . . . . . . . . . . . +
54 +
Fang Yang and Laurent D. Cohen +
Analytic Existence and Uniqueness Results for PDE-Based Image +
Reconstruction with the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Laurent Hoeltgen, Isaac Harris, Michael Breuß, and Andreas Kleefeld +
Combining Contrast Invariant L1 Data Fidelities with Nonlinear +
Spectral Image Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Leonie Zeune, Stephan A. van Gils, Leon W.M.M. Terstappen, +
and Christoph Brune +
An Efficient and Stable Two-Pixel Scheme for 2D +
Forward-and-Backward Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Martin Welk and Joachim Weickert +
66 +
80 +
94 +
Restoration and Reconstruction +
Blind Space-Variant Single-Image Restoration of Defocus Blur. . . . . . . . . . . +
109 +
Leah Bar, Nir Sochen, and Nahum Kiryati +
Denoising by Inpainting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
121 +
Robin Dirk Adam, Pascal Peter, and Joachim Weickert +
Stochastic Image Reconstruction from Local Histograms +
of Gradient Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Agnès Desolneux and Arthur Leclaire +
133 +
056294ff40584cdce81702b948f88cebd731a93e
052880031be0a760a5b606b2ad3d22f237e8af70Datasets on object manipulation and interaction: a survey +
05ea7930ae26165e7e51ff11b91c7aa8d7722002Learning And-Or Model to Represent Context and +
Occlusion for Car Detection and Viewpoint Estimation +
051a84f0e39126c1ebeeb379a405816d5d06604dCogn Comput (2009) 1:257–267 +
DOI 10.1007/s12559-009-9018-7 +
Biometric Recognition Performing in a Bioinspired System +
Joan Fa`bregas Æ Marcos Faundez-Zanuy +
Published online: 20 May 2009 +
Ó Springer Science+Business Media, LLC 2009 +
05f4d907ee2102d4c63a3dc337db7244c570d067
05a7be10fa9af8fb33ae2b5b72d108415519a698Multilayer and Multimodal Fusion of Deep Neural Networks +
for Video Classification +
NVIDIA +
050a149051a5d268fcc5539e8b654c2240070c82MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE
0580edbd7865414c62a36da9504d1169dea78d6fBaseline CNN structure analysis for facial expression recognition +
05e96d76ed4a044d8e54ef44dac004f796572f1a
9d839dfc9b6a274e7c193039dfa7166d3c07040bAugmented Faces +
1ETH Z¨urich +
2Kooaba AG +
3K.U. Leuven +
9d60ad72bde7b62be3be0c30c09b7d03f9710c5fA Survey: Face Recognition Techniques +
Assistant Professor, ITM GOI +
M Tech, ITM GOI +
face +
video +
(Eigen +
passport-verification, +
9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1
9ca7899338129f4ba6744f801e722d53a44e4622Deep Neural Networks Regularization for Structured +
Output Prediction +
Soufiane Belharbi∗ +
INSA Rouen, LITIS +
76000 Rouen, France +
INSA Rouen, LITIS +
76000 Rouen, France +
INSA Rouen, LITIS +
76000 Rouen, France +
INSA Rouen, LITIS +
76000 Rouen, France +
Normandie Univ, UNIROUEN, UNIHAVRE, +
Normandie Univ, UNIROUEN, UNIHAVRE, +
Normandie Univ, UNIROUEN, UNIHAVRE, +
Normandie Univ, UNIROUEN, UNIHAVRE, +
9c1664f69d0d832e05759e8f2f001774fad354d6Action representations in robotics: A +
taxonomy and systematic classification +
Journal Title +
XX(X):1–32 +
c(cid:13)The Author(s) 2016 +
Reprints and permission: +
sagepub.co.uk/journalsPermissions.nav +
DOI: 10.1177/ToBeAssigned +
www.sagepub.com/ +
9c065dfb26ce280610a492c887b7f6beccf27319Learning from Video and Text via Large-Scale Discriminative Clustering +
1 ´Ecole Normale Sup´erieure +
2Inria +
3CIIRC +
02601d184d79742c7cd0c0ed80e846d95def052eGraphical Representation for Heterogeneous +
Face Recognition +
02cc96ad997102b7c55e177ac876db3b91b4e72cMuseumVisitors: a dataset for pedestrian and group detection, gaze estimation +
and behavior understanding +
02fda07735bdf84554c193811ba4267c24fe2e4aIllumination Invariant Face Recognition +
Using Near-Infrared Images +
02dd0af998c3473d85bdd1f77254ebd71e6158c6PPP: Joint Pointwise and Pairwise Image Label Prediction +
1Department of Computer Science, Arizona State Univerity +
2Yahoo Research +
029317f260b3303c20dd58e8404a665c7c5e73391276 +
Character Identification in Feature-Length Films +
Using Global Face-Name Matching +
and Yeh-Min Huang, Member, IEEE +
0273414ba7d56ab9ff894959b9d46e4b2fef7fd0Photographic home styles in Congress: a +
computer vision approach∗ +
December 1, 2016 +
02e133aacde6d0977bca01ffe971c79097097b7f
02567fd428a675ca91a0c6786f47f3e35881bcbdACCEPTED BY IEEE TIP +
Deep Label Distribution Learning +
With Label Ambiguity +
029b53f32079063047097fa59cfc788b2b550c4b
02bd665196bd50c4ecf05d6852a4b9ba027cd9d0
026b5b8062e5a8d86c541cfa976f8eee97b30ab8MDLFace: Memorability Augmented Deep Learning for Video Face Recognition +
IIIT-Delhi, India +
0278acdc8632f463232e961563e177aa8c6d6833Selective Transfer Machine for Personalized +
Facial Expression Analysis +
1 INTRODUCTION +
Index Terms—Facial expression analysis, personalization, domain adaptation, transfer learning, support vector machine (SVM) +
A UTOMATIC facial AU detection confronts a number of +
02c993d361dddba9737d79e7251feca026288c9c
a46283e90bcdc0ee35c680411942c90df130f448
a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2Yudistira and Kurita EURASIP Journal on Image and Video +
Processing (2017) 2017:85 +
DOI 10.1186/s13640-017-0235-9 +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
Gated spatio and temporal convolutional +
neural network for activity recognition: +
towards gated multimodal deep learning +
a40f8881a36bc01f3ae356b3e57eac84e989eef0End-to-end semantic face segmentation with conditional +
random fields as convolutional, recurrent and adversarial +
networks +
a44590528b18059b00d24ece4670668e86378a79Learning the Hierarchical Parts of Objects by Deep +
Non-Smooth Nonnegative Matrix Factorization +
a4c430b7d849a8f23713dc283794d8c1782198b2Video Concept Embedding +
1. Introduction +
In the area of natural language processing, there has been +
much success in learning distributed representations for +
words as vectors. Doing so has an advantage over using +
simple labels, or a one-hot coding scheme for representing +
individual words. In learning distributed vector representa- +
tions for words, we manage to capture semantic relatedness +
of words in vector distance. For example, the word vector +
for ”car” and ”road” should end up being closer together in +
the vector space representation than ”car” and ”penguin”. +
This has been very useful in NLP areas of machine transla- +
tion and semantic understanding. +
In the computer vision domain, video understanding is a +
very important topic. +
It is made hard due to the large +
amount of high dimensional data in videos. One strategy +
to address this is to summarize a video into concepts (eg. +
running, climbing, cooking). This allows us to represent a +
video in a very natural way to humans, such as a sequence +
of semantic events. However this has the same shortcom- +
ings that one-hot coding of words have. +
The goal of this project is to find a meaningful way to em- +
bed video concepts into a vector space. The hope would +
be to capture semantic relatedness of concepts in a vector +
representation, essentially doing for videos what word2vec +
did for text. Having a vector representation for video con- +
cepts would help in areas such as semantic video retrieval +
and video classification, as it would provide a statistically +
meaningful and robust way of representing videos as lower +
dimensional vectors. An interesting thing would be to ob- +
serve if such a vector representation would result in ana- +
logical reasoning using simple vector arithmetic. +
Figure 1 shows an example of concepts detected at differ- +
ent snapshots in the same video. For example, consider +
the scenario where the concepts Kicking a ball, Soccer and +
Running are detected in the three snapshots respectively +
(from left to right). Since, these snapshots belong in the +
same video, we expect that these concepts are semantically +
similar and that they should lie close in the resulting em- +
bedding space. The aim of this project is to find a vector +
space embedding for the space of concepts such that vector +
representations for semantically similar concepts (in this +
Figure 1. Example snapshots from the same video +
case, Running, Kicking and Soccer) lie in the vicinity of +
each other. +
2. Related Work +
(Mikolov et al., 2013a) introduces the popular skip-gram +
model to learn distributed representations of words from +
very large linguistic datasets. Specifically, it uses each +
word as an input to a log-linear classifier and predict words +
within a certain range before and after the current word in +
the dataset. +
(Mikolov et al., 2013b) extends this model +
to learn representations for phrases, in addition to words, +
and also improve the quality of vectors and training speed. +
These works also show that the skip-gram model exhibits +
a linear structure that enables it to perform reasoning using +
basic vector arithmetic. The skip-gram model from these +
works is the basis of our model in learning representations +
for concepts. +
(Le & Mikolov, 2014) extends the concept of word vectors +
to sentences and paragraphs. Their approach is more in- +
volved than a simple bag of words approach, in that it tries +
to capture the nature of the words in the paragraph. They +
construct the paragraph vector in such a way that it can be +
used to predict the word vectors that are contained inside +
the paragraph. They do this by first learning word vectors, +
such that the probability of a word vector given its context +
is maximized. To learn paragraph vectors, the paragraph +
is essentially treated as a word, and the words it contains +
become the context. This provides a key insight in how +
a set of concept vectors can be used together to provide a +
more meaningful vector representation for videos, which +
can then be used for retrieval. +
(Hu et al.) utilizes structured knowledge in the data to learn +
distributed representations that improve semantic related- +
a4cc626da29ac48f9b4ed6ceb63081f6a4b304a2
a4f37cfdde3af723336205b361aefc9eca688f5cRecent Advances +
in Face Recognition +
a30869c5d4052ed1da8675128651e17f97b87918Fine-Grained Comparisons with Attributes +
a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7bFirst International Workshop on Adaptive Shot Learning +
for Gesture Understanding and Production +
ASL4GUP 2017 +
Held in conjunction with IEEE FG 2017, in May 30, 2017, +
Washington DC, USA +
a3d8b5622c4b9af1f753aade57e4774730787a00Pose-Aware Person Recognition +
Anoop Namboodiri (cid:63) +
(cid:63) CVIT, IIIT Hyderabad, India +
† Facebook AI Research +
a3017bb14a507abcf8446b56243cfddd6cdb542bFace Localization and Recognition in Varied +
Expressions and Illumination +
Hui-Yu Huang, Shih-Hang Hsu +
+
a378fc39128107815a9a68b0b07cffaa1ed32d1fDetermining a Suitable Metric When using Non-negative Matrix Factorization∗ +
Computer Vision Center, Dept. Inform`atica +
Universitat Aut`onoma de Barcelona +
08193 Bellaterra, Barcelona, Spain +
a34d75da87525d1192bda240b7675349ee85c123Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? +
Face++, Megvii Inc. +
Face++, Megvii Inc. +
Face++, Megvii Inc. +
a3f69a073dcfb6da8038607a9f14eb28b5dab2dbProceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +
1184 +
a3f78cc944ac189632f25925ba807a0e0678c4d5Action Recognition in Realistic Sports Videos +
a33f20773b46283ea72412f9b4473a8f8ad751ae
a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7Multiple Local Curvature Gabor Binary +
Patterns for Facial Action Recognition +
Signal Processing Laboratory (LTS5), +
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +
a32c5138c6a0b3d3aff69bcab1015d8b043c91fbDownloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018 +
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406.
a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9Recognizing Violence in Movies +
CIS400/401 Project Final Report +
Univ. of Pennsylvania +
Philadelphia, PA +
Univ. of Pennsylvania +
Philadelphia, PA +
Ben Sapp +
Univ. of Pennsylvania +
Philadelphia, PA +
Univ. of Pennsylvania +
Philadelphia, PA +
a3eab933e1b3db1a7377a119573ff38e780ea6a3978-1-4244-4296-6/10/$25.00 ©2010 IEEE +
838 +
ICASSP 2010 +
a35d3ba191137224576f312353e1e0267e6699a1Increasing security in DRM systems +
through biometric authentication. +
ecuring the exchange +
of intellectual property +
and providing protection +
to multimedia contents in +
distribution systems have enabled the +
advent of digital rights management +
(DRM) systems [5], [14], [21], [47], +
[51], [53]. Rights holders should be able to +
license, monitor, and track the usage of rights +
in a dynamic digital trading environment, espe- +
cially in the near future when universal multimedia +
access (UMA) becomes a reality, and any multimedia +
content will be available anytime, anywhere. In such +
DRM systems, encryption algorithms, access control, +
key management strategies, identification and tracing +
of contents, or copy control will play a prominent role +
to supervise and restrict access to multimedia data, +
avoiding unauthorized or fraudulent operations. +
A key component of any DRM system, also known +
as intellectual property management and protection +
(IPMP) systems in the MPEG-21 framework, is user +
authentication to ensure that +
only those with specific rights are +
able to access the digital informa- +
tion. It is here that biometrics can +
play an essential role, reinforcing securi- +
ty at all stages where customer authentica- +
tion is needed. The ubiquity of users and +
devices, where the same user might want to +
access to multimedia contents from different +
environments (home, car, work, jogging, etc.) and +
also from different devices or media (CD, DVD, +
home computer, laptop, PDA, 2G/3G mobile phones, +
game consoles, etc.) strengthens the need for reliable +
and universal authentication of users. +
Classical user authentication systems have been +
based in something that you have (like a key, an identi- +
fication card, etc.) and/or something that you know +
(like a password, or a PIN). With biometrics, a new +
user authentication paradigm is added: something that +
you are (e.g., fingerprints or face) or something that +
you do or produce (e.g., handwritten signature or +
50 +
IEEE SIGNAL PROCESSING MAGAZINE +
1053-5888/04/$20.00©2004IEEE +
MARCH 2004 +
b558be7e182809f5404ea0fcf8a1d1d9498dc01aBottom-up and top-down reasoning with convolutional latent-variable models +
UC Irvine +
UC Irvine +
b5fc4f9ad751c3784eaf740880a1db14843a85baSIViP (2007) 1:225–237 +
DOI 10.1007/s11760-007-0016-5 +
ORIGINAL PAPER +
Significance of image representation for face verification +
Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007 +
© Springer-Verlag London Limited 2007 +
b562def2624f59f7d3824e43ecffc990ad780898
b5160e95192340c848370f5092602cad8a4050cdIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR +
Video Classification With CNNs: Using The Codec +
As A Spatio-Temporal Activity Sensor +
b52c0faba5e1dc578a3c32a7f5cfb6fb87be06adJournal of Applied Research and +
Technology +
ISSN: 1665-6423 +
Centro de Ciencias Aplicadas y +
Desarrollo Tecnológico +
México +
+
Hussain Shah, Jamal; Sharif, Muhammad; Raza, Mudassar; Murtaza, Marryam; Ur-Rehman, Saeed +
Robust Face Recognition Technique under Varying Illumination +
Journal of Applied Research and Technology, vol. 13, núm. 1, febrero, 2015, pp. 97-105 +
Centro de Ciencias Aplicadas y Desarrollo Tecnológico +
Distrito Federal, México +
Available in: http://www.redalyc.org/articulo.oa?id=47436895009 +
How to cite +
Complete issue +
More information about this article +
Journal's homepage in redalyc.org +
Scientific Information System +
Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal +
Non-profit academic project, developed under the open access initiative +
b52886610eda6265a2c1aaf04ce209c047432b6dMicroexpression Identification and Categorization +
using a Facial Dynamics Map +
b5857b5bd6cb72508a166304f909ddc94afe53e3SSIG and IRISA at Multimodal Person Discovery +
1Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +
2IRISA & Inria Rennes , CNRS, Rennes, France +
b59f441234d2d8f1765a20715e227376c7251cd7
b51e3d59d1bcbc023f39cec233f38510819a2cf9CBMM Memo No. 003 +
March 27, 2014 +
Can a biologically-plausible hierarchy effectively +
replace face detection, alignment, and +
recognition pipelines? +
by +
b54c477885d53a27039c81f028e710ca54c83f111201 +
Semi-Supervised Kernel Mean Shift Clustering +
b2a0e5873c1a8f9a53a199eecae4bdf505816ecbHybrid VAE: Improving Deep Generative Models +
using Partial Observations +
Snap Research +
Microsoft Research +
b2b535118c5c4dfcc96f547274cdc05dde629976JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +
Automatic Recognition of Facial Displays of +
Unfelt Emotions +
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +
b235b4ccd01a204b95f7408bed7a10e080623d2eRegularizing Flat Latent Variables with Hierarchical Structures +
b2c25af8a8e191c000f6a55d5f85cf60794c2709Noname manuscript No. +
(will be inserted by the editor) +
A Novel Dimensionality Reduction Technique based on +
Kernel Optimization Through Graph Embedding +
N. Vretos, A. Tefas and I. Pitas +
the date of receipt and acceptance should be inserted later +
d904f945c1506e7b51b19c99c632ef13f340ef4cA scalable 3D HOG model for fast object detection and viewpoint estimation +
KU Leuven, ESAT/PSI - iMinds +
Kasteelpark Arenberg 10 B-3001 Leuven, Belgium +
d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
3031 +
ICASSP 2017 +
d9739d1b4478b0bf379fe755b3ce5abd8c668f89
d9318c7259e394b3060b424eb6feca0f71219179406 +
Face Matching and Retrieval Using Soft Biometrics +
d9a1dd762383213741de4c1c1fd9fccf44e6480d
d9c4b1ca997583047a8721b7dfd9f0ea2efdc42cLearning Inference Models for Computer Vision +
aca232de87c4c61537c730ee59a8f7ebf5ecb14fEBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION +
19.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece +
Athens Information Technology +
Keywords: +
Human-Machine Interfaces, Computer Vision, Face Recognition. +
ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6779 +
Privacy-Protected Facial Biometric Verification +
Using Fuzzy Forest Learning +
aca273a9350b10b6e2ef84f0e3a327255207d0f5
ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e
ac820d67b313c38b9add05abef8891426edd5afb
ac26166857e55fd5c64ae7194a169ff4e473eb8bPersonalized Age Progression with Bi-level +
Aging Dictionary Learning +
ac8441e30833a8e2a96a57c5e6fede5df81794afIEEE TRANSACTIONS ON IMAGE PROCESSING +
Hierarchical Representation Learning for Kinship +
Verification +
acb83d68345fe9a6eb9840c6e1ff0e41fa373229Kernel Methods in Computer Vision: +
Object Localization, Clustering, +
and Taxonomy Discovery +
vorgelegt von +
Matthew Brian Blaschko, M.S. +
aus La Jolla +
Von der Fakult¨at IV - Elektrotechnik und Informatik +
der Technischen Universit¨at Berlin +
zur Erlangung des akademischen Grades +
Doktor der Naturwissenschaften +
Dr. rer. nat. +
genehmigte Dissertation +
Promotionsausschuß: +
Vorsitzender: Prof. Dr. O. Hellwich +
Berichter: Prof. Dr. T. Hofmann +
Berichter: Prof. Dr. K.-R. M¨uller +
Berichter: Prof. Dr. B. Sch¨olkopf +
Tag der wissenschaftlichen Aussprache: 23.03.2009 +
Berlin 2009 +
D83 +
adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9beApprentissage de métrique appliqué à la +
détection de changement de page Web et +
aux attributs relatifs +
thieu Cord* +
* Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, +
France +
RÉSUMÉ. Nous proposons dans cet article un nouveau schéma d’apprentissage de métrique. +
Basé sur l’exploitation de contraintes qui impliquent des quadruplets d’images, notre approche +
vise à modéliser des relations sémantiques de similarités riches ou complexes. Nous étudions +
comment ce schéma peut être utilisé dans des contextes tels que la détection de régions impor- +
tantes dans des pages Web ou la reconnaissance à partir d’attributs relatifs. +
ada73060c0813d957576be471756fa7190d1e72dVRPBench: A Vehicle Routing Benchmark Tool +
October 19, 2016 +
adaf2b138094981edd615dbfc4b7787693dbc396Statistical Methods For Facial +
Shape-from-shading and Recognition +
Submitted for the degree of Doctor of Philosophy +
Department of Computer Science +
20th February 2007 +
ad6745dd793073f81abd1f3246ba4102046da022
adf62dfa00748381ac21634ae97710bb80fc2922ViFaI: A trained video face indexing scheme +
1. Introduction +
With the increasing prominence of inexpensive +
video recording devices (e.g., digital camcorders and +
video recording smartphones), +
the average user’s +
video collection today is increasing rapidly. With this +
development, there arises a natural desire to rapidly +
access a subset of one’s collection of videos. The solu- +
tion to this problem requires an effective video index- +
ing scheme. In particular, we must be able to easily +
process a video to extract such indexes. +
Today, there also exist large sets of labeled (tagged) +
face images. One important example is an individual’s +
Facebook profile. Such a set of of tagged images of +
one’s self, family, friends, and colleagues represents +
an extremely valuable potential training set. +
In this work, we explore how to leverage the afore- +
mentioned training set to solve the video indexing +
problem. +
2. Problem Statement +
Use a labeled (tagged) training set of face images +
to extract relevant indexes from a collection of videos, +
and use these indexes to answer boolean queries of the +
form: “videos with ‘Person 1’ OP1 ‘Person 2’ OP2 ... +
OP(N-1) ‘Person N’ ”, where ‘Person N’ corresponds +
to a training label (tag) and OPN is a boolean operand +
such as AND, OR, NOT, XOR, and so on. +
3. Proposed Scheme +
In this section, we outline our proposed scheme to +
address the problem we postulate in the previous sec- +
tion. We provide further details about the system im- +
plementation in Section 4. +
At a high level, we subdivide the problem into two +
key phases: the first ”off-line” executed once, and the +
second ”on-line” phase instantiated upon each query. +
For the purposes of this work, we define an index as +
follows:
bba281fe9c309afe4e5cc7d61d7cff1413b29558Social Cognitive and Affective Neuroscience, 2017, 984–992 +
doi: 10.1093/scan/nsx030 +
Advance Access Publication Date: 11 April 2017 +
Original article +
An unpleasant emotional state reduces working +
memory capacity: electrophysiological evidence +
1Laboratorio de Neurofisiologia do Comportamento, Departamento de Fisiologia e Farmacologia, Instituto +
Biome´dico, Universidade Federal Fluminense, Niteroi, Brazil, 2MograbiLab, Departamento de Psicologia, +
Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, and 3Laboratorio de Engenharia +
Pulmonar, Programa de Engenharia Biome´dica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil +
bb557f4af797cae9205d5c159f1e2fdfe2d8b096
bb06ef67a49849c169781657be0bb717587990e0Impact of Temporal Subsampling on Accuracy and +
Performance in Practical Video Classification +
F. Scheidegger∗†, L. Cavigelli∗, M. Schaffner∗, A. C. I. Malossi†, C. Bekas†, L. Benini∗‡ +
∗ETH Zürich, 8092 Zürich, Switzerland +
†IBM Research - Zürich, 8803 Rüschlikon, Switzerland +
‡Università di Bologna, Italy +
bb22104d2128e323051fb58a6fe1b3d24a9e9a46IAJ=JE BH ==OIEI 1 AIIA?A ?= EBH=JE =EO B?KIAI  JDA IK>JA +
ABBA?JELAAII B KH =CHEJD +
==OIEI 7IK=O = B=?E= ANFHAIIE ==OIEI IOIJA ?J=EI JDHAA IJ=CAI B=?A =?GKE +
9DAJDAH KIEC *=OAIE= ?=IIEAH " & IKFFHJ LA?JH =?DEA 58  H AKH= +
HACEI E = IECA ?=IIEAH EI = ? IJH=JACO & 0MALAH J = ?= HACEI +
bbe1332b4d83986542f5db359aee1fd9b9ba9967
bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197TO APPEAR IN TPAMI +
From Images to 3D Shape Attributes +
bbf01aa347982592b3e4c9e4f433e05d30e71305
bbf1396eb826b3826c5a800975047beabde2f0de
bbd1eb87c0686fddb838421050007e934b2d74ab
d73d2c9a6cef79052f9236e825058d5d9cdc13212014-ENST-0040 +
EDITE - ED 130 +
Doctorat ParisTech +
T H È S E +
pour obtenir le grade de docteur délivré par +
TELECOM ParisTech +
Spécialité « Signal et Images » +
présentée et soutenue publiquement par +
le 08 juillet 2014 +
Cutting the Visual World into Bigger Slices for Improved Video +
Concept Detection +
Amélioration de la détection des concepts dans les vidéos par de plus grandes tranches du Monde +
Visuel +
Directeur de thèse : Bernard Mérialdo +
Jury +
M. Philippe-Henri Gosselin, Professeur, INRIA +
M. Georges Quénot, Directeur de recherche CNRS, LIG +
M. Georges Linares, Professeur, LIA +
M. François Brémond, Professeur, INRIA +
M. Bernard Mérialdo, Professeur, EURECOM +
Rapporteur +
Rapporteur +
Examinateur +
Examinateur +
Encadrant +
TELECOM ParisTech +
école de l’Institut Télécom - membre de ParisTech +
d78077a7aa8a302d4a6a09fb9737ab489ae169a6
d7312149a6b773d1d97c0c2b847609c07b5255ec
d708ce7103a992634b1b4e87612815f03ba3ab24FCVID: Fudan-Columbia Video Dataset +
Available at: http://bigvid.fudan.edu.cn/FCVID/ +
1 OVERVIEW +
Recognizing visual contents in unconstrained videos +
has become a very important problem for many ap- +
plications, such as Web video search and recommen- +
dation, smart content-aware advertising, robotics, etc. +
Existing datasets for video content recognition are +
either small or do not have reliable manual labels. +
In this work, we construct and release a new Inter- +
net video dataset called Fudan-Columbia Video Dataset +
(FCVID), containing 91,223 Web videos (total duration +
4,232 hours) annotated manually according to 239 +
categories. We believe that the release of FCVID can +
stimulate innovative research on this challenging and +
important problem. +
2 COLLECTION AND ANNOTATION +
The categories in FCVID cover a wide range of topics +
like social events (e.g., “tailgate party”), procedural +
events (e.g., “making cake”), objects (e.g., “panda”), +
scenes (e.g., “beach”), etc. These categories were de- +
fined very carefully. Specifically, we conducted user +
surveys and used the organization structures on +
YouTube and Vimeo as references, and browsed nu- +
merous videos to identify categories that satisfy the +
following three criteria: (1) utility — high relevance +
in supporting practical application needs; (2) cover- +
age — a good coverage of the contents that people +
record; and (3) feasibility — likely to be automatically +
recognized in the next several years, and a high +
frequency of occurrence that is sufficient for training +
a recognition algorithm. +
This definition effort led to a set of over 250 candi- +
date categories. For each category, in addition to the +
official name used in the public release, we manually +
defined another alternative name. Videos were then +
downloaded from YouTube searches using the official +
and the alternative names as search terms. The pur- +
pose of using the alternative names was to expand the +
candidate video sets. For each search, we downloaded +
1,000 videos, and after removing duplicate videos and +
some extremely long ones (longer than 30 minutes), +
there were around 1,000–1,500 candidate videos for +
each category. +
All the videos were annotated manually to ensure +
a high precision of the FCVID labels. In order to min- +
imize subjectivity, nearly 20 annotators were involved +
in the task, and a master annotator was assigned to +
monitor the entire process and double-check all the +
found positive videos. Some of the videos are multi- +
labeled, and thus filtering the 1,000–1,500 videos for +
each category with focus on just the single category +
label is not adequate. As checking the existence of all +
the 250+ classes for each video is extremely difficult, +
we use the following strategy to narrow down the “la- +
bel search space” for each video. We first grouped the +
categories according to subjective predictions of label +
co-occurrences, e.g., “wedding reception” & “wed- +
ding ceremony”, “waterfall” & “river”, “hiking” & +
“mountain”, and even “dog” & “birthday”. We then +
annotated the videos not only based on the target cat- +
egory label, but also according to the identified related +
labels. This helped produce a fairly complete label +
set for FCVID, but largely reduced the annotation +
workload. After removing the rare categories with +
less than 100 videos after annotation, the final FCVID +
dataset contains 91,223 videos and 239 categories, +
where 183 are events and 56 are objects, scenes, etc. +
Figure 1 shows the number of videos per category. +
“Dog” has the largest number of positive videos +
(1,136), while “making egg tarts” is the most infre- +
quent category containing only 108 samples. The total +
duration of FCVID is 4,232 hours with an average +
video duration of 167 seconds. Figure 2 further gives +
the average video duration of each category. +
The categories are organized using a hierarchy con- +
taining 11 high-level groups, as visualized in Figure 3. +
3 COMPARISON WITH RELATED DATASETS +
We compare FCVID with the following datasets. Most +
of them have been widely adopted in the existing +
works on video categorization. +
KTH and Weizmann: The KTH [1] and the Weiz- +
mann [2] datasets are well-known benchmarks for +
human action recognition. The former contains 600 +
videos of 6 human actions performed by 25 people +
in four scenarios, and the latter consists of 81 videos +
associated with 9 actions performed by 9 actors. +
Hollywood Human Action: The Hollywood +
dataset [3] contains 8 action classes collected from +
32 Hollywood movies with a total of 430 videos. +
d7b6bbb94ac20f5e75893f140ef7e207db7cd483Griffith Research Online +
https://research-repository.griffith.edu.au +
Face Recognition across Pose: A +
Review +
Author +
Zhang, Paul, Gao, Yongsheng +
Published +
2009 +
Journal Title +
Pattern Recognition +
DOI +
https://doi.org/10.1016/j.patcog.2009.04.017 +
Copyright Statement +
Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance +
with the copyright policy of the publisher. Please refer to the journal's website for access to the +
definitive, published version. +
Downloaded from +
http://hdl.handle.net/10072/30193 +
d78373de773c2271a10b89466fe1858c3cab677f
d03265ea9200a993af857b473c6bf12a095ca178Multiple deep convolutional neural +
networks averaging for face +
alignment +
Zhouping Yin +
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms
d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0
d03baf17dff5177d07d94f05f5791779adf3cd5f
d0144d76b8b926d22411d388e7a26506519372ebImproving Regression Performance with Distributional Losses +
d02e27e724f9b9592901ac1f45830341d37140feDA-GAN: Instance-level Image Translation by Deep Attention Generative +
Adversarial Networks +
The State Universtiy of New York at Buffalo +
The State Universtiy of New York at Buffalo +
Microsoft Research +
Microsoft Research +
d0a21f94de312a0ff31657fd103d6b29db823caaFacial Expression Analysis +
d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3eaFace Recognition with Patterns of Oriented +
Edge Magnitudes +
1 Vesalis Sarl, Clermont Ferrand, France +
2 Gipsa-lab, Grenoble INP, France +
d00787e215bd74d32d80a6c115c4789214da5edbFaster and Lighter Online +
Sparse Dictionary Learning +
Project report +
be8c517406528edc47c4ec0222e2a603950c2762Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7 +
17.6.2005 +
5:45pm +
B A S I C R E S E A RC H +
M E T H O D S A N D +
P RO C E D U R E S +
be48b5dcd10ab834cd68d5b2a24187180e2b408fFOR PERSONAL USE ONLY +
Constrained Low-rank Learning Using Least +
Squares Based Regularization +
be437b53a376085b01ebd0f4c7c6c9e40a4b1a75ISSN (Online) 2321 – 2004 +
ISSN (Print) 2321 – 5526 +
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +
Vol. 4, Issue 5, May 2016 +
IJIREEICE +
Face Recognition and Retrieval Using Cross +
Age Reference Coding +
BE, DSCE, Bangalore1 +
Assistant Professor, DSCE, Bangalore2 +
bebea83479a8e1988a7da32584e37bfc463d32d4Discovery of Latent 3D Keypoints via +
End-to-end Geometric Reasoning +
Google AI +
bef503cdfe38e7940141f70524ee8df4afd4f954
beab10d1bdb0c95b2f880a81a747f6dd17caa9c2DeepDeblur: Fast one-step blurry face images restoration +
Tsinghua Unversity +
b331ca23aed90394c05f06701f90afd550131fe3Zhou et al. EURASIP Journal on Image and Video Processing (2018) 2018:49 +
https://doi.org/10.1186/s13640-018-0287-5 +
EURASIP Journal on Image +
and Video Processing +
R ES EAR CH +
Double regularized matrix factorization for +
image classification and clustering +
Open Access +
b3cb91a08be4117d6efe57251061b62417867de9T. Swearingen and A. Ross. "A label propagation approach for predicting missing biographic labels in +
A Label Propagation Approach for +
Predicting Missing Biographic Labels +
in Face-Based Biometric Records +
b3c60b642a1c64699ed069e3740a0edeabf1922cMax-Margin Object Detection +
b3f7c772acc8bc42291e09f7a2b081024a172564 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3225-3230 ISSN: 2249-6645 +
International Journal of Modern Engineering Research (IJMER) +
A novel approach for performance parameter estimation of face +
recognition based on clustering, shape and corner detection +

+
b32631f456397462b3530757f3a73a2ccc362342Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
3069 +
b3afa234996f44852317af382b98f5f557cab25a
df90850f1c153bfab691b985bfe536a5544e438bFACE TRACKING ALGORITHM ROBUST TO POSE, +
ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D +
PARAMETRIC MODEL APPROACH +

via Bramante 65 - 26013, Crema (CR), Italy +
Luigi Arnone, Fabrizio Beverina +
STMicroelectronics - Advanced System Technology Group +
via Olivetti 5 - 20041, Agrate Brianza, Italy +
Keywords: +
Face tracking, expression changes, FACS, illumination changes. +
df8da144a695269e159fb0120bf5355a558f4b02International Journal of Computer Applications (0975 – 8887) +
International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013) +
Face Recognition using PCA and Eigen Face +
Approach +
ME EXTC [VLSI & Embedded System] +
Sinhgad Academy of Engineering +
EXTC Department +
Pune, India +
df577a89830be69c1bfb196e925df3055cafc0edShift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions +
UC Berkeley +
dfabe7ef245ca68185f4fcc96a08602ee1afb3f7
df51dfe55912d30fc2f792561e9e0c2b43179089Face Hallucination using Linear Models of Coupled +
Sparse Support +
grid and fuse them to suppress the aliasing caused by under- +
sampling [5], [6]. On the other hand, learning based meth- +
ods use coupled dictionaries to learn the mapping relations +
between low- and high- resolution image pairs to synthesize +
high-resolution images from low-resolution images [4], [7]. +
The research community has lately focused on the latter +
category of super-resolution methods, since they can provide +
higher quality images and larger magnification factors. +
df80fed59ffdf751a20af317f265848fe6bfb9c91666 +
Learning Deep Sharable and Structural +
Detectors for Face Alignment +
dfa80e52b0489bc2585339ad3351626dee1a8395Human Action Forecasting by Learning Task Grammars +
dfecaedeaf618041a5498cd3f0942c15302e75c3Noname manuscript No. +
(will be inserted by the editor) +
A Recursive Framework for Expression Recognition: From +
Web Images to Deep Models to Game Dataset +
Received: date / Accepted: date +
df5fe0c195eea34ddc8d80efedb25f1b9034d07dRobust Modified Active Shape Model for Automatic Facial Landmark +
Annotation of Frontal Faces +
df674dc0fc813c2a6d539e892bfc74f9a761fbc8IOSR Journal of Computer Engineering (IOSR-JCE) +
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 6 (May. - Jun. 2013), PP 21-29 +
www.iosrjournals.org +
An Image Mining System for Gender Classification & Age +
Prediction Based on Facial Features +
1.Ms.Dhanashri Shirkey , 2Prof.Dr.S.R.Gupta, +
M.E(Scholar),Department Computer Science & Engineering, PRMIT & R, Badnera +
Asstt.Prof. Department Computer Science & Engineering, PRMIT & R, Badnera +
da4170c862d8ae39861aa193667bfdbdf0ecb363Multi-task CNN Model for Attribute Prediction +
da15344a4c10b91d6ee2e9356a48cb3a0eac6a97
da5bfddcfe703ca60c930e79d6df302920ab9465
dac2103843adc40191e48ee7f35b6d86a02ef019854 +
Unsupervised Celebrity Face Naming in Web Videos +
dae420b776957e6b8cf5fbbacd7bc0ec226b3e2eRECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS +
Institut f¨ur Nachrichtentechnik +
Universit¨at Karlsruhe (TH), Germany +
daba8f0717f3f47c272f018d0a466a205eba6395
daefac0610fdeff415c2a3f49b47968d84692e87New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +
Proceedings of NAACL-HLT 2018, pages 1481–1491 +
1481 +
b49affdff167f5d170da18de3efa6fd6a50262a2Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +
(2008)" +
b41374f4f31906cf1a73c7adda6c50a78b4eb498This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Iterative Gaussianization: From ICA to +
Random Rotations +
b4d7ca26deb83cec1922a6964c1193e8dd7270e7
b4ee64022cc3ccd14c7f9d4935c59b16456067d3Unsupervised Cross-Domain Image Generation +
b40290a694075868e0daef77303f2c4ca1c43269第 40 卷 第 4 期 +
2014 年 4 月 +
自 动 化 学 报 +
ACTA AUTOMATICA SINICA +
Vol. 40, No. 4 +
April, 2014 +
融合局部与全局信息的头发形状模型 +
王 楠 1 艾海舟 1 +
摘 要 头发在人体表观中具有重要作用, 然而, 因为缺少有效的形状模型, 头发分割仍然是一个非常具有挑战性的问题. 本 +
文提出了一种基于部件的模型, 它对头发形状以及环境变化更加鲁棒. 该模型将局部与全局信息相结合以描述头发的形状. 局 +
部模型通过一系列算法构建, 包括全局形状词表生成, 词表分类器学习以及参数优化; 而全局模型刻画不同的发型, 采用支持 +
向量机 (Support vector machine, SVM) 来学习, 它为所有潜在的发型配置部件并确定势函数. 在消费者图片上的实验证明 +
了本文算法在头发形状多变和复杂环境等条件下的准确性与有效性. +
关键词 头发形状建模, 部件模型, 部件配置算法, 支持向量机 +
引用格式 王楠, 艾海舟. 融合局部与全局信息的头发形状模型. 自动化学报, 2014, 40(4): 615−623 +
DOI 10.3724/SP.J.1004.2014.00615 +
Combining Local and Global Information for Hair Shape Modeling +
AI Hai-Zhou1 +
a2359c0f81a7eb032cff1fe45e3b80007facaa2aTowards Structured Analysis of Broadcast Badminton Videos +
C.V.Jawahar +
CVIT, KCIS, IIIT Hyderabad +
a2d9c9ed29bbc2619d5e03320e48b45c15155195
a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d
a27735e4cbb108db4a52ef9033e3a19f4dc0e5faIntention from Motion +
a50b4d404576695be7cd4194a064f0602806f3c4In Proceedings of BMVC, Edimburgh, UK, September 2006 +
Efficiently estimating facial expression and +
illumination in appearance-based tracking +
†ESCET, U. Rey Juan Carlos +
C/ Tulip´an, s/n +
28933 M´ostoles, Spain +
‡Facultad Inform´atica, UPM +
Campus de Montegancedo s/n +
28660 Boadilla del Monte, Spain +
http://www.dia.fi.upm.es/~pcr +
a56c1331750bf3ac33ee07004e083310a1e63ddcVol. xx, pp. x +
c(cid:13) xxxx Society for Industrial and Applied Mathematics +
x–x +
Efficient Point-to-Subspace Query in (cid:96)1 with Application to Robust Object +
Instance Recognition +
a54e0f2983e0b5af6eaafd4d3467b655a3de52f4Face Recognition Using Convolution Filters and +
Neural Networks +
Head, Dept. of E&E,PEC +
Sec-12, Chandigarh – 160012 +
Department of CSE & IT, PEC +
Sec-12, Chandigarh – 160012 +
C.P. Singh +
Physics Department, CFSL, +
Sec-36, Chandigarh - 160036 +
a +
of +
to: (a) +
potential method +
a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a818 +
Continuous Head Movement Estimator for +
Driver Assistance: Issues, Algorithms, +
and On-Road Evaluations +
Mohan Manubhai Trivedi, Fellow, IEEE +
a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be
a503eb91c0bce3a83bf6f524545888524b29b166
a5a44a32a91474f00a3cda671a802e87c899fbb4Moments in Time Dataset: one million +
videos for event understanding +
bd9eb65d9f0df3379ef96e5491533326e9dde315
bd07d1f68486052b7e4429dccecdb8deab1924db
bd8e2d27987be9e13af2aef378754f89ab20ce10
bd2d7c7f0145028e85c102fe52655c2b6c26aeb5Attribute-based People Search: Lessons Learnt from a +
Practical Surveillance System +
Rogerio Feris +
IBM Watson +
http://rogerioferis.com +
Russel Bobbitt +
IBM Watson +
Lisa Brown +
IBM Watson +
IBM Watson +
bdbba95e5abc543981fb557f21e3e6551a563b45International Journal of Computational Intelligence and Applications +
Vol. 17, No. 2 (2018) 1850008 (15 pages) +
#.c The Author(s) +
DOI: 10.1142/S1469026818500086 +
Speeding up the Hyperparameter Optimization of Deep +
Convolutional Neural Networks +
Knowledge Technology, Department of Informatics +
Universit€at Hamburg +
Vogt-K€olln-Str. 30, Hamburg 22527, Germany +
Received 15 August 2017 +
Accepted 23 March 2018 +
Published 18 June 2018 +
Most learning algorithms require the practitioner to manually set the values of many hyper- +
parameters before the learning process can begin. However, with modern algorithms, the +
evaluation of a given hyperparameter setting can take a considerable amount of time and the +
search space is often very high-dimensional. We suggest using a lower-dimensional represen- +
tation of the original data to quickly identify promising areas in the hyperparameter space. This +
information can then be used to initialize the optimization algorithm for the original, higher- +
dimensional data. We compare this approach with the standard procedure of optimizing the +
hyperparameters only on the original input. +
We perform experiments with various state-of-the-art hyperparameter optimization algo- +
rithms such as random search, the tree of parzen estimators (TPEs), sequential model-based +
algorithm con¯guration (SMAC), and a genetic algorithm (GA). Our experiments indicate that +
it is possible to speed up the optimization process by using lower-dimensional data repre- +
sentations at the beginning, while increasing the dimensionality of the input later in the opti- +
mization process. This is independent of the underlying optimization procedure, making the +
approach promising for many existing hyperparameter optimization algorithms. +
Keywords: Hyperparameter optimization; hyperparameter importance; convolutional neural +
networks; genetic algorithm; Bayesian optimization. +
1. Introduction +
The performance of many contemporary machine learning algorithms depends cru- +
cially on the speci¯c initialization of hyperparameters such as the general architec- +
ture, the learning rate, regularization parameters, and many others.1,2 Indeed, +
This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under +
the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is +
permitted, provided the original work is properly cited. +
1850008-1 +
Int. J. Comp. Intel. Appl. 2018.17. Downloaded from www.worldscientific.comby WSPC on 07/18/18. Re-use and distribution is strictly not permitted, except for Open Access articles.
d1dfdc107fa5f2c4820570e369cda10ab1661b87Super SloMo: High Quality Estimation of Multiple Intermediate Frames +
for Video Interpolation +
Erik Learned-Miller1 +
1UMass Amherst +
2NVIDIA 3UC Merced +
d1a43737ca8be02d65684cf64ab2331f66947207IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3) +
Kevin O’Connor z +
d1082eff91e8009bf2ce933ac87649c686205195(will be inserted by the editor) +
Pruning of Error Correcting Output Codes by +
Optimization of Accuracy-Diversity Trade off +
S¨ureyya ¨Oz¨o˘g¨ur Aky¨uz · Terry +
Windeatt · Raymond Smith +
Received: date / Accepted: date +
d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0
d6102a7ddb19a185019fd2112d2f29d9258f6decProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
3721 +
d6bfa9026a563ca109d088bdb0252ccf33b76bc6Unsupervised Temporal Segmentation of Facial Behaviour +
Department of Computer Science and Engineering, IIT Kanpur +
d6fb606e538763282e3942a5fb45c696ba38aee6
bc9003ad368cb79d8a8ac2ad025718da5ea36bc4Technische Universit¨at M¨unchen +
Bildverstehen und Intelligente Autonome Systeme +
Facial Expression Recognition With A +
Three-Dimensional Face Model +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Informatik der Technischen Uni- +
versit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktors der Naturwissenschaften +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr. Johann Schlichter +
Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. Bernd Radig (i.R.) +
2. Univ.-Prof. Gudrun J. Klinker, Ph.D. +
Die Dissertation wurde am 04.07.2011 bei der Technischen Universit¨at M¨unchen +
eingereicht und durch die Fakult¨at f¨ur Informatik am 02.12.2011 angenommen. +
bcc346f4a287d96d124e1163e4447bfc47073cd8
bcc172a1051be261afacdd5313619881cbe0f676978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
2197 +
ICASSP 2017 +
bcfeac1e5c31d83f1ed92a0783501244dde5a471
bc2852fa0a002e683aad3fb0db5523d1190d0ca5
bcb99d5150d792001a7d33031a3bd1b77bea706b
bc811a66855aae130ca78cd0016fd820db1603ecTowards three-dimensional face recognition in the real +
To cite this version: +
HAL Id: tel-00998798 +
https://tel.archives-ouvertes.fr/tel-00998798 +
Submitted on 2 Jun 2014 +
archive for the deposit and dissemination of sci- +
entific research documents, whether they are pub- +
teaching and research institutions in France or +
destin´ee au d´epˆot et `a la diffusion de documents +
recherche fran¸cais ou ´etrangers, des laboratoires +
bc9af4c2c22a82d2c84ef7c7fcc69073c19b30abMoCoGAN: Decomposing Motion and Content for Video Generation +
Snap Research +
NVIDIA +
bcac3a870501c5510df80c2a5631f371f2f6f74aCVPR +
#1387 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2013 Submission #1387. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#1387 +
Structured Face Hallucination +
Anonymous CVPR submission +
Paper ID 1387 +
aed321909bb87c81121c841b21d31509d6c78f69
ae936628e78db4edb8e66853f59433b8cc83594f
ae2cf545565c157813798910401e1da5dc8a6199Mahkonen et al. EURASIP Journal on Image and Video +
Processing (2018) 2018:61 +
https://doi.org/10.1186/s13640-018-0303-9 +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
Cascade of Boolean detector +
combinations +
aebb9649bc38e878baef082b518fa68f5cda23a5 +
aeff403079022683b233decda556a6aee3225065DeepFace: Face Generation using Deep Learning +
ae753fd46a744725424690d22d0d00fb05e53350000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
Describing Clothing by Semantic Attributes +
Anonymous ECCV submission +
Paper ID 727 +
ae4e2c81c8a8354c93c4b21442c26773352935dd
ae85c822c6aec8b0f67762c625a73a5d08f5060dThis is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2353624 +
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. M, NO. N, MONTH YEAR +
Retrieving Similar Styles to Parse Clothing +
d861c658db2fd03558f44c265c328b53e492383aAutomated Face Extraction and Normalization of 3D Mesh Data +
d83d2fb5403c823287f5889b44c1971f049a1c93Motiv Emot +
DOI 10.1007/s11031-013-9353-6 +
O R I G I N A L P A P E R +
Introducing the sick face +
Ó Springer Science+Business Media New York 2013 +
d8b568392970b68794a55c090c4dd2d7f90909d2PDA Face Recognition System +
Using Advanced Correlation +
Filters +
Chee Kiat Ng +
2005 +
Advisor: Prof. Khosla/Reviere +
d83ae5926b05894fcda0bc89bdc621e4f21272daversion of the following thesis: +
Frugal Forests: Learning a Dynamic and Cost Sensitive +
Feature Extraction Policy for Anytime Activity Classification +
d89cfed36ce8ffdb2097c2ba2dac3e2b2501100dRobust Face Recognition via Multimodal Deep +
Face Representation +
ab8f9a6bd8f582501c6b41c0e7179546e21c5e91Nonparametric Face Verification Using a Novel +
Face Representation +
ab58a7db32683aea9281c188c756ddf969b4cdbdEfficient Solvers for Sparse Subspace Clustering +
ab989225a55a2ddcd3b60a99672e78e4373c0df1Sample, Computation vs Storage Tradeoffs for +
Classification Using Tensor Subspace Models +
ab6776f500ed1ab23b7789599f3a6153cdac84f7International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1212 +
ISSN 2229-5518 +
A Survey on Various Facial Expression +
Techniques +
ab2b09b65fdc91a711e424524e666fc75aae7a51Multi-modal Biomarkers to Discriminate Cognitive State* +
1MIT Lincoln Laboratory, Lexington, Massachusetts, USA +
2USARIEM, 3NSRDEC +
1. Introduction +
Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have +
recently obtained increasing popularity in the detection of cognitive stress- and neurological-based +
disorders. Such conditions are significantly and adversely affecting human performance and quality +
of life for a large fraction of the world’s population. Example modalities used in detection of these +
conditions include voice, facial expression, physiology, eye tracking, gait, and EEG analysis. +
Toward the goal of finding simple, noninvasive means to detect, predict and monitor cognitive +
stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy +
three criteria. First, we seek biomarkers that reflect core components of cognitive status such as +
working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we +
seek biomarkers that reflect timing and coordination relations both within components of each +
modality and across different modalities. This is based on the hypothesis that neural coordination +
across different parts of the brain is essential in cognition (Figure 1). An example of timing and +
coordination within a modality is the set of finely timed and synchronized physiological +
components of speech production, while an example of coordination across modalities is the timing +
and synchrony that occurs across speech and facial expression while speaking. Third, we seek +
multimodal biomarkers that contribute in a complementary fashion under various channel and +
background conditions. In this chapter, as an illustration of this biomarker approach we focus on +
cognitive stress and the particular case of detecting different cognitive load levels. We also briefly +
show how similar feature-extraction principles can be applied to a neurological condition through +
the example of major depression disorder (MDD). MDD is one of several neurological disorders +
where multi-modal biomarkers based on principles of timing and coordination are important for +
detection [11]-[22]. In our cognitive load experiments, we use two easily obtained noninvasive +
modalities, voice and face, and show how these two modalities can be fused to produce results on +
par with more invasive, “gold-standard” EEG measurements. Vocal and facial biomarkers will also +
be used in our MDD case study. In both application areas we focus on timing and coordination +
relations within the components of each modality. +
* Distribution A: public release.This work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force contract +
#FA8721-05-C-0002. Opinions,interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States +
Government. +
ab87dfccb1818bdf0b41d732da1f9335b43b74aeSUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING +
Structured Dictionary Learning for Classification +
ab1dfcd96654af0bf6e805ffa2de0f55a73c025d
abeda55a7be0bbe25a25139fb9a3d823215d7536UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015
ab1900b5d7cf3317d17193e9327d57b97e24d2fc
ab8fb278db4405f7db08fa59404d9dd22d38bc83UNIVERSITÉ DE GENÈVE +
Département d'Informatique +
FACULTÉ DES SCIENCES +
Implicit and Automated Emotional +
Tagging of Videos +
THÈSE +
présenté à la Faculté des sciences de l'Université de Genève +
pour obtenir le grade de Docteur ès sciences, mention informatique +
par +
de +
Téhéran (IRAN) +
Thèse No 4368 +
GENÈVE +
Repro-Mail - Université de Genève +
2011 +
e5737ffc4e74374b0c799b65afdbf0304ff344cb
e5823a9d3e5e33e119576a34cb8aed497af20eeaDocFace+: ID Document to Selfie* Matching +
e5dfd17dbfc9647ccc7323a5d62f65721b318ba9
e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69Human Activity Recognition Based on Wearable +
Sensor Data: A Standardization of the +
State-of-the-Art +
Smart Surveillance Interest Group, Computer Science Department +
Universidade Federal de Minas Gerais, Brazil +
e27c92255d7ccd1860b5fb71c5b1277c1648ed1e
e200c3f2849d56e08056484f3b6183aa43c0f13a
f437b3884a9e5fab66740ca2a6f1f3a5724385eaHuman Identification Technical Challenges +
DARPA +
3701 N. Fairfax Dr +
Arlington, VA 22203 +
f442a2f2749f921849e22f37e0480ac04a3c3fec
f4f6fc473effb063b7a29aa221c65f64a791d7f4Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407.
f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0
f4373f5631329f77d85182ec2df6730cbd4686a9Soft Computing manuscript No. +
(will be inserted by the editor) +
Recognizing Gender from Human Facial Regions using +
Genetic Algorithm +
Received: date / Accepted: date +
f47404424270f6a20ba1ba8c2211adfba032f405International Journal of Emerging Technology and Advanced Engineering +
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +
Identification of Face Age range Group using Neural +
Network +
f3fcaae2ea3e998395a1443c87544f203890ae15
f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7NosePose: a competitive, landmark-free +
methodology for head pose estimation in the wild +
IMAGO Research Group - Universidade Federal do Paran´a +
f355e54ca94a2d8bbc598e06e414a876eb62ef99
f3ea181507db292b762aa798da30bc307be95344Covariance Pooling for Facial Expression Recognition +
†Computer Vision Lab, ETH Zurich, Switzerland +
‡VISICS, KU Leuven, Belgium +
f3cf10c84c4665a0b28734f5233d423a65ef1f23Title +
Temporal Exemplar-based Bayesian Networks for facial +
expression recognition +
Author(s) +
Shang, L; Chan, KP +
Citation +
Proceedings - 7Th International Conference On Machine +
Learning And Applications, Icmla 2008, 2008, p. 16-22 +
Issued Date +
2008 +
URL +
http://hdl.handle.net/10722/61208 +
Rights +
This work is licensed under a Creative Commons Attribution- +
NonCommercial-NoDerivatives 4.0 International License.; +
International Conference on Machine Learning and Applications +
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +
this material is permitted. However, permission to +
reprint/republish this material for advertising or promotional +
purposes or for creating new collective works for resale or +
redistribution to servers or lists, or to reuse any copyrighted +
component of this work in other works must be obtained from +
the IEEE. +
f3b7938de5f178e25a3cf477107c76286c0ad691JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017 +
Object Detection with Deep Learning: A Review +
ebedc841a2c1b3a9ab7357de833101648281ff0e
eb526174fa071345ff7b1fad1fad240cd943a6d7Deeply Vulnerable – A Study of the Robustness of Face Recognition to +
Presentation Attacks +
eb566490cd1aa9338831de8161c6659984e923fdFrom Lifestyle Vlogs to Everyday Interactions +
EECS Department, UC Berkeley +
eb9312458f84a366e98bd0a2265747aaed40b1a61-4244-1437-7/07/$20.00 ©2007 IEEE +
IV - 473 +
ICIP 2007 +
eb716dd3dbd0f04e6d89f1703b9975cad62ffb09Copyright +
by +
2012 +
ebabd1f7bc0274fec88a3dabaf115d3e226f198fDriver drowsiness detection system based on feature +
representation learning using various deep networks +
School of Electrical Engineering, KAIST, +
Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea +
ebb9d53668205c5797045ba130df18842e3eadef
eb48a58b873295d719827e746d51b110f5716d6cFace Alignment Using K-cluster Regression Forests +
With Weighted Splitting +
c7e4c7be0d37013de07b6d829a3bf73e1b95ad4eThe International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 +
DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL +
EXPRESSIONS OF EMOTIONS +
1LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France +
2LIG, Univ. Grenoble Alpes, BP 53 - 38041 Grenoble Cedex 9, France +
c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3cTHE IMPACT OF PRODUCT PHOTO ON ONLINE CONSUMER +
PURCHASE INTENTION: AN IMAGE-PROCESSING ENABLED +
EMPIRICAL STUDY +
c758b9c82b603904ba8806e6193c5fefa57e9613Heterogeneous Face Recognition with CNNs +
INRIA Grenoble, Laboratoire Jean Kuntzmann +
c7c8d150ece08b12e3abdb6224000c07a6ce7d47DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification +
National Laboratory of Pattern Recognition, CASIA +
Center for Research on Intelligent Perception and Computing, CASIA +
c038beaa228aeec174e5bd52460f0de75e9cccbeTemporal Segment Networks for Action +
Recognition in Videos +
c043f8924717a3023a869777d4c9bee33e607fb5Emotion Separation Is Completed Early and It Depends +
on Visual Field Presentation +
Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia
Cyprus +
c05a7c72e679745deab9c9d7d481f7b5b9b36bddNPS-CS-11-005 +
+
+
NAVAL +
POSTGRADUATE +
SCHOOL +
MONTEREY, CALIFORNIA +
by +
BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS: +
A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE, +
AND SOCIAL CONDITIONS ON THE EFFECTIVE +
COLLECTION OF BIOMETRICS +
April 2011 +
Approved for public release; distribution is unlimited +
c02847a04a99a5a6e784ab580907278ee3c12653Fine Grained Video Classification for +
Endangered Bird Species Protection +
Non-Thesis MS Final Report +
1. Introduction +
1.1 Background +
This project is about detecting eagles in videos. Eagles are endangered species at the brim of +
extinction since 1980s. With the bans of harmful pesticides, the number of eagles keep increasing. +
However, recent studies on golden eagles’ activities in the vicinity of wind turbines have shown +
significant number of turbine blade collisions with eagles as the major cause of eagles’ mortality. [1] +
This project is a part of a larger research project to build an eagle detection and deterrent system +
on wind turbine toward reducing eagles’ mortality. [2] The critical component of this study is a +
computer vision system for eagle detection in videos. The key requirement are that the system should +
work in real time and detect eagles at a far distance from the camera (i.e. in low resolution). +
There are three different bird species in my dataset - falcon, eagle and seagull. The reason for +
involving only these three species is based on the real world situation. Wind turbines are always +
installed near coast and mountain hill where falcons and seagulls will be the majority. So my model +
will classify the minority eagles out of other bird species during the immigration season and protecting +
them by using the deterrent system. +
1.2 Brief Approach +
Our approach represents a unified deep-learning architecture for eagle detection. Given videos, +
our goal is to detect eagle species at far distance from the camera, using both appearance and bird +
motion cues, so as to meet the recall-precision rates set by the user. Detecting eagle is a challenging +
task because of the following reasons. Frist, an eagle flies fast and high in the sky which means that +
we need a lens with wide angle such that captures their movement. However, a camera with wide +
angle produces a low resolution and low quality video and the detailed appearance of bird is +
compromised. Second, current neural network typically take as input low resolution images. This is +
because a higher resolution image will require larger filters and deeper networks which is turn hard to +
train [3]. So it is not clear whether the low resolution will cause challenge for fine-grained +
classification task. Last but not the least, there is not a large training database like PASCAL, MNIST +
c0c8d720658374cc1ffd6116554a615e846c74b5JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Modeling Multimodal Clues in a Hybrid Deep +
Learning Framework for Video Classification +
c0d5c3aab87d6e8dd3241db1d931470c15b9e39d
eee8a37a12506ff5df72c402ccc3d59216321346Uredniki: +
dr. Tomaž Erjavec +
Odsek za tehnologije znanja +
Institut »Jožef Stefan«, Ljubljana +
dr. Jerneja Žganec Gros +
Alpineon d.o.o, Ljubljana +
Založnik: Institut »Jožef Stefan«, Ljubljana +
Tisk: Birografika BORI d.o.o. +
Priprava zbornika: Mitja Lasič +
Oblikovanje naslovnice: dr. Damjan Demšar +
Tiskano iz predloga avtorjev +
Naklada: 50 +
Ljubljana, oktober 2008 +
Konferenco IS 2008 sofinancirata +
Ministrstvo za visoko šolstvo, znanost in tehnologijo +
Institut »Jožef Stefan« +
ISSN 1581-9973 +
CIP - Kataložni zapis o publikaciji +
Narodna in univerzitetna knjižnica, Ljubljana +
004.934(082) +
81'25:004.6(082) +
004.8(063) +
oktober 2008, Ljubljana, Slovenia : zbornik 11. mednarodne +
Proceedings of the Sixth Language Technologies Conference, October +
16th-17th, 2008 : proceedings of the 11th International +
Multiconference Information Society - IS 2008, volume C / uredila, +
edited by Tomaž Erjavec, Jerneja Žganec Gros. - Ljubljana : +
1581-9973) +
ISBN 978-961-264-006-4 +
družba 4. Information society 5. Erjavec, Tomaž, 1960- 6. +
Ljubljana) +
241520896 +
ee18e29a2b998eddb7f6663bb07891bfc72622481119 +
Local Linear Discriminant Analysis Framework +
Using Sample Neighbors +
ee461d060da58d6053d2f4988b54eff8655ecede
eefb8768f60c17d76fe156b55b8a00555eb40f4dSubspace Scores for Feature Selection in Computer Vision +
eed1dd2a5959647896e73d129272cb7c3a2e145c
ee92d36d72075048a7c8b2af5cc1720c7bace6ddFACE RECOGNITION USING MIXTURES OF PRINCIPAL COMPONENTS +
Video and Display Processing +
Philips Research USA +
Briarcliff Manor, NY 10510 +
eedfb384a5e42511013b33104f4cd3149432bd9eMultimodal Probabilistic Person +
Tracking and Identification +
in Smart Spaces +
zur Erlangung des akademischen Grades eines +
Doktors der Ingenieurwissenschaften +
der Fakultät für Informatik +
der Universität Fridericiana zu Karlsruhe (TH) +
genehmigte +
Dissertation +
von +
aus Karlsruhe +
Tag der mündlichen Prüfung: 20.11.2009 +
Erster Gutachter: +
Zweiter Gutachter: +
Prof. Dr. A. Waibel +
Prof. Dr. R. Stiefelhagen +
c9424d64b12a4abe0af201e7b641409e182bababArticle +
Which, When, and How: Hierarchical Clustering with +
Human–Machine Cooperation +
Academic Editor: Tom Burr +
Received: 3 November 2016; Accepted: 14 December 2016; Published: 21 December 2016 +
c903af0d69edacf8d1bff3bfd85b9470f6c4c243
fc1e37fb16006b62848def92a51434fc74a2431aDRAFT +
A Comprehensive Analysis of Deep Regression +
fc516a492cf09aaf1d319c8ff112c77cfb55a0e5
fcd3d69b418d56ae6800a421c8b89ef363418665Effects of Aging over Facial Feature Analysis and Face +
Recognition +
Bogaziçi Un. Electronics Eng. Dept. March 2010 +
fcd77f3ca6b40aad6edbd1dab9681d201f85f365c(cid:13)Copyright 2014 +
fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46MANUSCRIPT SUBMITTED TO IEEE TRANS. PATTERN ANAL. MACH. INTELL., JULY 2010 +
Feature Selection via Sparse Approximation for +
Face Recognition +
fcbf808bdf140442cddf0710defb2766c2d25c30IJCV manuscript No. +
(will be inserted by the editor) +
Unsupervised Semantic Action Discovery from Video +
Collections +
Received: date / Accepted: date +
fd4ac1da699885f71970588f84316589b7d8317bJOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +
Supervised Descent Method +
for Solving Nonlinear Least Squares +
Problems in Computer Vision +
fdf533eeb1306ba418b09210387833bdf27bb756951 +
fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3Im2Flow: Motion Hallucination from Static Images for Action Recognition +
UT Austin +
UT Austin +
UT Austin +
fdfaf46910012c7cdf72bba12e802a318b5bef5aComputerized Face Recognition in Renaissance +
Portrait Art +
fd15e397629e0241642329fc8ee0b8cd6c6ac807Semi-Supervised Clustering with Neural Networks +
IIIT-Delhi, India +
fdca08416bdadda91ae977db7d503e8610dd744f +
ICT-2009.7.1 +
KSERA Project +
2010-248085 +
Deliverable D3.1 +
Deliverable D3.1 +
Human Robot Interaction +
Human Robot Interaction +
18 October 2010 +
Public Document +
The KSERA project (http://www.ksera +
KSERA project (http://www.ksera-project.eu) has received funding from the European Commission +
project.eu) has received funding from the European Commission +
under the 7th Framework Programme (FP7) for Research and Technological Development under grant +
under the 7th Framework Programme (FP7) for Research and Technological Development under grant +
under the 7th Framework Programme (FP7) for Research and Technological Development under grant +
agreement n°2010-248085. +
fdaf65b314faee97220162980e76dbc8f32db9d6Accepted Manuscript +
Face recognition using both visible light image and near-infrared image and a deep +
network +
PII: +
DOI: +
Reference: +
S2468-2322(17)30014-8 +
10.1016/j.trit.2017.03.001 +
TRIT 41 +
To appear in: +
CAAI Transactions on Intelligence Technology +
Received Date: 30 January 2017 +
Accepted Date: 28 March 2017 +
Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and +
near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi: +
10.1016/j.trit.2017.03.001. +
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to +
our customers we are providing this early version of the manuscript. The manuscript will undergo +
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please +
note that during the production process errors may be discovered which could affect the content, and all +
legal disclaimers that apply to the journal pertain. +
f2e9494d0dca9fb6b274107032781d435a508de6
f2c568fe945e5743635c13fe5535af157b1903d1
f26097a1a479fb6f32b27a93f8f32609cfe30fdc
f231046d5f5d87e2ca5fae88f41e8d74964e8f4fWe are IntechOpen, +
the first native scientific +
publisher of Open Access books +
3,350 +
108,000 +
1.7 M +
Open access books available +
International authors and editors +
Downloads +
Our authors are among the +
151 +
Countries delivered to +
TOP 1% +
12.2% +
most cited scientists +
Contributors from top 500 universities +
Selection of our books indexed in the Book Citation Index +
in Web of Science™ Core Collection (BKCI) +
Interested in publishing with us? +
Numbers displayed above are based on latest data collected. +
For more information visit www.intechopen.com +
f214bcc6ecc3309e2efefdc21062441328ff6081
f5770dd225501ff3764f9023f19a76fad28127d4Real Time Online Facial Expression Transfer +
with Single Video Camera +
f519723238701849f1160d5a9cedebd31017da89Impact of multi-focused images on recognition of soft biometric traits +
aEURECOM, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia +
+
Antipolis cedex, FRANCE +
f558af209dd4c48e4b2f551b01065a6435c3ef33International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) +
ISSN: 0976-1353 Volume 23 Issue 1 –JUNE 2016. +
AN ENHANCED ATTRIBUTE +
RERANKING DESIGN FOR WEB IMAGE +
SEARCH +
#Student,Cse, CIET, Lam,Guntur, India +
* Assistant Professort,Cse, CIET, Lam,Guntur , India +
e393a038d520a073b9835df7a3ff104ad610c552Automatic temporal segment +
detection via bilateral long short- +
term memory recurrent neural +
networks +
detection via bilateral long short-term memory recurrent neural networks,” J. +
Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501. +
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx
e3657ab4129a7570230ff25ae7fbaccb4ba9950c
e315959d6e806c8fbfc91f072c322fb26ce0862bAn Efficient Face Recognition System Based on Sub-Window +
International Journal of Soft Computing and Engineering (IJSCE) +
ISSN: 2231-2307, Volume-1, Issue-6, January 2012 +
Extraction Algorithm +
e3c011d08d04c934197b2a4804c90be55e21d572How to Train Triplet Networks with 100K Identities? +
Orion Star +
Beijing, China +
Orion Star +
Beijing, China +
Orion Star +
Beijing, China +
e39a0834122e08ba28e7b411db896d0fdbbad9ba1368 +
Maximum Likelihood Estimation of Depth Maps +
Using Photometric Stereo +
e3917d6935586b90baae18d938295e5b089b5c62152 +
Face Localization and Authentication +
Using Color and Depth Images +
cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2
cfffae38fe34e29d47e6deccfd259788176dc213TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012 +
Matrix Completion for Weakly-supervised +
Multi-label Image Classification +
cfd4004054399f3a5f536df71f9b9987f060f434IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20?? +
Person Recognition in Personal Photo Collections +
cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce
cf875336d5a196ce0981e2e2ae9602580f3f62437 What 1 +
Rosalind W. Picard +
It Mean for a Computer to "Have" Emotions? +
There is a lot of talk about giving machines emotions, some of +
it fluff. Recently at a large technical meeting, a researcher stood up +
and talked of how a Bamey stuffed animal [the purple dinosaur for +
kids) "has emotions." He did not define what he meant by this, but +
after repeating it several times, it became apparent that children +
attributed emotions to Barney, and that Barney had deliberately +
expressive behaviors that would encourage the kids to think. Bar- +
ney had emotions. But kids have attributed emotions to dolls and +
stuffed animals for as long a s we know; and most of my technical +
colleagues would agree that such toys have never had and still do +
not have emotions. What is different now that prompts a researcher +
to make such a claim? Is the computational plush an example of a +
computer that really does have emotions? +
If not Barney, then what would be an example of a computa- +
tional system that has emotions? I am not a philosopher, and this +
paper will not be a discussion of the meaning of this question in +
any philosophical sense. However, as an engineer I am interested +
in what capabilities I would require a machine to have before I +
would say that it "has emotions," if that is even possible. +
Theorists still grappl~ with the problem of defining emotion, +
after many decades of discussion, and no clean definition looks +
likely to emerge. Even without a precise definition, one can still +
begin to say concrete things about certain components of emotion, +
at least based on what is known about human and animal emo- +
tions. Of course, much is still u d a o w n about human emotions, so +
we are nowhere near being able to model them, much less dupli- +
cate all their functions in machines.'~lso, all scientific findings are +
subject to revision-history has certainly taught us humility, that +
what scientists believed to be true at one point has often been +
changed at a later date. +
I wish to begin by mentioning four motivations for giving +
machines certain emotional abilities (and there are more). One goal +
is to build robots and synthetic characters that can emulate living +
humans and animals-for example, to build a humanoid robot. A +
I +
cf54a133c89f730adc5ea12c3ac646971120781c
cfbb2d32586b58f5681e459afd236380acd86e28Improving Alignment of Faces for Recognition +
Christopher J. Pal +
D´epartement de g´enie informatique et g´enie logiciel +
´Ecole Polytechnique de Montr´eal, +
D´epartement de g´enie informatique et g´enie logiciel +
´Ecole Polytechnique de Montr´eal, +
Qu´ebec, Canada +
Qu´ebec, Canada +
cfa92e17809e8d20ebc73b4e531a1b106d02b38cAdvances in Data Analysis and Classification manuscript No. +
(will be inserted by the editor) +
Parametric Classification with Soft Labels using the +
Evidential EM Algorithm +
Linear Discriminant Analysis vs. Logistic Regression +
Received: date / Accepted: date +
cfdc632adcb799dba14af6a8339ca761725abf0aProbabilistic Formulations of Regression with Mixed +
Guidance +
cfc30ce53bfc204b8764ebb764a029a8d0ad01f4Regularizing Deep Neural Networks by Noise: +
Its Interpretation and Optimization +
Dept. of Computer Science and Engineering, POSTECH, Korea +
cf86616b5a35d5ee777585196736dfafbb9853b5This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Learning Multiscale Active Facial Patches for +
Expression Analysis +
cad52d74c1a21043f851ae14c924ac689e197d1fFrom Ego to Nos-vision: +
Detecting Social Relationships in First-Person Views +
Universit`a degli Studi di Modena e Reggio Emilia +
Via Vignolese 905, 41125 Modena - Italy +
cac8bb0e393474b9fb3b810c61efdbc2e2c25c29
cad24ba99c7b6834faf6f5be820dd65f1a755b29Understanding hand-object +
manipulation by modeling the +
contextual relationship between actions, +
grasp types and object attributes +
Journal Title +
XX(X):1–14 +
c(cid:13)The Author(s) 2016 +
Reprints and permission: +
sagepub.co.uk/journalsPermissions.nav +
DOI: 10.1177/ToBeAssigned +
www.sagepub.com/ +
cadba72aa3e95d6dcf0acac828401ddda7ed8924THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES +
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +
Algorithms and VLSI Architectures +
for Low-Power Mobile Face Verification +
par +
Acceptée sur proposition du jury: +
Prof. F. Pellandini, directeur de thèse +
PD Dr. M. Ansorge, co-directeur de thèse +
Prof. P.-A. Farine, rapporteur +
Dr. C. Piguet, rapporteur +
Soutenue le 2 juin 2005 +
INSTITUT DE MICROTECHNIQUE +
UNIVERSITÉ DE NEUCHÂTEL +
2006 +
ca606186715e84d270fc9052af8500fe23befbdaUsing Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for +
Face Recognition +
Department of Electrical Engineering, +
Iran Univ. of Science and Technology, +
Narmak, Tehran, Iran +
Department of Electrical Engineering, +
Iran Univ. of Science and Technology, +
Department of Electrical Engineering, +
Iran Univ. of Science and Technology, +
Narmak, Tehran, Iran +
Narmak, Tehran, Iran +
e465f596d73f3d2523dbf8334d29eb93a35f6da0
e4aeaf1af68a40907fda752559e45dc7afc2de67
e4c3d5d43cb62ac5b57d74d55925bdf76205e306
e4a1b46b5c639d433d21b34b788df8d81b518729JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Side Information for Face Completion: a Robust +
PCA Approach +
e4c81c56966a763e021938be392718686ba9135e
e4e95b8bca585a15f13ef1ab4f48a884cd6ecfccFace Recognition with Independent Component Based +
Super-resolution +
aFaculty of Engineering and Natural Sciences, Sabanci Univ., Istanbul, Turkiye, 34956 +
bSchool of Elec. and Comp. Eng. , Georgia Inst. of Tech., Atlanta, GA, USA, 30332-0250 +
e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5Facial Expression Recognition Based on Constrained +
Local Models and Support Vector Machines +
e476cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf
e475e857b2f5574eb626e7e01be47b416deff268Facial Emotion Recognition Using Nonparametric +
Weighted Feature Extraction and Fuzzy Classifier +
e4391993f5270bdbc621b8d01702f626fba36fc2Author manuscript, published in "18th Scandinavian Conference on Image Analysis (2013)" +
DOI : 10.1007/978-3-642-38886-6_31 +
e4d8ba577cabcb67b4e9e1260573aea708574886UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO +
AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA +
Gaspare Giuliano Elias Bruno +
Tese de Doutorado apresentada ao Programa +
de P´os-gradua¸c˜ao em Engenharia de Sistemas e +
Computa¸c˜ao, COPPE, da Universidade Federal +
do Rio de Janeiro, como parte dos requisitos +
necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em +
Engenharia de Sistemas e Computa¸c˜ao. +
Orientadores: Edmundo Albuquerque de +
Souza e Silva +
Rosa Maria Meri Le˜ao +
Rio de Janeiro +
Janeiro de 2016 +
e475deadd1e284428b5e6efd8fe0e6a5b83b9dcdAccepted in Pattern Recognition Letters +
Pattern Recognition Letters +
journal homepage: www.elsevier.com +
Are you eligible? Predicting adulthood from face images via class specific mean +
autoencoder +
IIIT-Delhi, New Delhi, 110020, India +
Article history: +
Received 15 March 2017 +
e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5bImplicit Video Multi-Emotion Tagging by Exploiting Multi-Expression +
Relations +
fe9c460d5ca625402aa4d6dd308d15a40e1010faNeural Architecture for Temporal Emotion +
Classification +
Universit¨at Ulm, Neuroinformatik, Germany +
fe7c0bafbd9a28087e0169259816fca46db1a837
fe48f0e43dbdeeaf4a03b3837e27f6705783e576
fea83550a21f4b41057b031ac338170bacda8805Learning a Metric Embedding +
for Face Recognition +
using the Multibatch Method +
Orcam Ltd., Jerusalem, Israel +
feeb0fd0e254f38b38fe5c1022e84aa43d63f7ccEURECOM +
Multimedia Communications Department +
and +
Mobile Communications Department +
2229, route des Crˆetes +
B.P. 193 +
06904 Sophia-Antipolis +
FRANCE +
Research Report RR-11-255 +
Search Pruning with Soft Biometric Systems: +
Efficiency-Reliability Tradeoff +
June 1st, 2011 +
Last update June 1st, 2011 +
1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco, +
Monaco Telecom, Orange, SAP, SFR, Sharp, STEricsson, Swisscom, Symantec, Thales. +
fe108803ee97badfa2a4abb80f27fa86afd9aad9
fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139Rahman et al. EURASIP Journal on Image and Video Processing (2015) 2015:35 +
DOI 10.1186/s13640-015-0090-5 +
RESEARCH +
Open Access +
Bayesian face recognition using 2D +
Gaussian-Hermite moments +
c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3dModeling for part-based visual object +
detection based on local features +
Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Rheinisch-Westf¨alischen Technischen Hochschule Aachen +
zur Erlangung des akademischen Grades eines Doktors +
der Ingenieurwissenschaften genehmigte Dissertation +
vorgelegt von +
Diplom-Ingenieur +
aus Neuss +
Berichter: +
Univ.-Prof. Dr.-Ing. Jens-Rainer Ohm +
Univ.-Prof. Dr.-Ing. Til Aach +
Tag der m¨undlichen Pr¨ufung: 28. September 2011 +
Diese Dissertation ist auf den Internetseiten der +
Hochschulbibliothek online verf¨ugbar. +
c86e6ed734d3aa967deae00df003557b6e937d3dGenerative Adversarial Networks with +
Decoder-Encoder Output Noise +
conditional distribution of their neighbors. In [32], Portilla and +
Simoncelli proposed a parametric texture model based on joint +
statistics, which uses a decomposition method that is called +
steerable pyramid decomposition to decompose the texture +
of images. An example-based super-resolution algorithm [11] +
was proposed in 2002, which uses a Markov network to model +
the spatial relationship between the pixels of an image. A +
scene completion algorithm [16] was proposed in 2007, which +
applied a semantic scene match technique. These traditional +
algorithms can be applied to particular image generation tasks, +
such as texture synthesis and super-resolution. Their common +
characteristic is that they predict the images pixel by pixel +
rather than generate an image as a whole, and the basic idea +
of them is to make an interpolation according to the existing +
part of the images. Here, the problem is, given a set of images, +
can we generate totally new images with the same distribution +
of the given ones? +
c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS +
J´er´emie Nicolle +
K´evin Bailly +
Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France +
c866a2afc871910e3282fd9498dce4ab20f6a332Noname manuscript No. +
(will be inserted by the editor) +
Surveillance Face Recognition Challenge +
Received: date / Accepted: date +
c82c147c4f13e79ad49ef7456473d86881428b89
c84233f854bbed17c22ba0df6048cbb1dd4d3248Exploring Locally Rigid Discriminative +
Patches for Learning Relative Attributes +
http://researchweb.iiit.ac.in/~yashaswi.verma/ +
http://www.iiit.ac.in/~jawahar/ +
CVIT +
IIIT-Hyderabad, India +
http://cvit.iiit.ac.in +
c8adbe00b5661ab9b3726d01c6842c0d72c8d997Deep Architectures for Face Attributes +
Computer Vision and Machine Learning Group, Flickr, Yahoo, +
fb4545782d9df65d484009558e1824538030bbb1
fb5280b80edcf088f9dd1da769463d48e7b08390
fba464cb8e3eff455fe80e8fb6d3547768efba2f +
International Journal of Engineering and Applied Sciences (IJEAS) +
ISSN: 2394-3661, Volume-3, Issue-2, February 2016 +
Survey Paper on Emotion Recognition +
 +
fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59Reading Hidden Emotions: Spontaneous +
Micro-expression Spotting and Recognition +
fb9ad920809669c1b1455cc26dbd900d8e719e613D Gaze Estimation from Remote RGB-D Sensors +
THÈSE NO 6680 (2015) +
PRÉSENTÉE LE 9 OCTOBRE 2015 +
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR +
LABORATOIRE DE L'IDIAP +
PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE +
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE +
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +
PAR +
acceptée sur proposition du jury: +
Prof. K. Aminian, président du jury +
Dr J.-M. Odobez, directeur de thèse +
Prof. L.-Ph. Morency, rapporteur +
Prof. D. Witzner Hansen, rapporteur +
Dr R. Boulic, rapporteur +
Suisse +
2015 +
edef98d2b021464576d8d28690d29f5431fd5828Pixel-Level Alignment of Facial Images +
for High Accuracy Recognition +
Using Ensemble of Patches +
ed04e161c953d345bcf5b910991d7566f7c486f7Combining facial expression analysis and synthesis on a +
Mirror my emotions! +
robot +
c178a86f4c120eca3850a4915134fff44cbccb48
c1d2d12ade031d57f8d6a0333cbe8a772d752e01Journal of Math-for-Industry, Vol.2(2010B-5), pp.147–156 +
Convex optimization techniques for the efficient recovery of a sparsely +
corrupted low-rank matrix +
D 案 +
Received on August 10, 2010 / Revised on August 31, 2010 +
E 案 +
c10a15e52c85654db9c9343ae1dd892a2ac4a279Int J Comput Vis (2012) 100:134–153 +
DOI 10.1007/s11263-011-0494-3 +
Learning the Relative Importance of Objects from Tagged Images +
for Retrieval and Cross-Modal Search +
Received: 16 December 2010 / Accepted: 23 August 2011 / Published online: 18 October 2011 +
© Springer Science+Business Media, LLC 2011 +
c1fc70e0952f6a7587b84bf3366d2e57fc572fd7
c1dfabe36a4db26bf378417985a6aacb0f769735Journal of Computer Vision and Image Processing, NWPJ-201109-50 +
1 +
Describing Visual Scene through EigenMaps +
 +
c1482491f553726a8349337351692627a04d5dbe
c1ff88493721af1940df0d00bcfeefaa14f1711fCVPR +
#1369 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2010 Submission #1369. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
CVPR +
#1369 +
Subspace Regression: Predicting a Subspace from one Sample +
Anonymous CVPR submission +
Paper ID 1369 +
c11eb653746afa8148dc9153780a4584ea529d28Global and Local Consistent Wavelet-domain Age +
Synthesis +
c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7eeRobust Facial Landmark Localization Based on +
c17a332e59f03b77921942d487b4b102b1ee73b6Learning an appearance-based gaze estimator +
from one million synthesised images +
Tadas Baltruˇsaitis2 +
c1e76c6b643b287f621135ee0c27a9c481a99054
c6f3399edb73cfba1248aec964630c8d54a9c534A Comparison of CNN-based Face and Head Detectors for +
Real-Time Video Surveillance Applications +
1 ´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada +
2 Genetec Inc., Montreal, Canada +
c62c07de196e95eaaf614fb150a4fa4ce49588b4Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +
1078 +
ec1e03ec72186224b93b2611ff873656ed4d2f74JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
3D Reconstruction of “In-the-Wild” Faces in +
Images and Videos +
ec22eaa00f41a7f8e45ed833812d1ac44ee1174e
ec54000c6c0e660dd99051bdbd7aed2988e27ab8TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1 +
*Dept. Teoria del Senyal i Comunicacions - Universitat Politècnica de Catalunya, Barcelona, Spain +
+Dipartimento di Elettronica e Informazione - Politecnico di Milano, Meiland, Italy +
ec0104286c96707f57df26b4f0a4f49b774c486b758 +
An Ensemble CNN2ELM for Age Estimation +
4e32fbb58154e878dd2fd4b06398f85636fd0cf4A Hierarchical Matcher using Local Classifier Chains +
L. Zhang and I.A. Kakadiaris +
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204 +
4e27fec1703408d524d6b7ed805cdb6cba6ca132SSD-Sface: Single shot multibox detector for small faces +
C. Thuis +
4e6c9be0b646d60390fe3f72ce5aeb0136222a10Long-term Temporal Convolutions +
for Action Recognition +
4e444db884b5272f3a41e4b68dc0d453d4ec1f4c
4ef0a6817a7736c5641dc52cbc62737e2e063420International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970) +
Volume-4 Number-4 Issue-17 December-2014 +
Study of Face Recognition Techniques +
Received: 10-November-2014; Revised: 18-December-2014; Accepted: 23-December-2014 +
©2014 ACCENTS +
4e7ebf3c4c0c4ecc48348a769dd6ae1ebac3bf1b
4e0e49c280acbff8ae394b2443fcff1afb9bdce6Automatic learning of gait signatures for people identification +
F.M. Castro +
Univ. of Malaga +
fcastrouma.es +
M.J. Mar´ın-Jim´enez +
Univ. of Cordoba +
mjmarinuco.es +
N. Guil +
Univ. of Malaga +
nguiluma.es +
N. P´erez de la Blanca +
Univ. of Granada +
nicolasugr.es +
4e4e8fc9bbee816e5c751d13f0d9218380d74b8f
20a88cc454a03d62c3368aa1f5bdffa73523827b
20a432a065a06f088d96965f43d0055675f0a6c1In: Proc. of the 25th Int. Conference on Artificial Neural Networks (ICANN) +
Part II, LNCS 9887, pp. 80-87, Barcelona, Spain, September 2016 +
The final publication is available at Springer via +
http://dx.doi.org//10.1007/978-3-319-44781-0_10 +
The Effects of Regularization on Learning Facial +
Expressions with Convolutional Neural Networks +

Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany +
http://www.informatik.uni-hamburg.de/WTM +
20e504782951e0c2979d9aec88c76334f7505393Robust LSTM-Autoencoders for Face De-Occlusion +
in the Wild +
20ade100a320cc761c23971d2734388bfe79f7c5IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Subspace Clustering via Good Neighbors +
20767ca3b932cbc7b8112db21980d7b9b3ea43a3
20c2a5166206e7ffbb11a23387b9c5edf42b5230
2098983dd521e78746b3b3fa35a22eb2fa630299
206e24f7d4b3943b35b069ae2d028143fcbd0704Learning Structure and Strength of CNN Filters for Small Sample Size Training +
IIIT-Delhi, India +
2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5bTRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015 +
Co-Localization of Audio Sources in Images Using +
Binaural Features and Locally-Linear Regression +
∗ INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +
† Univ. Grenoble Alpes, GIPSA-Lab, France +
‡ Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel +
206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8
20111924fbf616a13d37823cd8712a9c6b458cd6International Journal of Computer Applications (0975 – 8887) +
Volume 130 – No.11, November2015 +
Linear Regression Line based Partial Face Recognition +
Naveena M. +
Department of Studies in +
Computer Science, +
Manasagagothri, +
Mysore. +
Department of Studies in +
Computer Science, +
Manasagagothri, +
Mysore. +
P. Nagabhushan +
Department of Studies in +
Computer Science, +
Manasagagothri, +
Mysore. +
images. In +
20532b1f80b509f2332b6cfc0126c0f80f438f10A deep matrix factorization method for learning +
attribute representations +
Bj¨orn W. Schuller, Senior member, IEEE +
205af28b4fcd6b569d0241bb6b255edb325965a4Intel Serv Robotics (2008) 1:143–157 +
DOI 10.1007/s11370-007-0014-z +
SPECIAL ISSUE +
Facial expression recognition and tracking for intelligent human-robot +
interaction +
Received: 27 June 2007 / Accepted: 6 December 2007 / Published online: 23 January 2008 +
© Springer-Verlag 2008 +
20a0b23741824a17c577376fdd0cf40101af5880Learning to track for spatio-temporal action localization +
Zaid Harchaouia,b +
b NYU +
a Inria∗ +
18c72175ddbb7d5956d180b65a96005c100f6014IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, +
JUNE 2001 +
643 +
From Few to Many: Illumination Cone +
Models for Face Recognition under +
Variable Lighting and Pose +
18636347b8741d321980e8f91a44ee054b051574978-1-4244-5654-3/09/$26.00 ©2009 IEEE +
37 +
ICIP 2009 +
18206e1b988389eaab86ef8c852662accf3c3663
181045164df86c72923906aed93d7f2f987bce6cRHEINISCH-WESTFÄLISCHE TECHNISCHE +
HOCHSCHULE AACHEN +
KNOWLEDGE-BASED SYSTEMS GROUP +
Detection and Recognition of Human +
Faces using Random Forests for a +
Mobile Robot +
MASTER OF SCIENCE THESIS +
MATRICULATION NUMBER: 26 86 51 +
SUPERVISOR: +
SECOND SUPERVISOR: +
PROF. ENRICO BLANZIERI, PH. D. +
ADVISERS: +
18d5b0d421332c9321920b07e0e8ac4a240e5f1fCollaborative Representation Classification +
Ensemble for Face Recognition +
18d51a366ce2b2068e061721f43cb798177b4bb7Cognition and Emotion +
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20 +
Looking into your eyes: observed pupil size +
influences approach-avoidance responses +
eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI: +
10.1080/02699931.2018.1472554 +
To link to this article: https://doi.org/10.1080/02699931.2018.1472554 +
View supplementary material +
Published online: 11 May 2018. +
Submit your article to this journal +
View related articles +
View Crossmark data +
Full Terms & Conditions of access and use can be found at +
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20 +
1885acea0d24e7b953485f78ec57b2f04e946eafCombining Local and Global Features for 3D Face Tracking +
Megvii (face++) Research +
184750382fe9b722e78d22a543e852a6290b3f70
18a849b1f336e3c3b7c0ee311c9ccde582d7214fInt J Comput Vis +
DOI 10.1007/s11263-012-0564-1 +
Efficiently Scaling up Crowdsourced Video Annotation +
A Set of Best Practices for High Quality, Economical Video Labeling +
Received: 31 October 2011 / Accepted: 20 August 2012 +
© Springer Science+Business Media, LLC 2012 +
1886b6d9c303135c5fbdc33e5f401e7fc4da6da4Knowledge Guided Disambiguation for Large-Scale +
Scene Classification with Multi-Resolution CNNs +
1888bf50fd140767352158c0ad5748b501563833PA R T 1 +
THE BASICS +
185360fe1d024a3313042805ee201a75eac50131299 +
Person De-Identification in Videos +
18dfc2434a95f149a6cbb583cca69a98c9de9887
27d709f7b67204e1e5e05fe2cfac629afa21699d
275b5091c50509cc8861e792e084ce07aa906549Institut für Informatik +
der Technischen +
Universität München +
Dissertation +
Leveraging the User’s Face as a Known Object +
in Handheld Augmented Reality +
Sebastian Bernhard Knorr +
270733d986a1eb72efda847b4b55bc6ba9686df4We are IntechOpen, +
the first native scientific +
publisher of Open Access books +
3,350 +
108,000 +
1.7 M +
Open access books available +
International authors and editors +
Downloads +
Our authors are among the +
151 +
Countries delivered to +
TOP 1% +
12.2% +
most cited scientists +
Contributors from top 500 universities +
Selection of our books indexed in the Book Citation Index +
in Web of Science™ Core Collection (BKCI) +
Interested in publishing with us? +
Numbers displayed above are based on latest data collected. +
For more information visit www.intechopen.com +
27da432cf2b9129dce256e5bf7f2f18953eef5a5
2770b095613d4395045942dc60e6c560e882f887GridFace: Face Rectification via Learning Local +
Homography Transformations +
Face++, Megvii Inc. +
27cccf992f54966feb2ab4831fab628334c742d8International Journal of Computer Applications (0975 – 8887) +
Volume 64– No.18, February 2013 +
Facial Expression Recognition by Statistical, Spatial +
Features and using Decision Tree +
Assistant Professor +
CSIT Department +
GGV BIlaspur, Chhattisgarh +
India +
Assistant Professor +
Electronics (ECE) Department +
JECRC Jaipur, Rajasthan India +
IshanBhardwaj +
Student of Ph.D. +
Electrical Department +
NIT Raipur, Chhattisgarh India +
27f8b01e628f20ebfcb58d14ea40573d351bbaadDEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE +
ICT International Doctoral School +
Events based Multimedia Indexing +
and Retrieval +
SUBMITTED TO THE DEPARTMENT OF +
INFORMATION ENGINEERING AND COMPUTER SCIENCE (DISI) +
IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE +
OF +
DOCTOR OF PHILOSOPHY +
Advisor: +
Examiners: Prof. Marco Carli, Universit`a degli Studi di Roma Tre, Italy +
Prof. Nicola Conci, Universit`a degli Studi di Trento, Italy +
Prof. Pietro Zanuttigh, Universit`a degli Studi di Padova, Italy +
Prof. Giulia Boato, Universit`a degli Studi di Trento, Italy +
December 2017 +
274f87ad659cd90382ef38f7c6fafc4fc7f0d74d
27ee8482c376ef282d5eb2e673ab042f5ded99d7Scale Normalization for the Distance Maps AAM. +
Avenue de la boulaie, BP 81127, +
35 511 Cesson-S´evign´e, France +
Sup´elec, IETR-SCEE Team +
4b89cf7197922ee9418ae93896586c990e0d2867LATEX Author Guidelines for CVPR Proceedings +
First Author +
Institution1 +
Institution1 address +
4b04247c7f22410681b6aab053d9655cf7f3f888Robust Face Recognition by Constrained Part-based +
Alignment +
4b60e45b6803e2e155f25a2270a28be9f8bec130Attribute Based Object Identification +
4b48e912a17c79ac95d6a60afed8238c9ab9e553JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Minimum Margin Loss for Deep Face Recognition +
4b5eeea5dd8bd69331bd4bd4c66098b125888deaHuman Activity Recognition Using Conditional +
Random Fields and Privileged Information +
submitted to +
the designated by the General Assembly Composition of the +
Department of Computer Science & Engineering Inquiry +
Committee +
by +
in partial fulfillment of the Requirements for the Degree of +
DOCTOR OF PHILOSOPHY +
February 2016 +
4bbbee93519a4254736167b31be69ee1e537f942
4b6be933057d939ddfa665501568ec4704fabb39
4be03fd3a76b07125cd39777a6875ee59d9889bdCONTENT-BASED ANALYSIS FOR ACCESSING AUDIOVISUAL ARCHIVES: +
ALTERNATIVES FOR CONCEPT-BASED INDEXING AND SEARCH +
ESAT/PSI - IBBT +
KU Leuven, Belgium +
113e5678ed8c0af2b100245057976baf82fcb907Facing Imbalanced Data +
Recommendations for the Use of Performance Metrics +
11f17191bf74c80ad0b16b9f404df6d03f7c8814Recognition of Visually Perceived Compositional +
Human Actions by Multiple Spatio-Temporal Scales +
Recurrent Neural Networks +
11367581c308f4ba6a32aac1b4a7cdb32cd63137
1198572784788a6d2c44c149886d4e42858d49e4Learning Discriminative Features using Encoder/Decoder type Deep +
Neural Nets +
11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8970 +
JUNE 2008 +
Tied Factor Analysis for Face Recognition +
across Large Pose Differences +
112780a7fe259dc7aff2170d5beda50b2bfa7bda
111a9645ad0108ad472b2f3b243ed3d942e7ff16Facial Expression Classification Using +
Combined Neural Networks +
DEE/PUC-Rio, Marquês de São Vicente 225, Rio de Janeiro – RJ - Brazil +
111d0b588f3abbbea85d50a28c0506f74161e091International Journal of Computer Applications (0975 – 8887) +
Volume 134 – No.10, January 2016 +
Facial Expression Recognition from Visual Information +
using Curvelet Transform +
Surabhi Group of Institution Bhopal +
systems. Further applications +
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22Labeled Faces in the Wild: A Survey +
7d73adcee255469aadc5e926066f71c93f51a1a5978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
1283 +
ICASSP 2016 +
7dffe7498c67e9451db2d04bb8408f376ae86992LEAR-INRIA submission for the THUMOS workshop +
LEAR, INRIA, France +
7d3f6dd220bec883a44596ddec9b1f0ed4f6aca22106 +
Linear Regression for Face Recognition +
29ce6b54a87432dc8371f3761a9568eb3c5593b0Kent Academic Repository +
Full text document (pdf) +
Citation for published version +
Yassin, DK H. PHM and Hoque, Sanaul and Deravi, Farzin (2013) Age Sensitivity of Face Recognition +
pp. 12-15. +
DOI +
https://doi.org/10.1109/EST.2013.8 +
Link to record in KAR +
http://kar.kent.ac.uk/43222/ +
Document Version +
Author's Accepted Manuscript +
Copyright & reuse +
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all +
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions +
for further reuse of content should be sought from the publisher, author or other copyright holder. +
Versions of research +
The version in the Kent Academic Repository may differ from the final published version. +
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the +
published version of record. +
Enquiries +
For any further enquiries regarding the licence status of this document, please contact: +
If you believe this document infringes copyright then please contact the KAR admin team with the take-down +
information provided at http://kar.kent.ac.uk/contact.html +
292eba47ef77495d2613373642b8372d03f7062bDeep Secure Encoding: An Application to Face Recognition +
29e96ec163cb12cd5bd33bdf3d32181c136abaf9Report No. UIUCDCS-R-2006-2748 +
UILU-ENG-2006-1788 +
Regularized Locality Preserving Projections with Two-Dimensional +
Discretized Laplacian Smoothing +
by +
July 2006 +
29c1f733a80c1e07acfdd228b7bcfb136c1dff98
29f27448e8dd843e1c4d2a78e01caeaea3f46a2d
294d1fa4e1315e1cf7cc50be2370d24cc6363a412008 SPIE Digital Library -- Subscriber Archive Copy +
29d414bfde0dfb1478b2bdf67617597dd2d57fc6Multidim Syst Sign Process (2010) 21:213–229 +
DOI 10.1007/s11045-009-0099-y +
Perfect histogram matching PCA for face recognition +
Received: 10 August 2009 / Revised: 21 November 2009 / Accepted: 29 December 2009 / +
Published online: 14 January 2010 +
© Springer Science+Business Media, LLC 2010 +
290136947fd44879d914085ee51d8a4f433765faOn a Taxonomy of Facial Features +
2957715e96a18dbb5ed5c36b92050ec375214aa6Improving Face Attribute Detection with Race and Gender Diversity +
InclusiveFaceNet: +
291265db88023e92bb8c8e6390438e5da148e8f5MS-Celeb-1M: A Dataset and Benchmark for +
Large-Scale Face Recognition +
Microsoft Research +
2921719b57544cfe5d0a1614d5ae81710ba804faFace Recognition Enhancement Based on Image +
File Formats and Wavelet De-noising +
 +
29a013b2faace976f2c532533bd6ab4178ccd348This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Hierarchical Manifold Learning With Applications +
to Supervised Classification for High-Resolution +
Remotely Sensed Images +
29756b6b16d7b06ea211f21cdaeacad94533e8b4Thresholding Approach based on GPU for Facial +
Expression Recognition +
1 Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México +
2Instituto Tecnológico de Puebla, Puebla, México +
293193d24d5c4d2975e836034bbb2329b71c4fe7Building a Corpus of Facial Expressions +
for Learning-Centered Emotions +
Instituto Tecnológico de Culiacán, Culiacán, Sinaloa, +
Mexico +
2988f24908e912259d7a34c84b0edaf7ea50e2b3A Model of Brightness Variations Due to +
Illumination Changes and Non-rigid Motion +
Using Spherical Harmonics +
Jos´e M. Buenaposada +
Dep. Ciencias de la Computaci´on, +
U. Rey Juan Carlos, Spain +
http://www.dia.fi.upm.es/~pcr +
Inst. for Systems and Robotics +
Inst. Superior T´ecnico, Portugal +
http://www.isr.ist.utl.pt/~adb +
Enrique Mu˜noz +
Facultad de Inform´atica, +
U. Complutense de Madrid, Spain +
Dep. de Inteligencia Artificial, +
U. Polit´ecnica de Madrid, Spain +
http://www.dia.fi.upm.es/~pcr +
http://www.dia.fi.upm.es/~pcr +
29156e4fe317b61cdcc87b0226e6f09e416909e0
293ade202109c7f23637589a637bdaed06dc37c9
7c7ab59a82b766929defd7146fd039b89d67e984Improving Multiview Face Detection with +
Multi-Task Deep Convolutional Neural Networks +
Microsoft Research +
One Microsoft Way, Redmond WA 98052 +
7c45b5824645ba6d96beec17ca8ecfb22dfcdd7fNews image annotation on a large parallel text-image corpus +
Universit´e de Rennes 1/IRISA, CNRS/IRISA, INRIA Rennes-Bretagne Atlantique +
Campus de Beaulieu +
35042 Rennes Cedex, France +
7c0a6824b556696ad7bdc6623d742687655852db18th Telecommunications forum TELFOR 2010 +
Serbia, Belgrade, November 23-25, 2010. +
MPCA+DATER: A Novel Approach for Face +
Recognition Based on Tensor Objects +
Ali. A. Shams Baboli, Member, IEEE, G. Rezai-rad, Member, IEEE, Aref. Shams Baboli +
7c95449a5712aac7e8c9a66d131f83a038bb7caaThis is an author produced version of Facial first impressions from another angle: How +
social judgements are influenced by changeable and invariant facial properties. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/102935/ +
Article: +
Rhodes (2017) Facial first impressions from another angle: How social judgements are +
influenced by changeable and invariant facial properties. British journal of psychology. pp. +
397-415. ISSN 0007-1269 +
https://doi.org/10.1111/bjop.12206 +
promoting access to +
White Rose research papers +
http://eprints.whiterose.ac.uk/ +
7c3e09e0bd992d3f4670ffacb4ec3a911141c51fNoname manuscript No. +
(will be inserted by the editor) +
Transferring Object-Scene Convolutional Neural Networks for +
Event Recognition in Still Images +
Received: date / Accepted: date +
7c7b0550ec41e97fcfc635feffe2e53624471c591051-4651/14 $31.00 © 2014 IEEE +
DOI 10.1109/ICPR.2014.124 +
660 +
7ce03597b703a3b6754d1adac5fbc98536994e8f
7c9a65f18f7feb473e993077d087d4806578214eSpringerLink - Zeitschriftenbeitrag +
http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352... +
Deutsch +
Deutsch +
Go +
Vorherige Beitrag Nächste Beitrag +
Beitrag markieren +
In den Warenkorb legen +
Zu gespeicherten Artikeln +
hinzufügen +
Permissions & Reprints +
Diesen Artikel empfehlen +
Ergebnisse +
finden +
Erweiterte Suche +
Go +
im gesamten Inhalt +
in dieser Zeitschrift +
in diesem Heft +
Diesen Beitrag exportieren +
Diesen Beitrag exportieren als RIS +
| Text +
Text +
PDF +
PDF ist das gebräuchliche Format +
für Online Publikationen. Die Größe +
dieses Dokumentes beträgt 564 +
Kilobyte. Je nach Art Ihrer +
Internetverbindung kann der +
Download einige Zeit in Anspruch +
nehmen. +
öffnen: Gesamtdokument +
Publikationsart Subject Collections +
Zurück zu: Journal Issue +
Athens Authentication Point +
Zeitschriftenbeitrag +
Willkommen! +
Um unsere personalisierten +
Angebote nutzen zu können, +
müssen Sie angemeldet sein. +
Login +
Jetzt registrieren +
Zugangsdaten vergessen? +
Hilfe. +
Mein Menü +
Markierte Beiträge +
Alerts +
Meine Bestellungen +
Private emotions versus social interaction: a data-driven approach towards +
analysing emotion in speech +
Zeitschrift +
Verlag +
ISSN +
Heft +
Kategorie +
DOI +
Seiten +
Subject Collection +
SpringerLink Date +
User Modeling and User-Adapted Interaction +
Springer Netherlands +
0924-1868 (Print) 1573-1391 (Online) +
Volume 18, Numbers 1-2 / Februar 2008 +
Original Paper +
10.1007/s11257-007-9039-4 +
175-206 +
Informatik +
Freitag, 12. Oktober 2007 +
Gespeicherte Beiträge +
Alle +
Favoriten +
(1) Lehrstuhl für Mustererkennung, FAU Erlangen – Nürnberg, Martensstr. 3, 91058 Erlangen, +
Germany +
Received: 3 July 2006 Accepted: 14 January 2007 Published online: 12 October 2007 +
7c1e1c767f7911a390d49bed4f73952df8445936NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) +
Non-Rigid Object Detection with Local +
Interleaved Sequential Alignment (LISA) +
and Tom´aˇs Svoboda, Member, IEEE +
7c349932a3d083466da58ab1674129600b12b81c
1648cf24c042122af2f429641ba9599a2187d605Boosting Cross-Age Face Verification via Generative Age Normalization +
(cid:2) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +
† Eurecom, 450 route des Chappes, 06410 Biot, France +
162403e189d1b8463952fa4f18a291241275c354Action Recognition with Spatio-Temporal +
Visual Attention on Skeleton Image Sequences +
With a strong ability of modeling sequential data, Recur- +
rent Neural Networks (RNN) with Long Short-Term Memory +
(LSTM) neurons outperform the previous hand-crafted feature +
based methods [9], [10]. Each skeleton frame is converted into +
a feature vector and the whole sequence is fed into the RNN. +
Despite the strong ability in modeling temporal sequences, +
RNN structures lack the ability to efficiently learn the spatial +
relations between the joints. To better use spatial information, +
a hierarchical structure is proposed in [11], [12] that feeds +
the joints into the network as several pre-defined body part +
groups. However, +
limit +
the effectiveness of representing spatial relations. A spatio- +
temporal 2D LSTM (ST-LSTM) network [13] is proposed +
to learn the spatial and temporal relations simultaneously. +
Furthermore, a two-stream RNN structure [14] is proposed to +
learn the spatio-temporal relations with two RNN branches. +
the pre-defined body regions still +
160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2bDiscriminant Multi-Label Manifold Embedding for Facial Action Unit +
Detection +
Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +
16671b2dc89367ce4ed2a9c241246a0cec9ec10e2006 +
Detecting the Number of Clusters +
in n-Way Probabilistic Clustering +
16de1324459fe8fdcdca80bba04c3c30bb789bdf
16892074764386b74b6040fe8d6946b67a246a0b
16395b40e19cbc6d5b82543039ffff2a06363845Action Recognition in Video Using Sparse Coding and Relative Features +
Anal´ı Alfaro +
P. Universidad Catolica de Chile +
P. Universidad Catolica de Chile +
P. Universidad Catolica de Chile +
Santiago, Chile +
Santiago, Chile +
Santiago, Chile +
16286fb0f14f6a7a1acc10fcd28b3ac43f12f3ebJ Nonverbal Behav +
DOI 10.1007/s10919-008-0059-5 +
O R I G I N A L P A P E R +
All Smiles are Not Created Equal: Morphology +
and Timing of Smiles Perceived as Amused, Polite, +
and Embarrassed/Nervous +
Ó Springer Science+Business Media, LLC 2008 +
166186e551b75c9b5adcc9218f0727b73f5de899Volume 4, Issue 2, February 2016 +
International Journal of Advance Research in +
Computer Science and Management Studies +
Research Article / Survey Paper / Case Study +
Available online at: www.ijarcsms.com +
ISSN: 2321-7782 (Online) +
Automatic Age and Gender Recognition in Human Face Image +
Dataset using Convolutional Neural Network System +
Subhani Shaik1 +
Assoc. Prof & Head of the Department +
Department of CSE, +
Associate Professor +
Department of CSE, +
St.Mary’s Group of Institutions Guntur +
St.Mary’s Group of Institutions Guntur +
Chebrolu(V&M),Guntur(Dt), +
Andhra Pradesh - India +
Chebrolu(V&M),Guntur(Dt), +
Andhra Pradesh - India +
16d9b983796ffcd151bdb8e75fc7eb2e31230809EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer +
(Guest Editors) +
Volume 37 (2018), Number 2 +
GazeDirector: Fully Articulated Eye Gaze Redirection in Video +
ID: paper1004 +
1679943d22d60639b4670eba86665371295f52c3
169076ffe5e7a2310e98087ef7da25aceb12b62d
161eb88031f382e6a1d630cd9a1b9c4bc6b476521 +
Automatic Facial Expression Recognition +
Using Features of Salient Facial Patches +
4209783b0cab1f22341f0600eed4512155b1dee6Accurate and Efficient Similarity Search for Large Scale Face Recognition +
BUPT +
BUPT +
BUPT +
42e3dac0df30d754c7c7dab9e1bb94990034a90dPANDA: Pose Aligned Networks for Deep Attribute Modeling +
2EECS, UC Berkeley +
1Facebook AI Research +
429c3588ce54468090cc2cf56c9b328b549a86dc
42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830Coordinated Local Metric Learning +
Inria∗ +
42350e28d11e33641775bef4c7b41a2c3437e4fd212 +
Multilinear Discriminant Analysis +
for Face Recognition +
42e155ea109eae773dadf74d713485be83fca105
4270460b8bc5299bd6eaf821d5685c6442ea179aInt J Comput Vis (2009) 84: 163–183 +
DOI 10.1007/s11263-008-0147-3 +
Partial Similarity of Objects, or How to Compare a Centaur +
to a Horse +
Received: 30 September 2007 / Accepted: 3 June 2008 / Published online: 26 July 2008 +
© Springer Science+Business Media, LLC 2008 +
429d4848d03d2243cc6a1b03695406a6de1a7abdFace Recognition based on Logarithmic Fusion +
International Journal of Soft Computing and Engineering (IJSCE) +
ISSN: 2231-2307, Volume-2, Issue-3, July 2012 +
of SVD and KT +
Ramachandra A C, Raja K B, Venugopal K R, L M Patnaik +
to +
 +
424259e9e917c037208125ccc1a02f8276afb667
42ecfc3221c2e1377e6ff849afb705ecd056b6ffPose Invariant Face Recognition under Arbitrary +
Unknown Lighting using Spherical Harmonics +
Department of Computer Science, +
SUNY at Stony Brook, NY, 11790 +
421955c6d2f7a5ffafaf154a329a525e21bbd6d3570 +
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 6, +
JUNE 2000 +
Evolutionary Pursuit and Its +
Application to Face Recognition +
42e0127a3fd6a96048e0bc7aab6d0ae88ba00fb0
42df75080e14d32332b39ee5d91e83da8a914e344280 +
Illumination Compensation Using Oriented +
Local Histogram Equalization and +
Its Application to Face Recognition +
89945b7cd614310ebae05b8deed0533a9998d212Divide-and-Conquer Method for L1 Norm Matrix +
Factorization in the Presence of Outliers and +
Missing Data +
89de30a75d3258816c2d4d5a733d2bef894b66b9
8913a5b7ed91c5f6dec95349fbc6919deee4fc75BigBIRD: A Large-Scale 3D Database of Object Instances +
89d3a57f663976a9ac5e9cdad01267c1fc1a7e06Neural Class-Specific Regression for face +
verification +
891b10c4b3b92ca30c9b93170ec9abd71f6099c4Facial landmark detection using structured output deep +
neural networks +
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +
1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +
2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +
September 24, 2015 +
45c340c8e79077a5340387cfff8ed7615efa20fd
45e7ddd5248977ba8ec61be111db912a4387d62fCHEN ET AL.: ADVERSARIAL POSENET +
Adversarial Learning of Structure-Aware Fully +
Convolutional Networks for Landmark +
Localization +
45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8
4560491820e0ee49736aea9b81d57c3939a69e12Investigating the Impact of Data Volume and +
Domain Similarity on Transfer Learning +
Applications +
State Farm Insurance, Bloomington IL 61710, USA, +
4571626d4d71c0d11928eb99a3c8b10955a74afeGeometry Guided Adversarial Facial Expression Synthesis +
1National Laboratory of Pattern Recognition, CASIA +
2Center for Research on Intelligent Perception and Computing, CASIA +
3Center for Excellence in Brain Science and Intelligence Technology, CAS +
4534d78f8beb8aad409f7bfcd857ec7f19247715Under review as a conference paper at ICLR 2017 +
TRANSFORMATION-BASED MODELS OF VIDEO +
SEQUENCES +
Facebook AI Research +
459e840ec58ef5ffcee60f49a94424eb503e8982One-shot Face Recognition by Promoting Underrepresented Classes +
Microsoft +
One Microsoft Way, Redmond, Washington, United States +
45fbeed124a8956477dbfc862c758a2ee2681278
451c42da244edcb1088e3c09d0f14c064ed9077e1964 +
© EURASIP, 2011 - ISSN 2076-1465 +
19th European Signal Processing Conference (EUSIPCO 2011) +
INTRODUCTION +
4511e09ee26044cb46073a8c2f6e1e0fbabe33e8
45a6333fc701d14aab19f9e2efd59fe7b0e89fecHAND POSTURE DATASET CREATION FOR GESTURE +
RECOGNITION +
Luis Anton-Canalis +
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +
Campus Universitario de Tafira, 35017 Gran Canaria, Spain +
Elena Sanchez-Nielsen +
Departamento de E.I.O. y Computacion +
38271 Universidad de La Laguna, Spain +
Keywords: +
Image understanding, Gesture recognition, Hand dataset. +
1ffe20eb32dbc4fa85ac7844178937bba97f4bf0Face Clustering: Representation and Pairwise +
Constraints +
1f8304f4b51033d2671147b33bb4e51b9a1e16feNoname manuscript No. +
(will be inserted by the editor) +
Beyond Trees: +
MAP Inference in MRFs via Outer-Planar Decomposition +
Received: date / Accepted: date +
1f9ae272bb4151817866511bd970bffb22981a49An Iterative Regression Approach for Face Pose Estima- +
tion from RGB Images +
This paper presents a iterative optimization method, explicit shape regression, for face pose +
detection and localization. The regression function is learnt to find out the entire facial shape +
and minimize the alignment errors. A cascaded learning framework is employed to enhance +
shape constraint during detection. A combination of a two-level boosted regression, shape +
performance. In this paper, we have explain the advantage of ESR for deformable object like +
face pose estimation and reveal its generic applications of the method. In the experiment, +
we compare the results with different work and demonstrate the accuracy and robustness in +
different scenarios. +
Introduction +
Pose estimation is an important problem in computer vision, and has enabled many practical ap- +
plication from face expression 1 to activity tracking 2. Researchers design a new algorithm called +
explicit shape regression (ESR) to find out face alignment from a picture 3. Figure 1 shows how +
the system uses ESR to learn a shape of a human face image. A simple way to identify a face is to +
find out facial landmarks like eyes, nose, mouth and chin. The researchers define a face shape S +
and S is composed of Nf p facial landmarks. Therefore, they get S = [x1, y1, ..., xNf p, yNf p]T . The +
objective of the researchers is to estimate a shape S of a face image. The way to know the accuracy +
1fc249ec69b3e23856b42a4e591c59ac60d77118Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +
Computational Biomedicine Lab +
4800 Calhoun Rd. Houston, TX, USA +
1fbde67e87890e5d45864e66edb86136fbdbe20eThe Action Similarity Labeling Challenge +
1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6Demographic Estimation from Face Images: +
Human vs. Machine Performance +
1fd2ed45fb3ba77f10c83f0eef3b66955645dfe0
1f2d12531a1421bafafe71b3ad53cb080917b1a7
1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58dvExplorer: A Search Method to Find Relevant YouTube Videos for Health +
Researchers +
IBM Research, Cambridge, MA, USA +
1f94734847c15fa1da68d4222973950d6b683c9eEmbedding Label Structures for Fine-Grained Feature Representation +
UNC Charlotte +
Charlotte, NC 28223 +
NEC Lab America +
Cupertino, CA 95014 +
NEC Lab America +
Cupertino, CA 95014 +
UNC Charlotte +
Charlotte, NC 28223 +
1f745215cda3a9f00a65166bd744e4ec35644b02Facial Cosmetics Database and Impact Analysis on +
Automatic Face Recognition +
# Computer Science Department, TU Muenchen +
Boltzmannstr. 3, 85748 Garching b. Muenchen, Germany +
∗ Multimedia Communications Department, EURECOM +
450 Route des Chappes, 06410 Biot, France +
1fff309330f85146134e49e0022ac61ac60506a9Data-Driven Sparse Sensor Placement for Reconstruction +
7323b594d3a8508f809e276aa2d224c4e7ec5a80JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
An Experimental Evaluation of Covariates +
Effects on Unconstrained Face Verification +
732e8d8f5717f8802426e1b9debc18a8361c1782Unimodal Probability Distributions for Deep Ordinal Classification +
73ed64803d6f2c49f01cffef8e6be8fc9b5273b8Noname manuscript No. +
(will be inserted by the editor) +
Cooking in the kitchen: Recognizing and Segmenting Human +
Activities in Videos +
Received: date / Accepted: date +
7306d42ca158d40436cc5167e651d7ebfa6b89c1Noname manuscript No. +
(will be inserted by the editor) +
Transductive Zero-Shot Action Recognition by +
Word-Vector Embedding +
Received: date / Accepted: date +
734cdda4a4de2a635404e4c6b61f1b2edb3f501dTie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 +
http://jivp.eurasipjournals.com/content/2013/1/8 +
R ES EAR CH +
Open Access +
Automatic landmark point detection and tracking +
for human facial expressions +
732686d799d760ccca8ad47b49a8308b1ab381fbRunning head: TEACHERS’ DIFFERING BEHAVIORS +
1 +
Graduate School of Psychology +
RESEARCH MASTER’S PSYCHOLOGY THESıS REPORT +
+
Teachers’ differing classroom behaviors: +
The role of emotional sensitivity and cultural tolerance +
Research Master’s, Social Psychology +
Ethics Committee Reference Code: 2016-SP-7084 +
73fbdd57270b9f91f2e24989178e264f2d2eb7ae978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1945 +
ICASSP 2012 +
73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c
871f5f1114949e3ddb1bca0982086cc806ce84a8Discriminative Learning of Apparel Features +
1 Computer Vision Laboratory, D-ITET, ETH Z¨urich, Switzerland +
2 ESAT - PSI / IBBT, K.U. Leuven, Belgium +
878169be6e2c87df2d8a1266e9e37de63b524ae7CBMM Memo No. 089 +
May 10, 2018 +
Image interpretation above and below the object level +
878301453e3d5cb1a1f7828002ea00f59cbeab06Faceness-Net: Face Detection through +
Deep Facial Part Responses +
87e592ee1a7e2d34e6b115da08700a1ae02e9355Deep Pictorial Gaze Estimation +
AIT Lab, Department of Computer Science, ETH Zurich +
87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fdCraniofacial Image Analysis +
8006219efb6ab76754616b0e8b7778dcfb46603dCONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble
80193dd633513c2d756c3f568ffa0ebc1bb5213e
804b4c1b553d9d7bae70d55bf8767c603c1a09e3978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
1831 +
ICASSP 2016 +
800cbbe16be0f7cb921842d54967c9a94eaa2a65MULTIMODAL RECOGNITION OF +
EMOTIONS +
803c92a3f0815dbf97e30c4ee9450fd005586e1aMax-Mahalanobis Linear Discriminant Analysis Networks +
80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923Research Article +
Soft Biometrics for a Socially Assistive Robotic +
Platform +
Open Access +
80a6bb337b8fdc17bffb8038f3b1467d01204375Proceedings of the International Conference on Computer and Information Science and Technology +
Ottawa, Ontario, Canada, May 11 – 12, 2015 +
Paper No. 126 +
Subspace LDA Methods for Solving the Small Sample Size +
Problem in Face Recognition +

101 KwanFu Rd., Sec. 2, Hsinchu, Taiwan +
80097a879fceff2a9a955bf7613b0d3bfa68dc23Active Self-Paced Learning for Cost-Effective and +
Progressive Face Identification +
74408cfd748ad5553cba8ab64e5f83da14875ae8Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation +
and Evaluation +
747d5fe667519acea1bee3df5cf94d9d6f874f20
74dbe6e0486e417a108923295c80551b6d759dbeInternational Journal of Computer Applications (0975 – 8887) +
Volume 45– No.11, May 2012 +
An HMM based Model for Prediction of Emotional +
Composition of a Facial Expression using both +
Significant and Insignificant Action Units and +
Associated Gender Differences +
Department of Management and Information +
Department of Management and Information +
Systems Science +
1603-1 Kamitomioka, Nagaoka +
Niigata, Japan +
Systems Science +
1603-1 Kamitomioka, Nagaoka +
Niigata, Japan +
747c25bff37b96def96dc039cc13f8a7f42dbbc7EmoNets: Multimodal deep learning approaches for emotion +
recognition in video +
74b0095944c6e29837c208307a67116ebe1231c8
74156a11c2997517061df5629be78428e1f09cbdCancún Center, Cancún, México, December 4-8, 2016 +
978-1-5090-4846-5/16/$31.00 ©2016 IEEE +
2784 +
745b42050a68a294e9300228e09b5748d2d20b81
749d605dd12a4af58de1fae6f5ef5e65eb06540eMulti-Task Video Captioning with Video and Entailment Generation +
UNC Chapel Hill +
74c19438c78a136677a7cb9004c53684a4ae56ffRESOUND: Towards Action Recognition +
without Representation Bias +
UC San Diego +
7480d8739eb7ab97c12c14e75658e5444b852e9fNEGREL ET AL.: REVISITED MLBOOST FOR FACE RETRIEVAL +
MLBoost Revisited: A Faster Metric +
Learning Algorithm for Identity-Based Face +
Retrieval +
Frederic Jurie +
Normandie Univ, UNICAEN, +
ENSICAEN, CNRS +
France +
74ba4ab407b90592ffdf884a20e10006d2223015Partial Face Detection in the Mobile Domain +
7405ed035d1a4b9787b78e5566340a98fe4b63a0Self-Expressive Decompositions for +
Matrix Approximation and Clustering +
744db9bd550bf5e109d44c2edabffec28c867b91FX e-Makeup for Muscle Based Interaction +
1 Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil +
2 Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil +
3 Department of Administration, PUC-Rio, Rio de Janeiro, Brazil +
744d23991a2c48d146781405e299e9b3cc14b731This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2535284, IEEE +
Transactions on Image Processing +
Aging Face Recognition: A Hierarchical Learning +
Model Based on Local Patterns Selection +
1a45ddaf43bcd49d261abb4a27977a952b5fff12LDOP: Local Directional Order Pattern for Robust +
Face Retrieval +
 +
1aa766bbd49bac8484e2545c20788d0f86e73ec2 +
Baseline Face Detection, Head Pose Estimation, and Coarse +
Direction Detection for Facial Data in the SHRP2 Naturalistic +
Driving Study +
J. Paone, D. Bolme, R. Ferrell, Member, IEEE, D. Aykac, and +
T. Karnowski, Member, IEEE +
Oak Ridge National Laboratory, Oak Ridge, TN +
1a849b694f2d68c3536ed849ed78c82e979d64d5This is a repository copy of Symmetric Shape Morphing for 3D Face and Head Modelling. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/131760/ +
Version: Accepted Version +
Proceedings Paper: +
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634, Smith, William Alfred +
Peter orcid.org/0000-0002-6047-0413 et al. (1 more author) (2018) Symmetric Shape +
Morphing for 3D Face and Head Modelling. In: The 13th IEEE Conference on Automatic +
Face and Gesture Recognition. IEEE . +
Reuse +
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless +
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by +
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of +
the full text version. This is indicated by the licence information on the White Rose Research Online record +
for the item. +
Takedown +
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +
https://eprints.whiterose.ac.uk/ +
1a3eee980a2252bb092666cf15dd1301fa84860ePCA GAUSSIANIZATION FOR IMAGE PROCESSING +
Image Processing Laboratory (IPL), Universitat de Val`encia +
Catedr´atico A. Escardino - 46980 Paterna, Val`encia, Spain +
1a031378cf1d2b9088a200d9715d87db8a1bf041Workshop track - ICLR 2018 +
DEEP DICTIONARY LEARNING: SYNERGIZING RE- +
CONSTRUCTION AND CLASSIFICATION +
1a9337d70a87d0e30966ecd1d7a9b0bbc7be161f
1a9a192b700c080c7887e5862c1ec578012f9ed1IEEE TRANSACTIONS ON SYSTEM, MAN AND CYBERNETICS, PART B +
Discriminant Subspace Analysis for Face +
Recognition with Small Number of Training +
Samples +
1a8ccc23ed73db64748e31c61c69fe23c48a2bb1Extensive Facial Landmark Localization +
with Coarse-to-fine Convolutional Network Cascade +
Megvii Inc. +
1ad97cce5fa8e9c2e001f53f6f3202bddcefba22Grassmann Averages for Scalable Robust PCA +
DIKU and MPIs T¨ubingen∗ +
Denmark and Germany +
DTU Compute∗ +
Lyngby, Denmark +
1a1118cd4339553ad0544a0a131512aee50cf7de
1a7a2221fed183b6431e29a014539e45d95f0804Person Identification Using Text and Image Data +
David S. Bolme, J. Ross Beveridge and Adele E. Howe +
Computer Science Department +
Colorado State Univeristy +
Fort Collins, Colorado 80523 +
28e0ed749ebe7eb778cb13853c1456cb6817a166
28b9d92baea72ec665c54d9d32743cf7bc0912a7
28d7029cfb73bcb4ad1997f3779c183972a406b4Discriminative Nonlinear Analysis Operator +
Learning: When Cosparse Model Meets Image +
Classification +
280d59fa99ead5929ebcde85407bba34b1fcfb59978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2662 +
ICASSP 2016 +
28cd46a078e8fad370b1aba34762a874374513a5CVPAPER.CHALLENGE IN 2016, JULY 2017 +
cvpaper.challenge in 2016: Futuristic Computer +
Vision through 1,600 Papers Survey +
282a3ee79a08486f0619caf0ada210f5c3572367
288dbc40c027af002298b38954d648fddd4e2fd3
28312c3a47c1be3a67365700744d3d6665b86f22
28b5b5f20ad584e560cd9fb4d81b0a22279b2e7bA New Fuzzy Stacked Generalization Technique +
and Analysis of its Performance +
28bc378a6b76142df8762cd3f80f737ca2b79208Understanding Objects in Detail with Fine-grained Attributes +
Ross Girshick5 +
David Weiss7 +
287900f41dd880802aa57f602e4094a8a9e5ae56
28d4e027c7e90b51b7d8908fce68128d1964668a
2866cbeb25551257683cf28f33d829932be651feIn Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP) +
The final publication is available at: http://dx.doi.org/10.1109/ICIP.2018.8451026 +
A TWO-STEP LEARNING METHOD FOR DETECTING LANDMARKS +
ON FACES FROM DIFFERENT DOMAINS +
Erickson R. Nascimento +
Universidade Federal de Minas Gerais (UFMG), Brazil +
28aa89b2c827e5dd65969a5930a0520fdd4a3dc7
28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68Predicting User Annoyance Using Visual Attributes +
Virginia Tech +
Goibibo +
Virginia Tech +
Virginia Tech +
17a85799c59c13f07d4b4d7cf9d7c7986475d01cADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents +
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha +
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats +
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats +
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la +
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de +
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita +
de parts de la tesi és obligat indicar el nom de la persona autora. +
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes +
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha +
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos +
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción +
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. +
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). +
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus +
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la +
persona autora. +
WARNING. On having consulted this thesis you’re accepting the following use conditions: +
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the +
titular of the intellectual property rights only for private uses placed in investigation and teaching +
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability +
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the +
TDX service is not authorized (framing). This rights affect to the presentation summary of the +
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate +
the name of the author +
176f26a6a8e04567ea71677b99e9818f8a8819d0MEG: Multi-Expert Gender classification from +
face images in a demographics-balanced dataset +
17035089959a14fe644ab1d3b160586c67327db2
17a995680482183f3463d2e01dd4c113ebb31608IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z +
Structured Label Inference for +
Visual Understanding +
17aa78bd4331ef490f24bdd4d4cd21d22a18c09c
17c0d99171efc957b88c31a465c59485ab033234
1742ffea0e1051b37f22773613f10f69d2e4ed2c
1791f790b99471fc48b7e9ec361dc505955ea8b1
174930cac7174257515a189cd3ecfdd80ee7dd54Multi-view Face Detection Using Deep Convolutional +
Neural Networks +
Yahoo +
Mohammad Saberian +
inc.com +
Yahoo +
Yahoo +
17fad2cc826d2223e882c9fda0715fcd5475acf3
1750db78b7394b8fb6f6f949d68f7c24d28d934fDetecting Facial Retouching Using Supervised +
Deep Learning +
Bowyer, Fellow, IEEE +
173657da03e3249f4e47457d360ab83b3cefbe63HKU-Face: A Large Scale Dataset for +
Deep Face Recognition +
Final Report +
3035140108 +
COMP4801 Final Year Project +
Project Code: 17007 +
7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889
7bfe085c10761f5b0cc7f907bdafe1ff577223e0
7b9b3794f79f87ca8a048d86954e0a72a5f97758DOI 10.1515/jisys-2013-0016      Journal of Intelligent Systems 2013; 22(4): 365–415 +
Passing an Enhanced Turing Test – +
Interacting with Lifelike Computer +
Representations of Specific Individuals  +
7b0f1fc93fb24630eb598330e13f7b839fb46cceLearning to Find Eye Region Landmarks for Remote Gaze +
Estimation in Unconstrained Settings +
ETH Zurich +
MPI for Informatics +
MPI for Informatics +
ETH Zurich +
7bdcd85efd1e3ce14b7934ff642b76f017419751289 +
Learning Discriminant Face Descriptor +
7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21fOn the Design and Evaluation of Robust Head Pose for +
Visual User Interfaces: Algorithms, Databases, and +
Comparisons +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
Mohan Trivedi +
Laboratory of Intelligent and +
Safe Automobiles +
UCSD - La Jolla, CA, USA +
8f772d9ce324b2ef5857d6e0b2a420bc93961196MAHPOD et al.: CFDRNN +
Facial Landmark Point Localization using +
Coarse-to-Fine Deep Recurrent Neural Network +
8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483
8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2aFeature Selection with Annealing for Big Data +
Learning +
8f9c37f351a91ed416baa8b6cdb4022b231b9085Generative Adversarial Style Transfer Networks for Face Aging +
Sveinn Palsson +
D-ITET, ETH Zurich +
Eirikur Agustsson +
D-ITET, ETH Zurich +
8f8c0243816f16a21dea1c20b5c81bc223088594
8f89aed13cb3555b56fccd715753f9ea72f27f05Attended End-to-end Architecture for Age +
Estimation from Facial Expression Videos +
8f9f599c05a844206b1bd4947d0524234940803d
8fd9c22b00bd8c0bcdbd182e17694046f245335f   +
Recognizing Facial Expressions in Videos +
8a866bc0d925dfd8bb10769b8b87d7d0ff01774dWikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art +
National Research Council Canada +
8a40b6c75dd6392ee0d3af73cdfc46f59337efa9
8a91ad8c46ca8f4310a442d99b98c80fb8f7625f2592 +
2D Segmentation Using a Robust Active +
Shape Model With the EM Algorithm +
8aed6ec62cfccb4dba0c19ee000e6334ec585d70Localizing and Visualizing Relative Attributes +
8a336e9a4c42384d4c505c53fb8628a040f2468eWang and Luo EURASIP Journal on Bioinformatics +
and Systems Biology (2016) 2016:13 +
DOI 10.1186/s13637-016-0048-7 +
R ES EAR CH +
Detecting Visually Observable Disease +
Symptoms from Faces +
Open Access +
7e600faee0ba11467d3f7aed57258b0db0448a72
7e8016bef2c180238f00eecc6a50eac473f3f138TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Immersive Interactive Data Mining and Machine +
Learning Algorithms for Big Data Visualization +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr. sc.techn. Andreas Herkersdorf +
Pr¨ufer der Dissertation: +
1. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Univ.-Prof. Dr.-Ing. habil. Dirk Wollherr +
3. Prof. Dr. Mihai Datcu +
Die Dissertation wurde am 13.08.2015 bei der Technischen Universit¨at M¨unchen eingerei- +
cht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 16.02.2016 +
angenommen. +
7e3367b9b97f291835cfd0385f45c75ff84f4dc5Improved Local Binary Pattern Based Action Unit Detection Using +
Morphological and Bilateral Filters +
1Signal Processing Laboratory (LTS5) +
´Ecole Polytechnique F´ed´erale de Lausanne, +
Switzerland +
2nViso SA +
Lausanne, Switzerland +
7ed6ff077422f156932fde320e6b3bd66f8ffbcbState of 3D Face Biometrics for Homeland Security Applications +
Chaudhari4 +
7e507370124a2ac66fb7a228d75be032ddd083ccThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2708106, IEEE +
Transactions on Affective Computing +
Dynamic Pose-Robust Facial Expression +
Recognition by Multi-View Pairwise Conditional +
Random Forests +
1 Sorbonne Universit´es, UPMC Univ Paris 06 +
CNRS, UMR 7222, F-75005, Paris, France +
1056347fc5e8cd86c875a2747b5f84fd570ba232
10e7dd3bbbfbc25661213155e0de1a9f043461a2Cross Euclidean-to-Riemannian Metric Learning +
with Application to Face Recognition from Video +
10ab1b48b2a55ec9e2920a5397febd84906a7769
10ce3a4724557d47df8f768670bfdd5cd5738f95Fihe igh Fied f Face Recgii +
Ac e ad  iai +
Rah G ai ahew ad Si Bake +
The Rbic i e Caegie e Uiveiy +
5000 Fbe Ave e ib gh A 15213 +
Abac.  ay face ecgii ak he e ad i iai +
cdii f he be ad gaey iage ae di(cid:11)ee.  he cae +
 ie gaey  be iage ay be avaiabe each ca ed f +
a di(cid:11)ee e ad de a di(cid:11)ee i iai. We e a face +
ecgii agih which ca e ay  be f gaey iage e +
 bjec ca ed a abiay e ad de abiay i iai +
ad ay  be f be iage agai ca ed a abiay e ad +
de abiay i iai. The agih eae by eiaig he +
Fihe igh (cid:12)ed f he  bjec head f he i  gaey  be +
iage. achig bewee he be ad gaey i he efed ig +
he Fihe igh (cid:12)ed. +
d ci +
 ay face ecgii ceai he e f he be ad gaey iage ae +
di(cid:11)ee. The gaey cai he iage ed d ig aiig f he agih. +
The agih ae eed wih he iage i he be e. F exae he +
gaey iage igh be a fa \ g h" ad he be iage igh be a 3/4 +
view ca ed f a caea i he ce f he . The  be f gaey +
ad be iage ca a vay. F exae he gaey ay ci f a ai f +
iage f each  bjec a fa  g h ad f (cid:12)e view ike he iage +
yicay ca ed by ice deae. The be ay be a iia ai f +
iage a ige 3/4 view  eve a ceci f view f ad e. +
Face ecgii ac e i.e. face ecgii whee he gaey ad be +
iage d  have he ae e ha eceived vey ie aei. Agih +
have bee ed which ca ecgize face [1]  e geea bjec [2] +
a a vaiey f e. weve  f hee agih e ie gaey iage +
a evey e. Agih have bee ed which d geeaize ac e +
f exae [3] b  hi agih c e 3D head de ig a gaey +
caiig a age  be f iage e  bjec ca ed ig ced i +
iai vaiai.  ca be ed wih abiay gaey ad be e. +
Afe e vaiai he ex  igi(cid:12)ca fac a(cid:11)ecig he aea +
ace f face i i iai. A  be f agih have bee deveed f +
face ecgii ac i iai b  hey yicay y dea wih fa +
face [4 5]. y a few aache have bee ed  hade bh e ad +
i iai vaiai a he ae ie. F exae [3] c e a 3D head +
102e374347698fe5404e1d83f441630b1abf62d9Facial Image Analysis for Fully-Automatic +
Prediction of Difficult Endotracheal Intubation +
100641ed8a5472536dde53c1f50fa2dd2d4e9be9Visual Attributes for Enhanced Human-Machine Communication* +
10195a163ab6348eef37213a46f60a3d87f289c5
10e704c82616fb5d9c48e0e68ee86d4f83789d96
101569eeef2cecc576578bd6500f1c2dcc0274e2Multiaccuracy: Black-Box Post-Processing for Fairness in +
Classification +
James Zou +
106732a010b1baf13c61d0994552aee8336f8c85Expanded Parts Model for Semantic Description +
of Humans in Still Images +
10e70a34d56258d10f468f8252a7762950830d2b
102b27922e9bd56667303f986404f0e1243b68abWang et al. Appl Inform (2017) 4:13 +
DOI 10.1186/s40535-017-0042-5 +
RESEARCH +
Multiscale recurrent regression networks +
for face alignment +
Open Access +
*Correspondence: +
3 State Key Lab of Intelligent +
Technologies and Systems, +
Beijing 100084, People’s +
Republic of China +
Full list of author information +
is available at the end of the +
article +
10fcbf30723033a5046db791fec2d3d286e34daaOn-Line Cursive Handwriting Recognition: A Survey of Methods +
and Performances +
*Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM) , 81310 +
Skudai, Johor, Malaysia. +
108b2581e07c6b7ca235717c749d45a1fa15bb24Using Stereo Matching with General Epipolar +
Geometry for 2D Face Recognition +
across Pose +
10d334a98c1e2a9e96c6c3713aadd42a557abb8bScene Text Recognition using Part-based Tree-structured Character Detection +
State Key Laboratory of Management and Control for Complex Systems, CASIA, Beijing, China +
192723085945c1d44bdd47e516c716169c06b7c0This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation +
Vision and Attention Theory Based Sampling +
for Continuous Facial Emotion Recognition +
Ninad S. Thakoor, Member, IEEE +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 +
25 +
26 +
27 +
28 +
29 +
30 +
31 +
32 +
33 +
34 +
35 +
36 +
37 +
19fb5e5207b4a964e5ab50d421e2549ce472baa8International Conference on Computer Systems and Technologies - CompSysTech’14 +
Online Emotional Facial Expression Dictionary +
Léon Rothkrantz +
1962e4c9f60864b96c49d85eb897141486e9f6d1Neural Comput & Applic (2011) 20:565–573 +
DOI 10.1007/s00521-011-0577-7 +
O R I G I N A L A R T I C L E +
Locality preserving embedding for face and handwriting digital +
recognition +
Received: 3 December 2008 / Accepted: 11 March 2011 / Published online: 1 April 2011 +
Ó Springer-Verlag London Limited 2011 +
supervised manifold +
the local sub-manifolds. +
19af008599fb17bbd9b12288c44f310881df951cDiscriminative Local Sparse Representations for +
Robust Face Recognition +
19296e129c70b332a8c0a67af8990f2f4d4f44d1Metric Learning Approaches for Face Identification +
Is that you? +
M. Guillaumin, J. Verbeek and C. Schmid +
LEAR team, INRIA Rhˆone-Alpes, France +
Supplementary Material +
19666b9eefcbf764df7c1f5b6938031bcf777191Group Component Analysis for Multi-block Data: +
Common and Individual Feature Extraction +
190b3caa2e1a229aa68fd6b1a360afba6f50fde4
19c0c7835dba1a319b59359adaa738f0410263e8228 +
Natural Image Statistics and +
Low-Complexity Feature Selection +
19808134b780b342e21f54b60095b181dfc7a600
19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9FaceNet: A Unified Embedding for Face Recognition and Clustering +
Google Inc. +
Google Inc. +
Google Inc. +
197c64c36e8a9d624a05ee98b740d87f94b4040cRegularized Greedy Column Subset Selection +
aDepartment of Computer Systems, Universidad Polit´ecnica de Madrid +
bDepartment of Applied Mathematics, Universidad Polit´ecnica de Madrid +
19d4855f064f0d53cb851e9342025bd8503922e2Learning SURF Cascade for Fast and Accurate Object Detection +
Intel Labs China +
19eb486dcfa1963c6404a9f146c378fc7ae3a1df
4c6daffd092d02574efbf746d086e6dc0d3b1e91
4c6e1840451e1f86af3ef1cb551259cb259493baHAND POSTURE DATASET CREATION FOR GESTURE +
RECOGNITION +
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +
Campus Universitario de Tafira, 35017 Gran Canaria, Spain +
Departamento de E.I.O. y Computacion +
38271 Universidad de La Laguna, Spain +
Keywords: +
Image understanding, Gesture recognition, Hand dataset. +
4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc
4c815f367213cc0fb8c61773cd04a5ca8be2c959978-1-4244-4296-6/10/$25.00 ©2010 IEEE +
2470 +
ICASSP 2010 +
4c4236b62302957052f1bbfbd34dbf71ac1650ecSEMI-SUPERVISED FACE RECOGNITION WITH LDA SELF-TRAINING +
Multimedia Communications Department, EURECOM +
2229 Route des Crêtes , BP 193, F-06560 Sophia-Antipolis Cedex, France +
2661f38aaa0ceb424c70a6258f7695c28b97238aIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012 +
1027 +
Multilayer Architectures for Facial +
Action Unit Recognition +
2609079d682998da2bc4315b55a29bafe4df414eON RANK AGGREGATION FOR FACE RECOGNITION FROM VIDEOS +
IIIT-Delhi, India +
26a72e9dd444d2861298d9df9df9f7d147186bcdDOI 10.1007/s00138-016-0768-4 +
ORIGINAL PAPER +
Collecting and annotating the large continuous action dataset +
Received: 18 June 2015 / Revised: 18 April 2016 / Accepted: 22 April 2016 / Published online: 21 May 2016 +
© The Author(s) 2016. This article is published with open access at Springerlink.com +
265af79627a3d7ccf64e9fe51c10e5268fee2aae1817 +
A Mixture of Transformed Hidden Markov +
Models for Elastic Motion Estimation +
267c6e8af71bab68547d17966adfaab3b4711e6b
26a89701f4d41806ce8dbc8ca00d901b68442d45
26ad6ceb07a1dc265d405e47a36570cb69b2ace6RESEARCH AND EXPLOR ATORY +
DEVELOPMENT DEPARTMENT +
REDD-2015-384 +
Neural Correlates of Cross-Cultural +
How to Improve the Training and Selection for +
Military Personnel Involved in Cross-Cultural +
Operating Under Grant #N00014-12-1-0629/113056 +
Adaptation +
September, 2015 +
Interactions +
Prepared for: +
Office of Naval Research +
26e570049aaedcfa420fc8c7b761bc70a195657cJ Sign Process Syst +
DOI 10.1007/s11265-017-1276-0 +
Hybrid Facial Regions Extraction for Micro-expression +
Recognition System +
Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017 +
© Springer Science+Business Media, LLC 2017 +
21ef129c063bad970b309a24a6a18cbcdfb3aff5POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Dr J.-M. Vesin, président du juryProf. J.-Ph. Thiran, Prof. D. Sander, directeurs de thèseProf. M. F. Valstar, rapporteurProf. H. K. Ekenel, rapporteurDr S. Marcel, rapporteurIndividual and Inter-related Action Unit Detection in Videos for Affect RecognitionTHÈSE NO 6837 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 19 FÉVRIER 2016À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 5PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAnıl YÜCE
218b2c5c9d011eb4432be4728b54e39f366354c1Enhancing Training Collections for Image +
Annotation: An Instance-Weighted Mixture +
Modeling Approach +
21e828071249d25e2edaca0596e27dcd63237346
2162654cb02bcd10794ae7e7d610c011ce0fb51b4697 +
978-1-4799-5751-4/14/$31.00 ©2014 IEEE +
1http://www.skype.com/ +
2http://www.google.com/hangouts/ +
tification, sparse coding +
21f3c5b173503185c1e02a3eb4e76e13d7e9c5bcm a s s a c h u s e t t s i n s t i t u t e o f +
t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y +
Rotation Invariant Real-time +
Face Detection and +
Recognition System +
AI Memo 2001-010 +
CBCL Memo 197 +
May 31, 2001 +
© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f +
t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u +
21bd9374c211749104232db33f0f71eab4df35d5Integrating Facial Makeup Detection Into +
Multimodal Biometric User Verification System +
CuteSafe Technology Inc. +
Gebze, Kocaeli, Turkey +
Eurecom Digital Security Department +
06410 Biot, France +
213a579af9e4f57f071b884aa872651372b661fdInt J Comput Vis +
DOI 10.1007/s11263-013-0672-6 +
Automatic and Efficient Human Pose Estimation for Sign +
Language Videos +
Received: 4 February 2013 / Accepted: 29 October 2013 +
© Springer Science+Business Media New York 2013 +
21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1978-1-4673-2533-2/12/$26.00 ©2012 IEEE +
1437 +
ICIP 2012 +
4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27Topological Principal Component Analysis for +
face encoding and recognition +
Juan J. Villanueva +
Computer Vision Center and Departament d’Inform(cid:18)atica, Edi(cid:12)ci O, Universitat +
Aut(cid:18)onoma de Barcelona  , Cerdanyola, Spain +
4da735d2ed0deeb0cae4a9d4394449275e316df2Gothenburg, Sweden, June 19-22, 2016 +
978-1-5090-1820-8/16/$31.00 ©2016 IEEE +
1410 +
4d530a4629671939d9ded1f294b0183b56a513efInternational Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012 +
Facial Expression Classification Method Based on Pseudo +
Zernike Moment and Radial Basis Function Network +
+
4d2975445007405f8cdcd74b7fd1dd547066f9b8Image and Video Processing +
for Affective Applications +
4df889b10a13021928007ef32dc3f38548e5ee56
4d423acc78273b75134e2afd1777ba6d3a398973
4db9e5f19366fe5d6a98ca43c1d113dac823a14dCombining Crowdsourcing and Face Recognition to Identify Civil War Soldiers +
Are 1,000 Features Worth A Picture? +
Department of Computer Science and Center for Human-Computer Interaction +
Virginia Tech, Arlington, VA, USA +
4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41
4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
2352 +
ICASSP 2017 +
4d90bab42806d082e3d8729067122a35bbc15e8d
4d6ad0c7b3cf74adb0507dc886993e603c863e8cHuman Activity Recognition Based on Wearable +
Sensor Data: A Standardization of the +
State-of-the-Art +
Smart Surveillance Interest Group, Computer Science Department +
Universidade Federal de Minas Gerais, Brazil +
4d0ef449de476631a8d107c8ec225628a67c87f9© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE +
must be obtained for all other uses, in any current or future media, including +
reprinting/republishing this material for advertising or promotional purposes, +
creating new collective works, for resale or redistribution to servers or lists, or +
reuse of any copyrighted component of this work in other works. +
Pre-print of article that appeared at BTAS 2010. +
The published article can be accessed from: +
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517 +
4d47261b2f52c361c09f7ab96fcb3f5c22cafb9fDeep multi-frame face super-resolution +
Evgeniya Ustinova, Victor Lempitsky +
October 17, 2017 +
75879ab7a77318bbe506cb9df309d99205862f6cAnalysis Of Emotion Recognition From Facial +
Expressions Using Spatial And Transform Domain +
Methods +
7574f999d2325803f88c4915ba8f304cccc232d1Transfer Learning For Cross-Dataset Recognition: A Survey +
This paper summarises and analyses the cross-dataset recognition transfer learning techniques with the +
emphasis on what kinds of methods can be used when the available source and target data are presented +
in different forms for boosting the target task. This paper for the first time summarises several transferring +
criteria in details from the concept level, which are the key bases to guide what kind of knowledge to transfer +
between datasets. In addition, a taxonomy of cross-dataset scenarios and problems is proposed according the +
properties of data that define how different datasets are diverged, thereby review the recent advances on +
each specific problem under different scenarios. Moreover, some real world applications and corresponding +
commonly used benchmarks of cross-dataset recognition are reviewed. Lastly, several future directions are +
identified. +
Additional Key Words and Phrases: Cross-dataset, transfer learning, domain adaptation +
1. INTRODUCTION +
It has been explored how human would transfer learning in one context to another +
similar context [Woodworth and Thorndike 1901; Perkins et al. 1992] in the field of +
Psychology and Education. For example, learning to drive a car helps a person later +
to learn more quickly to drive a truck, and learning mathematics prepares students to +
study physics. The machine learning algorithms are mostly inspired by human brains. +
However, most of them require a huge amount of training examples to learn a new +
model from scratch and fail to apply knowledge learned from previous domains or +
tasks. This may be due to that a basic assumption of statistical learning theory is +
that the training and test data are drawn from the same distribution and belong to +
the same task. Intuitively, learning from scratch is not realistic and practical, because +
it violates how human learn things. In addition, manually labelling a large amount +
of data for new domain or task is labour extensive, especially for the modern “data- +
hungry” and “data-driven” learning techniques (i.e. deep learning). However, the big +
data era provides a huge amount available data collected for other domains and tasks. +
Hence, how to use the previously available data smartly for the current task with +
scarce data will be beneficial for real world applications. +
To reuse the previous knowledge for current tasks, the differences between old data +
and new data need to be taken into account. Take the object recognition as an ex- +
ample. As claimed by Torralba and Efros [2011], despite the great efforts of object +
datasets creators, the datasets appear to have strong build-in bias caused by various +
factors, such as selection bias, capture bias, category or label bias, and negative set +
bias. This suggests that no matter how big the dataset is, it is impossible to cover +
the complexity of the real visual world. Hence, the dataset bias needs to be consid- +
ered before reusing data from previous datasets. Pan and Yang [2010] summarise that +
the differences between different datasets can be caused by domain divergence (i.e. +
distribution shift or feature space difference) or task divergence (i.e. conditional dis- +
tribution shift or label space difference), or both. For example, in visual recognition, +
the distributions between the previous and current data can be discrepant due to the +
different environments, lighting, background, sensor types, resolutions, view angles, +
and post-processing. Those external factors may cause the distribution divergence or +
even feature space divergence between different domains. On the other hand, the task +
divergence between current and previous data is also ubiquitous. For example, it is +
highly possible that an animal species that we want to recognize have not been seen +
ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. +
75e9a141b85d902224f849ea61ab135ae98e7bfb
75503aff70a61ff4810e85838a214be484a674baImproved Facial Expression Recognition via Uni-Hyperplane Classification +
S.W. Chew∗, S. Lucey†, P. Lucey‡, S. Sridharan∗, and J.F. Cohn‡ +
75cd81d2513b7e41ac971be08bbb25c63c37029a
75e5ba7621935b57b2be7bf4a10cad66a9c445b9
75859ac30f5444f0d9acfeff618444ae280d661dMultibiometric Cryptosystems based on Feature +
Level Fusion +
758d7e1be64cc668c59ef33ba8882c8597406e53IEEE TRANSACTIONS ON AFFECTIVE COMPUTING +
AffectNet: A Database for Facial Expression, +
Valence, and Arousal Computing in the Wild +
754f7f3e9a44506b814bf9dc06e44fecde599878Quantized Densely Connected U-Nets for +
Efficient Landmark Localization +
75249ebb85b74e8932496272f38af274fbcfd696Face Identification in Large Galleries +
Smart Surveillance Interest Group, Department of Computer Science +
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +
81a142c751bf0b23315fb6717bc467aa4fdfbc92978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
1767 +
ICASSP 2017 +
8147ee02ec5ff3a585dddcd000974896cb2edc53Angular Embedding: +
A Robust Quadratic Criterion +
Stella X. Yu, Member, +
IEEE +
8199803f476c12c7f6c0124d55d156b5d91314b6The iNaturalist Species Classification and Detection Dataset +
1Caltech +
2Google +
3Cornell Tech +
4iNaturalist +
81831ed8e5b304e9d28d2d8524d952b12b4cbf55
81b2a541d6c42679e946a5281b4b9dc603bc171cUniversit¨at Ulm | 89069 Ulm | Deutschland +
Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +
Institut f¨ur Neuroinformatik +
Direktor: Prof. Dr. G¨unther Palm +
Semi-Supervised Learning with Committees: +
Exploiting Unlabeled Data Using Ensemble +
Learning Algorithms +
Dissertation zur Erlangung des Doktorgrades +
Doktor der Naturwissenschaften (Dr. rer. nat.) +
der Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +
der Universit¨at Ulm +
vorgelegt von +
aus Kairo, ¨Agypten +
Ulm, Deutschland +
2010 +
8160b3b5f07deaa104769a2abb7017e9c031f1c1683 +
Exploiting Discriminant Information in Nonnegative +
Matrix Factorization With Application +
to Frontal Face Verification +
816eff5e92a6326a8ab50c4c50450a6d02047b5efLRR: Fast Low-Rank Representation Using +
Frobenius Norm +
Low Rank Representation (LRR) intends to find the representation +
with lowest-rank of a given data set, which can be formulated as a +
rank minimization problem. Since the rank operator is non-convex and +
discontinuous, most of the recent works use the nuclear norm as a convex +
relaxation. This letter theoretically shows that under some conditions, +
Frobenius-norm-based optimization problem has an unique solution that +
is also a solution of the original LRR optimization problem. In other +
words, it is feasible to apply Frobenius-norm as a surrogate of the +
nonconvex matrix rank function. This replacement will largely reduce the +
time-costs for obtaining the lowest-rank solution. Experimental results +
show that our method (i.e., fast Low Rank Representation, fLRR), +
performs well in terms of accuracy and computation speed in image +
clustering and motion segmentation compared with nuclear-norm-based +
LRR algorithm. +
Introduction: Given a data set X ∈ Rm×n(m < n) composed of column +
vectors, let A be a data set composed of vectors with the same dimension +
as those in X. Both X and A can be considered as matrices. A linear +
representation of X with respect to A is a matrix Z that satisfies the +
equation X = AZ. The data set A is called a dictionary. In general, this +
linear matrix equation will have infinite solutions, and any solution can be +
considered to be a representation of X associated with the dictionary A. To +
obtain an unique Z and explore the latent structure of the given data set, +
various assumptions could be enforced over Z. +
Liu et al. recently proposed Low Rank Representation (LRR) [1] by +
assuming that data are approximately sampled from an union of low-rank +
subspaces. Mathematically, LRR aims at solving +
min rank(Z) +
s.t. X = AZ, +
(1) +
where rank(Z) could be defined as the number of nonzero eigenvalues of +
the matrix Z. Clearly, (1) is non-convex and discontinuous, whose convex +
relaxation is as follows, +
min kZk∗ +
s.t. X = AZ, +
(2) +
where kZk∗ is the nuclear norm, which is a convex and continuous +
optimization problem. +
Considering the possible corruptions, the objective function of LRR is +
min kZk∗ + λkEkp +
s.t. X = AZ + E, +
(3) +
where k · kp could be ℓ1-norm for describing sparse corruption or ℓ2,1- +
norm for characterizing sample-specified corruption. +
The above nuclear-norm-based optimization problems are generally +
solved using Augmented Lagrange Multiplier algorithm (ALM) [2] which +
requires repeatedly performing Single Value Decomposition (SVD) over +
Z. Hence, this optimization program is inefficient. +
Beyond the nuclear-norm, do other norms exist that can be used as +
a surrogates for rank-minimization problem in LRR? Can we develop +
a fast algorithm to calculate LRR? This letter addresses these problems +
by theoretically showing the equivalence between the solutions of a +
Frobenius-norm-based problem and the original LRR problem. And we +
further develop fast Low Rank Representation (fLRR) based on the +
theoretical results. +
Theoretical Analysis: In the following analyses, Theorem 1 and +
Theorem 3 prove that Frobenius-norm-based problem is a surrogate of +
the rank-minimization problem of LRR in the case of clean data and +
corrupted ones, respectively. Theorem 2 shows that our Frobenius-norm- +
based method could produce a block-diagonal Z under some conditions. +
This property is helpful to subspace clustering. +
Let A ∈ Rm×n be a matrix with rank r. The full SVD and skinny +
SVD of A are A = U ΣV T and A = UrΣrV T +
r , where U and V are two +
orthogonal matrices with the size of m × m and n × n, respectively. In +
addition, Σ is an m × n rectangular diagonal matrix, its diagonal elements +
are nonnegative real numbers. Σr is a r × r diagonal matrix with singular +
values located on the diagonal in decreasing order, Ur and Vr consist of the +
first r columns of U and V , respectively. Clearly, Ur and Vr are column +
orthogonal matrices, i.e., U T +
r Vr = Ir, where Ir denotes the +
r Ur = Ir, V T +
identity matrix with the size of r × r. The pseudoinverse of A is defined +
by A† = VrΣ−1 +
r U T +
r . +
Given a matrix M ∈ Rm×n, the Frobenius norm of M is defined by +
kM kF =ptrace (M T M ) =qPmin{m,n} +
value of M . Clearly, kM kF = 0 if and only if M = 0. +
i=1 +
σ2 +
i , where σi is a singular +
Lemma 1: Suppose P is a column orthogonal matrix, i.e., P T P = I. Then, +
kP M kF = kM kF . +
Lemma 2: For the matrices M and N with same number of columns, it +
holds that +
= kM k2 +
F + kN k2 +
F . +
(4) +
N (cid:21)(cid:13)(cid:13)(cid:13)(cid:13) +
(cid:13)(cid:13)(cid:13)(cid:13) +
(cid:20) M +
The proofs of the above two lemmas are trivial. +
Theorem 1: +
minimization problem +
Suppose +
that X ∈ span{A}, +
the Frobenius norm +
min kZkF +
s.t. X = AZ, +
(5) +
has an unique solution Z ∗ = A†X which is also the lowest-rank solution +
of LRR in terms of (1). +
Proof: Let the full and skinny SVDs of A be A = U ΣV T and A = +
r U T +
UrΣrV T +
r . +
r , respectively. Then, the pseudoinverse of A is A† = VrΣ−1 +
Defining Vc by V T =(cid:20) V T +
V T +
(cid:21) and V T +
c Vr = 0. Moreover, it can be easily +
checked that Z ∗ satisfies X = AZ ∗ owing to X ∈ span{A}. +
To prove that Z ∗ is the unique solution of the optimization problem +
(5), two steps are required. First, we will prove that, for any solution Z of +
X = AZ, it must hold that kZkF ≥ kZ ∗kF . Using Lemma 1, we have +
kZkF = (cid:13)(cid:13)(cid:13)(cid:13) +
= (cid:13)(cid:13)(cid:13)(cid:13) +
V T +
(cid:20) V T +
(cid:20) V T +
(cid:21) [Z ∗ + (Z − Z ∗)](cid:13)(cid:13)(cid:13)(cid:13)F +
c (Z − Z ∗) (cid:21)(cid:13)(cid:13)(cid:13)(cid:13)F +
r (Z − Z ∗) +
r Z ∗ + V T +
c Z ∗ + V T +
V T +
As A (Z − Z ∗) = 0, +
r (Z − Z ∗) = 0. Denote B = Σ−1 +
V T +
V T +
c Vr = 0, we have V T +
i.e., UrΣrV T +
r U T +
c VrB = 0. Then, +
r (Z − Z ∗) = 0, +
r X, +
follows that +
then Z ∗ = VrB. Because +
it +
c Z ∗ = V T +
(cid:20) +
kZkF =(cid:13)(cid:13)(cid:13)(cid:13) +
V T +
c (Z − Z ∗) (cid:21)(cid:13)(cid:13)(cid:13)(cid:13)F +
By Lemma 2, +
kZk2 +
F = kBk2 +
F + kV T +
c (Z − Z ∗)k2 +
F , +
then, kZkF ≥ kBkF . +
By Lemma 1, +
kBkF = kVrBkF = kZ ∗kF , +
(6) +
(7) +
(8) +
thus, kZkF ≥ kZ ∗kF for any solution Z of X = AZ. +
In the second step, we will prove that if there exists another solution Z +
of (5), Z = Z ∗ must hold. Clearly, Z is a solution of (5) which implies that +
X = AZ and kZkF = kZ ∗kF . From (7) and (8), +
kZk2 +
F + kV T +
F = kZ ∗k2 +
Since kZkF = kZ ∗kF , +
c (Z − Z ∗) k2 +
F . +
c (Z − Z ∗) kF = 0, +
r (Z − Z ∗) = 0, this gives +
and so V T +
V T (Z − Z ∗) = 0. Because V is an orthogonal matrix, it must hold +
that Z = Z ∗. The above proves that Z ∗ is the unique solution of the +
optimization problem (5). +
c (Z − Z ∗) = 0. Together with V T +
it must hold that kV T +
(9) +
Next, we prove that Z ∗ is also a solution of the LRR optimization +
problem (1). Clearly, for any solution Z of X = AZ, +
it holds that +
rank(Z) ≥ rank(AZ) = rank(X). On the other hand, rank(Z ∗) = +
rank(A†X) ≤ rank(X). Thus, rank(Z ∗) = rank(X). This shows that +
Z ∗ is the lowest-rank solution of the LRR optimization problem (1). The +
proof is complete. +
(cid:4) +
In the following, Theorem 2 will show that the optimal Z of (5) will +
be block-diagonal if the data are sampled from a set of independent +
subspaces {S1, S2, · · · , Sk}, where the dimensionality of Si is ri and +
i = {1, 2, · · · , k}. Note that, {S1, S2, · · · , Sk} are independent if and +
only if SiTPj6=i Sj = {0}. Suppose that X = [X1, X2, · · · , Xk] and +
A = [A1, A2, · · · , Ak], where Ai and Xi contain mi and ni data points +
ELECTRONICS LETTERS 12th December 2011 Vol. 00 No. 00 +
8149c30a86e1a7db4b11965fe209fe0b75446a8cSemi-Supervised Multiple Instance Learning based +
Domain Adaptation for Object Detection +
Siemens Corporate Research +
Siemens Corporate Research +
Siemens Corporate Research +
Amit Kale +
Bangalore +
Bangalore +
{chhaya.methani, +
Bangalore +
rahul.thota, +
86b69b3718b9350c9d2008880ce88cd035828432Improving Face Image Extraction by Using Deep Learning Technique +
National Library of Medicine, NIH, Bethesda, MD +
86904aee566716d9bef508aa9f0255dc18be3960Learning Anonymized Representations with +
Adversarial Neural Networks +
867e709a298024a3c9777145e037e239385c0129 INTERNATIONAL JOURNAL +
OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 2 / FEB 2017 +
ANALYTICAL REPRESENTATION OF UNDERSAMPLED FACE +
RECOGNITION APPROACH BASED ON DICTIONARY LEARNING +
AND SPARSE REPRESENTATION +
(M.Tech)1, Assistant Professor2, Assistant Professor3, HOD of CSE Department4 +
86c053c162c08bc3fe093cc10398b9e64367a100Cascade of Forests for Face Alignment +
86b985b285c0982046650e8d9cf09565a939e4f9
861802ac19653a7831b314cd751fd8e89494ab12Time-of-Flight and Depth Imaging. Sensors, Algorithms +
and Applications: Dagstuhl Seminar 2012 and GCPR +
Workshop on Imaging New Modalities (Lecture ... Vision, +
Pattern Recognition, and Graphics) +
Publisher: Springer; 2013 edition +
(November 8, 2013) +
Language: English +
Pages: 320 +
ISBN: 978-3642449635 +
Size: 20.46 MB +
Format: PDF / ePub / Kindle +
Cameras for 3D depth imaging, using +
either time-of-flight (ToF) or +
structured light sensors, have received +
a lot of attention recently and have +
been improved considerably over the +
last few years. The present +
techniques... +
861b12f405c464b3ffa2af7408bff0698c6c9bf0International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 +
Volume: 3 Issue: 5 +
3337 - 3342 +
_______________________________________________________________________________________________ +
An Effective Technique for Removal of Facial Dupilcation by SBFA +
Computer Department, +
GHRCEM, +
Pune, India +
Computer Department, +
GHRCEM, +
Pune, India +
86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6The Kinetics Human Action Video Dataset +
Jo˜ao Carreira +
Paul Natsev +
86b105c3619a433b6f9632adcf9b253ff98aee871­4244­0367­7/06/$20.00 ©2006 IEEE +
1013 +
ICME 2006 +
86b51bd0c80eecd6acce9fc538f284b2ded5bcdd
8699268ee81a7472a0807c1d3b1db0d0ab05f40d
869583b700ecf33a9987447aee9444abfe23f343
72a00953f3f60a792de019a948174bf680cd6c9fStat Comput (2007) 17:57–70 +
DOI 10.1007/s11222-006-9004-9 +
Understanding the role of facial asymmetry in human face +
identification +
Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007 +
C(cid:1) Springer Science + Business Media, LLC 2007 +
726b8aba2095eef076922351e9d3a724bb71cb51
721b109970bf5f1862767a1bec3f9a79e815f79a
72ecaff8b57023f9fbf8b5b2588f3c7019010ca7Facial Keypoints Detection +
72591a75469321074b072daff80477d8911c3af3Group Component Analysis for Multi-block Data: +
Common and Individual Feature Extraction +
729dbe38538fbf2664bc79847601f00593474b05
729a9d35bc291cc7117b924219bef89a864ce62cRecognizing Material Properties from Images +
721d9c387ed382988fce6fa864446fed5fb23173
72c0c8deb9ea6f59fde4f5043bff67366b86bd66Age progression in Human Faces : A Survey +
445461a34adc4bcdccac2e3c374f5921c93750f8Emotional Expression Classification using Time-Series Kernels∗ +
4414a328466db1e8ab9651bf4e0f9f1fe1a163e41164 +
© EURASIP, 2010 ISSN 2076-1465 +
18th European Signal Processing Conference (EUSIPCO-2010) +
INTRODUCTION +
442f09ddb5bb7ba4e824c0795e37cad754967208
446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03A Pose-Adaptive Constrained Local Model For +
Accurate Head Pose Tracking +
Eikeo +
11 rue Leon Jouhaux, +
F-75010, Paris, France +
Sorbonne Universit´es +
UPMC Univ Paris 06 +
CNRS UMR 7222, ISIR +
F-75005, Paris, France +
Eikeo +
11 rue Leon Jouhaux, +
F-75010, Paris, France +
44b1399e8569a29eed0d22d88767b1891dbcf987This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Learning Multi-modal Latent Attributes +
446dc1413e1cfaee0030dc74a3cee49a47386355Recent Advances in Zero-shot Recognition +
44a3ec27f92c344a15deb8e5dc3a5b3797505c06A Taxonomy of Part and Attribute Discovery +
Techniques +
44aeda8493ad0d44ca1304756cc0126a2720f07bFace Alive Icons +
449b1b91029e84dab14b80852e35387a9275870e
44078d0daed8b13114cffb15b368acc467f96351
44dd150b9020b2253107b4a4af3644f0a51718a3An Analysis of the Sensitivity of Active Shape +
Models to Initialization when Applied to Automatic +
Facial Landmarking +
447d8893a4bdc29fa1214e53499ffe67b28a6db5
44f65e3304bdde4be04823fd7ca770c1c05c2cefSIViP +
DOI 10.1007/s11760-009-0125-4 +
ORIGINAL PAPER +
On the use of phase of the Fourier transform for face recognition +
under variations in illumination +
Received: 17 November 2008 / Revised: 20 February 2009 / Accepted: 7 July 2009 +
© Springer-Verlag London Limited 2009 +
44eb4d128b60485377e74ffb5facc0bf4ddeb022
448ed201f6fceaa6533d88b0b29da3f36235e131
447a5e1caf847952d2bb526ab2fb75898466d1bcUnder review as a conference paper at ICLR 2018 +
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +
INATIVE AND MINIMUM INFORMATION LOSS PRIORS +
Anonymous authors +
Paper under double-blind review +
2a7bca56e2539c8cf1ae4e9da521879b7951872dExploiting Unrelated Tasks in Multi-Task Learning +
Anonymous Author 1 +
Unknown Institution 1 +
Anonymous Author 2 +
Unknown Institution 2 +
Anonymous Author 3 +
Unknown Institution 3 +
2aaa6969c03f435b3ea8431574a91a0843bd320b
2ad7cef781f98fd66101fa4a78e012369d064830
2ad29b2921aba7738c51d9025b342a0ec770c6ea
2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924
2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3cRobust Registration and Geometry Estimation from Unstructured +
Facial Scans +
2ae139b247057c02cda352f6661f46f7feb38e45Combining Modality Specific Deep Neural Networks for +
Emotion Recognition in Video +
1École Polytechique de Montréal, Université de Montréal, Montréal, Canada +
2Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada +
2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83121 +
The Effect of Computer-Generated Descriptions +
on Photo-Sharing Experiences of People With +
Visual Impairments +
Like sighted people, visually impaired people want to share photographs on social networking services, but +
find it difficult to identify and select photos from their albums. We aimed to address this problem by +
incorporating state-of-the-art computer-generated descriptions into Facebook’s photo-sharing feature. We +
interviewed 12 visually impaired participants to understand their photo-sharing experiences and designed a +
photo description feature for the Facebook mobile application. We evaluated this feature with six +
participants in a seven-day diary study. We found that participants used the descriptions to recall and +
organize their photos, but they hesitated to upload photos without a sighted person’s input. In addition to +
basic information about photo content, participants wanted to know more details about salient objects and +
people, and whether the photos reflected their personal aesthetic. We discuss these findings from the lens of +
self-disclosure and self-presentation theories and propose new computer vision research directions that will +
better support visual content sharing by visually impaired people. +
CCS Concepts: • Information interfaces and presentations → Multimedia and information systems; • +
Social and professional topics → People with disabilities +
KEYWORDS +
Visual impairments; computer-generated descriptions; SNSs; photo sharing; self-disclosure; self-presentation +
ACM Reference format: +
The Effect of Computer-Generated Descriptions On Photo-Sharing Experiences of People With Visual +
Impairments. Proc. ACM Hum.-Comput. Interact. 1, CSCW. 121 (November 2017), 22 pages. +
DOI: 10.1145/3134756 +
1 INTRODUCTION +
Sharing memories and experiences via photos is a common way to engage with others on social networking +
services (SNSs) [39,46,51]. For instance, Facebook users uploaded more than 350 million photos a day [24] +
and Twitter, which initially supported only text in tweets, now has more than 28.4% of tweets containing +
images [39]. Visually impaired people (both blind and low vision) have a strong presence on SNS and are +
interested in sharing photos [50]. They take photos for the same reasons that sighted people do: sharing +
daily moments with their sighted friends and family [30,32]. A prior study showed that visually impaired +
people shared a relatively large number of photos on Facebook—only slightly less than their sighted +
counterparts [50]. +
+
PACM on Human-Computer Interaction, Vol. 1, No. 2, Article 121. Publication date: November 2017 +
2a02355c1155f2d2e0cf7a8e197e0d0075437b19
2aea27352406a2066ddae5fad6f3f13afdc90be9
2ad0ee93d029e790ebb50574f403a09854b65b7eAcquiring Linear Subspaces for Face +
Recognition under Variable Lighting +
David Kriegman, Senior Member, IEEE +
2ff9618ea521df3c916abc88e7c85220d9f0ff06Facial Tic Detection Using Computer Vision +
Christopher D. Leveille +
March 20, 2014 +
2fda461869f84a9298a0e93ef280f79b9fb76f94OpenFace: an open source facial behavior analysis toolkit +
Tadas Baltruˇsaitis +
2fdce3228d384456ea9faff108b9c6d0cf39e7c7
2f7e9b45255c9029d2ae97bbb004d6072e70fa79Noname manuscript No. +
(will be inserted by the editor) +
cvpaper.challenge in 2015 +
A review of CVPR2015 and DeepSurvey +
Nakamura +
Received: date / Accepted: date +
2f489bd9bfb61a7d7165a2f05c03377a00072477JIA, YANG: STRUCTURED SEMI-SUPERVISED FOREST +
Structured Semi-supervised Forest for +
Facial Landmarks Localization with Face +
Mask Reasoning +
1 Department of Computer Science +
The Univ. of Hong Kong, HK +
2 School of EECS +
Queen Mary Univ. of London, UK +
Angran Lin1 +
2f16459e2e24dc91b3b4cac7c6294387d4a0eacf
2f59f28a1ca3130d413e8e8b59fb30d50ac020e2Children Gender Recognition Under Unconstrained +
Conditions Based on Contextual Information +
Joint Research Centre, European Commission, Ispra, Italy +
2f88d3189723669f957d83ad542ac5c2341c37a5Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018 +
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +
Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021.
2fda164863a06a92d3a910b96eef927269aeb730Names and Faces in the News +
Computer Science Division +
U.C. Berkeley +
Berkeley, CA 94720 +
2fa057a20a2b4a4f344988fee0a49fce85b0dc33
2f8ef26bfecaaa102a55b752860dbb92f1a11dc6A Graph Based Approach to Speaker Retrieval in Talk +
Show Videos with Transcript-Based Supervision +
2f184c6e2c31d23ef083c881de36b9b9b6997ce9Polichotomies on Imbalanced Domains +
by One-per-Class Compensated Reconstruction Rule +
Integrated Research Centre, Universit´a Campus Bio-Medico of Rome, Rome, Italy +
2f9c173ccd8c1e6b88d7fb95d6679838bc9ca51d
2f8183b549ec51b67f7dad717f0db6bf342c9d02
2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475A novel approach to personal photo album representation +
and management +
Universit`a di Palermo - Dipartimento di Ingegneria Informatica +
Viale delle Scienze, 90128, Palermo, Italy +
2f882ceaaf110046e63123b495212d7d4e99f33dHigh Frequency Component Compensation based Super-resolution +
Algorithm for Face Video Enhancement +
CVRR Lab, UC San Diego, La Jolla, CA 92093, USA +
2f95340b01cfa48b867f336185e89acfedfa4d92Face Expression Recognition with a 2-Channel +
Convolutional Neural Network +

Vogt-K¨olln-Straße 30, 22527 Hamburg, Germany +
http://www.informatik.uni-hamburg.de/WTM/ +
2fea258320c50f36408032c05c54ba455d575809
2faa09413162b0a7629db93fbb27eda5aeac54caNISTIR 7674 +
Quantifying How Lighting and Focus +
Affect Face Recognition Performance +
Phillips, P. J. +
Beveridge, J. R. +
Draper, B. +
Bolme, D. +
Givens, G. H. +
Lui, Y. M. +
1 +
433bb1eaa3751519c2e5f17f47f8532322abbe6d
4300fa1221beb9dc81a496cd2f645c990a7ede53
439ac8edfa1e7cbc65474cab544a5b8c4c65d5dbSIViP (2011) 5:401–413 +
DOI 10.1007/s11760-011-0244-6 +
ORIGINAL PAPER +
Face authentication with undercontrolled pose and illumination +
Received: 15 September 2010 / Revised: 14 December 2010 / Accepted: 17 February 2011 / Published online: 7 August 2011 +
© Springer-Verlag London Limited 2011 +
43f6953804964037ff91a4f45d5b5d2f8edfe4d5Multi-Feature Fusion in Advanced Robotics Applications +
Institut für Informatik +
Technische Universität München +
D-85748 Garching, Germany +
439ec47725ae4a3660e509d32828599a495559bfFacial Expressions Tracking and Recognition: Database Protocols for Systems Validation +
and Evaluation +
43a03cbe8b704f31046a5aba05153eb3d6de4142Towards Robust Face Recognition from Video +
Image Science and Machine Vision Group +
Oak Ridge National Laboratory +
Oak Ridge, TN 37831-6010 +
43836d69f00275ba2f3d135f0ca9cf88d1209a87Ozaki et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:20 +
DOI 10.1186/s41074-017-0030-7 +
IPSJ Transactions on Computer +
Vision and Applications +
RESEARCH PAPER +
Open Access +
Effective hyperparameter optimization +
using Nelder-Mead method in deep learning +
43aa40eaa59244c233f83d81f86e12eba8d74b59
4362368dae29cc66a47114d5ffeaf0534bf0159cUACEE International Journal of Artificial Intelligence and Neural Networks ISSN:- 2250-3749 (online) +
Performance Analysis of FDA Based Face +
Recognition Using Correlation, ANN and SVM +
Department of Computer Engineering +
Department of Computer Engineering +
Department of Computer Engineering +
Anand, INDIA +
Anand, INDIA +
Anand, INDIA +
43e268c118ac25f1f0e984b57bc54f0119ded520
43476cbf2a109f8381b398e7a1ddd794b29a9a16A Practical Transfer Learning Algorithm for Face Verification +
David Wipf +
4353d0dcaf450743e9eddd2aeedee4d01a1be78bLearning Discriminative LBP-Histogram Bins +
for Facial Expression Recognition +
Philips Research, High Tech Campus 36, Eindhoven 5656 AE, The Netherlands +
437a720c6f6fc1959ba95e48e487eb3767b4e508
436d80cc1b52365ed7b2477c0b385b6fbbb51d3b
43b8b5eeb4869372ef896ca2d1e6010552cdc4d4Large-scale Supervised Hierarchical Feature Learning for Face Recognition +
Intel Labs China +
43ae4867d058453e9abce760ff0f9427789bab3a951 +
Graph Embedded Nonparametric Mutual +
Information For Supervised +
Dimensionality Reduction +
430c4d7ad76e51d83bbd7ec9d3f856043f054915
438b88fe40a6f9b5dcf08e64e27b2719940995e0Building a Classi(cid:2)cation Cascade for Visual Identi(cid:2)cation from One Example +
Computer Science, U.C. Berkeley +
Computer Science, UMass Amherst +
Computer Science, U.C. Berkeley +
43fb9efa79178cb6f481387b7c6e9b0ca3761da8Mixture of Parts Revisited: Expressive Part Interactions for Pose Estimation +
Anoop R Katti +
IIT Madras +
Chennai, India +
IIT Madras +
Chennai, India +
43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101aPobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl +
Data: 04/05/2018 16:53:32 +
U M CS +
889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7174 +
Using Support Vector Machines to Enhance the +
Performance of Bayesian Face Recognition +
8812aef6bdac056b00525f0642702ecf8d57790bA Unified Features Approach to Human Face Image +
Analysis and Interpretation +
Department of Informatics, +
Technische Universit¨at M¨unchen +
85748 Garching, Germany +
881066ec43bcf7476479a4146568414e419da804From Traditional to Modern : Domain Adaptation for +
Action Classification in Short Social Video Clips +
Center for Visual Information Technology, IIIT Hyderabad, India +
8813368c6c14552539137aba2b6f8c55f561b75fTrunk-Branch Ensemble Convolutional Neural +
Networks for Video-based Face Recognition +
883006c0f76cf348a5f8339bfcb649a3e46e2690Weakly Supervised Pain Localization using Multiple Instance Learning +
88f2952535df5859c8f60026f08b71976f8e19ecA neural network framework for face +
recognition by elastic bunch graph matching +
8818b12aa0ff3bf0b20f9caa250395cbea0e8769Fashion Conversation Data on Instagram +
∗Graduate School of Culture Technology, KAIST, South Korea +
†Department of Communication Studies, UCLA, USA +
8878871ec2763f912102eeaff4b5a2febfc22fbe3781 +
Human Action Recognition in Unconstrained +
Videos by Explicit Motion Modeling +
8855d6161d7e5b35f6c59e15b94db9fa5bbf2912COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD +
88bee9733e96958444dc9e6bef191baba4fa6efaExtending Face Identification to +
Open-Set Face Recognition +
Department of Computer Science +
Universidade Federal de Minas Gerais +
Belo Horizonte, Brazil +
88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2697 +
ICASSP 2016 +
9fa1be81d31fba07a1bde0275b9d35c528f4d0b8Identifying Persons by Pictorial and +
Contextual Cues +
Nicholas Leonard Pi¨el +
Thesis submitted for the degree of Master of Science +
Supervisor: +
April 2009 +
9f094341bea610a10346f072bf865cb550a1f1c1Recognition and Volume Estimation of Food Intake using a Mobile Device +
Sarnoff Corporation +
201 Washington Rd, +
Princeton, NJ, 08540 +
6b333b2c6311e36c2bde920ab5813f8cfcf2b67b
6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9
6b089627a4ea24bff193611e68390d1a4c3b3644CROSS-POLLINATION OF NORMALISATION +
TECHNIQUES FROM SPEAKER TO FACE +
AUTHENTICATION USING GAUSSIAN +
MIXTURE MODELS +
Idiap-RR-03-2012 +
JANUARY 2012 +
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny +
6be0ab66c31023762e26d309a4a9d0096f72a7f0Enhance Visual Recognition under Adverse +
Conditions via Deep Networks +
6b18628cc8829c3bf851ea3ee3bcff8543391819Face recognition based on subset selection via metric learning on manifold. +
1058. [doi:10.1631/FITEE.1500085] +
Face recognition based on subset +
selection via metric learning on manifold +
Key words: Face recognition, Sparse representation, Manifold structure, +
Metric learning, Subset selection +
ORCID: http://orcid.org/0000-0001-7441-4749 +
Front Inform Technol & Electron Eng
6b1b43d58faed7b457b1d4e8c16f5f7e7d819239
6b35b15ceba2f26cf949f23347ec95bbbf7bed64
6b6493551017819a3d1f12bbf922a8a8c8cc2a03Pose Normalization for Local Appearance-Based +
Face Recognition +
Computer Science Department, Universit¨at Karlsruhe (TH) +
Am Fasanengarten 5, Karlsruhe 76131, Germany +
http://isl.ira.uka.de/cvhci +
6bb630dfa797168e6627d972560c3d438f71ea99
0728f788107122d76dfafa4fb0c45c20dcf523caThe Best of Both Worlds: Combining Data-independent and Data-driven +
Approaches for Action Recognition +
071099a4c3eed464388c8d1bff7b0538c7322422FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES +
Microsoft Advanced Technology labs, Microsoft Technology and Research, Cairo, Egypt +
+
071af21377cc76d5c05100a745fb13cb2e40500f
0754e769eb613fd3968b6e267a301728f52358beTowards a Watson That Sees: Language-Guided Action Recognition for +
Robots +
0717b47ab84b848de37dbefd81cf8bf512b544acInternational Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +
International Conference on Humming Bird ( 01st March 2014) +
RESEARCH ARTICLE +
OPEN ACCESS +
Robust Face Recognition and Tagging in Visual Surveillance +
System +
0750a816858b601c0dbf4cfb68066ae7e788f05dCosFace: Large Margin Cosine Loss for Deep Face Recognition +
Tencent AI Lab +
0716e1ad868f5f446b1c367721418ffadfcf0519Interactively Guiding Semi-Supervised +
Clustering via Attribute-Based Explanations +
Virginia Tech, Blacksburg, VA, USA +
073eaa49ccde15b62425cda1d9feab0fea03a842
0726a45eb129eed88915aa5a86df2af16a09bcc1Introspective Perception: Learning to Predict Failures in Vision Systems +
38d56ddcea01ce99902dd75ad162213cbe4eaab7Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
2648 +
389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26FACIAL PARAMETER EXTRACTION SYSTEM BASED ON ACTIVE CONTOURS +
Universitat Politècnica de Catalunya, Barcelona, Spain +
380dd0ddd5d69adc52defc095570d1c22952f5cc
38679355d4cfea3a791005f211aa16e76b2eaa8dTitle +
Evolutionary cross-domain discriminative Hessian Eigenmaps +
Author(s) +
Si, S; Tao, D; Chan, KP +
Citation +
1086 +
Issued Date +
2010 +
URL +
http://hdl.handle.net/10722/127357 +
Rights +
This work is licensed under a Creative Commons Attribution- +
NonCommercial-NoDerivatives 4.0 International License.; ©2010 +
IEEE. Personal use of this material is permitted. However, +
permission to reprint/republish this material for advertising or +
promotional purposes or for creating new collective works for +
resale or redistribution to servers or lists, or to reuse any +
copyrighted component of this work in other works must be +
obtained from the IEEE. +
38682c7b19831e5d4f58e9bce9716f9c2c29c4e7International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 5 – Dec 2014 +
Movie Character Identification Using Graph Matching +
Algorithm +
M.Tech Scholar, Dept of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India. +
Associate Professor, Department of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India +
3803b91e784922a2dacd6a18f61b3100629df932Temporal Multimodal Fusion +
for Video Emotion Classification in the Wild +
Orange Labs +
Cesson-Sévigné, France +
Orange Labs +
Cesson-Sévigné, France +
Normandie Univ., UNICAEN, +
ENSICAEN, CNRS +
Caen, France +
38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7Noname manuscript No. +
(will be inserted by the editor) +
Multi-distance Support Matrix Machine +
Received: date / Accepted: date +
385750bcf95036c808d63db0e0b14768463ff4c6
384f972c81c52fe36849600728865ea50a0c46701 +
Multi-Fold Gabor, PCA and ICA Filter +
Convolution Descriptor for Face Recognition +
+
380d5138cadccc9b5b91c707ba0a9220b0f39271Deep Imbalanced Learning for Face Recognition +
and Attribute Prediction +
38861d0d3a0292c1f54153b303b0d791cbba1d50
38192a0f9261d9727b119e294a65f2e25f72d7e6
00fb2836068042c19b5197d0999e8e93b920eb9c
0077cd8f97cafd2b389783858a6e4ab7887b0b6bMAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES +
On the Reconstruction of Deep Face Templates +
00214fe1319113e6649435cae386019235474789Bachelorarbeit im Fach Informatik +
Face Recognition using +
Distortion Models +
Mathematik, Informatik und Naturwissenschaften der +
RHEINISCH-WESTFÄLISCHEN TECHNISCHEN HOCHSCHULE AACHEN +
Der Fakultät für +
Lehrstuhl für Informatik VI +
Prof. Dr.-Ing. H. Ney +
vorgelegt von: +
Matrikelnummer 252400 +
Gutachter: +
Prof. Dr.-Ing. H. Ney +
Prof. Dr. B. Leibe +
Betreuer: +
September 2009 +
0004f72a00096fa410b179ad12aa3a0d10fc853c
00f0ed04defec19b4843b5b16557d8d0ccc5bb42
0037bff7be6d463785d4e5b2671da664cd7ef746Author manuscript, published in "European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647" +
DOI : 10.1007/978-3-642-15549-9_46 +
00d9d88bb1bdca35663946a76d807fff3dc1c15fSubjects and Their Objects: Localizing Interactees for a +
Person-Centric View of Importance +
00a967cb2d18e1394226ad37930524a31351f6cfFully-adaptive Feature Sharing in Multi-Task Networks with Applications in +
Person Attribute Classification +
UC San Diego +
IBM Research +
IBM Research +
Binghamton Univeristy, SUNY +
UC San Diego +
Rogerio Feris +
IBM Research +
00a3cfe3ce35a7ffb8214f6db15366f4e79761e3Kinect for real-time emotion recognition via facial expressions. Frontiers of +
Information Technology & Electronic Engineering, 16(4):272-282. +
[doi:10.1631/FITEE.1400209] +
Using Kinect for real-time emotion +
recognition via facial expressions +
Key words: Kinect, Emotion recognition, Facial expression, Real-time +
classification, Fusion algorithm, Support vector machine (SVM) +
ORCID: http://orcid.org/0000-0002-5021-9057 +
Front Inform Technol & Electron Eng
004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4Balanced k-Means and Min-Cut Clustering +
00d94b35ffd6cabfb70b9a1d220b6823ae9154eeDiscriminative Bayesian Dictionary Learning +
for Classification +
006f283a50d325840433f4cf6d15876d475bba77756 +
Preserving Structure in Model-Free Tracking +
0059b3dfc7056f26de1eabaafd1ad542e34c2c2e
6e198f6cc4199e1c4173944e3df6f39a302cf787MORPH-II: Inconsistencies and Cleaning Whitepaper +
NSF-REU Site at UNC Wilmington, Summer 2017 +
6eaf446dec00536858548fe7cc66025b70ce20eb
6e91be2ad74cf7c5969314b2327b513532b1be09Dimensionality Reduction with Subspace Structure +
Preservation +
Department of Computer Science +
SUNY Buffalo +
Buffalo, NY 14260 +
6eba25166fe461dc388805cc2452d49f5d1cdaddPages 122.1-122.12 +
DOI: https://dx.doi.org/10.5244/C.30.122 +
6e8a81d452a91f5231443ac83e4c0a0db4579974Illumination robust face representation based on intrinsic geometrical +
information +
Soyel, H; Ozmen, B; McOwan, PW +
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET +
Conference on Image Processing (IPR 2012). The version of record is available +
http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1 +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
6ecd4025b7b5f4894c990614a9a65e3a1ac347b2International Journal on Recent and Innovation Trends in Computing and Communication +
+
ISSN: 2321-8169 +
Volume: 2 Issue: 5 +
1275– 1281 +
_______________________________________________________________________________________________ +
Automatic Naming of Character using Video Streaming for Face +
Recognition with Graph Matching +
Nivedita.R.Pandey +
Ranjan.P.Dahake +
PG Student at MET’s IOE Bhujbal Knowledge City, +
PG Student at MET’s IOE Bhujbal Knowledge City, +
Nasik, Maharashtra, India, +
Nasik, Maharashtra, India, +
6eaeac9ae2a1697fa0aa8e394edc64f32762f578
6ee2ea416382d659a0dddc7a88fc093accc2f8ee
6e3a181bf388dd503c83dc324561701b19d37df1Finding a low-rank basis in a matrix subspace +
Andr´e Uschmajew +
6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2fDeep Episodic Memory: Encoding, Recalling, and Predicting +
Episodic Experiences for Robot Action Execution +
6e911227e893d0eecb363015754824bf4366bdb7Wasserstein Divergence for GANs +
1 Computer Vision Lab, ETH Zurich, Switzerland +
2 VISICS, KU Leuven, Belgium +
6ee8a94ccba10062172e5b31ee097c846821a822Submitted 3/13; Revised 10/13; Published 12/13 +
How to Solve Classification and Regression Problems on +
High-Dimensional Data with a Supervised +
Extension of Slow Feature Analysis +
Institut f¨ur Neuroinformatik +
Ruhr-Universit¨at Bochum +
Bochum D-44801, Germany +
Editor: David Dunson +
6e379f2d34e14efd85ae51875a4fa7d7ae63a662A NEW MULTI-MODAL BIOMETRIC SYSTEM +
BASED ON FINGERPRINT AND FINGER +
VEIN RECOGNITION +
Master's Thesis +
Department of Software Engineering +
JULY-2014 +
I +
6e1802874ead801a7e1072aa870681aa2f555f351­4244­0728­1/07/$20.00 ©2007 IEEE +
I ­ 629 +
ICASSP 2007 +
6ed22b934e382c6f72402747d51aa50994cfd97bCustomized Expression Recognition for Performance-Driven +
Cutout Character Animation +
†NEC Laboratories America +
‡Snapchat +
6e93fd7400585f5df57b5343699cb7cda20cfcc2http://journalofvision.org/9/2/22/ +
Comparing a novel model based on the transferable +
belief model with humans during the recognition of +
partially occluded facial expressions +
Département de Psychologie, Université de Montréal, +
Canada +
Département de Psychologie, Université de Montréal, +
Canada +
Département de Psychologie, Université de Montréal, +
Canada +
Humans recognize basic facial expressions effortlessly. Yet, despite a considerable amount of research, this task remains +
elusive for computer vision systems. Here, we compared the behavior of one of the best computer models of facial +
expression recognition (Z. Hammal, L. Couvreur, A. Caplier, & M. Rombaut, 2007) with the behavior of human observers +
during the M. Smith, G. Cottrell, F. Gosselin, and P. G. Schyns (2005) facial expression recognition task performed on +
stimuli randomly sampled using Gaussian apertures. The modelVwhich we had to significantly modify in order to give the +
ability to deal with partially occluded stimuliVclassifies the six basic facial expressions (Happiness, Fear, Sadness, +
Surprise, Anger, and Disgust) plus Neutral from static images based on the permanent facial feature deformations and the +
Transferable Belief Model (TBM). Three simulations demonstrated the suitability of the TBM-based model to deal with +
partially occluded facial parts and revealed the differences between the facial information used by humans and by the +
model. This opens promising perspectives for the future development of the model. +
Keywords: facial features behavior, facial expressions classification, Transferable Belief Model, Bubbles +
Citation: Hammal, Z., Arguin, M., & Gosselin, F. (2009). Comparing a novel model based on the transferable belief +
http://journalofvision.org/9/2/22/, doi:10.1167/9.2.22. +
Introduction +
Facial expressions communicate information from +
which we can quickly infer the state of mind of our peers +
and adjust our behavior accordingly (Darwin, 1872). To +
illustrate, take a person like patient SM with complete +
bilateral damage to the amygdala nuclei that prevents her +
from recognizing facial expressions of fear. SM would be +
incapable of interpreting the fearful expression on the face +
of a bystander, who has encountered a furious Grizzly +
bear, as a sign of potential +
threat (Adolphs, Tranel, +
Damasio, & Damasio, 1994). +
Facial expressions are typically arranged into six +
universally recognized basic categories Happiness, Sur- +
prise, Disgust, Anger, Sadness, and Fear that are similarly +
expressed across different backgrounds and cultures +
(Cohn, 2006; Ekman, 1999; Izard, 1971, 1994). Facial +
expressions result +
from the precisely choreographed +
deformation of facial features, which are often described +
using the 46 Action Units (AUs; Ekman & Friesen, +
1978). +
Facial expression recognition and computer +
vision +
The study of human facial expressions has an impact in +
several areas of life such as art, social interaction, cognitive +
science, medicine, security, affective computing, and +
human-computer interaction (HCI). An automatic facial +
expressions classification system may contribute signifi- +
cantly to the development of all these disciplines. However, +
the development of such a system constitutes a significant +
challenge because of the many constraints that are imposed +
by its application in a real-world context (Pantic & Bartlett, +
2007; Pantic & Patras, 2006). In particular, such systems +
need to provide great accuracy and robustness without +
demanding too many interventions from the user. +
There have been major advances in computer vision +
over the past 15 years for the recognition of the six basic +
facial expressions (for reviews, see Fasel & Luettin, 2003; +
Pantic & Rothkrantz, 2000b). The main approaches can be +
divided in two classes: Model-based and fiducial points +
approaches. The model-based approach requires the +
design of a deterministic physical model that can represent +
doi: 10.1167/9.2.22 +
Received January 28, 2008; published February 26, 2009 +
ISSN 1534-7362 * ARVO +
6e12ba518816cbc2d987200c461dc907fd19f533
9ab463d117219ed51f602ff0ddbd3414217e3166Weighted Transmedia +
Relevance Feedback for +
Image Retrieval and +
Auto-annotation +
TECHNICAL +
REPORT +
N° 0415 +
December 2011 +
Project-Teams LEAR - INRIA +
and TVPA - XRCE +
9ac82909d76b4c902e5dde5838130de6ce838c16Recognizing Facial Expressions Automatically +
from Video +
1 Introduction +
Facial expressions, resulting from movements of the facial muscles, are the face +
changes in response to a person’s internal emotional states, intentions, or social +
communications. There is a considerable history associated with the study on fa- +
cial expressions. Darwin (1872) was the first to describe in details the specific fa- +
cial expressions associated with emotions in animals and humans, who argued that +
all mammals show emotions reliably in their faces. Since that, facial expression +
analysis has been a area of great research interest for behavioral scientists (Ekman, +
Friesen, and Hager, 2002). Psychological studies (Mehrabian, 1968; Ambady and +
Rosenthal, 1992) suggest that facial expressions, as the main mode for non-verbal +
communication, play a vital role in human face-to-face communication. For illus- +
tration, we show some examples of facial expressions in Fig. 1. +
Computer recognition of facial expressions has many important applications in +
intelligent human-computer interaction, computer animation, surveillance and se- +
curity, medical diagnosis, law enforcement, and awareness systems (Shan, 2007). +
Therefore, it has been an active research topic in multiple disciplines such as psy- +
chology, cognitive science, human-computer interaction, and pattern recognition. +
Meanwhile, as a promising unobtrusive solution, automatic facial expression analy- +
sis from video or images has received much attention in last two decades (Pantic and +
Rothkrantz, 2000a; Fasel and Luettin, 2003; Tian, Kanade, and Cohn, 2005; Pantic +
and Bartlett, 2007). +
This chapter introduces recent advances in computer recognition of facial expres- +
sions. Firstly, we describe the problem space, which includes multiple dimensions: +
level of description, static versus dynamic expression, facial feature extraction and +
9ac15845defcd0d6b611ecd609c740d41f0c341dCopyright +
by +
2011 +
9af1cf562377b307580ca214ecd2c556e20df000Feb. 28 +
International Journal of Advanced Studies in Computer Science and Engineering +
IJASCSE, Volume 4, Issue 2, 2015 +
Video-Based Facial Expression Recognition +
Using Local Directional Binary Pattern +
Electrical Engineering Dept., AmirKabir Univarsity of Technology +
Tehran, Iran +
9a23a0402ae68cc6ea2fe0092b6ec2d40f667adbHigh-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs +
1NVIDIA Corporation +
2UC Berkeley +
Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps +
(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can +
change labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also +
allows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road. +
Please visit our website for more side-by-side comparisons as well as interactive editing demos. +
9a7858eda9b40b16002c6003b6db19828f94a6c6MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE +
(cid:63) UC Berkeley / †ICSI +
9a276c72acdb83660557489114a494b86a39f6ffEmotion Classification through Lower Facial Expressions using Adaptive +
Support Vector Machines +
Department of Information Technology, Faculty of Industrial Technology and Management, +
9a42c519f0aaa68debbe9df00b090ca446d25bc4Face Recognition via Centralized Coordinate +
Learning +
9aad8e52aff12bd822f0011e6ef85dfc22fe8466Temporal-Spatial Mapping for Action Recognition +
36b40c75a3e53c633c4afb5a9309d10e12c292c7
3646b42511a6a0df5470408bc9a7a69bb3c5d742International Journal of Computer Applications (0975 – 8887) +
Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015 +
Detection of Facial Parts based on ABLATA +
Technical Campus, Bhilai +
Vikas Singh +
Technical Campus, Bhilai +
Abha Choubey +
Technical Campus, Bhilai +
365f67fe670bf55dc9ccdcd6888115264b2a2c56
36fe39ed69a5c7ff9650fd5f4fe950b5880760b0Tracking von Gesichtsmimik +
mit Hilfe von Gitterstrukturen +
zur Klassifikation von schmerzrelevanten Action +
Units +
1Fraunhofer-Institut f¨ur Integrierte Schaltungen IIS, Erlangen, +
2Otto-Friedrich-Universit¨at Bamberg, 3Universit¨atsklinkum Erlangen +
Kurzfassung. In der Schmerzforschung werden schmerzrelevante Mi- +
mikbewegungen von Probanden mittels des Facial Action Coding System +
klassifiziert. Die manuelle Klassifikation hierbei ist aufw¨andig und eine +
automatische (Vor-)klassifikation k¨onnte den diagnostischen Wert dieser +
Analysen erh¨ohen sowie den klinischen Workflow unterst¨utzen. Der hier +
vorgestellte regelbasierte Ansatz erm¨oglicht eine automatische Klassifika- +
tion ohne große Trainingsmengen vorklassifizierter Daten. Das Verfahren +
erkennt und verfolgt Mimikbewegungen, unterst¨utzt durch ein Gitter, +
und ordnet diese Bewegungen bestimmten Gesichtsarealen zu. Mit die- +
sem Wissen kann aus den Bewegungen auf die zugeh¨origen Action Units +
geschlossen werden. +
1 Einleitung +
Menschliche Empfindungen wie Emotionen oder Schmerz l¨osen spezifische Mu- +
ster von Kontraktionen der Gesichtsmuskulatur aus, die Grundlage dessen sind, +
was wir Mimik nennen. Aus der Beobachtung der Mimik kann wiederum auf +
menschliche Empfindungen r¨uckgeschlossen werden. Im Rahmen der Schmerz- +
forschung werden Videoaufnahmen von Probanden hinsichtlich des mimischen +
Schmerzausdrucks analysiert. Zur Beschreibung des mimischen Ausdrucks und +
dessen Ver¨anderungen wird das Facial Action Coding System (FACS) [1] verwen- +
det, das anatomisch begr¨undet, kleinste sichtbare Muskelbewegungen im Gesicht +
beschreibt und als einzelne Action Units (AUs) kategorisiert. Eine Vielzahl von +
Untersuchungen hat gezeigt, dass spezifische Muster von Action Units auftre- +
ten, wenn Probanden Schmerzen angeben [2]. Die manuelle Klassifikation und +
Markierung der Action Units von Probanden in Videosequenzen bedarf einer +
langwierigen Beobachtung durch ausgebildete FACS-Coder. Eine automatische +
(Vor-)klassifikation kann hierbei den klinischen Workflow unterst¨utzen und dieses +
Verfahren zum brauchbaren diagnostischen Instrument machen. Bisher realisier- +
te Ans¨atze zum Erkennen von Gesichtsausdr¨ucken basieren auf der Klassifikation +
36ce0b68a01b4c96af6ad8c26e55e5a30446f360Multimed Tools Appl +
DOI 10.1007/s11042-014-2322-6 +
Facial expression recognition based on a mlp neural +
network using constructive training algorithm +
Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014 +
© Springer Science+Business Media New York 2014 +
3674f3597bbca3ce05e4423611d871d09882043bISSN 1796-2048 +
Volume 7, Number 4, August 2012 +
Contents +
Special Issue: Multimedia Contents Security in Social Networks Applications +
Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran +
Guest Editorial +
Zhiyong Zhang and Muthucumaru Maheswaran +
SPECIAL ISSUE PAPERS +
DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding +
Gang Wang and Xiao-lin Gui +
Block-Based Parallel Intra Prediction Scheme for HEVC +
Jie Jiang, Baolong, Wei Mo, and Kefeng Fan +
Optimized LSB Matching Steganography Based on Fisher Information +
Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao +
A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform +
Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo +
Stego Key Estimation in LSB Steganography +
Jing Liu and Guangming Tang +
REGULAR PAPERS +
Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions +
277 +
279 +
289 +
295 +
303 +
309 +
314 +
362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2792 +
ICASSP 2016 +
366d20f8fd25b4fe4f7dc95068abc6c6cabe1194
3630324c2af04fd90f8668f9ee9709604fe980fdThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2607345, IEEE +
Transactions on Circuits and Systems for Video Technology +
Image Classification with Tailored Fine-Grained +
Dictionaries +
362ba8317aba71c78dafca023be60fb71320381d
36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958RGB-D Face Recognition with Texture and +
Attribute Features +
Member, IEEE +
36018404263b9bb44d1fddaddd9ee9af9d46e560OCCLUDED FACE RECOGNITION BY USING GABOR +
FEATURES +
1 Department of Electrical And Electronics Engineering, METU, Ankara, Turkey +
2 7h%ł7$.(cid:3)%ł/7(1(cid:15)(cid:3)$QNDUD(cid:15)(cid:3)7XUNH\ +
5c4ce36063dd3496a5926afd301e562899ff53ea
5c2a7518fb26a37139cebff76753d83e4da25159
5c2e264d6ac253693469bd190f323622c457ca05978-1-4799-2341-0/13/$31.00 ©2013 IEEE +
4367 +
ICIP 2013 +
5c473cfda1d7c384724fbb139dfe8cb39f79f626
5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c02132 +
Reference Face Graph for Face Recognition +
5c35ac04260e281141b3aaa7bbb147032c887f0cFace Detection and Tracking Control with Omni Car +
CS 231A Final Report +
June 31, 2016 +
5c717afc5a9a8ccb1767d87b79851de8d3016294978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1845 +
ICASSP 2012 +
0952ac6ce94c98049d518d29c18d136b1f04b0c0
09137e3c267a3414314d1e7e4b0e3a4cae801f45Noname manuscript No. +
(will be inserted by the editor) +
Two Birds with One Stone: Transforming and Generating +
Facial Images with Iterative GAN +
Received: date / Accepted: date +
09926ed62511c340f4540b5bc53cf2480e8063f8Action Tubelet Detector for Spatio-Temporal Action Localization +
09718bf335b926907ded5cb4c94784fd20e5ccd8875 +
Recognizing Partially Occluded, Expression Variant +
Faces From Single Training Image per Person +
With SOM and Soft k-NN Ensemble +
0903bb001c263e3c9a40f430116d1e629eaa616fCVPR +
#987 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
An Empirical Study of Context in Object Detection +
Anonymous CVPR submission +
Paper ID 987 +
09df62fd17d3d833ea6b5a52a232fc052d4da3f5ISSN: 1405-5546 +
Instituto Politécnico Nacional +
México +
+
Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez, +
Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J. +
Mejora de Contraste y Compensación en Cambios de la Iluminación +
Instituto Politécnico Nacional +
Distrito Federal, México +
Disponible en: http://www.redalyc.org/articulo.oa?id=61509703 +
Cómo citar el artículo +
Número completo +
Más información del artículo +
Página de la revista en redalyc.org +
Sistema de Información Científica +
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal +
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto +
097104fc731a15fad07479f4f2c4be2e071054a2
09f853ce12f7361c4b50c494df7ce3b9fad1d221myjournal manuscript No. +
(will be inserted by the editor) +
Random forests for real time 3D face analysis +
Received: date / Accepted: date +
09111da0aedb231c8484601444296c50ca0b5388
09750c9bbb074bbc4eb66586b20822d1812cdb20978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1385 +
ICASSP 2012 +
097f674aa9e91135151c480734dda54af5bc4240Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney +
Face Recognition Based on Multiple Region Features +
CSIRO Telecommunications & Industrial Physics +
Australia +
Tel: 612 9372 4104, Fax: 612 9372 4411, Email: +
5d485501f9c2030ab33f97972aa7585d3a0d59a7
5de5848dc3fc35e40420ffec70a407e4770e3a8dWebVision Database: Visual Learning and Understanding from Web Data +
1 Computer Vision Laboratory, ETH Zurich +
2 Google Switzerland +
5da139fc43216c86d779938d1c219b950dd82a4c1-4244-1437-7/07/$20.00 ©2007 IEEE +
II - 205 +
ICIP 2007 +
5dc056fe911a3e34a932513abe637076250d96da
5d233e6f23b1c306cf62af49ce66faac2078f967RESEARCH ARTICLE +
Optimal Geometrical Set for Automated +
Marker Placement to Virtualized Real-Time +
Facial Emotions +
School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Ulu Pauh, Arau, Perlis, West Malaysia +
5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cfRobust Registration of Dynamic Facial Sequences +
5dcf78de4d3d867d0fd4a3105f0defae2234b9cb
5db4fe0ce9e9227042144758cf6c4c2de2042435INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010 +
Recognition of Facial Expression Using Haar +
Wavelet Transform +
for +
paper +
features +
investigates +
+
5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194eFace Recognition Algorithms +
June 16, 2010 +
Ion Marqu´es +
Supervisor: +
Manuel Gra˜na +
5d09d5257139b563bd3149cfd5e6f9eae3c34776Optics Communications 338 (2015) 77–89 +
Contents lists available at ScienceDirect +
Optics Communications +
journal homepage: www.elsevier.com/locate/optcom +
Pattern recognition with composite correlation filters designed with +
multi-objective combinatorial optimization +
a Instituto Politécnico Nacional – CITEDI, Ave. del Parque 1310, Mesade Otay, Tijuana B.C. 22510, México +
b Department of Computer Science, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada B.C. 22860, México +
c Instituto Tecnológico de Tijuana, Blvd. Industrial y Ave. ITR TijuanaS/N, Mesa de Otay, Tijuana B.C. 22500, México +
d National Ignition Facility, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA +
a r t i c l e i n f o +
a b s t r a c t +
Article history: +
Received 12 July 2014 +
Accepted 16 November 2014 +
Available online 23 October 2014 +
Keywords: +
Object recognition +
Composite correlation filters +
Multi-objective evolutionary algorithm +
Combinatorial optimization +
Composite correlation filters are used for solving a wide variety of pattern recognition problems. These +
filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. +
In this work, we present a new approach for the design of composite filters based on multi-objective +
combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used +
to synthesize a filter with an optimized performance in terms of several competing criteria. Moreover, by +
employing a suggested binary-search procedure a filter bank with a minimum number of filters can be +
constructed, for a prespecified trade-off of performance metrics. Computer simulation results obtained +
with the proposed method in recognizing geometrically distorted versions of a target in cluttered and +
noisy scenes are discussed and compared in terms of recognition performance and complexity with +
existing state-of-the-art filters. +
& Elsevier B.V. All rights reserved. +
1. +
Introduction +
Nowadays, object recognition receives much research interest +
due to its high impact in real-life activities, such as robotics, bio- +
metrics, and target tracking [1,2]. Object recognition consists in +
solving two essential tasks: detection of a target within an ob- +
served scene and determination of the exact position of the de- +
tected object. Different approaches can be utilized to address these +
tasks, that is feature-based methods [3–6] and template matching +
algorithms [7,8]. In feature-based methods the observed scene is +
processed to extract relevant features of potential targets within +
the scene. Next, the extracted features are processed and analyzed +
to make decisions. Feature-based methods yield good results in +
many applications. However, they depend on several subjective +
decisions which often require optimization [9,10]. On the other +
hand, correlation filtering is a template matching processing. In +
this approach, the coordinates of the maximum of the filter output +
are taken as estimates of the target coordinates in the observed +
scene. Correlation filters possess a good mathematical basis and +
they can be implemented by exploiting massive parallelism either +
in hybrid opto-digital correlators [11,12] or in high-performance +
n Corresponding author. Tel.: þ52 664 623 1344x82856. +
http://dx.doi.org/10.1016/j.optcom.2014.10.038 +
0030-4018/& Elsevier B.V. All rights reserved. +
hardware such as graphics processing units (GPUs) [13] or field +
programmable gate arrays (FPGAs) [14] at high rate. Additionally, +
these filters are capable to reliably recognize a target in highly +
cluttered and noisy environments [8,15,16]. Moreover, they are +
able to estimate very accurately the position of the target within +
the scene [17]. Correlation filters are usually designed by a opti- +
mization of various criteria [18,19]. The filters can be broadly +
classified in to two main categories: analytical and composite fil- +
ters. Analytical filters optimize a performance criterion using +
mathematical models of signals and noise [20,21]. Composite fil- +
ters are constructed by combination of several training templates, +
each of them representing an expected target view in the observed +
scene [22,21]. In practice, composite filters are effective for real- +
life degradations of targets such as rotations and scaling. Compo- +
site filters are synthesized by means of a supervised training +
process. Thus, the performance of the filters highly depends on a +
proper selection of image templates used for training [20,23]. +
Normally, the training templates are chosen by a designer in an ad +
hoc manner. Such a subjective procedure is not optimal. In addi- +
tion, Kumar and Pochavsky [24] showed that the signal to noise +
ratio of a composite filter gradually reduces when the number of +
training templates increases. In order to synthesize composite +
filters with improved performance in terms of several competing +
metrics, a search and optimization strategy is required to auto- +
matically choose the set of training templates. +
5d01283474b73a46d80745ad0cc0c4da14aae194
5d197c8cd34473eb6cde6b65ced1be82a3a1ed14AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The"CAS-PEAL","FERET","CMUPIE",and"YaleB"databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The"HarvardRL","CMUPIE"and"YaleB"databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe"BANCA",and"NDHID"databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com
31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a
31b05f65405534a696a847dd19c621b7b8588263
318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24aSparsity in Dynamics of Spontaneous +
Subtle Emotions: Analysis & Application +
31c0968fb5f587918f1c49bf7fa51453b3e89cf7Deep Transfer Learning for Person Re-identification +
31e57fa83ac60c03d884774d2b515813493977b9
316e67550fbf0ba54f103b5924e6537712f06beeMultimodal semi-supervised learning +
for image classification +
LEAR team, INRIA Grenoble, France +
31ef5419e026ef57ff20de537d82fe3cfa9ee741Facial Expression Analysis Based on +
High Dimensional Binary Features +
´Ecole Polytechique de Montr´eal, Universit´e de Montr´eal, Montr´eal, Canada +
31b58ced31f22eab10bd3ee2d9174e7c14c27c01
31ace8c9d0e4550a233b904a0e2aabefcc90b0e3Learning Deep Face Representation +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
312afff739d1e0fcd3410adf78be1c66b3480396
31bb49ba7df94b88add9e3c2db72a4a98927bb05
91811203c2511e919b047ebc86edad87d985a4faExpression Subspace Projection for Face +
Recognition from Single Sample per Person +
91e57667b6fad7a996b24367119f4b22b6892ecaProbabilistic Corner Detection for Facial Feature +
Extraction +
Article +
Accepted version +
E. Ardizzone, M. La Cascia, M. Morana +
In Lecture Notes in Computer Science Volume 5716, 2009 +
It is advisable to refer to the publisher's version if you intend to cite +
from the work. +
Publisher: Springer +
http://link.springer.com/content/pdf/10.1007%2F978-3- +
642-04146-4_50.pdf +
91883dabc11245e393786d85941fb99a6248c1fb
917bea27af1846b649e2bced624e8df1d9b79d6fUltra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for +
Mobile and Embedded Applications +
Gyrfalcon Technology Inc. +
1900 McCarthy Blvd. Milpitas, CA 95035 +
91b1a59b9e0e7f4db0828bf36654b84ba53b0557This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +
 +
Simultaneous Hallucination and Recognition of +
Low-Resolution Faces Based on Singular Value +
Decomposition +
(SVD) +
for performing both +
911bef7465665d8b194b6b0370b2b2389dfda1a1RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW +
Learning Human Optical Flow +
1 MPI for Intelligent Systems +
Tübingen, Germany +
2 Amazon Inc. +
91ead35d1d2ff2ea7cf35d15b14996471404f68dCombining and Steganography of 3D Face Textures +
919d0e681c4ef687bf0b89fe7c0615221e9a1d30
912a6a97af390d009773452814a401e258b77640
91d513af1f667f64c9afc55ea1f45b0be7ba08d4Automatic Face Image Quality Prediction +
918b72a47b7f378bde0ba29c908babf6dab6f833
91e58c39608c6eb97b314b0c581ddaf7daac075ePixel-wise Ear Detection with Convolutional +
Encoder-Decoder Networks +
91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0
9131c990fad219726eb38384976868b968ee9d9cDeep Facial Expression Recognition: A Survey +
915d4a0fb523249ecbc88eb62cb150a60cf60fa0Comparison of Feature Extraction Techniques in Automatic +
Face Recognition Systems for Security Applications +
S . Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez +
Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain +
http://www.atvs.diac.upm.es +
65b737e5cc4a565011a895c460ed8fd07b333600Transfer Learning For Cross-Dataset Recognition: A Survey +
This paper summarises and analyses the cross-dataset recognition transfer learning techniques with the +
emphasis on what kinds of methods can be used when the available source and target data are presented +
in different forms for boosting the target task. This paper for the first time summarises several transferring +
criteria in details from the concept level, which are the key bases to guide what kind of knowledge to transfer +
between datasets. In addition, a taxonomy of cross-dataset scenarios and problems is proposed according the +
properties of data that define how different datasets are diverged, thereby review the recent advances on +
each specific problem under different scenarios. Moreover, some real world applications and corresponding +
commonly used benchmarks of cross-dataset recognition are reviewed. Lastly, several future directions are +
identified. +
Additional Key Words and Phrases: Cross-dataset, transfer learning, domain adaptation +
1. INTRODUCTION +
It has been explored how human would transfer learning in one context to another +
similar context [Woodworth and Thorndike 1901; Perkins et al. 1992] in the field of +
Psychology and Education. For example, learning to drive a car helps a person later +
to learn more quickly to drive a truck, and learning mathematics prepares students to +
study physics. The machine learning algorithms are mostly inspired by human brains. +
However, most of them require a huge amount of training examples to learn a new +
model from scratch and fail to apply knowledge learned from previous domains or +
tasks. This may be due to that a basic assumption of statistical learning theory is +
that the training and test data are drawn from the same distribution and belong to +
the same task. Intuitively, learning from scratch is not realistic and practical, because +
it violates how human learn things. In addition, manually labelling a large amount +
of data for new domain or task is labour extensive, especially for the modern “data- +
hungry” and “data-driven” learning techniques (i.e. deep learning). However, the big +
data era provides a huge amount available data collected for other domains and tasks. +
Hence, how to use the previously available data smartly for the current task with +
scarce data will be beneficial for real world applications. +
To reuse the previous knowledge for current tasks, the differences between old data +
and new data need to be taken into account. Take the object recognition as an ex- +
ample. As claimed by Torralba and Efros [2011], despite the great efforts of object +
datasets creators, the datasets appear to have strong build-in bias caused by various +
factors, such as selection bias, capture bias, category or label bias, and negative set +
bias. This suggests that no matter how big the dataset is, it is impossible to cover +
the complexity of the real visual world. Hence, the dataset bias needs to be consid- +
ered before reusing data from previous datasets. Pan and Yang [2010] summarise that +
the differences between different datasets can be caused by domain divergence (i.e. +
distribution shift or feature space difference) or task divergence (i.e. conditional dis- +
tribution shift or label space difference), or both. For example, in visual recognition, +
the distributions between the previous and current data can be discrepant due to the +
different environments, lighting, background, sensor types, resolutions, view angles, +
and post-processing. Those external factors may cause the distribution divergence or +
even feature space divergence between different domains. On the other hand, the task +
divergence between current and previous data is also ubiquitous. For example, it is +
highly possible that an animal species that we want to recognize have not been seen +
ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. +
6582f4ec2815d2106957215ca2fa298396dde274JUNE 2007 +
1005 +
Discriminative Learning and Recognition +
of Image Set Classes Using +
Canonical Correlations +
655d9ba828eeff47c600240e0327c3102b9aba7cIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +
489 +
Kernel Pooled Local Subspaces for Classification +
656a59954de3c9fcf82ffcef926af6ade2f3fdb5Convolutional Network Representation +
for Visual Recognition +
Doctoral Thesis +
Stockholm, Sweden, 2017 +
656f05741c402ba43bb1b9a58bcc5f7ce2403d9a
65817963194702f059bae07eadbf6486f18f4a0ahttp://dx.doi.org/10.1007/s11263-015-0814-0 +
WhittleSearch: Interactive Image Search with Relative Attribute +
Feedback +
Received: date / Accepted: date +
6581c5b17db7006f4cc3575d04bfc6546854a785Contextual Person Identification +
in Multimedia Data +
zur Erlangung des akademischen Grades eines +
Doktors der Ingenieurwissenschaften +
der Fakultät für Informatik +
des Karlsruher Instituts für Technologie (KIT) +
genehmigte +
Dissertation +
von +
aus Erlangen +
Tag der mündlichen Prüfung: +
18. November 2014 +
Hauptreferent: +
Korreferent: +
Prof. Dr. Rainer Stiefelhagen +
Karlsruher Institut für Technologie +
Prof. Dr. Gerhard Rigoll +
Technische Universität München +
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft +
www.kit.edu +
65babb10e727382b31ca5479b452ee725917c739Label Distribution Learning +
62dccab9ab715f33761a5315746ed02e48eed2a0A Short Note about Kinetics-600 +
Jo˜ao Carreira +
62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43 +
DOI 10.1186/s13640-017-0188-z +
EURASIP Journal on Image +
and Video Processing +
R ES EAR CH +
Noise-resistant network: a deep-learning +
method for face recognition under noise +
Open Access +
62694828c716af44c300f9ec0c3236e98770d7cfPadrón-Rivera, G., Rebolledo-Mendez, G., Parra, P. P., & Huerta-Pacheco, N. S. (2016). Identification of Action Units Related to +
Identification of Action Units Related to Affective States in a Tutoring System +
1Facultad de Estadística e Informática, Universidad Veracruzana, Mexico // 2Universidad Juárez Autónoma de +
for Mathematics +
Huerta-Pacheco1 +
*Corresponding author +
620339aef06aed07a78f9ed1a057a25433faa58b
62b3598b401c807288a113796f424612cc5833ca
628a3f027b7646f398c68a680add48c7969ab1d9Plan for Final Year Project: +
HKU-Face: A Large Scale Dataset for Deep Face +
Recognition +
3035140108 +
3035141841 +
Introduction +
Face recognition has been one of the most successful techniques in the field of artificial intelligence +
because of its surpassing human-level performance in academic experiments and broad application in +
the industrial world. Gaussian-face[1] and Facenet[2] hold state-of-the-art record using statistical +
method and deep-learning method respectively. What’s more, face recognition has been applied +
in various areas like authority checking and recording, fostering a large number of start-ups like +
Face++. +
Our final year project will deal with the face recognition task by building a large-scaled and carefully- +
filtered dataset. Our project plan specifies our roadmap and current research process. This plan first +
illustrates the significance and potential enhancement in constructing large-scale face dataset for +
both academics and companies. Then objectives to accomplish and related literature review will be +
expressed in detail. Next, methodologies used, scope of our project and challenges faced by us are +
described. The detailed timeline for this project follows as well as a small summary. +
2 Motivation +
Nowadays most of the face recognition tasks are supervised learning tasks which use dataset annotated +
by human beings. This contains mainly two drawbacks: (1) limited size of dataset due to limited +
human effort; (2) accuracy problem resulted from human perceptual bias. +
Parkhi et al.[3] discuss the first problem, showing that giant companies hold private face databases +
with larger size of data (See the comparison in Table 1). Other research institution could only get +
access to public but smaller databases like LFW[4, 5], which acts like a barricade to even higher +
performance. +
Dataset +
IJB-A [6] +
LFW [4, 5] +
YFD [7] +
CelebFaces [8] +
CASIA-WebFace [9] +
MS-Celeb-1M [10] +
Facebook +
Google +
Availability +
public +
public +
public +
public +
public +
public +
private +
private +
identities +
500 +
5K +
1595 +
10K +
10K +
100K +
4K +
8M +
images +
5712 +
13K +
3425 videos +
202K +
500K +
about 10M +
4400K +
100-200M +
Table 1: Face recognition datasets +
6257a622ed6bd1b8759ae837b50580657e676192
626859fe8cafd25da13b19d44d8d9eb6f0918647Activity Recognition based on a +
Magnitude-Orientation Stream Network +
Smart Surveillance Interest Group, Department of Computer Science +
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +
620e1dbf88069408b008347cd563e16aeeebeb83
62007c30f148334fb4d8975f80afe76e5aef8c7fEye In-Painting with Exemplar Generative Adversarial Networks +
Facebook Inc. +
1 Hacker Way, Menlo Park (CA), USA +
62a30f1b149843860938de6dd6d1874954de24b7418 +
Fast Algorithm for Updating the Discriminant Vectors +
of Dual-Space LDA +
62e0380a86e92709fe2c64e6a71ed94d152c6643Facial Emotion Recognition With Expression Energy +
Albert Cruz +
Center for Research in +
Intelligent Systems +
216 Winston Chung Hall +
Center for Research in +
Intelligent Systems +
216 Winston Chung Hall +
Center for Research in +
Intelligent Systems +
216 Winston Chung Hall +
Riverside, CA, 92521-0425, +
Riverside, CA, 92521-0425, +
Riverside, CA, 92521-0425, +
USA +
USA +
USA +
961a5d5750f18e91e28a767b3cb234a77aac8305Face Detection without Bells and Whistles +
1 ESAT-PSI/VISICS, iMinds, KU Leuven, Belgium +
2 MPI Informatics, Saarbrücken, Germany +
3 D-ITET/CVL, ETH Zürich, Switzerland +
9626bcb3fc7c7df2c5a423ae8d0a046b2f69180cUPTEC STS 17033 +
Examensarbete 30 hp +
November 2017 +
A deep learning approach for +
action classification in American +
football video sequences +
9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4J Inf Process Syst, Vol.9, No.1, March 2013 +
pISSN 1976-913X +
eISSN 2092-805X +
Region-Based Facial Expression Recognition in +
Still Images +
964a3196d44f0fefa7de3403849d22bbafa73886
9606b1c88b891d433927b1f841dce44b8d3af066Principal Component Analysis with Tensor Train +
Subspace +
96b1000031c53cd4c1c154013bb722ffd87fa7daContextVP: Fully Context-Aware Video +
Prediction +
1 NVIDIA, Santa Clara, CA, USA +
2 ETH Zurich, Zurich, Switzerland +
3 The Swiss AI Lab IDSIA, Manno, Switzerland +
4 NNAISENSE, Lugano, Switzerland +
968f472477a8afbadb5d92ff1b9c7fdc89f0c009Firefly-based Facial Expression Recognition +
9636c7d3643fc598dacb83d71f199f1d2cc34415
3a2fc58222870d8bed62442c00341e8c0a39ec87Probabilistic Local Variation +
Segmentation +
Technion - Computer Science Department - M.Sc. Thesis MSC-2014-02 - 2014
3abc833f4d689f37cc8a28f47fb42e32deaa4b17Noname manuscript No. +
(will be inserted by the editor) +
Large Scale Retrieval and Generation of Image Descriptions +
Received: date / Accepted: date +
3a60678ad2b862fa7c27b11f04c93c010cc6c430JANUARY-MARCH 2012 +
A Multimodal Database for +
Affect Recognition and Implicit Tagging +
3a0a839012575ba455f2b84c2d043a35133285f9444 +
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 444–454, +
Edinburgh, Scotland, UK, July 27–31, 2011. c(cid:13)2011 Association for Computational Linguistics +
3a9681e2e07be7b40b59c32a49a6ff4c40c962a2Biometrics & Biostatistics International Journal +
Comparing treatment means: overlapping standard +
errors, overlapping confidence intervals, and tests of +
hypothesis +
3a846704ef4792dd329a5c7a2cb8b330ab6b8b4ein any current or +
future media, +
for all other uses, +
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be +
obtained +
including +
reprinting/republishing this material for advertising or promotional purposes, creating +
new collective works, for resale or redistribution to servers or lists, or reuse of any +
copyrighted component of this work in other works. +
Pre-print of article that appeared at the IEEE Computer Society Workshop on Biometrics +
2010. +
The published article can be accessed from: +
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5544597 +
3a95eea0543cf05670e9ae28092a114e3dc3ab5cConstructing the L2-Graph for Robust Subspace +
Learning and Subspace Clustering +
3a4f522fa9d2c37aeaed232b39fcbe1b64495134ISSN (Online) 2321 – 2004 +
ISSN (Print) 2321 – 5526 +
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +
Vol. 4, Issue 5, May 2016 +
IJIREEICE +
Face Recognition and Retrieval Using Cross +
Age Reference Coding +
Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 +
BE, DSCE, Bangalore1 +
Assistant Professor, DSCE, Bangalore2 +
54969bcd728b0f2d3285866c86ef0b4797c2a74dIEEE TRANSACTION SUBMISSION +
Learning for Video Compression +
5456166e3bfe78a353df988897ec0bd66cee937fImproved Boosting Performance by Exclusion +
of Ambiguous Positive Examples +
Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden +
Keywords: +
Boosting, Image Classification, Algorithm Evaluation, Dataset Pruning, VOC2007. +
54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3A Joint Learning Framework for Attribute Models and Object Descriptions +
Dhruv Mahajan +
Yahoo! Labs, Bangalore, India +
541bccf19086755f8b5f57fd15177dc49e77d675
549c719c4429812dff4d02753d2db11dd490b2aeYouTube-BoundingBoxes: A Large High-Precision +
Human-Annotated Data Set for Object Detection in Video +
Google Brain +
Google Brain +
Google Research +
Google Brain +
Google Brain +
98b2f21db344b8b9f7747feaf86f92558595990c
988d1295ec32ce41d06e7cf928f14a3ee079a11eSemantic Deep Learning +
September 29, 2015 +
981449cdd5b820268c0876477419cba50d5d1316Learning Deep Features for One-Class +
Classification +
98127346920bdce9773aba6a2ffc8590b9558a4aNoname manuscript No. +
(will be inserted by the editor) +
Efficient Human Action Recognition using +
Histograms of Motion Gradients and +
VLAD with Descriptor Shape Information +
Received: date / Accepted: date +
982fed5c11e76dfef766ad9ff081bfa25e62415a
98519f3f615e7900578bc064a8fb4e5f429f3689Dictionary-based Domain Adaptation Methods +
for the Re-identification of Faces +
9825aa96f204c335ec23c2b872855ce0c98f9046International Journal of Ethics in Engineering & Management Education +
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014) +
FACE AND FACIAL EXPRESSION +
RECOGNITION IN 3-D USING MASKED +
PROJECTION UNDER OCCLUSION +
Jyoti patil * +
M.Tech (CSE) +
GNDEC Bidar-585401 +
BIDAR, INDIA +
M.Tech (CSE) +
GNDEC Bidar- 585401 +
BIDAR, INDIA +
M.Tech (CSE) +
VKIT, Bangalore- 560040 +
BANGALORE, INDIA +
5334ac0a6438483890d5eef64f6db93f44aacdf4
53dd25350d3b3aaf19beb2104f1e389e3442df61
530243b61fa5aea19b454b7dbcac9f463ed0460e
539ca9db570b5e43be0576bb250e1ba7a727d640
53c8cbc4a3a3752a74f79b74370ed8aeed97db85
5366573e96a1dadfcd4fd592f83017e378a0e185Böhlen, Chandola and Salunkhe +
Server, server in the cloud. +
Who is the fairest in the crowd? +
533bfb82c54f261e6a2b7ed7d31a2fd679c56d18Technical Report MSU-CSE-14-1 +
Unconstrained Face Recognition: Identifying a +
Person of Interest from a Media Collection +
530ce1097d0681a0f9d3ce877c5ba31617b1d709
3fbd68d1268922ee50c92b28bd23ca6669ff87e5598 +
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 +
A Shape- and Texture-Based Enhanced Fisher +
Classifier for Face Recognition +
3f22a4383c55ceaafe7d3cfed1b9ef910559d639JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Robust Kronecker Component Analysis +
3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001A top-down approach for a synthetic +
autobiographical memory system +
1Sheffield Centre for Robotics (SCentRo), Univ. of Sheffield, Sheffield, S10 2TN, UK +
2Dept. of Computer Science, Univ. of Sheffield, Sheffield, S1 4DP, UK +
3 CVAP Lab, KTH, Stockholm, Sweden +
3f848d6424f3d666a1b6dd405a48a35a797dd147GHODRATI et al.: IS 2D INFORMATION ENOUGH FOR VIEWPOINT ESTIMATION? +
Is 2D Information Enough For Viewpoint +
Estimation? +
KU Leuven, ESAT - PSI, iMinds +
Leuven, Belgium +
3fa738ab3c79eacdbfafa4c9950ef74f115a3d84DaMN – Discriminative and Mutually Nearest: +
Exploiting Pairwise Category Proximity +
for Video Action Recognition +
1 Center for Research in Computer Vision at UCF, Orlando, USA +
2 Google Research, Mountain View, USA +
http://crcv.ucf.edu/projects/DaMN/ +
3fb98e76ffd8ba79e1c22eda4d640da0c037e98aConvolutional Neural Networks for Crop Yield Prediction using Satellite Images +
H. Russello +
3f5cf3771446da44d48f1d5ca2121c52975bb3d3
3f14b504c2b37a0e8119fbda0eff52efb2eb24615727 +
Joint Facial Action Unit Detection and Feature +
Fusion: A Multi-Conditional Learning Approach +
3f9a7d690db82cf5c3940fbb06b827ced59ec01eVIP: Finding Important People in Images +
Virginia Tech +
Google Inc. +
Virginia Tech +
Project: https://computing.ece.vt.edu/~mclint/vip/ +
Demo: http://cloudcv.org/vip/ +
3fd90098551bf88c7509521adf1c0ba9b5dfeb57Page 1 of 21 +
*****For Peer Review Only***** +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 +
25 +
26 +
27 +
28 +
29 +
30 +
31 +
32 +
33 +
34 +
35 +
36 +
37 +
38 +
39 +
40 +
41 +
42 +
43 +
44 +
45 +
46 +
47 +
48 +
49 +
50 +
51 +
52 +
53 +
54 +
55 +
56 +
57 +
58 +
59 +
60 +
Attribute-Based Classification for Zero-Shot +
Visual Object Categorization +
3f63f9aaec8ba1fa801d131e3680900680f14139Facial Expression Recognition using Local Binary +
Patterns and Kullback Leibler Divergence +
AnushaVupputuri, SukadevMeher +
+
divergence. +
role +
3f0e0739677eb53a9d16feafc2d9a881b9677b63Efficient Two-Stream Motion and Appearance 3D CNNs for +
Video Classification +
ESAT-KU Leuven +
Ali Pazandeh +
Sharif UTech +
ESAT-KU Leuven, ETH Zurich +
30870ef75aa57e41f54310283c0057451c8c822bOvercoming Catastrophic Forgetting with Hard Attention to the Task +
303065c44cf847849d04da16b8b1d9a120cef73a
3046baea53360a8c5653f09f0a31581da384202eDeformable Face Alignment via Local +
Measurements and Global Constraints +
3028690d00bd95f20842d4aec84dc96de1db6e59Leveraging Union of Subspace Structure to Improve Constrained Clustering +
30c96cc041bafa4f480b7b1eb5c45999701fe0661090 +
Discrete Cosine Transform Locality-Sensitive +
Hashes for Face Retrieval +
306957285fea4ce11a14641c3497d01b46095989FACE RECOGNITION UNDER VARYING LIGHTING BASED ON +
DERIVATES OF LOG IMAGE +
2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing 100080, China +
1Graduate School, CAS, Beijing, 100039, China +
302c9c105d49c1348b8f1d8cc47bead70e2acf08This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE +
Transactions on Circuits and Systems for Video Technology +
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +
Unconstrained Face Recognition Using A Set-to-Set +
Distance Measure +
304a306d2a55ea41c2355bd9310e332fa76b3cb0
5e7e055ef9ba6e8566a400a8b1c6d8f827099553
5e28673a930131b1ee50d11f69573c17db8fff3eAuthor manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +
(2008)" +
5e6ba16cddd1797853d8898de52c1f1f44a73279Face Identification with Second-Order Pooling +
5e821cb036010bef259046a96fe26e681f20266e
5bfc32d9457f43d2488583167af4f3175fdcdc03International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 +
Local Gray Code Pattern (LGCP): A Robust +
Feature Descriptor for Facial Expression +
Recognition +
5ba7882700718e996d576b58528f1838e5559225This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE +
Transactions on Affective Computing +
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016 +
Predicting Personalized Image Emotion +
Perceptions in Social Networks +
5bb684dfe64171b77df06ba68997fd1e8daffbe1
5bae9822d703c585a61575dced83fa2f4dea1c6dMOTChallenge 2015: +
Towards a Benchmark for Multi-Target Tracking +
5babbad3daac5c26503088782fd5b62067b94fa5Are You Sure You Want To Do That? +
Classification with Verification +
5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65Evolving Systems. manuscript No. +
(will be inserted by the editor) +
An evolving spatio-temporal approach for gender and age +
group classification with Spiking Neural Networks +
Received: date / Accepted: date +
5bf70c1afdf4c16fd88687b4cf15580fd2f26102Accepted in Pattern Recognition Letters +
Pattern Recognition Letters +
journal homepage: www.elsevier.com +
Residual Codean Autoencoder for Facial Attribute Analysis +
IIIT-Delhi, New Delhi, India +
Article history: +
Received 29 March 2017 +
5b2cfee6e81ef36507ebf3c305e84e9e0473575a
5be3cc1650c918da1c38690812f74573e66b1d32Relative Parts: Distinctive Parts for Learning Relative Attributes +
Center for Visual Information Technology, IIIT Hyderabad, India - 500032 +
5b0ebb8430a04d9259b321fc3c1cc1090b8e600e
3765c26362ad1095dfe6744c6d52494ea106a42c
3727ac3d50e31a394b200029b2c350073c1b69e3
37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4eWACV +
#394 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
WACV 2015 Submission #394. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
Co-operative Pedestrians Group Tracking in Crowded Scenes using an MST +
Approach +
Anonymous WACV submission +
Paper ID 394 +
377a1be5113f38297716c4bb951ebef7a93f949aDear Faculty, IGERT Fellows, IGERT Associates and Students, +
You are cordially invited to attend a Seminar presented by Albert Cruz. Please +
plan to attend. +
Albert Cruz +
IGERT Fellow +
Electrical Engineering +
+
Date: Friday, October 11, 2013 +
Location: Bourns A265 +
Time: 11:00am +
Facial emotion recognition with anisotropic +
inhibited gabor energy histograms +
377c6563f97e76a4dc836a0bd23d7673492b1aae
370e0d9b89518a6b317a9f54f18d5398895a7046IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, XXXXXXX 20XX +
Cross-pollination of normalisation techniques +
from speaker to face authentication +
using Gaussian mixture models +
and S´ebastien Marcel, Member, IEEE +
37eb666b7eb225ffdafc6f318639bea7f0ba9a24MSU Technical Report (2014): MSU-CSE-14-5 +
Age, Gender and Race Estimation from +
Unconstrained Face Images +
375435fb0da220a65ac9e82275a880e1b9f0a557This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +
From Pixels to Response Maps: Discriminative Image +
Filtering for Face Alignment in the Wild +
37b6d6577541ed991435eaf899a2f82fdd72c790Vision-based Human Gender Recognition: A Survey +
Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia. +
370b5757a5379b15e30d619e4d3fb9e8e13f3256Labeled Faces in the Wild: A Database for Studying +
Face Recognition in Unconstrained Environments +
08d2f655361335bdd6c1c901642981e650dff5ecThis is the published version:   +
 Arandjelovic, Ognjen and Cipolla, R. 2006, Automatic cast listing in feature‐length films with +
Anisotropic Manifold Space, in CVPR 2006 : Proceedings of the Computer Vision and Pattern +
Recognition Conference 2006, IEEE, Piscataway, New Jersey, pp. 1513‐1520. +
+
http://hdl.handle.net/10536/DRO/DU:30058435 +
Reproduced with the kind permission of the copyright owner. +
Copyright : 2006, IEEE +
Available from Deakin Research Online:  +
08ae100805d7406bf56226e9c3c218d3f9774d19Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing (2017) 2017:59 +
DOI 10.1186/s13640-017-0211-4 +
EURASIP Journal on Image +
and Video Processing +
R ES EAR CH +
Predicting the Sixteen Personality Factors +
(16PF) of an individual by analyzing facial +
features +
Open Access +
08c18b2f57c8e6a3bfe462e599a6e1ce03005876A Least-Squares Framework +
for Component Analysis +
081a431107eb38812b74a8cd036ca5e97235b499
0831a511435fd7d21e0cceddb4a532c35700a622
080c204edff49bf85b335d3d416c5e734a861151CLAD: A Complex and Long Activities +
Dataset with Rich Crowdsourced +
Annotations +
Journal Title +
XX(X):1–6 +
c(cid:13)The Author(s) 2016 +
Reprints and permission: +
sagepub.co.uk/journalsPermissions.nav +
DOI: 10.1177/ToBeAssigned +
www.sagepub.com/ +
08f4832507259ded9700de81f5fd462caf0d5be8International Journal of Computer Applications (0975 – 8887) +
Volume 118 – No.14, May 2015 +
Geometric Approach for Human Emotion +
Recognition using Facial Expression +
S. S. Bavkar +
Assistant Professor +
J. S. Rangole +
Assistant Professor +
V. U. Deshmukh +
Assistant Professor +
08d40ee6e1c0060d3b706b6b627e03d4b123377aHuman Action Localization +
with Sparse Spatial Supervision +
08c1f8f0e69c0e2692a2d51040ef6364fb263a40
088aabe3da627432fdccf5077969e3f6402f0a80Under review as a conference paper at ICLR 2018 +
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +
Anonymous authors +
Paper under double-blind review +
08903bf161a1e8dec29250a752ce9e2a508a711cJoint Dimensionality Reduction and Metric Learning: A Geometric Take +
08e24f9df3d55364290d626b23f3d42b4772efb6ENHANCING FACIAL EXPRESSION CLASSIFICATION BY INFORMATION +
FUSION +
I. Buciu1, Z. Hammal 2, A. Caplier2, N. Nikolaidis 1, and I. Pitas 1 +

GR-54124, Thessaloniki, Box 451, Greece +
2 Laboratoire des Images et des Signaux / Institut National Polytechnique de Grenoble +
web: http://www.aiia.csd.auth.gr +
38031 Grenoble, France +
web: http://www.lis.inpg.fr +
0830c9b9f207007d5e07f5269ffba003235e4eff
081fb4e97d6bb357506d1b125153111b673cc128
0857281a3b6a5faba1405e2c11f4e17191d3824dChude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102 +
http://asp.eurasipjournals.com/content/2014/1/102 +
R ES EAR CH +
Face recognition via edge-based Gabor feature +
representation for plastic surgery-altered images +
Open Access +
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7Understanding Kin Relationships in a Photo +
082ad50ac59fc694ba4369d0f9b87430553b11db
6dd052df6b0e89d394192f7f2af4a3e3b8f89875International Journal of Engineering and Advanced Technology (IJEAT) +
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +
A literature survey on Facial Expression +
Recognition using Global Features +
 +
6dd5dbb6735846b214be72983e323726ef77c7a9Josai Mathematical Monographs +
vol. 7 (2014), pp. 25-40 +
A Survey on Newer Prospective +
Biometric Authentication Modalities +
6d10beb027fd7213dd4bccf2427e223662e20b7d
6dddf1440617bf7acda40d4d75c7fb4bf9517dbbJOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY +
Beyond Counting: Comparisons of Density Maps for Crowd +
Analysis Tasks - Counting, Detection, and Tracking +
6de18708218988b0558f6c2f27050bb4659155e4
6d91da37627c05150cb40cac323ca12a91965759
6d8c9a1759e7204eacb4eeb06567ad0ef4229f93Face Alignment Robust to Pose, Expressions and +
Occlusions +
6d66c98009018ac1512047e6bdfb525c35683b16IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003 +
1063 +
Face Recognition Based on +
Fitting a 3D Morphable Model +
016cbf0878db5c40566c1fbc237686fbad666a33
01bef320b83ac4405b3fc5b1cff788c124109fb9de Lausanne +
RLC D1 740, CH-1015 +
Lausanne +
de Lausanne +
RLC D1 740, CH-1015 +
Lausanne +
de Lausanne +
RLC D1 740, CH-1015 +
Lausanne +
Translating Head Motion into Attention - Towards +
Processing of Student’s Body-Language +
CHILI Laboratory +
Łukasz Kidzi´nski +
CHILI Laboratory +
CHILI Laboratory +
École polytechnique fédérale +
École polytechnique fédérale +
École polytechnique fédérale +
01c8d7a3460422412fba04e7ee14c4f6cdff9ad7(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 4, No. 7, 2013 +
Rule Based System for Recognizing Emotions Using +
Multimodal Approach +
Information System +
SBM, SVKM’s NMIMS +
Mumbai, India +
+
01e12be4097fa8c94cabeef0ad61498c8e7762f2
0163d847307fae508d8f40ad193ee542c1e051b4JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +
Classemes and Other Classifier-based +
Features for Efficient Object Categorization +
- Supplementary material - +
1 LOW-LEVEL FEATURES +
We extract the SIFT [1] features for our descriptor +
according to the following pipeline. We first convert +
each image to gray-scale, then we normalize the con- +
trast by forcing the 0.01% of lightest and darkest pixels +
to be mapped to white and black respectively, and +
linearly rescaling the values in between. All images +
exceeding 786,432 pixels of resolution are downsized +
to this maximum value while keeping the aspect ratio. +
The 128-dimensional SIFT descriptors are computed +
from the interest points returned by a DoG detec- +
tor [2]. We finally compute a Bag-Of-Word histogram +
of these descriptors, using a K-means vocabulary of +
500 words. +
2 CLASSEMES +
The LSCOM categories were developed specifically +
for multimedia annotation and retrieval, and have +
been used in the TRECVID video retrieval series. +
We took the LSCOM CYC ontology dated 2006-06-30, +
which contains 2832 unique categories. We removed +
01c4cf9c7c08f0ad3f386d88725da564f3c54679Interpretability Beyond Feature Attribution: +
Quantitative Testing with Concept Activation Vectors (TCAV) +
017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637FACE RECOGNITION WITH HARMONIC DE-LIGHTING +
2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +
1Graduate School, CAS, Beijing, China, 100080 +
Emails: {lyqing, sgshan, wgao}jdl.ac.cn +
014e3d0fa5248e6f4634dc237e2398160294edceInt J Comput Vis manuscript No. +
(will be inserted by the editor) +
What does 2D geometric information really tell us about +
3D face shape? +
Received: date / Accepted: date +
01beab8f8293a30cf48f52caea6ca0fb721c8489
0178929595f505ef7655272cc2c339d7ed0b9507
01b4b32c5ef945426b0396d32d2a12c69c282e29
0113b302a49de15a1d41ca4750191979ad756d2f1­4244­0367­7/06/$20.00 ©2006 IEEE +
537 +
ICME 2006 +
064b797aa1da2000640e437cacb97256444dee82Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression +
Megvii Inc. +
Megvii Inc. +
Megvii Inc. +
06f146dfcde10915d6284981b6b84b85da75acd4Scalable Face Image Retrieval using +
Attribute-Enhanced Sparse Codewords +
0697bd81844d54064d992d3229162fe8afcd82cbUser-driven mobile robot storyboarding: Learning image interest and +
saliency from pairwise image comparisons +
06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32WhittleSearch: Image Search with Relative Attribute Feedback +
(Supplementary Material) +
1 Comparative Qualitative Search Results +
We present three qualitative search results for human-generated feedback, in addition to those +
shown in the paper. Each example shows one search iteration, where the 20 reference images are +
randomly selected (rather than ones that match a keyword search, as the image examples in the +
main paper illustrate). For each result, the first figure shows our method and the second figure +
shows the binary feedback result for the corresponding target image. Note that for our method, +
“more/less X” (where X is an attribute) means that the target image is more/less X than the +
reference image which is shown. +
Figures 1 and 2 show results for human-generated relative attribute and binary feedback, re- +
spectively, when both methods are used to target the same “mental image” of a shoe shown in the +
top left bubble. The top right grid of 20 images are the reference images displayed to the user, and +
those outlined and annotated with constraints are the ones chosen by the user to give feedback. +
The bottom row of images in either figure shows the top-ranked images after integrating the user’s +
feedback into the scoring function, revealing the two methods’ respective performance. We see that +
while both methods retrieve high-heeled shoes, only our method retrieves images that are as “open” +
as the target image. This is because using the proposed approach, the user was able to comment +
explicitly on the desired openness property. +
066d71fcd997033dce4ca58df924397dfe0b5fd1(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:3)(cid:4)(cid:14)(cid:6)(cid:15)(cid:16)(cid:3)(cid:17)(cid:18)(cid:3)(cid:11)(cid:5)(cid:19)(cid:4) (cid:20)(cid:5)(cid:11)(cid:21)(cid:6)(cid:3)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:9)(cid:11)(cid:9)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)(cid:6)(cid:23)(cid:17)(cid:24)(cid:19)(cid:2)(cid:5)(cid:11)(cid:21)(cid:25) +
(cid:26)(cid:11)(cid:5)(cid:8)(cid:17)(cid:6)(cid:27)(cid:1)(cid:9)(cid:22)(cid:8)(cid:18)(cid:1)(cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)!(cid:8) (cid:8)(cid:6)(cid:4)(cid:1)"(cid:16)(cid:8)(cid:16)(cid:20)(cid:14)(cid:1)(cid:3)(cid:15)(cid:8)(cid:22)(cid:4)(cid:12)(cid:1)(cid:23)(cid:5)(cid:29)(cid:18)(cid:14)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)(cid:26)!(cid:9)(cid:13)(cid:14)(cid:1)#(cid:17)(cid:8)(cid:6)(cid:5)$(cid:1)(cid:17)(cid:4)(cid:5)%(cid:8)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)&(cid:30)(cid:8)(cid:16)(cid:15)(cid:15)(cid:21)(cid:27)(cid:15)(cid:17) +
(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)(cid:1)(cid:13)(cid:6)(cid:7)(cid:14) (cid:3)(cid:15)(cid:16)(cid:8)(cid:17)(cid:17)(cid:8)(cid:18)(cid:1)(cid:3)(cid:8)(cid:16)(cid:18)(cid:6)(cid:1)(cid:19)(cid:4)(cid:16)(cid:11)(cid:16)(cid:6)(cid:10)(cid:6)(cid:14)(cid:1)(cid:19)(cid:20)(cid:21)(cid:1)(cid:9)(cid:22)(cid:8)(cid:17)(cid:1)(cid:23)(cid:8)(cid:11)(cid:24)(cid:8)(cid:12)(cid:25)(cid:8)(cid:20)(cid:18) +
(cid:23)(cid:12)(cid:13)(cid:11)(cid:2)(cid:3)(cid:8)(cid:11)$(cid:1)’(cid:16)(cid:6)(cid:11) ((cid:8)((cid:4)(cid:20)(cid:1)(cid:6)(cid:12)(cid:24)(cid:20)(cid:15)(cid:18))(cid:27)(cid:4)(cid:11)(cid:1)(cid:8)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:15)(cid:25)(cid:1)(cid:15)(cid:29)(cid:4)(cid:20)(cid:1)*(cid:14)+,,(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)+(cid:2)+(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:16))(cid:17)(cid:8)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:11) (cid:6)(cid:12)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/ +
(cid:8)(cid:12)(cid:18) 01(cid:21)(cid:1)2(cid:4)(cid:1)(cid:12)(cid:8)(cid:17)(cid:4)(cid:18)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:21)(cid:1)’(cid:15)(cid:1)(cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:4)6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)(cid:20)(cid:4)(cid:11))(cid:5)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:12)(cid:4).(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:1)(cid:6)(cid:11)(cid:1)(cid:20)(cid:4)((cid:15)(cid:20)(cid:24)(cid:4)(cid:18)(cid:21) +
(cid:26)(cid:9)(cid:27) (cid:28)(cid:19)(cid:2)(cid:14)(cid:13)$(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1)3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)3(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:19)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:9)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:9)-(cid:4)(cid:1)7(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21) +
(cid:29) (cid:1)(cid:4)(cid:11)(cid:2)(cid:19)(cid:14)(cid:18)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4) +
8)(cid:17)(cid:8)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:17)(cid:15)(cid:11)(cid:24)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) )(cid:11)(cid:4)(cid:25))(cid:5)(cid:1) (cid:7)(cid:4)(cid:30)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:1) +
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)9(cid:11)(cid:1) (cid:6)(cid:18)(cid:4)(cid:12)(cid:24)(cid:6)(cid:24)(cid:30)(cid:21)(cid:1) (cid:9)(cid:11)(cid:1) (cid:16))(cid:17)(cid:8)(cid:12)(cid:11)(cid:14)(cid:1) .(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:24)(cid:15)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:22)(cid:4)(cid:1) (cid:8)(cid:1) +
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:8)-(cid:4)(cid:1)-(cid:20)(cid:15))((cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:8)(cid:1)((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:15)(cid:25)(cid:24)(cid:4)(cid:12)(cid:1) +
(cid:8)(cid:10)(cid:5)(cid:4)(cid:1)(cid:24)(cid:15)(cid:1)(cid:10)(cid:4)(cid:1);)(cid:6)(cid:24)(cid:4)(cid:1)((cid:20)(cid:4)(cid:27)(cid:6)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:4)(cid:11)(cid:24)(cid:6)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)<(cid:2)=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)(cid:20)(cid:4)(cid:27)(cid:4)(cid:12)(cid:24)(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:14)(cid:1) +
(cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) .(cid:15)(cid:20)(cid:7)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:4)(cid:6)(cid:29)(cid:4)(cid:18)(cid:1) (cid:11))(cid:10)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:8)(cid:24)(cid:24)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) (cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) (cid:6)(cid:12)(cid:1) (cid:10)(cid:6)(cid:15)(cid:17)(cid:4)(cid:24)(cid:20)(cid:6)(cid:27)(cid:11)(cid:14)(cid:1) ((cid:8)(cid:24)(cid:24)(cid:4)(cid:20)(cid:12)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) +
(cid:8)(cid:12)(cid:18)(cid:1) (cid:27)(cid:15)(cid:17)()(cid:24)(cid:4)(cid:20) (cid:29)(cid:6)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17))(cid:12)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) (cid:8)(cid:12)(cid:18) 1=(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:11)(cid:4)(cid:1) +
(cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:20)(cid:4)(cid:11)(cid:24)(cid:11)(cid:1)(cid:8)(cid:17)(cid:15)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1)(cid:17)(cid:15)(cid:24)(cid:6)(cid:29)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1))(cid:11)(cid:1)(cid:24)(cid:15)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:1)(cid:8)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21) ’(cid:16)(cid:4)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:12)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)(cid:11)(cid:24)(cid:20)(cid:6)(cid:10))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:24)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:21) +
’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:17)(cid:8)(cid:12)(cid:30)(cid:1) ()(cid:10)(cid:5)(cid:6)(cid:27)(cid:8)(cid:5)(cid:5)(cid:30)(cid:1) (cid:8)(cid:29)(cid:8)(cid:6)(cid:5)(cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) +
(cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:21)(cid:1) (cid:23)(cid:4)(cid:11)(cid:6)(cid:18)(cid:4)(cid:1) (cid:8)(cid:10)(cid:15)(cid:29)(cid:4)(cid:1) +
(cid:8)(((cid:5)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:14)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:1)(cid:27)(cid:8)(cid:12)(cid:1)(cid:10)(cid:4)(cid:1))(cid:11)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:8)-(cid:4)(cid:1) +
(cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:11))(cid:20)-(cid:4)(cid:20)(cid:30)(cid:14)(cid:1) (cid:20)(cid:8)(cid:27)(cid:4)(cid:1) (cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) 4(cid:10)(cid:4)(cid:11)(cid:6)(cid:18)(cid:4)(cid:1) (cid:15)(cid:24)(cid:16)(cid:4)(cid:20)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)5(cid:14)(cid:1) (cid:11)(cid:24))(cid:18)(cid:30)(cid:6)(cid:12)-(cid:1) (cid:6)(cid:12)(cid:25)(cid:5))(cid:4)(cid:12)(cid:27)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:27)(cid:8)(cid:20)(cid:4)(cid:4)(cid:20)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:7)(cid:6)(cid:12)(cid:18)(cid:1) (cid:15)(cid:25)(cid:1) (cid:11)(cid:7)(cid:6)(cid:12)(cid:1) (cid:15)(cid:12)(cid:1) +
(cid:8)-(cid:6)(cid:12)-(cid:14)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:15)(cid:24)(cid:16)(cid:4)(cid:20)(cid:1)(cid:11)(cid:6)(cid:17)(cid:6)(cid:5)(cid:8)(cid:20)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:11)(cid:21) +
(cid:26)(cid:12)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:20)(cid:4)(cid:17)(cid:8)(cid:6)(cid:12)(cid:6)(cid:12)-(cid:1) ((cid:8)(cid:20)(cid:24)(cid:11) (cid:18)(cid:4)(cid:24)(cid:8)(cid:6)(cid:5)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:4)6(cid:6)(cid:11)(cid:24)(cid:6)(cid:12)-(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:1) +
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11) (cid:8)(cid:12)(cid:18) (cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)-(cid:6)(cid:29)(cid:4)(cid:12)(cid:21) (cid:9)(cid:5)(cid:11)(cid:15)(cid:1) +
(cid:24)(cid:16)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) (cid:10)(cid:30)(cid:1) (cid:8)(((cid:5)(cid:30)(cid:6)(cid:12)- (cid:8)(cid:1) (cid:12)(cid:4).(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1) +
(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:21)(cid:1) +
(cid:30) (cid:15)(cid:31)(cid:5)(cid:13)(cid:11)(cid:5)(cid:4)(cid:24)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:1)(cid:25)(cid:3)(cid:24)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9)(cid:13) +
(cid:3)(cid:8)(cid:12)(cid:30)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)(cid:20)(cid:18)(cid:4)(cid:18)(cid:1) )(cid:12)(cid:18)(cid:4)(cid:20)(cid:1) (cid:8)(cid:1) (cid:29)(cid:8)(cid:20)(cid:6)(cid:4)(cid:24)(cid:30)(cid:1) (cid:15)(cid:25)(cid:1) +
(cid:27)(cid:15)(cid:12)(cid:18)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1).(cid:6)(cid:24)(cid:16)(cid:1)(cid:29)(cid:8)(cid:20)(cid:6)(cid:15))(cid:11)(cid:1)(cid:8)(((cid:5)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1)(cid:17)(cid:6)(cid:12)(cid:18)(cid:21)(cid:1)(cid:9)(cid:5)(cid:15)(cid:12)-(cid:1).(cid:6)(cid:24)(cid:16)(cid:1) +
(cid:24)(cid:16)(cid:4)(cid:1) (cid:18)(cid:4)(cid:29)(cid:4)(cid:5)(cid:15)((cid:17)(cid:4)(cid:12)(cid:24)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) +
(cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:1) (cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1) (cid:8)(cid:1) (cid:27)(cid:15)(cid:17)((cid:8)(cid:20)(cid:8)(cid:24)(cid:6)(cid:29)(cid:4)(cid:5)(cid:30)(cid:1) (cid:5)(cid:8)(cid:20)-(cid:4)(cid:1) (cid:12))(cid:17)(cid:10)(cid:4)(cid:20)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) +
A(cid:8)(cid:5)(cid:4)(cid:1)<0=(cid:14)(cid:1)(cid:3)(cid:26)’(cid:1)(cid:2)/=(cid:21)(cid:1)8(cid:4)(cid:20)(cid:4)(cid:1)3#!#’(cid:1)<(cid:2)*= (cid:8)(cid:12)(cid:18)(cid:1)3DE(cid:13)#’(cid:1)<(cid:2)>=(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:20)(cid:4)(cid:29)(cid:6)(cid:4).(cid:4)(cid:18)(cid:21) +
(cid:30) (cid:29) (cid:7)(cid:15)!(cid:15)"(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
’(cid:16)(cid:4)(cid:1) 3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) !(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) ’(cid:4)(cid:27)(cid:16)(cid:12)(cid:15)(cid:5)(cid:15)-(cid:30)(cid:1) 43#!#’5(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) +
.(cid:8)(cid:11)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1) (cid:8)(cid:24)(cid:1) D(cid:4)(cid:15)(cid:20)-(cid:4)(cid:1)(cid:3)(cid:8)(cid:11)(cid:15)(cid:12)(cid:1) (cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1) (cid:28)"(cid:1) (cid:9)(cid:20)(cid:17)(cid:30)(cid:1) +
!(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:1)F(cid:8)(cid:10)(cid:15)(cid:20)(cid:8)(cid:24)(cid:15)(cid:20)(cid:30)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:5)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) (cid:8)(cid:11)(cid:1)((cid:8)(cid:20)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1)3#!#’(cid:1) ((cid:20)(cid:15)-(cid:20)(cid:8)(cid:17)(cid:1) +
<(cid:2)*=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)3#!#’(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)(cid:2)(cid:2)BB(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:1)(cid:4)6(cid:6)(cid:11)(cid:24)(cid:1)(cid:6)(cid:12)(cid:1)BE/, +
(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) ((cid:15)(cid:11)(cid:4)(cid:11)(cid:14)(cid:1) /(cid:1) +
(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) /(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) +
(cid:6)(cid:5)(cid:5))(cid:17)(cid:6)(cid:12)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1)/(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:24)(cid:6)(cid:17)(cid:4)(cid:11)(cid:21)(cid:1)(cid:1)’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1)(cid:8)(cid:20)(cid:4) (cid:2)>(cid:14),1(cid:2)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1) +
/1+G*0>(cid:1)((cid:6)6(cid:4)(cid:5)(cid:11)(cid:1)(cid:6)(cid:12)(cid:1)(cid:11)(cid:6)(cid:22)(cid:4)(cid:21)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:20)(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:8)(cid:24)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:25)(cid:15)(cid:5)(cid:5)(cid:15).(cid:6)(cid:12)-(cid:1) +
((cid:15)(cid:11)(cid:4)(cid:11)$(cid:1)(cid:20)(cid:6)-(cid:16)(cid:24)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:5)(cid:4)(cid:25)(cid:24)(cid:1)((cid:20)(cid:15)(cid:25)(cid:6)(cid:5)(cid:4)(cid:14)(cid:1)(cid:20)(cid:6)-(cid:16)(cid:24)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:5)(cid:4)(cid:25)(cid:24)(cid:1);)(cid:8)(cid:20)(cid:24)(cid:4)(cid:20)(cid:1)((cid:20)(cid:15)(cid:25)(cid:6)(cid:5)(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:20)(cid:6)-(cid:16)(cid:24)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:5)(cid:4)(cid:25)(cid:24)(cid:1) (cid:16)(cid:8)(cid:5)(cid:25)(cid:1) ((cid:20)(cid:15)(cid:25)(cid:6)(cid:5)(cid:4)(cid:21)(cid:1) (cid:26)(cid:12)(cid:1) (cid:24)(cid:16)(cid:4)(cid:11)(cid:4)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:4)(cid:11)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) .(cid:4)(cid:20)(cid:4)(cid:1) +
(cid:20)(cid:4)(cid:27)(cid:15)(cid:20)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)1,0(cid:1)(cid:24)(cid:15)(cid:1)B0,(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:21) +
(cid:30) (cid:30)(cid:6)(cid:7)#$(cid:22)(cid:15)"(cid:6)(cid:23)(cid:24)(cid:5)(cid:4)(cid:24)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:2) +
’(cid:16)(cid:4)(cid:1)3DE(cid:13)#’(cid:1)(cid:9)-(cid:6)(cid:12)-(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1).(cid:8)(cid:11)(cid:1)-(cid:4)(cid:12)(cid:4)(cid:20)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1)(cid:8)(cid:11)(cid:1)((cid:8)(cid:20)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1) +
#)(cid:20)(cid:15)((cid:4)(cid:8)(cid:12)(cid:1) (cid:28)(cid:12)(cid:6)(cid:15)(cid:12)(cid:1) ((cid:20)(cid:15) (cid:4)(cid:27)(cid:24)(cid:1) 3DE(cid:13)#’(cid:1) +
43(cid:8)(cid:27)(cid:4)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) D(cid:4)(cid:11)(cid:24))(cid:20)(cid:4)(cid:1) +
!(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) !(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:1) (cid:13)(cid:4)(cid:24).(cid:15)(cid:20)(cid:7)5(cid:21)’(cid:16)(cid:6)(cid:11)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:6)(cid:12)-(cid:1) +
(cid:2),,/(cid:1) (cid:11)(cid:27)(cid:8)(cid:12)(cid:12)(cid:4)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:11)(cid:16)(cid:15).(cid:6)(cid:12)-(cid:1) 0/(cid:1) (cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1) (cid:8)(cid:24)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) +
(cid:8)-(cid:4)(cid:11)(cid:21)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:16)(cid:8)(cid:29)(cid:4)(cid:1)(cid:29)(cid:8)(cid:20)(cid:30)(cid:6)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)?(cid:1)(cid:8)(((cid:20)(cid:15)6(cid:6)(cid:17)(cid:8)(cid:24)(cid:4)(cid:5)(cid:30)(cid:1)>,,G1,, +
((cid:6)6(cid:4)(cid:5)(cid:11)(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) .(cid:8)(cid:11)(cid:1) (cid:18)(cid:4)(cid:29)(cid:4)(cid:5)(cid:15)((cid:4)(cid:18)(cid:1) (cid:6)(cid:12)(cid:1) (cid:8)(cid:12)(cid:1) (cid:8)(cid:24)(cid:24)(cid:4)(cid:17)((cid:24)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:11)(cid:11)(cid:6)(cid:11)(cid:24)(cid:1) +
(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) .(cid:16)(cid:15)(cid:1) (cid:6)(cid:12)(cid:29)(cid:4)(cid:11)(cid:24)(cid:6)-(cid:8)(cid:24)(cid:4)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:4)(cid:25)(cid:25)(cid:4)(cid:27)(cid:24)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) (cid:8)-(cid:6)(cid:12)-(cid:1) (cid:15)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:8)(((cid:4)(cid:8)(cid:20)(cid:8)(cid:12)(cid:27)(cid:4)(cid:1)<(cid:2)> =(cid:21) +
(cid:30) % (cid:22)(cid:9)(cid:9)(cid:14)(cid:6)(cid:7)(cid:19)(cid:2)(cid:6)(cid:23)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:26)(cid:12)(cid:1)(cid:15)(cid:20)(cid:18)(cid:4)(cid:20)(cid:1)(cid:24)(cid:15)(cid:1) (cid:10))(cid:6)(cid:5)(cid:18)(cid:14)(cid:1) (cid:24)(cid:20)(cid:8)(cid:6)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:6)(cid:8)(cid:10)(cid:5)(cid:30)(cid:1) (cid:24)(cid:4)(cid:11)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:1) (cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) +
(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1).(cid:6)(cid:24)(cid:16)(cid:1)(cid:27)(cid:15)(cid:12)(cid:24)(cid:20)(cid:15)(cid:5)(cid:5)(cid:4)(cid:18)(cid:1)(cid:29)(cid:8)(cid:20)(cid:6)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)(cid:25)(cid:8)(cid:27)(cid:24)(cid:15)(cid:20)(cid:11)(cid:1)(cid:11))(cid:27)(cid:16)(cid:1) +
(cid:8)(cid:11)(cid:1)(cid:8)-(cid:4)(cid:14)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)((cid:15)(cid:11)(cid:4)(cid:14)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)(cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)(cid:15)(cid:27)(cid:27)(cid:5))(cid:11)(cid:6)(cid:15)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)(cid:16)(cid:8)(cid:6)(cid:20)(cid:14)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:6)(cid:5)(cid:5))(cid:17)(cid:6)(cid:12)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:6)(cid:11)(cid:1) (cid:12)(cid:4)(cid:4)(cid:18)(cid:4)(cid:18)(cid:21)(cid:1) (cid:26)(cid:12)(cid:1) (cid:11)((cid:6)(cid:24)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:29)(cid:8)(cid:20)(cid:6)(cid:15))(cid:11)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:14)(cid:1) (cid:24)(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) +
(cid:12)(cid:15)(cid:24)(cid:1)(cid:8)(cid:12)(cid:1)(cid:8)(((cid:20)(cid:15)((cid:20)(cid:6)(cid:8)(cid:24)(cid:4)(cid:1)(cid:15)(cid:12)(cid:4)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:8)-(cid:4)(cid:1)(cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21)(cid:1)(cid:3)(cid:15)(cid:11)(cid:24)(cid:1)(cid:27))(cid:20)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:1) +
(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1)(cid:18)(cid:15)(cid:12):(cid:24)(cid:1)(cid:16)(cid:8)(cid:29)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)((cid:4)(cid:15)((cid:5)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:14)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:6)(cid:25)(cid:1)(cid:24)(cid:16)(cid:4)(cid:30)(cid:1) +
(cid:16)(cid:8)(cid:29)(cid:4)(cid:14)(cid:1) (cid:24)(cid:16)(cid:4)(cid:30)(cid:1) (cid:18)(cid:15)(cid:1) (cid:12)(cid:15)(cid:24)(cid:1) (cid:17)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:24)(cid:16)(cid:4)(cid:6)(cid:20)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21)(cid:1) 3DE(cid:13)#’(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) +
(cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:11)(cid:1) (cid:11)(cid:27)(cid:8)(cid:12)(cid:12)(cid:4)(cid:18)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) ((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)(cid:11)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:1) (cid:17)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:6)(cid:12)-(cid:1) (cid:24)(cid:16)(cid:4)(cid:6)(cid:20)(cid:1) +
(cid:8)-(cid:4)(cid:11)?(cid:1)(cid:10))(cid:24)(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:5)(cid:6)-(cid:16)(cid:24)(cid:6)(cid:12)-(cid:1)(cid:27)(cid:15)(cid:12)(cid:18)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:14)(cid:1)(cid:10)(cid:8)(cid:27)(cid:7)-(cid:20)(cid:15))(cid:12)(cid:18)(cid:14)(cid:1)((cid:15)(cid:11)(cid:4)(cid:11)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:11)(cid:21)(cid:1)(cid:23)(cid:30)(cid:1)(cid:11)(cid:24))(cid:18)(cid:30)(cid:6)(cid:12)-(cid:1)(cid:15)(cid:24)(cid:16)(cid:4)(cid:20)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1)(cid:6)(cid:24)(cid:1) .(cid:8)(cid:11)(cid:1) (cid:27)(cid:15)(cid:12)(cid:27)(cid:5))(cid:18)(cid:4)(cid:18)(cid:1)(cid:24)(cid:15)(cid:1) +
((cid:20)(cid:15)(cid:29)(cid:6)(cid:18)(cid:4)(cid:1) (cid:8)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:1) (cid:27)(cid:15)(cid:12)(cid:18)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1) (cid:15)(cid:25)(cid:1) (cid:8)(cid:12)(cid:1) (cid:8)-(cid:4)(cid:1) (cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1) +
((cid:20)(cid:15) (cid:4)(cid:27)(cid:24)(cid:21)(cid:1) (cid:9)-(cid:4)(cid:14)(cid:1) (cid:4)(cid:12)(cid:15))-(cid:16)(cid:1) (cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) .(cid:20)(cid:6)(cid:12)(cid:7)(cid:5)(cid:4)(cid:1) (cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) +
(cid:25)(cid:20)(cid:15)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)((cid:15)(cid:11)(cid:4)(cid:11)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:10)(cid:8)(cid:11)(cid:6)(cid:27)(cid:1)(cid:12)(cid:4)(cid:4)(cid:18)(cid:11)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:25)(cid:6)(cid:4)(cid:5)(cid:18)(cid:21)(cid:1) +
% (cid:10)(cid:9)(cid:13)(cid:8)(cid:2)(cid:5)&(cid:11)(cid:5)(cid:19)(cid:4)(cid:6) ’((cid:6) +
(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6) (cid:7)(cid:3)(cid:8)(cid:9)(cid:6) +
’(cid:16)(cid:4)(cid:1) (cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1) 3(cid:8)(cid:27)(cid:4)(cid:1) (cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:25)(cid:6)(cid:20)(cid:11)(cid:24)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) +
(cid:17)(cid:6)(cid:18)(cid:18)(cid:5)(cid:4)E(cid:4)(cid:8)(cid:11)(cid:24)(cid:14)(cid:1)(cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:11)(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:20)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:5)(cid:8)(cid:20)-(cid:4)(cid:1)(cid:12))(cid:17)(cid:10)(cid:4)(cid:20)(cid:1)(cid:15)(cid:25)(cid:1) +
(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11) (cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)01(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:1)(cid:15)(cid:5)(cid:18)(cid:21) +
(cid:26)3(cid:19)(cid:23)(cid:1)(cid:6)(cid:11)(cid:1)(cid:8)(cid:1)(cid:5)(cid:8)(cid:20)-(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:8)(cid:24)(cid:1)(cid:27)(cid:8)(cid:12)(cid:1)(cid:11))(((cid:15)(cid:20)(cid:24)(cid:1)(cid:11)(cid:24))(cid:18)(cid:6)(cid:4)(cid:11)(cid:1)(cid:15)(cid:25)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:8)-(cid:4)(cid:1) +
(cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:11)(cid:30)(cid:11)(cid:24)(cid:4)(cid:17)(cid:11)(cid:21)(cid:1) (cid:26)(cid:24)(cid:1) (cid:27)(cid:15)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:11)(cid:1) (cid:15)(cid:29)(cid:4)(cid:20)(cid:1) *(cid:14)+,,(cid:1) (cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) +
(cid:13)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:24)(cid:20)(cid:6)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:11)(cid:1)(cid:15)(cid:12)(cid:1).(cid:4)(cid:8)(cid:20)(cid:1)4(cid:27)(cid:5)(cid:15)(cid:24)(cid:16)(cid:4)(cid:11)(cid:14)(cid:1)-(cid:5)(cid:8)(cid:11)(cid:11)(cid:4)(cid:11)(cid:14)(cid:1)(cid:4)(cid:24)(cid:27)(cid:21)5(cid:14)(cid:1) (cid:17)(cid:8)(cid:7)(cid:4)E)((cid:14)(cid:1)(cid:16)(cid:8)(cid:6)(cid:20)(cid:1) +
(cid:11)(cid:24)(cid:30)(cid:5)(cid:4)(cid:14)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:16)(cid:8)(cid:6)(cid:20)(cid:1) .(cid:4)(cid:20)(cid:4)(cid:1) (cid:6)(cid:17)((cid:15)(cid:11)(cid:4)(cid:18)(cid:1) (cid:24)(cid:15)(cid:1) ((cid:8)(cid:20)(cid:24)(cid:6)(cid:27)(cid:6)((cid:8)(cid:12)(cid:24)(cid:11)(cid:21)(cid:1) D(cid:20)(cid:15))(cid:12)(cid:18)E(cid:24)(cid:20))(cid:24)(cid:16)(cid:1) +
(cid:6)(cid:12)(cid:25)(cid:15)(cid:20)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)(cid:6)(cid:12)(cid:27)(cid:5))(cid:18)(cid:6)(cid:12)-(cid:1)(cid:26)(cid:19)(cid:14)(cid:1)(cid:8)-(cid:4)(cid:14)(cid:1)(cid:7)(cid:6)(cid:12)(cid:18)(cid:1)(cid:15)(cid:25) ((cid:15)(cid:11)(cid:4)(cid:1)(cid:15)(cid:20)(cid:1)(cid:4)6((cid:20)(cid:4)(cid:11)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1) +
(cid:6)(cid:25)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:1) (cid:16)(cid:8)(cid:11)(cid:1) -(cid:5)(cid:8)(cid:11)(cid:11)(cid:4)(cid:11)(cid:1) (cid:6)(cid:11)(cid:1) ((cid:20)(cid:15)(cid:29)(cid:6)(cid:18)(cid:4)(cid:18)(cid:21)(cid:1) #6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1) (cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1) +
.(cid:4)(cid:20)(cid:4)(cid:1)((cid:16)(cid:15)(cid:24)(cid:15)-(cid:20)(cid:8)((cid:16)(cid:4)(cid:18)(cid:1).(cid:6)(cid:24)(cid:16)(cid:1)(cid:8)(cid:1)(cid:25)(cid:6)(cid:12)(cid:4)E(cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)-(cid:6)(cid:24)(cid:8)(cid:5)(cid:1)(cid:27)(cid:8)(cid:17)(cid:4)(cid:20)(cid:8)(cid:1) +
(cid:6)(cid:12)(cid:1)(cid:18)(cid:8)(cid:30)(cid:5)(cid:6)-(cid:16)(cid:24)(cid:21)(cid:1)’(cid:16)(cid:4)(cid:1)(cid:11))(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1).(cid:4)(cid:20)(cid:4)(cid:1)(cid:11)(cid:4)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1)(cid:15)(cid:12)(cid:1)(cid:8)(cid:1)(cid:11)(cid:24)(cid:15)(cid:15)(cid:5)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:6)(cid:12)(cid:11)(cid:24)(cid:20))(cid:27)(cid:24)(cid:4)(cid:18)(cid:1) +
(cid:24)(cid:15)(cid:1) (cid:17)(cid:8)(cid:6)(cid:12)(cid:24)(cid:8)(cid:6)(cid:12)(cid:1) (cid:8)(cid:1) (cid:27)(cid:15)(cid:12)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:1) (cid:16)(cid:4)(cid:8)(cid:18)(cid:1) ((cid:15)(cid:11)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) 4(cid:8)(cid:5)(cid:24)(cid:16)(cid:15))-(cid:16)(cid:1) (cid:11)(cid:5)(cid:6)-(cid:16)(cid:24)(cid:1) +
(cid:17)(cid:15)(cid:29)(cid:4)(cid:17)(cid:4)(cid:12)(cid:24)(cid:11)(cid:1).(cid:4)(cid:20)(cid:4)(cid:1))(cid:12)(cid:8)(cid:29)(cid:15)(cid:6)(cid:18)(cid:8)(cid:10)(cid:5)(cid:4)5(cid:21) +
’(cid:16)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)>0,G+>,(cid:1)((cid:6)6(cid:4)(cid:5)(cid:11)(cid:1)(cid:20)(cid:4)(cid:11)(cid:15)(cid:5))(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)/>(cid:1)(cid:10)(cid:6)(cid:24)(cid:1)(cid:18)(cid:4)((cid:24)(cid:16) (cid:14)(cid:1) +
(cid:8)(cid:10)(cid:15))(cid:24)(cid:1)>,(cid:1)(cid:31)(cid:10)(cid:30)(cid:24)(cid:4)(cid:11)(cid:1)(cid:11)(cid:6)(cid:22)(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)CHD(cid:1)(cid:25)(cid:15)(cid:20)(cid:17)(cid:8)(cid:24) (cid:21)(cid:1) +
#(cid:12)(cid:15))-(cid:16)(cid:1) (cid:5))(cid:17)(cid:6)(cid:12)(cid:15)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) .(cid:20)(cid:6)(cid:12)(cid:7)(cid:5)(cid:4)(cid:1) ((cid:20)(cid:15)(cid:27)(cid:4)(cid:11)(cid:11)(cid:6)(cid:12)-(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +
(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:11)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:15))(cid:24)(cid:1) (cid:11)(cid:16)(cid:8)(cid:18)(cid:15).(cid:11)(cid:1) (cid:6)(cid:11)(cid:1) (cid:12)(cid:4)(cid:4)(cid:18)(cid:4)(cid:18)(cid:1) 4(cid:6)(cid:12)(cid:1) (cid:8)-(cid:4)(cid:1) (cid:27)(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) +
.(cid:20)(cid:6)(cid:12)(cid:7)(cid:5)(cid:4)(cid:1) (cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:8)(cid:12)(cid:8)(cid:5)(cid:30)(cid:11)(cid:6)(cid:11)(cid:1) +
(cid:24)(cid:16)(cid:4)(cid:1) +
(cid:18)(cid:6)(cid:11)(cid:24)(cid:6)(cid:12)-)(cid:6)(cid:11)(cid:16)(cid:6)(cid:12)-(cid:1)(cid:15)(cid:25)(cid:1)(cid:11)(cid:4)(cid:12)(cid:6)(cid:15)(cid:20)(cid:11)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:24)(cid:16)(cid:15)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:30)(cid:15))(cid:12)-(cid:4)(cid:20)(cid:1)(cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:4)(cid:11)(cid:1) +
<(cid:2)=5(cid:21)(cid:1) ")(cid:10) (cid:4)(cid:27)(cid:24)(cid:11)(cid:1) .(cid:4)(cid:20)(cid:4)(cid:1) ((cid:16)(cid:15)(cid:24)(cid:15)-(cid:20)(cid:8)((cid:16)(cid:4)(cid:18)(cid:1) .(cid:6)(cid:24)(cid:16)(cid:15))(cid:24)(cid:1) (cid:8)(cid:12)(cid:30)(cid:1) ((cid:20)(cid:15) (cid:4)(cid:27)(cid:24)(cid:15)(cid:20)(cid:11)(cid:1) (cid:15)(cid:20)(cid:1) +
(cid:6)(cid:17)((cid:15)(cid:20)(cid:24)(cid:8)(cid:12)(cid:24)(cid:1) +
(cid:25)(cid:15)(cid:20)(cid:1) +
(cid:6)(cid:11)(cid:1) +
06526c52a999fdb0a9fd76e84f9795a69480cecf
06fe63b34fcc8ff68b72b5835c4245d3f9b8a016Mach Learn +
DOI 10.1007/s10994-013-5336-9 +
Learning semantic representations of objects +
and their parts +
Received: 24 May 2012 / Accepted: 26 February 2013 +
© The Author(s) 2013 +
06aab105d55c88bd2baa058dc51fa54580746424Image Set based Collaborative Representation for +
Face Recognition +
06262d14323f9e499b7c6e2a3dec76ad9877ba04Real-Time Pose Estimation Piggybacked on Object Detection +
Brno, Czech Republic +
062c41dad67bb68fefd9ff0c5c4d296e796004dcTemporal Generative Adversarial Nets with Singular Value Clipping +
Preferred Networks inc., Japan +
06400a24526dd9d131dfc1459fce5e5189b7baecEvent Recognition in Photo Collections with a Stopwatch HMM +
1Computer Vision Lab +
ETH Z¨urich, Switzerland +
2ESAT, PSI-VISICS +
K.U. Leuven, Belgium +
0653dcdff992ad980cd5ea5bc557efb6e2a53ba1
063a3be18cc27ba825bdfb821772f9f59038c207This is a repository copy of The development of spontaneous facial responses to others’ +
emotions in infancy. An EMG study. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/125231/ +
Version: Published Version +
Article: +
Kaiser, Jakob, Crespo-Llado, Maria Magdalena, Turati, Chiara et al. (1 more author) +
(2017) The development of spontaneous facial responses to others’ emotions in infancy. +
An EMG study. Scientific Reports. ISSN 2045-2322 +
https://doi.org/10.1038/s41598-017-17556-y +
Reuse +
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +
authors for the original work. More information and the full terms of the licence here: +
https://creativecommons.org/licenses/ +
Takedown +
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +
https://eprints.whiterose.ac.uk/ +
06a9ed612c8da85cb0ebb17fbe87f5a137541603Deep Learning of Player Trajectory Representations for Team +
Activity Analysis +
06ad99f19cf9cb4a40741a789e4acbf4433c19aeSenTion: A framework for Sensing Facial +
Expressions +
6c304f3b9c3a711a0cca5c62ce221fb098dccff0Attentive Semantic Video Generation using Captions +
IIT Hyderabad +
IIT Hyderabad +
6c2b392b32b2fd0fe364b20c496fcf869eac0a98DOI 10.1007/s00138-012-0423-7 +
ORIGINAL PAPER +
Fully automatic face recognition framework based +
on local and global features +
Received: 30 May 2011 / Revised: 21 February 2012 / Accepted: 29 February 2012 / Published online: 22 March 2012 +
© Springer-Verlag 2012 +
6cddc7e24c0581c50adef92d01bb3c73d8b80b41Face Verification Using the LARK +
Representation +
6c8c7065d1041146a3604cbe15c6207f486021baAttention Modeling for Face Recognition via Deep Learning +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 999077 CHINA +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 99907 CHINA +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 99907 CHINA +
Department of Computing, Hung Hom, Kowloon +
Hong Kong, 99907 CHINA +
390f3d7cdf1ce127ecca65afa2e24c563e9db93bLearning Deep Representation for Face +
Alignment with Auxiliary Attributes +
3918b425bb9259ddff9eca33e5d47bde46bd40aaCopyright +
by +
David Lieh-Chiang Chen +
2012 +
39ce143238ea1066edf0389d284208431b53b802
39ce2232452c0cd459e32a19c1abe2a2648d0c3f
3998c5aa6be58cce8cb65a64cb168864093a9a3e
397aeaea61ecdaa005b09198942381a7a11cd129
39b22bcbd452d5fea02a9ee63a56c16400af2b83
399a2c23bd2592ebe20aa35a8ea37d07c14199da
39c8b34c1b678235b60b648d0b11d241a34c8e32Learning to Deblur Images with Exemplars +
3986161c20c08fb4b9b791b57198b012519ea58bInternational Journal of Soft Computing and Engineering (IJSCE) +
ISSN: 2231-2307, Volume-4 Issue-4, September 2014 +
An Efficient Method for Face Recognition based on +
Fusion of Global and Local Feature Extraction +
392425be1c9d9c2ee6da45de9df7bef0d278e85f
392c3cabe516c0108b478152902a9eee94f4c81eComputer Science and Artificial Intelligence Laboratory +
Technical Report +
MIT-CSAIL-TR-2007-024 +
April 23, 2007 +
Tiny images +
m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u +
3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1
3965d61c4f3b72044f43609c808f8760af8781a2
395bf182983e0917f33b9701e385290b64e22f9a
3933e323653ff27e68c3458d245b47e3e37f52fdEvaluation of a 3D-aided Pose Invariant 2D Face Recognition System +
Computational Biomedicine Lab +
4800 Calhoun Rd. Houston, TX, USA +
39b452453bea9ce398613d8dd627984fd3a0d53c
3958db5769c927cfc2a9e4d1ee33ecfba86fe054Describable Visual Attributes for +
Face Verification and Image Search +
39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df
994f7c469219ccce59c89badf93c0661aae342641 +
Model Based Face Recognition Across Facial +
Expressions +
+
screens, embedded into mobiles and installed into everyday +
living and working environments they become valuable tools +
for human system interaction. A particular important aspect of +
this interaction is detection and recognition of faces and +
interpretation of facial expressions. These capabilities are +
deeply rooted in the human visual system and a crucial +
building block for social interaction. Consequently, these +
capabilities are an important step towards the acceptance of +
many technical systems. +
trees as a classifier +
lies not only +
9949ac42f39aeb7534b3478a21a31bc37fe2ffe3Parametric Stereo for Multi-Pose Face Recognition and +
3D-Face Modeling +
PSI ESAT-KUL +
Leuven, Belgium +
9958942a0b7832e0774708a832d8b7d1a5d287aeThe Sparse Matrix Transform for Covariance +
Estimation and Analysis of High Dimensional +
Signals +
9931c6b050e723f5b2a189dd38c81322ac0511de
9993f1a7cfb5b0078f339b9a6bfa341da76a3168JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
A Simple, Fast and Highly-Accurate Algorithm to +
Recover 3D Shape from 2D Landmarks on a Single +
Image +
99c20eb5433ed27e70881d026d1dbe378a12b342ISCA Archive +
http://www.isca-speech.org/archive +
First Workshop on Speech, Language +
and Audio in Multimedia +
Marseille, France +
August 22-23, 2013 +
Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013. +
78 +
9990e0b05f34b586ffccdc89de2f8b0e5d427067International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013 +
Auto-Optimized Multimodal Expression Recognition +
Framework Using 3D Kinect Data for ASD Therapeutic +
Aid +
 +
regarding +
emotion +
and +
to +
recognize +
99d7678039ad96ee29ab520ff114bb8021222a91Political image analysis with deep neural +
networks +
November 28, 2017 +
529e2ce6fb362bfce02d6d9a9e5de635bde81191This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +
> TIP-05732-2009< +
1 +
Normalization of Face Illumination Based +
on Large- and Small- Scale Features +
52887969107956d59e1218abb84a1f834a3145781283 +
Travel Recommendation by Mining People +
Attributes and Travel Group Types From +
Community-Contributed Photos +
521482c2089c62a59996425603d8264832998403
521b625eebea73b5deb171a350e3709a4910eebf
527dda77a3864d88b35e017d542cb612f275a4ec
52f23e1a386c87b0dab8bfdf9694c781cd0a3984
529baf1a79cca813f8c9966ceaa9b3e42748c058Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image +
+
{tag} {/tag} +
+
International Journal of Computer Applications +
+
© 2014 by IJCA Journal +
Volume 87 - Number 6 +
+
Year of Publication: 2014 +
+
+
+
Authors: +
+
Bhogeswar Borah +
+
+
+
+
+
+
+
+
+
+
10.5120/15209-3714 +
{bibtex}pxc3893714.bib{/bibtex} +
5239001571bc64de3e61be0be8985860f08d7e7eSUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 +
Deep Appearance Models: A Deep Boltzmann +
Machine Approach for Face Modeling +
550858b7f5efaca2ebed8f3969cb89017bdb739f
554b9478fd285f2317214396e0ccd81309963efdSpatio-Temporal Action Localization For Human Action +
Recognition in Large Dataset +
1L2TI, Institut Galil´ee, Universit´e Paris 13, France; +
2SERCOM, Ecole Polytechnique de Tunisie +
55c68c1237166679d2cb65f266f496d1ecd4bec6Learning to Score Figure Skating Sport Videos +
5502dfe47ac26e60e0fb25fc0f810cae6f5173c0Affordance Prediction via Learned Object Attributes +
55a158f4e7c38fe281d06ae45eb456e05516af50The 22nd International Conference on Computer Graphics and Vision +
108 +
GraphiCon’2012 +
5506a1a1e1255353fde05d9188cb2adc20553af5
55c81f15c89dc8f6eedab124ba4ccab18cf38327
551fa37e8d6d03b89d195a5c00c74cc52ff1c67aGeThR-Net: A Generalized Temporally Hybrid +
Recurrent Neural Network for Multimodal +
Information Fusion +
1 Xerox Research Centre India; 2 Amazon Development Center India +
55c40cbcf49a0225e72d911d762c27bb1c2d14aaIndian Face Age Database: A Database for Face Recognition with Age Variation +
{tag} {/tag} +
International Journal of Computer Applications +
+
Foundation of Computer Science (FCS), NY, USA +
+
+
Volume 126 +
- +
Number 5 +
+
+
Year of Publication: 2015 +
+
+
+
+
Authors: +
+
+
+
+
+
+
+
+
+
+
+
10.5120/ijca2015906055 +
{bibtex}2015906055.bib{/bibtex} +
973e3d9bc0879210c9fad145a902afca07370b86(IJACSA) International Journal of Advanced Computer Science and Applications, +
Vol. 7, No. 7, 2016 +
From Emotion Recognition to Website +
Customizations +
O.B. Efremides +
School of Web Media +
Bahrain Polytechnic +
Isa Town, Kingdom of Bahrain +
97b8249914e6b4f8757d22da51e8347995a4063728 +
Large-Scale Vehicle Detection, Indexing, +
and Search in Urban Surveillance Videos +
97032b13f1371c8a813802ade7558e816d25c73fTotal Recall Final Report +
Supervisor: Professor Duncan Gillies +
January 11, 2006 +
97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5manuscript No. +
(will be inserted by the editor) +
Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, +
Deep Architectures, and Beyond +
Zafeiriou4 +
97d1d561362a8b6beb0fdbee28f3862fb48f13801955 +
Age Synthesis and Estimation via Faces: +
A Survey +
97540905e4a9fdf425989a794f024776f28a3fa9
9755554b13103df634f9b1ef50a147dd02eab02fHow Transferable are CNN-based Features for +
Age and Gender Classification? +
1 +
635158d2da146e9de559d2742a2fa234e06b52db
63cf5fc2ee05eb9c6613043f585dba48c5561192Prototype Selection for +
Classification in Standard +
and Generalized +
Dissimilarity Spaces +
63d8d69e90e79806a062cb8654ad78327c8957bb
631483c15641c3652377f66c8380ff684f3e365cSync-DRAW: Automatic Video Generation using Deep Recurrent +
A(cid:130)entive Architectures +
Gaurav Mi(cid:138)al∗ +
IIT Hyderabad +
Vineeth N Balasubramanian +
IIT Hyderabad +
63eefc775bcd8ccad343433fc7a1dd8e1e5ee796
632fa986bed53862d83918c2b71ab953fd70d6ccGÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT +
What Face and Body Shapes Can Tell +
About Height +
CVLab +
EPFL, +
Lausanne, Switzerland +
63340c00896d76f4b728dbef85674d7ea8d5ab261732 +
Discriminant Subspace Analysis: +
A Fukunaga-Koontz Approach +
63d865c66faaba68018defee0daf201db8ca79edDeep Regression for Face Alignment +
1Dept. of Electronics and Information Engineering, Huazhong Univ. of Science and Technology, China +
2Microsoft Research, Beijing, China +
634541661d976c4b82d590ef6d1f3457d2857b19AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa +
in cotutela con Università di Sassari +
DOTTORATO DI RICERCA IN +
INGEGNERIA ELETTRONICA, INFORMATICA E DELLE +
TELECOMUNICAZIONI +
Ciclo XXVI +
Settore Concorsuale di afferenza: 09/H1 +
Settore Scientifico disciplinare: ING-INF/05 +
ADVANCED TECHNIQUES FOR FACE RECOGNITION +
UNDER CHALLENGING ENVIRONMENTS +
TITOLO TESI +
Presentata da: +
Coordinatore Dottorato +
ALESSANDRO VANELLI-CORALLI +
+
Relatore +
DAVIDE MALTONI +
Relatore +
MASSIMO TISTARELLI +
Esame finale anno 2014 +
6332a99e1680db72ae1145d65fa0cccb37256828MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE +
REPORT OF THE RESEARCH PROJECT +
OPTION: COMPUTER VISION +
Pose and Face Recovery via +
Spatio-temporal GrabCut Human +
Segmentation +
Date: 13/07/2010 +
63c022198cf9f084fe4a94aa6b240687f21d8b41425 +
0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dabMulti-Directional Multi-Level Dual-Cross +
Patterns for Robust Face Recognition +
0f112e49240f67a2bd5aaf46f74a924129f03912947 +
Age-Invariant Face Recognition +
0f4cfcaca8d61b1f895aa8c508d34ad89456948eLOCAL APPEARANCE BASED FACE RECOGNITION USING +
DISCRETE COSINE TRANSFORM (WedPmPO4) +
Author(s) : +
0fad544edfc2cd2a127436a2126bab7ad31ec333Decorrelating Semantic Visual Attributes by Resisting the Urge to Share +
UT Austin +
USC +
UT Austin +
0f32df6ae76402b98b0823339bd115d33d3ec0a0Emotion recognition from embedded bodily +
expressions and speech during dyadic interactions +
0fd1715da386d454b3d6571cf6d06477479f54fcJ Intell Robot Syst (2016) 82:101–133 +
DOI 10.1007/s10846-015-0259-2 +
A Survey of Autonomous Human Affect Detection Methods +
for Social Robots Engaged in Natural HRI +
Received: 10 December 2014 / Accepted: 11 August 2015 / Published online: 23 August 2015 +
© Springer Science+Business Media Dordrecht 2015 +
0f9bf5d8f9087fcba419379600b86ae9e9940013
0f92e9121e9c0addc35eedbbd25d0a1faf3ab529MORPH-II: A Proposed Subsetting Scheme +
NSF-REU Site at UNC Wilmington, Summer 2017 +
0fd1bffb171699a968c700f206665b2f8837d953Weakly Supervised Object Localization with +
Multi-fold Multiple Instance Learning +
0a511058edae582e8327e8b9d469588c25152dc6
0a4f3a423a37588fde9a2db71f114b293fc09c50
0a3863a0915256082aee613ba6dab6ede962cdcdEarly and Reliable Event Detection Using Proximity Space Representation +
LTCI, CNRS, T´el´ecom ParisTech, Universit´e Paris-Saclay, 75013, Paris, France +
J´erˆome Gauthier +
LADIS, CEA, LIST, 91191, Gif-sur-Yvette, France +
Normandie Universit´e, UR, LITIS EA 4108, Avenue de l’universit´e, 76801, Saint-Etienne-du-Rouvray, France +
0ad90118b4c91637ee165f53d557da7141c3fde0
0af48a45e723f99b712a8ce97d7826002fe4d5a52982 +
Toward Wide-Angle Microvision Sensors +
Todd Zickler, Member, IEEE +
0aa8a0203e5f406feb1815f9b3dd49907f5fd05bMixture subclass discriminant analysis +
0a1138276c52c734b67b30de0bf3f76b0351f097This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +
The final version of record is available at +
http://dx.doi.org/10.1109/TIP.2016.2539502 +
Discriminant Incoherent Component Analysis +
0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a
0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7Noname manuscript No. +
(will be inserted by the editor) +
Multi-task, multi-label and multi-domain learning with +
residual convolutional networks for emotion recognition +
Received: date / Accepted: date +
0acf23485ded5cb9cd249d1e4972119239227ddbDual coordinate solvers for large-scale structural SVMs +
UC Irvine +
This manuscript describes a method for training linear SVMs (including binary SVMs, SVM regression, +
and structural SVMs) from large, out-of-core training datasets. Current strategies for large-scale learning fall +
into one of two camps; batch algorithms which solve the learning problem given a finite datasets, and online +
algorithms which can process out-of-core datasets. The former typically requires datasets small enough to fit +
in memory. The latter is often phrased as a stochastic optimization problem [4, 15]; such algorithms enjoy +
strong theoretical properties but often require manual tuned annealing schedules, and may converge slowly +
for problems with large output spaces (e.g., structural SVMs). We discuss an algorithm for an “intermediate” +
regime in which the data is too large to fit in memory, but the active constraints (support vectors) are small +
enough to remain in memory. +
In this case, one can design rather efficient learning algorithms that are +
as stable as batch algorithms, but capable of processing out-of-core datasets. We have developed such a +
MATLAB-based solver and used it to train a series of recognition systems [19, 7, 21, 12] for articulated pose +
estimation, facial analysis, 3D object recognition, and action classification, all with publicly-available code. +
This writeup describes the solver in detail. +
Approach: Our approach is closely based on data-subsampling algorithms for collecting hard exam- +
ples [9, 10, 6], combined with the dual coordinate quadratic programming (QP) solver described in liblinear +
[8]. The latter appears to be current fastest method for learning linear SVMs. We make two extensions (1) +
We show how to generalize the solver to other types of SVM problems such as (latent) structural SVMs (2) +
We show how to modify it to behave as a partially-online algorithm, which only requires access to small +
amounts of data at a time. +
Overview: Sec. 1 describes a general formulation of an SVM problem that encompasses many standard +
tasks such as multi-class classification and (latent) structural prediction. Sec. 2 derives its dual QP, and Sec. 3 +
describes a dual coordinate descent optimization algorithm. Sec. 4 describes modifications for optimizing +
in an online fashion, allowing one to learn near-optimal models with a single pass over large, out-of-core +
datasets. Sec. 5 briefly touches on some theoretical issues that are necessary to ensure convergence. Finally, +
Sec. 6 and Sec. 7 describe modifications to our basic formulation to accommodate non-negativity constraints +
and flexible regularization schemes during learning. +
1 Generalized SVMs +
We first describe a general formulation of a SVM which encompasses various common problems such as +
binary classification, regression, and structured prediction. Assume we are given training data where the ith +
example is described by a set of Ni vectors {xij} and a set of Ni scalars {lij}, where j varies from 1 to Ni. +
We wish to solve the following optimization problem: +
(0, lij − wT xij) +
max +
j∈Ni +
(1) +
(cid:88) +
argmin +
L(w) = +
||w||2 + +
0ad4a814b30e096ad0e027e458981f812c835aa0
6448d23f317babb8d5a327f92e199aaa45f0efdc
6412d8bbcc01f595a2982d6141e4b93e7e982d0fDeep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and +
Score-level Fusion for Face Recognition +
1Department of Creative IT Engineering, POSTECH, Korea +
2Department of Computer Science and Engineering, POSTECH, Korea +
649eb674fc963ce25e4e8ce53ac7ee20500fb0e3
642c66df8d0085d97dc5179f735eed82abf110d0
641f34deb3bdd123c6b6e7b917519c3e56010cb7
645de797f936cb19c1b8dba3b862543645510544Deep Temporal Linear Encoding Networks +
1ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich +
6462ef39ca88f538405616239471a8ea17d76259
90ac0f32c0c29aa4545ed3d5070af17f195d015f
90cb074a19c5e7d92a1c0d328a1ade1295f4f311MIT. Media Laboratory Affective Computing Technical Report #571 +
Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003 +
Fully Automatic Upper Facial Action Recognition +
MIT Media Laboratory +
Cambridge, MA 02139 +
90b11e095c807a23f517d94523a4da6ae6b12c76
9028fbbd1727215010a5e09bc5758492211dec19Solving the Uncalibrated Photometric Stereo +
Problem using Total Variation +
1 IRIT, UMR CNRS 5505, Toulouse, France +
2 Dept. of Computer Science, Univ. of Copenhagen, Denmark +
bf1e0279a13903e1d43f8562aaf41444afca4fdc International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +
Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 +
Different Viewpoints of Recognizing Fleeting Facial Expressions with +
DWT +
information +
to get desired +
information +
Introduction +
---------------------------------------------------------------------***--------------------------------------------------------------------- +
bf5940d57f97ed20c50278a81e901ae4656f0f2cQuery-free Clothing Retrieval via Implicit +
Relevance Feedback +
bfb98423941e51e3cd067cb085ebfa3087f3bfbeSparseness helps: Sparsity Augmented +
Collaborative Representation for Classification +
d3b73e06d19da6b457924269bb208878160059daProceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015 +
11-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my ) +
Paper No. +
065 +
IMPLEMENTATION OF AN AUTOMATED SMART HOME +
CONTROL FOR DETECTING HUMAN EMOTIONS VIA FACIAL +
DETECTION +
Osman4 +
d3d71a110f26872c69cf25df70043f7615edcf922736 +
Learning Compact Feature Descriptor and Adaptive +
Matching Framework for Face Recognition +
improvements +
d309e414f0d6e56e7ba45736d28ee58ae2bad478Efficient Two-Stream Motion and Appearance 3D CNNs for +
Video Classification +
Ali Diba +
ESAT-KU Leuven +
Ali Pazandeh +
Sharif UTech +
Luc Van Gool +
ESAT-KU Leuven, ETH Zurich +
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9
d33fcdaf2c0bd0100ec94b2c437dccdacec66476Neurons with Paraboloid Decision Boundaries for +
Improved Neural Network Classification +
Performance +
d444368421f456baf8c3cb089244e017f8d32c41CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR +
d4c7d1a7a03adb2338704d2be7467495f2eb6c7b
d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d
d44a93027208816b9e871101693b05adab576d89
d4b88be6ce77164f5eea1ed2b16b985c0670463aTECHNICAL REPORT JAN.15.2016 +
A Survey of Different 3D Face Reconstruction +
Methods +
Department of Computer Science and Engineering +
d44ca9e7690b88e813021e67b855d871cdb5022fQUT Digital Repository: +
http://eprints.qut.edu.au/ +
Zhang, Ligang and Tjondronegoro, Dian W. (2009) Selecting, optimizing and +
fusing ‘salient’ Gabor features for facial expression recognition. In: Neural +
Information Processing (Lecture Notes in Computer Science), 1-5 December +
2009, Hotel Windsor Suites Bangkok, Bangkok. +
+
© Copyright 2009 Springer-Verlag GmbH Berlin Heidelberg +
+
bafb8812817db7445fe0e1362410a372578ec1fc805 +
Image-Quality-Based Adaptive Face Recognition +
ba816806adad2030e1939450226c8647105e101cMindLAB at the THUMOS Challenge +
Fabi´an P´aez +
Fabio A. Gonz´alez +
MindLAB Research Group +
MindLAB Research Group +
MindLAB Research Group +
Bogot´a, Colombia +
Bogot´a, Colombia +
Bogot´a, Colombia +
badcd992266c6813063c153c41b87babc0ba36a3Recent Advances in Object Detection in the Age +
of Deep Convolutional Neural Networks +
,1,2), Fr´ed´eric Jurie(1) +
(∗) equal contribution +
(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS +
(2)Safran Electronics and Defense +
September 11, 2018 +
ba788365d70fa6c907b71a01d846532ba3110e31
ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011 +
EXISTING SEPARATE ENGLISH EDITION +
Uporaba emotivno pogojenega raˇcunalniˇstva v +
priporoˇcilnih sistemih +
Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc +
1Univerza v Ljubljani, Fakulteta za elektrotehniko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +
2Univerza v Ljubljani, Fakulteta za raˇcunalniˇstvo in informatiko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +
Povzetek. V ˇclanku predstavljamo rezultate treh raziskav, vezanih na izboljˇsanje delovanja multimedijskih +
priporoˇcilnih sistemov s pomoˇcjo metod emotivno pogojenega raˇcunalniˇstva (ang. affective computing). +
Vsebinski priporoˇcilni sistem smo izboljˇsali s pomoˇcjo metapodatkov, ki opisujejo emotivne odzive uporabnikov. +
Pri skupinskem priporoˇcilnem sistemu smo dosegli znaˇcilno izboljˇsanje v obmoˇcju hladnega zagona z uvedbo +
nove mere podobnosti, ki temelji na osebnostnem modelu velikih pet (ang. five factor model). Razvili smo tudi +
sistem za neinvazivno oznaˇcevanje vsebin z emotivnimi parametri, ki pa ˇse ni zrel za uporabo v priporoˇcilnih +
sistemih. +
Kljuˇcne besede: priporoˇcilni sistemi, emotivno pogojeno raˇcunalniˇstvo, strojno uˇcenje, uporabniˇski profil, +
emocije +
Uporaba emotivnega raˇcunalniˇstva v priporoˇcilnih +
sistemih +
In this paper we present the results of three investigations of +
our broad research on the usage of affect and personality in +
recommender systems. We improved the accuracy of content- +
based recommender system with the inclusion of affective +
parameters of user and item modeling. We improved the +
accuracy of a content filtering recommender system under the +
cold start conditions with the introduction of a personality +
based user similarity measure. Furthermore we developed a +
system for implicit tagging of content with affective metadata. +
1 UVOD +
Uporabniki (porabniki) multimedijskih (MM) vsebin so +
v ˇcedalje teˇzjem poloˇzaju, saj v veliki koliˇcini vse- +
bin teˇzko najdejo zanje primerne. Pomagajo si s pri- +
poroˇcilnimi sistemi, ki na podlagi osebnih preferenc +
uporabnikov izberejo manjˇso koliˇcino relevantnih MM +
vsebin, med katerimi uporabnik laˇze izbira. Noben danes +
znan priporoˇcilni sistem ne zadoˇsˇca v celoti potrebam +
uporabnikov, saj je izbor priporoˇcenih vsebin obiˇcajno +
nezadovoljive kakovosti [10]. Cilj tega ˇclanka je pred- +
staviti metode emotivno pogojenega raˇcunalniˇstva (ang. +
affective computing - glej [12]) za izboljˇsanje kakovosti +
priporoˇcilnih sistemov in utrditi za slovenski prostor +
novo terminologijo. +
1.1 Opis problema +
Za izboljˇsanje kakovosti priporoˇcilnih sistemov sta +
na voljo dve poti: (i) optimizacija algoritmov ali (ii) +
uporaba boljˇsih znaˇcilk, ki bolje razloˇzijo neznano +
Prejet 13. oktober, 2010 +
Odobren 1. februar, 2011 +
varianco [8]. V tem ˇclanku predstavljamo izboljˇsanje +
priporoˇcilnih sistemov z uporabo novih znaˇcilk, ki te- +
meljijo na emotivnih odzivih uporabnikov in na njiho- +
vih osebnostnih lastnostih. Te znaˇcilke razloˇzijo velik +
del uporabnikovih preferenc, ki se izraˇzajo v obliki +
ocen posameznih vsebin (npr. Likertova lestvica, binarne +
ocene itd.). Ocene vsebin se pri priporoˇcilnih sistemih +
zajemajo eksplicitno (ocena) ali implicitno, pri ˇcemer o +
oceni sklepamo na podlagi opazovanj (npr. ˇcas gledanja +
kot indikator vˇseˇcnosti [7]. +
Izboljˇsanja uˇcinkovitosti priporoˇcilnih sistemov smo +
se lotili na treh podroˇcjih: (i) uporaba emotivnega +
modeliranja uporabnikov v vsebinskem priporoˇcilnem +
sistemu, (ii) neinvazivna (implicitna) detekcija emocij za +
emotivno modeliranje in (iii) uporaba osebnostne mere +
podobnosti v skupinskem priporoˇcilnem sistemu. Slika 1 +
prikazuje arhitekturo emotivnega priporoˇcilnega sistema +
in mesta, kjer smo vnesli opisane izboljˇsave. +
Preostanek ˇclanka je strukturiran tako: v razdelku +
2 je predstavljen zajem podatkov. V razdelku 3 je +
predstavljen vsebinski priporoˇcilni sistem z emotivnimi +
metapodatki. V razdelku 4 je predstavljen skupinski +
priporoˇcilni sistem, ki uporablja mero podobnosti na +
podlagi osebnosti, v razdelku 5 pa algoritem za razpo- +
znavo emocij. Vsak od teh razdelov je sestavljen iz opisa +
eksperimenta in predstavitve rezultatov. V razdelku 6 so +
predstavljeni sklepi. +
1.2 Sorodno delo +
Najbolj groba delitev priporoˇcilnih sistemov je na vse- +
binske, skupinske ter hibridne sisteme [1]. Z izjemo vse- +
binskih priporoˇcilnih sistemov, ki sta ga razvila Arapakis +
[2] in Tkalˇciˇc [14], sorodnega dela na podroˇcju emotivno +
pogojenih priporoˇcilnih sistemov takorekoˇc ni. Panti´c in +
ba29ba8ec180690fca702ad5d516c3e43a7f0bb8
bab88235a30e179a6804f506004468aa8c28ce4f
badd371a49d2c4126df95120902a34f4bee01b00GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION +
Parallel Separable 3D Convolution for Video +
and Volumetric Data Understanding +
Harvard John A. Paulson School of +
Engineering and Applied Sciences +
Camabridge MA, USA +
Toufiq Parag +
Hanspeter Pfister +
a0f94e9400938cbd05c4b60b06d9ed58c34583031118 +
Value-Directed Human Behavior Analysis +
from Video Using Partially Observable +
Markov Decision Processes +
a022eff5470c3446aca683eae9c18319fd2406d52017-ENST-0071 +
EDITE - ED 130 +
Doctorat ParisTech +
T H È S E +
pour obtenir le grade de docteur délivré par +
TÉLÉCOM ParisTech +
Spécialité « SIGNAL et IMAGES » +
présentée et soutenue publiquement par +
le 15 décembre 2017 +
Apprentissage Profond pour la Description Sémantique des Traits +
Visuels Humains +
Directeur de thèse : Jean-Luc DUGELAY +
Co-encadrement de la thèse : Moez BACCOUCHE +
Jury +
Mme Bernadette DORIZZI, PRU, Télécom SudParis +
Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux +
M. Christian WOLF, MC/HDR, INSA de Lyon +
M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes +
M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes +
M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis +
M. Sid-Ahmed BERRANI, Directeur de l’Innovation/HDR, Algérie Télécom +
Présidente +
Rapporteur +
Rapporteur +
Examinateur +
Encadrant +
Directeur de Thèse +
Invité +
TÉLÉCOM ParisTech +
école de l’Institut Télécom - membre de ParisTech +
N°: 2009 ENAM XXXX T H È S E
a0c37f07710184597befaa7e6cf2f0893ff440e9
a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670
a0fd85b3400c7b3e11122f44dc5870ae2de9009aLearning Deep Representation for Face +
Alignment with Auxiliary Attributes +
a0dfb8aae58bd757b801e2dcb717a094013bc178Reconocimiento de expresiones faciales con base +
en la din´amica de puntos de referencia faciales +
Instituto Nacional de Astrof´ısica ´Optica y Electr´onica, +
Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla, +
M´exico +
Resumen. Las expresiones faciales permiten a las personas comunicar +
emociones, y es pr´acticamente lo primero que observamos al interactuar +
con alguien. En el ´area de computaci´on, el reconocimiento de expresiones +
faciales es importante debido a que su an´alisis tiene aplicaci´on directa en +
´areas como psicolog´ıa, medicina, educaci´on, entre otras. En este articulo +
se presenta el proceso de dise˜no de un sistema para el reconocimiento de +
expresiones faciales utilizando la din´amica de puntos de referencia ubi- +
cados en el rostro, su implementaci´on, experimentos realizados y algunos +
de los resultados obtenidos hasta el momento. +
Palabras clave: Expresiones faciales, clasificaci´on, m´aquinas de soporte +
vectorial,modelos activos de apariencia. +
Facial Expressions Recognition Based on Facial +
Landmarks Dynamics +
a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60Simultaneous Learning and Alignment: +
Multi-Instance and Multi-Pose Learning? +
1 Comp. Science & Eng. +
Univ. of CA, San Diego +
2 Electrical Engineering +
California Inst. of Tech. +
3 Lab of Neuro Imaging +
Univ. of CA, Los Angeles +
a000149e83b09d17e18ed9184155be140ae1266eChapter 9 +
Action Recognition in Realistic +
Sports Videos +
a784a0d1cea26f18626682ab108ce2c9221d1e53Anchored Regression Networks applied to Age Estimation and Super Resolution +
D-ITET, ETH Zurich +
Switzerland +
D-ITET, ETH Zurich +
Merantix GmbH +
D-ITET, ETH Zurich +
ESAT, KU Leuven +
a74251efa970b92925b89eeef50a5e37d9281ad0
a7664247a37a89c74d0e1a1606a99119cffc41d4Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
3287 +
a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b911th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003 +
Face Recognition Using Multi-viewpoint Patterns for +
Robot Vision +
Corporate Research and Development Center, TOSHIBA Corporation +
1, KomukaiToshiba-cho, Saiwai-ku, Kawasaki 212-8582 Japan +
a75ee7f4c4130ef36d21582d5758f953dba03a01DD2427 Final Project Report +
DD2427 Final Project Report +
Human face attributes prediction with Deep +
Learning +
a775da3e6e6ea64bffab7f9baf665528644c7ed3International Journal of Computer Applications (0975 – 8887) +
Volume 142 – No.9, May 2016 +
Human Face Pose Estimation based on Feature +
Extraction Points +
Research scholar, +
Department of ECE +
SBSSTC, Moga Road, +
Ferozepur, Punjab, India +
b8dba0504d6b4b557d51a6cf4de5507141db60cfComparing Performances of Big Data Stream +
Processing Platforms with RAM3S +
b8378ab83bc165bc0e3692f2ce593dcc713df34a
b8f3f6d8f188f65ca8ea2725b248397c7d1e662dSelfie Detection by Synergy-Constriant Based +
Convolutional Neural Network +
Electrical and Electronics Engineering, NITK-Surathkal, India. +
b81cae2927598253da37954fb36a2549c5405cdbExperiments on Visual Information Extraction with the Faces of Wikipedia +
D´epartement de g´enie informatique et g´enie logiciel, Polytechnique Montr´eal +
2500, Chemin de Polytechnique, Universit´e de Montr´eal, Montr`eal, Qu´ebec, Canada +
b8a829b30381106b806066d40dd372045d49178d1872 +
A Probabilistic Framework for Joint Pedestrian Head +
and Body Orientation Estimation +
b1d89015f9b16515735d4140c84b0bacbbef19acToo Far to See? Not Really! +
— Pedestrian Detection with Scale-aware +
Localization Policy +
b14b672e09b5b2d984295dfafb05604492bfaec5LearningImageClassificationandRetrievalModelsThomasMensink
b171f9e4245b52ff96790cf4f8d23e822c260780
b1a3b19700b8738b4510eecf78a35ff38406df22This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE +
Transactions on Affective Computing +
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +
Automatic Analysis of Facial Actions: A Survey +
and Maja Pantic, Fellow, IEEE +
b1301c722886b6028d11e4c2084ee96466218be4
b1c5581f631dba78927aae4f86a839f43646220c
b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1LOCAL DIRECTIONAL RELATION PATTERN +
Local Directional Relation Pattern for +
Unconstrained and Robust Face Retrieval +
b19e83eda4a602abc5a8ef57467c5f47f493848dJOURNAL OF LATEX CLASS FILES +
Heat Kernel Based Local Binary Pattern for +
Face Representation +
dd8084b2878ca95d8f14bae73e1072922f0cc5daModel Distillation with Knowledge Transfer from +
Face Classification to Alignment and Verification +
Beijing Orion Star Technology Co., Ltd. Beijing, China +
dd0760bda44d4e222c0a54d41681f97b3270122b
ddea3c352f5041fb34433b635399711a90fde0e8Facial Expression Classification using Visual Cues and Language +
Department of Computer Science and Engineering, IIT Kanpur +
ddbd24a73ba3d74028596f393bb07a6b87a469c0Multi-region two-stream R-CNN +
for action detection +
Inria(cid:63) +
ddf099f0e0631da4a6396a17829160301796151cIEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY +
Learning Face Image Quality from +
Human Assessments +
dd0a334b767e0065c730873a95312a89ef7d1c03Eigenexpressions: Emotion Recognition using Multiple +
Eigenspaces +
Luis Marco-Gim´enez1, Miguel Arevalillo-Herr´aez1, and Cristina Cuhna-P´erez2 +

Burjassot. Valencia 46100, Spain, +
2 Universidad Cat´olica San Vicente M´artir de Valencia (UCV), +
Burjassot. Valencia. Spain +
dd2f6a1ba3650075245a422319d86002e1e87808
dd8d53e67668067fd290eb500d7dfab5b6f730dd69 +
A Parameter-Free Framework for General +
Supervised Subspace Learning +
ddbb6e0913ac127004be73e2d4097513a8f02d37264 +
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999 +
Face Detection Using Quantized Skin Color +
Regions Merging and Wavelet Packet Analysis +
dd600e7d6e4443ebe87ab864d62e2f4316431293
dcb44fc19c1949b1eda9abe998935d567498467dProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
1916 +
dc77287bb1fcf64358767dc5b5a8a79ed9abaa53Fashion Conversation Data on Instagram +
∗Graduate School of Culture Technology, KAIST, South Korea +
†Department of Communication Studies, UCLA, USA +
dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb
dc974c31201b6da32f48ef81ae5a9042512705feAm I done? Predicting Action Progress in Video +
1 Media Integration and Communication Center, Univ. of Florence, Italy +
2 Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy +
b6c047ab10dd86b1443b088029ffe05d79bbe257
b6c53891dff24caa1f2e690552a1a5921554f994
b613b30a7cbe76700855479a8d25164fa7b6b9f11 +
Identifying User-Specific Facial Affects from +
Spontaneous Expressions with Minimal Annotation +
b6f682648418422e992e3ef78a6965773550d36bFebruary 8, 2017 +
b656abc4d1e9c8dc699906b70d6fcd609fae8182
a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd(IJARAI) International Journal of Advanced Research in Artificial Intelligence, +
Vol. 5, No.6, 2016 +
A Model for Facial Emotion Inference Based on +
Planar Dynamic Emotional Surfaces +
Ruivo, J. P. P. +
Escola Polit´ecnica +
Negreiros, T. +
Escola Polit´ecnica +
Barretto, M. R. P. +
Escola Polit´ecnica +
Tinen, B. +
Escola Polit´ecnica +
Universidade de S˜ao Paulo +
Universidade de S˜ao Paulo +
Universidade de S˜ao Paulo +
Universidade de S˜ao Paulo +
S˜ao Paulo, Brazil +
S˜ao Paulo, Brazil +
S˜ao Paulo, Brazil +
S˜ao Paulo, Brazil +
a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f
a98316980b126f90514f33214dde51813693fe0dCollaborations on YouTube: From Unsupervised Detection to the +
Impact on Video and Channel Popularity +
Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany +
a93781e6db8c03668f277676d901905ef44ae49fRecent Datasets on Object Manipulation: A Survey +
a9adb6dcccab2d45828e11a6f152530ba8066de6Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma +
Illumination Subspaces based Robust Face Recognition +
Interactive Systems Labs, Universität Karlsruhe (TH) +
76131 Karlsruhe, Almanya +
web: http://isl.ira.uka.de/face_recognition +
Özetçe +
yönlerine +
aydınlanma +
kaynaklanan +
sonra, yüz uzayı +
Bu çalışmada aydınlanma alt-uzaylarına dayalı bir yüz tanıma +
sistemi sunulmuştur. Bu sistemde, +
ilk olarak, baskın +
aydınlanma yönleri, bir topaklandırma algoritması kullanılarak +
öğrenilmiştir. Topaklandırma algoritması sonucu önden, sağ +
ve sol yanlardan olmak üzere üç baskın aydınlanma yönü +
gözlemlenmiştir. Baskın +
karar +
-yüzün görünümündeki +
kılındıktan +
aydınlanmadan +
kişi +
kimliklerinden kaynaklanan değişimlerden ayırmak için- bu üç +
aydınlanma uzayına bölünmüştür. Daha sonra, ek aydınlanma +
yönü bilgisinden faydalanmak için aydınlanma alt-uzaylarına +
dayalı yüz +
tanıma algoritması kullanılmıştır. Önerilen +
yaklaşım, CMU PIE veritabanında, “illumination” ve +
“lighting” kümelerinde yer alan yüz +
imgeleri üzerinde +
sınanmıştır. Elde edilen deneysel sonuçlar, aydınlanma +
yönünden yararlanmanın ve aydınlanma alt-uzaylarına dayalı +
yüz tanıma algoritmasının yüz tanıma başarımını önemli +
ölçüde arttırdığını göstermiştir. +
değişimleri, +
farklı +
a95dc0c4a9d882a903ce8c70e80399f38d2dcc89 TR-IIS-14-003 +
Review and Implementation of +
High-Dimensional Local Binary +
Patterns and Its Application to +
Face Recognition +
July. 24, 2014 || Technical Report No. TR-IIS-14-003 +
http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html +
a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6Learning to Succeed while Teaching to Fail: +
Privacy in Closed Machine Learning Systems +
a92b5234b8b73e06709dd48ec5f0ec357c1aabed
d50c6d22449cc9170ab868b42f8c72f8d31f9b6cProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
1668 +
d522c162bd03e935b1417f2e564d1357e98826d2He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19 +
http://asp.eurasipjournals.com/content/2013/1/19 +
RESEARCH +
Open Access +
Weakly supervised object extraction with +
iterative contour prior for remote sensing +
images +
d59f18fcb07648381aa5232842eabba1db52383eInternational Conference on Systemics, Cybernetics and Informatics, February 12–15, 2004 +
ROBUST FACIAL EXPRESSION RECOGNITION USING SPATIALLY +
LOCALIZED GEOMETRIC MODEL +
Department of Electrical Engineering +
Dept. of Computer Sc. and Engg. +
IIT Kanpur +
Kanpur 208016, India +
Kanpur 208016, India +
IIT Kanpur +
Dept. of Computer Sc. and Engg. +
IIT Kanpur +
Kanpur 208016, India +
While approaches based on 3D deformable facial model have +
achieved expression recognition rates of as high as 98% [2], they +
are computationally inefficient and require considerable apriori +
training based on 3D information, which is often unavailable. +
Recognition from 2D images remains a difficult yet important +
problem for areas such as +
image database querying and +
classification. The accuracy rates achieved for 2D images are +
around 90% [3,4,5,11]. In a recent review of expression +
recognition, Fasel [1] considers the problem along several +
dimensions: whether features such as lips or eyebrows are first +
identified in the face (local [4] vs holistic [11]), or whether the +
image model used is 2D or 3D. Methods proposed for expression +
recognition from 2D images include the Gabor-Wavelet [5] or +
Holistic Optical flow [11] approach. +
This paper describes a more robust system for facial expression +
recognition from image sequences using 2D appearance-based +
local approach for the extraction of intransient facial features, i.e. +
features such as eyebrows, lips, or mouth, which are always +
present in the image, but may be deformed [1] (in contrast, +
transient features are wrinkles or bulges that disappear at other +
times). The main advantages of such an approach is low +
computational requirements, ability to work with both colored and +
grayscale images and robustness in handling partial occlusions +
[3]. +
Edge projection analysis which is used here for feature extraction +
(eyebrows and lips) is well known [6]. Unlike [6] which describes +
a template based matching as an essential starting point, we use +
contours analysis. Our system computes a feature vector based on +
geometrical model of the face and then classifies it into four +
expression classes using a feed-forward basis function net. The +
system detects open and closed state of the mouth as well. The +
algorithm presented here works on both color and grayscale image +
sequences. An important aspect of our work is the use of color +
information for robust and more accurate segmentation of lip +
region in case of color images. The novel lip-enhancement +
transform is based on Gaussian modeling of skin and lip color. +
To place the work in a larger context of face analysis and +
recognition, the overall task requires that the part of the image +
involving the face be detected and segmented. We assume that a +
near-frontal view of the face is available. Tests on a grayscale +
and two color face image databases ([8] and [9,10]) demonstrate a +
superior recognition rate for four facial expressions (smile, +
surprise, disgust and sad against neutral). +
image sequences +
d588dd4f305cdea37add2e9bb3d769df98efe880 +
Audio-Visual Authentication System over the +
Internet Protocol +
abandoned. +
in +
illumination based +
is developed with the objective to +
d5444f9475253bbcfef85c351ea9dab56793b9eaIEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS +
BoxCars: Improving Fine-Grained Recognition +
of Vehicles using 3D Bounding Boxes +
in Traffic Surveillance +
in contrast +
d5ab6aa15dad26a6ace5ab83ce62b7467a18a88eWorld Journal of Computer Application and Technology 2(7): 133-138, 2014 +
DOI: 10.13189/wjcat.2014.020701 +
http://www.hrpub.org +
Optimized Structure for Facial Action Unit Relationship +
Using Bayesian Network +
Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau +
Pinang, Malaysia +
Copyright © 2014 Horizon Research Publishing All rights reserved. +
d56fe69cbfd08525f20679ffc50707b738b88031Training of multiple classifier systems utilizing +
partially labelled sequences +

89069 Ulm - Germany +
d50751da2997e7ebc89244c88a4d0d18405e8507
d511e903a882658c9f6f930d6dd183007f508eda
d59404354f84ad98fa809fd1295608bf3d658bdcInternational Journal of Computer Vision manuscript No. +
(will be inserted by the editor) +
Face Synthesis from Visual Attributes via Sketch using +
Conditional VAEs and GANs +
Received: date / Accepted: date +
d5e1173dcb2a51b483f86694889b015d55094634
d2eb1079552fb736e3ba5e494543e67620832c52ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1 +
DeSTNet: Densely Fused Spatial +
Transformer Networks1 +
Onfido Research +
3 Finsbury Avenue +
London, UK +
d24dafe10ec43ac8fb98715b0e0bd8e479985260J Nonverbal Behav (2018) 42:81–99 +
https://doi.org/10.1007/s10919-017-0266-z +
O R I G I N A L P A P E R +
Effects of Social Anxiety on Emotional Mimicry +
and Contagion: Feeling Negative, but Smiling Politely +
• Gerben A. van Kleef2 +
• Agneta H. Fischer2 +
Published online: 25 September 2017 +
Ó The Author(s) 2017. This article is an open access publication +
d278e020be85a1ccd90aa366b70c43884dd3f798Learning From Less Data: Diversified Subset Selection and +
Active Learning in Image Classification Tasks +
IIT Bombay +
Mumbai, Maharashtra, India +
AITOE Labs +
Mumbai, Maharashtra, India +
AITOE Labs +
Mumbai, Maharashtra, India +
Rishabh Iyer +
AITOE Labs +
Seattle, Washington, USA +
AITOE Labs +
Seattle, Washington, USA +
Narsimha Raju +
IIT Bombay +
Mumbai, Maharashtra, India +
IIT Bombay +
Mumbai, Maharashtra, India +
IIT Bombay +
Mumbai, Maharashtra, India +
May 30, 2018 +
aafb271684a52a0b23debb3a5793eb618940c5dd
aa52910c8f95e91e9fc96a1aefd406ffa66d797dFACE RECOGNITION SYSTEM BASED +
ON 2DFLD AND PCA +
E&TC Department +
Sinhgad Academy of Engineering +
Pune, India +
Mr. Hulle Rohit Rajiv +
ME E&TC [Digital System] +
Sinhgad Academy of Engineering +
Pune, India +
aadfcaf601630bdc2af11c00eb34220da59b7559Multi-view Hybrid Embedding: +
A Divide-and-Conquer Approach +
aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5Biometrics in Ambient Intelligence +
aa331fe378056b6d6031bb8fe6676e035ed60d6d
aae0e417bbfba701a1183d3d92cc7ad550ee59c3844 +
A Statistical Method for 2-D Facial Landmarking +
aa577652ce4dad3ca3dde44f881972ae6e1acce7Deep Attribute Networks +
Department of EE, KAIST +
Daejeon, South Korea +
Department of EE, KAIST +
Daejeon, South Korea +
Department of EE, KAIST +
Daejeon, South Korea +
Department of EE, KAIST +
Daejeon, South Korea +
aa94f214bb3e14842e4056fdef834a51aecef39cReconhecimento de padrões faciais: Um estudo +
Universidade Federal +
Rural do Semi-Árido +
Departamento de Ciências Naturais +
Mossoró, RN - 59625-900 +
Resumo—O reconhecimento facial tem sido utilizado em di- +
versas áreas para identificação e autenticação de usuários. Um +
dos principais mercados está relacionado a segurança, porém há +
uma grande variedade de aplicações relacionadas ao uso pessoal, +
conveniência, aumento de produtividade, etc. O rosto humano +
possui um conjunto de padrões complexos e mutáveis. Para +
reconhecer esses padrões, são necessárias técnicas avançadas de +
reconhecimento de padrões capazes, não apenas de reconhecer, +
mas de se adaptar às mudanças constantes das faces das pessoas. +
Este documento apresenta um método de reconhecimento facial +
proposto a partir da análise comparativa de trabalhos encontra- +
dos na literatura. +
biométrica é o uso da biometria para reconhecimento, identi- +
ficação ou verificação, de um ou mais traços biométricos de +
um indivíduo com o objetivo de autenticar sua identidade. Os +
traços biométricos são os atributos analisados pelas técnicas +
de reconhecimento biométrico. +
A tarefa de reconhecimento facial é composta por três +
processos distintos: Registro, verificação e identificação bio- +
métrica. Os processos se diferenciam pela forma de determinar +
a identidade de um indivíduo. Na Figura 1 são descritos os +
processos de registro, verificação e identificação biométrica. +
I. INTRODUÇÃO +
Biometria é a ciência que estabelece a identidade de um +
indivíduo baseada em seus atributos físicos, químicos ou +
comportamentais [1]. Possui inúmeras aplicações em diver- +
sas áreas, se destacando mais na área de segurança, como +
por exemplo sistemas de gerenciamento de identidade, cuja +
funcionalidade é autenticar a identidade de um indivíduo no +
contexto de uma aplicação. +
O reconhecimento facial é uma técnica biométrica que +
consiste em identificar padrões em características faciais como +
formato da boca, do rosto, distância dos olhos, entre outros. +
Um humano é capaz de reconhecer uma pessoa familiar +
mesmo com muitos obstáculos com distância, sombras ou +
apenas a visão parcial do rosto. Uma máquina, no entanto, +
precisa realizar inúmeros processos para detectar e reconhecer +
um conjunto de padrões específicos para rotular uma face +
como conhecida ou desconhecida. Para isso, exitem métodos +
capazes de detectar, extrair e classificar as características +
faciais, fornecendo um reconhecimento automático de pessoas. +
II. RECONHECIMENTO FACIAL +
A tecnologia biométrica oferece vantagens em relação a +
outros métodos tradicionais de identificação como senhas, +
documentos e tokens. Entre elas estão o fato de que os +
traços biométricos não podem ser perdidos ou esquecidos, são +
difíceis de serem copiados, compartilhados ou distribuídos. Os +
métodos requerem que a pessoa autenticada esteja presente +
na hora e lugar da autenticação, evitando que pessoas má +
intencionadas tenham acesso sem autorização. +
A autenticação é o ato de estabelecer ou confirmar alguém, +
ou alguma coisa, como autêntico, isto é, que as alegações +
feitas por ou sobre a coisa é verdadeira [2]. Autenticação +
(a) +
(b) +
(c) +
Figura 1: Registro biométrico (a), identificação biométrica (b) +
e verificação biométrica (c) +
A Figura 1a descreve o processo de registro de dados +
af8fe1b602452cf7fc9ecea0fd4508ed4149834e
af6e351d58dba0962d6eb1baf4c9a776eb73533fHow to Train Your Deep Neural Network with +
Dictionary Learning +
*IIIT Delhi +
Okhla Phase 3 +
Delhi, 110020, India +
+IIIT Delhi +
Okhla Phase 3 +
#IIIT Delhi +
Okhla Phase 3 +
Delhi, 110020, India +
Delhi, 110020, India +
af6cae71f24ea8f457e581bfe1240d5fa63faaf7
af54dd5da722e104740f9b6f261df9d4688a9712
afc7092987f0d05f5685e9332d83c4b27612f964Person-Independent Facial Expression Detection using Constrained +
Local Models +
b730908bc1f80b711c031f3ea459e4de09a3d3242024 +
Active Orientation Models for Face +
Alignment In-the-Wild +
b7cf7bb574b2369f4d7ebc3866b461634147041aNeural Comput & Applic (2012) 21:1575–1583 +
DOI 10.1007/s00521-011-0728-x +
O R I G I N A L A R T I C L E +
From NLDA to LDA/GSVD: a modified NLDA algorithm +
Received: 2 August 2010 / Accepted: 3 August 2011 / Published online: 19 August 2011 +
Ó Springer-Verlag London Limited 2011 +
b7eead8586ffe069edd190956bd338d82c69f880A VIDEO DATABASE FOR FACIAL +
BEHAVIOR UNDERSTANDING +
D. Freire-Obreg´on and M. Castrill´on-Santana. +
SIANI, Universidad de Las Palmas de Gran Canaria, Spain +
b75cee96293c11fe77ab733fc1147950abbe16f9
b7f05d0771da64192f73bdb2535925b0e238d233 MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +
4-3 +
Robust Active Shape Model using AdaBoosted Histogram Classifiers +
W ataru Ito +
Imaging Software Technology Center +
Imaging Software Technology Center +
FUJI PHOTO FILM CO., LTD. +
FUJI PHOTO FILM CO., LTD. +
b755505bdd5af078e06427d34b6ac2530ba69b12To appear in the International Joint Conf. Biometrics, Washington D.C., October, 2011 +
NFRAD: Near-Infrared Face Recognition at a Distance +
aDept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea +
bDept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824 +
b73fdae232270404f96754329a1a18768974d3f6
b76af8fcf9a3ebc421b075b689defb6dc4282670Face Mask Extraction in Video Sequence +
b747fcad32484dfbe29530a15776d0df5688a7db
b7f7a4df251ff26aca83d66d6b479f1dc6cd1085Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55 +
http://jivp.eurasipjournals.com/content/2013/1/55 +
RESEARCH +
Open Access +
Handling missing weak classifiers in boosted +
cascade: application to multiview and +
occluded face detection +
db227f72bb13a5acca549fab0dc76bce1fb3b948International Refereed Journal of Engineering and Science (IRJES) +
ISSN (Online) 2319-183X, (Print) 2319-1821 +
Volume 4, Issue 6 (June 2015), PP.169-169-174 +
Characteristic Based Image Search using Re-Ranking method +
1Chitti Babu, 2Yasmeen Jaweed, 3G.Vijay Kumar +
dbaf89ca98dda2c99157c46abd136ace5bdc33b3Nonlinear Cross-View Sample Enrichment for +
Action Recognition +
Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI +
dbab6ac1a9516c360cdbfd5f3239a351a64adde7
dbe255d3d2a5d960daaaba71cb0da292e0af36a7Evolutionary Cost-sensitive Extreme Learning +
Machine +
1 +
dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8Chapter 7 +
Machine Learning Techniques +
for Face Analysis +
dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57Face Image Analysis With +
Convolutional Neural Networks +
Dissertation +
Zur Erlangung des Doktorgrades +
der Fakult¨at f¨ur Angewandte Wissenschaften +
an der Albert-Ludwigs-Universit¨at Freiburg im Breisgau +
von +
Stefan Duffner +
2007 +
a83fc450c124b7e640adc762e95e3bb6b423b310Deep Face Feature for Face Alignment +
a85e9e11db5665c89b057a124547377d3e1c27efDynamics of Driver’s Gaze: Explorations in +
Behavior Modeling & Maneuver Prediction +
a8117a4733cce9148c35fb6888962f665ae65b1eIEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X +
A Good Practice Towards Top Performance of Face +
Recognition: Transferred Deep Feature Fusion +
a8035ca71af8cc68b3e0ac9190a89fed50c92332000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
IIIT-CFW: A Benchmark Database of +
Cartoon Faces in the Wild +
1 IIIT Chittoor, Sri City, India +
2 CVIT, KCIS, IIIT Hyderabad, India +
a88640045d13fc0207ac816b0bb532e42bcccf36ARXIV VERSION +
Simultaneously Learning Neighborship and +
Projection Matrix for Supervised +
Dimensionality Reduction +
a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8This is a repository copy of Modelling of Orthogonal Craniofacial Profiles. +
White Rose Research Online URL for this paper: +
http://eprints.whiterose.ac.uk/131767/ +
Version: Published Version +
Article: +
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian +
(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X +
https://doi.org/10.3390/jimaging3040055 +
Reuse +
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +
authors for the original work. More information and the full terms of the licence here: +
https://creativecommons.org/licenses/ +
Takedown +
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +
https://eprints.whiterose.ac.uk/ +
a8e75978a5335fd3deb04572bb6ca43dbfad4738Sparse Graphical Representation based Discriminant +
Analysis for Heterogeneous Face Recognition +
ded968b97bd59465d5ccda4f1e441f24bac7ede5Noname manuscript No. +
(will be inserted by the editor) +
Large scale 3D Morphable Models +
Zafeiriou +
Received: date / Accepted: date +
de0eb358b890d92e8f67592c6e23f0e3b2ba3f66ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL. +
Inference-Based Similarity Search in +
Randomized Montgomery Domains for +
Privacy-Preserving Biometric Identification +
dee406a7aaa0f4c9d64b7550e633d81bc66ff451Content-Adaptive Sketch Portrait Generation by +
Decompositional Representation Learning +
dedabf9afe2ae4a1ace1279150e5f1d495e565da3294 +
Robust Face Recognition With Structurally +
Incoherent Low-Rank Matrix Decomposition +
de398bd8b7b57a3362c0c677ba8bf9f1d8ade583Hierarchical Bayesian Theme Models for +
Multi-pose Facial Expression Recognition +
ded41c9b027c8a7f4800e61b7cfb793edaeb2817
defa8774d3c6ad46d4db4959d8510b44751361d8FEBEI - Face Expression Based Emoticon Identification +
CS - B657 Computer Vision +
Robert J Henderson - rojahend +
b0c512fcfb7bd6c500429cbda963e28850f2e948
b09b693708f412823053508578df289b8403100aWANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS +
Two-Stream SR-CNNs for Action +
Recognition in Videos +
1 Advanced Interactive Technologies Lab +
ETH Zurich +
Zurich, Switzerland +
2 Computer Vision Lab +
ETH Zurich +
Zurich, Switzerland +
b07582d1a59a9c6f029d0d8328414c7bef64dca0Employing Fusion of Learned and Handcrafted +
Features for Unconstrained Ear Recognition +
Maur´ıcio Pamplona Segundo∗† +
October 24, 2017 +
b03d6e268cde7380e090ddaea889c75f64560891
b0c1615ebcad516b5a26d45be58068673e2ff217How Image Degradations Affect Deep CNN-based Face +
Recognition? +
S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1 +
G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2 +
b0de0892d2092c8c70aa22500fed31aa7eb4dd3f(will be inserted by the editor) +
A robust and efficient video representation for action recognition +
Received: date / Accepted: date +
a66d89357ada66d98d242c124e1e8d96ac9b37a0Failure Detection for Facial Landmark Detectors +
Computer Vision Lab, D-ITET, ETH Zurich, Switzerland +
a608c5f8fd42af6e9bd332ab516c8c2af7063c612408 +
Age Estimation via Grouping and Decision Fusion +
a6eb6ad9142130406fb4ffd4d60e8348c2442c29Video Description: A Survey of Methods, +
Datasets and Evaluation Metrics +
a6583c8daa7927eedb3e892a60fc88bdfe89a486
a6590c49e44aa4975b2b0152ee21ac8af3097d80https://doi.org/10.1007/s11263-018-1074-6 +
3D Interpreter Networks for Viewer-Centered Wireframe Modeling +
Received: date / Accepted: date +
a694180a683f7f4361042c61648aa97d222602dbFace Recognition using Scattering Wavelet under Illicit Drug Abuse Variations +
IIIT-Delhi India +
a6db73f10084ce6a4186363ea9d7475a9a658a11
a6634ff2f9c480e94ed8c01d64c9eb70e0d98487
b9d0774b0321a5cfc75471b62c8c5ef6c15527f5Fishy Faces: Crafting Adversarial Images to Poison Face Authentication +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
imec-DistriNet, KU Leuven +
b908edadad58c604a1e4b431f69ac8ded350589aDeep Face Feature for Face Alignment +
b9f2a755940353549e55690437eb7e13ea226bbfUnsupervised Feature Learning from Videos for Discovering and Recognizing Actions +
b9cedd1960d5c025be55ade0a0aa81b75a6efa61INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE +
MATRIX EXPONENTIAL EIGENPROBLEM FROM +
DIMENSIONALITY REDUCTION +
b971266b29fcecf1d5efe1c4dcdc2355cb188ab0MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES +
On the Reconstruction of Face Images from +
Deep Face Templates +
a158c1e2993ac90a90326881dd5cb0996c20d4f3OPEN ACCESS +
ISSN 2073-8994 +
Article +
1 DMA, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy +
2 CITC, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Itlay +
3 Istituto Nazionale di Ricerche Demopolis, via Col. Romey 7, 91100 Trapani, Italy +
† Deceased on 15 March 2009. +
Received: 4 March 2010; in revised form: 23 March 2010 / Accepted: 29 March 2010 / +
Published: 1 April 2010 +
a15d9d2ed035f21e13b688a78412cb7b5a04c469Object Detection Using +
Strongly-Supervised Deformable Part Models +
1Computer Vision and Active Perception Laboratory (CVAP), KTH, Sweden +
2INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Superieure +
a1b1442198f29072e907ed8cb02a064493737158456 +
Crowdsourcing Facial Responses +
to Online Videos +
a15c728d008801f5ffc7898568097bbeac8270a4Concise Preservation by Combining Managed Forgetting +
and Contextualized Remembering +
Grant Agreement No. 600826 +
Deliverable D4.4 +
Work-package +
Deliverable +
Deliverable Leader +
Quality Assessor +
Dissemination level +
Delivery date in Annex I +
Actual delivery date +
Revisions +
Status +
Keywords +
Information Consolidation and Con- +
WP4: +
centration +
D4.4: +
Information analysis, consolidation +
and concentration techniques, and evalua- +
tion - Final release. +
Vasileios Mezaris (CERTH) +
Walter Allasia (EURIX) +
PU +
31-01-2016 (M36) +
31-01-2016 +
Final +
multidocument summarization, semantic en- +
richment, +
feature extraction, concept de- +
tection, event detection, image/video qual- +
ity, image/video aesthetic quality, face de- +
tection/clustering, +
im- +
age/video summarization, image/video near +
duplicate detection, data deduplication, con- +
densation, consolidation +
image clustering, +
a1132e2638a8abd08bdf7fc4884804dd6654fa636 +
Real-Time Video Face Recognition +
for Embedded Devices +
Tessera, Galway, +
Ireland +
1. Introduction +
This chapter will address the challenges of real-time video face recognition systems +
implemented in embedded devices. Topics to be covered include: the importance and +
challenges of video face recognition in real life scenarios, describing a general architecture of +
a generic video face recognition system and a working solution suitable for recognizing +
faces in real-time using low complexity devices. Each component of the system will be +
described together with the system’s performance on a database of video samples that +
resembles real life conditions. +
2. Video face recognition +
Face recognition remains a very active topic in computer vision and receives attention from +
a large community of researchers in that discipline. Many reasons feed this interest; the +
main being the wide range of commercial, law enforcement and security applications that +
require authentication. The progress made in recent years on the methods and algorithms +
for data processing as well as the availability of new technologies makes it easier to study +
these algorithms and turn them into commercially viable product. Biometric based security +
systems are becoming more popular due to their non-invasive nature and their increasing +
reliability. Surveillance applications based on face recognition are gaining increasing +
attention after the United States’ 9/11 events and with the ongoing security threats. The +
Face Recognition Vendor Test (FRVT) (Phillips et al., 2003) includes video face recognition +
testing starting with the 2002 series of tests. +
Recently, face recognition technology was deployed in consumer applications such as +
organizing a collection of images using the faces present in the images (Picassa; Corcoran & +
Costache, 2005), prioritizing family members for best capturing conditions when taking +
pictures, or directly annotating the images as they are captured (Costache et al., 2006). +
Video face recognition, compared with more traditional still face recognition, has the main +
advantage of using multiple instances of the same individual in sequential frames for +
recognition to occur. In still recognition case, the system has only one input image to make +
the decision if the person is or is not in the database. If the image is not suitable for +
recognition (due to face orientation, expression, quality or facial occlusions) the recognition +
result will most likely be incorrect. In the video image there are multiple frames which can +
www.intechopen.com +
a14ae81609d09fed217aa12a4df9466553db4859REVISED VERSION, JUNE 2011 +
Face Identification Using Large Feature Sets +
a1e97c4043d5cc9896dc60ae7ca135782d89e5fcIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Re-identification of Humans in Crowds using +
Personal, Social and Environmental Constraints +
efd308393b573e5410455960fe551160e1525f49Tracking Persons-of-Interest via +
Unsupervised Representation Adaptation +
ef4ecb76413a05c96eac4c743d2c2a3886f2ae07Modeling the Importance of Faces in Natural Images +
Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a +
aEPFL, Lausanne, Switzerland; +
bOc´e, Paris, France +
ef032afa4bdb18b328ffcc60e2dc5229cc1939bcFang and Yuan EURASIP Journal on Image and Video +
Processing (2018) 2018:44 +
https://doi.org/10.1186/s13640-018-0282-x +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
Attribute-enhanced metric learning for +
face retrieval +
ef5531711a69ed687637c48930261769465457f0Studio2Shop: from studio photo shoots to fashion articles +
Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany +
Keywords: +
computer vision, deep learning, fashion, item recognition, street-to-shop +
efa08283656714911acff2d5022f26904e451113Active Object Localization in Visual Situations +
ef999ab2f7b37f46445a3457bf6c0f5fd7b5689dCalhoun: The NPS Institutional Archive +
DSpace Repository +
Theses and Dissertations +
1. Thesis and Dissertation Collection, all items +
2017-12 +
Improving face verification in photo albums by +
combining facial recognition and metadata +
with cross-matching +
Monterey, California: Naval Postgraduate School +
http://hdl.handle.net/10945/56868 +
Downloaded from NPS Archive: Calhoun +
c3beae515f38daf4bd8053a7d72f6d2ed3b05d88
c3dc4f414f5233df96a9661609557e341b71670dTao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4 +
http://asp.eurasipjournals.com/content/2011/1/4 +
RESEARCH +
Utterance independent bimodal emotion +
recognition in spontaneous communication +
Open Access +
c398684270543e97e3194674d9cce20acaef3db3Chapter 2 +
Comparative Face Soft Biometrics for +
Human Identification +
c3285a1d6ec6972156fea9e6dc9a8d88cd001617
c3418f866a86dfd947c2b548cbdeac8ca5783c15
c32383330df27625592134edd72d69bb6b5cff5c422 +
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012 +
Intrinsic Illumination Subspace for Lighting +
Insensitive Face Recognition +
c3a3f7758bccbead7c9713cb8517889ea6d04687
c30e4e4994b76605dcb2071954eaaea471307d80
c37a971f7a57f7345fdc479fa329d9b425ee02beA Novice Guide towards Human Motion Analysis and Understanding +
c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af
c3fb2399eb4bcec22723715556e31c44d086e054499 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
1. INTRODUCTION +
c37de914c6e9b743d90e2566723d0062bedc9e6a©2016 Society for Imaging Science and Technology +
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455 +
Joint and Discriminative Dictionary Learning +
Expression Recognition +
for Facial +
c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4Int J Comput Vis (2014) 108:3–29 +
DOI 10.1007/s11263-014-0698-4 +
The Ignorant Led by the Blind: A Hybrid Human–Machine Vision +
System for Fine-Grained Categorization +
Received: 7 March 2013 / Accepted: 8 January 2014 / Published online: 20 February 2014 +
© Springer Science+Business Media New York 2014 +
c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad Understanding Activity: Learning the Language of Action +
Univ. of Rochester and Maryland +
1.1 Overview +
Understanding observed activity is an important +
problem, both from the standpoint of practical applications, +
and as a central issue in attempting to describe the +
phenomenon of intelligence. On the practical side, there are a +
large number of applications that would benefit from +
improved machine ability to analyze activity. The most +
prominent are various surveillance scenarios. The current +
emphasis on homeland security has brought this issue to the +
forefront, and resulted in considerable work on mostly low- +
level detection schemes. There are also applications in +
medical diagnosis and household assistants that, in the long +
run, may be even more important. In addition, there are +
numerous scientific projects, ranging from monitoring of +
weather conditions to observation of animal behavior that +
would be facilitated by automatic understanding of activity. +
From a scientific standpoint, understanding activity +
understanding is central to understanding intelligence. +
Analyzing what is happening in the environment, and acting +
on the results of that analysis is, to a large extent, what +
natural intelligent systems do, whether they are human or +
animal. Artificial intelligences, if we want them to work with +
people in the natural world, will need commensurate abilities. +
The importance of the problem has not gone unrecognized. +
There is a substantial body of work on various components of +
the problem, most especially on change detection, motion +
analysis, and tracking. More recently, in the context of +
surveillance applications, there have been some preliminary +
efforts to come up with a general ontology of human activity. +
These efforts have largely been top-down in the classic AI +
tradition, and, as with earlier analogous effort in areas such +
as object recognition and scene understanding, have seen +
limited practical application because of the difficulty in +
robustly extracting the putative primitives on which the top- +
down formalism is based. We propose a novel alternative +
approach, where understanding activity is centered on +
c49aed65fcf9ded15c44f9cbb4b161f851c6fa88Multiscale Facial Expression Recognition using Convolutional Neural Networks +
IDIAP, Martigny, Switzerland +
eac6aee477446a67d491ef7c95abb21867cf71fcJOURNAL +
A survey of sparse representation: algorithms and +
applications +
ea482bf1e2b5b44c520fc77eab288caf8b3f367aProceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
2592 +
eafda8a94e410f1ad53b3e193ec124e80d57d095Jeffrey F. Cohn +
13 +
Observer-Based Measurement of Facial Expression +
With the Facial Action Coding System +
Facial expression has been a focus of emotion research for over +
a hundred years (Darwin, 1872/1998). It is central to several +
leading theories of emotion (Ekman, 1992; Izard, 1977; +
Tomkins, 1962) and has been the focus of at times heated +
debate about issues in emotion science (Ekman, 1973, 1993; +
Fridlund, 1992; Russell, 1994). Facial expression figures +
prominently in research on almost every aspect of emotion, +
including psychophysiology (Levenson, Ekman, & Friesen, +
1990), neural bases (Calder et al., 1996; Davidson, Ekman, +
Saron, Senulis, & Friesen, 1990), development (Malatesta, +
Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993), +
perception (Ambadar, Schooler, & Cohn, 2005), social pro- +
cesses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac, +
2000), and emotion disorder (Kaiser, 2002; Sloan, Straussa, +
Quirka, & Sajatovic, 1997), to name a few. +
Because of its importance to the study of emotion, a num- +
ber of observer-based systems of facial expression measure- +
ment have been developed (Ekman & Friesen, 1978, 1982; +
Ekman, Friesen, & Tomkins, 1971; Izard, 1979, 1983; Izard +
& Dougherty, 1981; Kring & Sloan, 1991; Tronick, Als, & +
Brazelton, 1980). Of these various systems for describing +
facial expression, the Facial Action Coding System (FACS; +
Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002) is +
the most comprehensive, psychometrically rigorous, and +
widely used (Cohn & Ekman, 2005; Ekman & Rosenberg, +
2005). Using FACS and viewing video-recorded facial behav- +
ior at frame rate and slow motion, coders can manually code +
nearly all possible facial expressions, which are decomposed +
into action units (AUs). Action units, with some qualifica- +
tions, are the smallest visually discriminable facial move- +
ments. By comparison, other systems are less thorough +
(Malatesta et al., 1989), fail to differentiate between some +
anatomically distinct movements (Oster, Hegley, & Nagel, +
1992), consider movements that are not anatomically dis- +
tinct as separable (Oster et al., 1992), and often assume a one- +
to-one mapping between facial expression and emotion (for +
a review of these systems, see Cohn & Ekman, in press). +
Unlike systems that use emotion labels to describe ex- +
pression, FACS explicitly distinguishes between facial actions +
and inferences about what they mean. FACS itself is descrip- +
tive and includes no emotion-specified descriptors. Hypoth- +
eses and inferences about the emotional meaning of facial +
actions are extrinsic to FACS. If one wishes to make emo- +
tion-based inferences from FACS codes, a variety of related +
resources exist. These include the FACS Investigators’ Guide +
(Ekman et al., 2002), the FACS interpretive database (Ekman, +
Rosenberg, & Hager, 1998), and a large body of empirical +
research.(Ekman & Rosenberg, 2005). These resources sug- +
gest combination rules for defining emotion-specified expres- +
sions from FACS action units, but this inferential step remains +
extrinsic to FACS. Because of its descriptive power, FACS +
is regarded by many as the standard measure for facial be- +
havior and is used widely in diverse fields. Beyond emo- +
tion science, these include facial neuromuscular disorders +
(Van Swearingen & Cohn, 2005), neuroscience (Bruce & +
Young, 1998; Rinn, 1984, 1991), computer vision (Bartlett, +
203 +
UNPROOFED PAGES
ea85378a6549bb9eb9bcc13e31aa6a61b655a9afDiplomarbeit +
Template Protection for PCA-LDA-based 3D +
Face Recognition System +
von +
Technische Universität Darmstadt +
Fachbereich Informatik +
Fachgebiet Graphisch-Interaktive Systeme +
Fraunhoferstraße 5 +
64283 Darmstadt +
ea2ee5c53747878f30f6d9c576fd09d388ab0e2bViola-Jones based Detectors: How much affects +
the Training Set? +
SIANI +
Edif. Central del Parque Cient´ıfico Tecnol´ogico +
Universidad de Las Palmas de Gran Canaria +
35017 - Spain +
ea96bc017fb56593a59149e10d5f14011a3744a0
e10a257f1daf279e55f17f273a1b557141953ce2
e171fba00d88710e78e181c3e807c2fdffc6798a
e1ab3b9dee2da20078464f4ad8deb523b5b1792ePre-Training CNNs Using Convolutional +
Autoencoders +
TU Berlin +
TU Berlin +
Sabbir Ahmmed +
TU Berlin +
TU Berlin +
e16efd2ae73a325b7571a456618bfa682b51aef8
e19ebad4739d59f999d192bac7d596b20b887f78Learning Gating ConvNet for Two-Stream based Methods in Action +
Recognition +
e13360cda1ebd6fa5c3f3386c0862f292e4dbee4
e1d726d812554f2b2b92cac3a4d2bec678969368J Electr Eng Technol.2015; 10(?): 30-40 +
http://dx.doi.org/10.5370/JEET.2015.10.2.030 +
ISSN(Print) +
1975-0102 +
ISSN(Online) 2093-7423 +
Human Action Recognition Bases on Local Action Attributes +
and Mohan S Kankanhalli** +
e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2TSINGHUA SCIENCE AND TECHNOLOGY +
ISSNll1007-0214 +
0?/?? pp???–??? +
DOI: 10.26599/TST.2018.9010000 +
Volume 1, Number 1, Septembelr 2018 +
Ranking with Adaptive Neighbors +
cd9666858f6c211e13aa80589d75373fd06f6246A Novel Time Series Kernel for +
Sequences Generated by LTI Systems +
V.le delle Scienze Ed.6, DIID, Universit´a degli studi di Palermo, Italy +
cd4c047f4d4df7937aff8fc76f4bae7718004f40
cd596a2682d74bdfa7b7160dd070b598975e89d9Mood Detection: Implementing a facial +
expression recognition system +
1. Introduction +
Facial expressions play a significant role in human dialogue. As a result, there has been +
considerable work done on the recognition of emotional expressions and the application of this +
research will be beneficial in improving human-machine dialogue. One can imagine the +
improvements to computer interfaces, automated clinical (psychological) research or even +
interactions between humans and autonomous robots. +
Unfortunately, a lot of the literature does not focus on trying to achieve high recognition rates +
across multiple databases. In this project we develop our own mood detection system that +
addresses this challenge. The system involves pre-processing image data by normalizing and +
applying a simple mask, extracting certain (facial) features using PCA and Gabor filters and then +
using SVMs for classification and recognition of expressions. Eigenfaces for each class are used +
to determine class-specific masks which are then applied to the image data and used to train +
multiple, one against the rest, SVMs. We find that simply using normalized pixel intensities +
works well with such an approach. +
Figure 1 – Overview of our system design +
2. Image pre-processing +
We performed pre-processing on the images used to train and test our algorithms as follows: +
1. The location of the eyes is first selected manually +
2. Images are scaled and cropped to a fixed size (170 x 130) keeping the eyes in all images +
aligned +
3. The image is histogram equalized using the mean histogram of all the training images to +
make it invariant to lighting, skin color etc. +
4. A fixed oval mask is applied to the image to extract face region. This serves to eliminate +
the background, hair, ears and other extraneous features in the image which provide no +
information about facial expression. +
This approach works reasonably well in capturing expression-relevant facial information across +
all databases. Examples of pre-processed images from the various datasets are shown in Figure- +
2a below. +
cda4fb9df653b5721ad4fe8b4a88468a410e55ecGabor wavelet transform and its application +
cd3005753012409361aba17f3f766e33e3a7320dMultilinear Biased Discriminant Analysis: A Novel Method for Facial +
Action Unit Representation +
cd7a7be3804fd217e9f10682e0c0bfd9583a08dbWomen also Snowboard: +
Overcoming Bias in Captioning Models +
ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011 +
A Dynamic Appearance Descriptor Approach to +
Facial Actions Temporal Modelling +
ccbfc004e29b3aceea091056b0ec536e8ea7c47e
cc3c273bb213240515147e8be68c50f7ea22777cGaining Insight Into Films +
Via Topic Modeling & Visualization +
KEYWORDS Collaboration, computer vision, cultural +
analytics, economy of abundance, interactive data +
visualization +
We moved beyond misuse when the software actually +
became useful for film analysis with the addition of audio +
analysis, subtitle analysis, facial recognition, and topic +
modeling. Using multiple types of visualizations and +
a back-and-fourth workflow between people and AI +
we arrived at an approach for cultural analytics that +
can be used to review and develop film criticism. Finally, +
we present ways to apply these techniques to Database +
Cinema and other aspects of film and video creation. +
PROJECT DATE 2014 +
URL http://misharabinovich.com/soyummy.html +
cc8e378fd05152a81c2810f682a78c5057c8a735International Journal of Computer Sciences and Engineering Open Access +
Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693 +
Expression Invariant Face Recognition System based on Topographic +
Independent Component Analysis and Inner Product Classifier +
+
Department of Electrical Engineering, IIT Delhi, New Delhi, India +
Available online at: www.ijcseonline.org +
Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017 +
cc31db984282bb70946f6881bab741aa841d3a7cALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV +
Learning Grimaces by Watching TV +
http://www.robots.ox.ac.uk/~albanie +
http://www.robots.ox.ac.uk/~vedaldi +
Engineering Science Department +
Univeristy of Oxford +
Oxford, UK +
cc8bf03b3f5800ac23e1a833447c421440d92197
cc96eab1e55e771e417b758119ce5d7ef1722b43An Empirical Study of Recent +
Face Alignment Methods +
e64b683e32525643a9ddb6b6af8b0472ef5b6a37Face Recognition and Retrieval in Video +
e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227Pairwise Relational Networks for Face +
Recognition +
1 Department of Creative IT Engineering, POSTECH, Korea +
2 Department of Computer Science and Engineering, POSTECH, Korea +
e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaecChapter 15. The critical role of the +
cold-start problem and incentive systems +
in emotional Web 2.0 services +
e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd1921 +
Flexible Manifold Embedding: A Framework +
for Semi-Supervised and Unsupervised +
Dimension Reduction +
0 = +
, the linear regression function ( +
e6e5a6090016810fb902b51d5baa2469ae28b8a1Title +
Energy-Efficient Deep In-memory Architecture for NAND +
Flash Memories +
Archived version +
Accepted manuscript: the content is same as the published +
paper but without the final typesetting by the publisher +
Published version +
DOI +
Published paper +
URL +
Authors (contact) +
10.1109/ISCAS.2018.8351458 +
e6540d70e5ffeed9f447602ea3455c7f0b38113e
e6ee36444038de5885473693fb206f49c1369138
f913bb65b62b0a6391ffa8f59b1d5527b7eba948
f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1
f0cee87e9ecedeb927664b8da44b8649050e1c86
f0f4f16d5b5f9efe304369120651fa688a03d495Temporal Generative Adversarial Nets +
Preferred Networks inc., Japan +
f06b015bb19bd3c39ac5b1e4320566f8d83a0c84
f0a3f12469fa55ad0d40c21212d18c02be0d1264Sparsity Sharing Embedding for Face +
Verification +
Department of Electrical Engineering, KAIST, Daejeon, Korea +
f7dea4454c2de0b96ab5cf95008ce7144292e52a
f7b422df567ce9813926461251517761e3e6cda0FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS +
(cid:63) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +
† Eurecom, 450 route des Chappes, 06410 Biot, France +
f79c97e7c3f9a98cf6f4a5d2431f149ffacae48fProvided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +
version when available. +
Title +
On color texture normalization for active appearance models +
Author(s) +
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +
Publication +
Date +
2009-05-12 +
Publication +
Information +
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +
Texture Normalization for Active Appearance Models. Image +
Processing, IEEE Transactions on, 18(6), 1372-1378. +
Publisher +
IEEE +
Link to +
publisher's +
version +
http://dx.doi.org/10.1109/TIP.2009.2017163 +
Item record +
http://hdl.handle.net/10379/1350 +
Some rights reserved. For more information, please see the item record link above. +
Downloaded 2017-06-17T22:38:27Z +
f7452a12f9bd927398e036ea6ede02da79097e6e
f7dcadc5288653ec6764600c7c1e2b49c305dfaaCopyright +
by +
Adriana Ivanova Kovashka +
2014 +
f7de943aa75406fe5568fdbb08133ce0f9a765d4Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross +
Project 1.5 +
Biometric Identification and Surveillance1 +
Year 5 Deliverable  +
Technical Report:  +
and +
Research Challenges in Biometrics +
Indexed biography of relevant biometric research literature +
Donald Adjeroh, Bojan Cukic, Arun Ross  +
April, 2014   +
                                                             +
1 "This research was supported by the United States Department of Homeland Security through the National Center for Border Security +
and Immigration (BORDERS) under grant number 2008-ST-061-BS0002. However, any opinions, findings, and conclusions or +
recommendations in this document are those of the authors and do not necessarily reflect views of the United States Department of +
Homeland Security." +
f75852386e563ca580a48b18420e446be45fcf8dILLUMINATION INVARIANT FACE RECOGNITION +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
ENEE 631: Digital Image and Video Processing +
Instructor: Dr. K. J. Ray Liu +
Term Project - Spring 2006 +
1. +
INTRODUCTION +
+
+
The performance of the Face Recognition algorithms is severely affected by two +
important factors: the change in Pose and Illumination conditions of the subjects. The +
changes in Illumination conditions of the subjects can be so drastic that, the variation in +
lighting will be of the similar order as that of the variation due to the change in subjects +
[1] and this can result in misclassification. +
+
For example, in the acquisition of the face of a person from a real time video, the +
ambient conditions will cause different lighting variations on the tracked face. Some +
examples of images with different illumination conditions are shown in Fig. 1. In this +
project, we study some algorithms that are capable of performing Illumination Invariant +
Face Recognition. The performances of these algorithms were compared on the CMU- +
Illumination dataset [13], by using the entire face as the input to the algorithms. Then, a +
model of dividing the face into four regions is proposed and the performance of the +
algorithms on these new features is analyzed. +
+
+
f78863f4e7c4c57744715abe524ae4256be884a9
f77c9bf5beec7c975584e8087aae8d679664a1ebLocal Deep Neural Networks for Age and Gender Classification +
March 27, 2017 +
e8410c4cd1689829c15bd1f34995eb3bd4321069
e8fdacbd708feb60fd6e7843b048bf3c4387c6dbDeep Learning +
Hinnerup Net A/S +
www.hinnerup.net +
July 4, 2014 +
Introduction +
Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively +
new research area although based on the popular artificial neural networks (supposedly +
mirroring brain function). With the development of the perceptron in the 1950s and +
1960s by Frank RosenBlatt, research began on artificial neural networks. To further +
mimic the architectural depth of the brain, researchers wanted to train a deep multi- +
layer neural network – this, however, did not happen until Geoffrey Hinton in 2006 +
introduced Deep Belief Networks [1]. +
Recently, the topic of deep learning has gained public interest. Large web companies such +
as Google and Facebook have a focused research on AI and an ever increasing amount +
of compute power, which has led to researchers finally being able to produce results +
that are of interest to the general public. In July 2012 Google trained a deep learning +
network on YouTube videos with the remarkable result that the network learned to +
recognize humans as well as cats [6], and in January this year Google successfully used +
deep learning on Street View images to automatically recognize house numbers with +
an accuracy comparable to that of a human operator [5]. In March this year Facebook +
announced their DeepFace algorithm that is able to match faces in photos with Facebook +
users almost as accurately as a human can do [9]. +
Deep learning and other AI are here to stay and will become more and more present in +
our daily lives, so we had better make ourselves acquainted with the technology. Let’s +
dive into the deep water and try not to drown! +
Data Representations +
Before presenting data to an AI algorithm, we would normally prepare the data to make +
it feasible to work with. For instance, if the data consists of images, we would take each +
e8b2a98f87b7b2593b4a046464c1ec63bfd13b51CMS-RCNN: Contextual Multi-Scale +
Region-based CNN for Unconstrained Face +
Detection +
e8c6c3fc9b52dffb15fe115702c6f159d955d30813 +
Linear Subspace Learning for +
Facial Expression Analysis +
Philips Research +
The Netherlands +
1. Introduction +
Facial expression, resulting from movements of the facial muscles, is one of the most +
powerful, natural, and immediate means for human beings to communicate their emotions +
and intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was +
the first to describe in detail the specific facial expressions associated with emotions in +
animals and humans; he argued that all mammals show emotions reliably in their faces. +
Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial +
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face +
communication. +
Fig. 1. Facial expressions of George W. Bush. +
Machine analysis of facial expressions, enabling computers to analyze and interpret facial +
expressions as humans do, has many important applications including intelligent human- +
computer interaction, computer animation, surveillance and security, medical diagnosis, +
law enforcement, and awareness system (Shan, 2007). Driven by its potential applications +
and theoretical interests of cognitive and psychological scientists, automatic facial +
expression analysis has attracted much attention in last two decades (Pantic & Rothkrantz, +
2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic & Bartlett, 2007). It has been studied in +
multiple disciplines such as psychology, cognitive science, computer vision, pattern +
Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira, +
ISBN 978-3-902613-56-1, pp. 450, February 2009, I-Tech, Vienna, Austria +
www.intechopen.com +
fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6Draft: Evaluation Guidelines for Gender +
Classification and Age Estimation +
July 1, 2011 +
Introduction +
In previous research on gender classification and age estimation did not use a +
standardised evaluation procedure. This makes comparison the different ap- +
proaches difficult. +
Thus we propose here a benchmarking and evaluation protocol for gender +
classification as well as age estimation to set a common ground for future re- +
search in these two areas. +
The evaluations are designed such that there is one scenario under controlled +
labratory conditions and one under uncontrolled real life conditions. +
The datasets were selected with the criteria of being publicly available for +
research purposes. +
File lists for the folds corresponding to the individual benchmarking proto- +
cols will be provided over our website at http://face.cs.kit.edu/befit. We +
will provide two kinds of folds for each of the tasks and conditions: one set of +
folds using the whole dataset and one set of folds using a reduced dataset, which +
is approximately balanced in terms of age, gender and ethnicity. +
2 Gender Classification +
In this task the goal is to determine the gender of the persons depicted in the +
individual images. +
2.1 Data +
In previous works one of the most commonly used databases is the Feret database [1, +
2]. We decided here not to take this database, because of its low number of im- +
ages. +
fa08a4da5f2fa39632d90ce3a2e1688d147ece61Supplementary material for +
“Unsupervised Creation of Parameterized Avatars” +
1 Summary of Notations +
Tab. 1 itemizes the symbols used in the submission. Fig. 2,3,4 of the main text illustrate many of these +
symbols. +
2 DANN results +
Fig. 1 shows side by side samples of the original image and the emoji generated by the method of [1]. +
As can be seen, these results do not preserve the identity very well, despite considerable effort invested in +
finding suitable architectures. +
3 Multiple Images Per Person +
Following [4], we evaluate the visual quality that is obtained per person and not just per image, by testing +
TOS on the Facescrub dataset [3]. For each person p, we considered the set of their images Xp, and selected +
the emoji that was most similar to their source image, i.e., the one for which: +
||f (x) − f (e(c(G(x))))||. +
argmin +
x∈Xp +
(1) +
Fig. 2 depicts the results obtained by this selection method on sample images form the Facescrub dataset +
(it is an extension of Fig. 7 of the main text). The figure also shows, for comparison, the DTN [4] result for +
the same image. +
4 Detailed Architecture of the Various Networks +
In this section we describe the architectures of the networks used in for the emoji and avatar experiments. +
4.1 TOS +
Network g maps DeepFace’s 256-dimensional representation [5] into 64 × 64 RGB emoji images. Follow- +
ing [4], this is done through a network with 9 blocks, each consisting of a convolution, batch-normalization +
and ReLU, except the last layer which employs Tanh activation. The odd blocks 1,3,5,7,9 perform upscaling +
convolutions with 512-256-128-64-3 filters respectively of spatial size 4 × 4. The even ones perform 1 × 1 +
convolutions [2]. The odd blocks use a stride of 2 and padding of 1, excluding the first one which does not +
use stride or padding. +
Network e maps emoji parameterization into the matching 64× 64 RGB emoji. The parameterization is +
given as binary vectors in R813 for emojis; Avatar parameterization is in R354. While there are dependencies +
among the various dimensions (an emoji cannot have two hairstyles at once), the binary representation is +
chosen for its simplicity and generality. e is trained in a fully supervised way, using pairs of matching +
parameterization vectors and images in a supervised manner. +
The architecture of e employs five upscaling convolutions with 512-256-128-64-3 filters respectively, +
each of spatial size 4×4. All layers except the last one are batch normalized followed by a ReLU activation. +
The last layer is followed by Tanh activation, generating an RGB image with values in range [−1, 1]. All +
the layers use a stride of 2 and padding of 1, excluding the first one which does not use stride or padding. +
faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b
faf5583063682e70dedc4466ac0f74eeb63169e7
fad895771260048f58d12158a4d4d6d0623f4158Audio-Visual Emotion +
Recognition For Natural +
Human-Robot Interaction +
Dissertation zur Erlangung des akademischen Grades +
Doktor der Ingenieurwissenschaften (Dr.-Ing.) +
vorgelegt von +
an der Technischen Fakultät der Universität Bielefeld +
15. März 2010 +
ff8315c1a0587563510195356c9153729b533c5b432 +
Zapping Index:Using Smile to Measure +
Advertisement Zapping Likelihood +
ff44d8938c52cfdca48c80f8e1618bbcbf91cb2aTowards Video Captioning with Naming: a +
Novel Dataset and a Multi-Modal Approach +
Dipartimento di Ingegneria “Enzo Ferrari” +
Universit`a degli Studi di Modena e Reggio Emilia +
fffefc1fb840da63e17428fd5de6e79feb726894Fine-Grained Age Estimation in the wild with +
Attention LSTM Networks +
ff398e7b6584d9a692e70c2170b4eecaddd78357
ffd81d784549ee51a9b0b7b8aaf20d5581031b74Performance Analysis of Retina and DoG +
Filtering Applied to Face Images for Training +
Correlation Filters +
Everardo Santiago Ram(cid:19)(cid:16)rez1, Jos(cid:19)e (cid:19)Angel Gonz(cid:19)alez Fraga1, Omar (cid:19)Alvarez +
1 Facultad de Ciencias, Universidad Aut(cid:19)onoma de Baja California, +
Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia Playitas, +
Ensenada, Baja California, C.P. 22860 +
{everardo.santiagoramirez,angel_fraga, +
2 Facultad de Ingenier(cid:19)(cid:16)a, Arquitectura y Dise~no, Universidad Aut(cid:19)onoma de Baja +
California, Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia +
Playitas, Ensenada, Baja California, C.P. 22860 +
ff60d4601adabe04214c67e12253ea3359f4e082
ff8ef43168b9c8dd467208a0b1b02e223b731254BreakingNews: Article Annotation by +
Image and Text Processing +
ffcbedb92e76fbab083bb2c57d846a2a96b5ae30
c50d73557be96907f88b59cfbd1ab1b2fd696d41JournalofElectronicImaging13(3),474–485(July2004). +
Semiconductor sidewall shape estimation +
Oak Ridge National Laboratory +
Oak Ridge, Tennessee 37831-6010 +
c54f9f33382f9f656ec0e97d3004df614ec56434
c574c72b5ef1759b7fd41cf19a9dcd67e5473739Zlatintsi et al. EURASIP Journal on Image and Video Processing (2017) 2017:54 +
DOI 10.1186/s13640-017-0194-1 +
EURASIP Journal on Image +
and Video Processing +
RESEARCH +
Open Access +
COGNIMUSE: a multimodal video +
database annotated with saliency, events, +
semantics and emotion with application to +
summarization +
c5a561c662fc2b195ff80d2655cc5a13a44ffd2dUsing Language to Learn Structured Appearance +
Models for Image Annotation +
c5fe40875358a286594b77fa23285fcfb7bda68e
c5be0feacec2860982fbbb4404cf98c654142489Semi-Qualitative Probabilistic Networks in Computer +
Vision Problems +
Troy, NY 12180, USA. +
Troy, NY 12180, USA. +
Troy, NY 12180, USA. +
Troy, NY 12180, USA. +
Received: *** +
Revised: *** +
c5844de3fdf5e0069d08e235514863c8ef900eb7Lam S K et al. / (IJCSE) International Journal on Computer Science and Engineering +
Vol. 02, No. 08, 2010, 2659-2665 +
A Study on Similarity Computations in Template +
Matching Technique for Identity Verification +
Lam, S. K., Yeong, C. Y., Yew, C. T., Chai, W. S., Suandi, S. A. +
Intelligent Biometric Group, School of Electrical and Electronic Engineering +
Engineering Campus, Universiti Sains Malaysia +
14300 Nibong Tebal, Pulau Pinang, MALAYSIA +
c220f457ad0b28886f8b3ef41f012dd0236cd91aJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Crystal Loss and Quality Pooling for +
Unconstrained Face Verification and Recognition +
c254b4c0f6d5a5a45680eb3742907ec93c3a222bA Fusion-based Gender Recognition Method +
Using Facial Images +
c28461e266fe0f03c0f9a9525a266aa3050229f0Automatic Detection of Facial Feature Points via +
HOGs and Geometric Prior Models +
1 Computer Vision Center , Universitat Aut`onoma de Barcelona +
2 Universitat Oberta de Catalunya +
3 Dept. de Matem`atica Aplicada i An`alisi +
Universitat de Barcelona +
c29e33fbd078d9a8ab7adbc74b03d4f830714cd0
f68ed499e9d41f9c3d16d843db75dc12833d988d
f6ca29516cce3fa346673a2aec550d8e671929a6International Journal of Engineering and Advanced Technology (IJEAT) +
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +
Algorithm for Face Matching Using Normalized +
Cross-Correlation +
 +
f6c70635241968a6d5fd5e03cde6907022091d64
f6ce34d6e4e445cc2c8a9b8ba624e971dd4144caCross-label Suppression: A Discriminative and Fast +
Dictionary Learning with Group Regularization +
April 24, 2017 +
f6abecc1f48f6ec6eede4143af33cc936f14d0d0
f6fa97fbfa07691bc9ff28caf93d0998a767a5c1k2-means for fast and accurate large scale clustering +
Computer Vision Lab +
D-ITET +
ETH Zurich +
Computer Vision Lab +
D-ITET +
ETH Zurich +
ESAT, KU Leuven +
D-ITET, ETH Zurich +
e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 +
Vol. 3 Issue 1, January-2014, pp: (362-365), Impact Factor: 1.252, Available online at: www.erpublications.com +
Cognitive Learning for Social Robot through +
Facial Expression from Video Input +
1Department of Automation & Robotics, 2Department of Computer Science & Engg. +
e988be047b28ba3b2f1e4cdba3e8c94026139fcfMulti-Task Convolutional Neural Network for +
Pose-Invariant Face Recognition +
e9d43231a403b4409633594fa6ccc518f035a135Deformable Part Models with CNN Features +
Kokkinos1,2 +
1 Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63) +
e9fcd15bcb0f65565138dda292e0c71ef25ea8bbRepositorio Institucional de la Universidad Autónoma de Madrid +
https://repositorio.uam.es +
Esta es la versión de autor de la comunicación de congreso publicada en: +
This is an author produced version of a paper published in: +
Highlights on Practical Applications of Agents and Multi-Agent Systems: +
International Workshops of PAAMS. Communications in Computer and +
Information Science, Volumen 365. Springer, 2013. 223-230 +
DOI: http://dx.doi.org/10.1007/978-3-642-38061-7_22 +
Copyright: © 2013 Springer-Verlag +
El acceso a la versión del editor puede requerir la suscripción del recurso +
Access to the published version may require subscription +
e9363f4368b04aeaa6d6617db0a574844fc59338BENCHIP: Benchmarking Intelligence +
Processors +
1ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group +
4IFLYTEK,5JD,6RDA Microelectronics,7AMD +
f16a605abb5857c39a10709bd9f9d14cdaa7918fFast greyscale road sign model matching +
and recognition +
Centre de Visió per Computador +
Edifici O – Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain +
f1748303cc02424704b3a35595610890229567f9
f19ab817dd1ef64ee94e94689b0daae0f686e849TECHNISCHE UNIVERSIT¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Blickrichtungsunabh¨angige Erkennung von +
Personen in Bild- und Tiefendaten +
Andre St¨ormer +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr.-Ing. Thomas Eibert +
Pr¨ufer der Dissertation: +
1. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Univ.-Prof. Dr.-Ing. Horst-Michael Groß, +
Technische Universit¨at Ilmenau +
Die Dissertation wurde am 16.06.2009 bei der Technischen Universit¨at M¨unchen einge- +
reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009 +
angenommen. +
e76798bddd0f12ae03de26b7c7743c008d505215
e726acda15d41b992b5a41feabd43617fab6dc23
e7b6887cd06d0c1aa4902335f7893d7640aef823Modelling of Facial Aging and Kinship: A Survey +
cb004e9706f12d1de83b88c209ac948b137caae0Face Aging Effect Simulation using Hidden Factor +
Analysis Joint Sparse Representation +
cb9092fe74ea6a5b2bb56e9226f1c88f96094388
cb08f679f2cb29c7aa972d66fe9e9996c8dfae00JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +
Action Understanding +
with Multiple Classes of Actors +
cb84229e005645e8623a866d3d7956c197f85e11IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 201X +
Disambiguating Visual Verbs +
cbe859d151466315a050a6925d54a8d3dbad591fGAZE SHIFTS AS DYNAMICAL RANDOM SAMPLING +
Dipartimento di Scienze dell’Informazione +
Universit´a di Milano +
Via Comelico 39/41 +
20135 Milano, Italy +
f8c94afd478821681a1565d463fc305337b02779 +
www.semargroup.org, +
www.ijsetr.com +
+
ISSN 2319-8885 +
Vol.03,Issue.25 +
September-2014, +
Pages:5079-5085 +
Design and Implementation of Robust Face Recognition System for +
Uncontrolled Pose and Illumination Changes +
2 +
f8ec92f6d009b588ddfbb47a518dd5e73855547dJ Inf Process Syst, Vol.10, No.3, pp.443~458, September 2014 +
+
ISSN 1976-913X (Print) +
ISSN 2092-805X (Electronic) +
Extreme Learning Machine Ensemble Using +
Bagging for Facial Expression Recognition +
f869601ae682e6116daebefb77d92e7c5dd2cb15
f8ed5f2c71e1a647a82677df24e70cc46d2f12a8International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 1 +
ISSN 2229-5518 +
Artificial Neural Network Design and Parameter +
Optimization for Facial Expressions Recognition +
cef841f27535c0865278ee9a4bc8ee113b4fb9f3
ce85d953086294d989c09ae5c41af795d098d5b2This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +
Bilinear Analysis for Kernel Selection and +
Nonlinear Feature Extraction +
ce691a37060944c136d2795e10ed7ba751cd8394
ce3f3088d0c0bf236638014a299a28e492069753
ce9a61bcba6decba72f91497085807bface02dafEigen-Harmonics Faces: Face Recognition under Generic Lighting +
1Graduate School, CAS, Beijing, China, 100080 +
2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +
Emails: {lyqing, sgshan, wgao}jdl.ac.cn +
cef6cffd7ad15e7fa5632269ef154d32eaf057afEmotion Detection Through Facial Feature +
Recognition +
through consistent +
cebfafea92ed51b74a8d27c730efdacd65572c40JANUARY 2006 +
31 +
Matching 2.5D Face Scans to 3D Models +
ce54e891e956d5b502a834ad131616786897dc91International Journal of Science and Research (IJSR) +
ISSN (Online): 2319-7064 +
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +
Face Recognition Using LTP Algorithm +
1ECE & KUK +
2Assistant Professor (ECE) +
Volume 4 Issue 12, December 2015 +
Licensed Under Creative Commons Attribution CC BY +
www.ijsr.net +
 Variation in luminance: Third main challenge that +
appears in face recognition process is the luminance. Due +
to variation in the luminance the representation get varied +
from the original image. The person with same poses +
expression and seen from same viewpoint can be appear +
very different due to variation in lightening. +
e0dedb6fc4d370f4399bf7d67e234dc44deb4333Supplementary Material: Multi-Task Video Captioning with Video and +
Entailment Generation +
UNC Chapel Hill +
1 Experimental Setup +
1.1 Datasets +
1.1.1 Video Captioning Datasets +
YouTube2Text or MSVD The Microsoft Re- +
search Video Description Corpus (MSVD) or +
YouTube2Text (Chen and Dolan, 2011) is used +
for our primary video captioning experiments. It +
has 1970 YouTube videos in the wild with many +
diverse captions in multiple languages for each +
video. Caption annotations to these videos are +
collected using Amazon Mechanical Turk (AMT). +
All our experiments use only English captions. On +
average, each video has 40 captions, and the over- +
all dataset has about 80, 000 unique video-caption +
pairs. The average clip duration is roughly 10 sec- +
onds. We used the standard split as stated in Venu- +
gopalan et al. (2015), i.e., 1200 videos for training, +
100 videos for validation, and 670 for testing. +
MSR-VTT MSR-VTT is a recent collection of +
10, 000 video clips of 41.2 hours duration (i.e., +
average duration of 15 seconds), which are an- +
notated by AMT workers. It has 200, 000 video +
clip-sentence pairs covering diverse content from +
a commercial video search engine. On average, +
each clip is annotated with 20 natural language +
captions. We used the standard split as provided +
in (Xu et al., 2016), i.e., 6, 513 video clips for +
training, 497 for validation, and 2, 990 for testing. +
M-VAD M-VAD is a movie description dataset +
with 49, 000 video clips collected from 92 movies, +
with the average clip duration being 6 seconds. +
Alignment of descriptions to video clips is done +
through an automatic procedure using Descrip- +
tive Video Service (DVS) provided for the movies. +
Each video clip description has only 1 or 2 sen- +
tences, making most evaluation metrics (except +
paraphrase-based METEOR) infeasible. Again, +
we used the standard train/val/test split as pro- +
vided in Torabi et al. (2015). +
1.1.2 Video Prediction Dataset +
For our unsupervised video representation learn- +
ing task, we use the UCF-101 action videos +
dataset (Soomro et al., 2012), which contains +
13, 320 video clips of 101 action categories and +
with an average clip length of 7.21 seconds each. +
This dataset suits our video captioning task well +
because both contain short video clips of a sin- +
gle action or few actions, and hence using future +
frame prediction on UCF-101 helps learn more ro- +
bust and context-aware video representations for +
our short clip video captioning task. We use the +
standard split of 9, 500 videos for training (we +
don’t need any validation set in our setup because +
we directly tune on the validation set of the video +
captioning task). +
the +
three +
video +
captioning +
1.2 Pre-trained Visual Frame Features +
For +
datasets +
(Youtube2Text, MSR-VTT, M-VAD) and the +
unsupervised video prediction dataset (UCF-101), +
we fix our sampling rate to 3f ps to bring uni- +
formity in the temporal representation of actions +
across all videos. These sampled frames are then +
converted into features using several state-of-the- +
art pre-trained models on ImageNet (Deng et al., +
2009) – VGGNet +
(Simonyan and Zisserman, +
2015), GoogLeNet (Szegedy et al., 2015; Ioffe +
and Szegedy, 2015), and Inception-v4 (Szegedy +
et al., 2016). For VGGNet, we use its f c7 layer +
features with dimension 4096. For GoogLeNet +
and Inception-v4, we use the layer before the fully +
connected layer with dimensions 1024 and 1536, +
respectively. We follow standard preprocessing +
and convert all the natural language descriptions +
to lower case and tokenize the sentences and +
remove punctuations. +
e096b11b3988441c0995c13742ad188a80f2b461Noname manuscript No. +
(will be inserted by the editor) +
DeepProposals: Hunting Objects and Actions by Cascading +
Deep Convolutional Layers +
Van Gool +
Received: date / Accepted: date +
e0c081a007435e0c64e208e9918ca727e2c1c44e
e00d4e4ba25fff3583b180db078ef962bf7d6824Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2017 doi:10.20944/preprints201703.0152.v1 +
Article +
Face Verification with Multi-Task and Multi-Scale +
Features Fusion +
e0939b4518a5ad649ba04194f74f3413c793f28eTechnical Report +
UCAM-CL-TR-636 +
ISSN 1476-2986 +
Number 636 +
Computer Laboratory +
Mind-reading machines: +
automated inference +
of complex mental states +
July 2005 +
15 JJ Thomson Avenue +
Cambridge CB3 0FD +
United Kingdom +
phone +44 1223 763500 +
http://www.cl.cam.ac.uk/ +
e0765de5cabe7e287582532456d7f4815acd74c1
e013c650c7c6b480a1b692bedb663947cd9d260f860 +
Robust Image Analysis With Sparse Representation +
on Quantized Visual Features +
46a4551a6d53a3cd10474ef3945f546f45ef76ee2014 IEEE Intelligent Vehicles Symposium (IV) +
June 8-11, 2014. Dearborn, Michigan, USA +
978-1-4799-3637-3/14/$31.00 ©2014 IEEE +
344 +
4686bdcee01520ed6a769943f112b2471e436208Utsumi et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:11 +
DOI 10.1186/s41074-017-0024-5 +
IPSJ Transactions on Computer +
Vision and Applications +
EXPRESS PAPER +
Open Access +
Fast search based on generalized +
similarity measure +
4688787d064e59023a304f7c9af950d192ddd33eInvestigating the Discriminative Power of Keystroke +
Sound +
and Dimitris Metaxas, Member, IEEE +
46e86cdb674440f61b6658ef3e84fea95ea51fb4
464de30d3310123644ab81a1f0adc51598586fd2
466a5add15bb5f91e0cfd29a55f5fb159a7980e5Video Repeat Recognition and Mining by Visual +
Features +
46538b0d841654a0934e4c75ccd659f6c5309b72Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.1, February 2014 +
A NOVEL APPROACH TO GENERATE FACE +
BIOMETRIC TEMPLATE USING BINARY +
DISCRIMINATING ANALYSIS +
1P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +
2Associate Professor, Department of Computer Engineering, +
MCERC, Nashik (M.S.), India +
46196735a201185db3a6d8f6e473baf05ba7b68f
4682fee7dc045aea7177d7f3bfe344aabf153bd5Tabula Rasa: Model Transfer for +
Object Category Detection +
Department of Engineering Science +
Oxford +
(Presented by Elad Liebman) +
2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58
2c8743089d9c7df04883405a31b5fbe494f175b4Washington State Convention Center +
Seattle, Washington, May 26-30, 2015 +
978-1-4799-6922-7/15/$31.00 ©2015 IEEE +
3039 +
2c61a9e26557dd0fe824909adeadf22a6a0d86b0
2c93c8da5dfe5c50119949881f90ac5a0a4f39feAdvanced local motion patterns for macro and micro facial +
expression recognition +
B. Allaerta,∗, IM. Bilascoa, C. Djerabaa +
aUniv. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - +
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +
2c2786ea6386f2d611fc9dbf209362699b104f83
2c848cc514293414d916c0e5931baf1e8583eabcAn automatic facial expression recognition system +
evaluated by different classifiers +
∗Programa de P´os-Graduac¸˜ao em Mecatrˆonica +
Universidade Federal da Bahia, +
†Department of Electrical Engineering - EESC/USP +
2cdd9e445e7259117b995516025fcfc02fa7eebbTitle +
Temporal Exemplar-based Bayesian Networks for facial +
expression recognition +
Author(s) +
Shang, L; Chan, KP +
Citation +
Proceedings - 7Th International Conference On Machine +
Learning And Applications, Icmla 2008, 2008, p. 16-22 +
Issued Date +
2008 +
URL +
http://hdl.handle.net/10722/61208 +
Rights +
This work is licensed under a Creative Commons Attribution- +
NonCommercial-NoDerivatives 4.0 International License.; +
International Conference on Machine Learning and Applications +
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +
this material is permitted. However, permission to +
reprint/republish this material for advertising or promotional +
purposes or for creating new collective works for resale or +
redistribution to servers or lists, or to reuse any copyrighted +
component of this work in other works must be obtained from +
the IEEE. +
2c5d1e0719f3ad7f66e1763685ae536806f0c23bAENet: Learning Deep Audio Features for Video +
Analysis +
2c8f24f859bbbc4193d4d83645ef467bcf25adc2845 +
Classification in the Presence of +
Label Noise: a Survey +
2cdde47c27a8ecd391cbb6b2dea64b73282c7491ORDER-AWARE CONVOLUTIONAL POOLING FOR VIDEO BASED ACTION RECOGNITION +
Order-aware Convolutional Pooling for Video Based +
Action Recognition +
2c7c3a74da960cc76c00965bd3e343958464da45
2cf5f2091f9c2d9ab97086756c47cd11522a6ef3MPIIGaze: Real-World Dataset and Deep +
Appearance-Based Gaze Estimation +
79581c364cefe53bff6bdd224acd4f4bbc43d6d4
790aa543151312aef3f7102d64ea699a1d15cb29Confidence-Weighted Local Expression Predictions for +
Occlusion Handling in Expression Recognition and Action +
Unit detection +
1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIR UMR 7222 +
4 place Jussieu 75005 Paris +
79f6a8f777a11fd626185ab549079236629431acCopyright +
by +
2013 +
795ea140df2c3d29753f40ccc4952ef24f46576c
79dc84a3bf76f1cb983902e2591d913cee5bdb0e
79b669abf65c2ca323098cf3f19fa7bdd837ff31 Deakin Research Online +
This is the published version: +
Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor +
based face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on +
Pattern Recognition, IEEE, Washington, D. C., pp. 1-4. +
Available from Deakin Research Online: +
http://hdl.handle.net/10536/DRO/DU:30044585 +
+
Reproduced with the kind permissions of the copyright owner. +
Personal use of this material is permitted. However, permission to reprint/republish this +
material for advertising or promotional purposes or for creating new collective works for +
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +
in other works must be obtained from the IEEE. +
Copyright : 2008, IEEE +
79c3a7131c6c176b02b97d368cd0cd0bc713ff7e
79dd787b2877cf9ce08762d702589543bda373beFace Detection Using SURF Cascade +
Intel Labs China +
793e7f1ba18848908da30cbad14323b0389fd2a8
2dd6c988b279d89ab5fb5155baba65ce4ce53c1e
2d294c58b2afb529b26c49d3c92293431f5f98d04413 +
Maximum Margin Projection Subspace Learning +
for Visual Data Analysis +
2d1f86e2c7ba81392c8914edbc079ac64d29b666
2d05e768c64628c034db858b7154c6cbd580b2d5Available Online at www.ijcsmc.com +
International Journal of Computer Science and Mobile Computing +
A Monthly Journal of Computer Science and Information Technology +
IJCSMC, Vol. 4, Issue. 8, August 2015, pg.431 – 446 +
RESEARCH ARTICLE +
ISSN 2320–088X +
FACIAL EXPRESSION RECOGNITION: +
Machine Learning using C# +
2d072cd43de8d17ce3198fae4469c498f97c6277Random Cascaded-Regression Copse for Robust +
Facial Landmark Detection +
and Xiao-Jun Wu +
2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3International Journal of Computer Applications (0975 – 8887) +
National Conference on Advancements in Computer & Information Technology (NCACIT-2016) +
A Survey on: Image Process using Two- Stage Crawler +
Assistant Professor +
SPPU, Pune +
Department of Computer Engg +
Department of Computer Engg +
Department of Computer Engg +
BE Student +
SPPU, Pune +
BE Student +
SPPU, Pune +
BE Student +
Department of Computer Engg +
SPPU, Pune +
additional +
analysis +
for +
information +
2d8d089d368f2982748fde93a959cf5944873673Proceedings of NAACL-HLT 2018, pages 788–794 +
New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +
788 +
2df4d05119fe3fbf1f8112b3ad901c33728b498aFacial landmark detection using structured output deep +
neural networks +
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +
Adam∗2 +
1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +
2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +
September 24, 2015 +
4188bd3ef976ea0dec24a2512b44d7673fd4ad261050 +
Nonlinear Non-Negative Component +
Analysis Algorithms +
41000c3a3344676513ef4bfcd392d14c7a9a7599A NOVEL APPROACH FOR GENERATING FACE +
TEMPLATE USING BDA +
1P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +
2Associate Professor, Department of Computer Engineering, MCERC, Nashik (M.S.), +
India +
414715421e01e8c8b5743c5330e6d2553a08c16dPoTion: Pose MoTion Representation for Action Recognition +
1Inria∗ +
2NAVER LABS Europe +
41ab4939db641fa4d327071ae9bb0df4a612dc89Interpreting Face Images by Fitting a Fast +
Illumination-Based 3D Active Appearance +
Model +
Instituto Nacional de Astrof´ısica, ´Optica y Electr´onica, +
Luis Enrique Erro #1, 72840 Sta Ma. Tonantzintla. Pue., M´exico +
Coordinaci´on de Ciencias Computacionales +
41a6196f88beced105d8bc48dd54d5494cc156fb2015 International Conference on +
Communications, Signal +
Processing, and their Applications +
(ICCSPA 2015) +
Sharjah, United Arab Emirates +
17-19 February 2015 +
IEEE Catalog Number: +
ISBN: +
CFP1574T-POD +
978-1-4799-6533-5 +
41de109bca9343691f1d5720df864cdbeeecd9d0Article +
Facial Emotion Recognition: A Survey and +
Real-World User Experiences in Mixed Reality +
Received: 10 December 2017; Accepted: 26 January 2018; Published: 1 Febuary 2018 +
41d9a240b711ff76c5448d4bf4df840cc5dad5fcJOURNAL DRAFT, VOL. X, NO. X, APR 2013 +
Image Similarity Using Sparse Representation +
and Compression Distance +
419a6fca4c8d73a1e43003edc3f6b610174c41d2A Component Based Approach Improves Classification of Discrete +
Facial Expressions Over a Holistic Approach +
4180978dbcd09162d166f7449136cb0b320adf1fReal-time head pose classification in uncontrolled environments +
with Spatio-Temporal Active Appearance Models +
∗ Matematica Aplicada i Analisi ,Universitat de Barcelona, Barcelona, Spain +
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain +
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain +
41b997f6cec7a6a773cd09f174cb6d2f036b36cd
413a184b584dc2b669fbe731ace1e48b22945443Human Pose Co-Estimation and Applications +
83ca4cca9b28ae58f461b5a192e08dffdc1c76f3DETECTING EMOTIONAL STRESS FROM FACIAL EXPRESSIONS FOR DRIVING SAFETY +
Signal Processing Laboratory (LTS5), +
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +
831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9
832e1d128059dd5ed5fa5a0b0f021a025903f9d5Pairwise Conditional Random Forests for Facial Expression Recognition +
S´everine Dubuisson1 +
1 Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, ISIR UMR 7222, 4 place Jussieu 75005 Paris +
83e093a07efcf795db5e3aa3576531d61557dd0dFacial Landmark Localization using Robust +
Relationship Priors and Approximative Gibbs +
Sampling +
Institut f¨ur Informationsverarbeitung (tnt) +
Leibniz Universit¨at Hannover, Germany +
83b4899d2899dd6a8d956eda3c4b89f27f1cd3081-4244-1437-7/07/$20.00 ©2007 IEEE +
I - 377 +
ICIP 2007 +
830e5b1043227fe189b3f93619ef4c58868758a7
8395cf3535a6628c3bdc9b8d0171568d551f5ff0Entropy Non-increasing Games for the +
Improvement of Dataflow Programming +
Norbert B´atfai, Ren´at´o Besenczi, Gerg˝o Bogacsovics, +
February 16, 2017 +
83ac942d71ba908c8d76fc68de6173151f012b38
834f5ab0cb374b13a6e19198d550e7a32901a4b2Face Translation between Images and Videos using Identity-aware CycleGAN +
†Computer Vision Lab, ETH Zurich, Switzerland +
‡VISICS, KU Leuven, Belgium +
834b15762f97b4da11a2d851840123dbeee51d33Landmark-free smile intensity estimation +
IMAGO Research Group - Universidade Federal do Paran´a +
Fig. 1. Overview of our method for smile intensity estimation +
833f6ab858f26b848f0d747de502127406f06417978-1-4244-5654-3/09/$26.00 ©2009 IEEE +
61 +
ICIP 2009 +
8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ffGeneric versus Salient Region-based Partitioning +
for Local Appearance Face Recognition +
Computer Science Depatment, Universit¨at Karlsruhe (TH) +
Am Fasanengarten 5, Karlsruhe 76131, Germany +
http://isl.ira.uka.de/cvhci +
1b55c4e804d1298cbbb9c507497177014a923d22Incremental Class Representation +
Learning for Face Recognition +
Degree’s Thesis +
Audiovisual Systems Engineering +
Author: +
Universitat Politècnica de Catalunya (UPC) +
2016 - 2017 +
1bd50926079e68a6e32dc4412e9d5abe331daefb
1b150248d856f95da8316da868532a4286b9d58eAnalyzing 3D Objects in Cluttered Images +
UC Irvine +
UC Irvine +
1be498d4bbc30c3bfd0029114c784bc2114d67c0Age and Gender Estimation of Unfiltered Faces +
1b300a7858ab7870d36622a51b0549b1936572d4This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2537215, IEEE +
Transactions on Image Processing +
Dynamic Facial Expression Recognition with Atlas +
Construction and Sparse Representation +
1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913dDICTA +
#147 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
DICTA 2010 Submission #147. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
Registration Invariant Representations for Expression Detection +
Anonymous DICTA submission +
Paper ID 147 +
1b0a071450c419138432c033f722027ec88846eaWindsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016 +
978-1-5090-1889-5/16/$31.00 ©2016 IEEE +
649 +
1b3b01513f99d13973e631c87ffa43904cd8a821HMM RECOGNITION OF EXPRESSIONS IN UNRESTRAINED VIDEO INTERVALS +
Universitat Politècnica de Catalunya, Barcelona, Spain +
1bc214c39536c940b12c3a2a6b78cafcbfddb59a
1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3ENHANCEMENT OF FAST FACE DETECTION ALGORITHM BASED ON A CASCADE OF +
DECISION TREES +
Commission II, WG II/5 +
KEY WORDS: Face Detection, Cascade Algorithm, Decision Trees. +
1b79628af96eb3ad64dbb859dae64f31a09027d5
1b4f6f73c70353869026e5eec1dd903f9e26d43fRobust Subjective Visual Property Prediction +
from Crowdsourced Pairwise Labels +
1bc23c771688109bed9fd295ce82d7e702726327
1b589016fbabe607a1fb7ce0c265442be9caf3a9
1b27ca161d2e1d4dd7d22b1247acee5c53db5104
7711a7404f1f1ac3a0107203936e6332f50ac30cAction Classification and Highlighting in Videos +
Disney Research Pittsburgh +
Disney Research Pittsburgh +
778c9f88839eb26129427e1b8633caa4bd4d275ePose Pooling Kernels for Sub-category Recognition +
ICSI & UC Berkeley +
ICSI & UC Berkeley +
Trever Darrell +
ICSI & UC Berkeley +
7789a5d87884f8bafec8a82085292e87d4e2866fA Unified Tensor-based Active Appearance Face +
Model +
Member, IEEE +
776835eb176ed4655d6e6c308ab203126194c41e
778bff335ae1b77fd7ec67404f71a1446624331bHough Forest-based Facial Expression Recognition from +
Video Sequences +
BIWI, ETH Zurich http://www.vision.ee.ethz.ch +
VISICS, K.U. Leuven http://www.esat.kuleuven.be/psi/visics +
7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0dCONTENT-AWARE COMPRESSION USING SALIENCY-DRIVEN IMAGE RETARGETING +
*Disney Research Zurich +
†ETH Zurich +
7754b708d6258fb8279aa5667ce805e9f925dfd0Facial Action Unit Recognition by Exploiting +
Their Dynamic and Semantic Relationships +
77db171a523fc3d08c91cea94c9562f3edce56e1Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17 +
http://jivp.eurasipjournals.com/content/2012/1/17 +
R ES EAR CH +
Open Access +
Gauss–Laguerre wavelet textural feature fusion +
with geometrical information for facial expression +
identification +
77037a22c9b8169930d74d2ce6f50f1a999c1221Robust Face Recognition With Kernelized +
Locality-Sensitive Group Sparsity Representation +
77d31d2ec25df44781d999d6ff980183093fb3deThe Multiverse Loss for Robust Transfer Learning +
Supplementary +
1. Omitted proofs +
for which the joint loss: +
m(cid:88) +
r=1 +
L(F r, br, D, y) +
(2) +
J(F 1, b1...F m, bm, D, y) = +
is bounded by: +
mL∗(D, y) ≤ J(F 1, b1...F m, bm, D, y) +
m−1(cid:88) +
≤ mL∗(D, y) + +
Alλd−j+1 +
(3) +
l=1 +
where [A1 . . . Am−1] are bounded parameters. +
We provide proofs that were omitted from the paper for +
lack of space. We follow the same theorem numbering as in +
the paper. +
Lemma 1. The minimizers F ∗, b∗ of L are not unique, and +
it holds that for any vector v ∈ Rc and scalar s, the solu- +
tions F ∗ + v1(cid:62) +
Proof. denoting V = v1(cid:62) +
c , b∗ + s1c are also minimizers of L. +
c , s = s1c, +
i v+byi +s +
i v+bj +s +
i fyi +byi +
i v+sed(cid:62) +
i fj +bj +
i=1 +
log( +
L(F ∗ + V, b∗ + s, D, y) = +
i fyi +d(cid:62) +
ed(cid:62) +
i fj +d(cid:62) +
j=1 ed(cid:62) +
i v+sed(cid:62) +
ed(cid:62) +
j=1 ed(cid:62) +
i v+sed(cid:62) +
ed(cid:62) +
(cid:80)c +
(cid:80)c +
i v+s(cid:80)c +
− n(cid:88) +
= − n(cid:88) +
= − n(cid:88) +
(cid:80)c +
= − n(cid:88) +
ed(cid:62) +
i fyi +byi +
j=1 ed(cid:62) +
i fj +bj +
ed(cid:62) +
log( +
log( +
log( +
i=1 +
i=1 +
i=1 +
i fj +bj +
i fyi +byi +
j=1 ed(cid:62) +
) = L(F ∗, b∗, D, y) +
The following simple lemma was not part of the paper. +
However, it is the reasoning behind the statement at the end +
of the proof of Thm. 1. “Since ∀i, j pi(j) > 0 and since +
rank(D) is full,(cid:80)n +
Lemma 2. Let K =(cid:80)n +
such that ∀i qi > 0, the matrix ˆK =(cid:80)n +
i be a full rank d×d matrix, +
i.e., it is PD and not just PSD, then for all vector q ∈ Rn +
is also +
i pi(j)pi(j(cid:48)) is PD.” +
i=1 did(cid:62) +
i=1 did(cid:62) +
i=1 qidid(cid:62) +
full rank. +
Proof. For +
(miniqi)v(cid:62)Kv > 0. +
every vector v +
(cid:2)f 1 +
(cid:3) , b1, F 2 = (cid:2)f 2 +
Theorem 3. There exist a set of weights F 1 = +
j ⊥ f s +
C ] , bm which are orthogonal ∀jrs f r +
2 , ..., f 1 +
2 , ..., f m +
1 , f 1 +
1 , f m +
2 , ..., f 2 +
1 , f 2 +
[f m +
(cid:3) , b2...F m = +
Proof. We again prove the theorem by constructing such a +
solution. Denoting by vd−m+2...vd the eigenvectors of K +
corresponding to λd−m+2 . . . λd. Given F 1 = F ∗, b1 = b∗, +
we can construct each pair F r, br as follows: +
(1) +
∀j, r +
fj +
r = f1 +
1 + +
m−1(cid:88) +
l=1 +
αjlrvd−l+1 +
br = b1 +
(4) +
The tensor of parameters αjlr is constructed to insure the +
orthogonality condition. Formally, αjlr has to satisfy: +
Rd, +
v(cid:62) ˆKv +
∀j, r (cid:54)= s +
(f 1 +
j + +
m−1(cid:88) +
l=1 +
αjlrvd−l+1)(cid:62)f s +
j = 0 +
(5) +
2 m(m− 1) equations, it +
Noticing that 5 constitutes a set of 1 +
can be satisfied by the tensor αjlr which contains m(m − +
c ] = F r − +
1)c parameters. Defining Ψr = [ψr +
1, ψr +
2, . . . , ψr +
486840f4f524e97f692a7f6b42cd19019ee71533DeepVisage: Making face recognition simple yet with powerful generalization +
skills +
1Laboratoire LIRIS, ´Ecole centrale de Lyon, 69134 Ecully, France. +
2Safran Identity & Security, 92130 Issy-les-Moulineaux, France. +
48186494fc7c0cc664edec16ce582b3fcb5249c0P-CNN: Pose-based CNN Features for Action Recognition +
Guilhem Ch´eron∗ † +
INRIA +
48499deeaa1e31ac22c901d115b8b9867f89f952Interim Report of Final Year Project +
HKU-Face: A Large Scale Dataset for +
Deep Face Recognition +
3035140108 +
Haoyu Li +
3035141841 +
COMP4801 Final Year Project +
Project Code: 17007 +
486a82f50835ea888fbc5c6babf3cf8e8b9807bcMSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 +
Face Search at Scale: 80 Million Gallery +
4866a5d6d7a40a26f038fc743e16345c064e9842
487df616e981557c8e1201829a1d0ec1ecb7d275Acoustic Echo Cancellation Using a Vector-Space-Based +
Adaptive Filtering Algorithm +
48f211a9764f2bf6d6dda4a467008eda5680837a
4858d014bb5119a199448fcd36746c413e60f295
48cfc5789c246c6ad88ff841701204fc9d6577edJ Inf Process Syst, Vol.12, No.3, pp.392~409, September 2016 +
+
+
ISSN 1976-913X (Print) +
ISSN 2092-805X (Electronic) +
Age Invariant Face Recognition Based on DCT +
Feature Extraction and Kernel Fisher Analysis +
70f189798c8b9f2b31c8b5566a5cf3107050b349The Challenge of Face Recognition from Digital Point-and-Shoot Cameras +
David Bolme‡ +
70109c670471db2e0ede3842cbb58ba6be804561Noname manuscript No. +
(will be inserted by the editor) +
Zero-Shot Visual Recognition via Bidirectional Latent Embedding +
Received: date / Accepted: date +
703890b7a50d6535900a5883e8d2a6813ead3a03
706236308e1c8d8b8ba7749869c6b9c25fa9f957Crowdsourced Data Collection of Facial Responses +
MIT Media Lab +
Cambridge +
02139, USA +
Rosalind Picard +
MIT Media Lab +
Cambridge +
02139, USA +
MIT Media Lab +
Cambridge +
02139, USA +
70569810e46f476515fce80a602a210f8d9a2b95Apparent Age Estimation from Face Images Combining General and +
Children-Specialized Deep Learning Models +
1Orange Labs – France Telecom, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +
2Eurecom, 450 route des Chappes, 06410 Biot, France +
70e79d7b64f5540d309465620b0dab19d9520df1International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 +
ISSN 2229-5518 +
Facial Expression Recognition System +
Using Extreme Learning Machine +
7003d903d5e88351d649b90d378f3fc5f211282bInternational Journal of Computer Applications (0975 – 8887) +
Volume 68– No.23, April 2013 +
Facial Expression Recognition using Gabor Wavelet +
ENTC SVERI’S COE (Poly), +
Pandharpur, +
Solapur, India +
ENTC SVERI’S COE, +
Pandharpur, +
Solapur, India +
ENTC SVERI’S COE (Poly), +
Pandharpur, +
Solapur, India +
70bf1769d2d5737fc82de72c24adbb7882d2effdFace detection in intelligent ambiences with colored illumination +
Department of Intelligent Systems +
TU Delft +
Delft, The Netherlands +
1e799047e294267087ec1e2c385fac67074ee5c8IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999 +
1357 +
Short Papers___________________________________________________________________________________________________ +
Automatic Classification of +
Single Facial Images +
1ef4815f41fa3a9217a8a8af12cc385f6ed137e1Rendering of Eyes for Eye-Shape Registration and Gaze Estimation +
1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3Article +
A Brief Review of Facial Emotion Recognition Based +
on Visual Information +
Byoung Chul Ko ID +
Tel.: +82-10-3559-4564 +
Received: 6 December 2017; Accepted: 25 January 2018; Published: 30 January 2018 +
1e8eee51fd3bf7a9570d6ee6aa9a09454254689dThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE +
Transactions on Pattern Analysis and Machine Intelligence +
Face Search at Scale +
1ea8085fe1c79d12adffb02bd157b54d799568e4
1ebdfceebad642299e573a8995bc5ed1fad173e3
1eec03527703114d15e98ef9e55bee5d6eeba736UNIVERSITÄT KARLSRUHE (TH) +
FAKULTÄT FÜR INFORMATIK +
INTERACTIVE SYSTEMS LABS +
DIPLOMA THESIS +
Automatic identification +
of persons in TV series +
SUBMITTED BY +
MAY 2008 +
ADVISORS +
1e8394cc9fe7c2392aa36fb4878faf7e78bbf2deTO APPEAR IN IEEE THMS +
Zero-Shot Object Recognition System +
based on Topic Model +
1ef4aac0ebc34e76123f848c256840d89ff728d0
1ecb56e7c06a380b3ce582af3a629f6ef0104457List of Contents Vol.8 +
Contents of +
Journal of Advanced Computational +
Intelligence and Intelligent Informatics +
Volume 8 +
Vol.8 No.1, January 2004 +
Editorial: +
o Special Issue on Selected Papers from Humanoid, +
Papers: +
o Dynamic Color Object Recognition Using Fuzzy +
Nano-technology, Information Technology, +
Communication and Control, Environment, and +
Management (HNICEM’03). +
. 1 +
Elmer P. Dadios +
Papers: +
o A New Way of Discovery of Belief, Desire and +
Intention in the BDI Agent-Based Software +
Modeling . +
. 2 +
o Integration of Distributed Robotic Systems +
. 7 +
Fakhri Karray, Rogelio Soto, Federico Guedea, +
and Insop Song +
o A Searching and Tracking Framework for +
Multi-Robot Observation of Multiple Moving +
Targets . +
. 14 +
Zheng Liu, Marcelo H. Ang Jr., and Winston +
Khoon Guan Seah +
Development Paper: +
o Possibilistic Uncertainty Propagation and +
Compromise Programming in the Life Cycle +
Analysis of Alternative Motor Vehicle Fuels +
Raymond R. Tan, Alvin B. Culaba, and +
Michael R. I. Purvis +
. 23 +
Logic . +
Napoleon H. Reyes, and Elmer P. Dadios +
. 29 +
o A Optical Coordinate Measuring Machine for +
Nanoscale Dimensional Metrology . +
. 39 +
Eric Kirkland, Thomas R. Kurfess, and Steven +
Y. Liang +
o Humanoid Robot HanSaRam: Recent Progress +
and Developments . +
. 45 +
Jong-Hwan Kim, Dong-Han Kim, Yong-Jae +
Kim, Kui-Hong Park, Jae-Ho Park, +
Choon-Kyoung Moon, Jee-Hwan Ryu, Kiam +
Tian Seow, and Kyoung-Chul Koh +
o Generalized Associative Memory Models: Their +
Memory Capacities and Potential Application +
. 56 +
Teddy N. Yap, Jr., and Arnulfo P. Azcarraga +
o Hybrid Fuzzy Logic Strategy for Soccer Robot +
Game. +
. 65 +
Elmer A. Maravillas , Napoleon H. Reyes, and +
Elmer P. Dadios +
o Image Compression and Reconstruction Based on +
Fuzzy Relation and Soft Computing +
Technology . +
. 72 +
Kaoru Hirota, Hajime Nobuhara, Kazuhiko +
Kawamoto, and Shin’ichi Yoshida +
Vol.8 No.2, March 2004 +
Editorial: +
o Special Issue on Pattern Recognition . +
. 83 +
Papers: +
o Operation of Spatiotemporal Patterns Stored in +
Osamu Hasegawa +
Review: +
o Support Vector Machine and Generalization . 84 +
Takio Kurita +
o Bayesian Network: Probabilistic Reasoning, +
Statistical Learning, and Applications . +
. 93 +
Yoichi Motomura +
Living Neuronal Networks Cultured on a +
Microelectrode Array . +
Suguru N. Kudoh, and Takahisa Taguchi +
o Rapid Discriminative Learning . +
. 100 +
. 108 +
Jun Rokui +
o Robust Fuzzy Clustering Based on Similarity +
between Data . +
Kohei Inoue, and Kiichi Urahama +
Vol.8 No.6, 2004 +
Journal of Advanced Computational Intelligence +
and Intelligent Informatics +
. 115 +
I-1 +
1e64b2d2f0a8a608d0d9d913c4baee6973995952DOMINANT AND +
COMPLEMENTARY MULTI- +
EMOTIONAL FACIAL +
EXPRESSION RECOGNITION +
USING C-SUPPORT VECTOR +
CLASSIFICATION +
1e21b925b65303ef0299af65e018ec1e1b9b8d60Under review as a conference paper at ICLR 2017 +
UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION +
Facebook AI Research +
Tel-Aviv, Israel +
1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9Entropy Regularization +
The problem of semi-supervised induction consists in learning a decision rule from +
labeled and unlabeled data. This task can be undertaken by discriminative methods, +
provided that learning criteria are adapted consequently. In this chapter, we moti- +
vate the use of entropy regularization as a means to bene(cid:12)t from unlabeled data in +
the framework of maximum a posteriori estimation. The learning criterion is derived +
from clearly stated assumptions and can be applied to any smoothly parametrized +
model of posterior probabilities. The regularization scheme favors low density sep- +
aration, without any modeling of the density of input features. The contribution +
of unlabeled data to the learning criterion induces local optima, but this problem +
can be alleviated by deterministic annealing. For well-behaved models of posterior +
probabilities, deterministic annealing EM provides a decomposition of the learning +
problem in a series of concave subproblems. Other approaches to the semi-supervised +
problem are shown to be close relatives or limiting cases of entropy regularization. +
A series of experiments illustrates the good behavior of the algorithm in terms of +
performance and robustness with respect to the violation of the postulated low den- +
sity separation assumption. The minimum entropy solution bene(cid:12)ts from unlabeled +
data and is able to challenge mixture models and manifold learning in a number of +
situations. +
9.1 Introduction +
semi-supervised +
induction +
This chapter addresses semi-supervised induction, which refers to the learning of +
a decision rule, on the entire input domain X, from labeled and unlabeled data. +
The objective is identical to the one of supervised classi(cid:12)cation: generalize from +
examples. The problem di(cid:11)ers in the respect that the supervisor’s responses are +
missing for some training examples. This characteristic is shared with transduction, +
which has however a di(cid:11)erent goal, that is, of predicting labels on a set of prede(cid:12)ned +
1ee3b4ba04e54bfbacba94d54bf8d05fd202931dIndonesian Journal of Electrical Engineering and Computer Science +
Vol. 12, No. 2, November 2018, pp. 476~481 +
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481 +
 476 +
Celebrity Face Recognition using Deep Learning +
1,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +
4Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +
Shah Alam, Selangor, Malaysia +
Campus Jasin, Melaka, Malaysia +
Article Info +
Article history: +
Received May 29, 2018 +
Revised Jul 30, 2018 +
Accepted Aug 3, 2018 +
Keywords: +
AlexNet +
Convolutional neural network +
Deep learning +
Face recognition +
GoogLeNet +
1e41a3fdaac9f306c0ef0a978ae050d884d77d2a411 +
Robust Object Recognition with +
Cortex-Like Mechanisms +
Tomaso Poggio, Member, IEEE +
1e1e66783f51a206509b0a427e68b3f6e40a27c8SEMI-SUPERVISED ESTIMATION OF PERCEIVED AGE +
FROM FACE IMAGES +
VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan +
Keywords: +
1efaa128378f988965841eb3f49d1319a102dc36JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +
Hierarchical binary CNNs for landmark +
localization with limited resources +
8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2Consensual and Privacy-Preserving Sharing of +
Multi-Subject and Interdependent Data +
EPFL, UNIL–HEC Lausanne +
K´evin Huguenin +
UNIL–HEC Lausanne +
EPFL +
EPFL +
84fe5b4ac805af63206012d29523a1e033bc827e
84e4b7469f9c4b6c9e73733fa28788730fd30379Duong et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:10 +
DOI 10.1186/s13634-017-0521-9 +
EURASIP Journal on Advances +
in Signal Processing +
R ES EAR CH +
Projective complex matrix factorization for +
facial expression recognition +
Open Access +
84dcf04802743d9907b5b3ae28b19cbbacd97981
84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1Improved Boosting Performance by Explicit +
Handling of Ambiguous Positive Examples +
841a5de1d71a0b51957d9be9d9bebed33fb5d9fa5017 +
PCANet: A Simple Deep Learning Baseline for +
Image Classification? +
849f891973ad2b6c6f70d7d43d9ac5805f1a1a5bDetecting Faces Using Region-based Fully +
Convolutional Networks +
Tencent AI Lab, China +
4adca62f888226d3a16654ca499bf2a7d3d11b71Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 572–582, +
Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics +
572 +
4a2d54ea1da851151d43b38652b7ea30cdb6dfb2Direct Recognition of Motion Blurred Faces +
4a3758f283b7c484d3f164528d73bc8667eb1591Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial +
Networks +
Center for Research on Intelligent Perception and Computing, CASIA +
National Laboratory of Pattern Recognition, CASIA +
4abd49538d04ea5c7e6d31701b57ea17bc349412Recognizing Fine-Grained and Composite Activities +
using Hand-Centric Features and Script Data +
4a0f98d7dbc31497106d4f652968c708f7da6692Real-time Eye Gaze Direction Classification Using +
Convolutional Neural Network +
4acd683b5f91589002e6f50885df51f48bc985f4BRIDGING COMPUTER VISION AND SOCIAL SCIENCE : A MULTI-CAMERA VISION +
SYSTEM FOR SOCIAL INTERACTION TRAINING ANALYSIS +
Peter Tu +
GE Global Research, Niskayuna NY USA +
4aeb87c11fb3a8ad603311c4650040fd3c088832Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +
1816 +
4a3d96b2a53114da4be3880f652a6eef3f3cc0352666 +
A Dictionary Learning-Based +
3D Morphable Shape Model +
4a6fcf714f663618657effc341ae5961784504c7Scaling up Class-Specific Kernel Discriminant +
Analysis for large-scale Face Verification +
24115d209e0733e319e39badc5411bbfd82c5133Long-term Recurrent Convolutional Networks for +
Visual Recognition and Description +
24c442ac3f6802296d71b1a1914b5d44e48b4f29Pose and expression-coherent face recovery in the wild +
Technicolor, Cesson-S´evign´e, France +
Franc¸ois Le Clerc +
Patrick P´erez +
24aac045f1e1a4c13a58eab4c7618dccd4c0e671
240d5390af19bb43761f112b0209771f19bfb696
24e099e77ae7bae3df2bebdc0ee4e00acca71250Robust face alignment under occlusion via regional predictive power +
estimation. +
© 2015 IEEE +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22467 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
2450c618cca4cbd9b8cdbdb05bb57d67e63069b1A Connexionist Approach for Robust and Precise Facial Feature Detection in +
Complex Scenes +
Stefan Duffner and Christophe Garcia +
France Telecom Research & Development +
4, rue du Clos Courtel +
35512 Cesson-S´evign´e, France +
244b57cc4a00076efd5f913cc2833138087e1258Warped Convolutions: Efficient Invariance to Spatial Transformations +
24869258fef8f47623b5ef43bd978a525f0af60eUNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur
24d376e4d580fb28fd66bc5e7681f1a8db3b6b78
24ff832171cb774087a614152c21f54589bf7523Beat-Event Detection in Action Movie Franchises +
Jerome Revaud +
Zaid Harchaoui +
24bf94f8090daf9bda56d54e42009067839b20df
230527d37421c28b7387c54e203deda64564e1b7Person Re-identification: System Design and +
Evaluation Overview +
23fdbef123bcda0f07d940c72f3b15704fd49a98
23ebbbba11c6ca785b0589543bf5675883283a57
23172f9a397f13ae1ecb5793efd81b6aba9b4537Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 10–17, +
Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics. +
10 +
236a4f38f79a4dcc2183e99b568f472cf45d27f41632 +
Randomized Clustering Forests +
for Image Classification +
Frederic Jurie, Member, IEEE Computer Society +
230c4a30f439700355b268e5f57d15851bcbf41fEM Algorithms for Weighted-Data Clustering +
with Application to Audio-Visual Scene Analysis +
237fa91c8e8098a0d44f32ce259ff0487aec02cfIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +
863 +
Bidirectional PCA With Assembled Matrix +
Distance Metric for Image Recognition +
23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3CS 229 Project, Fall 2014 +
Determining Mood from Facial Expressions +
Introduction +
I +
Facial expressions play an extremely important role in human communication. As +
society continues to make greater use of human-machine interactions, it is important for +
machines to be able to interpret facial expressions in order to improve their +
authenticity. If machines can be trained to determine mood to a better extent than +
humans can, especially for more subtle moods, then this could be useful in fields such as +
counseling. This could also be useful for gauging reactions of large audiences in various +
contexts, such as political talks. +
The results of this project could also be applied to recognizing other features of facial +
expressions, such as determining when people are purposefully suppressing emotions or +
lying. The ability to recognize different facial expressions could also improve technology +
that recognizes to whom specific faces belong. This could in turn be used to search a +
large number of pictures for a specific photo, which is becoming increasingly difficult, as +
storing photos digitally has been extremely common in the past decade. The possibilities +
are endless. +
II Data and Features +
2.1 Data +
Our data consists of 1166 frontal images of +
people’s faces from three databases, with each +
image labeled with one of eight emotions: +
anger, contempt, disgust, fear, happiness, +
neutral, sadness, and surprise. The TFEID [1], +
CK+ [2], and JAFFE [3] databases primarily +
consist of Taiwanese, Caucasian, and Japanese +
subjects, respectively. The TFEID and JAFFE +
images are both cropped with the faces +
centered. Each image has a subject posing with +
one of the emotions. The JAFFE database does +
not have any images for contempt. +
2.2 Features +
On each face, there are many different facial landmarks. While some of these landmarks +
(pupil position, nose tip, and face contour) are not as indicative of emotion, others +
(eyebrow, mouth, and eye shape) are. To extract landmark data from images, we used +
Happiness +
Figure 1 +
Anger +
238fc68b2e0ef9f5ec043d081451902573992a032656 +
Enhanced Local Gradient Order Features and +
Discriminant Analysis for Face Recognition +
role in robust face recognition [5]. Many algorithms have +
been proposed to deal with the effectiveness of feature design +
and extraction [6], [7]; however, the performance of many +
existing methods is still highly sensitive to variations of +
imaging conditions, such as outdoor illumination, exaggerated +
expression, and continuous occlusion. These complex varia- +
tions are significantly affecting the recognition accuracy in +
recent years [8]–[10]. +
Appearance-based subspace learning is one of the sim- +
plest approach for feature extraction, and many methods +
are usually based on linear correlation of pixel intensities. +
For example, Eigenface [11] uses eigen system of pixel +
intensities to estimate the lower rank linear subspace of +
a set of training face images by minimizing the (cid:2)2 dis- +
tance metric. The solution enjoys optimality properties when +
noise is independent +
identically distributed Gaussian only. +
Fisherface [12] will suffer more due to the estimation of +
inverse within-class covariance matrix [13], +
thus the per- +
formance will degenerate rapidly in the cases of occlusion +
and small sample size. Laplacianfaces [14] refer to another +
appearance-based approach which learns a locality preserv- +
ing subspace and seeks to capture the intrinsic geometry +
and local structure of the data. Other methods such as those +
in [5] and [15] also provide valuable approaches to supervised +
or unsupervised dimension reduction tasks. +
A fundamental problem of appearance-based methods for +
face recognition, however, is that they are sensitive to imag- +
ing conditions [10]. As for data corrupted by illumination +
changes, occlusions, and inaccurate alignment, the estimated +
subspace will be biased, thus much of the efforts concentrate +
on removing/shrinking the noise components. In contrast, local +
feature descriptors [15]–[19] have certain advantages as they +
are more stable to local changes. In the view of image pro- +
cessing and vision, the basic imaging system can be simply +
formulated as +
(x, y) = A(x, y) × L(x, y) +
(1) +
23d55061f7baf2ffa1c847d356d8f76d78ebc8c1Solmaz et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:22 +
DOI 10.1186/s41074-017-0033-4 +
IPSJ Transactions on Computer +
Vision and Applications +
RESEARCH PAPER +
Open Access +
Generic and attribute-specific deep +
representations for maritime vessels +
23a8d02389805854cf41c9e5fa56c66ee4160ce3Multimed Tools Appl +
DOI 10.1007/s11042-013-1568-8 +
Influence of low resolution of images on reliability +
of face detection and recognition +
© The Author(s) 2013. This article is published with open access at SpringerLink.com +
4fd29e5f4b7186e349ba34ea30738af7860cf21f
4f051022de100241e5a4ba8a7514db9167eabf6eFace Parsing via a Fully-Convolutional Continuous +
CRF Neural Network +
4f6adc53798d9da26369bea5a0d91ed5e1314df2IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016 +
Online Nonnegative Matrix Factorization with +
General Divergences +
4fbef7ce1809d102215453c34bf22b5f9f9aab26
4fa0d73b8ba114578744c2ebaf610d2ca9694f45
4f591e243a8f38ee3152300bbf42899ac5aae0a5SUBMITTED TO TPAMI +
Understanding Higher-Order Shape +
via 3D Shape Attributes +
4f9958946ad9fc71c2299847e9ff16741401c591Facial Expression Recognition with Recurrent Neural Networks +
Robotics and Embedded Systems Lab, Department of Computer Science +
Image Understanding and Knowledge-Based Systems, Department of Computer Science +
Technische Universit¨at M¨unchen, Germany +
4f0bf2508ae801aee082b37f684085adf0d06d23
4f4f920eb43399d8d05b42808e45b56bdd36a929International Journal of Computer Applications (0975 – 8887) +
Volume 123 – No.4, August 2015 +
A Novel Method for 3D Image Segmentation with Fusion +
of Two Images using Color K-means Algorithm +
Neelam Kushwah +
Dept. of CSE +
ITM Universe +
Gwalior +
Priusha Narwariya +
Dept. of CSE +
ITM Universe +
Gwalior +
two +
8d71872d5877c575a52f71ad445c7e5124a4b174
8de06a584955f04f399c10f09f2eed77722f6b1cAuthor manuscript, published in "International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)" +
8d4f0517eae232913bf27f516101a75da3249d15ARXIV SUBMISSION, MARCH 2018 +
Event-based Dynamic Face Detection and +
Tracking Based on Activity +
8de2dbe2b03be8a99628ffa000ac78f8b66a1028´Ecole Nationale Sup´erieure dInformatique et de Math´ematiques Appliqu´ees de Grenoble +
INP Grenoble – ENSIMAG +
UFR Informatique et Math´ematiques Appliqu´ees de Grenoble +
Rapport de stage de Master 2 et de projet de fin d’´etudes +
Effectu´e au sein de l’´equipe LEAR, I.N.R.I.A., Grenoble +
Action Recognition in Videos +
3e ann´ee ENSIMAG – Option I.I.I. +
M2R Informatique – sp´ecialit´e I.A. +
04 f´evrier 2008 – 04 juillet 2008 +
LEAR, +
I.N.R.I.A., Grenoble +
655 avenue de l’Europe +
38 334 Montbonnot +
France +
Responsable de stage +
Mme. Cordelia Schmid +
Tuteur ´ecole +
Jury +
8d42a24d570ad8f1e869a665da855628fcb1378fCVPR +
#987 +
000 +
001 +
002 +
003 +
004 +
005 +
006 +
007 +
008 +
009 +
010 +
011 +
012 +
013 +
014 +
015 +
016 +
017 +
018 +
019 +
020 +
021 +
022 +
023 +
024 +
025 +
026 +
027 +
028 +
029 +
030 +
031 +
032 +
033 +
034 +
035 +
036 +
037 +
038 +
039 +
040 +
041 +
042 +
043 +
044 +
045 +
046 +
047 +
048 +
049 +
050 +
051 +
052 +
053 +
CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +
An Empirical Study of Context in Object Detection +
Anonymous CVPR submission +
Paper ID 987 +
8d8461ed57b81e05cc46be8e83260cd68a2ebb4dAge identification of Facial Images using Neural +
Network +
CSE Department,CSVTU +
RIT, Raipur, Chhattisgarh , INDIA +
8dbe79830713925affc48d0afa04ed567c54724b
8d1adf0ac74e901a94f05eca2f684528129a630aFacial Expression Recognition Using Facial +
Movement Features +
8d712cef3a5a8a7b1619fb841a191bebc2a17f15
8dffbb6d75877d7d9b4dcde7665888b5675deee1Emotion Recognition with Deep-Belief +
Networks +
Introduction +
For our CS229 project, we studied the problem of +
reliable computerized emotion recognition in images of +
human +
faces. First, we performed a preliminary +
exploration using SVM classifiers, and then developed an +
approach based on Deep Belief Nets. Deep Belief Nets, or +
DBNs, are probabilistic generative models composed of +
multiple layers of stochastic latent variables, where each +
“building block” layer is a Restricted Boltzmann Machine +
(RBM). DBNs have a greedy layer-wise unsupervised +
learning algorithm as well as a discriminative fine-tuning +
procedure for optimizing performance on classification +
tasks. [1]. +
We trained our classifier on three databases: the +
Cohn-Kanade Extended Database (CK+) [2], the Japanese +
Female Facial Expression Database (JAFFE) [3], and the +
Yale Face Database (YALE) [4]. We tested several +
different database configurations, image pre-processing +
settings, and DBN parameters, and obtained test errors as +
low as 20% on a limited subset of the emotion labels. +
Finally, we created a real-time system which takes +
images of a single subject using a computer webcam and +
classifies the emotion shown by the subject. +
Part 1: Exploration of SVM-based approaches +
To set a baseline for comparison, we applied an +
SVM classifier to the emotion images in the CK+ +
database, using the LIBLINEAR library and its MATLAB +
interface [5]. This database contains 593 image sequences +
across 123 human subjects, beginning with a “neutral +
“expression and showing the progression to one of seven +
“peak” emotions. When given both a neutral and an +
expressive face to compare, the SVM obtained accuracy +
as high as 90%. This +
the +
implementation of the SVM classifier. For additional +
details on this stage of the project, please see our +
Milestone document. +
Part 1.1 Choice of labels (emotion numbers vs. FACS +
features) +
The CK+ database offers two sets of emotion +
features: “emotion numbers” and FACS features. Emotion +
numbers are integer values representing the main emotion +
shown in the “peak emotion” image. The emotions are +
coded as follows: 1=anger, 2=contempt, 3=disgust, +
4=fear, 5=happiness, 6=sadness, and 7=surprise. +
The other labeling option is called FACS, or the +
Facial Action Coding System. FACS decomposes every +
summarizes +
section +
facial emotion into a set of Action Units (AUs), which +
describe the specific muscle groups involved in forming +
the emotion. We chose not to use FACS because accurate +
labeling currently requires trained human experts [8], and +
we are interesting in creating an automated system. +
+
Part 1.2 Features +
Part 1.2.1 Norm of differences between neutral face +
and full emotion +
Each of the CK+ images has been hand-labeled with +
68 standard Active Appearance Models (AAM) face +
landmarks that describe the X and Y position of these +
landmarks on the image (Figure 1). +
Figure 1. AAM Facial Landmarks +
We initially trained the SVM on the norm of the +
vector differences in landmark positions between the +
neutral and peak expressions. With this approach, the +
training error was approximately 35% for hold out cross +
validation (see Figure 2). +
with +
Figure 3. Accuracy of +
SVM with separate X, Y +
displacement features. +
Figure 2. Accuracy of +
SVM +
norm- +
displacement features. +
Part 1.2.2 Separate X and Y differences between +
neutral face and full emotion +
Because the initial approach did not differentiate +
between displacements of +
in different +
directions, we also provided the differences in the X and +
Y components of each landmark separately. This doubled +
the size of our feature vector, and resulting in a significant +
(about 20%) improvement in accuracy (Figure 3). +
Part 1.2.3 Feature Selection +
landmarks +
Finally, we visualized which features were the most +
important for classifying each emotion; the results can be +
seen in Figure 4. The figure shows the X and Y +
153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4Overview of algorithms for face detection and +
tracking +
Nenad Markuˇs +
15136c2f94fd29fc1cb6bedc8c1831b7002930a6Deep Learning Architectures for Face +
Recognition in Video Surveillance +
153e5cddb79ac31154737b3e025b4fb639b3c9e7PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS +
Active Dictionary Learning in Sparse +
Representation Based Classification +
15e0b9ba3389a7394c6a1d267b6e06f8758ab82bXu et al. IPSJ Transactions on Computer Vision and +
Applications (2017) 9:24 +
DOI 10.1186/s41074-017-0035-2 +
IPSJ Transactions on Computer +
Vision and Applications +
TECHNICAL NOTE +
Open Access +
The OU-ISIR Gait Database comprising the +
Large Population Dataset with Age and +
performance evaluation of age estimation +
15aa6c457678e25f6bc0e818e5fc39e42dd8e533
15f3d47b48a7bcbe877f596cb2cfa76e798c6452Automatic face analysis tools for interactive digital games +
Anonymised for blind review +
Anonymous +
Anonymous +
Anonymous +
15728d6fd5c9fc20b40364b733228caf63558c31
1513949773e3a47e11ab87d9a429864716aba42d
153c8715f491272b06dc93add038fae62846f498
122ee00cc25c0137cab2c510494cee98bd504e9fThe Application of +
Active Appearance Models to +
Comprehensive Face Analysis +
Technical Report +
TU M¨unchen +
April 5, 2007 +
1287bfe73e381cc8042ac0cc27868ae086e1ce3b
12cb3bf6abf63d190f849880b1703ccc183692feGuess Who?: A game to crowdsource the labeling of affective facial +
expressions is comparable to expert ratings. +
Graduation research project, june 2012 +
Supervised by: Dr. Joost Broekens +
12cd96a419b1bd14cc40942b94d9c4dffe5094d229 +
Proceedings of the 5th Workshop on Vision and Language, pages 29–38, +
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics +
12055b8f82d5411f9ad196b60698d76fbd07ac1e1475 +
Multiview Facial Landmark Localization in RGB-D +
Images via Hierarchical Regression +
With Binary Patterns +
120785f9b4952734818245cc305148676563a99bDiagnostic automatique de l’état dépressif +
S. Cholet +
H. Paugam-Moisy +
Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540) +
Université des Antilles, Campus de Fouillole - Guadeloupe +
Résumé +
Les troubles psychosociaux sont un problème de santé pu- +
blique majeur, pouvant avoir des conséquences graves sur +
le court ou le long terme, tant sur le plan professionnel que +
personnel ou familial. Le diagnostic de ces troubles doit +
être établi par un professionnel. Toutefois, l’IA (l’Intelli- +
gence Artificielle) peut apporter une contribution en four- +
nissant au praticien une aide au diagnostic, et au patient +
un suivi permanent rapide et peu coûteux. Nous proposons +
une approche vers une méthode de diagnostic automatique +
de l’état dépressif à partir d’observations du visage en +
temps réel, au moyen d’une simple webcam. A partir de +
vidéos du challenge AVEC’2014, nous avons entraîné un +
classifieur neuronal à extraire des prototypes de visages +
selon différentes valeurs du score de dépression de Beck +
(BDI-II). +
12c713166c46ac87f452e0ae383d04fb44fe4eb2
12150d8b51a2158e574e006d4fbdd3f3d01edc93Deep End2End Voxel2Voxel Prediction +
Presented by: Ahmed Osman +
Ahmed Osman +
8c13f2900264b5cf65591e65f11e3f4a35408b48A GENERIC FACE REPRESENTATION APPROACH FOR +
LOCAL APPEARANCE BASED FACE VERIFICATION +
Interactive Systems Labs, Universität Karlsruhe (TH) +
76131 Karlsruhe, Germany +
web: http://isl.ira.uka.de/face_recognition/ +
8cb3f421b55c78e56c8a1c1d96f23335ebd4a5bf
8c955f3827a27e92b6858497284a9559d2d0623aBuletinul Ştiinţific al Universităţii "Politehnica" din Timişoara +
Seria ELECTRONICĂ şi TELECOMUNICAŢII +
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS +
Tom 53(67), Fascicola 1-2, 2008 +
Facial Expression Recognition under Noisy Environment +
Using Gabor Filters +
8ce9b7b52d05701d5ef4a573095db66ce60a7e1cStructured Sparse Subspace Clustering: A Joint +
Affinity Learning and Subspace Clustering +
Framework +
8c6c0783d90e4591a407a239bf6684960b72f34eSESSION +
KNOWLEDGE ENGINEERING AND +
MANAGEMENT + KNOWLEDGE ACQUISITION +
Chair(s) +
TBA +
Int'l Conf. Information and Knowledge Engineering | IKE'13 |1
8509abbde2f4b42dc26a45cafddcccb2d370712fImproving precision and recall of face recognition in SIPP with combination of +
modified mean search and LSH +
Xihua.Li +
855bfc17e90ec1b240efba9100fb760c068a8efa
858ddff549ae0a3094c747fb1f26aa72821374ecSurvey on RGB, 3D, Thermal, and Multimodal +
Approaches for Facial Expression Recognition: +
History, Trends, and Affect-related Applications +
858901405086056361f8f1839c2f3d65fc86a748ON TENSOR TUCKER DECOMPOSITION: THE CASE FOR AN +
ADJUSTABLE CORE SIZE +
85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : +
France (2008)" +
8518b501425f2975ea6dcbf1e693d41e73d0b0afRelative Hidden Markov Models for Evaluating Motion Skills +
Computer Science and Engineering +
Arizona State Univerisity, Tempe, AZ 85281 +
854dbb4a0048007a49df84e3f56124d387588d99JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +
Spatial-Temporal Recurrent Neural Network for +
Emotion Recognition +
1dbbec4ad8429788e16e9f3a79a80549a0d7ac7b
1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de91860 +
The Hidden Sides of Names—Face Modeling +
with First Name Attributes +
1d846934503e2bd7b8ea63b2eafe00e29507f06a
1d0dd20b9220d5c2e697888e23a8d9163c7c814bNEGREL ET AL.: BOOSTED METRIC LEARNING FOR FACE RETRIEVAL +
Boosted Metric Learning for Efficient +
Identity-Based Face Retrieval +
Frederic Jurie +
GREYC, CNRS UMR 6072, ENSICAEN +
Université de Caen Basse-Normandie +
France +
1d776bfe627f1a051099997114ba04678c45f0f5Deployment of Customized Deep Learning based +
Video Analytics On Surveillance Cameras +
AitoeLabs (www.aitoelabs.com) +
1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb
1de8f38c35f14a27831130060810cf9471a62b45Int J Comput Vis +
DOI 10.1007/s11263-017-0989-7 +
A Branch-and-Bound Framework for Unsupervised Common +
Event Discovery +
Received: 3 June 2016 / Accepted: 12 January 2017 +
© Springer Science+Business Media New York 2017 +
1da83903c8d476c64c14d6851c85060411830129Iterated Support Vector Machines for Distance +
Metric Learning +
1d6068631a379adbcff5860ca2311b790df3a70f
1d58d83ee4f57351b6f3624ac7e727c944c0eb8dEnhanced Local Texture +
Feature Sets for Face +
Recognition under Difficult +
Lighting Conditions +
INRIA & Laboratoire Jean +
Kuntzmann, +
655 avenue de l'Europe, Montbonnot 38330, France +
71b376dbfa43a62d19ae614c87dd0b5f1312c966The Temporal Connection Between Smiles and Blinks +
714d487571ca0d676bad75c8fa622d6f50df953beBear: An Expressive Bear-Like Robot +
710011644006c18291ad512456b7580095d628a2Learning Residual Images for Face Attribute Manipulation +
Fujitsu Research & Development Center, Beijing, China. +
76fd801981fd69ff1b18319c450cb80c4bc78959Proceedings of the 11th International Conference on Computational Semantics, pages 76–81, +
London, UK, April 15-17 2015. c(cid:13)2015 Association for Computational Linguistics +
76 +
76dc11b2f141314343d1601635f721fdeef86fdbWeighted Decoding ECOC for Facial +
Action Unit Classification +
760a712f570f7a618d9385c0cee7e4d0d6a78ed2
76b9fe32d763e9abd75b427df413706c4170b95c
76d9f5623d3a478677d3f519c6e061813e58e833FAST ALGORITHMS FOR THE GENERALIZED FOLEY-SAMMON +
DISCRIMINANT ANALYSIS +
765b2cb322646c52e20417c3b44b81f89860ff71PoseShop: Human Image Database +
Construction and Personalized +
Content Synthesis +
7644d90efef157e61fe4d773d8a3b0bad5feccec
760ba44792a383acd9ca8bef45765d11c55b48d4~ +
I . +
INTRODUCTION AND BACKGROUND +
The purpose of this article is to introduce the +
reader to the basic principles of classification with +
class-specific features. It is written both for readers +
interested in only the basic concepts as well as those +
interested in getting started in applying the method. +
For in-depth coverage, the reader is referred to a more +
detailed article [l]. +
Class-Specific Classifier: +
Avoiding the Curse of +
Dimensionality +
PAUL M. BAGGENSTOSS, Member. lEEE +
US. Naval Undersea Warfare Center +
This article describes a new probabilistic method called the +
“class-specific method” (CSM). CSM has the potential to avoid +
the “curse of dimensionality” which plagues most clmiiiers +
which attempt to determine the decision boundaries in a +
highdimensional featue space. In contrast, in CSM, it is possible +
to build classifiers without a ” n o n feature space. Separate +
Law-dimensional features seta may be de6ned for each class, while +
the decision funetions are projected back to the common raw data +
space. CSM eflectively extends the classical classification theory +
to handle multiple feature spaw.. It is completely general, and +
requires no s i m p l i n g assumption such as Gaussianity or that +
data lies in linear subspaces. +
Manuscript received September 26, 2W2; revised February 12, +
2003. +
This work was supported by the Office of Naval Research. +
Author’s address: US. Naval Undersea Warfare Center, Newport +
Classification is the process of assigning data +
to one of a set of pre-determined class labels [2]. +
Classification is a fundamental problem that has +
to be solved if machines are to approximate the +
human functions of recognizing sounds, images, or +
other sensory inputs. This is why classification is so +
important for automation in today’s commercial and +
military arenas. +
Many of us have first-hand knowledge of +
successful automated recognition systems from +
cameras that recognize faces in airports to computers +
that can scan and read printed and handwritten text, +
or systems that can recognize human speech. These +
systems are becoming more and more reliable and +
accurate. Given reasonably clean input data, the +
performance is often quite good if not perfect. But +
many of these systems fail in applications where +
clean, uncorrupted data is not available or if the +
problem is complicated by variability of conditions +
or by proliferation of inputs from unknown sources. +
In military environments, the targets to he recognized +
are often uncooperative and hidden in clutter and +
interference. In short, military uses of such systems +
still fall far short of what a well-trained alert human +
operator can achieve. +
We are often perplexed by the wide gap of +
as a car door slamming. From +
performance between humans and automated systems. +
Allow a human listener to hear two or three examples +
of a sound-such +
these few examples, the human can recognize +
the sound again and not confuse it with similar +
interfering sounds. But try the same experiment with +
general-purpose classifiers using neural networks +
and the story is quite different. Depending on the +
problem, the automated system may require hundreds, +
thousands, even millions of examples for training +
before it becomes both robust and reliable. +
Why? The answer lies in what is known as the +
“curse of dimensionality.” General-purpose classifiers +
need to extract a large number of measurements, +
or features, from the data to account for all the +
different possibilities of data types. The large +
collection of features form a high-dimensional space +
that the classifier has to sub-divide into decision +
boundaries. It is well-known that the complexity of +
a high-dimensional space increases exponentially +
with the number of measurements [31-and +
so does +
the difficulty of finding the hest decision boundaries +
from a fixed amount of training data. Unless a lot +
EEE A&E SYSTEMS MAGAZINE VOL. 19, NO. 1 JANUARY 2004 PART 2: TUTORIALS-BAGGENSTOSS +
37 +
766728bac030b169fcbc2fbafe24c6e22a58ef3cA survey of deep facial landmark detection +
Yongzhe Yan1,2 +
Thierry Chateau1 +
1 Université Clermont Auvergne, France +
2 Wisimage, France +
3 Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France +
Résumé +
La détection de landmarks joue un rôle crucial dans de +
nombreuses applications d’analyse du visage comme la +
reconnaissance de l’identité, des expressions, l’animation +
d’avatar, la reconstruction 3D du visage, ainsi que pour +
les applications de réalité augmentée comme la pose de +
masque ou de maquillage virtuel. L’avènement de l’ap- +
prentissage profond a permis des progrès très importants +
dans ce domaine, y compris sur les corpus non contraints +
(in-the-wild). Nous présentons ici un état de l’art cen- +
tré sur la détection 2D dans une image fixe, et les mé- +
thodes spécifiques pour la vidéo. Nous présentons ensuite +
les corpus existants pour ces trois tâches, ainsi que les mé- +
triques d’évaluations associées. Nous exposons finalement +
quelques résultats, ainsi que quelques pistes de recherche. +
Mots Clef +
Détection de landmark facial, Alignement de visage, Deep +
learning +
7697295ee6fc817296bed816ac5cae97644c2d5bDetecting and Recognizing Human-Object Interactions +
Facebook AI Research (FAIR) +
1c80bc91c74d4984e6422e7b0856cf3cf28df1fbNoname manuscript No. +
(will be inserted by the editor) +
Hierarchical Adaptive Structural SVM for Domain Adaptation +
Received: date / Accepted: date +
1ce4587e27e2cf8ba5947d3be7a37b4d1317fbeeDeep fusion of visual signatures +
for client-server facial analysis +
Normandie Univ, UNICAEN, +
ENSICAEN, CNRS, GREYC +
Computer Sc. & Engg. +
IIT Kanpur, India +
Frederic Jurie +
Normandie Univ, UNICAEN, +
ENSICAEN, CNRS, GREYC +
Facial analysis is a key technology for enabling human- +
machine interaction. +
In this context, we present a client- +
server framework, where a client transmits the signature of +
a face to be analyzed to the server, and, in return, the server +
sends back various information describing the face e.g. is the +
person male or female, is she/he bald, does he have a mus- +
tache, etc. We assume that a client can compute one (or a +
combination) of visual features; from very simple and effi- +
cient features, like Local Binary Patterns, to more complex +
and computationally heavy, like Fisher Vectors and CNN +
based, depending on the computing resources available. The +
challenge addressed in this paper is to design a common uni- +
versal representation such that a single merged signature is +
transmitted to the server, whatever be the type and num- +
ber of features computed by the client, ensuring nonetheless +
an optimal performance. Our solution is based on learn- +
ing of a common optimal subspace for aligning the different +
face features and merging them into a universal signature. +
We have validated the proposed method on the challenging +
CelebA dataset, on which our method outperforms existing +
state-of-art methods when rich representation is available at +
test time, while giving competitive performance when only +
simple signatures (like LBP) are available at test time due +
to resource constraints on the client. +
1. +
INTRODUCTION +
We propose a novel method in a heterogeneous server- +
client framework for the challenging and important task of +
analyzing images of faces. Facial analysis is a key ingredient +
for assistive computer vision and human-machine interaction +
methods, and systems and incorporating high-performing +
methods in daily life devices is a challenging task. The ob- +
jective of the present paper is to develop state-of-the-art +
technologies for recognizing facial expressions and facial at- +
tributes on mobile and low cost devices. Depending on their +
computing resources, the clients (i.e. the devices on which +
the face image is taken) are capable of computing different +
types of face signatures, from the simplest ones (e.g. LPB) +
to the most complex ones (e.g. very deep CNN features), and +
should be able to eventually combine them into a single rich +
signature. Moreover, it is convenient if the face analyzer, +
which might require significant computing resources, is im- +
plemented on a server receiving face signatures and comput- +
ing facial expressions and attributes from these signatures. +
Keeping the computation of the signatures on the client is +
safer in terms of privacy, as the original images are not trans- +
mitted, and keeping the analysis part on the server is also +
beneficial for easy model upgrades in the future. To limit +
the transmission costs, the signatures have to be made as +
compact as possible. +
In summary, the technology needed +
for this scenario has to be able to merge the different avail- +
able features – the number of features available at test time +
is not known in advance but is dependent on the computing +
resources available on the client – producing a unique rich +
and compact signature of the face, which can be transmitted +
and analyzed by a server. Ideally, we would like the univer- +
sal signature to have the following properties: when all the +
features are available, we would like the performance of the +
signature to be better than the one of a system specifically +
optimized for any single type of feature. +
In addition, we +
would like to have reasonable performance when only one +
type of feature is available at test time. +
For developing such a system, we propose a hybrid deep +
neural network and give a method to carefully fine-tune the +
network parameters while learning with all or a subset of +
features available. Thus, the proposed network can process a +
number of wide ranges of feature types such as hand-crafted +
LBP and FV, or even CNN features which are learned end- +
to-end. +
While CNNs have been quite successful in computer vi- +
sion [1], representing images with CNN features is relatively +
time consuming, much more than some simple hand-crafted +
features such as LBP. Thus, the use of CNN in real-time ap- +
plications is still not feasible. In addition, the use of robust +
hand-crafted features such as FV in hybrid architectures can +
give performance comparable to Deep CNN features [2]. The +
main advantage of learning hybrid architectures is to avoid +
having large numbers of convolutional and pooling layers. +
Again from [2], we can also observe that hybrid architec- +
tures improve the performance of hand-crafted features e.g. +
FVs. Therefore, hybrid architectures are useful for the cases +
where only hand-crafted features, and not the original im- +
ages, are available during training and testing time. This +
scenario is useful when it is not possible to share training +
images due to copyright or privacy issues. +
Hybrid networks are particularly adapted to our client- +
1c3073b57000f9b6dbf1c5681c52d17c55d60fd7THÈSEprésentéepourl’obtentiondutitredeDOCTEURDEL’ÉCOLENATIONALEDESPONTSETCHAUSSÉESSpécialité:InformatiqueparCharlotteGHYSAnalyse,Reconstruction3D,&AnimationduVisageAnalysis,3DReconstruction,&AnimationofFacesSoutenancele19mai2010devantlejurycomposéde:Rapporteurs:MajaPANTICDimitrisSAMARASExaminateurs:MichelBARLAUDRenaudKERIVENDirectiondethèse:NikosPARAGIOSBénédicteBASCLE
1c93b48abdd3ef1021599095a1a5ab5e0e020dd5JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009 +
A Compositional and Dynamic Model for Face Aging +
1c6be6874e150898d9db984dd546e9e85c85724e
1c65f3b3c70e1ea89114f955624d7adab620a013
1c6e22516ceb5c97c3caf07a9bd5df357988ceda
82bef8481207de9970c4dc8b1d0e17dced706352
825f56ff489cdd3bcc41e76426d0070754eab1a8Making Convolutional Networks Recurrent for Visual Sequence Learning +
NVIDIA +
82d2af2ffa106160a183371946e466021876870dA Novel Space-Time Representation on the Positive Semidefinite Cone +
for Facial Expression Recognition +
1IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL – +
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +
2Univ. Lille, CNRS, UMR 8524, Laboratoire Paul Painlev´e, F-59000 Lille, France. +
8210fd10ef1de44265632589f8fc28bc439a57e6Single Sample Face Recognition via Learning Deep +
Supervised Auto-Encoders +
Shenghua Gao, Yuting Zhang, Kui Jia, Jiwen Lu, Yingying Zhang +
82a4a35b2bae3e5c51f4d24ea5908c52973bd5beReal-time emotion recognition for gaming using +
deep convolutional network features +
S´ebastien Ouellet +
82f4e8f053d20be64d9318529af9fadd2e3547efTechnical Report: +
Multibiometric Cryptosystems +
82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d141 +
REFERENCES +
1. +
2. +
3. +
4. +
5. +
6. +
7. +
8. +
9. +
Adler A., Youmaran R. and Loyka S., “Towards a Measure of +
Biometric Information”, Canadian Conference on Electrical and +
Computer Engineering, pp. 210-213, 2006. +
Military Academy, West Point, New York, pp. 452-458, 2005. +
Security and Trust, St. Andrews, New Brunswick, Canada, pp. 1-8, +
2005. +
Structural Model for Biometric Sketch Recognition”, Proceedings of +
DAGM, Magdeburg, Germany, Vol. 2781, pp. 187-195, 2003. +
of Security”, The First UAE International Conference on Biological +
and Medical Physics, pp. 1-4, 2005. +
Avraam Kasapis., “MLPs and Pose, Expression Classification”, +
Proceedings of UNiS Report, pp. 1-87, 2003. +
Detection for Storage Area Networks (SANs)”, Proceedings of 22nd +
IEEE / 13th NASA Goddard Conference on Mass Storage Systems and +
Technologies, pp. 118-127, 2005. +
Black M.J. and Yacoob Y., “Recognizing Facial Expressions in Image +
Sequences using Local Parameterized Models of Image Motion”, Int. +
Journal Computer Vision, Vol. 25, No. 1, pp. 23-48, 1997. +
10. +
Recognition using a State-Based Model of Spatially-Localized Facial +
82417d8ec8ac6406f2d55774a35af2a1b3f4b66eSome faces are more equal than others: +
Hierarchical organization for accurate and +
efficient large-scale identity-based face retrieval +
GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1 +
Technicolor, Rennes, France2 +
826c66bd182b54fea3617192a242de1e4f16d020978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
1602 +
ICASSP 2017 +
4972aadcce369a8c0029e6dc2f288dfd0241e144Multi-target Unsupervised Domain Adaptation +
without Exactly Shared Categories +
49dd4b359f8014e85ed7c106e7848049f852a304
49e85869fa2cbb31e2fd761951d0cdfa741d95f3253 +
Adaptive Manifold Learning +
49659fb64b1d47fdd569e41a8a6da6aa76612903
49a7949fabcdf01bbae1c2eb38946ee99f491857A CONCATENATING FRAMEWORK OF SHORTCUT +
CONVOLUTIONAL NEURAL NETWORKS +
49e1aa3ecda55465641b2c2acc6583b32f3f1fc6International Journal of Emerging Technology and Advanced Engineering +
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +
Support Vector Machine for age classification +
1Assistant Professor, CSE, RSR RCET, Kohka Bhilai +
2,3 Sr. Assistant Professor, CSE, SSCET, Junwani Bhilai +
49df381ea2a1e7f4059346311f1f9f45dd9971642018 +
On the Use of Client-Specific Information for Face +
Presentation Attack Detection Based on Anomaly +
Detection +
40205181ed1406a6f101c5e38c5b4b9b583d06bcUsing Context to Recognize People in Consumer Images +
40dab43abef32deaf875c2652133ea1e2c089223Noname manuscript No. +
(will be inserted by the editor) +
Facial Communicative Signals +
Valence Recognition in Task-Oriented Human-Robot Interaction +
Received: date / Accepted: date +
405b43f4a52f70336ac1db36d5fa654600e9e643What can we learn about CNNs from a large scale controlled object dataset? +
UWM +
AUT +
USC +
40b86ce698be51e36884edcc8937998979cd02ecYüz ve İsim İlişkisi kullanarak Haberlerdeki Kişilerin Bulunması +
Finding Faces in News Photos Using Both Face and Name Information +
Derya Ozkan, Pınar Duygulu +
Bilgisayar Mühendisliği Bölümü, Bilkent Üniversitesi, 06800, Ankara +
Özetçe +
Bu çalışmada, haber fotoğraflarından oluşan geniş veri +
kümelerinde kişilerin sorgulanmasını sağlayan bir yöntem +
sunulmuştur. Yöntem isim ve yüzlerin ilişkilendirilmesine +
dayanmaktadır. Haber başlığında kişinin ismi geçiyor ise +
fotoğrafta da o kişinin yüzünün bulunacağı varsayımıyla, ilk +
olarak sorgulanan isim ile ilişkilendirilmiş, fotoğraflardaki +
tüm yüzler seçilir. Bu yüzler arasında sorgu kişisine ait farklı +
koşul, poz ve zamanlarda çekilmiş pek çok resmin yanında, +
haberde ismi geçen başka kişilere ait yüzler ya da kullanılan +
yüz bulma yönteminin hatasından kaynaklanan yüz olmayan +
resimler de bulunabilir. Yine de, çoğu zaman, sorgu kişisine +
ait resimler daha çok olup, bu resimler birbirine diğerlerine +
olduğundan daha çok benzeyeceklerdir. Bu nedenle, yüzler +
arasındaki benzerlikler çizgesel olarak betimlendiğinde , +
birbirine en çok benzeyen yüzler bu çizgede en yoğun bileşen +
olacaktır. Bu çalışmada, sorgu ismiyle ilişkilendirilmiş, +
yüzler arasında birbirine en çok benzeyen alt kümeyi bulan, +
çizgeye dayalı bir yöntem sunulmaktadır. +
402f6db00251a15d1d92507887b17e1c50feebca3D Facial Action Units Recognition for Emotional +
Expression +
1Department of Information Technology and Communication, Politeknik Kuching, Sarawak, Malaysia +
2Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia +
The muscular activities caused the activation of certain AUs for every facial expression at the certain duration of time +
throughout the facial expression. This paper presents the methods to recognise facial Action Unit (AU) using facial distance +
of the facial features which activates the muscles. The seven facial action units involved are AU1, AU4, AU6, AU12, AU15, +
AU17 and AU25 that characterises happy and sad expression. The recognition is performed on each AU according to rules +
defined based on the distance of each facial points. The facial distances chosen are extracted from twelve facial features. +
Then the facial distances are trained using Support Vector Machine (SVM) and Neural Network (NN). Classification result +
using SVM is presented with several different SVM kernels while result using NN is presented for each training, validation +
and testing phase. +
Keywords: Facial action units recognition, 3D AU recognition, facial expression +
+
40fb4e8932fb6a8fef0dddfdda57a3e142c3e823A Mixed Generative-Discriminative Framework for Pedestrian Classification +
Dariu M. Gavrila2,3 +
1 Image & Pattern Analysis Group, Dept. of Math. and Comp. Sc., Univ. of Heidelberg, Germany +
2 Environment Perception, Group Research, Daimler AG, Ulm, Germany +
3 Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands +
40cd062438c280c76110e7a3a0b2cf5ef675052c
40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a80 +
40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cdBridging Heterogeneous Domains With Parallel Transport For Vision and +
Multimedia Applications +
Dept. of Video and Multimedia Technologies Research +
AT&T Labs-Research +
San Francisco, CA 94108 +
40389b941a6901c190fb74e95dc170166fd7639dAutomatic Facial Expression Recognition +
Emotient +
http://emotient.com +
February 12, 2014 +
Imago animi vultus est, indices oculi. (Cicero) +
Introduction +
The face is innervated by two different brain systems that compete for control of its muscles: +
a cortical brain system related to voluntary and controllable behavior, and a sub-cortical +
system responsible for involuntary expressions. The interplay between these two systems +
generates a wealth of information that humans constantly use to read the emotions, inten- +
tions, and interests [25] of others. +
Given the critical role that facial expressions play in our daily life, technologies that can +
interpret and respond to facial expressions automatically are likely to find a wide range of +
applications. For example, in pharmacology, the effect of new anti-depression drugs could +
be assessed more accurately based on daily records of the patients’ facial expressions than +
asking the patients to fill out a questionnaire, as it is currently done [7]. Facial expression +
recognition may enable a new generation of teaching systems to adapt to the expression +
of their students in the way good teachers do [61]. Expression recognition could be used +
to assess the fatigue of drivers and air-pilots [58, 59]. Daily-life robots with automatic +
expression recognition will be able to assess the states and intentions of humans and respond +
accordingly [41]. Smart phones with expression analysis may help people to prepare for +
important meetings and job interviews. +
Thanks to the introduction of machine learning methods, recent years have seen great +
progress in the field of automatic facial expression recognition. Commercial real-time ex- +
pression recognition systems are starting to be used in consumer applications, e.g., smile +
detectors embedded in digital cameras [62]. Nonetheless, considerable progress has yet to be +
made: Methods for face detection and tracking (the first step of automated face analysis) +
work well for frontal views of adult Caucasian and Asian faces [50], but their performance +
40273657e6919455373455bd9a5355bb46a7d614Anonymizing k-Facial Attributes via Adversarial Perturbations +
1 IIIT Delhi, New Delhi, India +
2 Ministry of Electronics and Information Technology, New Delhi, India +
40b10e330a5511a6a45f42c8b86da222504c717fImplementing the Viola-Jones +
Face Detection Algorithm +
Kongens Lyngby 2008 +
IMM-M.Sc.-2008-93 +
40ca925befa1f7e039f0cd40d57dbef6007b4416Sampling Matters in Deep Embedding Learning +
UT Austin +
A9/Amazon +
Amazon +
Philipp Kr¨ahenb¨uhl +
UT Austin +
4042bbb4e74e0934f4afbedbe92dd3e37336b2f4
40f127fa4459a69a9a21884ee93d286e99b54c5fOptimizing Apparent Display Resolution +
Enhancement for Arbitrary Videos +
401e6b9ada571603b67377b336786801f5b54eeeActive Image Clustering: Seeking Constraints from +
Humans to Complement Algorithms +
November 22, 2011 +
2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9
2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87International Journal of Computer Vision manuscript No. +
(will be inserted by the editor) +
Pointly-Supervised Action Localization +
Received: date / Accepted: date +
2eb37a3f362cffdcf5882a94a20a1212dfed25d94 +
Local Feature Based Face Recognition +
R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded +
India +
1. Introduction +
A reliable automatic face recognition (AFR) system is a need of time because in today's +
networked world, maintaining the security of private information or physical property is +
becoming increasingly important and difficult as well. Most of the time criminals have been +
taking the advantage of fundamental flaws in the conventional access control systems i.e. +
the systems operating on credit card, ATM etc. do not grant access by "who we are", but by +
"what we have”. The biometric based access control systems have a potential to overcome +
most of the deficiencies of conventional access control systems and has been gaining the +
importance in recent years. These systems can be designed with biometric traits such as +
fingerprint, face, iris, signature, hand geometry etc. But comparison of different biometric +
traits shows that face is very attractive biometric because of its non-intrusiveness and social +
acceptability. It provides automated methods of verifying or recognizing the identity of a +
living person based on its facial characteristics. +
In last decade, major advances occurred in face recognition, with many systems capable of +
achieving recognition rates greater than 90%. However real-world scenarios remain a +
challenge, because face acquisition process can undergo to a wide range of variations. Hence +
the AFR can be thought as a very complex object recognition problem, where the object to be +
recognized is the face. This problem becomes even more difficult because the search is done +
among objects belonging to the same class and very few images of each class are available to +
train the system. Moreover different problems arise when images are acquired under +
uncontrolled conditions such as illumination variations, pose changes, occlusion, person +
appearance at different ages, expression changes and face deformations. The numbers of +
approaches has been proposed by various researchers to deal with these problems but still +
reported results cannot suffice the need of the reliable AFR system in presence of all facial +
image variations. A recent survey paper (Abate et al., 2007) states that the sensibility of the +
AFR systems to illumination and pose variations are the main problems researchers have +
been facing up till. +
2. Face recognition methods +
The existing face recognition methods can be divided into two categories: holistic matching +
methods and local matching methods.The holistic matching methods use complete face +
region as a input to face recognition system and constructs a lower dimensional subspace +
using principal component analysis (PCA) (Turk & Pentland, 1991), linear discriminant +
www.intechopen.com +
2e5cfa97f3ecc10ae8f54c1862433285281e6a7c
2e0e056ed5927a4dc6e5c633715beb762628aeb0
2e68190ebda2db8fb690e378fa213319ca915cf8Generating Videos with Scene Dynamics +
MIT +
UMBC +
MIT +
2e0d56794379c436b2d1be63e71a215dd67eb2caImproving precision and recall of face recognition in SIPP with combination of +
modified mean search and LSH +
Xihua.Li +
2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd
2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522Leveraging Billions of Faces to Overcome +
Performance Barriers in Unconstrained Face +
Recognition +
face.com +
2e19371a2d797ab9929b99c80d80f01a1fbf9479
2ebc35d196cd975e1ccbc8e98694f20d7f52faf3This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +
Towards Wide-angle Micro Vision Sensors +
2e3d081c8f0e10f138314c4d2c11064a981c1327
2e86402b354516d0a8392f75430156d629ca6281
2e0f5e72ad893b049f971bc99b67ebf254e194f7Apparel Classification with Style +
1ETH Z¨urich, Switzerland 2Microsoft, Austria 3Kooaba AG, Switzerland +
4KU Leuven, Belgium +
2ec7d6a04c8c72cc194d7eab7456f73dfa501c8cInternational Journal of Scientific Research and Management Studies (IJSRMS) +
ISSN: 2349-3771 +
+
Volume 3 Issue 4, pg: 164-169 +
A REVIEW ON TEXTURE BASED EMOTION RECOGNITION +
FROM FACIAL EXPRESSION +
1U.G. Scholars, 2Assistant Professor, +
Dept. of E & C Engg., MIT Moradabad, Ram Ganga Vihar, Phase II, Moradabad, India. +
2e1b1969ded4d63b69a5ec854350c0f74dc4de36
2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23fAn Effective Approach for Facial Expression Recognition with Local Binary +
Pattern and Support Vector Machine +
2b3ceb40dced78a824cf67054959e250aeaa573b
2b1327a51412646fcf96aa16329f6f74b42aba89Under review as a conference paper at ICLR 2016 +
IMPROVING PERFORMANCE OF RECURRENT NEURAL +
NETWORK WITH RELU NONLINEARITY +
Qualcomm Research +
San Diego, CA 92121, USA +
2b5cb5466eecb131f06a8100dcaf0c7a0e30d391A Comparative Study of Active Appearance Model +
Annotation Schemes for the Face +
Face Aging Group +
UNCW, USA +
Face Aging Group +
UNCW, USA +
Face Aging Group +
UNCW, USA +
2b632f090c09435d089ff76220fd31fd314838aeEarly Adaptation of Deep Priors in Age Prediction from Face Images +
Computer Vision Lab +
D-ITET, ETH Zurich +
Computer Vision Lab +
D-ITET, ETH Zurich +
CVL, D-ITET, ETH Zurich +
Merantix GmbH +
2b8dfbd7cae8f412c6c943ab48c795514d53c4a7529 +
2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +
978-1-4799-2893-4/14/$31.00 ©2014 IEEE +
RECOGNITION +
1. INTRODUCTION +
(d1,d2)∈[0;d]2 +
d1+d2≤d +
2baec98c19804bf19b480a9a0aa814078e28bb3d
470dbd3238b857f349ebf0efab0d2d6e9779073aUnsupervised Simultaneous Orthogonal Basis Clustering Feature Selection +
School of Electrical Engineering, KAIST, South Korea +
In this paper, we propose a novel unsupervised feature selection method: Si- +
multaneous Orthogonal basis Clustering Feature Selection (SOCFS). To per- +
form feature selection on unlabeled data effectively, a regularized regression- +
based formulation with a new type of target matrix is designed. The target +
matrix captures latent cluster centers of the projected data points by per- +
forming the orthogonal basis clustering, and then guides the projection ma- +
trix to select discriminative features. Unlike the recent unsupervised feature +
selection methods, SOCFS does not explicitly use the pre-computed local +
structure information for data points represented as additional terms of their +
objective functions, but directly computes latent cluster information by the +
target matrix conducting orthogonal basis clustering in a single unified term +
of the proposed objective function. +
Since the target matrix is put in a single unified term for regression of +
the proposed objective function, feature selection and clustering are simul- +
taneously performed. In this way, the projection matrix for feature selection +
is more properly computed by the estimated latent cluster centers of the +
projected data points. To the best of our knowledge, this is the first valid +
formulation to consider feature selection and clustering together in a sin- +
gle unified term of the objective function. The proposed objective function +
has fewer parameters to tune and does not require complicated optimization +
tools so just a simple optimization algorithm is sufficient. Substantial ex- +
periments are performed on several publicly available real world datasets, +
which shows that SOCFS outperforms various unsupervised feature selec- +
tion methods and that latent cluster information by the target matrix is ef- +
fective for regularized regression-based feature selection. +
Problem Formulation: Given training data, let X = [x1, . . . ,xn] ∈ Rd×n +
denote the data matrix with n instances where dimension is d and T = +
[t1, . . . ,tn] ∈ Rm×n denote the corresponding target matrix where dimension +
is m. We start from the regularized regression-based formulation to select +
maximum r features is minW (cid:107)WT X− T(cid:107)2 +
s.t. (cid:107)W(cid:107)2,0 ≤ r. To exploit +
such formulation on unlabeled data more effectively, it is crucial for the tar- +
get matrix T to have discriminative destinations for projected clusters. To +
this end, a new type of target matrix T is proposed to conduct clustering di- +
rectly on the projected data points WT X. We allow extra degrees of freedom +
to T by decomposing it into two other matrices B ∈ Rm×c and E ∈ Rn×c as +
T = BET with additional constraints as +
(1) +
F + λ(cid:107)W(cid:107)2,1 +
(cid:107)WT X− BET(cid:107)2 +
s.t. BT B = I, ET E = I, E ≥ 0, +
min +
W,B,E +
where λ > 0 is a weighting parameter for the relaxed regularizer (cid:107)W(cid:107)2,1 +
that induces row sparsity of the projection matrix W. The meanings of the +
constraints BT B = I,ET E = I,E ≥ 0 are as follows: 1) the orthogonal con- +
straint of B lets each column of B be independent; 2) the orthogonal and +
the nonnegative constraint of E make each row of E has only one non-zero +
element [2]. From 1) and 2), we can clearly interpret B as the basis matrix, +
which has orthogonality and E as the encoding matrix, where the non-zero +
element of each column of ET selects one column in B. +
While optimizing problem (1), T = BET acts like clustering of projected +
data points WT X with orthogonal basis B and encoder E, so T can estimate +
latent cluster centers of the WT X. Then, W successively projects X close +
to corresponding latent cluster centers, which are estimated by T. Note that +
the orthogonal constraint of B makes each projected cluster in WT X be sep- +
arated (independent of each other), and it helps W to be a better projection +
matrix for selecting more discriminative features. If the clustering is directly +
performed on X not on WT X, the orthogonal constraint of B extremely re- +
stricts the degree of freedom of B. However, since features are selected by +
W and the clustering is carried out on WT X in our formulation, so the or- +
thogonal constraint of B is highly reasonable. A schematic illustration of +
the proposed method is shown in Figure 1. +
47541d04ec24662c0be438531527323d983e958eAffective Information Processing +
474b461cd12c6d1a2fbd67184362631681defa9e2014 IEEE International +
Conference on Systems, Man +
and Cybernetics +
(SMC 2014) +
San Diego, California, USA +
5-8 October 2014 +
Pages 1-789 +
IEEE Catalog Number: +
ISBN: +
CFP14SMC-POD +
978-1-4799-3841-4 +
1/5 +
47d4838087a7ac2b995f3c5eba02ecdd2c28ba14JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +
Automatic Recognition of Facial Displays of +
Unfelt Emotions +
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +
47a2727bd60e43f3253247b6d6f63faf2b67c54bSemi-supervised Vocabulary-informed Learning +
Disney Research +
47e3029a3d4cf0a9b0e96252c3dc1f646e750b14International Conference on Computer Systems and Technologies - CompSysTech’07 +
Facial Expression Recognition in still pictures and videos using Active +
Appearance Models. A comparison approach. +
Drago(cid:1) Datcu +
Léon Rothkrantz +
475e16577be1bfc0dd1f74f67bb651abd6d63524DAiSEE: Towards User Engagement Recognition in the Wild +
Microsoft +
Vineeth N Balasubramanian +
Indian Institution of Technology Hyderabad +
471befc1b5167fcfbf5280aa7f908eff0489c72b570 +
Class-Specific Kernel-Discriminant +
Analysis for Face Verification +
class problems ( +
47f8b3b3f249830b6e17888df4810f3d189daac1
47e8db3d9adb79a87c8c02b88f432f911eb45dc5MAGMA: Multi-level accelerated gradient mirror descent algorithm for +
large-scale convex composite minimization +
July 15, 2016 +
47aeb3b82f54b5ae8142b4bdda7b614433e69b9a
477811ff147f99b21e3c28309abff1304106dbbe
47e14fdc6685f0b3800f709c32e005068dfc8d47
782188821963304fb78791e01665590f0cd869e8
78a4cabf0afc94da123e299df5b32550cd638939
78f08cc9f845dc112f892a67e279a8366663e26dTECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Semi-Autonomous Data Enrichment and +
Optimisation for Intelligent Speech Analysis +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzender: +
Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Alexander W. Koch +
Pr¨ufer der Dissertation: +
1. +
Univ.-Prof. Dr.-Ing. habil. Bj¨orn W. Schuller, +
Universit¨at Passau +
2. Univ.-Prof. Gordon Cheng, Ph.D. +
Die Dissertation wurde am 30.09.2014 bei der Technischen Universit¨at M¨unchen einge- +
reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 07.04.2015 +
angenommen. +
783f3fccde99931bb900dce91357a6268afecc52Hindawi Publishing Corporation +
EURASIP Journal on Image and Video Processing +
Volume 2009, Article ID 945717, 14 pages +
doi:10.1155/2009/945717 +
Research Article +
Adapted Active Appearance Models +
1 SUP ´ELEC/IETR, Avenue de la Boulaie, 35511 Cesson-S´evign´e, France +
2 Orange Labs—TECH/IRIS, 4 rue du clos courtel, 35 512 Cesson S´evign´e, France +
Received 5 January 2009; Revised 2 September 2009; Accepted 20 October 2009 +
Recommended by Kenneth M. Lam +
Active Appearance Models (AAMs) are able to align efficiently known faces under duress, when face pose and illumination are +
controlled. We propose Adapted Active Appearance Models to align unknown faces in unknown poses and illuminations. Our +
proposal is based on the one hand on a specific transformation of the active model texture in an oriented map, which changes the +
AAM normalization process; on the other hand on the research made in a set of different precomputed models related to the most +
adapted AAM for an unknown face. Tests on public and private databases show the interest of our approach. It becomes possible +
to align unknown faces in real-time situations, in which light and pose are not controlled. +
Copyright © 2009 Renaud S´eguier et al. This is an open access article distributed under the Creative Commons Attribution +
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +
cited. +
1. Introduction +
All applications related to face analysis and synthesis (Man- +
Machine Interaction, compression in video communication, +
augmented reality) need to detect and then to align the user’s +
face. This latest process consists in the precise localization of +
the eyes, nose, and mouth gravity center. Face detection can +
now be realized in real time and in a rather efficient manner +
[1, 2]; the technical bottleneck lies now in the face alignment +
when it is done in real conditions, which is precisely the +
object of this paper. +
Since such Active Appearance Models (AAMs) as those +
described in [3] exist, it is therefore possible to align faces +
in real time. The AAMs exploit a set of face examples in +
order to extract a statistical model. To align an unknown +
face in new image, the models parameters must be tuned, in +
order to match the analyzed face features in the best possible +
way. There is no difficulty to align a face featuring the same +
characteristics (same morphology, illumination, and pose) +
as those constituting the example data set. Unfortunately, +
AAMs are less outstanding when illumination, pose, and +
face type changes. We suggest in this paper a robust Active +
Appearance Model allowing a real-time implementation. In +
the next section, we will survey the different techniques, +
which aim to increase the AAM robustness. We will see +
that none of them address at the same time the three types +
of robustness, we are interested in pose, illumination, and +
identity. It must be pointed out that we do not consider the +
robustness against occlusion as [4] does, for example, when +
a person moves his hand around the face. +
After a quick introduction of the Active Appearance +
Models and their limitations (Section 3), we will present our +
two main contributions in Section 4.1 in order to improve +
AAM robustness in illumination, pose, and identity. Exper- +
iments will be conducted and discussed in Section 5 before +
drawing a conclusion, suggesting new research directions in +
the last section. +
2. State of the Art +
We propose to classify the methods which lead to an increase +
of the AAM robustness as follows. The specific types of +
dedicated robustness are in italic. +
(i) Preprocess +
(1) Invariant features (illumination) +
(2) Canonical representation (illumination) +
(ii) Parameter space extension +
(1) Light modeling (illumination) +
(2) 3D modeling (pose) +
7897c8a9361b427f7b07249d21eb9315db189496
78f438ed17f08bfe71dfb205ac447ce0561250c6
78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c
781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7edInt J Comput Vis +
DOI 10.1007/s11263-017-1023-9 +
Tubelets: Unsupervised Action Proposals from Spatiotemporal +
Super-Voxels +
Cees G. M. Snoek1 +
Received: 25 June 2016 / Accepted: 18 May 2017 +
© The Author(s) 2017. This article is an open access publication +
78df7d3fdd5c32f037fb5cc2a7c104ac1743d74eTEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION +
Temporal Pyramid Pooling Based Convolutional +
Neural Network for Action Recognition +
78fdf2b98cf6380623b0e20b0005a452e736181e
788a7b59ea72e23ef4f86dc9abb4450efefeca41
8b7191a2b8ab3ba97423b979da6ffc39cb53f46bSearch Pruning in Video Surveillance Systems: Efficiency-Reliability Tradeoff +
EURECOM +
Sophia Antipolis, France +
8b8728edc536020bc4871dc66b26a191f6658f7c
8b744786137cf6be766778344d9f13abf4ec0683978-1-4799-9988-0/16/$31.00 ©2016 IEEE +
2697 +
ICASSP 2016 +
8bf647fed40bdc9e35560021636dfb892a46720eLearning to Hash-tag Videos with Tag2Vec +
CVIT, KCIS, IIIT Hyderabad, India +
P J Narayanan +
http://cvit.iiit.ac.in/research/projects/tag2vec +
Figure 1. Learning a direct mapping from videos to hash-tags : sample frames from short video clips with user-given hash-tags +
(left); a sample frame from a query video and hash-tags suggested by our system for this query (right). +
8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0Methoden +
at 11/2013 +
(cid:2)(cid:2)(cid:2) +
Multimodale Interaktion +
auf einer sozialen Roboterplattform +
Multimodal Interaction on a Social Robotic Platform +
Zusammenfassung Dieser Beitrag beschreibt die multimo- +
dalen Interaktionsmöglichkeiten mit der Forschungsroboter- +
plattform ELIAS. Zunächst wird ein Überblick über die Ro- +
boterplattform sowie die entwickelten Verarbeitungskompo- +
nenten gegeben, die Einteilung dieser Komponenten erfolgt +
nach dem Konzept von wahrnehmenden und agierenden Mo- +
dalitäten. Anschließend wird das Zusammenspiel der Kom- +
ponenten in einem multimodalen Spieleszenario näher be- +
trachtet. (cid:2)(cid:2)(cid:2) Summary +
This paper presents the mul- +
timodal +
interaction capabilities of the robotic research plat- +
form ELIAS. An overview of the robotic platform as well +
as the developed processing components is presented, the +
classification of the components follows the concept of sen- +
sing and acting modalities. Finally, +
the interplay between +
those components within a multimodal gaming scenario is +
described. +
Schlagwörter Mensch-Roboter-Interaktion, Multimodalität, Gesten, Blick (cid:2)(cid:2)(cid:2) Keywords Human-robot interaction, +
multimodal, gestures, gaze +
1 Einleitung +
Eine intuitive und natürliche Bedienbarkeit der zuneh- +
mend komplexeren Technik wird für den Menschen +
immer wichtiger, da im heutigen Alltag eine Vielzahl an +
technischen Geräten mit wachsendem Funktionsumfang +
anzutreffen ist. Unterschiedliche Aktivitäten in der For- +
schungsgemeinschaft haben sich schon seit längerer Zeit +
mit verbalen sowie nonverbalen Kommunikationsformen +
(bspw. Emotions- und Gestenerkennung) in der Mensch- +
Maschine-Interaktion beschäftigt. Gerade in der jüngeren +
Zeit trugen auf diesem Forschungsfeld unterschiedliche +
Innovationen (bspw. Touchscreen, Gestensteuerung im +
Fernseher) dazu bei, dass intuitive und natürliche Bedien- +
konzepte mehr und mehr im Alltag Verwendung finden. +
Auch Möglichkeiten zur Sprach- und Gestensteuerung +
von Konsolen und Mobiltelefonen finden heute vermehr- +
ten Einsatz in der Gerätebedienung. Diese natürlicheren +
und multimodalen Benutzerschnittstellen sind dem Nut- +
zer schnell zugänglich und erlauben eine intuitivere +
Interaktion mit komplexen technischen Geräten. +
Auch für Robotersysteme bietet sich eine multimodale +
Interaktion an, um die Benutzung und den Zugang zu +
den Funktionalitäten zu vereinfachen. Der Mensch soll +
in seiner Kommunikation idealerweise vollkommene Ent- +
scheidungsfreiheit bei der Wahl der Modalitäten haben, +
um sein gewünschtes Ziel zu erreichen. Dafür werden +
in diesem Beitrag die wahrnehmenden und agieren- +
den Modalitäten einer, rein auf Kommunikationsaspekte +
reduzierten, Forschungsroboterplattform beispielhaft in +
einer Spieleanwendung untersucht. +
1.1 Struktur des Beitrags +
In diesem Beitrag wird zunächst ein kurzer Über- +
blick über die multimodale Interaktion im Allgemeinen +
gegeben, hierbei erfolgt eine Betrachtung nach wahr- +
nehmenden und agierenden Modalitäten. Im nächsten +
Abschnitt werden Arbeiten vorgestellt, die sich auch mit +
multimodalen Robotersystemen beschäftigen. Im darauf +
folgenden Abschnitt wird die Roboterplattform ELIAS +
mit den wahrnehmenden, verarbeitenden und agierenden +
at – Automatisierungstechnik 61 (2013) 11 / DOI 10.1515/auto.2013.1062 © Oldenbourg Wissenschaftsverlag +
- 10.1515/auto.2013.1062 +
Downloaded from De Gruyter Online at 09/27/2016 10:08:34PM +
via Technische Universität München +
737 +
8b1db0894a23c4d6535b5adf28692f795559be90Biometric and Surveillance Technology for Human and Activity Identification X, edited by Ioannis Kakadiaris, +
Walter J. Scheirer, Laurence G. Hassebrook, Proc. of SPIE Vol. 8712, 87120Q · © 2013 SPIE +
CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2018974 +
Proc. of SPIE Vol. 8712 87120Q-1 +
134db6ca13f808a848321d3998e4fe4cdc52fbc2IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006 +
433 +
Dynamics of Facial Expression: Recognition of +
Facial Actions and Their Temporal Segments +
From Face Profile Image Sequences +
133dd0f23e52c4e7bf254e8849ac6f8b17fcd22dThis article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +
Active Clustering with Model-Based +
Uncertainty Reduction +
1369e9f174760ea592a94177dbcab9ed29be1649Geometrical Facial Modeling for Emotion Recognition +
133900a0e7450979c9491951a5f1c2a403a180f0JOURNAL OF LATEX CLASS FILES +
Social Grouping for Multi-target Tracking and +
Head Pose Estimation in Video +
13141284f1a7e1fe255f5c2b22c09e32f0a4d465Object Tracking by +
Oversampling Local Features +
133da0d8c7719a219537f4a11c915bf74c320da7International Journal of Computer Applications (0975 – 8887) +
Volume 123 – No.4, August 2015 +
A Novel Method for 3D Image Segmentation with Fusion +
of Two Images using Color K-means Algorithm +
Dept. of CSE +
ITM Universe +
Gwalior +
Dept. of CSE +
ITM Universe +
Gwalior +
two +
133f01aec1534604d184d56de866a4bd531dac87Effective Unconstrained Face Recognition by +
Combining Multiple Descriptors and Learned +
Background Statistics +
13841d54c55bd74964d877b4b517fa94650d9b65Generalised Ambient Reflection Models for Lambertian and +
Phong Surfaces +
Author +
Zhang, Paul, Gao, Yongsheng +
Published +
2009 +
Conference Title +
Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009) +
DOI +
https://doi.org/10.1109/ICIP.2009.5413812 +
Copyright Statement +
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/ +
republish this material for advertising or promotional purposes or for creating new collective +
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +
this work in other works must be obtained from the IEEE. +
Downloaded from +
http://hdl.handle.net/10072/30001 +
Griffith Research Online +
https://research-repository.griffith.edu.au +
131e395c94999c55c53afead65d81be61cd349a4
1384a83e557b96883a6bffdb8433517ec52d0bea
13fd0a4d06f30a665fc0f6938cea6572f3b496f7
13afc4f8d08f766479577db2083f9632544c7ea6Multiple Kernel Learning for +
Emotion Recognition in the Wild +
Machine Perception Laboratory +
UCSD +
EmotiW Challenge, ICMI, 2013 +
1 +
13d9da779138af990d761ef84556e3e5c1e0eb94Int J Comput Vis (2008) 77: 3–24 +
DOI 10.1007/s11263-007-0093-5 +
Learning to Locate Informative Features for Visual Identification +
Received: 18 August 2005 / Accepted: 11 September 2007 / Published online: 9 November 2007 +
© Springer Science+Business Media, LLC 2007 +
7f533bd8f32525e2934a66a5b57d9143d7a89ee1Audio-Visual Identity Grounding for Enabling Cross Media Search +
Paper ID 22 +
7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5Int J Comput Vis (2016) 119:60–75 +
DOI 10.1007/s11263-015-0839-4 +
Sparse Output Coding for Scalable Visual Recognition +
Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015 +
© Springer Science+Business Media New York 2015 +
7f4bc8883c3b9872408cc391bcd294017848d0cf +
+
Computer +
Sciences +
Department +
The Multimodal Focused Attribute Model: A Nonparametric +
Bayesian Approach to Simultaneous Object Classification and +
Attribute Discovery +
Technical Report #1697 +
January 2012 +
+
7f6061c83dc36633911e4d726a497cdc1f31e58aYouTube-8M: A Large-Scale Video Classification +
Benchmark +
Paul Natsev +
Google Research +
7f36dd9ead29649ed389306790faf3b390dc0aa2MOVEMENT DIFFERENCES BETWEEN DELIBERATE +
AND SPONTANEOUS FACIAL EXPRESSIONS: +
ZYGOMATICUS MAJOR ACTION IN SMILING +
7f6cd03e3b7b63fca7170e317b3bb072ec9889e0A Face Recognition Signature Combining Patch-based +
Features with Soft Facial Attributes +
L. Zhang, P. Dou, I.A. Kakadiaris +
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204 +
7f3a73babe733520112c0199ff8d26ddfc7038a0
7f205b9fca7e66ac80758c4d6caabe148deb8581Page 1 of 47 +
Computing Surveys +
A Survey on Mobile Social Signal Processing +
Understanding human behaviour in an automatic but non-intrusive manner is an important area for various applications. This requires the +
collaboration of information technology with human sciences to transfer existing knowledge of human behaviour into self-acting tools. These +
tools will reduce human error that is introduced by current obtrusive methods such as questionnaires. To achieve unobtrusiveness, we focus on +
exploiting the pervasive and ubiquitous character of mobile devices. +
In this article, a survey of existing techniques for extracting social behaviour through mobile devices is provided. Initially we expose the +
terminology used in the area and introduce a concrete architecture for social signal processing applications on mobile phones, constituted by +
sensing, social interaction detection, behavioural cues extraction, social signal inference and social behaviour understanding. Furthermore, we +
present state-of-the-art techniques applied to each stage of the process. Finally, potential applications are shown while arguing about the main +
challenges of the area. +
Categories and Subject Descriptors: General and reference [Document Types]: Surveys and Overviews; Human-centered computing [Collab- +
orative and social computing, Ubiquitous and mobile computing] +
General Terms: Design, Theory, Human Factors, Performance +
Additional Key Words and Phrases: Social Signal Processing, mobile phones, social behaviour +
ACM Reference Format: +
Processing. ACM V, N, Article A (January YYYY), 35 pages. +
DOI:http://dx.doi.org/10.1145/0000000.0000000 +
1. INTRODUCTION +
Human behaviour understanding has received a great deal of interest since the beginning of the previous century. +
People initially conducted research on the way animals behave when they are surrounded by creatures of the same +
species. Acquiring basic underlying knowledge of animal relations led to extending this information to humans +
in order to understand social behaviour, social relations etc. Initial experiments were conducted by empirically +
observing people and retrieving feedback from them. These methods gave rise to well-established psychological +
approaches for understanding human behaviour, such as surveys, questionnaires, camera recordings and human +
observers. Nevertheless, these methods introduce several limitations including various sources of error. Complet- +
ing surveys and questionnaires induces partiality, unconcern etc. [Groves 2004], human error [Reason 1990], and +
additional restrictions in scalability of the experiments. Accumulating these research problems leads to a common +
challenge, the lack of automation in an unobtrusive manner. +
An area that has focussed on detecting social behaviour automatically and has received a great amount of at- +
tention is Social Signal Processing (SSP). The main target of the field is to model, analyse and synthesise human +
behaviour with limited user intervention. To achieve these targets, researchers presented three key terms which +
7a9ef21a7f59a47ce53b1dff2dd49a8289bb5098
7af38f6dcfbe1cd89f2307776bcaa09c54c30a8beaig i C e Vii ad Beyd: +
Devee +
h . Weg +
Deae f C e Sciece +
ichiga Sae Uiveiy +
Ea aig  48824 +
Abac +
Thi chae id ce wha i caed he deveea aach  c e vii i +
aic a ad ai(cid:12)cia ieigece i geea.  dic e he c e baic aadig f de +
veig a ye ad i f daea iiai. The deveea aach i ivaed +
by h a cgiive devee f ifacy  ad hd. A deveea eaig ag +
ih i deeied befe he \bih" f he ye. Afe he \bih" i eabe he ye +
 ea ew ak wih  a eed f egaig. The aj ga f he deveea +
aach i  eaize a ai f geea  e eaig ha eabe achie  ef +
deveea eaig ve a g eid. S ch eaig i cd ced i a de iia  he +
way aia ad h a ea. The achie   ea diecy f ci   ey i +
  ea whie ieacig wih he evie ic dig h a eache.  hi eaig +
de deveig ieige ga f vai  ak i eaized h gh ea ie ieac +
7a81967598c2c0b3b3771c1af943efb1defd4482Do We Need More Training Data? +
7ad77b6e727795a12fdacd1f328f4f904471233fSupervised Local Descriptor Learning +
for Human Action Recognition +
7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b
7aa4c16a8e1481629f16167dea313fe9256abb42978-1-5090-4117-6/17/$31.00 ©2017 IEEE +
2981 +
ICASSP 2017 +
7a85b3ab0efb6b6fcb034ce13145156ee9d10598
7ab930146f4b5946ec59459f8473c700bcc89233
7ad7897740e701eae455457ea74ac10f8b307bedRandom Subspace Two-dimensional LDA for Face Recognition* +
7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697Attend and Rectify: a Gated Attention +
Mechanism for Fine-Grained Recovery +
†Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB), +
Campus UAB, 08193 Bellaterra, Catalonia Spain +
‡Visual Tagging Services, Parc de Recerca, Campus UAB +
1451e7b11e66c86104f9391b80d9fb422fb11c01IET Signal Processing +
Research Article +
Image privacy protection with secure JPEG +
transmorphing +
ISSN 1751-9675 +
Received on 30th December 2016 +
Revised 13th July 2017 +
Accepted on 11th August 2017 +
doi: 10.1049/iet-spr.2016.0756 +
www.ietdl.org +
1Multimedia Signal Processing Group, Electrical Engineering Department, EPFL, Station 11, Lausanne, Switzerland +
14761b89152aa1fc280a33ea4d77b723df4e3864
14fa27234fa2112014eda23da16af606db7f3637
1459d4d16088379c3748322ab0835f50300d9a38Cross-Domain Visual Matching via Generalized +
Similarity Measure and Feature Learning +
14e949f5754f9e5160e8bfa3f1364dd92c2bb8d6
1450296fb936d666f2f11454cc8f0108e2306741Learning to Discover Cross-Domain Relations +
with Generative Adversarial Networks +
14fdce01c958043140e3af0a7f274517b235adf3
141eab5f7e164e4ef40dd7bc19df9c31bd200c5e
14e759cb019aaf812d6ac049fde54f40c4ed1468Subspace Methods +
Synonyms +
{ Multiple similarity method +
Related Concepts +
{ Principal component analysis (PCA) +
{ Subspace analysis +
{ Dimensionality reduction +
De(cid:12)nition +
Subspace analysis in computer vision is a generic name to describe a general +
framework for comparison and classification of subspaces. A typical approach in +
subspace analysis is the subspace method (SM) that classify an input pattern +
vector into several classes based on the minimum distance or angle between the +
input pattern vector and each class subspace, where a class subspace corresponds +
to the distribution of pattern vectors of the class in high dimensional vector +
space. +
Background +
Comparison and classification of subspaces has been one of the central prob- +
lems in computer vision, where an image set of an object to be classified is +
compactly represented by a subspace in high dimensional vector space. +
The subspace method is one of the most effective classification method in +
subspace analysis, which was developed by two Japanese researchers, Watanabe +
and Iijima around 1970, independently [1, 2]. Watanabe and Iijima named their +
methods the CLAFIC [3] and the multiple similarity method [4], respectively. +
The concept of the subspace method is derived from the observation that pat- +
terns belonging to a class forms a compact cluster in high dimensional vector +
space, where, for example, a w×h pixels image pattern is usually represented as a +
vector in w×h-dimensional vector space. The compact cluster can be represented +
by a subspace, which is generated by using Karhunen-Lo`eve (KL) expansion, also +
known as the principal component analysis (PCA). Note that a subspace is gen- +
erated for each class, unlike the Eigenface Method [5] in which only one subspace +
(called eigenspace) is generated. +
The SM has been known as one of the most useful methods in pattern recog- +
nition field, since its algorithm is very simple and it can handle classification +
of multiple classes. However, its classification performance was not sufficient for +
many applications in practice, because class subspaces are generated indepen- +
dently of each other [1]. There is no reason to assume a priori that each class +
148eb413bede35487198ce7851997bf8721ea2d6People Search in Surveillance Videos +
Four Eyes Lab, UCSB +
IBM Research +
IBM Research +
IBM Research +
Four Eyes Lab, UCSB +
INTRODUCTION +
1. +
In traditional surveillance scenarios, users are required to +
watch video footage corresponding to extended periods of +
time in order to find events of interest. However, this pro- +
cess is resource-consuming, and suffers from high costs of +
employing security personnel. The field of intelligent vi- +
sual surveillance [2] seeks to address these issues by applying +
computer vision techniques to automatically detect specific +
events in long video streams. The events can then be pre- +
sented to the user or be indexed into a database to allow +
queries such as “show me the red cars that entered a given +
parking lot from 7pm to 9pm on Monday” or “show me the +
faces of people who left the city’s train station last week.” +
In this work, we are interested in analyzing people, by ex- +
tracting information that can be used to search for them in +
surveillance videos. Current research on this topic focuses +
on approaches based on face recognition, where the goal is +
to establish the identity of a person given an image of a +
face. However, face recognition is still a very challenging +
problem, especially in low resolution images with variations +
in pose and lighting, which is often the case in surveillance +
data. State-of-the-art face recognition systems [1] require +
a fair amount of resolution in order to produce reliable re- +
sults, but in many cases this level of detail is not available +
in surveillance applications. +
We approach the problem in an alternative way, by avoiding +
face recognition and proposing a framework for finding peo- +
ple based on parsing the human body and exploiting part +
attributes. Those include visual attributes such as facial hair +
type (beards, mustaches, absence of facial hair), type of eye- +
wear (sunglasses, eyeglasses, absence of glasses), hair type +
(baldness, hair, wearing a hat), and clothing color. While +
face recognition is still a difficult problem, accurate and ef- +
ficient face detectors1 based on learning approaches [6] are +
available. Those have been demonstrated to work well on +
challenging low-resolution images, with variations in pose +
and lighting. In our method, we employ this technology to +
design detectors for facial attributes from large sets of train- +
ing data. +
1The face detection problem consists of localizing faces in +
images, while face recognition aims to establish the identity +
of a person given an image of a face. Face detection is a +
challenging problem, but it is arguably not as complex as +
face recognition. +
Our technique falls into the category of short term recogni- +
tion methods, taking advantage of features present in brief +
intervals in time, such as clothing color, hairstyle, and makeup, +
which are generally considered an annoyance in face recogni- +
tion methods. There are several applications that naturally +
fit within a short term recognition framework. An example +
is in criminal investigation, when the police are interested in +
locating a suspect. In those cases, eyewitnesses typically fill +
out a suspect description form, where they indicate personal +
traits of the suspect as seen at the moment when the crime +
was committed. Those include facial hair type, hair color, +
clothing type, etc. Based on that description, the police +
manually scan the entire video archive looking for a person +
with similar characteristics. This process is tedious and time +
consuming, and could be drastically accelerated by the use +
of our technique. Another application is on finding missing +
people. Parents looking for their children in an amusement +
park could provide a description including clothing and eye- +
wear type, and videos from multiple cameras in the park +
would then be automatically searched. +
1473a233465ea664031d985e10e21de927314c94
140c95e53c619eac594d70f6369f518adfea12efPushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A +
The development of accurate and scalable unconstrained face recogni- +
tion algorithms is a long term goal of the biometrics and computer vision +
communities. The term “unconstrained” implies a system can perform suc- +
cessful identifications regardless of face image capture presentation (illumi- +
nation, sensor, compression) or subject conditions (facial pose, expression, +
occlusion). While automatic, as well as human, face identification in certain +
scenarios may forever be elusive, such as when a face is heavily occluded or +
captured at very low resolutions, there still remains a large gap between au- +
tomated systems and human performance on familiar faces. In order to close +
this gap, large annotated sets of imagery are needed that are representative +
of the end goals of unconstrained face recognition. This will help continue +
to push the frontiers of unconstrained face detection and recognition, which +
are the primary goals of the IARPA Janus program. +
The current state of the art in unconstrained face recognition is high +
accuracy (roughly 99% true accept rate at a false accept rate of 1.0%) on +
faces that can be detected with a commodity face detectors, but unknown +
accuracy on other faces. Despite the fact that face detection and recognition +
research generally has advanced somewhat independently, the frontal face +
detector filtering approach used for key in the wild face recognition datasets +
means that progress in face recognition is currently hampered by progress +
in face detection. Hence, a major need exists for a face recognition dataset +
that captures as wide of a range of variations as possible to offer challenges +
to both face detection as well as face recognition. +
In this paper we introduce the IARPA Janus Benchmark A (IJB-A), +
which is publicly available for download. The IJB-A contains images and +
videos from 500 subjects captured from “in the wild” environment. All la- +
belled subjects have been manually localized with bounding boxes for face +
detection, as well as fiducial landmarks for the center of the two eyes (if +
visible) and base of the nose. Manual bounding box annotations for all non- +
labelled subjects (i.e., other persons captured in the imagery) have been cap- +
tured as well. All imagery is Creative Commons licensed, which is a license +
that allows open re-distribution provided proper attribution is made to the +
data creator. The subjects have been intentionally sampled to contain wider +
geographic distribution than previous datasets. Recognition and detection +
protocols are provided which are motivated by operational deployments of +
face recognition systems. An example of images and video from IJB-A can +
be found in Figure 3. +
The IJB-A dataset has the following claimed contributions: (i) The most +
unconstrained database released to date; (ii) The first joint face detection and +
face recognition benchmark dataset collected in the wild; (iii) Meta-data +
providing subject gender and skin color, and occlusion (eyes, mouth/nose, +
and forehead), facial hear, and coarse pose information for each imagery +
instance; (iv) Widest geographic distribution of any public face dataset; (v) +
The first in the wild dataset to contain a mixture of images and videos; (vi) +
Clear authority for re-distribution; (vii) Protocols for identification (search) +
and verification (compare); (viii) Baseline accuracies from off the shelf de- +
tectors and recognition algorithms; and (ix) Protocols for both template and +
model-based face recognition. +
Every subject in the dataset contains at least five images and one video. +
IJB-A consists of a total of 5,712 images and 2,085 videos, with an average +
of 11.4 images and 4.2 videos per subject. +
142dcfc3c62b1f30a13f1f49c608be3e62033042Adaptive Region Pooling for Object Detection +
UC Merced +
Qualcomm Research, San Diego +
UC Merced +
14e428f2ff3dc5cf96e5742eedb156c1ea12ece1Facial Expression Recognition Using Neural Network Trained with Zernike +
Moments +
Dept. Génie-Electrique +
Université M.C.M Souk-Ahras +
Souk-Ahras, Algeria +
14a5feadd4209d21fa308e7a942967ea7c13b7b6978-1-4673-0046-9/12/$26.00 ©2012 IEEE +
1025 +
ICASSP 2012 +
14fee990a372bcc4cb6dc024ab7fc4ecf09dba2bModeling Spatio-Temporal Human Track Structure for Action +
Localization +
14ee4948be56caeb30aa3b94968ce663e7496ce4Jang, Y; Gunes, H; Patras, I +
© Copyright 2018 IEEE +
For additional information about this publication click this link. +
http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405 +
Information about this research object was correct at the time of download; we occasionally +
make corrections to records, please therefore check the published record when citing. For +
8ee62f7d59aa949b4a943453824e03f4ce19e500Robust Head-Pose Estimation Based on +
Partially-Latent Mixture of Linear Regression +
∗INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +
†INRIA Rennes Bretagne Atlantique, Rennes, France +
8e33183a0ed7141aa4fa9d87ef3be334727c76c0– COS429 Written Report, Fall 2017 – +
Robustness of Face Recognition to Image Manipulations +
1. Motivation +
We can often recognize pictures of people we know even if the image has low resolution or obscures +
part of the face, if the camera angle resulted in a distorted image of the subject’s face, or if the +
subject has aged or put on makeup since we last saw them. Although this is a simple recognition task +
for a human, when we think about how we accomplish this task, it seems non-trivial for computer +
algorithms to recognize faces despite visual changes. +
Computer facial recognition is relied upon for many application where accuracy is important. +
Facial recognition systems have applications ranging from airport security and suspect identification +
to personal device authentication and face tagging [7]. In these real-world applications, the system +
must continue to recognize images of a person who looks slightly different due to the passage of +
time, a change in environment, or a difference in clothing. +
Therefore, we are interested in investigating face recognition algorithms and their robustness to +
image changes resulting from realistically plausible manipulations. Furthermore, we are curious +
about whether the impact of image manipulations on computer algorithms’ face recognition ability +
mirrors related insights from neuroscience about humans’ face recognition abilities. +
2. Goal +
In this project, we implement both face recognition algorithms and image manipulations. We then +
analyze the impact of each image manipulation on the recognition accuracy each algorithm, and +
how these influences depend on the accuracy of each algorithm on non-manipulated images. +
3. Background and Related Work +
Researchers have developed a wide variety of face recognition algorithms, such as traditional +
statistical methods such as PCA, more opaque methods such as deep neural networks, and proprietary +
systems used by governments and corporations [1][13][14]. +
Similarly, others have developed image manipulations using principles from linear algebra, such +
as mimicking distortions from lens distortions, as well as using neural networks, such as a system +
for transforming images according to specified characteristics [12][16]. +
Furthermore, researchers in psychology have studied face recognition in humans. A study of +
“super-recognizers” (people with extraordinarily high powers of face recognition) and “developmen- +
tal prosopagnosics” (people with severely impaired face recognition abilities) found that inverting +
images of faces impaired recognition ability more for people with stronger face recognition abilities +
[11]. This could indicate that image manipulations tend to equalize face recognition abilities, and +
we investigate whether this is the case with the manipulations and face recognition algorithms we +
test. +
8e3d0b401dec8818cd0245c540c6bc032f169a1dMcGan: Mean and Covariance Feature Matching GAN +
8e94ed0d7606408a0833e69c3185d6dcbe22bbbe© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE +
must be obtained for all other uses, in any current or future media, including +
reprinting/republishing this material for advertising or promotional purposes, +
creating new collective works, for resale or redistribution to servers or lists, or +
reuse of any copyrighted component of this work in other works. +
Pre-print of article that will appear at WACV 2012. +
8e461978359b056d1b4770508e7a567dbed49776LOMo: Latent Ordinal Model for Facial Analysis in Videos +
Marian Bartlett1,∗,‡ +
1UCSD, USA +
2MPI for Informatics, Germany +
3IIT Kanpur, India +
8ea30ade85880b94b74b56a9bac013585cb4c34bFROM TURBO HIDDEN MARKOV MODELS TO TURBO STATE-SPACE MODELS +
Institut Eur´ecom +
Multimedia Communications Department +
BP 193, 06904 Sophia Antipolis Cedex, France +
8ed32c8fad924736ebc6d99c5c319312ba1fa80b
8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125in any current or +
future media, +
for all other uses, +
 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be +
obtained +
including +
reprinting/republishing this material for advertising or promotional purposes, creating +
new collective works, for resale or redistribution to servers or lists, or reuse of any +
copyrighted component of this work in other works. +
Pre-print of article that will appear at BTAS 2012.!! +
8e378ef01171b33c59c17ff5798f30293fe30686Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
der Technischen Universit¨at M¨unchen +
A System for Automatic Face Analysis +
Based on +
Statistical Shape and Texture Models +
Ronald M¨uller +
Vollst¨andiger Abdruck der von der Fakult¨at +
f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen +
zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs +
genehmigten Dissertation +
Vorsitzender: Prof. Dr. rer. nat. Bernhard Wolf +
Pr¨ufer der Dissertation: +
1. Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Prof. Dr.-Ing. habil. Alexander W. Koch +
Die Dissertation wurde am 28.02.2008 bei der Technischen Universit¨at M¨unchen +
eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
am 18.09.2008 angenommen. +
8ed051be31309a71b75e584bc812b71a0344a019Class-based feature matching across unrestricted +
transformations +
8e36100cb144685c26e46ad034c524b830b8b2f2Modeling Facial Geometry using Compositional VAEs +
1 ´Ecole Polytechnique F´ed´erale de Lausanne +
2Facebook Reality Labs, Pittsburgh +
8e0becfc5fe3ecdd2ac93fabe34634827b21ef2bInternational Journal of Computer Vision manuscript No. +
(will be inserted by the editor) +
Learning from Longitudinal Face Demonstration - +
Where Tractable Deep Modeling Meets Inverse Reinforcement Learning +
Savvides · Tien D. Bui +
Received: date / Accepted: date +
225fb9181545f8750061c7693661b62d715dc542
22043cbd2b70cb8195d8d0500460ddc00ddb1a62Separability-Oriented Subclass Discriminant +
Analysis +
22137ce9c01a8fdebf92ef35407a5a5d18730dde
22dada4a7ba85625824489375184ba1c3f7f0c8f
223ec77652c268b98c298327d42aacea8f3ce23fTR-CS-11-02 +
Acted Facial Expressions In The Wild +
Database +
September 2011 +
ANU Computer Science Technical Report Series +
227b18fab568472bf14f9665cedfb95ed33e5fceCompositional Dictionaries for Domain Adaptive +
Face Recognition +
227b1a09b942eaf130d1d84cdcabf98921780a22Yang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:51 +
https://doi.org/10.1186/s13634-018-0572-6 +
EURASIP Journal on Advances +
in Signal Processing +
R ES EAR CH +
Multi-feature shape regression for face +
alignment +
Open Access +
22dabd4f092e7f3bdaf352edd925ecc59821e168 Deakin Research Online +
This is the published version: +
An, Senjian, Liu, Wanquan and Venkatesh, Svetha 2008, Exploiting side information in +
locality preserving projection, in CVPR 2008 : Proceedings of the 26th IEEE Conference on +
Computer Vision and Pattern Recognition, IEEE, Washington, D. C., pp. 1-8. +
Available from Deakin Research Online: +
http://hdl.handle.net/10536/DRO/DU:30044576 +
+
Reproduced with the kind permissions of the copyright owner. +
Personal use of this material is permitted. However, permission to reprint/republish this +
material for advertising or promotional purposes or for creating new collective works for +
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +
in other works must be obtained from the IEEE. +
Copyright : 2008, IEEE +
22f656d0f8426c84a33a267977f511f127bfd7f3
2271d554787fdad561fafc6e9f742eea94d35518TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +
Multimodale Mensch-Roboter-Interaktion +
f¨ur Ambient Assisted Living +
Tobias F. Rehrl +
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +
Doktor-Ingenieurs (Dr.-Ing.) +
genehmigten Dissertation. +
Vorsitzende: +
Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +
2. Univ.-Prof. Dr.-Ing. Horst-Michael Groß +
Univ.-Prof. Dr.-Ing. Sandra Hirche +
(Technische Universit¨at Ilmenau) +
Die Dissertation wurde am 17. April 2013 bei der Technischen Universit¨at M¨unchen +
eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am +
8. Oktober 2013 angenommen. +
22ec256400e53cee35f999244fb9ba6ba11c1d06
22a7f1aebdb57eecd64be2a1f03aef25f9b0e9a7
22e189a813529a8f43ad76b318207d9a4b6de71aWhat will Happen Next? +
Forecasting Player Moves in Sports Videos +
UC Berkeley, STATS +
UC Berkeley +
UC Berkeley +
25d514d26ecbc147becf4117512523412e1f060bAnnotated Crowd Video Face Database +
IIIT-Delhi, India +
25c19d8c85462b3b0926820ee5a92fc55b81c35aNoname manuscript No. +
(will be inserted by the editor) +
Pose-Invariant Facial Expression Recognition +
Using Variable-Intensity Templates +
Received: date / Accepted: date +
258a8c6710a9b0c2dc3818333ec035730062b1a5Benelearn 2005 +
Annual Machine Learning Conference of +
Belgium and the Netherlands +
CTIT PROCEEDINGS OF THE FOURTEENTH +
ANNUAL MACHINE LEARNING CONFERENCE +
OF BELGIUM AND THE NETHERLANDS +
25695abfe51209798f3b68fb42cfad7a96356f1fAN INVESTIGATION INTO COMBINING +
BOTH FACIAL DETECTION AND +
LANDMARK LOCALISATION INTO A +
UNIFIED PROCEDURE USING GPU +
COMPUTING +
MSc by Research +
2016 +
25d3e122fec578a14226dc7c007fb1f05ddf97f7The First Facial Expression Recognition and Analysis Challenge +
2597b0dccdf3d89eaffd32e202570b1fbbedd1d6Towards predicting the likeability of fashion images +
25982e2bef817ebde7be5bb80b22a9864b979fb0
25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8Label Distribution Learning +
2559b15f8d4a57694a0a33bdc4ac95c479a3c79a570 +
Contextual Object Localization With Multiple +
Kernel Nearest Neighbor +
Gert Lanckriet, Member, IEEE +
2574860616d7ffa653eb002bbaca53686bc71cdd
25f1f195c0efd84c221b62d1256a8625cb4b450c1-4244-1017-7/07/$25.00 ©2007 IEEE +
1091 +
ICME 2007 +
25885e9292957feb89dcb4a30e77218ffe7b9868JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2016 +
Analyzing the Affect of a Group of People Using +
Multi-modal Framework +
259706f1fd85e2e900e757d2656ca289363e74aaImproving People Search Using Query Expansions +
How Friends Help To Find People +
LEAR - INRIA Rhˆone Alpes - Grenoble, France +
25728e08b0ee482ee6ced79c74d4735bb5478e29
258a2dad71cb47c71f408fa0611a4864532f5ebaDiscriminative Optimization +
of Local Features for Face Recognition +
+
H O S S E I N A Z I Z P O U R +
+
Master of Science Thesis +
Stockholm, Sweden 2011 +
+
25127c2d9f14d36f03d200a65de8446f6a0e3bd6Journal of Theoretical and Applied Information Technology +
20th May 2016. Vol.87. No.2 +
© 2005 - 2016 JATIT & LLS. All rights reserved. +
ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 +
EVALUATING THE PERFORMANCE OF DEEP SUPERVISED +
AUTO ENCODER IN SINGLE SAMPLE FACE RECOGNITION +
PROBLEM USING KULLBACK-LEIBLER DIVERGENCE +
SPARSITY REGULARIZER +
Faculty of Computer of Computer Science, Universitas Indonesia, Kampus UI Depok, Indonesia +
\ No newline at end of file diff --git a/scraper/reports/institutions_not_found.csv b/scraper/reports/institutions_not_found.csv new file mode 100644 index 00000000..0b36eb36 --- /dev/null +++ b/scraper/reports/institutions_not_found.csv @@ -0,0 +1,1773 @@ +"1E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2R" +"2 School of Computing, National University of Singapore" +"2015 Wiley Periodicals, Inc" +"2Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, Canada" +A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER +A Thesis submitted to McGill University in partial fulfillment of the requirements for the +A dissertation submitted to the Faculty of the University of Delaware in partial +A dissertation submitted to the University of Bristol in accordance with the requirements +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"ADSIP Research Centre, University of Central Lancashire" +ATR Human Information Processing Research Laboratories +ATR Human Information Processing Research Laboratory +ATR Interpreting Telecommunications Research Laboratories +"Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark" +"Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India" +"Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan" +"Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of" +Achariya college of Engineering Technology +Acharya Institute Of Technology +"Address correspondence to: Karen L. Schmidt, University of" +"Aditya College of Engineering, Surampalem, East Godavari" +"Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra Pradesh" +"Aditya institute of Technology and Management, Tekkalli-532 201, A.P" +"Adobe Systems, Inc., 345 Park Ave, San Jose, CA" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"Advanced Engineering, The Chinese University of Hong Kong" +"Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul" +"Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India" +AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of +Al-Khwarizmi Institute of Computer Science +Alan W Black (Carnegie Mellon University +Alex Waibel (Carnegie Mellon University +"Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest" +Allen Institute for Arti cial Intelligence (AI +"Allen Institute for Arti cial Intelligence (AI2), Seattle, WA" +"Amal Jyothi College of Engineering, Kanjirappally, India" +"Amazon, Inc" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of" +"Anjuman College of Engineering and Technology, Sadar, Nagpur, India" +"Annamacharya Institute of Technology and Sciences, Tirupati, India" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece" +AristotleUniversityofThessaloniki +"Arti cial Intelligence Institute, China" +"Arts Media and Engineering, Arizona State University" +"Arts, Commerce and Science College, Gangakhed, M.S, India" +"Arts, Science and Commerce College, Chopda" +"Asia University, Taichung, Taiwan" +"Asian Institute of Technology, Pathumthani, Thailand" +"Asian University, Taichung, Taiwan" +"Assam University, Silchar-788011 Assam University, Silchar" +"Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq" +"Assiut University, Assiut 71515, Egypt" +"Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany" +"Augsburg University, Germany" +"Australian Centre for Visual Technologies, The University of Adelaide, Australia (b" +Australian National University and NICTA +"Australian National University and NICTA, Australia" +"Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO" +"Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL" +"Australian National University, and NICTA" +"Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy" +Autonomous University of Barcelona +Azad University of Qazvin +"B. Eng., Zhejiang University" +B. S. Rochester Institute of Technology +"B. Tech., Indian Institute of Technology Jodhpur" +"B.A. Earlham College, Richmond Indiana" +"B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"B.Eng., Nankai University" +B.S. (Cornell University +"B.S. Abdur Rahman University, Chennai-48, India" +B.S. University of Indonesia +"B.S., Computer Engineering, Bo gazi ci University" +"B.S., E.E., Bo azi i University" +B.S./M.S. Brandeis University +B.S.Abdur Rahman University B.S.Abdur Rahman University +"B.Sc., University of Science and Technology of China" +"B.Tech (C.S.E), Bharath University, Chennai" +"BECS, Aalto University School of Science and Technology, Finland" +"BECS, Aalto University, Helsinki, Finland" +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria" +Baidu IDL and Tsinghua University +Baidu Research Institute of Deep Learning +"Baidu Research, USA 3John Hopkins University" +"Baingio Pinna, University of" +Bangladesh University of Engineering and Technology(BUET +Beckman Institute for Advanced Science and Technology +"Beckman Institute, University of Illinois at Urbana-Champaign, IL USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA" +"Beihang University 2Gri th University 3University of York, UK" +"Beijing Institute of Technology, Beijing 100081, PR China" +"Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China" +"Beijing University of Posts and Telecommunications, Beijing, China. 2School of" +Bharath Institute of Science and Technology +"Bharti Vidyapeeth Deemed University, Pune, India" +"Bilgi University, Dolapdere, Istanbul, TR" +"Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network" +"Bioinformatics Institute, A*STAR, Singapore" +Biometric Research Center +"Biometric Research Center, The Hong Kong Polytechnic University" +"Biometric and Image Processing Lab, University of Salerno, Italy" +"Birkbeck College, University of London" +Bo gazi ci University +"Bo gazi ci University, Turkey" +"Bo gazic i University, Istanbul, Turkey" +"Bo gazici University, Istanbul, TR" +"Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos" +Boston University / **Rutgers University / ***Gallaudet University +Boston University Computer Science Technical Report No +Boston University Theses and Dissertations +"Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA" +"Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA" +"Brown University, 2University of California, San Diego, 3California Institute of Technology" +"C.L. Teo, University of Maryland" +"CAS), Institute of Computing Technology, CAS, Beijing 100190, China" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"CISE, University of Florida, Gainesville, FL" +"CISUC, University of Coimbra" +"CMR Institute of Technology, Hyderabad, (India" +"CNRS , Institute of Automation of the Chinese Academy of Sciences" +COMSATS Institute of Information Technology Wah Cantt +"CRCV, University of Central Florida" +CUNY Graduate Center and City College +"CVAP, KTH (Royal Institute of Technology), Stockholm, SE" +"CVIP Lab, University of Louisville, Louisville, KY 40292, USA" +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"CVL, Link oping University, Link oping, Sweden" +CVSSP University of Surrey +"CVSSP, University of Surrey" +"CVSSP, University of Surrey, UK" +"Caarmel Engineering College, MG University, Kerala, India" +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +"California State University, Fullerton, USA" +"Cambridge University, Trumpington Street, Cambridge CB21PZ, UK" +Canadian Institute for Advanced Research +Carnegie Mellon University (CMU +"Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +"Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA" +"Carnegie Mellon University, Electrical and Computer Engineering" +Carnegie Melon University +"Catholic University of Rio de Janeiro, Brazil" +"Center for Arti cial Vision Research, Korea University" +"Center for Automation Research (CfAR), University of Maryland, College Park, MD" +"Center for Automation Research, UMIACS, University of Maryland, College Park" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA" +"Center for Automation Research, University of Maryland" +"Center for Automation Research, University of Maryland, College Park, MD" +"Center for Automation Research, University of Maryland, College Park, MD 20740, USA" +"Center for Automation Research, University of Maryland, College Park, MD 20742, USA" +"Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +"Center for Brain Science, Harvard University, Cambridge, MA 02138 USA" +"Center for Brain Science, Harvard University, Cambridge, MA, USA" +"Center for Brains, Minds and Machines, McGovern Institute, MIT" +"Center for Cognitive Neuroscience, Duke University, Durham, North Carolina" +"Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin" +"Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA" +"Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ" +"Center for Healthy Aging, University of" +"Center for Information Science, Peking University, Beijing 100871, China" +"Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT" +"Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A" +"Center for Machine Vision Research, University of Oulu, Finland" +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"Center for Machine Vision and Signal Analysis, University of Oulu, Finland" +"Center for Research in Computer Vision (CRCV), University of Central Florida (UCF" +"Center for Research in Computer Vision, University of Central Florida" +"Center for Research in Computer Vision, University of Central Florida, Orlando, FL" +"Center for Research in Computer Vision, University of Central Florida, Orlando, USA" +"Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA" +"Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen" +"Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA" +Central Mechanical Engineering Research Institute +"Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India" +"Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA" +"Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de" +"Centre for Intelligent Machines, McGill University, Montreal, Canada" +"Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia" +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +"Chalmers University of Technology, SAFER" +"Chandigarh Engg. College, Mohali, Punjab, India" +"Chandigarh University, Gharuan, Punjab, India" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +"Charotar University of Science and Technology, Changa, India" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +China University of Mining and Technol +"China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of" +"China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology" +"China-Singapore Institute of Digital Media, Singapore" +"Chonbuk National University, Jeonju 561-756, Korea" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of" +"Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany" +"Collage of Sciences, Baghdad University, Iraq" +"College Road East, Princeton, NJ" +College of Computer Science and Information Sciences +"College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China" +"College of Computer Science and Information Technology, Northeast Normal University, Changchun" +"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China" +College of Computer Science and Technology +"College of Computer Science and Technology, Chongqing" +"College of Computer Science and Technology, Zhejiang University, China" +"College of Computer Science, Chongqing University, Chongqing, 400030, China" +"College of Computer Science, Chongqing University, Chongqing, China" +"College of Computer Science, Sichuan University, Chengdu 610065, P.R. China" +"College of Computer Science, Zhejiang University" +"College of Computer Science, Zhejiang University, Hangzhou, China" +"College of Computer Science, Zhejiang University, Zhejiang, China" +"College of Computer and Information Engineering, Nanyang Institute of Technology" +"College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China" +"College of Computer and Information Science, Northeastern University, Boston, USA" +"College of Computer and Information Science, Northeastern University, MA, USA" +"College of Computer and Information Science, Southwest University, Chongqing 400715, China" +College of Computer and Information Sciences +"College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +"College of Computing, Georgia Institute of Technology" +"College of Computing, Georgia Institute of Technology, Atlanta, GA, USA" +"College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China" +"College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China" +"College of Electronics and Information, Northwestern Polytechnic University" +College of Engineering (Poly +College of Engineering and Mineral Resources +"College of Engineering, Mathematics and Physical Sciences" +"College of Engineering, Purdue University" +College of Image Arts and Sciences +College of Information Engineering +"College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University" +College of Information Science and Engineering +"College of Information Science and Engineering, Ocean University of China, Qingdao, China" +"College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan" +"College of Information Science and Engineering, Xinjiang University" +"College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi" +College of Information and Control Engineering in China University of Petroleum +"College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China" +College of Information and Electrical Engineering +"College of Information, Yunnan Normal University, Kunming, China" +"College of Medical Informatics, Chongqing Medical University, Chongqing, China" +"College of Medicine, Seoul National University" +"College of Science, Baghdad University, Baghdad, Iraq" +"College of Science, Menou a University, Menou a 32721, Egypt" +"College of Sciences, Northeastern University, Shenyang 110819, China" +"College of Software Engineering, Southeast University, Nanjing 210096, China" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"CollegePark, MD" +"ColumbiaUniversity, NY, USA" +Compi`egne University of Technology +"Computational Biomedicine Lab, University of Houston, TX, USA" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas" +"Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey" +"Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India" +"Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran" +"Computer Graphics Research Group, University of Freiburg, Freiburg, Germany" +"Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA" +"Computer Laboratory, University of Cambridge, Cambridge, UK" +"Computer Science Division, The Open University of Israel" +"Computer Science Division, The Open University of Israel, Israel" +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +"Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA" +"Computer Science and Engineering, Anna University, India" +"Computer Science and Engineering, Easwari Engineering College, India" +"Computer Science and Engineering, Michigan State University, East Lansing, USA" +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"Computer Science and Engineering, University of Washington" +"Computer Science and Engineering, University of Washington, Seattle, WA" +"Computer Science and Engineering, University of Washington, Seattle, WA, USA" +"Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada" +"Computer Science and Software Engineering, The University of Western Australia" +"Computer Science and Technology, Tsinghua University, Beijing, China" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +"Computer Science, Brown University, Providence, RI, USA" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Computer Science, Princeton University, Princeton, NJ, USA" +"Computer Vision Group, Friedrich Schiller University Jena" +"Computer Vision Group, Friedrich Schiller University of Jena, Germany" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +"Computer Vision Group, Xerox Research Center Europe, Meylan, France" +"Computer Vision Lab, Delft University of Technology" +"Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden" +"Computer Vision Laboratory, Link oping University, Sweden" +"Computer Vision Laboratory, The University of Nottingham" +"Computer Vision Laboratory, University of Nottingham, Nottingham, UK" +Computer Vision Laboratory. University of Nottingham +"Computer Vision Research Group, COMSATS Institute of Information" +Computer Vision and Robotics Research Laboratory +"Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany" +"Computer and Systems Engineering, Rensselaer Polytechnic Institute" +Computer and Vision Research Center +"Computer vision and Remote Sensing, Berlin university of Technology" +"Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada" +Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university +"Cooperative Medianet Innovation Center, Shanghai Jiaotong University" +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +"Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers" +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +Cornell University 2 Cornell Tech +Cornell University 2Eastman Kodak Company +"Cornell University, Ithaca, NY, U.S.A" +"Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein" +Courant Institute and Google Research +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +"Current Address: Research Institute of Child Development and Education, University of Amsterdam" +Curtin University of Technology +"D Research Center, Kwangwoon University and Springer" +D.J. Sanghvi College of Engineering +"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University" +DAP - University of Sassari +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +DICGIM - University of Palermo +"DIEI, University of Perugia, Italy" +DISI - University of Trento +"DISI, University of Trento, Italy" +"DISI, University of Trento, Trento, Italy" +"DPDCE, University IUAV" +"DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK" +"DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China" +DVMM Lab - Columbia University +"Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College" +Dalle Molle Institute for Arti cial Intelligence +"Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA" +Datta Meghe College of Engineering +"Dayananda Sagar College of Engg., India" +"Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain" +"Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK" +"Deparment of Computing, Goldsmiths, University of London, UK" +"Deparment of Computing, Imperial College London, UK" +Departm nt of Information Engin ering Th Chines University of Hong Kong +"Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India" +"Deva Ramanan, University of California at Irvine" +"Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA" +Dhanalakshmi Srinivasan College of Engineering +Dietrich College Honors Theses +Dietrich College of Humanities and Social Sciences +Digital Media Research Center +"Dipartimento di Sistemi e Informatica, University of Florence" +"Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India" +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"Division of Computer Science, University of California, Berkeley, CA, USA e-mail" +"Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +"Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea" +"Dnyanopasak College Parbhani, M.S, India" +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Doctor of Philosophy in Computing of Imperial College, February" +Doctor of Philosophy of University College London +"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania" +Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"ECE dept, University of Miami" +"ECE, National University of Singapore, Singapore" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +"EECS, Syracuse University, Syracuse, NY, USA" +"EEMCS, University of Twente" +"EEMCS, University of Twente Enschede, The Netherlands" +"EEMCS, University of Twente, Netherlands" +"EEMCS, University of Twente, The Netherlands" +"EIMT, Open University of" +"ESAT, Katholieke Universiteit Leuven, Leuven, Belgium" +"ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai" +"ESTeM, University of Canberra" +"Eastern Mediterranean University, Gazima usa, Northern Cyprus" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT +"Education, Yunnan Normal University, Kunming, China" +"Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan" +"Elect. Eng. Faculty, Tabriz University, Tabriz, Iran" +"Electrical Engineering Institute, EPFL" +"Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab" +"Electrical and Computer Engineering, National University of Singapore, Singapore" +"Electrical and Computer Engineering, The University of Memphis" +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada" +"Electrical, Computer, Rensselaer Polytechnic Institute" +"Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute" +Electronic Engineering and Computer Science Queen Mary University of London +"Electronic and Information Engineering, University of Bologna, Italy" +"Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India" +"Electronics Engineering, National Institute of Technical Teachers" +"Electronics and Communication Engineering, Chuo University" +"Electronics and Computer Science, University of Southampton, Southampton, Hampshire" +Electronics and Telecommunications Research Institute +"Engg, Priyadarshini College of" +Engineering Chaoyang University Nankai Institute of +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +"Engineering and Natural Science, Sabanci University, Istanbul, Turkey" +"Engineering, G.H.Raisoni College of Engineering" +"Engineering, National Formosa University" +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"Engineering, University of Dundee" +"Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom" +"Exploratory Computer Vision Group, IBM T. J. Watson Research Center" +"F.Ferraro, University of Rochester" +"FI-90014 University of Oulu, Finland" +"FX Palo Alto Laboratory, Inc., California, USA" +Facebook 4Texas AandM University 5IBM Research +"Facebook AI Research, 2Dartmouth College" +"Facial Image Processing and Analysis Group, Institute for Anthropomatics" +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"Faculty of Computer Science, Dalhousie University, Halifax, Canada" +"Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands" +"Faculty of Computer Science, University of A Coru na, Coru na, Spain" +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran" +"Faculty of Computers and Information, Cairo University, Cairo, Egypt" +"Faculty of EEMCS, Delft University of Technology, The Netherlands" +"Faculty of EEMCS, University of Twente, The Netherlands" +"Faculty of ETI, Gdansk University of Technology, Gdansk, Poland" +"Faculty of Electrical Engineering, Czech Technical University" +"Faculty of Electrical Engineering, Czech Technical University in Prague" +"Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The" +"Faculty of Electrical Engineering, University of Ljubljana" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +"Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran" +"Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran" +"Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland" +"Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia" +"Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey" +"Faculty of Engineering and Technology, Multimedia University (Melaka Campus" +"Faculty of Engineering, Ain Shams University, Cairo, Egypt" +"Faculty of Informatics, E otv os Lor and University, Budapest, Hungary" +"Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia" +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"Faculty of Science and Engineering, Waseda University, Tokyo, Japan" +"Faculty of Science and Technology, University of Macau" +"Faculty of Science, University of Amsterdam, The Netherlands" +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +"Federal Institute of Science and Technology, Mookkannoor" +"Federal University Technology Akure, PMB 704, Akure, Nigeria" +Federal University of Bahia (UFBA +Federal University of Campina Grande (UFCG +Federal University of Para ba +Federal University of Technology - Paran a +"Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions" +"Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai" +"Final Year, PanimalarInstitute of Technology" +"Florian Metze, Chair (Carnegie Mellon University" +Formerly: Texas AandM University +"Foundation University, Rawalpindi 46000, Pakistan" +"Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India" +Fraunhofer Institute for Integrated Circuits IIS +"Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB" +"Friedrich Schiller University, D-07740 Jena" +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +Funding was provided by the U.S. National Institutes of Mental +"G.H.Raisoni College of Engg. and Mgmt., Pune, India" +"GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology" +"GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA" +"GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS" +"GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin" +"GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco" +"Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +Gangnung-Wonju National University +"Gannan Normal University, Ganzhou 341000, China" +"Gatsby Computational Neuroscience Unit, University College London, London, UK" +"Gayathri.S, M.E., Vins Christian college of Engineering" +"Gdansk University of Technology, Faculty of Electronics, Telecommunication" +German Research Center for Arti cial Intelligence (DFKI +"German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany" +"Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia" +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyd" +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad" +"Goldsmiths, University of London, London, UK" +"Goldsmiths, University of London, UK" +"Gonda Brain Research Center, Bar Ilan University, Israel" +"Google, Inc" +"Governance, Keio University" +"Government College of Engineering, Aurangabad" +"Government College of Engineering, Aurangabad [Autonomous" +"Grad. School at Shenzhen, Tsinghua University" +"Grad. School of Information Science and Technology, The University of Tokyo, Japan" +"Graduate Institute of Electronics Engineering, National Taiwan University" +"Graduate Institute of Networking and Multimedia, National Taiwan University" +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China" +"Graduate School of Doshisha University, Kyoto, Japan" +"Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan" +"Graduate School of Informatics, Kyoto University" +"Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan" +"Graduate School of Information Science and Technology, The University of Tokyo" +"Graduate School of Information Science, Nagoya University, Japan" +"Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan" +"Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara" +"Graduate School of Science and Engineering, Saitama University" +"Graduate School of System Informatics, Kobe University" +"Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan" +"Graduate University of CAS, 100190, Beijing, China" +"Graduate University of Chinese Academy of Sciences(CAS), 100190, China" +"Graduate University of Chinese Academy of Sciences, Beijing 100049, China" +"Gri th University, QLD-4111, Brisbane, Australia" +"Grif th University, QLD, Australia" +"Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Gujarat Technological University, V.V.Nagar, India" +"H. He, Honkong Polytechnic University" +HELSINKI UNIVERSITY OF TECHNOLOGY +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"Harbin Institute of Technology, School of Computer Science and Technology" +"Hasan Kalyoncu University, Gaziantep, Turkey" +"Head and Neck Surgery, Seoul National University" +"Hector Research Institute of Education Sciences and Psychology, T ubingen" +"Heilongjiang University, College of Computer Science and Technology, China" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"Helen Wills Neuroscience Institute, University of" +"Helsinki Collegium for Advanced Studies, University of Helsinki, Finland" +"Helsinki Institute for Information Technology, Aalto University, Finland" +Helsinki University of Technology Laboratory of Computational Engineering Publications +"Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China" +"Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne" +High Institute of Medical Technologies +"Hindusthan College of Engineering and Technology, Coimbatore, India" +Ho Chi Minh City University of +Ho Chi Minh City University of Science +Honda Fundamental Research Labs +"Honda RandD Americas, Inc., Boston, MA, USA" +Honda Research Institute +Honda Research Institute USA +Hong Kong Applied Science and Technology Research Institute Company Limited +"Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China" +Howard Hughes Medical Institute (HHMI +"Hua Zhong University of Science and Technology, Wuhan, China" +Huazhong Agricultural University +"Human Centered Multimedia, Augsburg University, Germany" +"Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea" +"Human Development and Applied Psychology, University of Toronto, Ontario, Canada" +"Human Genome Center, Institute of Medical Science" +Human Interaction Research Lab +"Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand" +"Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany" +"Human Media Interaction, University of Twente, P.O. Box" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +"Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China" +IBM China Research Lab +"IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore" +IBM T. J. Watson Research Center +"IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY" +"IBM T. J. Watson Research Center, Yorktown Heights, NY, USA" +IBM T.J. Watson Research Center +"IBM Watson Research Center, Armonk, NY, USA" +ICMC University of S ao Paulo +ICSI / UC Berkeley 2Brigham Young University +"ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences" +"IES College of Technology, Bhopal" +"IHCC, RSCS, CECS, Australian National University" +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"IIIS, Tsinghua University" +"IIIS, Tsinghua University, Beijing, China" +"IIIT-Delhi, India, 2West Virginia University" +"IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands" +"IN3, Open University of" +"ISLA Lab, Informatics Institute" +"ISLA Lab, Informatics Institute, University of Amsterdam" +"ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +"ITCS, Tsinghua University" +"ITEE, The University of Queensland, Australia" +Idiap Research Institute and EPF Lausanne +"Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay" +"Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France" +"Iftm University, Moradabad-244001 U.P" +"Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany" +"Image Processing Center, Beihang University" +"Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia" +"Image and Video Research Laboratory, Queensland University of Technology" +"Imaging Science and Biomedical Engineering, The University of Manchester, UK" +Imperial College London / Twente University +"Imperial College London, On do" +"Imperial College of Science, Technology and Medicine" +"Imperial College, 180 Queens Gate" +"Imperial College, South Kensington Campus, London SW7 2AZ, UK" +In the Graduate College +"Indian Institute of Informaiton Technology, Allahabad, India" +"Indian Institute of Technology, Kharagpur" +"Indian Institute of Technology, Madras" +"Indian Institute of Technology, Madras, Chennai 600036, INDIA" +Indraprastha Institute of Information Technology +"Indraprastha Institute of Information Technology (Delhi, India" +"Indraprastha Institute of Information Technology, Delhi" +Informatics and Telematics Institute +"Informatics and Telematics Institute, Centre for Research and Technology Hellas" +"Informatics and Telematics Institute, Centre of Research and Technology - Hellas" +"Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland" +"Information Sciences Institute, USC, CA, USA" +"Information Systems Design, Doshisha University, Kyoto, Japan" +"Information Technology, Madras Institute of Technology, TamilNadu, India, email" +"Information and Media Processing Research Laboratories, NEC Corporation" +"Informatization Office, National University of Defense Technology, Changsha 410073, China" +"Innopolis University, Kazan, Russia" +"Inst. Neural Computation, University of California" +"Institiude of Computer Science and Technology, Peking University" +"Institute AIFB, Karlsruhe Institute of Technology, Germany" +"Institute Polythechnic of Leiria, Portugal" +Institute for Advanced Computer Studies +"Institute for Advanced Computer Studies, University of Maryland, College Park, MD" +Institute for Anthropomatics +"Institute for Arts, Science and Technology" +Institute for Computer Graphics and Vision +"Institute for Computer Graphics and Vision, Graz University of Technology" +"Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States" +"Institute for Electronics, Signal Processing and Communications" +"Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn" +Institute for Human-Machine Communication +"Institute for Human-Machine Communication, Technische Universit at M unchen" +"Institute for Human-Machine Communication, Technische Universit at M unchen, Germany" +"Institute for Infocomm Research (I2R), A*STAR, Singapore" +"Institute for Infocomm Research, A*STAR" +"Institute for Infocomm Research, A*STAR, Singapore" +"Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore" +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore" +"Institute for Infocomm Research, Singapore" +Institute for Information Systems Engineering +"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University" +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +"Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +Institute for Neural Computation +"Institute for Neural Computation, University of California, San Diego" +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +Institute for Numerical Mathematics +"Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan" +Institute for Robotics and Intelligent +Institute for Robotics and Intelligent Systems +"Institute for Robotics and Intelligent Systems, USC, CA, USA" +"Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA" +"Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran" +Institute for Vision Systems Engineering +"Institute for Vision and Graphics, University of Siegen, Germany" +Institute for studies in theoretical Physics and Mathematics(IPM +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +Institute of Arti cial Intelligence and Cognitive Engineering +"Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen" +Institute of Automatic Control Engineering (LSR +"Institute of Automation, Chinese Academy of" +"Institute of Automation, Chinese Academy of Sciences" +"Institute of Automation, Chinese Academy of Sciences (CASIA" +"Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China" +"Institute of Automation, Chinese Academy of Sciences, China" +"Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School" +"Institute of Biochemistry, University of Balochistan, Quetta" +"Institute of Child Health, University College London, UK" +"Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China" +"Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain" +"Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social" +"Institute of Computer Science and Technology, Chongqing University of Posts and" +"Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece" +"Institute of Computing Technology, CAS" +"Institute of Computing Technology, CAS, Beijing 100190, China" +"Institute of Computing Technology, CAS, Beijing, 100190, China" +"Institute of Computing Technology, Chinese Academy of Sciences" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"Institute of Data Science and Technology, Alibaba Group" +Institute of Deep Learning +"Institute of Deep Learning, Baidu Research" +"Institute of Digital Media, Peking University, Beijing 100871, China" +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria" +Institute of Electrical and Electronics Engineers +Institute of Electrical and Electronics Engineers (IEEE). DOI +"Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj" +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +Institute of Graduate Studies and Research +"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany" +"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China" +"Institute of Industrial Science, The University of Tokyo" +Institute of Informatics - ISLA +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +Institute of Interdisciplinary Studies in Identity Sciences (IISIS +"Institute of Media and Information Technology, Chiba University" +"Institute of Mental Health, Peking University, P.R. China" +"Institute of Neural Information Processing, Ulm University, Ulm, Germany" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +Institute of Psychology and Behavioral Sciences +"Institute of Psychology, Chinese" +"Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland" +"Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan" +"Institute of Software, Chinese Academy of Sciences, Beijing 100190, China" +"Institute of Systems Engineering, Southeast University, Nanjing, China" +"Institute of Systems and Robotics - University of Coimbra, Portugal" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +Institute of control science and engineering +"Institute ofInformation Science, Academia Sinica, Taipei, Taiwan" +"Integrated Research Center, Universit`a Campus Bio-Medico di Roma" +"Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA" +Intelligence Computing Research Center +"Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching" +"Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan" +"Intelligent Recognition and Image Processing Lab, Beihang University, Beijing" +"Intelligent Systems Group, University of Groningen, The Netherlands" +"Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht" +"Intelligent Systems Lab Amsterdam, University of Amsterdam" +"Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands" +"Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden" +"Intelligent User Interfaces Lab, Ko c University, Turkey" +Interactive and Digital Media Institute +"Interactive and Digital Media Institute, National University of Singapore, SG" +"Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea" +"Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea" +"International Islamic University, Islamabad 44000, Pakistan" +Islamic Azad University of AHAR +"Islamic Azad University, Gonabad, Iran" +"Islamic Azad University, Mashhad Branch, Mashhad, Iran" +"Islamic Azad University, Qazvin, Iran" +"Islamic Azad University, Shahrood, Iran" +"IslamicAzad University, Qazvin, Iran" +IstanbulTechnicalUniversity +"J. P. College of Engineering, India" +"JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China" +"Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +"Jawaharlal Technological University, Anantapur" +"Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA" +"Jilin University, Changchun 130012, China" +"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"Johns Hopkins University, Center for Speech and Language Processing" +K S Rangasamy College of Technology +K. N. Toosi University of +"K.S.R. College Of Engineering, Tiruchengode, India" +"K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +"KTH Royal Institute of Technology, CVAP Lab, Stockholm, Sweden" +"KTH, Royal Institute of Technology" +"KU Phonetics and Psycholinguistics Lab, University of Kansas" +"Katholieke Universiteit Leuven, ESAT/VISICS" +"Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of" +"Key Lab of Intelligent Information Processing, Institute of Computing Technology" +"Key Lab. of Machine Perception, School of EECS, Peking University" +"Key Lab. of Machine Perception, School of EECS, Peking University, China" +"Key Laboratory of Behavior Sciences, Institute of Psychology" +"Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing" +"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China" +"Key Laboratory of Machine Perception (MOE), School of EECS, Peking University" +"Key Laboratory of Machine Perception, Peking University, Beijing" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +"Key Laboratory of Transient Optics and Photonics, Xi an Institute of Optics and Precision Mechanics, Chi" +Khulna University of Engineering and Technology +"King Saud University, KSA" +"King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia" +"Kingston University London, University of Westminster London" +"Kitware, Inc" +"Kobe University, NICT and University of Siegen" +"Kodak Research Laboratories, Rochester, NY" +"Kodak Research Laboratories, Rochester, New York" +"Kong Polytechnic University, Kowloon, Hong Kong" +Korea Advanced Institute of Science and Technology (KAIST +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of" +"Korea University, Seoul 136-713, Korea" +"Korean Research Institute of Standards and Science (KRISS), Korea" +"Kulhare, Sourabh, ""Deep Learning for Semantic Video Understanding"" (2017). Thesis. Rochester Institute of Technology. Accessed" +"Kumamoto University, 2-39-1 Kurokami, Kumamoto shi" +"Kurukshetra University, Kurukshetra-136 119, Haryana, INDIA" +"Kwangwoon University, 447-1 Wolge-dong, Nowon-Gu, Seoul 139-701, Korea" +Kyung Hee University South of Korea +"Kyung Hee University, Yongin, Rep. of Korea" +"L3S Research Center, Hannover, Germany" +"LCSEE, West Virginia University" +"LIACS Media Lab, Leiden University, The Netherlands" +"LIP6, UPMC - Sorbonne University, Paris, France" +"LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France" +"LIUM Laboratory, Le Mans, France, 2 Idiap Research Institute, Martigny, Switzerland" +"Lab of Science and Technology, Southeast University, Nanjing 210096, China" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan" +"Laboratory, University of Houston, Houston, TX, USA" +Language Technologies Institute +"Language Technologies Institute, Carnegie Mellon University, PA, USA" +"Language Technologies Institute, School of Computer Science" +"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"Language and Brain Lab, Simon Fraser University, Canada" +"Learning Systems Group, California Institute of Technology" +"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India" +"Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands" +"Leiden, the Netherlands, 3 Delft University of Technology" +"Lille 1 University, France" +"Link oping University, Computer Vision Laboratory" +"Link oping University, SE-581 83 Link oping, Sweden" +Link to publication from Aalborg University +Link to publication in University of Groningen/UMCG research database +Link to publication record in Queen's University Belfast Research Portal +"Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health" +"Lomonosov Moscow State University, 2Video Analysis Technologies, LLC" +"Lotus Hill Institute for Computer Vision and Information Science, 436000, China" +"Lund University, Cognimatics AB" +M. Mark Everingham University of Leeds +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +"M.P.M. College, Bhopal, India" +"M.S. (University of California, Berkeley" +M.S. Brunel University of West London +M.S. University of Central Florida +"M.Tech Scholar, MES College of Engineering, Kuttippuram" +"M.Tech Student, Mount Zion College of Engineering, Pathanamthitta, Kerala, India" +"M.Tech Student, SSG Engineering College, Odisha, India" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +"M.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli" +"MATS University, MATS School of Engineering and Technology, Arang, Raipur, India" +"MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry" +"MES College of Engineering, Kuttippuram" +MICC - University of Florence +"MICC, University of Florence" +"MIRACL-FS, University of Sfax" +"MIRACL-FSEG, University of Sfax" +"MISC Laboratory, Constantine 2 University, Constantine, Algeria" +"MIT, McGovern Institute, Center for Brains, Minds and Machines" +MITSUBISHI ELECTRIC RESEARCH LABORATORIES +"MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff" +"MRC Laboratory For Molecular Cell Biology, University College London" +"MTech Student 1, 2, Disha Institute of" +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +"Machine Intelligence Lab (MIL), Cambridge University" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"Machine Perception Laboratory, University of California, San Diego" +"Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland" +"Machine Vision Lab, Faculty of Environment and Technology, University of the West of England" +"Mackenzie Presbyterian University, S o Paulo, S o Paulo, Brazil" +"Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh" +Mahatma Gandhi Institute of Technology +Malaviya National Institute of Technology +"Mancha, Spain, Imperial College, London, UK" +"Mangalore Institute of Engineering and Technology, Badaga" +Mans eld College +"Marine Institute, via Torre Bianca, 98164 Messina Italy" +Massachusettes Institute of Technology +Massachusetts Institute of Technology Rapporteur +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +Max Planck Institute f ur biologische Kybernetik +"Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 T bingen, Germany" +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +"Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada" +"Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular" +"Medical School, University of Ioannina, Ioannina, Greece" +"Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master" +"Metron, Inc" +"Michigan State University, 3115 Engineering Building" +"Michigan State University, East Lansing, MI 48824, U.S.A" +"Michigan State University, East Lansing, MI, U.S.A" +"Michigan State University, NEC Laboratories America" +"Microsystems Design Lab, The Pennsylvania State University" +"Middlesex University London, 4International Hellenic University" +Mihaylo College of Business and Economics +"Minia University, Egypt" +Ministry of Higher Education and Scientific Research / The University of Mustsnsiriyah/Baghdad IRAQ +Mitsubishi Electric Research Laboratory +Mitsubishi Electric Research Labs (MERL +"Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA" +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +"Montefiore Institute, University of Li ge, 4000 Li ge, Belgium" +"Montreal Institute for Learning Algorithms, Universit e de Montr eal" +Moradabad Institute of Technology +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +"Moscow State University, dept. of Computational Mathematics and Cybernetics" +"Most of the earlier studies mentioned above, including ours" +"Motorola China Research Center, Shanghai, 210000, P.R.China" +"Motorola, Inc" +"Much is known on how facial expressions of emotion are produced, including which individual muscles are most active in" +Multimedia Laboratory at The Chinese University of Hong Kong +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +"Multimedia University (MMU), Cyberjaya, Malaysia" +"Multimodal Computing and Interaction, Saarland University, Germany" +"Myongji University, Yongin, 449-728 South" +"NEC Laboratories America, Inc" +"NEC Laboratories America, Inc., Cupertino, CA" +"NICTA , Queensland Research Laboratory, QLD, Australia" +"NICTA, and Australian National University" +NSS College of Engineering +"Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan" +"Najafabad Branch, Islamic Azad University" +Nam k Kemal University +"Nam k Kemal University, Tekirda g, Turkey" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +Nanjing University of Science and +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"Nanjing, 210094, China, 3 School of Automation, Nanjing University of Posts and Telecommunications" +"Nanyang Technological University, 2University of California San Diego" +"Narayana Pharmacy College, Nellore, India" +"National Cheng Kung University, Tainan, Taiwan, R.O.C" +"National Cheng Kung University, Tainan, Taiwan, ROC" +"National Chung Cheng University, Chiayi, Taiwan, R.O.C" +"National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China" +National Institute of Advanced Industrial +National Institute of Advanced Industrial Science and Technology (AIST +"National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan" +National Institute of Development Administration +National Institute of Informatics +"National Institute of Informatics, Japan" +"National Institute of Informatics, Tokyo, Japan" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"National Institute of Technology, Toyota College, Japan" +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +"National Key Laboratory for Novel Software Technology, Nanjing University, China" +"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China" +"National Lab of Pattern Recognition, Institute of Automation" +"National Laboratory of Pattern Recognition (NLPR), Institute of Automation" +"National Laboratory of Pattern Recognition, Institute of Automation" +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, P. R. China" +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce" +"National Research University Higher School of Economics, Nizhny Novgorod, Russian" +"National Taichung University of Science and Technology, Taichung, Taiwan, R.O.C" +National Taiwan University of Science and +"National Tsing Hua University, Hsin-Chu, Taiwan" +"National Tsing-Hua University, Hsin-Chu, Taiwan" +"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan" +"National University of Singapore Research Institute, Suzhou, China" +"National University of Singapore, 2Shanghai Jiao Tong University" +"Netherlands, Utrecht University, Utrecht, The Netherlands" +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +"New York University Shanghai, 1555 Century Ave, Pudong" +No Institute Given +Nokia Bell Labs and University of Oxford +"Nokia Research Center, Tampere, Finland" +North Carolina AandT State University +"North China University of Technology, Beijing 100144 CHINA" +"North Dakota State University, Fargo, ND58105, USA" +Northeastern University 2Microsoft Research 3City University of New York +"Northumbria University, Newcastle Upon-Tyne NE21XE, UK" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +Nqtional Institute of Standards and Technology +"Numediart Institute, University of Mons" +Odaiyappa College of +Opus College of Engineering +"Other uses, including reproduction and distribution, or selling or" +"P A College of Engineering, Nadupadavu" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +"P. O. Box 4500 Fin-90014 University of Oulu, Finland" +"P.A. College of Engnineering, Mangalore" +"P.G. Student, SRV Engineering College, sembodai, India" +"P.S.R Engineering College, Sivakasi, Tamilnadu, India" +"PES Institute of Technology, Bangalore, Karnataka, India" +PES Modern College of Engg +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India" +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +"PSGR Krishnammal College for Women, Coimbatore" +Palo Alto Research Center (PARC +"PanimalarInstitute of Technology, Tamilnadu, India" +"Paran a Federal University, Curitiba, Brazil" +"Pathological anxiety is associated with disrupted cognitive processing, including working memory and" +"Pattern Recognition Group, University of Siegen" +"Pattern Recognition and Bio-informatics Laboratory, Delft University of Technology, THE NETHERLANDS" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology, The Netherlands" +"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India" +"Ph.D student Zaid Shhedi, Doctoral School of Automatic Control and Computers, University" +"Polytechnic Institute of NYU, NY, USA" +Polytechnic University of Bucharest +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"Pompeu Fabra University, Spain" +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +"Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India" +"Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India" +"Priyadarshini College of Engg, Nagpur, India" +"Program of Computational Science and Engineering, Bo gazi ci University" +"Proto Labs, Inc" +Psychiatry at the University of Pittsburgh +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +"Psychology and Psychiatry, University of Pittsburgh, USA" +"Psychology, American University" +"Psychology, University of Illinois, Beckman Institute, Urbana-Champaign, Illinois 61801, University of" +"Psychonomic Society, Inc" +"Psychopharmacology Unit, Educational and Health Psychology, University College" +"Public University of Navarra, Spain" +"Publication details, including instructions for authors and subscription" +"Publication details, including instructions for authors and subscription information" +Purdue Institute for Integrative Neuroscience +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +"QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia" +"QCIS, University of Technology Sydney, Sydney, Australia" +"QCIS, University of Technology, Sydney" +"Qihoo 360 AI Institute, Beijing, China" +"Quanti ed Employee unit, Finnish Institute of Occupational Health" +"Quantitative Employee unit, Finnish Institute of Occupational Health" +"Queen Mary College, London" +"Queen Mary, University of London" +"Queen Mary, University of London, E1 4NS, UK" +"Queen Mary, University of London, London E1 4NS, UK" +Queen s University Belfast +Queen's University Belfast - Research Portal +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +"R. Campellone, 3210 Tolman Hall, University of California, Berkeley" +"R.C.Patel Institute of Technology, Shirpur, Dist.Dhule.Maharashtra, India" +"RCC Institute of Information Technology, Kolkata, India" +"RGPV University, Indore" +"RIEB, Kobe University, Kobe, 657-8501, Japan" +"RTM Nagpur University, Campus Nagpur, (MS)-India" +"RTMNU Nagpur University, India" +"Rayalaseema University Kurnool, Andhra Pradesh" +"Recanati Genetic Institute, Rabin Medical Center and Schneider Children s Medical Center, Petah Tikva, Israel" +"Recognition, Institute of Automation" +"Recognition, Institute of Automation, Chinese Academy of Sciences" +"Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China" +"Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 USA" +Research Center E. Piaggio +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"Research Center CENTIA, Electronics and Mechatronics" +Research Center and Laboratoire +Research Center for Information +"Research Center for Information Technology Innovation, Academia Sinica" +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Research Center for Intelligent Security Technology, CIGIT" +"Research Center for Learning Science, Southeast University, China" +"Research Center for Learning Science, Southeast University, Nanjing 210096, China" +"Research Center for Learning Science, Southeast University, Nanjing, China" +"Research Center in Information Technologies, Universit e de Mons, Belgium" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea" +"Research Reports of CMP, Czech Technical University in Prague, No" +"Research Scholar (M.Tech, IT), Institute of Engineering and Technology" +"Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India" +"Research Scholar, PSGR Krishnammal College for Women, Coimbatore" +"Research School of Computer Science, The Australian National University, ACT 2601, Australia" +"Research School of Engineering, The Australian National University, ACT 2601, Australia" +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Robotics Institute, Carnegie Mellon University" +"Robotics Institute, Carnegie Mellon University 3University of Pittsburgh, USA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"Robotics Institute, Carnegie Mellon University, USA" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"Rochester Human-Computer Interaction (ROC HCI), University of Rochester, NY" +"Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA" +"Rochester Institute of Technology, Rochester, NY" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +Rowland Institute at Harvard +"Rowland Institute at Harvard, Cambridge, MA 02142, USA" +"Rutgers University, Computer and Information Sciences, 110 Frelinghuysen Road, Piscataway, NJ" +"Rutgers, The State University of New Jersey" +"Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ" +"Rutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +"S J B Institute of Technology, Bangalore, Karnataka, India" +"S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India" +SAMSI and Duke University +"SBK Women s University, Quetta, Balochistan" +"SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University" +"SRI International, Menlo Park California / *Brooklyn College, Brooklyn New York" +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"SRV Engineering College, sembodai, india" +"SSESA, Science College, Congress Nagar, Nagpur, (MS)-India" +"SSN College of Engineering, Chennai, India" +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY +SUS college of Engineering and Technology +Sabanc University +"Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel" +"Salgado de Oliveira University, Brazil" +Samsung Advanced Institute of Technology +"Samsung Advanced Institute of Technology (SAIT), KAIST" +"Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA" +Sanghvi Institute of Management and Science +"Sapienza University of Rome, Italy" +Sarhad University of Science and Information Technology +"Sathyabama University Old Mamallapuram Road, Chennai, India" +"Sathyabama University, Chennai, India" +"Savitri Bai Phule Pune University, Maharashtra India" +Savitribai Phule Pune University +"School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand" +"School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave" +"School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China" +"School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA" +"School of Business, Aalto University, Finland" +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +"School of Computer Engineering, Nanyang Technological University, Singapore" +"School of Computer Engineering, Sejong University, Seoul, Korea" +"School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN" +"School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China" +"School of Computer Science and Engineering, Nanjing University of Science and Technology" +"School of Computer Science and Engineering, Nanyang Technological University, Singapore" +"School of Computer Science and Engineering, Sichuan University, China" +"School of Computer Science and Engineering, South China University of Technology" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"School of Computer Science and Engineering, Southeast University, Nanjing 210096, China" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam" +"School of Computer Science and Information Systems, Birkbeck College, University of London" +"School of Computer Science and Software Engineering, Shenzhen University" +"School of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen" +"School of Computer Science and Technology, Harbin Institute of" +"School of Computer Science and Technology, Harbin Institute of Technology, China" +"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China" +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +"School of Computer Science and Technology, Shandong Institute of Business and Technology" +"School of Computer Science and Technology, Shandong University" +"School of Computer Science and Technology, Tianjin University" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +"School of Computer Science and Technology, Tianjin University, China" +"School of Computer Science and Technology, Tianjin University, Tianjin 300072, China" +"School of Computer Science and Technology, Tianjin University, Tianjin, China" +"School of Computer Science and Technology, University of Science and Technology of China" +"School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China" +"School of Computer Science, CECS, Australian National University, Australia" +"School of Computer Science, Carnegie Mellon University, 15213, USA" +"School of Computer Science, Carnegie Mellon University, PA 15213, USA" +"School of Computer Science, Carnegie Mellon University, PA, USA" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, USA" +"School of Computer Science, Carnegie Mellon University, USA" +"School of Computer Science, Fudan University, Shanghai 200433, China" +"School of Computer Science, Fudan University, Shanghai, 200433, China" +"School of Computer Science, Fudan University, Shanghai, China" +"School of Computer Science, Nanjing University of Science and Technology" +"School of Computer Science, Northwestern Polytechnical University, China" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"School of Computer Science, Northwestern Polytechnical University, Xi an China" +"School of Computer Science, Sichuan University, Chengdu, China" +"School of Computer Science, South China Normal University, China" +"School of Computer Science, The University of Adelaide, Australia" +"School of Computer Science, The University of Manchester" +"School of Computer Science, The University of Nottingham" +"School of Computer Science, Tianjin University" +"School of Computer Science, University of Adelaide, Australia" +"School of Computer Science, University of Birmingham, UK" +"School of Computer Science, University of Lincoln, U.K" +"School of Computer Science, University of Lincoln, United Kingdom" +"School of Computer Science, University of Nottingham" +"School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P" +"School of Computer Science, Wuhan University, P.R. China" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"School of Computer and Information Science, Chongqing Normal University 401331, China" +"School of Computer and Information, Hefei University of Technology, China" +"School of Computer and Information, Hefei University of Technology, Hefei" +"School of Computer, Beijing Institute of Technology, Beijing, China" +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada" +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; E-Mail" +"School of Computing Science, Simon Fraser University, Canada" +"School of Computing Sciences, University of East Anglia, Norwich, UK" +"School of Computing and Communications University of Technology, Sydney" +"School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK" +"School of Computing and Communications, University of Technology Sydney, Sydney, Australia" +"School of Computing and Info. Sciences, Florida International University" +"School of Computing, National University of Singapore, SG" +"School of Computing, National University of Singapore, Singapore" +"School of Computing, Staffordshire University" +"School of Control Science and Engineering, Shandong University, Jinan 250061, China" +"School of Data Science, Fudan University, China" +"School of Data and Computer Science, Sun Yat-Sen University, China" +"School of Data and Computer Science, Sun Yat-sen University" +"School of Data and Computer Science, Sun Yat-sen University, P.R.China" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece" +"School of EECS, Queen Mary University of London" +"School of EECS, Queen Mary University of London, UK" +"School of EEE, Nanyang Technological University, Singapore" +"School of Electrical Engineering and Automation, Harbin Institute of Technology" +"School of Electrical Engineering and Computer Science, Peking University" +"School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran" +"School of Electrical and Computer Engineering, Cornell University" +"School of Electrical and Computer Engineering, RMIT University" +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore" +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"School of Electronic Engineering and Computer Science, Peking University, 100871, China" +"School of Electronic and Computer Engineering, Peking University" +"School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China" +"School of Electronic and Information Engineering, South China University of Technology" +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"School of Electronics Engineering and Computer Science, Peking University" +"School of Electronics and Computer Engineering, Peking University" +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"School of Electronics and Information, Northwestern Polytechnical University, China" +"School of Engineering, Taylor s University" +"School of Engineering, University of Guelph" +"School of Engineering, University of Portsmouth, United Kingdom" +"School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu" +"School of Games, Hongik University, Seoul, Korea" +"School of ICE, Beijing University of Posts and Telecommunications, Beijing, China" +"School of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications" +"School of Informatics, University of Edinburgh, UK" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"School of Information Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"School of Information Engineering, Nanchang University, China" +"School of Information Science and Engineering, Central South University, Changsha" +"School of Information Science and Engineering, Southeast University, Nanjing, China" +"School of Information Science and Technology, Donghua University, Shanghai 200051, China" +"School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"School of Information Science and Technology, Sun Yat-sen University, China" +"School of Information Systems, Singapore Management University, Singapore" +"School of Information Technology and Electrical Engineering, The University of Queensland" +"School of Information Technology and Engineering, University of Ottawa, Ontario, Canada" +"School of Information Technology and Management, University of International" +"School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China" +"School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China" +"School of IoT Engineering, Jiangnan University, Wuxi 214122, China" +"School of IoT Engineering, Jiangnan University, Wuxi, 214122, China" +"School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China" +"School of Mathematical Science, Dalian University of Technology, Dalian, China" +"School of Mathematical Science, Peking University, China" +"School of Mathematical Sciences, Dalian University of Technology, Linggong Rd. 2, Dalian" +"School of Mathematical Sciences, Monash University, VIC 3800, Australia" +"School of Mathematics and Computational Science, Sun Yat-sen University, China" +"School of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA" +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +"School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China" +"School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China" +"School of Medicine, Shenzhen University, Shenzhen 518060, China" +"School of Optics and Electronics, Beijing Institute of Technology, Beijing" +"School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China, 2 School of Information" +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"School of Psychology, Cardiff University, Cardiff, United Kingdom, College of" +"School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"School of Psychology, University of Central Lancashire" +"School of Software, Dalian University of Technology, Dalian 116621, China" +"School of Software, Dalian University of Technology, Tuqiang St. 321, Dalian 116620, China" +"School of Software, Sun Yat-sen University, China" +"School of Software, Tianjin University" +"School of Software, Tsinghua University, Beijing 100084, China" +"Schreiber Building, room 103, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part +"Scienti c Visualization and Computer Graphics, University of Groningen, Nijenborgh 9, Groningen, The Netherlands" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +"Section of Pathology, Second University of Naples, Via L. Armanni" +"Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea" +"Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea" +"Sendai National College of Technology, Natori, Japan" +"SenseTime, 2Tsinghua University" +"Sensor-enhanced Social Media (SeSaMe) Centre, National University of Singapore, Singapore" +"Several methods exists to induce anxiety in healthy individuals, including threat of shock (ToS), the Trier" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +ShahidBeheshti University +Shandong Women s University +"Shanghai Institute of Applied Physics, Chinese Academy of Sciences" +"Shanghai Jiao Tong University, CloudWalk Technology" +"Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China" +"Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China" +"Shaoguan University, Da Tang Lu" +"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China" +"Shenzhen Institutes of Advanced Technology, CAS, China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +"Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology" +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +"Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China" +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology" +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +"Shri Shivaji College, Parbhani, M.S, India" +"Sichuan Fine Arts Institute, Chongqing, China" +"Siemens Corporate Research, 755 College Road East, Princeton, NJ" +"Sighthound, Inc" +Signal Processing Institute +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +Slovak University of Technology in +"Smart Network System Institute, Institute for Information Industry" +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"Sogang University, Seoul 121-742, Republic of Korea" +"Solapur University, INDIA" +"Sorbonne Universit s, UPMC University Paris 06, Paris, France" +"Southeast University, Nanjing 210096, China" +"Southeast University, Nanjing 211189, China" +"Southern Illinois University, Carbondale, IL 62901 USA" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"Springer Science + Business Media, Inc. Manufactured in The Netherlands" +"Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India" +"Sri Manakula Vinayagar Engineering College, Pondicherry" +"Sri SidarthaInstitute of Technology, Tumkur" +"Sri Sunflower College of Engineering and Technology, Lankapalli" +Sridevi Women's Engineering College +"Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India" +St. Anne s College +St. Francis Institute of Technology +"St. Xavier s Catholic College of Engineering, India" +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"St.Joseph s College of Engineering, Old Mamallapuram Road, Kamaraj Nagar, Semmencherry, Chennai" +"Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom" +"State Key Lab of CADandCG, College of Computer Science, Zhejiang University, Hangzhou, China" +"State Key Lab of CADandCG, Zhejiang University, Hangzhou, Zhejiang, China" +"State Key Lab. LIESMARS, Wuhan University, China" +"State Key Laboratory for Novel Software Technology, Nanjing University, China" +"State Key Laboratory of Brain and Cognitive Science, Institute of Psychology" +"State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China" +"State Key Laboratory of Integrated Services Networks, Xidian University, Xi an 710071 China" +"State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China" +"State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China" +"State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia" +State University of Feira de Santana (UEFS +"State University of New York at Binghamton, Binghamton, NY" +"State University of Rio de Janeiro, Brazil" +Stevens Institute of Technology Adobe Systems Inc +"Student, Amal Jyothi College of Engineering, Kanjirappally, India" +"Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +Submitted to the Institute for Graduate Studies in +Submitted to the Senate of the Hebrew University +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +Sun Yat-Sen (Zhongshan) University +"Swiss Federal Institute of Technology, Lausanne (EPFL" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"System Research Center, NOKIA Research Center, Beijing, 100176, China" +Systems and Telematics - Neurolab +"TNLIST, Tsinghua University, Beijing, 100084, China" +Taizhou University +"Tarbiat Modarres University, Tehran, Iran" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +"Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic" +"Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic" +"Technical University of Cluj Napoca, 28 Memorandumului Street" +Technical University of Kaiserslautern +"Technical University of Munich, Germany" +"Technical University of Ostrava, FEECS" +TechnicalUniversityofDenmark +"Technological Educational Institute of Athens, 12210 Athens, Greece" +"Technology, Nanjing University of Aero" +"Technology, University of Oradea 410087, Universitatii 1, Romania" +"Texas AandM University, College Station, TX, USA" +The Allen Institute for AI +"The American University In Cairo, Road 90, New Cairo, Cairo, Egypt" +"The Amsterdam School of Communication Research, University of Amsterdam" +The Australian National University Queensland University of Technology +The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved +The Author 2014. Published by Oxford University Press +"The Big Data Research Center, Henan University, Kaifeng 475001, China" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"The Blavatnik School of Computer Science, Tel-Aviv University, Israel" +"The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel" +"The Blavatnik School of Computer Science, The Tel-Aviv University" +The Chinese University of Hong Kong holds the copyright of this thesis. Any +"The Chinese University of Hong Kong, HKSAR, China" +"The Chinese University of Hong Kong, Hong Kong SAR, China" +The Chinese University ofHong Kong +The Graduate University for Advanced Studies (SOKENDAI +The Hong Kong Polytechnic University 2Harbin Institute of Technology +"The Hong Kong Polytechnic University, Hong Kong, SAR, 2University of Technology Sydney, Australia" +"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +"The Institute of Scienti c and Industrial Research, Osaka University" +"The Open University of Israel, Israel" +"The Remote Sensing Technology Institute (IMF), German Aerospace Center" +"The Robotics Inistitute, Carnegie Mellon University" +The Robotics Institute Carnegie Mellon University +"The Robotics Institute, Carnegie Mellon University" +"The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA" +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"The School of Computer Science, Tel-Aviv University, Israel" +"The School of Electrical Electronic and Control Engineering, Kongju National University" +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +The University of Adelaide; and Australian Centre for Robotic Vision +The University of Queensland in +"The University of Queensland, School of ITEE" +"The University of Queensland, School of ITEE, QLD 4072, Australia" +The University of Shef eld +"The authors are with the Delft University of Technology, Data and Knowl" +The open University of Israel. 2Adience +"The school of Data Science, Fudan University" +Thesis. Rochester Institute of Technology. Accessed from +This article was downloaded from Harvard University s DASH +This work was supported by Grant MOP102637 from the Canadian Institutes of Health Research to E.D.R. and the +This work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E +Tokyo Polytechnic University +Tomas Bata University in Zl n +"Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan" +"Toyota Research Institute, Cambridge, MA 2 University of Michigan, Ann Arbor, MI" +Toyota Technological Institute Chicago (TTIC +Toyota Technological Institute at Chicago +"Toyota Technological Institute, Chicago (TTIC" +Tripura University (A Central University +"Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom" +Tsinghua University 4SenseTime +"Tsinghua University, State Key Lab. of Intelligent" +Tsinghua-CUHK Joint Research Center for Media Sciences +"Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +U.S. Army Research Laboratory +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea" +"UG student, Amity school of Engineering and Technology, Amity University, Haryana, India" +"UMIACS | University of Maryland, College Park" +"UMIACS, University of Maryland, College Park, USA" +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD +UNIVERSITY OF OULU GRADUATE SCHOOL +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +"USA, 2Unit for Experimental Psychiatry, University of Pennsylvania School of Medicine" +"USC IRIS Lab, University of Southern California" +USC Information Sciences Institute +"USC Information Sciences Institute (ISI), Marina Del Rey, CA" +USC Institute for Creative Technologies +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +"Uber Advanced Technologies Group, 5Vector Institute" +"Ultra College of Engineering and Technology for Women, India" +"United States of America, State University of New York Albany, Albany" +"United States of America, State University of New York Albany, Albany, New York" +"Universit Paris-Dauphine, PSL Research University, CNRS, UMR" +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"Universitat Polit`ecnica de Catalunya, Columbia University" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +"University B.D.T.College of Engineering, Visvesvaraya" +"University Bourgogne Franche-Comt , France" +"University Campus, 54124, Thessaloniki, Greece" +"University Center of FEI, S ao Bernardo do Campo, Brazil" +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"University Health Board, Swansea, United Kingdom" +"University Hospital Jena, Germany" +University Lecturer Anu Soikkeli +University Lecturer Veli-Matti Ulvinen +"University Station C0500, Austin TX 78712, USA" +"University Street, Montral, QC H3A 0E9, Canada" +"University Street, Montreal, QC H3A 0E9, Canada" +"University Technology of Malaysia, 81310 Skudai, Johor, Malaysia" +"University at Buffalo, SUNY" +"University at Buffalo, State University of New York" +"University of Alberta, Edmonton, AB T6G 2E8, Canada" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +"University of Amsterdam, University of Trento, Italy" +"University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of" +University of Applied Sciences Darmstadt - CASED +"University of Balochistan, Quetta" +"University of Barcelona and Computer Vision Centre, Barcelona, Spain" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +"University of Bari, Bari, Italy" +"University of Basel, Departement Informatik, Basel, Switzerland" +University of Beira Interior +"University of Bonn, Roemerstrasse 164, 53117 Bonn, Germany" +University of Bristol - Explore Bristol Research +"University of Business Agriculture and Technology, Dhaka-1230, Bangladesh" +University of Caen Basse-Normandie +"University of Caen, France" +University of Cagliari +University of California at Berkeley +University of California at Berkeley / ICSI +"University of California at Berkeley, USA" +"University of California at Irvine, Irvine, CA" +"University of California at Los Angeles, Los Angeles, CA, USA" +University of California at San Diego +"University of California at San Diego, La Jolla, CA" +"University of California, Berkeley1 Adobe" +"University of California, Los Angeles" +"University of California, San Diego 2 Carnegie Mellon University" +"University of California, Santa Cruz" +University of Cambridge Computer Laboratory +"University of Cambridge, Computer Laboratory, UK" +"University of Cambridge, The Computer Laboratory, Cambridge CB3 0FD, U.K" +"University of Cambridge, UK 2Carnegie Mellon University, USA" +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +University of Chinese Academy of +University of Colorado at Colorado Springs +"University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA" +"University of Colorado, Colorado Springs" +"University of Exceter, Exceter, UK" +"University of Florence, Italy" +University of Freiburg +"University of Freiburg, Germany" +"University of Freiburg, Instit ut f ur Informatik" +"University of Genoa, Italy" +"University of Georgia, Athens, GA, U.S.A" +University of Illinois at Urbana-Champaign 2Adobe Research +"University of Illinois, Urbana-Champaign University of California, San Diego" +University of Insubria +"University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine" +"University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +"University of Kentucky, 329 Rose St., Lexington, KY, 40508, U.S.A" +University of Lac Hong 10 Huynh Van Nghe +"University of Lincoln, School of Computer Science, U.K" +"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia" +"University of Maryland Institute for Advanced Computer Studies, College Park, MD" +"University of Maryland, CFAR" +"University of Maryland, Center for Automation Research" +"University of Maryland, College Park" +"University of Maryland, College Park, MD" +"University of Maryland, College Park, USA" +"University of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre" +University of Massachusetts Amherst in partial ful llment +"University of Michigan, Ann Arbor, MI, USA (UMICH.EDU" +"University of Milano-Bicocca, Italy" +"University of Minnesota-Twin Cities, Minneapolis" +"University of Nevada at Reno, USA" +University of North Carolina Wilmington in Partial Ful llment +"University of Notre Dame, 2IIIT-Delhi" +"University of Nottingham, Ningbo, China" +"University of Nottingham, UK, School of Computer Science" +"University of Oradea 410087, Universitatii 1, Romania" +"University of Oviedo, Campus de Viesques, 33204 Gij n" +"University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"University of Pennsylvania School of Medicine, 1013 Blockley Hall" +"University of Pennsylvania, 2Ryerson University" +"University of Pisa, Largo Lucio" +"University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada" +"University of Queensland, School of ITEE, QLD 4072, Australia" +"University of Queensland, St Lucia QLD Australia, 5 Institut Universitaire de France, Paris, France" +"University of S ao Paulo - USP, S ao Paulo - Brazil" +"University of S ao Paulo, S ao Paulo, Brazil" +"University of Santiago de Compostela, Santiago de Compostela, Spain" +University of Science and Technology Beijing +"University of Science, Ho Chi Minh city" +"University of Science, VNU-HCM, Viet Nam" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"University of Science, Vietnam National University-Ho Chi Minh city" +University of Sfax +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"University of Shef eld, UK" +University of Siegen +"University of Siena, Siena, Italy" +"University of Sk vde, Sweden" +"University of Southampton, UK, 2University of Warwick, UK" +"University of Szeged, 2 E tv s Lor nd University" +"University of T ubingen, T ubingen, Germany" +"University of Tampere, Kanslerinnrinne 1, 33014, Tampere, Finland" +"University of Technology, Guangzhou, 510640, P.R.China" +"University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia" +"University of Tokyo, 4-6-1 Shirokanedai" +University of Toronto and Recognyz Systems Technologies +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"University of Toronto, Toronto, ON M5S 2G4, Canada" +University of Toulouse II Le Mirail +University of Twente 2Dublin City University 3Oxford University +"University of Twente, EEMCS, Netherlands" +"University of Ulsan, Ulsan, Republic of Korea" +"University of Verona, Verona, Italy" +University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento +"University of Victoria, Victoria, Canada" +"University of Vigo, Spain" +University of Washington 4The Allen Institute for AI +University of Washington and Google Inc +"University of Washington, Bothell" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +University of West Bohemia +University of Wollongong. For further information contact the UOW +"University of Zagreb, Faculty of Electrical Engineering and Computing" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +"University of Zagreb, Unska 3, 10 000 Zagreb" +"University of Zaragoza, Spain" +"University of the South Paci c, Fiji" +"University, Taiwan, R.O.C" +University: Dhirubhai Ambani Institute of Information and Communication Technology +UniversityofMaryland +"UniversityofMaryland, CollegePark, MD" +"Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands" +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +VEER SURENDRA SAI UNIVERSITY OF +"VHNSN College, Virudhunagar, ANJA College" +"VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain" +"VISLab, EBUII-216, University of California Riverside" +"VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic" +"VSI Lab, Goethe University, Frankfurt, Germany" +Vector Institute for Arti cial Intelligence +VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College +"Vickram College of Engineering, Enathi, Tamil Nadu, India" +"Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand" +Vietnam National University Ho Chi +Vietnam National University of Agriculture +"Virudhunagar Hindu Nadars Senthikumara Nadar College, Virudhunagar" +"Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal" +"Vision Science Group, University of California" +"Vision Systems, Inc" +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany" +"Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT" +"Vision and Security Technology Lab, University of Colorado Colorado Springs" +"Vision and Security Technology Lab, University of Colorado at Colorado Springs, Colorado" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Vision and Sensing, HCC, ESTeM, University of Canberra" +"Visual Analysis of People Lab, Aalborg University, Denmark" +"Visual Computing and Communications Lab, Arizona State University" +"Visual Geometry Group, University of Oxford" +"Visual Geometry Group, University of Oxford, Oxford UK" +"Visual Geometry Group, University of Oxford, UK" +"Visualization and Computer Vision Lab, GE Global Research Center" +"Viswajyothi College of Engineering and Technology Kerala, India" +"Waseda University, Tokyo, Japan" +"Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of" +"Wenzhou University, China" +"Wenzhou University, Wenzhou, China" +"West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi" +William Marsh Rice University +Xerox Research Center India +Xerox Research Center Webster +"Xi an Jiaotong University, China" +"Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences" +Xidian University 2Xi an Jiaotong University 3Microsoft Research Asia +"Y ld z Teknik University, Istanbul, TR" +"ZHAW Datalab, Zurich University of Applied Sciences" +"Zhejang University, Hangzhou 310027, P.R.China" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +"a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India" +"aCollege of Computer Science at Chongqing University, 400044, Chongqing, P.R.C" +"aDivision of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA" +"aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia" +"aIBM China Research Lab, Beijing, China" +"aImperial College London, London, UK" +aInformation Sciences Institute +"aLawrence Technological University, 21000 W Ten Mile Rd., South eld, MI 48075, United States" +"aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA" +"aResearch Scholar, Anna University, Chennai, Inida" +"aSchool of Computing and Mathematics, Charles Sturt University, Bathurst, NSW" +"aSchool of Technology, University of Campinas" +"aTurgut Ozal University, Ankara Turkey" +"abroad, or from public or private research centers" +"additional details of DCS descriptors, including visualization. For extending the evaluation" +"and 2Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708" +"and Engineering, Beihang University, Beijing, China" +"and IBUG [32]. All of them cover large variations, including different" +"and Mathematical Biosciences Institute, The Ohio State University" +"and Modeling, Rutgers University" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +"and education use, including for instruction at the authors institution" +"and especially light angle, drastically change the appearance of a face [1]. Facial expressions, including" +"and quantify distinct social behaviors, including those involving" +and the institute of engineering and science +"applications has different requirements, including: processing time (off-line, on-line, or real-time" +"applications, including texture classification [16], face recognition [12], object detection [10], and" +at The Australian National University +at West Virginia University +at the Delft University of Technology +at the University of Central Florida +"atry, University of Pennsylvania School of Medicine, Philadelphia, PA" +"b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney" +"b Computer Technology Institute, Beijing Union University, 100101, China" +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +b Institute for Robotics and Intelligent Systems +"b School of Applied Mathematics, Xidian University, Xi an, China" +"b School of Business, Reykjavik University, Reykjavik, Iceland" +"b The Interdisciplinary Center for Research on Emotions, University of" +"bDiscipline of Business Analytics, The University of Sydney Business School" +"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +"bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +"bSchool of Computer and Control Engineering, University of Chinese Academy of Sciences" +"bTsinghua University, Beijing, China" +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +by grants from the National Institute of Mental Health (MH 15279 and MH067976 (K. Schmidt +"c Cardiff Business School, Cardiff University, Cardiff, United Kingdom" +"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"c School of Computational Science, Florida State University, Tallahassee, FL 32306, USA" +c(cid:13) Carnegie Mellon University +c(cid:13)The Chinese University of Hong Kong +c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved +"cCentre of Intelligent Machines, McGill University, Montr eal, QC H3A 0E9, Canada" +"cFaculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands" +"cSchool of Astronautics at Beihang University, 100191, Beijing, P.R.C" +cThe Open University +cid:1) Honda Research Institute +cid:1)Institute for Neural Computation +"cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA" +"cid:2) Imperial College London, United Kingdom" +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +"cid:2)Imperial College London, U.K" +"cid:3) School of Software, Tsinghua University" +cid:3)The Salk Institute and Howard Hughes Medical Institute +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +"cid:63) Imperial College London, UK" +"cid:63)Queen Mary University of London, Imperial College London" +"cid:63)Sharif University of Technology, University College London, Queen Mary University of London" +cid:63)Stanford University +"cid:93) Faculty of Science and Technology, University of Macau" +"cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China" +comparisons with 12 instance-based classi ers on 13 benchmark University of California Irvine +"do, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea" +"e ects of di erence factors, including age group, age gap" +eBay Research Labs +"engineering, Government College of Engineering Kannur, Kerala, India" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"face processing, including age (Berry, 1990), sex (Hill" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"gelmeyer et al., 1996); and, increasingly, its role in reactions to" +"general term, including collaboration. Interaction determines action on someone" +"gies (Bughin et al. 2017). A range of other sectors, includ" +"he University of Hong Kong, Pokfulam" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium" +"image being generated by the model, include Active Appearance" +in The University of Michigan +"in signed languages, including American Sign Language (ASL). Gestures such" +in the College of Engineering and Computer Science +in the Graduate School of Duke University +"instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i" +"learning. As a result of this research, many applications, including video surveillance systems" +massachusetts institute of technology artificial intelligence laboratory +"ment of Psychology, University of California, Berkeley" +ment. Oxford University Press Series in Affective Science. New York: Oxford +"methods, including graph matching, optical- ow-based" +"obtained for all other uses, in any current or future media, including reprinting/republishing" +"of Engineering and Information Technology, University of Technology, Sydney, Australia" +"of Maryland, College Park, MD 20742, USA" +"of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China" +"of Psychology, Princeton University, Princeton, NJ 08540. E-mail" +"of Psychology, University of Michigan, Ann Arbor, MI, United States, University of Michigan, Ann" +"of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science" +"our analysis to stereotypes beyond gender, including those" +"ples of such ne-grained descriptions, including attributes covering detailed" +"point, lighting, and appearance. Many applications, including video surveillance systems" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"recognition, such as human computer interfaces and e-services, including e-home" +"subsection a table summarizing the key features of the database is provided, including (where available) the number of" +"t2i Lab, Chalmers University of Technology, Gothenburg, Sweden" +"the Chinese University of Hong Kong, Shatin, Hong Kong" +"the Diploma of Imperial College London. This thesis is entirely my own work, and, except" +"the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam" +"the face, including negative affect and distress, dates" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"to process in all the illumination conditions, including total" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"uses, in any current or future media, including" +"versity of Amsterdam, Amsterdam and University of Trento" +via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to +yAristotle University of Thessaloniki +yThe University of Tokyo +years. According to the definition by the National Institute diff --git a/scraper/reports/institutions_not_found/not-found-1.csv b/scraper/reports/institutions_not_found/not-found-1.csv new file mode 100644 index 00000000..29eee253 --- /dev/null +++ b/scraper/reports/institutions_not_found/not-found-1.csv @@ -0,0 +1,845 @@ +"MIRACL-FS, University of Sfax" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"The Blavatnik School of Computer Science, The Tel-Aviv University" +"Deparment of Computing, Imperial College London, UK" +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"School of Computer Science, University of Birmingham, UK" +Stevens Institute of Technology Adobe Systems Inc +"College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +Tomas Bata University in Zl n +"School of Computing and Info. Sciences, Florida International University" +"Numediart Institute, University of Mons" +in the College of Engineering and Computer Science +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +The University of Queensland in +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +M. Mark Everingham University of Leeds +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"School of Computer Science, Fudan University, Shanghai, China" +"BECS, Aalto University, Helsinki, Finland" +"Beihang University 2Gri th University 3University of York, UK" +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +Tsinghua-CUHK Joint Research Center for Media Sciences +Sabanc University +"Viswajyothi College of Engineering and Technology Kerala, India" +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +"School of Computer Science, University of Nottingham" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"University at Buffalo, SUNY" +"University of Maryland, Center for Automation Research" +"MRC Laboratory For Molecular Cell Biology, University College London" +"IslamicAzad University, Qazvin, Iran" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +This article was downloaded from Harvard University s DASH +"Program of Computational Science and Engineering, Bo gazi ci University" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"DISI, University of Trento, Italy" +College of Information Engineering +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +University of California at Berkeley / ICSI +"Intelligent User Interfaces Lab, Ko c University, Turkey" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +Honda Fundamental Research Labs +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +"University of Zaragoza, Spain" +"Assam University, Silchar-788011 Assam University, Silchar" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +"Grif th University, QLD, Australia" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +"Asian University, Taichung, Taiwan" +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Sapienza University of Rome, Italy" +"University of Milano-Bicocca, Italy" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"University of S ao Paulo - USP, S ao Paulo - Brazil" +"Machine Perception Laboratory, University of California, San Diego" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +University of Cagliari +"LIP6, UPMC - Sorbonne University, Paris, France" +"Baidu Research, USA 3John Hopkins University" +"Computer Science and Software Engineering, The University of Western Australia" +"Computer Vision Laboratory, The University of Nottingham" +"L3S Research Center, Hannover, Germany" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"he University of Hong Kong, Pokfulam" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +"image being generated by the model, include Active Appearance" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"School of Computer Science and Information Systems, Birkbeck College, University of London" +"Queen Mary, University of London" +University of Sfax +SUS college of Engineering and Technology +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +College of Information Science and Engineering +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"Institute for Neural Computation, University of California, San Diego" +"Proto Labs, Inc" +Institute of Psychology and Behavioral Sciences +ATR Interpreting Telecommunications Research Laboratories +Fraunhofer Institute for Integrated Circuits IIS +"Chalmers University of Technology, SAFER" +"Computer Vision Research Group, COMSATS Institute of Information" +"TNLIST, Tsinghua University, Beijing, 100084, China" +"School of Computer Science, University of Lincoln, U.K" +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +Language Technologies Institute +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"Birkbeck College, University of London" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +Nokia Bell Labs and University of Oxford +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"VISLab, EBUII-216, University of California Riverside" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Computer Science and Engineering, Easwari Engineering College, India" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Assiut University, Assiut 71515, Egypt" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +"Hasan Kalyoncu University, Gaziantep, Turkey" +"Computer Science Division, The Open University of Israel" +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Facebook AI Research, 2Dartmouth College" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +"Key Lab. of Machine Perception, School of EECS, Peking University" +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +Thesis. Rochester Institute of Technology. Accessed from +cid:63)Stanford University +"The Robotics Institute, Carnegie Mellon University" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +State University of Feira de Santana (UEFS +University of Siegen +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +"USC IRIS Lab, University of Southern California" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +"EEMCS, University of Twente, Netherlands" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"Electrical and Computer Engineering, The University of Memphis" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"Machine Intelligence Lab (MIL), Cambridge University" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"Technology, University of Oradea 410087, Universitatii 1, Romania" +"University Health Board, Swansea, United Kingdom" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"Institute for Computer Graphics and Vision, Graz University of Technology" +"School of Computer Engineering, Sejong University, Seoul, Korea" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +"Governance, Keio University" +"cid:63)Queen Mary University of London, Imperial College London" +"RGPV University, Indore" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +Honda Research Institute +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +Sarhad University of Science and Information Technology +"University of Twente, EEMCS, Netherlands" +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +"University of Illinois, Urbana-Champaign University of California, San Diego" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"Michigan State University, East Lansing, MI 48824, U.S.A" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +"Asian Institute of Technology, Pathumthani, Thailand" +"Center for Arti cial Vision Research, Korea University" +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +"Technical University of Munich, Germany" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"Laboratory, University of Houston, Houston, TX, USA" +"School of Computer Science, University of Lincoln, United Kingdom" +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +Institute of Deep Learning +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"FI-90014 University of Oulu, Finland" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +"Arts Media and Engineering, Arizona State University" +University of Beira Interior +"Institute of Biochemistry, University of Balochistan, Quetta" +Ho Chi Minh City University of +"Asia University, Taichung, Taiwan" +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +"New York University Shanghai, 1555 Century Ave, Pudong" +Facebook 4Texas AandM University 5IBM Research +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +yAristotle University of Thessaloniki +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"CVSSP, University of Surrey" +ShahidBeheshti University +"Electronics Engineering, National Institute of Technical Teachers" +"Sichuan Fine Arts Institute, Chongqing, China" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +"Institute for Electronics, Signal Processing and Communications" +National Institute of Development Administration +"EEMCS, University of Twente, The Netherlands" +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +"College of Sciences, Northeastern University, Shenyang 110819, China" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +Dietrich College of Humanities and Social Sciences +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"School of Information Technology and Electrical Engineering, The University of Queensland" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"Center for Automation Research, University of Maryland" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +University of Science and Technology Beijing +"Computational Biomedicine Lab, University of Houston, TX, USA" +Nam k Kemal University +University of Colorado at Colorado Springs +University of Freiburg +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +"College of Science, Menou a University, Menou a 32721, Egypt" +Interactive and Digital Media Institute +"College of Computer and Information Science, Northeastern University, MA, USA" +"School of Computer and Information, Hefei University of Technology, Hefei" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +National Institute of Advanced Industrial +USC Institute for Creative Technologies +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +Institute for Vision Systems Engineering +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +eBay Research Labs +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +Howard Hughes Medical Institute (HHMI +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"and Modeling, Rutgers University" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"National Institute of Informatics, Japan" +"Charotar University of Science and Technology, Changa, India" +UniversityofMaryland +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"Caarmel Engineering College, MG University, Kerala, India" +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"J. P. College of Engineering, India" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +Technical University of Kaiserslautern +"M.Tech Student, SSG Engineering College, Odisha, India" +"learning. As a result of this research, many applications, including video surveillance systems" +Taizhou University +"Goldsmiths, University of London, London, UK" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Multimodal Computing and Interaction, Saarland University, Germany" +"School of Computer Science, Northwestern Polytechnical University, China" +"Intelligent Systems Group, University of Groningen, The Netherlands" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +"P.A. College of Engnineering, Mangalore" +"Beijing Institute of Technology, Beijing 100081, PR China" +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +"School of Computer Science, Carnegie Mellon University, USA" +"Computer Science Division, The Open University of Israel, Israel" +Achariya college of Engineering Technology +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +High Institute of Medical Technologies +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +Sun Yat-Sen (Zhongshan) University +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"Institute for Infocomm Research, Singapore" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"Xi an Jiaotong University, China" +"North Dakota State University, Fargo, ND58105, USA" +University of Twente 2Dublin City University 3Oxford University +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +"University of Technology, Guangzhou, 510640, P.R.China" +"Queen Mary, University of London, E1 4NS, UK" +University of Wollongong. For further information contact the UOW +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +College of Computer Science and Technology +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +Gangnung-Wonju National University +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"cid:2)Imperial College London, U.K" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"Friedrich Schiller University, D-07740 Jena" +Mahatma Gandhi Institute of Technology +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +B.S. University of Indonesia +"University of T ubingen, T ubingen, Germany" +"School of Computer Science, The University of Adelaide, Australia" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +Honda Research Institute USA +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"University of Nottingham, UK, School of Computer Science" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Sogang University, Seoul 121-742, Republic of Korea" +Imperial College London / Twente University +"National University of Singapore, 2Shanghai Jiao Tong University" +"School of Software, Tsinghua University, Beijing 100084, China" +"SRV Engineering College, sembodai, india" +Central Mechanical Engineering Research Institute +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +"Gayathri.S, M.E., Vins Christian college of Engineering" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"CVSSP, University of Surrey, UK" +Sanghvi Institute of Management and Science +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +College of Information and Electrical Engineering +"aResearch Scholar, Anna University, Chennai, Inida" +"School of Computer Science, Tianjin University" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +University of California at San Diego +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"DIEI, University of Perugia, Italy" +"Michigan State University, 3115 Engineering Building" +"Publication details, including instructions for authors and subscription" +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"Jawaharlal Technological University, Anantapur" +SAMSI and Duke University +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"MISC Laboratory, Constantine 2 University, Constantine, Algeria" +"SRV Engineering College, sembodai, india" +"Institute of Computing Technology, CAS" +Institute of control science and engineering +National Institute of Informatics +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +Institute for Robotics and Intelligent Systems +St. Anne s College +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"J. P. College of Engineering, India" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +SUS college of Engineering and Technology +"methods, including graph matching, optical- ow-based" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +"Michigan State University, NEC Laboratories America" +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +M. Mark Everingham University of Leeds +University of California at San Diego +IBM T.J. Watson Research Center +"Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 USA" +"LCSEE, West Virginia University" +"e ects of di erence factors, including age group, age gap" +"CRCV, University of Central Florida" +"VHNSN College, Virudhunagar, ANJA College" +Institute for Robotics and Intelligent +"University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada" +ICSI / UC Berkeley 2Brigham Young University +"Microsystems Design Lab, The Pennsylvania State University" +"Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany" +"UMIACS, University of Maryland, College Park, USA" +"R.C.Patel Institute of Technology, Shirpur, Dist.Dhule.Maharashtra, India" +"Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA" +"Center for Research in Computer Vision, University of Central Florida" +University of Siegen +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +"subsection a table summarizing the key features of the database is provided, including (where available) the number of" +"USC IRIS Lab, University of Southern California" +"bTsinghua University, Beijing, China" +"University of Illinois, Urbana-Champaign University of California, San Diego" +Interactive and Digital Media Institute +"North China University of Technology, Beijing 100144 CHINA" +"University of Vigo, Spain" +"Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India" +"cFaculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands" +"Kingston University London, University of Westminster London" +"Center for Research in Computer Vision, University of Central Florida, Orlando, FL" +"University Bourgogne Franche-Comt , France" +"methods, including graph matching, optical- ow-based" +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"B. Eng., Zhejiang University" +"Research Scholar, PSGR Krishnammal College for Women, Coimbatore" +"he University of Hong Kong, Pokfulam" +"Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +"Governance, Keio University" +"Goldsmiths, University of London, UK" +Honda Fundamental Research Labs +"CVIP Lab, University of Louisville, Louisville, KY 40292, USA" +"The Big Data Research Center, Henan University, Kaifeng 475001, China" +"Rochester Human-Computer Interaction (ROC HCI), University of Rochester, NY" +"Machine Vision Lab, Faculty of Environment and Technology, University of the West of England" +"Visual Geometry Group, University of Oxford, Oxford UK" +"gelmeyer et al., 1996); and, increasingly, its role in reactions to" +"CMR Institute of Technology, Hyderabad, (India" +M.S. University of Central Florida +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"Toyota Research Institute, Cambridge, MA 2 University of Michigan, Ann Arbor, MI" +"The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel" +The open University of Israel. 2Adience +Cornell University 2 Cornell Tech +"School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran" +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +Sarhad University of Science and Information Technology +"TNLIST, Tsinghua University, Beijing, 100084, China" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China" +USC Information Sciences Institute +"Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan" +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, P. R. China" +"School of EEE, Nanyang Technological University, Singapore" +"School of Computing, National University of Singapore, Singapore" +"Islamic Azad University, Gonabad, Iran" +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced" +"Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra Pradesh" +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of" +"College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China" +"Grif th University, QLD, Australia" +"Rutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ" +"School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China" +"Institute of Mental Health, Peking University, P.R. China" +"National Taichung University of Science and Technology, Taichung, Taiwan, R.O.C" +"School of ICE, Beijing University of Posts and Telecommunications, Beijing, China" +"Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia" +"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +"School of Electronic and Information Engineering, South China University of Technology" +"College of Information, Yunnan Normal University, Kunming, China" +"King Saud University, KSA" +"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of" +"Hindusthan College of Engineering and Technology, Coimbatore, India" +"Institute of Automation, Chinese Academy of Sciences" +"College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China" +"University of Zagreb, Faculty of Electrical Engineering and Computing" +"DIEI, University of Perugia, Italy" +"National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce" +"Beckman Institute, University of Illinois at Urbana-Champaign, USA" +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +"Final Year, PanimalarInstitute of Technology" +"LIACS Media Lab, Leiden University, The Netherlands" +"The Robotics Inistitute, Carnegie Mellon University" +"Institute for Computer Graphics and Vision, Graz University of Technology" +"Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA" +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +Bangladesh University of Engineering and Technology(BUET +"School of Software, Sun Yat-sen University, China" +"Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria" +Acharya Institute Of Technology +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"Graduate School of System Informatics, Kobe University" +"School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China" +"Sendai National College of Technology, Natori, Japan" +College of Engineering and Mineral Resources +"aTurgut Ozal University, Ankara Turkey" +"VISLab, EBUII-216, University of California Riverside" +"Moscow State University, dept. of Computational Mathematics and Cybernetics" +"Annamacharya Institute of Technology and Sciences, Tirupati, India" +"Sri Manakula Vinayagar Engineering College, Pondicherry" +"College of Computer and Information Science, Northeastern University, Boston, USA" +"gies (Bughin et al. 2017). A range of other sectors, includ" +Huazhong Agricultural University +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"Rayalaseema University Kurnool, Andhra Pradesh" +"IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands" +"University of Genoa, Italy" +ShahidBeheshti University +"University B.D.T.College of Engineering, Visvesvaraya" +"MRC Laboratory For Molecular Cell Biology, University College London" +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +"IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY" +"Graduate Institute of Networking and Multimedia, National Taiwan University" +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"School of Computer and Information Science, Chongqing Normal University 401331, China" +Queen s University Belfast +"Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School" +ICMC University of S ao Paulo +comparisons with 12 instance-based classi ers on 13 benchmark University of California Irvine +"Faculty of Electrical Engineering, University of Ljubljana" +"Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada" +"Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University" +"Information Sciences Institute, USC, CA, USA" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +"Arti cial Intelligence Institute, China" +"Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden" +"Computer Science and Engineering, Michigan State University, East Lansing, USA" +"Institute for Infocomm Research, A*STAR" +Federal University of Bahia (UFBA +"Google, Inc" +Tripura University (A Central University +"School of Medicine, Shenzhen University, Shenzhen 518060, China" +"University of T ubingen, T ubingen, Germany" +"Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India" +"aCollege of Computer Science at Chongqing University, 400044, Chongqing, P.R.C" +"University Street, Montral, QC H3A 0E9, Canada" +"University of Bonn, Roemerstrasse 164, 53117 Bonn, Germany" +"University of Amsterdam, University of Trento, Italy" +"of Maryland, College Park, MD 20742, USA" +"Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA" +"2Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, Canada" +"Islamic Azad University, Shahrood, Iran" +"Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay" +"M.Tech Student, Mount Zion College of Engineering, Pathanamthitta, Kerala, India" +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +"School of Computer Science and Information Systems, Birkbeck College, University of London" +Odaiyappa College of +"Proto Labs, Inc" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +"GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology" +"Electrical and Computer Engineering, The University of Memphis" +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +MITSUBISHI ELECTRIC RESEARCH LABORATORIES +"Visual Analysis of People Lab, Aalborg University, Denmark" +"School of Games, Hongik University, Seoul, Korea" +"B.Eng., Nankai University" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The" +"obtained for all other uses, in any current or future media, including reprinting/republishing" +"College of Computer Science and Technology, Zhejiang University, China" +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +"Key Laboratory of Behavior Sciences, Institute of Psychology" +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad" +"College of Engineering, Mathematics and Physical Sciences" +"Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO" +"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China" +"Korea University, Seoul 136-713, Korea" +"Engineering, National Formosa University" +VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College +"Harbin Institute of Technology, School of Computer Science and Technology" +"Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions" +"and Engineering, Beihang University, Beijing, China" +"School of Computer Science, University of Nottingham" +"RTM Nagpur University, Campus Nagpur, (MS)-India" +"Wenzhou University, China" +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +Tokyo Polytechnic University +"College of Software Engineering, Southeast University, Nanjing 210096, China" +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +"b The Interdisciplinary Center for Research on Emotions, University of" +"Asia University, Taichung, Taiwan" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +UniversityofMaryland +"Arts, Commerce and Science College, Gangakhed, M.S, India" +Computer Vision and Robotics Research Laboratory +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu" +"Computer Graphics Research Group, University of Freiburg, Freiburg, Germany" +"CISE, University of Florida, Gainesville, FL" +Institute for Numerical Mathematics +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +"Rutgers, The State University of New Jersey" +"Schreiber Building, room 103, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv" +Savitribai Phule Pune University +"School of Computer Science, Carnegie Mellon University, PA 15213, USA" +The Allen Institute for AI +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +Institute of Arti cial Intelligence and Cognitive Engineering +"Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea" +"Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers" +"Eastern Mediterranean University, Gazima usa, Northern Cyprus" +in the Graduate School of Duke University +"uses, in any current or future media, including" +"School of Mathematical Sciences, Dalian University of Technology, Linggong Rd. 2, Dalian" +"College of Computer Science, Chongqing University, Chongqing, 400030, China" +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +"F.Ferraro, University of Rochester" +"School of Computer Engineering, Sejong University, Seoul, Korea" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK" +"College Road East, Princeton, NJ" +"School of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen" +"Queen Mary College, London" +"Shenzhen Institutes of Advanced Technology, CAS, China" +"SSESA, Science College, Congress Nagar, Nagpur, (MS)-India" +"The Institute of Scienti c and Industrial Research, Osaka University" +"College of Information Science and Engineering, Ocean University of China, Qingdao, China" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +Informatics and Telematics Institute +"Computer Science and Software Engineering, The University of Western Australia" +"University of Nottingham, UK, School of Computer Science" +"Gayathri.S, M.E., Vins Christian college of Engineering" +"School of Computer Science, South China Normal University, China" +"Ph.D student Zaid Shhedi, Doctoral School of Automatic Control and Computers, University" +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +"Computer Vision Laboratory, The University of Nottingham" +"Computer Vision Laboratory, Link oping University, Sweden" +"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University" +SUS college of Engineering and Technology +"Medical School, University of Ioannina, Ioannina, Greece" +"Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland" +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; E-Mail" +"Research Center for Learning Science, Southeast University, China" +cThe Open University +Dhanalakshmi Srinivasan College of Engineering +"Arts, Science and Commerce College, Chopda" +c(cid:13) Carnegie Mellon University +"Bharti Vidyapeeth Deemed University, Pune, India" +"The University of Queensland, School of ITEE" +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"St.Joseph s College of Engineering, Old Mamallapuram Road, Kamaraj Nagar, Semmencherry, Chennai" +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China" +"Uber Advanced Technologies Group, 5Vector Institute" +"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of" +"Computer Science Division, The Open University of Israel" +"Computer Science and Engineering, University of Washington, Seattle, WA" +"Link oping University, Computer Vision Laboratory" +"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China" +"Polytechnic Institute of NYU, NY, USA" +"School of Mathematical Sciences, Monash University, VIC 3800, Australia" +Institute for Information Systems Engineering +"Allen Institute for Arti cial Intelligence (AI2), Seattle, WA" +"Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran" +"University of Science, VNU-HCM, Viet Nam" +"Gdansk University of Technology, Faculty of Electronics, Telecommunication" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +"Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA" +"UG student, Amity school of Engineering and Technology, Amity University, Haryana, India" +"Computer and Systems Engineering, Rensselaer Polytechnic Institute" +"Informatization Office, National University of Defense Technology, Changsha 410073, China" +"Viswajyothi College of Engineering and Technology Kerala, India" +"Sri Sunflower College of Engineering and Technology, Lankapalli" +Cornell University 2Eastman Kodak Company +"University of Maryland, Center for Automation Research" +"Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos" +"Center for Brain Science, Harvard University, Cambridge, MA, USA" +"Computer Science and Engineering, University of Washington" +"Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands" +"M.Tech Student, SSG Engineering College, Odisha, India" +Mihaylo College of Business and Economics +"Johns Hopkins University, Center for Speech and Language Processing" +"Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States" +Human Interaction Research Lab +Courant Institute and Google Research +"State University of New York at Binghamton, Binghamton, NY" +"University of Maryland Institute for Advanced Computer Studies, College Park, MD" +"Augsburg University, Germany" +Doctor of Philosophy of University College London +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of" +"National Institute of Technology, Toyota College, Japan" +"Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master" +"Research School of Computer Science, The Australian National University, ACT 2601, Australia" +"Pathological anxiety is associated with disrupted cognitive processing, including working memory and" +"our analysis to stereotypes beyond gender, including those" +"a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +Boston University / **Rutgers University / ***Gallaudet University +CVSSP University of Surrey +"the face, including negative affect and distress, dates" +University of Sfax +at the Delft University of Technology +"R. Campellone, 3210 Tolman Hall, University of California, Berkeley" +"College of Computing, Georgia Institute of Technology, Atlanta, GA, USA" +"National University of Singapore, 2Shanghai Jiao Tong University" +University of Beira Interior +William Marsh Rice University +Sun Yat-Sen (Zhongshan) University +"Psychology and Psychiatry, University of Pittsburgh, USA" +"Collage of Sciences, Baghdad University, Iraq" +"School of Computer and Information, Hefei University of Technology, China" +"University of Nottingham, Ningbo, China" +"Kodak Research Laboratories, Rochester, NY" +"School of IoT Engineering, Jiangnan University, Wuxi 214122, China" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"Center for Automation Research, University of Maryland, College Park, MD" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +"Education, Yunnan Normal University, Kunming, China" +"University of California, San Diego 2 Carnegie Mellon University" +"Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social" +"Chandigarh University, Gharuan, Punjab, India" +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"Computer Vision Lab, Delft University of Technology" +"Bioinformatics Institute, A*STAR, Singapore" +"of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science" +"University of Maryland, CFAR" +"DPDCE, University IUAV" +"University of Nevada at Reno, USA" +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"University of Bari, Bari, Italy" +Alan W Black (Carnegie Mellon University +"Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United" +Hong Kong Applied Science and Technology Research Institute Company Limited +"Center for Arti cial Vision Research, Korea University" +National Institute of Development Administration +"School of Information Technology and Engineering, University of Ottawa, Ontario, Canada" +"Human Development and Applied Psychology, University of Toronto, Ontario, Canada" +"College of Information Science and Engineering, Xinjiang University" +"National Institute of Informatics, Japan" +"School of Engineering, University of Guelph" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +Azad University of Qazvin +"Wenzhou University, Wenzhou, China" +"Language Technologies Institute, School of Computer Science" +"KTH Royal Institute of Technology, CVAP Lab, Stockholm, Sweden" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +Institute of Psychology and Behavioral Sciences +"Grad. School of Information Science and Technology, The University of Tokyo, Japan" +"Faculty of ETI, Gdansk University of Technology, Gdansk, Poland" +"Baidu Research, USA 3John Hopkins University" +"Graduate School of Informatics, Kyoto University" +"DISI, University of Trento, Italy" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +"Michigan State University, East Lansing, MI 48824, U.S.A" +"Technical University of Munich, Germany" +College of Computer and Information Sciences +"Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA" +"Carnegie Mellon University, Electrical and Computer Engineering" +"The authors are with the Delft University of Technology, Data and Knowl" +"Vickram College of Engineering, Enathi, Tamil Nadu, India" +Computer Vision Laboratory. University of Nottingham +"Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece" +"Biometric Research Center, The Hong Kong Polytechnic University" +"Smart Network System Institute, Institute for Information Industry" +"School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China, 2 School of Information" +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +"Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA" +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +The University of Shef eld +"School of Computer Science, Fudan University, Shanghai, 200433, China" +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +ment. Oxford University Press Series in Affective Science. New York: Oxford +"University of California, Berkeley1 Adobe" +Institute of Graduate Studies and Research +"University of S ao Paulo, S ao Paulo, Brazil" +"Vision and Security Technology Lab, University of Colorado Colorado Springs" +"B.S., Computer Engineering, Bo gazi ci University" +"Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran" +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +"Key Lab of Intelligent Information Processing, Institute of Computing Technology" +"P A College of Engineering, Nadupadavu" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen" +Submitted to the Senate of the Hebrew University +DISI - University of Trento +"Salgado de Oliveira University, Brazil" +"Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia" +"Helsinki Institute for Information Technology, Aalto University, Finland" +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +"Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +Institute of Electrical and Electronics Engineers +"Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Friedrich Schiller University, D-07740 Jena" +in the College of Engineering and Computer Science +"Cornell University, Ithaca, NY, U.S.A" +"Helsinki Collegium for Advanced Studies, University of Helsinki, Finland" +"University of Tampere, Kanslerinnrinne 1, 33014, Tampere, Finland" +Link to publication record in Queen's University Belfast Research Portal +University of Illinois at Urbana-Champaign 2Adobe Research +"Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran" +"CISUC, University of Coimbra" +"DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China" +"Gri th University, QLD-4111, Brisbane, Australia" +"Research Center for Information Technology Innovation, Academia Sinica" +Sabanc University +"Samsung Advanced Institute of Technology (SAIT), KAIST" +University of Caen Basse-Normandie +"Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD" +"Institute of Neural Information Processing, Ulm University, Ulm, Germany" +"Indraprastha Institute of Information Technology, Delhi" +"Other uses, including reproduction and distribution, or selling or" +"Shanghai Jiao Tong University, CloudWalk Technology" +"Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT" +"Vision and Security Technology Lab, University of Colorado at Colorado Springs, Colorado" +"Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan" +"b School of Applied Mathematics, Xidian University, Xi an, China" +"Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network" +"School of Computer Science and Technology, Tianjin University" +"Machine Intelligence Lab (MIL), Cambridge University" +"University Health Board, Swansea, United Kingdom" +"University of Colorado, Colorado Springs" +University of Washington 4The Allen Institute for AI +"School of Computer Science and Technology, University of Science and Technology of China" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"Computational Biomedicine Lab, University of Houston, TX, USA" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +University of West Bohemia +"University of S ao Paulo - USP, S ao Paulo - Brazil" +College of Information and Control Engineering in China University of Petroleum +"University of Business Agriculture and Technology, Dhaka-1230, Bangladesh" +"China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology" +"School of Software, Tsinghua University, Beijing 100084, China" +"St. Xavier s Catholic College of Engineering, India" +"c School of Computational Science, Florida State University, Tallahassee, FL 32306, USA" +"Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China" +"Southern Illinois University, Carbondale, IL 62901 USA" +The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved +"MICC, University of Florence" +"IN3, Open University of" +"Charotar University of Science and Technology, Changa, India" +"Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab" +"Shri Shivaji College, Parbhani, M.S, India" +"Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A" +"bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A" +"and quantify distinct social behaviors, including those involving" +"Pattern Recognition and Bio-informatics Laboratory, Delft University of Technology, THE NETHERLANDS" +"Student, Amal Jyothi College of Engineering, Kanjirappally, India" +"School of Computer Science, University of Windsor, Windsor, ON, Canada N9B 3P" +"PSGR Krishnammal College for Women, Coimbatore" diff --git a/scraper/reports/institutions_not_found/not-found-2.csv b/scraper/reports/institutions_not_found/not-found-2.csv new file mode 100644 index 00000000..f845f7b5 --- /dev/null +++ b/scraper/reports/institutions_not_found/not-found-2.csv @@ -0,0 +1,876 @@ +"MIRACL-FS, University of Sfax" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"The Blavatnik School of Computer Science, The Tel-Aviv University" +"Deparment of Computing, Imperial College London, UK" +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"School of Computer Science, University of Birmingham, UK" +Stevens Institute of Technology Adobe Systems Inc +"College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +Tomas Bata University in Zl n +"School of Computing and Info. Sciences, Florida International University" +"Numediart Institute, University of Mons" +in the College of Engineering and Computer Science +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +The University of Queensland in +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +M. Mark Everingham University of Leeds +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"School of Computer Science, Fudan University, Shanghai, China" +"BECS, Aalto University, Helsinki, Finland" +"Beihang University 2Gri th University 3University of York, UK" +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +Tsinghua-CUHK Joint Research Center for Media Sciences +Sabanc University +"Viswajyothi College of Engineering and Technology Kerala, India" +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +"School of Computer Science, University of Nottingham" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"University at Buffalo, SUNY" +"University of Maryland, Center for Automation Research" +"MRC Laboratory For Molecular Cell Biology, University College London" +"IslamicAzad University, Qazvin, Iran" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +This article was downloaded from Harvard University s DASH +"Program of Computational Science and Engineering, Bo gazi ci University" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"DISI, University of Trento, Italy" +College of Information Engineering +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +University of California at Berkeley / ICSI +"Intelligent User Interfaces Lab, Ko c University, Turkey" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +Honda Fundamental Research Labs +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +"University of Zaragoza, Spain" +"Assam University, Silchar-788011 Assam University, Silchar" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +"Grif th University, QLD, Australia" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +"Asian University, Taichung, Taiwan" +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Sapienza University of Rome, Italy" +"University of Milano-Bicocca, Italy" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"University of S ao Paulo - USP, S ao Paulo - Brazil" +"Machine Perception Laboratory, University of California, San Diego" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +University of Cagliari +"LIP6, UPMC - Sorbonne University, Paris, France" +"Baidu Research, USA 3John Hopkins University" +"Computer Science and Software Engineering, The University of Western Australia" +"Computer Vision Laboratory, The University of Nottingham" +"L3S Research Center, Hannover, Germany" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"he University of Hong Kong, Pokfulam" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +"image being generated by the model, include Active Appearance" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"School of Computer Science and Information Systems, Birkbeck College, University of London" +"Queen Mary, University of London" +University of Sfax +SUS college of Engineering and Technology +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +College of Information Science and Engineering +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"Institute for Neural Computation, University of California, San Diego" +"Proto Labs, Inc" +Institute of Psychology and Behavioral Sciences +ATR Interpreting Telecommunications Research Laboratories +Fraunhofer Institute for Integrated Circuits IIS +"Chalmers University of Technology, SAFER" +"Computer Vision Research Group, COMSATS Institute of Information" +"TNLIST, Tsinghua University, Beijing, 100084, China" +"School of Computer Science, University of Lincoln, U.K" +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +Language Technologies Institute +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"Birkbeck College, University of London" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +Nokia Bell Labs and University of Oxford +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"VISLab, EBUII-216, University of California Riverside" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Computer Science and Engineering, Easwari Engineering College, India" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Assiut University, Assiut 71515, Egypt" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +"Hasan Kalyoncu University, Gaziantep, Turkey" +"Computer Science Division, The Open University of Israel" +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Facebook AI Research, 2Dartmouth College" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +"Key Lab. of Machine Perception, School of EECS, Peking University" +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +Thesis. Rochester Institute of Technology. Accessed from +cid:63)Stanford University +"The Robotics Institute, Carnegie Mellon University" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +State University of Feira de Santana (UEFS +University of Siegen +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +"USC IRIS Lab, University of Southern California" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +"EEMCS, University of Twente, Netherlands" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"Electrical and Computer Engineering, The University of Memphis" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"Machine Intelligence Lab (MIL), Cambridge University" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"Technology, University of Oradea 410087, Universitatii 1, Romania" +"University Health Board, Swansea, United Kingdom" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"Institute for Computer Graphics and Vision, Graz University of Technology" +"School of Computer Engineering, Sejong University, Seoul, Korea" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +"Governance, Keio University" +"cid:63)Queen Mary University of London, Imperial College London" +"RGPV University, Indore" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +Honda Research Institute +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +Sarhad University of Science and Information Technology +"University of Twente, EEMCS, Netherlands" +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +"University of Illinois, Urbana-Champaign University of California, San Diego" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"Michigan State University, East Lansing, MI 48824, U.S.A" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +"Asian Institute of Technology, Pathumthani, Thailand" +"Center for Arti cial Vision Research, Korea University" +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +"Technical University of Munich, Germany" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"Laboratory, University of Houston, Houston, TX, USA" +"School of Computer Science, University of Lincoln, United Kingdom" +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +Institute of Deep Learning +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"FI-90014 University of Oulu, Finland" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +"Arts Media and Engineering, Arizona State University" +University of Beira Interior +"Institute of Biochemistry, University of Balochistan, Quetta" +Ho Chi Minh City University of +"Asia University, Taichung, Taiwan" +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +"New York University Shanghai, 1555 Century Ave, Pudong" +Facebook 4Texas AandM University 5IBM Research +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +yAristotle University of Thessaloniki +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"CVSSP, University of Surrey" +ShahidBeheshti University +"Electronics Engineering, National Institute of Technical Teachers" +"Sichuan Fine Arts Institute, Chongqing, China" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +"Institute for Electronics, Signal Processing and Communications" +National Institute of Development Administration +"EEMCS, University of Twente, The Netherlands" +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +"College of Sciences, Northeastern University, Shenyang 110819, China" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +Dietrich College of Humanities and Social Sciences +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"School of Information Technology and Electrical Engineering, The University of Queensland" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"Center for Automation Research, University of Maryland" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +University of Science and Technology Beijing +"Computational Biomedicine Lab, University of Houston, TX, USA" +Nam k Kemal University +University of Colorado at Colorado Springs +University of Freiburg +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +"College of Science, Menou a University, Menou a 32721, Egypt" +Interactive and Digital Media Institute +"College of Computer and Information Science, Northeastern University, MA, USA" +"School of Computer and Information, Hefei University of Technology, Hefei" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +National Institute of Advanced Industrial +USC Institute for Creative Technologies +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +Institute for Vision Systems Engineering +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +eBay Research Labs +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +Howard Hughes Medical Institute (HHMI +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"and Modeling, Rutgers University" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"National Institute of Informatics, Japan" +"Charotar University of Science and Technology, Changa, India" +UniversityofMaryland +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"Caarmel Engineering College, MG University, Kerala, India" +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"J. P. College of Engineering, India" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +Technical University of Kaiserslautern +"M.Tech Student, SSG Engineering College, Odisha, India" +"learning. As a result of this research, many applications, including video surveillance systems" +Taizhou University +"Goldsmiths, University of London, London, UK" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Multimodal Computing and Interaction, Saarland University, Germany" +"School of Computer Science, Northwestern Polytechnical University, China" +"Intelligent Systems Group, University of Groningen, The Netherlands" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +"P.A. College of Engnineering, Mangalore" +"Beijing Institute of Technology, Beijing 100081, PR China" +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +"School of Computer Science, Carnegie Mellon University, USA" +"Computer Science Division, The Open University of Israel, Israel" +Achariya college of Engineering Technology +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +High Institute of Medical Technologies +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +Sun Yat-Sen (Zhongshan) University +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"Institute for Infocomm Research, Singapore" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"Xi an Jiaotong University, China" +"North Dakota State University, Fargo, ND58105, USA" +University of Twente 2Dublin City University 3Oxford University +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +"University of Technology, Guangzhou, 510640, P.R.China" +"Queen Mary, University of London, E1 4NS, UK" +University of Wollongong. For further information contact the UOW +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +College of Computer Science and Technology +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +Gangnung-Wonju National University +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"cid:2)Imperial College London, U.K" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"Friedrich Schiller University, D-07740 Jena" +Mahatma Gandhi Institute of Technology +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +B.S. University of Indonesia +"University of T ubingen, T ubingen, Germany" +"School of Computer Science, The University of Adelaide, Australia" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +Honda Research Institute USA +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"University of Nottingham, UK, School of Computer Science" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Sogang University, Seoul 121-742, Republic of Korea" +Imperial College London / Twente University +"National University of Singapore, 2Shanghai Jiao Tong University" +"School of Software, Tsinghua University, Beijing 100084, China" +"SRV Engineering College, sembodai, india" +Central Mechanical Engineering Research Institute +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +"Gayathri.S, M.E., Vins Christian college of Engineering" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"CVSSP, University of Surrey, UK" +Sanghvi Institute of Management and Science +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +College of Information and Electrical Engineering +"aResearch Scholar, Anna University, Chennai, Inida" +"School of Computer Science, Tianjin University" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +University of California at San Diego +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"DIEI, University of Perugia, Italy" +"Michigan State University, 3115 Engineering Building" +"Publication details, including instructions for authors and subscription" +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"Jawaharlal Technological University, Anantapur" +SAMSI and Duke University +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"MISC Laboratory, Constantine 2 University, Constantine, Algeria" +"SRV Engineering College, sembodai, india" +"Institute of Computing Technology, CAS" +Institute of control science and engineering +National Institute of Informatics +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +Institute for Robotics and Intelligent Systems +St. Anne s College +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"J. P. College of Engineering, India" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +SUS college of Engineering and Technology +"methods, including graph matching, optical- ow-based" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +"Michigan State University, NEC Laboratories America" +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +M. Mark Everingham University of Leeds +University of California at San Diego +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of" +"Cornell University, Ithaca, NY, U.S.A" +"Pathological anxiety is associated with disrupted cognitive processing, including working memory and" +"Carnegie Mellon University, Electrical and Computer Engineering" +"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China" +University of Sfax +"Arts, Commerce and Science College, Gangakhed, M.S, India" +"Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea" +"Education, Yunnan Normal University, Kunming, China" +"Arti cial Intelligence Institute, China" +"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of" +"Imperial College London, On do" +Xerox Research Center Webster +"University of Minnesota-Twin Cities, Minneapolis" +"School of Computer Science and Technology, Harbin Institute of Technology, China" +"Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College" +"Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China" +"Shanghai Institute of Applied Physics, Chinese Academy of Sciences" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China" +TechnicalUniversityofDenmark +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"School of Computer Science and Technology, Shandong University" +"P.S.R Engineering College, Sivakasi, Tamilnadu, India" +"Institute Polythechnic of Leiria, Portugal" +"Institute for Human-Machine Communication, Technische Universit at M unchen, Germany" +DVMM Lab - Columbia University +cid:1)Institute for Neural Computation +years. According to the definition by the National Institute +Vietnam National University of Agriculture +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +"Information Systems Design, Doshisha University, Kyoto, Japan" +"Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India" +University of Cagliari +Federal University of Para ba +"Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +"Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT" +"b Computer Technology Institute, Beijing Union University, 100101, China" +"University Station C0500, Austin TX 78712, USA" +"Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan" +"Institute of Automation, Chinese Academy of Sciences, China" +Vietnam National University of Agriculture +University of Lac Hong 10 Huynh Van Nghe +"Nanyang Technological University, 2University of California San Diego" +"National Cheng Kung University, Tainan, Taiwan, ROC" +University of Cagliari +"German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany" +"PES Institute of Technology, Bangalore, Karnataka, India" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +Intelligence Computing Research Center +"Technical University of Ostrava, FEECS" +"Much is known on how facial expressions of emotion are produced, including which individual muscles are most active in" +"Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +"Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia" +"School of Information Technology and Management, University of International" +"Gokaraju Rangaraju Institute of Engineering and Technology, Hyd" +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +Polytechnic University of Bucharest +"Scienti c Visualization and Computer Graphics, University of Groningen, Nijenborgh 9, Groningen, The Netherlands" +"University of California, Santa Cruz" +"b Computer Technology Institute, Beijing Union University, 100101, China" +"Intelligent User Interfaces Lab, Ko c University, Turkey" +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada" +"Faculty of Computers and Information, Cairo University, Cairo, Egypt" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China" +"University, Taiwan, R.O.C" +"Beckman Institute, University of Illinois at Urbana-Champaign, IL USA" +Dietrich College Honors Theses +"Institute AIFB, Karlsruhe Institute of Technology, Germany" +St. Anne s College +"FI-90014 University of Oulu, Finland" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA" +"Centre for Intelligent Machines, McGill University, Montreal, Canada" +"University of Milano-Bicocca, Italy" +"Michigan State University, 3115 Engineering Building" +"Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece" +"B.Tech (C.S.E), Bharath University, Chennai" +"Address correspondence to: Karen L. Schmidt, University of" +"School of Computer Science and Engineering, Southeast University, Nanjing 210096, China" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"Graduate School of Doshisha University, Kyoto, Japan" +"EEMCS, University of Twente" +"The Hong Kong Polytechnic University, Hong Kong, SAR, 2University of Technology Sydney, Australia" +Compi`egne University of Technology +"Information Systems Design, Doshisha University, Kyoto, Japan" +"Human Centered Multimedia, Augsburg University, Germany" +"School of Computing and Info. Sciences, Florida International University" +"School of Information Technology and Electrical Engineering, The University of Queensland" +"Computer Science and Engineering, University of Washington, Seattle, WA, USA" +"Mangalore Institute of Engineering and Technology, Badaga" +"University of Barcelona and Computer Vision Centre, Barcelona, Spain" +"Information and Media Processing Research Laboratories, NEC Corporation" +"cid:2)Imperial College London, U.K" +cid:1)Institute for Neural Computation +Opus College of Engineering +"University of Cambridge, The Computer Laboratory, Cambridge CB3 0FD, U.K" +"Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College" +"Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India" +"Human Media Interaction, University of Twente, P.O. Box" +"Recognition, Institute of Automation, Chinese Academy of Sciences" +"College of Computer and Information Science, Northeastern University, MA, USA" +"College of Sciences, Northeastern University, Shenyang 110819, China" +Kyung Hee University South of Korea +"cid:93) Faculty of Science and Technology, University of Macau" +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +"Institute of Psychology, Chinese" +Allen Institute for Arti cial Intelligence (AI +"Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA" +Tsinghua University 4SenseTime +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"Electrical, Computer, Rensselaer Polytechnic Institute" +"College of Computer Science, Zhejiang University, Zhejiang, China" +"Language Technologies Institute, Carnegie Mellon University, PA, USA" +"Imperial College, 180 Queens Gate" +"MIRACL-FSEG, University of Sfax" +"and Mathematical Biosciences Institute, The Ohio State University" +Ministry of Higher Education and Scientific Research / The University of Mustsnsiriyah/Baghdad IRAQ +"Leiden, the Netherlands, 3 Delft University of Technology" +"MIRACL-FS, University of Sfax" +"Program of Computational Science and Engineering, Bo gazi ci University" +"Imperial College London, On do" +"Institute of Media and Information Technology, Chiba University" +"Facebook AI Research, 2Dartmouth College" +Toyota Technological Institute at Chicago +"Graduate School of Information Science and Technology, The University of Tokyo" +"Recanati Genetic Institute, Rabin Medical Center and Schneider Children s Medical Center, Petah Tikva, Israel" +"Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT" +"New York University Shanghai, 1555 Century Ave, Pudong" +"China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of" +"Sensor-enhanced Social Media (SeSaMe) Centre, National University of Singapore, Singapore" +"Computer Vision Group, Xerox Research Center Europe, Meylan, France" +Nokia Bell Labs and University of Oxford +cid:1) Honda Research Institute +"Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain" +"RIEB, Kobe University, Kobe, 657-8501, Japan" +"Queen Mary, University of London, London E1 4NS, UK" +St. Francis Institute of Technology +AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of +"Anjuman College of Engineering and Technology, Sadar, Nagpur, India" +Electronics and Telecommunications Research Institute +"Deva Ramanan, University of California at Irvine" +"Sathyabama University, Chennai, India" +"State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China" +"National Key Laboratory for Novel Software Technology, Nanjing University, China" +"School of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA" +Xerox Research Center Webster +"Technology, University of Oradea 410087, Universitatii 1, Romania" +"B.S., E.E., Bo azi i University" +in The University of Michigan +"Kitware, Inc" +University of Toronto and Recognyz Systems Technologies +"IHCC, RSCS, CECS, Australian National University" +"School of Software, Dalian University of Technology, Tuqiang St. 321, Dalian 116620, China" +"Faculty of EEMCS, University of Twente, The Netherlands" +"Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB" +"Institute for Robotics and Intelligent Systems, USC, CA, USA" +"MTech Student 1, 2, Disha Institute of" +"Michigan State University, NEC Laboratories America" +"MATS University, MATS School of Engineering and Technology, Arang, Raipur, India" +"Head and Neck Surgery, Seoul National University" +"cid:63) Imperial College London, UK" +"Institute for Human-Machine Communication, Technische Universit at M unchen, Germany" +"University of Maryland, College Park" +"Visualization and Computer Vision Lab, GE Global Research Center" +"University of California at Los Angeles, Los Angeles, CA, USA" +"aResearch Scholar, Anna University, Chennai, Inida" +"Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal" +massachusetts institute of technology artificial intelligence laboratory +University of Colorado at Colorado Springs +National Institute of Informatics +"School of Information Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"State Key Lab of CADandCG, Zhejiang University, Hangzhou, Zhejiang, China" +"cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China" +Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the +"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia" +"EEMCS, University of Twente, The Netherlands" +This work was supported by Grant MOP102637 from the Canadian Institutes of Health Research to E.D.R. and the +Queen's University Belfast - Research Portal +"Graduate School of Science and Engineering, Saitama University" +"QCIS, University of Technology Sydney, Sydney, Australia" +at The Australian National University +"Montreal Institute for Learning Algorithms, Universit e de Montr eal" +"Sapienza University of Rome, Italy" +Xidian University 2Xi an Jiaotong University 3Microsoft Research Asia +"Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan" +"Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India" +ATR Interpreting Telecommunications Research Laboratories +ATR Human Information Processing Research Laboratory +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"Institute for Human-Machine Communication, Technische Universit at M unchen" +The University of Adelaide; and Australian Centre for Robotic Vision +Sanghvi Institute of Management and Science +"Chalmers University of Technology, SAFER" +"general term, including collaboration. Interaction determines action on someone" +Boston University Computer Science Technical Report No +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"School of Information Engineering, Nanchang University, China" +Mahatma Gandhi Institute of Technology +"Computer Science, Princeton University, Princeton, NJ, USA" +by grants from the National Institute of Mental Health (MH 15279 and MH067976 (K. Schmidt +"Innopolis University, Kazan, Russia" +"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA" +"Bo gazi ci University, Turkey" +Honda Research Institute +Electronic Engineering and Computer Science Queen Mary University of London +"Graduate Institute of Electronics Engineering, National Taiwan University" +"Informatics and Telematics Institute, Centre for Research and Technology Hellas" +"Cambridge University, Trumpington Street, Cambridge CB21PZ, UK" +"Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching" +"School of Electronics and Information, Northwestern Polytechnical University, China" +"Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan" +"School of Computer Science and Technology, Shandong University" +"Australian National University and NICTA, Australia" +"The Blavatnik School of Computer Science, The Tel-Aviv University" +"School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu" +"Faculty of Electrical Engineering, Czech Technical University in Prague" +"Section of Pathology, Second University of Naples, Via L. Armanni" +"Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada" +"Psychology, University of Illinois, Beckman Institute, Urbana-Champaign, Illinois 61801, University of" +"aSchool of Computing and Mathematics, Charles Sturt University, Bathurst, NSW" +Signal Processing Institute +"School of Computer Science and Technology, Harbin Institute of Technology, China" +"RCC Institute of Information Technology, Kolkata, India" +"Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan" +Psychiatry at the University of Pittsburgh +"USC Information Sciences Institute (ISI), Marina Del Rey, CA" +Xerox Research Center India +"The Robotics Institute, Carnegie Mellon University" +"Numediart Institute, University of Mons" +"Jilin University, Changchun 130012, China" +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea" +"Beijing Institute of Technology, Beijing 100081, PR China" +"NEC Laboratories America, Inc., Cupertino, CA" +"National Institute of Informatics, Tokyo, Japan" +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +"Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA" +"Institute Polythechnic of Leiria, Portugal" +"Faculty of Electrical Engineering, Czech Technical University" +"College of Computer Science, Chongqing University, Chongqing, China" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China" +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology" +"ADSIP Research Centre, University of Central Lancashire" +"Research Center for Intelligent Security Technology, CIGIT" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of" +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"University of Pennsylvania, 2Ryerson University" +Baidu IDL and Tsinghua University +The Chinese University of Hong Kong holds the copyright of this thesis. Any +"National Laboratory of Pattern Recognition, Institute of Automation" +"Islamic Azad University, Mashhad Branch, Mashhad, Iran" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"Kumamoto University, 2-39-1 Kurokami, Kumamoto shi" +"Bilgi University, Dolapdere, Istanbul, TR" +"LIUM Laboratory, Le Mans, France, 2 Idiap Research Institute, Martigny, Switzerland" +"SSN College of Engineering, Chennai, India" +"University Street, Montreal, QC H3A 0E9, Canada" +"2015 Wiley Periodicals, Inc" +"Technical University of Cluj Napoca, 28 Memorandumului Street" +"FX Palo Alto Laboratory, Inc., California, USA" +Nqtional Institute of Standards and Technology +"Aditya College of Engineering, Surampalem, East Godavari" +"bSchool of Computer and Control Engineering, University of Chinese Academy of Sciences" +Purdue Institute for Integrative Neuroscience +"Center for Machine Vision Research, University of Oulu, Finland" +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"Research Center in Information Technologies, Universit e de Mons, Belgium" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +"Rochester Institute of Technology, Rochester, NY" +"Elect. Eng. Faculty, Tabriz University, Tabriz, Iran" +Carnegie Mellon University (CMU +"Facial Image Processing and Analysis Group, Institute for Anthropomatics" +National Institute of Advanced Industrial Science and Technology (AIST +"NICTA , Queensland Research Laboratory, QLD, Australia" +"School of Computer Science, Fudan University, Shanghai, China" +"University at Buffalo, SUNY" +"Foundation University, Rawalpindi 46000, Pakistan" +College of Information Science and Engineering +"Most of the earlier studies mentioned above, including ours" +"Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +DVMM Lab - Columbia University +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China" +"Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China" +College of Information Engineering +"ment of Psychology, University of California, Berkeley" +"University of Freiburg, Germany" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh" +"National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +"Key Lab. of Machine Perception, School of EECS, Peking University" +cid:63)Stanford University +"Institute of Data Science and Technology, Alibaba Group" +"University of Queensland, St Lucia QLD Australia, 5 Institut Universitaire de France, Paris, France" +Rowland Institute at Harvard +"University of Kentucky, 329 Rose St., Lexington, KY, 40508, U.S.A" +"Several methods exists to induce anxiety in healthy individuals, including threat of shock (ToS), the Trier" +Federal University of Campina Grande (UFCG +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK" +"Metron, Inc" +"Motorola, Inc" +"National Cheng Kung University, Tainan, Taiwan, R.O.C" +VEER SURENDRA SAI UNIVERSITY OF +The Australian National University Queensland University of Technology +"Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India" +"1E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2R" +"JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"Vision Science Group, University of California" +Institute for Anthropomatics +"Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of" +"Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey" +"School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China" +"B.A. Earlham College, Richmond Indiana" +"Institute of Computing Technology, CAS, Beijing 100190, China" +Canadian Institute for Advanced Research +"Savitri Bai Phule Pune University, Maharashtra India" +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +"B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"School of Software, Dalian University of Technology, Dalian 116621, China" +"Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India" +"cid:63)Queen Mary University of London, Imperial College London" +"IBM T. J. Watson Research Center, Yorktown Heights, NY, USA" +"Kwangwoon University, 447-1 Wolge-dong, Nowon-Gu, Seoul 139-701, Korea" +"Gujarat Technological University, V.V.Nagar, India" +Khulna University of Engineering and Technology +"Tarbiat Modarres University, Tehran, Iran" +"School of Psychology, Cardiff University, Cardiff, United Kingdom, College of" +"University of Sk vde, Sweden" +"University of Science, Vietnam National University-Ho Chi Minh city" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +Toyota Technological Institute Chicago (TTIC +"ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai" +"D Research Center, Kwangwoon University and Springer" +"Marine Institute, via Torre Bianca, 98164 Messina Italy" +Ho Chi Minh City University of +"School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China" +"University of Twente, EEMCS, Netherlands" +"Electronics and Communication Engineering, Chuo University" +"applications, including texture classification [16], face recognition [12], object detection [10], and" +Beckman Institute for Advanced Science and Technology +"College of Computer and Information Engineering, Nanyang Institute of Technology" +Institute of Informatics - ISLA +"Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu" +"cCentre of Intelligent Machines, McGill University, Montr eal, QC H3A 0E9, Canada" +"Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA" +"Shanghai Institute of Applied Physics, Chinese Academy of Sciences" +"Computer Laboratory, University of Cambridge, Cambridge, UK" +"t2i Lab, Chalmers University of Technology, Gothenburg, Sweden" +"CVSSP, University of Surrey, UK" +"King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia" +Institute for studies in theoretical Physics and Mathematics(IPM +"University of Minnesota-Twin Cities, Minneapolis" +"State Key Laboratory of Brain and Cognitive Science, Institute of Psychology" +"Asian University, Taichung, Taiwan" +"Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India" +"do, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea" +"Robotics Institute, Carnegie Mellon University 3University of Pittsburgh, USA" +Federal University of Technology - Paran a +"Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China" +Indraprastha Institute of Information Technology +"Assam University, Silchar-788011 Assam University, Silchar" +"Key Laboratory of Machine Perception (MOE), School of EECS, Peking University" +"Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA" +"Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA" +IBM T. J. Watson Research Center +"ples of such ne-grained descriptions, including attributes covering detailed" +"Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand" +"University at Buffalo, State University of New York" +"Brown University, 2University of California, San Diego, 3California Institute of Technology" +"aLawrence Technological University, 21000 W Ten Mile Rd., South eld, MI 48075, United States" +"School of Computer Science, Tianjin University" +"The School of Computer Science, Tel-Aviv University, Israel" +"IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore" +"School of Mathematics and Computational Science, Sun Yat-sen University, China" +"Intelligent Recognition and Image Processing Lab, Beihang University, Beijing" +"Lund University, Cognimatics AB" +"Gonda Brain Research Center, Bar Ilan University, Israel" +Departm nt of Information Engin ering Th Chines University of Hong Kong +University of Freiburg +"School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China" +"VSI Lab, Goethe University, Frankfurt, Germany" +Al-Khwarizmi Institute of Computer Science +"University of Zagreb, Unska 3, 10 000 Zagreb" +"School of Computer Science, CECS, Australian National University, Australia" +HELSINKI UNIVERSITY OF TECHNOLOGY +Federal University of Para ba +"Zhejang University, Hangzhou 310027, P.R.China" +"Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom" +"Pattern Recognition Group, University of Siegen" +"University of California at Berkeley, USA" +"Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France" +The University of Queensland in +"School of Engineering, Taylor s University" +"Florian Metze, Chair (Carnegie Mellon University" +TechnicalUniversityofDenmark +"Human Genome Center, Institute of Medical Science" +Sridevi Women's Engineering College +"Dipartimento di Sistemi e Informatica, University of Florence" +"School of Computing and Communications, University of Technology Sydney, Sydney, Australia" +"P.A. College of Engnineering, Mangalore" +"Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne" +"University of Washington, Bothell" +"Sighthound, Inc" +"Nam k Kemal University, Tekirda g, Turkey" +"Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +"cSchool of Astronautics at Beihang University, 100191, Beijing, P.R.C" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS, China" +University of Toulouse II Le Mirail +"Myongji University, Yongin, 449-728 South" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +CUNY Graduate Center and City College +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +"atry, University of Pennsylvania School of Medicine, Philadelphia, PA" +b Institute for Robotics and Intelligent Systems +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +The Hong Kong Polytechnic University 2Harbin Institute of Technology +Samsung Advanced Institute of Technology +"National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China" +Baidu Research Institute of Deep Learning +"The Amsterdam School of Communication Research, University of Amsterdam" +"College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan" +MICC - University of Florence +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China" +"School of Computer Science, University of Lincoln, U.K" +Tomas Bata University in Zl n +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +"Institiude of Computer Science and Technology, Peking University" +"Kyung Hee University, Yongin, Rep. of Korea" +cid:3)The Salk Institute and Howard Hughes Medical Institute +"School of Information Science and Technology, Donghua University, Shanghai 200051, China" +"P.S.R Engineering College, Sivakasi, Tamilnadu, India" +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +"Computer Vision Laboratory, University of Nottingham, Nottingham, UK" +"Visual Geometry Group, University of Oxford" +"School of EECS, Queen Mary University of London, UK" +"Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences" +years. According to the definition by the National Institute +"G.H.Raisoni College of Engg. and Mgmt., Pune, India" +"Institute for Infocomm Research (I2R), A*STAR, Singapore" +"instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i" +In the Graduate College +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +Helsinki University of Technology Laboratory of Computational Engineering Publications +Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university +"University of Exceter, Exceter, UK" +"Recognition, Institute of Automation" +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing" +"DISI, University of Trento, Trento, Italy" +Institute of Electrical and Electronics Engineers (IEEE). DOI +"Link oping University, SE-581 83 Link oping, Sweden" +"Mackenzie Presbyterian University, S o Paulo, S o Paulo, Brazil" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +"Dayananda Sagar College of Engg., India" +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"Electrical Engineering Institute, EPFL" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +"Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan" +"School of Computer and Information, Hefei University of Technology, Hefei" +"Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin" +"Engg, Priyadarshini College of" +"Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany" +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +Mitsubishi Electric Research Labs (MERL +"School of Electrical and Computer Engineering, Cornell University" +Slovak University of Technology in +"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China" +"Multimodal Computing and Interaction, Saarland University, Germany" +"Center for Cognitive Neuroscience, Duke University, Durham, North Carolina" +"Computer Vision Group, Friedrich Schiller University Jena" diff --git a/scraper/reports/institutions_not_found/not-found-3.csv b/scraper/reports/institutions_not_found/not-found-3.csv new file mode 100644 index 00000000..e3bc00ca --- /dev/null +++ b/scraper/reports/institutions_not_found/not-found-3.csv @@ -0,0 +1,1373 @@ +"MIRACL-FS, University of Sfax" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"The Blavatnik School of Computer Science, The Tel-Aviv University" +"Deparment of Computing, Imperial College London, UK" +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"School of Computer Science, University of Birmingham, UK" +Stevens Institute of Technology Adobe Systems Inc +"College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +Tomas Bata University in Zl n +"School of Computing and Info. Sciences, Florida International University" +"Numediart Institute, University of Mons" +in the College of Engineering and Computer Science +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +The University of Queensland in +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +M. Mark Everingham University of Leeds +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"School of Computer Science, Fudan University, Shanghai, China" +"BECS, Aalto University, Helsinki, Finland" +"Beihang University 2Gri th University 3University of York, UK" +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +Tsinghua-CUHK Joint Research Center for Media Sciences +Sabanc University +"Viswajyothi College of Engineering and Technology Kerala, India" +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +"School of Computer Science, University of Nottingham" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"University at Buffalo, SUNY" +"University of Maryland, Center for Automation Research" +"MRC Laboratory For Molecular Cell Biology, University College London" +"IslamicAzad University, Qazvin, Iran" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +This article was downloaded from Harvard University s DASH +"Program of Computational Science and Engineering, Bo gazi ci University" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"DISI, University of Trento, Italy" +College of Information Engineering +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +University of California at Berkeley / ICSI +"Intelligent User Interfaces Lab, Ko c University, Turkey" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +Honda Fundamental Research Labs +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +"University of Zaragoza, Spain" +"Assam University, Silchar-788011 Assam University, Silchar" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +"Grif th University, QLD, Australia" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +"Asian University, Taichung, Taiwan" +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Sapienza University of Rome, Italy" +"University of Milano-Bicocca, Italy" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"University of S ao Paulo - USP, S ao Paulo - Brazil" +"Machine Perception Laboratory, University of California, San Diego" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +University of Cagliari +"LIP6, UPMC - Sorbonne University, Paris, France" +"Baidu Research, USA 3John Hopkins University" +"Computer Science and Software Engineering, The University of Western Australia" +"Computer Vision Laboratory, The University of Nottingham" +"L3S Research Center, Hannover, Germany" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"he University of Hong Kong, Pokfulam" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +"image being generated by the model, include Active Appearance" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"School of Computer Science and Information Systems, Birkbeck College, University of London" +"Queen Mary, University of London" +University of Sfax +SUS college of Engineering and Technology +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +College of Information Science and Engineering +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"Institute for Neural Computation, University of California, San Diego" +"Proto Labs, Inc" +Institute of Psychology and Behavioral Sciences +ATR Interpreting Telecommunications Research Laboratories +Fraunhofer Institute for Integrated Circuits IIS +"Chalmers University of Technology, SAFER" +"Computer Vision Research Group, COMSATS Institute of Information" +"TNLIST, Tsinghua University, Beijing, 100084, China" +"School of Computer Science, University of Lincoln, U.K" +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +Language Technologies Institute +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"Birkbeck College, University of London" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +Nokia Bell Labs and University of Oxford +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"VISLab, EBUII-216, University of California Riverside" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Computer Science and Engineering, Easwari Engineering College, India" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Assiut University, Assiut 71515, Egypt" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +"Hasan Kalyoncu University, Gaziantep, Turkey" +"Computer Science Division, The Open University of Israel" +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Facebook AI Research, 2Dartmouth College" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +"Key Lab. of Machine Perception, School of EECS, Peking University" +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +Thesis. Rochester Institute of Technology. Accessed from +cid:63)Stanford University +"The Robotics Institute, Carnegie Mellon University" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +State University of Feira de Santana (UEFS +University of Siegen +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +"USC IRIS Lab, University of Southern California" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +"EEMCS, University of Twente, Netherlands" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"Electrical and Computer Engineering, The University of Memphis" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"Machine Intelligence Lab (MIL), Cambridge University" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"Technology, University of Oradea 410087, Universitatii 1, Romania" +"University Health Board, Swansea, United Kingdom" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"Institute for Computer Graphics and Vision, Graz University of Technology" +"School of Computer Engineering, Sejong University, Seoul, Korea" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +"Governance, Keio University" +"cid:63)Queen Mary University of London, Imperial College London" +"RGPV University, Indore" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +Honda Research Institute +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +Sarhad University of Science and Information Technology +"University of Twente, EEMCS, Netherlands" +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +"University of Illinois, Urbana-Champaign University of California, San Diego" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"Michigan State University, East Lansing, MI 48824, U.S.A" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +"Asian Institute of Technology, Pathumthani, Thailand" +"Center for Arti cial Vision Research, Korea University" +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +"Technical University of Munich, Germany" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"Laboratory, University of Houston, Houston, TX, USA" +"School of Computer Science, University of Lincoln, United Kingdom" +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +Institute of Deep Learning +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"FI-90014 University of Oulu, Finland" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +"Arts Media and Engineering, Arizona State University" +University of Beira Interior +"Institute of Biochemistry, University of Balochistan, Quetta" +Ho Chi Minh City University of +"Asia University, Taichung, Taiwan" +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +"New York University Shanghai, 1555 Century Ave, Pudong" +Facebook 4Texas AandM University 5IBM Research +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +yAristotle University of Thessaloniki +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"CVSSP, University of Surrey" +ShahidBeheshti University +"Electronics Engineering, National Institute of Technical Teachers" +"Sichuan Fine Arts Institute, Chongqing, China" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +"Institute for Electronics, Signal Processing and Communications" +National Institute of Development Administration +"EEMCS, University of Twente, The Netherlands" +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +"College of Sciences, Northeastern University, Shenyang 110819, China" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +Dietrich College of Humanities and Social Sciences +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"School of Information Technology and Electrical Engineering, The University of Queensland" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"Center for Automation Research, University of Maryland" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +University of Science and Technology Beijing +"Computational Biomedicine Lab, University of Houston, TX, USA" +Nam k Kemal University +University of Colorado at Colorado Springs +University of Freiburg +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +"College of Science, Menou a University, Menou a 32721, Egypt" +Interactive and Digital Media Institute +"College of Computer and Information Science, Northeastern University, MA, USA" +"School of Computer and Information, Hefei University of Technology, Hefei" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +National Institute of Advanced Industrial +USC Institute for Creative Technologies +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +Institute for Vision Systems Engineering +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +eBay Research Labs +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +Howard Hughes Medical Institute (HHMI +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"and Modeling, Rutgers University" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"National Institute of Informatics, Japan" +"Charotar University of Science and Technology, Changa, India" +UniversityofMaryland +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"Caarmel Engineering College, MG University, Kerala, India" +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"J. P. College of Engineering, India" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +Technical University of Kaiserslautern +"M.Tech Student, SSG Engineering College, Odisha, India" +"learning. As a result of this research, many applications, including video surveillance systems" +Taizhou University +"Goldsmiths, University of London, London, UK" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Multimodal Computing and Interaction, Saarland University, Germany" +"School of Computer Science, Northwestern Polytechnical University, China" +"Intelligent Systems Group, University of Groningen, The Netherlands" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +"P.A. College of Engnineering, Mangalore" +"Beijing Institute of Technology, Beijing 100081, PR China" +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +"School of Computer Science, Carnegie Mellon University, USA" +"Computer Science Division, The Open University of Israel, Israel" +Achariya college of Engineering Technology +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +High Institute of Medical Technologies +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +Sun Yat-Sen (Zhongshan) University +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"Institute for Infocomm Research, Singapore" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"Xi an Jiaotong University, China" +"North Dakota State University, Fargo, ND58105, USA" +University of Twente 2Dublin City University 3Oxford University +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +"University of Technology, Guangzhou, 510640, P.R.China" +"Queen Mary, University of London, E1 4NS, UK" +University of Wollongong. For further information contact the UOW +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +College of Computer Science and Technology +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +Gangnung-Wonju National University +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"cid:2)Imperial College London, U.K" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"Friedrich Schiller University, D-07740 Jena" +Mahatma Gandhi Institute of Technology +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +B.S. University of Indonesia +"University of T ubingen, T ubingen, Germany" +"School of Computer Science, The University of Adelaide, Australia" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +Honda Research Institute USA +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"University of Nottingham, UK, School of Computer Science" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Sogang University, Seoul 121-742, Republic of Korea" +Imperial College London / Twente University +"National University of Singapore, 2Shanghai Jiao Tong University" +"School of Software, Tsinghua University, Beijing 100084, China" +"SRV Engineering College, sembodai, india" +Central Mechanical Engineering Research Institute +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +"Gayathri.S, M.E., Vins Christian college of Engineering" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"CVSSP, University of Surrey, UK" +Sanghvi Institute of Management and Science +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +College of Information and Electrical Engineering +"aResearch Scholar, Anna University, Chennai, Inida" +"School of Computer Science, Tianjin University" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +University of California at San Diego +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"DIEI, University of Perugia, Italy" +"Michigan State University, 3115 Engineering Building" +"Publication details, including instructions for authors and subscription" +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"Jawaharlal Technological University, Anantapur" +SAMSI and Duke University +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"MISC Laboratory, Constantine 2 University, Constantine, Algeria" +"SRV Engineering College, sembodai, india" +"Institute of Computing Technology, CAS" +Institute of control science and engineering +National Institute of Informatics +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +Institute for Robotics and Intelligent Systems +St. Anne s College +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"J. P. College of Engineering, India" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +SUS college of Engineering and Technology +"methods, including graph matching, optical- ow-based" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +"Michigan State University, NEC Laboratories America" +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +M. Mark Everingham University of Leeds +University of California at San Diego +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of" +"Cornell University, Ithaca, NY, U.S.A" +"Pathological anxiety is associated with disrupted cognitive processing, including working memory and" +"Carnegie Mellon University, Electrical and Computer Engineering" +"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China" +University of Sfax +"Arts, Commerce and Science College, Gangakhed, M.S, India" +"Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea" +"Education, Yunnan Normal University, Kunming, China" +"Arti cial Intelligence Institute, China" +"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of" +"Siemens Corporate Research, 755 College Road East, Princeton, NJ" +"CAS), Institute of Computing Technology, CAS, Beijing 100190, China" +"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China" +"Institute of Biochemistry, University of Balochistan, Quetta" +"School of Engineering, University of Portsmouth, United Kingdom" +"S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India" +"bDiscipline of Business Analytics, The University of Sydney Business School" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"Najafabad Branch, Islamic Azad University" +"Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA" +"The school of Data Science, Fudan University" +"School of Mathematical Science, Peking University, China" +"School of Computer Science, The University of Adelaide, Australia" +Institute of Interdisciplinary Studies in Identity Sciences (IISIS +"School of Computing, National University of Singapore, SG" +University of California at Berkeley / ICSI +"School of Electrical Engineering and Automation, Harbin Institute of Technology" +Massachusettes Institute of Technology +"IBM Watson Research Center, Armonk, NY, USA" +B.S. (Cornell University +"School of IoT Engineering, Jiangnan University, Wuxi, 214122, China" +"Assiut University, Assiut 71515, Egypt" +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University" +Shandong Women s University +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"School of Computer Science and Technology, Harbin Institute of" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"Key Lab. of Machine Perception, School of EECS, Peking University, China" +"Faculty of Science and Engineering, Waseda University, Tokyo, Japan" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"Kurukshetra University, Kurukshetra-136 119, Haryana, INDIA" +Research Center E. Piaggio +"Federal University Technology Akure, PMB 704, Akure, Nigeria" +Thesis. Rochester Institute of Technology. Accessed from +"The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA" +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +"Beihang University 2Gri th University 3University of York, UK" +"University of Oviedo, Campus de Viesques, 33204 Gij n" +"Institute for Vision and Graphics, University of Siegen, Germany" +"P. O. Box 4500 Fin-90014 University of Oulu, Finland" +Malaviya National Institute of Technology +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"Engineering and Natural Science, Sabanci University, Istanbul, Turkey" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +"Faculty of Science, University of Amsterdam, The Netherlands" +National Taiwan University of Science and +"Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan" +"DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy" +"School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +"CollegePark, MD" +"Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of" +"School of Computer Science, Wuhan University, P.R. China" +"School of Electronic and Computer Engineering, Peking University" +COMSATS Institute of Information Technology Wah Cantt +yThe University of Tokyo +"School of Electronics and Computer Engineering, Peking University" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +Computer and Vision Research Center +"Faculty of Computer Science, University of A Coru na, Coru na, Spain" +"Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland" +"Robotics Institute, Carnegie Mellon University, USA" +"Paran a Federal University, Curitiba, Brazil" +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +"Nanjing, 210094, China, 3 School of Automation, Nanjing University of Posts and Telecommunications" +"Tsinghua University, State Key Lab. of Intelligent" +PES Modern College of Engg +K. N. Toosi University of +"School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China" +Research Center for Information +"Rowland Institute at Harvard, Cambridge, MA 02142, USA" +"College of Computer Science, Zhejiang University, Hangzhou, China" +"School of Computer Science, University of Birmingham, UK" +"University of Tokyo, 4-6-1 Shirokanedai" +"Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology" +Achariya college of Engineering Technology +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep" +at West Virginia University +"Grad. School at Shenzhen, Tsinghua University" +State University of Feira de Santana (UEFS +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Catholic University of Rio de Janeiro, Brazil" +"Asian Institute of Technology, Pathumthani, Thailand" +"Indian Institute of Informaiton Technology, Allahabad, India" +"Indian Institute of Technology, Madras, Chennai 600036, INDIA" +yAristotle University of Thessaloniki +Korea Advanced Institute of Science and Technology (KAIST +"B.S. Abdur Rahman University, Chennai-48, India" +Imperial College London / Twente University +University of Chinese Academy of +Mans eld College +"LIP6, UPMC - Sorbonne University, Paris, France" +"University of Santiago de Compostela, Santiago de Compostela, Spain" +"School of Computer Science, Northwestern Polytechnical University, China" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"Middlesex University London, 4International Hellenic University" +"International Islamic University, Islamabad 44000, Pakistan" +"College of Computing, Georgia Institute of Technology" +"Australian National University, and NICTA" +"M.P.M. College, Bhopal, India" +"California State University, Fullerton, USA" +"EEMCS, University of Twente Enschede, The Netherlands" +"IIIS, Tsinghua University" +"National Tsing Hua University, Hsin-Chu, Taiwan" +M.S. Brunel University of West London +"Research Center CENTIA, Electronics and Mechatronics" +IBM China Research Lab +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +North Carolina AandT State University +"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China" +"University of Queensland, School of ITEE, QLD 4072, Australia" +The Author 2014. Published by Oxford University Press +"Institute of Automation, Chinese Academy of" +"University of Lincoln, School of Computer Science, U.K" +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"cid:2) Imperial College London, United Kingdom" +"Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India" +"State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia" +"College of Medical Informatics, Chongqing Medical University, Chongqing, China" +Australian National University and NICTA +"Waseda University, Tokyo, Japan" +"School of Computing Sciences, University of East Anglia, Norwich, UK" +"Beijing University of Posts and Telecommunications, Beijing, China. 2School of" +German Research Center for Arti cial Intelligence (DFKI +"Baingio Pinna, University of" +"abroad, or from public or private research centers" +"IslamicAzad University, Qazvin, Iran" +"Institute for Neural Computation, University of California, San Diego" +"The Blavatnik School of Computer Science, Tel-Aviv University, Israel" +"GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA" +"School of Information Science and Engineering, Central South University, Changsha" +"Vision Systems, Inc" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"Graduate School of Information Science, Nagoya University, Japan" +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"School of Computer Science, Carnegie Mellon University, PA, USA" +"Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland" +"Sathyabama University Old Mamallapuram Road, Chennai, India" +"Southeast University, Nanjing 211189, China" +"China-Singapore Institute of Digital Media, Singapore" +"University of Notre Dame, 2IIIT-Delhi" +"Image Processing Center, Beihang University" +"Caarmel Engineering College, MG University, Kerala, India" +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +College of Computer Science and Technology +"School of Informatics, University of Edinburgh, UK" +"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia" +"Iftm University, Moradabad-244001 U.P" +"Biometric and Image Processing Lab, University of Salerno, Italy" +"School of Data and Computer Science, Sun Yat-sen University" +Northeastern University 2Microsoft Research 3City University of New York +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"University of California at San Diego, La Jolla, CA" +"University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia" +c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved +"University of Toronto, Toronto, ON M5S 2G4, Canada" +"University of California at Irvine, Irvine, CA" +"University Hospital Jena, Germany" +"RGPV University, Indore" +Facebook 4Texas AandM University 5IBM Research +"Mancha, Spain, Imperial College, London, UK" +"Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea" +"University of Zaragoza, Spain" +"Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China" +"University of Florence, Italy" +"Key Laboratory of Machine Perception, Peking University, Beijing" +"K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"School of Computer Science and Technology, Shandong Institute of Business and Technology" +"College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China" +"University of Cambridge, UK 2Carnegie Mellon University, USA" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +"Bo gazic i University, Istanbul, Turkey" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +"Kong Polytechnic University, Kowloon, Hong Kong" +Gangnung-Wonju National University +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +"The School of Electrical Electronic and Control Engineering, Kongju National University" +Taizhou University +"Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic" +"ECE dept, University of Miami" +"Qihoo 360 AI Institute, Beijing, China" +University of California at Berkeley +"Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen" +"Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 T bingen, Germany" +Research Center and Laboratoire +"EECS, Syracuse University, Syracuse, NY, USA" +"University of Cambridge, Computer Laboratory, UK" +Moradabad Institute of Technology +"ITCS, Tsinghua University" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +"Dnyanopasak College Parbhani, M.S, India" +"Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran" +"School of Computer Science and Software Engineering, Shenzhen University" +"Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India" +Palo Alto Research Center (PARC +"Universit Paris-Dauphine, PSL Research University, CNRS, UMR" +"Institute of Industrial Science, The University of Tokyo" +"State Key Laboratory of Integrated Services Networks, Xidian University, Xi an 710071 China" +"National Tsing-Hua University, Hsin-Chu, Taiwan" +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +"S J B Institute of Technology, Bangalore, Karnataka, India" +"ITEE, The University of Queensland, Australia" +"ECE, National University of Singapore, Singapore" +Central Mechanical Engineering Research Institute +"UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea" +"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong" +"Computer Science and Engineering, Anna University, India" +"QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia" +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"Intelligent Systems Group, University of Groningen, The Netherlands" +Curtin University of Technology +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"Chandigarh Engg. College, Mohali, Punjab, India" +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems" +"Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea" +"School of Psychology, University of Central Lancashire" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"MES College of Engineering, Kuttippuram" +"Korean Research Institute of Standards and Science (KRISS), Korea" +"Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai" +"School of Computer Science, The University of Nottingham" +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +University of Applied Sciences Darmstadt - CASED +Sponsors: Machine Intelligence Research Labs (MIR Labs +"Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark" +"Birkbeck College, University of London" +"School of Data and Computer Science, Sun Yat-sen University, P.R.China" +"iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore" +"University of California, Los Angeles" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"School of Electronic and Computer Engineering, Peking University" +"RGPV University, Indore" +"School of Engineering, University of Portsmouth, United Kingdom" +"M.Tech Scholar, MES College of Engineering, Kuttippuram" +"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China" +"LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France" +"Exploratory Computer Vision Group, IBM T. J. Watson Research Center" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"K.S.R. College Of Engineering, Tiruchengode, India" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"University of Tokyo, 4-6-1 Shirokanedai" +"Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China" +yAristotle University of Thessaloniki +"School of Data Science, Fudan University, China" +University of Applied Sciences Darmstadt - CASED +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +"School of Electrical and Computer Engineering, RMIT University" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Chandigarh Engg. College, Mohali, Punjab, India" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"Faculty of EEMCS, Delft University of Technology, The Netherlands" +China University of Mining and Technol +"University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia" +"The Blavatnik School of Computer Science, Tel-Aviv University, Israel" +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +"QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia" +"School of Electronics and Computer Engineering, Peking University" +"Catholic University of Rio de Janeiro, Brazil" +"Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea" +University of Washington and Google Inc +Imperial College London / Twente University +c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved +"University of Zaragoza, Spain" +"Siemens Corporate Research, 755 College Road East, Princeton, NJ" +"School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China" +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +"Key Lab. of Machine Perception, School of EECS, Peking University, China" +"Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA" +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"Shaoguan University, Da Tang Lu" +"International Islamic University, Islamabad 44000, Pakistan" +"Engineering and Natural Science, Sabanci University, Istanbul, Turkey" +"School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China" +"Computer Science Division, The Open University of Israel, Israel" +Mans eld College +"PanimalarInstitute of Technology, Tamilnadu, India" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"University of Lincoln, School of Computer Science, U.K" +"School of Computer Science and Software Engineering, Shenzhen University" +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey" +"P.G. Student, SRV Engineering College, sembodai, India" +"Najafabad Branch, Islamic Azad University" +Ho Chi Minh City University of Science +"School of Computer Science, The University of Adelaide, Australia" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +"School of Electronic and Computer Engineering, Peking University" +"School of Electronic Engineering and Computer Science, Peking University, 100871, China" +"Institute of Industrial Science, The University of Tokyo" +"School of Computer Science and Technology, Shandong Institute of Business and Technology" +"in signed languages, including American Sign Language (ASL). Gestures such" +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"BECS, Aalto University School of Science and Technology, Finland" +"College of Medical Informatics, Chongqing Medical University, Chongqing, China" +"State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China" +"Amazon, Inc" +"Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein" +Mitsubishi Electric Research Laboratory +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Laboratory, University of Houston, Houston, TX, USA" +"Exploratory Computer Vision Group, IBM T. J. Watson Research Center" +"The school of Data Science, Fudan University" +College of Image Arts and Sciences +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney" +Australian National University and NICTA +"Rowland Institute at Harvard, Cambridge, MA 02142, USA" +"GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA" +"Kong Polytechnic University, Kowloon, Hong Kong" +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Center for Automation Research, University of Maryland" +"Chonbuk National University, Jeonju 561-756, Korea" +c(cid:13)The Chinese University of Hong Kong +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +"Computer Science, Brown University, Providence, RI, USA" +Institute of Interdisciplinary Studies in Identity Sciences (IISIS +"Institute of Biochemistry, University of Balochistan, Quetta" +"ITCS, Tsinghua University" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep" +A dissertation submitted to the University of Bristol in accordance with the requirements +"Universit Paris-Dauphine, PSL Research University, CNRS, UMR" +"University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +University of California at Berkeley / ICSI +"ECE, National University of Singapore, Singapore" +"Institute of Automation, Chinese Academy of" +This work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E +"Sogang University, Seoul 121-742, Republic of Korea" +"Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"School of Data and Computer Science, Sun Yat-sen University, P.R.China" +"West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA" +"S J B Institute of Technology, Bangalore, Karnataka, India" +"School of Information Science and Engineering, Southeast University, Nanjing, China" +"Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India" +"K.S.R. College Of Engineering, Tiruchengode, India" +"Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen" +"School of Computer Science and Engineering, Nanjing University of Science and Technology" +Formerly: Texas AandM University +"IslamicAzad University, Qazvin, Iran" +K. N. Toosi University of +"Key Lab. of Machine Perception, School of EECS, Peking University, China" +"School of Electronics Engineering and Computer Science, Peking University" +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +Achariya college of Engineering Technology +"School of Information Systems, Singapore Management University, Singapore" +"Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +"Bo gazic i University, Istanbul, Turkey" +Research Center and Laboratoire +"Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea" +"UniversityofMaryland, CollegePark, MD" +"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +"Catholic University of Rio de Janeiro, Brazil" +"Middlesex University London, 4International Hellenic University" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore" +University of Applied Sciences Darmstadt - CASED +"Computer Science and Engineering, Anna University, India" +"International Islamic University, Islamabad 44000, Pakistan" +"University of Notre Dame, 2IIIT-Delhi" +"Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest" +IBM China Research Lab +"cid:2) Imperial College London, United Kingdom" +"Indian Institute of Technology, Madras" +"CVSSP, University of Surrey" +Curtin University of Technology +"SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University" +German Research Center for Arti cial Intelligence (DFKI +"Robotics Institute, Carnegie Mellon University, USA" +"Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular" +Research Center for Information +"Advanced Engineering, The Chinese University of Hong Kong" +"Image Processing Center, Beihang University" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +"California State University, Fullerton, USA" +"School of Information Science and Technology, Sun Yat-sen University, China" +"Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +"Interactive and Digital Media Institute, National University of Singapore, SG" +"University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia" +"National Tsing-Hua University, Hsin-Chu, Taiwan" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy" +"National Tsing Hua University, Hsin-Chu, Taiwan" +"School of Electronics and Computer Engineering, Peking University" +"School of IoT Engineering, Jiangnan University, Wuxi, 214122, China" +"School of Computer Science, Sichuan University, Chengdu, China" +"Tsinghua University, State Key Lab. of Intelligent" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +"Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +"Computer Vision Group, Friedrich Schiller University of Jena, Germany" +"University of Pisa, Largo Lucio" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +B.S. (Cornell University +"Center for Brains, Minds and Machines, McGovern Institute, MIT" +Facebook 4Texas AandM University 5IBM Research +National Taiwan University of Science and +"Engineering, G.H.Raisoni College of Engineering" +"Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea" +"Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology" +"and education use, including for instruction at the authors institution" +"Southeast University, Nanjing 211189, China" +"School of Computer Science and Engineering, Sichuan University, China" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK" +"Jawaharlal Technological University, Anantapur" +"School of Computing Sciences, University of East Anglia, Norwich, UK" +China University of Mining and Technol +"KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc" +"Language and Brain Lab, Simon Fraser University, Canada" +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"P. O. Box 4500 Fin-90014 University of Oulu, Finland" +"School of Data and Computer Science, Sun Yat-sen University" +"School of Electrical Engineering and Automation, Harbin Institute of Technology" +"UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea" +Massachusettes Institute of Technology +Submitted to the Institute for Graduate Studies in +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"bDiscipline of Business Analytics, The University of Sydney Business School" +"Electronics and Computer Science, University of Southampton, Southampton, Hampshire" +"QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia" +"Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"Gatsby Computational Neuroscience Unit, University College London, London, UK" +"Indian Institute of Technology, Madras, Chennai 600036, INDIA" +"China-Singapore Institute of Digital Media, Singapore" +Datta Meghe College of Engineering +"College of Computer and Information Science, Southwest University, Chongqing 400715, China" +"Institute for Vision and Graphics, University of Siegen, Germany" +"Islamic Azad University, Qazvin, Iran" +"The Open University of Israel, Israel" +Nanjing University of Science and +"School of Mathematical Science, Peking University, China" +"University of Santiago de Compostela, Santiago de Compostela, Spain" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +University of California at Berkeley / ICSI +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +University of California at Berkeley +"Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland" +"School of Computing, Staffordshire University" +"Beijing University of Posts and Telecommunications, Beijing, China. 2School of" +"School of Electrical Engineering and Automation, Harbin Institute of Technology" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland" +Max Planck Institute f ur biologische Kybernetik +"Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +"Engineering, University of Dundee" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic" +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +A dissertation submitted to the University of Bristol in accordance with the requirements +"Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan" +"abroad, or from public or private research centers" +This work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E +"Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA" +"Australian National University, and NICTA" +"GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA" +and the institute of engineering and science +"Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK" +"aDivision of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences" +"DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"Qihoo 360 AI Institute, Beijing, China" +"State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia" +"Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey" +"Center for Information Science, Peking University, Beijing 100871, China" +"Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"Waseda University, Tokyo, Japan" +"College of Medicine, Seoul National University" +"School of Data and Computer Science, Sun Yat-Sen University, China" +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +Submitted to the Institute for Graduate Studies in +"PanimalarInstitute of Technology, Tamilnadu, India" +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +"LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France" +"University of Zaragoza, Spain" +"Shaoguan University, Da Tang Lu" +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"California State University, Fullerton, USA" +"ZHAW Datalab, Zurich University of Applied Sciences" +University of Applied Sciences Darmstadt - CASED +"Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel" +"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +"School of Information Science and Engineering, Southeast University, Nanjing, China" +"Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran" +"The School of Electrical Electronic and Control Engineering, Kongju National University" +"to process in all the illumination conditions, including total" +Mitsubishi Electric Research Laboratory +"Grad. School at Shenzhen, Tsinghua University" +"Kurukshetra University, Kurukshetra-136 119, Haryana, INDIA" +"School of Information Science and Technology, Sun Yat-sen University, China" +"School of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications" +"M.Tech Scholar, MES College of Engineering, Kuttippuram" +Northeastern University 2Microsoft Research 3City University of New York +Korea Advanced Institute of Science and Technology (KAIST +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +"University of Notre Dame, 2IIIT-Delhi" +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"IBM Watson Research Center, Armonk, NY, USA" +"Middlesex University London, 4International Hellenic University" +Australian National University and NICTA +"UniversityofMaryland, CollegePark, MD" +"University of Freiburg, Instit ut f ur Informatik" +"Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark" +"Institute for Neural Computation, University of California, San Diego" +"School of Computing, National University of Singapore, SG" +"Intelligent Systems Group, University of Groningen, The Netherlands" +"School of Data and Computer Science, Sun Yat-sen University" +"School of Computer Science and Software Engineering, Shenzhen University" +"School of Mathematical Science, Peking University, China" +"KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc" +"Faculty of Computer Science, Dalhousie University, Halifax, Canada" +"International Islamic University, Islamabad 44000, Pakistan" +"Image Processing Center, Beihang University" +"School of Computer Science and Technology, Harbin Institute of" +Dalle Molle Institute for Arti cial Intelligence +"Dnyanopasak College Parbhani, M.S, India" +"Current Address: Research Institute of Child Development and Education, University of Amsterdam" +IBM China Research Lab +"Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology" +"The Remote Sensing Technology Institute (IMF), German Aerospace Center" +Nanjing University of Science and +"SRI International, Menlo Park California / *Brooklyn College, Brooklyn New York" +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +"Tsinghua University, State Key Lab. of Intelligent" +"Chandigarh Engg. College, Mohali, Punjab, India" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +University of Wollongong. For further information contact the UOW +"School of Psychology, University of Central Lancashire" +"RGPV University, Indore" +"P. O. Box 4500 Fin-90014 University of Oulu, Finland" +University of Washington and Google Inc +"United States of America, State University of New York Albany, Albany" +"engineering, Government College of Engineering Kannur, Kerala, India" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea" +"Nokia Research Center, Tampere, Finland" +"Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic" +Research Center for Information +Research Center E. Piaggio +"The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA" +"Institute of Software, Chinese Academy of Sciences, Beijing 100190, China" +"School of Computer Science, The University of Nottingham" +"School of Computer Science, Carnegie Mellon University, PA, USA" +B.S. (Cornell University +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +Taizhou University +"Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA" +"LIP6, UPMC - Sorbonne University, Paris, France" +"School of Computer Science and Technology, Tianjin University, China" +"Sorbonne Universit s, UPMC University Paris 06, Paris, France" +"Center for Brain Science, Harvard University, Cambridge, MA 02138 USA" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"Biometric and Image Processing Lab, University of Salerno, Italy" +"ITEE, The University of Queensland, Australia" +"Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea" +"School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China" +PES Modern College of Engg +Facebook 4Texas AandM University 5IBM Research +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +"University Hospital Jena, Germany" +"GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin" +"b School of Business, Reykjavik University, Reykjavik, Iceland" +University of Bristol - Explore Bristol Research +COMSATS Institute of Information Technology Wah Cantt +Moradabad Institute of Technology +via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to +"Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA" +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +"Federal Institute of Science and Technology, Mookkannoor" +"Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China" +"Laboratory, University of Houston, Houston, TX, USA" +"College of Computer Science and Technology, Chongqing" +State University of Feira de Santana (UEFS +National Taiwan University of Science and +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA" +"School of IoT Engineering, Jiangnan University, Wuxi, 214122, China" +"School of Computer Science and Engineering, South China University of Technology" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +Malaviya National Institute of Technology +"School of Electronics Engineering and Computer Science, Peking University" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"Indian Institute of Technology, Madras, Chennai 600036, INDIA" +"Institute of Industrial Science, The University of Tokyo" +"Faculty of Science, University of Amsterdam, The Netherlands" +Formerly: Texas AandM University +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +University of Chinese Academy of +"College of Computing, Georgia Institute of Technology" +"School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China" +"Kong Polytechnic University, Kowloon, Hong Kong" +"Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India" +"and IBUG [32]. All of them cover large variations, including different" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Bo gazic i University, Istanbul, Turkey" +"University of the South Paci c, Fiji" +"and 2Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708" +"Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India" +Institute of Interdisciplinary Studies in Identity Sciences (IISIS +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +Achariya college of Engineering Technology +Shandong Women s University +"Interactive and Digital Media Institute, National University of Singapore, SG" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +"Language and Brain Lab, Simon Fraser University, Canada" +"School of Computer Science, Northwestern Polytechnical University, China" +"Paran a Federal University, Curitiba, Brazil" +"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China" +"University of Cambridge, Computer Laboratory, UK" +"School of Computer Science, The University of Manchester" +"USA, 2Unit for Experimental Psychiatry, University of Pennsylvania School of Medicine" +B.S. University of Indonesia +"Jawaharlal Technological University, Anantapur" +"Institute of Automation, Chinese Academy of" +"Key Laboratory of Machine Perception, Peking University, Beijing" +"State Key Lab of CADandCG, College of Computer Science, Zhejiang University, Hangzhou, China" +"Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan" +"Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA" +"Vision Systems, Inc" +c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved +China University of Mining and Technol +"ECE dept, University of Miami" +"University of Technology, Guangzhou, 510640, P.R.China" +"CAS), Institute of Computing Technology, CAS, Beijing 100190, China" +Mans eld College +"P.G. Student, SRV Engineering College, sembodai, India" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"School of Computer Science, University of Birmingham, UK" +"Learning Systems Group, California Institute of Technology" +Curtin University of Technology +"The school of Data Science, Fudan University" +"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong" +"Division of Computer Science, University of California, Berkeley, CA, USA e-mail" +"School of Engineering, University of Portsmouth, United Kingdom" +"School of Information Systems, Singapore Management University, Singapore" +"CollegePark, MD" +"Gatsby Computational Neuroscience Unit, University College London, London, UK" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Rowland Institute at Harvard, Cambridge, MA 02142, USA" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"Assiut University, Assiut 71515, Egypt" +"PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India" +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +"University of Toronto, Toronto, ON M5S 2G4, Canada" +"EECS, Syracuse University, Syracuse, NY, USA" +Massachusetts Institute of Technology Rapporteur +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"Sathyabama University Old Mamallapuram Road, Chennai, India" +"University of Oradea 410087, Universitatii 1, Romania" +"Heilongjiang University, College of Computer Science and Technology, China" +"Faculty of Computer Science, University of A Coru na, Coru na, Spain" +"University of Cambridge, UK 2Carnegie Mellon University, USA" +"Sogang University, Seoul 121-742, Republic of Korea" +"Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai" +"VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain" +"Korean Research Institute of Standards and Science (KRISS), Korea" +"IIIT-Delhi, India, 2West Virginia University" +"Key Lab. of Machine Perception, School of EECS, Peking University, China" +"and education use, including for instruction at the authors institution" +"School of Computer Science, Sichuan University, Chengdu, China" +"Graduate School of Information Science, Nagoya University, Japan" +"Electronics and Computer Science, University of Southampton, Southampton, Hampshire" +"School of Electronic Engineering and Computer Science, Peking University, 100871, China" +"Computer Science, Brown University, Providence, RI, USA" +"School of Data Science, Fudan University, China" +"Institute of Deep Learning, Baidu Research" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +"School of Computer Science, Wuhan University, P.R. China" +"Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea" +"Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ" +"NEC Laboratories America, Inc" +"b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +"Siemens Corporate Research, 755 College Road East, Princeton, NJ" +"cid:2) Imperial College London, United Kingdom" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +Moradabad Institute of Technology +"Narayana Pharmacy College, Nellore, India" +"LIP6, UPMC - Sorbonne University, Paris, France" +"University of California, Los Angeles" +"Beijing University of Posts and Telecommunications, Beijing, China. 2School of" +yAristotle University of Thessaloniki +"College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi" +"School of Information Science and Engineering, Central South University, Changsha" +University of Washington and Google Inc +"Center for Automation Research, University of Maryland, College Park, MD 20742, USA" +"Heilongjiang University, College of Computer Science and Technology, China" +Vector Institute for Arti cial Intelligence +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia" +"Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA" +"Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea" +"Institute of Systems and Robotics - University of Coimbra, Portugal" +Central Mechanical Engineering Research Institute +"Gatsby Computational Neuroscience Unit, University College London, London, UK" +A dissertation submitted to the University of Bristol in accordance with the requirements +"Pompeu Fabra University, Spain" +"Australian National University, and NICTA" +"International Islamic University, Islamabad 44000, Pakistan" +"Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA" +"BECS, Aalto University, Helsinki, Finland" +"NEC Laboratories America, Inc" +"Caarmel Engineering College, MG University, Kerala, India" +Malaviya National Institute of Technology +"Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands" +"DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy" +"EECS, Syracuse University, Syracuse, NY, USA" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +K. N. Toosi University of +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +Massachusetts Institute of Technology Rapporteur +"Chandigarh Engg. College, Mohali, Punjab, India" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +B.S. (Cornell University +"QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia" +"L3S Research Center, Hannover, Germany" +"College of Computing, Georgia Institute of Technology" +"School of Electrical and Computer Engineering, RMIT University" +"School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China" +"Institute for Neural Computation, University of California, San Diego" +"The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, PA, USA" +yThe University of Tokyo +"Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China" +"Shaoguan University, Da Tang Lu" +"University Hospital Jena, Germany" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +University of California at Berkeley / ICSI +"University of Cambridge, Computer Laboratory, UK" +"School of Computer Science, Sichuan University, Chengdu, China" +"Federal University Technology Akure, PMB 704, Akure, Nigeria" +Max Planck Institute f ur biologische Kybernetik +"Learning Systems Group, California Institute of Technology" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"Vision Systems, Inc" +"ZHAW Datalab, Zurich University of Applied Sciences" +"School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam" +"School of Psychology, University of Central Lancashire" +B.S. University of Indonesia +"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia" +"School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China" +"University of California at Irvine, Irvine, CA" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"University of Queensland, School of ITEE, QLD 4072, Australia" +"IslamicAzad University, Qazvin, Iran" +"Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom" +"School of Data and Computer Science, Sun Yat-Sen University, China" +"School of Informatics, University of Edinburgh, UK" +"United States of America, State University of New York Albany, Albany, New York" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +University of California at Berkeley +Formerly: Texas AandM University +"University of Pisa, Largo Lucio" +"Islamic Azad University, Qazvin, Iran" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"Institute for Vision and Graphics, University of Siegen, Germany" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +"University of Notre Dame, 2IIIT-Delhi" +College of Computer Science and Technology +China University of Mining and Technol +"Universit Paris-Dauphine, PSL Research University, CNRS, UMR" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore" +Central Mechanical Engineering Research Institute +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"Southeast University, Nanjing 211189, China" +"Iftm University, Moradabad-244001 U.P" +"Kurukshetra University, Kurukshetra-136 119, Haryana, INDIA" +"Exploratory Computer Vision Group, IBM T. J. Watson Research Center" +"CAS), Institute of Computing Technology, CAS, Beijing 100190, China" +"University of California at San Diego, La Jolla, CA" +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"School of Data and Computer Science, Sun Yat-Sen University, China" +"Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA" +"Division of Computer Science, University of California, Berkeley, CA, USA e-mail" +"Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey" +"School of Computer Science and Technology, Shandong Institute of Business and Technology" +"School of Computing, Staffordshire University" +University of Bristol - Explore Bristol Research +Northeastern University 2Microsoft Research 3City University of New York +"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +"Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark" +University of Chinese Academy of +Max Planck Institute f ur biologische Kybernetik +"ZHAW Datalab, Zurich University of Applied Sciences" +"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong" +"University of Queensland, School of ITEE, QLD 4072, Australia" +University of California at Berkeley / ICSI +"School of Data and Computer Science, Sun Yat-sen University" +"Grad. School at Shenzhen, Tsinghua University" +"Faculty of Computer Science, University of A Coru na, Coru na, Spain" +"Korean Research Institute of Standards and Science (KRISS), Korea" +"University of Ulsan, Ulsan, Republic of Korea" +"University of Oradea 410087, Universitatii 1, Romania" +"Beijing University of Posts and Telecommunications, Beijing, China. 2School of" +"Research Center CENTIA, Electronics and Mechatronics" +Palo Alto Research Center (PARC +"Institute of Software, Chinese Academy of Sciences, Beijing 100190, China" +"Center for Information Science, Peking University, Beijing 100871, China" +"bDiscipline of Business Analytics, The University of Sydney Business School" +"Image Processing Center, Beihang University" +"School of Computer Science, University of Birmingham, UK" +"Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Center for Automation Research (CfAR), University of Maryland, College Park, MD" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +"IBM Watson Research Center, Armonk, NY, USA" +"EECS, Syracuse University, Syracuse, NY, USA" +PES Modern College of Engg +"ECE dept, University of Miami" +"School of Computer Science, The University of Manchester" +"P.G. Student, SRV Engineering College, sembodai, India" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"EEMCS, University of Twente Enschede, The Netherlands" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"Key Laboratory of Machine Perception, Peking University, Beijing" +"State Key Lab of CADandCG, College of Computer Science, Zhejiang University, Hangzhou, China" +"School of Computer Science and Engineering, Sichuan University, China" +"School of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications" +"Engineering and Natural Science, Sabanci University, Istanbul, Turkey" +"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China" +A dissertation submitted to the University of Bristol in accordance with the requirements +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +"Sogang University, Seoul 121-742, Republic of Korea" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"School of Computing Sciences, University of East Anglia, Norwich, UK" +"Center for Automation Research, University of Maryland, College Park, MD 20740, USA" +"Center for Automation Research, University of Maryland, College Park, MD 20742, USA" +University of Washington and Google Inc +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"College of Computer and Information Science, Southwest University, Chongqing 400715, China" +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain" +"Dnyanopasak College Parbhani, M.S, India" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"Center for Brain Science, Harvard University, Cambridge, MA 02138 USA" +"Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan" +"M.Tech Scholar, MES College of Engineering, Kuttippuram" +"Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular" +"School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China" +"National Tsing Hua University, Hsin-Chu, Taiwan" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam" +"EEMCS, University of Twente Enschede, The Netherlands" +"Computer Vision Group, Friedrich Schiller University of Jena, Germany" +"School of Computer Science, Carnegie Mellon University, PA, USA" +"cid:2) Imperial College London, United Kingdom" +"BECS, Aalto University, Helsinki, Finland" +"Laboratory, University of Houston, Houston, TX, USA" +Research Center and Laboratoire +"Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of" +"MES College of Engineering, Kuttippuram" +"University of the South Paci c, Fiji" +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +"College of Medical Informatics, Chongqing Medical University, Chongqing, China" +"EECS, Syracuse University, Syracuse, NY, USA" +"Gatsby Computational Neuroscience Unit, University College London, London, UK" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta" +"Faculty of Engineering, Ain Shams University, Cairo, Egypt" +"Visual Computing and Communications Lab, Arizona State University" +"Research Reports of CMP, Czech Technical University in Prague, No" +"Robotics Institute, Carnegie Mellon University, USA" +"Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +and the institute of engineering and science +"School of Electronic Engineering and Computer Science, Peking University, 100871, China" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"Computer Science Division, The Open University of Israel, Israel" +University of Washington and Google Inc +"College of Computing, Georgia Institute of Technology" +State University of Feira de Santana (UEFS +"Computer Vision Research Group, COMSATS Institute of Information" +"Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +"University of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre" +"Faculty of Computer Science, University of A Coru na, Coru na, Spain" +"S J B Institute of Technology, Bangalore, Karnataka, India" +"University of Tokyo, 4-6-1 Shirokanedai" +"Technology, Nanjing University of Aero" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France" +"School of Informatics, University of Edinburgh, UK" +"Institute of Industrial Science, The University of Tokyo" +"Federal University Technology Akure, PMB 704, Akure, Nigeria" +"University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +"Asian Institute of Technology, Pathumthani, Thailand" +"ECE, National University of Singapore, Singapore" +"ECE dept, University of Miami" +Datta Meghe College of Engineering +"University Hospital Jena, Germany" +"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia" +"Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea" +"Islamic Azad University, Qazvin, Iran" +"School of Data and Computer Science, Sun Yat-sen University, P.R.China" +"b School of Business, Reykjavik University, Reykjavik, Iceland" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"Siemens Corporate Research, 755 College Road East, Princeton, NJ" +"B.S. Abdur Rahman University, Chennai-48, India" +"School of Data and Computer Science, Sun Yat-Sen University, China" +"School of Computer Science, The University of Nottingham" +"Kong Polytechnic University, Kowloon, Hong Kong" +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +COMSATS Institute of Information Technology Wah Cantt +"The Open University of Israel, Israel" +"State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"Amazon, Inc" +"Jawaharlal Technological University, Anantapur" +Institute of Interdisciplinary Studies in Identity Sciences (IISIS +"Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA" +"Adobe Systems, Inc., 345 Park Ave, San Jose, CA" +"aSchool of Technology, University of Campinas" +"Center for Research in Computer Vision (CRCV), University of Central Florida (UCF" +"Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht" +"State Key Lab. LIESMARS, Wuhan University, China" +"School of Computer Science, University of Adelaide, Australia" +"Cooperative Medianet Innovation Center, Shanghai Jiaotong University" +"Graduate University of Chinese Academy of Sciences, Beijing 100049, China" +Digital Media Research Center +"School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China" +"Lab of Science and Technology, Southeast University, Nanjing 210096, China" +"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University" +Institute of Automatic Control Engineering (LSR +"Research Center for Learning Science, Southeast University, Nanjing 210096, China" +"Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada" +"Ultra College of Engineering and Technology for Women, India" +"Y ld z Teknik University, Istanbul, TR" +"School of Computing Science, Simon Fraser University, Canada" +"Institute of Child Health, University College London, UK" +"cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA" +"Computer vision and Remote Sensing, Berlin university of Technology" +"Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute" diff --git a/scraper/reports/institutions_not_found/not-found-4.csv b/scraper/reports/institutions_not_found/not-found-4.csv new file mode 100644 index 00000000..2e5facbb --- /dev/null +++ b/scraper/reports/institutions_not_found/not-found-4.csv @@ -0,0 +1,1439 @@ +"MIRACL-FS, University of Sfax" +"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science" +"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do" +"The Blavatnik School of Computer Science, The Tel-Aviv University" +"Deparment of Computing, Imperial College London, UK" +"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA" +"SSN College of Engineering, Kalavakkam, Tamil Nadu, India" +"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA" +"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA" +"SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India" +"School of Computer Science, University of Birmingham, UK" +Stevens Institute of Technology Adobe Systems Inc +"College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +Tomas Bata University in Zl n +"School of Computing and Info. Sciences, Florida International University" +"Numediart Institute, University of Mons" +in the College of Engineering and Computer Science +"Pursuing M.Tech, Caarmel Engineering College, MG University, Kerala, India" +The University of Queensland in +"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei" +M. Mark Everingham University of Leeds +"CVIP Lab, University of Louisville, Louisville, KY, USA" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"University of Shef eld, Regent Court, 211 Portobello, Shef eld" +"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca" +"Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +"RoboticsResearchGroup, UniversityofOxford, Oxford, UK" +"School of Computer Science, Fudan University, Shanghai, China" +"BECS, Aalto University, Helsinki, Finland" +"Beihang University 2Gri th University 3University of York, UK" +"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China" +Tsinghua-CUHK Joint Research Center for Media Sciences +Sabanc University +"Viswajyothi College of Engineering and Technology Kerala, India" +"Fudan University, 2Microsoft Research Asia, 3University of Maryland" +"School of Computer Science, University of Nottingham" +"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore" +"University at Buffalo, SUNY" +"University of Maryland, Center for Automation Research" +"MRC Laboratory For Molecular Cell Biology, University College London" +"IslamicAzad University, Qazvin, Iran" +KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association +"Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +This article was downloaded from Harvard University s DASH +"Program of Computational Science and Engineering, Bo gazi ci University" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"DISI, University of Trento, Italy" +College of Information Engineering +"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan" +"bUniversity of Nottingham, School of Computer Science, Nottingham, UK" +"P. O. Box 4500 FI-90014 University of Oulu, Finland" +University of California at Berkeley / ICSI +"Intelligent User Interfaces Lab, Ko c University, Turkey" +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +Honda Fundamental Research Labs +"Queensland Micro- and Nanotechnology Centre and Grif th School of Engineering, Grif th University" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +"University of Zaragoza, Spain" +"Assam University, Silchar-788011 Assam University, Silchar" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain" +"Grif th University, QLD, Australia" +"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute" +"Lab, University College London, London WC1H 0AP, UK. 3Clinical" +"Institute for Neural Computation, University of California, San Diego, La Jolla, CA" +"Asian University, Taichung, Taiwan" +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Sapienza University of Rome, Italy" +"University of Milano-Bicocca, Italy" +"Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia" +Sponsors: Machine Intelligence Research Labs (MIR Labs +"University of S ao Paulo - USP, S ao Paulo - Brazil" +"Machine Perception Laboratory, University of California, San Diego" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain" +University of Cagliari +"LIP6, UPMC - Sorbonne University, Paris, France" +"Baidu Research, USA 3John Hopkins University" +"Computer Science and Software Engineering, The University of Western Australia" +"Computer Vision Laboratory, The University of Nottingham" +"L3S Research Center, Hannover, Germany" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"he University of Hong Kong, Pokfulam" +"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China" +"image being generated by the model, include Active Appearance" +"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain" +"Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213. USA" +"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"School of Computer Science and Information Systems, Birkbeck College, University of London" +"Queen Mary, University of London" +University of Sfax +SUS college of Engineering and Technology +"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK" +"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam" +College of Information Science and Engineering +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"Institute for Neural Computation, University of California, San Diego" +"Proto Labs, Inc" +Institute of Psychology and Behavioral Sciences +ATR Interpreting Telecommunications Research Laboratories +Fraunhofer Institute for Integrated Circuits IIS +"Chalmers University of Technology, SAFER" +"Computer Vision Research Group, COMSATS Institute of Information" +"TNLIST, Tsinghua University, Beijing, 100084, China" +"School of Computer Science, University of Lincoln, U.K" +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +"The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong" +"St. Xavier s Catholic College of Engineering, Nagercoil, India" +"Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland" +"Human-friendly Welfare Robotic System Engineering Research Center, KAIST" +Language Technologies Institute +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia" +Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of +"Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia" +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"Birkbeck College, University of London" +"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone" +Nokia Bell Labs and University of Oxford +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"VISLab, EBUII-216, University of California Riverside" +"University of Waterloo, Waterloo ON N2L3G1, Canada" +"Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Computer Science and Engineering, Easwari Engineering College, India" +"Faculty of Electrical Engineering, University of Ljubljana, Slovenia" +"Assiut University, Assiut 71515, Egypt" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany" +"Hasan Kalyoncu University, Gaziantep, Turkey" +"Computer Science Division, The Open University of Israel" +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Facebook AI Research, 2Dartmouth College" +"Computer Science, Engineering and Mathematics School, Flinders University, Australia" +"Seattle Paci c University, Seattle, WA 98119-1957, USA" +"Key Lab. of Machine Perception, School of EECS, Peking University" +"Electrical and Computer Engineering, University of Auckland, New Zealand" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +Thesis. Rochester Institute of Technology. Accessed from +cid:63)Stanford University +"The Robotics Institute, Carnegie Mellon University" +"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R" +"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY" +State University of Feira de Santana (UEFS +University of Siegen +"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States" +"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India" +"cid:2)Honda RandD Americas, Inc., Boston, MA, USA" +tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming +"Skolkovo Institute of Science and Technology (Skoltech), Russia" +"USC IRIS Lab, University of Southern California" +"Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, China" +"EEMCS, University of Twente, Netherlands" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"Electrical and Computer Engineering, The University of Memphis" +"Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"Machine Intelligence Lab (MIL), Cambridge University" +"Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India" +"Nanjing, 210023, China, 4 School of Computer Science and Technology, Nanjing University of Posts and" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address" +"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China" +"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam" +"Technology, University of Oradea 410087, Universitatii 1, Romania" +"University Health Board, Swansea, United Kingdom" +facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty +"Institute for Computer Graphics and Vision, Graz University of Technology" +"School of Computer Engineering, Sejong University, Seoul, Korea" +"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome" +"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel" +"Governance, Keio University" +"cid:63)Queen Mary University of London, Imperial College London" +"RGPV University, Indore" +"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China" +Honda Research Institute +"cid:5)School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47907, USA" +Sarhad University of Science and Information Technology +"University of Twente, EEMCS, Netherlands" +"School of Computer Science and Technology, Nanjing University of Science and Technology, China" +"University of Illinois, Urbana-Champaign University of California, San Diego" +"Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"Michigan State University, East Lansing, MI 48824, U.S.A" +"Rutgers, The State University of New Jersey, Piscataway, NJ" +"Asian Institute of Technology, Pathumthani, Thailand" +"Center for Arti cial Vision Research, Korea University" +"Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong" +"Technical University of Munich, Germany" +"City University of Hong Kong, Kowloon 999077, Hong Kong, China" +"Laboratory, University of Houston, Houston, TX, USA" +"School of Computer Science, University of Lincoln, United Kingdom" +"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia" +"Ponti cal Catholic University of Rio de Janeiro, Brazil" +"School of Computer Science, Wuyi University, Jiangmen 529020, China" +Institute of Deep Learning +"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China" +"Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA" +"FI-90014 University of Oulu, Finland" +"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +"Arts Media and Engineering, Arizona State University" +University of Beira Interior +"Institute of Biochemistry, University of Balochistan, Quetta" +Ho Chi Minh City University of +"Asia University, Taichung, Taiwan" +"National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC" +"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA" +"New York University Shanghai, 1555 Century Ave, Pudong" +Facebook 4Texas AandM University 5IBM Research +"Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland" +yAristotle University of Thessaloniki +"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai" +"CVSSP, University of Surrey" +ShahidBeheshti University +"Electronics Engineering, National Institute of Technical Teachers" +"Sichuan Fine Arts Institute, Chongqing, China" +"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including" +"Institute for Electronics, Signal Processing and Communications" +National Institute of Development Administration +"EEMCS, University of Twente, The Netherlands" +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl +"College of Sciences, Northeastern University, Shenyang 110819, China" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +Dietrich College of Humanities and Social Sciences +"School of Electronic and Information Engineering, Tongji University, Shanghai, China" +"School of Information Technology and Electrical Engineering, The University of Queensland" +"Institute of Systems and Robotics, University of Coimbra, Portugal" +"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong" +"Center for Automation Research, University of Maryland" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +University of Science and Technology Beijing +"Computational Biomedicine Lab, University of Houston, TX, USA" +Nam k Kemal University +University of Colorado at Colorado Springs +University of Freiburg +"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco" +"College of Science, Menou a University, Menou a 32721, Egypt" +Interactive and Digital Media Institute +"College of Computer and Information Science, Northeastern University, MA, USA" +"School of Computer and Information, Hefei University of Technology, Hefei" +"Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia" +National Institute of Advanced Industrial +USC Institute for Creative Technologies +"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia" +Institute for Vision Systems Engineering +"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA" +"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore" +eBay Research Labs +"Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The" +Howard Hughes Medical Institute (HHMI +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"and Modeling, Rutgers University" +"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander" +"National Institute of Informatics, Japan" +"Charotar University of Science and Technology, Changa, India" +UniversityofMaryland +"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International" +"Caarmel Engineering College, MG University, Kerala, India" +"Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +"Computer Science and Engineering, University of Michigan, Ann Arbor" +"J. P. College of Engineering, India" +"Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 4 The Queensland Brain Institute, The" +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez" +Technical University of Kaiserslautern +"M.Tech Student, SSG Engineering College, Odisha, India" +"learning. As a result of this research, many applications, including video surveillance systems" +Taizhou University +"Goldsmiths, University of London, London, UK" +"China Mobile Research Institute, Xuanwu Men West Street, Beijing" +"Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg" +"Multimodal Computing and Interaction, Saarland University, Germany" +"School of Computer Science, Northwestern Polytechnical University, China" +"Intelligent Systems Group, University of Groningen, The Netherlands" +"Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA" +"College of software, Chongqing University of Posts and Telecommunications Chongqing" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA" +"P.A. College of Engnineering, Mangalore" +"Beijing Institute of Technology, Beijing 100081, PR China" +"M.H Saboo Siddik College of Engineering, University of Mumbai, India" +"School of Computer Science, Carnegie Mellon University, USA" +"Computer Science Division, The Open University of Israel, Israel" +Achariya college of Engineering Technology +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +High Institute of Medical Technologies +"cid:63) Faculty of Computing, Information Systems and Mathematics, Kingston University London" +Sun Yat-Sen (Zhongshan) University +"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical" +"Institute for Infocomm Research, Singapore" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +"National Institute of Optics, National Research Council, Arnesano, LE, Italy" +"Xi an Jiaotong University, China" +"North Dakota State University, Fargo, ND58105, USA" +University of Twente 2Dublin City University 3Oxford University +"School of Electrical, Computer and Energy Engineering, Arizona State University" +"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"tum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University" +"Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and" +"University of Technology, Guangzhou, 510640, P.R.China" +"Queen Mary, University of London, E1 4NS, UK" +University of Wollongong. For further information contact the UOW +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +College of Computer Science and Technology +"Coordinated Science Lab, University of Illinois at Urbana-Champaign" +Gangnung-Wonju National University +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"cid:2)Imperial College London, U.K" +"School of Computer Science and Engineering, Southeast University, Nanjing 211189, China" +"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht" +"School of Computer Science, Northwestern Polytechnical University, P.R.China" +"Friedrich Schiller University, D-07740 Jena" +Mahatma Gandhi Institute of Technology +"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE" +B.S. University of Indonesia +"University of T ubingen, T ubingen, Germany" +"School of Computer Science, The University of Adelaide, Australia" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +Honda Research Institute USA +"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA" +"Machine Intelligence Laboratory, College of Computer Science, Sichuan University" +"University of Nottingham, UK, School of Computer Science" +"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College" +"Sogang University, Seoul 121-742, Republic of Korea" +Imperial College London / Twente University +"National University of Singapore, 2Shanghai Jiao Tong University" +"School of Software, Tsinghua University, Beijing 100084, China" +"SRV Engineering College, sembodai, india" +Central Mechanical Engineering Research Institute +"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China" +"Gayathri.S, M.E., Vins Christian college of Engineering" +"Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands" +"CVSSP, University of Surrey, UK" +Sanghvi Institute of Management and Science +"Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong" +"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +College of Information and Electrical Engineering +"aResearch Scholar, Anna University, Chennai, Inida" +"School of Computer Science, Tianjin University" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy" +"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam" +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +University of California at San Diego +"Engineering, University of Akron, Akron, OH 44325-3904, USA" +"DIEI, University of Perugia, Italy" +"Michigan State University, 3115 Engineering Building" +"Publication details, including instructions for authors and subscription" +"Max Planck Institute for Informatics, Saarbr ucken, Germany" +"iCV Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia" +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"Jawaharlal Technological University, Anantapur" +SAMSI and Duke University +"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China" +"MISC Laboratory, Constantine 2 University, Constantine, Algeria" +"SRV Engineering College, sembodai, india" +"Institute of Computing Technology, CAS" +Institute of control science and engineering +National Institute of Informatics +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +Institute for Robotics and Intelligent Systems +St. Anne s College +"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China" +"DSP Lab, Sharif University of Technology, Tehran, Iran" +"J. P. College of Engineering, India" +"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China" +SUS college of Engineering and Technology +"methods, including graph matching, optical- ow-based" +"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu" +"Michigan State University, NEC Laboratories America" +"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics" +"The Blavatnik School of Computer Science, Tel Aviv University, Israel" +"School of Information Engineering, Guangdong Medical College, Song Shan Hu" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +M. Mark Everingham University of Leeds +University of California at San Diego +"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China" +"PG Scholar, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India" +"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of" +"Cornell University, Ithaca, NY, U.S.A" +"Pathological anxiety is associated with disrupted cognitive processing, including working memory and" +"Carnegie Mellon University, Electrical and Computer Engineering" +"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China" +University of Sfax +"Arts, Commerce and Science College, Gangakhed, M.S, India" +"Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea" +"Education, Yunnan Normal University, Kunming, China" +"Arti cial Intelligence Institute, China" +"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +"University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia" +"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of" +"The Chinese University of Hong Kong, HKSAR, China" +"Institute for Infocomm Research, A*STAR, Singapore" +U.S. Army Research Laboratory +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"Texas AandM University, College Station, TX, USA" +"Technological Educational Institute of Athens, 12210 Athens, Greece" +"National University of Singapore Research Institute, Suzhou, China" +"Faculty of Science and Technology, University of Macau" +Nam k Kemal University +"Doctor of Philosophy in Computing of Imperial College, February" +"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China" +"CNRS , Institute of Automation of the Chinese Academy of Sciences" +"c Cardiff Business School, Cardiff University, Cardiff, United Kingdom" +"Psychology, American University" +"H. He, Honkong Polytechnic University" +College of Computer Science and Information Sciences +College of Information and Electrical Engineering +"ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis" +"recognition, such as human computer interfaces and e-services, including e-home" +"Vision and Sensing, HCC, ESTeM, University of Canberra" +"Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan" +"School of Software, Tianjin University" +High Institute of Medical Technologies +Funding was provided by the U.S. National Institutes of Mental +"Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen" +"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania" +A Thesis submitted to McGill University in partial fulfillment of the requirements for the +at the University of Central Florida +"School of Computing and Communications University of Technology, Sydney" +"additional details of DCS descriptors, including visualization. For extending the evaluation" +"University College London, 12 Queen Square, London WC1N 3BG, UK" +Language Technologies Institute +"System Research Center, NOKIA Research Center, Beijing, 100176, China" +"Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany" +"Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands" +"School of Computer Science, Nanjing University of Science and Technology" +"National Lab of Pattern Recognition, Institute of Automation" +"Virudhunagar Hindu Nadars Senthikumara Nadar College, Virudhunagar" +"Indraprastha Institute of Information Technology (Delhi, India" +"Machine Perception Laboratory, University of California, San Diego" +"School of Optics and Electronics, Beijing Institute of Technology, Beijing" +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +"Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas" +"Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C" +"State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China" +"Priyadarshini College of Engg, Nagpur, India" +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan" +"Center for Healthy Aging, University of" +"J. P. College of Engineering, India" +Vietnam National University Ho Chi +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +"Hector Research Institute of Education Sciences and Psychology, T ubingen" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +B.S./M.S. Brandeis University +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +Carnegie Melon University +"Quanti ed Employee unit, Finnish Institute of Occupational Health" +"School of Computer Engineering, Nanyang Technological University, Singapore" +"University of Caen, France" +USC Institute for Creative Technologies +"School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA" +"State University of Rio de Janeiro, Brazil" +"Institute of Automation, Chinese Academy of Sciences (CASIA" +"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"of Psychology, Princeton University, Princeton, NJ 08540. E-mail" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University" +"National Chung Cheng University, Chiayi, Taiwan, R.O.C" +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore" +"School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology" +"Institute of Digital Media, Peking University, Beijing 100871, China" +ATR Human Information Processing Research Laboratories +"School of Psychology, University of Auckland, Auckland, New Zealand" +"Deparment of Computing, Imperial College London, UK" +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"IIIS, Tsinghua University, Beijing, China" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India" +"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India" +"the Chinese University of Hong Kong, Shatin, Hong Kong" +"Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA" +"2 School of Computing, National University of Singapore" +"ISLA Lab, Informatics Institute, University of Amsterdam" +"MIT, McGovern Institute, Center for Brains, Minds and Machines" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"Queen Mary, University of London, E1 4NS, UK" +"MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry" +"of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China" +"cid:63)Sharif University of Technology, University College London, Queen Mary University of London" +"Visual Geometry Group, University of Oxford, UK" +"Publication details, including instructions for authors and subscription information" +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +"College of Science, Baghdad University, Baghdad, Iraq" +"Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +"Intelligent Systems Lab Amsterdam, University of Amsterdam" +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA" +"Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL" +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +University of North Carolina Wilmington in Partial Ful llment +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +"School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN" +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Northumbria University, Newcastle Upon-Tyne NE21XE, UK" +B.S.Abdur Rahman University B.S.Abdur Rahman University +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"National Chung Cheng University, Chiayi, Taiwan, R.O.C" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand" +"2 School of Computing, National University of Singapore" +"University of Maryland, College Park, USA" +"Institute of Computer Science and Technology, Chongqing University of Posts and" +"Lomonosov Moscow State University, 2Video Analysis Technologies, LLC" +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +"School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA" +"University Technology of Malaysia, 81310 Skudai, Johor, Malaysia" +"Sri SidarthaInstitute of Technology, Tumkur" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +Bharath Institute of Science and Technology +"Institute ofInformation Science, Academia Sinica, Taipei, Taiwan" +"the Chinese University of Hong Kong, Shatin, Hong Kong" +"School of Computer Science, Carnegie Mellon University, 15213, USA" +"University of Siena, Siena, Italy" +"School of Computer, Beijing Institute of Technology, Beijing, China" +"ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences" +"Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore" +"Indraprastha Institute of Information Technology (Delhi, India" +"State University of Rio de Janeiro, Brazil" +"Montefiore Institute, University of Li ge, 4000 Li ge, Belgium" +"Quanti ed Employee unit, Finnish Institute of Occupational Health" +"College of Science, Menou a University, Menou a 32721, Egypt" +"Institute of Computing Technology, CAS, Beijing, 100190, China" +"Deparment of Computing, Goldsmiths, University of London, UK" +"Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom" +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +"College of Science, Baghdad University, Baghdad, Iraq" +Vietnam National University Ho Chi +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan" +"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"NICTA, and Australian National University" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"Technological Educational Institute of Athens, 12210 Athens, Greece" +"ISLA Lab, Informatics Institute" +"Minia University, Egypt" +"Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden" +Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part +Link to publication in University of Groningen/UMCG research database +"GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco" +"applications has different requirements, including: processing time (off-line, on-line, or real-time" +"School of Mathematical Science, Dalian University of Technology, Dalian, China" +Institute of Deep Learning +"Courant Institute of Mathematical Sciences and Google Research, New York, NY" +"National Chung Cheng University, Chiayi, Taiwan, R.O.C" +"College of Electronics and Information, Northwestern Polytechnic University" +"cid:3) School of Software, Tsinghua University" +"Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China" +"of Engineering and Information Technology, University of Technology, Sydney, Australia" +"Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany" +"versity of Amsterdam, Amsterdam and University of Trento" +"Publication details, including instructions for authors and subscription information" +"Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health" +"IES College of Technology, Bhopal" +"Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq" +"Springer Science + Business Media, Inc. Manufactured in The Netherlands" +Institute for Computer Graphics and Vision +"IIIS, Tsinghua University, Beijing, China" +"Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of" +"MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry" +"2 School of Computing, National University of Singapore" +Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT +"Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India" +"Hasan Kalyoncu University, Gaziantep, Turkey" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"and especially light angle, drastically change the appearance of a face [1]. Facial expressions, including" +A dissertation submitted to the Faculty of the University of Delaware in partial +"EEMCS, University of Twente, Netherlands" +"Arts Media and Engineering, Arizona State University" +"of Psychology, Princeton University, Princeton, NJ 08540. E-mail" +University of Cambridge Computer Laboratory +B.S.Abdur Rahman University B.S.Abdur Rahman University +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany" +No Institute Given +"Institute of Computing Technology, Chinese Academy of Sciences" +"The Chinese University of Hong Kong, HKSAR, China" +"Institute of Digital Media, Peking University, Beijing, 100871, China" +"Visual Geometry Group, University of Oxford, UK" +"GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS" +"Psychonomic Society, Inc" +"B. Tech., Indian Institute of Technology Jodhpur" +"QCIS, University of Technology, Sydney" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology" +"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing" +"School of Computer Science, Fudan University, Shanghai 200433, China" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA" +"ESTeM, University of Canberra" +"Center for Machine Vision and Signal Analysis, University of Oulu, Finland" +Stevens Institute of Technology Adobe Systems Inc +NSS College of Engineering +"J. P. College of Engineering, India" +"School of EECS, Queen Mary University of London" +"Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan" +"National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan" +"Research Scholar (M.Tech, IT), Institute of Engineering and Technology" +"Faculty of Informatics, E otv os Lor and University, Budapest, Hungary" +"M.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli" +"University of Balochistan, Quetta" +"Multimedia University (MMU), Cyberjaya, Malaysia" +eBay Research Labs +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China" +Engineering Chaoyang University Nankai Institute of +"School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave" +"The Chinese University of Hong Kong, Hong Kong SAR, China" +"Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +AristotleUniversityofThessaloniki +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India" +"Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara" +"Government College of Engineering, Aurangabad [Autonomous" +Carnegie Melon University +"School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +"State Key Laboratory for Novel Software Technology, Nanjing University, China" +"Imperial College, South Kensington Campus, London SW7 2AZ, UK" +USC Institute for Creative Technologies +A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER +"Pattern Recognition and Bioinformatics Group, Delft University of Technology, The Netherlands" +"Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen" +"University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of" +Institute for Robotics and Intelligent Systems +"Research Center for Learning Science, Southeast University, Nanjing, China" +University of Science and Technology Beijing +B. S. Rochester Institute of Technology +"National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China" +"College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China" +The Robotics Institute Carnegie Mellon University +"University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine" +"School of Computer Science and Technology, Tianjin University, Tianjin, China" +University of California at San Diego +Institute for Neural Computation +"System Research Center, NOKIA Research Center, Beijing, 100176, China" +"CVAP, KTH (Royal Institute of Technology), Stockholm, SE" +Institute for Advanced Computer Studies +"Solapur University, INDIA" +High Institute of Medical Technologies +"Psychology, American University" +Multimedia Laboratory at The Chinese University of Hong Kong +"Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand" +"c Cardiff Business School, Cardiff University, Cardiff, United Kingdom" +"to visually detectable changes in facial appearance, including blushing and tears. These" +The Chinese University ofHong Kong +"University of Caen, France" +"School of Computer Science and Engineering, Nanyang Technological University, Singapore" +"ESAT, Katholieke Universiteit Leuven, Leuven, Belgium" +Tsinghua-CUHK Joint Research Center for Media Sciences +ATR Human Information Processing Research Laboratories +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"University of Verona, Verona, Italy" +"University of Maryland, College Park, USA" +"Universitat Polit`ecnica de Catalunya, Columbia University" +"Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan" +aInformation Sciences Institute +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +"face processing, including age (Berry, 1990), sex (Hill" +"School of Computer Science, Carnegie Mellon University, USA" +"Lomonosov Moscow State University, 2Video Analysis Technologies, LLC" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China" +Idiap Research Institute and EPF Lausanne +"Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China" +"Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA" +"Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria" +"Machine Perception Laboratory, University of California, San Diego" +"of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China" +STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"Lotus Hill Institute for Computer Vision and Information Science, 436000, China" +"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece" +University Lecturer Veli-Matti Ulvinen +"School of Software, Tianjin University" +"Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India" +"Aditya institute of Technology and Management, Tekkalli-532 201, A.P" +"University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA" +"Public University of Navarra, Spain" +"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"Deparment of Computing, Imperial College London, UK" +"Faculty of Engineering and Technology, Multimedia University (Melaka Campus" +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD +"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran" +"CNRS , Institute of Automation of the Chinese Academy of Sciences" +"College of Computer Science and Information Technology, Northeast Normal University, Changchun" +"Institute of Computing Technology, CAS" +"aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA" +"Publication details, including instructions for authors and subscription" +"School of Computing and Communications University of Technology, Sydney" +"School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China" +"Motorola China Research Center, Shanghai, 210000, P.R.China" +"the Diploma of Imperial College London. This thesis is entirely my own work, and, except" +"Institute of Systems Engineering, Southeast University, Nanjing, China" +"Psychopharmacology Unit, Educational and Health Psychology, University College" +"Graduate University of Chinese Academy of Sciences(CAS), 100190, China" +"University of Southampton, UK, 2University of Warwick, UK" +"Robotics Institute, Carnegie Mellon University" +"of Psychology, University of Michigan, Ann Arbor, MI, United States, University of Michigan, Ann" +University of North Carolina Wilmington in Partial Ful llment +"Vision and Sensing, HCC, ESTeM, University of Canberra" +"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India" +"State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China" +U.S. Army Research Laboratory +"ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis" +"Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul" +"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany" +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"School of Computer Science, Northwestern Polytechnical University, Xi an China" +"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana" +Nam k Kemal University +"National Laboratory of Pattern Recognition (NLPR), Institute of Automation" +"Kodak Research Laboratories, Rochester, New York" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"SenseTime, 2Tsinghua University" +UNIVERSITY OF OULU GRADUATE SCHOOL +"Bo gazici University, Istanbul, TR" +"aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia" +"RTMNU Nagpur University, India" +College of Computer Science and Information Sciences +"Michigan State University, East Lansing, MI, U.S.A" +"Computer Science and Technology, Tsinghua University, Beijing, China" +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +"Inst. Neural Computation, University of California" +K S Rangasamy College of Technology +"Institute for Infocomm Research, A*STAR, Singapore" +"Image and Video Research Laboratory, Queensland University of Technology" +"Katholieke Universiteit Leuven, ESAT/VISICS" +"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania" +"North Dakota State University, Fargo, ND58105, USA" +University of Insubria +"MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff" +"The American University In Cairo, Road 90, New Cairo, Cairo, Egypt" +"University of Georgia, Athens, GA, U.S.A" +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +"Swiss Federal Institute of Technology, Lausanne (EPFL" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"Hector Research Institute of Education Sciences and Psychology, T ubingen" +"Institute of Automation, Chinese Academy of Sciences (CASIA" +"School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN" +"Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic" +Islamic Azad University of AHAR +"Indian Institute of Technology, Kharagpur" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"Faculty of Science and Technology, University of Macau" +"University of Victoria, Victoria, Canada" +"EIMT, Open University of" +"Australian Centre for Visual Technologies, The University of Adelaide, Australia (b" +"Priyadarshini College of Engg, Nagpur, India" +"aImperial College London, London, UK" +"University of Alberta, Edmonton, AB T6G 2E8, Canada" +"Information Technology, Madras Institute of Technology, TamilNadu, India, email" +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +"Intelligent Systems Lab Amsterdam, University of Amsterdam" +"Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany" +"Government College of Engineering, Aurangabad" +"Queen Mary, University of London" +"University Center of FEI, S ao Bernardo do Campo, Brazil" +"University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS" +"Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany" +Boston University Theses and Dissertations +"Helen Wills Neuroscience Institute, University of" +Institute for Vision Systems Engineering +"Informatics and Telematics Institute, Centre of Research and Technology - Hellas" +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +"School of Computer Science, Nanjing University of Science and Technology" +"Imperial College of Science, Technology and Medicine" +"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India" +"College of Computer Science, Sichuan University, Chengdu 610065, P.R. China" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of" +Biometric Research Center +"Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA" +"Electronic and Information Engineering, University of Bologna, Italy" +"MIT, McGovern Institute, Center for Brains, Minds and Machines" +"National Lab of Pattern Recognition, Institute of Automation" +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +"Center for Research in Computer Vision, University of Central Florida, Orlando, USA" +"Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA" +University of Twente 2Dublin City University 3Oxford University +"C.L. Teo, University of Maryland" +Technical University of Kaiserslautern +"Institute of Digital Media, Peking University, Beijing 100871, China" +"Faculty of Electrical Engineering, Mathematics and Computer Science, University" +"Kobe University, NICT and University of Siegen" +"School of Computer Science and Technology, Tianjin University, Tianjin 300072, China" +"Graduate University of CAS, 100190, Beijing, China" +"ISLA Lab, Informatics Institute, University of Amsterdam" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +"University of Shef eld, UK" +"aIBM China Research Lab, Beijing, China" +"Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn" +"Doctor of Philosophy in Computing of Imperial College, February" +University: Dhirubhai Ambani Institute of Information and Communication Technology +"University Campus, 54124, Thessaloniki, Greece" +"Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia" +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +"School of Electrical Engineering and Computer Science, Peking University" +"Research School of Engineering, The Australian National University, ACT 2601, Australia" +"College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University" +Howard Hughes Medical Institute (HHMI +"learning. As a result of this research, many applications, including video surveillance systems" +"School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA" +"M.S. (University of California, Berkeley" +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"University of Szeged, 2 E tv s Lor nd University" +at the University of Central Florida +"Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C" +"Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL" +"Kulhare, Sourabh, ""Deep Learning for Semantic Video Understanding"" (2017). Thesis. Rochester Institute of Technology. Accessed" +"Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece" +"ECSE, Rensselaer Polytechnic Institute, Troy, NY" +Language Technologies Institute +"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan" +"National Research University Higher School of Economics, Nizhny Novgorod, Russian" +"Sichuan Fine Arts Institute, Chongqing, China" +SAMSI and Duke University +A Thesis submitted to McGill University in partial fulfillment of the requirements for the +Alex Waibel (Carnegie Mellon University +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +"School of Business, Aalto University, Finland" +"Electrical and Computer Engineering, National University of Singapore, Singapore" +"the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam" +"Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands" +"Rutgers University, Computer and Information Sciences, 110 Frelinghuysen Road, Piscataway, NJ" +"School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology" +"Center for Healthy Aging, University of" +DICGIM - University of Palermo +College of Engineering (Poly +Link to publication from Aalborg University +"image being generated by the model, include Active Appearance" +"University of Science, Ho Chi Minh city" +"Queen Mary, University of London, E1 4NS, UK" +"University of Basel, Departement Informatik, Basel, Switzerland" +"School of Computer Science, University of Lincoln, United Kingdom" +"School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK" +"Hua Zhong University of Science and Technology, Wuhan, China" +"University of Maryland, College Park, MD" +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan" +"recognition, such as human computer interfaces and e-services, including e-home" +"University of Pennsylvania School of Medicine, 1013 Blockley Hall" +The Graduate University for Advanced Studies (SOKENDAI +Honda Research Institute USA +DAP - University of Sassari +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu" +"CVL, Link oping University, Link oping, Sweden" +"Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy" +"ColumbiaUniversity, NY, USA" +"Imaging Science and Biomedical Engineering, The University of Manchester, UK" +"Institute of Computer Science and Technology, Chongqing University of Posts and" +"Quantitative Employee unit, Finnish Institute of Occupational Health" +"KTH, Royal Institute of Technology" +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India" +"The University of Queensland, School of ITEE, QLD 4072, Australia" +"University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of" +"School of Business, Aalto University, Finland" +"Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA" +U.S. Army Research Laboratory +"Hector Research Institute of Education Sciences and Psychology, T ubingen" +"Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA" +"University of Shef eld, UK" +"point, lighting, and appearance. Many applications, including video surveillance systems" +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +"QCIS, University of Technology, Sydney" +"Government College of Engineering, Aurangabad" +"Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Honda RandD Americas, Inc., Boston, MA, USA" +"Institute for Advanced Computer Studies, University of Maryland, College Park, MD" +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +"Helen Wills Neuroscience Institute, University of" +"Kodak Research Laboratories, Rochester, New York" +A dissertation submitted to the Faculty of the University of Delaware in partial +"Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany" +eBay Research Labs +"School of Computer Science, Carnegie Mellon University, USA" +Multimedia Laboratory at The Chinese University of Hong Kong +"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"IES College of Technology, Bhopal" +"Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia" +"College of Science, Menou a University, Menou a 32721, Egypt" +"aIBM China Research Lab, Beijing, China" +"Institute of Computer Science and Technology, Chongqing University of Posts and" +"Center for Automation Research, UMIACS, University of Maryland, College Park" +"School of Electrical Engineering and Computer Science, Peking University" +Institute for Human-Machine Communication +University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento +"Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands" +"Robotics Institute, Carnegie Mellon University" +"the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam" +Idiap Research Institute and EPF Lausanne +"Electrical and Computer Engineering, National University of Singapore, Singapore" +"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany" +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India" +"Integrated Research Center, Universit`a Campus Bio-Medico di Roma" +"Institute of Computer Science and Technology, Chongqing University of Posts and" +B.S.Abdur Rahman University B.S.Abdur Rahman University +"Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom" +eBay Research Labs +"Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland" +"College of Science, Menou a University, Menou a 32721, Egypt" +K S Rangasamy College of Technology +"School of Software, Tianjin University" +"Research Center for Learning Science, Southeast University, Nanjing, China" +"Lomonosov Moscow State University, 2Video Analysis Technologies, LLC" +Stevens Institute of Technology Adobe Systems Inc +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER +"University Campus, 54124, Thessaloniki, Greece" +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +A dissertation submitted to the Faculty of the University of Delaware in partial +"SBK Women s University, Quetta, Balochistan" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China" +"University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine" +"University of Balochistan, Quetta" +Multimedia Laboratory at The Chinese University of Hong Kong +"cid:63)Sharif University of Technology, University College London, Queen Mary University of London" +"Doctor of Philosophy in Computer Science at Cardi University, July 24th" +"Institute of Systems Engineering, Southeast University, Nanjing, China" +Honda Research Institute USA +"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"C.L. Teo, University of Maryland" +"National University of Singapore Research Institute, Suzhou, China" +"Psychology, American University" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +Howard Hughes Medical Institute (HHMI +"School of Computer Science and Technology, Tianjin University, Tianjin 300072, China" +"Imperial College, South Kensington Campus, London SW7 2AZ, UK" +"Electronic and Information Engineering, University of Bologna, Italy" +"Technological Educational Institute of Athens, 12210 Athens, Greece" +"Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA" +"Indian Institute of Technology, Kharagpur" +"NICTA, and Australian National University" +"IES College of Technology, Bhopal" +"Swiss Federal Institute of Technology, Lausanne (EPFL" +"Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore" +"Research School of Engineering, The Australian National University, ACT 2601, Australia" +"Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria" +"Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health" +"Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences" +"the Diploma of Imperial College London. This thesis is entirely my own work, and, except" +"Institute of Automation, Chinese Academy of Sciences (CASIA" +"Sichuan Fine Arts Institute, Chongqing, China" +"University of Victoria, Victoria, Canada" +"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany" +"National Laboratory of Pattern Recognition (NLPR), Institute of Automation" +"The Chinese University of Hong Kong, Hong Kong SAR, China" +"Computer Science and Technology, Tsinghua University, Beijing, China" +"M.S. (University of California, Berkeley" +"Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany" +"Faculty of Informatics, E otv os Lor and University, Budapest, Hungary" +DICGIM - University of Palermo +"School of Computing and Communications University of Technology, Sydney" +USC Institute for Creative Technologies +"Aditya institute of Technology and Management, Tekkalli-532 201, A.P" +"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India" +"University Center of FEI, S ao Bernardo do Campo, Brazil" +"Lotus Hill Institute for Computer Vision and Information Science, 436000, China" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Queen Mary, University of London, E1 4NS, UK" +"CNRS , Institute of Automation of the Chinese Academy of Sciences" +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany" +"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys" +"Quanti ed Employee unit, Finnish Institute of Occupational Health" +"National Chung Cheng University, Chiayi, Taiwan, R.O.C" +"University of Shef eld, UK" +"Inst. Neural Computation, University of California" +"Institute of Digital Media, Peking University, Beijing 100871, China" +"University of Georgia, Athens, GA, U.S.A" +"ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences" +"Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA" +D.J. Sanghvi College of Engineering +"Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India" +Carnegie Melon University +Vietnam National University Ho Chi +"Kodak Research Laboratories, Rochester, New York" +"College of Computer Science and Information Technology, Northeast Normal University, Changchun" +"J. P. College of Engineering, India" +"Institute for Electronics, Signal Processing and Communications" +"of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China" +"Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan" +"Queen Mary, University of London" +"CVAP, KTH (Royal Institute of Technology), Stockholm, SE" +University Lecturer Anu Soikkeli +IstanbulTechnicalUniversity +"aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA" +"University of Siena, Siena, Italy" +"Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq" +"Northumbria University, Newcastle Upon-Tyne NE21XE, UK" +"System Research Center, NOKIA Research Center, Beijing, 100176, China" +"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA" +"Pattern Recognition and Bioinformatics Group, Delft University of Technology" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA" +"Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of" +"Vision and Sensing, HCC, ESTeM, University of Canberra" +"Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden" +Bo gazi ci University +"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania" +"Kulhare, Sourabh, ""Deep Learning for Semantic Video Understanding"" (2017). Thesis. Rochester Institute of Technology. Accessed" +B. S. Rochester Institute of Technology +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +Nam k Kemal University +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Institute for Infocomm Research, Singapore" +"University of Michigan, Ann Arbor, MI, USA (UMICH.EDU" +"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India" +"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS" +"Institute of Computing Technology, CAS" +"School of Computer Science and Engineering, South China University of Technology, Guangzhou, China" +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China" +"GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS" +"aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia" +"Graduate University of Chinese Academy of Sciences(CAS), 100190, China" +"College of Engineering, Purdue University" +"Hector Research Institute of Education Sciences and Psychology, T ubingen" +"Katholieke Universiteit Leuven, ESAT/VISICS" +"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece" +DAP - University of Sassari +Fraunhofer Institute for Integrated Circuits IIS +Link to publication in University of Groningen/UMCG research database +"Government College of Engineering, Aurangabad" +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University" +"Research Institute of Shenzhen, Wuhan University, Shenzhen, China" +"MIT, McGovern Institute, Center for Brains, Minds and Machines" +"Center for Automation Research, UMIACS, University of Maryland, College Park" +"Government College of Engineering, Aurangabad [Autonomous" +"Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +"of Psychology, Princeton University, Princeton, NJ 08540. E-mail" +"Institute for Arts, Science and Technology" +"Psychonomic Society, Inc" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY +"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran" +Language Technologies Institute +"Faculty of Science and Technology, University of Macau" +"Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan" +Funding was provided by the U.S. National Institutes of Mental +"Minia University, Egypt" +"North Dakota State University, Fargo, ND58105, USA" +"School of Computer Science and Technology, Tianjin University, Tianjin, China" +College of Information and Electrical Engineering +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +"Electrical and Computer Engineering, National University of Singapore, Singapore" +Institute for Vision Systems Engineering +University of North Carolina Wilmington in Partial Ful llment +"School of Computer Science, Carnegie Mellon University, USA" +"aImperial College London, London, UK" +aInformation Sciences Institute +"Imperial College of Science, Technology and Medicine" +"Information Technology, Madras Institute of Technology, TamilNadu, India, email" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"School of Computer Science, Carnegie Mellon University, 15213, USA" +"Graduate University of CAS, 100190, Beijing, China" +"ESTeM, University of Canberra" +"College of Science, Baghdad University, Baghdad, Iraq" +High Institute of Medical Technologies +"the Chinese University of Hong Kong, Shatin, Hong Kong" +Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part +A Thesis submitted to McGill University in partial fulfillment of the requirements for the +"Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara" +"QCIS, University of Technology, Sydney" +"Lille 1 University, France" +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore" +"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University" +"Motorola China Research Center, Shanghai, 210000, P.R.China" +"Priyadarshini College of Engg, Nagpur, India" +AristotleUniversityofThessaloniki +"Institute for Advanced Computer Studies, University of Maryland, College Park, MD" +"Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy" +"Institute for Arts, Science and Technology" +"School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology" +STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY +Funding was provided by the U.S. National Institutes of Mental +"Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore" +"Graduate University of CAS, 100190, Beijing, China" +K S Rangasamy College of Technology +"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +"University of Verona, Verona, Italy" +"Priyadarshini College of Engg, Nagpur, India" +"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan" +"EIMT, Open University of" +"School of Computer, Beijing Institute of Technology, Beijing, China" +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +"School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK" +"The American University In Cairo, Road 90, New Cairo, Cairo, Egypt" +"Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan" +"Sri SidarthaInstitute of Technology, Tumkur" +"KU Phonetics and Psycholinguistics Lab, University of Kansas" +"Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria" +"University of Victoria, Victoria, Canada" +"College of Computer Science, Zhejiang University" +"School of Control Science and Engineering, Shandong University, Jinan 250061, China" +"Toyota Technological Institute, Chicago (TTIC" +"M.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli" +"Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China" +"MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff" +"University Campus, 54124, Thessaloniki, Greece" +"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India" +"College of Electronics and Information, Northwestern Polytechnic University" +"Publication details, including instructions for authors and subscription" +"State Key Laboratory for Novel Software Technology, Nanjing University, China" +"Institute for Electronics, Signal Processing and Communications" +Bharath Institute of Science and Technology +"National Laboratory of Pattern Recognition (NLPR), Institute of Automation" +"School of Computer, Beijing Institute of Technology, Beijing, China" +"School of EECS, Queen Mary University of London" +"C.L. Teo, University of Maryland" +Technical University of Kaiserslautern +"School of Computer Science, Carnegie Mellon University, 15213, USA" +"Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of" +"Swiss Federal Institute of Technology, Lausanne (EPFL" +Idiap Research Institute and EPF Lausanne +"Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara" +"Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom" +"Electrical and Computer Engineering, National University of Singapore, Singapore" +DICGIM - University of Palermo +"Faculty of Engineering and Technology, Multimedia University (Melaka Campus" +"School of Electrical Engineering and Computer Science, Peking University" +University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento +"UMIACS | University of Maryland, College Park" +"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India" +"School of Computing and Communications University of Technology, Sydney" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"College of Electronics and Information, Northwestern Polytechnic University" +"Computer Science and Engineering, Easwari Engineering College, India" +"National Research University Higher School of Economics, Nizhny Novgorod, Russian" +"Imperial College, South Kensington Campus, London SW7 2AZ, UK" +"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany" +"Helen Wills Neuroscience Institute, University of" +SAMSI and Duke University +"School of Computer Engineering, Nanyang Technological University, Singapore" +"2 School of Computing, National University of Singapore" +"Technological Educational Institute of Athens, 12210 Athens, Greece" +"face processing, including age (Berry, 1990), sex (Hill" +"J. P. College of Engineering, India" +"Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore" +"The Chinese University of Hong Kong, Hong Kong SAR, China" +"recognition, such as human computer interfaces and e-services, including e-home" +Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part +"University of Basel, Departement Informatik, Basel, Switzerland" +"learning. As a result of this research, many applications, including video surveillance systems" +"Priyadarshini College of Engg, Nagpur, India" +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +Multimedia Laboratory at The Chinese University of Hong Kong +"The Chinese University of Hong Kong, HKSAR, China" +"Institute of Digital Media, Peking University, Beijing 100871, China" +"B.Sc., University of Science and Technology of China" +"Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany" +"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania" +"puter Engineering, National University of Singapore, Singapore (e-mails" +"Intelligent Systems Lab Amsterdam, University of Amsterdam" +"Netherlands, Utrecht University, Utrecht, The Netherlands" +"School of Computer Science and Technology, Tianjin University, Tianjin, China" +"MIT, McGovern Institute, Center for Brains, Minds and Machines" +"Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands" +"IES College of Technology, Bhopal" +"Nanjing University of Information Science and Technology, Nanjing, 210044, China" +"Solapur University, INDIA" +"Multimedia University (MMU), Cyberjaya, Malaysia" +"School of Computer Science, Fudan University, Shanghai 200433, China" +"ColumbiaUniversity, NY, USA" +"School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave" +"Inst. Neural Computation, University of California" +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +"Katholieke Universiteit Leuven, ESAT/VISICS" +"additional details of DCS descriptors, including visualization. For extending the evaluation" +"North Dakota State University, Fargo, ND58105, USA" +University: Dhirubhai Ambani Institute of Information and Communication Technology +"H. He, Honkong Polytechnic University" +"Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China" +IstanbulTechnicalUniversity +"HOD, St. Joseph College of Information Technology, Songea, Tanzania" +"System Research Center, NOKIA Research Center, Beijing, 100176, China" +"Texas AandM University, College Station, TX, USA" +"of Psychology, Princeton University, Princeton, NJ 08540. E-mail" +"Ross School of Business, University of Michigan, Ann Arbor, MI, USA" +"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China" +"Institute of Information Science, Academia Sinica, Taipei, Taiwan" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +"School of Optics and Electronics, Beijing Institute of Technology, Beijing" +"Doctor of Philosophy in Computing of Imperial College, February" +Bharath Institute of Science and Technology +"Michigan State University, East Lansing, MI, U.S.A" +"Institute of Digital Media, Peking University, Beijing, 100871, China" +Funding was provided by the U.S. National Institutes of Mental +"Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand" +"image being generated by the model, include Active Appearance" +"Queen Mary, University of London" +"Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada" +"State University of Rio de Janeiro, Brazil" +"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India" +UNIVERSITY OF OULU GRADUATE SCHOOL +Link to publication in University of Groningen/UMCG research database +"School of Software, Tianjin University" +"School of Computer Science and Engineering, Nanyang Technological University, Singapore" +University of Cambridge Computer Laboratory +Institute for Robotics and Intelligent Systems +A dissertation submitted to the Faculty of the University of Delaware in partial +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"Center for Automation Research, UMIACS, University of Maryland, College Park" +"Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China" +"KTH, Royal Institute of Technology" +"Public University of Navarra, Spain" +"School of Computer Science, Northwestern Polytechnical University, Xi an China" +"School of Data of Computer Science, Sun Yat-sen University, P.R. China" +"Gannan Normal University, Ganzhou 341000, China" +"Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA" +"Government College of Engineering, Aurangabad [Autonomous" +"College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University" +"Key Laboratory of Transient Optics and Photonics, Xi an Institute of Optics and Precision Mechanics, Chi" +"University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA" +"Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic" +Bo gazi ci University +Autonomous University of Barcelona +Howard Hughes Medical Institute (HHMI +"University of Michigan, Ann Arbor, MI, USA (UMICH.EDU" +"versity of Amsterdam, Amsterdam and University of Trento" +"Minia University, Egypt" +"The University of Queensland, School of ITEE, QLD 4072, Australia" +"Psychopharmacology Unit, Educational and Health Psychology, University College" +"National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan" +"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany" +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +B.S.Abdur Rahman University B.S.Abdur Rahman University +The Graduate University for Advanced Studies (SOKENDAI +Link to publication from Aalborg University +Institute for Advanced Computer Studies +"The Robotics Institute, Carnegie Mellon University, Pittsburgh PA" +Biometric Research Center +"Institute of Systems Engineering, Southeast University, Nanjing, China" +"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology" +"Institute for Infocomm Research, A*STAR, Singapore" +"GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS" +"Southeast University, Nanjing 210096, China" +NSS College of Engineering +"National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China" +"KU Phonetics and Psycholinguistics Lab, University of Kansas" +"College of Science, Menou a University, Menou a 32721, Egypt" +"recognition, such as human computer interfaces and e-services, including e-home" +University Lecturer Anu Soikkeli +"School of Electrical Engineering and Computer Science, Peking University" +"College of Engineering, Purdue University" +Stevens Institute of Technology Adobe Systems Inc +"EIMT, Open University of" +"School of Computer Science, Carnegie Mellon University, Pittsburgh, USA" +"School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK" +"College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University" +The Chinese University ofHong Kong +"Faculty of Electrical Engineering, Mathematics and Computer Science, University" +"Kodak Research Laboratories, Rochester, New York" +Funding was provided by the U.S. National Institutes of Mental +"Institute of Computing Technology, CAS" +"Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen" +"Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India" +"Institute of Computer Science and Technology, Chongqing University of Posts and" +"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA" +K S Rangasamy College of Technology +"Minia University, Egypt" +"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq" +"The University of Queensland, School of ITEE, QLD 4072, Australia" +"Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic" +"Hua Zhong University of Science and Technology, Wuhan, China" +Language Technologies Institute +"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg" +"Center for Healthy Aging, University of" +"School of Business, Aalto University, Finland" +"School of Computer Software, Tianjin University, 300072 Tianjin, China" +"M.S. (University of California, Berkeley" +Multimedia Laboratory at The Chinese University of Hong Kong +"The Chinese University of Hong Kong, Hong Kong SAR, China" +"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania" +"Information Technology, Madras Institute of Technology, TamilNadu, India, email" +D.J. Sanghvi College of Engineering +"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China" +"cid:63)Sharif University of Technology, University College London, Queen Mary University of London" +eBay Research Labs +"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman" +UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND +"IIIS, Tsinghua University, Beijing, China" +"SBK Women s University, Quetta, Balochistan" +"College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China" +"Institute of Digital Media, Peking University, Beijing, 100871, China" +High Institute of Medical Technologies +Nam k Kemal University +Institute for Neural Computation +"Technological Educational Institute of Athens, 12210 Athens, Greece" +USC Institute for Creative Technologies +"Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan" +"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of" +"H. He, Honkong Polytechnic University" +"Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China" +University Lecturer Veli-Matti Ulvinen +"Institute of Computing Technology, CAS, Beijing, 100190, China" +"Institute of Digital Media, Peking University, Beijing 100871, China" +Systems and Telematics - Neurolab +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD +"School of Computer Science, Carnegie Mellon University, 15213, USA" +"Informatics and Telematics Institute, Centre of Research and Technology - Hellas" +"Psychology, American University" +"Gannan Normal University, Ganzhou 341000, China" +"Texas AandM University, College Station, TX, USA" +"Northumbria University, Newcastle Upon-Tyne NE21XE, UK" +Islamic Azad University of AHAR +"University of Michigan, Ann Arbor, MI, USA (UMICH.EDU" +"ISLA Lab, Informatics Institute" +"Vision and Sensing, HCC, ESTeM, University of Canberra" +University of Massachusetts Amherst in partial ful llment +"Swiss Federal Institute of Technology, Lausanne (EPFL" +"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu" +Vietnam National University Ho Chi +"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia" +Carnegie Melon University +"Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan" +"University Campus, 54124, Thessaloniki, Greece" +"University of Caen, France" +"University of Southampton, UK, 2University of Warwick, UK" +"B.Sc., University of Science and Technology of China" +"to visually detectable changes in facial appearance, including blushing and tears. These" +"School of Psychology, University of Auckland, Auckland, New Zealand" +"Institute ofInformation Science, Academia Sinica, Taipei, Taiwan" +"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA" +"Honda RandD Americas, Inc., Boston, MA, USA" +B. S. Rochester Institute of Technology +"College of Science, Baghdad University, Baghdad, Iraq" +Bharath Institute of Science and Technology +"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece" +"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan" +"Priyadarshini College of Engg, Nagpur, India" +"School of Computer Science and Technology, Tianjin University, Tianjin 300072, China" +"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran" +"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education" +"Psychonomic Society, Inc" +"Doctor of Philosophy in Computing of Imperial College, February" +"North Dakota State University, Fargo, ND58105, USA" +"Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA" +"Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan" +UNIVERSITY OF OULU GRADUATE SCHOOL +"University College London, 12 Queen Square, London WC1N 3BG, UK" +"The American University In Cairo, Road 90, New Cairo, Cairo, Egypt" +"Montefiore Institute, University of Li ge, 4000 Li ge, Belgium" +ATR Human Information Processing Research Laboratories +"Solapur University, INDIA" +"Katholieke Universiteit Leuven, ESAT/VISICS" +"Vision and Sensing, HCC Lab, ESTeM, University of Canberra" +"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China" +"Netherlands, Utrecht University, Utrecht, The Netherlands" +"Integrated Research Center, Universit`a Campus Bio-Medico di Roma" +"University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine" +"School of Computer Science, Northwestern Polytechnical University, Xi an China" +"Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS" +Autonomous University of Barcelona +"Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany" +"University Center of FEI, S ao Bernardo do Campo, Brazil" +University Lecturer Anu Soikkeli +"University of Alberta, Edmonton, AB T6G 2E8, Canada" +"Institute of Systems Engineering, Southeast University, Nanjing, China" +"Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq" +"Toyota Technological Institute, Chicago (TTIC" +University of California at San Diego +"University of Balochistan, Quetta" +"Intelligent Systems Lab Amsterdam, University of Amsterdam" +"Graduate University of CAS, 100190, Beijing, China" +"applications has different requirements, including: processing time (off-line, on-line, or real-time" +"School of Control Science and Engineering, Shandong University, Jinan 250061, China" +"Southeast University, Nanjing 210096, China" +"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA" +"B. Tech., Indian Institute of Technology Jodhpur" +"Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania" +"versity of Amsterdam, Amsterdam and University of Trento" +"University of Pennsylvania School of Medicine, 1013 Blockley Hall" +College of Information and Electrical Engineering +"University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of" +"School of Computer Science, Fudan University, Shanghai 200433, China" +"National Research University Higher School of Economics, Nizhny Novgorod, Russian" +"Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara" +"IES College of Technology, Bhopal" +A dissertation submitted to the Faculty of the University of Delaware in partial +College of Engineering (Poly +"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany" +"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH" +"CVAP, KTH (Royal Institute of Technology), Stockholm, SE" +University: Dhirubhai Ambani Institute of Information and Communication Technology +"PG scholar, Communication Systems, Adhiyamaan College of Engineeing, Hosur, (India" +"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India" +"GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco" +"School of Optics and Electronics, Beijing Institute of Technology, Beijing" +"Inst. Neural Computation, University of California" +Bo gazi ci University +Biometric Research Center +"face processing, including age (Berry, 1990), sex (Hill" +"Amal Jyothi College of Engineering, Kanjirappally, India" diff --git a/scraper/reports/leaflet.arc.js b/scraper/reports/leaflet.arc.js new file mode 100644 index 00000000..062b22a0 --- /dev/null +++ b/scraper/reports/leaflet.arc.js @@ -0,0 +1,2 @@ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define("leaflet-arc",[],e):"object"==typeof exports?exports["leaflet-arc"]=e():t["leaflet-arc"]=e()}(this,function(){return function(t){function e(o){if(r[o])return r[o].exports;var s=r[o]={exports:{},id:o,loaded:!1};return t[o].call(s.exports,s,s.exports,e),s.loaded=!0,s.exports}var r={};return e.m=t,e.c=r,e.p="",e(0)}([function(t,e,r){"use strict";function o(t){return t&&t.__esModule?t:{"default":t}}function s(t,e){if(!t.geometries[0]||!t.geometries[0].coords[0])return[];var r=function(){var r=e.lng-t.geometries[0].coords[0][0]-360;return{v:t.geometries.map(function(t){return r+=360,t.coords.map(function(t){return L.latLng([t[1],t[0]+r])})}).reduce(function(t,e){return t.concat(e)})}}();return"object"===("undefined"==typeof r?"undefined":n(r))?r.v:void 0}var i=Object.assign||function(t){for(var e=1;ed&&(v>f&&gf&&vu&&(u=M)}var m=[];if(p&&u0&&Math.abs(b-r[x-1][0])>d){var L=parseFloat(r[x-1][0]),S=parseFloat(r[x-1][1]),j=parseFloat(r[x][0]),E=parseFloat(r[x][1]);if(L>-180&&L-180&&r[x-1][0]f&&L<180&&j==-180&&x+1f&&r[x-1][0]<180){w.push([180,r[x][1]]),x++,w.push([r[x][0],r[x][1]]);continue}if(Lf){var F=L;L=j,j=F;var C=S;S=E,E=C}if(L>f&&j=180&&Lf?180:-180,I]),w=[],w.push([r[x-1][0]>f?-180:180,I]),m.push(w)}else w=[],m.push(w);w.push([b,r[x][1]])}else w.push([r[x][0],r[x][1]])}}else{var N=[];m.push(N);for(var A=0;Asvg'); + + // let spaceship_img = this.spaceship_img = SnapSvg.image(this.icon.path).attr({ + // visibility: "hidden" + // }); + + + // let spaceship = SnapSvg.group(spaceship_img); + // let flight_path = SnapSvg.path(path).attr({ + // 'fill': 'none', + // 'stroke': 'none' + // }); + + // let full_path_length = Snap.path.getTotalLength(flight_path); + // let half_path_length = full_path_length / 2; + // let third_path_length = full_path_length / 3; + // let forth_path_length = full_path_length / 4; + + + // let width = forth_path_length / this._map.getZoom(); + // let height = forth_path_length / this._map.getZoom(); + + // width = Math.min(Math.max(width, 30), 64); + // height = Math.min(Math.max(height, 30), 64); + + + // let last_step = 0; + + + // Snap.animate(0, forth_path_length, function (step) { + + // //show image when plane start to animate + // spaceship_img.attr({ + // visibility: "visible" + // }); + + // spaceship_img.attr({width: width, height: height}); + + // last_step = step; + + // let moveToPoint = Snap.path.getPointAtLength(flight_path, step); + + // let x = moveToPoint.x - (width / 2); + // let y = moveToPoint.y - (height / 2); + + + // spaceship.transform('translate(' + x + ',' + y + ') rotate(' + (moveToPoint.alpha - 90) + ', ' + width / 2 + ', ' + height / 2 + ')'); + + // }, 2500, mina.easeout, function () { + + // Snap.animate(forth_path_length, half_path_length, function (step) { + + // last_step = step; + // let moveToPoint = Snap.path.getPointAtLength(flight_path, step); + + // let x = moveToPoint.x - width / 2; + // let y = moveToPoint.y - height / 2; + // spaceship.transform('translate(' + x + ',' + y + ') rotate(' + (moveToPoint.alpha - 90) + ', ' + width / 2 + ', ' + height / 2 + ')'); + // }, 7000, mina.easein, function () { + // //done + + // }); + + // }); + + + // }, + getPath: function () { + return this._coords; + }, + setPath: function (path) { + this._setPath(path); + return this.redraw(); + }, + getBounds: function () { + return this._bounds; + }, + getMidPoint: function (from, to, deep, round_side = 'LEFT_ROUND') { + + let offset = 3.14; + + if (round_side === 'RIGHT_ROUND') + offset = offset * -1; + + let latlngs = []; + + let latlng1 = from, + latlng2 = to; + + let offsetX = latlng2.lng - latlng1.lng, + offsetY = latlng2.lat - latlng1.lat; + + let r = Math.sqrt(Math.pow(offsetX, 2) + Math.pow(offsetY, 2)), + theta = Math.atan2(offsetY, offsetX); + + let thetaOffset = (offset / (deep ? deep : 4)); + + let r2 = (r / 2) / (Math.cos(thetaOffset)), + theta2 = theta + thetaOffset; + + let midpointX = (r2 * Math.cos(theta2)) + latlng1.lng, + midpointY = (r2 * Math.sin(theta2)) + latlng1.lat; + + let midpointLatLng = [midpointY, midpointX]; + + latlngs.push(latlng1, midpointLatLng, latlng2); + + return midpointLatLng; + }, + _setPath: function (path) { + this._coords = path; + this._bounds = this._computeBounds(); + }, + _computeBounds: function () { + + let bound = new L.LatLngBounds(); + + bound.extend(this._coords.from); + bound.extend(this._coords.to);//for single destination + bound.extend(this._coords.mid); + + return bound; + }, + getCenter: function () { + return this._bounds.getCenter(); + }, + _update: function () { + if (!this._map) { + return; + } + this._updatePath(); + }, + _updatePath: function () { + //animated plane + let path = this._renderer._updatecurve(this); + // this.setAnimatePlane(path); + }, + _project: function () { + + this._points = []; + + this._points.push('M'); + + let curPoint = this._map.latLngToLayerPoint(this._coords.from); + this._points.push(curPoint); + + if (this._coords.mid) { + this._points.push('Q'); + curPoint = this._map.latLngToLayerPoint(this._coords.mid); + this._points.push(curPoint); + } + curPoint = this._map.latLngToLayerPoint(this._coords.to); + this._points.push(curPoint); + + + }, + + +}); + +L.bezier = function (config, options) { + let paths = []; + for (let i = 0; config.path.length > i; i++) { + let last_destination = false; + for (let c = 0; config.path[i].length > c; c++) { + + let current_destination = config.path[i][c]; + if (last_destination) { + let path_pair = {from: last_destination, to: current_destination}; + paths.push(new Bezier(path_pair, config.icon, options)); + } + + last_destination = config.path[i][c]; + } + } + return L.layerGroup(paths); + +}; + + diff --git a/scraper/reports/map.js b/scraper/reports/map.js new file mode 100644 index 00000000..58984c8e --- /dev/null +++ b/scraper/reports/map.js @@ -0,0 +1,92 @@ +function read_json(selector) { + try { + return JSON.parse(document.querySelector('#' + selector).innerText) + } catch(e) { + console.log("json error!") + return [] + } +} + +let map_mode = false +if (window.location.hash.indexOf('map') !== -1) { + document.body.parentNode.classList.add('map') + map_mode = true +} + +let map = L.map('mapid').setView([25, 0], 2); +L.tileLayer('https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?access_token={accessToken}', { + attribution: 'Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox', + maxZoom: 18, + id: 'mapbox.dark', + style: 'mapbox://styles/mapbox/dark-v9', + accessToken: 'pk.eyJ1IjoiZmFuc2FsY3kiLCJhIjoiY2pvN3I1czJwMHF5NDNrbWRoMWpteHlrdCJ9.kMpM5syQUhVjKkn1iVx9fg' +}).addTo(map); +let points = read_json('citations') +let address = read_json('address') +let source = [0,0] +if (address) { + source = address.slice(3,5).map(n => parseFloat(n)) + console.log(address, source) +} + +var redDot = L.icon({ + iconUrl: '../reddot.png', + iconSize: [17, 17], // size of the icon + iconAnchor: [8, 8], // point of the icon which will correspond to marker's location + popupAnchor: [0, -5] // point from which the popup should open relative to the iconAnchor +}); + +points.forEach(point => { + /* + [ + "Face Alignment by Local Deep Descriptor Regression", + "Rutgers University", + [ + "Rutgers University", + "40.47913175", + "-74.431688684404", + "Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" + ] + ] + */ + + const latlng = point.slice(5,7).map(n => parseFloat(n)) + // console.log(point) + if (!latlng.length || isNaN(latlng[0]) || isNaN(latlng[1])) return + var marker = L.marker(latlng, { icon: redDot }).addTo(map); + marker.bindPopup([ + "", point[0], "", + "
", + point[1], + ].join('')) + // var arcStyle = { + // color: 'rgb(245, 246, 150)', + // fillColor: 'rgb(245, 246, 150)', + // opacity: 0.8, + // weight: '1', + // vertices: 100, + // } + // L.Polyline.Arc(source, latlng, arcStyle).addTo(map); + // console.log(latlng) + var pathStyle = { + color: 'rgb(245, 246, 150)', + fillColor: 'rgb(245, 246, 150)', + opacity: 0.8, + weight: '1', + } + L.bezier({ + path: [ + [ + {lat: source[0], lng: source[1]}, + {lat: latlng[0], lng: latlng[1]}, + ], + ] + }, pathStyle).addTo(map) +}) + +var marker = L.marker(source, { icon: redDot }).addTo(map); +marker.bindPopup([ + "", document.querySelector('h2').innerText, "", + '
', + address[0] +].join('')) diff --git a/scraper/reports/misc/all_doi-1.csv b/scraper/reports/misc/all_doi-1.csv new file mode 100644 index 00000000..16e74d90 --- /dev/null +++ b/scraper/reports/misc/all_doi-1.csv @@ -0,0 +1,749 @@ +95d858b39227edeaf75b7fad71f3dc081e415d16,http://doi.org/10.1007/s11042-017-5073-3 +6a38e4bb35673a73f041e34d3f2db7067482a9b5,http://doi.acm.org/10.1145/2663204.2666277 +045275adac94cced8a898a815293700401e9955f,https://doi.org/10.1007/s00138-012-0447-z +55c46ae1154ed310610bdf5f6d9e7023d14c7eb4,http://doi.acm.org/10.1145/1027933.1028013 +6ad5ac867c5ca56e0edaece153269d989b383b59,https://doi.org/10.1109/CISP-BMEI.2016.7852723 +b598f7761b153ecb26e9d08d3c5817aac5b34b52,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4618852 +32e4fc2f0d9c535b1aca95aeb5bcc0623bcd2cf2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1334680 +998542e5e3882bb0ce563d390b1e1bff5460e80c,https://doi.org/10.1109/AFGR.2008.4813471 +217aa3aa0b3d9f6f394b5d26f03418187d775596,http://doi.acm.org/10.1145/3123266.3123298 +af9419f2155785961a5c16315c70b8228435d5f8,http://doi.org/10.1016/j.patrec.2015.12.013 +3266fbaaa317a796d0934b9a3f3bb7c64992ac7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4527244 +346752e3ab96c93483413be4feaa024ccfe9499f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6960834 +602f772c69e4a1a65de00443c30d51fdd47a80aa,https://doi.org/10.1109/IISA.2013.6623705 +d0dd1364411a130448517ba532728d5c2fe78ed9,https://doi.org/10.1109/ISCAS.2016.7527183 +0a4a8768c1ed419baebe1c420bd9051760875cbe,https://doi.org/10.1109/EUSIPCO.2016.7760451 +170aa0f16cd655fdd4d087f5e9c99518949a1b5c,https://doi.org/10.1007/s11263-007-0074-8 +2f837ff8b134b785ee185a9c24e1f82b4e54df04,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5739539 +96ba65bffdddef7c7737c0f42ff4299e95cd85c2,http://doi.org/10.1007/s11042-018-5658-5 +d42dbc995318e2936714c65c028700bfd3633049,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477592 +0e6f422c3f79c552c0c3d7eda0145aed8680f0ea,https://doi.org/10.1016/j.patrec.2012.09.008 +2a98351aef0eec1003bd5524933aed8d3f303927,https://doi.org/10.1109/CIRA.2007.382901 +c1173b8d8efb8c2d989ce0e51fe21f6b0b8d1478,https://doi.org/10.1109/TCYB.2016.2535122 +00a38ebce124879738b04ffc1536018e75399193,https://doi.org/10.1109/BTAS.2017.8272766 +3f4711c315d156a972af37fe23642dc970a60acf,https://doi.org/10.1109/IJCNN.2008.4634393 +f449c85b8ba5fa67ead341c7ad4ec396f4ab2dd6,http://doi.ieeecomputersociety.org/10.1109/TKDE.2015.2448547 +68f19f06f49aa98b676fc6e315b25e23a1efb1f0,https://doi.org/10.1109/ICIP.2015.7351080 +a136ccaa67f660c45d3abb8551c5ed357faf7081,https://www.ncbi.nlm.nih.gov/pubmed/27078863 +e0162dea3746d58083dd1d061fb276015d875b2e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014992 +d4ec62efcc631fa720dfaa1cbc5692b39e649008,https://doi.org/10.1109/ICDM.2016.0026 +70d0bffa288e317bc62376f4f577c5bd7712e521,https://doi.org/10.1049/iet-cvi.2012.0094 +110919f803740912e02bb7e1424373d325f558a9,http://doi.acm.org/10.1145/3123266.3123421 +9ff931ca721d50e470e1a38e583c7b18b6cdc2cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407637 +cc2a9f4be1e465cb4ba702539f0f088ac3383834,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344595 +dba7d8c4d2fca41269a2c96b1ea594e2d0b9bdda,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7422069 +965c4a8087ae208c08e58aaf630ad412ac8ce6e2,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.100 +598744c8620e4ecbf449d14d7081fbf1cd05851f,https://www.ncbi.nlm.nih.gov/pubmed/29731533 +81af86e3d343a40ce06a3927b6aa8c8853f6811a,http://doi.acm.org/10.1145/3009977.3009996 +64a08beb073f62d2ce44e25c4f887de9208625a4,https://doi.org/10.1080/09540090701725557 +62e61f9f7445e8dec336415ac0c7e677f9f5f7c1,https://doi.org/10.1142/S0219467814500065 +9b1a70d6771547cbcf6ba646f8775614c0162aca,https://doi.org/10.1016/j.patrec.2016.11.005 +4a03f07397c5d32463750facf010c532f45233a5,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.32 +972e044f69443dfc5c987e29250b2b88a6d2f986,http://doi.org/10.1134/S1054661811020738 +f486624efa750d718a670fba3c7f21b1c84ebaeb,https://doi.org/10.1109/TCYB.2016.2581861 +fefaa892f1f3ff78db4da55391f4a76d6536c49a,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2497689 +27a586a435efdcecb151c275947fe5b5b21cf59b,https://doi.org/10.1007/s12559-017-9530-0 +71c4b8e1bb25ee80f4317411ea8180dae6499524,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463396 +1ad5cb4c1eec5a9666b5dbbb6fab43576d0935db,https://doi.org/10.1109/ICIP.2016.7533026 +60777fbca8bff210398ec8b1179bc4ecb72dfec0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751535 +dec5b11b01f35f72adb41d2be26b9b95870c5c00,http://ieeexplore.ieee.org/document/7071948/ +7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,http://doi.org/10.1007/s11263-016-0967-5 +120b9c271c3a4ea0ad12bbc71054664d4d460bc3,https://doi.org/10.1109/DICTA.2015.7371259 +1723227710869a111079be7d61ae3df48604e653,https://doi.org/10.1109/INISTA.2014.6873606 +b0f59b71f86f18495b9f4de7c5dbbebed4ae1607,https://doi.org/10.1016/j.neucom.2015.04.085 +82953e7b3d28ccd1534eedbb6de7984c59d38cd4,https://doi.org/10.1109/TNNLS.2014.2356856 +2d3af3ee03793f76fb8ff15e7d7515ff1e03f34c,http://doi.org/10.1007/s11042-017-4818-3 +c07ab025d9e3c885ad5386e6f000543efe091c4b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302601 +c459014131cbcd85f5bd5c0a89115b5cc1512be9,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.23 +4b9b30066a05bdeb0e05025402668499ebf99a6b,https://doi.org/10.1109/ISPACS.2012.6473448 +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d,http://doi.org/10.1007/s11227-018-2408-4 +7eb8476024413269bfb2abd54e88d3e131d0aa0e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4284739 +f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,https://doi.org/10.1109/TMM.2015.2476657 +7c8e0f3053e09da6d8f9a1812591a35bccd5c669,http://doi.org/10.1007/978-3-030-00470-5 +dc3dc18b6831c867a8d65da130a9ff147a736745,http://dl.acm.org/citation.cfm?id=2750679 +bb2f61a057bbf176e402d171d79df2635ccda9f6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296311 +ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,https://doi.org/10.1109/ICDSP.2016.7868598 +a1e07c31184d3728e009d4d1bebe21bf9fe95c8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900056 +ea1303f6746f815b7518c82c9c4d4a00cd6328b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411434 +a2b76ab614d92f5e71312b530f0b6281d0c500f7,https://doi.org/10.1007/s10898-014-0231-x +70444627cb765a67a2efba17b0f4b81ce1fc20ff,https://doi.org/10.1109/TNNLS.2016.2609434 +72d110df78a7931f5f2beaa29f1eb528cf0995d3,https://doi.org/10.1007/s11517-015-1346-z +bf30477f4bd70a585588528355b7418d2f37953e,https://doi.org/10.1109/ICPR.2016.7900280 +d6e08345ba293565086cb282ba08b225326022fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7490397 +9729930ab0f9cbcd07f1105bc69c540330cda50a,https://doi.org/10.1109/ACCESS.2017.2749331 +7783095a565094ae5b3dccf082d504ddd7255a5c,http://dl.acm.org/citation.cfm?id=2502258 +0629bc2b12245195af989e21573369329b7ef2b7,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2553038 +b7128e0fe18dcb42e8a2ac5cf6794f64a8e37bd0,https://doi.org/10.1109/SERA.2017.7965717 +daa4cfde41d37b2ab497458e331556d13dd14d0b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406477 +587b8c147c6253878128ddacf6e5faf8272842a4,http://dl.acm.org/citation.cfm?id=2638549 +569988e19ab36582d4bd0ec98e344cbacf177f45,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2347960 +f7be8956639e66e534ed6195d929aed4e0b90cad,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4117059 +f28d549feffd414f38147d5e0460883fb487e2d3,https://doi.org/10.1007/s10462-011-9273-3 +a2af07176a38fe844b0e2fdf4abae65472628b38,https://doi.org/10.1109/ICIP.2014.7026060 +57ca530e9acb63487e8591cb6efb89473aa1e5b4,https://doi.org/10.1109/TIP.2014.2356292 +9227c1a5b26556b9c34015b3ea5f9ae5f50e9b23,https://doi.org/10.1109/FCV.2015.7103729 +856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014 +556875fb04ed6043620d7ca04dfe3d8b3a9284f5,https://doi.org/10.1109/ICPR.2014.437 +6b99cd366f2ea8e1c9abadf73b05388c0e24fec3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100204 +6554ca3187b3cbe5d1221592eb546dfc11aac14b,http://doi.acm.org/10.1145/2501643.2501647 +68d566ed4041a7519acb87753036610bd64dcc09,https://doi.org/10.1007/s11390-013-1347-z +f1173a4c5e3501323b37c1ae9a6d7dd8a236eab8,http://arxiv.org/abs/1504.07339 +7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,http://doi.org/10.1007/s11263-016-0920-7 +9745a7f38c9bba9d2fd076813fc9ab7a128a3e19,http://doi.acm.org/10.1145/2393347.2396335 +aae31f092fadd09a843e1ca62af52dc15fc33c56,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273609 +2b5005c2abf2d9a8c16afa50306b6959dfc72275,https://doi.org/10.1109/ICARCV.2010.5707216 +b8a16fcb65a8cee8dd32310a03fe36b5dff9266a,https://doi.org/10.1109/SIU.2014.6830473 +5f1cd82343f4bd6972f674d50aecb453d06f04ad,http://doi.acm.org/10.1145/3125739.3125756 +10e2f2ad1dedec6066e063cb2098b089b35905a8,http://doi.acm.org/10.1145/3052930 +c83d142a47babe84e8c4addafa9e2bb9e9b757a5,https://doi.org/10.1109/MLSP.2012.6349762 +70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e,http://doi.org/10.1007/s11042-018-5608-2 +83b54b8c97dc14e302dad191327407ec0d5fb4a6,https://doi.org/10.1109/ICIP.2017.8296913 +34dd83115195676e7a8b008eb0e9abe84b330b32,https://doi.org/10.1007/s00371-014-0931-8 +81b8a6cabcd6451b21d5b44e69b0a355d9229cc4,https://doi.org/10.1109/ICDSP.2017.8096137 +a26fd9df58bb76d6c7a3254820143b3da5bd584b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446759 +cf7a4442a6aad0e08d4aade8ec379c44f84bca8a,http://doi.acm.org/10.1145/1873951.1874054 +b3050dc48600acf2f75edf1f580a1f9e9cb3c14a,https://doi.org/10.1007/s00138-013-0584-z +214072c84378802a0a0fde0b93ffb17bc04f3759,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301397 +65fc8393610fceec665726fe4e48f00dc90f55fb,https://doi.org/10.1109/CYBConf.2013.6617455 +098363b29eef1471c494382338687f2fe98f6e15,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411212 +a9d1d00d6897ae23c9a7e9fb75a3c7417a6730a4,https://doi.org/10.1049/iet-ipr.2016.1074 +4c648fe9b7bfd25236164333beb51ed364a73253,http://doi.acm.org/10.1145/3038924 +18145b0b13aa477eeabef9ceec4299b60e87c563,https://doi.org/10.1007/s11042-011-0834-x +fd9ab411dc6258763c95b7741e3d51adf5504040,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595808 +3060ac37dec4633ef69e7bc63488548ab3511f61,https://doi.org/10.1007/s00521-018-3358-8 +628f9c1454b85ff528a60cd8e43ec7874cf17931,http://doi.acm.org/10.1145/2993148.2993193 +7ee7b0602ef517b445316ca8aa525e28ea79307e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418530 +7ebfa8f1c92ac213ff35fa27287dee94ae5735a1,https://doi.org/10.1109/TMM.2016.2614429 +84c5b45328dee855c4855a104ac9c0558cc8a328,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411213 +940e5c45511b63f609568dce2ad61437c5e39683,https://doi.org/10.1109/TIP.2015.2390976 +0f2461a265be997c962fa562ae48378fb964b7b4,https://doi.org/10.1109/BigData.2016.7841028 +a92147bed9c17c311c6081beb0ef4c3165b6268e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6805594 +d916602f694ebb9cf95d85e08dd53f653b6196c3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237607 +d046030f7138e5a2dbe2b3eec1b948ad8c787538,https://doi.org/10.1109/ICIP.2009.5413447 +3f0c6dbfd3c9cd5625ba748327d69324baa593a6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373880 +566563a02dbaebec07429046122426acd7039166,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461618 +3a0558ebfde592bd8bd07cb72b8ca8f700715bfb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6636646 +cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7945277 +0e02dadab802128f6155e099135d03ca6b72f42c,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2365793 +0e8a28511d8484ad220d3e8dde39220c74fab14b,https://doi.org/10.1109/TNNLS.2015.2477826 +4686df20f0ee40cd411e4b43860ef56de5531d9e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301536 +3ba74755c530347f14ec8261996dd9eae896e383,https://doi.org/10.1109/JSSC.2017.2767705 +3d89f9b4da3d6fb1fdb33dea7592b5992069a096,https://doi.org/10.1109/CISP-BMEI.2017.8302003 +2a2df7e790737a026434187f9605c4763ff71292,http://doi.org/10.1007/s11042-017-4665-2 +0c1314d98bb6b99af00817644c1803dbc0fb5ff5,http://doi.ieeecomputersociety.org/10.1109/BigMM.2015.29 +47d07217c501644d63adfec740346f244abaaae8,https://doi.org/10.1016/j.patcog.2016.05.017 +eed05da2c0ab7d2b0a3c665a5368efa81b185099,https://doi.org/10.1016/j.neucom.2014.05.020 +85ae6fa48e07857e17ac4bd48fb804785483e268,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7755833 +7918e3e15099b4b2943746e1f6c9e3992a79c5f3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995492 +2ed7d95588200c8c738c7dd61b8338538e04ea30,https://doi.org/10.1109/ICIP.2010.5654063 +a5b6a3234e15343d2e5417cff46c0a5f0943521e,https://doi.org/10.1109/TNNLS.2014.2321420 +3d4b76fe73ea16400d62d0d776b3f43cc5ecf72b,https://doi.org/10.1109/TIFS.2015.2512561 +5c4f9260762a450892856b189df240f25b5ed333,https://doi.org/10.1109/TIP.2017.2651396 +8fa9cb5dac394e30e4089bf5f4ffecc873d1da96,http://doi.org/10.1007/s11042-017-5245-1 +48a402593ca4896ac34fbebf1e725ab1226ecdb7,http://doi.org/10.1016/j.patcog.2015.01.022 +359b4a4c6cb58c8ab5e8eaaed0e8562c8c43a0f9,https://doi.org/10.1007/s10044-014-0377-7 +2be9284d531b8c573a4c39503ca50606446041a3,https://doi.org/10.1109/ICIP.2005.1530004 +0387b32d0ebd034dc778972367e7d4194223785d,http://doi.acm.org/10.1145/2522848.2531740 +397022a4460750c762dbb0aaebcacc829dee8002,https://doi.org/10.1109/TIFS.2013.2258152 +7914c3f510e84a3d83d66717aad0d852d6a4d148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532448 +21cbf46c6adfb3a44ed2b30ff0b21a8391c18b13,https://doi.org/10.1109/VCIP.2017.8305137 +39c8ed5213882d4dbc74332245ffe201882c5de1,https://doi.org/10.1109/ICASSP.2013.6638045 +cb4d3d1b8fbb6df71a184dd8f00f89f84fa8373b,http://doi.ieeecomputersociety.org/10.1109/IJCNN.2009.5179002 +771a6a80dd08212d83a4e976522e1ce108881401,https://doi.org/10.1109/IPTA.2016.7820979 +c65d2ee433ae095652abe3860eeafe6082c636c6,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553714 +414fdfe5f2e4f32a59bf15062b6e524cbf970637,https://doi.org/10.1109/TIFS.2014.2361028 +eeaeca3a601d65d2d978bf3da43ab42fa5e08ed2,https://doi.org/10.1109/FSKD.2016.7603398 +71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774 +1aeef2ab062c27e0dbba481047e818d4c471ca57,https://doi.org/10.1109/ICACCI.2015.7275860 +58538cc418bf41197fad4fc4ee2449b2daeb08b1,http://doi.org/10.1007/s11042-017-4343-4 +4a7e5a0f6a0df8f5ed25ef356cd67745cd854bea,https://doi.org/10.1007/978-3-642-14922-1_68 +b7c6df1ae0e8348feecd65e9ad574d1e04d212a5,http://doi.org/10.1007/s11704-018-8015-y +7d18e9165312cf669b799aa1b883c6bbe95bf40e,http://doi.org/10.1007/s11042-016-3492-1 +edfce091688bc88389dd4877950bd58e00ff1253,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553700 +708f4787bec9d7563f4bb8b33834de445147133b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237449 +259ddd3c618feec51576baac7eaaf80ea924b791,https://doi.org/10.1007/s11257-007-9039-4 +0bab5213911c19c40e936b08d2f8fba01e286b85,https://doi.org/10.1109/BigMM.2017.81 +df6e68db278bedf5486a80697dec6623958edba8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952696 +b209608a534957ec61e7a8f4b9d08286ae3d1d7f,https://doi.org/10.1111/j.1468-0394.2011.00589.x +0d7652652c742149d925c4fb5c851f7c17382ab8,https://doi.org/10.1016/j.neucom.2015.05.057 +2a84f7934365f05b6707ea0ac225210f78e547af,https://doi.org/10.1109/ICPR.2016.7899690 +ca458f189c1167e42d3a5aaf81efc92a4c008976,https://doi.org/10.1109/TIP.2012.2202678 +1ea4347def5868c622d7ce57cbe171fa68207e2b,https://doi.org/10.1007/978-3-642-41181-6_23 +6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885 +e73b1137099368dd7909d203b80c3d5164885e44,http://doi.ieeecomputersociety.org/10.1109/FSKD.2008.116 +97f3d35d3567cd3d973c4c435cdd6832461b7c3c,http://doi.ieeecomputersociety.org/10.1109/FG.2017.75 +e957d0673af7454dbf0a14813201b0e2570577e9,https://doi.org/10.1109/ICPR.2016.7899699 +a100595c66f84c3ddd3da8d362a53f7a82f6e3eb,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.46 +8ebe2df4d82af79f0f082ced70f3a73d7fb93b66,https://doi.org/10.1109/URAI.2015.7358851 +a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357 +f1ae9f5338fcff577b1ae9becdb66007fe57bd45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099873 +c9527df51e63b56c61cbf16f83d1a3c5c2c82499,http://doi.acm.org/10.1145/2072298.2072311 +a2e0966f303f38b58b898d388d1c83e40b605262,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354125 +352a620f0b96a7e76b9195a7038d5eec257fd994,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373823 +179545c1fc645cb2ad9b31a30f48352d541876ff,https://doi.org/10.1109/IJCNN.2007.4371116 +e75a589ca27dc4f05c2715b9d54206dee37af266,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409973 +b5f9180666924a3215ab0b1faf712e70b353444d,http://doi.org/10.1007/s11042-017-4661-6 +099053f2cbfa06c0141371b9f34e26970e316426,http://doi.org/10.1007/s11042-016-4079-6 +3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398675 +ff402bd06c9c4e94aa47ad80ccc4455efa869af3,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334120 +434f1442533754b3098afd4e24abf1e3792b24db,https://doi.org/10.1109/CBMI.2015.7153627 +d57ce0ff4acb2910c2d1afee2ebb7aa1e72a4584,https://doi.org/10.1109/CVPRW.2010.5543816 +bd25c4ad7471580ed9787eae041b80a3c4fe97bb,https://doi.org/10.1016/j.sigpro.2010.01.019 +72345fed8d068229e50f9ea694c4babfd23244a0,http://doi.acm.org/10.1145/2632856.2632937 +d289ce63055c10937e5715e940a4bb9d0af7a8c5,http://dl.acm.org/citation.cfm?id=3081360 +239e305c24155add73f2a0ba5ccbd66b37f77e14,http://dl.acm.org/citation.cfm?id=1219097 +55fdff2881d43050a8c51c7fdc094dbfbbe6fa46,https://doi.org/10.1109/ICB.2016.7550064 +3690af0af51a067750f664c08e48b486d1cd476d,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2012.41 +681399aa0ea4cbffd9ab22bf17661d6df4047349,http://doi.ieeecomputersociety.org/10.1109/CISIS.2012.207 +8cd0855ca967ce47b0225b58bbadd38d8b1b41a1,https://doi.org/10.1109/TIP.2017.2721106 +5e9ec3b8daa95d45138e30c07321e386590f8ec7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6967830 +d4fb26f5528b9a1f04ea773cc2b920e01fc0edd4,https://doi.org/10.1109/TSMCB.2009.2032155 +ae73f771d0e429a74b04a6784b1b46dfe98f53e4,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.326 +d6e3bd948aae43f7654ea1d9e89d88f20d8cf25f,https://doi.org/10.1109/ACPR.2013.98 +b7043048b4ba748c9c6317b6d8206192c34f57ff,https://doi.org/10.1109/ICIP.2016.7533061 +535cdce8264ac0813d5bb8b19ceafa77a1674adf,http://doi.org/10.1007/s12559-016-9402-z +a532cfc69259254192aee3fc5be614d9197e7824,http://doi.org/10.1016/j.patcog.2016.12.028 +3f88ea8cf2eade325b0f32832561483185db5c10,https://doi.org/10.1109/TIP.2017.2721838 +021e008282714eaefc0796303f521c9e4f199d7e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354319 +437642cfc8c34e445ea653929e2d183aaaeeb704,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014815 +69b2a7533e38c2c8c9a0891a728abb423ad2c7e7,https://doi.org/10.1016/j.imavis.2013.03.003 +0c0db39cac8cb76b52cfdbe10bde1c53d68d202f,http://doi.acm.org/10.1145/3123266.3123334 +751fb994b2c553dc843774a5620bfcab8bc657fd,https://doi.org/10.1007/978-3-319-67180-2_47 +3980dadd27933d99b2f576c3b36fe0d22ffc4746,https://doi.org/10.1109/ROBIO.2017.8324597 +459eb3cfd9b52a0d416571e4bc4e75f979f4b901,https://doi.org/10.1109/ROBIO.2015.7418998 +e51f1ee5535017e10a5f77100ff892509ec6b221,https://doi.org/10.1109/ICSMC.2007.4413825 +1ce29d6b820ed4a24da27b76ffd9605d5b3b10b5,https://doi.org/10.1016/j.imavis.2015.01.007 +26949c1ba7f55f0c389000aa234238bf01a32d3b,https://doi.org/10.1109/ICIP.2017.8296814 +ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,https://doi.org/10.1109/ICIP.2017.8296549 +d6c8f5674030cf3f5a2f7cc929bad37a422b26a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337371 +68eb6e0e3660009e8a046bff15cef6fe87d46477,https://doi.org/10.1109/ICIP.2017.8296999 +7f904093e6933cab876e87532111db94c71a304f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117544 +82e1692467969940a6d6ac40eae606b8b4981f7e,https://doi.org/10.1109/ICMEW.2012.56 +a20036b7fbf6c0db454c8711e72d78f145560dc8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761890 +e9cebf627c204c6949dcc077d04c57eb66b2c038,https://doi.org/10.1109/SIU.2013.6531371 +1195f0bf8f745ba69da915203bcd79589b94aec5,https://doi.org/10.1016/j.procs.2010.11.004 +06b4e41185734f70ce432fdb2b121a7eb01140af,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362753 +6b8329730b2e13178a577b878631735a1cd58a71,http://doi.ieeecomputersociety.org/10.1109/FiCloud.2015.78 +812d3f6975f4cb87e9905ef18696c5c779227634,https://doi.org/10.1186/s13640-016-0151-4 +4f8b4784d0fca31840307650f7052b0dde736a76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7017496 +bd26faef48080b5af294b19139c804ffec70825e,https://doi.org/10.1007/s11390-015-1526-1 +9635493998ad60764d7bbf883351af57a668d159,https://doi.org/10.1109/IJCNN.2017.7966005 +5ee0103048e1ce46e34a04c45ff2c2c31529b466,https://doi.org/10.1109/ICIP.2015.7350886 +66f4d7c381bd1798703977de2e38b696c6641b77,https://doi.org/10.1109/FSKD.2015.7382360 +aea977a3b5556957ed5fb3ef21685ee84921eaa3,https://doi.org/10.1007/s12193-017-0256-9 +f8162276f3b21a3873dde7a507fd68b4ab858bcc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761923 +2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,http://doi.acm.org/10.1145/3090311 +69a41c98f6b71764913145dbc2bb4643c9bc4b0a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8444452 +d0a8889f694422614bf3ecccd69aa1d4f7822606,https://doi.org/10.1007/978-0-85729-997-0_22 +b8e5800dfc590f82a0f7eedefce9abebf8088d12,https://doi.org/10.1109/DCC.2017.87 +7123e510dea783035b02f6c35e35a1a09677c5ab,https://doi.org/10.1109/ICPR.2016.7900297 +bccb35704cdd3f2765b1a3f0296d1bff3be019c1,https://doi.org/10.1109/ICMLA.2016.0145 +2564920d6976be68bb22e299b0b8098090bbf259,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8407761 +d7bd37920a3a4a4d681151131e23a839695c8d5b,https://doi.org/10.1109/ICRA.2011.5979870 +5e806d8fa48216041fe719309534e3fa903f7b5b,https://doi.org/10.1109/BTAS.2010.5634501 +ad7b6d2e8d66f720cc83323a0700c25006d49609,https://doi.org/10.1109/TIP.2009.2028255 +62f017907e19766c76887209d01d4307be0cc573,http://doi.org/10.1016/j.imavis.2012.02.001 +b5747ecfa0f3be0adaad919d78763b1133c4d662,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397022 +239958d6778643101ab631ec354ea1bc4d33e7e0,http://doi.org/10.1016/j.patcog.2017.06.009 +1ed49161e58559be399ce7092569c19ddd39ca0b,https://doi.org/10.1109/ICPR.2016.7899973 +e3b9863e583171ac9ae7b485f88e503852c747b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7494596 +a9506c60ec48056087ee3e10d28ff7774fbbd553,https://doi.org/10.1109/TCSVT.2014.2376136 +21959bc56a160ebd450606867dce1462a913afab,http://doi.org/10.1007/s11042-018-6071-9 +292e1c88d43a77dbe5c610f4f611cfdb6d3212b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301520 +8c048be9dd2b601808b893b5d3d51f00907bdee0,https://doi.org/10.1631/FITEE.1600041 +9b0ead0a20a2b7c4ae40568d8d1c0c2b23a6b807,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354290 +fa72e39971855dff6beb8174b5fa654e0ab7d324,https://doi.org/10.1007/s11042-013-1793-1 +6584c3c877400e1689a11ef70133daa86a238602,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8039231 +c1581b5175994e33549b8e6d07b4ea0baf7fe517,https://doi.org/10.1109/IJCNN.2011.6033478 +163d0e6ea8c8b88b4383a4eaa740870e2458b9b0,https://doi.org/10.1007/978-3-319-71928-3_18 +e7697c7b626ba3a426106d83f4c3a052fcde02a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553713 +fff31548617f208cd5ae5c32917afd48abc4ff6a,http://doi.acm.org/10.1145/3139295.3139309 +cd3b713722ccb1e2ae3b050837ca296b2a2dd82a,https://doi.org/10.1016/j.jvcir.2016.07.015 +b2ddea9c71cd73fa63e09e8121bc7a098fae70b4,https://doi.org/10.1109/ISCCSP.2012.6217849 +a7ec294373ccc0598cbb0bbb6340c4e56fe5d979,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699580 +f41e80f941a45b5880f4c88e5bf721872db3400f,http://doi.ieeecomputersociety.org/10.1109/IC3.2017.8284359 +9d46485ca2c562d5e295251530a99dd5df99b589,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813386 +1bd8ab47177997acb3b0cca4b6a801e6e6ec3eac,https://doi.org/10.1109/ICIP.2014.7025273 +98c5dc00bd21a39df1d4411641329bdd6928de8a,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995447 +3bdaf59665e6effe323a1b61308bcac2da4c1b73,https://doi.org/10.1109/ROMAN.2012.6343736 +65869cc5ef00d581c637ae8ea6ca02ae4bb2b996,http://doi.ieeecomputersociety.org/10.1109/ICDM.2007.65 +ef7b8f73e95faa7a747e0b04363fced0a38d33b0,https://doi.org/10.1109/ICIP.2017.8297028 +d91a5589fd870bf62b7e4979d9d47e8acf6c655d,http://doi.acm.org/10.1145/2382336.2382343 +493bc7071e35e7428336a515d1d26020a5fb9015,https://doi.org/10.1109/ACSSC.2013.6810420 +0d3ff34d8490a9a53de1aac1dea70172cb02e013,https://doi.org/10.1109/ICPR.2014.542 +286a5c19a43382a21c8d96d847b52bba6b715a71,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6876188 +adb040081974369c46b943e9f75be4e405623102,http://doi.ieeecomputersociety.org/10.1109/PACCS.2009.191 +e295c1aa47422eb35123053038e62e9aa50a2e3a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406389 +fba386ac63fe87ee5a0cf64bf4fb90324b657d61,https://doi.org/10.1109/ICIP.2015.7351752 +aa581b481d400982a7e2a88830a33ec42ad0414f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7313922 +997c7ebf467c579b55859315c5a7f15c1df43432,http://doi.ieeecomputersociety.org/10.1109/FG.2017.141 +cbbd9880fb28bef4e33da418a3795477d3a1616e,http://doi.org/10.1016/j.patcog.2016.02.002 +00d4c2db10f3a32d505d7b8adc7179e421443dec,https://doi.org/10.1109/GlobalSIP.2014.7032080 +104ee18b513b52386f871e959c1f9e5072604e93,https://doi.org/10.1109/GlobalSIP.2017.8309189 +258b3b1df82186dd76064ef86b28555e91389b73,https://doi.org/10.1109/ACCESS.2017.2739822 +524f6dc7441a3899ea8eb5d3e0d5d70e50ba566a,http://doi.acm.org/10.1145/2797143.2797165 +a71bd4b94f67a71bc5c3563884bb9d12134ee46a,https://doi.org/10.1016/j.asoc.2015.05.006 +234c106036964131c0f2daf76c47ced802652046,http://doi.org/10.1016/j.cviu.2015.07.007 +b85d0aef3ee2883daca2835a469f5756917e76b7,https://doi.org/10.1007/s41095-015-0015-3 +9aab33ce8d6786b3b77900a9b25f5f4577cea461,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961739 +d77f18917a58e7d4598d31af4e7be2762d858370,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6289062 +4490b8d8ab2ac693c670751d4c2bff0a56d7393d,https://doi.org/10.1007/s11063-017-9648-9 +84a74ef8680b66e6dccbc69ae80321a52780a68e,http://doi.org/10.1007/978-0-85729-932-1_19 +913062218c7498b2617bb9d7821fe1201659c5cc,https://doi.org/10.1109/ICMLA.2012.178 +157647b0968d95f9288b27d6d9179a8e1ef5c970,https://doi.org/10.1049/iet-bmt.2014.0086 +b8bcf9c773da1c5ee76db4bf750c9ff5d159f1a0,http://doi.acm.org/10.1145/2911996.2911999 +f1af714b92372c8e606485a3982eab2f16772ad8,http://ieeexplore.ieee.org/document/5617662/ +49068538b7eef66b4254cc11914128097302fab8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339040 +27e0684fa5b57715162ac6c58a6ea283c7db1719,https://doi.org/10.1109/ICARCV.2004.1468857 +252f202bfb14d363a969fce19df2972b83fa7ec0,http://doi.ieeecomputersociety.org/10.1109/FG.2017.120 +ff42ec628b0980909bbb84225d0c4f8d9ac51e03,https://doi.org/10.1109/TCSVT.2008.2005799 +e14cc2715b806288fe457d88c1ad07ef55c65318,http://dl.acm.org/citation.cfm?id=2830583 +add6d96fc018986f51a1aac47eae9ee3fc62fb66,http://doi.acm.org/10.1145/3009977.3010074 +7923742e2af655dee4f9a99e39916d164bc30178,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272743 +4d90d7834ae25ee6176c096d5d6608555766c0b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354115 +1ed617d14dbc53b20287d3405b14c68d8dad3965,https://doi.org/10.1109/TCYB.2016.2582918 +244293024aebbb0ff42a7cf2ba49b1164697a127,https://doi.org/10.1109/BTAS.2016.7791187 +1b6c65442f2b572fb6c8fc9a7d5ae49a8e6d32ab,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.537 +af3b803188344971aa89fee861a6a598f30c6f10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404811 +9da63f089b8ee23120bfa8b4d9d9c8f605f421fc,http://doi.acm.org/10.1145/2072298.2072043 +610779e90b644cc18696d7ac7820d3e0598e24d0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7067419 +fed8cc533037d7d925df572a440fd89f34d9c1fd,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.194 +6f68c49106b66a5bd71ba118273b4c5c64b6619f,http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190720 +0fb45e704ef3ca1f9c70e7be3fb93b53714ed8b5,http://doi.ieeecomputersociety.org/10.1109/FG.2017.142 +16c1b592d85d13f1ba4eff0afb4441bb78650785,https://doi.org/10.1109/TIP.2017.2685343 +2546dc7e2c2390233de16502413fe1097ecf3fb5,https://doi.org/10.1016/j.patrec.2011.01.009 +c06b13d0ec3f5c43e2782cd22542588e233733c3,https://doi.org/10.1016/j.cviu.2016.02.001 +6c01b349edb2d33530e8bb07ba338f009663a9dd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5332299 +8fc36452a49cb0fd43d986da56f84b375a05b4c1,http://doi.acm.org/10.1145/2542355.2542388 +a6902db7972a7631d186bbf59c5ef116c205b1e8,http://dl.acm.org/citation.cfm?id=1276381 +0c6a566ebdac4bd14e80cd6bf4631bc7458e1595,http://doi.org/10.1016/j.patcog.2013.03.010 +f7bebb2d5ef7c9bd38808b8e615756efafc2a1e7,https://doi.org/10.1109/ICIP.2012.6467434 +a325d5ea42a0b6aeb0390318e9f65f584bd67edd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909426 +abf0aa1d8869d87f4ef62e2da058ccfb4bf46d18,https://doi.org/10.1007/s11042-015-2536-2 +c8bc8c99acd009e4d27ddd8d9a6e0b899d48543e,https://doi.org/10.1109/IROS.2012.6386178 +193bc8b663d041bc34134a8407adc3e546daa9cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373908 +cb160c5c2a0b34aba7b0f39f5dda6aca8135f880,https://doi.org/10.1109/SIU.2016.7496023 +91167aceafbc9c1560381b33c8adbc32a417231b,https://doi.org/10.1109/TCSVT.2009.2020337 +9776a9f3c59907f45baaeda4b8907dcdac98aef1,https://doi.org/10.1109/CISP-BMEI.2017.8301924 +d9b4b49378fcd77dcd5e755975b99ed4c7962f17,https://doi.org/10.1109/TIP.2015.2473105 +e74a2159f0f7afb35c7318a6e035bc31b8e69634,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019503 +9ce4541d21ee3511bf3dc55bc3cd01222194d95a,https://doi.org/10.1016/j.cviu.2017.05.008 +2400c4994655c4dd59f919c4d6e9640f57f2009f,https://doi.org/10.1109/IPTA.2015.7367096 +4ea63435d7b58d41a5cbcdd34812201f302ca061,https://doi.org/10.1109/ICIP.2014.7025066 +81c21f4aafab39b7f5965829ec9e0f828d6a6182,https://doi.org/10.1109/BTAS.2015.7358744 +69ba86f7aac7b7be0ac41d990f5cd38400158f96,https://doi.org/10.1109/TNNLS.2015.2504724 +58684a925693a0e3e4bb1dd2ebe604885be034d2,https://doi.org/10.1109/ICASSP.2008.4517869 +51d6a8a61ea9588a795b20353c97efccec73f5db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460308 +8e8a6623b4abd2452779c43f3c2085488dfcb323,http://doi.acm.org/10.1145/2993148.2997630 +75a74a74d6abbbb302a99de3225c8870fa149aee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914657 +37866fea39deeff453802cde529dd9d32e0205a5,http://dl.acm.org/citation.cfm?id=2393385 +93d903d2e48d6a8ad3e3d2aff2e57622efe649cd,https://doi.org/10.1109/ICIP.2016.7532432 +e198a7b9e61dd19c620e454aaa81ae8f7377ade0,https://doi.org/10.1109/CVPRW.2010.5543611 +163ba5a998973f9ead6be0ca873aed5934d5022e,https://doi.org/10.1109/ACPR.2013.53 +ea03a569272d329090fe60d6bff8d119e18057d7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532906 +df550cb749858648209707bec5410431ea95e027,https://doi.org/10.1109/TCYB.2015.2433926 +cd85f71907f1c27349947690b48bfb84e44a3db0,https://doi.org/10.1007/978-981-10-4840-1 +8c3f7bd8ae50337dd812b370ce4c4ea9375a9f58,https://doi.org/10.1109/ICIP.2014.7025276 +dc2f16f967eac710cb9b7553093e9c977e5b761d,https://doi.org/10.1109/ICPR.2016.7900141 +9fbcf40b0649c03ba0f38f940c34e7e6c9e04c03,https://doi.org/10.1007/s10044-006-0033-y +90221884fe2643b80203991686af78a9da0f9791,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995467 +46976097c54e86032932d559c8eb82ffea4bb6bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738868 +0561bed18b6278434deae562d646e8adad72e75d,https://doi.org/10.1016/j.neucom.2014.09.052 +ac03849956ac470c41585d2ee34d8bb58bb3c764,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853690 +fffe5ab3351deab81f7562d06764551422dbd9c4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163114 +3ff418ac82df0b5c2f09f3571557e8a4b500a62c,https://doi.org/10.1007/s11554-007-0039-8 +80677676b127b67938c8db06a15d87f5dd4bd7f1,https://doi.org/10.1007/s11760-014-0623-x +d383ba7bbf8b7b49dcef9f8abab47521966546bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995471 +fcb276874cd932c8f6204f767157420500c64bd0,https://doi.org/10.1007/978-3-319-04960-1_3 +052cec9fdbfe12ccd02688f3b7f538c0d73555b3,https://doi.org/10.1109/ICIP.2016.7533172 +2ce84465b9759166effc7302c2f5339766cc523d,https://doi.org/10.1109/VCIP.2015.7457830 +e68869499471bcd6fa8b4dc02aa00633673c0917,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595885 +db3984b143c59584a32d762d712d21c0e8cf38b8,https://doi.org/10.1109/SMC.2015.324 +a9fdbe102f266cc20e600fa6b060a7bc8d1134e9,https://www.ncbi.nlm.nih.gov/pubmed/29334821 +2e535b8cd02c2f767670ba47a43ad449fa1faad7,https://doi.org/10.1109/MSP.2017.2740460 +faa46ef96493b04694555738100d9f983915cf9b,https://doi.org/10.1007/s10489-015-0735-1 +b7a0c70a320c1ac3e92f4bf0b50a7d8ceb757c41,https://doi.org/10.1109/IJCNN.2016.7727203 +a38dd439209b0913b14b1c3c71143457d8cf9b78,https://doi.org/10.1109/IJCNN.2015.7280803 +256b46b12ab47283e6ada05fad6a2b501de35323,https://doi.org/10.1109/ICPR.2016.7900275 +f7911b9ff58d07d19c68f4a30f40621f63c0f385,http://dl.acm.org/citation.cfm?id=3007693 +b21bf45cd3aeaec3440eeca09a1c5a5ee3d24a3a,https://doi.org/10.1080/10798587.2014.934592 +e41246837c25d629ca0fad74643fb9eb8bf38009,https://doi.org/10.1109/ICSIPA.2011.6144064 +8a8127a06f432982bfb0150df3212f379b36840b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373884 +5b4bbba68053d67d12bd3789286e8a9be88f7b9d,https://doi.org/10.1109/ICSMC.2008.4811353 +0da3c329ae14a4032b3ba38d4ea808cf6d115c4a,https://doi.org/10.1007/s00138-015-0709-7 +ded8252fc6df715753e75ba7b7fee518361266ef,https://doi.org/10.1109/SIU.2012.6204837 +99cd84a62edb2bda2fc2fdc362a72413941f6aa4,http://doi.ieeecomputersociety.org/10.1109/FG.2017.109 +60462b981fda63c5f9d780528a37c46884fe0b54,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397015 +2a7058a720fa9da4b9b607ea00bfdb63652dff95,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590031 +69adf2f122ff18848ff85e8de3ee3b2bc495838e,http://arxiv.org/abs/1711.10678 +ad08426ca57da2be0e9f8c1f673e491582edb896,http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.98 +e4c3587392d477b7594086c6f28a00a826abf004,https://doi.org/10.1109/ICIP.2017.8296998 +9939498315777b40bed9150d8940fc1ac340e8ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789583 +872ff48a3acfbf96376fd048348372f5137615e4,https://doi.org/10.1007/s41095-016-0051-7 +681d222f91b12b00e9a4217b80beaa11d032f540,https://doi.org/10.1007/s10044-015-0493-z +be6bd94322dd0ecfc8ea99eb7f40a9a14dd3471f,https://doi.org/10.1109/UIC-ATC.2013.32 +80d4cf7747abfae96328183dd1f84133023c2668,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369786 +b1bb517bd87a1212174033fc786b2237844b04e6,https://doi.org/10.1016/j.neucom.2015.03.078 +39d6339a39151b5f88ec2d7acc38fe0618d71b5f,https://doi.org/10.1109/MMSP.2013.6659285 +4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,https://doi.org/10.1109/TIP.2014.2387379 +a9426cb98c8aedf79ea19839643a7cf1e435aeaa,https://doi.org/10.1109/GlobalSIP.2016.7905998 +68e6cfb0d7423d3fae579919046639c8e2d04ad7,https://doi.org/10.1109/ICB.2016.7550058 +e1179a5746b4bf12e1c8a033192326bf7f670a4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163104 +ebc2a3e8a510c625353637e8e8f07bd34410228f,https://doi.org/10.1109/TIP.2015.2502485 +91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,http://doi.org/10.1007/s41095-016-0068-y +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762938 +550351edcfd59d3666984771f5248d95548f465a,https://doi.org/10.1109/TIP.2014.2327805 +e8c051d9e7eb8891b23cde6cbfad203011318a4f,http://doi.acm.org/10.1145/3013971.3014015 +8bbd40558a99e33fac18f6736b8fe99f4a97d9b1,http://doi.org/10.1007/s11263-016-0986-2 +44389d8e20cf9f1a8453f4ba033e03cff9bdfcbb,https://doi.org/10.1016/j.neucom.2017.07.052 +8027a9093f9007200e8e69e05616778a910f4a5f,https://doi.org/10.1109/ICB.2013.6612997 +7477cf04c6b086108f459f693a60272523c134db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618937 +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae,http://dl.acm.org/citation.cfm?id=3123271 +17de5a9ce09f4834629cd76b8526071a956c9c6d,https://doi.org/10.1007/978-3-319-68063-7_8 +dc34ab49d378ddcf6c8e2dbf5472784c5bfa8006,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462222 +cae41c3d5508f57421faf672ee1bea0da4be66e0,https://doi.org/10.1109/ICPR.2016.7900298 +ffb1cb0f9fd65247f02c92cfcb152590a5d68741,https://doi.org/10.1109/CISS.2012.6310782 +ffea2b26e422c1009afa7e200a43b31a1fae86a9,https://doi.org/10.1007/s00500-009-0441-1 +14bdd23ea8f4f6d7f4c193e5cbb0622362e12ae1,https://doi.org/10.1109/TIP.2006.884932 +d37ca68742b2999667faf464f78d2fbf81e0cb07,https://doi.org/10.1007/978-3-319-25417-3_76 +60284c37249532fe7ff6b14834a2ae4d2a7fda02,https://doi.org/10.1109/SIU.2016.7495971 +335435a94f8fa9c128b9f278d929c9d0e45e2510,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849440 +17d03da4db3bb89537d644b682b2a091d563af4a,https://doi.org/10.1109/TNN.2010.2050600 +2744e6d526b8f2c1b297ac2d2458aaa08b0cda11,http://doi.org/10.1007/s11042-017-5571-3 +11d73f4f19077e6806d05dc7ecd17fbeb15bdf39,http://doi.ieeecomputersociety.org/10.1109/FG.2017.28 +184dba921b932143d196c833310dee6884fa4a0a,https://doi.org/10.1109/SIU.2017.7960393 +7f5346a169c9784ca79aca5d95ae8bf2ebab58e3,https://doi.org/10.1109/ICIP.2015.7351304 +e0fe68c92fefa80992f4861b0c45a3fbec7cf1c9,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344671 +0ee83ed9bedc0cec5c3368144df0b6f4ee76ddff,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.40 +d9e66b877b277d73f8876f537206395e71f58269,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7225130 +63c74794aedb40dd6b1650352a2da7a968180302,https://doi.org/10.1016/j.neucom.2016.09.015 +3157be811685c93d0cef7fa4c489efea581f9b8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411222 +1860b8f63ce501bd0dfa9e6f2debc080e88d9baa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7894195 +35ccc836df60cd99c731412fe44156c7fd057b99,https://doi.org/10.1109/ICCIS.2017.8274819 +578117ff493d691166fefc52fd61bad70d8752a9,https://doi.org/10.1109/CCST.2016.7815707 +e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,https://doi.org/10.1109/BTAS.2017.8272722 +dcf6ecd51ba135d432fcb7697fc6c52e4e7b0a43,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100120 +f39783847499dd56ba39c1f3b567f64dfdfa8527,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791189 +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7,http://doi.org/10.1007/s11042-018-6047-9 +d4fba386caca1b5b2ee35ee5310b5fce50b2b1c3,https://doi.org/10.23919/MVA.2017.7986886 +9026ee8a89ecfa6bd2688a4943eee027e3fc4b0f,http://doi.ieeecomputersociety.org/10.1109/CGIV.2011.28 +5798055e11e25c404b1b0027bc9331bcc6e00555,http://doi.acm.org/10.1145/2393347.2396357 +4672513d0dbc398719d66bba36183f6e2b78947b,https://doi.org/10.1016/j.ipm.2015.05.007 +2a826273e856939b58be8779d2136bffa0dddb08,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373892 +41e5d92b13d36da61287c7ffd77ee71de9eb2942,https://doi.org/10.1016/j.asoc.2016.12.033 +5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,https://doi.org/10.1109/ICT.2017.7998256 +9c6dfd3a38374399d998d5a130ffc2864c37f554,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553738 +fbc9ba70e36768efff130c7d970ce52810b044ff,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738500 +747dc0add50b86f5ba9e3e7315943d520e08f9eb,http://doi.ieeecomputersociety.org/10.1109/FG.2017.78 +6b0a2f9ab9b134d66a325525ea5d90ad546fe2b7,https://doi.org/10.1109/IJCNN.2016.7727803 +ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,https://doi.org/10.1109/LSP.2016.2602538 +d36a1e4637618304c2093f72702dcdcc4dcd41d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961791 +331d6ace8d59fa211e5bc84a93fdc65695238c69,https://doi.org/10.1007/s10115-017-1115-4 +58d43e32660446669ff54f29658961fe8bb6cc72,https://doi.org/10.1109/ISBI.2017.7950504 +8605e8f5d84b8325b1a81d968c296a5a5d741f31,https://doi.org/10.1016/j.patcog.2017.04.010 +d8b99eada922bd2ce4e20dc09c61a0e3cc640a62,https://doi.org/10.1109/IJCNN.2014.6889675 +3d9e44d8f8bc2663192c7ce668ccbbb084e466e4,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019505 +9f5e22fbc22e1b0a61bcd75202d299232e68de5d,https://doi.org/10.1109/IJCNN.2016.7727391 +22e121a8dea49e3042de305574356477ecacadda,http://doi.org/10.1007/s00138-018-0935-x +afdc303b3325fbc1baa9f18a66bcad59d5aa675b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595920 +d98a36081a434451184fa4becb59bf5ec55f3a1e,https://doi.org/10.1016/j.neucom.2016.09.110 +5fe3a9d54d5070308803dd8ef611594f59805400,http://doi.org/10.1016/j.patcog.2016.02.006 +b7b8e7813fbc12849f2daba5cab604abd8cbaab6,https://doi.org/10.1109/ICCE.2014.6775938 +6a5d7d20a8c4993d56bcf702c772aa3f95f99450,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813408 +a317083d9aac4062e77aa0854513383c87e47ece,https://doi.org/10.1016/j.patcog.2015.06.003 +f6f2a212505a118933ef84110e487551b6591553,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952474 +d2baa43471d959075fc4c93485643cbd009797fd,http://doi.ieeecomputersociety.org/10.1109/MM.2017.4241350 +d2d9612d3d67582d0cd7c1833599b88d84288fab,https://doi.org/10.1049/iet-cvi.2015.0222 +a2cc3193ed56ef4cedaaf4402c844df28edb5639,https://doi.org/10.1016/j.patrec.2012.01.005 +a735c6330430c0ff0752d117c54281b1396b16bf,https://doi.org/10.1109/SMC.2014.6974118 +3ca6adc90aae5912baa376863807191ffd56b34e,https://doi.org/10.1109/LSP.2014.2316918 +cbaa17be8c22e219a9c656559e028867dfb2c2ed,https://doi.org/10.1109/ICIP.2016.7532636 +1672becb287ae3eaece3e216ba37677ed045db55,https://doi.org/10.1016/j.eswa.2015.10.047 +c847de9faa1f1a06d5647949a23f523f84aba7f3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199761 +d10cfcf206b0991e3bc20ac28df1f61c63516f30,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553776 +844e3e6992c98e53b45e4eb88368d0d6e27fc1d6,https://doi.org/10.1109/ICIP.2014.7026057 +9f43caad22803332400f498ca4dd0429fe7da0aa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6239186 +9fab78015e6e91ba7241a923222acd6c576c6e27,http://doi.ieeecomputersociety.org/10.1109/ICSS.2016.10 +ca8f23d9b9a40016eaf0467a3df46720ac718e1d,https://doi.org/10.1109/ICASSP.2015.7178214 +0a451fc7d2c6b3509d213c210ae880645edf90ed,https://doi.org/10.1109/IJCNN.2014.6889591 +4c72a51a7c7288e6e17dfefe4f87df47929608e7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736912 +d60e3eef429ed2a51bbd806125fa31f5bea072a4,https://doi.org/10.1109/HIS.2013.6920481 +4d19401e44848fe65b721971bc71a9250870ed5f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462612 +0974677f59e78649a40f0a1d85735410d21b906a,https://doi.org/10.1109/ISCAS.2017.8050798 +90eb66e75381cce7146b3953a2ae479a7beec539,http://doi.ieeecomputersociety.org/10.1109/AIPR.2015.7444542 +3a6334953cd2775fab7a8e7b72ed63468c71dee7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7591180 +8694cd9748fb1c128f91a572119978075fede848,http://doi.org/10.1016/j.neucom.2017.08.028 +651cafb2620ab60a0e4f550c080231f20ae6d26e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6360717 +c61a8940d66eed9850b35dd3768f18b59471ca34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1374768 +d4331a8dd47b03433f8390da2eaa618751861c64,https://doi.org/10.1109/TIP.2012.2192125 +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,https://doi.org/10.1007/978-981-10-3005-5_57 +d340a135a55ecf7506010e153d5f23155dcfa7e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7884781 +3c1b73509cc09200e96ab9cfb28ebfd9d1d6aa9a,https://doi.org/10.1109/LSP.2016.2639341 +c83e26622b275fdf878135e71c23325a31d0e5fc,http://dl.acm.org/citation.cfm?id=3164611 +0d8cec1b3f9b6e25d9d31eeb54d8894a1f2ef84f,https://doi.org/10.1109/LSP.2018.2810121 +93108f1548e8766621565bdb780455023349d2b2,https://doi.org/10.1109/ICIP.2010.5653914 +af2d30fdb8c611dc5b883b90311d873e336fc534,https://doi.org/10.1109/ISCAS.2017.8050275 +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74,http://doi.org/10.1007/s00138-016-0820-4 +26c8ed504f852eda4a2e63dbbbc3480e57f43c70,http://doi.org/10.1142/S0218001415560078 +81513764b73dae486a9d2df28269c7db75e9beb3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7839217 +4317856a1458baa427dc00e8ea505d2fc5f118ab,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296449 +fc8fb68a7e3b79c37108588671c0e1abf374f501,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565615 +fb3ff56ab12bd250caf8254eca30cd97984a949a,https://doi.org/10.3103/S0146411617010072 +243cd27dce38fd756a840b397c28ad21cfb78897,https://doi.org/10.1049/iet-ipr.2013.0003 +31f905d40a4ac3c16c91d5be8427762fa91277f1,https://doi.org/10.1109/TIP.2017.2704661 +a4725a5b43e7c36d9e30028dff66958f892254a0,http://doi.acm.org/10.1145/2663204.2666271 +def934edb7c7355757802a95218c6e4ed6122a72,http://doi.org/10.1007/978-0-387-31439-6 +dbfe62c02b544b48354fac741d90eb4edf815db5,https://doi.org/10.1109/SITIS.2016.43 +22a10d8d2a2cb9055557a3b335d6706100890afb,https://doi.org/10.1109/SIU.2016.7496121 +15ef65fd68d61f3d47326e358c446b0f054f093a,https://doi.org/10.1109/MLSP.2017.8168180 +0141cb33c822e87e93b0c1bad0a09db49b3ad470,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298876 +5304cd17f9d6391bf31276e4419100f17d4423b2,https://doi.org/10.1109/ICIP.2012.6466930 +ff0617d750fa49416514c1363824b8f61baf8fb5,https://doi.org/10.1587/elex.7.1125 +3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373845 +539ffd51f18404e1ef83371488cf5a27cd16d064,https://doi.org/10.1049/iet-ipr.2014.0733 +a4e75766ef93b43608c463c233b8646439ce2415,https://doi.org/10.1109/ICCVW.2011.6130492 +57dc55edade7074f0b32db02939c00f4da8fe3a6,https://doi.org/10.1109/TITS.2014.2313371 +01f0a4e1442a7804e1fe95798eff777d08e42014,https://doi.org/10.1016/j.knosys.2017.09.005 +9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354113 +b944cc4241d195b1609a7a9d87fce0e9ba1498bc,https://doi.org/10.1109/TSP.2011.2179539 +695426275dee2ec56bc0c0afe1c5b4227a350840,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7878535 +f201baf618574108bcee50e9a8b65f5174d832ee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057 +794a51097385648e3909a1acae7188f5ab881710,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813382 +64e82b42e1c41250bdf9eb952686631287cfd410,https://doi.org/10.1111/cgf.12760 +5594beb2b314f5433bd7581f64bdbc58f2933dc4,https://doi.org/10.1016/j.neucom.2016.12.013 +0cf1287c8fd41dcef4ac03ebeab20482f02dce20,https://doi.org/10.1109/MSN.2016.032 +d20ea5a4fa771bc4121b5654a7483ced98b39148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430554 +518a3ce2a290352afea22027b64bf3950bffc65a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204174 +50333790dd98c052dfafe1f9bf7bf8b4fc9530ba,https://doi.org/10.1109/ICIP.2015.7351001 +aba9acb4a607071af10684f2cfbdefa0507a4e9a,https://doi.org/10.1016/j.patcog.2016.06.010 +29f298dd5f806c99951cb434834bc8dcc765df18,https://doi.org/10.1109/ICPR.2016.7899837 +289cfcd081c4393c7d6f63510747b5372202f855,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373873 +4f37f71517420c93c6841beb33ca0926354fa11d,http://doi.org/10.1016/j.neucom.2017.08.062 +1966bddc083886a9b547e1817fe6abc352a00ec3,http://doi.acm.org/10.1145/2733373.2806312 +2960500033eb31777ed1af1fcb133dcab1b4a857,http://doi.acm.org/10.1145/3005467.3005471 +f1280f76933ba8b7f4a6b8662580504f02bb4ab6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7836703 +27aa23d7a05368a6b5e3d95627f9bab34284e5c4,https://doi.org/10.1109/IJCNN.2012.6252705 +c244c3c797574048d6931b6714ebac64d820dbb3,http://doi.acm.org/10.1145/2808492.2808500 +496d62741e8baf3859c24bb22eaccd3043322126,http://doi.ieeecomputersociety.org/10.1109/TKDE.2017.2728531 +22ccd537857aca1ee4b961f081f07c58d42a7f32,https://doi.org/10.1109/DICTA.2015.7371260 +5a259f2f5337435f841d39dada832ab24e7b3325,http://doi.acm.org/10.1145/2964284.2984059 +d09fd7e0bb5d997963cfef45452724416b2bb052,https://doi.org/10.1109/EMEIT.2011.6023179 +939d28859c8bd2cca2d692901e174cfd599dac74,https://doi.org/10.1109/WOCC.2016.7506582 +51410d6bd9a41eacb105f15dbdaee520e050d646,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412888 +57eeaceb14a01a2560d0b90d38205e512dcca691,https://doi.org/10.1109/TIP.2017.2778563 +6f74c3885b684e52096497b811692bd766071530,https://doi.org/10.1016/j.neucom.2013.06.013 +e6f3707a75d760c8590292b54bc8a48582da2cd4,https://doi.org/10.1007/s11760-012-0410-5 +d44e6baf3464bf56d3a29daf280b1b525ac30f7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265336 +4aa27c1f8118dbb39809a0f79a28c0cbc3ede276,http://doi.acm.org/10.1145/2683483.2683530 +993934822a42e70dd35fb366693d847164ca15ff,https://doi.org/10.1109/ICME.2009.5202753 +e2b3aae594035e58f72125e313e92c7c4cc9d5bb,https://doi.org/10.1007/s00138-014-0597-2 +cb9921d5fc4ffa50be537332e111f03d74622442,https://doi.org/10.1007/978-3-319-46654-5_79 +57f4e54a63ef95596dbc743f391c3fff461f278b,https://doi.org/10.1109/ICMEW.2012.86 +950bf95da60fd4e77d5159254fed906d5ed5fbcb,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.24 +8a1e95b82d8cf27e0034e127091396efd4c8bd9e,https://doi.org/10.1109/IGARSS.2016.7729015 +42441f1fee81c8fd42a74504df21b3226a648739,https://doi.org/10.1007/s11554-008-0072-2 +aa4af9b3811db6a30e1c7cc1ebf079078c1ee152,http://doi.acm.org/10.1145/3129416.3129451 +dcea30602c4e0b7525a1bf4088620128d4cbb800,https://doi.org/10.1109/VCIP.2013.6706430 +fb6f5cb26395608a3cf0e9c6c618293a4278a8ad,http://doi.org/10.1007/s11390-018-1835-2 +5632ba72b2652df3b648b2ee698233e76a4eee65,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8346387 +cc5edaa1b0e91bc3577547fc30ea094aa2722bf0,https://doi.org/10.1109/CICARE.2014.7007832 +254964096e523d5e48e03390ce440c9af337d200,http://dl.acm.org/citation.cfm?id=3005378 +c5c56e9c884ac4070880ac481909bb6b621d2a3f,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126466 +30188b836f2fa82209d7afbf0e4d0ee29c6b9a87,https://doi.org/10.1109/TIP.2013.2249077 +8b1f697d81de1245c283b4f8f055b9b76badfa66,https://doi.org/10.1142/S0218126616500171 +b8b9cef0938975c5b640b7ada4e3dea6c06d64e9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.119 +84ae55603bffda40c225fe93029d39f04793e01f,https://doi.org/10.1109/ICB.2016.7550066 +4f064c2a0ef0849eed61ab816ff0c2ff6d9d7308,http://dl.acm.org/citation.cfm?id=2396318 +ce3304119ba6391cb6bb25c4b3dff79164df9ac6,https://doi.org/10.1016/j.imavis.2016.03.004 +ab703224e3d6718bc28f7b9987eb6a5e5cce3b01,https://doi.org/10.1631/FITEE.1500235 +f2cc459ada3abd9d8aa82e92710676973aeff275,http://ieeexplore.ieee.org/document/5967185/ +e180572400b64860e190a8bc04ef839fa491e056,http://doi.org/10.1038/s41598-017-12097-w +0d90c992dd08bfb06df50ab5c5c77ce83061e830,https://doi.org/10.1109/UIC-ATC.2013.85 +48a6a1c6a0ac5f2b7912b3ccb40b0c07f62ddfdf,https://doi.org/10.1016/j.imavis.2015.12.003 +9590b09c34fffda08c8f54faffa379e478f84b04,https://doi.org/10.1109/TNNLS.2013.2275170 +b9dc8cc479cacda1f23b91df00eb03f88cc0c260,http://dl.acm.org/citation.cfm?id=2964287 +d066575b48b552a38e63095bb1f7b56cbb1fbea4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359888 +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e,http://doi.org/10.1007/s11042-016-4261-x +21f5f65e832c5472d6d08f6ee280d65ff0202e29,https://doi.org/10.1007/978-3-319-70353-4_44 +43261920d2615f135d6e72b333fe55d3f2659145,http://doi.acm.org/10.1145/3136273.3136301 +151b87de997e55db892b122c211f9c749f4293de,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237481 +a9215666b4bcdf8d510de8952cf0d55b635727dc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7498613 +443f4421e44d4f374c265e6f2551bf9830de5597,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771467 +ba17782ca5fc0d932317389c2adf94b5dbd3ebfe,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509290 +31ffc95167a2010ce7aab23db7d5fc7ec439f5fb,https://doi.org/10.1109/TNNLS.2017.2651169 +5305bfdff39ae74d2958ba28d42c16495ce2ff86,https://doi.org/10.1109/DICTA.2014.7008128 +c0b02be66a5a1907e8cfb8117de50f80b90a65a8,http://doi.acm.org/10.1145/2808492.2808523 +16eaa26a84468b27e559215db01c53286808ec2a,https://doi.org/10.1007/s11263-015-0859-0 +562f7555e5cb79ce0fe834c4613264d8378dd007,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7153112 +0b82bf595e76898993ed4f4b2883c42720c0f277,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411229 +61831364ddc8db869618f1c7f0ad35ab2ab6bcf7,https://doi.org/10.1109/ICIP.2013.6738496 +0d6d9c4b5dd282b8f29cd3c200df02a00141f0a9,https://doi.org/10.1109/SIU.2014.6830193 +f17d8f14651c123d39e13a39dc79b7eb3659fe68,https://doi.org/10.1007/s11042-013-1803-3 +d7b8f285b0701ba7b1a11d1c7dd3d1e7e304083f,http://dl.acm.org/citation.cfm?id=3164593 +935924ddb5992c11f3202bf995183130ad83d07b,https://doi.org/10.1117/1.JEI.24.2.023015 +22894c7a84984bd4822dcfe7c76a74673a242c36,http://doi.acm.org/10.1145/2993148.2997634 +8e21399bb102e993edd82b003c306a068a2474da,https://doi.org/10.1109/ICIP.2013.6738758 +40dd736c803720890d6bfc1e083f6050e35d8f7a,http://doi.acm.org/10.1145/3139958.3140055 +aaf2436bc63a58d18192b71cc8100768e2f8a6cb,http://doi.ieeecomputersociety.org/10.1109/ICDIP.2009.77 +1ad780e02edf155c09ea84251289a054b671b98a,https://doi.org/10.1109/ICNIDC.2012.6418787 +badb95dbdfb3f044a46d7ba0ee69dba929c511b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363515 +971cb1bfe3d10fcb2037e684c48bd99842f42fa4,http://doi.org/10.1007/s11042-017-5141-8 +24eeb748a5e431510381ec7c8253bcb70eff8526,https://doi.org/10.1109/TIP.2017.2746270 +19c82eacd77b35f57ac8815b979716e08e3339ca,http://doi.ieeecomputersociety.org/10.1109/ICITCS.2015.7292981 +01e27b6d1af4c9c2f50e2908b5f3b2331ff24846,http://doi.org/10.1007/s11263-017-0996-8 +d119443de1d75cad384d897c2ed5a7b9c1661d98,https://doi.org/10.1109/ICIP.2010.5650873 +539cb169fb65a5542c84f42efcd5d2d925e87ebb,https://doi.org/10.1109/ICB.2015.7139098 +1d10010ea7af43d59e1909d27e4e0e987264c667,https://doi.org/10.1016/j.neunet.2004.06.006 +af4745a3c3c7b51dab0fd90d68b53e60225aa4a9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7873272 +0c378c8dcf707145e1e840a9951519d4176a301f,https://doi.org/10.1109/ICARCV.2010.5707434 +04f56dc5abee683b1e00cbb493d031d303c815fd,http://doi.acm.org/10.1145/2808492.2808557 +5feee69ed183954fa76c58735daa7dd3549e434d,https://doi.org/10.1109/ICIP.2008.4711697 +480858e55abdbc07ca47b7dc10204613fdd9783c,https://doi.org/10.1109/ICPR.2014.786 +779d3f0cf74b7d33344eea210170c7c981a7e27b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8115237 +5ddfd3d372f7679518db8fd763d5f8bc5899ed67,https://doi.org/10.1109/ICPR.2014.797 +7fa00c81f7c2d8da1551334b0e7bc3d7fd43130c,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2353635 +4d4736173a5e72c266e52f3a43bdcb2b58f237a2,https://doi.org/10.1109/ISSPA.2012.6310583 +5e19d7307ea67799eb830d5ce971f893e2b8a9ca,https://doi.org/10.1007/s11063-012-9214-4 +d264dedfdca8dc4c71c50311bcdd6ba3980eb331,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392234 +6e9de9c3af3258dd18142e9bef2977b7ce153bd5,https://doi.org/10.1007/978-3-319-48881-3 +ab8ecf98f457e29b000c44d49f5bf49ec92e571c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8439631 +2b2924af7ec219bd1fadcbd2c57014ed54efec86,http://doi.ieeecomputersociety.org/10.1109/SSIAI.2014.6806053 +327ae6742cca4a6a684a632b0d160dd84d0d8632,https://doi.org/10.1007/s10851-015-0629-1 +4551194408383b12db19a22cca5db0f185cced5c,https://doi.org/10.1109/TNNLS.2014.2341634 +bed8feb11e8077df158e16bce064853cf217ba62,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6191360 +23e824d1dfc33f3780dd18076284f07bd99f1c43,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7947686 +a8faeef97e2a00eddfb17a44d4892c179a7cc277,https://doi.org/10.1109/FG.2011.5771459 +6e2041a9b5d840b0c3e4195241cd110640b1f5f3,https://doi.org/10.1007/s10044-013-0349-3 +c0f67e850176bb778b6c048d81c3d7e4d8c41003,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296441 +0e2d956790d3b8ab18cee8df6c949504ee78ad42,https://doi.org/10.1109/IVCNZ.2013.6727024 +f09d5b6433f63d7403df5650893b78cdcf7319b3,https://doi.org/10.1109/AFGR.2008.4813384 +6a6406906470be10f6d6d94a32741ba370a1db68,http://doi.org/10.1007/s11042-016-4213-5 +f2004fff215a17ac132310882610ddafe25ba153,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.124 +7d61b70d922d20c52a4e629b09465076af71ddfd,https://doi.org/10.1007/s10044-011-0258-2 +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e,http://doi.org/10.1007/s11042-018-6110-6 +d5b445c5716952be02172ca4d40c44f4f04067fa,https://doi.org/10.1109/ICICS.2011.6173537 +58217ae5423828ed5e1569bee93d491569d79970,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1578742 +edf60d081ffdfa80243217a50a411ab5407c961d,http://doi.org/10.1007/s11263-016-0893-6 +f4fc77660665ae58993065c6a336367e9a6c85f7,https://doi.org/10.1016/j.patcog.2012.12.009 +7753e3b9e158289cbaa22203166424ca9c229f68,http://doi.ieeecomputersociety.org/10.1109/ICDM.2014.29 +e790a2538579c8e2ef9b314962ab26197d6664c6,https://doi.org/10.1109/ICIP.2016.7532915 +8fe5feeaa72eddc62e7e65665c98e5cb0acffa87,https://doi.org/10.1007/s12193-015-0209-0 +fd809ee36fa6832dda57a0a2403b4b52c207549d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409768 +33b61be191e63b0c9974be708180275c9d5b3057,https://doi.org/10.1109/ICRA.2011.5979705 +f6311d6b3f4d3bd192d866d2e898c30eea37d7d5,http://ieeexplore.ieee.org/document/6460511/ +2149d49c84a83848d6051867290d9c8bfcef0edb,https://doi.org/10.1109/TIFS.2017.2746062 +5bfad0355cdb62b22970777d140ea388a7057d4c,https://doi.org/10.1016/j.patcog.2011.05.006 +c41a3c31972cf0c1be6b6895f3bf97181773fcfb,https://doi.org/10.1109/ICPR.2014.103 +126076774da192d4d3f4efcd1accc719ee5f9683,https://doi.org/10.1109/SIU.2012.6204774 +05c5134125a333855e8d25500bf97a31496c9b3f,http://doi.acm.org/10.1145/3132515.3132517 +1eb48895d86404251aa21323e5a811c19f9a55f9,http://doi.ieeecomputersociety.org/10.1109/CIS.2015.22 +4f03ba35440436cfa06a2ed2a571fea01cb36598,https://doi.org/10.1109/SPAC.2017.8304260 +1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,http://doi.acm.org/10.1145/2964284.2984061 +4a8480d58c30dc484bda08969e754cd13a64faa1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406475 +a4543226f6592786e9c38752440d9659993d3cb3,http://doi.ieeecomputersociety.org/10.1109/FG.2017.112 +32dfd4545c87d9820cc92ca912c7d490794a81d6,https://doi.org/10.1007/978-3-319-50551-0 +64b9ad39d115f3e375bde4f70fb8fdef5d681df8,https://doi.org/10.1109/ICB.2016.7550088 +ae5e92abd5929ee7f0a5aa1622aa094bac4fae29,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373805 +b631f3c212aab45d73ddc119f1f7d00c3c502a72,https://doi.org/10.1109/TIFS.2009.2035976 +e9809c0c6bf33cfe232a63b0a13f9b1263c58cb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7172556 +0647c9d56cf11215894d57d677997826b22f6a13,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401557 +116f9e9cda25ff3187bc777ceb3ecd28077a7eca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373864 +4c6886c489e93ccab5a1124555a6f3e5b0104464,https://doi.org/10.1109/ICIP.2017.8296921 +bb83d5c7c17832d1eef14aa5d303d9dd65748956,http://doi.acm.org/10.1145/3139513.3139514 +e5c687c8c84f1cdb9d9fbc9b6ff7518ff4d71056,https://doi.org/10.1109/TNN.2011.2170220 +c4ca092972abb74ee1c20b7cae6e69c654479e2c,https://doi.org/10.1109/ICIP.2016.7532960 +592f14f4b12225fc691477a180a2a3226a5ef4f0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789592 +0f22b89341d162a7a0ebaa3c622d9731e5551064,http://doi.ieeecomputersociety.org/10.1109/AIPR.2011.6176352 +9f131b4e036208f2402182a1af2a59e3c5d7dd44,http://dl.acm.org/citation.cfm?id=3206038 +39af06d29a74ad371a1846259e01c14b5343e3d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8046026 +ec28217290897a059348dcdf287540a2e2c68204,https://doi.org/10.1504/IJBM.2015.070928 +506ea19145838a035e7dba535519fb40a3a0018c,http://arxiv.org/abs/1806.08251 +6dd8d8be00376ac760dc92f9c5f20520872c5355,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2417578 +27812db1d2f68611cc284d65d11818082e572008,https://doi.org/10.1109/MIPRO.2016.7522323 +22648dcd3100432fe0cc71e09de5ee855c61f12b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393188 +8bebb26880274bdb840ebcca530caf26c393bf45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369529 +c138c76809b8da9e5822fb0ae38457e5d75287e0,https://doi.org/10.1109/TIP.2014.2378017 +e4b825bf9d5df47e01e8d7829371d05208fc272d,http://doi.acm.org/10.1145/3055635.3056618 +bbc21d6b7c6e807c6886d237a04b501158ca6bb8,https://doi.org/10.1109/TMM.2016.2523421 +70769def1284fe88fd57a477cde8a9c9a3dff13f,https://doi.org/10.1016/j.neucom.2006.10.036 +34bc8ecec0c0b328cd8c485cb34d4d2f4b84e0c9,https://www.ncbi.nlm.nih.gov/pubmed/29069621 +f3553148e322f4f64545d6667dfbc7607c82703a,http://doi.org/10.1007/s00138-016-0763-9 +8cedb92694845854f3ad0daf6c9adb6b81c293de,http://doi.acm.org/10.1145/1839379.1839431 +c98b13871a3bc767df0bdd51ff00c5254ede8b22,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909913 +c872d6310f2079db0cee0e69cc96da1470055225,https://doi.org/10.1007/978-3-319-46675-0_68 +a4898f55f12e6393b1c078803909ea715bf71730,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6957817 +465faf9974a60da00950be977f3bc2fc3e56f5d2,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273631 +eef0be751e9aca7776d83f25c8ffdc1a18201fd8,https://doi.org/10.1016/j.patcog.2016.10.015 +1050cd9bf281d0b7367c03d931e6e0b4fc08ccd3,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043872 +4e1d89149fc4aa057a8becce2d730ec6afd60efa,https://doi.org/10.1109/ICSMC.2009.5346047 +918fc4c77a436b8a588f63b2b37420b7868fbbf8,https://doi.org/10.1016/j.inffus.2015.03.005 +7f1078a2ebfa23a58adb050084d9034bd48a8a99,https://doi.org/10.1007/s00371-015-1169-9 +7e8c8b1d72c67e2e241184448715a8d4bd88a727,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8097314 +2bb36c875754a2a8919f2f9b00a336c00006e453,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373869 +9e5690cdb4dfa30d98dff653be459e1c270cde7f,https://doi.org/10.1109/ICIP.2017.8297080 +4113269f916117f975d5d2a0e60864735b73c64c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613059 +235a347cb96ef22bf35b4cf37e2b4ee5cde9df77,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.13 +7e456e94f3080c761f858264428ee4c91cd187b2,http://ieeexplore.ieee.org/document/6460899/ +e0ab926cd48a47a8c7b16e27583421141f71f6df,https://doi.org/10.1109/HPCSim.2016.7568383 +ec6a2093059fd6eada9944212f64a659881abb95,https://doi.org/10.1016/j.patcog.2016.02.022 +8a6033cbba8598945bfadd2dd04023c2a9f31681,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014991 +4097fef623185557bb1842501cfdc97f812fc66d,http://doi.acm.org/10.1145/3126686.3126755 +8697ccb156982d40e88fda7fbf4297fa5171f24d,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2011.101 +d1bd956a8523629ed4e2533b01272f22cea534c6,https://doi.org/10.1016/j.patrec.2010.01.021 +ede16b198b83d04b52dc3f0dafc11fd82c5abac4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952343 +814369f171337ee1d8809446b7dbfc5e1ef9f4b5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597559 +56e25358ebfaf8a8b3c7c33ed007e24f026065d0,https://doi.org/10.1007/s10994-015-5541-9 +1ef6ad9e1742d0b2588deaf506ef83b894fb9956,https://doi.org/10.1007/s12193-016-0213-z +9961f1e5cf8fda29912344773bc75c47f18333a0,http://doi.org/10.1007/s10044-017-0618-7 +cf6851c24f489dabff0238e01554edea6aa0fc7c,https://doi.org/10.1109/ICSMC.2011.6083637 +b7461aac36fc0b8a24ecadf6c5b5caf54f2aa2f7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528404 +8633732d9f787f8497c2696309c7d70176995c15,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298967 +e896389891ba84af58a8c279cf8ab5de3e9320ee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6958874 +ede5982980aa76deae8f9dc5143a724299d67742,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081396 +0341405252c80ff029a0d0065ca46d0ade943b03,http://doi.ieeecomputersociety.org/10.1109/FG.2017.40 +d4ccc4f18a824af08649657660e60b67c6868d9c,https://doi.org/10.1142/S021800141655020X +afba76d0fe40e1be381182aec822431e20de8153,https://doi.org/10.1007/s00521-014-1768-9 +7c8909da44e89a78fe88e815c83a4ced34f99149,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.326 +78f244dc2a171944836a89874b8f60e9fe80865d,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.181 +c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763 +31ec1e5c3b5e020af4a5a3c1be2724c7429a7c78,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354285 +93dd4e512cd7647aecbfc0cd4767adf5d9289c3d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952499 +9abf6d56a7d336bc58f4e3328d2ee807032589f1,https://doi.org/10.1109/CEC.2017.7969500 +7c57ac7c9f84fbd093f6393e2b63c18078bf0fdf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6218178 +765be0c44a67e41e0f8f0b5d8a3af0ff40a00c7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373821 +a313851ed00074a4a6c0fccf372acb6a68d9bc0b,http://doi.org/10.1007/s11042-016-4324-z +93978ba84c8e95ff82e8b5960eab64e54ca36296,http://doi.acm.org/10.1145/3136755.3136806 +0ed96cc68b1b61e9eb4096f67d3dcab9169148b9,http://doi.acm.org/10.1145/2663204.2666279 +e2faaebd17d10e2919bd69492787e7565546a63f,http://doi.org/10.1007/s11042-017-4514-3 +7c11fa4fd91cb57e6e216117febcdd748e595760,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597453 +cc1b093cfb97475faabab414878fa7e4a2d97cd7,http://doi.ieeecomputersociety.org/10.1109/ICALT.2017.141 +90c4a6c6f790dbcef9a29c9a755458be09e319b6,http://doi.acm.org/10.1145/2964284.2967242 +71e95c3a31dceabe9cde9f117615be8bf8f6d40e,https://doi.org/10.1109/ICIP.2010.5653024 +3888d7a40f3cea5e4a851c8ca97a2d7810a62867,https://doi.org/10.1109/CCECE.2016.7726684 +23ee7b7a9ca5948e81555aaf3a044cfec778f148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771385 +85c90ad5eebb637f048841ebfded05942bb786b7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977163 +7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404767 +cec8936d97dea2fcf04f175d3facaaeb65e574bf,http://dl.acm.org/citation.cfm?id=3134264 +00301c250d667700276b1e573640ff2fd7be574d,https://doi.org/10.1109/BTAS.2014.6996242 +ecd08edab496801fd4fde45362dde462d00ee91c,https://www.ncbi.nlm.nih.gov/pubmed/29994561 +7cfbf90368553333b47731729e0e358479c25340,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346480 +76dff7008d9b8bf44ec5348f294d5518877c6182,https://doi.org/10.1016/j.imavis.2014.09.004 +1f41bf5e8b8562ac7ef0013f4d0cf1c9e1a431f9,https://doi.org/10.1109/IJCNN.2017.7965955 +b8d8501595f38974e001a66752dc7098db13dfec,http://arxiv.org/abs/1711.09265 +43bb2b58f906262035ef61e41768375bc8d99ae3,https://doi.org/10.1016/j.procs.2016.04.072 +e6c491fb6a57c9a7c2d71522a1a066be2e681c84,https://doi.org/10.1016/j.imavis.2016.06.002 +c222f8079c246ead285894c47bdbb2dfc7741044,https://doi.org/10.1109/ICIP.2015.7351631 +be4faea0971ef74096ec9800750648b7601dda65,http://doi.org/10.1007/s11063-017-9724-1 +b910590a0eb191d03e1aedb3d55c905129e92e6b,http://doi.acm.org/10.1145/2808492.2808570 +9ab126760f68071a78cabe006cf92995d6427025,https://doi.org/10.1007/s11042-013-1703-6 +47fb74785fbd8870c2e819fc91d04b9d9722386f,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.161 +ad9ba7eade9d4299159512d6d5d07d7d3d26ae58,https://doi.org/10.1007/s11063-012-9252-y +e2f78d2f75a807b89a13115a206da4661361fa71,https://doi.org/10.1109/TMM.2017.2696825 +fecccc79548001ecbd6cafd3067bcf14de80b11a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354157 +7d45f1878d8048f6b3de5b3ec912c49742d5e968,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7747479 +4e6e5cb93e7e564bc426b5b27888d55101504c50,https://doi.org/10.1109/ICPR.2016.7900299 +572dbaee6648eefa4c9de9b42551204b985ff863,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163151 +898ff1bafee2a6fb3c848ad07f6f292416b5f07d,https://doi.org/10.1109/TIP.2016.2518867 +db0379c9b02e514f10f778cccff0d6a6acf40519,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6130343 +e7cfaff65541cde4298a04882e00608d992f6703,http://doi.org/10.1007/s00521-018-3554-6 +884a9ce87d4d2338cb97bf4c8df3cdb079a87d5e,https://doi.org/10.1109/SMC.2016.7844717 diff --git a/scraper/reports/misc/all_doi-2.csv b/scraper/reports/misc/all_doi-2.csv new file mode 100644 index 00000000..d798b9ad --- /dev/null +++ b/scraper/reports/misc/all_doi-2.csv @@ -0,0 +1,749 @@ +a094e52771baabe4ab37ef7853f9a4f534227457,https://doi.org/10.1109/TITS.2016.2551298 +5da827fe558fb2e1124dcc84ef08311241761726,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139096 +bcf2710d46941695e421226372397c9544994214,https://doi.org/10.1109/ICNC.2015.7378076 +136aae348c7ebc6fd9df970b0657241983075795,https://doi.org/10.1109/ICIP.2015.7351542 +ac37285f2f5ccf99e9054735a36465ee35a6afdd,https://doi.org/10.1109/ISCAS.2006.1693880 +98d1b5515b079492c8e7f0f9688df7d42d96da8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204260 +b69e7e2a7705a58a0e3f1b80ae542907b89ce02e,https://doi.org/10.1007/s11042-015-2614-5 +c570d1247e337f91e555c3be0e8c8a5aba539d9f,https://doi.org/10.1007/s11042-012-1352-1 +44834929e56f2a8f16844fde519039d647006216,http://doi.acm.org/10.1145/1460096.1460150 +8f3675e979629ca9cee9436d37763f546edb8d40,https://doi.org/10.1109/SIU.2017.7960446 +6aa0a47f4b986870370c622be51f00f3a1b9d364,https://doi.org/10.1109/TIP.2012.2192285 +6c0ad77af4c0850bd01bb118e175ecc313476f27,http://doi.acm.org/10.1145/3009977.3010026 +218139e5262cb4f012cd2e119074aa59b89ebc32,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.265 +5f2c210644c1e567435d78522258e0ae036deedb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4036602 +eca706b4d77708452bdad1c98a23e4e88ce941ab,https://doi.org/10.1142/S0218001416550144 +2cf3564d7421b661e84251d280d159d4b3ebb336,https://doi.org/10.1109/BTAS.2014.6996287 +42a6beed493c69d5bad99ae47ea76497c8e5fdae,http://doi.org/10.1007/s11704-017-6613-8 +9aba281955117eb4a7aed36775f55f27e4dde42f,http://doi.ieeecomputersociety.org/10.1109/AFGR.2000.840635 +9989ad33b64accea8042e386ff3f1216386ba7f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393320 +56fd4c05869e11e4935d48aa1d7abb96072ac242,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373812 +1f5f67d315c9dad341d39129d8f8fe7fa58e564c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397536 +548233d67f859491e50c5c343d7d77a7531d4221,https://doi.org/10.1007/s11042-007-0176-x +d63bd06340dd35590a22222509e455c49165ee13,https://doi.org/10.1109/IJCNN.2016.7727234 +bb3698df3b4f40c0b7cc523d26ffb8c5276d5a1c,https://doi.org/10.1109/ICDSP.2016.7868528 +e0cc2a9fe6b5086c55fdbf0021aca3dc1a77a1ca,http://doi.ieeecomputersociety.org/10.1109/BLISS.2008.25 +51dcb36a6c247189be4420562f19feb00c9487f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1394433 +b999364980e4c21d9c22cc5a9f14501432999ca4,http://doi.org/10.1007/s10044-018-0727-y +c3d3d2229500c555c7a7150a8b126ef874cbee1c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406478 +2f841ff062053f38725030aa1b77db903dad1efb,https://doi.org/10.1109/ICRA.2014.6907748 +1ab19e516b318ed6ab64822efe9b2328836107a4,https://doi.org/10.1109/TIP.2010.2083674 +ace1e0f50fe39eb9a42586f841d53980c6f04b11,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043849 +946b4d840b026d91608758d04f2763e9b981234e,http://doi.acm.org/10.1145/2388676.2388792 +cc9a61a30afdb8a5bc7088e1cef814b53dc4fc66,https://doi.org/10.1142/s0218213015400199 +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,https://doi.org/10.1109/ACCESS.2017.2752176 +fcceea054cb59f1409dda181198ed4070ed762c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8388318 +eb3c45e78acee0824c8f7d997c6104d74e7213a8,http://doi.ieeecomputersociety.org/10.1109/iThings/CPSCom.2011.116 +6318d3842b36362bb45527b717e1a45ae46151d5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780708 +ccb95192001b07bb25fc924587f9682b0df3de8e,https://doi.org/10.1109/ICACCI.2016.7732123 +aa8341cb5d8f0b95f619d9949131ed5c896d6470,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2007.403 +13907865a97afde053d7bb7134d58a7bbc12043c,https://doi.org/10.1016/j.patcog.2014.05.001 +6c6f0e806e4e286f3b18b934f42c72b67030ce17,https://doi.org/10.1109/FG.2011.5771345 +96e0b67f34208b85bd90aecffdb92bc5134befc8,https://doi.org/10.1016/j.patcog.2007.10.002 +6932baa348943507d992aba75402cfe8545a1a9b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014987 +30cc1ddd7a9b4878cca7783a59086bdc49dc4044,https://doi.org/10.1007/s11042-015-2599-0 +82a0a5d0785fb2c2282ed901a15c3ff02f8567df,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849828 +092dd7cb6c9b415eb83afb104fa63d7d4290ac33,https://doi.org/10.1109/SPLIM.2016.7528409 +cd22e6532211f679ba6057d15a801ba448b9915c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434092 +d569c3e62f471aa75ed53e631ec05c1a3d594595,https://doi.org/10.1109/NNSP.2002.1030072 +baafe3253702955c6904f0b233e661b47aa067e1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776926 +6cce5ccc5d366996f5a32de17a403341db5fddc6,http://doi.org/10.1016/j.cviu.2016.04.012 +76669f166ddd3fb830dbaacb3daa875cfedc24d9,https://doi.org/10.1109/ICPR.2016.7899840 +3e9ab40e6e23f09d16c852b74d40264067ac6abc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619307 +d141c31e3f261d7d5214f07886c1a29ac734d6fc,http://doi.org/10.1007/s11063-018-9812-x +93cd5c47e4a3425d23e3db32c6eaef53745bb32e,http://doi.org/10.1007/s11042-017-5062-6 +4eeccbbb98de4f2e992600482fd6b881ace014bb,http://doi.acm.org/10.1145/2964284.2967240 +4ed40e6bb66dfa38a75d864d804d175a26b6c6f6,http://doi.ieeecomputersociety.org/10.1109/CRV.2011.41 +4932b929a2e09ddebedcb1abe8c62f269e7d4e33,https://doi.org/10.1109/SIU.2016.7496076 +71a9d7cf8cf1e206cb5fa18795f5ab7588c61aba,https://doi.org/10.1109/TIM.2011.2141270 +13179bb3f2867ea44647b6fe0c8fb4109207e9f5,http://doi.org/10.1007/s00779-018-1171-0 +026e96c3c4751e1583bfe78b8c28bdfe854c4988,https://doi.org/10.1109/ICIP.2017.8296442 +d7b7253f7d8b397d9d74057e1e72ed9c58e2ba6d,https://doi.org/10.1109/TII.2013.2271914 +84f3c4937cd006888b82f2eb78e884f2247f0c4e,https://doi.org/10.1109/CCNC.2012.6181097 +17768efd76a681902a33994da4d3163262bf657f,https://doi.org/10.1007/s12559-017-9472-6 +398558817e05e8de184cc4c247d4ea51ab9d4d58,https://doi.org/10.1109/ICPR.2014.14 +5dbb2d556f2e63a783a695a517f5deb11aafd7ea,https://doi.org/10.1109/ICB.2015.7139079 +3d1f976db6495e2bb654115b939b863d13dd3d05,https://doi.org/10.1007/s11042-015-2581-x +c7b58827b2d07ece676271ae0425e369e3bd2310,https://doi.org/10.1142/S0218001415560042 +cb8a1b8d87a3fef15635eb4a32173f9c6f966055,http://dl.acm.org/citation.cfm?id=3234150 +768f6a14a7903099729872e0db231ea814eb05e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411205 +d8c9ce0bd5e4b6d1465402a760845e23af5ac259,https://doi.org/10.1109/ITSC.2015.380 +5811944e93a1f3e35ece7a70a43a3de95c69b5ab,https://doi.org/10.1109/BTAS.2016.7791163 +c12260540ec14910f5ec6e38d95bdb606826b32e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7005459 +7788fa76f1488b1597ee2bebc462f628e659f61e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8063888 +1fd7a17a6c630a122c1a3d1c0668d14c0c375de0,https://doi.org/10.1109/CIST.2016.7805097 +d06bcb2d46342ee011e652990edf290a0876b502,http://arxiv.org/abs/1708.00980 +583e0d218e1e7aaf9763a5493e7c18c2b8dd7464,http://doi.acm.org/10.1145/2988240.2988243 +963a004e208ce4bd26fa79a570af61d31651b3c3,https://doi.org/10.1016/j.jvlc.2009.01.011 +4e343c66c5fe7426132869d552f0f205d1bc5307,https://doi.org/10.1109/ICPR.2014.452 +009bf86913f1c366d9391bf236867d84d12fa20c,https://doi.org/10.1109/CVPRW.2010.5544620 +67386772c289cd40db343bdc4cb8cb4f58271df2,http://doi.org/10.1038/s41598-017-10745-9 +e1312b0b0fd660de87fa42de39316b28f9336e70,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369055 +7c66e7f357553fd4b362d00ff377bffb9197410e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961231 +9fd1b8abbad25cb38f0c009288fb5db0fc862db6,https://doi.org/10.1109/ICASSP.2003.1199147 +1a53ca294bbe5923c46a339955e8207907e9c8c6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870 +745e74ae84e1b2b8690d07db523531642023d6c4,https://doi.org/10.1109/FSKD.2016.7603417 +789b8fff223b0db0fe3babf46ea98b1d5197f0c0,https://doi.org/10.1002/ima.20245 +4b9c47856f8314ecbe4d0efc65278c2ededb2738,https://doi.org/10.1109/LSP.2012.2188890 +b749ca71c60904d7dad6fc8fa142bf81f6e56a62,https://doi.org/10.1109/TIP.2013.2292560 +2138ccf78dcf428c22951cc066a11ba397f6fcef,https://doi.org/10.1109/BHI.2012.6211519 +845f45f8412905137bf4e46a0d434f5856cd3aec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418618 +486f5e85944404a1b57333443070b0b8c588c262,http://doi.ieeecomputersociety.org/10.1109/IRI.2014.7051957 +715d3eb3665f46cd2fab74d35578a72aafbad799,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2013.118 +0d98750028ea7b84b86e6fec3e67d61e4f690d09,https://doi.org/10.1109/ACSSC.2015.7421092 +a53f988d16f5828c961553e8efd38fed15e70bcc,https://doi.org/10.1109/BTAS.2015.7358787 +21d5c838d19fcb4d624b69fe9d98e84d88f18e79,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7358748 +13901473a12061f080b9d54219f16db7d406e769,https://doi.org/10.1109/TIP.2012.2222895 +1ab4fdcd431286a2fe9538cb9a9e3c67016fa98a,https://doi.org/10.1007/s11042-013-1754-8 +6a527eeb0b2480109fe987ed7eb671e0d847fca8,https://doi.org/10.1007/978-3-319-28515-3 +2c052a1c77a3ec2604b3deb702d77c41418c7d3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373863 +ee1465cbbc1d03cb9eddaad8618a4feea78a01ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6998872 +9255d3b2bfee4aaae349f68e67c76a077d2d07ad,https://doi.org/10.1109/TIP.2017.2713041 +9cda3e56cec21bd8f91f7acfcefc04ac10973966,https://doi.org/10.1109/IWBF.2016.7449688 +907bb6c2b292e6db74fad5c0b7a7f1cc2a4d4224,https://doi.org/10.1016/j.patcog.2014.07.010 +eb8a3948c4be0d23eb7326d27f2271be893b3409,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914701 +62750d78e819d745b9200b0c5c35fcae6fb9f404,http://doi.org/10.1007/s11042-016-4085-8 +fb915bcc1623cdf999c0e95992c0e0cf85e64d8e,http://doi.ieeecomputersociety.org/10.1109/iThings.2014.83 +7de8a8b437ec7a18e395be9bf7c8f2d502025cc6,https://doi.org/10.1109/SIU.2017.7960528 +4fbc0189252ed4fe8f9cffd3ea0ebbb0c621e3ef,https://doi.org/10.1049/iet-cvi.2012.0127 +3827f1cab643a57e3cd22fbffbf19dd5e8a298a8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373804 +cf6c59d359466c41643017d2c212125aa0ee84b2,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552983 +de79437f74e8e3b266afc664decf4e6e4bdf34d7,https://doi.org/10.1109/IVCNZ.2016.7804415 +79fd4baca5f840d6534a053b22e0029948b9075e,https://doi.org/10.1109/ISDA.2012.6416647 +f2d605985821597773bc6b956036bdbc5d307386,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8027090 +a63ec22e84106685c15c869aeb157aa48259e855,https://doi.org/10.1142/S0219691312500294 +36bb5cca0f6a75be8e66f58cba214b90982ee52f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.73 +91d0e8610348ef4d5d4975e6de99bb2d429af778,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.61 +4ba2f445fcbbad464f107b036c57aa807ac5c0c2,https://doi.org/10.1109/TCSVT.2014.2367357 +c2dc29e0db76122dfed075c3b9ee48503b027809,https://doi.org/10.1109/ICIP.2016.7532632 +771505abd38641454757de75fe751d41e87f89a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401561 +3d6f59e0f0e16d01b9c588a53d3b6b3b984e991e,http://doi.ieeecomputersociety.org/10.1109/FG.2017.117 +a200885bf6bfa0493d85e7617e65cdabe30a2dab,https://doi.org/10.1109/ICIP.2015.7351272 +f63b3b8388bc4dcd4a0330402af37a59ce37e4f3,https://doi.org/10.1109/SIU.2013.6531214 +77c5437107f8138d48cb7e10b2b286fa51473678,https://doi.org/10.1109/URAI.2016.7734005 +35d90beea6b4dca8d949aae93f86cf53da72971f,https://doi.org/10.1109/ICIP.2011.6116672 +d9d7a4b64b13ed1bce89d3cbbabe62e78d70b3fb,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.16 +3769e65690e424808361e3eebfdec8ab91908aa9,http://doi.acm.org/10.1145/2647868.2655035 +7e2f7c0eeaeb47b163a7258665324643669919e8,http://doi.org/10.1007/s11042-018-5801-3 +6cbde27d9a287ae926979dbb18dfef61cf49860e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8253589 +2696d3708d6c6cccbd701f0dac14cc94d72dd76d,http://doi.org/10.1007/s10044-017-0633-8 +4492914df003d690e5ff3cb3e0e0509a51f7753e,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2014.6921443 +6ff0f804b8412a50ae2beea5cd020c94a5de5764,http://doi.acm.org/10.1145/1877972.1877994 +20d6a4aaf5abf2925fdce2780e38ab1771209f76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446795 +4512b87d68458d9ba0956c0f74b60371b6c69df4,https://doi.org/10.1109/TIP.2017.2708504 +b6a23f72007cb40223d7e1e1cc47e466716de945,https://doi.org/10.1109/CVPRW.2010.5544598 +19705579b8e7d955092ef54a22f95f557a455338,https://doi.org/10.1109/ICIP.2014.7025277 +c38b1fa00f1f370c029984c55d4d2d40b529d00c,http://doi.org/10.1007/978-3-319-26561-2 +5721cd4b898f0e7df8de1e0215f630af94656be9,http://doi.acm.org/10.1145/3095140.3095164 +180bd019eab85bbf01d9cddc837242e111825750,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239690 +c2b10909a0dd068b8e377a55b0a1827c8319118a,https://doi.org/10.1109/TCYB.2016.2565898 +06a799ad89a2a45aee685b9e892805e3e0251770,https://doi.org/10.1007/978-3-319-42147-6 +ea86b75427f845f04e96bdaadfc0d67b3f460005,https://doi.org/10.1109/ICIP.2016.7532686 +b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,http://doi.org/10.1007/s11263-017-1012-z +6baaa8b763cc5553715766e7fbe7abb235fae33c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789589 +eb6f2b5529f2a7bc8b5b03b1171f75a4c753a0b2,http://doi.org/10.1117/12.650555 +d4df31006798ee091b86e091a7bf5dce6e51ba3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1612996 +c4b00e86841db3fced2a5d8ac65f80d0d3bbe352,http://doi.ieeecomputersociety.org/10.1109/AIPR.2004.4 +bf00071a7c4c559022272ca5d39e07f727ebb479,https://doi.org/10.1109/MMSP.2016.7813388 +828d7553a45eb0c3132e406105732a254369eb4d,https://doi.org/10.1016/j.neunet.2017.09.001 +bb4f83458976755e9310b241a689c8d21b481238,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265393 +81d81a2060366f29fd100f793c11acf000bd2a7f,https://doi.org/10.1007/11795131_112 +c26b43c2e1e2da96e7caabd46e1d7314acac0992,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466510 +88ed558bff3600f5354963d1abe762309f66111e,https://doi.org/10.1109/TIFS.2015.2393553 +bef4df99e1dc6f696f9b3732ab6bac8e85d3fb3c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344632 +37f25732397864b739714aac001ea1574d813b0d,https://doi.org/10.1016/j.ijar.2017.09.002 +a3bf6129d1ae136709063a5639eafd8018f50feb,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2017.8109741 +4b936847f39094d6cb0bde68cea654d948c4735d,http://doi.org/10.1007/s11042-016-3470-7 +a76e57c1b2e385b68ffdf7609802d71244804c1d,https://doi.org/10.1016/j.patrec.2016.05.027 +6f22324fab61fbc5df1aac2c0c9c497e0a7db608,https://doi.org/10.1109/ICB.2013.6612990 +03333e7ec198208c13627066bc76b0367f5e270f,https://doi.org/10.1109/IJCNN.2017.7966100 +f6fc112ff7e4746b040c13f28700a9c47992045e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7442559 +9b1c218a55ead45296bfd7ad315aaeff1ae9983e,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2481396 +b5bda4e1374acc7414107cde529ad8b3263fae4b,https://doi.org/10.1007/s11370-010-0066-3 +789a43f51e0a3814327dab4299e4eda8165a5748,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.189 +01729cb766b1016bac217a6a6cf24bbde19f56c8,https://doi.org/10.1109/CBMI.2010.5529888 +92292fffc36336d63f4f77d6b8fc23b0c54090e9,http://doi.org/10.1016/j.jvcir.2015.03.001 +6afe1f668eea8dfdd43f0780634073ed4545af23,https://doi.org/10.1007/s11042-017-4962-9 +c648d2394be3ff0c0ee5360787ff3777a3881b02,https://doi.org/10.1080/01449290903353047 +2e6776cd582c015b46faf616f29c98ce9cff51a2,https://doi.org/10.1109/TNN.2005.860849 +e57ce6244ec696ff9aa42d6af7f09eed176153a8,https://doi.org/10.1109/ICIP.2015.7351449 +18bfda16116e76c2b21eb2b54494506cbb25e243,https://doi.org/10.1109/TIFS.2010.2051544 +06ab24721d7117974a6039eb2e57d1545eee5e46,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373809 +a00fdf49e5e0a73eb24345cb25a0bd1383a10021,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892186 +b41d585246360646c677a8238ec35e8605b083b0,http://doi.org/10.1007/s11042-018-6017-2 +ce8db0fe11e7c96d08de561506f9f8f399dabbb2,https://doi.org/10.1109/ICIP.2015.7351677 +492116d16a39eb54454c7ffb1754cea27ad3a171,http://doi.acm.org/10.1145/3132525.3134823 +5039834df68600a24e7e8eefb6ba44a5124e67fc,https://doi.org/10.1109/ICIP.2013.6738761 +773ce00841a23d32727aa1f54c29865fefd4ce02,http://doi.ieeecomputersociety.org/10.1109/AIPR.2006.24 +895081d6a5545ad6385bfc6fcf460fc0b13bac86,http://doi.org/10.1016/S0167-8655%2899%2900134-8 +57178b36c21fd7f4529ac6748614bb3374714e91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217 +87610276ccbc12d0912b23fd493019f06256f94e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706757 +36486944b4feeb88c0499fecd253c5a53034a23f,https://doi.org/10.1109/CISP-BMEI.2017.8301986 +b2470969e4fba92f7909eac26b77d08cc5575533,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8326475 +9c686b318cb7774b6da5e2c712743a5a6cafa423,https://doi.org/10.1016/j.neuroimage.2015.12.036 +c1a70d63d1667abfb1f6267f3564110d55c79c0d,https://doi.org/10.1007/s00138-013-0488-y +cb27b45329d61f5f95ed213798d4b2a615e76be2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236 +2348f1fa2940b01ec90e023fac8cc96812189774,http://doi.ieeecomputersociety.org/10.1109/EWDTS.2017.8110157 +bd74c3ca2ff03396109ac2d1131708636bd0d4d3,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.228 +1135a818b756b057104e45d976546970ba84e612,http://doi.ieeecomputersociety.org/10.1109/FG.2017.118 +8fba84af61ac9b5e2bcb69b6730a597d7521ad73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771329 +ba931c3f90dd40a5db4301a8f0c71779a23043d6,https://doi.org/10.1109/ICPR.2014.136 +4983076c1a8b80ff5cd68b924b11df58a68b6c84,http://doi.org/10.1007/s11704-017-6114-9 +f7ae38a073be7c9cd1b92359131b9c8374579b13,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7487053 +f18ff597bbfca10f84d017ac5e1ef0de6d7ad66c,http://doi.ieeecomputersociety.org/10.1109/SNPD.2016.7515888 +15e12d5c4d80a2b6f4d957a3ffd130564e9bab3a,https://doi.org/10.5220/0004736505740580 +947cdeb52f694fb1c87fc16836f8877cd83dc652,https://doi.org/10.1109/SMAP.2017.8022671 +84574aa43a98ad8a29470977e7b091f5a5ec2366,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301321 +5760d29574d78e79e8343b74e6e30b3555e48676,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8447743 +891b31be76e2baa83745f24c2e2013851dc83cbb,https://doi.org/10.1109/TSMCB.2009.2018137 +055cd8173536031e189628c879a2acad6cf2a5d0,https://doi.org/10.1109/BTAS.2017.8272740 +53de11d144cd2eda7cf1bb644ae27f8ef2489289,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424637 +557115454c1b8e6eaf8dbb65122c5b00dc713d51,https://doi.org/10.1109/LSP.2011.2140370 +152683f3ac99f829b476ea1b1b976dec6e17b911,https://doi.org/10.1109/MIXDES.2016.7529773 +e51927b125640bfc47bbf1aa00c3c026748c75bd,http://doi.acm.org/10.1145/2647868.2655015 +407806f5fe3c5ecc2dc15b75d3d2b0359b4ee7e0,http://doi.org/10.1007/s11042-017-5028-8 +da928ac611e4e14e454e0b69dfbf697f7a09fb38,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477718 +67e6ddce6fea17bb2b171c949ee224936d36c0d1,https://doi.org/10.1109/ICIP.2008.4712157 +7177649ece5506b315cb73c36098baac1681b8d2,http://doi.ieeecomputersociety.org/10.1109/FG.2017.130 +a9756ca629f73dc8f84ee97cfa8b34b8207392dc,https://doi.org/10.1109/ICIP.2017.8296542 +e94168c35be1d4b4d2aaf42ef892e64a3874ed8c,https://doi.org/10.1109/TSMCB.2008.2010715 +1c5a5d58a92c161e9ba27e2dfe490e7caaee1ff5,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163119 +33c2131cc85c0f0fef0f15ac18f28312347d9ba4,https://doi.org/10.1016/j.neucom.2010.06.024 +a324d61c79fe2e240e080f0dab358aa72dd002b3,https://doi.org/10.1016/j.patcog.2016.02.005 +5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,https://doi.org/10.1109/ICPR.2016.7900278 +35208eda874591eac70286441d19785726578946,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789507 +acff2dc5d601887741002a78f8c0c35a799e6403,http://doi.org/10.1007/978-3-662-44654-6 +057b80e235b10799d03876ad25465208a4c64caf,http://dl.acm.org/citation.cfm?id=3123427 +1125760c14ea6182b85a09bf3f5bad1bdad43ef5,https://doi.org/10.1109/CVPR.2004.286 +9d24812d942e69f86279a26932df53c0a68c4111,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8417316 +1dabb080e3e968633f4b3774f19192f8378f5b67,https://doi.org/10.1109/ICPR.2016.7899664 +0fee3b9191dc1cef21f54232a23530cd8169d3b2,https://doi.org/10.1109/ICDM.2016.0050 +00049f989067d082f7f8d0581608ad5441d09f8b,https://doi.org/10.1109/LSP.2016.2555480 +417c2fa930bb7078fdf10cb85c503bd5270b9dc2,https://doi.org/10.1109/ICSIPA.2015.7412169 +e1449be4951ba7519945cd1ad50656c3516113da,https://doi.org/10.1109/TCSVT.2016.2603535 +0db371a6bc8794557b1bffc308814f53470e885a,https://doi.org/10.1007/s13042-015-0380-3 +cf4c1099bef189838877c8785812bc9baa5441ed,https://doi.org/10.1109/ICPR.2016.7899862 +272e487dfa32f241b622ac625f42eae783b7d9aa,https://doi.org/10.1109/ICSIPA.2015.7412207 +a939e287feb3166983e36b8573cd161d12097ad8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550048 +99e0c03686f7bc9d7add6cff39a941a047c3600a,https://doi.org/10.1109/ACCESS.2017.2712788 +af8e22ef8c405f9cc9ad26314cb7a9e7d3d4eec2,https://doi.org/10.1007/s00521-014-1569-1 +df87193e15a19d5620f5a6458b05fee0cf03729f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363421 +b14e3fe0d320c0d7c09154840250d70bc88bb6c0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699097 +3e452ca67e17e4173ec8dfbd4a2b803ad2ee5a48,http://doi.ieeecomputersociety.org/10.1109/WF-IoT.2016.7845505 +0f1cb558b32c516e2b6919fea0f97a307aaa9091,https://doi.org/10.1007/s41095-017-0091-7 +c48b68dc780c71ab0f0f530cd160aa564ed08ade,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1357193 +4007bf090887d8a0e907ab5e17ecfcdbbdafc2e4,http://doi.org/10.1007/s13735-017-0144-9 +4500888fd4db5d7c453617ee2b0047cedccf2a27,http://doi.acm.org/10.1145/2647750 +405d9a71350c9a13adea41f9d7f7f9274793824f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373834 +f812347d46035d786de40c165a158160bb2988f0,https://doi.org/10.1007/s10339-016-0765-6 +82dad0941a7cada11d2e2f2359293fe5fabf913f,https://doi.org/10.1109/ICIP.2017.8296810 +ad5a35a251e07628dd035c68e44a64c53652be6b,https://doi.org/10.1016/j.patcog.2016.12.024 +95b9df34bcf4ae04beea55c11cf0cc4095aa38dc,http://doi.org/10.1007/11527923_7 +b839bc95794dc65340b6e5fea098fa6e6ea5e430,https://doi.org/10.1109/WACVW.2017.8 +a082c77e9a6c2e2313d8255e8e4c0677d325ce3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163111 +b0b944b3a783c2d9f12637b471fe1efb44deb52b,http://dl.acm.org/citation.cfm?id=2591684 +f0a9d69028edd1a39147848ad1116ca308d7491e,https://doi.org/10.1007/11573548_11 +0a0b9a9ff827065e4ff11022b0e417ddf1d3734e,http://dl.acm.org/citation.cfm?id=2935856 +da2b2be4c33e221c7f417875a6c5c74043b1b227,https://doi.org/10.1109/BTAS.2017.8272712 +e7b7df786cf5960d55cbac4e696ca37b7cee8dcd,https://doi.org/10.1109/IJCNN.2012.6252728 +c3e53788370341afe426f2216bed452cbbdaf117,http://doi.ieeecomputersociety.org/10.1109/ATNAC.2017.8215436 +cce2f036d0c5f47c25e459b2f2c49fa992595654,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.93 +18d3532298fb7b8fb418453107f786178ca82e4a,https://doi.org/10.1109/TIFS.2017.2668221 +8e55486aa456cae7f04fe922689b3e99a0e409fe,http://doi.acm.org/10.1145/3123266.3123342 +02a92b79391ddac0acef4f665b396f7f39ca2972,https://doi.org/10.1016/j.patcog.2016.10.021 +a3201e955d6607d383332f3a12a7befa08c5a18c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276 +a2646865d7c3d7fb346cf714caf146de2ea0e68f,https://doi.org/10.1109/SMC.2016.7844390 +53f5cb365806c57811319a42659c9f68b879454a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8356995 +913961d716a4102d3428224f999295f12438399f,https://doi.org/10.1016/j.patcog.2014.01.016 +a8c62833f5e57d4cd060d6b5f0f9cfe486ee6825,http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.808 +6bacd4347f67ec60a69e24ed7cc0ac8073004e6f,https://doi.org/10.1109/VCIP.2014.7051528 +f652cb159a2cf2745aabcbf6a7beed4415e79e34,http://doi.acm.org/10.1145/1460096.1460119 +cec70cf159b51a18b39c80fac1ad34f65f3691ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7949100 +3d2c89676fcc9d64aaed38718146055152d22b39,https://doi.org/10.1109/ACPR.2013.10 +96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364450 +803803b5c2c61046d63674f85ecf0123f9d2c4b8,https://doi.org/10.1049/iet-bmt.2013.0089 +521aa8dcd66428b07728b91722cc8f2b5a73944b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367126 +e71c15f5650a59755619b2a62fa93ac922151fd6,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.22 +2f160a6526ebf10773680dadaba44b006bcec2cb,https://doi.org/10.1016/j.neucom.2012.03.007 +f5c57979ec3d8baa6f934242965350865c0121bd,http://doi.org/10.1007/s12539-018-0281-8 +603231c507bb98cc8807b6cbe2c860f79e8f6645,https://doi.org/10.1109/EUSIPCO.2015.7362819 +32e9c9520cf6acb55dde672b73760442b2f166f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7970176 +993374c1c9d58a3dec28160188ff6ac1227d02f5,https://doi.org/10.1109/ICARCV.2016.7838650 +080e0efc3cf71260bfe9bdc62cd86614d1ebca46,http://doi.org/10.1007/s10851-017-0771-z +2360ecf058393141ead1ca6b587efa2461e120e4,https://doi.org/10.1007/s00138-017-0895-6 +cccd0edb5dafb3a160179a60f75fd8c835c0be82,http://doi.org/10.1007/s12193-017-0241-3 +31ba9d0bfaa2a44bae039e5625eb580afd962892,https://doi.org/10.1016/j.cviu.2016.03.014 +9f1a854d574d0bd14786c41247db272be6062581,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8360155 +daa120032d8f141bc6aae20e23b1b754a0dd7d5f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789593 +4562ea84ebfc8d9864e943ed9e44d35997bbdf43,http://doi.ieeecomputersociety.org/10.1109/FG.2017.19 +d963bdff2ce5212fa585a83ca8fad96875bc0057,https://doi.org/10.1016/j.neucom.2016.03.091 +3d2c932f4f2693a87a0b855048e60f142214f475,http://doi.ieeecomputersociety.org/10.1109/CSE.2014.354 +70341f61dfe2b92d8607814b52dfd0863a94310e,http://doi.ieeecomputersociety.org/10.1109/AVSS.2015.7301750 +3d1959048eba5495e765a80c8e0bbd3d65b3d544,https://doi.org/10.1016/j.neucom.2016.07.038 +c4d439fe07a65b735d0c8604bd5fdaea13f6b072,http://doi.acm.org/10.1145/2671188.2749294 +e6da1fcd2a8cda0c69b3d94812caa7d844903007,http://dl.acm.org/citation.cfm?id=3137154 +c4f3185f010027a0a97fcb9753d74eb27a9cfd3e,http://doi.org/10.1016/j.patrec.2015.02.006 +81a4397d5108f6582813febc9ddbeff905474120,https://doi.org/10.1109/ICPR.2016.7899883 +8845c03bee88fdd2f400ed2bddba038366c82abe,http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.135 +1f3f7df159c338884ddfd38ee2d3ba2e1e3ada69,http://doi.org/10.1162/jocn_a_00645 +3ec860cfbd5d953f29c43c4e926d3647e532c8b0,https://doi.org/10.1109/TCSVT.2008.924108 +d2b3166b8a6a3e6e7bc116257e718e4fe94a0638,https://doi.org/10.1007/s00521-010-0411-7 +ad1679295a5e5ebe7ad05ea1502bce961ec68057,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344631 +c5022fbeb65b70f6fe11694575b8ad1b53412a0d,https://doi.org/10.1109/ICIP.2005.1530209 +fa052fd40e717773c6dc9cc4a2f5c10b8760339f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595883 +69064c7b349bf6e7f4a802f4fd0da676c1bd1d8b,https://doi.org/10.1016/j.patcog.2014.06.016 +ff76ff05aa1ab17e5ca9864df2252e6bb44c8a17,http://dl.acm.org/citation.cfm?id=3173582 +0733ec1953f6c774eb3a723618e1268586b46359,https://doi.org/10.1109/TMM.2006.870737 +8a4893d825db22f398b81d6a82ad2560832cd890,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5349489 +948f35344e6e063ffc35f10c547d5dd9204dee4e,https://doi.org/10.1016/j.eswa.2017.07.037 +24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,https://doi.org/10.1109/GlobalSIP.2016.7906030 +501076313de90aca7848e0249e7f0e7283d669a1,https://doi.org/10.1109/SOCPAR.2014.7007987 +7adfc2f854e2ea45c29d22d6e2dcccdd527f46a8,https://doi.org/10.1007/s00138-015-0677-y +a3add3268c26876eb76decdf5d7dd78a0d5cf304,https://doi.org/10.1016/j.specom.2017.07.003 +a1cda8e30ce35445e4f51b47ab65b775f75c9f18,https://doi.org/10.1109/ISBA.2018.8311462 +ccfebdf7917cb50b5fcd56fb837f841a2246a149,https://doi.org/10.1109/ICIP.2015.7351065 +7b618a699b79c1272f6c83101917ad021a58d96b,https://doi.org/10.1007/s11042-014-1986-2 +8e452379fda31744d4a4383fcb8a9eab6dbc4ae4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4586390 +fcc6fe6007c322641796cb8792718641856a22a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612994 +1979e270093b343d62e97816eeed956062e155a0,https://doi.org/10.1016/j.micpro.2005.07.003 +9213a415d798426c8d84efc6d2a69a2cbfa2af84,https://doi.org/10.1016/j.cviu.2013.03.008 +e16f73f3a63c44cf285b8c1bc630eb8377b85b6d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373816 +516f8728ad1d4f9f2701a2b5385f8c8e71b9d356,https://doi.org/10.1109/ACCESS.2017.2745903 +fb2bd6c2959a4f811b712840e599f695dad2967e,https://doi.org/10.1109/ISPA.2015.7306038 +af97a51f56cd6b793cf96692931a8d1ddbe4e3cc,https://doi.org/10.1109/ICPR.2014.57 +14ae16e9911f6504d994503989db34d2d1cb2cd4,https://doi.org/10.1007/s11042-013-1616-4 +f2eab39cf68de880ee7264b454044a55098e8163,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5539989 +9ce97efc1d520dadaa0d114192ca789f23442727,http://doi.acm.org/10.1145/2597627 +aee3427d0814d8a398fd31f4f46941e9e5488d83,http://dl.acm.org/citation.cfm?id=1924573 +5a0ae814be58d319dfc9fd98b058a2476801201c,https://doi.org/10.1007/s00521-012-1124-x +9649a19b49607459cef32f43db4f6e6727080bdb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395207 +a006cd95c14de399706c5709b86ac17fce93fcba,https://doi.org/10.1109/ICPR.2014.343 +95023e3505263fac60b1759975f33090275768f3,http://doi.acm.org/10.1145/2856767.2856770 +3a3e55cf5bfd689d6c922e082efa0cd71cd2ae5c,http://dl.acm.org/citation.cfm?id=3184081 +97b5800e144a8df48f1f7e91383b0f37bc37cf60,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237657 +5613cb13ab381c8a8b81181ac786255705691626,https://doi.org/10.1109/VCIP.2015.7457876 +f6532bf13a4649b7599eb40f826aa5281e392c61,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6202713 +c61eaf172820fcafaabf39005bd4536f0c45f995,http://doi.org/10.1007/978-3-319-58771-4_1 +7644b3a0871b8e0e7e1cdf06099e295f1e5fbdf7,https://doi.org/10.1007/s11063-015-9464-z +3080026f2f0846d520bd5bacb0cb2acea0ffe16b,https://doi.org/10.1109/BTAS.2017.8272690 +dc5d9399b3796db7fd850990402dce221b98c8be,http://dl.acm.org/citation.cfm?id=3220016 +85205914a99374fa87e004735fe67fc6aec29d36,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2392774 +86597fe787e0bdd05935d25158790727257a40bd,http://doi.ieeecomputersociety.org/10.1109/3DV.2016.72 +143571c2fc9b1b69d3172f8a35b8fad50bc8202a,https://doi.org/10.1016/j.neucom.2014.07.066 +1176a74fb9351ac2de81c198c4861d78e58f172d,https://doi.org/10.1016/j.patrec.2011.03.023 +af7553d833886663550ce83b087a592a04b36419,https://doi.org/10.1109/TIFS.2015.2390138 +36b23007420b98f368d092bab196a8f3cbcf6f93,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.106 +0de1450369cb57e77ef61cd334c3192226e2b4c2,https://doi.org/10.1109/BTAS.2017.8272747 +9e60614fd57afe381ae42c6ee0b18f32f60bb493,https://doi.org/10.1109/ICIP.2015.7351544 +659dc6aa517645a118b79f0f0273e46ab7b53cd9,https://doi.org/10.1109/ACPR.2015.7486608 +5b64584d6b01e66dfd0b6025b2552db1447ccdeb,https://doi.org/10.1109/BTAS.2017.8272697 +31cdaaa7a47efe2ce0e78ebec29df4d2d81df265,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776921 +034b3f3bac663fb814336a69a9fd3514ca0082b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298991 +bf4f79fd31493648d80d0a4a8da5edeeaba74055,http://doi.acm.org/10.1145/2783258.2783280 +de0ee491d2747a6f3d171f813fe6f5cdb3a27fd6,https://doi.org/10.1002/cpe.3850 +55cfc3c08000f9d21879582c6296f2a864b657e8,http://doi.org/10.1049/iet-cvi.2015.0287 +9e7646b7e9e89be525cda1385cc1351cc28a896e,http://doi.ieeecomputersociety.org/10.1109/TMC.2017.2702634 +349c909abf937ef0a5a12c28a28e98500598834b,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890672 +383e64d9ef1fca9de677ac82486b4df42e96e861,http://doi.ieeecomputersociety.org/10.1109/DSC.2017.78 +b259f57f41f4b3b5b7ca29c5acb6f42186bbcf23,https://doi.org/10.1109/SMC.2017.8122808 +71bbda43b97e8dc8b67b2bde3c873fa6aacd439f,https://doi.org/10.1016/j.patcog.2015.09.012 +3c18fb8ff0f5003fefa8e9dc9bebaf88908d255c,https://doi.org/10.1109/ICIP.2014.7025145 +4eb8030b31ff86bdcb063403eef24e53b9ad4329,http://doi.acm.org/10.1145/2993148.2997640 +f423d8be5e13d9ef979debd3baf0a1b2e1d3682f,https://doi.org/10.1016/j.imavis.2015.11.004 +26575ad9e75efb440a7dc4ef8e548eed4e19dbd1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411910 +7fcecaef60a681c47f0476e54e08712ee05d6154,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7299097 +1d51b256af68c5546d230f3e6f41da029e0f5852,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590015 +d6bdc70d259b38bbeb3a78db064232b4b4acc88f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.27 +9378ead3a09bc9f89fb711e2746facf399dd942e,https://doi.org/10.1109/TCSVT.2010.2045817 +6b44543571fe69f088be577d0c383ffc65eceb2a,http://doi.ieeecomputersociety.org/10.1109/EST.2012.24 +5e62b2ab6fd3886e673fd5cbee160a5bee414507,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.31 +da1477b4a65ae5a013e646b57e004f0cd60619a2,https://doi.org/10.1109/ICB.2012.6199764 +2c6ab32a03c4862ee3e2bc02e7e74745cd523ad2,https://doi.org/10.1109/IC3.2013.6612218 +0fdc3cbf92027cb1200f3f94927bef017d7325ae,https://doi.org/10.1109/BTAS.2015.7358771 +f925879459848a3eeb0035fe206c4645e3f20d42,http://doi.acm.org/10.1145/3025453.3025472 +5ed66fb992bfefb070b5c39dc45b6e3ff5248c10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163116 +0553c6b9ee3f7d24f80e204d758c94a9d6b375d2,https://doi.org/10.1109/ICIP.2004.1419764 +ca096e158912080493a898b0b8a4bd2902674fed,http://dl.acm.org/citation.cfm?id=3264899 +78d4d861c766af2a8da8855bece5da4e6eed2e1c,http://doi.acm.org/10.1145/3129416.3129455 +e9d1b3767c06c896f89690deea7a95401ae4582b,https://doi.org/10.1109/VCIP.2016.7805565 +d57982dc55dbed3d0f89589e319dc2d2bd598532,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099760 +89497854eada7e32f06aa8f3c0ceedc0e91ecfef,https://doi.org/10.1109/TIP.2017.2784571 +de0df8b2b4755da9f70cf1613d7b12040d0ce8ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791166 +a73405038fdc0d8bf986539ef755a80ebd341e97,https://doi.org/10.1109/TIP.2017.2698918 +045e83272db5e92aa4dc8bdfee908534c2608711,http://doi.ieeecomputersociety.org/10.1109/ICCABS.2016.7802775 +b6c00e51590c48a48fae51385b3534c4d282f76c,https://doi.org/10.1109/TIFS.2015.2427778 +3251f40ed1113d592c61d2017e67beca66e678bb,https://doi.org/10.1007/978-3-319-65172-9_17 +ff82825a04a654ca70e6d460c8d88080ee4a7fcc,http://doi.acm.org/10.1145/2683483.2683533 +3a0425c25beea6c4c546771adaf5d2ced4954e0d,https://link.springer.com/book/10.1007/978-3-319-58347-1 +cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6737950 +6de935a02f87aa31e33245c3b85ea3b7f8b1111c,http://doi.org/10.1007/s11263-017-1029-3 +f38813f1c9dac44dcb992ebe51c5ede66fd0f491,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354277 +75ce75c1a5c35ecdba99dd8b7ba900d073e35f78,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163152 +93af335bf8c610f34ce0cadc15d1dd592debc706,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8267475 +1a8d40bcfb087591cc221086440d9891749d47b8,https://doi.org/10.1109/ICCE.2012.6161859 +b84f164dbccb16da75a61323adaca730f528edde,https://doi.org/10.1109/TIP.2013.2237914 +76d1c6c6b67e67ced1f19a89a5034dafc9599f25,http://doi.acm.org/10.1145/2590296.2590315 +4b8c736524d548472d0725c971ee29240ae683f6,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.31 +b6259115b819424de53bb92f64cc459dcb649f31,http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078466 +deb89950939ae9847f0a1a4bb198e6dbfed62778,https://doi.org/10.1109/LSP.2016.2543019 +c64502696438b4c9f9e12e64daaf7605f62ce3f0,http://doi.ieeecomputersociety.org/10.1109/WKDD.2009.195 +7f5b379b12505d60f9303aab1fea48515d36d098,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411873 +b1f4423c227fa37b9680787be38857069247a307,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6200254 +c49075ead6eb07ede5ada4fe372899bd0cfb83ac,https://doi.org/10.1109/ICSPCS.2015.7391782 +0831794eddcbac1f601dcb9be9d45531a56dbf7e,http://doi.org/10.1007/s11042-017-4416-4 +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,http://doi.org/10.1007/s10994-014-5463-y +f03a82fd4a039c1b94a0e8719284a777f776fb22,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355453 +c1f05b723e53ac4eb1133249b445c0011d42ca79,https://doi.org/10.1162/neco_a_00990 +8aa1591bf8fcb44f2e9f2f10d1029720ccbb8832,http://dl.acm.org/citation.cfm?id=3078988 +97c554fbcf783d554c4f6c2f3fcc0a0f9dba0759,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0085 +6cb8c52bb421ce04898fa42cb997c04097ddd328,http://doi.org/10.1007/978-3-319-11289-3 +b13b101b6197048710e82f044ad2eda6b93affd8,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.91 +7bd37e6721d198c555bf41a2d633c4f0a5aeecc1,https://doi.org/10.1109/ACPR.2013.58 +914d7527678b514e3ee9551655f55ffbd3f0eb0a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404350 +39c10888a470b92b917788c57a6fd154c97b421c,https://doi.org/10.1109/VCIP.2017.8305036 +fb557b79157a6dda15f3abdeb01a3308528f71f2,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.310 +b42b535fcd0d9bd41a6594a910ea4623e907ceb9,https://doi.org/10.1109/ICTAI.2012.153 +3fc173805ed43602eebb7f64eea4d60c0386c612,http://doi.ieeecomputersociety.org/10.1109/CyberC.2015.94 +12c4ba96eaa37586f07be0d82b2e99964048dcb5,https://doi.org/10.1109/LSP.2017.2694460 +8d3e95c31c93548b8c71dbeee2e9f7180067a888,https://doi.org/10.1109/ICPR.2016.7899841 +71d68af11df855f886b511e4fc1635c1e9e789b0,https://doi.org/10.1109/TCSVT.2011.2133210 +dea409847d52bb0ad54bf586cb0482a29a584a7e,http://doi.ieeecomputersociety.org/10.1109/ISM.2009.115 +c17c7b201cfd0bcd75441afeaa734544c6ca3416,https://doi.org/10.1109/TCSVT.2016.2587389 +8de5dc782178114d9424d33d9adabb2f29a1ab17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7053946 +44c278cbecd6c1123bfa5df92e0bda156895fa48,https://doi.org/10.1109/ICPR.2014.316 +6688b2b1c1162bc00047075005ec5c7fca7219fd,https://doi.org/10.1109/SACI.2013.6608958 +e0793fd343aa63b5f366c8ace61b9c5489c51a4d,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.46 +c15b68986ecfa1e13e3791686ae9024f66983f14,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014747 +5dafab3c936763294257af73baf9fb3bb1696654,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5514556 +58483028445bf6b2d1ad6e4b1382939587513fe1,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247763 +ebde9b9c714ed326157f41add8c781f826c1d864,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014758 +33bbf01413910bca26ed287112d32fe88c1cc0df,https://doi.org/10.1109/ICIP.2014.7026204 +11e6cf1cbb33d67a3e3c87dcaf7031d6654bc0de,http://doi.acm.org/10.1145/2522968.2522978 +b034cc919af30e96ee7bed769b93ea5828ae361b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099915 +48255c9e1d6e1d030728d33a71699757e337be08,https://doi.org/10.1109/ISSNIP.2013.6529832 +ee56823f2f00c8c773e4ebc725ca57d2f9242947,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7110235 +2f8ef56c1007a02cdc016219553479d6b7e097fb,https://doi.org/10.1007/978-3-642-14834-7_2 +9bd3cafa16a411815f8f87ed3eb3cafefc25e5a3,https://doi.org/10.1109/ICPR.2016.7899782 +969626c52d30ea803064ddef8fb4613fa73ba11d,http://doi.org/10.1007/BF02683992 +6e46d8aa63db3285417c8ebb65340b5045ca106f,http://dl.acm.org/citation.cfm?id=3183751 +cf185d0d8fcad2c7f0a28b7906353d4eca5a098b,https://doi.org/10.1186/s13640-017-0190-5 +3779e0599481f11fc1acee60d5108d63e55819b3,http://doi.org/10.1007/s11280-018-0581-2 +9aade3d26996ce7ef6d657130464504b8d812534,https://doi.org/10.1109/TNNLS.2016.2618340 +5dd57b7e0e82a33420c054da7ea3f435d49e910e,https://doi.org/10.1007/s10851-014-0493-4 +43fce0c6b11eb50f597aa573611ac6dc47e088d3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465617 +a11ce3c9b78bf3f868b1467b620219ff651fe125,http://doi.acm.org/10.1145/2911996.2912073 +d1dd80d77655876fb45b9420fe72444c303b219e,https://doi.org/10.1109/FG.2011.5771371 +eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,https://doi.org/10.1109/ICPR.2016.7899719 +1ddea58d04e29069b583ac95bc0ae9bebb0bed07,https://doi.org/10.1109/KSE.2015.50 +298c2be98370de8af538c06c957ce35d00e93af8,https://doi.org/10.1109/IPTA.2016.7820988 +6c58e3a8209fef0e28ca2219726c15ea5f284f4f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899896 +6ffdbac58e15e0ff084310b0a804520ad4bd013e,https://doi.org/10.1049/iet-bmt.2015.0078 +2debdb6a772312788251cc3bd1cb7cc8a6072214,https://doi.org/10.1142/S0218001415560157 +7195cb08ba2248f3214f5dc5d7881533dd1f46d9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5673820 +0247998a1c045e601dc4d65c53282b5e655be62b,https://doi.org/10.1109/ITSC.2017.8317782 +c81b27932069e6c7016bfcaa5e861b99ac617934,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019469 +0fc5c6f06e40014a56f492172f44c073d269e95c,https://doi.org/10.1108/17563781311301490 +faf19885431cb39360158982c3a1127f6090a1f6,https://doi.org/10.1109/BTAS.2015.7358768 +acd4280453b995cb071c33f7c9db5760432f4279,https://doi.org/10.1007/s00138-018-0907-1 +f2896dd2701fbb3564492a12c64f11a5ad456a67,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414 +b8048a7661bdb73d3613fde9d710bd45a20d13e7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8468792 +6359fcb0b4546979c54818df8271debc0d653257,http://doi.org/10.1007/s11704-017-6275-6 +bd243d77076b3b8fe046bd3dc6e8a02aa9b38d62,http://arxiv.org/abs/1412.0767 +9436170c648c40b6f4cc3751fca3674aa82ffe9a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6811741 +7081958a390d3033f5f33e22bbfec7055ea8d601,https://doi.org/10.1109/MCI.2015.2437318 +060f67c8a0de8fee9c1732b63ab40627993f93d0,https://doi.org/10.1007/978-3-642-33564-8 +e101bab97bce2733222db9cfbb92a82779966508,https://doi.org/10.1109/TCYB.2016.2549639 +5101368f986aa9837fdb3a71cb4299dff6f6325d,https://doi.org/10.1109/ICIP.2008.4712155 +75d7ba926ef1cc2adab6c5019afbb2f69a5ca27d,https://doi.org/10.1007/s00521-012-1042-y +857c64060963dd8d28e4740f190d321298ddd503,http://doi.org/10.1007/s11042-015-3103-6 +1addc5c1fa80086d1ed58f71a9315ad13bd87ca2,https://doi.org/10.1007/s10044-012-0279-5 +49fdafef327069516d887d8e69b5e96c983c3dd0,https://doi.org/10.1109/DICTA.2017.8227433 +ba01dbfa29dc86d1279b2e9b9eeca1c52509bbda,http://doi.org/10.1007/s00530-017-0566-5 +e111624fb4c5dc60b9e8223abfbf7c4196d34b21,http://doi.ieeecomputersociety.org/10.1109/BIBM.2016.7822814 +4aea1213bdb5aa6c74b99fca1afc72d8a99503c6,https://doi.org/10.1109/ICDIM.2010.5664688 +b7fa06b76f4b9263567875b2988fb7bbc753e69f,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469282 +e6d46d923f201da644ae8d8bd04721dd9ac0e73d,https://doi.org/10.1109/ISBA.2016.7477226 +38c7f80a1e7fa1bdec632042318dc7cdd3c9aad4,http://doi.org/10.1016/j.asoc.2018.03.030 +826015d9ade1637b3fcbeca071e3137d3ac1ef56,https://doi.org/10.1109/WACV.2017.84 +f95321f4348cfacc52084aae2a19127d74426047,https://doi.org/10.1109/ICMLC.2013.6890897 +11bb2abe0ca614c15701961428eb2f260e3e2eef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343867 +e2106bb3febb4fc8fe91f0fcbc241bcda0e56b1e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952626 +7b47dd9302b3085cd6705614b88d7bdbc8ae5c13,http://doi.org/10.1007/s11063-017-9693-4 +de92951ea021ec56492d76381a8ae560a972dd68,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738246 +606dff86a34c67c79d93f1e536487847a5bb7002,https://doi.org/10.1109/WACV.2011.5711538 +b55e70df03d9b80c91446a97957bc95772dcc45b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329 +cd33b3ca8d7f00c1738c41b2071a3164ba42ea61,https://doi.org/10.1142/S0218213008003832 +a07f78124f83eef1ed3a6f54ba982664ae7ca82a,http://ieeexplore.ieee.org/document/6460481/ +76a52ebfc5afd547f8b73430ec81456cf25ddd69,http://doi.ieeecomputersociety.org/10.1109/AIPR.2014.7041914 +e6c834c816b5366875cf3060ccc20e16f19a9fc6,https://doi.org/10.1109/BTAS.2016.7791185 +cb2470aade8e5630dcad5e479ab220db94ecbf91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397018 +4c19690889fb3a12ec03e65bae6f5f20420b4ba4,https://doi.org/10.1049/iet-ipr.2015.0699 +23675cb2180aac466944df0edda4677a77c455cd,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.142 +ec576efd18203bcb8273539fa277839ec92232a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7994601 +bca39960ba46dc3193defe0b286ee0bea4424041,https://doi.org/10.1016/j.patrec.2009.05.018 +81f101cea3c451754506bf1c7edf80a661fa4dd1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163081 +f856532a729bd337fae1eb7dbe55129ae7788f45,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.26 +f2d15482e7055dd5f54cf4a8a8f60d8e75af7edf,https://doi.org/10.1109/ICIP.2011.6115736 +f0dac9a55443aa39fd9832bdff202a579b835e88,https://doi.org/10.1109/JSTSP.2016.2543681 +1831800ef8b1f262c92209f1ee16567105da35d6,https://doi.org/10.1016/j.sigpro.2014.01.010 +fb8eb4a7b9b9602992e5982c9e0d6d7f7b8210ef,https://www.ncbi.nlm.nih.gov/pubmed/29994550 +8bf945166305eb8e304a9471c591139b3b01a1e1,https://doi.org/10.1109/ACCESS.2017.2756451 +655e94eccddbe1b1662432c1237e61cf13a7d57b,http://doi.ieeecomputersociety.org/10.1109/ISIP.2008.147 +b5f9306c3207ac12ac761e7d028c78b3009a219c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6093779 +a713a01971e73d0c3118d0409dc7699a24f521d6,https://doi.org/10.1109/SSCI.2017.8285381 +5c19c4c6a663fe185a739a5f50cef6a12a4635a1,https://doi.org/10.1016/j.imavis.2012.08.016 +ec5c63609cf56496715b0eba0e906de3231ad6d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364651 +ec1a57e609eda72b4eb60155fac12db1da31f6c0,https://doi.org/10.1007/11744085_41 +a35ed55dc330d470be2f610f4822f5152fcac4e1,https://doi.org/10.1109/ISBA.2015.7126369 +43c3b6a564b284382fdf8ae33f974f4e7a89600e,http://dl.acm.org/citation.cfm?id=3190784 +329b2781007604652deb72139d14315df3bc2771,http://doi.acm.org/10.1145/2671188.2749358 +d628aabf1a666a875e77c3d3fee857cd25891947,https://doi.org/10.1109/SMC.2016.7844663 +c4d0d09115a0df856cdb389fbccb20f62b07b14e,https://doi.org/10.1109/ICIP.2012.6466925 +cb7a743b9811d20682c13c4ee7b791ff01c62155,https://doi.org/10.1109/MMSP.2015.7340789 +6dcf418c778f528b5792104760f1fbfe90c6dd6a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014984 +7f68a5429f150f9eb7550308bb47a363f2989cb3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977004 +8dd3f05071fd70fb1c349460b526b0e69dcc65bf,https://doi.org/10.1109/TIP.2017.2726010 +262cdbc57ecf5c18756046c0d8b9aa7eb10e3b19,http://dl.acm.org/citation.cfm?id=3007694 +26bbe76d1ae9e05da75b0507510b92e7e6308c73,https://doi.org/10.1007/s00371-014-1049-8 +80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,https://doi.org/10.1109/TNNLS.2016.2522431 +34546ef7e6148d9a1fb42cfab5f0ce11c92c760a,https://doi.org/10.1016/j.jvcir.2015.09.005 +dac34b590adddef2fc31f26e2aeb0059115d07a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436078 +80a5afeb6968c7e736adc48bd4d5ec5b45b13f71,https://doi.org/10.1007/978-3-319-15762-7 +ed94e7689cdae87891f08428596dec2a2dc6a002,https://doi.org/10.1109/CAMSAP.2017.8313130 +4e37cd250130c6fd60e066f0c8efb3cbb778c421,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8419742 +38e7f3fe450b126367ec358be9b4cc04e82fa8c7,https://doi.org/10.1109/TIP.2014.2351265 +73ba33e933e834b815f62a50aa1a0e15c6547e83,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368754 +8eb40d0a0a1339469a05711f532839e8ffd8126c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7890464 +ef2bb8bd93fa8b44414565b32735334fa6823b56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393076 +c5c53d42e551f3c8f6ca2c13335af80a882009fa,http://doi.org/10.1007/s11263-018-1088-0 +2336de3a81dada63eb00ea82f7570c4069342fb5,http://doi.acm.org/10.1145/2361407.2361428 +a60db9ca8bc144a37fe233b08232d9c91641cbb5,http://doi.org/10.1007/s11280-018-0615-9 +6856a11b98ffffeff6e2f991d3d1a1232c029ea1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771409 +cef73d305e5368ee269baff53ec20ea3ae7cdd82,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461485 +070c8ee3876c06f9a65693e536d61097ace40417,https://doi.org/10.1109/ACPR.2013.161 +ddf577e8b7c86b1122c1bc90cba79f641d2b33fa,http://doi.acm.org/10.1145/3013971.3014026 +ff3f128f5addc6ce6b41f19f3d679282bbdaa2ee,http://doi.acm.org/10.1145/2903220.2903255 +7f26c615dd187ca5e4b15759d5cb23ab3ea9d9a9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7781761 +a75de488eaacb1dafffbe667465390f101498aaf,http://doi.ieeecomputersociety.org/10.1109/FG.2017.47 +588bed36b3cc9e2f26c39b5d99d6687f36ae1177,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771389 +1e8fd77d4717e9cb6079e10771dd2ed772098cb3,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2016.7574681 +314c4c95694ff12b3419733db387476346969932,http://dl.acm.org/citation.cfm?id=3007672 +fbc591cde7fb7beb985437a22466f9cf4b16f8b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463262 +46e0703044811c941f0b5418139f89d46b360aa3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883945 +ea026456729f0ec54c697198e1fd089310de4ae2,https://doi.org/10.1109/CIBIM.2013.6607917 +59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552862 +b85d953de16eecaecccaa8fad4081bd6abda9b1b,https://doi.org/10.1016/j.neuroimage.2015.12.020 +4e43408a59852c1bbaa11596a5da3e42034d9380,http://doi.org/10.1007/s11042-018-6040-3 +661c78a0e2b63cbdb9c20dcf89854ba029b6bc87,https://doi.org/10.1109/ICIP.2014.7025093 +9a98dd6d6aaba05c9e46411ea263f74df908203d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7859405 +d2a415365f997c8fe2dbdd4e06ceab2e654172f6,http://doi.acm.org/10.1145/2425333.2425361 +ec1bec7344d07417fb04e509a9d3198da850349f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342699 +f4b5a8f6462a68e79d643648c780efe588e4b6ca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995700 +88535dba55b0a80975df179d31a6cc80cae1cc92,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355366 +dc1510110c23f7b509035a1eda22879ef2506e61,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909642 +6014eeb333998c2b2929657d233ebbcb1c3412c9,http://doi.acm.org/10.1145/2647868.2656406 +fa80344137c4d158bf59be4ac5591d074483157a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1470219 +5fea59ccdab484873081eaa37af88e26e3db2aed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8263394 +7ac4fc169fffa8e962b9df94f61e2adf6bac8f97,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8453893 +8686b15802529ff8aea50995ef14079681788110,https://doi.org/10.1109/TNNLS.2014.2376936 +61262450d4d814865a4f9a84299c24daa493f66e,http://doi.org/10.1007/s10462-016-9474-x +2724ba85ec4a66de18da33925e537f3902f21249,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751298 +d91f9e8cbf271004ef1a293401197a10a26ccd1b,https://doi.org/10.1109/SOCPAR.2015.7492801 +fc5538e60952f86fff22571c334a403619c742c3,http://ieeexplore.ieee.org/document/6460202/ +8f71c97206a03c366ddefaa6812f865ac6df87e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342943 +20b405d658b7bb88d176653758384e2e3e367039,https://doi.org/10.1109/IJCNN.2012.6252677 +9b78ce9fdac30864d1694a56328b3c8a96cccef5,https://doi.org/10.1089/cpb.2004.7.635 +46f48211716062744ddec5824e9de9322704dea1,http://doi.org/10.1007/s11263-016-0923-4 +d0d75a7116a76ccd98a3aeb6f6fff10ba91de1c1,https://doi.org/10.1109/TIP.2015.2502144 +8a2210bedeb1468f223c08eea4ad15a48d3bc894,http://doi.acm.org/10.1145/2513383.2513438 +fde611bf25a89fe11e077692070f89dcdede043a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7322904 +39d6f8b791995dc5989f817373391189d7ac478a,http://doi.org/10.1016/j.patrec.2015.09.015 +73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198 +93dcea2419ca95b96a47e541748c46220d289d77,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014993 +10cb39e93fac194220237f15dae084136fdc6740,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457972 +17189cfedbdbd219849b8e7f8cf0293d49465f9c,http://doi.acm.org/10.1145/2393347.2396505 +84f86f8c559a38752ddfb417e58f98e1f8402f17,http://doi.ieeecomputersociety.org/10.1109/EST.2013.10 +73dcb4c452badb3ee39a2f222298b234d08c21eb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6779478 +d723ebf3288126fa8cbb10ba7e2a6308aede857c,https://doi.org/10.1117/12.968586 +9771e04f48d8a1d7ae262539de8924117a04c20d,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.70 +9806d3dc7805dd8c9c20d7222c915fc4beee7099,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6755972 +0d7fcdb99dc0d65b510f2b0b09d3d3cfed390261,https://doi.org/10.1109/IJCB.2011.6117508 +28e1982d20b6eff33989abbef3e9e74400dbf508,http://doi.org/10.1007/s11042-015-3007-5 +7343f0b7bcdaf909c5e37937e295bf0ac7b69499,http://doi.org/10.1016/j.csi.2015.06.004 +cd2bf0e1d19babe51eaa94cbc24b223e9c048ad6,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2581168 +e8f4ded98f5955aad114f55e7aca6b540599236b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7047804 +ea8fa68b74ffefbe79a3576d7e4ae4365a1346ff,http://doi.ieeecomputersociety.org/10.1109/FG.2017.113 +6dcf6b028a6042a9904628a3395520995b1d0ef9,http://dl.acm.org/citation.cfm?id=3158392 +7a666a91a47da0d371a9ba288912673bcd5881e4,https://doi.org/10.1016/j.patrec.2009.05.011 +ee1f9637f372d2eccc447461ef834a9859011ec1,http://doi.org/10.1007/s11042-016-3950-9 +b351575e3eab724d62d0703e24ecae55025eef00,https://doi.org/10.1007/s10209-014-0369-9 +9e8382aa1de8f2012fd013d3b39838c6dad8fb4d,http://doi.acm.org/10.1145/3123266.3123349 +f545b121b9612707339dfdc40eca32def5e60430,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.33 +96a8f115df9e2c938453282feb7d7b9fde6f4f95,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2593719 +cb522b2e16b11dde48203bef97131ddca3cdaebd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979 +d9eed86e53ce5f7cba379fe77bbefb42e83c0d88,https://doi.org/10.1109/TIP.2017.2764262 +f374ac9307be5f25145b44931f5a53b388a77e49,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339060 +5779e3e439c90d43648db107e848aeb954d3e347,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7927417 +1e2770ce52d581d9a39642b40bfa827e3abf7ea2,http://doi.acm.org/10.1145/2425333.2425362 +f58f30932e3464fc808e539897efa4ee4e7ac59f,https://doi.org/10.1109/DICTA.2016.7797023 +e47e8fa44decf9adbcdb02f8a64b802fe33b29ef,https://doi.org/10.1109/TIP.2017.2782366 +9a84588fe7e758cfbe7062686a648fab787fc32f,https://doi.org/10.1007/s11042-014-2333-3 +23edcd0d2011d9c0d421193af061f2eb3e155da3,http://doi.org/10.1007/s00371-015-1137-4 +ed82f10e5bfe1825b9fa5379a1d0017b96fa1ebf,http://doi.ieeecomputersociety.org/10.1109/ICEBE.2017.36 +eac97959f2fcd882e8236c5dd6035870878eb36b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890147 +452ea180cf4d08d7500fc4bc046fd7141fd3d112,https://doi.org/10.1109/BTAS.2012.6374569 +f231e9408da20498ba51d93459b3fcdb7b666efb,https://doi.org/10.1016/j.micpro.2012.01.002 +aad6fc5bd7631d2e68b7a5a01ac5d578899c43e5,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.80 +7782627fa2e545276996ff9e9a1686ac496df081,http://doi.acm.org/10.1145/2663204.2666276 +396b2963f0403109d92a4d4f26205f279ea79d2c,https://doi.org/10.1109/TSMCB.2005.845399 +e1d1540a718bb7a933e21339f1a2d90660af7353,http://doi.org/10.1007/s11063-018-9852-2 +c12034ca237ee330dd25843f2d05a6e1cfde1767,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.298 +a13a27e65c88b6cb4a414fd4f6bca780751a59db,https://doi.org/10.1109/SMC.2016.7844934 +46b2ecef197b465abc43e0e017543b1af61921ac,https://doi.org/10.1109/ICPR.2016.7899652 +159caaa56c2291bedbd41d12af5546a7725c58d4,https://doi.org/10.1109/ICIP.2016.7532910 +9c81d436b300494bc88d4de3ac3ec3cc9c43c161,https://doi.org/10.1007/s11042-017-5019-9 +bbc8ccd3f62615e3c0ce2c3aee5e4a223d215bbd,https://doi.org/10.1007/s11042-015-2497-5 +2f69e9964f3b6bdc0d18749b48bb6b44a4171c64,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7801496 +aad7b12936e0ced60bc0be95e8670b60b5d5ce20,https://doi.org/10.1109/URAI.2013.6677383 +8f051647bd8d23482c6c3866c0ce1959b8bd40f6,https://doi.org/10.1016/j.asoc.2017.04.041 +cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,https://doi.org/10.1109/SIU.2016.7495874 +83f80fd4eb614777285202fa99e8314e3e5b169c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265544 +8c85ef961826575bc2c2f4da7784bc3bfcf8b188,https://doi.org/10.1109/ICIP.2015.7350871 +5f4219118556d2c627137827a617cf4e26242a6e,https://doi.org/10.1109/TMM.2017.2751143 +c65cfc9d3568c586faf18611c4124f6b7c0c1a13,https://doi.org/10.1109/ICACCI.2014.6968322 +ab0981d1da654f37620ca39c6b42de21d7eb58eb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8016651 +1617f56c86bf8ea61de62062a97961d23fcf03d3,https://doi.org/10.1007/s11390-015-1540-3 +de45bf9e5593a5549a60ca01f2988266d04d77da,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404529 +34c1e9a6166f4732d1738db803467f7abc47ba87,https://doi.org/10.1109/WACV.2017.137 +d12bea587989fc78b47584470fd8f689b6ab81d2,https://doi.org/10.1109/TIP.2013.2246523 +f2d5bb329c09a5867045721112a7dad82ca757a3,http://doi.org/10.1007/s11042-015-3009-3 +1fb980e137b2c9f8781a0d98c026e164b497ddb1,http://dl.acm.org/citation.cfm?id=3213539 +5c526ee00ec0e80ba9678fee5134dae3f497ff08,https://doi.org/10.1109/TCE.2010.5606299 +b5ca8d4f259f35c1f3edfd9f108ce29881e478b0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099624 +453bf941f77234cb5abfda4e015b2b337cea4f17,https://doi.org/10.1007/s11042-014-2340-4 +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369725 +e4754afaa15b1b53e70743880484b8d0736990ff,http://doi.org/10.1016/j.imavis.2016.01.002 +2e27667421a7eeab278e0b761db4d2c725683c3f,https://doi.org/10.1007/s11042-013-1815-z +85e78aa374d85f9a61da693e5010e40decd3f986,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619100 +e96cef8732f3021080c362126518455562606f2d,http://dl.acm.org/citation.cfm?id=3206058 +f557df59cd088ffb8e27506d8612d062407e96f4,https://doi.org/10.1007/s00521-014-1810-y +0c65226edb466204189b5aec8f1033542e2c17aa,https://doi.org/10.1109/ICIP.2017.8296997 +a7f188a7161b6605d58e48b2537c18a69bd2446f,https://doi.org/10.1109/PIMRC.2011.6139898 +d92084e376a795d3943df577d3b3f3b7d12eeae5,http://doi.ieeecomputersociety.org/10.1109/FG.2017.85 +a192845a7695bdb372cccf008e6590a14ed82761,https://doi.org/10.1109/TIP.2014.2321495 +5c3eb40b06543f00b2345f3291619a870672c450,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.539 +d58fce50e9028dfc12cb2e7964f83d3b28bcc2fc,http://doi.ieeecomputersociety.org/10.1109/FG.2017.101 +b161d261fabb507803a9e5834571d56a3b87d147,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8122913 +952138ae6534fad573dca0e6b221cdf042a36412,http://doi.ieeecomputersociety.org/10.1109/DICTA.2005.38 +1de23d7fe718d9fab0159f58f422099e44ad3f0a,http://doi.org/10.1007/s11063-016-9558-2 +dcb6f06631021811091ce691592b12a237c12907,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8438999 +b5690409be6c4e98bd37181d41121adfef218537,https://doi.org/10.1109/ICIP.2008.4711920 +3bf579baf0903ee4d4180a29739bf05cbe8f4a74,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270392 +34c2ea3c7e794215588c58adf0eaad6dc267d082,http://doi.acm.org/10.1145/3136755.3143005 +10e4172dd4f4a633f10762fc5d4755e61d52dc36,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100146 +1fa426496ed6bcd0c0b17b8b935a14c84a7ee1c2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100195 +50ee027c63dcc5ab5cd0a6cdffb1994f83916a46,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995354 +ce11b2d7905d2955c4282db5b68482edb846f29f,http://doi.acm.org/10.1145/3126686.3126705 +c3a53b308c7a75c66759cbfdf52359d9be4f552b,http://doi.ieeecomputersociety.org/10.1109/ISPAN-FCST-ISCC.2017.16 +ced7811f2b694e54e3d96ec5398e4b6afca67fc0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1605391 +9dcfa771a7e87d7681348dd9f6cf9803699b16ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1385984 +f2700e3d69d3cce2e0b1aea0d7f87e74aff437cd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237686 +99a1180c3d39532efecfc5fa251d6893375c91a1,https://doi.org/10.1109/ICARCV.2012.6485394 +bf1ebcaad91c2c0ed35544159415b3ad388cc7a9,https://doi.org/10.1007/s11042-015-2665-7 +cc7c63473c5bef5ae09f26b2258691d9ffdd5f93,https://doi.org/10.1109/ICMLA.2012.17 +9d4692e243e25eb465a0480376beb60a5d2f0f13,https://doi.org/10.1109/ICCE.2016.7430617 +321db1059032b828b223ca30f3304257f0c41e4c,https://doi.org/10.1109/ICACCI.2015.7275951 +645f09f4bc2e6a13663564ee9032ca16e35fc52d,http://dl.acm.org/citation.cfm?id=3193542 +3826e47f0572ab4d0fe34f0ed6a49aa8303e0428,https://doi.org/10.1109/ACPR.2013.66 +1b4b3d0ce900996a6da8928e16370e21d15ed83e,https://doi.org/10.1109/BigDataService.2017.38 +6316a4b689706b0f01b40f9a3cef47b92bc52411,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699534 +eba4cfd76f99159ccc0a65cab0a02db42b548d85,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751379 +abf573864b8fbc0f1c491ca60b60527a3e75f0f5,https://doi.org/10.1007/s11042-014-2204-y +cb4d8cef8cec9406b1121180d47c14dfef373882,https://doi.org/10.1109/ICPR.2014.301 +2480f8dccd9054372d696e1e521e057d9ac9de17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8396968 +42a5dc91852c8c14ed5f4c3b451c9dc98348bc02,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.021 +0ac2e8bd5a77d83bae9b49daab2c6f321e9b7a4e,https://doi.org/10.1109/SCIS-ISIS.2016.0166 +90ae02da16b750a9fd43f8a38440f848309c2fe0,https://doi.org/10.1007/s10044-015-0499-6 +f6ebfa0cb3865c316f9072ded26725fd9881e73e,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.109 +1221e25763c3be95c1b6626ca9e7feaa3b636d9a,http://doi.org/10.1007/s11042-017-4353-2 +ed273b5434013dcdb9029c1a9f1718da494a23a2,https://doi.org/10.1109/LSP.2018.2810106 +1773d65c1dc566fd6128db65e907ac91b4583bed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8328914 +8b1fa60b9164b60d1ca2705611fab063505a3ef5,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618337 +4c842fbd4c032dd4d931eb6ff1eaa2a13450b7af,https://doi.org/10.1016/j.imavis.2014.06.004 +2ac7bb3fb014d27d3928a9b4bc1bf019627e0c1a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8432363 +dc964b9c7242a985eb255b2410a9c45981c2f4d0,http://doi.org/10.1007/s10851-018-0837-6 +191b70fdd6678ef9a00fd63710c70b022d075362,https://doi.org/10.1109/ICIP.2003.1247347 +ce70dd0d613b840754dce528c14c0ebadd20ffaa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7973159 +745d49a2ff70450113f07124c2c5263105125f58,https://doi.org/10.1109/ICPR.2016.7899972 +293d69d042fe9bc4fea256c61915978ddaf7cc92,https://doi.org/10.1007/978-981-10-7302-1_6 +7f8cef6ba2f059e465b1b23057a6dbb23fba1c63,https://doi.org/10.1109/TCSVT.2016.2539541 +2f17c0514bb71e0ca20780d71ea0d50ff0da4938,http://doi.acm.org/10.1145/1943403.1943490 +2afde207bd6f2e5fa20f3cf81940b18cc14e7dbb,https://doi.org/10.1109/TIP.2013.2255300 +a5b9c6aa52f91092b5a8ab04ed1f7b60c0ea5260,http://doi.ieeecomputersociety.org/10.1109/WI-IATW.2006.88 +013305c13cfabaea82c218b841dbe71e108d2b97,http://doi.org/10.1007/s11063-016-9554-6 +41c42cb001f34c43d4d8dd8fb72a982854e173fb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5308445 +a45e6172713a56736a2565ddea9cb8b1d94721cd,http://doi.org/10.1038/s41746-018-0035-3 +3d0b2da6169d38b56c58fe5f13342cf965992ece,https://doi.org/10.1109/ICIP.2016.7532909 +332d773b70f2f6fb725d49f314f57b8f8349a067,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.220 +2a92bda6dbd5cce5894f7d370d798c07fa8783f4,https://doi.org/10.1109/TIFS.2014.2359587 +9ac2960f646a46b701963230e6949abd9ac0a9b3,http://doi.org/10.1162/jocn_a_01174 +3e59d97d42f36fc96d33a5658951856a555e997b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163128 +61971f8e6fff5b35faed610d02ad14ccfc186c70,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373843 +ca447d6479554b27b4afbd0fd599b2ed39f2c335,https://doi.org/10.1109/ICPR.2014.459 +3dfbd17bd9caf7bd1d908ff469dec2b61e8a9548,https://doi.org/10.1109/ITSC.2015.252 +b75eecc879da38138bf3ace9195ae1613fb6e3cc,https://doi.org/10.1007/s10278-015-9808-2 +942f6eb2ec56809430c2243a71d03cc975d0a673,https://doi.org/10.1109/BigMM.2017.64 +c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6,https://doi.org/10.1109/BTAS.2017.8272773 +c3d874336eb8fae92ab335393fd801fa8df98412,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952438 +5bb4fd87fa4a27ddacd570aa81c2d66eb4721019,http://doi.org/10.1016/j.neucom.2017.07.014 +6440d6c7081efe4538a1c75e93144f3d142feb41,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.280 +2cd426f10178bd95fef3dede69ae7b67e73bb70c,https://doi.org/10.1109/ROBIO.2016.7866457 +abbc6dcbd032ff80e0535850f1bc27c4610b0d45,https://doi.org/10.1109/ICIP.2015.7350983 +945ef646679b6c575d3bbef9c6fc0a9629ac1b62,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477689 +c5437496932dcb9d33519a120821da755951e1a9,http://doi.acm.org/10.1145/2487575.2487604 +54e988bc0764073a5db2955705d4bfa8365b7fa9,http://doi.acm.org/10.1145/2522848.2531749 +fbe4f8a6af19f63e47801c6f31402f9baae5fecf,http://dl.acm.org/citation.cfm?id=2820910 +cab3c6069387461c3a9e5d77defe9a84fe9c9032,https://doi.org/10.1016/j.neucom.2016.12.056 +44855e53801d09763c1fb5f90ab73e5c3758a728,http://doi.org/10.1007/s11263-017-1018-6 +72167c9e4e03e78152f6df44c782571c3058050e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771464 +fc970d7694b1d2438dd101a146d2e4f29087963e,http://doi.ieeecomputersociety.org/10.1109/FG.2017.86 +407a26fff7fac195b74de9fcb556005e8785a4e9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.29 +7e27d946d23229220bcb6672aacab88e09516d39,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900131 +24b637c98b22cd932f74acfeecdb50533abea9ae,https://doi.org/10.1109/TIP.2015.2492819 +9285f4a6a06e975bde3ae3267fccd971d4fff98a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099853 +1b8541ec28564db66a08185510c8b300fa4dc793,https://doi.org/10.1109/LSP.2015.2499778 +aa6e8a2a9d3ed59d2ae72add84176e7b7f4b2912,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8203756 +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854428 +071ec4f3fb4bfe6ae9980477d208a7b12691710e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6552193 +4d1f77d9418a212c61a3c75c04a5b3884f6441ba,https://doi.org/10.1109/TIP.2017.2788196 +e8c6853135856515fc88fff7c55737a292b0a15b,http://doi.ieeecomputersociety.org/10.1109/FG.2017.46 +7fcd03407c084023606c901e8933746b80d2ad57,https://doi.org/10.1109/BTAS.2017.8272694 +aef58a54d458ab76f62c9b6de61af4f475e0f616,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706790 +abe4c1d6b964c4f5443b0334a44f0b03dd1909f4,https://doi.org/10.1109/IJCNN.2017.7965950 +f27fd2a1bc229c773238f1912db94991b8bf389a,https://doi.org/10.1109/IVCNZ.2016.7804414 +608b01c70f0d1166c10c3829c411424d9ef550e7,https://doi.org/10.1109/CISP-BMEI.2017.8301920 +0abfb5b89e9546f8a5c569ab35b39b888e7cea46,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.68 +7f415aee0137acab659c664eb1dff15f7b726bdd,https://doi.org/10.1109/TCSVT.2014.2302522 +3f2a44dcf0ba3fc72b24c7f09bb08e25797398c1,https://doi.org/10.1109/IJCNN.2017.7966210 +4735fa28fa2a2af98f7b266efd300a00e60dddf7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460647 +f49aebe58d30241f12c1d7d9f4e04b6e524d7a45,https://doi.org/10.1109/ICB.2016.7550074 +9296f4ac0180e29226d6c016b5a4d5d2964eaaf6,http://doi.org/10.1038/s41598-017-07122-x +d5dc78eae7a3cb5c953c89376e06531d39b34836,https://doi.org/10.1007/s00521-009-0242-6 +84ec0983adb8821f0655f83b8ce47f36896ca9ee,https://doi.org/10.1109/SMC.2017.8122985 +e5ea7295b89ef679e74919bf957f58d55ad49489,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401948 +aa5a7a9900548a1f1381389fc8695ced0c34261a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900274 +2f1b521c29ab075a0cd9bbf56ba26ee13d5e4d76,https://doi.org/10.1109/ACPR.2015.7486607 +8562b4f63e49847692b8cb31ef0bdec416b9a87a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8128909 +041b51a81a977b5c64682c55414ad8d165c1f2ce,https://doi.org/10.1109/TCE.2014.7027339 +56f57786516dcc8ea3c0ffe877c1363bfb9981d2,https://doi.org/10.1109/CBMI.2014.6849823 +4e061a302816f5890a621eb278c6efa6e37d7e2f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909638 +c9efcd8e32dced6efa2bba64789df8d0a8e4996a,http://dl.acm.org/citation.cfm?id=2984060 +0133d1fe8a3138871075cd742c761a3de93a42ec,https://doi.org/10.1109/ICDSP.2015.7251932 +d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952553 +e88988f4696e7e2925ed96467fde4314bfa95eff,https://doi.org/10.1016/j.neucom.2015.01.076 +bf0836e5c10add0b13005990ba019a9c4b744b06,https://doi.org/10.1109/TCE.2009.5373791 +7fe2ab9f54242ef8609ef9bf988f008c7d42407c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382330 +01e27c91c7cef926389f913d12410725e7dd35ab,https://doi.org/10.1007/s11760-017-1140-5 +f762afd65f3b680330e390f88d4cc39485345a01,http://doi.ieeecomputersociety.org/10.1109/ACIIW.2017.8272606 +9cd4f72d33d1cedc89870b4f4421d496aa702897,https://doi.org/10.1117/1.JEI.22.2.023010 +6d4c64ca6936f868d793e1b164ddaf19243c19a7,https://doi.org/10.1109/TNNLS.2015.2499273 diff --git a/scraper/reports/misc/all_doi-3.csv b/scraper/reports/misc/all_doi-3.csv new file mode 100644 index 00000000..9517ab77 --- /dev/null +++ b/scraper/reports/misc/all_doi-3.csv @@ -0,0 +1,749 @@ +915ff2bedfa0b73eded2e2e08b17f861c0e82a58,https://doi.org/10.1109/UEMCON.2017.8249000 +454bf5b99607b4418e931092476ad1798ce5efa4,https://doi.org/10.1155/2011/790598 +abfba1dc9a9991897acd0e0d3d4ef9d4aef4151c,https://doi.org/10.1109/FUZZ-IEEE.2014.6891864 +166ef5d3fd96d99caeabe928eba291c082ec75a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237597 +8ac2d704f27a2ddf19b40c8e4695da629aa52a54,http://doi.org/10.1007/s11042-015-2945-2 +f9fb7979af4233c2dd14813da94ec7c38ce9232a,http://doi.acm.org/10.1145/3131902 +c175ebe550761b18bac24d394d85bdfaf3b7718c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301582 +1f5725a4a2eb6cdaefccbc20dccadf893936df12,https://doi.org/10.1109/CCST.2012.6393544 +361eaef45fccfffd5b7df12fba902490a7d24a8d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404319 +dfb8a04a80d4b0794c0679d797cb90ec101e162c,http://doi.ieeecomputersociety.org/10.1109/AVSS.2014.6918665 +5a12e1d4d74fe1a57929eaaa14f593b80f907ea3,http://doi.org/10.1007/s13735-016-0117-4 +b6ac33d2c470077fa8dcbfe9b113beccfbd739f8,http://doi.acm.org/10.1145/2509896.2509905 +35d42f4e7a1d898bc8e2d052c38e1106f3e80188,https://doi.org/10.1109/BTAS.2015.7358765 +9cb7b3b14fd01cc2ed76784ab76304132dab6ff3,https://doi.org/10.1109/ICIP.2015.7351174 +f41d7f891a1fc4569fe2df66e67f277a1adef229,https://doi.org/10.1109/ICIP.2015.7351552 +12b533f7c6847616393591dcfe4793cfe9c4bb17,https://doi.org/10.1109/TIFS.2017.2765519 +dd031dbf634103ff3c58ce87aa74ec6921b2e21d,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344664 +1e0d92b9b4011822825d1f7dc0eba6d83504d45d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4497872 +189e5a2fa51ed471c0e7227d82dffb52736070d8,https://doi.org/10.1109/ICIP.2017.8296995 +9eaa967d19fc66010b7ade7d94eaf7971a1957f3,https://doi.org/10.1109/IWCIA.2013.6624793 +71f9861df104b90399dc15e12bbb14cd03f16e0b,http://doi.ieeecomputersociety.org/10.1109/CGIV.2009.7 +3c09d15b3e78f38618b60388ec9402e616fc6f8e,https://doi.org/10.1109/IJCNN.2010.5596793 +067fe74aec42cb82b92cf6742c7cfb4a65f16951,http://doi.acm.org/10.1145/2601434 +4f742c09ce12859b20deaa372c8f1575acfc99c9,https://doi.org/10.1016/j.neucom.2017.01.020 +e7436b8e68bb7139b823a7572af3decd96241e78,https://doi.org/10.1109/ROBIO.2011.6181560 +26727dc7347e3338d22e8cf6092e3a3c7568d763,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163088 +3ebb0209d5e99b22c67e425a67a959f4db8d1f47,https://doi.org/10.1109/ICDAR.2017.173 +78f2c8671d1a79c08c80ac857e89315197418472,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237443 +5491478ae2c58af21389ed3af21babd362511a8e,http://doi.acm.org/10.1145/2949035.2949048 +c8fb8872203ee694d95da47a1f9929ac27186d87,https://doi.org/10.1109/ICIP.2005.1530305 +47cd161546c59ab1e05f8841b82e985f72e5ddcb,https://doi.org/10.1109/ICIP.2017.8296552 +2e12c5ea432004de566684b29a8e148126ef5b70,https://doi.org/10.1007/s12193-015-0204-5 +607aebe7568407421e8ffc7b23a5fda52650ad93,https://doi.org/10.1109/ISBA.2016.7477237 +9055b155cbabdce3b98e16e5ac9c0edf00f9552f,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78 +cacce7f4ce74e3269f5555aa6fd83e48baaf9c96,http://doi.acm.org/10.1145/2632165 +b208f2fc776097e98b41a4ff71c18b393e0a0018,http://doi.ieeecomputersociety.org/10.1109/AVSS.2003.1217900 +e52272f92fa553687f1ac068605f1de929efafc2,https://doi.org/10.1016/j.engappai.2017.06.003 +dac8fc521dfafb2d082faa4697f491eae00472c7,http://dl.acm.org/citation.cfm?id=3123423 +2d79dece7890121469f515a6e773ba0251fc2d98,https://doi.org/10.1109/ICIP.2017.8296756 +609d81ddf393164581b3e3bf11609a712ac47522,https://doi.org/10.1109/APSIPA.2017.8282300 +d89a754d7c59e025d2bfcdb872d2d061e2e371ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5598629 +5f9dc3919fb088eb84accb1e490921a134232466,http://doi.ieeecomputersociety.org/10.1109/WACV.2007.49 +e8aa1f207b4b0bb710f79ab47a671d5639696a56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7362364 +10bf35bf98cfe555dfc03b5f03f2769d330e3af9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8000333 +4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,https://doi.org/10.1109/TIFS.2017.2788002 +0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,https://doi.org/10.1109/TMM.2015.2500730 +b934f730a81c071dbfc08eb4c360d6fca2daa08f,http://doi.ieeecomputersociety.org/10.1109/ICME.2015.7177496 +b388bf63c79e429dafee16c62b2732bcbea0d026,https://doi.org/10.1109/ICIP.2016.7533051 +be51854ef513362bc236b85dd6f0e2c2da51614b,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.298 +178b37392b2c6f1a167ebc1a5baa5f2f5916e4c4,https://doi.org/10.1007/s11042-013-1578-6 +dbc8ffd6457147ff06cd3f56834e3ec6dccb2057,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265396 +d3008b4122e50a28f6cc1fa98ac6af28b42271ea,http://dl.acm.org/citation.cfm?id=2806218 +eb9867f5efc98d3203ce1037f9a8814b0d15d0aa,https://doi.org/10.1109/ICIP.2014.7026008 +fe14d8177cbdb7e5b4085302e6e044f7a4c19cb2,https://doi.org/10.1109/ICSMC.2012.6377834 +c843f591658ca9dbb77944a89372a92006defe68,http://doi.org/10.1007/s11042-015-2550-4 +00eccc565b64f34ad53bf67dfaf44ffa3645adff,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618328 +ddfae3a96bd341109d75cedeaebb5ed2362b903f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6837429 +1277b1b8b609a18b94e4907d76a117c9783a5373,http://doi.ieeecomputersociety.org/10.1109/ASONAM.2016.7752438 +dcdece0d0ee382e2f388dcd7f5bd9721bb7354d6,https://doi.org/10.1109/TCYB.2014.2311033 +45b9b7fe3850ef83d39d52f6edcc0c24fcc0bc73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888593 +ecc4be938f0e61a9c6b5111e0a99013f2edc54b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771439 +3b8c830b200f1df8ef705de37cbfe83945a3d307,https://doi.org/10.1007/s00138-017-0887-6 +48db8bf18e2f6f19e07e88384be855c8b7ea0ead,http://doi.acm.org/10.1145/2964284.2967225 +87552622efd0e85c2a71d4d2590e53d45f021dbf,https://doi.org/10.1109/ICIP.2016.7532435 +7a6e3ed956f71b20c41fbec008b1fa8dacad31a6,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163117 +113b06e70b7eead8ae7450bafe9c91656705024c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373832 +9e2ab407ff36f3b793d78d9118ea25622f4b7434,http://doi.org/10.1007/s11042-018-5679-0 +d0b67ec62086b55f00dc461ab58dc87b85388b2b,https://doi.org/10.1109/ICIP.2014.7026206 +78e1798c3077f4f8a4df04ca35cd73f82e9a38f3,http://ieeexplore.ieee.org/document/6460640/ +95e7cf27a8ee62b63ed9d1ecb02a7016e9a680a6,https://doi.org/10.1007/s11063-013-9322-9 +aca728cab26b95fbe04ec230b389878656d8af5b,http://doi.org/10.1007/978-981-10-8258-0 +2fd007088a75916d0bf50c493d94f950bf55c5e6,https://doi.org/10.1007/978-981-10-7302-1_1 +ebc3d7f50231cdb18a8107433ae9adc7bd94b97a,http://doi.org/10.1111/cgf.13218 +9eb13f8e8d948146bfbae1260e505ba209c7fdc1,https://doi.org/10.1109/AFGR.2008.4813404 +85785ae222c6a9e01830d73a120cdac75d0b838a,https://doi.org/10.1007/978-3-319-11782-9 +2e7e1ee7e3ee1445939480efd615e8828b9838f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5643167 +0c6a18b0cee01038eb1f9373c369835b236373ae,https://doi.org/10.1007/s11042-017-4359-9 +539f55c0e2501c1d86791c8b54b225d9b3187b9c,https://doi.org/10.1109/TIP.2017.2738560 +4ee94572ae1d9c090fe81baa7236c7efbe1ca5b4,https://doi.org/10.1109/DICTA.2017.8227494 +4268ae436db79c4eee8bc06e9475caff3ff70d57,http://doi.ieeecomputersociety.org/10.1109/FG.2017.146 +11f8d0a54e55c5e6537eef431cd548fa292ef90b,https://doi.org/10.1016/j.neucom.2017.05.042 +9f62ac43a1086c22b9a3d9f192c975d1a5a4b31f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4426825 +52e270ca8f5b53eabfe00a21850a17b5cc10f6d5,https://doi.org/10.1109/ROBIO.2013.6739643 +6fdf2f4f7ae589af6016305a17d460617d9ef345,https://doi.org/10.1109/ICIP.2015.7350767 +5e8de234b20f98f467581f6666f1ed90fd2a81be,http://doi.acm.org/10.1145/2647868.2655042 +3c7825dcf5a027bd07eb0fe4cce23910b89cf050,http://doi.acm.org/10.1145/2987378 +d9218c2bbc7449dbccac351f55675efd810535db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5699141 +cb992fe67f0d4025e876161bfd2dda467eaec741,https://doi.org/10.1109/IPTA.2015.7367144 +1b29f23f3517ac5bbe9bf5e80cda741b61bb9b12,https://doi.org/10.1016/j.patcog.2017.01.007 +988849863c3a45bcedacf8bd5beae3cc9210ce28,http://doi.ieeecomputersociety.org/10.1109/TPDS.2016.2539164 +113cd9e5a4081ce5a0585107951a0d36456ce7a8,https://doi.org/10.1109/ICSMC.2006.384939 +947ee3452e4f3d657b16325c6b959f8b8768efad,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952677 +07a31bd7a0bd7118f8ac0bc735feef90e304fb08,http://doi.org/10.1007/s11042-015-3120-5 +61b22b1016bf13aca8d2e57c4e5e004d423f4865,https://doi.org/10.1109/TCYB.2016.2526630 +b5fdd7778503f27c9d9bf77fab193b475fab6076,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373891 +609c35a6fa80af8b2e4ce46b1b16ec36578fd07f,https://doi.org/10.1155/2014/950349 +6345c0062885b82ccb760c738a9ab7fdce8cd577,https://doi.org/10.1109/EMBC.2016.7590729 +bc66685acc64fa3c425c0ee6c443d3fa87db7364,https://doi.org/10.1109/TMM.2013.2279658 +d8c9bad8d07ae4196027dfb8343b9d9aefb130ff,https://doi.org/10.1007/s00138-017-0848-0 +ad4d1ecf5c5473c050e11f6876ce148de1c8920a,https://doi.org/10.1109/IJCNN.2017.7965886 +c535d4d61aa0f1d8aadb4082bdcc19f4cbdf0eaf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237344 +5fce9d893a40c4e0f2ae335b2e68bfd02f1cb2c6,https://doi.org/10.1109/ICTAI.2012.40 +36b13627ee8a5a8cd04645213aabfa917bbd32f5,https://doi.org/10.1109/TCSVT.2016.2602812 +7c13fa0c742123a6a927771ce67da270492b588c,http://doi.acm.org/10.1145/3152114 +d8526863f35b29cbf8ac2ae756eaae0d2930ffb1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265439 +59b83666c1031c3f509f063b9963c7ad9781ca23,http://dl.acm.org/citation.cfm?id=2830590 +e5fbaeddbf98c667ec7c5575bda2158a36b55409,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.25 +10df1d4b278da991848fb71b572f687bd189c10e,https://doi.org/10.1109/ICPR.2016.7899739 +0874734e2af06883599ed449532a015738a1e779,https://doi.org/10.1007/s10115-013-0702-2 +09138ad5ad1aeef381f825481d1b4f6b345c438c,https://doi.org/10.1109/IIH-MSP.2012.41 +c631a31be2c793d398175ceef7daff1848bb6408,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466318 +78cec49ca0acd3b961021bc27d5cf78cbbbafc7e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995556 +4014e8c1a1b49ad2b9b2c45c328ec9f1fd56f676,https://doi.org/10.1109/IJCNN.2017.7966191 +5375a3344017d9502ebb4170325435de3da1fa16,https://doi.org/10.1007/978-3-642-37444-9 +92de9a54515f4ac8cc8e4e6b0dfab20e5e6bb09d,https://doi.org/10.1109/ICIP.2016.7533062 +1a81c722727299e45af289d905d7dcf157174248,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995466 +65475ce4430fb524675ebab6bcb570dfa07e0041,https://doi.org/10.1109/ISR.2013.6695696 +cefaad8241bceb24827a71bf7c2556e458e57faa,https://doi.org/10.1109/TIP.2013.2264676 +18855be5e7a60269c0652e9567484ce5b9617caa,http://doi.org/10.1007/s11042-017-4579-z +8f713e3c5b6b166c213e00a3873f750fb5939c9a,https://doi.org/10.1109/EUSIPCO.2015.7362563 +ff8db3810f927506f3aa594d66d5e8658f3cf4d5,http://doi.acm.org/10.1145/3078971.3079026 +a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265434 +39d0de660e2116f32088ce07c3376759d0fdaff5,https://doi.org/10.1109/ICPR.2016.7900043 +34c062e2b8a3f6421b9f4ff22f115a36d4aba823,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7872382 +de878384f00b6ce1caa66ac01735fb4b63ad0279,https://doi.org/10.1049/iet-ipr.2014.0670 +f888c165f45febf3d17b8604a99a2f684d689cbc,http://doi.ieeecomputersociety.org/10.1109/CIT.2004.1357196 +73d53a7c27716ae9a6d3484e78883545e53117ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8371978 +35d272877b178aa97c678e3fcbb619ff512af4c2,https://doi.org/10.1109/SMC.2017.8122743 +88c21e06ed44da518a7e346fce416efedc771704,https://doi.org/10.1109/ICIP.2015.7351455 +bc6a7390135bf127b93b90a21b1fdebbfb56ad30,https://doi.org/10.1109/TIFS.2017.2766039 +e9d77a85bc2fa672cc1bd10258c896c8d89b41e8,https://doi.org/10.1109/ICTAI.2012.25 +85ec86f8320ba2ed8b3da04d1c291ce88b8969c0,http://dl.acm.org/citation.cfm?id=3264947 +96fbadc5fa1393d59ce0b8fd3d71aebc1fe35b40,https://doi.org/10.1109/ICIP.2016.7532959 +ebeb0546efeab2be404c41a94f586c9107952bc3,http://doi.acm.org/10.1145/2733373.2806290 +4da4e58072c15904d4ce31076061ebd3ab1cdcd5,http://doi.org/10.1007/s00371-018-1477-y +9b4d2cd2e5edbf5c8efddbdcce1db9a02a853534,https://doi.org/10.1016/j.neucom.2016.02.063 +8b4124bb68e5b3e6b8b77888beae7350dc594a40,https://doi.org/10.1109/ICSMC.2005.1571395 +04c07ecaf5e962ac847059ece3ae7b6962b4e5c4,http://doi.acm.org/10.1145/2993148.2997631 +8aff9c8a0e17be91f55328e5be5e94aea5227a35,https://doi.org/10.1109/TNNLS.2012.2191620 +eb240521d008d582af37f0497f12c51f4bab16c8,https://doi.org/10.1023/A:1012365806338 +9b6d9f0923e1d42c86a1154897b1a9bd7ba6716c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7114333 +f180cb7111e9a6ba7cfe0b251c0c35daaef4f517,https://doi.org/10.1109/TIP.2015.2417502 +6486b36c6f7fd7675257d26e896223a02a1881d9,https://doi.org/10.1109/THMS.2014.2376874 +0d9815f62498db21f06ee0a9cc8b166acc93888e,https://doi.org/10.1016/j.neucom.2007.12.018 +b85c198ce09ffc4037582a544c7ffb6ebaeff198,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100113 +e060e32f8ad98f10277b582393df50ac17f2836c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099600 +c59b62864a6d86eead075c88137a87070a984550,https://doi.org/10.1109/IVCNZ.2015.7761546 +1b9976fea3c1cf13f0a102a884f027d9d80a14b3,https://doi.org/10.1109/ROMAN.2014.6926354 +1902288256839539aeb5feb3e1699b963a15aa1a,https://doi.org/10.1109/IJCNN.2016.7727435 +c270aff2b066ee354b4fe7e958a40a37f7bfca45,https://doi.org/10.1109/WCSP.2017.8170910 +49358915ae259271238c7690694e6a887b16f7ed,http://doi.org/10.1007/BF02884429 +95b5296f7ec70455b0cf1748cddeaa099284bfed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443886 +dc84d3f29c52e6d296b5d457962c02074aa75d0f,https://doi.org/10.1109/TIP.2016.2580939 +047d3cb2a6a9628b28cac077b97d95b04ca9044c,https://doi.org/10.1109/FG.2011.5771332 +387b54cf6c186c12d83f95df6bd458c5eb1254ee,https://doi.org/10.1109/VCIP.2017.8305123 +6f0caff7c6de636486ff4ae913953f2a6078a0ab,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583081 +2c06781ba75d51f5246d65d1acf66ab182e9bde6,https://doi.org/10.1016/j.imavis.2016.11.002 +1890470d07a090e7b762091c7b9670b5c2e1c348,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.20 +cdcfc75f54405c77478ab776eb407c598075d9f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410829 +e3d76f1920c5bf4a60129516abb4a2d8683e48ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907 +c362116a358320e71fb6bc8baa559142677622d2,http://doi.org/10.1016/j.patcog.2011.07.009 +b856d8d6bff745bb1b4beb67e4b821fc20073840,https://doi.org/10.1109/ICMLC.2016.7872935 +29322b9a3744afaa5fc986b805d9edb6ff5ea9fe,https://doi.org/10.1109/TNNLS.2011.2178037 +ccb54fc5f263a8bc2a8373839cb6855f528f10d3,http://doi.org/10.1016/j.patcog.2015.11.008 +e52f57a7de675d14aed28e5d0f2f3c5a01715337,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319987 +5d9f468a2841ea2f27bbe3ef2c6fe531d444be68,https://doi.org/10.1109/GlobalSIP.2017.8309167 +53873fe7bbd5a2d171e2b1babc9cacaad6cabe45,https://doi.org/10.1109/TCYB.2015.2417211 +c553f0334fcadf43607925733685adef81fbe406,https://doi.org/10.1109/ICSIPA.2017.8120636 +b3ad7bc128b77d9254aa38c5e1ead7fa10b07d29,http://dl.acm.org/citation.cfm?id=3206041 +559645d2447004355c83737a19c9a811b45780f1,https://doi.org/10.1109/ICB.2015.7139114 +b6620027b441131a18f383d544779521b119c1aa,http://doi.org/10.1016/j.patcog.2013.04.013 +159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,https://doi.org/10.1109/TIP.2017.2694226 +2df4d0c06f4f68060cecbbb8e2088d9c6b20d04f,https://doi.org/10.1109/ICIP.2014.7026056 +ad77056780328bdcc6b7a21bce4ddd49c49e2013,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398021 +b63b6ed78b39166d87d4c56f8890873aa65976a2,https://doi.org/10.1109/ICRA.2011.5979953 +26973cf1552250f402c82e9a4445f03fe6757b58,http://doi.acm.org/10.1145/3126686.3130239 +5df17c81c266cf2ebb0778e48e825905e161a8d9,https://doi.org/10.1109/TMM.2016.2520091 +660c99ac408b535bb0468ab3708d0d1d5db30180,http://doi.org/10.1007/s11042-015-3083-6 +784a83437b3dba49c0d7ccc10ac40497b84661a5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100224 +7831ab4f8c622d91974579c1ff749dadc170c73c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6712699 +3ce37af3ac0ed2eba08267a3605730b2e0433da5,https://doi.org/10.1109/TIP.2016.2609811 +fe556c18b7ab65ceb57e1dd054a2ca21cefe153c,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.145 +2f43b614607163abf41dfe5d17ef6749a1b61304,https://doi.org/10.1109/TIFS.2014.2361479 +dd0086da7c4efe61abb70dd012538f5deb9a8d16,http://doi.org/10.1007/s11704-016-5024-6 +df7af280771a6c8302b75ed0a14ffe7854cca679,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293 +29a5d38390857e234c111f8bb787724c08f39110,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813387 +4f3b652c75b1d7cf4997e0baaef2067b61e3a79b,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552910 +59b6ff409ae6f57525faff4b369af85c37a8dd80,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.28 +7c457c9a658327af6f6490729b4cab1239c22005,https://doi.org/10.1109/ACCESS.2017.2672829 +56fa0872ed73f7acfbfe83677fecb2dbc6eaa2fe,https://doi.org/10.1007/s11554-007-0031-3 +a03448488950ee5bf50e9e1d744129fbba066c50,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367180 +fcd3d557863e71dd5ce8bcf918adbe22ec59e62f,http://doi.acm.org/10.1145/2502081.2502148 +6c28b3550f57262889fe101e5d027912eb39564e,https://doi.org/10.1109/LSP.2014.2338911 +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423530 +b8f64a94f536b46ef34a0223272e02f9be785ef9,https://doi.org/10.1109/EMBC.2012.6346590 +31a36014354ee7c89aa6d94e656db77922b180a5,http://doi.acm.org/10.1145/2304496.2304509 +c2474202d56bb80663e7bece5924245978425fc1,https://doi.org/10.1109/ICIP.2016.7532771 +ef3a0b454370991a9c18ac7bfd228cf15ad53da0,https://doi.org/10.1109/ICNC.2010.5582886 +e908ce44fa94bb7ecf2a8b70cb5ec0b1a00b311a,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019548 +cc9d068cf6c4a30da82fd6350a348467cb5086d4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411204 +07dc9f3b34284cc915dea7575f40ef0c04338126,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2537337 +6e7ffd67329ca6027357a133437505bc56044e65,https://doi.org/10.1109/IJCNN.2014.6889754 +ce75deb5c645eeb08254e9a7962c74cab1e4c480,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373839 +94806f0967931d376d1729c29702f3d3bb70167c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780581 +ea2b3efd4d317ebaffaf7dc8c62db5ff1eab0e1b,https://doi.org/10.1109/FRUCT-ISPIT.2016.7561522 +87806c51dc8c1077953178367dcf5c75c553ce34,https://doi.org/10.1109/ICMLA.2015.146 +20eabf10e9591443de95b726d90cda8efa7e53bb,https://doi.org/10.1007/s11390-017-1740-0 +d9deafd9d9e60657a7f34df5f494edff546c4fb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100124 +2b0d14dbd079b3d78631117b1304d6c1579e1940,https://doi.org/10.1007/s11063-016-9524-z +5551a03353f571b552125dd4ee57301b69a10c46,https://doi.org/10.1016/j.neucom.2015.09.083 +268c4bb54902433bf00d11391178a162e5d674c9,https://doi.org/10.1109/CVPRW.2010.5543261 +e27b2cabdfdd6bf3ffb3ebce1b4c55adb1e80c8f,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.225 +f88ce52c5042f9f200405f58dbe94b4e82cf0d34,https://doi.org/10.1109/TNNLS.2015.2508025 +a6793de9a01afe47ffbb516cc32f66625f313231,http://doi.acm.org/10.1145/2939672.2939853 +ffc81ced9ee8223ab0adb18817321cbee99606e6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157 +3a9fbd05aaab081189a8eea6f23ed730fa6db03c,https://doi.org/10.1109/ICASSP.2013.6638305 +2facf3e85240042a02f289a0d40fee376c478d0f,https://doi.org/10.1109/BTAS.2010.5634544 +b82f89d6ef94d26bf4fec4d49437346b727c3bd4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6894202 +195b61470720c7faa523e10e68d0c8d8f27d7c7a,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995618 +134cea33099cafc6615e57437e29d7c3906a2b48,http://doi.ieeecomputersociety.org/10.1109/ICETET.2010.80 +18dd3867d68187519097c84b7be1da71771d01a3,http://doi.acm.org/10.1145/2448556.2448563 +52af7625f7e7a0bd9f9d8eeafd631c4d431e67e7,http://doi.org/10.1007/s00371-018-1585-8 +0ba5369c5e1e87ea172089d84a5610435c73de00,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347111 +2e5d173ee0d1d7f88c335ade6a7b879b2d987ab4,https://doi.org/10.1109/ICASSP.2015.7178367 +18010284894ed0edcca74e5bf768ee2e15ef7841,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780493 +3288e16c62a215254e2ed7c39675482b356c3bef,https://doi.org/10.1109/SACI.2016.7507341 +cbe1df2213a88eafc5dcaf55264f2523fe3ec981,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.34 +322488c4000c686e9bfb7514ccdeacae33e53358,http://doi.acm.org/10.1145/2671188.2749301 +b1891010a0722117c57e98809e1f2b26cd8e9ee3,http://doi.acm.org/10.1145/2330784.2331026 +5d2e5833ca713f95adcf4267148ac2ccf2318539,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6121744 +ae7604b1840753e9c2e1ab7a97e02f91a9d81860,https://doi.org/10.1007/s10586-016-0535-3 +81d232e1f432db7de67baf4f30f240c62d1a9055,https://doi.org/10.1109/ICIP.2017.8296405 +25960f0a2ed38a89fa8076a448ca538de2f1e183,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411220 +c6382de52636705be5898017f2f8ed7c70d7ae96,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089 +ada063ce9a1ff230791c48b6afa29c401a9007f1,http://doi.org/10.1007/978-3-319-97909-0 +d116bac3b6ad77084c12bea557d42ed4c9d78433,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471886 +0e37d70794d5ccfef8b4cc22b4203245f33eec6e,https://doi.org/10.1109/ICIP.2010.5653034 +76640cb1a683a479ce2e0d6681d821ff39126d63,https://doi.org/10.1109/IJCNN.2011.6033408 +dab795b562c7cc270c9099b925d685bea0abe82a,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2382599 +5f0d4657eab4152a1785ee0a25b5b499cd1163ec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853687 +e26a7e343fe109e2b52d1eeea5b02dae836f3502,https://doi.org/10.1109/ACCESS.2017.2676238 +ffea4184a0b24807b5f4ed87f9a985c2a27027d9,https://doi.org/10.1007/s00530-012-0297-6 +8ab465c1a131ee4bee6ac0a0b19dfe68f5dcdcc4,http://doi.ieeecomputersociety.org/10.1109/CSSE.2008.575 +fe5d6c65e51386f4d36f7434fe6fcd9494fe9361,https://doi.org/10.1109/ACCESS.2017.2730281 +939f9fa056f8be445da19b43da64bd2405851a43,https://doi.org/10.1109/ICSMC.2007.4413713 +ed023651e31cdbcaa5ef2ee1d71ddbc2906c2f76,https://doi.org/10.1109/LSP.2010.2093600 +bdd203bcd3c41c336c5635fb026a78279d75b4be,https://doi.org/10.1109/ICPR.2016.7899761 +b50edfea790f86373407a964b4255bf8e436d377,http://doi.acm.org/10.1145/3136755.3143008 +e82a0976db908e6f074b926f58223ac685533c65,https://doi.org/10.1007/s11042-015-2848-2 +fadbb3a447d697d52771e237173b80782caaa936,https://doi.org/10.1007/s00530-012-0290-0 +b784bb1d2b2720dac8d4b92851a8d6360c35b0b2,https://doi.org/10.1109/ICDM.2016.0041 +8c50869b745fc094a4fb1b27861934c3c14d7199,https://doi.org/10.1109/EMBC.2016.7591826 +1a0e1ba4408d12f8a28049da0ff8cad4f91690d5,https://doi.org/10.1007/s12559-016-9445-1 +96d34c1a749e74af0050004162d9dc5132098a79,https://doi.org/10.1109/TNN.2005.844909 +d62d82c312c40437bc4c1c91caedac2ba5beb292,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461322 +261a80216dda39b127d2b7497c068ec7e0fdf183,https://doi.org/10.1109/TCSVT.2013.2265571 +f4003cbbff3b3d008aa64c76fed163c10d9c68bd,https://doi.org/10.1016/j.neucom.2016.08.055 +cbc2de9b919bc63590b6ee2dfd9dda134af45286,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477561 +d79530e1745b33f3b771d0b38d090b40afc04191,https://doi.org/10.1007/s11042-015-2485-9 +fa32b29e627086d4302db4d30c07a9d11dcd6b84,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354123 +cce332405ce9cd9dccc45efac26d1d614eaa982d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597533 +09f9409430bba2afb84aa8214dbbb43bfd4cf056,https://doi.org/10.1109/TNN.2006.883012 +e084b0e477ee07d78c32c3696ea22c94f5fdfbec,https://doi.org/10.1109/ICIP.2013.6738565 +5b5b9c6c67855ede21a60c834aea5379df7d51b7,http://hdl.handle.net/10044/1/45280 +fcf393a90190e376b617cc02e4a473106684d066,http://doi.org/10.1007/s10044-015-0507-x +1cb0c11620bde2734c1a428c789158ffff0d6c7b,http://doi.ieeecomputersociety.org/10.1109/BigMM.2016.62 +440b94b1624ca516b07e72ea8b3488072adc5e26,https://doi.org/10.1109/ITSC.2015.153 +565f7c767e6b150ebda491e04e6b1de759fda2d4,https://doi.org/10.1016/j.patcog.2016.11.023 +6ec275755f8776b620d0a4550be0e65caf2bc87a,https://doi.org/10.1109/IS.2016.7737496 +2983cf95743be82671a71528004036bd19172712,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7915734 +88399c7fa890f1252178cd5e4979971509bd904f,https://doi.org/10.1142/S0219878906000915 +997b9ffe2f752ba84a66730cfd320d040e7ba2e2,http://dl.acm.org/citation.cfm?id=2967199 +57b7325b8027745b130490c8f736445c407f4c4c,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.27 +ab80582807506c0f840bd1ba03a8b84f8ac72f79,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462326 +b1efefcc9a5d30be90776571a6cc0071f3679753,https://doi.org/10.1109/ROBIO.2016.7866471 +3cd380bd0f3b164b44c49e3b01f6ac9798b6b6f9,http://doi.org/10.1007/s00371-016-1323-z +1da1299088a6bf28167c58bbd46ca247de41eb3c,https://doi.org/10.1109/ICASSP.2002.5745055 +982fcead58be419e4f34df6e806204674a4bc579,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613012 +b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,http://doi.acm.org/10.1145/2733373.2807962 +57ba4b6de23a6fc9d45ff052ed2563e5de00b968,https://doi.org/10.1109/ICIP.2017.8296993 +bec0c33d330385d73a5b6a05ad642d6954a6d632,http://doi.org/10.1007/s11042-017-4491-6 +9ab963e473829739475b9e47514f454ab467a5af,http://doi.ieeecomputersociety.org/10.1109/FG.2017.33 +187f3ee3bc50a1f2471edc80d707e4fa1cac5b0b,https://doi.org/10.1109/LSP.2015.2437883 +9f3c9e41f46df9c94d714b1f080dafad6b4de1de,https://doi.org/10.1109/ICT.2017.7998260 +aad4c94fd55d33a3f3a5377bbe441c9474cdbd1e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7777820 +fd5376fcb09001a3acccc03159e8ff5801129683,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373899 +cba090a5bfae7dd8a60a973259f0870ed68c4dd3,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.22 +d9c0310203179d5328c4f1475fa4d68c5f0c7324,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.11 +b5ae8b69677fb962421fe7072f1e842e71f3bea5,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273641 +30044dd951133187cb8b57e53a22cf9306fa7612,https://doi.org/10.1109/WACV.2017.52 +4ed6c7740ba93d75345397ef043f35c0562fb0fd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117516 +0b58b3a5f153f653c138257426bf8d572ae35a67,https://doi.org/10.1109/SMC.2016.7844481 +5e87f5076952cd442718d6b4addce905bae1a1a4,https://doi.org/10.1109/ICMLC.2016.7872938 +f4465454811acb2021a46d84d94fc88e2dda00a6,https://doi.org/10.1007/s11042-007-0184-x +568ced900cbf7437c9e87b60a17e16f0c1e0c442,https://doi.org/10.1109/CCECE.2012.6335026 +2ee1ba1c3d4797fdae46d3d5f01db7ef5903dadd,https://doi.org/10.1016/j.neucom.2015.07.031 +36bb93c4f381adca267191811abb8cc7812363f9,https://doi.org/10.1109/CISP-BMEI.2017.8301987 +8c4042191431e9eb43f00b0f14c23765ab9c6688,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532956 +fe50efe9e282c63941ec23eb9b8c7510b6283228,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7314574 +dbcfefa92edab8d1ffe8bc1cc66ad80fb13d2b6a,https://doi.org/10.1007/s00521-010-0519-9 +dc107e7322f7059430b4ef4991507cb18bcc5d95,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995338 +47109343e502a4097cb7efee54bc5fbb14598c05,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.182 +1dae2f492d3ca2351349a73df6ee8a99b05ffc30,https://doi.org/10.1137/110842570 +0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,https://doi.org/10.1109/CIBIM.2014.7015437 +a180dc9766490416246e7fbafadca14a3c500a46,https://doi.org/10.1016/S0167-8655(03)00112-0 +23ecc496eaa238ac884e6bae5763f6138a9c90a3,https://doi.org/10.1109/ICB.2016.7550085 +c84991fe3bf0635e326a05e34b11ccaf74d233dc,https://doi.org/10.1016/j.neucom.2016.08.069 +cceec87bad847b9b87178bde8ce5cce6bf1a8e99,https://doi.org/10.1109/RIISS.2014.7009163 +834736698f2cc5c221c22369abe95515243a9fc3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249 +8fb2ec3bbd862f680be05ef348b595e142463524,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699880 +356a144d2aa5cc5e74d178dae3963003871aa8a1,https://doi.org/10.1007/978-3-319-27671-7_41 +9077365c9486e54e251dd0b6f6edaeda30ae52b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373910 +a6ab23f67d85da26592055c0eac4c34f05c26519,http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.15 +344c0917c8d9e13c6b3546da8695332f86b57bd3,https://doi.org/10.1109/ICIP.2017.8296715 +bf3bf5400b617fef2825eb987eb496fea99804b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461385 +7d7b036ed01765c9473d695f029142128d442aaa,https://doi.org/10.1109/TIP.2018.2791180 +c291f0e29871c8b9509d1a2876c3e305839ad4ac,https://doi.org/10.1109/ICARCV.2014.7064432 +8e272978dd1500ce6e4c2ef5e91d4332078ff757,https://doi.org/10.1007/11848035_5 +15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,https://doi.org/10.1109/TMM.2011.2167317 +afdbbc5c84eb4e535c7c478b5227c0138b57af64,http://doi.ieeecomputersociety.org/10.1109/TMC.2016.2593919 +854b1f0581f5d3340f15eb79452363cbf38c04c8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648 +cb8382f43ce073322eba82809f02d3084dad7969,http://dl.acm.org/citation.cfm?id=3232664 +26ebe98753acec806b7281d085110c06d9cd1e16,http://doi.ieeecomputersociety.org/10.1109/FG.2017.22 +30cace74a7d51e9a928287e25bcefb968c49f331,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344634 +373c4d6af0ee233f0d669c3955c3a3ef2a009638,https://doi.org/10.1109/APSIPA.2015.7415420 +647b2e162e9c476728172f62463a8547d245cde3,https://doi.org/10.1109/ICPR.2016.7899898 +d4353952a408e1eae8c27a45cc358976d38dde00,https://doi.org/10.1007/s00138-014-0594-5 +6d70344ae6f6108144a15e9debc7b0be4e3335f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8390318 +761304bbd259a9e419a2518193e1ff1face9fd2d,https://doi.org/10.1007/978-3-642-33885-4_57 +bd9e0b6a90b51cc19b65f51dacd08ce1a7ccaac5,https://doi.org/10.1109/VSMM.2014.7136653 +7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373833 +32f62da99ec9f58dd93e3be667612abcf00df16a,http://doi.org/10.1007/s11042-017-5583-z +24b5ea4e262e22768813e7b6581f60e4ab9a8de7,https://doi.org/10.1109/TIFS.2018.2807791 +f28ef0a61a45a8b9cd03aa0ca81863e1d54a31d1,https://doi.org/10.1109/VCIP.2016.7805483 +b2add9fad0bcf7bf0660f99f389672cdf7cc6a70,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226 +cbe021d840f9fc1cb191cba79d3f7e3bbcda78d3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406479 +e96ce25d11296fce4e2ecc2da03bd207dc118724,https://doi.org/10.1007/s00138-007-0095-x +b1534888673e6119f324082246016d28eba249aa,https://doi.org/10.1109/MMSP.2017.8122229 +013d0acff1e5410fd9f6e15520d16f4ea02f03f6,https://doi.org/10.1109/TMM.2015.2477681 +dc5d04d34b278b944097b8925a9147773bbb80cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354149 +9b8830655d4a5a837e3ffe835d14d6d71932a4f2,https://doi.org/10.1109/TSMCB.2011.2169452 +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5,http://doi.org/10.1007/s11042-017-4572-6 +d8288322f32ee4501cef5a9b667e5bb79ebd7018,https://doi.org/10.1016/j.patcog.2011.12.018 +36219a3196aac2bd149bc786f083957a6e6da125,https://doi.org/10.1016/j.jvcir.2015.12.003 +0bf1f999a16461a730dd80e3a187d0675c216292,http://doi.ieeecomputersociety.org/10.1109/CW.2017.26 +58eb9174211d58af76023ce33ee05769de57236c,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2636827 +cf54e9776d799aa183d7466094525251d66389a4,https://doi.org/10.1109/ICCE-Berlin.2017.8210589 +9888edfb6276887eb56a6da7fe561e508e72a517,http://dl.acm.org/citation.cfm?id=3243904 +633c851ebf625ad7abdda2324e9de093cf623141,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727 +556b05ab6eff48d32ffbd04f9008b9a5c78a4ad7,http://dl.acm.org/citation.cfm?id=2926713 +c36f3cabeddce0263c944e9fe4afd510b5bae816,https://doi.org/10.1109/DICTA.2017.8227399 +9fc993aeb0a007ccfaca369a9a8c0ccf7697261d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7936534 +9f428db0d3cf26b9b929dd333a0445bcc7514cdf,https://doi.org/10.1016/j.cviu.2010.11.015 +9efdb73c6833df57732b727c6aeac510cadb53fe,http://dl.acm.org/citation.cfm?id=3184071 +20a0f71d2c667f3c69df18f097f2b5678ac7d214,http://doi.org/10.1007/s10055-018-0357-0 +e03f69bad7e6537794a50a99da807c9df4ff5186,http://doi.acm.org/10.1145/2708463.2709060 +e57e1dce81e888eb07054923602e35bfb5ef3eb8,https://doi.org/10.1109/IROS.2012.6385544 +06518858bd99cddf9bc9200fac5311fc29ac33b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392777 +e98551055bdcf8e25e07f4ffdbf39d0a4a57bffc,https://doi.org/10.1109/ICPR.2014.440 +dd8a851f2a0c63bb97e33aaff1841695f601c863,https://doi.org/10.1109/BTAS.2014.6996260 +778c1e95b6ea4ccf89067b83364036ab08797256,https://doi.org/10.1109/TIFS.2012.2224866 +beae35eb5b2c7f63dfa9115f07b5ba0319709951,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163096 +bd8d579715d58405dfd5a77f32920aafe018fce4,http://doi.org/10.1016/j.imavis.2008.08.005 +8da32ff9e3759dc236878ac240728b344555e4e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014820 +41c56c69b20b3f0b6c8a625009fc0a4d317e047a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5720366 +31697737707d7f661cbc6785b76cf9a79fee3ccd,http://doi.ieeecomputersociety.org/10.1109/FG.2017.100 +8fee7b38358815e443f8316fa18768d76dba12e3,http://doi.acm.org/10.1145/2063576.2063676 +4ffd744a5f079c2d65f36e3ee0979b978f522a13,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.15 +c7cd490e43ee4ff81e8f86f790063695369c2830,https://doi.org/10.1109/VCIP.2016.7805472 +b05943b05ef45e8ea8278e8f0870f23db5c83b23,https://doi.org/10.1109/ROBIO.2010.5723349 +8db609d84190b905913eb2f17f4e558c6e982208,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.182 +aab9a617be6e5507beb457b1e6c2e5b046f9cff0,https://doi.org/10.1109/ICIP.2008.4712153 +1f59e0818e7b16c0d39dd08eb90533ea0ae0be5e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8385089 +2e3b981b9f3751fc5873f77ad2aa7789c3e1d1d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397046 +4b94f531c203743a9f7f1e9dd009cdbee22ea197,https://doi.org/10.1109/ICSMC.2005.1571393 +cdf0dc4e06d56259f6c621741b1ada5c88963c6d,https://doi.org/10.1109/ICIP.2014.7025061 +235bebe7d0db37e6727dfa1246663be34027d96b,https://doi.org/10.1109/NAFIPS.2016.7851625 +3e03d19b950edadc74ca047dec86227282eccf71,https://doi.org/10.1109/ACCESS.2017.2777003 +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734,http://doi.org/10.1007/s11042-018-5945-1 +1025c4922491745534d5d4e8c6e74ba2dc57b138,http://doi.org/10.1007/s11263-017-1014-x +d1079444ceddb1de316983f371ecd1db7a0c2f38,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460478 +ad8bd7016132a2f98ff1f41dac695285e71cc4b1,https://doi.org/10.1109/CISP-BMEI.2017.8301964 +398e0771e64cab6ca5d21754e32dce63f9e3c223,http://dl.acm.org/citation.cfm?id=3206028 +af29ad70ab148c83e1faa8b3098396bc1cd87790,http://doi.org/10.1007/s40012-016-0149-1 +0a5b2e642683ff20b6f0cee16a32a68ba0099908,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2012.6239342 +a1081cb856faae25df14e25045cd682db8028141,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462122 +126204b377029feb500e9b081136e7a9010e3b6b,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2010.50 +b972683d702a65d3ee7a25bc931a5890d1072b6b,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2669035 +892400017e5c93611dc8361e7749135520d66f25,https://doi.org/10.1109/ICARCV.2010.5707394 +55a7286f014cc6b51a3f50b1e6bc8acc8166f231,http://arxiv.org/abs/1603.02814 +16fc82d44188eb49a151bd5836a29911b3bfabcb,https://doi.org/10.1007/978-981-10-7302-1_50 +4344ba6e33faaa616d01248368e66799548ca48b,https://doi.org/10.1007/s10044-015-0474-2 +902cc7dd4ecfb2b6750905ef08bceeed24e1eeeb,https://doi.org/10.1016/j.patcog.2016.03.002 +a9cecfbc47a39fa0158a5f6fd883e0e5ac2aa134,https://doi.org/10.1142/S0218001405004071 +642417f2bb1ff98989e0a0aa855253fed1fffe04,https://doi.org/10.1117/12.2004255 +7a91617ec959acedc5ec8b65e55b9490b76ab871,https://doi.org/10.1109/RAIT.2012.6194481 +6d67a7fd9a4fa99624721f37b077c71dad675805,https://doi.org/10.1007/s12193-015-0202-7 +8576d0031f2b0fe1a0f93dd454e73d48d98a4c63,http://doi.acm.org/10.1145/2522848.2531743 +3266fcd1886e8ad883714e38203e66c0c6487f7b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7533149 +4e1258db62e4762fd8647b250fda9c3567f86eb8,http://doi.ieeecomputersociety.org/10.1109/CRV.2013.17 +83bce0907937f09f5ccde26c361d52fe55fc8979,http://doi.acm.org/10.1145/2993148.2993185 +e14b046a564604508ea8e3369e7e9f612e148511,https://doi.org/10.1007/978-3-642-17829-0_4 +604a281100784b4d5bc1a6db993d423abc5dc8f0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681 +3db6fd6a0e9bb30f2421e84ee5e433683d17d9c1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8402469 +6966d9d30fa9b7c01523425726ab417fd8428790,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619291 +503b6a490c2b24b9d2aaf642a0fdaf797a8cdb99,https://doi.org/10.1109/ACCESS.2017.2733718 +cc70fb1ab585378c79a2ab94776723e597afe379,https://doi.org/10.1109/ICIP.2017.8297067 +6159908dec4bc2c1102f416f8a52a31bf3e666a4,https://doi.org/10.1109/ICIP.2012.6467431 +468bb5344f74842a9a43a7e1a3333ebd394929b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373896 +9d3377313759dfdc1a702b341d8d8e4b1469460c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7342926 +6b742055a664bcbd1c6a85ae6796bd15bc945367,http://doi.org/10.1007/s00138-006-0052-0 +3c09fb7fe1886072670e0c4dd632d052102a3733,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101020 +1f8656e2254e353a91cceb08b33c25643a1b1fb7,https://doi.org/10.1109/LSP.2017.2736542 +77816b9567d5fed1f6085f33e1ddbcc73af2010e,https://doi.org/10.1109/MRA.2012.2201574 +4e581831d24fd90b0b5228b9136e76fa3e8f8279,https://doi.org/10.1109/TIP.2014.2303648 +a59c0cf3d2c5bf144ee0dbc1152b1b5dd7634990,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7350093 +62648f91e38b0e8f69dded13b9858bd3a86bb6ed,http://doi.acm.org/10.1145/2647868.2655016 +ee7e8aec3ebb37e41092e1285e4f81916ce92c18,https://www.sciencedirect.com/science/article/pii/S0197458017301859 +096ffc1ea5493242ba0c113178dab0c096412f81,http://doi.acm.org/10.1145/3123266.3123441 +934efd61b20f5b8b151a2df7cd373f0b387c02b0,https://doi.org/10.5220/0004673003290336 +519f1486f0755ef3c1f05700ea8a05f52f83387b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595846 +90ddf1aabf1c73b5fc45254a2de46e53a0bde857,https://doi.org/10.1109/ROBIO.2015.7418917 +cbf3e848c5d2130dd640d9bd546403b8d78ce0f9,https://doi.org/10.1109/IJCNN.2012.6252385 +27e5b7ae3506a0f7472ee9089cd2472442e71c14,https://doi.org/10.1007/s00521-015-1834-y +ef35c30529df914a6975af62aca1b9428f678e9f,https://doi.org/10.1007/s00138-016-0817-z +12226bca7a891e25b7d1e1a34a089521bba75731,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373861 +d5c66a48bc0a324750db3d295803f47f6060043d,http://doi.ieeecomputersociety.org/10.1109/AVSS.2006.109 +f73174cfcc5c329b63f19fffdd706e1df4cc9e20,http://doi.ieeecomputersociety.org/10.1109/FIT.2015.13 +197efbef17f92e5cb5076961b6cd9f59e88ffd9a,https://doi.org/10.1109/ICMLA.2017.00-59 +fe866887d3c26ee72590c440ed86ffc80e980293,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397011 +70d8bda4aafb0272ac4b93cd43e2448446b8e94d,https://doi.org/10.1109/ICMLC.2010.5580938 +daca9d03c1c951ed518248de7f75ff51e5c272cb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6976977 +bc607bee2002c6c6bf694a15efd0a5d049767237,http://doi.org/10.1007/s11042-017-4364-z +e55f7250f3b8ee722814f8809620a851c31e5b0e,https://doi.org/10.3182/20130902-3-CN-3020.00030 +d0f9143f6f43a39bff47daf8c596681581db72ea,https://doi.org/10.1007/s11042-017-5241-5 +db1a9b8d8ce9a5696a96f8db4206b6f72707730e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961838 +d6791b98353aa113d79f6fb96335aa6c7ea3b759,https://doi.org/10.1109/TNNLS.2017.2648122 +035c8632c1ffbeb75efe16a4ec50c91e20e6e189,http://doi.org/10.1007/s00138-018-0943-x +2bcd9b2b78eb353ea57cf50387083900eae5384a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995329 +bb070c019c0885232f114c7dca970d2afd9cd828,https://doi.org/10.1109/DICTA.2014.7008089 +40c9dce0a4c18829c4100bff5845eb7799b54ca1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5346008 +6c7a42b4f43b3a2f9b250f5803b697857b1444ac,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553718 +aed6af12148b43e4a24ee6e2bc3604ca59bd99a5,https://doi.org/10.1109/TIP.2017.2717505 +f6dabb4d91bf7389f3af219d486d4e67cec18c17,https://doi.org/10.1016/j.compeleceng.2014.08.010 +9c23859ec7313f2e756a3e85575735e0c52249f4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981788 +f79e4ba09402adab54d2efadd1c4bfe4e20c5da5,https://doi.org/10.1109/ICIP.2017.8296364 +fdbc602a749ef070a7ac11c78dc8d468c0b60154,https://doi.org/10.1049/iet-ipr.2015.0519 +6622776d1696e79223f999af51e3086ba075dbd1,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019454 +cd74d606e76ecddee75279679d9770cdc0b49861,https://doi.org/10.1109/TIP.2014.2365725 +ebb3d5c70bedf2287f9b26ac0031004f8f617b97,https://doi.org/10.1109/MSP.2017.2764116 +d0b7d3f9a59034d44e7cd1b434cfd27136a7c029,https://doi.org/10.1109/INCoS.2013.143 +a8e7561ada380f2f50211c67fc45c3b3dea96bdb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401921 +637b31157386efbde61505365c0720545248fbae,https://doi.org/10.1109/BTAS.2017.8272721 +bdf5434648356ce22bdbf81d2951e4bb00228e4d,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.415 +30c93fec078b98453a71f9f21fbc9512ab3e916f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395274 +b472f91390781611d4e197564b0016d9643a5518,http://doi.acm.org/10.1145/2382336.2382345 +287de191c49a3caa38ad7594093045dfba1eb420,https://doi.org/10.23919/MVA.2017.7986829 +f25aa838fb44087668206bf3d556d31ffd75235d,http://doi.acm.org/10.1145/2911996.2912038 +0e454686f83284ced2ffc5740829552a032671a3,https://doi.org/10.1109/IJCNN.2015.7280802 +18e54b74ed1f3c02b7569f53a7d930d72fc329f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7902214 +7813d405450013bbdb0b3a917319d5964a89484a,https://doi.org/10.1109/WACV.2017.62 +83d41f6548bb76241737dcd3fed9e182ee901ff9,http://dl.acm.org/citation.cfm?id=2964328 +1fcb905e4505a781fb0b375eb470f5661e38ae39,http://doi.acm.org/10.1145/3123266.3123450 +34fd227f4fdbc7fe028cc1f7d92cb59204333718,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446331 +4014d74e8f5ea4d76c2c1add81d0c88d6e342478,http://doi.acm.org/10.1145/3136755.3143010 +86fa086d02f424705bbea53943390f009191740a,https://doi.org/10.1109/ICIP.2015.7351651 +dad6b36fd515bda801f3d22a462cc62348f6aad8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117531 +2a4984fb48c175d1e42c6460c5f00963da9f26b6,https://doi.org/10.1109/MIPRO.2015.7160445 +5364e58ba1f4cdfcffb247c2421e8f56a75fad8d,https://doi.org/10.1109/VCIP.2017.8305113 +32c5c65db2af9691f8bb749c953c978959329f8f,https://doi.org/10.1109/ICIP.2015.7351469 +0343f9401b98de36be957a30209fef45dd684270,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163134 +5213549200bccec57232fc3ff788ddf1043af7b3,http://doi.acm.org/10.1145/2601097.2601204 +fa54ab106c7f6dbd3c004cea4ef74ea580cf50bf,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.18 +ec90738b6de83748957ff7c8aeb3150b4c9b68bb,http://doi.org/10.1016/j.patcog.2015.03.011 +86881ce8f80adea201304ca6bb3aa413d94e9dd0,https://doi.org/10.1109/ICIP.2017.8297133 +0e4baf74dfccef7a99c6954bb0968a2e35315c1f,https://doi.org/10.1109/SIU.2012.6204517 +d40c16285d762f7a1c862b8ac05a0fdb24af1202,https://doi.org/10.1109/BESC.2017.8256378 +c18a03568d4b512a0d8380cbb1fbf6bd56d11f05,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8430403 +b86c49c6e3117ea116ec2d8174fa957f83502e89,https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.149 +ce2945e369603fcec1fcdc6e19aac5996325cba9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771366 +ff012c56b9b1de969328dacd13e26b7138ff298b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921 +8185be0689442db83813b49e215bf30870017459,https://doi.org/10.1109/TNNLS.2013.2293418 +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc,http://doi.org/10.1007/978-3-319-16865-4 +fcb97ede372c5bddde7a61924ac2fd29788c82ce,https://doi.org/10.1109/TSMCC.2012.2192727 +64ec02e1056de4b400f9547ce56e69ba8393e2ca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446491 +ada56c9ceef50aa5159f1f8aa45ca2040d1ed15c,https://doi.org/10.1109/TIFS.2017.2680246 +e73f2839fc232c03e9f027c78bc419ee15810fe8,https://doi.org/10.1109/ICIP.2017.8296413 +5810ce61fda464d4de2769bd899e12727bee0382,https://doi.org/10.1109/IJCNN.2016.7727484 +8229f2735a0db0ad41f4d7252129311f06959907,https://doi.org/10.1109/TIP.2011.2106794 +0931bef0a9c8c153184a1f9c286cf4883cbe99b6,https://doi.org/10.1007/s12193-015-0203-6 +809e5884cf26b71dc7abc56ac0bad40fb29c671c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6247842 +6ca6ade6c9acb833790b1b4e7ee8842a04c607f7,http://dl.acm.org/citation.cfm?id=3234805 +7a09e8f65bd85d4c79f0ae90d4e2685869a9894f,https://doi.org/10.1109/TMM.2016.2551698 +da7bbfa905d88834f8929cb69f41a1b683639f4b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199752 +15ef449ac443c494ceeea8a9c425043f4079522e,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477583 +d2598c088b0664c084413796f39697c6f821d56e,https://doi.org/10.1109/VCIP.2016.7805451 +f1da4d705571312b244ebfd2b450692fd875cd1f,https://doi.org/10.1109/TIP.2014.2322446 +e66a6ae542907d6a0ebc45da60a62d3eecf17839,https://doi.org/10.1109/EUVIP.2014.7018366 +77869f274d4be4d4b4c438dbe7dff4baed521bd8,https://doi.org/10.1109/TIP.2016.2551362 +98e098ba9ff98fc58f22fed6d3d8540116284b91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8332532 +49be50efc87c5df7a42905e58b092729ea04c2f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7177489 +c2be82ed0db509087b08423c8cf39ab3c36549c3,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019363 +7c6686fa4d8c990e931f1d16deabf647bf3b1986,http://arxiv.org/abs/1504.07550 +534159e498e9cc61ea10917347637a59af38142d,https://doi.org/10.1016/j.neucom.2016.01.126 +8ad0a88a7583af819af66cf2d9e8adb860cf9c34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539153 +ceba8ca45bad226c401a509e6b8ccbf31361b0c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7129813 +e9331ae2a887c02e0a908ebae2810a681aedee29,https://doi.org/10.1016/j.image.2011.05.003 +9652f154f4ae7807bdaff32d3222cc0c485a6762,https://doi.org/10.1007/s00138-016-0760-z +03e1480f1de2ffbd85655d68aae63a01685c5862,https://doi.org/10.1109/ICPR.2014.771 +6e38011e38a1c893b90a48e8f8eae0e22d2008e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265376 +ae96fc36c89e5c6c3c433c1163c25db1359e13ea,https://doi.org/10.1007/s10489-013-0485-x +f85ccab7173e543f2bfd4c7a81fb14e147695740,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5946910 +51b770e6b2af994ffc8793f59b24a9f619033a3a,https://doi.org/10.1109/ICDSC.2011.6042899 +cd55fb30737625e86454a2861302b96833ed549d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094 +5167e16b53283be5587659ea8eaa3b8ef3fddd33,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813364 +4bf85ef995c684b841d0a5a002d175fadd922ff0,http://dl.acm.org/citation.cfm?id=3199668 +984edce0b961418d81203ec477b9bfa5a8197ba3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369732 +4342a2b63c9c344d78cf153600cd918a5fecad59,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237671 +ae425a2654a1064c2eda29b08a492c8d5aab27a2,https://doi.org/10.23919/MVA.2017.7986845 +aafeb3d76155ec28e8ab6b4d063105d5e04e471d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014781 +03babadaaa7e71d4b65203e27e8957db649155c6,https://doi.org/10.1109/TIP.2017.2725578 +b72eebffe697008048781ab7b768e0c96e52236a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100092 +d2f2b10a8f29165d815e652f8d44955a12d057e6,http://doi.org/10.1007/s10044-015-0475-1 +cc44f1d99b17a049a8186ec04c6a1ecf1906c3c8,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.87 +3a1c40eced07d59a3ea7acda94fa833c493909c1,http://doi.ieeecomputersociety.org/10.1109/FG.2017.111 +ab2c07c9867243fad2d66fa6aeabfb780433f319,http://doi.acm.org/10.1145/2967878.2967887 +ae8240095c9cca2c395f173fece2f46277b94929,https://doi.org/10.1016/j.neucom.2017.06.045 +d5d5cc27ca519d1300e77e3c1a535a089f52f646,http://doi.org/10.1007/s11042-016-3768-5 +88e2efab01e883e037a416c63a03075d66625c26,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265507 +e66b4aa85524f493dafde8c75176ac0afad5b79c,https://doi.org/10.1109/SSCI.2017.8285219 +1e344b99583b782e3eaf152cdfa15f217b781181,http://doi.acm.org/10.1145/2499788.2499789 +973022a1f9e30a624f5e8f7158b5bbb114f4af32,http://doi.acm.org/10.1145/3011077.3011138 +5763b09ebca9a756b4adebf74d6d7de27e80e298,https://doi.org/10.1109/BTAS.2013.6712738 +dcb50e1f439d1f9b14ae85866f4542e51b830a07,https://doi.org/10.1109/FSKD.2012.6234354 +a5acda0e8c0937bfed013e6382da127103e41395,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789672 +02fc9e7283b79183eb3757a9b6ddeb8c91c209bb,http://doi.org/10.1007/s11042-018-6146-7 +ab6886252aea103b3d974462f589b4886ef2735a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4371439 +525da67fb524d46f2afa89478cd482a68be8a42b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354128 +a4bb791b135bdc721c8fcc5bdef612ca654d7377,https://doi.org/10.1109/BTAS.2017.8272703 +008528d5e27919ee95c311266041e4fb1711c254,https://doi.org/10.1007/s13735-015-0092-1 +6c1227659878e867a01888eef472dd96b679adb6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354280 +0b3144cdc9d6d5a1498d6178db20d1c49fb64de9,http://doi.acm.org/10.1145/1322192.1322203 +44b91268fbbf62e1d2ba1d5331ec7aedac30dbe8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342368 +6a6269e591e11f41d59c2ca1e707aaa1f0d57de6,http://doi.org/10.1007/s10044-016-0531-5 +016194dbcd538ab5a129ef1bcff3c6e073db63f9,https://doi.org/10.1007/s10462-012-9334-2 +ab7923968660d04434271559c4634790dc68c58e,https://doi.org/10.1109/ICIP.2015.7351111 +2adffdffa16475ae71bb2adcf65840f01f1e53f7,https://doi.org/10.1049/iet-cvi.2014.0094 +7f2a234ad5c256733a837dbf98f25ed5aad214e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7207289 +c84de67ec2a5d687869d0c3ca8ac974aaa5ee765,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7090979 +2238dddb76499b19035641d97711cf30d899dadb,https://doi.org/10.1109/SIU.2016.7496098 +5f7094ba898a248e1e6b37e3d9fb795e59131cdc,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026246 +9f2984081ef88c20d43b29788fdf732ceabd5d6a,http://arxiv.org/abs/1806.01547 +f86c6942a7e187c41dd0714531efd2be828e18ad,https://doi.org/10.1109/VCIP.2016.7805514 +40f06e5c052d34190832b8c963b462ade739cbf0,https://doi.org/10.1109/ICNC.2010.5583821 +54058859a2ddf4ecfc0fe7ccbea7bb5f29d9201d,https://doi.org/10.1007/978-3-319-50832-0_36 +be0a0e563445119b82d664d370e646e53e69a4c5,https://doi.org/10.1016/j.eswa.2017.05.037 +805a0f4b99f162ac4db0ef6e0456138c8d498c3a,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2465373 +67214e8d2f83eb41c14bfc86698eb6620e72e87c,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.263 +1071dde48a77f81c35ad5f0ca90a9daedb54e893,http://ieeexplore.ieee.org/document/7881657/ +68c1090f912b69b76437644dd16922909dd40d60,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6987312 +675b1fd2aaebe9c62be6b22b9ac6d278193cc581,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699428 +754626bd5fb06fee5e10962fdfeddd495513e84b,https://doi.org/10.1109/SIU.2017.7960646 +72a3bb0fb490355a926c5a689e12268bff9ff842,https://doi.org/10.1109/ICIP.2006.312862 +e6d6203fa911429d76f026e2ec2de260ec520432,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899663 +2d411826cd7865638b65e1b5f92043c245f009f9,http://doi.acm.org/10.1145/2733373.2806239 +2ca10da4b59b406533ad1dc7740156e01782658f,https://doi.org/10.1109/SIU.2016.7496207 +df767f62a6bf3b09e6417d801726f2d5d642a202,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699727 +a8fd23934e5039bb818b8d1c47ccb540ce2c253c,https://doi.org/10.1007/s11760-015-0808-y +33b915476f798ca18ae80183bf40aea4aaf57d1e,https://doi.org/10.1109/TIP.2013.2271548 +636b8ffc09b1b23ff714ac8350bb35635e49fa3c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467308 +1b211f8221162ce7ef212956b637b50e30ad48f4,https://doi.org/10.1109/ICIP.2016.7532925 +44b827df6c433ca49bcf44f9f3ebfdc0774ee952,https://doi.org/10.1109/LSP.2017.2726105 +beb2f1a6f3f781443580ffec9161d9ce6852bf48,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424735 +11c2d40fc63ecd88febadd8a9cac9521a6b7de66,https://doi.org/10.1109/ICSIPA.2011.6144081 +b26e8f6ad7c2d4c838660d5a17337ce241442ed9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462692 +bbc47f421ab161f22f2699ee7bbb7fc8aec1cb7b,https://doi.org/10.1109/IJCNN.2017.7966271 +b51d11fa400d66b9f9d903a60c4ebe03fd77c8f2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8358588 +89e31777f221ddb3bc9940d7f520c8114c4148a2,https://doi.org/10.1007/s11063-012-9224-2 +94b729f9d9171e7c4489995e6e1cb134c8521f4e,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.055 +cf736f596bf881ca97ec4b29776baaa493b9d50e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629 +9ba358281f2946cba12fff266019193a2b059590,http://doi.ieeecomputersociety.org/10.1109/ISM.2008.27 +4786638ffb3b2fb385cec80720cc6e7c3588b773,https://doi.org/10.1007/s11042-015-2598-1 +fc8990088e0f1f017540900bc3f5a4996192ff05,https://doi.org/10.1109/ICIP.2017.8296314 +98856ab9dc0eab6dccde514ab50c823684f0855c,https://doi.org/10.1109/TIFS.2012.2191962 +85f27ec70474fe93f32864dd03c1d0f321979100,https://doi.org/10.1109/IJCNN.2014.6889381 +ed9de242a23ad546902e1d5ec022dbb029cc2282,https://doi.org/10.1109/ICASSP.2015.7178138 +dca2bb023b076de1ccd0c6b8d71faeb3fccb3978,http://doi.acm.org/10.1145/3152118 +efb24d35d8f6a46e1ff3800a2481bc7e681e255e,http://doi.org/10.1016/j.patrec.2015.08.006 +2f5b51af8053cf82ab52bbfd46b56999222ec21c,https://doi.org/10.1109/ICPR.2014.788 +b712f08f819b925ff7587b6c09a8855bc295d795,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450858 +fdd19fee07f2404952e629cc7f7ffaac14febe01,https://doi.org/10.1109/CISP-BMEI.2016.7852754 +75858dbee2c248a60741fbc64dcad4f8b63d51cb,https://doi.org/10.1109/TIP.2015.2460464 +204f1cf56794bb23f9516b5f225a6ae00d3d30b8,https://doi.org/10.1109/JSYST.2015.2418680 +b2ae5c496fe01bb2e2dee107f75b82c6a2a23374,http://doi.ieeecomputersociety.org/10.1109/FG.2017.116 +63fd7a159e58add133b9c71c4b1b37b899dd646f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6603332 +3ce96f03874d42345c0727edc78b6949b20b4a11,https://doi.org/10.1007/s11042-015-2630-5 +328da943e22adef5957c08b6909bda09d931a350,https://doi.org/10.1109/ICARCV.2008.4795605 +7d40e7e5c01bd551edf65902386401e1b8b8014b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7303876 +279459cbbc5c6db4802e9c737cc72a612d76f7fc,https://doi.org/10.1109/SSCI.2017.8285296 +e45a556df61e2357a8f422bdf864b7a5ed3b8627,http://doi.org/10.1016/j.image.2017.08.001 +c444c4dab97dd6d6696f56c1cacda051dde60448,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37 +eb5c1e526fe2d17778c68f60c874c3da0129fabd,https://doi.org/10.1109/VCIP.2015.7457856 +e287ff7997297ce1197359ed0fb2a0bd381638c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7795253 +270acff7916589a6cc9ca915b0012ffcb75d4899,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659 +80aa455068018c63237c902001b58844fcc6f160,https://doi.org/10.1109/FG.2011.5771327 +782a05fbe30269ff8ab427109f5c4d0a577e5284,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8038860 +c1fb854d9a04b842ff38bd844b50115e33113539,https://doi.org/10.1007/s11042-016-3883-3 +45edb29fb7eed5a52040300e1fd3cd53f1bdb429,https://doi.org/10.1109/ICIP.2015.7351570 +ec89f2307e29cc4222b887eb0619e0b697cf110d,https://doi.org/10.1109/TIP.2009.2027361 +24f3dfeb95bdecdc604d630acdfcafa1dc7c9124,http://doi.acm.org/10.1145/2994258.2994270 +28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406402 +8274069feeff6392b6c5d45d8bfaaacd36daedad,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019312 +d691440030394c2e00a2ab47aba4f8b5fca5f25a,https://doi.org/10.1109/ICIP.2016.7532921 +a5d76710dc15ebc7d8b4dc976604315f1e2fc3ba,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2011.117 +eef432868e85b95a7d9d9c7b8c461637052318ca,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.236 +8c2b663f8be1702ed3e377b5e6e85921fe7c6389,https://doi.org/10.1109/IPTA.2016.7821006 +a9ae55c83a8047c6cdf7c958fd3d4a6bfb0a13df,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014745 +78b457f8b1ba4fbd1c50c32ec1f02f4f58764ad7,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.99 +1a03dcc811131b0b702bd5a75c54ed26cd27151a,https://doi.org/10.1007/s11760-015-0810-4 +0b45aeb0aede5e0c19b508ede802bdfec668aefd,http://dl.acm.org/citation.cfm?id=1963206 +c60601bdb5465d8270fdf444e5d8aeccab744e29,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583363 +3c8db0d86a6aa51b64ec09c7d25a721adcdfb7a3,https://doi.org/10.1016/j.imavis.2015.06.009 +dff38cac0a1004037024f0ed2a72f76f4e49318b,https://doi.org/10.1109/TNNLS.2015.2495268 +1eb1fdc5c933d2483ba1acbfa8c457fae87e71e5,https://doi.org/10.1109/ICPR.2016.7899945 +28a45770faf256f294ce3bbd5de25c6d5700976e,https://doi.org/10.1109/ICDSP.2016.7868531 +8882d39edae556a351b6445e7324ec2c473cadb1,https://doi.org/10.1109/TIP.2017.2755766 +aa1129780cc496918085cd0603a774345c353c54,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7779010 +359edbaa9cf56857dd5c7c94aaef77003ba8b860,https://doi.org/10.1007/978-3-319-02714-2 +ac48ecbc7c3c1a7eab08820845d47d6ce197707c,https://doi.org/10.1109/TIP.2017.2681841 +5b5b568a0ba63d00e16a263051c73e09ab83e245,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8416840 +1280b35e4a20036fcfd82ee09f45a3fca190276f,http://doi.ieeecomputersociety.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.166 +a6d47f7aa361ab9b37c7f3f868280318f355fadc,https://ora.ox.ac.uk/objects/uuid:7704244a-b327-4e5c-a58e-7bfe769ed988 +2d7c2c015053fff5300515a7addcd74b523f3f66,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8323422 +bcead1a92744e76c38caaa13159de4abfb81b1d0,https://doi.org/10.1109/ICIP.2014.7025310 +480ccd25cb2a851745f5e6e95d33edb703efb49e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461792 +f16599e4ec666c6390c90ff9a253162178a70ef5,http://dl.acm.org/citation.cfm?id=3206050 +3ff79cf6df1937949cc9bc522041a9a39d314d83,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406730 +9e10ea753b9767aa2f91dafe8545cd6f44befd7f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771444 +68021c333559ab95ca10e0dbbcc8a4840c31e157,https://doi.org/10.1109/ICPR.2016.7900281 +ddd9d7cb809589b701fba9f326d7cf998a63b14f,http://doi.acm.org/10.1145/2647868.2654992 +81b0550c58e7409b4f1a1cd7838669cfaa512eb3,http://doi.org/10.1016/j.patcog.2015.08.026 +e8951cc76af80da43e3528fe6d984071f17f57e7,https://doi.org/10.1109/WACVW.2017.9 +dbced84d839165d9b494982449aa2eb9109b8467,http://arxiv.org/abs/1712.05083 +7b1ca9a74ab7fbfc32a69e8313ca2f2d78ac6c35,http://doi.ieeecomputersociety.org/10.1109/ICSC.2017.61 +5e0b691e9e5812dd3cb120a8d77619a45aa8e4c4,https://doi.org/10.1109/ICIP.2016.7532567 +8879083463a471898ff9ed9403b84db277be5bf6,https://doi.org/10.1016/j.patcog.2016.08.031 +31d51e48dbd9e7253eafe0719f3788adb564a971,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410588 +e3a8f18e507d9f2b537ec3c3fcc1b874b8ccfc24,http://doi.ieeecomputersociety.org/10.1109/MMUL.2016.27 +4a733a0862bd5f7be73fb4040c1375a6d17c9276,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618949 +8e63868e552e433dc536ba732f4c2af095602869,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699730 +dee6609615b73b10540f32537a242baa3c9fca4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015006 +a119844792fd9157dec87e3937685c8319cac62f,https://doi.org/10.1109/APSIPA.2015.7415395 +58e7dbbb58416b785b4a1733bf611f8106511aca,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273597 +bddc822cf20b31d8f714925bec192c39294184f7,http://doi.org/10.1134/S1054661807040190 +876583a059154def7a4bc503b21542f80859affd,https://doi.org/10.1109/IWBF.2016.7449697 +4215b34597d8ce1e8985afa8043400caf0ec7230,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.71 +2601b679fdd637f3cd978753ae2f15e8759dd267,https://doi.org/10.1109/ICIP.2015.7351306 +f64574ee0e6247b84d573ddb5c6e2c4ba798ffff,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699435 +2a79bd36c56fd1634ca0f8089fe8aa9343eb92ce,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2006.104 +1252727e8096f48096ef89483d30c3a74500dd15,https://doi.org/10.1007/s00138-016-0746-x +c6bbb56a26222bdb8ce7dd829cff38b67d4b03cd,http://doi.acm.org/10.1145/2043674.2043677 +728b1b2a86a7ffda402e7ec1a97cd1988dcde868,https://doi.org/10.1016/j.procs.2016.04.083 +b5f3b0f45cf7f462a9c463a941e34e102a029506,http://dl.acm.org/citation.cfm?id=3143004 +496f3d14cf466f054d395a3c71fa2cd6a3dda61d,http://doi.acm.org/10.1145/3009977.3010055 +4c0846bcfa64d9e810802c5b7ef0f8b43523fe54,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2324594 +4ca9753ab023accbfa75a547a65344ee17b549ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457710 +e9b731f00d16a10a31ceea446b2baa38719a31f1,https://doi.org/10.1109/ICSMC.2012.6378271 +194f5d3c240d06575403c9a422a0ebc86d43b91e,https://doi.org/10.1007/s11042-015-2580-y +028e237cb539b01ec72c244f57fdcfb65bbe53d4,http://doi.ieeecomputersociety.org/10.1109/CIS.2010.65 +772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,https://doi.org/10.1109/BTAS.2017.8272716 +b47a3c909ee9b099854619054fd00e200b944aa9,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.77 +798e58c181f3ba3aecbe41acd1881860c5e2df3a,https://doi.org/10.1109/TNNLS.2012.2237038 +c91da328fe50821182e1ae4e7bcbe2b62496f8b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4453844 +6f48e5e258da11e6ba45eeabe65a5698f17e58ef,https://doi.org/10.1109/ICASSP.2013.6637968 +24205a60cbf1cc12d7e0a9d44ed3c2ea64ed7852,http://doi.ieeecomputersociety.org/10.1109/FG.2017.30 +f0f854f8cfe826fd08385c0c3c8097488f468076,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406454 +80ed678ef28ccc1b942e197e0393229cd99d55c8,http://doi.org/10.1007/s10044-015-0456-4 +3ac3a714042d3ebc159546c26321a1f8f4f5f80c,http://dl.acm.org/citation.cfm?id=3025149 +c8fb8994190c1aa03c5c54c0af64c2c5c99139b4,https://doi.org/10.1007/s00138-016-0794-2 +86afb1e38a96f2ac00e792ef353a971fd13c8474,https://doi.org/10.1109/BigData.2016.7840742 +3e3227c8e9f44593d2499f4d1302575c77977b2e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347112 +4848a48a2b8bacd2092e87961cd86818da8e7151,https://doi.org/10.1109/VCIP.2017.8305080 +d7c87f4ca39f79d93c954ffacac32bc6eb527e2c,https://doi.org/10.1007/978-3-642-15696-0_57 +64fd48fae4d859583c4a031b51ce76ecb5de614c,https://doi.org/10.1109/ICARCV.2008.4795556 +ba1c0600d3bdb8ed9d439e8aa736a96214156284,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081394 +c59a9151cef054984607b7253ef189c12122a625,https://doi.org/10.1007/s00138-016-0791-5 +dec76940896a41a8a7b6e9684df326b23737cd5d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607638 +f2902f5956d7e2dca536d9131d4334f85f52f783,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460191 +f6511d8156058737ec5354c66ef6fdcf035d714d,http://doi.ieeecomputersociety.org/10.1109/BWCCA.2014.115 +1afef6b389bd727c566cd6fbcd99adefe4c0cf32,https://doi.org/10.1109/ICB.2016.7550087 +51bb86dc8748088a198b216f7e97616634147388,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890496 +f4251e02f87ac3fcae70bdb313f13ed16ff6ff0a,https://www.ncbi.nlm.nih.gov/pubmed/24314504 +f65b47093e4d45013f54c3ba09bbcce7140af6bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354117 +1ca1b4f787712ede215030d22a0eea41534a601e,https://doi.org/10.1109/CVPRW.2010.5543609 +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39,http://doi.org/10.1007/s11042-016-4105-8 +4033ac52dba394e390a86cd149b9838f1d7834b5,https://doi.org/10.1109/ICMLC.2012.6359009 +0532cbcf616f27e5f6a4054f818d4992b99d201d,http://doi.org/10.1007/s11042-015-3042-2 +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,http://doi.org/10.1007/s13735-016-0112-9 +41781474d834c079e8fafea154d7916b77991b15,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.60 +ca37933b6297cdca211aa7250cbe6b59f8be40e5,http://doi.acm.org/10.1145/3155133.3155207 +052fb35f731680d9d4e7d89c8f70f14173efb015,http://doi.acm.org/10.1145/2893487 +b2f9e0497901d22b05b9699b0ea8147861c2e2cc,https://doi.org/10.1007/978-3-319-70353-4_3 +9b4b2a575641f3a7f8a5ce28b6a06c36694a9ddf,http://doi.org/10.1007/s00371-015-1158-z +1063be2ad265751fb958b396ee26167fa0e844d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369056 +2884ff0d58a66d42371b548526d685760e514043,https://doi.org/10.1109/ICIP.2015.7351242 +48dcf45a1e38adbb9826594f7ffaa5e95ef78395,https://doi.org/10.1109/VCIP.2017.8305111 +a7a3ec1128f920066c25cb86fbc33445ce613919,https://doi.org/10.1109/VCIP.2017.8305115 +6a3fa483c64e72d9c96663ff031446a2bdb6b2eb,https://doi.org/10.1016/j.patcog.2017.02.003 +24e42e6889314099549583c7e19b1cb4cc995226,https://doi.org/10.1109/ACPR.2011.6166646 +5217ab9b723158b3ba2235e807d165e72fd33007,http://doi.acm.org/10.1145/2043674.2043710 +7acbf0b060e948589b38d5501ca217463cfd5c2f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6940304 +b7ec41005ce4384e76e3be854ecccd564d2f89fb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8441009 +7d8798e7430dcc68fcdbd93053c884fc44978906,http://doi.acm.org/10.1145/2506364.2506369 +e79bacc03152ea55343e6af97bcd17d8904cf5ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237669 +6a931e7b7475635f089dd33e8d9a2899ae963804,http://doi.org/10.1007/s00371-018-1561-3 +427bec487c330e7e34cc2c8fc2d6558690421ea0,http://doi.ieeecomputersociety.org/10.1109/ISCSCT.2008.352 +d5f8827fc7d66643bf018d5636e81ed41026b61a,http://doi.ieeecomputersociety.org/10.1109/FG.2017.36 +48de3ca194c3830daa7495603712496fe908375c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619283 +c7745f941532b7d6fa70db09e81eb1167f70f8a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1640757 +55432723c728a2ce90d817e9e9877ae9fbad6fe5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412925 +cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,https://doi.org/10.1109/TIFS.2013.2286265 +8127b7654d6e5c46caaf2404270b74c6b0967e19,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813406 +d9072e6b7999bc2d5750eb58c67a643f38d176d6,https://doi.org/10.1109/LSP.2009.2027636 +7049187c5155d9652747413ce1ebc8dbb209fd69,https://doi.org/10.1109/ICPR.2016.7899808 +d9a5c82b710b1f4f1ffb67be2ae1d3c0ae7f6c55,http://doi.org/10.1016/j.jvcir.2015.11.002 +3ad56aed164190e1124abea4a3c4e1e868b07dee,https://doi.org/10.1016/j.patcog.2015.12.016 +2bf646a6efd15ab830344ae9d43e10cc89e29f34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8387808 +7e56d9ebd47490bb06a8ff0bd5bcd8672ec52364,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1275543 +c0270a57ad78da6c3982a4034ffa195b9e932fda,http://doi.ieeecomputersociety.org/10.1109/FG.2017.131 +43eb03f95adc0df61af2c3b12a913c725b08d4f5,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2011.101 +b728e7db6e5559a77dc59381bfb8df96d482a721,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.28 +27b451abfe321a696c852215bb7efb4c2e50c89f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7898447 +017e94ad51c9be864b98c9b75582753ce6ee134f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892240 +8cd9475a3a1b2bcccf2034ce8f4fe691c57a4889,http://doi.ieeecomputersociety.org/10.1109/FG.2017.138 +3b64b8be33887e77e6def4c385985e43e2c15eea,https://doi.org/10.1109/TIP.2016.2576278 +245d98726674297208e76308c3a11ce3fc43bee2,https://doi.org/10.1007/s11042-015-2699-x +acab402d706dbde4bea4b7df52812681011f435e,https://doi.org/10.1109/HIS.2012.6421377 +96b1f2bde46fe4f6cc637398a6a71e8454291a6e,https://doi.org/10.1109/TIP.2010.2073476 +1b5d445741473ced3d4d33732c9c9225148ed4a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8452894 +cdf2c8752f1070b0385a94c7bf22e8b54cac521b,https://doi.org/10.1007/s11265-010-0541-2 +d983dda8b03ed60fa3afafe5c50f1d9a495f260b,https://doi.org/10.1016/j.patcog.2007.03.020 +471bef061653366ba66a7ac4f29268e8444f146e,https://doi.org/10.1109/SMC.2015.524 +c833c2fb73decde1ad5b5432d16af9c7bee1c165,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.143 +a7c066e636b8953481b4a8d8ff25a43a96dd348f,https://doi.org/10.1109/ATSIP.2017.8075517 +4d6d6369664a49f6992f65af4148cefef95055bc,https://doi.org/10.1109/ICIP.2014.7025407 +142e233adceed9171f718a214a7eba8497af4324,https://doi.org/10.1109/IJCNN.2014.6889504 +484bac2a9ff3a43a6f85d109bbc579a4346397f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6011991 +b262a2a543971e10fcbfc7f65f46115ae895d69e,https://doi.org/10.1109/DICTA.2015.7371266 +699b8250fb93b3fa64b2fc8f59fef036e172564d,https://doi.org/10.1109/ICMLA.2016.0147 diff --git a/scraper/reports/misc/all_doi-4.csv b/scraper/reports/misc/all_doi-4.csv new file mode 100644 index 00000000..81bb4df3 --- /dev/null +++ b/scraper/reports/misc/all_doi-4.csv @@ -0,0 +1,748 @@ +d790093cb85fc556c0089610026e0ec3466ab845,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4721612 +0450dacc43171c6e623d0d5078600dd570de777e,http://doi.org/10.1007/s10339-016-0774-5 +91e17338a12b5e570907e816bff296b13177971e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272751 +30fb5c24cc15eb8cde5e389bf368d65fb96513e4,http://dl.acm.org/citation.cfm?id=3206048 +30a4b4ef252cb509b58834e7c40862124c737b61,https://doi.org/10.1142/S0218001416560061 +363f540dc82ba8620262a04a67cfd6d3c85b0582,http://doi.ieeecomputersociety.org/10.1109/WIAMIS.2009.5031445 +bd66dc891270d858de3adf97d42ed714860ae94d,https://doi.org/10.1109/ACPR.2015.7486598 +0e4fa61871755b5548a5c970c8103f7b2ada24f3,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.19 +06c956d4aac65752672ce4bd5a379f10a7fd6148,https://doi.org/10.1109/LSP.2017.2749763 +bab2f4949a38a712a78aafbc0a3c392227c65f56,https://doi.org/10.1109/CISP-BMEI.2017.8302191 +8be60114634caa0eff8566f3252cb9a1b7d5ef10,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890133 +29fd98f096fc9d507cd5ee7d692600b1feaf7ed1,http://doi.acm.org/10.1145/2988257.2988270 +69ad67e204fb3763d4c222a6c3d05d6725b638ed,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890538 +247a8040447b6577aa33648395d95d80441a0cf3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362745 +2f67d5448b5372f639633d8d29aac9c0295b4d72,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460923 +d4288daef6519f6852f59ac6b85e21b8910f2207,https://www.ncbi.nlm.nih.gov/pubmed/29994505 +dae9d0a9b77366f0cd52e38847e47691ee97bc1f,https://doi.org/10.1007/s11760-015-0822-0 +8383faea09b4b4bef8117a1da897495ebd68691b,https://doi.org/10.1109/TCYB.2015.2493538 +eece52bd0ed4d7925c49b34e67dbb6657d2d649b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014982 +99d06fe2f4d6d76acf40b6da67c5052e82055f5a,http://dl.acm.org/citation.cfm?id=3268909 +f095b5770f0ff13ba9670e3d480743c5e9ad1036,http://doi.org/10.1007/s11263-016-0950-1 +4c141534210df53e58352f30bab558a077fec3c6,https://doi.org/10.1109/TMM.2016.2557722 +a62997208fec1b2fbca6557198eb7bc9340b2409,https://doi.org/10.1109/HPCC.and.EUC.2013.241 +e95c5aaa72e72761b05f00fad6aec11c3e2f8d0f,http://doi.acm.org/10.1145/2791405.2791505 +77cea27494499dd162221d1476bf70a87391790a,https://doi.org/10.1109/VCIP.2015.7457930 +e6d6d1b0a8b414160f67142fc18e1321fe3f1c49,https://doi.org/10.1109/FSKD.2015.7382037 +16b0c171fb094f677fcdf78bbb9aaef0d5404942,https://doi.org/10.1109/TIP.2017.2733739 +49fe4f387ac7e5852a78b327ec42cc7300c5f8e0,https://doi.org/10.1007/s11042-014-2055-6 +d99b5ee3e2d7e3a016fbc5fd417304e15efbd1f8,http://doi.org/10.1007/s11063-017-9578-6 +58d0c140597aa658345230615fb34e2c750d164c,http://doi.acm.org/10.1145/3098954.3098969 +629a973ca5f3c7d2f4a9befab97d0044dfd3167a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4427488 +87ee56feefdb39938cda7f872e784d9d986713af,http://dl.acm.org/citation.cfm?id=3022247 +6f22628d34a486d73c6b46eb071200a00e3abae3,https://www.ncbi.nlm.nih.gov/pubmed/29994497 +5a547df635a9a56ac224d556333d36ff68cbf088,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359041 +f8fe1b57347cdcbea755722bf1ae85c4b26f3e5c,https://doi.org/10.1007/s00138-016-0790-6 +f76a6b1d6029769e2dc1be4dadbee6a7ba777429,http://doi.org/10.1007/s12559-017-9506-0 +85f7f03b79d03da5fae3a7f79d9aac228a635166,https://doi.org/10.1109/WACV.2009.5403085 +6af75a8572965207c2b227ad35d5c61a5bd69f45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433687 +43dce79cf815b5c7068b1678f6200dabf8f5de31,http://arxiv.org/abs/1709.03196 +62e834114b58a58a2ea2d7b6dd7b0ce657a64317,https://doi.org/10.1109/SMC.2014.6973987 +c29fe5ed41d2240352fcb8d8196eb2f31d009522,http://doi.org/10.1007/s11042-015-3230-0 +df7ff512e8324894d20103fd8ab5da650e4d86db,http://doi.acm.org/10.1145/2043674.2043709 +e853484dc585bed4b0ed0c5eb4bc6d9d93a16211,http://dl.acm.org/citation.cfm?id=3130971 +d878a67b2ef6a0a5dec72db15291f12419040ab1,https://doi.org/10.1109/IPTA.2016.7821012 +f61829274cfe64b94361e54351f01a0376cd1253,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410784 +397257783ccc8cace5b67cc71e0c73034d559a4f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6918513 +2be24e8a3f2b89bdaccd02521eff3b7bb917003e,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.96 +bc36badb6606b8162d821a227dda09a94aac537f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337442 +8c37bd06e1a637c6f249dcd1d2c4bc9589ae24b3,https://doi.org/10.1007/11608288_28 +55aafdef9d9798611ade1a387d1e4689f2975e51,http://doi.org/10.1007/s11263-017-1044-4 +eefdb69ac2c461e7791603d0f8c02ff3c8600adc,https://doi.org/10.1016/j.jvcir.2017.02.007 +72119cb98f9502ec639de317dccea57fd4b9ee55,https://doi.org/10.1109/GlobalSIP.2015.7418230 +2f61d91033a06dd904ff9d1765d57e5b4d7f57a6,https://doi.org/10.1109/ICIP.2016.7532953 +3e2b9ffeb708b4362ebfad95fa7bb0101db1579d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553717 +b22317a0bbbcc79425f7c8a871b2bf211ba2e9c4,https://doi.org/10.1109/ACCESS.2018.2805861 +e585dc6c810264d9f07e38c412379734a920714e,http://doi.acm.org/10.1145/2531923.2531926 +9e28243f047cc9f62a946bf87abedb65b0da0f0a,https://doi.org/10.1109/ICMLA.2013.141 +e97ba85a4550667b8a28f83a98808d489e0ff3bc,http://doi.org/10.1155/2018%2F9729014 +281b91c35a1af97b1405bc724a04e2be6e24971b,https://doi.org/10.1109/ICMLC.2010.5580557 +cead57f2f7f7b733f4524c4b5a7ba7f271749b5f,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.46 +2babf665198a91932a4ce557f627c28e7e8f31f2,http://doi.acm.org/10.1145/3009977.3010004 +cd63759842a56bd2ede3999f6e11a74ccbec318b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995404 +e4d53e7f4c2052940841abc08f9574655f3f7fb4,http://doi.acm.org/10.1145/3078971.3079039 +cdfa7dccbc9e9d466f8a5847004973a33c7fcc89,https://doi.org/10.1109/TIFS.2013.2263498 +6adecb82edbf84a0097ff623428f4f1936e31de0,https://doi.org/10.1007/s11760-011-0246-4 +e10cbd049ac2f5cc8af9eb8e587b3408ad4bb111,https://doi.org/10.1117/1.JEI.24.5.053028 +c4cfdcf19705f9095fb60fb2e569a9253a475f11,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237333 +95f1790da3d0a4a5310a050512ce355b3c5aac86,https://doi.org/10.1109/ICIP.2016.7533142 +05785cb0dcaace54801aa486d4f8fdad3245b27a,https://doi.org/10.1109/ICPR.2016.7899760 +7196b3832065aec49859c61318037b0c8c12363a,https://doi.org/10.1007/s11432-014-5151-3 +d7a84db2a1bf7b97657b0250f354f249394dd700,https://doi.org/10.1109/ICIP.2010.5653518 +3150e329e01be31ba08b6d76fc46b0da88a5ddeb,http://doi.acm.org/10.1145/2927006.2927012 +746c0205fdf191a737df7af000eaec9409ede73f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119 +8184a92e1ccc7fdeb4a198b226feb325c63d6870,https://doi.org/10.1109/ICCE.2017.7889290 +6813208b94ffa1052760d318169307d1d1c2438e,http://doi.acm.org/10.1145/2818346.2830582 +c9c9ade2ef4dffb7582a629a47ea70c31be7a35e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237606 +c2422c975d9f9b62fbb19738e5ce5e818a6e1752,https://doi.org/10.1109/TNNLS.2015.2481006 +c0f9fae059745e50658d9605bd8875fc3a2d0b4b,http://doi.ieeecomputersociety.org/10.1109/BIGCOMP.2014.6741422 +38345264a9ca188c4facffe6e18a7e6865fb2966,http://doi.ieeecomputersociety.org/10.1109/BIBM.2017.8217969 +b5f79df712ad535d88ae784a617a30c02e0551ca,https://doi.org/10.1109/LSP.2015.2480758 +c907104680ad53bdc673f2648d713e4d26335825,http://doi.acm.org/10.1145/3077286.3077304 +7935f644c8044c0d3b81e2842e5ecc3672698bbb,https://doi.org/10.1109/ICIP.2011.6116258 +77223849321d57a03e0571a08e71eba06e38834a,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.20 +eb3066de677f9f6131aab542d9d426aaf50ed2ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373860 +5dd3c9ac3c6d826e17c5b378d1575b68d02432d7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7292416 +e4d7b8eb0a8e6d2bb5b90b027c1bf32bad320ba5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8023876 +3cb057a24a8adba6fe964b5d461ba4e4af68af14,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6701391 +bc9bad25f8149318314971d8b8c170064e220ea8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8078542 +fb1b6138aeb081adf853316c0d83ef4c5626a7fa,https://doi.org/10.1109/ICIP.2017.8296302 +ccebd3bf069f5c73ea2ccc5791976f894bc6023d,https://doi.org/10.1109/ICPR.2016.7900186 +663efaa0671eace1100fdbdecacd94216a17b1db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619243 +35265cbd9c6ea95753f7c6b71659f7f7ef9081b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7052327 +9026eb610916ec4ce77f0d7d543b7c2482ba4173,https://doi.org/10.1016/j.patrec.2012.03.006 +71f07c95a2b039cc21854c602f29e5be053f2aba,https://doi.org/10.1007/s00138-010-0250-7 +efc78a7d95b14abacdfde5c78007eabf9a21689c,http://dl.acm.org/citation.cfm?id=2939840 +6ca7a82ec1c51417c4f0b8eebddb53a73a3874b1,http://doi.acm.org/10.1145/2708463.2709059 +c858c74d30c02be2d992f82a821b925669bfca13,http://doi.org/10.1007/978-3-319-10605-2 +6ba6045e4b404c44f9b4dfce2d946019f0e85a72,https://doi.org/10.1109/ICPR.2016.7899962 +c900e0ad4c95948baaf0acd8449fde26f9b4952a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780969 +da23d90bacf246b75ef752a2cbb138c4fcd789b7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406360 +85567174a61b5b526e95cd148da018fa2a041d43,https://doi.org/10.1109/TMM.2016.2515367 +66490b5869822b31d32af7108eaff193fbdb37b0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373857 +9790ec6042fb2665c7d9369bf28566b0ce75a936,http://doi.acm.org/10.1145/3056540.3056546 +b54fe193b6faf228e5ffc4b88818d6aa234b5bb9,http://doi.acm.org/10.1145/2964284.2967287 +1e62ca5845a6f0492574a5da049e9b43dbeadb1b,https://doi.org/10.1109/LSP.2016.2637400 +aeb6b9aba5bb08cde2aebfeda7ced6c38c84df4a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424644 +ebbceab4e15bf641f74e335b70c6c4490a043961,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813349 +2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,https://doi.org/10.1109/CVPRW.2010.5543608 +9d1cebed7672210f9c411c5ba422a931980da833,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0078 +e4ad82afc563b783475ed45e9f2cd4c9e2a53e83,https://doi.org/10.1109/AICCSA.2016.7945716 +2e5b160892b70a1e846aa9dcdf132b8011937ec6,https://doi.org/10.1109/LSP.2017.2689921 +c9b958c2494b7ba08b5b460f19a06814dba8aee0,https://www.ncbi.nlm.nih.gov/pubmed/30080142 +55266ddbe9d5366e8cd1b0b645971cad6d12157a,https://doi.org/10.1109/SIU.2017.7960368 +ff9e042cccbed7e350a25b7d806cd17fb79dfdf9,https://doi.org/10.1007/s11760-016-0882-9 +ed0d8997a4b7b80a7cd3592e98bdbe5c3aab0cee,https://doi.org/10.1007/s11042-014-2345-z +2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d,https://doi.org/10.1109/CVPRW.2011.5981801 +71d786fdb563bdec6ca0bbf69eba8e3f37c48c6f,https://doi.org/10.1109/SMC.2016.7844680 +0e05b365af662bc6744106a7cdf5e77c9900e967,https://doi.org/10.1007/s11042-014-2234-5 +a6e75b4ccc793a58ef0f6dbe990633f7658c7241,https://doi.org/10.1016/j.cviu.2016.10.007 +ca0185529706df92745e656639179675c717d8d5,https://doi.org/10.1504/IJCVR.2014.065571 +642a386c451e94d9c44134e03052219a7512b9de,http://doi.org/10.1016/j.imavis.2008.04.018 +e57108607d94aa158eb22ae50540ae6080e48d4b,http://doi.ieeecomputersociety.org/10.1109/ICMI.2002.1167051 +0f64e26d6dd6f1c99fe2050887fac26cafe9ed60,https://doi.org/10.1109/MCI.2016.2627668 +c675534be881e59a78a5986b8fb4e649ddd2abbe,https://doi.org/10.1109/ICIP.2017.8296548 +82e3f4099503633c042a425e9217bfe47cfe9d4b,http://doi.org/10.1007/s11042-015-2819-7 +a9fc8efd1aa3d58f89c0f53f0cb112725b5bda10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316891 +28d55935cc36df297fe21b98b4e2b07b5720612e,https://doi.org/10.1109/CISS.2016.7460569 +54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334 +9774430006f1ed017156b17f3cf669071e398c58,https://doi.org/10.1109/SMC.2013.513 +3598d10d7d4f2b543afa8bcf6b2c34a3696ef155,https://doi.org/10.1109/SPAC.2017.8304347 +d6a5eb4377e2a67420778eab61b5a89046307bae,http://doi.ieeecomputersociety.org/10.1109/CRV.2014.37 +ed2f4e5ecbc4b08ee0784e97760a7f9e5ea9efae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8241843 +90e7a86a57079f17f1089c3a46ea9bfd1d49226c,https://www.sciencedirect.com/science/article/pii/S0042698914002739 +c3390711f5ce6f5f0728ef88c54148bf9d8783a2,https://doi.org/10.1016/j.engappai.2015.03.016 +aa7c72f874951ff7ca3769439f2f39b7cfd4b202,https://doi.org/10.1109/JPROC.2009.2032355 +defd44b02a1532f47bdd8c8f2375e3df64ac5d79,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.139 +0ea05bbc0b0c8b7df10f16e9429ef90177bf94fa,https://doi.org/10.1163/016918610X538534 +753a277c1632dd61233c488cc55d648de3caaaa3,https://doi.org/10.1016/j.patcog.2011.02.013 +e50ec6b6d1c189edc127eb403c41a64f34fc0a6c,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890187 +a88ced67f4ed7940c76b666e1c9c0f08b59f9cf8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771415 +e3ce4c3e1279e3dc0c14ff3bb2920aced9e62638,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099824 +10bfa4cecd64b9584c901075d6b50f4fad898d0b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728013 +5af06815baa4b8f53adc9dc22f6eb3f6f1ad8ff8,https://doi.org/10.1186/s13640-017-0178-1 +c90427085909029afd2af01d1967e80b78e01b88,https://doi.org/10.1109/ACCESS.2017.2753830 +1584edf8106e8f697f19b726e011b9717de0e4db,https://doi.org/10.1049/iet-cvi.2015.0350 +a1cecbb759c266133084d98747d022c1e638340d,http://doi.acm.org/10.1145/2670473.2670501 +95288fa7ff4683e32fe021a78cbf7d3376e6e400,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014759 +0aaf785d7f21d2b5ad582b456896495d30b0a4e2,http://dl.acm.org/citation.cfm?id=3173789 +ec983394f800da971d243f4143ab7f8421aa967c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340635 +919cb6160db66a8fe0b84cb7f171aded48a13632,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2327978 +b3add9bc9e70b6b28ba31e843e9155e7c37f3958,http://doi.org/10.1007/s10766-017-0552-8 +b65b51c796ed667c4c7914bf12b1926fd6bbaa0c,https://doi.org/10.1016/j.neuroimage.2013.05.108 +9ef06cc958af2274afd193a1dca705c08234bcd3,https://doi.org/10.1109/ICIP.2014.7026207 +2563fc1797f187e2f6f9d9f4387d4bcadd3fbd02,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410635 +0034e37a0faf0f71395245b266aacbf5412f190a,https://doi.org/10.1109/TMM.2014.2355134 +9101363521de0ec1cf50349da701996e4d1148c8,http://doi.ieeecomputersociety.org/10.1109/ICIAP.2007.28 +9cc8cf0c7d7fa7607659921b6ff657e17e135ecc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099536 +5e6fc99d8f5ebaab0e9c29bc0969530d201e0708,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8017477 +45877ff4694576f59c2a9ca45aa65f935378492a,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.38 +4958c06da5581fd0b4904d3bf0ee09958ecdba5b,https://doi.org/10.1016/j.knosys.2016.12.005 +3c6542295cf7fe362d7d629ac10670bf30cdabce,https://doi.org/10.1109/DICTA.2015.7371264 +fa5ab4b1b45bf22ce7b194c20c724946de2f2dd4,https://doi.org/10.1109/TIP.2015.2421437 +e7e8c0bbee09b5af6f7df1de8f0f26da992737c4,https://doi.org/10.1109/IJCNN.2011.6033417 +1bcb1c6d6cebc9737f9933fcefbf3da8a612f994,https://doi.org/10.1016/j.jvcir.2017.10.008 +a8f1fc34089c4f2bc618a122be71c25813cae354,https://doi.org/10.1142/S0219467816500194 +4b9ec224949c79a980a5a66664d0ac6233c3d575,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501 +520782f07474616879f94aae0d9d1fff48910254,https://doi.org/10.1016/j.neucom.2014.11.038 +5748652924084b7b0220cddcd28f6b2222004359,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7492255 +c58ece1a3fa23608f022e424ec5a93cddda31308,https://doi.org/10.1109/JSYST.2014.2325957 +4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306 +28f1542c63f5949ee6f2d51a6422244192b5a900,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780475 +08872d801f134e41753601e85971769b28314ca2,http://doi.acm.org/10.1145/2683483.2683560 +978b32ff990d636f7e2050bb05b8df7dfcbb42a1,https://doi.org/10.1109/BTAS.2014.6996270 +e40cb4369c6402ae53c81ce52b73df3ef89f578b,http://doi.org/10.1016/j.image.2015.01.009 +77d929b3c4bf546557815b41ed5c076a5792dc6b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265399 +1c25a3c8ef3e2c4dbff337aa727d13f5eba40fb2,http://doi.org/10.1007/s00371-016-1290-4 +20eeb83a8b6fea64c746bf993f9c991bb34a4b30,http://doi.org/10.1007/s00138-018-0956-5 +982d4f1dee188f662a4b5616a045d69fc5c21b54,https://doi.org/10.1109/IJCNN.2016.7727859 +c808c784237f167c78a87cc5a9d48152579c27a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265437 +e4fa062bff299a0bcef9f6b2e593c85be116c9f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407641 +f834c50e249c9796eb7f03da7459b71205dc0737,https://doi.org/10.1109/TIP.2011.2166974 +0ed4b4d6d1a0c49c4eb619aab36db559b620d99f,https://doi.org/10.1016/j.neucom.2015.11.115 +dbb9601a1d2febcce4c07dd2b819243d81abb2c2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361884 +7a94936ce558627afde4d5b439ec15c59dbcdaa4,https://doi.org/10.1007/s11263-013-0665-5 +5da98f7590c08e83889f3cec7b0304b3610abf42,https://doi.org/10.1016/j.eswa.2017.07.018 +a96c45ed3a44ad79a72499be238264ae38857988,http://doi.org/10.1007/s00138-016-0786-2 +0eed55ea9f401f25e1474cdbaf09367f44b4f490,https://doi.org/10.1016/j.neucom.2013.05.032 +378418fdd28f9022b02857ef7dbab6b0b9a02dbe,http://doi.org/10.1007/978-3-319-75420-8 +74cec83ee694b5d0e07d5d0bacd0aa48a80776aa,https://doi.org/10.1109/ISCAS.2013.6572506 +fc7b34a2e43bb3d3585e1963bb64a488e2f278a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7045492 +5957936195c10521dadc9b90ca9b159eb1fc4871,https://doi.org/10.1109/TCE.2016.7838098 +55ee484f9cbd62111512485e3c1c3eadbf2e15c0,http://doi.ieeecomputersociety.org/10.1109/FG.2017.25 +88780bd55615c58d9bacc4d66fc2198e603a1714,https://doi.org/10.1109/EMBC.2016.7590730 +b68452e28951bf8db5f1193eca3a8fd9e2d0d7ef,https://doi.org/10.1109/ICACCI.2015.7275752 +eb38f20eaa1b849cabec99815883390f84daf279,https://doi.org/10.1016/j.patcog.2008.11.026 +ae78469de00ea1e7602ca468dcf188cdfe2c80d4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466467 +26b9d546a4e64c1d759c67cd134120f98a43c2a6,https://doi.org/10.1109/ICMLA.2012.120 +5435d5f8b9f4def52ac84bee109320e64e58ab8f,http://doi.org/10.1007/s11042-016-4321-2 +edbddf8c176d6e914f0babe64ad56c051597d415,https://doi.org/10.1109/TMM.2016.2644866 +d2bad850d30973a61b1a7d7dc582241a41e5c326,http://doi.ieeecomputersociety.org/10.1109/ICICIC.2006.12 +d00e9a6339e34c613053d3b2c132fccbde547b56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154 +8db9188e5137e167bffb3ee974732c1fe5f7a7dc,https://doi.org/10.1109/TIP.2016.2612885 +6da3ff4250103369f4a6a39c8fb982438a97525c,https://doi.org/10.1109/THMS.2015.2404913 +405cf40f3ce74210f7e9862b2b828ce002b409ed,https://doi.org/10.1109/IJCNN.2017.7966244 +80f72b26c6571aee2ff04704bc7fd1a69bfa0b3f,https://doi.org/10.1016/j.patcog.2016.12.029 +e95895262f66f7c5e47dd46a70110d89c3b4c203,https://doi.org/10.1016/j.neucom.2016.09.023 +5226296884b3e151ce317a37f94827dbda0b9d16,https://doi.org/10.1109/IWBF.2016.7449690 +66ec085c362f698b40d6e0e7b10629462280c062,https://doi.org/10.1109/ICARCV.2004.1468855 +053ee4a4793f54b02dfabde5436fd7ee479e79eb,http://doi.acm.org/10.1145/3160504.3160507 +3e0035b447d0d4e11ceda45936c898256f321382,https://doi.org/10.1109/BMEI.2014.7002762 +188abc5bad3a3663d042ce98c7a7327e5a1ae298,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6152129 +4b0cb10c6c3f2d581ac9eb654412f70bc72ed661,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8172386 +97c59db934ff85c60c460a4591106682b5ab9caa,https://doi.org/10.1109/BTAS.2012.6374568 +6267dbeb54889be5bdb50c338a7c6ef82287084c,https://doi.org/10.1109/ICMLC.2010.5580567 +3bfa630a6dc6d1ca98e7b43c90dd9e8b98e361d6,https://doi.org/10.1109/ICIP.2015.7351140 +a0d5990eb150cdcb1c8b2967e6a4fe7a5d85063b,https://doi.org/10.1109/ICIP.2017.8296805 +67af3ec65f1dc535018f3671624e72c96a611c39,http://doi.org/10.1007/s11042-016-4058-y +1fe1a78c941e03abe942498249c041b2703fd3d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393355 +56bcc89fb1e05d21a8b7b880c6b4df79271ceca5,https://doi.org/10.1007/s11760-013-0441-6 +c6724c2bb7f491c92c8dd4a1f01a80b82644b793,https://www.ncbi.nlm.nih.gov/pubmed/19167865 +1d30f813798c55ae4fe454829be6e2948ee841da,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270396 +3e1190655cc7c1159944d88bdbe591b53f48d761,https://doi.org/10.1007/s10489-013-0464-2 +5fc97d6cb5af21ed196e44f22cee31ce8c51ef13,http://doi.acm.org/10.1145/2742060.2743769 +45e043dffc57a9070f483ac4aec2c5cd2cec22cb,http://doi.acm.org/10.1145/3130977 +9b1022a01ca4ecf8c1fa99b1b39a93924de2fcfb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316962 +250b73ec5a4f78b7b4ea3aba65c27fc1352154d5,https://doi.org/10.1109/TIP.2015.2463223 +9e99f818b37d44ec6aac345fb2c5356d83d511c7,https://doi.org/10.1109/ISSPA.2012.6310540 +61bc124537f414f6fcb4d1ff476681b5a0ee222a,http://doi.ieeecomputersociety.org/10.1109/WIW.2016.043 +445e3ba7eabcc55b5d24f951b029196b47830684,https://doi.org/10.1109/TMM.2016.2591508 +97c1f68fb7162af326cd0f1bc546908218ec5da6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471977 +2961e14c327341d22d5f266a6872aa174add8ac4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6654170 +de8657e9eab0296ac062c60a6e10339ccf173ec1,http://doi.ieeecomputersociety.org/10.1109/BRACIS.2014.51 +2a41388040141ef6b016c100ef833a2a73ab8b42,https://doi.org/10.1016/j.neucom.2017.03.033 +61e2044184d86d0f13e50ecaa3da6a4913088c76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7572183 +ee2ec0836ded2f3f37bf49fa0e985280a8addaca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368755 +9753ee59db115e1e84a7c045f2234a3f63f255b1,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344683 +5f448ab700528888019542e6fea1d1e0db6c35f2,https://doi.org/10.1109/LSP.2016.2533721 +37c5e3b6175db9eaadee425dc51bc7ce05b69a4e,https://doi.org/10.1007/s00521-013-1387-x +5fb9944b18f5a4a6d20778816290ed647f5e3853,http://doi.acm.org/10.1145/3080538.3080540 +8ef465ff12ee1d2be2a99d1c628117a4ce890a6b,https://doi.org/10.1016/j.camwa.2010.08.082 +eaf020bc8a3ed5401fc3852f7037a03b2525586a,http://arxiv.org/abs/1710.07735 +992e4119d885f866cb715f4fbf0250449ce0db05,https://doi.org/10.1007/s00138-015-0674-1 +052c5ef6b20bf3e88bc955b6b2e86571be08ba64,https://doi.org/10.1109/TIFS.2011.2170068 +b2cb335ded99b10f37002d09753bd5a6ea522ef1,https://doi.org/10.1109/ISBA.2017.7947679 +122f52fadd4854cf6c9287013520eced3c91e71a,https://doi.org/10.1109/TIP.2016.2515987 +985bbe1d47b843fa0b974b4db91be23f218d1ce7,https://doi.org/10.1007/978-3-319-68121-4 +780c8a795baca1ba4cb4956cded877dd3d1ca313,http://doi.ieeecomputersociety.org/10.1109/ISSPIT.2013.6781879 +c9be1001706bcdd8b35fa9cae733c592e90c7ec3,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.54 +0750c796467b6ef60b0caff5fb199337d54d431e,https://doi.org/10.1109/ICMLC.2016.7873015 +522a4ca705c06a0436bbe62f46efe24d67a82422,http://doi.org/10.1007/s11042-017-5475-2 +bad2df94fa771869fa35bd11a1a7ab2e3f6d1da3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344635 +31ba7f5e09a2f0fe9cf7ea95314723206dcb6059,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.300 +bf2eb77e9b795a4a0a38ed4b1c8dd4b2c9a74317,https://doi.org/10.1007/978-3-319-69900-4_70 +11ba01ce7d606bab5c2d7e998c6d94325521b8a0,https://doi.org/10.1109/ICIP.2015.7350911 +553a605243b77a76c1ed4c1ad4f9a43ff45e391b,https://doi.org/10.1109/CISP-BMEI.2017.8302001 +4db99a2268a120c7af636387241188064ea42338,https://www.ncbi.nlm.nih.gov/pubmed/21820862 +414d78e32ac41e6ff8b192bc095fe55f865a02f4,http://arxiv.org/abs/1706.00631 +f402e088dddfaad7667bd4def26092d05f247206,https://doi.org/10.1109/TITS.2015.2475721 +de162d4b8450bf2b80f672478f987f304b7e6ae4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237454 +a5f35880477ae82902c620245e258cf854c09be9,http://doi.org/10.1016/j.imavis.2013.12.004 +5dd473a4a9c6337b083edf38b6ddf5a6aece8908,http://arxiv.org/abs/1711.08238 +22dbdace88c8f4bda2843ed421e3708ec0744237,https://doi.org/10.1016/j.cviu.2013.12.010 +3960882a7a1cd19dfb711e35a5fc1843ed9002e7,http://doi.acm.org/10.1145/2487575.2487701 +57c270a9f468f7129643852945cf3562cbb76e07,https://doi.org/10.1016/j.imavis.2016.07.004 +b84dde74dddf6a3281a0b22c68999942d2722919,http://dl.acm.org/citation.cfm?id=2910703 +3a49507c46a2b8c6411809c81ac47b2b1d2282c3,http://doi.org/10.1007/s11042-017-5319-0 +e865908ed5e5d7469b412b081ca8abd738c72121,https://doi.org/10.1109/TIP.2016.2621667 +e1c50cf0c08d70ff90cf515894b2b360b2bc788b,https://doi.org/10.1109/ICSMC.2007.4414085 +24603ed946cb9385ec541c86d2e42db47361c102,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373865 +49e4f05fa98f63510de76e7abd8856ff8db0f38d,http://doi.ieeecomputersociety.org/10.1109/FG.2017.110 +1e3068886b138304ec5a7296702879cc8788143d,http://doi.org/10.1007/s11263-013-0630-3 +ebce3f5c1801511de9e2e14465482260ba5933cc,http://doi.acm.org/10.1145/3126594.3126640 +710c3aaffef29730ffd909a63798e9185f488327,https://doi.org/10.1109/ICPR.2016.7900095 +f14403d9d5fbc4c6e8aeb7505b5d887c50bad8a4,https://doi.org/10.1109/ICIP.2012.6467433 +fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb,https://www.ncbi.nlm.nih.gov/pubmed/30040629 +8a2bedaa38abf173823944f0de2c84f5b2549609,https://doi.org/10.1109/TNNLS.2016.2573644 +b91f54e1581fbbf60392364323d00a0cd43e493c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553788 +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339084 +d1184939e06dbc3b495c883c53b684c6d6aa9e48,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477669 +3bf8e4d89b9e6d004de6ea52e3e9d68f6015f94b,http://dl.acm.org/citation.cfm?id=3240893 +023decb4c56f2e97d345593e4f7b89b667a6763d,http://doi.org/10.1007/s10994-005-3561-6 +fb1627ed224bf7b1e3d80c097316ed7703951df2,https://doi.org/10.1109/VCIP.2017.8305094 +43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,https://doi.org/10.1109/ICIP.2017.8296394 +ccca2263786429b1b3572886ce6a2bea8f0dfb26,https://doi.org/10.1007/s10044-014-0388-4 +5efdf48ca56b78e34dc2f2f0ce107a25793d3fc2,http://doi.ieeecomputersociety.org/10.1109/TVCG.2016.2641442 +c4a2cd5ec81cdfd894c9a20d4ffb8cda637aab1f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5326314 +31f1c92dbfa5aa338a21a0cb15d071cb9dc6e362,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337733 +838dad9d1d68d29be280d92e69410eaac40084bc,https://doi.org/10.1109/HPCSim.2014.6903749 +eedb2c34c36017b9c5aa6ce8bff2ab152e713cee,https://doi.org/10.1007/s00521-008-0225-z +bfdafe932f93b01632a5ba590627f0d41034705d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6134770 +cde7901c0945683d0c677b1bb415786e4f6081e6,http://doi.ieeecomputersociety.org/10.1109/IRI.2015.44 +70516aede32cf0dbc539abd9416c44faafc868bd,https://doi.org/10.1109/MICAI.2013.16 +7b455cbb320684f78cd8f2443f14ecf5f50426db,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.33 +874da338c01fb7a87d605fcde6c52835eee03d5e,http://doi.ieeecomputersociety.org/10.1109/ICAPR.2009.20 +ce30ddb5ceaddc0e7d308880a45c135287573d0e,https://doi.org/10.1109/ICSMC.2012.6378304 +f33bd953d2df0a5305fc8a93a37ff754459a906c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961800 +32b76220ed3a76310e3be72dab4e7d2db34aa490,https://doi.org/10.1109/SMC.2014.6974364 +1cfe8c1d341dbf8cc43040b37ca3552385adb10b,http://doi.acm.org/10.1145/2461466.2461473 +22c06284a908d8ad0994ad52119773a034eed7ee,http://doi.acm.org/10.1145/2964284.2967236 +1f02bf412a82ad99fe99dc3cfb3adec9dd41eabb,https://doi.org/10.1007/s11760-016-1052-9 +0f7e9199dad3237159e985e430dd2bf619ef2db5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883882 +636c786d4e4ac530ac85e3883a2f2cf469e45fe2,https://doi.org/10.1016/j.neucom.2016.12.043 +13f065d4e6dfe2a130bd64d73eee97d10d9f7d33,https://doi.org/10.1109/DICTA.2015.7371222 +cbfcd1ec8aa30e31faf205c73d350d447704afee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7955089 +785eeac2e236a85a45b4e0356c0745279c31e089,https://doi.org/10.1109/TIFS.2014.2359543 +127c7f87f289b1d32e729738475b337a6b042cf7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436988 +eacf974e235add458efb815ada1e5b82a05878fa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4577667 +283d381c5c2ba243013b1c4f5e3b29eb906fa823,http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.222 +77c3574a020757769b2ca807ff4b95a88eaa2a37,https://doi.org/10.1109/MSP.2015.2410783 +6196f4be3b28684f6528b8687adccbdf9ac5c67c,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.267 +d855791bc23b4aa8e751d6a4e2ae7f5566a991e8,http://doi.acm.org/10.1145/3012941 +b0358af78b7c5ee7adc883ef513bbcc84a18a02b,https://doi.org/10.1109/WACV.2017.10 +26a5136ee4502500fb50cd5ade814aad45422771,https://doi.org/10.1142/S0218001413560028 +050e51268b0fb03033428ac777ccfef2db752ab3,https://doi.org/10.1109/DICTA.2007.4426834 +c997744db532767ee757197491d8ac28d10f1c0f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364339 +68c5b4d9ce2a0c75ba515870923a4bd1b7d8f9b5,https://doi.org/10.1109/CISP-BMEI.2017.8301919 +e7144f5c19848e037bb96e225d1cfd961f82bd9f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.126 +ab68837d09986c592dcab7d08ee6dfb40e02916f,https://doi.org/10.1007/978-3-319-11289-3_23 +b5979489e11edd76607c219a8bdc83ba4a88ab38,https://doi.org/10.1109/ACCESS.2017.2778011 +8706c3d49d1136035f298041f03bb70dc074f24d,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.12 +11a6593e6e35f95ebeb5233897d1d8bcad6f9c87,https://doi.org/10.1007/s11063-017-9615-5 +84be18c7683417786c13d59026f30daeed8bd8c9,https://doi.org/10.1007/s00138-016-0755-9 +635d2696aa597a278dd6563f079be06aa76a33c0,https://doi.org/10.1109/ICIP.2016.7532429 +3bd10f7603c4f5a4737c5613722124787d0dd818,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415949 +d31328b12eef33e7722b8e5505d0f9d9abe2ffd9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373866 +b961e512242ddad7712855ab00b4d37723376e5d,http://doi.org/10.1007/s11554-010-0178-1 +57de1a09db680e0b4878ceda68d626ae4e44ccfe,https://doi.org/10.1016/j.neucom.2014.10.111 +c8585c95215bc53e28edb740678b3a0460ca8aa4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373829 +93eb3963bc20e28af26c53ef3bce1e76b15e3209,https://doi.org/10.1109/ICIP.2017.8296992 +a52a69bf304d49fba6eac6a73c5169834c77042d,https://doi.org/10.1109/LSP.2017.2789251 +d3a3d15a32644beffaac4322b9f165ed51cfd99b,https://doi.org/10.1109/SIU.2016.7496197 +05184f01e66d7139530729b281da74db35a178d2,http://ieeexplore.ieee.org/document/6460470/ +ad50f6899103eff0ee4504e539c38eb965fd1309,https://doi.org/10.1109/IJCNN.2010.5596374 +a92e24c8c53e31fc444a13bd75b434b7207c58f1,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2317711 +049186d674173ebb76496f9ecee55e17ed1ca41b,https://doi.org/10.1109/ACCESS.2017.2724763 +3cbd3124b1b4f95fcdf53abd358d7ceec7861dda,http://doi.acm.org/10.1145/3019612.3019641 +176d9121e4e645344de4706dfb345ad456bfb84a,https://doi.org/10.1117/1.JEI.24.2.023009 +864d50327a88d1ff588601bf14139299ced2356f,https://doi.org/10.1109/FSKD.2016.7603151 +a5f70e0cd7da2b2df05fadb356a24743f3cf459a,http://doi.org/10.1007/s11063-017-9649-8 +5278b7a6f1178bf5f90cd3388908925edff5ad46,https://doi.org/10.1007/s11704-015-4291-y +524c25217a6f1ed17f47871e947a5581d775fa56,https://doi.org/10.1117/12.2030875 +b6bb883dd14f2737d0d6225cf4acbf050d307634,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382306 +15a9f812e781cf85c283f7cf2aa2928b370329c5,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469281 +982ede05154c1afdcf6fc623ba45186a34f4b9f2,https://doi.org/10.1109/TMM.2017.2659221 +5642bafa7955b69f05c11230151cd59fcbe43b8e,https://doi.org/10.1007/s11760-012-0404-3 +7f9be0e08784835de0f8bc3a82fcca02b3721dc1,https://doi.org/10.1109/IJCNN.2014.6889744 +228ea13041910c41b50d0052bdce924037c3bc6a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434495 +09903df21a38e069273b80e94c8c29324963a832,http://doi.org/10.1007/s11042-017-4980-7 +2b286ed9f36240e1d11b585d65133db84b52122c,http://doi.acm.org/10.1145/3130800.3130837 +98fd92d68a143a5ced4a016fa3b7addd6b4a0122,http://doi.org/10.1007/s11704-016-6066-5 +93e1e195f294c463f4832c4686775bf386b3de39,https://doi.org/10.1109/TIP.2015.2490551 +40c1de7b1b0a087c590537df55ecd089c86e8bfc,http://doi.org/10.1162/NECO_a_00401 +adf9998214598469f7a097bc50de4c23784f2a5a,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.745 +ccb2ecb30a50460c9189bb55ba594f2300882747,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8334751 +b11b71b704629357fe13ed97b216b9554b0e7463,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736040 +972b1a7ef8cc9c83c2c6d8d126f94f27b567d7d0,http://doi.org/10.1007/978-3-319-99978-4 +bf37a81d572bb154581845b65a766fab1e5c7dda,http://doi.org/10.1007/s11760-017-1111-x +f6b4811c5e7111485e2c9cc5bf63f8ac80f3e2d7,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2569436 +5fb59cf5b31a80d8c70d91660092ef86494be577,https://doi.org/10.1109/CISP-BMEI.2017.8301923 +ed70d1a9435c0b32c0c75c1a062f4f07556f7016,https://doi.org/10.1109/ICIP.2015.7350774 +897aa4aaa474fed41233faec9b70b802aea5fdea,https://doi.org/10.1142/S0218001414560126 +35b3dc0e961a15a7a60b95490a989f91680acc7c,http://doi.ieeecomputersociety.org/10.1109/TDSC.2016.2550459 +fb3aaf18ea07b30d1836e7cf2ab9fa898627fe93,https://doi.org/10.1109/ACCESS.2017.2784096 +b58d381f9f953bfe24915246b65da872aa94f9aa,https://doi.org/10.1109/SMAP.2013.13 +b97c7f82c1439fa1e4525e5860cb05a39cc412ea,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430537 +5d9971c6a9d5c56463ea186850b16f8969a58e67,http://doi.org/10.1007/s11042-017-5354-x +32a440720ee988b7b41de204b2910775171ee12c,https://doi.org/10.1109/ICIP.2011.6116351 +8e9b92a805d1ce0bf4e0c04133d26e28db036e6a,https://doi.org/10.1109/DICTA.2017.8227428 +d9e34af95c21c0e114b61abccbc653480b370c3b,https://doi.org/10.1016/j.patcog.2005.10.020 +c586463b8dbedce2bfce3ee90517085a9d9e2e13,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2006.9 +f531ce18befc03489f647560ad3e5639566b39dc,http://doi.ieeecomputersociety.org/10.1109/ACOMP.2015.9 +8a63a2b10068b6a917e249fdc73173f5fd918db0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8120021 +e42f3c27391821f9873539fc3da125b83bffd5a2,https://doi.org/10.1109/HPCS.2010.5547096 +be7444c891caf295d162233bdae0e1c79791d566,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014816 +9b9f6e5eb6d7fa50300d67502e8fda1006594b84,http://dl.acm.org/citation.cfm?id=3123323 +9989eda2f5392cfe1f789bb0f6213a46d92d1302,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477584 +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4,http://doi.org/10.1007/s11554-016-0645-4 +e12b2c468850acb456b0097d5535fc6a0d34efe3,https://doi.org/10.1016/j.neucom.2011.03.009 +2a98b850139b911df5a336d6ebf33be7819ae122,https://doi.org/10.1109/ICIP.2015.7350806 +9ca542d744149f0efc8b8aac8289f5e38e6d200c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789587 +ab00ea1aa2f81fbe139b4632ec3682dfb7312ef0,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6835994 +696236fb6f986f6d5565abb01f402d09db68e5fa,http://doi.org/10.1007/s41095-018-0112-1 +ee2217f9d22d6a18aaf97f05768035c38305d1fa,https://doi.org/10.1109/APSIPA.2015.7415501 +11df25b4e074b7610ec304a8733fa47625d9faca,http://doi.org/10.1016/j.patrec.2012.09.024 +8ccbbd9da0749d96f09164e28480d54935ee171c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597578 +c05ae45c262b270df1e99a32efa35036aae8d950,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354120 +4909ed22b1310f1c6f2005be5ce3349e3259ff6a,https://doi.org/10.1109/ROBIO.2009.4913106 +61a3c45c9f802f9d5fa8d94fee811e203bac6487,https://doi.org/10.1109/TIFS.2016.2567318 +640e12837241d52d04379d3649d050ee3760048c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5692624 +0fcf04fda0bea5265b73c85d2cc2f7f70416537b,https://doi.org/10.1109/TCSVT.2015.2409012 +56fb30b24e7277b47d366ca2c491749eee4d6bb1,https://doi.org/10.1109/ICAPR.2015.7050658 +1473e6f2d250307f0421f1e2ea68b6485d3bd481,https://doi.org/10.1109/IJCNN.2016.7727333 +af3e6e20de06b03c33f8e85eced74c2d096730ea,https://doi.org/10.1109/CISP-BMEI.2017.8301972 +cf2e1ebb9609f46af6de0c15b4f48d03e37e54ba,http://arxiv.org/abs/1503.01521 +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225,http://doi.org/10.1007/978-3-319-11071-4 +2ef1b1b5ed732634e005df779fd9b21da0ffe60c,https://doi.org/10.1016/j.image.2017.03.012 +ae89e464576209b1082da38e0cee7aeabd03d932,https://doi.org/10.1007/s00521-005-0017-7 +c9832564d5dc601113b4d80e5a05ede6fee9f7dd,https://doi.org/10.1109/ISBA.2017.7947687 +7ec431e36919e29524eceb1431d3e1202637cf19,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8365242 +2a612a7037646276ff98141d3e7abbc9c91fccb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909615 +5fa6f72d3fe16f9160d221e28da35c1e67a5d951,http://doi.acm.org/10.1145/3061639.3062182 +a168ca2e199121258fbb2b6c821207456e5bf994,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553808 +8f99f7ccb85af6d4b9e015a9b215c529126e7844,https://doi.org/10.1109/ROMAN.2017.8172359 +003ba2001bd2614d309d6ec15e9e2cbe86db03a1,https://doi.org/10.1109/ISCAS.2005.1465264 +f27e5a13c1c424504b63a9084c50f491c1b17978,http://dl.acm.org/citation.cfm?id=3097991 +feea73095b1be0cbae1ad7af8ba2c4fb6f316d35,http://dl.acm.org/citation.cfm?id=3126693 +8dd9c97b85e883c16e5b1ec260f9cd610df52dec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404159 +e52f73c77c7eaece6f2d8fdd0f15327f9f007261,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099713 +782eee555067b2d6d24db87775e1ded5fb047491,https://doi.org/10.1109/MMSP.2008.4665158 +e57014b4106dd1355e69a0f60bb533615a705606,http://doi.org/10.1007/s13748-018-0143-y +b6f15bf8723b2d5390122442ab04630d2d3878d8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163142 +b69bcb5f73999ea12ff4ac1ac853b72cd5096b2d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613024 +f839ae810338e3b12c8e2f8db6ce4d725738d2d9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.115 +919bdc161485615d5ee571b1585c1eb0539822c8,http://ieeexplore.ieee.org/document/6460332/ +4328933890f5a89ad0af69990926d8484f403e4b,http://doi.acm.org/10.1145/2072298.2071993 +b484141b99d3478a12b8a6854864c4b875d289b8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117595 +7361b900018f22e37499443643be1ff9d20edfd6,http://doi.org/10.1049/iet-bmt.2016.0169 +d4b4020e289c095ce2c2941685c6cd37667f5cc9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7489442 +a7da7e5a6a4b53bf8736c470ff8381a654e8c965,https://doi.org/10.1007/s13042-011-0045-9 +bb0ecedde7d6e837dc9a5e115302a2aaad1035e1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373838 +3dce635ce4b55fb63fc6d41b38640403b152a048,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411225 +62fddae74c553ac9e34f511a2957b1614eb4f937,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406684 +f0b4f5104571020206b2d5e606c4d70f496983f9,https://doi.org/10.1109/FUZZ-IEEE.2014.6891674 +c98def5f9d0c6ae519fe0aeebe5378f65b14e496,https://doi.org/10.1117/12.2064730 +29db16efc3b378c50511f743e5197a4c0b9e902f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406401 +7f8d2d7eaa03132caefe0f3b126b5b369a712c9d,http://doi.ieeecomputersociety.org/10.1109/ACHI.2009.33 +fa9610c2dc7e2a79e0096ac033b11508d8ae7ed7,https://doi.org/10.1109/FSKD.2016.7603418 +95289007f2f336e6636cf8f920225b8d47c6e94f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6472796 +42fff5b37006009c2dbfab63c0375c7c7d7d8ee3,https://doi.org/10.1007/s11042-014-2228-3 +c252bc84356ed69ccf53507752135b6e98de8db4,https://doi.org/10.1016/j.neucom.2015.02.067 +705e086bb666d129a6969882cfa49282116a638e,https://doi.org/10.1109/TNNLS.2014.2376963 +205f035ec90a7fa50fd04fdca390ce83c0eea958,http://doi.acm.org/10.1145/3131287 +dfbbe8100fcd70322a431bd5d2c2d52a65fd4bbd,http://doi.acm.org/10.1145/2818346.2823313 +1c0acf9c2f2c43be47b34acbd4e7338de360e555,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461986 +110359824a0e3b6480102b108372793265a24a86,https://doi.org/10.1016/j.image.2016.03.011 +6256b47342f080c62acd106095cf164df2be6020,https://doi.org/10.1007/978-3-319-24702-1_6 +b34fdab6864782ce60fd90d09f5d886bd83f84f5,https://doi.org/10.1002/cpe.3766 +d1ee9e63c8826a39d75fa32711fddbcc58d5161a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613000 +61329bc767152f01aa502989abc854b53047e52c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450832 +aeb36fac7516753a14c3c690f352de78e70f8c6e,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2013.13 +aa892fe17c06e2b18db2b12314499a741e755df7,https://doi.org/10.1109/IJCNN.2017.7966089 +f11c76efdc9651db329c8c862652820d61933308,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100 +e9b0a27018c7151016a9fe01c98b4c21d6ebf4be,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471957 +9d5bfaf6191484022a6731ce13ac1b866d21ad18,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139086 +a0f6196d27a39cde2dbf62c08d89cbe489600bb0,https://doi.org/10.1016/j.cose.2016.03.007 +3cc2a2eaaacbf96c6b9abc1cf91bfefabf6fcfdd,https://doi.org/10.1109/TCSVT.2014.2317887 +2ce1bac5ddc4cf668bbbb8879cd21dfb94b5cfe4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099709 +c1c2775e19d6fd2ad6616f69bda92ac8927106a2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6196236 +54ba18952fe36c9be9f2ab11faecd43d123b389b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163085 +f5603ceaebe3caf6a812edef9c4b38def78cbf34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4455998 +ca44a838da4187617dca9f6249d8c4b604661ec7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7351564 +8cffe360a05085d4bcba111a3a3cd113d96c0369,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248 +1eb9c859ff7537182a25556635954bcd11830822,https://doi.org/10.1109/ICDSP.2015.7252004 +4f8345f31e38f65f1155569238d14bd8517606f4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618941 +7e48711c627edf90e9b232f2cbc0e3576c8f2f2a,https://doi.org/10.1007/s11760-015-0777-1 +e69a765d033ef6ea55c57ca41c146b27964c5cf2,https://doi.org/10.1109/ISCAS.2017.8050764 +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,http://doi.org/10.1134/S1054661818030136 +b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,https://doi.org/10.1109/GlobalSIP.2017.8309138 +3b21aaf7def52964cf1fcc5f11520a7618c8fae3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099900 +4dbfbe5fd96c9efc8c3c2fd54406b62979482678,https://doi.org/10.1016/j.jvcir.2014.07.007 +0701b01bc99bf3b64050690ceadb58a8800e81ed,https://doi.org/10.1007/s11042-015-3107-2 +4e8f301dbedc9063831da1306b294f2bd5b10477,https://doi.org/10.1109/BIOSIG.2016.7736919 +9057044c0347fb9798a9b552910a9aff150385db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6778411 +22d5aeb25bb034f6ae2fc50b5cdd9934a85d6505,http://doi.acm.org/10.1145/2808469.2810102 +a2b4a6c6b32900a066d0257ae6d4526db872afe2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466 +080ab68a898a3703feead145e2c38361ae84a0a8,https://doi.org/10.1109/TIFS.2014.2343833 +f472cb8380a41c540cfea32ebb4575da241c0288,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284869 +8598d31c7ca9c8f5bb433409af5e472a75037b4d,https://doi.org/10.1109/JPROC.2008.916364 +3c086601ce0bac61047b5b931b253bd4035e1e7a,https://doi.org/10.1109/ICIP.2015.7350897 +44d93039eec244083ac7c46577b9446b3a071f3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1415571 +493c8591d6a1bef5d7b84164a73761cefb9f5a25,http://dl.acm.org/citation.cfm?id=3159691 +1aa61dd85d3a5a2fe819cba21192ec4471c08628,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359518 +d34f546e61eccbac2450ca7490f558e751e13ec3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461800 +3e01f2fefe219bfeb112f1d82e76ebba4c0e2aac,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836097 +ed32df6b122b15a52238777c9993ed31107b4bed,http://doi.org/10.1016/j.eswa.2017.03.008 +f4ba07d2ae6c9673502daf50ee751a5e9262848f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810 +52b102620fff029b80b3193bec147fe6afd6f42e,http://dl.acm.org/citation.cfm?id=3028863 +a98ff1c2e3c22e3d0a41a2718e4587537b92da0a,http://doi.org/10.1007/978-3-319-68548-9_19 +c23bd1917badd27093c8284bd324332b8c45bfcf,https://doi.org/10.1109/IJCNN.2010.5596316 +32bab8fe6db08c9d1e906be8a9c7e8cf7a0f0b99,http://doi.ieeecomputersociety.org/10.1109/CIS.2007.196 +64e216c128164f56bc91a33c18ab461647384869,http://doi.ieeecomputersociety.org/10.1109/AVSS.2016.7738017 +7f4040b482d16354d5938c1d1b926b544652bf5b,http://doi.acm.org/10.1145/2502081.2502115 +2ae2e29c3e9cc2d94a26da5730df7845de0d631b,https://doi.org/10.1109/TCSVT.2011.2129670 +9abab00de61dd722b3ad1b8fa9bffd0001763f8b,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2420563 +a76969df111f9ee9f0b898b51ad23a721d289bdc,https://doi.org/10.1109/ICMLA.2015.185 +53509017a25ac074b5010bb1cdba293cdf399e9b,http://doi.ieeecomputersociety.org/10.1109/AVSS.2012.41 +f1e44e64957397d167d13f8f551cae99e5c16c75,https://doi.org/10.1007/s11042-013-1548-z +f1061b2b5b7ca32edd5aa486aecc63a0972c84f3,https://doi.org/10.1109/TIP.2017.2760512 +9166f46aa3e58befaefd3537e5a11b31ebeea4d0,https://doi.org/10.1109/ICIP.2015.7351505 +2f73203fd71b755a9601d00fc202bbbd0a595110,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868 +a8bb698d1bb21b81497ef68f0f52fa6eaf14a6bf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6587752 +1951dc9dd4601168ab5acf4c14043b124a8e2f67,http://doi.org/10.1162/neco_a_01116 +cca476114c48871d05537abb303061de5ab010d6,https://doi.org/10.15439/2016F472 +ecdd83002f69c2ccc644d07abb44dd939542d89d,https://doi.org/10.1016/j.neucom.2015.07.011 +b98e7a8f605c21e25ac5e32bfb1851a01f30081b,http://doi.acm.org/10.1145/2393347.2396303 +48906f609446afcdaacbe1d65770d7a6165a8eee,https://doi.org/10.1007/s12559-017-9482-4 +93c0405b1f5432eab11cb5180229720604ffd030,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462228 +dac6e9d708a9757f848409f25df99c5a561c863c,https://doi.org/10.1109/LSP.2014.2334656 +a216f7863fc6ab15e2bb7a538dfe00924e1da0ab,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163087 +b313751548018e4ecd5ae2ce6b3b94fbd9cae33e,http://doi.org/10.1007/s11263-008-0143-7 +dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,http://doi.org/10.1007/s11042-017-4646-5 +179564f157a96787b1b3380a9f79701e3394013d,http://dl.acm.org/citation.cfm?id=2493502 +d2fac640086ba89271ad7c1ebf36239ecd64605e,http://ieeexplore.ieee.org/document/6460449/ +9c2f20ed168743071db6268480a966d5d238a7ee,http://dl.acm.org/citation.cfm?id=1456304 +f19bf8b5c1860cd81b5339804d5db9e791085aa7,https://doi.org/10.1109/SMC.2017.8122640 +ca0804050cf9d7e3ed311f9be9c7f829e5e6a003,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1333904 +05a116cb6e220f96837e4418de4aa8e39839c996,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.30 +bc08dfa22949fbe54e15b1a6379afade71835968,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899970 +16fadde3e68bba301f9829b3f99157191106bd0f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4562953 +e546572f8205570de4518bcf8d0345465e51d7a0,https://doi.org/10.1109/ICIP.2015.7351318 +b7845e0b0ce17cde7db37d5524ef2a61dee3e540,https://doi.org/10.1109/ICPR.2016.7899608 +a3ed0f15824802359e05d9777cacd5488dfa7dba,http://doi.acm.org/10.1145/2851581.2892282 +1a47f12a2490f6775c0ad863ac856de27f5b3e03,https://doi.org/10.1016/j.sigpro.2014.11.010 +a9af0dc1e7a724464d4b9d174c9cf2441e34d487,https://doi.org/10.1142/S0219691316500351 +ee6e4324123b99d94a7a23d9bddf026f39903693,https://doi.org/10.1109/ISMICT.2013.6521709 +43cbe3522f356fbf07b1ff0def73756391dc3454,https://doi.org/10.1109/WIFS.2011.6123140 +cf784156547c3be146706e2763c1a52d939d1722,https://doi.org/10.1007/s11042-017-5038-6 +0f29bc5d8458358d74dc8c4fd6968b4182dd71d2,https://doi.org/10.1109/ICIP.2016.7532637 +2340d810c515dc0c9fd319f598fa8012dc0368a0,https://doi.org/10.1109/AFGR.2008.4813420 +af97e792827438ddea1d5900960571939fc0533e,https://doi.org/10.1109/ICSMC.2005.1571460 +ec39e9c21d6e2576f21936b1ecc1574dadaf291e,https://doi.org/10.1109/WACV.2017.130 +a92c207031b0778572bf41803dba1a21076e128b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433557 +c0c0b8558b17aa20debc4611275a4c69edd1e2a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909629 +3d4d3f70352dc833e454a5756d682f27eca46e5d,http://doi.ieeecomputersociety.org/10.1109/FG.2017.32 +aaec8141d57d29aa3cedf1baec9633180ddb7a3d,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552916 +edd6ed94207ab614c71ac0591d304a708d708e7b,http://doi.org/10.1016/j.neucom.2012.02.001 +87b607b8d4858a16731144d17f457a54e488f15d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597532 +1a40c2a2d17c52c8b9d20648647d0886e30a60fa,https://doi.org/10.1109/ICPR.2016.7900283 +8202da548a128b28dd1f3aa9f86a0523ec2ecb26,http://doi.org/10.1016/j.ijar.2012.01.003 +552122432b92129d7e7059ef40dc5f6045f422b5,http://doi.org/10.1007/s11263-017-1000-3 +6489ad111fee8224b34f99d1bcfb5122786508cd,https://doi.org/10.1109/ICIP.2014.7025280 +9e5809122c0880183c7e42c7edd997f92de6d81e,http://doi.acm.org/10.1145/2451176.2451209 +d05759932001aa6f1f71e7dc261c4716f57a5397,https://doi.org/10.1109/ISBA.2015.7126365 +f702a6cf6bc5e4cf53ea72baa4fc9d80cdbbae93,https://doi.org/10.1109/TCSVT.2007.903317 +2f1485994ef2c09a7bb2874eb8252be8fe710db1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780700 +b40c001b3e304dccb28c745bd54aa281c8ff1f29,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072 +b299c292b84aeb4f080a8b39677a8e0d07d51b27,http://doi.ieeecomputersociety.org/10.1109/ICDM.2015.23 +eefecac463ebfc0694b9831e842b574f3954fed6,http://doi.ieeecomputersociety.org/10.1109/SNPD.2013.15 +7bc1e7d000ab517161a83b1fedf353e619516ddf,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836068 +e4df98e4b45a598661a47a0a8900065716dafd6d,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2015.219 +d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,https://doi.org/10.1109/LSP.2017.2661983 +007fbc7a1d7eae33b2bb59b175dd1033e5e178f3,http://dl.acm.org/citation.cfm?id=3209659 +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae,http://dl.acm.org/citation.cfm?id=3230921 +ec00ecb64fa206cea8b2e716955a738a96424084,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265512 +ba30cc9d8bac724dafc0aea247159cc7e7105784,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019360 +b806a31c093b31e98cc5fca7e3ec53f2cc169db9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995928 +cfba667644508853844c45bfe5d0b8a2ffb756d3,https://doi.org/10.1109/ISBA.2018.8311455 +865d4ce1751ff3c0a8eb41077a9aa7bd94603c47,https://doi.org/10.1007/s12193-015-0210-7 +cc6d3ccc9e3dd0a43313a714316c8783cd879572,https://doi.org/10.1109/ICIP.2017.8296802 +cea2911ccabab40e9c1e5bcc0aa1127cab0c789f,http://doi.org/10.1007/s11042-015-2847-3 +383ff2d66fecdc2fd02a31ac1fa392f48e578296,https://doi.org/10.1016/j.cviu.2015.07.005 +10f4bbf87a44bab3d79e330e486c897e95f5f33f,https://doi.org/10.1109/TIFS.2012.2186292 +4398afa0aeb5749a12772f2d81ca688066636019,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2496320 +8f73af52d87c94d0bd43242462fd68d974eda331,https://doi.org/10.1109/ICB.2013.6613009 +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393012 +46c82cfadd9f885f5480b2d7155f0985daf949fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780537 +bf1e0545785b05b47caa3ffe7d16982769986f38,https://doi.org/10.1016/j.asoc.2010.12.002 +5ed5e534c8defd683909200c1dc31692942b7b5f,http://doi.acm.org/10.1145/2983926 +310fe4e6cb6d090f7817de4c1034e35567b56e34,https://doi.org/10.1109/ICPR.2014.313 +5de9670f72d10682bf2cb3156988346257e0489f,http://doi.org/10.1016/j.inffus.2015.12.004 +3b350afd8b82487aa97097170c269a25daa0c82d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8248664 +ad6cc071b2585e4bdb6233b7ad8d63e12538537d,https://doi.org/10.1007/s10462-010-9172-z +3fa628e7cff0b1dad3f15de98f99b0fdb09df834,http://doi.ieeecomputersociety.org/10.1109/ICME.2013.6607603 +25bcd5aa3bbe56c992547fba683418655b46fc4a,https://doi.org/10.1016/j.eswa.2017.03.030 +dbf2d2ca28582031be6d16519ab887248f5e8ad8,https://doi.org/10.1109/TMM.2015.2410135 +526c79c6ce39882310b814b7918449d48662e2a9,https://doi.org/10.1109/ICASSP.2005.1416338 +21bd60919e2e182a29af455353141ba4907b1b41,https://doi.org/10.1109/ACCESS.2018.2798573 +6d5f876a73799cc628e4ad2d9cfcd88091272342,https://doi.org/10.1109/TSMCC.2005.848193 +047ce307ad0c871bc2c9a5c1e4649cefae2ba50d,https://doi.org/10.1109/ICRA.2012.6224587 +60821d447e5b8a96dd9294a0514911e1141ff620,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813328 +605f6817018a572797095b83bec7fae7195b2abc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339020 +f9752fd07b14505d0438bc3e14b23d7f0fe7f48b,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2009.114 +6f16f4bd01aeefdd03d6783beacb7de118f5af8a,https://doi.org/10.1109/VCIP.2013.6706330 +3cd22b5b81a0172d608ff14be71b755d1f68c201,https://doi.org/10.1109/ACCESS.2018.2812725 +75b51140d08acdc7f0af11b0ffa1edb40ebbd059,https://doi.org/10.1007/s00521-010-0381-9 +a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,https://doi.org/10.1109/TIP.2015.2481327 +1bd9dbe78918ed17b0a3ac40623f044cb3d3552c,http://doi.org/10.1038/nn870 +d75bd05865224a1341731da66b8d812a7924d6f6,https://doi.org/10.1109/TSMCB.2012.2217127 +2e36b63fdf1353425a57a0665b0d0274efe92963,http://doi.acm.org/10.1145/3152771.3156179 +ca60d007af691558de377cab5e865b5373d80a44,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273630 +502d30c5eac92c7db587d85d080343fbd9bc469e,https://doi.org/10.1109/TIFS.2016.2538744 +b104c8ef6735eba1d29f50c99bbbf99d33fc8dc2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415357 +9e105c4a176465d14434fb3f5bae67f57ff5fba2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354230 +90c4deaa538da42b9b044d7b68c3692cced66036,http://doi.ieeecomputersociety.org/10.1109/SITIS.2007.89 +673541a8cb1aa3ac63a288523ba71aec2a38280e,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552971 +b759936982d6fb25c55c98955f6955582bdaeb27,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7472169 +0b8839945259ec764ef0fad47471f34db39f40c3,https://doi.org/10.1109/DESEC.2017.8073838 +4b7f21b48c7e0dc7334e36108f558d54642c17c0,https://doi.org/10.1109/WACV.2017.106 +b234d429c9ea682e54fca52f4b889b3170f65ffc,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22 +193474d008cab9fa1c1fa81ce094d415f00b075c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466415 +4c0cc732314ba3ccccd9036e019b1cfc27850c17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854473 +a5d4cc596446517dfaa4d92276a12d5e1c0a284c,https://doi.org/10.1016/j.patrec.2009.06.002 +a6b5ca99432c23392cec682aebb8295c0283728b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302395 +de048065ea2c5b3e306e2c963533df055e7dfcaa,https://doi.org/10.1109/LSP.2016.2598878 +4cec3e5776090852bef015a8bbe74fed862aa2dd,https://doi.org/10.1109/TSP.2013.2271479 +55c4efc082a8410b528af7325de8148b80cf41e3,http://dl.acm.org/citation.cfm?id=3231899 +6ba3cb67bcdb7aea8a07e144c03b8c5a79c19bc0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8246530 +c92e36689ef561df726a7ae861d9c166c3934908,https://doi.org/10.1109/ICPR.2016.7900140 +7234468db46b37e2027ab2978c67b48b8581f796,https://doi.org/10.1109/ACPR.2015.7486464 +ac2e166c76c103f17fdea2b4ecb137200b8d4703,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5373798 +bef926d63512dbffcf1af59f72295ef497f5acf9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6990726 +13d430257d595231bda216ef859950caa736ad1d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394947 +69a9cf9bc8e585782824666fa3fb5ce5cf07cef2,https://doi.org/10.1007/s11390-017-1738-7 +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4,http://doi.org/10.1007/s11042-018-5806-y +6d2fd0a9cbea13e840f962ba7c8a9771ec437d3a,http://doi.org/10.1007/s11063-017-9715-2 +6f8cffd9904415c8fa3a1e650ac143867a04f40a,https://doi.org/10.1016/j.neucom.2015.01.099 +9df86395c11565afa8683f6f0a9ca005485c5589,https://doi.org/10.1007/s00530-014-0400-2 +aa90a466a2ff7781c36e7da7df0013aa5b117510,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.159 +0821028073981f9bd2dba2ad2557b25403fe7d7d,http://doi.acm.org/10.1145/2733373.2806318 +31dd6bafd6e7c6095eb8d0591abac3b0106a75e3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457336 +6343bc0013343b6a5f96154f02d18dcd36a3f74c,https://doi.org/10.1007/s11042-014-2083-2 +0be015e2f9a1d2acebc3afb6e0f6948dd2f9d23d,https://doi.org/10.1007/s12193-013-0133-0 +489b7e12a420eff0d585f3f866e76b838c2cd275,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477675 +c4541802086461420afb1ecb5bb8ccd5962a9f02,https://doi.org/10.1109/TSMCB.2009.2029076 +01e14d8ffd6767336d50c2b817a7b7744903e567,http://doi.ieeecomputersociety.org/10.1109/FG.2017.128 +592370b4c7b58a2a141e507f3a2cc5bbd247a62e,https://doi.org/10.1109/IJCNN.2017.7965911 +d6ae7941dcec920d5726d50d1b1cdfe4dde34d35,http://dl.acm.org/citation.cfm?id=31310887 +c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014811 +0c247ac797a5d4035469abc3f9a0a2ccba49f4d8,https://doi.org/10.1109/ICMLC.2011.6016715 +942b89d8d17e89e58c82453de2bfcbbeb09adc81,https://doi.org/10.1016/j.patcog.2016.02.019 +3ffbc912de7bad720c995385e1fdc439b1046148,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2008.347 +f1d6da83dcf71eda45a56a86c5ae13e7f45a8536,https://doi.org/10.1109/ACCESS.2017.2737544 +46c1af268d4b3c61a0a12be091ca008a3a60e4cd,https://doi.org/10.1007/s11042-016-3592-y +14d7bce17265738f10f48987bb7bffb3eafc676e,http://ieeexplore.ieee.org/document/7514504/ +affa61d044daa1a7d43a6803a743eab47c89c45d,https://doi.org/10.1109/TNNLS.2015.2405574 +21b5af67618fcc047b495d2d5d7c2bf145753633,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771442 +d4453ec649dbde752e74da8ab0984c6f15cc6e06,http://doi.org/10.1007/s11042-016-3361-y +aa1607090fbc80ab1e9c0f25ffe8b75b777e5fd8,https://www.sciencedirect.com/science/article/pii/S0006322316331110 +2d2fb01f761d21a459cfb34935bc47ab45a9913b,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2346515 +6c92d87c84fa5e5d2bb5bed3ef38168786bacc49,http://dl.acm.org/citation.cfm?id=2501650 +fef6f1e04fa64f2f26ac9f01cd143dd19e549790,http://doi.acm.org/10.1145/3123266.3123451 +b8fc620a1563511744f1a9386bdfa09a2ea0f71b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411214 +5bed2453a5b0c54a4a4a294f29c9658658a9881e,https://doi.org/10.1109/TIP.2015.2451173 +be40014beffaa9faacee12bb3412969f98b6a43d,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.454 +6da711d07b63c9f24d143ca3991070736baeb412,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7000295 +425ea5656c7cf57f14781bafed51182b2e6da65f,https://doi.org/10.1109/TIP.2017.2718187 +a6ce1a1de164f41cb8999c728bceedf65d66bb23,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7170694 +e0423788eb91772de9d708a17799179cf3230d63,http://doi.acm.org/10.1145/3093241.3093277 +ecac3da2ff8bc2ba55981467f7fdea9de80e2092,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301635 +f4411787688ca40466ee059ec64bf56d746733c1,https://doi.org/10.1007/s12652-012-0107-1 +863ad2838b9b90d4461995f498a39bcd2fb87c73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265580 +021469757d626a39639e260492eea7d3e8563820,https://doi.org/10.1007/b116723 +464ef1b3dcbe84099c904b6f9e9281c5f6fd75eb,https://doi.org/10.1109/TIP.2014.2359765 +3aebaaf888cba25be25097173d0b3af73d9ce7f9,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.49 +c9c2de3628be7e249722b12911bebad84b567ce6,https://doi.org/10.1016/j.patcog.2017.06.028 +c0945953506a3d531331caf6c2b2a6d027e319f0,https://doi.org/10.1002/cav.49 +24286ef164f0e12c3e9590ec7f636871ba253026,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369721 +2d94dfa9c8f6708e071ef38d58f9f9bcb374cd84,https://doi.org/10.1109/CVPRW.2011.5981817 +51f626540860ad75b68206025a45466a6d087aa6,https://doi.org/10.1109/ICIP.2017.8296595 +dbc3ab8c9f564f038e7779b87900c4a0426f3dd1,http://doi.acm.org/10.1145/1386352.1386401 +dd6826e9520a6e72bcd24d1bdb930e78c1083b31,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7106467 +3fe3d6ff7e5320f4395571131708ecaef6ef4550,https://doi.org/10.1109/SITIS.2016.60 +720763bcb5e0507f13a8a319018676eb24270ff0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5202783 +fc7f140fcedfe54dd63769268a36ff3f175662b5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8013122 +b3e60bb5627312b72c99c5ef18aa41bcc1d21aea,https://doi.org/10.1109/SPAC.2014.6982690 +51b42da0706a1260430f27badcf9ee6694768b9b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471882 +fd38163654a0551ed7f4e442851508106e6105d9,https://doi.org/10.1109/ICNSC.2008.4525311 +2dbc57abf3ceda80827b85593ce1f457b76a870b,http://doi.org/10.1007/s11042-018-6133-z +85a136b48c2036b16f444f93b086e2bd8539a498,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7885525 +ebfdb4842c69177b65022f00d3d038d645f3260b,http://doi.ieeecomputersociety.org/10.1109/CVPR.2006.154 +076c97826df63f70d55ea11f0b7ae47a7ad81ad3,http://doi.ieeecomputersociety.org/10.1109/SITIS.2011.40 +158aa18c724107587bcc4137252d0ba10debf417,https://doi.org/10.1109/ACSSC.2016.7869522 +9944c451b4a487940d3fd8819080fe16d627892d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612967 +0ef20991e0ecc7dc3f6e0e5fd6ee93c4970206f3,https://doi.org/10.1109/ICIP.2015.7351013 +64ba203c8cfc631d5f3f20419880523155fbeeb2,http://doi.acm.org/10.1145/3009977.3010008 +b36a80d15c3e48870ea6118b855055cc34307658,https://doi.org/10.1109/ICPR.2014.17 +74d3ff8324e02503c18fb2566ed29e2e22ce0d1b,http://doi.ieeecomputersociety.org/10.1109/IAS.2009.266 +d3d39e419ac98db2de1a9d5a05cb0b4ca5cae8fd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619296 +70e14e216b12bed2211c4df66ef5f0bdeaffe774,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237666 +ea8d217231d4380071132ce37bf997164b60ec44,https://doi.org/10.1109/SIU.2016.7496031 +9c59bb28054eee783a40b467c82f38021c19ff3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7178311 +af12a79892bd030c19dfea392f7a7ccb0e7ebb72,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247972 +7f203f2ff6721e73738720589ea83adddb7fdd27,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301513 +c4e2d5ebfebbb9dcee6a9866c3d6290481496df5,http://doi.org/10.1007/s00138-012-0439-z +5951e9e13ff99f97f301a336f24a14d80459c659,https://doi.org/10.1016/j.neucom.2017.09.009 +2b300985a507533db3ec9bd38ade16a32345968e,https://doi.org/10.1007/s11042-015-3070-y +504d2675da7a56a36386568ee668938df6d82bbe,https://doi.org/10.1109/TCSVT.2016.2539604 +4cfe921ac4650470b0473fd52a2b801f4494ee64,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6467429 +14efb131bed66f1874dd96170f714def8db45d90,http://doi.acm.org/10.1145/2818346.2830585 +0aebe97a92f590bdf21cdadfddec8061c682cdb2,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2695183 +a961f1234e963a7945fed70197015678149b37d8,http://dl.acm.org/citation.cfm?id=3206068 +4f1249369127cc2e2894f6b2f1052d399794919a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663 +b084ad222c1fc9409d355d8e54ac3d1e86f2ca18,https://doi.org/10.1016/j.neucom.2017.04.001 +3e7070323bca6106f19bea4c97ef67bd6249cb5d,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477448 +885c37f94e9edbbb2177cfba8cb1ad840b2a5f20,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8006255 +176e6ba56e04c98e1997ffdef964ece90fd827b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8322125 +9048732c8591a92a1f4f589b520a733f07578f80,https://doi.org/10.1109/CISP-BMEI.2017.8301921 +4fac09969ee80d485876e3198c7177181c600a4a,http://doi.ieeecomputersociety.org/10.1109/CRV.2015.32 +02e668f9b75f4a526c6fdf7268c8c1936d8e6f09,https://doi.org/10.1142/S0218001411008968 +f070d739fb812d38571ec77490ccd8777e95ce7a,http://doi.org/10.1016/j.patcog.2014.09.007 +adad7446e371d27fdaee39475856e2058f3045e5,https://doi.org/10.1109/ISCAS.2013.6572295 +8355d095d3534ef511a9af68a3b2893339e3f96b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390 +1b2d9a1c067f692dd48991beff03cd62b9faebf2,https://doi.org/10.1109/ICIP.2011.6116302 +fddca9e7d892a97073ada88eec39e03e44b8c46a,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.305 +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392250 +bb4be8e24d7b8ed56d81edec435b7b59bad96214,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7060677 +fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,https://doi.org/10.1109/TIM.2015.2415012 +3e0377af0087b9b836bf6d95bc1c7085dfde4897,http://doi.acm.org/10.1145/2671188.2749320 +0be418e63d111e3b94813875f75909e4dc27d13a,https://doi.org/10.1109/ICB.2016.7550057 +f3cdd2c3180aa2bf08320ddd3b9a56f9fe00e72b,http://doi.org/10.1016/j.patrec.2013.03.022 +53507e2de66eaba996f14fd2f54a5535056f1e59,http://doi.org/10.1016/j.sigpro.2017.10.024 +d3dea0cd65ab3da14cb7b3bd0ec59531d98508aa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728015 +4349f17ec319ac8b25c14c2ec8c35f374b958066,https://doi.org/10.1109/THMS.2017.2681425 +263ed62f94ea615c747c00ebbb4008385285b33b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319974 +f5a95f857496db376d69f7ac844d1f56e3577b75,https://doi.org/10.1007/s12193-012-0107-7 +7535e3995deb84a879dc13857e2bc0796a2f7ce2,https://doi.org/10.1007/s10618-010-0207-5 +d4f0960c6587379ad7df7928c256776e25952c60,https://www.ncbi.nlm.nih.gov/pubmed/29107889 +19bbecead81e34b94111a2f584cf55db9a80e60c,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248025 +657e702326a1cbc561e059476e9be4d417c37795,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343704 +89272b78b651038ff4d294b9ccca0018d2c9033b,https://doi.org/10.1109/ICPR.2014.777 +fa641327dc5873276f0af453a2caa1634c16f143,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789590 +fb7bf10cbc583db5d5eee945aa633fcb968e01ad,https://doi.org/10.1007/s00521-012-0962-x +9a59abdf3460970de53e09cb397f47d86744f472,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995399 +2945cc9e821ab87fa17afc8802f3858435d1264c,https://doi.org/10.1109/ICPR.2016.7899839 +c5e37630d0672e4d44f7dee83ac2c1528be41c2e,http://dl.acm.org/citation.cfm?id=3078973 +b8978a5251b6e341a1171e4fd9177aec1432dd3a,https://doi.org/10.1016/j.image.2016.04.004 +7a595800b490ff437ab06fe7612a678d5fe2b57d,https://doi.org/10.1109/MMSP.2009.5293285 +6689aee6c9599c1af4c607ea5385ac0c2cf0c4b3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8335166 +eb02daee558e483427ebcf5d1f142f6443a6de6b,http://doi.acm.org/10.1145/2911996.2912019 +c3c463a9ee464bb610423b7203300a83a166b500,https://doi.org/10.1109/ICIP.2014.7025069 +4cc326fc977cf967eef5f3135bf0c48d07b79e2d,http://doi.org/10.1007/s11042-016-3830-3 +a5eb36f1e77245dfc9e5c0c03998529331e4c89b,https://doi.org/10.1109/BTAS.2014.6996222 +dd715a98dab34437ad05758b20cc640c2cdc5715,https://doi.org/10.1007/s41095-017-0082-8 +e83e5960c2aabab654e1545eb419ef64c25800d5,https://doi.org/10.1016/j.neunet.2016.08.011 +3b75681f0162752865d85befd8b15e7d954ebfe6,https://doi.org/10.1109/CLEI.2014.6965097 +9d01eca806e0f98c5b3c9a865cec1bd8c78e0f0c,http://doi.acm.org/10.1145/3136755.3137032 +a78b5495a4223b9784cc53670cc10b6f0beefd32,http://doi.org/10.1007/s11042-018-6260-6 +d8e5d94c3c8688f0ca0ee656c79847c7df04c77d,https://doi.org/10.1007/s12193-015-0187-2 +5180c98815d7034e753a14ef6f54583f115da3aa,http://doi.ieeecomputersociety.org/10.1109/iV.2017.40 +ff3859917d4121f47de0d46922a103c78514fcab,https://doi.org/10.1109/ICB.2016.7550050 +265a88a8805f6ba3efae3fcc93d810be1ea68866,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342346 +ad339a5fdaab95f3c8aad83b60ceba8d76107fa2,https://doi.org/10.1023/B:VISI.0000013090.39095.d5 +141cb9ee401f223220d3468592effa90f0c255fa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815403 +196c12571ab51273f44ea3469d16301d5b8d2828,http://doi.org/10.1007/s00371-018-1494-x +758d481bbf24d12615b751fd9ec121500a648bce,http://doi.org/10.1007/s11042-015-2914-9 +8dfe43c76b76a97f8938f5f5f81059a1f1fa74ed,http://doi.org/10.1038/s41598-017-18993-5 +83d50257eb4c0aa8d16d27bf2ee8d0614fd63bf6,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284834 +ed184fda0306079f2ee55a1ae60fbf675c8e11c6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6802347 +39acf4bb06b889686ca17fd8c89887a3cec26554,http://www.springerlink.com/index/10.1007/s10044-004-0223-4 +58df849378fbcfb6b1a8ebddfbe4caa450226b9d,https://doi.org/10.1109/ICIP.2017.8296770 +be632b206f1cd38eab0c01c5f2004d1e8fc72880,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607601 +7dc498d45f9fcb97acee552c6f587b65d5122c35,https://doi.org/10.1109/ICIP.2015.7351618 +19b492d426f092d80825edba3b02e354c312295f,http://doi.org/10.1007/s00371-016-1332-y +8b3c867e67b263d7a0577a112173a64009a3b4ba,https://doi.org/10.1109/ICIP.2010.5652374 +2b43100a13811b33cc9f905fa1334bfd8b1873ba,https://doi.org/10.1109/IVCNZ.2015.7761564 +0d75c7d9a00f859cffe7d0bd78dd35d0b4bc7fa6,https://doi.org/10.1109/LSP.2005.863661 +ea5c9d5438cde6d907431c28c2f1f35e02b64b33,https://doi.org/10.1109/SPAC.2017.8304257 +5c91fc106cfe9d57a9b149c1af29ca84d403fc7e,https://doi.org/10.1109/TCSVT.2015.2452782 diff --git a/scraper/reports/misc/all_doi.csv b/scraper/reports/misc/all_doi.csv new file mode 100644 index 00000000..83caf30a --- /dev/null +++ b/scraper/reports/misc/all_doi.csv @@ -0,0 +1,2995 @@ +61831364ddc8db869618f1c7f0ad35ab2ab6bcf7,https://doi.org/10.1109/ICIP.2013.6738496 +61a3c45c9f802f9d5fa8d94fee811e203bac6487,https://doi.org/10.1109/TIFS.2016.2567318 +6159908dec4bc2c1102f416f8a52a31bf3e666a4,https://doi.org/10.1109/ICIP.2012.6467431 +6196f4be3b28684f6528b8687adccbdf9ac5c67c,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.267 +61b22b1016bf13aca8d2e57c4e5e004d423f4865,https://doi.org/10.1109/TCYB.2016.2526630 +61bc124537f414f6fcb4d1ff476681b5a0ee222a,http://doi.ieeecomputersociety.org/10.1109/WIW.2016.043 +0d90c992dd08bfb06df50ab5c5c77ce83061e830,https://doi.org/10.1109/UIC-ATC.2013.85 +0d7fcdb99dc0d65b510f2b0b09d3d3cfed390261,https://doi.org/10.1109/IJCB.2011.6117508 +0d6d9c4b5dd282b8f29cd3c200df02a00141f0a9,https://doi.org/10.1109/SIU.2014.6830193 +0d9815f62498db21f06ee0a9cc8b166acc93888e,https://doi.org/10.1016/j.neucom.2007.12.018 +0d8cec1b3f9b6e25d9d31eeb54d8894a1f2ef84f,https://doi.org/10.1109/LSP.2018.2810121 +0d3ff34d8490a9a53de1aac1dea70172cb02e013,https://doi.org/10.1109/ICPR.2014.542 +0de1450369cb57e77ef61cd334c3192226e2b4c2,https://doi.org/10.1109/BTAS.2017.8272747 +0d7652652c742149d925c4fb5c851f7c17382ab8,https://doi.org/10.1016/j.neucom.2015.05.057 +0da3c329ae14a4032b3ba38d4ea808cf6d115c4a,https://doi.org/10.1007/s00138-015-0709-7 +0d75c7d9a00f859cffe7d0bd78dd35d0b4bc7fa6,https://doi.org/10.1109/LSP.2005.863661 +0d98750028ea7b84b86e6fec3e67d61e4f690d09,https://doi.org/10.1109/ACSSC.2015.7421092 +0db371a6bc8794557b1bffc308814f53470e885a,https://doi.org/10.1007/s13042-015-0380-3 +95f1790da3d0a4a5310a050512ce355b3c5aac86,https://doi.org/10.1109/ICIP.2016.7533142 +95023e3505263fac60b1759975f33090275768f3,http://doi.acm.org/10.1145/2856767.2856770 +952138ae6534fad573dca0e6b221cdf042a36412,http://doi.ieeecomputersociety.org/10.1109/DICTA.2005.38 +950bf95da60fd4e77d5159254fed906d5ed5fbcb,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.24 +9590b09c34fffda08c8f54faffa379e478f84b04,https://doi.org/10.1109/TNNLS.2013.2275170 +95e7cf27a8ee62b63ed9d1ecb02a7016e9a680a6,https://doi.org/10.1007/s11063-013-9322-9 +5957936195c10521dadc9b90ca9b159eb1fc4871,https://doi.org/10.1109/TCE.2016.7838098 +59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552862 +592370b4c7b58a2a141e507f3a2cc5bbd247a62e,https://doi.org/10.1109/IJCNN.2017.7965911 +59b6ff409ae6f57525faff4b369af85c37a8dd80,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.28 +5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,https://doi.org/10.1109/ICT.2017.7998256 +5951e9e13ff99f97f301a336f24a14d80459c659,https://doi.org/10.1016/j.neucom.2017.09.009 +9227c1a5b26556b9c34015b3ea5f9ae5f50e9b23,https://doi.org/10.1109/FCV.2015.7103729 +9255d3b2bfee4aaae349f68e67c76a077d2d07ad,https://doi.org/10.1109/TIP.2017.2713041 +92de9a54515f4ac8cc8e4e6b0dfab20e5e6bb09d,https://doi.org/10.1109/ICIP.2016.7533062 +9213a415d798426c8d84efc6d2a69a2cbfa2af84,https://doi.org/10.1016/j.cviu.2013.03.008 +0c378c8dcf707145e1e840a9951519d4176a301f,https://doi.org/10.1109/ICARCV.2010.5707434 +0c65226edb466204189b5aec8f1033542e2c17aa,https://doi.org/10.1109/ICIP.2017.8296997 +0c247ac797a5d4035469abc3f9a0a2ccba49f4d8,https://doi.org/10.1109/ICMLC.2011.6016715 +0cf1287c8fd41dcef4ac03ebeab20482f02dce20,https://doi.org/10.1109/MSN.2016.032 +0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,https://doi.org/10.1109/CIBIM.2014.7015437 +0c0db39cac8cb76b52cfdbe10bde1c53d68d202f,http://doi.acm.org/10.1145/3123266.3123334 +0c1314d98bb6b99af00817644c1803dbc0fb5ff5,http://doi.ieeecomputersociety.org/10.1109/BigMM.2015.29 +0c6a18b0cee01038eb1f9373c369835b236373ae,https://doi.org/10.1007/s11042-017-4359-9 +66ec085c362f698b40d6e0e7b10629462280c062,https://doi.org/10.1109/ICARCV.2004.1468855 +661c78a0e2b63cbdb9c20dcf89854ba029b6bc87,https://doi.org/10.1109/ICIP.2014.7025093 +66f4d7c381bd1798703977de2e38b696c6641b77,https://doi.org/10.1109/FSKD.2015.7382360 +6688b2b1c1162bc00047075005ec5c7fca7219fd,https://doi.org/10.1109/SACI.2013.6608958 +6622776d1696e79223f999af51e3086ba075dbd1,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019454 +3e01f2fefe219bfeb112f1d82e76ebba4c0e2aac,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836097 +3ebb0209d5e99b22c67e425a67a959f4db8d1f47,https://doi.org/10.1109/ICDAR.2017.173 +3e0035b447d0d4e11ceda45936c898256f321382,https://doi.org/10.1109/BMEI.2014.7002762 +3e1190655cc7c1159944d88bdbe591b53f48d761,https://doi.org/10.1007/s10489-013-0464-2 +3e452ca67e17e4173ec8dfbd4a2b803ad2ee5a48,http://doi.ieeecomputersociety.org/10.1109/WF-IoT.2016.7845505 +3ec860cfbd5d953f29c43c4e926d3647e532c8b0,https://doi.org/10.1109/TCSVT.2008.924108 +3e0377af0087b9b836bf6d95bc1c7085dfde4897,http://doi.acm.org/10.1145/2671188.2749320 +3e7070323bca6106f19bea4c97ef67bd6249cb5d,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477448 +3e03d19b950edadc74ca047dec86227282eccf71,https://doi.org/10.1109/ACCESS.2017.2777003 +503b6a490c2b24b9d2aaf642a0fdaf797a8cdb99,https://doi.org/10.1109/ACCESS.2017.2733718 +504d2675da7a56a36386568ee668938df6d82bbe,https://doi.org/10.1109/TCSVT.2016.2539604 +502d30c5eac92c7db587d85d080343fbd9bc469e,https://doi.org/10.1109/TIFS.2016.2538744 +50333790dd98c052dfafe1f9bf7bf8b4fc9530ba,https://doi.org/10.1109/ICIP.2015.7351001 +5039834df68600a24e7e8eefb6ba44a5124e67fc,https://doi.org/10.1109/ICIP.2013.6738761 +501076313de90aca7848e0249e7f0e7283d669a1,https://doi.org/10.1109/SOCPAR.2014.7007987 +681d222f91b12b00e9a4217b80beaa11d032f540,https://doi.org/10.1007/s10044-015-0493-z +68c5b4d9ce2a0c75ba515870923a4bd1b7d8f9b5,https://doi.org/10.1109/CISP-BMEI.2017.8301919 +68eb6e0e3660009e8a046bff15cef6fe87d46477,https://doi.org/10.1109/ICIP.2017.8296999 +68e6cfb0d7423d3fae579919046639c8e2d04ad7,https://doi.org/10.1109/ICB.2016.7550058 +6813208b94ffa1052760d318169307d1d1c2438e,http://doi.acm.org/10.1145/2818346.2830582 +68f19f06f49aa98b676fc6e315b25e23a1efb1f0,https://doi.org/10.1109/ICIP.2015.7351080 +68d566ed4041a7519acb87753036610bd64dcc09,https://doi.org/10.1007/s11390-013-1347-z +68021c333559ab95ca10e0dbbcc8a4840c31e157,https://doi.org/10.1109/ICPR.2016.7900281 +681399aa0ea4cbffd9ab22bf17661d6df4047349,http://doi.ieeecomputersociety.org/10.1109/CISIS.2012.207 +57b7325b8027745b130490c8f736445c407f4c4c,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.27 +5798055e11e25c404b1b0027bc9331bcc6e00555,http://doi.acm.org/10.1145/2393347.2396357 +57eeaceb14a01a2560d0b90d38205e512dcca691,https://doi.org/10.1109/TIP.2017.2778563 +5763b09ebca9a756b4adebf74d6d7de27e80e298,https://doi.org/10.1109/BTAS.2013.6712738 +57f4e54a63ef95596dbc743f391c3fff461f278b,https://doi.org/10.1109/ICMEW.2012.86 +57ca530e9acb63487e8591cb6efb89473aa1e5b4,https://doi.org/10.1109/TIP.2014.2356292 +578117ff493d691166fefc52fd61bad70d8752a9,https://doi.org/10.1109/CCST.2016.7815707 +57ba4b6de23a6fc9d45ff052ed2563e5de00b968,https://doi.org/10.1109/ICIP.2017.8296993 +5721cd4b898f0e7df8de1e0215f630af94656be9,http://doi.acm.org/10.1145/3095140.3095164 +57c270a9f468f7129643852945cf3562cbb76e07,https://doi.org/10.1016/j.imavis.2016.07.004 +57de1a09db680e0b4878ceda68d626ae4e44ccfe,https://doi.org/10.1016/j.neucom.2014.10.111 +57dc55edade7074f0b32db02939c00f4da8fe3a6,https://doi.org/10.1109/TITS.2014.2313371 +3ba74755c530347f14ec8261996dd9eae896e383,https://doi.org/10.1109/JSSC.2017.2767705 +3b8c830b200f1df8ef705de37cbfe83945a3d307,https://doi.org/10.1007/s00138-017-0887-6 +3bdaf59665e6effe323a1b61308bcac2da4c1b73,https://doi.org/10.1109/ROMAN.2012.6343736 +3bfa630a6dc6d1ca98e7b43c90dd9e8b98e361d6,https://doi.org/10.1109/ICIP.2015.7351140 +3b75681f0162752865d85befd8b15e7d954ebfe6,https://doi.org/10.1109/CLEI.2014.6965097 +3b64b8be33887e77e6def4c385985e43e2c15eea,https://doi.org/10.1109/TIP.2016.2576278 +6f74c3885b684e52096497b811692bd766071530,https://doi.org/10.1016/j.neucom.2013.06.013 +6f68c49106b66a5bd71ba118273b4c5c64b6619f,http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190720 +6ffdbac58e15e0ff084310b0a804520ad4bd013e,https://doi.org/10.1049/iet-bmt.2015.0078 +6f22324fab61fbc5df1aac2c0c9c497e0a7db608,https://doi.org/10.1109/ICB.2013.6612990 +6f16f4bd01aeefdd03d6783beacb7de118f5af8a,https://doi.org/10.1109/VCIP.2013.6706330 +6f0caff7c6de636486ff4ae913953f2a6078a0ab,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583081 +6ff0f804b8412a50ae2beea5cd020c94a5de5764,http://doi.acm.org/10.1145/1877972.1877994 +6fdf2f4f7ae589af6016305a17d460617d9ef345,https://doi.org/10.1109/ICIP.2015.7350767 +6f48e5e258da11e6ba45eeabe65a5698f17e58ef,https://doi.org/10.1109/ICASSP.2013.6637968 +6f8cffd9904415c8fa3a1e650ac143867a04f40a,https://doi.org/10.1016/j.neucom.2015.01.099 +0387b32d0ebd034dc778972367e7d4194223785d,http://doi.acm.org/10.1145/2522848.2531740 +03333e7ec198208c13627066bc76b0367f5e270f,https://doi.org/10.1109/IJCNN.2017.7966100 +03e1480f1de2ffbd85655d68aae63a01685c5862,https://doi.org/10.1109/ICPR.2014.771 +0341405252c80ff029a0d0065ca46d0ade943b03,http://doi.ieeecomputersociety.org/10.1109/FG.2017.40 +03babadaaa7e71d4b65203e27e8957db649155c6,https://doi.org/10.1109/TIP.2017.2725578 +0343f9401b98de36be957a30209fef45dd684270,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163134 +9b78ce9fdac30864d1694a56328b3c8a96cccef5,https://doi.org/10.1089/cpb.2004.7.635 +9bd3cafa16a411815f8f87ed3eb3cafefc25e5a3,https://doi.org/10.1109/ICPR.2016.7899782 +9b8830655d4a5a837e3ffe835d14d6d71932a4f2,https://doi.org/10.1109/TSMCB.2011.2169452 +9ba358281f2946cba12fff266019193a2b059590,http://doi.ieeecomputersociety.org/10.1109/ISM.2008.27 +9b4d2cd2e5edbf5c8efddbdcce1db9a02a853534,https://doi.org/10.1016/j.neucom.2016.02.063 +9b1a70d6771547cbcf6ba646f8775614c0162aca,https://doi.org/10.1016/j.patrec.2016.11.005 +9b1c218a55ead45296bfd7ad315aaeff1ae9983e,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2481396 +9e8382aa1de8f2012fd013d3b39838c6dad8fb4d,http://doi.acm.org/10.1145/3123266.3123349 +9e5690cdb4dfa30d98dff653be459e1c270cde7f,https://doi.org/10.1109/ICIP.2017.8297080 +9e5809122c0880183c7e42c7edd997f92de6d81e,http://doi.acm.org/10.1145/2451176.2451209 +9e7646b7e9e89be525cda1385cc1351cc28a896e,http://doi.ieeecomputersociety.org/10.1109/TMC.2017.2702634 +9e99f818b37d44ec6aac345fb2c5356d83d511c7,https://doi.org/10.1109/ISSPA.2012.6310540 +9eaa967d19fc66010b7ade7d94eaf7971a1957f3,https://doi.org/10.1109/IWCIA.2013.6624793 +9eb13f8e8d948146bfbae1260e505ba209c7fdc1,https://doi.org/10.1109/AFGR.2008.4813404 +9e28243f047cc9f62a946bf87abedb65b0da0f0a,https://doi.org/10.1109/ICMLA.2013.141 +9ef06cc958af2274afd193a1dca705c08234bcd3,https://doi.org/10.1109/ICIP.2014.7026207 +9e60614fd57afe381ae42c6ee0b18f32f60bb493,https://doi.org/10.1109/ICIP.2015.7351544 +049186d674173ebb76496f9ecee55e17ed1ca41b,https://doi.org/10.1109/ACCESS.2017.2724763 +045e83272db5e92aa4dc8bdfee908534c2608711,http://doi.ieeecomputersociety.org/10.1109/ICCABS.2016.7802775 +047d3cb2a6a9628b28cac077b97d95b04ca9044c,https://doi.org/10.1109/FG.2011.5771332 +041b51a81a977b5c64682c55414ad8d165c1f2ce,https://doi.org/10.1109/TCE.2014.7027339 +04f56dc5abee683b1e00cbb493d031d303c815fd,http://doi.acm.org/10.1145/2808492.2808557 +04c07ecaf5e962ac847059ece3ae7b6962b4e5c4,http://doi.acm.org/10.1145/2993148.2997631 +047ce307ad0c871bc2c9a5c1e4649cefae2ba50d,https://doi.org/10.1109/ICRA.2012.6224587 +045275adac94cced8a898a815293700401e9955f,https://doi.org/10.1007/s00138-012-0447-z +6a3fa483c64e72d9c96663ff031446a2bdb6b2eb,https://doi.org/10.1016/j.patcog.2017.02.003 +6a38e4bb35673a73f041e34d3f2db7067482a9b5,http://doi.acm.org/10.1145/2663204.2666277 +6afe1f668eea8dfdd43f0780634073ed4545af23,https://doi.org/10.1007/s11042-017-4962-9 +6a527eeb0b2480109fe987ed7eb671e0d847fca8,https://doi.org/10.1007/978-3-319-28515-3 +6adecb82edbf84a0097ff623428f4f1936e31de0,https://doi.org/10.1007/s11760-011-0246-4 +6aa0a47f4b986870370c622be51f00f3a1b9d364,https://doi.org/10.1109/TIP.2012.2192285 +6ad5ac867c5ca56e0edaece153269d989b383b59,https://doi.org/10.1109/CISP-BMEI.2016.7852723 +321db1059032b828b223ca30f3304257f0c41e4c,https://doi.org/10.1109/ICACCI.2015.7275951 +32b76220ed3a76310e3be72dab4e7d2db34aa490,https://doi.org/10.1109/SMC.2014.6974364 +32bab8fe6db08c9d1e906be8a9c7e8cf7a0f0b99,http://doi.ieeecomputersociety.org/10.1109/CIS.2007.196 +327ae6742cca4a6a684a632b0d160dd84d0d8632,https://doi.org/10.1007/s10851-015-0629-1 +32c5c65db2af9691f8bb749c953c978959329f8f,https://doi.org/10.1109/ICIP.2015.7351469 +322488c4000c686e9bfb7514ccdeacae33e53358,http://doi.acm.org/10.1145/2671188.2749301 +32dfd4545c87d9820cc92ca912c7d490794a81d6,https://doi.org/10.1007/978-3-319-50551-0 +328da943e22adef5957c08b6909bda09d931a350,https://doi.org/10.1109/ICARCV.2008.4795605 +3288e16c62a215254e2ed7c39675482b356c3bef,https://doi.org/10.1109/SACI.2016.7507341 +329b2781007604652deb72139d14315df3bc2771,http://doi.acm.org/10.1145/2671188.2749358 +32a440720ee988b7b41de204b2910775171ee12c,https://doi.org/10.1109/ICIP.2011.6116351 +3251f40ed1113d592c61d2017e67beca66e678bb,https://doi.org/10.1007/978-3-319-65172-9_17 +356a144d2aa5cc5e74d178dae3963003871aa8a1,https://doi.org/10.1007/978-3-319-27671-7_41 +359edbaa9cf56857dd5c7c94aaef77003ba8b860,https://doi.org/10.1007/978-3-319-02714-2 +35d90beea6b4dca8d949aae93f86cf53da72971f,https://doi.org/10.1109/ICIP.2011.6116672 +35ccc836df60cd99c731412fe44156c7fd057b99,https://doi.org/10.1109/ICCIS.2017.8274819 +3598d10d7d4f2b543afa8bcf6b2c34a3696ef155,https://doi.org/10.1109/SPAC.2017.8304347 +359b4a4c6cb58c8ab5e8eaaed0e8562c8c43a0f9,https://doi.org/10.1007/s10044-014-0377-7 +35d272877b178aa97c678e3fcbb619ff512af4c2,https://doi.org/10.1109/SMC.2017.8122743 +35b3dc0e961a15a7a60b95490a989f91680acc7c,http://doi.ieeecomputersociety.org/10.1109/TDSC.2016.2550459 +35d42f4e7a1d898bc8e2d052c38e1106f3e80188,https://doi.org/10.1109/BTAS.2015.7358765 +69a9cf9bc8e585782824666fa3fb5ce5cf07cef2,https://doi.org/10.1007/s11390-017-1738-7 +699b8250fb93b3fa64b2fc8f59fef036e172564d,https://doi.org/10.1109/ICMLA.2016.0147 +69064c7b349bf6e7f4a802f4fd0da676c1bd1d8b,https://doi.org/10.1016/j.patcog.2014.06.016 +69ba86f7aac7b7be0ac41d990f5cd38400158f96,https://doi.org/10.1109/TNNLS.2015.2504724 +69ad67e204fb3763d4c222a6c3d05d6725b638ed,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890538 +69b2a7533e38c2c8c9a0891a728abb423ad2c7e7,https://doi.org/10.1016/j.imavis.2013.03.003 +3c8db0d86a6aa51b64ec09c7d25a721adcdfb7a3,https://doi.org/10.1016/j.imavis.2015.06.009 +3c1b73509cc09200e96ab9cfb28ebfd9d1d6aa9a,https://doi.org/10.1109/LSP.2016.2639341 +3c7825dcf5a027bd07eb0fe4cce23910b89cf050,http://doi.acm.org/10.1145/2987378 +3c086601ce0bac61047b5b931b253bd4035e1e7a,https://doi.org/10.1109/ICIP.2015.7350897 +3cbd3124b1b4f95fcdf53abd358d7ceec7861dda,http://doi.acm.org/10.1145/3019612.3019641 +3c09d15b3e78f38618b60388ec9402e616fc6f8e,https://doi.org/10.1109/IJCNN.2010.5596793 +3ce96f03874d42345c0727edc78b6949b20b4a11,https://doi.org/10.1007/s11042-015-2630-5 +3c18fb8ff0f5003fefa8e9dc9bebaf88908d255c,https://doi.org/10.1109/ICIP.2014.7025145 +3c6542295cf7fe362d7d629ac10670bf30cdabce,https://doi.org/10.1109/DICTA.2015.7371264 +3ce37af3ac0ed2eba08267a3605730b2e0433da5,https://doi.org/10.1109/TIP.2016.2609811 +3cd22b5b81a0172d608ff14be71b755d1f68c201,https://doi.org/10.1109/ACCESS.2018.2812725 +3cc2a2eaaacbf96c6b9abc1cf91bfefabf6fcfdd,https://doi.org/10.1109/TCSVT.2014.2317887 +3ca6adc90aae5912baa376863807191ffd56b34e,https://doi.org/10.1109/LSP.2014.2316918 +5642bafa7955b69f05c11230151cd59fcbe43b8e,https://doi.org/10.1007/s11760-012-0404-3 +56fb30b24e7277b47d366ca2c491749eee4d6bb1,https://doi.org/10.1109/ICAPR.2015.7050658 +56bcc89fb1e05d21a8b7b880c6b4df79271ceca5,https://doi.org/10.1007/s11760-013-0441-6 +56e25358ebfaf8a8b3c7c33ed007e24f026065d0,https://doi.org/10.1007/s10994-015-5541-9 +568ced900cbf7437c9e87b60a17e16f0c1e0c442,https://doi.org/10.1109/CCECE.2012.6335026 +5613cb13ab381c8a8b81181ac786255705691626,https://doi.org/10.1109/VCIP.2015.7457876 +56fa0872ed73f7acfbfe83677fecb2dbc6eaa2fe,https://doi.org/10.1007/s11554-007-0031-3 +569988e19ab36582d4bd0ec98e344cbacf177f45,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2347960 +56f57786516dcc8ea3c0ffe877c1363bfb9981d2,https://doi.org/10.1109/CBMI.2014.6849823 +565f7c767e6b150ebda491e04e6b1de759fda2d4,https://doi.org/10.1016/j.patcog.2016.11.023 +51f626540860ad75b68206025a45466a6d087aa6,https://doi.org/10.1109/ICIP.2017.8296595 +51b770e6b2af994ffc8793f59b24a9f619033a3a,https://doi.org/10.1109/ICDSC.2011.6042899 +516f8728ad1d4f9f2701a2b5385f8c8e71b9d356,https://doi.org/10.1109/ACCESS.2017.2745903 +5101368f986aa9837fdb3a71cb4299dff6f6325d,https://doi.org/10.1109/ICIP.2008.4712155 +5180c98815d7034e753a14ef6f54583f115da3aa,http://doi.ieeecomputersociety.org/10.1109/iV.2017.40 +3d2c932f4f2693a87a0b855048e60f142214f475,http://doi.ieeecomputersociety.org/10.1109/CSE.2014.354 +3d1959048eba5495e765a80c8e0bbd3d65b3d544,https://doi.org/10.1016/j.neucom.2016.07.038 +3d2c89676fcc9d64aaed38718146055152d22b39,https://doi.org/10.1109/ACPR.2013.10 +3d4b76fe73ea16400d62d0d776b3f43cc5ecf72b,https://doi.org/10.1109/TIFS.2015.2512561 +3d1f976db6495e2bb654115b939b863d13dd3d05,https://doi.org/10.1007/s11042-015-2581-x +3dfbd17bd9caf7bd1d908ff469dec2b61e8a9548,https://doi.org/10.1109/ITSC.2015.252 +3d4d3f70352dc833e454a5756d682f27eca46e5d,http://doi.ieeecomputersociety.org/10.1109/FG.2017.32 +3d0b2da6169d38b56c58fe5f13342cf965992ece,https://doi.org/10.1109/ICIP.2016.7532909 +3d89f9b4da3d6fb1fdb33dea7592b5992069a096,https://doi.org/10.1109/CISP-BMEI.2017.8302003 +3d9e44d8f8bc2663192c7ce668ccbbb084e466e4,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019505 +3d6f59e0f0e16d01b9c588a53d3b6b3b984e991e,http://doi.ieeecomputersociety.org/10.1109/FG.2017.117 +5810ce61fda464d4de2769bd899e12727bee0382,https://doi.org/10.1109/IJCNN.2016.7727484 +58d43e32660446669ff54f29658961fe8bb6cc72,https://doi.org/10.1109/ISBI.2017.7950504 +583e0d218e1e7aaf9763a5493e7c18c2b8dd7464,http://doi.acm.org/10.1145/2988240.2988243 +58684a925693a0e3e4bb1dd2ebe604885be034d2,https://doi.org/10.1109/ICASSP.2008.4517869 +58483028445bf6b2d1ad6e4b1382939587513fe1,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247763 +5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,https://doi.org/10.1109/ICPR.2016.7900278 +58eb9174211d58af76023ce33ee05769de57236c,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2636827 +58d0c140597aa658345230615fb34e2c750d164c,http://doi.acm.org/10.1145/3098954.3098969 +5811944e93a1f3e35ece7a70a43a3de95c69b5ab,https://doi.org/10.1109/BTAS.2016.7791163 +58df849378fbcfb6b1a8ebddfbe4caa450226b9d,https://doi.org/10.1109/ICIP.2017.8296770 +58e7dbbb58416b785b4a1733bf611f8106511aca,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273597 +673541a8cb1aa3ac63a288523ba71aec2a38280e,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552971 +67214e8d2f83eb41c14bfc86698eb6620e72e87c,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.263 +67e6ddce6fea17bb2b171c949ee224936d36c0d1,https://doi.org/10.1109/ICIP.2008.4712157 +0b58b3a5f153f653c138257426bf8d572ae35a67,https://doi.org/10.1109/SMC.2016.7844481 +0b3144cdc9d6d5a1498d6178db20d1c49fb64de9,http://doi.acm.org/10.1145/1322192.1322203 +0bab5213911c19c40e936b08d2f8fba01e286b85,https://doi.org/10.1109/BigMM.2017.81 +0b8839945259ec764ef0fad47471f34db39f40c3,https://doi.org/10.1109/DESEC.2017.8073838 +0be418e63d111e3b94813875f75909e4dc27d13a,https://doi.org/10.1109/ICB.2016.7550057 +0bf1f999a16461a730dd80e3a187d0675c216292,http://doi.ieeecomputersociety.org/10.1109/CW.2017.26 +0be015e2f9a1d2acebc3afb6e0f6948dd2f9d23d,https://doi.org/10.1007/s12193-013-0133-0 +93d903d2e48d6a8ad3e3d2aff2e57622efe649cd,https://doi.org/10.1109/ICIP.2016.7532432 +935924ddb5992c11f3202bf995183130ad83d07b,https://doi.org/10.1117/1.JEI.24.2.023015 +93e1e195f294c463f4832c4686775bf386b3de39,https://doi.org/10.1109/TIP.2015.2490551 +93108f1548e8766621565bdb780455023349d2b2,https://doi.org/10.1109/ICIP.2010.5653914 +939f9fa056f8be445da19b43da64bd2405851a43,https://doi.org/10.1109/ICSMC.2007.4413713 +939d28859c8bd2cca2d692901e174cfd599dac74,https://doi.org/10.1109/WOCC.2016.7506582 +9378ead3a09bc9f89fb711e2746facf399dd942e,https://doi.org/10.1109/TCSVT.2010.2045817 +93978ba84c8e95ff82e8b5960eab64e54ca36296,http://doi.acm.org/10.1145/3136755.3136806 +934efd61b20f5b8b151a2df7cd373f0b387c02b0,https://doi.org/10.5220/0004673003290336 +93eb3963bc20e28af26c53ef3bce1e76b15e3209,https://doi.org/10.1109/ICIP.2017.8296992 +945ef646679b6c575d3bbef9c6fc0a9629ac1b62,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477689 +947cdeb52f694fb1c87fc16836f8877cd83dc652,https://doi.org/10.1109/SMAP.2017.8022671 +946b4d840b026d91608758d04f2763e9b981234e,http://doi.acm.org/10.1145/2388676.2388792 +942f6eb2ec56809430c2243a71d03cc975d0a673,https://doi.org/10.1109/BigMM.2017.64 +942b89d8d17e89e58c82453de2bfcbbeb09adc81,https://doi.org/10.1016/j.patcog.2016.02.019 +94b729f9d9171e7c4489995e6e1cb134c8521f4e,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.055 +948f35344e6e063ffc35f10c547d5dd9204dee4e,https://doi.org/10.1016/j.eswa.2017.07.037 +940e5c45511b63f609568dce2ad61437c5e39683,https://doi.org/10.1109/TIP.2015.2390976 +0eed55ea9f401f25e1474cdbaf09367f44b4f490,https://doi.org/10.1016/j.neucom.2013.05.032 +0ea05bbc0b0c8b7df10f16e9429ef90177bf94fa,https://doi.org/10.1163/016918610X538534 +0e05b365af662bc6744106a7cdf5e77c9900e967,https://doi.org/10.1007/s11042-014-2234-5 +0ee83ed9bedc0cec5c3368144df0b6f4ee76ddff,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.40 +0e37d70794d5ccfef8b4cc22b4203245f33eec6e,https://doi.org/10.1109/ICIP.2010.5653034 +0e8a28511d8484ad220d3e8dde39220c74fab14b,https://doi.org/10.1109/TNNLS.2015.2477826 +0e454686f83284ced2ffc5740829552a032671a3,https://doi.org/10.1109/IJCNN.2015.7280802 +0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,https://doi.org/10.1109/TMM.2015.2500730 +0ed4b4d6d1a0c49c4eb619aab36db559b620d99f,https://doi.org/10.1016/j.neucom.2015.11.115 +0ef20991e0ecc7dc3f6e0e5fd6ee93c4970206f3,https://doi.org/10.1109/ICIP.2015.7351013 +0e2d956790d3b8ab18cee8df6c949504ee78ad42,https://doi.org/10.1109/IVCNZ.2013.6727024 +0e4baf74dfccef7a99c6954bb0968a2e35315c1f,https://doi.org/10.1109/SIU.2012.6204517 +0ed96cc68b1b61e9eb4096f67d3dcab9169148b9,http://doi.acm.org/10.1145/2663204.2666279 +0e4fa61871755b5548a5c970c8103f7b2ada24f3,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.19 +0e02dadab802128f6155e099135d03ca6b72f42c,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2365793 +0e6f422c3f79c552c0c3d7eda0145aed8680f0ea,https://doi.org/10.1016/j.patrec.2012.09.008 +608b01c70f0d1166c10c3829c411424d9ef550e7,https://doi.org/10.1109/CISP-BMEI.2017.8301920 +606dff86a34c67c79d93f1e536487847a5bb7002,https://doi.org/10.1109/WACV.2011.5711538 +607aebe7568407421e8ffc7b23a5fda52650ad93,https://doi.org/10.1109/ISBA.2016.7477237 +609c35a6fa80af8b2e4ce46b1b16ec36578fd07f,https://doi.org/10.1155/2014/950349 +602f772c69e4a1a65de00443c30d51fdd47a80aa,https://doi.org/10.1109/IISA.2013.6623705 +609d81ddf393164581b3e3bf11609a712ac47522,https://doi.org/10.1109/APSIPA.2017.8282300 +603231c507bb98cc8807b6cbe2c860f79e8f6645,https://doi.org/10.1109/EUSIPCO.2015.7362819 +60284c37249532fe7ff6b14834a2ae4d2a7fda02,https://doi.org/10.1109/SIU.2016.7495971 +6014eeb333998c2b2929657d233ebbcb1c3412c9,http://doi.acm.org/10.1145/2647868.2656406 +34546ef7e6148d9a1fb42cfab5f0ce11c92c760a,https://doi.org/10.1016/j.jvcir.2015.09.005 +34c2ea3c7e794215588c58adf0eaad6dc267d082,http://doi.acm.org/10.1145/3136755.3143005 +34c1e9a6166f4732d1738db803467f7abc47ba87,https://doi.org/10.1109/WACV.2017.137 +344c0917c8d9e13c6b3546da8695332f86b57bd3,https://doi.org/10.1109/ICIP.2017.8296715 +349c909abf937ef0a5a12c28a28e98500598834b,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890672 +34dd83115195676e7a8b008eb0e9abe84b330b32,https://doi.org/10.1007/s00371-014-0931-8 +5a259f2f5337435f841d39dada832ab24e7b3325,http://doi.acm.org/10.1145/2964284.2984059 +5af06815baa4b8f53adc9dc22f6eb3f6f1ad8ff8,https://doi.org/10.1186/s13640-017-0178-1 +5a0ae814be58d319dfc9fd98b058a2476801201c,https://doi.org/10.1007/s00521-012-1124-x +5feee69ed183954fa76c58735daa7dd3549e434d,https://doi.org/10.1109/ICIP.2008.4711697 +5fc97d6cb5af21ed196e44f22cee31ce8c51ef13,http://doi.acm.org/10.1145/2742060.2743769 +5f7094ba898a248e1e6b37e3d9fb795e59131cdc,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026246 +5fb9944b18f5a4a6d20778816290ed647f5e3853,http://doi.acm.org/10.1145/3080538.3080540 +5f1cd82343f4bd6972f674d50aecb453d06f04ad,http://doi.acm.org/10.1145/3125739.3125756 +5f4219118556d2c627137827a617cf4e26242a6e,https://doi.org/10.1109/TMM.2017.2751143 +5fa6f72d3fe16f9160d221e28da35c1e67a5d951,http://doi.acm.org/10.1145/3061639.3062182 +5fb59cf5b31a80d8c70d91660092ef86494be577,https://doi.org/10.1109/CISP-BMEI.2017.8301923 +5fce9d893a40c4e0f2ae335b2e68bfd02f1cb2c6,https://doi.org/10.1109/ICTAI.2012.40 +5f448ab700528888019542e6fea1d1e0db6c35f2,https://doi.org/10.1109/LSP.2016.2533721 +5f9dc3919fb088eb84accb1e490921a134232466,http://doi.ieeecomputersociety.org/10.1109/WACV.2007.49 +33c2131cc85c0f0fef0f15ac18f28312347d9ba4,https://doi.org/10.1016/j.neucom.2010.06.024 +33b915476f798ca18ae80183bf40aea4aaf57d1e,https://doi.org/10.1109/TIP.2013.2271548 +332d773b70f2f6fb725d49f314f57b8f8349a067,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.220 +33b61be191e63b0c9974be708180275c9d5b3057,https://doi.org/10.1109/ICRA.2011.5979705 +33bbf01413910bca26ed287112d32fe88c1cc0df,https://doi.org/10.1109/ICIP.2014.7026204 +331d6ace8d59fa211e5bc84a93fdc65695238c69,https://doi.org/10.1007/s10115-017-1115-4 +05184f01e66d7139530729b281da74db35a178d2,http://ieeexplore.ieee.org/document/6460470/ +052fb35f731680d9d4e7d89c8f70f14173efb015,http://doi.acm.org/10.1145/2893487 +05785cb0dcaace54801aa486d4f8fdad3245b27a,https://doi.org/10.1109/ICPR.2016.7899760 +053ee4a4793f54b02dfabde5436fd7ee479e79eb,http://doi.acm.org/10.1145/3160504.3160507 +052c5ef6b20bf3e88bc955b6b2e86571be08ba64,https://doi.org/10.1109/TIFS.2011.2170068 +0561bed18b6278434deae562d646e8adad72e75d,https://doi.org/10.1016/j.neucom.2014.09.052 +0553c6b9ee3f7d24f80e204d758c94a9d6b375d2,https://doi.org/10.1109/ICIP.2004.1419764 +055cd8173536031e189628c879a2acad6cf2a5d0,https://doi.org/10.1109/BTAS.2017.8272740 +05c5134125a333855e8d25500bf97a31496c9b3f,http://doi.acm.org/10.1145/3132515.3132517 +05a116cb6e220f96837e4418de4aa8e39839c996,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.30 +050e51268b0fb03033428ac777ccfef2db752ab3,https://doi.org/10.1109/DICTA.2007.4426834 +052cec9fdbfe12ccd02688f3b7f538c0d73555b3,https://doi.org/10.1109/ICIP.2016.7533172 +9d1cebed7672210f9c411c5ba422a931980da833,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0078 +9da63f089b8ee23120bfa8b4d9d9c8f605f421fc,http://doi.acm.org/10.1145/2072298.2072043 +9d4692e243e25eb465a0480376beb60a5d2f0f13,https://doi.org/10.1109/ICCE.2016.7430617 +9d01eca806e0f98c5b3c9a865cec1bd8c78e0f0c,http://doi.acm.org/10.1145/3136755.3137032 +9df86395c11565afa8683f6f0a9ca005485c5589,https://doi.org/10.1007/s00530-014-0400-2 +9c686b318cb7774b6da5e2c712743a5a6cafa423,https://doi.org/10.1016/j.neuroimage.2015.12.036 +9cda3e56cec21bd8f91f7acfcefc04ac10973966,https://doi.org/10.1109/IWBF.2016.7449688 +9ce4541d21ee3511bf3dc55bc3cd01222194d95a,https://doi.org/10.1016/j.cviu.2017.05.008 +9ce97efc1d520dadaa0d114192ca789f23442727,http://doi.acm.org/10.1145/2597627 +9c81d436b300494bc88d4de3ac3ec3cc9c43c161,https://doi.org/10.1007/s11042-017-5019-9 +9cd4f72d33d1cedc89870b4f4421d496aa702897,https://doi.org/10.1117/1.JEI.22.2.023010 +9cb7b3b14fd01cc2ed76784ab76304132dab6ff3,https://doi.org/10.1109/ICIP.2015.7351174 +02e668f9b75f4a526c6fdf7268c8c1936d8e6f09,https://doi.org/10.1142/S0218001411008968 +028e237cb539b01ec72c244f57fdcfb65bbe53d4,http://doi.ieeecomputersociety.org/10.1109/CIS.2010.65 +026e96c3c4751e1583bfe78b8c28bdfe854c4988,https://doi.org/10.1109/ICIP.2017.8296442 +0247998a1c045e601dc4d65c53282b5e655be62b,https://doi.org/10.1109/ITSC.2017.8317782 +021469757d626a39639e260492eea7d3e8563820,https://doi.org/10.1007/b116723 +02a92b79391ddac0acef4f665b396f7f39ca2972,https://doi.org/10.1016/j.patcog.2016.10.021 +a4bb791b135bdc721c8fcc5bdef612ca654d7377,https://doi.org/10.1109/BTAS.2017.8272703 +a4725a5b43e7c36d9e30028dff66958f892254a0,http://doi.acm.org/10.1145/2663204.2666271 +a4543226f6592786e9c38752440d9659993d3cb3,http://doi.ieeecomputersociety.org/10.1109/FG.2017.112 +a4e75766ef93b43608c463c233b8646439ce2415,https://doi.org/10.1109/ICCVW.2011.6130492 +a317083d9aac4062e77aa0854513383c87e47ece,https://doi.org/10.1016/j.patcog.2015.06.003 +a35ed55dc330d470be2f610f4822f5152fcac4e1,https://doi.org/10.1109/ISBA.2015.7126369 +a324d61c79fe2e240e080f0dab358aa72dd002b3,https://doi.org/10.1016/j.patcog.2016.02.005 +a3add3268c26876eb76decdf5d7dd78a0d5cf304,https://doi.org/10.1016/j.specom.2017.07.003 +a3ed0f15824802359e05d9777cacd5488dfa7dba,http://doi.acm.org/10.1145/2851581.2892282 +a3bf6129d1ae136709063a5639eafd8018f50feb,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2017.8109741 +a38dd439209b0913b14b1c3c71143457d8cf9b78,https://doi.org/10.1109/IJCNN.2015.7280803 +b5ae8b69677fb962421fe7072f1e842e71f3bea5,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273641 +b5979489e11edd76607c219a8bdc83ba4a88ab38,https://doi.org/10.1109/ACCESS.2017.2778011 +b5bda4e1374acc7414107cde529ad8b3263fae4b,https://doi.org/10.1007/s11370-010-0066-3 +b54fe193b6faf228e5ffc4b88818d6aa234b5bb9,http://doi.acm.org/10.1145/2964284.2967287 +b5690409be6c4e98bd37181d41121adfef218537,https://doi.org/10.1109/ICIP.2008.4711920 +b58d381f9f953bfe24915246b65da872aa94f9aa,https://doi.org/10.1109/SMAP.2013.13 +b5f79df712ad535d88ae784a617a30c02e0551ca,https://doi.org/10.1109/LSP.2015.2480758 +b50edfea790f86373407a964b4255bf8e436d377,http://doi.acm.org/10.1145/3136755.3143008 +b299c292b84aeb4f080a8b39677a8e0d07d51b27,http://doi.ieeecomputersociety.org/10.1109/ICDM.2015.23 +b2add9fad0bcf7bf0660f99f389672cdf7cc6a70,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226 +b2ae5c496fe01bb2e2dee107f75b82c6a2a23374,http://doi.ieeecomputersociety.org/10.1109/FG.2017.116 +b208f2fc776097e98b41a4ff71c18b393e0a0018,http://doi.ieeecomputersociety.org/10.1109/AVSS.2003.1217900 +b259f57f41f4b3b5b7ca29c5acb6f42186bbcf23,https://doi.org/10.1109/SMC.2017.8122808 +b2f9e0497901d22b05b9699b0ea8147861c2e2cc,https://doi.org/10.1007/978-3-319-70353-4_3 +b209608a534957ec61e7a8f4b9d08286ae3d1d7f,https://doi.org/10.1111/j.1468-0394.2011.00589.x +b22317a0bbbcc79425f7c8a871b2bf211ba2e9c4,https://doi.org/10.1109/ACCESS.2018.2805861 +b21bf45cd3aeaec3440eeca09a1c5a5ee3d24a3a,https://doi.org/10.1080/10798587.2014.934592 +b234d429c9ea682e54fca52f4b889b3170f65ffc,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22 +b2ddea9c71cd73fa63e09e8121bc7a098fae70b4,https://doi.org/10.1109/ISCCSP.2012.6217849 +b262a2a543971e10fcbfc7f65f46115ae895d69e,https://doi.org/10.1109/DICTA.2015.7371266 +b2cb335ded99b10f37002d09753bd5a6ea522ef1,https://doi.org/10.1109/ISBA.2017.7947679 +d9c0310203179d5328c4f1475fa4d68c5f0c7324,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.11 +d98a36081a434451184fa4becb59bf5ec55f3a1e,https://doi.org/10.1016/j.neucom.2016.09.110 +d9072e6b7999bc2d5750eb58c67a643f38d176d6,https://doi.org/10.1109/LSP.2009.2027636 +d92084e376a795d3943df577d3b3f3b7d12eeae5,http://doi.ieeecomputersociety.org/10.1109/FG.2017.85 +d963bdff2ce5212fa585a83ca8fad96875bc0057,https://doi.org/10.1016/j.neucom.2016.03.091 +d983dda8b03ed60fa3afafe5c50f1d9a495f260b,https://doi.org/10.1016/j.patcog.2007.03.020 +d9e34af95c21c0e114b61abccbc653480b370c3b,https://doi.org/10.1016/j.patcog.2005.10.020 +d91a5589fd870bf62b7e4979d9d47e8acf6c655d,http://doi.acm.org/10.1145/2382336.2382343 +d9d7a4b64b13ed1bce89d3cbbabe62e78d70b3fb,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.16 +d9eed86e53ce5f7cba379fe77bbefb42e83c0d88,https://doi.org/10.1109/TIP.2017.2764262 +d9b4b49378fcd77dcd5e755975b99ed4c7962f17,https://doi.org/10.1109/TIP.2015.2473105 +d91f9e8cbf271004ef1a293401197a10a26ccd1b,https://doi.org/10.1109/SOCPAR.2015.7492801 +ace1e0f50fe39eb9a42586f841d53980c6f04b11,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043849 +acab402d706dbde4bea4b7df52812681011f435e,https://doi.org/10.1109/HIS.2012.6421377 +acd4280453b995cb071c33f7c9db5760432f4279,https://doi.org/10.1007/s00138-018-0907-1 +ac48ecbc7c3c1a7eab08820845d47d6ce197707c,https://doi.org/10.1109/TIP.2017.2681841 +ac37285f2f5ccf99e9054735a36465ee35a6afdd,https://doi.org/10.1109/ISCAS.2006.1693880 +ad08426ca57da2be0e9f8c1f673e491582edb896,http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.98 +adad7446e371d27fdaee39475856e2058f3045e5,https://doi.org/10.1109/ISCAS.2013.6572295 +ad6cc071b2585e4bdb6233b7ad8d63e12538537d,https://doi.org/10.1007/s10462-010-9172-z +ad4d1ecf5c5473c050e11f6876ce148de1c8920a,https://doi.org/10.1109/IJCNN.2017.7965886 +ad9ba7eade9d4299159512d6d5d07d7d3d26ae58,https://doi.org/10.1007/s11063-012-9252-y +ad8bd7016132a2f98ff1f41dac695285e71cc4b1,https://doi.org/10.1109/CISP-BMEI.2017.8301964 +add6d96fc018986f51a1aac47eae9ee3fc62fb66,http://doi.acm.org/10.1145/3009977.3010074 +ad5a35a251e07628dd035c68e44a64c53652be6b,https://doi.org/10.1016/j.patcog.2016.12.024 +ad7b6d2e8d66f720cc83323a0700c25006d49609,https://doi.org/10.1109/TIP.2009.2028255 +adb040081974369c46b943e9f75be4e405623102,http://doi.ieeecomputersociety.org/10.1109/PACCS.2009.191 +ad339a5fdaab95f3c8aad83b60ceba8d76107fa2,https://doi.org/10.1023/B:VISI.0000013090.39095.d5 +ada56c9ceef50aa5159f1f8aa45ca2040d1ed15c,https://doi.org/10.1109/TIFS.2017.2680246 +ad1679295a5e5ebe7ad05ea1502bce961ec68057,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344631 +adf9998214598469f7a097bc50de4c23784f2a5a,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.745 +ad50f6899103eff0ee4504e539c38eb965fd1309,https://doi.org/10.1109/IJCNN.2010.5596374 +bbc21d6b7c6e807c6886d237a04b501158ca6bb8,https://doi.org/10.1109/TMM.2016.2523421 +bb070c019c0885232f114c7dca970d2afd9cd828,https://doi.org/10.1109/DICTA.2014.7008089 +bbc47f421ab161f22f2699ee7bbb7fc8aec1cb7b,https://doi.org/10.1109/IJCNN.2017.7966271 +bb3698df3b4f40c0b7cc523d26ffb8c5276d5a1c,https://doi.org/10.1109/ICDSP.2016.7868528 +bb83d5c7c17832d1eef14aa5d303d9dd65748956,http://doi.acm.org/10.1145/3139513.3139514 +bbc8ccd3f62615e3c0ce2c3aee5e4a223d215bbd,https://doi.org/10.1007/s11042-015-2497-5 +d7c87f4ca39f79d93c954ffacac32bc6eb527e2c,https://doi.org/10.1007/978-3-642-15696-0_57 +d75bd05865224a1341731da66b8d812a7924d6f6,https://doi.org/10.1109/TSMCB.2012.2217127 +d79530e1745b33f3b771d0b38d090b40afc04191,https://doi.org/10.1007/s11042-015-2485-9 +d7bd37920a3a4a4d681151131e23a839695c8d5b,https://doi.org/10.1109/ICRA.2011.5979870 +d7b7253f7d8b397d9d74057e1e72ed9c58e2ba6d,https://doi.org/10.1109/TII.2013.2271914 +d723ebf3288126fa8cbb10ba7e2a6308aede857c,https://doi.org/10.1117/12.968586 +d7a84db2a1bf7b97657b0250f354f249394dd700,https://doi.org/10.1109/ICIP.2010.5653518 +d05759932001aa6f1f71e7dc261c4716f57a5397,https://doi.org/10.1109/ISBA.2015.7126365 +d046030f7138e5a2dbe2b3eec1b948ad8c787538,https://doi.org/10.1109/ICIP.2009.5413447 +d0b67ec62086b55f00dc461ab58dc87b85388b2b,https://doi.org/10.1109/ICIP.2014.7026206 +d0a8889f694422614bf3ecccd69aa1d4f7822606,https://doi.org/10.1007/978-0-85729-997-0_22 +d0f9143f6f43a39bff47daf8c596681581db72ea,https://doi.org/10.1007/s11042-017-5241-5 +d0b7d3f9a59034d44e7cd1b434cfd27136a7c029,https://doi.org/10.1109/INCoS.2013.143 +d0d75a7116a76ccd98a3aeb6f6fff10ba91de1c1,https://doi.org/10.1109/TIP.2015.2502144 +d09fd7e0bb5d997963cfef45452724416b2bb052,https://doi.org/10.1109/EMEIT.2011.6023179 +d0dd1364411a130448517ba532728d5c2fe78ed9,https://doi.org/10.1109/ISCAS.2016.7527183 +be51854ef513362bc236b85dd6f0e2c2da51614b,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.298 +be6bd94322dd0ecfc8ea99eb7f40a9a14dd3471f,https://doi.org/10.1109/UIC-ATC.2013.32 +be40014beffaa9faacee12bb3412969f98b6a43d,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.454 +be0a0e563445119b82d664d370e646e53e69a4c5,https://doi.org/10.1016/j.eswa.2017.05.037 +b3050dc48600acf2f75edf1f580a1f9e9cb3c14a,https://doi.org/10.1007/s00138-013-0584-z +b388bf63c79e429dafee16c62b2732bcbea0d026,https://doi.org/10.1109/ICIP.2016.7533051 +b351575e3eab724d62d0703e24ecae55025eef00,https://doi.org/10.1007/s10209-014-0369-9 +b34fdab6864782ce60fd90d09f5d886bd83f84f5,https://doi.org/10.1002/cpe.3766 +b36a80d15c3e48870ea6118b855055cc34307658,https://doi.org/10.1109/ICPR.2014.17 +b3e60bb5627312b72c99c5ef18aa41bcc1d21aea,https://doi.org/10.1109/SPAC.2014.6982690 +dfb8a04a80d4b0794c0679d797cb90ec101e162c,http://doi.ieeecomputersociety.org/10.1109/AVSS.2014.6918665 +dfbbe8100fcd70322a431bd5d2c2d52a65fd4bbd,http://doi.acm.org/10.1145/2818346.2823313 +df550cb749858648209707bec5410431ea95e027,https://doi.org/10.1109/TCYB.2015.2433926 +df7ff512e8324894d20103fd8ab5da650e4d86db,http://doi.acm.org/10.1145/2043674.2043709 +dff38cac0a1004037024f0ed2a72f76f4e49318b,https://doi.org/10.1109/TNNLS.2015.2495268 +df7af280771a6c8302b75ed0a14ffe7854cca679,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293 +da1477b4a65ae5a013e646b57e004f0cd60619a2,https://doi.org/10.1109/ICB.2012.6199764 +da2b2be4c33e221c7f417875a6c5c74043b1b227,https://doi.org/10.1109/BTAS.2017.8272712 +dab795b562c7cc270c9099b925d685bea0abe82a,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2382599 +dac6e9d708a9757f848409f25df99c5a561c863c,https://doi.org/10.1109/LSP.2014.2334656 +da928ac611e4e14e454e0b69dfbf697f7a09fb38,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477718 +dae9d0a9b77366f0cd52e38847e47691ee97bc1f,https://doi.org/10.1007/s11760-015-0822-0 +b472f91390781611d4e197564b0016d9643a5518,http://doi.acm.org/10.1145/2382336.2382345 +b47a3c909ee9b099854619054fd00e200b944aa9,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.77 +b42b535fcd0d9bd41a6594a910ea4623e907ceb9,https://doi.org/10.1109/ICTAI.2012.153 +b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,https://doi.org/10.1109/GlobalSIP.2017.8309138 +a216f7863fc6ab15e2bb7a538dfe00924e1da0ab,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163087 +a2646865d7c3d7fb346cf714caf146de2ea0e68f,https://doi.org/10.1109/SMC.2016.7844390 +a200885bf6bfa0493d85e7617e65cdabe30a2dab,https://doi.org/10.1109/ICIP.2015.7351272 +a2cc3193ed56ef4cedaaf4402c844df28edb5639,https://doi.org/10.1016/j.patrec.2012.01.005 +a2af07176a38fe844b0e2fdf4abae65472628b38,https://doi.org/10.1109/ICIP.2014.7026060 +a2b76ab614d92f5e71312b530f0b6281d0c500f7,https://doi.org/10.1007/s10898-014-0231-x +a5eb36f1e77245dfc9e5c0c03998529331e4c89b,https://doi.org/10.1109/BTAS.2014.6996222 +a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,https://doi.org/10.1109/TIP.2015.2481327 +a5b6a3234e15343d2e5417cff46c0a5f0943521e,https://doi.org/10.1109/TNNLS.2014.2321420 +a5b9c6aa52f91092b5a8ab04ed1f7b60c0ea5260,http://doi.ieeecomputersociety.org/10.1109/WI-IATW.2006.88 +a5d4cc596446517dfaa4d92276a12d5e1c0a284c,https://doi.org/10.1016/j.patrec.2009.06.002 +a5d76710dc15ebc7d8b4dc976604315f1e2fc3ba,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2011.117 +a53f988d16f5828c961553e8efd38fed15e70bcc,https://doi.org/10.1109/BTAS.2015.7358787 +a52a69bf304d49fba6eac6a73c5169834c77042d,https://doi.org/10.1109/LSP.2017.2789251 +bdf5434648356ce22bdbf81d2951e4bb00228e4d,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.415 +bd26faef48080b5af294b19139c804ffec70825e,https://doi.org/10.1007/s11390-015-1526-1 +bdd203bcd3c41c336c5635fb026a78279d75b4be,https://doi.org/10.1109/ICPR.2016.7899761 +bd9e0b6a90b51cc19b65f51dacd08ce1a7ccaac5,https://doi.org/10.1109/VSMM.2014.7136653 +bd25c4ad7471580ed9787eae041b80a3c4fe97bb,https://doi.org/10.1016/j.sigpro.2010.01.019 +bd66dc891270d858de3adf97d42ed714860ae94d,https://doi.org/10.1109/ACPR.2015.7486598 +bd74c3ca2ff03396109ac2d1131708636bd0d4d3,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.228 +d119443de1d75cad384d897c2ed5a7b9c1661d98,https://doi.org/10.1109/ICIP.2010.5650873 +d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,https://doi.org/10.1109/LSP.2017.2661983 +d1184939e06dbc3b495c883c53b684c6d6aa9e48,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477669 +d1dd80d77655876fb45b9420fe72444c303b219e,https://doi.org/10.1109/FG.2011.5771371 +d12bea587989fc78b47584470fd8f689b6ab81d2,https://doi.org/10.1109/TIP.2013.2246523 +d1bd956a8523629ed4e2533b01272f22cea534c6,https://doi.org/10.1016/j.patrec.2010.01.021 +d60e3eef429ed2a51bbd806125fa31f5bea072a4,https://doi.org/10.1109/HIS.2013.6920481 +d6e3bd948aae43f7654ea1d9e89d88f20d8cf25f,https://doi.org/10.1109/ACPR.2013.98 +d691440030394c2e00a2ab47aba4f8b5fca5f25a,https://doi.org/10.1109/ICIP.2016.7532921 +d6bdc70d259b38bbeb3a78db064232b4b4acc88f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.27 +d63bd06340dd35590a22222509e455c49165ee13,https://doi.org/10.1109/IJCNN.2016.7727234 +d6a5eb4377e2a67420778eab61b5a89046307bae,http://doi.ieeecomputersociety.org/10.1109/CRV.2014.37 +d628aabf1a666a875e77c3d3fee857cd25891947,https://doi.org/10.1109/SMC.2016.7844663 +d6791b98353aa113d79f6fb96335aa6c7ea3b759,https://doi.org/10.1109/TNNLS.2017.2648122 +bcf2710d46941695e421226372397c9544994214,https://doi.org/10.1109/ICNC.2015.7378076 +bc66685acc64fa3c425c0ee6c443d3fa87db7364,https://doi.org/10.1109/TMM.2013.2279658 +bccb35704cdd3f2765b1a3f0296d1bff3be019c1,https://doi.org/10.1109/ICMLA.2016.0145 +bcead1a92744e76c38caaa13159de4abfb81b1d0,https://doi.org/10.1109/ICIP.2014.7025310 +bca39960ba46dc3193defe0b286ee0bea4424041,https://doi.org/10.1016/j.patrec.2009.05.018 +bc6a7390135bf127b93b90a21b1fdebbfb56ad30,https://doi.org/10.1109/TIFS.2017.2766039 +ae73f771d0e429a74b04a6784b1b46dfe98f53e4,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.326 +ae425a2654a1064c2eda29b08a492c8d5aab27a2,https://doi.org/10.23919/MVA.2017.7986845 +ae89e464576209b1082da38e0cee7aeabd03d932,https://doi.org/10.1007/s00521-005-0017-7 +ae7604b1840753e9c2e1ab7a97e02f91a9d81860,https://doi.org/10.1007/s10586-016-0535-3 +aeb36fac7516753a14c3c690f352de78e70f8c6e,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2013.13 +aea977a3b5556957ed5fb3ef21685ee84921eaa3,https://doi.org/10.1007/s12193-017-0256-9 +aed6af12148b43e4a24ee6e2bc3604ca59bd99a5,https://doi.org/10.1109/TIP.2017.2717505 +ae8240095c9cca2c395f173fece2f46277b94929,https://doi.org/10.1016/j.neucom.2017.06.045 +ae96fc36c89e5c6c3c433c1163c25db1359e13ea,https://doi.org/10.1007/s10489-013-0485-x +d8c9bad8d07ae4196027dfb8343b9d9aefb130ff,https://doi.org/10.1007/s00138-017-0848-0 +d8b99eada922bd2ce4e20dc09c61a0e3cc640a62,https://doi.org/10.1109/IJCNN.2014.6889675 +d878a67b2ef6a0a5dec72db15291f12419040ab1,https://doi.org/10.1109/IPTA.2016.7821012 +d8e5d94c3c8688f0ca0ee656c79847c7df04c77d,https://doi.org/10.1007/s12193-015-0187-2 +d855791bc23b4aa8e751d6a4e2ae7f5566a991e8,http://doi.acm.org/10.1145/3012941 +d8288322f32ee4501cef5a9b667e5bb79ebd7018,https://doi.org/10.1016/j.patcog.2011.12.018 +d8c9ce0bd5e4b6d1465402a760845e23af5ac259,https://doi.org/10.1109/ITSC.2015.380 +ab7923968660d04434271559c4634790dc68c58e,https://doi.org/10.1109/ICIP.2015.7351111 +abf0aa1d8869d87f4ef62e2da058ccfb4bf46d18,https://doi.org/10.1007/s11042-015-2536-2 +abfba1dc9a9991897acd0e0d3d4ef9d4aef4151c,https://doi.org/10.1109/FUZZ-IEEE.2014.6891864 +ab68837d09986c592dcab7d08ee6dfb40e02916f,https://doi.org/10.1007/978-3-319-11289-3_23 +aba9acb4a607071af10684f2cfbdefa0507a4e9a,https://doi.org/10.1016/j.patcog.2016.06.010 +ab703224e3d6718bc28f7b9987eb6a5e5cce3b01,https://doi.org/10.1631/FITEE.1500235 +abe4c1d6b964c4f5443b0334a44f0b03dd1909f4,https://doi.org/10.1109/IJCNN.2017.7965950 +ab2c07c9867243fad2d66fa6aeabfb780433f319,http://doi.acm.org/10.1145/2967878.2967887 +ab00ea1aa2f81fbe139b4632ec3682dfb7312ef0,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6835994 +abbc6dcbd032ff80e0535850f1bc27c4610b0d45,https://doi.org/10.1109/ICIP.2015.7350983 +abf573864b8fbc0f1c491ca60b60527a3e75f0f5,https://doi.org/10.1007/s11042-014-2204-y +e52272f92fa553687f1ac068605f1de929efafc2,https://doi.org/10.1016/j.engappai.2017.06.003 +e585dc6c810264d9f07e38c412379734a920714e,http://doi.acm.org/10.1145/2531923.2531926 +e51f1ee5535017e10a5f77100ff892509ec6b221,https://doi.org/10.1109/ICSMC.2007.4413825 +e57108607d94aa158eb22ae50540ae6080e48d4b,http://doi.ieeecomputersociety.org/10.1109/ICMI.2002.1167051 +e5c687c8c84f1cdb9d9fbc9b6ff7518ff4d71056,https://doi.org/10.1109/TNN.2011.2170220 +e57ce6244ec696ff9aa42d6af7f09eed176153a8,https://doi.org/10.1109/ICIP.2015.7351449 +e50ec6b6d1c189edc127eb403c41a64f34fc0a6c,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890187 +e51927b125640bfc47bbf1aa00c3c026748c75bd,http://doi.acm.org/10.1145/2647868.2655015 +e55f7250f3b8ee722814f8809620a851c31e5b0e,https://doi.org/10.3182/20130902-3-CN-3020.00030 +e5fbaeddbf98c667ec7c5575bda2158a36b55409,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.25 +e57e1dce81e888eb07054923602e35bfb5ef3eb8,https://doi.org/10.1109/IROS.2012.6385544 +e546572f8205570de4518bcf8d0345465e51d7a0,https://doi.org/10.1109/ICIP.2015.7351318 +e27b2cabdfdd6bf3ffb3ebce1b4c55adb1e80c8f,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.225 +e26a7e343fe109e2b52d1eeea5b02dae836f3502,https://doi.org/10.1109/ACCESS.2017.2676238 +e2b3aae594035e58f72125e313e92c7c4cc9d5bb,https://doi.org/10.1007/s00138-014-0597-2 +e2f78d2f75a807b89a13115a206da4661361fa71,https://doi.org/10.1109/TMM.2017.2696825 +f41d7f891a1fc4569fe2df66e67f277a1adef229,https://doi.org/10.1109/ICIP.2015.7351552 +f4411787688ca40466ee059ec64bf56d746733c1,https://doi.org/10.1007/s12652-012-0107-1 +f402e088dddfaad7667bd4def26092d05f247206,https://doi.org/10.1109/TITS.2015.2475721 +f4465454811acb2021a46d84d94fc88e2dda00a6,https://doi.org/10.1007/s11042-007-0184-x +f41e80f941a45b5880f4c88e5bf721872db3400f,http://doi.ieeecomputersociety.org/10.1109/IC3.2017.8284359 +f4fc77660665ae58993065c6a336367e9a6c85f7,https://doi.org/10.1016/j.patcog.2012.12.009 +f4003cbbff3b3d008aa64c76fed163c10d9c68bd,https://doi.org/10.1016/j.neucom.2016.08.055 +f449c85b8ba5fa67ead341c7ad4ec396f4ab2dd6,http://doi.ieeecomputersociety.org/10.1109/TKDE.2015.2448547 +f423d8be5e13d9ef979debd3baf0a1b2e1d3682f,https://doi.org/10.1016/j.imavis.2015.11.004 +f486624efa750d718a670fba3c7f21b1c84ebaeb,https://doi.org/10.1109/TCYB.2016.2581861 +f49aebe58d30241f12c1d7d9f4e04b6e524d7a45,https://doi.org/10.1109/ICB.2016.7550074 +eb3c45e78acee0824c8f7d997c6104d74e7213a8,http://doi.ieeecomputersociety.org/10.1109/iThings/CPSCom.2011.116 +eb38f20eaa1b849cabec99815883390f84daf279,https://doi.org/10.1016/j.patcog.2008.11.026 +eb9867f5efc98d3203ce1037f9a8814b0d15d0aa,https://doi.org/10.1109/ICIP.2014.7026008 +eb02daee558e483427ebcf5d1f142f6443a6de6b,http://doi.acm.org/10.1145/2911996.2912019 +ebc2a3e8a510c625353637e8e8f07bd34410228f,https://doi.org/10.1109/TIP.2015.2502485 +eb5c1e526fe2d17778c68f60c874c3da0129fabd,https://doi.org/10.1109/VCIP.2015.7457856 +ebce3f5c1801511de9e2e14465482260ba5933cc,http://doi.acm.org/10.1145/3126594.3126640 +eb240521d008d582af37f0497f12c51f4bab16c8,https://doi.org/10.1023/A:1012365806338 +ebb3d5c70bedf2287f9b26ac0031004f8f617b97,https://doi.org/10.1109/MSP.2017.2764116 +ebeb0546efeab2be404c41a94f586c9107952bc3,http://doi.acm.org/10.1145/2733373.2806290 +ebfdb4842c69177b65022f00d3d038d645f3260b,http://doi.ieeecomputersociety.org/10.1109/CVPR.2006.154 +eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,https://doi.org/10.1109/ICPR.2016.7899719 +c7cd490e43ee4ff81e8f86f790063695369c2830,https://doi.org/10.1109/VCIP.2016.7805472 +c7b58827b2d07ece676271ae0425e369e3bd2310,https://doi.org/10.1142/S0218001415560042 +c0270a57ad78da6c3982a4034ffa195b9e932fda,http://doi.ieeecomputersociety.org/10.1109/FG.2017.131 +c0f9fae059745e50658d9605bd8875fc3a2d0b4b,http://doi.ieeecomputersociety.org/10.1109/BIGCOMP.2014.6741422 +c0945953506a3d531331caf6c2b2a6d027e319f0,https://doi.org/10.1002/cav.49 +c06b13d0ec3f5c43e2782cd22542588e233733c3,https://doi.org/10.1016/j.cviu.2016.02.001 +c0b02be66a5a1907e8cfb8117de50f80b90a65a8,http://doi.acm.org/10.1145/2808492.2808523 +eefecac463ebfc0694b9831e842b574f3954fed6,http://doi.ieeecomputersociety.org/10.1109/SNPD.2013.15 +eedb2c34c36017b9c5aa6ce8bff2ab152e713cee,https://doi.org/10.1007/s00521-008-0225-z +ee6e4324123b99d94a7a23d9bddf026f39903693,https://doi.org/10.1109/ISMICT.2013.6521709 +eef432868e85b95a7d9d9c7b8c461637052318ca,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.236 +eef0be751e9aca7776d83f25c8ffdc1a18201fd8,https://doi.org/10.1016/j.patcog.2016.10.015 +ee2217f9d22d6a18aaf97f05768035c38305d1fa,https://doi.org/10.1109/APSIPA.2015.7415501 +eed05da2c0ab7d2b0a3c665a5368efa81b185099,https://doi.org/10.1016/j.neucom.2014.05.020 +eeaeca3a601d65d2d978bf3da43ab42fa5e08ed2,https://doi.org/10.1109/FSKD.2016.7603398 +eefdb69ac2c461e7791603d0f8c02ff3c8600adc,https://doi.org/10.1016/j.jvcir.2017.02.007 +ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,https://doi.org/10.1109/LSP.2016.2602538 +c98def5f9d0c6ae519fe0aeebe5378f65b14e496,https://doi.org/10.1117/12.2064730 +c92e36689ef561df726a7ae861d9c166c3934908,https://doi.org/10.1109/ICPR.2016.7900140 +c907104680ad53bdc673f2648d713e4d26335825,http://doi.acm.org/10.1145/3077286.3077304 +c9c2de3628be7e249722b12911bebad84b567ce6,https://doi.org/10.1016/j.patcog.2017.06.028 +c9be1001706bcdd8b35fa9cae733c592e90c7ec3,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.54 +c9527df51e63b56c61cbf16f83d1a3c5c2c82499,http://doi.acm.org/10.1145/2072298.2072311 +c9832564d5dc601113b4d80e5a05ede6fee9f7dd,https://doi.org/10.1109/ISBA.2017.7947687 +c90427085909029afd2af01d1967e80b78e01b88,https://doi.org/10.1109/ACCESS.2017.2753830 +fcd3d557863e71dd5ce8bcf918adbe22ec59e62f,http://doi.acm.org/10.1145/2502081.2502148 +fc8990088e0f1f017540900bc3f5a4996192ff05,https://doi.org/10.1109/ICIP.2017.8296314 +fcb97ede372c5bddde7a61924ac2fd29788c82ce,https://doi.org/10.1109/TSMCC.2012.2192727 +fc5538e60952f86fff22571c334a403619c742c3,http://ieeexplore.ieee.org/document/6460202/ +fc970d7694b1d2438dd101a146d2e4f29087963e,http://doi.ieeecomputersociety.org/10.1109/FG.2017.86 +fcb276874cd932c8f6204f767157420500c64bd0,https://doi.org/10.1007/978-3-319-04960-1_3 +fdd19fee07f2404952e629cc7f7ffaac14febe01,https://doi.org/10.1109/CISP-BMEI.2016.7852754 +fdbc602a749ef070a7ac11c78dc8d468c0b60154,https://doi.org/10.1049/iet-ipr.2015.0519 +fddca9e7d892a97073ada88eec39e03e44b8c46a,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.305 +fd38163654a0551ed7f4e442851508106e6105d9,https://doi.org/10.1109/ICNSC.2008.4525311 +f28d549feffd414f38147d5e0460883fb487e2d3,https://doi.org/10.1007/s10462-011-9273-3 +f25aa838fb44087668206bf3d556d31ffd75235d,http://doi.acm.org/10.1145/2911996.2912038 +f2d15482e7055dd5f54cf4a8a8f60d8e75af7edf,https://doi.org/10.1109/ICIP.2011.6115736 +f2cc459ada3abd9d8aa82e92710676973aeff275,http://ieeexplore.ieee.org/document/5967185/ +f27fd2a1bc229c773238f1912db94991b8bf389a,https://doi.org/10.1109/IVCNZ.2016.7804414 +f28ef0a61a45a8b9cd03aa0ca81863e1d54a31d1,https://doi.org/10.1109/VCIP.2016.7805483 +f2004fff215a17ac132310882610ddafe25ba153,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.124 +f231e9408da20498ba51d93459b3fcdb7b666efb,https://doi.org/10.1016/j.micpro.2012.01.002 +f5a95f857496db376d69f7ac844d1f56e3577b75,https://doi.org/10.1007/s12193-012-0107-7 +f531ce18befc03489f647560ad3e5639566b39dc,http://doi.ieeecomputersociety.org/10.1109/ACOMP.2015.9 +f545b121b9612707339dfdc40eca32def5e60430,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.33 +f58f30932e3464fc808e539897efa4ee4e7ac59f,https://doi.org/10.1109/DICTA.2016.7797023 +f557df59cd088ffb8e27506d8612d062407e96f4,https://doi.org/10.1007/s00521-014-1810-y +e3a8f18e507d9f2b537ec3c3fcc1b874b8ccfc24,http://doi.ieeecomputersociety.org/10.1109/MMUL.2016.27 +cf4c1099bef189838877c8785812bc9baa5441ed,https://doi.org/10.1109/ICPR.2016.7899862 +cf6c59d359466c41643017d2c212125aa0ee84b2,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552983 +cf7a4442a6aad0e08d4aade8ec379c44f84bca8a,http://doi.acm.org/10.1145/1873951.1874054 +cf784156547c3be146706e2763c1a52d939d1722,https://doi.org/10.1007/s11042-017-5038-6 +cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,https://doi.org/10.1109/TIFS.2013.2286265 +cf185d0d8fcad2c7f0a28b7906353d4eca5a098b,https://doi.org/10.1186/s13640-017-0190-5 +cf54e9776d799aa183d7466094525251d66389a4,https://doi.org/10.1109/ICCE-Berlin.2017.8210589 +cf6851c24f489dabff0238e01554edea6aa0fc7c,https://doi.org/10.1109/ICSMC.2011.6083637 +cfba667644508853844c45bfe5d0b8a2ffb756d3,https://doi.org/10.1109/ISBA.2018.8311455 +ca0185529706df92745e656639179675c717d8d5,https://doi.org/10.1504/IJCVR.2014.065571 +cae41c3d5508f57421faf672ee1bea0da4be66e0,https://doi.org/10.1109/ICPR.2016.7900298 +ca447d6479554b27b4afbd0fd599b2ed39f2c335,https://doi.org/10.1109/ICPR.2014.459 +ca0804050cf9d7e3ed311f9be9c7f829e5e6a003,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1333904 +ca458f189c1167e42d3a5aaf81efc92a4c008976,https://doi.org/10.1109/TIP.2012.2202678 +ca8f23d9b9a40016eaf0467a3df46720ac718e1d,https://doi.org/10.1109/ICASSP.2015.7178214 +cacce7f4ce74e3269f5555aa6fd83e48baaf9c96,http://doi.acm.org/10.1145/2632165 +ca60d007af691558de377cab5e865b5373d80a44,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273630 +cab3c6069387461c3a9e5d77defe9a84fe9c9032,https://doi.org/10.1016/j.neucom.2016.12.056 +ca37933b6297cdca211aa7250cbe6b59f8be40e5,http://doi.acm.org/10.1145/3155133.3155207 +e41246837c25d629ca0fad74643fb9eb8bf38009,https://doi.org/10.1109/ICSIPA.2011.6144064 +e4d53e7f4c2052940841abc08f9574655f3f7fb4,http://doi.acm.org/10.1145/3078971.3079039 +e4df98e4b45a598661a47a0a8900065716dafd6d,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2015.219 +e4ad82afc563b783475ed45e9f2cd4c9e2a53e83,https://doi.org/10.1109/AICCSA.2016.7945716 +e47e8fa44decf9adbcdb02f8a64b802fe33b29ef,https://doi.org/10.1109/TIP.2017.2782366 +e42f3c27391821f9873539fc3da125b83bffd5a2,https://doi.org/10.1109/HPCS.2010.5547096 +e4b825bf9d5df47e01e8d7829371d05208fc272d,http://doi.acm.org/10.1145/3055635.3056618 +e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,https://doi.org/10.1109/BTAS.2017.8272722 +e4c3587392d477b7594086c6f28a00a826abf004,https://doi.org/10.1109/ICIP.2017.8296998 +fef6f1e04fa64f2f26ac9f01cd143dd19e549790,http://doi.acm.org/10.1145/3123266.3123451 +fe556c18b7ab65ceb57e1dd054a2ca21cefe153c,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.145 +fed8cc533037d7d925df572a440fd89f34d9c1fd,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.194 +fefaa892f1f3ff78db4da55391f4a76d6536c49a,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2497689 +fe14d8177cbdb7e5b4085302e6e044f7a4c19cb2,https://doi.org/10.1109/ICSMC.2012.6377834 +fe5d6c65e51386f4d36f7434fe6fcd9494fe9361,https://doi.org/10.1109/ACCESS.2017.2730281 +c83d142a47babe84e8c4addafa9e2bb9e9b757a5,https://doi.org/10.1109/MLSP.2012.6349762 +c833c2fb73decde1ad5b5432d16af9c7bee1c165,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.143 +c8fb8872203ee694d95da47a1f9929ac27186d87,https://doi.org/10.1109/ICIP.2005.1530305 +c8fb8994190c1aa03c5c54c0af64c2c5c99139b4,https://doi.org/10.1007/s00138-016-0794-2 +c84991fe3bf0635e326a05e34b11ccaf74d233dc,https://doi.org/10.1016/j.neucom.2016.08.069 +c8bc8c99acd009e4d27ddd8d9a6e0b899d48543e,https://doi.org/10.1109/IROS.2012.6386178 +c81b27932069e6c7016bfcaa5e861b99ac617934,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019469 +c872d6310f2079db0cee0e69cc96da1470055225,https://doi.org/10.1007/978-3-319-46675-0_68 +fb3aaf18ea07b30d1836e7cf2ab9fa898627fe93,https://doi.org/10.1109/ACCESS.2017.2784096 +fb1b6138aeb081adf853316c0d83ef4c5626a7fa,https://doi.org/10.1109/ICIP.2017.8296302 +fb7bf10cbc583db5d5eee945aa633fcb968e01ad,https://doi.org/10.1007/s00521-012-0962-x +fb915bcc1623cdf999c0e95992c0e0cf85e64d8e,http://doi.ieeecomputersociety.org/10.1109/iThings.2014.83 +fb557b79157a6dda15f3abdeb01a3308528f71f2,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.310 +fb1627ed224bf7b1e3d80c097316ed7703951df2,https://doi.org/10.1109/VCIP.2017.8305094 +fb3ff56ab12bd250caf8254eca30cd97984a949a,https://doi.org/10.3103/S0146411617010072 +fb2bd6c2959a4f811b712840e599f695dad2967e,https://doi.org/10.1109/ISPA.2015.7306038 +fba386ac63fe87ee5a0cf64bf4fb90324b657d61,https://doi.org/10.1109/ICIP.2015.7351752 +ed9de242a23ad546902e1d5ec022dbb029cc2282,https://doi.org/10.1109/ICASSP.2015.7178138 +edbddf8c176d6e914f0babe64ad56c051597d415,https://doi.org/10.1109/TMM.2016.2644866 +ed94e7689cdae87891f08428596dec2a2dc6a002,https://doi.org/10.1109/CAMSAP.2017.8313130 +ed273b5434013dcdb9029c1a9f1718da494a23a2,https://doi.org/10.1109/LSP.2018.2810106 +ed0d8997a4b7b80a7cd3592e98bdbe5c3aab0cee,https://doi.org/10.1007/s11042-014-2345-z +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,https://doi.org/10.1007/978-981-10-3005-5_57 +ed70d1a9435c0b32c0c75c1a062f4f07556f7016,https://doi.org/10.1109/ICIP.2015.7350774 +ed82f10e5bfe1825b9fa5379a1d0017b96fa1ebf,http://doi.ieeecomputersociety.org/10.1109/ICEBE.2017.36 +ed023651e31cdbcaa5ef2ee1d71ddbc2906c2f76,https://doi.org/10.1109/LSP.2010.2093600 +c1a70d63d1667abfb1f6267f3564110d55c79c0d,https://doi.org/10.1007/s00138-013-0488-y +c138c76809b8da9e5822fb0ae38457e5d75287e0,https://doi.org/10.1109/TIP.2014.2378017 +c1581b5175994e33549b8e6d07b4ea0baf7fe517,https://doi.org/10.1109/IJCNN.2011.6033478 +c1173b8d8efb8c2d989ce0e51fe21f6b0b8d1478,https://doi.org/10.1109/TCYB.2016.2535122 +c1f05b723e53ac4eb1133249b445c0011d42ca79,https://doi.org/10.1162/neco_a_00990 +c1fb854d9a04b842ff38bd844b50115e33113539,https://doi.org/10.1007/s11042-016-3883-3 +c17c7b201cfd0bcd75441afeaa734544c6ca3416,https://doi.org/10.1109/TCSVT.2016.2587389 +c12034ca237ee330dd25843f2d05a6e1cfde1767,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.298 +c64502696438b4c9f9e12e64daaf7605f62ce3f0,http://doi.ieeecomputersociety.org/10.1109/WKDD.2009.195 +c65cfc9d3568c586faf18611c4124f6b7c0c1a13,https://doi.org/10.1109/ICACCI.2014.6968322 +c648d2394be3ff0c0ee5360787ff3777a3881b02,https://doi.org/10.1080/01449290903353047 +c65d2ee433ae095652abe3860eeafe6082c636c6,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553714 +c6bbb56a26222bdb8ce7dd829cff38b67d4b03cd,http://doi.acm.org/10.1145/2043674.2043677 +c675534be881e59a78a5986b8fb4e649ddd2abbe,https://doi.org/10.1109/ICIP.2017.8296548 +c60601bdb5465d8270fdf444e5d8aeccab744e29,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583363 +ec6a2093059fd6eada9944212f64a659881abb95,https://doi.org/10.1016/j.patcog.2016.02.022 +ec89f2307e29cc4222b887eb0619e0b697cf110d,https://doi.org/10.1109/TIP.2009.2027361 +ec1a57e609eda72b4eb60155fac12db1da31f6c0,https://doi.org/10.1007/11744085_41 +ec28217290897a059348dcdf287540a2e2c68204,https://doi.org/10.1504/IJBM.2015.070928 +eca706b4d77708452bdad1c98a23e4e88ce941ab,https://doi.org/10.1142/S0218001416550144 +ec39e9c21d6e2576f21936b1ecc1574dadaf291e,https://doi.org/10.1109/WACV.2017.130 +ecdd83002f69c2ccc644d07abb44dd939542d89d,https://doi.org/10.1016/j.neucom.2015.07.011 +4e8f301dbedc9063831da1306b294f2bd5b10477,https://doi.org/10.1109/BIOSIG.2016.7736919 +4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,https://doi.org/10.1109/TIFS.2017.2788002 +4e1d89149fc4aa057a8becce2d730ec6afd60efa,https://doi.org/10.1109/ICSMC.2009.5346047 +4ea63435d7b58d41a5cbcdd34812201f302ca061,https://doi.org/10.1109/ICIP.2014.7025066 +4e6e5cb93e7e564bc426b5b27888d55101504c50,https://doi.org/10.1109/ICPR.2016.7900299 +4e343c66c5fe7426132869d552f0f205d1bc5307,https://doi.org/10.1109/ICPR.2014.452 +4e1258db62e4762fd8647b250fda9c3567f86eb8,http://doi.ieeecomputersociety.org/10.1109/CRV.2013.17 +4ee94572ae1d9c090fe81baa7236c7efbe1ca5b4,https://doi.org/10.1109/DICTA.2017.8227494 +4eeccbbb98de4f2e992600482fd6b881ace014bb,http://doi.acm.org/10.1145/2964284.2967240 +4e581831d24fd90b0b5228b9136e76fa3e8f8279,https://doi.org/10.1109/TIP.2014.2303648 +4eb8030b31ff86bdcb063403eef24e53b9ad4329,http://doi.acm.org/10.1145/2993148.2997640 +4ed40e6bb66dfa38a75d864d804d175a26b6c6f6,http://doi.ieeecomputersociety.org/10.1109/CRV.2011.41 +204f1cf56794bb23f9516b5f225a6ae00d3d30b8,https://doi.org/10.1109/JSYST.2015.2418680 +20b405d658b7bb88d176653758384e2e3e367039,https://doi.org/10.1109/IJCNN.2012.6252677 +20eabf10e9591443de95b726d90cda8efa7e53bb,https://doi.org/10.1007/s11390-017-1740-0 +205f035ec90a7fa50fd04fdca390ce83c0eea958,http://doi.acm.org/10.1145/3131287 +189e5a2fa51ed471c0e7227d82dffb52736070d8,https://doi.org/10.1109/ICIP.2017.8296995 +18bfda16116e76c2b21eb2b54494506cbb25e243,https://doi.org/10.1109/TIFS.2010.2051544 +18d3532298fb7b8fb418453107f786178ca82e4a,https://doi.org/10.1109/TIFS.2017.2668221 +184dba921b932143d196c833310dee6884fa4a0a,https://doi.org/10.1109/SIU.2017.7960393 +18dd3867d68187519097c84b7be1da71771d01a3,http://doi.acm.org/10.1145/2448556.2448563 +18145b0b13aa477eeabef9ceec4299b60e87c563,https://doi.org/10.1007/s11042-011-0834-x +187f3ee3bc50a1f2471edc80d707e4fa1cac5b0b,https://doi.org/10.1109/LSP.2015.2437883 +1831800ef8b1f262c92209f1ee16567105da35d6,https://doi.org/10.1016/j.sigpro.2014.01.010 +1890470d07a090e7b762091c7b9670b5c2e1c348,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.20 +27e0684fa5b57715162ac6c58a6ea283c7db1719,https://doi.org/10.1109/ICARCV.2004.1468857 +27812db1d2f68611cc284d65d11818082e572008,https://doi.org/10.1109/MIPRO.2016.7522323 +27e5b7ae3506a0f7472ee9089cd2472442e71c14,https://doi.org/10.1007/s00521-015-1834-y +27aa23d7a05368a6b5e3d95627f9bab34284e5c4,https://doi.org/10.1109/IJCNN.2012.6252705 +27a586a435efdcecb151c275947fe5b5b21cf59b,https://doi.org/10.1007/s12559-017-9530-0 +279459cbbc5c6db4802e9c737cc72a612d76f7fc,https://doi.org/10.1109/SSCI.2017.8285296 +272e487dfa32f241b622ac625f42eae783b7d9aa,https://doi.org/10.1109/ICSIPA.2015.7412207 +4b9b30066a05bdeb0e05025402668499ebf99a6b,https://doi.org/10.1109/ISPACS.2012.6473448 +4b8c736524d548472d0725c971ee29240ae683f6,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.31 +4b7f21b48c7e0dc7334e36108f558d54642c17c0,https://doi.org/10.1109/WACV.2017.106 +4ba2f445fcbbad464f107b036c57aa807ac5c0c2,https://doi.org/10.1109/TCSVT.2014.2367357 +4b94f531c203743a9f7f1e9dd009cdbee22ea197,https://doi.org/10.1109/ICSMC.2005.1571393 +4b9c47856f8314ecbe4d0efc65278c2ededb2738,https://doi.org/10.1109/LSP.2012.2188890 +1176a74fb9351ac2de81c198c4861d78e58f172d,https://doi.org/10.1016/j.patrec.2011.03.023 +11ba01ce7d606bab5c2d7e998c6d94325521b8a0,https://doi.org/10.1109/ICIP.2015.7350911 +110919f803740912e02bb7e1424373d325f558a9,http://doi.acm.org/10.1145/3123266.3123421 +11e6cf1cbb33d67a3e3c87dcaf7031d6654bc0de,http://doi.acm.org/10.1145/2522968.2522978 +113cd9e5a4081ce5a0585107951a0d36456ce7a8,https://doi.org/10.1109/ICSMC.2006.384939 +11c2d40fc63ecd88febadd8a9cac9521a6b7de66,https://doi.org/10.1109/ICSIPA.2011.6144081 +1195f0bf8f745ba69da915203bcd79589b94aec5,https://doi.org/10.1016/j.procs.2010.11.004 +11f8d0a54e55c5e6537eef431cd548fa292ef90b,https://doi.org/10.1016/j.neucom.2017.05.042 +110359824a0e3b6480102b108372793265a24a86,https://doi.org/10.1016/j.image.2016.03.011 +1125760c14ea6182b85a09bf3f5bad1bdad43ef5,https://doi.org/10.1109/CVPR.2004.286 +11a6593e6e35f95ebeb5233897d1d8bcad6f9c87,https://doi.org/10.1007/s11063-017-9615-5 +11d73f4f19077e6806d05dc7ecd17fbeb15bdf39,http://doi.ieeecomputersociety.org/10.1109/FG.2017.28 +1135a818b756b057104e45d976546970ba84e612,http://doi.ieeecomputersociety.org/10.1109/FG.2017.118 +7d8798e7430dcc68fcdbd93053c884fc44978906,http://doi.acm.org/10.1145/2506364.2506369 +7d61b70d922d20c52a4e629b09465076af71ddfd,https://doi.org/10.1007/s10044-011-0258-2 +7d7b036ed01765c9473d695f029142128d442aaa,https://doi.org/10.1109/TIP.2018.2791180 +7dc498d45f9fcb97acee552c6f587b65d5122c35,https://doi.org/10.1109/ICIP.2015.7351618 +7de8a8b437ec7a18e395be9bf7c8f2d502025cc6,https://doi.org/10.1109/SIU.2017.7960528 +298c2be98370de8af538c06c957ce35d00e93af8,https://doi.org/10.1109/IPTA.2016.7820988 +29322b9a3744afaa5fc986b805d9edb6ff5ea9fe,https://doi.org/10.1109/TNNLS.2011.2178037 +2945cc9e821ab87fa17afc8802f3858435d1264c,https://doi.org/10.1109/ICPR.2016.7899839 +2960500033eb31777ed1af1fcb133dcab1b4a857,http://doi.acm.org/10.1145/3005467.3005471 +29f298dd5f806c99951cb434834bc8dcc765df18,https://doi.org/10.1109/ICPR.2016.7899837 +293d69d042fe9bc4fea256c61915978ddaf7cc92,https://doi.org/10.1007/978-981-10-7302-1_6 +29fd98f096fc9d507cd5ee7d692600b1feaf7ed1,http://doi.acm.org/10.1145/2988257.2988270 +7c8909da44e89a78fe88e815c83a4ced34f99149,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.326 +7c457c9a658327af6f6490729b4cab1239c22005,https://doi.org/10.1109/ACCESS.2017.2672829 +7c13fa0c742123a6a927771ce67da270492b588c,http://doi.acm.org/10.1145/3152114 +163ba5a998973f9ead6be0ca873aed5934d5022e,https://doi.org/10.1109/ACPR.2013.53 +16b0c171fb094f677fcdf78bbb9aaef0d5404942,https://doi.org/10.1109/TIP.2017.2733739 +1617f56c86bf8ea61de62062a97961d23fcf03d3,https://doi.org/10.1007/s11390-015-1540-3 +1672becb287ae3eaece3e216ba37677ed045db55,https://doi.org/10.1016/j.eswa.2015.10.047 +16eaa26a84468b27e559215db01c53286808ec2a,https://doi.org/10.1007/s11263-015-0859-0 +16c1b592d85d13f1ba4eff0afb4441bb78650785,https://doi.org/10.1109/TIP.2017.2685343 +163d0e6ea8c8b88b4383a4eaa740870e2458b9b0,https://doi.org/10.1007/978-3-319-71928-3_18 +16fc82d44188eb49a151bd5836a29911b3bfabcb,https://doi.org/10.1007/978-981-10-7302-1_50 +42441f1fee81c8fd42a74504df21b3226a648739,https://doi.org/10.1007/s11554-008-0072-2 +4268ae436db79c4eee8bc06e9475caff3ff70d57,http://doi.ieeecomputersociety.org/10.1109/FG.2017.146 +42fff5b37006009c2dbfab63c0375c7c7d7d8ee3,https://doi.org/10.1007/s11042-014-2228-3 +42a5dc91852c8c14ed5f4c3b451c9dc98348bc02,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.021 +425ea5656c7cf57f14781bafed51182b2e6da65f,https://doi.org/10.1109/TIP.2017.2718187 +427bec487c330e7e34cc2c8fc2d6558690421ea0,http://doi.ieeecomputersociety.org/10.1109/ISCSCT.2008.352 +4215b34597d8ce1e8985afa8043400caf0ec7230,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.71 +89e31777f221ddb3bc9940d7f520c8114c4148a2,https://doi.org/10.1007/s11063-012-9224-2 +897aa4aaa474fed41233faec9b70b802aea5fdea,https://doi.org/10.1142/S0218001414560126 +89272b78b651038ff4d294b9ccca0018d2c9033b,https://doi.org/10.1109/ICPR.2014.777 +89497854eada7e32f06aa8f3c0ceedc0e91ecfef,https://doi.org/10.1109/TIP.2017.2784571 +891b31be76e2baa83745f24c2e2013851dc83cbb,https://doi.org/10.1109/TSMCB.2009.2018137 +892400017e5c93611dc8361e7749135520d66f25,https://doi.org/10.1109/ICARCV.2010.5707394 +898ff1bafee2a6fb3c848ad07f6f292416b5f07d,https://doi.org/10.1109/TIP.2016.2518867 +454bf5b99607b4418e931092476ad1798ce5efa4,https://doi.org/10.1155/2011/790598 +45877ff4694576f59c2a9ca45aa65f935378492a,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.38 +4551194408383b12db19a22cca5db0f185cced5c,https://doi.org/10.1109/TNNLS.2014.2341634 +45e043dffc57a9070f483ac4aec2c5cd2cec22cb,http://doi.acm.org/10.1145/3130977 +452ea180cf4d08d7500fc4bc046fd7141fd3d112,https://doi.org/10.1109/BTAS.2012.6374569 +45edb29fb7eed5a52040300e1fd3cd53f1bdb429,https://doi.org/10.1109/ICIP.2015.7351570 +4512b87d68458d9ba0956c0f74b60371b6c69df4,https://doi.org/10.1109/TIP.2017.2708504 +4500888fd4db5d7c453617ee2b0047cedccf2a27,http://doi.acm.org/10.1145/2647750 +4562ea84ebfc8d9864e943ed9e44d35997bbdf43,http://doi.ieeecomputersociety.org/10.1109/FG.2017.19 +459eb3cfd9b52a0d416571e4bc4e75f979f4b901,https://doi.org/10.1109/ROBIO.2015.7418998 +453bf941f77234cb5abfda4e015b2b337cea4f17,https://doi.org/10.1007/s11042-014-2340-4 +1fd7a17a6c630a122c1a3d1c0668d14c0c375de0,https://doi.org/10.1109/CIST.2016.7805097 +1f41bf5e8b8562ac7ef0013f4d0cf1c9e1a431f9,https://doi.org/10.1109/IJCNN.2017.7965955 +1f8656e2254e353a91cceb08b33c25643a1b1fb7,https://doi.org/10.1109/LSP.2017.2736542 +1f02bf412a82ad99fe99dc3cfb3adec9dd41eabb,https://doi.org/10.1007/s11760-016-1052-9 +1f5725a4a2eb6cdaefccbc20dccadf893936df12,https://doi.org/10.1109/CCST.2012.6393544 +1fcb905e4505a781fb0b375eb470f5661e38ae39,http://doi.acm.org/10.1145/3123266.3123450 +874da338c01fb7a87d605fcde6c52835eee03d5e,http://doi.ieeecomputersociety.org/10.1109/ICAPR.2009.20 +87806c51dc8c1077953178367dcf5c75c553ce34,https://doi.org/10.1109/ICMLA.2015.146 +87ee56feefdb39938cda7f872e784d9d986713af,http://dl.acm.org/citation.cfm?id=3022247 +87552622efd0e85c2a71d4d2590e53d45f021dbf,https://doi.org/10.1109/ICIP.2016.7532435 +872ff48a3acfbf96376fd048348372f5137615e4,https://doi.org/10.1007/s41095-016-0051-7 +8706c3d49d1136035f298041f03bb70dc074f24d,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.12 +876583a059154def7a4bc503b21542f80859affd,https://doi.org/10.1109/IWBF.2016.7449697 +80677676b127b67938c8db06a15d87f5dd4bd7f1,https://doi.org/10.1007/s11760-014-0623-x +80f72b26c6571aee2ff04704bc7fd1a69bfa0b3f,https://doi.org/10.1016/j.patcog.2016.12.029 +8027a9093f9007200e8e69e05616778a910f4a5f,https://doi.org/10.1109/ICB.2013.6612997 +805a0f4b99f162ac4db0ef6e0456138c8d498c3a,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2465373 +803803b5c2c61046d63674f85ecf0123f9d2c4b8,https://doi.org/10.1049/iet-bmt.2013.0089 +80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,https://doi.org/10.1109/TNNLS.2016.2522431 +80aa455068018c63237c902001b58844fcc6f160,https://doi.org/10.1109/FG.2011.5771327 +80a5afeb6968c7e736adc48bd4d5ec5b45b13f71,https://doi.org/10.1007/978-3-319-15762-7 +74cec83ee694b5d0e07d5d0bacd0aa48a80776aa,https://doi.org/10.1109/ISCAS.2013.6572506 +745d49a2ff70450113f07124c2c5263105125f58,https://doi.org/10.1109/ICPR.2016.7899972 +745e74ae84e1b2b8690d07db523531642023d6c4,https://doi.org/10.1109/FSKD.2016.7603417 +747dc0add50b86f5ba9e3e7315943d520e08f9eb,http://doi.ieeecomputersociety.org/10.1109/FG.2017.78 +74d3ff8324e02503c18fb2566ed29e2e22ce0d1b,http://doi.ieeecomputersociety.org/10.1109/IAS.2009.266 +1ab19e516b318ed6ab64822efe9b2328836107a4,https://doi.org/10.1109/TIP.2010.2083674 +1ab4fdcd431286a2fe9538cb9a9e3c67016fa98a,https://doi.org/10.1007/s11042-013-1754-8 +1a0e1ba4408d12f8a28049da0ff8cad4f91690d5,https://doi.org/10.1007/s12559-016-9445-1 +1ad5cb4c1eec5a9666b5dbbb6fab43576d0935db,https://doi.org/10.1109/ICIP.2016.7533026 +1a47f12a2490f6775c0ad863ac856de27f5b3e03,https://doi.org/10.1016/j.sigpro.2014.11.010 +1a8d40bcfb087591cc221086440d9891749d47b8,https://doi.org/10.1109/ICCE.2012.6161859 +1afef6b389bd727c566cd6fbcd99adefe4c0cf32,https://doi.org/10.1109/ICB.2016.7550087 +1aeef2ab062c27e0dbba481047e818d4c471ca57,https://doi.org/10.1109/ICACCI.2015.7275860 +1addc5c1fa80086d1ed58f71a9315ad13bd87ca2,https://doi.org/10.1007/s10044-012-0279-5 +1a40c2a2d17c52c8b9d20648647d0886e30a60fa,https://doi.org/10.1109/ICPR.2016.7900283 +1a03dcc811131b0b702bd5a75c54ed26cd27151a,https://doi.org/10.1007/s11760-015-0810-4 +1ad780e02edf155c09ea84251289a054b671b98a,https://doi.org/10.1109/ICNIDC.2012.6418787 +287de191c49a3caa38ad7594093045dfba1eb420,https://doi.org/10.23919/MVA.2017.7986829 +281b91c35a1af97b1405bc724a04e2be6e24971b,https://doi.org/10.1109/ICMLC.2010.5580557 +28d55935cc36df297fe21b98b4e2b07b5720612e,https://doi.org/10.1109/CISS.2016.7460569 +28a45770faf256f294ce3bbd5de25c6d5700976e,https://doi.org/10.1109/ICDSP.2016.7868531 +283d381c5c2ba243013b1c4f5e3b29eb906fa823,http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.222 +2884ff0d58a66d42371b548526d685760e514043,https://doi.org/10.1109/ICIP.2015.7351242 +17768efd76a681902a33994da4d3163262bf657f,https://doi.org/10.1007/s12559-017-9472-6 +176d9121e4e645344de4706dfb345ad456bfb84a,https://doi.org/10.1117/1.JEI.24.2.023009 +17189cfedbdbd219849b8e7f8cf0293d49465f9c,http://doi.acm.org/10.1145/2393347.2396505 +170aa0f16cd655fdd4d087f5e9c99518949a1b5c,https://doi.org/10.1007/s11263-007-0074-8 +179545c1fc645cb2ad9b31a30f48352d541876ff,https://doi.org/10.1109/IJCNN.2007.4371116 +17de5a9ce09f4834629cd76b8526071a956c9c6d,https://doi.org/10.1007/978-3-319-68063-7_8 +1723227710869a111079be7d61ae3df48604e653,https://doi.org/10.1109/INISTA.2014.6873606 +178b37392b2c6f1a167ebc1a5baa5f2f5916e4c4,https://doi.org/10.1007/s11042-013-1578-6 +17d03da4db3bb89537d644b682b2a091d563af4a,https://doi.org/10.1109/TNN.2010.2050600 +7b1ca9a74ab7fbfc32a69e8313ca2f2d78ac6c35,http://doi.ieeecomputersociety.org/10.1109/ICSC.2017.61 +7bc1e7d000ab517161a83b1fedf353e619516ddf,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836068 +7b618a699b79c1272f6c83101917ad021a58d96b,https://doi.org/10.1007/s11042-014-1986-2 +7bd37e6721d198c555bf41a2d633c4f0a5aeecc1,https://doi.org/10.1109/ACPR.2013.58 +7b455cbb320684f78cd8f2443f14ecf5f50426db,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.33 +8f3675e979629ca9cee9436d37763f546edb8d40,https://doi.org/10.1109/SIU.2017.7960446 +8fee7b38358815e443f8316fa18768d76dba12e3,http://doi.acm.org/10.1145/2063576.2063676 +8fe5feeaa72eddc62e7e65665c98e5cb0acffa87,https://doi.org/10.1007/s12193-015-0209-0 +8f73af52d87c94d0bd43242462fd68d974eda331,https://doi.org/10.1109/ICB.2013.6613009 +8f99f7ccb85af6d4b9e015a9b215c529126e7844,https://doi.org/10.1109/ROMAN.2017.8172359 +8f051647bd8d23482c6c3866c0ce1959b8bd40f6,https://doi.org/10.1016/j.asoc.2017.04.041 +8f713e3c5b6b166c213e00a3873f750fb5939c9a,https://doi.org/10.1109/EUSIPCO.2015.7362563 +8fc36452a49cb0fd43d986da56f84b375a05b4c1,http://doi.acm.org/10.1145/2542355.2542388 +8aff9c8a0e17be91f55328e5be5e94aea5227a35,https://doi.org/10.1109/TNNLS.2012.2191620 +8a1e95b82d8cf27e0034e127091396efd4c8bd9e,https://doi.org/10.1109/IGARSS.2016.7729015 +8a2210bedeb1468f223c08eea4ad15a48d3bc894,http://doi.acm.org/10.1145/2513383.2513438 +8a2bedaa38abf173823944f0de2c84f5b2549609,https://doi.org/10.1109/TNNLS.2016.2573644 +8ab465c1a131ee4bee6ac0a0b19dfe68f5dcdcc4,http://doi.ieeecomputersociety.org/10.1109/CSSE.2008.575 +7ebfa8f1c92ac213ff35fa27287dee94ae5735a1,https://doi.org/10.1109/TMM.2016.2614429 +7e456e94f3080c761f858264428ee4c91cd187b2,http://ieeexplore.ieee.org/document/6460899/ +7e48711c627edf90e9b232f2cbc0e3576c8f2f2a,https://doi.org/10.1007/s11760-015-0777-1 +10e2f2ad1dedec6066e063cb2098b089b35905a8,http://doi.acm.org/10.1145/3052930 +10df1d4b278da991848fb71b572f687bd189c10e,https://doi.org/10.1109/ICPR.2016.7899739 +104ee18b513b52386f871e959c1f9e5072604e93,https://doi.org/10.1109/GlobalSIP.2017.8309189 +10f4bbf87a44bab3d79e330e486c897e95f5f33f,https://doi.org/10.1109/TIFS.2012.2186292 +1071dde48a77f81c35ad5f0ca90a9daedb54e893,http://ieeexplore.ieee.org/document/7881657/ +1050cd9bf281d0b7367c03d931e6e0b4fc08ccd3,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043872 +1966bddc083886a9b547e1817fe6abc352a00ec3,http://doi.acm.org/10.1145/2733373.2806312 +19705579b8e7d955092ef54a22f95f557a455338,https://doi.org/10.1109/ICIP.2014.7025277 +1979e270093b343d62e97816eeed956062e155a0,https://doi.org/10.1016/j.micpro.2005.07.003 +194f5d3c240d06575403c9a422a0ebc86d43b91e,https://doi.org/10.1007/s11042-015-2580-y +197efbef17f92e5cb5076961b6cd9f59e88ffd9a,https://doi.org/10.1109/ICMLA.2017.00-59 +19bbecead81e34b94111a2f584cf55db9a80e60c,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248025 +195b61470720c7faa523e10e68d0c8d8f27d7c7a,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995618 +1902288256839539aeb5feb3e1699b963a15aa1a,https://doi.org/10.1109/IJCNN.2016.7727435 +19c82eacd77b35f57ac8815b979716e08e3339ca,http://doi.ieeecomputersociety.org/10.1109/ICITCS.2015.7292981 +191b70fdd6678ef9a00fd63710c70b022d075362,https://doi.org/10.1109/ICIP.2003.1247347 +4c141534210df53e58352f30bab558a077fec3c6,https://doi.org/10.1109/TMM.2016.2557722 +4c19690889fb3a12ec03e65bae6f5f20420b4ba4,https://doi.org/10.1049/iet-ipr.2015.0699 +4c6886c489e93ccab5a1124555a6f3e5b0104464,https://doi.org/10.1109/ICIP.2017.8296921 +4c648fe9b7bfd25236164333beb51ed364a73253,http://doi.acm.org/10.1145/3038924 +4c0846bcfa64d9e810802c5b7ef0f8b43523fe54,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2324594 +4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,https://doi.org/10.1109/TIP.2014.2387379 +4cec3e5776090852bef015a8bbe74fed862aa2dd,https://doi.org/10.1109/TSP.2013.2271479 +4c842fbd4c032dd4d931eb6ff1eaa2a13450b7af,https://doi.org/10.1016/j.imavis.2014.06.004 +268c4bb54902433bf00d11391178a162e5d674c9,https://doi.org/10.1109/CVPRW.2010.5543261 +261a80216dda39b127d2b7497c068ec7e0fdf183,https://doi.org/10.1109/TCSVT.2013.2265571 +26ebe98753acec806b7281d085110c06d9cd1e16,http://doi.ieeecomputersociety.org/10.1109/FG.2017.22 +26973cf1552250f402c82e9a4445f03fe6757b58,http://doi.acm.org/10.1145/3126686.3130239 +2601b679fdd637f3cd978753ae2f15e8759dd267,https://doi.org/10.1109/ICIP.2015.7351306 +262cdbc57ecf5c18756046c0d8b9aa7eb10e3b19,http://dl.acm.org/citation.cfm?id=3007694 +26b9d546a4e64c1d759c67cd134120f98a43c2a6,https://doi.org/10.1109/ICMLA.2012.120 +26bbe76d1ae9e05da75b0507510b92e7e6308c73,https://doi.org/10.1007/s00371-014-1049-8 +26949c1ba7f55f0c389000aa234238bf01a32d3b,https://doi.org/10.1109/ICIP.2017.8296814 +26a5136ee4502500fb50cd5ade814aad45422771,https://doi.org/10.1142/S0218001413560028 +26727dc7347e3338d22e8cf6092e3a3c7568d763,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163088 +2138ccf78dcf428c22951cc066a11ba397f6fcef,https://doi.org/10.1109/BHI.2012.6211519 +21bd60919e2e182a29af455353141ba4907b1b41,https://doi.org/10.1109/ACCESS.2018.2798573 +21cbf46c6adfb3a44ed2b30ff0b21a8391c18b13,https://doi.org/10.1109/VCIP.2017.8305137 +21f5f65e832c5472d6d08f6ee280d65ff0202e29,https://doi.org/10.1007/978-3-319-70353-4_44 +218139e5262cb4f012cd2e119074aa59b89ebc32,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.265 +217aa3aa0b3d9f6f394b5d26f03418187d775596,http://doi.acm.org/10.1145/3123266.3123298 +2149d49c84a83848d6051867290d9c8bfcef0edb,https://doi.org/10.1109/TIFS.2017.2746062 +4dbfbe5fd96c9efc8c3c2fd54406b62979482678,https://doi.org/10.1016/j.jvcir.2014.07.007 +4d1f77d9418a212c61a3c75c04a5b3884f6441ba,https://doi.org/10.1109/TIP.2017.2788196 +4d4736173a5e72c266e52f3a43bdcb2b58f237a2,https://doi.org/10.1109/ISSPA.2012.6310583 +4d6d6369664a49f6992f65af4148cefef95055bc,https://doi.org/10.1109/ICIP.2014.7025407 +75858dbee2c248a60741fbc64dcad4f8b63d51cb,https://doi.org/10.1109/TIP.2015.2460464 +7535e3995deb84a879dc13857e2bc0796a2f7ce2,https://doi.org/10.1007/s10618-010-0207-5 +75d7ba926ef1cc2adab6c5019afbb2f69a5ca27d,https://doi.org/10.1007/s00521-012-1042-y +75b51140d08acdc7f0af11b0ffa1edb40ebbd059,https://doi.org/10.1007/s00521-010-0381-9 +754626bd5fb06fee5e10962fdfeddd495513e84b,https://doi.org/10.1109/SIU.2017.7960646 +751fb994b2c553dc843774a5620bfcab8bc657fd,https://doi.org/10.1007/978-3-319-67180-2_47 +753a277c1632dd61233c488cc55d648de3caaaa3,https://doi.org/10.1016/j.patcog.2011.02.013 +81a4397d5108f6582813febc9ddbeff905474120,https://doi.org/10.1109/ICPR.2016.7899883 +812d3f6975f4cb87e9905ef18696c5c779227634,https://doi.org/10.1186/s13640-016-0151-4 +8184a92e1ccc7fdeb4a198b226feb325c63d6870,https://doi.org/10.1109/ICCE.2017.7889290 +8185be0689442db83813b49e215bf30870017459,https://doi.org/10.1109/TNNLS.2013.2293418 +81b8a6cabcd6451b21d5b44e69b0a355d9229cc4,https://doi.org/10.1109/ICDSP.2017.8096137 +81d81a2060366f29fd100f793c11acf000bd2a7f,https://doi.org/10.1007/11795131_112 +81af86e3d343a40ce06a3927b6aa8c8853f6811a,http://doi.acm.org/10.1145/3009977.3009996 +81c21f4aafab39b7f5965829ec9e0f828d6a6182,https://doi.org/10.1109/BTAS.2015.7358744 +81d232e1f432db7de67baf4f30f240c62d1a9055,https://doi.org/10.1109/ICIP.2017.8296405 +86fa086d02f424705bbea53943390f009191740a,https://doi.org/10.1109/ICIP.2015.7351651 +865d4ce1751ff3c0a8eb41077a9aa7bd94603c47,https://doi.org/10.1007/s12193-015-0210-7 +86597fe787e0bdd05935d25158790727257a40bd,http://doi.ieeecomputersociety.org/10.1109/3DV.2016.72 +86afb1e38a96f2ac00e792ef353a971fd13c8474,https://doi.org/10.1109/BigData.2016.7840742 +8686b15802529ff8aea50995ef14079681788110,https://doi.org/10.1109/TNNLS.2014.2376936 +864d50327a88d1ff588601bf14139299ced2356f,https://doi.org/10.1109/FSKD.2016.7603151 +8697ccb156982d40e88fda7fbf4297fa5171f24d,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2011.101 +86881ce8f80adea201304ca6bb3aa413d94e9dd0,https://doi.org/10.1109/ICIP.2017.8297133 +8605e8f5d84b8325b1a81d968c296a5a5d741f31,https://doi.org/10.1016/j.patcog.2017.04.010 +72345fed8d068229e50f9ea694c4babfd23244a0,http://doi.acm.org/10.1145/2632856.2632937 +728b1b2a86a7ffda402e7ec1a97cd1988dcde868,https://doi.org/10.1016/j.procs.2016.04.083 +72a3bb0fb490355a926c5a689e12268bff9ff842,https://doi.org/10.1109/ICIP.2006.312862 +7234468db46b37e2027ab2978c67b48b8581f796,https://doi.org/10.1109/ACPR.2015.7486464 +72119cb98f9502ec639de317dccea57fd4b9ee55,https://doi.org/10.1109/GlobalSIP.2015.7418230 +72d110df78a7931f5f2beaa29f1eb528cf0995d3,https://doi.org/10.1007/s11517-015-1346-z +440b94b1624ca516b07e72ea8b3488072adc5e26,https://doi.org/10.1109/ITSC.2015.153 +44b827df6c433ca49bcf44f9f3ebfdc0774ee952,https://doi.org/10.1109/LSP.2017.2726105 +44c278cbecd6c1123bfa5df92e0bda156895fa48,https://doi.org/10.1109/ICPR.2014.316 +4490b8d8ab2ac693c670751d4c2bff0a56d7393d,https://doi.org/10.1007/s11063-017-9648-9 +4492914df003d690e5ff3cb3e0e0509a51f7753e,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2014.6921443 +44834929e56f2a8f16844fde519039d647006216,http://doi.acm.org/10.1145/1460096.1460150 +44389d8e20cf9f1a8453f4ba033e03cff9bdfcbb,https://doi.org/10.1016/j.neucom.2017.07.052 +445e3ba7eabcc55b5d24f951b029196b47830684,https://doi.org/10.1109/TMM.2016.2591508 +2a92bda6dbd5cce5894f7d370d798c07fa8783f4,https://doi.org/10.1109/TIFS.2014.2359587 +2afde207bd6f2e5fa20f3cf81940b18cc14e7dbb,https://doi.org/10.1109/TIP.2013.2255300 +2a98b850139b911df5a336d6ebf33be7819ae122,https://doi.org/10.1109/ICIP.2015.7350806 +2ae2e29c3e9cc2d94a26da5730df7845de0d631b,https://doi.org/10.1109/TCSVT.2011.2129670 +2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,https://doi.org/10.1109/CVPRW.2010.5543608 +2a98351aef0eec1003bd5524933aed8d3f303927,https://doi.org/10.1109/CIRA.2007.382901 +2a41388040141ef6b016c100ef833a2a73ab8b42,https://doi.org/10.1016/j.neucom.2017.03.033 +2a79bd36c56fd1634ca0f8089fe8aa9343eb92ce,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2006.104 +2a84f7934365f05b6707ea0ac225210f78e547af,https://doi.org/10.1109/ICPR.2016.7899690 +2adffdffa16475ae71bb2adcf65840f01f1e53f7,https://doi.org/10.1049/iet-cvi.2014.0094 +2a4984fb48c175d1e42c6460c5f00963da9f26b6,https://doi.org/10.1109/MIPRO.2015.7160445 +2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,http://doi.acm.org/10.1145/3090311 +2f8ef56c1007a02cdc016219553479d6b7e097fb,https://doi.org/10.1007/978-3-642-14834-7_2 +2fd007088a75916d0bf50c493d94f950bf55c5e6,https://doi.org/10.1007/978-981-10-7302-1_1 +2f43b614607163abf41dfe5d17ef6749a1b61304,https://doi.org/10.1109/TIFS.2014.2361479 +2f1b521c29ab075a0cd9bbf56ba26ee13d5e4d76,https://doi.org/10.1109/ACPR.2015.7486607 +2f5b51af8053cf82ab52bbfd46b56999222ec21c,https://doi.org/10.1109/ICPR.2014.788 +2f841ff062053f38725030aa1b77db903dad1efb,https://doi.org/10.1109/ICRA.2014.6907748 +2facf3e85240042a02f289a0d40fee376c478d0f,https://doi.org/10.1109/BTAS.2010.5634544 +2f61d91033a06dd904ff9d1765d57e5b4d7f57a6,https://doi.org/10.1109/ICIP.2016.7532953 +2f160a6526ebf10773680dadaba44b006bcec2cb,https://doi.org/10.1016/j.neucom.2012.03.007 +2f17c0514bb71e0ca20780d71ea0d50ff0da4938,http://doi.acm.org/10.1145/1943403.1943490 +43261920d2615f135d6e72b333fe55d3f2659145,http://doi.acm.org/10.1145/3136273.3136301 +4349f17ec319ac8b25c14c2ec8c35f374b958066,https://doi.org/10.1109/THMS.2017.2681425 +43cbe3522f356fbf07b1ff0def73756391dc3454,https://doi.org/10.1109/WIFS.2011.6123140 +4398afa0aeb5749a12772f2d81ca688066636019,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2496320 +4344ba6e33faaa616d01248368e66799548ca48b,https://doi.org/10.1007/s10044-015-0474-2 +43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,https://doi.org/10.1109/ICIP.2017.8296394 +43bb2b58f906262035ef61e41768375bc8d99ae3,https://doi.org/10.1016/j.procs.2016.04.072 +4328933890f5a89ad0af69990926d8484f403e4b,http://doi.acm.org/10.1145/2072298.2071993 +434f1442533754b3098afd4e24abf1e3792b24db,https://doi.org/10.1109/CBMI.2015.7153627 +43eb03f95adc0df61af2c3b12a913c725b08d4f5,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2011.101 +88780bd55615c58d9bacc4d66fc2198e603a1714,https://doi.org/10.1109/EMBC.2016.7590730 +8879083463a471898ff9ed9403b84db277be5bf6,https://doi.org/10.1016/j.patcog.2016.08.031 +884a9ce87d4d2338cb97bf4c8df3cdb079a87d5e,https://doi.org/10.1109/SMC.2016.7844717 +88ed558bff3600f5354963d1abe762309f66111e,https://doi.org/10.1109/TIFS.2015.2393553 +88399c7fa890f1252178cd5e4979971509bd904f,https://doi.org/10.1142/S0219878906000915 +8845c03bee88fdd2f400ed2bddba038366c82abe,http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.135 +8882d39edae556a351b6445e7324ec2c473cadb1,https://doi.org/10.1109/TIP.2017.2755766 +88c21e06ed44da518a7e346fce416efedc771704,https://doi.org/10.1109/ICIP.2015.7351455 +9f5e22fbc22e1b0a61bcd75202d299232e68de5d,https://doi.org/10.1109/IJCNN.2016.7727391 +9fab78015e6e91ba7241a923222acd6c576c6e27,http://doi.ieeecomputersociety.org/10.1109/ICSS.2016.10 +9f3c9e41f46df9c94d714b1f080dafad6b4de1de,https://doi.org/10.1109/ICT.2017.7998260 +9f428db0d3cf26b9b929dd333a0445bcc7514cdf,https://doi.org/10.1016/j.cviu.2010.11.015 +9fd1b8abbad25cb38f0c009288fb5db0fc862db6,https://doi.org/10.1109/ICASSP.2003.1199147 +9fbcf40b0649c03ba0f38f940c34e7e6c9e04c03,https://doi.org/10.1007/s10044-006-0033-y +6b44543571fe69f088be577d0c383ffc65eceb2a,http://doi.ieeecomputersociety.org/10.1109/EST.2012.24 +6b0a2f9ab9b134d66a325525ea5d90ad546fe2b7,https://doi.org/10.1109/IJCNN.2016.7727803 +6bacd4347f67ec60a69e24ed7cc0ac8073004e6f,https://doi.org/10.1109/VCIP.2014.7051528 +6ba6045e4b404c44f9b4dfce2d946019f0e85a72,https://doi.org/10.1109/ICPR.2016.7899962 +6b8329730b2e13178a577b878631735a1cd58a71,http://doi.ieeecomputersociety.org/10.1109/FiCloud.2015.78 +07dc9f3b34284cc915dea7575f40ef0c04338126,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2537337 +070c8ee3876c06f9a65693e536d61097ace40417,https://doi.org/10.1109/ACPR.2013.161 +0733ec1953f6c774eb3a723618e1268586b46359,https://doi.org/10.1109/TMM.2006.870737 +0750c796467b6ef60b0caff5fb199337d54d431e,https://doi.org/10.1109/ICMLC.2016.7873015 +0701b01bc99bf3b64050690ceadb58a8800e81ed,https://doi.org/10.1007/s11042-015-3107-2 +076c97826df63f70d55ea11f0b7ae47a7ad81ad3,http://doi.ieeecomputersociety.org/10.1109/SITIS.2011.40 +38e7f3fe450b126367ec358be9b4cc04e82fa8c7,https://doi.org/10.1109/TIP.2014.2351265 +3888d7a40f3cea5e4a851c8ca97a2d7810a62867,https://doi.org/10.1109/CCECE.2016.7726684 +383ff2d66fecdc2fd02a31ac1fa392f48e578296,https://doi.org/10.1016/j.cviu.2015.07.005 +387b54cf6c186c12d83f95df6bd458c5eb1254ee,https://doi.org/10.1109/VCIP.2017.8305123 +3826e47f0572ab4d0fe34f0ed6a49aa8303e0428,https://doi.org/10.1109/ACPR.2013.66 +383e64d9ef1fca9de677ac82486b4df42e96e861,http://doi.ieeecomputersociety.org/10.1109/DSC.2017.78 +38345264a9ca188c4facffe6e18a7e6865fb2966,http://doi.ieeecomputersociety.org/10.1109/BIBM.2017.8217969 +008528d5e27919ee95c311266041e4fb1711c254,https://doi.org/10.1007/s13735-015-0092-1 +00d4c2db10f3a32d505d7b8adc7179e421443dec,https://doi.org/10.1109/GlobalSIP.2014.7032080 +00049f989067d082f7f8d0581608ad5441d09f8b,https://doi.org/10.1109/LSP.2016.2555480 +003ba2001bd2614d309d6ec15e9e2cbe86db03a1,https://doi.org/10.1109/ISCAS.2005.1465264 +00eccc565b64f34ad53bf67dfaf44ffa3645adff,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618328 +00301c250d667700276b1e573640ff2fd7be574d,https://doi.org/10.1109/BTAS.2014.6996242 +00a38ebce124879738b04ffc1536018e75399193,https://doi.org/10.1109/BTAS.2017.8272766 +009bf86913f1c366d9391bf236867d84d12fa20c,https://doi.org/10.1109/CVPRW.2010.5544620 +0034e37a0faf0f71395245b266aacbf5412f190a,https://doi.org/10.1109/TMM.2014.2355134 +6e9de9c3af3258dd18142e9bef2977b7ce153bd5,https://doi.org/10.1007/978-3-319-48881-3 +6e2041a9b5d840b0c3e4195241cd110640b1f5f3,https://doi.org/10.1007/s10044-013-0349-3 +6e7ffd67329ca6027357a133437505bc56044e65,https://doi.org/10.1109/IJCNN.2014.6889754 +6ec275755f8776b620d0a4550be0e65caf2bc87a,https://doi.org/10.1109/IS.2016.7737496 +9ab963e473829739475b9e47514f454ab467a5af,http://doi.ieeecomputersociety.org/10.1109/FG.2017.33 +9abf6d56a7d336bc58f4e3328d2ee807032589f1,https://doi.org/10.1109/CEC.2017.7969500 +9abab00de61dd722b3ad1b8fa9bffd0001763f8b,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2420563 +9ab126760f68071a78cabe006cf92995d6427025,https://doi.org/10.1007/s11042-013-1703-6 +9a84588fe7e758cfbe7062686a648fab787fc32f,https://doi.org/10.1007/s11042-014-2333-3 +9aade3d26996ce7ef6d657130464504b8d812534,https://doi.org/10.1109/TNNLS.2016.2618340 +9aba281955117eb4a7aed36775f55f27e4dde42f,http://doi.ieeecomputersociety.org/10.1109/AFGR.2000.840635 +36bb5cca0f6a75be8e66f58cba214b90982ee52f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.73 +36219a3196aac2bd149bc786f083957a6e6da125,https://doi.org/10.1016/j.jvcir.2015.12.003 +3690af0af51a067750f664c08e48b486d1cd476d,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2012.41 +36486944b4feeb88c0499fecd253c5a53034a23f,https://doi.org/10.1109/CISP-BMEI.2017.8301986 +36b23007420b98f368d092bab196a8f3cbcf6f93,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.106 +36b13627ee8a5a8cd04645213aabfa917bbd32f5,https://doi.org/10.1109/TCSVT.2016.2602812 +363f540dc82ba8620262a04a67cfd6d3c85b0582,http://doi.ieeecomputersociety.org/10.1109/WIAMIS.2009.5031445 +36bb93c4f381adca267191811abb8cc7812363f9,https://doi.org/10.1109/CISP-BMEI.2017.8301987 +5c91fc106cfe9d57a9b149c1af29ca84d403fc7e,https://doi.org/10.1109/TCSVT.2015.2452782 +5c3eb40b06543f00b2345f3291619a870672c450,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.539 +5c19c4c6a663fe185a739a5f50cef6a12a4635a1,https://doi.org/10.1016/j.imavis.2012.08.016 +5c526ee00ec0e80ba9678fee5134dae3f497ff08,https://doi.org/10.1109/TCE.2010.5606299 +5c4f9260762a450892856b189df240f25b5ed333,https://doi.org/10.1109/TIP.2017.2651396 +09f9409430bba2afb84aa8214dbbb43bfd4cf056,https://doi.org/10.1109/TNN.2006.883012 +0974677f59e78649a40f0a1d85735410d21b906a,https://doi.org/10.1109/ISCAS.2017.8050798 +0931bef0a9c8c153184a1f9c286cf4883cbe99b6,https://doi.org/10.1007/s12193-015-0203-6 +09138ad5ad1aeef381f825481d1b4f6b345c438c,https://doi.org/10.1109/IIH-MSP.2012.41 +096ffc1ea5493242ba0c113178dab0c096412f81,http://doi.acm.org/10.1145/3123266.3123441 +092dd7cb6c9b415eb83afb104fa63d7d4290ac33,https://doi.org/10.1109/SPLIM.2016.7528409 +5dbb2d556f2e63a783a695a517f5deb11aafd7ea,https://doi.org/10.1109/ICB.2015.7139079 +5dd57b7e0e82a33420c054da7ea3f435d49e910e,https://doi.org/10.1007/s10851-014-0493-4 +5df17c81c266cf2ebb0778e48e825905e161a8d9,https://doi.org/10.1109/TMM.2016.2520091 +5da98f7590c08e83889f3cec7b0304b3610abf42,https://doi.org/10.1016/j.eswa.2017.07.018 +5d9f468a2841ea2f27bbe3ef2c6fe531d444be68,https://doi.org/10.1109/GlobalSIP.2017.8309167 +5ddfd3d372f7679518db8fd763d5f8bc5899ed67,https://doi.org/10.1109/ICPR.2014.797 +31ba7f5e09a2f0fe9cf7ea95314723206dcb6059,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.300 +3150e329e01be31ba08b6d76fc46b0da88a5ddeb,http://doi.acm.org/10.1145/2927006.2927012 +310fe4e6cb6d090f7817de4c1034e35567b56e34,https://doi.org/10.1109/ICPR.2014.313 +31697737707d7f661cbc6785b76cf9a79fee3ccd,http://doi.ieeecomputersociety.org/10.1109/FG.2017.100 +31a36014354ee7c89aa6d94e656db77922b180a5,http://doi.acm.org/10.1145/2304496.2304509 +31ffc95167a2010ce7aab23db7d5fc7ec439f5fb,https://doi.org/10.1109/TNNLS.2017.2651169 +31ba9d0bfaa2a44bae039e5625eb580afd962892,https://doi.org/10.1016/j.cviu.2016.03.014 +314c4c95694ff12b3419733db387476346969932,http://dl.acm.org/citation.cfm?id=3007672 +31f905d40a4ac3c16c91d5be8427762fa91277f1,https://doi.org/10.1109/TIP.2017.2704661 +91167aceafbc9c1560381b33c8adbc32a417231b,https://doi.org/10.1109/TCSVT.2009.2020337 +915ff2bedfa0b73eded2e2e08b17f861c0e82a58,https://doi.org/10.1109/UEMCON.2017.8249000 +919bdc161485615d5ee571b1585c1eb0539822c8,http://ieeexplore.ieee.org/document/6460332/ +9101363521de0ec1cf50349da701996e4d1148c8,http://doi.ieeecomputersociety.org/10.1109/ICIAP.2007.28 +919cb6160db66a8fe0b84cb7f171aded48a13632,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2327978 +9166f46aa3e58befaefd3537e5a11b31ebeea4d0,https://doi.org/10.1109/ICIP.2015.7351505 +91d0e8610348ef4d5d4975e6de99bb2d429af778,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.61 +913961d716a4102d3428224f999295f12438399f,https://doi.org/10.1016/j.patcog.2014.01.016 +913062218c7498b2617bb9d7821fe1201659c5cc,https://doi.org/10.1109/ICMLA.2012.178 +918fc4c77a436b8a588f63b2b37420b7868fbbf8,https://doi.org/10.1016/j.inffus.2015.03.005 +655e94eccddbe1b1662432c1237e61cf13a7d57b,http://doi.ieeecomputersociety.org/10.1109/ISIP.2008.147 +6554ca3187b3cbe5d1221592eb546dfc11aac14b,http://doi.acm.org/10.1145/2501643.2501647 +65475ce4430fb524675ebab6bcb570dfa07e0041,https://doi.org/10.1109/ISR.2013.6695696 +65869cc5ef00d581c637ae8ea6ca02ae4bb2b996,http://doi.ieeecomputersociety.org/10.1109/ICDM.2007.65 +659dc6aa517645a118b79f0f0273e46ab7b53cd9,https://doi.org/10.1109/ACPR.2015.7486608 +65fc8393610fceec665726fe4e48f00dc90f55fb,https://doi.org/10.1109/CYBConf.2013.6617455 +6256b47342f080c62acd106095cf164df2be6020,https://doi.org/10.1007/978-3-319-24702-1_6 +62648f91e38b0e8f69dded13b9858bd3a86bb6ed,http://doi.acm.org/10.1145/2647868.2655016 +628f9c1454b85ff528a60cd8e43ec7874cf17931,http://doi.acm.org/10.1145/2993148.2993193 +62e834114b58a58a2ea2d7b6dd7b0ce657a64317,https://doi.org/10.1109/SMC.2014.6973987 +62e61f9f7445e8dec336415ac0c7e677f9f5f7c1,https://doi.org/10.1142/S0219467814500065 +6267dbeb54889be5bdb50c338a7c6ef82287084c,https://doi.org/10.1109/ICMLC.2010.5580567 +963a004e208ce4bd26fa79a570af61d31651b3c3,https://doi.org/10.1016/j.jvlc.2009.01.011 +9635493998ad60764d7bbf883351af57a668d159,https://doi.org/10.1109/IJCNN.2017.7966005 +96a8f115df9e2c938453282feb7d7b9fde6f4f95,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2593719 +965c4a8087ae208c08e58aaf630ad412ac8ce6e2,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.100 +96b1f2bde46fe4f6cc637398a6a71e8454291a6e,https://doi.org/10.1109/TIP.2010.2073476 +96fbadc5fa1393d59ce0b8fd3d71aebc1fe35b40,https://doi.org/10.1109/ICIP.2016.7532959 +9652f154f4ae7807bdaff32d3222cc0c485a6762,https://doi.org/10.1007/s00138-016-0760-z +96d34c1a749e74af0050004162d9dc5132098a79,https://doi.org/10.1109/TNN.2005.844909 +96e0b67f34208b85bd90aecffdb92bc5134befc8,https://doi.org/10.1016/j.patcog.2007.10.002 +3a9fbd05aaab081189a8eea6f23ed730fa6db03c,https://doi.org/10.1109/ICASSP.2013.6638305 +3aebaaf888cba25be25097173d0b3af73d9ce7f9,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.49 +3a1c40eced07d59a3ea7acda94fa833c493909c1,http://doi.ieeecomputersociety.org/10.1109/FG.2017.111 +3ad56aed164190e1124abea4a3c4e1e868b07dee,https://doi.org/10.1016/j.patcog.2015.12.016 +3a0425c25beea6c4c546771adaf5d2ced4954e0d,https://link.springer.com/book/10.1007/978-3-319-58347-1 +54058859a2ddf4ecfc0fe7ccbea7bb5f29d9201d,https://doi.org/10.1007/978-3-319-50832-0_36 +548233d67f859491e50c5c343d7d77a7531d4221,https://doi.org/10.1007/s11042-007-0176-x +5491478ae2c58af21389ed3af21babd362511a8e,http://doi.acm.org/10.1145/2949035.2949048 +54e988bc0764073a5db2955705d4bfa8365b7fa9,http://doi.acm.org/10.1145/2522848.2531749 +98856ab9dc0eab6dccde514ab50c823684f0855c,https://doi.org/10.1109/TIFS.2012.2191962 +982ede05154c1afdcf6fc623ba45186a34f4b9f2,https://doi.org/10.1109/TMM.2017.2659221 +982d4f1dee188f662a4b5616a045d69fc5c21b54,https://doi.org/10.1109/IJCNN.2016.7727859 +985bbe1d47b843fa0b974b4db91be23f218d1ce7,https://doi.org/10.1007/978-3-319-68121-4 +988849863c3a45bcedacf8bd5beae3cc9210ce28,http://doi.ieeecomputersociety.org/10.1109/TPDS.2016.2539164 +98c5dc00bd21a39df1d4411641329bdd6928de8a,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995447 +5364e58ba1f4cdfcffb247c2421e8f56a75fad8d,https://doi.org/10.1109/VCIP.2017.8305113 +539cb169fb65a5542c84f42efcd5d2d925e87ebb,https://doi.org/10.1109/ICB.2015.7139098 +5375a3344017d9502ebb4170325435de3da1fa16,https://doi.org/10.1007/978-3-642-37444-9 +5304cd17f9d6391bf31276e4419100f17d4423b2,https://doi.org/10.1109/ICIP.2012.6466930 +53873fe7bbd5a2d171e2b1babc9cacaad6cabe45,https://doi.org/10.1109/TCYB.2015.2417211 +534159e498e9cc61ea10917347637a59af38142d,https://doi.org/10.1016/j.neucom.2016.01.126 +53509017a25ac074b5010bb1cdba293cdf399e9b,http://doi.ieeecomputersociety.org/10.1109/AVSS.2012.41 +539f55c0e2501c1d86791c8b54b225d9b3187b9c,https://doi.org/10.1109/TIP.2017.2738560 +539ffd51f18404e1ef83371488cf5a27cd16d064,https://doi.org/10.1049/iet-ipr.2014.0733 +5305bfdff39ae74d2958ba28d42c16495ce2ff86,https://doi.org/10.1109/DICTA.2014.7008128 +3f2a44dcf0ba3fc72b24c7f09bb08e25797398c1,https://doi.org/10.1109/IJCNN.2017.7966210 +3fa628e7cff0b1dad3f15de98f99b0fdb09df834,http://doi.ieeecomputersociety.org/10.1109/ICME.2013.6607603 +3ffbc912de7bad720c995385e1fdc439b1046148,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2008.347 +3fe3d6ff7e5320f4395571131708ecaef6ef4550,https://doi.org/10.1109/SITIS.2016.60 +3f88ea8cf2eade325b0f32832561483185db5c10,https://doi.org/10.1109/TIP.2017.2721838 +3f4711c315d156a972af37fe23642dc970a60acf,https://doi.org/10.1109/IJCNN.2008.4634393 +3ff418ac82df0b5c2f09f3571557e8a4b500a62c,https://doi.org/10.1007/s11554-007-0039-8 +3fc173805ed43602eebb7f64eea4d60c0386c612,http://doi.ieeecomputersociety.org/10.1109/CyberC.2015.94 +30cc1ddd7a9b4878cca7783a59086bdc49dc4044,https://doi.org/10.1007/s11042-015-2599-0 +30a4b4ef252cb509b58834e7c40862124c737b61,https://doi.org/10.1142/S0218001416560061 +3060ac37dec4633ef69e7bc63488548ab3511f61,https://doi.org/10.1007/s00521-018-3358-8 +30044dd951133187cb8b57e53a22cf9306fa7612,https://doi.org/10.1109/WACV.2017.52 +30188b836f2fa82209d7afbf0e4d0ee29c6b9a87,https://doi.org/10.1109/TIP.2013.2249077 +3080026f2f0846d520bd5bacb0cb2acea0ffe16b,https://doi.org/10.1109/BTAS.2017.8272690 +30cace74a7d51e9a928287e25bcefb968c49f331,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344634 +5ee0103048e1ce46e34a04c45ff2c2c31529b466,https://doi.org/10.1109/ICIP.2015.7350886 +5e8de234b20f98f467581f6666f1ed90fd2a81be,http://doi.acm.org/10.1145/2647868.2655042 +5e87f5076952cd442718d6b4addce905bae1a1a4,https://doi.org/10.1109/ICMLC.2016.7872938 +5e19d7307ea67799eb830d5ce971f893e2b8a9ca,https://doi.org/10.1007/s11063-012-9214-4 +5e0b691e9e5812dd3cb120a8d77619a45aa8e4c4,https://doi.org/10.1109/ICIP.2016.7532567 +5ed5e534c8defd683909200c1dc31692942b7b5f,http://doi.acm.org/10.1145/2983926 +5e62b2ab6fd3886e673fd5cbee160a5bee414507,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.31 +5e806d8fa48216041fe719309534e3fa903f7b5b,https://doi.org/10.1109/BTAS.2010.5634501 +5efdf48ca56b78e34dc2f2f0ce107a25793d3fc2,http://doi.ieeecomputersociety.org/10.1109/TVCG.2016.2641442 +5bed2453a5b0c54a4a4a294f29c9658658a9881e,https://doi.org/10.1109/TIP.2015.2451173 +5b64584d6b01e66dfd0b6025b2552db1447ccdeb,https://doi.org/10.1109/BTAS.2017.8272697 +5bfad0355cdb62b22970777d140ea388a7057d4c,https://doi.org/10.1016/j.patcog.2011.05.006 +5b4bbba68053d67d12bd3789286e8a9be88f7b9d,https://doi.org/10.1109/ICSMC.2008.4811353 +37c5e3b6175db9eaadee425dc51bc7ce05b69a4e,https://doi.org/10.1007/s00521-013-1387-x +3769e65690e424808361e3eebfdec8ab91908aa9,http://doi.acm.org/10.1145/2647868.2655035 +37f25732397864b739714aac001ea1574d813b0d,https://doi.org/10.1016/j.ijar.2017.09.002 +373c4d6af0ee233f0d669c3955c3a3ef2a009638,https://doi.org/10.1109/APSIPA.2015.7415420 +0874734e2af06883599ed449532a015738a1e779,https://doi.org/10.1007/s10115-013-0702-2 +0821028073981f9bd2dba2ad2557b25403fe7d7d,http://doi.acm.org/10.1145/2733373.2806318 +08872d801f134e41753601e85971769b28314ca2,http://doi.acm.org/10.1145/2683483.2683560 +080ab68a898a3703feead145e2c38361ae84a0a8,https://doi.org/10.1109/TIFS.2014.2343833 +6d5f876a73799cc628e4ad2d9cfcd88091272342,https://doi.org/10.1109/TSMCC.2005.848193 +6da3ff4250103369f4a6a39c8fb982438a97525c,https://doi.org/10.1109/THMS.2015.2404913 +6dd8d8be00376ac760dc92f9c5f20520872c5355,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2417578 +6d67a7fd9a4fa99624721f37b077c71dad675805,https://doi.org/10.1007/s12193-015-0202-7 +6d4c64ca6936f868d793e1b164ddaf19243c19a7,https://doi.org/10.1109/TNNLS.2015.2499273 +01729cb766b1016bac217a6a6cf24bbde19f56c8,https://doi.org/10.1109/CBMI.2010.5529888 +013d0acff1e5410fd9f6e15520d16f4ea02f03f6,https://doi.org/10.1109/TMM.2015.2477681 +01e14d8ffd6767336d50c2b817a7b7744903e567,http://doi.ieeecomputersociety.org/10.1109/FG.2017.128 +0133d1fe8a3138871075cd742c761a3de93a42ec,https://doi.org/10.1109/ICDSP.2015.7251932 +016194dbcd538ab5a129ef1bcff3c6e073db63f9,https://doi.org/10.1007/s10462-012-9334-2 +01f0a4e1442a7804e1fe95798eff777d08e42014,https://doi.org/10.1016/j.knosys.2017.09.005 +01e27c91c7cef926389f913d12410725e7dd35ab,https://doi.org/10.1007/s11760-017-1140-5 +067fe74aec42cb82b92cf6742c7cfb4a65f16951,http://doi.acm.org/10.1145/2601434 +06a799ad89a2a45aee685b9e892805e3e0251770,https://doi.org/10.1007/978-3-319-42147-6 +060f67c8a0de8fee9c1732b63ab40627993f93d0,https://doi.org/10.1007/978-3-642-33564-8 +06c956d4aac65752672ce4bd5a379f10a7fd6148,https://doi.org/10.1109/LSP.2017.2749763 +0629bc2b12245195af989e21573369329b7ef2b7,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2553038 +6c6f0e806e4e286f3b18b934f42c72b67030ce17,https://doi.org/10.1109/FG.2011.5771345 +6c28b3550f57262889fe101e5d027912eb39564e,https://doi.org/10.1109/LSP.2014.2338911 +6c0ad77af4c0850bd01bb118e175ecc313476f27,http://doi.acm.org/10.1145/3009977.3010026 +6ca7a82ec1c51417c4f0b8eebddb53a73a3874b1,http://doi.acm.org/10.1145/2708463.2709059 +39c8ed5213882d4dbc74332245ffe201882c5de1,https://doi.org/10.1109/ICASSP.2013.6638045 +396b2963f0403109d92a4d4f26205f279ea79d2c,https://doi.org/10.1109/TSMCB.2005.845399 +397022a4460750c762dbb0aaebcacc829dee8002,https://doi.org/10.1109/TIFS.2013.2258152 +39acf4bb06b889686ca17fd8c89887a3cec26554,http://www.springerlink.com/index/10.1007/s10044-004-0223-4 +39c10888a470b92b917788c57a6fd154c97b421c,https://doi.org/10.1109/VCIP.2017.8305036 +39d0de660e2116f32088ce07c3376759d0fdaff5,https://doi.org/10.1109/ICPR.2016.7900043 +39d6339a39151b5f88ec2d7acc38fe0618d71b5f,https://doi.org/10.1109/MMSP.2013.6659285 +3980dadd27933d99b2f576c3b36fe0d22ffc4746,https://doi.org/10.1109/ROBIO.2017.8324597 +3960882a7a1cd19dfb711e35a5fc1843ed9002e7,http://doi.acm.org/10.1145/2487575.2487701 +398558817e05e8de184cc4c247d4ea51ab9d4d58,https://doi.org/10.1109/ICPR.2014.14 +993934822a42e70dd35fb366693d847164ca15ff,https://doi.org/10.1109/ICME.2009.5202753 +99a1180c3d39532efecfc5fa251d6893375c91a1,https://doi.org/10.1109/ICARCV.2012.6485394 +99e0c03686f7bc9d7add6cff39a941a047c3600a,https://doi.org/10.1109/ACCESS.2017.2712788 +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,https://doi.org/10.1109/ACCESS.2017.2752176 +998542e5e3882bb0ce563d390b1e1bff5460e80c,https://doi.org/10.1109/AFGR.2008.4813471 +992e4119d885f866cb715f4fbf0250449ce0db05,https://doi.org/10.1007/s00138-015-0674-1 +9989eda2f5392cfe1f789bb0f6213a46d92d1302,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477584 +997c7ebf467c579b55859315c5a7f15c1df43432,http://doi.ieeecomputersociety.org/10.1109/FG.2017.141 +993374c1c9d58a3dec28160188ff6ac1227d02f5,https://doi.org/10.1109/ICARCV.2016.7838650 +99cd84a62edb2bda2fc2fdc362a72413941f6aa4,http://doi.ieeecomputersociety.org/10.1109/FG.2017.109 +5278b7a6f1178bf5f90cd3388908925edff5ad46,https://doi.org/10.1007/s11704-015-4291-y +520782f07474616879f94aae0d9d1fff48910254,https://doi.org/10.1016/j.neucom.2014.11.038 +5217ab9b723158b3ba2235e807d165e72fd33007,http://doi.acm.org/10.1145/2043674.2043710 +524c25217a6f1ed17f47871e947a5581d775fa56,https://doi.org/10.1117/12.2030875 +52e270ca8f5b53eabfe00a21850a17b5cc10f6d5,https://doi.org/10.1109/ROBIO.2013.6739643 +5226296884b3e151ce317a37f94827dbda0b9d16,https://doi.org/10.1109/IWBF.2016.7449690 +5213549200bccec57232fc3ff788ddf1043af7b3,http://doi.acm.org/10.1145/2601097.2601204 +526c79c6ce39882310b814b7918449d48662e2a9,https://doi.org/10.1109/ICASSP.2005.1416338 +524f6dc7441a3899ea8eb5d3e0d5d70e50ba566a,http://doi.acm.org/10.1145/2797143.2797165 +52b102620fff029b80b3193bec147fe6afd6f42e,http://dl.acm.org/citation.cfm?id=3028863 +5551a03353f571b552125dd4ee57301b69a10c46,https://doi.org/10.1016/j.neucom.2015.09.083 +55c46ae1154ed310610bdf5f6d9e7023d14c7eb4,http://doi.acm.org/10.1145/1027933.1028013 +55ee484f9cbd62111512485e3c1c3eadbf2e15c0,http://doi.ieeecomputersociety.org/10.1109/FG.2017.25 +559645d2447004355c83737a19c9a811b45780f1,https://doi.org/10.1109/ICB.2015.7139114 +550351edcfd59d3666984771f5248d95548f465a,https://doi.org/10.1109/TIP.2014.2327805 +5594beb2b314f5433bd7581f64bdbc58f2933dc4,https://doi.org/10.1016/j.neucom.2016.12.013 +55fdff2881d43050a8c51c7fdc094dbfbbe6fa46,https://doi.org/10.1109/ICB.2016.7550064 +553a605243b77a76c1ed4c1ad4f9a43ff45e391b,https://doi.org/10.1109/CISP-BMEI.2017.8302001 +557115454c1b8e6eaf8dbb65122c5b00dc713d51,https://doi.org/10.1109/LSP.2011.2140370 +55266ddbe9d5366e8cd1b0b645971cad6d12157a,https://doi.org/10.1109/SIU.2017.7960368 +556875fb04ed6043620d7ca04dfe3d8b3a9284f5,https://doi.org/10.1109/ICPR.2014.437 +9745a7f38c9bba9d2fd076813fc9ab7a128a3e19,http://doi.acm.org/10.1145/2393347.2396335 +97f3d35d3567cd3d973c4c435cdd6832461b7c3c,http://doi.ieeecomputersociety.org/10.1109/FG.2017.75 +97c554fbcf783d554c4f6c2f3fcc0a0f9dba0759,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0085 +9776a9f3c59907f45baaeda4b8907dcdac98aef1,https://doi.org/10.1109/CISP-BMEI.2017.8301924 +97c59db934ff85c60c460a4591106682b5ab9caa,https://doi.org/10.1109/BTAS.2012.6374568 +978b32ff990d636f7e2050bb05b8df7dfcbb42a1,https://doi.org/10.1109/BTAS.2014.6996270 +9729930ab0f9cbcd07f1105bc69c540330cda50a,https://doi.org/10.1109/ACCESS.2017.2749331 +9790ec6042fb2665c7d9369bf28566b0ce75a936,http://doi.acm.org/10.1145/3056540.3056546 +973022a1f9e30a624f5e8f7158b5bbb114f4af32,http://doi.acm.org/10.1145/3011077.3011138 +9774430006f1ed017156b17f3cf669071e398c58,https://doi.org/10.1109/SMC.2013.513 +9753ee59db115e1e84a7c045f2234a3f63f255b1,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344683 +9771e04f48d8a1d7ae262539de8924117a04c20d,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.70 +63c74794aedb40dd6b1650352a2da7a968180302,https://doi.org/10.1016/j.neucom.2016.09.015 +637b31157386efbde61505365c0720545248fbae,https://doi.org/10.1109/BTAS.2017.8272721 +6345c0062885b82ccb760c738a9ab7fdce8cd577,https://doi.org/10.1109/EMBC.2016.7590729 +635d2696aa597a278dd6563f079be06aa76a33c0,https://doi.org/10.1109/ICIP.2016.7532429 +636c786d4e4ac530ac85e3883a2f2cf469e45fe2,https://doi.org/10.1016/j.neucom.2016.12.043 +6343bc0013343b6a5f96154f02d18dcd36a3f74c,https://doi.org/10.1007/s11042-014-2083-2 +0fc5c6f06e40014a56f492172f44c073d269e95c,https://doi.org/10.1108/17563781311301490 +0fb45e704ef3ca1f9c70e7be3fb93b53714ed8b5,http://doi.ieeecomputersociety.org/10.1109/FG.2017.142 +0fee3b9191dc1cef21f54232a23530cd8169d3b2,https://doi.org/10.1109/ICDM.2016.0050 +0f2461a265be997c962fa562ae48378fb964b7b4,https://doi.org/10.1109/BigData.2016.7841028 +0f22b89341d162a7a0ebaa3c622d9731e5551064,http://doi.ieeecomputersociety.org/10.1109/AIPR.2011.6176352 +0fdc3cbf92027cb1200f3f94927bef017d7325ae,https://doi.org/10.1109/BTAS.2015.7358771 +0f29bc5d8458358d74dc8c4fd6968b4182dd71d2,https://doi.org/10.1109/ICIP.2016.7532637 +0f1cb558b32c516e2b6919fea0f97a307aaa9091,https://doi.org/10.1007/s41095-017-0091-7 +0fcf04fda0bea5265b73c85d2cc2f7f70416537b,https://doi.org/10.1109/TCSVT.2015.2409012 +0f64e26d6dd6f1c99fe2050887fac26cafe9ed60,https://doi.org/10.1109/MCI.2016.2627668 +0a4a8768c1ed419baebe1c420bd9051760875cbe,https://doi.org/10.1109/EUSIPCO.2016.7760451 +0a5b2e642683ff20b6f0cee16a32a68ba0099908,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2012.6239342 +0aebe97a92f590bdf21cdadfddec8061c682cdb2,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2695183 +0a0b9a9ff827065e4ff11022b0e417ddf1d3734e,http://dl.acm.org/citation.cfm?id=2935856 +0a451fc7d2c6b3509d213c210ae880645edf90ed,https://doi.org/10.1109/IJCNN.2014.6889591 +0abfb5b89e9546f8a5c569ab35b39b888e7cea46,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.68 +0ac2e8bd5a77d83bae9b49daab2c6f321e9b7a4e,https://doi.org/10.1109/SCIS-ISIS.2016.0166 +642417f2bb1ff98989e0a0aa855253fed1fffe04,https://doi.org/10.1117/12.2004255 +6440d6c7081efe4538a1c75e93144f3d142feb41,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.280 +6486b36c6f7fd7675257d26e896223a02a1881d9,https://doi.org/10.1109/THMS.2014.2376874 +647b2e162e9c476728172f62463a8547d245cde3,https://doi.org/10.1109/ICPR.2016.7899898 +64e216c128164f56bc91a33c18ab461647384869,http://doi.ieeecomputersociety.org/10.1109/AVSS.2016.7738017 +6489ad111fee8224b34f99d1bcfb5122786508cd,https://doi.org/10.1109/ICIP.2014.7025280 +64a08beb073f62d2ce44e25c4f887de9208625a4,https://doi.org/10.1080/09540090701725557 +64e82b42e1c41250bdf9eb952686631287cfd410,https://doi.org/10.1111/cgf.12760 +64b9ad39d115f3e375bde4f70fb8fdef5d681df8,https://doi.org/10.1109/ICB.2016.7550088 +64fd48fae4d859583c4a031b51ce76ecb5de614c,https://doi.org/10.1109/ICARCV.2008.4795556 +64ba203c8cfc631d5f3f20419880523155fbeeb2,http://doi.acm.org/10.1145/3009977.3010008 +90ddf1aabf1c73b5fc45254a2de46e53a0bde857,https://doi.org/10.1109/ROBIO.2015.7418917 +907bb6c2b292e6db74fad5c0b7a7f1cc2a4d4224,https://doi.org/10.1016/j.patcog.2014.07.010 +9048732c8591a92a1f4f589b520a733f07578f80,https://doi.org/10.1109/CISP-BMEI.2017.8301921 +9055b155cbabdce3b98e16e5ac9c0edf00f9552f,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78 +902cc7dd4ecfb2b6750905ef08bceeed24e1eeeb,https://doi.org/10.1016/j.patcog.2016.03.002 +90eb66e75381cce7146b3953a2ae479a7beec539,http://doi.ieeecomputersociety.org/10.1109/AIPR.2015.7444542 +90ae02da16b750a9fd43f8a38440f848309c2fe0,https://doi.org/10.1007/s10044-015-0499-6 +9026ee8a89ecfa6bd2688a4943eee027e3fc4b0f,http://doi.ieeecomputersociety.org/10.1109/CGIV.2011.28 +90c4a6c6f790dbcef9a29c9a755458be09e319b6,http://doi.acm.org/10.1145/2964284.2967242 +9026eb610916ec4ce77f0d7d543b7c2482ba4173,https://doi.org/10.1016/j.patrec.2012.03.006 +90c4deaa538da42b9b044d7b68c3692cced66036,http://doi.ieeecomputersociety.org/10.1109/SITIS.2007.89 +bf30477f4bd70a585588528355b7418d2f37953e,https://doi.org/10.1109/ICPR.2016.7900280 +bf1e0545785b05b47caa3ffe7d16982769986f38,https://doi.org/10.1016/j.asoc.2010.12.002 +bf0836e5c10add0b13005990ba019a9c4b744b06,https://doi.org/10.1109/TCE.2009.5373791 +bf4f79fd31493648d80d0a4a8da5edeeaba74055,http://doi.acm.org/10.1145/2783258.2783280 +bf00071a7c4c559022272ca5d39e07f727ebb479,https://doi.org/10.1109/MMSP.2016.7813388 +bf2eb77e9b795a4a0a38ed4b1c8dd4b2c9a74317,https://doi.org/10.1007/978-3-319-69900-4_70 +bf1ebcaad91c2c0ed35544159415b3ad388cc7a9,https://doi.org/10.1007/s11042-015-2665-7 +d37ca68742b2999667faf464f78d2fbf81e0cb07,https://doi.org/10.1007/978-3-319-25417-3_76 +d3a3d15a32644beffaac4322b9f165ed51cfd99b,https://doi.org/10.1109/SIU.2016.7496197 +d42dbc995318e2936714c65c028700bfd3633049,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477592 +d4331a8dd47b03433f8390da2eaa618751861c64,https://doi.org/10.1109/TIP.2012.2192125 +d4353952a408e1eae8c27a45cc358976d38dde00,https://doi.org/10.1007/s00138-014-0594-5 +d4ccc4f18a824af08649657660e60b67c6868d9c,https://doi.org/10.1142/S021800141655020X +d40c16285d762f7a1c862b8ac05a0fdb24af1202,https://doi.org/10.1109/BESC.2017.8256378 +d4ec62efcc631fa720dfaa1cbc5692b39e649008,https://doi.org/10.1109/ICDM.2016.0026 +d4fb26f5528b9a1f04ea773cc2b920e01fc0edd4,https://doi.org/10.1109/TSMCB.2009.2032155 +d4fba386caca1b5b2ee35ee5310b5fce50b2b1c3,https://doi.org/10.23919/MVA.2017.7986886 +bab2f4949a38a712a78aafbc0a3c392227c65f56,https://doi.org/10.1109/CISP-BMEI.2017.8302191 +ba30cc9d8bac724dafc0aea247159cc7e7105784,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019360 +ba931c3f90dd40a5db4301a8f0c71779a23043d6,https://doi.org/10.1109/ICPR.2014.136 +a07f78124f83eef1ed3a6f54ba982664ae7ca82a,http://ieeexplore.ieee.org/document/6460481/ +a0d5990eb150cdcb1c8b2967e6a4fe7a5d85063b,https://doi.org/10.1109/ICIP.2017.8296805 +a094e52771baabe4ab37ef7853f9a4f534227457,https://doi.org/10.1109/TITS.2016.2551298 +a0f6196d27a39cde2dbf62c08d89cbe489600bb0,https://doi.org/10.1016/j.cose.2016.03.007 +a006cd95c14de399706c5709b86ac17fce93fcba,https://doi.org/10.1109/ICPR.2014.343 +a7c066e636b8953481b4a8d8ff25a43a96dd348f,https://doi.org/10.1109/ATSIP.2017.8075517 +a76e57c1b2e385b68ffdf7609802d71244804c1d,https://doi.org/10.1016/j.patrec.2016.05.027 +a7da7e5a6a4b53bf8736c470ff8381a654e8c965,https://doi.org/10.1007/s13042-011-0045-9 +a7a3ec1128f920066c25cb86fbc33445ce613919,https://doi.org/10.1109/VCIP.2017.8305115 +a71bd4b94f67a71bc5c3563884bb9d12134ee46a,https://doi.org/10.1016/j.asoc.2015.05.006 +a735c6330430c0ff0752d117c54281b1396b16bf,https://doi.org/10.1109/SMC.2014.6974118 +a73405038fdc0d8bf986539ef755a80ebd341e97,https://doi.org/10.1109/TIP.2017.2698918 +a713a01971e73d0c3118d0409dc7699a24f521d6,https://doi.org/10.1109/SSCI.2017.8285381 +a7f188a7161b6605d58e48b2537c18a69bd2446f,https://doi.org/10.1109/PIMRC.2011.6139898 +a76969df111f9ee9f0b898b51ad23a721d289bdc,https://doi.org/10.1109/ICMLA.2015.185 +a75de488eaacb1dafffbe667465390f101498aaf,http://doi.ieeecomputersociety.org/10.1109/FG.2017.47 +b839bc95794dc65340b6e5fea098fa6e6ea5e430,https://doi.org/10.1109/WACVW.2017.8 +b8e5800dfc590f82a0f7eedefce9abebf8088d12,https://doi.org/10.1109/DCC.2017.87 +b86c49c6e3117ea116ec2d8174fa957f83502e89,https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.149 +b85d0aef3ee2883daca2835a469f5756917e76b7,https://doi.org/10.1007/s41095-015-0015-3 +b856d8d6bff745bb1b4beb67e4b821fc20073840,https://doi.org/10.1109/ICMLC.2016.7872935 +b84dde74dddf6a3281a0b22c68999942d2722919,http://dl.acm.org/citation.cfm?id=2910703 +b8a16fcb65a8cee8dd32310a03fe36b5dff9266a,https://doi.org/10.1109/SIU.2014.6830473 +b8b9cef0938975c5b640b7ada4e3dea6c06d64e9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.119 +b85d953de16eecaecccaa8fad4081bd6abda9b1b,https://doi.org/10.1016/j.neuroimage.2015.12.020 +b84f164dbccb16da75a61323adaca730f528edde,https://doi.org/10.1109/TIP.2013.2237914 +b8bcf9c773da1c5ee76db4bf750c9ff5d159f1a0,http://doi.acm.org/10.1145/2911996.2911999 +b8978a5251b6e341a1171e4fd9177aec1432dd3a,https://doi.org/10.1016/j.image.2016.04.004 +b8f64a94f536b46ef34a0223272e02f9be785ef9,https://doi.org/10.1109/EMBC.2012.6346590 +b1891010a0722117c57e98809e1f2b26cd8e9ee3,http://doi.acm.org/10.1145/2330784.2331026 +b1efefcc9a5d30be90776571a6cc0071f3679753,https://doi.org/10.1109/ROBIO.2016.7866471 +b1bb517bd87a1212174033fc786b2237844b04e6,https://doi.org/10.1016/j.neucom.2015.03.078 +b1534888673e6119f324082246016d28eba249aa,https://doi.org/10.1109/MMSP.2017.8122229 +b13b101b6197048710e82f044ad2eda6b93affd8,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.91 +ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,https://doi.org/10.1109/ICDSP.2016.7868598 +dd031dbf634103ff3c58ce87aa74ec6921b2e21d,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344664 +dd8a851f2a0c63bb97e33aaff1841695f601c863,https://doi.org/10.1109/BTAS.2014.6996260 +ddd9d7cb809589b701fba9f326d7cf998a63b14f,http://doi.acm.org/10.1145/2647868.2654992 +ddf577e8b7c86b1122c1bc90cba79f641d2b33fa,http://doi.acm.org/10.1145/3013971.3014026 +dd715a98dab34437ad05758b20cc640c2cdc5715,https://doi.org/10.1007/s41095-017-0082-8 +dcb50e1f439d1f9b14ae85866f4542e51b830a07,https://doi.org/10.1109/FSKD.2012.6234354 +dcea30602c4e0b7525a1bf4088620128d4cbb800,https://doi.org/10.1109/VCIP.2013.6706430 +dcdece0d0ee382e2f388dcd7f5bd9721bb7354d6,https://doi.org/10.1109/TCYB.2014.2311033 +dc2f16f967eac710cb9b7553093e9c977e5b761d,https://doi.org/10.1109/ICPR.2016.7900141 +dc84d3f29c52e6d296b5d457962c02074aa75d0f,https://doi.org/10.1109/TIP.2016.2580939 +dca2bb023b076de1ccd0c6b8d71faeb3fccb3978,http://doi.acm.org/10.1145/3152118 +b69e7e2a7705a58a0e3f1b80ae542907b89ce02e,https://doi.org/10.1007/s11042-015-2614-5 +b6259115b819424de53bb92f64cc459dcb649f31,http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078466 +b68452e28951bf8db5f1193eca3a8fd9e2d0d7ef,https://doi.org/10.1109/ICACCI.2015.7275752 +b6ac33d2c470077fa8dcbfe9b113beccfbd739f8,http://doi.acm.org/10.1145/2509896.2509905 +b65b51c796ed667c4c7914bf12b1926fd6bbaa0c,https://doi.org/10.1016/j.neuroimage.2013.05.108 +b6a23f72007cb40223d7e1e1cc47e466716de945,https://doi.org/10.1109/CVPRW.2010.5544598 +b6c00e51590c48a48fae51385b3534c4d282f76c,https://doi.org/10.1109/TIFS.2015.2427778 +b631f3c212aab45d73ddc119f1f7d00c3c502a72,https://doi.org/10.1109/TIFS.2009.2035976 +b63b6ed78b39166d87d4c56f8890873aa65976a2,https://doi.org/10.1109/ICRA.2011.5979953 +a92e24c8c53e31fc444a13bd75b434b7207c58f1,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2317711 +a9756ca629f73dc8f84ee97cfa8b34b8207392dc,https://doi.org/10.1109/ICIP.2017.8296542 +a9cecfbc47a39fa0158a5f6fd883e0e5ac2aa134,https://doi.org/10.1142/S0218001405004071 +a9af0dc1e7a724464d4b9d174c9cf2441e34d487,https://doi.org/10.1142/S0219691316500351 +a9506c60ec48056087ee3e10d28ff7774fbbd553,https://doi.org/10.1109/TCSVT.2014.2376136 +a9d1d00d6897ae23c9a7e9fb75a3c7417a6730a4,https://doi.org/10.1049/iet-ipr.2016.1074 +a9426cb98c8aedf79ea19839643a7cf1e435aeaa,https://doi.org/10.1109/GlobalSIP.2016.7905998 +d5f8827fc7d66643bf018d5636e81ed41026b61a,http://doi.ieeecomputersociety.org/10.1109/FG.2017.36 +d569c3e62f471aa75ed53e631ec05c1a3d594595,https://doi.org/10.1109/NNSP.2002.1030072 +d5b445c5716952be02172ca4d40c44f4f04067fa,https://doi.org/10.1109/ICICS.2011.6173537 +d57ce0ff4acb2910c2d1afee2ebb7aa1e72a4584,https://doi.org/10.1109/CVPRW.2010.5543816 +d5c66a48bc0a324750db3d295803f47f6060043d,http://doi.ieeecomputersociety.org/10.1109/AVSS.2006.109 +d58fce50e9028dfc12cb2e7964f83d3b28bcc2fc,http://doi.ieeecomputersociety.org/10.1109/FG.2017.101 +d5dc78eae7a3cb5c953c89376e06531d39b34836,https://doi.org/10.1007/s00521-009-0242-6 +d2d9612d3d67582d0cd7c1833599b88d84288fab,https://doi.org/10.1049/iet-cvi.2015.0222 +d2a415365f997c8fe2dbdd4e06ceab2e654172f6,http://doi.acm.org/10.1145/2425333.2425361 +d2bad850d30973a61b1a7d7dc582241a41e5c326,http://doi.ieeecomputersociety.org/10.1109/ICICIC.2006.12 +d2baa43471d959075fc4c93485643cbd009797fd,http://doi.ieeecomputersociety.org/10.1109/MM.2017.4241350 +d2598c088b0664c084413796f39697c6f821d56e,https://doi.org/10.1109/VCIP.2016.7805451 +d2fac640086ba89271ad7c1ebf36239ecd64605e,http://ieeexplore.ieee.org/document/6460449/ +d2b3166b8a6a3e6e7bc116257e718e4fe94a0638,https://doi.org/10.1007/s00521-010-0411-7 +aa7c72f874951ff7ca3769439f2f39b7cfd4b202,https://doi.org/10.1109/JPROC.2009.2032355 +aaf2436bc63a58d18192b71cc8100768e2f8a6cb,http://doi.ieeecomputersociety.org/10.1109/ICDIP.2009.77 +aad6fc5bd7631d2e68b7a5a01ac5d578899c43e5,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.80 +aa892fe17c06e2b18db2b12314499a741e755df7,https://doi.org/10.1109/IJCNN.2017.7966089 +aab9a617be6e5507beb457b1e6c2e5b046f9cff0,https://doi.org/10.1109/ICIP.2008.4712153 +aa4af9b3811db6a30e1c7cc1ebf079078c1ee152,http://doi.acm.org/10.1145/3129416.3129451 +aad7b12936e0ced60bc0be95e8670b60b5d5ce20,https://doi.org/10.1109/URAI.2013.6677383 +aa90a466a2ff7781c36e7da7df0013aa5b117510,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.159 +aa8341cb5d8f0b95f619d9949131ed5c896d6470,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2007.403 +aaec8141d57d29aa3cedf1baec9633180ddb7a3d,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552916 +aae31f092fadd09a843e1ca62af52dc15fc33c56,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273609 +affa61d044daa1a7d43a6803a743eab47c89c45d,https://doi.org/10.1109/TNNLS.2015.2405574 +afba76d0fe40e1be381182aec822431e20de8153,https://doi.org/10.1007/s00521-014-1768-9 +af12a79892bd030c19dfea392f7a7ccb0e7ebb72,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247972 +afdbbc5c84eb4e535c7c478b5227c0138b57af64,http://doi.ieeecomputersociety.org/10.1109/TMC.2016.2593919 +af2d30fdb8c611dc5b883b90311d873e336fc534,https://doi.org/10.1109/ISCAS.2017.8050275 +af3e6e20de06b03c33f8e85eced74c2d096730ea,https://doi.org/10.1109/CISP-BMEI.2017.8301972 +af7553d833886663550ce83b087a592a04b36419,https://doi.org/10.1109/TIFS.2015.2390138 +af8e22ef8c405f9cc9ad26314cb7a9e7d3d4eec2,https://doi.org/10.1007/s00521-014-1569-1 +af97e792827438ddea1d5900960571939fc0533e,https://doi.org/10.1109/ICSMC.2005.1571460 +af97a51f56cd6b793cf96692931a8d1ddbe4e3cc,https://doi.org/10.1109/ICPR.2014.57 +b749ca71c60904d7dad6fc8fa142bf81f6e56a62,https://doi.org/10.1109/TIP.2013.2292560 +b7128e0fe18dcb42e8a2ac5cf6794f64a8e37bd0,https://doi.org/10.1109/SERA.2017.7965717 +b7845e0b0ce17cde7db37d5524ef2a61dee3e540,https://doi.org/10.1109/ICPR.2016.7899608 +b75eecc879da38138bf3ace9195ae1613fb6e3cc,https://doi.org/10.1007/s10278-015-9808-2 +b7b8e7813fbc12849f2daba5cab604abd8cbaab6,https://doi.org/10.1109/ICCE.2014.6775938 +b7a0c70a320c1ac3e92f4bf0b50a7d8ceb757c41,https://doi.org/10.1109/IJCNN.2016.7727203 +b784bb1d2b2720dac8d4b92851a8d6360c35b0b2,https://doi.org/10.1109/ICDM.2016.0041 +b728e7db6e5559a77dc59381bfb8df96d482a721,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.28 +b7fa06b76f4b9263567875b2988fb7bbc753e69f,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469282 +b7043048b4ba748c9c6317b6d8206192c34f57ff,https://doi.org/10.1109/ICIP.2016.7533061 +db3984b143c59584a32d762d712d21c0e8cf38b8,https://doi.org/10.1109/SMC.2015.324 +dbcfefa92edab8d1ffe8bc1cc66ad80fb13d2b6a,https://doi.org/10.1007/s00521-010-0519-9 +dbf2d2ca28582031be6d16519ab887248f5e8ad8,https://doi.org/10.1109/TMM.2015.2410135 +dbfe62c02b544b48354fac741d90eb4edf815db5,https://doi.org/10.1109/SITIS.2016.43 +dbc3ab8c9f564f038e7779b87900c4a0426f3dd1,http://doi.acm.org/10.1145/1386352.1386401 +a8faeef97e2a00eddfb17a44d4892c179a7cc277,https://doi.org/10.1109/FG.2011.5771459 +a8c62833f5e57d4cd060d6b5f0f9cfe486ee6825,http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.808 +a8fd23934e5039bb818b8d1c47ccb540ce2c253c,https://doi.org/10.1007/s11760-015-0808-y +a8f1fc34089c4f2bc618a122be71c25813cae354,https://doi.org/10.1142/S0219467816500194 +de048065ea2c5b3e306e2c963533df055e7dfcaa,https://doi.org/10.1109/LSP.2016.2598878 +ded8252fc6df715753e75ba7b7fee518361266ef,https://doi.org/10.1109/SIU.2012.6204837 +de79437f74e8e3b266afc664decf4e6e4bdf34d7,https://doi.org/10.1109/IVCNZ.2016.7804415 +de8657e9eab0296ac062c60a6e10339ccf173ec1,http://doi.ieeecomputersociety.org/10.1109/BRACIS.2014.51 +dea409847d52bb0ad54bf586cb0482a29a584a7e,http://doi.ieeecomputersociety.org/10.1109/ISM.2009.115 +de0ee491d2747a6f3d171f813fe6f5cdb3a27fd6,https://doi.org/10.1002/cpe.3850 +dec5b11b01f35f72adb41d2be26b9b95870c5c00,http://ieeexplore.ieee.org/document/7071948/ +deb89950939ae9847f0a1a4bb198e6dbfed62778,https://doi.org/10.1109/LSP.2016.2543019 +de878384f00b6ce1caa66ac01735fb4b63ad0279,https://doi.org/10.1049/iet-ipr.2014.0670 +defd44b02a1532f47bdd8c8f2375e3df64ac5d79,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.139 +b05943b05ef45e8ea8278e8f0870f23db5c83b23,https://doi.org/10.1109/ROBIO.2010.5723349 +b084ad222c1fc9409d355d8e54ac3d1e86f2ca18,https://doi.org/10.1016/j.neucom.2017.04.001 +b0358af78b7c5ee7adc883ef513bbcc84a18a02b,https://doi.org/10.1109/WACV.2017.10 +b0f59b71f86f18495b9f4de7c5dbbebed4ae1607,https://doi.org/10.1016/j.neucom.2015.04.085 +a63ec22e84106685c15c869aeb157aa48259e855,https://doi.org/10.1142/S0219691312500294 +a6e75b4ccc793a58ef0f6dbe990633f7658c7241,https://doi.org/10.1016/j.cviu.2016.10.007 +a62997208fec1b2fbca6557198eb7bc9340b2409,https://doi.org/10.1109/HPCC.and.EUC.2013.241 +a6ab23f67d85da26592055c0eac4c34f05c26519,http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.15 +a6793de9a01afe47ffbb516cc32f66625f313231,http://doi.acm.org/10.1145/2939672.2939853 +b944cc4241d195b1609a7a9d87fce0e9ba1498bc,https://doi.org/10.1109/TSP.2011.2179539 +b934f730a81c071dbfc08eb4c360d6fca2daa08f,http://doi.ieeecomputersociety.org/10.1109/ICME.2015.7177496 +b98e7a8f605c21e25ac5e32bfb1851a01f30081b,http://doi.acm.org/10.1145/2393347.2396303 +b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,http://doi.acm.org/10.1145/2733373.2807962 +b972683d702a65d3ee7a25bc931a5890d1072b6b,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2669035 +b910590a0eb191d03e1aedb3d55c905129e92e6b,http://doi.acm.org/10.1145/2808492.2808570 +a180dc9766490416246e7fbafadca14a3c500a46,https://doi.org/10.1016/S0167-8655(03)00112-0 +a100595c66f84c3ddd3da8d362a53f7a82f6e3eb,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.46 +a1cda8e30ce35445e4f51b47ab65b775f75c9f18,https://doi.org/10.1109/ISBA.2018.8311462 +a13a27e65c88b6cb4a414fd4f6bca780751a59db,https://doi.org/10.1109/SMC.2016.7844934 +a1cecbb759c266133084d98747d022c1e638340d,http://doi.acm.org/10.1145/2670473.2670501 +a11ce3c9b78bf3f868b1467b620219ff651fe125,http://doi.acm.org/10.1145/2911996.2912073 +a192845a7695bdb372cccf008e6590a14ed82761,https://doi.org/10.1109/TIP.2014.2321495 +a119844792fd9157dec87e3937685c8319cac62f,https://doi.org/10.1109/APSIPA.2015.7415395 +ef7b8f73e95faa7a747e0b04363fced0a38d33b0,https://doi.org/10.1109/ICIP.2017.8297028 +ef35c30529df914a6975af62aca1b9428f678e9f,https://doi.org/10.1007/s00138-016-0817-z +ef3a0b454370991a9c18ac7bfd228cf15ad53da0,https://doi.org/10.1109/ICNC.2010.5582886 +c3c463a9ee464bb610423b7203300a83a166b500,https://doi.org/10.1109/ICIP.2014.7025069 +c3390711f5ce6f5f0728ef88c54148bf9d8783a2,https://doi.org/10.1016/j.engappai.2015.03.016 +c3e53788370341afe426f2216bed452cbbdaf117,http://doi.ieeecomputersociety.org/10.1109/ATNAC.2017.8215436 +c3a53b308c7a75c66759cbfdf52359d9be4f552b,http://doi.ieeecomputersociety.org/10.1109/ISPAN-FCST-ISCC.2017.16 +c36f3cabeddce0263c944e9fe4afd510b5bae816,https://doi.org/10.1109/DICTA.2017.8227399 +c4b00e86841db3fced2a5d8ac65f80d0d3bbe352,http://doi.ieeecomputersociety.org/10.1109/AIPR.2004.4 +c41a3c31972cf0c1be6b6895f3bf97181773fcfb,https://doi.org/10.1109/ICPR.2014.103 +c4ca092972abb74ee1c20b7cae6e69c654479e2c,https://doi.org/10.1109/ICIP.2016.7532960 +c444c4dab97dd6d6696f56c1cacda051dde60448,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37 +c459014131cbcd85f5bd5c0a89115b5cc1512be9,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.23 +c49075ead6eb07ede5ada4fe372899bd0cfb83ac,https://doi.org/10.1109/ICSPCS.2015.7391782 +c4541802086461420afb1ecb5bb8ccd5962a9f02,https://doi.org/10.1109/TSMCB.2009.2029076 +c4d439fe07a65b735d0c8604bd5fdaea13f6b072,http://doi.acm.org/10.1145/2671188.2749294 +c4d0d09115a0df856cdb389fbccb20f62b07b14e,https://doi.org/10.1109/ICIP.2012.6466925 +ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,https://doi.org/10.1109/ICIP.2017.8296549 +ea8fa68b74ffefbe79a3576d7e4ae4365a1346ff,http://doi.ieeecomputersociety.org/10.1109/FG.2017.113 +ea8d217231d4380071132ce37bf997164b60ec44,https://doi.org/10.1109/SIU.2016.7496031 +ea2b3efd4d317ebaffaf7dc8c62db5ff1eab0e1b,https://doi.org/10.1109/FRUCT-ISPIT.2016.7561522 +ea026456729f0ec54c697198e1fd089310de4ae2,https://doi.org/10.1109/CIBIM.2013.6607917 +ea86b75427f845f04e96bdaadfc0d67b3f460005,https://doi.org/10.1109/ICIP.2016.7532686 +ea5c9d5438cde6d907431c28c2f1f35e02b64b33,https://doi.org/10.1109/SPAC.2017.8304257 +e12b2c468850acb456b0097d5535fc6a0d34efe3,https://doi.org/10.1016/j.neucom.2011.03.009 +e1c50cf0c08d70ff90cf515894b2b360b2bc788b,https://doi.org/10.1109/ICSMC.2007.4414085 +e10cbd049ac2f5cc8af9eb8e587b3408ad4bb111,https://doi.org/10.1117/1.JEI.24.5.053028 +e111624fb4c5dc60b9e8223abfbf7c4196d34b21,http://doi.ieeecomputersociety.org/10.1109/BIBM.2016.7822814 +e101bab97bce2733222db9cfbb92a82779966508,https://doi.org/10.1109/TCYB.2016.2549639 +e14b046a564604508ea8e3369e7e9f612e148511,https://doi.org/10.1007/978-3-642-17829-0_4 +e198a7b9e61dd19c620e454aaa81ae8f7377ade0,https://doi.org/10.1109/CVPRW.2010.5543611 +e1449be4951ba7519945cd1ad50656c3516113da,https://doi.org/10.1109/TCSVT.2016.2603535 +cd2bf0e1d19babe51eaa94cbc24b223e9c048ad6,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2581168 +cde7901c0945683d0c677b1bb415786e4f6081e6,http://doi.ieeecomputersociety.org/10.1109/IRI.2015.44 +cdf2c8752f1070b0385a94c7bf22e8b54cac521b,https://doi.org/10.1007/s11265-010-0541-2 +cd33b3ca8d7f00c1738c41b2071a3164ba42ea61,https://doi.org/10.1142/S0218213008003832 +cdf0dc4e06d56259f6c621741b1ada5c88963c6d,https://doi.org/10.1109/ICIP.2014.7025061 +cd85f71907f1c27349947690b48bfb84e44a3db0,https://doi.org/10.1007/978-981-10-4840-1 +cdfa7dccbc9e9d466f8a5847004973a33c7fcc89,https://doi.org/10.1109/TIFS.2013.2263498 +cd3b713722ccb1e2ae3b050837ca296b2a2dd82a,https://doi.org/10.1016/j.jvcir.2016.07.015 +cd74d606e76ecddee75279679d9770cdc0b49861,https://doi.org/10.1109/TIP.2014.2365725 +cc1b093cfb97475faabab414878fa7e4a2d97cd7,http://doi.ieeecomputersociety.org/10.1109/ICALT.2017.141 +ccca2263786429b1b3572886ce6a2bea8f0dfb26,https://doi.org/10.1007/s10044-014-0388-4 +cc7c63473c5bef5ae09f26b2258691d9ffdd5f93,https://doi.org/10.1109/ICMLA.2012.17 +cc44f1d99b17a049a8186ec04c6a1ecf1906c3c8,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.87 +ccb95192001b07bb25fc924587f9682b0df3de8e,https://doi.org/10.1109/ICACCI.2016.7732123 +cc70fb1ab585378c79a2ab94776723e597afe379,https://doi.org/10.1109/ICIP.2017.8297067 +cc6d3ccc9e3dd0a43313a714316c8783cd879572,https://doi.org/10.1109/ICIP.2017.8296802 +cc9a61a30afdb8a5bc7088e1cef814b53dc4fc66,https://doi.org/10.1142/s0218213015400199 +cc5edaa1b0e91bc3577547fc30ea094aa2722bf0,https://doi.org/10.1109/CICARE.2014.7007832 +cce2f036d0c5f47c25e459b2f2c49fa992595654,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.93 +cca476114c48871d05537abb303061de5ab010d6,https://doi.org/10.15439/2016F472 +cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,https://doi.org/10.1109/SIU.2016.7495874 +ccebd3bf069f5c73ea2ccc5791976f894bc6023d,https://doi.org/10.1109/ICPR.2016.7900186 +cceec87bad847b9b87178bde8ce5cce6bf1a8e99,https://doi.org/10.1109/RIISS.2014.7009163 +ccfebdf7917cb50b5fcd56fb837f841a2246a149,https://doi.org/10.1109/ICIP.2015.7351065 +e6f3707a75d760c8590292b54bc8a48582da2cd4,https://doi.org/10.1007/s11760-012-0410-5 +e6c491fb6a57c9a7c2d71522a1a066be2e681c84,https://doi.org/10.1016/j.imavis.2016.06.002 +e6d46d923f201da644ae8d8bd04721dd9ac0e73d,https://doi.org/10.1109/ISBA.2016.7477226 +e6c834c816b5366875cf3060ccc20e16f19a9fc6,https://doi.org/10.1109/BTAS.2016.7791185 +e66a6ae542907d6a0ebc45da60a62d3eecf17839,https://doi.org/10.1109/EUVIP.2014.7018366 +e66b4aa85524f493dafde8c75176ac0afad5b79c,https://doi.org/10.1109/SSCI.2017.8285219 +e6d6d1b0a8b414160f67142fc18e1321fe3f1c49,https://doi.org/10.1109/FSKD.2015.7382037 +e69a765d033ef6ea55c57ca41c146b27964c5cf2,https://doi.org/10.1109/ISCAS.2017.8050764 +f9fb7979af4233c2dd14813da94ec7c38ce9232a,http://doi.acm.org/10.1145/3131902 +f9752fd07b14505d0438bc3e14b23d7f0fe7f48b,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2009.114 +f95321f4348cfacc52084aae2a19127d74426047,https://doi.org/10.1109/ICMLC.2013.6890897 +f925879459848a3eeb0035fe206c4645e3f20d42,http://doi.acm.org/10.1145/3025453.3025472 +f0dac9a55443aa39fd9832bdff202a579b835e88,https://doi.org/10.1109/JSTSP.2016.2543681 +f0a9d69028edd1a39147848ad1116ca308d7491e,https://doi.org/10.1007/11573548_11 +f09d5b6433f63d7403df5650893b78cdcf7319b3,https://doi.org/10.1109/AFGR.2008.4813384 +f0b4f5104571020206b2d5e606c4d70f496983f9,https://doi.org/10.1109/FUZZ-IEEE.2014.6891674 +f7911b9ff58d07d19c68f4a30f40621f63c0f385,http://dl.acm.org/citation.cfm?id=3007693 +f762afd65f3b680330e390f88d4cc39485345a01,http://doi.ieeecomputersociety.org/10.1109/ACIIW.2017.8272606 +f702a6cf6bc5e4cf53ea72baa4fc9d80cdbbae93,https://doi.org/10.1109/TCSVT.2007.903317 +f73174cfcc5c329b63f19fffdd706e1df4cc9e20,http://doi.ieeecomputersociety.org/10.1109/FIT.2015.13 +f7bebb2d5ef7c9bd38808b8e615756efafc2a1e7,https://doi.org/10.1109/ICIP.2012.6467434 +f79e4ba09402adab54d2efadd1c4bfe4e20c5da5,https://doi.org/10.1109/ICIP.2017.8296364 +e83e5960c2aabab654e1545eb419ef64c25800d5,https://doi.org/10.1016/j.neunet.2016.08.011 +e8951cc76af80da43e3528fe6d984071f17f57e7,https://doi.org/10.1109/WACVW.2017.9 +e8c051d9e7eb8891b23cde6cbfad203011318a4f,http://doi.acm.org/10.1145/3013971.3014015 +e88988f4696e7e2925ed96467fde4314bfa95eff,https://doi.org/10.1016/j.neucom.2015.01.076 +e82a0976db908e6f074b926f58223ac685533c65,https://doi.org/10.1007/s11042-015-2848-2 +e865908ed5e5d7469b412b081ca8abd738c72121,https://doi.org/10.1109/TIP.2016.2621667 +e8c6853135856515fc88fff7c55737a292b0a15b,http://doi.ieeecomputersociety.org/10.1109/FG.2017.46 +fa54ab106c7f6dbd3c004cea4ef74ea580cf50bf,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.18 +faf19885431cb39360158982c3a1127f6090a1f6,https://doi.org/10.1109/BTAS.2015.7358768 +fa72e39971855dff6beb8174b5fa654e0ab7d324,https://doi.org/10.1007/s11042-013-1793-1 +faa46ef96493b04694555738100d9f983915cf9b,https://doi.org/10.1007/s10489-015-0735-1 +fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,https://doi.org/10.1109/TIM.2015.2415012 +fadbb3a447d697d52771e237173b80782caaa936,https://doi.org/10.1007/s00530-012-0290-0 +fa9610c2dc7e2a79e0096ac033b11508d8ae7ed7,https://doi.org/10.1109/FSKD.2016.7603418 +fa5ab4b1b45bf22ce7b194c20c724946de2f2dd4,https://doi.org/10.1109/TIP.2015.2421437 +ff82825a04a654ca70e6d460c8d88080ee4a7fcc,http://doi.acm.org/10.1145/2683483.2683533 +ff9e042cccbed7e350a25b7d806cd17fb79dfdf9,https://doi.org/10.1007/s11760-016-0882-9 +fff31548617f208cd5ae5c32917afd48abc4ff6a,http://doi.acm.org/10.1145/3139295.3139309 +ff3859917d4121f47de0d46922a103c78514fcab,https://doi.org/10.1109/ICB.2016.7550050 +ff402bd06c9c4e94aa47ad80ccc4455efa869af3,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334120 +ff42ec628b0980909bbb84225d0c4f8d9ac51e03,https://doi.org/10.1109/TCSVT.2008.2005799 +ffea4184a0b24807b5f4ed87f9a985c2a27027d9,https://doi.org/10.1007/s00530-012-0297-6 +ff8db3810f927506f3aa594d66d5e8658f3cf4d5,http://doi.acm.org/10.1145/3078971.3079026 +ffea2b26e422c1009afa7e200a43b31a1fae86a9,https://doi.org/10.1007/s00500-009-0441-1 +ffb1cb0f9fd65247f02c92cfcb152590a5d68741,https://doi.org/10.1109/CISS.2012.6310782 +ff3f128f5addc6ce6b41f19f3d679282bbdaa2ee,http://doi.acm.org/10.1145/2903220.2903255 +ff0617d750fa49416514c1363824b8f61baf8fb5,https://doi.org/10.1587/elex.7.1125 +c570d1247e337f91e555c3be0e8c8a5aba539d9f,https://doi.org/10.1007/s11042-012-1352-1 +c586463b8dbedce2bfce3ee90517085a9d9e2e13,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2006.9 +c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6,https://doi.org/10.1109/BTAS.2017.8272773 +c5022fbeb65b70f6fe11694575b8ad1b53412a0d,https://doi.org/10.1109/ICIP.2005.1530209 +c5c56e9c884ac4070880ac481909bb6b621d2a3f,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126466 +c553f0334fcadf43607925733685adef81fbe406,https://doi.org/10.1109/ICSIPA.2017.8120636 +c58ece1a3fa23608f022e424ec5a93cddda31308,https://doi.org/10.1109/JSYST.2014.2325957 +c59a9151cef054984607b7253ef189c12122a625,https://doi.org/10.1007/s00138-016-0791-5 +c59b62864a6d86eead075c88137a87070a984550,https://doi.org/10.1109/IVCNZ.2015.7761546 +c5437496932dcb9d33519a120821da755951e1a9,http://doi.acm.org/10.1145/2487575.2487604 +c2b10909a0dd068b8e377a55b0a1827c8319118a,https://doi.org/10.1109/TCYB.2016.2565898 +c270aff2b066ee354b4fe7e958a40a37f7bfca45,https://doi.org/10.1109/WCSP.2017.8170910 +c252bc84356ed69ccf53507752135b6e98de8db4,https://doi.org/10.1016/j.neucom.2015.02.067 +c291f0e29871c8b9509d1a2876c3e305839ad4ac,https://doi.org/10.1109/ICARCV.2014.7064432 +c244c3c797574048d6931b6714ebac64d820dbb3,http://doi.acm.org/10.1145/2808492.2808500 +c222f8079c246ead285894c47bdbb2dfc7741044,https://doi.org/10.1109/ICIP.2015.7351631 +c2be82ed0db509087b08423c8cf39ab3c36549c3,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019363 +c23bd1917badd27093c8284bd324332b8c45bfcf,https://doi.org/10.1109/IJCNN.2010.5596316 +c2474202d56bb80663e7bece5924245978425fc1,https://doi.org/10.1109/ICIP.2016.7532771 +c2422c975d9f9b62fbb19738e5ce5e818a6e1752,https://doi.org/10.1109/TNNLS.2015.2481006 +c2dc29e0db76122dfed075c3b9ee48503b027809,https://doi.org/10.1109/ICIP.2016.7532632 +f6b4811c5e7111485e2c9cc5bf63f8ac80f3e2d7,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2569436 +f6311d6b3f4d3bd192d866d2e898c30eea37d7d5,http://ieeexplore.ieee.org/document/6460511/ +f63b3b8388bc4dcd4a0330402af37a59ce37e4f3,https://doi.org/10.1109/SIU.2013.6531214 +f6ebfa0cb3865c316f9072ded26725fd9881e73e,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.109 +f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,https://doi.org/10.1109/TMM.2015.2476657 +f6511d8156058737ec5354c66ef6fdcf035d714d,http://doi.ieeecomputersociety.org/10.1109/BWCCA.2014.115 +f652cb159a2cf2745aabcbf6a7beed4415e79e34,http://doi.acm.org/10.1145/1460096.1460119 +f6dabb4d91bf7389f3af219d486d4e67cec18c17,https://doi.org/10.1016/j.compeleceng.2014.08.010 +e95895262f66f7c5e47dd46a70110d89c3b4c203,https://doi.org/10.1016/j.neucom.2016.09.023 +e957d0673af7454dbf0a14813201b0e2570577e9,https://doi.org/10.1109/ICPR.2016.7899699 +e95c5aaa72e72761b05f00fad6aec11c3e2f8d0f,http://doi.acm.org/10.1145/2791405.2791505 +e9cebf627c204c6949dcc077d04c57eb66b2c038,https://doi.org/10.1109/SIU.2013.6531371 +e9b731f00d16a10a31ceea446b2baa38719a31f1,https://doi.org/10.1109/ICSMC.2012.6378271 +e9d1b3767c06c896f89690deea7a95401ae4582b,https://doi.org/10.1109/VCIP.2016.7805565 +e9d77a85bc2fa672cc1bd10258c896c8d89b41e8,https://doi.org/10.1109/ICTAI.2012.25 +e908ce44fa94bb7ecf2a8b70cb5ec0b1a00b311a,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019548 +e94168c35be1d4b4d2aaf42ef892e64a3874ed8c,https://doi.org/10.1109/TSMCB.2008.2010715 +e96ce25d11296fce4e2ecc2da03bd207dc118724,https://doi.org/10.1007/s00138-007-0095-x +e98551055bdcf8e25e07f4ffdbf39d0a4a57bffc,https://doi.org/10.1109/ICPR.2014.440 +e9331ae2a887c02e0a908ebae2810a681aedee29,https://doi.org/10.1016/j.image.2011.05.003 +f1e44e64957397d167d13f8f551cae99e5c16c75,https://doi.org/10.1007/s11042-013-1548-z +f17d8f14651c123d39e13a39dc79b7eb3659fe68,https://doi.org/10.1007/s11042-013-1803-3 +f1da4d705571312b244ebfd2b450692fd875cd1f,https://doi.org/10.1109/TIP.2014.2322446 +f1d6da83dcf71eda45a56a86c5ae13e7f45a8536,https://doi.org/10.1109/ACCESS.2017.2737544 +f18ff597bbfca10f84d017ac5e1ef0de6d7ad66c,http://doi.ieeecomputersociety.org/10.1109/SNPD.2016.7515888 +f1061b2b5b7ca32edd5aa486aecc63a0972c84f3,https://doi.org/10.1109/TIP.2017.2760512 +f180cb7111e9a6ba7cfe0b251c0c35daaef4f517,https://doi.org/10.1109/TIP.2015.2417502 +f19bf8b5c1860cd81b5339804d5db9e791085aa7,https://doi.org/10.1109/SMC.2017.8122640 +f14403d9d5fbc4c6e8aeb7505b5d887c50bad8a4,https://doi.org/10.1109/ICIP.2012.6467433 +f1af714b92372c8e606485a3982eab2f16772ad8,http://ieeexplore.ieee.org/document/5617662/ +e7436b8e68bb7139b823a7572af3decd96241e78,https://doi.org/10.1109/ROBIO.2011.6181560 +e7144f5c19848e037bb96e225d1cfd961f82bd9f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.126 +e73b1137099368dd7909d203b80c3d5164885e44,http://doi.ieeecomputersociety.org/10.1109/FSKD.2008.116 +e73f2839fc232c03e9f027c78bc419ee15810fe8,https://doi.org/10.1109/ICIP.2017.8296413 +e71c15f5650a59755619b2a62fa93ac922151fd6,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.22 +e74a2159f0f7afb35c7318a6e035bc31b8e69634,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019503 +e790a2538579c8e2ef9b314962ab26197d6664c6,https://doi.org/10.1109/ICIP.2016.7532915 +e7e8c0bbee09b5af6f7df1de8f0f26da992737c4,https://doi.org/10.1109/IJCNN.2011.6033417 +e7b7df786cf5960d55cbac4e696ca37b7cee8dcd,https://doi.org/10.1109/IJCNN.2012.6252728 +cba090a5bfae7dd8a60a973259f0870ed68c4dd3,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.22 +cb4d3d1b8fbb6df71a184dd8f00f89f84fa8373b,http://doi.ieeecomputersociety.org/10.1109/IJCNN.2009.5179002 +cb992fe67f0d4025e876161bfd2dda467eaec741,https://doi.org/10.1109/IPTA.2015.7367144 +cbc2de9b919bc63590b6ee2dfd9dda134af45286,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477561 +cbf3e848c5d2130dd640d9bd546403b8d78ce0f9,https://doi.org/10.1109/IJCNN.2012.6252385 +cbe1df2213a88eafc5dcaf55264f2523fe3ec981,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.34 +cb4d8cef8cec9406b1121180d47c14dfef373882,https://doi.org/10.1109/ICPR.2014.301 +cb7a743b9811d20682c13c4ee7b791ff01c62155,https://doi.org/10.1109/MMSP.2015.7340789 +cb9921d5fc4ffa50be537332e111f03d74622442,https://doi.org/10.1007/978-3-319-46654-5_79 +cbaa17be8c22e219a9c656559e028867dfb2c2ed,https://doi.org/10.1109/ICIP.2016.7532636 +cb160c5c2a0b34aba7b0f39f5dda6aca8135f880,https://doi.org/10.1109/SIU.2016.7496023 +f839ae810338e3b12c8e2f8db6ce4d725738d2d9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.115 +f888c165f45febf3d17b8604a99a2f684d689cbc,http://doi.ieeecomputersociety.org/10.1109/CIT.2004.1357196 +f812347d46035d786de40c165a158160bb2988f0,https://doi.org/10.1007/s10339-016-0765-6 +f856532a729bd337fae1eb7dbe55129ae7788f45,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.26 +f88ce52c5042f9f200405f58dbe94b4e82cf0d34,https://doi.org/10.1109/TNNLS.2015.2508025 +f8fe1b57347cdcbea755722bf1ae85c4b26f3e5c,https://doi.org/10.1007/s00138-016-0790-6 +f86c6942a7e187c41dd0714531efd2be828e18ad,https://doi.org/10.1109/VCIP.2016.7805514 +f834c50e249c9796eb7f03da7459b71205dc0737,https://doi.org/10.1109/TIP.2011.2166974 +cead57f2f7f7b733f4524c4b5a7ba7f271749b5f,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.46 +cefaad8241bceb24827a71bf7c2556e458e57faa,https://doi.org/10.1109/TIP.2013.2264676 +ce3304119ba6391cb6bb25c4b3dff79164df9ac6,https://doi.org/10.1016/j.imavis.2016.03.004 +ce8db0fe11e7c96d08de561506f9f8f399dabbb2,https://doi.org/10.1109/ICIP.2015.7351677 +ce11b2d7905d2955c4282db5b68482edb846f29f,http://doi.acm.org/10.1145/3126686.3126705 +ce30ddb5ceaddc0e7d308880a45c135287573d0e,https://doi.org/10.1109/ICSMC.2012.6378304 +e0fe68c92fefa80992f4861b0c45a3fbec7cf1c9,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344671 +e084b0e477ee07d78c32c3696ea22c94f5fdfbec,https://doi.org/10.1109/ICIP.2013.6738565 +e0cc2a9fe6b5086c55fdbf0021aca3dc1a77a1ca,http://doi.ieeecomputersociety.org/10.1109/BLISS.2008.25 +e0ab926cd48a47a8c7b16e27583421141f71f6df,https://doi.org/10.1109/HPCSim.2016.7568383 +e0423788eb91772de9d708a17799179cf3230d63,http://doi.acm.org/10.1145/3093241.3093277 +e03f69bad7e6537794a50a99da807c9df4ff5186,http://doi.acm.org/10.1145/2708463.2709060 +e0793fd343aa63b5f366c8ace61b9c5489c51a4d,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.46 +465faf9974a60da00950be977f3bc2fc3e56f5d2,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273631 +46b2ecef197b465abc43e0e017543b1af61921ac,https://doi.org/10.1109/ICPR.2016.7899652 +464ef1b3dcbe84099c904b6f9e9281c5f6fd75eb,https://doi.org/10.1109/TIP.2014.2359765 +4672513d0dbc398719d66bba36183f6e2b78947b,https://doi.org/10.1016/j.ipm.2015.05.007 +46c1af268d4b3c61a0a12be091ca008a3a60e4cd,https://doi.org/10.1007/s11042-016-3592-y +2cf3564d7421b661e84251d280d159d4b3ebb336,https://doi.org/10.1109/BTAS.2014.6996287 +2c6ab32a03c4862ee3e2bc02e7e74745cd523ad2,https://doi.org/10.1109/IC3.2013.6612218 +2ca10da4b59b406533ad1dc7740156e01782658f,https://doi.org/10.1109/SIU.2016.7496207 +2cd426f10178bd95fef3dede69ae7b67e73bb70c,https://doi.org/10.1109/ROBIO.2016.7866457 +2c06781ba75d51f5246d65d1acf66ab182e9bde6,https://doi.org/10.1016/j.imavis.2016.11.002 +2ce84465b9759166effc7302c2f5339766cc523d,https://doi.org/10.1109/VCIP.2015.7457830 +798e58c181f3ba3aecbe41acd1881860c5e2df3a,https://doi.org/10.1109/TNNLS.2012.2237038 +7935f644c8044c0d3b81e2842e5ecc3672698bbb,https://doi.org/10.1109/ICIP.2011.6116258 +79fd4baca5f840d6534a053b22e0029948b9075e,https://doi.org/10.1109/ISDA.2012.6416647 +2d94dfa9c8f6708e071ef38d58f9f9bcb374cd84,https://doi.org/10.1109/CVPRW.2011.5981817 +2debdb6a772312788251cc3bd1cb7cc8a6072214,https://doi.org/10.1142/S0218001415560157 +2d411826cd7865638b65e1b5f92043c245f009f9,http://doi.acm.org/10.1145/2733373.2806239 +2d79dece7890121469f515a6e773ba0251fc2d98,https://doi.org/10.1109/ICIP.2017.8296756 +2df4d0c06f4f68060cecbbb8e2088d9c6b20d04f,https://doi.org/10.1109/ICIP.2014.7026056 +2d2fb01f761d21a459cfb34935bc47ab45a9913b,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2346515 +41e5d92b13d36da61287c7ffd77ee71de9eb2942,https://doi.org/10.1016/j.asoc.2016.12.033 +41781474d834c079e8fafea154d7916b77991b15,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.60 +417c2fa930bb7078fdf10cb85c503bd5270b9dc2,https://doi.org/10.1109/ICSIPA.2015.7412169 +414fdfe5f2e4f32a59bf15062b6e524cbf970637,https://doi.org/10.1109/TIFS.2014.2361028 +83b54b8c97dc14e302dad191327407ec0d5fb4a6,https://doi.org/10.1109/ICIP.2017.8296913 +8383faea09b4b4bef8117a1da897495ebd68691b,https://doi.org/10.1109/TCYB.2015.2493538 +838dad9d1d68d29be280d92e69410eaac40084bc,https://doi.org/10.1109/HPCSim.2014.6903749 +83d50257eb4c0aa8d16d27bf2ee8d0614fd63bf6,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284834 +83bce0907937f09f5ccde26c361d52fe55fc8979,http://doi.acm.org/10.1145/2993148.2993185 +1b8541ec28564db66a08185510c8b300fa4dc793,https://doi.org/10.1109/LSP.2015.2499778 +1b211f8221162ce7ef212956b637b50e30ad48f4,https://doi.org/10.1109/ICIP.2016.7532925 +1b6c65442f2b572fb6c8fc9a7d5ae49a8e6d32ab,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.537 +1b29f23f3517ac5bbe9bf5e80cda741b61bb9b12,https://doi.org/10.1016/j.patcog.2017.01.007 +1b4b3d0ce900996a6da8928e16370e21d15ed83e,https://doi.org/10.1109/BigDataService.2017.38 +1b9976fea3c1cf13f0a102a884f027d9d80a14b3,https://doi.org/10.1109/ROMAN.2014.6926354 +1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,http://doi.acm.org/10.1145/2964284.2984061 +1bcb1c6d6cebc9737f9933fcefbf3da8a612f994,https://doi.org/10.1016/j.jvcir.2017.10.008 +1bd8ab47177997acb3b0cca4b6a801e6e6ec3eac,https://doi.org/10.1109/ICIP.2014.7025273 +1b2d9a1c067f692dd48991beff03cd62b9faebf2,https://doi.org/10.1109/ICIP.2011.6116302 +7782627fa2e545276996ff9e9a1686ac496df081,http://doi.acm.org/10.1145/2663204.2666276 +771a6a80dd08212d83a4e976522e1ce108881401,https://doi.org/10.1109/IPTA.2016.7820979 +77223849321d57a03e0571a08e71eba06e38834a,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.20 +77c5437107f8138d48cb7e10b2b286fa51473678,https://doi.org/10.1109/URAI.2016.7734005 +77c3574a020757769b2ca807ff4b95a88eaa2a37,https://doi.org/10.1109/MSP.2015.2410783 +77cea27494499dd162221d1476bf70a87391790a,https://doi.org/10.1109/VCIP.2015.7457930 +77816b9567d5fed1f6085f33e1ddbcc73af2010e,https://doi.org/10.1109/MRA.2012.2201574 +778c1e95b6ea4ccf89067b83364036ab08797256,https://doi.org/10.1109/TIFS.2012.2224866 +7753e3b9e158289cbaa22203166424ca9c229f68,http://doi.ieeecomputersociety.org/10.1109/ICDM.2014.29 +77869f274d4be4d4b4c438dbe7dff4baed521bd8,https://doi.org/10.1109/TIP.2016.2551362 +773ce00841a23d32727aa1f54c29865fefd4ce02,http://doi.ieeecomputersociety.org/10.1109/AIPR.2006.24 +772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,https://doi.org/10.1109/BTAS.2017.8272716 +480858e55abdbc07ca47b7dc10204613fdd9783c,https://doi.org/10.1109/ICPR.2014.786 +48a6a1c6a0ac5f2b7912b3ccb40b0c07f62ddfdf,https://doi.org/10.1016/j.imavis.2015.12.003 +489b7e12a420eff0d585f3f866e76b838c2cd275,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477675 +48dcf45a1e38adbb9826594f7ffaa5e95ef78395,https://doi.org/10.1109/VCIP.2017.8305111 +48db8bf18e2f6f19e07e88384be855c8b7ea0ead,http://doi.acm.org/10.1145/2964284.2967225 +4848a48a2b8bacd2092e87961cd86818da8e7151,https://doi.org/10.1109/VCIP.2017.8305080 +48255c9e1d6e1d030728d33a71699757e337be08,https://doi.org/10.1109/ISSNIP.2013.6529832 +48906f609446afcdaacbe1d65770d7a6165a8eee,https://doi.org/10.1007/s12559-017-9482-4 +486f5e85944404a1b57333443070b0b8c588c262,http://doi.ieeecomputersociety.org/10.1109/IRI.2014.7051957 +7049187c5155d9652747413ce1ebc8dbb209fd69,https://doi.org/10.1109/ICPR.2016.7899808 +70769def1284fe88fd57a477cde8a9c9a3dff13f,https://doi.org/10.1016/j.neucom.2006.10.036 +70341f61dfe2b92d8607814b52dfd0863a94310e,http://doi.ieeecomputersociety.org/10.1109/AVSS.2015.7301750 +70444627cb765a67a2efba17b0f4b81ce1fc20ff,https://doi.org/10.1109/TNNLS.2016.2609434 +70516aede32cf0dbc539abd9416c44faafc868bd,https://doi.org/10.1109/MICAI.2013.16 +7081958a390d3033f5f33e22bbfec7055ea8d601,https://doi.org/10.1109/MCI.2015.2437318 +70d8bda4aafb0272ac4b93cd43e2448446b8e94d,https://doi.org/10.1109/ICMLC.2010.5580938 +705e086bb666d129a6969882cfa49282116a638e,https://doi.org/10.1109/TNNLS.2014.2376963 +70d0bffa288e317bc62376f4f577c5bd7712e521,https://doi.org/10.1049/iet-cvi.2012.0094 +1e2770ce52d581d9a39642b40bfa827e3abf7ea2,http://doi.acm.org/10.1145/2425333.2425362 +1eb48895d86404251aa21323e5a811c19f9a55f9,http://doi.ieeecomputersociety.org/10.1109/CIS.2015.22 +1e8fd77d4717e9cb6079e10771dd2ed772098cb3,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2016.7574681 +1e62ca5845a6f0492574a5da049e9b43dbeadb1b,https://doi.org/10.1109/LSP.2016.2637400 +1e344b99583b782e3eaf152cdfa15f217b781181,http://doi.acm.org/10.1145/2499788.2499789 +1eb9c859ff7537182a25556635954bcd11830822,https://doi.org/10.1109/ICDSP.2015.7252004 +1ef6ad9e1742d0b2588deaf506ef83b894fb9956,https://doi.org/10.1007/s12193-016-0213-z +1ed617d14dbc53b20287d3405b14c68d8dad3965,https://doi.org/10.1109/TCYB.2016.2582918 +1ed49161e58559be399ce7092569c19ddd39ca0b,https://doi.org/10.1109/ICPR.2016.7899973 +1eb1fdc5c933d2483ba1acbfa8c457fae87e71e5,https://doi.org/10.1109/ICPR.2016.7899945 +1ea4347def5868c622d7ce57cbe171fa68207e2b,https://doi.org/10.1007/978-3-642-41181-6_23 +84f3c4937cd006888b82f2eb78e884f2247f0c4e,https://doi.org/10.1109/CCNC.2012.6181097 +84be18c7683417786c13d59026f30daeed8bd8c9,https://doi.org/10.1007/s00138-016-0755-9 +84f86f8c559a38752ddfb417e58f98e1f8402f17,http://doi.ieeecomputersociety.org/10.1109/EST.2013.10 +844e3e6992c98e53b45e4eb88368d0d6e27fc1d6,https://doi.org/10.1109/ICIP.2014.7026057 +84ae55603bffda40c225fe93029d39f04793e01f,https://doi.org/10.1109/ICB.2016.7550066 +84ec0983adb8821f0655f83b8ce47f36896ca9ee,https://doi.org/10.1109/SMC.2017.8122985 +4aa27c1f8118dbb39809a0f79a28c0cbc3ede276,http://doi.acm.org/10.1145/2683483.2683530 +4a03f07397c5d32463750facf010c532f45233a5,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.32 +4aea1213bdb5aa6c74b99fca1afc72d8a99503c6,https://doi.org/10.1109/ICDIM.2010.5664688 +4a7e5a0f6a0df8f5ed25ef356cd67745cd854bea,https://doi.org/10.1007/978-3-642-14922-1_68 +243cd27dce38fd756a840b397c28ad21cfb78897,https://doi.org/10.1049/iet-ipr.2013.0003 +24b5ea4e262e22768813e7b6581f60e4ab9a8de7,https://doi.org/10.1109/TIFS.2018.2807791 +244293024aebbb0ff42a7cf2ba49b1164697a127,https://doi.org/10.1109/BTAS.2016.7791187 +24eeb748a5e431510381ec7c8253bcb70eff8526,https://doi.org/10.1109/TIP.2017.2746270 +2400c4994655c4dd59f919c4d6e9640f57f2009f,https://doi.org/10.1109/IPTA.2015.7367096 +24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,https://doi.org/10.1109/GlobalSIP.2016.7906030 +24b637c98b22cd932f74acfeecdb50533abea9ae,https://doi.org/10.1109/TIP.2015.2492819 +24205a60cbf1cc12d7e0a9d44ed3c2ea64ed7852,http://doi.ieeecomputersociety.org/10.1109/FG.2017.30 +24e42e6889314099549583c7e19b1cb4cc995226,https://doi.org/10.1109/ACPR.2011.6166646 +24f3dfeb95bdecdc604d630acdfcafa1dc7c9124,http://doi.acm.org/10.1145/2994258.2994270 +245d98726674297208e76308c3a11ce3fc43bee2,https://doi.org/10.1007/s11042-015-2699-x +2348f1fa2940b01ec90e023fac8cc96812189774,http://doi.ieeecomputersociety.org/10.1109/EWDTS.2017.8110157 +2360ecf058393141ead1ca6b587efa2461e120e4,https://doi.org/10.1007/s00138-017-0895-6 +235a347cb96ef22bf35b4cf37e2b4ee5cde9df77,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.13 +23ecc496eaa238ac884e6bae5763f6138a9c90a3,https://doi.org/10.1109/ICB.2016.7550085 +2336de3a81dada63eb00ea82f7570c4069342fb5,http://doi.acm.org/10.1145/2361407.2361428 +235bebe7d0db37e6727dfa1246663be34027d96b,https://doi.org/10.1109/NAFIPS.2016.7851625 +2340d810c515dc0c9fd319f598fa8012dc0368a0,https://doi.org/10.1109/AFGR.2008.4813420 +23675cb2180aac466944df0edda4677a77c455cd,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.142 +4ffd744a5f079c2d65f36e3ee0979b978f522a13,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.15 +4fbc0189252ed4fe8f9cffd3ea0ebbb0c621e3ef,https://doi.org/10.1049/iet-cvi.2012.0127 +4f742c09ce12859b20deaa372c8f1575acfc99c9,https://doi.org/10.1016/j.neucom.2017.01.020 +4f03ba35440436cfa06a2ed2a571fea01cb36598,https://doi.org/10.1109/SPAC.2017.8304260 +4fac09969ee80d485876e3198c7177181c600a4a,http://doi.ieeecomputersociety.org/10.1109/CRV.2015.32 +4f3b652c75b1d7cf4997e0baaef2067b61e3a79b,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552910 +8dd3f05071fd70fb1c349460b526b0e69dcc65bf,https://doi.org/10.1109/TIP.2017.2726010 +8d3e95c31c93548b8c71dbeee2e9f7180067a888,https://doi.org/10.1109/ICPR.2016.7899841 +8db9188e5137e167bffb3ee974732c1fe5f7a7dc,https://doi.org/10.1109/TIP.2016.2612885 +8db609d84190b905913eb2f17f4e558c6e982208,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.182 +15ef449ac443c494ceeea8a9c425043f4079522e,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477583 +157647b0968d95f9288b27d6d9179a8e1ef5c970,https://doi.org/10.1049/iet-bmt.2014.0086 +15ef65fd68d61f3d47326e358c446b0f054f093a,https://doi.org/10.1109/MLSP.2017.8168180 +1584edf8106e8f697f19b726e011b9717de0e4db,https://doi.org/10.1049/iet-cvi.2015.0350 +15a9f812e781cf85c283f7cf2aa2928b370329c5,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469281 +158aa18c724107587bcc4137252d0ba10debf417,https://doi.org/10.1109/ACSSC.2016.7869522 +159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,https://doi.org/10.1109/TIP.2017.2694226 +152683f3ac99f829b476ea1b1b976dec6e17b911,https://doi.org/10.1109/MIXDES.2016.7529773 +159caaa56c2291bedbd41d12af5546a7725c58d4,https://doi.org/10.1109/ICIP.2016.7532910 +15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,https://doi.org/10.1109/TMM.2011.2167317 +15e12d5c4d80a2b6f4d957a3ffd130564e9bab3a,https://doi.org/10.5220/0004736505740580 +1277b1b8b609a18b94e4907d76a117c9783a5373,http://doi.ieeecomputersociety.org/10.1109/ASONAM.2016.7752438 +12c4ba96eaa37586f07be0d82b2e99964048dcb5,https://doi.org/10.1109/LSP.2017.2694460 +122f52fadd4854cf6c9287013520eced3c91e71a,https://doi.org/10.1109/TIP.2016.2515987 +1280b35e4a20036fcfd82ee09f45a3fca190276f,http://doi.ieeecomputersociety.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.166 +1252727e8096f48096ef89483d30c3a74500dd15,https://doi.org/10.1007/s00138-016-0746-x +126204b377029feb500e9b081136e7a9010e3b6b,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2010.50 +126076774da192d4d3f4efcd1accc719ee5f9683,https://doi.org/10.1109/SIU.2012.6204774 +120b9c271c3a4ea0ad12bbc71054664d4d460bc3,https://doi.org/10.1109/DICTA.2015.7371259 +12b533f7c6847616393591dcfe4793cfe9c4bb17,https://doi.org/10.1109/TIFS.2017.2765519 +8cd9475a3a1b2bcccf2034ce8f4fe691c57a4889,http://doi.ieeecomputersociety.org/10.1109/FG.2017.138 +8cffe360a05085d4bcba111a3a3cd113d96c0369,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248 +8c85ef961826575bc2c2f4da7784bc3bfcf8b188,https://doi.org/10.1109/ICIP.2015.7350871 +8c50869b745fc094a4fb1b27861934c3c14d7199,https://doi.org/10.1109/EMBC.2016.7591826 +8cedb92694845854f3ad0daf6c9adb6b81c293de,http://doi.acm.org/10.1145/1839379.1839431 +8c3f7bd8ae50337dd812b370ce4c4ea9375a9f58,https://doi.org/10.1109/ICIP.2014.7025276 +8c37bd06e1a637c6f249dcd1d2c4bc9589ae24b3,https://doi.org/10.1007/11608288_28 +8c2b663f8be1702ed3e377b5e6e85921fe7c6389,https://doi.org/10.1109/IPTA.2016.7821006 +8cd0855ca967ce47b0225b58bbadd38d8b1b41a1,https://doi.org/10.1109/TIP.2017.2721106 +8c048be9dd2b601808b893b5d3d51f00907bdee0,https://doi.org/10.1631/FITEE.1600041 +85785ae222c6a9e01830d73a120cdac75d0b838a,https://doi.org/10.1007/978-3-319-11782-9 +85567174a61b5b526e95cd148da018fa2a041d43,https://doi.org/10.1109/TMM.2016.2515367 +8576d0031f2b0fe1a0f93dd454e73d48d98a4c63,http://doi.acm.org/10.1145/2522848.2531743 +8598d31c7ca9c8f5bb433409af5e472a75037b4d,https://doi.org/10.1109/JPROC.2008.916364 +85f27ec70474fe93f32864dd03c1d0f321979100,https://doi.org/10.1109/IJCNN.2014.6889381 +85f7f03b79d03da5fae3a7f79d9aac228a635166,https://doi.org/10.1109/WACV.2009.5403085 +85205914a99374fa87e004735fe67fc6aec29d36,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2392774 +1ddea58d04e29069b583ac95bc0ae9bebb0bed07,https://doi.org/10.1109/KSE.2015.50 +1dabb080e3e968633f4b3774f19192f8378f5b67,https://doi.org/10.1109/ICPR.2016.7899664 +1d10010ea7af43d59e1909d27e4e0e987264c667,https://doi.org/10.1016/j.neunet.2004.06.006 +1dae2f492d3ca2351349a73df6ee8a99b05ffc30,https://doi.org/10.1137/110842570 +1da1299088a6bf28167c58bbd46ca247de41eb3c,https://doi.org/10.1109/ICASSP.2002.5745055 +71d786fdb563bdec6ca0bbf69eba8e3f37c48c6f,https://doi.org/10.1109/SMC.2016.7844680 +710c3aaffef29730ffd909a63798e9185f488327,https://doi.org/10.1109/ICPR.2016.7900095 +71a9d7cf8cf1e206cb5fa18795f5ab7588c61aba,https://doi.org/10.1109/TIM.2011.2141270 +71e95c3a31dceabe9cde9f117615be8bf8f6d40e,https://doi.org/10.1109/ICIP.2010.5653024 +71f07c95a2b039cc21854c602f29e5be053f2aba,https://doi.org/10.1007/s00138-010-0250-7 +7123e510dea783035b02f6c35e35a1a09677c5ab,https://doi.org/10.1109/ICPR.2016.7900297 +715d3eb3665f46cd2fab74d35578a72aafbad799,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2013.118 +7177649ece5506b315cb73c36098baac1681b8d2,http://doi.ieeecomputersociety.org/10.1109/FG.2017.130 +71d68af11df855f886b511e4fc1635c1e9e789b0,https://doi.org/10.1109/TCSVT.2011.2133210 +71bbda43b97e8dc8b67b2bde3c873fa6aacd439f,https://doi.org/10.1016/j.patcog.2015.09.012 +7196b3832065aec49859c61318037b0c8c12363a,https://doi.org/10.1007/s11432-014-5151-3 +71f9861df104b90399dc15e12bbb14cd03f16e0b,http://doi.ieeecomputersociety.org/10.1109/CGIV.2009.7 +7644b3a0871b8e0e7e1cdf06099e295f1e5fbdf7,https://doi.org/10.1007/s11063-015-9464-z +76669f166ddd3fb830dbaacb3daa875cfedc24d9,https://doi.org/10.1109/ICPR.2016.7899840 +76dff7008d9b8bf44ec5348f294d5518877c6182,https://doi.org/10.1016/j.imavis.2014.09.004 +76640cb1a683a479ce2e0d6681d821ff39126d63,https://doi.org/10.1109/IJCNN.2011.6033408 +76a52ebfc5afd547f8b73430ec81456cf25ddd69,http://doi.ieeecomputersociety.org/10.1109/AIPR.2014.7041914 +76d1c6c6b67e67ced1f19a89a5034dafc9599f25,http://doi.acm.org/10.1145/2590296.2590315 +761304bbd259a9e419a2518193e1ff1face9fd2d,https://doi.org/10.1007/978-3-642-33885-4_57 +1ca1b4f787712ede215030d22a0eea41534a601e,https://doi.org/10.1109/CVPRW.2010.5543609 +1cb0c11620bde2734c1a428c789158ffff0d6c7b,http://doi.ieeecomputersociety.org/10.1109/BigMM.2016.62 +1c5a5d58a92c161e9ba27e2dfe490e7caaee1ff5,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163119 +1ce29d6b820ed4a24da27b76ffd9605d5b3b10b5,https://doi.org/10.1016/j.imavis.2015.01.007 +1cfe8c1d341dbf8cc43040b37ca3552385adb10b,http://doi.acm.org/10.1145/2461466.2461473 +82e1692467969940a6d6ac40eae606b8b4981f7e,https://doi.org/10.1109/ICMEW.2012.56 +8274069feeff6392b6c5d45d8bfaaacd36daedad,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019312 +826015d9ade1637b3fcbeca071e3137d3ac1ef56,https://doi.org/10.1109/WACV.2017.84 +828d7553a45eb0c3132e406105732a254369eb4d,https://doi.org/10.1016/j.neunet.2017.09.001 +82953e7b3d28ccd1534eedbb6de7984c59d38cd4,https://doi.org/10.1109/TNNLS.2014.2356856 +8229f2735a0db0ad41f4d7252129311f06959907,https://doi.org/10.1109/TIP.2011.2106794 +82dad0941a7cada11d2e2f2359293fe5fabf913f,https://doi.org/10.1109/ICIP.2017.8296810 +493bc7071e35e7428336a515d1d26020a5fb9015,https://doi.org/10.1109/ACSSC.2013.6810420 +4958c06da5581fd0b4904d3bf0ee09958ecdba5b,https://doi.org/10.1016/j.knosys.2016.12.005 +4909ed22b1310f1c6f2005be5ce3349e3259ff6a,https://doi.org/10.1109/ROBIO.2009.4913106 +49e4f05fa98f63510de76e7abd8856ff8db0f38d,http://doi.ieeecomputersociety.org/10.1109/FG.2017.110 +4932b929a2e09ddebedcb1abe8c62f269e7d4e33,https://doi.org/10.1109/SIU.2016.7496076 +492116d16a39eb54454c7ffb1754cea27ad3a171,http://doi.acm.org/10.1145/3132525.3134823 +496f3d14cf466f054d395a3c71fa2cd6a3dda61d,http://doi.acm.org/10.1145/3009977.3010055 +49fdafef327069516d887d8e69b5e96c983c3dd0,https://doi.org/10.1109/DICTA.2017.8227433 +496d62741e8baf3859c24bb22eaccd3043322126,http://doi.ieeecomputersociety.org/10.1109/TKDE.2017.2728531 +49fe4f387ac7e5852a78b327ec42cc7300c5f8e0,https://doi.org/10.1007/s11042-014-2055-6 +4033ac52dba394e390a86cd149b9838f1d7834b5,https://doi.org/10.1109/ICMLC.2012.6359009 +4014d74e8f5ea4d76c2c1add81d0c88d6e342478,http://doi.acm.org/10.1145/3136755.3143010 +4014e8c1a1b49ad2b9b2c45c328ec9f1fd56f676,https://doi.org/10.1109/IJCNN.2017.7966191 +4097fef623185557bb1842501cfdc97f812fc66d,http://doi.acm.org/10.1145/3126686.3126755 +40dd736c803720890d6bfc1e083f6050e35d8f7a,http://doi.acm.org/10.1145/3139958.3140055 +40f06e5c052d34190832b8c963b462ade739cbf0,https://doi.org/10.1109/ICNC.2010.5583821 +405cf40f3ce74210f7e9862b2b828ce002b409ed,https://doi.org/10.1109/IJCNN.2017.7966244 +407a26fff7fac195b74de9fcb556005e8785a4e9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.29 +2e36b63fdf1353425a57a0665b0d0274efe92963,http://doi.acm.org/10.1145/3152771.3156179 +2e5d173ee0d1d7f88c335ade6a7b879b2d987ab4,https://doi.org/10.1109/ICASSP.2015.7178367 +2e535b8cd02c2f767670ba47a43ad449fa1faad7,https://doi.org/10.1109/MSP.2017.2740460 +2ed7d95588200c8c738c7dd61b8338538e04ea30,https://doi.org/10.1109/ICIP.2010.5654063 +2ee1ba1c3d4797fdae46d3d5f01db7ef5903dadd,https://doi.org/10.1016/j.neucom.2015.07.031 +2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d,https://doi.org/10.1109/CVPRW.2011.5981801 +2ef1b1b5ed732634e005df779fd9b21da0ffe60c,https://doi.org/10.1016/j.image.2017.03.012 +2e5b160892b70a1e846aa9dcdf132b8011937ec6,https://doi.org/10.1109/LSP.2017.2689921 +2e27667421a7eeab278e0b761db4d2c725683c3f,https://doi.org/10.1007/s11042-013-1815-z +2e6776cd582c015b46faf616f29c98ce9cff51a2,https://doi.org/10.1109/TNN.2005.860849 +2e12c5ea432004de566684b29a8e148126ef5b70,https://doi.org/10.1007/s12193-015-0204-5 +2b286ed9f36240e1d11b585d65133db84b52122c,http://doi.acm.org/10.1145/3130800.3130837 +2babf665198a91932a4ce557f627c28e7e8f31f2,http://doi.acm.org/10.1145/3009977.3010004 +2b300985a507533db3ec9bd38ade16a32345968e,https://doi.org/10.1007/s11042-015-3070-y +2b5005c2abf2d9a8c16afa50306b6959dfc72275,https://doi.org/10.1109/ICARCV.2010.5707216 +2b0d14dbd079b3d78631117b1304d6c1579e1940,https://doi.org/10.1007/s11063-016-9524-z +2b43100a13811b33cc9f905fa1334bfd8b1873ba,https://doi.org/10.1109/IVCNZ.2015.7761564 +2b2924af7ec219bd1fadcbd2c57014ed54efec86,http://doi.ieeecomputersociety.org/10.1109/SSIAI.2014.6806053 +2be9284d531b8c573a4c39503ca50606446041a3,https://doi.org/10.1109/ICIP.2005.1530004 +2be24e8a3f2b89bdaccd02521eff3b7bb917003e,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.96 +47cd161546c59ab1e05f8841b82e985f72e5ddcb,https://doi.org/10.1109/ICIP.2017.8296552 +47109343e502a4097cb7efee54bc5fbb14598c05,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.182 +4786638ffb3b2fb385cec80720cc6e7c3588b773,https://doi.org/10.1007/s11042-015-2598-1 +471bef061653366ba66a7ac4f29268e8444f146e,https://doi.org/10.1109/SMC.2015.524 +47fb74785fbd8870c2e819fc91d04b9d9722386f,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.161 +47d07217c501644d63adfec740346f244abaaae8,https://doi.org/10.1016/j.patcog.2016.05.017 +78b457f8b1ba4fbd1c50c32ec1f02f4f58764ad7,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.99 +78d4d861c766af2a8da8855bece5da4e6eed2e1c,http://doi.acm.org/10.1145/3129416.3129455 +78e1798c3077f4f8a4df04ca35cd73f82e9a38f3,http://ieeexplore.ieee.org/document/6460640/ +78f244dc2a171944836a89874b8f60e9fe80865d,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.181 +780c8a795baca1ba4cb4956cded877dd3d1ca313,http://doi.ieeecomputersociety.org/10.1109/ISSPIT.2013.6781879 +789b8fff223b0db0fe3babf46ea98b1d5197f0c0,https://doi.org/10.1002/ima.20245 +785eeac2e236a85a45b4e0356c0745279c31e089,https://doi.org/10.1109/TIFS.2014.2359543 +7813d405450013bbdb0b3a917319d5964a89484a,https://doi.org/10.1109/WACV.2017.62 +789a43f51e0a3814327dab4299e4eda8165a5748,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.189 +782eee555067b2d6d24db87775e1ded5fb047491,https://doi.org/10.1109/MMSP.2008.4665158 +8be60114634caa0eff8566f3252cb9a1b7d5ef10,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890133 +8b4124bb68e5b3e6b8b77888beae7350dc594a40,https://doi.org/10.1109/ICSMC.2005.1571395 +8bf945166305eb8e304a9471c591139b3b01a1e1,https://doi.org/10.1109/ACCESS.2017.2756451 +8b1fa60b9164b60d1ca2705611fab063505a3ef5,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618337 +8b3c867e67b263d7a0577a112173a64009a3b4ba,https://doi.org/10.1109/ICIP.2010.5652374 +8b1f697d81de1245c283b4f8f055b9b76badfa66,https://doi.org/10.1142/S0218126616500171 +13907865a97afde053d7bb7134d58a7bbc12043c,https://doi.org/10.1016/j.patcog.2014.05.001 +134cea33099cafc6615e57437e29d7c3906a2b48,http://doi.ieeecomputersociety.org/10.1109/ICETET.2010.80 +136aae348c7ebc6fd9df970b0657241983075795,https://doi.org/10.1109/ICIP.2015.7351542 +13f065d4e6dfe2a130bd64d73eee97d10d9f7d33,https://doi.org/10.1109/DICTA.2015.7371222 +13901473a12061f080b9d54219f16db7d406e769,https://doi.org/10.1109/TIP.2012.2222895 +7f9be0e08784835de0f8bc3a82fcca02b3721dc1,https://doi.org/10.1109/IJCNN.2014.6889744 +7f415aee0137acab659c664eb1dff15f7b726bdd,https://doi.org/10.1109/TCSVT.2014.2302522 +7f5346a169c9784ca79aca5d95ae8bf2ebab58e3,https://doi.org/10.1109/ICIP.2015.7351304 +7f4040b482d16354d5938c1d1b926b544652bf5b,http://doi.acm.org/10.1145/2502081.2502115 +7f8d2d7eaa03132caefe0f3b126b5b369a712c9d,http://doi.ieeecomputersociety.org/10.1109/ACHI.2009.33 +7fa00c81f7c2d8da1551334b0e7bc3d7fd43130c,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2353635 +7fcd03407c084023606c901e8933746b80d2ad57,https://doi.org/10.1109/BTAS.2017.8272694 +7f8cef6ba2f059e465b1b23057a6dbb23fba1c63,https://doi.org/10.1109/TCSVT.2016.2539541 +7f1078a2ebfa23a58adb050084d9034bd48a8a99,https://doi.org/10.1007/s00371-015-1169-9 +7a595800b490ff437ab06fe7612a678d5fe2b57d,https://doi.org/10.1109/MMSP.2009.5293285 +7a09e8f65bd85d4c79f0ae90d4e2685869a9894f,https://doi.org/10.1109/TMM.2016.2551698 +7a6e3ed956f71b20c41fbec008b1fa8dacad31a6,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163117 +7a91617ec959acedc5ec8b65e55b9490b76ab871,https://doi.org/10.1109/RAIT.2012.6194481 +7a666a91a47da0d371a9ba288912673bcd5881e4,https://doi.org/10.1016/j.patrec.2009.05.011 +7adfc2f854e2ea45c29d22d6e2dcccdd527f46a8,https://doi.org/10.1007/s00138-015-0677-y +7a94936ce558627afde4d5b439ec15c59dbcdaa4,https://doi.org/10.1007/s11263-013-0665-5 +14d7bce17265738f10f48987bb7bffb3eafc676e,http://ieeexplore.ieee.org/document/7514504/ +143571c2fc9b1b69d3172f8a35b8fad50bc8202a,https://doi.org/10.1016/j.neucom.2014.07.066 +142e233adceed9171f718a214a7eba8497af4324,https://doi.org/10.1109/IJCNN.2014.6889504 +14efb131bed66f1874dd96170f714def8db45d90,http://doi.acm.org/10.1145/2818346.2830585 +14ae16e9911f6504d994503989db34d2d1cb2cd4,https://doi.org/10.1007/s11042-013-1616-4 +14bdd23ea8f4f6d7f4c193e5cbb0622362e12ae1,https://doi.org/10.1109/TIP.2006.884932 +1473e6f2d250307f0421f1e2ea68b6485d3bd481,https://doi.org/10.1109/IJCNN.2016.7727333 +8e9b92a805d1ce0bf4e0c04133d26e28db036e6a,https://doi.org/10.1109/DICTA.2017.8227428 +8ef465ff12ee1d2be2a99d1c628117a4ce890a6b,https://doi.org/10.1016/j.camwa.2010.08.082 +8e55486aa456cae7f04fe922689b3e99a0e409fe,http://doi.acm.org/10.1145/3123266.3123342 +8ebe2df4d82af79f0f082ced70f3a73d7fb93b66,https://doi.org/10.1109/URAI.2015.7358851 +8e272978dd1500ce6e4c2ef5e91d4332078ff757,https://doi.org/10.1007/11848035_5 +8e8a6623b4abd2452779c43f3c2085488dfcb323,http://doi.acm.org/10.1145/2993148.2997630 +8e21399bb102e993edd82b003c306a068a2474da,https://doi.org/10.1109/ICIP.2013.6738758 +22c06284a908d8ad0994ad52119773a034eed7ee,http://doi.acm.org/10.1145/2964284.2967236 +2238dddb76499b19035641d97711cf30d899dadb,https://doi.org/10.1109/SIU.2016.7496098 +22894c7a84984bd4822dcfe7c76a74673a242c36,http://doi.acm.org/10.1145/2993148.2997634 +22a10d8d2a2cb9055557a3b335d6706100890afb,https://doi.org/10.1109/SIU.2016.7496121 +22ccd537857aca1ee4b961f081f07c58d42a7f32,https://doi.org/10.1109/DICTA.2015.7371260 +22d5aeb25bb034f6ae2fc50b5cdd9934a85d6505,http://doi.acm.org/10.1145/2808469.2810102 +22dbdace88c8f4bda2843ed421e3708ec0744237,https://doi.org/10.1016/j.cviu.2013.12.010 +259ddd3c618feec51576baac7eaaf80ea924b791,https://doi.org/10.1007/s11257-007-9039-4 +254964096e523d5e48e03390ce440c9af337d200,http://dl.acm.org/citation.cfm?id=3005378 +250b73ec5a4f78b7b4ea3aba65c27fc1352154d5,https://doi.org/10.1109/TIP.2015.2463223 +256b46b12ab47283e6ada05fad6a2b501de35323,https://doi.org/10.1109/ICPR.2016.7900275 +252f202bfb14d363a969fce19df2972b83fa7ec0,http://doi.ieeecomputersociety.org/10.1109/FG.2017.120 +25bcd5aa3bbe56c992547fba683418655b46fc4a,https://doi.org/10.1016/j.eswa.2017.03.030 +2546dc7e2c2390233de16502413fe1097ecf3fb5,https://doi.org/10.1016/j.patrec.2011.01.009 +258b3b1df82186dd76064ef86b28555e91389b73,https://doi.org/10.1109/ACCESS.2017.2739822 +610779e90b644cc18696d7ac7820d3e0598e24d0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7067419 +61262450d4d814865a4f9a84299c24daa493f66e,http://doi.org/10.1007/s10462-016-9474-x +61971f8e6fff5b35faed610d02ad14ccfc186c70,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373843 +61e2044184d86d0f13e50ecaa3da6a4913088c76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7572183 +61329bc767152f01aa502989abc854b53047e52c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450832 +95b9df34bcf4ae04beea55c11cf0cc4095aa38dc,http://doi.org/10.1007/11527923_7 +95289007f2f336e6636cf8f920225b8d47c6e94f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6472796 +95b5296f7ec70455b0cf1748cddeaa099284bfed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443886 +95d858b39227edeaf75b7fad71f3dc081e415d16,http://doi.org/10.1007/s11042-017-5073-3 +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e,http://doi.org/10.1007/s11042-016-4261-x +95288fa7ff4683e32fe021a78cbf7d3376e6e400,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014759 +598744c8620e4ecbf449d14d7081fbf1cd05851f,https://www.ncbi.nlm.nih.gov/pubmed/29731533 +59b83666c1031c3f509f063b9963c7ad9781ca23,http://dl.acm.org/citation.cfm?id=2830590 +592f14f4b12225fc691477a180a2a3226a5ef4f0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789592 +9285f4a6a06e975bde3ae3267fccd971d4fff98a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099853 +9296f4ac0180e29226d6c016b5a4d5d2964eaaf6,http://doi.org/10.1038/s41598-017-07122-x +92292fffc36336d63f4f77d6b8fc23b0c54090e9,http://doi.org/10.1016/j.jvcir.2015.03.001 +0c6a566ebdac4bd14e80cd6bf4631bc7458e1595,http://doi.org/10.1016/j.patcog.2013.03.010 +6689aee6c9599c1af4c607ea5385ac0c2cf0c4b3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8335166 +660c99ac408b535bb0468ab3708d0d1d5db30180,http://doi.org/10.1007/s11042-015-3083-6 +66490b5869822b31d32af7108eaff193fbdb37b0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373857 +663efaa0671eace1100fdbdecacd94216a17b1db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619243 +3e3227c8e9f44593d2499f4d1302575c77977b2e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347112 +3e59d97d42f36fc96d33a5658951856a555e997b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163128 +3e9ab40e6e23f09d16c852b74d40264067ac6abc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619307 +3e2b9ffeb708b4362ebfad95fa7bb0101db1579d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553717 +50ee027c63dcc5ab5cd0a6cdffb1994f83916a46,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995354 +506ea19145838a035e7dba535519fb40a3a0018c,http://arxiv.org/abs/1806.08251 +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,http://doi.org/10.1134/S1054661818030136 +6856a11b98ffffeff6e2f991d3d1a1232c029ea1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771409 +68c1090f912b69b76437644dd16922909dd40d60,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6987312 +5760d29574d78e79e8343b74e6e30b3555e48676,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8447743 +572dbaee6648eefa4c9de9b42551204b985ff863,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163151 +5779e3e439c90d43648db107e848aeb954d3e347,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7927417 +5748652924084b7b0220cddcd28f6b2222004359,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7492255 +57178b36c21fd7f4529ac6748614bb3374714e91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217 +3b350afd8b82487aa97097170c269a25daa0c82d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8248664 +3b21aaf7def52964cf1fcc5f11520a7618c8fae3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099900 +3bf8e4d89b9e6d004de6ea52e3e9d68f6015f94b,http://dl.acm.org/citation.cfm?id=3240893 +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393012 +3bf579baf0903ee4d4180a29739bf05cbe8f4a74,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270392 +3bd10f7603c4f5a4737c5613722124787d0dd818,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415949 +6f22628d34a486d73c6b46eb071200a00e3abae3,https://www.ncbi.nlm.nih.gov/pubmed/29994497 +6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885 +035c8632c1ffbeb75efe16a4ec50c91e20e6e189,http://doi.org/10.1007/s00138-018-0943-x +034b3f3bac663fb814336a69a9fd3514ca0082b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298991 +9b4b2a575641f3a7f8a5ce28b6a06c36694a9ddf,http://doi.org/10.1007/s00371-015-1158-z +9b9f6e5eb6d7fa50300d67502e8fda1006594b84,http://dl.acm.org/citation.cfm?id=3123323 +9b1022a01ca4ecf8c1fa99b1b39a93924de2fcfb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316962 +9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354113 +9b0ead0a20a2b7c4ae40568d8d1c0c2b23a6b807,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354290 +9b6d9f0923e1d42c86a1154897b1a9bd7ba6716c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7114333 +9efdb73c6833df57732b727c6aeac510cadb53fe,http://dl.acm.org/citation.cfm?id=3184071 +9e105c4a176465d14434fb3f5bae67f57ff5fba2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354230 +9e2ab407ff36f3b793d78d9118ea25622f4b7434,http://doi.org/10.1007/s11042-018-5679-0 +9e10ea753b9767aa2f91dafe8545cd6f44befd7f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771444 +0450dacc43171c6e623d0d5078600dd570de777e,http://doi.org/10.1007/s10339-016-0774-5 +6af75a8572965207c2b227ad35d5c61a5bd69f45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433687 +6a6269e591e11f41d59c2ca1e707aaa1f0d57de6,http://doi.org/10.1007/s10044-016-0531-5 +6a931e7b7475635f089dd33e8d9a2899ae963804,http://doi.org/10.1007/s00371-018-1561-3 +6a6406906470be10f6d6d94a32741ba370a1db68,http://doi.org/10.1007/s11042-016-4213-5 +6a5d7d20a8c4993d56bcf702c772aa3f95f99450,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813408 +3266fcd1886e8ad883714e38203e66c0c6487f7b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7533149 +3266fbaaa317a796d0934b9a3f3bb7c64992ac7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4527244 +32f62da99ec9f58dd93e3be667612abcf00df16a,http://doi.org/10.1007/s11042-017-5583-z +32e4fc2f0d9c535b1aca95aeb5bcc0623bcd2cf2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1334680 +32e9c9520cf6acb55dde672b73760442b2f166f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7970176 +35208eda874591eac70286441d19785726578946,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789507 +35265cbd9c6ea95753f7c6b71659f7f7ef9081b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7052327 +352a620f0b96a7e76b9195a7038d5eec257fd994,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373823 +69adf2f122ff18848ff85e8de3ee3b2bc495838e,http://arxiv.org/abs/1711.10678 +69a41c98f6b71764913145dbc2bb4643c9bc4b0a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8444452 +695426275dee2ec56bc0c0afe1c5b4227a350840,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7878535 +696236fb6f986f6d5565abb01f402d09db68e5fa,http://doi.org/10.1007/s41095-018-0112-1 +6932baa348943507d992aba75402cfe8545a1a9b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014987 +6966d9d30fa9b7c01523425726ab417fd8428790,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619291 +3cb057a24a8adba6fe964b5d461ba4e4af68af14,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6701391 +3c09fb7fe1886072670e0c4dd632d052102a3733,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101020 +3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373845 +3cd380bd0f3b164b44c49e3b01f6ac9798b6b6f9,http://doi.org/10.1007/s00371-016-1323-z +562f7555e5cb79ce0fe834c4613264d8378dd007,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7153112 +56fd4c05869e11e4935d48aa1d7abb96072ac242,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373812 +566563a02dbaebec07429046122426acd7039166,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461618 +5632ba72b2652df3b648b2ee698233e76a4eee65,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8346387 +51b42da0706a1260430f27badcf9ee6694768b9b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471882 +51410d6bd9a41eacb105f15dbdaee520e050d646,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412888 +51d6a8a61ea9588a795b20353c97efccec73f5db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460308 +518a3ce2a290352afea22027b64bf3950bffc65a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204174 +51dcb36a6c247189be4420562f19feb00c9487f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1394433 +519f1486f0755ef3c1f05700ea8a05f52f83387b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595846 +5167e16b53283be5587659ea8eaa3b8ef3fddd33,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813364 +51bb86dc8748088a198b216f7e97616634147388,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890496 +3dce635ce4b55fb63fc6d41b38640403b152a048,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411225 +3db6fd6a0e9bb30f2421e84ee5e433683d17d9c1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8402469 +588bed36b3cc9e2f26c39b5d99d6687f36ae1177,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771389 +58217ae5423828ed5e1569bee93d491569d79970,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1578742 +587b8c147c6253878128ddacf6e5faf8272842a4,http://dl.acm.org/citation.cfm?id=2638549 +58538cc418bf41197fad4fc4ee2449b2daeb08b1,http://doi.org/10.1007/s11042-017-4343-4 +67386772c289cd40db343bdc4cb8cb4f58271df2,http://doi.org/10.1038/s41598-017-10745-9 +675b1fd2aaebe9c62be6b22b9ac6d278193cc581,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699428 +67af3ec65f1dc535018f3671624e72c96a611c39,http://doi.org/10.1007/s11042-016-4058-y +0b45aeb0aede5e0c19b508ede802bdfec668aefd,http://dl.acm.org/citation.cfm?id=1963206 +0ba5369c5e1e87ea172089d84a5610435c73de00,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347111 +0b82bf595e76898993ed4f4b2883c42720c0f277,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411229 +93af335bf8c610f34ce0cadc15d1dd592debc706,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8267475 +93cd5c47e4a3425d23e3db32c6eaef53745bb32e,http://doi.org/10.1007/s11042-017-5062-6 +93dcea2419ca95b96a47e541748c46220d289d77,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014993 +93c0405b1f5432eab11cb5180229720604ffd030,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462228 +93dd4e512cd7647aecbfc0cd4767adf5d9289c3d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952499 +94806f0967931d376d1729c29702f3d3bb70167c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780581 +9436170c648c40b6f4cc3751fca3674aa82ffe9a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6811741 +947ee3452e4f3d657b16325c6b959f8b8768efad,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952677 +604a281100784b4d5bc1a6db993d423abc5dc8f0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681 +60777fbca8bff210398ec8b1179bc4ecb72dfec0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751535 +60821d447e5b8a96dd9294a0514911e1141ff620,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813328 +605f6817018a572797095b83bec7fae7195b2abc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339020 +60462b981fda63c5f9d780528a37c46884fe0b54,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397015 +34c062e2b8a3f6421b9f4ff22f115a36d4aba823,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7872382 +34bc8ecec0c0b328cd8c485cb34d4d2f4b84e0c9,https://www.ncbi.nlm.nih.gov/pubmed/29069621 +346752e3ab96c93483413be4feaa024ccfe9499f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6960834 +34fd227f4fdbc7fe028cc1f7d92cb59204333718,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446331 +5a12e1d4d74fe1a57929eaaa14f593b80f907ea3,http://doi.org/10.1007/s13735-016-0117-4 +5a547df635a9a56ac224d556333d36ff68cbf088,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359041 +5fea59ccdab484873081eaa37af88e26e3db2aed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8263394 +5f2c210644c1e567435d78522258e0ae036deedb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4036602 +5fe3a9d54d5070308803dd8ef611594f59805400,http://doi.org/10.1016/j.patcog.2016.02.006 +5f0d4657eab4152a1785ee0a25b5b499cd1163ec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853687 +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762938 +335435a94f8fa9c128b9f278d929c9d0e45e2510,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849440 +3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398675 +057b80e235b10799d03876ad25465208a4c64caf,http://dl.acm.org/citation.cfm?id=3123427 +0532cbcf616f27e5f6a4054f818d4992b99d201d,http://doi.org/10.1007/s11042-015-3042-2 +9d5bfaf6191484022a6731ce13ac1b866d21ad18,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139086 +9d24812d942e69f86279a26932df53c0a68c4111,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8417316 +9d46485ca2c562d5e295251530a99dd5df99b589,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813386 +9d3377313759dfdc1a702b341d8d8e4b1469460c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7342926 +9dcfa771a7e87d7681348dd9f6cf9803699b16ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1385984 +9c2f20ed168743071db6268480a966d5d238a7ee,http://dl.acm.org/citation.cfm?id=1456304 +9cc8cf0c7d7fa7607659921b6ff657e17e135ecc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099536 +9c6dfd3a38374399d998d5a130ffc2864c37f554,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553738 +9c23859ec7313f2e756a3e85575735e0c52249f4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981788 +9ca542d744149f0efc8b8aac8289f5e38e6d200c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789587 +9c59bb28054eee783a40b467c82f38021c19ff3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7178311 +023decb4c56f2e97d345593e4f7b89b667a6763d,http://doi.org/10.1007/s10994-005-3561-6 +02fc9e7283b79183eb3757a9b6ddeb8c91c209bb,http://doi.org/10.1007/s11042-018-6146-7 +021e008282714eaefc0796303f521c9e4f199d7e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354319 +a4898f55f12e6393b1c078803909ea715bf71730,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6957817 +a45e6172713a56736a2565ddea9cb8b1d94721cd,http://doi.org/10.1038/s41746-018-0035-3 +a325d5ea42a0b6aeb0390318e9f65f584bd67edd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909426 +a3201e955d6607d383332f3a12a7befa08c5a18c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276 +a313851ed00074a4a6c0fccf372acb6a68d9bc0b,http://doi.org/10.1007/s11042-016-4324-z +b5f9180666924a3215ab0b1faf712e70b353444d,http://doi.org/10.1007/s11042-017-4661-6 +b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,http://doi.org/10.1007/s11263-017-1012-z +b5747ecfa0f3be0adaad919d78763b1133c4d662,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397022 +b5f3b0f45cf7f462a9c463a941e34e102a029506,http://dl.acm.org/citation.cfm?id=3143004 +b51d11fa400d66b9f9d903a60c4ebe03fd77c8f2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8358588 +b5fdd7778503f27c9d9bf77fab193b475fab6076,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373891 +b598f7761b153ecb26e9d08d3c5817aac5b34b52,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4618852 +b55e70df03d9b80c91446a97957bc95772dcc45b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329 +b5ca8d4f259f35c1f3edfd9f108ce29881e478b0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099624 +b5f9306c3207ac12ac761e7d028c78b3009a219c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6093779 +b26e8f6ad7c2d4c838660d5a17337ce241442ed9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462692 +b2470969e4fba92f7909eac26b77d08cc5575533,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8326475 +d916602f694ebb9cf95d85e08dd53f653b6196c3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237607 +d9e66b877b277d73f8876f537206395e71f58269,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7225130 +d9deafd9d9e60657a7f34df5f494edff546c4fb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100124 +d9218c2bbc7449dbccac351f55675efd810535db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5699141 +d9a5c82b710b1f4f1ffb67be2ae1d3c0ae7f6c55,http://doi.org/10.1016/j.jvcir.2015.11.002 +d99b5ee3e2d7e3a016fbc5fd417304e15efbd1f8,http://doi.org/10.1007/s11063-017-9578-6 +aca728cab26b95fbe04ec230b389878656d8af5b,http://doi.org/10.1007/978-981-10-8258-0 +acff2dc5d601887741002a78f8c0c35a799e6403,http://doi.org/10.1007/978-3-662-44654-6 +ac2e166c76c103f17fdea2b4ecb137200b8d4703,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5373798 +ac03849956ac470c41585d2ee34d8bb58bb3c764,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853690 +ad77056780328bdcc6b7a21bce4ddd49c49e2013,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398021 +ada063ce9a1ff230791c48b6afa29c401a9007f1,http://doi.org/10.1007/978-3-319-97909-0 +bb4f83458976755e9310b241a689c8d21b481238,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265393 +bb4be8e24d7b8ed56d81edec435b7b59bad96214,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7060677 +bb2f61a057bbf176e402d171d79df2635ccda9f6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296311 +bb0ecedde7d6e837dc9a5e115302a2aaad1035e1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373838 +d7b8f285b0701ba7b1a11d1c7dd3d1e7e304083f,http://dl.acm.org/citation.cfm?id=3164593 +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,http://doi.org/10.1007/s10994-014-5463-y +d790093cb85fc556c0089610026e0ec3466ab845,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4721612 +d77f18917a58e7d4598d31af4e7be2762d858370,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6289062 +d00e9a6339e34c613053d3b2c132fccbde547b56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154 +d06bcb2d46342ee011e652990edf290a0876b502,http://arxiv.org/abs/1708.00980 +d066575b48b552a38e63095bb1f7b56cbb1fbea4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359888 +bed8feb11e8077df158e16bce064853cf217ba62,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6191360 +bef4df99e1dc6f696f9b3732ab6bac8e85d3fb3c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344632 +be7444c891caf295d162233bdae0e1c79791d566,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014816 +bec0c33d330385d73a5b6a05ad642d6954a6d632,http://doi.org/10.1007/s11042-017-4491-6 +bef926d63512dbffcf1af59f72295ef497f5acf9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6990726 +be632b206f1cd38eab0c01c5f2004d1e8fc72880,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607601 +beb2f1a6f3f781443580ffec9161d9ce6852bf48,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424735 +beae35eb5b2c7f63dfa9115f07b5ba0319709951,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163096 +be4faea0971ef74096ec9800750648b7601dda65,http://doi.org/10.1007/s11063-017-9724-1 +b313751548018e4ecd5ae2ce6b3b94fbd9cae33e,http://doi.org/10.1007/s11263-008-0143-7 +b3ad7bc128b77d9254aa38c5e1ead7fa10b07d29,http://dl.acm.org/citation.cfm?id=3206041 +b3add9bc9e70b6b28ba31e843e9155e7c37f3958,http://doi.org/10.1007/s10766-017-0552-8 +df767f62a6bf3b09e6417d801726f2d5d642a202,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699727 +df87193e15a19d5620f5a6458b05fee0cf03729f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363421 +df6e68db278bedf5486a80697dec6623958edba8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952696 +da7bbfa905d88834f8929cb69f41a1b683639f4b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199752 +daa120032d8f141bc6aae20e23b1b754a0dd7d5f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789593 +dad6b36fd515bda801f3d22a462cc62348f6aad8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117531 +daca9d03c1c951ed518248de7f75ff51e5c272cb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6976977 +dac8fc521dfafb2d082faa4697f491eae00472c7,http://dl.acm.org/citation.cfm?id=3123423 +daa4cfde41d37b2ab497458e331556d13dd14d0b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406477 +da23d90bacf246b75ef752a2cbb138c4fcd789b7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406360 +dac34b590adddef2fc31f26e2aeb0059115d07a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436078 +b484141b99d3478a12b8a6854864c4b875d289b8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117595 +b41d585246360646c677a8238ec35e8605b083b0,http://doi.org/10.1007/s11042-018-6017-2 +b40c001b3e304dccb28c745bd54aa281c8ff1f29,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072 +a2e0966f303f38b58b898d388d1c83e40b605262,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354125 +a2b4a6c6b32900a066d0257ae6d4526db872afe2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466 +a20036b7fbf6c0db454c8711e72d78f145560dc8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761890 +a26fd9df58bb76d6c7a3254820143b3da5bd584b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446759 +a5acda0e8c0937bfed013e6382da127103e41395,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789672 +a532cfc69259254192aee3fc5be614d9197e7824,http://doi.org/10.1016/j.patcog.2016.12.028 +a59c0cf3d2c5bf144ee0dbc1152b1b5dd7634990,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7350093 +a5f35880477ae82902c620245e258cf854c09be9,http://doi.org/10.1016/j.imavis.2013.12.004 +a5f70e0cd7da2b2df05fadb356a24743f3cf459a,http://doi.org/10.1007/s11063-017-9649-8 +bddc822cf20b31d8f714925bec192c39294184f7,http://doi.org/10.1134/S1054661807040190 +bd243d77076b3b8fe046bd3dc6e8a02aa9b38d62,http://arxiv.org/abs/1412.0767 +bd8d579715d58405dfd5a77f32920aafe018fce4,http://doi.org/10.1016/j.imavis.2008.08.005 +d141c31e3f261d7d5214f07886c1a29ac734d6fc,http://doi.org/10.1007/s11063-018-9812-x +d1ee9e63c8826a39d75fa32711fddbcc58d5161a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613000 +d10cfcf206b0991e3bc20ac28df1f61c63516f30,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553776 +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,http://doi.org/10.1007/s13735-016-0112-9 +d116bac3b6ad77084c12bea557d42ed4c9d78433,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471886 +d1079444ceddb1de316983f371ecd1db7a0c2f38,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460478 +d6c8f5674030cf3f5a2f7cc929bad37a422b26a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337371 +d6ae7941dcec920d5726d50d1b1cdfe4dde34d35,http://dl.acm.org/citation.cfm?id=31310887 +d6e08345ba293565086cb282ba08b225326022fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7490397 +d62d82c312c40437bc4c1c91caedac2ba5beb292,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461322 +bc607bee2002c6c6bf694a15efd0a5d049767237,http://doi.org/10.1007/s11042-017-4364-z +bc9bad25f8149318314971d8b8c170064e220ea8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8078542 +bc08dfa22949fbe54e15b1a6379afade71835968,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899970 +bc36badb6606b8162d821a227dda09a94aac537f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337442 +ae78469de00ea1e7602ca468dcf188cdfe2c80d4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466467 +ae5e92abd5929ee7f0a5aa1622aa094bac4fae29,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373805 +aeb6b9aba5bb08cde2aebfeda7ced6c38c84df4a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424644 +aef58a54d458ab76f62c9b6de61af4f475e0f616,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706790 +aee3427d0814d8a398fd31f4f46941e9e5488d83,http://dl.acm.org/citation.cfm?id=1924573 +d8526863f35b29cbf8ac2ae756eaae0d2930ffb1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265439 +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7,http://doi.org/10.1007/s11042-018-6047-9 +d89a754d7c59e025d2bfcdb872d2d061e2e371ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5598629 +d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952553 +ab8ecf98f457e29b000c44d49f5bf49ec92e571c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8439631 +ab0981d1da654f37620ca39c6b42de21d7eb58eb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8016651 +ab80582807506c0f840bd1ba03a8b84f8ac72f79,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462326 +ab6886252aea103b3d974462f589b4886ef2735a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4371439 +e5ea7295b89ef679e74919bf957f58d55ad49489,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401948 +e52f73c77c7eaece6f2d8fdd0f15327f9f007261,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099713 +e52f57a7de675d14aed28e5d0f2f3c5a01715337,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319987 +e57014b4106dd1355e69a0f60bb533615a705606,http://doi.org/10.1007/s13748-018-0143-y +e295c1aa47422eb35123053038e62e9aa50a2e3a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406389 +e287ff7997297ce1197359ed0fb2a0bd381638c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7795253 +e2faaebd17d10e2919bd69492787e7565546a63f,http://doi.org/10.1007/s11042-017-4514-3 +e2106bb3febb4fc8fe91f0fcbc241bcda0e56b1e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952626 +f472cb8380a41c540cfea32ebb4575da241c0288,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284869 +f4ba07d2ae6c9673502daf50ee751a5e9262848f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810 +f4251e02f87ac3fcae70bdb313f13ed16ff6ff0a,https://www.ncbi.nlm.nih.gov/pubmed/24314504 +f4b5a8f6462a68e79d643648c780efe588e4b6ca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995700 +f39783847499dd56ba39c1f3b567f64dfdfa8527,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791189 +f3cdd2c3180aa2bf08320ddd3b9a56f9fe00e72b,http://doi.org/10.1016/j.patrec.2013.03.022 +f374ac9307be5f25145b44931f5a53b388a77e49,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339060 +f38813f1c9dac44dcb992ebe51c5ede66fd0f491,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354277 +f3553148e322f4f64545d6667dfbc7607c82703a,http://doi.org/10.1007/s00138-016-0763-9 +f33bd953d2df0a5305fc8a93a37ff754459a906c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961800 +ebbceab4e15bf641f74e335b70c6c4490a043961,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813349 +ebc3d7f50231cdb18a8107433ae9adc7bd94b97a,http://doi.org/10.1111/cgf.13218 +eba4cfd76f99159ccc0a65cab0a02db42b548d85,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751379 +ebde9b9c714ed326157f41add8c781f826c1d864,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014758 +eb3066de677f9f6131aab542d9d426aaf50ed2ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373860 +eb8a3948c4be0d23eb7326d27f2271be893b3409,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914701 +eb6f2b5529f2a7bc8b5b03b1171f75a4c753a0b2,http://doi.org/10.1117/12.650555 +c7745f941532b7d6fa70db09e81eb1167f70f8a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1640757 +c05ae45c262b270df1e99a32efa35036aae8d950,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354120 +c07ab025d9e3c885ad5386e6f000543efe091c4b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302601 +c0c0b8558b17aa20debc4611275a4c69edd1e2a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909629 +c0f67e850176bb778b6c048d81c3d7e4d8c41003,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296441 +eece52bd0ed4d7925c49b34e67dbb6657d2d649b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014982 +ee1465cbbc1d03cb9eddaad8618a4feea78a01ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6998872 +ee7e8aec3ebb37e41092e1285e4f81916ce92c18,https://www.sciencedirect.com/science/article/pii/S0197458017301859 +ee1f9637f372d2eccc447461ef834a9859011ec1,http://doi.org/10.1007/s11042-016-3950-9 +ee56823f2f00c8c773e4ebc725ca57d2f9242947,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7110235 +ee2ec0836ded2f3f37bf49fa0e985280a8addaca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368755 +c91da328fe50821182e1ae4e7bcbe2b62496f8b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4453844 +c9b958c2494b7ba08b5b460f19a06814dba8aee0,https://www.ncbi.nlm.nih.gov/pubmed/30080142 +c9c9ade2ef4dffb7582a629a47ea70c31be7a35e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237606 +c997744db532767ee757197491d8ac28d10f1c0f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364339 +c9efcd8e32dced6efa2bba64789df8d0a8e4996a,http://dl.acm.org/citation.cfm?id=2984060 +c900e0ad4c95948baaf0acd8449fde26f9b4952a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780969 +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225,http://doi.org/10.1007/978-3-319-11071-4 +c98b13871a3bc767df0bdd51ff00c5254ede8b22,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909913 +fc7b34a2e43bb3d3585e1963bb64a488e2f278a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7045492 +fcc6fe6007c322641796cb8792718641856a22a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612994 +fc8fb68a7e3b79c37108588671c0e1abf374f501,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565615 +fcf393a90190e376b617cc02e4a473106684d066,http://doi.org/10.1007/s10044-015-0507-x +fcceea054cb59f1409dda181198ed4070ed762c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8388318 +fc7f140fcedfe54dd63769268a36ff3f175662b5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8013122 +fd9ab411dc6258763c95b7741e3d51adf5504040,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595808 +fd809ee36fa6832dda57a0a2403b4b52c207549d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409768 +fde611bf25a89fe11e077692070f89dcdede043a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7322904 +fd5376fcb09001a3acccc03159e8ff5801129683,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373899 +f2902f5956d7e2dca536d9131d4334f85f52f783,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460191 +f2d605985821597773bc6b956036bdbc5d307386,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8027090 +f2896dd2701fbb3564492a12c64f11a5ad456a67,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414 +f2700e3d69d3cce2e0b1aea0d7f87e74aff437cd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237686 +f27e5a13c1c424504b63a9084c50f491c1b17978,http://dl.acm.org/citation.cfm?id=3097991 +f2eab39cf68de880ee7264b454044a55098e8163,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5539989 +f2d5bb329c09a5867045721112a7dad82ca757a3,http://doi.org/10.1007/s11042-015-3009-3 +f201baf618574108bcee50e9a8b65f5174d832ee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057 +f5c57979ec3d8baa6f934242965350865c0121bd,http://doi.org/10.1007/s12539-018-0281-8 +f5603ceaebe3caf6a812edef9c4b38def78cbf34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4455998 +e3ce4c3e1279e3dc0c14ff3bb2920aced9e62638,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099824 +e3d76f1920c5bf4a60129516abb4a2d8683e48ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907 +e3b9863e583171ac9ae7b485f88e503852c747b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7494596 +cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6737950 +cf736f596bf881ca97ec4b29776baaa493b9d50e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629 +cf2e1ebb9609f46af6de0c15b4f48d03e37e54ba,http://arxiv.org/abs/1503.01521 +ca096e158912080493a898b0b8a4bd2902674fed,http://dl.acm.org/citation.cfm?id=3264899 +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734,http://doi.org/10.1007/s11042-018-5945-1 +ca44a838da4187617dca9f6249d8c4b604661ec7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7351564 +e4754afaa15b1b53e70743880484b8d0736990ff,http://doi.org/10.1016/j.imavis.2016.01.002 +e40cb4369c6402ae53c81ce52b73df3ef89f578b,http://doi.org/10.1016/j.image.2015.01.009 +e45a556df61e2357a8f422bdf864b7a5ed3b8627,http://doi.org/10.1016/j.image.2017.08.001 +e4d7b8eb0a8e6d2bb5b90b027c1bf32bad320ba5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8023876 +e4fa062bff299a0bcef9f6b2e593c85be116c9f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407641 +fe866887d3c26ee72590c440ed86ffc80e980293,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397011 +fe50efe9e282c63941ec23eb9b8c7510b6283228,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7314574 +feea73095b1be0cbae1ad7af8ba2c4fb6f316d35,http://dl.acm.org/citation.cfm?id=3126693 +fecccc79548001ecbd6cafd3067bcf14de80b11a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354157 +c847de9faa1f1a06d5647949a23f523f84aba7f3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199761 +c8585c95215bc53e28edb740678b3a0460ca8aa4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373829 +c84de67ec2a5d687869d0c3ca8ac974aaa5ee765,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7090979 +c83e26622b275fdf878135e71c23325a31d0e5fc,http://dl.acm.org/citation.cfm?id=3164611 +c808c784237f167c78a87cc5a9d48152579c27a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265437 +c858c74d30c02be2d992f82a821b925669bfca13,http://doi.org/10.1007/978-3-319-10605-2 +c843f591658ca9dbb77944a89372a92006defe68,http://doi.org/10.1007/s11042-015-2550-4 +fb6f5cb26395608a3cf0e9c6c618293a4278a8ad,http://doi.org/10.1007/s11390-018-1835-2 +fbc591cde7fb7beb985437a22466f9cf4b16f8b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463262 +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339084 +fbe4f8a6af19f63e47801c6f31402f9baae5fecf,http://dl.acm.org/citation.cfm?id=2820910 +fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb,https://www.ncbi.nlm.nih.gov/pubmed/30040629 +fbc9ba70e36768efff130c7d970ce52810b044ff,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738500 +fb8eb4a7b9b9602992e5982c9e0d6d7f7b8210ef,https://www.ncbi.nlm.nih.gov/pubmed/29994550 +edfce091688bc88389dd4877950bd58e00ff1253,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553700 +ed32df6b122b15a52238777c9993ed31107b4bed,http://doi.org/10.1016/j.eswa.2017.03.008 +ed2f4e5ecbc4b08ee0784e97760a7f9e5ea9efae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8241843 +ede5982980aa76deae8f9dc5143a724299d67742,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081396 +ed184fda0306079f2ee55a1ae60fbf675c8e11c6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6802347 +edd6ed94207ab614c71ac0591d304a708d708e7b,http://doi.org/10.1016/j.neucom.2012.02.001 +edf60d081ffdfa80243217a50a411ab5407c961d,http://doi.org/10.1007/s11263-016-0893-6 +ede16b198b83d04b52dc3f0dafc11fd82c5abac4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952343 +c15b68986ecfa1e13e3791686ae9024f66983f14,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014747 +c12260540ec14910f5ec6e38d95bdb606826b32e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7005459 +c18a03568d4b512a0d8380cbb1fbf6bd56d11f05,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8430403 +c1c2775e19d6fd2ad6616f69bda92ac8927106a2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6196236 +c175ebe550761b18bac24d394d85bdfaf3b7718c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301582 +c6724c2bb7f491c92c8dd4a1f01a80b82644b793,https://www.ncbi.nlm.nih.gov/pubmed/19167865 +c61eaf172820fcafaabf39005bd4536f0c45f995,http://doi.org/10.1007/978-3-319-58771-4_1 +c6382de52636705be5898017f2f8ed7c70d7ae96,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089 +c631a31be2c793d398175ceef7daff1848bb6408,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466318 +c61a8940d66eed9850b35dd3768f18b59471ca34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1374768 +ecac3da2ff8bc2ba55981467f7fdea9de80e2092,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301635 +ec576efd18203bcb8273539fa277839ec92232a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7994601 +ecc4be938f0e61a9c6b5111e0a99013f2edc54b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771439 +ec1bec7344d07417fb04e509a9d3198da850349f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342699 +ec983394f800da971d243f4143ab7f8421aa967c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340635 +ecd08edab496801fd4fde45362dde462d00ee91c,https://www.ncbi.nlm.nih.gov/pubmed/29994561 +ec5c63609cf56496715b0eba0e906de3231ad6d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364651 +ec00ecb64fa206cea8b2e716955a738a96424084,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265512 +ec90738b6de83748957ff7c8aeb3150b4c9b68bb,http://doi.org/10.1016/j.patcog.2015.03.011 +4e061a302816f5890a621eb278c6efa6e37d7e2f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909638 +4e43408a59852c1bbaa11596a5da3e42034d9380,http://doi.org/10.1007/s11042-018-6040-3 +4ed6c7740ba93d75345397ef043f35c0562fb0fd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117516 +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d,http://doi.org/10.1007/s11227-018-2408-4 +4e37cd250130c6fd60e066f0c8efb3cbb778c421,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8419742 +20a0f71d2c667f3c69df18f097f2b5678ac7d214,http://doi.org/10.1007/s10055-018-0357-0 +20d6a4aaf5abf2925fdce2780e38ab1771209f76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446795 +20eeb83a8b6fea64c746bf993f9c991bb34a4b30,http://doi.org/10.1007/s00138-018-0956-5 +18855be5e7a60269c0652e9567484ce5b9617caa,http://doi.org/10.1007/s11042-017-4579-z +1860b8f63ce501bd0dfa9e6f2debc080e88d9baa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7894195 +18010284894ed0edcca74e5bf768ee2e15ef7841,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780493 +18e54b74ed1f3c02b7569f53a7d930d72fc329f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7902214 +188abc5bad3a3663d042ce98c7a7327e5a1ae298,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6152129 +180bd019eab85bbf01d9cddc837242e111825750,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239690 +270acff7916589a6cc9ca915b0012ffcb75d4899,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659 +27b451abfe321a696c852215bb7efb4c2e50c89f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7898447 +2744e6d526b8f2c1b297ac2d2458aaa08b0cda11,http://doi.org/10.1007/s11042-017-5571-3 +2724ba85ec4a66de18da33925e537f3902f21249,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751298 +4b0cb10c6c3f2d581ac9eb654412f70bc72ed661,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8172386 +4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306 +4b9ec224949c79a980a5a66664d0ac6233c3d575,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501 +4bf85ef995c684b841d0a5a002d175fadd922ff0,http://dl.acm.org/citation.cfm?id=3199668 +4b936847f39094d6cb0bde68cea654d948c4735d,http://doi.org/10.1007/s11042-016-3470-7 +11bb2abe0ca614c15701961428eb2f260e3e2eef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343867 +113b06e70b7eead8ae7450bafe9c91656705024c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373832 +116f9e9cda25ff3187bc777ceb3ecd28077a7eca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373864 +11df25b4e074b7610ec304a8733fa47625d9faca,http://doi.org/10.1016/j.patrec.2012.09.024 +7d18e9165312cf669b799aa1b883c6bbe95bf40e,http://doi.org/10.1007/s11042-016-3492-1 +7d45f1878d8048f6b3de5b3ec912c49742d5e968,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7747479 +7d40e7e5c01bd551edf65902386401e1b8b8014b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7303876 +29db16efc3b378c50511f743e5197a4c0b9e902f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406401 +2961e14c327341d22d5f266a6872aa174add8ac4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6654170 +2983cf95743be82671a71528004036bd19172712,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7915734 +29a5d38390857e234c111f8bb787724c08f39110,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813387 +292e1c88d43a77dbe5c610f4f611cfdb6d3212b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301520 +7c57ac7c9f84fbd093f6393e2b63c18078bf0fdf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6218178 +7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,http://doi.org/10.1007/s11263-016-0967-5 +7c11fa4fd91cb57e6e216117febcdd748e595760,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597453 +7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,http://doi.org/10.1007/s11263-016-0920-7 +7c8e0f3053e09da6d8f9a1812591a35bccd5c669,http://doi.org/10.1007/978-3-030-00470-5 +7cfbf90368553333b47731729e0e358479c25340,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346480 +7c66e7f357553fd4b362d00ff377bffb9197410e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961231 +7c6686fa4d8c990e931f1d16deabf647bf3b1986,http://arxiv.org/abs/1504.07550 +166ef5d3fd96d99caeabe928eba291c082ec75a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237597 +16fadde3e68bba301f9829b3f99157191106bd0f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4562953 +42a6beed493c69d5bad99ae47ea76497c8e5fdae,http://doi.org/10.1007/s11704-017-6613-8 +895081d6a5545ad6385bfc6fcf460fc0b13bac86,http://doi.org/10.1016/S0167-8655%2899%2900134-8 +45b9b7fe3850ef83d39d52f6edcc0c24fcc0bc73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888593 +1f3f7df159c338884ddfd38ee2d3ba2e1e3ada69,http://doi.org/10.1162/jocn_a_00645 +1f5f67d315c9dad341d39129d8f8fe7fa58e564c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397536 +1fe1a78c941e03abe942498249c041b2703fd3d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393355 +1f59e0818e7b16c0d39dd08eb90533ea0ae0be5e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8385089 +1fa426496ed6bcd0c0b17b8b935a14c84a7ee1c2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100195 +1fb980e137b2c9f8781a0d98c026e164b497ddb1,http://dl.acm.org/citation.cfm?id=3213539 +7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373833 +73ba33e933e834b815f62a50aa1a0e15c6547e83,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368754 +7361b900018f22e37499443643be1ff9d20edfd6,http://doi.org/10.1049/iet-bmt.2016.0169 +73d53a7c27716ae9a6d3484e78883545e53117ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8371978 +7343f0b7bcdaf909c5e37937e295bf0ac7b69499,http://doi.org/10.1016/j.csi.2015.06.004 +73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198 +73dcb4c452badb3ee39a2f222298b234d08c21eb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6779478 +87610276ccbc12d0912b23fd493019f06256f94e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706757 +87b607b8d4858a16731144d17f457a54e488f15d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597532 +80d4cf7747abfae96328183dd1f84133023c2668,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369786 +80ed678ef28ccc1b942e197e0393229cd99d55c8,http://doi.org/10.1007/s10044-015-0456-4 +809e5884cf26b71dc7abc56ac0bad40fb29c671c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6247842 +7477cf04c6b086108f459f693a60272523c134db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618937 +746c0205fdf191a737df7af000eaec9409ede73f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119 +1aa61dd85d3a5a2fe819cba21192ec4471c08628,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359518 +1a53ca294bbe5923c46a339955e8207907e9c8c6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870 +1a81c722727299e45af289d905d7dcf157174248,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995466 +286a5c19a43382a21c8d96d847b52bba6b715a71,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6876188 +289cfcd081c4393c7d6f63510747b5372202f855,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373873 +28e1982d20b6eff33989abbef3e9e74400dbf508,http://doi.org/10.1007/s11042-015-3007-5 +28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406402 +28f1542c63f5949ee6f2d51a6422244192b5a900,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780475 +176e6ba56e04c98e1997ffdef964ece90fd827b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8322125 +179564f157a96787b1b3380a9f79701e3394013d,http://dl.acm.org/citation.cfm?id=2493502 +1773d65c1dc566fd6128db65e907ac91b4583bed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8328914 +7b47dd9302b3085cd6705614b88d7bdbc8ae5c13,http://doi.org/10.1007/s11063-017-9693-4 +8f71c97206a03c366ddefaa6812f865ac6df87e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342943 +8fa9cb5dac394e30e4089bf5f4ffecc873d1da96,http://doi.org/10.1007/s11042-017-5245-1 +8fba84af61ac9b5e2bcb69b6730a597d7521ad73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771329 +8fb2ec3bbd862f680be05ef348b595e142463524,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699880 +8a8127a06f432982bfb0150df3212f379b36840b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373884 +8ad0a88a7583af819af66cf2d9e8adb860cf9c34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539153 +8ac2d704f27a2ddf19b40c8e4695da629aa52a54,http://doi.org/10.1007/s11042-015-2945-2 +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae,http://dl.acm.org/citation.cfm?id=3123271 +8a6033cbba8598945bfadd2dd04023c2a9f31681,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014991 +8a63a2b10068b6a917e249fdc73173f5fd918db0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8120021 +8a4893d825db22f398b81d6a82ad2560832cd890,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5349489 +8aa1591bf8fcb44f2e9f2f10d1029720ccbb8832,http://dl.acm.org/citation.cfm?id=3078988 +7eb8476024413269bfb2abd54e88d3e131d0aa0e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4284739 +7e56d9ebd47490bb06a8ff0bd5bcd8672ec52364,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1275543 +7ee7b0602ef517b445316ca8aa525e28ea79307e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418530 +7e8c8b1d72c67e2e241184448715a8d4bd88a727,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8097314 +7e2f7c0eeaeb47b163a7258665324643669919e8,http://doi.org/10.1007/s11042-018-5801-3 +7e27d946d23229220bcb6672aacab88e09516d39,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900131 +7ec431e36919e29524eceb1431d3e1202637cf19,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8365242 +10cb39e93fac194220237f15dae084136fdc6740,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457972 +10bfa4cecd64b9584c901075d6b50f4fad898d0b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728013 +10e4172dd4f4a633f10762fc5d4755e61d52dc36,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100146 +1025c4922491745534d5d4e8c6e74ba2dc57b138,http://doi.org/10.1007/s11263-017-1014-x +1063be2ad265751fb958b396ee26167fa0e844d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369056 +10bf35bf98cfe555dfc03b5f03f2769d330e3af9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8000333 +193474d008cab9fa1c1fa81ce094d415f00b075c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466415 +196c12571ab51273f44ea3469d16301d5b8d2828,http://doi.org/10.1007/s00371-018-1494-x +19b492d426f092d80825edba3b02e354c312295f,http://doi.org/10.1007/s00371-016-1332-y +1951dc9dd4601168ab5acf4c14043b124a8e2f67,http://doi.org/10.1162/neco_a_01116 +193bc8b663d041bc34134a8407adc3e546daa9cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373908 +4c72a51a7c7288e6e17dfefe4f87df47929608e7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736912 +4cc326fc977cf967eef5f3135bf0c48d07b79e2d,http://doi.org/10.1007/s11042-016-3830-3 +4ca9753ab023accbfa75a547a65344ee17b549ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457710 +4cfe921ac4650470b0473fd52a2b801f4494ee64,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6467429 +4c0cc732314ba3ccccd9036e019b1cfc27850c17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854473 +263ed62f94ea615c747c00ebbb4008385285b33b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319974 +2696d3708d6c6cccbd701f0dac14cc94d72dd76d,http://doi.org/10.1007/s10044-017-0633-8 +265a88a8805f6ba3efae3fcc93d810be1ea68866,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342346 +26575ad9e75efb440a7dc4ef8e548eed4e19dbd1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411910 +26c8ed504f852eda4a2e63dbbbc3480e57f43c70,http://doi.org/10.1142/S0218001415560078 +21d5c838d19fcb4d624b69fe9d98e84d88f18e79,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7358748 +21b5af67618fcc047b495d2d5d7c2bf145753633,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771442 +21959bc56a160ebd450606867dce1462a913afab,http://doi.org/10.1007/s11042-018-6071-9 +214072c84378802a0a0fde0b93ffb17bc04f3759,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301397 +4d90d7834ae25ee6176c096d5d6608555766c0b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354115 +4da4e58072c15904d4ce31076061ebd3ab1cdcd5,http://doi.org/10.1007/s00371-018-1477-y +4d19401e44848fe65b721971bc71a9250870ed5f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462612 +4db99a2268a120c7af636387241188064ea42338,https://www.ncbi.nlm.nih.gov/pubmed/21820862 +75ce75c1a5c35ecdba99dd8b7ba900d073e35f78,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163152 +75a74a74d6abbbb302a99de3225c8870fa149aee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914657 +758d481bbf24d12615b751fd9ec121500a648bce,http://doi.org/10.1007/s11042-015-2914-9 +814369f171337ee1d8809446b7dbfc5e1ef9f4b5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597559 +81513764b73dae486a9d2df28269c7db75e9beb3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7839217 +8127b7654d6e5c46caaf2404270b74c6b0967e19,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813406 +81b0550c58e7409b4f1a1cd7838669cfaa512eb3,http://doi.org/10.1016/j.patcog.2015.08.026 +81f101cea3c451754506bf1c7edf80a661fa4dd1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163081 +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369725 +863ad2838b9b90d4461995f498a39bcd2fb87c73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265580 +8633732d9f787f8497c2696309c7d70176995c15,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298967 +8694cd9748fb1c128f91a572119978075fede848,http://doi.org/10.1016/j.neucom.2017.08.028 +720763bcb5e0507f13a8a319018676eb24270ff0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5202783 +72167c9e4e03e78152f6df44c782571c3058050e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771464 +443f4421e44d4f374c265e6f2551bf9830de5597,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771467 +44855e53801d09763c1fb5f90ab73e5c3758a728,http://doi.org/10.1007/s11263-017-1018-6 +44b91268fbbf62e1d2ba1d5331ec7aedac30dbe8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342368 +44d93039eec244083ac7c46577b9446b3a071f3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1415571 +2a826273e856939b58be8779d2136bffa0dddb08,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373892 +2ac7bb3fb014d27d3928a9b4bc1bf019627e0c1a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8432363 +2a7058a720fa9da4b9b607ea00bfdb63652dff95,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590031 +2a612a7037646276ff98141d3e7abbc9c91fccb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909615 +2a2df7e790737a026434187f9605c4763ff71292,http://doi.org/10.1007/s11042-017-4665-2 +2f1485994ef2c09a7bb2874eb8252be8fe710db1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780700 +2f67d5448b5372f639633d8d29aac9c0295b4d72,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460923 +2f69e9964f3b6bdc0d18749b48bb6b44a4171c64,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7801496 +2f837ff8b134b785ee185a9c24e1f82b4e54df04,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5739539 +2f73203fd71b755a9601d00fc202bbbd0a595110,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868 +43fce0c6b11eb50f597aa573611ac6dc47e088d3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465617 +43dce79cf815b5c7068b1678f6200dabf8f5de31,http://arxiv.org/abs/1709.03196 +43c3b6a564b284382fdf8ae33f974f4e7a89600e,http://dl.acm.org/citation.cfm?id=3190784 +437642cfc8c34e445ea653929e2d183aaaeeb704,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014815 +4317856a1458baa427dc00e8ea505d2fc5f118ab,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296449 +4342a2b63c9c344d78cf153600cd918a5fecad59,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237671 +88535dba55b0a80975df179d31a6cc80cae1cc92,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355366 +885c37f94e9edbbb2177cfba8cb1ad840b2a5f20,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8006255 +88e2efab01e883e037a416c63a03075d66625c26,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265507 +9ff931ca721d50e470e1a38e583c7b18b6cdc2cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407637 +9f1a854d574d0bd14786c41247db272be6062581,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8360155 +9f62ac43a1086c22b9a3d9f192c975d1a5a4b31f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4426825 +9f131b4e036208f2402182a1af2a59e3c5d7dd44,http://dl.acm.org/citation.cfm?id=3206038 +9f2984081ef88c20d43b29788fdf732ceabd5d6a,http://arxiv.org/abs/1806.01547 +9fc993aeb0a007ccfaca369a9a8c0ccf7697261d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7936534 +9f43caad22803332400f498ca4dd0429fe7da0aa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6239186 +6baaa8b763cc5553715766e7fbe7abb235fae33c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789589 +6ba3cb67bcdb7aea8a07e144c03b8c5a79c19bc0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8246530 +6b99cd366f2ea8e1c9abadf73b05388c0e24fec3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100204 +6b742055a664bcbd1c6a85ae6796bd15bc945367,http://doi.org/10.1007/s00138-006-0052-0 +07a31bd7a0bd7118f8ac0bc735feef90e304fb08,http://doi.org/10.1007/s11042-015-3120-5 +071ec4f3fb4bfe6ae9980477d208a7b12691710e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6552193 +38c7f80a1e7fa1bdec632042318dc7cdd3c9aad4,http://doi.org/10.1016/j.asoc.2018.03.030 +3827f1cab643a57e3cd22fbffbf19dd5e8a298a8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373804 +007fbc7a1d7eae33b2bb59b175dd1033e5e178f3,http://dl.acm.org/citation.cfm?id=3209659 +6e46d8aa63db3285417c8ebb65340b5045ca106f,http://dl.acm.org/citation.cfm?id=3183751 +6e38011e38a1c893b90a48e8f8eae0e22d2008e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265376 +9a98dd6d6aaba05c9e46411ea263f74df908203d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7859405 +9a59abdf3460970de53e09cb397f47d86744f472,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995399 +9aab33ce8d6786b3b77900a9b25f5f4577cea461,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961739 +9ac2960f646a46b701963230e6949abd9ac0a9b3,http://doi.org/10.1162/jocn_a_01174 +361eaef45fccfffd5b7df12fba902490a7d24a8d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404319 +09903df21a38e069273b80e94c8c29324963a832,http://doi.org/10.1007/s11042-017-4980-7 +098363b29eef1471c494382338687f2fe98f6e15,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411212 +099053f2cbfa06c0141371b9f34e26970e316426,http://doi.org/10.1007/s11042-016-4079-6 +5dafab3c936763294257af73baf9fb3bb1696654,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5514556 +5d9971c6a9d5c56463ea186850b16f8969a58e67,http://doi.org/10.1007/s11042-017-5354-x +5da827fe558fb2e1124dcc84ef08311241761726,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139096 +5dd473a4a9c6337b083edf38b6ddf5a6aece8908,http://arxiv.org/abs/1711.08238 +5de9670f72d10682bf2cb3156988346257e0489f,http://doi.org/10.1016/j.inffus.2015.12.004 +5d2e5833ca713f95adcf4267148ac2ccf2318539,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6121744 +5dd3c9ac3c6d826e17c5b378d1575b68d02432d7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7292416 +31cdaaa7a47efe2ce0e78ebec29df4d2d81df265,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776921 +31f1c92dbfa5aa338a21a0cb15d071cb9dc6e362,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337733 +31dd6bafd6e7c6095eb8d0591abac3b0106a75e3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457336 +31d51e48dbd9e7253eafe0719f3788adb564a971,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410588 +3157be811685c93d0cef7fa4c489efea581f9b8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411222 +31ec1e5c3b5e020af4a5a3c1be2724c7429a7c78,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354285 +914d7527678b514e3ee9551655f55ffbd3f0eb0a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404350 +91e17338a12b5e570907e816bff296b13177971e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272751 +91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,http://doi.org/10.1007/s41095-016-0068-y +657e702326a1cbc561e059476e9be4d417c37795,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343704 +651cafb2620ab60a0e4f550c080231f20ae6d26e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6360717 +6584c3c877400e1689a11ef70133daa86a238602,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8039231 +629a973ca5f3c7d2f4a9befab97d0044dfd3167a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4427488 +62fddae74c553ac9e34f511a2957b1614eb4f937,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406684 +62750d78e819d745b9200b0c5c35fcae6fb9f404,http://doi.org/10.1007/s11042-016-4085-8 +62f017907e19766c76887209d01d4307be0cc573,http://doi.org/10.1016/j.imavis.2012.02.001 +969626c52d30ea803064ddef8fb4613fa73ba11d,http://doi.org/10.1007/BF02683992 +96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364450 +96ba65bffdddef7c7737c0f42ff4299e95cd85c2,http://doi.org/10.1007/s11042-018-5658-5 +9649a19b49607459cef32f43db4f6e6727080bdb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395207 +3a0558ebfde592bd8bd07cb72b8ca8f700715bfb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6636646 +3a3e55cf5bfd689d6c922e082efa0cd71cd2ae5c,http://dl.acm.org/citation.cfm?id=3184081 +3ac3a714042d3ebc159546c26321a1f8f4f5f80c,http://dl.acm.org/citation.cfm?id=3025149 +3a49507c46a2b8c6411809c81ac47b2b1d2282c3,http://doi.org/10.1007/s11042-017-5319-0 +3a6334953cd2775fab7a8e7b72ed63468c71dee7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7591180 +5435d5f8b9f4def52ac84bee109320e64e58ab8f,http://doi.org/10.1007/s11042-016-4321-2 +54ba18952fe36c9be9f2ab11faecd43d123b389b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163085 +54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334 +982fcead58be419e4f34df6e806204674a4bc579,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613012 +9888edfb6276887eb56a6da7fe561e508e72a517,http://dl.acm.org/citation.cfm?id=3243904 +984edce0b961418d81203ec477b9bfa5a8197ba3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369732 +98d1b5515b079492c8e7f0f9688df7d42d96da8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204260 +9806d3dc7805dd8c9c20d7222c915fc4beee7099,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6755972 +98e098ba9ff98fc58f22fed6d3d8540116284b91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8332532 +98fd92d68a143a5ced4a016fa3b7addd6b4a0122,http://doi.org/10.1007/s11704-016-6066-5 +53507e2de66eaba996f14fd2f54a5535056f1e59,http://doi.org/10.1016/j.sigpro.2017.10.024 +53de11d144cd2eda7cf1bb644ae27f8ef2489289,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424637 +535cdce8264ac0813d5bb8b19ceafa77a1674adf,http://doi.org/10.1007/s12559-016-9402-z +53f5cb365806c57811319a42659c9f68b879454a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8356995 +3ff79cf6df1937949cc9bc522041a9a39d314d83,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406730 +3f0c6dbfd3c9cd5625ba748327d69324baa593a6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373880 +30c93fec078b98453a71f9f21fbc9512ab3e916f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395274 +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392250 +30fb5c24cc15eb8cde5e389bf368d65fb96513e4,http://dl.acm.org/citation.cfm?id=3206048 +5e6fc99d8f5ebaab0e9c29bc0969530d201e0708,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8017477 +5ed66fb992bfefb070b5c39dc45b6e3ff5248c10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163116 +5e9ec3b8daa95d45138e30c07321e386590f8ec7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6967830 +5b5b9c6c67855ede21a60c834aea5379df7d51b7,http://hdl.handle.net/10044/1/45280 +5bb4fd87fa4a27ddacd570aa81c2d66eb4721019,http://doi.org/10.1016/j.neucom.2017.07.014 +5b5b568a0ba63d00e16a263051c73e09ab83e245,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8416840 +378418fdd28f9022b02857ef7dbab6b0b9a02dbe,http://doi.org/10.1007/978-3-319-75420-8 +37866fea39deeff453802cde529dd9d32e0205a5,http://dl.acm.org/citation.cfm?id=2393385 +3779e0599481f11fc1acee60d5108d63e55819b3,http://doi.org/10.1007/s11280-018-0581-2 +0831794eddcbac1f601dcb9be9d45531a56dbf7e,http://doi.org/10.1007/s11042-017-4416-4 +080e0efc3cf71260bfe9bdc62cd86614d1ebca46,http://doi.org/10.1007/s10851-017-0771-z +6d2fd0a9cbea13e840f962ba7c8a9771ec437d3a,http://doi.org/10.1007/s11063-017-9715-2 +6dcf6b028a6042a9904628a3395520995b1d0ef9,http://dl.acm.org/citation.cfm?id=3158392 +6dcf418c778f528b5792104760f1fbfe90c6dd6a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014984 +6de935a02f87aa31e33245c3b85ea3b7f8b1111c,http://doi.org/10.1007/s11263-017-1029-3 +6da711d07b63c9f24d143ca3991070736baeb412,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7000295 +6d70344ae6f6108144a15e9debc7b0be4e3335f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8390318 +013305c13cfabaea82c218b841dbe71e108d2b97,http://doi.org/10.1007/s11063-016-9554-6 +017e94ad51c9be864b98c9b75582753ce6ee134f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892240 +01e27b6d1af4c9c2f50e2908b5f3b2331ff24846,http://doi.org/10.1007/s11263-017-0996-8 +0141cb33c822e87e93b0c1bad0a09db49b3ad470,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298876 +0647c9d56cf11215894d57d677997826b22f6a13,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401557 +06518858bd99cddf9bc9200fac5311fc29ac33b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392777 +06ab24721d7117974a6039eb2e57d1545eee5e46,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373809 +06b4e41185734f70ce432fdb2b121a7eb01140af,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362753 +6c1227659878e867a01888eef472dd96b679adb6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354280 +6ca6ade6c9acb833790b1b4e7ee8842a04c607f7,http://dl.acm.org/citation.cfm?id=3234805 +6cb8c52bb421ce04898fa42cb997c04097ddd328,http://doi.org/10.1007/978-3-319-11289-3 +6c01b349edb2d33530e8bb07ba338f009663a9dd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5332299 +6cce5ccc5d366996f5a32de17a403341db5fddc6,http://doi.org/10.1016/j.cviu.2016.04.012 +6c92d87c84fa5e5d2bb5bed3ef38168786bacc49,http://dl.acm.org/citation.cfm?id=2501650 +6c7a42b4f43b3a2f9b250f5803b697857b1444ac,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553718 +6cbde27d9a287ae926979dbb18dfef61cf49860e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8253589 +6c58e3a8209fef0e28ca2219726c15ea5f284f4f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899896 +397257783ccc8cace5b67cc71e0c73034d559a4f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6918513 +398e0771e64cab6ca5d21754e32dce63f9e3c223,http://dl.acm.org/citation.cfm?id=3206028 +39af06d29a74ad371a1846259e01c14b5343e3d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8046026 +39d6f8b791995dc5989f817373391189d7ac478a,http://doi.org/10.1016/j.patrec.2015.09.015 +9944c451b4a487940d3fd8819080fe16d627892d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612967 +9939498315777b40bed9150d8940fc1ac340e8ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789583 +997b9ffe2f752ba84a66730cfd320d040e7ba2e2,http://dl.acm.org/citation.cfm?id=2967199 +99d06fe2f4d6d76acf40b6da67c5052e82055f5a,http://dl.acm.org/citation.cfm?id=3268909 +9989ad33b64accea8042e386ff3f1216386ba7f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393320 +9961f1e5cf8fda29912344773bc75c47f18333a0,http://doi.org/10.1007/s10044-017-0618-7 +521aa8dcd66428b07728b91722cc8f2b5a73944b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367126 +52af7625f7e7a0bd9f9d8eeafd631c4d431e67e7,http://doi.org/10.1007/s00371-018-1585-8 +525da67fb524d46f2afa89478cd482a68be8a42b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354128 +522a4ca705c06a0436bbe62f46efe24d67a82422,http://doi.org/10.1007/s11042-017-5475-2 +55432723c728a2ce90d817e9e9877ae9fbad6fe5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412925 +55cfc3c08000f9d21879582c6296f2a864b657e8,http://doi.org/10.1049/iet-cvi.2015.0287 +556b05ab6eff48d32ffbd04f9008b9a5c78a4ad7,http://dl.acm.org/citation.cfm?id=2926713 +552122432b92129d7e7059ef40dc5f6045f422b5,http://doi.org/10.1007/s11263-017-1000-3 +55aafdef9d9798611ade1a387d1e4689f2975e51,http://doi.org/10.1007/s11263-017-1044-4 +55c4efc082a8410b528af7325de8148b80cf41e3,http://dl.acm.org/citation.cfm?id=3231899 +55a7286f014cc6b51a3f50b1e6bc8acc8166f231,http://arxiv.org/abs/1603.02814 +97b5800e144a8df48f1f7e91383b0f37bc37cf60,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237657 +972e044f69443dfc5c987e29250b2b88a6d2f986,http://doi.org/10.1134/S1054661811020738 +971cb1bfe3d10fcb2037e684c48bd99842f42fa4,http://doi.org/10.1007/s11042-017-5141-8 +972b1a7ef8cc9c83c2c6d8d126f94f27b567d7d0,http://doi.org/10.1007/978-3-319-99978-4 +97c1f68fb7162af326cd0f1bc546908218ec5da6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471977 +63fd7a159e58add133b9c71c4b1b37b899dd646f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6603332 +6318d3842b36362bb45527b717e1a45ae46151d5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780708 +636b8ffc09b1b23ff714ac8350bb35635e49fa3c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467308 +6359fcb0b4546979c54818df8271debc0d653257,http://doi.org/10.1007/s11704-017-6275-6 +633c851ebf625ad7abdda2324e9de093cf623141,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727 +6316a4b689706b0f01b40f9a3cef47b92bc52411,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699534 +0f7e9199dad3237159e985e430dd2bf619ef2db5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883882 +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39,http://doi.org/10.1007/s11042-016-4105-8 +0aaf785d7f21d2b5ad582b456896495d30b0a4e2,http://dl.acm.org/citation.cfm?id=3173789 +642a386c451e94d9c44134e03052219a7512b9de,http://doi.org/10.1016/j.imavis.2008.04.018 +640e12837241d52d04379d3649d050ee3760048c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5692624 +64ec02e1056de4b400f9547ce56e69ba8393e2ca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446491 +645f09f4bc2e6a13663564ee9032ca16e35fc52d,http://dl.acm.org/citation.cfm?id=3193542 +9057044c0347fb9798a9b552910a9aff150385db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6778411 +9077365c9486e54e251dd0b6f6edaeda30ae52b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373910 +90e7a86a57079f17f1089c3a46ea9bfd1d49226c,https://www.sciencedirect.com/science/article/pii/S0042698914002739 +90221884fe2643b80203991686af78a9da0f9791,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995467 +bfdafe932f93b01632a5ba590627f0d41034705d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6134770 +bf3bf5400b617fef2825eb987eb496fea99804b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461385 +bf37a81d572bb154581845b65a766fab1e5c7dda,http://doi.org/10.1007/s11760-017-1111-x +d34f546e61eccbac2450ca7490f558e751e13ec3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461800 +d3008b4122e50a28f6cc1fa98ac6af28b42271ea,http://dl.acm.org/citation.cfm?id=2806218 +d3dea0cd65ab3da14cb7b3bd0ec59531d98508aa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728015 +d31328b12eef33e7722b8e5505d0f9d9abe2ffd9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373866 +d36a1e4637618304c2093f72702dcdcc4dcd41d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961791 +d383ba7bbf8b7b49dcef9f8abab47521966546bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995471 +d3d39e419ac98db2de1a9d5a05cb0b4ca5cae8fd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619296 +d340a135a55ecf7506010e153d5f23155dcfa7e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7884781 +d4f0960c6587379ad7df7928c256776e25952c60,https://www.ncbi.nlm.nih.gov/pubmed/29107889 +d4453ec649dbde752e74da8ab0984c6f15cc6e06,http://doi.org/10.1007/s11042-016-3361-y +d4288daef6519f6852f59ac6b85e21b8910f2207,https://www.ncbi.nlm.nih.gov/pubmed/29994505 +d4b4020e289c095ce2c2941685c6cd37667f5cc9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7489442 +d4df31006798ee091b86e091a7bf5dce6e51ba3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1612996 +d44e6baf3464bf56d3a29daf280b1b525ac30f7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265336 +ba01dbfa29dc86d1279b2e9b9eeca1c52509bbda,http://doi.org/10.1007/s00530-017-0566-5 +bad2df94fa771869fa35bd11a1a7ab2e3f6d1da3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344635 +ba1c0600d3bdb8ed9d439e8aa736a96214156284,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081394 +badb95dbdfb3f044a46d7ba0ee69dba929c511b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363515 +baafe3253702955c6904f0b233e661b47aa067e1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776926 +ba17782ca5fc0d932317389c2adf94b5dbd3ebfe,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509290 +a082c77e9a6c2e2313d8255e8e4c0677d325ce3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163111 +a00fdf49e5e0a73eb24345cb25a0bd1383a10021,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892186 +a03448488950ee5bf50e9e1d744129fbba066c50,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367180 +a7ec294373ccc0598cbb0bbb6340c4e56fe5d979,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699580 +a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357 +a78b5495a4223b9784cc53670cc10b6f0beefd32,http://doi.org/10.1007/s11042-018-6260-6 +b8fc620a1563511744f1a9386bdfa09a2ea0f71b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411214 +b8048a7661bdb73d3613fde9d710bd45a20d13e7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8468792 +b85c198ce09ffc4037582a544c7ffb6ebaeff198,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100113 +b82f89d6ef94d26bf4fec4d49437346b727c3bd4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6894202 +b8d8501595f38974e001a66752dc7098db13dfec,http://arxiv.org/abs/1711.09265 +b806a31c093b31e98cc5fca7e3ec53f2cc169db9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995928 +b14e3fe0d320c0d7c09154840250d70bc88bb6c0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699097 +b161d261fabb507803a9e5834571d56a3b87d147,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8122913 +b1f4423c227fa37b9680787be38857069247a307,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6200254 +b104c8ef6735eba1d29f50c99bbbf99d33fc8dc2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415357 +b11b71b704629357fe13ed97b216b9554b0e7463,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736040 +dd0086da7c4efe61abb70dd012538f5deb9a8d16,http://doi.org/10.1007/s11704-016-5024-6 +dd6826e9520a6e72bcd24d1bdb930e78c1083b31,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7106467 +ddfae3a96bd341109d75cedeaebb5ed2362b903f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6837429 +dc1510110c23f7b509035a1eda22879ef2506e61,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909642 +dc107e7322f7059430b4ef4991507cb18bcc5d95,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995338 +dcf6ecd51ba135d432fcb7697fc6c52e4e7b0a43,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100120 +dc964b9c7242a985eb255b2410a9c45981c2f4d0,http://doi.org/10.1007/s10851-018-0837-6 +dc5d04d34b278b944097b8925a9147773bbb80cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354149 +dc5d9399b3796db7fd850990402dce221b98c8be,http://dl.acm.org/citation.cfm?id=3220016 +dc3dc18b6831c867a8d65da130a9ff147a736745,http://dl.acm.org/citation.cfm?id=2750679 +dc34ab49d378ddcf6c8e2dbf5472784c5bfa8006,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462222 +dcb6f06631021811091ce691592b12a237c12907,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8438999 +dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,http://doi.org/10.1007/s11042-017-4646-5 +b6bb883dd14f2737d0d6225cf4acbf050d307634,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382306 +b6f15bf8723b2d5390122442ab04630d2d3878d8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163142 +b6620027b441131a18f383d544779521b119c1aa,http://doi.org/10.1016/j.patcog.2013.04.013 +b69bcb5f73999ea12ff4ac1ac853b72cd5096b2d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613024 +a9fc8efd1aa3d58f89c0f53f0cb112725b5bda10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316891 +a9ae55c83a8047c6cdf7c958fd3d4a6bfb0a13df,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014745 +a9fdbe102f266cc20e600fa6b060a7bc8d1134e9,https://www.ncbi.nlm.nih.gov/pubmed/29334821 +a92147bed9c17c311c6081beb0ef4c3165b6268e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6805594 +a98ff1c2e3c22e3d0a41a2718e4587537b92da0a,http://doi.org/10.1007/978-3-319-68548-9_19 +a939e287feb3166983e36b8573cd161d12097ad8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550048 +a961f1234e963a7945fed70197015678149b37d8,http://dl.acm.org/citation.cfm?id=3206068 +a96c45ed3a44ad79a72499be238264ae38857988,http://doi.org/10.1007/s00138-016-0786-2 +a92c207031b0778572bf41803dba1a21076e128b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433557 +a9215666b4bcdf8d510de8952cf0d55b635727dc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7498613 +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4,http://doi.org/10.1007/s11042-018-5806-y +d57982dc55dbed3d0f89589e319dc2d2bd598532,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099760 +d5d5cc27ca519d1300e77e3c1a535a089f52f646,http://doi.org/10.1007/s11042-016-3768-5 +d289ce63055c10937e5715e940a4bb9d0af7a8c5,http://dl.acm.org/citation.cfm?id=3081360 +d264dedfdca8dc4c71c50311bcdd6ba3980eb331,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392234 +d2f2b10a8f29165d815e652f8d44955a12d057e6,http://doi.org/10.1007/s10044-015-0475-1 +d20ea5a4fa771bc4121b5654a7483ced98b39148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430554 +aad4c94fd55d33a3f3a5377bbe441c9474cdbd1e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7777820 +aa581b481d400982a7e2a88830a33ec42ad0414f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7313922 +aa5a7a9900548a1f1381389fc8695ced0c34261a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900274 +aafeb3d76155ec28e8ab6b4d063105d5e04e471d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014781 +aa6e8a2a9d3ed59d2ae72add84176e7b7f4b2912,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8203756 +aa1129780cc496918085cd0603a774345c353c54,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7779010 +aa1607090fbc80ab1e9c0f25ffe8b75b777e5fd8,https://www.sciencedirect.com/science/article/pii/S0006322316331110 +af29ad70ab148c83e1faa8b3098396bc1cd87790,http://doi.org/10.1007/s40012-016-0149-1 +afdc303b3325fbc1baa9f18a66bcad59d5aa675b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595920 +af4745a3c3c7b51dab0fd90d68b53e60225aa4a9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7873272 +af3b803188344971aa89fee861a6a598f30c6f10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404811 +af9419f2155785961a5c16315c70b8228435d5f8,http://doi.org/10.1016/j.patrec.2015.12.013 +b712f08f819b925ff7587b6c09a8855bc295d795,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450858 +b759936982d6fb25c55c98955f6955582bdaeb27,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7472169 +b7ec41005ce4384e76e3be854ecccd564d2f89fb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8441009 +b72eebffe697008048781ab7b768e0c96e52236a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100092 +b7461aac36fc0b8a24ecadf6c5b5caf54f2aa2f7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528404 +b7c6df1ae0e8348feecd65e9ad574d1e04d212a5,http://doi.org/10.1007/s11704-018-8015-y +db0379c9b02e514f10f778cccff0d6a6acf40519,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6130343 +dba7d8c4d2fca41269a2c96b1ea594e2d0b9bdda,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7422069 +db1a9b8d8ce9a5696a96f8db4206b6f72707730e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961838 +dbb9601a1d2febcce4c07dd2b819243d81abb2c2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361884 +dbc8ffd6457147ff06cd3f56834e3ec6dccb2057,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265396 +dbced84d839165d9b494982449aa2eb9109b8467,http://arxiv.org/abs/1712.05083 +a8bb698d1bb21b81497ef68f0f52fa6eaf14a6bf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6587752 +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423530 +a88ced67f4ed7940c76b666e1c9c0f08b59f9cf8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771415 +a8e7561ada380f2f50211c67fc45c3b3dea96bdb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401921 +a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265434 +de162d4b8450bf2b80f672478f987f304b7e6ae4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237454 +def934edb7c7355757802a95218c6e4ed6122a72,http://doi.org/10.1007/978-0-387-31439-6 +dec76940896a41a8a7b6e9684df326b23737cd5d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607638 +de92951ea021ec56492d76381a8ae560a972dd68,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738246 +dee6609615b73b10540f32537a242baa3c9fca4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015006 +de0df8b2b4755da9f70cf1613d7b12040d0ce8ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791166 +de45bf9e5593a5549a60ca01f2988266d04d77da,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404529 +b0b944b3a783c2d9f12637b471fe1efb44deb52b,http://dl.acm.org/citation.cfm?id=2591684 +b034cc919af30e96ee7bed769b93ea5828ae361b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099915 +a6b5ca99432c23392cec682aebb8295c0283728b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302395 +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5,http://doi.org/10.1007/s11042-017-4572-6 +a60db9ca8bc144a37fe233b08232d9c91641cbb5,http://doi.org/10.1007/s11280-018-0615-9 +a6902db7972a7631d186bbf59c5ef116c205b1e8,http://dl.acm.org/citation.cfm?id=1276381 +a6ce1a1de164f41cb8999c728bceedf65d66bb23,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7170694 +a6d47f7aa361ab9b37c7f3f868280318f355fadc,https://ora.ox.ac.uk/objects/uuid:7704244a-b327-4e5c-a58e-7bfe769ed988 +b97c7f82c1439fa1e4525e5860cb05a39cc412ea,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430537 +b999364980e4c21d9c22cc5a9f14501432999ca4,http://doi.org/10.1007/s10044-018-0727-y +b9dc8cc479cacda1f23b91df00eb03f88cc0c260,http://dl.acm.org/citation.cfm?id=2964287 +b91f54e1581fbbf60392364323d00a0cd43e493c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553788 +b961e512242ddad7712855ab00b4d37723376e5d,http://doi.org/10.1007/s11554-010-0178-1 +a1e07c31184d3728e009d4d1bebe21bf9fe95c8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900056 +a168ca2e199121258fbb2b6c821207456e5bf994,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553808 +a1081cb856faae25df14e25045cd682db8028141,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462122 +a136ccaa67f660c45d3abb8551c5ed357faf7081,https://www.ncbi.nlm.nih.gov/pubmed/27078863 +ef2bb8bd93fa8b44414565b32735334fa6823b56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393076 +efc78a7d95b14abacdfde5c78007eabf9a21689c,http://dl.acm.org/citation.cfm?id=2939840 +efb24d35d8f6a46e1ff3800a2481bc7e681e255e,http://doi.org/10.1016/j.patrec.2015.08.006 +c3d3d2229500c555c7a7150a8b126ef874cbee1c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406478 +c3d874336eb8fae92ab335393fd801fa8df98412,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952438 +c362116a358320e71fb6bc8baa559142677622d2,http://doi.org/10.1016/j.patcog.2011.07.009 +c38b1fa00f1f370c029984c55d4d2d40b529d00c,http://doi.org/10.1007/978-3-319-26561-2 +c4a2cd5ec81cdfd894c9a20d4ffb8cda637aab1f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5326314 +c4cfdcf19705f9095fb60fb2e569a9253a475f11,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237333 +c4e2d5ebfebbb9dcee6a9866c3d6290481496df5,http://doi.org/10.1007/s00138-012-0439-z +c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763 +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae,http://dl.acm.org/citation.cfm?id=3230921 +c4f3185f010027a0a97fcb9753d74eb27a9cfd3e,http://doi.org/10.1016/j.patrec.2015.02.006 +c48b68dc780c71ab0f0f530cd160aa564ed08ade,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1357193 +eaf020bc8a3ed5401fc3852f7037a03b2525586a,http://arxiv.org/abs/1710.07735 +eac97959f2fcd882e8236c5dd6035870878eb36b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890147 +ea1303f6746f815b7518c82c9c4d4a00cd6328b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411434 +eacf974e235add458efb815ada1e5b82a05878fa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4577667 +ea03a569272d329090fe60d6bff8d119e18057d7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532906 +e1312b0b0fd660de87fa42de39316b28f9336e70,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369055 +e1d1540a718bb7a933e21339f1a2d90660af7353,http://doi.org/10.1007/s11063-018-9852-2 +e1179a5746b4bf12e1c8a033192326bf7f670a4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163104 +e16f73f3a63c44cf285b8c1bc630eb8377b85b6d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373816 +e14cc2715b806288fe457d88c1ad07ef55c65318,http://dl.acm.org/citation.cfm?id=2830583 +e180572400b64860e190a8bc04ef839fa491e056,http://doi.org/10.1038/s41598-017-12097-w +cdcfc75f54405c77478ab776eb407c598075d9f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410829 +cd22e6532211f679ba6057d15a801ba448b9915c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434092 +cd55fb30737625e86454a2861302b96833ed549d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094 +cd63759842a56bd2ede3999f6e11a74ccbec318b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995404 +cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7945277 +cc9d068cf6c4a30da82fd6350a348467cb5086d4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411204 +ccb2ecb30a50460c9189bb55ba594f2300882747,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8334751 +cccd0edb5dafb3a160179a60f75fd8c835c0be82,http://doi.org/10.1007/s12193-017-0241-3 +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854428 +cce332405ce9cd9dccc45efac26d1d614eaa982d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597533 +ccb54fc5f263a8bc2a8373839cb6855f528f10d3,http://doi.org/10.1016/j.patcog.2015.11.008 +cc2a9f4be1e465cb4ba702539f0f088ac3383834,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344595 +e6d6203fa911429d76f026e2ec2de260ec520432,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899663 +e6da1fcd2a8cda0c69b3d94812caa7d844903007,http://dl.acm.org/citation.cfm?id=3137154 +e68869499471bcd6fa8b4dc02aa00633673c0917,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595885 +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e,http://doi.org/10.1007/s11042-018-6110-6 +f03a82fd4a039c1b94a0e8719284a777f776fb22,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355453 +f095b5770f0ff13ba9670e3d480743c5e9ad1036,http://doi.org/10.1007/s11263-016-0950-1 +f0f854f8cfe826fd08385c0c3c8097488f468076,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406454 +f070d739fb812d38571ec77490ccd8777e95ce7a,http://doi.org/10.1016/j.patcog.2014.09.007 +f7ae38a073be7c9cd1b92359131b9c8374579b13,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7487053 +f76a6b1d6029769e2dc1be4dadbee6a7ba777429,http://doi.org/10.1007/s12559-017-9506-0 +f7be8956639e66e534ed6195d929aed4e0b90cad,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4117059 +e8aa1f207b4b0bb710f79ab47a671d5639696a56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7362364 +e853484dc585bed4b0ed0c5eb4bc6d9d93a16211,http://dl.acm.org/citation.cfm?id=3130971 +e8f4ded98f5955aad114f55e7aca6b540599236b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7047804 +e896389891ba84af58a8c279cf8ab5de3e9320ee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6958874 +fa052fd40e717773c6dc9cc4a2f5c10b8760339f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595883 +fa641327dc5873276f0af453a2caa1634c16f143,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789590 +fa80344137c4d158bf59be4ac5591d074483157a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1470219 +fa32b29e627086d4302db4d30c07a9d11dcd6b84,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354123 +ff76ff05aa1ab17e5ca9864df2252e6bb44c8a17,http://dl.acm.org/citation.cfm?id=3173582 +ffc81ced9ee8223ab0adb18817321cbee99606e6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157 +fffe5ab3351deab81f7562d06764551422dbd9c4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163114 +ff012c56b9b1de969328dacd13e26b7138ff298b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921 +c5c53d42e551f3c8f6ca2c13335af80a882009fa,http://doi.org/10.1007/s11263-018-1088-0 +c5e37630d0672e4d44f7dee83ac2c1528be41c2e,http://dl.acm.org/citation.cfm?id=3078973 +c535d4d61aa0f1d8aadb4082bdcc19f4cbdf0eaf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237344 +c26b43c2e1e2da96e7caabd46e1d7314acac0992,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466510 +c29fe5ed41d2240352fcb8d8196eb2f31d009522,http://doi.org/10.1007/s11042-015-3230-0 +c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014811 +f64574ee0e6247b84d573ddb5c6e2c4ba798ffff,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699435 +f6fc112ff7e4746b040c13f28700a9c47992045e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7442559 +f6532bf13a4649b7599eb40f826aa5281e392c61,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6202713 +f61829274cfe64b94361e54351f01a0376cd1253,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410784 +f6f2a212505a118933ef84110e487551b6591553,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952474 +f65b47093e4d45013f54c3ba09bbcce7140af6bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354117 +e9809c0c6bf33cfe232a63b0a13f9b1263c58cb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7172556 +e97ba85a4550667b8a28f83a98808d489e0ff3bc,http://doi.org/10.1155/2018%2F9729014 +e9b0a27018c7151016a9fe01c98b4c21d6ebf4be,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471957 +e96cef8732f3021080c362126518455562606f2d,http://dl.acm.org/citation.cfm?id=3206058 +f1ae9f5338fcff577b1ae9becdb66007fe57bd45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099873 +f16599e4ec666c6390c90ff9a253162178a70ef5,http://dl.acm.org/citation.cfm?id=3206050 +f1280f76933ba8b7f4a6b8662580504f02bb4ab6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7836703 +f1173a4c5e3501323b37c1ae9a6d7dd8a236eab8,http://arxiv.org/abs/1504.07339 +f11c76efdc9651db329c8c862652820d61933308,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100 +e75a589ca27dc4f05c2715b9d54206dee37af266,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409973 +e7cfaff65541cde4298a04882e00608d992f6703,http://doi.org/10.1007/s00521-018-3554-6 +e7697c7b626ba3a426106d83f4c3a052fcde02a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553713 +e79bacc03152ea55343e6af97bcd17d8904cf5ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237669 +cb8382f43ce073322eba82809f02d3084dad7969,http://dl.acm.org/citation.cfm?id=3232664 +cbbd9880fb28bef4e33da418a3795477d3a1616e,http://doi.org/10.1016/j.patcog.2016.02.002 +cbe021d840f9fc1cb191cba79d3f7e3bbcda78d3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406479 +cb522b2e16b11dde48203bef97131ddca3cdaebd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979 +cbfcd1ec8aa30e31faf205c73d350d447704afee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7955089 +cb8a1b8d87a3fef15635eb4a32173f9c6f966055,http://dl.acm.org/citation.cfm?id=3234150 +cb27b45329d61f5f95ed213798d4b2a615e76be2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236 +cb2470aade8e5630dcad5e479ab220db94ecbf91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397018 +f85ccab7173e543f2bfd4c7a81fb14e147695740,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5946910 +f8162276f3b21a3873dde7a507fd68b4ab858bcc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761923 +cef73d305e5368ee269baff53ec20ea3ae7cdd82,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461485 +cec70cf159b51a18b39c80fac1ad34f65f3691ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7949100 +cea2911ccabab40e9c1e5bcc0aa1127cab0c789f,http://doi.org/10.1007/s11042-015-2847-3 +cec8936d97dea2fcf04f175d3facaaeb65e574bf,http://dl.acm.org/citation.cfm?id=3134264 +ce70dd0d613b840754dce528c14c0ebadd20ffaa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7973159 +ceba8ca45bad226c401a509e6b8ccbf31361b0c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7129813 +ce75deb5c645eeb08254e9a7962c74cab1e4c480,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373839 +ced7811f2b694e54e3d96ec5398e4b6afca67fc0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1605391 +ce2945e369603fcec1fcdc6e19aac5996325cba9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771366 +e060e32f8ad98f10277b582393df50ac17f2836c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099600 +e0162dea3746d58083dd1d061fb276015d875b2e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014992 +46f48211716062744ddec5824e9de9322704dea1,http://doi.org/10.1007/s11263-016-0923-4 +468bb5344f74842a9a43a7e1a3333ebd394929b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373896 +46e0703044811c941f0b5418139f89d46b360aa3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883945 +4686df20f0ee40cd411e4b43860ef56de5531d9e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301536 +46c82cfadd9f885f5480b2d7155f0985daf949fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780537 +46976097c54e86032932d559c8eb82ffea4bb6bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738868 +2c052a1c77a3ec2604b3deb702d77c41418c7d3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373863 +2ce1bac5ddc4cf668bbbb8879cd21dfb94b5cfe4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099709 +7923742e2af655dee4f9a99e39916d164bc30178,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272743 +7914c3f510e84a3d83d66717aad0d852d6a4d148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532448 +7918e3e15099b4b2943746e1f6c9e3992a79c5f3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995492 +794a51097385648e3909a1acae7188f5ab881710,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813382 +2d3af3ee03793f76fb8ff15e7d7515ff1e03f34c,http://doi.org/10.1007/s11042-017-4818-3 +2d7c2c015053fff5300515a7addcd74b523f3f66,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8323422 +2dbc57abf3ceda80827b85593ce1f457b76a870b,http://doi.org/10.1007/s11042-018-6133-z +4113269f916117f975d5d2a0e60864735b73c64c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613059 +41c56c69b20b3f0b6c8a625009fc0a4d317e047a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5720366 +41c42cb001f34c43d4d8dd8fb72a982854e173fb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5308445 +414d78e32ac41e6ff8b192bc095fe55f865a02f4,http://arxiv.org/abs/1706.00631 +834736698f2cc5c221c22369abe95515243a9fc3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249 +83d41f6548bb76241737dcd3fed9e182ee901ff9,http://dl.acm.org/citation.cfm?id=2964328 +8355d095d3534ef511a9af68a3b2893339e3f96b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390 +83f80fd4eb614777285202fa99e8314e3e5b169c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265544 +1bd9dbe78918ed17b0a3ac40623f044cb3d3552c,http://doi.org/10.1038/nn870 +1b5d445741473ced3d4d33732c9c9225148ed4a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8452894 +7783095a565094ae5b3dccf082d504ddd7255a5c,http://dl.acm.org/citation.cfm?id=2502258 +77d929b3c4bf546557815b41ed5c076a5792dc6b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265399 +779d3f0cf74b7d33344eea210170c7c981a7e27b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8115237 +7788fa76f1488b1597ee2bebc462f628e659f61e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8063888 +771505abd38641454757de75fe751d41e87f89a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401561 +48a402593ca4896ac34fbebf1e725ab1226ecdb7,http://doi.org/10.1016/j.patcog.2015.01.022 +48de3ca194c3830daa7495603712496fe908375c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619283 +480ccd25cb2a851745f5e6e95d33edb703efb49e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461792 +484bac2a9ff3a43a6f85d109bbc579a4346397f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6011991 +70e14e216b12bed2211c4df66ef5f0bdeaffe774,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237666 +708f4787bec9d7563f4bb8b33834de445147133b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237449 +70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e,http://doi.org/10.1007/s11042-018-5608-2 +1e0d92b9b4011822825d1f7dc0eba6d83504d45d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4497872 +1e3068886b138304ec5a7296702879cc8788143d,http://doi.org/10.1007/s11263-013-0630-3 +84c5b45328dee855c4855a104ac9c0558cc8a328,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411213 +84574aa43a98ad8a29470977e7b091f5a5ec2366,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301321 +84a74ef8680b66e6dccbc69ae80321a52780a68e,http://doi.org/10.1007/978-0-85729-932-1_19 +845f45f8412905137bf4e46a0d434f5856cd3aec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418618 +4a733a0862bd5f7be73fb4040c1375a6d17c9276,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618949 +4a8480d58c30dc484bda08969e754cd13a64faa1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406475 +24603ed946cb9385ec541c86d2e42db47361c102,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373865 +24286ef164f0e12c3e9590ec7f636871ba253026,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369721 +2480f8dccd9054372d696e1e521e057d9ac9de17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8396968 +247a8040447b6577aa33648395d95d80441a0cf3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362745 +23edcd0d2011d9c0d421193af061f2eb3e155da3,http://doi.org/10.1007/s00371-015-1137-4 +23ee7b7a9ca5948e81555aaf3a044cfec778f148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771385 +239e305c24155add73f2a0ba5ccbd66b37f77e14,http://dl.acm.org/citation.cfm?id=1219097 +23e824d1dfc33f3780dd18076284f07bd99f1c43,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7947686 +239958d6778643101ab631ec354ea1bc4d33e7e0,http://doi.org/10.1016/j.patcog.2017.06.009 +234c106036964131c0f2daf76c47ced802652046,http://doi.org/10.1016/j.cviu.2015.07.007 +4f37f71517420c93c6841beb33ca0926354fa11d,http://doi.org/10.1016/j.neucom.2017.08.062 +4f064c2a0ef0849eed61ab816ff0c2ff6d9d7308,http://dl.acm.org/citation.cfm?id=2396318 +4f1249369127cc2e2894f6b2f1052d399794919a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663 +4f8345f31e38f65f1155569238d14bd8517606f4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618941 +4f8b4784d0fca31840307650f7052b0dde736a76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7017496 +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc,http://doi.org/10.1007/978-3-319-16865-4 +8dd9c97b85e883c16e5b1ec260f9cd610df52dec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404159 +8da32ff9e3759dc236878ac240728b344555e4e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014820 +8dfe43c76b76a97f8938f5f5f81059a1f1fa74ed,http://doi.org/10.1038/s41598-017-18993-5 +8de5dc782178114d9424d33d9adabb2f29a1ab17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7053946 +151b87de997e55db892b122c211f9c749f4293de,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237481 +127c7f87f289b1d32e729738475b337a6b042cf7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436988 +1221e25763c3be95c1b6626ca9e7feaa3b636d9a,http://doi.org/10.1007/s11042-017-4353-2 +12226bca7a891e25b7d1e1a34a089521bba75731,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373861 +8c4042191431e9eb43f00b0f14c23765ab9c6688,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532956 +8ccbbd9da0749d96f09164e28480d54935ee171c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597578 +856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014 +85a136b48c2036b16f444f93b086e2bd8539a498,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7885525 +85e78aa374d85f9a61da693e5010e40decd3f986,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619100 +854b1f0581f5d3340f15eb79452363cbf38c04c8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648 +85ec86f8320ba2ed8b3da04d1c291ce88b8969c0,http://dl.acm.org/citation.cfm?id=3264947 +85ae6fa48e07857e17ac4bd48fb804785483e268,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7755833 +85c90ad5eebb637f048841ebfded05942bb786b7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977163 +8562b4f63e49847692b8cb31ef0bdec416b9a87a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8128909 +857c64060963dd8d28e4740f190d321298ddd503,http://doi.org/10.1007/s11042-015-3103-6 +1d30f813798c55ae4fe454829be6e2948ee841da,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270396 +1d51b256af68c5546d230f3e6f41da029e0f5852,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590015 +1de23d7fe718d9fab0159f58f422099e44ad3f0a,http://doi.org/10.1007/s11063-016-9558-2 +71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774 +7195cb08ba2248f3214f5dc5d7881533dd1f46d9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5673820 +71c4b8e1bb25ee80f4317411ea8180dae6499524,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463396 +765be0c44a67e41e0f8f0b5d8a3af0ff40a00c7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373821 +768f6a14a7903099729872e0db231ea814eb05e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411205 +1c25a3c8ef3e2c4dbff337aa727d13f5eba40fb2,http://doi.org/10.1007/s00371-016-1290-4 +1c0acf9c2f2c43be47b34acbd4e7338de360e555,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461986 +8202da548a128b28dd1f3aa9f86a0523ec2ecb26,http://doi.org/10.1016/j.ijar.2012.01.003 +82a0a5d0785fb2c2282ed901a15c3ff02f8567df,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849828 +82e3f4099503633c042a425e9217bfe47cfe9d4b,http://doi.org/10.1007/s11042-015-2819-7 +49358915ae259271238c7690694e6a887b16f7ed,http://doi.org/10.1007/BF02884429 +4983076c1a8b80ff5cd68b924b11df58a68b6c84,http://doi.org/10.1007/s11704-017-6114-9 +49068538b7eef66b4254cc11914128097302fab8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339040 +49be50efc87c5df7a42905e58b092729ea04c2f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7177489 +493c8591d6a1bef5d7b84164a73761cefb9f5a25,http://dl.acm.org/citation.cfm?id=3159691 +40c9dce0a4c18829c4100bff5845eb7799b54ca1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5346008 +405d9a71350c9a13adea41f9d7f7f9274793824f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373834 +40c1de7b1b0a087c590537df55ecd089c86e8bfc,http://doi.org/10.1162/NECO_a_00401 +4007bf090887d8a0e907ab5e17ecfcdbbdafc2e4,http://doi.org/10.1007/s13735-017-0144-9 +407806f5fe3c5ecc2dc15b75d3d2b0359b4ee7e0,http://doi.org/10.1007/s11042-017-5028-8 +2e7e1ee7e3ee1445939480efd615e8828b9838f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5643167 +2e3b981b9f3751fc5873f77ad2aa7789c3e1d1d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397046 +2bb36c875754a2a8919f2f9b00a336c00006e453,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373869 +2bf646a6efd15ab830344ae9d43e10cc89e29f34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8387808 +2bcd9b2b78eb353ea57cf50387083900eae5384a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995329 +4735fa28fa2a2af98f7b266efd300a00e60dddf7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460647 +7831ab4f8c622d91974579c1ff749dadc170c73c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6712699 +78f2c8671d1a79c08c80ac857e89315197418472,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237443 +784a83437b3dba49c0d7ccc10ac40497b84661a5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100224 +78cec49ca0acd3b961021bc27d5cf78cbbbafc7e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995556 +782a05fbe30269ff8ab427109f5c4d0a577e5284,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8038860 +8bebb26880274bdb840ebcca530caf26c393bf45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369529 +8bbd40558a99e33fac18f6736b8fe99f4a97d9b1,http://doi.org/10.1007/s11263-016-0986-2 +13d430257d595231bda216ef859950caa736ad1d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394947 +13179bb3f2867ea44647b6fe0c8fb4109207e9f5,http://doi.org/10.1007/s00779-018-1171-0 +7fcecaef60a681c47f0476e54e08712ee05d6154,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7299097 +7f203f2ff6721e73738720589ea83adddb7fdd27,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301513 +7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404767 +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4,http://doi.org/10.1007/s11554-016-0645-4 +7fe2ab9f54242ef8609ef9bf988f008c7d42407c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382330 +7f904093e6933cab876e87532111db94c71a304f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117544 +7f26c615dd187ca5e4b15759d5cb23ab3ea9d9a9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7781761 +7f2a234ad5c256733a837dbf98f25ed5aad214e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7207289 +7f5b379b12505d60f9303aab1fea48515d36d098,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411873 +7f68a5429f150f9eb7550308bb47a363f2989cb3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977004 +7acbf0b060e948589b38d5501ca217463cfd5c2f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6940304 +7ac4fc169fffa8e962b9df94f61e2adf6bac8f97,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8453893 +141cb9ee401f223220d3468592effa90f0c255fa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815403 +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74,http://doi.org/10.1007/s00138-016-0820-4 +8e63868e552e433dc536ba732f4c2af095602869,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699730 +8eb40d0a0a1339469a05711f532839e8ffd8126c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7890464 +8e452379fda31744d4a4383fcb8a9eab6dbc4ae4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4586390 +22648dcd3100432fe0cc71e09de5ee855c61f12b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393188 +228ea13041910c41b50d0052bdce924037c3bc6a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434495 +22e121a8dea49e3042de305574356477ecacadda,http://doi.org/10.1007/s00138-018-0935-x +25960f0a2ed38a89fa8076a448ca538de2f1e183,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411220 +2563fc1797f187e2f6f9d9f4387d4bcadd3fbd02,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410635 +2564920d6976be68bb22e299b0b8098090bbf259,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8407761 diff --git a/scraper/reports/misc/db_paper_doi.csv b/scraper/reports/misc/db_paper_doi.csv new file mode 100644 index 00000000..69384d5d --- /dev/null +++ b/scraper/reports/misc/db_paper_doi.csv @@ -0,0 +1,1928 @@ +61831364ddc8db869618f1c7f0ad35ab2ab6bcf7,https://doi.org/10.1109/ICIP.2013.6738496 +61a3c45c9f802f9d5fa8d94fee811e203bac6487,https://doi.org/10.1109/TIFS.2016.2567318 +6159908dec4bc2c1102f416f8a52a31bf3e666a4,https://doi.org/10.1109/ICIP.2012.6467431 +6196f4be3b28684f6528b8687adccbdf9ac5c67c,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.267 +61b22b1016bf13aca8d2e57c4e5e004d423f4865,https://doi.org/10.1109/TCYB.2016.2526630 +61bc124537f414f6fcb4d1ff476681b5a0ee222a,http://doi.ieeecomputersociety.org/10.1109/WIW.2016.043 +0d90c992dd08bfb06df50ab5c5c77ce83061e830,https://doi.org/10.1109/UIC-ATC.2013.85 +0d7fcdb99dc0d65b510f2b0b09d3d3cfed390261,https://doi.org/10.1109/IJCB.2011.6117508 +0d6d9c4b5dd282b8f29cd3c200df02a00141f0a9,https://doi.org/10.1109/SIU.2014.6830193 +0d9815f62498db21f06ee0a9cc8b166acc93888e,https://doi.org/10.1016/j.neucom.2007.12.018 +0d8cec1b3f9b6e25d9d31eeb54d8894a1f2ef84f,https://doi.org/10.1109/LSP.2018.2810121 +0d3ff34d8490a9a53de1aac1dea70172cb02e013,https://doi.org/10.1109/ICPR.2014.542 +0de1450369cb57e77ef61cd334c3192226e2b4c2,https://doi.org/10.1109/BTAS.2017.8272747 +0d7652652c742149d925c4fb5c851f7c17382ab8,https://doi.org/10.1016/j.neucom.2015.05.057 +0da3c329ae14a4032b3ba38d4ea808cf6d115c4a,https://doi.org/10.1007/s00138-015-0709-7 +0d75c7d9a00f859cffe7d0bd78dd35d0b4bc7fa6,https://doi.org/10.1109/LSP.2005.863661 +0d98750028ea7b84b86e6fec3e67d61e4f690d09,https://doi.org/10.1109/ACSSC.2015.7421092 +0db371a6bc8794557b1bffc308814f53470e885a,https://doi.org/10.1007/s13042-015-0380-3 +95f1790da3d0a4a5310a050512ce355b3c5aac86,https://doi.org/10.1109/ICIP.2016.7533142 +95023e3505263fac60b1759975f33090275768f3,http://doi.acm.org/10.1145/2856767.2856770 +952138ae6534fad573dca0e6b221cdf042a36412,http://doi.ieeecomputersociety.org/10.1109/DICTA.2005.38 +950bf95da60fd4e77d5159254fed906d5ed5fbcb,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.24 +9590b09c34fffda08c8f54faffa379e478f84b04,https://doi.org/10.1109/TNNLS.2013.2275170 +95e7cf27a8ee62b63ed9d1ecb02a7016e9a680a6,https://doi.org/10.1007/s11063-013-9322-9 +5957936195c10521dadc9b90ca9b159eb1fc4871,https://doi.org/10.1109/TCE.2016.7838098 +59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552862 +592370b4c7b58a2a141e507f3a2cc5bbd247a62e,https://doi.org/10.1109/IJCNN.2017.7965911 +59b6ff409ae6f57525faff4b369af85c37a8dd80,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.28 +5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,https://doi.org/10.1109/ICT.2017.7998256 +5951e9e13ff99f97f301a336f24a14d80459c659,https://doi.org/10.1016/j.neucom.2017.09.009 +9227c1a5b26556b9c34015b3ea5f9ae5f50e9b23,https://doi.org/10.1109/FCV.2015.7103729 +9255d3b2bfee4aaae349f68e67c76a077d2d07ad,https://doi.org/10.1109/TIP.2017.2713041 +92de9a54515f4ac8cc8e4e6b0dfab20e5e6bb09d,https://doi.org/10.1109/ICIP.2016.7533062 +9213a415d798426c8d84efc6d2a69a2cbfa2af84,https://doi.org/10.1016/j.cviu.2013.03.008 +0c378c8dcf707145e1e840a9951519d4176a301f,https://doi.org/10.1109/ICARCV.2010.5707434 +0c65226edb466204189b5aec8f1033542e2c17aa,https://doi.org/10.1109/ICIP.2017.8296997 +0c247ac797a5d4035469abc3f9a0a2ccba49f4d8,https://doi.org/10.1109/ICMLC.2011.6016715 +0cf1287c8fd41dcef4ac03ebeab20482f02dce20,https://doi.org/10.1109/MSN.2016.032 +0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,https://doi.org/10.1109/CIBIM.2014.7015437 +0c0db39cac8cb76b52cfdbe10bde1c53d68d202f,http://doi.acm.org/10.1145/3123266.3123334 +0c1314d98bb6b99af00817644c1803dbc0fb5ff5,http://doi.ieeecomputersociety.org/10.1109/BigMM.2015.29 +0c6a18b0cee01038eb1f9373c369835b236373ae,https://doi.org/10.1007/s11042-017-4359-9 +66ec085c362f698b40d6e0e7b10629462280c062,https://doi.org/10.1109/ICARCV.2004.1468855 +661c78a0e2b63cbdb9c20dcf89854ba029b6bc87,https://doi.org/10.1109/ICIP.2014.7025093 +66f4d7c381bd1798703977de2e38b696c6641b77,https://doi.org/10.1109/FSKD.2015.7382360 +6688b2b1c1162bc00047075005ec5c7fca7219fd,https://doi.org/10.1109/SACI.2013.6608958 +6622776d1696e79223f999af51e3086ba075dbd1,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019454 +3e01f2fefe219bfeb112f1d82e76ebba4c0e2aac,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836097 +3ebb0209d5e99b22c67e425a67a959f4db8d1f47,https://doi.org/10.1109/ICDAR.2017.173 +3e0035b447d0d4e11ceda45936c898256f321382,https://doi.org/10.1109/BMEI.2014.7002762 +3e1190655cc7c1159944d88bdbe591b53f48d761,https://doi.org/10.1007/s10489-013-0464-2 +3e452ca67e17e4173ec8dfbd4a2b803ad2ee5a48,http://doi.ieeecomputersociety.org/10.1109/WF-IoT.2016.7845505 +3ec860cfbd5d953f29c43c4e926d3647e532c8b0,https://doi.org/10.1109/TCSVT.2008.924108 +3e0377af0087b9b836bf6d95bc1c7085dfde4897,http://doi.acm.org/10.1145/2671188.2749320 +3e7070323bca6106f19bea4c97ef67bd6249cb5d,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477448 +3e03d19b950edadc74ca047dec86227282eccf71,https://doi.org/10.1109/ACCESS.2017.2777003 +503b6a490c2b24b9d2aaf642a0fdaf797a8cdb99,https://doi.org/10.1109/ACCESS.2017.2733718 +504d2675da7a56a36386568ee668938df6d82bbe,https://doi.org/10.1109/TCSVT.2016.2539604 +502d30c5eac92c7db587d85d080343fbd9bc469e,https://doi.org/10.1109/TIFS.2016.2538744 +50333790dd98c052dfafe1f9bf7bf8b4fc9530ba,https://doi.org/10.1109/ICIP.2015.7351001 +5039834df68600a24e7e8eefb6ba44a5124e67fc,https://doi.org/10.1109/ICIP.2013.6738761 +501076313de90aca7848e0249e7f0e7283d669a1,https://doi.org/10.1109/SOCPAR.2014.7007987 +681d222f91b12b00e9a4217b80beaa11d032f540,https://doi.org/10.1007/s10044-015-0493-z +68c5b4d9ce2a0c75ba515870923a4bd1b7d8f9b5,https://doi.org/10.1109/CISP-BMEI.2017.8301919 +68eb6e0e3660009e8a046bff15cef6fe87d46477,https://doi.org/10.1109/ICIP.2017.8296999 +68e6cfb0d7423d3fae579919046639c8e2d04ad7,https://doi.org/10.1109/ICB.2016.7550058 +6813208b94ffa1052760d318169307d1d1c2438e,http://doi.acm.org/10.1145/2818346.2830582 +68f19f06f49aa98b676fc6e315b25e23a1efb1f0,https://doi.org/10.1109/ICIP.2015.7351080 +68d566ed4041a7519acb87753036610bd64dcc09,https://doi.org/10.1007/s11390-013-1347-z +68021c333559ab95ca10e0dbbcc8a4840c31e157,https://doi.org/10.1109/ICPR.2016.7900281 +681399aa0ea4cbffd9ab22bf17661d6df4047349,http://doi.ieeecomputersociety.org/10.1109/CISIS.2012.207 +57b7325b8027745b130490c8f736445c407f4c4c,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.27 +5798055e11e25c404b1b0027bc9331bcc6e00555,http://doi.acm.org/10.1145/2393347.2396357 +57eeaceb14a01a2560d0b90d38205e512dcca691,https://doi.org/10.1109/TIP.2017.2778563 +5763b09ebca9a756b4adebf74d6d7de27e80e298,https://doi.org/10.1109/BTAS.2013.6712738 +57f4e54a63ef95596dbc743f391c3fff461f278b,https://doi.org/10.1109/ICMEW.2012.86 +57ca530e9acb63487e8591cb6efb89473aa1e5b4,https://doi.org/10.1109/TIP.2014.2356292 +578117ff493d691166fefc52fd61bad70d8752a9,https://doi.org/10.1109/CCST.2016.7815707 +57ba4b6de23a6fc9d45ff052ed2563e5de00b968,https://doi.org/10.1109/ICIP.2017.8296993 +5721cd4b898f0e7df8de1e0215f630af94656be9,http://doi.acm.org/10.1145/3095140.3095164 +57c270a9f468f7129643852945cf3562cbb76e07,https://doi.org/10.1016/j.imavis.2016.07.004 +57de1a09db680e0b4878ceda68d626ae4e44ccfe,https://doi.org/10.1016/j.neucom.2014.10.111 +57dc55edade7074f0b32db02939c00f4da8fe3a6,https://doi.org/10.1109/TITS.2014.2313371 +3ba74755c530347f14ec8261996dd9eae896e383,https://doi.org/10.1109/JSSC.2017.2767705 +3b8c830b200f1df8ef705de37cbfe83945a3d307,https://doi.org/10.1007/s00138-017-0887-6 +3bdaf59665e6effe323a1b61308bcac2da4c1b73,https://doi.org/10.1109/ROMAN.2012.6343736 +3bfa630a6dc6d1ca98e7b43c90dd9e8b98e361d6,https://doi.org/10.1109/ICIP.2015.7351140 +3b75681f0162752865d85befd8b15e7d954ebfe6,https://doi.org/10.1109/CLEI.2014.6965097 +3b64b8be33887e77e6def4c385985e43e2c15eea,https://doi.org/10.1109/TIP.2016.2576278 +6f74c3885b684e52096497b811692bd766071530,https://doi.org/10.1016/j.neucom.2013.06.013 +6f68c49106b66a5bd71ba118273b4c5c64b6619f,http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190720 +6ffdbac58e15e0ff084310b0a804520ad4bd013e,https://doi.org/10.1049/iet-bmt.2015.0078 +6f22324fab61fbc5df1aac2c0c9c497e0a7db608,https://doi.org/10.1109/ICB.2013.6612990 +6f16f4bd01aeefdd03d6783beacb7de118f5af8a,https://doi.org/10.1109/VCIP.2013.6706330 +6f0caff7c6de636486ff4ae913953f2a6078a0ab,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583081 +6ff0f804b8412a50ae2beea5cd020c94a5de5764,http://doi.acm.org/10.1145/1877972.1877994 +6fdf2f4f7ae589af6016305a17d460617d9ef345,https://doi.org/10.1109/ICIP.2015.7350767 +6f48e5e258da11e6ba45eeabe65a5698f17e58ef,https://doi.org/10.1109/ICASSP.2013.6637968 +6f8cffd9904415c8fa3a1e650ac143867a04f40a,https://doi.org/10.1016/j.neucom.2015.01.099 +0387b32d0ebd034dc778972367e7d4194223785d,http://doi.acm.org/10.1145/2522848.2531740 +03333e7ec198208c13627066bc76b0367f5e270f,https://doi.org/10.1109/IJCNN.2017.7966100 +03e1480f1de2ffbd85655d68aae63a01685c5862,https://doi.org/10.1109/ICPR.2014.771 +0341405252c80ff029a0d0065ca46d0ade943b03,http://doi.ieeecomputersociety.org/10.1109/FG.2017.40 +03babadaaa7e71d4b65203e27e8957db649155c6,https://doi.org/10.1109/TIP.2017.2725578 +0343f9401b98de36be957a30209fef45dd684270,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163134 +9b78ce9fdac30864d1694a56328b3c8a96cccef5,https://doi.org/10.1089/cpb.2004.7.635 +9bd3cafa16a411815f8f87ed3eb3cafefc25e5a3,https://doi.org/10.1109/ICPR.2016.7899782 +9b8830655d4a5a837e3ffe835d14d6d71932a4f2,https://doi.org/10.1109/TSMCB.2011.2169452 +9ba358281f2946cba12fff266019193a2b059590,http://doi.ieeecomputersociety.org/10.1109/ISM.2008.27 +9b4d2cd2e5edbf5c8efddbdcce1db9a02a853534,https://doi.org/10.1016/j.neucom.2016.02.063 +9b1a70d6771547cbcf6ba646f8775614c0162aca,https://doi.org/10.1016/j.patrec.2016.11.005 +9b1c218a55ead45296bfd7ad315aaeff1ae9983e,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2481396 +9e8382aa1de8f2012fd013d3b39838c6dad8fb4d,http://doi.acm.org/10.1145/3123266.3123349 +9e5690cdb4dfa30d98dff653be459e1c270cde7f,https://doi.org/10.1109/ICIP.2017.8297080 +9e5809122c0880183c7e42c7edd997f92de6d81e,http://doi.acm.org/10.1145/2451176.2451209 +9e7646b7e9e89be525cda1385cc1351cc28a896e,http://doi.ieeecomputersociety.org/10.1109/TMC.2017.2702634 +9e99f818b37d44ec6aac345fb2c5356d83d511c7,https://doi.org/10.1109/ISSPA.2012.6310540 +9eaa967d19fc66010b7ade7d94eaf7971a1957f3,https://doi.org/10.1109/IWCIA.2013.6624793 +9eb13f8e8d948146bfbae1260e505ba209c7fdc1,https://doi.org/10.1109/AFGR.2008.4813404 +9e28243f047cc9f62a946bf87abedb65b0da0f0a,https://doi.org/10.1109/ICMLA.2013.141 +9ef06cc958af2274afd193a1dca705c08234bcd3,https://doi.org/10.1109/ICIP.2014.7026207 +9e60614fd57afe381ae42c6ee0b18f32f60bb493,https://doi.org/10.1109/ICIP.2015.7351544 +049186d674173ebb76496f9ecee55e17ed1ca41b,https://doi.org/10.1109/ACCESS.2017.2724763 +045e83272db5e92aa4dc8bdfee908534c2608711,http://doi.ieeecomputersociety.org/10.1109/ICCABS.2016.7802775 +047d3cb2a6a9628b28cac077b97d95b04ca9044c,https://doi.org/10.1109/FG.2011.5771332 +041b51a81a977b5c64682c55414ad8d165c1f2ce,https://doi.org/10.1109/TCE.2014.7027339 +04f56dc5abee683b1e00cbb493d031d303c815fd,http://doi.acm.org/10.1145/2808492.2808557 +04c07ecaf5e962ac847059ece3ae7b6962b4e5c4,http://doi.acm.org/10.1145/2993148.2997631 +047ce307ad0c871bc2c9a5c1e4649cefae2ba50d,https://doi.org/10.1109/ICRA.2012.6224587 +045275adac94cced8a898a815293700401e9955f,https://doi.org/10.1007/s00138-012-0447-z +6a3fa483c64e72d9c96663ff031446a2bdb6b2eb,https://doi.org/10.1016/j.patcog.2017.02.003 +6a38e4bb35673a73f041e34d3f2db7067482a9b5,http://doi.acm.org/10.1145/2663204.2666277 +6afe1f668eea8dfdd43f0780634073ed4545af23,https://doi.org/10.1007/s11042-017-4962-9 +6a527eeb0b2480109fe987ed7eb671e0d847fca8,https://doi.org/10.1007/978-3-319-28515-3 +6adecb82edbf84a0097ff623428f4f1936e31de0,https://doi.org/10.1007/s11760-011-0246-4 +6aa0a47f4b986870370c622be51f00f3a1b9d364,https://doi.org/10.1109/TIP.2012.2192285 +6ad5ac867c5ca56e0edaece153269d989b383b59,https://doi.org/10.1109/CISP-BMEI.2016.7852723 +321db1059032b828b223ca30f3304257f0c41e4c,https://doi.org/10.1109/ICACCI.2015.7275951 +32b76220ed3a76310e3be72dab4e7d2db34aa490,https://doi.org/10.1109/SMC.2014.6974364 +32bab8fe6db08c9d1e906be8a9c7e8cf7a0f0b99,http://doi.ieeecomputersociety.org/10.1109/CIS.2007.196 +327ae6742cca4a6a684a632b0d160dd84d0d8632,https://doi.org/10.1007/s10851-015-0629-1 +32c5c65db2af9691f8bb749c953c978959329f8f,https://doi.org/10.1109/ICIP.2015.7351469 +322488c4000c686e9bfb7514ccdeacae33e53358,http://doi.acm.org/10.1145/2671188.2749301 +32dfd4545c87d9820cc92ca912c7d490794a81d6,https://doi.org/10.1007/978-3-319-50551-0 +328da943e22adef5957c08b6909bda09d931a350,https://doi.org/10.1109/ICARCV.2008.4795605 +3288e16c62a215254e2ed7c39675482b356c3bef,https://doi.org/10.1109/SACI.2016.7507341 +329b2781007604652deb72139d14315df3bc2771,http://doi.acm.org/10.1145/2671188.2749358 +32a440720ee988b7b41de204b2910775171ee12c,https://doi.org/10.1109/ICIP.2011.6116351 +3251f40ed1113d592c61d2017e67beca66e678bb,https://doi.org/10.1007/978-3-319-65172-9_17 +356a144d2aa5cc5e74d178dae3963003871aa8a1,https://doi.org/10.1007/978-3-319-27671-7_41 +359edbaa9cf56857dd5c7c94aaef77003ba8b860,https://doi.org/10.1007/978-3-319-02714-2 +35d90beea6b4dca8d949aae93f86cf53da72971f,https://doi.org/10.1109/ICIP.2011.6116672 +35ccc836df60cd99c731412fe44156c7fd057b99,https://doi.org/10.1109/ICCIS.2017.8274819 +3598d10d7d4f2b543afa8bcf6b2c34a3696ef155,https://doi.org/10.1109/SPAC.2017.8304347 +359b4a4c6cb58c8ab5e8eaaed0e8562c8c43a0f9,https://doi.org/10.1007/s10044-014-0377-7 +35d272877b178aa97c678e3fcbb619ff512af4c2,https://doi.org/10.1109/SMC.2017.8122743 +35b3dc0e961a15a7a60b95490a989f91680acc7c,http://doi.ieeecomputersociety.org/10.1109/TDSC.2016.2550459 +35d42f4e7a1d898bc8e2d052c38e1106f3e80188,https://doi.org/10.1109/BTAS.2015.7358765 +69a9cf9bc8e585782824666fa3fb5ce5cf07cef2,https://doi.org/10.1007/s11390-017-1738-7 +699b8250fb93b3fa64b2fc8f59fef036e172564d,https://doi.org/10.1109/ICMLA.2016.0147 +69064c7b349bf6e7f4a802f4fd0da676c1bd1d8b,https://doi.org/10.1016/j.patcog.2014.06.016 +69ba86f7aac7b7be0ac41d990f5cd38400158f96,https://doi.org/10.1109/TNNLS.2015.2504724 +69ad67e204fb3763d4c222a6c3d05d6725b638ed,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890538 +69b2a7533e38c2c8c9a0891a728abb423ad2c7e7,https://doi.org/10.1016/j.imavis.2013.03.003 +3c8db0d86a6aa51b64ec09c7d25a721adcdfb7a3,https://doi.org/10.1016/j.imavis.2015.06.009 +3c1b73509cc09200e96ab9cfb28ebfd9d1d6aa9a,https://doi.org/10.1109/LSP.2016.2639341 +3c7825dcf5a027bd07eb0fe4cce23910b89cf050,http://doi.acm.org/10.1145/2987378 +3c086601ce0bac61047b5b931b253bd4035e1e7a,https://doi.org/10.1109/ICIP.2015.7350897 +3cbd3124b1b4f95fcdf53abd358d7ceec7861dda,http://doi.acm.org/10.1145/3019612.3019641 +3c09d15b3e78f38618b60388ec9402e616fc6f8e,https://doi.org/10.1109/IJCNN.2010.5596793 +3ce96f03874d42345c0727edc78b6949b20b4a11,https://doi.org/10.1007/s11042-015-2630-5 +3c18fb8ff0f5003fefa8e9dc9bebaf88908d255c,https://doi.org/10.1109/ICIP.2014.7025145 +3c6542295cf7fe362d7d629ac10670bf30cdabce,https://doi.org/10.1109/DICTA.2015.7371264 +3ce37af3ac0ed2eba08267a3605730b2e0433da5,https://doi.org/10.1109/TIP.2016.2609811 +3cd22b5b81a0172d608ff14be71b755d1f68c201,https://doi.org/10.1109/ACCESS.2018.2812725 +3cc2a2eaaacbf96c6b9abc1cf91bfefabf6fcfdd,https://doi.org/10.1109/TCSVT.2014.2317887 +3ca6adc90aae5912baa376863807191ffd56b34e,https://doi.org/10.1109/LSP.2014.2316918 +5642bafa7955b69f05c11230151cd59fcbe43b8e,https://doi.org/10.1007/s11760-012-0404-3 +56fb30b24e7277b47d366ca2c491749eee4d6bb1,https://doi.org/10.1109/ICAPR.2015.7050658 +56bcc89fb1e05d21a8b7b880c6b4df79271ceca5,https://doi.org/10.1007/s11760-013-0441-6 +56e25358ebfaf8a8b3c7c33ed007e24f026065d0,https://doi.org/10.1007/s10994-015-5541-9 +568ced900cbf7437c9e87b60a17e16f0c1e0c442,https://doi.org/10.1109/CCECE.2012.6335026 +5613cb13ab381c8a8b81181ac786255705691626,https://doi.org/10.1109/VCIP.2015.7457876 +56fa0872ed73f7acfbfe83677fecb2dbc6eaa2fe,https://doi.org/10.1007/s11554-007-0031-3 +569988e19ab36582d4bd0ec98e344cbacf177f45,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2347960 +56f57786516dcc8ea3c0ffe877c1363bfb9981d2,https://doi.org/10.1109/CBMI.2014.6849823 +565f7c767e6b150ebda491e04e6b1de759fda2d4,https://doi.org/10.1016/j.patcog.2016.11.023 +51f626540860ad75b68206025a45466a6d087aa6,https://doi.org/10.1109/ICIP.2017.8296595 +51b770e6b2af994ffc8793f59b24a9f619033a3a,https://doi.org/10.1109/ICDSC.2011.6042899 +516f8728ad1d4f9f2701a2b5385f8c8e71b9d356,https://doi.org/10.1109/ACCESS.2017.2745903 +5101368f986aa9837fdb3a71cb4299dff6f6325d,https://doi.org/10.1109/ICIP.2008.4712155 +5180c98815d7034e753a14ef6f54583f115da3aa,http://doi.ieeecomputersociety.org/10.1109/iV.2017.40 +3d2c932f4f2693a87a0b855048e60f142214f475,http://doi.ieeecomputersociety.org/10.1109/CSE.2014.354 +3d1959048eba5495e765a80c8e0bbd3d65b3d544,https://doi.org/10.1016/j.neucom.2016.07.038 +3d2c89676fcc9d64aaed38718146055152d22b39,https://doi.org/10.1109/ACPR.2013.10 +3d4b76fe73ea16400d62d0d776b3f43cc5ecf72b,https://doi.org/10.1109/TIFS.2015.2512561 +3d1f976db6495e2bb654115b939b863d13dd3d05,https://doi.org/10.1007/s11042-015-2581-x +3dfbd17bd9caf7bd1d908ff469dec2b61e8a9548,https://doi.org/10.1109/ITSC.2015.252 +3d4d3f70352dc833e454a5756d682f27eca46e5d,http://doi.ieeecomputersociety.org/10.1109/FG.2017.32 +3d0b2da6169d38b56c58fe5f13342cf965992ece,https://doi.org/10.1109/ICIP.2016.7532909 +3d89f9b4da3d6fb1fdb33dea7592b5992069a096,https://doi.org/10.1109/CISP-BMEI.2017.8302003 +3d9e44d8f8bc2663192c7ce668ccbbb084e466e4,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019505 +3d6f59e0f0e16d01b9c588a53d3b6b3b984e991e,http://doi.ieeecomputersociety.org/10.1109/FG.2017.117 +5810ce61fda464d4de2769bd899e12727bee0382,https://doi.org/10.1109/IJCNN.2016.7727484 +58d43e32660446669ff54f29658961fe8bb6cc72,https://doi.org/10.1109/ISBI.2017.7950504 +583e0d218e1e7aaf9763a5493e7c18c2b8dd7464,http://doi.acm.org/10.1145/2988240.2988243 +58684a925693a0e3e4bb1dd2ebe604885be034d2,https://doi.org/10.1109/ICASSP.2008.4517869 +58483028445bf6b2d1ad6e4b1382939587513fe1,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247763 +5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,https://doi.org/10.1109/ICPR.2016.7900278 +58eb9174211d58af76023ce33ee05769de57236c,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2636827 +58d0c140597aa658345230615fb34e2c750d164c,http://doi.acm.org/10.1145/3098954.3098969 +5811944e93a1f3e35ece7a70a43a3de95c69b5ab,https://doi.org/10.1109/BTAS.2016.7791163 +58df849378fbcfb6b1a8ebddfbe4caa450226b9d,https://doi.org/10.1109/ICIP.2017.8296770 +58e7dbbb58416b785b4a1733bf611f8106511aca,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273597 +673541a8cb1aa3ac63a288523ba71aec2a38280e,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552971 +67214e8d2f83eb41c14bfc86698eb6620e72e87c,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.263 +67e6ddce6fea17bb2b171c949ee224936d36c0d1,https://doi.org/10.1109/ICIP.2008.4712157 +0b58b3a5f153f653c138257426bf8d572ae35a67,https://doi.org/10.1109/SMC.2016.7844481 +0b3144cdc9d6d5a1498d6178db20d1c49fb64de9,http://doi.acm.org/10.1145/1322192.1322203 +0bab5213911c19c40e936b08d2f8fba01e286b85,https://doi.org/10.1109/BigMM.2017.81 +0b8839945259ec764ef0fad47471f34db39f40c3,https://doi.org/10.1109/DESEC.2017.8073838 +0be418e63d111e3b94813875f75909e4dc27d13a,https://doi.org/10.1109/ICB.2016.7550057 +0bf1f999a16461a730dd80e3a187d0675c216292,http://doi.ieeecomputersociety.org/10.1109/CW.2017.26 +0be015e2f9a1d2acebc3afb6e0f6948dd2f9d23d,https://doi.org/10.1007/s12193-013-0133-0 +93d903d2e48d6a8ad3e3d2aff2e57622efe649cd,https://doi.org/10.1109/ICIP.2016.7532432 +935924ddb5992c11f3202bf995183130ad83d07b,https://doi.org/10.1117/1.JEI.24.2.023015 +93e1e195f294c463f4832c4686775bf386b3de39,https://doi.org/10.1109/TIP.2015.2490551 +93108f1548e8766621565bdb780455023349d2b2,https://doi.org/10.1109/ICIP.2010.5653914 +939f9fa056f8be445da19b43da64bd2405851a43,https://doi.org/10.1109/ICSMC.2007.4413713 +939d28859c8bd2cca2d692901e174cfd599dac74,https://doi.org/10.1109/WOCC.2016.7506582 +9378ead3a09bc9f89fb711e2746facf399dd942e,https://doi.org/10.1109/TCSVT.2010.2045817 +93978ba84c8e95ff82e8b5960eab64e54ca36296,http://doi.acm.org/10.1145/3136755.3136806 +934efd61b20f5b8b151a2df7cd373f0b387c02b0,https://doi.org/10.5220/0004673003290336 +93eb3963bc20e28af26c53ef3bce1e76b15e3209,https://doi.org/10.1109/ICIP.2017.8296992 +945ef646679b6c575d3bbef9c6fc0a9629ac1b62,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477689 +947cdeb52f694fb1c87fc16836f8877cd83dc652,https://doi.org/10.1109/SMAP.2017.8022671 +946b4d840b026d91608758d04f2763e9b981234e,http://doi.acm.org/10.1145/2388676.2388792 +942f6eb2ec56809430c2243a71d03cc975d0a673,https://doi.org/10.1109/BigMM.2017.64 +942b89d8d17e89e58c82453de2bfcbbeb09adc81,https://doi.org/10.1016/j.patcog.2016.02.019 +94b729f9d9171e7c4489995e6e1cb134c8521f4e,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.055 +948f35344e6e063ffc35f10c547d5dd9204dee4e,https://doi.org/10.1016/j.eswa.2017.07.037 +940e5c45511b63f609568dce2ad61437c5e39683,https://doi.org/10.1109/TIP.2015.2390976 +0eed55ea9f401f25e1474cdbaf09367f44b4f490,https://doi.org/10.1016/j.neucom.2013.05.032 +0ea05bbc0b0c8b7df10f16e9429ef90177bf94fa,https://doi.org/10.1163/016918610X538534 +0e05b365af662bc6744106a7cdf5e77c9900e967,https://doi.org/10.1007/s11042-014-2234-5 +0ee83ed9bedc0cec5c3368144df0b6f4ee76ddff,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.40 +0e37d70794d5ccfef8b4cc22b4203245f33eec6e,https://doi.org/10.1109/ICIP.2010.5653034 +0e8a28511d8484ad220d3e8dde39220c74fab14b,https://doi.org/10.1109/TNNLS.2015.2477826 +0e454686f83284ced2ffc5740829552a032671a3,https://doi.org/10.1109/IJCNN.2015.7280802 +0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,https://doi.org/10.1109/TMM.2015.2500730 +0ed4b4d6d1a0c49c4eb619aab36db559b620d99f,https://doi.org/10.1016/j.neucom.2015.11.115 +0ef20991e0ecc7dc3f6e0e5fd6ee93c4970206f3,https://doi.org/10.1109/ICIP.2015.7351013 +0e2d956790d3b8ab18cee8df6c949504ee78ad42,https://doi.org/10.1109/IVCNZ.2013.6727024 +0e4baf74dfccef7a99c6954bb0968a2e35315c1f,https://doi.org/10.1109/SIU.2012.6204517 +0ed96cc68b1b61e9eb4096f67d3dcab9169148b9,http://doi.acm.org/10.1145/2663204.2666279 +0e4fa61871755b5548a5c970c8103f7b2ada24f3,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.19 +0e02dadab802128f6155e099135d03ca6b72f42c,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2365793 +0e6f422c3f79c552c0c3d7eda0145aed8680f0ea,https://doi.org/10.1016/j.patrec.2012.09.008 +608b01c70f0d1166c10c3829c411424d9ef550e7,https://doi.org/10.1109/CISP-BMEI.2017.8301920 +606dff86a34c67c79d93f1e536487847a5bb7002,https://doi.org/10.1109/WACV.2011.5711538 +607aebe7568407421e8ffc7b23a5fda52650ad93,https://doi.org/10.1109/ISBA.2016.7477237 +609c35a6fa80af8b2e4ce46b1b16ec36578fd07f,https://doi.org/10.1155/2014/950349 +602f772c69e4a1a65de00443c30d51fdd47a80aa,https://doi.org/10.1109/IISA.2013.6623705 +609d81ddf393164581b3e3bf11609a712ac47522,https://doi.org/10.1109/APSIPA.2017.8282300 +603231c507bb98cc8807b6cbe2c860f79e8f6645,https://doi.org/10.1109/EUSIPCO.2015.7362819 +60284c37249532fe7ff6b14834a2ae4d2a7fda02,https://doi.org/10.1109/SIU.2016.7495971 +6014eeb333998c2b2929657d233ebbcb1c3412c9,http://doi.acm.org/10.1145/2647868.2656406 +34546ef7e6148d9a1fb42cfab5f0ce11c92c760a,https://doi.org/10.1016/j.jvcir.2015.09.005 +34c2ea3c7e794215588c58adf0eaad6dc267d082,http://doi.acm.org/10.1145/3136755.3143005 +34c1e9a6166f4732d1738db803467f7abc47ba87,https://doi.org/10.1109/WACV.2017.137 +344c0917c8d9e13c6b3546da8695332f86b57bd3,https://doi.org/10.1109/ICIP.2017.8296715 +349c909abf937ef0a5a12c28a28e98500598834b,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890672 +34dd83115195676e7a8b008eb0e9abe84b330b32,https://doi.org/10.1007/s00371-014-0931-8 +5a259f2f5337435f841d39dada832ab24e7b3325,http://doi.acm.org/10.1145/2964284.2984059 +5af06815baa4b8f53adc9dc22f6eb3f6f1ad8ff8,https://doi.org/10.1186/s13640-017-0178-1 +5a0ae814be58d319dfc9fd98b058a2476801201c,https://doi.org/10.1007/s00521-012-1124-x +5feee69ed183954fa76c58735daa7dd3549e434d,https://doi.org/10.1109/ICIP.2008.4711697 +5fc97d6cb5af21ed196e44f22cee31ce8c51ef13,http://doi.acm.org/10.1145/2742060.2743769 +5f7094ba898a248e1e6b37e3d9fb795e59131cdc,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026246 +5fb9944b18f5a4a6d20778816290ed647f5e3853,http://doi.acm.org/10.1145/3080538.3080540 +5f1cd82343f4bd6972f674d50aecb453d06f04ad,http://doi.acm.org/10.1145/3125739.3125756 +5f4219118556d2c627137827a617cf4e26242a6e,https://doi.org/10.1109/TMM.2017.2751143 +5fa6f72d3fe16f9160d221e28da35c1e67a5d951,http://doi.acm.org/10.1145/3061639.3062182 +5fb59cf5b31a80d8c70d91660092ef86494be577,https://doi.org/10.1109/CISP-BMEI.2017.8301923 +5fce9d893a40c4e0f2ae335b2e68bfd02f1cb2c6,https://doi.org/10.1109/ICTAI.2012.40 +5f448ab700528888019542e6fea1d1e0db6c35f2,https://doi.org/10.1109/LSP.2016.2533721 +5f9dc3919fb088eb84accb1e490921a134232466,http://doi.ieeecomputersociety.org/10.1109/WACV.2007.49 +33c2131cc85c0f0fef0f15ac18f28312347d9ba4,https://doi.org/10.1016/j.neucom.2010.06.024 +33b915476f798ca18ae80183bf40aea4aaf57d1e,https://doi.org/10.1109/TIP.2013.2271548 +332d773b70f2f6fb725d49f314f57b8f8349a067,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.220 +33b61be191e63b0c9974be708180275c9d5b3057,https://doi.org/10.1109/ICRA.2011.5979705 +33bbf01413910bca26ed287112d32fe88c1cc0df,https://doi.org/10.1109/ICIP.2014.7026204 +331d6ace8d59fa211e5bc84a93fdc65695238c69,https://doi.org/10.1007/s10115-017-1115-4 +05184f01e66d7139530729b281da74db35a178d2,http://ieeexplore.ieee.org/document/6460470/ +052fb35f731680d9d4e7d89c8f70f14173efb015,http://doi.acm.org/10.1145/2893487 +05785cb0dcaace54801aa486d4f8fdad3245b27a,https://doi.org/10.1109/ICPR.2016.7899760 +053ee4a4793f54b02dfabde5436fd7ee479e79eb,http://doi.acm.org/10.1145/3160504.3160507 +052c5ef6b20bf3e88bc955b6b2e86571be08ba64,https://doi.org/10.1109/TIFS.2011.2170068 +0561bed18b6278434deae562d646e8adad72e75d,https://doi.org/10.1016/j.neucom.2014.09.052 +0553c6b9ee3f7d24f80e204d758c94a9d6b375d2,https://doi.org/10.1109/ICIP.2004.1419764 +055cd8173536031e189628c879a2acad6cf2a5d0,https://doi.org/10.1109/BTAS.2017.8272740 +05c5134125a333855e8d25500bf97a31496c9b3f,http://doi.acm.org/10.1145/3132515.3132517 +05a116cb6e220f96837e4418de4aa8e39839c996,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.30 +050e51268b0fb03033428ac777ccfef2db752ab3,https://doi.org/10.1109/DICTA.2007.4426834 +052cec9fdbfe12ccd02688f3b7f538c0d73555b3,https://doi.org/10.1109/ICIP.2016.7533172 +9d1cebed7672210f9c411c5ba422a931980da833,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0078 +9da63f089b8ee23120bfa8b4d9d9c8f605f421fc,http://doi.acm.org/10.1145/2072298.2072043 +9d4692e243e25eb465a0480376beb60a5d2f0f13,https://doi.org/10.1109/ICCE.2016.7430617 +9d01eca806e0f98c5b3c9a865cec1bd8c78e0f0c,http://doi.acm.org/10.1145/3136755.3137032 +9df86395c11565afa8683f6f0a9ca005485c5589,https://doi.org/10.1007/s00530-014-0400-2 +9c686b318cb7774b6da5e2c712743a5a6cafa423,https://doi.org/10.1016/j.neuroimage.2015.12.036 +9cda3e56cec21bd8f91f7acfcefc04ac10973966,https://doi.org/10.1109/IWBF.2016.7449688 +9ce4541d21ee3511bf3dc55bc3cd01222194d95a,https://doi.org/10.1016/j.cviu.2017.05.008 +9ce97efc1d520dadaa0d114192ca789f23442727,http://doi.acm.org/10.1145/2597627 +9c81d436b300494bc88d4de3ac3ec3cc9c43c161,https://doi.org/10.1007/s11042-017-5019-9 +9cd4f72d33d1cedc89870b4f4421d496aa702897,https://doi.org/10.1117/1.JEI.22.2.023010 +9cb7b3b14fd01cc2ed76784ab76304132dab6ff3,https://doi.org/10.1109/ICIP.2015.7351174 +02e668f9b75f4a526c6fdf7268c8c1936d8e6f09,https://doi.org/10.1142/S0218001411008968 +028e237cb539b01ec72c244f57fdcfb65bbe53d4,http://doi.ieeecomputersociety.org/10.1109/CIS.2010.65 +026e96c3c4751e1583bfe78b8c28bdfe854c4988,https://doi.org/10.1109/ICIP.2017.8296442 +0247998a1c045e601dc4d65c53282b5e655be62b,https://doi.org/10.1109/ITSC.2017.8317782 +021469757d626a39639e260492eea7d3e8563820,https://doi.org/10.1007/b116723 +02a92b79391ddac0acef4f665b396f7f39ca2972,https://doi.org/10.1016/j.patcog.2016.10.021 +a4bb791b135bdc721c8fcc5bdef612ca654d7377,https://doi.org/10.1109/BTAS.2017.8272703 +a4725a5b43e7c36d9e30028dff66958f892254a0,http://doi.acm.org/10.1145/2663204.2666271 +a4543226f6592786e9c38752440d9659993d3cb3,http://doi.ieeecomputersociety.org/10.1109/FG.2017.112 +a4e75766ef93b43608c463c233b8646439ce2415,https://doi.org/10.1109/ICCVW.2011.6130492 +a317083d9aac4062e77aa0854513383c87e47ece,https://doi.org/10.1016/j.patcog.2015.06.003 +a35ed55dc330d470be2f610f4822f5152fcac4e1,https://doi.org/10.1109/ISBA.2015.7126369 +a324d61c79fe2e240e080f0dab358aa72dd002b3,https://doi.org/10.1016/j.patcog.2016.02.005 +a3add3268c26876eb76decdf5d7dd78a0d5cf304,https://doi.org/10.1016/j.specom.2017.07.003 +a3ed0f15824802359e05d9777cacd5488dfa7dba,http://doi.acm.org/10.1145/2851581.2892282 +a3bf6129d1ae136709063a5639eafd8018f50feb,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2017.8109741 +a38dd439209b0913b14b1c3c71143457d8cf9b78,https://doi.org/10.1109/IJCNN.2015.7280803 +b5ae8b69677fb962421fe7072f1e842e71f3bea5,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273641 +b5979489e11edd76607c219a8bdc83ba4a88ab38,https://doi.org/10.1109/ACCESS.2017.2778011 +b5bda4e1374acc7414107cde529ad8b3263fae4b,https://doi.org/10.1007/s11370-010-0066-3 +b54fe193b6faf228e5ffc4b88818d6aa234b5bb9,http://doi.acm.org/10.1145/2964284.2967287 +b5690409be6c4e98bd37181d41121adfef218537,https://doi.org/10.1109/ICIP.2008.4711920 +b58d381f9f953bfe24915246b65da872aa94f9aa,https://doi.org/10.1109/SMAP.2013.13 +b5f79df712ad535d88ae784a617a30c02e0551ca,https://doi.org/10.1109/LSP.2015.2480758 +b50edfea790f86373407a964b4255bf8e436d377,http://doi.acm.org/10.1145/3136755.3143008 +b299c292b84aeb4f080a8b39677a8e0d07d51b27,http://doi.ieeecomputersociety.org/10.1109/ICDM.2015.23 +b2add9fad0bcf7bf0660f99f389672cdf7cc6a70,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226 +b2ae5c496fe01bb2e2dee107f75b82c6a2a23374,http://doi.ieeecomputersociety.org/10.1109/FG.2017.116 +b208f2fc776097e98b41a4ff71c18b393e0a0018,http://doi.ieeecomputersociety.org/10.1109/AVSS.2003.1217900 +b259f57f41f4b3b5b7ca29c5acb6f42186bbcf23,https://doi.org/10.1109/SMC.2017.8122808 +b2f9e0497901d22b05b9699b0ea8147861c2e2cc,https://doi.org/10.1007/978-3-319-70353-4_3 +b209608a534957ec61e7a8f4b9d08286ae3d1d7f,https://doi.org/10.1111/j.1468-0394.2011.00589.x +b22317a0bbbcc79425f7c8a871b2bf211ba2e9c4,https://doi.org/10.1109/ACCESS.2018.2805861 +b21bf45cd3aeaec3440eeca09a1c5a5ee3d24a3a,https://doi.org/10.1080/10798587.2014.934592 +b234d429c9ea682e54fca52f4b889b3170f65ffc,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22 +b2ddea9c71cd73fa63e09e8121bc7a098fae70b4,https://doi.org/10.1109/ISCCSP.2012.6217849 +b262a2a543971e10fcbfc7f65f46115ae895d69e,https://doi.org/10.1109/DICTA.2015.7371266 +b2cb335ded99b10f37002d09753bd5a6ea522ef1,https://doi.org/10.1109/ISBA.2017.7947679 +d9c0310203179d5328c4f1475fa4d68c5f0c7324,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.11 +d98a36081a434451184fa4becb59bf5ec55f3a1e,https://doi.org/10.1016/j.neucom.2016.09.110 +d9072e6b7999bc2d5750eb58c67a643f38d176d6,https://doi.org/10.1109/LSP.2009.2027636 +d92084e376a795d3943df577d3b3f3b7d12eeae5,http://doi.ieeecomputersociety.org/10.1109/FG.2017.85 +d963bdff2ce5212fa585a83ca8fad96875bc0057,https://doi.org/10.1016/j.neucom.2016.03.091 +d983dda8b03ed60fa3afafe5c50f1d9a495f260b,https://doi.org/10.1016/j.patcog.2007.03.020 +d9e34af95c21c0e114b61abccbc653480b370c3b,https://doi.org/10.1016/j.patcog.2005.10.020 +d91a5589fd870bf62b7e4979d9d47e8acf6c655d,http://doi.acm.org/10.1145/2382336.2382343 +d9d7a4b64b13ed1bce89d3cbbabe62e78d70b3fb,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.16 +d9eed86e53ce5f7cba379fe77bbefb42e83c0d88,https://doi.org/10.1109/TIP.2017.2764262 +d9b4b49378fcd77dcd5e755975b99ed4c7962f17,https://doi.org/10.1109/TIP.2015.2473105 +d91f9e8cbf271004ef1a293401197a10a26ccd1b,https://doi.org/10.1109/SOCPAR.2015.7492801 +ace1e0f50fe39eb9a42586f841d53980c6f04b11,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043849 +acab402d706dbde4bea4b7df52812681011f435e,https://doi.org/10.1109/HIS.2012.6421377 +acd4280453b995cb071c33f7c9db5760432f4279,https://doi.org/10.1007/s00138-018-0907-1 +ac48ecbc7c3c1a7eab08820845d47d6ce197707c,https://doi.org/10.1109/TIP.2017.2681841 +ac37285f2f5ccf99e9054735a36465ee35a6afdd,https://doi.org/10.1109/ISCAS.2006.1693880 +ad08426ca57da2be0e9f8c1f673e491582edb896,http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.98 +adad7446e371d27fdaee39475856e2058f3045e5,https://doi.org/10.1109/ISCAS.2013.6572295 +ad6cc071b2585e4bdb6233b7ad8d63e12538537d,https://doi.org/10.1007/s10462-010-9172-z +ad4d1ecf5c5473c050e11f6876ce148de1c8920a,https://doi.org/10.1109/IJCNN.2017.7965886 +ad9ba7eade9d4299159512d6d5d07d7d3d26ae58,https://doi.org/10.1007/s11063-012-9252-y +ad8bd7016132a2f98ff1f41dac695285e71cc4b1,https://doi.org/10.1109/CISP-BMEI.2017.8301964 +add6d96fc018986f51a1aac47eae9ee3fc62fb66,http://doi.acm.org/10.1145/3009977.3010074 +ad5a35a251e07628dd035c68e44a64c53652be6b,https://doi.org/10.1016/j.patcog.2016.12.024 +ad7b6d2e8d66f720cc83323a0700c25006d49609,https://doi.org/10.1109/TIP.2009.2028255 +adb040081974369c46b943e9f75be4e405623102,http://doi.ieeecomputersociety.org/10.1109/PACCS.2009.191 +ad339a5fdaab95f3c8aad83b60ceba8d76107fa2,https://doi.org/10.1023/B:VISI.0000013090.39095.d5 +ada56c9ceef50aa5159f1f8aa45ca2040d1ed15c,https://doi.org/10.1109/TIFS.2017.2680246 +ad1679295a5e5ebe7ad05ea1502bce961ec68057,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344631 +adf9998214598469f7a097bc50de4c23784f2a5a,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.745 +ad50f6899103eff0ee4504e539c38eb965fd1309,https://doi.org/10.1109/IJCNN.2010.5596374 +bbc21d6b7c6e807c6886d237a04b501158ca6bb8,https://doi.org/10.1109/TMM.2016.2523421 +bb070c019c0885232f114c7dca970d2afd9cd828,https://doi.org/10.1109/DICTA.2014.7008089 +bbc47f421ab161f22f2699ee7bbb7fc8aec1cb7b,https://doi.org/10.1109/IJCNN.2017.7966271 +bb3698df3b4f40c0b7cc523d26ffb8c5276d5a1c,https://doi.org/10.1109/ICDSP.2016.7868528 +bb83d5c7c17832d1eef14aa5d303d9dd65748956,http://doi.acm.org/10.1145/3139513.3139514 +bbc8ccd3f62615e3c0ce2c3aee5e4a223d215bbd,https://doi.org/10.1007/s11042-015-2497-5 +d7c87f4ca39f79d93c954ffacac32bc6eb527e2c,https://doi.org/10.1007/978-3-642-15696-0_57 +d75bd05865224a1341731da66b8d812a7924d6f6,https://doi.org/10.1109/TSMCB.2012.2217127 +d79530e1745b33f3b771d0b38d090b40afc04191,https://doi.org/10.1007/s11042-015-2485-9 +d7bd37920a3a4a4d681151131e23a839695c8d5b,https://doi.org/10.1109/ICRA.2011.5979870 +d7b7253f7d8b397d9d74057e1e72ed9c58e2ba6d,https://doi.org/10.1109/TII.2013.2271914 +d723ebf3288126fa8cbb10ba7e2a6308aede857c,https://doi.org/10.1117/12.968586 +d7a84db2a1bf7b97657b0250f354f249394dd700,https://doi.org/10.1109/ICIP.2010.5653518 +d05759932001aa6f1f71e7dc261c4716f57a5397,https://doi.org/10.1109/ISBA.2015.7126365 +d046030f7138e5a2dbe2b3eec1b948ad8c787538,https://doi.org/10.1109/ICIP.2009.5413447 +d0b67ec62086b55f00dc461ab58dc87b85388b2b,https://doi.org/10.1109/ICIP.2014.7026206 +d0a8889f694422614bf3ecccd69aa1d4f7822606,https://doi.org/10.1007/978-0-85729-997-0_22 +d0f9143f6f43a39bff47daf8c596681581db72ea,https://doi.org/10.1007/s11042-017-5241-5 +d0b7d3f9a59034d44e7cd1b434cfd27136a7c029,https://doi.org/10.1109/INCoS.2013.143 +d0d75a7116a76ccd98a3aeb6f6fff10ba91de1c1,https://doi.org/10.1109/TIP.2015.2502144 +d09fd7e0bb5d997963cfef45452724416b2bb052,https://doi.org/10.1109/EMEIT.2011.6023179 +d0dd1364411a130448517ba532728d5c2fe78ed9,https://doi.org/10.1109/ISCAS.2016.7527183 +be51854ef513362bc236b85dd6f0e2c2da51614b,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.298 +be6bd94322dd0ecfc8ea99eb7f40a9a14dd3471f,https://doi.org/10.1109/UIC-ATC.2013.32 +be40014beffaa9faacee12bb3412969f98b6a43d,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.454 +be0a0e563445119b82d664d370e646e53e69a4c5,https://doi.org/10.1016/j.eswa.2017.05.037 +b3050dc48600acf2f75edf1f580a1f9e9cb3c14a,https://doi.org/10.1007/s00138-013-0584-z +b388bf63c79e429dafee16c62b2732bcbea0d026,https://doi.org/10.1109/ICIP.2016.7533051 +b351575e3eab724d62d0703e24ecae55025eef00,https://doi.org/10.1007/s10209-014-0369-9 +b34fdab6864782ce60fd90d09f5d886bd83f84f5,https://doi.org/10.1002/cpe.3766 +b36a80d15c3e48870ea6118b855055cc34307658,https://doi.org/10.1109/ICPR.2014.17 +b3e60bb5627312b72c99c5ef18aa41bcc1d21aea,https://doi.org/10.1109/SPAC.2014.6982690 +dfb8a04a80d4b0794c0679d797cb90ec101e162c,http://doi.ieeecomputersociety.org/10.1109/AVSS.2014.6918665 +dfbbe8100fcd70322a431bd5d2c2d52a65fd4bbd,http://doi.acm.org/10.1145/2818346.2823313 +df550cb749858648209707bec5410431ea95e027,https://doi.org/10.1109/TCYB.2015.2433926 +df7ff512e8324894d20103fd8ab5da650e4d86db,http://doi.acm.org/10.1145/2043674.2043709 +dff38cac0a1004037024f0ed2a72f76f4e49318b,https://doi.org/10.1109/TNNLS.2015.2495268 +df7af280771a6c8302b75ed0a14ffe7854cca679,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293 +da1477b4a65ae5a013e646b57e004f0cd60619a2,https://doi.org/10.1109/ICB.2012.6199764 +da2b2be4c33e221c7f417875a6c5c74043b1b227,https://doi.org/10.1109/BTAS.2017.8272712 +dab795b562c7cc270c9099b925d685bea0abe82a,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2382599 +dac6e9d708a9757f848409f25df99c5a561c863c,https://doi.org/10.1109/LSP.2014.2334656 +da928ac611e4e14e454e0b69dfbf697f7a09fb38,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477718 +dae9d0a9b77366f0cd52e38847e47691ee97bc1f,https://doi.org/10.1007/s11760-015-0822-0 +b472f91390781611d4e197564b0016d9643a5518,http://doi.acm.org/10.1145/2382336.2382345 +b47a3c909ee9b099854619054fd00e200b944aa9,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.77 +b42b535fcd0d9bd41a6594a910ea4623e907ceb9,https://doi.org/10.1109/ICTAI.2012.153 +b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,https://doi.org/10.1109/GlobalSIP.2017.8309138 +a216f7863fc6ab15e2bb7a538dfe00924e1da0ab,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163087 +a2646865d7c3d7fb346cf714caf146de2ea0e68f,https://doi.org/10.1109/SMC.2016.7844390 +a200885bf6bfa0493d85e7617e65cdabe30a2dab,https://doi.org/10.1109/ICIP.2015.7351272 +a2cc3193ed56ef4cedaaf4402c844df28edb5639,https://doi.org/10.1016/j.patrec.2012.01.005 +a2af07176a38fe844b0e2fdf4abae65472628b38,https://doi.org/10.1109/ICIP.2014.7026060 +a2b76ab614d92f5e71312b530f0b6281d0c500f7,https://doi.org/10.1007/s10898-014-0231-x +a5eb36f1e77245dfc9e5c0c03998529331e4c89b,https://doi.org/10.1109/BTAS.2014.6996222 +a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,https://doi.org/10.1109/TIP.2015.2481327 +a5b6a3234e15343d2e5417cff46c0a5f0943521e,https://doi.org/10.1109/TNNLS.2014.2321420 +a5b9c6aa52f91092b5a8ab04ed1f7b60c0ea5260,http://doi.ieeecomputersociety.org/10.1109/WI-IATW.2006.88 +a5d4cc596446517dfaa4d92276a12d5e1c0a284c,https://doi.org/10.1016/j.patrec.2009.06.002 +a5d76710dc15ebc7d8b4dc976604315f1e2fc3ba,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2011.117 +a53f988d16f5828c961553e8efd38fed15e70bcc,https://doi.org/10.1109/BTAS.2015.7358787 +a52a69bf304d49fba6eac6a73c5169834c77042d,https://doi.org/10.1109/LSP.2017.2789251 +bdf5434648356ce22bdbf81d2951e4bb00228e4d,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.415 +bd26faef48080b5af294b19139c804ffec70825e,https://doi.org/10.1007/s11390-015-1526-1 +bdd203bcd3c41c336c5635fb026a78279d75b4be,https://doi.org/10.1109/ICPR.2016.7899761 +bd9e0b6a90b51cc19b65f51dacd08ce1a7ccaac5,https://doi.org/10.1109/VSMM.2014.7136653 +bd25c4ad7471580ed9787eae041b80a3c4fe97bb,https://doi.org/10.1016/j.sigpro.2010.01.019 +bd66dc891270d858de3adf97d42ed714860ae94d,https://doi.org/10.1109/ACPR.2015.7486598 +bd74c3ca2ff03396109ac2d1131708636bd0d4d3,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.228 +d119443de1d75cad384d897c2ed5a7b9c1661d98,https://doi.org/10.1109/ICIP.2010.5650873 +d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,https://doi.org/10.1109/LSP.2017.2661983 +d1184939e06dbc3b495c883c53b684c6d6aa9e48,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477669 +d1dd80d77655876fb45b9420fe72444c303b219e,https://doi.org/10.1109/FG.2011.5771371 +d12bea587989fc78b47584470fd8f689b6ab81d2,https://doi.org/10.1109/TIP.2013.2246523 +d1bd956a8523629ed4e2533b01272f22cea534c6,https://doi.org/10.1016/j.patrec.2010.01.021 +d60e3eef429ed2a51bbd806125fa31f5bea072a4,https://doi.org/10.1109/HIS.2013.6920481 +d6e3bd948aae43f7654ea1d9e89d88f20d8cf25f,https://doi.org/10.1109/ACPR.2013.98 +d691440030394c2e00a2ab47aba4f8b5fca5f25a,https://doi.org/10.1109/ICIP.2016.7532921 +d6bdc70d259b38bbeb3a78db064232b4b4acc88f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.27 +d63bd06340dd35590a22222509e455c49165ee13,https://doi.org/10.1109/IJCNN.2016.7727234 +d6a5eb4377e2a67420778eab61b5a89046307bae,http://doi.ieeecomputersociety.org/10.1109/CRV.2014.37 +d628aabf1a666a875e77c3d3fee857cd25891947,https://doi.org/10.1109/SMC.2016.7844663 +d6791b98353aa113d79f6fb96335aa6c7ea3b759,https://doi.org/10.1109/TNNLS.2017.2648122 +bcf2710d46941695e421226372397c9544994214,https://doi.org/10.1109/ICNC.2015.7378076 +bc66685acc64fa3c425c0ee6c443d3fa87db7364,https://doi.org/10.1109/TMM.2013.2279658 +bccb35704cdd3f2765b1a3f0296d1bff3be019c1,https://doi.org/10.1109/ICMLA.2016.0145 +bcead1a92744e76c38caaa13159de4abfb81b1d0,https://doi.org/10.1109/ICIP.2014.7025310 +bca39960ba46dc3193defe0b286ee0bea4424041,https://doi.org/10.1016/j.patrec.2009.05.018 +bc6a7390135bf127b93b90a21b1fdebbfb56ad30,https://doi.org/10.1109/TIFS.2017.2766039 +ae73f771d0e429a74b04a6784b1b46dfe98f53e4,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.326 +ae425a2654a1064c2eda29b08a492c8d5aab27a2,https://doi.org/10.23919/MVA.2017.7986845 +ae89e464576209b1082da38e0cee7aeabd03d932,https://doi.org/10.1007/s00521-005-0017-7 +ae7604b1840753e9c2e1ab7a97e02f91a9d81860,https://doi.org/10.1007/s10586-016-0535-3 +aeb36fac7516753a14c3c690f352de78e70f8c6e,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2013.13 +aea977a3b5556957ed5fb3ef21685ee84921eaa3,https://doi.org/10.1007/s12193-017-0256-9 +aed6af12148b43e4a24ee6e2bc3604ca59bd99a5,https://doi.org/10.1109/TIP.2017.2717505 +ae8240095c9cca2c395f173fece2f46277b94929,https://doi.org/10.1016/j.neucom.2017.06.045 +ae96fc36c89e5c6c3c433c1163c25db1359e13ea,https://doi.org/10.1007/s10489-013-0485-x +d8c9bad8d07ae4196027dfb8343b9d9aefb130ff,https://doi.org/10.1007/s00138-017-0848-0 +d8b99eada922bd2ce4e20dc09c61a0e3cc640a62,https://doi.org/10.1109/IJCNN.2014.6889675 +d878a67b2ef6a0a5dec72db15291f12419040ab1,https://doi.org/10.1109/IPTA.2016.7821012 +d8e5d94c3c8688f0ca0ee656c79847c7df04c77d,https://doi.org/10.1007/s12193-015-0187-2 +d855791bc23b4aa8e751d6a4e2ae7f5566a991e8,http://doi.acm.org/10.1145/3012941 +d8288322f32ee4501cef5a9b667e5bb79ebd7018,https://doi.org/10.1016/j.patcog.2011.12.018 +d8c9ce0bd5e4b6d1465402a760845e23af5ac259,https://doi.org/10.1109/ITSC.2015.380 +ab7923968660d04434271559c4634790dc68c58e,https://doi.org/10.1109/ICIP.2015.7351111 +abf0aa1d8869d87f4ef62e2da058ccfb4bf46d18,https://doi.org/10.1007/s11042-015-2536-2 +abfba1dc9a9991897acd0e0d3d4ef9d4aef4151c,https://doi.org/10.1109/FUZZ-IEEE.2014.6891864 +ab68837d09986c592dcab7d08ee6dfb40e02916f,https://doi.org/10.1007/978-3-319-11289-3_23 +aba9acb4a607071af10684f2cfbdefa0507a4e9a,https://doi.org/10.1016/j.patcog.2016.06.010 +ab703224e3d6718bc28f7b9987eb6a5e5cce3b01,https://doi.org/10.1631/FITEE.1500235 +abe4c1d6b964c4f5443b0334a44f0b03dd1909f4,https://doi.org/10.1109/IJCNN.2017.7965950 +ab2c07c9867243fad2d66fa6aeabfb780433f319,http://doi.acm.org/10.1145/2967878.2967887 +ab00ea1aa2f81fbe139b4632ec3682dfb7312ef0,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6835994 +abbc6dcbd032ff80e0535850f1bc27c4610b0d45,https://doi.org/10.1109/ICIP.2015.7350983 +abf573864b8fbc0f1c491ca60b60527a3e75f0f5,https://doi.org/10.1007/s11042-014-2204-y +e52272f92fa553687f1ac068605f1de929efafc2,https://doi.org/10.1016/j.engappai.2017.06.003 +e585dc6c810264d9f07e38c412379734a920714e,http://doi.acm.org/10.1145/2531923.2531926 +e51f1ee5535017e10a5f77100ff892509ec6b221,https://doi.org/10.1109/ICSMC.2007.4413825 +e57108607d94aa158eb22ae50540ae6080e48d4b,http://doi.ieeecomputersociety.org/10.1109/ICMI.2002.1167051 +e5c687c8c84f1cdb9d9fbc9b6ff7518ff4d71056,https://doi.org/10.1109/TNN.2011.2170220 +e57ce6244ec696ff9aa42d6af7f09eed176153a8,https://doi.org/10.1109/ICIP.2015.7351449 +e50ec6b6d1c189edc127eb403c41a64f34fc0a6c,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890187 +e51927b125640bfc47bbf1aa00c3c026748c75bd,http://doi.acm.org/10.1145/2647868.2655015 +e55f7250f3b8ee722814f8809620a851c31e5b0e,https://doi.org/10.3182/20130902-3-CN-3020.00030 +e5fbaeddbf98c667ec7c5575bda2158a36b55409,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.25 +e57e1dce81e888eb07054923602e35bfb5ef3eb8,https://doi.org/10.1109/IROS.2012.6385544 +e546572f8205570de4518bcf8d0345465e51d7a0,https://doi.org/10.1109/ICIP.2015.7351318 +e27b2cabdfdd6bf3ffb3ebce1b4c55adb1e80c8f,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.225 +e26a7e343fe109e2b52d1eeea5b02dae836f3502,https://doi.org/10.1109/ACCESS.2017.2676238 +e2b3aae594035e58f72125e313e92c7c4cc9d5bb,https://doi.org/10.1007/s00138-014-0597-2 +e2f78d2f75a807b89a13115a206da4661361fa71,https://doi.org/10.1109/TMM.2017.2696825 +f41d7f891a1fc4569fe2df66e67f277a1adef229,https://doi.org/10.1109/ICIP.2015.7351552 +f4411787688ca40466ee059ec64bf56d746733c1,https://doi.org/10.1007/s12652-012-0107-1 +f402e088dddfaad7667bd4def26092d05f247206,https://doi.org/10.1109/TITS.2015.2475721 +f4465454811acb2021a46d84d94fc88e2dda00a6,https://doi.org/10.1007/s11042-007-0184-x +f41e80f941a45b5880f4c88e5bf721872db3400f,http://doi.ieeecomputersociety.org/10.1109/IC3.2017.8284359 +f4fc77660665ae58993065c6a336367e9a6c85f7,https://doi.org/10.1016/j.patcog.2012.12.009 +f4003cbbff3b3d008aa64c76fed163c10d9c68bd,https://doi.org/10.1016/j.neucom.2016.08.055 +f449c85b8ba5fa67ead341c7ad4ec396f4ab2dd6,http://doi.ieeecomputersociety.org/10.1109/TKDE.2015.2448547 +f423d8be5e13d9ef979debd3baf0a1b2e1d3682f,https://doi.org/10.1016/j.imavis.2015.11.004 +f486624efa750d718a670fba3c7f21b1c84ebaeb,https://doi.org/10.1109/TCYB.2016.2581861 +f49aebe58d30241f12c1d7d9f4e04b6e524d7a45,https://doi.org/10.1109/ICB.2016.7550074 +eb3c45e78acee0824c8f7d997c6104d74e7213a8,http://doi.ieeecomputersociety.org/10.1109/iThings/CPSCom.2011.116 +eb38f20eaa1b849cabec99815883390f84daf279,https://doi.org/10.1016/j.patcog.2008.11.026 +eb9867f5efc98d3203ce1037f9a8814b0d15d0aa,https://doi.org/10.1109/ICIP.2014.7026008 +eb02daee558e483427ebcf5d1f142f6443a6de6b,http://doi.acm.org/10.1145/2911996.2912019 +ebc2a3e8a510c625353637e8e8f07bd34410228f,https://doi.org/10.1109/TIP.2015.2502485 +eb5c1e526fe2d17778c68f60c874c3da0129fabd,https://doi.org/10.1109/VCIP.2015.7457856 +ebce3f5c1801511de9e2e14465482260ba5933cc,http://doi.acm.org/10.1145/3126594.3126640 +eb240521d008d582af37f0497f12c51f4bab16c8,https://doi.org/10.1023/A:1012365806338 +ebb3d5c70bedf2287f9b26ac0031004f8f617b97,https://doi.org/10.1109/MSP.2017.2764116 +ebeb0546efeab2be404c41a94f586c9107952bc3,http://doi.acm.org/10.1145/2733373.2806290 +ebfdb4842c69177b65022f00d3d038d645f3260b,http://doi.ieeecomputersociety.org/10.1109/CVPR.2006.154 +eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,https://doi.org/10.1109/ICPR.2016.7899719 +c7cd490e43ee4ff81e8f86f790063695369c2830,https://doi.org/10.1109/VCIP.2016.7805472 +c7b58827b2d07ece676271ae0425e369e3bd2310,https://doi.org/10.1142/S0218001415560042 +c0270a57ad78da6c3982a4034ffa195b9e932fda,http://doi.ieeecomputersociety.org/10.1109/FG.2017.131 +c0f9fae059745e50658d9605bd8875fc3a2d0b4b,http://doi.ieeecomputersociety.org/10.1109/BIGCOMP.2014.6741422 +c0945953506a3d531331caf6c2b2a6d027e319f0,https://doi.org/10.1002/cav.49 +c06b13d0ec3f5c43e2782cd22542588e233733c3,https://doi.org/10.1016/j.cviu.2016.02.001 +c0b02be66a5a1907e8cfb8117de50f80b90a65a8,http://doi.acm.org/10.1145/2808492.2808523 +eefecac463ebfc0694b9831e842b574f3954fed6,http://doi.ieeecomputersociety.org/10.1109/SNPD.2013.15 +eedb2c34c36017b9c5aa6ce8bff2ab152e713cee,https://doi.org/10.1007/s00521-008-0225-z +ee6e4324123b99d94a7a23d9bddf026f39903693,https://doi.org/10.1109/ISMICT.2013.6521709 +eef432868e85b95a7d9d9c7b8c461637052318ca,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.236 +eef0be751e9aca7776d83f25c8ffdc1a18201fd8,https://doi.org/10.1016/j.patcog.2016.10.015 +ee2217f9d22d6a18aaf97f05768035c38305d1fa,https://doi.org/10.1109/APSIPA.2015.7415501 +eed05da2c0ab7d2b0a3c665a5368efa81b185099,https://doi.org/10.1016/j.neucom.2014.05.020 +eeaeca3a601d65d2d978bf3da43ab42fa5e08ed2,https://doi.org/10.1109/FSKD.2016.7603398 +eefdb69ac2c461e7791603d0f8c02ff3c8600adc,https://doi.org/10.1016/j.jvcir.2017.02.007 +ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,https://doi.org/10.1109/LSP.2016.2602538 +c98def5f9d0c6ae519fe0aeebe5378f65b14e496,https://doi.org/10.1117/12.2064730 +c92e36689ef561df726a7ae861d9c166c3934908,https://doi.org/10.1109/ICPR.2016.7900140 +c907104680ad53bdc673f2648d713e4d26335825,http://doi.acm.org/10.1145/3077286.3077304 +c9c2de3628be7e249722b12911bebad84b567ce6,https://doi.org/10.1016/j.patcog.2017.06.028 +c9be1001706bcdd8b35fa9cae733c592e90c7ec3,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.54 +c9527df51e63b56c61cbf16f83d1a3c5c2c82499,http://doi.acm.org/10.1145/2072298.2072311 +c9832564d5dc601113b4d80e5a05ede6fee9f7dd,https://doi.org/10.1109/ISBA.2017.7947687 +c90427085909029afd2af01d1967e80b78e01b88,https://doi.org/10.1109/ACCESS.2017.2753830 +fcd3d557863e71dd5ce8bcf918adbe22ec59e62f,http://doi.acm.org/10.1145/2502081.2502148 +fc8990088e0f1f017540900bc3f5a4996192ff05,https://doi.org/10.1109/ICIP.2017.8296314 +fcb97ede372c5bddde7a61924ac2fd29788c82ce,https://doi.org/10.1109/TSMCC.2012.2192727 +fc5538e60952f86fff22571c334a403619c742c3,http://ieeexplore.ieee.org/document/6460202/ +fc970d7694b1d2438dd101a146d2e4f29087963e,http://doi.ieeecomputersociety.org/10.1109/FG.2017.86 +fcb276874cd932c8f6204f767157420500c64bd0,https://doi.org/10.1007/978-3-319-04960-1_3 +fdd19fee07f2404952e629cc7f7ffaac14febe01,https://doi.org/10.1109/CISP-BMEI.2016.7852754 +fdbc602a749ef070a7ac11c78dc8d468c0b60154,https://doi.org/10.1049/iet-ipr.2015.0519 +fddca9e7d892a97073ada88eec39e03e44b8c46a,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.305 +fd38163654a0551ed7f4e442851508106e6105d9,https://doi.org/10.1109/ICNSC.2008.4525311 +f28d549feffd414f38147d5e0460883fb487e2d3,https://doi.org/10.1007/s10462-011-9273-3 +f25aa838fb44087668206bf3d556d31ffd75235d,http://doi.acm.org/10.1145/2911996.2912038 +f2d15482e7055dd5f54cf4a8a8f60d8e75af7edf,https://doi.org/10.1109/ICIP.2011.6115736 +f2cc459ada3abd9d8aa82e92710676973aeff275,http://ieeexplore.ieee.org/document/5967185/ +f27fd2a1bc229c773238f1912db94991b8bf389a,https://doi.org/10.1109/IVCNZ.2016.7804414 +f28ef0a61a45a8b9cd03aa0ca81863e1d54a31d1,https://doi.org/10.1109/VCIP.2016.7805483 +f2004fff215a17ac132310882610ddafe25ba153,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.124 +f231e9408da20498ba51d93459b3fcdb7b666efb,https://doi.org/10.1016/j.micpro.2012.01.002 +f5a95f857496db376d69f7ac844d1f56e3577b75,https://doi.org/10.1007/s12193-012-0107-7 +f531ce18befc03489f647560ad3e5639566b39dc,http://doi.ieeecomputersociety.org/10.1109/ACOMP.2015.9 +f545b121b9612707339dfdc40eca32def5e60430,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.33 +f58f30932e3464fc808e539897efa4ee4e7ac59f,https://doi.org/10.1109/DICTA.2016.7797023 +f557df59cd088ffb8e27506d8612d062407e96f4,https://doi.org/10.1007/s00521-014-1810-y +e3a8f18e507d9f2b537ec3c3fcc1b874b8ccfc24,http://doi.ieeecomputersociety.org/10.1109/MMUL.2016.27 +cf4c1099bef189838877c8785812bc9baa5441ed,https://doi.org/10.1109/ICPR.2016.7899862 +cf6c59d359466c41643017d2c212125aa0ee84b2,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552983 +cf7a4442a6aad0e08d4aade8ec379c44f84bca8a,http://doi.acm.org/10.1145/1873951.1874054 +cf784156547c3be146706e2763c1a52d939d1722,https://doi.org/10.1007/s11042-017-5038-6 +cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,https://doi.org/10.1109/TIFS.2013.2286265 +cf185d0d8fcad2c7f0a28b7906353d4eca5a098b,https://doi.org/10.1186/s13640-017-0190-5 +cf54e9776d799aa183d7466094525251d66389a4,https://doi.org/10.1109/ICCE-Berlin.2017.8210589 +cf6851c24f489dabff0238e01554edea6aa0fc7c,https://doi.org/10.1109/ICSMC.2011.6083637 +cfba667644508853844c45bfe5d0b8a2ffb756d3,https://doi.org/10.1109/ISBA.2018.8311455 +ca0185529706df92745e656639179675c717d8d5,https://doi.org/10.1504/IJCVR.2014.065571 +cae41c3d5508f57421faf672ee1bea0da4be66e0,https://doi.org/10.1109/ICPR.2016.7900298 +ca447d6479554b27b4afbd0fd599b2ed39f2c335,https://doi.org/10.1109/ICPR.2014.459 +ca0804050cf9d7e3ed311f9be9c7f829e5e6a003,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1333904 +ca458f189c1167e42d3a5aaf81efc92a4c008976,https://doi.org/10.1109/TIP.2012.2202678 +ca8f23d9b9a40016eaf0467a3df46720ac718e1d,https://doi.org/10.1109/ICASSP.2015.7178214 +cacce7f4ce74e3269f5555aa6fd83e48baaf9c96,http://doi.acm.org/10.1145/2632165 +ca60d007af691558de377cab5e865b5373d80a44,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273630 +cab3c6069387461c3a9e5d77defe9a84fe9c9032,https://doi.org/10.1016/j.neucom.2016.12.056 +ca37933b6297cdca211aa7250cbe6b59f8be40e5,http://doi.acm.org/10.1145/3155133.3155207 +e41246837c25d629ca0fad74643fb9eb8bf38009,https://doi.org/10.1109/ICSIPA.2011.6144064 +e4d53e7f4c2052940841abc08f9574655f3f7fb4,http://doi.acm.org/10.1145/3078971.3079039 +e4df98e4b45a598661a47a0a8900065716dafd6d,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2015.219 +e4ad82afc563b783475ed45e9f2cd4c9e2a53e83,https://doi.org/10.1109/AICCSA.2016.7945716 +e47e8fa44decf9adbcdb02f8a64b802fe33b29ef,https://doi.org/10.1109/TIP.2017.2782366 +e42f3c27391821f9873539fc3da125b83bffd5a2,https://doi.org/10.1109/HPCS.2010.5547096 +e4b825bf9d5df47e01e8d7829371d05208fc272d,http://doi.acm.org/10.1145/3055635.3056618 +e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,https://doi.org/10.1109/BTAS.2017.8272722 +e4c3587392d477b7594086c6f28a00a826abf004,https://doi.org/10.1109/ICIP.2017.8296998 +fef6f1e04fa64f2f26ac9f01cd143dd19e549790,http://doi.acm.org/10.1145/3123266.3123451 +fe556c18b7ab65ceb57e1dd054a2ca21cefe153c,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.145 +fed8cc533037d7d925df572a440fd89f34d9c1fd,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.194 +fefaa892f1f3ff78db4da55391f4a76d6536c49a,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2497689 +fe14d8177cbdb7e5b4085302e6e044f7a4c19cb2,https://doi.org/10.1109/ICSMC.2012.6377834 +fe5d6c65e51386f4d36f7434fe6fcd9494fe9361,https://doi.org/10.1109/ACCESS.2017.2730281 +c83d142a47babe84e8c4addafa9e2bb9e9b757a5,https://doi.org/10.1109/MLSP.2012.6349762 +c833c2fb73decde1ad5b5432d16af9c7bee1c165,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.143 +c8fb8872203ee694d95da47a1f9929ac27186d87,https://doi.org/10.1109/ICIP.2005.1530305 +c8fb8994190c1aa03c5c54c0af64c2c5c99139b4,https://doi.org/10.1007/s00138-016-0794-2 +c84991fe3bf0635e326a05e34b11ccaf74d233dc,https://doi.org/10.1016/j.neucom.2016.08.069 +c8bc8c99acd009e4d27ddd8d9a6e0b899d48543e,https://doi.org/10.1109/IROS.2012.6386178 +c81b27932069e6c7016bfcaa5e861b99ac617934,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019469 +c872d6310f2079db0cee0e69cc96da1470055225,https://doi.org/10.1007/978-3-319-46675-0_68 +fb3aaf18ea07b30d1836e7cf2ab9fa898627fe93,https://doi.org/10.1109/ACCESS.2017.2784096 +fb1b6138aeb081adf853316c0d83ef4c5626a7fa,https://doi.org/10.1109/ICIP.2017.8296302 +fb7bf10cbc583db5d5eee945aa633fcb968e01ad,https://doi.org/10.1007/s00521-012-0962-x +fb915bcc1623cdf999c0e95992c0e0cf85e64d8e,http://doi.ieeecomputersociety.org/10.1109/iThings.2014.83 +fb557b79157a6dda15f3abdeb01a3308528f71f2,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.310 +fb1627ed224bf7b1e3d80c097316ed7703951df2,https://doi.org/10.1109/VCIP.2017.8305094 +fb3ff56ab12bd250caf8254eca30cd97984a949a,https://doi.org/10.3103/S0146411617010072 +fb2bd6c2959a4f811b712840e599f695dad2967e,https://doi.org/10.1109/ISPA.2015.7306038 +fba386ac63fe87ee5a0cf64bf4fb90324b657d61,https://doi.org/10.1109/ICIP.2015.7351752 +ed9de242a23ad546902e1d5ec022dbb029cc2282,https://doi.org/10.1109/ICASSP.2015.7178138 +edbddf8c176d6e914f0babe64ad56c051597d415,https://doi.org/10.1109/TMM.2016.2644866 +ed94e7689cdae87891f08428596dec2a2dc6a002,https://doi.org/10.1109/CAMSAP.2017.8313130 +ed273b5434013dcdb9029c1a9f1718da494a23a2,https://doi.org/10.1109/LSP.2018.2810106 +ed0d8997a4b7b80a7cd3592e98bdbe5c3aab0cee,https://doi.org/10.1007/s11042-014-2345-z +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,https://doi.org/10.1007/978-981-10-3005-5_57 +ed70d1a9435c0b32c0c75c1a062f4f07556f7016,https://doi.org/10.1109/ICIP.2015.7350774 +ed82f10e5bfe1825b9fa5379a1d0017b96fa1ebf,http://doi.ieeecomputersociety.org/10.1109/ICEBE.2017.36 +ed023651e31cdbcaa5ef2ee1d71ddbc2906c2f76,https://doi.org/10.1109/LSP.2010.2093600 +c1a70d63d1667abfb1f6267f3564110d55c79c0d,https://doi.org/10.1007/s00138-013-0488-y +c138c76809b8da9e5822fb0ae38457e5d75287e0,https://doi.org/10.1109/TIP.2014.2378017 +c1581b5175994e33549b8e6d07b4ea0baf7fe517,https://doi.org/10.1109/IJCNN.2011.6033478 +c1173b8d8efb8c2d989ce0e51fe21f6b0b8d1478,https://doi.org/10.1109/TCYB.2016.2535122 +c1f05b723e53ac4eb1133249b445c0011d42ca79,https://doi.org/10.1162/neco_a_00990 +c1fb854d9a04b842ff38bd844b50115e33113539,https://doi.org/10.1007/s11042-016-3883-3 +c17c7b201cfd0bcd75441afeaa734544c6ca3416,https://doi.org/10.1109/TCSVT.2016.2587389 +c12034ca237ee330dd25843f2d05a6e1cfde1767,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.298 +c64502696438b4c9f9e12e64daaf7605f62ce3f0,http://doi.ieeecomputersociety.org/10.1109/WKDD.2009.195 +c65cfc9d3568c586faf18611c4124f6b7c0c1a13,https://doi.org/10.1109/ICACCI.2014.6968322 +c648d2394be3ff0c0ee5360787ff3777a3881b02,https://doi.org/10.1080/01449290903353047 +c65d2ee433ae095652abe3860eeafe6082c636c6,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553714 +c6bbb56a26222bdb8ce7dd829cff38b67d4b03cd,http://doi.acm.org/10.1145/2043674.2043677 +c675534be881e59a78a5986b8fb4e649ddd2abbe,https://doi.org/10.1109/ICIP.2017.8296548 +c60601bdb5465d8270fdf444e5d8aeccab744e29,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583363 +ec6a2093059fd6eada9944212f64a659881abb95,https://doi.org/10.1016/j.patcog.2016.02.022 +ec89f2307e29cc4222b887eb0619e0b697cf110d,https://doi.org/10.1109/TIP.2009.2027361 +ec1a57e609eda72b4eb60155fac12db1da31f6c0,https://doi.org/10.1007/11744085_41 +ec28217290897a059348dcdf287540a2e2c68204,https://doi.org/10.1504/IJBM.2015.070928 +eca706b4d77708452bdad1c98a23e4e88ce941ab,https://doi.org/10.1142/S0218001416550144 +ec39e9c21d6e2576f21936b1ecc1574dadaf291e,https://doi.org/10.1109/WACV.2017.130 +ecdd83002f69c2ccc644d07abb44dd939542d89d,https://doi.org/10.1016/j.neucom.2015.07.011 +4e8f301dbedc9063831da1306b294f2bd5b10477,https://doi.org/10.1109/BIOSIG.2016.7736919 +4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,https://doi.org/10.1109/TIFS.2017.2788002 +4e1d89149fc4aa057a8becce2d730ec6afd60efa,https://doi.org/10.1109/ICSMC.2009.5346047 +4ea63435d7b58d41a5cbcdd34812201f302ca061,https://doi.org/10.1109/ICIP.2014.7025066 +4e6e5cb93e7e564bc426b5b27888d55101504c50,https://doi.org/10.1109/ICPR.2016.7900299 +4e343c66c5fe7426132869d552f0f205d1bc5307,https://doi.org/10.1109/ICPR.2014.452 +4e1258db62e4762fd8647b250fda9c3567f86eb8,http://doi.ieeecomputersociety.org/10.1109/CRV.2013.17 +4ee94572ae1d9c090fe81baa7236c7efbe1ca5b4,https://doi.org/10.1109/DICTA.2017.8227494 +4eeccbbb98de4f2e992600482fd6b881ace014bb,http://doi.acm.org/10.1145/2964284.2967240 +4e581831d24fd90b0b5228b9136e76fa3e8f8279,https://doi.org/10.1109/TIP.2014.2303648 +4eb8030b31ff86bdcb063403eef24e53b9ad4329,http://doi.acm.org/10.1145/2993148.2997640 +4ed40e6bb66dfa38a75d864d804d175a26b6c6f6,http://doi.ieeecomputersociety.org/10.1109/CRV.2011.41 +204f1cf56794bb23f9516b5f225a6ae00d3d30b8,https://doi.org/10.1109/JSYST.2015.2418680 +20b405d658b7bb88d176653758384e2e3e367039,https://doi.org/10.1109/IJCNN.2012.6252677 +20eabf10e9591443de95b726d90cda8efa7e53bb,https://doi.org/10.1007/s11390-017-1740-0 +205f035ec90a7fa50fd04fdca390ce83c0eea958,http://doi.acm.org/10.1145/3131287 +189e5a2fa51ed471c0e7227d82dffb52736070d8,https://doi.org/10.1109/ICIP.2017.8296995 +18bfda16116e76c2b21eb2b54494506cbb25e243,https://doi.org/10.1109/TIFS.2010.2051544 +18d3532298fb7b8fb418453107f786178ca82e4a,https://doi.org/10.1109/TIFS.2017.2668221 +184dba921b932143d196c833310dee6884fa4a0a,https://doi.org/10.1109/SIU.2017.7960393 +18dd3867d68187519097c84b7be1da71771d01a3,http://doi.acm.org/10.1145/2448556.2448563 +18145b0b13aa477eeabef9ceec4299b60e87c563,https://doi.org/10.1007/s11042-011-0834-x +187f3ee3bc50a1f2471edc80d707e4fa1cac5b0b,https://doi.org/10.1109/LSP.2015.2437883 +1831800ef8b1f262c92209f1ee16567105da35d6,https://doi.org/10.1016/j.sigpro.2014.01.010 +1890470d07a090e7b762091c7b9670b5c2e1c348,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.20 +27e0684fa5b57715162ac6c58a6ea283c7db1719,https://doi.org/10.1109/ICARCV.2004.1468857 +27812db1d2f68611cc284d65d11818082e572008,https://doi.org/10.1109/MIPRO.2016.7522323 +27e5b7ae3506a0f7472ee9089cd2472442e71c14,https://doi.org/10.1007/s00521-015-1834-y +27aa23d7a05368a6b5e3d95627f9bab34284e5c4,https://doi.org/10.1109/IJCNN.2012.6252705 +27a586a435efdcecb151c275947fe5b5b21cf59b,https://doi.org/10.1007/s12559-017-9530-0 +279459cbbc5c6db4802e9c737cc72a612d76f7fc,https://doi.org/10.1109/SSCI.2017.8285296 +272e487dfa32f241b622ac625f42eae783b7d9aa,https://doi.org/10.1109/ICSIPA.2015.7412207 +4b9b30066a05bdeb0e05025402668499ebf99a6b,https://doi.org/10.1109/ISPACS.2012.6473448 +4b8c736524d548472d0725c971ee29240ae683f6,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.31 +4b7f21b48c7e0dc7334e36108f558d54642c17c0,https://doi.org/10.1109/WACV.2017.106 +4ba2f445fcbbad464f107b036c57aa807ac5c0c2,https://doi.org/10.1109/TCSVT.2014.2367357 +4b94f531c203743a9f7f1e9dd009cdbee22ea197,https://doi.org/10.1109/ICSMC.2005.1571393 +4b9c47856f8314ecbe4d0efc65278c2ededb2738,https://doi.org/10.1109/LSP.2012.2188890 +1176a74fb9351ac2de81c198c4861d78e58f172d,https://doi.org/10.1016/j.patrec.2011.03.023 +11ba01ce7d606bab5c2d7e998c6d94325521b8a0,https://doi.org/10.1109/ICIP.2015.7350911 +110919f803740912e02bb7e1424373d325f558a9,http://doi.acm.org/10.1145/3123266.3123421 +11e6cf1cbb33d67a3e3c87dcaf7031d6654bc0de,http://doi.acm.org/10.1145/2522968.2522978 +113cd9e5a4081ce5a0585107951a0d36456ce7a8,https://doi.org/10.1109/ICSMC.2006.384939 +11c2d40fc63ecd88febadd8a9cac9521a6b7de66,https://doi.org/10.1109/ICSIPA.2011.6144081 +1195f0bf8f745ba69da915203bcd79589b94aec5,https://doi.org/10.1016/j.procs.2010.11.004 +11f8d0a54e55c5e6537eef431cd548fa292ef90b,https://doi.org/10.1016/j.neucom.2017.05.042 +110359824a0e3b6480102b108372793265a24a86,https://doi.org/10.1016/j.image.2016.03.011 +1125760c14ea6182b85a09bf3f5bad1bdad43ef5,https://doi.org/10.1109/CVPR.2004.286 +11a6593e6e35f95ebeb5233897d1d8bcad6f9c87,https://doi.org/10.1007/s11063-017-9615-5 +11d73f4f19077e6806d05dc7ecd17fbeb15bdf39,http://doi.ieeecomputersociety.org/10.1109/FG.2017.28 +1135a818b756b057104e45d976546970ba84e612,http://doi.ieeecomputersociety.org/10.1109/FG.2017.118 +7d8798e7430dcc68fcdbd93053c884fc44978906,http://doi.acm.org/10.1145/2506364.2506369 +7d61b70d922d20c52a4e629b09465076af71ddfd,https://doi.org/10.1007/s10044-011-0258-2 +7d7b036ed01765c9473d695f029142128d442aaa,https://doi.org/10.1109/TIP.2018.2791180 +7dc498d45f9fcb97acee552c6f587b65d5122c35,https://doi.org/10.1109/ICIP.2015.7351618 +7de8a8b437ec7a18e395be9bf7c8f2d502025cc6,https://doi.org/10.1109/SIU.2017.7960528 +298c2be98370de8af538c06c957ce35d00e93af8,https://doi.org/10.1109/IPTA.2016.7820988 +29322b9a3744afaa5fc986b805d9edb6ff5ea9fe,https://doi.org/10.1109/TNNLS.2011.2178037 +2945cc9e821ab87fa17afc8802f3858435d1264c,https://doi.org/10.1109/ICPR.2016.7899839 +2960500033eb31777ed1af1fcb133dcab1b4a857,http://doi.acm.org/10.1145/3005467.3005471 +29f298dd5f806c99951cb434834bc8dcc765df18,https://doi.org/10.1109/ICPR.2016.7899837 +293d69d042fe9bc4fea256c61915978ddaf7cc92,https://doi.org/10.1007/978-981-10-7302-1_6 +29fd98f096fc9d507cd5ee7d692600b1feaf7ed1,http://doi.acm.org/10.1145/2988257.2988270 +7c8909da44e89a78fe88e815c83a4ced34f99149,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.326 +7c457c9a658327af6f6490729b4cab1239c22005,https://doi.org/10.1109/ACCESS.2017.2672829 +7c13fa0c742123a6a927771ce67da270492b588c,http://doi.acm.org/10.1145/3152114 +163ba5a998973f9ead6be0ca873aed5934d5022e,https://doi.org/10.1109/ACPR.2013.53 +16b0c171fb094f677fcdf78bbb9aaef0d5404942,https://doi.org/10.1109/TIP.2017.2733739 +1617f56c86bf8ea61de62062a97961d23fcf03d3,https://doi.org/10.1007/s11390-015-1540-3 +1672becb287ae3eaece3e216ba37677ed045db55,https://doi.org/10.1016/j.eswa.2015.10.047 +16eaa26a84468b27e559215db01c53286808ec2a,https://doi.org/10.1007/s11263-015-0859-0 +16c1b592d85d13f1ba4eff0afb4441bb78650785,https://doi.org/10.1109/TIP.2017.2685343 +163d0e6ea8c8b88b4383a4eaa740870e2458b9b0,https://doi.org/10.1007/978-3-319-71928-3_18 +16fc82d44188eb49a151bd5836a29911b3bfabcb,https://doi.org/10.1007/978-981-10-7302-1_50 +42441f1fee81c8fd42a74504df21b3226a648739,https://doi.org/10.1007/s11554-008-0072-2 +4268ae436db79c4eee8bc06e9475caff3ff70d57,http://doi.ieeecomputersociety.org/10.1109/FG.2017.146 +42fff5b37006009c2dbfab63c0375c7c7d7d8ee3,https://doi.org/10.1007/s11042-014-2228-3 +42a5dc91852c8c14ed5f4c3b451c9dc98348bc02,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.021 +425ea5656c7cf57f14781bafed51182b2e6da65f,https://doi.org/10.1109/TIP.2017.2718187 +427bec487c330e7e34cc2c8fc2d6558690421ea0,http://doi.ieeecomputersociety.org/10.1109/ISCSCT.2008.352 +4215b34597d8ce1e8985afa8043400caf0ec7230,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.71 +89e31777f221ddb3bc9940d7f520c8114c4148a2,https://doi.org/10.1007/s11063-012-9224-2 +897aa4aaa474fed41233faec9b70b802aea5fdea,https://doi.org/10.1142/S0218001414560126 +89272b78b651038ff4d294b9ccca0018d2c9033b,https://doi.org/10.1109/ICPR.2014.777 +89497854eada7e32f06aa8f3c0ceedc0e91ecfef,https://doi.org/10.1109/TIP.2017.2784571 +891b31be76e2baa83745f24c2e2013851dc83cbb,https://doi.org/10.1109/TSMCB.2009.2018137 +892400017e5c93611dc8361e7749135520d66f25,https://doi.org/10.1109/ICARCV.2010.5707394 +898ff1bafee2a6fb3c848ad07f6f292416b5f07d,https://doi.org/10.1109/TIP.2016.2518867 +454bf5b99607b4418e931092476ad1798ce5efa4,https://doi.org/10.1155/2011/790598 +45877ff4694576f59c2a9ca45aa65f935378492a,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.38 +4551194408383b12db19a22cca5db0f185cced5c,https://doi.org/10.1109/TNNLS.2014.2341634 +45e043dffc57a9070f483ac4aec2c5cd2cec22cb,http://doi.acm.org/10.1145/3130977 +452ea180cf4d08d7500fc4bc046fd7141fd3d112,https://doi.org/10.1109/BTAS.2012.6374569 +45edb29fb7eed5a52040300e1fd3cd53f1bdb429,https://doi.org/10.1109/ICIP.2015.7351570 +4512b87d68458d9ba0956c0f74b60371b6c69df4,https://doi.org/10.1109/TIP.2017.2708504 +4500888fd4db5d7c453617ee2b0047cedccf2a27,http://doi.acm.org/10.1145/2647750 +4562ea84ebfc8d9864e943ed9e44d35997bbdf43,http://doi.ieeecomputersociety.org/10.1109/FG.2017.19 +459eb3cfd9b52a0d416571e4bc4e75f979f4b901,https://doi.org/10.1109/ROBIO.2015.7418998 +453bf941f77234cb5abfda4e015b2b337cea4f17,https://doi.org/10.1007/s11042-014-2340-4 +1fd7a17a6c630a122c1a3d1c0668d14c0c375de0,https://doi.org/10.1109/CIST.2016.7805097 +1f41bf5e8b8562ac7ef0013f4d0cf1c9e1a431f9,https://doi.org/10.1109/IJCNN.2017.7965955 +1f8656e2254e353a91cceb08b33c25643a1b1fb7,https://doi.org/10.1109/LSP.2017.2736542 +1f02bf412a82ad99fe99dc3cfb3adec9dd41eabb,https://doi.org/10.1007/s11760-016-1052-9 +1f5725a4a2eb6cdaefccbc20dccadf893936df12,https://doi.org/10.1109/CCST.2012.6393544 +1fcb905e4505a781fb0b375eb470f5661e38ae39,http://doi.acm.org/10.1145/3123266.3123450 +874da338c01fb7a87d605fcde6c52835eee03d5e,http://doi.ieeecomputersociety.org/10.1109/ICAPR.2009.20 +87806c51dc8c1077953178367dcf5c75c553ce34,https://doi.org/10.1109/ICMLA.2015.146 +87ee56feefdb39938cda7f872e784d9d986713af,http://dl.acm.org/citation.cfm?id=3022247 +87552622efd0e85c2a71d4d2590e53d45f021dbf,https://doi.org/10.1109/ICIP.2016.7532435 +872ff48a3acfbf96376fd048348372f5137615e4,https://doi.org/10.1007/s41095-016-0051-7 +8706c3d49d1136035f298041f03bb70dc074f24d,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.12 +876583a059154def7a4bc503b21542f80859affd,https://doi.org/10.1109/IWBF.2016.7449697 +80677676b127b67938c8db06a15d87f5dd4bd7f1,https://doi.org/10.1007/s11760-014-0623-x +80f72b26c6571aee2ff04704bc7fd1a69bfa0b3f,https://doi.org/10.1016/j.patcog.2016.12.029 +8027a9093f9007200e8e69e05616778a910f4a5f,https://doi.org/10.1109/ICB.2013.6612997 +805a0f4b99f162ac4db0ef6e0456138c8d498c3a,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2465373 +803803b5c2c61046d63674f85ecf0123f9d2c4b8,https://doi.org/10.1049/iet-bmt.2013.0089 +80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,https://doi.org/10.1109/TNNLS.2016.2522431 +80aa455068018c63237c902001b58844fcc6f160,https://doi.org/10.1109/FG.2011.5771327 +80a5afeb6968c7e736adc48bd4d5ec5b45b13f71,https://doi.org/10.1007/978-3-319-15762-7 +74cec83ee694b5d0e07d5d0bacd0aa48a80776aa,https://doi.org/10.1109/ISCAS.2013.6572506 +745d49a2ff70450113f07124c2c5263105125f58,https://doi.org/10.1109/ICPR.2016.7899972 +745e74ae84e1b2b8690d07db523531642023d6c4,https://doi.org/10.1109/FSKD.2016.7603417 +747dc0add50b86f5ba9e3e7315943d520e08f9eb,http://doi.ieeecomputersociety.org/10.1109/FG.2017.78 +74d3ff8324e02503c18fb2566ed29e2e22ce0d1b,http://doi.ieeecomputersociety.org/10.1109/IAS.2009.266 +1ab19e516b318ed6ab64822efe9b2328836107a4,https://doi.org/10.1109/TIP.2010.2083674 +1ab4fdcd431286a2fe9538cb9a9e3c67016fa98a,https://doi.org/10.1007/s11042-013-1754-8 +1a0e1ba4408d12f8a28049da0ff8cad4f91690d5,https://doi.org/10.1007/s12559-016-9445-1 +1ad5cb4c1eec5a9666b5dbbb6fab43576d0935db,https://doi.org/10.1109/ICIP.2016.7533026 +1a47f12a2490f6775c0ad863ac856de27f5b3e03,https://doi.org/10.1016/j.sigpro.2014.11.010 +1a8d40bcfb087591cc221086440d9891749d47b8,https://doi.org/10.1109/ICCE.2012.6161859 +1afef6b389bd727c566cd6fbcd99adefe4c0cf32,https://doi.org/10.1109/ICB.2016.7550087 +1aeef2ab062c27e0dbba481047e818d4c471ca57,https://doi.org/10.1109/ICACCI.2015.7275860 +1addc5c1fa80086d1ed58f71a9315ad13bd87ca2,https://doi.org/10.1007/s10044-012-0279-5 +1a40c2a2d17c52c8b9d20648647d0886e30a60fa,https://doi.org/10.1109/ICPR.2016.7900283 +1a03dcc811131b0b702bd5a75c54ed26cd27151a,https://doi.org/10.1007/s11760-015-0810-4 +1ad780e02edf155c09ea84251289a054b671b98a,https://doi.org/10.1109/ICNIDC.2012.6418787 +287de191c49a3caa38ad7594093045dfba1eb420,https://doi.org/10.23919/MVA.2017.7986829 +281b91c35a1af97b1405bc724a04e2be6e24971b,https://doi.org/10.1109/ICMLC.2010.5580557 +28d55935cc36df297fe21b98b4e2b07b5720612e,https://doi.org/10.1109/CISS.2016.7460569 +28a45770faf256f294ce3bbd5de25c6d5700976e,https://doi.org/10.1109/ICDSP.2016.7868531 +283d381c5c2ba243013b1c4f5e3b29eb906fa823,http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.222 +2884ff0d58a66d42371b548526d685760e514043,https://doi.org/10.1109/ICIP.2015.7351242 +17768efd76a681902a33994da4d3163262bf657f,https://doi.org/10.1007/s12559-017-9472-6 +176d9121e4e645344de4706dfb345ad456bfb84a,https://doi.org/10.1117/1.JEI.24.2.023009 +17189cfedbdbd219849b8e7f8cf0293d49465f9c,http://doi.acm.org/10.1145/2393347.2396505 +170aa0f16cd655fdd4d087f5e9c99518949a1b5c,https://doi.org/10.1007/s11263-007-0074-8 +179545c1fc645cb2ad9b31a30f48352d541876ff,https://doi.org/10.1109/IJCNN.2007.4371116 +17de5a9ce09f4834629cd76b8526071a956c9c6d,https://doi.org/10.1007/978-3-319-68063-7_8 +1723227710869a111079be7d61ae3df48604e653,https://doi.org/10.1109/INISTA.2014.6873606 +178b37392b2c6f1a167ebc1a5baa5f2f5916e4c4,https://doi.org/10.1007/s11042-013-1578-6 +17d03da4db3bb89537d644b682b2a091d563af4a,https://doi.org/10.1109/TNN.2010.2050600 +7b1ca9a74ab7fbfc32a69e8313ca2f2d78ac6c35,http://doi.ieeecomputersociety.org/10.1109/ICSC.2017.61 +7bc1e7d000ab517161a83b1fedf353e619516ddf,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836068 +7b618a699b79c1272f6c83101917ad021a58d96b,https://doi.org/10.1007/s11042-014-1986-2 +7bd37e6721d198c555bf41a2d633c4f0a5aeecc1,https://doi.org/10.1109/ACPR.2013.58 +7b455cbb320684f78cd8f2443f14ecf5f50426db,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.33 +8f3675e979629ca9cee9436d37763f546edb8d40,https://doi.org/10.1109/SIU.2017.7960446 +8fee7b38358815e443f8316fa18768d76dba12e3,http://doi.acm.org/10.1145/2063576.2063676 +8fe5feeaa72eddc62e7e65665c98e5cb0acffa87,https://doi.org/10.1007/s12193-015-0209-0 +8f73af52d87c94d0bd43242462fd68d974eda331,https://doi.org/10.1109/ICB.2013.6613009 +8f99f7ccb85af6d4b9e015a9b215c529126e7844,https://doi.org/10.1109/ROMAN.2017.8172359 +8f051647bd8d23482c6c3866c0ce1959b8bd40f6,https://doi.org/10.1016/j.asoc.2017.04.041 +8f713e3c5b6b166c213e00a3873f750fb5939c9a,https://doi.org/10.1109/EUSIPCO.2015.7362563 +8fc36452a49cb0fd43d986da56f84b375a05b4c1,http://doi.acm.org/10.1145/2542355.2542388 +8aff9c8a0e17be91f55328e5be5e94aea5227a35,https://doi.org/10.1109/TNNLS.2012.2191620 +8a1e95b82d8cf27e0034e127091396efd4c8bd9e,https://doi.org/10.1109/IGARSS.2016.7729015 +8a2210bedeb1468f223c08eea4ad15a48d3bc894,http://doi.acm.org/10.1145/2513383.2513438 +8a2bedaa38abf173823944f0de2c84f5b2549609,https://doi.org/10.1109/TNNLS.2016.2573644 +8ab465c1a131ee4bee6ac0a0b19dfe68f5dcdcc4,http://doi.ieeecomputersociety.org/10.1109/CSSE.2008.575 +7ebfa8f1c92ac213ff35fa27287dee94ae5735a1,https://doi.org/10.1109/TMM.2016.2614429 +7e456e94f3080c761f858264428ee4c91cd187b2,http://ieeexplore.ieee.org/document/6460899/ +7e48711c627edf90e9b232f2cbc0e3576c8f2f2a,https://doi.org/10.1007/s11760-015-0777-1 +10e2f2ad1dedec6066e063cb2098b089b35905a8,http://doi.acm.org/10.1145/3052930 +10df1d4b278da991848fb71b572f687bd189c10e,https://doi.org/10.1109/ICPR.2016.7899739 +104ee18b513b52386f871e959c1f9e5072604e93,https://doi.org/10.1109/GlobalSIP.2017.8309189 +10f4bbf87a44bab3d79e330e486c897e95f5f33f,https://doi.org/10.1109/TIFS.2012.2186292 +1071dde48a77f81c35ad5f0ca90a9daedb54e893,http://ieeexplore.ieee.org/document/7881657/ +1050cd9bf281d0b7367c03d931e6e0b4fc08ccd3,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043872 +1966bddc083886a9b547e1817fe6abc352a00ec3,http://doi.acm.org/10.1145/2733373.2806312 +19705579b8e7d955092ef54a22f95f557a455338,https://doi.org/10.1109/ICIP.2014.7025277 +1979e270093b343d62e97816eeed956062e155a0,https://doi.org/10.1016/j.micpro.2005.07.003 +194f5d3c240d06575403c9a422a0ebc86d43b91e,https://doi.org/10.1007/s11042-015-2580-y +197efbef17f92e5cb5076961b6cd9f59e88ffd9a,https://doi.org/10.1109/ICMLA.2017.00-59 +19bbecead81e34b94111a2f584cf55db9a80e60c,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248025 +195b61470720c7faa523e10e68d0c8d8f27d7c7a,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995618 +1902288256839539aeb5feb3e1699b963a15aa1a,https://doi.org/10.1109/IJCNN.2016.7727435 +19c82eacd77b35f57ac8815b979716e08e3339ca,http://doi.ieeecomputersociety.org/10.1109/ICITCS.2015.7292981 +191b70fdd6678ef9a00fd63710c70b022d075362,https://doi.org/10.1109/ICIP.2003.1247347 +4c141534210df53e58352f30bab558a077fec3c6,https://doi.org/10.1109/TMM.2016.2557722 +4c19690889fb3a12ec03e65bae6f5f20420b4ba4,https://doi.org/10.1049/iet-ipr.2015.0699 +4c6886c489e93ccab5a1124555a6f3e5b0104464,https://doi.org/10.1109/ICIP.2017.8296921 +4c648fe9b7bfd25236164333beb51ed364a73253,http://doi.acm.org/10.1145/3038924 +4c0846bcfa64d9e810802c5b7ef0f8b43523fe54,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2324594 +4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,https://doi.org/10.1109/TIP.2014.2387379 +4cec3e5776090852bef015a8bbe74fed862aa2dd,https://doi.org/10.1109/TSP.2013.2271479 +4c842fbd4c032dd4d931eb6ff1eaa2a13450b7af,https://doi.org/10.1016/j.imavis.2014.06.004 +268c4bb54902433bf00d11391178a162e5d674c9,https://doi.org/10.1109/CVPRW.2010.5543261 +261a80216dda39b127d2b7497c068ec7e0fdf183,https://doi.org/10.1109/TCSVT.2013.2265571 +26ebe98753acec806b7281d085110c06d9cd1e16,http://doi.ieeecomputersociety.org/10.1109/FG.2017.22 +26973cf1552250f402c82e9a4445f03fe6757b58,http://doi.acm.org/10.1145/3126686.3130239 +2601b679fdd637f3cd978753ae2f15e8759dd267,https://doi.org/10.1109/ICIP.2015.7351306 +262cdbc57ecf5c18756046c0d8b9aa7eb10e3b19,http://dl.acm.org/citation.cfm?id=3007694 +26b9d546a4e64c1d759c67cd134120f98a43c2a6,https://doi.org/10.1109/ICMLA.2012.120 +26bbe76d1ae9e05da75b0507510b92e7e6308c73,https://doi.org/10.1007/s00371-014-1049-8 +26949c1ba7f55f0c389000aa234238bf01a32d3b,https://doi.org/10.1109/ICIP.2017.8296814 +26a5136ee4502500fb50cd5ade814aad45422771,https://doi.org/10.1142/S0218001413560028 +26727dc7347e3338d22e8cf6092e3a3c7568d763,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163088 +2138ccf78dcf428c22951cc066a11ba397f6fcef,https://doi.org/10.1109/BHI.2012.6211519 +21bd60919e2e182a29af455353141ba4907b1b41,https://doi.org/10.1109/ACCESS.2018.2798573 +21cbf46c6adfb3a44ed2b30ff0b21a8391c18b13,https://doi.org/10.1109/VCIP.2017.8305137 +21f5f65e832c5472d6d08f6ee280d65ff0202e29,https://doi.org/10.1007/978-3-319-70353-4_44 +218139e5262cb4f012cd2e119074aa59b89ebc32,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.265 +217aa3aa0b3d9f6f394b5d26f03418187d775596,http://doi.acm.org/10.1145/3123266.3123298 +2149d49c84a83848d6051867290d9c8bfcef0edb,https://doi.org/10.1109/TIFS.2017.2746062 +4dbfbe5fd96c9efc8c3c2fd54406b62979482678,https://doi.org/10.1016/j.jvcir.2014.07.007 +4d1f77d9418a212c61a3c75c04a5b3884f6441ba,https://doi.org/10.1109/TIP.2017.2788196 +4d4736173a5e72c266e52f3a43bdcb2b58f237a2,https://doi.org/10.1109/ISSPA.2012.6310583 +4d6d6369664a49f6992f65af4148cefef95055bc,https://doi.org/10.1109/ICIP.2014.7025407 +75858dbee2c248a60741fbc64dcad4f8b63d51cb,https://doi.org/10.1109/TIP.2015.2460464 +7535e3995deb84a879dc13857e2bc0796a2f7ce2,https://doi.org/10.1007/s10618-010-0207-5 +75d7ba926ef1cc2adab6c5019afbb2f69a5ca27d,https://doi.org/10.1007/s00521-012-1042-y +75b51140d08acdc7f0af11b0ffa1edb40ebbd059,https://doi.org/10.1007/s00521-010-0381-9 +754626bd5fb06fee5e10962fdfeddd495513e84b,https://doi.org/10.1109/SIU.2017.7960646 +751fb994b2c553dc843774a5620bfcab8bc657fd,https://doi.org/10.1007/978-3-319-67180-2_47 +753a277c1632dd61233c488cc55d648de3caaaa3,https://doi.org/10.1016/j.patcog.2011.02.013 +81a4397d5108f6582813febc9ddbeff905474120,https://doi.org/10.1109/ICPR.2016.7899883 +812d3f6975f4cb87e9905ef18696c5c779227634,https://doi.org/10.1186/s13640-016-0151-4 +8184a92e1ccc7fdeb4a198b226feb325c63d6870,https://doi.org/10.1109/ICCE.2017.7889290 +8185be0689442db83813b49e215bf30870017459,https://doi.org/10.1109/TNNLS.2013.2293418 +81b8a6cabcd6451b21d5b44e69b0a355d9229cc4,https://doi.org/10.1109/ICDSP.2017.8096137 +81d81a2060366f29fd100f793c11acf000bd2a7f,https://doi.org/10.1007/11795131_112 +81af86e3d343a40ce06a3927b6aa8c8853f6811a,http://doi.acm.org/10.1145/3009977.3009996 +81c21f4aafab39b7f5965829ec9e0f828d6a6182,https://doi.org/10.1109/BTAS.2015.7358744 +81d232e1f432db7de67baf4f30f240c62d1a9055,https://doi.org/10.1109/ICIP.2017.8296405 +86fa086d02f424705bbea53943390f009191740a,https://doi.org/10.1109/ICIP.2015.7351651 +865d4ce1751ff3c0a8eb41077a9aa7bd94603c47,https://doi.org/10.1007/s12193-015-0210-7 +86597fe787e0bdd05935d25158790727257a40bd,http://doi.ieeecomputersociety.org/10.1109/3DV.2016.72 +86afb1e38a96f2ac00e792ef353a971fd13c8474,https://doi.org/10.1109/BigData.2016.7840742 +8686b15802529ff8aea50995ef14079681788110,https://doi.org/10.1109/TNNLS.2014.2376936 +864d50327a88d1ff588601bf14139299ced2356f,https://doi.org/10.1109/FSKD.2016.7603151 +8697ccb156982d40e88fda7fbf4297fa5171f24d,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2011.101 +86881ce8f80adea201304ca6bb3aa413d94e9dd0,https://doi.org/10.1109/ICIP.2017.8297133 +8605e8f5d84b8325b1a81d968c296a5a5d741f31,https://doi.org/10.1016/j.patcog.2017.04.010 +72345fed8d068229e50f9ea694c4babfd23244a0,http://doi.acm.org/10.1145/2632856.2632937 +728b1b2a86a7ffda402e7ec1a97cd1988dcde868,https://doi.org/10.1016/j.procs.2016.04.083 +72a3bb0fb490355a926c5a689e12268bff9ff842,https://doi.org/10.1109/ICIP.2006.312862 +7234468db46b37e2027ab2978c67b48b8581f796,https://doi.org/10.1109/ACPR.2015.7486464 +72119cb98f9502ec639de317dccea57fd4b9ee55,https://doi.org/10.1109/GlobalSIP.2015.7418230 +72d110df78a7931f5f2beaa29f1eb528cf0995d3,https://doi.org/10.1007/s11517-015-1346-z +440b94b1624ca516b07e72ea8b3488072adc5e26,https://doi.org/10.1109/ITSC.2015.153 +44b827df6c433ca49bcf44f9f3ebfdc0774ee952,https://doi.org/10.1109/LSP.2017.2726105 +44c278cbecd6c1123bfa5df92e0bda156895fa48,https://doi.org/10.1109/ICPR.2014.316 +4490b8d8ab2ac693c670751d4c2bff0a56d7393d,https://doi.org/10.1007/s11063-017-9648-9 +4492914df003d690e5ff3cb3e0e0509a51f7753e,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2014.6921443 +44834929e56f2a8f16844fde519039d647006216,http://doi.acm.org/10.1145/1460096.1460150 +44389d8e20cf9f1a8453f4ba033e03cff9bdfcbb,https://doi.org/10.1016/j.neucom.2017.07.052 +445e3ba7eabcc55b5d24f951b029196b47830684,https://doi.org/10.1109/TMM.2016.2591508 +2a92bda6dbd5cce5894f7d370d798c07fa8783f4,https://doi.org/10.1109/TIFS.2014.2359587 +2afde207bd6f2e5fa20f3cf81940b18cc14e7dbb,https://doi.org/10.1109/TIP.2013.2255300 +2a98b850139b911df5a336d6ebf33be7819ae122,https://doi.org/10.1109/ICIP.2015.7350806 +2ae2e29c3e9cc2d94a26da5730df7845de0d631b,https://doi.org/10.1109/TCSVT.2011.2129670 +2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,https://doi.org/10.1109/CVPRW.2010.5543608 +2a98351aef0eec1003bd5524933aed8d3f303927,https://doi.org/10.1109/CIRA.2007.382901 +2a41388040141ef6b016c100ef833a2a73ab8b42,https://doi.org/10.1016/j.neucom.2017.03.033 +2a79bd36c56fd1634ca0f8089fe8aa9343eb92ce,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2006.104 +2a84f7934365f05b6707ea0ac225210f78e547af,https://doi.org/10.1109/ICPR.2016.7899690 +2adffdffa16475ae71bb2adcf65840f01f1e53f7,https://doi.org/10.1049/iet-cvi.2014.0094 +2a4984fb48c175d1e42c6460c5f00963da9f26b6,https://doi.org/10.1109/MIPRO.2015.7160445 +2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,http://doi.acm.org/10.1145/3090311 +2f8ef56c1007a02cdc016219553479d6b7e097fb,https://doi.org/10.1007/978-3-642-14834-7_2 +2fd007088a75916d0bf50c493d94f950bf55c5e6,https://doi.org/10.1007/978-981-10-7302-1_1 +2f43b614607163abf41dfe5d17ef6749a1b61304,https://doi.org/10.1109/TIFS.2014.2361479 +2f1b521c29ab075a0cd9bbf56ba26ee13d5e4d76,https://doi.org/10.1109/ACPR.2015.7486607 +2f5b51af8053cf82ab52bbfd46b56999222ec21c,https://doi.org/10.1109/ICPR.2014.788 +2f841ff062053f38725030aa1b77db903dad1efb,https://doi.org/10.1109/ICRA.2014.6907748 +2facf3e85240042a02f289a0d40fee376c478d0f,https://doi.org/10.1109/BTAS.2010.5634544 +2f61d91033a06dd904ff9d1765d57e5b4d7f57a6,https://doi.org/10.1109/ICIP.2016.7532953 +2f160a6526ebf10773680dadaba44b006bcec2cb,https://doi.org/10.1016/j.neucom.2012.03.007 +2f17c0514bb71e0ca20780d71ea0d50ff0da4938,http://doi.acm.org/10.1145/1943403.1943490 +43261920d2615f135d6e72b333fe55d3f2659145,http://doi.acm.org/10.1145/3136273.3136301 +4349f17ec319ac8b25c14c2ec8c35f374b958066,https://doi.org/10.1109/THMS.2017.2681425 +43cbe3522f356fbf07b1ff0def73756391dc3454,https://doi.org/10.1109/WIFS.2011.6123140 +4398afa0aeb5749a12772f2d81ca688066636019,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2496320 +4344ba6e33faaa616d01248368e66799548ca48b,https://doi.org/10.1007/s10044-015-0474-2 +43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,https://doi.org/10.1109/ICIP.2017.8296394 +43bb2b58f906262035ef61e41768375bc8d99ae3,https://doi.org/10.1016/j.procs.2016.04.072 +4328933890f5a89ad0af69990926d8484f403e4b,http://doi.acm.org/10.1145/2072298.2071993 +434f1442533754b3098afd4e24abf1e3792b24db,https://doi.org/10.1109/CBMI.2015.7153627 +43eb03f95adc0df61af2c3b12a913c725b08d4f5,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2011.101 +88780bd55615c58d9bacc4d66fc2198e603a1714,https://doi.org/10.1109/EMBC.2016.7590730 +8879083463a471898ff9ed9403b84db277be5bf6,https://doi.org/10.1016/j.patcog.2016.08.031 +884a9ce87d4d2338cb97bf4c8df3cdb079a87d5e,https://doi.org/10.1109/SMC.2016.7844717 +88ed558bff3600f5354963d1abe762309f66111e,https://doi.org/10.1109/TIFS.2015.2393553 +88399c7fa890f1252178cd5e4979971509bd904f,https://doi.org/10.1142/S0219878906000915 +8845c03bee88fdd2f400ed2bddba038366c82abe,http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.135 +8882d39edae556a351b6445e7324ec2c473cadb1,https://doi.org/10.1109/TIP.2017.2755766 +88c21e06ed44da518a7e346fce416efedc771704,https://doi.org/10.1109/ICIP.2015.7351455 +9f5e22fbc22e1b0a61bcd75202d299232e68de5d,https://doi.org/10.1109/IJCNN.2016.7727391 +9fab78015e6e91ba7241a923222acd6c576c6e27,http://doi.ieeecomputersociety.org/10.1109/ICSS.2016.10 +9f3c9e41f46df9c94d714b1f080dafad6b4de1de,https://doi.org/10.1109/ICT.2017.7998260 +9f428db0d3cf26b9b929dd333a0445bcc7514cdf,https://doi.org/10.1016/j.cviu.2010.11.015 +9fd1b8abbad25cb38f0c009288fb5db0fc862db6,https://doi.org/10.1109/ICASSP.2003.1199147 +9fbcf40b0649c03ba0f38f940c34e7e6c9e04c03,https://doi.org/10.1007/s10044-006-0033-y +6b44543571fe69f088be577d0c383ffc65eceb2a,http://doi.ieeecomputersociety.org/10.1109/EST.2012.24 +6b0a2f9ab9b134d66a325525ea5d90ad546fe2b7,https://doi.org/10.1109/IJCNN.2016.7727803 +6bacd4347f67ec60a69e24ed7cc0ac8073004e6f,https://doi.org/10.1109/VCIP.2014.7051528 +6ba6045e4b404c44f9b4dfce2d946019f0e85a72,https://doi.org/10.1109/ICPR.2016.7899962 +6b8329730b2e13178a577b878631735a1cd58a71,http://doi.ieeecomputersociety.org/10.1109/FiCloud.2015.78 +07dc9f3b34284cc915dea7575f40ef0c04338126,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2537337 +070c8ee3876c06f9a65693e536d61097ace40417,https://doi.org/10.1109/ACPR.2013.161 +0733ec1953f6c774eb3a723618e1268586b46359,https://doi.org/10.1109/TMM.2006.870737 +0750c796467b6ef60b0caff5fb199337d54d431e,https://doi.org/10.1109/ICMLC.2016.7873015 +0701b01bc99bf3b64050690ceadb58a8800e81ed,https://doi.org/10.1007/s11042-015-3107-2 +076c97826df63f70d55ea11f0b7ae47a7ad81ad3,http://doi.ieeecomputersociety.org/10.1109/SITIS.2011.40 +38e7f3fe450b126367ec358be9b4cc04e82fa8c7,https://doi.org/10.1109/TIP.2014.2351265 +3888d7a40f3cea5e4a851c8ca97a2d7810a62867,https://doi.org/10.1109/CCECE.2016.7726684 +383ff2d66fecdc2fd02a31ac1fa392f48e578296,https://doi.org/10.1016/j.cviu.2015.07.005 +387b54cf6c186c12d83f95df6bd458c5eb1254ee,https://doi.org/10.1109/VCIP.2017.8305123 +3826e47f0572ab4d0fe34f0ed6a49aa8303e0428,https://doi.org/10.1109/ACPR.2013.66 +383e64d9ef1fca9de677ac82486b4df42e96e861,http://doi.ieeecomputersociety.org/10.1109/DSC.2017.78 +38345264a9ca188c4facffe6e18a7e6865fb2966,http://doi.ieeecomputersociety.org/10.1109/BIBM.2017.8217969 +008528d5e27919ee95c311266041e4fb1711c254,https://doi.org/10.1007/s13735-015-0092-1 +00d4c2db10f3a32d505d7b8adc7179e421443dec,https://doi.org/10.1109/GlobalSIP.2014.7032080 +00049f989067d082f7f8d0581608ad5441d09f8b,https://doi.org/10.1109/LSP.2016.2555480 +003ba2001bd2614d309d6ec15e9e2cbe86db03a1,https://doi.org/10.1109/ISCAS.2005.1465264 +00eccc565b64f34ad53bf67dfaf44ffa3645adff,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618328 +00301c250d667700276b1e573640ff2fd7be574d,https://doi.org/10.1109/BTAS.2014.6996242 +00a38ebce124879738b04ffc1536018e75399193,https://doi.org/10.1109/BTAS.2017.8272766 +009bf86913f1c366d9391bf236867d84d12fa20c,https://doi.org/10.1109/CVPRW.2010.5544620 +0034e37a0faf0f71395245b266aacbf5412f190a,https://doi.org/10.1109/TMM.2014.2355134 +6e9de9c3af3258dd18142e9bef2977b7ce153bd5,https://doi.org/10.1007/978-3-319-48881-3 +6e2041a9b5d840b0c3e4195241cd110640b1f5f3,https://doi.org/10.1007/s10044-013-0349-3 +6e7ffd67329ca6027357a133437505bc56044e65,https://doi.org/10.1109/IJCNN.2014.6889754 +6ec275755f8776b620d0a4550be0e65caf2bc87a,https://doi.org/10.1109/IS.2016.7737496 +9ab963e473829739475b9e47514f454ab467a5af,http://doi.ieeecomputersociety.org/10.1109/FG.2017.33 +9abf6d56a7d336bc58f4e3328d2ee807032589f1,https://doi.org/10.1109/CEC.2017.7969500 +9abab00de61dd722b3ad1b8fa9bffd0001763f8b,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2420563 +9ab126760f68071a78cabe006cf92995d6427025,https://doi.org/10.1007/s11042-013-1703-6 +9a84588fe7e758cfbe7062686a648fab787fc32f,https://doi.org/10.1007/s11042-014-2333-3 +9aade3d26996ce7ef6d657130464504b8d812534,https://doi.org/10.1109/TNNLS.2016.2618340 +9aba281955117eb4a7aed36775f55f27e4dde42f,http://doi.ieeecomputersociety.org/10.1109/AFGR.2000.840635 +36bb5cca0f6a75be8e66f58cba214b90982ee52f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.73 +36219a3196aac2bd149bc786f083957a6e6da125,https://doi.org/10.1016/j.jvcir.2015.12.003 +3690af0af51a067750f664c08e48b486d1cd476d,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2012.41 +36486944b4feeb88c0499fecd253c5a53034a23f,https://doi.org/10.1109/CISP-BMEI.2017.8301986 +36b23007420b98f368d092bab196a8f3cbcf6f93,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.106 +36b13627ee8a5a8cd04645213aabfa917bbd32f5,https://doi.org/10.1109/TCSVT.2016.2602812 +363f540dc82ba8620262a04a67cfd6d3c85b0582,http://doi.ieeecomputersociety.org/10.1109/WIAMIS.2009.5031445 +36bb93c4f381adca267191811abb8cc7812363f9,https://doi.org/10.1109/CISP-BMEI.2017.8301987 +5c91fc106cfe9d57a9b149c1af29ca84d403fc7e,https://doi.org/10.1109/TCSVT.2015.2452782 +5c3eb40b06543f00b2345f3291619a870672c450,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.539 +5c19c4c6a663fe185a739a5f50cef6a12a4635a1,https://doi.org/10.1016/j.imavis.2012.08.016 +5c526ee00ec0e80ba9678fee5134dae3f497ff08,https://doi.org/10.1109/TCE.2010.5606299 +5c4f9260762a450892856b189df240f25b5ed333,https://doi.org/10.1109/TIP.2017.2651396 +09f9409430bba2afb84aa8214dbbb43bfd4cf056,https://doi.org/10.1109/TNN.2006.883012 +0974677f59e78649a40f0a1d85735410d21b906a,https://doi.org/10.1109/ISCAS.2017.8050798 +0931bef0a9c8c153184a1f9c286cf4883cbe99b6,https://doi.org/10.1007/s12193-015-0203-6 +09138ad5ad1aeef381f825481d1b4f6b345c438c,https://doi.org/10.1109/IIH-MSP.2012.41 +096ffc1ea5493242ba0c113178dab0c096412f81,http://doi.acm.org/10.1145/3123266.3123441 +092dd7cb6c9b415eb83afb104fa63d7d4290ac33,https://doi.org/10.1109/SPLIM.2016.7528409 +5dbb2d556f2e63a783a695a517f5deb11aafd7ea,https://doi.org/10.1109/ICB.2015.7139079 +5dd57b7e0e82a33420c054da7ea3f435d49e910e,https://doi.org/10.1007/s10851-014-0493-4 +5df17c81c266cf2ebb0778e48e825905e161a8d9,https://doi.org/10.1109/TMM.2016.2520091 +5da98f7590c08e83889f3cec7b0304b3610abf42,https://doi.org/10.1016/j.eswa.2017.07.018 +5d9f468a2841ea2f27bbe3ef2c6fe531d444be68,https://doi.org/10.1109/GlobalSIP.2017.8309167 +5ddfd3d372f7679518db8fd763d5f8bc5899ed67,https://doi.org/10.1109/ICPR.2014.797 +31ba7f5e09a2f0fe9cf7ea95314723206dcb6059,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.300 +3150e329e01be31ba08b6d76fc46b0da88a5ddeb,http://doi.acm.org/10.1145/2927006.2927012 +310fe4e6cb6d090f7817de4c1034e35567b56e34,https://doi.org/10.1109/ICPR.2014.313 +31697737707d7f661cbc6785b76cf9a79fee3ccd,http://doi.ieeecomputersociety.org/10.1109/FG.2017.100 +31a36014354ee7c89aa6d94e656db77922b180a5,http://doi.acm.org/10.1145/2304496.2304509 +31ffc95167a2010ce7aab23db7d5fc7ec439f5fb,https://doi.org/10.1109/TNNLS.2017.2651169 +31ba9d0bfaa2a44bae039e5625eb580afd962892,https://doi.org/10.1016/j.cviu.2016.03.014 +314c4c95694ff12b3419733db387476346969932,http://dl.acm.org/citation.cfm?id=3007672 +31f905d40a4ac3c16c91d5be8427762fa91277f1,https://doi.org/10.1109/TIP.2017.2704661 +91167aceafbc9c1560381b33c8adbc32a417231b,https://doi.org/10.1109/TCSVT.2009.2020337 +915ff2bedfa0b73eded2e2e08b17f861c0e82a58,https://doi.org/10.1109/UEMCON.2017.8249000 +919bdc161485615d5ee571b1585c1eb0539822c8,http://ieeexplore.ieee.org/document/6460332/ +9101363521de0ec1cf50349da701996e4d1148c8,http://doi.ieeecomputersociety.org/10.1109/ICIAP.2007.28 +919cb6160db66a8fe0b84cb7f171aded48a13632,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2327978 +9166f46aa3e58befaefd3537e5a11b31ebeea4d0,https://doi.org/10.1109/ICIP.2015.7351505 +91d0e8610348ef4d5d4975e6de99bb2d429af778,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.61 +913961d716a4102d3428224f999295f12438399f,https://doi.org/10.1016/j.patcog.2014.01.016 +913062218c7498b2617bb9d7821fe1201659c5cc,https://doi.org/10.1109/ICMLA.2012.178 +918fc4c77a436b8a588f63b2b37420b7868fbbf8,https://doi.org/10.1016/j.inffus.2015.03.005 +655e94eccddbe1b1662432c1237e61cf13a7d57b,http://doi.ieeecomputersociety.org/10.1109/ISIP.2008.147 +6554ca3187b3cbe5d1221592eb546dfc11aac14b,http://doi.acm.org/10.1145/2501643.2501647 +65475ce4430fb524675ebab6bcb570dfa07e0041,https://doi.org/10.1109/ISR.2013.6695696 +65869cc5ef00d581c637ae8ea6ca02ae4bb2b996,http://doi.ieeecomputersociety.org/10.1109/ICDM.2007.65 +659dc6aa517645a118b79f0f0273e46ab7b53cd9,https://doi.org/10.1109/ACPR.2015.7486608 +65fc8393610fceec665726fe4e48f00dc90f55fb,https://doi.org/10.1109/CYBConf.2013.6617455 +6256b47342f080c62acd106095cf164df2be6020,https://doi.org/10.1007/978-3-319-24702-1_6 +62648f91e38b0e8f69dded13b9858bd3a86bb6ed,http://doi.acm.org/10.1145/2647868.2655016 +628f9c1454b85ff528a60cd8e43ec7874cf17931,http://doi.acm.org/10.1145/2993148.2993193 +62e834114b58a58a2ea2d7b6dd7b0ce657a64317,https://doi.org/10.1109/SMC.2014.6973987 +62e61f9f7445e8dec336415ac0c7e677f9f5f7c1,https://doi.org/10.1142/S0219467814500065 +6267dbeb54889be5bdb50c338a7c6ef82287084c,https://doi.org/10.1109/ICMLC.2010.5580567 +963a004e208ce4bd26fa79a570af61d31651b3c3,https://doi.org/10.1016/j.jvlc.2009.01.011 +9635493998ad60764d7bbf883351af57a668d159,https://doi.org/10.1109/IJCNN.2017.7966005 +96a8f115df9e2c938453282feb7d7b9fde6f4f95,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2593719 +965c4a8087ae208c08e58aaf630ad412ac8ce6e2,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.100 +96b1f2bde46fe4f6cc637398a6a71e8454291a6e,https://doi.org/10.1109/TIP.2010.2073476 +96fbadc5fa1393d59ce0b8fd3d71aebc1fe35b40,https://doi.org/10.1109/ICIP.2016.7532959 +9652f154f4ae7807bdaff32d3222cc0c485a6762,https://doi.org/10.1007/s00138-016-0760-z +96d34c1a749e74af0050004162d9dc5132098a79,https://doi.org/10.1109/TNN.2005.844909 +96e0b67f34208b85bd90aecffdb92bc5134befc8,https://doi.org/10.1016/j.patcog.2007.10.002 +3a9fbd05aaab081189a8eea6f23ed730fa6db03c,https://doi.org/10.1109/ICASSP.2013.6638305 +3aebaaf888cba25be25097173d0b3af73d9ce7f9,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.49 +3a1c40eced07d59a3ea7acda94fa833c493909c1,http://doi.ieeecomputersociety.org/10.1109/FG.2017.111 +3ad56aed164190e1124abea4a3c4e1e868b07dee,https://doi.org/10.1016/j.patcog.2015.12.016 +3a0425c25beea6c4c546771adaf5d2ced4954e0d,https://link.springer.com/book/10.1007/978-3-319-58347-1 +54058859a2ddf4ecfc0fe7ccbea7bb5f29d9201d,https://doi.org/10.1007/978-3-319-50832-0_36 +548233d67f859491e50c5c343d7d77a7531d4221,https://doi.org/10.1007/s11042-007-0176-x +5491478ae2c58af21389ed3af21babd362511a8e,http://doi.acm.org/10.1145/2949035.2949048 +54e988bc0764073a5db2955705d4bfa8365b7fa9,http://doi.acm.org/10.1145/2522848.2531749 +98856ab9dc0eab6dccde514ab50c823684f0855c,https://doi.org/10.1109/TIFS.2012.2191962 +982ede05154c1afdcf6fc623ba45186a34f4b9f2,https://doi.org/10.1109/TMM.2017.2659221 +982d4f1dee188f662a4b5616a045d69fc5c21b54,https://doi.org/10.1109/IJCNN.2016.7727859 +985bbe1d47b843fa0b974b4db91be23f218d1ce7,https://doi.org/10.1007/978-3-319-68121-4 +988849863c3a45bcedacf8bd5beae3cc9210ce28,http://doi.ieeecomputersociety.org/10.1109/TPDS.2016.2539164 +98c5dc00bd21a39df1d4411641329bdd6928de8a,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995447 +5364e58ba1f4cdfcffb247c2421e8f56a75fad8d,https://doi.org/10.1109/VCIP.2017.8305113 +539cb169fb65a5542c84f42efcd5d2d925e87ebb,https://doi.org/10.1109/ICB.2015.7139098 +5375a3344017d9502ebb4170325435de3da1fa16,https://doi.org/10.1007/978-3-642-37444-9 +5304cd17f9d6391bf31276e4419100f17d4423b2,https://doi.org/10.1109/ICIP.2012.6466930 +53873fe7bbd5a2d171e2b1babc9cacaad6cabe45,https://doi.org/10.1109/TCYB.2015.2417211 +534159e498e9cc61ea10917347637a59af38142d,https://doi.org/10.1016/j.neucom.2016.01.126 +53509017a25ac074b5010bb1cdba293cdf399e9b,http://doi.ieeecomputersociety.org/10.1109/AVSS.2012.41 +539f55c0e2501c1d86791c8b54b225d9b3187b9c,https://doi.org/10.1109/TIP.2017.2738560 +539ffd51f18404e1ef83371488cf5a27cd16d064,https://doi.org/10.1049/iet-ipr.2014.0733 +5305bfdff39ae74d2958ba28d42c16495ce2ff86,https://doi.org/10.1109/DICTA.2014.7008128 +3f2a44dcf0ba3fc72b24c7f09bb08e25797398c1,https://doi.org/10.1109/IJCNN.2017.7966210 +3fa628e7cff0b1dad3f15de98f99b0fdb09df834,http://doi.ieeecomputersociety.org/10.1109/ICME.2013.6607603 +3ffbc912de7bad720c995385e1fdc439b1046148,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2008.347 +3fe3d6ff7e5320f4395571131708ecaef6ef4550,https://doi.org/10.1109/SITIS.2016.60 +3f88ea8cf2eade325b0f32832561483185db5c10,https://doi.org/10.1109/TIP.2017.2721838 +3f4711c315d156a972af37fe23642dc970a60acf,https://doi.org/10.1109/IJCNN.2008.4634393 +3ff418ac82df0b5c2f09f3571557e8a4b500a62c,https://doi.org/10.1007/s11554-007-0039-8 +3fc173805ed43602eebb7f64eea4d60c0386c612,http://doi.ieeecomputersociety.org/10.1109/CyberC.2015.94 +30cc1ddd7a9b4878cca7783a59086bdc49dc4044,https://doi.org/10.1007/s11042-015-2599-0 +30a4b4ef252cb509b58834e7c40862124c737b61,https://doi.org/10.1142/S0218001416560061 +3060ac37dec4633ef69e7bc63488548ab3511f61,https://doi.org/10.1007/s00521-018-3358-8 +30044dd951133187cb8b57e53a22cf9306fa7612,https://doi.org/10.1109/WACV.2017.52 +30188b836f2fa82209d7afbf0e4d0ee29c6b9a87,https://doi.org/10.1109/TIP.2013.2249077 +3080026f2f0846d520bd5bacb0cb2acea0ffe16b,https://doi.org/10.1109/BTAS.2017.8272690 +30cace74a7d51e9a928287e25bcefb968c49f331,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344634 +5ee0103048e1ce46e34a04c45ff2c2c31529b466,https://doi.org/10.1109/ICIP.2015.7350886 +5e8de234b20f98f467581f6666f1ed90fd2a81be,http://doi.acm.org/10.1145/2647868.2655042 +5e87f5076952cd442718d6b4addce905bae1a1a4,https://doi.org/10.1109/ICMLC.2016.7872938 +5e19d7307ea67799eb830d5ce971f893e2b8a9ca,https://doi.org/10.1007/s11063-012-9214-4 +5e0b691e9e5812dd3cb120a8d77619a45aa8e4c4,https://doi.org/10.1109/ICIP.2016.7532567 +5ed5e534c8defd683909200c1dc31692942b7b5f,http://doi.acm.org/10.1145/2983926 +5e62b2ab6fd3886e673fd5cbee160a5bee414507,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.31 +5e806d8fa48216041fe719309534e3fa903f7b5b,https://doi.org/10.1109/BTAS.2010.5634501 +5efdf48ca56b78e34dc2f2f0ce107a25793d3fc2,http://doi.ieeecomputersociety.org/10.1109/TVCG.2016.2641442 +5bed2453a5b0c54a4a4a294f29c9658658a9881e,https://doi.org/10.1109/TIP.2015.2451173 +5b64584d6b01e66dfd0b6025b2552db1447ccdeb,https://doi.org/10.1109/BTAS.2017.8272697 +5bfad0355cdb62b22970777d140ea388a7057d4c,https://doi.org/10.1016/j.patcog.2011.05.006 +5b4bbba68053d67d12bd3789286e8a9be88f7b9d,https://doi.org/10.1109/ICSMC.2008.4811353 +37c5e3b6175db9eaadee425dc51bc7ce05b69a4e,https://doi.org/10.1007/s00521-013-1387-x +3769e65690e424808361e3eebfdec8ab91908aa9,http://doi.acm.org/10.1145/2647868.2655035 +37f25732397864b739714aac001ea1574d813b0d,https://doi.org/10.1016/j.ijar.2017.09.002 +373c4d6af0ee233f0d669c3955c3a3ef2a009638,https://doi.org/10.1109/APSIPA.2015.7415420 +0874734e2af06883599ed449532a015738a1e779,https://doi.org/10.1007/s10115-013-0702-2 +0821028073981f9bd2dba2ad2557b25403fe7d7d,http://doi.acm.org/10.1145/2733373.2806318 +08872d801f134e41753601e85971769b28314ca2,http://doi.acm.org/10.1145/2683483.2683560 +080ab68a898a3703feead145e2c38361ae84a0a8,https://doi.org/10.1109/TIFS.2014.2343833 +6d5f876a73799cc628e4ad2d9cfcd88091272342,https://doi.org/10.1109/TSMCC.2005.848193 +6da3ff4250103369f4a6a39c8fb982438a97525c,https://doi.org/10.1109/THMS.2015.2404913 +6dd8d8be00376ac760dc92f9c5f20520872c5355,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2417578 +6d67a7fd9a4fa99624721f37b077c71dad675805,https://doi.org/10.1007/s12193-015-0202-7 +6d4c64ca6936f868d793e1b164ddaf19243c19a7,https://doi.org/10.1109/TNNLS.2015.2499273 +01729cb766b1016bac217a6a6cf24bbde19f56c8,https://doi.org/10.1109/CBMI.2010.5529888 +013d0acff1e5410fd9f6e15520d16f4ea02f03f6,https://doi.org/10.1109/TMM.2015.2477681 +01e14d8ffd6767336d50c2b817a7b7744903e567,http://doi.ieeecomputersociety.org/10.1109/FG.2017.128 +0133d1fe8a3138871075cd742c761a3de93a42ec,https://doi.org/10.1109/ICDSP.2015.7251932 +016194dbcd538ab5a129ef1bcff3c6e073db63f9,https://doi.org/10.1007/s10462-012-9334-2 +01f0a4e1442a7804e1fe95798eff777d08e42014,https://doi.org/10.1016/j.knosys.2017.09.005 +01e27c91c7cef926389f913d12410725e7dd35ab,https://doi.org/10.1007/s11760-017-1140-5 +067fe74aec42cb82b92cf6742c7cfb4a65f16951,http://doi.acm.org/10.1145/2601434 +06a799ad89a2a45aee685b9e892805e3e0251770,https://doi.org/10.1007/978-3-319-42147-6 +060f67c8a0de8fee9c1732b63ab40627993f93d0,https://doi.org/10.1007/978-3-642-33564-8 +06c956d4aac65752672ce4bd5a379f10a7fd6148,https://doi.org/10.1109/LSP.2017.2749763 +0629bc2b12245195af989e21573369329b7ef2b7,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2553038 +6c6f0e806e4e286f3b18b934f42c72b67030ce17,https://doi.org/10.1109/FG.2011.5771345 +6c28b3550f57262889fe101e5d027912eb39564e,https://doi.org/10.1109/LSP.2014.2338911 +6c0ad77af4c0850bd01bb118e175ecc313476f27,http://doi.acm.org/10.1145/3009977.3010026 +6ca7a82ec1c51417c4f0b8eebddb53a73a3874b1,http://doi.acm.org/10.1145/2708463.2709059 +39c8ed5213882d4dbc74332245ffe201882c5de1,https://doi.org/10.1109/ICASSP.2013.6638045 +396b2963f0403109d92a4d4f26205f279ea79d2c,https://doi.org/10.1109/TSMCB.2005.845399 +397022a4460750c762dbb0aaebcacc829dee8002,https://doi.org/10.1109/TIFS.2013.2258152 +39acf4bb06b889686ca17fd8c89887a3cec26554,http://www.springerlink.com/index/10.1007/s10044-004-0223-4 +39c10888a470b92b917788c57a6fd154c97b421c,https://doi.org/10.1109/VCIP.2017.8305036 +39d0de660e2116f32088ce07c3376759d0fdaff5,https://doi.org/10.1109/ICPR.2016.7900043 +39d6339a39151b5f88ec2d7acc38fe0618d71b5f,https://doi.org/10.1109/MMSP.2013.6659285 +3980dadd27933d99b2f576c3b36fe0d22ffc4746,https://doi.org/10.1109/ROBIO.2017.8324597 +3960882a7a1cd19dfb711e35a5fc1843ed9002e7,http://doi.acm.org/10.1145/2487575.2487701 +398558817e05e8de184cc4c247d4ea51ab9d4d58,https://doi.org/10.1109/ICPR.2014.14 +993934822a42e70dd35fb366693d847164ca15ff,https://doi.org/10.1109/ICME.2009.5202753 +99a1180c3d39532efecfc5fa251d6893375c91a1,https://doi.org/10.1109/ICARCV.2012.6485394 +99e0c03686f7bc9d7add6cff39a941a047c3600a,https://doi.org/10.1109/ACCESS.2017.2712788 +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,https://doi.org/10.1109/ACCESS.2017.2752176 +998542e5e3882bb0ce563d390b1e1bff5460e80c,https://doi.org/10.1109/AFGR.2008.4813471 +992e4119d885f866cb715f4fbf0250449ce0db05,https://doi.org/10.1007/s00138-015-0674-1 +9989eda2f5392cfe1f789bb0f6213a46d92d1302,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477584 +997c7ebf467c579b55859315c5a7f15c1df43432,http://doi.ieeecomputersociety.org/10.1109/FG.2017.141 +993374c1c9d58a3dec28160188ff6ac1227d02f5,https://doi.org/10.1109/ICARCV.2016.7838650 +99cd84a62edb2bda2fc2fdc362a72413941f6aa4,http://doi.ieeecomputersociety.org/10.1109/FG.2017.109 +5278b7a6f1178bf5f90cd3388908925edff5ad46,https://doi.org/10.1007/s11704-015-4291-y +520782f07474616879f94aae0d9d1fff48910254,https://doi.org/10.1016/j.neucom.2014.11.038 +5217ab9b723158b3ba2235e807d165e72fd33007,http://doi.acm.org/10.1145/2043674.2043710 +524c25217a6f1ed17f47871e947a5581d775fa56,https://doi.org/10.1117/12.2030875 +52e270ca8f5b53eabfe00a21850a17b5cc10f6d5,https://doi.org/10.1109/ROBIO.2013.6739643 +5226296884b3e151ce317a37f94827dbda0b9d16,https://doi.org/10.1109/IWBF.2016.7449690 +5213549200bccec57232fc3ff788ddf1043af7b3,http://doi.acm.org/10.1145/2601097.2601204 +526c79c6ce39882310b814b7918449d48662e2a9,https://doi.org/10.1109/ICASSP.2005.1416338 +524f6dc7441a3899ea8eb5d3e0d5d70e50ba566a,http://doi.acm.org/10.1145/2797143.2797165 +52b102620fff029b80b3193bec147fe6afd6f42e,http://dl.acm.org/citation.cfm?id=3028863 +5551a03353f571b552125dd4ee57301b69a10c46,https://doi.org/10.1016/j.neucom.2015.09.083 +55c46ae1154ed310610bdf5f6d9e7023d14c7eb4,http://doi.acm.org/10.1145/1027933.1028013 +55ee484f9cbd62111512485e3c1c3eadbf2e15c0,http://doi.ieeecomputersociety.org/10.1109/FG.2017.25 +559645d2447004355c83737a19c9a811b45780f1,https://doi.org/10.1109/ICB.2015.7139114 +550351edcfd59d3666984771f5248d95548f465a,https://doi.org/10.1109/TIP.2014.2327805 +5594beb2b314f5433bd7581f64bdbc58f2933dc4,https://doi.org/10.1016/j.neucom.2016.12.013 +55fdff2881d43050a8c51c7fdc094dbfbbe6fa46,https://doi.org/10.1109/ICB.2016.7550064 +553a605243b77a76c1ed4c1ad4f9a43ff45e391b,https://doi.org/10.1109/CISP-BMEI.2017.8302001 +557115454c1b8e6eaf8dbb65122c5b00dc713d51,https://doi.org/10.1109/LSP.2011.2140370 +55266ddbe9d5366e8cd1b0b645971cad6d12157a,https://doi.org/10.1109/SIU.2017.7960368 +556875fb04ed6043620d7ca04dfe3d8b3a9284f5,https://doi.org/10.1109/ICPR.2014.437 +9745a7f38c9bba9d2fd076813fc9ab7a128a3e19,http://doi.acm.org/10.1145/2393347.2396335 +97f3d35d3567cd3d973c4c435cdd6832461b7c3c,http://doi.ieeecomputersociety.org/10.1109/FG.2017.75 +97c554fbcf783d554c4f6c2f3fcc0a0f9dba0759,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0085 +9776a9f3c59907f45baaeda4b8907dcdac98aef1,https://doi.org/10.1109/CISP-BMEI.2017.8301924 +97c59db934ff85c60c460a4591106682b5ab9caa,https://doi.org/10.1109/BTAS.2012.6374568 +978b32ff990d636f7e2050bb05b8df7dfcbb42a1,https://doi.org/10.1109/BTAS.2014.6996270 +9729930ab0f9cbcd07f1105bc69c540330cda50a,https://doi.org/10.1109/ACCESS.2017.2749331 +9790ec6042fb2665c7d9369bf28566b0ce75a936,http://doi.acm.org/10.1145/3056540.3056546 +973022a1f9e30a624f5e8f7158b5bbb114f4af32,http://doi.acm.org/10.1145/3011077.3011138 +9774430006f1ed017156b17f3cf669071e398c58,https://doi.org/10.1109/SMC.2013.513 +9753ee59db115e1e84a7c045f2234a3f63f255b1,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344683 +9771e04f48d8a1d7ae262539de8924117a04c20d,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.70 +63c74794aedb40dd6b1650352a2da7a968180302,https://doi.org/10.1016/j.neucom.2016.09.015 +637b31157386efbde61505365c0720545248fbae,https://doi.org/10.1109/BTAS.2017.8272721 +6345c0062885b82ccb760c738a9ab7fdce8cd577,https://doi.org/10.1109/EMBC.2016.7590729 +635d2696aa597a278dd6563f079be06aa76a33c0,https://doi.org/10.1109/ICIP.2016.7532429 +636c786d4e4ac530ac85e3883a2f2cf469e45fe2,https://doi.org/10.1016/j.neucom.2016.12.043 +6343bc0013343b6a5f96154f02d18dcd36a3f74c,https://doi.org/10.1007/s11042-014-2083-2 +0fc5c6f06e40014a56f492172f44c073d269e95c,https://doi.org/10.1108/17563781311301490 +0fb45e704ef3ca1f9c70e7be3fb93b53714ed8b5,http://doi.ieeecomputersociety.org/10.1109/FG.2017.142 +0fee3b9191dc1cef21f54232a23530cd8169d3b2,https://doi.org/10.1109/ICDM.2016.0050 +0f2461a265be997c962fa562ae48378fb964b7b4,https://doi.org/10.1109/BigData.2016.7841028 +0f22b89341d162a7a0ebaa3c622d9731e5551064,http://doi.ieeecomputersociety.org/10.1109/AIPR.2011.6176352 +0fdc3cbf92027cb1200f3f94927bef017d7325ae,https://doi.org/10.1109/BTAS.2015.7358771 +0f29bc5d8458358d74dc8c4fd6968b4182dd71d2,https://doi.org/10.1109/ICIP.2016.7532637 +0f1cb558b32c516e2b6919fea0f97a307aaa9091,https://doi.org/10.1007/s41095-017-0091-7 +0fcf04fda0bea5265b73c85d2cc2f7f70416537b,https://doi.org/10.1109/TCSVT.2015.2409012 +0f64e26d6dd6f1c99fe2050887fac26cafe9ed60,https://doi.org/10.1109/MCI.2016.2627668 +0a4a8768c1ed419baebe1c420bd9051760875cbe,https://doi.org/10.1109/EUSIPCO.2016.7760451 +0a5b2e642683ff20b6f0cee16a32a68ba0099908,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2012.6239342 +0aebe97a92f590bdf21cdadfddec8061c682cdb2,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2695183 +0a0b9a9ff827065e4ff11022b0e417ddf1d3734e,http://dl.acm.org/citation.cfm?id=2935856 +0a451fc7d2c6b3509d213c210ae880645edf90ed,https://doi.org/10.1109/IJCNN.2014.6889591 +0abfb5b89e9546f8a5c569ab35b39b888e7cea46,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.68 +0ac2e8bd5a77d83bae9b49daab2c6f321e9b7a4e,https://doi.org/10.1109/SCIS-ISIS.2016.0166 +642417f2bb1ff98989e0a0aa855253fed1fffe04,https://doi.org/10.1117/12.2004255 +6440d6c7081efe4538a1c75e93144f3d142feb41,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.280 +6486b36c6f7fd7675257d26e896223a02a1881d9,https://doi.org/10.1109/THMS.2014.2376874 +647b2e162e9c476728172f62463a8547d245cde3,https://doi.org/10.1109/ICPR.2016.7899898 +64e216c128164f56bc91a33c18ab461647384869,http://doi.ieeecomputersociety.org/10.1109/AVSS.2016.7738017 +6489ad111fee8224b34f99d1bcfb5122786508cd,https://doi.org/10.1109/ICIP.2014.7025280 +64a08beb073f62d2ce44e25c4f887de9208625a4,https://doi.org/10.1080/09540090701725557 +64e82b42e1c41250bdf9eb952686631287cfd410,https://doi.org/10.1111/cgf.12760 +64b9ad39d115f3e375bde4f70fb8fdef5d681df8,https://doi.org/10.1109/ICB.2016.7550088 +64fd48fae4d859583c4a031b51ce76ecb5de614c,https://doi.org/10.1109/ICARCV.2008.4795556 +64ba203c8cfc631d5f3f20419880523155fbeeb2,http://doi.acm.org/10.1145/3009977.3010008 +90ddf1aabf1c73b5fc45254a2de46e53a0bde857,https://doi.org/10.1109/ROBIO.2015.7418917 +907bb6c2b292e6db74fad5c0b7a7f1cc2a4d4224,https://doi.org/10.1016/j.patcog.2014.07.010 +9048732c8591a92a1f4f589b520a733f07578f80,https://doi.org/10.1109/CISP-BMEI.2017.8301921 +9055b155cbabdce3b98e16e5ac9c0edf00f9552f,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78 +902cc7dd4ecfb2b6750905ef08bceeed24e1eeeb,https://doi.org/10.1016/j.patcog.2016.03.002 +90eb66e75381cce7146b3953a2ae479a7beec539,http://doi.ieeecomputersociety.org/10.1109/AIPR.2015.7444542 +90ae02da16b750a9fd43f8a38440f848309c2fe0,https://doi.org/10.1007/s10044-015-0499-6 +9026ee8a89ecfa6bd2688a4943eee027e3fc4b0f,http://doi.ieeecomputersociety.org/10.1109/CGIV.2011.28 +90c4a6c6f790dbcef9a29c9a755458be09e319b6,http://doi.acm.org/10.1145/2964284.2967242 +9026eb610916ec4ce77f0d7d543b7c2482ba4173,https://doi.org/10.1016/j.patrec.2012.03.006 +90c4deaa538da42b9b044d7b68c3692cced66036,http://doi.ieeecomputersociety.org/10.1109/SITIS.2007.89 +bf30477f4bd70a585588528355b7418d2f37953e,https://doi.org/10.1109/ICPR.2016.7900280 +bf1e0545785b05b47caa3ffe7d16982769986f38,https://doi.org/10.1016/j.asoc.2010.12.002 +bf0836e5c10add0b13005990ba019a9c4b744b06,https://doi.org/10.1109/TCE.2009.5373791 +bf4f79fd31493648d80d0a4a8da5edeeaba74055,http://doi.acm.org/10.1145/2783258.2783280 +bf00071a7c4c559022272ca5d39e07f727ebb479,https://doi.org/10.1109/MMSP.2016.7813388 +bf2eb77e9b795a4a0a38ed4b1c8dd4b2c9a74317,https://doi.org/10.1007/978-3-319-69900-4_70 +bf1ebcaad91c2c0ed35544159415b3ad388cc7a9,https://doi.org/10.1007/s11042-015-2665-7 +d37ca68742b2999667faf464f78d2fbf81e0cb07,https://doi.org/10.1007/978-3-319-25417-3_76 +d3a3d15a32644beffaac4322b9f165ed51cfd99b,https://doi.org/10.1109/SIU.2016.7496197 +d42dbc995318e2936714c65c028700bfd3633049,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477592 +d4331a8dd47b03433f8390da2eaa618751861c64,https://doi.org/10.1109/TIP.2012.2192125 +d4353952a408e1eae8c27a45cc358976d38dde00,https://doi.org/10.1007/s00138-014-0594-5 +d4ccc4f18a824af08649657660e60b67c6868d9c,https://doi.org/10.1142/S021800141655020X +d40c16285d762f7a1c862b8ac05a0fdb24af1202,https://doi.org/10.1109/BESC.2017.8256378 +d4ec62efcc631fa720dfaa1cbc5692b39e649008,https://doi.org/10.1109/ICDM.2016.0026 +d4fb26f5528b9a1f04ea773cc2b920e01fc0edd4,https://doi.org/10.1109/TSMCB.2009.2032155 +d4fba386caca1b5b2ee35ee5310b5fce50b2b1c3,https://doi.org/10.23919/MVA.2017.7986886 +bab2f4949a38a712a78aafbc0a3c392227c65f56,https://doi.org/10.1109/CISP-BMEI.2017.8302191 +ba30cc9d8bac724dafc0aea247159cc7e7105784,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019360 +ba931c3f90dd40a5db4301a8f0c71779a23043d6,https://doi.org/10.1109/ICPR.2014.136 +a07f78124f83eef1ed3a6f54ba982664ae7ca82a,http://ieeexplore.ieee.org/document/6460481/ +a0d5990eb150cdcb1c8b2967e6a4fe7a5d85063b,https://doi.org/10.1109/ICIP.2017.8296805 +a094e52771baabe4ab37ef7853f9a4f534227457,https://doi.org/10.1109/TITS.2016.2551298 +a0f6196d27a39cde2dbf62c08d89cbe489600bb0,https://doi.org/10.1016/j.cose.2016.03.007 +a006cd95c14de399706c5709b86ac17fce93fcba,https://doi.org/10.1109/ICPR.2014.343 +a7c066e636b8953481b4a8d8ff25a43a96dd348f,https://doi.org/10.1109/ATSIP.2017.8075517 +a76e57c1b2e385b68ffdf7609802d71244804c1d,https://doi.org/10.1016/j.patrec.2016.05.027 +a7da7e5a6a4b53bf8736c470ff8381a654e8c965,https://doi.org/10.1007/s13042-011-0045-9 +a7a3ec1128f920066c25cb86fbc33445ce613919,https://doi.org/10.1109/VCIP.2017.8305115 +a71bd4b94f67a71bc5c3563884bb9d12134ee46a,https://doi.org/10.1016/j.asoc.2015.05.006 +a735c6330430c0ff0752d117c54281b1396b16bf,https://doi.org/10.1109/SMC.2014.6974118 +a73405038fdc0d8bf986539ef755a80ebd341e97,https://doi.org/10.1109/TIP.2017.2698918 +a713a01971e73d0c3118d0409dc7699a24f521d6,https://doi.org/10.1109/SSCI.2017.8285381 +a7f188a7161b6605d58e48b2537c18a69bd2446f,https://doi.org/10.1109/PIMRC.2011.6139898 +a76969df111f9ee9f0b898b51ad23a721d289bdc,https://doi.org/10.1109/ICMLA.2015.185 +a75de488eaacb1dafffbe667465390f101498aaf,http://doi.ieeecomputersociety.org/10.1109/FG.2017.47 +b839bc95794dc65340b6e5fea098fa6e6ea5e430,https://doi.org/10.1109/WACVW.2017.8 +b8e5800dfc590f82a0f7eedefce9abebf8088d12,https://doi.org/10.1109/DCC.2017.87 +b86c49c6e3117ea116ec2d8174fa957f83502e89,https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.149 +b85d0aef3ee2883daca2835a469f5756917e76b7,https://doi.org/10.1007/s41095-015-0015-3 +b856d8d6bff745bb1b4beb67e4b821fc20073840,https://doi.org/10.1109/ICMLC.2016.7872935 +b84dde74dddf6a3281a0b22c68999942d2722919,http://dl.acm.org/citation.cfm?id=2910703 +b8a16fcb65a8cee8dd32310a03fe36b5dff9266a,https://doi.org/10.1109/SIU.2014.6830473 +b8b9cef0938975c5b640b7ada4e3dea6c06d64e9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.119 +b85d953de16eecaecccaa8fad4081bd6abda9b1b,https://doi.org/10.1016/j.neuroimage.2015.12.020 +b84f164dbccb16da75a61323adaca730f528edde,https://doi.org/10.1109/TIP.2013.2237914 +b8bcf9c773da1c5ee76db4bf750c9ff5d159f1a0,http://doi.acm.org/10.1145/2911996.2911999 +b8978a5251b6e341a1171e4fd9177aec1432dd3a,https://doi.org/10.1016/j.image.2016.04.004 +b8f64a94f536b46ef34a0223272e02f9be785ef9,https://doi.org/10.1109/EMBC.2012.6346590 +b1891010a0722117c57e98809e1f2b26cd8e9ee3,http://doi.acm.org/10.1145/2330784.2331026 +b1efefcc9a5d30be90776571a6cc0071f3679753,https://doi.org/10.1109/ROBIO.2016.7866471 +b1bb517bd87a1212174033fc786b2237844b04e6,https://doi.org/10.1016/j.neucom.2015.03.078 +b1534888673e6119f324082246016d28eba249aa,https://doi.org/10.1109/MMSP.2017.8122229 +b13b101b6197048710e82f044ad2eda6b93affd8,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.91 +ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,https://doi.org/10.1109/ICDSP.2016.7868598 +dd031dbf634103ff3c58ce87aa74ec6921b2e21d,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344664 +dd8a851f2a0c63bb97e33aaff1841695f601c863,https://doi.org/10.1109/BTAS.2014.6996260 +ddd9d7cb809589b701fba9f326d7cf998a63b14f,http://doi.acm.org/10.1145/2647868.2654992 +ddf577e8b7c86b1122c1bc90cba79f641d2b33fa,http://doi.acm.org/10.1145/3013971.3014026 +dd715a98dab34437ad05758b20cc640c2cdc5715,https://doi.org/10.1007/s41095-017-0082-8 +dcb50e1f439d1f9b14ae85866f4542e51b830a07,https://doi.org/10.1109/FSKD.2012.6234354 +dcea30602c4e0b7525a1bf4088620128d4cbb800,https://doi.org/10.1109/VCIP.2013.6706430 +dcdece0d0ee382e2f388dcd7f5bd9721bb7354d6,https://doi.org/10.1109/TCYB.2014.2311033 +dc2f16f967eac710cb9b7553093e9c977e5b761d,https://doi.org/10.1109/ICPR.2016.7900141 +dc84d3f29c52e6d296b5d457962c02074aa75d0f,https://doi.org/10.1109/TIP.2016.2580939 +dca2bb023b076de1ccd0c6b8d71faeb3fccb3978,http://doi.acm.org/10.1145/3152118 +b69e7e2a7705a58a0e3f1b80ae542907b89ce02e,https://doi.org/10.1007/s11042-015-2614-5 +b6259115b819424de53bb92f64cc459dcb649f31,http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078466 +b68452e28951bf8db5f1193eca3a8fd9e2d0d7ef,https://doi.org/10.1109/ICACCI.2015.7275752 +b6ac33d2c470077fa8dcbfe9b113beccfbd739f8,http://doi.acm.org/10.1145/2509896.2509905 +b65b51c796ed667c4c7914bf12b1926fd6bbaa0c,https://doi.org/10.1016/j.neuroimage.2013.05.108 +b6a23f72007cb40223d7e1e1cc47e466716de945,https://doi.org/10.1109/CVPRW.2010.5544598 +b6c00e51590c48a48fae51385b3534c4d282f76c,https://doi.org/10.1109/TIFS.2015.2427778 +b631f3c212aab45d73ddc119f1f7d00c3c502a72,https://doi.org/10.1109/TIFS.2009.2035976 +b63b6ed78b39166d87d4c56f8890873aa65976a2,https://doi.org/10.1109/ICRA.2011.5979953 +a92e24c8c53e31fc444a13bd75b434b7207c58f1,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2317711 +a9756ca629f73dc8f84ee97cfa8b34b8207392dc,https://doi.org/10.1109/ICIP.2017.8296542 +a9cecfbc47a39fa0158a5f6fd883e0e5ac2aa134,https://doi.org/10.1142/S0218001405004071 +a9af0dc1e7a724464d4b9d174c9cf2441e34d487,https://doi.org/10.1142/S0219691316500351 +a9506c60ec48056087ee3e10d28ff7774fbbd553,https://doi.org/10.1109/TCSVT.2014.2376136 +a9d1d00d6897ae23c9a7e9fb75a3c7417a6730a4,https://doi.org/10.1049/iet-ipr.2016.1074 +a9426cb98c8aedf79ea19839643a7cf1e435aeaa,https://doi.org/10.1109/GlobalSIP.2016.7905998 +d5f8827fc7d66643bf018d5636e81ed41026b61a,http://doi.ieeecomputersociety.org/10.1109/FG.2017.36 +d569c3e62f471aa75ed53e631ec05c1a3d594595,https://doi.org/10.1109/NNSP.2002.1030072 +d5b445c5716952be02172ca4d40c44f4f04067fa,https://doi.org/10.1109/ICICS.2011.6173537 +d57ce0ff4acb2910c2d1afee2ebb7aa1e72a4584,https://doi.org/10.1109/CVPRW.2010.5543816 +d5c66a48bc0a324750db3d295803f47f6060043d,http://doi.ieeecomputersociety.org/10.1109/AVSS.2006.109 +d58fce50e9028dfc12cb2e7964f83d3b28bcc2fc,http://doi.ieeecomputersociety.org/10.1109/FG.2017.101 +d5dc78eae7a3cb5c953c89376e06531d39b34836,https://doi.org/10.1007/s00521-009-0242-6 +d2d9612d3d67582d0cd7c1833599b88d84288fab,https://doi.org/10.1049/iet-cvi.2015.0222 +d2a415365f997c8fe2dbdd4e06ceab2e654172f6,http://doi.acm.org/10.1145/2425333.2425361 +d2bad850d30973a61b1a7d7dc582241a41e5c326,http://doi.ieeecomputersociety.org/10.1109/ICICIC.2006.12 +d2baa43471d959075fc4c93485643cbd009797fd,http://doi.ieeecomputersociety.org/10.1109/MM.2017.4241350 +d2598c088b0664c084413796f39697c6f821d56e,https://doi.org/10.1109/VCIP.2016.7805451 +d2fac640086ba89271ad7c1ebf36239ecd64605e,http://ieeexplore.ieee.org/document/6460449/ +d2b3166b8a6a3e6e7bc116257e718e4fe94a0638,https://doi.org/10.1007/s00521-010-0411-7 +aa7c72f874951ff7ca3769439f2f39b7cfd4b202,https://doi.org/10.1109/JPROC.2009.2032355 +aaf2436bc63a58d18192b71cc8100768e2f8a6cb,http://doi.ieeecomputersociety.org/10.1109/ICDIP.2009.77 +aad6fc5bd7631d2e68b7a5a01ac5d578899c43e5,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.80 +aa892fe17c06e2b18db2b12314499a741e755df7,https://doi.org/10.1109/IJCNN.2017.7966089 +aab9a617be6e5507beb457b1e6c2e5b046f9cff0,https://doi.org/10.1109/ICIP.2008.4712153 +aa4af9b3811db6a30e1c7cc1ebf079078c1ee152,http://doi.acm.org/10.1145/3129416.3129451 +aad7b12936e0ced60bc0be95e8670b60b5d5ce20,https://doi.org/10.1109/URAI.2013.6677383 +aa90a466a2ff7781c36e7da7df0013aa5b117510,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.159 +aa8341cb5d8f0b95f619d9949131ed5c896d6470,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2007.403 +aaec8141d57d29aa3cedf1baec9633180ddb7a3d,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552916 +aae31f092fadd09a843e1ca62af52dc15fc33c56,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273609 +affa61d044daa1a7d43a6803a743eab47c89c45d,https://doi.org/10.1109/TNNLS.2015.2405574 +afba76d0fe40e1be381182aec822431e20de8153,https://doi.org/10.1007/s00521-014-1768-9 +af12a79892bd030c19dfea392f7a7ccb0e7ebb72,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247972 +afdbbc5c84eb4e535c7c478b5227c0138b57af64,http://doi.ieeecomputersociety.org/10.1109/TMC.2016.2593919 +af2d30fdb8c611dc5b883b90311d873e336fc534,https://doi.org/10.1109/ISCAS.2017.8050275 +af3e6e20de06b03c33f8e85eced74c2d096730ea,https://doi.org/10.1109/CISP-BMEI.2017.8301972 +af7553d833886663550ce83b087a592a04b36419,https://doi.org/10.1109/TIFS.2015.2390138 +af8e22ef8c405f9cc9ad26314cb7a9e7d3d4eec2,https://doi.org/10.1007/s00521-014-1569-1 +af97e792827438ddea1d5900960571939fc0533e,https://doi.org/10.1109/ICSMC.2005.1571460 +af97a51f56cd6b793cf96692931a8d1ddbe4e3cc,https://doi.org/10.1109/ICPR.2014.57 +b749ca71c60904d7dad6fc8fa142bf81f6e56a62,https://doi.org/10.1109/TIP.2013.2292560 +b7128e0fe18dcb42e8a2ac5cf6794f64a8e37bd0,https://doi.org/10.1109/SERA.2017.7965717 +b7845e0b0ce17cde7db37d5524ef2a61dee3e540,https://doi.org/10.1109/ICPR.2016.7899608 +b75eecc879da38138bf3ace9195ae1613fb6e3cc,https://doi.org/10.1007/s10278-015-9808-2 +b7b8e7813fbc12849f2daba5cab604abd8cbaab6,https://doi.org/10.1109/ICCE.2014.6775938 +b7a0c70a320c1ac3e92f4bf0b50a7d8ceb757c41,https://doi.org/10.1109/IJCNN.2016.7727203 +b784bb1d2b2720dac8d4b92851a8d6360c35b0b2,https://doi.org/10.1109/ICDM.2016.0041 +b728e7db6e5559a77dc59381bfb8df96d482a721,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.28 +b7fa06b76f4b9263567875b2988fb7bbc753e69f,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469282 +b7043048b4ba748c9c6317b6d8206192c34f57ff,https://doi.org/10.1109/ICIP.2016.7533061 +db3984b143c59584a32d762d712d21c0e8cf38b8,https://doi.org/10.1109/SMC.2015.324 +dbcfefa92edab8d1ffe8bc1cc66ad80fb13d2b6a,https://doi.org/10.1007/s00521-010-0519-9 +dbf2d2ca28582031be6d16519ab887248f5e8ad8,https://doi.org/10.1109/TMM.2015.2410135 +dbfe62c02b544b48354fac741d90eb4edf815db5,https://doi.org/10.1109/SITIS.2016.43 +dbc3ab8c9f564f038e7779b87900c4a0426f3dd1,http://doi.acm.org/10.1145/1386352.1386401 +a8faeef97e2a00eddfb17a44d4892c179a7cc277,https://doi.org/10.1109/FG.2011.5771459 +a8c62833f5e57d4cd060d6b5f0f9cfe486ee6825,http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.808 +a8fd23934e5039bb818b8d1c47ccb540ce2c253c,https://doi.org/10.1007/s11760-015-0808-y +a8f1fc34089c4f2bc618a122be71c25813cae354,https://doi.org/10.1142/S0219467816500194 +de048065ea2c5b3e306e2c963533df055e7dfcaa,https://doi.org/10.1109/LSP.2016.2598878 +ded8252fc6df715753e75ba7b7fee518361266ef,https://doi.org/10.1109/SIU.2012.6204837 +de79437f74e8e3b266afc664decf4e6e4bdf34d7,https://doi.org/10.1109/IVCNZ.2016.7804415 +de8657e9eab0296ac062c60a6e10339ccf173ec1,http://doi.ieeecomputersociety.org/10.1109/BRACIS.2014.51 +dea409847d52bb0ad54bf586cb0482a29a584a7e,http://doi.ieeecomputersociety.org/10.1109/ISM.2009.115 +de0ee491d2747a6f3d171f813fe6f5cdb3a27fd6,https://doi.org/10.1002/cpe.3850 +dec5b11b01f35f72adb41d2be26b9b95870c5c00,http://ieeexplore.ieee.org/document/7071948/ +deb89950939ae9847f0a1a4bb198e6dbfed62778,https://doi.org/10.1109/LSP.2016.2543019 +de878384f00b6ce1caa66ac01735fb4b63ad0279,https://doi.org/10.1049/iet-ipr.2014.0670 +defd44b02a1532f47bdd8c8f2375e3df64ac5d79,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.139 +b05943b05ef45e8ea8278e8f0870f23db5c83b23,https://doi.org/10.1109/ROBIO.2010.5723349 +b084ad222c1fc9409d355d8e54ac3d1e86f2ca18,https://doi.org/10.1016/j.neucom.2017.04.001 +b0358af78b7c5ee7adc883ef513bbcc84a18a02b,https://doi.org/10.1109/WACV.2017.10 +b0f59b71f86f18495b9f4de7c5dbbebed4ae1607,https://doi.org/10.1016/j.neucom.2015.04.085 +a63ec22e84106685c15c869aeb157aa48259e855,https://doi.org/10.1142/S0219691312500294 +a6e75b4ccc793a58ef0f6dbe990633f7658c7241,https://doi.org/10.1016/j.cviu.2016.10.007 +a62997208fec1b2fbca6557198eb7bc9340b2409,https://doi.org/10.1109/HPCC.and.EUC.2013.241 +a6ab23f67d85da26592055c0eac4c34f05c26519,http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.15 +a6793de9a01afe47ffbb516cc32f66625f313231,http://doi.acm.org/10.1145/2939672.2939853 +b944cc4241d195b1609a7a9d87fce0e9ba1498bc,https://doi.org/10.1109/TSP.2011.2179539 +b934f730a81c071dbfc08eb4c360d6fca2daa08f,http://doi.ieeecomputersociety.org/10.1109/ICME.2015.7177496 +b98e7a8f605c21e25ac5e32bfb1851a01f30081b,http://doi.acm.org/10.1145/2393347.2396303 +b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,http://doi.acm.org/10.1145/2733373.2807962 +b972683d702a65d3ee7a25bc931a5890d1072b6b,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2669035 +b910590a0eb191d03e1aedb3d55c905129e92e6b,http://doi.acm.org/10.1145/2808492.2808570 +a180dc9766490416246e7fbafadca14a3c500a46,https://doi.org/10.1016/S0167-8655(03)00112-0 +a100595c66f84c3ddd3da8d362a53f7a82f6e3eb,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.46 +a1cda8e30ce35445e4f51b47ab65b775f75c9f18,https://doi.org/10.1109/ISBA.2018.8311462 +a13a27e65c88b6cb4a414fd4f6bca780751a59db,https://doi.org/10.1109/SMC.2016.7844934 +a1cecbb759c266133084d98747d022c1e638340d,http://doi.acm.org/10.1145/2670473.2670501 +a11ce3c9b78bf3f868b1467b620219ff651fe125,http://doi.acm.org/10.1145/2911996.2912073 +a192845a7695bdb372cccf008e6590a14ed82761,https://doi.org/10.1109/TIP.2014.2321495 +a119844792fd9157dec87e3937685c8319cac62f,https://doi.org/10.1109/APSIPA.2015.7415395 +ef7b8f73e95faa7a747e0b04363fced0a38d33b0,https://doi.org/10.1109/ICIP.2017.8297028 +ef35c30529df914a6975af62aca1b9428f678e9f,https://doi.org/10.1007/s00138-016-0817-z +ef3a0b454370991a9c18ac7bfd228cf15ad53da0,https://doi.org/10.1109/ICNC.2010.5582886 +c3c463a9ee464bb610423b7203300a83a166b500,https://doi.org/10.1109/ICIP.2014.7025069 +c3390711f5ce6f5f0728ef88c54148bf9d8783a2,https://doi.org/10.1016/j.engappai.2015.03.016 +c3e53788370341afe426f2216bed452cbbdaf117,http://doi.ieeecomputersociety.org/10.1109/ATNAC.2017.8215436 +c3a53b308c7a75c66759cbfdf52359d9be4f552b,http://doi.ieeecomputersociety.org/10.1109/ISPAN-FCST-ISCC.2017.16 +c36f3cabeddce0263c944e9fe4afd510b5bae816,https://doi.org/10.1109/DICTA.2017.8227399 +c4b00e86841db3fced2a5d8ac65f80d0d3bbe352,http://doi.ieeecomputersociety.org/10.1109/AIPR.2004.4 +c41a3c31972cf0c1be6b6895f3bf97181773fcfb,https://doi.org/10.1109/ICPR.2014.103 +c4ca092972abb74ee1c20b7cae6e69c654479e2c,https://doi.org/10.1109/ICIP.2016.7532960 +c444c4dab97dd6d6696f56c1cacda051dde60448,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37 +c459014131cbcd85f5bd5c0a89115b5cc1512be9,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.23 +c49075ead6eb07ede5ada4fe372899bd0cfb83ac,https://doi.org/10.1109/ICSPCS.2015.7391782 +c4541802086461420afb1ecb5bb8ccd5962a9f02,https://doi.org/10.1109/TSMCB.2009.2029076 +c4d439fe07a65b735d0c8604bd5fdaea13f6b072,http://doi.acm.org/10.1145/2671188.2749294 +c4d0d09115a0df856cdb389fbccb20f62b07b14e,https://doi.org/10.1109/ICIP.2012.6466925 +ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,https://doi.org/10.1109/ICIP.2017.8296549 +ea8fa68b74ffefbe79a3576d7e4ae4365a1346ff,http://doi.ieeecomputersociety.org/10.1109/FG.2017.113 +ea8d217231d4380071132ce37bf997164b60ec44,https://doi.org/10.1109/SIU.2016.7496031 +ea2b3efd4d317ebaffaf7dc8c62db5ff1eab0e1b,https://doi.org/10.1109/FRUCT-ISPIT.2016.7561522 +ea026456729f0ec54c697198e1fd089310de4ae2,https://doi.org/10.1109/CIBIM.2013.6607917 +ea86b75427f845f04e96bdaadfc0d67b3f460005,https://doi.org/10.1109/ICIP.2016.7532686 +ea5c9d5438cde6d907431c28c2f1f35e02b64b33,https://doi.org/10.1109/SPAC.2017.8304257 +e12b2c468850acb456b0097d5535fc6a0d34efe3,https://doi.org/10.1016/j.neucom.2011.03.009 +e1c50cf0c08d70ff90cf515894b2b360b2bc788b,https://doi.org/10.1109/ICSMC.2007.4414085 +e10cbd049ac2f5cc8af9eb8e587b3408ad4bb111,https://doi.org/10.1117/1.JEI.24.5.053028 +e111624fb4c5dc60b9e8223abfbf7c4196d34b21,http://doi.ieeecomputersociety.org/10.1109/BIBM.2016.7822814 +e101bab97bce2733222db9cfbb92a82779966508,https://doi.org/10.1109/TCYB.2016.2549639 +e14b046a564604508ea8e3369e7e9f612e148511,https://doi.org/10.1007/978-3-642-17829-0_4 +e198a7b9e61dd19c620e454aaa81ae8f7377ade0,https://doi.org/10.1109/CVPRW.2010.5543611 +e1449be4951ba7519945cd1ad50656c3516113da,https://doi.org/10.1109/TCSVT.2016.2603535 +cd2bf0e1d19babe51eaa94cbc24b223e9c048ad6,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2581168 +cde7901c0945683d0c677b1bb415786e4f6081e6,http://doi.ieeecomputersociety.org/10.1109/IRI.2015.44 +cdf2c8752f1070b0385a94c7bf22e8b54cac521b,https://doi.org/10.1007/s11265-010-0541-2 +cd33b3ca8d7f00c1738c41b2071a3164ba42ea61,https://doi.org/10.1142/S0218213008003832 +cdf0dc4e06d56259f6c621741b1ada5c88963c6d,https://doi.org/10.1109/ICIP.2014.7025061 +cd85f71907f1c27349947690b48bfb84e44a3db0,https://doi.org/10.1007/978-981-10-4840-1 +cdfa7dccbc9e9d466f8a5847004973a33c7fcc89,https://doi.org/10.1109/TIFS.2013.2263498 +cd3b713722ccb1e2ae3b050837ca296b2a2dd82a,https://doi.org/10.1016/j.jvcir.2016.07.015 +cd74d606e76ecddee75279679d9770cdc0b49861,https://doi.org/10.1109/TIP.2014.2365725 +cc1b093cfb97475faabab414878fa7e4a2d97cd7,http://doi.ieeecomputersociety.org/10.1109/ICALT.2017.141 +ccca2263786429b1b3572886ce6a2bea8f0dfb26,https://doi.org/10.1007/s10044-014-0388-4 +cc7c63473c5bef5ae09f26b2258691d9ffdd5f93,https://doi.org/10.1109/ICMLA.2012.17 +cc44f1d99b17a049a8186ec04c6a1ecf1906c3c8,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.87 +ccb95192001b07bb25fc924587f9682b0df3de8e,https://doi.org/10.1109/ICACCI.2016.7732123 +cc70fb1ab585378c79a2ab94776723e597afe379,https://doi.org/10.1109/ICIP.2017.8297067 +cc6d3ccc9e3dd0a43313a714316c8783cd879572,https://doi.org/10.1109/ICIP.2017.8296802 +cc9a61a30afdb8a5bc7088e1cef814b53dc4fc66,https://doi.org/10.1142/s0218213015400199 +cc5edaa1b0e91bc3577547fc30ea094aa2722bf0,https://doi.org/10.1109/CICARE.2014.7007832 +cce2f036d0c5f47c25e459b2f2c49fa992595654,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.93 +cca476114c48871d05537abb303061de5ab010d6,https://doi.org/10.15439/2016F472 +cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,https://doi.org/10.1109/SIU.2016.7495874 +ccebd3bf069f5c73ea2ccc5791976f894bc6023d,https://doi.org/10.1109/ICPR.2016.7900186 +cceec87bad847b9b87178bde8ce5cce6bf1a8e99,https://doi.org/10.1109/RIISS.2014.7009163 +ccfebdf7917cb50b5fcd56fb837f841a2246a149,https://doi.org/10.1109/ICIP.2015.7351065 +e6f3707a75d760c8590292b54bc8a48582da2cd4,https://doi.org/10.1007/s11760-012-0410-5 +e6c491fb6a57c9a7c2d71522a1a066be2e681c84,https://doi.org/10.1016/j.imavis.2016.06.002 +e6d46d923f201da644ae8d8bd04721dd9ac0e73d,https://doi.org/10.1109/ISBA.2016.7477226 +e6c834c816b5366875cf3060ccc20e16f19a9fc6,https://doi.org/10.1109/BTAS.2016.7791185 +e66a6ae542907d6a0ebc45da60a62d3eecf17839,https://doi.org/10.1109/EUVIP.2014.7018366 +e66b4aa85524f493dafde8c75176ac0afad5b79c,https://doi.org/10.1109/SSCI.2017.8285219 +e6d6d1b0a8b414160f67142fc18e1321fe3f1c49,https://doi.org/10.1109/FSKD.2015.7382037 +e69a765d033ef6ea55c57ca41c146b27964c5cf2,https://doi.org/10.1109/ISCAS.2017.8050764 +f9fb7979af4233c2dd14813da94ec7c38ce9232a,http://doi.acm.org/10.1145/3131902 +f9752fd07b14505d0438bc3e14b23d7f0fe7f48b,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2009.114 +f95321f4348cfacc52084aae2a19127d74426047,https://doi.org/10.1109/ICMLC.2013.6890897 +f925879459848a3eeb0035fe206c4645e3f20d42,http://doi.acm.org/10.1145/3025453.3025472 +f0dac9a55443aa39fd9832bdff202a579b835e88,https://doi.org/10.1109/JSTSP.2016.2543681 +f0a9d69028edd1a39147848ad1116ca308d7491e,https://doi.org/10.1007/11573548_11 +f09d5b6433f63d7403df5650893b78cdcf7319b3,https://doi.org/10.1109/AFGR.2008.4813384 +f0b4f5104571020206b2d5e606c4d70f496983f9,https://doi.org/10.1109/FUZZ-IEEE.2014.6891674 +f7911b9ff58d07d19c68f4a30f40621f63c0f385,http://dl.acm.org/citation.cfm?id=3007693 +f762afd65f3b680330e390f88d4cc39485345a01,http://doi.ieeecomputersociety.org/10.1109/ACIIW.2017.8272606 +f702a6cf6bc5e4cf53ea72baa4fc9d80cdbbae93,https://doi.org/10.1109/TCSVT.2007.903317 +f73174cfcc5c329b63f19fffdd706e1df4cc9e20,http://doi.ieeecomputersociety.org/10.1109/FIT.2015.13 +f7bebb2d5ef7c9bd38808b8e615756efafc2a1e7,https://doi.org/10.1109/ICIP.2012.6467434 +f79e4ba09402adab54d2efadd1c4bfe4e20c5da5,https://doi.org/10.1109/ICIP.2017.8296364 +e83e5960c2aabab654e1545eb419ef64c25800d5,https://doi.org/10.1016/j.neunet.2016.08.011 +e8951cc76af80da43e3528fe6d984071f17f57e7,https://doi.org/10.1109/WACVW.2017.9 +e8c051d9e7eb8891b23cde6cbfad203011318a4f,http://doi.acm.org/10.1145/3013971.3014015 +e88988f4696e7e2925ed96467fde4314bfa95eff,https://doi.org/10.1016/j.neucom.2015.01.076 +e82a0976db908e6f074b926f58223ac685533c65,https://doi.org/10.1007/s11042-015-2848-2 +e865908ed5e5d7469b412b081ca8abd738c72121,https://doi.org/10.1109/TIP.2016.2621667 +e8c6853135856515fc88fff7c55737a292b0a15b,http://doi.ieeecomputersociety.org/10.1109/FG.2017.46 +fa54ab106c7f6dbd3c004cea4ef74ea580cf50bf,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.18 +faf19885431cb39360158982c3a1127f6090a1f6,https://doi.org/10.1109/BTAS.2015.7358768 +fa72e39971855dff6beb8174b5fa654e0ab7d324,https://doi.org/10.1007/s11042-013-1793-1 +faa46ef96493b04694555738100d9f983915cf9b,https://doi.org/10.1007/s10489-015-0735-1 +fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,https://doi.org/10.1109/TIM.2015.2415012 +fadbb3a447d697d52771e237173b80782caaa936,https://doi.org/10.1007/s00530-012-0290-0 +fa9610c2dc7e2a79e0096ac033b11508d8ae7ed7,https://doi.org/10.1109/FSKD.2016.7603418 +fa5ab4b1b45bf22ce7b194c20c724946de2f2dd4,https://doi.org/10.1109/TIP.2015.2421437 +ff82825a04a654ca70e6d460c8d88080ee4a7fcc,http://doi.acm.org/10.1145/2683483.2683533 +ff9e042cccbed7e350a25b7d806cd17fb79dfdf9,https://doi.org/10.1007/s11760-016-0882-9 +fff31548617f208cd5ae5c32917afd48abc4ff6a,http://doi.acm.org/10.1145/3139295.3139309 +ff3859917d4121f47de0d46922a103c78514fcab,https://doi.org/10.1109/ICB.2016.7550050 +ff402bd06c9c4e94aa47ad80ccc4455efa869af3,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334120 +ff42ec628b0980909bbb84225d0c4f8d9ac51e03,https://doi.org/10.1109/TCSVT.2008.2005799 +ffea4184a0b24807b5f4ed87f9a985c2a27027d9,https://doi.org/10.1007/s00530-012-0297-6 +ff8db3810f927506f3aa594d66d5e8658f3cf4d5,http://doi.acm.org/10.1145/3078971.3079026 +ffea2b26e422c1009afa7e200a43b31a1fae86a9,https://doi.org/10.1007/s00500-009-0441-1 +ffb1cb0f9fd65247f02c92cfcb152590a5d68741,https://doi.org/10.1109/CISS.2012.6310782 +ff3f128f5addc6ce6b41f19f3d679282bbdaa2ee,http://doi.acm.org/10.1145/2903220.2903255 +ff0617d750fa49416514c1363824b8f61baf8fb5,https://doi.org/10.1587/elex.7.1125 +c570d1247e337f91e555c3be0e8c8a5aba539d9f,https://doi.org/10.1007/s11042-012-1352-1 +c586463b8dbedce2bfce3ee90517085a9d9e2e13,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2006.9 +c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6,https://doi.org/10.1109/BTAS.2017.8272773 +c5022fbeb65b70f6fe11694575b8ad1b53412a0d,https://doi.org/10.1109/ICIP.2005.1530209 +c5c56e9c884ac4070880ac481909bb6b621d2a3f,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126466 +c553f0334fcadf43607925733685adef81fbe406,https://doi.org/10.1109/ICSIPA.2017.8120636 +c58ece1a3fa23608f022e424ec5a93cddda31308,https://doi.org/10.1109/JSYST.2014.2325957 +c59a9151cef054984607b7253ef189c12122a625,https://doi.org/10.1007/s00138-016-0791-5 +c59b62864a6d86eead075c88137a87070a984550,https://doi.org/10.1109/IVCNZ.2015.7761546 +c5437496932dcb9d33519a120821da755951e1a9,http://doi.acm.org/10.1145/2487575.2487604 +c2b10909a0dd068b8e377a55b0a1827c8319118a,https://doi.org/10.1109/TCYB.2016.2565898 +c270aff2b066ee354b4fe7e958a40a37f7bfca45,https://doi.org/10.1109/WCSP.2017.8170910 +c252bc84356ed69ccf53507752135b6e98de8db4,https://doi.org/10.1016/j.neucom.2015.02.067 +c291f0e29871c8b9509d1a2876c3e305839ad4ac,https://doi.org/10.1109/ICARCV.2014.7064432 +c244c3c797574048d6931b6714ebac64d820dbb3,http://doi.acm.org/10.1145/2808492.2808500 +c222f8079c246ead285894c47bdbb2dfc7741044,https://doi.org/10.1109/ICIP.2015.7351631 +c2be82ed0db509087b08423c8cf39ab3c36549c3,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019363 +c23bd1917badd27093c8284bd324332b8c45bfcf,https://doi.org/10.1109/IJCNN.2010.5596316 +c2474202d56bb80663e7bece5924245978425fc1,https://doi.org/10.1109/ICIP.2016.7532771 +c2422c975d9f9b62fbb19738e5ce5e818a6e1752,https://doi.org/10.1109/TNNLS.2015.2481006 +c2dc29e0db76122dfed075c3b9ee48503b027809,https://doi.org/10.1109/ICIP.2016.7532632 +f6b4811c5e7111485e2c9cc5bf63f8ac80f3e2d7,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2569436 +f6311d6b3f4d3bd192d866d2e898c30eea37d7d5,http://ieeexplore.ieee.org/document/6460511/ +f63b3b8388bc4dcd4a0330402af37a59ce37e4f3,https://doi.org/10.1109/SIU.2013.6531214 +f6ebfa0cb3865c316f9072ded26725fd9881e73e,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.109 +f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,https://doi.org/10.1109/TMM.2015.2476657 +f6511d8156058737ec5354c66ef6fdcf035d714d,http://doi.ieeecomputersociety.org/10.1109/BWCCA.2014.115 +f652cb159a2cf2745aabcbf6a7beed4415e79e34,http://doi.acm.org/10.1145/1460096.1460119 +f6dabb4d91bf7389f3af219d486d4e67cec18c17,https://doi.org/10.1016/j.compeleceng.2014.08.010 +e95895262f66f7c5e47dd46a70110d89c3b4c203,https://doi.org/10.1016/j.neucom.2016.09.023 +e957d0673af7454dbf0a14813201b0e2570577e9,https://doi.org/10.1109/ICPR.2016.7899699 +e95c5aaa72e72761b05f00fad6aec11c3e2f8d0f,http://doi.acm.org/10.1145/2791405.2791505 +e9cebf627c204c6949dcc077d04c57eb66b2c038,https://doi.org/10.1109/SIU.2013.6531371 +e9b731f00d16a10a31ceea446b2baa38719a31f1,https://doi.org/10.1109/ICSMC.2012.6378271 +e9d1b3767c06c896f89690deea7a95401ae4582b,https://doi.org/10.1109/VCIP.2016.7805565 +e9d77a85bc2fa672cc1bd10258c896c8d89b41e8,https://doi.org/10.1109/ICTAI.2012.25 +e908ce44fa94bb7ecf2a8b70cb5ec0b1a00b311a,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019548 +e94168c35be1d4b4d2aaf42ef892e64a3874ed8c,https://doi.org/10.1109/TSMCB.2008.2010715 +e96ce25d11296fce4e2ecc2da03bd207dc118724,https://doi.org/10.1007/s00138-007-0095-x +e98551055bdcf8e25e07f4ffdbf39d0a4a57bffc,https://doi.org/10.1109/ICPR.2014.440 +e9331ae2a887c02e0a908ebae2810a681aedee29,https://doi.org/10.1016/j.image.2011.05.003 +f1e44e64957397d167d13f8f551cae99e5c16c75,https://doi.org/10.1007/s11042-013-1548-z +f17d8f14651c123d39e13a39dc79b7eb3659fe68,https://doi.org/10.1007/s11042-013-1803-3 +f1da4d705571312b244ebfd2b450692fd875cd1f,https://doi.org/10.1109/TIP.2014.2322446 +f1d6da83dcf71eda45a56a86c5ae13e7f45a8536,https://doi.org/10.1109/ACCESS.2017.2737544 +f18ff597bbfca10f84d017ac5e1ef0de6d7ad66c,http://doi.ieeecomputersociety.org/10.1109/SNPD.2016.7515888 +f1061b2b5b7ca32edd5aa486aecc63a0972c84f3,https://doi.org/10.1109/TIP.2017.2760512 +f180cb7111e9a6ba7cfe0b251c0c35daaef4f517,https://doi.org/10.1109/TIP.2015.2417502 +f19bf8b5c1860cd81b5339804d5db9e791085aa7,https://doi.org/10.1109/SMC.2017.8122640 +f14403d9d5fbc4c6e8aeb7505b5d887c50bad8a4,https://doi.org/10.1109/ICIP.2012.6467433 +f1af714b92372c8e606485a3982eab2f16772ad8,http://ieeexplore.ieee.org/document/5617662/ +e7436b8e68bb7139b823a7572af3decd96241e78,https://doi.org/10.1109/ROBIO.2011.6181560 +e7144f5c19848e037bb96e225d1cfd961f82bd9f,http://doi.ieeecomputersociety.org/10.1109/FG.2017.126 +e73b1137099368dd7909d203b80c3d5164885e44,http://doi.ieeecomputersociety.org/10.1109/FSKD.2008.116 +e73f2839fc232c03e9f027c78bc419ee15810fe8,https://doi.org/10.1109/ICIP.2017.8296413 +e71c15f5650a59755619b2a62fa93ac922151fd6,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.22 +e74a2159f0f7afb35c7318a6e035bc31b8e69634,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019503 +e790a2538579c8e2ef9b314962ab26197d6664c6,https://doi.org/10.1109/ICIP.2016.7532915 +e7e8c0bbee09b5af6f7df1de8f0f26da992737c4,https://doi.org/10.1109/IJCNN.2011.6033417 +e7b7df786cf5960d55cbac4e696ca37b7cee8dcd,https://doi.org/10.1109/IJCNN.2012.6252728 +cba090a5bfae7dd8a60a973259f0870ed68c4dd3,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.22 +cb4d3d1b8fbb6df71a184dd8f00f89f84fa8373b,http://doi.ieeecomputersociety.org/10.1109/IJCNN.2009.5179002 +cb992fe67f0d4025e876161bfd2dda467eaec741,https://doi.org/10.1109/IPTA.2015.7367144 +cbc2de9b919bc63590b6ee2dfd9dda134af45286,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477561 +cbf3e848c5d2130dd640d9bd546403b8d78ce0f9,https://doi.org/10.1109/IJCNN.2012.6252385 +cbe1df2213a88eafc5dcaf55264f2523fe3ec981,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.34 +cb4d8cef8cec9406b1121180d47c14dfef373882,https://doi.org/10.1109/ICPR.2014.301 +cb7a743b9811d20682c13c4ee7b791ff01c62155,https://doi.org/10.1109/MMSP.2015.7340789 +cb9921d5fc4ffa50be537332e111f03d74622442,https://doi.org/10.1007/978-3-319-46654-5_79 +cbaa17be8c22e219a9c656559e028867dfb2c2ed,https://doi.org/10.1109/ICIP.2016.7532636 +cb160c5c2a0b34aba7b0f39f5dda6aca8135f880,https://doi.org/10.1109/SIU.2016.7496023 +f839ae810338e3b12c8e2f8db6ce4d725738d2d9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.115 +f888c165f45febf3d17b8604a99a2f684d689cbc,http://doi.ieeecomputersociety.org/10.1109/CIT.2004.1357196 +f812347d46035d786de40c165a158160bb2988f0,https://doi.org/10.1007/s10339-016-0765-6 +f856532a729bd337fae1eb7dbe55129ae7788f45,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.26 +f88ce52c5042f9f200405f58dbe94b4e82cf0d34,https://doi.org/10.1109/TNNLS.2015.2508025 +f8fe1b57347cdcbea755722bf1ae85c4b26f3e5c,https://doi.org/10.1007/s00138-016-0790-6 +f86c6942a7e187c41dd0714531efd2be828e18ad,https://doi.org/10.1109/VCIP.2016.7805514 +f834c50e249c9796eb7f03da7459b71205dc0737,https://doi.org/10.1109/TIP.2011.2166974 +cead57f2f7f7b733f4524c4b5a7ba7f271749b5f,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.46 +cefaad8241bceb24827a71bf7c2556e458e57faa,https://doi.org/10.1109/TIP.2013.2264676 +ce3304119ba6391cb6bb25c4b3dff79164df9ac6,https://doi.org/10.1016/j.imavis.2016.03.004 +ce8db0fe11e7c96d08de561506f9f8f399dabbb2,https://doi.org/10.1109/ICIP.2015.7351677 +ce11b2d7905d2955c4282db5b68482edb846f29f,http://doi.acm.org/10.1145/3126686.3126705 +ce30ddb5ceaddc0e7d308880a45c135287573d0e,https://doi.org/10.1109/ICSMC.2012.6378304 +e0fe68c92fefa80992f4861b0c45a3fbec7cf1c9,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344671 +e084b0e477ee07d78c32c3696ea22c94f5fdfbec,https://doi.org/10.1109/ICIP.2013.6738565 +e0cc2a9fe6b5086c55fdbf0021aca3dc1a77a1ca,http://doi.ieeecomputersociety.org/10.1109/BLISS.2008.25 +e0ab926cd48a47a8c7b16e27583421141f71f6df,https://doi.org/10.1109/HPCSim.2016.7568383 +e0423788eb91772de9d708a17799179cf3230d63,http://doi.acm.org/10.1145/3093241.3093277 +e03f69bad7e6537794a50a99da807c9df4ff5186,http://doi.acm.org/10.1145/2708463.2709060 +e0793fd343aa63b5f366c8ace61b9c5489c51a4d,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.46 +465faf9974a60da00950be977f3bc2fc3e56f5d2,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273631 +46b2ecef197b465abc43e0e017543b1af61921ac,https://doi.org/10.1109/ICPR.2016.7899652 +464ef1b3dcbe84099c904b6f9e9281c5f6fd75eb,https://doi.org/10.1109/TIP.2014.2359765 +4672513d0dbc398719d66bba36183f6e2b78947b,https://doi.org/10.1016/j.ipm.2015.05.007 +46c1af268d4b3c61a0a12be091ca008a3a60e4cd,https://doi.org/10.1007/s11042-016-3592-y +2cf3564d7421b661e84251d280d159d4b3ebb336,https://doi.org/10.1109/BTAS.2014.6996287 +2c6ab32a03c4862ee3e2bc02e7e74745cd523ad2,https://doi.org/10.1109/IC3.2013.6612218 +2ca10da4b59b406533ad1dc7740156e01782658f,https://doi.org/10.1109/SIU.2016.7496207 +2cd426f10178bd95fef3dede69ae7b67e73bb70c,https://doi.org/10.1109/ROBIO.2016.7866457 +2c06781ba75d51f5246d65d1acf66ab182e9bde6,https://doi.org/10.1016/j.imavis.2016.11.002 +2ce84465b9759166effc7302c2f5339766cc523d,https://doi.org/10.1109/VCIP.2015.7457830 +798e58c181f3ba3aecbe41acd1881860c5e2df3a,https://doi.org/10.1109/TNNLS.2012.2237038 +7935f644c8044c0d3b81e2842e5ecc3672698bbb,https://doi.org/10.1109/ICIP.2011.6116258 +79fd4baca5f840d6534a053b22e0029948b9075e,https://doi.org/10.1109/ISDA.2012.6416647 +2d94dfa9c8f6708e071ef38d58f9f9bcb374cd84,https://doi.org/10.1109/CVPRW.2011.5981817 +2debdb6a772312788251cc3bd1cb7cc8a6072214,https://doi.org/10.1142/S0218001415560157 +2d411826cd7865638b65e1b5f92043c245f009f9,http://doi.acm.org/10.1145/2733373.2806239 +2d79dece7890121469f515a6e773ba0251fc2d98,https://doi.org/10.1109/ICIP.2017.8296756 +2df4d0c06f4f68060cecbbb8e2088d9c6b20d04f,https://doi.org/10.1109/ICIP.2014.7026056 +2d2fb01f761d21a459cfb34935bc47ab45a9913b,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2346515 +41e5d92b13d36da61287c7ffd77ee71de9eb2942,https://doi.org/10.1016/j.asoc.2016.12.033 +41781474d834c079e8fafea154d7916b77991b15,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.60 +417c2fa930bb7078fdf10cb85c503bd5270b9dc2,https://doi.org/10.1109/ICSIPA.2015.7412169 +414fdfe5f2e4f32a59bf15062b6e524cbf970637,https://doi.org/10.1109/TIFS.2014.2361028 +83b54b8c97dc14e302dad191327407ec0d5fb4a6,https://doi.org/10.1109/ICIP.2017.8296913 +8383faea09b4b4bef8117a1da897495ebd68691b,https://doi.org/10.1109/TCYB.2015.2493538 +838dad9d1d68d29be280d92e69410eaac40084bc,https://doi.org/10.1109/HPCSim.2014.6903749 +83d50257eb4c0aa8d16d27bf2ee8d0614fd63bf6,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284834 +83bce0907937f09f5ccde26c361d52fe55fc8979,http://doi.acm.org/10.1145/2993148.2993185 +1b8541ec28564db66a08185510c8b300fa4dc793,https://doi.org/10.1109/LSP.2015.2499778 +1b211f8221162ce7ef212956b637b50e30ad48f4,https://doi.org/10.1109/ICIP.2016.7532925 +1b6c65442f2b572fb6c8fc9a7d5ae49a8e6d32ab,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.537 +1b29f23f3517ac5bbe9bf5e80cda741b61bb9b12,https://doi.org/10.1016/j.patcog.2017.01.007 +1b4b3d0ce900996a6da8928e16370e21d15ed83e,https://doi.org/10.1109/BigDataService.2017.38 +1b9976fea3c1cf13f0a102a884f027d9d80a14b3,https://doi.org/10.1109/ROMAN.2014.6926354 +1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,http://doi.acm.org/10.1145/2964284.2984061 +1bcb1c6d6cebc9737f9933fcefbf3da8a612f994,https://doi.org/10.1016/j.jvcir.2017.10.008 +1bd8ab47177997acb3b0cca4b6a801e6e6ec3eac,https://doi.org/10.1109/ICIP.2014.7025273 +1b2d9a1c067f692dd48991beff03cd62b9faebf2,https://doi.org/10.1109/ICIP.2011.6116302 +7782627fa2e545276996ff9e9a1686ac496df081,http://doi.acm.org/10.1145/2663204.2666276 +771a6a80dd08212d83a4e976522e1ce108881401,https://doi.org/10.1109/IPTA.2016.7820979 +77223849321d57a03e0571a08e71eba06e38834a,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.20 +77c5437107f8138d48cb7e10b2b286fa51473678,https://doi.org/10.1109/URAI.2016.7734005 +77c3574a020757769b2ca807ff4b95a88eaa2a37,https://doi.org/10.1109/MSP.2015.2410783 +77cea27494499dd162221d1476bf70a87391790a,https://doi.org/10.1109/VCIP.2015.7457930 +77816b9567d5fed1f6085f33e1ddbcc73af2010e,https://doi.org/10.1109/MRA.2012.2201574 +778c1e95b6ea4ccf89067b83364036ab08797256,https://doi.org/10.1109/TIFS.2012.2224866 +7753e3b9e158289cbaa22203166424ca9c229f68,http://doi.ieeecomputersociety.org/10.1109/ICDM.2014.29 +77869f274d4be4d4b4c438dbe7dff4baed521bd8,https://doi.org/10.1109/TIP.2016.2551362 +773ce00841a23d32727aa1f54c29865fefd4ce02,http://doi.ieeecomputersociety.org/10.1109/AIPR.2006.24 +772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,https://doi.org/10.1109/BTAS.2017.8272716 +480858e55abdbc07ca47b7dc10204613fdd9783c,https://doi.org/10.1109/ICPR.2014.786 +48a6a1c6a0ac5f2b7912b3ccb40b0c07f62ddfdf,https://doi.org/10.1016/j.imavis.2015.12.003 +489b7e12a420eff0d585f3f866e76b838c2cd275,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477675 +48dcf45a1e38adbb9826594f7ffaa5e95ef78395,https://doi.org/10.1109/VCIP.2017.8305111 +48db8bf18e2f6f19e07e88384be855c8b7ea0ead,http://doi.acm.org/10.1145/2964284.2967225 +4848a48a2b8bacd2092e87961cd86818da8e7151,https://doi.org/10.1109/VCIP.2017.8305080 +48255c9e1d6e1d030728d33a71699757e337be08,https://doi.org/10.1109/ISSNIP.2013.6529832 +48906f609446afcdaacbe1d65770d7a6165a8eee,https://doi.org/10.1007/s12559-017-9482-4 +486f5e85944404a1b57333443070b0b8c588c262,http://doi.ieeecomputersociety.org/10.1109/IRI.2014.7051957 +7049187c5155d9652747413ce1ebc8dbb209fd69,https://doi.org/10.1109/ICPR.2016.7899808 +70769def1284fe88fd57a477cde8a9c9a3dff13f,https://doi.org/10.1016/j.neucom.2006.10.036 +70341f61dfe2b92d8607814b52dfd0863a94310e,http://doi.ieeecomputersociety.org/10.1109/AVSS.2015.7301750 +70444627cb765a67a2efba17b0f4b81ce1fc20ff,https://doi.org/10.1109/TNNLS.2016.2609434 +70516aede32cf0dbc539abd9416c44faafc868bd,https://doi.org/10.1109/MICAI.2013.16 +7081958a390d3033f5f33e22bbfec7055ea8d601,https://doi.org/10.1109/MCI.2015.2437318 +70d8bda4aafb0272ac4b93cd43e2448446b8e94d,https://doi.org/10.1109/ICMLC.2010.5580938 +705e086bb666d129a6969882cfa49282116a638e,https://doi.org/10.1109/TNNLS.2014.2376963 +70d0bffa288e317bc62376f4f577c5bd7712e521,https://doi.org/10.1049/iet-cvi.2012.0094 +1e2770ce52d581d9a39642b40bfa827e3abf7ea2,http://doi.acm.org/10.1145/2425333.2425362 +1eb48895d86404251aa21323e5a811c19f9a55f9,http://doi.ieeecomputersociety.org/10.1109/CIS.2015.22 +1e8fd77d4717e9cb6079e10771dd2ed772098cb3,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2016.7574681 +1e62ca5845a6f0492574a5da049e9b43dbeadb1b,https://doi.org/10.1109/LSP.2016.2637400 +1e344b99583b782e3eaf152cdfa15f217b781181,http://doi.acm.org/10.1145/2499788.2499789 +1eb9c859ff7537182a25556635954bcd11830822,https://doi.org/10.1109/ICDSP.2015.7252004 +1ef6ad9e1742d0b2588deaf506ef83b894fb9956,https://doi.org/10.1007/s12193-016-0213-z +1ed617d14dbc53b20287d3405b14c68d8dad3965,https://doi.org/10.1109/TCYB.2016.2582918 +1ed49161e58559be399ce7092569c19ddd39ca0b,https://doi.org/10.1109/ICPR.2016.7899973 +1eb1fdc5c933d2483ba1acbfa8c457fae87e71e5,https://doi.org/10.1109/ICPR.2016.7899945 +1ea4347def5868c622d7ce57cbe171fa68207e2b,https://doi.org/10.1007/978-3-642-41181-6_23 +84f3c4937cd006888b82f2eb78e884f2247f0c4e,https://doi.org/10.1109/CCNC.2012.6181097 +84be18c7683417786c13d59026f30daeed8bd8c9,https://doi.org/10.1007/s00138-016-0755-9 +84f86f8c559a38752ddfb417e58f98e1f8402f17,http://doi.ieeecomputersociety.org/10.1109/EST.2013.10 +844e3e6992c98e53b45e4eb88368d0d6e27fc1d6,https://doi.org/10.1109/ICIP.2014.7026057 +84ae55603bffda40c225fe93029d39f04793e01f,https://doi.org/10.1109/ICB.2016.7550066 +84ec0983adb8821f0655f83b8ce47f36896ca9ee,https://doi.org/10.1109/SMC.2017.8122985 +4aa27c1f8118dbb39809a0f79a28c0cbc3ede276,http://doi.acm.org/10.1145/2683483.2683530 +4a03f07397c5d32463750facf010c532f45233a5,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.32 +4aea1213bdb5aa6c74b99fca1afc72d8a99503c6,https://doi.org/10.1109/ICDIM.2010.5664688 +4a7e5a0f6a0df8f5ed25ef356cd67745cd854bea,https://doi.org/10.1007/978-3-642-14922-1_68 +243cd27dce38fd756a840b397c28ad21cfb78897,https://doi.org/10.1049/iet-ipr.2013.0003 +24b5ea4e262e22768813e7b6581f60e4ab9a8de7,https://doi.org/10.1109/TIFS.2018.2807791 +244293024aebbb0ff42a7cf2ba49b1164697a127,https://doi.org/10.1109/BTAS.2016.7791187 +24eeb748a5e431510381ec7c8253bcb70eff8526,https://doi.org/10.1109/TIP.2017.2746270 +2400c4994655c4dd59f919c4d6e9640f57f2009f,https://doi.org/10.1109/IPTA.2015.7367096 +24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,https://doi.org/10.1109/GlobalSIP.2016.7906030 +24b637c98b22cd932f74acfeecdb50533abea9ae,https://doi.org/10.1109/TIP.2015.2492819 +24205a60cbf1cc12d7e0a9d44ed3c2ea64ed7852,http://doi.ieeecomputersociety.org/10.1109/FG.2017.30 +24e42e6889314099549583c7e19b1cb4cc995226,https://doi.org/10.1109/ACPR.2011.6166646 +24f3dfeb95bdecdc604d630acdfcafa1dc7c9124,http://doi.acm.org/10.1145/2994258.2994270 +245d98726674297208e76308c3a11ce3fc43bee2,https://doi.org/10.1007/s11042-015-2699-x +2348f1fa2940b01ec90e023fac8cc96812189774,http://doi.ieeecomputersociety.org/10.1109/EWDTS.2017.8110157 +2360ecf058393141ead1ca6b587efa2461e120e4,https://doi.org/10.1007/s00138-017-0895-6 +235a347cb96ef22bf35b4cf37e2b4ee5cde9df77,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.13 +23ecc496eaa238ac884e6bae5763f6138a9c90a3,https://doi.org/10.1109/ICB.2016.7550085 +2336de3a81dada63eb00ea82f7570c4069342fb5,http://doi.acm.org/10.1145/2361407.2361428 +235bebe7d0db37e6727dfa1246663be34027d96b,https://doi.org/10.1109/NAFIPS.2016.7851625 +2340d810c515dc0c9fd319f598fa8012dc0368a0,https://doi.org/10.1109/AFGR.2008.4813420 +23675cb2180aac466944df0edda4677a77c455cd,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.142 +4ffd744a5f079c2d65f36e3ee0979b978f522a13,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.15 +4fbc0189252ed4fe8f9cffd3ea0ebbb0c621e3ef,https://doi.org/10.1049/iet-cvi.2012.0127 +4f742c09ce12859b20deaa372c8f1575acfc99c9,https://doi.org/10.1016/j.neucom.2017.01.020 +4f03ba35440436cfa06a2ed2a571fea01cb36598,https://doi.org/10.1109/SPAC.2017.8304260 +4fac09969ee80d485876e3198c7177181c600a4a,http://doi.ieeecomputersociety.org/10.1109/CRV.2015.32 +4f3b652c75b1d7cf4997e0baaef2067b61e3a79b,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552910 +8dd3f05071fd70fb1c349460b526b0e69dcc65bf,https://doi.org/10.1109/TIP.2017.2726010 +8d3e95c31c93548b8c71dbeee2e9f7180067a888,https://doi.org/10.1109/ICPR.2016.7899841 +8db9188e5137e167bffb3ee974732c1fe5f7a7dc,https://doi.org/10.1109/TIP.2016.2612885 +8db609d84190b905913eb2f17f4e558c6e982208,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.182 +15ef449ac443c494ceeea8a9c425043f4079522e,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477583 +157647b0968d95f9288b27d6d9179a8e1ef5c970,https://doi.org/10.1049/iet-bmt.2014.0086 +15ef65fd68d61f3d47326e358c446b0f054f093a,https://doi.org/10.1109/MLSP.2017.8168180 +1584edf8106e8f697f19b726e011b9717de0e4db,https://doi.org/10.1049/iet-cvi.2015.0350 +15a9f812e781cf85c283f7cf2aa2928b370329c5,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469281 +158aa18c724107587bcc4137252d0ba10debf417,https://doi.org/10.1109/ACSSC.2016.7869522 +159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,https://doi.org/10.1109/TIP.2017.2694226 +152683f3ac99f829b476ea1b1b976dec6e17b911,https://doi.org/10.1109/MIXDES.2016.7529773 +159caaa56c2291bedbd41d12af5546a7725c58d4,https://doi.org/10.1109/ICIP.2016.7532910 +15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,https://doi.org/10.1109/TMM.2011.2167317 +15e12d5c4d80a2b6f4d957a3ffd130564e9bab3a,https://doi.org/10.5220/0004736505740580 +1277b1b8b609a18b94e4907d76a117c9783a5373,http://doi.ieeecomputersociety.org/10.1109/ASONAM.2016.7752438 +12c4ba96eaa37586f07be0d82b2e99964048dcb5,https://doi.org/10.1109/LSP.2017.2694460 +122f52fadd4854cf6c9287013520eced3c91e71a,https://doi.org/10.1109/TIP.2016.2515987 +1280b35e4a20036fcfd82ee09f45a3fca190276f,http://doi.ieeecomputersociety.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.166 +1252727e8096f48096ef89483d30c3a74500dd15,https://doi.org/10.1007/s00138-016-0746-x +126204b377029feb500e9b081136e7a9010e3b6b,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2010.50 +126076774da192d4d3f4efcd1accc719ee5f9683,https://doi.org/10.1109/SIU.2012.6204774 +120b9c271c3a4ea0ad12bbc71054664d4d460bc3,https://doi.org/10.1109/DICTA.2015.7371259 +12b533f7c6847616393591dcfe4793cfe9c4bb17,https://doi.org/10.1109/TIFS.2017.2765519 +8cd9475a3a1b2bcccf2034ce8f4fe691c57a4889,http://doi.ieeecomputersociety.org/10.1109/FG.2017.138 +8cffe360a05085d4bcba111a3a3cd113d96c0369,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248 +8c85ef961826575bc2c2f4da7784bc3bfcf8b188,https://doi.org/10.1109/ICIP.2015.7350871 +8c50869b745fc094a4fb1b27861934c3c14d7199,https://doi.org/10.1109/EMBC.2016.7591826 +8cedb92694845854f3ad0daf6c9adb6b81c293de,http://doi.acm.org/10.1145/1839379.1839431 +8c3f7bd8ae50337dd812b370ce4c4ea9375a9f58,https://doi.org/10.1109/ICIP.2014.7025276 +8c37bd06e1a637c6f249dcd1d2c4bc9589ae24b3,https://doi.org/10.1007/11608288_28 +8c2b663f8be1702ed3e377b5e6e85921fe7c6389,https://doi.org/10.1109/IPTA.2016.7821006 +8cd0855ca967ce47b0225b58bbadd38d8b1b41a1,https://doi.org/10.1109/TIP.2017.2721106 +8c048be9dd2b601808b893b5d3d51f00907bdee0,https://doi.org/10.1631/FITEE.1600041 +85785ae222c6a9e01830d73a120cdac75d0b838a,https://doi.org/10.1007/978-3-319-11782-9 +85567174a61b5b526e95cd148da018fa2a041d43,https://doi.org/10.1109/TMM.2016.2515367 +8576d0031f2b0fe1a0f93dd454e73d48d98a4c63,http://doi.acm.org/10.1145/2522848.2531743 +8598d31c7ca9c8f5bb433409af5e472a75037b4d,https://doi.org/10.1109/JPROC.2008.916364 +85f27ec70474fe93f32864dd03c1d0f321979100,https://doi.org/10.1109/IJCNN.2014.6889381 +85f7f03b79d03da5fae3a7f79d9aac228a635166,https://doi.org/10.1109/WACV.2009.5403085 +85205914a99374fa87e004735fe67fc6aec29d36,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2392774 +1ddea58d04e29069b583ac95bc0ae9bebb0bed07,https://doi.org/10.1109/KSE.2015.50 +1dabb080e3e968633f4b3774f19192f8378f5b67,https://doi.org/10.1109/ICPR.2016.7899664 +1d10010ea7af43d59e1909d27e4e0e987264c667,https://doi.org/10.1016/j.neunet.2004.06.006 +1dae2f492d3ca2351349a73df6ee8a99b05ffc30,https://doi.org/10.1137/110842570 +1da1299088a6bf28167c58bbd46ca247de41eb3c,https://doi.org/10.1109/ICASSP.2002.5745055 +71d786fdb563bdec6ca0bbf69eba8e3f37c48c6f,https://doi.org/10.1109/SMC.2016.7844680 +710c3aaffef29730ffd909a63798e9185f488327,https://doi.org/10.1109/ICPR.2016.7900095 +71a9d7cf8cf1e206cb5fa18795f5ab7588c61aba,https://doi.org/10.1109/TIM.2011.2141270 +71e95c3a31dceabe9cde9f117615be8bf8f6d40e,https://doi.org/10.1109/ICIP.2010.5653024 +71f07c95a2b039cc21854c602f29e5be053f2aba,https://doi.org/10.1007/s00138-010-0250-7 +7123e510dea783035b02f6c35e35a1a09677c5ab,https://doi.org/10.1109/ICPR.2016.7900297 +715d3eb3665f46cd2fab74d35578a72aafbad799,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2013.118 +7177649ece5506b315cb73c36098baac1681b8d2,http://doi.ieeecomputersociety.org/10.1109/FG.2017.130 +71d68af11df855f886b511e4fc1635c1e9e789b0,https://doi.org/10.1109/TCSVT.2011.2133210 +71bbda43b97e8dc8b67b2bde3c873fa6aacd439f,https://doi.org/10.1016/j.patcog.2015.09.012 +7196b3832065aec49859c61318037b0c8c12363a,https://doi.org/10.1007/s11432-014-5151-3 +71f9861df104b90399dc15e12bbb14cd03f16e0b,http://doi.ieeecomputersociety.org/10.1109/CGIV.2009.7 +7644b3a0871b8e0e7e1cdf06099e295f1e5fbdf7,https://doi.org/10.1007/s11063-015-9464-z +76669f166ddd3fb830dbaacb3daa875cfedc24d9,https://doi.org/10.1109/ICPR.2016.7899840 +76dff7008d9b8bf44ec5348f294d5518877c6182,https://doi.org/10.1016/j.imavis.2014.09.004 +76640cb1a683a479ce2e0d6681d821ff39126d63,https://doi.org/10.1109/IJCNN.2011.6033408 +76a52ebfc5afd547f8b73430ec81456cf25ddd69,http://doi.ieeecomputersociety.org/10.1109/AIPR.2014.7041914 +76d1c6c6b67e67ced1f19a89a5034dafc9599f25,http://doi.acm.org/10.1145/2590296.2590315 +761304bbd259a9e419a2518193e1ff1face9fd2d,https://doi.org/10.1007/978-3-642-33885-4_57 +1ca1b4f787712ede215030d22a0eea41534a601e,https://doi.org/10.1109/CVPRW.2010.5543609 +1cb0c11620bde2734c1a428c789158ffff0d6c7b,http://doi.ieeecomputersociety.org/10.1109/BigMM.2016.62 +1c5a5d58a92c161e9ba27e2dfe490e7caaee1ff5,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163119 +1ce29d6b820ed4a24da27b76ffd9605d5b3b10b5,https://doi.org/10.1016/j.imavis.2015.01.007 +1cfe8c1d341dbf8cc43040b37ca3552385adb10b,http://doi.acm.org/10.1145/2461466.2461473 +82e1692467969940a6d6ac40eae606b8b4981f7e,https://doi.org/10.1109/ICMEW.2012.56 +8274069feeff6392b6c5d45d8bfaaacd36daedad,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019312 +826015d9ade1637b3fcbeca071e3137d3ac1ef56,https://doi.org/10.1109/WACV.2017.84 +828d7553a45eb0c3132e406105732a254369eb4d,https://doi.org/10.1016/j.neunet.2017.09.001 +82953e7b3d28ccd1534eedbb6de7984c59d38cd4,https://doi.org/10.1109/TNNLS.2014.2356856 +8229f2735a0db0ad41f4d7252129311f06959907,https://doi.org/10.1109/TIP.2011.2106794 +82dad0941a7cada11d2e2f2359293fe5fabf913f,https://doi.org/10.1109/ICIP.2017.8296810 +493bc7071e35e7428336a515d1d26020a5fb9015,https://doi.org/10.1109/ACSSC.2013.6810420 +4958c06da5581fd0b4904d3bf0ee09958ecdba5b,https://doi.org/10.1016/j.knosys.2016.12.005 +4909ed22b1310f1c6f2005be5ce3349e3259ff6a,https://doi.org/10.1109/ROBIO.2009.4913106 +49e4f05fa98f63510de76e7abd8856ff8db0f38d,http://doi.ieeecomputersociety.org/10.1109/FG.2017.110 +4932b929a2e09ddebedcb1abe8c62f269e7d4e33,https://doi.org/10.1109/SIU.2016.7496076 +492116d16a39eb54454c7ffb1754cea27ad3a171,http://doi.acm.org/10.1145/3132525.3134823 +496f3d14cf466f054d395a3c71fa2cd6a3dda61d,http://doi.acm.org/10.1145/3009977.3010055 +49fdafef327069516d887d8e69b5e96c983c3dd0,https://doi.org/10.1109/DICTA.2017.8227433 +496d62741e8baf3859c24bb22eaccd3043322126,http://doi.ieeecomputersociety.org/10.1109/TKDE.2017.2728531 +49fe4f387ac7e5852a78b327ec42cc7300c5f8e0,https://doi.org/10.1007/s11042-014-2055-6 +4033ac52dba394e390a86cd149b9838f1d7834b5,https://doi.org/10.1109/ICMLC.2012.6359009 +4014d74e8f5ea4d76c2c1add81d0c88d6e342478,http://doi.acm.org/10.1145/3136755.3143010 +4014e8c1a1b49ad2b9b2c45c328ec9f1fd56f676,https://doi.org/10.1109/IJCNN.2017.7966191 +4097fef623185557bb1842501cfdc97f812fc66d,http://doi.acm.org/10.1145/3126686.3126755 +40dd736c803720890d6bfc1e083f6050e35d8f7a,http://doi.acm.org/10.1145/3139958.3140055 +40f06e5c052d34190832b8c963b462ade739cbf0,https://doi.org/10.1109/ICNC.2010.5583821 +405cf40f3ce74210f7e9862b2b828ce002b409ed,https://doi.org/10.1109/IJCNN.2017.7966244 +407a26fff7fac195b74de9fcb556005e8785a4e9,http://doi.ieeecomputersociety.org/10.1109/FG.2017.29 +2e36b63fdf1353425a57a0665b0d0274efe92963,http://doi.acm.org/10.1145/3152771.3156179 +2e5d173ee0d1d7f88c335ade6a7b879b2d987ab4,https://doi.org/10.1109/ICASSP.2015.7178367 +2e535b8cd02c2f767670ba47a43ad449fa1faad7,https://doi.org/10.1109/MSP.2017.2740460 +2ed7d95588200c8c738c7dd61b8338538e04ea30,https://doi.org/10.1109/ICIP.2010.5654063 +2ee1ba1c3d4797fdae46d3d5f01db7ef5903dadd,https://doi.org/10.1016/j.neucom.2015.07.031 +2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d,https://doi.org/10.1109/CVPRW.2011.5981801 +2ef1b1b5ed732634e005df779fd9b21da0ffe60c,https://doi.org/10.1016/j.image.2017.03.012 +2e5b160892b70a1e846aa9dcdf132b8011937ec6,https://doi.org/10.1109/LSP.2017.2689921 +2e27667421a7eeab278e0b761db4d2c725683c3f,https://doi.org/10.1007/s11042-013-1815-z +2e6776cd582c015b46faf616f29c98ce9cff51a2,https://doi.org/10.1109/TNN.2005.860849 +2e12c5ea432004de566684b29a8e148126ef5b70,https://doi.org/10.1007/s12193-015-0204-5 +2b286ed9f36240e1d11b585d65133db84b52122c,http://doi.acm.org/10.1145/3130800.3130837 +2babf665198a91932a4ce557f627c28e7e8f31f2,http://doi.acm.org/10.1145/3009977.3010004 +2b300985a507533db3ec9bd38ade16a32345968e,https://doi.org/10.1007/s11042-015-3070-y +2b5005c2abf2d9a8c16afa50306b6959dfc72275,https://doi.org/10.1109/ICARCV.2010.5707216 +2b0d14dbd079b3d78631117b1304d6c1579e1940,https://doi.org/10.1007/s11063-016-9524-z +2b43100a13811b33cc9f905fa1334bfd8b1873ba,https://doi.org/10.1109/IVCNZ.2015.7761564 +2b2924af7ec219bd1fadcbd2c57014ed54efec86,http://doi.ieeecomputersociety.org/10.1109/SSIAI.2014.6806053 +2be9284d531b8c573a4c39503ca50606446041a3,https://doi.org/10.1109/ICIP.2005.1530004 +2be24e8a3f2b89bdaccd02521eff3b7bb917003e,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.96 +47cd161546c59ab1e05f8841b82e985f72e5ddcb,https://doi.org/10.1109/ICIP.2017.8296552 +47109343e502a4097cb7efee54bc5fbb14598c05,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.182 +4786638ffb3b2fb385cec80720cc6e7c3588b773,https://doi.org/10.1007/s11042-015-2598-1 +471bef061653366ba66a7ac4f29268e8444f146e,https://doi.org/10.1109/SMC.2015.524 +47fb74785fbd8870c2e819fc91d04b9d9722386f,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.161 +47d07217c501644d63adfec740346f244abaaae8,https://doi.org/10.1016/j.patcog.2016.05.017 +78b457f8b1ba4fbd1c50c32ec1f02f4f58764ad7,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.99 +78d4d861c766af2a8da8855bece5da4e6eed2e1c,http://doi.acm.org/10.1145/3129416.3129455 +78e1798c3077f4f8a4df04ca35cd73f82e9a38f3,http://ieeexplore.ieee.org/document/6460640/ +78f244dc2a171944836a89874b8f60e9fe80865d,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.181 +780c8a795baca1ba4cb4956cded877dd3d1ca313,http://doi.ieeecomputersociety.org/10.1109/ISSPIT.2013.6781879 +789b8fff223b0db0fe3babf46ea98b1d5197f0c0,https://doi.org/10.1002/ima.20245 +785eeac2e236a85a45b4e0356c0745279c31e089,https://doi.org/10.1109/TIFS.2014.2359543 +7813d405450013bbdb0b3a917319d5964a89484a,https://doi.org/10.1109/WACV.2017.62 +789a43f51e0a3814327dab4299e4eda8165a5748,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.189 +782eee555067b2d6d24db87775e1ded5fb047491,https://doi.org/10.1109/MMSP.2008.4665158 +8be60114634caa0eff8566f3252cb9a1b7d5ef10,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890133 +8b4124bb68e5b3e6b8b77888beae7350dc594a40,https://doi.org/10.1109/ICSMC.2005.1571395 +8bf945166305eb8e304a9471c591139b3b01a1e1,https://doi.org/10.1109/ACCESS.2017.2756451 +8b1fa60b9164b60d1ca2705611fab063505a3ef5,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618337 +8b3c867e67b263d7a0577a112173a64009a3b4ba,https://doi.org/10.1109/ICIP.2010.5652374 +8b1f697d81de1245c283b4f8f055b9b76badfa66,https://doi.org/10.1142/S0218126616500171 +13907865a97afde053d7bb7134d58a7bbc12043c,https://doi.org/10.1016/j.patcog.2014.05.001 +134cea33099cafc6615e57437e29d7c3906a2b48,http://doi.ieeecomputersociety.org/10.1109/ICETET.2010.80 +136aae348c7ebc6fd9df970b0657241983075795,https://doi.org/10.1109/ICIP.2015.7351542 +13f065d4e6dfe2a130bd64d73eee97d10d9f7d33,https://doi.org/10.1109/DICTA.2015.7371222 +13901473a12061f080b9d54219f16db7d406e769,https://doi.org/10.1109/TIP.2012.2222895 +7f9be0e08784835de0f8bc3a82fcca02b3721dc1,https://doi.org/10.1109/IJCNN.2014.6889744 +7f415aee0137acab659c664eb1dff15f7b726bdd,https://doi.org/10.1109/TCSVT.2014.2302522 +7f5346a169c9784ca79aca5d95ae8bf2ebab58e3,https://doi.org/10.1109/ICIP.2015.7351304 +7f4040b482d16354d5938c1d1b926b544652bf5b,http://doi.acm.org/10.1145/2502081.2502115 +7f8d2d7eaa03132caefe0f3b126b5b369a712c9d,http://doi.ieeecomputersociety.org/10.1109/ACHI.2009.33 +7fa00c81f7c2d8da1551334b0e7bc3d7fd43130c,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2353635 +7fcd03407c084023606c901e8933746b80d2ad57,https://doi.org/10.1109/BTAS.2017.8272694 +7f8cef6ba2f059e465b1b23057a6dbb23fba1c63,https://doi.org/10.1109/TCSVT.2016.2539541 +7f1078a2ebfa23a58adb050084d9034bd48a8a99,https://doi.org/10.1007/s00371-015-1169-9 +7a595800b490ff437ab06fe7612a678d5fe2b57d,https://doi.org/10.1109/MMSP.2009.5293285 +7a09e8f65bd85d4c79f0ae90d4e2685869a9894f,https://doi.org/10.1109/TMM.2016.2551698 +7a6e3ed956f71b20c41fbec008b1fa8dacad31a6,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163117 +7a91617ec959acedc5ec8b65e55b9490b76ab871,https://doi.org/10.1109/RAIT.2012.6194481 +7a666a91a47da0d371a9ba288912673bcd5881e4,https://doi.org/10.1016/j.patrec.2009.05.011 +7adfc2f854e2ea45c29d22d6e2dcccdd527f46a8,https://doi.org/10.1007/s00138-015-0677-y +7a94936ce558627afde4d5b439ec15c59dbcdaa4,https://doi.org/10.1007/s11263-013-0665-5 +14d7bce17265738f10f48987bb7bffb3eafc676e,http://ieeexplore.ieee.org/document/7514504/ +143571c2fc9b1b69d3172f8a35b8fad50bc8202a,https://doi.org/10.1016/j.neucom.2014.07.066 +142e233adceed9171f718a214a7eba8497af4324,https://doi.org/10.1109/IJCNN.2014.6889504 +14efb131bed66f1874dd96170f714def8db45d90,http://doi.acm.org/10.1145/2818346.2830585 +14ae16e9911f6504d994503989db34d2d1cb2cd4,https://doi.org/10.1007/s11042-013-1616-4 +14bdd23ea8f4f6d7f4c193e5cbb0622362e12ae1,https://doi.org/10.1109/TIP.2006.884932 +1473e6f2d250307f0421f1e2ea68b6485d3bd481,https://doi.org/10.1109/IJCNN.2016.7727333 +8e9b92a805d1ce0bf4e0c04133d26e28db036e6a,https://doi.org/10.1109/DICTA.2017.8227428 +8ef465ff12ee1d2be2a99d1c628117a4ce890a6b,https://doi.org/10.1016/j.camwa.2010.08.082 +8e55486aa456cae7f04fe922689b3e99a0e409fe,http://doi.acm.org/10.1145/3123266.3123342 +8ebe2df4d82af79f0f082ced70f3a73d7fb93b66,https://doi.org/10.1109/URAI.2015.7358851 +8e272978dd1500ce6e4c2ef5e91d4332078ff757,https://doi.org/10.1007/11848035_5 +8e8a6623b4abd2452779c43f3c2085488dfcb323,http://doi.acm.org/10.1145/2993148.2997630 +8e21399bb102e993edd82b003c306a068a2474da,https://doi.org/10.1109/ICIP.2013.6738758 +22c06284a908d8ad0994ad52119773a034eed7ee,http://doi.acm.org/10.1145/2964284.2967236 +2238dddb76499b19035641d97711cf30d899dadb,https://doi.org/10.1109/SIU.2016.7496098 +22894c7a84984bd4822dcfe7c76a74673a242c36,http://doi.acm.org/10.1145/2993148.2997634 +22a10d8d2a2cb9055557a3b335d6706100890afb,https://doi.org/10.1109/SIU.2016.7496121 +22ccd537857aca1ee4b961f081f07c58d42a7f32,https://doi.org/10.1109/DICTA.2015.7371260 +22d5aeb25bb034f6ae2fc50b5cdd9934a85d6505,http://doi.acm.org/10.1145/2808469.2810102 +22dbdace88c8f4bda2843ed421e3708ec0744237,https://doi.org/10.1016/j.cviu.2013.12.010 +259ddd3c618feec51576baac7eaaf80ea924b791,https://doi.org/10.1007/s11257-007-9039-4 +254964096e523d5e48e03390ce440c9af337d200,http://dl.acm.org/citation.cfm?id=3005378 +250b73ec5a4f78b7b4ea3aba65c27fc1352154d5,https://doi.org/10.1109/TIP.2015.2463223 +256b46b12ab47283e6ada05fad6a2b501de35323,https://doi.org/10.1109/ICPR.2016.7900275 +252f202bfb14d363a969fce19df2972b83fa7ec0,http://doi.ieeecomputersociety.org/10.1109/FG.2017.120 +25bcd5aa3bbe56c992547fba683418655b46fc4a,https://doi.org/10.1016/j.eswa.2017.03.030 +2546dc7e2c2390233de16502413fe1097ecf3fb5,https://doi.org/10.1016/j.patrec.2011.01.009 +258b3b1df82186dd76064ef86b28555e91389b73,https://doi.org/10.1109/ACCESS.2017.2739822 diff --git a/scraper/reports/misc/db_paper_pdf-1.csv b/scraper/reports/misc/db_paper_pdf-1.csv new file mode 100644 index 00000000..810fada9 --- /dev/null +++ b/scraper/reports/misc/db_paper_pdf-1.csv @@ -0,0 +1,1639 @@ +40b86ce698be51e36884edcc8937998979cd02ec,http://www.cs.bilkent.edu.tr/~duygulu/papers/SIU2006-face.pdf +e465f596d73f3d2523dbf8334d29eb93a35f6da0,http://pdfs.semanticscholar.org/e465/f596d73f3d2523dbf8334d29eb93a35f6da0.pdf +29f4ac49fbd6ddc82b1bb697820100f50fa98ab6,http://dhoiem.cs.illinois.edu/publications/acvhl2010_annotation_ian.pdf +ceb763d6657a07b47e48e8a2956bcfdf2cf10818,http://pdfs.semanticscholar.org/ceb7/63d6657a07b47e48e8a2956bcfdf2cf10818.pdf +24b37016fee57057cf403fe2fc3dda78476a8262,http://pdfs.semanticscholar.org/24b3/7016fee57057cf403fe2fc3dda78476a8262.pdf +235d5620d05bb7710f5c4fa6fceead0eb670dec5,http://pdfs.semanticscholar.org/7497/50d81dbd4d9fdcc9c1728b797dbb538a8747.pdf +13f6ab2f245b4a871720b95045c41a4204626814,http://pdfs.semanticscholar.org/9d74/382b6c4209c49de7c2b0fab7b34483ba0ddb.pdf +107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53,http://pdfs.semanticscholar.org/65ef/8706ae8c4e22d491550f5fff052ca3f5db21.pdf +4d6c3a3f9410ca35eb3389ec7088f5e2c16ec3ea,http://www.researchgate.net/profile/Roland_Goecke/publication/221429947_Static_facial_expression_analysis_in_tough_conditions_Data_evaluation_protocol_and_benchmark/links/0fcfd50e81697312d6000000.pdf +e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2,http://pdfs.semanticscholar.org/e1e6/e6792e92f7110e26e27e80e0c30ec36ac9c2.pdf +0db43ed25d63d801ce745fe04ca3e8b363bf3147,http://pdfs.semanticscholar.org/0db4/3ed25d63d801ce745fe04ca3e8b363bf3147.pdf +5d33a10752af9ea30993139ac6e3a323992a5831,http://web.engr.illinois.edu/~iendres2/publications/cvpr2010_att.pdf +7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719d,http://pdfs.semanticscholar.org/7c2e/c6f4ab3eae86e0c1b4f586e9c158fb1d719d.pdf +c74aba9a096379b3dbe1ff95e7af5db45c0fd680,http://pdfs.semanticscholar.org/c74a/ba9a096379b3dbe1ff95e7af5db45c0fd680.pdf +03af8cf40283ff30f1da3637b024319d0c79bdf0,https://www.researchgate.net/profile/Gary_Mckeown/publication/224251574_The_Belfast_Induced_Natural_Emotion_Database/links/0fcfd510a6b4384822000000.pdf +190b3caa2e1a229aa68fd6b1a360afba6f50fde4,http://pdfs.semanticscholar.org/190b/3caa2e1a229aa68fd6b1a360afba6f50fde4.pdf +b599f323ee17f12bf251aba928b19a09bfbb13bb,http://pdfs.semanticscholar.org/b599/f323ee17f12bf251aba928b19a09bfbb13bb.pdf +587c48ec417be8b0334fa39075b3bfd66cc29dbe,http://pdfs.semanticscholar.org/ff91/95f99a1a28ced431362f5363c9a5da47a37b.pdf +271df16f789bd2122f0268c3e2fa46bc0cb5f195,http://users.eecs.northwestern.edu/~mya671/mypapers/CVPR11_Yuan_Yang_Wu.pdf +11269e98f072095ff94676d3dad34658f4876e0e,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2015/ACII2015_submission_70.pdf +a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60,http://pdfs.semanticscholar.org/ac3b/033fd24913c31778cd4cb2d013239315d7a9.pdf +713594c18978b965be87651bb553c28f8501df0a,http://pdfs.semanticscholar.org/fbfc/a34d52422cf8eac9d92d68dd16f95db5ef36.pdf +fcd3d69b418d56ae6800a421c8b89ef363418665,http://pdfs.semanticscholar.org/fcd3/d69b418d56ae6800a421c8b89ef363418665.pdf +4223666d1b0b1a60c74b14c2980069905088edc6,http://pdfs.semanticscholar.org/4223/666d1b0b1a60c74b14c2980069905088edc6.pdf +9ed4ad41cbad645e7109e146ef6df73f774cd75d,http://pdfs.semanticscholar.org/a83e/175ad5b2066e207f5d2ec830ae05bac266b9.pdf +5cfbeae360398de9e20e4165485837bd42b93217,http://pdfs.semanticscholar.org/5cfb/eae360398de9e20e4165485837bd42b93217.pdf +2c92839418a64728438c351a42f6dc5ad0c6e686,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Aware_Face_Recognition_CVPR_2016_paper.pdf +9028fbbd1727215010a5e09bc5758492211dec19,http://pdfs.semanticscholar.org/9028/fbbd1727215010a5e09bc5758492211dec19.pdf +5ac80e0b94200ee3ecd58a618fe6afd077be0a00,http://pdfs.semanticscholar.org/5ac8/0e0b94200ee3ecd58a618fe6afd077be0a00.pdf +a75dfb5a839f0eb4b613d150f54a418b7812aa90,https://arxiv.org/pdf/1708.02314v1.pdf +1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16,http://pdfs.semanticscholar.org/1cbd/3f96524ca2258fd2d5c504c7ea8da7fb1d16.pdf +b33e8db8ccabdfc49211e46d78d09b14557d4cba,http://pdfs.semanticscholar.org/b33e/8db8ccabdfc49211e46d78d09b14557d4cba.pdf +c91103e6612fa7e664ccbc3ed1b0b5deac865b02,http://pdfs.semanticscholar.org/c911/03e6612fa7e664ccbc3ed1b0b5deac865b02.pdf +18dfc2434a95f149a6cbb583cca69a98c9de9887,http://pdfs.semanticscholar.org/18df/c2434a95f149a6cbb583cca69a98c9de9887.pdf +4350bb360797a4ade4faf616ed2ac8e27315968e,http://www.merl.com/publications/docs/TR2006-058.pdf +4fbef7ce1809d102215453c34bf22b5f9f9aab26,http://pdfs.semanticscholar.org/4fbe/f7ce1809d102215453c34bf22b5f9f9aab26.pdf +a5625cfe16d72bd00e987857d68eb4d8fc3ce4fb,http://pdfs.semanticscholar.org/a562/5cfe16d72bd00e987857d68eb4d8fc3ce4fb.pdf +d28d697b578867500632b35b1b19d3d76698f4a9,http://pdfs.semanticscholar.org/d28d/697b578867500632b35b1b19d3d76698f4a9.pdf +4511e09ee26044cb46073a8c2f6e1e0fbabe33e8,http://pdfs.semanticscholar.org/4511/e09ee26044cb46073a8c2f6e1e0fbabe33e8.pdf +4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,https://arxiv.org/pdf/1510.00562v1.pdf +78a4cabf0afc94da123e299df5b32550cd638939,http://pdfs.semanticscholar.org/78a4/cabf0afc94da123e299df5b32550cd638939.pdf +dac2103843adc40191e48ee7f35b6d86a02ef019,http://www.chennaisunday.com/2015DOTNET/Unsupervised%20Celebrity%20Face%20Naming%20in%20Web%20Videos.pdf +24aac045f1e1a4c13a58eab4c7618dccd4c0e671,https://arxiv.org/pdf/1706.04124v1.pdf +08c1f8f0e69c0e2692a2d51040ef6364fb263a40,http://pdfs.semanticscholar.org/0b20/0cf032430d74fd612601cc59d5af5608ceb4.pdf +6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2,http://pdfs.semanticscholar.org/6a1b/eb34a2dfcdf36ae3c16811f1aef6e64abff2.pdf +3f14b504c2b37a0e8119fbda0eff52efb2eb2461,https://ibug.doc.ic.ac.uk/media/uploads/documents/eleftheriadis_tip_2016.pdf +41a6196f88beced105d8bc48dd54d5494cc156fb,http://toc.proceedings.com/25848webtoc.pdf +fbb6ee4f736519f7231830a8e337b263e91f06fe,http://pdfs.semanticscholar.org/fbb6/ee4f736519f7231830a8e337b263e91f06fe.pdf +2d3482dcff69c7417c7b933f22de606a0e8e42d4,http://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf +2aaa6969c03f435b3ea8431574a91a0843bd320b,http://pdfs.semanticscholar.org/2aaa/6969c03f435b3ea8431574a91a0843bd320b.pdf +2564848f094f7c1cd5e599aa907947b10b5c7df2,http://prr.hec.gov.pk/Thesis/252S.pdf +0b85b50b6ff03a7886c702ceabad9ab8c8748fdc,http://pdfs.semanticscholar.org/0b85/b50b6ff03a7886c702ceabad9ab8c8748fdc.pdf +0470b0ab569fac5bbe385fa5565036739d4c37f8,https://hal.inria.fr/inria-00321048/file/verbeek08cvpr.pdf +b87b0fa1ac0aad0ca563844daecaeecb2df8debf,http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/portraits-CAe.pdf +e16efd2ae73a325b7571a456618bfa682b51aef8,http://pdfs.semanticscholar.org/e16e/fd2ae73a325b7571a456618bfa682b51aef8.pdf +aba770a7c45e82b2f9de6ea2a12738722566a149,http://pure.qub.ac.uk/portal/files/49719304/Face_Recognition_in_the_Scrambled.pdf +0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d,https://arxiv.org/pdf/1609.00153v1.pdf +023ed32ac3ea6029f09b8c582efbe3866de7d00a,http://pdfs.semanticscholar.org/023e/d32ac3ea6029f09b8c582efbe3866de7d00a.pdf +580054294ca761500ada71f7d5a78acb0e622f19,http://www.jdl.ac.cn/project/faceId/paperreading/Paper/hhan_20090305_TIP2008_FaceRelighting.pdf +72a00953f3f60a792de019a948174bf680cd6c9f,http://pdfs.semanticscholar.org/72a0/0953f3f60a792de019a948174bf680cd6c9f.pdf +87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd,http://pdfs.semanticscholar.org/87bb/183d8be0c2b4cfceb9ee158fee4bbf3e19fd.pdf +3e69ed088f588f6ecb30969bc6e4dbfacb35133e,http://pdfs.semanticscholar.org/3e69/ed088f588f6ecb30969bc6e4dbfacb35133e.pdf +fb084b1fe52017b3898c871514cffcc2bdb40b73,http://pdfs.semanticscholar.org/fb08/4b1fe52017b3898c871514cffcc2bdb40b73.pdf +62f60039a95692baaeaae79a013c7f545e2a6c3d,http://www.researchgate.net/profile/G_Boato/publication/242336498_Identify_computer_generated_characters_by_analysing_facial_expressions_variation/links/0f3175360a34547478000000.pdf +dd0760bda44d4e222c0a54d41681f97b3270122b,http://pdfs.semanticscholar.org/dd07/60bda44d4e222c0a54d41681f97b3270122b.pdf +046a694bbb3669f2ff705c6c706ca3af95db798c,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xiong_Conditional_Convolutional_Neural_ICCV_2015_paper.pdf +0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Memory-Augmented_Attribute_Manipulation_CVPR_2017_paper.pdf +41aa8c1c90d74f2653ef4b3a2e02ac473af61e47,http://pdfs.semanticscholar.org/41aa/8c1c90d74f2653ef4b3a2e02ac473af61e47.pdf +40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,http://www.site.uottawa.ca/~wslee/publication/CCECE2006.pdf +6ec004e4c1171c4c4858eec7c927f567684b80bc,http://www.researchgate.net/profile/Bongnam_Kang/publication/221292310_The_POSTECH_face_database_(PF07)_and_performance_evaluation/links/00463531e60efa5310000000.pdf +f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,http://pdfs.semanticscholar.org/f935/225e7811858fe9ef6b5fd3fdd59aec9abd1a.pdf +4e490cf3cf26fe46507bb55a548c403b9c685ba0,http://labnic.unige.ch/nic/papers/SJ_DG_SD_KND_IC_MIV_DS_PV_KRS_IEEETransac11.pdf +5fa1724a79a9f7090c54925f6ac52f1697d6b570,http://pdfs.semanticscholar.org/5fa1/724a79a9f7090c54925f6ac52f1697d6b570.pdf +0786a6d5ce6db8a68cef05bb5f5b84ec1b0c2cde,http://vipl.ict.ac.cn/sites/default/files/papers/files/2008_ACMMM_cxliu_Naming%20Faces%20in%20Broadcast%20News%20Video%20by%20Image%20Google.pdf +3946b8f862ecae64582ef0912ca2aa6d3f6f84dc,http://pdfs.semanticscholar.org/3946/b8f862ecae64582ef0912ca2aa6d3f6f84dc.pdf +2d88e7922d9f046ace0234f9f96f570ee848a5b5,http://pdfs.semanticscholar.org/2d88/e7922d9f046ace0234f9f96f570ee848a5b5.pdf +66886f5af67b22d14177119520bd9c9f39cdd2e6,http://pdfs.semanticscholar.org/6688/6f5af67b22d14177119520bd9c9f39cdd2e6.pdf +280d59fa99ead5929ebcde85407bba34b1fcfb59,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002662.pdf +2bbe89f61a8d6d4d6e39fdcaf8c185f110a01c78,http://www3.ntu.edu.sg/home/wanggang/TIFS15.pdf +e4aeaf1af68a40907fda752559e45dc7afc2de67,http://pdfs.semanticscholar.org/e4ae/af1af68a40907fda752559e45dc7afc2de67.pdf +6e782073a013ce3dbc5b9b56087fd0300c510f67,http://pdfs.semanticscholar.org/6e78/2073a013ce3dbc5b9b56087fd0300c510f67.pdf +a0f94e9400938cbd05c4b60b06d9ed58c3458303,http://people.ee.duke.edu/~lcarin/Hoey_Little07.pdf +070ab604c3ced2c23cce2259043446c5ee342fd6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/Biometrics/papers/24-p75.pdf +b6c53891dff24caa1f2e690552a1a5921554f994,http://pdfs.semanticscholar.org/b6c5/3891dff24caa1f2e690552a1a5921554f994.pdf +31ef5419e026ef57ff20de537d82fe3cfa9ee741,http://pdfs.semanticscholar.org/9a10/78b6e3810c95fc4b87154ad62c0f133caebb.pdf +433a6d6d2a3ed8a6502982dccc992f91d665b9b3,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf +28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d,http://pdfs.semanticscholar.org/28bc/f31f794dc27f73eb248e5a1b2c3294b3ec9d.pdf +57a1466c5985fe7594a91d46588d969007210581,https://www.wjscheirer.com/projects/unconstrained-face/amfg_2010_poster.pdf +133da0d8c7719a219537f4a11c915bf74c320da7,http://pdfs.semanticscholar.org/4f4f/920eb43399d8d05b42808e45b56bdd36a929.pdf +1d1a7ef193b958f9074f4f236060a5f5e7642fc1,http://pdfs.semanticscholar.org/db40/804914afbb7f8279ca9a4f52e0ade695f19e.pdf +a503eb91c0bce3a83bf6f524545888524b29b166,http://pdfs.semanticscholar.org/a503/eb91c0bce3a83bf6f524545888524b29b166.pdf +b3f7c772acc8bc42291e09f7a2b081024a172564,http://pdfs.semanticscholar.org/b3f7/c772acc8bc42291e09f7a2b081024a172564.pdf +080c204edff49bf85b335d3d416c5e734a861151,http://pdfs.semanticscholar.org/d3d1/09d81dd0911dfde259b6878d737e50c834eb.pdf +4fa0d73b8ba114578744c2ebaf610d2ca9694f45,http://pdfs.semanticscholar.org/4fa0/d73b8ba114578744c2ebaf610d2ca9694f45.pdf +5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,http://pdfs.semanticscholar.org/5c86/72c0d2f28fd5d2d2c4b9818fcff43fb01a48.pdf +621f656fedda378ceaa9c0096ebb1556a42e5e0f,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2016/07.19.17.24/doc/PID4367205.pdf?ibiurl.language=en +411503a304a661b0c04c2b446a6e43e4a70942dc,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/CRV2010FaceClustFinal.pdf +5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934,http://www.istc-cc.cmu.edu/publications/papers/2016/GeePS-cui-eurosys16.pdf +1677d29a108a1c0f27a6a630e74856e7bddcb70d,http://pdfs.semanticscholar.org/1677/d29a108a1c0f27a6a630e74856e7bddcb70d.pdf +30b103d59f8460d80bb9eac0aa09aaa56c98494f,http://pdfs.semanticscholar.org/30b1/03d59f8460d80bb9eac0aa09aaa56c98494f.pdf +0278acdc8632f463232e961563e177aa8c6d6833,http://www.pitt.edu/~jeffcohn/biblio/TPAMI2547397%20FINAL.pdf +4faded442b506ad0f200a608a69c039e92eaff11,http://pdfs.semanticscholar.org/4fad/ed442b506ad0f200a608a69c039e92eaff11.pdf +3d0379688518cc0e8f896e30815d0b5e8452d4cd,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/007.pdf +846c028643e60fefc86bae13bebd27341b87c4d1,http://pdfs.semanticscholar.org/a06f/510ee0f206abc4c44a2b68455d88a1748427.pdf +3896c62af5b65d7ba9e52f87505841341bb3e8df,http://pdfs.semanticscholar.org/3896/c62af5b65d7ba9e52f87505841341bb3e8df.pdf +38f7f3c72e582e116f6f079ec9ae738894785b96,http://pdfs.semanticscholar.org/38f7/f3c72e582e116f6f079ec9ae738894785b96.pdf +1b70bbf7cdfc692873ce98dd3c0e191580a1b041,http://pdfs.semanticscholar.org/1b70/bbf7cdfc692873ce98dd3c0e191580a1b041.pdf +b755505bdd5af078e06427d34b6ac2530ba69b12,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/Maengetal_NIFaceRecognitionDistance_IJCB11.pdf +d8bf148899f09a0aad18a196ce729384a4464e2b,http://pdfs.semanticscholar.org/d8bf/148899f09a0aad18a196ce729384a4464e2b.pdf +a6e21438695dbc3a184d33b6cf5064ddf655a9ba,http://pdfs.semanticscholar.org/b673/ffe63c5d0723009042f0f922f19f093b7e34.pdf +0323b618d3a4c24bdda4f42361e19a2a7d497da5,http://www.ecse.rpi.edu/homepages/qji/Papers/Simultaneous%20Paper_TIP_Revised_V4_email.pdf +550858b7f5efaca2ebed8f3969cb89017bdb739f,http://pdfs.semanticscholar.org/5508/58b7f5efaca2ebed8f3969cb89017bdb739f.pdf +111a9645ad0108ad472b2f3b243ed3d942e7ff16,http://pdfs.semanticscholar.org/111a/9645ad0108ad472b2f3b243ed3d942e7ff16.pdf +44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,http://pdfs.semanticscholar.org/44f4/8a4b1ef94a9104d063e53bf88a69ff0f55f3.pdf +167736556bea7fd57cfabc692ec4ae40c445f144,http://pdfs.semanticscholar.org/1677/36556bea7fd57cfabc692ec4ae40c445f144.pdf +1a878e4667fe55170252e3f41d38ddf85c87fcaf,http://pdfs.semanticscholar.org/1a87/8e4667fe55170252e3f41d38ddf85c87fcaf.pdf +b4d7ca26deb83cec1922a6964c1193e8dd7270e7,http://pdfs.semanticscholar.org/b4d7/ca26deb83cec1922a6964c1193e8dd7270e7.pdf +5aad5e7390211267f3511ffa75c69febe3b84cc7,http://pdfs.semanticscholar.org/5aad/5e7390211267f3511ffa75c69febe3b84cc7.pdf +687e17db5043661f8921fb86f215e9ca2264d4d2,http://www.ece.northwestern.edu/~ganghua/publication/ICCV09a.pdf +66d512342355fb77a4450decc89977efe7e55fa2,http://pdfs.semanticscholar.org/66d5/12342355fb77a4450decc89977efe7e55fa2.pdf +5a34a9bb264a2594c02b5f46b038aa1ec3389072,http://www.mpi-inf.mpg.de/fileadmin/inf/d2/akata/TPAMI2487986.pdf +0726a45eb129eed88915aa5a86df2af16a09bcc1,http://www.ri.cmu.edu/pub_files/2016/7/root-compressed.pdf +530ce1097d0681a0f9d3ce877c5ba31617b1d709,https://pdfs.semanticscholar.org/530c/e1097d0681a0f9d3ce877c5ba31617b1d709.pdf +bc2852fa0a002e683aad3fb0db5523d1190d0ca5,http://pdfs.semanticscholar.org/bc28/52fa0a002e683aad3fb0db5523d1190d0ca5.pdf +e00d4e4ba25fff3583b180db078ef962bf7d6824,http://pdfs.semanticscholar.org/e00d/4e4ba25fff3583b180db078ef962bf7d6824.pdf +4e6c17966efae956133bf8f22edeffc24a0470c1,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf +ae4390873485c9432899977499c3bf17886fa149,http://pdfs.semanticscholar.org/ae43/90873485c9432899977499c3bf17886fa149.pdf +1394ca71fc52db972366602a6643dc3e65ee8726,https://www.cl.cam.ac.uk/~tb346/pub/papers/icmi2016EmoReact.pdf +968b983fa9967ff82e0798a5967920188a3590a8,http://pdfs.semanticscholar.org/968b/983fa9967ff82e0798a5967920188a3590a8.pdf +6261eb75066f779e75b02209fbd3d0f02d3e1e45,http://pdfs.semanticscholar.org/6261/eb75066f779e75b02209fbd3d0f02d3e1e45.pdf +e496d6be415038de1636bbe8202cac9c1cea9dbe,http://pdfs.semanticscholar.org/e496/d6be415038de1636bbe8202cac9c1cea9dbe.pdf +174f46eccb5852c1f979d8c386e3805f7942bace,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Kae_The_Shape-Time_Random_2014_CVPR_paper.pdf +9949ac42f39aeb7534b3478a21a31bc37fe2ffe3,http://pdfs.semanticscholar.org/9949/ac42f39aeb7534b3478a21a31bc37fe2ffe3.pdf +f74917fc0e55f4f5682909dcf6929abd19d33e2e,http://pdfs.semanticscholar.org/f749/17fc0e55f4f5682909dcf6929abd19d33e2e.pdf +9103148dd87e6ff9fba28509f3b265e1873166c9,http://pdfs.semanticscholar.org/9103/148dd87e6ff9fba28509f3b265e1873166c9.pdf +86a8b3d0f753cb49ac3250fa14d277983e30a4b7,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W09/papers/Zhang_Exploiting_Unlabeled_Ages_2013_CVPR_paper.pdf +a9be20954e9177d8b2bc39747acdea4f5496f394,http://acsweb.ucsd.edu/~yuw176/report/cvpr_2016.pdf +4aabd6db4594212019c9af89b3e66f39f3108aac,http://pdfs.semanticscholar.org/4aab/d6db4594212019c9af89b3e66f39f3108aac.pdf +174930cac7174257515a189cd3ecfdd80ee7dd54,https://arxiv.org/pdf/1502.02766v3.pdf +a14db48785d41cd57d4eac75949a6b79fc684e70,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Barkan_Fast_High_Dimensional_2013_ICCV_paper.pdf +25d514d26ecbc147becf4117512523412e1f060b,http://www.iab-rubric.org/papers/2015_ICB_CrowdVideoFaceDataset.pdf +0be80da851a17dd33f1e6ffdd7d90a1dc7475b96,http://pdfs.semanticscholar.org/0be8/0da851a17dd33f1e6ffdd7d90a1dc7475b96.pdf +3b092733f428b12f1f920638f868ed1e8663fe57,http://www.math.jhu.edu/~data/RamaPapers/PerformanceBounds.pdf +1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,http://pdfs.semanticscholar.org/e5c5/e5531aaa661c223088454572de11d2f266c3.pdf +d50751da2997e7ebc89244c88a4d0d18405e8507,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553713.pdf +f8f2d2910ce8b81cb4bbf84239f9229888158b34,http://pdfs.semanticscholar.org/f8f2/d2910ce8b81cb4bbf84239f9229888158b34.pdf +488d3e32d046232680cc0ba80ce3879f92f35cac,http://pdfs.semanticscholar.org/488d/3e32d046232680cc0ba80ce3879f92f35cac.pdf +fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9,http://pdfs.semanticscholar.org/fea0/a5ed1bc83dd1b545a5d75db2e37a69489ac9.pdf +307a810d1bf6f747b1bd697a8a642afbd649613d,http://pdfs.semanticscholar.org/307a/810d1bf6f747b1bd697a8a642afbd649613d.pdf +23172f9a397f13ae1ecb5793efd81b6aba9b4537,http://pdfs.semanticscholar.org/2317/2f9a397f13ae1ecb5793efd81b6aba9b4537.pdf +57f7d8c6ec690bd436e70d7761bc5f46e993be4c,https://opus.lib.uts.edu.au/bitstream/10453/10785/3/2009001878_Du.pdf +45215e330a4251801877070c85c81f42c2da60fb,http://pdfs.semanticscholar.org/4521/5e330a4251801877070c85c81f42c2da60fb.pdf +b32631f456397462b3530757f3a73a2ccc362342,http://pdfs.semanticscholar.org/b326/31f456397462b3530757f3a73a2ccc362342.pdf +2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,http://www.cs.fsu.edu/~liux/research/pub/papers/Wu-Two-Stage-CVIU-2008.pdf +38787338ba659f0bfbeba11ec5b7748ffdbb1c3d,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr1885.pdf +41de109bca9343691f1d5720df864cdbeeecd9d0,http://pdfs.semanticscholar.org/41de/109bca9343691f1d5720df864cdbeeecd9d0.pdf +e4bc529ced68fae154e125c72af5381b1185f34e,http://pdfs.semanticscholar.org/e4bc/529ced68fae154e125c72af5381b1185f34e.pdf +3acb6b3e3f09f528c88d5dd765fee6131de931ea,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2017/novelRepresentation.pdf +a93781e6db8c03668f277676d901905ef44ae49f,http://pdfs.semanticscholar.org/a937/81e6db8c03668f277676d901905ef44ae49f.pdf +4c4236b62302957052f1bbfbd34dbf71ac1650ec,http://www.eurecom.fr/en/publication/3397/download/mm-publi-3397.pdf +3d143cfab13ecd9c485f19d988242e7240660c86,http://pdfs.semanticscholar.org/3d14/3cfab13ecd9c485f19d988242e7240660c86.pdf +b185f0a39384ceb3c4923196aeed6d68830a069f,http://pdfs.semanticscholar.org/b185/f0a39384ceb3c4923196aeed6d68830a069f.pdf +29f27448e8dd843e1c4d2a78e01caeaea3f46a2d,http://pdfs.semanticscholar.org/29f2/7448e8dd843e1c4d2a78e01caeaea3f46a2d.pdf +6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,http://arxiv.org/pdf/1411.7766v2.pdf +3039627fa612c184228b0bed0a8c03c7f754748c,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wu_Robust_Regression_on_2015_CVPR_paper.pdf +11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8,http://elderlab.apps01.yorku.ca/wp-content/uploads/2016/12/PrincePAMI08.pdf +df8da144a695269e159fb0120bf5355a558f4b02,http://pdfs.semanticscholar.org/df8d/a144a695269e159fb0120bf5355a558f4b02.pdf +06fb92e110d077c27d401d2f9483964cd0615284,http://www.cs.sunysb.edu/~ial/content/papers/2009/wang_pami09.pdf +1134a6be0f469ff2c8caab266bbdacf482f32179,http://pdfs.semanticscholar.org/1134/a6be0f469ff2c8caab266bbdacf482f32179.pdf +6d4b5444c45880517213a2fdcdb6f17064b3fa91,http://pdfs.semanticscholar.org/6d4b/5444c45880517213a2fdcdb6f17064b3fa91.pdf +9821669a989a3df9d598c1b4332d17ae8e35e294,http://pdfs.semanticscholar.org/9821/669a989a3df9d598c1b4332d17ae8e35e294.pdf +1586871a1ddfe031b885b94efdbff647cf03eff1,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w18/papers/Ginosar_A_Century_of_ICCV_2015_paper.pdf +205f3d654b7d28d00d15b034a8c5b2a8740bd8b6,https://www.researchgate.net/profile/Ya_Su4/publication/51686551_Discriminant_learning_through_multiple_principal_angles_for_visual_recognition/links/00b495253b0057832b000000.pdf +02c38fa9a8ada6040ef21de17daf8d5e5cdc60c7,http://members.e-inclusion.crim.ca/files/articles/CRV_2006.pdf +4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,http://sergioescalera.com/wp-content/uploads/2015/08/cha11g-lopezATS.pdf +1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8,http://pdfs.semanticscholar.org/b1c8/4ab7cc0c85e8aa8be4c0ec32bad225c9c630.pdf +d03265ea9200a993af857b473c6bf12a095ca178,http://pdfs.semanticscholar.org/d032/65ea9200a993af857b473c6bf12a095ca178.pdf +a14ae81609d09fed217aa12a4df9466553db4859,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_TIP.pdf +b249f10a30907a80f2a73582f696bc35ba4db9e2,http://pdfs.semanticscholar.org/f06d/6161eef9325285b32356e1c4b5527479eb9b.pdf +db428d03e3dfd98624c23e0462817ad17ef14493,http://pdfs.semanticscholar.org/db42/8d03e3dfd98624c23e0462817ad17ef14493.pdf +5ae970294aaba5e0225122552c019eb56f20af74,http://pdfs.semanticscholar.org/5ae9/70294aaba5e0225122552c019eb56f20af74.pdf +90c2d4d9569866a0b930e91713ad1da01c2a6846,http://pdfs.semanticscholar.org/90c2/d4d9569866a0b930e91713ad1da01c2a6846.pdf +26c884829897b3035702800937d4d15fef7010e4,http://pdfs.semanticscholar.org/9200/10cc55d2658e04b01783118b59b7d90420c6.pdf +6a657995b02bc9dee130701138ea45183c18f4ae,http://pdfs.semanticscholar.org/6a65/7995b02bc9dee130701138ea45183c18f4ae.pdf +3c8da376576938160cbed956ece838682fa50e9f,http://shodhganga.inflibnet.ac.in/bitstream/10603/49167/11/11_chapter%204.pdf +8d71872d5877c575a52f71ad445c7e5124a4b174,http://pdfs.semanticscholar.org/8d71/872d5877c575a52f71ad445c7e5124a4b174.pdf +33aff42530c2fd134553d397bf572c048db12c28,http://openaccess.thecvf.com/content_iccv_2015/papers/Ruiz_From_Emotions_to_ICCV_2015_paper.pdf +89c51f73ec5ebd1c2a9000123deaf628acf3cdd8,http://pdfs.semanticscholar.org/89c5/1f73ec5ebd1c2a9000123deaf628acf3cdd8.pdf +0172867f4c712b33168d9da79c6d3859b198ed4c,http://www.cin.ufpe.br/~rps/Artigos/Expression%20and%20Illumination%20Invariant%20Preprocessing%20Technique%20for%20Face%20Recognition.pdf +5c435c4bc9c9667f968f891e207d241c3e45757a,http://pdfs.semanticscholar.org/eb6a/13c8a607dfc535e5f31b7c8843335674644c.pdf +28f5138d63e4acafca49a94ae1dc44f7e9d84827,http://pdfs.semanticscholar.org/28f5/138d63e4acafca49a94ae1dc44f7e9d84827.pdf +6821113166b030d2123c3cd793dd63d2c909a110,http://pdfs.semanticscholar.org/6821/113166b030d2123c3cd793dd63d2c909a110.pdf +e379e73e11868abb1728c3acdc77e2c51673eb0d,http://pdfs.semanticscholar.org/e379/e73e11868abb1728c3acdc77e2c51673eb0d.pdf +66b9d954dd8204c3a970d86d91dd4ea0eb12db47,http://pdfs.semanticscholar.org/f3ec/7e58da49f39b807ff1c98d0bf574ef5f0720.pdf +68cf263a17862e4dd3547f7ecc863b2dc53320d8,http://pdfs.semanticscholar.org/68cf/263a17862e4dd3547f7ecc863b2dc53320d8.pdf +a8748a79e8d37e395354ba7a8b3038468cb37e1f,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w9/papers/Reale_Seeing_the_Forest_CVPR_2016_paper.pdf +7d73adcee255469aadc5e926066f71c93f51a1a5,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001283.pdf +5ca14fa73da37855bfa880b549483ee2aba26669,http://pdfs.semanticscholar.org/5ca1/4fa73da37855bfa880b549483ee2aba26669.pdf +54f442c7fa4603f1814ebd8eba912a00dceb5cb2,http://pdfs.semanticscholar.org/54f4/42c7fa4603f1814ebd8eba912a00dceb5cb2.pdf +01379c50c392c104694ccb871a4b6a36d514f102,http://sse.tongji.edu.cn/hyli/Publications/icmla2010.pdf +56c0b225fd57cfe173e5206a4bb0ce153bfecc29,http://www.sfu.ca/~wya16/ProfileFG08.pdf +3504907a2e3c81d78e9dfe71c93ac145b1318f9c,https://arxiv.org/pdf/1605.02686v3.pdf +80277fb3a8a981933533cf478245f262652a33b5,http://pdfs.semanticscholar.org/8027/7fb3a8a981933533cf478245f262652a33b5.pdf +056294ff40584cdce81702b948f88cebd731a93e,https://arxiv.org/pdf/1506.08438v3.pdf +353a89c277cca3e3e4e8c6a199ae3442cdad59b5,http://pdfs.semanticscholar.org/353a/89c277cca3e3e4e8c6a199ae3442cdad59b5.pdf +66e6f08873325d37e0ec20a4769ce881e04e964e,http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf +1c4ceae745fe812d8251fda7aad03210448ae25e,http://pdfs.semanticscholar.org/98d3/6d12cf6f2da181a9c1fb9d652ceaa57eb7bb.pdf +834b15762f97b4da11a2d851840123dbeee51d33,http://pdfs.semanticscholar.org/834b/15762f97b4da11a2d851840123dbeee51d33.pdf +927ad0dceacce2bb482b96f42f2fe2ad1873f37a,http://pdfs.semanticscholar.org/927a/d0dceacce2bb482b96f42f2fe2ad1873f37a.pdf +bd8f3fef958ebed5576792078f84c43999b1b207,http://pdfs.semanticscholar.org/bd8f/3fef958ebed5576792078f84c43999b1b207.pdf +5bde1718253ec28a753a892b0ba82d8e553b6bf3,http://pdfs.semanticscholar.org/5bde/1718253ec28a753a892b0ba82d8e553b6bf3.pdf +214db8a5872f7be48cdb8876e0233efecdcb6061,http://users.eecs.northwestern.edu/~mya671/mypapers/ICCV13_Zhang_Yang_Wang_Lin_Tian.pdf +62e913431bcef5983955e9ca160b91bb19d9de42,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf +9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d,http://pdfs.semanticscholar.org/9cbb/6e42a35f26cf1d19f4875cd7f6953f10b95d.pdf +3327e21b46434f6441018922ef31bddba6cc8176,http://www.metaio.com/fileadmin/upload/research_files/paper/ISMAR2014_Real-Time_Illumination_Estimation_from_Faces_for_Coherent_Rendering_paper.pdf +0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7,http://pdfs.semanticscholar.org/0b6a/5200c33434cbfa9bf24ba482f6e06bf5fff7.pdf +28312c3a47c1be3a67365700744d3d6665b86f22,http://pdfs.semanticscholar.org/2831/2c3a47c1be3a67365700744d3d6665b86f22.pdf +98b2f21db344b8b9f7747feaf86f92558595990c,http://pdfs.semanticscholar.org/b9f0/29075a36f15202f0d213fe222dcf237fe65f.pdf +cd436f05fb4aeeda5d1085f2fe0384526571a46e,http://pdfs.semanticscholar.org/cd43/6f05fb4aeeda5d1085f2fe0384526571a46e.pdf +9a276c72acdb83660557489114a494b86a39f6ff,http://pdfs.semanticscholar.org/9a27/6c72acdb83660557489114a494b86a39f6ff.pdf +47dabb566f2bdd6b3e4fa7efc941824d8b923a13,http://pdfs.semanticscholar.org/47da/bb566f2bdd6b3e4fa7efc941824d8b923a13.pdf +d6cf3cab269877c58a16be011b74e07838d957c2,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0162.pdf +2ff9618ea521df3c916abc88e7c85220d9f0ff06,http://pdfs.semanticscholar.org/bb08/f64565ee68e868dcab904cada9646dd5f676.pdf +c178a86f4c120eca3850a4915134fff44cbccb48,http://pdfs.semanticscholar.org/c178/a86f4c120eca3850a4915134fff44cbccb48.pdf +2d4b9fe3854ccce24040074c461d0c516c46baf4,https://arxiv.org/pdf/1704.04671v1.pdf +c6096986b4d6c374ab2d20031e026b581e7bf7e9,http://pdfs.semanticscholar.org/c609/6986b4d6c374ab2d20031e026b581e7bf7e9.pdf +237fa91c8e8098a0d44f32ce259ff0487aec02cf,http://ira.lib.polyu.edu.hk/bitstream/10397/241/1/SMCB_C_36_4_06_B.pdf +966e36f15b05ef8436afecf57a97b73d6dcada94,http://pdfs.semanticscholar.org/966e/36f15b05ef8436afecf57a97b73d6dcada94.pdf +1ef4815f41fa3a9217a8a8af12cc385f6ed137e1,https://www.d2.mpi-inf.mpg.de/sites/default/files/wood2015_iccv.pdf +a2eb90e334575d9b435c01de4f4bf42d2464effc,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu04b.pdf +c10b0a6ba98aa95d740a0d60e150ffd77c7895ad,http://pdfs.semanticscholar.org/c10b/0a6ba98aa95d740a0d60e150ffd77c7895ad.pdf +d448d67c6371f9abf533ea0f894ef2f022b12503,http://pdfs.semanticscholar.org/d448/d67c6371f9abf533ea0f894ef2f022b12503.pdf +68003e92a41d12647806d477dd7d20e4dcde1354,http://pdfs.semanticscholar.org/db86/41ed047da4a90d53414edfe126c845141d69.pdf +fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46,http://pdfs.semanticscholar.org/fcf8/bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46.pdf +3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0,http://pdfs.semanticscholar.org/73cc/fdedbd7d72a147925727ba1932f9488cfde3.pdf +09f58353e48780c707cf24a0074e4d353da18934,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/BestrowdenBishtKlontzJain_CrowdsourcingHumanPeformance_IJCB2014.pdf +4c523db33c56759255b2c58c024eb6112542014e,http://www0.cs.ucl.ac.uk/staff/P.Li/publication/ICCV09JaniaAghajanian.pdf +a546fd229f99d7fe3cf634234e04bae920a2ec33,http://pdfs.semanticscholar.org/a546/fd229f99d7fe3cf634234e04bae920a2ec33.pdf +75da1df4ed319926c544eefe17ec8d720feef8c0,http://pdfs.semanticscholar.org/75da/1df4ed319926c544eefe17ec8d720feef8c0.pdf +29631ca6cff21c9199c70bcdbbcd5f812d331a96,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf +635158d2da146e9de559d2742a2fa234e06b52db,http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf +7a65fc9e78eff3ab6062707deaadde024d2fad40,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf +062d67af7677db086ef35186dc936b4511f155d7,http://openaccess.thecvf.com/content_cvpr_2016/papers/Chang_They_Are_Not_CVPR_2016_paper.pdf +434d6726229c0f556841fad20391c18316806f73,https://arxiv.org/pdf/1704.03114v2.pdf +06fe63b34fcc8ff68b72b5835c4245d3f9b8a016,http://chechiklab.biu.ac.il/~gal/Papers/Mesnil_MachineLearning2013_objects_and_their_parts.pdf +8adb2fcab20dab5232099becbd640e9c4b6a905a,http://pdfs.semanticscholar.org/d0d1/50a51c46cfb3bdd9d5fb570018c6534b57ff.pdf +05a312478618418a2efb0a014b45acf3663562d7,http://people.ee.duke.edu/~lcarin/AccelGibbs.pdf +cd4c047f4d4df7937aff8fc76f4bae7718004f40,http://pdfs.semanticscholar.org/cd4c/047f4d4df7937aff8fc76f4bae7718004f40.pdf +43fb9efa79178cb6f481387b7c6e9b0ca3761da8,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Katti_Mixture_of_Parts_2015_CVPR_paper.pdf +09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081,http://acberg.com/papers/street2shop.pdf +df054fa8ee6bb7d2a50909939d90ef417c73604c,http://pdfs.semanticscholar.org/df05/4fa8ee6bb7d2a50909939d90ef417c73604c.pdf +3cc3cf57326eceb5f20a02aefae17108e8c8ab57,http://pdfs.semanticscholar.org/3cc3/cf57326eceb5f20a02aefae17108e8c8ab57.pdf +3107316f243233d45e3c7e5972517d1ed4991f91,https://arxiv.org/pdf/1703.10155v1.pdf +bb6bf94bffc37ef2970410e74a6b6dc44a7f4feb,http://pdfs.semanticscholar.org/bb6b/f94bffc37ef2970410e74a6b6dc44a7f4feb.pdf +ae85c822c6aec8b0f67762c625a73a5d08f5060d,http://tamaraberg.com/papers/yamaguchi2014retrieving.pdf +15252b7af081761bb00535aac6bd1987391f9b79,http://cvsp.cs.ntua.gr/publications/confr/KoutrasMaragos_EyeGaze_ICIP15.pdf +951f21a5671a4cd14b1ef1728dfe305bda72366f,http://pdfs.semanticscholar.org/951f/21a5671a4cd14b1ef1728dfe305bda72366f.pdf +bb557f4af797cae9205d5c159f1e2fdfe2d8b096,http://pdfs.semanticscholar.org/bb55/7f4af797cae9205d5c159f1e2fdfe2d8b096.pdf +c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,http://pdfs.semanticscholar.org/c42a/8969cd76e9f54d43f7f4dd8f9b08da566c5f.pdf +3f957142ef66f2921e7c8c7eadc8e548dccc1327,https://ibug.doc.ic.ac.uk/media/uploads/documents/combined_model_lda_&_svms.pdf +293ade202109c7f23637589a637bdaed06dc37c9,http://pdfs.semanticscholar.org/293a/de202109c7f23637589a637bdaed06dc37c9.pdf +64153df77fe137b7c6f820a58f0bdb4b3b1a879b,http://pdfs.semanticscholar.org/6415/3df77fe137b7c6f820a58f0bdb4b3b1a879b.pdf +486a82f50835ea888fbc5c6babf3cf8e8b9807bc,http://pdfs.semanticscholar.org/486a/82f50835ea888fbc5c6babf3cf8e8b9807bc.pdf +0708059e3bedbea1cbfae1c8cd6b7259d4b56b5b,http://www.cs.tut.fi/~iosifidi/files/conference/2016_EUSIPCO_GRMCSVM.pdf?dl=0 +280bc9751593897091015aaf2cab39805768b463,http://pdfs.semanticscholar.org/280b/c9751593897091015aaf2cab39805768b463.pdf +919d0e681c4ef687bf0b89fe7c0615221e9a1d30,http://pdfs.semanticscholar.org/919d/0e681c4ef687bf0b89fe7c0615221e9a1d30.pdf +f6c70635241968a6d5fd5e03cde6907022091d64,http://pdfs.semanticscholar.org/f6c7/0635241968a6d5fd5e03cde6907022091d64.pdf +016800413ebd1a87730a5cf828e197f43a08f4b3,http://arxiv.org/pdf/1605.00743v1.pdf +42350e28d11e33641775bef4c7b41a2c3437e4fd,http://mmlab.ie.cuhk.edu.hk/archive/2007/IP07_face02.pdf +8f8c0243816f16a21dea1c20b5c81bc223088594,http://pdfs.semanticscholar.org/8f8c/0243816f16a21dea1c20b5c81bc223088594.pdf +1dff919e51c262c22630955972968f38ba385d8a,http://pdfs.semanticscholar.org/1dff/919e51c262c22630955972968f38ba385d8a.pdf +68a3f12382003bc714c51c85fb6d0557dcb15467,http://research.microsoft.com/pubs/217884/ZitnickSent2SceneICCV13.pdf +84bc3ca61fc63b47ec3a1a6566ab8dcefb3d0015,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2012/BTAS%20144.pdf +08f6ad0a3e75b715852f825d12b6f28883f5ca05,http://www.cse.msu.edu/biometrics/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf +0c36c988acc9ec239953ff1b3931799af388ef70,http://pdfs.semanticscholar.org/0c36/c988acc9ec239953ff1b3931799af388ef70.pdf +ce85d953086294d989c09ae5c41af795d098d5b2,http://mmlab.ie.cuhk.edu.hk/archive/2007/NN07_feature.pdf +36df81e82ea5c1e5edac40b60b374979a43668a5,http://www.robots.ox.ac.uk/~vgg/publications/2012/Parkhi12b/parkhi12b.pdf +aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9,http://pdfs.semanticscholar.org/aca7/5c032cfb0b2eb4c0ae56f3d060d8875e43f9.pdf +00a967cb2d18e1394226ad37930524a31351f6cf,https://arxiv.org/pdf/1611.05377v1.pdf +48cfc5789c246c6ad88ff841701204fc9d6577ed,http://pdfs.semanticscholar.org/48cf/c5789c246c6ad88ff841701204fc9d6577ed.pdf +37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e,http://www.cse.iitm.ac.in/~amittal/wacv2015_review.pdf +c207fd762728f3da4cddcfcf8bf19669809ab284,http://pdfs.semanticscholar.org/c207/fd762728f3da4cddcfcf8bf19669809ab284.pdf +4bd3de97b256b96556d19a5db71dda519934fd53,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wen_Latent_Factor_Guided_CVPR_2016_paper.pdf +f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,http://pdfs.semanticscholar.org/f8a5/bc2bd26790d474a1f6cc246b2ba0bcde9464.pdf +202d8d93b7b747cdbd6e24e5a919640f8d16298a,http://pdfs.semanticscholar.org/202d/8d93b7b747cdbd6e24e5a919640f8d16298a.pdf +570308801ff9614191cfbfd7da88d41fb441b423,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chu_Unsupervised_Synchrony_Discovery_ICCV_2015_paper.pdf +c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774,http://pdfs.semanticscholar.org/c0ca/6b992cbe46ea3003f4e9b48f4ef57e5fb774.pdf +4e7ed13e541b8ed868480375785005d33530e06d,http://arxiv.org/pdf/1603.07388v1.pdf +a6496553fb9ab9ca5d69eb45af1bdf0b60ed86dc,http://pdfs.semanticscholar.org/a649/6553fb9ab9ca5d69eb45af1bdf0b60ed86dc.pdf +b747fcad32484dfbe29530a15776d0df5688a7db,http://pdfs.semanticscholar.org/b747/fcad32484dfbe29530a15776d0df5688a7db.pdf +5b7cb9b97c425b52b2e6f41ba8028836029c4432,http://www.cis.pku.edu.cn/faculty/vision/zlin/Publications/2014-CVPR-SMR.pdf +1b5875dbebc76fec87e72cee7a5263d325a77376,http://arxiv.org/pdf/1603.00560v2.pdf +d41c11ebcb06c82b7055e2964914b9af417abfb2,http://pdfs.semanticscholar.org/d41c/11ebcb06c82b7055e2964914b9af417abfb2.pdf +697b0b9630213ca08a1ae1d459fabc13325bdcbb,http://pdfs.semanticscholar.org/697b/0b9630213ca08a1ae1d459fabc13325bdcbb.pdf +4fc7a540efb24bea338f82c8bdc64c214744a3de,http://www.researchgate.net/profile/Touradj_Ebrahimi/publication/41083907_Object-based_Tag_Propagation_for_Semi-automatic_Annotation_of_Images/links/02e7e515b3de45cd50000000.pdf +b9f2a755940353549e55690437eb7e13ea226bbf,http://pdfs.semanticscholar.org/b9f2/a755940353549e55690437eb7e13ea226bbf.pdf +ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b,http://pdfs.semanticscholar.org/ccf4/3c62e4bf76b6a48ff588ef7ed51e87ddf50b.pdf +b2c25af8a8e191c000f6a55d5f85cf60794c2709,http://pdfs.semanticscholar.org/b2c2/5af8a8e191c000f6a55d5f85cf60794c2709.pdf +5bc0a89f4f73523967050374ed34d7bc89e4d9e1,http://pdfs.semanticscholar.org/5bc0/a89f4f73523967050374ed34d7bc89e4d9e1.pdf +6d4e3616d0b27957c4107ae877dc0dd4504b69ab,http://pdfs.semanticscholar.org/6d4e/3616d0b27957c4107ae877dc0dd4504b69ab.pdf +6eaf446dec00536858548fe7cc66025b70ce20eb,http://pdfs.semanticscholar.org/6eaf/446dec00536858548fe7cc66025b70ce20eb.pdf +2f7fc778e3dec2300b4081ba2a1e52f669094fcd,http://pdfs.semanticscholar.org/2f7f/c778e3dec2300b4081ba2a1e52f669094fcd.pdf +c0d5c3aab87d6e8dd3241db1d931470c15b9e39d,http://pdfs.semanticscholar.org/facb/edfe90956c720f70aab14767b5e25dcc6478.pdf +47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa,http://pdfs.semanticscholar.org/d948/50abdd272a402cd2f00e5b85311d87c75b16.pdf +65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,http://pdfs.semanticscholar.org/6529/3ecf6a4c5ab037a2afb4a9a1def95e194e5f.pdf +21ec41a6ee3c655cf54c6db659d56480fc76e742,http://www.liacs.nl/home/mlew/ivc2007.emotion.pdf +559795d3f3b096ceddc03720ba62d79d50eae300,http://www3.nd.edu/~kwb/BarrBowyerFlynnTIFS_2014.pdf +2b64a8c1f584389b611198d47a750f5d74234426,http://pdfs.semanticscholar.org/fb11/6f00320a37d80ec32561d1ab9b795c943202.pdf +3ce2ecf3d6ace8d80303daf67345be6ec33b3a93,http://pdfs.semanticscholar.org/3ce2/ecf3d6ace8d80303daf67345be6ec33b3a93.pdf +14c0f9dc9373bea1e27b11fa0594c86c9e632c8d,http://openaccess.thecvf.com/content_iccv_2015/papers/Dang_Adaptive_Exponential_Smoothing_ICCV_2015_paper.pdf +3b2a2357b12cf0a5c99c8bc06ef7b46e40dd888e,http://pdfs.semanticscholar.org/5141/cf2e59fb2ec9bb489b9c1832447d3cd93110.pdf +d82b93f848d5442f82154a6011d26df8a9cd00e7,http://pdfs.semanticscholar.org/d82b/93f848d5442f82154a6011d26df8a9cd00e7.pdf +c3b3636080b9931ac802e2dd28b7b684d6cf4f8b,http://pdfs.semanticscholar.org/c3b3/636080b9931ac802e2dd28b7b684d6cf4f8b.pdf +0b642f6d48a51df64502462372a38c50df2051b1,https://infoscience.epfl.ch/record/231128/files/Le_ICMI_2017.pdf +d785fcf71cb22f9c33473cba35f075c1f0f06ffc,http://research.cs.rutgers.edu/~linzhong/PDF/Lin_cvpr2012.pdf +24d376e4d580fb28fd66bc5e7681f1a8db3b6b78,http://pdfs.semanticscholar.org/24d3/76e4d580fb28fd66bc5e7681f1a8db3b6b78.pdf +53c8cbc4a3a3752a74f79b74370ed8aeed97db85,http://pdfs.semanticscholar.org/53c8/cbc4a3a3752a74f79b74370ed8aeed97db85.pdf +27a299b834a18e45d73e0bf784bbb5b304c197b3,http://ai.stanford.edu/~vigneshr/cvpr_13/cvpr13_social_roles.pdf +a1b1442198f29072e907ed8cb02a064493737158,http://affect.media.mit.edu/pdfs/12.McDuff-etal-Crowdsourcing-TAC.pdf +1c65f3b3c70e1ea89114f955624d7adab620a013,http://pdfs.semanticscholar.org/ef34/cc2a26e88abd6a03d1a831c750440c6147d2.pdf +8160b3b5f07deaa104769a2abb7017e9c031f1c1,http://www.aiia.csd.auth.gr/EN/cor_baayen/Exploiting_Discriminant_Information_in_NMF_for_FFV.pdf +f0f501e1e8726148d18e70c8e9f6feea9360d119,http://pdfs.semanticscholar.org/f0f5/01e1e8726148d18e70c8e9f6feea9360d119.pdf +81dd68de9d88c49db1ae509dbc66c7a82809c026,http://atvs.ii.uam.es/files/2004_SPM_Biometrics_Ortega.pdf +f43eeb578e0ca48abfd43397bbd15825f94302e4,http://pdfs.semanticscholar.org/f43e/eb578e0ca48abfd43397bbd15825f94302e4.pdf +c398684270543e97e3194674d9cce20acaef3db3,http://pdfs.semanticscholar.org/c398/684270543e97e3194674d9cce20acaef3db3.pdf +f3015be0f9dbc1a55b6f3dc388d97bb566ff94fe,http://pdfs.semanticscholar.org/f301/5be0f9dbc1a55b6f3dc388d97bb566ff94fe.pdf +1329206dbdb0a2b9e23102e1340c17bd2b2adcf5,http://pdfs.semanticscholar.org/a2f4/06c8babac96b2108c530974c4d3132106d42.pdf +36b40c75a3e53c633c4afb5a9309d10e12c292c7,https://pdfs.semanticscholar.org/36b4/0c75a3e53c633c4afb5a9309d10e12c292c7.pdf +02e43d9ca736802d72824892c864e8cfde13718e,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/10075/shi%20Transferring%20a%20semantic%20representation%202015%20Accepted.pdf?sequence=1 +1c1a98df3d0d5e2034ea723994bdc85af45934db,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Jaiswal_Guided_Unsupervised_Learning_2013_ICCV_paper.pdf +0d538084f664b4b7c0e11899d08da31aead87c32,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Deformable_Part_Descriptors_2013_ICCV_paper.pdf +3a2fc58222870d8bed62442c00341e8c0a39ec87,http://pdfs.semanticscholar.org/3a2f/c58222870d8bed62442c00341e8c0a39ec87.pdf +438e7999c937b94f0f6384dbeaa3febff6d283b6,https://arxiv.org/pdf/1705.02402v2.pdf +c40c23e4afc81c8b119ea361e5582aa3adecb157,http://pdfs.semanticscholar.org/c40c/23e4afc81c8b119ea361e5582aa3adecb157.pdf +03b03f5a301b2ff88ab3bb4969f54fd9a35c7271,http://pdfs.semanticscholar.org/03b0/3f5a301b2ff88ab3bb4969f54fd9a35c7271.pdf +da15344a4c10b91d6ee2e9356a48cb3a0eac6a97,http://pdfs.semanticscholar.org/da15/344a4c10b91d6ee2e9356a48cb3a0eac6a97.pdf +181045164df86c72923906aed93d7f2f987bce6c,http://pdfs.semanticscholar.org/1810/45164df86c72923906aed93d7f2f987bce6c.pdf +1e58d7e5277288176456c66f6b1433c41ca77415,http://pdfs.semanticscholar.org/1e58/d7e5277288176456c66f6b1433c41ca77415.pdf +034addac4637121e953511301ef3a3226a9e75fd,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Parikh_Implied_Feedback_Learning_2013_ICCV_paper.pdf +a2d9c9ed29bbc2619d5e03320e48b45c15155195,http://pdfs.semanticscholar.org/a2d9/c9ed29bbc2619d5e03320e48b45c15155195.pdf +459960be65dd04317dd325af5b7cbb883d822ee4,http://pdfs.semanticscholar.org/876c/c40c6c470f39fbda48dd394d0a9d5f6b147d.pdf +45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8,http://www.doc.ic.ac.uk/~maja/VukadinovicPantic-SMC05-FINAL.pdf +d6102a7ddb19a185019fd2112d2f29d9258f6dec,http://pdfs.semanticscholar.org/d610/2a7ddb19a185019fd2112d2f29d9258f6dec.pdf +adaf2b138094981edd615dbfc4b7787693dbc396,http://pdfs.semanticscholar.org/adaf/2b138094981edd615dbfc4b7787693dbc396.pdf +0f829fee12e86f980a581480a9e0cefccb59e2c5,http://www.cs.columbia.edu/~liujx09/posters/birdpart_poster.pdf +14b69626b64106bff20e17cf8681790254d1e81c,http://pdfs.semanticscholar.org/14b6/9626b64106bff20e17cf8681790254d1e81c.pdf +0a64f4fec592662316764283575d05913eb2135b,http://pdfs.semanticscholar.org/0a64/f4fec592662316764283575d05913eb2135b.pdf +26d407b911d1234e8e3601e586b49316f0818c95,https://arxiv.org/pdf/1709.00965v1.pdf +2eb9f1dbea71bdc57821dedbb587ff04f3a25f07,http://pdfs.semanticscholar.org/2eb9/f1dbea71bdc57821dedbb587ff04f3a25f07.pdf +8d1adf0ac74e901a94f05eca2f684528129a630a,http://www.denniscodd.com/dotnet-ieee/Facial%20Expression%20Recognition%20Using%20Facial.pdf +346166da1a49e531923294300a731167e1436d5b,http://lear.inrialpes.fr/people/mpederso/papers/3DV14.pdf +cbe859d151466315a050a6925d54a8d3dbad591f,http://homes.di.unimi.it/~boccignone/GiuseppeBoccignone_webpage/Stochastic_files/Euvip2010.pdf +ac2e44622efbbab525d4301c83cb4d5d7f6f0e55,http://openaccess.thecvf.com/content_cvpr_2016/papers/Booth_A_3D_Morphable_CVPR_2016_paper.pdf +503db524b9a99220d430e741c44cd9c91ce1ddf8,http://pdfs.semanticscholar.org/503d/b524b9a99220d430e741c44cd9c91ce1ddf8.pdf +c696c9bbe27434cb6279223a79b17535cd6e88c8,http://pdfs.semanticscholar.org/c696/c9bbe27434cb6279223a79b17535cd6e88c8.pdf +1f745215cda3a9f00a65166bd744e4ec35644b02,http://www.eurecom.fr/en/publication/4044/download/mm-publi-4044.pdf +56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Li_Shape_Driven_Kernel_2015_CVPR_paper.pdf +738c187d55745aac18d5fb5f6cc9e3568cd2d217,http://www-ee.ccny.cuny.edu/wwwn/yltian/Publications/ICMR130-2015.pdf +0178929595f505ef7655272cc2c339d7ed0b9507,http://pdfs.semanticscholar.org/7d84/151beccef17f71b3eeaca59ebc690561ab73.pdf +6ed738ff03fd9042965abdfaa3ed8322de15c116,https://dr.ntu.edu.sg/bitstream/handle/10220/39690/kmeap_icdm2014.pdf?isAllowed=y&sequence=1 +56a653fea5c2a7e45246613049fb16b1d204fc96,http://ieeeprojectsmadurai.com/matlab2016base/Quaternion%20Collaborative%20and%20Sparse%20Representation.pdf +184750382fe9b722e78d22a543e852a6290b3f70,http://pdfs.semanticscholar.org/1847/50382fe9b722e78d22a543e852a6290b3f70.pdf +297d3df0cf84d24f7efea44f87c090c7d9be4bed,http://pdfs.semanticscholar.org/297d/3df0cf84d24f7efea44f87c090c7d9be4bed.pdf +40dab43abef32deaf875c2652133ea1e2c089223,http://pdfs.semanticscholar.org/40da/b43abef32deaf875c2652133ea1e2c089223.pdf +113e5678ed8c0af2b100245057976baf82fcb907,http://www.humansensing.cs.cmu.edu/sites/default/files/4Jeni_Metrics.pdf +2d35a07c4fa03d78d5b622ab703ea44850de8d39,http://www.cs.sunysb.edu/~vislab/papers/Zhang2005cgi.pdf +2fda461869f84a9298a0e93ef280f79b9fb76f94,https://www.cl.cam.ac.uk/research/rainbow/projects/openface/wacv2016.pdf +306957285fea4ce11a14641c3497d01b46095989,http://pdfs.semanticscholar.org/3069/57285fea4ce11a14641c3497d01b46095989.pdf +a3017bb14a507abcf8446b56243cfddd6cdb542b,http://pdfs.semanticscholar.org/a301/7bb14a507abcf8446b56243cfddd6cdb542b.pdf +00e3957212517a252258baef833833921dd308d4,http://www.yugangjiang.info/publication/17MM-PersonAttribute.pdf +46a4551a6d53a3cd10474ef3945f546f45ef76ee,http://cvrr.ucsd.edu/publications/2014/TawariTrivedi_IV2014.pdf +833f6ab858f26b848f0d747de502127406f06417,http://mediatum.ub.tum.de/doc/980054/157447.pdf +449808b7aa9ee6b13ad1a21d9f058efaa400639a,http://www.jdl.ac.cn/doc/2008/Recovering%203D%20Facial%20Shape%20via%20Coupled%202D-3D%20Space%20Learning.pdf +b5857b5bd6cb72508a166304f909ddc94afe53e3,http://pdfs.semanticscholar.org/b585/7b5bd6cb72508a166304f909ddc94afe53e3.pdf +a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4,http://pdfs.semanticscholar.org/a0f1/93c86e3dd7e0020c0de3ec1e24eaff343ce4.pdf +3270b2672077cc345f188500902eaf7809799466,http://pdfs.semanticscholar.org/3270/b2672077cc345f188500902eaf7809799466.pdf +56ae6d94fc6097ec4ca861f0daa87941d1c10b70,http://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf +a7e1327bd76945a315f2869bfae1ce55bb94d165,http://pdfs.semanticscholar.org/a7e1/327bd76945a315f2869bfae1ce55bb94d165.pdf +391b86cf16c2702dcc4beee55a6dd6d3bd7cf27b,http://dayongwang.info/pdf/2014-MM.pdf +46f3b113838e4680caa5fc8bda6e9ae0d35a038c,http://pdfs.semanticscholar.org/46f3/b113838e4680caa5fc8bda6e9ae0d35a038c.pdf +5fac62a3de11125fc363877ba347122529b5aa50,http://openaccess.thecvf.com/content_ICCV_2017/papers/Saha_AMTnet_Action-Micro-Tube_Regression_ICCV_2017_paper.pdf +9b318098f3660b453fbdb7a579778ab5e9118c4c,http://humansensing.cs.cmu.edu/sites/default/files/07471506.pdf +0e652a99761d2664f28f8931fee5b1d6b78c2a82,http://pdfs.semanticscholar.org/0e65/2a99761d2664f28f8931fee5b1d6b78c2a82.pdf +69de532d93ad8099f4d4902c4cad28db958adfea,http://pdfs.semanticscholar.org/e6bc/c30d2be78797e0e2506567bc0f09b8eae21a.pdf +624e9d9d3d941bab6aaccdd93432fc45cac28d4b,https://arxiv.org/pdf/1505.00296v1.pdf +9fa1be81d31fba07a1bde0275b9d35c528f4d0b8,http://pdfs.semanticscholar.org/9fa1/be81d31fba07a1bde0275b9d35c528f4d0b8.pdf +8ed051be31309a71b75e584bc812b71a0344a019,http://www.vision.caltech.edu/~bart/Publications/2007/BartUllmanMBE.pdf +c10a15e52c85654db9c9343ae1dd892a2ac4a279,http://www.cs.utexas.edu/~grauman/papers/ijcv-sungju.pdf +62694828c716af44c300f9ec0c3236e98770d7cf,http://pdfs.semanticscholar.org/6269/4828c716af44c300f9ec0c3236e98770d7cf.pdf +2525f336af31178b836e27f8c60056e18f1455d2,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2017/TEMPORALLY%20ENHANCED%20IMAGE%20OBJECT%20PROPOSALS%20FOR%20VIDEOS.pdf +66029f1be1a5cee9a4e3e24ed8fcb65d5d293720,http://pdfs.semanticscholar.org/6602/9f1be1a5cee9a4e3e24ed8fcb65d5d293720.pdf +b1df214e0f1c5065f53054195cd15012e660490a,http://pdfs.semanticscholar.org/b1df/214e0f1c5065f53054195cd15012e660490a.pdf +1d79ec93a9feba817c75c31604c3f8df346eabe8,https://www.researchgate.net/profile/Manjunath_Aradhya/publication/254461422_The_study_of_different_similarity_measure_techniques_in_recognition_of_handwritten_characters/links/0046352049dae0d044000000.pdf +20767ca3b932cbc7b8112db21980d7b9b3ea43a3,http://pdfs.semanticscholar.org/2076/7ca3b932cbc7b8112db21980d7b9b3ea43a3.pdf +c62c910264658709e9bf0e769e011e7944c45c90,http://pdfs.semanticscholar.org/c62c/910264658709e9bf0e769e011e7944c45c90.pdf +adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9be,http://pdfs.semanticscholar.org/adf7/ccb81b8515a2d05fd3b4c7ce5adf5377d9be.pdf +edef98d2b021464576d8d28690d29f5431fd5828,http://pdfs.semanticscholar.org/edef/98d2b021464576d8d28690d29f5431fd5828.pdf +1462bc73834e070201acd6e3eaddd23ce3c1a114,http://pdfs.semanticscholar.org/1462/bc73834e070201acd6e3eaddd23ce3c1a114.pdf +a83fc450c124b7e640adc762e95e3bb6b423b310,http://pdfs.semanticscholar.org/b908/edadad58c604a1e4b431f69ac8ded350589a.pdf +b54c477885d53a27039c81f028e710ca54c83f11,http://coewww.rutgers.edu/riul/research/papers/pdf/skmspami.pdf +84e6669b47670f9f4f49c0085311dce0e178b685,http://pdfs.semanticscholar.org/84e6/669b47670f9f4f49c0085311dce0e178b685.pdf +1b150248d856f95da8316da868532a4286b9d58e,http://pdfs.semanticscholar.org/6724/41000751d58396790f4c993419d70f6af3f4.pdf +b18858ad6ec88d8b443dffd3e944e653178bc28b,http://pdfs.semanticscholar.org/b188/58ad6ec88d8b443dffd3e944e653178bc28b.pdf +497bf2df484906e5430aa3045cf04a40c9225f94,http://pdfs.semanticscholar.org/497b/f2df484906e5430aa3045cf04a40c9225f94.pdf +0077cd8f97cafd2b389783858a6e4ab7887b0b6b,http://pdfs.semanticscholar.org/b971/266b29fcecf1d5efe1c4dcdc2355cb188ab0.pdf +2fdce3228d384456ea9faff108b9c6d0cf39e7c7,http://pdfs.semanticscholar.org/2fdc/e3228d384456ea9faff108b9c6d0cf39e7c7.pdf +21d9d0deed16f0ad62a4865e9acf0686f4f15492,http://amp.ece.cmu.edu/people/Andy/Andy_files/cvpr09.pdf +a88640045d13fc0207ac816b0bb532e42bcccf36,http://pdfs.semanticscholar.org/a886/40045d13fc0207ac816b0bb532e42bcccf36.pdf +1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf +051f03bc25ec633592aa2ff5db1d416b705eac6c,http://www.cse.msu.edu/biometrics/Publications/Face/LiaoJain_PartialFR_AlignmentFreeApproach_ICJB11.pdf +d6bfa9026a563ca109d088bdb0252ccf33b76bc6,http://pdfs.semanticscholar.org/d6bf/a9026a563ca109d088bdb0252ccf33b76bc6.pdf +1ca8c09abb73a02519d8db77e4fe107acfc589b6,http://sci.pitt.edu/wp-content/uploads/2018/03/111_Zhang.pdf +117f164f416ea68e8b88a3005e55a39dbdf32ce4,http://www.cs.toronto.edu/~fidler/papers/fashionCVPR15.pdf +28d7029cfb73bcb4ad1997f3779c183972a406b4,https://arxiv.org/pdf/1705.00322v1.pdf +0359f7357ea8191206b9da45298902de9f054c92,http://arxiv.org/pdf/1511.04110v1.pdf +cc8bf03b3f5800ac23e1a833447c421440d92197,https://pdfs.semanticscholar.org/cc8b/f03b3f5800ac23e1a833447c421440d92197.pdf +74b0095944c6e29837c208307a67116ebe1231c8,http://web.eecs.umich.edu/~hero/Preprints/EuclideanK-Nearest.pdf +7aafeb9aab48fb2c34bed4b86755ac71e3f00338,http://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf +16f940b4b5da79072d64a77692a876627092d39c,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/10/10.pdf +06262d14323f9e499b7c6e2a3dec76ad9877ba04,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Juranek_Real-Time_Pose_Estimation_ICCV_2015_paper.pdf +82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,http://pdfs.semanticscholar.org/82d7/81b7b6b7c8c992e0cb13f7ec3989c8eafb3d.pdf +9d42df42132c3d76e3447ea61e900d3a6271f5fe,http://pdfs.semanticscholar.org/9d42/df42132c3d76e3447ea61e900d3a6271f5fe.pdf +ab1dfcd96654af0bf6e805ffa2de0f55a73c025d,http://pdfs.semanticscholar.org/ab1d/fcd96654af0bf6e805ffa2de0f55a73c025d.pdf +3d94f81cf4c3a7307e1a976dc6cb7bf38068a381,http://faculty.ucmerced.edu/mhyang/papers/tip17_age.pdf +488e475eeb3bb39a145f23ede197cd3620f1d98a,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W10/papers/Zhu_Pedestrian_Attribute_Classification_2013_ICCV_paper.pdf +8cb3f421b55c78e56c8a1c1d96f23335ebd4a5bf,http://pdfs.semanticscholar.org/8cb3/f421b55c78e56c8a1c1d96f23335ebd4a5bf.pdf +c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af,http://pdfs.semanticscholar.org/c363/8b026c7f80a2199b5ae89c8fcbedfc0bd8af.pdf +3af1a375c7c1decbcf5c3a29774e165cafce390c,https://www.cbica.upenn.edu/sbia/papers/540.pdf +2c848cc514293414d916c0e5931baf1e8583eabc,http://pdfs.semanticscholar.org/2c84/8cc514293414d916c0e5931baf1e8583eabc.pdf +54bb25a213944b08298e4e2de54f2ddea890954a,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf +86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663,http://pdfs.semanticscholar.org/8661/4c2d2f6ebcb9c600d4aef85fd6bf6eab6663.pdf +d65b82b862cf1dbba3dee6541358f69849004f30,http://pdfs.semanticscholar.org/d65b/82b862cf1dbba3dee6541358f69849004f30.pdf +861b12f405c464b3ffa2af7408bff0698c6c9bf0,http://pdfs.semanticscholar.org/861b/12f405c464b3ffa2af7408bff0698c6c9bf0.pdf +31f1e711fcf82c855f27396f181bf5e565a2f58d,http://www.rci.rutgers.edu/~vmp93/Conference_pub/Age_iccv2015.pdf +9f4078773c8ea3f37951bf617dbce1d4b3795839,http://pdfs.semanticscholar.org/9f40/78773c8ea3f37951bf617dbce1d4b3795839.pdf +43aa40eaa59244c233f83d81f86e12eba8d74b59,http://pdfs.semanticscholar.org/43aa/40eaa59244c233f83d81f86e12eba8d74b59.pdf +faca1c97ac2df9d972c0766a296efcf101aaf969,http://pdfs.semanticscholar.org/faca/1c97ac2df9d972c0766a296efcf101aaf969.pdf +ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,http://pdfs.semanticscholar.org/f727/b58b84ccd8e7ed51a90ccc913d704b451191.pdf +7701952e405c3d8a0947e2a309de281aa76bd3f4,http://isl.ira.uka.de/~stiefel/papers/IEE_SIU_2LDA.pdf +5e28673a930131b1ee50d11f69573c17db8fff3e,http://pdfs.semanticscholar.org/f28d/fadba11bd3489d008827d9b1a539b34b50df.pdf +9abd35b37a49ee1295e8197aac59bde802a934f3,http://pdfs.semanticscholar.org/9abd/35b37a49ee1295e8197aac59bde802a934f3.pdf +3505c9b0a9631539e34663310aefe9b05ac02727,https://ibug.doc.ic.ac.uk/media/uploads/documents/pid4666647.pdf +8b19efa16a9e73125ab973429eb769d0ad5a8208,http://pdfs.semanticscholar.org/8b19/efa16a9e73125ab973429eb769d0ad5a8208.pdf +69a68f9cf874c69e2232f47808016c2736b90c35,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2016_imbalanced.pdf +ab427f0c7d4b0eb22c045392107509451165b2ba,http://cs.uky.edu/~zach/assets/papers/li2012learning.pdf +2f882ceaaf110046e63123b495212d7d4e99f33d,http://pdfs.semanticscholar.org/2f88/2ceaaf110046e63123b495212d7d4e99f33d.pdf +43e99b76ca8e31765d4571d609679a689afdc99e,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yu_Learning_Dense_Facial_ICCV_2017_paper.pdf +89cabb60aa369486a1ebe586dbe09e3557615ef8,http://pdfs.semanticscholar.org/89ca/bb60aa369486a1ebe586dbe09e3557615ef8.pdf +419a6fca4c8d73a1e43003edc3f6b610174c41d2,http://www.robots.newcastle.edu.au/~chalup/chalup_publications/p058_preprint.pdf +cb1b5e8b35609e470ce519303915236b907b13b6,http://dforte.ece.ufl.edu/Domenic_files/IJCB.pdf +0058cbe110933f73c21fa6cc9ae0cd23e974a9c7,http://pdfs.semanticscholar.org/0058/cbe110933f73c21fa6cc9ae0cd23e974a9c7.pdf +e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Liu2013.pdf +1eec03527703114d15e98ef9e55bee5d6eeba736,http://pdfs.semanticscholar.org/1eec/03527703114d15e98ef9e55bee5d6eeba736.pdf +44078d0daed8b13114cffb15b368acc467f96351,http://arxiv.org/pdf/1604.05417v1.pdf +2cd7821fcf5fae53a185624f7eeda007434ae037,http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf +0dccc881cb9b474186a01fd60eb3a3e061fa6546,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_104_ext.pdf +bcee40c25e8819955263b89a433c735f82755a03,http://pdfs.semanticscholar.org/bcee/40c25e8819955263b89a433c735f82755a03.pdf +558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f,http://pdfs.semanticscholar.org/558f/c9a2bce3d3993a9c1f41b6c7f290cefcf92f.pdf +f2c568fe945e5743635c13fe5535af157b1903d1,http://pdfs.semanticscholar.org/f2c5/68fe945e5743635c13fe5535af157b1903d1.pdf +b5160e95192340c848370f5092602cad8a4050cd,http://pdfs.semanticscholar.org/dd71/dc78e75f0de27263d508b3a8b29921cfea03.pdf +5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9,http://pdfs.semanticscholar.org/e1dd/1c4de149c6b05eedd1728d57a18a074b9b2a.pdf +b73d9e1af36aabb81353f29c40ecdcbdf731dbed,http://pdfs.semanticscholar.org/b73d/9e1af36aabb81353f29c40ecdcbdf731dbed.pdf +4c6233765b5f83333f6c675d3389bbbf503805e3,https://perceptual.mpi-inf.mpg.de/files/2015/03/Yan_Vis13.pdf +02d650d8a3a9daaba523433fbe93705df0a7f4b1,http://pdfs.semanticscholar.org/02d6/50d8a3a9daaba523433fbe93705df0a7f4b1.pdf +4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9,https://arxiv.org/pdf/1608.01866v1.pdf +3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,http://pdfs.semanticscholar.org/3c4f/6d24b55b1fd3c5b85c70308d544faef3f69a.pdf +5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0,http://pdfs.semanticscholar.org/c173/fa4456941b9c40d53d656b8ad84d24c16ec3.pdf +964a3196d44f0fefa7de3403849d22bbafa73886,http://pdfs.semanticscholar.org/964a/3196d44f0fefa7de3403849d22bbafa73886.pdf +cc589c499dcf323fe4a143bbef0074c3e31f9b60,http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf +34c594abba9bb7e5813cfae830e2c4db78cf138c,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_047_ext.pdf +3b1260d78885e872cf2223f2c6f3d6f6ea254204,http://pdfs.semanticscholar.org/3b12/60d78885e872cf2223f2c6f3d6f6ea254204.pdf +1630e839bc23811e340bdadad3c55b6723db361d,http://pdfs.semanticscholar.org/9fc9/f22e9e28eab53d426e9d848c0d7dcd2c2459.pdf +cd6c2ae00157e3fb6ab56379843280eb4cbb01b4,http://www.umiacs.umd.edu/~yzyang/paper/ICRA_2013_Multi.pdf +0fc254272db096a9305c760164520ad9914f4c9e,https://arxiv.org/pdf/1601.06087v1.pdf +2be1e2f2b7208fdf7a379da37a2097cfe52bc196,http://www2.cvl.isy.liu.se/Education/Graduate/artikelklubb/aryananda_icra09.pdf +af8fe1b602452cf7fc9ecea0fd4508ed4149834e,http://pdfs.semanticscholar.org/af8f/e1b602452cf7fc9ecea0fd4508ed4149834e.pdf +8c6b9c9c26ead75ce549a57c4fd0a12b46142848,http://pdfs.semanticscholar.org/97fc/47ba1427b0e50cd815b8b1657fea6fb9e25a.pdf +0c2875bb47db3698dbbb3304aca47066978897a4,http://slazebni.cs.illinois.edu/publications/iccv17_situation.pdf +41000c3a3344676513ef4bfcd392d14c7a9a7599,http://pdfs.semanticscholar.org/d3ba/9ed56e9ddb73f0e0f2bea3fd3920db30f42e.pdf +c1ff88493721af1940df0d00bcfeefaa14f1711f,http://pdfs.semanticscholar.org/c1ff/88493721af1940df0d00bcfeefaa14f1711f.pdf +ab0f9bc35b777eaefff735cb0dd0663f0c34ad31,http://faculty.ucmerced.edu/snewsam/papers/Yang_ICPR14_SemiSupervisedLearning.pdf +4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf +29e96ec163cb12cd5bd33bdf3d32181c136abaf9,http://pdfs.semanticscholar.org/29e9/6ec163cb12cd5bd33bdf3d32181c136abaf9.pdf +5c6de2d9f93b90034f07860ae485a2accf529285,http://pdfs.semanticscholar.org/5c6d/e2d9f93b90034f07860ae485a2accf529285.pdf +ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,http://pdfs.semanticscholar.org/ac6c/3b3e92ff5fbcd8f7967696c7aae134bea209.pdf +3d5a1be4c1595b4805a35414dfb55716e3bf80d8,http://pdfs.semanticscholar.org/9e8e/bf5447fcd5b2ba4cdd53253f0049dacb2985.pdf +de398bd8b7b57a3362c0c677ba8bf9f1d8ade583,http://www.cs.wayne.edu/~mdong/TMM16.pdf +64cf86ba3b23d3074961b485c16ecb99584401de,http://pdfs.semanticscholar.org/b54a/54a2f33c24123c6943597462ef02928ec99f.pdf +a40f8881a36bc01f3ae356b3e57eac84e989eef0,http://pdfs.semanticscholar.org/a40f/8881a36bc01f3ae356b3e57eac84e989eef0.pdf +b7426836ca364603ccab0e533891d8ac54cf2429,http://pdfs.semanticscholar.org/b742/6836ca364603ccab0e533891d8ac54cf2429.pdf +5397c34a5e396658fa57e3ca0065a2878c3cced7,http://www.iis.sinica.edu.tw/papers/song/5959-F.pdf +d59404354f84ad98fa809fd1295608bf3d658bdc,http://pdfs.semanticscholar.org/d594/04354f84ad98fa809fd1295608bf3d658bdc.pdf +05318a267226f6d855d83e9338eaa9e718b2a8dd,https://fruct.org/publications/fruct16/files/Khr.pdf +6dd5dbb6735846b214be72983e323726ef77c7a9,http://pdfs.semanticscholar.org/6dd5/dbb6735846b214be72983e323726ef77c7a9.pdf +c660500b49f097e3af67bb14667de30d67db88e3,http://pdfs.semanticscholar.org/c660/500b49f097e3af67bb14667de30d67db88e3.pdf +b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89,http://pdfs.semanticscholar.org/b03b/4d8b4190361ed2de66fcbb6fda0c9a0a7d89.pdf +989332c5f1b22604d6bb1f78e606cb6b1f694e1a,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf +b6f758be954d34817d4ebaa22b30c63a4b8ddb35,https://arxiv.org/pdf/1703.04835v1.pdf +3f848d6424f3d666a1b6dd405a48a35a797dd147,http://pdfs.semanticscholar.org/4f69/233cd6f0b56833c9395528aa007b63158a1d.pdf +2afdda6fb85732d830cea242c1ff84497cd5f3cb,http://www.iis.sinica.edu.tw/papers/song/11489-F.pdf +4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/CNN_Gender_Recognition.pdf +b073313325b6482e22032e259d7311fb9615356c,http://alumni.cs.ucr.edu/~hli/paper/hli05tumor.pdf +223ec77652c268b98c298327d42aacea8f3ce23f,http://pdfs.semanticscholar.org/223e/c77652c268b98c298327d42aacea8f3ce23f.pdf +1ebdfceebad642299e573a8995bc5ed1fad173e3,http://pdfs.semanticscholar.org/1ebd/fceebad642299e573a8995bc5ed1fad173e3.pdf +d7312149a6b773d1d97c0c2b847609c07b5255ec,http://pdfs.semanticscholar.org/d731/2149a6b773d1d97c0c2b847609c07b5255ec.pdf +be57d2aaab615ec8bc1dd2dba8bee41a4d038b85,https://www.cl.cam.ac.uk/~mmam3/pub/a19-mahmoud.pdf +2faa09413162b0a7629db93fbb27eda5aeac54ca,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=905048 +346dbc7484a1d930e7cc44276c29d134ad76dc3f,http://pdfs.semanticscholar.org/346d/bc7484a1d930e7cc44276c29d134ad76dc3f.pdf +44f23600671473c3ddb65a308ca97657bc92e527,http://arxiv.org/pdf/1604.06573v2.pdf +0f395a49ff6cbc7e796656040dbf446a40e300aa,http://pdfs.semanticscholar.org/0f39/5a49ff6cbc7e796656040dbf446a40e300aa.pdf +c574c72b5ef1759b7fd41cf19a9dcd67e5473739,http://pdfs.semanticscholar.org/c574/c72b5ef1759b7fd41cf19a9dcd67e5473739.pdf +dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8,http://pdfs.semanticscholar.org/dbb0/a527612c828d43bcb9a9c41f1bf7110b1dc8.pdf +4a6fcf714f663618657effc341ae5961784504c7,http://www.cs.tut.fi/~iosifidi/files/journal/2016_TIFS_ACSKDA.pdf?dl=0 +b446bcd7fb78adfe346cf7a01a38e4f43760f363,http://pdfs.semanticscholar.org/b446/bcd7fb78adfe346cf7a01a38e4f43760f363.pdf +c7c03324833ba262eeaada0349afa1b5990c1ea7,http://pdfs.semanticscholar.org/c7c0/3324833ba262eeaada0349afa1b5990c1ea7.pdf +089513ca240c6d672c79a46fa94a92cde28bd567,http://pdfs.semanticscholar.org/0895/13ca240c6d672c79a46fa94a92cde28bd567.pdf +6d10beb027fd7213dd4bccf2427e223662e20b7d,http://pdfs.semanticscholar.org/6d10/beb027fd7213dd4bccf2427e223662e20b7d.pdf +a35d3ba191137224576f312353e1e0267e6699a1,http://pdfs.semanticscholar.org/a35d/3ba191137224576f312353e1e0267e6699a1.pdf +191674c64f89c1b5cba19732869aa48c38698c84,http://pdfs.semanticscholar.org/1916/74c64f89c1b5cba19732869aa48c38698c84.pdf +0be764800507d2e683b3fb6576086e37e56059d1,http://pdfs.semanticscholar.org/0be7/64800507d2e683b3fb6576086e37e56059d1.pdf +22e189a813529a8f43ad76b318207d9a4b6de71a,http://openaccess.thecvf.com/content_ICCV_2017/papers/Felsen_What_Will_Happen_ICCV_2017_paper.pdf +1389ba6c3ff34cdf452ede130c738f37dca7e8cb,http://pdfs.semanticscholar.org/1389/ba6c3ff34cdf452ede130c738f37dca7e8cb.pdf +3986161c20c08fb4b9b791b57198b012519ea58b,http://pdfs.semanticscholar.org/3986/161c20c08fb4b9b791b57198b012519ea58b.pdf +1ef4aac0ebc34e76123f848c256840d89ff728d0,http://www.openu.ac.il/home/hassner/projects/augmented_faces/Masietal2017rapid.pdf +b52c0faba5e1dc578a3c32a7f5cfb6fb87be06ad,http://pdfs.semanticscholar.org/b52c/0faba5e1dc578a3c32a7f5cfb6fb87be06ad.pdf +33f2b44742cc828347ccc5ec488200c25838b664,http://pdfs.semanticscholar.org/33f2/b44742cc828347ccc5ec488200c25838b664.pdf +e6c8f5067ec2ad6af33745312b45fab03e7e038b,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1297.pdf +4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,http://pdfs.semanticscholar.org/4467/a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f.pdf +46a29a5026142c91e5655454aa2c2f122561db7f,http://vipl.ict.ac.cn/sites/default/files/papers/files/2011_FG_sxli_Margin%20Emphasized%20Metric%20Learning%20and%20Its%20Application%20to%20Gabor%20Feature%20Based%20Face%20Recognition.pdf +0ad4a814b30e096ad0e027e458981f812c835aa0,http://arxiv.org/pdf/1602.01827v1.pdf +b5da4943c348a6b4c934c2ea7330afaf1d655e79,http://pdfs.semanticscholar.org/b5da/4943c348a6b4c934c2ea7330afaf1d655e79.pdf +7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0d,https://graphics.ethz.ch/Downloads/Publications/Papers/2013/Zun13a/Zun13a.pdf +01dc1e03f39901e212bdf291209b7686266aeb13,http://arxiv.org/pdf/1604.07279v1.pdf +7754b708d6258fb8279aa5667ce805e9f925dfd0,https://www.ecse.rpi.edu/~qji/Papers/PAMI_AU.pdf +9d3aa3b7d392fad596b067b13b9e42443bbc377c,http://pdfs.semanticscholar.org/9d3a/a3b7d392fad596b067b13b9e42443bbc377c.pdf +2331df8ca9f29320dd3a33ce68a539953fa87ff5,http://faculty.ucmerced.edu/mhyang/papers/aaai02.pdf +1198572784788a6d2c44c149886d4e42858d49e4,http://pdfs.semanticscholar.org/1198/572784788a6d2c44c149886d4e42858d49e4.pdf +20e504782951e0c2979d9aec88c76334f7505393,https://arxiv.org/pdf/1612.08534v1.pdf +6e379f2d34e14efd85ae51875a4fa7d7ae63a662,http://pdfs.semanticscholar.org/6e37/9f2d34e14efd85ae51875a4fa7d7ae63a662.pdf +0b9ce839b3c77762fff947e60a0eb7ebbf261e84,http://pdfs.semanticscholar.org/0b9c/e839b3c77762fff947e60a0eb7ebbf261e84.pdf +98a660c15c821ea6d49a61c5061cd88e26c18c65,http://pdfs.semanticscholar.org/98a6/60c15c821ea6d49a61c5061cd88e26c18c65.pdf +6f75697a86d23d12a14be5466a41e5a7ffb79fad,https://www.computer.org/csdl/proceedings/icis/2016/0806/00/07550861.pdf +e8b2a98f87b7b2593b4a046464c1ec63bfd13b51,http://pdfs.semanticscholar.org/e8b2/a98f87b7b2593b4a046464c1ec63bfd13b51.pdf +b239a756f22201c2780e46754d06a82f108c1d03,http://www.rci.rutgers.edu/~vmp93/Conference_pub/Fusion_FG_camera_ready.pdf +3dd4d719b2185f7c7f92cc97f3b5a65990fcd5dd,http://pdfs.semanticscholar.org/3dd4/d719b2185f7c7f92cc97f3b5a65990fcd5dd.pdf +ac820d67b313c38b9add05abef8891426edd5afb,http://pdfs.semanticscholar.org/da4e/76b789f7ea8ed6c6d26858ac8a12bb1413fe.pdf +0d735e7552af0d1dcd856a8740401916e54b7eee,http://pdfs.semanticscholar.org/915f/f5da6658e800eb7ec1c8f3f26281e18d3cbf.pdf +0653dcdff992ad980cd5ea5bc557efb6e2a53ba1,http://pdfs.semanticscholar.org/0653/dcdff992ad980cd5ea5bc557efb6e2a53ba1.pdf +0eac652139f7ab44ff1051584b59f2dc1757f53b,http://pdfs.semanticscholar.org/0eac/652139f7ab44ff1051584b59f2dc1757f53b.pdf +1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6,http://pdfs.semanticscholar.org/1a4b/6ee6cd846ef5e3030a6ae59f026e5f50eda6.pdf +06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32,http://www.cs.utexas.edu/~grauman/papers/whittle-search-supp-cvpr2012.pdf +7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5,http://www.cs.cmu.edu/~epxing/papers/2015/Zhao_Xing_IJCV15.pdf +a57ee5a8fb7618004dd1def8e14ef97aadaaeef5,http://pdfs.semanticscholar.org/f1f5/b603dd34ec26939517348d77df10992798f0.pdf +20532b1f80b509f2332b6cfc0126c0f80f438f10,https://arxiv.org/pdf/1509.03248v1.pdf +6a184f111d26787703f05ce1507eef5705fdda83,http://pdfs.semanticscholar.org/6a18/4f111d26787703f05ce1507eef5705fdda83.pdf +82ccd62f70e669ec770daf11d9611cab0a13047e,http://www.csse.uwa.edu.au/~ajmal/papers/Farshid_DICTA2013.pdf +0c75c7c54eec85e962b1720755381cdca3f57dfb,https://webpages.uncc.edu/~szhang16/paper/PAMI_face_landmark.pdf +6ee2ea416382d659a0dddc7a88fc093accc2f8ee,https://pdfs.semanticscholar.org/6ee2/ea416382d659a0dddc7a88fc093accc2f8ee.pdf +4d2975445007405f8cdcd74b7fd1dd547066f9b8,http://pdfs.semanticscholar.org/4d29/75445007405f8cdcd74b7fd1dd547066f9b8.pdf +8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483,http://pdfs.semanticscholar.org/8fb6/11aca3bd8a3a0527ac0f38561a5a9a5b8483.pdf +056d5d942084428e97c374bb188efc386791e36d,http://pdfs.semanticscholar.org/056d/5d942084428e97c374bb188efc386791e36d.pdf +ffd81d784549ee51a9b0b7b8aaf20d5581031b74,http://pdfs.semanticscholar.org/ffd8/1d784549ee51a9b0b7b8aaf20d5581031b74.pdf +8d646ac6e5473398d668c1e35e3daa964d9eb0f6,http://pdfs.semanticscholar.org/8d64/6ac6e5473398d668c1e35e3daa964d9eb0f6.pdf +2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9,http://pdfs.semanticscholar.org/71f1/c8d39e1fbf1083a4616a3496f5c397a2daf5.pdf +8b6fded4d08bf0b7c56966b60562ee096af1f0c4,http://pdfs.semanticscholar.org/8b6f/ded4d08bf0b7c56966b60562ee096af1f0c4.pdf +970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3,http://pdfs.semanticscholar.org/970c/0d6c0fd2ebe7c5921a45bc70f6345c844ff3.pdf +9cd6a81a519545bf8aa9023f6e879521f85d4cd1,http://pdfs.semanticscholar.org/9cd6/a81a519545bf8aa9023f6e879521f85d4cd1.pdf +177bc509dd0c7b8d388bb47403f28d6228c14b5c,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Sun_Deep_Learning_Face_2014_CVPR_paper.pdf +a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7b,http://pdfs.semanticscholar.org/a3eb/acd8bcbc7ddbd5753935496e22a0f74dcf7b.pdf +266ed43dcea2e7db9f968b164ca08897539ca8dd,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Duong_Beyond_Principal_Components_2015_CVPR_paper.pdf +703890b7a50d6535900a5883e8d2a6813ead3a03,http://pdfs.semanticscholar.org/7038/90b7a50d6535900a5883e8d2a6813ead3a03.pdf +b29b42f7ab8d25d244bfc1413a8d608cbdc51855,http://pdfs.semanticscholar.org/b29b/42f7ab8d25d244bfc1413a8d608cbdc51855.pdf +1fcdc113a5df2f45a1f4b3249c041d942a3a730b,http://vipl.ict.ac.cn/homepage/CVPR15Metric/ref/Reconstruction-Based%20Metric%20Learning%20for%20Unconstrained%20Face%20Verification_TIFS2015.pdf +72282287f25c5419dc6fd9e89ec9d86d660dc0b5,https://arxiv.org/pdf/1609.07495v1.pdf +4b3eaedac75ac419c2609e131ea9377ba8c3d4b8,https://teresaproject.eu/wp-content/uploads/2015/07/kossaifi_tzimiro_pantic_icip_2014.pdf +3e3f305dac4fbb813e60ac778d6929012b4b745a,http://pdfs.semanticscholar.org/3e3f/305dac4fbb813e60ac778d6929012b4b745a.pdf +090e4713bcccff52dcd0c01169591affd2af7e76,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Shao_What_Do_You_2013_ICCV_paper.pdf +76d9f5623d3a478677d3f519c6e061813e58e833,http://pdfs.semanticscholar.org/76d9/f5623d3a478677d3f519c6e061813e58e833.pdf +16820ccfb626dcdc893cc7735784aed9f63cbb70,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf +7eb85bcb372261bad707c05e496a09609e27fdb3,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W17/papers/Sathyanarayana_A_Compute-Efficient_Algorithm_2014_CVPR_paper.pdf +d1dae2993bdbb2667d1439ff538ac928c0a593dc,http://pdfs.semanticscholar.org/d1da/e2993bdbb2667d1439ff538ac928c0a593dc.pdf +62f0d8446adee6a5e8102053a63a61af07ac4098,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C072_yamashita2015.pdf +6e97a99b2879634ecae962ddb8af7c1a0a653a82,http://pdfs.semanticscholar.org/7d37/7ba82df9cba0959cb910288415e568007792.pdf +e328d19027297ac796aae2470e438fe0bd334449,http://pdfs.semanticscholar.org/e328/d19027297ac796aae2470e438fe0bd334449.pdf +94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81,http://ibug.doc.ic.ac.uk/media/uploads/documents/p148-cheng.pdf +24e6a28c133b7539a57896393a79d43dba46e0f6,http://arxiv.org/pdf/1605.02057v2.pdf +34b7e826db49a16773e8747bc8dfa48e344e425d,http://www.comp.leeds.ac.uk/me/Publications/cvpr09_bsl.pdf +68a04a3ae2086986877fee2c82ae68e3631d0356,http://pdfs.semanticscholar.org/68a0/4a3ae2086986877fee2c82ae68e3631d0356.pdf +5ca23ceb0636dfc34c114d4af7276a588e0e8dac,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SMC_2009/PDFs/116.pdf +56f812661c3248ed28859d3b2b39e033b04ae6ae,http://www.cs.wisc.edu/~gdguo/myPapersOnWeb/CIVR08.pdf +800cbbe16be0f7cb921842d54967c9a94eaa2a65,http://pdfs.semanticscholar.org/800c/bbe16be0f7cb921842d54967c9a94eaa2a65.pdf +1513949773e3a47e11ab87d9a429864716aba42d,http://pdfs.semanticscholar.org/1513/949773e3a47e11ab87d9a429864716aba42d.pdf +158e32579e38c29b26dfd33bf93e772e6211e188,http://pdfs.semanticscholar.org/158e/32579e38c29b26dfd33bf93e772e6211e188.pdf +2be8e06bc3a4662d0e4f5bcfea45631b8beca4d0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_028_ext.pdf +29756b6b16d7b06ea211f21cdaeacad94533e8b4,http://pdfs.semanticscholar.org/2975/6b6b16d7b06ea211f21cdaeacad94533e8b4.pdf +b3c60b642a1c64699ed069e3740a0edeabf1922c,http://pdfs.semanticscholar.org/b3c6/0b642a1c64699ed069e3740a0edeabf1922c.pdf +8d2c43759e221f39ab1b4bf70d6891ffd19fb8da,https://www.researchgate.net/profile/Zhang_Pinzheng/publication/224711010_An_Automatic_Facial_Expression_Recognition_Approach_Based_on_Confusion-Crossed_Support_Vector_Machine_Tree/links/54658c630cf2052b509f3391.pdf +66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,http://pdfs.semanticscholar.org/66f0/2fbcad13c6ee5b421be2fc72485aaaf6fcb5.pdf +81b2a541d6c42679e946a5281b4b9dc603bc171c,http://pdfs.semanticscholar.org/81b2/a541d6c42679e946a5281b4b9dc603bc171c.pdf +031055c241b92d66b6984643eb9e05fd605f24e2,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Cinbis_Multi-fold_MIL_Training_2014_CVPR_paper.pdf +7f3a73babe733520112c0199ff8d26ddfc7038a0,http://pdfs.semanticscholar.org/7f3a/73babe733520112c0199ff8d26ddfc7038a0.pdf +62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4,http://pdfs.semanticscholar.org/62d1/a31b8acd2141d3a994f2d2ec7a3baf0e6dc4.pdf +7f8d44e7fd2605d580683e47bb185de7f9ea9e28,http://pdfs.semanticscholar.org/c84f/88b2a764ddcc22c4971827d58024b6017496.pdf +31a38fd2d9d4f34d2b54318021209fe5565b8f7f,http://www.umiacs.umd.edu/~huytho/papers/HoChellappa_TIP2013.pdf +93971a49ef6cc88a139420349a1dfd85fb5d3f5c,http://pdfs.semanticscholar.org/9397/1a49ef6cc88a139420349a1dfd85fb5d3f5c.pdf +0a1138276c52c734b67b30de0bf3f76b0351f097,https://ibug.doc.ic.ac.uk/media/uploads/documents/georgakis_dica.pdf +27961bc8173ac84fdbecacd01e5ed6f7ed92d4bd,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/NiinumaHanJain_MultiviewFaceRecognition_PoseRegularization_BTAS13.pdf +6a806978ca5cd593d0ccd8b3711b6ef2a163d810,http://pdfs.semanticscholar.org/6a80/6978ca5cd593d0ccd8b3711b6ef2a163d810.pdf +80193dd633513c2d756c3f568ffa0ebc1bb5213e,http://pdfs.semanticscholar.org/a3d8/8154a1253338b45f950bcf9cbe91ba5271ee.pdf +26f03693c50eb50a42c9117f107af488865f3dc1,http://pdfs.semanticscholar.org/26f0/3693c50eb50a42c9117f107af488865f3dc1.pdf +57893403f543db75d1f4e7355283bdca11f3ab1b,http://www.doc.ic.ac.uk/~maja/PAMI-KoelstraEtAl-accepted.pdf +27cccf992f54966feb2ab4831fab628334c742d8,http://pdfs.semanticscholar.org/27cc/cf992f54966feb2ab4831fab628334c742d8.pdf +9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73,http://www.vision.ee.ethz.ch/~zzhiwu/papers/COX-Face-DB-TIP-final.pdf +08a98822739bb8e6b1388c266938e10eaa01d903,http://homes.cs.washington.edu/~yoshi/papers/SensorSift_ACSAC_2012.pdf +38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,http://www.cs.colostate.edu/~draper/papers/zhang_ijcb14.pdf +6ae75eaa7e9f1379338eae94fbb43664bb3c898a,https://www.researchgate.net/profile/Beom_Seok_Oh/publication/254016039_Fusion_of_structured_projections_for_cancelable_face_identity_verification/links/559156c108ae15962d8e145e.pdf?origin=publication_detail +38861d0d3a0292c1f54153b303b0d791cbba1d50,http://pdfs.semanticscholar.org/3886/1d0d3a0292c1f54153b303b0d791cbba1d50.pdf +978a219e07daa046244821b341631c41f91daccd,http://pdfs.semanticscholar.org/e2b9/f8b66d3f9080ccb14f058cf4798cb4d89241.pdf +47eba2f95679e106e463e8296c1f61f6ddfe815b,https://www.csie.ntu.edu.tw/~cyy/publications/papers/Shih2017DCF.pdf +4c078c2919c7bdc26ca2238fa1a79e0331898b56,http://pdfs.semanticscholar.org/4c07/8c2919c7bdc26ca2238fa1a79e0331898b56.pdf +b55d0c9a022874fb78653a0004998a66f8242cad,http://pdfs.semanticscholar.org/b55d/0c9a022874fb78653a0004998a66f8242cad.pdf +83fd5c23204147844a0528c21e645b757edd7af9,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W05/papers/Bulan_USDOT_Number_Localization_2015_CVPR_paper.pdf +303517dfc327c3004ae866a6a340f16bab2ee3e3,http://pdfs.semanticscholar.org/3035/17dfc327c3004ae866a6a340f16bab2ee3e3.pdf +06466276c4955257b15eff78ebc576662100f740,http://cmlab.csie.ntu.edu.tw/~sirius42/papers/sigir12.pdf +1679943d22d60639b4670eba86665371295f52c3,http://pdfs.semanticscholar.org/1679/943d22d60639b4670eba86665371295f52c3.pdf +7f82f8a416170e259b217186c9e38a9b05cb3eb4,http://pdfs.semanticscholar.org/7f82/f8a416170e259b217186c9e38a9b05cb3eb4.pdf +7711a7404f1f1ac3a0107203936e6332f50ac30c,http://pdfs.semanticscholar.org/7711/a7404f1f1ac3a0107203936e6332f50ac30c.pdf +66533107f9abdc7d1cb8f8795025fc7e78eb1122,http://pdfs.semanticscholar.org/6653/3107f9abdc7d1cb8f8795025fc7e78eb1122.pdf +556545eec370b9d300fc044a1aa63fc44fd79b0f,http://www.cs.cmu.edu/~dhoiem/publications/cvpr2010_gangwang.pdf +59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb,http://www.ccvcl.org/~wei/pdf/CNNExpRecog_CamReady.pdf +141eab5f7e164e4ef40dd7bc19df9c31bd200c5e,http://www.jdl.ac.cn/doc/2006/Local%20Linear%20Regression%20(LLR)%20for%20Pose%20Invariant%20Face%20Recognition.pdf +0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0,http://pdfs.semanticscholar.org/0694/b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0.pdf +1e9f1bbb751fe538dde9f612f60eb946747defaa,http://pdfs.semanticscholar.org/1e9f/1bbb751fe538dde9f612f60eb946747defaa.pdf +60ce4a9602c27ad17a1366165033fe5e0cf68078,http://pdfs.semanticscholar.org/60ce/4a9602c27ad17a1366165033fe5e0cf68078.pdf +df0e280cae018cebd5b16ad701ad101265c369fa,http://pdfs.semanticscholar.org/df0e/280cae018cebd5b16ad701ad101265c369fa.pdf +f78863f4e7c4c57744715abe524ae4256be884a9,http://pdfs.semanticscholar.org/f788/63f4e7c4c57744715abe524ae4256be884a9.pdf +5df376748fe5ccd87a724ef31d4fdb579dab693f,http://pdfs.semanticscholar.org/5df3/76748fe5ccd87a724ef31d4fdb579dab693f.pdf +d59f18fcb07648381aa5232842eabba1db52383e,http://pdfs.semanticscholar.org/d59f/18fcb07648381aa5232842eabba1db52383e.pdf +499f1d647d938235e9186d968b7bb2ab20f2726d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Xiong_Face_Recognition_via_2013_ICCV_paper.pdf +23d55061f7baf2ffa1c847d356d8f76d78ebc8c1,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0033-4?site=ipsjcva.springeropen.com +d3c004125c71942846a9b32ae565c5216c068d1e,http://pdfs.semanticscholar.org/d3c0/04125c71942846a9b32ae565c5216c068d1e.pdf +d0a21f94de312a0ff31657fd103d6b29db823caa,http://pdfs.semanticscholar.org/d0a2/1f94de312a0ff31657fd103d6b29db823caa.pdf +443acd268126c777bc7194e185bec0984c3d1ae7,https://eprints.soton.ac.uk/402985/1/icpr-16.pdf +8c8525e626c8857a4c6c385de34ffea31e7e41d1,http://arxiv.org/pdf/1505.07922.pdf +38d8ff137ff753f04689e6b76119a44588e143f3,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf +ec05078be14a11157ac0e1c6b430ac886124589b,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf +52887969107956d59e1218abb84a1f834a314578,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/chen13travel.pdf +2f489bd9bfb61a7d7165a2f05c03377a00072477,http://pdfs.semanticscholar.org/2f48/9bd9bfb61a7d7165a2f05c03377a00072477.pdf +9c373438285101d47ab9332cdb0df6534e3b93d1,http://pdfs.semanticscholar.org/9c37/3438285101d47ab9332cdb0df6534e3b93d1.pdf +6324fada2fb00bd55e7ff594cf1c41c918813030,http://pdfs.semanticscholar.org/6324/fada2fb00bd55e7ff594cf1c41c918813030.pdf +1a7a17c4f97c68d68fbeefee1751d349b83eb14a,http://pdfs.semanticscholar.org/1a7a/17c4f97c68d68fbeefee1751d349b83eb14a.pdf +4df3143922bcdf7db78eb91e6b5359d6ada004d2,http://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf +2098983dd521e78746b3b3fa35a22eb2fa630299,http://pdfs.semanticscholar.org/2098/983dd521e78746b3b3fa35a22eb2fa630299.pdf +05e3acc8afabc86109d8da4594f3c059cf5d561f,https://www.cs.rochester.edu/u/cxu22/p/cvpr2016_a2s2_poster.pdf +0163d847307fae508d8f40ad193ee542c1e051b4,http://www.alessandrobergamo.com/data/compact_descriptors_supplementary.pdf +4f7967158b257e86d66bdabfdc556c697d917d24,http://pdfs.semanticscholar.org/4f79/67158b257e86d66bdabfdc556c697d917d24.pdf +25337690fed69033ef1ce6944e5b78c4f06ffb81,http://pdfs.semanticscholar.org/2533/7690fed69033ef1ce6944e5b78c4f06ffb81.pdf +74156a11c2997517061df5629be78428e1f09cbd,http://cvrr.ucsd.edu/publications/2016/MartinRangeshTrivediICPR2016.pdf +19666b9eefcbf764df7c1f5b6938031bcf777191,https://arxiv.org/pdf/1212.3913v4.pdf +51224ed7519e71346076060092462e3d59ca3ab9,http://www.iis.ee.ic.ac.uk/ComputerVision/docs/pubs/Chao_TM_2014.pdf +4e444db884b5272f3a41e4b68dc0d453d4ec1f4c,http://pdfs.semanticscholar.org/4e44/4db884b5272f3a41e4b68dc0d453d4ec1f4c.pdf +6f26ab7edd971148723d9b4dc8ddf71b36be9bf7,http://pdfs.semanticscholar.org/6f26/ab7edd971148723d9b4dc8ddf71b36be9bf7.pdf +27218ff58c3f0e7d7779fba3bb465d746749ed7c,http://pdfs.semanticscholar.org/2721/8ff58c3f0e7d7779fba3bb465d746749ed7c.pdf +1459d4d16088379c3748322ab0835f50300d9a38,https://arxiv.org/pdf/1605.04039v1.pdf +12d8730da5aab242795bdff17b30b6e0bac82998,http://pdfs.semanticscholar.org/12d8/730da5aab242795bdff17b30b6e0bac82998.pdf +5c624382057b55e46af4dc4c055a33c90e8bf08a,http://www.researchgate.net/profile/Ngoc_Son_Vu/publication/224114972_Illumination-robust_face_recognition_using_retina_modeling/links/0fcfd507f06292b0a5000000.pdf +176e5abddb87d029f85f60d1bbff67c66500e8c3,http://www.researchgate.net/profile/Tony_Han3/publication/220930104_Efficient_Facial_Attribute_Recognition_with_a_Spatial_Codebook/links/0046351affdf1f0d96000000.pdf +9fc04a13eef99851136eadff52e98eb9caac919d,http://pdfs.semanticscholar.org/9fc0/4a13eef99851136eadff52e98eb9caac919d.pdf +86c053c162c08bc3fe093cc10398b9e64367a100,http://pdfs.semanticscholar.org/86c0/53c162c08bc3fe093cc10398b9e64367a100.pdf +c5be0feacec2860982fbbb4404cf98c654142489,http://pdfs.semanticscholar.org/c5be/0feacec2860982fbbb4404cf98c654142489.pdf +4dd2be07b4f0393995b57196f8fc79d666b3aec5,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p3572-lee.pdf +9d941a99e6578b41e4e32d57ece580c10d578b22,http://pdfs.semanticscholar.org/9d94/1a99e6578b41e4e32d57ece580c10d578b22.pdf +6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,http://pdfs.semanticscholar.org/6cef/b70f4668ee6c0bf0c18ea36fd49dd60e8365.pdf +2bab44d3a4c5ca79fb8f87abfef4456d326a0445,http://www.mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mir25.pdf +20a16efb03c366fa4180659c2b2a0c5024c679da,http://pdfs.semanticscholar.org/20a1/6efb03c366fa4180659c2b2a0c5024c679da.pdf +60737db62fb5fab742371709485e4b2ddf64b7b2,http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/p307-weng.pdf +25f1f195c0efd84c221b62d1256a8625cb4b450c,http://www.ee.oulu.fi/~gyzhao/Papers/2007/04284844-ICME.pdf +a79704c1ce7bf10c8753a8f51437ccbc61947d03,http://www.eecs.qmul.ac.uk/~cfshan/papers/shan-etal-icip05.pdf +441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sundararajan_Head_Pose_Estimation_2015_CVPR_paper.pdf +c2c3ff1778ed9c33c6e613417832505d33513c55,http://pdfs.semanticscholar.org/c2c3/ff1778ed9c33c6e613417832505d33513c55.pdf +8e378ef01171b33c59c17ff5798f30293fe30686,http://pdfs.semanticscholar.org/8e37/8ef01171b33c59c17ff5798f30293fe30686.pdf +1e799047e294267087ec1e2c385fac67074ee5c8,http://pdfs.semanticscholar.org/1e79/9047e294267087ec1e2c385fac67074ee5c8.pdf +2e3d081c8f0e10f138314c4d2c11064a981c1327,http://arxiv.org/pdf/1603.06015v1.pdf +51cc78bc719d7ff2956b645e2fb61bab59843d2b,http://pdfs.semanticscholar.org/51cc/78bc719d7ff2956b645e2fb61bab59843d2b.pdf +3f63f9aaec8ba1fa801d131e3680900680f14139,http://dspace.nitrkl.ac.in/dspace/bitstream/2080/2288/1/4a.pdf +0b6616f3ebff461e4b6c68205fcef1dae43e2a1a,http://pdfs.semanticscholar.org/0b66/16f3ebff461e4b6c68205fcef1dae43e2a1a.pdf +33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13,http://pdfs.semanticscholar.org/33c3/702b0eee6fc26fc49f79f9133f3dd7fa3f13.pdf +27846b464369095f4909f093d11ed481277c8bba,http://pdfs.semanticscholar.org/2784/6b464369095f4909f093d11ed481277c8bba.pdf +6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9,http://pdfs.semanticscholar.org/6b9a/a288ce7740ec5ce9826c66d059ddcfd8dba9.pdf +50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,http://ajbasweb.com/old/ajbas/2017/April/1-11.pdf +28a900a07c7cbce6b6297e4030be3229e094a950,http://pdfs.semanticscholar.org/28a9/00a07c7cbce6b6297e4030be3229e094a950.pdf +4bbbee93519a4254736167b31be69ee1e537f942,https://arxiv.org/pdf/1611.05125v2.pdf +5e97a1095f2811e0bc188f52380ea7c9c460c896,http://web.eecs.utk.edu/~rguo1/FacialParsing.pdf +131e395c94999c55c53afead65d81be61cd349a4,http://pdfs.semanticscholar.org/2c3f/aeaf0fe103e1e6cb8c2116728e2a5c7b7f29.pdf +6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c,http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf +265af79627a3d7ccf64e9fe51c10e5268fee2aae,http://media.cs.tsinghua.edu.cn/~cvg/publications/ENGLISH%20JOURNAL%20PAPERS/A%20Mixture%20of%20Transformed%20Hidden%20Markov%20Models%20for%20Elastic%20Motion%20Estimation.pdf +290136947fd44879d914085ee51d8a4f433765fa,http://www.cse.msu.edu/biometrics/Publications/Face/KlareJain_TaxonomyFacialFeatures_BTAS10.pdf +9ed943f143d2deaac2efc9cf414b3092ed482610,http://www.jaist.ac.jp/~chen-fan/publication/ism2014-07032993.pdf +6691dfa1a83a04fdc0177d8d70e3df79f606b10f,http://pdfs.semanticscholar.org/6691/dfa1a83a04fdc0177d8d70e3df79f606b10f.pdf +918b72a47b7f378bde0ba29c908babf6dab6f833,http://pdfs.semanticscholar.org/918b/72a47b7f378bde0ba29c908babf6dab6f833.pdf +c32c8bfadda8f44d40c6cd9058a4016ab1c27499,http://pdfs.semanticscholar.org/c32c/8bfadda8f44d40c6cd9058a4016ab1c27499.pdf +58fa85ed57e661df93ca4cdb27d210afe5d2cdcd,http://www.dgcv.nii.ac.jp/Publications/Papers/2016/ICPR2016a.pdf +f1748303cc02424704b3a35595610890229567f9,http://pdfs.semanticscholar.org/f174/8303cc02424704b3a35595610890229567f9.pdf +17b46e2dad927836c689d6787ddb3387c6159ece,http://cs.uky.edu/~jacobs/papers/greenwell2014faceattributes.pdf +60d765f2c0a1a674b68bee845f6c02741a49b44e,http://pdfs.semanticscholar.org/60d7/65f2c0a1a674b68bee845f6c02741a49b44e.pdf +01c09acf0c046296643de4c8b55a9330e9c8a419,http://pdfs.semanticscholar.org/01c0/9acf0c046296643de4c8b55a9330e9c8a419.pdf +ff7bc7a6d493e01ec8fa2b889bcaf6349101676e,http://pdfs.semanticscholar.org/ff7b/c7a6d493e01ec8fa2b889bcaf6349101676e.pdf +9c4cc11d0df2de42d6593f5284cfdf3f05da402a,http://pdfs.semanticscholar.org/ce1a/f0e944260efced743f371ba0cb06878582b6.pdf +fe961cbe4be0a35becd2d722f9f364ec3c26bd34,http://pdfs.semanticscholar.org/fe96/1cbe4be0a35becd2d722f9f364ec3c26bd34.pdf +81fc86e86980a32c47410f0ba7b17665048141ec,http://pdfs.semanticscholar.org/81fc/86e86980a32c47410f0ba7b17665048141ec.pdf +6ee8a94ccba10062172e5b31ee097c846821a822,http://pdfs.semanticscholar.org/6ee8/a94ccba10062172e5b31ee097c846821a822.pdf +35490b021dcdec12882870a31dce9a687205ab5c,http://www.ecse.rpi.edu/homepages/qji/Papers/BN_learning_CVPR08.pdf +1cee993dc42626caf5dbc26c0a7790ca6571d01a,http://www.iri.upc.edu/people/fmoreno/Publications/2005/pdf/Moreno_siggraphsketch2005.pdf +1a9337d70a87d0e30966ecd1d7a9b0bbc7be161f,http://pdfs.semanticscholar.org/1a93/37d70a87d0e30966ecd1d7a9b0bbc7be161f.pdf +6d66c98009018ac1512047e6bdfb525c35683b16,http://pdfs.semanticscholar.org/6d66/c98009018ac1512047e6bdfb525c35683b16.pdf +d24dafe10ec43ac8fb98715b0e0bd8e479985260,http://pdfs.semanticscholar.org/d24d/afe10ec43ac8fb98715b0e0bd8e479985260.pdf +429c3588ce54468090cc2cf56c9b328b549a86dc,http://pdfs.semanticscholar.org/429c/3588ce54468090cc2cf56c9b328b549a86dc.pdf +0517d08da7550241fb2afb283fc05d37fce5d7b7,http://pdfs.semanticscholar.org/0517/d08da7550241fb2afb283fc05d37fce5d7b7.pdf +0055c7f32fa6d4b1ad586d5211a7afb030ca08cc,http://pdfs.semanticscholar.org/0055/c7f32fa6d4b1ad586d5211a7afb030ca08cc.pdf +40ee38d7ff2871761663d8634c3a4970ed1dc058,http://pdfs.semanticscholar.org/40ee/38d7ff2871761663d8634c3a4970ed1dc058.pdf +b16580d27bbf4e17053f2f91bc1d0be12045e00b,http://pdfs.semanticscholar.org/b165/80d27bbf4e17053f2f91bc1d0be12045e00b.pdf +04c2cda00e5536f4b1508cbd80041e9552880e67,http://pdfs.semanticscholar.org/04c2/cda00e5536f4b1508cbd80041e9552880e67.pdf +1bc23c771688109bed9fd295ce82d7e702726327,http://pdfs.semanticscholar.org/1bc2/3c771688109bed9fd295ce82d7e702726327.pdf +b03446a2de01126e6a06eb5d526df277fa36099f,http://pdfs.semanticscholar.org/b034/46a2de01126e6a06eb5d526df277fa36099f.pdf +e3144f39f473e238374dd4005c8b83e19764ae9e,http://pdfs.semanticscholar.org/f42d/ca4a4426e5873a981712102aa961be34539a.pdf +df51dfe55912d30fc2f792561e9e0c2b43179089,http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1512.06009.pdf +7bfe085c10761f5b0cc7f907bdafe1ff577223e0,http://pdfs.semanticscholar.org/c32b/aaa307da7376bcb5dfef7bb985c06d032a0f.pdf +240d5390af19bb43761f112b0209771f19bfb696,http://pdfs.semanticscholar.org/4e10/0973f1540312df3465a087597018a7892310.pdf +a0d6390dd28d802152f207940c7716fe5fae8760,http://pdfs.semanticscholar.org/a0d6/390dd28d802152f207940c7716fe5fae8760.pdf +47a2727bd60e43f3253247b6d6f63faf2b67c54b,http://openaccess.thecvf.com/content_cvpr_2016/papers/Fu_Semi-Supervised_Vocabulary-Informed_Learning_CVPR_2016_paper.pdf +77b1db2281292372c38926cc4aca32ef056011dc,http://pdfs.semanticscholar.org/77b1/db2281292372c38926cc4aca32ef056011dc.pdf +a0021e3bbf942a88e13b67d83db7cf52e013abfd,http://pdfs.semanticscholar.org/a002/1e3bbf942a88e13b67d83db7cf52e013abfd.pdf +7644d90efef157e61fe4d773d8a3b0bad5feccec,http://pdfs.semanticscholar.org/7644/d90efef157e61fe4d773d8a3b0bad5feccec.pdf +7d41b67a641426cb8c0f659f0ba74cdb60e7159a,http://eprints.soton.ac.uk/389641/1/isba-16-camera.pdf +6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf,http://pdfs.semanticscholar.org/6dd2/a0f9ca8a5fee12edec1485c0699770b4cfdf.pdf +356b431d4f7a2a0a38cf971c84568207dcdbf189,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Xiong_Recognize_Complex_Events_2015_CVPR_paper.pdf +b1429e4d3dd3412e92a37d2f9e0721ea719a9b9e,http://www.hamedkiani.com/uploads/5/1/8/8/51882963/176.pdf +9c1860de6d6e991a45325c997bf9651c8a9d716f,http://pdfs.semanticscholar.org/d02c/54192dbd0798b43231efe1159d6b4375ad36.pdf +96f4a1dd1146064d1586ebe86293d02e8480d181,http://pdfs.semanticscholar.org/96f4/a1dd1146064d1586ebe86293d02e8480d181.pdf +8aae23847e1beb4a6d51881750ce36822ca7ed0b,http://pdfs.semanticscholar.org/8aae/23847e1beb4a6d51881750ce36822ca7ed0b.pdf +3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,http://pdfs.semanticscholar.org/3152/e89963b8a4028c4abf6e1dc19e91c4c5a8f4.pdf +28b9d92baea72ec665c54d9d32743cf7bc0912a7,http://pdfs.semanticscholar.org/a7f8/b6bf6aa7a12773ad9bcf1d040d4d74d12493.pdf +366595171c9f4696ec5eef7c3686114fd3f116ad,http://pdfs.semanticscholar.org/3665/95171c9f4696ec5eef7c3686114fd3f116ad.pdf +23ebbbba11c6ca785b0589543bf5675883283a57,https://pdfs.semanticscholar.org/23eb/bbba11c6ca785b0589543bf5675883283a57.pdf +0066caed1238de95a431d836d8e6e551b3cde391,http://humansensing.cs.cmu.edu/sites/default/files/7de_la_torre_frade_fernando_2007_3.pdf +9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf +3c63fa505a44902f13698ec10d7f259b1d0878ee,http://www.ece.ucr.edu/~amitrc/publications/TMM2015.pdf +293193d24d5c4d2975e836034bbb2329b71c4fe7,http://pdfs.semanticscholar.org/2931/93d24d5c4d2975e836034bbb2329b71c4fe7.pdf +9391618c09a51f72a1c30b2e890f4fac1f595ebd,http://pdfs.semanticscholar.org/9391/618c09a51f72a1c30b2e890f4fac1f595ebd.pdf +4b4106614c1d553365bad75d7866bff0de6056ed,http://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf +ac12ba5bf81de83991210b4cd95b4ad048317681,http://pdfs.semanticscholar.org/ac12/ba5bf81de83991210b4cd95b4ad048317681.pdf +5ec94adc9e0f282597f943ea9f4502a2a34ecfc2,http://pdfs.semanticscholar.org/5ec9/4adc9e0f282597f943ea9f4502a2a34ecfc2.pdf +9a42c519f0aaa68debbe9df00b090ca446d25bc4,http://pdfs.semanticscholar.org/9a42/c519f0aaa68debbe9df00b090ca446d25bc4.pdf +4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56,https://arxiv.org/pdf/1612.00523v1.pdf +4a484d97e402ed0365d6cf162f5a60a4d8000ea0,http://pdfs.semanticscholar.org/4a48/4d97e402ed0365d6cf162f5a60a4d8000ea0.pdf +4e4e8fc9bbee816e5c751d13f0d9218380d74b8f,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553711.pdf +0744af11a025e9c072ef6ad102af208e79cc6f44,https://www.researchgate.net/profile/Pascal_Frossard/publication/233799235_Learning_Smooth_Pattern_Transformation_Manifolds/links/00463533951057e9bb000000.pdf +01e12be4097fa8c94cabeef0ad61498c8e7762f2,http://pdfs.semanticscholar.org/10bf/f1957b8a4adce86efd10596186d905976c16.pdf +6308e9c991125ee6734baa3ec93c697211237df8,http://www.ifp.illinois.edu/~jyang29/papers/ICME-SSR.pdf +18c72175ddbb7d5956d180b65a96005c100f6014,http://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf +389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26,http://pdfs.semanticscholar.org/3893/34e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26.pdf +1255afbf86423c171349e874b3ac297de19f00cd,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SSCI_2015/data/7560a203.pdf +4ef0a6817a7736c5641dc52cbc62737e2e063420,http://pdfs.semanticscholar.org/4ef0/a6817a7736c5641dc52cbc62737e2e063420.pdf +2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8,http://pdfs.semanticscholar.org/2d93/a9aa8bed51d0d1b940c73ac32c046ebf1eb8.pdf +64782a2bc5da11b1b18ca20cecf7bdc26a538d68,http://pdfs.semanticscholar.org/6478/2a2bc5da11b1b18ca20cecf7bdc26a538d68.pdf +3802c97f925cb03bac91d9db13d8b777dfd29dcc,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Martins_Non-Parametric_Bayesian_Constrained_2014_CVPR_paper.pdf +7085d21f483743007cc6a8e3fa01d8bdf592ad33,http://www.meeting.edu.cn/meeting/UploadPapers/1282699022328.pdf +316d51aaa37891d730ffded7b9d42946abea837f,http://pdfs.semanticscholar.org/9f00/3a5e727b99f792e600b93b6458b9cda3f0a5.pdf +2d3c17ced03e4b6c4b014490fe3d40c62d02e914,http://pdfs.semanticscholar.org/2d3c/17ced03e4b6c4b014490fe3d40c62d02e914.pdf +57c59011614c43f51a509e10717e47505c776389,http://users.cecs.anu.edu.au/~basura/papers/CVPR_2017_Workshop.pdf +27a0a7837f9114143717fc63294a6500565294c2,http://pdfs.semanticscholar.org/27a0/a7837f9114143717fc63294a6500565294c2.pdf +a51d5c2f8db48a42446cc4f1718c75ac9303cb7a,http://pdfs.semanticscholar.org/a51d/5c2f8db48a42446cc4f1718c75ac9303cb7a.pdf +aaeb8b634bb96a372b972f63ec1dc4db62e7b62a,http://pdfs.semanticscholar.org/aaeb/8b634bb96a372b972f63ec1dc4db62e7b62a.pdf +aa52910c8f95e91e9fc96a1aefd406ffa66d797d,http://pdfs.semanticscholar.org/aa52/910c8f95e91e9fc96a1aefd406ffa66d797d.pdf +3b410ae97e4564bc19d6c37bc44ada2dcd608552,http://pdfs.semanticscholar.org/3b41/0ae97e4564bc19d6c37bc44ada2dcd608552.pdf +ddaa8add8528857712424fd57179e5db6885df7c,http://pdfs.semanticscholar.org/ff63/a8e8e462d15c9d59ac66025a043d3c299aea.pdf +2a9b398d358cf04dc608a298d36d305659e8f607,http://www.pitt.edu/~jeffcohn/biblio/MahoorFG2011.pdf +7643861bb492bf303b25d0306462f8fb7dc29878,https://www-i6.informatik.rwth-aachen.de/publications/download/991/Hanselmann-FG-2015.pdf +052880031be0a760a5b606b2ad3d22f237e8af70,http://pdfs.semanticscholar.org/0528/80031be0a760a5b606b2ad3d22f237e8af70.pdf +7c4c442e9c04c6b98cd2aa221e9d7be15efd8663,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Classifier_Learning_With_2015_CVPR_paper.pdf +396a19e29853f31736ca171a3f40c506ef418a9f,http://pdfs.semanticscholar.org/396a/19e29853f31736ca171a3f40c506ef418a9f.pdf +14fdec563788af3202ce71c021dd8b300ae33051,http://pdfs.semanticscholar.org/14fd/ec563788af3202ce71c021dd8b300ae33051.pdf +0ccc535d12ad2142a8310d957cc468bbe4c63647,http://arxiv.org/pdf/1510.03979v1.pdf +590628a9584e500f3e7f349ba7e2046c8c273fcf,http://pdfs.semanticscholar.org/6893/c573d7abd3847d6ea2f0e79b6924ca124372.pdf +4534d78f8beb8aad409f7bfcd857ec7f19247715,http://pdfs.semanticscholar.org/4534/d78f8beb8aad409f7bfcd857ec7f19247715.pdf +00f0ed04defec19b4843b5b16557d8d0ccc5bb42,http://pdfs.semanticscholar.org/00f0/ed04defec19b4843b5b16557d8d0ccc5bb42.pdf +00d931eccab929be33caea207547989ae7c1ef39,http://pdfs.semanticscholar.org/00d9/31eccab929be33caea207547989ae7c1ef39.pdf +65817963194702f059bae07eadbf6486f18f4a0a,http://arxiv.org/pdf/1505.04141v2.pdf +a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670,http://webhost.uoradea.ro/ibuciu/ISCAS2006_Buciu.pdf +4d9a02d080636e9666c4d1cc438b9893391ec6c7,http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf +70db3a0d2ca8a797153cc68506b8650908cb0ada,http://pdfs.semanticscholar.org/70db/3a0d2ca8a797153cc68506b8650908cb0ada.pdf +55138c2b127ebdcc508503112bf1d1eeb5395604,http://pdfs.semanticscholar.org/7815/368a8f6474910d3faf798198ff9dae836360.pdf +62e0380a86e92709fe2c64e6a71ed94d152c6643,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2012/Facial%20emotion%20recognition%20with%20expression%20energy12.pdf +7bce4f4e85a3bfcd6bfb3b173b2769b064fce0ed,http://pdfs.semanticscholar.org/7bce/4f4e85a3bfcd6bfb3b173b2769b064fce0ed.pdf +adf5caca605e07ee40a3b3408f7c7c92a09b0f70,http://pdfs.semanticscholar.org/adf5/caca605e07ee40a3b3408f7c7c92a09b0f70.pdf +8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa,http://pdfs.semanticscholar.org/8c7f/4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa.pdf +0aa8a0203e5f406feb1815f9b3dd49907f5fd05b,http://www.iti.gr/~bmezaris/publications/spl11_preprint.pdf +490a217a4e9a30563f3a4442a7d04f0ea34442c8,http://pdfs.semanticscholar.org/490a/217a4e9a30563f3a4442a7d04f0ea34442c8.pdf +4ff11512e4fde3d1a109546d9c61a963d4391add,http://pdfs.semanticscholar.org/4ff1/1512e4fde3d1a109546d9c61a963d4391add.pdf +59eefa01c067a33a0b9bad31c882e2710748ea24,http://pdfs.semanticscholar.org/59ee/fa01c067a33a0b9bad31c882e2710748ea24.pdf +5850aab97e1709b45ac26bb7d205e2accc798a87,http://pdfs.semanticscholar.org/5850/aab97e1709b45ac26bb7d205e2accc798a87.pdf +3a76e9fc2e89bdd10a9818f7249fbf61d216efc4,http://openaccess.thecvf.com/content_ICCV_2017/papers/Nagpal_Face_Sketch_Matching_ICCV_2017_paper.pdf +8ee62f7d59aa949b4a943453824e03f4ce19e500,http://arxiv.org/pdf/1603.09732v1.pdf +64e75f53ff3991099c3fb72ceca55b76544374e5,http://pdfs.semanticscholar.org/eb48/804eefe4c61f62178d2a83a9ae0097091897.pdf +1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9,http://pdfs.semanticscholar.org/1bdf/b3deae6e6c0df6537efcd1d7edcb4d7a96e9.pdf +09cf3f1764ab1029f3a7d57b70ae5d5954486d69,http://pdfs.semanticscholar.org/09cf/3f1764ab1029f3a7d57b70ae5d5954486d69.pdf +daba8f0717f3f47c272f018d0a466a205eba6395,https://pdfs.semanticscholar.org/daba/8f0717f3f47c272f018d0a466a205eba6395.pdf +1f9ae272bb4151817866511bd970bffb22981a49,http://pdfs.semanticscholar.org/1f9a/e272bb4151817866511bd970bffb22981a49.pdf +9b246c88a0435fd9f6d10dc88f47a1944dd8f89e,http://pdfs.semanticscholar.org/ffe3/a5a7c0faebd1719f7c77b5f7e05cae61a9ad.pdf +52f23e1a386c87b0dab8bfdf9694c781cd0a3984,http://pdfs.semanticscholar.org/52f2/3e1a386c87b0dab8bfdf9694c781cd0a3984.pdf +230527d37421c28b7387c54e203deda64564e1b7,http://pdfs.semanticscholar.org/2305/27d37421c28b7387c54e203deda64564e1b7.pdf +83e093a07efcf795db5e3aa3576531d61557dd0d,http://pdfs.semanticscholar.org/83e0/93a07efcf795db5e3aa3576531d61557dd0d.pdf +40b10e330a5511a6a45f42c8b86da222504c717f,http://pdfs.semanticscholar.org/40b1/0e330a5511a6a45f42c8b86da222504c717f.pdf +9990e0b05f34b586ffccdc89de2f8b0e5d427067,http://pdfs.semanticscholar.org/9990/e0b05f34b586ffccdc89de2f8b0e5d427067.pdf +0e7c70321462694757511a1776f53d629a1b38f3,http://pdfs.semanticscholar.org/0e7c/70321462694757511a1776f53d629a1b38f3.pdf +1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2,http://www.es.ele.tue.nl/~sander/publications/icme16.pdf +2dced31a14401d465cd115902bf8f508d79de076,http://pdfs.semanticscholar.org/2dce/d31a14401d465cd115902bf8f508d79de076.pdf +ab1900b5d7cf3317d17193e9327d57b97e24d2fc,http://pdfs.semanticscholar.org/ab19/00b5d7cf3317d17193e9327d57b97e24d2fc.pdf +04250e037dce3a438d8f49a4400566457190f4e2,http://pdfs.semanticscholar.org/0425/0e037dce3a438d8f49a4400566457190f4e2.pdf +2679e4f84c5e773cae31cef158eb358af475e22f,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Liu_Adaptive_Deep_Metric_CVPR_2017_paper.pdf +c5a561c662fc2b195ff80d2655cc5a13a44ffd2d,http://www.cs.toronto.edu/~suzanne/papers/JamiesonEtAlPAMI.pdf +c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d,http://pdfs.semanticscholar.org/c8db/8764f9d8f5d44e739bbcb663fbfc0a40fb3d.pdf +d33b26794ea6d744bba7110d2d4365b752d7246f,http://pdfs.semanticscholar.org/d33b/26794ea6d744bba7110d2d4365b752d7246f.pdf +59d45281707b85a33d6f50c6ac6b148eedd71a25,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Cheng_Rank_Minimization_across_2013_ICCV_paper.pdf +0d467adaf936b112f570970c5210bdb3c626a717,http://pdfs.semanticscholar.org/0d46/7adaf936b112f570970c5210bdb3c626a717.pdf +4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27,http://pdfs.semanticscholar.org/4d49/c6cff198cccb21f4fa35fd75cbe99cfcbf27.pdf +556b9aaf1bc15c928718bc46322d70c691111158,https://www.ecse.rpi.edu/~cvrl/lwh/myPublications/ICPR08_BNlearning_camera.pdf +047f6afa87f48de7e32e14229844d1587185ce45,http://pdfs.semanticscholar.org/047f/6afa87f48de7e32e14229844d1587185ce45.pdf +32b8c9fd4e3f44c371960eb0074b42515f318ee7,http://pdfs.semanticscholar.org/32b8/c9fd4e3f44c371960eb0074b42515f318ee7.pdf +12cb3bf6abf63d190f849880b1703ccc183692fe,http://pdfs.semanticscholar.org/12cb/3bf6abf63d190f849880b1703ccc183692fe.pdf +1d0128b9f96f4c11c034d41581f23eb4b4dd7780,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Snape_Automatic_Construction_Of_2015_CVPR_paper.pdf +407bb798ab153bf6156ba2956f8cf93256b6910a,http://pdfs.semanticscholar.org/407b/b798ab153bf6156ba2956f8cf93256b6910a.pdf +6fe2efbcb860767f6bb271edbb48640adbd806c3,https://eprints.soton.ac.uk/359808/1/version9.pdf +fa24bf887d3b3f6f58f8305dcd076f0ccc30272a,http://pdfs.semanticscholar.org/fa24/bf887d3b3f6f58f8305dcd076f0ccc30272a.pdf +7a85b3ab0efb6b6fcb034ce13145156ee9d10598,http://pdfs.semanticscholar.org/7a85/b3ab0efb6b6fcb034ce13145156ee9d10598.pdf +793e7f1ba18848908da30cbad14323b0389fd2a8,http://pdfs.semanticscholar.org/793e/7f1ba18848908da30cbad14323b0389fd2a8.pdf +ae1de0359f4ed53918824271c888b7b36b8a5d41,http://pdfs.semanticscholar.org/ae1d/e0359f4ed53918824271c888b7b36b8a5d41.pdf +59f325e63f21b95d2b4e2700c461f0136aecc171,http://nlpr-web.ia.ac.cn/2011papers/gjhy/gh13.pdf +9758f3fd94239a8d974217fe12599f88fb413f3d,http://pdfs.semanticscholar.org/9758/f3fd94239a8d974217fe12599f88fb413f3d.pdf +69d29012d17cdf0a2e59546ccbbe46fa49afcd68,https://arxiv.org/pdf/1404.6818v1.pdf +c30982d6d9bbe470a760c168002ed9d66e1718a2,http://facstaff.elon.edu/sspurlock/papers/spurlock15_head_pose.pdf +162dfd0d2c9f3621d600e8a3790745395ab25ebc,http://cse.seu.edu.cn/people/xgeng/LDL/resource/cvpr14a.pdf +2241eda10b76efd84f3c05bdd836619b4a3df97e,http://arxiv.org/pdf/1506.01342v5.pdf +2988f24908e912259d7a34c84b0edaf7ea50e2b3,http://pdfs.semanticscholar.org/a779/e9432c3b6bfdcdbb1827757c3b8bf7c3aa4a.pdf +3ebce6710135d1f9b652815e59323858a7c60025,http://pdfs.semanticscholar.org/3ebc/e6710135d1f9b652815e59323858a7c60025.pdf +c590c6c171392e9f66aab1bce337470c43b48f39,http://pdfs.semanticscholar.org/c590/c6c171392e9f66aab1bce337470c43b48f39.pdf +ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,http://hal.inria.fr/docs/00/87/00/59/PDF/Ozerov_et_al_ICIP_2013.pdf +3be027448ad49a79816cd21dcfcce5f4e1cec8a8,http://www.cs.utexas.edu/~grauman/papers/kovashka_iccv2011.pdf +081286ede247c5789081502a700b378b6223f94b,http://pdfs.semanticscholar.org/0812/86ede247c5789081502a700b378b6223f94b.pdf +02cc96ad997102b7c55e177ac876db3b91b4e72c,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_museum-visitors-dataset.pdf +4307e8f33f9e6c07c8fc2aeafc30b22836649d8c,http://pdfs.semanticscholar.org/ebff/0956c07185f7bb4e4ee5c7cc0aaa74aca05e.pdf +52885fa403efbab5ef21274282edd98b9ca70cbf,http://www.aiia.csd.auth.gr/EN/cor_baayen/Discriminant_Graph_Structures_FER.pdf +2bb2ba7c96d40e269fc6a2d5384c739ff9fa16eb,http://jmcauley.ucsd.edu/data/amazon/sigir_draft.pdf +0b835284b8f1f45f87b0ce004a4ad2aca1d9e153,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kapadia_Cartooning_for_Enhanced_CVPR_2017_paper.pdf +87309bdb2b9d1fb8916303e3866eca6e3452c27d,http://pdfs.semanticscholar.org/8730/9bdb2b9d1fb8916303e3866eca6e3452c27d.pdf +5f6ab4543cc38f23d0339e3037a952df7bcf696b,http://www.public.asu.edu/~bli24/Papers/ICPR2016_video2vec.pdf +05a7be10fa9af8fb33ae2b5b72d108415519a698,http://jankautz.com/publications/MMFusion4Video_ACMM16.pdf +0c377fcbc3bbd35386b6ed4768beda7b5111eec6,http://www.ecse.rpi.edu/~qji/Papers/face_exp_pami.pdf +4cd0da974af9356027a31b8485a34a24b57b8b90,https://arxiv.org/pdf/1703.00862v2.pdf +6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19,http://pdfs.semanticscholar.org/6d8e/ef8f8d6cd8436c55018e6ca5c5907b31ac19.pdf +bff77a3b80f40cefe79550bf9e220fb82a74c084,http://pdfs.semanticscholar.org/bff7/7a3b80f40cefe79550bf9e220fb82a74c084.pdf +02567fd428a675ca91a0c6786f47f3e35881bcbd,https://arxiv.org/pdf/1611.01731.pdf +788a7b59ea72e23ef4f86dc9abb4450efefeca41,http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf +3fe4109ded039ac9d58eb9f5baa5327af30ad8b6,http://www.cvc.uab.cat/~ahernandez/files/CVPR2010STGRABCUT.pdf +58db008b204d0c3c6744f280e8367b4057173259,http://pdfs.semanticscholar.org/58db/008b204d0c3c6744f280e8367b4057173259.pdf +7fc3442c8b4c96300ad3e860ee0310edb086de94,http://pdfs.semanticscholar.org/82f3/b7cacc15e026fd3a7639091d54162f6ae064.pdf +3bebb79f8f49aa11dd4f6d60d903172db02bf4f3,http://hct.ece.ubc.ca/publications/pdf/oleinikov-etal-wacv2014.pdf +dd033d4886f2e687b82d893a2c14dae02962ea70,http://pdfs.semanticscholar.org/dd03/3d4886f2e687b82d893a2c14dae02962ea70.pdf +69b18d62330711bfd7f01a45f97aaec71e9ea6a5,http://pdfs.semanticscholar.org/69b1/8d62330711bfd7f01a45f97aaec71e9ea6a5.pdf +ad37d01c4787d169daff7da52e80e2018aab6358,http://ibug.doc.ic.ac.uk/media/uploads/documents/bidirectional_newton_aam.pdf +e4a1b46b5c639d433d21b34b788df8d81b518729,http://pdfs.semanticscholar.org/e4a1/b46b5c639d433d21b34b788df8d81b518729.pdf +eb6ee56e085ebf473da990d032a4249437a3e462,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf +bbf1396eb826b3826c5a800975047beabde2f0de,http://pdfs.semanticscholar.org/bbf1/396eb826b3826c5a800975047beabde2f0de.pdf +1dbbec4ad8429788e16e9f3a79a80549a0d7ac7b,http://pdfs.semanticscholar.org/9d44/ef9e28d7722c388091ec4c1fa7c05f085e53.pdf +680d662c30739521f5c4b76845cb341dce010735,http://people.cs.umass.edu/~smaji/papers/maji15part.pdf +0ca66283f4fb7dbc682f789fcf6d6732006befd5,http://pdfs.semanticscholar.org/0ca6/6283f4fb7dbc682f789fcf6d6732006befd5.pdf +25d3e122fec578a14226dc7c007fb1f05ddf97f7,https://ibug.doc.ic.ac.uk/media/uploads/documents/pdf17.pdf +f0681fc08f4d7198dcde803d69ca62f09f3db6c5,http://pdfs.semanticscholar.org/f068/1fc08f4d7198dcde803d69ca62f09f3db6c5.pdf +92c4636962b719542deb984bd2bf75af405b574c,http://www.umiacs.umd.edu/~arijit/projects/Active_clustering/active_clustering_ijcv.pdf +213a579af9e4f57f071b884aa872651372b661fd,http://www.robots.ox.ac.uk/~vgg/publications/2013/Charles13a/charles13a.pdf +7a9ef21a7f59a47ce53b1dff2dd49a8289bb5098,http://pdfs.semanticscholar.org/7a9e/f21a7f59a47ce53b1dff2dd49a8289bb5098.pdf +023be757b1769ecb0db810c95c010310d7daf00b,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf +941166547968081463398c9eb041f00eb04304f7,http://people.duke.edu/~qq3/pub/ExpressionDictionary_TIP.pdf +d83ae5926b05894fcda0bc89bdc621e4f21272da,http://pdfs.semanticscholar.org/d83a/e5926b05894fcda0bc89bdc621e4f21272da.pdf +faa29975169ba3bbb954e518bc9814a5819876f6,http://pdfs.semanticscholar.org/faa2/9975169ba3bbb954e518bc9814a5819876f6.pdf +40205181ed1406a6f101c5e38c5b4b9b583d06bc,http://pdfs.semanticscholar.org/4020/5181ed1406a6f101c5e38c5b4b9b583d06bc.pdf +68996c28bc050158f025a17908eb4bc805c3ee55,https://www.researchgate.net/profile/M_Yeasin/publication/4082331_From_facial_expression_to_level_of_interest_a_spatio-temporal_approach/links/54983d0a0cf2519f5a1dda62.pdf +6d91da37627c05150cb40cac323ca12a91965759,http://pdfs.semanticscholar.org/6d91/da37627c05150cb40cac323ca12a91965759.pdf +4b3f425274b0c2297d136f8833a31866db2f2aec,https://arxiv.org/pdf/1705.01567v2.pdf +3765c26362ad1095dfe6744c6d52494ea106a42c,http://www.vision.ee.ethz.ch/~tquack/gammeter_quack_iccv2009.pdf +ffc5a9610df0341369aa75c0331ef021de0a02a9,http://pdfs.semanticscholar.org/ffc5/a9610df0341369aa75c0331ef021de0a02a9.pdf +69fb98e11df56b5d7ec7d45442af274889e4be52,http://pdfs.semanticscholar.org/69fb/98e11df56b5d7ec7d45442af274889e4be52.pdf +35e4b6c20756cd6388a3c0012b58acee14ffa604,http://pdfs.semanticscholar.org/35e4/b6c20756cd6388a3c0012b58acee14ffa604.pdf +8d91f06af4ef65193f3943005922f25dbb483ee4,http://pdfs.semanticscholar.org/8d91/f06af4ef65193f3943005922f25dbb483ee4.pdf +5778d49c8d8d127351eee35047b8d0dc90defe85,http://pdfs.semanticscholar.org/ec31/6c1c182de9d7fe73c7fbbc1a121a7e43c100.pdf +7e507370124a2ac66fb7a228d75be032ddd083cc,http://pdfs.semanticscholar.org/8992/4d7418df1380044af9ab706a019418952141.pdf +7f59657c883f77dc26393c2f9ed3d19bdf51137b,http://pdfs.semanticscholar.org/7f59/657c883f77dc26393c2f9ed3d19bdf51137b.pdf +35f1bcff4552632419742bbb6e1927ef5e998eb4,https://arxiv.org/pdf/1703.02521v1.pdf +10f66f6550d74b817a3fdcef7fdeba13ccdba51c,http://pdfs.semanticscholar.org/10f6/6f6550d74b817a3fdcef7fdeba13ccdba51c.pdf +e0dc6f1b740479098c1d397a7bc0962991b5e294,http://pdfs.semanticscholar.org/e0dc/6f1b740479098c1d397a7bc0962991b5e294.pdf +0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab,http://arxiv.org/pdf/1401.5311v1.pdf +8b8728edc536020bc4871dc66b26a191f6658f7c,http://pdfs.semanticscholar.org/8b87/28edc536020bc4871dc66b26a191f6658f7c.pdf +1439bf9ba7ff97df9a2da6dae4784e68794da184,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Ptucha_LGE-KSVD_Flexible_Dictionary_2013_CVPR_paper.pdf +d6fb606e538763282e3942a5fb45c696ba38aee6,https://pdfs.semanticscholar.org/d6fb/606e538763282e3942a5fb45c696ba38aee6.pdf +2642810e6c74d900f653f9a800c0e6a14ca2e1c7,http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_Projection_Bank_From_ICCV_2015_paper.pdf +2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40,http://www.cl.cam.ac.uk/~pr10/publications/fg17.pdf +748e72af01ba4ee742df65e9c030cacec88ce506,http://pdfs.semanticscholar.org/748e/72af01ba4ee742df65e9c030cacec88ce506.pdf +c9424d64b12a4abe0af201e7b641409e182babab,http://pdfs.semanticscholar.org/c942/4d64b12a4abe0af201e7b641409e182babab.pdf +b43b6551ecc556557b63edb8b0dc39901ed0343b,http://pdfs.semanticscholar.org/b43b/6551ecc556557b63edb8b0dc39901ed0343b.pdf +642c66df8d0085d97dc5179f735eed82abf110d0,http://research.microsoft.com/users/leizhang/Paper/CVPR05-Shuicheng-Coupled.pdf +1768909f779869c0e83d53f6c91764f41c338ab5,http://arxiv.org/pdf/1506.08959v1.pdf +bcac3a870501c5510df80c2a5631f371f2f6f74a,http://pdfs.semanticscholar.org/bcac/3a870501c5510df80c2a5631f371f2f6f74a.pdf +89e7d23e0c6a1d636f2da68aaef58efee36b718b,http://pdfs.semanticscholar.org/89e7/d23e0c6a1d636f2da68aaef58efee36b718b.pdf +8bf243817112ac0aa1348b40a065bb0b735cdb9c,http://pdfs.semanticscholar.org/8bf2/43817112ac0aa1348b40a065bb0b735cdb9c.pdf +958c599a6f01678513849637bec5dc5dba592394,http://pdfs.semanticscholar.org/958c/599a6f01678513849637bec5dc5dba592394.pdf +6448d23f317babb8d5a327f92e199aaa45f0efdc,http://pdfs.semanticscholar.org/6448/d23f317babb8d5a327f92e199aaa45f0efdc.pdf +0c5ddfa02982dcad47704888b271997c4de0674b,http://pdfs.semanticscholar.org/0c5d/dfa02982dcad47704888b271997c4de0674b.pdf +1922ad4978ab92ce0d23acc4c7441a8812f157e5,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2015_alignment.pdf +861c650f403834163a2c27467a50713ceca37a3e,http://personal.stevens.edu/~hli18/data/papers/PEPICCV2013_CameraReady.pdf +2aea27352406a2066ddae5fad6f3f13afdc90be9,http://arxiv.org/pdf/1507.05699v4.pdf +832e1d128059dd5ed5fa5a0b0f021a025903f9d5,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dapogny_Pairwise_Conditional_Random_ICCV_2015_paper.pdf +9110c589c6e78daf4affd8e318d843dc750fb71a,http://pdfs.semanticscholar.org/9110/c589c6e78daf4affd8e318d843dc750fb71a.pdf +5e0e516226413ea1e973f1a24e2fdedde98e7ec0,http://pdfs.semanticscholar.org/74ce/97da57ec848db660ee69dec709f226c74f43.pdf +2e3c893ac11e1a566971f64ae30ac4a1f36f5bb5,http://pdfs.semanticscholar.org/cb94/9e849b20ddc157aaf648dca1e8c71463c288.pdf +0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e,http://pdfs.semanticscholar.org/0d2d/d4fc016cb6a517d8fb43a7cc3ff62964832e.pdf +04522dc16114c88dfb0ebd3b95050fdbd4193b90,http://www.svcl.ucsd.edu/publications/conference/2005/crv05/FES.pdf +c1dfabe36a4db26bf378417985a6aacb0f769735,http://pdfs.semanticscholar.org/c1df/abe36a4db26bf378417985a6aacb0f769735.pdf +6ed22b934e382c6f72402747d51aa50994cfd97b,http://www.ifp.illinois.edu/~jyang29/papers/WACV16-Expression.pdf +2b0102d77d3d3f9bc55420d862075934f5c85bec,http://openaccess.thecvf.com/content_cvpr_2016/papers/Shao_Slicing_Convolutional_Neural_CVPR_2016_paper.pdf +99726ad232cef837f37914b63de70d8c5101f4e2,http://pdfs.semanticscholar.org/9972/6ad232cef837f37914b63de70d8c5101f4e2.pdf +435642641312364e45f4989fac0901b205c49d53,http://pdfs.semanticscholar.org/4356/42641312364e45f4989fac0901b205c49d53.pdf +b9cedd1960d5c025be55ade0a0aa81b75a6efa61,http://pdfs.semanticscholar.org/b9ce/dd1960d5c025be55ade0a0aa81b75a6efa61.pdf +1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3,http://pdfs.semanticscholar.org/1be1/8a701d5af2d8088db3e6aaa5b9b1d54b6fd3.pdf +961a5d5750f18e91e28a767b3cb234a77aac8305,http://pdfs.semanticscholar.org/961a/5d5750f18e91e28a767b3cb234a77aac8305.pdf +036c41d67b49e5b0a578a401eb31e5f46b3624e0,http://www.infomus.org/Events/proceedings/ACII2015/papers/Main_Conference/M2_Poster/Poster_Teaser_5/ACII2015_submission_19.pdf +3dda181be266950ba1280b61eb63ac11777029f9,http://pdfs.semanticscholar.org/3dda/181be266950ba1280b61eb63ac11777029f9.pdf +a947c21a15fb0a02378c36271e1addf6b6e110eb,http://www.researchgate.net/profile/Bryan_Conroy/publication/220734216_The_grouped_two-sided_orthogonal_Procrustes_problem/links/02e7e52541c3f27987000000.pdf +6d207360148ec3991b70952315cb3f1e8899e977,http://www.researchgate.net/profile/Edwin_Hancock/publication/224649584_Estimating_Cast_Shadows_using_SFS_and_Class-based_Surface_Completion/links/004635239fd1ed7ac5000000.pdf +63b29886577a37032c7e32d8899a6f69b11a90de,http://pdfs.semanticscholar.org/63b2/9886577a37032c7e32d8899a6f69b11a90de.pdf +3773e5d195f796b0b7df1fca6e0d1466ad84b5e7,http://pdfs.semanticscholar.org/3773/e5d195f796b0b7df1fca6e0d1466ad84b5e7.pdf +8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,http://pdfs.semanticscholar.org/8bb2/1b1f8d6952d77cae95b4e0b8964c9e0201b0.pdf +7fc5b6130e9d474dfb49d9612b6aa0297d481c8e,http://pdfs.semanticscholar.org/7fc5/b6130e9d474dfb49d9612b6aa0297d481c8e.pdf +32ecbbd76fdce249f9109594eee2d52a1cafdfc7,http://pdfs.semanticscholar.org/32ec/bbd76fdce249f9109594eee2d52a1cafdfc7.pdf +fdf533eeb1306ba418b09210387833bdf27bb756,http://pdfs.semanticscholar.org/fdf5/33eeb1306ba418b09210387833bdf27bb756.pdf +34a41ec648d082270697b9ee264f0baf4ffb5c8d,http://pdfs.semanticscholar.org/34a4/1ec648d082270697b9ee264f0baf4ffb5c8d.pdf +9e1c3b8b1653337094c1b9dba389e8533bc885b0,http://pdfs.semanticscholar.org/9e1c/3b8b1653337094c1b9dba389e8533bc885b0.pdf +47f5f740e225281c02c8a2ae809be201458a854f,http://pdfs.semanticscholar.org/5241/ad03e9276d4acd1c51eaa7f44e2d04d07b68.pdf +71e6a46b32a8163c9eda69e1badcee6348f1f56a,http://pdfs.semanticscholar.org/71e6/a46b32a8163c9eda69e1badcee6348f1f56a.pdf +790aa543151312aef3f7102d64ea699a1d15cb29,http://arxiv.org/pdf/1607.06290v1.pdf +37b6d6577541ed991435eaf899a2f82fdd72c790,http://pdfs.semanticscholar.org/37b6/d6577541ed991435eaf899a2f82fdd72c790.pdf +6a8a3c604591e7dd4346611c14dbef0c8ce9ba54,http://pdfs.semanticscholar.org/6a8a/3c604591e7dd4346611c14dbef0c8ce9ba54.pdf +7cf8a841aad5b7bdbea46a7bb820790e9ce12d0b,http://pdfs.semanticscholar.org/7cf8/a841aad5b7bdbea46a7bb820790e9ce12d0b.pdf +63eefc775bcd8ccad343433fc7a1dd8e1e5ee796,http://www.lv-nus.org/papers%5C2008%5C2008_J_6.pdf +4542273a157bfd4740645a6129d1784d1df775d2,http://pdfs.semanticscholar.org/4542/273a157bfd4740645a6129d1784d1df775d2.pdf +52bf00df3b970e017e4e2f8079202460f1c0e1bd,http://pdfs.semanticscholar.org/52bf/00df3b970e017e4e2f8079202460f1c0e1bd.pdf +e1f6e2651b7294951b5eab5d2322336af1f676dc,http://pdfs.semanticscholar.org/e1f6/e2651b7294951b5eab5d2322336af1f676dc.pdf +a6db73f10084ce6a4186363ea9d7475a9a658a11,http://pdfs.semanticscholar.org/afce/ebbea6e9130cf22142206c19a19cda226b13.pdf +bc910ca355277359130da841a589a36446616262,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_Conditional_High-Order_Boltzmann_ICCV_2015_paper.pdf +c0ee89dc2dad76147780f96294de9e421348c1f4,http://pdfs.semanticscholar.org/c0ee/89dc2dad76147780f96294de9e421348c1f4.pdf +8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,http://pdfs.semanticscholar.org/acf8/b9607ca39f20b9b1956b8761b37f14eb4284.pdf +38183fe28add21693729ddeaf3c8a90a2d5caea3,https://arxiv.org/pdf/1706.09876v1.pdf +e3bb83684817c7815f5005561a85c23942b1f46b,http://pdfs.semanticscholar.org/e3bb/83684817c7815f5005561a85c23942b1f46b.pdf +2cdd5b50a67e4615cb0892beaac12664ec53b81f,http://people.eecs.berkeley.edu/~junyanz/projects/mirrormirror/mirrormirror_small.pdf +92115b620c7f653c847f43b6c4ff0470c8e55dab,http://pdfs.semanticscholar.org/a77c/798d06060ece81c620458e4586819e75ae15.pdf +e4e95b8bca585a15f13ef1ab4f48a884cd6ecfcc,http://pdfs.semanticscholar.org/e4e9/5b8bca585a15f13ef1ab4f48a884cd6ecfcc.pdf +f8ed5f2c71e1a647a82677df24e70cc46d2f12a8,http://pdfs.semanticscholar.org/f8ed/5f2c71e1a647a82677df24e70cc46d2f12a8.pdf +0830c9b9f207007d5e07f5269ffba003235e4eff,http://pdfs.semanticscholar.org/cf2e/1ebb9609f46af6de0c15b4f48d03e37e54ba.pdf +dd2f6a1ba3650075245a422319d86002e1e87808,http://pdfs.semanticscholar.org/dd2f/6a1ba3650075245a422319d86002e1e87808.pdf +37619564574856c6184005830deda4310d3ca580,http://arxiv.org/pdf/1508.04389v1.pdf +4682fee7dc045aea7177d7f3bfe344aabf153bd5,http://www.cs.utexas.edu/~cv-fall2012/slides/elad-paper.pdf +171d8a39b9e3d21231004f7008397d5056ff23af,http://openaccess.thecvf.com/content_cvpr_2017/papers/Wu_Simultaneous_Facial_Landmark_CVPR_2017_paper.pdf +48c41ffab7ff19d24e8df3092f0b5812c1d3fb6e,http://www.iri.upc.edu/files/scidoc/1938-Multi-Modal-Embedding-for-Main-Product-Detection-in-Fashion.pdf +6fa7a1c8a858157deee3b582099e5e234798bb4a,http://biometrics.nist.gov/cs_links/ibpc2014/presentations/14_wednesday_gentric_IBPC14_morpho.pdf +37eb666b7eb225ffdafc6f318639bea7f0ba9a24,http://pdfs.semanticscholar.org/37eb/666b7eb225ffdafc6f318639bea7f0ba9a24.pdf +91a1945b9c40af4944a6cdcfe59a0999de4f650a,http://ccbr2017.org/ccbr%20PPT/95%E5%8F%B7%E8%AE%BA%E6%96%87-%E7%94%B3%E6%99%9A%E9%9C%9E%20wanxiahen-ccbr.pdf +d3d71a110f26872c69cf25df70043f7615edcf92,https://www.cise.ufl.edu/~dihong/assets/07094272.pdf +585260468d023ffc95f0e539c3fa87254c28510b,http://pdfs.semanticscholar.org/5852/60468d023ffc95f0e539c3fa87254c28510b.pdf +5ea9cba00f74d2e113a10c484ebe4b5780493964,http://pdfs.semanticscholar.org/5ea9/cba00f74d2e113a10c484ebe4b5780493964.pdf +97540905e4a9fdf425989a794f024776f28a3fa9,http://pdfs.semanticscholar.org/cc5a/1bf68ba00c20415e43684c6f75ce3fbc176c.pdf +5366573e96a1dadfcd4fd592f83017e378a0e185,http://pdfs.semanticscholar.org/5366/573e96a1dadfcd4fd592f83017e378a0e185.pdf +0aae88cf63090ea5b2c80cd014ef4837bcbaadd8,http://pdfs.semanticscholar.org/0aae/88cf63090ea5b2c80cd014ef4837bcbaadd8.pdf +0ec67c69e0975cfcbd8ba787cc0889aec4cc5399,http://pdfs.semanticscholar.org/1af3/6a1fc18328e2a0310bc4208ef35ba882bdc1.pdf +2910fcd11fafee3f9339387929221f4fc1160973,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Becker_Evaluating_Open-Universe_Face_2013_CVPR_paper.pdf +e73b9b16adcf4339ff4d6723e61502489c50c2d9,http://pdfs.semanticscholar.org/e73b/9b16adcf4339ff4d6723e61502489c50c2d9.pdf +b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3,http://cs.adelaide.edu.au/~javen/pub/ShiLiShe10.pdf +68f9cb5ee129e2b9477faf01181cd7e3099d1824,http://pdfs.semanticscholar.org/68f9/cb5ee129e2b9477faf01181cd7e3099d1824.pdf +74325f3d9aea3a810fe4eab8863d1a48c099de11,http://pdfs.semanticscholar.org/7432/5f3d9aea3a810fe4eab8863d1a48c099de11.pdf +6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,http://pdfs.semanticscholar.org/6eb1/b5935b0613a41b72fd9e7e53a3c0b32651e9.pdf +935a7793cbb8f102924fa34fce1049727de865c2,https://ivi.fnwi.uva.nl/isis/publications/2015/AlnajarICIP20015/AlnajarICIP20015.pdf +6888f3402039a36028d0a7e2c3df6db94f5cb9bb,http://pdfs.semanticscholar.org/6888/f3402039a36028d0a7e2c3df6db94f5cb9bb.pdf +a25106a76af723ba9b09308a7dcf4f76d9283589,http://pdfs.semanticscholar.org/a251/06a76af723ba9b09308a7dcf4f76d9283589.pdf +ea6f5c8e12513dbaca6bbdff495ef2975b8001bd,http://pdfs.semanticscholar.org/ea6f/5c8e12513dbaca6bbdff495ef2975b8001bd.pdf +097104fc731a15fad07479f4f2c4be2e071054a2,http://pdfs.semanticscholar.org/dbad/94c3506a342f55f54388e162e8481ae8b184.pdf +3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a,http://www.cse.msu.edu/~rossarun/BiometricsTextBook/Papers/Security/Teoh_BioHash_PAMI06.pdf +33ba256d59aefe27735a30b51caf0554e5e3a1df,http://pdfs.semanticscholar.org/33ba/256d59aefe27735a30b51caf0554e5e3a1df.pdf +4ed54d5093d240cc3644e4212f162a11ae7d1e3b,http://pdfs.semanticscholar.org/4ed5/4d5093d240cc3644e4212f162a11ae7d1e3b.pdf +42dc36550912bc40f7faa195c60ff6ffc04e7cd6,http://pdfs.semanticscholar.org/42dc/36550912bc40f7faa195c60ff6ffc04e7cd6.pdf +beb49072f5ba79ed24750108c593e8982715498e,http://pdfs.semanticscholar.org/beb4/9072f5ba79ed24750108c593e8982715498e.pdf +a7267bc781a4e3e79213bb9c4925dd551ea1f5c4,http://pdfs.semanticscholar.org/a726/7bc781a4e3e79213bb9c4925dd551ea1f5c4.pdf +994b52bf884c71a28b4f5be4eda6baaacad1beee,http://www.yugangjiang.info/publication/BIGMM15-summit-invited.pdf +4d15254f6f31356963cc70319ce416d28d8924a3,http://pdfs.semanticscholar.org/4d15/254f6f31356963cc70319ce416d28d8924a3.pdf +2cdd9e445e7259117b995516025fcfc02fa7eebb,http://hub.hku.hk/bitstream/10722/61208/1/Content.pdf +e200c3f2849d56e08056484f3b6183aa43c0f13a,http://pdfs.semanticscholar.org/e200/c3f2849d56e08056484f3b6183aa43c0f13a.pdf +4d9c02567e7b9e065108eb83ea3f03fcff880462,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Towards_Facial_Expression_CVPR_2016_paper.pdf +ed04e161c953d345bcf5b910991d7566f7c486f7,http://pdfs.semanticscholar.org/ed04/e161c953d345bcf5b910991d7566f7c486f7.pdf +0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136,https://ibug.doc.ic.ac.uk/media/uploads/documents/booth2017large.pdf +97f9c3bdb4668f3e140ded2da33fe704fc81f3ea,http://pdfs.semanticscholar.org/97f9/c3bdb4668f3e140ded2da33fe704fc81f3ea.pdf +6515fe829d0b31a5e1f4dc2970a78684237f6edb,http://pdfs.semanticscholar.org/6515/fe829d0b31a5e1f4dc2970a78684237f6edb.pdf +14ce7635ff18318e7094417d0f92acbec6669f1c,http://www.cs.tau.ac.il/~wolf/papers/deepface_11_01_2013.pdf +096eb8b4b977aaf274c271058feff14c99d46af3,http://www.dtic.mil/dtic/tr/fulltext/u2/a585819.pdf +ca54d0a128b96b150baef392bf7e498793a6371f,http://pdfs.semanticscholar.org/ca54/d0a128b96b150baef392bf7e498793a6371f.pdf +43836d69f00275ba2f3d135f0ca9cf88d1209a87,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0030-7?site=ipsjcva.springeropen.com +b3154d981eca98416074538e091778cbc031ca29,http://pdfs.semanticscholar.org/b315/4d981eca98416074538e091778cbc031ca29.pdf +24bf94f8090daf9bda56d54e42009067839b20df,https://www.computer.org/csdl/trans/tp/2015/06/06940284.pdf +ada73060c0813d957576be471756fa7190d1e72d,http://pdfs.semanticscholar.org/ada7/3060c0813d957576be471756fa7190d1e72d.pdf +d9a1dd762383213741de4c1c1fd9fccf44e6480d,http://pdfs.semanticscholar.org/d9a1/dd762383213741de4c1c1fd9fccf44e6480d.pdf +5f5906168235613c81ad2129e2431a0e5ef2b6e4,https://arxiv.org/pdf/1601.00199v1.pdf +aece472ba64007f2e86300cc3486c84597f02ec7,http://doras.dcu.ie/439/1/ieee_smap_2007.pdf +02c993d361dddba9737d79e7251feca026288c9c,http://eprints.eemcs.utwente.nl/26377/01/Automatic_player_detection_and_recognition_in_images_using_AdaBoost.pdf +16395b40e19cbc6d5b82543039ffff2a06363845,https://arxiv.org/pdf/1605.03222v1.pdf +498fd231d7983433dac37f3c97fb1eafcf065268,http://pdfs.semanticscholar.org/498f/d231d7983433dac37f3c97fb1eafcf065268.pdf +a46086e210c98dcb6cb9a211286ef906c580f4e8,http://pdfs.semanticscholar.org/dc94/43e3ae2fe70282b1b30e3eda3717b58c0808.pdf +b5667d087aafcf6b91f3c77aa90cee1ac185f8f1,http://www-ee.ccny.cuny.edu/wwwn/yltian/Publications/ICIP17.pdf +ff398e7b6584d9a692e70c2170b4eecaddd78357,http://pdfs.semanticscholar.org/ff39/8e7b6584d9a692e70c2170b4eecaddd78357.pdf +2e8a0cc071017845ee6f67bd0633b8167a47abed,https://arxiv.org/pdf/1303.6021v1.pdf +7bf0a1aa1d0228a51d24c0c3a83eceb937a6ae25,http://pdfs.semanticscholar.org/7bf0/a1aa1d0228a51d24c0c3a83eceb937a6ae25.pdf +3538d2b5f7ab393387ce138611ffa325b6400774,http://pdfs.semanticscholar.org/3538/d2b5f7ab393387ce138611ffa325b6400774.pdf +070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf +e8686663aec64f4414eba6a0f821ab9eb9f93e38,http://pdfs.semanticscholar.org/e868/6663aec64f4414eba6a0f821ab9eb9f93e38.pdf +06d7ef72fae1be206070b9119fb6b61ce4699587,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zafeiriou_On_One-Shot_Similarity_2013_ICCV_paper.pdf +26a89701f4d41806ce8dbc8ca00d901b68442d45,http://pdfs.semanticscholar.org/b7d8/fea52643236bd9b0dd7eec5f1cde248d10f6.pdf +205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2009/Vretos_2009_ICIP.pdf +d1881993c446ea693bbf7f7d6e750798bf958900,http://pdfs.semanticscholar.org/d188/1993c446ea693bbf7f7d6e750798bf958900.pdf +0cd8895b4a8f16618686f622522726991ca2a324,http://pdfs.semanticscholar.org/0cd8/895b4a8f16618686f622522726991ca2a324.pdf +cda4fb9df653b5721ad4fe8b4a88468a410e55ec,http://pdfs.semanticscholar.org/cda4/fb9df653b5721ad4fe8b4a88468a410e55ec.pdf +8886b21f97c114a23b24dc7025bbf42885adc3a7,http://researchprofiles.herts.ac.uk/portal/files/10195320/UH_eval_deid_face_final.pdf +78f438ed17f08bfe71dfb205ac447ce0561250c6,http://pdfs.semanticscholar.org/78f4/38ed17f08bfe71dfb205ac447ce0561250c6.pdf +cb9092fe74ea6a5b2bb56e9226f1c88f96094388,http://pdfs.semanticscholar.org/cb90/92fe74ea6a5b2bb56e9226f1c88f96094388.pdf +5495e224ac7b45b9edc5cfeabbb754d8a40a879b,http://pdfs.semanticscholar.org/5495/e224ac7b45b9edc5cfeabbb754d8a40a879b.pdf +176fc31a686fb70d73f1fa354bf043ad236f7aa3,http://www.cs.brown.edu/~black/Papers/ofevaltr.pdf +c7685fdbee2d96ef056a89ab4fa43df5aeae7ba7,http://staff.science.uva.nl/~nicu/publications/SMC04.pdf +6e12ba518816cbc2d987200c461dc907fd19f533,http://pdfs.semanticscholar.org/6e12/ba518816cbc2d987200c461dc907fd19f533.pdf +be07f2950771d318a78d2b64de340394f7d6b717,http://pdfs.semanticscholar.org/be07/f2950771d318a78d2b64de340394f7d6b717.pdf +8f5ce25e6e1047e1bf5b782d045e1dac29ca747e,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Kotsia07b.pdf +0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae,http://pdfs.semanticscholar.org/0ced/7b814ec3bb9aebe0fcf0cac3d78f36361eae.pdf +8e461978359b056d1b4770508e7a567dbed49776,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sikka_LOMo_Latent_Ordinal_CVPR_2016_paper.pdf +00dc942f23f2d52ab8c8b76b6016d9deed8c468d,http://pdfs.semanticscholar.org/00dc/942f23f2d52ab8c8b76b6016d9deed8c468d.pdf +68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5,http://pdfs.semanticscholar.org/68a2/ee5c5b76b6feeb3170aaff09b1566ec2cdf5.pdf +437a720c6f6fc1959ba95e48e487eb3767b4e508,http://pdfs.semanticscholar.org/d4f0/960c6587379ad7df7928c256776e25952c60.pdf +0ac664519b2b8abfb8966dafe60d093037275573,http://face.cs.kit.edu/download/publications/supplemental_material.pdf +2d84c0d96332bb4fbd8acced98e726aabbf15591,http://pdfs.semanticscholar.org/2d84/c0d96332bb4fbd8acced98e726aabbf15591.pdf +86ed5b9121c02bcf26900913f2b5ea58ba23508f,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wang_Actions__Transformations_CVPR_2016_paper.pdf +74408cfd748ad5553cba8ab64e5f83da14875ae8,http://pdfs.semanticscholar.org/7440/8cfd748ad5553cba8ab64e5f83da14875ae8.pdf +3b9b200e76a35178da940279d566bbb7dfebb787,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf +6a5fe819d2b72b6ca6565a0de117c2b3be448b02,http://pdfs.semanticscholar.org/6a5f/e819d2b72b6ca6565a0de117c2b3be448b02.pdf +8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82,http://pdfs.semanticscholar.org/e09e/aa666f354d4262d5ff4cf4ef54a960561bbe.pdf +3f4c262d836b2867a53eefb959057350bf7219c9,http://pdfs.semanticscholar.org/3f4c/262d836b2867a53eefb959057350bf7219c9.pdf +fffa2943808509fdbd2fc817cc5366752e57664a,http://pdfs.semanticscholar.org/fffa/2943808509fdbd2fc817cc5366752e57664a.pdf +9c9ef6a46fb6395702fad622f03ceeffbada06e5,http://pdfs.semanticscholar.org/f1e3/d1d26e39f98608037b195761f61fa7532925.pdf +7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae,http://pdfs.semanticscholar.org/7f97/a36a5a634c30de5a8e8b2d1c812ca9f971ae.pdf +23aba7b878544004b5dfa64f649697d9f082b0cf,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Wang_Locality-Constrained_Discriminative_Learning_2015_CVPR_paper.pdf +e1c59e00458b4dee3f0e683ed265735f33187f77,http://pdfs.semanticscholar.org/e1c5/9e00458b4dee3f0e683ed265735f33187f77.pdf +5aad56cfa2bac5d6635df4184047e809f8fecca2,http://chenlab.ece.cornell.edu/people/Amir/publications/picture_password.pdf +f9ccfe000092121a2016639732cdb368378256d5,http://pdfs.semanticscholar.org/f9cc/fe000092121a2016639732cdb368378256d5.pdf +7859667ed6c05a467dfc8a322ecd0f5e2337db56,http://pdfs.semanticscholar.org/7859/667ed6c05a467dfc8a322ecd0f5e2337db56.pdf +60cdcf75e97e88638ec973f468598ae7f75c59b4,http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/tmm08face.pdf +0969e0dc05fca21ff572ada75cb4b703c8212e80,http://pdfs.semanticscholar.org/0969/e0dc05fca21ff572ada75cb4b703c8212e80.pdf +d588dd4f305cdea37add2e9bb3d769df98efe880,http://pdfs.semanticscholar.org/d588/dd4f305cdea37add2e9bb3d769df98efe880.pdf +57b052cf826b24739cd7749b632f85f4b7bcf90b,http://pdfs.semanticscholar.org/57b0/52cf826b24739cd7749b632f85f4b7bcf90b.pdf +1f9b2f70c24a567207752989c5bd4907442a9d0f,http://pdfs.semanticscholar.org/1f9b/2f70c24a567207752989c5bd4907442a9d0f.pdf +3db75962857a602cae65f60f202d311eb4627b41,https://pdfs.semanticscholar.org/3db7/5962857a602cae65f60f202d311eb4627b41.pdf +ed28e8367fcb7df7e51963add9e2d85b46e2d5d6,http://pdfs.semanticscholar.org/ed28/e8367fcb7df7e51963add9e2d85b46e2d5d6.pdf +00214fe1319113e6649435cae386019235474789,http://pdfs.semanticscholar.org/0021/4fe1319113e6649435cae386019235474789.pdf +d67dcaf6e44afd30c5602172c4eec1e484fc7fb7,http://pdfs.semanticscholar.org/d67d/caf6e44afd30c5602172c4eec1e484fc7fb7.pdf +91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0,http://pdfs.semanticscholar.org/94c3/624c54f8f070a9dc82a41cbf7a888fe8f477.pdf +013909077ad843eb6df7a3e8e290cfd5575999d2,http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf +90b11e095c807a23f517d94523a4da6ae6b12c76,https://arxiv.org/pdf/1609.08475v1.pdf +08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d,http://pdfs.semanticscholar.org/b680/2fb123c594a9fd621ae576651201fcc4329a.pdf +500b92578e4deff98ce20e6017124e6d2053b451,http://eprints.eemcs.utwente.nl/25818/01/Pantic_Incremental_Face_Alignment_in_the_Wild.pdf +0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7,http://pdfs.semanticscholar.org/0ae9/cc6a06cfd03d95eee4eca9ed77b818b59cb7.pdf +656ef752b363a24f84cc1aeba91e4fa3d5dd66ba,http://pdfs.semanticscholar.org/656e/f752b363a24f84cc1aeba91e4fa3d5dd66ba.pdf +053b263b4a4ccc6f9097ad28ebf39c2957254dfb,http://pdfs.semanticscholar.org/7a49/4b4489408ec3adea15817978ecd2e733f5fe.pdf +a6ebe013b639f0f79def4c219f585b8a012be04f,http://pdfs.semanticscholar.org/a6eb/e013b639f0f79def4c219f585b8a012be04f.pdf +59690814e916d1c0e7aa9190678ba847cbd0046f,http://figment.cse.usf.edu/~sfefilat/data/papers/ThBCT8.7.pdf +0b87d91fbda61cdea79a4b4dcdcb6d579f063884,http://pdfs.semanticscholar.org/0b87/d91fbda61cdea79a4b4dcdcb6d579f063884.pdf +17035089959a14fe644ab1d3b160586c67327db2,http://pdfs.semanticscholar.org/1703/5089959a14fe644ab1d3b160586c67327db2.pdf +bbe1332b4d83986542f5db359aee1fd9b9ba9967,http://pdfs.semanticscholar.org/bbe1/332b4d83986542f5db359aee1fd9b9ba9967.pdf +bd07d1f68486052b7e4429dccecdb8deab1924db,http://pdfs.semanticscholar.org/bd07/d1f68486052b7e4429dccecdb8deab1924db.pdf +0a511058edae582e8327e8b9d469588c25152dc6,http://pdfs.semanticscholar.org/0a51/1058edae582e8327e8b9d469588c25152dc6.pdf +29156e4fe317b61cdcc87b0226e6f09e416909e0,http://pdfs.semanticscholar.org/b880/78d284c9f77172dd23970522856a7042c961.pdf +b8dba0504d6b4b557d51a6cf4de5507141db60cf,http://pdfs.semanticscholar.org/b8db/a0504d6b4b557d51a6cf4de5507141db60cf.pdf +38215c283ce4bf2c8edd597ab21410f99dc9b094,https://pure.qub.ac.uk/portal/files/9746839/IEEE_Transactions_on_Affective_Computing_2012_McKeown.pdf +055530f7f771bb1d5f352e2758d1242408d34e4d,http://pdfs.semanticscholar.org/0555/30f7f771bb1d5f352e2758d1242408d34e4d.pdf +247cab87b133bd0f4f9e8ce5e7fc682be6340eac,http://pdfs.semanticscholar.org/247c/ab87b133bd0f4f9e8ce5e7fc682be6340eac.pdf +3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,http://pdfs.semanticscholar.org/3411/ef1ff5ad11e45106f7863e8c7faf563f4ee1.pdf +7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,http://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf +92fada7564d572b72fd3be09ea3c39373df3e27c,http://pdfs.semanticscholar.org/b8a4/f51a85fb801e1a5f04c213725d60133233a0.pdf +2717998d89d34f45a1cca8b663b26d8bf10608a9,http://wangzheallen.github.io/papers/ZhangWWQW_CVPR16.pdf +0faee699eccb2da6cf4307ded67ba8434368257b,http://pdfs.semanticscholar.org/2396/5bd9b557b04b2c81a35ee5c16951c0e420f3.pdf +842d82081f4b27ca2d4bc05c6c7e389378f0c7b8,http://pdfs.semanticscholar.org/842d/82081f4b27ca2d4bc05c6c7e389378f0c7b8.pdf +2489a839d0a761ef8520393a7e412c36f5f26324,https://cs.adelaide.edu.au/~tjchin/lib/exe/fetch.php?media=eccv2014_hypergraph.pdf +53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9,http://pdfs.semanticscholar.org/53d7/8c8dbac7c9be8eb148c6a9e1d672f1dd72f9.pdf +35e87e06cf19908855a16ede8c79a0d3d7687b5c,http://pdfs.semanticscholar.org/35e8/7e06cf19908855a16ede8c79a0d3d7687b5c.pdf +78fdf2b98cf6380623b0e20b0005a452e736181e,http://pdfs.semanticscholar.org/78fd/f2b98cf6380623b0e20b0005a452e736181e.pdf +6f0d3610c4ee7b67e9d435d48bc98167761251e8,http://www.cs.washington.edu/homes/wufei/papers/IJCNN.pdf +5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7,http://cbl.uh.edu/pub_files/ISBA-2016.pdf +7af38f6dcfbe1cd89f2307776bcaa09c54c30a8b,http://pdfs.semanticscholar.org/7af3/8f6dcfbe1cd89f2307776bcaa09c54c30a8b.pdf +1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,https://arxiv.org/pdf/1608.00486v3.pdf +15728d6fd5c9fc20b40364b733228caf63558c31,http://pdfs.semanticscholar.org/1572/8d6fd5c9fc20b40364b733228caf63558c31.pdf +3fde656343d3fd4223e08e0bc835552bff4bda40,http://pdfs.semanticscholar.org/3fde/656343d3fd4223e08e0bc835552bff4bda40.pdf +0562fc7eca23d47096472a1d42f5d4d086e21871,http://pdfs.semanticscholar.org/0562/fc7eca23d47096472a1d42f5d4d086e21871.pdf +956c634343e49319a5e3cba4f2bd2360bdcbc075,http://www.cse.ust.hk/~jamesk/papers/tsmc06.pdf +7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,http://pdfs.semanticscholar.org/7e1e/a2679a110241ed0dd38ff45cd4dfeb7a8e83.pdf +430c4d7ad76e51d83bbd7ec9d3f856043f054915,http://pdfs.semanticscholar.org/5176/899c80b3d4b3b8be34d35549f95bf2d55e7d.pdf +14e759cb019aaf812d6ac049fde54f40c4ed1468,http://pdfs.semanticscholar.org/14e7/59cb019aaf812d6ac049fde54f40c4ed1468.pdf +6f2dc51d607f491dbe6338711c073620c85351ac,http://pdfs.semanticscholar.org/6f2d/c51d607f491dbe6338711c073620c85351ac.pdf +28d99dc2d673d62118658f8375b414e5192eac6f,http://www.cs.wayne.edu/~mdong/cvpr17.pdf +8c13f2900264b5cf65591e65f11e3f4a35408b48,http://cvhci.ira.uka.de/~stiefel/papers/Ekenel_Local_Appearance.pdf +1e41a3fdaac9f306c0ef0a978ae050d884d77d2a,http://www.cs.huji.ac.il/~daphna/course/CoursePapers/SerreEtAl%20PAMI2007.pdf +10550ee13855bd7403946032354b0cd92a10d0aa,http://www.public.asu.edu/~chaitali/confpapers/neuromorphic_dac12.pdf +3ee7a8107a805370b296a53e355d111118e96b7c,http://pdfs.semanticscholar.org/3ee7/a8107a805370b296a53e355d111118e96b7c.pdf +12692fbe915e6bb1c80733519371bbb90ae07539,http://pdfs.semanticscholar.org/50ef/4817a6e50a2ec525d6e417d05d2400983c11.pdf +2c7c3a74da960cc76c00965bd3e343958464da45,http://pdfs.semanticscholar.org/2c7c/3a74da960cc76c00965bd3e343958464da45.pdf +2d1f86e2c7ba81392c8914edbc079ac64d29b666,https://arxiv.org/pdf/1702.04471v1.pdf +7862f646d640cbf9f88e5ba94a7d642e2a552ec9,http://pdfs.semanticscholar.org/7862/f646d640cbf9f88e5ba94a7d642e2a552ec9.pdf +2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,https://www.cse.iitb.ac.in/~sharat/icvgip.org/icvgip2010/papers/53.sethuram.134.pdf +7f6061c83dc36633911e4d726a497cdc1f31e58a,http://pdfs.semanticscholar.org/7f60/61c83dc36633911e4d726a497cdc1f31e58a.pdf +89c84628b6f63554eec13830851a5d03d740261a,http://pdfs.semanticscholar.org/89c8/4628b6f63554eec13830851a5d03d740261a.pdf +102b968d836177f9c436141e382915a4f8549276,https://ibug.doc.ic.ac.uk/media/uploads/documents/PanticEtAl-ACM-MM05-Proc.pdf +45c31cde87258414f33412b3b12fc5bec7cb3ba9,http://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf +2b42f83a720bd4156113ba5350add2df2673daf0,http://pdfs.semanticscholar.org/2b42/f83a720bd4156113ba5350add2df2673daf0.pdf +37c8514df89337f34421dc27b86d0eb45b660a5e,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Uricar_Facial_Landmark_Tracking_ICCV_2015_paper.pdf +a52d9e9daf2cb26b31bf2902f78774bd31c0dd88,http://pdfs.semanticscholar.org/a52d/9e9daf2cb26b31bf2902f78774bd31c0dd88.pdf +aadf4b077880ae5eee5dd298ab9e79a1b0114555,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Presti_Using_Hankel_Matrices_2015_CVPR_paper.pdf +eed1dd2a5959647896e73d129272cb7c3a2e145c,http://s3.amazonaws.com/kvaccaro.com/documents/UIST16.pdf +d5fa9d98c8da54a57abf353767a927d662b7f026,http://pdfs.semanticscholar.org/f15e/9712b8731e1f5fd9566aca513edda910b5b8.pdf +c1d2d12ade031d57f8d6a0333cbe8a772d752e01,http://pdfs.semanticscholar.org/c1d2/d12ade031d57f8d6a0333cbe8a772d752e01.pdf +db1f48a7e11174d4a724a4edb3a0f1571d649670,http://pdfs.semanticscholar.org/db1f/48a7e11174d4a724a4edb3a0f1571d649670.pdf +0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5,http://ca.cs.cmu.edu/sites/default/files/9MMED_CVPR12.pdf +41cfc9edbf36754746991c2a1e9a47c0d129d105,https://www.cs.princeton.edu/~ohad/papers/FriedShechtmanGoldmanFinkelstein_SIGGRAPH2016.pdf +47fdbd64edd7d348713253cf362a9c21f98e4296,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C071_yamashita2015.pdf +6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01293.pdf +366d20f8fd25b4fe4f7dc95068abc6c6cabe1194,http://arxiv.org/pdf/1605.05411v1.pdf +43bb20ccfda7b111850743a80a5929792cb031f0,http://pdfs.semanticscholar.org/43bb/20ccfda7b111850743a80a5929792cb031f0.pdf +bd236913cfe07896e171ece9bda62c18b8c8197e,http://pdfs.semanticscholar.org/bd23/6913cfe07896e171ece9bda62c18b8c8197e.pdf +5157dde17a69f12c51186ffc20a0a6c6847f1a29,http://arxiv.org/pdf/1505.04373v2.pdf +ce56be1acffda599dec6cc2af2b35600488846c9,http://pdfs.semanticscholar.org/ce56/be1acffda599dec6cc2af2b35600488846c9.pdf +f074e86e003d5b7a3b6e1780d9c323598d93f3bc,http://pdfs.semanticscholar.org/f074/e86e003d5b7a3b6e1780d9c323598d93f3bc.pdf +9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6,http://pdfs.semanticscholar.org/9d8f/f782f68547cf72b7f3f3beda9dc3e8ecfce6.pdf +1be498d4bbc30c3bfd0029114c784bc2114d67c0,http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf +191d30e7e7360d565b0c1e2814b5bcbd86a11d41,http://homepages.rpi.edu/~wuy9/DiscriminativeDeepFaceShape/DiscriminativeDeepFaceShape_IJCV.pdf +31182c5ffc8c5d8772b6db01ec98144cd6e4e897,http://pdfs.semanticscholar.org/3118/2c5ffc8c5d8772b6db01ec98144cd6e4e897.pdf +862d17895fe822f7111e737cbcdd042ba04377e8,http://pdfs.semanticscholar.org/862d/17895fe822f7111e737cbcdd042ba04377e8.pdf +634541661d976c4b82d590ef6d1f3457d2857b19,http://pdfs.semanticscholar.org/6345/41661d976c4b82d590ef6d1f3457d2857b19.pdf +f913bb65b62b0a6391ffa8f59b1d5527b7eba948,http://pdfs.semanticscholar.org/f913/bb65b62b0a6391ffa8f59b1d5527b7eba948.pdf +5b73b7b335f33cda2d0662a8e9520f357b65f3ac,http://www.iis.sinica.edu.tw/papers/song/16795-F.pdf +4b02387c2db968a70b69d98da3c443f139099e91,http://pdfs.semanticscholar.org/4b02/387c2db968a70b69d98da3c443f139099e91.pdf +fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f,http://pdfs.semanticscholar.org/fd9f/eb21b3d1fab470ff82e3f03efce6a0e67a1f.pdf +5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Yang_Improving_3D_Face_2014_CVPR_paper.pdf +8f5facdc0a2a79283864aad03edc702e2a400346,http://pdfs.semanticscholar.org/8f5f/acdc0a2a79283864aad03edc702e2a400346.pdf +31c34a5b42a640b824fa4e3d6187e3675226143e,http://pdfs.semanticscholar.org/31c3/4a5b42a640b824fa4e3d6187e3675226143e.pdf +2b3ceb40dced78a824cf67054959e250aeaa573b,http://pdfs.semanticscholar.org/7493/4a2b65538f42701e15f7f532437db2beead2.pdf +ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf,http://pdfs.semanticscholar.org/ae71/f69f1db840e0aa17f8c814316f0bd0f6fbbf.pdf +55966926e7c28b1eee1c7eb7a0b11b10605a1af0,http://pdfs.semanticscholar.org/baa8/bdeb5aa545af5b5f43efaf9dda08490da0bc.pdf +25728e08b0ee482ee6ced79c74d4735bb5478e29,http://pdfs.semanticscholar.org/2572/8e08b0ee482ee6ced79c74d4735bb5478e29.pdf +a3f684930c5c45fcb56a2b407d26b63879120cbf,http://pdfs.semanticscholar.org/a3f6/84930c5c45fcb56a2b407d26b63879120cbf.pdf +e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef,http://pdfs.semanticscholar.org/e69a/c130e3c7267cce5e1e3d9508ff76eb0e0eef.pdf +b62571691a23836b35719fc457e093b0db187956,http://pdfs.semanticscholar.org/b625/71691a23836b35719fc457e093b0db187956.pdf +1d21e5beef23eecff6fff7d4edc16247f0fd984a,http://pdfs.semanticscholar.org/1d21/e5beef23eecff6fff7d4edc16247f0fd984a.pdf +47ca2df3d657d7938d7253bed673505a6a819661,http://pdfs.semanticscholar.org/47ca/2df3d657d7938d7253bed673505a6a819661.pdf +377c6563f97e76a4dc836a0bd23d7673492b1aae,http://pdfs.semanticscholar.org/377c/6563f97e76a4dc836a0bd23d7673492b1aae.pdf +4270460b8bc5299bd6eaf821d5685c6442ea179a,http://www.cs.technion.ac.il/~ron/PAPERS/BronBronBrucKimIJCV09.pdf +7862d40da0d4e33cd6f5c71bbdb47377e4c6b95a,https://arxiv.org/pdf/1709.07598v1.pdf +1e5a1619fe5586e5ded2c7a845e73f22960bbf5a,https://arxiv.org/pdf/1509.04783v1.pdf +2a3e19d7c54cba3805115497c69069dd5a91da65,http://pdfs.semanticscholar.org/2a3e/19d7c54cba3805115497c69069dd5a91da65.pdf +321c8ba38db118d8b02c0ba209be709e6792a2c7,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Yan_Learn_to_Combine_2013_ICCV_paper.pdf +3bcd72be6fbc1a11492df3d36f6d51696fd6bdad,http://pdfs.semanticscholar.org/3bcd/72be6fbc1a11492df3d36f6d51696fd6bdad.pdf +3fd90098551bf88c7509521adf1c0ba9b5dfeb57,http://pub.ist.ac.at/~chl/papers/lampert-pami2013.pdf +15cd05baa849ab058b99a966c54d2f0bf82e7885,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_031_ext.pdf +881066ec43bcf7476479a4146568414e419da804,http://pdfs.semanticscholar.org/8810/66ec43bcf7476479a4146568414e419da804.pdf +2ad0ee93d029e790ebb50574f403a09854b65b7e,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf +01bef320b83ac4405b3fc5b1cff788c124109fb9,http://pdfs.semanticscholar.org/49e4/37cc5b673c49b942e304607a0050dcc82dae.pdf +1a45ddaf43bcd49d261abb4a27977a952b5fff12,http://pdfs.semanticscholar.org/1a45/ddaf43bcd49d261abb4a27977a952b5fff12.pdf +e0638e0628021712ac76e3472663ccc17bd8838c,http://pdfs.semanticscholar.org/e063/8e0628021712ac76e3472663ccc17bd8838c.pdf +aca273a9350b10b6e2ef84f0e3a327255207d0f5,http://pdfs.semanticscholar.org/efb2/4d35d8f6a46e1ff3800a2481bc7e681e255e.pdf +08e24f9df3d55364290d626b23f3d42b4772efb6,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu06c.pdf +c6608fdd919f2bc4f8d7412bab287527dcbcf505,http://pdfs.semanticscholar.org/c660/8fdd919f2bc4f8d7412bab287527dcbcf505.pdf +2f184c6e2c31d23ef083c881de36b9b9b6997ce9,http://pdfs.semanticscholar.org/2f18/4c6e2c31d23ef083c881de36b9b9b6997ce9.pdf +df2494da8efa44d70c27abf23f73387318cf1ca8,http://pdfs.semanticscholar.org/df24/94da8efa44d70c27abf23f73387318cf1ca8.pdf +7b63ed54345d8c06523f6b03c41a09b5c8f227e2,http://research.iaun.ac.ir/pd/pourghassem/pdfs/PaperC_1187.pdf +14b87359f6874ff9b8ee234b18b418e57e75b762,http://pdfs.semanticscholar.org/1b62/6c14544f249cd52ef86a4efc17f3d3834003.pdf +11408af8861fb0a977412e58c1a23d61b8df458c,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2014/0265.pdf +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,http://pdfs.semanticscholar.org/1f89/439524e87a6514f4fbe7ed34bda4fd1ce286.pdf +1c147261f5ab1b8ee0a54021a3168fa191096df8,http://pdfs.semanticscholar.org/1c14/7261f5ab1b8ee0a54021a3168fa191096df8.pdf +40389b941a6901c190fb74e95dc170166fd7639d,http://pdfs.semanticscholar.org/56f7/dad4d6d98292061a2c1e399d9a0ecfbbbde3.pdf +621ed006945e9438910b5aa4f6214888dea3d791,http://figment.cse.usf.edu/~sfefilat/data/papers/ThAT9.20.pdf +7a9c317734acaf4b9bd8e07dd99221c457b94171,http://pdfs.semanticscholar.org/7a9c/317734acaf4b9bd8e07dd99221c457b94171.pdf +19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9,https://arxiv.org/pdf/1503.03832v2.pdf +27d709f7b67204e1e5e05fe2cfac629afa21699d,http://pdfs.semanticscholar.org/2b88/db4294f11b0516a537b8720fcf416be80dbf.pdf +f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3,http://pdfs.semanticscholar.org/f7c5/0d2be9fba0e4527fd9fbe3095e9d9a94fdd3.pdf +2e6cfeba49d327de21ae3186532e56cadeb57c02,http://openaccess.thecvf.com/content_ICCV_2017/papers/Wang_Real_Time_Eye_ICCV_2017_paper.pdf +a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51,http://pdfs.semanticscholar.org/a7d2/3c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51.pdf +c95cd36779fcbe45e3831ffcd3314e19c85defc5,https://arxiv.org/pdf/1703.04853v1.pdf +dbe0e533d715f8543bcf197f3b8e5cffa969dfc0,http://pdfs.semanticscholar.org/dbe0/e533d715f8543bcf197f3b8e5cffa969dfc0.pdf +45c340c8e79077a5340387cfff8ed7615efa20fd,http://pdfs.semanticscholar.org/45c3/40c8e79077a5340387cfff8ed7615efa20fd.pdf +a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3,http://pdfs.semanticscholar.org/a4a0/b5f08198f6d7ea2d1e81bd97fea21afe3fc3.pdf +4300fa1221beb9dc81a496cd2f645c990a7ede53,http://pdfs.semanticscholar.org/da71/87e56b6da1b9c993d9a096d2f2b9d80fb14c.pdf +0d06b3a4132d8a2effed115a89617e0a702c957a,http://arxiv.org/pdf/1605.08680v1.pdf +b5f4e617ac3fc4700ec8129fcd0dcf5f71722923,http://pdfs.semanticscholar.org/c4dd/f94ed445bad0793cd4ba2813506d02221ec0.pdf +397aeaea61ecdaa005b09198942381a7a11cd129,http://pdfs.semanticscholar.org/e30b/df82a358587f7d27ee4ea0b34762328c2a8d.pdf +d6ca3dc01de060871839d5536e8112b551a7f9ff,https://arxiv.org/pdf/1802.08310v1.pdf +294bd7eb5dc24052237669cdd7b4675144e22306,http://pdfs.semanticscholar.org/294b/d7eb5dc24052237669cdd7b4675144e22306.pdf +061e29eae705f318eee703b9e17dc0989547ba0c,http://pdfs.semanticscholar.org/061e/29eae705f318eee703b9e17dc0989547ba0c.pdf +12003a7d65c4f98fb57587fd0e764b44d0d10125,http://luks.fe.uni-lj.si/en/staff/simond/publications/Dobrisek2015.pdf +e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=8BA80DE8A35C6665EB6C19D582E5689F?doi=10.1.1.227.7824&rep=rep1&type=pdf +8699268ee81a7472a0807c1d3b1db0d0ab05f40d,http://pdfs.semanticscholar.org/8699/268ee81a7472a0807c1d3b1db0d0ab05f40d.pdf +61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,http://pdfs.semanticscholar.org/61ff/edd8a70a78332c2bbdc9feba6c3d1fd4f1b8.pdf +06400a24526dd9d131dfc1459fce5e5189b7baec,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01054.pdf +64f9519f20acdf703984f02e05fd23f5e2451977,http://arxiv.org/pdf/1509.01343v1.pdf +378ae5ca649f023003021f5a63e393da3a4e47f0,http://vision.ucsd.edu/~carolina/files/galleguillos_cvpr10.pdf +36018404263b9bb44d1fddaddd9ee9af9d46e560,http://pdfs.semanticscholar.org/3601/8404263b9bb44d1fddaddd9ee9af9d46e560.pdf +449b1b91029e84dab14b80852e35387a9275870e,https://pdfs.semanticscholar.org/608c/da0c14c3d134d9d18dd38f9682b23c31d367.pdf +21a2f67b21905ff6e0afa762937427e92dc5aa0b,http://pdfs.semanticscholar.org/21a2/f67b21905ff6e0afa762937427e92dc5aa0b.pdf +a57b37549edba625f5955759e259e52eb0af8773,http://learning.cs.toronto.edu/~hinton/absps/ranzato_cvpr2011.pdf +3630324c2af04fd90f8668f9ee9709604fe980fd,http://www.yugangjiang.info/publication/TCSVT-Shu.pdf +0ba64f4157d80720883a96a73e8d6a5f5b9f1d9b,http://pdfs.semanticscholar.org/84b7/e2138a3701432c33ea70a1297328cd814ab5.pdf +38a9ca2c49a77b540be52377784b9f734e0417e4,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_IJCB_Faces.pdf +0ebc50b6e4b01eb5eba5279ce547c838890b1418,http://pdfs.semanticscholar.org/0ebc/50b6e4b01eb5eba5279ce547c838890b1418.pdf +1742e6c347037d5d4ccbdf5c7a27dfbf0afedb91,http://www1.i2r.a-star.edu.sg/~htang/Unified_Framework_for_Subspace_Clustering-TNNLS.pdf +7897c8a9361b427f7b07249d21eb9315db189496,https://arxiv.org/pdf/1102.2743v2.pdf +24496e4acfb8840616b2960b0e2c80cc4c9e5a87,http://ai2-s2-pdfs.s3.amazonaws.com/2449/6e4acfb8840616b2960b0e2c80cc4c9e5a87.pdf +fae83b145e5eeda8327de9f19df286edfaf5e60c,http://pdfs.semanticscholar.org/fae8/3b145e5eeda8327de9f19df286edfaf5e60c.pdf +abeda55a7be0bbe25a25139fb9a3d823215d7536,http://pdfs.semanticscholar.org/abed/a55a7be0bbe25a25139fb9a3d823215d7536.pdf +b6052dc718c72f2506cfd9d29422642ecf3992ef,http://pdfs.semanticscholar.org/b605/2dc718c72f2506cfd9d29422642ecf3992ef.pdf +42df75080e14d32332b39ee5d91e83da8a914e34,http://www.imlab.tw/wp-content/uploads/2015/11/Illumination-Compensation-Using-Oriented-Local-Histogram-Equalization-and-its-Application-to-Face-Recognition.pdf +f7452a12f9bd927398e036ea6ede02da79097e6e,http://pdfs.semanticscholar.org/f745/2a12f9bd927398e036ea6ede02da79097e6e.pdf +c50d73557be96907f88b59cfbd1ab1b2fd696d41,http://pdfs.semanticscholar.org/c50d/73557be96907f88b59cfbd1ab1b2fd696d41.pdf +ae753fd46a744725424690d22d0d00fb05e53350,http://pdfs.semanticscholar.org/ae75/3fd46a744725424690d22d0d00fb05e53350.pdf +bb489e4de6f9b835d70ab46217f11e32887931a2,http://conteudo.icmc.usp.br/pessoas/moacir/p17sibgrapi-tutorial/2017-SIBGRAPI_Tutorial-Survey_Paper-Deep_Learning_for_Computer_Vision.pdf +adfaf01773c8af859faa5a9f40fb3aa9770a8aa7,http://pdfs.semanticscholar.org/adfa/f01773c8af859faa5a9f40fb3aa9770a8aa7.pdf +948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494,http://pdfs.semanticscholar.org/948a/f4b04b4a9ae4bff2777ffbcb29d5bfeeb494.pdf +f8c94afd478821681a1565d463fc305337b02779,http://pdfs.semanticscholar.org/f8c9/4afd478821681a1565d463fc305337b02779.pdf +4a4da3d1bbf10f15b448577e75112bac4861620a,http://pdfs.semanticscholar.org/4a4d/a3d1bbf10f15b448577e75112bac4861620a.pdf +ff1f45bdad41d8b35435098041e009627e60d208,http://pdfs.semanticscholar.org/ff1f/45bdad41d8b35435098041e009627e60d208.pdf +03c48d8376990cff9f541d542ef834728a2fcda2,http://dvmmweb.cs.columbia.edu/files/dvmm_scnn_paper.pdf +a472d59cff9d822f15f326a874e666be09b70cfd,http://pdfs.semanticscholar.org/a472/d59cff9d822f15f326a874e666be09b70cfd.pdf +527dda77a3864d88b35e017d542cb612f275a4ec,https://arxiv.org/pdf/1709.00531v1.pdf +f19ab817dd1ef64ee94e94689b0daae0f686e849,http://pdfs.semanticscholar.org/f19a/b817dd1ef64ee94e94689b0daae0f686e849.pdf +ae4e2c81c8a8354c93c4b21442c26773352935dd,http://pdfs.semanticscholar.org/ae4e/2c81c8a8354c93c4b21442c26773352935dd.pdf +529b1f33aed49dbe025a99ac1d211c777ad881ec,https://teresaproject.eu/wp-content/uploads/2015/07/kossaifi_bidirectional_icip.pdf +3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,http://pdfs.semanticscholar.org/51f7/3cfcc6d671bd99b5c3c512ff9b7bb959f33b.pdf +d00c335fbb542bc628642c1db36791eae24e02b7,http://pdfs.semanticscholar.org/d00c/335fbb542bc628642c1db36791eae24e02b7.pdf +5d09d5257139b563bd3149cfd5e6f9eae3c34776,http://pdfs.semanticscholar.org/5d09/d5257139b563bd3149cfd5e6f9eae3c34776.pdf +6cd96f2b63c6b6f33f15c0ea366e6003f512a951,http://pdfs.semanticscholar.org/6cd9/6f2b63c6b6f33f15c0ea366e6003f512a951.pdf +14e428f2ff3dc5cf96e5742eedb156c1ea12ece1,http://www.univ-soukahras.dz/eprints/2014-150-03190.pdf +34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4c,http://pdfs.semanticscholar.org/9e97/360b519d9912ded55618ccbb000d74d8e35c.pdf +11b89011298e193d9e6a1d99302221c1d8645bda,http://openaccess.thecvf.com/content_iccv_2015/papers/Gao_Structured_Feature_Selection_ICCV_2015_paper.pdf +6582f4ec2815d2106957215ca2fa298396dde274,http://mi.eng.cam.ac.uk/~cipolla/publications/article/2007-PAMI-face-sets.pdf +06f146dfcde10915d6284981b6b84b85da75acd4,http://cmlab.csie.ntu.edu.tw/~sirius42/papers/tmm12.pdf +4ea4116f57c5d5033569690871ba294dc3649ea5,http://pdfs.semanticscholar.org/4ea4/116f57c5d5033569690871ba294dc3649ea5.pdf +661da40b838806a7effcb42d63a9624fcd684976,http://pdfs.semanticscholar.org/661d/a40b838806a7effcb42d63a9624fcd684976.pdf +fd615118fb290a8e3883e1f75390de8a6c68bfde,http://pdfs.semanticscholar.org/fd61/5118fb290a8e3883e1f75390de8a6c68bfde.pdf +3d0f9a3031bee4b89fab703ff1f1d6170493dc01,http://pdfs.semanticscholar.org/3d0f/9a3031bee4b89fab703ff1f1d6170493dc01.pdf +2c8743089d9c7df04883405a31b5fbe494f175b4,http://srl.informatik.uni-freiburg.de/publicationsdir/linderICRA15.pdf +e4c2f8e4aace8cb851cb74478a63d9111ca550ae,http://pdfs.semanticscholar.org/e4c2/f8e4aace8cb851cb74478a63d9111ca550ae.pdf +322b7a4ce006e4d14748dd064e80ffba573ebcd7,http://cheonji.kaist.ac.kr/pdfsrc/ic/2008_KHAn_ROMAN.pdf +4de757faa69c1632066391158648f8611889d862,http://pdfs.semanticscholar.org/4de7/57faa69c1632066391158648f8611889d862.pdf +4fd29e5f4b7186e349ba34ea30738af7860cf21f,https://arxiv.org/pdf/1506.02588v1.pdf +5922e26c9eaaee92d1d70eae36275bb226ecdb2e,http://pdfs.semanticscholar.org/5922/e26c9eaaee92d1d70eae36275bb226ecdb2e.pdf +3f4798c7701da044bdb7feb61ebdbd1d53df5cfe,http://sip.unige.ch/articles/2015/2015.EUSIPCO.Vector.quantization.pdf +5c473cfda1d7c384724fbb139dfe8cb39f79f626,http://www.cs.zju.edu.cn/~gpan/publication/2012-PAA-face-expression-onlinefirst.pdf +4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,http://pdfs.semanticscholar.org/4541/c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6.pdf +ab87dfccb1818bdf0b41d732da1f9335b43b74ae,http://pdfs.semanticscholar.org/ab87/dfccb1818bdf0b41d732da1f9335b43b74ae.pdf +10195a163ab6348eef37213a46f60a3d87f289c5,https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/156130/eth-50296-01.pdf +5bae9822d703c585a61575dced83fa2f4dea1c6d,http://pdfs.semanticscholar.org/5bae/9822d703c585a61575dced83fa2f4dea1c6d.pdf +fd96432675911a702b8a4ce857b7c8619498bf9f,http://pdfs.semanticscholar.org/fd96/432675911a702b8a4ce857b7c8619498bf9f.pdf +7071cd1ee46db4bc1824c4fd62d36f6d13cad08a,http://pdfs.semanticscholar.org/7071/cd1ee46db4bc1824c4fd62d36f6d13cad08a.pdf +c3418f866a86dfd947c2b548cbdeac8ca5783c15,http://pdfs.semanticscholar.org/c341/8f866a86dfd947c2b548cbdeac8ca5783c15.pdf +1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/icmr038-liA.pdf +11fdff97f4511ae3d3691cfdeec5a19fa04db6ef,http://mclab.eic.hust.edu.cn/UpLoadFiles/Papers/SCA_TIP2016.pdf +48f0055295be7b175a06df5bc6fa5c6b69725785,http://pdfs.semanticscholar.org/48f0/055295be7b175a06df5bc6fa5c6b69725785.pdf +9ef2b2db11ed117521424c275c3ce1b5c696b9b3,http://pdfs.semanticscholar.org/c31b/dd00734807938dcfd8a12375bd9ffa556985.pdf +4f773c8e7ca98ece9894ba3a22823127a70c6e6c,http://pdfs.semanticscholar.org/4f77/3c8e7ca98ece9894ba3a22823127a70c6e6c.pdf +302c9c105d49c1348b8f1d8cc47bead70e2acf08,http://pdfs.semanticscholar.org/302c/9c105d49c1348b8f1d8cc47bead70e2acf08.pdf +439647914236431c858535a2354988dde042ef4d,http://eecs.qmul.ac.uk/~jason/Research/PreprintVersion/Face%20Illumination%20Normalization%20on%20Large%20and%20Small%20Scale%20Features.pdf +519f4eb5fe15a25a46f1a49e2632b12a3b18c94d,https://www.cise.ufl.edu/~arunava/papers/pami-abrdf.pdf +0568fc777081cbe6de95b653644fec7b766537b2,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Liu_Learning_Expressionlets_on_2014_CVPR_paper.pdf +5bb684dfe64171b77df06ba68997fd1e8daffbe1,http://pdfs.semanticscholar.org/f096/9403b5dfa54445d911aedd88ab25b0b6cd99.pdf +bcc172a1051be261afacdd5313619881cbe0f676,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002197.pdf +e4e3faa47bb567491eaeaebb2213bf0e1db989e1,http://pdfs.semanticscholar.org/e4e3/faa47bb567491eaeaebb2213bf0e1db989e1.pdf +5cb83eba8d265afd4eac49eb6b91cdae47def26d,http://www.kresttechnology.com/krest-academic-projects/krest-major-projects/ECE/B-Tech%20Papers/21.pdf +7480d8739eb7ab97c12c14e75658e5444b852e9f,http://pdfs.semanticscholar.org/cfe4/b03951be323394e6749f6a30b2ac9b924479.pdf +b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88,http://pdfs.semanticscholar.org/b59c/8b44a568587bc1b61d130f0ca2f7a2ae3b88.pdf +7f6599e674a33ed64549cd512ad75bdbd28c7f6c,http://pdfs.semanticscholar.org/7f65/99e674a33ed64549cd512ad75bdbd28c7f6c.pdf +4b7c110987c1d89109355b04f8597ce427a7cd72,http://pdfs.semanticscholar.org/4b7c/110987c1d89109355b04f8597ce427a7cd72.pdf +521482c2089c62a59996425603d8264832998403,http://pdfs.semanticscholar.org/5214/82c2089c62a59996425603d8264832998403.pdf +cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf +711bb5f63139ee7a9b9aef21533f959671a7d80e,http://pdfs.semanticscholar.org/711b/b5f63139ee7a9b9aef21533f959671a7d80e.pdf +a090d61bfb2c3f380c01c0774ea17929998e0c96,http://iitlab.bit.edu.cn/mcislab/~jiayunde/pdf/CVPR2012_BrickIllumDimension.pdf +1a40092b493c6b8840257ab7f96051d1a4dbfeb2,http://web.cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf +783f3fccde99931bb900dce91357a6268afecc52,http://pdfs.semanticscholar.org/d1ea/f2cc9dfc6cdbc5468ef2152c46e9111a3f3b.pdf +1c3073b57000f9b6dbf1c5681c52d17c55d60fd7,http://pdfs.semanticscholar.org/1c30/73b57000f9b6dbf1c5681c52d17c55d60fd7.pdf +ab8fb278db4405f7db08fa59404d9dd22d38bc83,http://pdfs.semanticscholar.org/ab8f/b278db4405f7db08fa59404d9dd22d38bc83.pdf +2df4d05119fe3fbf1f8112b3ad901c33728b498a,http://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf +9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4,http://pdfs.semanticscholar.org/9696/b172d66e402a2e9d0a8d2b3f204ad8b98cc4.pdf +0c435e7f49f3e1534af0829b7461deb891cf540a,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_Capturing_Global_Semantic_2013_ICCV_paper.pdf +5aadd85e2a77e482d44ac2a215c1f21e4a30d91b,http://pdfs.semanticscholar.org/5aad/d85e2a77e482d44ac2a215c1f21e4a30d91b.pdf +efd28eabebb9815e34031316624e7f095c7dfcfe,http://pdfs.semanticscholar.org/efd2/8eabebb9815e34031316624e7f095c7dfcfe.pdf +31b58ced31f22eab10bd3ee2d9174e7c14c27c01,http://pdfs.semanticscholar.org/31b5/8ced31f22eab10bd3ee2d9174e7c14c27c01.pdf +b3c398da38d529b907b0bac7ec586c81b851708f,http://www.cbsr.ia.ac.cn/publications/Stan/WHT-FG2004.pdf +4ac4e8d17132f2d9812a0088594d262a9a0d339b,http://pdfs.semanticscholar.org/4ac4/e8d17132f2d9812a0088594d262a9a0d339b.pdf +32c9ebd2685f522821eddfc19c7c91fd6b3caf22,http://pdfs.semanticscholar.org/32c9/ebd2685f522821eddfc19c7c91fd6b3caf22.pdf +148eb413bede35487198ce7851997bf8721ea2d6,http://pdfs.semanticscholar.org/148e/b413bede35487198ce7851997bf8721ea2d6.pdf +287795991fad3c61d6058352879c7d7ae1fdd2b6,http://pdfs.semanticscholar.org/2877/95991fad3c61d6058352879c7d7ae1fdd2b6.pdf +273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,http://arxiv.org/pdf/1604.04334v1.pdf +b20cfbb2348984b4e25b6b9174f3c7b65b6aed9e,http://pdfs.semanticscholar.org/b20c/fbb2348984b4e25b6b9174f3c7b65b6aed9e.pdf +1a031378cf1d2b9088a200d9715d87db8a1bf041,http://pdfs.semanticscholar.org/1a03/1378cf1d2b9088a200d9715d87db8a1bf041.pdf +926c67a611824bc5ba67db11db9c05626e79de96,http://www.ee.columbia.edu/ln/dvmm/publications/09/xu_ebsl.pdf +9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc,http://pdfs.semanticscholar.org/9686/dcf40e6fdc4152f38bd12b929bcd4f3bbbcc.pdf +03adcf58d947a412f3904a79f2ab51cfdf0e838a,http://pdfs.semanticscholar.org/03ad/cf58d947a412f3904a79f2ab51cfdf0e838a.pdf +98519f3f615e7900578bc064a8fb4e5f429f3689,http://pdfs.semanticscholar.org/9851/9f3f615e7900578bc064a8fb4e5f429f3689.pdf +8b30259a8ab07394d4dac971f3d3bd633beac811,http://pdfs.semanticscholar.org/8b30/259a8ab07394d4dac971f3d3bd633beac811.pdf +016cbf0878db5c40566c1fbc237686fbad666a33,http://pdfs.semanticscholar.org/5a07/986f0a202eafbd1f1574fe2c3ae6abe2281f.pdf +d68dbb71b34dfe98dee0680198a23d3b53056394,http://pdfs.semanticscholar.org/d68d/bb71b34dfe98dee0680198a23d3b53056394.pdf +8b2e3805b37c18618b74b243e7a6098018556559,http://pdfs.semanticscholar.org/8b2e/3805b37c18618b74b243e7a6098018556559.pdf +011e6146995d5d63c852bd776f782cc6f6e11b7b,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhuang_Fast_Training_of_CVPR_2016_paper.pdf +179e566a2c1a2a48aa3d0028209c11ebe7d6740e,http://homepages.rpi.edu/~wuy9/EyeDetectionDBM/DeepFeaturesEyeDetection.pdf +dcb44fc19c1949b1eda9abe998935d567498467d,http://pdfs.semanticscholar.org/dcb4/4fc19c1949b1eda9abe998935d567498467d.pdf +7ce03597b703a3b6754d1adac5fbc98536994e8f,http://pdfs.semanticscholar.org/7ce0/3597b703a3b6754d1adac5fbc98536994e8f.pdf +40217a8c60e0a7d1735d4f631171aa6ed146e719,http://pdfs.semanticscholar.org/4021/7a8c60e0a7d1735d4f631171aa6ed146e719.pdf +47e3029a3d4cf0a9b0e96252c3dc1f646e750b14,http://mmi.tudelft.nl/pub/dragos/_CompSysTech07.pdf +57b8b28f8748d998951b5a863ff1bfd7ca4ae6a5,http://pdfs.semanticscholar.org/57b8/b28f8748d998951b5a863ff1bfd7ca4ae6a5.pdf +40ca925befa1f7e039f0cd40d57dbef6007b4416,https://arxiv.org/pdf/1706.07567v1.pdf +2a65d7d5336b377b7f5a98855767dd48fa516c0f,https://mug.ee.auth.gr/wp-content/uploads/fsLDA.pdf +0c1d85a197a1f5b7376652a485523e616a406273,http://openaccess.thecvf.com/content_cvpr_2017/papers/Hayat_Joint_Registration_and_CVPR_2017_paper.pdf +7c1e1c767f7911a390d49bed4f73952df8445936,http://cmp.felk.cvut.cz/~zimmerk/zimmermann-TPAMI-2014.pdf +a000149e83b09d17e18ed9184155be140ae1266e,http://pdfs.semanticscholar.org/a000/149e83b09d17e18ed9184155be140ae1266e.pdf +5d233e6f23b1c306cf62af49ce66faac2078f967,http://pdfs.semanticscholar.org/5d23/3e6f23b1c306cf62af49ce66faac2078f967.pdf +3028690d00bd95f20842d4aec84dc96de1db6e59,http://pdfs.semanticscholar.org/775f/9b8bc0ff151ee62b5e777f0aa9b09484ef8a.pdf +5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,http://pdfs.semanticscholar.org/5fb5/d9389e2a2a4302c81bcfc068a4c8d4efe70c.pdf +fc516a492cf09aaf1d319c8ff112c77cfb55a0e5,http://pdfs.semanticscholar.org/fc51/6a492cf09aaf1d319c8ff112c77cfb55a0e5.pdf +6342a4c54835c1e14159495373ab18b4233d2d9b,http://pdfs.semanticscholar.org/6342/a4c54835c1e14159495373ab18b4233d2d9b.pdf +98a120802aef324599e8b9014decfeb2236a78a3,http://nyunetworks.com/Pubs/butler-chi16.pdf +118ca3b2e7c08094e2a50137b1548ada7935e505,http://pdfs.semanticscholar.org/dc5c/273198b16dc615888256da74758f4a4b128b.pdf +5e6ba16cddd1797853d8898de52c1f1f44a73279,http://pdfs.semanticscholar.org/5e6b/a16cddd1797853d8898de52c1f1f44a73279.pdf +4688787d064e59023a304f7c9af950d192ddd33e,http://www.cse.msu.edu/~liuxm/publication/Roth_Liu_Ross_Metaxas_TIFS.pdf +75e9a141b85d902224f849ea61ab135ae98e7bfb,http://pdfs.semanticscholar.org/d1a5/0fffd1c9cf033943636b9e18172ed68582b1.pdf +4c170a0dcc8de75587dae21ca508dab2f9343974,http://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf +361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,http://pdfs.semanticscholar.org/361c/9ba853c7d69058ddc0f32cdbe94fbc2166d5.pdf +b7eead8586ffe069edd190956bd338d82c69f880,http://pdfs.semanticscholar.org/b7ee/ad8586ffe069edd190956bd338d82c69f880.pdf +11f17191bf74c80ad0b16b9f404df6d03f7c8814,http://pdfs.semanticscholar.org/11f5/c82e3a39b9c8b91370ef7286a748c19b658a.pdf +40b0fced8bc45f548ca7f79922e62478d2043220,http://pdfs.semanticscholar.org/40b0/fced8bc45f548ca7f79922e62478d2043220.pdf +4140498e96a5ff3ba816d13daf148fffb9a2be3f,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Li_Constrained.pdf +e7b6887cd06d0c1aa4902335f7893d7640aef823,http://pdfs.semanticscholar.org/e7b6/887cd06d0c1aa4902335f7893d7640aef823.pdf +76fd801981fd69ff1b18319c450cb80c4bc78959,http://pdfs.semanticscholar.org/76fd/801981fd69ff1b18319c450cb80c4bc78959.pdf +703c9c8f20860a1b1be63e6df1622b2021b003ca,http://openaccess.thecvf.com/content_ICCV_2017/papers/Kobayashi_Flip-Invariant_Motion_Representation_ICCV_2017_paper.pdf +2ca43325a5dbde91af90bf850b83b0984587b3cc,http://pdfs.semanticscholar.org/2ca4/3325a5dbde91af90bf850b83b0984587b3cc.pdf +029b53f32079063047097fa59cfc788b2b550c4b,http://pdfs.semanticscholar.org/b71c/73fcae520f6a5cdbce18c813633fb3d66342.pdf +951368a1a8b3c5cd286726050b8bdf75a80f7c37,https://vision.cornell.edu/se3/wp-content/uploads/2014/09/osb_iccv09_cam.pdf +e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6,http://pdfs.semanticscholar.org/e48f/b3ee27eef1e503d7ba07df8eb1524c47f4a6.pdf +c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,http://pdfs.semanticscholar.org/c652/6dd3060d63a6c90e8b7ff340383c4e0e0dd8.pdf +0c60eebe10b56dbffe66bb3812793dd514865935,http://arxiv.org/pdf/1502.07209.pdf +13719bbb4bb8bbe0cbcdad009243a926d93be433,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Tian_Deep_LDA-Pruned_Nets_CVPR_2017_paper.pdf +59bfeac0635d3f1f4891106ae0262b81841b06e4,http://pdfs.semanticscholar.org/59bf/eac0635d3f1f4891106ae0262b81841b06e4.pdf +193ec7bb21321fcf43bbe42233aed06dbdecbc5c,http://pdfs.semanticscholar.org/d40e/f2ca85d8b7540948677c2ed07f1f3677cfdd.pdf +44fbbaea6271e47ace47c27701ed05e15da8f7cf,http://pdfs.semanticscholar.org/44fb/baea6271e47ace47c27701ed05e15da8f7cf.pdf +7e9df45ece7843fe050033c81014cc30b3a8903a,http://pdfs.semanticscholar.org/7e9d/f45ece7843fe050033c81014cc30b3a8903a.pdf +4362368dae29cc66a47114d5ffeaf0534bf0159c,http://pdfs.semanticscholar.org/4362/368dae29cc66a47114d5ffeaf0534bf0159c.pdf +4a64758786e3f49fc13781304197591ffbd69a6e,http://vicos.fri.uni-lj.si/alesl/files/2008/05/fidlerpami06.pdf +99001ac9fdaf7649c0d0bd8d2078719bafd216d9,http://people.ee.duke.edu/~lcarin/TPAMI_2007_General_tensor_analysis.pdf +17aa78bd4331ef490f24bdd4d4cd21d22a18c09c,http://pdfs.semanticscholar.org/17aa/78bd4331ef490f24bdd4d4cd21d22a18c09c.pdf +a4f37cfdde3af723336205b361aefc9eca688f5c,http://pdfs.semanticscholar.org/a4f3/7cfdde3af723336205b361aefc9eca688f5c.pdf +230c4a30f439700355b268e5f57d15851bcbf41f,http://arxiv.org/pdf/1509.01509v2.pdf +0290523cabea481e3e147b84dcaab1ef7a914612,http://pdfs.semanticscholar.org/0290/523cabea481e3e147b84dcaab1ef7a914612.pdf +5e821cb036010bef259046a96fe26e681f20266e,https://pdfs.semanticscholar.org/d7e6/d52748c5ed386a90118fa385647c55954ab9.pdf +1c1f957d85b59d23163583c421755869f248ceef,http://homepages.rpi.edu/~wuy9/ICCV15/FLD_iccv15.pdf +39ce143238ea1066edf0389d284208431b53b802,http://pdfs.semanticscholar.org/39ce/143238ea1066edf0389d284208431b53b802.pdf +d522c162bd03e935b1417f2e564d1357e98826d2,http://pdfs.semanticscholar.org/d522/c162bd03e935b1417f2e564d1357e98826d2.pdf +22f656d0f8426c84a33a267977f511f127bfd7f3,https://arxiv.org/pdf/1609.06426v2.pdf +2c61a9e26557dd0fe824909adeadf22a6a0d86b0,http://pdfs.semanticscholar.org/f117/3a4c5e3501323b37c1ae9a6d7dd8a236eab8.pdf +501096cca4d0b3d1ef407844642e39cd2ff86b37,http://pdfs.semanticscholar.org/5010/96cca4d0b3d1ef407844642e39cd2ff86b37.pdf +fc20149dfdff5fdf020647b57e8a09c06e11434b,http://pdfs.semanticscholar.org/fc20/149dfdff5fdf020647b57e8a09c06e11434b.pdf +1e64b2d2f0a8a608d0d9d913c4baee6973995952,http://sergioescalera.com/wp-content/uploads/2017/06/FG_presentation.pdf +4967b0acc50995aa4b28e576c404dc85fefb0601,http://pdfs.semanticscholar.org/4967/b0acc50995aa4b28e576c404dc85fefb0601.pdf +50e47857b11bfd3d420f6eafb155199f4b41f6d7,http://pdfs.semanticscholar.org/50e4/7857b11bfd3d420f6eafb155199f4b41f6d7.pdf +31a2fb63a3fc67da9932474cda078c9ac43f85c5,http://www.researchgate.net/profile/Sadeep_Jayasumana2/publication/269040853_Kernel_Methods_on_Riemannian_Manifolds_with_Gaussian_RBF_Kernels/links/54858a6a0cf283750c37264b.pdf +122ee00cc25c0137cab2c510494cee98bd504e9f,http://pdfs.semanticscholar.org/122e/e00cc25c0137cab2c510494cee98bd504e9f.pdf +28c9198d30447ffe9c96176805c1cd81615d98c8,http://pdfs.semanticscholar.org/28c9/198d30447ffe9c96176805c1cd81615d98c8.pdf +08fbe3187f31b828a38811cc8dc7ca17933b91e9,http://www.merl.com/publications/docs/TR2011-084.pdf +74f643579949ccd566f2638b85374e7a6857a9fc,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/ICPR/MBP%20ICPR10(Revise%20final).pdf +4be03fd3a76b07125cd39777a6875ee59d9889bd,http://homes.esat.kuleuven.be/~tuytelaa/Tuytelaars-BeyondConceptSearch-WIAMIS12.pdf +1742ffea0e1051b37f22773613f10f69d2e4ed2c,http://pdfs.semanticscholar.org/1742/ffea0e1051b37f22773613f10f69d2e4ed2c.pdf +584909d2220b52c0d037e8761d80cb22f516773f,http://www.cs.tau.ac.il/~nachumd/papers/OFTA.pdf +2cfc28a96b57e0817cc9624a5d553b3aafba56f3,https://web.njit.edu/~borcea/papers/ieee-sarnoff16.pdf +6f1a784ebb8df0689361afe26a2e5f7a1f4c66ca,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553757.pdf +e6d689054e87ad3b8fbbb70714d48712ad84dc1c,http://pdfs.semanticscholar.org/e6d6/89054e87ad3b8fbbb70714d48712ad84dc1c.pdf +0fae5d9d2764a8d6ea691b9835d497dd680bbccd,http://pdfs.semanticscholar.org/0fae/5d9d2764a8d6ea691b9835d497dd680bbccd.pdf +1dc6c0ad19b41e5190fc9fe50e3ae27f49f18fa2,http://www.researchgate.net/profile/Stefano_Alletto/publication/265611795_Head_Pose_Estimation_in_First-Person_Camera_Views/links/5416b5ef0cf2788c4b35e14b.pdf +42e0127a3fd6a96048e0bc7aab6d0ae88ba00fb0,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553734.pdf +6c690af9701f35cd3c2f6c8d160b8891ad85822a,http://www.umiacs.umd.edu/~fyang/papers/iccv15.pdf +2d84e30c61281d3d7cdd11676683d6e66a68aea6,http://pdfs.semanticscholar.org/2d84/e30c61281d3d7cdd11676683d6e66a68aea6.pdf +22143664860c6356d3de3556ddebe3652f9c912a,http://pdfs.semanticscholar.org/2214/3664860c6356d3de3556ddebe3652f9c912a.pdf +9ac82909d76b4c902e5dde5838130de6ce838c16,http://pdfs.semanticscholar.org/9ac8/2909d76b4c902e5dde5838130de6ce838c16.pdf +a1dd806b8f4f418d01960e22fb950fe7a56c18f1,https://www.cc.gatech.edu/~parikh/Publications/ParikhGrauman_CVPR2011_nameable.pdf +566038a3c2867894a08125efe41ef0a40824a090,http://mirlab.org/conference_papers/international_conference/icassp%202009/pdfs/0001945.pdf +787c1bb6d1f2341c5909a0d6d7314bced96f4681,http://pdfs.semanticscholar.org/787c/1bb6d1f2341c5909a0d6d7314bced96f4681.pdf +00f1e5e954f9eb7ffde3ca74009a8c3c27358b58,http://www.vision.caltech.edu/holub/public_html/Papers/PDF/holub_et_al_face_clustering.pdf +52012b4ecb78f6b4b9ea496be98bcfe0944353cd,http://pdfs.semanticscholar.org/5201/2b4ecb78f6b4b9ea496be98bcfe0944353cd.pdf +9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2,http://pdfs.semanticscholar.org/9d8f/d639a7aeab0dd1bc6eef9d11540199fd6fe2.pdf +1e1e66783f51a206509b0a427e68b3f6e40a27c8,http://pdfs.semanticscholar.org/1e1e/66783f51a206509b0a427e68b3f6e40a27c8.pdf +6e173ad91b288418c290aa8891193873933423b3,http://pdfs.semanticscholar.org/eb3b/021406fe5a5002535b392cac60832aa8f162.pdf +4abaebe5137d40c9fcb72711cdefdf13d9fc3e62,http://pdfs.semanticscholar.org/4aba/ebe5137d40c9fcb72711cdefdf13d9fc3e62.pdf +88850b73449973a34fefe491f8836293fc208580,http://pdfs.semanticscholar.org/8885/0b73449973a34fefe491f8836293fc208580.pdf +1943c6bf8df8a64bd539a5cd6d4e68785eb590c2,http://ccs.njit.edu/inst/source/02MDDM08.pdf +3be7b7eb11714e6191dd301a696c734e8d07435f,http://pdfs.semanticscholar.org/3be7/b7eb11714e6191dd301a696c734e8d07435f.pdf +be86d88ecb4192eaf512f29c461e684eb6c35257,http://pdfs.semanticscholar.org/be86/d88ecb4192eaf512f29c461e684eb6c35257.pdf +0d087aaa6e2753099789cd9943495fbbd08437c0,http://pdfs.semanticscholar.org/beab/b0d9d30871d517c5d915cf852f7f5293f52f.pdf +dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e,http://pdfs.semanticscholar.org/dae4/20b776957e6b8cf5fbbacd7bc0ec226b3e2e.pdf +009cd18ff06ff91c8c9a08a91d2516b264eee48e,http://pdfs.semanticscholar.org/009c/d18ff06ff91c8c9a08a91d2516b264eee48e.pdf +972ef9ddd9059079bdec17abc8b33039ed25c99c,http://pdfs.semanticscholar.org/972e/f9ddd9059079bdec17abc8b33039ed25c99c.pdf +9d36c81b27e67c515df661913a54a797cd1260bb,http://pdfs.semanticscholar.org/9d36/c81b27e67c515df661913a54a797cd1260bb.pdf +05bcc5235721fd6a465a63774d28720bacc60858,http://www.site.uottawa.ca/~fshi098/papers/Gradient_Boundary_Histograms_for_Action_Recognition.pdf +434bf475addfb580707208618f99c8be0c55cf95,http://pdfs.semanticscholar.org/8cea/404e8a5c4c11064923e5a6c023a0ae594a5a.pdf +22dabd4f092e7f3bdaf352edd925ecc59821e168,http://dro.deakin.edu.au/eserv/DU:30044576/venkatesh-exploitingside-2008.pdf +ddf099f0e0631da4a6396a17829160301796151c,http://pdfs.semanticscholar.org/ddf0/99f0e0631da4a6396a17829160301796151c.pdf +5d197c8cd34473eb6cde6b65ced1be82a3a1ed14,http://cdn.intechopen.com/pdfs/20590/InTech-A_face_image_database_for_evaluating_out_of_focus_blur.pdf +189b1859f77ddc08027e1e0f92275341e5c0fdc6,http://pdfs.semanticscholar.org/189b/1859f77ddc08027e1e0f92275341e5c0fdc6.pdf +ccbfc004e29b3aceea091056b0ec536e8ea7c47e,http://research.microsoft.com/~yqxu/papers/IEEE%20ICIP2005.pdf +38d56ddcea01ce99902dd75ad162213cbe4eaab7,http://pdfs.semanticscholar.org/38d5/6ddcea01ce99902dd75ad162213cbe4eaab7.pdf +cbd004d4c5e3b64321dc1a8f05fa5d64500389c2,http://www.researchgate.net/profile/Wen_Li38/publication/261711227_POSE-ROBUST_REPRESENTATION_FOR_FACE_VERIFICATION_IN_UNCONSTRAINED_VIDEOS/links/00b7d53535ed96428c000000.pdf +a29a22878e1881d6cbf6acff2d0b209c8d3f778b,http://pdfs.semanticscholar.org/a29a/22878e1881d6cbf6acff2d0b209c8d3f778b.pdf +7c953868cd51f596300c8231192d57c9c514ae17,http://courses.cs.washington.edu/courses/cse590v/13au/CVPR13_FaceDetection.pdf +73fd7e74457e0606704c5c3d3462549f1b2de1ad,http://pdfs.semanticscholar.org/73fd/7e74457e0606704c5c3d3462549f1b2de1ad.pdf +ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a,http://pdfs.semanticscholar.org/ff44/d8938c52cfdca48c80f8e1618bbcbf91cb2a.pdf +a74251efa970b92925b89eeef50a5e37d9281ad0,http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf +8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09,http://pdfs.semanticscholar.org/8f3e/3f0f97844d3bfd9e9ec566ac7a54f6931b09.pdf +45513d0f2f5c0dac5b61f9ff76c7e46cce62f402,http://pdfs.semanticscholar.org/4551/3d0f2f5c0dac5b61f9ff76c7e46cce62f402.pdf +3bd56f4cf8a36dd2d754704bcb71415dcbc0a165,http://www.humansensing.cs.cmu.edu/sites/default/files/4robustreg.pdf +1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,http://pdfs.semanticscholar.org/1fd3/dbb6e910708fa85c8a86e17ba0b6fef5617c.pdf +49e85869fa2cbb31e2fd761951d0cdfa741d95f3,http://studentnet.cs.manchester.ac.uk/pgt/COMP61021/reference/adaptive-manifold-learning.pdf +29b86534d4b334b670914038c801987e18eb5532,http://www.cs.toronto.edu/~makarand/papers/ICVGIP2014.pdf +610a4451423ad7f82916c736cd8adb86a5a64c59,http://pdfs.semanticscholar.org/610a/4451423ad7f82916c736cd8adb86a5a64c59.pdf +3026722b4cbe9223eda6ff2822140172e44ed4b1,http://chenlab.ece.cornell.edu/people/Andy/Andy_files/GallagherICCV09Demographics.pdf +02e39f23e08c2cb24d188bf0ca34141f3cc72d47,http://luks.fe.uni-lj.si/sl/osebje/vitomir/pub/ICASSP2010.pdf +c94b3a05f6f41d015d524169972ae8fd52871b67,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Yan_The_Fastest_Deformable_2014_CVPR_paper.pdf +d61e794ec22a4d4882181da17316438b5b24890f,http://pdfs.semanticscholar.org/d61e/794ec22a4d4882181da17316438b5b24890f.pdf +3e4f84ce00027723bdfdb21156c9003168bc1c80,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2011/papers/1569427521.pdf +4866a5d6d7a40a26f038fc743e16345c064e9842,http://pdfs.semanticscholar.org/4866/a5d6d7a40a26f038fc743e16345c064e9842.pdf +110c55b440b7c6a1692da9d8ee52389e43f6e76e,http://cs.brown.edu/people/ls/Publications/wacv2015dai_supplement.pdf +26a72e9dd444d2861298d9df9df9f7d147186bcd,https://engineering.purdue.edu/~qobi/papers/mvap2016.pdf +9f094341bea610a10346f072bf865cb550a1f1c1,http://zhiweizhu.com/papers/FIVR_MobileDevice_2009.pdf +b1c5581f631dba78927aae4f86a839f43646220c,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553753.pdf +9e8637a5419fec97f162153569ec4fc53579c21e,http://pdfs.semanticscholar.org/9e86/37a5419fec97f162153569ec4fc53579c21e.pdf +124538b3db791e30e1b62f81d4101be435ee12ef,http://pdfs.semanticscholar.org/1245/38b3db791e30e1b62f81d4101be435ee12ef.pdf +0b9d3a0c61ee498f8ed54aaa22d3c4e72aa56f40,http://www.researchgate.net/profile/Mark_Billinghurst/publication/221209697_A_Quadratic_Deformation_Model_for_Facial_Expression_Recognition/links/00b4952464de6e125e000000.pdf +59e2037f5079794cb9128c7f0900a568ced14c2a,https://arxiv.org/pdf/1704.02231v1.pdf +436d80cc1b52365ed7b2477c0b385b6fbbb51d3b,http://pdfs.semanticscholar.org/436d/80cc1b52365ed7b2477c0b385b6fbbb51d3b.pdf +4aa286914f17cd8cefa0320e41800a99c142a1cd,http://www.vbettadapura.com/egocentric/food/Food-Bettadapura15.pdf +59319c128c8ac3c88b4ab81088efe8ae9c458e07,http://pdfs.semanticscholar.org/5931/9c128c8ac3c88b4ab81088efe8ae9c458e07.pdf +2bae810500388dd595f4ebe992c36e1443b048d2,http://pdfs.semanticscholar.org/2bae/810500388dd595f4ebe992c36e1443b048d2.pdf +31e57fa83ac60c03d884774d2b515813493977b9,http://pdfs.semanticscholar.org/31e5/7fa83ac60c03d884774d2b515813493977b9.pdf +3b80bf5a69a1b0089192d73fa3ace2fbb52a4ad5,http://pdfs.semanticscholar.org/3b80/bf5a69a1b0089192d73fa3ace2fbb52a4ad5.pdf +83b4899d2899dd6a8d956eda3c4b89f27f1cd308,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0100377.pdf +912a6a97af390d009773452814a401e258b77640,http://pdfs.semanticscholar.org/912a/6a97af390d009773452814a401e258b77640.pdf +2d79d338c114ece1d97cde1aa06ab4cf17d38254,http://crcv.ucf.edu/papers/cvpr2016/Borji_CVPR2016.pdf +e9fcd15bcb0f65565138dda292e0c71ef25ea8bb,http://pdfs.semanticscholar.org/e9fc/d15bcb0f65565138dda292e0c71ef25ea8bb.pdf +75259a613285bdb339556ae30897cb7e628209fa,http://openaccess.thecvf.com/content_iccv_2015/papers/Kodirov_Unsupervised_Domain_Adaptation_ICCV_2015_paper.pdf +a5e5094a1e052fa44f539b0d62b54ef03c78bf6a,http://pdfs.semanticscholar.org/a5e5/094a1e052fa44f539b0d62b54ef03c78bf6a.pdf +17027a05c1414c9a06a1c5046899abf382a1142d,http://www.cs.cmu.edu/~rahuls/pub/cvpr2015-alionment-rahuls.pdf +f93606d362fcbe62550d0bf1b3edeb7be684b000,http://pdfs.semanticscholar.org/f936/06d362fcbe62550d0bf1b3edeb7be684b000.pdf +2b632f090c09435d089ff76220fd31fd314838ae,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Hajibabaei_Early_Adaptation_of_ICCV_2017_paper.pdf +d893f75206b122973cdbf2532f506912ccd6fbe0,http://pdfs.semanticscholar.org/d893/f75206b122973cdbf2532f506912ccd6fbe0.pdf +51eba481dac6b229a7490f650dff7b17ce05df73,http://grail.cs.washington.edu/wp-content/uploads/2016/09/yatskar2016srv.pdf +ac9a331327cceda4e23f9873f387c9fd161fad76,http://pdfs.semanticscholar.org/ac9a/331327cceda4e23f9873f387c9fd161fad76.pdf +ff061f7e46a6213d15ac2eb2c49d9d3003612e49,http://pdfs.semanticscholar.org/ff06/1f7e46a6213d15ac2eb2c49d9d3003612e49.pdf +760ba44792a383acd9ca8bef45765d11c55b48d4,http://class-specific.com/csf/papers/aes_tut.pdf +09c586624ec65d7ef2d4d8d321e98f61698dcfe2,http://www.seas.upenn.edu/~timothee/papers/cvpr_2010_supplement.pdf +9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6,http://pdfs.semanticscholar.org/9c78/1f7fd5d8168ddae1ce5bb4a77e3ca12b40b6.pdf +7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f,http://pdfs.semanticscholar.org/7c45/b5824645ba6d96beec17ca8ecfb22dfcdd7f.pdf +459e840ec58ef5ffcee60f49a94424eb503e8982,http://pdfs.semanticscholar.org/459e/840ec58ef5ffcee60f49a94424eb503e8982.pdf +1473a233465ea664031d985e10e21de927314c94,http://pdfs.semanticscholar.org/e985/0501e707f8783172ecacfe0cd29159abda34.pdf +23aef683f60cb8af239b0906c45d11dac352fb4e,http://pdfs.semanticscholar.org/b6cd/e64dcf864e457a83b72b7742fd19984a7552.pdf +b5c749f98710c19b6c41062c60fb605e1ef4312a,http://www.yugangjiang.info/publication/icmr15-eval2stream.pdf +3d6943f1573f992d6897489b73ec46df983d776c,http://pdfs.semanticscholar.org/757d/223b8db29e4cfba9530c7f942304c78cfee1.pdf +5de5848dc3fc35e40420ffec70a407e4770e3a8d,http://pdfs.semanticscholar.org/5de5/848dc3fc35e40420ffec70a407e4770e3a8d.pdf +19d4855f064f0d53cb851e9342025bd8503922e2,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d468.pdf +073eaa49ccde15b62425cda1d9feab0fea03a842,http://pdfs.semanticscholar.org/073e/aa49ccde15b62425cda1d9feab0fea03a842.pdf +af54dd5da722e104740f9b6f261df9d4688a9712,http://pdfs.semanticscholar.org/af54/dd5da722e104740f9b6f261df9d4688a9712.pdf +b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae,http://pdfs.semanticscholar.org/b6d3/c8322d8e6a0212456cf38c6ef59c13d062dd.pdf +2e0addeffba4be98a6ad0460453fbab52616b139,http://pdfs.semanticscholar.org/3cd7/8b1f43ead1226554f450bafcb8fbe208b5f0.pdf +7a0fb972e524cb9115cae655e24f2ae0cfe448e0,http://pdfs.semanticscholar.org/7a0f/b972e524cb9115cae655e24f2ae0cfe448e0.pdf +098a1ccc13b8d6409aa333c8a1079b2c9824705b,http://people.cs.pitt.edu/~kovashka/ut/pivots-kovashka-iccv2013.pdf +f3fcaae2ea3e998395a1443c87544f203890ae15,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553791.pdf +13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd,http://pdfs.semanticscholar.org/1318/8a88bbf83a18dd4964e3f89d0bc0a4d3a0bd.pdf +062d0813815c2b9864cd9bb4f5a1dc2c580e0d90,https://infoscience.epfl.ch/record/230310/files/AliakbarianEtAlICCV17.pdf?version=1 +28c0cb56e7f97046d6f3463378d084e9ea90a89a,http://www.robots.ox.ac.uk/~vgg/publications/2005/Arandjelovic05a/arandjelovic05a.pdf +c32383330df27625592134edd72d69bb6b5cff5c,http://www.iis.sinica.edu.tw/papers/song/13690-F.pdf +1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913d,http://www.pitt.edu/~jeffcohn/biblio/dicta2010.pdf +bbf01aa347982592b3e4c9e4f433e05d30e71305,https://pdfs.semanticscholar.org/bbf0/1aa347982592b3e4c9e4f433e05d30e71305.pdf +2e86402b354516d0a8392f75430156d629ca6281,https://arxiv.org/pdf/1604.03628v2.pdf +1ad97cce5fa8e9c2e001f53f6f3202bddcefba22,http://files.is.tue.mpg.de/black/papers/RGA2014.pdf +49570b41bd9574bd9c600e24b269d945c645b7bd,http://pdfs.semanticscholar.org/4957/0b41bd9574bd9c600e24b269d945c645b7bd.pdf +e5737ffc4e74374b0c799b65afdbf0304ff344cb,http://pdfs.semanticscholar.org/e573/7ffc4e74374b0c799b65afdbf0304ff344cb.pdf +ad6c7cc5c0f4ab273fef105ff3761d2c08609a20,https://people.cs.clemson.edu/~jzwang/1701863/mm2016/p1405-huo-ACM%20MM-Jing%20HUO-2016-10-19.pdf +28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68,https://www.cc.gatech.edu/~parikh/Publications/annoyance_prediction_CVPR2014.pdf +1e07500b00fcd0f65cf30a11f9023f74fe8ce65c,http://vijaychan.github.io/Publications/2015%20ICIP%20-%20Whole%20Subspace%20Discriminant%20Analysis%20for%20Face%20Recognition.pdf +0b183f5260667c16ef6f640e5da50272c36d599b,http://pdfs.semanticscholar.org/0b18/3f5260667c16ef6f640e5da50272c36d599b.pdf +a15c728d008801f5ffc7898568097bbeac8270a4,http://pdfs.semanticscholar.org/a15c/728d008801f5ffc7898568097bbeac8270a4.pdf +27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5,http://pdfs.semanticscholar.org/2717/3d0b9bb5ce3a75d05e4dbd8f063375f24bb5.pdf +ac21c8aceea6b9495574f8f9d916e571e2fc497f,http://pdfs.semanticscholar.org/ac21/c8aceea6b9495574f8f9d916e571e2fc497f.pdf +529e2ce6fb362bfce02d6d9a9e5de635bde81191,http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2011/1/20111721232398113.pdf +6bb630dfa797168e6627d972560c3d438f71ea99,http://arxiv.org/pdf/1609.03056v1.pdf +7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3a,http://pdfs.semanticscholar.org/7f1f/3d7b1a4e7fc895b77cb23b1119a6f13e4d3a.pdf +4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2c,http://www.ifp.illinois.edu/~dagli/papers/ICME07.pdf +89bc311df99ad0127383a9149d1684dfd8a5aa34,http://pdfs.semanticscholar.org/89bc/311df99ad0127383a9149d1684dfd8a5aa34.pdf +8b10383ef569ea0029a2c4a60cc2d8c87391b4db,http://pdfs.semanticscholar.org/fe2d/20dca6dcedc7944cc2d9fea76de6cbb9d90c.pdf +71b376dbfa43a62d19ae614c87dd0b5f1312c966,http://www.cs.cmu.edu/~ltrutoiu/pdfs/FG2013_trutoiu.pdf +0c20fd90d867fe1be2459223a3cb1a69fa3d44bf,http://pdfs.semanticscholar.org/0c20/fd90d867fe1be2459223a3cb1a69fa3d44bf.pdf +4df889b10a13021928007ef32dc3f38548e5ee56,http://ww2.cs.fsu.edu/~ywu/PDF-files/IJCNN.pdf +1384a83e557b96883a6bffdb8433517ec52d0bea,http://pdfs.semanticscholar.org/6be6/392550222ca07ba4c47931bffaedace72d24.pdf +205b34b6035aa7b23d89f1aed2850b1d3780de35,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p504-jiang.pdf +06bad0cdda63e3fd054e7b334a5d8a46d8542817,http://vision.cs.utexas.edu/projects/featuresharing/0975.pdf +02467703b6e087799e04e321bea3a4c354c5487d,http://biometrics.cse.msu.edu/Publications/Face/AdamsAllenMillerKalkaJain_CVPRWB2016_GRPR.pdf +5c8ae37d532c7bb8d7f00dfde84df4ba63f46297,http://pdfs.semanticscholar.org/5c8a/e37d532c7bb8d7f00dfde84df4ba63f46297.pdf +46196735a201185db3a6d8f6e473baf05ba7b68f,http://pdfs.semanticscholar.org/4619/6735a201185db3a6d8f6e473baf05ba7b68f.pdf +92c2dd6b3ac9227fce0a960093ca30678bceb364,https://aran.library.nuigalway.ie/bitstream/handle/10379/1350/On%20color%20texture%20normalization%20for%20active%20appearance%20models.pdf?isAllowed=y&sequence=1 +3b2d5585af59480531616fe970cb265bbdf63f5b,http://pdfs.semanticscholar.org/3b2d/5585af59480531616fe970cb265bbdf63f5b.pdf +1bddad4dc0dfa8efa402aa5d18c29304a5760f12,https://www.researchgate.net/profile/Iickho_Song/publication/254062033_Complexity-Reduced_Scheme_for_Feature_Extraction_With_Linear_Discriminant_Analysis/links/53d694ce0cf228d363ea69d5.pdf +649eb674fc963ce25e4e8ce53ac7ee20500fb0e3,http://chenlab.ece.cornell.edu/Publication/Kuan-Chuan/WACV16.pdf +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,http://pdfs.semanticscholar.org/bd42/e0a6a1082e8c197a7b0a9b710434cd7c5a47.pdf +86b985b285c0982046650e8d9cf09565a939e4f9,http://pdfs.semanticscholar.org/86b9/85b285c0982046650e8d9cf09565a939e4f9.pdf +0580edbd7865414c62a36da9504d1169dea78d6f,https://arxiv.org/pdf/1611.04251v1.pdf +794ddb1f3b7598985d4d289b5b0664be736a50c4,http://pdfs.semanticscholar.org/794d/db1f3b7598985d4d289b5b0664be736a50c4.pdf +0fad544edfc2cd2a127436a2126bab7ad31ec333,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7D609FEFFC36336C4A45ECA3B56C336A?doi=10.1.1.476.9590&rep=rep1&type=pdf +d231a81b38fde73bdbf13cfec57d6652f8546c3c,http://pdfs.semanticscholar.org/d231/a81b38fde73bdbf13cfec57d6652f8546c3c.pdf +dba493caf6647214c8c58967a8251641c2bda4c2,http://pdfs.semanticscholar.org/dba4/93caf6647214c8c58967a8251641c2bda4c2.pdf +4d356f347ab6647fb3e8ed8c2154dbd359e479ed,http://www.researchgate.net/profile/Anna_Esposito/publication/225441684_Extracting_and_Associating_Meta-features_for_Understanding_Peoples_Emotional_Behaviour_Face_and_Speech/links/02e7e52bed3a1b106e000000.pdf +1a41831a3d7b0e0df688fb6d4f861176cef97136,http://pdfs.semanticscholar.org/1fae/8f87f83bb707c4b38c23e93ae2bcb900b962.pdf +7f36dd9ead29649ed389306790faf3b390dc0aa2,http://pdfs.semanticscholar.org/7f36/dd9ead29649ed389306790faf3b390dc0aa2.pdf +55804f85613b8584d5002a5b0ddfe86b0d0e3325,http://pdfs.semanticscholar.org/ba13/b161aa8e6f6cb511592016058882d976a898.pdf +241d2c517dbc0e22d7b8698e06ace67de5f26fdf,http://pdfs.semanticscholar.org/bfc3/546fa119443fdcbac3a5723647c2ba0007ac.pdf +4157e45f616233a0874f54a59c3df001b9646cd7,http://pdfs.semanticscholar.org/4157/e45f616233a0874f54a59c3df001b9646cd7.pdf +37105ca0bc1f11fcc7c6b7946603f3d572571d76,http://vipl.ict.ac.cn/sites/default/files/papers/files/2012_TIST_dmzhai_Multi-view%20metric%20learning%20with%20global%20consistency%20and%20local%20smoothness.pdf +a30869c5d4052ed1da8675128651e17f97b87918,http://pdfs.semanticscholar.org/a308/69c5d4052ed1da8675128651e17f97b87918.pdf +729a9d35bc291cc7117b924219bef89a864ce62c,http://pdfs.semanticscholar.org/729a/9d35bc291cc7117b924219bef89a864ce62c.pdf +d72973a72b5d891a4c2d873daeb1bc274b48cddf,http://pdfs.semanticscholar.org/d729/73a72b5d891a4c2d873daeb1bc274b48cddf.pdf +abce06a96a7c3095bfc36eed8779d89263769b85,http://ai.pku.edu.cn/aiwebsite/research.files/collected%20papers%20-%20others/Analyzing%20Asymmetry%20Biometric%20in%20the%20Frequency%20Domain%20for%20Face%20Recognition.pdf +b171f9e4245b52ff96790cf4f8d23e822c260780,http://pdfs.semanticscholar.org/b171/f9e4245b52ff96790cf4f8d23e822c260780.pdf +30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf +07ac2e342db42589322b28ef291c2702f4a793a8,http://www.cs.illinois.edu/homes/dhoiem/publications/cvpr2009_santosh_context.pdf +6eaeac9ae2a1697fa0aa8e394edc64f32762f578,http://pdfs.semanticscholar.org/6eae/ac9ae2a1697fa0aa8e394edc64f32762f578.pdf +85674b1b6007634f362cbe9b921912b697c0a32c,http://pdfs.semanticscholar.org/8567/4b1b6007634f362cbe9b921912b697c0a32c.pdf +1bc214c39536c940b12c3a2a6b78cafcbfddb59a,http://pdfs.semanticscholar.org/1bc2/14c39536c940b12c3a2a6b78cafcbfddb59a.pdf +2c285dadfa6c07d392ee411d0213648a8a1cf68f,http://www.contrib.andrew.cmu.edu/~yzhiding/ICMI15.pdf +e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec,http://pdfs.semanticscholar.org/e686/5b000cf4d4e84c3fe895b7ddfc65a9c4aaec.pdf +7f533bd8f32525e2934a66a5b57d9143d7a89ee1,http://pdfs.semanticscholar.org/7f53/3bd8f32525e2934a66a5b57d9143d7a89ee1.pdf +73f467b4358ac1cafb57f58e902c1cab5b15c590,http://pdfs.semanticscholar.org/73f4/67b4358ac1cafb57f58e902c1cab5b15c590.pdf +55079a93b7d1eb789193d7fcdcf614e6829fad0f,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w10/papers/Conde_Efficient_and_Robust_ICCV_2015_paper.pdf +13b1b18b9cfa6c8c44addb9a81fe10b0e89db32a,http://www.sfu.ca/~smuralid/papers/thesis.pdf +2d05e768c64628c034db858b7154c6cbd580b2d5,http://pdfs.semanticscholar.org/2d05/e768c64628c034db858b7154c6cbd580b2d5.pdf +aae0e417bbfba701a1183d3d92cc7ad550ee59c3,https://staff.fnwi.uva.nl/th.gevers/pub/GeversTIP12-3.pdf +a255a54b8758050ea1632bf5a88a201cd72656e1,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Tamersoy_Nonparametric_Facial_Feature_2013_CVPR_paper.pdf +333e7ad7f915d8ee3bb43a93ea167d6026aa3c22,http://www.eurecom.fr/en/publication/4277/download/mm-publi-4277.pdf +5e16f10f2d667d17c029622b9278b6b0a206d394,http://pdfs.semanticscholar.org/5e16/f10f2d667d17c029622b9278b6b0a206d394.pdf +1270044a3fa1a469ec2f4f3bd364754f58a1cb56,http://pdfs.semanticscholar.org/1270/044a3fa1a469ec2f4f3bd364754f58a1cb56.pdf +1d846934503e2bd7b8ea63b2eafe00e29507f06a,http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/manifold%20learning/20fa.pdf +ad784332cc37720f03df1c576e442c9c828a587a,http://pdfs.semanticscholar.org/ad78/4332cc37720f03df1c576e442c9c828a587a.pdf +f5149fb6b455a73734f1252a96a9ce5caa95ae02,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhang_Low-Rank-Sparse_Subspace_Representation_CVPR_2017_paper.pdf +915d4a0fb523249ecbc88eb62cb150a60cf60fa0,http://pdfs.semanticscholar.org/915d/4a0fb523249ecbc88eb62cb150a60cf60fa0.pdf +4b321065f6a45e55cb7f9d7b1055e8ac04713b41,http://pdfs.semanticscholar.org/4b32/1065f6a45e55cb7f9d7b1055e8ac04713b41.pdf +0fabb4a40f2e3a2502cd935e54e090a304006c1c,http://arxiv.org/pdf/1202.4207v2.pdf +02239ae5e922075a354169f75f684cad8fdfd5ab,http://ai2-website.s3.amazonaws.com/publications/CVPR_2017_Situation.pdf +9dcc6dde8d9f132577290d92a1e76b5decc6d755,http://pdfs.semanticscholar.org/a36a/3cd13c59777b6b07e41c4026e55b55e8096f.pdf +426913f890f07a5d79e6c23b83cd928ffc00e494,http://www2012.wwwconference.org/proceedings/proceedings/p939.pdf +439ca6ded75dffa5ddea203dde5e621dc4a88c3e,http://research.cs.rutgers.edu/~hxp1/rc_images/hai_facetrack_icpr2016.pdf +5bb53fb36a47b355e9a6962257dd465cd7ad6827,http://pdfs.semanticscholar.org/5bb5/3fb36a47b355e9a6962257dd465cd7ad6827.pdf +91883dabc11245e393786d85941fb99a6248c1fb,http://pdfs.semanticscholar.org/9188/3dabc11245e393786d85941fb99a6248c1fb.pdf +9cadd166893f1b8aaecb27280a0915e6694441f5,http://pdfs.semanticscholar.org/9cad/d166893f1b8aaecb27280a0915e6694441f5.pdf +e59813940c5c83b1ce63f3f451d03d34d2f68082,http://pdfs.semanticscholar.org/e598/13940c5c83b1ce63f3f451d03d34d2f68082.pdf +6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2,http://pdfs.semanticscholar.org/6156/eaad00aad74c90cbcfd822fa0c9bd4eb14c2.pdf +6b1b43d58faed7b457b1d4e8c16f5f7e7d819239,http://pdfs.semanticscholar.org/6b1b/43d58faed7b457b1d4e8c16f5f7e7d819239.pdf +1de8f38c35f14a27831130060810cf9471a62b45,http://www.psy.miami.edu/faculty/dmessinger/c_c/rsrcs/rdgs/emot/Unsupervised_Discovery.IJCompVis.2017.pdf +0c54e9ac43d2d3bab1543c43ee137fc47b77276e,http://pdfs.semanticscholar.org/0c54/e9ac43d2d3bab1543c43ee137fc47b77276e.pdf +2c258eec8e4da9e65018f116b237f7e2e0b2ad17,http://openaccess.thecvf.com/content_cvpr_2017/papers/Qiu_Deep_Quantization_Encoding_CVPR_2017_paper.pdf +dd8ad6ce8701d4b09be460a6cf058fcd5318c700,https://www.researchgate.net/profile/Daniel_Riccio/publication/260652311_Robust_Face_Recognition_for_Uncontrolled_Pose_and_Illumination_Changes/links/5402f4450cf23d9765a55fbc.pdf +1885acea0d24e7b953485f78ec57b2f04e946eaf,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w36/Xiong_Combining_Local_and_ICCV_2017_paper.pdf +d35c82588645b94ce3f629a0b98f6a531e4022a3,http://pdfs.semanticscholar.org/d35c/82588645b94ce3f629a0b98f6a531e4022a3.pdf +ed08ac6da6f8ead590b390b1d14e8a9b97370794,http://pdfs.semanticscholar.org/ed08/ac6da6f8ead590b390b1d14e8a9b97370794.pdf +718824256b4461d62d192ab9399cfc477d3660b4,http://pdfs.semanticscholar.org/7188/24256b4461d62d192ab9399cfc477d3660b4.pdf +c81ee278d27423fd16c1a114dcae486687ee27ff,http://pdfs.semanticscholar.org/c81e/e278d27423fd16c1a114dcae486687ee27ff.pdf +155199d7f10218e29ddaee36ebe611c95cae68c4,http://pdfs.semanticscholar.org/1551/99d7f10218e29ddaee36ebe611c95cae68c4.pdf +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,http://pdfs.semanticscholar.org/50e4/5e9c55c9e79aaae43aff7d9e2f079a2d787b.pdf +4568063b7efb66801e67856b3f572069e774ad33,http://www.dbs.ifi.lmu.de/~yu_k/cvpr11_0712.pdf +8fd9c22b00bd8c0bcdbd182e17694046f245335f,http://pdfs.semanticscholar.org/8fd9/c22b00bd8c0bcdbd182e17694046f245335f.pdf +125d82fee1b9fbcc616622b0977f3d06771fc152,http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTcvpr12.pdf +78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e,http://arxiv.org/pdf/1503.01224.pdf +362ba8317aba71c78dafca023be60fb71320381d,http://pdfs.semanticscholar.org/362b/a8317aba71c78dafca023be60fb71320381d.pdf +a70e36daf934092f40a338d61e0fe27be633f577,http://pdfs.semanticscholar.org/a70e/36daf934092f40a338d61e0fe27be633f577.pdf +85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9,http://pdfs.semanticscholar.org/8518/8c77f3b2de3a45f7d4f709b6ea79e36bd0d9.pdf +29c1f733a80c1e07acfdd228b7bcfb136c1dff98,http://pdfs.semanticscholar.org/29c1/f733a80c1e07acfdd228b7bcfb136c1dff98.pdf +f1d090fcea63d9f9e835c49352a3cd576ec899c1,http://pdfs.semanticscholar.org/f1d0/90fcea63d9f9e835c49352a3cd576ec899c1.pdf +923ede53b0842619831e94c7150e0fc4104e62f7,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001293.pdf +38682c7b19831e5d4f58e9bce9716f9c2c29c4e7,http://pdfs.semanticscholar.org/3868/2c7b19831e5d4f58e9bce9716f9c2c29c4e7.pdf +00b29e319ff8b3a521b1320cb8ab5e39d7f42281,http://pdfs.semanticscholar.org/8007/b8afa13869d2a7c681db8bd7c2e7df1ef02d.pdf +58b8588c01196070674ceabe5366b20f73c2912d,http://www.cse.ust.hk/~qnature/pdf/ICDM2015.pdf +42f6f5454dda99d8989f9814989efd50fe807ee8,http://pdfs.semanticscholar.org/42f6/f5454dda99d8989f9814989efd50fe807ee8.pdf +1f94734847c15fa1da68d4222973950d6b683c9e,https://arxiv.org/pdf/1512.02895v1.pdf +b19e83eda4a602abc5a8ef57467c5f47f493848d,http://www.cs.jhu.edu/~hwang/papers/SPL10.pdf +27ee8482c376ef282d5eb2e673ab042f5ded99d7,http://sylvain.legallou.fr/Fichiers/p_ICARCV06_NewNormalization_LeGallou.pdf +70580ed8bc482cad66e059e838e4a779081d1648,http://pdfs.semanticscholar.org/7058/0ed8bc482cad66e059e838e4a779081d1648.pdf +0b7d1386df0cf957690f0fe330160723633d2305,http://www.cs.rpi.edu/~magdon/ps/conference/AccentICMLA2009.pdf +7dd578878e84337d6d0f5eb593f22cabeacbb94c,http://pdfs.semanticscholar.org/7dd5/78878e84337d6d0f5eb593f22cabeacbb94c.pdf +652aac54a3caf6570b1c10c993a5af7fa2ef31ff,http://pdfs.semanticscholar.org/652a/ac54a3caf6570b1c10c993a5af7fa2ef31ff.pdf +3e207c05f438a8cef7dd30b62d9e2c997ddc0d3f,http://pdfs.semanticscholar.org/bca7/c0a8c5b0503a4ee43f3561f540918071aaa3.pdf +190d8bd39c50b37b27b17ac1213e6dde105b21b8,https://dr.ntu.edu.sg/bitstream/handle/10220/18955/fp518-wang.pdf?isAllowed=y&sequence=1 +48f211a9764f2bf6d6dda4a467008eda5680837a,http://www.lv-nus.org/papers/2011/iccv2011-occupation.pdf +a6ffe238eaf8632b4a8a6f718c8917e7f3261546,http://pdfs.semanticscholar.org/a6ff/e238eaf8632b4a8a6f718c8917e7f3261546.pdf +a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,http://pdfs.semanticscholar.org/e12a/0f0bca1624965386ac9cf95f711c90441553.pdf +1056347fc5e8cd86c875a2747b5f84fd570ba232,http://arxiv.org/pdf/1607.06408v1.pdf +171ca25bc2cdfc79cad63933bcdd420d35a541ab,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Alnajar_Calibration-Free_Gaze_Estimation_2013_ICCV_paper.pdf +16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb,http://pdfs.semanticscholar.org/1628/6fb0f14f6a7a1acc10fcd28b3ac43f12f3eb.pdf +4cf3419dbf83a76ccac11828ca57b46bbbe54e0a,https://www.researchgate.net/profile/Muhammad_Sharif9/publication/224173583_Illumination_normalization_preprocessing_for_face_recognition/links/02e7e51a47972ae996000000.pdf +77fb9e36196d7bb2b505340b6b94ba552a58b01b,http://pdfs.semanticscholar.org/77fb/9e36196d7bb2b505340b6b94ba552a58b01b.pdf +9264b390aa00521f9bd01095ba0ba4b42bf84d7e,http://pdfs.semanticscholar.org/9264/b390aa00521f9bd01095ba0ba4b42bf84d7e.pdf +76b9fe32d763e9abd75b427df413706c4170b95c,http://pdfs.semanticscholar.org/76b9/fe32d763e9abd75b427df413706c4170b95c.pdf +bffbd04ee5c837cd919b946fecf01897b2d2d432,http://pdfs.semanticscholar.org/bffb/d04ee5c837cd919b946fecf01897b2d2d432.pdf +23a8d02389805854cf41c9e5fa56c66ee4160ce3,http://www.advancedsourcecode.com/influencelow10.pdf +1fe121925668743762ce9f6e157081e087171f4c,https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Ylioinas_Unsupervised_Learning_of_2015_CVPR_paper.pdf +2c34bf897bad780e124d5539099405c28f3279ac,http://pdfs.semanticscholar.org/2c34/bf897bad780e124d5539099405c28f3279ac.pdf +d28d32af7ef9889ef9cb877345a90ea85e70f7f1,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Kim_Local.pdf +6341274aca0c2977c3e1575378f4f2126aa9b050,http://arxiv.org/pdf/1609.03536v1.pdf +dd8d53e67668067fd290eb500d7dfab5b6f730dd,http://mmlab.ie.cuhk.edu.hk/archive/2007/IFS07_subspace.pdf +5b6bed112e722c0629bcce778770d1b28e42fc96,http://pdfs.semanticscholar.org/5b6b/ed112e722c0629bcce778770d1b28e42fc96.pdf +2983efadb1f2980ab5ef20175f488f77b6f059d7,http://pdfs.semanticscholar.org/2983/efadb1f2980ab5ef20175f488f77b6f059d7.pdf +c29e33fbd078d9a8ab7adbc74b03d4f830714cd0,http://research.microsoft.com/en-us/um/people/leizhang/Paper/FG04-Longbin.pdf +304a306d2a55ea41c2355bd9310e332fa76b3cb0,http://pdfs.semanticscholar.org/95da/2d1137637e89da8b7a16e0dc6168cfceb693.pdf +19e0cc41b9f89492b6b8c2a8a58d01b8242ce00b,http://pdfs.semanticscholar.org/4088/3844c1ceab95cb92498a92bfdf45beaa288e.pdf +4e0e49c280acbff8ae394b2443fcff1afb9bdce6,http://pdfs.semanticscholar.org/4e0e/49c280acbff8ae394b2443fcff1afb9bdce6.pdf +09dd01e19b247a33162d71f07491781bdf4bfd00,http://pdfs.semanticscholar.org/5991/0d557b54566ec97280480daca02685f21907.pdf diff --git a/scraper/reports/misc/db_paper_pdf-2.csv b/scraper/reports/misc/db_paper_pdf-2.csv new file mode 100644 index 00000000..0adc7ca6 --- /dev/null +++ b/scraper/reports/misc/db_paper_pdf-2.csv @@ -0,0 +1,1639 @@ +b018fa5cb9793e260b8844ae155bd06380988584,http://pdfs.semanticscholar.org/b018/fa5cb9793e260b8844ae155bd06380988584.pdf +39f525f3a0475e6bbfbe781ae3a74aca5b401125,http://pdfs.semanticscholar.org/39f5/25f3a0475e6bbfbe781ae3a74aca5b401125.pdf +0052de4885916cf6949a6904d02336e59d98544c,https://rd.springer.com/content/pdf/10.1007/s10994-005-3561-6.pdf +6974449ce544dc208b8cc88b606b03d95c8fd368,https://ibug.doc.ic.ac.uk/media/uploads/documents/martinezvalstar-pami_final.pdf +751b26e7791b29e4e53ab915bfd263f96f531f56,http://affect.media.mit.edu/pdfs/12.Hernandez-Hoque-Drevo-Picard-MoodMeter-Ubicomp.pdf +551fa37e8d6d03b89d195a5c00c74cc52ff1c67a,http://pdfs.semanticscholar.org/551f/a37e8d6d03b89d195a5c00c74cc52ff1c67a.pdf +2b339ece73e3787f445c5b92078e8f82c9b1c522,http://pdfs.semanticscholar.org/7a2e/e06aaa3f342937225272951c0b6dd4309a7a.pdf +b613b30a7cbe76700855479a8d25164fa7b6b9f1,http://www.cs.ucf.edu/~kienhua/classes/COP6731/Reading/AffectiveComputing.pdf +a2b9cee7a3866eb2db53a7d81afda72051fe9732,http://pdfs.semanticscholar.org/a2b9/cee7a3866eb2db53a7d81afda72051fe9732.pdf +21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1,http://www.eecs.qmul.ac.uk/~jason/Research/PreprintVersion/Transductive%20VIS-NIR%20Face%20Matching.pdf +2f9c173ccd8c1e6b88d7fb95d6679838bc9ca51d,http://arxiv.org/pdf/1604.02917v1.pdf +042825549296ea419d95fcf0b5e71f72070a5f0d,http://eprints.pascal-network.org/archive/00008397/01/paper.pdf +858901405086056361f8f1839c2f3d65fc86a748,http://pdfs.semanticscholar.org/8589/01405086056361f8f1839c2f3d65fc86a748.pdf +ebb1c29145d31c4afa3c9be7f023155832776cd3,http://pdfs.semanticscholar.org/ebb1/c29145d31c4afa3c9be7f023155832776cd3.pdf +98c2053e0c31fab5bcb9ce5386335b647160cc09,https://smartech.gatech.edu/bitstream/handle/1853/45502/GT-CS-12-10.pdf +5fc664202208aaf01c9b62da5dfdcd71fdadab29,http://pdfs.semanticscholar.org/5fc6/64202208aaf01c9b62da5dfdcd71fdadab29.pdf +2d25045ec63f9132371841c0beccd801d3733908,http://pdfs.semanticscholar.org/2d25/045ec63f9132371841c0beccd801d3733908.pdf +3ea8a6dc79d79319f7ad90d663558c664cf298d4,http://pdfs.semanticscholar.org/3ea8/a6dc79d79319f7ad90d663558c664cf298d4.pdf +621ff353960d5d9320242f39f85921f72be69dc8,http://www.research.rutgers.edu/~xiangyu/paper/FG_2013.pdf +32d8e555441c47fc27249940991f80502cb70bd5,https://arxiv.org/pdf/1709.07886v1.pdf +5e7cb894307f36651bdd055a85fdf1e182b7db30,http://pdfs.semanticscholar.org/5e7c/b894307f36651bdd055a85fdf1e182b7db30.pdf +ec22eaa00f41a7f8e45ed833812d1ac44ee1174e,http://pdfs.semanticscholar.org/ec22/eaa00f41a7f8e45ed833812d1ac44ee1174e.pdf +794c0dc199f0bf778e2d40ce8e1969d4069ffa7b,http://hcil2.cs.umd.edu/trs/2011-17/2011-17.pdf +f9784db8ff805439f0a6b6e15aeaf892dba47ca0,http://pdfs.semanticscholar.org/f978/4db8ff805439f0a6b6e15aeaf892dba47ca0.pdf +2ed3ce5cf9e262bcc48a6bd998e7fb70cf8a971c,http://pdfs.semanticscholar.org/6abe/c94e0af01d9706d73dfd91fd76139c7d99e0.pdf +9af1cf562377b307580ca214ecd2c556e20df000,http://pdfs.semanticscholar.org/9af1/cf562377b307580ca214ecd2c556e20df000.pdf +309e17e6223e13b1f76b5b0eaa123b96ef22f51b,https://static.aminer.org/pdf/PDF/000/337/771/image_synthesis_and_face_recognition_based_on_d_face_model.pdf +4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Luo_A_Deep_Sum-Product_2013_ICCV_paper.pdf +2bbbbe1873ad2800954058c749a00f30fe61ab17,http://pdfs.semanticscholar.org/2bbb/be1873ad2800954058c749a00f30fe61ab17.pdf +c2fa83e8a428c03c74148d91f60468089b80c328,http://pdfs.semanticscholar.org/c2fa/83e8a428c03c74148d91f60468089b80c328.pdf +8bf647fed40bdc9e35560021636dfb892a46720e,https://arxiv.org/pdf/1612.04061v1.pdf +c1fc70e0952f6a7587b84bf3366d2e57fc572fd7,http://pdfs.semanticscholar.org/c1fc/70e0952f6a7587b84bf3366d2e57fc572fd7.pdf +14ff9c89f00dacc8e0c13c94f9fadcd90e4e604d,https://www.comp.nus.edu.sg/~tsim/documents/cascade-cf-landmarks.pdf +3506518d616343d3083f4fe257a5ee36b376b9e1,http://disi.unitn.it/~zen/data/icmi14_personalized.pdf +27dafedccd7b049e87efed72cabaa32ec00fdd45,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_074.pdf +18166432309000d9a5873f989b39c72a682932f5,http://pdfs.semanticscholar.org/1816/6432309000d9a5873f989b39c72a682932f5.pdf +60970e124aa5fb964c9a2a5d48cd6eee769c73ef,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Tierney_Subspace_Clustering_for_2014_CVPR_paper.pdf +1e213b03e1b8a6067bf37503904491e98b9e42df,http://figment.cse.usf.edu/~sfefilat/data/papers/TuAT10.9.pdf +1fe990ca6df273de10583860933d106298655ec8,http://pdfs.semanticscholar.org/1fe9/90ca6df273de10583860933d106298655ec8.pdf +2921719b57544cfe5d0a1614d5ae81710ba804fa,http://pdfs.semanticscholar.org/2921/719b57544cfe5d0a1614d5ae81710ba804fa.pdf +779ad364cae60ca57af593c83851360c0f52c7bf,http://pdfs.semanticscholar.org/779a/d364cae60ca57af593c83851360c0f52c7bf.pdf +6ae96f68187f1cdb9472104b5431ec66f4b2470f,http://pdfs.semanticscholar.org/6ae9/6f68187f1cdb9472104b5431ec66f4b2470f.pdf +0d760e7d762fa449737ad51431f3ff938d6803fe,https://arxiv.org/pdf/1705.05922v1.pdf +c5d13e42071813a0a9dd809d54268712eba7883f,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%2016/PID2891229.pdf +a065080353d18809b2597246bb0b48316234c29a,http://pdfs.semanticscholar.org/a065/080353d18809b2597246bb0b48316234c29a.pdf +5feb1341a49dd7a597f4195004fe9b59f67e6707,http://pdfs.semanticscholar.org/5feb/1341a49dd7a597f4195004fe9b59f67e6707.pdf +7a7f2403e3cc7207e76475e8f27a501c21320a44,http://www.apsipa2013.org/wp-content/uploads/2013/05/395_Emotion-recognition-Wu-2928773.pdf +3f7723ab51417b85aa909e739fc4c43c64bf3e84,http://pdfs.semanticscholar.org/3f77/23ab51417b85aa909e739fc4c43c64bf3e84.pdf +5028c0decfc8dd623c50b102424b93a8e9f2e390,http://pdfs.semanticscholar.org/5028/c0decfc8dd623c50b102424b93a8e9f2e390.pdf +0ea7b7fff090c707684fd4dc13e0a8f39b300a97,https://arxiv.org/pdf/1711.06055v1.pdf +ae9257f3be9f815db8d72819332372ac59c1316b,http://pdfs.semanticscholar.org/ae92/57f3be9f815db8d72819332372ac59c1316b.pdf +353b6c1f431feac6edde12b2dde7e6e702455abd,http://pdfs.semanticscholar.org/8835/c80f8ad8ebd05771a9bce5a8637efbc4c8e3.pdf +1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9,http://pdfs.semanticscholar.org/1af5/2c853ff1d0ddb8265727c1d70d81b4f9b3a9.pdf +a5bf83f99f71e3840f651fbeef9f334d8e75fd75,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1927.pdf +c1f07ec629be1c6fe562af0e34b04c54e238dcd1,http://pdfs.semanticscholar.org/c1f0/7ec629be1c6fe562af0e34b04c54e238dcd1.pdf +258a2dad71cb47c71f408fa0611a4864532f5eba,http://pdfs.semanticscholar.org/258a/2dad71cb47c71f408fa0611a4864532f5eba.pdf +9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7,http://pdfs.semanticscholar.org/9eea/da49fc2cba846b4dad1012ba8a7ee78a8bb7.pdf +8323af714efe9a3cadb31b309fcc2c36c8acba8f,http://pdfs.semanticscholar.org/8323/af714efe9a3cadb31b309fcc2c36c8acba8f.pdf +a6f81619158d9caeaa0863738ab400b9ba2d77c2,http://pdfs.semanticscholar.org/a6f8/1619158d9caeaa0863738ab400b9ba2d77c2.pdf +87147418f863e3d8ff8c97db0b42695a1c28195b,http://pdfs.semanticscholar.org/8714/7418f863e3d8ff8c97db0b42695a1c28195b.pdf +bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5,https://ubicomp-mental-health.github.io/papers/2017/perception-syeda.pdf +3be8964cef223698e587b4f71fc0c72c2eeef8cf,https://www.researchgate.net/profile/Mohammad_Reza_Mohammadi3/publication/264394830_Simultaneous_recognition_of_facial_expression_and_identity_via_sparse_representation/links/53df5c5b0cf2a76fb6682872.pdf?origin=publication_list +2597b0dccdf3d89eaffd32e202570b1fbbedd1d6,http://pdfs.semanticscholar.org/26f3/03ae1912c16f08523a7d8db926e35114e8f0.pdf +15ee80e86e75bf1413dc38f521b9142b28fe02d1,https://arxiv.org/pdf/1612.05322v1.pdf +0f533bc9fdfb75a3680d71c84f906bbd59ee48f1,http://www.iis.sinica.edu.tw/papers/song/11837-F.pdf +084bd02d171e36458f108f07265386f22b34a1ae,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ren_Face_Alignment_at_2014_CVPR_paper.pdf +11a210835b87ccb4989e9ba31e7559bb7a9fd292,http://profdoc.um.ac.ir/articles/a/1020638.pdf +519a724426b5d9ad384d38aaf2a4632d3824f243,http://pdfs.semanticscholar.org/519a/724426b5d9ad384d38aaf2a4632d3824f243.pdf +0b3a146c474166bba71e645452b3a8276ac05998,http://pdfs.semanticscholar.org/c6e5/17eb85bc6c68dff5d3fadb2d817e839c966b.pdf +19e62a56b6772bbd37dfc6b8f948e260dbb474f5,http://pdfs.semanticscholar.org/19e6/2a56b6772bbd37dfc6b8f948e260dbb474f5.pdf +ab8f9a6bd8f582501c6b41c0e7179546e21c5e91,http://pdfs.semanticscholar.org/ab8f/9a6bd8f582501c6b41c0e7179546e21c5e91.pdf +c5765590c294146a8e3c9987d394c0990ab6a35b,http://media.cs.tsinghua.edu.cn/~imagevision/papers/%5B2012%5D084_P1B-31-cvpr2012-wan.pdf +030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,http://pdfs.semanticscholar.org/030e/f31b51bd4c8d0d8f4a9a32b80b9192fe4c3f.pdf +d50a40f2d24363809a9ac57cf7fbb630644af0e5,http://pdfs.semanticscholar.org/d50a/40f2d24363809a9ac57cf7fbb630644af0e5.pdf +7c2c9b083817f7a779d819afee383599d2e97ed8,http://pdfs.semanticscholar.org/bcad/d9c086ccd2f217da25f9550b06a429d53011.pdf +6a16b91b2db0a3164f62bfd956530a4206b23fea,http://pdfs.semanticscholar.org/6a16/b91b2db0a3164f62bfd956530a4206b23fea.pdf +2b435ee691718d0b55d057d9be4c3dbb8a81526e,http://pdfs.semanticscholar.org/43ef/472c2c09d1ae2f2e5fc35d6d3ab7578658b4.pdf +48853c25dc75481b0c77f408a8a76383287ebe2a,http://qil.uh.edu/qil/websitecontent/pdf/2015-45.pdf +0b0958493e43ca9c131315bcfb9a171d52ecbb8a,http://pdfs.semanticscholar.org/0b09/58493e43ca9c131315bcfb9a171d52ecbb8a.pdf +a967426ec9b761a989997d6a213d890fc34c5fe3,http://vision.ucsd.edu/sites/default/files/043-wacv.pdf +898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c,http://pdfs.semanticscholar.org/898a/66979c7e8b53a10fd58ac51fbfdb6e6e6e7c.pdf +8a336e9a4c42384d4c505c53fb8628a040f2468e,http://pdfs.semanticscholar.org/8a33/6e9a4c42384d4c505c53fb8628a040f2468e.pdf +bc866c2ced533252f29cf2111dd71a6d1724bd49,http://pdfs.semanticscholar.org/bc86/6c2ced533252f29cf2111dd71a6d1724bd49.pdf +8913a5b7ed91c5f6dec95349fbc6919deee4fc75,https://people.eecs.berkeley.edu/~pabbeel/papers/2014-ICRA-BigBIRD.pdf +6b6493551017819a3d1f12bbf922a8a8c8cc2a03,http://pdfs.semanticscholar.org/6b64/93551017819a3d1f12bbf922a8a8c8cc2a03.pdf +9117fd5695582961a456bd72b157d4386ca6a174,http://pdfs.semanticscholar.org/9117/fd5695582961a456bd72b157d4386ca6a174.pdf +2d31ab536b3c8a05de0d24e0257ca4433d5a7c75,http://tamaraberg.com/papers/xray.pdf +9b07084c074ba3710fee59ed749c001ae70aa408,http://pdfs.semanticscholar.org/9b07/084c074ba3710fee59ed749c001ae70aa408.pdf +4c81c76f799c48c33bb63b9369d013f51eaf5ada,https://www.cmpe.boun.edu.tr/~salah/kaya17chalearn.pdf +e378ce25579f3676ca50c8f6454e92a886b9e4d7,http://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Robust_Video_Super-Resolution_ICCV_2017_paper.pdf +1d0dd20b9220d5c2e697888e23a8d9163c7c814b,http://pdfs.semanticscholar.org/1d0d/d20b9220d5c2e697888e23a8d9163c7c814b.pdf +97d1d561362a8b6beb0fdbee28f3862fb48f1380,http://pages.cs.wisc.edu/~gdguo/myPapersOnWeb/PAMI10Guo.pdf +6eba25166fe461dc388805cc2452d49f5d1cdadd,http://pdfs.semanticscholar.org/6eba/25166fe461dc388805cc2452d49f5d1cdadd.pdf +31aa7c992692b74f17ddec665cd862faaeafd673,http://www.researchgate.net/profile/Shinichi_Satoh/publication/221657297_Unsupervised_face_annotation_by_mining_the_web/links/0912f510a04034844d000000.pdf +d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0,http://pdfs.semanticscholar.org/d0eb/3fd1b1750242f3bb39ce9ac27fc8cc7c5af0.pdf +32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b,http://pdfs.semanticscholar.org/32a4/0c43a9bc1f1c1ed10be3b9f10609d7e0cb6b.pdf +e726acda15d41b992b5a41feabd43617fab6dc23,http://pdfs.semanticscholar.org/e726/acda15d41b992b5a41feabd43617fab6dc23.pdf +3f5cf3771446da44d48f1d5ca2121c52975bb3d3,http://pdfs.semanticscholar.org/3f5c/f3771446da44d48f1d5ca2121c52975bb3d3.pdf +6e94c579097922f4bc659dd5d6c6238a428c4d22,http://pdfs.semanticscholar.org/6e94/c579097922f4bc659dd5d6c6238a428c4d22.pdf +8395cf3535a6628c3bdc9b8d0171568d551f5ff0,http://pdfs.semanticscholar.org/8395/cf3535a6628c3bdc9b8d0171568d551f5ff0.pdf +b41374f4f31906cf1a73c7adda6c50a78b4eb498,http://isp.uv.es/papers/Laparra11.pdf +4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002352.pdf +1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3,http://pdfs.semanticscholar.org/1e7a/e86a78a9b4860aa720fb0fd0bdc199b092c3.pdf +8d3fbdb9783716c1832a0b7ab1da6390c2869c14,http://pdfs.semanticscholar.org/ae81/6e7e0077fe94f1e62629647dc04263a970b5.pdf +0831a511435fd7d21e0cceddb4a532c35700a622,http://pdfs.semanticscholar.org/0831/a511435fd7d21e0cceddb4a532c35700a622.pdf +11367581c308f4ba6a32aac1b4a7cdb32cd63137,https://pdfs.semanticscholar.org/82c3/367ca6fc95e705aa8f2270265d82e9d8eedd.pdf +333aa36e80f1a7fa29cf069d81d4d2e12679bc67,http://pdfs.semanticscholar.org/333a/a36e80f1a7fa29cf069d81d4d2e12679bc67.pdf +303a7099c01530fa0beb197eb1305b574168b653,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf +f0ae807627f81acb63eb5837c75a1e895a92c376,http://pdfs.semanticscholar.org/f0ae/807627f81acb63eb5837c75a1e895a92c376.pdf +b7f7a4df251ff26aca83d66d6b479f1dc6cd1085,http://pdfs.semanticscholar.org/b7f7/a4df251ff26aca83d66d6b479f1dc6cd1085.pdf +0113b302a49de15a1d41ca4750191979ad756d2f,http://www.cecs.uci.edu/~papers/icme06/pdfs/0000537.pdf +faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b,http://pdfs.semanticscholar.org/faea/d8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b.pdf +5a5f0287484f0d480fed1ce585dbf729586f0edc,http://www.researchgate.net/profile/Mohammad_Mahoor/publication/248703363_DISFA_A_Spontaneous_Facial_Action_Intensity_Database/links/0c960520903b2b8153000000.pdf +910524c0d0fe062bf806bb545627bf2c9a236a03,http://pdfs.semanticscholar.org/9105/24c0d0fe062bf806bb545627bf2c9a236a03.pdf +1824b1ccace464ba275ccc86619feaa89018c0ad,http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf +71f36c8e17a5c080fab31fce1ffea9551fc49e47,http://openaccess.thecvf.com/content_cvpr_2014/papers/Zhang_Predicting_Failures_of_2014_CVPR_paper.pdf +5b719410e7829c98c074bc2947697fac3b505b64,http://pdfs.semanticscholar.org/ecec/d5c8b2472364fd7816033e8355215e34bb1b.pdf +daa02cf195818cbf651ef81941a233727f71591f,http://pdfs.semanticscholar.org/daa0/2cf195818cbf651ef81941a233727f71591f.pdf +75bf3b6109d7a685236c8589f8ead7d769ea863f,http://pdfs.semanticscholar.org/75bf/3b6109d7a685236c8589f8ead7d769ea863f.pdf +5bf70c1afdf4c16fd88687b4cf15580fd2f26102,http://pdfs.semanticscholar.org/5bf7/0c1afdf4c16fd88687b4cf15580fd2f26102.pdf +20a88cc454a03d62c3368aa1f5bdffa73523827b,http://pdfs.semanticscholar.org/d620/7593c39255ac8ce7536e5958a99f52d6bb60.pdf +42afe6d016e52c99e2c0d876052ade9c192d91e7,https://ibug.doc.ic.ac.uk/media/uploads/documents/ValstarEtAl-ICMI2006-FINAL.pdf +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,http://pdfs.semanticscholar.org/e0bf/cf965b402f3f209f26ae20ee88bc4d0002ab.pdf +732686d799d760ccca8ad47b49a8308b1ab381fb,http://pdfs.semanticscholar.org/7326/86d799d760ccca8ad47b49a8308b1ab381fb.pdf +36c473fc0bf3cee5fdd49a13cf122de8be736977,http://pdfs.semanticscholar.org/bc6c/051b66ecadac7bb3e6ace66665e42875d790.pdf +0abf67e7bd470d9eb656ea2508beae13ca173198,http://www.cs.cmu.edu/~kkitani/pdf/MFK-CVPR16.pdf +0b242d5123f79defd5f775d49d8a7047ad3153bc,http://pdfs.semanticscholar.org/84db/c0010ae4f5206d689cf9f5bb176d18990bcd.pdf +2495ebdcb6da8d8c2e82cf57fcaab0ec003d571d,http://eprints.pascal-network.org/archive/00002118/01/russell06.pdf +1fc249ec69b3e23856b42a4e591c59ac60d77118,http://cbl.uh.edu/pub_files/IJCB-2017-XX.pdf +feb6e267923868bff6e2108603d00fdfd65251ca,http://pdfs.semanticscholar.org/feb6/e267923868bff6e2108603d00fdfd65251ca.pdf +346c9100b2fab35b162d7779002c974da5f069ee,http://cmlab.csie.ntu.edu.tw/~yanying/paper/p651-lei.pdf +56e4dead93a63490e6c8402a3c7adc493c230da5,http://pdfs.semanticscholar.org/56e4/dead93a63490e6c8402a3c7adc493c230da5.pdf +855184c789bca7a56bb223089516d1358823db0b,http://pdfs.semanticscholar.org/8551/84c789bca7a56bb223089516d1358823db0b.pdf +44a3ec27f92c344a15deb8e5dc3a5b3797505c06,http://pdfs.semanticscholar.org/44a3/ec27f92c344a15deb8e5dc3a5b3797505c06.pdf +397085122a5cade71ef6c19f657c609f0a4f7473,http://pdfs.semanticscholar.org/db11/4901d09a07ab66bffa6986bc81303e133ae1.pdf +cf875336d5a196ce0981e2e2ae9602580f3f6243,http://pdfs.semanticscholar.org/cf87/5336d5a196ce0981e2e2ae9602580f3f6243.pdf +a87e37d43d4c47bef8992ace408de0f872739efc,http://pdfs.semanticscholar.org/a87e/37d43d4c47bef8992ace408de0f872739efc.pdf +29921072d8628544114f68bdf84deaf20a8c8f91,https://arxiv.org/pdf/1610.03670v4.pdf +e1ab3b9dee2da20078464f4ad8deb523b5b1792e,http://pdfs.semanticscholar.org/e1ab/3b9dee2da20078464f4ad8deb523b5b1792e.pdf +28fe6e785b32afdcd2c366c9240a661091b850cf,http://pdfs.semanticscholar.org/28fe/6e785b32afdcd2c366c9240a661091b850cf.pdf +89002a64e96a82486220b1d5c3f060654b24ef2a,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Peng_PIEFA_Personalized_Incremental_ICCV_2015_paper.pdf +89de30a75d3258816c2d4d5a733d2bef894b66b9,https://www.computer.org/csdl/trans/tp/2015/06/06915721.pdf +2f8ef26bfecaaa102a55b752860dbb92f1a11dc6,http://pdfs.semanticscholar.org/2f8e/f26bfecaaa102a55b752860dbb92f1a11dc6.pdf +17a85799c59c13f07d4b4d7cf9d7c7986475d01c,http://pdfs.semanticscholar.org/17a8/5799c59c13f07d4b4d7cf9d7c7986475d01c.pdf +9b6d0b3fbf7d07a7bb0d86290f97058aa6153179,http://pdfs.semanticscholar.org/9b6d/0b3fbf7d07a7bb0d86290f97058aa6153179.pdf +72160aae43cd9b2c3aae5574acc0d00ea0993b9e,http://pdfs.semanticscholar.org/7216/0aae43cd9b2c3aae5574acc0d00ea0993b9e.pdf +d5b0e73b584be507198b6665bcddeba92b62e1e5,http://pdfs.semanticscholar.org/d5b0/e73b584be507198b6665bcddeba92b62e1e5.pdf +e9e40e588f8e6510fa5537e0c9e083ceed5d07ad,http://pdfs.semanticscholar.org/e9e4/0e588f8e6510fa5537e0c9e083ceed5d07ad.pdf +245f8ec4373e0a6c1cae36cd6fed5a2babed1386,http://pdfs.semanticscholar.org/245f/8ec4373e0a6c1cae36cd6fed5a2babed1386.pdf +0b78fd881d0f402fd9b773249af65819e48ad36d,http://mirlab.org/conference_papers/International_Conference/ISCSLP%202008/pdfs/281.pdf +7e0c75ce731131e613544e1a85ae0f2c28ee4c1f,http://pdfs.semanticscholar.org/7e0c/75ce731131e613544e1a85ae0f2c28ee4c1f.pdf +b3330adb131fb4b6ebbfacce56f1aec2a61e0869,http://pdfs.semanticscholar.org/b333/0adb131fb4b6ebbfacce56f1aec2a61e0869.pdf +e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,http://pdfs.semanticscholar.org/e429/98bbebddeeb4b2bedf5da23fa5c4efc976fa.pdf +936c7406de1dfdd22493785fc5d1e5614c6c2882,http://pdfs.semanticscholar.org/9d5e/1395e1ace37d9d5b7ce6854d518e7f128e79.pdf +dfabe7ef245ca68185f4fcc96a08602ee1afb3f7,http://pdfs.semanticscholar.org/dfab/e7ef245ca68185f4fcc96a08602ee1afb3f7.pdf +60bffecd79193d05742e5ab8550a5f89accd8488,http://pdfs.semanticscholar.org/60bf/fecd79193d05742e5ab8550a5f89accd8488.pdf +1888bf50fd140767352158c0ad5748b501563833,http://pdfs.semanticscholar.org/1888/bf50fd140767352158c0ad5748b501563833.pdf +0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,http://pdfs.semanticscholar.org/0a2d/df88bd1a6c093aad87a8c7f4150bfcf27112.pdf +071099a4c3eed464388c8d1bff7b0538c7322422,http://arxiv.org/pdf/1601.02487v1.pdf +e4391993f5270bdbc621b8d01702f626fba36fc2,http://pdfs.semanticscholar.org/e439/1993f5270bdbc621b8d01702f626fba36fc2.pdf +3046baea53360a8c5653f09f0a31581da384202e,http://pdfs.semanticscholar.org/3046/baea53360a8c5653f09f0a31581da384202e.pdf +500fbe18afd44312738cab91b4689c12b4e0eeee,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf +5121f42de7cb9e41f93646e087df82b573b23311,http://pdfs.semanticscholar.org/5121/f42de7cb9e41f93646e087df82b573b23311.pdf +9d357bbf014289fb5f64183c32aa64dc0bd9f454,http://pdfs.semanticscholar.org/9d35/7bbf014289fb5f64183c32aa64dc0bd9f454.pdf +157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6,http://www.merl.com/publications/docs/TR2012-043.pdf +3dbfd2fdbd28e4518e2ae05de8374057307e97b3,http://pdfs.semanticscholar.org/3dbf/d2fdbd28e4518e2ae05de8374057307e97b3.pdf +5be3cc1650c918da1c38690812f74573e66b1d32,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Sandeep_Relative_Parts_Distinctive_2014_CVPR_paper.pdf +82d2af2ffa106160a183371946e466021876870d,http://pdfs.semanticscholar.org/82d2/af2ffa106160a183371946e466021876870d.pdf +3167f415a861f19747ab5e749e78000179d685bc,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICCV_2009/contents/pdf/iccv2009_131.pdf +04661729f0ff6afe4b4d6223f18d0da1d479accf,https://arxiv.org/pdf/1509.06451v1.pdf +3f22a4383c55ceaafe7d3cfed1b9ef910559d639,http://pdfs.semanticscholar.org/3f22/a4383c55ceaafe7d3cfed1b9ef910559d639.pdf +e35b09879a7df814b2be14d9102c4508e4db458b,http://pdfs.semanticscholar.org/e35b/09879a7df814b2be14d9102c4508e4db458b.pdf +514a74aefb0b6a71933013155bcde7308cad2b46,http://pdfs.semanticscholar.org/514a/74aefb0b6a71933013155bcde7308cad2b46.pdf +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,https://graphics.stanford.edu/papers/ib-relighting/ib-relighting.pdf +dfb6aa168177d4685420fcb184def0aa7db7cddb,http://pdfs.semanticscholar.org/dfb6/aa168177d4685420fcb184def0aa7db7cddb.pdf +e4bf70e818e507b54f7d94856fecc42cc9e0f73d,http://pdfs.semanticscholar.org/e4bf/70e818e507b54f7d94856fecc42cc9e0f73d.pdf +a6d621a5aae983a6996849db5e6bc63fe0a234af,http://mplab.ucsd.edu/~ksikka/pain_icmi14.pdf +c8292aa152a962763185e12fd7391a1d6df60d07,http://pdfs.semanticscholar.org/c829/2aa152a962763185e12fd7391a1d6df60d07.pdf +350da18d8f7455b0e2920bc4ac228764f8fac292,http://pdfs.semanticscholar.org/b1b1/19c94c8bf94da5c9974db537e356e4f80c67.pdf +28de411a5b3eb8411e7bcb0003c426aa91f33e97,http://pdfs.semanticscholar.org/28de/411a5b3eb8411e7bcb0003c426aa91f33e97.pdf +39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,http://openaccess.thecvf.com/content_iccv_2015/papers/Lu_Simultaneous_Local_Binary_ICCV_2015_paper.pdf +6a3a07deadcaaab42a0689fbe5879b5dfc3ede52,http://pdfs.semanticscholar.org/6a3a/07deadcaaab42a0689fbe5879b5dfc3ede52.pdf +af278274e4bda66f38fd296cfa5c07804fbc26ee,http://pdfs.semanticscholar.org/af27/8274e4bda66f38fd296cfa5c07804fbc26ee.pdf +14761b89152aa1fc280a33ea4d77b723df4e3864,http://pdfs.semanticscholar.org/1476/1b89152aa1fc280a33ea4d77b723df4e3864.pdf +a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7,http://pdfs.semanticscholar.org/a3a6/a6a2eb1d32b4dead9e702824375ee76e3ce7.pdf +1ea8085fe1c79d12adffb02bd157b54d799568e4,http://pdfs.semanticscholar.org/1ea8/085fe1c79d12adffb02bd157b54d799568e4.pdf +28f311b16e4fe4cc0ff6560aae3bbd0cb6782966,http://pdfs.semanticscholar.org/4d59/7318188a9c7f7a78dadbe5b8f8385c1e1356.pdf +7405ed035d1a4b9787b78e5566340a98fe4b63a0,http://pdfs.semanticscholar.org/7405/ed035d1a4b9787b78e5566340a98fe4b63a0.pdf +4d530a4629671939d9ded1f294b0183b56a513ef,http://pdfs.semanticscholar.org/4d53/0a4629671939d9ded1f294b0183b56a513ef.pdf +907475a4febf3f1d4089a3e775ea018fbec895fe,http://pdfs.semanticscholar.org/9074/75a4febf3f1d4089a3e775ea018fbec895fe.pdf +e0b71d3c7d551684bd334af5b3671df7053a529d,http://mplab.ucsd.edu/~jake/locality.pdf +5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0,http://pdfs.semanticscholar.org/5a8c/a0cfad32f04449099e2e3f3e3a1c8f6541c0.pdf +1938d85feafdaa8a65cb9c379c9a81a0b0dcd3c4,http://www4.comp.polyu.edu.hk/~cslzhang/paper/MBC_TIFS_final.pdf +1fd6004345245daf101c98935387e6ef651cbb55,http://pdfs.semanticscholar.org/1fd6/004345245daf101c98935387e6ef651cbb55.pdf +c28461e266fe0f03c0f9a9525a266aa3050229f0,http://pdfs.semanticscholar.org/c284/61e266fe0f03c0f9a9525a266aa3050229f0.pdf +4c87aafa779747828054cffee3125fcea332364d,http://pdfs.semanticscholar.org/4c87/aafa779747828054cffee3125fcea332364d.pdf +e0e4910d575c4a8309f2069b38b99c972dbedc57,http://eprints.pascal-network.org/archive/00009548/01/PoseDetectRandomizedCascades.pdf +63d8d69e90e79806a062cb8654ad78327c8957bb,http://pdfs.semanticscholar.org/63d8/d69e90e79806a062cb8654ad78327c8957bb.pdf +ea218cebea2228b360680cb85ca133e8c2972e56,http://pdfs.semanticscholar.org/ea21/8cebea2228b360680cb85ca133e8c2972e56.pdf +8862a573a42bbaedd392e9e634c1ccbfd177a01d,https://arxiv.org/pdf/1605.06764v1.pdf +ceeb67bf53ffab1395c36f1141b516f893bada27,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf +beab10d1bdb0c95b2f880a81a747f6dd17caa9c2,http://pdfs.semanticscholar.org/beab/10d1bdb0c95b2f880a81a747f6dd17caa9c2.pdf +af0a8199328d4c806574866f419d1962def9305a,http://ttic.uchicago.edu/~smaji/papers/mr07mms.pdf +ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18,http://ibug.doc.ic.ac.uk/media/uploads/documents/taud.pdf +8dbe79830713925affc48d0afa04ed567c54724b,http://pdfs.semanticscholar.org/8dbe/79830713925affc48d0afa04ed567c54724b.pdf +73fbdd57270b9f91f2e24989178e264f2d2eb7ae,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001945.pdf +1e0add381031245b1d5129b482853ee738b498e1,http://eprints.pascal-network.org/archive/00001829/01/CVPR05_Romdhani.pdf +981449cdd5b820268c0876477419cba50d5d1316,http://pdfs.semanticscholar.org/9814/49cdd5b820268c0876477419cba50d5d1316.pdf +1f8304f4b51033d2671147b33bb4e51b9a1e16fe,http://pdfs.semanticscholar.org/1f83/04f4b51033d2671147b33bb4e51b9a1e16fe.pdf +15f3d47b48a7bcbe877f596cb2cfa76e798c6452,http://pdfs.semanticscholar.org/15f3/d47b48a7bcbe877f596cb2cfa76e798c6452.pdf +e0dedb6fc4d370f4399bf7d67e234dc44deb4333,http://pdfs.semanticscholar.org/e0de/db6fc4d370f4399bf7d67e234dc44deb4333.pdf +8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,http://pdfs.semanticscholar.org/bff6/c3acd48f34c671c48fae9b3fdf60f5d7b363.pdf +0e21c9e5755c3dab6d8079d738d1188b03128a31,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Wu_Constrained_Clustering_and_2013_CVPR_paper.pdf +0faeec0d1c51623a511adb779dabb1e721a6309b,http://pdfs.semanticscholar.org/a075/782ea38167658fe28986755adddba7369b4f.pdf +06850b60e33baa4ea9473811d58c0d5015da079e,http://pdfs.semanticscholar.org/4cff/901521af06d6a0c98c9dce253296dd88b496.pdf +982f5c625d6ad0dac25d7acbce4dabfb35dd7f23,http://pdfs.semanticscholar.org/982f/5c625d6ad0dac25d7acbce4dabfb35dd7f23.pdf +475e16577be1bfc0dd1f74f67bb651abd6d63524,http://pdfs.semanticscholar.org/475e/16577be1bfc0dd1f74f67bb651abd6d63524.pdf +2450c618cca4cbd9b8cdbdb05bb57d67e63069b1,http://liris.cnrs.fr/Documents/Liris-6127.pdf +4c1ce6bced30f5114f135cacf1a37b69bb709ea1,http://imag.pub.ro/common/staff/cflorea/papers/nlp_eye_MVA_site.pdf +377a1be5113f38297716c4bb951ebef7a93f949a,http://www.cris.ucr.edu/IGERT/Presentation2013/CruzAbstract.pdf +1d6068631a379adbcff5860ca2311b790df3a70f,http://pdfs.semanticscholar.org/c322/b1b998ec8f1892b29a1ebcbdc2f62e644cf1.pdf +294d1fa4e1315e1cf7cc50be2370d24cc6363a41,http://pdfs.semanticscholar.org/294d/1fa4e1315e1cf7cc50be2370d24cc6363a41.pdf +c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,http://pdfs.semanticscholar.org/c7c5/f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c.pdf +77d31d2ec25df44781d999d6ff980183093fb3de,http://openaccess.thecvf.com/content_cvpr_2016/supplemental/Littwin_The_Multiverse_Loss_2016_CVPR_supplemental.pdf +582edc19f2b1ab2ac6883426f147196c8306685a,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf +cfbb2d32586b58f5681e459afd236380acd86e28,http://www.professeurs.polymtl.ca/christopher.pal/2011/ROSE.v2.5.pdf +ddf55fc9cf57dabf4eccbf9daab52108df5b69aa,http://pdfs.semanticscholar.org/ddf5/5fc9cf57dabf4eccbf9daab52108df5b69aa.pdf +05e96d76ed4a044d8e54ef44dac004f796572f1a,http://www.cs.ucsb.edu/~mturk/595/papers/BRONSTEIN.pdf +004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4,http://pdfs.semanticscholar.org/004a/1bb1a2c93b4f379468cca6b6cfc6d8746cc4.pdf +00b08d22abc85361e1c781d969a1b09b97bc7010,http://www.umariqbal.info/uploads/1/4/8/3/14837880/visapp_2014.pdf +03f98c175b4230960ac347b1100fbfc10c100d0c,http://courses.cs.washington.edu/courses/cse590v/13au/intraface.pdf +b2e6944bebab8e018f71f802607e6e9164ad3537,http://pdfs.semanticscholar.org/b2e6/944bebab8e018f71f802607e6e9164ad3537.pdf +044ba70e6744e80c6a09fa63ed6822ae241386f2,http://pdfs.semanticscholar.org/044b/a70e6744e80c6a09fa63ed6822ae241386f2.pdf +beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2,http://pdfs.semanticscholar.org/beb3/fd2da7f8f3b0c3ebceaa2150a0e65736d1a2.pdf +004e3292885463f97a70e1f511dc476289451ed5,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Law_Quadruplet-Wise_Image_Similarity_2013_ICCV_paper.pdf +046865a5f822346c77e2865668ec014ec3282033,http://www.csie.ntu.edu.tw/~winston/papers/chen12discovering.pdf +140c95e53c619eac594d70f6369f518adfea12ef,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf +2911e7f0fb6803851b0eddf8067a6fc06e8eadd6,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Jung_Joint_Fine-Tuning_in_ICCV_2015_paper.pdf +362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002792.pdf +6eb1e006b7758b636a569ca9e15aafd038d2c1b1,http://pdfs.semanticscholar.org/6eb1/e006b7758b636a569ca9e15aafd038d2c1b1.pdf +8ea30ade85880b94b74b56a9bac013585cb4c34b,http://www.eurecom.fr/fr/publication/1392/download/mm-perrfl-040517.pdf +82d79658805f6c1aedf7b0b88b47b9555584d7ae,http://cheonji.kaist.ac.kr/pdfsrc/ic/2008_KHAn_IROS.pdf +a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,http://pdfs.semanticscholar.org/a5c8/fc1ca4f06a344b53dc81ebc6d87f54896722.pdf +51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6,http://pdfs.semanticscholar.org/51ed/4c92cab9336a2ac41fa8e0293c2f5f9bf3b6.pdf +28be652db01273289499bc6e56379ca0237506c0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_018_ext.pdf +575141e42740564f64d9be8ab88d495192f5b3bc,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf +074af31bd9caa61fea3c4216731420bd7c08b96a,http://www.umiacs.umd.edu/~jhchoi/paper/cvprw2012_sfv.pdf +3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2014/MM02014.pdf +91811203c2511e919b047ebc86edad87d985a4fa,http://pdfs.semanticscholar.org/9181/1203c2511e919b047ebc86edad87d985a4fa.pdf +bf8a520533f401347e2f55da17383a3e567ef6d8,http://pdfs.semanticscholar.org/bf8a/520533f401347e2f55da17383a3e567ef6d8.pdf +e74816bc0803460e20edbd30a44ab857b06e288e,http://pdfs.semanticscholar.org/e748/16bc0803460e20edbd30a44ab857b06e288e.pdf +487df616e981557c8e1201829a1d0ec1ecb7d275,http://www.citi.sinica.edu.tw/papers/yu.tsao/4293-F.pdf +0ec1673609256b1e457f41ede5f21f05de0c054f,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d025.pdf +247a6b0e97b9447850780fe8dbc4f94252251133,http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Conf_Arman_CVPR2010.pdf +1d5aad4f7fae6d414ffb212cec1f7ac876de48bf,http://biometrics.cse.msu.edu/Publications/Face/WangJain_FaceRetriever_ICB15.pdf +66af2afd4c598c2841dbfd1053bf0c386579234e,http://www.ics.uci.edu/~dvk/pub/J17_IJMIR14_Liyan.pdf +5517b28795d7a68777c9f3b2b46845dcdb425b2c,http://pdfs.semanticscholar.org/5517/b28795d7a68777c9f3b2b46845dcdb425b2c.pdf +ff8315c1a0587563510195356c9153729b533c5b,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/Zapping%20IndexUsing%20Smile%20to%20MeasureAdvertisement14.pdf +b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,http://pdfs.semanticscholar.org/b13b/f657ca6d34d0df90e7ae739c94a7efc30dc3.pdf +2b7ef95822a4d577021df16607bf7b4a4514eb4b,http://pdfs.semanticscholar.org/b596/9178f843bfaecd0026d04c41e79bcb9edab5.pdf +8f8a5be9dc16d73664285a29993af7dc6a598c83,http://pdfs.semanticscholar.org/8f8a/5be9dc16d73664285a29993af7dc6a598c83.pdf +949699d0b865ef35b36f11564f9a4396f5c9cddb,http://pdfs.semanticscholar.org/9496/99d0b865ef35b36f11564f9a4396f5c9cddb.pdf +2b1327a51412646fcf96aa16329f6f74b42aba89,http://pdfs.semanticscholar.org/8296/cb7fea317fcd0a7ff6b7e4486ab869a7231e.pdf +6eece104e430829741677cadc1dfacd0e058d60f,http://pdfs.semanticscholar.org/7a42/6d0b98c8f52d61f9d89cd7be5ab6119f0a4a.pdf +329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf +9755554b13103df634f9b1ef50a147dd02eab02f,https://arxiv.org/pdf/1610.00134v1.pdf +0a11b82aa207d43d1b4c0452007e9388a786be12,http://pdfs.semanticscholar.org/0a11/b82aa207d43d1b4c0452007e9388a786be12.pdf +27f8b01e628f20ebfcb58d14ea40573d351bbaad,http://pdfs.semanticscholar.org/27f8/b01e628f20ebfcb58d14ea40573d351bbaad.pdf +ee6b503ab512a293e3088fdd7a1c893a77902acb,http://pdfs.semanticscholar.org/ee6b/503ab512a293e3088fdd7a1c893a77902acb.pdf +2ec7d6a04c8c72cc194d7eab7456f73dfa501c8c,http://pdfs.semanticscholar.org/2ec7/d6a04c8c72cc194d7eab7456f73dfa501c8c.pdf +add50a7d882eb38e35fe70d11cb40b1f0059c96f,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_086_ext.pdf +3d1a6a5fd5915e0efb953ede5af0b23debd1fc7f,http://pdfs.semanticscholar.org/3d1a/6a5fd5915e0efb953ede5af0b23debd1fc7f.pdf +4068574b8678a117d9a434360e9c12fe6232dae0,http://www.visionmeetscognition.org/fpic2014/Camera_Ready/Paper%2031.pdf +f869601ae682e6116daebefb77d92e7c5dd2cb15,http://pdfs.semanticscholar.org/f869/601ae682e6116daebefb77d92e7c5dd2cb15.pdf +76673de6d81bedd6b6be68953858c5f1aa467e61,http://pdfs.semanticscholar.org/8883/2abb9082af6a1395e1b9bd3d4c1b46d00616.pdf +53cfe4817ac2eecbe4e286709a9140a5fe729b35,http://www.cv.iit.nrc.ca/VI/fpiv04/pdf/17fa.pdf +243e9d490fe98d139003bb8dc95683b366866c57,http://pdfs.semanticscholar.org/243e/9d490fe98d139003bb8dc95683b366866c57.pdf +6d4103762e159130b32335cbf8893ee4dca26859,http://homepage.tudelft.nl/19j49/Publications_files/cogn_proc.pdf +c02847a04a99a5a6e784ab580907278ee3c12653,http://pdfs.semanticscholar.org/c028/47a04a99a5a6e784ab580907278ee3c12653.pdf +05c91e8a29483ced50c5f2d869617b80f7dacdd9,http://www.cs.rochester.edu/~mehoque/Publications/2013/13.Hoque-etal-MACH-UbiComp.pdf +b11bb6bd63ee6f246d278dd4edccfbe470263803,http://pdfs.semanticscholar.org/b11b/b6bd63ee6f246d278dd4edccfbe470263803.pdf +58b0be2db0aeda2edb641273fe52946a24a714c3,http://www.cs.ucsb.edu/~daniel/publications/conferences/wacv09/VaqueroWACV09.pdf +0f940d2cdfefc78c92ec6e533a6098985f47a377,https://www.ecse.rpi.edu/~cvrl/chenj/Expression_v6_submit.pdf +baaaf73ec28226d60d923bc639f3c7d507345635,http://pdfs.semanticscholar.org/baaa/f73ec28226d60d923bc639f3c7d507345635.pdf +198b6beb53e0e61357825d57938719f614685f75,http://pdfs.semanticscholar.org/198b/6beb53e0e61357825d57938719f614685f75.pdf +c614450c9b1d89d5fda23a54dbf6a27a4b821ac0,http://pdfs.semanticscholar.org/c614/450c9b1d89d5fda23a54dbf6a27a4b821ac0.pdf +e0c081a007435e0c64e208e9918ca727e2c1c44e,http://pdfs.semanticscholar.org/e0c0/81a007435e0c64e208e9918ca727e2c1c44e.pdf +271e2856e332634eccc5e80ba6fa9bbccf61f1be,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/176.pdf +507c9672e3673ed419075848b4b85899623ea4b0,http://pdfs.semanticscholar.org/507c/9672e3673ed419075848b4b85899623ea4b0.pdf +057d5f66a873ec80f8ae2603f937b671030035e6,http://cs.stanford.edu/~roozbeh/papers/Mottaghi16cvpr_a.pdf +883006c0f76cf348a5f8339bfcb649a3e46e2690,http://mplab.ucsd.edu/~marni/pubs/Sikka_FG2013.pdf +751970d4fb6f61d1b94ca82682984fd03c74f127,http://pdfs.semanticscholar.org/7519/70d4fb6f61d1b94ca82682984fd03c74f127.pdf +3d42e17266475e5d34a32103d879b13de2366561,http://pdfs.semanticscholar.org/7450/7306832bd71884365ed81e1cc7866e47c399.pdf +0d3882b22da23497e5de8b7750b71f3a4b0aac6b,http://pdfs.semanticscholar.org/0d38/82b22da23497e5de8b7750b71f3a4b0aac6b.pdf +fa08a4da5f2fa39632d90ce3a2e1688d147ece61,http://pdfs.semanticscholar.org/fa08/a4da5f2fa39632d90ce3a2e1688d147ece61.pdf +286812ade95e6f1543193918e14ba84e5f8e852e,http://pdfs.semanticscholar.org/9b1d/a39168a7196c2f9c85e9b3d17debff04c988.pdf +75d2ecbbcc934563dff6b39821605dc6f2d5ffcc,http://pdfs.semanticscholar.org/75d2/ecbbcc934563dff6b39821605dc6f2d5ffcc.pdf +656a59954de3c9fcf82ffcef926af6ade2f3fdb5,http://pdfs.semanticscholar.org/656a/59954de3c9fcf82ffcef926af6ade2f3fdb5.pdf +291f527598c589fb0519f890f1beb2749082ddfd,http://pdfs.semanticscholar.org/3215/ceb94227451a958bcf6b1205c710d17e53f5.pdf +6f9824c5cb5ac08760b08e374031cbdabc953bae,https://eprints.soton.ac.uk/397973/1/PID4351119.pdf +6ecd4025b7b5f4894c990614a9a65e3a1ac347b2,http://pdfs.semanticscholar.org/6ecd/4025b7b5f4894c990614a9a65e3a1ac347b2.pdf +2dbde64ca75e7986a0fa6181b6940263bcd70684,http://www.micc.unifi.it/wp-content/uploads/2016/01/2014_pose_independent.pdf +9f6d04ce617d24c8001a9a31f11a594bd6fe3510,http://pdfs.semanticscholar.org/9f6d/04ce617d24c8001a9a31f11a594bd6fe3510.pdf +99ced8f36d66dce20d121f3a29f52d8b27a1da6c,http://pdfs.semanticscholar.org/99ce/d8f36d66dce20d121f3a29f52d8b27a1da6c.pdf +ad8540379884ec03327076b562b63bc47e64a2c7,http://pdfs.semanticscholar.org/ad85/40379884ec03327076b562b63bc47e64a2c7.pdf +044d9a8c61383312cdafbcc44b9d00d650b21c70,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf +94e259345e82fa3015a381d6e91ec6cded3971b4,http://pdfs.semanticscholar.org/94e2/59345e82fa3015a381d6e91ec6cded3971b4.pdf +b88ceded6467e9b286f048bb1b17be5998a077bd,http://pdfs.semanticscholar.org/b88c/eded6467e9b286f048bb1b17be5998a077bd.pdf +7f268f29d2c8f58cea4946536f5e2325777fa8fa,http://pdfs.semanticscholar.org/7f26/8f29d2c8f58cea4946536f5e2325777fa8fa.pdf +7ca337735ec4c99284e7c98f8d61fb901dbc9015,http://vision.psych.umn.edu/users/schrater/Papers/Veeretal05.pdf +4015e8195db6edb0ef8520709ca9cb2c46f29be7,http://pdfs.semanticscholar.org/4015/e8195db6edb0ef8520709ca9cb2c46f29be7.pdf +c180f22a9af4a2f47a917fd8f15121412f2d0901,http://pdfs.semanticscholar.org/c180/f22a9af4a2f47a917fd8f15121412f2d0901.pdf +29908288392a9326d7a2996c6cd6b3e6cb137265,http://people.cs.ubc.ca/~pcarbo/ijcvss.pdf +c8829013bbfb19ccb731bd54c1a885c245b6c7d7,http://pdfs.semanticscholar.org/c882/9013bbfb19ccb731bd54c1a885c245b6c7d7.pdf +416b559402d0f3e2b785074fcee989d44d82b8e5,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Cai_Multi-View_Super_Vector_2014_CVPR_paper.pdf +153c8715f491272b06dc93add038fae62846f498,http://pdfs.semanticscholar.org/153c/8715f491272b06dc93add038fae62846f498.pdf +f6ca29516cce3fa346673a2aec550d8e671929a6,http://pdfs.semanticscholar.org/f6ca/29516cce3fa346673a2aec550d8e671929a6.pdf +153e5cddb79ac31154737b3e025b4fb639b3c9e7,http://pdfs.semanticscholar.org/d9f5/9178ef2d91c98e0f3108fe273cdc6c6590f4.pdf +33402ee078a61c7d019b1543bb11cc127c2462d2,http://users.cecs.anu.edu.au/~sgould/papers/cvpr17-ooo.pdf +40a74eea514b389b480d6fe8b359cb6ad31b644a,http://pdfs.semanticscholar.org/7ac4/2be6c1f01ccc42b28c0bfa77856cc75b65a2.pdf +c2e03efd8c5217188ab685e73cc2e52c54835d1a,http://web.eecs.utk.edu/~ataalimi/wp-content/uploads/2016/09/Deep-Tree-structured-Face-A-Unified-Representation-for-Multi-task-Facial.pdf +05ad478ca69b935c1bba755ac1a2a90be6679129,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Turakhia_Attribute_Dominance_What_2013_ICCV_paper.pdf +f86ddd6561f522d115614c93520faad122eb3b56,http://pdfs.semanticscholar.org/f86d/dd6561f522d115614c93520faad122eb3b56.pdf +cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2,https://www.computer.org/csdl/trans/ta/2017/03/07420600.pdf +f909d04c809013b930bafca12c0f9a8192df9d92,http://pdfs.semanticscholar.org/f909/d04c809013b930bafca12c0f9a8192df9d92.pdf +36c2db5ff76864d289781f93cbb3e6351f11984c,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569187194.pdf +4bd088ba3f42aa1e43ae33b1988264465a643a1f,http://pdfs.semanticscholar.org/4bd0/88ba3f42aa1e43ae33b1988264465a643a1f.pdf +a15d9d2ed035f21e13b688a78412cb7b5a04c469,http://pdfs.semanticscholar.org/a15d/9d2ed035f21e13b688a78412cb7b5a04c469.pdf +43ae4867d058453e9abce760ff0f9427789bab3a,https://infoscience.epfl.ch/record/207780/files/tnnls_graph_embedding.pdf +cdb1d32bc5c1a9bb0d9a5b9c9222401eab3e9ca0,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Functional_Faces_Groupwise_CVPR_2016_paper.pdf +62374b9e0e814e672db75c2c00f0023f58ef442c,http://pdfs.semanticscholar.org/6237/4b9e0e814e672db75c2c00f0023f58ef442c.pdf +0b2966101fa617b90510e145ed52226e79351072,http://www.cs.umanitoba.ca/~ywang/papers/icpr16_videotext.pdf +22df6b6c87d26f51c0ccf3d4dddad07ce839deb0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Yu_Fast_Action_Proposals_2015_CVPR_paper.pdf +e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,http://pdfs.semanticscholar.org/e48e/94959c4ce799fc61f3f4aa8a209c00be8d7f.pdf +22ec256400e53cee35f999244fb9ba6ba11c1d06,http://pdfs.semanticscholar.org/2dbd/f0093228eee11ce9ef17365055dada756413.pdf +eb716dd3dbd0f04e6d89f1703b9975cad62ffb09,http://pdfs.semanticscholar.org/eb71/6dd3dbd0f04e6d89f1703b9975cad62ffb09.pdf +01c7a778cde86ad1b89909ea809d55230e569390,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Siyahjani_A_Supervised_Low-Rank_ICCV_2015_paper.pdf +46e86cdb674440f61b6658ef3e84fea95ea51fb4,http://pdfs.semanticscholar.org/c075/e79a832d36e5b4c76b0f07c3b9d5f3be43e0.pdf +676a136f5978783f75b5edbb38e8bb588e8efbbe,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_084_ext.pdf +2c203050a6cca0a0bff80e574bda16a8c46fe9c2,http://pdfs.semanticscholar.org/608f/43ee003c7c2e7f170336fda7a00cccd06311.pdf +80840df0802399838fe5725cce829e1b417d7a2e,http://pdfs.semanticscholar.org/8084/0df0802399838fe5725cce829e1b417d7a2e.pdf +57911d7f347dde0398f964e0c7ed8fdd0a882449,http://amp.ece.cmu.edu/people/Andy/Andy_files/1424CVPR08Gallagher.pdf +01b4b32c5ef945426b0396d32d2a12c69c282e29,http://pdfs.semanticscholar.org/1510/bfa3a31ccf47e0241d3528aeda4871597a0f.pdf +a1e97c4043d5cc9896dc60ae7ca135782d89e5fc,http://pdfs.semanticscholar.org/a1e9/7c4043d5cc9896dc60ae7ca135782d89e5fc.pdf +1d19c6857e798943cd0ecd110a7a0d514c671fec,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w2/papers/Khorrami_Do_Deep_Neural_ICCV_2015_paper.pdf +301b0da87027d6472b98361729faecf6e1d5e5f6,http://pdfs.semanticscholar.org/301b/0da87027d6472b98361729faecf6e1d5e5f6.pdf +641f34deb3bdd123c6b6e7b917519c3e56010cb7,https://pdfs.semanticscholar.org/878d/68c5d016a0a63f328d72adda6b135432b66d.pdf +10e70a34d56258d10f468f8252a7762950830d2b,http://intechweb.org/downloadpdf.php?id=5889 +26437fb289cd7caeb3834361f0cc933a02267766,http://pdfs.semanticscholar.org/2643/7fb289cd7caeb3834361f0cc933a02267766.pdf +50d961508ec192197f78b898ff5d44dc004ef26d,http://pdfs.semanticscholar.org/50d9/61508ec192197f78b898ff5d44dc004ef26d.pdf +8d4f0517eae232913bf27f516101a75da3249d15,http://pdfs.semanticscholar.org/8d4f/0517eae232913bf27f516101a75da3249d15.pdf +87e5b4d95f95a0975e855cf5ad402db7a3c64ff5,http://www.researchgate.net/profile/Paul_Bodesheim/publication/269314560_Local_Novelty_Detection_in_Multi-class_Recognition_Problems/links/5486c2420cf289302e2c35eb.pdf +48fea82b247641c79e1994f4ac24cad6b6275972,http://wan.poly.edu/KDD2012/docs/p1469.pdf +14e8dbc0db89ef722c3c198ae19bde58138e88bf,http://ascl.cis.fiu.edu/uploads/1/3/4/2/13423859/amini-lisetti-acii-2013-final.pdf +140438a77a771a8fb656b39a78ff488066eb6b50,http://homes.cs.washington.edu/~neeraj/base/publications/base/papers/nk_cvpr2011_faceparts.pdf +0badf61e8d3b26a0d8b60fe94ba5c606718daf0b,http://pdfs.semanticscholar.org/0bad/f61e8d3b26a0d8b60fe94ba5c606718daf0b.pdf +9ac15845defcd0d6b611ecd609c740d41f0c341d,http://pdfs.semanticscholar.org/9ac1/5845defcd0d6b611ecd609c740d41f0c341d.pdf +2cdde47c27a8ecd391cbb6b2dea64b73282c7491,http://pdfs.semanticscholar.org/2cdd/e47c27a8ecd391cbb6b2dea64b73282c7491.pdf +34108098e1a378bc15a5824812bdf2229b938678,http://pdfs.semanticscholar.org/3410/8098e1a378bc15a5824812bdf2229b938678.pdf +1eb4ea011a3122dc7ef3447e10c1dad5b69b0642,http://pdfs.semanticscholar.org/1eb4/ea011a3122dc7ef3447e10c1dad5b69b0642.pdf +3399f8f0dff8fcf001b711174d29c9d4fde89379,http://pdfs.semanticscholar.org/3399/f8f0dff8fcf001b711174d29c9d4fde89379.pdf +6f08885b980049be95a991f6213ee49bbf05c48d,http://pdfs.semanticscholar.org/6f08/885b980049be95a991f6213ee49bbf05c48d.pdf +02bd665196bd50c4ecf05d6852a4b9ba027cd9d0,http://arxiv.org/pdf/1310.2880v6.pdf +15e27f968458bf99dd34e402b900ac7b34b1d575,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p8362-mahanta.pdf +238fc68b2e0ef9f5ec043d081451902573992a03,http://www.cbsr.ia.ac.cn/users/zlei/papers/ChuanxianRen-ELGOF-TCYB.pdf +7d7be6172fc2884e1da22d1e96d5899a29831ad2,http://pdfs.semanticscholar.org/7d7b/e6172fc2884e1da22d1e96d5899a29831ad2.pdf +43a03cbe8b704f31046a5aba05153eb3d6de4142,http://pdfs.semanticscholar.org/9594/3329cd6922a869dd6d58ef01e9492879034c.pdf +17cf838720f7892dbe567129dcf3f7a982e0b56e,http://pdfs.semanticscholar.org/6e0a/a9926e484e08b31fdeb85b73d1ae65ba47d6.pdf +0fd1715da386d454b3d6571cf6d06477479f54fc,http://pdfs.semanticscholar.org/0fd1/715da386d454b3d6571cf6d06477479f54fc.pdf +9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493,http://www.ifp.illinois.edu/~jyang29/papers/JRR_ICCV11.pdf +e6ee36444038de5885473693fb206f49c1369138,http://pdfs.semanticscholar.org/e6ee/36444038de5885473693fb206f49c1369138.pdf +33a1a049d15e22befc7ddefdd3ae719ced8394bf,http://pdfs.semanticscholar.org/33a1/a049d15e22befc7ddefdd3ae719ced8394bf.pdf +cef841f27535c0865278ee9a4bc8ee113b4fb9f3,http://pdfs.semanticscholar.org/cef8/41f27535c0865278ee9a4bc8ee113b4fb9f3.pdf +0394040749195937e535af4dda134206aa830258,http://web.eecs.umich.edu/~hero/Preprints/sp_mlsi_submitted_revised2.pdf +10ce3a4724557d47df8f768670bfdd5cd5738f95,http://pdfs.semanticscholar.org/10ce/3a4724557d47df8f768670bfdd5cd5738f95.pdf +31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a,http://pdfs.semanticscholar.org/31aa/20911cc7a2b556e7d273f0bdd5a2f0671e0a.pdf +63d8110ac76f57b3ba8a5947bc6bdbb86f25a342,http://pdfs.semanticscholar.org/63d8/110ac76f57b3ba8a5947bc6bdbb86f25a342.pdf +0641dbee7202d07b6c78a39eecd312c17607412e,http://users.cecs.anu.edu.au/~hongdong/JiZhongLiSalzmannICIP14.pdf +43476cbf2a109f8381b398e7a1ddd794b29a9a16,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Cao_A_Practical_Transfer_2013_ICCV_paper.pdf +9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1,http://pdfs.semanticscholar.org/9cfb/3a68fb10a59ec2a6de1b24799bf9154a8fd1.pdf +13bda03fc8984d5943ed8d02e49a779d27c84114,http://www-ljk.imag.fr/Publications/Basilic/com.lmc.publi.PUBLI_Inproceedings@13730f58c78_1669a2e/cevikalp-cvpr12.pdf +6e60536c847ac25dba4c1c071e0355e5537fe061,http://www.cfar.umd.edu/~fer/postscript/CV_and_NLP.pdf +9a0c7a4652c49a177460b5d2fbbe1b2e6535e50a,http://arxiv.org/pdf/1602.01940v1.pdf +8518b501425f2975ea6dcbf1e693d41e73d0b0af,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhang_Relative_Hidden_Markov_2013_CVPR_paper.pdf +a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,http://pdfs.semanticscholar.org/bce2/02717ce134b317b39f0a18151659d643875b.pdf +47a003e6bbfc5bf04a099ca53c67ddfdbea71315,http://www.researchgate.net/profile/Andrzej_Drygajlo/publication/228669241_Q-stack_aging_model_for_face_verification/links/09e4150f7ffb6d3946000000.pdf +741485741734a99e933dd0302f457158c6842adf,http://pdfs.semanticscholar.org/7414/85741734a99e933dd0302f457158c6842adf.pdf +e78394213ae07b682ce40dc600352f674aa4cb05,http://pdfs.semanticscholar.org/e783/94213ae07b682ce40dc600352f674aa4cb05.pdf +a3dc109b1dff3846f5a2cc1fe2448230a76ad83f,http://pdfs.semanticscholar.org/a3dc/109b1dff3846f5a2cc1fe2448230a76ad83f.pdf +9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e,http://pdfs.semanticscholar.org/9a1a/9dd3c471bba17e5ce80a53e52fcaaad4373e.pdf +106732a010b1baf13c61d0994552aee8336f8c85,http://arxiv.org/pdf/1509.04186v2.pdf +31b05f65405534a696a847dd19c621b7b8588263,https://arxiv.org/pdf/1611.01484v1.pdf +2251a88fbccb0228d6d846b60ac3eeabe468e0f1,http://pdfs.semanticscholar.org/2251/a88fbccb0228d6d846b60ac3eeabe468e0f1.pdf +3fb3c7dd12561e9443ac301f5527d539b1f4574e,http://www.research.rutgers.edu/~shaoting/paper/ICCV13.pdf +02fda07735bdf84554c193811ba4267c24fe2e4a,http://www.cbsr.ia.ac.cn/Li%20Group/papers/Li-IR-Face-PAMI-07.pdf +2cf5f2091f9c2d9ab97086756c47cd11522a6ef3,http://pdfs.semanticscholar.org/2cf5/f2091f9c2d9ab97086756c47cd11522a6ef3.pdf +8e94ed0d7606408a0833e69c3185d6dcbe22bbbe,http://www.wjscheirer.com/papers/wjs_wacv2012_eyes.pdf +0b3786a3a0ea7ec08f01636124c183dbee8f625f,http://www.cs.uiuc.edu/homes/dhoiem/publications/pami2012_FlickrSimilaritiesSIKMA_Gang.pdf +27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba,http://pdfs.semanticscholar.org/27b1/670e1b91ab983b7b1ecfe9eb5e6ba951e0ba.pdf +66e9fb4c2860eb4a15f713096020962553696e12,http://pdfs.semanticscholar.org/d42f/8e7283b20b89f55f8d36efcb1d8e2b774167.pdf +ffc9d6a5f353e5aec3116a10cf685294979c63d9,http://pdfs.semanticscholar.org/ffc9/d6a5f353e5aec3116a10cf685294979c63d9.pdf +0b174d4a67805b8796bfe86cd69a967d357ba9b6,http://pdfs.semanticscholar.org/0b17/4d4a67805b8796bfe86cd69a967d357ba9b6.pdf +03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20,https://ias.in.tum.de/_media/spezial/bib/mayer08arealtime.pdf +086131159999d79adf6b31c1e604b18809e70ba8,http://vinereactor.org/icpr2016.pdf +58628e64e61bd2776a2a7258012eabe3c79ca90c,http://pdfs.semanticscholar.org/5862/8e64e61bd2776a2a7258012eabe3c79ca90c.pdf +539ae0920815eb248939165dd5d1b0188ff7dca2,http://www.ele.puc-rio.br/~visao/Topicos/Prince%20and%20Helder%202007%20Probabilistic%20linear%20discriminant%20analysis.pdf +718d3137adba9e3078fa1f698020b666449f3336,http://pdfs.semanticscholar.org/718d/3137adba9e3078fa1f698020b666449f3336.pdf +71b07c537a9e188b850192131bfe31ef206a39a0,http://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf +ccdea57234d38c7831f1e9231efcb6352c801c55,http://pdfs.semanticscholar.org/ccde/a57234d38c7831f1e9231efcb6352c801c55.pdf +67b79c2336b9a2efbfc805b9a6912a0959e392a9,https://www.researchgate.net/profile/Engin_Erzin/publication/220716898_RANSAC-Based_Training_Data_Selection_on_Spectral_Features_for_Emotion_Recognition_from_Spontaneous_Speech/links/0912f5089705e67f21000000.pdf +146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,https://arxiv.org/pdf/1611.06158v1.pdf +4b4ecc1cb7f048235605975ab37bb694d69f63e5,http://pdfs.semanticscholar.org/4b4e/cc1cb7f048235605975ab37bb694d69f63e5.pdf +fde0180735699ea31f6c001c71eae507848b190f,http://pdfs.semanticscholar.org/fde0/180735699ea31f6c001c71eae507848b190f.pdf +f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,http://pdfs.semanticscholar.org/f2ad/9b43bac8c2bae9dea694f6a4e44c760e63da.pdf +1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,http://www.dabi.temple.edu/~hbling/publication/oria-12-final.pdf +08cb294a08365e36dd7ed4167b1fd04f847651a9,http://pdfs.semanticscholar.org/f75f/56bb1dcf721449f2fcc3634265f1e08e012c.pdf +ee461d060da58d6053d2f4988b54eff8655ecede,http://pdfs.semanticscholar.org/ee46/1d060da58d6053d2f4988b54eff8655ecede.pdf +5b6f0a508c1f4097dd8dced751df46230450b01a,http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.pdf +20a432a065a06f088d96965f43d0055675f0a6c1,http://pdfs.semanticscholar.org/20a4/32a065a06f088d96965f43d0055675f0a6c1.pdf +3d0c21d4780489bd624a74b07e28c16175df6355,http://pdfs.semanticscholar.org/3d0c/21d4780489bd624a74b07e28c16175df6355.pdf +20b437dc4fc44c17f131713ffcbb4a8bd672ef00,http://pdfs.semanticscholar.org/20b4/37dc4fc44c17f131713ffcbb4a8bd672ef00.pdf +ee92d36d72075048a7c8b2af5cc1720c7bace6dd,http://pdfs.semanticscholar.org/ee92/d36d72075048a7c8b2af5cc1720c7bace6dd.pdf +ca606186715e84d270fc9052af8500fe23befbda,http://www.amirtahmasbi.com/publications_repository/SDA_ICSPS2010.pdf +aa127e6b2dc0aaccfb85e93e8b557f83ebee816b,http://pdfs.semanticscholar.org/aa12/7e6b2dc0aaccfb85e93e8b557f83ebee816b.pdf +18a849b1f336e3c3b7c0ee311c9ccde582d7214f,http://pdfs.semanticscholar.org/18a8/49b1f336e3c3b7c0ee311c9ccde582d7214f.pdf +227b18fab568472bf14f9665cedfb95ed33e5fce,https://arxiv.org/pdf/1308.0271v2.pdf +b5930275813a7e7a1510035a58dd7ba7612943bc,http://pdfs.semanticscholar.org/b593/0275813a7e7a1510035a58dd7ba7612943bc.pdf +7d94fd5b0ca25dd23b2e36a2efee93244648a27b,http://pdfs.semanticscholar.org/7d94/fd5b0ca25dd23b2e36a2efee93244648a27b.pdf +a35dd69d63bac6f3296e0f1d148708cfa4ba80f6,http://pdfs.semanticscholar.org/a35d/d69d63bac6f3296e0f1d148708cfa4ba80f6.pdf +26ad6ceb07a1dc265d405e47a36570cb69b2ace6,http://pdfs.semanticscholar.org/26ad/6ceb07a1dc265d405e47a36570cb69b2ace6.pdf +55b4b1168c734eeb42882082bd131206dbfedd5b,http://pdfs.semanticscholar.org/76fd/f16bcc2cb260b9e6b2880c8fe128533bc2c6.pdf +956e9b69b3366ed3e1670609b53ba4a7088b8b7e,http://pdfs.semanticscholar.org/956e/9b69b3366ed3e1670609b53ba4a7088b8b7e.pdf +f7de943aa75406fe5568fdbb08133ce0f9a765d4,http://pdfs.semanticscholar.org/f7de/943aa75406fe5568fdbb08133ce0f9a765d4.pdf +1369e9f174760ea592a94177dbcab9ed29be1649,http://geza.kzoo.edu/~erdi/IJCNN2013/HTMLFiles/PDFs/P393-1401.pdf +beb4546ae95f79235c5f3c0e9cc301b5d6fc9374,http://pdfs.semanticscholar.org/beb4/546ae95f79235c5f3c0e9cc301b5d6fc9374.pdf +4c6e1840451e1f86af3ef1cb551259cb259493ba,http://pdfs.semanticscholar.org/4c6e/1840451e1f86af3ef1cb551259cb259493ba.pdf +fdb33141005ca1b208a725796732ab10a9c37d75,http://pdfs.semanticscholar.org/fdb3/3141005ca1b208a725796732ab10a9c37d75.pdf +5d01283474b73a46d80745ad0cc0c4da14aae194,http://pdfs.semanticscholar.org/5d01/283474b73a46d80745ad0cc0c4da14aae194.pdf +1c17450c4d616e1e1eece248c42eba4f87de9e0d,http://pdfs.semanticscholar.org/d269/39a00a8d3964de612cd3faa86764343d5622.pdf +cebfafea92ed51b74a8d27c730efdacd65572c40,http://biometrics.cse.msu.edu/Publications/Face/LuJainColbry_Matching2.5DFaceScans_PAMI06.pdf +937ffb1c303e0595317873eda5ce85b1a17f9943,https://ivi.fnwi.uva.nl/isis/publications/2010/DibekliogluICM2010/DibekliogluICM2010.pdf +809ea255d144cff780300440d0f22c96e98abd53,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf +8f3e120b030e6c1d035cb7bd9c22f6cc75782025,http://pdfs.semanticscholar.org/8f3e/120b030e6c1d035cb7bd9c22f6cc75782025.pdf +367a786cfe930455cd3f6bd2492c304d38f6f488,http://pdfs.semanticscholar.org/367a/786cfe930455cd3f6bd2492c304d38f6f488.pdf +0e7f277538142fb50ce2dd9179cffdc36b794054,http://nb.vse.cz/~svatek/mdm08.pdf +581e920ddb6ecfc2a313a3aa6fed3d933b917ab0,http://pdfs.semanticscholar.org/581e/920ddb6ecfc2a313a3aa6fed3d933b917ab0.pdf +d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,http://pdfs.semanticscholar.org/d2cd/9a7f19600370bce3ea29aba97d949fe0ceb9.pdf +404042a1dcfde338cf24bc2742c57c0fb1f48359,http://pdfs.semanticscholar.org/4040/42a1dcfde338cf24bc2742c57c0fb1f48359.pdf +b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24,http://grid.hust.edu.cn/xbliu/papers/ICDM09.pdf +79617903c5cb56697f2e738e1463b9654e2d68ed,http://hal.cse.msu.edu/pdfs/papers/2013-mmcf-tip.pdf +b03d6e268cde7380e090ddaea889c75f64560891,http://pdfs.semanticscholar.org/b03d/6e268cde7380e090ddaea889c75f64560891.pdf +19f076998ba757602c8fec04ce6a4ca674de0e25,http://pdfs.semanticscholar.org/19f0/76998ba757602c8fec04ce6a4ca674de0e25.pdf +d73d2c9a6cef79052f9236e825058d5d9cdc1321,http://pdfs.semanticscholar.org/d73d/2c9a6cef79052f9236e825058d5d9cdc1321.pdf +401e6b9ada571603b67377b336786801f5b54eee,http://pdfs.semanticscholar.org/401e/6b9ada571603b67377b336786801f5b54eee.pdf +86b51bd0c80eecd6acce9fc538f284b2ded5bcdd,http://pdfs.semanticscholar.org/86b5/1bd0c80eecd6acce9fc538f284b2ded5bcdd.pdf +05f4d907ee2102d4c63a3dc337db7244c570d067,http://pdfs.semanticscholar.org/3c52/2c9707eb795e0dba69202f1ec946a9072661.pdf +3dabf7d853769cfc4986aec443cc8b6699136ed0,http://pdfs.semanticscholar.org/3dab/f7d853769cfc4986aec443cc8b6699136ed0.pdf +6e1802874ead801a7e1072aa870681aa2f555f35,http://www.cs.yale.edu/homes/hw5/WebContent/ICASSP07_Yan.pdf +3a591a9b5c6d4c62963d7374d58c1ae79e3a4039,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W04/papers/Artan_Driver_Cell_Phone_2014_CVPR_paper.pdf +261c3e30bae8b8bdc83541ffa9331b52fcf015e6,http://pdfs.semanticscholar.org/a751/04bc7dbaaf549d89f163560525031b49df38.pdf +469ee1b00f7bbfe17c698ccded6f48be398f2a44,http://pdfs.semanticscholar.org/469e/e1b00f7bbfe17c698ccded6f48be398f2a44.pdf +1fe59275142844ce3ade9e2aed900378dd025880,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Xiao_Facial_Landmark_Detection_ICCV_2015_paper.pdf +5ea165d2bbd305dc125415487ef061bce75dac7d,http://www.ece.northwestern.edu/~zli/new_home/MyPublications/conf/ICME2009-human-act-apd-final.pdf +539287d8967cdeb3ef60d60157ee93e8724efcac,http://pdfs.semanticscholar.org/e5ae/05a05eefbf416eb2e13ec080f1a166dde735.pdf +4439746eeb7c7328beba3f3ef47dc67fbb52bcb3,http://pdfs.semanticscholar.org/4439/746eeb7c7328beba3f3ef47dc67fbb52bcb3.pdf +c82c147c4f13e79ad49ef7456473d86881428b89,http://pdfs.semanticscholar.org/c82c/147c4f13e79ad49ef7456473d86881428b89.pdf +07da958db2e561cc7c24e334b543d49084dd1809,https://infoscience.epfl.ch/record/117525/files/Classification.pdf?version=1 +bd6099429bb7bf248b1fd6a1739e744512660d55,http://pdfs.semanticscholar.org/bd60/99429bb7bf248b1fd6a1739e744512660d55.pdf +17fad2cc826d2223e882c9fda0715fcd5475acf3,http://pdfs.semanticscholar.org/8f64/def1fe17e2711405d66898a578e3b20da29e.pdf +7d50df03d0c8a26eaaeaef47de68691f9ac73701,http://media-lab.engr.ccny.cuny.edu/Paper/2011/HCBA11.pdf +46072f872eee3413f9d05482be6446f6b96b6c09,http://pdfs.semanticscholar.org/4607/2f872eee3413f9d05482be6446f6b96b6c09.pdf +176bd61cc843d0ed6aa5af83c22e3feb13b89fe1,http://pdfs.semanticscholar.org/648b/f64ff77aeccf761b83dd85143a6eb832b258.pdf +ee418372b0038bd3b8ae82bd1518d5c01a33a7ec,http://pdfs.semanticscholar.org/ee41/8372b0038bd3b8ae82bd1518d5c01a33a7ec.pdf +6459f1e67e1ea701b8f96177214583b0349ed964,http://vision.ece.ucsb.edu/publications/karthik_icip2011.pdf +0c05f60998628884a9ac60116453f1a91bcd9dda,http://pdfs.semanticscholar.org/7b19/80d4ac1730fd0145202a8cb125bf05d96f01.pdf +00d9d88bb1bdca35663946a76d807fff3dc1c15f,http://arxiv.org/pdf/1604.04842v1.pdf +847e07387142c1bcc65035109ccce681ef88362c,http://pdfs.semanticscholar.org/847e/07387142c1bcc65035109ccce681ef88362c.pdf +1bad8a9640cdbc4fe7de12685651f44c4cff35ce,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W08/papers/Gourgari_THETIS_Three_Dimensional_2013_CVPR_paper.pdf +f19777e37321f79e34462fc4c416bd56772031bf,http://pdfs.semanticscholar.org/f197/77e37321f79e34462fc4c416bd56772031bf.pdf +e3a6e9ddbbfc4c5160082338d46808cea839848a,http://pdfs.semanticscholar.org/f5d0/2300271ab0f32f10bfbba5562c0fa83c5727.pdf +8eb9aa6349db3dd1b724266fcd5fc39a83da022a,http://www.hcii-lab.net/2009/%5BICIP%202009%5D%20A%20Novel%20feature%20extraction%20using%20PHOG%20for%20Smile%20Recognition.pdf +a955033ca6716bf9957b362b77092592461664b4,http://pdfs.semanticscholar.org/a955/033ca6716bf9957b362b77092592461664b4.pdf +2cc4ae2e864321cdab13c90144d4810464b24275,http://pdfs.semanticscholar.org/f3d2/c66630176cbb1409ebacd2dac4b30d8e3145.pdf +98fb3890c565f1d32049a524ec425ceda1da5c24,http://pdfs.semanticscholar.org/98fb/3890c565f1d32049a524ec425ceda1da5c24.pdf +071135dfb342bff884ddb9a4d8af0e70055c22a1,http://pdfs.semanticscholar.org/0711/35dfb342bff884ddb9a4d8af0e70055c22a1.pdf +ebedc841a2c1b3a9ab7357de833101648281ff0e,http://pdfs.semanticscholar.org/ebed/c841a2c1b3a9ab7357de833101648281ff0e.pdf +b234cd7788a7f7fa410653ad2bafef5de7d5ad29,http://pdfs.semanticscholar.org/b234/cd7788a7f7fa410653ad2bafef5de7d5ad29.pdf +4d16337cc0431cd43043dfef839ce5f0717c3483,http://pdfs.semanticscholar.org/4d16/337cc0431cd43043dfef839ce5f0717c3483.pdf +3cb488a3b71f221a8616716a1fc2b951dd0de549,http://cse.seu.edu.cn/people/xgeng/LDL/resource/icpr14.pdf +5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43,http://www.cs.cmu.edu/~juny/Prof/papers/acmmm04a-jyang.pdf +0af33f6b5fcbc5e718f24591b030250c6eec027a,http://pdfs.semanticscholar.org/fa2c/96273027ff92f98109dbcef5b65f34b36627.pdf +31bb49ba7df94b88add9e3c2db72a4a98927bb05,http://pdfs.semanticscholar.org/31bb/49ba7df94b88add9e3c2db72a4a98927bb05.pdf +3e685704b140180d48142d1727080d2fb9e52163,http://pdfs.semanticscholar.org/3e68/5704b140180d48142d1727080d2fb9e52163.pdf +ad9cb522cc257e3c5d7f896fe6a526f6583ce46f,http://pdfs.semanticscholar.org/ad9c/b522cc257e3c5d7f896fe6a526f6583ce46f.pdf +44c9b5c55ca27a4313daf3760a3f24a440ce17ad,http://pdfs.semanticscholar.org/44c9/b5c55ca27a4313daf3760a3f24a440ce17ad.pdf +1aef6f7d2e3565f29125a4871cd60c4d86c48361,http://pdfs.semanticscholar.org/1aef/6f7d2e3565f29125a4871cd60c4d86c48361.pdf +4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_How_Related_Exemplars_2013_ICCV_paper.pdf +3a60678ad2b862fa7c27b11f04c93c010cc6c430,http://ibug.doc.ic.ac.uk/media/uploads/documents/taffcsi-2010-11-0112-2.pdf +aac934f2eed758d4a27562dae4e9c5415ff4cdb7,http://pdfs.semanticscholar.org/aac9/34f2eed758d4a27562dae4e9c5415ff4cdb7.pdf +4858d014bb5119a199448fcd36746c413e60f295,http://pdfs.semanticscholar.org/4858/d014bb5119a199448fcd36746c413e60f295.pdf +1e94cc91c5293c8fc89204d4b881552e5b2ce672,http://pdfs.semanticscholar.org/5893/7d427ff36e1470b18120245148355047e4ea.pdf +385750bcf95036c808d63db0e0b14768463ff4c6,http://pdfs.semanticscholar.org/3857/50bcf95036c808d63db0e0b14768463ff4c6.pdf +0742d051caebf8a5d452c03c5d55dfb02f84baab,http://research.cs.tamu.edu/keyser/Papers/CGI05Blur-JonesBW.pdf?origin=publication_detail +8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125,https://www.wjscheirer.com/papers/wjs_btas2012_smt.pdf +0d14261e69a4ad4140ce17c1d1cea76af6546056,http://pdfs.semanticscholar.org/0d14/261e69a4ad4140ce17c1d1cea76af6546056.pdf +60d4cef56efd2f5452362d4d9ac1ae05afa970d1,http://pdfs.semanticscholar.org/60d4/cef56efd2f5452362d4d9ac1ae05afa970d1.pdf +5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f,http://pdfs.semanticscholar.org/7589/58f2340ba46c6708b73d5427985d5623a512.pdf +056ba488898a1a1b32daec7a45e0d550e0c51ae4,http://pdfs.semanticscholar.org/056b/a488898a1a1b32daec7a45e0d550e0c51ae4.pdf +587f81ae87b42c18c565694c694439c65557d6d5,http://pdfs.semanticscholar.org/aeff/403079022683b233decda556a6aee3225065.pdf +40bb090a4e303f11168dce33ed992f51afe02ff7,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Deng_Marginal_Loss_for_CVPR_2017_paper.pdf +831d661d657d97a07894da8639a048c430c5536d,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Zhu_Weakly_Supervised_Facial_CVPR_2016_paper.pdf +bd8e2d27987be9e13af2aef378754f89ab20ce10,http://pdfs.semanticscholar.org/bd8e/2d27987be9e13af2aef378754f89ab20ce10.pdf +b8a829b30381106b806066d40dd372045d49178d,http://gavrila.net/tits15.pdf +8813368c6c14552539137aba2b6f8c55f561b75f,https://arxiv.org/pdf/1607.05427v1.pdf +db36e682501582d1c7b903422993cf8d70bb0b42,http://pdfs.semanticscholar.org/db36/e682501582d1c7b903422993cf8d70bb0b42.pdf +20c2a5166206e7ffbb11a23387b9c5edf42b5230,http://pdfs.semanticscholar.org/aff0/51003a43736001aeb76e08cb86ce67d6c70d.pdf +08ff81f3f00f8f68b8abd910248b25a126a4dfa4,https://research-information.bristol.ac.uk/files/74279764/Ioannis_Pitas_Symmetric_Subspace_Learning_for_Image_Analysis_2014.pdf +496074fcbeefd88664b7bd945012ca22615d812e,http://pdfs.semanticscholar.org/4960/74fcbeefd88664b7bd945012ca22615d812e.pdf +0a9345ea6e488fb936e26a9ba70b0640d3730ba7,http://www1.ece.neu.edu/~yuewu/files/2016/p52-jiang.pdf +1886b6d9c303135c5fbdc33e5f401e7fc4da6da4,https://arxiv.org/pdf/1610.01119v1.pdf +97e569159d5658760eb00ca9cb662e6882d2ab0e,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989c291.pdf +5a87bc1eae2ec715a67db4603be3d1bb8e53ace2,http://pdfs.semanticscholar.org/5a87/bc1eae2ec715a67db4603be3d1bb8e53ace2.pdf +b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,http://pdfs.semanticscholar.org/b166/5e1ddf9253dcaebecb48ac09a7ab4095a83e.pdf +2c2786ea6386f2d611fc9dbf209362699b104f83,http://pdfs.semanticscholar.org/2c27/86ea6386f2d611fc9dbf209362699b104f83.pdf +96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,http://megaface.cs.washington.edu/KemelmacherMegaFaceCVPR16.pdf +09111da0aedb231c8484601444296c50ca0b5388,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553737.pdf +325b048ecd5b4d14dce32f92bff093cd744aa7f8,http://pdfs.semanticscholar.org/325b/048ecd5b4d14dce32f92bff093cd744aa7f8.pdf +4ba38262fe20fab3e4c80215147b498f83843b93,http://pdfs.semanticscholar.org/f2af/967e28c12de9d957c08ffbc7a982e4ccea1e.pdf +04f0292d9a062634623516edd01d92595f03bd3f,http://www.cs.nott.ac.uk/~mfv/Documents/emotiw2013_cameraready.pdf +170a5f5da9ac9187f1c88f21a88d35db38b4111a,https://arxiv.org/pdf/1611.08563v3.pdf +745b42050a68a294e9300228e09b5748d2d20b81,http://pdfs.semanticscholar.org/745b/42050a68a294e9300228e09b5748d2d20b81.pdf +86c5478f21c4a9f9de71b5ffa90f2a483ba5c497,http://pdfs.semanticscholar.org/86c5/478f21c4a9f9de71b5ffa90f2a483ba5c497.pdf +bef503cdfe38e7940141f70524ee8df4afd4f954,https://pdfs.semanticscholar.org/bef5/03cdfe38e7940141f70524ee8df4afd4f954.pdf +384945abd53f6a6af51faf254ba8ef0f0fb3f338,http://pdfs.semanticscholar.org/b42c/4b804d69a031aac797346acc337f486e4a09.pdf +59031a35b0727925f8c47c3b2194224323489d68,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/ICCV13/SVDL.pdf +1f35a65eab258f042edb8e1d4d5fff34f00a85bd,http://www.seattle.intel-research.net/~xren/publication/xren_cvpr08_casablanca.pdf +4c822785c29ceaf67a0de9c699716c94fefbd37d,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhu_A_Key_Volume_CVPR_2016_paper.pdf +d40cd10f0f3e64fd9b0c2728089e10e72bea9616,http://pdfs.semanticscholar.org/d40c/d10f0f3e64fd9b0c2728089e10e72bea9616.pdf +bd2d7c7f0145028e85c102fe52655c2b6c26aeb5,http://rogerioferis.com/publications/FerisICMR2014.pdf +03b99f5abe0e977ff4c902412c5cb832977cf18e,http://pdfs.semanticscholar.org/03b9/9f5abe0e977ff4c902412c5cb832977cf18e.pdf +7f57e9939560562727344c1c987416285ef76cda,http://people.cs.vt.edu/~gangwang/class/cs6604/papers/face.pdf +82be2ede6b7613286b80c3e2afe3b5353f322bed,http://www.eecs.berkeley.edu/~jiayq/papers/iccv11_mm.pdf +aa331fe378056b6d6031bb8fe6676e035ed60d6d,http://pdfs.semanticscholar.org/aa33/1fe378056b6d6031bb8fe6676e035ed60d6d.pdf +316e67550fbf0ba54f103b5924e6537712f06bee,http://lear.inrialpes.fr/pubs/2010/GVS10/slides.pdf +dcc38db6c885444694f515d683bbb50521ff3990,http://pdfs.semanticscholar.org/dcc3/8db6c885444694f515d683bbb50521ff3990.pdf +fb4545782d9df65d484009558e1824538030bbb1,http://pdfs.semanticscholar.org/fb45/45782d9df65d484009558e1824538030bbb1.pdf +4f77a37753c03886ca9c9349723ec3bbfe4ee967,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Hasan_Localizing_Facial_Keypoints_2013_ICCV_paper.pdf +29ce6b54a87432dc8371f3761a9568eb3c5593b0,https://kar.kent.ac.uk/43222/1/Yatie_EST2013_vfinal.pdf +447a5e1caf847952d2bb526ab2fb75898466d1bc,http://pdfs.semanticscholar.org/447a/5e1caf847952d2bb526ab2fb75898466d1bc.pdf +c03f48e211ac81c3867c0e787bea3192fcfe323e,http://pdfs.semanticscholar.org/c03f/48e211ac81c3867c0e787bea3192fcfe323e.pdf +67c3c1194ee72c54bc011b5768e153a035068c43,http://pdfs.semanticscholar.org/67c3/c1194ee72c54bc011b5768e153a035068c43.pdf +a59cdc49185689f3f9efdf7ee261c78f9c180789,http://pdfs.semanticscholar.org/a59c/dc49185689f3f9efdf7ee261c78f9c180789.pdf +14ba910c46d659871843b31d5be6cba59843a8b8,http://www.crcv.ucf.edu/papers/cvpr2013/ortiz_vfr_trailers.pdf +35f084ddee49072fdb6e0e2e6344ce50c02457ef,https://dash.harvard.edu/bitstream/handle/1/4238979/Lee_Bilinear.pdf?sequence=2 +9ab463d117219ed51f602ff0ddbd3414217e3166,http://pdfs.semanticscholar.org/d965/43e8ab524108cae8c12d3a65a54a295deae6.pdf +f4373f5631329f77d85182ec2df6730cbd4686a9,http://pdfs.semanticscholar.org/f437/3f5631329f77d85182ec2df6730cbd4686a9.pdf +3cb64217ca2127445270000141cfa2959c84d9e7,http://staff.estem-uc.edu.au/roland/files/2009/05/Joshi_Goecke_Parker_Breakspear_FG2013_CanBodyExpressionsContributeToAutomaticDepressionAnalysis.pdf +1b3b01513f99d13973e631c87ffa43904cd8a821,http://pdfs.semanticscholar.org/1b3b/01513f99d13973e631c87ffa43904cd8a821.pdf +05270b68547a2cd5bda302779cfc5dda876ae538,http://www.cs.sfu.ca/~mori/courses/cmpt882/fall05/papers/laplacianfaces.pdf +321bd4d5d80abb1bae675a48583f872af3919172,http://pdfs.semanticscholar.org/321b/d4d5d80abb1bae675a48583f872af3919172.pdf +ea85378a6549bb9eb9bcc13e31aa6a61b655a9af,http://pdfs.semanticscholar.org/ea85/378a6549bb9eb9bcc13e31aa6a61b655a9af.pdf +a3a2f3803bf403262b56ce88d130af15e984fff0,http://pdfs.semanticscholar.org/e538/e1f6557d2920b449249606f909b665fbb924.pdf +3ba8f8b6bfb36465018430ffaef10d2caf3cfa7e,http://www.chennaisunday.com/IEEE%202013%20Dotnet%20Basepaper/Local%20Directional%20Number%20Pattern%20for%20Face%20Analysis%20Face%20and%20Expression%20Recognition.pdf +2a14b6d9f688714dc60876816c4b7cf763c029a9,http://tamaraberg.com/papers/wacv2016_combining.pdf +abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72,http://pdfs.semanticscholar.org/abc1/ef570bb2d7ea92cbe69e101eefa9a53e1d72.pdf +9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7,http://pdfs.semanticscholar.org/9b79/74d9ad19bb4ba1ea147c55e629ad7927c5d7.pdf +1b794b944fd462a2742b6c2f8021fecc663004c9,https://www.ecse.rpi.edu/~cvrl/wuy/HierarchicalShape/CVPR14_facialfeaturedetection_cameraready.pdf +1610d2d4947c03a89c0fda506a74ba1ae2bc54c2,http://research.cs.rutgers.edu/~hxp1/rc_images/hai_facetrackextreme_3dv2016.pdf +176a3e9e118712251124c1347516a92d5e315297,http://eprints.pascal-network.org/archive/00008997/01/ICMR11.pdf +d03baf17dff5177d07d94f05f5791779adf3cd5f,http://pdfs.semanticscholar.org/d03b/af17dff5177d07d94f05f5791779adf3cd5f.pdf +34863ecc50722f0972e23ec117f80afcfe1411a9,http://nlpr-web.ia.ac.cn/2010papers/kz/gh3.pdf +9958942a0b7832e0774708a832d8b7d1a5d287ae,https://engineering.purdue.edu/~bouman/publications/pdf/tip29.pdf +88bee9733e96958444dc9e6bef191baba4fa6efa,http://homepages.dcc.ufmg.br/~william/papers/paper_2014_SIBGRAPI.pdf +3991223b1dc3b87883cec7af97cf56534178f74a,http://www.ics.uci.edu/~dvk/pub/ICMR13_dvk.pdf +05e03c48f32bd89c8a15ba82891f40f1cfdc7562,http://files.is.tue.mpg.de/black/papers/rgapami.pdf +0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf,http://pdfs.semanticscholar.org/0cb7/e4c2f6355c73bfc8e6d5cdfad26f3fde0baf.pdf +5c92355b2808621d237a89dc7b3faa5cdb990ab5,http://www.researchgate.net/profile/Brian_Lovell2/publication/236124723_Dynamic_Amelioration_of_Resolution_Mismatches_for_Local_Feature_Based_Identity_Inference/links/0fcfd50741a027e848000000.pdf +13141284f1a7e1fe255f5c2b22c09e32f0a4d465,http://www.micc.unifi.it/pernici/index_files/ALIEN_final.pdf +0b50e223ad4d9465bb92dbf17a7b79eccdb997fb,http://users.eecs.northwestern.edu/~ganghua/publication/CVPR08a.pdf +36b9f46c12240898bafa10b0026a3fb5239f72f3,https://arxiv.org/pdf/1702.05573v1.pdf +74eae724ef197f2822fb7f3029c63014625ce1ca,http://pdfs.semanticscholar.org/74ea/e724ef197f2822fb7f3029c63014625ce1ca.pdf +0a6a818b634cca4eb75a37bfd23b5c5c21331b12,http://hal.cse.msu.edu/pdfs/papers/wacv-2015.pdf +5c3dce55c61ee86073575ac75cc882a215cb49e6,http://pdfs.semanticscholar.org/8d93/b33c38a26b97442b2f160e75212739c60bc5.pdf +59a35b63cf845ebf0ba31c290423e24eb822d245,http://biometrics.cse.msu.edu/Publications/Face/Klumetal_FaceSketchID_TIFS2014.pdf +442f09ddb5bb7ba4e824c0795e37cad754967208,http://pdfs.semanticscholar.org/8c29/513c2621c26ac8491bb763674db475fe58c6.pdf +5456166e3bfe78a353df988897ec0bd66cee937f,http://pdfs.semanticscholar.org/5456/166e3bfe78a353df988897ec0bd66cee937f.pdf +a3eab933e1b3db1a7377a119573ff38e780ea6a3,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0000838.pdf +5fa932be4d30cad13ea3f3e863572372b915bec8,http://pdfs.semanticscholar.org/5fa9/32be4d30cad13ea3f3e863572372b915bec8.pdf +43f6953804964037ff91a4f45d5b5d2f8edfe4d5,http://ias.cs.tum.edu/_media/spezial/bib/riaz09fit.pdf +8d712cef3a5a8a7b1619fb841a191bebc2a17f15,http://pdfs.semanticscholar.org/8d71/2cef3a5a8a7b1619fb841a191bebc2a17f15.pdf +19d3b02185ad36fb0b792f2a15a027c58ac91e8e,http://pdfs.semanticscholar.org/19d3/b02185ad36fb0b792f2a15a027c58ac91e8e.pdf +bcb99d5150d792001a7d33031a3bd1b77bea706b,http://pdfs.semanticscholar.org/bcb9/9d5150d792001a7d33031a3bd1b77bea706b.pdf +0334cc0374d9ead3dc69db4816d08c917316c6c4,http://pdfs.semanticscholar.org/0334/cc0374d9ead3dc69db4816d08c917316c6c4.pdf +9636c7d3643fc598dacb83d71f199f1d2cc34415,http://pdfs.semanticscholar.org/9636/c7d3643fc598dacb83d71f199f1d2cc34415.pdf +25e2d3122d4926edaab56a576925ae7a88d68a77,http://pdfs.semanticscholar.org/25e2/d3122d4926edaab56a576925ae7a88d68a77.pdf +22a7f1aebdb57eecd64be2a1f03aef25f9b0e9a7,http://pdfs.semanticscholar.org/22a7/f1aebdb57eecd64be2a1f03aef25f9b0e9a7.pdf +a54e0f2983e0b5af6eaafd4d3467b655a3de52f4,http://pdfs.semanticscholar.org/a54e/0f2983e0b5af6eaafd4d3467b655a3de52f4.pdf +cbcf5da9f09b12f53d656446fd43bc6df4b2fa48,http://pdfs.semanticscholar.org/cbcf/5da9f09b12f53d656446fd43bc6df4b2fa48.pdf +4ae291b070ad7940b3c9d3cb10e8c05955c9e269,http://www.cl.cam.ac.uk/~pr10/publications/icmi14.pdf +4f591e243a8f38ee3152300bbf42899ac5aae0a5,http://pdfs.semanticscholar.org/4f59/1e243a8f38ee3152300bbf42899ac5aae0a5.pdf +676f9eabf4cfc1fd625228c83ff72f6499c67926,http://pdfs.semanticscholar.org/676f/9eabf4cfc1fd625228c83ff72f6499c67926.pdf +285472527c5dc1c620d9644849e7519766c2d655,http://lear.inrialpes.fr/people/mpederso/papers/ICCV15_Parts.pdf +e510f2412999399149d8635a83eca89c338a99a1,http://pdfs.semanticscholar.org/e510/f2412999399149d8635a83eca89c338a99a1.pdf +0a87d781fe2ae2e700237ddd00314dbc10b1429c,http://pdfs.semanticscholar.org/0a87/d781fe2ae2e700237ddd00314dbc10b1429c.pdf +68c5238994e3f654adea0ccd8bca29f2a24087fc,http://web.fsktm.um.edu.my/~cschan/doc/ICIP2013.pdf +acc548285f362e6b08c2b876b628efceceeb813e,http://pdfs.semanticscholar.org/acc5/48285f362e6b08c2b876b628efceceeb813e.pdf +053c2f592a7f153e5f3746aa5ab58b62f2cf1d21,http://pdfs.semanticscholar.org/053c/2f592a7f153e5f3746aa5ab58b62f2cf1d21.pdf +89945b7cd614310ebae05b8deed0533a9998d212,http://pdfs.semanticscholar.org/8994/5b7cd614310ebae05b8deed0533a9998d212.pdf +a0061dae94d916f60a5a5373088f665a1b54f673,http://pdfs.semanticscholar.org/a006/1dae94d916f60a5a5373088f665a1b54f673.pdf +6a7e464464f70afea78552c8386f4d2763ea1d9c,http://pdfs.semanticscholar.org/6a7e/464464f70afea78552c8386f4d2763ea1d9c.pdf +900207b3bc3a4e5244cae9838643a9685a84fee0,http://pdfs.semanticscholar.org/9002/07b3bc3a4e5244cae9838643a9685a84fee0.pdf +82a4a35b2bae3e5c51f4d24ea5908c52973bd5be,http://pdfs.semanticscholar.org/82a4/a35b2bae3e5c51f4d24ea5908c52973bd5be.pdf +0ee661a1b6bbfadb5a482ec643573de53a9adf5e,http://epubs.surrey.ac.uk/812523/1/yunlian_TIFS2014.pdf +352c53e56c52a49d33dcdbec5690c2ba604b07d0,http://www.cs.huji.ac.il/~zweiga/Alons_Zweig_Hompage/Homepage_files/Zweig_ICCV7.pdf +60a006bdfe5b8bf3243404fae8a5f4a9d58fa892,http://alumni.cs.ucr.edu/~mkafai/papers/Paper_bwild.pdf +cd3005753012409361aba17f3f766e33e3a7320d,http://pdfs.semanticscholar.org/cd30/05753012409361aba17f3f766e33e3a7320d.pdf +067126ce1f1a205f98e33db7a3b77b7aec7fb45a,http://pdfs.semanticscholar.org/0671/26ce1f1a205f98e33db7a3b77b7aec7fb45a.pdf +3f540faf85e1f8de6ce04fb37e556700b67e4ad3,http://pdfs.semanticscholar.org/3f54/0faf85e1f8de6ce04fb37e556700b67e4ad3.pdf +0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,http://pdfs.semanticscholar.org/0ec0/fc9ed165c40b1ef4a99e944abd8aa4e38056.pdf +5c2a7518fb26a37139cebff76753d83e4da25159,http://pdfs.semanticscholar.org/5c2a/7518fb26a37139cebff76753d83e4da25159.pdf +edbb8cce0b813d3291cae4088914ad3199736aa0,http://pdfs.semanticscholar.org/edbb/8cce0b813d3291cae4088914ad3199736aa0.pdf +69a9da55bd20ce4b83e1680fbc6be2c976067631,http://pdfs.semanticscholar.org/a9b4/d257d16e876302e3318ade42fcb2ab9ffdf9.pdf +211c42a567e02987a6f89b89527de3bf4d2e9f90,http://www.cs.dartmouth.edu/~dutran/papers/ijcv16_preprint.pdf +09f853ce12f7361c4b50c494df7ce3b9fad1d221,http://files.is.tue.mpg.de/jgall/download/jgall_RFdepthFace_ijcv12.pdf +368d59cf1733af511ed8abbcbeb4fb47afd4da1c,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf +03b98b4a2c0b7cc7dae7724b5fe623a43eaf877b,http://pdfs.semanticscholar.org/03b9/8b4a2c0b7cc7dae7724b5fe623a43eaf877b.pdf +131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1,http://pdfs.semanticscholar.org/131b/fa2ae6a04fd3b921ccb82b1c3f18a400a9c1.pdf +d3e04963ff42284c721f2bc6a90b7a9e20f0242f,http://pdfs.semanticscholar.org/d3e0/4963ff42284c721f2bc6a90b7a9e20f0242f.pdf +8b7191a2b8ab3ba97423b979da6ffc39cb53f46b,http://www.eurecom.fr/fr/publication/3472/download/mm-publi-3472.pdf +66dcd855a6772d2731b45cfdd75f084327b055c2,http://pdfs.semanticscholar.org/66dc/d855a6772d2731b45cfdd75f084327b055c2.pdf +421955c6d2f7a5ffafaf154a329a525e21bbd6d3,http://pdfs.semanticscholar.org/ea6c/4d71fafe4352e7c3aa2237f77af0c4050cef.pdf +4a14a321a9b5101b14ed5ad6aa7636e757909a7c,http://openaccess.thecvf.com/content_iccv_2015/papers/Li_Learning_Semi-Supervised_Representation_ICCV_2015_paper.pdf +d46e793b945c4f391031656357625e902c4405e8,http://140.118.9.222/publications/journal/faceoff.pdf +532f7ec8e0c8f7331417dd4a45dc2e8930874066,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p6060-zoidi.pdf +303065c44cf847849d04da16b8b1d9a120cef73a,http://pdfs.semanticscholar.org/3030/65c44cf847849d04da16b8b1d9a120cef73a.pdf +9a6da02db99fcc0690d7ffdc15340b125726ab95,http://vision.ucla.edu/~vedaldi/assets/pubs/vedaldi07boosting.pdf +af62621816fbbe7582a7d237ebae1a4d68fcf97d,http://pdfs.semanticscholar.org/af62/621816fbbe7582a7d237ebae1a4d68fcf97d.pdf +c54f9f33382f9f656ec0e97d3004df614ec56434,http://pdfs.semanticscholar.org/c54f/9f33382f9f656ec0e97d3004df614ec56434.pdf +becd5fd62f6301226b8e150e1a5ec3180f748ff8,http://pdfs.semanticscholar.org/becd/5fd62f6301226b8e150e1a5ec3180f748ff8.pdf +760a712f570f7a618d9385c0cee7e4d0d6a78ed2,http://pdfs.semanticscholar.org/760a/712f570f7a618d9385c0cee7e4d0d6a78ed2.pdf +292c6b743ff50757b8230395c4a001f210283a34,https://labicvl.github.io/docs/pubs/Oscar_VISAPP_2014.pdf +f52efc206432a0cb860155c6d92c7bab962757de,http://pdfs.semanticscholar.org/f52e/fc206432a0cb860155c6d92c7bab962757de.pdf +c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e,http://pdfs.semanticscholar.org/c7e4/c7be0d37013de07b6d829a3bf73e1b95ad4e.pdf +1b79628af96eb3ad64dbb859dae64f31a09027d5,http://pdfs.semanticscholar.org/1b79/628af96eb3ad64dbb859dae64f31a09027d5.pdf +3bc376f29bc169279105d33f59642568de36f17f,http://www.dip.ee.uct.ac.za/~nicolls/publish/sm14-visapp.pdf +0a6d344112b5af7d1abbd712f83c0d70105211d0,http://www.cl.cam.ac.uk/~tb346/pub/papers/iccv2013.pdf +0903bb001c263e3c9a40f430116d1e629eaa616f,http://pdfs.semanticscholar.org/0903/bb001c263e3c9a40f430116d1e629eaa616f.pdf +ee18e29a2b998eddb7f6663bb07891bfc7262248,http://or.nsfc.gov.cn/bitstream/00001903-5/13750/1/1000007562815.pdf +1750db78b7394b8fb6f6f949d68f7c24d28d934f,https://www3.nd.edu/~kwb/Bharati_Singh_Vatsa_Bowyer_TIFS_2016.pdf +d082f35534932dfa1b034499fc603f299645862d,http://pdfs.semanticscholar.org/d082/f35534932dfa1b034499fc603f299645862d.pdf +aff92784567095ee526a705e21be4f42226bbaab,http://pdfs.semanticscholar.org/aff9/2784567095ee526a705e21be4f42226bbaab.pdf +75fd9acf5e5b7ed17c658cc84090c4659e5de01d,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_035_ext.pdf +52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,http://blogs.bu.edu/joewang/files/2013/06/allerton_2011_v2.pdf +0dbf4232fcbd52eb4599dc0760b18fcc1e9546e9,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553740.pdf +57101b29680208cfedf041d13198299e2d396314,http://pdfs.semanticscholar.org/5710/1b29680208cfedf041d13198299e2d396314.pdf +b013cce42dd769db754a57351d49b7410b8e82ad,http://tlab.princeton.edu/publication_files/Rojas%20et%20al%20IEEE%202010.pdf +29a013b2faace976f2c532533bd6ab4178ccd348,http://or.nsfc.gov.cn/bitstream/00001903-5/94894/1/1000006589627.pdf +5b89744d2ac9021f468b3ffd32edf9c00ed7fed7,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Bi_Beyond_Mahalanobis_Metric_2015_CVPR_paper.pdf +102e374347698fe5404e1d83f441630b1abf62d9,https://infoscience.epfl.ch/record/209965/files/TBME-preprint-infoscience.pdf +69c2ac04693d53251500557316c854a625af84ee,http://pdfs.semanticscholar.org/dc97/ceb1faf945e780a92be651b022a82e3bff5a.pdf +8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff,http://publications.idiap.ch/downloads/papers/2017/Le_CBMI_2017.pdf +48a9241edda07252c1aadca09875fabcfee32871,https://arxiv.org/pdf/1611.08657v5.pdf +3661a34f302883c759b9fa2ce03de0c7173d2bb2,http://pdfs.semanticscholar.org/fd6d/14fb0bbca58e924c504d7dc57cb7f8d3707e.pdf +1149c6ac37ae2310fe6be1feb6e7e18336552d95,http://pdfs.semanticscholar.org/1149/c6ac37ae2310fe6be1feb6e7e18336552d95.pdf +25c108a56e4cb757b62911639a40e9caf07f1b4f,https://arxiv.org/pdf/1707.09531v2.pdf +1b300a7858ab7870d36622a51b0549b1936572d4,http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/Yimo-TIP2016.pdf +82bef8481207de9970c4dc8b1d0e17dced706352,http://pdfs.semanticscholar.org/82be/f8481207de9970c4dc8b1d0e17dced706352.pdf +aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52,http://www.gtti.it/gtti13/Presentazioni_GTTI13/25_Giugno/Sessioni_Scientifiche_Short_Presentation/Piacenza.pdf +0d8415a56660d3969449e77095be46ef0254a448,http://www.lv-nus.org/papers/2004/2004_C_6.pdf +3c97c32ff575989ef2869f86d89c63005fc11ba9,http://people.cs.umass.edu/~hzjiang/pubs/face_det_fg_2017.pdf +ffaad0204f4af763e3390a2f6053c0e9875376be,http://pdfs.semanticscholar.org/ffaa/d0204f4af763e3390a2f6053c0e9875376be.pdf +855bfc17e90ec1b240efba9100fb760c068a8efa,http://pdfs.semanticscholar.org/855b/fc17e90ec1b240efba9100fb760c068a8efa.pdf +e43cc682453cf3874785584fca813665878adaa7,http://pdfs.semanticscholar.org/e43c/c682453cf3874785584fca813665878adaa7.pdf +42ded74d4858bea1070dadb08b037115d9d15db5,http://pdfs.semanticscholar.org/42de/d74d4858bea1070dadb08b037115d9d15db5.pdf +49a7949fabcdf01bbae1c2eb38946ee99f491857,http://pdfs.semanticscholar.org/49a7/949fabcdf01bbae1c2eb38946ee99f491857.pdf +2288696b6558b7397bdebe3aed77bedec7b9c0a9,http://pdfs.semanticscholar.org/2288/696b6558b7397bdebe3aed77bedec7b9c0a9.pdf +854dbb4a0048007a49df84e3f56124d387588d99,http://pdfs.semanticscholar.org/854d/bb4a0048007a49df84e3f56124d387588d99.pdf +c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1,http://pdfs.semanticscholar.org/d6f1/42f5ddcb027e7b346eb20703abbf5cc4e883.pdf +d05513c754966801f26e446db174b7f2595805ba,http://pdfs.semanticscholar.org/d055/13c754966801f26e446db174b7f2595805ba.pdf +54bae57ed37ce50e859cbc4d94d70cc3a84189d5,http://pdfs.semanticscholar.org/af65/4a7ec15168b16382bd604889ea07a967dac6.pdf +1f05473c587e2a3b587f51eb808695a1c10bc153,http://pdfs.semanticscholar.org/7246/bbdf4c125d9d216e560c87c58a8613bd2602.pdf +4e5dc3b397484326a4348ccceb88acf309960e86,http://pdfs.semanticscholar.org/4e5d/c3b397484326a4348ccceb88acf309960e86.pdf +39b22bcbd452d5fea02a9ee63a56c16400af2b83,http://www.uoguelph.ca/~gwtaylor/publications/gwtaylor_crv2014.pdf +352110778d2cc2e7110f0bf773398812fd905eb1,http://www.ca.cs.cmu.edu/sites/default/files/complete_14.pdf +2fda164863a06a92d3a910b96eef927269aeb730,http://www.cs.utexas.edu/~grauman/courses/spring2007/395T/papers/berg_names_and_faces.pdf +01beab8f8293a30cf48f52caea6ca0fb721c8489,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553729.pdf +a6634ff2f9c480e94ed8c01d64c9eb70e0d98487,http://pdfs.semanticscholar.org/a663/4ff2f9c480e94ed8c01d64c9eb70e0d98487.pdf +334ac2a459190b41923be57744aa6989f9a54a51,http://pdfs.semanticscholar.org/334a/c2a459190b41923be57744aa6989f9a54a51.pdf +42c9394ca1caaa36f535721fa9a64b2c8d4e0dee,http://pdfs.semanticscholar.org/5d2d/208fc245bb49148bffb3076b0660b98b4466.pdf +19eb486dcfa1963c6404a9f146c378fc7ae3a1df,https://pdfs.semanticscholar.org/3b4d/bd7be0b5b0df2e0c61a977974b1fc78ad3e5.pdf +46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4,http://ibug.doc.ic.ac.uk/media/uploads/documents/3d_local_features.pdf +02820c1491b10a1ff486fed32c269e4077c36551,https://arxiv.org/pdf/1610.07930v1.pdf +b3658514a0729694d86a8b89c875a66cde20480c,http://pdfs.semanticscholar.org/b365/8514a0729694d86a8b89c875a66cde20480c.pdf +b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1,http://pdfs.semanticscholar.org/b144/4b3bf15eec84f6d9a2ade7989bb980ea7bd1.pdf +34bb11bad04c13efd575224a5b4e58b9249370f3,http://cs.nju.edu.cn/wujx/paper/CVPR2014_Action.pdf +cc7e66f2ba9ac0c639c80c65534ce6031997acd7,http://pdfs.semanticscholar.org/cc7e/66f2ba9ac0c639c80c65534ce6031997acd7.pdf +ebabd1f7bc0274fec88a3dabaf115d3e226f198f,http://pdfs.semanticscholar.org/ebab/d1f7bc0274fec88a3dabaf115d3e226f198f.pdf +2594a77a3f0dd5073f79ba620e2f287804cec630,https://arxiv.org/pdf/1702.06925v1.pdf +e9bb045e702ee38e566ce46cc1312ed25cb59ea7,http://pdfs.semanticscholar.org/e9bb/045e702ee38e566ce46cc1312ed25cb59ea7.pdf +4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,https://arxiv.org/pdf/1611.09956v1.pdf +5d185d82832acd430981ffed3de055db34e3c653,http://pdfs.semanticscholar.org/fc70/92e72a2bae6f60266147e0fb587b1771699a.pdf +ba816806adad2030e1939450226c8647105e101c,http://pdfs.semanticscholar.org/ba81/6806adad2030e1939450226c8647105e101c.pdf +3c03d95084ccbe7bf44b6d54151625c68f6e74d0,http://pdfs.semanticscholar.org/3c03/d95084ccbe7bf44b6d54151625c68f6e74d0.pdf +0486214fb58ee9a04edfe7d6a74c6d0f661a7668,http://conradsanderson.id.au/pdfs/wong_face_selection_cvpr_biometrics_2011.pdf +1564bf0a268662df752b68bee5addc4b08868739,https://arxiv.org/pdf/1605.04129v2.pdf +29f0414c5d566716a229ab4c5794eaf9304d78b6,http://pdfs.semanticscholar.org/29f0/414c5d566716a229ab4c5794eaf9304d78b6.pdf +ac75c662568cbb7308400cc002469a14ff25edfd,http://www.dsp.toronto.edu/juwei/Publication/JuweiICIP04v2.pdf +9d66de2a59ec20ca00a618481498a5320ad38481,http://www.cs.iit.edu/~xli/paper/Conf/POP-ICDCS15.pdf +7c7b0550ec41e97fcfc635feffe2e53624471c59,http://cvrr.ucsd.edu/publications/2014/headhandeye.pdf +2c17d36bab56083293456fe14ceff5497cc97d75,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf +395a91d49e9283e1bf2d61a75c3dc846b347ea74,http://cake.fiu.edu/Publications/Reza+al-13-OV.On-demand_Virtual_Health.IEEE.downloaded.pdf +a7191958e806fce2505a057196ccb01ea763b6ea,http://pdfs.semanticscholar.org/a719/1958e806fce2505a057196ccb01ea763b6ea.pdf +17670b60dcfb5cbf8fdae0b266e18cf995f6014c,https://arxiv.org/pdf/1606.02254v1.pdf +48a417cfeba06feb4c7ab30f06c57ffbc288d0b5,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Chen_Robust_Dictionary_Learning_2013_ICCV_paper.pdf +7c7ab59a82b766929defd7146fd039b89d67e984,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/wacv2014_ChaZhang.pdf +24f9248f01df3020351347c2a3f632e01de72090,http://www.cs.utexas.edu/users/bwaters/publications/papers/luong-wacv2013.pdf +eff87ecafed67cc6fc4f661cb077fed5440994bb,http://pdfs.semanticscholar.org/eff8/7ecafed67cc6fc4f661cb077fed5440994bb.pdf +781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7ed,https://ivi.fnwi.uva.nl/isis/publications/2017/JainIJCV2017/JainIJCV2017.pdf +133f01aec1534604d184d56de866a4bd531dac87,http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf +4d8ce7669d0346f63b20393ffaa438493e7adfec,http://pdfs.semanticscholar.org/4d8c/e7669d0346f63b20393ffaa438493e7adfec.pdf +72f4aaf7e2e3f215cd8762ce283988220f182a5b,http://pdfs.semanticscholar.org/72f4/aaf7e2e3f215cd8762ce283988220f182a5b.pdf +0cbc4dcf2aa76191bbf641358d6cecf38f644325,http://pdfs.semanticscholar.org/0cbc/4dcf2aa76191bbf641358d6cecf38f644325.pdf +e476cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf,https://pdfs.semanticscholar.org/e476/cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf.pdf +07e639abf1621ceff27c9e3f548fadfa2052c912,http://pdfs.semanticscholar.org/07e6/39abf1621ceff27c9e3f548fadfa2052c912.pdf +0f0241124d6092a0bb56259ac091467c2c6938ca,http://mm.cs.uec.ac.jp/kitaha-a/research/maw2008.pdf?origin=publication_detail +05f3d1e9fb254b275354ca69018e9ed321dd8755,http://pdfs.semanticscholar.org/05f3/d1e9fb254b275354ca69018e9ed321dd8755.pdf +57f5711ca7ee5c7110b7d6d12c611d27af37875f,http://pdfs.semanticscholar.org/57f5/711ca7ee5c7110b7d6d12c611d27af37875f.pdf +929bd1d11d4f9cbc638779fbaf958f0efb82e603,http://pdfs.semanticscholar.org/929b/d1d11d4f9cbc638779fbaf958f0efb82e603.pdf +6080f26675e44f692dd722b61905af71c5260af8,https://arxiv.org/pdf/1603.05073v1.pdf +11c04c4f0c234a72f94222efede9b38ba6b2306c,http://www.ece.northwestern.edu/~zli/new_home/MyPublications/conf/ACMMM08-action-recog.pdf +481fb0a74528fa7706669a5cce6a212ac46eaea3,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Recognizing_RGB_Images_2014_CVPR_paper.pdf +051a84f0e39126c1ebeeb379a405816d5d06604d,http://static.springer.com/sgw/documents/1348632/application/pdf/Cognitive+Computation_Biometric+Recognition+Performing+in+a+Bioinspired+System.pdf +32575ffa69d85bbc6aef5b21d73e809b37bf376d,http://www.sce.carleton.ca/faculty/adler//publications/2006/youmaran-adler-bcc2006-quality.pdf +bac11ce0fb3e12c466f7ebfb6d036a9fe62628ea,http://pdfs.semanticscholar.org/bac1/1ce0fb3e12c466f7ebfb6d036a9fe62628ea.pdf +2cac70f9c8140a12b6a55cef834a3d7504200b62,http://www.eng.auburn.edu/~reevesj/Classes/ELEC6970-latex/posters/baposterex1.pdf +2ef328e035b2b5501ceddc0052615d4cebac6f1f,http://mi.eng.cam.ac.uk/~ss965/semantic_transform.pdf +b871d1b8495025ff8a6255514ed39f7765415935,http://pdfs.semanticscholar.org/b871/d1b8495025ff8a6255514ed39f7765415935.pdf +b3b4a7e29b9186e00d2948a1d706ee1605fe5811,http://pdfs.semanticscholar.org/b3b4/a7e29b9186e00d2948a1d706ee1605fe5811.pdf +8a40b6c75dd6392ee0d3af73cdfc46f59337efa9,http://pdfs.semanticscholar.org/f656/f6682655180162b67042d9d37c4d57c49238.pdf +c78fdd080df01fff400a32fb4cc932621926021f,http://pdfs.semanticscholar.org/c78f/dd080df01fff400a32fb4cc932621926021f.pdf +06ad99f19cf9cb4a40741a789e4acbf4433c19ae,http://pdfs.semanticscholar.org/06ad/99f19cf9cb4a40741a789e4acbf4433c19ae.pdf +7e8016bef2c180238f00eecc6a50eac473f3f138,http://pdfs.semanticscholar.org/7e80/16bef2c180238f00eecc6a50eac473f3f138.pdf +3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,http://pdfs.semanticscholar.org/3fdf/d6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3.pdf +17fa1c2a24ba8f731c8b21f1244463bc4b465681,http://pdfs.semanticscholar.org/d5ba/a722b1bca1f95e4e1fad968b2b74ec1ecc7f.pdf +6643a7feebd0479916d94fb9186e403a4e5f7cbf,http://pdfs.semanticscholar.org/6643/a7feebd0479916d94fb9186e403a4e5f7cbf.pdf +ec12f805a48004a90e0057c7b844d8119cb21b4a,http://pdfs.semanticscholar.org/ec12/f805a48004a90e0057c7b844d8119cb21b4a.pdf +e013c650c7c6b480a1b692bedb663947cd9d260f,http://www.nlpr.ia.ac.cn/2013papers/gjkw/gk25.pdf +3a804cbf004f6d4e0b041873290ac8e07082b61f,http://pdfs.semanticscholar.org/5ce8/e665a6512c09f15d8528ce6bece1f6a4d138.pdf +dce3dff9216d63c4a77a2fcb0ec1adf6d2489394,http://pdfs.semanticscholar.org/dce3/dff9216d63c4a77a2fcb0ec1adf6d2489394.pdf +c3a3f7758bccbead7c9713cb8517889ea6d04687,http://pdfs.semanticscholar.org/c3a3/f7758bccbead7c9713cb8517889ea6d04687.pdf +69526cdf6abbfc4bcd39616acde544568326d856,http://speech.iiit.ac.in/svlpubs/article/SaoA.K.Yegna2007.pdf +8dc9de0c7324d098b537639c8214543f55392a6b,http://www.diva-portal.org/smash/get/diva2:280081/FULLTEXT01.pdf +ca0363d29e790f80f924cedaf93cb42308365b3d,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Kotsia07a.pdf +4205cb47ba4d3c0f21840633bcd49349d1dc02c1,http://www.utdallas.edu/~cxc123730/ICIP_2017.pdf +0e36ada8cb9c91f07c9dcaf196d036564e117536,http://pdfs.semanticscholar.org/d0d5/aa7f797113c825053f4c4fd3772dc3601139.pdf +d61578468d267c2d50672077918c1cda9b91429b,http://pdfs.semanticscholar.org/d615/78468d267c2d50672077918c1cda9b91429b.pdf +9ea73660fccc4da51c7bc6eb6eedabcce7b5cead,http://pdfs.semanticscholar.org/9ea7/3660fccc4da51c7bc6eb6eedabcce7b5cead.pdf +51f311f724883218bcc511b0403b9a7745b9d40e,https://www.researchgate.net/profile/Xiangwei_Kong/publication/221190737_Biometrics-based_identifiers_for_digital_identity_management/links/00b7d51ca1f2a78c74000000.pdf +1e8394cc9fe7c2392aa36fb4878faf7e78bbf2de,https://arxiv.org/pdf/1410.3748v1.pdf +14fb3283d4e37760b7dc044a1e2906e3cbf4d23a,http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/felix_yu_attribute_cvpr2012.pdf +4f028efe6708fc252851eee4a14292b7ce79d378,http://pdfs.semanticscholar.org/ae17/aca92b4710efb00e3180a46e56e463ae2a6f.pdf +6339e9385ae3609cb22f6b87175c7e6850f2c05b,http://vision.ucmerced.edu/papers/Yang_WACV12_EstimatingTheSpatialExtent.pdf +240eb0b34872c431ecf9df504671281f59e7da37,http://www.ece.cmu.edu/~dbatra/publications/assets/cutout_tags_iv2009_small.pdf +8509abbde2f4b42dc26a45cafddcccb2d370712f,http://pdfs.semanticscholar.org/ad9a/169042d887c33cfcec2716a453a0d3abcb0c.pdf +58cb1414095f5eb6a8c6843326a6653403a0ee17,http://pdfs.semanticscholar.org/58cb/1414095f5eb6a8c6843326a6653403a0ee17.pdf +fe5df5fe0e4745d224636a9ae196649176028990,http://pdfs.semanticscholar.org/fe5d/f5fe0e4745d224636a9ae196649176028990.pdf +c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,http://pdfs.semanticscholar.org/c65e/4ffa2c07a37b0bb7781ca4ec2ed7542f18e3.pdf +00d0b01d6a5f12216e078001b7c49225d2495b21,http://graphics.cs.uh.edu/publication/pub/2009_TVCJ_faceilluminationtransfer.pdf +956317de62bd3024d4ea5a62effe8d6623a64e53,https://research-repository.griffith.edu.au/bitstream/handle/10072/17889/47024_1.pdf;jsessionid=2146D7EB83BAD65DE653E0056477D61A?sequence=1 +1a65cc5b2abde1754b8c9b1d932a68519bcb1ada,http://pdfs.semanticscholar.org/e4ae/821e234c281aed6ba629c130be7c8eac4a31.pdf +cf54a133c89f730adc5ea12c3ac646971120781c,http://pdfs.semanticscholar.org/cf54/a133c89f730adc5ea12c3ac646971120781c.pdf +236a4f38f79a4dcc2183e99b568f472cf45d27f4,https://jurie.users.greyc.fr/papers/moosman-nowak-jurie-pami08.pdf +c7f752eea91bf5495a4f6e6a67f14800ec246d08,http://pdfs.semanticscholar.org/c7f7/52eea91bf5495a4f6e6a67f14800ec246d08.pdf +42765c170c14bd58e7200b09b2e1e17911eed42b,http://pdfs.semanticscholar.org/4276/5c170c14bd58e7200b09b2e1e17911eed42b.pdf +65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220,http://pdfs.semanticscholar.org/65d7/f95fcbabcc3cdafc0ad38e81d1f473bb6220.pdf +1171e8a96ffb15fdb265aaba02be014a38137ad5,http://hal.cse.msu.edu/pdfs/papers/pdm-tifs-2015.pdf +cf09e2cb82961128302b99a34bff91ec7d198c7c,http://pdfs.semanticscholar.org/cf09/e2cb82961128302b99a34bff91ec7d198c7c.pdf +8a0d10a7909b252d0e11bf32a7f9edd0c9a8030b,http://www.cs.unc.edu/~lazebnik/research/fall07/animals_on_the_web.pdf +032a1c95388fb5c6e6016dd8597149be40bc9d4d,http://people.eecs.berkeley.edu/~gkioxari/ActionTubes/action_tubes.pdf +5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf,https://www.cl.cam.ac.uk/~hg410/SariyanidiEtAl-RobustRegistration-TIP2016.pdf +4d3c4c3fe8742821242368e87cd72da0bd7d3783,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTiccv13.pdf +416364cfdbc131d6544582e552daf25f585c557d,http://www.dcs.qmw.ac.uk/~sgg/papers/Zalewski_Gong_FG04.pdf +1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43,http://pdfs.semanticscholar.org/676c/0fc58b6a0108326024f708e30d76cadbae58.pdf +66a2c229ac82e38f1b7c77a786d8cf0d7e369598,http://pdfs.semanticscholar.org/66a2/c229ac82e38f1b7c77a786d8cf0d7e369598.pdf +341ed69a6e5d7a89ff897c72c1456f50cfb23c96,http://pdfs.semanticscholar.org/cd7f/26c430363f90e530824446b3a4c85cfb94e5.pdf +36e8ef2e5d52a78dddf0002e03918b101dcdb326,http://www.milbo.org/stasm-files/multiview-active-shape-models-with-sift-for-300w.pdf +23e75f5ce7e73714b63f036d6247fa0172d97cb6,http://pdfs.semanticscholar.org/23e7/5f5ce7e73714b63f036d6247fa0172d97cb6.pdf +831226405bb255527e9127b84e8eaedd7eb8e9f9,http://pdfs.semanticscholar.org/8312/26405bb255527e9127b84e8eaedd7eb8e9f9.pdf +0dd72887465046b0f8fc655793c6eaaac9c03a3d,http://pdfs.semanticscholar.org/e112/df5539821a00dfa818617bf95f901f016763.pdf +6de18708218988b0558f6c2f27050bb4659155e4,https://arxiv.org/pdf/1611.05216v1.pdf +a66d89357ada66d98d242c124e1e8d96ac9b37a0,http://pdfs.semanticscholar.org/a66d/89357ada66d98d242c124e1e8d96ac9b37a0.pdf +4026dc62475d2ff2876557fc2b0445be898cd380,http://pdfs.semanticscholar.org/4026/dc62475d2ff2876557fc2b0445be898cd380.pdf +0773c320713dae62848fceac5a0ac346ba224eca,http://eudl.eu/pdf/10.4108/icst.intetain.2015.259444 +029317f260b3303c20dd58e8404a665c7c5e7339,http://www.nlpr.ia.ac.cn/2009papers/gjkw/gk32.pdf?origin=publication_detail +0515e43c92e4e52254a14660718a9e498bd61cf5,http://pdfs.semanticscholar.org/3a78/5f86c2109fe1ff242dcb26211abfb9b0a870.pdf +8878871ec2763f912102eeaff4b5a2febfc22fbe,http://www.ee.columbia.edu/~wliu/TIP15_action.pdf +2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359,http://pdfs.semanticscholar.org/2d99/0b04c2bd61d3b7b922b8eed33aeeeb7b9359.pdf +75b833dde2e76c5de5912db3444d62c4131d15dc,http://www.researchgate.net/profile/Vassilios_Solachidis/publication/4303365_A_Face_Tracker_Trajectories_Clustering_Using_Mutual_Information/links/09e4150ca146dba69c000000.pdf +e5b301ee349ba8e96ea6c71782295c4f06be6c31,http://pdfs.semanticscholar.org/e5b3/01ee349ba8e96ea6c71782295c4f06be6c31.pdf +b216040f110d2549f61e3f5a7261cab128cab361,http://pdfs.semanticscholar.org/b216/040f110d2549f61e3f5a7261cab128cab361.pdf +0021f46bda27ea105d722d19690f5564f2b8869e,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhao_Deep_Region_and_CVPR_2016_paper.pdf +0f92e9121e9c0addc35eedbbd25d0a1faf3ab529,http://pdfs.semanticscholar.org/0f92/e9121e9c0addc35eedbbd25d0a1faf3ab529.pdf +40c8cffd5aac68f59324733416b6b2959cb668fd,https://arxiv.org/pdf/1701.08341v1.pdf +19da9f3532c2e525bf92668198b8afec14f9efea,http://pdfs.semanticscholar.org/19da/9f3532c2e525bf92668198b8afec14f9efea.pdf +6c705285c554985ecfe1117e854e1fe1323f8c21,http://pdfs.semanticscholar.org/6c70/5285c554985ecfe1117e854e1fe1323f8c21.pdf +c0723e0e154a33faa6ff959d084aebf07770ffaf,http://pdfs.semanticscholar.org/c072/3e0e154a33faa6ff959d084aebf07770ffaf.pdf +8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff,http://pdfs.semanticscholar.org/8309/e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff.pdf +39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df,https://pdfs.semanticscholar.org/39b5/f6d6f8d8127b2b97ea1a4987732c0db6f9df.pdf +21765df4c0224afcc25eb780bef654cbe6f0bc3a,http://ci2cv.net/media/papers/2013_ICCV_Kiani.pdf +0db8e6eb861ed9a70305c1839eaef34f2c85bbaf,https://arxiv.org/pdf/1704.06244v1.pdf +5a86842ab586de9d62d5badb2ad8f4f01eada885,http://pdfs.semanticscholar.org/5a86/842ab586de9d62d5badb2ad8f4f01eada885.pdf +0b605b40d4fef23baa5d21ead11f522d7af1df06,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a819.pdf +d78077a7aa8a302d4a6a09fb9737ab489ae169a6,http://pdfs.semanticscholar.org/d780/77a7aa8a302d4a6a09fb9737ab489ae169a6.pdf +defa8774d3c6ad46d4db4959d8510b44751361d8,http://pdfs.semanticscholar.org/defa/8774d3c6ad46d4db4959d8510b44751361d8.pdf +126535430845361cd7a3a6f317797fe6e53f5a3b,http://pdfs.semanticscholar.org/1265/35430845361cd7a3a6f317797fe6e53f5a3b.pdf +621e8882c41cdaf03a2c4a986a6404f0272ba511,http://conradsanderson.id.au/pdfs/wong_ijcnn_2012.pdf +312afff739d1e0fcd3410adf78be1c66b3480396,http://pdfs.semanticscholar.org/312a/fff739d1e0fcd3410adf78be1c66b3480396.pdf +6b35b15ceba2f26cf949f23347ec95bbbf7bed64,http://pdfs.semanticscholar.org/6b35/b15ceba2f26cf949f23347ec95bbbf7bed64.pdf +181708b09bde7f4904f8fd92b3668d76e7aff527,http://mplab.ucsd.edu/~ksikka/emotiw14.pdf +7a6d9f89e0925a220fe3dfba4f0d2745f8be6c9a,http://www.faceplusplus.com/wp-content/uploads/2014/11/Learning-Compact-Face-Representation-Packing-a-Face-into-an-int32.pdf +35c973dba6e1225196566200cfafa150dd231fa8,http://pdfs.semanticscholar.org/8af7/72ea2389b555c0b193624add6a1c5a49ff24.pdf +8f6263e4d3775757e804796e104631c7a2bb8679,http://pdfs.semanticscholar.org/8f62/63e4d3775757e804796e104631c7a2bb8679.pdf +cadba72aa3e95d6dcf0acac828401ddda7ed8924,http://pdfs.semanticscholar.org/cadb/a72aa3e95d6dcf0acac828401ddda7ed8924.pdf +44fb4dcf88eb482e2ab79fd4540caf941613b970,http://www.researchgate.net/profile/Masashi_Sugiyama/publication/220930547_Perceived_Age_Estimation_under_Lighting_Condition_Change_by_Covariate_Shift_Adaptation/links/0fcfd5122b4d406edd000000.pdf +31d60b2af2c0e172c1a6a124718e99075818c408,http://pdfs.semanticscholar.org/31d6/0b2af2c0e172c1a6a124718e99075818c408.pdf +2661f38aaa0ceb424c70a6258f7695c28b97238a,http://mplab.ucsd.edu/wordpress/wp-content/uploads/multilayer2012.pdf +03104f9e0586e43611f648af1132064cadc5cc07,http://pdfs.semanticscholar.org/51c0/2f135d6c960b1141bde539059a279f9beb78.pdf +4a0f98d7dbc31497106d4f652968c708f7da6692,http://arxiv.org/pdf/1605.05258v1.pdf +08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7,http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf +c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,http://pdfs.semanticscholar.org/c03e/01717b2d93f04cce9b5fd2dcfd1143bcc180.pdf +a8638a07465fe388ae5da0e8a68e62a4ee322d68,http://pdfs.semanticscholar.org/a863/8a07465fe388ae5da0e8a68e62a4ee322d68.pdf +b503f481120e69b62e076dcccf334ee50559451e,http://pdfs.semanticscholar.org/b503/f481120e69b62e076dcccf334ee50559451e.pdf +47e8db3d9adb79a87c8c02b88f432f911eb45dc5,http://pdfs.semanticscholar.org/5f99/63990ab7dd888ab33393f712f8d5c1463348.pdf +c0a8c0e6ccf9882969ba0eda0b898affa015437b,http://stanford.edu/~verroios/papers/waldo.pdf +2dd6c988b279d89ab5fb5155baba65ce4ce53c1e,http://pdfs.semanticscholar.org/2dd6/c988b279d89ab5fb5155baba65ce4ce53c1e.pdf +7c6dbaebfe14878f3aee400d1378d90d61373921,http://pdfs.semanticscholar.org/7c6d/baebfe14878f3aee400d1378d90d61373921.pdf +4042bbb4e74e0934f4afbedbe92dd3e37336b2f4,http://pdfs.semanticscholar.org/b35a/6b2f335c28696eb78a02e0b30ee59a3e3fd2.pdf +b8084d5e193633462e56f897f3d81b2832b72dff,http://pdfs.semanticscholar.org/b808/4d5e193633462e56f897f3d81b2832b72dff.pdf +e6540d70e5ffeed9f447602ea3455c7f0b38113e,http://pdfs.semanticscholar.org/e654/0d70e5ffeed9f447602ea3455c7f0b38113e.pdf +2d748f8ee023a5b1fbd50294d176981ded4ad4ee,http://pdfs.semanticscholar.org/2d74/8f8ee023a5b1fbd50294d176981ded4ad4ee.pdf +81831ed8e5b304e9d28d2d8524d952b12b4cbf55,http://pdfs.semanticscholar.org/8183/1ed8e5b304e9d28d2d8524d952b12b4cbf55.pdf +33ae696546eed070717192d393f75a1583cd8e2c,https://arxiv.org/pdf/1708.08508v2.pdf +d4c7d1a7a03adb2338704d2be7467495f2eb6c7b,http://pdfs.semanticscholar.org/d4c7/d1a7a03adb2338704d2be7467495f2eb6c7b.pdf +7a061e7eab865fc8d2ef00e029b7070719ad2e9a,http://cvrr.ucsd.edu/ece285/papers/from_WI13/Ramanan_IJCV2013.pdf +f24e379e942e134d41c4acec444ecf02b9d0d3a9,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf +cb08f679f2cb29c7aa972d66fe9e9996c8dfae00,http://pdfs.semanticscholar.org/cb08/f679f2cb29c7aa972d66fe9e9996c8dfae00.pdf +2e1fd8d57425b727fd850d7710d38194fa6e2654,http://www.cs.toronto.edu/~afsaneh/JamiesonEtAl2007.pdf +b9cad920a00fc0e997fc24396872e03f13c0bb9c,http://www.ic.unicamp.br/~rocha/pub/papers/2011-icip-spoofing-detection.pdf +2b8dfbd7cae8f412c6c943ab48c795514d53c4a7,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p529-bordei.pdf +5e0eb34aeb2b58000726540336771053ecd335fc,http://ies.anthropomatik.kit.edu/ies/download/publ/ies_2016_herrmann_low_quality.pdf +523b2cbc48decfabffb66ecaeced4fe6a6f2ac78,https://arxiv.org/pdf/1708.09126v1.pdf +90298f9f80ebe03cb8b158fd724551ad711d4e71,http://pdfs.semanticscholar.org/9029/8f9f80ebe03cb8b158fd724551ad711d4e71.pdf +8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b,http://pdfs.semanticscholar.org/8ad0/d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b.pdf +50614ff325f0c8ca20f99efc55d65a8d4cc768cd,http://www.genizah.org/professionalPapers/IJCinGeniza.pdf +2edc6df161f6aadbef9c12408bdb367e72c3c967,http://www.infomus.org/Events/proceedings/ICMI2014/icmi/p514.pdf +31ace8c9d0e4550a233b904a0e2aabefcc90b0e3,http://pdfs.semanticscholar.org/31ac/e8c9d0e4550a233b904a0e2aabefcc90b0e3.pdf +370b5757a5379b15e30d619e4d3fb9e8e13f3256,http://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf +45f858f9e8d7713f60f52618e54089ba68dfcd6d,http://openaccess.thecvf.com/content_ICCV_2017/papers/Sigurdsson_What_Actions_Are_ICCV_2017_paper.pdf +f9d1f12070e5267afc60828002137af949ff1544,http://pdfs.semanticscholar.org/f9d1/f12070e5267afc60828002137af949ff1544.pdf +244b57cc4a00076efd5f913cc2833138087e1258,http://pdfs.semanticscholar.org/dfa8/d0afc548a8086902412fb0eae0fcf881ed8a.pdf +3cd8ab6bb4b038454861a36d5396f4787a21cc68,http://pdfs.semanticscholar.org/3cd8/ab6bb4b038454861a36d5396f4787a21cc68.pdf +094357c1a2ba3fda22aa6dd9e496530d784e1721,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_A_Unified_Probabilistic_2013_ICCV_paper.pdf +4b6387e608afa83ac8d855de2c9b0ae3b86f31cc,http://www.researchgate.net/profile/Heng_Yang3/publication/263813517_Face_Sketch_Landmarks_Localization_in_the_Wild/links/53d3dd3b0cf220632f3ce8b3.pdf +0cccf576050f493c8b8fec9ee0238277c0cfd69a,http://pdfs.semanticscholar.org/0ccc/f576050f493c8b8fec9ee0238277c0cfd69a.pdf +2d23fa205acca9c21e3e1a04674f1e5a9528550e,http://pdfs.semanticscholar.org/2d23/fa205acca9c21e3e1a04674f1e5a9528550e.pdf +3958db5769c927cfc2a9e4d1ee33ecfba86fe054,http://homes.cs.washington.edu/~neeraj/base/base/papers/nk_pami2011_faceattrs.pdf +a51882cfd0706512bf50e12c0a7dd0775285030d,http://pdfs.semanticscholar.org/a518/82cfd0706512bf50e12c0a7dd0775285030d.pdf +df5fe0c195eea34ddc8d80efedb25f1b9034d07d,http://www.andrew.cmu.edu/user/kseshadr/BTAS_2009_Paper_IEEE.pdf +d44ca9e7690b88e813021e67b855d871cdb5022f,http://pdfs.semanticscholar.org/d44c/a9e7690b88e813021e67b855d871cdb5022f.pdf +06526c52a999fdb0a9fd76e84f9795a69480cecf,http://pdfs.semanticscholar.org/0652/6c52a999fdb0a9fd76e84f9795a69480cecf.pdf +9326d1390e8601e2efc3c4032152844483038f3f,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Hsu_Landmark_Based_Facial_2014_CVPR_paper.pdf +b69b239217d4e9a20fe4fe1417bf26c94ded9af9,http://pdfs.semanticscholar.org/b69b/239217d4e9a20fe4fe1417bf26c94ded9af9.pdf +2a02355c1155f2d2e0cf7a8e197e0d0075437b19,http://pdfs.semanticscholar.org/cf2c/58a5efea263a878815e25148b1c6954a0cbe.pdf +4a9d906935c9de019c61aedc10b77ee10e3aec63,http://openaccess.thecvf.com/content_cvpr_2016/papers/Gupta_Cross_Modal_Distillation_CVPR_2016_paper.pdf +78436256ff8f2e448b28e854ebec5e8d8306cf21,http://pdfs.semanticscholar.org/7843/6256ff8f2e448b28e854ebec5e8d8306cf21.pdf +4da735d2ed0deeb0cae4a9d4394449275e316df2,http://cvrr.ucsd.edu/publications/2016/0406.pdf +4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8,http://pdfs.semanticscholar.org/4ab1/0174a4f98f7e2da7cf6ccfeb9bc64c8e7da8.pdf +1b6394178dbc31d0867f0b44686d224a19d61cf4,http://pdfs.semanticscholar.org/ca8e/5419fd570f19643425b24da801283b706fc1.pdf +d7d166aee5369b79ea2d71a6edd73b7599597aaa,http://pdfs.semanticscholar.org/d7d1/66aee5369b79ea2d71a6edd73b7599597aaa.pdf +0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf +156cd2a0e2c378e4c3649a1d046cd080d3338bca,http://pdfs.semanticscholar.org/156c/d2a0e2c378e4c3649a1d046cd080d3338bca.pdf +541bccf19086755f8b5f57fd15177dc49e77d675,http://pdfs.semanticscholar.org/541b/ccf19086755f8b5f57fd15177dc49e77d675.pdf +6c6bb85a08b0bdc50cf8f98408d790ccdb418798,http://pdfs.semanticscholar.org/6c6b/b85a08b0bdc50cf8f98408d790ccdb418798.pdf +fcbf808bdf140442cddf0710defb2766c2d25c30,http://pdfs.semanticscholar.org/fcbf/808bdf140442cddf0710defb2766c2d25c30.pdf +d78373de773c2271a10b89466fe1858c3cab677f,http://pdfs.semanticscholar.org/d783/73de773c2271a10b89466fe1858c3cab677f.pdf +6aefe7460e1540438ffa63f7757c4750c844764d,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Nascimento_Non-rigid_Segmentation_using_2014_CVPR_paper.pdf +133900a0e7450979c9491951a5f1c2a403a180f0,http://rlair.cs.ucr.edu/papers/docs/socgroup.pdf +6e9a8a34ab5b7cdc12ea52d94e3462225af2c32c,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Kim_Fusing_Aligned_and_CVPR_2016_paper.pdf +2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,http://pdfs.semanticscholar.org/ca31/53a726d8c212a7fd92f696c7e00a3ae3b31f.pdf +5a4c6246758c522f68e75491eb65eafda375b701,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0001118.pdf +841a5de1d71a0b51957d9be9d9bebed33fb5d9fa,http://mx.nthu.edu.tw/~tsunghan/papers/journal%20papers/TIP_PCANet.pdf +288dbc40c027af002298b38954d648fddd4e2fd3,http://pdfs.semanticscholar.org/288d/bc40c027af002298b38954d648fddd4e2fd3.pdf +0d746111135c2e7f91443869003d05cde3044beb,https://arxiv.org/pdf/1603.09364v1.pdf +f2b13946d42a50fa36a2c6d20d28de2234aba3b4,http://npl.mcgill.ca/Papers/Adaptive%20Facial%20Expression%20Recognition%20Using%20Inter-modal%20top-down%20context.pdf +085b5f9fd49432edab29e2c64f2a427fbce97f67,https://staff.fnwi.uva.nl/m.jain/pub/jain-objects-actions-cvpr2015.pdf +bf03f0fe8f3ba5b118bdcbb935bacb62989ecb11,http://pdfs.semanticscholar.org/bf03/f0fe8f3ba5b118bdcbb935bacb62989ecb11.pdf +8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152,http://pdfs.semanticscholar.org/8d02/43b8b663ca0ab7cbe613e3b886a5d1c8c152.pdf +1a6c9ef99bf0ab9835a91fe5f1760d98a0606243,http://pdfs.semanticscholar.org/57ce/705f08ae7256b16eac2b8b40ae0c88d6cf23.pdf +7ab930146f4b5946ec59459f8473c700bcc89233,http://pdfs.semanticscholar.org/7ab9/30146f4b5946ec59459f8473c700bcc89233.pdf +6b17b219bd1a718b5cd63427032d93c603fcf24f,http://pdfs.semanticscholar.org/6b17/b219bd1a718b5cd63427032d93c603fcf24f.pdf +28bc378a6b76142df8762cd3f80f737ca2b79208,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Vedaldi_Understanding_Objects_in_2014_CVPR_paper.pdf +fba464cb8e3eff455fe80e8fb6d3547768efba2f,http://pdfs.semanticscholar.org/fba4/64cb8e3eff455fe80e8fb6d3547768efba2f.pdf +25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,http://pdfs.semanticscholar.org/25bf/288b2d896f3c9dab7e7c3e9f9302e7d6806b.pdf +3727ac3d50e31a394b200029b2c350073c1b69e3,http://arxiv.org/pdf/1605.03639v2.pdf +8c81705e5e4a1e2068a5bd518adc6955d49ae434,http://pdfs.semanticscholar.org/8c81/705e5e4a1e2068a5bd518adc6955d49ae434.pdf +82f8652c2059187b944ce65e87bacb6b765521f6,http://pdfs.semanticscholar.org/82f8/652c2059187b944ce65e87bacb6b765521f6.pdf +37007af698b990a3ea8592b11d264b14d39c843f,http://acberg.com/papers/dcmsvm.pdf +464de30d3310123644ab81a1f0adc51598586fd2,http://pdfs.semanticscholar.org/464d/e30d3310123644ab81a1f0adc51598586fd2.pdf +0dbacb4fd069462841ebb26e1454b4d147cd8e98,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Nikitidis11c.pdf +3b38c06caf54f301847db0dd622a6622c3843957,http://pdfs.semanticscholar.org/3b38/c06caf54f301847db0dd622a6622c3843957.pdf +4223917177405eaa6bdedca061eb28f7b440ed8e,http://pdfs.semanticscholar.org/4223/917177405eaa6bdedca061eb28f7b440ed8e.pdf +3cc46bf79fb9225cf308815c7d41c8dd5625cc29,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf +d1f58798db460996501f224fff6cceada08f59f9,http://pdfs.semanticscholar.org/d1f5/8798db460996501f224fff6cceada08f59f9.pdf +f45d6a7bdb6741242da6192d18c97ac39e6308db,http://media.cs.tsinghua.edu.cn/~imagevision/papers/%5B2008%5D%5Bfg%5DPerson-Specific%20Face%20Recognition%20in%20Unconstrained%20Environments%20a%20Combination%20of%20Offline%20and%20Online%20Learning.pdf +3393459600368be2c4c9878a3f65a57dcc0c2cfa,http://pdfs.semanticscholar.org/3393/459600368be2c4c9878a3f65a57dcc0c2cfa.pdf +13fd0a4d06f30a665fc0f6938cea6572f3b496f7,http://pdfs.semanticscholar.org/13fd/0a4d06f30a665fc0f6938cea6572f3b496f7.pdf +33792bb27ef392973e951ca5a5a3be4a22a0d0c6,http://plaza.ufl.edu/xsshi2015/paper_list/TPAMI2016.pdf +f2e9494d0dca9fb6b274107032781d435a508de6,http://pdfs.semanticscholar.org/f2e9/494d0dca9fb6b274107032781d435a508de6.pdf +d29eec5e047560627c16803029d2eb8a4e61da75,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf +0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,http://cs.nju.edu.cn/_upload/tpl/01/0b/267/template267/zhouzh.files/publication/aaai10LLD.pdf +552c55c71bccfc6de7ce1343a1cd12208e9a63b3,https://ivi.fnwi.uva.nl/isis/publications/2008/ValentiCVPR2008/ValentiCVPR2008.pdf +275b3cb7c780c663eabbf4d6c6cbc8fe24287c70,https://www.researchgate.net/profile/Bisan_Alsalibi/publication/280839254_The_Impact_of_Bio-Inspired_Approaches_Toward_the_Advancement_of_Face_Recognition/links/55c8ce4608aeca747d67062e.pdf?origin=publication_list +88e2574af83db7281c2064e5194c7d5dfa649846,http://pdfs.semanticscholar.org/88e2/574af83db7281c2064e5194c7d5dfa649846.pdf +46e866f58419ff4259c65e8256c1d4f14927b2c6,http://pdfs.semanticscholar.org/f03d/cfd956cf4404ec9f0c7fb451479d72a63e03.pdf +5334ac0a6438483890d5eef64f6db93f44aacdf4,http://pdfs.semanticscholar.org/5334/ac0a6438483890d5eef64f6db93f44aacdf4.pdf +7d53678ef6009a68009d62cd07c020706a2deac3,http://pdfs.semanticscholar.org/7d53/678ef6009a68009d62cd07c020706a2deac3.pdf +23120f9b39e59bbac4438bf4a8a7889431ae8adb,http://pdfs.semanticscholar.org/2312/0f9b39e59bbac4438bf4a8a7889431ae8adb.pdf +f5aee1529b98136194ef80961ba1a6de646645fe,http://pdfs.semanticscholar.org/f5ae/e1529b98136194ef80961ba1a6de646645fe.pdf +919d3067bce76009ce07b070a13728f549ebba49,http://pdfs.semanticscholar.org/919d/3067bce76009ce07b070a13728f549ebba49.pdf +071af21377cc76d5c05100a745fb13cb2e40500f,http://pdfs.semanticscholar.org/071a/f21377cc76d5c05100a745fb13cb2e40500f.pdf +07d986b1005593eda1aeb3b1d24078db864f8f6a,http://pdfs.semanticscholar.org/07d9/86b1005593eda1aeb3b1d24078db864f8f6a.pdf +63cf5fc2ee05eb9c6613043f585dba48c5561192,http://pdfs.semanticscholar.org/63cf/5fc2ee05eb9c6613043f585dba48c5561192.pdf +55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,http://pdfs.semanticscholar.org/55eb/7ec9b9740f6c69d6e62062a24bfa091bbb0c.pdf +2c8f24f859bbbc4193d4d83645ef467bcf25adc2,http://romisatriawahono.net/lecture/rm/survey/machine%20learning/Frenay%20-%20Classification%20in%20the%20Presence%20of%20Label%20Noise%20-%202014.pdf +0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277,http://pdfs.semanticscholar.org/0fb8/317a8bf5feaf297af8e9b94c50c5ed0e8277.pdf +6d8e3f3a83514381f890ab7cd2a1f1c5be597b69,http://pdfs.semanticscholar.org/aeb1/83983f4ae1ea9e01005f5d546480190e0345.pdf +1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61,http://mplab.ucsd.edu/~marni/pubs/Bartlett_CVPR05.pdf +2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924,http://pdfs.semanticscholar.org/2a6b/ba2e81d5fb3c0fd0e6b757cf50ba7bf8e924.pdf +39ce2232452c0cd459e32a19c1abe2a2648d0c3f,http://pdfs.semanticscholar.org/4fac/61d638cf7a1ab995e2ee9a02d3672b12d2ca.pdf +06f39834e870278243dda826658319be2d5d8ded,http://www.public.asu.edu/~bli24/Papers/ICIP2016_video.pdf +cacd51221c592012bf2d9e4894178c1c1fa307ca,http://pdfs.semanticscholar.org/cacd/51221c592012bf2d9e4894178c1c1fa307ca.pdf +a158c1e2993ac90a90326881dd5cb0996c20d4f3,http://pdfs.semanticscholar.org/a158/c1e2993ac90a90326881dd5cb0996c20d4f3.pdf +e315959d6e806c8fbfc91f072c322fb26ce0862b,http://pdfs.semanticscholar.org/e315/959d6e806c8fbfc91f072c322fb26ce0862b.pdf +7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,http://pdfs.semanticscholar.org/d5a4/c2757619a1f2c8d9a879e6f26f539a4a18f2.pdf +3634b4dd263c0f330245c086ce646c9bb748cd6b,https://arxiv.org/pdf/1504.00983v2.pdf +a2bd81be79edfa8dcfde79173b0a895682d62329,http://pdfs.semanticscholar.org/a2bd/81be79edfa8dcfde79173b0a895682d62329.pdf +f0a3f12469fa55ad0d40c21212d18c02be0d1264,http://pdfs.semanticscholar.org/f0a3/f12469fa55ad0d40c21212d18c02be0d1264.pdf +315a90543d60a5b6c5d1716fe9076736f0e90d24,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553721.pdf +0209389b8369aaa2a08830ac3b2036d4901ba1f1,https://arxiv.org/pdf/1612.01202v2.pdf +b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf +72bf9c5787d7ff56a1697a3389f11d14654b4fcf,http://pdfs.semanticscholar.org/7910/a98a1fe9f4bec4c0dc4dc3476e9405b1930d.pdf +047d7cf4301cae3d318468fe03a1c4ce43b086ed,http://webee.technion.ac.il/~yoav/publications/Delforge_taslp14R2.pdf +ce5eac297174c17311ee28bda534faaa1d559bae,http://pdfs.semanticscholar.org/ce5e/ac297174c17311ee28bda534faaa1d559bae.pdf +14d72dc9f78d65534c68c3ed57305f14bd4b5753,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yan_Exploiting_Multi-Grain_Ranking_ICCV_2017_paper.pdf +11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,http://pdfs.semanticscholar.org/11aa/527c01e61ec3a7a67eef8d7ffe9d9ce63f1d.pdf +2f04ba0f74df046b0080ca78e56898bd4847898b,https://arxiv.org/pdf/1407.4023v2.pdf +09b0ef3248ff8f1a05b8704a1b4cf64951575be9,https://arxiv.org/pdf/1511.06783v1.pdf +6e198f6cc4199e1c4173944e3df6f39a302cf787,http://pdfs.semanticscholar.org/6e19/8f6cc4199e1c4173944e3df6f39a302cf787.pdf +4526992d4de4da2c5fae7a5ceaad6b65441adf9d,http://pdfs.semanticscholar.org/4526/992d4de4da2c5fae7a5ceaad6b65441adf9d.pdf +1791f790b99471fc48b7e9ec361dc505955ea8b1,http://pdfs.semanticscholar.org/6fea/599d7b9fc72350d6e0947d3baaf44edc561b.pdf +33695e0779e67c7722449e9a3e2e55fde64cfd99,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_064_ext.pdf +5615d6045301ecbc5be35e46cab711f676aadf3a,https://arxiv.org/pdf/1705.10420v1.pdf +ea2ee5c53747878f30f6d9c576fd09d388ab0e2b,http://pdfs.semanticscholar.org/ea2e/e5c53747878f30f6d9c576fd09d388ab0e2b.pdf +716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0,http://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf +237eba4822744a9eabb121fe7b50fd2057bf744c,http://pdfs.semanticscholar.org/ba2a/65bef17d9db7366fe8c1344ca918ba50b99a.pdf +9c25e89c80b10919865b9c8c80aed98d223ca0c6,http://pdfs.semanticscholar.org/9c25/e89c80b10919865b9c8c80aed98d223ca0c6.pdf +3b557c4fd6775afc80c2cf7c8b16edde125b270e,https://arxiv.org/pdf/1602.02999v1.pdf +2f348a2ad3ba390ee178d400be0f09a0479ae17b,http://www.csee.wvu.edu/~richas/ML-Papers/Gabor-Based%20Kernel%20PCA.pdf +86f8e6310d114bb24deb971e8bc7089df6ac3b57,http://ftp.ncbi.nlm.nih.gov/pub/pmc/84/69/40101_2015_Article_46.PMC4350291.pdf +36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958,http://www.iab-rubric.org/papers/RGBD-Face.pdf +81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,http://pdfs.semanticscholar.org/8169/5fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f.pdf +0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a,http://www.openu.ac.il/home/hassner/projects/LATCH/LATCH.pdf +19296e129c70b332a8c0a67af8990f2f4d4f44d1,http://lear.inrialpes.fr/pubs/2009/GVS09/supplmat.pdf +66810438bfb52367e3f6f62c24f5bc127cf92e56,http://pdfs.semanticscholar.org/6681/0438bfb52367e3f6f62c24f5bc127cf92e56.pdf +50eb75dfece76ed9119ec543e04386dfc95dfd13,https://lirias.kuleuven.be/bitstream/123456789/197359/1/boiy-learningVisual.pdf +82cd5a5fec8a27887a35f1ecec684ec55eefad73,http://www.researchgate.net/profile/Giuseppe_Boccignone/publication/265793480_Using_Sparse_Coding_for_Landmark_Localization_in_Facial_Expressions/links/541bf80b0cf241a65a0ba53a.pdf +600025c9a13ff09c6d8b606a286a79c823d89db8,http://pdfs.semanticscholar.org/6000/25c9a13ff09c6d8b606a286a79c823d89db8.pdf +d30050cfd16b29e43ed2024ae74787ac0bbcf2f7,http://pdfs.semanticscholar.org/d300/50cfd16b29e43ed2024ae74787ac0bbcf2f7.pdf +d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e,http://pdfs.semanticscholar.org/d5ab/6aa15dad26a6ace5ab83ce62b7467a18a88e.pdf +ada42b99f882ba69d70fff68c9ccbaff642d5189,http://pdfs.semanticscholar.org/ba11/4dfdd12b0f4323a8f28cd2bd770dfa74673e.pdf +20e505cef6d40f896e9508e623bfc01aa1ec3120,http://pdfs.semanticscholar.org/20e5/05cef6d40f896e9508e623bfc01aa1ec3120.pdf +2e1b1969ded4d63b69a5ec854350c0f74dc4de36,http://pdfs.semanticscholar.org/2e1b/1969ded4d63b69a5ec854350c0f74dc4de36.pdf +03bd58a96f635059d4bf1a3c0755213a51478f12,https://arxiv.org/pdf/1401.7413v2.pdf +ebf204e0a3e137b6c24e271b0d55fa49a6c52b41,http://pdfs.semanticscholar.org/ebf2/04e0a3e137b6c24e271b0d55fa49a6c52b41.pdf +445461a34adc4bcdccac2e3c374f5921c93750f8,https://arxiv.org/pdf/1306.1913v1.pdf +fc1e37fb16006b62848def92a51434fc74a2431a,http://pdfs.semanticscholar.org/fc1e/37fb16006b62848def92a51434fc74a2431a.pdf +339937141ffb547af8e746718fbf2365cc1570c8,http://pdfs.semanticscholar.org/3399/37141ffb547af8e746718fbf2365cc1570c8.pdf +955e2a39f51c0b6f967199942d77625009e580f9,http://pdfs.semanticscholar.org/955e/2a39f51c0b6f967199942d77625009e580f9.pdf +4d6462fb78db88afff44561d06dd52227190689c,http://pdfs.semanticscholar.org/4d64/62fb78db88afff44561d06dd52227190689c.pdf +014143aa16604ec3f334c1407ceaa496d2ed726e,http://www.cs.cmu.edu/~har/cvpr2008-manifold.pdf +392425be1c9d9c2ee6da45de9df7bef0d278e85f,http://pdfs.semanticscholar.org/3924/25be1c9d9c2ee6da45de9df7bef0d278e85f.pdf +3abc833f4d689f37cc8a28f47fb42e32deaa4b17,http://www.cs.virginia.edu/~vicente/files/ijcv_bigdata.pdf +5160569ca88171d5fa257582d161e9063c8f898d,http://infoscience.epfl.ch/record/83324/files/heusch-AFGR-2006.pdf +1b60b8e70859d5c85ac90510b370b501c5728620,http://pdfs.semanticscholar.org/1b60/b8e70859d5c85ac90510b370b501c5728620.pdf +5b0ebb8430a04d9259b321fc3c1cc1090b8e600e,http://www.openu.ac.il/home/hassner/projects/Ossk/WolfHassnerTaigman_ICCV09.pdf +026a9cfe3135b7b62279bc08e2fb97e0e9fad5c4,http://perso.telecom-paristech.fr/~sahbi/jstars2017.pdf +4f0d9200647042e41dea71c35eb59e598e6018a7,http://pdfs.semanticscholar.org/4f0d/9200647042e41dea71c35eb59e598e6018a7.pdf +feeb0fd0e254f38b38fe5c1022e84aa43d63f7cc,http://pdfs.semanticscholar.org/feeb/0fd0e254f38b38fe5c1022e84aa43d63f7cc.pdf +371f40f6d32ece05cc879b6954db408b3d4edaf3,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_100_ext.pdf +14bca107bb25c4dce89210049bf39ecd55f18568,http://pdfs.semanticscholar.org/6f56/b0fada68f36d78cf20148fd13de8bce8a93d.pdf +348a16b10d140861ece327886b85d96cce95711e,http://pdfs.semanticscholar.org/348a/16b10d140861ece327886b85d96cce95711e.pdf +83ca4cca9b28ae58f461b5a192e08dffdc1c76f3,http://infoscience.epfl.ch/record/200407/files/icip1024-cam-ready.pdf +612075999e82596f3b42a80e6996712cc52880a3,https://www.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Publications/Publications-2017/PID4875389.pdf +b6c047ab10dd86b1443b088029ffe05d79bbe257,http://pdfs.semanticscholar.org/b6c0/47ab10dd86b1443b088029ffe05d79bbe257.pdf +5666ed763698295e41564efda627767ee55cc943,http://i.cs.hku.hk/~kykwong/publications/zkuang_ijcv15.pdf +69063f7e0a60ad6ce16a877bc8f11b59e5f7348e,http://openaccess.thecvf.com/content_iccv_2015/papers/Anwar_Class-Specific_Image_Deblurring_ICCV_2015_paper.pdf +2b84630680e2c906f8d7ac528e2eb32c99ef203a,http://disi.unitn.it/~zen/data/acmmm14_zen3_orlando.pdf +804b4c1b553d9d7bae70d55bf8767c603c1a09e3,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001831.pdf +f4ebbeb77249d1136c355f5bae30f02961b9a359,http://pdfs.semanticscholar.org/f4eb/beb77249d1136c355f5bae30f02961b9a359.pdf +985cd420c00d2f53965faf63358e8c13d1951fa8,http://pdfs.semanticscholar.org/985c/d420c00d2f53965faf63358e8c13d1951fa8.pdf +74ba4ab407b90592ffdf884a20e10006d2223015,http://pdfs.semanticscholar.org/74ba/4ab407b90592ffdf884a20e10006d2223015.pdf +3852968082a16db8be19b4cb04fb44820ae823d4,https://infoscience.epfl.ch/record/230240/files/1701.01821.pdf +1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Zhou_Extensive_Facial_Landmark_2013_ICCV_paper.pdf +70e79d7b64f5540d309465620b0dab19d9520df1,http://pdfs.semanticscholar.org/70e7/9d7b64f5540d309465620b0dab19d9520df1.pdf +7002d6fc3e0453320da5c863a70dbb598415e7aa,http://www.cris.ucr.edu/IGERT/papers/SongfanAbstract.pdf +334e65b31ad51b1c1f84ce12ef235096395f1ca7,http://pdfs.semanticscholar.org/334e/65b31ad51b1c1f84ce12ef235096395f1ca7.pdf +1db23a0547700ca233aef9cfae2081cd8c5a04d7,http://pdfs.semanticscholar.org/1db2/3a0547700ca233aef9cfae2081cd8c5a04d7.pdf +a6b1d79bc334c74cde199e26a7ef4c189e9acd46,http://pdfs.semanticscholar.org/a6b1/d79bc334c74cde199e26a7ef4c189e9acd46.pdf +b8caf1b1bc3d7a26a91574b493c502d2128791f6,http://pdfs.semanticscholar.org/b8ca/f1b1bc3d7a26a91574b493c502d2128791f6.pdf +77037a22c9b8169930d74d2ce6f50f1a999c1221,https://ueaeprints.uea.ac.uk/64308/1/Accepted_manuscript.pdf +8d2c0c9155a1ed49ba576ac0446ec67725468d87,http://media.cs.tsinghua.edu.cn/~cvg/publications/ENGLISH%20CONFERENCE%20PAPERS/A%20Study%20of%20Two%20Image%20Representations%20for%20Head%20Pose%20Estimation.pdf +7dcd3f58aa75f7ae96fdac9b1c2332a4f0b2dbd3,https://www.researchgate.net/profile/Symeon_Nikitidis/publication/221122322_Facial_expression_recognition_using_clustering_discriminant_Non-negative_Matrix_Factorization/links/54fee98e0cf2eaf210b4506c.pdf +47aeb3b82f54b5ae8142b4bdda7b614433e69b9a,http://pdfs.semanticscholar.org/5d06/437656dd94616d7d87260d5eb77513ded30f.pdf +0a82860d11fcbf12628724333f1e7ada8f3cd255,http://pdfs.semanticscholar.org/0a82/860d11fcbf12628724333f1e7ada8f3cd255.pdf +d79f9ada35e4410cd255db39d7cc557017f8111a,http://pdfs.semanticscholar.org/d79f/9ada35e4410cd255db39d7cc557017f8111a.pdf +9887ab220254859ffc7354d5189083a87c9bca6e,http://pdfs.semanticscholar.org/9887/ab220254859ffc7354d5189083a87c9bca6e.pdf +2609079d682998da2bc4315b55a29bafe4df414e,http://www.iab-rubric.org/papers/ICIP-13-camready.pdf +08e995c080a566fe59884a527b72e13844b6f176,http://pdfs.semanticscholar.org/08e9/95c080a566fe59884a527b72e13844b6f176.pdf +47d4838087a7ac2b995f3c5eba02ecdd2c28ba14,http://pdfs.semanticscholar.org/b2b5/35118c5c4dfcc96f547274cdc05dde629976.pdf +1c93b48abdd3ef1021599095a1a5ab5e0e020dd5,http://www.stat.ucla.edu/~sczhu/papers/PAMI_FaceAging.pdf +1d97735bb0f0434dde552a96e1844b064af08f62,http://www.apsipa.org/proceedings_2015/pdf/290.pdf +56e03f8fcd16332f764352ba6e72c9c5092cac0f,http://www.cs.utexas.edu/~ssi/DHE.pdf +2ad29b2921aba7738c51d9025b342a0ec770c6ea,http://arxiv.org/pdf/1510.02781v1.pdf +677477e6d2ba5b99633aee3d60e77026fb0b9306,http://pdfs.semanticscholar.org/d105/b9b31106495f58fb951cfdbf64787ee89ab2.pdf +1c30bb689a40a895bd089e55e0cad746e343d1e2,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf +adc4bc7639d5f1c5ead8728882e2390339d061ed,https://www.researchgate.net/profile/Fanbo_Meng2/publication/224144294_Emotional_Audio-Visual_Speech_Synthesis_Based_on_PAD/links/00b49538fd61d3280d000000.pdf?origin=publication_list +51dc127f29d1bb076d97f515dca4cc42dda3d25b,http://pdfs.semanticscholar.org/7a1d/4a9ef5944217ee19aa642471b4746aaa2576.pdf +91e57667b6fad7a996b24367119f4b22b6892eca,http://pdfs.semanticscholar.org/91e5/7667b6fad7a996b24367119f4b22b6892eca.pdf +0235b2d2ae306b7755483ac4f564044f46387648,http://pdfs.semanticscholar.org/0235/b2d2ae306b7755483ac4f564044f46387648.pdf +264a84f4d27cd4bca94270620907cffcb889075c,https://arxiv.org/pdf/1612.06615v1.pdf +467b602a67cfd7c347fe7ce74c02b38c4bb1f332,http://pdfs.semanticscholar.org/467b/602a67cfd7c347fe7ce74c02b38c4bb1f332.pdf +169076ffe5e7a2310e98087ef7da25aceb12b62d,http://pdfs.semanticscholar.org/1690/76ffe5e7a2310e98087ef7da25aceb12b62d.pdf +232b6e2391c064d483546b9ee3aafe0ba48ca519,https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_iccv2013.pdf +1451e7b11e66c86104f9391b80d9fb422fb11c01,http://pdfs.semanticscholar.org/1451/e7b11e66c86104f9391b80d9fb422fb11c01.pdf +2e8eb9dc07deb5142a99bc861e0b6295574d1fbd,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Hejrati_Analysis_by_Synthesis_2014_CVPR_paper.pdf +a75ee7f4c4130ef36d21582d5758f953dba03a01,http://pdfs.semanticscholar.org/a75e/e7f4c4130ef36d21582d5758f953dba03a01.pdf +5d485501f9c2030ab33f97972aa7585d3a0d59a7,http://pdfs.semanticscholar.org/5d48/5501f9c2030ab33f97972aa7585d3a0d59a7.pdf +49e1aa3ecda55465641b2c2acc6583b32f3f1fc6,http://pdfs.semanticscholar.org/49e1/aa3ecda55465641b2c2acc6583b32f3f1fc6.pdf +0059b3dfc7056f26de1eabaafd1ad542e34c2c2e,http://pdfs.semanticscholar.org/0059/b3dfc7056f26de1eabaafd1ad542e34c2c2e.pdf +896f4d87257abd0f628c1ffbbfdac38c86a56f50,http://pdfs.semanticscholar.org/cf5c/c511c7fd556aaf113de02fc88d7ba10928b0.pdf +0ad8149318912b5449085187eb3521786a37bc78,http://arxiv.org/pdf/1604.02975v1.pdf +9e8d87dc5d8a6dd832716a3f358c1cdbfa97074c,https://people.csail.mit.edu/khosla/papers/www2014_khosla.pdf +b1a3b19700b8738b4510eecf78a35ff38406df22,http://pdfs.semanticscholar.org/b1a3/b19700b8738b4510eecf78a35ff38406df22.pdf +8bfada57140aa1aa22a575e960c2a71140083293,http://pdfs.semanticscholar.org/8bfa/da57140aa1aa22a575e960c2a71140083293.pdf +46c87fded035c97f35bb991fdec45634d15f9df2,https://arxiv.org/pdf/1707.09145v1.pdf +f740bac1484f2f2c70777db6d2a11cf4280081d6,http://pdfs.semanticscholar.org/f740/bac1484f2f2c70777db6d2a11cf4280081d6.pdf +e27c92255d7ccd1860b5fb71c5b1277c1648ed1e,http://pdfs.semanticscholar.org/e27c/92255d7ccd1860b5fb71c5b1277c1648ed1e.pdf +f6abecc1f48f6ec6eede4143af33cc936f14d0d0,http://pdfs.semanticscholar.org/f6ab/ecc1f48f6ec6eede4143af33cc936f14d0d0.pdf +df80fed59ffdf751a20af317f265848fe6bfb9c9,http://ivg.au.tsinghua.edu.cn/paper/2017_Learning%20deep%20sharable%20and%20structural%20detectors%20for%20face%20alignment.pdf +2e0e056ed5927a4dc6e5c633715beb762628aeb0,http://pdfs.semanticscholar.org/2e0e/056ed5927a4dc6e5c633715beb762628aeb0.pdf +10e0e6f1ec00b20bc78a5453a00c792f1334b016,http://pdfs.semanticscholar.org/672f/ae3da801b2a0d2bad65afdbbbf1b2320623e.pdf +11a2ef92b6238055cf3f6dcac0ff49b7b803aee3,http://cs.adelaide.edu.au/~carneiro/publications/mainSPL.pdf +0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,http://pdfs.semanticscholar.org/0559/fb9f5e8627fecc026c8ee6f7ad30e54ee929.pdf +a2d04db895dd17f2a8291b300a63604842c06d09,http://www4.comp.polyu.edu.hk/~csdct/Publications/2006/TCSVT.pdf +f9e0209dc9e72d64b290d0622c1c1662aa2cc771,http://pdfs.semanticscholar.org/f9e0/209dc9e72d64b290d0622c1c1662aa2cc771.pdf +03701e66eda54d5ab1dc36a3a6d165389be0ce79,http://www.eem.anadolu.edu.tr/atalaybarkan/EEM%20405%20(K)/icerik/improved%20pcr.pdf +871f5f1114949e3ddb1bca0982086cc806ce84a8,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01169.pdf +3463f12ad434d256cd5f94c1c1bfd2dd6df36947,http://pdfs.semanticscholar.org/3463/f12ad434d256cd5f94c1c1bfd2dd6df36947.pdf +5ebb247963d2d898d420f1f4a2486102a9d05aa9,http://bcmi.sjtu.edu.cn/~zhzhang/papers/nncw.pdf +72a5e181ee8f71b0b153369963ff9bfec1c6b5b0,http://pdfs.semanticscholar.org/72a5/e181ee8f71b0b153369963ff9bfec1c6b5b0.pdf +3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f,http://pdfs.semanticscholar.org/3cb0/ef5aabc7eb4dd8d32a129cb12b3081ef264f.pdf +80c8d143e7f61761f39baec5b6dfb8faeb814be9,http://pdfs.semanticscholar.org/80c8/d143e7f61761f39baec5b6dfb8faeb814be9.pdf +5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65,http://pdfs.semanticscholar.org/5b9d/9f5a59c48bc8dd409a1bd5abf1d642463d65.pdf +f26097a1a479fb6f32b27a93f8f32609cfe30fdc,http://pdfs.semanticscholar.org/f260/97a1a479fb6f32b27a93f8f32609cfe30fdc.pdf +95f12d27c3b4914e0668a268360948bce92f7db3,http://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf +ce691a37060944c136d2795e10ed7ba751cd8394,http://pdfs.semanticscholar.org/ce69/1a37060944c136d2795e10ed7ba751cd8394.pdf +47382cb7f501188a81bb2e10cfd7aed20285f376,http://pdfs.semanticscholar.org/4738/2cb7f501188a81bb2e10cfd7aed20285f376.pdf +283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43,http://pdfs.semanticscholar.org/283d/226e346ac3e7685dd9a4ba8ae55ee4f2fe43.pdf +c0cdaeccff78f49f4604a6d263dc6eb1bb8707d5,http://pdfs.semanticscholar.org/c0cd/aeccff78f49f4604a6d263dc6eb1bb8707d5.pdf +19dd371e1649ab55a46f4b98890d6937a411ec5d,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2011_11_17_DagliC_HST_FP.pdf +28cd46a078e8fad370b1aba34762a874374513a5,http://pdfs.semanticscholar.org/28cd/46a078e8fad370b1aba34762a874374513a5.pdf +c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad,http://pdfs.semanticscholar.org/c4dc/f41506c23aa45c33a0a5e51b5b9f8990e8ad.pdf +3b9c08381282e65649cd87dfae6a01fe6abea79b,http://pdfs.semanticscholar.org/3b9c/08381282e65649cd87dfae6a01fe6abea79b.pdf +c88ce5ef33d5e544224ab50162d9883ff6429aa3,http://pdfs.semanticscholar.org/c88c/e5ef33d5e544224ab50162d9883ff6429aa3.pdf +e171fba00d88710e78e181c3e807c2fdffc6798a,http://pdfs.semanticscholar.org/e171/fba00d88710e78e181c3e807c2fdffc6798a.pdf +27aadf6e7441bf40675874df1cf4bb7e2dffdd9e,http://www1.icsi.berkeley.edu/~farrell/birdlets/iccv11-camera-ready.pdf +c71f36c9376d444075de15b1102b4974481be84d,http://pdfs.semanticscholar.org/c71f/36c9376d444075de15b1102b4974481be84d.pdf +36ce0b68a01b4c96af6ad8c26e55e5a30446f360,http://liris.cnrs.fr/Documents/Liris-6963.pdf +25c19d8c85462b3b0926820ee5a92fc55b81c35a,http://www.brl.ntt.co.jp/people/kumano/papers/Kumano.IJCV2009.pdf +1dacc2f4890431d867a038fd81c111d639cf4d7e,http://pdfs.semanticscholar.org/1dac/c2f4890431d867a038fd81c111d639cf4d7e.pdf +2bf08d4cb8d1201a9866ee7c4852bfcbf8f8e7f1,http://mplab.ucsd.edu/~jake/haar.pdf +0ba0f000baf877bc00a9e144b88fa6d373db2708,http://pdfs.semanticscholar.org/0ba0/f000baf877bc00a9e144b88fa6d373db2708.pdf +b56530be665b0e65933adec4cc5ed05840c37fc4,http://kobus.ca/research/publications/07/cvpr-07-region-www.pdf +c043f8924717a3023a869777d4c9bee33e607fb5,http://pdfs.semanticscholar.org/c043/f8924717a3023a869777d4c9bee33e607fb5.pdf +60b3601d70f5cdcfef9934b24bcb3cc4dde663e7,http://pdfs.semanticscholar.org/60b3/601d70f5cdcfef9934b24bcb3cc4dde663e7.pdf +d394bd9fbaad1f421df8a49347d4b3fca307db83,http://www.eecs.qmul.ac.uk/~sgg/papers/ShanEtAl_AVSS05.pdf +aefc7c708269b874182a5c877fb6dae06da210d4,http://pdfs.semanticscholar.org/f6f4/60d4a4a5b4c077ab3ac7a972f52af17a4241.pdf +683ec608442617d11200cfbcd816e86ce9ec0899,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Dual_Linear_Regression_2014_CVPR_paper.pdf +60643bdab1c6261576e6610ea64ea0c0b200a28d,http://pdfs.semanticscholar.org/6064/3bdab1c6261576e6610ea64ea0c0b200a28d.pdf +5394d42fd27b7e14bd875ec71f31fdd2fcc8f923,http://pdfs.semanticscholar.org/5394/d42fd27b7e14bd875ec71f31fdd2fcc8f923.pdf +0861f86fb65aa915fbfbe918b28aabf31ffba364,http://pdfs.semanticscholar.org/0861/f86fb65aa915fbfbe918b28aabf31ffba364.pdf +80be8624771104ff4838dcba9629bacfe6b3ea09,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf +bcfeac1e5c31d83f1ed92a0783501244dde5a471,http://pdfs.semanticscholar.org/bcfe/ac1e5c31d83f1ed92a0783501244dde5a471.pdf +09ce14b84af2dc2f76ae1cf227356fa0ba337d07,http://grail.cs.washington.edu/3dfaces/paper.pdf +1467c4ab821c3b340abe05a1b13a19318ebbce98,http://pdfs.semanticscholar.org/1467/c4ab821c3b340abe05a1b13a19318ebbce98.pdf +38bbca5f94d4494494860c5fe8ca8862dcf9676e,http://pdfs.semanticscholar.org/c322/b770d2c7d9e70d196577bf0ae6b05205ebd7.pdf +3b37d95d2855c8db64bd6b1ee5659f87fce36881,http://pdfs.semanticscholar.org/3b37/d95d2855c8db64bd6b1ee5659f87fce36881.pdf +74618fb4ce8ce0209db85cc6069fe64b1f268ff4,https://ir.canterbury.ac.nz/bitstream/handle/10092/6229/12636740_Y10_ICCSIT.pdf?isAllowed=y&sequence=1 +2ea78e128bec30fb1a623c55ad5d55bb99190bd2,http://pdfs.semanticscholar.org/2ea7/8e128bec30fb1a623c55ad5d55bb99190bd2.pdf +167f07b9d2babb8920acfa320ab04ee2758b5db6,http://eprints.pascal-network.org/archive/00008391/01/paper_express.pdf +4dd71a097e6b3cd379d8c802460667ee0cbc8463,http://www.dgcv.nii.ac.jp/Publications/Papers/2015/BWILD2015.pdf +0c4659b35ec2518914da924e692deb37e96d6206,https://cs.uwaterloo.ca/~jhoey/teaching/cs793/papers/OrchardTIP10.pdf +66886997988358847615375ba7d6e9eb0f1bb27f,https://pdfs.semanticscholar.org/6688/6997988358847615375ba7d6e9eb0f1bb27f.pdf +3d36f941d8ec613bb25e80fb8f4c160c1a2848df,https://arxiv.org/pdf/1502.02410v1.pdf +24cb375a998f4af278998f8dee1d33603057e525,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_016_ext.pdf +0d0b880e2b531c45ee8227166a489bf35a528cb9,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhang_Structure_Preserving_Object_2013_CVPR_paper.pdf +1a85956154c170daf7f15f32f29281269028ff69,http://ibug.doc.ic.ac.uk/media/uploads/documents/active_pictorial_structures.pdf +aac101dd321e6d2199d8c0b48c543b541c181b66,http://pdfs.semanticscholar.org/aac1/01dd321e6d2199d8c0b48c543b541c181b66.pdf +60824ee635777b4ee30fcc2485ef1e103b8e7af9,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/Feng-TIP-2015.pdf +bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,http://pdfs.semanticscholar.org/bc12/715a1ddf1a540dab06bf3ac4f3a32a26b135.pdf +6097ea6fd21a5f86a10a52e6e4dd5b78a436d5bf,http://arxiv.org/pdf/1512.05300v3.pdf +a32d4195f7752a715469ad99cb1e6ebc1a099de6,http://pdfs.semanticscholar.org/a32d/4195f7752a715469ad99cb1e6ebc1a099de6.pdf +8796f2d54afb0e5c924101f54d469a1d54d5775d,http://pdfs.semanticscholar.org/8796/f2d54afb0e5c924101f54d469a1d54d5775d.pdf +f519723238701849f1160d5a9cedebd31017da89,http://pdfs.semanticscholar.org/f519/723238701849f1160d5a9cedebd31017da89.pdf +5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a,http://pdfs.semanticscholar.org/5fa0/e6da81acece7026ac1bc6dcdbd8b204a5f0a.pdf +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf +d122d66c51606a8157a461b9d7eb8b6af3d819b0,http://pdfs.semanticscholar.org/d122/d66c51606a8157a461b9d7eb8b6af3d819b0.pdf +0a3863a0915256082aee613ba6dab6ede962cdcd,http://pdfs.semanticscholar.org/0a38/63a0915256082aee613ba6dab6ede962cdcd.pdf +5bfc32d9457f43d2488583167af4f3175fdcdc03,http://pdfs.semanticscholar.org/5bfc/32d9457f43d2488583167af4f3175fdcdc03.pdf +03167776e17bde31b50f294403f97ee068515578,http://pdfs.semanticscholar.org/0316/7776e17bde31b50f294403f97ee068515578.pdf +60040e4eae81ab6974ce12f1c789e0c05be00303,http://pdfs.semanticscholar.org/6004/0e4eae81ab6974ce12f1c789e0c05be00303.pdf +b9cedd09bdae827dacb138d6b054449d5346caf1,http://www.cs.colostate.edu/~lui/Papers/BTAS09LUIa.pdf +94ac3008bf6be6be6b0f5140a0bea738d4c75579,http://pdfs.semanticscholar.org/94ac/3008bf6be6be6b0f5140a0bea738d4c75579.pdf +ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7,http://pdfs.semanticscholar.org/ade1/034d5daec9e3eba1d39ae3f33ebbe3e8e9a7.pdf +3830047081ef4bc787f16edf5b244cb2793f75e5,https://www.cs.drexel.edu/~kon/publication/GSchwartz_CPCV13_slides.pdf +09750c9bbb074bbc4eb66586b20822d1812cdb20,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001385.pdf +05d80c59c6fcc4652cfc38ed63d4c13e2211d944,http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/35389.pdf +2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd,http://research.microsoft.com/users/byzhang/publications/20-81_01.pdf +bec31269632c17206deb90cd74367d1e6586f75f,http://pdfs.semanticscholar.org/bec3/1269632c17206deb90cd74367d1e6586f75f.pdf +9825aa96f204c335ec23c2b872855ce0c98f9046,http://pdfs.semanticscholar.org/9825/aa96f204c335ec23c2b872855ce0c98f9046.pdf +91067f298e1ece33c47df65236853704f6700a0b,http://pdfs.semanticscholar.org/9106/7f298e1ece33c47df65236853704f6700a0b.pdf +6581c5b17db7006f4cc3575d04bfc6546854a785,http://pdfs.semanticscholar.org/6581/c5b17db7006f4cc3575d04bfc6546854a785.pdf +25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8,http://arxiv.org/pdf/1408.6027v2.pdf +ec0104286c96707f57df26b4f0a4f49b774c486b,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf +4d90bab42806d082e3d8729067122a35bbc15e8d,http://pdfs.semanticscholar.org/4d90/bab42806d082e3d8729067122a35bbc15e8d.pdf +564d4ee76c0511bc395dfc8ef8e3b3867fc34a6d,http://bcmi.sjtu.edu.cn/~pengyong/Pub2015/CCECE2015.pdf +26ac607a101492bc86fd81a141311066cfe9e2b5,http://www.eecs.qmul.ac.uk/~hy300/papers/YangPatrasiccv2013.pdf +4ed2d7ecb34a13e12474f75d803547ad2ad811b2,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yang_Common_Action_Discovery_ICCV_2017_paper.pdf +b656abc4d1e9c8dc699906b70d6fcd609fae8182,http://pdfs.semanticscholar.org/b656/abc4d1e9c8dc699906b70d6fcd609fae8182.pdf +2eb37a3f362cffdcf5882a94a20a1212dfed25d9,http://pdfs.semanticscholar.org/2eb3/7a3f362cffdcf5882a94a20a1212dfed25d9.pdf +433bb1eaa3751519c2e5f17f47f8532322abbe6d,http://pdfs.semanticscholar.org/433b/b1eaa3751519c2e5f17f47f8532322abbe6d.pdf +a46283e90bcdc0ee35c680411942c90df130f448,http://pdfs.semanticscholar.org/a462/83e90bcdc0ee35c680411942c90df130f448.pdf +0573f3d2754df3a717368a6cbcd940e105d67f0b,http://cs.anu.edu.au/few/EmotiW_icmi_draft_ver_1_0.pdf +4b3dd18882ff2738aa867b60febd2b35ab34dffc,http://pdfs.semanticscholar.org/4b3d/d18882ff2738aa867b60febd2b35ab34dffc.pdf +d794ffece3533567d838f1bd7f442afee13148fd,http://pdfs.semanticscholar.org/d794/ffece3533567d838f1bd7f442afee13148fd.pdf +16892074764386b74b6040fe8d6946b67a246a0b,http://pdfs.semanticscholar.org/5f92/7118a5634790fe660fea91aea163b7065ae2.pdf +9e42d44c07fbd800f830b4e83d81bdb9d106ed6b,http://openaccess.thecvf.com/content_ICCV_2017/papers/Rao_Learning_Discriminative_Aggregation_ICCV_2017_paper.pdf +96578785836d7416bf2e9c154f687eed8f93b1e4,http://pdfs.semanticscholar.org/9657/8785836d7416bf2e9c154f687eed8f93b1e4.pdf +86b105c3619a433b6f9632adcf9b253ff98aee87,http://www.cecs.uci.edu/~papers/icme06/pdfs/0001013.pdf +5b86c36e3eb59c347b81125d5dd57dd2a2c377a9,http://pdfs.semanticscholar.org/5b86/c36e3eb59c347b81125d5dd57dd2a2c377a9.pdf +a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa,http://pdfs.semanticscholar.org/d965/50536f2ff505f62aec841b3656d940e7f1cf.pdf +217a21d60bb777d15cd9328970cab563d70b5d23,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf +8d6c4af9d4c01ff47fe0be48155174158a9a5e08,http://pdfs.semanticscholar.org/8d6c/4af9d4c01ff47fe0be48155174158a9a5e08.pdf +4c815f367213cc0fb8c61773cd04a5ca8be2c959,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0002470.pdf +1c80bc91c74d4984e6422e7b0856cf3cf28df1fb,http://refbase.cvc.uab.es/files/xrv2014d.pdf +486840f4f524e97f692a7f6b42cd19019ee71533,https://arxiv.org/pdf/1703.08388v2.pdf +9e5c2d85a1caed701b68ddf6f239f3ff941bb707,http://pdfs.semanticscholar.org/ada4/4aa744f9703cacfcd0028372a2b1684a45a3.pdf +19af008599fb17bbd9b12288c44f310881df951c,http://pdfs.semanticscholar.org/19af/008599fb17bbd9b12288c44f310881df951c.pdf +8f60c343f76913c509ce623467bf086935bcadac,http://pdfs.semanticscholar.org/8f60/c343f76913c509ce623467bf086935bcadac.pdf +ac1d97a465b7cc56204af5f2df0d54f819eef8a6,http://pdfs.semanticscholar.org/ac1d/97a465b7cc56204af5f2df0d54f819eef8a6.pdf +a820941eaf03077d68536732a4d5f28d94b5864a,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf +abac0fa75281c9a0690bf67586280ed145682422,http://pdfs.semanticscholar.org/abac/0fa75281c9a0690bf67586280ed145682422.pdf +4e7ebf3c4c0c4ecc48348a769dd6ae1ebac3bf1b,http://pdfs.semanticscholar.org/4e7e/bf3c4c0c4ecc48348a769dd6ae1ebac3bf1b.pdf +8bfec7afcf5015017406fc04c43c1f43eb723631,http://www.umiacs.umd.edu/users/pvishalm/Journal_pub/DCS_TAC_2013.pdf +448ed201f6fceaa6533d88b0b29da3f36235e131,http://pdfs.semanticscholar.org/aa6a/0b92c60187c7fa9923b1c8433ec99a495df7.pdf +20be15dac7d8a5ba4688bf206ad24cab57d532d6,http://pdfs.semanticscholar.org/20be/15dac7d8a5ba4688bf206ad24cab57d532d6.pdf +afc7092987f0d05f5685e9332d83c4b27612f964,http://ci2cv.net/media/papers/2011_AFGR_Chew.pdf +c17a332e59f03b77921942d487b4b102b1ee73b6,http://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf +c5f1ae9f46dc44624591db3d5e9f90a6a8391111,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu_ICPR_2004.pdf +1a96d54c326d19e32bed00642a177ea439341fa2,http://vc.cs.nthu.edu.tw/home/paper/codfiles/tychiu/200808151557/Principal_Component_Analysis_Based_on_L1-Norm_Maximization.pdf +a949b8700ca6ba96ee40f75dfee1410c5bbdb3db,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Haase_Instance-weighted_Transfer_Learning_2014_CVPR_paper.pdf +3dd906bc0947e56d2b7bf9530b11351bbdff2358,http://pdfs.semanticscholar.org/c57a/070724b48962935ff46ab1384d919e1d1089.pdf +35f03f5cbcc21a9c36c84e858eeb15c5d6722309,http://www.ee.columbia.edu/ln/dvmm/publications/16/ACMMMVP_VAH_2016.pdf +3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,http://pdfs.semanticscholar.org/3c37/4cb8e730b64dacb9fbf6eb67f5987c7de3c8.pdf +f8ec92f6d009b588ddfbb47a518dd5e73855547d,http://pdfs.semanticscholar.org/f8ec/92f6d009b588ddfbb47a518dd5e73855547d.pdf +01c8d7a3460422412fba04e7ee14c4f6cdff9ad7,http://pdfs.semanticscholar.org/01c8/d7a3460422412fba04e7ee14c4f6cdff9ad7.pdf +fd4ac1da699885f71970588f84316589b7d8317b,http://pdfs.semanticscholar.org/fd4a/c1da699885f71970588f84316589b7d8317b.pdf +4f6adc53798d9da26369bea5a0d91ed5e1314df2,http://pdfs.semanticscholar.org/4f6a/dc53798d9da26369bea5a0d91ed5e1314df2.pdf +ff5dd6f96e108d8233220cc262bc282229c1a582,http://pdfs.semanticscholar.org/ff5d/d6f96e108d8233220cc262bc282229c1a582.pdf +7792fbc59f3eafc709323cdb63852c5d3a4b23e9,http://pdfs.semanticscholar.org/7792/fbc59f3eafc709323cdb63852c5d3a4b23e9.pdf +064cd41d323441209ce1484a9bba02a22b625088,http://www.ri.cmu.edu/pub_files/2013/6/stm_final.pdf +6742c0a26315d7354ab6b1fa62a5fffaea06da14,http://pdfs.semanticscholar.org/ae08/778d8003933a02fd90a49b2e5f67ba56ad8d.pdf +980266ad6807531fea94252e8f2b771c20e173b3,http://pdfs.semanticscholar.org/9802/66ad6807531fea94252e8f2b771c20e173b3.pdf +4686bdcee01520ed6a769943f112b2471e436208,http://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0024-5?site=ipsjcva.springeropen.com +f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0,http://pdfs.semanticscholar.org/f4c0/1fc79c7ead67899f6fe7b79dd1ad249f71b0.pdf +e30dc2abac4ecc48aa51863858f6f60c7afdf82a,http://pdfs.semanticscholar.org/e30d/c2abac4ecc48aa51863858f6f60c7afdf82a.pdf +d647099e571f9af3a1762f895fd8c99760a3916e,http://cbim.rutgers.edu/dmdocuments/CVPR10_Peng_Yang.pdf +eefb8768f60c17d76fe156b55b8a00555eb40f4d,http://pdfs.semanticscholar.org/eefb/8768f60c17d76fe156b55b8a00555eb40f4d.pdf +59420fd595ae745ad62c26ae55a754b97170b01f,http://pdfs.semanticscholar.org/5942/0fd595ae745ad62c26ae55a754b97170b01f.pdf +d50c6d22449cc9170ab868b42f8c72f8d31f9b6c,http://pdfs.semanticscholar.org/d50c/6d22449cc9170ab868b42f8c72f8d31f9b6c.pdf +833fa04463d90aab4a9fe2870d480f0b40df446e,http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf +f06b015bb19bd3c39ac5b1e4320566f8d83a0c84,http://pdfs.semanticscholar.org/f06b/015bb19bd3c39ac5b1e4320566f8d83a0c84.pdf +f83dd9ff002a40228bbe3427419b272ab9d5c9e4,http://pdfs.semanticscholar.org/f83d/d9ff002a40228bbe3427419b272ab9d5c9e4.pdf +0b3f354e6796ef7416bf6dde9e0779b2fcfabed2,http://pdfs.semanticscholar.org/fd60/5d123a0f777716f798f258fbbcd73d75fa8b.pdf +85041e48b51a2c498f22850ce7228df4e2263372,http://pdfs.semanticscholar.org/8504/1e48b51a2c498f22850ce7228df4e2263372.pdf +21e828071249d25e2edaca0596e27dcd63237346,http://research.microsoft.com/pubs/122158/cvpr2010.pdf +98127346920bdce9773aba6a2ffc8590b9558a4a,http://disi.unitn.it/~duta/pubs/MTAP2017_Duta.pdf +64d5772f44efe32eb24c9968a3085bc0786bfca7,http://pdfs.semanticscholar.org/64d5/772f44efe32eb24c9968a3085bc0786bfca7.pdf +0319332ded894bf1afe43f174f5aa405b49305f0,http://pdfs.semanticscholar.org/0319/332ded894bf1afe43f174f5aa405b49305f0.pdf +2f13dd8c82f8efb25057de1517746373e05b04c4,http://www.cfar.umd.edu/~rama/Publications/Ni_ICIP.pdf +12cd96a419b1bd14cc40942b94d9c4dffe5094d2,http://pdfs.semanticscholar.org/12cd/96a419b1bd14cc40942b94d9c4dffe5094d2.pdf +8a1ed5e23231e86216c9bdd62419c3b05f1e0b4d,http://pdfs.semanticscholar.org/8a1e/d5e23231e86216c9bdd62419c3b05f1e0b4d.pdf +74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,http://pdfs.semanticscholar.org/74e8/69bc7c99093a5ff9f8cfc3f533ccf1b135d8.pdf +808b685d09912cbef4a009e74e10476304b4cccf,http://pdfs.semanticscholar.org/808b/685d09912cbef4a009e74e10476304b4cccf.pdf +10ab1b48b2a55ec9e2920a5397febd84906a7769,http://pdfs.semanticscholar.org/10ab/1b48b2a55ec9e2920a5397febd84906a7769.pdf +4805f41c4f8cfb932b011dfdd7f8907152590d1a,http://www.affectiva.com/wp-content/uploads/2014/09/From_Dials_to_Facial_Coding_Automated_Detection_of_Spontaneous_Facial_Expressions_fo.pdf +49f70f707c2e030fe16059635df85c7625b5dc7e,http://pdfs.semanticscholar.org/55b7/59b3e94088488334e3af2d17710c5e1fce4b.pdf +7be60f8c34a16f30735518d240a01972f3530e00,http://www.cs.utexas.edu/~suyog/expression_recog.pdf +eb9312458f84a366e98bd0a2265747aaed40b1a6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0400473.pdf +470dbd3238b857f349ebf0efab0d2d6e9779073a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_062_ext.pdf +6fa3857faba887ed048a9e355b3b8642c6aab1d8,http://pdfs.semanticscholar.org/6fa3/857faba887ed048a9e355b3b8642c6aab1d8.pdf +769461ff717d987482b28b32b1e2a6e46570e3ff,http://pdfs.semanticscholar.org/7694/61ff717d987482b28b32b1e2a6e46570e3ff.pdf +ac51d9ddbd462d023ec60818bac6cdae83b66992,http://pdfs.semanticscholar.org/ac51/d9ddbd462d023ec60818bac6cdae83b66992.pdf +554b9478fd285f2317214396e0ccd81309963efd,http://pdfs.semanticscholar.org/554b/9478fd285f2317214396e0ccd81309963efd.pdf +533bfb82c54f261e6a2b7ed7d31a2fd679c56d18,http://biometrics.cse.msu.edu/Publications/Face/BestRowdenetal_UnconstrainedFaceRecognition_TechReport_MSU-CSE-14-1.pdf +a125bc55bdf4bec7484111eea9ae537be314ec62,http://pdfs.semanticscholar.org/a125/bc55bdf4bec7484111eea9ae537be314ec62.pdf +870433ba89d8cab1656e57ac78f1c26f4998edfb,https://arxiv.org/pdf/1612.04904v1.pdf +6043006467fb3fd1e9783928d8040ee1f1db1f3a,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/CVPR10_FaceReco.pdf +7f6cd03e3b7b63fca7170e317b3bb072ec9889e0,http://pdfs.semanticscholar.org/7f6c/d03e3b7b63fca7170e317b3bb072ec9889e0.pdf +4b89cf7197922ee9418ae93896586c990e0d2867,http://www.cs.cmu.edu/~ftorre/paper1.pdf +b7b461f82c911f2596b310e2b18dd0da1d5d4491,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p2961-wang.pdf +2042aed660796b14925db17c0a8b9fbdd7f3ebac,http://pdfs.semanticscholar.org/4a19/fd2eb09976128e33bd8f9411972146ac6c41.pdf +3fb26f3abcf0d287243646426cd5ddeee33624d4,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Qin_Joint_Training_of_CVPR_2016_paper.pdf +8e4808e71c9b9f852dc9558d7ef41566639137f3,http://pdfs.semanticscholar.org/8e48/08e71c9b9f852dc9558d7ef41566639137f3.pdf +2b10a07c35c453144f22e8c539bf9a23695e85fc,http://pdfs.semanticscholar.org/2b10/a07c35c453144f22e8c539bf9a23695e85fc.pdf +a6e43b73f9f87588783988333997a81b4487e2d5,http://pdfs.semanticscholar.org/a6e4/3b73f9f87588783988333997a81b4487e2d5.pdf +52258ec5ec73ce30ca8bc215539c017d279517cf,http://pdfs.semanticscholar.org/5225/8ec5ec73ce30ca8bc215539c017d279517cf.pdf +5dfebcb7bfefb1af1cfef61a151abfe98a7e7cfa,http://vision.ucsd.edu/sites/default/files/cwah_cvpr2013_unfamiliar.pdf +2af620e17d0ed67d9ccbca624250989ce372e255,http://www.alessandrobergamo.com/data/bt_cvpr12.pdf +0b9db62b26b811e8c24eb9edc37901a4b79a897f,https://eng.ucmerced.edu/people/cyang35/CVPR13/cvpr13_hallucination.pdf +36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,http://pdfs.semanticscholar.org/36fe/39ed69a5c7ff9650fd5f4fe950b5880760b0.pdf +72ecaff8b57023f9fbf8b5b2588f3c7019010ca7,http://pdfs.semanticscholar.org/72ec/aff8b57023f9fbf8b5b2588f3c7019010ca7.pdf +6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6,http://pdfs.semanticscholar.org/6b7f/7817b2e5a7e7d409af2254a903fc0d6e02b6.pdf +2baec98c19804bf19b480a9a0aa814078e28bb3d,http://eprints.eemcs.utwente.nl/26841/01/Pantic_Multi-conditional_Latent_Variable_Model.pdf +90d735cffd84e8f2ae4d0c9493590f3a7d99daf1,http://pdfs.semanticscholar.org/90d7/35cffd84e8f2ae4d0c9493590f3a7d99daf1.pdf +521b625eebea73b5deb171a350e3709a4910eebf,https://arxiv.org/pdf/1604.06397v1.pdf +4353d0dcaf450743e9eddd2aeedee4d01a1be78b,http://pdfs.semanticscholar.org/4353/d0dcaf450743e9eddd2aeedee4d01a1be78b.pdf +f77c9bf5beec7c975584e8087aae8d679664a1eb,http://pdfs.semanticscholar.org/f77c/9bf5beec7c975584e8087aae8d679664a1eb.pdf +1c5d7d02a26aa052ecc47d301de4929083e5d320,https://www.ll.mit.edu/news/avec2014_mitll.pdf +0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dc,http://pdfs.semanticscholar.org/0c6e/29d82a5a080dc1db9eeabbd7d1529e78a3dc.pdf +c3fb2399eb4bcec22723715556e31c44d086e054,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p499-srinivasan.pdf +0f32df6ae76402b98b0823339bd115d33d3ec0a0,http://perceptual.mpi-inf.mpg.de/files/2015/07/Mueller15_ACII.pdf +bf4825474673246ae855979034c8ffdb12c80a98,http://pdfs.semanticscholar.org/bf48/25474673246ae855979034c8ffdb12c80a98.pdf +7a84368ebb1a20cc0882237a4947efc81c56c0c0,https://ibug.doc.ic.ac.uk/media/uploads/documents/iccv_final.pdf +446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03,http://www.isir.upmc.fr/files/2014ACTI3172.pdf +1d3dd9aba79a53390317ec1e0b7cd742cba43132,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf +90a754f597958a2717862fbaa313f67b25083bf9,http://pdfs.semanticscholar.org/90a7/54f597958a2717862fbaa313f67b25083bf9.pdf +68f69e6c6c66cfde3d02237a6918c9d1ee678e1b,http://www.cs.fiu.edu/~chens/PDF/ISM09_Pruning.pdf +1b4bc7447f500af2601c5233879afc057a5876d8,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Wang2015g.pdf +cffebdf88e406c27b892857d1520cb2d7ccda573,http://pdfs.semanticscholar.org/cffe/bdf88e406c27b892857d1520cb2d7ccda573.pdf +dbab6ac1a9516c360cdbfd5f3239a351a64adde7,http://pdfs.semanticscholar.org/dbab/6ac1a9516c360cdbfd5f3239a351a64adde7.pdf +9e0285debd4b0ba7769b389181bd3e0fd7a02af6,http://pdfs.semanticscholar.org/9e02/85debd4b0ba7769b389181bd3e0fd7a02af6.pdf +e5342233141a1d3858ed99ccd8ca0fead519f58b,http://pdfs.semanticscholar.org/e534/2233141a1d3858ed99ccd8ca0fead519f58b.pdf +705a24f4e1766a44bbba7cf335f74229ed443c7b,http://web.ing.puc.cl/~asoto/papers/Maturana-09.pdf +ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6,http://eprints.whiterose.ac.uk/104654/9/07289412.pdf +41d9a240b711ff76c5448d4bf4df840cc5dad5fc,https://arxiv.org/pdf/1206.2627v2.pdf +862f2d84b4230d64ddb3e48967ad417089f2c291,http://www.umiacs.umd.edu/users/pvishalm/Conference_pub/ICIP14_landmarks.pdf +0c93cb1af3bba1bd90a03e921ff2d55acf35c01f,http://www.researchgate.net/profile/Mohammed_Bennamoun/publication/220928947_Robust_Regression_for_Face_Recognition/links/542157f20cf203f155c65a23.pdf +9d757c0fede931b1c6ac344f67767533043cba14,http://pdfs.semanticscholar.org/9d75/7c0fede931b1c6ac344f67767533043cba14.pdf +12055b8f82d5411f9ad196b60698d76fbd07ac1e,https://zhzhanp.github.io/papers/TCSVT2014.pdf +5c02bd53c0a6eb361972e8a4df60cdb30c6e3930,http://arxiv.org/pdf/1303.4893v2.pdf +a3a97bb5131e7e67316b649bbc2432aaa1a6556e,http://pdfs.semanticscholar.org/a3a9/7bb5131e7e67316b649bbc2432aaa1a6556e.pdf +84fe5b4ac805af63206012d29523a1e033bc827e,http://pdfs.semanticscholar.org/84fe/5b4ac805af63206012d29523a1e033bc827e.pdf +91835984eaeb538606972de47c372c5fcfe8b6aa,http://www.cse.ust.hk/~qnature/pdf/IEEESMC2015.pdf +fc45e44dd50915957e498186618f7a499953c6be,http://www.pami.sjtu.edu.cn/people/wangxh/Gabor%20Filter/Quaternion%20Correlation%20Filters%20for%20Face%20Recognition%20in%20Wavelet%20Domain.pdf +4698a599425c3a6bae1c698456029519f8f2befe,http://pdfs.semanticscholar.org/4698/a599425c3a6bae1c698456029519f8f2befe.pdf +1d696a1beb42515ab16f3a9f6f72584a41492a03,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr15.pdf +167ea1631476e8f9332cef98cf470cb3d4847bc6,http://www.kevinjing.com/visual_search_at_pinterest.pdf +143f7a51058b743a0d43026a523d9bbbc1ae43a8,http://www.researchgate.net/profile/Shinichi_Satoh/publication/221368838_An_efficient_method_for_face_retrieval_from_large_video_datasets/links/0912f510a0404c605f000000.pdf +9931c6b050e723f5b2a189dd38c81322ac0511de,http://pdfs.semanticscholar.org/9931/c6b050e723f5b2a189dd38c81322ac0511de.pdf +2271d554787fdad561fafc6e9f742eea94d35518,http://pdfs.semanticscholar.org/2271/d554787fdad561fafc6e9f742eea94d35518.pdf +56f86bef26209c85f2ef66ec23b6803d12ca6cd6,https://arxiv.org/pdf/1710.00307v1.pdf +00f7f7b72a92939c36e2ef9be97397d8796ee07c,http://pdfs.semanticscholar.org/00f7/f7b72a92939c36e2ef9be97397d8796ee07c.pdf +877100f430b72c5d60de199603ab5c65f611ce17,http://pdfs.semanticscholar.org/8771/00f430b72c5d60de199603ab5c65f611ce17.pdf +aa0c30bd923774add6e2f27ac74acd197b9110f2,http://research.gold.ac.uk/20200/1/dplda.pdf +79581c364cefe53bff6bdd224acd4f4bbc43d6d4,http://pdfs.semanticscholar.org/7958/1c364cefe53bff6bdd224acd4f4bbc43d6d4.pdf +4b605e6a9362485bfe69950432fa1f896e7d19bf,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf +ad08c97a511091e0f59fc6a383615c0cc704f44a,http://pdfs.semanticscholar.org/ad08/c97a511091e0f59fc6a383615c0cc704f44a.pdf +060820f110a72cbf02c14a6d1085bd6e1d994f6a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_113_ext.pdf +59bece468ed98397d54865715f40af30221aa08c,https://bib.irb.hr/datoteka/833608.BiForD2016_11.pdf +0f9bf5d8f9087fcba419379600b86ae9e9940013,http://pdfs.semanticscholar.org/0f9b/f5d8f9087fcba419379600b86ae9e9940013.pdf +bc871497626afb469d25c4975aa657159269aefe,http://ir.ia.ac.cn/bitstream/173211/10560/1/Adaptive%20Learning%20Algorithm%20for%20Pattern%20Classification.pdf +8b74252625c91375f55cbdd2e6415e752a281d10,http://epubs.surrey.ac.uk/813060/1/camgoz2016icprw.pdf +d24d3370b2e7d254e999140024d8a7bddf701502,https://www.researchgate.net/profile/Thang_Hoang2/publication/252047382_SVM_classifier_based_face_detection_system_using_BDIP_and_BVLC_moments/links/53f0b8be0cf2711e0c431012.pdf +0b4c4ea4a133b9eab46b217e22bda4d9d13559e6,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_morph_random_forests.pdf +853bd61bc48a431b9b1c7cab10c603830c488e39,http://pdfs.semanticscholar.org/b8a2/0ed7e74325da76d7183d1ab77b082a92b447.pdf +07c90e85ac0f74b977babe245dea0f0abcf177e3,http://pdfs.semanticscholar.org/07c9/0e85ac0f74b977babe245dea0f0abcf177e3.pdf +5da740682f080a70a30dc46b0fc66616884463ec,http://pdfs.semanticscholar.org/5da7/40682f080a70a30dc46b0fc66616884463ec.pdf +42ecfc3221c2e1377e6ff849afb705ecd056b6ff,http://pdfs.semanticscholar.org/42ec/fc3221c2e1377e6ff849afb705ecd056b6ff.pdf +55a158f4e7c38fe281d06ae45eb456e05516af50,http://pdfs.semanticscholar.org/55a1/58f4e7c38fe281d06ae45eb456e05516af50.pdf +6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94,http://pdfs.semanticscholar.org/6e0a/05d87b3cc7e16b4b2870ca24cf5e806c0a94.pdf +4c8ef4f98c6c8d340b011cfa0bb65a9377107970,http://pdfs.semanticscholar.org/4c8e/f4f98c6c8d340b011cfa0bb65a9377107970.pdf +7c3e09e0bd992d3f4670ffacb4ec3a911141c51f,http://pdfs.semanticscholar.org/7c3e/09e0bd992d3f4670ffacb4ec3a911141c51f.pdf +ce6d60b69eb95477596535227958109e07c61e1e,http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf +43010792bf5cdb536a95fba16b8841c534ded316,https://www.comp.nus.edu.sg/~tsim/documents/general-face-motion.pdf +4d0b3921345ae373a4e04f068867181647d57d7d,http://people.cs.pitt.edu/~kovashka/murrugarra_llerena_kovashka_wacv2017_slides.pdf +834f5ab0cb374b13a6e19198d550e7a32901a4b2,http://pdfs.semanticscholar.org/834f/5ab0cb374b13a6e19198d550e7a32901a4b2.pdf +1a3eee980a2252bb092666cf15dd1301fa84860e,https://www.uv.es/vista/vistavalencia/papers/ICIP09_GPCA.pdf +1ac2882559a4ff552a1a9956ebeadb035cb6df5b,http://www.pitt.edu/~jeffcohn/biblio/TrainData.pdf +62c435bc714f13a373926e3b1914786592ed1fef,http://assistech.iitd.ernet.in/mavi-embedded-device.pdf +2f2406551c693d616a840719ae1e6ea448e2f5d3,http://biometrics.cse.msu.edu/Presentations/CharlesOtto_ICB13_AgeEstimationFaceImages_HumanVsMachinePerformance.pdf +2ac21d663c25d11cda48381fb204a37a47d2a574,http://pdfs.semanticscholar.org/2ac2/1d663c25d11cda48381fb204a37a47d2a574.pdf +d5e1173dcb2a51b483f86694889b015d55094634,http://pdfs.semanticscholar.org/d5e1/173dcb2a51b483f86694889b015d55094634.pdf +1a41e5d93f1ef5b23b95b7163f5f9aedbe661394,http://pdfs.semanticscholar.org/1a41/e5d93f1ef5b23b95b7163f5f9aedbe661394.pdf +2d080662a1653f523321974a57518e7cb67ecb41,http://pdfs.semanticscholar.org/2d08/0662a1653f523321974a57518e7cb67ecb41.pdf +17d01f34dfe2136b404e8d7f59cebfb467b72b26,http://pdfs.semanticscholar.org/4cfb/51d3b8478d7e63ba2661385337abf94d2c48.pdf +83ac942d71ba908c8d76fc68de6173151f012b38,http://pdfs.semanticscholar.org/83ac/942d71ba908c8d76fc68de6173151f012b38.pdf +0431e8a01bae556c0d8b2b431e334f7395dd803a,https://people.cs.umass.edu/~smaji/papers/localized-wacv15.pdf +286adff6eff2f53e84fe5b4d4eb25837b46cae23,http://pdfs.semanticscholar.org/b17e/61972e674f8f734bd428cb882a9bb797abe2.pdf +2c883977e4292806739041cf8409b2f6df171aee,http://pdfs.semanticscholar.org/c5fb/ef530eb28d4f787990e0b962a6a68e420e49.pdf +7c42371bae54050dbbf7ded1e7a9b4109a23a482,http://pdfs.semanticscholar.org/7c42/371bae54050dbbf7ded1e7a9b4109a23a482.pdf +00a3cfe3ce35a7ffb8214f6db15366f4e79761e3,http://engineering.cae.cn/fitee/fileup/2095-9184/SUPPL/20150414135701.pdf +96e731e82b817c95d4ce48b9e6b08d2394937cf8,http://arxiv.org/pdf/1508.01722v2.pdf +d0d7671c816ed7f37b16be86fa792a1b29ddd79b,http://pdfs.semanticscholar.org/d0d7/671c816ed7f37b16be86fa792a1b29ddd79b.pdf +3e04feb0b6392f94554f6d18e24fadba1a28b65f,http://pdfs.semanticscholar.org/b72c/5119c0aafa64f32e8e773638b5738f31b33c.pdf +57ebeff9273dea933e2a75c306849baf43081a8c,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sun_Deep_Convolutional_Network_2013_CVPR_paper.pdf +0a4f3a423a37588fde9a2db71f114b293fc09c50,http://pdfs.semanticscholar.org/0a4f/3a423a37588fde9a2db71f114b293fc09c50.pdf +57fd229097e4822292d19329a17ceb013b2cb648,http://pdfs.semanticscholar.org/57fd/229097e4822292d19329a17ceb013b2cb648.pdf +176f26a6a8e04567ea71677b99e9818f8a8819d0,http://pdfs.semanticscholar.org/176f/26a6a8e04567ea71677b99e9818f8a8819d0.pdf +473366f025c4a6e0783e6174ca914f9cb328fe70,http://pdfs.semanticscholar.org/f021/cbfa5f3483889c3980b62c6cec329c8c5aec.pdf +7ed2c84fdfc7d658968221d78e745dfd1def6332,http://pdfs.semanticscholar.org/7ed2/c84fdfc7d658968221d78e745dfd1def6332.pdf +f355e54ca94a2d8bbc598e06e414a876eb62ef99,http://pdfs.semanticscholar.org/f355/e54ca94a2d8bbc598e06e414a876eb62ef99.pdf +936227f7483938097cc1cdd3032016df54dbd5b6,http://pdfs.semanticscholar.org/9362/27f7483938097cc1cdd3032016df54dbd5b6.pdf +13940d0cc90dbf854a58f92d533ce7053aac024a,http://pdfs.semanticscholar.org/949c/a8a6997aba88a162a36d48047f35ba8d0aab.pdf +a56c1331750bf3ac33ee07004e083310a1e63ddc,http://pdfs.semanticscholar.org/de99/1e4c18c21b3cdf6389b439c88709d62f4252.pdf +9854145f2f64d52aac23c0301f4bb6657e32e562,http://www.ucsp.edu.pe/sibgrapi2013/eproceedings/technical/114953_2.pdf +65b1760d9b1541241c6c0222cc4ee9df078b593a,http://pdfs.semanticscholar.org/65b1/760d9b1541241c6c0222cc4ee9df078b593a.pdf +47f8b3b3f249830b6e17888df4810f3d189daac1,http://pdfs.semanticscholar.org/fd44/c0c238fe90d6ca61864010abd94768fcde0c.pdf +78d645d5b426247e9c8f359694080186681f57db,http://pdfs.semanticscholar.org/78d6/45d5b426247e9c8f359694080186681f57db.pdf +a5ade88747fa5769c9c92ffde9b7196ff085a9eb,http://face.cs.kit.edu/download/publications/gehrig-emotiw2013.pdf +e726174d516605f80ff359e71f68b6e8e6ec6d5d,http://pdfs.semanticscholar.org/e726/174d516605f80ff359e71f68b6e8e6ec6d5d.pdf +04dcdb7cb0d3c462bdefdd05508edfcff5a6d315,http://pdfs.semanticscholar.org/04dc/db7cb0d3c462bdefdd05508edfcff5a6d315.pdf +1246534c3104da030fdb9e041819257e0d57dcbf,http://home.isr.uc.pt/~joaoluis/papers/cvpr2015_2.pdf +3312eb79e025b885afe986be8189446ba356a507,http://pdfs.semanticscholar.org/6007/292075f8a8538fa6f4c3d7a8676a595ab1f4.pdf +a8e75978a5335fd3deb04572bb6ca43dbfad4738,http://pdfs.semanticscholar.org/a8e7/5978a5335fd3deb04572bb6ca43dbfad4738.pdf +5c7adde982efb24c3786fa2d1f65f40a64e2afbf,http://pdfs.semanticscholar.org/bd40/dee4f2bbb0e512575cc96a0e3a7918a0ce42.pdf +f66f3d1e6e33cb9e9b3315d3374cd5f121144213,http://pdfs.semanticscholar.org/f66f/3d1e6e33cb9e9b3315d3374cd5f121144213.pdf +05a0d04693b2a51a8131d195c68ad9f5818b2ce1,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf +58bb77dff5f6ee0fb5ab7f5079a5e788276184cc,https://ram-lab.com/papers/2016/rcar_lyp_192.pdf +87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5,http://pdfs.semanticscholar.org/87dd/3fd36bccbe1d5f1484ac05f1848b51c6eab5.pdf +630d1728435a529d0b0bfecb0e7e335f8ea2596d,http://pdfs.semanticscholar.org/aa67/719e839d035e4d67e4434794b6cccaf091d6.pdf +2fa057a20a2b4a4f344988fee0a49fce85b0dc33,http://next.comp.nus.edu.sg/sites/default/files/publication-attachments/eHeritage.pdf +6cddc7e24c0581c50adef92d01bb3c73d8b80b41,http://users.soe.ucsc.edu/~milanfar/publications/journal/TIFS_Final.pdf +3c0bbfe664fb083644301c67c04a7f1331d9515f,http://pdfs.semanticscholar.org/3c0b/bfe664fb083644301c67c04a7f1331d9515f.pdf +20cfb4136c1a984a330a2a9664fcdadc2228b0bc,http://www.eecs.harvard.edu/~htk/publication/2015-amfg-chen-comiter-kung-mcdanel.pdf +17579791ead67262fcfb62ed8765e115fb5eca6f,http://pdfs.semanticscholar.org/1757/9791ead67262fcfb62ed8765e115fb5eca6f.pdf +edd7504be47ebc28b0d608502ca78c0aea6a65a2,http://pdfs.semanticscholar.org/edd7/504be47ebc28b0d608502ca78c0aea6a65a2.pdf +15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,http://feiwang03.googlepages.com/CVPRposter.pdf +bb22104d2128e323051fb58a6fe1b3d24a9e9a46,http://pdfs.semanticscholar.org/bb22/104d2128e323051fb58a6fe1b3d24a9e9a46.pdf +08d2f655361335bdd6c1c901642981e650dff5ec,http://dro.deakin.edu.au/eserv/DU:30058435/arandjelovic-automaticcastlisting-2006.pdf +2cf9088e9faa81872b355a4ea0a9fae46d3c8a08,http://www.cvg.unibe.ch/tpapadhimitri/tech.pdf +13841d54c55bd74964d877b4b517fa94650d9b65,http://www98.griffith.edu.au/dspace/bitstream/handle/10072/30001/60226_1.pdf?sequence=1 +276dbb667a66c23545534caa80be483222db7769,http://pdfs.semanticscholar.org/276d/bb667a66c23545534caa80be483222db7769.pdf +d0ac9913a3b1784f94446db2f1fb4cf3afda151f,http://pdfs.semanticscholar.org/d0ac/9913a3b1784f94446db2f1fb4cf3afda151f.pdf +cc9057d2762e077c53e381f90884595677eceafa,http://pdfs.semanticscholar.org/cc90/57d2762e077c53e381f90884595677eceafa.pdf +009a18d04a5e3ec23f8ffcfc940402fd8ec9488f,http://pdfs.semanticscholar.org/009a/18d04a5e3ec23f8ffcfc940402fd8ec9488f.pdf +98142103c311b67eeca12127aad9229d56b4a9ff,http://pdfs.semanticscholar.org/9814/2103c311b67eeca12127aad9229d56b4a9ff.pdf +205af28b4fcd6b569d0241bb6b255edb325965a4,http://pdfs.semanticscholar.org/205a/f28b4fcd6b569d0241bb6b255edb325965a4.pdf +0c3f7272a68c8e0aa6b92d132d1bf8541c062141,http://pdfs.semanticscholar.org/0c3f/7272a68c8e0aa6b92d132d1bf8541c062141.pdf +a4c430b7d849a8f23713dc283794d8c1782198b2,http://pdfs.semanticscholar.org/a4c4/30b7d849a8f23713dc283794d8c1782198b2.pdf +fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5,http://pdfs.semanticscholar.org/fe7e/3cc1f3412bbbf37d277eeb3b17b8b21d71d5.pdf +749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7,http://pdfs.semanticscholar.org/7493/82d19bfe9fb8d0c5e94d0c9b0a63ab531cb7.pdf +8557914593e8540fcdd9b11aef076f68d41d3b4b,http://elwilber.com/papers/ecodes-2014.pdf +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,http://disi.unitn.it/~duta/pubs/ICPR2016_Duta.pdf +93cbb3b3e40321c4990c36f89a63534b506b6daf,http://www.cs.wisc.edu/~gdguo/myPapersOnWeb/IEEESMC05Guo.pdf +451c42da244edcb1088e3c09d0f14c064ed9077e,https://ibug.doc.ic.ac.uk/media/uploads/documents/sdnmf_conf.pdf +57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,http://www.cs.toronto.edu/~rfm/pubs/morphBM.pdf +679b7fa9e74b2aa7892eaea580def6ed4332a228,http://pdfs.semanticscholar.org/679b/7fa9e74b2aa7892eaea580def6ed4332a228.pdf +050a3346e44ca720a54afbf57d56b1ee45ffbe49,https://www.d2.mpi-inf.mpg.de/sites/default/files/cvpr16.pdf +a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6,http://pdfs.semanticscholar.org/a928/6519e12675302b1d7d2fe0ca3cc4dc7d17f6.pdf +80a6bb337b8fdc17bffb8038f3b1467d01204375,http://pdfs.semanticscholar.org/80a6/bb337b8fdc17bffb8038f3b1467d01204375.pdf +7ad1638f7d76c7e885bc84cd694c60f109f02159,https://www.researchgate.net/profile/Wen-Jing_Yan/publication/236120483_Face_Recognition_and_Micro-expression_Recognition_Based_on_Discriminant_Tensor_Subspace_Analysis_Plus_Extreme_Learning_Machine/links/0deec51adcddd72a4f000000.pdf +77a9b1856ebbc9a6170ee4c572a515d6db062cef,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1291.pdf +38cc2f1c13420170c7adac30f9dfac69b297fb76,http://pdfs.semanticscholar.org/38cc/2f1c13420170c7adac30f9dfac69b297fb76.pdf +8d8461ed57b81e05cc46be8e83260cd68a2ebb4d,http://pdfs.semanticscholar.org/8d84/61ed57b81e05cc46be8e83260cd68a2ebb4d.pdf +044fdb693a8d96a61a9b2622dd1737ce8e5ff4fa,http://www.ee.oulu.fi/mvg/files/pdf/pdf_740.pdf +86d1fbaecd02b44309383830e6d985dc09e786aa,http://feng-xu.com/papers/ExpressionSynthesis_CVPR.pdf +04bb3fa0824d255b01e9db4946ead9f856cc0b59,http://pdfs.semanticscholar.org/c1de/db5ac05c955e53d7ef1f6367fb7badea49b1.pdf +59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Zafeiriou_The_Menpo_Facial_CVPR_2017_paper.pdf +1b589016fbabe607a1fb7ce0c265442be9caf3a9,http://pdfs.semanticscholar.org/5efe/b55fe3f03cd16aa0c268d74a5ad2e03170cf.pdf +8210fd10ef1de44265632589f8fc28bc439a57e6,http://www.ytzhang.net/files/publications/2015-tifs-sup-ae.pdf +16c884be18016cc07aec0ef7e914622a1a9fb59d,http://pdfs.semanticscholar.org/16c8/84be18016cc07aec0ef7e914622a1a9fb59d.pdf +55e18e0dde592258882134d2dceeb86122b366ab,http://pdfs.semanticscholar.org/f863/ba982068d676084032146e8053d4791114e9.pdf +795ea140df2c3d29753f40ccc4952ef24f46576c,http://pdfs.semanticscholar.org/795e/a140df2c3d29753f40ccc4952ef24f46576c.pdf +61f1b14f04d2fa1d8a556adbdf93050b4637f44b,http://www.caam.rice.edu/~wy1/paperfiles/T.Chen%20W.Yin%20X.Zhou%20D.Comaniciu%20T.Huang%20-%20Total%20variation%20models%20for%20variable%20lighting%20face%20recognition.pdf +08d55271589f989d90a7edce3345f78f2468a7e0,https://arxiv.org/pdf/1704.03373v1.pdf +c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4,http://pdfs.semanticscholar.org/c2c5/206f6a539b02f5d5a19bdb3a90584f7e6ba4.pdf +19878141fbb3117d411599b1a74a44fc3daf296d,http://pdfs.semanticscholar.org/1987/8141fbb3117d411599b1a74a44fc3daf296d.pdf +eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5a,http://pdfs.semanticscholar.org/eb7b/387a3a006609b89ca5ed0e6b3a1d5ecb5e5a.pdf +a6583c8daa7927eedb3e892a60fc88bdfe89a486,http://pdfs.semanticscholar.org/a658/3c8daa7927eedb3e892a60fc88bdfe89a486.pdf +055de0519da7fdf27add848e691087e0af166637,http://pdfs.semanticscholar.org/d3f9/cf3fb66326e456587acb18cf3196d1e314c7.pdf +fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192,http://pdfs.semanticscholar.org/fc5b/db98ff97581d7c1e5eb2d24d3f10714aa192.pdf +0115f260069e2e501850a14845feb400142e2443,http://pdfs.semanticscholar.org/0115/f260069e2e501850a14845feb400142e2443.pdf +a0848d7b1bb43f4b4f1b4016e58c830f40944817,http://lhncbc.nlm.nih.gov/system/files/pub8893.pdf +40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a,http://pdfs.semanticscholar.org/cea3/8a329e98900923e9c962b0d58bf8e15405d6.pdf +3cd5da596060819e2b156e8b3a28331ef633036b,http://pdfs.semanticscholar.org/3cd5/da596060819e2b156e8b3a28331ef633036b.pdf +1e917fe7462445996837934a7e46eeec14ebc65f,http://pdfs.semanticscholar.org/1e91/7fe7462445996837934a7e46eeec14ebc65f.pdf +365f67fe670bf55dc9ccdcd6888115264b2a2c56,http://pdfs.semanticscholar.org/f431/d3d7a0323bf1150420c826dade2093a7dfa1.pdf +0e49a23fafa4b2e2ac097292acf00298458932b4,http://pdfs.semanticscholar.org/0e49/a23fafa4b2e2ac097292acf00298458932b4.pdf +9c7444c6949427994b430787a153d5cceff46d5c,http://pdfs.semanticscholar.org/9c74/44c6949427994b430787a153d5cceff46d5c.pdf +80bd795930837330e3ced199f5b9b75398336b87,http://pdfs.semanticscholar.org/80bd/795930837330e3ced199f5b9b75398336b87.pdf +d8722ffbca906a685abe57f3b7b9c1b542adfa0c,http://pdfs.semanticscholar.org/d872/2ffbca906a685abe57f3b7b9c1b542adfa0c.pdf +5db075a308350c083c3fa6722af4c9765c4b8fef,http://pdfs.semanticscholar.org/5db0/75a308350c083c3fa6722af4c9765c4b8fef.pdf +0ac442bb570b086d04c4d51a8410fcbfd0b1779d,http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/cvpr16_warpnet.pdf +9f8ebf149aed8a0eda5c3375c9947c6b26eb7873,http://www.cais.ntu.edu.sg/~chhoi/paper_pdf/fp21-wang.pdf +61084a25ebe736e8f6d7a6e53b2c20d9723c4608,http://pdfs.semanticscholar.org/6108/4a25ebe736e8f6d7a6e53b2c20d9723c4608.pdf +d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0003031.pdf +ff60d4601adabe04214c67e12253ea3359f4e082,http://pdfs.semanticscholar.org/ff60/d4601adabe04214c67e12253ea3359f4e082.pdf +1e8eee51fd3bf7a9570d6ee6aa9a09454254689d,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/WangOttoJain_FaceSearchAtScale_TPAMI.pdf +c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0,http://pdfs.semanticscholar.org/c3bc/c4ee9e81ce9c5c0845f34e9992872a8defc0.pdf +3af130e2fd41143d5fc49503830bbd7bafd01f8b,http://pdfs.semanticscholar.org/db76/002794c12e5febc30510de58b54bb9344ea9.pdf +4d423acc78273b75134e2afd1777ba6d3a398973,http://pdfs.semanticscholar.org/4d42/3acc78273b75134e2afd1777ba6d3a398973.pdf +afef2b1d35fb807f422cfec0a370f7d08d4651d1,http://www.researchgate.net/profile/Dong_Yi3/publication/228853254_A_robust_eye_localization_method_for_low_quality_face_images/links/0912f509c4d7ec1630000000.pdf +33ad23377eaead8955ed1c2b087a5e536fecf44e,http://vis-www.cs.umass.edu/papers/gloc_cvpr13.pdf +282a3ee79a08486f0619caf0ada210f5c3572367,http://pdfs.semanticscholar.org/282a/3ee79a08486f0619caf0ada210f5c3572367.pdf +dff838ba0567ef0a6c8fbfff9837ea484314efc6,http://pdfs.semanticscholar.org/dff8/38ba0567ef0a6c8fbfff9837ea484314efc6.pdf +a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf +e52be9a083e621d9ed29c8e9914451a6a327ff59,http://pdfs.semanticscholar.org/e52b/e9a083e621d9ed29c8e9914451a6a327ff59.pdf +5b6d05ce368e69485cb08dd97903075e7f517aed,http://pdfs.semanticscholar.org/5b6d/05ce368e69485cb08dd97903075e7f517aed.pdf +17ded725602b4329b1c494bfa41527482bf83a6f,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf +0ff23392e1cb62a600d10bb462d7a1f171f579d0,http://www.umiacs.umd.edu/~jhchoi/paper/icpr2014_slide.pdf +0e8760fc198a7e7c9f4193478c0e0700950a86cd,http://pdfs.semanticscholar.org/0e87/60fc198a7e7c9f4193478c0e0700950a86cd.pdf +19fb5e5207b4a964e5ab50d421e2549ce472baa8,http://mmi.tudelft.nl/sites/default/files/e-FEDCompSys14final.pdf +9963c73b03e4649959f021ef6f4fb1eac0b617d2,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2017/Person%20Re-identification%20Using%20Multiple%20Egocentric%20Views.pdf +574751dbb53777101502419127ba8209562c4758,http://pdfs.semanticscholar.org/5747/51dbb53777101502419127ba8209562c4758.pdf +3f4bfa4e3655ef392eb5ad609d31c05f29826b45,http://pdfs.semanticscholar.org/3f4b/fa4e3655ef392eb5ad609d31c05f29826b45.pdf +c32fb755856c21a238857b77d7548f18e05f482d,http://pdfs.semanticscholar.org/c32f/b755856c21a238857b77d7548f18e05f482d.pdf +2be0ab87dc8f4005c37c523f712dd033c0685827,http://www3.ntu.edu.sg/home/EXDJiang/ICIP2013_4.pdf +bd0201b32e7eca7818468f2b5cb1fb4374de75b9,http://pdfs.semanticscholar.org/bd02/01b32e7eca7818468f2b5cb1fb4374de75b9.pdf +45efd6c2dd4ca19eed38ceeb7c2c5568231451e1,http://pdfs.semanticscholar.org/45ef/d6c2dd4ca19eed38ceeb7c2c5568231451e1.pdf +01d23cbac762b0e46251f5dbde08f49f2d13b9f8,http://pdfs.semanticscholar.org/01d2/3cbac762b0e46251f5dbde08f49f2d13b9f8.pdf +1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,http://arxiv.org/pdf/1607.01450v1.pdf +cfd8c66e71e98410f564babeb1c5fd6f77182c55,http://pdfs.semanticscholar.org/cfd8/c66e71e98410f564babeb1c5fd6f77182c55.pdf +1bd50926079e68a6e32dc4412e9d5abe331daefb,https://pdfs.semanticscholar.org/544d/6cd24db5adad8453033e0cc1aa7d3d6224ab.pdf +1b27ca161d2e1d4dd7d22b1247acee5c53db5104,http://pdfs.semanticscholar.org/1b27/ca161d2e1d4dd7d22b1247acee5c53db5104.pdf +458677de7910a5455283a2be99f776a834449f61,http://pdfs.semanticscholar.org/4586/77de7910a5455283a2be99f776a834449f61.pdf +8a09668efc95eafd6c3056ff1f0fbc43bb5774db,http://sist.sysu.edu.cn/~zhwshi/Research/PreprintVersion/Robust%20Principal%20Component%20Analysis%20Based%20on%20Maximum%20Correntropy%20Criterion.pdf +01733018a79aa447a27f269a1b9a58cd5f39603e,http://vc.sce.ntu.edu.sg/index_files/Semi-supervised%20Bilinear%20Subspace%20Learning.pdf +399a2c23bd2592ebe20aa35a8ea37d07c14199da,http://pdfs.semanticscholar.org/399a/2c23bd2592ebe20aa35a8ea37d07c14199da.pdf +471befc1b5167fcfbf5280aa7f908eff0489c72b,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Goudelis07a.pdf +f558af209dd4c48e4b2f551b01065a6435c3ef33,http://pdfs.semanticscholar.org/f558/af209dd4c48e4b2f551b01065a6435c3ef33.pdf +07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf +060034b59275c13746413ca9c67d6304cba50da6,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W14/papers/Murthy_Ordered_Trajectories_for_2013_ICCV_paper.pdf +8bbbdff11e88327816cad3c565f4ab1bb3ee20db,https://eprints.soton.ac.uk/410731/1/FG_soton_paper.pdf +025720574ef67672c44ba9e7065a83a5d6075c36,http://pdfs.semanticscholar.org/915f/dd2fdc7880074bd1c1d596f7e7d19ab34e8f.pdf +816bd8a7f91824097f098e4f3e0f4b69f481689d,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00334.pdf +b4362cd87ad219790800127ddd366cc465606a78,http://pdfs.semanticscholar.org/b436/2cd87ad219790800127ddd366cc465606a78.pdf +aeeea6eec2f063c006c13be865cec0c350244e5b,http://pdfs.semanticscholar.org/aeee/a6eec2f063c006c13be865cec0c350244e5b.pdf +d708ce7103a992634b1b4e87612815f03ba3ab24,http://pdfs.semanticscholar.org/d708/ce7103a992634b1b4e87612815f03ba3ab24.pdf +4217473596b978f13a211cdf47b7d3f6588c785f,http://biometrics.cse.msu.edu/Publications/Face/OttoKlareJain_EfficientApproachClusteringFaceImages_ICB15.pdf +780557daaa39a445b24c41f637d5fc9b216a0621,http://www.ee.columbia.edu/ln/dvmm/publications/15/EventNetDemo.pdf +72a87f509817b3369f2accd7024b2e4b30a1f588,http://hal.inria.fr/docs/00/75/05/89/PDF/paa2010last.pdf +41c97af4801ac302f09902aeec2af17b481563ab,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2016/Collaborative%20Multi-View%20Metric%20Learning%20for%20Visual%20Classification.pdf +76ce3d35d9370f0e2e27cfd29ea0941f1462895f,http://pdfs.semanticscholar.org/76ce/3d35d9370f0e2e27cfd29ea0941f1462895f.pdf +0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1,http://faculty.iiit.ac.in/~anoop/papers/Vijay2014Face.pdf +94498fae459167841e8b2f4b911493fc3c7da22f,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/cvpr2016_ROF.pdf +14fa27234fa2112014eda23da16af606db7f3637,http://pdfs.semanticscholar.org/14fa/27234fa2112014eda23da16af606db7f3637.pdf +df674dc0fc813c2a6d539e892bfc74f9a761fbc8,http://pdfs.semanticscholar.org/df67/4dc0fc813c2a6d539e892bfc74f9a761fbc8.pdf +6c8c7065d1041146a3604cbe15c6207f486021ba,http://pdfs.semanticscholar.org/6c8c/7065d1041146a3604cbe15c6207f486021ba.pdf +747d5fe667519acea1bee3df5cf94d9d6f874f20,http://pdfs.semanticscholar.org/747d/5fe667519acea1bee3df5cf94d9d6f874f20.pdf +76e2d7621019bd45a5851740bd2742afdcf62837,http://pdfs.semanticscholar.org/76e2/d7621019bd45a5851740bd2742afdcf62837.pdf +329394480fc5e9e96de4250cc1a2b060c3677c94,https://arxiv.org/pdf/1604.08826v1.pdf +45dbf1b6fbc7fdae09e2a1928b18fbfff331a979,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0854.pdf +3edb0fa2d6b0f1984e8e2c523c558cb026b2a983,http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/tpami07.pdf +026b5b8062e5a8d86c541cfa976f8eee97b30ab8,http://www.iab-rubric.org/papers/deeplearningvideo-CR.pdf +56c700693b63e3da3b985777da6d9256e2e0dc21,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_079.pdf +28b5b5f20ad584e560cd9fb4d81b0a22279b2e7b,http://pdfs.semanticscholar.org/28b5/b5f20ad584e560cd9fb4d81b0a22279b2e7b.pdf +2a35d20b2c0a045ea84723f328321c18be6f555c,http://pdfs.semanticscholar.org/d1be/cba3c460892453939f9f3639d8beddf2a133.pdf +ce933821661a0139a329e6c8243e335bfa1022b1,http://pdfs.semanticscholar.org/ce93/3821661a0139a329e6c8243e335bfa1022b1.pdf +776835eb176ed4655d6e6c308ab203126194c41e,http://pdfs.semanticscholar.org/7768/35eb176ed4655d6e6c308ab203126194c41e.pdf +af13c355a2a14bb74847aedeafe990db3fc9cbd4,http://publications.idiap.ch/downloads/papers/2015/Chavez-Martinez_MUM2015_2015.pdf +23fc83c8cfff14a16df7ca497661264fc54ed746,http://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf +5721216f2163d026e90d7cd9942aeb4bebc92334,http://pdfs.semanticscholar.org/5721/216f2163d026e90d7cd9942aeb4bebc92334.pdf +2d0363a3ebda56d91d704d5ff5458a527775b609,http://pdfs.semanticscholar.org/2e07/a4c0f87ac078fcccf057d109f9387f4703a9.pdf +05e658fed4a1ce877199a4ce1a8f8cf6f449a890,http://pdfs.semanticscholar.org/05e6/58fed4a1ce877199a4ce1a8f8cf6f449a890.pdf +19808134b780b342e21f54b60095b181dfc7a600,http://www.openu.ac.il/home/hassner/projects/siftscales/HassneretalTPAMI16.pdf +37ce1d3a6415d6fc1760964e2a04174c24208173,http://www.cse.msu.edu/~liuxm/publication/Jourabloo_Liu_ICCV2015.pdf +36a3a96ef54000a0cd63de867a5eb7e84396de09,http://www.cs.toronto.edu/~guerzhoy/oriviz/crv17.pdf +0d3bb75852098b25d90f31d2f48fd0cb4944702b,http://stefan.winklerbros.net/Publications/icip2014a.pdf +78f79c83b50ff94d3e922bed392737b47f93aa06,http://mplab.ucsd.edu/wp-content/uploads/2011-LittlewortEtAl-FG-CERT.pdf +b73fdae232270404f96754329a1a18768974d3f6,http://pdfs.semanticscholar.org/b73f/dae232270404f96754329a1a18768974d3f6.pdf +0e986f51fe45b00633de9fd0c94d082d2be51406,http://vision.ics.uci.edu/papers/ZhuR_CVPR_2012/ZhuR_CVPR_2012.pdf +097f674aa9e91135151c480734dda54af5bc4240,http://pdfs.semanticscholar.org/097f/674aa9e91135151c480734dda54af5bc4240.pdf +3dc522a6576c3475e4a166377cbbf4ba389c041f,http://pdfs.semanticscholar.org/3dc5/22a6576c3475e4a166377cbbf4ba389c041f.pdf +2c4b96f6c1a520e75eb37c6ee8b844332bc0435c,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w12/papers/Leo_Automatic_Emotion_Recognition_ICCV_2015_paper.pdf +10fcbf30723033a5046db791fec2d3d286e34daa,http://pdfs.semanticscholar.org/10fc/bf30723033a5046db791fec2d3d286e34daa.pdf +21258aa3c48437a2831191b71cd069c05fb84cf7,http://pdfs.semanticscholar.org/2125/8aa3c48437a2831191b71cd069c05fb84cf7.pdf +c05441dd1bc418fb912a6fafa84c0659a6850bf0,http://pdfs.semanticscholar.org/c054/41dd1bc418fb912a6fafa84c0659a6850bf0.pdf +85639cefb8f8deab7017ce92717674d6178d43cc,http://pdfs.semanticscholar.org/8563/9cefb8f8deab7017ce92717674d6178d43cc.pdf +142e5b4492bc83b36191be4445ef0b8b770bf4b0,http://pdfs.semanticscholar.org/142e/5b4492bc83b36191be4445ef0b8b770bf4b0.pdf +10e12d11cb98ffa5ae82343f8904cfe321ae8004,http://pdfs.semanticscholar.org/10e1/2d11cb98ffa5ae82343f8904cfe321ae8004.pdf +06f8aa1f436a33014e9883153b93581eea8c5c70,http://pdfs.semanticscholar.org/8926/471921ff608f70c6c81777782974a91086ae.pdf +4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c,http://pdfs.semanticscholar.org/4a1a/5316e85528f4ff7a5f76699dfa8c70f6cc5c.pdf +30c5d2ec584e7b8273af6915aab420fc23ff2761,http://imi.ntu.edu.sg/IMIGraduatePrograms/IMIResearchSeminars/Documents/29_April_2014/REN_Jianfeng_29_April_2014.pdf +82f4e8f053d20be64d9318529af9fadd2e3547ef,http://pdfs.semanticscholar.org/82f4/e8f053d20be64d9318529af9fadd2e3547ef.pdf +624496296af19243d5f05e7505fd927db02fd0ce,http://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_cvpr_2014.pdf +10e704c82616fb5d9c48e0e68ee86d4f83789d96,http://pdfs.semanticscholar.org/10e7/04c82616fb5d9c48e0e68ee86d4f83789d96.pdf +a2fbaa0b849ecc74f34ebb36d1442d63212b29d2,http://pdfs.semanticscholar.org/a2fb/aa0b849ecc74f34ebb36d1442d63212b29d2.pdf +28e0ed749ebe7eb778cb13853c1456cb6817a166,http://pdfs.semanticscholar.org/28e0/ed749ebe7eb778cb13853c1456cb6817a166.pdf +7b43326477795a772c08aee750d3e433f00f20be,http://pdfs.semanticscholar.org/7b43/326477795a772c08aee750d3e433f00f20be.pdf +334d6c71b6bce8dfbd376c4203004bd4464c2099,http://pdfs.semanticscholar.org/ebbf/a07476257e1b7f4e259b29531a12eab575bd.pdf +808656563eea17470159e6540b05fe6f7ae58c2b,http://www.researchgate.net/profile/Songul_Varli_Albayrak/publication/235248598_Classification_with_Emotional_Faces_via_a_Robust_Sparse_Classifier/links/0912f510a44fb84bef000000.pdf +1e5ca4183929929a4e6f09b1e1d54823b8217b8e,http://pdfs.semanticscholar.org/1e5c/a4183929929a4e6f09b1e1d54823b8217b8e.pdf +84e4b7469f9c4b6c9e73733fa28788730fd30379,http://pdfs.semanticscholar.org/84e4/b7469f9c4b6c9e73733fa28788730fd30379.pdf +9606b1c88b891d433927b1f841dce44b8d3af066,http://pdfs.semanticscholar.org/9606/b1c88b891d433927b1f841dce44b8d3af066.pdf +ec7cd3fff8bdbbe7005bc8d6b7f6b87d72aac2d9,http://www.mmp.rwth-aachen.de/publications/pdf/rafi_chalearn2015.pdf +76dc11b2f141314343d1601635f721fdeef86fdb,http://pdfs.semanticscholar.org/8d19/1804f5b260807dac107b89a5837ac15857aa.pdf +6fed504da4e192fe4c2d452754d23d3db4a4e5e3,http://pdfs.semanticscholar.org/85ee/d639f7367c794a6d8b38619697af3efaacfe.pdf +a34d75da87525d1192bda240b7675349ee85c123,http://pdfs.semanticscholar.org/a34d/75da87525d1192bda240b7675349ee85c123.pdf +6332a99e1680db72ae1145d65fa0cccb37256828,http://pdfs.semanticscholar.org/6332/a99e1680db72ae1145d65fa0cccb37256828.pdf +2f16459e2e24dc91b3b4cac7c6294387d4a0eacf,http://pdfs.semanticscholar.org/2f16/459e2e24dc91b3b4cac7c6294387d4a0eacf.pdf +6889d649c6bbd9c0042fadec6c813f8e894ac6cc,http://pdfs.semanticscholar.org/6889/d649c6bbd9c0042fadec6c813f8e894ac6cc.pdf +d280bcbb387b1d548173917ae82cb6944e3ceca6,https://cse.sc.edu/~mengz/papers/ICIP2014.pdf +375435fb0da220a65ac9e82275a880e1b9f0a557,https://ibug.doc.ic.ac.uk/media/uploads/documents/tpami_alignment.pdf +3933416f88c36023a0cba63940eb92f5cef8001a,http://pdfs.semanticscholar.org/3933/416f88c36023a0cba63940eb92f5cef8001a.pdf +740e095a65524d569244947f6eea3aefa3cca526,http://pdfs.semanticscholar.org/740e/095a65524d569244947f6eea3aefa3cca526.pdf +07ea3dd22d1ecc013b6649c9846d67f2bf697008,http://pdfs.semanticscholar.org/07ea/3dd22d1ecc013b6649c9846d67f2bf697008.pdf +3e687d5ace90c407186602de1a7727167461194a,http://pdfs.semanticscholar.org/3e68/7d5ace90c407186602de1a7727167461194a.pdf +063a3be18cc27ba825bdfb821772f9f59038c207,http://eprints.whiterose.ac.uk/125231/1/kaiser_et_al_17.pdf +2e1415a814ae9abace5550e4893e13bd988c7ba1,http://pdfs.semanticscholar.org/2e14/15a814ae9abace5550e4893e13bd988c7ba1.pdf +225fb9181545f8750061c7693661b62d715dc542,http://pdfs.semanticscholar.org/c592/e408d95c838bced90b79640bead7c226fe64.pdf +4a1d640f5e25bb60bb2347d36009718249ce9230,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Xing_Towards_Multi-view_and_2014_CVPR_paper.pdf +fd7b6c77b46420c27725757553fcd1fb24ea29a8,http://pdfs.semanticscholar.org/fd7b/6c77b46420c27725757553fcd1fb24ea29a8.pdf +98c548a4be0d3b62971e75259d7514feab14f884,http://pdfs.semanticscholar.org/98c5/48a4be0d3b62971e75259d7514feab14f884.pdf +5b59e6b980d2447b2f3042bd811906694e4b0843,https://bib.irb.hr/datoteka/832723.PID4276755.pdf +22e2066acfb795ac4db3f97d2ac176d6ca41836c,http://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf +5dc056fe911a3e34a932513abe637076250d96da,http://www.vision.ee.ethz.ch/~gfanelli/pubs/cvpr12.pdf +218b2c5c9d011eb4432be4728b54e39f366354c1,http://infolab.stanford.edu/~wangz/project/imsearch/ALIP/TIP13/sawant.pdf +00616b487d4094805107bb766da1c234c3c75e73,http://vision.ucmerced.edu/papers/Newsam_ACMGIS_2008.pdf +7e00fb79576fe213853aeea39a6bc51df9fdca16,http://www.ics.ele.tue.nl/~tbasten/papers/AVSS2015_final.pdf +7de386bf2a1b2436c836c0cc1f1f23fccb24aad6,http://pdfs.semanticscholar.org/7de3/86bf2a1b2436c836c0cc1f1f23fccb24aad6.pdf +4c8e5fc0877d066516bb63e6c31eb1b8b5f967eb,http://pdfs.semanticscholar.org/4c8e/5fc0877d066516bb63e6c31eb1b8b5f967eb.pdf +081cb09791e7ff33c5d86fd39db00b2f29653fa8,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/09/22.pdf +20a0b23741824a17c577376fdd0cf40101af5880,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Weinzaepfel_Learning_to_Track_ICCV_2015_paper.pdf +aed321909bb87c81121c841b21d31509d6c78f69,http://pdfs.semanticscholar.org/aed3/21909bb87c81121c841b21d31509d6c78f69.pdf +4571626d4d71c0d11928eb99a3c8b10955a74afe,http://pdfs.semanticscholar.org/4571/626d4d71c0d11928eb99a3c8b10955a74afe.pdf +131178dad3c056458e0400bed7ee1a36de1b2918,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Deng_Visual_Reranking_through_2013_ICCV_paper.pdf +081a431107eb38812b74a8cd036ca5e97235b499,http://webhost.uoradea.ro/ibuciu/IEEE_TNN_2008.pdf +2cdc40f20b70ca44d9fd8e7716080ee05ca7924a,http://pdfs.semanticscholar.org/2cdc/40f20b70ca44d9fd8e7716080ee05ca7924a.pdf +aa912375eaf50439bec23de615aa8a31a3395ad3,http://pdfs.semanticscholar.org/aa91/2375eaf50439bec23de615aa8a31a3395ad3.pdf +7373c4a23684e2613f441f2236ed02e3f9942dd4,https://dr.ntu.edu.sg/bitstream/handle/10220/18012/Feature%20Extraction%20through%20Binary%20Pattern%20of%20Phase%20Congruency%20for%20Facial%20Expression%20Recognition.pdf?isAllowed=y&sequence=1 +0ce8a45a77e797e9d52604c29f4c1e227f604080,http://pdfs.semanticscholar.org/0ce8/a45a77e797e9d52604c29f4c1e227f604080.pdf +cd9666858f6c211e13aa80589d75373fd06f6246,http://pdfs.semanticscholar.org/cd96/66858f6c211e13aa80589d75373fd06f6246.pdf +d04d5692461d208dd5f079b98082eda887b62323,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICB2015/ZLEI-ICB-15.pdf +ce9a61bcba6decba72f91497085807bface02daf,http://www.jdl.ac.cn/user/sgshan/pub/FG04_Qing_LY.pdf +0447bdb71490c24dd9c865e187824dee5813a676,http://pdfs.semanticscholar.org/0447/bdb71490c24dd9c865e187824dee5813a676.pdf +68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_AgeNet_Deeply_Learned_ICCV_2015_paper.pdf +52c91fcf996af72d191520d659af44e310f86ef9,http://pdfs.semanticscholar.org/52c9/1fcf996af72d191520d659af44e310f86ef9.pdf +1648cf24c042122af2f429641ba9599a2187d605,http://www.eurecom.fr/en/publication/5333/download/sec-publi-5333.pdf +1afdedba774f6689eb07e048056f7844c9083be9,http://ibug.doc.ic.ac.uk/media/uploads/documents/sandbach2013markov.pdf +5a7520380d9960ff3b4f5f0fe526a00f63791e99,http://arxiv.org/pdf/1512.00932v1.pdf +c1482491f553726a8349337351692627a04d5dbe,http://pdfs.semanticscholar.org/c148/2491f553726a8349337351692627a04d5dbe.pdf +c4b58ceafdf4cf55586b036b9eb4d6d3d9ecd9c4,http://www.serc.iisc.ernet.in/~venky/Papers/Action_Recognition_CD_ISSNIP14.pdf +c37a971f7a57f7345fdc479fa329d9b425ee02be,http://pdfs.semanticscholar.org/c37a/971f7a57f7345fdc479fa329d9b425ee02be.pdf +18a9f3d855bd7728ed4f988675fa9405b5478845,http://pdfs.semanticscholar.org/18a9/f3d855bd7728ed4f988675fa9405b5478845.pdf +4188bd3ef976ea0dec24a2512b44d7673fd4ad26,http://ibug.doc.ic.ac.uk/media/uploads/documents/ieee_tip2010.pdf +22e678d3e915218a7c09af0d1602e73080658bb7,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/04/13.pdf +9d06d43e883930ddb3aa6fe57c6a865425f28d44,http://pdfs.semanticscholar.org/dd08/039eb271af93810ba392728ff481d8ce7496.pdf +47541d04ec24662c0be438531527323d983e958e,http://pdfs.semanticscholar.org/4754/1d04ec24662c0be438531527323d983e958e.pdf +0952ac6ce94c98049d518d29c18d136b1f04b0c0,http://pdfs.semanticscholar.org/0952/ac6ce94c98049d518d29c18d136b1f04b0c0.pdf +f214bcc6ecc3309e2efefdc21062441328ff6081,http://pdfs.semanticscholar.org/f214/bcc6ecc3309e2efefdc21062441328ff6081.pdf +0f53ab8b6c428127753281dd77cf94bdb889b624,https://www.researchgate.net/profile/Dian_Tjondronegoro/publication/224257559_Toward_a_more_robust_facial_expression_recognition_in_occluded_images_using_randomly_sampled_Gabor_based_templates/links/00b7d51f84babec8ad000000.pdf +84f904a71bee129a1cf00dc97f6cdbe1011657e6,http://pdfs.semanticscholar.org/84f9/04a71bee129a1cf00dc97f6cdbe1011657e6.pdf +40fb4e8932fb6a8fef0dddfdda57a3e142c3e823,http://gavrila.net/Publications/cvpr08.pdf +3aa9c8c65ce63eb41580ba27d47babb1100df8a3,http://www.csb.uncw.edu/mscsis/complete/pdf/VandeventerJason_Final.pdf +39f7878f447df7703f2c4ddeeffd7eb0e21f6cd4,http://dev.pubs.doc.ic.ac.uk/Pantic-CVPR05/Pantic-CVPR05.pdf +d84a48f7d242d73b32a9286f9b148f5575acf227,http://pdfs.semanticscholar.org/d84a/48f7d242d73b32a9286f9b148f5575acf227.pdf +de15af84b1257211a11889b6c2adf0a2bcf59b42,http://pdfs.semanticscholar.org/de15/af84b1257211a11889b6c2adf0a2bcf59b42.pdf +5287d8fef49b80b8d500583c07e935c7f9798933,http://pdfs.semanticscholar.org/8e65/13b642dcd5dc0fb60173dd0da1d8440eba8d.pdf +63a2e2155193dc2da9764ae7380cdbd044ff2b94,http://pdfs.semanticscholar.org/a8fb/2c65a23d1e75c4923c36fdd6e3d2a4b3d8f7.pdf +632441c9324cd29489cee3da773a9064a46ae26b,http://pdfs.semanticscholar.org/6324/41c9324cd29489cee3da773a9064a46ae26b.pdf +2c3430e0cbe6c8d7be3316a88a5c13a50e90021d,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Wang_Multi-feature_Spectral_Clustering_2014_CVPR_paper.pdf +a611c978e05d7feab01fb8a37737996ad6e88bd9,http://cbl.uh.edu/pub_files/3_Benchmarking3DPoseEstimationForFaceRecognition_ICPR2014_v8.pdf +c1e76c6b643b287f621135ee0c27a9c481a99054,http://pdfs.semanticscholar.org/c1e7/6c6b643b287f621135ee0c27a9c481a99054.pdf +43b8b5eeb4869372ef896ca2d1e6010552cdc4d4,http://pdfs.semanticscholar.org/43b8/b5eeb4869372ef896ca2d1e6010552cdc4d4.pdf +088aabe3da627432fdccf5077969e3f6402f0a80,http://pdfs.semanticscholar.org/088a/abe3da627432fdccf5077969e3f6402f0a80.pdf +4b0a2937f64df66cadee459a32ad7ae6e9fd7ed2,https://arxiv.org/pdf/1705.07750v3.pdf +b689d344502419f656d482bd186a5ee6b0140891,http://pdfs.semanticscholar.org/b689/d344502419f656d482bd186a5ee6b0140891.pdf +09718bf335b926907ded5cb4c94784fd20e5ccd8,http://parnec.nuaa.edu.cn/papers/journal/2005/xtan-TNN05.pdf +0ba449e312894bca0d16348f3aef41ca01872383,http://pdfs.semanticscholar.org/0ba4/49e312894bca0d16348f3aef41ca01872383.pdf +0db36bf08140d53807595b6313201a7339470cfe,http://www.cfar.umd.edu/~rama/Publications/Shroff_CVPR_2010.pdf +0cf7741e1fdb11a77cdf39b4dda8c65a62af4f23,http://vipl.ict.ac.cn/sites/default/files/papers/files/2013_TIP_mnkan_Learning%20Prototype%20Hyperplanes%20for%20Face%20Verification%20in%20the%20Wild.pdf +3bd50e33220af76ffc32a7e57688e248843b7f25,http://staff.estem-uc.edu.au/roland/files/2009/05/Ramana_Murthy_Goecke_DICTA2014_TheInfluenceOfTemporalInformationOnHumanActionRecognitionWithLargeNumberOfClasses.pdf +b13a882e6168afc4058fe14cc075c7e41434f43e,http://pdfs.semanticscholar.org/b13a/882e6168afc4058fe14cc075c7e41434f43e.pdf +0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_Fast_Subspace_Search_2013_ICCV_paper.pdf +357963a46dfc150670061dbc23da6ba7d6da786e,http://pdfs.semanticscholar.org/3579/63a46dfc150670061dbc23da6ba7d6da786e.pdf +b89862f38fff416d2fcda389f5c59daba56241db,http://pdfs.semanticscholar.org/b898/62f38fff416d2fcda389f5c59daba56241db.pdf +db82f9101f64d396a86fc2bd05b352e433d88d02,http://pdfs.semanticscholar.org/db82/f9101f64d396a86fc2bd05b352e433d88d02.pdf +c089c7d8d1413b54f59fc410d88e215902e51638,http://nlpr-web.ia.ac.cn/2011papers/gjhy/gh122.pdf +8820d1d3fa73cde623662d92ecf2e3faf1e3f328,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w2/papers/Victor_Continuous_Video_to_CVPR_2017_paper.pdf +0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698,http://pdfs.semanticscholar.org/0e78/af9bd0f9a0ce4ceb5f09f24bc4e4823bd698.pdf +0e677f2b798f5c1f7143ba983467321a7851565a,http://www.cse.iitk.ac.in/users/rahulaaj/papers/BillyYL.pdf +6a4ebd91c4d380e21da0efb2dee276897f56467a,http://ibug.doc.ic.ac.uk/media/uploads/documents/07025044.pdf +e4df83b7424842ff5864c10fa55d38eae1c45fac,http://pdfs.semanticscholar.org/e4df/83b7424842ff5864c10fa55d38eae1c45fac.pdf +151481703aa8352dc78e2577f0601782b8c41b34,http://pdfs.semanticscholar.org/943c/f990952712673320b011e1e8092fad65eedd.pdf +8a3bb63925ac2cdf7f9ecf43f71d65e210416e17,https://www.math.uh.edu/~dlabate/ShearFace_ICPR2014.pdf +6d618657fa5a584d805b562302fe1090957194ba,http://pdfs.semanticscholar.org/6d61/8657fa5a584d805b562302fe1090957194ba.pdf +33e20449aa40488c6d4b430a48edf5c4b43afdab,http://mplab.ucsd.edu/wordpress/wp-content/uploads/EngagementRecognitionFinal.pdf +d511e903a882658c9f6f930d6dd183007f508eda,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553766.pdf +988d1295ec32ce41d06e7cf928f14a3ee079a11e,http://pdfs.semanticscholar.org/988d/1295ec32ce41d06e7cf928f14a3ee079a11e.pdf +3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,http://pdfs.semanticscholar.org/accb/d6cd5dd649137a7c57ad6ef99232759f7544.pdf +9c1305383ce2c108421e9f5e75f092eaa4a5aa3c,http://pdfs.semanticscholar.org/9c13/05383ce2c108421e9f5e75f092eaa4a5aa3c.pdf +70a69569ba61f3585cd90c70ca5832e838fa1584,http://pdfs.semanticscholar.org/70a6/9569ba61f3585cd90c70ca5832e838fa1584.pdf +492f41e800c52614c5519f830e72561db205e86c,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lv_A_Deep_Regression_CVPR_2017_paper.pdf +6f84e61f33564e5188136474f9570b1652a0606f,https://arxiv.org/pdf/1708.00284v1.pdf +93747de3d40376761d1ef83ffa72ec38cd385833,http://pdfs.semanticscholar.org/9374/7de3d40376761d1ef83ffa72ec38cd385833.pdf +c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4,https://vision.cornell.edu/se3/wp-content/uploads/2015/02/ijcv2014.pdf +bb06ef67a49849c169781657be0bb717587990e0,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2017/papers/1570342773.pdf +021a19e240f0ae0554eff814e838e1e396be6572,http://ci2cv.net/static/papers/2009_ICCV_Saragih_2.pdf +6e3a181bf388dd503c83dc324561701b19d37df1,http://pdfs.semanticscholar.org/9d91/213394fb411743b11bae74cf22f0ffca9191.pdf +21f3c5b173503185c1e02a3eb4e76e13d7e9c5bc,http://pdfs.semanticscholar.org/21f3/c5b173503185c1e02a3eb4e76e13d7e9c5bc.pdf +6d7a32f594d46f4087b71e2a2bb66a4b25da5e30,http://pdfs.semanticscholar.org/6d7a/32f594d46f4087b71e2a2bb66a4b25da5e30.pdf +d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f,http://pdfs.semanticscholar.org/d7d9/c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f.pdf +6479b61ea89e9d474ffdefa71f068fbcde22cc44,http://pdfs.semanticscholar.org/6479/b61ea89e9d474ffdefa71f068fbcde22cc44.pdf +f35a493afa78a671b9d2392c69642dcc3dd2cdc2,http://pdfs.semanticscholar.org/f35a/493afa78a671b9d2392c69642dcc3dd2cdc2.pdf +889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7,http://mmlab.ie.cuhk.edu.hk/archive/2007/IFS07_face.pdf +2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,http://yugangjiang.info/publication/JCST-nameface.pdf +d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea,http://pdfs.semanticscholar.org/d03e/4e938bcbc25aa0feb83d8a0830f9cd3eb3ea.pdf +f6742010372210d06e531e7df7df9c01a185e241,http://pdfs.semanticscholar.org/f674/2010372210d06e531e7df7df9c01a185e241.pdf +28aa89b2c827e5dd65969a5930a0520fdd4a3dc7,http://pdfs.semanticscholar.org/28aa/89b2c827e5dd65969a5930a0520fdd4a3dc7.pdf +6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d,http://pdfs.semanticscholar.org/6a67/e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d.pdf +100105d6c97b23059f7aa70589ead2f61969fbc3,http://www.rci.rutgers.edu/~vmp93/Conference_pub/WACV2016_CFP.pdf +2d294c58b2afb529b26c49d3c92293431f5f98d0,https://ibug.doc.ic.ac.uk/media/uploads/documents/mmpp_journal.pdf +86b6de59f17187f6c238853810e01596d37f63cd,http://pdfs.semanticscholar.org/86b6/de59f17187f6c238853810e01596d37f63cd.pdf +ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,http://pdfs.semanticscholar.org/ba8a/99d35aee2c4e5e8a40abfdd37813bfdd0906.pdf +51528cdce7a92835657c0a616c0806594de7513b,http://pdfs.semanticscholar.org/5152/8cdce7a92835657c0a616c0806594de7513b.pdf +da5bfddcfe703ca60c930e79d6df302920ab9465,http://pdfs.semanticscholar.org/da5b/fddcfe703ca60c930e79d6df302920ab9465.pdf +d9ef1a80738bbdd35655c320761f95ee609b8f49,http://pdfs.semanticscholar.org/d9ef/1a80738bbdd35655c320761f95ee609b8f49.pdf +5506a1a1e1255353fde05d9188cb2adc20553af5,http://pdfs.semanticscholar.org/ff69/cb49c8cb86d0afadbcfa0baa607d7065965a.pdf diff --git a/scraper/reports/misc/db_paper_pdf-3.csv b/scraper/reports/misc/db_paper_pdf-3.csv new file mode 100644 index 00000000..93605c7b --- /dev/null +++ b/scraper/reports/misc/db_paper_pdf-3.csv @@ -0,0 +1,1639 @@ +292eba47ef77495d2613373642b8372d03f7062b,http://pdfs.semanticscholar.org/292e/ba47ef77495d2613373642b8372d03f7062b.pdf +fab2fc6882872746498b362825184c0fb7d810e4,http://pdfs.semanticscholar.org/fab2/fc6882872746498b362825184c0fb7d810e4.pdf +690d669115ad6fabd53e0562de95e35f1078dfbb,http://pdfs.semanticscholar.org/690d/669115ad6fabd53e0562de95e35f1078dfbb.pdf +e64b683e32525643a9ddb6b6af8b0472ef5b6a37,http://pdfs.semanticscholar.org/e64b/683e32525643a9ddb6b6af8b0472ef5b6a37.pdf +1d6c09019149be2dc84b0c067595f782a5d17316,http://pdfs.semanticscholar.org/3e27/b747e272c2ab778df92ea802d30af15e43d6.pdf +192723085945c1d44bdd47e516c716169c06b7c0,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/VisionandAttentionTheoryBasedSampling14.pdf +d074b33afd95074d90360095b6ecd8bc4e5bb6a2,http://pdfs.semanticscholar.org/d074/b33afd95074d90360095b6ecd8bc4e5bb6a2.pdf +5b01d4338734aefb16ee82c4c59763d3abc008e6,http://pdfs.semanticscholar.org/5b01/d4338734aefb16ee82c4c59763d3abc008e6.pdf +810f5606a4769fc3dd99611acf805596fb79223d,http://pdfs.semanticscholar.org/810f/5606a4769fc3dd99611acf805596fb79223d.pdf +c035c193eed5d72c7f187f0bc880a17d217dada0,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf +10f2b8188c745d43c1580f5ee6de71ad8d538b4d,http://staff.eng.bahcesehir.edu.tr/~cigdemeroglu/papers/international_conference_papers/2015_EmotiW.pdf +43ed518e466ff13118385f4e5d039ae4d1c000fb,https://arxiv.org/pdf/1505.01350v1.pdf +4bfce41cc72be315770861a15e467aa027d91641,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Branson_Active_Annotation_Translation_2014_CVPR_paper.pdf +11ddf5e47854e4e6109762835d2ce086bbdfbc5b,http://eprints.pascal-network.org/archive/00008322/01/schroff11.pdf +ebb9d53668205c5797045ba130df18842e3eadef,http://pdfs.semanticscholar.org/ebb9/d53668205c5797045ba130df18842e3eadef.pdf +1b635f494eff2e5501607ebe55eda7bdfa8263b8,http://pdfs.semanticscholar.org/1b63/5f494eff2e5501607ebe55eda7bdfa8263b8.pdf +af6e351d58dba0962d6eb1baf4c9a776eb73533f,http://pdfs.semanticscholar.org/af6e/351d58dba0962d6eb1baf4c9a776eb73533f.pdf +31625522950e82ad4dffef7ed0df00fdd2401436,http://pdfs.semanticscholar.org/3162/5522950e82ad4dffef7ed0df00fdd2401436.pdf +566a39d753c494f57b4464d6bde61bf3593f7ceb,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W01/papers/Hassner_A_Critical_Review_2013_CVPR_paper.pdf +e10a257f1daf279e55f17f273a1b557141953ce2,http://pdfs.semanticscholar.org/e10a/257f1daf279e55f17f273a1b557141953ce2.pdf +88ad82e6f2264f75f7783232ba9185a2f931a5d1,http://pdfs.semanticscholar.org/88ad/82e6f2264f75f7783232ba9185a2f931a5d1.pdf +340d1a9852747b03061e5358a8d12055136599b0,http://pdfs.semanticscholar.org/340d/1a9852747b03061e5358a8d12055136599b0.pdf +70c2c2d2b7e34ff533a8477eff9763be196cd03a,http://iplab.dmi.unict.it/sites/default/files/_9.pdf +17cf6195fd2dfa42670dc7ada476e67b381b8f69,http://pdfs.semanticscholar.org/17cf/6195fd2dfa42670dc7ada476e67b381b8f69.pdf +747fddd7345b60da121fc13c5440a18039b912e6,http://pdfs.semanticscholar.org/747f/ddd7345b60da121fc13c5440a18039b912e6.pdf +0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306,http://pdfs.semanticscholar.org/0d6b/28691e1aa2a17ffaa98b9b38ac3140fb3306.pdf +14b016c7a87d142f4b9a0e6dc470dcfc073af517,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912 +29479bb4fe8c04695e6f5ae59901d15f8da6124b,http://www.mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mm31.pdf +670531f3925c1ee6921f1550a988a034db727c3b,http://neerajkumar.org/base/papers/nk_www2014_photorecall.pdf +08ae100805d7406bf56226e9c3c218d3f9774d19,http://pdfs.semanticscholar.org/08ae/100805d7406bf56226e9c3c218d3f9774d19.pdf +228558a2a38a6937e3c7b1775144fea290d65d6c,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Smith_Nonparametric_Context_Modeling_2014_CVPR_paper.pdf +c5421a18583f629b49ca20577022f201692c4f5d,http://pdfs.semanticscholar.org/c542/1a18583f629b49ca20577022f201692c4f5d.pdf +23d5b2dccd48a17e743d3a5a4d596111a2f16c41,http://pdfs.semanticscholar.org/8cda/dc4d5e7e4fe6a0dbe15611f6fc8b7c0f103e.pdf +0efdd82a4753a8309ff0a3c22106c570d8a84c20,http://pdfs.semanticscholar.org/0efd/d82a4753a8309ff0a3c22106c570d8a84c20.pdf +857ad04fca2740b016f0066b152bd1fa1171483f,http://pdfs.semanticscholar.org/857a/d04fca2740b016f0066b152bd1fa1171483f.pdf +c92da368a6a886211dc759fe7b1b777a64d8b682,http://pdfs.semanticscholar.org/c92d/a368a6a886211dc759fe7b1b777a64d8b682.pdf +cefd9936e91885ba7af9364d50470f6cb54315a4,http://pdfs.semanticscholar.org/cefd/9936e91885ba7af9364d50470f6cb54315a4.pdf +94a7c97d1e3eb5dbfb20b180780451486597a9be,http://pdfs.semanticscholar.org/94a7/c97d1e3eb5dbfb20b180780451486597a9be.pdf +dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57,http://pdfs.semanticscholar.org/dbb7/f37fb9b41d1aa862aaf2d2e721a470fd2c57.pdf +b3f3d6be11ace907c804c2d916830c85643e468d,http://pdfs.semanticscholar.org/b3f3/d6be11ace907c804c2d916830c85643e468d.pdf +c5366f412f2e8e78280afcccc544156f63b516e3,http://lep.unige.ch/system/files/biblio/2012_Valstar_MetaAnalysisGEMEP-FERA.pdf +a6d7cf29f333ea3d2aeac67cde39a73898e270b7,http://pdfs.semanticscholar.org/a6d7/cf29f333ea3d2aeac67cde39a73898e270b7.pdf +01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,http://openaccess.thecvf.com/content_ICCV_2017/papers/Jackson_Large_Pose_3D_ICCV_2017_paper.pdf +14b162c2581aea1c0ffe84e7e9273ab075820f52,http://pdfs.semanticscholar.org/4b87/c72e53f19e29f2ccf4d24f9432ebbafcf1a8.pdf +162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e,https://research-information.bristol.ac.uk/files/75922781/Ioannis_Pitas_Large_scale_classification_by_an_approximate_least_squares_one_class_support_vector_machine_ensemble_2015.pdf +cc2eaa182f33defbb33d69e9547630aab7ed9c9c,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf +6fda12c43b53c679629473806c2510d84358478f,http://pdfs.semanticscholar.org/6fda/12c43b53c679629473806c2510d84358478f.pdf +054756fa720bdcf1d320ad7a353e54ca53d4d3af,http://www.stat.ucla.edu/~yuille/Pubs15/JianyuWangSemanticCVPR2015%20(1).pdf +fe9c460d5ca625402aa4d6dd308d15a40e1010fa,http://pdfs.semanticscholar.org/fe9c/460d5ca625402aa4d6dd308d15a40e1010fa.pdf +0b0eb562d7341231c3f82a65cf51943194add0bb,http://pdfs.semanticscholar.org/0b0e/b562d7341231c3f82a65cf51943194add0bb.pdf +75859ac30f5444f0d9acfeff618444ae280d661d,http://www.cse.msu.edu/rgroups/biometrics/Publications/SecureBiometrics/NagarNandakumarJain_MultibiometricCryptosystems_TIFS11.pdf +016f49a54b79ec787e701cc8c7d0280273f9b1ef,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Kotropoulos06a.pdf +9b474d6e81e3b94e0c7881210e249689139b3e04,http://pdfs.semanticscholar.org/a43c/c0c2f1d0e29cf1ee88f3bde4289a94b70409.pdf +6a0368b4e132f4aa3bbdeada8d894396f201358a,http://pdfs.semanticscholar.org/6a03/68b4e132f4aa3bbdeada8d894396f201358a.pdf +6dd052df6b0e89d394192f7f2af4a3e3b8f89875,http://pdfs.semanticscholar.org/6dd0/52df6b0e89d394192f7f2af4a3e3b8f89875.pdf +0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,https://arxiv.org/pdf/1501.05152v1.pdf +47d3b923730746bfaabaab29a35634c5f72c3f04,http://pdfs.semanticscholar.org/47d3/b923730746bfaabaab29a35634c5f72c3f04.pdf +13a994d489c15d440c1238fc1ac37dad06dd928c,http://pdfs.semanticscholar.org/13a9/94d489c15d440c1238fc1ac37dad06dd928c.pdf +5c820e47981d21c9dddde8d2f8020146e600368f,http://pdfs.semanticscholar.org/5c82/0e47981d21c9dddde8d2f8020146e600368f.pdf +78216cd51e6e1cc014b83e27e7e78631ad44b899,http://www.ami-lab.org/uploads/Publications/Conference/WP4/Tracking%20facial%20features%20under%20occlusions%20and%20recognizing%20facial%20expressions%20in%20sign%20language.pdf +ab6776f500ed1ab23b7789599f3a6153cdac84f7,http://pdfs.semanticscholar.org/ab67/76f500ed1ab23b7789599f3a6153cdac84f7.pdf +1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f,http://pdfs.semanticscholar.org/1a6c/3c37c2e62b21ebc0f3533686dde4d0103b3f.pdf +ba29ba8ec180690fca702ad5d516c3e43a7f0bb8,http://pdfs.semanticscholar.org/ba29/ba8ec180690fca702ad5d516c3e43a7f0bb8.pdf +b261439b5cde39ec52d932a222450df085eb5a91,http://pdfs.semanticscholar.org/b261/439b5cde39ec52d932a222450df085eb5a91.pdf +93675f86d03256f9a010033d3c4c842a732bf661,http://pdfs.semanticscholar.org/9367/5f86d03256f9a010033d3c4c842a732bf661.pdf +91e507d2d8375bf474f6ffa87788aa3e742333ce,http://pdfs.semanticscholar.org/91e5/07d2d8375bf474f6ffa87788aa3e742333ce.pdf +4e1836914bbcf94dc00e604b24b1b0d6d7b61e66,http://pdfs.semanticscholar.org/4e18/36914bbcf94dc00e604b24b1b0d6d7b61e66.pdf +12c713166c46ac87f452e0ae383d04fb44fe4eb2,http://pdfs.semanticscholar.org/98dc/a90e43c7592ef81cf84445d73c8baa719686.pdf +93721023dd6423ab06ff7a491d01bdfe83db7754,http://pdfs.semanticscholar.org/9372/1023dd6423ab06ff7a491d01bdfe83db7754.pdf +7fb6bc6c920ca574677f0d3a40c5c377a095885b,http://www.cs.bris.ac.uk/Publications/Papers/2000124.pdf +edc5a0a8b9fc6ae0e8d8091a2391767f645095d9,http://www.es.mdh.se/pdf_publications/3948.pdf +a695c2240382e362262db72017ceae0365d63f8f,http://www3.nd.edu/~kwb/AggarwalBiswasFlynnBowyerWACV_2012.pdf +9a7858eda9b40b16002c6003b6db19828f94a6c6,https://www1.icsi.berkeley.edu/~twke/pdfs/pubs/mooney_icip2017.pdf +14b66748d7c8f3752dca23991254fca81b6ee86c,http://pdfs.semanticscholar.org/4e92/a8dcfd802c3248d56ba16d2613dceacaef59.pdf +33ec047f1084e290c8a6f516bc75345b6bcf02a0,https://www.researchgate.net/profile/Peter_Corcoran/publication/220168274_Smart_Cameras_2D_Affine_Models_for_Determining_Subject_Facial_Expressions/links/02bfe5118f52d3d59d000000.pdf +d1082eff91e8009bf2ce933ac87649c686205195,http://epubs.surrey.ac.uk/807279/1/ML_Akyuz_Windeatt_Raymond.pdf +9d61b0beb3c5903fc3032655dc0fd834ec0b2af3,http://pdfs.semanticscholar.org/c5ac/a3f653e2e8a58888492524fc1480608457b7.pdf +4ca1fcfd7650eeb0ac8d51cff31b70717cdddfdd,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1563.pdf +0d5824e14593bcb349d636d255ba274f98bbb88f,http://www.researchgate.net/profile/Claus_Neubauer/publication/224716248_A_Variational_Bayesian_Approach_for_Classification_with_Corrupted_Inputs/links/00b7d52dd1f690da64000000.pdf +dc7df544d7c186723d754e2e7b7217d38a12fcf7,http://pdfs.semanticscholar.org/dc7d/f544d7c186723d754e2e7b7217d38a12fcf7.pdf +22bebedc1a5f3556cb4f577bdbe032299a2865e8,http://pdfs.semanticscholar.org/22be/bedc1a5f3556cb4f577bdbe032299a2865e8.pdf +71e56f2aebeb3c4bb3687b104815e09bb4364102,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Guo_Video_Co-segmentation_for_2013_ICCV_paper.pdf +b446cf353744a4b640af88d1848a1b958169c9f2,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553744.pdf +0f4cfcaca8d61b1f895aa8c508d34ad89456948e,http://signal.ee.bilkent.edu.tr/defevent/abstract/a2051.pdf +16bce9f940bb01aa5ec961892cc021d4664eb9e4,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf +8fa3478aaf8e1f94e849d7ffbd12146946badaba,http://pdfs.semanticscholar.org/8fa3/478aaf8e1f94e849d7ffbd12146946badaba.pdf +14811696e75ce09fd84b75fdd0569c241ae02f12,https://jurie.users.greyc.fr/papers/cvpr08-cevikalp.pdf +19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54,http://cvrr.ucsd.edu/publications/2006/McCallTrivedi_v4hci_cvpr2006.pdf +814b05113ba0397d236736f94c01e85bb034c833,http://pdfs.semanticscholar.org/814b/05113ba0397d236736f94c01e85bb034c833.pdf +14418ae9a6a8de2b428acb2c00064da129632f3e,http://fanyix.cs.ucdavis.edu/project/discovery/files/ext_abstract.pdf +56c2fb2438f32529aec604e6fc3b06a595ddbfcc,http://pdfs.semanticscholar.org/56c2/fb2438f32529aec604e6fc3b06a595ddbfcc.pdf +3a0a839012575ba455f2b84c2d043a35133285f9,http://pdfs.semanticscholar.org/76a1/dca3a9c2b0229c1b12c95752dcf40dc95a11.pdf +278e1441a77fbeebb22c45932d76c557e5663197,http://sist.sysu.edu.cn/~zhwshi/research/preprintversion/two-stage%20nonnegative%20sparse%20representation%20for%20large-scale%20face%20recognition.pdf +5040f7f261872a30eec88788f98326395a44db03,http://pdfs.semanticscholar.org/5040/f7f261872a30eec88788f98326395a44db03.pdf +c5844de3fdf5e0069d08e235514863c8ef900eb7,http://pdfs.semanticscholar.org/c584/4de3fdf5e0069d08e235514863c8ef900eb7.pdf +d9318c7259e394b3060b424eb6feca0f71219179,http://biometrics.cse.msu.edu/Publications/Face/ParkJainFaceSoftBio_TIFS10.pdf +09628e9116e7890bc65ebeabaaa5f607c9847bae,https://arxiv.org/pdf/1704.03039.pdf +2b1129efcbafa61da1d660de3b5c84b646540311,http://www.researchgate.net/profile/Haizhou_Ai/publication/221368891_Distributing_expressional_faces_in_2-D_emotional_space/links/546b431f0cf20dedafd52906.pdf +bba281fe9c309afe4e5cc7d61d7cff1413b29558,http://pdfs.semanticscholar.org/bba2/81fe9c309afe4e5cc7d61d7cff1413b29558.pdf +1f24cef78d1de5aa1eefaf344244dcd1972797e8,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Outlier-Robust_Tensor_PCA_CVPR_2017_paper.pdf +fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f,http://pdfs.semanticscholar.org/fc68/c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f.pdf +4118b4fc7d61068b9b448fd499876d139baeec81,http://www.cs.utexas.edu/~ssi/TKDE2010.pdf +91e58c39608c6eb97b314b0c581ddaf7daac075e,http://pdfs.semanticscholar.org/91e5/8c39608c6eb97b314b0c581ddaf7daac075e.pdf +baa0fe4d0ac0c7b664d4c4dd00b318b6d4e09143,http://pdfs.semanticscholar.org/baa0/fe4d0ac0c7b664d4c4dd00b318b6d4e09143.pdf +88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002697.pdf +0182d090478be67241392df90212d6cd0fb659e6,http://www.cs.utexas.edu/~grauman/papers/localized_attributes_cvpr2012.pdf +96faccdddef887673d6007fed8ff2574580cae1f,http://pdfs.semanticscholar.org/96fa/ccdddef887673d6007fed8ff2574580cae1f.pdf +33403e9b4bbd913ae9adafc6751b52debbd45b0e,http://pdfs.semanticscholar.org/3340/3e9b4bbd913ae9adafc6751b52debbd45b0e.pdf +22fdd8d65463f520f054bf4f6d2d216b54fc5677,http://pdfs.semanticscholar.org/22fd/d8d65463f520f054bf4f6d2d216b54fc5677.pdf +8983485996d5d9d162e70d66399047c5d01ac451,https://arxiv.org/pdf/1602.04868v1.pdf +3ca5d3b8f5f071148cb50f22955fd8c1c1992719,http://pdfs.semanticscholar.org/3ca5/d3b8f5f071148cb50f22955fd8c1c1992719.pdf +03f4c0fe190e5e451d51310bca61c704b39dcac8,http://pdfs.semanticscholar.org/03f4/c0fe190e5e451d51310bca61c704b39dcac8.pdf +420782499f38c1d114aabde7b8a8104c9e40a974,http://openaccess.thecvf.com/content_cvpr_2016/papers/Simo-Serra_Fashion_Style_in_CVPR_2016_paper.pdf +6c9266aa77ea01b9d26a98a483b56e9e8b80eeba,https://www.researchgate.net/profile/Stefano_Tubaro/publication/224641232_Mixed_2D-3D_Information_for_Pose_Estimation_and_Face_Recognition/links/00b7d5178477f30fb3000000.pdf +75cd81d2513b7e41ac971be08bbb25c63c37029a,http://pdfs.semanticscholar.org/75cd/81d2513b7e41ac971be08bbb25c63c37029a.pdf +c32f04ccde4f11f8717189f056209eb091075254,http://pdfs.semanticscholar.org/c32f/04ccde4f11f8717189f056209eb091075254.pdf +cb669c1d1e17c2a54d78711fa6a9f556b83f1987,http://satoh-lab.ex.nii.ac.jp/users/ledduy/pub/Ngo-RobustFaceTrackFindingUnsingTrackedPoints.pdf +1d1caaa2312390260f7d20ad5f1736099818d358,https://eprints.soton.ac.uk/271401/1/paperOnIEEEexplore.pdf +a308077e98a611a977e1e85b5a6073f1a9bae6f0,http://pdfs.semanticscholar.org/a308/077e98a611a977e1e85b5a6073f1a9bae6f0.pdf +0cdb49142f742f5edb293eb9261f8243aee36e12,https://arxiv.org/pdf/1303.2783v1.pdf +2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522,http://pdfs.semanticscholar.org/2ef5/1b57c4a3743ac33e47e0dc6a40b0afcdd522.pdf +02431ed90700d5cfe4e3d3a20f1e97de3e131569,http://www.di.ens.fr/~bojanowski/papers/bojanowski13finding.pdf +1afd481036d57320bf52d784a22dcb07b1ca95e2,http://pdfs.semanticscholar.org/e206/144fc1dee7f10079facf3b6a3d5d2bf5f8db.pdf +e2d265f606cd25f1fd72e5ee8b8f4c5127b764df,http://pdfs.semanticscholar.org/e2d2/65f606cd25f1fd72e5ee8b8f4c5127b764df.pdf +6bcee7dba5ed67b3f9926d2ae49f9a54dee64643,http://pdfs.semanticscholar.org/6bce/e7dba5ed67b3f9926d2ae49f9a54dee64643.pdf +182f3aa4b02248ff9c0f9816432a56d3c8880706,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Quan_Sparse_Coding_for_CVPR_2016_paper.pdf +22646cf884cc7093b0db2c1731bd52f43682eaa8,http://pdfs.semanticscholar.org/2264/6cf884cc7093b0db2c1731bd52f43682eaa8.pdf +10a285260e822b49023c4324d0fbbca7df8e128b,https://staff.fnwi.uva.nl/m.jain/pub/jain-objects2action-iccv2015.pdf +a0dfb8aae58bd757b801e2dcb717a094013bc178,http://pdfs.semanticscholar.org/a0df/b8aae58bd757b801e2dcb717a094013bc178.pdf +7ee53d931668fbed1021839db4210a06e4f33190,http://crcv.ucf.edu/projects/videolocalization_images/CVPR16_Waqas_AL.pdf +c822bd0a005efe4ec1fea74de534900a9aa6fb93,http://pdfs.semanticscholar.org/c822/bd0a005efe4ec1fea74de534900a9aa6fb93.pdf +e13360cda1ebd6fa5c3f3386c0862f292e4dbee4,http://pdfs.semanticscholar.org/e133/60cda1ebd6fa5c3f3386c0862f292e4dbee4.pdf +4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7,http://pdfs.semanticscholar.org/d8ca/e259c1c5bba0c096f480dc7322bbaebfac1a.pdf +306127c3197eb5544ab1e1bf8279a01e0df26120,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Huang_Sparse_Coding_and_CVPR_2016_paper.pdf +20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6,http://pdfs.semanticscholar.org/ee89/f47ebfbebed7d6793a6774356ba63398f0d0.pdf +2be9144a1e66de127192b01907c862381f4011d1,http://www1.cs.columbia.edu/~belhumeur/conference/eye-iccv05.pdf +a0e7f8771c7d83e502d52c276748a33bae3d5f81,http://pdfs.semanticscholar.org/a0e7/f8771c7d83e502d52c276748a33bae3d5f81.pdf +2ee817981e02c4709d65870c140665ed25b005cc,http://www.umiacs.umd.edu/users/rama/Publications/Patel_ICARCV_2010.pdf +86b69b3718b9350c9d2008880ce88cd035828432,http://pdfs.semanticscholar.org/86b6/9b3718b9350c9d2008880ce88cd035828432.pdf +5d44c675addcb6e74cbc5a9c48df0d754bdbcd98,http://pdfs.semanticscholar.org/9bc0/1fa9400c231e41e6a72ec509d76ca797207c.pdf +cd687ddbd89a832f51d5510c478942800a3e6854,http://pdfs.semanticscholar.org/cd68/7ddbd89a832f51d5510c478942800a3e6854.pdf +2465fc22e03faf030e5a319479a95ef1dfc46e14,https://www.fruct.org/publications/fruct20/files/Bel.pdf +5253c94f955146ba7d3566196e49fe2edea1c8f4,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Kemelmacher-Shlizerman_Internet_Based_Morphable_2013_ICCV_paper.pdf +8cc07ae9510854ec6e79190cc150f9f1fe98a238,http://pdfs.semanticscholar.org/8cc0/7ae9510854ec6e79190cc150f9f1fe98a238.pdf +1b0a071450c419138432c033f722027ec88846ea,http://cvrr.ucsd.edu/publications/2016/YuenMartinTrivediITSC2016.pdf +47506951d2dc7c4bb4d2d33dd25b67a767e56680,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2015_04_15_BradyJ_IEEEHST_FP.pdf +2e0f5e72ad893b049f971bc99b67ebf254e194f7,http://pdfs.semanticscholar.org/2e0f/5e72ad893b049f971bc99b67ebf254e194f7.pdf +fc23a386c2189f221b25dbd0bb34fcd26ccf60fa,http://pdfs.semanticscholar.org/fc23/a386c2189f221b25dbd0bb34fcd26ccf60fa.pdf +87bee0e68dfc86b714f0107860d600fffdaf7996,http://mi.informatik.uni-siegen.de/publications/piotraschke_autoreconst_cvpr16.pdf +ae936628e78db4edb8e66853f59433b8cc83594f,http://pdfs.semanticscholar.org/ae93/6628e78db4edb8e66853f59433b8cc83594f.pdf +1c6be6874e150898d9db984dd546e9e85c85724e,http://research.microsoft.com/~szli/papers/WHT-CVPR2004.pdf +77c53ec6ea448db4dad586e002a395c4a47ecf66,http://pdfs.semanticscholar.org/77c5/3ec6ea448db4dad586e002a395c4a47ecf66.pdf +97032b13f1371c8a813802ade7558e816d25c73f,http://pdfs.semanticscholar.org/9703/2b13f1371c8a813802ade7558e816d25c73f.pdf +53698b91709112e5bb71eeeae94607db2aefc57c,http://pdfs.semanticscholar.org/5369/8b91709112e5bb71eeeae94607db2aefc57c.pdf +66aad5b42b7dda077a492e5b2c7837a2a808c2fa,http://pdfs.semanticscholar.org/66aa/d5b42b7dda077a492e5b2c7837a2a808c2fa.pdf +6bca0d1f46b0f7546ad4846e89b6b842d538ee4e,http://pdfs.semanticscholar.org/6bca/0d1f46b0f7546ad4846e89b6b842d538ee4e.pdf +97b8249914e6b4f8757d22da51e8347995a40637,http://rogerioferis.com/VisualRecognitionAndSearch2014/material/papers/FerisTransMultimedia2012.pdf +6a38c575733b0f7118970238e8f9b480522a2dbc,http://pdfs.semanticscholar.org/fbee/265a61fd5ec15a6ed8f490a8fd8d3359506e.pdf +37d6f0eb074d207b53885bd2eb78ccc8a04be597,http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf +3feb69531653e83d0986a0643e4a6210a088e3e5,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/SLAM2007/papers/10-1569042275.pdf +fdca08416bdadda91ae977db7d503e8610dd744f,http://pdfs.semanticscholar.org/fdca/08416bdadda91ae977db7d503e8610dd744f.pdf +564035f1b8f06e9bb061255f40e3139fa57ea879,http://pdfs.semanticscholar.org/fcbf/61524a3d775947ea8bcef46d1b0a9cce7bfb.pdf +830e5b1043227fe189b3f93619ef4c58868758a7,http://pdfs.semanticscholar.org/830e/5b1043227fe189b3f93619ef4c58868758a7.pdf +84b4eb66ad75a74f77299f1ecb6aa6305362e8cd,https://www.researchgate.net/profile/Joao_Carvalho8/publication/4285113_A_Learning-based_Eye_Detector_Coupled_with_Eye_Candidate_Filtering_and_PCA_Features/links/0f31752d6b19aa31ec000000.pdf +ae5bb02599244d6d88c4fe466a7fdd80aeb91af4,http://pdfs.semanticscholar.org/ae5b/b02599244d6d88c4fe466a7fdd80aeb91af4.pdf +8ba67f45fbb1ce47a90df38f21834db37c840079,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/dsp006-chen.pdf +a3f1db123ce1818971a57330d82901683d7c2b67,http://pdfs.semanticscholar.org/a3f1/db123ce1818971a57330d82901683d7c2b67.pdf +aa577652ce4dad3ca3dde44f881972ae6e1acce7,http://pdfs.semanticscholar.org/aa57/7652ce4dad3ca3dde44f881972ae6e1acce7.pdf +ee7093e91466b81d13f4d6933bcee48e4ee63a16,http://pdfs.semanticscholar.org/ee70/93e91466b81d13f4d6933bcee48e4ee63a16.pdf +0af48a45e723f99b712a8ce97d7826002fe4d5a5,http://vision.seas.harvard.edu/papers/WideAngle_PAMI2013.pdf +208a2c50edb5271a050fa9f29d3870f891daa4dc,http://pdfs.semanticscholar.org/c17c/55f43af5db44b6a4c17932aa3d7031985749.pdf +560e0e58d0059259ddf86fcec1fa7975dee6a868,http://www.cs.tau.ac.il/~wolf/papers/lvfw.pdf +55c81f15c89dc8f6eedab124ba4ccab18cf38327,http://pdfs.semanticscholar.org/d31e/258f6af40f457c27ce118986ea157673c9c4.pdf +3bd1d41a656c8159305ba2aa395f68f41ab84f31,http://pdfs.semanticscholar.org/3bd1/d41a656c8159305ba2aa395f68f41ab84f31.pdf +18d5b0d421332c9321920b07e0e8ac4a240e5f1f,http://pdfs.semanticscholar.org/18d5/b0d421332c9321920b07e0e8ac4a240e5f1f.pdf +d9739d1b4478b0bf379fe755b3ce5abd8c668f89,http://pdfs.semanticscholar.org/d973/9d1b4478b0bf379fe755b3ce5abd8c668f89.pdf +a44590528b18059b00d24ece4670668e86378a79,http://pdfs.semanticscholar.org/a445/90528b18059b00d24ece4670668e86378a79.pdf +2d83ba2d43306e3c0587ef16f327d59bf4888dc3,http://www.cs.colby.edu/courses/S16/cs365/papers/karpath-deepVideo-CVPR14.pdf +68d4056765c27fbcac233794857b7f5b8a6a82bf,http://pdfs.semanticscholar.org/68d4/056765c27fbcac233794857b7f5b8a6a82bf.pdf +3cc3e01ac1369a0d1aa88fedda61d3c99a98b890,http://mi.eng.cam.ac.uk/~bdrs2/papers/mita_pami08.pdf +102b27922e9bd56667303f986404f0e1243b68ab,https://applied-informatics-j.springeropen.com/track/pdf/10.1186/s40535-017-0042-5?site=applied-informatics-j.springeropen.com +7e1c419065fdb9cf2a31aa4b5d0c0e03f7afd54e,http://jpinfotech.org/wp-content/plugins/infotech/file/upload/pdf/8962Face-Sketch-Synthesis-via-Sparse-Representation-Based-Greedy-Search-pdf.pdf +739d400cb6fb730b894182b29171faaae79e3f01,http://pdfs.semanticscholar.org/739d/400cb6fb730b894182b29171faaae79e3f01.pdf +04ff69aa20da4eeccdabbe127e3641b8e6502ec0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf +75908b6460eb0781130ed0aa94585be25a584996,http://pdfs.semanticscholar.org/7590/8b6460eb0781130ed0aa94585be25a584996.pdf +e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66,http://pdfs.semanticscholar.org/e9ed/17fd8bf1f3d343198e206a4a7e0561ad7e66.pdf +06d93a40365da90f30a624f15bf22a90d9cfe6bb,http://pdfs.semanticscholar.org/6940/40e59bffd860640e45c54ca7b093630caa39.pdf +0229829e9a1eed5769a2b5eccddcaa7cd9460b92,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_098_ext.pdf +142dcfc3c62b1f30a13f1f49c608be3e62033042,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Tsai_Adaptive_Region_Pooling_2015_CVPR_paper.pdf +4cb8a691a15e050756640c0a35880cdd418e2b87,http://www.vision.caltech.edu/~bart/Publications/2004/BartUllmanClassBasedMatching.pdf +f16a605abb5857c39a10709bd9f9d14cdaa7918f,http://pdfs.semanticscholar.org/f16a/605abb5857c39a10709bd9f9d14cdaa7918f.pdf +3b9d94752f8488106b2c007e11c193f35d941e92,http://pdfs.semanticscholar.org/3b9d/94752f8488106b2c007e11c193f35d941e92.pdf +11cc0774365b0cc0d3fa1313bef3d32c345507b1,http://pdfs.semanticscholar.org/11cc/0774365b0cc0d3fa1313bef3d32c345507b1.pdf +1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de9,https://web.stanford.edu/~bgirod/pdfs/ChenHuizhongTransPAMISep2014.pdf +48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,http://pdfs.semanticscholar.org/4831/9e611f0daaa758ed5dcf5a6496b4c6ef45f2.pdf +516d0d9eb08825809e4618ca73a0697137ebabd5,http://web.engr.oregonstate.edu/~sinisa/talks/cvpr16_multimodal_oral.pdf +cc3c273bb213240515147e8be68c50f7ea22777c,http://pdfs.semanticscholar.org/cc3c/273bb213240515147e8be68c50f7ea22777c.pdf +ff46c41e9ea139d499dd349e78d7cc8be19f936c,http://pdfs.semanticscholar.org/ff46/c41e9ea139d499dd349e78d7cc8be19f936c.pdf +5c2e264d6ac253693469bd190f323622c457ca05,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2013/Improving%20large%20scale%20image%20retrieval%20using%20multi-level%20features13.pdf +20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba,http://pdfs.semanticscholar.org/e805/bc872e18277c7cbfce82206cf1667cce22cc.pdf +14fdce01c958043140e3af0a7f274517b235adf3,http://pdfs.semanticscholar.org/14fd/ce01c958043140e3af0a7f274517b235adf3.pdf +ce6f459462ea9419ca5adcc549d1d10e616c0213,http://pdfs.semanticscholar.org/ce6f/459462ea9419ca5adcc549d1d10e616c0213.pdf +6f5151c7446552fd6a611bf6263f14e729805ec7,http://pdfs.semanticscholar.org/6f51/51c7446552fd6a611bf6263f14e729805ec7.pdf +1177977134f6663fff0137f11b81be9c64c1f424,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_003.pdf +122f51cee489ba4da5ab65064457fbe104713526,http://www.speakit.cn/Group/file/2015_LongShortTerm_ACMAVEC@MM15_EI.pdf +370e0d9b89518a6b317a9f54f18d5398895a7046,http://pdfs.semanticscholar.org/370e/0d9b89518a6b317a9f54f18d5398895a7046.pdf +dfd934ae448a1b8947d404b01303951b79b13801,http://pdfs.semanticscholar.org/dfd9/34ae448a1b8947d404b01303951b79b13801.pdf +44f65e3304bdde4be04823fd7ca770c1c05c2cef,http://pdfs.semanticscholar.org/44f6/5e3304bdde4be04823fd7ca770c1c05c2cef.pdf +63d865c66faaba68018defee0daf201db8ca79ed,http://pdfs.semanticscholar.org/63d8/65c66faaba68018defee0daf201db8ca79ed.pdf +8af411697e73f6cfe691fe502d4bfb42510b4835,http://pdfs.semanticscholar.org/8af4/11697e73f6cfe691fe502d4bfb42510b4835.pdf +b0de0892d2092c8c70aa22500fed31aa7eb4dd3f,http://arxiv.org/pdf/1504.05524.pdf +18636347b8741d321980e8f91a44ee054b051574,http://biometrics.cse.msu.edu/Publications/SoftBiometrics/JainParkFacemarks_ICIP09.pdf +1c530de1a94ac70bf9086e39af1712ea8d2d2781,http://pdfs.semanticscholar.org/1c53/0de1a94ac70bf9086e39af1712ea8d2d2781.pdf +2d164f88a579ba53e06b601d39959aaaae9016b7,http://pdfs.semanticscholar.org/a666/2bf767df8f8a5bcb655142ac0fb7c4f524f1.pdf +1828b1b0f5395b163fef087a72df0605249300c2,http://pdfs.semanticscholar.org/8b18/66a150521bfa18c3e6ec633e1acc79683749.pdf +22043cbd2b70cb8195d8d0500460ddc00ddb1a62,http://uir.ulster.ac.uk/37137/2/Separability-Oriented%20Subclass%20Discriminant%20Analysis.pdf +6fbb179a4ad39790f4558dd32316b9f2818cd106,http://pdfs.semanticscholar.org/6fbb/179a4ad39790f4558dd32316b9f2818cd106.pdf +81da427270c100241c07143885ba3051ec4a2ecb,http://pdfs.semanticscholar.org/81da/427270c100241c07143885ba3051ec4a2ecb.pdf +9329523dc0bd4e2896d5f63cf2440f21b7a16f16,http://pdfs.semanticscholar.org/d853/107e81c3db4a7909b599bff82ab1c48772af.pdf +df71a00071d5a949f9c31371c2e5ee8b478e7dc8,http://studentlife.cs.dartmouth.edu/facelogging.pdf +7b9b3794f79f87ca8a048d86954e0a72a5f97758,http://pdfs.semanticscholar.org/7b9b/3794f79f87ca8a048d86954e0a72a5f97758.pdf +b84b7b035c574727e4c30889e973423fe15560d7,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf +d83d2fb5403c823287f5889b44c1971f049a1c93,http://pdfs.semanticscholar.org/d83d/2fb5403c823287f5889b44c1971f049a1c93.pdf +68bf7fc874c2db44d0446cdbb1e05f19c2239282,http://pdfs.semanticscholar.org/68bf/7fc874c2db44d0446cdbb1e05f19c2239282.pdf +d5b5c63c5611d7b911bc1f7e161a0863a34d44ea,http://pdfs.semanticscholar.org/d5b5/c63c5611d7b911bc1f7e161a0863a34d44ea.pdf +6859b891a079a30ef16f01ba8b85dc45bd22c352,http://pdfs.semanticscholar.org/6859/b891a079a30ef16f01ba8b85dc45bd22c352.pdf +50c0de2cccf7084a81debad5fdb34a9139496da0,http://pdfs.semanticscholar.org/50c0/de2cccf7084a81debad5fdb34a9139496da0.pdf +3a4f522fa9d2c37aeaed232b39fcbe1b64495134,http://ijireeice.com/upload/2016/may-16/IJIREEICE%20101.pdf +00e9011f58a561500a2910a4013e6334627dee60,http://library.utia.cas.cz/separaty/2008/RO/somol-facial%20expression%20recognition%20using%20angle-related%20information%20from%20facial%20meshes.pdf +3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0,http://pdfs.semanticscholar.org/3b15/a48ffe3c6b3f2518a7c395280a11a5f58ab0.pdf +75503aff70a61ff4810e85838a214be484a674ba,https://www.ri.cmu.edu/pub_files/2012/0/Improved-Facial-Expression.pdf +141768ab49a5a9f5adcf0cf7e43a23471a7e5d82,http://arxiv.org/pdf/1405.0085v1.pdf +03a8f53058127798bc2bc0245d21e78354f6c93b,http://www.robots.ox.ac.uk/~vgg/rg/slides/additiveclassifiers.pdf +019e471667c72b5b3728b4a9ba9fe301a7426fb2,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_012.pdf +56e885b9094391f7d55023a71a09822b38b26447,http://pdfs.semanticscholar.org/56e8/85b9094391f7d55023a71a09822b38b26447.pdf +a02f0aad91c2d88b49c443e1e39c3acfc067a705,http://www.cs.columbia.edu/~wfan/PAPERS/SMC10cher.pdf +dcce3d7e8d59041e84fcdf4418702fb0f8e35043,http://www.cfar.umd.edu/~rama/Conf.pdf-files/zhou04cvpr-10.pdf +c44c84540db1c38ace232ef34b03bda1c81ba039,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf +4aa8db1a3379f00db2403bba7dade5d6e258b9e9,http://pdfs.semanticscholar.org/4aa8/db1a3379f00db2403bba7dade5d6e258b9e9.pdf +28e1668d7b61ce21bf306009a62b06593f1819e3,http://pdfs.semanticscholar.org/28e1/668d7b61ce21bf306009a62b06593f1819e3.pdf +3a92de0a4a0ef4f88e1647633f1fbb13cd6a3c95,http://impca.cs.curtin.edu.au/pubs/2007/conferences/an_liu_venkatesh_cvpr07.pdf +29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea,http://www.umiacs.umd.edu/~nshroff/DomainAdapt.pdf +bfb98423941e51e3cd067cb085ebfa3087f3bfbe,http://pdfs.semanticscholar.org/bfb9/8423941e51e3cd067cb085ebfa3087f3bfbe.pdf +8e0ede53dc94a4bfcf1238869bf1113f2a37b667,http://www.ri.cmu.edu/pub_files/2015/6/jpml_final.pdf +39ecdbad173e45964ffe589b9ced9f1ebfe2d44e,http://measuringbehavior.org/files/ProceedingsPDF(website)/Gonzalez_FullPaper3.4.pdf +034c2ed71c31cb0d984d66c7ca753ef2cb6196ca,http://pdfs.semanticscholar.org/034c/2ed71c31cb0d984d66c7ca753ef2cb6196ca.pdf +25c3cdbde7054fbc647d8be0d746373e7b64d150,http://openaccess.thecvf.com/content_cvpr_2016/papers/Ouyang_ForgetMeNot_Memory-Aware_Forensic_CVPR_2016_paper.pdf +c8adbe00b5661ab9b3726d01c6842c0d72c8d997,http://pdfs.semanticscholar.org/c8ad/be00b5661ab9b3726d01c6842c0d72c8d997.pdf +d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d,http://pdfs.semanticscholar.org/d4eb/f0a4f48275ecd8dbc2840b2a31cc07bd676d.pdf +472ba8dd4ec72b34e85e733bccebb115811fd726,http://pdfs.semanticscholar.org/472b/a8dd4ec72b34e85e733bccebb115811fd726.pdf +c5468665d98ce7349d38afb620adbf51757ab86f,http://pdfs.semanticscholar.org/c546/8665d98ce7349d38afb620adbf51757ab86f.pdf +137aa2f891d474fce1e7a1d1e9b3aefe21e22b34,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf +207798603e3089a1c807c93e5f36f7767055ec06,http://www1.se.cuhk.edu.hk/~hccl/publications/pub/2012_APSIPA_FacialExpression.pdf +60a20d5023f2bcc241eb9e187b4ddece695c2b9b,http://pdfs.semanticscholar.org/60a2/0d5023f2bcc241eb9e187b4ddece695c2b9b.pdf +b5d7c5aba7b1ededdf61700ca9d8591c65e84e88,http://pdfs.semanticscholar.org/b5d7/c5aba7b1ededdf61700ca9d8591c65e84e88.pdf +ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea,http://pdfs.semanticscholar.org/ac9d/fbeb58d591b5aea13d13a83b1e23e7ef1fea.pdf +2ff9ffedfc59422a8c7dac418a02d1415eec92f1,http://pdfs.semanticscholar.org/6e3b/778ad384101f792284b42844518f620143aa.pdf +5d479f77ecccfac9f47d91544fd67df642dfab3c,http://pdfs.semanticscholar.org/7880/c21bb0de02cd4db095e011ac7aff47b35ee8.pdf +63340c00896d76f4b728dbef85674d7ea8d5ab26,https://www.comp.nus.edu.sg/~tsim/documents/fkt-dsa-pami-published.pdf +038ce930a02d38fb30d15aac654ec95640fe5cb0,http://www.robots.ox.ac.uk/~tvg/publications/2013/BVGFacialFeatureTrackerMobile.pdf +9bcfadd22b2c84a717c56a2725971b6d49d3a804,http://pdfs.semanticscholar.org/9bcf/add22b2c84a717c56a2725971b6d49d3a804.pdf +8f9f599c05a844206b1bd4947d0524234940803d,http://pdfs.semanticscholar.org/8f9f/599c05a844206b1bd4947d0524234940803d.pdf +5083c6be0f8c85815ead5368882b584e4dfab4d1,http://pdfs.semanticscholar.org/5083/c6be0f8c85815ead5368882b584e4dfab4d1.pdf +270e5266a1f6e76954dedbc2caf6ff61a5fbf8d0,http://pdfs.semanticscholar.org/270e/5266a1f6e76954dedbc2caf6ff61a5fbf8d0.pdf +380dd0ddd5d69adc52defc095570d1c22952f5cc,http://pdfs.semanticscholar.org/380d/d0ddd5d69adc52defc095570d1c22952f5cc.pdf +2a171f8d14b6b8735001a11c217af9587d095848,http://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_Learning_Social_Relation_ICCV_2015_paper.pdf +8b547b87fd95c8ff6a74f89a2b072b60ec0a3351,http://pdfs.semanticscholar.org/8b54/7b87fd95c8ff6a74f89a2b072b60ec0a3351.pdf +35308a3fd49d4f33bdbd35fefee39e39fe6b30b7,https://biblio.ugent.be/publication/7238034/file/7238038.pdf +33ac7fd3a622da23308f21b0c4986ae8a86ecd2b,http://pdfs.semanticscholar.org/33ac/7fd3a622da23308f21b0c4986ae8a86ecd2b.pdf +f963967e52a5fd97fa3ebd679fd098c3cb70340e,http://pdfs.semanticscholar.org/f963/967e52a5fd97fa3ebd679fd098c3cb70340e.pdf +39dc2ce4cce737e78010642048b6ed1b71e8ac2f,http://www.mirlab.org/conference_papers/International_Conference/ICME%202004/html/papers/P59890.pdf +7553fba5c7f73098524fbb58ca534a65f08e91e7,http://pdfs.semanticscholar.org/7553/fba5c7f73098524fbb58ca534a65f08e91e7.pdf +969dd8bc1179c047523d257516ade5d831d701ad,http://pdfs.semanticscholar.org/969d/d8bc1179c047523d257516ade5d831d701ad.pdf +195df1106f4d7aff0e9cb609358abbf80f54a716,https://arxiv.org/pdf/1511.02917v1.pdf +778c9f88839eb26129427e1b8633caa4bd4d275e,http://www.cs.berkeley.edu/~nzhang/papers/cvpr12_ppk.pdf +7ad7897740e701eae455457ea74ac10f8b307bed,http://pdfs.semanticscholar.org/7ad7/897740e701eae455457ea74ac10f8b307bed.pdf +4180978dbcd09162d166f7449136cb0b320adf1f,http://pdfs.semanticscholar.org/4180/978dbcd09162d166f7449136cb0b320adf1f.pdf +6be0ab66c31023762e26d309a4a9d0096f72a7f0,http://pdfs.semanticscholar.org/6be0/ab66c31023762e26d309a4a9d0096f72a7f0.pdf +67a50752358d5d287c2b55e7a45cc39be47bf7d0,http://pdfs.semanticscholar.org/67a5/0752358d5d287c2b55e7a45cc39be47bf7d0.pdf +06a9ed612c8da85cb0ebb17fbe87f5a137541603,http://pdfs.semanticscholar.org/06a9/ed612c8da85cb0ebb17fbe87f5a137541603.pdf +3998c5aa6be58cce8cb65a64cb168864093a9a3e,http://cvrr.ucsd.edu/publications/2014/HeadHand.pdf +27c9ddb72360f4cd0f715cd7ea82fa399af91f11,http://pdfs.semanticscholar.org/27c9/ddb72360f4cd0f715cd7ea82fa399af91f11.pdf +4b6be933057d939ddfa665501568ec4704fabb39,http://pdfs.semanticscholar.org/59c4/c6ba21354675401a173eb6c70500b99571cd.pdf +4fc936102e2b5247473ea2dd94c514e320375abb,http://pdfs.semanticscholar.org/4fc9/36102e2b5247473ea2dd94c514e320375abb.pdf +fc2bad3544c7c8dc7cd182f54888baf99ed75e53,http://pdfs.semanticscholar.org/fc2b/ad3544c7c8dc7cd182f54888baf99ed75e53.pdf +061c84a4143e859a7caf6e6d283dfb30c23ee56e,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_008_ext.pdf +24de12df6953151ef5cd0379e205eb0f57ff9d1f,http://www.researchgate.net/profile/Sebastian_Ventura/publication/270337594_A_Tutorial_on_Multi-Label_Learning/links/54bcd8460cf253b50e2d697b.pdf?origin=publication_list +c41de506423e301ef2a10ea6f984e9e19ba091b4,http://www.ee.columbia.edu/ln/dvmm/publications/14/felixyu_llp_mm2014.pdf +e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,http://pdfs.semanticscholar.org/e617/8de1ef15a6a973aad2791ce5fbabc2cb8ae5.pdf +a1f40bcfadbeee66f67ab0755dd3037c030a7450,http://www.researchgate.net/profile/Jiansheng_Chen/publication/265016758_Face_Image_Quality_Assessment_Based_on_Learning_to_Rank/links/546d662d0cf2193b94c5852b.pdf +3d62b2f9cef997fc37099305dabff356d39ed477,http://pdfs.semanticscholar.org/3d62/b2f9cef997fc37099305dabff356d39ed477.pdf +c418a3441f992fea523926f837f4bfb742548c16,http://pdfs.semanticscholar.org/c418/a3441f992fea523926f837f4bfb742548c16.pdf +42e3dac0df30d754c7c7dab9e1bb94990034a90d,https://arxiv.org/pdf/1311.5591v2.pdf +a60907b7ee346b567972074e3e03c82f64d7ea30,http://pdfs.semanticscholar.org/a609/07b7ee346b567972074e3e03c82f64d7ea30.pdf +14e949f5754f9e5160e8bfa3f1364dd92c2bb8d6,http://pdfs.semanticscholar.org/4b76/694ff2efb302074adf1ba6052d643177abd1.pdf +7636f94ddce79f3dea375c56fbdaaa0f4d9854aa,http://pdfs.semanticscholar.org/7636/f94ddce79f3dea375c56fbdaaa0f4d9854aa.pdf +402f6db00251a15d1d92507887b17e1c50feebca,http://pdfs.semanticscholar.org/402f/6db00251a15d1d92507887b17e1c50feebca.pdf +473cbc5ec2609175041e1410bc6602b187d03b23,http://pdfs.semanticscholar.org/473c/bc5ec2609175041e1410bc6602b187d03b23.pdf +d350a9390f0818703f886138da27bf8967fe8f51,http://mi.informatik.uni-siegen.de/publications/shahlaei_icip2016.pdf +0037bff7be6d463785d4e5b2671da664cd7ef746,http://pdfs.semanticscholar.org/0037/bff7be6d463785d4e5b2671da664cd7ef746.pdf +33f7e78950455c37236b31a6318194cfb2c302a4,http://pdfs.semanticscholar.org/33f7/e78950455c37236b31a6318194cfb2c302a4.pdf +32728e1eb1da13686b69cc0bd7cce55a5c963cdd,http://pdfs.semanticscholar.org/3272/8e1eb1da13686b69cc0bd7cce55a5c963cdd.pdf +193debca0be1c38dabc42dc772513e6653fd91d8,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf +3fbd68d1268922ee50c92b28bd23ca6669ff87e5,http://pdfs.semanticscholar.org/f563/6a8021c09870c350e7505c87625fe1681bd4.pdf +c32cd207855e301e6d1d9ddd3633c949630c793a,http://pdfs.semanticscholar.org/c32c/d207855e301e6d1d9ddd3633c949630c793a.pdf +571f493c0ade12bbe960cfefc04b0e4607d8d4b2,http://pdfs.semanticscholar.org/571f/493c0ade12bbe960cfefc04b0e4607d8d4b2.pdf +2e68190ebda2db8fb690e378fa213319ca915cf8,http://pdfs.semanticscholar.org/a705/804fa2e97ce23619b4f43da1b75fb138296d.pdf +50f0c495a214b8d57892d43110728e54e413d47d,http://pdfs.semanticscholar.org/50f0/c495a214b8d57892d43110728e54e413d47d.pdf +f6fa97fbfa07691bc9ff28caf93d0998a767a5c1,http://pdfs.semanticscholar.org/f6fa/97fbfa07691bc9ff28caf93d0998a767a5c1.pdf +4bb03b27bc625e53d8d444c0ba3ee235d2f17e86,http://www.cs.utexas.edu/~grauman/papers/hwang_cvpr2010.pdf +29d414bfde0dfb1478b2bdf67617597dd2d57fc6,http://pdfs.semanticscholar.org/29d4/14bfde0dfb1478b2bdf67617597dd2d57fc6.pdf +365866dc937529c3079a962408bffaa9b87c1f06,http://pdfs.semanticscholar.org/3658/66dc937529c3079a962408bffaa9b87c1f06.pdf +27eb7a6e1fb6b42516041def6fe64bd028b7614d,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zafeiriou_Joint_Unsupervised_Deformable_CVPR_2016_paper.pdf +7577a1ddf9195513a5c976887ad806d1386bb1e9,http://pdfs.semanticscholar.org/7577/a1ddf9195513a5c976887ad806d1386bb1e9.pdf +132527383890565d18f1b7ad50d76dfad2f14972,http://pdfs.semanticscholar.org/1325/27383890565d18f1b7ad50d76dfad2f14972.pdf +0e50fe28229fea45527000b876eb4068abd6ed8c,http://pdfs.semanticscholar.org/0e50/fe28229fea45527000b876eb4068abd6ed8c.pdf +5aafca76dbbbbaefd82f5f0265776afb5320dafe,http://pdfs.semanticscholar.org/5aaf/ca76dbbbbaefd82f5f0265776afb5320dafe.pdf +9441253b638373a0027a5b4324b4ee5f0dffd670,http://pdfs.semanticscholar.org/9441/253b638373a0027a5b4324b4ee5f0dffd670.pdf +4e4d034caa72dce6fca115e77c74ace826884c66,http://pdfs.semanticscholar.org/4e4d/034caa72dce6fca115e77c74ace826884c66.pdf +0cf7da0df64557a4774100f6fde898bc4a3c4840,https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/berg-cvpr05.pdf +b88d5e12089f6f598b8c72ebeffefc102cad1fc0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w24/papers/Wang_Robust_2DPCA_and_CVPR_2016_paper.pdf +69eb6c91788e7c359ddd3500d01fb73433ce2e65,http://pdfs.semanticscholar.org/69eb/6c91788e7c359ddd3500d01fb73433ce2e65.pdf +48174c414cfce7f1d71c4401d2b3d49ba91c5338,http://pdfs.semanticscholar.org/4817/4c414cfce7f1d71c4401d2b3d49ba91c5338.pdf +ddea3c352f5041fb34433b635399711a90fde0e8,http://pdfs.semanticscholar.org/fc6b/2eb9253f33197b1ba8a045525487a16e8756.pdf +4aeb87c11fb3a8ad603311c4650040fd3c088832,http://pdfs.semanticscholar.org/4aeb/87c11fb3a8ad603311c4650040fd3c088832.pdf +5050807e90a925120cbc3a9cd13431b98965f4b9,http://pdfs.semanticscholar.org/5050/807e90a925120cbc3a9cd13431b98965f4b9.pdf +60efdb2e204b2be6701a8e168983fa666feac1be,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01387.pdf +8147ee02ec5ff3a585dddcd000974896cb2edc53,http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2012aePAMI.pdf +c903af0d69edacf8d1bff3bfd85b9470f6c4c243,http://pdfs.semanticscholar.org/c903/af0d69edacf8d1bff3bfd85b9470f6c4c243.pdf +2a7bca56e2539c8cf1ae4e9da521879b7951872d,http://pdfs.semanticscholar.org/2a7b/ca56e2539c8cf1ae4e9da521879b7951872d.pdf +0f4eb63402a4f3bae8f396e12133684fb760def1,http://pdfs.semanticscholar.org/8c4e/b15de264af9f92a93d6e89d36295c5c4bf37.pdf +63f2d1a64737afa1608588b9651b1e4207e82d1c,http://staff.estem-uc.edu.au/roland/files/2009/05/Rajagopalan_Goecke_ICIP2014_DetectingSelf-StimulatoryBehavioursForAutismDiagnosis.pdf +a9adb6dcccab2d45828e11a6f152530ba8066de6,http://pdfs.semanticscholar.org/a9ad/b6dcccab2d45828e11a6f152530ba8066de6.pdf +aea4128ba18689ff1af27b90c111bbd34013f8d5,http://pdfs.semanticscholar.org/aea4/128ba18689ff1af27b90c111bbd34013f8d5.pdf +56e6f472090030a6f172a3e2f46ef9daf6cad757,http://pdfs.semanticscholar.org/56e6/f472090030a6f172a3e2f46ef9daf6cad757.pdf +a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,http://pdfs.semanticscholar.org/a3d7/8bc94d99fdec9f44a7aa40c175d5a106f0b9.pdf +89d7cc9bbcd2fdc4f4434d153ecb83764242227b,http://pdfs.semanticscholar.org/89d7/cc9bbcd2fdc4f4434d153ecb83764242227b.pdf +113c22eed8383c74fe6b218743395532e2897e71,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sapp_MODEC_Multimodal_Decomposable_2013_CVPR_paper.pdf +f3f77b803b375f0c63971b59d0906cb700ea24ed,http://pdfs.semanticscholar.org/f3f7/7b803b375f0c63971b59d0906cb700ea24ed.pdf +f7093b138fd31956e30d411a7043741dcb8ca4aa,http://pdfs.semanticscholar.org/f709/3b138fd31956e30d411a7043741dcb8ca4aa.pdf +97865d31b5e771cf4162bc9eae7de6991ceb8bbf,http://pdfs.semanticscholar.org/9786/5d31b5e771cf4162bc9eae7de6991ceb8bbf.pdf +b7f05d0771da64192f73bdb2535925b0e238d233,http://pdfs.semanticscholar.org/b7f0/5d0771da64192f73bdb2535925b0e238d233.pdf +75ebe1e0ae9d42732e31948e2e9c03d680235c39,http://pdfs.semanticscholar.org/75eb/e1e0ae9d42732e31948e2e9c03d680235c39.pdf +ba99c37a9220e08e1186f21cab11956d3f4fccc2,https://arxiv.org/pdf/1609.08677v1.pdf +ec54000c6c0e660dd99051bdbd7aed2988e27ab8,http://pdfs.semanticscholar.org/ec54/000c6c0e660dd99051bdbd7aed2988e27ab8.pdf +392d35bb359a3b61cca1360272a65690a97a2b3f,http://pdfs.semanticscholar.org/9cc1/0842f7701bfb92725b4dda4df391b0b341e3.pdf +501eda2d04b1db717b7834800d74dacb7df58f91,http://pdfs.semanticscholar.org/501e/da2d04b1db717b7834800d74dacb7df58f91.pdf +dd0a334b767e0065c730873a95312a89ef7d1c03,http://pdfs.semanticscholar.org/dd0a/334b767e0065c730873a95312a89ef7d1c03.pdf +91b1a59b9e0e7f4db0828bf36654b84ba53b0557,http://www.kresttechnology.com/krest-academic-projects/krest-mtech-projects/ECE/MTech%20DSP%202015-16/MTech%20DSP%20BasePaper%202015-16/50.pdf +072db5ba5b375d439ba6dbb6427c63cd7da6e940,http://users.ece.cmu.edu/~juefeix/tip_2014_felix.pdf +4c1528bab3142ec957700ab502531e1a67e7f2f6,http://www.researchgate.net/profile/Xiaohua_Xie/publication/220932399_Restoration_of_a_Frontal_Illuminated_Face_Image_Based_on_KPCA/links/00b49522adfc6b1435000000.pdf +d671a210990f67eba9b2d3dda8c2cb91575b4a7a,http://pdfs.semanticscholar.org/d671/a210990f67eba9b2d3dda8c2cb91575b4a7a.pdf +2969f822b118637af29d8a3a0811ede2751897b5,http://iip.ict.ac.cn/sites/default/files/publication/2013_ICCV_xwzhao_Cascaded%20Shape%20Space%20Pruning%20for%20Robust%20Facial%20Landmark%20Detection.pdf +76d939f73a327bf1087d91daa6a7824681d76ea1,http://pdfs.semanticscholar.org/76d9/39f73a327bf1087d91daa6a7824681d76ea1.pdf +d95e6185f82e3ef3880a98122522eca8c8c3f34e,http://bbs.utdallas.edu/facelab/docs/4_05_otoole-pami.pdf +3d0ef9bfd08a9252db6acfece3b83f3aa58b4cae,http://perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BIOMET/Face/Kumar/CoreFaceCVPR04.pdf +098fa9b4c3f7fb41c7a178d36f5dbb50a3ffa377,http://oui.csail.mit.edu/camera_readys/13.pdf +0717b47ab84b848de37dbefd81cf8bf512b544ac,http://pdfs.semanticscholar.org/0717/b47ab84b848de37dbefd81cf8bf512b544ac.pdf +6aa61d28750629febe257d1cb69379e14c66c67f,http://pdfs.semanticscholar.org/6aa6/1d28750629febe257d1cb69379e14c66c67f.pdf +2f7e9b45255c9029d2ae97bbb004d6072e70fa79,http://pdfs.semanticscholar.org/2f7e/9b45255c9029d2ae97bbb004d6072e70fa79.pdf +3a95eea0543cf05670e9ae28092a114e3dc3ab5c,https://arxiv.org/pdf/1209.0841v7.pdf +8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3,http://vision.ucsd.edu/~pdollar/files/papers/DollarCVPR10pose.pdf +d140c5add2cddd4a572f07358d666fe00e8f4fe1,http://pdfs.semanticscholar.org/d140/c5add2cddd4a572f07358d666fe00e8f4fe1.pdf +df2841a1d2a21a0fc6f14fe53b6124519f3812f9,http://pdfs.semanticscholar.org/df28/41a1d2a21a0fc6f14fe53b6124519f3812f9.pdf +72450d7e5cbe79b05839c30a4f0284af5aa80053,http://pdfs.semanticscholar.org/7245/0d7e5cbe79b05839c30a4f0284af5aa80053.pdf +7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2,http://maths.dur.ac.uk/users/kasper.peeters/pdf/face_recognition/PCA/Togneri2010LinearRegressionFaceRecognition.pdf +d00787e215bd74d32d80a6c115c4789214da5edb,http://pdfs.semanticscholar.org/d007/87e215bd74d32d80a6c115c4789214da5edb.pdf +a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be,http://pdfs.semanticscholar.org/d788/2e6bd512b190e47be944dc9b58b612f12581.pdf +133dd0f23e52c4e7bf254e8849ac6f8b17fcd22d,http://www.stat.ucla.edu/~caiming/pubs/1402.1783v2.pdf +843e6f1e226480e8a6872d8fd7b7b2cd74b637a4,http://pdfs.semanticscholar.org/843e/6f1e226480e8a6872d8fd7b7b2cd74b637a4.pdf +727ecf8c839c9b5f7b6c7afffe219e8b270e7e15,http://pdfs.semanticscholar.org/727e/cf8c839c9b5f7b6c7afffe219e8b270e7e15.pdf +00ebc3fa871933265711558fa9486057937c416e,http://pdfs.semanticscholar.org/00eb/c3fa871933265711558fa9486057937c416e.pdf +0145dc4505041bf39efa70ea6d95cf392cfe7f19,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_046_ext.pdf +7ff42ee09c9b1a508080837a3dc2ea780a1a839b,http://pdfs.semanticscholar.org/7ff4/2ee09c9b1a508080837a3dc2ea780a1a839b.pdf +2a0efb1c17fbe78470acf01e4601a75735a805cc,http://pdfs.semanticscholar.org/2a0e/fb1c17fbe78470acf01e4601a75735a805cc.pdf +7fa2605676c589a7d1a90d759f8d7832940118b5,http://www.ces.clemson.edu/~stb/publications/willimon_clothing_classification_icra2013.pdf +bbcb4920b312da201bf4d2359383fb4ee3b17ed9,http://pdfs.semanticscholar.org/bbcb/4920b312da201bf4d2359383fb4ee3b17ed9.pdf +37278ffce3a0fe2c2bbf6232e805dd3f5267eba3,http://arxiv.org/pdf/1602.04504v1.pdf +14e9158daf17985ccbb15c9cd31cf457e5551990,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf +7a8c2743db1749c2d9f16f62ee633574c1176e34,http://pdfs.semanticscholar.org/7a8c/2743db1749c2d9f16f62ee633574c1176e34.pdf +d4c2d26523f577e2d72fc80109e2540c887255c8,http://pdfs.semanticscholar.org/d4c2/d26523f577e2d72fc80109e2540c887255c8.pdf +4d21a2866cfd1f0fb2a223aab9eecfdec963059a,http://pdfs.semanticscholar.org/ddb3/5264ae7a74811bf8eb63d0eca7b7db07a4b1.pdf +0294f992f8dfd8748703f953925f9aee14e1b2a2,http://pdfs.semanticscholar.org/0294/f992f8dfd8748703f953925f9aee14e1b2a2.pdf +c46a4db7247d26aceafed3e4f38ce52d54361817,http://pdfs.semanticscholar.org/c46a/4db7247d26aceafed3e4f38ce52d54361817.pdf +cac8bb0e393474b9fb3b810c61efdbc2e2c25c29,http://pdfs.semanticscholar.org/cac8/bb0e393474b9fb3b810c61efdbc2e2c25c29.pdf +16d9b983796ffcd151bdb8e75fc7eb2e31230809,http://pdfs.semanticscholar.org/16d9/b983796ffcd151bdb8e75fc7eb2e31230809.pdf +133f42368e63928dc860cce7618f30ee186d328c,http://pdfs.semanticscholar.org/50bd/1c76a5051db0b13fd76e7a633884ad49d5a8.pdf +29fc4de6b680733e9447240b42db13d5832e408f,http://pdfs.semanticscholar.org/29fc/4de6b680733e9447240b42db13d5832e408f.pdf +e5799fd239531644ad9270f49a3961d7540ce358,http://chenlab.ece.cornell.edu/people/ruogu/publications/ICIP13_Kinship.pdf +53e081f5af505374c3b8491e9c4470fe77fe7934,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hsieh_Unconstrained_Realtime_Facial_2015_CVPR_paper.pdf +473031328c58b7461753e81251379331467f7a69,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W09/papers/Wang_Exploring_Fisher_Vector_2015_CVPR_paper.pdf +1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,http://pdfs.semanticscholar.org/1ee2/7c66fabde8ffe90bd2f4ccee5835f8dedbb9.pdf +400e6c777d5894db2f6538c8ebd1124352b1c064,http://www.ee.ucr.edu/~lan/papers/FG13.pdf +41b997f6cec7a6a773cd09f174cb6d2f036b36cd,http://pdfs.semanticscholar.org/41b9/97f6cec7a6a773cd09f174cb6d2f036b36cd.pdf +24959d1a9c9faf29238163b6bcaf523e2b05a053,http://pdfs.semanticscholar.org/2495/9d1a9c9faf29238163b6bcaf523e2b05a053.pdf +22ec8af0f0e5469e40592d29e28cfbdf1154c666,http://pdfs.semanticscholar.org/aa07/2c823da778a2b8bf1fc79141b3b228a14e99.pdf +488375ae857a424febed7c0347cc9590989f01f7,http://pdfs.semanticscholar.org/4883/75ae857a424febed7c0347cc9590989f01f7.pdf +50ff21e595e0ebe51ae808a2da3b7940549f4035,http://export.arxiv.org/pdf/1710.02985 +9294739e24e1929794330067b84f7eafd286e1c8,http://pdfs.semanticscholar.org/9294/739e24e1929794330067b84f7eafd286e1c8.pdf +8855d6161d7e5b35f6c59e15b94db9fa5bbf2912,http://pdfs.semanticscholar.org/8855/d6161d7e5b35f6c59e15b94db9fa5bbf2912.pdf +160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b,https://infoscience.epfl.ch/record/207802/files/Discriminant-multilabel-Yuce.pdf +2f59f28a1ca3130d413e8e8b59fb30d50ac020e2,http://pralab.diee.unica.it/sites/default/files/Satta_ICPR2014.pdf +0334a8862634988cc684dacd4279c5c0d03704da,https://arxiv.org/pdf/1609.06591v1.pdf +6bb95a0f3668cd36407c85899b71c9fe44bf9573,http://pdfs.semanticscholar.org/6bb9/5a0f3668cd36407c85899b71c9fe44bf9573.pdf +7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889,http://pdfs.semanticscholar.org/c67c/5780cb9870b70b78e4c82da4f92c7bb2592d.pdf +2cf92ee60f719098acc3aae3981cedc47fa726b3,http://eksl.isi.edu/files/papers/sinjini_2007_1172280675.pdf +539ca9db570b5e43be0576bb250e1ba7a727d640,http://pdfs.semanticscholar.org/539c/a9db570b5e43be0576bb250e1ba7a727d640.pdf +cfd933f71f4a69625390819b7645598867900eab,http://pdfs.semanticscholar.org/cfd9/33f71f4a69625390819b7645598867900eab.pdf +31afdb6fa95ded37e5871587df38976fdb8c0d67,http://www3.ntu.edu.sg/home/EXDJiang/ICASSP15.pdf +69ff40fd5ce7c3e6db95a2b63d763edd8db3a102,http://pdfs.semanticscholar.org/69ff/40fd5ce7c3e6db95a2b63d763edd8db3a102.pdf +2f8183b549ec51b67f7dad717f0db6bf342c9d02,http://www.wisdom.weizmann.ac.il/~ronen/papers/Kemelmacher%20Basri%20-%203D%20Face%20Reconstruction%20from%20a%20Single%20Image%20Using%20a%20Single%20Reference%20Face%20Shape.pdf +5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372,http://pdfs.semanticscholar.org/5a02/9a0b0ae8ae7fc9043f0711b7c0d442bfd372.pdf +87f285782d755eb85d8922840e67ed9602cfd6b9,http://pdfs.semanticscholar.org/87f2/85782d755eb85d8922840e67ed9602cfd6b9.pdf +1e19ea6e7f1c04a18c952ce29386252485e4031e,http://pdfs.semanticscholar.org/1e19/ea6e7f1c04a18c952ce29386252485e4031e.pdf +f437b3884a9e5fab66740ca2a6f1f3a5724385ea,http://pdfs.semanticscholar.org/f437/b3884a9e5fab66740ca2a6f1f3a5724385ea.pdf +28d06fd508d6f14cd15f251518b36da17909b79e,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chen_Whats_in_a_2013_CVPR_paper.pdf +dbaf89ca98dda2c99157c46abd136ace5bdc33b3,http://pdfs.semanticscholar.org/dbaf/89ca98dda2c99157c46abd136ace5bdc33b3.pdf +e8f0f9b74db6794830baa2cab48d99d8724e8cb6,http://pdfs.semanticscholar.org/e8f0/f9b74db6794830baa2cab48d99d8724e8cb6.pdf +aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5,http://pdfs.semanticscholar.org/aaa4/c625f5f9b65c7f3df5c7bfe8a6595d0195a5.pdf +2654ef92491cebeef0997fd4b599ac903e48d07a,http://www.ee.oulu.fi/~gyzhao/Papers/2008/Facial%20Expression%20Recognition%20from%20Near-Infrared%20Video%20Sequences.pdf +3a2a37ca2bdc82bba4c8e80b45d9f038fe697c7d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Vahdat_Handling_Uncertain_Tags_2013_ICCV_paper.pdf +7ad77b6e727795a12fdacd1f328f4f904471233f,https://ueaeprints.uea.ac.uk/65008/1/Accepted_manuscript.pdf +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,http://pdfs.semanticscholar.org/7e18/b5f5b678aebc8df6246716bf63ea5d8d714e.pdf +360d66e210f7011423364327b7eccdf758b5fdd2,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569190652.pdf +24c442ac3f6802296d71b1a1914b5d44e48b4f29,http://vision.caltech.edu/~xpburgos/papers/ICCVW15%20Burgos-Artizzu.pdf +e9f1cdd9ea95810efed306a338de9e0de25990a0,http://pdfs.semanticscholar.org/e9f1/cdd9ea95810efed306a338de9e0de25990a0.pdf +81bfe562e42f2eab3ae117c46c2e07b3d142dade,http://pdfs.semanticscholar.org/81bf/e562e42f2eab3ae117c46c2e07b3d142dade.pdf +66a9935e958a779a3a2267c85ecb69fbbb75b8dc,http://pdfs.semanticscholar.org/66a9/935e958a779a3a2267c85ecb69fbbb75b8dc.pdf +45fbeed124a8956477dbfc862c758a2ee2681278,http://pdfs.semanticscholar.org/fb2a/66f842ca2577d9ea8a8300b555b71bd9cee8.pdf +1b69b860e22278a6f482507b8ce879082dd00c44,http://www.cs.utexas.edu/~chaoyeh/cvpr_2014_Inferring_Analogous_Attributes.pdf +d115c4a66d765fef596b0b171febca334cea15b5,http://pdfs.semanticscholar.org/d115/c4a66d765fef596b0b171febca334cea15b5.pdf +439ac8edfa1e7cbc65474cab544a5b8c4c65d5db,http://pdfs.semanticscholar.org/439a/c8edfa1e7cbc65474cab544a5b8c4c65d5db.pdf +fb5280b80edcf088f9dd1da769463d48e7b08390,http://pdfs.semanticscholar.org/fb52/80b80edcf088f9dd1da769463d48e7b08390.pdf +499f2b005e960a145619305814a4e9aa6a1bba6a,http://pdfs.semanticscholar.org/499f/2b005e960a145619305814a4e9aa6a1bba6a.pdf +dced05d28f353be971ea2c14517e85bc457405f3,http://pdfs.semanticscholar.org/dced/05d28f353be971ea2c14517e85bc457405f3.pdf +7fd700f4a010d765c506841de9884df394c1de1c,http://www.kyb.tuebingen.mpg.de/publications/attachments/CVPR2008-Blaschko_5069%5B0%5D.pdf +29c7dfbbba7a74e9aafb6a6919629b0a7f576530,http://pdfs.semanticscholar.org/29c7/dfbbba7a74e9aafb6a6919629b0a7f576530.pdf +8384e104796488fa2667c355dd15b65d6d5ff957,http://pdfs.semanticscholar.org/feea/803c1eaedc825509e24a8c1279ffe0251d9d.pdf +c23153aade9be0c941390909c5d1aad8924821db,http://pdfs.semanticscholar.org/c231/53aade9be0c941390909c5d1aad8924821db.pdf +d4b88be6ce77164f5eea1ed2b16b985c0670463a,http://pdfs.semanticscholar.org/d4b8/8be6ce77164f5eea1ed2b16b985c0670463a.pdf +c220f457ad0b28886f8b3ef41f012dd0236cd91a,http://pdfs.semanticscholar.org/c220/f457ad0b28886f8b3ef41f012dd0236cd91a.pdf +1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113,http://pdfs.semanticscholar.org/1bc9/aaa41c08bbd0c01dd5d7d7ebf3e48ae78113.pdf +88f2952535df5859c8f60026f08b71976f8e19ec,http://pdfs.semanticscholar.org/88f2/952535df5859c8f60026f08b71976f8e19ec.pdf +68f89c1ee75a018c8eff86e15b1d2383c250529b,http://pdfs.semanticscholar.org/68f8/9c1ee75a018c8eff86e15b1d2383c250529b.pdf +4b04247c7f22410681b6aab053d9655cf7f3f888,http://pdfs.semanticscholar.org/60e5/0494dc26bd30e3c49b93ca85d0f79bf5c53f.pdf +2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,http://pdfs.semanticscholar.org/2af1/9b5ff2ca428fa42ef4b85ddbb576b5d9a5cc.pdf +384f972c81c52fe36849600728865ea50a0c4670,http://pdfs.semanticscholar.org/dad7/3d70b4fa77d67c5c02e3ecba21c52ab9a386.pdf +22f94c43dd8b203f073f782d91e701108909690b,http://pdfs.semanticscholar.org/22f9/4c43dd8b203f073f782d91e701108909690b.pdf +74875368649f52f74bfc4355689b85a724c3db47,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Yan_Object_Detection_by_2015_CVPR_paper.pdf +03dba79518434ba4a937b2980fbdc8bafc048b36,http://people.ee.duke.edu/~jh313/resource/TRAIT.pdf +f5af4e9086b0c3aee942cb93ece5820bdc9c9748,http://pdfs.semanticscholar.org/f5af/4e9086b0c3aee942cb93ece5820bdc9c9748.pdf +2f78e471d2ec66057b7b718fab8bfd8e5183d8f4,http://pdfs.semanticscholar.org/2f78/e471d2ec66057b7b718fab8bfd8e5183d8f4.pdf +6769cfbd85329e4815bb1332b118b01119975a95,http://pdfs.semanticscholar.org/6769/cfbd85329e4815bb1332b118b01119975a95.pdf +087002ab569e35432cdeb8e63b2c94f1abc53ea9,http://sergioescalera.com/wp-content/uploads/2015/07/CVPR2015MoeslundSlides.pdf +c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,http://pdfs.semanticscholar.org/c00f/402b9cfc3f8dd2c74d6b3552acbd1f358301.pdf +5dd496e58cfedfc11b4b43c4ffe44ac72493bf55,http://pdfs.semanticscholar.org/5dd4/96e58cfedfc11b4b43c4ffe44ac72493bf55.pdf +3af8d38469fb21368ee947d53746ea68cd64eeae,http://pdfs.semanticscholar.org/3af8/d38469fb21368ee947d53746ea68cd64eeae.pdf +7f23a4bb0c777dd72cca7665a5f370ac7980217e,http://pdfs.semanticscholar.org/ce70/fecc7150816e081b422cbc157bd9019cdf25.pdf +287900f41dd880802aa57f602e4094a8a9e5ae56,https://www.comp.nus.edu.sg/~tsim/documents/cross-expression.pdf +7fc76446d2b11fc0479df6e285723ceb4244d4ef,http://pdfs.semanticscholar.org/7fc7/6446d2b11fc0479df6e285723ceb4244d4ef.pdf +4cac9eda716a0addb73bd7ffea2a5fb0e6ec2367,http://pdfs.semanticscholar.org/4cac/9eda716a0addb73bd7ffea2a5fb0e6ec2367.pdf +411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8,http://pdfs.semanticscholar.org/411e/e9236095f8f5ca3b9ef18fd3381c1c68c4b8.pdf +b81cae2927598253da37954fb36a2549c5405cdb,http://pdfs.semanticscholar.org/d892/753827950a227179b691e6df85820ab7c417.pdf +0b84f07af44f964817675ad961def8a51406dd2e,https://arxiv.org/pdf/1604.02531v2.pdf +7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21f,http://cvrr.ucsd.edu/publications/2012/Martin_AutoUI2012.pdf +757e4cb981e807d83539d9982ad325331cb59b16,http://pdfs.semanticscholar.org/757e/4cb981e807d83539d9982ad325331cb59b16.pdf +f67a73c9dd1e05bfc51219e70536dbb49158f7bc,http://pdfs.semanticscholar.org/f67a/73c9dd1e05bfc51219e70536dbb49158f7bc.pdf +fa398c6d6bd03df839dce7b59e04f473bc0ed660,https://www.researchgate.net/profile/Sujata_Pandey/publication/4308761_A_Novel_Approach_for_Face_Recognition_Using_DCT_Coefficients_Re-scaling_for_Illumination_Normalization/links/004635211c385bb7e3000000.pdf +83b7578e2d9fa60d33d9336be334f6f2cc4f218f,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_101_ext.pdf +13d9da779138af990d761ef84556e3e5c1e0eb94,http://www.cs.berkeley.edu/~malik/papers/ferencz-learnedmiller-malik08.pdf +3dcebd4a1d66313dcd043f71162d677761b07a0d,http://cvhci.ira.uka.de/download/publications/2008/siu2008_lbp.pdf +3f0e0739677eb53a9d16feafc2d9a881b9677b63,http://pdfs.semanticscholar.org/d309/e414f0d6e56e7ba45736d28ee58ae2bad478.pdf +0c30f6303dc1ff6d05c7cee4f8952b74b9533928,http://humansensing.cs.cmu.edu/sites/default/files/15parda.pdf +0b2277a0609565c30a8ee3e7e193ce7f79ab48b0,http://ivg.au.tsinghua.edu.cn/paper/2012_Cost-sensitive%20semi-supervised%20discriminant%20analysis%20for%20face%20recognition.pdf +8ec82da82416bb8da8cdf2140c740e1574eaf84f,http://pdfs.semanticscholar.org/8ec8/2da82416bb8da8cdf2140c740e1574eaf84f.pdf +477811ff147f99b21e3c28309abff1304106dbbe,http://pdfs.semanticscholar.org/f0f8/23511188d8c10b67512d23eb9cb7f3dd2f9a.pdf +68d40176e878ebffbc01ffb0556e8cb2756dd9e9,http://pdfs.semanticscholar.org/68d4/0176e878ebffbc01ffb0556e8cb2756dd9e9.pdf +0fe96806c009e8d095205e8f954d41b2b9fd5dcf,http://pdfs.semanticscholar.org/51be/ffe5f96ccb6b64057a540a7874185ccad8d7.pdf +0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64,http://mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mm1039.pdf +7d8c2d29deb80ceed3c8568100376195ce0914cb,https://arxiv.org/pdf/1708.01988v1.pdf +3edc43e336be075dca77c7e173b555b6c14274d8,http://pdfs.semanticscholar.org/3edc/43e336be075dca77c7e173b555b6c14274d8.pdf +0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,http://pdfs.semanticscholar.org/0e5d/cc6ae52625fd0637c6bba46a973e46d58b9c.pdf +304b1f14ca6a37552dbfac443f3d5b36dbe1a451,http://pdfs.semanticscholar.org/304b/1f14ca6a37552dbfac443f3d5b36dbe1a451.pdf +2e091b311ac48c18aaedbb5117e94213f1dbb529,http://pdfs.semanticscholar.org/b1a1/a049f1d78f6e3d072236237c467292ccd537.pdf +b5402c03a02b059b76be829330d38db8e921e4b5,http://pdfs.semanticscholar.org/b540/2c03a02b059b76be829330d38db8e921e4b5.pdf +1862cb5728990f189fa91c67028f6d77b5ac94f6,http://lvdmaaten.github.io/publications/papers/CVPR_2014.pdf +8b2704a5218a6ef70e553eaf0a463bd55129b69d,http://pdfs.semanticscholar.org/8b27/04a5218a6ef70e553eaf0a463bd55129b69d.pdf +8f89aed13cb3555b56fccd715753f9ea72f27f05,http://pdfs.semanticscholar.org/8f89/aed13cb3555b56fccd715753f9ea72f27f05.pdf +1dc241ee162db246882f366644171c11f7aed96d,http://pdfs.semanticscholar.org/1dc2/41ee162db246882f366644171c11f7aed96d.pdf +197eaa59a003a4c7cc77c1abe0f99d942f716942,http://www.lv-nus.org/papers%5C2009%5C2009_mm_age.pdf +6412d8bbcc01f595a2982d6141e4b93e7e982d0f,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Kang_Deep_Convolutional_Neural_CVPR_2017_paper.pdf +143bee9120bcd7df29a0f2ad6f0f0abfb23977b8,http://pdfs.semanticscholar.org/143b/ee9120bcd7df29a0f2ad6f0f0abfb23977b8.pdf +132f88626f6760d769c95984212ed0915790b625,http://pdfs.semanticscholar.org/132f/88626f6760d769c95984212ed0915790b625.pdf +1962e4c9f60864b96c49d85eb897141486e9f6d1,http://www.patternrecognition.cn/~zhongjin/2011/2011Lai_NCP.pdf +3042d3727b2f80453ff5378b4b3043abb2d685a1,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0219.pdf +9863dd1e2a3d3b4910a91176ac0f2fee5eb3b5e1,http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/kim-ieee-2006.pdf +4adca62f888226d3a16654ca499bf2a7d3d11b71,http://pdfs.semanticscholar.org/5525/119941f6710fcde85cf71cc2ca25484e78c6.pdf +413a184b584dc2b669fbe731ace1e48b22945443,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_00911.pdf +22717ad3ad1dfcbb0fd2f866da63abbde9af0b09,http://pdfs.semanticscholar.org/2271/7ad3ad1dfcbb0fd2f866da63abbde9af0b09.pdf +7ab7befcd319d55d26c1e4b7b9560da5763906f3,http://www.researchgate.net/profile/Lee_Ping-Han/publication/236160185_Facial_Trait_Code/links/0c96051e26825bd65a000000.pdf +4b71d1ff7e589b94e0f97271c052699157e6dc4a,http://pdfs.semanticscholar.org/4b71/d1ff7e589b94e0f97271c052699157e6dc4a.pdf +52a9f957f776c8b3d913cfcd20452b9e31c27845,http://pdfs.semanticscholar.org/52a9/f957f776c8b3d913cfcd20452b9e31c27845.pdf +721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,http://pdfs.semanticscholar.org/74f1/9d0986c9d39aabb359abaa2a87a248a48deb.pdf +a3c8c7da177cd08978b2ad613c1d5cb89e0de741,http://pdfs.semanticscholar.org/a3c8/c7da177cd08978b2ad613c1d5cb89e0de741.pdf +616d3d6d82dbc2697d150e879996d878ef74faef,https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2016_Khorrami_ICIP_FP.pdf +3e51d634faacf58e7903750f17111d0d172a0bf1,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569924869.pdf +ca83053d9a790319b11a04eac5ab412e7fcab914,http://pdfs.semanticscholar.org/ca83/053d9a790319b11a04eac5ab412e7fcab914.pdf +3083d2c6d4f456e01cbb72930dc2207af98a6244,http://pdfs.semanticscholar.org/3083/d2c6d4f456e01cbb72930dc2207af98a6244.pdf +a784a0d1cea26f18626682ab108ce2c9221d1e53,http://openaccess.thecvf.com/content_ICCV_2017/papers/Agustsson_Anchored_Regression_Networks_ICCV_2017_paper.pdf +05ea7930ae26165e7e51ff11b91c7aa8d7722002,http://www.stat.ucla.edu/~sczhu/papers/PAMI_car_occlusion_AOG.pdf +e3917d6935586b90baae18d938295e5b089b5c62,http://www.iti.gr/files/tip05tsalakanidou.pdf +81e366ed1834a8d01c4457eccae4d57d169cb932,http://www-public.int-edu.eu/~horain/Publications/Wesierski%20ICCV_2013.pdf +8e33183a0ed7141aa4fa9d87ef3be334727c76c0,http://pdfs.semanticscholar.org/8e33/183a0ed7141aa4fa9d87ef3be334727c76c0.pdf +0dfa460a35f7cab4705726b6367557b9f7842c65,https://arxiv.org/pdf/1504.01561v1.pdf +5dcf78de4d3d867d0fd4a3105f0defae2234b9cb,http://pdfs.semanticscholar.org/5dcf/78de4d3d867d0fd4a3105f0defae2234b9cb.pdf +33554ff9d1d3b32f67020598320d3d761d7ec81f,http://pdfs.semanticscholar.org/3355/4ff9d1d3b32f67020598320d3d761d7ec81f.pdf +41aa209e9d294d370357434f310d49b2b0baebeb,https://arxiv.org/pdf/1605.05440v1.pdf +63488398f397b55552f484409b86d812dacde99a,http://pdfs.semanticscholar.org/6348/8398f397b55552f484409b86d812dacde99a.pdf +1c2724243b27a18a2302f12dea79d9a1d4460e35,http://read.pudn.com/downloads157/doc/697237/kfd/Fisher+Kernel%20criterion%20for%20discriminant%20analysis.pdf +2c0acaec54ab2585ff807e18b6b9550c44651eab,http://pdfs.semanticscholar.org/2c0a/caec54ab2585ff807e18b6b9550c44651eab.pdf +19841b721bfe31899e238982a22257287b9be66a,http://pdfs.semanticscholar.org/1984/1b721bfe31899e238982a22257287b9be66a.pdf +d6c7092111a8619ed7a6b01b00c5f75949f137bf,http://pdfs.semanticscholar.org/d6c7/092111a8619ed7a6b01b00c5f75949f137bf.pdf +310da8bd81c963bd510bf9aaa4d028a643555c84,http://www.cs.sunysb.edu/~ial/content/papers/2005/Zhang2005cvpr2.pdf +78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c,http://pdfs.semanticscholar.org/78a1/1b7d2d7e1b19d92d2afd51bd3624eca86c3c.pdf +345bea5f7d42926f857f395c371118a00382447f,http://grail.cs.washington.edu/wp-content/uploads/2016/09/kemelmacher2016tp.pdf +9be94fa0330dd493f127d51e4ef7f9fd64613cfc,http://pdfs.semanticscholar.org/9be9/4fa0330dd493f127d51e4ef7f9fd64613cfc.pdf +bafb8812817db7445fe0e1362410a372578ec1fc,http://www.cin.ufpe.br/~rps/Artigos/Image-Quality-Based%20Adaptive%20Face%20Recognition.pdf +0c7f27d23a162d4f3896325d147f412c40160b52,http://pdfs.semanticscholar.org/0c7f/27d23a162d4f3896325d147f412c40160b52.pdf +5860cf0f24f2ec3f8cbc39292976eed52ba2eafd,http://pdfs.semanticscholar.org/5860/cf0f24f2ec3f8cbc39292976eed52ba2eafd.pdf +a694180a683f7f4361042c61648aa97d222602db,http://www.iab-rubric.org/papers/ICB16-Autoscat.pdf +50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Qu_Towards_Robust_Cascaded_2015_CVPR_paper.pdf +b375db63742f8a67c2a7d663f23774aedccc84e5,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W17/papers/Conti_Brain-inspired_Classroom_Occupancy_2014_CVPR_paper.pdf +56f231fc40424ed9a7c93cbc9f5a99d022e1d242,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf +6e93fd7400585f5df57b5343699cb7cda20cfcc2,http://pdfs.semanticscholar.org/a52f/4d315adf0aa60ba284fd4caf22485625cedf.pdf +75fcbb01bc7e53e9de89cb1857a527f97ea532ce,http://pdfs.semanticscholar.org/75fc/bb01bc7e53e9de89cb1857a527f97ea532ce.pdf +2d38fd1df95f5025e2cee5bc439ba92b369a93df,http://pdfs.semanticscholar.org/2d38/fd1df95f5025e2cee5bc439ba92b369a93df.pdf +dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb,http://pdfs.semanticscholar.org/dc2e/805d0038f9d1b3d1bc79192f1d90f6091ecb.pdf +7fce5769a7d9c69248178989a99d1231daa4fce9,http://pdfs.semanticscholar.org/7fce/5769a7d9c69248178989a99d1231daa4fce9.pdf +fc798314994bf94d1cde8d615ba4d5e61b6268b6,http://pdfs.semanticscholar.org/fc79/8314994bf94d1cde8d615ba4d5e61b6268b6.pdf +5b6593a6497868a0d19312952d2b753232414c23,http://pdfs.semanticscholar.org/5b65/93a6497868a0d19312952d2b753232414c23.pdf +ef2a5a26448636570986d5cda8376da83d96ef87,http://pdfs.semanticscholar.org/ef2a/5a26448636570986d5cda8376da83d96ef87.pdf +543f21d81bbea89f901dfcc01f4e332a9af6682d,http://pdfs.semanticscholar.org/543f/21d81bbea89f901dfcc01f4e332a9af6682d.pdf +8323529cf37f955fb3fc6674af6e708374006a28,http://researcher.ibm.com/researcher/files/us-smiyaza/FPIV04.pdf +2a4153655ad1169d482e22c468d67f3bc2c49f12,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf +8c9c8111e18f8798a612e7386e88536dfe26455e,http://pdfs.semanticscholar.org/8c9c/8111e18f8798a612e7386e88536dfe26455e.pdf +3bfb9ba4b74b2b952868f590ff2f164de0c7d402,http://qil.uh.edu/qil/websitecontent/pdf/2015-8.pdf +11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0,http://pdfs.semanticscholar.org/11ac/88aebe0230e743c7ea2c2a76b5d4acbfecd0.pdf +852ff0d410a25ebb7936043a05efe2469c699e4b,http://pdfs.semanticscholar.org/852f/f0d410a25ebb7936043a05efe2469c699e4b.pdf +5fba1b179ac80fee80548a0795d3f72b1b6e49cd,http://pdfs.semanticscholar.org/fe88/e30cfca9161b598ea8a26985df5832259924.pdf +2162654cb02bcd10794ae7e7d610c011ce0fb51b,http://www.jdl.ac.cn/doc/2011/201511610103648366_%E5%88%98%E8%B4%A4%E6%98%8E.pdf +b133b2d7df9b848253b9d75e2ca5c68e21eba008,http://pdfs.semanticscholar.org/c2c1/ab9eac2907e15618d80f5ce0c9b60f2c36cc.pdf +134aad8153ab78345b2581efac2fe175a3084154,http://www.cs.utexas.edu/~ai-lab/pubs/vijayanarasimhan_grauman_cvpr2008.pdf +161eb88031f382e6a1d630cd9a1b9c4bc6b47652,http://arxiv.org/pdf/1505.04026v1.pdf +2a88541448be2eb1b953ac2c0c54da240b47dd8a,http://pdfs.semanticscholar.org/2c44/0d01738a2fed3e3bd6520471acacb6c96e3b.pdf +3fa738ab3c79eacdbfafa4c9950ef74f115a3d84,http://pdfs.semanticscholar.org/3fa7/38ab3c79eacdbfafa4c9950ef74f115a3d84.pdf +d930ec59b87004fd172721f6684963e00137745f,http://pdfs.semanticscholar.org/d930/ec59b87004fd172721f6684963e00137745f.pdf +d4001826cc6171c821281e2771af3a36dd01ffc0,http://pdfs.semanticscholar.org/d400/1826cc6171c821281e2771af3a36dd01ffc0.pdf +185360fe1d024a3313042805ee201a75eac50131,http://cvit.iiit.ac.in/papers/deidentTCSVT2k11.pdf +1a9a192b700c080c7887e5862c1ec578012f9ed1,http://pdfs.semanticscholar.org/1a9a/192b700c080c7887e5862c1ec578012f9ed1.pdf +34c8de02a5064e27760d33b861b7e47161592e65,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w14/papers/Han_Video_Action_Recognition_CVPR_2017_paper.pdf +763158cef9d1e4041f24fce4cf9d6a3b7a7f08ff,http://pdfs.semanticscholar.org/7631/58cef9d1e4041f24fce4cf9d6a3b7a7f08ff.pdf +01cc8a712e67384f9ef9f30580b7415bfd71e980,http://pdfs.semanticscholar.org/01cc/8a712e67384f9ef9f30580b7415bfd71e980.pdf +744db9bd550bf5e109d44c2edabffec28c867b91,http://pdfs.semanticscholar.org/744d/b9bd550bf5e109d44c2edabffec28c867b91.pdf +65bba9fba03e420c96ec432a2a82521ddd848c09,http://pdfs.semanticscholar.org/65bb/a9fba03e420c96ec432a2a82521ddd848c09.pdf +3d24b386d003bee176a942c26336dbe8f427aadd,https://arxiv.org/pdf/1611.09967v1.pdf +21104bcf07ef0269ab133471a3200b9bf94b2948,http://www.cs.utexas.edu/~grauman/papers/liang-cvpr2014.pdf +3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e,http://www.wjscheirer.com/papers/wjs_cswb2010_grab.pdf +5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725,http://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf +5859774103306113707db02fe2dd3ac9f91f1b9e,http://www.wisdom.weizmann.ac.il/~shimon/papers/IJCV29_98.pdf +04f55f81bbd879773e2b8df9c6b7c1d324bc72d8,http://pdfs.semanticscholar.org/04f5/5f81bbd879773e2b8df9c6b7c1d324bc72d8.pdf +5e59193a0fc22a0c37301fb05b198dd96df94266,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dessein_Example-Based_Modeling_of_ICCV_2015_paper.pdf +8c955f3827a27e92b6858497284a9559d2d0623a,http://pdfs.semanticscholar.org/8c95/5f3827a27e92b6858497284a9559d2d0623a.pdf +c6ea6fee4823b511eecf41f6c2574a0728055baf,http://pdfs.semanticscholar.org/c6ea/6fee4823b511eecf41f6c2574a0728055baf.pdf +d185f4f05c587e23c0119f2cdfac8ea335197ac0,http://pdfs.semanticscholar.org/d185/f4f05c587e23c0119f2cdfac8ea335197ac0.pdf +4e4fa167d772f34dfffc374e021ab3044566afc3,http://pdfs.semanticscholar.org/4e4f/a167d772f34dfffc374e021ab3044566afc3.pdf +0601416ade6707c689b44a5bb67dab58d5c27814,http://pdfs.semanticscholar.org/0601/416ade6707c689b44a5bb67dab58d5c27814.pdf +0c069a870367b54dd06d0da63b1e3a900a257298,http://pdfs.semanticscholar.org/cdb8/36785579a4ea3d0eff26dbba8cf845a347d2.pdf +b5cd8151f9354ee38b73be1d1457d28e39d3c2c6,http://pdfs.semanticscholar.org/b5cd/8151f9354ee38b73be1d1457d28e39d3c2c6.pdf +71fd29c2ae9cc9e4f959268674b6b563c06d9480,http://pdfs.semanticscholar.org/71fd/29c2ae9cc9e4f959268674b6b563c06d9480.pdf +48729e4de8aa478ee5eeeb08a72a446b0f5367d5,http://faculty.ucmerced.edu/mhyang/papers/icip14_cfh.pdf +21b16df93f0fab4864816f35ccb3207778a51952,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2015/06.18.19.06/doc/PID3766353.pdf +94b9c0a6515913bad345f0940ee233cdf82fffe1,http://pdfs.semanticscholar.org/94b9/c0a6515913bad345f0940ee233cdf82fffe1.pdf +8bf57dc0dd45ed969ad9690033d44af24fd18e05,http://pdfs.semanticscholar.org/8bf5/7dc0dd45ed969ad9690033d44af24fd18e05.pdf +6c2b392b32b2fd0fe364b20c496fcf869eac0a98,http://www3.ntu.edu.sg/home/EXDJiang/JiangX.D.-MVA-13.pdf +26433d86b9c215b5a6871c70197ff4081d63054a,https://www.researchgate.net/profile/WL_Woo/publication/221093080_Multimodal_biometric_fusion_at_feature_level_Face_and_palmprint/links/0fcfd5134b4f62c892000000.pdf +2050847bc7a1a0453891f03aeeb4643e360fde7d,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf +0be2245b2b016de1dcce75ffb3371a5e4b1e731b,http://pdfs.semanticscholar.org/0be2/245b2b016de1dcce75ffb3371a5e4b1e731b.pdf +39150acac6ce7fba56d54248f9c0badbfaeef0ea,http://pdfs.semanticscholar.org/3915/0acac6ce7fba56d54248f9c0badbfaeef0ea.pdf +7b9961094d3e664fc76b12211f06e12c47a7e77d,http://pdfs.semanticscholar.org/7b99/61094d3e664fc76b12211f06e12c47a7e77d.pdf +922838dd98d599d1d229cc73896d55e7a769aa7c,http://www.cs.umass.edu/~elm/papers/HuangCVPR12.pdf +78f08cc9f845dc112f892a67e279a8366663e26d,http://pdfs.semanticscholar.org/78f0/8cc9f845dc112f892a67e279a8366663e26d.pdf +0729628db4bb99f1f70dd6cb2353d7b76a9fce47,http://pdfs.semanticscholar.org/f02a/dc21a307d32c1145f4ade65504b016b0faac.pdf +02601d184d79742c7cd0c0ed80e846d95def052e,http://arxiv.org/pdf/1503.00488v3.pdf +ad75330953d9aacc05b5ca1a50c4fed3e7ca1e21,http://www.science.uva.nl/~asalah/dibeklioglu11design.pdf +214ac8196d8061981bef271b37a279526aab5024,http://pdfs.semanticscholar.org/214a/c8196d8061981bef271b37a279526aab5024.pdf +4b28de1ebf6b6cb2479b9176fab50add6ed75b78,http://vision.ucsd.edu/sites/default/files/cvpr05a.pdf +3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001,http://pdfs.semanticscholar.org/4032/8c9de5a0a90a8c24e80db7924f0281b46484.pdf +31c0968fb5f587918f1c49bf7fa51453b3e89cf7,http://pdfs.semanticscholar.org/31c0/968fb5f587918f1c49bf7fa51453b3e89cf7.pdf +6180bc0816b1776ca4b32ced8ea45c3c9ce56b47,http://pdfs.semanticscholar.org/793e/92ed3f89c8636c8ca1175c1183ba812da245.pdf +5ea9063b44b56d9c1942b8484572790dff82731e,https://ibug.doc.ic.ac.uk/media/uploads/documents/mlsp_2007_kotsia.pdf +2a0623ae989f2236f5e1fe3db25ab708f5d02955,http://pdfs.semanticscholar.org/2a06/23ae989f2236f5e1fe3db25ab708f5d02955.pdf +3d68cedd80babfbb04ab197a0b69054e3c196cd9,http://www.cim.mcgill.ca/~mrl/pubs/malika/Meghjani09_Masters_Thesis.pdf +25695abfe51209798f3b68fb42cfad7a96356f1f,http://pdfs.semanticscholar.org/2569/5abfe51209798f3b68fb42cfad7a96356f1f.pdf +a8583e80a455507a0f146143abeb35e769d25e4e,http://pdfs.semanticscholar.org/a858/3e80a455507a0f146143abeb35e769d25e4e.pdf +5da139fc43216c86d779938d1c219b950dd82a4c,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0200205.pdf +3a2cf589f5e11ca886417b72c2592975ff1d8472,http://pdfs.semanticscholar.org/3a2c/f589f5e11ca886417b72c2592975ff1d8472.pdf +90fb58eeb32f15f795030c112f5a9b1655ba3624,http://pdfs.semanticscholar.org/90fb/58eeb32f15f795030c112f5a9b1655ba3624.pdf +08c18b2f57c8e6a3bfe462e599a6e1ce03005876,http://ca.cs.cmu.edu/sites/default/files/8uca_final_revision.pdf +8a3c5507237957d013a0fe0f082cab7f757af6ee,http://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf +0435a34e93b8dda459de49b499dd71dbb478dc18,http://pdfs.semanticscholar.org/0435/a34e93b8dda459de49b499dd71dbb478dc18.pdf +251281d9cbd207038efbde0515f4077541967239,http://staff.estem-uc.edu.au/roland/files/2009/05/Ramana-Murthy_Radwan_Goecke_ICIP2014_DenseBodyPartTrajectoriesForHumanActionRecognition.pdf +60c699b9ec71f7dcbc06fa4fd98eeb08e915eb09,https://arxiv.org/pdf/1706.03947v1.pdf +38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,http://pdfs.semanticscholar.org/e9a4/1f856a474aa346491fe76151869e3f548172.pdf +0716e1ad868f5f446b1c367721418ffadfcf0519,http://pdfs.semanticscholar.org/6e05/5db22fbddb524ccb0006145db7944d1ed31c.pdf +2f16baddac6af536451b3216b02d3480fc361ef4,http://cs.nyu.edu/~fergus/teaching/vision/10_facerec.pdf +0b8b8776684009e537b9e2c0d87dbd56708ddcb4,http://pdfs.semanticscholar.org/0b8b/8776684009e537b9e2c0d87dbd56708ddcb4.pdf +bd9157331104a0708aa4f8ae79b7651a5be797c6,http://pdfs.semanticscholar.org/bd91/57331104a0708aa4f8ae79b7651a5be797c6.pdf +9993f1a7cfb5b0078f339b9a6bfa341da76a3168,http://pdfs.semanticscholar.org/9993/f1a7cfb5b0078f339b9a6bfa341da76a3168.pdf +22137ce9c01a8fdebf92ef35407a5a5d18730dde,http://pdfs.semanticscholar.org/2213/7ce9c01a8fdebf92ef35407a5a5d18730dde.pdf +732e8d8f5717f8802426e1b9debc18a8361c1782,http://pdfs.semanticscholar.org/732e/8d8f5717f8802426e1b9debc18a8361c1782.pdf +e39a0834122e08ba28e7b411db896d0fdbbad9ba,http://www.ece.ualberta.ca/~djoseph/publications/journal/TPAMI_2012.pdf +08d40ee6e1c0060d3b706b6b627e03d4b123377a,http://pdfs.semanticscholar.org/3daa/fe6389d877fe15d8823cdf5ac15fd919676f.pdf +670637d0303a863c1548d5b19f705860a23e285c,https://classes.cs.uoregon.edu/16F/cis607photo/faces.pdf +c92bb26238f6e30196b0c4a737d8847e61cfb7d4,http://pdfs.semanticscholar.org/c92b/b26238f6e30196b0c4a737d8847e61cfb7d4.pdf +831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9,http://pdfs.semanticscholar.org/831f/bef657cc5e1bbf298ce6aad6b62f00a5b5d9.pdf +1ecb56e7c06a380b3ce582af3a629f6ef0104457,http://pdfs.semanticscholar.org/1ecb/56e7c06a380b3ce582af3a629f6ef0104457.pdf +4b507a161af8a7dd41e909798b9230f4ac779315,http://pdfs.semanticscholar.org/5202/4d271f516c7d0dfa73009bf7537549ef74f7.pdf +6fa0c206873dcc5812f7ea74a48bb4bf4b273494,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W03/papers/Suk_Real-time_Mobile_Facial_2014_CVPR_paper.pdf +36ea75e14b69bed454fde6076ea6b85ed87fbb14,http://pdfs.semanticscholar.org/36ea/75e14b69bed454fde6076ea6b85ed87fbb14.pdf +6ee64c19efa89f955011531cde03822c2d1787b8,http://pdfs.semanticscholar.org/6ee6/4c19efa89f955011531cde03822c2d1787b8.pdf +2d244d70ed1a2ba03d152189f1f90ff2b4f16a79,http://pdfs.semanticscholar.org/2d24/4d70ed1a2ba03d152189f1f90ff2b4f16a79.pdf +6ab8f2081b1420a6214a6c127e5828c14979d414,http://pdfs.semanticscholar.org/6ab8/f2081b1420a6214a6c127e5828c14979d414.pdf +22dada4a7ba85625824489375184ba1c3f7f0c8f,http://arxiv.org/pdf/1506.02328v1.pdf +5bcc8ef74efbb959407adfda15a01dad8fcf1648,http://pdfs.semanticscholar.org/5bcc/8ef74efbb959407adfda15a01dad8fcf1648.pdf +4f298d6d0c8870acdbf94fe473ebf6814681bd1f,http://pdfs.semanticscholar.org/9979/b794d0bd06a1959a6b169f2cf32ba8ba376b.pdf +4cb0e0c0e9b92e457f2c546dc25b9a4ff87ff819,http://dayongwang.info/pdf/2012-CIKM.pdf +0aa405447a8797e509521f0570e4679a42fdac9b,http://mplab.ucsd.edu/~jake/AISeminar26Sep2011.pdf +24cf9fe9045f50c732fc9c602358af89ae40a9f7,http://pdfs.semanticscholar.org/b3e7/4cbe27454e32b4b35014af831783d3480ad5.pdf +367f2668b215e32aff9d5122ce1f1207c20336c8,http://pdfs.semanticscholar.org/367f/2668b215e32aff9d5122ce1f1207c20336c8.pdf +41b38da2f4137c957537908f9cb70cbd2fac8bc1,https://arxiv.org/pdf/1701.01879v1.pdf +37179032085e710d1d62a1ba2e9c1f63bb4dde91,http://eprints.soton.ac.uk/363288/1/tome%20tifs.pdf +7c119e6bdada2882baca232da76c35ae9b5277f8,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SMC_2009/PDFs/1070.pdf +a33f20773b46283ea72412f9b4473a8f8ad751ae,http://pdfs.semanticscholar.org/a33f/20773b46283ea72412f9b4473a8f8ad751ae.pdf +3abe50d0a806a9f5a5626f60f590632a6d87f0c4,http://vis.uky.edu/~gravity/publications/2008/Estimating_Xinyu.pdf +026e4ee480475e63ae68570d73388f8dfd4b4cde,http://pdfs.semanticscholar.org/026e/4ee480475e63ae68570d73388f8dfd4b4cde.pdf +085ceda1c65caf11762b3452f87660703f914782,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jourabloo_Large-Pose_Face_Alignment_CVPR_2016_paper.pdf +1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58d,http://pdfs.semanticscholar.org/1fef/b2f8dd1efcdb57d5c2966d81f9ab22c1c58d.pdf +839a2155995acc0a053a326e283be12068b35cb8,http://pdfs.semanticscholar.org/839a/2155995acc0a053a326e283be12068b35cb8.pdf +b7c5f885114186284c51e863b58292583047a8b4,http://pdfs.semanticscholar.org/b7c5/f885114186284c51e863b58292583047a8b4.pdf +d9327b9621a97244d351b5b93e057f159f24a21e,http://www.cil.pku.edu.cn/publications/papers/CS2010gusuicheng.pdf +8cb55413f1c5b6bda943697bba1dc0f8fc880d28,http://cvhci.anthropomatik.kit.edu/~stiefel/papers/ICCV07_031.pdf +226a5ff790b969593596a52b55b3718dcdd7bb7f,https://www.cise.ufl.edu/~jho/papers/IEEE06.pdf +4c6daffd092d02574efbf746d086e6dc0d3b1e91,http://pdfs.semanticscholar.org/4c6d/affd092d02574efbf746d086e6dc0d3b1e91.pdf +7c61d21446679776f7bdc7afd13aedc96f9acac1,http://pdfs.semanticscholar.org/e199/9cee8e6d717ad1181ae9e17c366e152e805e.pdf +0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,http://ca.cs.cmu.edu/sites/default/files/132010_CVPR_AU_Long.pdf +32c20afb5c91ed7cdbafb76408c3a62b38dd9160,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Hassner_Viewing_Real-World_Faces_2013_ICCV_paper.pdf +00075519a794ea546b2ca3ca105e2f65e2f5f471,http://pdfs.semanticscholar.org/0007/5519a794ea546b2ca3ca105e2f65e2f5f471.pdf +9820920d4544173e97228cb4ab8b71ecf4548475,http://pdfs.semanticscholar.org/9820/920d4544173e97228cb4ab8b71ecf4548475.pdf +4414a328466db1e8ab9651bf4e0f9f1fe1a163e4,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2010/Contents/papers/1569290719.pdf +433d2d5528d1401a402f2c1db40b933c494f11ba,https://www.researchgate.net/profile/Xudong_Jiang3/publication/4248964_Face_Recognition_Based_on_Discriminant_Evaluation_in_the_Whole_Space/links/0046351ef2d1c48d55000000.pdf +5c124b57699be19cd4eb4e1da285b4a8c84fc80d,http://www.iis.ee.ic.ac.uk/icvl/doc/cvpr14_xiaowei.pdf +3107085973617bbfc434c6cb82c87f2a952021b7,http://pdfs.semanticscholar.org/cee6/6bd89d1e25355e78573220adcd017a2d97d8.pdf +976e0264bb57786952a987d4456850e274714fb8,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Dehghan_Improving_Semantic_Concept_2014_CVPR_paper.pdf +435dc062d565ce87c6c20a5f49430eb9a4b573c4,http://pdfs.semanticscholar.org/435d/c062d565ce87c6c20a5f49430eb9a4b573c4.pdf +d57dca4413ad4f33c97ae06a5a7fc86dc5a75f8b,http://iplab.dmi.unict.it/sites/default/files/_11.pdf +e4c3d5d43cb62ac5b57d74d55925bdf76205e306,http://pdfs.semanticscholar.org/e4c3/d5d43cb62ac5b57d74d55925bdf76205e306.pdf +83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,http://pdfs.semanticscholar.org/83fd/2d2d5ad6e4e153672c9b6d1a3785f754b60e.pdf +2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f,http://pdfs.semanticscholar.org/2b0f/f4b82bac85c4f980c40b3dc4fde05d3cc23f.pdf +0e73d2b0f943cf8559da7f5002414ccc26bc77cd,https://people.cs.umass.edu/~smaji/presentations/similarity-poster-cvpr14.pdf +a703d51c200724517f099ee10885286ddbd8b587,http://pdfs.semanticscholar.org/a703/d51c200724517f099ee10885286ddbd8b587.pdf +5892f8367639e9c1e3cf27fdf6c09bb3247651ed,http://pdfs.semanticscholar.org/5892/f8367639e9c1e3cf27fdf6c09bb3247651ed.pdf +924b14a9e36d0523a267293c6d149bca83e73f3b,http://pdfs.semanticscholar.org/924b/14a9e36d0523a267293c6d149bca83e73f3b.pdf +63ce37da6c0c789099307337bb913e1104473854,http://pdfs.semanticscholar.org/63ce/37da6c0c789099307337bb913e1104473854.pdf +0394e684bd0a94fc2ff09d2baef8059c2652ffb0,http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/TIP2522378.pdf +1ca815327e62c70f4ee619a836e05183ef629567,http://www.humansensing.cs.cmu.edu/sites/default/files/Xiong_Global_Supervised_Descent_2015_CVPR_paper.pdf +d46b4e6871fc9974542215f001e92e3035aa08d9,http://pdfs.semanticscholar.org/d46b/4e6871fc9974542215f001e92e3035aa08d9.pdf +0aa74ad36064906e165ac4b79dec298911a7a4db,http://pdfs.semanticscholar.org/7645/11b63b0eeba9f3dfe1e5ec9ff261cdc59d25.pdf +2784d9212dee2f8a660814f4b85ba564ec333720,http://people.cs.umass.edu/~elm/papers/cvpr2010_imagetrans.pdf +4f9958946ad9fc71c2299847e9ff16741401c591,http://pdfs.semanticscholar.org/4f99/58946ad9fc71c2299847e9ff16741401c591.pdf +7003d903d5e88351d649b90d378f3fc5f211282b,http://pdfs.semanticscholar.org/7003/d903d5e88351d649b90d378f3fc5f211282b.pdf +429d4848d03d2243cc6a1b03695406a6de1a7abd,http://pdfs.semanticscholar.org/429d/4848d03d2243cc6a1b03695406a6de1a7abd.pdf +5502dfe47ac26e60e0fb25fc0f810cae6f5173c0,http://pdfs.semanticscholar.org/5502/dfe47ac26e60e0fb25fc0f810cae6f5173c0.pdf +4adb97b096b700af9a58d00e45a2f980136fcbb5,http://pdfs.semanticscholar.org/9ea2/23c070ec9a00f4cb5ca0de35d098eb9a8e32.pdf +7808937b46acad36e43c30ae4e9f3fd57462853d,http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf +ea96bc017fb56593a59149e10d5f14011a3744a0,http://pdfs.semanticscholar.org/ea96/bc017fb56593a59149e10d5f14011a3744a0.pdf +40a5b32e261dc5ccc1b5df5d5338b7d3fe10370d,http://pdfs.semanticscholar.org/40a5/b32e261dc5ccc1b5df5d5338b7d3fe10370d.pdf +568cff415e7e1bebd4769c4a628b90db293c1717,http://pdfs.semanticscholar.org/568c/ff415e7e1bebd4769c4a628b90db293c1717.pdf +55cc90968e5e6ed413dd607af2a850ac2f54e378,http://pdfs.semanticscholar.org/55cc/90968e5e6ed413dd607af2a850ac2f54e378.pdf +a01f9461bc8cf8fe40c26d223ab1abea5d8e2812,http://pdfs.semanticscholar.org/a01f/9461bc8cf8fe40c26d223ab1abea5d8e2812.pdf +614a7c42aae8946c7ad4c36b53290860f6256441,https://arxiv.org/pdf/1604.02878.pdf +95f26d1c80217706c00b6b4b605a448032b93b75,http://pdfs.semanticscholar.org/95f2/6d1c80217706c00b6b4b605a448032b93b75.pdf +48734cb558b271d5809286447ff105fd2e9a6850,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w41/papers/Mahoor_Facial_Expression_Recognition_CVPR_2017_paper.pdf +bc98027b331c090448492eb9e0b9721e812fac84,http://pdfs.semanticscholar.org/bc98/027b331c090448492eb9e0b9721e812fac84.pdf +9d839dfc9b6a274e7c193039dfa7166d3c07040b,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00869.pdf +27c6cd568d0623d549439edc98f6b92528d39bfe,http://openaccess.thecvf.com/content_iccv_2015/papers/Hsu_Regressive_Tree_Structured_ICCV_2015_paper.pdf +4657d87aebd652a5920ed255dca993353575f441,http://pdfs.semanticscholar.org/4657/d87aebd652a5920ed255dca993353575f441.pdf +d06c8e3c266fbae4026d122ec9bd6c911fcdf51d,http://pdfs.semanticscholar.org/d06c/8e3c266fbae4026d122ec9bd6c911fcdf51d.pdf +9547a7bce2b85ef159b2d7c1b73dea82827a449f,http://tdlc.ucsd.edu/research/publications/Wu_Bartlett_Movellan_Facial_Expression_2010.pdf +a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d,http://pdfs.semanticscholar.org/a2b5/4f4d73bdb80854aa78f0c5aca3d8b56b571d.pdf +6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8,http://pdfs.semanticscholar.org/6af6/5e2a1eba6bd62843e7bf717b4ccc91bce2b8.pdf +1a1118cd4339553ad0544a0a131512aee50cf7de,http://pdfs.semanticscholar.org/1a11/18cd4339553ad0544a0a131512aee50cf7de.pdf +60496b400e70acfbbf5f2f35b4a49de2a90701b5,http://pdfs.semanticscholar.org/6049/6b400e70acfbbf5f2f35b4a49de2a90701b5.pdf +2020e8c0be8fa00d773fd99b6da55029a6a83e3d,http://pdfs.semanticscholar.org/9ca3/806dd01f8aded02e88c7022716b7fef46423.pdf +153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4,http://pdfs.semanticscholar.org/153f/5ad54dd101f7f9c2ae17e96c69fe84aa9de4.pdf +4e97b53926d997f451139f74ec1601bbef125599,http://pdfs.semanticscholar.org/4e97/b53926d997f451139f74ec1601bbef125599.pdf +6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3,http://www.ifp.uiuc.edu/~iracohen/publications/CohenSebeMS05.pdf +79fa57dedafddd3f3720ca26eb41c82086bfb332,http://www.cis.pku.edu.cn/vision/Visual&Robot/publication/doc/IROS05_wu.pdf +291265db88023e92bb8c8e6390438e5da148e8f5,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf +f2c30594d917ea915028668bc2a481371a72a14d,http://pdfs.semanticscholar.org/f2c3/0594d917ea915028668bc2a481371a72a14d.pdf +c65a394118d34beda5dd01ae0df163c3db88fceb,http://pdfs.semanticscholar.org/c65a/394118d34beda5dd01ae0df163c3db88fceb.pdf +ce5e50467e43e3178cbd86cfc3348e3f577c4489,https://www.computer.org/csdl/proceedings/avss/2013/9999/00/06636683.pdf +80135ed7e34ac1dcc7f858f880edc699a920bf53,http://pdfs.semanticscholar.org/8013/5ed7e34ac1dcc7f858f880edc699a920bf53.pdf +50d15cb17144344bb1879c0a5de7207471b9ff74,http://pdfs.semanticscholar.org/50d1/5cb17144344bb1879c0a5de7207471b9ff74.pdf +51c3050fb509ca685de3d9ac2e965f0de1fb21cc,http://www.cs.toronto.edu/~law/publications/CVPR/2014/fantope_regularization.pdf +b340f275518aa5dd2c3663eed951045a5b8b0ab1,http://www.eecs.qmul.ac.uk/~sgg/papers/GongShanXiang_ACM_ICMI2007.pdf +392c3cabe516c0108b478152902a9eee94f4c81e,http://pdfs.semanticscholar.org/392c/3cabe516c0108b478152902a9eee94f4c81e.pdf +29e793271370c1f9f5ac03d7b1e70d1efa10577c,http://pdfs.semanticscholar.org/29e7/93271370c1f9f5ac03d7b1e70d1efa10577c.pdf +0bc0f9178999e5c2f23a45325fa50300961e0226,http://pdfs.semanticscholar.org/0bc0/f9178999e5c2f23a45325fa50300961e0226.pdf +91df860368cbcebebd83d59ae1670c0f47de171d,http://pdfs.semanticscholar.org/91df/860368cbcebebd83d59ae1670c0f47de171d.pdf +1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6,http://www.cse.msu.edu/~liuxm/publication/Han_Otto_Liu_Jain_TPAMI14.pdf +3d948e4813a6856e5b8b54c20e50cc5050e66abe,http://pdfs.semanticscholar.org/3d94/8e4813a6856e5b8b54c20e50cc5050e66abe.pdf +995d55fdf5b6fe7fb630c93a424700d4bc566104,http://openaccess.thecvf.com/content_iccv_2015/papers/Nilsson_The_One_Triangle_ICCV_2015_paper.pdf +c980443ca996402de4b5e5424f872acda0368831,http://homepage.tudelft.nl/19j49/Publications_files/Final_CVPR10.pdf +405b43f4a52f70336ac1db36d5fa654600e9e643,http://pdfs.semanticscholar.org/405b/43f4a52f70336ac1db36d5fa654600e9e643.pdf +11b3877df0213271676fa8aa347046fd4b1a99ad,http://pdfs.semanticscholar.org/11b3/877df0213271676fa8aa347046fd4b1a99ad.pdf +ce3f3088d0c0bf236638014a299a28e492069753,http://pdfs.semanticscholar.org/ce3f/3088d0c0bf236638014a299a28e492069753.pdf +0fd3a7ee228bbc3dd4a111dae04952a1ee58a8cd,http://media.cs.tsinghua.edu.cn/~ahz/papers/%5B2011%5D%5Bacpr%5Dwang%20nan.pdf +2b507f659b341ed0f23106446de8e4322f4a3f7e,http://pdfs.semanticscholar.org/2b50/7f659b341ed0f23106446de8e4322f4a3f7e.pdf +2cae619d0209c338dc94593892a787ee712d9db0,http://vis-www.cs.umass.edu/papers/cvpr08shrf.pdf +9d55ec73cab779403cd933e6eb557fb04892b634,http://pdfs.semanticscholar.org/9d55/ec73cab779403cd933e6eb557fb04892b634.pdf +7f2a4cd506fe84dee26c0fb41848cb219305173f,http://pdfs.semanticscholar.org/7f2a/4cd506fe84dee26c0fb41848cb219305173f.pdf +3c78b642289d6a15b0fb8a7010a1fb829beceee2,http://pdfs.semanticscholar.org/3c78/b642289d6a15b0fb8a7010a1fb829beceee2.pdf +7aa4c16a8e1481629f16167dea313fe9256abb42,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf +07de8371ad4901356145722aa29abaeafd0986b9,http://pdfs.semanticscholar.org/07de/8371ad4901356145722aa29abaeafd0986b9.pdf +bbc4b376ebd296fb9848b857527a72c82828fc52,http://pdfs.semanticscholar.org/bbc4/b376ebd296fb9848b857527a72c82828fc52.pdf +f05ad40246656a977cf321c8299158435e3f3b61,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Lu_Face_Recognition_Using_2013_ICCV_paper.pdf +1a7a2221fed183b6431e29a014539e45d95f0804,http://www.cs.colostate.edu/~vision/publications/Bolme2007b.pdf +ded41c9b027c8a7f4800e61b7cfb793edaeb2817,http://pdfs.semanticscholar.org/ded4/1c9b027c8a7f4800e61b7cfb793edaeb2817.pdf +738a985fba44f9f5acd516e07d0d9578f2ffaa4e,http://pdfs.semanticscholar.org/738a/985fba44f9f5acd516e07d0d9578f2ffaa4e.pdf +146bbf00298ee1caecde3d74e59a2b8773d2c0fc,http://pdfs.semanticscholar.org/146b/bf00298ee1caecde3d74e59a2b8773d2c0fc.pdf +902114feaf33deac209225c210bbdecbd9ef33b1,http://pdfs.semanticscholar.org/b5b0/8aaf56df40260abea890813503003485bda3.pdf +c9f588d295437009994ddaabb64fd4e4c499b294,http://pdfs.semanticscholar.org/c9f5/88d295437009994ddaabb64fd4e4c499b294.pdf +b75cee96293c11fe77ab733fc1147950abbe16f9,http://pdfs.semanticscholar.org/e1a6/16674f63dd54b495d06cf1b7bd59f4cb772e.pdf +8fbec9105d346cd23d48536eb20c80b7c2bbbe30,http://conradsanderson.id.au/reading_group/Barr_Effectiveness_Face_WACV_2014.pdf +169618b8dc9b348694a31c6e9e17b989735b4d39,http://vllab.ucmerced.edu/hylee/publication/ICCV17_OPN.pdf +4f0bf2508ae801aee082b37f684085adf0d06d23,http://pdfs.semanticscholar.org/4f0b/f2508ae801aee082b37f684085adf0d06d23.pdf +dad7b8be074d7ea6c3f970bd18884d496cbb0f91,http://pdfs.semanticscholar.org/dad7/b8be074d7ea6c3f970bd18884d496cbb0f91.pdf +601834a4150e9af028df90535ab61d812c45082c,http://pdfs.semanticscholar.org/6018/34a4150e9af028df90535ab61d812c45082c.pdf +02e133aacde6d0977bca01ffe971c79097097b7f,http://pdfs.semanticscholar.org/02e1/33aacde6d0977bca01ffe971c79097097b7f.pdf +47638197d83a8f8174cdddc44a2c7101fa8301b7,http://grail.cs.washington.edu/wp-content/uploads/2015/08/saleh2013oad.pdf +d8896861126b7fd5d2ceb6fed8505a6dff83414f,http://pdfs.semanticscholar.org/d889/6861126b7fd5d2ceb6fed8505a6dff83414f.pdf +4be774af78f5bf55f7b7f654f9042b6e288b64bd,http://pdfs.semanticscholar.org/4be7/74af78f5bf55f7b7f654f9042b6e288b64bd.pdf +2914e8c62f0432f598251fae060447f98141e935,http://pdfs.semanticscholar.org/2914/e8c62f0432f598251fae060447f98141e935.pdf +57d37ad025b5796457eee7392d2038910988655a,http://pdfs.semanticscholar.org/57d3/7ad025b5796457eee7392d2038910988655a.pdf +2b773fe8f0246536c9c40671dfa307e98bf365ad,http://pdfs.semanticscholar.org/2b77/3fe8f0246536c9c40671dfa307e98bf365ad.pdf +017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637,http://pdfs.semanticscholar.org/017c/e398e1eb9f2eed82d0b22fb1c21d3bcf9637.pdf +ad247138e751cefa3bb891c2fe69805da9c293d7,http://pdfs.semanticscholar.org/ad24/7138e751cefa3bb891c2fe69805da9c293d7.pdf +7d9fe410f24142d2057695ee1d6015fb1d347d4a,http://pdfs.semanticscholar.org/7d9f/e410f24142d2057695ee1d6015fb1d347d4a.pdf +7d306512b545df98243f87cb8173df83b4672b18,http://pdfs.semanticscholar.org/7d30/6512b545df98243f87cb8173df83b4672b18.pdf +0a68747d001aba014acd3b6ec83ba9534946a0da,http://staff.estem-uc.edu.au/roland/files/2009/05/Dhall_Goecke_Gedeon_TAC2015_AutomaticGroupHappinessIntensityAnalysis.pdf +47b508abdaa5661fe14c13e8eb21935b8940126b,http://pdfs.semanticscholar.org/47b5/08abdaa5661fe14c13e8eb21935b8940126b.pdf +13afc4f8d08f766479577db2083f9632544c7ea6,https://cs.anu.edu.au/few/KSikka_EmotiW.pdf +7171b46d233810df57eaba44ccd8eabd0ad1f53a,http://pdfs.semanticscholar.org/7171/b46d233810df57eaba44ccd8eabd0ad1f53a.pdf +0a5ffc55b584da7918c2650f9d8602675d256023,http://pdfs.semanticscholar.org/0a5f/fc55b584da7918c2650f9d8602675d256023.pdf +51683eac8bbcd2944f811d9074a74d09d395c7f3,http://pdfs.semanticscholar.org/5168/3eac8bbcd2944f811d9074a74d09d395c7f3.pdf +4e8168fbaa615009d1618a9d6552bfad809309e9,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf +2db05ef11041447dbc735362db68b04e562c1e35,http://www.cs.berkeley.edu/~daf/eccv-sft.pdf +5239001571bc64de3e61be0be8985860f08d7e7e,http://pdfs.semanticscholar.org/5239/001571bc64de3e61be0be8985860f08d7e7e.pdf +7f205b9fca7e66ac80758c4d6caabe148deb8581,http://pdfs.semanticscholar.org/7f20/5b9fca7e66ac80758c4d6caabe148deb8581.pdf +8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4,http://www.apsipa.org/proceedings_2013/papers/280_automatic-facial-hsu-2931731.pdf +3624ca25f09f3acbcf4d3a4c40b9e45a29c22b94,http://pdfs.semanticscholar.org/3624/ca25f09f3acbcf4d3a4c40b9e45a29c22b94.pdf +1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,http://www.dcs.gla.ac.uk/~vincia/papers/shortsurvey.pdf +a75edf8124f5b52690c08ff35b0c7eb8355fe950,http://pdfs.semanticscholar.org/a75e/df8124f5b52690c08ff35b0c7eb8355fe950.pdf +4377b03bbee1f2cf99950019a8d4111f8de9c34a,http://www.umiacs.umd.edu/~morariu/publications/LiSelectiveEncoderICCV15.pdf +72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_094_ext.pdf +3b64efa817fd609d525c7244a0e00f98feacc8b4,https://arxiv.org/pdf/1502.04383v3.pdf +3f204a413d9c8c16f146c306c8d96b91839fed0c,http://www.menpo.org/pages/paper/Menpo_ACM_MM_2014.pdf +13c250fb740cb5616aeb474869db6ab11560e2a6,http://pdfs.semanticscholar.org/13c2/50fb740cb5616aeb474869db6ab11560e2a6.pdf +2e157e8b57f679c2f1b8e16d6e934f52312f08f6,http://pdfs.semanticscholar.org/2e15/7e8b57f679c2f1b8e16d6e934f52312f08f6.pdf +c472436764a30278337aca9681eee456bee95c34,http://pdfs.semanticscholar.org/c472/436764a30278337aca9681eee456bee95c34.pdf +c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3,http://www.isir.upmc.fr/files/2013ACTI2846.pdf +95aef5184b89daebd0c820c8102f331ea7cae1ad,http://www.dia.fi.upm.es/~pcr/publications/paa2008.pdf +70f189798c8b9f2b31c8b5566a5cf3107050b349,http://www.cs.colostate.edu/~vision/pasc/docs/pasc2013_NISTIR_061013.pdf +61f93ed515b3bfac822deed348d9e21d5dffe373,http://dvmmweb.cs.columbia.edu/files/set_hash_wacv17.pdf +01c9dc5c677aaa980f92c4680229db482d5860db,https://pages.iai.uni-bonn.de/gall_juergen/download/jgall_actiondetect_cvpr16.pdf +57bf9888f0dfcc41c5ed5d4b1c2787afab72145a,http://pdfs.semanticscholar.org/57bf/9888f0dfcc41c5ed5d4b1c2787afab72145a.pdf +d1959ba4637739dcc6cc6995e10fd41fd6604713,http://pdfs.semanticscholar.org/d195/9ba4637739dcc6cc6995e10fd41fd6604713.pdf +42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Saxena_Coordinated_Local_Metric_ICCV_2015_paper.pdf +e3657ab4129a7570230ff25ae7fbaccb4ba9950c,http://pdfs.semanticscholar.org/e365/7ab4129a7570230ff25ae7fbaccb4ba9950c.pdf +4cc681239c8fda3fb04ba7ac6a1b9d85b68af31d,http://pdfs.semanticscholar.org/56a6/77c889e0e2c9f68ab8ca42a7e63acf986229.pdf +3137a3fedf23717c411483c7b4bd2ed646258401,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_iccv_13.pdf +cd596a2682d74bdfa7b7160dd070b598975e89d9,http://pdfs.semanticscholar.org/cd59/6a2682d74bdfa7b7160dd070b598975e89d9.pdf +21bd9374c211749104232db33f0f71eab4df35d5,http://www.eurecom.fr/en/publication/5184/download/sec-publi-5184.pdf +a458b319f5a2763ff9c6dc959eefa77673c56671,http://people.tamu.edu/~amir.tahmasbi/publications/Fisher_ICCEA2010.pdf +081fb4e97d6bb357506d1b125153111b673cc128,http://pdfs.semanticscholar.org/081f/b4e97d6bb357506d1b125153111b673cc128.pdf +a52581a7b48138d7124afc7ccfcf8ec3b48359d0,http://pdfs.semanticscholar.org/a525/81a7b48138d7124afc7ccfcf8ec3b48359d0.pdf +622daa25b5e6af69f0dac3a3eaf4050aa0860396,http://pdfs.semanticscholar.org/af52/4ffcedaa50cff30607e6ad8e270ad0d7bf71.pdf +867e709a298024a3c9777145e037e239385c0129,http://pdfs.semanticscholar.org/867e/709a298024a3c9777145e037e239385c0129.pdf +6257a622ed6bd1b8759ae837b50580657e676192,http://pdfs.semanticscholar.org/b8d8/501595f38974e001a66752dc7098db13dfec.pdf +4d0ef449de476631a8d107c8ec225628a67c87f9,http://www.wjscheirer.com/papers/wjs_btas2010b_photohead.pdf +650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772,http://pdfs.semanticscholar.org/650b/fe7acc3f03eb4ba91d9f93da8ef0ae8ba772.pdf +a8035ca71af8cc68b3e0ac9190a89fed50c92332,http://pdfs.semanticscholar.org/a803/5ca71af8cc68b3e0ac9190a89fed50c92332.pdf +5c717afc5a9a8ccb1767d87b79851de8d3016294,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001845.pdf +79b669abf65c2ca323098cf3f19fa7bdd837ff31,http://dro.deakin.edu.au/eserv/DU:30044585/venkatesh-efficienttensor-2008.pdf +bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103,http://pdfs.semanticscholar.org/bf0f/0eb0fb31ee498da4ae2ca9b467f730ea9103.pdf +10e7dd3bbbfbc25661213155e0de1a9f043461a2,http://pdfs.semanticscholar.org/eb9c/24686d2d8a65894e6d708c6107724f2b6c04.pdf +405526dfc79de98f5bf3c97bf4aa9a287700f15d,http://pdfs.semanticscholar.org/8a6c/57fcd99a77982ec754e0b97fd67519ccb60c.pdf +259706f1fd85e2e900e757d2656ca289363e74aa,http://pdfs.semanticscholar.org/6f98/3e8f26066f2ea486f6653b87154360d948ca.pdf +68e9c837431f2ba59741b55004df60235e50994d,http://pdfs.semanticscholar.org/68e9/c837431f2ba59741b55004df60235e50994d.pdf +8a91ad8c46ca8f4310a442d99b98c80fb8f7625f,http://vislab.isr.ist.utl.pt/wp-content/uploads/2016/02/2015_TIP.pdf +1862bfca2f105fddfc79941c90baea7db45b8b16,http://vision.cs.utexas.edu/projects/rationales/rationales.pdf +0b79356e58a0df1d0efcf428d0c7c4651afa140d,http://pdfs.semanticscholar.org/7725/05d940a31ca237563cfb2d5c05c62742993f.pdf +7cee802e083c5e1731ee50e731f23c9b12da7d36,http://pdfs.semanticscholar.org/7cee/802e083c5e1731ee50e731f23c9b12da7d36.pdf +100428708e4884300e4c1ac1f84cbb16e7644ccf,http://www.math.uh.edu/~dlabate/ICASSP_2014.pdf +3419af6331e4099504255a38de6f6b7b3b1e5c14,http://pdfs.semanticscholar.org/3419/af6331e4099504255a38de6f6b7b3b1e5c14.pdf +5d88702cdc879396b8b2cc674e233895de99666b,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_Exploiting_Feature_Hierarchies_ICCV_2015_paper.pdf +1e8eec6fc0e4538e21909ab6037c228547a678ba,http://pdfs.semanticscholar.org/1e8e/ec6fc0e4538e21909ab6037c228547a678ba.pdf +2f53b97f0de2194d588bc7fb920b89cd7bcf7663,http://pdfs.semanticscholar.org/2f53/b97f0de2194d588bc7fb920b89cd7bcf7663.pdf +089b5e8eb549723020b908e8eb19479ba39812f5,http://www.face-recognition-challenge.com/RobustnessOfDCNN-preprint.pdf +58081cb20d397ce80f638d38ed80b3384af76869,http://pdfs.semanticscholar.org/5808/1cb20d397ce80f638d38ed80b3384af76869.pdf +88bef50410cea3c749c61ed68808fcff84840c37,https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiropoulos2011sparse.pdf +e475e857b2f5574eb626e7e01be47b416deff268,http://pdfs.semanticscholar.org/e475/e857b2f5574eb626e7e01be47b416deff268.pdf +656aeb92e4f0e280576cbac57d4abbfe6f9439ea,http://pdfs.semanticscholar.org/656a/eb92e4f0e280576cbac57d4abbfe6f9439ea.pdf +bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,http://pdfs.semanticscholar.org/bd13/f50b8997d0733169ceba39b6eb1bda3eb1aa.pdf +2d146cc0908c931d87f6e6e5d08b117c30a69b8d,http://www.cs.cityu.edu.hk/~yihong/download/TSMC.pdf +861802ac19653a7831b314cd751fd8e89494ab12,http://btpwpdf.ijoy365.com/time-of-flight-and-depth-imaging-marcin-63540537.pdf +7c0a6824b556696ad7bdc6623d742687655852db,http://2010.telfor.rs/files/radovi//TELFOR2010_05_35.pdf +499343a2fd9421dca608d206e25e53be84489f44,http://pdfs.semanticscholar.org/4993/43a2fd9421dca608d206e25e53be84489f44.pdf +f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7,http://pdfs.semanticscholar.org/f3d9/e347eadcf0d21cb0e92710bc906b22f2b3e7.pdf +33030c23f6e25e30b140615bb190d5e1632c3d3b,http://pdfs.semanticscholar.org/3303/0c23f6e25e30b140615bb190d5e1632c3d3b.pdf +0eff410cd6a93d0e37048e236f62e209bc4383d1,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICRA_2010/data/papers/0516.pdf +3e3a87eb24628ab075a3d2bde3abfd185591aa4c,http://pdfs.semanticscholar.org/3e3a/87eb24628ab075a3d2bde3abfd185591aa4c.pdf +729dbe38538fbf2664bc79847601f00593474b05,http://pdfs.semanticscholar.org/729d/be38538fbf2664bc79847601f00593474b05.pdf +fcd77f3ca6b40aad6edbd1dab9681d201f85f365,http://pdfs.semanticscholar.org/fcd7/7f3ca6b40aad6edbd1dab9681d201f85f365.pdf +09b80d8eea809529b08a8b0ff3417950c048d474,http://openaccess.thecvf.com/content_cvpr_2013/papers/Choi_Adding_Unlabeled_Samples_2013_CVPR_paper.pdf +726b8aba2095eef076922351e9d3a724bb71cb51,http://pdfs.semanticscholar.org/d06b/cb2d46342ee011e652990edf290a0876b502.pdf +03264e2e2709d06059dd79582a5cc791cbef94b1,http://pdfs.semanticscholar.org/0326/4e2e2709d06059dd79582a5cc791cbef94b1.pdf +090ff8f992dc71a1125636c1adffc0634155b450,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf +1939168a275013d9bc1afaefc418684caf99ba66,http://research.microsoft.com/en-us/um/people/jiansun/papers/CVPR11_FaceAPModel.pdf +cad52d74c1a21043f851ae14c924ac689e197d1f,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W16/papers/Alletto_From_Ego_to_2014_CVPR_paper.pdf +5058a7ec68c32984c33f357ebaee96c59e269425,http://pdfs.semanticscholar.org/5058/a7ec68c32984c33f357ebaee96c59e269425.pdf +8dffbb6d75877d7d9b4dcde7665888b5675deee1,http://pdfs.semanticscholar.org/8dff/bb6d75877d7d9b4dcde7665888b5675deee1.pdf +c34e48d637705ffb52360c2afb6b03efdeb680bf,http://pdfs.semanticscholar.org/c34e/48d637705ffb52360c2afb6b03efdeb680bf.pdf +466184b10fb7ce9857e6b5bd6b4e5003e09a0b16,http://pdfs.semanticscholar.org/a42f/433e500661589e567340fe7f7d761d1f14df.pdf +511b06c26b0628175c66ab70dd4c1a4c0c19aee9,http://pdfs.semanticscholar.org/511b/06c26b0628175c66ab70dd4c1a4c0c19aee9.pdf +e0ed0e2d189ff73701ec72e167d44df4eb6e864d,http://pdfs.semanticscholar.org/e0ed/0e2d189ff73701ec72e167d44df4eb6e864d.pdf +06c2dfe1568266ad99368fc75edf79585e29095f,http://ibug.doc.ic.ac.uk/media/uploads/documents/joan_cvpr2014.pdf +d687fa99586a9ad229284229f20a157ba2d41aea,http://pdfs.semanticscholar.org/d687/fa99586a9ad229284229f20a157ba2d41aea.pdf +c8e84cdff569dd09f8d31e9f9ba3218dee65e961,http://pdfs.semanticscholar.org/c8e8/4cdff569dd09f8d31e9f9ba3218dee65e961.pdf +4563b46d42079242f06567b3f2e2f7a80cb3befe,http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf +9d24179aa33a94c8c61f314203bf9e906d6b64de,http://www.decom.ufop.br/sibgrapi2012/eproceedings/technical/ts9/102146_3.pdf +826c66bd182b54fea3617192a242de1e4f16d020,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0001602.pdf +841bf196ee0086c805bd5d1d0bddfadc87e424ec,http://pdfs.semanticscholar.org/841b/f196ee0086c805bd5d1d0bddfadc87e424ec.pdf +bb69f750ccec9624f6dabd334251def2bbddf166,http://research.microsoft.com/en-us/um/people/leizhang/Paper/FG04-Yuxiao.pdf +e0d878cc095eaae220ad1f681b33d7d61eb5e425,http://pdfs.semanticscholar.org/e0d8/78cc095eaae220ad1f681b33d7d61eb5e425.pdf +3a04eb72aa64760dccd73e68a3b2301822e4cdc3,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Peng_Scalable_Sparse_Subspace_2013_CVPR_paper.pdf +cf86616b5a35d5ee777585196736dfafbb9853b5,http://www.research.rutgers.edu/~linzhong/PDF/TC_Facial.pdf +37ef18d71c1ca71c0a33fc625ef439391926bfbb,http://pdfs.semanticscholar.org/37ef/18d71c1ca71c0a33fc625ef439391926bfbb.pdf +14d4c019c3eac3c3fa888cb8c184f31457eced02,http://pdfs.semanticscholar.org/14d4/c019c3eac3c3fa888cb8c184f31457eced02.pdf +351158e4481e3197bd63acdafd73a5df8336143b,http://pdfs.semanticscholar.org/3511/58e4481e3197bd63acdafd73a5df8336143b.pdf +f75852386e563ca580a48b18420e446be45fcf8d,http://pdfs.semanticscholar.org/f758/52386e563ca580a48b18420e446be45fcf8d.pdf +066d71fcd997033dce4ca58df924397dfe0b5fd1,http://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf +006f283a50d325840433f4cf6d15876d475bba77,http://lvdmaaten.github.io/publications/papers/TPAMI_2014.pdf +02e628e99f9a1b295458cb453c09863ea1641b67,http://pdfs.semanticscholar.org/02e6/28e99f9a1b295458cb453c09863ea1641b67.pdf +26af867977f90342c9648ccf7e30f94470d40a73,http://pdfs.semanticscholar.org/26af/867977f90342c9648ccf7e30f94470d40a73.pdf +082ad50ac59fc694ba4369d0f9b87430553b11db,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553696.pdf +ff01bc3f49130d436fca24b987b7e3beedfa404d,http://pdfs.semanticscholar.org/ff01/bc3f49130d436fca24b987b7e3beedfa404d.pdf +34ccdec6c3f1edeeecae6a8f92e8bdb290ce40fd,http://pdfs.semanticscholar.org/34cc/dec6c3f1edeeecae6a8f92e8bdb290ce40fd.pdf +493ec9e567c5587c4cbeb5f08ca47408ca2d6571,http://pdfs.semanticscholar.org/493e/c9e567c5587c4cbeb5f08ca47408ca2d6571.pdf +10d334a98c1e2a9e96c6c3713aadd42a557abb8b,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Shi_Scene_Text_Recognition_2013_CVPR_paper.pdf +8ee5b1c9fb0bded3578113c738060290403ed472,https://infoscience.epfl.ch/record/200452/files/wacv2014-RGE.pdf +70569810e46f476515fce80a602a210f8d9a2b95,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Antipov_Apparent_Age_Estimation_CVPR_2016_paper.pdf +25127c2d9f14d36f03d200a65de8446f6a0e3bd6,http://pdfs.semanticscholar.org/2512/7c2d9f14d36f03d200a65de8446f6a0e3bd6.pdf +030c82b87e3cdc5ba35c443a93ff4a9d21c2bc2f,http://www.cfar.umd.edu/~shaohua/papers/zhou07tpami_gps.pdf +38192a0f9261d9727b119e294a65f2e25f72d7e6,http://pdfs.semanticscholar.org/3819/2a0f9261d9727b119e294a65f2e25f72d7e6.pdf +3918b425bb9259ddff9eca33e5d47bde46bd40aa,http://pdfs.semanticscholar.org/3918/b425bb9259ddff9eca33e5d47bde46bd40aa.pdf +3fac7c60136a67b320fc1c132fde45205cd2ac66,http://pdfs.semanticscholar.org/3fac/7c60136a67b320fc1c132fde45205cd2ac66.pdf +2f5ae4d6cd240ec7bc3f8ada47030e8439125df2,http://users.eecs.northwestern.edu/~xsh835/CVPR14_ExemplarFaceDetection.pdf +84dcf04802743d9907b5b3ae28b19cbbacd97981,http://pdfs.semanticscholar.org/84dc/f04802743d9907b5b3ae28b19cbbacd97981.pdf +8c643e1a61f3f563ec382c1e450f4b2b28122614,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2012/BTAS147.pdf +c2e6daebb95c9dfc741af67464c98f1039127627,http://pdfs.semanticscholar.org/c2e6/daebb95c9dfc741af67464c98f1039127627.pdf +15cf7bdc36ec901596c56d04c934596cf7b43115,http://pdfs.semanticscholar.org/15cf/7bdc36ec901596c56d04c934596cf7b43115.pdf +18cd79f3c93b74d856bff6da92bfc87be1109f80,http://pdfs.semanticscholar.org/18cd/79f3c93b74d856bff6da92bfc87be1109f80.pdf +0339459a5b5439d38acd9c40a0c5fea178ba52fb,http://pdfs.semanticscholar.org/0339/459a5b5439d38acd9c40a0c5fea178ba52fb.pdf +70bf1769d2d5737fc82de72c24adbb7882d2effd,http://pdfs.semanticscholar.org/70bf/1769d2d5737fc82de72c24adbb7882d2effd.pdf +6d2ca1ddacccc8c865112bd1fbf8b931c2ee8e75,http://hoques.com/Publications/2015/2015-ubicomp_rocspeak_Fung-etal.pdf +37ba12271d09d219dd1a8283bc0b4659faf3a6c6,http://www.eecs.qmul.ac.uk/~sgg/papers/LayneEtAl_ARTERMIS2013.pdf +b6a01cd4572b5f2f3a82732ef07d7296ab0161d3,http://pdfs.semanticscholar.org/b6a0/1cd4572b5f2f3a82732ef07d7296ab0161d3.pdf +d56fe69cbfd08525f20679ffc50707b738b88031,http://pdfs.semanticscholar.org/d56f/e69cbfd08525f20679ffc50707b738b88031.pdf +7e3367b9b97f291835cfd0385f45c75ff84f4dc5,https://infoscience.epfl.ch/record/182226/files/fg2013.pdf +0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,http://pdfs.semanticscholar.org/a32a/8d6d4c3b4d69544763be48ffa7cb0d7f2f23.pdf +74de03923a069ffc0fb79e492ee447299401001f,http://pdfs.semanticscholar.org/74de/03923a069ffc0fb79e492ee447299401001f.pdf +79dd787b2877cf9ce08762d702589543bda373be,http://fipa.cs.kit.edu/befit/workshop2011/pdf/slides/jianguo_li-slides.pdf +0c8a0a81481ceb304bd7796e12f5d5fa869ee448,http://pdfs.semanticscholar.org/0c8a/0a81481ceb304bd7796e12f5d5fa869ee448.pdf +03d9ccce3e1b4d42d234dba1856a9e1b28977640,http://pdfs.semanticscholar.org/03d9/ccce3e1b4d42d234dba1856a9e1b28977640.pdf +8b1db0894a23c4d6535b5adf28692f795559be90,http://pdfs.semanticscholar.org/8b1d/b0894a23c4d6535b5adf28692f795559be90.pdf +34d484b47af705e303fc6987413dc0180f5f04a9,http://pdfs.semanticscholar.org/34d4/84b47af705e303fc6987413dc0180f5f04a9.pdf +12ccfc188de0b40c84d6a427999239c6a379cd66,http://pdfs.semanticscholar.org/12cc/fc188de0b40c84d6a427999239c6a379cd66.pdf +f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1,http://pdfs.semanticscholar.org/f96b/dd1e2a940030fb0a89abbe6c69b8d7f6f0c1.pdf +2b4d092d70efc13790d0c737c916b89952d4d8c7,http://pdfs.semanticscholar.org/2b4d/092d70efc13790d0c737c916b89952d4d8c7.pdf +5b9d41e2985fa815c0f38a2563cca4311ce82954,http://www.iti.gr/files/3dpvt04tsalakanidou.pdf +40cd062438c280c76110e7a3a0b2cf5ef675052c,http://pdfs.semanticscholar.org/40cd/062438c280c76110e7a3a0b2cf5ef675052c.pdf +939123cf21dc9189a03671484c734091b240183e,http://publications.idiap.ch/downloads/papers/2015/Erdogmus_MMSP_2015.pdf +6409b8879c7e61acf3ca17bcc62f49edca627d4c,http://pdfs.semanticscholar.org/6409/b8879c7e61acf3ca17bcc62f49edca627d4c.pdf +199c2df5f2847f685796c2523221c6436f022464,https://static.aminer.org/pdf/PDF/000/322/051/self_quotient_image_for_face_recognition.pdf +887b7676a4efde616d13f38fcbfe322a791d1413,http://pdfs.semanticscholar.org/b4a0/cff84c35f75bcdb7aec3a0b1395edd15189b.pdf +7dffe7498c67e9451db2d04bb8408f376ae86992,http://pdfs.semanticscholar.org/7dff/e7498c67e9451db2d04bb8408f376ae86992.pdf +35f921def890210dda4b72247849ad7ba7d35250,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhou_Exemplar-Based_Graph_Matching_2013_ICCV_paper.pdf +134db6ca13f808a848321d3998e4fe4cdc52fbc2,http://ibug.doc.ic.ac.uk/media/uploads/documents/PanticPatras-SMCB-2005-FINAL.pdf +82b43bc9213230af9db17322301cbdf81e2ce8cc,http://pdfs.semanticscholar.org/82b4/3bc9213230af9db17322301cbdf81e2ce8cc.pdf +d963e640d0bf74120f147329228c3c272764932b,http://pdfs.semanticscholar.org/d963/e640d0bf74120f147329228c3c272764932b.pdf +1aa766bbd49bac8484e2545c20788d0f86e73ec2,http://inside.mines.edu/~jpaone/papers/IV15_BaselineFaceDetection_SHRP2NDS.pdf +bbe949c06dc4872c7976950b655788555fe513b8,http://www.quaero.org/media/files/bibliographie/ekenel_automaticfrequency.pdf +bbfe0527e277e0213aafe068113d719b2e62b09c,http://pdfs.semanticscholar.org/bbfe/0527e277e0213aafe068113d719b2e62b09c.pdf +7966146d72f9953330556baa04be746d18702047,http://pdfs.semanticscholar.org/7966/146d72f9953330556baa04be746d18702047.pdf +8c66378df977606d332fc3b0047989e890a6ac76,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_078_ext.pdf +374a0df2aa63b26737ee89b6c7df01e59b4d8531,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yuan_Temporal_Action_Localization_CVPR_2016_paper.pdf +bebb8a97b2940a4e5f6e9d3caf6d71af21585eda,http://pdfs.semanticscholar.org/bebb/8a97b2940a4e5f6e9d3caf6d71af21585eda.pdf +06a6347ac14fd0c6bb3ad8190cbe9cdfa5d59efc,https://www.cs.umd.edu/sites/default/files/scholarly_papers/Biswas_1.pdf +224d0eee53c2aa5d426d2c9b7fa5d843a47cf1db,http://www.ifp.illinois.edu/~jyang29/papers/CVPR13-PEM.pdf +30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,http://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf +081189493ca339ca49b1913a12122af8bb431984,http://pdfs.semanticscholar.org/0811/89493ca339ca49b1913a12122af8bb431984.pdf +3daf1191d43e21a8302d98567630b0e2025913b0,http://pdfs.semanticscholar.org/3daf/1191d43e21a8302d98567630b0e2025913b0.pdf +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,https://cs.uwaterloo.ca/~jhoey/papers/DhallICMI16.pdf +39c48309b930396a5a8903fdfe781d3e40d415d0,http://www.ri.cmu.edu/pub_files/2017/5/ant_low.pdf +3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5,http://www.rci.rutgers.edu/~vmp93/Journal_pub/T-pami_openset.pdf +b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172,https://arxiv.org/pdf/1802.00237v1.pdf +03baf00a3d00887dd7c828c333d4a29f3aacd5f5,http://pdfs.semanticscholar.org/03ba/f00a3d00887dd7c828c333d4a29f3aacd5f5.pdf +04644c97784700c449f2c885cb4cab86447f0bd4,http://www.seekdl.org/upload/files/20131209_014911.pdf +0e1a18576a7d3b40fe961ef42885101f4e2630f8,http://pdfs.semanticscholar.org/0e1a/18576a7d3b40fe961ef42885101f4e2630f8.pdf +8c7bceba769762126fd3dae78d622908bb83c3d3,http://qil.uh.edu/qil/websitecontent/pdf/2015-33.pdf +531fd9be964d18ba7970bd1ca6c3b9dc91b8d2ab,http://pdfs.semanticscholar.org/531f/d9be964d18ba7970bd1ca6c3b9dc91b8d2ab.pdf +db93049981abca0a281918b8d0655572922553de,http://www.cs.odu.edu/~sji/papers/pdf/Ji_TKDE08.pdf +38cbb500823057613494bacd0078aa0e57b30af8,https://ibug.doc.ic.ac.uk/media/uploads/documents/08014986.pdf +de8381903c579a4fed609dff3e52a1dc51154951,http://pdfs.semanticscholar.org/de83/81903c579a4fed609dff3e52a1dc51154951.pdf +73c5bab5c664afa96b1c147ff21439135c7d968b,http://uclab.khu.ac.kr/resources/publication/C_109.pdf +5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0,http://www.cs.ucr.edu/~mkafai/papers/Paper_tifs2014.pdf +82c303cf4852ad18116a2eea31e2291325bc19c3,http://pdfs.semanticscholar.org/82c3/03cf4852ad18116a2eea31e2291325bc19c3.pdf +03f14159718cb495ca50786f278f8518c0d8c8c9,http://www.acscrg.com/iccsce/2015/wp-content/uploads/2015/11/The-Latest-Schedule-23-Nov-2015.pdf +258a8c6710a9b0c2dc3818333ec035730062b1a5,http://pdfs.semanticscholar.org/258a/8c6710a9b0c2dc3818333ec035730062b1a5.pdf +100641ed8a5472536dde53c1f50fa2dd2d4e9be9,https://filebox.ece.vt.edu/~parikh/Publications/Parikh_hum_mac_com_Allerton_2013.pdf +171389529df11cc5a8b1fbbe659813f8c3be024d,http://pdfs.semanticscholar.org/1713/89529df11cc5a8b1fbbe659813f8c3be024d.pdf +29f0a868644462aa7ebc21f4510d4209932a1b8c,http://yamdrok.stanford.edu/crowd/icmr.pdf +6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Afshar_Facial_Expression_Recognition_CVPR_2016_paper.pdf +fdfaf46910012c7cdf72bba12e802a318b5bef5a,http://pdfs.semanticscholar.org/fdfa/f46910012c7cdf72bba12e802a318b5bef5a.pdf +1a140d9265df8cf50a3cd69074db7e20dc060d14,http://pdfs.semanticscholar.org/1a14/0d9265df8cf50a3cd69074db7e20dc060d14.pdf +8c6c0783d90e4591a407a239bf6684960b72f34e,http://pdfs.semanticscholar.org/8c6c/0783d90e4591a407a239bf6684960b72f34e.pdf +3328674d71a18ed649e828963a0edb54348ee598,http://ai.pku.edu.cn/application/files/1415/1124/8089/A_face_and_palmprint_recognition_approach_based_on_discriminant_DCT_feature_extraction.pdf +14014a1bdeb5d63563b68b52593e3ac1e3ce7312,http://pdfs.semanticscholar.org/1401/4a1bdeb5d63563b68b52593e3ac1e3ce7312.pdf +eacba5e8fbafb1302866c0860fc260a2bdfff232,http://pdfs.semanticscholar.org/eacb/a5e8fbafb1302866c0860fc260a2bdfff232.pdf +49659fb64b1d47fdd569e41a8a6da6aa76612903,http://pdfs.semanticscholar.org/4965/9fb64b1d47fdd569e41a8a6da6aa76612903.pdf +42e155ea109eae773dadf74d713485be83fca105,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569924805.pdf +38679355d4cfea3a791005f211aa16e76b2eaa8d,http://hub.hku.hk/bitstream/10722/127357/1/Content.pdf +18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,http://pdfs.semanticscholar.org/18c6/c92c39c8a5a2bb8b5673f339d3c26b8dcaae.pdf +b235b4ccd01a204b95f7408bed7a10e080623d2e,http://pdfs.semanticscholar.org/b235/b4ccd01a204b95f7408bed7a10e080623d2e.pdf +5b0bf1063b694e4b1575bb428edb4f3451d9bf04,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Yang_Facial_Shape_Tracking_ICCV_2015_paper.pdf +13db9466d2ddf3c30b0fd66db8bfe6289e880802,http://pdfs.semanticscholar.org/13db/9466d2ddf3c30b0fd66db8bfe6289e880802.pdf +3f623bb0c9c766a5ac612df248f4a59288e4d29f,http://pdfs.semanticscholar.org/3f62/3bb0c9c766a5ac612df248f4a59288e4d29f.pdf +adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,http://openaccess.thecvf.com/content_iccv_2015/papers/Li_Two_Birds_One_ICCV_2015_paper.pdf +7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4,http://pdfs.semanticscholar.org/7dda/2eb0054eb1aeda576ed2b27a84ddf09b07d4.pdf +221252be5d5be3b3e53b3bbbe7a9930d9d8cad69,http://pdfs.semanticscholar.org/2212/52be5d5be3b3e53b3bbbe7a9930d9d8cad69.pdf +9f65319b8a33c8ec11da2f034731d928bf92e29d,http://pdfs.semanticscholar.org/9f65/319b8a33c8ec11da2f034731d928bf92e29d.pdf +0241513eeb4320d7848364e9a7ef134a69cbfd55,http://videolectures.net/site/normal_dl/tag=71121/cvpr2010_yang_stis_01.v1.pdf +6462ef39ca88f538405616239471a8ea17d76259,http://pdfs.semanticscholar.org/6462/ef39ca88f538405616239471a8ea17d76259.pdf +4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,http://pdfs.semanticscholar.org/4276/eb27e2e4fc3e0ceb769eca75e3c73b7f2e99.pdf +7492c611b1df6bce895bee6ba33737e7fc7f60a6,https://ibug.doc.ic.ac.uk/media/uploads/documents/zafeiriou_the_3d_menpo_iccv_2017_paper.pdf +1f8e44593eb335c2253d0f22f7f9dc1025af8c0d,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/22607/Patras%20Fine-tuning%20regression%202014%20Accepted.pdf?sequence=1 +424259e9e917c037208125ccc1a02f8276afb667,http://arxiv.org/pdf/1604.06433v1.pdf +63213d080a43660ac59ea12e3c35e6953f6d7ce8,https://arxiv.org/pdf/1704.02895v1.pdf +7c95449a5712aac7e8c9a66d131f83a038bb7caa,http://pdfs.semanticscholar.org/7c95/449a5712aac7e8c9a66d131f83a038bb7caa.pdf +cef6cffd7ad15e7fa5632269ef154d32eaf057af,http://pdfs.semanticscholar.org/cef6/cffd7ad15e7fa5632269ef154d32eaf057af.pdf +d3424761e06a8f5f3c1f042f1f1163a469872129,http://pdfs.semanticscholar.org/d342/4761e06a8f5f3c1f042f1f1163a469872129.pdf +248db911e3a6a63ecd5ff6b7397a5d48ac15e77a,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Matthews_Enriching_Texture_Analysis_2013_CVPR_paper.pdf +6502cf30c088c6c7c4b2a05b7777b032c9dde7cd,http://vipl.ict.ac.cn/homepage/CVPR15Metric/ref/Learning%20compact%20binary%20face%20descriptor%20for%20face%20recognition_PAMI2015.pdf +0a23d374c6cf71a65e845569230420362fe4903a,http://mplab.ucsd.edu/~ksikka/in_the_wild.pdf +cc91001f9d299ad70deb6453d55b2c0b967f8c0d,http://pdfs.semanticscholar.org/cc91/001f9d299ad70deb6453d55b2c0b967f8c0d.pdf +c068263bb09968fe69c053906279b16532b778f4,http://www.researchgate.net/profile/Mahdi_Bejani/publication/257435889_Audiovisual_emotion_recognition_using_ANOVA_feature_selection_method_and_multi-classifier_neural_networks/links/0c960529aee6234edd000000.pdf +09b43b59879d59493df2a93c216746f2cf50f4ac,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_036_ext.pdf +d46fda4b49bbc219e37ef6191053d4327e66c74b,http://pdfs.semanticscholar.org/d46f/da4b49bbc219e37ef6191053d4327e66c74b.pdf +267c6e8af71bab68547d17966adfaab3b4711e6b,http://pdfs.semanticscholar.org/3097/60122ce6215876c013b2b0211f1df8239df5.pdf +75e5ba7621935b57b2be7bf4a10cad66a9c445b9,http://pdfs.semanticscholar.org/75e5/ba7621935b57b2be7bf4a10cad66a9c445b9.pdf +121fe33daf55758219e53249cf8bcb0eb2b4db4b,http://pdfs.semanticscholar.org/121f/e33daf55758219e53249cf8bcb0eb2b4db4b.pdf +363ca0a3f908859b1b55c2ff77cc900957653748,http://pdfs.semanticscholar.org/363c/a0a3f908859b1b55c2ff77cc900957653748.pdf +16671b2dc89367ce4ed2a9c241246a0cec9ec10e,http://www.bsp.brain.riken.jp/publications/2010/PAMI-clustering-He-cichocki.pdf +8f08b2101d43b1c0829678d6a824f0f045d57da5,http://pdfs.semanticscholar.org/b93b/f0a7e449cfd0db91a83284d9eba25a6094d8.pdf +c0d1d9a585ef961f1c8e6a1e922822811181615c,http://pdfs.semanticscholar.org/c0d1/d9a585ef961f1c8e6a1e922822811181615c.pdf +1ef5ce743a44d8a454dbfc2657e1e2e2d025e366,http://pdfs.semanticscholar.org/1ef5/ce743a44d8a454dbfc2657e1e2e2d025e366.pdf +0ea38a5ba0c8739d1196da5d20efb13406bb6550,https://filebox.ece.vt.edu/~parikh/Publications/ParikhGrauman_ICCV2011_relative.pdf +63cff99eff0c38b633c8a3a2fec8269869f81850,http://pdfs.semanticscholar.org/63cf/f99eff0c38b633c8a3a2fec8269869f81850.pdf +3bc776eb1f4e2776f98189e17f0d5a78bb755ef4,http://pdfs.semanticscholar.org/3bc7/76eb1f4e2776f98189e17f0d5a78bb755ef4.pdf +0181fec8e42d82bfb03dc8b82381bb329de00631,http://users.isy.liu.se/en/cvl/zografos/publications/CVPR2013.pdf +cda8fd9dd8b485e6854b1733d2294f69666c66f7,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2014/Activity%20Recognition%20in%20Unconstrained%20RGB-D%20Video%20using%203D%20Trajectories.pdf +14070478b8f0d84e5597c3e67c30af91b5c3a917,http://pdfs.semanticscholar.org/f0a5/f885aa14ac2bbb3cc8e4c7530f2449b2f160.pdf +dbd5e9691cab2c515b50dda3d0832bea6eef79f2,http://pdfs.semanticscholar.org/dbd5/e9691cab2c515b50dda3d0832bea6eef79f2.pdf +86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6,http://pdfs.semanticscholar.org/86e1/bdbfd13b9ed137e4c4b8b459a3980eb257f6.pdf +960ad662c2bb454d69006492cc3f52d1550de55d,http://www.research.att.com/~yifanhu/PUB/gmap_cga.pdf +35a39c7da14b1d288c0f9201374b307f667d63a3,http://media.au.tsinghua.edu.cn/liuyebin_files/TMM.pdf +0a85bdff552615643dd74646ac881862a7c7072d,https://fbcdn-dragon-a.akamaihd.net/hphotos-ak-xpa1/t39.2365-6/10000000_1672336992989417_1391274031_n/Beyond_Frontal_Faces_Improving_Person_Recognition_Using_Multiple_Cues.pdf +961939e96eed6620b1752721ab520745ac5329c6,http://www.cs.umd.edu/~gaurav/research/frgcWorkshop.pdf +5f676d6eca4c72d1a3f3acf5a4081c29140650fb,http://www.cs.ucr.edu/~mkafai/papers/Paper_fg.pdf +076d3fc800d882445c11b9af466c3af7d2afc64f,http://slsp.kaist.ac.kr/paperdata/Face_attribute_classification.pdf +4acd683b5f91589002e6f50885df51f48bc985f4,http://www.albany.edu/faculty/mchang2/files/2015_09_ICIP_Darpa.pdf +9306f61c7c3bdcdcb257cd437ca59df8e599e326,http://www.umiacs.umd.edu/~pvishalm/Conference_pub/ACPR2011_v2.pdf +eeb6d084f9906c53ec8da8c34583105ab5ab8284,http://pdfs.semanticscholar.org/eeb6/d084f9906c53ec8da8c34583105ab5ab8284.pdf +7ebd323ddfe3b6de8368c4682db6d0db7b70df62,http://pdfs.semanticscholar.org/7ebd/323ddfe3b6de8368c4682db6d0db7b70df62.pdf +688754568623f62032820546ae3b9ca458ed0870,http://pdfs.semanticscholar.org/d6c2/108259edf97fabcbe608766a6baa98ac893d.pdf +1ec98785ac91808455b753d4bc00441d8572c416,https://www.cl.cam.ac.uk/~tb346/pub/papers/fg2017_curriculum.pdf +57f8e1f461ab25614f5fe51a83601710142f8e88,http://pdfs.semanticscholar.org/57f8/e1f461ab25614f5fe51a83601710142f8e88.pdf +3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,http://pdfs.semanticscholar.org/3b02/aaccc9f063ae696c9d28bb06a8cd84b2abb8.pdf +24e099e77ae7bae3df2bebdc0ee4e00acca71250,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/22467/Yang%20Robust%20Face%20Alignment%20Under%20Occlusion%20via%20Regional%20Predictive%20Power%20Estimation%202015%20Accepted.pdf?sequence=1 +24830e3979d4ed01b9fd0feebf4a8fd22e0c35fd,http://www.researchgate.net/profile/Wei_Quan3/publication/221430048_High-resolution_comprehensive_3-D_dynamic_database_for_facial_articulation_analysis/links/0deec534309495805d000000.pdf +743e582c3e70c6ec07094887ce8dae7248b970ad,http://pdfs.semanticscholar.org/743e/582c3e70c6ec07094887ce8dae7248b970ad.pdf +5b5962bdb75c72848c1fb4b34c113ff6101b5a87,http://research.microsoft.com/en-us/um/people/leizhang/paper/TMM2011_Xiao.pdf +0595d18e8d8c9fb7689f636341d8a55cc15b3e6a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_102.pdf +282503fa0285240ef42b5b4c74ae0590fe169211,http://pdfs.semanticscholar.org/2825/03fa0285240ef42b5b4c74ae0590fe169211.pdf +2cb5db4df50921d276ad9e7186119a276324e465,http://cbcl.mit.edu/projects/cbcl/publications/ps/Leibo_Liao_Poggio_VISAPP_2014.pdf +26ec75b8ad066b36f814379a79ad57089c82c079,http://www.seas.upenn.edu/~bensapp/papers/ambig-tech-report-2009.pdf +48463a119f67ff2c43b7c38f0a722a32f590dfeb,http://pdfs.semanticscholar.org/4846/3a119f67ff2c43b7c38f0a722a32f590dfeb.pdf +ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9,http://pdfs.semanticscholar.org/ae18/ccb35a1a5d7b22f2a5760f706b1c11bf39a9.pdf +e8c9dcbf56714db53063b9c367e3e44300141ff6,http://faculty.virginia.edu/humandynamicslab/pubs/BrickHunterCohn-ACII2009.pdf +35ec9b8811f2d755c7ad377bdc29741b55b09356,http://pdfs.semanticscholar.org/35ec/9b8811f2d755c7ad377bdc29741b55b09356.pdf +30aa681ab80a830c3890090b0da3f1e786bd66ff,https://arxiv.org/pdf/1708.02337v1.pdf +0f1cbe4e26d584c82008ccef9fb1e4669b82de1f,http://figment.cse.usf.edu/~sfefilat/data/papers/MoBT9.24.pdf +4a2d54ea1da851151d43b38652b7ea30cdb6dfb2,http://pdfs.semanticscholar.org/4a2d/54ea1da851151d43b38652b7ea30cdb6dfb2.pdf +004d5491f673cd76150f43b0a0429214f5bfd823,http://www.cais.ntu.edu.sg/~chhoi/paper_pdf/fp130-wang.pdf +c5935b92bd23fd25cae20222c7c2abc9f4caa770,http://openaccess.thecvf.com/content_cvpr_2017/papers/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.pdf +4f0d5cbcd30fef3978b9691c2e736daed2f841c1,http://www.ics.uci.edu/~dramanan/papers/localdist_journal.pdf +a378fc39128107815a9a68b0b07cffaa1ed32d1f,http://pdfs.semanticscholar.org/a378/fc39128107815a9a68b0b07cffaa1ed32d1f.pdf +b3b532e8ea6304446b1623e83b0b9a96968f926c,http://pdfs.semanticscholar.org/b3b5/32e8ea6304446b1623e83b0b9a96968f926c.pdf +d9810786fccee5f5affaef59bc58d2282718af9b,http://pdfs.semanticscholar.org/d981/0786fccee5f5affaef59bc58d2282718af9b.pdf +488a61e0a1c3768affdcd3c694706e5bb17ae548,http://pdfs.semanticscholar.org/916b/f08e66c3dd11bec809dd8cbe384e8860bb66.pdf +6b089627a4ea24bff193611e68390d1a4c3b3644,http://publications.idiap.ch/downloads/reports/2012/Wallace_Idiap-RR-03-2012.pdf +3b7f6035a113b560760c5e8000540fc46f91fed5,http://www.vision.ee.ethz.ch/~zzhiwu/posters/ICCV13_Poster_ZhiwuHuang_v2.0.pdf +0f0366070b46972fcb2976775b45681e62a94a26,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Bendale_Reliable_Posterior_Probability_2014_CVPR_paper.pdf +1be785355ae29e32d85d86285bb8f90ea83171df,http://staff.estem-uc.edu.au/roland/files/2009/05/Sharma_Dhall_Gedeon_Goecke_ACII2013_ModelingStressUsingThermalFacialPatterns_ASpatio-TemporalApproach.pdf +6bb0425baac448297fbd29a00e9c9b9926ce8870,http://pdfs.semanticscholar.org/6bb0/425baac448297fbd29a00e9c9b9926ce8870.pdf +521cfbc1949289a7ffc3ff90af7c55adeb43db2a,http://pdfs.semanticscholar.org/521c/fbc1949289a7ffc3ff90af7c55adeb43db2a.pdf +90b7619eabe94731722ae884d0802256462457dc,https://arxiv.org/pdf/1511.09319v1.pdf +fafe69a00565895c7d57ad09ef44ce9ddd5a6caa,http://pdfs.semanticscholar.org/fafe/69a00565895c7d57ad09ef44ce9ddd5a6caa.pdf +439ec47725ae4a3660e509d32828599a495559bf,http://pdfs.semanticscholar.org/439e/c47725ae4a3660e509d32828599a495559bf.pdf +a52c72cd8538c62156aaa4d7e5c54946be53b9bb,http://pdfs.semanticscholar.org/a52c/72cd8538c62156aaa4d7e5c54946be53b9bb.pdf +41ab4939db641fa4d327071ae9bb0df4a612dc89,http://pdfs.semanticscholar.org/41ab/4939db641fa4d327071ae9bb0df4a612dc89.pdf +0f112e49240f67a2bd5aaf46f74a924129f03912,http://www.cse.msu.edu/biometrics/Publications/Face/ParkTongJain_AgeInvariantFaceRecognition_PAMI10.pdf +4ae59d2a28abd76e6d9fb53c9e7ece833dce7733,http://pdfs.semanticscholar.org/4ae5/9d2a28abd76e6d9fb53c9e7ece833dce7733.pdf +774cbb45968607a027ae4729077734db000a1ec5,http://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf +7384c39a2d084c93566b98bc4d81532b5ad55892,http://pdfs.semanticscholar.org/d0a5/0940a1bf951adaf22bd1fc72ea861b606cdb.pdf +0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7,http://pdfs.semanticscholar.org/0aa9/872daf2876db8d8e5d6197c1ce0f8efee4b7.pdf +b9c9c7ef82f31614c4b9226e92ab45de4394c5f6,http://pdfs.semanticscholar.org/b9c9/c7ef82f31614c4b9226e92ab45de4394c5f6.pdf +0b51197109813d921835cb9c4153b9d1e12a9b34,http://pdfs.semanticscholar.org/0b51/197109813d921835cb9c4153b9d1e12a9b34.pdf +759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,http://homes.cs.washington.edu/~neeraj/projects/faceverification/base/papers/nk_iccv2009_attrs.pdf +61542874efb0b4c125389793d8131f9f99995671,http://pdfs.semanticscholar.org/6154/2874efb0b4c125389793d8131f9f99995671.pdf +bb750b4c485bc90a47d4b2f723be4e4b74229f7a,http://pdfs.semanticscholar.org/bb75/0b4c485bc90a47d4b2f723be4e4b74229f7a.pdf +5865e824e3d8560e07840dd5f75cfe9bf68f9d96,http://pdfs.semanticscholar.org/5865/e824e3d8560e07840dd5f75cfe9bf68f9d96.pdf +512b4c8f0f3fb23445c0c2dab768bcd848fa8392,http://pdfs.semanticscholar.org/b85d/ac54bfa985137b3b071593b986ac92f32bed.pdf +973e3d9bc0879210c9fad145a902afca07370b86,http://pdfs.semanticscholar.org/973e/3d9bc0879210c9fad145a902afca07370b86.pdf +3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bd,http://pdfs.semanticscholar.org/3c11/a1f2bd4b9ce70f699fb6ad6398171a8ad3bd.pdf +25885e9292957feb89dcb4a30e77218ffe7b9868,http://pdfs.semanticscholar.org/2588/5e9292957feb89dcb4a30e77218ffe7b9868.pdf +32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347,https://arxiv.org/pdf/1410.1606v2.pdf +30b74e60ec11c0ebc4e640637d56d85872dd17ce,http://pdfs.semanticscholar.org/c810/9382eea8f3fc49b3e6ed13d36eb95a06d0ed.pdf +1b90507f02967ff143fce993a5abbfba173b1ed0,http://mrl.cs.vsb.cz/publications/fusek_ipta_2014.pdf +0509c442550571907258f07aad9da9d00b1e468b,https://pdfs.semanticscholar.org/0509/c442550571907258f07aad9da9d00b1e468b.pdf +2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3,http://pdfs.semanticscholar.org/77c1/56969e3b7fbc86432c5238a95679d25ac579.pdf +334166a942acb15ccc4517cefde751a381512605,http://pdfs.semanticscholar.org/3341/66a942acb15ccc4517cefde751a381512605.pdf +3983637022992a329f1d721bed246ae76bc934f7,http://www.cs.umd.edu/~djacobs/pubs_files/SlantCVPRFinal.pdf +6aa43f673cc42ed2fa351cbc188408b724cb8d50,http://pdfs.semanticscholar.org/6aa4/3f673cc42ed2fa351cbc188408b724cb8d50.pdf +064b797aa1da2000640e437cacb97256444dee82,http://pdfs.semanticscholar.org/064b/797aa1da2000640e437cacb97256444dee82.pdf +593234ba1d2e16a887207bf65d6b55bbc7ea2247,http://pdfs.semanticscholar.org/73c4/47ea9f75b0ffbdd35c957aed88fe80b2ac07.pdf +d961617db4e95382ba869a7603006edc4d66ac3b,http://pdfs.semanticscholar.org/d961/617db4e95382ba869a7603006edc4d66ac3b.pdf +288d2704205d9ca68660b9f3a8fda17e18329c13,http://arxiv.org/pdf/1601.04153v2.pdf +f68f20868a6c46c2150ca70f412dc4b53e6a03c2,http://pdfs.semanticscholar.org/f68f/20868a6c46c2150ca70f412dc4b53e6a03c2.pdf +7a1ce696e260899688cb705f243adf73c679f0d9,http://www.cse.msu.edu/~rossarun/pubs/SwearingenRossLabelPropagation_BIOSIG2016.pdf +e5eb7fa8c9a812d402facfe8e4672670541ed108,http://pdfs.semanticscholar.org/e5eb/7fa8c9a812d402facfe8e4672670541ed108.pdf +3b408a3ca6fb39b0fda4d77e6a9679003b2dc9ab,http://pdfs.semanticscholar.org/3b40/8a3ca6fb39b0fda4d77e6a9679003b2dc9ab.pdf +f781e50caa43be13c5ceb13f4ccc2abc7d1507c5,http://pdfs.semanticscholar.org/f781/e50caa43be13c5ceb13f4ccc2abc7d1507c5.pdf +27169761aeab311a428a9dd964c7e34950a62a6b,http://academicjournals.org/article/article1380818227_Mostayed%20et%20al.pdf +1fd2ed45fb3ba77f10c83f0eef3b66955645dfe0,http://pdfs.semanticscholar.org/d91a/de2712c65f45ed8b917414829ecb24c3c183.pdf +b37f57edab685dba5c23de00e4fa032a3a6e8841,http://pdfs.semanticscholar.org/b37f/57edab685dba5c23de00e4fa032a3a6e8841.pdf +5042b358705e8d8e8b0655d07f751be6a1565482,http://pdfs.semanticscholar.org/5042/b358705e8d8e8b0655d07f751be6a1565482.pdf +90ad0daa279c3e30b360f9fe9371293d68f4cebf,http://pdfs.semanticscholar.org/90ad/0daa279c3e30b360f9fe9371293d68f4cebf.pdf +9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0,http://pdfs.semanticscholar.org/9eb8/6327c82b76d77fee3fd72e2d9eff03bbe5e0.pdf +0ef96d97365899af797628e80f8d1020c4c7e431,http://media.adelaide.edu.au/acvt/Publications/2006/2006-Improving%20the%20Speed%20of%20Kernel%20PCA%20on%20Large%20Scale%20Datasets.pdf +390f3d7cdf1ce127ecca65afa2e24c563e9db93b,https://arxiv.org/pdf/1408.3967v2.pdf +d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e,http://pdfs.semanticscholar.org/d850/aff9d10a01ad5f1d8a1b489fbb3998d0d80e.pdf +474b461cd12c6d1a2fbd67184362631681defa9e,http://toc.proceedings.com/24478webtoc.pdf +c4934d9f9c41dbc46f4173aad2775432fe02e0e6,http://pdfs.semanticscholar.org/c493/4d9f9c41dbc46f4173aad2775432fe02e0e6.pdf +d6a9ea9b40a7377c91c705f4c7f206a669a9eea2,http://pdfs.semanticscholar.org/d6a9/ea9b40a7377c91c705f4c7f206a669a9eea2.pdf +e0765de5cabe7e287582532456d7f4815acd74c1,http://pdfs.semanticscholar.org/e076/5de5cabe7e287582532456d7f4815acd74c1.pdf +3403cb92192dc6b2943d8dbfa8212cc65880159e,http://pdfs.semanticscholar.org/3403/cb92192dc6b2943d8dbfa8212cc65880159e.pdf +0c5afb209b647456e99ce42a6d9d177764f9a0dd,http://pdfs.semanticscholar.org/49ee/5e1f1cfa45aa105e4120e6b7fb5b14cc2877.pdf +6afed8dc29bc568b58778f066dc44146cad5366c,http://pdfs.semanticscholar.org/6afe/d8dc29bc568b58778f066dc44146cad5366c.pdf +0019925779bff96448f0c75492717e4473f88377,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w3/papers/Reale_Deep_Heterogeneous_Face_CVPR_2017_paper.pdf +67ba3524e135c1375c74fe53ebb03684754aae56,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0001767.pdf +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,http://pdfs.semanticscholar.org/0d1d/9a603b08649264f6e3b6d5a66bf1e1ac39d2.pdf +4c5b38ac5d60ab0272145a5a4d50872c7b89fe1b,https://opus.lib.uts.edu.au/bitstream/10453/43339/1/APSIPA_ASC_2015_submission_313.pdf +a7c39a4e9977a85673892b714fc9441c959bf078,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/Biometrics/papers/06-p71.pdf +0ba99a709cd34654ac296418a4f41a9543928149,https://pdfs.semanticscholar.org/0ba9/9a709cd34654ac296418a4f41a9543928149.pdf +0b02bfa5f3a238716a83aebceb0e75d22c549975,http://pdfs.semanticscholar.org/0b02/bfa5f3a238716a83aebceb0e75d22c549975.pdf +182470fd0c18d0c5979dff75d089f1da176ceeeb,https://repositori.upf.edu/bitstream/handle/10230/27207/dominguez_MARMI16_mult.pdf?isAllowed=y&sequence=1 +4159663f0b292fd8cc7411929be9d669bb98b386,http://www.researchgate.net/profile/Pradeep_Khosla/publication/224752362_Cancelable_biometric_filters_for_face_recognition/links/00b4952ade904b0db4000000.pdf +44dd150b9020b2253107b4a4af3644f0a51718a3,http://www.andrew.cmu.edu/user/kseshadr/TIFS_2012_Paper_Final_Submission.pdf +a56b0f76919aabe8b768f5fbaeca412276365aa2,http://www.mingzhao.org/Publications/ZM_2006_FG_3DReconstruction.pdf +324b9369a1457213ec7a5a12fe77c0ee9aef1ad4,http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf +1fa3948af1c338f9ae200038c45adadd2b39a3e4,http://pdfs.semanticscholar.org/7655/4182b4b0f3301afe8cfbc96a9d289b75254f.pdf +858ddff549ae0a3094c747fb1f26aa72821374ec,https://arxiv.org/pdf/1606.03237v1.pdf +b1301c722886b6028d11e4c2084ee96466218be4,http://pdfs.semanticscholar.org/b130/1c722886b6028d11e4c2084ee96466218be4.pdf +a3a34c1b876002e0393038fcf2bcb00821737105,http://pdfs.semanticscholar.org/a3a3/4c1b876002e0393038fcf2bcb00821737105.pdf +256ef946b4cecd8889df8d799d0c9175ae986af9,https://pdfs.semanticscholar.org/cd73/8347673151b378f447119fe2665f5c8c2215.pdf +4b5eeea5dd8bd69331bd4bd4c66098b125888dea,http://pdfs.semanticscholar.org/4b5e/eea5dd8bd69331bd4bd4c66098b125888dea.pdf +2742a61d32053761bcc14bd6c32365bfcdbefe35,http://pdfs.semanticscholar.org/ee39/96dc3f451f480134e1a468c32762d688c51b.pdf +a9791544baa14520379d47afd02e2e7353df87e5,http://pdfs.semanticscholar.org/a979/1544baa14520379d47afd02e2e7353df87e5.pdf +b191aa2c5b8ece06c221c3a4a0914e8157a16129,http://pdfs.semanticscholar.org/b191/aa2c5b8ece06c221c3a4a0914e8157a16129.pdf +6f0900a7fe8a774a1977c5f0a500b2898bcbe149,http://pdfs.semanticscholar.org/6f09/00a7fe8a774a1977c5f0a500b2898bcbe149.pdf +0754e769eb613fd3968b6e267a301728f52358be,http://www.umiacs.umd.edu/~cteo/public-shared/ICRA2012_ActionObjects_preprint.pdf +1033ca56c7e88d8b3e80546848826f572c4cd63e,http://alumni.cs.ucsb.edu/~daniel/publications/conferences/fg11/DattaFerisVaqueroFG2011.pdf +afe9cfba90d4b1dbd7db1cf60faf91f24d12b286,http://pdfs.semanticscholar.org/afe9/cfba90d4b1dbd7db1cf60faf91f24d12b286.pdf +2ae139b247057c02cda352f6661f46f7feb38e45,http://www.iro.umontreal.ca/~memisevr/pubs/icmi_emotiw.pdf +81e11e33fc5785090e2d459da3ac3d3db5e43f65,http://pdfs.semanticscholar.org/81e1/1e33fc5785090e2d459da3ac3d3db5e43f65.pdf +04c5268d7a4e3819344825e72167332240a69717,http://longwood.cs.ucf.edu/~vision/papers/cvpr2008/7.pdf +07a472ea4b5a28b93678a2dcf89028b086e481a2,http://pdfs.semanticscholar.org/07a4/72ea4b5a28b93678a2dcf89028b086e481a2.pdf +06959f9cf3226179fa1b05efade843b7844fb2bc,http://www.researchgate.net/profile/Fei_Wu2/publication/4090506_Relevant_linear_feature_extraction_using_side-information_and_unlabeled_data/links/549062220cf214269f2668c9.pdf +968f472477a8afbadb5d92ff1b9c7fdc89f0c009,http://pdfs.semanticscholar.org/968f/472477a8afbadb5d92ff1b9c7fdc89f0c009.pdf +46538b0d841654a0934e4c75ccd659f6c5309b72,http://pdfs.semanticscholar.org/4653/8b0d841654a0934e4c75ccd659f6c5309b72.pdf +41f8477a6be9cd992a674d84062108c68b7a9520,http://pdfs.semanticscholar.org/41f8/477a6be9cd992a674d84062108c68b7a9520.pdf +b730908bc1f80b711c031f3ea459e4de09a3d324,http://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf +7ae0212d6bf8a067b468f2a78054c64ea6a577ce,http://pdfs.semanticscholar.org/7ae0/212d6bf8a067b468f2a78054c64ea6a577ce.pdf +30c96cc041bafa4f480b7b1eb5c45999701fe066,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/DiscreteCosineTransformLocality-SensitiveHashes14.pdf +7d1688ce0b48096e05a66ead80e9270260cb8082,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w44/Saxen_Real_vs._Fake_ICCV_2017_paper.pdf +7bdcd85efd1e3ce14b7934ff642b76f017419751,http://www.cbsr.ia.ac.cn/users/zlei/papers/Lei-DFD-PAMI-14.pdf +a4cc626da29ac48f9b4ed6ceb63081f6a4b304a2,http://pdfs.semanticscholar.org/a4cc/626da29ac48f9b4ed6ceb63081f6a4b304a2.pdf +b07582d1a59a9c6f029d0d8328414c7bef64dca0,http://pdfs.semanticscholar.org/b075/82d1a59a9c6f029d0d8328414c7bef64dca0.pdf +6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,http://openaccess.thecvf.com/content_iccv_2015/papers/Song_Top_Rank_Supervised_ICCV_2015_paper.pdf +3cd5b1d71c1d6a50fcc986589f2d0026c68d9803,http://www.openu.ac.il/home/hassner/projects/siftscales/OnSiftsAndTheirScales-CVPR12.pdf +0c59071ddd33849bd431165bc2d21bbe165a81e0,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Oh_Person_Recognition_in_ICCV_2015_paper.pdf +505e55d0be8e48b30067fb132f05a91650666c41,http://pdfs.semanticscholar.org/505e/55d0be8e48b30067fb132f05a91650666c41.pdf +b51b4ef97238940aaa4f43b20a861eaf66f67253,http://pdfs.semanticscholar.org/b51b/4ef97238940aaa4f43b20a861eaf66f67253.pdf +816eff5e92a6326a8ab50c4c50450a6d02047b5e,http://pdfs.semanticscholar.org/816e/ff5e92a6326a8ab50c4c50450a6d02047b5e.pdf +43776d1bfa531e66d5e9826ff5529345b792def7,http://cvrr.ucsd.edu/scmartin/presentation/DriveAnalysisByLookingIn-ITSC2015-NDS.pdf +2e19371a2d797ab9929b99c80d80f01a1fbf9479,http://pdfs.semanticscholar.org/2e19/371a2d797ab9929b99c80d80f01a1fbf9479.pdf +01c948d2b73abe8be1ac128a6439c1081ebca95a,http://mla.sdu.edu.cn/PeopleInfo/lixuzhou/A%20hybrid%20biometric%20identification%20framework%20for%20high%20security%20applications.pdf +187d4d9ba8e10245a34f72be96dd9d0fb393b1aa,http://pdfs.semanticscholar.org/187d/4d9ba8e10245a34f72be96dd9d0fb393b1aa.pdf +537d8c4c53604fd419918ec90d6ef28d045311d0,https://arxiv.org/pdf/1704.08821v1.pdf +27883967d3dac734c207074eed966e83afccb8c3,http://www.ee.cuhk.edu.hk/~xgwang/papers/gaoGZHW.pdf +2574860616d7ffa653eb002bbaca53686bc71cdd,http://pdfs.semanticscholar.org/e01d/f3e6faffad3f304f6c40b133ae1dcf326662.pdf +bd78a853df61d03b7133aea58e45cd27d464c3cf,http://pdfs.semanticscholar.org/bd78/a853df61d03b7133aea58e45cd27d464c3cf.pdf +d912b8d88d63a2f0cb5d58164e7414bfa6b41dfa,http://pdfs.semanticscholar.org/d912/b8d88d63a2f0cb5d58164e7414bfa6b41dfa.pdf +3f12701449a82a5e01845001afab3580b92da858,http://pdfs.semanticscholar.org/e4f5/2f5e116f0cc486d033e4b8fc737944343db7.pdf +5a93f9084e59cb9730a498ff602a8c8703e5d8a5,http://pdfs.semanticscholar.org/5a93/f9084e59cb9730a498ff602a8c8703e5d8a5.pdf +4d01d78544ae0de3075304ff0efa51a077c903b7,http://pdfs.semanticscholar.org/8f82/71d557ae862866c692e556f610ab45dcc399.pdf +0273414ba7d56ab9ff894959b9d46e4b2fef7fd0,http://pdfs.semanticscholar.org/3ae9/29d33dd1e6acdf6c907a1115e5a21f6cb076.pdf +4e93a8a47473bf57e24aec048cb870ab366a43d6,http://pdfs.semanticscholar.org/4e93/a8a47473bf57e24aec048cb870ab366a43d6.pdf +406431d2286a50205a71f04e0b311ba858fc7b6c,http://pdfs.semanticscholar.org/4064/31d2286a50205a71f04e0b311ba858fc7b6c.pdf +0cb2dd5f178e3a297a0c33068961018659d0f443,http://www.vislab.ucr.edu/Biometrics2017/program_slides/Noblis_CVPRW_IJBB.pdf +c0ff7dc0d575658bf402719c12b676a34271dfcd,http://pdfs.semanticscholar.org/c0ff/7dc0d575658bf402719c12b676a34271dfcd.pdf +05b8673d810fadf888c62b7e6c7185355ffa4121,https://nannanwang.github.io/My_Papers/IJCV2013.pdf +965f8bb9a467ce9538dec6bef57438964976d6d9,http://www4.comp.polyu.edu.hk/~csajaykr/myhome/papers/ISBA2016.pdf +7c349932a3d083466da58ab1674129600b12b81c,http://pdfs.semanticscholar.org/7c34/9932a3d083466da58ab1674129600b12b81c.pdf +765b2cb322646c52e20417c3b44b81f89860ff71,http://cg.cs.tsinghua.edu.cn/papers/TVCG_2013_poseshop.pdf +aafb271684a52a0b23debb3a5793eb618940c5dd,http://pdfs.semanticscholar.org/aafb/271684a52a0b23debb3a5793eb618940c5dd.pdf +3fefc856a47726d19a9f1441168480cee6e9f5bb,http://pdfs.semanticscholar.org/e0e6/bf37d374f9c5cb2461ea87190e234c466d63.pdf +11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Caseiro_Rolling_Riemannian_Manifolds_2013_CVPR_paper.pdf +07d95be4922670ef2f8b11997e0c00eb643f3fca,http://eprints.eemcs.utwente.nl/26833/01/Pantic_The_First_Facial_Landmark_Tracking_in-the-Wild_Challenge.pdf +5145e42dc46845f3aeb8307452765ba8dc59d2da,http://pdcat13.csie.ntust.edu.tw/download/papers/P10003.pdf +591a737c158be7b131121d87d9d81b471c400dba,http://affect.media.mit.edu/pdfs/10.McDuff-etal-Affect-2010.pdf +fcbec158e6a4ace3d4311b26195482b8388f0ee9,http://pdfs.semanticscholar.org/fcbe/c158e6a4ace3d4311b26195482b8388f0ee9.pdf +b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,http://pdfs.semanticscholar.org/f269/c3573b39d26a5ad0754edb67a46ef57816c7.pdf +706236308e1c8d8b8ba7749869c6b9c25fa9f957,http://affect.media.mit.edu/pdfs/11.McDuff-etal-Crowdsourced-2011.pdf +3ada7640b1c525056e6fcd37eea26cd638815cd6,http://pdfs.semanticscholar.org/3ada/7640b1c525056e6fcd37eea26cd638815cd6.pdf +b40290a694075868e0daef77303f2c4ca1c43269,http://pdfs.semanticscholar.org/b402/90a694075868e0daef77303f2c4ca1c43269.pdf +9f499948121abb47b31ca904030243e924585d5f,http://pdfs.semanticscholar.org/9f49/9948121abb47b31ca904030243e924585d5f.pdf +d142e74c6a7457e77237cf2a3ded4e20f8894e1a,http://pdfs.semanticscholar.org/d142/e74c6a7457e77237cf2a3ded4e20f8894e1a.pdf +131130f105661a47e0ffb85c2fe21595785f948a,http://pdfs.semanticscholar.org/1311/30f105661a47e0ffb85c2fe21595785f948a.pdf +b51e3d59d1bcbc023f39cec233f38510819a2cf9,http://pdfs.semanticscholar.org/b51e/3d59d1bcbc023f39cec233f38510819a2cf9.pdf +2f95340b01cfa48b867f336185e89acfedfa4d92,https://www2.informatik.uni-hamburg.de/wtm/ps/Hamester_IJCNN2015.pdf +8d42a24d570ad8f1e869a665da855628fcb1378f,http://pdfs.semanticscholar.org/8d42/a24d570ad8f1e869a665da855628fcb1378f.pdf +efd308393b573e5410455960fe551160e1525f49,http://pdfs.semanticscholar.org/efd3/08393b573e5410455960fe551160e1525f49.pdf +45e616093a92e5f1e61a7c6037d5f637aa8964af,http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf +0fba39bf12486c7684fd3d51322e3f0577d3e4e8,http://vision.ucsd.edu/~pdollar/files/papers/BabenkoICCV07boom.pdf +02a98118ce990942432c0147ff3c0de756b4b76a,http://eprints.pascal-network.org/archive/00005029/01/LaptevMarszalekSchmidRozenfeld-CVPR08-HumanActions.pdf +457cf73263d80a1a1338dc750ce9a50313745d1d,http://pdfs.semanticscholar.org/457c/f73263d80a1a1338dc750ce9a50313745d1d.pdf +eee8a37a12506ff5df72c402ccc3d59216321346,http://pdfs.semanticscholar.org/eee8/a37a12506ff5df72c402ccc3d59216321346.pdf +eb526174fa071345ff7b1fad1fad240cd943a6d7,http://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf +aebb9649bc38e878baef082b518fa68f5cda23a5,http://pdfs.semanticscholar.org/aebb/9649bc38e878baef082b518fa68f5cda23a5.pdf +7c9622ad1d8971cd74cc9e838753911fe27ccac4,http://pdfs.semanticscholar.org/7c96/22ad1d8971cd74cc9e838753911fe27ccac4.pdf +9a4c45e5c6e4f616771a7325629d167a38508691,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf +4793f11fbca4a7dba898b9fff68f70d868e2497c,http://pdfs.semanticscholar.org/4793/f11fbca4a7dba898b9fff68f70d868e2497c.pdf +15b07dae17f184c8e6efbc9d2b58526d8e8dc9d4,https://arxiv.org/pdf/1707.07196v1.pdf +90c4f15f1203a3a8a5bf307f8641ba54172ead30,http://pdfs.semanticscholar.org/90c4/f15f1203a3a8a5bf307f8641ba54172ead30.pdf +79cdc8c786c535366cafeced1f3bdeb18ff04e66,http://www.researchgate.net/profile/Ziga_Spiclin/publication/221795259_Groupwise_registration_of_multimodal_images_by_an_efficient_joint_entropy_minimization_scheme/links/0deec520dd49e7bc24000000.pdf +3a0ea368d7606030a94eb5527a12e6789f727994,http://pdfs.semanticscholar.org/c7ca/eb8ecb6a38bdd65ddd25aca4fdd79203ddef.pdf +f8ddb2cac276812c25021b5b79bf720e97063b1e,http://www.eecs.qmul.ac.uk/~sgg/papers/ShanEtAl_HCI2006.pdf +a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,http://pdfs.semanticscholar.org/a1ee/0176a9c71863d812fe012b5c6b9c15f9aa8a.pdf +86904aee566716d9bef508aa9f0255dc18be3960,http://pdfs.semanticscholar.org/8690/4aee566716d9bef508aa9f0255dc18be3960.pdf +326613b5528b7806d6a06f43211800b54f34965e,http://mplab.ucsd.edu/wp-content/uploads/cvpr2008/conference/data/papers/377.pdf +16e95a907b016951da7c9327927bb039534151da,http://pdfs.semanticscholar.org/16e9/5a907b016951da7c9327927bb039534151da.pdf +54756f824befa3f0c2af404db0122f5b5bbf16e0,http://pdfs.semanticscholar.org/5475/6f824befa3f0c2af404db0122f5b5bbf16e0.pdf +2ebc35d196cd975e1ccbc8e98694f20d7f52faf3,http://pdfs.semanticscholar.org/2ebc/35d196cd975e1ccbc8e98694f20d7f52faf3.pdf +0acf23485ded5cb9cd249d1e4972119239227ddb,http://pdfs.semanticscholar.org/507e/2bad4851f04a686ae6e964e15bbef28583e9.pdf +32925200665a1bbb4fc8131cd192cb34c2d7d9e3,http://pdfs.semanticscholar.org/3292/5200665a1bbb4fc8131cd192cb34c2d7d9e3.pdf +4bc9a767d7e63c5b94614ebdc24a8775603b15c9,http://pdfs.semanticscholar.org/4bc9/a767d7e63c5b94614ebdc24a8775603b15c9.pdf +b8378ab83bc165bc0e3692f2ce593dcc713df34a,http://cmp.felk.cvut.cz/ftp/articles/cech/Cech-ICPR-2014.pdf +3b3482e735698819a6a28dcac84912ec01a9eb8a,http://vislab.ee.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2003/Individual%20Recognition%20Using%20Gait%20Energy%20Image03.pdf +1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,https://arxiv.org/pdf/1611.00142v2.pdf +dc5cde7e4554db012d39fc41ac8580f4f6774045,http://pdfs.semanticscholar.org/dc5c/de7e4554db012d39fc41ac8580f4f6774045.pdf +bd9eb65d9f0df3379ef96e5491533326e9dde315,http://pdfs.semanticscholar.org/bd9e/b65d9f0df3379ef96e5491533326e9dde315.pdf +44eb4d128b60485377e74ffb5facc0bf4ddeb022,https://pdfs.semanticscholar.org/44eb/4d128b60485377e74ffb5facc0bf4ddeb022.pdf +3d9db1cacf9c3bb7af57b8112787b59f45927355,http://pdfs.semanticscholar.org/3d9d/b1cacf9c3bb7af57b8112787b59f45927355.pdf +0ed0e48b245f2d459baa3d2779bfc18fee04145b,http://pdfs.semanticscholar.org/0ed0/e48b245f2d459baa3d2779bfc18fee04145b.pdf +795aa8064b34c4bf4acdd8be3f1e5d06da5a7756,http://pdfs.semanticscholar.org/795a/a8064b34c4bf4acdd8be3f1e5d06da5a7756.pdf +016a8ed8f6ba49bc669dbd44de4ff31a79963078,http://www.jdl.ac.cn/user/sgshan/pub/icassp04_qing.pdf +2965d092ed72822432c547830fa557794ae7e27b,http://pdfs.semanticscholar.org/f038/9424ab8c27e01843931fcbef7e3ca997e891.pdf +d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12,http://pdfs.semanticscholar.org/d537/5f51eeb0c6eff71d6c6ad73e11e9353c1f12.pdf +27c66b87e0fbb39f68ddb783d11b5b7e807c76e8,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w14/papers/Rodriguez_Fast_Simplex-HMM_for_CVPR_2017_paper.pdf +f02f0f6fcd56a9b1407045de6634df15c60a85cd,http://pdfs.semanticscholar.org/f02f/0f6fcd56a9b1407045de6634df15c60a85cd.pdf +ae0765ebdffffd6e6cc33c7705df33b7e8478627,http://pdfs.semanticscholar.org/ae07/65ebdffffd6e6cc33c7705df33b7e8478627.pdf +050eda213ce29da7212db4e85f948b812a215660,http://pdfs.semanticscholar.org/b598/4a1044d72224f99e959746a452fc1927a257.pdf +c27f64eaf48e88758f650e38fa4e043c16580d26,http://pdfs.semanticscholar.org/c27f/64eaf48e88758f650e38fa4e043c16580d26.pdf +d22785eae6b7503cb16402514fd5bd9571511654,http://pdfs.semanticscholar.org/d227/85eae6b7503cb16402514fd5bd9571511654.pdf +7ed6ff077422f156932fde320e6b3bd66f8ffbcb,http://pdfs.semanticscholar.org/7ed6/ff077422f156932fde320e6b3bd66f8ffbcb.pdf +caaa6e8e83abb97c78ff9b813b849d5ab56b5050,http://digital.cs.usu.edu/~xqi/Promotion/JSPL.FaceRecognition.14.pdf +518edcd112991a1717856841c1a03dd94a250090,http://pdfs.semanticscholar.org/518e/dcd112991a1717856841c1a03dd94a250090.pdf +1176c886afbd8685ecf0094450a02eb96b950f71,http://pdfs.semanticscholar.org/1176/c886afbd8685ecf0094450a02eb96b950f71.pdf +8de2dbe2b03be8a99628ffa000ac78f8b66a1028,http://pdfs.semanticscholar.org/8de2/dbe2b03be8a99628ffa000ac78f8b66a1028.pdf +374c7a2898180723f3f3980cbcb31c8e8eb5d7af,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Kotsia07a.pdf +dda35768681f74dafd02a667dac2e6101926a279,http://www.cim.mcgill.ca/~clark/vmrl/web-content/papers/jjclark_icip_2014.pdf +620e1dbf88069408b008347cd563e16aeeebeb83,http://pdfs.semanticscholar.org/620e/1dbf88069408b008347cd563e16aeeebeb83.pdf +c74b1643a108939c6ba42ae4de55cb05b2191be5,http://pdfs.semanticscholar.org/c74b/1643a108939c6ba42ae4de55cb05b2191be5.pdf +e76798bddd0f12ae03de26b7c7743c008d505215,http://pdfs.semanticscholar.org/e767/98bddd0f12ae03de26b7c7743c008d505215.pdf +2f598922f81e65c1f3ffbd8c2456d2e9dcd7124a,http://pdfs.semanticscholar.org/464c/21d54339c3f6e624ce026fef53b19c1edd86.pdf +14a5feadd4209d21fa308e7a942967ea7c13b7b6,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001025.pdf +078d507703fc0ac4bf8ca758be101e75ea286c80,http://pdfs.semanticscholar.org/078d/507703fc0ac4bf8ca758be101e75ea286c80.pdf +fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,http://pdfs.semanticscholar.org/fab8/3bf8d7cab8fe069796b33d2a6bd70c8cefc6.pdf +6daccf3d15c617873954bb75de26f6b6b0a42772,http://arts.buaa.edu.cn/papers/Learning%20Templates%20for%20Artistic%20Portrait%20Lighting%20Analysis.pdf +bab88235a30e179a6804f506004468aa8c28ce4f,http://pdfs.semanticscholar.org/bab8/8235a30e179a6804f506004468aa8c28ce4f.pdf +17d5e5c9a9ee4cf85dfbb9d9322968a6329c3735,http://pdfs.semanticscholar.org/17d5/e5c9a9ee4cf85dfbb9d9322968a6329c3735.pdf +daf05febbe8406a480306683e46eb5676843c424,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Feng_Robust_Subspace_Segmentation_2014_CVPR_paper.pdf +aecb15e3e9191eb135bdba2426967bfac3f068db,http://www.cvip.uofl.edu/wwwcvip/research/publications/Pub_Pdf/2010/3D%20Face%20Rcovery%20From%20Intensities_2010.pdf +17738b0972571e7b4ae471d1b2dccea5ce057511,http://dayongwang.info/pdf/2011-MM.pdf +b7cf7bb574b2369f4d7ebc3866b461634147041a,http://www.patternrecognition.cn/~zhongjin/2012/2012_yinjun_NCA.pdf +2e475f1d496456831599ce86d8bbbdada8ee57ed,http://www.l3s.de/~siersdorfer/sources/2015/www2015groupsourcing.pdf +1450296fb936d666f2f11454cc8f0108e2306741,http://pdfs.semanticscholar.org/1450/296fb936d666f2f11454cc8f0108e2306741.pdf +19c0069f075b5b2d8ac48ad28a7409179bd08b86,http://people.csail.mit.edu/torralba/publications/iccv2013_khosla.pdf +fbf196d83a41d57dfe577b3a54b1b7fa06666e3b,http://pdfs.semanticscholar.org/fbf1/96d83a41d57dfe577b3a54b1b7fa06666e3b.pdf +265e76285e18587065a1e28246971f003c5267f3,http://cortex.informatik.tu-ilmenau.de/~wilhelm/wilhelm-soave-2004a.pdf +bf1e0279a13903e1d43f8562aaf41444afca4fdc,http://pdfs.semanticscholar.org/bf1e/0279a13903e1d43f8562aaf41444afca4fdc.pdf +0df0d1adea39a5bef318b74faa37de7f3e00b452,https://scalable.mpi-inf.mpg.de/files/2015/09/zhang_CVPR15.pdf +744d23991a2c48d146781405e299e9b3cc14b731,http://www.cise.ufl.edu/~dihong/assets/LPS2016.pdf +685f8df14776457c1c324b0619c39b3872df617b,http://pdfs.semanticscholar.org/685f/8df14776457c1c324b0619c39b3872df617b.pdf +1a5b39a4b29afc5d2a3cd49087ae23c6838eca2b,http://www.l3s.de/~siersdorfer/sources/2014/mtgame-2014.pdf +cc38942825d3a2c9ee8583c153d2c56c607e61a7,http://pdfs.semanticscholar.org/cc38/942825d3a2c9ee8583c153d2c56c607e61a7.pdf +a608c5f8fd42af6e9bd332ab516c8c2af7063c61,http://mcl.usc.edu/wp-content/uploads/2016/01/Liu-TIFS-2015-10.pdf +06aab105d55c88bd2baa058dc51fa54580746424,http://www4.comp.polyu.edu.hk/~cslzhang/paper/ISCRC_TIFS.pdf +9e4b052844d154c3431120ec27e78813b637b4fc,http://pdfs.semanticscholar.org/9e4b/052844d154c3431120ec27e78813b637b4fc.pdf +3802da31c6d33d71b839e260f4022ec4fbd88e2d,http://pdfs.semanticscholar.org/3802/da31c6d33d71b839e260f4022ec4fbd88e2d.pdf +4836b084a583d2e794eb6a94982ea30d7990f663,http://pdfs.semanticscholar.org/4836/b084a583d2e794eb6a94982ea30d7990f663.pdf +09733129161ca7d65cf56a7ad63c17f493386027,http://pdfs.semanticscholar.org/0973/3129161ca7d65cf56a7ad63c17f493386027.pdf +46551095a2cc4976d6be0165c31c37b0c5638719,http://staff.estem-uc.edu.au/roland/wp-content/uploads/file/roland/publications/Journal/JMUI/joshi_goecke_alghowinem_dhall_wagner_epps_parker_breakspear_JMUI2013_MultimodalAssistiveTechnologiesForDepressionDiagnosisAndMonitoring.pdf +67c703a864aab47eba80b94d1935e6d244e00bcb,http://pdfs.semanticscholar.org/67c7/03a864aab47eba80b94d1935e6d244e00bcb.pdf +bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,https://arxiv.org/pdf/1801.08329v1.pdf +0d88ab0250748410a1bc990b67ab2efb370ade5d,http://signal.ee.bilkent.edu.tr/defevent/abstract/a1795.pdf +bd8b7599acf53e3053aa27cfd522764e28474e57,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf +4b60e45b6803e2e155f25a2270a28be9f8bec130,http://www.cs.washington.edu/ai/Mobile_Robotics/postscripts/attribute-objects-icra-2013.pdf +3cfbe1f100619a932ba7e2f068cd4c41505c9f58,http://pdfs.semanticscholar.org/3cfb/e1f100619a932ba7e2f068cd4c41505c9f58.pdf +bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4,http://pdfs.semanticscholar.org/bd57/2e9cbec095bcf5700cb7cd73d1cdc2fe02f4.pdf +23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,http://pdfs.semanticscholar.org/23ba/9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3.pdf +177d1e7bbea4318d379f46d8d17720ecef3086ac,http://pdfs.semanticscholar.org/177d/1e7bbea4318d379f46d8d17720ecef3086ac.pdf +b017963d83b3edf71e1673d7ffdec13a6d350a87,http://pdfs.semanticscholar.org/b017/963d83b3edf71e1673d7ffdec13a6d350a87.pdf +10f17534dba06af1ddab96c4188a9c98a020a459,http://www.cs.umass.edu/~mccallum/papers/peoplelda-iccv07.pdf +274f87ad659cd90382ef38f7c6fafc4fc7f0d74d,http://www.deepkernel.com/Papers/mm2014.pdf +6eddea1d991e81c1c3024a6cea422bc59b10a1dc,http://pdfs.semanticscholar.org/6edd/ea1d991e81c1c3024a6cea422bc59b10a1dc.pdf +5f871838710a6b408cf647aacb3b198983719c31,http://www.jdl.ac.cn/user/xlchen/Paper/TIP07b.pdf +0c167008408c301935bade9536084a527527ec74,http://www.micc.unifi.it/publications/2006/BDN06/bertini_nunziati-mm06.pdf +0b20f75dbb0823766d8c7b04030670ef7147ccdd,http://pdfs.semanticscholar.org/0b20/f75dbb0823766d8c7b04030670ef7147ccdd.pdf +03c1fc9c3339813ed81ad0de540132f9f695a0f8,http://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf +ea482bf1e2b5b44c520fc77eab288caf8b3f367a,http://pdfs.semanticscholar.org/ea48/2bf1e2b5b44c520fc77eab288caf8b3f367a.pdf +ffcbedb92e76fbab083bb2c57d846a2a96b5ae30,http://pdfs.semanticscholar.org/ffcb/edb92e76fbab083bb2c57d846a2a96b5ae30.pdf +9e9052256442f4e254663ea55c87303c85310df9,http://pdfs.semanticscholar.org/9e90/52256442f4e254663ea55c87303c85310df9.pdf +db227f72bb13a5acca549fab0dc76bce1fb3b948,http://pdfs.semanticscholar.org/e83d/6fd4502d6d31134ffddb80b6d5c752cf3123.pdf +59c9d416f7b3d33141cc94567925a447d0662d80,http://pdfs.semanticscholar.org/59c9/d416f7b3d33141cc94567925a447d0662d80.pdf +44aeda8493ad0d44ca1304756cc0126a2720f07b,http://pdfs.semanticscholar.org/afbb/c0ea429ba0f5cf7790d23fc40d7d5342a53c.pdf +50ce3f8744c219871fbdcab1342d49d589f2626b,http://www.public.asu.edu/~jye02/Publications/Papers/AML_cvpr07.pdf +7c45339253841b6f0efb28c75f2c898c79dfd038,http://vis-www.cs.umass.edu/papers/iccv07alignment.pdf +d5afd7b76f1391321a1340a19ba63eec9e0f9833,http://pdfs.semanticscholar.org/d5af/d7b76f1391321a1340a19ba63eec9e0f9833.pdf +a538b05ebb01a40323997629e171c91aa28b8e2f,http://pdfs.semanticscholar.org/a538/b05ebb01a40323997629e171c91aa28b8e2f.pdf +217de4ff802d4904d3f90d2e24a29371307942fe,http://www.cs.columbia.edu/~tberg/papers/poof-cvpr13.pdf +4b519e2e88ccd45718b0fc65bfd82ebe103902f7,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf +6ef1996563835b4dfb7fda1d14abe01c8bd24a05,http://hera.inf-cv.uni-jena.de:6680/pdf/Goering14:NPT +050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,http://www.springer.com/cda/content/document/cda_downloaddocument/9783319587707-t1.pdf?SGWID=0-0-45-1607395-p180855259 +40f127fa4459a69a9a21884ee93d286e99b54c5f,http://graphics.tu-bs.de/media/publications/stengel2013resolution.pdf +19c0c7835dba1a319b59359adaa738f0410263e8,http://www.svcl.ucsd.edu/publications/journal/2009/pami09-fs.pdf +2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1,http://pdfs.semanticscholar.org/f39c/e446b7c76d24cc63df7837cb3be0ee235df2.pdf +00d94b35ffd6cabfb70b9a1d220b6823ae9154ee,https://arxiv.org/pdf/1503.07989v1.pdf +d3b73e06d19da6b457924269bb208878160059da,http://pdfs.semanticscholar.org/d3b7/3e06d19da6b457924269bb208878160059da.pdf +dedabf9afe2ae4a1ace1279150e5f1d495e565da,http://www.citi.sinica.edu.tw/papers/ycwang/4156-F.pdf +66330846a03dcc10f36b6db9adf3b4d32e7a3127,http://pdfs.semanticscholar.org/6633/0846a03dcc10f36b6db9adf3b4d32e7a3127.pdf +8411fe1142935a86b819f065cd1f879f16e77401,http://pdfs.semanticscholar.org/8411/fe1142935a86b819f065cd1f879f16e77401.pdf +b64cfb39840969b1c769e336a05a30e7f9efcd61,http://pdfs.semanticscholar.org/fde2/b8943eb429d35e649c56ce95658b44c49243.pdf +bc704680b5032eadf78c4e49f548ba14040965bf,http://pdfs.semanticscholar.org/ccbc/c676546a43cd4b714f0c85cbd493f9c61396.pdf +58823377757e7dc92f3b70a973be697651089756,http://pdfs.semanticscholar.org/fa88/52e5b7849adf8e96a103ca67e4ca60bdf244.pdf +88f7a3d6f0521803ca59fde45601e94c3a34a403,http://pdfs.semanticscholar.org/88f7/a3d6f0521803ca59fde45601e94c3a34a403.pdf +a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,http://pdfs.semanticscholar.org/a8c8/a96b78e7b8e0d4a4a422fcb083e53ad06531.pdf +e50ee29ca12028cb903cd498bb9cacd41bd5ce3a,http://pdfs.semanticscholar.org/e50e/e29ca12028cb903cd498bb9cacd41bd5ce3a.pdf +0081e2188c8f34fcea3e23c49fb3e17883b33551,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf +210b98394c3be96e7fd75d3eb11a391da1b3a6ca,http://pdfs.semanticscholar.org/210b/98394c3be96e7fd75d3eb11a391da1b3a6ca.pdf +2ad7cef781f98fd66101fa4a78e012369d064830,http://arxiv.org/pdf/1603.05474v1.pdf +a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd,http://pdfs.semanticscholar.org/a9eb/6e436cfcbded5a9f4b82f6b914c7f390adbd.pdf +9b000ccc04a2605f6aab867097ebf7001a52b459,http://pdfs.semanticscholar.org/9b00/0ccc04a2605f6aab867097ebf7001a52b459.pdf +a50b4d404576695be7cd4194a064f0602806f3c4,http://pdfs.semanticscholar.org/a50b/4d404576695be7cd4194a064f0602806f3c4.pdf +19746957aa0d800d550da246a025ad44409cdb03,http://pdfs.semanticscholar.org/1974/6957aa0d800d550da246a025ad44409cdb03.pdf +5f57a1a3a1e5364792b35e8f5f259f92ad561c1f,http://pdfs.semanticscholar.org/5f57/a1a3a1e5364792b35e8f5f259f92ad561c1f.pdf +4919663c62174a9bc0cc7f60da8f96974b397ad2,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/EBIF_5-2-2010_v_5.pdf +07f31bef7a7035792e3791473b3c58d03928abbf,http://videolectures.net/site/normal_dl/tag=977248/fgconference2015_phillips_biometric_samples_01.pdf +15f70a0ad8903017250927595ae2096d8b263090,http://pdfs.semanticscholar.org/15f7/0a0ad8903017250927595ae2096d8b263090.pdf +63c022198cf9f084fe4a94aa6b240687f21d8b41,http://pdfs.semanticscholar.org/63c0/22198cf9f084fe4a94aa6b240687f21d8b41.pdf +11a47a91471f40af5cf00449954474fd6e9f7694,http://pdfs.semanticscholar.org/11a4/7a91471f40af5cf00449954474fd6e9f7694.pdf +23fd653b094c7e4591a95506416a72aeb50a32b5,http://pdfs.semanticscholar.org/8a92/17f540845a7d11d24f2d76c0b752ca439457.pdf +5789f8420d8f15e7772580ec373112f864627c4b,http://openaccess.thecvf.com/content_ICCV_2017/papers/Schneider_Efficient_Global_Illumination_ICCV_2017_paper.pdf +4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41,http://pdfs.semanticscholar.org/4dd6/d511a8bbc4d9965d22d79ae6714ba48c8e41.pdf +677ebde61ba3936b805357e27fce06c44513a455,http://pdfs.semanticscholar.org/677e/bde61ba3936b805357e27fce06c44513a455.pdf +b2e5df82c55295912194ec73f0dca346f7c113f6,http://pdfs.semanticscholar.org/b2e5/df82c55295912194ec73f0dca346f7c113f6.pdf +f47404424270f6a20ba1ba8c2211adfba032f405,http://pdfs.semanticscholar.org/f474/04424270f6a20ba1ba8c2211adfba032f405.pdf +0e3840ea3227851aaf4633133dd3cbf9bbe89e5b,http://pdfs.semanticscholar.org/8d59/98cd984e7cce307da7d46f155f9db99c6590.pdf +6b18628cc8829c3bf851ea3ee3bcff8543391819,http://engineering.cae.cn/fitee/fileup/2095-9184/SUPPL/20151221082702_2.pdf +1130c38e88108cf68b92ecc61a9fc5aeee8557c9,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_058.pdf +48910f9b6ccc40226cd4f105ed5291571271b39e,http://pdfs.semanticscholar.org/4891/0f9b6ccc40226cd4f105ed5291571271b39e.pdf +36fc4120fc0638b97c23f97b53e2184107c52233,http://pdfs.semanticscholar.org/36fc/4120fc0638b97c23f97b53e2184107c52233.pdf +04616814f1aabe3799f8ab67101fbaf9fd115ae4,http://pdfs.semanticscholar.org/0461/6814f1aabe3799f8ab67101fbaf9fd115ae4.pdf +0aeb5020003e0c89219031b51bd30ff1bceea363,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTarxiv15.pdf +447d8893a4bdc29fa1214e53499ffe67b28a6db5,http://pdfs.semanticscholar.org/447d/8893a4bdc29fa1214e53499ffe67b28a6db5.pdf +574705812f7c0e776ad5006ae5e61d9b071eebdb,http://pdfs.semanticscholar.org/5747/05812f7c0e776ad5006ae5e61d9b071eebdb.pdf +3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,http://nms.csail.mit.edu/papers/sen060-chenA.pdf +c758b9c82b603904ba8806e6193c5fefa57e9613,http://pdfs.semanticscholar.org/c758/b9c82b603904ba8806e6193c5fefa57e9613.pdf +10b06d05b8b3a2c925b951a6d1d5919f536ffed4,http://gamesstudio.org/chek/wp-content/uploads/2014/01/interactivity_befaced.pdf +6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf +68c17aa1ecbff0787709be74d1d98d9efd78f410,http://pdfs.semanticscholar.org/68c1/7aa1ecbff0787709be74d1d98d9efd78f410.pdf +e6f20e7431172c68f7fce0d4595100445a06c117,http://pdfs.semanticscholar.org/e6f2/0e7431172c68f7fce0d4595100445a06c117.pdf +732e4016225280b485c557a119ec50cffb8fee98,http://pdfs.semanticscholar.org/732e/4016225280b485c557a119ec50cffb8fee98.pdf +18206e1b988389eaab86ef8c852662accf3c3663,http://pdfs.semanticscholar.org/d13e/5b4249cfe9672672eb573d15e7dc0a235e04.pdf +16572c545384174f8136d761d2b0866e968120a8,http://pdfs.semanticscholar.org/1657/2c545384174f8136d761d2b0866e968120a8.pdf +f4210309f29d4bbfea9642ecadfb6cf9581ccec7,http://pdfs.semanticscholar.org/f421/0309f29d4bbfea9642ecadfb6cf9581ccec7.pdf +8efda5708bbcf658d4f567e3866e3549fe045bbb,http://pdfs.semanticscholar.org/8efd/a5708bbcf658d4f567e3866e3549fe045bbb.pdf +a956ff50ca958a3619b476d16525c6c3d17ca264,http://ce.sharif.edu/~amiryanj/downloads/novel_bidirectional_nn_for_face_recognition.pdf +46ae4d593d89b72e1a479a91806c39095cd96615,http://www.idiap.ch/~odobez/publications/GayKhouryMeignierOdobezDeleglise-FaceNaming-ICIP-2014.pdf +72a55554b816b66a865a1ec1b4a5b17b5d3ba784,http://vislab.ucr.edu/Biometrics16/CVPRW_Vizilter.pdf +d915e634aec40d7ee00cbea96d735d3e69602f1a,http://pdfs.semanticscholar.org/d915/e634aec40d7ee00cbea96d735d3e69602f1a.pdf +a2bcfba155c990f64ffb44c0a1bb53f994b68a15,http://ibug.doc.ic.ac.uk/media/uploads/documents/cvprw_photoface.pdf +c9e955cb9709f16faeb0c840f4dae92eb875450a,http://pdfs.semanticscholar.org/c9e9/55cb9709f16faeb0c840f4dae92eb875450a.pdf +a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a,http://cvrr.ucsd.edu/publications/2014/TawariMartinTrivedi_IEEETITS2014.pdf +6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1,http://disi.unitn.it/~sebe/publications/MIR03.pdf +19868a469dc25ee0db00947e06c804b88ea94fd0,http://pdfs.semanticscholar.org/1986/8a469dc25ee0db00947e06c804b88ea94fd0.pdf +46f32991ebb6235509a6d297928947a8c483f29e,http://pdfs.semanticscholar.org/46f3/2991ebb6235509a6d297928947a8c483f29e.pdf +c5fe40875358a286594b77fa23285fcfb7bda68e,http://pdfs.semanticscholar.org/edd1/cfb1caff16f80d807ff0821883ae855950c5.pdf +22264e60f1dfbc7d0b52549d1de560993dd96e46,http://arxiv.org/pdf/1608.01471v1.pdf +8f92cccacf2c84f5d69db3597a7c2670d93be781,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2006/papers/1568982203.pdf +0b8c92463f8f5087696681fb62dad003c308ebe2,https://www.iiitd.edu.in/~richa/papers/BTAS10-Sketch.pdf +d861c658db2fd03558f44c265c328b53e492383a,http://www.cs.washington.edu/research/VACE/Multimedia/Jia_EMBC2014_final.pdf +fac5a9a18157962cff38df6d4ae69f8a7da1cfa8,http://www.cs.sunysb.edu/~vislab/papers/01580481.pdf +8149c30a86e1a7db4b11965fe209fe0b75446a8c,http://www.cfar.umd.edu/~kale/ICVGIP2012.pdf +100da509d4fa74afc6e86a49352751d365fceee5,http://vision.ucsd.edu/sites/default/files/iccv2011_20q_parts_final.pdf +e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5,http://pdfs.semanticscholar.org/e43e/a078749d1f9b8254e0c3df4c51ba2f4eebd5.pdf +e475deadd1e284428b5e6efd8fe0e6a5b83b9dcd,http://pdfs.semanticscholar.org/e475/deadd1e284428b5e6efd8fe0e6a5b83b9dcd.pdf +daa52dd09b61ee94945655f0dde216cce0ebd505,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yonetani_Recognizing_Micro-Actions_and_CVPR_2016_paper.pdf +4d625677469be99e0a765a750f88cfb85c522cce,http://pdfs.semanticscholar.org/cccc/378e98218bbedfd93da956e4a07b9971b928.pdf +1565721ebdbd2518224f54388ed4f6b21ebd26f3,http://cmp.felk.cvut.cz/ftp/articles/franc/Cevilkalp-FaceDetector-FG2013.pdf +3b470b76045745c0ef5321e0f1e0e6a4b1821339,http://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf +476f177b026830f7b31e94bdb23b7a415578f9a4,http://vision.ece.ucsb.edu/sites/vision.ece.ucsb.edu/files/publications/karthikeyan_icip2012_subspace_final.pdf +1da83903c8d476c64c14d6851c85060411830129,http://pdfs.semanticscholar.org/90c3/b003b85bd60ae06630bcef6abc03c3b1ef96.pdf +0de91641f37b0a81a892e4c914b46d05d33fd36e,https://ibug.doc.ic.ac.uk/media/uploads/documents/raps.pdf +a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2,http://pdfs.semanticscholar.org/a4a5/ad6f1cc489427ac1021da7d7b70fa9a770f2.pdf +9d896605fbf93315b68d4ee03be0770077f84e40,http://pdfs.semanticscholar.org/9d89/6605fbf93315b68d4ee03be0770077f84e40.pdf +8f992ed6686710164005c20ab16cef6c6ad8d0ea,http://sist.sysu.edu.cn/~zhwshi/Research/PreprintVersion/Half-quadratic%20based%20Iterative%20Minimization%20for%20Robust%20Sparse%20Representation.pdf +a660390654498dff2470667b64ea656668c98ecc,https://pdfs.semanticscholar.org/b42a/97fb47bcd6bfa72e130c08960a77ee96f9ab.pdf +01d2cf5398c2b3e0f4fc8e8318a4492c95a0b242,http://webee.technion.ac.il/~lihi/Publications/10-ANS-PAMI.pdf +8320dbdd3e4712cca813451cd94a909527652d63,http://pdfs.semanticscholar.org/d921/1df11080fa5eb0dc1d62fb683b10c055673a.pdf +51348e24d2199b06273e7b65ae5f3fc764a2efc7,http://pdfs.semanticscholar.org/c4b4/cbc801a4430be5fdd16ae34c68f53f772582.pdf +2f0b8579829b3d4efdbc03c96821e33d7cc65e1d,http://thoth.inrialpes.fr/people/mpederso/papers/cvpr14-facial.pdf +1e058b3af90d475bf53b3f977bab6f4d9269e6e8,http://pdfs.semanticscholar.org/30b9/7c36bcb99e857cd78fc55e2600d7851dc117.pdf +1d58d83ee4f57351b6f3624ac7e727c944c0eb8d,http://parnec.nuaa.edu.cn/xtan/paper/amfg07_talk.pdf +528069963f0bd0861f380f53270c96c269a3ea1c,http://pdfs.semanticscholar.org/5280/69963f0bd0861f380f53270c96c269a3ea1c.pdf +4c8581246ed4d90c942a23ed7c0e007221fa684d,http://welcome.isr.ist.utl.pt/img/pdfs/3439_14-ICIPb.pdf +108b2581e07c6b7ca235717c749d45a1fa15bb24,http://www.cs.umd.edu/~djacobs/pubs_files/TPAMI_Proofs.pdf +a9fc23d612e848250d5b675e064dba98f05ad0d9,http://pdfs.semanticscholar.org/a9fc/23d612e848250d5b675e064dba98f05ad0d9.pdf +23fdbef123bcda0f07d940c72f3b15704fd49a98,http://pdfs.semanticscholar.org/23fd/bef123bcda0f07d940c72f3b15704fd49a98.pdf +b2a0e5873c1a8f9a53a199eecae4bdf505816ecb,http://pdfs.semanticscholar.org/b2a0/e5873c1a8f9a53a199eecae4bdf505816ecb.pdf +e793f8644c94b81b7a0f89395937a7f8ad428a89,http://pdfs.semanticscholar.org/e793/f8644c94b81b7a0f89395937a7f8ad428a89.pdf +21ef129c063bad970b309a24a6a18cbcdfb3aff5,http://pdfs.semanticscholar.org/21ef/129c063bad970b309a24a6a18cbcdfb3aff5.pdf +6ab33fa51467595f18a7a22f1d356323876f8262,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf +0fdcfb4197136ced766d538b9f505729a15f0daf,https://arxiv.org/pdf/0907.5321v2.pdf +fec6648b4154fc7e0892c74f98898f0b51036dfe,http://pdfs.semanticscholar.org/fec6/648b4154fc7e0892c74f98898f0b51036dfe.pdf +666300af8ffb8c903223f32f1fcc5c4674e2430b,http://pdfs.semanticscholar.org/6663/00af8ffb8c903223f32f1fcc5c4674e2430b.pdf +8de06a584955f04f399c10f09f2eed77722f6b1c,http://pdfs.semanticscholar.org/8de0/6a584955f04f399c10f09f2eed77722f6b1c.pdf +f4f9697f2519f1fe725ee7e3788119ed217dca34,http://pdfs.semanticscholar.org/f4f9/697f2519f1fe725ee7e3788119ed217dca34.pdf +5bdd9f807eec399bb42972a33b83afc8b607c05c,http://www.umiacs.umd.edu/~pvishalm/Journal_pub/SPM_DA_v9.pdf +549c719c4429812dff4d02753d2db11dd490b2ae,http://openaccess.thecvf.com/content_cvpr_2017/papers/Real_YouTube-BoundingBoxes_A_Large_CVPR_2017_paper.pdf +1606b1475e125bba1b2d87bcf1e33b06f42c5f0d,http://users.eecs.northwestern.edu/~xsh835/CVPR2015_CasCNN.pdf +badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,http://pdfs.semanticscholar.org/badc/fb7d4e2ef0d3e332a19a3f93d59b4f85668e.pdf +324f39fb5673ec2296d90142cf9a909e595d82cf,http://pdfs.semanticscholar.org/324f/39fb5673ec2296d90142cf9a909e595d82cf.pdf +2f5e057e35a97278a9d824545d7196c301072ebf,http://vision.ics.uci.edu/papers/ZhuAR_CVPR_2014/ZhuAR_CVPR_2014.pdf +4a3d96b2a53114da4be3880f652a6eef3f3cc035,https://www.micc.unifi.it/wp-content/uploads/2018/01/07932891.pdf +a57b92ed2d8aa5b41fe513c3e98cbf83b7141741,http://pdfs.semanticscholar.org/a57b/92ed2d8aa5b41fe513c3e98cbf83b7141741.pdf +b5cd9e5d81d14868f1a86ca4f3fab079f63a366d,https://ivi.fnwi.uva.nl/isis/publications/2016/AgharwalWCACV2016/AgharwalWCACV2016.pdf +5f344a4ef7edfd87c5c4bc531833774c3ed23542,http://pdfs.semanticscholar.org/5f34/4a4ef7edfd87c5c4bc531833774c3ed23542.pdf +1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,http://pdfs.semanticscholar.org/3a2f/aa145c5fe63ab906568a29fa4100220e03d9.pdf +65b737e5cc4a565011a895c460ed8fd07b333600,http://pdfs.semanticscholar.org/7574/f999d2325803f88c4915ba8f304cccc232d1.pdf +94f74c6314ffd02db581e8e887b5fd81ce288dbf,http://pdfs.semanticscholar.org/94f7/4c6314ffd02db581e8e887b5fd81ce288dbf.pdf +2179afa1cb4bd6d6ff0ca8df580ae511f59d99a3,http://pdfs.semanticscholar.org/f9f4/9f8347db35e721672955c3e24f60574553c0.pdf +611961abc4dfc02b67edd8124abb08c449f5280a,http://pdfs.semanticscholar.org/6119/61abc4dfc02b67edd8124abb08c449f5280a.pdf +b87db5ac17312db60e26394f9e3e1a51647cca66,http://pdfs.semanticscholar.org/b87d/b5ac17312db60e26394f9e3e1a51647cca66.pdf +2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475,http://pdfs.semanticscholar.org/2fa1/fc116731b2b5bb97f06d2ac494cb2b2fe475.pdf +be8c517406528edc47c4ec0222e2a603950c2762,http://pdfs.semanticscholar.org/be8c/517406528edc47c4ec0222e2a603950c2762.pdf +4abd49538d04ea5c7e6d31701b57ea17bc349412,http://resources.mpi-inf.mpg.de/publications/D2/2015/rohrbach15ijcv.pdf +6f288a12033fa895fb0e9ec3219f3115904f24de,https://arxiv.org/pdf/1511.05204v1.pdf +a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9,http://pdfs.semanticscholar.org/a7a6/eb53bee5e2224f2ecd56a14e3a5a717e55b9.pdf +b5fc4f9ad751c3784eaf740880a1db14843a85ba,http://pdfs.semanticscholar.org/b5fc/4f9ad751c3784eaf740880a1db14843a85ba.pdf +cc96eab1e55e771e417b758119ce5d7ef1722b43,http://pdfs.semanticscholar.org/cc96/eab1e55e771e417b758119ce5d7ef1722b43.pdf +992ebd81eb448d1eef846bfc416fc929beb7d28b,http://pdfs.semanticscholar.org/992e/bd81eb448d1eef846bfc416fc929beb7d28b.pdf +768c332650a44dee02f3d1d2be1debfa90a3946c,http://mmlab.ie.cuhk.edu.hk/archive/2004/CVPR04_Face3.pdf +55b9b1c1c5487f5f62b44340104a9c4cc2ed7c96,http://pdfs.semanticscholar.org/55b9/b1c1c5487f5f62b44340104a9c4cc2ed7c96.pdf +dfa80e52b0489bc2585339ad3351626dee1a8395,http://pdfs.semanticscholar.org/dfa8/0e52b0489bc2585339ad3351626dee1a8395.pdf +a8affc2819f7a722a41bb913dea9149ee0e23a1f,http://robotics.szpku.edu.cn/c/publication/paper/ICIP2014-gaoyuan1.pdf +41971dfbf404abeb8cf73fea29dc37b9aae12439,http://pdfs.semanticscholar.org/4197/1dfbf404abeb8cf73fea29dc37b9aae12439.pdf +28b26597a7237f9ea6a9255cde4e17ee18122904,http://pdfs.semanticscholar.org/28b2/6597a7237f9ea6a9255cde4e17ee18122904.pdf +5c4ce36063dd3496a5926afd301e562899ff53ea,http://pdfs.semanticscholar.org/5c4c/e36063dd3496a5926afd301e562899ff53ea.pdf +007250c2dce81dd839a55f9108677b4f13f2640a,http://pdfs.semanticscholar.org/0db7/735e7adbe6e34dd058af31e278033040ab18.pdf +65126e0b1161fc8212643b8ff39c1d71d262fbc1,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ghiasi_Occlusion_Coherence_Localizing_2014_CVPR_paper.pdf +466a5add15bb5f91e0cfd29a55f5fb159a7980e5,http://pdfs.semanticscholar.org/466a/5add15bb5f91e0cfd29a55f5fb159a7980e5.pdf +2dd2c7602d7f4a0b78494ac23ee1e28ff489be88,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_cvpr_2012.pdf +fe108803ee97badfa2a4abb80f27fa86afd9aad9,http://pdfs.semanticscholar.org/fe10/8803ee97badfa2a4abb80f27fa86afd9aad9.pdf +7c36afc9828379de97f226e131390af719dbc18d,http://www.cs.cornell.edu/~chenxiawu/papers/ufna.pdf +3c47022955c3274250630b042b53d3de2df8eeda,http://research.microsoft.com/en-us/um/people/leizhang/paper/cvpr05-shuicheng-discriminant.pdf +1921e0a97904bdf61e17a165ab159443414308ed,http://pdfs.semanticscholar.org/1921/e0a97904bdf61e17a165ab159443414308ed.pdf +cb84229e005645e8623a866d3d7956c197f85e11,http://pdfs.semanticscholar.org/cb84/229e005645e8623a866d3d7956c197f85e11.pdf +969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,http://pdfs.semanticscholar.org/969f/d48e1a668ab5d3c6a80a3d2aeab77067c6ce.pdf +6c27eccf8c4b22510395baf9f0d0acc3ee547862,http://pdfs.semanticscholar.org/6c27/eccf8c4b22510395baf9f0d0acc3ee547862.pdf +12150d8b51a2158e574e006d4fbdd3f3d01edc93,https://lmb.informatik.uni-freiburg.de/lectures/seminar_brox/seminar_ss16/DeepEnd2EndV2V.pdf +0ce3a786aed896d128f5efdf78733cc675970854,http://pdfs.semanticscholar.org/3689/2b6bb4848a9c21158b8eded7f14a6654dd7e.pdf +8cb403c733a5f23aefa6f583a17cf9b972e35c90,http://pdfs.semanticscholar.org/e4ca/1fa70823c4350888607df470248be0ed4c56.pdf +14318d2b5f2cf731134a6964d8193ad761d86942,http://pdfs.semanticscholar.org/1431/8d2b5f2cf731134a6964d8193ad761d86942.pdf +438b88fe40a6f9b5dcf08e64e27b2719940995e0,http://www.csd.uwo.ca/~olga/Courses/Fall2006/StudentPapers/ferenczMillerMalikICCV05.pdf +51c7c5dfda47647aef2797ac3103cf0e108fdfb4,http://pdfs.semanticscholar.org/51c7/c5dfda47647aef2797ac3103cf0e108fdfb4.pdf +9a3535cabf5d0f662bff1d897fb5b777a412d82e,http://pdfs.semanticscholar.org/9a35/35cabf5d0f662bff1d897fb5b777a412d82e.pdf +c5c379a807e02cab2e57de45699ababe8d13fb6d,http://pdfs.semanticscholar.org/c5c3/79a807e02cab2e57de45699ababe8d13fb6d.pdf +15e0b9ba3389a7394c6a1d267b6e06f8758ab82b,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0035-2?site=ipsjcva.springeropen.com +d8b568392970b68794a55c090c4dd2d7f90909d2,http://pdfs.semanticscholar.org/d8b5/68392970b68794a55c090c4dd2d7f90909d2.pdf +a4876b7493d8110d4be720942a0f98c2d116d2a0,http://pdfs.semanticscholar.org/a487/6b7493d8110d4be720942a0f98c2d116d2a0.pdf +5f1dcaff475ef18a2ecec0e114a9849a0a8002b9,http://pdfs.semanticscholar.org/5f1d/caff475ef18a2ecec0e114a9849a0a8002b9.pdf +192235f5a9e4c9d6a28ec0d333e36f294b32f764,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf +887745c282edf9af40d38425d5fdc9b3fe139c08,https://arxiv.org/pdf/1407.2987v1.pdf +4622b82a8aff4ac1e87b01d2708a333380b5913b,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICB2015/Zhu-ICB-15.pdf +e4c81c56966a763e021938be392718686ba9135e,http://pdfs.semanticscholar.org/e4c8/1c56966a763e021938be392718686ba9135e.pdf +250ebcd1a8da31f0071d07954eea4426bb80644c,http://pdfs.semanticscholar.org/2e26/8598d9c2fd9757ba43f7967e57b8a2a871f4.pdf +e82360682c4da11f136f3fccb73a31d7fd195694,http://pdfs.semanticscholar.org/e823/60682c4da11f136f3fccb73a31d7fd195694.pdf +62a30f1b149843860938de6dd6d1874954de24b7,http://mmlab.ie.cuhk.edu.hk/archive/2009/09_fast_algorithm.pdf +b52886610eda6265a2c1aaf04ce209c047432b6d,http://infolab.stanford.edu/~wangz/project/imsearch/Aesthetics/TAC16/xu.pdf +98af221afd64a23e82c40fd28d25210c352e41b7,http://pdfs.semanticscholar.org/d2fb/a31b394ea016b57f45bead77534fd8f7fbfa.pdf +660b73b0f39d4e644bf13a1745d6ee74424d4a16,http://pdfs.semanticscholar.org/660b/73b0f39d4e644bf13a1745d6ee74424d4a16.pdf +7f9260c00a86a0d53df14469f1fa10e318ee2a3c,http://www.cse.msu.edu/~stockman/Book/projects.html/F06Docs/Papers/daugemanIrisICIP02.pdf +b85580ff2d8d8be0a2c40863f04269df4cd766d9,http://pdfs.semanticscholar.org/b855/80ff2d8d8be0a2c40863f04269df4cd766d9.pdf +1048c753e9488daa2441c50577fe5fdba5aa5d7c,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/473.pdf +f69de2b6770f0a8de6d3ec1a65cb7996b3c99317,http://pdfs.semanticscholar.org/f69d/e2b6770f0a8de6d3ec1a65cb7996b3c99317.pdf +322c063e97cd26f75191ae908f09a41c534eba90,https://jurie.users.greyc.fr/papers/12_SEMATR_IJCV.pdf +1de690714f143a8eb0d6be35d98390257a3f4a47,http://www.cs.fsu.edu/~liux/research/publications/papers/waring-liu-face-detection-smcb-2005.pdf +3ec05713a1eed6fa9b57fef718f369f68bbbe09f,http://pdfs.semanticscholar.org/3ec0/5713a1eed6fa9b57fef718f369f68bbbe09f.pdf +dd600e7d6e4443ebe87ab864d62e2f4316431293,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553774.pdf +2c811b647a6aac924920c06e607e9e8d4b8d872d,http://pdfs.semanticscholar.org/2c81/1b647a6aac924920c06e607e9e8d4b8d872d.pdf +90dd2a53236b058c79763459b9d8a7ba5e58c4f1,http://pdfs.semanticscholar.org/90dd/2a53236b058c79763459b9d8a7ba5e58c4f1.pdf +442d3aeca486de787de10bc41bfeb0b42c81803f,http://pdfs.semanticscholar.org/442d/3aeca486de787de10bc41bfeb0b42c81803f.pdf +d78fbd11f12cbc194e8ede761d292dc2c02d38a2,http://pdfs.semanticscholar.org/d78f/bd11f12cbc194e8ede761d292dc2c02d38a2.pdf +3c1f5580a66c9624c77f27ab8e4cf0d1b3d9d171,http://research.microsoft.com/en-us/um/people/luyuan/paper/skyfinder_siggraph09.pdf +6afeb764ee97fbdedfa8f66810dfc22feae3fa1f,http://pdfs.semanticscholar.org/928c/dc2049462f66460dc30aef5aaaa15e427d12.pdf +f8015e31d1421f6aee5e17fc3907070b8e0a5e59,http://pdfs.semanticscholar.org/f801/5e31d1421f6aee5e17fc3907070b8e0a5e59.pdf +c53352a4239568cc915ad968aff51c49924a3072,http://pdfs.semanticscholar.org/c533/52a4239568cc915ad968aff51c49924a3072.pdf +1f2d12531a1421bafafe71b3ad53cb080917b1a7,http://pdfs.semanticscholar.org/1f2d/12531a1421bafafe71b3ad53cb080917b1a7.pdf +a702fc36f0644a958c08de169b763b9927c175eb,http://www.apsipa.org/proceedings_2013/papers/170_PID2935307.pdf +abb396490ba8b112f10fbb20a0a8ce69737cd492,http://pdfs.semanticscholar.org/abb3/96490ba8b112f10fbb20a0a8ce69737cd492.pdf +51a8dabe4dae157aeffa5e1790702d31368b9161,http://pdfs.semanticscholar.org/5621/adae20c1bc781a36c43a9ddbe5475ea4b6e8.pdf +9b93406f3678cf0f16451140ea18be04784faeee,http://pdfs.semanticscholar.org/9b93/406f3678cf0f16451140ea18be04784faeee.pdf +63c109946ffd401ee1195ed28f2fb87c2159e63d,http://pdfs.semanticscholar.org/63c1/09946ffd401ee1195ed28f2fb87c2159e63d.pdf +24f1e2b7a48c2c88c9e44de27dc3eefd563f6d39,http://openaccess.thecvf.com/content_ICCV_2017/papers/Benitez-Quiroz_Recognition_of_Action_ICCV_2017_paper.pdf +466f80b066215e85da63e6f30e276f1a9d7c843b,http://cbl.uh.edu/pub_files/07961802.pdf +195d331c958f2da3431f37a344559f9bce09c0f7,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_066_ext.pdf +54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3,http://www.cs.toronto.edu/~vnair/iccv11.pdf +1eba6fc35a027134aa8997413647b49685f6fbd1,https://ubicomp-mental-health.github.io/papers/voss-glass.pdf +5b693cb3bedaa2f1e84161a4261df9b3f8e77353,http://pdfs.semanticscholar.org/5b69/3cb3bedaa2f1e84161a4261df9b3f8e77353.pdf +e8410c4cd1689829c15bd1f34995eb3bd4321069,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553731.pdf +17e563af203d469c456bb975f3f88a741e43fb71,https://cvhci.anthropomatik.kit.edu/~mhaurile/papers/WACV2016.pdf +91d513af1f667f64c9afc55ea1f45b0be7ba08d4,http://pdfs.semanticscholar.org/91d5/13af1f667f64c9afc55ea1f45b0be7ba08d4.pdf +aac39ca161dfc52aade063901f02f56d01a1693c,http://pdfs.semanticscholar.org/aac3/9ca161dfc52aade063901f02f56d01a1693c.pdf +920a92900fbff22fdaaef4b128ca3ca8e8d54c3e,http://pdfs.semanticscholar.org/920a/92900fbff22fdaaef4b128ca3ca8e8d54c3e.pdf +03e88bf3c5ddd44ebf0e580d4bd63072566613ad,http://pdfs.semanticscholar.org/03e8/8bf3c5ddd44ebf0e580d4bd63072566613ad.pdf +541f1436c8ffef1118a0121088584ddbfd3a0a8a,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/A%20Spatio-Temporal%20Feature%20based%20on%20Triangulation%20of%20Dense%20SURF.pdf +778bff335ae1b77fd7ec67404f71a1446624331b,http://pdfs.semanticscholar.org/778b/ff335ae1b77fd7ec67404f71a1446624331b.pdf +9b164cef4b4ad93e89f7c1aada81ae7af802f3a4,http://pdfs.semanticscholar.org/9b16/4cef4b4ad93e89f7c1aada81ae7af802f3a4.pdf +1ae642a8d756c6aa7bc049c5c89d5072d8749637,http://www.cs.umd.edu/~behjat/papers/ICMR14_poster.pdf +d0e895a272d684a91c1b1b1af29747f92919d823,http://pdfs.semanticscholar.org/d0e8/95a272d684a91c1b1b1af29747f92919d823.pdf +ad5a1621190d18dd429930ab5125c849ce7e4506,http://www.cs.csub.edu/~acruz/papers/10.1109-ICIP.2014.7025275.pdf +f4aed1314b2d38fd8f1b9d2bc154295bbd45f523,http://pdfs.semanticscholar.org/f4ae/d1314b2d38fd8f1b9d2bc154295bbd45f523.pdf +0a325d70cc381b136a8f4e471b406cda6d27668c,http://pdfs.semanticscholar.org/0a32/5d70cc381b136a8f4e471b406cda6d27668c.pdf +a481e394f58f2d6e998aa320dad35c0d0e15d43c,http://www.cs.colostate.edu/~draper/papers/wigness_wacv14.pdf +7698ba9fd1f49157ca2666a93311afbf1ff4e66c,http://www.ics.uci.edu/~dramanan/papers/dpm_acm.pdf +32d555faaaa0a6f6f9dfc9263e4dba75a38c3193,http://pdfs.semanticscholar.org/e119/eeee5025235c6f8dacc7c1812c0c52d595b9.pdf +68bf34e383092eb827dd6a61e9b362fcba36a83a,http://pdfs.semanticscholar.org/68bf/34e383092eb827dd6a61e9b362fcba36a83a.pdf +7735f63e5790006cb3d989c8c19910e40200abfc,http://pdfs.semanticscholar.org/7735/f63e5790006cb3d989c8c19910e40200abfc.pdf +209324c152fa8fab9f3553ccb62b693b5b10fb4d,http://pdfs.semanticscholar.org/2093/24c152fa8fab9f3553ccb62b693b5b10fb4d.pdf +90cb074a19c5e7d92a1c0d328a1ade1295f4f311,http://pdfs.semanticscholar.org/90cb/074a19c5e7d92a1c0d328a1ade1295f4f311.pdf +02dd0af998c3473d85bdd1f77254ebd71e6158c6,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_PPP_Joint_Pointwise_CVPR_2016_paper.pdf +465d5bb11912005f0a4f0569c6524981df18a7de,http://pdfs.semanticscholar.org/465d/5bb11912005f0a4f0569c6524981df18a7de.pdf +64cf1cda80a23ed6fc1c8e66065614ef7bdeadf3,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/PAMI_LIV.pdf +19994e667d908bc0aacfb663ab0a2bb5ad16b221,http://pdfs.semanticscholar.org/65b1/70e5ec86f5fc500fd5cbd7bfe7b2ec4ef045.pdf +19a9f658ea14701502d169dc086651b1d9b2a8ea,http://www.cbsr.ia.ac.cn/users/zlei/papers/JJYan-FG2013.pdf +d8f0bda19a345fac81a1d560d7db73f2b4868836,http://pdfs.semanticscholar.org/d8f0/bda19a345fac81a1d560d7db73f2b4868836.pdf +655d9ba828eeff47c600240e0327c3102b9aba7c,http://cs.gmu.edu/~carlotta/publications/kpools.pdf +9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c,http://pdfs.semanticscholar.org/9626/bcb3fc7c7df2c5a423ae8d0a046b2f69180c.pdf +88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320,http://pdfs.semanticscholar.org/88c6/d4b73bd36e7b5a72f3c61536c8c93f8d2320.pdf +2836d68c86f29bb87537ea6066d508fde838ad71,http://arxiv.org/pdf/1510.06503v1.pdf +63a6c256ec2cf2e0e0c9a43a085f5bc94af84265,http://www.cs.tau.ac.il/~wolf/papers/complexity-multiverse-networks.pdf +6f957df9a7d3fc4eeba53086d3d154fc61ae88df,http://pdfs.semanticscholar.org/6f95/7df9a7d3fc4eeba53086d3d154fc61ae88df.pdf +17045163860fc7c38a0f7d575f3e44aaa5fa40d7,http://pdfs.semanticscholar.org/38b9/57e2b5ec0ea852d22d1481ef924fbf7f72e2.pdf +4b74f2d56cd0dda6f459319fec29559291c61bff,http://pdfs.semanticscholar.org/96d1/e2686725f69b38b510a75b716caf3a48b3e2.pdf +25b2811118ed73c64682544fe78023bb8242c709,http://www.researchgate.net/profile/Xueyin_Lin/publication/4193803_Kernel-based_multifactor_analysis_for_image_synthesis_and_recognition/links/00b7d51a9fd4fb9962000000.pdf +3df8cc0384814c3fb05c44e494ced947a7d43f36,http://openaccess.thecvf.com/content_ICCV_2017/papers/Walker_The_Pose_Knows_ICCV_2017_paper.pdf +8812aef6bdac056b00525f0642702ecf8d57790b,http://pdfs.semanticscholar.org/8812/aef6bdac056b00525f0642702ecf8d57790b.pdf +231a6d2ee1cc76f7e0c5912a530912f766e0b459,http://pdfs.semanticscholar.org/231a/6d2ee1cc76f7e0c5912a530912f766e0b459.pdf +666939690c564641b864eed0d60a410b31e49f80,http://pdfs.semanticscholar.org/6669/39690c564641b864eed0d60a410b31e49f80.pdf +ecca2a2b84ea01ea425b8d2d9f376f15a295a7f5,http://smie2.sysu.edu.cn/~wcd/Papers/2013_TPAMI_Wang_MEAP.pdf +1fbde67e87890e5d45864e66edb86136fbdbe20e,http://www.openu.ac.il/home/hassner/data/ASLAN/Papers/ASLAN_TPAMI12.pdf +ad6745dd793073f81abd1f3246ba4102046da022,http://pdfs.semanticscholar.org/ad67/45dd793073f81abd1f3246ba4102046da022.pdf +7ffc5c58e5b61ac7c45d8e6ed076248051ebea34,http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/238/1/SMCB_C_34_5_04.pdf +2912c3ea67678a1052d7d5cbe734a6ad90fc360e,http://pdfs.semanticscholar.org/2912/c3ea67678a1052d7d5cbe734a6ad90fc360e.pdf +a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sikka_Exemplar_Hidden_Markov_2015_CVPR_paper.pdf +3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9,https://arxiv.org/pdf/1611.06638.pdf +6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0000937.pdf +1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,http://personal.stevens.edu/~hli18//data/papers/CVPR2016_CameraReady.pdf +49820ae612b3c0590a8a78a725f4f378cb605cd1,http://pdfs.semanticscholar.org/4982/0ae612b3c0590a8a78a725f4f378cb605cd1.pdf +22ad2c8c0f4d6aa4328b38d894b814ec22579761,http://nichol.as/papers/Gallagher/Clothing%20Cosegmentation%20for%20Recognizing%20People.pdf +ce54e891e956d5b502a834ad131616786897dc91,http://pdfs.semanticscholar.org/ce54/e891e956d5b502a834ad131616786897dc91.pdf +11dc744736a30a189f88fa81be589be0b865c9fa,http://openaccess.thecvf.com/content_iccv_2015/papers/Liang_A_Unified_Multiplicative_ICCV_2015_paper.pdf +1667a77db764e03a87a3fd167d88b060ef47bb56,http://pdfs.semanticscholar.org/1667/a77db764e03a87a3fd167d88b060ef47bb56.pdf +32df63d395b5462a8a4a3c3574ae7916b0cd4d1d,http://www.ppgia.pucpr.br/~alekoe/Papers/ALEKOE-FacialExpression-ICASSP2011.pdf +d9c4586269a142faee309973e2ce8cde27bda718,http://pdfs.semanticscholar.org/d9c4/586269a142faee309973e2ce8cde27bda718.pdf +aa94f214bb3e14842e4056fdef834a51aecef39c,http://pdfs.semanticscholar.org/aa94/f214bb3e14842e4056fdef834a51aecef39c.pdf +04470861408d14cc860f24e73d93b3bb476492d0,http://pdfs.semanticscholar.org/0447/0861408d14cc860f24e73d93b3bb476492d0.pdf +0ad90118b4c91637ee165f53d557da7141c3fde0,http://pdfs.semanticscholar.org/0ad9/0118b4c91637ee165f53d557da7141c3fde0.pdf +c466ad258d6262c8ce7796681f564fec9c2b143d,http://pdfs.semanticscholar.org/c466/ad258d6262c8ce7796681f564fec9c2b143d.pdf +982fed5c11e76dfef766ad9ff081bfa25e62415a,https://pdfs.semanticscholar.org/c7fa/d91ba4e33f64d584c928b1200327815f09e6.pdf +9513503867b29b10223f17c86e47034371b6eb4f,http://pdfs.semanticscholar.org/9513/503867b29b10223f17c86e47034371b6eb4f.pdf +b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57,http://pdfs.semanticscholar.org/b506/aa23949b6d1f0c868ad03aaaeb5e5f7f6b57.pdf +5003754070f3a87ab94a2abb077c899fcaf936a6,http://pdfs.semanticscholar.org/5003/754070f3a87ab94a2abb077c899fcaf936a6.pdf +17370f848801871deeed22af152489e39b6e1454,http://mml.citi.sinica.edu.tw/papers/ICME_2015_Wei.pdf +1576ed0f3926c6ce65e0ca770475bca6adcfdbb4,http://openaccess.thecvf.com/content_cvpr_workshops_2015/W09/papers/Bagheri_Keep_it_Accurate_2015_CVPR_paper.pdf +59cdafed4eeb8ff7c9bb2d4ecd0edeb8a361ffc1,http://pdfs.semanticscholar.org/59cd/afed4eeb8ff7c9bb2d4ecd0edeb8a361ffc1.pdf +6ce23cf4f440021b7b05aa3c1c2700cc7560b557,http://pdfs.semanticscholar.org/6ce2/3cf4f440021b7b05aa3c1c2700cc7560b557.pdf +5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhao_Facial_Expression_Intensity_CVPR_2016_paper.pdf +0728f788107122d76dfafa4fb0c45c20dcf523ca,http://arxiv.org/pdf/1505.04427v1.pdf +0cbe059c181278a373292a6af1667c54911e7925,http://pdfs.semanticscholar.org/ea4e/15a4cf256599d11291040ad5e487f55ae514.pdf +7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b,http://pdfs.semanticscholar.org/7d98/dcd15e28bcc57c9c59b7401fa4a5fdaa632b.pdf +dc77287bb1fcf64358767dc5b5a8a79ed9abaa53,http://pdfs.semanticscholar.org/dc77/287bb1fcf64358767dc5b5a8a79ed9abaa53.pdf +5173a20304ea7baa6bfe97944a5c7a69ea72530f,http://pdfs.semanticscholar.org/5173/a20304ea7baa6bfe97944a5c7a69ea72530f.pdf +1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb,http://research.microsoft.com/en-us/um/people/jiansun/papers/CVPR12_FaceAlignRegression.pdf +9d60ad72bde7b62be3be0c30c09b7d03f9710c5f,http://pdfs.semanticscholar.org/9d60/ad72bde7b62be3be0c30c09b7d03f9710c5f.pdf +89f4bcbfeb29966ab969682eae235066a89fc151,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/short-fgr-2004.pdf +78fede85d6595e7a0939095821121f8bfae05da6,http://pdfs.semanticscholar.org/78fe/de85d6595e7a0939095821121f8bfae05da6.pdf +d5f751d31a9d2d754d0d136d5b02c24b28fb94a0,http://www.researchgate.net/profile/Marie-Francine_Moens/publication/220634584_Naming_People_in_News_Videos_with_Label_Propagation/links/0a85e52ecd01912489000000.pdf +cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7a,http://pdfs.semanticscholar.org/cba4/5a87fc6cf12b3b0b6f57ba1a5282ef7fee7a.pdf +c49aed65fcf9ded15c44f9cbb4b161f851c6fa88,http://pdfs.semanticscholar.org/c49a/ed65fcf9ded15c44f9cbb4b161f851c6fa88.pdf +08ee541925e4f7f376538bc289503dd80399536f,http://pdfs.semanticscholar.org/08ee/541925e4f7f376538bc289503dd80399536f.pdf +23c3eb6ad8e5f18f672f187a6e9e9b0d94042970,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_095_ext.pdf +bb451dc2420e1a090c4796c19716f93a9ef867c9,http://pdfs.semanticscholar.org/bb45/1dc2420e1a090c4796c19716f93a9ef867c9.pdf +e3e2c106ccbd668fb9fca851498c662add257036,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-et-al-Ensembles.pdf +8aed6ec62cfccb4dba0c19ee000e6334ec585d70,http://pdfs.semanticscholar.org/8aed/6ec62cfccb4dba0c19ee000e6334ec585d70.pdf +08f1e9e14775757298afd9039f46ec56e80677f9,http://pdfs.semanticscholar.org/08f1/e9e14775757298afd9039f46ec56e80677f9.pdf +faeefc5da67421ecd71d400f1505cfacb990119c,http://pdfs.semanticscholar.org/faee/fc5da67421ecd71d400f1505cfacb990119c.pdf +23086a13b83d1b408b98346cf44f3e11920b404d,http://pdfs.semanticscholar.org/2308/6a13b83d1b408b98346cf44f3e11920b404d.pdf +2d98a1cb0d1a37c79a7ebcb727066f9ccc781703,https://arxiv.org/pdf/1706.07525v1.pdf +c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6,http://pdfs.semanticscholar.org/c6ff/a09c4a6cacbbd3c41c8ae7a728b0de6e10b6.pdf +580e48d3e7fe1ae0ceed2137976139852b1755df,http://pdfs.semanticscholar.org/580e/48d3e7fe1ae0ceed2137976139852b1755df.pdf +9282239846d79a29392aa71fc24880651826af72,http://pdfs.semanticscholar.org/9282/239846d79a29392aa71fc24880651826af72.pdf +34b42bcf84d79e30e26413f1589a9cf4b37076f9,http://pdfs.semanticscholar.org/34b4/2bcf84d79e30e26413f1589a9cf4b37076f9.pdf +10ca2e03ff995023a701e6d8d128455c6e8db030,http://pdfs.semanticscholar.org/a941/e5f8778cbac75e21172985a0575b51ea819b.pdf +7fd6bb30ad5d7eb3078efbb85f94d2d60e701115,http://pdfs.semanticscholar.org/7fd6/bb30ad5d7eb3078efbb85f94d2d60e701115.pdf +5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e,http://pdfs.semanticscholar.org/5d5c/d6fa5c41eb9d3d2bab3359b3e5eb60ae194e.pdf +59e75aad529b8001afc7e194e21668425119b864,http://pdfs.semanticscholar.org/59e7/5aad529b8001afc7e194e21668425119b864.pdf +bcc5cbbb540ee66dc8b9a3453b506e895d8395de,http://pdfs.semanticscholar.org/bcc5/cbbb540ee66dc8b9a3453b506e895d8395de.pdf +b6145d3268032da70edc9cfececa1f9ffa4e3f11,http://cnl.salk.edu/~zhafed/papers/fr_IJCV_2001.pdf +468c8f09d2ad8b558b65d11ec5ad49208c4da2f2,http://www.public.asu.edu/~bli24/Papers/ICPR2016_MSR-CNN.pdf +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/SLAM2007/papers/11-1569042551.pdf +0bf3513d18ec37efb1d2c7934a837dabafe9d091,http://pdfs.semanticscholar.org/14ff/c760c1655524fc2a035357ad354664b5af5e.pdf +054738ce39920975b8dcc97e01b3b6cc0d0bdf32,http://ita.ucsd.edu/workshop/16/files/paper/paper_2663.pdf +0d902541c26f03ff95221e0e71d67c39e094a61d,https://arxiv.org/pdf/1506.05085v1.pdf +13be4f13dac6c9a93f969f823c4b8c88f607a8c4,http://www1.ece.neu.edu/~yuewu/files/2016/p242-robinson.pdf +0697bd81844d54064d992d3229162fe8afcd82cb,http://pdfs.semanticscholar.org/0697/bd81844d54064d992d3229162fe8afcd82cb.pdf +7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/He_Robust_FEC-CNN_A_CVPR_2017_paper.pdf +a06b6d30e2b31dc600f622ab15afe5e2929581a7,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf +6226f2ea345f5f4716ac4ddca6715a47162d5b92,http://pdfs.semanticscholar.org/6226/f2ea345f5f4716ac4ddca6715a47162d5b92.pdf +e1f790bbedcba3134277f545e56946bc6ffce48d,http://pdfs.semanticscholar.org/e1f7/90bbedcba3134277f545e56946bc6ffce48d.pdf +2559b15f8d4a57694a0a33bdc4ac95c479a3c79a,http://vision.ucsd.edu/~carolina/files/mklmnn.pdf +159e792096756b1ec02ec7a980d5ef26b434ff78,http://pdfs.semanticscholar.org/159e/792096756b1ec02ec7a980d5ef26b434ff78.pdf +3df7401906ae315e6aef3b4f13126de64b894a54,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/067.pdf +8000c4f278e9af4d087c0d0895fff7012c5e3d78,https://www.cse.ust.hk/~yuzhangcse/papers/Zhang_Yeung_CVPR10.pdf +d3b550e587379c481392fb07f2cbbe11728cf7a6,http://pdfs.semanticscholar.org/d3b5/50e587379c481392fb07f2cbbe11728cf7a6.pdf +0d3068b352c3733c9e1cc75e449bf7df1f7b10a4,http://users.cecs.anu.edu.au/~adhall/Dhall_ACII_DC_2013.pdf +079edd5cf7968ac4759dfe72af2042cf6e990efc,http://pdfs.semanticscholar.org/079e/dd5cf7968ac4759dfe72af2042cf6e990efc.pdf +a8117a4733cce9148c35fb6888962f665ae65b1e,http://pdfs.semanticscholar.org/a811/7a4733cce9148c35fb6888962f665ae65b1e.pdf +0a79d0ba1a4876086e64fc0041ece5f0de90fbea,http://pdfs.semanticscholar.org/0a79/d0ba1a4876086e64fc0041ece5f0de90fbea.pdf +0363e93d49d2a3dbe057cc7754825ebf30f0f816,http://nichol.as/papers/Everingham/Identifying%20individuals%20in%20video%20by%20combining%20generative.pdf +b7740dba37a3cbd5c832a8deb9a710a28966486a,http://pdfs.semanticscholar.org/b774/0dba37a3cbd5c832a8deb9a710a28966486a.pdf +318a81acdd15a0ab2f706b5f53ee9d4d5d86237f,http://pdfs.semanticscholar.org/318a/81acdd15a0ab2f706b5f53ee9d4d5d86237f.pdf +6577c76395896dd4d352f7b1ee8b705b1a45fa90,http://ai.stanford.edu/~kdtang/papers/icip10_kinship.pdf +2e98329fdec27d4b3b9b894687e7d1352d828b1d,http://pdfs.semanticscholar.org/2e98/329fdec27d4b3b9b894687e7d1352d828b1d.pdf +72c0c8deb9ea6f59fde4f5043bff67366b86bd66,http://pdfs.semanticscholar.org/72c0/c8deb9ea6f59fde4f5043bff67366b86bd66.pdf +82e66c4832386cafcec16b92ac88088ffd1a1bc9,http://pdfs.semanticscholar.org/82e6/6c4832386cafcec16b92ac88088ffd1a1bc9.pdf +b4f4b0d39fd10baec34d3412d53515f1a4605222,http://pdfs.semanticscholar.org/eaae/d23a2d94feb2f1c3ff22a25777c7a78f3141.pdf +3146fabd5631a7d1387327918b184103d06c2211,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Jeni_Person-Independent_3D_Gaze_CVPR_2016_paper.pdf +55bc7abcef8266d76667896bbc652d081d00f797,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf +404776aa18031828f3d5dbceed39907f038a47fe,http://pdfs.semanticscholar.org/4047/76aa18031828f3d5dbceed39907f038a47fe.pdf +9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5,http://pdfs.semanticscholar.org/9893/865afdb1de55fdd21e5d86bbdb5daa5fa3d5.pdf +03f7041515d8a6dcb9170763d4f6debd50202c2b,http://biometrics.cse.msu.edu/Publications/Face/OttoWangJain_ClusteringMillionsOfFacesByIdentity_TPAMI17.pdf +2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58,http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf +d22b378fb4ef241d8d210202893518d08e0bb213,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Random_Faces_Guided_2013_ICCV_paper.pdf +2f2aa67c5d6dbfaf218c104184a8c807e8b29286,http://sesame.comp.nus.edu.sg/components/com_flexicontent/uploads/lekhaicon13.pdf +2d072cd43de8d17ce3198fae4469c498f97c6277,http://www.patrikhuber.ch/files/RCRC_SPL_2015.pdf +855882a5943fc12fa9c0e8439c482e055b4b46f3,http://humansensing.cs.cmu.edu/papers/Automated.pdf +1ce3a91214c94ed05f15343490981ec7cc810016,http://grail.cs.washington.edu/photobios/paper.pdf +acb83d68345fe9a6eb9840c6e1ff0e41fa373229,http://pdfs.semanticscholar.org/acb8/3d68345fe9a6eb9840c6e1ff0e41fa373229.pdf +0b5bd3ce90bf732801642b9f55a781e7de7fdde0,http://pdfs.semanticscholar.org/0b5b/d3ce90bf732801642b9f55a781e7de7fdde0.pdf +4ea53e76246afae94758c1528002808374b75cfa,http://pdfs.semanticscholar.org/4ea5/3e76246afae94758c1528002808374b75cfa.pdf +126214ef0dcef2b456cb413905fa13160c73ec8e,http://infoscience.epfl.ch/record/125056/files/MHFE_fg08.pdf +455204fa201e9936b42756d362f62700597874c4,http://pdfs.semanticscholar.org/4552/04fa201e9936b42756d362f62700597874c4.pdf +2bcec23ac1486f4106a3aa588b6589e9299aba70,http://pdfs.semanticscholar.org/2bce/c23ac1486f4106a3aa588b6589e9299aba70.pdf +561ae67de137e75e9642ab3512d3749b34484310,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf +999289b0ef76c4c6daa16a4f42df056bf3d68377,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf +3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Hsu_Face_Recognition_across_2013_CVPR_paper.pdf +24f1febcdf56cd74cb19d08010b6eb5e7c81c362,http://www.umiacs.umd.edu/~cteo/public-shared/language_robotsMethods_PerMIS2012.pdf +ba2bbef34f05551291410103e3de9e82fdf9dddd,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Guo_A_Study_on_2014_CVPR_paper.pdf +31835472821c7e3090abb42e57c38f7043dc3636,http://pdfs.semanticscholar.org/3183/5472821c7e3090abb42e57c38f7043dc3636.pdf +1cad5d682393ffbb00fd26231532d36132582bb4,http://pdfs.semanticscholar.org/1cad/5d682393ffbb00fd26231532d36132582bb4.pdf +49dd4b359f8014e85ed7c106e7848049f852a304,http://pdfs.semanticscholar.org/49dd/4b359f8014e85ed7c106e7848049f852a304.pdf +9e5acdda54481104aaf19974dca6382ed5ff21ed,http://pdfs.semanticscholar.org/dd52/0f2ebcf8034cb168ab4e82acec9a69fe0188.pdf +9c1cdb795fd771003da4378f9a0585730d1c3784,http://pdfs.semanticscholar.org/9c1c/db795fd771003da4378f9a0585730d1c3784.pdf diff --git a/scraper/reports/misc/db_paper_pdf.csv b/scraper/reports/misc/db_paper_pdf.csv new file mode 100644 index 00000000..5547d808 --- /dev/null +++ b/scraper/reports/misc/db_paper_pdf.csv @@ -0,0 +1,4917 @@ +611961abc4dfc02b67edd8124abb08c449f5280a,http://pdfs.semanticscholar.org/6119/61abc4dfc02b67edd8124abb08c449f5280a.pdf +610a4451423ad7f82916c736cd8adb86a5a64c59,http://pdfs.semanticscholar.org/610a/4451423ad7f82916c736cd8adb86a5a64c59.pdf +6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2,http://pdfs.semanticscholar.org/6156/eaad00aad74c90cbcfd822fa0c9bd4eb14c2.pdf +61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,http://pdfs.semanticscholar.org/61ff/edd8a70a78332c2bbdc9feba6c3d1fd4f1b8.pdf +61084a25ebe736e8f6d7a6e53b2c20d9723c4608,http://pdfs.semanticscholar.org/6108/4a25ebe736e8f6d7a6e53b2c20d9723c4608.pdf +61542874efb0b4c125389793d8131f9f99995671,http://pdfs.semanticscholar.org/6154/2874efb0b4c125389793d8131f9f99995671.pdf +61f93ed515b3bfac822deed348d9e21d5dffe373,http://dvmmweb.cs.columbia.edu/files/set_hash_wacv17.pdf +6180bc0816b1776ca4b32ced8ea45c3c9ce56b47,http://pdfs.semanticscholar.org/793e/92ed3f89c8636c8ca1175c1183ba812da245.pdf +61f1b14f04d2fa1d8a556adbdf93050b4637f44b,http://www.caam.rice.edu/~wy1/paperfiles/T.Chen%20W.Yin%20X.Zhou%20D.Comaniciu%20T.Huang%20-%20Total%20variation%20models%20for%20variable%20lighting%20face%20recognition.pdf +612075999e82596f3b42a80e6996712cc52880a3,https://www.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Publications/Publications-2017/PID4875389.pdf +614a7c42aae8946c7ad4c36b53290860f6256441,https://arxiv.org/pdf/1604.02878.pdf +616d3d6d82dbc2697d150e879996d878ef74faef,https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2016_Khorrami_ICIP_FP.pdf +0d746111135c2e7f91443869003d05cde3044beb,https://arxiv.org/pdf/1603.09364v1.pdf +0d88ab0250748410a1bc990b67ab2efb370ade5d,http://signal.ee.bilkent.edu.tr/defevent/abstract/a1795.pdf +0db43ed25d63d801ce745fe04ca3e8b363bf3147,http://pdfs.semanticscholar.org/0db4/3ed25d63d801ce745fe04ca3e8b363bf3147.pdf +0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,http://ca.cs.cmu.edu/sites/default/files/132010_CVPR_AU_Long.pdf +0d538084f664b4b7c0e11899d08da31aead87c32,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Deformable_Part_Descriptors_2013_ICCV_paper.pdf +0dccc881cb9b474186a01fd60eb3a3e061fa6546,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_104_ext.pdf +0d467adaf936b112f570970c5210bdb3c626a717,http://pdfs.semanticscholar.org/0d46/7adaf936b112f570970c5210bdb3c626a717.pdf +0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306,http://pdfs.semanticscholar.org/0d6b/28691e1aa2a17ffaa98b9b38ac3140fb3306.pdf +0de91641f37b0a81a892e4c914b46d05d33fd36e,https://ibug.doc.ic.ac.uk/media/uploads/documents/raps.pdf +0df0d1adea39a5bef318b74faa37de7f3e00b452,https://scalable.mpi-inf.mpg.de/files/2015/09/zhang_CVPR15.pdf +0d3bb75852098b25d90f31d2f48fd0cb4944702b,http://stefan.winklerbros.net/Publications/icip2014a.pdf +0db8e6eb861ed9a70305c1839eaef34f2c85bbaf,https://arxiv.org/pdf/1704.06244v1.pdf +0d902541c26f03ff95221e0e71d67c39e094a61d,https://arxiv.org/pdf/1506.05085v1.pdf +0d0b880e2b531c45ee8227166a489bf35a528cb9,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhang_Structure_Preserving_Object_2013_CVPR_paper.pdf +0d3882b22da23497e5de8b7750b71f3a4b0aac6b,http://pdfs.semanticscholar.org/0d38/82b22da23497e5de8b7750b71f3a4b0aac6b.pdf +0dbf4232fcbd52eb4599dc0760b18fcc1e9546e9,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553740.pdf +0d760e7d762fa449737ad51431f3ff938d6803fe,https://arxiv.org/pdf/1705.05922v1.pdf +0d3068b352c3733c9e1cc75e449bf7df1f7b10a4,http://users.cecs.anu.edu.au/~adhall/Dhall_ACII_DC_2013.pdf +0dd72887465046b0f8fc655793c6eaaac9c03a3d,http://pdfs.semanticscholar.org/e112/df5539821a00dfa818617bf95f901f016763.pdf +0d087aaa6e2753099789cd9943495fbbd08437c0,http://pdfs.semanticscholar.org/beab/b0d9d30871d517c5d915cf852f7f5293f52f.pdf +0d5824e14593bcb349d636d255ba274f98bbb88f,http://www.researchgate.net/profile/Claus_Neubauer/publication/224716248_A_Variational_Bayesian_Approach_for_Classification_with_Corrupted_Inputs/links/00b7d52dd1f690da64000000.pdf +0d8415a56660d3969449e77095be46ef0254a448,http://www.lv-nus.org/papers/2004/2004_C_6.pdf +0dfa460a35f7cab4705726b6367557b9f7842c65,https://arxiv.org/pdf/1504.01561v1.pdf +0d14261e69a4ad4140ce17c1d1cea76af6546056,http://pdfs.semanticscholar.org/0d14/261e69a4ad4140ce17c1d1cea76af6546056.pdf +0dbacb4fd069462841ebb26e1454b4d147cd8e98,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Nikitidis11c.pdf +0db36bf08140d53807595b6313201a7339470cfe,http://www.cfar.umd.edu/~rama/Publications/Shroff_CVPR_2010.pdf +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,https://cs.uwaterloo.ca/~jhoey/papers/DhallICMI16.pdf +0d735e7552af0d1dcd856a8740401916e54b7eee,http://pdfs.semanticscholar.org/915f/f5da6658e800eb7ec1c8f3f26281e18d3cbf.pdf +0d06b3a4132d8a2effed115a89617e0a702c957a,http://arxiv.org/pdf/1605.08680v1.pdf +0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e,http://pdfs.semanticscholar.org/0d2d/d4fc016cb6a517d8fb43a7cc3ff62964832e.pdf +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,http://pdfs.semanticscholar.org/0d1d/9a603b08649264f6e3b6d5a66bf1e1ac39d2.pdf +951368a1a8b3c5cd286726050b8bdf75a80f7c37,https://vision.cornell.edu/se3/wp-content/uploads/2014/09/osb_iccv09_cam.pdf +956e9b69b3366ed3e1670609b53ba4a7088b8b7e,http://pdfs.semanticscholar.org/956e/9b69b3366ed3e1670609b53ba4a7088b8b7e.pdf +956317de62bd3024d4ea5a62effe8d6623a64e53,https://research-repository.griffith.edu.au/bitstream/handle/10072/17889/47024_1.pdf;jsessionid=2146D7EB83BAD65DE653E0056477D61A?sequence=1 +951f21a5671a4cd14b1ef1728dfe305bda72366f,http://pdfs.semanticscholar.org/951f/21a5671a4cd14b1ef1728dfe305bda72366f.pdf +95f26d1c80217706c00b6b4b605a448032b93b75,http://pdfs.semanticscholar.org/95f2/6d1c80217706c00b6b4b605a448032b93b75.pdf +95f12d27c3b4914e0668a268360948bce92f7db3,http://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf +95aef5184b89daebd0c820c8102f331ea7cae1ad,http://www.dia.fi.upm.es/~pcr/publications/paa2008.pdf +9547a7bce2b85ef159b2d7c1b73dea82827a449f,http://tdlc.ucsd.edu/research/publications/Wu_Bartlett_Movellan_Facial_Expression_2010.pdf +9513503867b29b10223f17c86e47034371b6eb4f,http://pdfs.semanticscholar.org/9513/503867b29b10223f17c86e47034371b6eb4f.pdf +955e2a39f51c0b6f967199942d77625009e580f9,http://pdfs.semanticscholar.org/955e/2a39f51c0b6f967199942d77625009e580f9.pdf +956c634343e49319a5e3cba4f2bd2360bdcbc075,http://www.cse.ust.hk/~jamesk/papers/tsmc06.pdf +958c599a6f01678513849637bec5dc5dba592394,http://pdfs.semanticscholar.org/958c/599a6f01678513849637bec5dc5dba592394.pdf +59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb,http://www.ccvcl.org/~wei/pdf/CNNExpRecog_CamReady.pdf +591a737c158be7b131121d87d9d81b471c400dba,http://affect.media.mit.edu/pdfs/10.McDuff-etal-Affect-2010.pdf +59690814e916d1c0e7aa9190678ba847cbd0046f,http://figment.cse.usf.edu/~sfefilat/data/papers/ThBCT8.7.pdf +59bfeac0635d3f1f4891106ae0262b81841b06e4,http://pdfs.semanticscholar.org/59bf/eac0635d3f1f4891106ae0262b81841b06e4.pdf +59cdafed4eeb8ff7c9bb2d4ecd0edeb8a361ffc1,http://pdfs.semanticscholar.org/59cd/afed4eeb8ff7c9bb2d4ecd0edeb8a361ffc1.pdf +590628a9584e500f3e7f349ba7e2046c8c273fcf,http://pdfs.semanticscholar.org/6893/c573d7abd3847d6ea2f0e79b6924ca124372.pdf +593234ba1d2e16a887207bf65d6b55bbc7ea2247,http://pdfs.semanticscholar.org/73c4/47ea9f75b0ffbdd35c957aed88fe80b2ac07.pdf +59eefa01c067a33a0b9bad31c882e2710748ea24,http://pdfs.semanticscholar.org/59ee/fa01c067a33a0b9bad31c882e2710748ea24.pdf +59e2037f5079794cb9128c7f0900a568ced14c2a,https://arxiv.org/pdf/1704.02231v1.pdf +59c9d416f7b3d33141cc94567925a447d0662d80,http://pdfs.semanticscholar.org/59c9/d416f7b3d33141cc94567925a447d0662d80.pdf +59bece468ed98397d54865715f40af30221aa08c,https://bib.irb.hr/datoteka/833608.BiForD2016_11.pdf +59a35b63cf845ebf0ba31c290423e24eb822d245,http://biometrics.cse.msu.edu/Publications/Face/Klumetal_FaceSketchID_TIFS2014.pdf +59f325e63f21b95d2b4e2700c461f0136aecc171,http://nlpr-web.ia.ac.cn/2011papers/gjhy/gh13.pdf +59420fd595ae745ad62c26ae55a754b97170b01f,http://pdfs.semanticscholar.org/5942/0fd595ae745ad62c26ae55a754b97170b01f.pdf +5922e26c9eaaee92d1d70eae36275bb226ecdb2e,http://pdfs.semanticscholar.org/5922/e26c9eaaee92d1d70eae36275bb226ecdb2e.pdf +59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Zafeiriou_The_Menpo_Facial_CVPR_2017_paper.pdf +59e75aad529b8001afc7e194e21668425119b864,http://pdfs.semanticscholar.org/59e7/5aad529b8001afc7e194e21668425119b864.pdf +59d45281707b85a33d6f50c6ac6b148eedd71a25,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Cheng_Rank_Minimization_across_2013_ICCV_paper.pdf +59319c128c8ac3c88b4ab81088efe8ae9c458e07,http://pdfs.semanticscholar.org/5931/9c128c8ac3c88b4ab81088efe8ae9c458e07.pdf +59031a35b0727925f8c47c3b2194224323489d68,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/ICCV13/SVDL.pdf +926c67a611824bc5ba67db11db9c05626e79de96,http://www.ee.columbia.edu/ln/dvmm/publications/09/xu_ebsl.pdf +923ede53b0842619831e94c7150e0fc4104e62f7,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001293.pdf +9264b390aa00521f9bd01095ba0ba4b42bf84d7e,http://pdfs.semanticscholar.org/9264/b390aa00521f9bd01095ba0ba4b42bf84d7e.pdf +920a92900fbff22fdaaef4b128ca3ca8e8d54c3e,http://pdfs.semanticscholar.org/920a/92900fbff22fdaaef4b128ca3ca8e8d54c3e.pdf +924b14a9e36d0523a267293c6d149bca83e73f3b,http://pdfs.semanticscholar.org/924b/14a9e36d0523a267293c6d149bca83e73f3b.pdf +9282239846d79a29392aa71fc24880651826af72,http://pdfs.semanticscholar.org/9282/239846d79a29392aa71fc24880651826af72.pdf +92115b620c7f653c847f43b6c4ff0470c8e55dab,http://pdfs.semanticscholar.org/a77c/798d06060ece81c620458e4586819e75ae15.pdf +92c4636962b719542deb984bd2bf75af405b574c,http://www.umiacs.umd.edu/~arijit/projects/Active_clustering/active_clustering_ijcv.pdf +92c2dd6b3ac9227fce0a960093ca30678bceb364,https://aran.library.nuigalway.ie/bitstream/handle/10379/1350/On%20color%20texture%20normalization%20for%20active%20appearance%20models.pdf?isAllowed=y&sequence=1 +922838dd98d599d1d229cc73896d55e7a769aa7c,http://www.cs.umass.edu/~elm/papers/HuangCVPR12.pdf +9294739e24e1929794330067b84f7eafd286e1c8,http://pdfs.semanticscholar.org/9294/739e24e1929794330067b84f7eafd286e1c8.pdf +92fada7564d572b72fd3be09ea3c39373df3e27c,http://pdfs.semanticscholar.org/b8a4/f51a85fb801e1a5f04c213725d60133233a0.pdf +927ad0dceacce2bb482b96f42f2fe2ad1873f37a,http://pdfs.semanticscholar.org/927a/d0dceacce2bb482b96f42f2fe2ad1873f37a.pdf +929bd1d11d4f9cbc638779fbaf958f0efb82e603,http://pdfs.semanticscholar.org/929b/d1d11d4f9cbc638779fbaf958f0efb82e603.pdf +0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,http://cs.nju.edu.cn/_upload/tpl/01/0b/267/template267/zhouzh.files/publication/aaai10LLD.pdf +0c435e7f49f3e1534af0829b7461deb891cf540a,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_Capturing_Global_Semantic_2013_ICCV_paper.pdf +0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf,http://pdfs.semanticscholar.org/0cb7/e4c2f6355c73bfc8e6d5cdfad26f3fde0baf.pdf +0c30f6303dc1ff6d05c7cee4f8952b74b9533928,http://humansensing.cs.cmu.edu/sites/default/files/15parda.pdf +0ccc535d12ad2142a8310d957cc468bbe4c63647,http://arxiv.org/pdf/1510.03979v1.pdf +0c8a0a81481ceb304bd7796e12f5d5fa869ee448,http://pdfs.semanticscholar.org/0c8a/0a81481ceb304bd7796e12f5d5fa869ee448.pdf +0c36c988acc9ec239953ff1b3931799af388ef70,http://pdfs.semanticscholar.org/0c36/c988acc9ec239953ff1b3931799af388ef70.pdf +0c5ddfa02982dcad47704888b271997c4de0674b,http://pdfs.semanticscholar.org/0c5d/dfa02982dcad47704888b271997c4de0674b.pdf +0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1,http://faculty.iiit.ac.in/~anoop/papers/Vijay2014Face.pdf +0cccf576050f493c8b8fec9ee0238277c0cfd69a,http://pdfs.semanticscholar.org/0ccc/f576050f493c8b8fec9ee0238277c0cfd69a.pdf +0cdb49142f742f5edb293eb9261f8243aee36e12,https://arxiv.org/pdf/1303.2783v1.pdf +0c069a870367b54dd06d0da63b1e3a900a257298,http://pdfs.semanticscholar.org/cdb8/36785579a4ea3d0eff26dbba8cf845a347d2.pdf +0c75c7c54eec85e962b1720755381cdca3f57dfb,https://webpages.uncc.edu/~szhang16/paper/PAMI_face_landmark.pdf +0c167008408c301935bade9536084a527527ec74,http://www.micc.unifi.it/publications/2006/BDN06/bertini_nunziati-mm06.pdf +0c1d85a197a1f5b7376652a485523e616a406273,http://openaccess.thecvf.com/content_cvpr_2017/papers/Hayat_Joint_Registration_and_CVPR_2017_paper.pdf +0ca66283f4fb7dbc682f789fcf6d6732006befd5,http://pdfs.semanticscholar.org/0ca6/6283f4fb7dbc682f789fcf6d6732006befd5.pdf +0c7f27d23a162d4f3896325d147f412c40160b52,http://pdfs.semanticscholar.org/0c7f/27d23a162d4f3896325d147f412c40160b52.pdf +0c20fd90d867fe1be2459223a3cb1a69fa3d44bf,http://pdfs.semanticscholar.org/0c20/fd90d867fe1be2459223a3cb1a69fa3d44bf.pdf +0c2875bb47db3698dbbb3304aca47066978897a4,http://slazebni.cs.illinois.edu/publications/iccv17_situation.pdf +0c3f7272a68c8e0aa6b92d132d1bf8541c062141,http://pdfs.semanticscholar.org/0c3f/7272a68c8e0aa6b92d132d1bf8541c062141.pdf +0cbc4dcf2aa76191bbf641358d6cecf38f644325,http://pdfs.semanticscholar.org/0cbc/4dcf2aa76191bbf641358d6cecf38f644325.pdf +0ce8a45a77e797e9d52604c29f4c1e227f604080,http://pdfs.semanticscholar.org/0ce8/a45a77e797e9d52604c29f4c1e227f604080.pdf +0ce3a786aed896d128f5efdf78733cc675970854,http://pdfs.semanticscholar.org/3689/2b6bb4848a9c21158b8eded7f14a6654dd7e.pdf +0c93cb1af3bba1bd90a03e921ff2d55acf35c01f,http://www.researchgate.net/profile/Mohammed_Bennamoun/publication/220928947_Robust_Regression_for_Face_Recognition/links/542157f20cf203f155c65a23.pdf +0cf7741e1fdb11a77cdf39b4dda8c65a62af4f23,http://vipl.ict.ac.cn/sites/default/files/papers/files/2013_TIP_mnkan_Learning%20Prototype%20Hyperplanes%20for%20Face%20Verification%20in%20the%20Wild.pdf +0c54e9ac43d2d3bab1543c43ee137fc47b77276e,http://pdfs.semanticscholar.org/0c54/e9ac43d2d3bab1543c43ee137fc47b77276e.pdf +0c5afb209b647456e99ce42a6d9d177764f9a0dd,http://pdfs.semanticscholar.org/49ee/5e1f1cfa45aa105e4120e6b7fb5b14cc2877.pdf +0c59071ddd33849bd431165bc2d21bbe165a81e0,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Oh_Person_Recognition_in_ICCV_2015_paper.pdf +0c377fcbc3bbd35386b6ed4768beda7b5111eec6,http://www.ecse.rpi.edu/~qji/Papers/face_exp_pami.pdf +0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Memory-Augmented_Attribute_Manipulation_CVPR_2017_paper.pdf +0cb2dd5f178e3a297a0c33068961018659d0f443,http://www.vislab.ucr.edu/Biometrics2017/program_slides/Noblis_CVPRW_IJBB.pdf +0cd8895b4a8f16618686f622522726991ca2a324,http://pdfs.semanticscholar.org/0cd8/895b4a8f16618686f622522726991ca2a324.pdf +0cf7da0df64557a4774100f6fde898bc4a3c4840,https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/berg-cvpr05.pdf +0cbe059c181278a373292a6af1667c54911e7925,http://pdfs.semanticscholar.org/ea4e/15a4cf256599d11291040ad5e487f55ae514.pdf +0c4659b35ec2518914da924e692deb37e96d6206,https://cs.uwaterloo.ca/~jhoey/teaching/cs793/papers/OrchardTIP10.pdf +0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dc,http://pdfs.semanticscholar.org/0c6e/29d82a5a080dc1db9eeabbd7d1529e78a3dc.pdf +0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae,http://pdfs.semanticscholar.org/0ced/7b814ec3bb9aebe0fcf0cac3d78f36361eae.pdf +0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d,https://arxiv.org/pdf/1609.00153v1.pdf +0c60eebe10b56dbffe66bb3812793dd514865935,http://arxiv.org/pdf/1502.07209.pdf +0c05f60998628884a9ac60116453f1a91bcd9dda,http://pdfs.semanticscholar.org/7b19/80d4ac1730fd0145202a8cb125bf05d96f01.pdf +660b73b0f39d4e644bf13a1745d6ee74424d4a16,http://pdfs.semanticscholar.org/660b/73b0f39d4e644bf13a1745d6ee74424d4a16.pdf +66d512342355fb77a4450decc89977efe7e55fa2,http://pdfs.semanticscholar.org/66d5/12342355fb77a4450decc89977efe7e55fa2.pdf +66aad5b42b7dda077a492e5b2c7837a2a808c2fa,http://pdfs.semanticscholar.org/66aa/d5b42b7dda077a492e5b2c7837a2a808c2fa.pdf +66b9d954dd8204c3a970d86d91dd4ea0eb12db47,http://pdfs.semanticscholar.org/f3ec/7e58da49f39b807ff1c98d0bf574ef5f0720.pdf +6643a7feebd0479916d94fb9186e403a4e5f7cbf,http://pdfs.semanticscholar.org/6643/a7feebd0479916d94fb9186e403a4e5f7cbf.pdf +66dcd855a6772d2731b45cfdd75f084327b055c2,http://pdfs.semanticscholar.org/66dc/d855a6772d2731b45cfdd75f084327b055c2.pdf +666939690c564641b864eed0d60a410b31e49f80,http://pdfs.semanticscholar.org/6669/39690c564641b864eed0d60a410b31e49f80.pdf +66330846a03dcc10f36b6db9adf3b4d32e7a3127,http://pdfs.semanticscholar.org/6633/0846a03dcc10f36b6db9adf3b4d32e7a3127.pdf +6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c,http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf +666300af8ffb8c903223f32f1fcc5c4674e2430b,http://pdfs.semanticscholar.org/6663/00af8ffb8c903223f32f1fcc5c4674e2430b.pdf +66029f1be1a5cee9a4e3e24ed8fcb65d5d293720,http://pdfs.semanticscholar.org/6602/9f1be1a5cee9a4e3e24ed8fcb65d5d293720.pdf +6691dfa1a83a04fdc0177d8d70e3df79f606b10f,http://pdfs.semanticscholar.org/6691/dfa1a83a04fdc0177d8d70e3df79f606b10f.pdf +66a2c229ac82e38f1b7c77a786d8cf0d7e369598,http://pdfs.semanticscholar.org/66a2/c229ac82e38f1b7c77a786d8cf0d7e369598.pdf +66886997988358847615375ba7d6e9eb0f1bb27f,https://pdfs.semanticscholar.org/6688/6997988358847615375ba7d6e9eb0f1bb27f.pdf +66a9935e958a779a3a2267c85ecb69fbbb75b8dc,http://pdfs.semanticscholar.org/66a9/935e958a779a3a2267c85ecb69fbbb75b8dc.pdf +66533107f9abdc7d1cb8f8795025fc7e78eb1122,http://pdfs.semanticscholar.org/6653/3107f9abdc7d1cb8f8795025fc7e78eb1122.pdf +66810438bfb52367e3f6f62c24f5bc127cf92e56,http://pdfs.semanticscholar.org/6681/0438bfb52367e3f6f62c24f5bc127cf92e56.pdf +66af2afd4c598c2841dbfd1053bf0c386579234e,http://www.ics.uci.edu/~dvk/pub/J17_IJMIR14_Liyan.pdf +66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,http://pdfs.semanticscholar.org/66f0/2fbcad13c6ee5b421be2fc72485aaaf6fcb5.pdf +66e9fb4c2860eb4a15f713096020962553696e12,http://pdfs.semanticscholar.org/d42f/8e7283b20b89f55f8d36efcb1d8e2b774167.pdf +66e6f08873325d37e0ec20a4769ce881e04e964e,http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf +661da40b838806a7effcb42d63a9624fcd684976,http://pdfs.semanticscholar.org/661d/a40b838806a7effcb42d63a9624fcd684976.pdf +66886f5af67b22d14177119520bd9c9f39cdd2e6,http://pdfs.semanticscholar.org/6688/6f5af67b22d14177119520bd9c9f39cdd2e6.pdf +3edb0fa2d6b0f1984e8e2c523c558cb026b2a983,http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/tpami07.pdf +3e69ed088f588f6ecb30969bc6e4dbfacb35133e,http://pdfs.semanticscholar.org/3e69/ed088f588f6ecb30969bc6e4dbfacb35133e.pdf +3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,http://pdfs.semanticscholar.org/accb/d6cd5dd649137a7c57ad6ef99232759f7544.pdf +3ee7a8107a805370b296a53e355d111118e96b7c,http://pdfs.semanticscholar.org/3ee7/a8107a805370b296a53e355d111118e96b7c.pdf +3ebce6710135d1f9b652815e59323858a7c60025,http://pdfs.semanticscholar.org/3ebc/e6710135d1f9b652815e59323858a7c60025.pdf +3ec05713a1eed6fa9b57fef718f369f68bbbe09f,http://pdfs.semanticscholar.org/3ec0/5713a1eed6fa9b57fef718f369f68bbbe09f.pdf +3e3f305dac4fbb813e60ac778d6929012b4b745a,http://pdfs.semanticscholar.org/3e3f/305dac4fbb813e60ac778d6929012b4b745a.pdf +3ea8a6dc79d79319f7ad90d663558c664cf298d4,http://pdfs.semanticscholar.org/3ea8/a6dc79d79319f7ad90d663558c664cf298d4.pdf +3e4f84ce00027723bdfdb21156c9003168bc1c80,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2011/papers/1569427521.pdf +3e04feb0b6392f94554f6d18e24fadba1a28b65f,http://pdfs.semanticscholar.org/b72c/5119c0aafa64f32e8e773638b5738f31b33c.pdf +3e685704b140180d48142d1727080d2fb9e52163,http://pdfs.semanticscholar.org/3e68/5704b140180d48142d1727080d2fb9e52163.pdf +3e51d634faacf58e7903750f17111d0d172a0bf1,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569924869.pdf +3e687d5ace90c407186602de1a7727167461194a,http://pdfs.semanticscholar.org/3e68/7d5ace90c407186602de1a7727167461194a.pdf +3e3a87eb24628ab075a3d2bde3abfd185591aa4c,http://pdfs.semanticscholar.org/3e3a/87eb24628ab075a3d2bde3abfd185591aa4c.pdf +3edc43e336be075dca77c7e173b555b6c14274d8,http://pdfs.semanticscholar.org/3edc/43e336be075dca77c7e173b555b6c14274d8.pdf +3e207c05f438a8cef7dd30b62d9e2c997ddc0d3f,http://pdfs.semanticscholar.org/bca7/c0a8c5b0503a4ee43f3561f540918071aaa3.pdf +5040f7f261872a30eec88788f98326395a44db03,http://pdfs.semanticscholar.org/5040/f7f261872a30eec88788f98326395a44db03.pdf +50f0c495a214b8d57892d43110728e54e413d47d,http://pdfs.semanticscholar.org/50f0/c495a214b8d57892d43110728e54e413d47d.pdf +501096cca4d0b3d1ef407844642e39cd2ff86b37,http://pdfs.semanticscholar.org/5010/96cca4d0b3d1ef407844642e39cd2ff86b37.pdf +500fbe18afd44312738cab91b4689c12b4e0eeee,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf +501eda2d04b1db717b7834800d74dacb7df58f91,http://pdfs.semanticscholar.org/501e/da2d04b1db717b7834800d74dacb7df58f91.pdf +5083c6be0f8c85815ead5368882b584e4dfab4d1,http://pdfs.semanticscholar.org/5083/c6be0f8c85815ead5368882b584e4dfab4d1.pdf +50ce3f8744c219871fbdcab1342d49d589f2626b,http://www.public.asu.edu/~jye02/Publications/Papers/AML_cvpr07.pdf +500b92578e4deff98ce20e6017124e6d2053b451,http://eprints.eemcs.utwente.nl/25818/01/Pantic_Incremental_Face_Alignment_in_the_Wild.pdf +5058a7ec68c32984c33f357ebaee96c59e269425,http://pdfs.semanticscholar.org/5058/a7ec68c32984c33f357ebaee96c59e269425.pdf +50ff21e595e0ebe51ae808a2da3b7940549f4035,http://export.arxiv.org/pdf/1710.02985 +5042b358705e8d8e8b0655d07f751be6a1565482,http://pdfs.semanticscholar.org/5042/b358705e8d8e8b0655d07f751be6a1565482.pdf +50e47857b11bfd3d420f6eafb155199f4b41f6d7,http://pdfs.semanticscholar.org/50e4/7857b11bfd3d420f6eafb155199f4b41f6d7.pdf +50614ff325f0c8ca20f99efc55d65a8d4cc768cd,http://www.genizah.org/professionalPapers/IJCinGeniza.pdf +50eb75dfece76ed9119ec543e04386dfc95dfd13,https://lirias.kuleuven.be/bitstream/123456789/197359/1/boiy-learningVisual.pdf +5050807e90a925120cbc3a9cd13431b98965f4b9,http://pdfs.semanticscholar.org/5050/807e90a925120cbc3a9cd13431b98965f4b9.pdf +50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,http://ajbasweb.com/old/ajbas/2017/April/1-11.pdf +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,http://pdfs.semanticscholar.org/50e4/5e9c55c9e79aaae43aff7d9e2f079a2d787b.pdf +5003754070f3a87ab94a2abb077c899fcaf936a6,http://pdfs.semanticscholar.org/5003/754070f3a87ab94a2abb077c899fcaf936a6.pdf +503db524b9a99220d430e741c44cd9c91ce1ddf8,http://pdfs.semanticscholar.org/503d/b524b9a99220d430e741c44cd9c91ce1ddf8.pdf +50d15cb17144344bb1879c0a5de7207471b9ff74,http://pdfs.semanticscholar.org/50d1/5cb17144344bb1879c0a5de7207471b9ff74.pdf +50d961508ec192197f78b898ff5d44dc004ef26d,http://pdfs.semanticscholar.org/50d9/61508ec192197f78b898ff5d44dc004ef26d.pdf +50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Qu_Towards_Robust_Cascaded_2015_CVPR_paper.pdf +5028c0decfc8dd623c50b102424b93a8e9f2e390,http://pdfs.semanticscholar.org/5028/c0decfc8dd623c50b102424b93a8e9f2e390.pdf +505e55d0be8e48b30067fb132f05a91650666c41,http://pdfs.semanticscholar.org/505e/55d0be8e48b30067fb132f05a91650666c41.pdf +507c9672e3673ed419075848b4b85899623ea4b0,http://pdfs.semanticscholar.org/507c/9672e3673ed419075848b4b85899623ea4b0.pdf +50c0de2cccf7084a81debad5fdb34a9139496da0,http://pdfs.semanticscholar.org/50c0/de2cccf7084a81debad5fdb34a9139496da0.pdf +680d662c30739521f5c4b76845cb341dce010735,http://people.cs.umass.edu/~smaji/papers/maji15part.pdf +68f89c1ee75a018c8eff86e15b1d2383c250529b,http://pdfs.semanticscholar.org/68f8/9c1ee75a018c8eff86e15b1d2383c250529b.pdf +68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5,http://pdfs.semanticscholar.org/68a2/ee5c5b76b6feeb3170aaff09b1566ec2cdf5.pdf +68a3f12382003bc714c51c85fb6d0557dcb15467,http://research.microsoft.com/pubs/217884/ZitnickSent2SceneICCV13.pdf +6859b891a079a30ef16f01ba8b85dc45bd22c352,http://pdfs.semanticscholar.org/6859/b891a079a30ef16f01ba8b85dc45bd22c352.pdf +68003e92a41d12647806d477dd7d20e4dcde1354,http://pdfs.semanticscholar.org/db86/41ed047da4a90d53414edfe126c845141d69.pdf +68d4056765c27fbcac233794857b7f5b8a6a82bf,http://pdfs.semanticscholar.org/68d4/056765c27fbcac233794857b7f5b8a6a82bf.pdf +68996c28bc050158f025a17908eb4bc805c3ee55,https://www.researchgate.net/profile/M_Yeasin/publication/4082331_From_facial_expression_to_level_of_interest_a_spatio-temporal_approach/links/54983d0a0cf2519f5a1dda62.pdf +68c5238994e3f654adea0ccd8bca29f2a24087fc,http://web.fsktm.um.edu.my/~cschan/doc/ICIP2013.pdf +68bf7fc874c2db44d0446cdbb1e05f19c2239282,http://pdfs.semanticscholar.org/68bf/7fc874c2db44d0446cdbb1e05f19c2239282.pdf +68cf263a17862e4dd3547f7ecc863b2dc53320d8,http://pdfs.semanticscholar.org/68cf/263a17862e4dd3547f7ecc863b2dc53320d8.pdf +68e9c837431f2ba59741b55004df60235e50994d,http://pdfs.semanticscholar.org/68e9/c837431f2ba59741b55004df60235e50994d.pdf +685f8df14776457c1c324b0619c39b3872df617b,http://pdfs.semanticscholar.org/685f/8df14776457c1c324b0619c39b3872df617b.pdf +687e17db5043661f8921fb86f215e9ca2264d4d2,http://www.ece.northwestern.edu/~ganghua/publication/ICCV09a.pdf +688754568623f62032820546ae3b9ca458ed0870,http://pdfs.semanticscholar.org/d6c2/108259edf97fabcbe608766a6baa98ac893d.pdf +68f9cb5ee129e2b9477faf01181cd7e3099d1824,http://pdfs.semanticscholar.org/68f9/cb5ee129e2b9477faf01181cd7e3099d1824.pdf +68bf34e383092eb827dd6a61e9b362fcba36a83a,http://pdfs.semanticscholar.org/68bf/34e383092eb827dd6a61e9b362fcba36a83a.pdf +68d40176e878ebffbc01ffb0556e8cb2756dd9e9,http://pdfs.semanticscholar.org/68d4/0176e878ebffbc01ffb0556e8cb2756dd9e9.pdf +68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_AgeNet_Deeply_Learned_ICCV_2015_paper.pdf +6889d649c6bbd9c0042fadec6c813f8e894ac6cc,http://pdfs.semanticscholar.org/6889/d649c6bbd9c0042fadec6c813f8e894ac6cc.pdf +68f69e6c6c66cfde3d02237a6918c9d1ee678e1b,http://www.cs.fiu.edu/~chens/PDF/ISM09_Pruning.pdf +683ec608442617d11200cfbcd816e86ce9ec0899,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Dual_Linear_Regression_2014_CVPR_paper.pdf +68c17aa1ecbff0787709be74d1d98d9efd78f410,http://pdfs.semanticscholar.org/68c1/7aa1ecbff0787709be74d1d98d9efd78f410.pdf +6821113166b030d2123c3cd793dd63d2c909a110,http://pdfs.semanticscholar.org/6821/113166b030d2123c3cd793dd63d2c909a110.pdf +68a04a3ae2086986877fee2c82ae68e3631d0356,http://pdfs.semanticscholar.org/68a0/4a3ae2086986877fee2c82ae68e3631d0356.pdf +6888f3402039a36028d0a7e2c3df6db94f5cb9bb,http://pdfs.semanticscholar.org/6888/f3402039a36028d0a7e2c3df6db94f5cb9bb.pdf +57f5711ca7ee5c7110b7d6d12c611d27af37875f,http://pdfs.semanticscholar.org/57f5/711ca7ee5c7110b7d6d12c611d27af37875f.pdf +570308801ff9614191cfbfd7da88d41fb441b423,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chu_Unsupervised_Synchrony_Discovery_ICCV_2015_paper.pdf +57bf9888f0dfcc41c5ed5d4b1c2787afab72145a,http://pdfs.semanticscholar.org/57bf/9888f0dfcc41c5ed5d4b1c2787afab72145a.pdf +57ebeff9273dea933e2a75c306849baf43081a8c,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sun_Deep_Convolutional_Network_2013_CVPR_paper.pdf +574751dbb53777101502419127ba8209562c4758,http://pdfs.semanticscholar.org/5747/51dbb53777101502419127ba8209562c4758.pdf +5778d49c8d8d127351eee35047b8d0dc90defe85,http://pdfs.semanticscholar.org/ec31/6c1c182de9d7fe73c7fbbc1a121a7e43c100.pdf +57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,http://www.cs.toronto.edu/~rfm/pubs/morphBM.pdf +57fd229097e4822292d19329a17ceb013b2cb648,http://pdfs.semanticscholar.org/57fd/229097e4822292d19329a17ceb013b2cb648.pdf +57c59011614c43f51a509e10717e47505c776389,http://users.cecs.anu.edu.au/~basura/papers/CVPR_2017_Workshop.pdf +57b8b28f8748d998951b5a863ff1bfd7ca4ae6a5,http://pdfs.semanticscholar.org/57b8/b28f8748d998951b5a863ff1bfd7ca4ae6a5.pdf +57101b29680208cfedf041d13198299e2d396314,http://pdfs.semanticscholar.org/5710/1b29680208cfedf041d13198299e2d396314.pdf +57893403f543db75d1f4e7355283bdca11f3ab1b,http://www.doc.ic.ac.uk/~maja/PAMI-KoelstraEtAl-accepted.pdf +571f493c0ade12bbe960cfefc04b0e4607d8d4b2,http://pdfs.semanticscholar.org/571f/493c0ade12bbe960cfefc04b0e4607d8d4b2.pdf +57f8e1f461ab25614f5fe51a83601710142f8e88,http://pdfs.semanticscholar.org/57f8/e1f461ab25614f5fe51a83601710142f8e88.pdf +57a1466c5985fe7594a91d46588d969007210581,https://www.wjscheirer.com/projects/unconstrained-face/amfg_2010_poster.pdf +5721216f2163d026e90d7cd9942aeb4bebc92334,http://pdfs.semanticscholar.org/5721/216f2163d026e90d7cd9942aeb4bebc92334.pdf +575141e42740564f64d9be8ab88d495192f5b3bc,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf +57911d7f347dde0398f964e0c7ed8fdd0a882449,http://amp.ece.cmu.edu/people/Andy/Andy_files/1424CVPR08Gallagher.pdf +5789f8420d8f15e7772580ec373112f864627c4b,http://openaccess.thecvf.com/content_ICCV_2017/papers/Schneider_Efficient_Global_Illumination_ICCV_2017_paper.pdf +574705812f7c0e776ad5006ae5e61d9b071eebdb,http://pdfs.semanticscholar.org/5747/05812f7c0e776ad5006ae5e61d9b071eebdb.pdf +5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725,http://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf +57b052cf826b24739cd7749b632f85f4b7bcf90b,http://pdfs.semanticscholar.org/57b0/52cf826b24739cd7749b632f85f4b7bcf90b.pdf +57d37ad025b5796457eee7392d2038910988655a,http://pdfs.semanticscholar.org/57d3/7ad025b5796457eee7392d2038910988655a.pdf +57f7d8c6ec690bd436e70d7761bc5f46e993be4c,https://opus.lib.uts.edu.au/bitstream/10453/10785/3/2009001878_Du.pdf +3b1260d78885e872cf2223f2c6f3d6f6ea254204,http://pdfs.semanticscholar.org/3b12/60d78885e872cf2223f2c6f3d6f6ea254204.pdf +3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5,http://www.rci.rutgers.edu/~vmp93/Journal_pub/T-pami_openset.pdf +3b092733f428b12f1f920638f868ed1e8663fe57,http://www.math.jhu.edu/~data/RamaPapers/PerformanceBounds.pdf +3b2d5585af59480531616fe970cb265bbdf63f5b,http://pdfs.semanticscholar.org/3b2d/5585af59480531616fe970cb265bbdf63f5b.pdf +3b64efa817fd609d525c7244a0e00f98feacc8b4,https://arxiv.org/pdf/1502.04383v3.pdf +3bc776eb1f4e2776f98189e17f0d5a78bb755ef4,http://pdfs.semanticscholar.org/3bc7/76eb1f4e2776f98189e17f0d5a78bb755ef4.pdf +3b7f6035a113b560760c5e8000540fc46f91fed5,http://www.vision.ee.ethz.ch/~zzhiwu/posters/ICCV13_Poster_ZhiwuHuang_v2.0.pdf +3b2a2357b12cf0a5c99c8bc06ef7b46e40dd888e,http://pdfs.semanticscholar.org/5141/cf2e59fb2ec9bb489b9c1832447d3cd93110.pdf +3bd1d41a656c8159305ba2aa395f68f41ab84f31,http://pdfs.semanticscholar.org/3bd1/d41a656c8159305ba2aa395f68f41ab84f31.pdf +3bcd72be6fbc1a11492df3d36f6d51696fd6bdad,http://pdfs.semanticscholar.org/3bcd/72be6fbc1a11492df3d36f6d51696fd6bdad.pdf +3b9c08381282e65649cd87dfae6a01fe6abea79b,http://pdfs.semanticscholar.org/3b9c/08381282e65649cd87dfae6a01fe6abea79b.pdf +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,http://nms.csail.mit.edu/papers/sen060-chenA.pdf +3bc376f29bc169279105d33f59642568de36f17f,http://www.dip.ee.uct.ac.za/~nicolls/publish/sm14-visapp.pdf +3b38c06caf54f301847db0dd622a6622c3843957,http://pdfs.semanticscholar.org/3b38/c06caf54f301847db0dd622a6622c3843957.pdf +3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0,http://pdfs.semanticscholar.org/3b15/a48ffe3c6b3f2518a7c395280a11a5f58ab0.pdf +3b9b200e76a35178da940279d566bbb7dfebb787,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf +3be8964cef223698e587b4f71fc0c72c2eeef8cf,https://www.researchgate.net/profile/Mohammad_Reza_Mohammadi3/publication/264394830_Simultaneous_recognition_of_facial_expression_and_identity_via_sparse_representation/links/53df5c5b0cf2a76fb6682872.pdf?origin=publication_list +3b408a3ca6fb39b0fda4d77e6a9679003b2dc9ab,http://pdfs.semanticscholar.org/3b40/8a3ca6fb39b0fda4d77e6a9679003b2dc9ab.pdf +3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,http://pdfs.semanticscholar.org/3b02/aaccc9f063ae696c9d28bb06a8cd84b2abb8.pdf +3ba8f8b6bfb36465018430ffaef10d2caf3cfa7e,http://www.chennaisunday.com/IEEE%202013%20Dotnet%20Basepaper/Local%20Directional%20Number%20Pattern%20for%20Face%20Analysis%20Face%20and%20Expression%20Recognition.pdf +3b80bf5a69a1b0089192d73fa3ace2fbb52a4ad5,http://pdfs.semanticscholar.org/3b80/bf5a69a1b0089192d73fa3ace2fbb52a4ad5.pdf +3b9d94752f8488106b2c007e11c193f35d941e92,http://pdfs.semanticscholar.org/3b9d/94752f8488106b2c007e11c193f35d941e92.pdf +3bebb79f8f49aa11dd4f6d60d903172db02bf4f3,http://hct.ece.ubc.ca/publications/pdf/oleinikov-etal-wacv2014.pdf +3b557c4fd6775afc80c2cf7c8b16edde125b270e,https://arxiv.org/pdf/1602.02999v1.pdf +3b3482e735698819a6a28dcac84912ec01a9eb8a,http://vislab.ee.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2003/Individual%20Recognition%20Using%20Gait%20Energy%20Image03.pdf +3b37d95d2855c8db64bd6b1ee5659f87fce36881,http://pdfs.semanticscholar.org/3b37/d95d2855c8db64bd6b1ee5659f87fce36881.pdf +3bfb9ba4b74b2b952868f590ff2f164de0c7d402,http://qil.uh.edu/qil/websitecontent/pdf/2015-8.pdf +3be7b7eb11714e6191dd301a696c734e8d07435f,http://pdfs.semanticscholar.org/3be7/b7eb11714e6191dd301a696c734e8d07435f.pdf +3bd50e33220af76ffc32a7e57688e248843b7f25,http://staff.estem-uc.edu.au/roland/files/2009/05/Ramana_Murthy_Goecke_DICTA2014_TheInfluenceOfTemporalInformationOnHumanActionRecognitionWithLargeNumberOfClasses.pdf +3be027448ad49a79816cd21dcfcce5f4e1cec8a8,http://www.cs.utexas.edu/~grauman/papers/kovashka_iccv2011.pdf +3bd56f4cf8a36dd2d754704bcb71415dcbc0a165,http://www.humansensing.cs.cmu.edu/sites/default/files/4robustreg.pdf +3b410ae97e4564bc19d6c37bc44ada2dcd608552,http://pdfs.semanticscholar.org/3b41/0ae97e4564bc19d6c37bc44ada2dcd608552.pdf +3b470b76045745c0ef5321e0f1e0e6a4b1821339,http://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf +6fa7a1c8a858157deee3b582099e5e234798bb4a,http://biometrics.nist.gov/cs_links/ibpc2014/presentations/14_wednesday_gentric_IBPC14_morpho.pdf +6f288a12033fa895fb0e9ec3219f3115904f24de,https://arxiv.org/pdf/1511.05204v1.pdf +6fa0c206873dcc5812f7ea74a48bb4bf4b273494,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W03/papers/Suk_Real-time_Mobile_Facial_2014_CVPR_paper.pdf +6f9824c5cb5ac08760b08e374031cbdabc953bae,https://eprints.soton.ac.uk/397973/1/PID4351119.pdf +6f2dc51d607f491dbe6338711c073620c85351ac,http://pdfs.semanticscholar.org/6f2d/c51d607f491dbe6338711c073620c85351ac.pdf +6fed504da4e192fe4c2d452754d23d3db4a4e5e3,http://pdfs.semanticscholar.org/85ee/d639f7367c794a6d8b38619697af3efaacfe.pdf +6f957df9a7d3fc4eeba53086d3d154fc61ae88df,http://pdfs.semanticscholar.org/6f95/7df9a7d3fc4eeba53086d3d154fc61ae88df.pdf +6f0d3610c4ee7b67e9d435d48bc98167761251e8,http://www.cs.washington.edu/homes/wufei/papers/IJCNN.pdf +6f1a784ebb8df0689361afe26a2e5f7a1f4c66ca,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553757.pdf +6f26ab7edd971148723d9b4dc8ddf71b36be9bf7,http://pdfs.semanticscholar.org/6f26/ab7edd971148723d9b4dc8ddf71b36be9bf7.pdf +6f75697a86d23d12a14be5466a41e5a7ffb79fad,https://www.computer.org/csdl/proceedings/icis/2016/0806/00/07550861.pdf +6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01293.pdf +6f08885b980049be95a991f6213ee49bbf05c48d,http://pdfs.semanticscholar.org/6f08/885b980049be95a991f6213ee49bbf05c48d.pdf +6f0900a7fe8a774a1977c5f0a500b2898bcbe149,http://pdfs.semanticscholar.org/6f09/00a7fe8a774a1977c5f0a500b2898bcbe149.pdf +6fbb179a4ad39790f4558dd32316b9f2818cd106,http://pdfs.semanticscholar.org/6fbb/179a4ad39790f4558dd32316b9f2818cd106.pdf +6f84e61f33564e5188136474f9570b1652a0606f,https://arxiv.org/pdf/1708.00284v1.pdf +6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3,http://www.ifp.uiuc.edu/~iracohen/publications/CohenSebeMS05.pdf +6fa3857faba887ed048a9e355b3b8642c6aab1d8,http://pdfs.semanticscholar.org/6fa3/857faba887ed048a9e355b3b8642c6aab1d8.pdf +6fda12c43b53c679629473806c2510d84358478f,http://pdfs.semanticscholar.org/6fda/12c43b53c679629473806c2510d84358478f.pdf +6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0000937.pdf +6fe2efbcb860767f6bb271edbb48640adbd806c3,https://eprints.soton.ac.uk/359808/1/version9.pdf +6f5151c7446552fd6a611bf6263f14e729805ec7,http://pdfs.semanticscholar.org/6f51/51c7446552fd6a611bf6263f14e729805ec7.pdf +030c82b87e3cdc5ba35c443a93ff4a9d21c2bc2f,http://www.cfar.umd.edu/~shaohua/papers/zhou07tpami_gps.pdf +03d9ccce3e1b4d42d234dba1856a9e1b28977640,http://pdfs.semanticscholar.org/03d9/ccce3e1b4d42d234dba1856a9e1b28977640.pdf +036c41d67b49e5b0a578a401eb31e5f46b3624e0,http://www.infomus.org/Events/proceedings/ACII2015/papers/Main_Conference/M2_Poster/Poster_Teaser_5/ACII2015_submission_19.pdf +03b03f5a301b2ff88ab3bb4969f54fd9a35c7271,http://pdfs.semanticscholar.org/03b0/3f5a301b2ff88ab3bb4969f54fd9a35c7271.pdf +03f7041515d8a6dcb9170763d4f6debd50202c2b,http://biometrics.cse.msu.edu/Publications/Face/OttoWangJain_ClusteringMillionsOfFacesByIdentity_TPAMI17.pdf +03b99f5abe0e977ff4c902412c5cb832977cf18e,http://pdfs.semanticscholar.org/03b9/9f5abe0e977ff4c902412c5cb832977cf18e.pdf +038ce930a02d38fb30d15aac654ec95640fe5cb0,http://www.robots.ox.ac.uk/~tvg/publications/2013/BVGFacialFeatureTrackerMobile.pdf +03167776e17bde31b50f294403f97ee068515578,http://pdfs.semanticscholar.org/0316/7776e17bde31b50f294403f97ee068515578.pdf +0334a8862634988cc684dacd4279c5c0d03704da,https://arxiv.org/pdf/1609.06591v1.pdf +03c1fc9c3339813ed81ad0de540132f9f695a0f8,http://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf +0339459a5b5439d38acd9c40a0c5fea178ba52fb,http://pdfs.semanticscholar.org/0339/459a5b5439d38acd9c40a0c5fea178ba52fb.pdf +030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,http://pdfs.semanticscholar.org/030e/f31b51bd4c8d0d8f4a9a32b80b9192fe4c3f.pdf +03f98c175b4230960ac347b1100fbfc10c100d0c,http://courses.cs.washington.edu/courses/cse590v/13au/intraface.pdf +0323b618d3a4c24bdda4f42361e19a2a7d497da5,http://www.ecse.rpi.edu/homepages/qji/Papers/Simultaneous%20Paper_TIP_Revised_V4_email.pdf +03264e2e2709d06059dd79582a5cc791cbef94b1,http://pdfs.semanticscholar.org/0326/4e2e2709d06059dd79582a5cc791cbef94b1.pdf +03dba79518434ba4a937b2980fbdc8bafc048b36,http://people.ee.duke.edu/~jh313/resource/TRAIT.pdf +03a8f53058127798bc2bc0245d21e78354f6c93b,http://www.robots.ox.ac.uk/~vgg/rg/slides/additiveclassifiers.pdf +03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20,https://ias.in.tum.de/_media/spezial/bib/mayer08arealtime.pdf +0363e93d49d2a3dbe057cc7754825ebf30f0f816,http://nichol.as/papers/Everingham/Identifying%20individuals%20in%20video%20by%20combining%20generative.pdf +03b98b4a2c0b7cc7dae7724b5fe623a43eaf877b,http://pdfs.semanticscholar.org/03b9/8b4a2c0b7cc7dae7724b5fe623a43eaf877b.pdf +03adcf58d947a412f3904a79f2ab51cfdf0e838a,http://pdfs.semanticscholar.org/03ad/cf58d947a412f3904a79f2ab51cfdf0e838a.pdf +03104f9e0586e43611f648af1132064cadc5cc07,http://pdfs.semanticscholar.org/51c0/2f135d6c960b1141bde539059a279f9beb78.pdf +03f14159718cb495ca50786f278f8518c0d8c8c9,http://www.acscrg.com/iccsce/2015/wp-content/uploads/2015/11/The-Latest-Schedule-23-Nov-2015.pdf +0394040749195937e535af4dda134206aa830258,http://web.eecs.umich.edu/~hero/Preprints/sp_mlsi_submitted_revised2.pdf +0334cc0374d9ead3dc69db4816d08c917316c6c4,http://pdfs.semanticscholar.org/0334/cc0374d9ead3dc69db4816d08c917316c6c4.pdf +03c48d8376990cff9f541d542ef834728a2fcda2,http://dvmmweb.cs.columbia.edu/files/dvmm_scnn_paper.pdf +0319332ded894bf1afe43f174f5aa405b49305f0,http://pdfs.semanticscholar.org/0319/332ded894bf1afe43f174f5aa405b49305f0.pdf +03af8cf40283ff30f1da3637b024319d0c79bdf0,https://www.researchgate.net/profile/Gary_Mckeown/publication/224251574_The_Belfast_Induced_Natural_Emotion_Database/links/0fcfd510a6b4384822000000.pdf +03baf00a3d00887dd7c828c333d4a29f3aacd5f5,http://pdfs.semanticscholar.org/03ba/f00a3d00887dd7c828c333d4a29f3aacd5f5.pdf +0359f7357ea8191206b9da45298902de9f054c92,http://arxiv.org/pdf/1511.04110v1.pdf +0394e684bd0a94fc2ff09d2baef8059c2652ffb0,http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/TIP2522378.pdf +03e88bf3c5ddd44ebf0e580d4bd63072566613ad,http://pdfs.semanticscholar.org/03e8/8bf3c5ddd44ebf0e580d4bd63072566613ad.pdf +03f4c0fe190e5e451d51310bca61c704b39dcac8,http://pdfs.semanticscholar.org/03f4/c0fe190e5e451d51310bca61c704b39dcac8.pdf +03bd58a96f635059d4bf1a3c0755213a51478f12,https://arxiv.org/pdf/1401.7413v2.pdf +031055c241b92d66b6984643eb9e05fd605f24e2,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Cinbis_Multi-fold_MIL_Training_2014_CVPR_paper.pdf +0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136,https://ibug.doc.ic.ac.uk/media/uploads/documents/booth2017large.pdf +032a1c95388fb5c6e6016dd8597149be40bc9d4d,http://people.eecs.berkeley.edu/~gkioxari/ActionTubes/action_tubes.pdf +034addac4637121e953511301ef3a3226a9e75fd,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Parikh_Implied_Feedback_Learning_2013_ICCV_paper.pdf +03701e66eda54d5ab1dc36a3a6d165389be0ce79,http://www.eem.anadolu.edu.tr/atalaybarkan/EEM%20405%20(K)/icerik/improved%20pcr.pdf +034c2ed71c31cb0d984d66c7ca753ef2cb6196ca,http://pdfs.semanticscholar.org/034c/2ed71c31cb0d984d66c7ca753ef2cb6196ca.pdf +9b318098f3660b453fbdb7a579778ab5e9118c4c,http://humansensing.cs.cmu.edu/sites/default/files/07471506.pdf +9be94fa0330dd493f127d51e4ef7f9fd64613cfc,http://pdfs.semanticscholar.org/9be9/4fa0330dd493f127d51e4ef7f9fd64613cfc.pdf +9b000ccc04a2605f6aab867097ebf7001a52b459,http://pdfs.semanticscholar.org/9b00/0ccc04a2605f6aab867097ebf7001a52b459.pdf +9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf +9b474d6e81e3b94e0c7881210e249689139b3e04,http://pdfs.semanticscholar.org/a43c/c0c2f1d0e29cf1ee88f3bde4289a94b70409.pdf +9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493,http://www.ifp.illinois.edu/~jyang29/papers/JRR_ICCV11.pdf +9bcfadd22b2c84a717c56a2725971b6d49d3a804,http://pdfs.semanticscholar.org/9bcf/add22b2c84a717c56a2725971b6d49d3a804.pdf +9b07084c074ba3710fee59ed749c001ae70aa408,http://pdfs.semanticscholar.org/9b07/084c074ba3710fee59ed749c001ae70aa408.pdf +9b246c88a0435fd9f6d10dc88f47a1944dd8f89e,http://pdfs.semanticscholar.org/ffe3/a5a7c0faebd1719f7c77b5f7e05cae61a9ad.pdf +9b164cef4b4ad93e89f7c1aada81ae7af802f3a4,http://pdfs.semanticscholar.org/9b16/4cef4b4ad93e89f7c1aada81ae7af802f3a4.pdf +9b93406f3678cf0f16451140ea18be04784faeee,http://pdfs.semanticscholar.org/9b93/406f3678cf0f16451140ea18be04784faeee.pdf +9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7,http://pdfs.semanticscholar.org/9b79/74d9ad19bb4ba1ea147c55e629ad7927c5d7.pdf +9b6d0b3fbf7d07a7bb0d86290f97058aa6153179,http://pdfs.semanticscholar.org/9b6d/0b3fbf7d07a7bb0d86290f97058aa6153179.pdf +9e8637a5419fec97f162153569ec4fc53579c21e,http://pdfs.semanticscholar.org/9e86/37a5419fec97f162153569ec4fc53579c21e.pdf +9e4b052844d154c3431120ec27e78813b637b4fc,http://pdfs.semanticscholar.org/9e4b/052844d154c3431120ec27e78813b637b4fc.pdf +9e42d44c07fbd800f830b4e83d81bdb9d106ed6b,http://openaccess.thecvf.com/content_ICCV_2017/papers/Rao_Learning_Discriminative_Aggregation_ICCV_2017_paper.pdf +9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0,http://pdfs.semanticscholar.org/9eb8/6327c82b76d77fee3fd72e2d9eff03bbe5e0.pdf +9ea73660fccc4da51c7bc6eb6eedabcce7b5cead,http://pdfs.semanticscholar.org/9ea7/3660fccc4da51c7bc6eb6eedabcce7b5cead.pdf +9e9052256442f4e254663ea55c87303c85310df9,http://pdfs.semanticscholar.org/9e90/52256442f4e254663ea55c87303c85310df9.pdf +9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7,http://pdfs.semanticscholar.org/9eea/da49fc2cba846b4dad1012ba8a7ee78a8bb7.pdf +9ef2b2db11ed117521424c275c3ce1b5c696b9b3,http://pdfs.semanticscholar.org/c31b/dd00734807938dcfd8a12375bd9ffa556985.pdf +9e5acdda54481104aaf19974dca6382ed5ff21ed,http://pdfs.semanticscholar.org/dd52/0f2ebcf8034cb168ab4e82acec9a69fe0188.pdf +9ed943f143d2deaac2efc9cf414b3092ed482610,http://www.jaist.ac.jp/~chen-fan/publication/ism2014-07032993.pdf +9e1c3b8b1653337094c1b9dba389e8533bc885b0,http://pdfs.semanticscholar.org/9e1c/3b8b1653337094c1b9dba389e8533bc885b0.pdf +9e0285debd4b0ba7769b389181bd3e0fd7a02af6,http://pdfs.semanticscholar.org/9e02/85debd4b0ba7769b389181bd3e0fd7a02af6.pdf +9ed4ad41cbad645e7109e146ef6df73f774cd75d,http://pdfs.semanticscholar.org/a83e/175ad5b2066e207f5d2ec830ae05bac266b9.pdf +9e8d87dc5d8a6dd832716a3f358c1cdbfa97074c,https://people.csail.mit.edu/khosla/papers/www2014_khosla.pdf +9e5c2d85a1caed701b68ddf6f239f3ff941bb707,http://pdfs.semanticscholar.org/ada4/4aa744f9703cacfcd0028372a2b1684a45a3.pdf +044d9a8c61383312cdafbcc44b9d00d650b21c70,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf +04bb3fa0824d255b01e9db4946ead9f856cc0b59,http://pdfs.semanticscholar.org/c1de/db5ac05c955e53d7ef1f6367fb7badea49b1.pdf +04f0292d9a062634623516edd01d92595f03bd3f,http://www.cs.nott.ac.uk/~mfv/Documents/emotiw2013_cameraready.pdf +047f6afa87f48de7e32e14229844d1587185ce45,http://pdfs.semanticscholar.org/047f/6afa87f48de7e32e14229844d1587185ce45.pdf +04522dc16114c88dfb0ebd3b95050fdbd4193b90,http://www.svcl.ucsd.edu/publications/conference/2005/crv05/FES.pdf +04470861408d14cc860f24e73d93b3bb476492d0,http://pdfs.semanticscholar.org/0447/0861408d14cc860f24e73d93b3bb476492d0.pdf +0486214fb58ee9a04edfe7d6a74c6d0f661a7668,http://conradsanderson.id.au/pdfs/wong_face_selection_cvpr_biometrics_2011.pdf +0447bdb71490c24dd9c865e187824dee5813a676,http://pdfs.semanticscholar.org/0447/bdb71490c24dd9c865e187824dee5813a676.pdf +0435a34e93b8dda459de49b499dd71dbb478dc18,http://pdfs.semanticscholar.org/0435/a34e93b8dda459de49b499dd71dbb478dc18.pdf +044ba70e6744e80c6a09fa63ed6822ae241386f2,http://pdfs.semanticscholar.org/044b/a70e6744e80c6a09fa63ed6822ae241386f2.pdf +04661729f0ff6afe4b4d6223f18d0da1d479accf,https://arxiv.org/pdf/1509.06451v1.pdf +04dcdb7cb0d3c462bdefdd05508edfcff5a6d315,http://pdfs.semanticscholar.org/04dc/db7cb0d3c462bdefdd05508edfcff5a6d315.pdf +044fdb693a8d96a61a9b2622dd1737ce8e5ff4fa,http://www.ee.oulu.fi/mvg/files/pdf/pdf_740.pdf +04f55f81bbd879773e2b8df9c6b7c1d324bc72d8,http://pdfs.semanticscholar.org/04f5/5f81bbd879773e2b8df9c6b7c1d324bc72d8.pdf +04250e037dce3a438d8f49a4400566457190f4e2,http://pdfs.semanticscholar.org/0425/0e037dce3a438d8f49a4400566457190f4e2.pdf +0431e8a01bae556c0d8b2b431e334f7395dd803a,https://people.cs.umass.edu/~smaji/papers/localized-wacv15.pdf +04616814f1aabe3799f8ab67101fbaf9fd115ae4,http://pdfs.semanticscholar.org/0461/6814f1aabe3799f8ab67101fbaf9fd115ae4.pdf +04c5268d7a4e3819344825e72167332240a69717,http://longwood.cs.ucf.edu/~vision/papers/cvpr2008/7.pdf +04c2cda00e5536f4b1508cbd80041e9552880e67,http://pdfs.semanticscholar.org/04c2/cda00e5536f4b1508cbd80041e9552880e67.pdf +04644c97784700c449f2c885cb4cab86447f0bd4,http://www.seekdl.org/upload/files/20131209_014911.pdf +04ff69aa20da4eeccdabbe127e3641b8e6502ec0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf +046a694bbb3669f2ff705c6c706ca3af95db798c,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xiong_Conditional_Convolutional_Neural_ICCV_2015_paper.pdf +047d7cf4301cae3d318468fe03a1c4ce43b086ed,http://webee.technion.ac.il/~yoav/publications/Delforge_taslp14R2.pdf +046865a5f822346c77e2865668ec014ec3282033,http://www.csie.ntu.edu.tw/~winston/papers/chen12discovering.pdf +042825549296ea419d95fcf0b5e71f72070a5f0d,http://eprints.pascal-network.org/archive/00008397/01/paper.pdf +0470b0ab569fac5bbe385fa5565036739d4c37f8,https://hal.inria.fr/inria-00321048/file/verbeek08cvpr.pdf +6a3a07deadcaaab42a0689fbe5879b5dfc3ede52,http://pdfs.semanticscholar.org/6a3a/07deadcaaab42a0689fbe5879b5dfc3ede52.pdf +6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d,http://pdfs.semanticscholar.org/6a67/e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d.pdf +6afed8dc29bc568b58778f066dc44146cad5366c,http://pdfs.semanticscholar.org/6afe/d8dc29bc568b58778f066dc44146cad5366c.pdf +6a184f111d26787703f05ce1507eef5705fdda83,http://pdfs.semanticscholar.org/6a18/4f111d26787703f05ce1507eef5705fdda83.pdf +6a16b91b2db0a3164f62bfd956530a4206b23fea,http://pdfs.semanticscholar.org/6a16/b91b2db0a3164f62bfd956530a4206b23fea.pdf +6a806978ca5cd593d0ccd8b3711b6ef2a163d810,http://pdfs.semanticscholar.org/6a80/6978ca5cd593d0ccd8b3711b6ef2a163d810.pdf +6a8a3c604591e7dd4346611c14dbef0c8ce9ba54,http://pdfs.semanticscholar.org/6a8a/3c604591e7dd4346611c14dbef0c8ce9ba54.pdf +6aa43f673cc42ed2fa351cbc188408b724cb8d50,http://pdfs.semanticscholar.org/6aa4/3f673cc42ed2fa351cbc188408b724cb8d50.pdf +6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,http://openaccess.thecvf.com/content_iccv_2015/papers/Song_Top_Rank_Supervised_ICCV_2015_paper.pdf +6a5fe819d2b72b6ca6565a0de117c2b3be448b02,http://pdfs.semanticscholar.org/6a5f/e819d2b72b6ca6565a0de117c2b3be448b02.pdf +6afeb764ee97fbdedfa8f66810dfc22feae3fa1f,http://pdfs.semanticscholar.org/928c/dc2049462f66460dc30aef5aaaa15e427d12.pdf +6aa61d28750629febe257d1cb69379e14c66c67f,http://pdfs.semanticscholar.org/6aa6/1d28750629febe257d1cb69379e14c66c67f.pdf +6ae96f68187f1cdb9472104b5431ec66f4b2470f,http://pdfs.semanticscholar.org/6ae9/6f68187f1cdb9472104b5431ec66f4b2470f.pdf +6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8,http://pdfs.semanticscholar.org/6af6/5e2a1eba6bd62843e7bf717b4ccc91bce2b8.pdf +6a657995b02bc9dee130701138ea45183c18f4ae,http://pdfs.semanticscholar.org/6a65/7995b02bc9dee130701138ea45183c18f4ae.pdf +6a0368b4e132f4aa3bbdeada8d894396f201358a,http://pdfs.semanticscholar.org/6a03/68b4e132f4aa3bbdeada8d894396f201358a.pdf +6ab33fa51467595f18a7a22f1d356323876f8262,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf +6ae75eaa7e9f1379338eae94fbb43664bb3c898a,https://www.researchgate.net/profile/Beom_Seok_Oh/publication/254016039_Fusion_of_structured_projections_for_cancelable_face_identity_verification/links/559156c108ae15962d8e145e.pdf?origin=publication_detail +6aefe7460e1540438ffa63f7757c4750c844764d,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Nascimento_Non-rigid_Segmentation_using_2014_CVPR_paper.pdf +6ab8f2081b1420a6214a6c127e5828c14979d414,http://pdfs.semanticscholar.org/6ab8/f2081b1420a6214a6c127e5828c14979d414.pdf +6a38c575733b0f7118970238e8f9b480522a2dbc,http://pdfs.semanticscholar.org/fbee/265a61fd5ec15a6ed8f490a8fd8d3359506e.pdf +6a4ebd91c4d380e21da0efb2dee276897f56467a,http://ibug.doc.ic.ac.uk/media/uploads/documents/07025044.pdf +6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2,http://pdfs.semanticscholar.org/6a1b/eb34a2dfcdf36ae3c16811f1aef6e64abff2.pdf +6a7e464464f70afea78552c8386f4d2763ea1d9c,http://pdfs.semanticscholar.org/6a7e/464464f70afea78552c8386f4d2763ea1d9c.pdf +32925200665a1bbb4fc8131cd192cb34c2d7d9e3,http://pdfs.semanticscholar.org/3292/5200665a1bbb4fc8131cd192cb34c2d7d9e3.pdf +322c063e97cd26f75191ae908f09a41c534eba90,https://jurie.users.greyc.fr/papers/12_SEMATR_IJCV.pdf +325b048ecd5b4d14dce32f92bff093cd744aa7f8,http://pdfs.semanticscholar.org/325b/048ecd5b4d14dce32f92bff093cd744aa7f8.pdf +32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347,https://arxiv.org/pdf/1410.1606v2.pdf +32d8e555441c47fc27249940991f80502cb70bd5,https://arxiv.org/pdf/1709.07886v1.pdf +32d555faaaa0a6f6f9dfc9263e4dba75a38c3193,http://pdfs.semanticscholar.org/e119/eeee5025235c6f8dacc7c1812c0c52d595b9.pdf +324f39fb5673ec2296d90142cf9a909e595d82cf,http://pdfs.semanticscholar.org/324f/39fb5673ec2296d90142cf9a909e595d82cf.pdf +321bd4d5d80abb1bae675a48583f872af3919172,http://pdfs.semanticscholar.org/321b/d4d5d80abb1bae675a48583f872af3919172.pdf +32b8c9fd4e3f44c371960eb0074b42515f318ee7,http://pdfs.semanticscholar.org/32b8/c9fd4e3f44c371960eb0074b42515f318ee7.pdf +32575ffa69d85bbc6aef5b21d73e809b37bf376d,http://www.sce.carleton.ca/faculty/adler//publications/2006/youmaran-adler-bcc2006-quality.pdf +32ecbbd76fdce249f9109594eee2d52a1cafdfc7,http://pdfs.semanticscholar.org/32ec/bbd76fdce249f9109594eee2d52a1cafdfc7.pdf +32c20afb5c91ed7cdbafb76408c3a62b38dd9160,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Hassner_Viewing_Real-World_Faces_2013_ICCV_paper.pdf +32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b,http://pdfs.semanticscholar.org/32a4/0c43a9bc1f1c1ed10be3b9f10609d7e0cb6b.pdf +329394480fc5e9e96de4250cc1a2b060c3677c94,https://arxiv.org/pdf/1604.08826v1.pdf +326613b5528b7806d6a06f43211800b54f34965e,http://mplab.ucsd.edu/wp-content/uploads/cvpr2008/conference/data/papers/377.pdf +32728e1eb1da13686b69cc0bd7cce55a5c963cdd,http://pdfs.semanticscholar.org/3272/8e1eb1da13686b69cc0bd7cce55a5c963cdd.pdf +32c9ebd2685f522821eddfc19c7c91fd6b3caf22,http://pdfs.semanticscholar.org/32c9/ebd2685f522821eddfc19c7c91fd6b3caf22.pdf +322b7a4ce006e4d14748dd064e80ffba573ebcd7,http://cheonji.kaist.ac.kr/pdfsrc/ic/2008_KHAn_ROMAN.pdf +3270b2672077cc345f188500902eaf7809799466,http://pdfs.semanticscholar.org/3270/b2672077cc345f188500902eaf7809799466.pdf +321c8ba38db118d8b02c0ba209be709e6792a2c7,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Yan_Learn_to_Combine_2013_ICCV_paper.pdf +324b9369a1457213ec7a5a12fe77c0ee9aef1ad4,http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf +329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf +32df63d395b5462a8a4a3c3574ae7916b0cd4d1d,http://www.ppgia.pucpr.br/~alekoe/Papers/ALEKOE-FacialExpression-ICASSP2011.pdf +35308a3fd49d4f33bdbd35fefee39e39fe6b30b7,https://biblio.ugent.be/publication/7238034/file/7238038.pdf +353b6c1f431feac6edde12b2dde7e6e702455abd,http://pdfs.semanticscholar.org/8835/c80f8ad8ebd05771a9bce5a8637efbc4c8e3.pdf +350da18d8f7455b0e2920bc4ac228764f8fac292,http://pdfs.semanticscholar.org/b1b1/19c94c8bf94da5c9974db537e356e4f80c67.pdf +3538d2b5f7ab393387ce138611ffa325b6400774,http://pdfs.semanticscholar.org/3538/d2b5f7ab393387ce138611ffa325b6400774.pdf +3504907a2e3c81d78e9dfe71c93ac145b1318f9c,https://arxiv.org/pdf/1605.02686v3.pdf +35f03f5cbcc21a9c36c84e858eeb15c5d6722309,http://www.ee.columbia.edu/ln/dvmm/publications/16/ACMMMVP_VAH_2016.pdf +35e4b6c20756cd6388a3c0012b58acee14ffa604,http://pdfs.semanticscholar.org/35e4/b6c20756cd6388a3c0012b58acee14ffa604.pdf +356b431d4f7a2a0a38cf971c84568207dcdbf189,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Xiong_Recognize_Complex_Events_2015_CVPR_paper.pdf +35f921def890210dda4b72247849ad7ba7d35250,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhou_Exemplar-Based_Graph_Matching_2013_ICCV_paper.pdf +357963a46dfc150670061dbc23da6ba7d6da786e,http://pdfs.semanticscholar.org/3579/63a46dfc150670061dbc23da6ba7d6da786e.pdf +35ec9b8811f2d755c7ad377bdc29741b55b09356,http://pdfs.semanticscholar.org/35ec/9b8811f2d755c7ad377bdc29741b55b09356.pdf +35f1bcff4552632419742bbb6e1927ef5e998eb4,https://arxiv.org/pdf/1703.02521v1.pdf +35c973dba6e1225196566200cfafa150dd231fa8,http://pdfs.semanticscholar.org/8af7/72ea2389b555c0b193624add6a1c5a49ff24.pdf +35a39c7da14b1d288c0f9201374b307f667d63a3,http://media.au.tsinghua.edu.cn/liuyebin_files/TMM.pdf +35f084ddee49072fdb6e0e2e6344ce50c02457ef,https://dash.harvard.edu/bitstream/handle/1/4238979/Lee_Bilinear.pdf?sequence=2 +352c53e56c52a49d33dcdbec5690c2ba604b07d0,http://www.cs.huji.ac.il/~zweiga/Alons_Zweig_Hompage/Homepage_files/Zweig_ICCV7.pdf +3505c9b0a9631539e34663310aefe9b05ac02727,https://ibug.doc.ic.ac.uk/media/uploads/documents/pid4666647.pdf +3506518d616343d3083f4fe257a5ee36b376b9e1,http://disi.unitn.it/~zen/data/icmi14_personalized.pdf +353a89c277cca3e3e4e8c6a199ae3442cdad59b5,http://pdfs.semanticscholar.org/353a/89c277cca3e3e4e8c6a199ae3442cdad59b5.pdf +35e87e06cf19908855a16ede8c79a0d3d7687b5c,http://pdfs.semanticscholar.org/35e8/7e06cf19908855a16ede8c79a0d3d7687b5c.pdf +352110778d2cc2e7110f0bf773398812fd905eb1,http://www.ca.cs.cmu.edu/sites/default/files/complete_14.pdf +351158e4481e3197bd63acdafd73a5df8336143b,http://pdfs.semanticscholar.org/3511/58e4481e3197bd63acdafd73a5df8336143b.pdf +35490b021dcdec12882870a31dce9a687205ab5c,http://www.ecse.rpi.edu/homepages/qji/Papers/BN_learning_CVPR08.pdf +697b0b9630213ca08a1ae1d459fabc13325bdcbb,http://pdfs.semanticscholar.org/697b/0b9630213ca08a1ae1d459fabc13325bdcbb.pdf +69ff40fd5ce7c3e6db95a2b63d763edd8db3a102,http://pdfs.semanticscholar.org/69ff/40fd5ce7c3e6db95a2b63d763edd8db3a102.pdf +69d29012d17cdf0a2e59546ccbbe46fa49afcd68,https://arxiv.org/pdf/1404.6818v1.pdf +69a68f9cf874c69e2232f47808016c2736b90c35,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2016_imbalanced.pdf +69de532d93ad8099f4d4902c4cad28db958adfea,http://pdfs.semanticscholar.org/e6bc/c30d2be78797e0e2506567bc0f09b8eae21a.pdf +69b18d62330711bfd7f01a45f97aaec71e9ea6a5,http://pdfs.semanticscholar.org/69b1/8d62330711bfd7f01a45f97aaec71e9ea6a5.pdf +69526cdf6abbfc4bcd39616acde544568326d856,http://speech.iiit.ac.in/svlpubs/article/SaoA.K.Yegna2007.pdf +690d669115ad6fabd53e0562de95e35f1078dfbb,http://pdfs.semanticscholar.org/690d/669115ad6fabd53e0562de95e35f1078dfbb.pdf +69eb6c91788e7c359ddd3500d01fb73433ce2e65,http://pdfs.semanticscholar.org/69eb/6c91788e7c359ddd3500d01fb73433ce2e65.pdf +69063f7e0a60ad6ce16a877bc8f11b59e5f7348e,http://openaccess.thecvf.com/content_iccv_2015/papers/Anwar_Class-Specific_Image_Deblurring_ICCV_2015_paper.pdf +69a9da55bd20ce4b83e1680fbc6be2c976067631,http://pdfs.semanticscholar.org/a9b4/d257d16e876302e3318ade42fcb2ab9ffdf9.pdf +69c2ac04693d53251500557316c854a625af84ee,http://pdfs.semanticscholar.org/dc97/ceb1faf945e780a92be651b022a82e3bff5a.pdf +6974449ce544dc208b8cc88b606b03d95c8fd368,https://ibug.doc.ic.ac.uk/media/uploads/documents/martinezvalstar-pami_final.pdf +69fb98e11df56b5d7ec7d45442af274889e4be52,http://pdfs.semanticscholar.org/69fb/98e11df56b5d7ec7d45442af274889e4be52.pdf +3c78b642289d6a15b0fb8a7010a1fb829beceee2,http://pdfs.semanticscholar.org/3c78/b642289d6a15b0fb8a7010a1fb829beceee2.pdf +3cc3cf57326eceb5f20a02aefae17108e8c8ab57,http://pdfs.semanticscholar.org/3cc3/cf57326eceb5f20a02aefae17108e8c8ab57.pdf +3c1f5580a66c9624c77f27ab8e4cf0d1b3d9d171,http://research.microsoft.com/en-us/um/people/luyuan/paper/skyfinder_siggraph09.pdf +3c63fa505a44902f13698ec10d7f259b1d0878ee,http://www.ece.ucr.edu/~amitrc/publications/TMM2015.pdf +3cb488a3b71f221a8616716a1fc2b951dd0de549,http://cse.seu.edu.cn/people/xgeng/LDL/resource/icpr14.pdf +3cfbe1f100619a932ba7e2f068cd4c41505c9f58,http://pdfs.semanticscholar.org/3cfb/e1f100619a932ba7e2f068cd4c41505c9f58.pdf +3c03d95084ccbe7bf44b6d54151625c68f6e74d0,http://pdfs.semanticscholar.org/3c03/d95084ccbe7bf44b6d54151625c68f6e74d0.pdf +3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0,http://pdfs.semanticscholar.org/73cc/fdedbd7d72a147925727ba1932f9488cfde3.pdf +3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,http://pdfs.semanticscholar.org/51f7/3cfcc6d671bd99b5c3c512ff9b7bb959f33b.pdf +3c97c32ff575989ef2869f86d89c63005fc11ba9,http://people.cs.umass.edu/~hzjiang/pubs/face_det_fg_2017.pdf +3c47022955c3274250630b042b53d3de2df8eeda,http://research.microsoft.com/en-us/um/people/leizhang/paper/cvpr05-shuicheng-discriminant.pdf +3cd5b1d71c1d6a50fcc986589f2d0026c68d9803,http://www.openu.ac.il/home/hassner/projects/siftscales/OnSiftsAndTheirScales-CVPR12.pdf +3ce2ecf3d6ace8d80303daf67345be6ec33b3a93,http://pdfs.semanticscholar.org/3ce2/ecf3d6ace8d80303daf67345be6ec33b3a93.pdf +3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,http://pdfs.semanticscholar.org/3c37/4cb8e730b64dacb9fbf6eb67f5987c7de3c8.pdf +3c0bbfe664fb083644301c67c04a7f1331d9515f,http://pdfs.semanticscholar.org/3c0b/bfe664fb083644301c67c04a7f1331d9515f.pdf +3cc3e01ac1369a0d1aa88fedda61d3c99a98b890,http://mi.eng.cam.ac.uk/~bdrs2/papers/mita_pami08.pdf +3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,http://pdfs.semanticscholar.org/3c4f/6d24b55b1fd3c5b85c70308d544faef3f69a.pdf +3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f,http://pdfs.semanticscholar.org/3cb0/ef5aabc7eb4dd8d32a129cb12b3081ef264f.pdf +3cb64217ca2127445270000141cfa2959c84d9e7,http://staff.estem-uc.edu.au/roland/files/2009/05/Joshi_Goecke_Parker_Breakspear_FG2013_CanBodyExpressionsContributeToAutomaticDepressionAnalysis.pdf +3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bd,http://pdfs.semanticscholar.org/3c11/a1f2bd4b9ce70f699fb6ad6398171a8ad3bd.pdf +3cd8ab6bb4b038454861a36d5396f4787a21cc68,http://pdfs.semanticscholar.org/3cd8/ab6bb4b038454861a36d5396f4787a21cc68.pdf +3cd5da596060819e2b156e8b3a28331ef633036b,http://pdfs.semanticscholar.org/3cd5/da596060819e2b156e8b3a28331ef633036b.pdf +3ca5d3b8f5f071148cb50f22955fd8c1c1992719,http://pdfs.semanticscholar.org/3ca5/d3b8f5f071148cb50f22955fd8c1c1992719.pdf +3cc46bf79fb9225cf308815c7d41c8dd5625cc29,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf +3c8da376576938160cbed956ece838682fa50e9f,http://shodhganga.inflibnet.ac.in/bitstream/10603/49167/11/11_chapter%204.pdf +56e4dead93a63490e6c8402a3c7adc493c230da5,http://pdfs.semanticscholar.org/56e4/dead93a63490e6c8402a3c7adc493c230da5.pdf +56e885b9094391f7d55023a71a09822b38b26447,http://pdfs.semanticscholar.org/56e8/85b9094391f7d55023a71a09822b38b26447.pdf +56c700693b63e3da3b985777da6d9256e2e0dc21,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_079.pdf +56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Li_Shape_Driven_Kernel_2015_CVPR_paper.pdf +56e6f472090030a6f172a3e2f46ef9daf6cad757,http://pdfs.semanticscholar.org/56e6/f472090030a6f172a3e2f46ef9daf6cad757.pdf +56e03f8fcd16332f764352ba6e72c9c5092cac0f,http://www.cs.utexas.edu/~ssi/DHE.pdf +564d4ee76c0511bc395dfc8ef8e3b3867fc34a6d,http://bcmi.sjtu.edu.cn/~pengyong/Pub2015/CCECE2015.pdf +56a653fea5c2a7e45246613049fb16b1d204fc96,http://ieeeprojectsmadurai.com/matlab2016base/Quaternion%20Collaborative%20and%20Sparse%20Representation.pdf +56f86bef26209c85f2ef66ec23b6803d12ca6cd6,https://arxiv.org/pdf/1710.00307v1.pdf +5666ed763698295e41564efda627767ee55cc943,http://i.cs.hku.hk/~kykwong/publications/zkuang_ijcv15.pdf +566a39d753c494f57b4464d6bde61bf3593f7ceb,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W01/papers/Hassner_A_Critical_Review_2013_CVPR_paper.pdf +56c2fb2438f32529aec604e6fc3b06a595ddbfcc,http://pdfs.semanticscholar.org/56c2/fb2438f32529aec604e6fc3b06a595ddbfcc.pdf +56f231fc40424ed9a7c93cbc9f5a99d022e1d242,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf +5615d6045301ecbc5be35e46cab711f676aadf3a,https://arxiv.org/pdf/1705.10420v1.pdf +561ae67de137e75e9642ab3512d3749b34484310,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf +568cff415e7e1bebd4769c4a628b90db293c1717,http://pdfs.semanticscholar.org/568c/ff415e7e1bebd4769c4a628b90db293c1717.pdf +564035f1b8f06e9bb061255f40e3139fa57ea879,http://pdfs.semanticscholar.org/fcbf/61524a3d775947ea8bcef46d1b0a9cce7bfb.pdf +560e0e58d0059259ddf86fcec1fa7975dee6a868,http://www.cs.tau.ac.il/~wolf/papers/lvfw.pdf +56c0b225fd57cfe173e5206a4bb0ce153bfecc29,http://www.sfu.ca/~wya16/ProfileFG08.pdf +566038a3c2867894a08125efe41ef0a40824a090,http://mirlab.org/conference_papers/international_conference/icassp%202009/pdfs/0001945.pdf +56ae6d94fc6097ec4ca861f0daa87941d1c10b70,http://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf +56f812661c3248ed28859d3b2b39e033b04ae6ae,http://www.cs.wisc.edu/~gdguo/myPapersOnWeb/CIVR08.pdf +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,http://pdfs.semanticscholar.org/bd42/e0a6a1082e8c197a7b0a9b710434cd7c5a47.pdf +5145e42dc46845f3aeb8307452765ba8dc59d2da,http://pdcat13.csie.ntust.edu.tw/download/papers/P10003.pdf +51c3050fb509ca685de3d9ac2e965f0de1fb21cc,http://www.cs.toronto.edu/~law/publications/CVPR/2014/fantope_regularization.pdf +516d0d9eb08825809e4618ca73a0697137ebabd5,http://web.engr.oregonstate.edu/~sinisa/talks/cvpr16_multimodal_oral.pdf +519a724426b5d9ad384d38aaf2a4632d3824f243,http://pdfs.semanticscholar.org/519a/724426b5d9ad384d38aaf2a4632d3824f243.pdf +51c7c5dfda47647aef2797ac3103cf0e108fdfb4,http://pdfs.semanticscholar.org/51c7/c5dfda47647aef2797ac3103cf0e108fdfb4.pdf +519f4eb5fe15a25a46f1a49e2632b12a3b18c94d,https://www.cise.ufl.edu/~arunava/papers/pami-abrdf.pdf +518edcd112991a1717856841c1a03dd94a250090,http://pdfs.semanticscholar.org/518e/dcd112991a1717856841c1a03dd94a250090.pdf +51683eac8bbcd2944f811d9074a74d09d395c7f3,http://pdfs.semanticscholar.org/5168/3eac8bbcd2944f811d9074a74d09d395c7f3.pdf +51cc78bc719d7ff2956b645e2fb61bab59843d2b,http://pdfs.semanticscholar.org/51cc/78bc719d7ff2956b645e2fb61bab59843d2b.pdf +511b06c26b0628175c66ab70dd4c1a4c0c19aee9,http://pdfs.semanticscholar.org/511b/06c26b0628175c66ab70dd4c1a4c0c19aee9.pdf +51528cdce7a92835657c0a616c0806594de7513b,http://pdfs.semanticscholar.org/5152/8cdce7a92835657c0a616c0806594de7513b.pdf +514a74aefb0b6a71933013155bcde7308cad2b46,http://pdfs.semanticscholar.org/514a/74aefb0b6a71933013155bcde7308cad2b46.pdf +51a8dabe4dae157aeffa5e1790702d31368b9161,http://pdfs.semanticscholar.org/5621/adae20c1bc781a36c43a9ddbe5475ea4b6e8.pdf +51224ed7519e71346076060092462e3d59ca3ab9,http://www.iis.ee.ic.ac.uk/ComputerVision/docs/pubs/Chao_TM_2014.pdf +512b4c8f0f3fb23445c0c2dab768bcd848fa8392,http://pdfs.semanticscholar.org/b85d/ac54bfa985137b3b071593b986ac92f32bed.pdf +51eba481dac6b229a7490f650dff7b17ce05df73,http://grail.cs.washington.edu/wp-content/uploads/2016/09/yatskar2016srv.pdf +51348e24d2199b06273e7b65ae5f3fc764a2efc7,http://pdfs.semanticscholar.org/c4b4/cbc801a4430be5fdd16ae34c68f53f772582.pdf +5173a20304ea7baa6bfe97944a5c7a69ea72530f,http://pdfs.semanticscholar.org/5173/a20304ea7baa6bfe97944a5c7a69ea72530f.pdf +51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6,http://pdfs.semanticscholar.org/51ed/4c92cab9336a2ac41fa8e0293c2f5f9bf3b6.pdf +51f311f724883218bcc511b0403b9a7745b9d40e,https://www.researchgate.net/profile/Xiangwei_Kong/publication/221190737_Biometrics-based_identifiers_for_digital_identity_management/links/00b7d51ca1f2a78c74000000.pdf +5121f42de7cb9e41f93646e087df82b573b23311,http://pdfs.semanticscholar.org/5121/f42de7cb9e41f93646e087df82b573b23311.pdf +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/SLAM2007/papers/11-1569042551.pdf +5160569ca88171d5fa257582d161e9063c8f898d,http://infoscience.epfl.ch/record/83324/files/heusch-AFGR-2006.pdf +5157dde17a69f12c51186ffc20a0a6c6847f1a29,http://arxiv.org/pdf/1505.04373v2.pdf +51dc127f29d1bb076d97f515dca4cc42dda3d25b,http://pdfs.semanticscholar.org/7a1d/4a9ef5944217ee19aa642471b4746aaa2576.pdf +3d143cfab13ecd9c485f19d988242e7240660c86,http://pdfs.semanticscholar.org/3d14/3cfab13ecd9c485f19d988242e7240660c86.pdf +3dabf7d853769cfc4986aec443cc8b6699136ed0,http://pdfs.semanticscholar.org/3dab/f7d853769cfc4986aec443cc8b6699136ed0.pdf +3db75962857a602cae65f60f202d311eb4627b41,https://pdfs.semanticscholar.org/3db7/5962857a602cae65f60f202d311eb4627b41.pdf +3daf1191d43e21a8302d98567630b0e2025913b0,http://pdfs.semanticscholar.org/3daf/1191d43e21a8302d98567630b0e2025913b0.pdf +3d36f941d8ec613bb25e80fb8f4c160c1a2848df,https://arxiv.org/pdf/1502.02410v1.pdf +3d5a1be4c1595b4805a35414dfb55716e3bf80d8,http://pdfs.semanticscholar.org/9e8e/bf5447fcd5b2ba4cdd53253f0049dacb2985.pdf +3d62b2f9cef997fc37099305dabff356d39ed477,http://pdfs.semanticscholar.org/3d62/b2f9cef997fc37099305dabff356d39ed477.pdf +3dc522a6576c3475e4a166377cbbf4ba389c041f,http://pdfs.semanticscholar.org/3dc5/22a6576c3475e4a166377cbbf4ba389c041f.pdf +3dd4d719b2185f7c7f92cc97f3b5a65990fcd5dd,http://pdfs.semanticscholar.org/3dd4/d719b2185f7c7f92cc97f3b5a65990fcd5dd.pdf +3d0ef9bfd08a9252db6acfece3b83f3aa58b4cae,http://perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BIOMET/Face/Kumar/CoreFaceCVPR04.pdf +3d1a6a5fd5915e0efb953ede5af0b23debd1fc7f,http://pdfs.semanticscholar.org/3d1a/6a5fd5915e0efb953ede5af0b23debd1fc7f.pdf +3d0379688518cc0e8f896e30815d0b5e8452d4cd,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/007.pdf +3dda181be266950ba1280b61eb63ac11777029f9,http://pdfs.semanticscholar.org/3dda/181be266950ba1280b61eb63ac11777029f9.pdf +3d24b386d003bee176a942c26336dbe8f427aadd,https://arxiv.org/pdf/1611.09967v1.pdf +3dcebd4a1d66313dcd043f71162d677761b07a0d,http://cvhci.ira.uka.de/download/publications/2008/siu2008_lbp.pdf +3d0f9a3031bee4b89fab703ff1f1d6170493dc01,http://pdfs.semanticscholar.org/3d0f/9a3031bee4b89fab703ff1f1d6170493dc01.pdf +3d0c21d4780489bd624a74b07e28c16175df6355,http://pdfs.semanticscholar.org/3d0c/21d4780489bd624a74b07e28c16175df6355.pdf +3df8cc0384814c3fb05c44e494ced947a7d43f36,http://openaccess.thecvf.com/content_ICCV_2017/papers/Walker_The_Pose_Knows_ICCV_2017_paper.pdf +3d42e17266475e5d34a32103d879b13de2366561,http://pdfs.semanticscholar.org/7450/7306832bd71884365ed81e1cc7866e47c399.pdf +3dd906bc0947e56d2b7bf9530b11351bbdff2358,http://pdfs.semanticscholar.org/c57a/070724b48962935ff46ab1384d919e1d1089.pdf +3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf +3dbfd2fdbd28e4518e2ae05de8374057307e97b3,http://pdfs.semanticscholar.org/3dbf/d2fdbd28e4518e2ae05de8374057307e97b3.pdf +3df7401906ae315e6aef3b4f13126de64b894a54,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/067.pdf +3d68cedd80babfbb04ab197a0b69054e3c196cd9,http://www.cim.mcgill.ca/~mrl/pubs/malika/Meghjani09_Masters_Thesis.pdf +3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a,http://www.cse.msu.edu/~rossarun/BiometricsTextBook/Papers/Security/Teoh_BioHash_PAMI06.pdf +3d6943f1573f992d6897489b73ec46df983d776c,http://pdfs.semanticscholar.org/757d/223b8db29e4cfba9530c7f942304c78cfee1.pdf +3d948e4813a6856e5b8b54c20e50cc5050e66abe,http://pdfs.semanticscholar.org/3d94/8e4813a6856e5b8b54c20e50cc5050e66abe.pdf +3d94f81cf4c3a7307e1a976dc6cb7bf38068a381,http://faculty.ucmerced.edu/mhyang/papers/tip17_age.pdf +3d9db1cacf9c3bb7af57b8112787b59f45927355,http://pdfs.semanticscholar.org/3d9d/b1cacf9c3bb7af57b8112787b59f45927355.pdf +582edc19f2b1ab2ac6883426f147196c8306685a,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf +5859774103306113707db02fe2dd3ac9f91f1b9e,http://www.wisdom.weizmann.ac.il/~shimon/papers/IJCV29_98.pdf +5892f8367639e9c1e3cf27fdf6c09bb3247651ed,http://pdfs.semanticscholar.org/5892/f8367639e9c1e3cf27fdf6c09bb3247651ed.pdf +5850aab97e1709b45ac26bb7d205e2accc798a87,http://pdfs.semanticscholar.org/5850/aab97e1709b45ac26bb7d205e2accc798a87.pdf +587f81ae87b42c18c565694c694439c65557d6d5,http://pdfs.semanticscholar.org/aeff/403079022683b233decda556a6aee3225065.pdf +580054294ca761500ada71f7d5a78acb0e622f19,http://www.jdl.ac.cn/project/faceId/paperreading/Paper/hhan_20090305_TIP2008_FaceRelighting.pdf +587c48ec417be8b0334fa39075b3bfd66cc29dbe,http://pdfs.semanticscholar.org/ff91/95f99a1a28ced431362f5363c9a5da47a37b.pdf +58081cb20d397ce80f638d38ed80b3384af76869,http://pdfs.semanticscholar.org/5808/1cb20d397ce80f638d38ed80b3384af76869.pdf +581e920ddb6ecfc2a313a3aa6fed3d933b917ab0,http://pdfs.semanticscholar.org/581e/920ddb6ecfc2a313a3aa6fed3d933b917ab0.pdf +58fa85ed57e661df93ca4cdb27d210afe5d2cdcd,http://www.dgcv.nii.ac.jp/Publications/Papers/2016/ICPR2016a.pdf +5860cf0f24f2ec3f8cbc39292976eed52ba2eafd,http://pdfs.semanticscholar.org/5860/cf0f24f2ec3f8cbc39292976eed52ba2eafd.pdf +584909d2220b52c0d037e8761d80cb22f516773f,http://www.cs.tau.ac.il/~nachumd/papers/OFTA.pdf +58823377757e7dc92f3b70a973be697651089756,http://pdfs.semanticscholar.org/fa88/52e5b7849adf8e96a103ca67e4ca60bdf244.pdf +580e48d3e7fe1ae0ceed2137976139852b1755df,http://pdfs.semanticscholar.org/580e/48d3e7fe1ae0ceed2137976139852b1755df.pdf +5865e824e3d8560e07840dd5f75cfe9bf68f9d96,http://pdfs.semanticscholar.org/5865/e824e3d8560e07840dd5f75cfe9bf68f9d96.pdf +58bb77dff5f6ee0fb5ab7f5079a5e788276184cc,https://ram-lab.com/papers/2016/rcar_lyp_192.pdf +58b8588c01196070674ceabe5366b20f73c2912d,http://www.cse.ust.hk/~qnature/pdf/ICDM2015.pdf +58b0be2db0aeda2edb641273fe52946a24a714c3,http://www.cs.ucsb.edu/~daniel/publications/conferences/wacv09/VaqueroWACV09.pdf +585260468d023ffc95f0e539c3fa87254c28510b,http://pdfs.semanticscholar.org/5852/60468d023ffc95f0e539c3fa87254c28510b.pdf +58cb1414095f5eb6a8c6843326a6653403a0ee17,http://pdfs.semanticscholar.org/58cb/1414095f5eb6a8c6843326a6653403a0ee17.pdf +58db008b204d0c3c6744f280e8367b4057173259,http://pdfs.semanticscholar.org/58db/008b204d0c3c6744f280e8367b4057173259.pdf +58628e64e61bd2776a2a7258012eabe3c79ca90c,http://pdfs.semanticscholar.org/5862/8e64e61bd2776a2a7258012eabe3c79ca90c.pdf +676a136f5978783f75b5edbb38e8bb588e8efbbe,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_084_ext.pdf +676f9eabf4cfc1fd625228c83ff72f6499c67926,http://pdfs.semanticscholar.org/676f/9eabf4cfc1fd625228c83ff72f6499c67926.pdf +677477e6d2ba5b99633aee3d60e77026fb0b9306,http://pdfs.semanticscholar.org/d105/b9b31106495f58fb951cfdbf64787ee89ab2.pdf +670531f3925c1ee6921f1550a988a034db727c3b,http://neerajkumar.org/base/papers/nk_www2014_photorecall.pdf +679b7fa9e74b2aa7892eaea580def6ed4332a228,http://pdfs.semanticscholar.org/679b/7fa9e74b2aa7892eaea580def6ed4332a228.pdf +670637d0303a863c1548d5b19f705860a23e285c,https://classes.cs.uoregon.edu/16F/cis607photo/faces.pdf +67b79c2336b9a2efbfc805b9a6912a0959e392a9,https://www.researchgate.net/profile/Engin_Erzin/publication/220716898_RANSAC-Based_Training_Data_Selection_on_Spectral_Features_for_Emotion_Recognition_from_Spontaneous_Speech/links/0912f5089705e67f21000000.pdf +6742c0a26315d7354ab6b1fa62a5fffaea06da14,http://pdfs.semanticscholar.org/ae08/778d8003933a02fd90a49b2e5f67ba56ad8d.pdf +67a50752358d5d287c2b55e7a45cc39be47bf7d0,http://pdfs.semanticscholar.org/67a5/0752358d5d287c2b55e7a45cc39be47bf7d0.pdf +67c3c1194ee72c54bc011b5768e153a035068c43,http://pdfs.semanticscholar.org/67c3/c1194ee72c54bc011b5768e153a035068c43.pdf +67c703a864aab47eba80b94d1935e6d244e00bcb,http://pdfs.semanticscholar.org/67c7/03a864aab47eba80b94d1935e6d244e00bcb.pdf +677ebde61ba3936b805357e27fce06c44513a455,http://pdfs.semanticscholar.org/677e/bde61ba3936b805357e27fce06c44513a455.pdf +67ba3524e135c1375c74fe53ebb03684754aae56,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0001767.pdf +6769cfbd85329e4815bb1332b118b01119975a95,http://pdfs.semanticscholar.org/6769/cfbd85329e4815bb1332b118b01119975a95.pdf +0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,http://pdfs.semanticscholar.org/a32a/8d6d4c3b4d69544763be48ffa7cb0d7f2f23.pdf +0b2277a0609565c30a8ee3e7e193ce7f79ab48b0,http://ivg.au.tsinghua.edu.cn/paper/2012_Cost-sensitive%20semi-supervised%20discriminant%20analysis%20for%20face%20recognition.pdf +0b9ce839b3c77762fff947e60a0eb7ebbf261e84,http://pdfs.semanticscholar.org/0b9c/e839b3c77762fff947e60a0eb7ebbf261e84.pdf +0b8b8776684009e537b9e2c0d87dbd56708ddcb4,http://pdfs.semanticscholar.org/0b8b/8776684009e537b9e2c0d87dbd56708ddcb4.pdf +0ba64f4157d80720883a96a73e8d6a5f5b9f1d9b,http://pdfs.semanticscholar.org/84b7/e2138a3701432c33ea70a1297328cd814ab5.pdf +0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7,http://pdfs.semanticscholar.org/0b6a/5200c33434cbfa9bf24ba482f6e06bf5fff7.pdf +0b605b40d4fef23baa5d21ead11f522d7af1df06,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a819.pdf +0b0eb562d7341231c3f82a65cf51943194add0bb,http://pdfs.semanticscholar.org/0b0e/b562d7341231c3f82a65cf51943194add0bb.pdf +0b3a146c474166bba71e645452b3a8276ac05998,http://pdfs.semanticscholar.org/c6e5/17eb85bc6c68dff5d3fadb2d817e839c966b.pdf +0b78fd881d0f402fd9b773249af65819e48ad36d,http://mirlab.org/conference_papers/International_Conference/ISCSLP%202008/pdfs/281.pdf +0b835284b8f1f45f87b0ce004a4ad2aca1d9e153,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kapadia_Cartooning_for_Enhanced_CVPR_2017_paper.pdf +0b5bd3ce90bf732801642b9f55a781e7de7fdde0,http://pdfs.semanticscholar.org/0b5b/d3ce90bf732801642b9f55a781e7de7fdde0.pdf +0b0958493e43ca9c131315bcfb9a171d52ecbb8a,http://pdfs.semanticscholar.org/0b09/58493e43ca9c131315bcfb9a171d52ecbb8a.pdf +0b51197109813d921835cb9c4153b9d1e12a9b34,http://pdfs.semanticscholar.org/0b51/197109813d921835cb9c4153b9d1e12a9b34.pdf +0bf3513d18ec37efb1d2c7934a837dabafe9d091,http://pdfs.semanticscholar.org/14ff/c760c1655524fc2a035357ad354664b5af5e.pdf +0b20f75dbb0823766d8c7b04030670ef7147ccdd,http://pdfs.semanticscholar.org/0b20/f75dbb0823766d8c7b04030670ef7147ccdd.pdf +0b174d4a67805b8796bfe86cd69a967d357ba9b6,http://pdfs.semanticscholar.org/0b17/4d4a67805b8796bfe86cd69a967d357ba9b6.pdf +0ba449e312894bca0d16348f3aef41ca01872383,http://pdfs.semanticscholar.org/0ba4/49e312894bca0d16348f3aef41ca01872383.pdf +0b87d91fbda61cdea79a4b4dcdcb6d579f063884,http://pdfs.semanticscholar.org/0b87/d91fbda61cdea79a4b4dcdcb6d579f063884.pdf +0be2245b2b016de1dcce75ffb3371a5e4b1e731b,http://pdfs.semanticscholar.org/0be2/245b2b016de1dcce75ffb3371a5e4b1e731b.pdf +0b79356e58a0df1d0efcf428d0c7c4651afa140d,http://pdfs.semanticscholar.org/7725/05d940a31ca237563cfb2d5c05c62742993f.pdf +0b85b50b6ff03a7886c702ceabad9ab8c8748fdc,http://pdfs.semanticscholar.org/0b85/b50b6ff03a7886c702ceabad9ab8c8748fdc.pdf +0b84f07af44f964817675ad961def8a51406dd2e,https://arxiv.org/pdf/1604.02531v2.pdf +0b242d5123f79defd5f775d49d8a7047ad3153bc,http://pdfs.semanticscholar.org/84db/c0010ae4f5206d689cf9f5bb176d18990bcd.pdf +0b3786a3a0ea7ec08f01636124c183dbee8f625f,http://www.cs.uiuc.edu/homes/dhoiem/publications/pami2012_FlickrSimilaritiesSIKMA_Gang.pdf +0b50e223ad4d9465bb92dbf17a7b79eccdb997fb,http://users.eecs.northwestern.edu/~ganghua/publication/CVPR08a.pdf +0badf61e8d3b26a0d8b60fe94ba5c606718daf0b,http://pdfs.semanticscholar.org/0bad/f61e8d3b26a0d8b60fe94ba5c606718daf0b.pdf +0b02bfa5f3a238716a83aebceb0e75d22c549975,http://pdfs.semanticscholar.org/0b02/bfa5f3a238716a83aebceb0e75d22c549975.pdf +0b2966101fa617b90510e145ed52226e79351072,http://www.cs.umanitoba.ca/~ywang/papers/icpr16_videotext.pdf +0ba0f000baf877bc00a9e144b88fa6d373db2708,http://pdfs.semanticscholar.org/0ba0/f000baf877bc00a9e144b88fa6d373db2708.pdf +0be80da851a17dd33f1e6ffdd7d90a1dc7475b96,http://pdfs.semanticscholar.org/0be8/0da851a17dd33f1e6ffdd7d90a1dc7475b96.pdf +0b183f5260667c16ef6f640e5da50272c36d599b,http://pdfs.semanticscholar.org/0b18/3f5260667c16ef6f640e5da50272c36d599b.pdf +0b4c4ea4a133b9eab46b217e22bda4d9d13559e6,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_morph_random_forests.pdf +0b9db62b26b811e8c24eb9edc37901a4b79a897f,https://eng.ucmerced.edu/people/cyang35/CVPR13/cvpr13_hallucination.pdf +0ba99a709cd34654ac296418a4f41a9543928149,https://pdfs.semanticscholar.org/0ba9/9a709cd34654ac296418a4f41a9543928149.pdf +0be764800507d2e683b3fb6576086e37e56059d1,http://pdfs.semanticscholar.org/0be7/64800507d2e683b3fb6576086e37e56059d1.pdf +0b642f6d48a51df64502462372a38c50df2051b1,https://infoscience.epfl.ch/record/231128/files/Le_ICMI_2017.pdf +0b7d1386df0cf957690f0fe330160723633d2305,http://www.cs.rpi.edu/~magdon/ps/conference/AccentICMLA2009.pdf +0b6616f3ebff461e4b6c68205fcef1dae43e2a1a,http://pdfs.semanticscholar.org/0b66/16f3ebff461e4b6c68205fcef1dae43e2a1a.pdf +0b8c92463f8f5087696681fb62dad003c308ebe2,https://www.iiitd.edu.in/~richa/papers/BTAS10-Sketch.pdf +0bc0f9178999e5c2f23a45325fa50300961e0226,http://pdfs.semanticscholar.org/0bc0/f9178999e5c2f23a45325fa50300961e0226.pdf +0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf +0b3f354e6796ef7416bf6dde9e0779b2fcfabed2,http://pdfs.semanticscholar.org/fd60/5d123a0f777716f798f258fbbcd73d75fa8b.pdf +0b9d3a0c61ee498f8ed54aaa22d3c4e72aa56f40,http://www.researchgate.net/profile/Mark_Billinghurst/publication/221209697_A_Quadratic_Deformation_Model_for_Facial_Expression_Recognition/links/00b4952464de6e125e000000.pdf +9391618c09a51f72a1c30b2e890f4fac1f595ebd,http://pdfs.semanticscholar.org/9391/618c09a51f72a1c30b2e890f4fac1f595ebd.pdf +93675f86d03256f9a010033d3c4c842a732bf661,http://pdfs.semanticscholar.org/9367/5f86d03256f9a010033d3c4c842a732bf661.pdf +935a7793cbb8f102924fa34fce1049727de865c2,https://ivi.fnwi.uva.nl/isis/publications/2015/AlnajarICIP20015/AlnajarICIP20015.pdf +9326d1390e8601e2efc3c4032152844483038f3f,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Hsu_Landmark_Based_Facial_2014_CVPR_paper.pdf +93747de3d40376761d1ef83ffa72ec38cd385833,http://pdfs.semanticscholar.org/9374/7de3d40376761d1ef83ffa72ec38cd385833.pdf +936c7406de1dfdd22493785fc5d1e5614c6c2882,http://pdfs.semanticscholar.org/9d5e/1395e1ace37d9d5b7ce6854d518e7f128e79.pdf +93721023dd6423ab06ff7a491d01bdfe83db7754,http://pdfs.semanticscholar.org/9372/1023dd6423ab06ff7a491d01bdfe83db7754.pdf +93971a49ef6cc88a139420349a1dfd85fb5d3f5c,http://pdfs.semanticscholar.org/9397/1a49ef6cc88a139420349a1dfd85fb5d3f5c.pdf +93cbb3b3e40321c4990c36f89a63534b506b6daf,http://www.cs.wisc.edu/~gdguo/myPapersOnWeb/IEEESMC05Guo.pdf +937ffb1c303e0595317873eda5ce85b1a17f9943,https://ivi.fnwi.uva.nl/isis/publications/2010/DibekliogluICM2010/DibekliogluICM2010.pdf +9329523dc0bd4e2896d5f63cf2440f21b7a16f16,http://pdfs.semanticscholar.org/d853/107e81c3db4a7909b599bff82ab1c48772af.pdf +9306f61c7c3bdcdcb257cd437ca59df8e599e326,http://www.umiacs.umd.edu/~pvishalm/Conference_pub/ACPR2011_v2.pdf +936227f7483938097cc1cdd3032016df54dbd5b6,http://pdfs.semanticscholar.org/9362/27f7483938097cc1cdd3032016df54dbd5b6.pdf +939123cf21dc9189a03671484c734091b240183e,http://publications.idiap.ch/downloads/papers/2015/Erdogmus_MMSP_2015.pdf +94b9c0a6515913bad345f0940ee233cdf82fffe1,http://pdfs.semanticscholar.org/94b9/c0a6515913bad345f0940ee233cdf82fffe1.pdf +94498fae459167841e8b2f4b911493fc3c7da22f,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/cvpr2016_ROF.pdf +94a7c97d1e3eb5dbfb20b180780451486597a9be,http://pdfs.semanticscholar.org/94a7/c97d1e3eb5dbfb20b180780451486597a9be.pdf +9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73,http://www.vision.ee.ethz.ch/~zzhiwu/papers/COX-Face-DB-TIP-final.pdf +948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494,http://pdfs.semanticscholar.org/948a/f4b04b4a9ae4bff2777ffbcb29d5bfeeb494.pdf +94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81,http://ibug.doc.ic.ac.uk/media/uploads/documents/p148-cheng.pdf +94f74c6314ffd02db581e8e887b5fd81ce288dbf,http://pdfs.semanticscholar.org/94f7/4c6314ffd02db581e8e887b5fd81ce288dbf.pdf +941166547968081463398c9eb041f00eb04304f7,http://people.duke.edu/~qq3/pub/ExpressionDictionary_TIP.pdf +9441253b638373a0027a5b4324b4ee5f0dffd670,http://pdfs.semanticscholar.org/9441/253b638373a0027a5b4324b4ee5f0dffd670.pdf +949699d0b865ef35b36f11564f9a4396f5c9cddb,http://pdfs.semanticscholar.org/9496/99d0b865ef35b36f11564f9a4396f5c9cddb.pdf +94ac3008bf6be6be6b0f5140a0bea738d4c75579,http://pdfs.semanticscholar.org/94ac/3008bf6be6be6b0f5140a0bea738d4c75579.pdf +94e259345e82fa3015a381d6e91ec6cded3971b4,http://pdfs.semanticscholar.org/94e2/59345e82fa3015a381d6e91ec6cded3971b4.pdf +0efdd82a4753a8309ff0a3c22106c570d8a84c20,http://pdfs.semanticscholar.org/0efd/d82a4753a8309ff0a3c22106c570d8a84c20.pdf +0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,http://pdfs.semanticscholar.org/0e5d/cc6ae52625fd0637c6bba46a973e46d58b9c.pdf +0e73d2b0f943cf8559da7f5002414ccc26bc77cd,https://people.cs.umass.edu/~smaji/presentations/similarity-poster-cvpr14.pdf +0ed0e48b245f2d459baa3d2779bfc18fee04145b,http://pdfs.semanticscholar.org/0ed0/e48b245f2d459baa3d2779bfc18fee04145b.pdf +0eac652139f7ab44ff1051584b59f2dc1757f53b,http://pdfs.semanticscholar.org/0eac/652139f7ab44ff1051584b59f2dc1757f53b.pdf +0ef96d97365899af797628e80f8d1020c4c7e431,http://media.adelaide.edu.au/acvt/Publications/2006/2006-Improving%20the%20Speed%20of%20Kernel%20PCA%20on%20Large%20Scale%20Datasets.pdf +0e7f277538142fb50ce2dd9179cffdc36b794054,http://nb.vse.cz/~svatek/mdm08.pdf +0e8760fc198a7e7c9f4193478c0e0700950a86cd,http://pdfs.semanticscholar.org/0e87/60fc198a7e7c9f4193478c0e0700950a86cd.pdf +0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,http://pdfs.semanticscholar.org/0ec0/fc9ed165c40b1ef4a99e944abd8aa4e38056.pdf +0e652a99761d2664f28f8931fee5b1d6b78c2a82,http://pdfs.semanticscholar.org/0e65/2a99761d2664f28f8931fee5b1d6b78c2a82.pdf +0e50fe28229fea45527000b876eb4068abd6ed8c,http://pdfs.semanticscholar.org/0e50/fe28229fea45527000b876eb4068abd6ed8c.pdf +0eff410cd6a93d0e37048e236f62e209bc4383d1,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICRA_2010/data/papers/0516.pdf +0ea7b7fff090c707684fd4dc13e0a8f39b300a97,https://arxiv.org/pdf/1711.06055v1.pdf +0ee661a1b6bbfadb5a482ec643573de53a9adf5e,http://epubs.surrey.ac.uk/812523/1/yunlian_TIFS2014.pdf +0e36ada8cb9c91f07c9dcaf196d036564e117536,http://pdfs.semanticscholar.org/d0d5/aa7f797113c825053f4c4fd3772dc3601139.pdf +0e986f51fe45b00633de9fd0c94d082d2be51406,http://vision.ics.uci.edu/papers/ZhuR_CVPR_2012/ZhuR_CVPR_2012.pdf +0ebc50b6e4b01eb5eba5279ce547c838890b1418,http://pdfs.semanticscholar.org/0ebc/50b6e4b01eb5eba5279ce547c838890b1418.pdf +0e49a23fafa4b2e2ac097292acf00298458932b4,http://pdfs.semanticscholar.org/0e49/a23fafa4b2e2ac097292acf00298458932b4.pdf +0ec1673609256b1e457f41ede5f21f05de0c054f,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d025.pdf +0e3840ea3227851aaf4633133dd3cbf9bbe89e5b,http://pdfs.semanticscholar.org/8d59/98cd984e7cce307da7d46f155f9db99c6590.pdf +0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a,http://www.openu.ac.il/home/hassner/projects/LATCH/LATCH.pdf +0ea38a5ba0c8739d1196da5d20efb13406bb6550,https://filebox.ece.vt.edu/~parikh/Publications/ParikhGrauman_ICCV2011_relative.pdf +0e21c9e5755c3dab6d8079d738d1188b03128a31,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Wu_Constrained_Clustering_and_2013_CVPR_paper.pdf +0e677f2b798f5c1f7143ba983467321a7851565a,http://www.cse.iitk.ac.in/users/rahulaaj/papers/BillyYL.pdf +0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698,http://pdfs.semanticscholar.org/0e78/af9bd0f9a0ce4ceb5f09f24bc4e4823bd698.pdf +0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5,http://ca.cs.cmu.edu/sites/default/files/9MMED_CVPR12.pdf +0e7c70321462694757511a1776f53d629a1b38f3,http://pdfs.semanticscholar.org/0e7c/70321462694757511a1776f53d629a1b38f3.pdf +0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_Fast_Subspace_Search_2013_ICCV_paper.pdf +0ec67c69e0975cfcbd8ba787cc0889aec4cc5399,http://pdfs.semanticscholar.org/1af3/6a1fc18328e2a0310bc4208ef35ba882bdc1.pdf +0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64,http://mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mm1039.pdf +0e1a18576a7d3b40fe961ef42885101f4e2630f8,http://pdfs.semanticscholar.org/0e1a/18576a7d3b40fe961ef42885101f4e2630f8.pdf +6080f26675e44f692dd722b61905af71c5260af8,https://arxiv.org/pdf/1603.05073v1.pdf +60a006bdfe5b8bf3243404fae8a5f4a9d58fa892,http://alumni.cs.ucr.edu/~mkafai/papers/Paper_bwild.pdf +6043006467fb3fd1e9783928d8040ee1f1db1f3a,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/CVPR10_FaceReco.pdf +600025c9a13ff09c6d8b606a286a79c823d89db8,http://pdfs.semanticscholar.org/6000/25c9a13ff09c6d8b606a286a79c823d89db8.pdf +60d765f2c0a1a674b68bee845f6c02741a49b44e,http://pdfs.semanticscholar.org/60d7/65f2c0a1a674b68bee845f6c02741a49b44e.pdf +60d4cef56efd2f5452362d4d9ac1ae05afa970d1,http://pdfs.semanticscholar.org/60d4/cef56efd2f5452362d4d9ac1ae05afa970d1.pdf +60ce4a9602c27ad17a1366165033fe5e0cf68078,http://pdfs.semanticscholar.org/60ce/4a9602c27ad17a1366165033fe5e0cf68078.pdf +6097ea6fd21a5f86a10a52e6e4dd5b78a436d5bf,http://arxiv.org/pdf/1512.05300v3.pdf +60c699b9ec71f7dcbc06fa4fd98eeb08e915eb09,https://arxiv.org/pdf/1706.03947v1.pdf +60970e124aa5fb964c9a2a5d48cd6eee769c73ef,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Tierney_Subspace_Clustering_for_2014_CVPR_paper.pdf +60efdb2e204b2be6701a8e168983fa666feac1be,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01387.pdf +60824ee635777b4ee30fcc2485ef1e103b8e7af9,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/Feng-TIP-2015.pdf +60643bdab1c6261576e6610ea64ea0c0b200a28d,http://pdfs.semanticscholar.org/6064/3bdab1c6261576e6610ea64ea0c0b200a28d.pdf +60a20d5023f2bcc241eb9e187b4ddece695c2b9b,http://pdfs.semanticscholar.org/60a2/0d5023f2bcc241eb9e187b4ddece695c2b9b.pdf +60cdcf75e97e88638ec973f468598ae7f75c59b4,http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/tmm08face.pdf +60040e4eae81ab6974ce12f1c789e0c05be00303,http://pdfs.semanticscholar.org/6004/0e4eae81ab6974ce12f1c789e0c05be00303.pdf +60b3601d70f5cdcfef9934b24bcb3cc4dde663e7,http://pdfs.semanticscholar.org/60b3/601d70f5cdcfef9934b24bcb3cc4dde663e7.pdf +60737db62fb5fab742371709485e4b2ddf64b7b2,http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/p307-weng.pdf +60496b400e70acfbbf5f2f35b4a49de2a90701b5,http://pdfs.semanticscholar.org/6049/6b400e70acfbbf5f2f35b4a49de2a90701b5.pdf +60bffecd79193d05742e5ab8550a5f89accd8488,http://pdfs.semanticscholar.org/60bf/fecd79193d05742e5ab8550a5f89accd8488.pdf +601834a4150e9af028df90535ab61d812c45082c,http://pdfs.semanticscholar.org/6018/34a4150e9af028df90535ab61d812c45082c.pdf +346dbc7484a1d930e7cc44276c29d134ad76dc3f,http://pdfs.semanticscholar.org/346d/bc7484a1d930e7cc44276c29d134ad76dc3f.pdf +34a41ec648d082270697b9ee264f0baf4ffb5c8d,http://pdfs.semanticscholar.org/34a4/1ec648d082270697b9ee264f0baf4ffb5c8d.pdf +34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4c,http://pdfs.semanticscholar.org/9e97/360b519d9912ded55618ccbb000d74d8e35c.pdf +34bb11bad04c13efd575224a5b4e58b9249370f3,http://cs.nju.edu.cn/wujx/paper/CVPR2014_Action.pdf +3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,http://pdfs.semanticscholar.org/3411/ef1ff5ad11e45106f7863e8c7faf563f4ee1.pdf +34d484b47af705e303fc6987413dc0180f5f04a9,http://pdfs.semanticscholar.org/34d4/84b47af705e303fc6987413dc0180f5f04a9.pdf +346166da1a49e531923294300a731167e1436d5b,http://lear.inrialpes.fr/people/mpederso/papers/3DV14.pdf +345bea5f7d42926f857f395c371118a00382447f,http://grail.cs.washington.edu/wp-content/uploads/2016/09/kemelmacher2016tp.pdf +3403cb92192dc6b2943d8dbfa8212cc65880159e,http://pdfs.semanticscholar.org/3403/cb92192dc6b2943d8dbfa8212cc65880159e.pdf +3463f12ad434d256cd5f94c1c1bfd2dd6df36947,http://pdfs.semanticscholar.org/3463/f12ad434d256cd5f94c1c1bfd2dd6df36947.pdf +346c9100b2fab35b162d7779002c974da5f069ee,http://cmlab.csie.ntu.edu.tw/~yanying/paper/p651-lei.pdf +34863ecc50722f0972e23ec117f80afcfe1411a9,http://nlpr-web.ia.ac.cn/2010papers/kz/gh3.pdf +34b7e826db49a16773e8747bc8dfa48e344e425d,http://www.comp.leeds.ac.uk/me/Publications/cvpr09_bsl.pdf +34c594abba9bb7e5813cfae830e2c4db78cf138c,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_047_ext.pdf +34108098e1a378bc15a5824812bdf2229b938678,http://pdfs.semanticscholar.org/3410/8098e1a378bc15a5824812bdf2229b938678.pdf +341ed69a6e5d7a89ff897c72c1456f50cfb23c96,http://pdfs.semanticscholar.org/cd7f/26c430363f90e530824446b3a4c85cfb94e5.pdf +348a16b10d140861ece327886b85d96cce95711e,http://pdfs.semanticscholar.org/348a/16b10d140861ece327886b85d96cce95711e.pdf +3419af6331e4099504255a38de6f6b7b3b1e5c14,http://pdfs.semanticscholar.org/3419/af6331e4099504255a38de6f6b7b3b1e5c14.pdf +34c8de02a5064e27760d33b861b7e47161592e65,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w14/papers/Han_Video_Action_Recognition_CVPR_2017_paper.pdf +340d1a9852747b03061e5358a8d12055136599b0,http://pdfs.semanticscholar.org/340d/1a9852747b03061e5358a8d12055136599b0.pdf +34ccdec6c3f1edeeecae6a8f92e8bdb290ce40fd,http://pdfs.semanticscholar.org/34cc/dec6c3f1edeeecae6a8f92e8bdb290ce40fd.pdf +34b42bcf84d79e30e26413f1589a9cf4b37076f9,http://pdfs.semanticscholar.org/34b4/2bcf84d79e30e26413f1589a9cf4b37076f9.pdf +5aafca76dbbbbaefd82f5f0265776afb5320dafe,http://pdfs.semanticscholar.org/5aaf/ca76dbbbbaefd82f5f0265776afb5320dafe.pdf +5a93f9084e59cb9730a498ff602a8c8703e5d8a5,http://pdfs.semanticscholar.org/5a93/f9084e59cb9730a498ff602a8c8703e5d8a5.pdf +5a87bc1eae2ec715a67db4603be3d1bb8e53ace2,http://pdfs.semanticscholar.org/5a87/bc1eae2ec715a67db4603be3d1bb8e53ace2.pdf +5aad56cfa2bac5d6635df4184047e809f8fecca2,http://chenlab.ece.cornell.edu/people/Amir/publications/picture_password.pdf +5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0,http://pdfs.semanticscholar.org/5a8c/a0cfad32f04449099e2e3f3e3a1c8f6541c0.pdf +5ac80e0b94200ee3ecd58a618fe6afd077be0a00,http://pdfs.semanticscholar.org/5ac8/0e0b94200ee3ecd58a618fe6afd077be0a00.pdf +5a5f0287484f0d480fed1ce585dbf729586f0edc,http://www.researchgate.net/profile/Mohammad_Mahoor/publication/248703363_DISFA_A_Spontaneous_Facial_Action_Intensity_Database/links/0c960520903b2b8153000000.pdf +5aadd85e2a77e482d44ac2a215c1f21e4a30d91b,http://pdfs.semanticscholar.org/5aad/d85e2a77e482d44ac2a215c1f21e4a30d91b.pdf +5a34a9bb264a2594c02b5f46b038aa1ec3389072,http://www.mpi-inf.mpg.de/fileadmin/inf/d2/akata/TPAMI2487986.pdf +5a4c6246758c522f68e75491eb65eafda375b701,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0001118.pdf +5aad5e7390211267f3511ffa75c69febe3b84cc7,http://pdfs.semanticscholar.org/5aad/5e7390211267f3511ffa75c69febe3b84cc7.pdf +5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372,http://pdfs.semanticscholar.org/5a02/9a0b0ae8ae7fc9043f0711b7c0d442bfd372.pdf +5ae970294aaba5e0225122552c019eb56f20af74,http://pdfs.semanticscholar.org/5ae9/70294aaba5e0225122552c019eb56f20af74.pdf +5a86842ab586de9d62d5badb2ad8f4f01eada885,http://pdfs.semanticscholar.org/5a86/842ab586de9d62d5badb2ad8f4f01eada885.pdf +5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0,http://pdfs.semanticscholar.org/c173/fa4456941b9c40d53d656b8ad84d24c16ec3.pdf +5a7520380d9960ff3b4f5f0fe526a00f63791e99,http://arxiv.org/pdf/1512.00932v1.pdf +5f871838710a6b408cf647aacb3b198983719c31,http://www.jdl.ac.cn/user/xlchen/Paper/TIP07b.pdf +5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9,http://pdfs.semanticscholar.org/e1dd/1c4de149c6b05eedd1728d57a18a074b9b2a.pdf +5f344a4ef7edfd87c5c4bc531833774c3ed23542,http://pdfs.semanticscholar.org/5f34/4a4ef7edfd87c5c4bc531833774c3ed23542.pdf +5f6ab4543cc38f23d0339e3037a952df7bcf696b,http://www.public.asu.edu/~bli24/Papers/ICPR2016_video2vec.pdf +5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a,http://pdfs.semanticscholar.org/5fa0/e6da81acece7026ac1bc6dcdbd8b204a5f0a.pdf +5feb1341a49dd7a597f4195004fe9b59f67e6707,http://pdfs.semanticscholar.org/5feb/1341a49dd7a597f4195004fe9b59f67e6707.pdf +5f57a1a3a1e5364792b35e8f5f259f92ad561c1f,http://pdfs.semanticscholar.org/5f57/a1a3a1e5364792b35e8f5f259f92ad561c1f.pdf +5fa932be4d30cad13ea3f3e863572372b915bec8,http://pdfs.semanticscholar.org/5fa9/32be4d30cad13ea3f3e863572372b915bec8.pdf +5f5906168235613c81ad2129e2431a0e5ef2b6e4,https://arxiv.org/pdf/1601.00199v1.pdf +5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,http://pdfs.semanticscholar.org/5fb5/d9389e2a2a4302c81bcfc068a4c8d4efe70c.pdf +5f1dcaff475ef18a2ecec0e114a9849a0a8002b9,http://pdfs.semanticscholar.org/5f1d/caff475ef18a2ecec0e114a9849a0a8002b9.pdf +5f676d6eca4c72d1a3f3acf5a4081c29140650fb,http://www.cs.ucr.edu/~mkafai/papers/Paper_fg.pdf +5fc664202208aaf01c9b62da5dfdcd71fdadab29,http://pdfs.semanticscholar.org/5fc6/64202208aaf01c9b62da5dfdcd71fdadab29.pdf +5fac62a3de11125fc363877ba347122529b5aa50,http://openaccess.thecvf.com/content_ICCV_2017/papers/Saha_AMTnet_Action-Micro-Tube_Regression_ICCV_2017_paper.pdf +5fa1724a79a9f7090c54925f6ac52f1697d6b570,http://pdfs.semanticscholar.org/5fa1/724a79a9f7090c54925f6ac52f1697d6b570.pdf +5fba1b179ac80fee80548a0795d3f72b1b6e49cd,http://pdfs.semanticscholar.org/fe88/e30cfca9161b598ea8a26985df5832259924.pdf +33f7e78950455c37236b31a6318194cfb2c302a4,http://pdfs.semanticscholar.org/33f7/e78950455c37236b31a6318194cfb2c302a4.pdf +33ac7fd3a622da23308f21b0c4986ae8a86ecd2b,http://pdfs.semanticscholar.org/33ac/7fd3a622da23308f21b0c4986ae8a86ecd2b.pdf +33030c23f6e25e30b140615bb190d5e1632c3d3b,http://pdfs.semanticscholar.org/3303/0c23f6e25e30b140615bb190d5e1632c3d3b.pdf +33ba256d59aefe27735a30b51caf0554e5e3a1df,http://pdfs.semanticscholar.org/33ba/256d59aefe27735a30b51caf0554e5e3a1df.pdf +33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13,http://pdfs.semanticscholar.org/33c3/702b0eee6fc26fc49f79f9133f3dd7fa3f13.pdf +33aff42530c2fd134553d397bf572c048db12c28,http://openaccess.thecvf.com/content_iccv_2015/papers/Ruiz_From_Emotions_to_ICCV_2015_paper.pdf +33a1a049d15e22befc7ddefdd3ae719ced8394bf,http://pdfs.semanticscholar.org/33a1/a049d15e22befc7ddefdd3ae719ced8394bf.pdf +33ec047f1084e290c8a6f516bc75345b6bcf02a0,https://www.researchgate.net/profile/Peter_Corcoran/publication/220168274_Smart_Cameras_2D_Affine_Models_for_Determining_Subject_Facial_Expressions/links/02bfe5118f52d3d59d000000.pdf +334e65b31ad51b1c1f84ce12ef235096395f1ca7,http://pdfs.semanticscholar.org/334e/65b31ad51b1c1f84ce12ef235096395f1ca7.pdf +3399f8f0dff8fcf001b711174d29c9d4fde89379,http://pdfs.semanticscholar.org/3399/f8f0dff8fcf001b711174d29c9d4fde89379.pdf +333aa36e80f1a7fa29cf069d81d4d2e12679bc67,http://pdfs.semanticscholar.org/333a/a36e80f1a7fa29cf069d81d4d2e12679bc67.pdf +3312eb79e025b885afe986be8189446ba356a507,http://pdfs.semanticscholar.org/6007/292075f8a8538fa6f4c3d7a8676a595ab1f4.pdf +33792bb27ef392973e951ca5a5a3be4a22a0d0c6,http://plaza.ufl.edu/xsshi2015/paper_list/TPAMI2016.pdf +3328674d71a18ed649e828963a0edb54348ee598,http://ai.pku.edu.cn/application/files/1415/1124/8089/A_face_and_palmprint_recognition_approach_based_on_discriminant_DCT_feature_extraction.pdf +339937141ffb547af8e746718fbf2365cc1570c8,http://pdfs.semanticscholar.org/3399/37141ffb547af8e746718fbf2365cc1570c8.pdf +33402ee078a61c7d019b1543bb11cc127c2462d2,http://users.cecs.anu.edu.au/~sgould/papers/cvpr17-ooo.pdf +33ae696546eed070717192d393f75a1583cd8e2c,https://arxiv.org/pdf/1708.08508v2.pdf +33554ff9d1d3b32f67020598320d3d761d7ec81f,http://pdfs.semanticscholar.org/3355/4ff9d1d3b32f67020598320d3d761d7ec81f.pdf +33f2b44742cc828347ccc5ec488200c25838b664,http://pdfs.semanticscholar.org/33f2/b44742cc828347ccc5ec488200c25838b664.pdf +3393459600368be2c4c9878a3f65a57dcc0c2cfa,http://pdfs.semanticscholar.org/3393/459600368be2c4c9878a3f65a57dcc0c2cfa.pdf +3327e21b46434f6441018922ef31bddba6cc8176,http://www.metaio.com/fileadmin/upload/research_files/paper/ISMAR2014_Real-Time_Illumination_Estimation_from_Faces_for_Coherent_Rendering_paper.pdf +334d6c71b6bce8dfbd376c4203004bd4464c2099,http://pdfs.semanticscholar.org/ebbf/a07476257e1b7f4e259b29531a12eab575bd.pdf +33695e0779e67c7722449e9a3e2e55fde64cfd99,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_064_ext.pdf +334ac2a459190b41923be57744aa6989f9a54a51,http://pdfs.semanticscholar.org/334a/c2a459190b41923be57744aa6989f9a54a51.pdf +33e20449aa40488c6d4b430a48edf5c4b43afdab,http://mplab.ucsd.edu/wordpress/wp-content/uploads/EngagementRecognitionFinal.pdf +333e7ad7f915d8ee3bb43a93ea167d6026aa3c22,http://www.eurecom.fr/en/publication/4277/download/mm-publi-4277.pdf +334166a942acb15ccc4517cefde751a381512605,http://pdfs.semanticscholar.org/3341/66a942acb15ccc4517cefde751a381512605.pdf +33403e9b4bbd913ae9adafc6751b52debbd45b0e,http://pdfs.semanticscholar.org/3340/3e9b4bbd913ae9adafc6751b52debbd45b0e.pdf +33ad23377eaead8955ed1c2b087a5e536fecf44e,http://vis-www.cs.umass.edu/papers/gloc_cvpr13.pdf +053b263b4a4ccc6f9097ad28ebf39c2957254dfb,http://pdfs.semanticscholar.org/7a49/4b4489408ec3adea15817978ecd2e733f5fe.pdf +054756fa720bdcf1d320ad7a353e54ca53d4d3af,http://www.stat.ucla.edu/~yuille/Pubs15/JianyuWangSemanticCVPR2015%20(1).pdf +05b8673d810fadf888c62b7e6c7185355ffa4121,https://nannanwang.github.io/My_Papers/IJCV2013.pdf +056d5d942084428e97c374bb188efc386791e36d,http://pdfs.semanticscholar.org/056d/5d942084428e97c374bb188efc386791e36d.pdf +05e658fed4a1ce877199a4ce1a8f8cf6f449a890,http://pdfs.semanticscholar.org/05e6/58fed4a1ce877199a4ce1a8f8cf6f449a890.pdf +05ad478ca69b935c1bba755ac1a2a90be6679129,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Turakhia_Attribute_Dominance_What_2013_ICCV_paper.pdf +0595d18e8d8c9fb7689f636341d8a55cc15b3e6a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_102.pdf +0573f3d2754df3a717368a6cbcd940e105d67f0b,http://cs.anu.edu.au/few/EmotiW_icmi_draft_ver_1_0.pdf +05a0d04693b2a51a8131d195c68ad9f5818b2ce1,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf +0562fc7eca23d47096472a1d42f5d4d086e21871,http://pdfs.semanticscholar.org/0562/fc7eca23d47096472a1d42f5d4d086e21871.pdf +054738ce39920975b8dcc97e01b3b6cc0d0bdf32,http://ita.ucsd.edu/workshop/16/files/paper/paper_2663.pdf +05bcc5235721fd6a465a63774d28720bacc60858,http://www.site.uottawa.ca/~fshi098/papers/Gradient_Boundary_Histograms_for_Action_Recognition.pdf +05e03c48f32bd89c8a15ba82891f40f1cfdc7562,http://files.is.tue.mpg.de/black/papers/rgapami.pdf +05a312478618418a2efb0a014b45acf3663562d7,http://people.ee.duke.edu/~lcarin/AccelGibbs.pdf +056ba488898a1a1b32daec7a45e0d550e0c51ae4,http://pdfs.semanticscholar.org/056b/a488898a1a1b32daec7a45e0d550e0c51ae4.pdf +050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,http://www.springer.com/cda/content/document/cda_downloaddocument/9783319587707-t1.pdf?SGWID=0-0-45-1607395-p180855259 +0509c442550571907258f07aad9da9d00b1e468b,https://pdfs.semanticscholar.org/0509/c442550571907258f07aad9da9d00b1e468b.pdf +056294ff40584cdce81702b948f88cebd731a93e,https://arxiv.org/pdf/1506.08438v3.pdf +052880031be0a760a5b606b2ad3d22f237e8af70,http://pdfs.semanticscholar.org/0528/80031be0a760a5b606b2ad3d22f237e8af70.pdf +055de0519da7fdf27add848e691087e0af166637,http://pdfs.semanticscholar.org/d3f9/cf3fb66326e456587acb18cf3196d1e314c7.pdf +0515e43c92e4e52254a14660718a9e498bd61cf5,http://pdfs.semanticscholar.org/3a78/5f86c2109fe1ff242dcb26211abfb9b0a870.pdf +053c2f592a7f153e5f3746aa5ab58b62f2cf1d21,http://pdfs.semanticscholar.org/053c/2f592a7f153e5f3746aa5ab58b62f2cf1d21.pdf +0568fc777081cbe6de95b653644fec7b766537b2,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Liu_Learning_Expressionlets_on_2014_CVPR_paper.pdf +05d80c59c6fcc4652cfc38ed63d4c13e2211d944,http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/35389.pdf +05ea7930ae26165e7e51ff11b91c7aa8d7722002,http://www.stat.ucla.edu/~sczhu/papers/PAMI_car_occlusion_AOG.pdf +055530f7f771bb1d5f352e2758d1242408d34e4d,http://pdfs.semanticscholar.org/0555/30f7f771bb1d5f352e2758d1242408d34e4d.pdf +050eda213ce29da7212db4e85f948b812a215660,http://pdfs.semanticscholar.org/b598/4a1044d72224f99e959746a452fc1927a257.pdf +051a84f0e39126c1ebeeb379a405816d5d06604d,http://static.springer.com/sgw/documents/1348632/application/pdf/Cognitive+Computation_Biometric+Recognition+Performing+in+a+Bioinspired+System.pdf +05e3acc8afabc86109d8da4594f3c059cf5d561f,https://www.cs.rochester.edu/u/cxu22/p/cvpr2016_a2s2_poster.pdf +05f4d907ee2102d4c63a3dc337db7244c570d067,http://pdfs.semanticscholar.org/3c52/2c9707eb795e0dba69202f1ec946a9072661.pdf +0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,http://pdfs.semanticscholar.org/0559/fb9f5e8627fecc026c8ee6f7ad30e54ee929.pdf +05a7be10fa9af8fb33ae2b5b72d108415519a698,http://jankautz.com/publications/MMFusion4Video_ACMM16.pdf +05318a267226f6d855d83e9338eaa9e718b2a8dd,https://fruct.org/publications/fruct16/files/Khr.pdf +057d5f66a873ec80f8ae2603f937b671030035e6,http://cs.stanford.edu/~roozbeh/papers/Mottaghi16cvpr_a.pdf +05c91e8a29483ced50c5f2d869617b80f7dacdd9,http://www.cs.rochester.edu/~mehoque/Publications/2013/13.Hoque-etal-MACH-UbiComp.pdf +0580edbd7865414c62a36da9504d1169dea78d6f,https://arxiv.org/pdf/1611.04251v1.pdf +050a3346e44ca720a54afbf57d56b1ee45ffbe49,https://www.d2.mpi-inf.mpg.de/sites/default/files/cvpr16.pdf +0517d08da7550241fb2afb283fc05d37fce5d7b7,http://pdfs.semanticscholar.org/0517/d08da7550241fb2afb283fc05d37fce5d7b7.pdf +05f3d1e9fb254b275354ca69018e9ed321dd8755,http://pdfs.semanticscholar.org/05f3/d1e9fb254b275354ca69018e9ed321dd8755.pdf +05e96d76ed4a044d8e54ef44dac004f796572f1a,http://www.cs.ucsb.edu/~mturk/595/papers/BRONSTEIN.pdf +051f03bc25ec633592aa2ff5db1d416b705eac6c,http://www.cse.msu.edu/biometrics/Publications/Face/LiaoJain_PartialFR_AlignmentFreeApproach_ICJB11.pdf +05270b68547a2cd5bda302779cfc5dda876ae538,http://www.cs.sfu.ca/~mori/courses/cmpt882/fall05/papers/laplacianfaces.pdf +9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6,http://pdfs.semanticscholar.org/9d8f/f782f68547cf72b7f3f3beda9dc3e8ecfce6.pdf +9d42df42132c3d76e3447ea61e900d3a6271f5fe,http://pdfs.semanticscholar.org/9d42/df42132c3d76e3447ea61e900d3a6271f5fe.pdf +9d55ec73cab779403cd933e6eb557fb04892b634,http://pdfs.semanticscholar.org/9d55/ec73cab779403cd933e6eb557fb04892b634.pdf +9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2,http://pdfs.semanticscholar.org/9d8f/d639a7aeab0dd1bc6eef9d11540199fd6fe2.pdf +9d357bbf014289fb5f64183c32aa64dc0bd9f454,http://pdfs.semanticscholar.org/9d35/7bbf014289fb5f64183c32aa64dc0bd9f454.pdf +9d66de2a59ec20ca00a618481498a5320ad38481,http://www.cs.iit.edu/~xli/paper/Conf/POP-ICDCS15.pdf +9d839dfc9b6a274e7c193039dfa7166d3c07040b,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00869.pdf +9dcc6dde8d9f132577290d92a1e76b5decc6d755,http://pdfs.semanticscholar.org/a36a/3cd13c59777b6b07e41c4026e55b55e8096f.pdf +9d36c81b27e67c515df661913a54a797cd1260bb,http://pdfs.semanticscholar.org/9d36/c81b27e67c515df661913a54a797cd1260bb.pdf +9d757c0fede931b1c6ac344f67767533043cba14,http://pdfs.semanticscholar.org/9d75/7c0fede931b1c6ac344f67767533043cba14.pdf +9d941a99e6578b41e4e32d57ece580c10d578b22,http://pdfs.semanticscholar.org/9d94/1a99e6578b41e4e32d57ece580c10d578b22.pdf +9d60ad72bde7b62be3be0c30c09b7d03f9710c5f,http://pdfs.semanticscholar.org/9d60/ad72bde7b62be3be0c30c09b7d03f9710c5f.pdf +9d896605fbf93315b68d4ee03be0770077f84e40,http://pdfs.semanticscholar.org/9d89/6605fbf93315b68d4ee03be0770077f84e40.pdf +9d61b0beb3c5903fc3032655dc0fd834ec0b2af3,http://pdfs.semanticscholar.org/c5ac/a3f653e2e8a58888492524fc1480608457b7.pdf +9d24179aa33a94c8c61f314203bf9e906d6b64de,http://www.decom.ufop.br/sibgrapi2012/eproceedings/technical/ts9/102146_3.pdf +9d3aa3b7d392fad596b067b13b9e42443bbc377c,http://pdfs.semanticscholar.org/9d3a/a3b7d392fad596b067b13b9e42443bbc377c.pdf +9d06d43e883930ddb3aa6fe57c6a865425f28d44,http://pdfs.semanticscholar.org/dd08/039eb271af93810ba392728ff481d8ce7496.pdf +9c1305383ce2c108421e9f5e75f092eaa4a5aa3c,http://pdfs.semanticscholar.org/9c13/05383ce2c108421e9f5e75f092eaa4a5aa3c.pdf +9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1,http://pdfs.semanticscholar.org/9cfb/3a68fb10a59ec2a6de1b24799bf9154a8fd1.pdf +9c1860de6d6e991a45325c997bf9651c8a9d716f,http://pdfs.semanticscholar.org/d02c/54192dbd0798b43231efe1159d6b4375ad36.pdf +9c9ef6a46fb6395702fad622f03ceeffbada06e5,http://pdfs.semanticscholar.org/f1e3/d1d26e39f98608037b195761f61fa7532925.pdf +9c1cdb795fd771003da4378f9a0585730d1c3784,http://pdfs.semanticscholar.org/9c1c/db795fd771003da4378f9a0585730d1c3784.pdf +9c25e89c80b10919865b9c8c80aed98d223ca0c6,http://pdfs.semanticscholar.org/9c25/e89c80b10919865b9c8c80aed98d223ca0c6.pdf +9c7444c6949427994b430787a153d5cceff46d5c,http://pdfs.semanticscholar.org/9c74/44c6949427994b430787a153d5cceff46d5c.pdf +9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6,http://pdfs.semanticscholar.org/9c78/1f7fd5d8168ddae1ce5bb4a77e3ca12b40b6.pdf +9c373438285101d47ab9332cdb0df6534e3b93d1,http://pdfs.semanticscholar.org/9c37/3438285101d47ab9332cdb0df6534e3b93d1.pdf +9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d,http://pdfs.semanticscholar.org/9cbb/6e42a35f26cf1d19f4875cd7f6953f10b95d.pdf +9c4cc11d0df2de42d6593f5284cfdf3f05da402a,http://pdfs.semanticscholar.org/ce1a/f0e944260efced743f371ba0cb06878582b6.pdf +9cd6a81a519545bf8aa9023f6e879521f85d4cd1,http://pdfs.semanticscholar.org/9cd6/a81a519545bf8aa9023f6e879521f85d4cd1.pdf +9cadd166893f1b8aaecb27280a0915e6694441f5,http://pdfs.semanticscholar.org/9cad/d166893f1b8aaecb27280a0915e6694441f5.pdf +02601d184d79742c7cd0c0ed80e846d95def052e,http://arxiv.org/pdf/1503.00488v3.pdf +02cc96ad997102b7c55e177ac876db3b91b4e72c,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_museum-visitors-dataset.pdf +02a98118ce990942432c0147ff3c0de756b4b76a,http://eprints.pascal-network.org/archive/00005029/01/LaptevMarszalekSchmidRozenfeld-CVPR08-HumanActions.pdf +02e43d9ca736802d72824892c864e8cfde13718e,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/10075/shi%20Transferring%20a%20semantic%20representation%202015%20Accepted.pdf?sequence=1 +02fda07735bdf84554c193811ba4267c24fe2e4a,http://www.cbsr.ia.ac.cn/Li%20Group/papers/Li-IR-Face-PAMI-07.pdf +02431ed90700d5cfe4e3d3a20f1e97de3e131569,http://www.di.ens.fr/~bojanowski/papers/bojanowski13finding.pdf +023ed32ac3ea6029f09b8c582efbe3866de7d00a,http://pdfs.semanticscholar.org/023e/d32ac3ea6029f09b8c582efbe3866de7d00a.pdf +0241513eeb4320d7848364e9a7ef134a69cbfd55,http://videolectures.net/site/normal_dl/tag=71121/cvpr2010_yang_stis_01.v1.pdf +02dd0af998c3473d85bdd1f77254ebd71e6158c6,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_PPP_Joint_Pointwise_CVPR_2016_paper.pdf +0290523cabea481e3e147b84dcaab1ef7a914612,http://pdfs.semanticscholar.org/0290/523cabea481e3e147b84dcaab1ef7a914612.pdf +0229829e9a1eed5769a2b5eccddcaa7cd9460b92,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_098_ext.pdf +025720574ef67672c44ba9e7065a83a5d6075c36,http://pdfs.semanticscholar.org/915f/dd2fdc7880074bd1c1d596f7e7d19ab34e8f.pdf +029317f260b3303c20dd58e8404a665c7c5e7339,http://www.nlpr.ia.ac.cn/2009papers/gjkw/gk32.pdf?origin=publication_detail +026e4ee480475e63ae68570d73388f8dfd4b4cde,http://pdfs.semanticscholar.org/026e/4ee480475e63ae68570d73388f8dfd4b4cde.pdf +02e628e99f9a1b295458cb453c09863ea1641b67,http://pdfs.semanticscholar.org/02e6/28e99f9a1b295458cb453c09863ea1641b67.pdf +0273414ba7d56ab9ff894959b9d46e4b2fef7fd0,http://pdfs.semanticscholar.org/3ae9/29d33dd1e6acdf6c907a1115e5a21f6cb076.pdf +02e133aacde6d0977bca01ffe971c79097097b7f,http://pdfs.semanticscholar.org/02e1/33aacde6d0977bca01ffe971c79097097b7f.pdf +02567fd428a675ca91a0c6786f47f3e35881bcbd,https://arxiv.org/pdf/1611.01731.pdf +029b53f32079063047097fa59cfc788b2b550c4b,http://pdfs.semanticscholar.org/b71c/73fcae520f6a5cdbce18c813633fb3d66342.pdf +02bd665196bd50c4ecf05d6852a4b9ba027cd9d0,http://arxiv.org/pdf/1310.2880v6.pdf +02c38fa9a8ada6040ef21de17daf8d5e5cdc60c7,http://members.e-inclusion.crim.ca/files/articles/CRV_2006.pdf +021a19e240f0ae0554eff814e838e1e396be6572,http://ci2cv.net/static/papers/2009_ICCV_Saragih_2.pdf +026b5b8062e5a8d86c541cfa976f8eee97b30ab8,http://www.iab-rubric.org/papers/deeplearningvideo-CR.pdf +0235b2d2ae306b7755483ac4f564044f46387648,http://pdfs.semanticscholar.org/0235/b2d2ae306b7755483ac4f564044f46387648.pdf +02467703b6e087799e04e321bea3a4c354c5487d,http://biometrics.cse.msu.edu/Publications/Face/AdamsAllenMillerKalkaJain_CVPRWB2016_GRPR.pdf +02e39f23e08c2cb24d188bf0ca34141f3cc72d47,http://luks.fe.uni-lj.si/sl/osebje/vitomir/pub/ICASSP2010.pdf +023be757b1769ecb0db810c95c010310d7daf00b,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf +026a9cfe3135b7b62279bc08e2fb97e0e9fad5c4,http://perso.telecom-paristech.fr/~sahbi/jstars2017.pdf +0278acdc8632f463232e961563e177aa8c6d6833,http://www.pitt.edu/~jeffcohn/biblio/TPAMI2547397%20FINAL.pdf +0209389b8369aaa2a08830ac3b2036d4901ba1f1,https://arxiv.org/pdf/1612.01202v2.pdf +02c993d361dddba9737d79e7251feca026288c9c,http://eprints.eemcs.utwente.nl/26377/01/Automatic_player_detection_and_recognition_in_images_using_AdaBoost.pdf +02239ae5e922075a354169f75f684cad8fdfd5ab,http://ai2-website.s3.amazonaws.com/publications/CVPR_2017_Situation.pdf +02d650d8a3a9daaba523433fbe93705df0a7f4b1,http://pdfs.semanticscholar.org/02d6/50d8a3a9daaba523433fbe93705df0a7f4b1.pdf +0294f992f8dfd8748703f953925f9aee14e1b2a2,http://pdfs.semanticscholar.org/0294/f992f8dfd8748703f953925f9aee14e1b2a2.pdf +02820c1491b10a1ff486fed32c269e4077c36551,https://arxiv.org/pdf/1610.07930v1.pdf +a458b319f5a2763ff9c6dc959eefa77673c56671,http://people.tamu.edu/~amir.tahmasbi/publications/Fisher_ICCEA2010.pdf +a46283e90bcdc0ee35c680411942c90df130f448,http://pdfs.semanticscholar.org/a462/83e90bcdc0ee35c680411942c90df130f448.pdf +a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2,http://pdfs.semanticscholar.org/a4a5/ad6f1cc489427ac1021da7d7b70fa9a770f2.pdf +a4876b7493d8110d4be720942a0f98c2d116d2a0,http://pdfs.semanticscholar.org/a487/6b7493d8110d4be720942a0f98c2d116d2a0.pdf +a40f8881a36bc01f3ae356b3e57eac84e989eef0,http://pdfs.semanticscholar.org/a40f/8881a36bc01f3ae356b3e57eac84e989eef0.pdf +a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3,http://pdfs.semanticscholar.org/a4a0/b5f08198f6d7ea2d1e81bd97fea21afe3fc3.pdf +a46086e210c98dcb6cb9a211286ef906c580f4e8,http://pdfs.semanticscholar.org/dc94/43e3ae2fe70282b1b30e3eda3717b58c0808.pdf +a44590528b18059b00d24ece4670668e86378a79,http://pdfs.semanticscholar.org/a445/90528b18059b00d24ece4670668e86378a79.pdf +a472d59cff9d822f15f326a874e666be09b70cfd,http://pdfs.semanticscholar.org/a472/d59cff9d822f15f326a874e666be09b70cfd.pdf +a4c430b7d849a8f23713dc283794d8c1782198b2,http://pdfs.semanticscholar.org/a4c4/30b7d849a8f23713dc283794d8c1782198b2.pdf +a4cc626da29ac48f9b4ed6ceb63081f6a4b304a2,http://pdfs.semanticscholar.org/a4cc/626da29ac48f9b4ed6ceb63081f6a4b304a2.pdf +a4f37cfdde3af723336205b361aefc9eca688f5c,http://pdfs.semanticscholar.org/a4f3/7cfdde3af723336205b361aefc9eca688f5c.pdf +a481e394f58f2d6e998aa320dad35c0d0e15d43c,http://www.cs.colostate.edu/~draper/papers/wigness_wacv14.pdf +a30869c5d4052ed1da8675128651e17f97b87918,http://pdfs.semanticscholar.org/a308/69c5d4052ed1da8675128651e17f97b87918.pdf +a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7b,http://pdfs.semanticscholar.org/a3eb/acd8bcbc7ddbd5753935496e22a0f74dcf7b.pdf +a3017bb14a507abcf8446b56243cfddd6cdb542b,http://pdfs.semanticscholar.org/a301/7bb14a507abcf8446b56243cfddd6cdb542b.pdf +a3c8c7da177cd08978b2ad613c1d5cb89e0de741,http://pdfs.semanticscholar.org/a3c8/c7da177cd08978b2ad613c1d5cb89e0de741.pdf +a378fc39128107815a9a68b0b07cffaa1ed32d1f,http://pdfs.semanticscholar.org/a378/fc39128107815a9a68b0b07cffaa1ed32d1f.pdf +a34d75da87525d1192bda240b7675349ee85c123,http://pdfs.semanticscholar.org/a34d/75da87525d1192bda240b7675349ee85c123.pdf +a3dc109b1dff3846f5a2cc1fe2448230a76ad83f,http://pdfs.semanticscholar.org/a3dc/109b1dff3846f5a2cc1fe2448230a76ad83f.pdf +a3f684930c5c45fcb56a2b407d26b63879120cbf,http://pdfs.semanticscholar.org/a3f6/84930c5c45fcb56a2b407d26b63879120cbf.pdf +a33f20773b46283ea72412f9b4473a8f8ad751ae,http://pdfs.semanticscholar.org/a33f/20773b46283ea72412f9b4473a8f8ad751ae.pdf +a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7,http://pdfs.semanticscholar.org/a3a6/a6a2eb1d32b4dead9e702824375ee76e3ce7.pdf +a32d4195f7752a715469ad99cb1e6ebc1a099de6,http://pdfs.semanticscholar.org/a32d/4195f7752a715469ad99cb1e6ebc1a099de6.pdf +a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,http://pdfs.semanticscholar.org/a3d7/8bc94d99fdec9f44a7aa40c175d5a106f0b9.pdf +a3eab933e1b3db1a7377a119573ff38e780ea6a3,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0000838.pdf +a308077e98a611a977e1e85b5a6073f1a9bae6f0,http://pdfs.semanticscholar.org/a308/077e98a611a977e1e85b5a6073f1a9bae6f0.pdf +a35dd69d63bac6f3296e0f1d148708cfa4ba80f6,http://pdfs.semanticscholar.org/a35d/d69d63bac6f3296e0f1d148708cfa4ba80f6.pdf +a3a34c1b876002e0393038fcf2bcb00821737105,http://pdfs.semanticscholar.org/a3a3/4c1b876002e0393038fcf2bcb00821737105.pdf +a3f1db123ce1818971a57330d82901683d7c2b67,http://pdfs.semanticscholar.org/a3f1/db123ce1818971a57330d82901683d7c2b67.pdf +a3a97bb5131e7e67316b649bbc2432aaa1a6556e,http://pdfs.semanticscholar.org/a3a9/7bb5131e7e67316b649bbc2432aaa1a6556e.pdf +a35d3ba191137224576f312353e1e0267e6699a1,http://pdfs.semanticscholar.org/a35d/3ba191137224576f312353e1e0267e6699a1.pdf +a3a2f3803bf403262b56ce88d130af15e984fff0,http://pdfs.semanticscholar.org/e538/e1f6557d2920b449249606f909b665fbb924.pdf +b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae,http://pdfs.semanticscholar.org/b6d3/c8322d8e6a0212456cf38c6ef59c13d062dd.pdf +b5cd9e5d81d14868f1a86ca4f3fab079f63a366d,https://ivi.fnwi.uva.nl/isis/publications/2016/AgharwalWCACV2016/AgharwalWCACV2016.pdf +b5cd8151f9354ee38b73be1d1457d28e39d3c2c6,http://pdfs.semanticscholar.org/b5cd/8151f9354ee38b73be1d1457d28e39d3c2c6.pdf +b5fc4f9ad751c3784eaf740880a1db14843a85ba,http://pdfs.semanticscholar.org/b5fc/4f9ad751c3784eaf740880a1db14843a85ba.pdf +b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57,http://pdfs.semanticscholar.org/b506/aa23949b6d1f0c868ad03aaaeb5e5f7f6b57.pdf +b599f323ee17f12bf251aba928b19a09bfbb13bb,http://pdfs.semanticscholar.org/b599/f323ee17f12bf251aba928b19a09bfbb13bb.pdf +b5da4943c348a6b4c934c2ea7330afaf1d655e79,http://pdfs.semanticscholar.org/b5da/4943c348a6b4c934c2ea7330afaf1d655e79.pdf +b5402c03a02b059b76be829330d38db8e921e4b5,http://pdfs.semanticscholar.org/b540/2c03a02b059b76be829330d38db8e921e4b5.pdf +b5160e95192340c848370f5092602cad8a4050cd,http://pdfs.semanticscholar.org/dd71/dc78e75f0de27263d508b3a8b29921cfea03.pdf +b52c0faba5e1dc578a3c32a7f5cfb6fb87be06ad,http://pdfs.semanticscholar.org/b52c/0faba5e1dc578a3c32a7f5cfb6fb87be06ad.pdf +b56530be665b0e65933adec4cc5ed05840c37fc4,http://kobus.ca/research/publications/07/cvpr-07-region-www.pdf +b5f4e617ac3fc4700ec8129fcd0dcf5f71722923,http://pdfs.semanticscholar.org/c4dd/f94ed445bad0793cd4ba2813506d02221ec0.pdf +b52886610eda6265a2c1aaf04ce209c047432b6d,http://infolab.stanford.edu/~wangz/project/imsearch/Aesthetics/TAC16/xu.pdf +b51b4ef97238940aaa4f43b20a861eaf66f67253,http://pdfs.semanticscholar.org/b51b/4ef97238940aaa4f43b20a861eaf66f67253.pdf +b5d7c5aba7b1ededdf61700ca9d8591c65e84e88,http://pdfs.semanticscholar.org/b5d7/c5aba7b1ededdf61700ca9d8591c65e84e88.pdf +b5c749f98710c19b6c41062c60fb605e1ef4312a,http://www.yugangjiang.info/publication/icmr15-eval2stream.pdf +b5667d087aafcf6b91f3c77aa90cee1ac185f8f1,http://www-ee.ccny.cuny.edu/wwwn/yltian/Publications/ICIP17.pdf +b5857b5bd6cb72508a166304f909ddc94afe53e3,http://pdfs.semanticscholar.org/b585/7b5bd6cb72508a166304f909ddc94afe53e3.pdf +b51e3d59d1bcbc023f39cec233f38510819a2cf9,http://pdfs.semanticscholar.org/b51e/3d59d1bcbc023f39cec233f38510819a2cf9.pdf +b54c477885d53a27039c81f028e710ca54c83f11,http://coewww.rutgers.edu/riul/research/papers/pdf/skmspami.pdf +b503f481120e69b62e076dcccf334ee50559451e,http://pdfs.semanticscholar.org/b503/f481120e69b62e076dcccf334ee50559451e.pdf +b55d0c9a022874fb78653a0004998a66f8242cad,http://pdfs.semanticscholar.org/b55d/0c9a022874fb78653a0004998a66f8242cad.pdf +b5930275813a7e7a1510035a58dd7ba7612943bc,http://pdfs.semanticscholar.org/b593/0275813a7e7a1510035a58dd7ba7612943bc.pdf +b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88,http://pdfs.semanticscholar.org/b59c/8b44a568587bc1b61d130f0ca2f7a2ae3b88.pdf +b249f10a30907a80f2a73582f696bc35ba4db9e2,http://pdfs.semanticscholar.org/f06d/6161eef9325285b32356e1c4b5527479eb9b.pdf +b2a0e5873c1a8f9a53a199eecae4bdf505816ecb,http://pdfs.semanticscholar.org/b2a0/e5873c1a8f9a53a199eecae4bdf505816ecb.pdf +b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf +b216040f110d2549f61e3f5a7261cab128cab361,http://pdfs.semanticscholar.org/b216/040f110d2549f61e3f5a7261cab128cab361.pdf +b261439b5cde39ec52d932a222450df085eb5a91,http://pdfs.semanticscholar.org/b261/439b5cde39ec52d932a222450df085eb5a91.pdf +b234cd7788a7f7fa410653ad2bafef5de7d5ad29,http://pdfs.semanticscholar.org/b234/cd7788a7f7fa410653ad2bafef5de7d5ad29.pdf +b235b4ccd01a204b95f7408bed7a10e080623d2e,http://pdfs.semanticscholar.org/b235/b4ccd01a204b95f7408bed7a10e080623d2e.pdf +b29b42f7ab8d25d244bfc1413a8d608cbdc51855,http://pdfs.semanticscholar.org/b29b/42f7ab8d25d244bfc1413a8d608cbdc51855.pdf +b2e5df82c55295912194ec73f0dca346f7c113f6,http://pdfs.semanticscholar.org/b2e5/df82c55295912194ec73f0dca346f7c113f6.pdf +b2e6944bebab8e018f71f802607e6e9164ad3537,http://pdfs.semanticscholar.org/b2e6/944bebab8e018f71f802607e6e9164ad3537.pdf +b2c25af8a8e191c000f6a55d5f85cf60794c2709,http://pdfs.semanticscholar.org/b2c2/5af8a8e191c000f6a55d5f85cf60794c2709.pdf +b239a756f22201c2780e46754d06a82f108c1d03,http://www.rci.rutgers.edu/~vmp93/Conference_pub/Fusion_FG_camera_ready.pdf +b20cfbb2348984b4e25b6b9174f3c7b65b6aed9e,http://pdfs.semanticscholar.org/b20c/fbb2348984b4e25b6b9174f3c7b65b6aed9e.pdf +d961617db4e95382ba869a7603006edc4d66ac3b,http://pdfs.semanticscholar.org/d961/617db4e95382ba869a7603006edc4d66ac3b.pdf +d9810786fccee5f5affaef59bc58d2282718af9b,http://pdfs.semanticscholar.org/d981/0786fccee5f5affaef59bc58d2282718af9b.pdf +d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0003031.pdf +d930ec59b87004fd172721f6684963e00137745f,http://pdfs.semanticscholar.org/d930/ec59b87004fd172721f6684963e00137745f.pdf +d9739d1b4478b0bf379fe755b3ce5abd8c668f89,http://pdfs.semanticscholar.org/d973/9d1b4478b0bf379fe755b3ce5abd8c668f89.pdf +d9c4586269a142faee309973e2ce8cde27bda718,http://pdfs.semanticscholar.org/d9c4/586269a142faee309973e2ce8cde27bda718.pdf +d912b8d88d63a2f0cb5d58164e7414bfa6b41dfa,http://pdfs.semanticscholar.org/d912/b8d88d63a2f0cb5d58164e7414bfa6b41dfa.pdf +d9318c7259e394b3060b424eb6feca0f71219179,http://biometrics.cse.msu.edu/Publications/Face/ParkJainFaceSoftBio_TIFS10.pdf +d9a1dd762383213741de4c1c1fd9fccf44e6480d,http://pdfs.semanticscholar.org/d9a1/dd762383213741de4c1c1fd9fccf44e6480d.pdf +d963e640d0bf74120f147329228c3c272764932b,http://pdfs.semanticscholar.org/d963/e640d0bf74120f147329228c3c272764932b.pdf +d95e6185f82e3ef3880a98122522eca8c8c3f34e,http://bbs.utdallas.edu/facelab/docs/4_05_otoole-pami.pdf +d9ef1a80738bbdd35655c320761f95ee609b8f49,http://pdfs.semanticscholar.org/d9ef/1a80738bbdd35655c320761f95ee609b8f49.pdf +d9327b9621a97244d351b5b93e057f159f24a21e,http://www.cil.pku.edu.cn/publications/papers/CS2010gusuicheng.pdf +d915e634aec40d7ee00cbea96d735d3e69602f1a,http://pdfs.semanticscholar.org/d915/e634aec40d7ee00cbea96d735d3e69602f1a.pdf +ac1d97a465b7cc56204af5f2df0d54f819eef8a6,http://pdfs.semanticscholar.org/ac1d/97a465b7cc56204af5f2df0d54f819eef8a6.pdf +ac2e44622efbbab525d4301c83cb4d5d7f6f0e55,http://openaccess.thecvf.com/content_cvpr_2016/papers/Booth_A_3D_Morphable_CVPR_2016_paper.pdf +ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,http://pdfs.semanticscholar.org/ac6c/3b3e92ff5fbcd8f7967696c7aae134bea209.pdf +ac21c8aceea6b9495574f8f9d916e571e2fc497f,http://pdfs.semanticscholar.org/ac21/c8aceea6b9495574f8f9d916e571e2fc497f.pdf +ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6,http://eprints.whiterose.ac.uk/104654/9/07289412.pdf +aca273a9350b10b6e2ef84f0e3a327255207d0f5,http://pdfs.semanticscholar.org/efb2/4d35d8f6a46e1ff3800a2481bc7e681e255e.pdf +aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9,http://pdfs.semanticscholar.org/aca7/5c032cfb0b2eb4c0ae56f3d060d8875e43f9.pdf +ac51d9ddbd462d023ec60818bac6cdae83b66992,http://pdfs.semanticscholar.org/ac51/d9ddbd462d023ec60818bac6cdae83b66992.pdf +acc548285f362e6b08c2b876b628efceceeb813e,http://pdfs.semanticscholar.org/acc5/48285f362e6b08c2b876b628efceceeb813e.pdf +ac820d67b313c38b9add05abef8891426edd5afb,http://pdfs.semanticscholar.org/da4e/76b789f7ea8ed6c6d26858ac8a12bb1413fe.pdf +ac9a331327cceda4e23f9873f387c9fd161fad76,http://pdfs.semanticscholar.org/ac9a/331327cceda4e23f9873f387c9fd161fad76.pdf +ac12ba5bf81de83991210b4cd95b4ad048317681,http://pdfs.semanticscholar.org/ac12/ba5bf81de83991210b4cd95b4ad048317681.pdf +ac75c662568cbb7308400cc002469a14ff25edfd,http://www.dsp.toronto.edu/juwei/Publication/JuweiICIP04v2.pdf +ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea,http://pdfs.semanticscholar.org/ac9d/fbeb58d591b5aea13d13a83b1e23e7ef1fea.pdf +acb83d68345fe9a6eb9840c6e1ff0e41fa373229,http://pdfs.semanticscholar.org/acb8/3d68345fe9a6eb9840c6e1ff0e41fa373229.pdf +ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7,http://pdfs.semanticscholar.org/ade1/034d5daec9e3eba1d39ae3f33ebbe3e8e9a7.pdf +ad8540379884ec03327076b562b63bc47e64a2c7,http://pdfs.semanticscholar.org/ad85/40379884ec03327076b562b63bc47e64a2c7.pdf +adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,http://openaccess.thecvf.com/content_iccv_2015/papers/Li_Two_Birds_One_ICCV_2015_paper.pdf +adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9be,http://pdfs.semanticscholar.org/adf7/ccb81b8515a2d05fd3b4c7ce5adf5377d9be.pdf +ada73060c0813d957576be471756fa7190d1e72d,http://pdfs.semanticscholar.org/ada7/3060c0813d957576be471756fa7190d1e72d.pdf +add50a7d882eb38e35fe70d11cb40b1f0059c96f,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_086_ext.pdf +ad784332cc37720f03df1c576e442c9c828a587a,http://pdfs.semanticscholar.org/ad78/4332cc37720f03df1c576e442c9c828a587a.pdf +ada42b99f882ba69d70fff68c9ccbaff642d5189,http://pdfs.semanticscholar.org/ba11/4dfdd12b0f4323a8f28cd2bd770dfa74673e.pdf +ad6c7cc5c0f4ab273fef105ff3761d2c08609a20,https://people.cs.clemson.edu/~jzwang/1701863/mm2016/p1405-huo-ACM%20MM-Jing%20HUO-2016-10-19.pdf +adfaf01773c8af859faa5a9f40fb3aa9770a8aa7,http://pdfs.semanticscholar.org/adfa/f01773c8af859faa5a9f40fb3aa9770a8aa7.pdf +adf5caca605e07ee40a3b3408f7c7c92a09b0f70,http://pdfs.semanticscholar.org/adf5/caca605e07ee40a3b3408f7c7c92a09b0f70.pdf +adaf2b138094981edd615dbfc4b7787693dbc396,http://pdfs.semanticscholar.org/adaf/2b138094981edd615dbfc4b7787693dbc396.pdf +adc4bc7639d5f1c5ead8728882e2390339d061ed,https://www.researchgate.net/profile/Fanbo_Meng2/publication/224144294_Emotional_Audio-Visual_Speech_Synthesis_Based_on_PAD/links/00b49538fd61d3280d000000.pdf?origin=publication_list +ad6745dd793073f81abd1f3246ba4102046da022,http://pdfs.semanticscholar.org/ad67/45dd793073f81abd1f3246ba4102046da022.pdf +ad9cb522cc257e3c5d7f896fe6a526f6583ce46f,http://pdfs.semanticscholar.org/ad9c/b522cc257e3c5d7f896fe6a526f6583ce46f.pdf +ad08c97a511091e0f59fc6a383615c0cc704f44a,http://pdfs.semanticscholar.org/ad08/c97a511091e0f59fc6a383615c0cc704f44a.pdf +ad5a1621190d18dd429930ab5125c849ce7e4506,http://www.cs.csub.edu/~acruz/papers/10.1109-ICIP.2014.7025275.pdf +ad37d01c4787d169daff7da52e80e2018aab6358,http://ibug.doc.ic.ac.uk/media/uploads/documents/bidirectional_newton_aam.pdf +ad247138e751cefa3bb891c2fe69805da9c293d7,http://pdfs.semanticscholar.org/ad24/7138e751cefa3bb891c2fe69805da9c293d7.pdf +ad75330953d9aacc05b5ca1a50c4fed3e7ca1e21,http://www.science.uva.nl/~asalah/dibeklioglu11design.pdf +bbc4b376ebd296fb9848b857527a72c82828fc52,http://pdfs.semanticscholar.org/bbc4/b376ebd296fb9848b857527a72c82828fc52.pdf +bb489e4de6f9b835d70ab46217f11e32887931a2,http://conteudo.icmc.usp.br/pessoas/moacir/p17sibgrapi-tutorial/2017-SIBGRAPI_Tutorial-Survey_Paper-Deep_Learning_for_Computer_Vision.pdf +bba281fe9c309afe4e5cc7d61d7cff1413b29558,http://pdfs.semanticscholar.org/bba2/81fe9c309afe4e5cc7d61d7cff1413b29558.pdf +bb557f4af797cae9205d5c159f1e2fdfe2d8b096,http://pdfs.semanticscholar.org/bb55/7f4af797cae9205d5c159f1e2fdfe2d8b096.pdf +bb06ef67a49849c169781657be0bb717587990e0,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2017/papers/1570342773.pdf +bb22104d2128e323051fb58a6fe1b3d24a9e9a46,http://pdfs.semanticscholar.org/bb22/104d2128e323051fb58a6fe1b3d24a9e9a46.pdf +bbe1332b4d83986542f5db359aee1fd9b9ba9967,http://pdfs.semanticscholar.org/bbe1/332b4d83986542f5db359aee1fd9b9ba9967.pdf +bbe949c06dc4872c7976950b655788555fe513b8,http://www.quaero.org/media/files/bibliographie/ekenel_automaticfrequency.pdf +bbcb4920b312da201bf4d2359383fb4ee3b17ed9,http://pdfs.semanticscholar.org/bbcb/4920b312da201bf4d2359383fb4ee3b17ed9.pdf +bb6bf94bffc37ef2970410e74a6b6dc44a7f4feb,http://pdfs.semanticscholar.org/bb6b/f94bffc37ef2970410e74a6b6dc44a7f4feb.pdf +bbf01aa347982592b3e4c9e4f433e05d30e71305,https://pdfs.semanticscholar.org/bbf0/1aa347982592b3e4c9e4f433e05d30e71305.pdf +bbfe0527e277e0213aafe068113d719b2e62b09c,http://pdfs.semanticscholar.org/bbfe/0527e277e0213aafe068113d719b2e62b09c.pdf +bbf1396eb826b3826c5a800975047beabde2f0de,http://pdfs.semanticscholar.org/bbf1/396eb826b3826c5a800975047beabde2f0de.pdf +bb451dc2420e1a090c4796c19716f93a9ef867c9,http://pdfs.semanticscholar.org/bb45/1dc2420e1a090c4796c19716f93a9ef867c9.pdf +bb69f750ccec9624f6dabd334251def2bbddf166,http://research.microsoft.com/en-us/um/people/leizhang/Paper/FG04-Yuxiao.pdf +bb750b4c485bc90a47d4b2f723be4e4b74229f7a,http://pdfs.semanticscholar.org/bb75/0b4c485bc90a47d4b2f723be4e4b74229f7a.pdf +d73d2c9a6cef79052f9236e825058d5d9cdc1321,http://pdfs.semanticscholar.org/d73d/2c9a6cef79052f9236e825058d5d9cdc1321.pdf +d794ffece3533567d838f1bd7f442afee13148fd,http://pdfs.semanticscholar.org/d794/ffece3533567d838f1bd7f442afee13148fd.pdf +d78077a7aa8a302d4a6a09fb9737ab489ae169a6,http://pdfs.semanticscholar.org/d780/77a7aa8a302d4a6a09fb9737ab489ae169a6.pdf +d7312149a6b773d1d97c0c2b847609c07b5255ec,http://pdfs.semanticscholar.org/d731/2149a6b773d1d97c0c2b847609c07b5255ec.pdf +d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f,http://pdfs.semanticscholar.org/d7d9/c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f.pdf +d708ce7103a992634b1b4e87612815f03ba3ab24,http://pdfs.semanticscholar.org/d708/ce7103a992634b1b4e87612815f03ba3ab24.pdf +d785fcf71cb22f9c33473cba35f075c1f0f06ffc,http://research.cs.rutgers.edu/~linzhong/PDF/Lin_cvpr2012.pdf +d78373de773c2271a10b89466fe1858c3cab677f,http://pdfs.semanticscholar.org/d783/73de773c2271a10b89466fe1858c3cab677f.pdf +d78fbd11f12cbc194e8ede761d292dc2c02d38a2,http://pdfs.semanticscholar.org/d78f/bd11f12cbc194e8ede761d292dc2c02d38a2.pdf +d72973a72b5d891a4c2d873daeb1bc274b48cddf,http://pdfs.semanticscholar.org/d729/73a72b5d891a4c2d873daeb1bc274b48cddf.pdf +d7d166aee5369b79ea2d71a6edd73b7599597aaa,http://pdfs.semanticscholar.org/d7d1/66aee5369b79ea2d71a6edd73b7599597aaa.pdf +d79f9ada35e4410cd255db39d7cc557017f8111a,http://pdfs.semanticscholar.org/d79f/9ada35e4410cd255db39d7cc557017f8111a.pdf +d0e895a272d684a91c1b1b1af29747f92919d823,http://pdfs.semanticscholar.org/d0e8/95a272d684a91c1b1b1af29747f92919d823.pdf +d082f35534932dfa1b034499fc603f299645862d,http://pdfs.semanticscholar.org/d082/f35534932dfa1b034499fc603f299645862d.pdf +d03265ea9200a993af857b473c6bf12a095ca178,http://pdfs.semanticscholar.org/d032/65ea9200a993af857b473c6bf12a095ca178.pdf +d0ac9913a3b1784f94446db2f1fb4cf3afda151f,http://pdfs.semanticscholar.org/d0ac/9913a3b1784f94446db2f1fb4cf3afda151f.pdf +d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0,http://pdfs.semanticscholar.org/d0eb/3fd1b1750242f3bb39ce9ac27fc8cc7c5af0.pdf +d00c335fbb542bc628642c1db36791eae24e02b7,http://pdfs.semanticscholar.org/d00c/335fbb542bc628642c1db36791eae24e02b7.pdf +d06c8e3c266fbae4026d122ec9bd6c911fcdf51d,http://pdfs.semanticscholar.org/d06c/8e3c266fbae4026d122ec9bd6c911fcdf51d.pdf +d074b33afd95074d90360095b6ecd8bc4e5bb6a2,http://pdfs.semanticscholar.org/d074/b33afd95074d90360095b6ecd8bc4e5bb6a2.pdf +d04d5692461d208dd5f079b98082eda887b62323,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICB2015/ZLEI-ICB-15.pdf +d05513c754966801f26e446db174b7f2595805ba,http://pdfs.semanticscholar.org/d055/13c754966801f26e446db174b7f2595805ba.pdf +d03baf17dff5177d07d94f05f5791779adf3cd5f,http://pdfs.semanticscholar.org/d03b/af17dff5177d07d94f05f5791779adf3cd5f.pdf +d0a21f94de312a0ff31657fd103d6b29db823caa,http://pdfs.semanticscholar.org/d0a2/1f94de312a0ff31657fd103d6b29db823caa.pdf +d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea,http://pdfs.semanticscholar.org/d03e/4e938bcbc25aa0feb83d8a0830f9cd3eb3ea.pdf +d0d7671c816ed7f37b16be86fa792a1b29ddd79b,http://pdfs.semanticscholar.org/d0d7/671c816ed7f37b16be86fa792a1b29ddd79b.pdf +d00787e215bd74d32d80a6c115c4789214da5edb,http://pdfs.semanticscholar.org/d007/87e215bd74d32d80a6c115c4789214da5edb.pdf +be8c517406528edc47c4ec0222e2a603950c2762,http://pdfs.semanticscholar.org/be8c/517406528edc47c4ec0222e2a603950c2762.pdf +beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2,http://pdfs.semanticscholar.org/beb3/fd2da7f8f3b0c3ebceaa2150a0e65736d1a2.pdf +be86d88ecb4192eaf512f29c461e684eb6c35257,http://pdfs.semanticscholar.org/be86/d88ecb4192eaf512f29c461e684eb6c35257.pdf +beb49072f5ba79ed24750108c593e8982715498e,http://pdfs.semanticscholar.org/beb4/9072f5ba79ed24750108c593e8982715498e.pdf +becd5fd62f6301226b8e150e1a5ec3180f748ff8,http://pdfs.semanticscholar.org/becd/5fd62f6301226b8e150e1a5ec3180f748ff8.pdf +bebb8a97b2940a4e5f6e9d3caf6d71af21585eda,http://pdfs.semanticscholar.org/bebb/8a97b2940a4e5f6e9d3caf6d71af21585eda.pdf +be07f2950771d318a78d2b64de340394f7d6b717,http://pdfs.semanticscholar.org/be07/f2950771d318a78d2b64de340394f7d6b717.pdf +beb4546ae95f79235c5f3c0e9cc301b5d6fc9374,http://pdfs.semanticscholar.org/beb4/546ae95f79235c5f3c0e9cc301b5d6fc9374.pdf +bec31269632c17206deb90cd74367d1e6586f75f,http://pdfs.semanticscholar.org/bec3/1269632c17206deb90cd74367d1e6586f75f.pdf +be57d2aaab615ec8bc1dd2dba8bee41a4d038b85,https://www.cl.cam.ac.uk/~mmam3/pub/a19-mahmoud.pdf +bef503cdfe38e7940141f70524ee8df4afd4f954,https://pdfs.semanticscholar.org/bef5/03cdfe38e7940141f70524ee8df4afd4f954.pdf +beab10d1bdb0c95b2f880a81a747f6dd17caa9c2,http://pdfs.semanticscholar.org/beab/10d1bdb0c95b2f880a81a747f6dd17caa9c2.pdf +b3b532e8ea6304446b1623e83b0b9a96968f926c,http://pdfs.semanticscholar.org/b3b5/32e8ea6304446b1623e83b0b9a96968f926c.pdf +b37f57edab685dba5c23de00e4fa032a3a6e8841,http://pdfs.semanticscholar.org/b37f/57edab685dba5c23de00e4fa032a3a6e8841.pdf +b3154d981eca98416074538e091778cbc031ca29,http://pdfs.semanticscholar.org/b315/4d981eca98416074538e091778cbc031ca29.pdf +b340f275518aa5dd2c3663eed951045a5b8b0ab1,http://www.eecs.qmul.ac.uk/~sgg/papers/GongShanXiang_ACM_ICMI2007.pdf +b375db63742f8a67c2a7d663f23774aedccc84e5,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W17/papers/Conti_Brain-inspired_Classroom_Occupancy_2014_CVPR_paper.pdf +b3330adb131fb4b6ebbfacce56f1aec2a61e0869,http://pdfs.semanticscholar.org/b333/0adb131fb4b6ebbfacce56f1aec2a61e0869.pdf +b3c60b642a1c64699ed069e3740a0edeabf1922c,http://pdfs.semanticscholar.org/b3c6/0b642a1c64699ed069e3740a0edeabf1922c.pdf +b3f3d6be11ace907c804c2d916830c85643e468d,http://pdfs.semanticscholar.org/b3f3/d6be11ace907c804c2d916830c85643e468d.pdf +b3f7c772acc8bc42291e09f7a2b081024a172564,http://pdfs.semanticscholar.org/b3f7/c772acc8bc42291e09f7a2b081024a172564.pdf +b3c398da38d529b907b0bac7ec586c81b851708f,http://www.cbsr.ia.ac.cn/publications/Stan/WHT-FG2004.pdf +b3658514a0729694d86a8b89c875a66cde20480c,http://pdfs.semanticscholar.org/b365/8514a0729694d86a8b89c875a66cde20480c.pdf +b3b4a7e29b9186e00d2948a1d706ee1605fe5811,http://pdfs.semanticscholar.org/b3b4/a7e29b9186e00d2948a1d706ee1605fe5811.pdf +b32631f456397462b3530757f3a73a2ccc362342,http://pdfs.semanticscholar.org/b326/31f456397462b3530757f3a73a2ccc362342.pdf +b33e8db8ccabdfc49211e46d78d09b14557d4cba,http://pdfs.semanticscholar.org/b33e/8db8ccabdfc49211e46d78d09b14557d4cba.pdf +df8da144a695269e159fb0120bf5355a558f4b02,http://pdfs.semanticscholar.org/df8d/a144a695269e159fb0120bf5355a558f4b02.pdf +dfd934ae448a1b8947d404b01303951b79b13801,http://pdfs.semanticscholar.org/dfd9/34ae448a1b8947d404b01303951b79b13801.pdf +df0e280cae018cebd5b16ad701ad101265c369fa,http://pdfs.semanticscholar.org/df0e/280cae018cebd5b16ad701ad101265c369fa.pdf +dfabe7ef245ca68185f4fcc96a08602ee1afb3f7,http://pdfs.semanticscholar.org/dfab/e7ef245ca68185f4fcc96a08602ee1afb3f7.pdf +df51dfe55912d30fc2f792561e9e0c2b43179089,http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1512.06009.pdf +df054fa8ee6bb7d2a50909939d90ef417c73604c,http://pdfs.semanticscholar.org/df05/4fa8ee6bb7d2a50909939d90ef417c73604c.pdf +df80fed59ffdf751a20af317f265848fe6bfb9c9,http://ivg.au.tsinghua.edu.cn/paper/2017_Learning%20deep%20sharable%20and%20structural%20detectors%20for%20face%20alignment.pdf +dff838ba0567ef0a6c8fbfff9837ea484314efc6,http://pdfs.semanticscholar.org/dff8/38ba0567ef0a6c8fbfff9837ea484314efc6.pdf +dfa80e52b0489bc2585339ad3351626dee1a8395,http://pdfs.semanticscholar.org/dfa8/0e52b0489bc2585339ad3351626dee1a8395.pdf +df71a00071d5a949f9c31371c2e5ee8b478e7dc8,http://studentlife.cs.dartmouth.edu/facelogging.pdf +dfb6aa168177d4685420fcb184def0aa7db7cddb,http://pdfs.semanticscholar.org/dfb6/aa168177d4685420fcb184def0aa7db7cddb.pdf +df2841a1d2a21a0fc6f14fe53b6124519f3812f9,http://pdfs.semanticscholar.org/df28/41a1d2a21a0fc6f14fe53b6124519f3812f9.pdf +df5fe0c195eea34ddc8d80efedb25f1b9034d07d,http://www.andrew.cmu.edu/user/kseshadr/BTAS_2009_Paper_IEEE.pdf +df2494da8efa44d70c27abf23f73387318cf1ca8,http://pdfs.semanticscholar.org/df24/94da8efa44d70c27abf23f73387318cf1ca8.pdf +df674dc0fc813c2a6d539e892bfc74f9a761fbc8,http://pdfs.semanticscholar.org/df67/4dc0fc813c2a6d539e892bfc74f9a761fbc8.pdf +dad7b8be074d7ea6c3f970bd18884d496cbb0f91,http://pdfs.semanticscholar.org/dad7/b8be074d7ea6c3f970bd18884d496cbb0f91.pdf +daf05febbe8406a480306683e46eb5676843c424,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Feng_Robust_Subspace_Segmentation_2014_CVPR_paper.pdf +da15344a4c10b91d6ee2e9356a48cb3a0eac6a97,http://pdfs.semanticscholar.org/da15/344a4c10b91d6ee2e9356a48cb3a0eac6a97.pdf +da5bfddcfe703ca60c930e79d6df302920ab9465,http://pdfs.semanticscholar.org/da5b/fddcfe703ca60c930e79d6df302920ab9465.pdf +dac2103843adc40191e48ee7f35b6d86a02ef019,http://www.chennaisunday.com/2015DOTNET/Unsupervised%20Celebrity%20Face%20Naming%20in%20Web%20Videos.pdf +dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e,http://pdfs.semanticscholar.org/dae4/20b776957e6b8cf5fbbacd7bc0ec226b3e2e.pdf +daa02cf195818cbf651ef81941a233727f71591f,http://pdfs.semanticscholar.org/daa0/2cf195818cbf651ef81941a233727f71591f.pdf +daa52dd09b61ee94945655f0dde216cce0ebd505,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yonetani_Recognizing_Micro-Actions_and_CVPR_2016_paper.pdf +daba8f0717f3f47c272f018d0a466a205eba6395,https://pdfs.semanticscholar.org/daba/8f0717f3f47c272f018d0a466a205eba6395.pdf +b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3,http://cs.adelaide.edu.au/~javen/pub/ShiLiShe10.pdf +b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,http://pdfs.semanticscholar.org/f269/c3573b39d26a5ad0754edb67a46ef57816c7.pdf +b446bcd7fb78adfe346cf7a01a38e4f43760f363,http://pdfs.semanticscholar.org/b446/bcd7fb78adfe346cf7a01a38e4f43760f363.pdf +b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172,https://arxiv.org/pdf/1802.00237v1.pdf +b446cf353744a4b640af88d1848a1b958169c9f2,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553744.pdf +b41374f4f31906cf1a73c7adda6c50a78b4eb498,http://isp.uv.es/papers/Laparra11.pdf +b4d7ca26deb83cec1922a6964c1193e8dd7270e7,http://pdfs.semanticscholar.org/b4d7/ca26deb83cec1922a6964c1193e8dd7270e7.pdf +b40290a694075868e0daef77303f2c4ca1c43269,http://pdfs.semanticscholar.org/b402/90a694075868e0daef77303f2c4ca1c43269.pdf +b4362cd87ad219790800127ddd366cc465606a78,http://pdfs.semanticscholar.org/b436/2cd87ad219790800127ddd366cc465606a78.pdf +b4f4b0d39fd10baec34d3412d53515f1a4605222,http://pdfs.semanticscholar.org/eaae/d23a2d94feb2f1c3ff22a25777c7a78f3141.pdf +b43b6551ecc556557b63edb8b0dc39901ed0343b,http://pdfs.semanticscholar.org/b43b/6551ecc556557b63edb8b0dc39901ed0343b.pdf +a255a54b8758050ea1632bf5a88a201cd72656e1,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Tamersoy_Nonparametric_Facial_Feature_2013_CVPR_paper.pdf +a2b9cee7a3866eb2db53a7d81afda72051fe9732,http://pdfs.semanticscholar.org/a2b9/cee7a3866eb2db53a7d81afda72051fe9732.pdf +a2d04db895dd17f2a8291b300a63604842c06d09,http://www4.comp.polyu.edu.hk/~csdct/Publications/2006/TCSVT.pdf +a2bd81be79edfa8dcfde79173b0a895682d62329,http://pdfs.semanticscholar.org/a2bd/81be79edfa8dcfde79173b0a895682d62329.pdf +a2eb90e334575d9b435c01de4f4bf42d2464effc,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu04b.pdf +a25106a76af723ba9b09308a7dcf4f76d9283589,http://pdfs.semanticscholar.org/a251/06a76af723ba9b09308a7dcf4f76d9283589.pdf +a2d9c9ed29bbc2619d5e03320e48b45c15155195,http://pdfs.semanticscholar.org/a2d9/c9ed29bbc2619d5e03320e48b45c15155195.pdf +a29a22878e1881d6cbf6acff2d0b209c8d3f778b,http://pdfs.semanticscholar.org/a29a/22878e1881d6cbf6acff2d0b209c8d3f778b.pdf +a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,http://pdfs.semanticscholar.org/e12a/0f0bca1624965386ac9cf95f711c90441553.pdf +a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d,http://pdfs.semanticscholar.org/a2b5/4f4d73bdb80854aa78f0c5aca3d8b56b571d.pdf +a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa,http://pdfs.semanticscholar.org/d965/50536f2ff505f62aec841b3656d940e7f1cf.pdf +a2bcfba155c990f64ffb44c0a1bb53f994b68a15,http://ibug.doc.ic.ac.uk/media/uploads/documents/cvprw_photoface.pdf +a2fbaa0b849ecc74f34ebb36d1442d63212b29d2,http://pdfs.semanticscholar.org/a2fb/aa0b849ecc74f34ebb36d1442d63212b29d2.pdf +a50b4d404576695be7cd4194a064f0602806f3c4,http://pdfs.semanticscholar.org/a50b/4d404576695be7cd4194a064f0602806f3c4.pdf +a59cdc49185689f3f9efdf7ee261c78f9c180789,http://pdfs.semanticscholar.org/a59c/dc49185689f3f9efdf7ee261c78f9c180789.pdf +a5e5094a1e052fa44f539b0d62b54ef03c78bf6a,http://pdfs.semanticscholar.org/a5e5/094a1e052fa44f539b0d62b54ef03c78bf6a.pdf +a52c72cd8538c62156aaa4d7e5c54946be53b9bb,http://pdfs.semanticscholar.org/a52c/72cd8538c62156aaa4d7e5c54946be53b9bb.pdf +a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,http://pdfs.semanticscholar.org/a5c8/fc1ca4f06a344b53dc81ebc6d87f54896722.pdf +a5ade88747fa5769c9c92ffde9b7196ff085a9eb,http://face.cs.kit.edu/download/publications/gehrig-emotiw2013.pdf +a56c1331750bf3ac33ee07004e083310a1e63ddc,http://pdfs.semanticscholar.org/de99/1e4c18c21b3cdf6389b439c88709d62f4252.pdf +a56b0f76919aabe8b768f5fbaeca412276365aa2,http://www.mingzhao.org/Publications/ZM_2006_FG_3DReconstruction.pdf +a54e0f2983e0b5af6eaafd4d3467b655a3de52f4,http://pdfs.semanticscholar.org/a54e/0f2983e0b5af6eaafd4d3467b655a3de52f4.pdf +a5625cfe16d72bd00e987857d68eb4d8fc3ce4fb,http://pdfs.semanticscholar.org/a562/5cfe16d72bd00e987857d68eb4d8fc3ce4fb.pdf +a5bf83f99f71e3840f651fbeef9f334d8e75fd75,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1927.pdf +a546fd229f99d7fe3cf634234e04bae920a2ec33,http://pdfs.semanticscholar.org/a546/fd229f99d7fe3cf634234e04bae920a2ec33.pdf +a538b05ebb01a40323997629e171c91aa28b8e2f,http://pdfs.semanticscholar.org/a538/b05ebb01a40323997629e171c91aa28b8e2f.pdf +a57ee5a8fb7618004dd1def8e14ef97aadaaeef5,http://pdfs.semanticscholar.org/f1f5/b603dd34ec26939517348d77df10992798f0.pdf +a57b37549edba625f5955759e259e52eb0af8773,http://learning.cs.toronto.edu/~hinton/absps/ranzato_cvpr2011.pdf +a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sikka_Exemplar_Hidden_Markov_2015_CVPR_paper.pdf +a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a,http://cvrr.ucsd.edu/publications/2014/TawariMartinTrivedi_IEEETITS2014.pdf +a51d5c2f8db48a42446cc4f1718c75ac9303cb7a,http://pdfs.semanticscholar.org/a51d/5c2f8db48a42446cc4f1718c75ac9303cb7a.pdf +a57b92ed2d8aa5b41fe513c3e98cbf83b7141741,http://pdfs.semanticscholar.org/a57b/92ed2d8aa5b41fe513c3e98cbf83b7141741.pdf +a52d9e9daf2cb26b31bf2902f78774bd31c0dd88,http://pdfs.semanticscholar.org/a52d/9e9daf2cb26b31bf2902f78774bd31c0dd88.pdf +a51882cfd0706512bf50e12c0a7dd0775285030d,http://pdfs.semanticscholar.org/a518/82cfd0706512bf50e12c0a7dd0775285030d.pdf +a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be,http://pdfs.semanticscholar.org/d788/2e6bd512b190e47be944dc9b58b612f12581.pdf +a503eb91c0bce3a83bf6f524545888524b29b166,http://pdfs.semanticscholar.org/a503/eb91c0bce3a83bf6f524545888524b29b166.pdf +a52581a7b48138d7124afc7ccfcf8ec3b48359d0,http://pdfs.semanticscholar.org/a525/81a7b48138d7124afc7ccfcf8ec3b48359d0.pdf +bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4,http://pdfs.semanticscholar.org/bd57/2e9cbec095bcf5700cb7cd73d1cdc2fe02f4.pdf +bd6099429bb7bf248b1fd6a1739e744512660d55,http://pdfs.semanticscholar.org/bd60/99429bb7bf248b1fd6a1739e744512660d55.pdf +bd8f3fef958ebed5576792078f84c43999b1b207,http://pdfs.semanticscholar.org/bd8f/3fef958ebed5576792078f84c43999b1b207.pdf +bd9eb65d9f0df3379ef96e5491533326e9dde315,http://pdfs.semanticscholar.org/bd9e/b65d9f0df3379ef96e5491533326e9dde315.pdf +bd07d1f68486052b7e4429dccecdb8deab1924db,http://pdfs.semanticscholar.org/bd07/d1f68486052b7e4429dccecdb8deab1924db.pdf +bd0201b32e7eca7818468f2b5cb1fb4374de75b9,http://pdfs.semanticscholar.org/bd02/01b32e7eca7818468f2b5cb1fb4374de75b9.pdf +bd8e2d27987be9e13af2aef378754f89ab20ce10,http://pdfs.semanticscholar.org/bd8e/2d27987be9e13af2aef378754f89ab20ce10.pdf +bd236913cfe07896e171ece9bda62c18b8c8197e,http://pdfs.semanticscholar.org/bd23/6913cfe07896e171ece9bda62c18b8c8197e.pdf +bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,http://pdfs.semanticscholar.org/bd13/f50b8997d0733169ceba39b6eb1bda3eb1aa.pdf +bd8b7599acf53e3053aa27cfd522764e28474e57,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf +bd78a853df61d03b7133aea58e45cd27d464c3cf,http://pdfs.semanticscholar.org/bd78/a853df61d03b7133aea58e45cd27d464c3cf.pdf +bd2d7c7f0145028e85c102fe52655c2b6c26aeb5,http://rogerioferis.com/publications/FerisICMR2014.pdf +bd9157331104a0708aa4f8ae79b7651a5be797c6,http://pdfs.semanticscholar.org/bd91/57331104a0708aa4f8ae79b7651a5be797c6.pdf +d185f4f05c587e23c0119f2cdfac8ea335197ac0,http://pdfs.semanticscholar.org/d185/f4f05c587e23c0119f2cdfac8ea335197ac0.pdf +d140c5add2cddd4a572f07358d666fe00e8f4fe1,http://pdfs.semanticscholar.org/d140/c5add2cddd4a572f07358d666fe00e8f4fe1.pdf +d1dae2993bdbb2667d1439ff538ac928c0a593dc,http://pdfs.semanticscholar.org/d1da/e2993bdbb2667d1439ff538ac928c0a593dc.pdf +d1f58798db460996501f224fff6cceada08f59f9,http://pdfs.semanticscholar.org/d1f5/8798db460996501f224fff6cceada08f59f9.pdf +d115c4a66d765fef596b0b171febca334cea15b5,http://pdfs.semanticscholar.org/d115/c4a66d765fef596b0b171febca334cea15b5.pdf +d122d66c51606a8157a461b9d7eb8b6af3d819b0,http://pdfs.semanticscholar.org/d122/d66c51606a8157a461b9d7eb8b6af3d819b0.pdf +d142e74c6a7457e77237cf2a3ded4e20f8894e1a,http://pdfs.semanticscholar.org/d142/e74c6a7457e77237cf2a3ded4e20f8894e1a.pdf +d1082eff91e8009bf2ce933ac87649c686205195,http://epubs.surrey.ac.uk/807279/1/ML_Akyuz_Windeatt_Raymond.pdf +d1959ba4637739dcc6cc6995e10fd41fd6604713,http://pdfs.semanticscholar.org/d195/9ba4637739dcc6cc6995e10fd41fd6604713.pdf +d1881993c446ea693bbf7f7d6e750798bf958900,http://pdfs.semanticscholar.org/d188/1993c446ea693bbf7f7d6e750798bf958900.pdf +d6cf3cab269877c58a16be011b74e07838d957c2,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0162.pdf +d61578468d267c2d50672077918c1cda9b91429b,http://pdfs.semanticscholar.org/d615/78468d267c2d50672077918c1cda9b91429b.pdf +d687fa99586a9ad229284229f20a157ba2d41aea,http://pdfs.semanticscholar.org/d687/fa99586a9ad229284229f20a157ba2d41aea.pdf +d647099e571f9af3a1762f895fd8c99760a3916e,http://cbim.rutgers.edu/dmdocuments/CVPR10_Peng_Yang.pdf +d6a9ea9b40a7377c91c705f4c7f206a669a9eea2,http://pdfs.semanticscholar.org/d6a9/ea9b40a7377c91c705f4c7f206a669a9eea2.pdf +d6ca3dc01de060871839d5536e8112b551a7f9ff,https://arxiv.org/pdf/1802.08310v1.pdf +d671a210990f67eba9b2d3dda8c2cb91575b4a7a,http://pdfs.semanticscholar.org/d671/a210990f67eba9b2d3dda8c2cb91575b4a7a.pdf +d61e794ec22a4d4882181da17316438b5b24890f,http://pdfs.semanticscholar.org/d61e/794ec22a4d4882181da17316438b5b24890f.pdf +d65b82b862cf1dbba3dee6541358f69849004f30,http://pdfs.semanticscholar.org/d65b/82b862cf1dbba3dee6541358f69849004f30.pdf +d6102a7ddb19a185019fd2112d2f29d9258f6dec,http://pdfs.semanticscholar.org/d610/2a7ddb19a185019fd2112d2f29d9258f6dec.pdf +d6bfa9026a563ca109d088bdb0252ccf33b76bc6,http://pdfs.semanticscholar.org/d6bf/a9026a563ca109d088bdb0252ccf33b76bc6.pdf +d67dcaf6e44afd30c5602172c4eec1e484fc7fb7,http://pdfs.semanticscholar.org/d67d/caf6e44afd30c5602172c4eec1e484fc7fb7.pdf +d6c7092111a8619ed7a6b01b00c5f75949f137bf,http://pdfs.semanticscholar.org/d6c7/092111a8619ed7a6b01b00c5f75949f137bf.pdf +d68dbb71b34dfe98dee0680198a23d3b53056394,http://pdfs.semanticscholar.org/d68d/bb71b34dfe98dee0680198a23d3b53056394.pdf +d6fb606e538763282e3942a5fb45c696ba38aee6,https://pdfs.semanticscholar.org/d6fb/606e538763282e3942a5fb45c696ba38aee6.pdf +bcee40c25e8819955263b89a433c735f82755a03,http://pdfs.semanticscholar.org/bcee/40c25e8819955263b89a433c735f82755a03.pdf +bc704680b5032eadf78c4e49f548ba14040965bf,http://pdfs.semanticscholar.org/ccbc/c676546a43cd4b714f0c85cbd493f9c61396.pdf +bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,https://arxiv.org/pdf/1801.08329v1.pdf +bcc172a1051be261afacdd5313619881cbe0f676,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002197.pdf +bcfeac1e5c31d83f1ed92a0783501244dde5a471,http://pdfs.semanticscholar.org/bcfe/ac1e5c31d83f1ed92a0783501244dde5a471.pdf +bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,http://pdfs.semanticscholar.org/bc12/715a1ddf1a540dab06bf3ac4f3a32a26b135.pdf +bc910ca355277359130da841a589a36446616262,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_Conditional_High-Order_Boltzmann_ICCV_2015_paper.pdf +bcc5cbbb540ee66dc8b9a3453b506e895d8395de,http://pdfs.semanticscholar.org/bcc5/cbbb540ee66dc8b9a3453b506e895d8395de.pdf +bc871497626afb469d25c4975aa657159269aefe,http://ir.ia.ac.cn/bitstream/173211/10560/1/Adaptive%20Learning%20Algorithm%20for%20Pattern%20Classification.pdf +bc2852fa0a002e683aad3fb0db5523d1190d0ca5,http://pdfs.semanticscholar.org/bc28/52fa0a002e683aad3fb0db5523d1190d0ca5.pdf +bc866c2ced533252f29cf2111dd71a6d1724bd49,http://pdfs.semanticscholar.org/bc86/6c2ced533252f29cf2111dd71a6d1724bd49.pdf +bcb99d5150d792001a7d33031a3bd1b77bea706b,http://pdfs.semanticscholar.org/bcb9/9d5150d792001a7d33031a3bd1b77bea706b.pdf +bc98027b331c090448492eb9e0b9721e812fac84,http://pdfs.semanticscholar.org/bc98/027b331c090448492eb9e0b9721e812fac84.pdf +bcac3a870501c5510df80c2a5631f371f2f6f74a,http://pdfs.semanticscholar.org/bcac/3a870501c5510df80c2a5631f371f2f6f74a.pdf +aed321909bb87c81121c841b21d31509d6c78f69,http://pdfs.semanticscholar.org/aed3/21909bb87c81121c841b21d31509d6c78f69.pdf +aecb15e3e9191eb135bdba2426967bfac3f068db,http://www.cvip.uofl.edu/wwwcvip/research/publications/Pub_Pdf/2010/3D%20Face%20Rcovery%20From%20Intensities_2010.pdf +ae936628e78db4edb8e66853f59433b8cc83594f,http://pdfs.semanticscholar.org/ae93/6628e78db4edb8e66853f59433b8cc83594f.pdf +ae0765ebdffffd6e6cc33c7705df33b7e8478627,http://pdfs.semanticscholar.org/ae07/65ebdffffd6e6cc33c7705df33b7e8478627.pdf +aefc7c708269b874182a5c877fb6dae06da210d4,http://pdfs.semanticscholar.org/f6f4/60d4a4a5b4c077ab3ac7a972f52af17a4241.pdf +aebb9649bc38e878baef082b518fa68f5cda23a5,http://pdfs.semanticscholar.org/aebb/9649bc38e878baef082b518fa68f5cda23a5.pdf +aece472ba64007f2e86300cc3486c84597f02ec7,http://doras.dcu.ie/439/1/ieee_smap_2007.pdf +ae5bb02599244d6d88c4fe466a7fdd80aeb91af4,http://pdfs.semanticscholar.org/ae5b/b02599244d6d88c4fe466a7fdd80aeb91af4.pdf +ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9,http://pdfs.semanticscholar.org/ae18/ccb35a1a5d7b22f2a5760f706b1c11bf39a9.pdf +aeeea6eec2f063c006c13be865cec0c350244e5b,http://pdfs.semanticscholar.org/aeee/a6eec2f063c006c13be865cec0c350244e5b.pdf +ae9257f3be9f815db8d72819332372ac59c1316b,http://pdfs.semanticscholar.org/ae92/57f3be9f815db8d72819332372ac59c1316b.pdf +ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,http://hal.inria.fr/docs/00/87/00/59/PDF/Ozerov_et_al_ICIP_2013.pdf +ae1de0359f4ed53918824271c888b7b36b8a5d41,http://pdfs.semanticscholar.org/ae1d/e0359f4ed53918824271c888b7b36b8a5d41.pdf +ae4390873485c9432899977499c3bf17886fa149,http://pdfs.semanticscholar.org/ae43/90873485c9432899977499c3bf17886fa149.pdf +ae753fd46a744725424690d22d0d00fb05e53350,http://pdfs.semanticscholar.org/ae75/3fd46a744725424690d22d0d00fb05e53350.pdf +aea4128ba18689ff1af27b90c111bbd34013f8d5,http://pdfs.semanticscholar.org/aea4/128ba18689ff1af27b90c111bbd34013f8d5.pdf +ae4e2c81c8a8354c93c4b21442c26773352935dd,http://pdfs.semanticscholar.org/ae4e/2c81c8a8354c93c4b21442c26773352935dd.pdf +ae85c822c6aec8b0f67762c625a73a5d08f5060d,http://tamaraberg.com/papers/yamaguchi2014retrieving.pdf +ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf,http://pdfs.semanticscholar.org/ae71/f69f1db840e0aa17f8c814316f0bd0f6fbbf.pdf +d893f75206b122973cdbf2532f506912ccd6fbe0,http://pdfs.semanticscholar.org/d893/f75206b122973cdbf2532f506912ccd6fbe0.pdf +d861c658db2fd03558f44c265c328b53e492383a,http://www.cs.washington.edu/research/VACE/Multimedia/Jia_EMBC2014_final.pdf +d84a48f7d242d73b32a9286f9b148f5575acf227,http://pdfs.semanticscholar.org/d84a/48f7d242d73b32a9286f9b148f5575acf227.pdf +d8f0bda19a345fac81a1d560d7db73f2b4868836,http://pdfs.semanticscholar.org/d8f0/bda19a345fac81a1d560d7db73f2b4868836.pdf +d82b93f848d5442f82154a6011d26df8a9cd00e7,http://pdfs.semanticscholar.org/d82b/93f848d5442f82154a6011d26df8a9cd00e7.pdf +d8722ffbca906a685abe57f3b7b9c1b542adfa0c,http://pdfs.semanticscholar.org/d872/2ffbca906a685abe57f3b7b9c1b542adfa0c.pdf +d8896861126b7fd5d2ceb6fed8505a6dff83414f,http://pdfs.semanticscholar.org/d889/6861126b7fd5d2ceb6fed8505a6dff83414f.pdf +d83d2fb5403c823287f5889b44c1971f049a1c93,http://pdfs.semanticscholar.org/d83d/2fb5403c823287f5889b44c1971f049a1c93.pdf +d8b568392970b68794a55c090c4dd2d7f90909d2,http://pdfs.semanticscholar.org/d8b5/68392970b68794a55c090c4dd2d7f90909d2.pdf +d83ae5926b05894fcda0bc89bdc621e4f21272da,http://pdfs.semanticscholar.org/d83a/e5926b05894fcda0bc89bdc621e4f21272da.pdf +d8bf148899f09a0aad18a196ce729384a4464e2b,http://pdfs.semanticscholar.org/d8bf/148899f09a0aad18a196ce729384a4464e2b.pdf +d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e,http://pdfs.semanticscholar.org/d850/aff9d10a01ad5f1d8a1b489fbb3998d0d80e.pdf +ab8f9a6bd8f582501c6b41c0e7179546e21c5e91,http://pdfs.semanticscholar.org/ab8f/9a6bd8f582501c6b41c0e7179546e21c5e91.pdf +abce06a96a7c3095bfc36eed8779d89263769b85,http://ai.pku.edu.cn/aiwebsite/research.files/collected%20papers%20-%20others/Analyzing%20Asymmetry%20Biometric%20in%20the%20Frequency%20Domain%20for%20Face%20Recognition.pdf +aba770a7c45e82b2f9de6ea2a12738722566a149,http://pure.qub.ac.uk/portal/files/49719304/Face_Recognition_in_the_Scrambled.pdf +ab0f9bc35b777eaefff735cb0dd0663f0c34ad31,http://faculty.ucmerced.edu/snewsam/papers/Yang_ICPR14_SemiSupervisedLearning.pdf +abb396490ba8b112f10fbb20a0a8ce69737cd492,http://pdfs.semanticscholar.org/abb3/96490ba8b112f10fbb20a0a8ce69737cd492.pdf +abac0fa75281c9a0690bf67586280ed145682422,http://pdfs.semanticscholar.org/abac/0fa75281c9a0690bf67586280ed145682422.pdf +ab6776f500ed1ab23b7789599f3a6153cdac84f7,http://pdfs.semanticscholar.org/ab67/76f500ed1ab23b7789599f3a6153cdac84f7.pdf +ab87dfccb1818bdf0b41d732da1f9335b43b74ae,http://pdfs.semanticscholar.org/ab87/dfccb1818bdf0b41d732da1f9335b43b74ae.pdf +abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72,http://pdfs.semanticscholar.org/abc1/ef570bb2d7ea92cbe69e101eefa9a53e1d72.pdf +ab1dfcd96654af0bf6e805ffa2de0f55a73c025d,http://pdfs.semanticscholar.org/ab1d/fcd96654af0bf6e805ffa2de0f55a73c025d.pdf +abeda55a7be0bbe25a25139fb9a3d823215d7536,http://pdfs.semanticscholar.org/abed/a55a7be0bbe25a25139fb9a3d823215d7536.pdf +ab427f0c7d4b0eb22c045392107509451165b2ba,http://cs.uky.edu/~zach/assets/papers/li2012learning.pdf +ab1900b5d7cf3317d17193e9327d57b97e24d2fc,http://pdfs.semanticscholar.org/ab19/00b5d7cf3317d17193e9327d57b97e24d2fc.pdf +ab8fb278db4405f7db08fa59404d9dd22d38bc83,http://pdfs.semanticscholar.org/ab8f/b278db4405f7db08fa59404d9dd22d38bc83.pdf +e5737ffc4e74374b0c799b65afdbf0304ff344cb,http://pdfs.semanticscholar.org/e573/7ffc4e74374b0c799b65afdbf0304ff344cb.pdf +e50ee29ca12028cb903cd498bb9cacd41bd5ce3a,http://pdfs.semanticscholar.org/e50e/e29ca12028cb903cd498bb9cacd41bd5ce3a.pdf +e510f2412999399149d8635a83eca89c338a99a1,http://pdfs.semanticscholar.org/e510/f2412999399149d8635a83eca89c338a99a1.pdf +e59813940c5c83b1ce63f3f451d03d34d2f68082,http://pdfs.semanticscholar.org/e598/13940c5c83b1ce63f3f451d03d34d2f68082.pdf +e5b301ee349ba8e96ea6c71782295c4f06be6c31,http://pdfs.semanticscholar.org/e5b3/01ee349ba8e96ea6c71782295c4f06be6c31.pdf +e5342233141a1d3858ed99ccd8ca0fead519f58b,http://pdfs.semanticscholar.org/e534/2233141a1d3858ed99ccd8ca0fead519f58b.pdf +e52be9a083e621d9ed29c8e9914451a6a327ff59,http://pdfs.semanticscholar.org/e52b/e9a083e621d9ed29c8e9914451a6a327ff59.pdf +e5799fd239531644ad9270f49a3961d7540ce358,http://chenlab.ece.cornell.edu/people/ruogu/publications/ICIP13_Kinship.pdf +e5eb7fa8c9a812d402facfe8e4672670541ed108,http://pdfs.semanticscholar.org/e5eb/7fa8c9a812d402facfe8e4672670541ed108.pdf +e27c92255d7ccd1860b5fb71c5b1277c1648ed1e,http://pdfs.semanticscholar.org/e27c/92255d7ccd1860b5fb71c5b1277c1648ed1e.pdf +e200c3f2849d56e08056484f3b6183aa43c0f13a,http://pdfs.semanticscholar.org/e200/c3f2849d56e08056484f3b6183aa43c0f13a.pdf +e2d265f606cd25f1fd72e5ee8b8f4c5127b764df,http://pdfs.semanticscholar.org/e2d2/65f606cd25f1fd72e5ee8b8f4c5127b764df.pdf +f45d6a7bdb6741242da6192d18c97ac39e6308db,http://media.cs.tsinghua.edu.cn/~imagevision/papers/%5B2008%5D%5Bfg%5DPerson-Specific%20Face%20Recognition%20in%20Unconstrained%20Environments%20a%20Combination%20of%20Offline%20and%20Online%20Learning.pdf +f437b3884a9e5fab66740ca2a6f1f3a5724385ea,http://pdfs.semanticscholar.org/f437/b3884a9e5fab66740ca2a6f1f3a5724385ea.pdf +f43eeb578e0ca48abfd43397bbd15825f94302e4,http://pdfs.semanticscholar.org/f43e/eb578e0ca48abfd43397bbd15825f94302e4.pdf +f4f9697f2519f1fe725ee7e3788119ed217dca34,http://pdfs.semanticscholar.org/f4f9/697f2519f1fe725ee7e3788119ed217dca34.pdf +f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0,http://pdfs.semanticscholar.org/f4c0/1fc79c7ead67899f6fe7b79dd1ad249f71b0.pdf +f4373f5631329f77d85182ec2df6730cbd4686a9,http://pdfs.semanticscholar.org/f437/3f5631329f77d85182ec2df6730cbd4686a9.pdf +f4210309f29d4bbfea9642ecadfb6cf9581ccec7,http://pdfs.semanticscholar.org/f421/0309f29d4bbfea9642ecadfb6cf9581ccec7.pdf +f47404424270f6a20ba1ba8c2211adfba032f405,http://pdfs.semanticscholar.org/f474/04424270f6a20ba1ba8c2211adfba032f405.pdf +f4ebbeb77249d1136c355f5bae30f02961b9a359,http://pdfs.semanticscholar.org/f4eb/beb77249d1136c355f5bae30f02961b9a359.pdf +f4aed1314b2d38fd8f1b9d2bc154295bbd45f523,http://pdfs.semanticscholar.org/f4ae/d1314b2d38fd8f1b9d2bc154295bbd45f523.pdf +f3fcaae2ea3e998395a1443c87544f203890ae15,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553791.pdf +f3015be0f9dbc1a55b6f3dc388d97bb566ff94fe,http://pdfs.semanticscholar.org/f301/5be0f9dbc1a55b6f3dc388d97bb566ff94fe.pdf +f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7,http://pdfs.semanticscholar.org/f3d9/e347eadcf0d21cb0e92710bc906b22f2b3e7.pdf +f3f77b803b375f0c63971b59d0906cb700ea24ed,http://pdfs.semanticscholar.org/f3f7/7b803b375f0c63971b59d0906cb700ea24ed.pdf +f355e54ca94a2d8bbc598e06e414a876eb62ef99,http://pdfs.semanticscholar.org/f355/e54ca94a2d8bbc598e06e414a876eb62ef99.pdf +f35a493afa78a671b9d2392c69642dcc3dd2cdc2,http://pdfs.semanticscholar.org/f35a/493afa78a671b9d2392c69642dcc3dd2cdc2.pdf +ebedc841a2c1b3a9ab7357de833101648281ff0e,http://pdfs.semanticscholar.org/ebed/c841a2c1b3a9ab7357de833101648281ff0e.pdf +eb526174fa071345ff7b1fad1fad240cd943a6d7,http://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf +eb6ee56e085ebf473da990d032a4249437a3e462,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf +ebb1c29145d31c4afa3c9be7f023155832776cd3,http://pdfs.semanticscholar.org/ebb1/c29145d31c4afa3c9be7f023155832776cd3.pdf +eb9312458f84a366e98bd0a2265747aaed40b1a6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0400473.pdf +eb716dd3dbd0f04e6d89f1703b9975cad62ffb09,http://pdfs.semanticscholar.org/eb71/6dd3dbd0f04e6d89f1703b9975cad62ffb09.pdf +ebabd1f7bc0274fec88a3dabaf115d3e226f198f,http://pdfs.semanticscholar.org/ebab/d1f7bc0274fec88a3dabaf115d3e226f198f.pdf +ebb9d53668205c5797045ba130df18842e3eadef,http://pdfs.semanticscholar.org/ebb9/d53668205c5797045ba130df18842e3eadef.pdf +eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5a,http://pdfs.semanticscholar.org/eb7b/387a3a006609b89ca5ed0e6b3a1d5ecb5e5a.pdf +ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,http://pdfs.semanticscholar.org/f727/b58b84ccd8e7ed51a90ccc913d704b451191.pdf +ebf204e0a3e137b6c24e271b0d55fa49a6c52b41,http://pdfs.semanticscholar.org/ebf2/04e0a3e137b6c24e271b0d55fa49a6c52b41.pdf +c71f36c9376d444075de15b1102b4974481be84d,http://pdfs.semanticscholar.org/c71f/36c9376d444075de15b1102b4974481be84d.pdf +c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e,http://pdfs.semanticscholar.org/c7e4/c7be0d37013de07b6d829a3bf73e1b95ad4e.pdf +c74aba9a096379b3dbe1ff95e7af5db45c0fd680,http://pdfs.semanticscholar.org/c74a/ba9a096379b3dbe1ff95e7af5db45c0fd680.pdf +c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,http://pdfs.semanticscholar.org/c7c5/f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c.pdf +c7685fdbee2d96ef056a89ab4fa43df5aeae7ba7,http://staff.science.uva.nl/~nicu/publications/SMC04.pdf +c7f752eea91bf5495a4f6e6a67f14800ec246d08,http://pdfs.semanticscholar.org/c7f7/52eea91bf5495a4f6e6a67f14800ec246d08.pdf +c758b9c82b603904ba8806e6193c5fefa57e9613,http://pdfs.semanticscholar.org/c758/b9c82b603904ba8806e6193c5fefa57e9613.pdf +c7c03324833ba262eeaada0349afa1b5990c1ea7,http://pdfs.semanticscholar.org/c7c0/3324833ba262eeaada0349afa1b5990c1ea7.pdf +c78fdd080df01fff400a32fb4cc932621926021f,http://pdfs.semanticscholar.org/c78f/dd080df01fff400a32fb4cc932621926021f.pdf +c74b1643a108939c6ba42ae4de55cb05b2191be5,http://pdfs.semanticscholar.org/c74b/1643a108939c6ba42ae4de55cb05b2191be5.pdf +c0723e0e154a33faa6ff959d084aebf07770ffaf,http://pdfs.semanticscholar.org/c072/3e0e154a33faa6ff959d084aebf07770ffaf.pdf +c03f48e211ac81c3867c0e787bea3192fcfe323e,http://pdfs.semanticscholar.org/c03f/48e211ac81c3867c0e787bea3192fcfe323e.pdf +c043f8924717a3023a869777d4c9bee33e607fb5,http://pdfs.semanticscholar.org/c043/f8924717a3023a869777d4c9bee33e607fb5.pdf +c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,http://pdfs.semanticscholar.org/c03e/01717b2d93f04cce9b5fd2dcfd1143bcc180.pdf +c0ff7dc0d575658bf402719c12b676a34271dfcd,http://pdfs.semanticscholar.org/c0ff/7dc0d575658bf402719c12b676a34271dfcd.pdf +c02847a04a99a5a6e784ab580907278ee3c12653,http://pdfs.semanticscholar.org/c028/47a04a99a5a6e784ab580907278ee3c12653.pdf +c035c193eed5d72c7f187f0bc880a17d217dada0,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf +c0d1d9a585ef961f1c8e6a1e922822811181615c,http://pdfs.semanticscholar.org/c0d1/d9a585ef961f1c8e6a1e922822811181615c.pdf +c0a8c0e6ccf9882969ba0eda0b898affa015437b,http://stanford.edu/~verroios/papers/waldo.pdf +c0cdaeccff78f49f4604a6d263dc6eb1bb8707d5,http://pdfs.semanticscholar.org/c0cd/aeccff78f49f4604a6d263dc6eb1bb8707d5.pdf +c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,http://pdfs.semanticscholar.org/c00f/402b9cfc3f8dd2c74d6b3552acbd1f358301.pdf +c089c7d8d1413b54f59fc410d88e215902e51638,http://nlpr-web.ia.ac.cn/2011papers/gjhy/gh122.pdf +c068263bb09968fe69c053906279b16532b778f4,http://www.researchgate.net/profile/Mahdi_Bejani/publication/257435889_Audiovisual_emotion_recognition_using_ANOVA_feature_selection_method_and_multi-classifier_neural_networks/links/0c960529aee6234edd000000.pdf +c0ee89dc2dad76147780f96294de9e421348c1f4,http://pdfs.semanticscholar.org/c0ee/89dc2dad76147780f96294de9e421348c1f4.pdf +c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774,http://pdfs.semanticscholar.org/c0ca/6b992cbe46ea3003f4e9b48f4ef57e5fb774.pdf +c0d5c3aab87d6e8dd3241db1d931470c15b9e39d,http://pdfs.semanticscholar.org/facb/edfe90956c720f70aab14767b5e25dcc6478.pdf +c05441dd1bc418fb912a6fafa84c0659a6850bf0,http://pdfs.semanticscholar.org/c054/41dd1bc418fb912a6fafa84c0659a6850bf0.pdf +eee8a37a12506ff5df72c402ccc3d59216321346,http://pdfs.semanticscholar.org/eee8/a37a12506ff5df72c402ccc3d59216321346.pdf +ee6b503ab512a293e3088fdd7a1c893a77902acb,http://pdfs.semanticscholar.org/ee6b/503ab512a293e3088fdd7a1c893a77902acb.pdf +ee18e29a2b998eddb7f6663bb07891bfc7262248,http://or.nsfc.gov.cn/bitstream/00001903-5/13750/1/1000007562815.pdf +eeb6d084f9906c53ec8da8c34583105ab5ab8284,http://pdfs.semanticscholar.org/eeb6/d084f9906c53ec8da8c34583105ab5ab8284.pdf +ee7093e91466b81d13f4d6933bcee48e4ee63a16,http://pdfs.semanticscholar.org/ee70/93e91466b81d13f4d6933bcee48e4ee63a16.pdf +ee461d060da58d6053d2f4988b54eff8655ecede,http://pdfs.semanticscholar.org/ee46/1d060da58d6053d2f4988b54eff8655ecede.pdf +eefb8768f60c17d76fe156b55b8a00555eb40f4d,http://pdfs.semanticscholar.org/eefb/8768f60c17d76fe156b55b8a00555eb40f4d.pdf +eed1dd2a5959647896e73d129272cb7c3a2e145c,http://s3.amazonaws.com/kvaccaro.com/documents/UIST16.pdf +ee92d36d72075048a7c8b2af5cc1720c7bace6dd,http://pdfs.semanticscholar.org/ee92/d36d72075048a7c8b2af5cc1720c7bace6dd.pdf +ee418372b0038bd3b8ae82bd1518d5c01a33a7ec,http://pdfs.semanticscholar.org/ee41/8372b0038bd3b8ae82bd1518d5c01a33a7ec.pdf +c94b3a05f6f41d015d524169972ae8fd52871b67,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Yan_The_Fastest_Deformable_2014_CVPR_paper.pdf +c9424d64b12a4abe0af201e7b641409e182babab,http://pdfs.semanticscholar.org/c942/4d64b12a4abe0af201e7b641409e182babab.pdf +c91103e6612fa7e664ccbc3ed1b0b5deac865b02,http://pdfs.semanticscholar.org/c911/03e6612fa7e664ccbc3ed1b0b5deac865b02.pdf +c903af0d69edacf8d1bff3bfd85b9470f6c4c243,http://pdfs.semanticscholar.org/c903/af0d69edacf8d1bff3bfd85b9470f6c4c243.pdf +c95cd36779fcbe45e3831ffcd3314e19c85defc5,https://arxiv.org/pdf/1703.04853v1.pdf +c9e955cb9709f16faeb0c840f4dae92eb875450a,http://pdfs.semanticscholar.org/c9e9/55cb9709f16faeb0c840f4dae92eb875450a.pdf +c92bb26238f6e30196b0c4a737d8847e61cfb7d4,http://pdfs.semanticscholar.org/c92b/b26238f6e30196b0c4a737d8847e61cfb7d4.pdf +c980443ca996402de4b5e5424f872acda0368831,http://homepage.tudelft.nl/19j49/Publications_files/Final_CVPR10.pdf +c9f588d295437009994ddaabb64fd4e4c499b294,http://pdfs.semanticscholar.org/c9f5/88d295437009994ddaabb64fd4e4c499b294.pdf +c92da368a6a886211dc759fe7b1b777a64d8b682,http://pdfs.semanticscholar.org/c92d/a368a6a886211dc759fe7b1b777a64d8b682.pdf +fc1e37fb16006b62848def92a51434fc74a2431a,http://pdfs.semanticscholar.org/fc1e/37fb16006b62848def92a51434fc74a2431a.pdf +fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192,http://pdfs.semanticscholar.org/fc5b/db98ff97581d7c1e5eb2d24d3f10714aa192.pdf +fc20149dfdff5fdf020647b57e8a09c06e11434b,http://pdfs.semanticscholar.org/fc20/149dfdff5fdf020647b57e8a09c06e11434b.pdf +fc516a492cf09aaf1d319c8ff112c77cfb55a0e5,http://pdfs.semanticscholar.org/fc51/6a492cf09aaf1d319c8ff112c77cfb55a0e5.pdf +fcbec158e6a4ace3d4311b26195482b8388f0ee9,http://pdfs.semanticscholar.org/fcbe/c158e6a4ace3d4311b26195482b8388f0ee9.pdf +fcd3d69b418d56ae6800a421c8b89ef363418665,http://pdfs.semanticscholar.org/fcd3/d69b418d56ae6800a421c8b89ef363418665.pdf +fcd77f3ca6b40aad6edbd1dab9681d201f85f365,http://pdfs.semanticscholar.org/fcd7/7f3ca6b40aad6edbd1dab9681d201f85f365.pdf +fc798314994bf94d1cde8d615ba4d5e61b6268b6,http://pdfs.semanticscholar.org/fc79/8314994bf94d1cde8d615ba4d5e61b6268b6.pdf +fc45e44dd50915957e498186618f7a499953c6be,http://www.pami.sjtu.edu.cn/people/wangxh/Gabor%20Filter/Quaternion%20Correlation%20Filters%20for%20Face%20Recognition%20in%20Wavelet%20Domain.pdf +fc23a386c2189f221b25dbd0bb34fcd26ccf60fa,http://pdfs.semanticscholar.org/fc23/a386c2189f221b25dbd0bb34fcd26ccf60fa.pdf +fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f,http://pdfs.semanticscholar.org/fc68/c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f.pdf +fc2bad3544c7c8dc7cd182f54888baf99ed75e53,http://pdfs.semanticscholar.org/fc2b/ad3544c7c8dc7cd182f54888baf99ed75e53.pdf +fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46,http://pdfs.semanticscholar.org/fcf8/bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46.pdf +fcbf808bdf140442cddf0710defb2766c2d25c30,http://pdfs.semanticscholar.org/fcbf/808bdf140442cddf0710defb2766c2d25c30.pdf +fd4ac1da699885f71970588f84316589b7d8317b,http://pdfs.semanticscholar.org/fd4a/c1da699885f71970588f84316589b7d8317b.pdf +fdf533eeb1306ba418b09210387833bdf27bb756,http://pdfs.semanticscholar.org/fdf5/33eeb1306ba418b09210387833bdf27bb756.pdf +fdfaf46910012c7cdf72bba12e802a318b5bef5a,http://pdfs.semanticscholar.org/fdfa/f46910012c7cdf72bba12e802a318b5bef5a.pdf +fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f,http://pdfs.semanticscholar.org/fd9f/eb21b3d1fab470ff82e3f03efce6a0e67a1f.pdf +fdca08416bdadda91ae977db7d503e8610dd744f,http://pdfs.semanticscholar.org/fdca/08416bdadda91ae977db7d503e8610dd744f.pdf +fd96432675911a702b8a4ce857b7c8619498bf9f,http://pdfs.semanticscholar.org/fd96/432675911a702b8a4ce857b7c8619498bf9f.pdf +fd7b6c77b46420c27725757553fcd1fb24ea29a8,http://pdfs.semanticscholar.org/fd7b/6c77b46420c27725757553fcd1fb24ea29a8.pdf +fdb33141005ca1b208a725796732ab10a9c37d75,http://pdfs.semanticscholar.org/fdb3/3141005ca1b208a725796732ab10a9c37d75.pdf +fde0180735699ea31f6c001c71eae507848b190f,http://pdfs.semanticscholar.org/fde0/180735699ea31f6c001c71eae507848b190f.pdf +fd615118fb290a8e3883e1f75390de8a6c68bfde,http://pdfs.semanticscholar.org/fd61/5118fb290a8e3883e1f75390de8a6c68bfde.pdf +f24e379e942e134d41c4acec444ecf02b9d0d3a9,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf +f2b13946d42a50fa36a2c6d20d28de2234aba3b4,http://npl.mcgill.ca/Papers/Adaptive%20Facial%20Expression%20Recognition%20Using%20Inter-modal%20top-down%20context.pdf +f2c30594d917ea915028668bc2a481371a72a14d,http://pdfs.semanticscholar.org/f2c3/0594d917ea915028668bc2a481371a72a14d.pdf +f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,http://pdfs.semanticscholar.org/f2ad/9b43bac8c2bae9dea694f6a4e44c760e63da.pdf +f2e9494d0dca9fb6b274107032781d435a508de6,http://pdfs.semanticscholar.org/f2e9/494d0dca9fb6b274107032781d435a508de6.pdf +f2c568fe945e5743635c13fe5535af157b1903d1,http://pdfs.semanticscholar.org/f2c5/68fe945e5743635c13fe5535af157b1903d1.pdf +f26097a1a479fb6f32b27a93f8f32609cfe30fdc,http://pdfs.semanticscholar.org/f260/97a1a479fb6f32b27a93f8f32609cfe30fdc.pdf +f214bcc6ecc3309e2efefdc21062441328ff6081,http://pdfs.semanticscholar.org/f214/bcc6ecc3309e2efefdc21062441328ff6081.pdf +f5149fb6b455a73734f1252a96a9ce5caa95ae02,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhang_Low-Rank-Sparse_Subspace_Representation_CVPR_2017_paper.pdf +f5af4e9086b0c3aee942cb93ece5820bdc9c9748,http://pdfs.semanticscholar.org/f5af/4e9086b0c3aee942cb93ece5820bdc9c9748.pdf +f5aee1529b98136194ef80961ba1a6de646645fe,http://pdfs.semanticscholar.org/f5ae/e1529b98136194ef80961ba1a6de646645fe.pdf +f52efc206432a0cb860155c6d92c7bab962757de,http://pdfs.semanticscholar.org/f52e/fc206432a0cb860155c6d92c7bab962757de.pdf +f519723238701849f1160d5a9cedebd31017da89,http://pdfs.semanticscholar.org/f519/723238701849f1160d5a9cedebd31017da89.pdf +f558af209dd4c48e4b2f551b01065a6435c3ef33,http://pdfs.semanticscholar.org/f558/af209dd4c48e4b2f551b01065a6435c3ef33.pdf +e378ce25579f3676ca50c8f6454e92a886b9e4d7,http://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Robust_Video_Super-Resolution_ICCV_2017_paper.pdf +e35b09879a7df814b2be14d9102c4508e4db458b,http://pdfs.semanticscholar.org/e35b/09879a7df814b2be14d9102c4508e4db458b.pdf +e3657ab4129a7570230ff25ae7fbaccb4ba9950c,http://pdfs.semanticscholar.org/e365/7ab4129a7570230ff25ae7fbaccb4ba9950c.pdf +e315959d6e806c8fbfc91f072c322fb26ce0862b,http://pdfs.semanticscholar.org/e315/959d6e806c8fbfc91f072c322fb26ce0862b.pdf +e39a0834122e08ba28e7b411db896d0fdbbad9ba,http://www.ece.ualberta.ca/~djoseph/publications/journal/TPAMI_2012.pdf +e3bb83684817c7815f5005561a85c23942b1f46b,http://pdfs.semanticscholar.org/e3bb/83684817c7815f5005561a85c23942b1f46b.pdf +e30dc2abac4ecc48aa51863858f6f60c7afdf82a,http://pdfs.semanticscholar.org/e30d/c2abac4ecc48aa51863858f6f60c7afdf82a.pdf +e3e2c106ccbd668fb9fca851498c662add257036,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-et-al-Ensembles.pdf +e379e73e11868abb1728c3acdc77e2c51673eb0d,http://pdfs.semanticscholar.org/e379/e73e11868abb1728c3acdc77e2c51673eb0d.pdf +e3a6e9ddbbfc4c5160082338d46808cea839848a,http://pdfs.semanticscholar.org/f5d0/2300271ab0f32f10bfbba5562c0fa83c5727.pdf +e3917d6935586b90baae18d938295e5b089b5c62,http://www.iti.gr/files/tip05tsalakanidou.pdf +e328d19027297ac796aae2470e438fe0bd334449,http://pdfs.semanticscholar.org/e328/d19027297ac796aae2470e438fe0bd334449.pdf +e3144f39f473e238374dd4005c8b83e19764ae9e,http://pdfs.semanticscholar.org/f42d/ca4a4426e5873a981712102aa961be34539a.pdf +cffebdf88e406c27b892857d1520cb2d7ccda573,http://pdfs.semanticscholar.org/cffe/bdf88e406c27b892857d1520cb2d7ccda573.pdf +cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2,https://www.computer.org/csdl/trans/ta/2017/03/07420600.pdf +cfd933f71f4a69625390819b7645598867900eab,http://pdfs.semanticscholar.org/cfd9/33f71f4a69625390819b7645598867900eab.pdf +cf875336d5a196ce0981e2e2ae9602580f3f6243,http://pdfs.semanticscholar.org/cf87/5336d5a196ce0981e2e2ae9602580f3f6243.pdf +cfd8c66e71e98410f564babeb1c5fd6f77182c55,http://pdfs.semanticscholar.org/cfd8/c66e71e98410f564babeb1c5fd6f77182c55.pdf +cf54a133c89f730adc5ea12c3ac646971120781c,http://pdfs.semanticscholar.org/cf54/a133c89f730adc5ea12c3ac646971120781c.pdf +cfbb2d32586b58f5681e459afd236380acd86e28,http://www.professeurs.polymtl.ca/christopher.pal/2011/ROSE.v2.5.pdf +cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf +cf09e2cb82961128302b99a34bff91ec7d198c7c,http://pdfs.semanticscholar.org/cf09/e2cb82961128302b99a34bff91ec7d198c7c.pdf +cf86616b5a35d5ee777585196736dfafbb9853b5,http://www.research.rutgers.edu/~linzhong/PDF/TC_Facial.pdf +cacd51221c592012bf2d9e4894178c1c1fa307ca,http://pdfs.semanticscholar.org/cacd/51221c592012bf2d9e4894178c1c1fa307ca.pdf +ca0363d29e790f80f924cedaf93cb42308365b3d,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Kotsia07a.pdf +cad52d74c1a21043f851ae14c924ac689e197d1f,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W16/papers/Alletto_From_Ego_to_2014_CVPR_paper.pdf +cac8bb0e393474b9fb3b810c61efdbc2e2c25c29,http://pdfs.semanticscholar.org/cac8/bb0e393474b9fb3b810c61efdbc2e2c25c29.pdf +caaa6e8e83abb97c78ff9b813b849d5ab56b5050,http://digital.cs.usu.edu/~xqi/Promotion/JSPL.FaceRecognition.14.pdf +ca54d0a128b96b150baef392bf7e498793a6371f,http://pdfs.semanticscholar.org/ca54/d0a128b96b150baef392bf7e498793a6371f.pdf +ca83053d9a790319b11a04eac5ab412e7fcab914,http://pdfs.semanticscholar.org/ca83/053d9a790319b11a04eac5ab412e7fcab914.pdf +cadba72aa3e95d6dcf0acac828401ddda7ed8924,http://pdfs.semanticscholar.org/cadb/a72aa3e95d6dcf0acac828401ddda7ed8924.pdf +ca606186715e84d270fc9052af8500fe23befbda,http://www.amirtahmasbi.com/publications_repository/SDA_ICSPS2010.pdf +e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6,http://pdfs.semanticscholar.org/e48f/b3ee27eef1e503d7ba07df8eb1524c47f4a6.pdf +e4bf70e818e507b54f7d94856fecc42cc9e0f73d,http://pdfs.semanticscholar.org/e4bf/70e818e507b54f7d94856fecc42cc9e0f73d.pdf +e4bc529ced68fae154e125c72af5381b1185f34e,http://pdfs.semanticscholar.org/e4bc/529ced68fae154e125c72af5381b1185f34e.pdf +e465f596d73f3d2523dbf8334d29eb93a35f6da0,http://pdfs.semanticscholar.org/e465/f596d73f3d2523dbf8334d29eb93a35f6da0.pdf +e4aeaf1af68a40907fda752559e45dc7afc2de67,http://pdfs.semanticscholar.org/e4ae/af1af68a40907fda752559e45dc7afc2de67.pdf +e4c3d5d43cb62ac5b57d74d55925bdf76205e306,http://pdfs.semanticscholar.org/e4c3/d5d43cb62ac5b57d74d55925bdf76205e306.pdf +e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,http://pdfs.semanticscholar.org/e429/98bbebddeeb4b2bedf5da23fa5c4efc976fa.pdf +e4a1b46b5c639d433d21b34b788df8d81b518729,http://pdfs.semanticscholar.org/e4a1/b46b5c639d433d21b34b788df8d81b518729.pdf +e4c81c56966a763e021938be392718686ba9135e,http://pdfs.semanticscholar.org/e4c8/1c56966a763e021938be392718686ba9135e.pdf +e4e95b8bca585a15f13ef1ab4f48a884cd6ecfcc,http://pdfs.semanticscholar.org/e4e9/5b8bca585a15f13ef1ab4f48a884cd6ecfcc.pdf +e4df83b7424842ff5864c10fa55d38eae1c45fac,http://pdfs.semanticscholar.org/e4df/83b7424842ff5864c10fa55d38eae1c45fac.pdf +e4e3faa47bb567491eaeaebb2213bf0e1db989e1,http://pdfs.semanticscholar.org/e4e3/faa47bb567491eaeaebb2213bf0e1db989e1.pdf +e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5,http://pdfs.semanticscholar.org/e43e/a078749d1f9b8254e0c3df4c51ba2f4eebd5.pdf +e476cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf,https://pdfs.semanticscholar.org/e476/cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf.pdf +e4c2f8e4aace8cb851cb74478a63d9111ca550ae,http://pdfs.semanticscholar.org/e4c2/f8e4aace8cb851cb74478a63d9111ca550ae.pdf +e475e857b2f5574eb626e7e01be47b416deff268,http://pdfs.semanticscholar.org/e475/e857b2f5574eb626e7e01be47b416deff268.pdf +e4391993f5270bdbc621b8d01702f626fba36fc2,http://pdfs.semanticscholar.org/e439/1993f5270bdbc621b8d01702f626fba36fc2.pdf +e475deadd1e284428b5e6efd8fe0e6a5b83b9dcd,http://pdfs.semanticscholar.org/e475/deadd1e284428b5e6efd8fe0e6a5b83b9dcd.pdf +e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Liu2013.pdf +e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,http://pdfs.semanticscholar.org/e48e/94959c4ce799fc61f3f4aa8a209c00be8d7f.pdf +e496d6be415038de1636bbe8202cac9c1cea9dbe,http://pdfs.semanticscholar.org/e496/d6be415038de1636bbe8202cac9c1cea9dbe.pdf +e43cc682453cf3874785584fca813665878adaa7,http://pdfs.semanticscholar.org/e43c/c682453cf3874785584fca813665878adaa7.pdf +fec6648b4154fc7e0892c74f98898f0b51036dfe,http://pdfs.semanticscholar.org/fec6/648b4154fc7e0892c74f98898f0b51036dfe.pdf +fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9,http://pdfs.semanticscholar.org/fea0/a5ed1bc83dd1b545a5d75db2e37a69489ac9.pdf +fe9c460d5ca625402aa4d6dd308d15a40e1010fa,http://pdfs.semanticscholar.org/fe9c/460d5ca625402aa4d6dd308d15a40e1010fa.pdf +fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5,http://pdfs.semanticscholar.org/fe7e/3cc1f3412bbbf37d277eeb3b17b8b21d71d5.pdf +fe5df5fe0e4745d224636a9ae196649176028990,http://pdfs.semanticscholar.org/fe5d/f5fe0e4745d224636a9ae196649176028990.pdf +fe961cbe4be0a35becd2d722f9f364ec3c26bd34,http://pdfs.semanticscholar.org/fe96/1cbe4be0a35becd2d722f9f364ec3c26bd34.pdf +feb6e267923868bff6e2108603d00fdfd65251ca,http://pdfs.semanticscholar.org/feb6/e267923868bff6e2108603d00fdfd65251ca.pdf +feeb0fd0e254f38b38fe5c1022e84aa43d63f7cc,http://pdfs.semanticscholar.org/feeb/0fd0e254f38b38fe5c1022e84aa43d63f7cc.pdf +fe108803ee97badfa2a4abb80f27fa86afd9aad9,http://pdfs.semanticscholar.org/fe10/8803ee97badfa2a4abb80f27fa86afd9aad9.pdf +c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d,http://pdfs.semanticscholar.org/c8db/8764f9d8f5d44e739bbcb663fbfc0a40fb3d.pdf +c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3,http://www.isir.upmc.fr/files/2013ACTI2846.pdf +c8292aa152a962763185e12fd7391a1d6df60d07,http://pdfs.semanticscholar.org/c829/2aa152a962763185e12fd7391a1d6df60d07.pdf +c82c147c4f13e79ad49ef7456473d86881428b89,http://pdfs.semanticscholar.org/c82c/147c4f13e79ad49ef7456473d86881428b89.pdf +c8e84cdff569dd09f8d31e9f9ba3218dee65e961,http://pdfs.semanticscholar.org/c8e8/4cdff569dd09f8d31e9f9ba3218dee65e961.pdf +c8829013bbfb19ccb731bd54c1a885c245b6c7d7,http://pdfs.semanticscholar.org/c882/9013bbfb19ccb731bd54c1a885c245b6c7d7.pdf +c81ee278d27423fd16c1a114dcae486687ee27ff,http://pdfs.semanticscholar.org/c81e/e278d27423fd16c1a114dcae486687ee27ff.pdf +c88ce5ef33d5e544224ab50162d9883ff6429aa3,http://pdfs.semanticscholar.org/c88c/e5ef33d5e544224ab50162d9883ff6429aa3.pdf +c822bd0a005efe4ec1fea74de534900a9aa6fb93,http://pdfs.semanticscholar.org/c822/bd0a005efe4ec1fea74de534900a9aa6fb93.pdf +c8adbe00b5661ab9b3726d01c6842c0d72c8d997,http://pdfs.semanticscholar.org/c8ad/be00b5661ab9b3726d01c6842c0d72c8d997.pdf +fb4545782d9df65d484009558e1824538030bbb1,http://pdfs.semanticscholar.org/fb45/45782d9df65d484009558e1824538030bbb1.pdf +fbf196d83a41d57dfe577b3a54b1b7fa06666e3b,http://pdfs.semanticscholar.org/fbf1/96d83a41d57dfe577b3a54b1b7fa06666e3b.pdf +fbb6ee4f736519f7231830a8e337b263e91f06fe,http://pdfs.semanticscholar.org/fbb6/ee4f736519f7231830a8e337b263e91f06fe.pdf +fb5280b80edcf088f9dd1da769463d48e7b08390,http://pdfs.semanticscholar.org/fb52/80b80edcf088f9dd1da769463d48e7b08390.pdf +fba464cb8e3eff455fe80e8fb6d3547768efba2f,http://pdfs.semanticscholar.org/fba4/64cb8e3eff455fe80e8fb6d3547768efba2f.pdf +fb084b1fe52017b3898c871514cffcc2bdb40b73,http://pdfs.semanticscholar.org/fb08/4b1fe52017b3898c871514cffcc2bdb40b73.pdf +ed28e8367fcb7df7e51963add9e2d85b46e2d5d6,http://pdfs.semanticscholar.org/ed28/e8367fcb7df7e51963add9e2d85b46e2d5d6.pdf +ed08ac6da6f8ead590b390b1d14e8a9b97370794,http://pdfs.semanticscholar.org/ed08/ac6da6f8ead590b390b1d14e8a9b97370794.pdf +edef98d2b021464576d8d28690d29f5431fd5828,http://pdfs.semanticscholar.org/edef/98d2b021464576d8d28690d29f5431fd5828.pdf +edc5a0a8b9fc6ae0e8d8091a2391767f645095d9,http://www.es.mdh.se/pdf_publications/3948.pdf +ed04e161c953d345bcf5b910991d7566f7c486f7,http://pdfs.semanticscholar.org/ed04/e161c953d345bcf5b910991d7566f7c486f7.pdf +edd7504be47ebc28b0d608502ca78c0aea6a65a2,http://pdfs.semanticscholar.org/edd7/504be47ebc28b0d608502ca78c0aea6a65a2.pdf +edbb8cce0b813d3291cae4088914ad3199736aa0,http://pdfs.semanticscholar.org/edbb/8cce0b813d3291cae4088914ad3199736aa0.pdf +c178a86f4c120eca3850a4915134fff44cbccb48,http://pdfs.semanticscholar.org/c178/a86f4c120eca3850a4915134fff44cbccb48.pdf +c1d2d12ade031d57f8d6a0333cbe8a772d752e01,http://pdfs.semanticscholar.org/c1d2/d12ade031d57f8d6a0333cbe8a772d752e01.pdf +c180f22a9af4a2f47a917fd8f15121412f2d0901,http://pdfs.semanticscholar.org/c180/f22a9af4a2f47a917fd8f15121412f2d0901.pdf +c1f07ec629be1c6fe562af0e34b04c54e238dcd1,http://pdfs.semanticscholar.org/c1f0/7ec629be1c6fe562af0e34b04c54e238dcd1.pdf +c10a15e52c85654db9c9343ae1dd892a2ac4a279,http://www.cs.utexas.edu/~grauman/papers/ijcv-sungju.pdf +c1fc70e0952f6a7587b84bf3366d2e57fc572fd7,http://pdfs.semanticscholar.org/c1fc/70e0952f6a7587b84bf3366d2e57fc572fd7.pdf +c1dfabe36a4db26bf378417985a6aacb0f769735,http://pdfs.semanticscholar.org/c1df/abe36a4db26bf378417985a6aacb0f769735.pdf +c1482491f553726a8349337351692627a04d5dbe,http://pdfs.semanticscholar.org/c148/2491f553726a8349337351692627a04d5dbe.pdf +c1ff88493721af1940df0d00bcfeefaa14f1711f,http://pdfs.semanticscholar.org/c1ff/88493721af1940df0d00bcfeefaa14f1711f.pdf +c17a332e59f03b77921942d487b4b102b1ee73b6,http://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf +c1e76c6b643b287f621135ee0c27a9c481a99054,http://pdfs.semanticscholar.org/c1e7/6c6b643b287f621135ee0c27a9c481a99054.pdf +c10b0a6ba98aa95d740a0d60e150ffd77c7895ad,http://pdfs.semanticscholar.org/c10b/0a6ba98aa95d740a0d60e150ffd77c7895ad.pdf +c696c9bbe27434cb6279223a79b17535cd6e88c8,http://pdfs.semanticscholar.org/c696/c9bbe27434cb6279223a79b17535cd6e88c8.pdf +c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,http://pdfs.semanticscholar.org/c65e/4ffa2c07a37b0bb7781ca4ec2ed7542f18e3.pdf +c614450c9b1d89d5fda23a54dbf6a27a4b821ac0,http://pdfs.semanticscholar.org/c614/450c9b1d89d5fda23a54dbf6a27a4b821ac0.pdf +c6096986b4d6c374ab2d20031e026b581e7bf7e9,http://pdfs.semanticscholar.org/c609/6986b4d6c374ab2d20031e026b581e7bf7e9.pdf +c6608fdd919f2bc4f8d7412bab287527dcbcf505,http://pdfs.semanticscholar.org/c660/8fdd919f2bc4f8d7412bab287527dcbcf505.pdf +c6ea6fee4823b511eecf41f6c2574a0728055baf,http://pdfs.semanticscholar.org/c6ea/6fee4823b511eecf41f6c2574a0728055baf.pdf +c62c910264658709e9bf0e769e011e7944c45c90,http://pdfs.semanticscholar.org/c62c/910264658709e9bf0e769e011e7944c45c90.pdf +c660500b49f097e3af67bb14667de30d67db88e3,http://pdfs.semanticscholar.org/c660/500b49f097e3af67bb14667de30d67db88e3.pdf +c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6,http://pdfs.semanticscholar.org/c6ff/a09c4a6cacbbd3c41c8ae7a728b0de6e10b6.pdf +c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,http://pdfs.semanticscholar.org/c652/6dd3060d63a6c90e8b7ff340383c4e0e0dd8.pdf +c65a394118d34beda5dd01ae0df163c3db88fceb,http://pdfs.semanticscholar.org/c65a/394118d34beda5dd01ae0df163c3db88fceb.pdf +ec12f805a48004a90e0057c7b844d8119cb21b4a,http://pdfs.semanticscholar.org/ec12/f805a48004a90e0057c7b844d8119cb21b4a.pdf +ec22eaa00f41a7f8e45ed833812d1ac44ee1174e,http://pdfs.semanticscholar.org/ec22/eaa00f41a7f8e45ed833812d1ac44ee1174e.pdf +ec54000c6c0e660dd99051bdbd7aed2988e27ab8,http://pdfs.semanticscholar.org/ec54/000c6c0e660dd99051bdbd7aed2988e27ab8.pdf +ec0104286c96707f57df26b4f0a4f49b774c486b,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf +ecca2a2b84ea01ea425b8d2d9f376f15a295a7f5,http://smie2.sysu.edu.cn/~wcd/Papers/2013_TPAMI_Wang_MEAP.pdf +ec7cd3fff8bdbbe7005bc8d6b7f6b87d72aac2d9,http://www.mmp.rwth-aachen.de/publications/pdf/rafi_chalearn2015.pdf +ec05078be14a11157ac0e1c6b430ac886124589b,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf +4e7ed13e541b8ed868480375785005d33530e06d,http://arxiv.org/pdf/1603.07388v1.pdf +4e490cf3cf26fe46507bb55a548c403b9c685ba0,http://labnic.unige.ch/nic/papers/SJ_DG_SD_KND_IC_MIV_DS_PV_KRS_IEEETransac11.pdf +4e5dc3b397484326a4348ccceb88acf309960e86,http://pdfs.semanticscholar.org/4e5d/c3b397484326a4348ccceb88acf309960e86.pdf +4e6c17966efae956133bf8f22edeffc24a0470c1,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf +4e1836914bbcf94dc00e604b24b1b0d6d7b61e66,http://pdfs.semanticscholar.org/4e18/36914bbcf94dc00e604b24b1b0d6d7b61e66.pdf +4e4fa167d772f34dfffc374e021ab3044566afc3,http://pdfs.semanticscholar.org/4e4f/a167d772f34dfffc374e021ab3044566afc3.pdf +4ed54d5093d240cc3644e4212f162a11ae7d1e3b,http://pdfs.semanticscholar.org/4ed5/4d5093d240cc3644e4212f162a11ae7d1e3b.pdf +4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_How_Related_Exemplars_2013_ICCV_paper.pdf +4ea53e76246afae94758c1528002808374b75cfa,http://pdfs.semanticscholar.org/4ea5/3e76246afae94758c1528002808374b75cfa.pdf +4ed2d7ecb34a13e12474f75d803547ad2ad811b2,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yang_Common_Action_Discovery_ICCV_2017_paper.pdf +4e97b53926d997f451139f74ec1601bbef125599,http://pdfs.semanticscholar.org/4e97/b53926d997f451139f74ec1601bbef125599.pdf +4e93a8a47473bf57e24aec048cb870ab366a43d6,http://pdfs.semanticscholar.org/4e93/a8a47473bf57e24aec048cb870ab366a43d6.pdf +4e8168fbaa615009d1618a9d6552bfad809309e9,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf +4ea4116f57c5d5033569690871ba294dc3649ea5,http://pdfs.semanticscholar.org/4ea4/116f57c5d5033569690871ba294dc3649ea5.pdf +4e444db884b5272f3a41e4b68dc0d453d4ec1f4c,http://pdfs.semanticscholar.org/4e44/4db884b5272f3a41e4b68dc0d453d4ec1f4c.pdf +4ef0a6817a7736c5641dc52cbc62737e2e063420,http://pdfs.semanticscholar.org/4ef0/a6817a7736c5641dc52cbc62737e2e063420.pdf +4e4d034caa72dce6fca115e77c74ace826884c66,http://pdfs.semanticscholar.org/4e4d/034caa72dce6fca115e77c74ace826884c66.pdf +4e7ebf3c4c0c4ecc48348a769dd6ae1ebac3bf1b,http://pdfs.semanticscholar.org/4e7e/bf3c4c0c4ecc48348a769dd6ae1ebac3bf1b.pdf +4e0e49c280acbff8ae394b2443fcff1afb9bdce6,http://pdfs.semanticscholar.org/4e0e/49c280acbff8ae394b2443fcff1afb9bdce6.pdf +4e4e8fc9bbee816e5c751d13f0d9218380d74b8f,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553711.pdf +20a88cc454a03d62c3368aa1f5bdffa73523827b,http://pdfs.semanticscholar.org/d620/7593c39255ac8ce7536e5958a99f52d6bb60.pdf +20a432a065a06f088d96965f43d0055675f0a6c1,http://pdfs.semanticscholar.org/20a4/32a065a06f088d96965f43d0055675f0a6c1.pdf +20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba,http://pdfs.semanticscholar.org/e805/bc872e18277c7cbfce82206cf1667cce22cc.pdf +20e504782951e0c2979d9aec88c76334f7505393,https://arxiv.org/pdf/1612.08534v1.pdf +209324c152fa8fab9f3553ccb62b693b5b10fb4d,http://pdfs.semanticscholar.org/2093/24c152fa8fab9f3553ccb62b693b5b10fb4d.pdf +2050847bc7a1a0453891f03aeeb4643e360fde7d,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf +205f3d654b7d28d00d15b034a8c5b2a8740bd8b6,https://www.researchgate.net/profile/Ya_Su4/publication/51686551_Discriminant_learning_through_multiple_principal_angles_for_visual_recognition/links/00b495253b0057832b000000.pdf +202d8d93b7b747cdbd6e24e5a919640f8d16298a,http://pdfs.semanticscholar.org/202d/8d93b7b747cdbd6e24e5a919640f8d16298a.pdf +20767ca3b932cbc7b8112db21980d7b9b3ea43a3,http://pdfs.semanticscholar.org/2076/7ca3b932cbc7b8112db21980d7b9b3ea43a3.pdf +20a16efb03c366fa4180659c2b2a0c5024c679da,http://pdfs.semanticscholar.org/20a1/6efb03c366fa4180659c2b2a0c5024c679da.pdf +205b34b6035aa7b23d89f1aed2850b1d3780de35,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p504-jiang.pdf +20c2a5166206e7ffbb11a23387b9c5edf42b5230,http://pdfs.semanticscholar.org/aff0/51003a43736001aeb76e08cb86ce67d6c70d.pdf +20e505cef6d40f896e9508e623bfc01aa1ec3120,http://pdfs.semanticscholar.org/20e5/05cef6d40f896e9508e623bfc01aa1ec3120.pdf +205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2009/Vretos_2009_ICIP.pdf +2098983dd521e78746b3b3fa35a22eb2fa630299,http://pdfs.semanticscholar.org/2098/983dd521e78746b3b3fa35a22eb2fa630299.pdf +20b437dc4fc44c17f131713ffcbb4a8bd672ef00,http://pdfs.semanticscholar.org/20b4/37dc4fc44c17f131713ffcbb4a8bd672ef00.pdf +208a2c50edb5271a050fa9f29d3870f891daa4dc,http://pdfs.semanticscholar.org/c17c/55f43af5db44b6a4c17932aa3d7031985749.pdf +207798603e3089a1c807c93e5f36f7767055ec06,http://www1.se.cuhk.edu.hk/~hccl/publications/pub/2012_APSIPA_FacialExpression.pdf +20be15dac7d8a5ba4688bf206ad24cab57d532d6,http://pdfs.semanticscholar.org/20be/15dac7d8a5ba4688bf206ad24cab57d532d6.pdf +2042aed660796b14925db17c0a8b9fbdd7f3ebac,http://pdfs.semanticscholar.org/4a19/fd2eb09976128e33bd8f9411972146ac6c41.pdf +20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6,http://pdfs.semanticscholar.org/ee89/f47ebfbebed7d6793a6774356ba63398f0d0.pdf +20532b1f80b509f2332b6cfc0126c0f80f438f10,https://arxiv.org/pdf/1509.03248v1.pdf +205af28b4fcd6b569d0241bb6b255edb325965a4,http://pdfs.semanticscholar.org/205a/f28b4fcd6b569d0241bb6b255edb325965a4.pdf +20cfb4136c1a984a330a2a9664fcdadc2228b0bc,http://www.eecs.harvard.edu/~htk/publication/2015-amfg-chen-comiter-kung-mcdanel.pdf +2020e8c0be8fa00d773fd99b6da55029a6a83e3d,http://pdfs.semanticscholar.org/9ca3/806dd01f8aded02e88c7022716b7fef46423.pdf +20a0b23741824a17c577376fdd0cf40101af5880,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Weinzaepfel_Learning_to_Track_ICCV_2015_paper.pdf +18c72175ddbb7d5956d180b65a96005c100f6014,http://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf +18636347b8741d321980e8f91a44ee054b051574,http://biometrics.cse.msu.edu/Publications/SoftBiometrics/JainParkFacemarks_ICIP09.pdf +18206e1b988389eaab86ef8c852662accf3c3663,http://pdfs.semanticscholar.org/d13e/5b4249cfe9672672eb573d15e7dc0a235e04.pdf +189b1859f77ddc08027e1e0f92275341e5c0fdc6,http://pdfs.semanticscholar.org/189b/1859f77ddc08027e1e0f92275341e5c0fdc6.pdf +18a9f3d855bd7728ed4f988675fa9405b5478845,http://pdfs.semanticscholar.org/18a9/f3d855bd7728ed4f988675fa9405b5478845.pdf +181045164df86c72923906aed93d7f2f987bce6c,http://pdfs.semanticscholar.org/1810/45164df86c72923906aed93d7f2f987bce6c.pdf +18166432309000d9a5873f989b39c72a682932f5,http://pdfs.semanticscholar.org/1816/6432309000d9a5873f989b39c72a682932f5.pdf +18d5b0d421332c9321920b07e0e8ac4a240e5f1f,http://pdfs.semanticscholar.org/18d5/b0d421332c9321920b07e0e8ac4a240e5f1f.pdf +18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,http://pdfs.semanticscholar.org/18c6/c92c39c8a5a2bb8b5673f339d3c26b8dcaae.pdf +1885acea0d24e7b953485f78ec57b2f04e946eaf,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w36/Xiong_Combining_Local_and_ICCV_2017_paper.pdf +184750382fe9b722e78d22a543e852a6290b3f70,http://pdfs.semanticscholar.org/1847/50382fe9b722e78d22a543e852a6290b3f70.pdf +18a849b1f336e3c3b7c0ee311c9ccde582d7214f,http://pdfs.semanticscholar.org/18a8/49b1f336e3c3b7c0ee311c9ccde582d7214f.pdf +18cd79f3c93b74d856bff6da92bfc87be1109f80,http://pdfs.semanticscholar.org/18cd/79f3c93b74d856bff6da92bfc87be1109f80.pdf +182470fd0c18d0c5979dff75d089f1da176ceeeb,https://repositori.upf.edu/bitstream/handle/10230/27207/dominguez_MARMI16_mult.pdf?isAllowed=y&sequence=1 +1862cb5728990f189fa91c67028f6d77b5ac94f6,http://lvdmaaten.github.io/publications/papers/CVPR_2014.pdf +1862bfca2f105fddfc79941c90baea7db45b8b16,http://vision.cs.utexas.edu/projects/rationales/rationales.pdf +1886b6d9c303135c5fbdc33e5f401e7fc4da6da4,https://arxiv.org/pdf/1610.01119v1.pdf +1888bf50fd140767352158c0ad5748b501563833,http://pdfs.semanticscholar.org/1888/bf50fd140767352158c0ad5748b501563833.pdf +187d4d9ba8e10245a34f72be96dd9d0fb393b1aa,http://pdfs.semanticscholar.org/187d/4d9ba8e10245a34f72be96dd9d0fb393b1aa.pdf +182f3aa4b02248ff9c0f9816432a56d3c8880706,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Quan_Sparse_Coding_for_CVPR_2016_paper.pdf +1828b1b0f5395b163fef087a72df0605249300c2,http://pdfs.semanticscholar.org/8b18/66a150521bfa18c3e6ec633e1acc79683749.pdf +185360fe1d024a3313042805ee201a75eac50131,http://cvit.iiit.ac.in/papers/deidentTCSVT2k11.pdf +1824b1ccace464ba275ccc86619feaa89018c0ad,http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf +18dfc2434a95f149a6cbb583cca69a98c9de9887,http://pdfs.semanticscholar.org/18df/c2434a95f149a6cbb583cca69a98c9de9887.pdf +181708b09bde7f4904f8fd92b3668d76e7aff527,http://mplab.ucsd.edu/~ksikka/emotiw14.pdf +271e2856e332634eccc5e80ba6fa9bbccf61f1be,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/176.pdf +27846b464369095f4909f093d11ed481277c8bba,http://pdfs.semanticscholar.org/2784/6b464369095f4909f093d11ed481277c8bba.pdf +27eb7a6e1fb6b42516041def6fe64bd028b7614d,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zafeiriou_Joint_Unsupervised_Deformable_CVPR_2016_paper.pdf +2717998d89d34f45a1cca8b663b26d8bf10608a9,http://wangzheallen.github.io/papers/ZhangWWQW_CVPR16.pdf +27c66b87e0fbb39f68ddb783d11b5b7e807c76e8,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w14/papers/Rodriguez_Fast_Simplex-HMM_for_CVPR_2017_paper.pdf +27a0a7837f9114143717fc63294a6500565294c2,http://pdfs.semanticscholar.org/27a0/a7837f9114143717fc63294a6500565294c2.pdf +27aadf6e7441bf40675874df1cf4bb7e2dffdd9e,http://www1.icsi.berkeley.edu/~farrell/birdlets/iccv11-camera-ready.pdf +27d709f7b67204e1e5e05fe2cfac629afa21699d,http://pdfs.semanticscholar.org/2b88/db4294f11b0516a537b8720fcf416be80dbf.pdf +27c9ddb72360f4cd0f715cd7ea82fa399af91f11,http://pdfs.semanticscholar.org/27c9/ddb72360f4cd0f715cd7ea82fa399af91f11.pdf +271df16f789bd2122f0268c3e2fa46bc0cb5f195,http://users.eecs.northwestern.edu/~mya671/mypapers/CVPR11_Yuan_Yang_Wu.pdf +27218ff58c3f0e7d7779fba3bb465d746749ed7c,http://pdfs.semanticscholar.org/2721/8ff58c3f0e7d7779fba3bb465d746749ed7c.pdf +276dbb667a66c23545534caa80be483222db7769,http://pdfs.semanticscholar.org/276d/bb667a66c23545534caa80be483222db7769.pdf +27c6cd568d0623d549439edc98f6b92528d39bfe,http://openaccess.thecvf.com/content_iccv_2015/papers/Hsu_Regressive_Tree_Structured_ICCV_2015_paper.pdf +273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,http://arxiv.org/pdf/1604.04334v1.pdf +27169761aeab311a428a9dd964c7e34950a62a6b,http://academicjournals.org/article/article1380818227_Mostayed%20et%20al.pdf +27961bc8173ac84fdbecacd01e5ed6f7ed92d4bd,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/NiinumaHanJain_MultiviewFaceRecognition_PoseRegularization_BTAS13.pdf +27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5,http://pdfs.semanticscholar.org/2717/3d0b9bb5ce3a75d05e4dbd8f063375f24bb5.pdf +2784d9212dee2f8a660814f4b85ba564ec333720,http://people.cs.umass.edu/~elm/papers/cvpr2010_imagetrans.pdf +275b3cb7c780c663eabbf4d6c6cbc8fe24287c70,https://www.researchgate.net/profile/Bisan_Alsalibi/publication/280839254_The_Impact_of_Bio-Inspired_Approaches_Toward_the_Advancement_of_Face_Recognition/links/55c8ce4608aeca747d67062e.pdf?origin=publication_list +278e1441a77fbeebb22c45932d76c557e5663197,http://sist.sysu.edu.cn/~zhwshi/research/preprintversion/two-stage%20nonnegative%20sparse%20representation%20for%20large-scale%20face%20recognition.pdf +27cccf992f54966feb2ab4831fab628334c742d8,http://pdfs.semanticscholar.org/27cc/cf992f54966feb2ab4831fab628334c742d8.pdf +27883967d3dac734c207074eed966e83afccb8c3,http://www.ee.cuhk.edu.hk/~xgwang/papers/gaoGZHW.pdf +270e5266a1f6e76954dedbc2caf6ff61a5fbf8d0,http://pdfs.semanticscholar.org/270e/5266a1f6e76954dedbc2caf6ff61a5fbf8d0.pdf +27f8b01e628f20ebfcb58d14ea40573d351bbaad,http://pdfs.semanticscholar.org/27f8/b01e628f20ebfcb58d14ea40573d351bbaad.pdf +2742a61d32053761bcc14bd6c32365bfcdbefe35,http://pdfs.semanticscholar.org/ee39/96dc3f451f480134e1a468c32762d688c51b.pdf +27dafedccd7b049e87efed72cabaa32ec00fdd45,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_074.pdf +27a299b834a18e45d73e0bf784bbb5b304c197b3,http://ai.stanford.edu/~vigneshr/cvpr_13/cvpr13_social_roles.pdf +27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba,http://pdfs.semanticscholar.org/27b1/670e1b91ab983b7b1ecfe9eb5e6ba951e0ba.pdf +274f87ad659cd90382ef38f7c6fafc4fc7f0d74d,http://www.deepkernel.com/Papers/mm2014.pdf +27ee8482c376ef282d5eb2e673ab042f5ded99d7,http://sylvain.legallou.fr/Fichiers/p_ICARCV06_NewNormalization_LeGallou.pdf +4b28de1ebf6b6cb2479b9176fab50add6ed75b78,http://vision.ucsd.edu/sites/default/files/cvpr05a.pdf +4b4106614c1d553365bad75d7866bff0de6056ed,http://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf +4bb03b27bc625e53d8d444c0ba3ee235d2f17e86,http://www.cs.utexas.edu/~grauman/papers/hwang_cvpr2010.pdf +4b89cf7197922ee9418ae93896586c990e0d2867,http://www.cs.cmu.edu/~ftorre/paper1.pdf +4bc9a767d7e63c5b94614ebdc24a8775603b15c9,http://pdfs.semanticscholar.org/4bc9/a767d7e63c5b94614ebdc24a8775603b15c9.pdf +4b519e2e88ccd45718b0fc65bfd82ebe103902f7,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf +4b3f425274b0c2297d136f8833a31866db2f2aec,https://arxiv.org/pdf/1705.01567v2.pdf +4b7c110987c1d89109355b04f8597ce427a7cd72,http://pdfs.semanticscholar.org/4b7c/110987c1d89109355b04f8597ce427a7cd72.pdf +4bd088ba3f42aa1e43ae33b1988264465a643a1f,http://pdfs.semanticscholar.org/4bd0/88ba3f42aa1e43ae33b1988264465a643a1f.pdf +4bfce41cc72be315770861a15e467aa027d91641,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Branson_Active_Annotation_Translation_2014_CVPR_paper.pdf +4bd3de97b256b96556d19a5db71dda519934fd53,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wen_Latent_Factor_Guided_CVPR_2016_paper.pdf +4b04247c7f22410681b6aab053d9655cf7f3f888,http://pdfs.semanticscholar.org/60e5/0494dc26bd30e3c49b93ca85d0f79bf5c53f.pdf +4b6387e608afa83ac8d855de2c9b0ae3b86f31cc,http://www.researchgate.net/profile/Heng_Yang3/publication/263813517_Face_Sketch_Landmarks_Localization_in_the_Wild/links/53d3dd3b0cf220632f3ce8b3.pdf +4b60e45b6803e2e155f25a2270a28be9f8bec130,http://www.cs.washington.edu/ai/Mobile_Robotics/postscripts/attribute-objects-icra-2013.pdf +4b5eeea5dd8bd69331bd4bd4c66098b125888dea,http://pdfs.semanticscholar.org/4b5e/eea5dd8bd69331bd4bd4c66098b125888dea.pdf +4bbbee93519a4254736167b31be69ee1e537f942,https://arxiv.org/pdf/1611.05125v2.pdf +4b74f2d56cd0dda6f459319fec29559291c61bff,http://pdfs.semanticscholar.org/96d1/e2686725f69b38b510a75b716caf3a48b3e2.pdf +4ba38262fe20fab3e4c80215147b498f83843b93,http://pdfs.semanticscholar.org/f2af/967e28c12de9d957c08ffbc7a982e4ccea1e.pdf +4b3eaedac75ac419c2609e131ea9377ba8c3d4b8,https://teresaproject.eu/wp-content/uploads/2015/07/kossaifi_tzimiro_pantic_icip_2014.pdf +4b507a161af8a7dd41e909798b9230f4ac779315,http://pdfs.semanticscholar.org/5202/4d271f516c7d0dfa73009bf7537549ef74f7.pdf +4b02387c2db968a70b69d98da3c443f139099e91,http://pdfs.semanticscholar.org/4b02/387c2db968a70b69d98da3c443f139099e91.pdf +4b6be933057d939ddfa665501568ec4704fabb39,http://pdfs.semanticscholar.org/59c4/c6ba21354675401a173eb6c70500b99571cd.pdf +4b71d1ff7e589b94e0f97271c052699157e6dc4a,http://pdfs.semanticscholar.org/4b71/d1ff7e589b94e0f97271c052699157e6dc4a.pdf +4b0a2937f64df66cadee459a32ad7ae6e9fd7ed2,https://arxiv.org/pdf/1705.07750v3.pdf +4b4ecc1cb7f048235605975ab37bb694d69f63e5,http://pdfs.semanticscholar.org/4b4e/cc1cb7f048235605975ab37bb694d69f63e5.pdf +4be03fd3a76b07125cd39777a6875ee59d9889bd,http://homes.esat.kuleuven.be/~tuytelaa/Tuytelaars-BeyondConceptSearch-WIAMIS12.pdf +4be774af78f5bf55f7b7f654f9042b6e288b64bd,http://pdfs.semanticscholar.org/4be7/74af78f5bf55f7b7f654f9042b6e288b64bd.pdf +4b321065f6a45e55cb7f9d7b1055e8ac04713b41,http://pdfs.semanticscholar.org/4b32/1065f6a45e55cb7f9d7b1055e8ac04713b41.pdf +4b605e6a9362485bfe69950432fa1f896e7d19bf,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf +4b3dd18882ff2738aa867b60febd2b35ab34dffc,http://pdfs.semanticscholar.org/4b3d/d18882ff2738aa867b60febd2b35ab34dffc.pdf +11a2ef92b6238055cf3f6dcac0ff49b7b803aee3,http://cs.adelaide.edu.au/~carneiro/publications/mainSPL.pdf +11dc744736a30a189f88fa81be589be0b865c9fa,http://openaccess.thecvf.com/content_iccv_2015/papers/Liang_A_Unified_Multiplicative_ICCV_2015_paper.pdf +1171e8a96ffb15fdb265aaba02be014a38137ad5,http://hal.cse.msu.edu/pdfs/papers/pdm-tifs-2015.pdf +11a210835b87ccb4989e9ba31e7559bb7a9fd292,http://profdoc.um.ac.ir/articles/a/1020638.pdf +118ca3b2e7c08094e2a50137b1548ada7935e505,http://pdfs.semanticscholar.org/dc5c/273198b16dc615888256da74758f4a4b128b.pdf +11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,http://pdfs.semanticscholar.org/11aa/527c01e61ec3a7a67eef8d7ffe9d9ce63f1d.pdf +11ddf5e47854e4e6109762835d2ce086bbdfbc5b,http://eprints.pascal-network.org/archive/00008322/01/schroff11.pdf +113c22eed8383c74fe6b218743395532e2897e71,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sapp_MODEC_Multimodal_Decomposable_2013_CVPR_paper.pdf +110c55b440b7c6a1692da9d8ee52389e43f6e76e,http://cs.brown.edu/people/ls/Publications/wacv2015dai_supplement.pdf +11408af8861fb0a977412e58c1a23d61b8df458c,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2014/0265.pdf +11cc0774365b0cc0d3fa1313bef3d32c345507b1,http://pdfs.semanticscholar.org/11cc/0774365b0cc0d3fa1313bef3d32c345507b1.pdf +11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Caseiro_Rolling_Riemannian_Manifolds_2013_CVPR_paper.pdf +11269e98f072095ff94676d3dad34658f4876e0e,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2015/ACII2015_submission_70.pdf +1176c886afbd8685ecf0094450a02eb96b950f71,http://pdfs.semanticscholar.org/1176/c886afbd8685ecf0094450a02eb96b950f71.pdf +113e5678ed8c0af2b100245057976baf82fcb907,http://www.humansensing.cs.cmu.edu/sites/default/files/4Jeni_Metrics.pdf +11c04c4f0c234a72f94222efede9b38ba6b2306c,http://www.ece.northwestern.edu/~zli/new_home/MyPublications/conf/ACMMM08-action-recog.pdf +1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/icmr038-liA.pdf +1149c6ac37ae2310fe6be1feb6e7e18336552d95,http://pdfs.semanticscholar.org/1149/c6ac37ae2310fe6be1feb6e7e18336552d95.pdf +11f17191bf74c80ad0b16b9f404df6d03f7c8814,http://pdfs.semanticscholar.org/11f5/c82e3a39b9c8b91370ef7286a748c19b658a.pdf +11367581c308f4ba6a32aac1b4a7cdb32cd63137,https://pdfs.semanticscholar.org/82c3/367ca6fc95e705aa8f2270265d82e9d8eedd.pdf +11a47a91471f40af5cf00449954474fd6e9f7694,http://pdfs.semanticscholar.org/11a4/7a91471f40af5cf00449954474fd6e9f7694.pdf +11fdff97f4511ae3d3691cfdeec5a19fa04db6ef,http://mclab.eic.hust.edu.cn/UpLoadFiles/Papers/SCA_TIP2016.pdf +1198572784788a6d2c44c149886d4e42858d49e4,http://pdfs.semanticscholar.org/1198/572784788a6d2c44c149886d4e42858d49e4.pdf +11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8,http://elderlab.apps01.yorku.ca/wp-content/uploads/2016/12/PrincePAMI08.pdf +1134a6be0f469ff2c8caab266bbdacf482f32179,http://pdfs.semanticscholar.org/1134/a6be0f469ff2c8caab266bbdacf482f32179.pdf +11b3877df0213271676fa8aa347046fd4b1a99ad,http://pdfs.semanticscholar.org/11b3/877df0213271676fa8aa347046fd4b1a99ad.pdf +1130c38e88108cf68b92ecc61a9fc5aeee8557c9,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_058.pdf +11b89011298e193d9e6a1d99302221c1d8645bda,http://openaccess.thecvf.com/content_iccv_2015/papers/Gao_Structured_Feature_Selection_ICCV_2015_paper.pdf +111a9645ad0108ad472b2f3b243ed3d942e7ff16,http://pdfs.semanticscholar.org/111a/9645ad0108ad472b2f3b243ed3d942e7ff16.pdf +1177977134f6663fff0137f11b81be9c64c1f424,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_003.pdf +11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0,http://pdfs.semanticscholar.org/11ac/88aebe0230e743c7ea2c2a76b5d4acbfecd0.pdf +117f164f416ea68e8b88a3005e55a39dbdf32ce4,http://www.cs.toronto.edu/~fidler/papers/fashionCVPR15.pdf +7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4,http://pdfs.semanticscholar.org/7dda/2eb0054eb1aeda576ed2b27a84ddf09b07d4.pdf +7d94fd5b0ca25dd23b2e36a2efee93244648a27b,http://pdfs.semanticscholar.org/7d94/fd5b0ca25dd23b2e36a2efee93244648a27b.pdf +7d8c2d29deb80ceed3c8568100376195ce0914cb,https://arxiv.org/pdf/1708.01988v1.pdf +7d50df03d0c8a26eaaeaef47de68691f9ac73701,http://media-lab.engr.ccny.cuny.edu/Paper/2011/HCBA11.pdf +7d306512b545df98243f87cb8173df83b4672b18,http://pdfs.semanticscholar.org/7d30/6512b545df98243f87cb8173df83b4672b18.pdf +7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b,http://pdfs.semanticscholar.org/7d98/dcd15e28bcc57c9c59b7401fa4a5fdaa632b.pdf +7d41b67a641426cb8c0f659f0ba74cdb60e7159a,http://eprints.soton.ac.uk/389641/1/isba-16-camera.pdf +7d1688ce0b48096e05a66ead80e9270260cb8082,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w44/Saxen_Real_vs._Fake_ICCV_2017_paper.pdf +7d53678ef6009a68009d62cd07c020706a2deac3,http://pdfs.semanticscholar.org/7d53/678ef6009a68009d62cd07c020706a2deac3.pdf +7d7be6172fc2884e1da22d1e96d5899a29831ad2,http://pdfs.semanticscholar.org/7d7b/e6172fc2884e1da22d1e96d5899a29831ad2.pdf +7dcd3f58aa75f7ae96fdac9b1c2332a4f0b2dbd3,https://www.researchgate.net/profile/Symeon_Nikitidis/publication/221122322_Facial_expression_recognition_using_clustering_discriminant_Non-negative_Matrix_Factorization/links/54fee98e0cf2eaf210b4506c.pdf +7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,http://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf +7d73adcee255469aadc5e926066f71c93f51a1a5,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001283.pdf +7d9fe410f24142d2057695ee1d6015fb1d347d4a,http://pdfs.semanticscholar.org/7d9f/e410f24142d2057695ee1d6015fb1d347d4a.pdf +7dd578878e84337d6d0f5eb593f22cabeacbb94c,http://pdfs.semanticscholar.org/7dd5/78878e84337d6d0f5eb593f22cabeacbb94c.pdf +7dffe7498c67e9451db2d04bb8408f376ae86992,http://pdfs.semanticscholar.org/7dff/e7498c67e9451db2d04bb8408f376ae86992.pdf +7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2,http://maths.dur.ac.uk/users/kasper.peeters/pdf/face_recognition/PCA/Togneri2010LinearRegressionFaceRecognition.pdf +7de386bf2a1b2436c836c0cc1f1f23fccb24aad6,http://pdfs.semanticscholar.org/7de3/86bf2a1b2436c836c0cc1f1f23fccb24aad6.pdf +29ce6b54a87432dc8371f3761a9568eb3c5593b0,https://kar.kent.ac.uk/43222/1/Yatie_EST2013_vfinal.pdf +2914e8c62f0432f598251fae060447f98141e935,http://pdfs.semanticscholar.org/2914/e8c62f0432f598251fae060447f98141e935.pdf +292eba47ef77495d2613373642b8372d03f7062b,http://pdfs.semanticscholar.org/292e/ba47ef77495d2613373642b8372d03f7062b.pdf +29e96ec163cb12cd5bd33bdf3d32181c136abaf9,http://pdfs.semanticscholar.org/29e9/6ec163cb12cd5bd33bdf3d32181c136abaf9.pdf +29e793271370c1f9f5ac03d7b1e70d1efa10577c,http://pdfs.semanticscholar.org/29e7/93271370c1f9f5ac03d7b1e70d1efa10577c.pdf +29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea,http://www.umiacs.umd.edu/~nshroff/DomainAdapt.pdf +29c7dfbbba7a74e9aafb6a6919629b0a7f576530,http://pdfs.semanticscholar.org/29c7/dfbbba7a74e9aafb6a6919629b0a7f576530.pdf +292c6b743ff50757b8230395c4a001f210283a34,https://labicvl.github.io/docs/pubs/Oscar_VISAPP_2014.pdf +29fc4de6b680733e9447240b42db13d5832e408f,http://pdfs.semanticscholar.org/29fc/4de6b680733e9447240b42db13d5832e408f.pdf +29c1f733a80c1e07acfdd228b7bcfb136c1dff98,http://pdfs.semanticscholar.org/29c1/f733a80c1e07acfdd228b7bcfb136c1dff98.pdf +29f0a868644462aa7ebc21f4510d4209932a1b8c,http://yamdrok.stanford.edu/crowd/icmr.pdf +29f27448e8dd843e1c4d2a78e01caeaea3f46a2d,http://pdfs.semanticscholar.org/29f2/7448e8dd843e1c4d2a78e01caeaea3f46a2d.pdf +294d1fa4e1315e1cf7cc50be2370d24cc6363a41,http://pdfs.semanticscholar.org/294d/1fa4e1315e1cf7cc50be2370d24cc6363a41.pdf +29d414bfde0dfb1478b2bdf67617597dd2d57fc6,http://pdfs.semanticscholar.org/29d4/14bfde0dfb1478b2bdf67617597dd2d57fc6.pdf +2912c3ea67678a1052d7d5cbe734a6ad90fc360e,http://pdfs.semanticscholar.org/2912/c3ea67678a1052d7d5cbe734a6ad90fc360e.pdf +29f4ac49fbd6ddc82b1bb697820100f50fa98ab6,http://dhoiem.cs.illinois.edu/publications/acvhl2010_annotation_ian.pdf +2910fcd11fafee3f9339387929221f4fc1160973,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Becker_Evaluating_Open-Universe_Face_2013_CVPR_paper.pdf +29479bb4fe8c04695e6f5ae59901d15f8da6124b,http://www.mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mm31.pdf +290136947fd44879d914085ee51d8a4f433765fa,http://www.cse.msu.edu/biometrics/Publications/Face/KlareJain_TaxonomyFacialFeatures_BTAS10.pdf +291f527598c589fb0519f890f1beb2749082ddfd,http://pdfs.semanticscholar.org/3215/ceb94227451a958bcf6b1205c710d17e53f5.pdf +291265db88023e92bb8c8e6390438e5da148e8f5,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf +297d3df0cf84d24f7efea44f87c090c7d9be4bed,http://pdfs.semanticscholar.org/297d/3df0cf84d24f7efea44f87c090c7d9be4bed.pdf +29b86534d4b334b670914038c801987e18eb5532,http://www.cs.toronto.edu/~makarand/papers/ICVGIP2014.pdf +29631ca6cff21c9199c70bcdbbcd5f812d331a96,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf +2965d092ed72822432c547830fa557794ae7e27b,http://pdfs.semanticscholar.org/f038/9424ab8c27e01843931fcbef7e3ca997e891.pdf +2983efadb1f2980ab5ef20175f488f77b6f059d7,http://pdfs.semanticscholar.org/2983/efadb1f2980ab5ef20175f488f77b6f059d7.pdf +2911e7f0fb6803851b0eddf8067a6fc06e8eadd6,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Jung_Joint_Fine-Tuning_in_ICCV_2015_paper.pdf +2921719b57544cfe5d0a1614d5ae81710ba804fa,http://pdfs.semanticscholar.org/2921/719b57544cfe5d0a1614d5ae81710ba804fa.pdf +29a013b2faace976f2c532533bd6ab4178ccd348,http://or.nsfc.gov.cn/bitstream/00001903-5/94894/1/1000006589627.pdf +29921072d8628544114f68bdf84deaf20a8c8f91,https://arxiv.org/pdf/1610.03670v4.pdf +2969f822b118637af29d8a3a0811ede2751897b5,http://iip.ict.ac.cn/sites/default/files/publication/2013_ICCV_xwzhao_Cascaded%20Shape%20Space%20Pruning%20for%20Robust%20Facial%20Landmark%20Detection.pdf +29756b6b16d7b06ea211f21cdaeacad94533e8b4,http://pdfs.semanticscholar.org/2975/6b6b16d7b06ea211f21cdaeacad94533e8b4.pdf +293193d24d5c4d2975e836034bbb2329b71c4fe7,http://pdfs.semanticscholar.org/2931/93d24d5c4d2975e836034bbb2329b71c4fe7.pdf +294bd7eb5dc24052237669cdd7b4675144e22306,http://pdfs.semanticscholar.org/294b/d7eb5dc24052237669cdd7b4675144e22306.pdf +2988f24908e912259d7a34c84b0edaf7ea50e2b3,http://pdfs.semanticscholar.org/a779/e9432c3b6bfdcdbb1827757c3b8bf7c3aa4a.pdf +29156e4fe317b61cdcc87b0226e6f09e416909e0,http://pdfs.semanticscholar.org/b880/78d284c9f77172dd23970522856a7042c961.pdf +29f0414c5d566716a229ab4c5794eaf9304d78b6,http://pdfs.semanticscholar.org/29f0/414c5d566716a229ab4c5794eaf9304d78b6.pdf +29908288392a9326d7a2996c6cd6b3e6cb137265,http://people.cs.ubc.ca/~pcarbo/ijcvss.pdf +293ade202109c7f23637589a637bdaed06dc37c9,http://pdfs.semanticscholar.org/293a/de202109c7f23637589a637bdaed06dc37c9.pdf +7c61d21446679776f7bdc7afd13aedc96f9acac1,http://pdfs.semanticscholar.org/e199/9cee8e6d717ad1181ae9e17c366e152e805e.pdf +7cee802e083c5e1731ee50e731f23c9b12da7d36,http://pdfs.semanticscholar.org/7cee/802e083c5e1731ee50e731f23c9b12da7d36.pdf +7c7ab59a82b766929defd7146fd039b89d67e984,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/wacv2014_ChaZhang.pdf +7ca337735ec4c99284e7c98f8d61fb901dbc9015,http://vision.psych.umn.edu/users/schrater/Papers/Veeretal05.pdf +7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f,http://pdfs.semanticscholar.org/7c45/b5824645ba6d96beec17ca8ecfb22dfcdd7f.pdf +7c0a6824b556696ad7bdc6623d742687655852db,http://2010.telfor.rs/files/radovi//TELFOR2010_05_35.pdf +7c95449a5712aac7e8c9a66d131f83a038bb7caa,http://pdfs.semanticscholar.org/7c95/449a5712aac7e8c9a66d131f83a038bb7caa.pdf +7c4c442e9c04c6b98cd2aa221e9d7be15efd8663,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Classifier_Learning_With_2015_CVPR_paper.pdf +7c3e09e0bd992d3f4670ffacb4ec3a911141c51f,http://pdfs.semanticscholar.org/7c3e/09e0bd992d3f4670ffacb4ec3a911141c51f.pdf +7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719d,http://pdfs.semanticscholar.org/7c2e/c6f4ab3eae86e0c1b4f586e9c158fb1d719d.pdf +7cf8a841aad5b7bdbea46a7bb820790e9ce12d0b,http://pdfs.semanticscholar.org/7cf8/a841aad5b7bdbea46a7bb820790e9ce12d0b.pdf +7c9622ad1d8971cd74cc9e838753911fe27ccac4,http://pdfs.semanticscholar.org/7c96/22ad1d8971cd74cc9e838753911fe27ccac4.pdf +7c2c9b083817f7a779d819afee383599d2e97ed8,http://pdfs.semanticscholar.org/bcad/d9c086ccd2f217da25f9550b06a429d53011.pdf +7c45339253841b6f0efb28c75f2c898c79dfd038,http://vis-www.cs.umass.edu/papers/iccv07alignment.pdf +7c7b0550ec41e97fcfc635feffe2e53624471c59,http://cvrr.ucsd.edu/publications/2014/headhandeye.pdf +7ce03597b703a3b6754d1adac5fbc98536994e8f,http://pdfs.semanticscholar.org/7ce0/3597b703a3b6754d1adac5fbc98536994e8f.pdf +7c36afc9828379de97f226e131390af719dbc18d,http://www.cs.cornell.edu/~chenxiawu/papers/ufna.pdf +7c119e6bdada2882baca232da76c35ae9b5277f8,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SMC_2009/PDFs/1070.pdf +7c42371bae54050dbbf7ded1e7a9b4109a23a482,http://pdfs.semanticscholar.org/7c42/371bae54050dbbf7ded1e7a9b4109a23a482.pdf +7c953868cd51f596300c8231192d57c9c514ae17,http://courses.cs.washington.edu/courses/cse590v/13au/CVPR13_FaceDetection.pdf +7c6dbaebfe14878f3aee400d1378d90d61373921,http://pdfs.semanticscholar.org/7c6d/baebfe14878f3aee400d1378d90d61373921.pdf +7c1e1c767f7911a390d49bed4f73952df8445936,http://cmp.felk.cvut.cz/~zimmerk/zimmermann-TPAMI-2014.pdf +7c349932a3d083466da58ab1674129600b12b81c,http://pdfs.semanticscholar.org/7c34/9932a3d083466da58ab1674129600b12b81c.pdf +1648cf24c042122af2f429641ba9599a2187d605,http://www.eurecom.fr/en/publication/5333/download/sec-publi-5333.pdf +160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b,https://infoscience.epfl.ch/record/207802/files/Discriminant-multilabel-Yuce.pdf +16671b2dc89367ce4ed2a9c241246a0cec9ec10e,http://www.bsp.brain.riken.jp/publications/2010/PAMI-clustering-He-cichocki.pdf +16bce9f940bb01aa5ec961892cc021d4664eb9e4,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf +16892074764386b74b6040fe8d6946b67a246a0b,http://pdfs.semanticscholar.org/5f92/7118a5634790fe660fea91aea163b7065ae2.pdf +16395b40e19cbc6d5b82543039ffff2a06363845,https://arxiv.org/pdf/1605.03222v1.pdf +1677d29a108a1c0f27a6a630e74856e7bddcb70d,http://pdfs.semanticscholar.org/1677/d29a108a1c0f27a6a630e74856e7bddcb70d.pdf +16c884be18016cc07aec0ef7e914622a1a9fb59d,http://pdfs.semanticscholar.org/16c8/84be18016cc07aec0ef7e914622a1a9fb59d.pdf +162dfd0d2c9f3621d600e8a3790745395ab25ebc,http://cse.seu.edu.cn/people/xgeng/LDL/resource/cvpr14a.pdf +1606b1475e125bba1b2d87bcf1e33b06f42c5f0d,http://users.eecs.northwestern.edu/~xsh835/CVPR2015_CasCNN.pdf +16f940b4b5da79072d64a77692a876627092d39c,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/10/10.pdf +16572c545384174f8136d761d2b0866e968120a8,http://pdfs.semanticscholar.org/1657/2c545384174f8136d761d2b0866e968120a8.pdf +16820ccfb626dcdc893cc7735784aed9f63cbb70,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf +1630e839bc23811e340bdadad3c55b6723db361d,http://pdfs.semanticscholar.org/9fc9/f22e9e28eab53d426e9d848c0d7dcd2c2459.pdf +167f07b9d2babb8920acfa320ab04ee2758b5db6,http://eprints.pascal-network.org/archive/00008391/01/paper_express.pdf +16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb,http://pdfs.semanticscholar.org/1628/6fb0f14f6a7a1acc10fcd28b3ac43f12f3eb.pdf +1667a77db764e03a87a3fd167d88b060ef47bb56,http://pdfs.semanticscholar.org/1667/a77db764e03a87a3fd167d88b060ef47bb56.pdf +169618b8dc9b348694a31c6e9e17b989735b4d39,http://vllab.ucmerced.edu/hylee/publication/ICCV17_OPN.pdf +16e95a907b016951da7c9327927bb039534151da,http://pdfs.semanticscholar.org/16e9/5a907b016951da7c9327927bb039534151da.pdf +16d9b983796ffcd151bdb8e75fc7eb2e31230809,http://pdfs.semanticscholar.org/16d9/b983796ffcd151bdb8e75fc7eb2e31230809.pdf +1679943d22d60639b4670eba86665371295f52c3,http://pdfs.semanticscholar.org/1679/943d22d60639b4670eba86665371295f52c3.pdf +162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e,https://research-information.bristol.ac.uk/files/75922781/Ioannis_Pitas_Large_scale_classification_by_an_approximate_least_squares_one_class_support_vector_machine_ensemble_2015.pdf +1610d2d4947c03a89c0fda506a74ba1ae2bc54c2,http://research.cs.rutgers.edu/~hxp1/rc_images/hai_facetrackextreme_3dv2016.pdf +1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,http://www.dcs.gla.ac.uk/~vincia/papers/shortsurvey.pdf +169076ffe5e7a2310e98087ef7da25aceb12b62d,http://pdfs.semanticscholar.org/1690/76ffe5e7a2310e98087ef7da25aceb12b62d.pdf +167736556bea7fd57cfabc692ec4ae40c445f144,http://pdfs.semanticscholar.org/1677/36556bea7fd57cfabc692ec4ae40c445f144.pdf +167ea1631476e8f9332cef98cf470cb3d4847bc6,http://www.kevinjing.com/visual_search_at_pinterest.pdf +161eb88031f382e6a1d630cd9a1b9c4bc6b47652,http://arxiv.org/pdf/1505.04026v1.pdf +420782499f38c1d114aabde7b8a8104c9e40a974,http://openaccess.thecvf.com/content_cvpr_2016/papers/Simo-Serra_Fashion_Style_in_CVPR_2016_paper.pdf +42e3dac0df30d754c7c7dab9e1bb94990034a90d,https://arxiv.org/pdf/1311.5591v2.pdf +4217473596b978f13a211cdf47b7d3f6588c785f,http://biometrics.cse.msu.edu/Publications/Face/OttoKlareJain_EfficientApproachClusteringFaceImages_ICB15.pdf +4223666d1b0b1a60c74b14c2980069905088edc6,http://pdfs.semanticscholar.org/4223/666d1b0b1a60c74b14c2980069905088edc6.pdf +42afe6d016e52c99e2c0d876052ade9c192d91e7,https://ibug.doc.ic.ac.uk/media/uploads/documents/ValstarEtAl-ICMI2006-FINAL.pdf +42765c170c14bd58e7200b09b2e1e17911eed42b,http://pdfs.semanticscholar.org/4276/5c170c14bd58e7200b09b2e1e17911eed42b.pdf +429c3588ce54468090cc2cf56c9b328b549a86dc,http://pdfs.semanticscholar.org/429c/3588ce54468090cc2cf56c9b328b549a86dc.pdf +42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Saxena_Coordinated_Local_Metric_ICCV_2015_paper.pdf +42350e28d11e33641775bef4c7b41a2c3437e4fd,http://mmlab.ie.cuhk.edu.hk/archive/2007/IP07_face02.pdf +42e155ea109eae773dadf74d713485be83fca105,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569924805.pdf +426913f890f07a5d79e6c23b83cd928ffc00e494,http://www2012.wwwconference.org/proceedings/proceedings/p939.pdf +4223917177405eaa6bdedca061eb28f7b440ed8e,http://pdfs.semanticscholar.org/4223/917177405eaa6bdedca061eb28f7b440ed8e.pdf +42c9394ca1caaa36f535721fa9a64b2c8d4e0dee,http://pdfs.semanticscholar.org/5d2d/208fc245bb49148bffb3076b0660b98b4466.pdf +4270460b8bc5299bd6eaf821d5685c6442ea179a,http://www.cs.technion.ac.il/~ron/PAPERS/BronBronBrucKimIJCV09.pdf +4205cb47ba4d3c0f21840633bcd49349d1dc02c1,http://www.utdallas.edu/~cxc123730/ICIP_2017.pdf +42ded74d4858bea1070dadb08b037115d9d15db5,http://pdfs.semanticscholar.org/42de/d74d4858bea1070dadb08b037115d9d15db5.pdf +42f6f5454dda99d8989f9814989efd50fe807ee8,http://pdfs.semanticscholar.org/42f6/f5454dda99d8989f9814989efd50fe807ee8.pdf +429d4848d03d2243cc6a1b03695406a6de1a7abd,http://pdfs.semanticscholar.org/429d/4848d03d2243cc6a1b03695406a6de1a7abd.pdf +42dc36550912bc40f7faa195c60ff6ffc04e7cd6,http://pdfs.semanticscholar.org/42dc/36550912bc40f7faa195c60ff6ffc04e7cd6.pdf +424259e9e917c037208125ccc1a02f8276afb667,http://arxiv.org/pdf/1604.06433v1.pdf +42ecfc3221c2e1377e6ff849afb705ecd056b6ff,http://pdfs.semanticscholar.org/42ec/fc3221c2e1377e6ff849afb705ecd056b6ff.pdf +421955c6d2f7a5ffafaf154a329a525e21bbd6d3,http://pdfs.semanticscholar.org/ea6c/4d71fafe4352e7c3aa2237f77af0c4050cef.pdf +42e0127a3fd6a96048e0bc7aab6d0ae88ba00fb0,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553734.pdf +42df75080e14d32332b39ee5d91e83da8a914e34,http://www.imlab.tw/wp-content/uploads/2015/11/Illumination-Compensation-Using-Oriented-Local-Histogram-Equalization-and-its-Application-to-Face-Recognition.pdf +4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,http://pdfs.semanticscholar.org/4276/eb27e2e4fc3e0ceb769eca75e3c73b7f2e99.pdf +89945b7cd614310ebae05b8deed0533a9998d212,http://pdfs.semanticscholar.org/8994/5b7cd614310ebae05b8deed0533a9998d212.pdf +89de30a75d3258816c2d4d5a733d2bef894b66b9,https://www.computer.org/csdl/trans/tp/2015/06/06915721.pdf +89002a64e96a82486220b1d5c3f060654b24ef2a,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Peng_PIEFA_Personalized_Incremental_ICCV_2015_paper.pdf +89c84628b6f63554eec13830851a5d03d740261a,http://pdfs.semanticscholar.org/89c8/4628b6f63554eec13830851a5d03d740261a.pdf +89c51f73ec5ebd1c2a9000123deaf628acf3cdd8,http://pdfs.semanticscholar.org/89c5/1f73ec5ebd1c2a9000123deaf628acf3cdd8.pdf +89e7d23e0c6a1d636f2da68aaef58efee36b718b,http://pdfs.semanticscholar.org/89e7/d23e0c6a1d636f2da68aaef58efee36b718b.pdf +89f4bcbfeb29966ab969682eae235066a89fc151,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/short-fgr-2004.pdf +8913a5b7ed91c5f6dec95349fbc6919deee4fc75,https://people.eecs.berkeley.edu/~pabbeel/papers/2014-ICRA-BigBIRD.pdf +89cabb60aa369486a1ebe586dbe09e3557615ef8,http://pdfs.semanticscholar.org/89ca/bb60aa369486a1ebe586dbe09e3557615ef8.pdf +8983485996d5d9d162e70d66399047c5d01ac451,https://arxiv.org/pdf/1602.04868v1.pdf +89bc311df99ad0127383a9149d1684dfd8a5aa34,http://pdfs.semanticscholar.org/89bc/311df99ad0127383a9149d1684dfd8a5aa34.pdf +898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c,http://pdfs.semanticscholar.org/898a/66979c7e8b53a10fd58ac51fbfdb6e6e6e7c.pdf +89d7cc9bbcd2fdc4f4434d153ecb83764242227b,http://pdfs.semanticscholar.org/89d7/cc9bbcd2fdc4f4434d153ecb83764242227b.pdf +896f4d87257abd0f628c1ffbbfdac38c86a56f50,http://pdfs.semanticscholar.org/cf5c/c511c7fd556aaf113de02fc88d7ba10928b0.pdf +45c340c8e79077a5340387cfff8ed7615efa20fd,http://pdfs.semanticscholar.org/45c3/40c8e79077a5340387cfff8ed7615efa20fd.pdf +45dbf1b6fbc7fdae09e2a1928b18fbfff331a979,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0854.pdf +455204fa201e9936b42756d362f62700597874c4,http://pdfs.semanticscholar.org/4552/04fa201e9936b42756d362f62700597874c4.pdf +4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,http://pdfs.semanticscholar.org/4541/c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6.pdf +459960be65dd04317dd325af5b7cbb883d822ee4,http://pdfs.semanticscholar.org/876c/c40c6c470f39fbda48dd394d0a9d5f6b147d.pdf +45f858f9e8d7713f60f52618e54089ba68dfcd6d,http://openaccess.thecvf.com/content_ICCV_2017/papers/Sigurdsson_What_Actions_Are_ICCV_2017_paper.pdf +45215e330a4251801877070c85c81f42c2da60fb,http://pdfs.semanticscholar.org/4521/5e330a4251801877070c85c81f42c2da60fb.pdf +457cf73263d80a1a1338dc750ce9a50313745d1d,http://pdfs.semanticscholar.org/457c/f73263d80a1a1338dc750ce9a50313745d1d.pdf +4526992d4de4da2c5fae7a5ceaad6b65441adf9d,http://pdfs.semanticscholar.org/4526/992d4de4da2c5fae7a5ceaad6b65441adf9d.pdf +45e616093a92e5f1e61a7c6037d5f637aa8964af,http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf +45efd6c2dd4ca19eed38ceeb7c2c5568231451e1,http://pdfs.semanticscholar.org/45ef/d6c2dd4ca19eed38ceeb7c2c5568231451e1.pdf +45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8,http://www.doc.ic.ac.uk/~maja/VukadinovicPantic-SMC05-FINAL.pdf +4571626d4d71c0d11928eb99a3c8b10955a74afe,http://pdfs.semanticscholar.org/4571/626d4d71c0d11928eb99a3c8b10955a74afe.pdf +4534d78f8beb8aad409f7bfcd857ec7f19247715,http://pdfs.semanticscholar.org/4534/d78f8beb8aad409f7bfcd857ec7f19247715.pdf +4563b46d42079242f06567b3f2e2f7a80cb3befe,http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf +459e840ec58ef5ffcee60f49a94424eb503e8982,http://pdfs.semanticscholar.org/459e/840ec58ef5ffcee60f49a94424eb503e8982.pdf +45fbeed124a8956477dbfc862c758a2ee2681278,http://pdfs.semanticscholar.org/fb2a/66f842ca2577d9ea8a8300b555b71bd9cee8.pdf +451c42da244edcb1088e3c09d0f14c064ed9077e,https://ibug.doc.ic.ac.uk/media/uploads/documents/sdnmf_conf.pdf +4568063b7efb66801e67856b3f572069e774ad33,http://www.dbs.ifi.lmu.de/~yu_k/cvpr11_0712.pdf +45c31cde87258414f33412b3b12fc5bec7cb3ba9,http://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf +4542273a157bfd4740645a6129d1784d1df775d2,http://pdfs.semanticscholar.org/4542/273a157bfd4740645a6129d1784d1df775d2.pdf +4511e09ee26044cb46073a8c2f6e1e0fbabe33e8,http://pdfs.semanticscholar.org/4511/e09ee26044cb46073a8c2f6e1e0fbabe33e8.pdf +45513d0f2f5c0dac5b61f9ff76c7e46cce62f402,http://pdfs.semanticscholar.org/4551/3d0f2f5c0dac5b61f9ff76c7e46cce62f402.pdf +458677de7910a5455283a2be99f776a834449f61,http://pdfs.semanticscholar.org/4586/77de7910a5455283a2be99f776a834449f61.pdf +1f9b2f70c24a567207752989c5bd4907442a9d0f,http://pdfs.semanticscholar.org/1f9b/2f70c24a567207752989c5bd4907442a9d0f.pdf +1f05473c587e2a3b587f51eb808695a1c10bc153,http://pdfs.semanticscholar.org/7246/bbdf4c125d9d216e560c87c58a8613bd2602.pdf +1fa3948af1c338f9ae200038c45adadd2b39a3e4,http://pdfs.semanticscholar.org/7655/4182b4b0f3301afe8cfbc96a9d289b75254f.pdf +1f8304f4b51033d2671147b33bb4e51b9a1e16fe,http://pdfs.semanticscholar.org/1f83/04f4b51033d2671147b33bb4e51b9a1e16fe.pdf +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,http://pdfs.semanticscholar.org/1f89/439524e87a6514f4fbe7ed34bda4fd1ce286.pdf +1f9ae272bb4151817866511bd970bffb22981a49,http://pdfs.semanticscholar.org/1f9a/e272bb4151817866511bd970bffb22981a49.pdf +1fd6004345245daf101c98935387e6ef651cbb55,http://pdfs.semanticscholar.org/1fd6/004345245daf101c98935387e6ef651cbb55.pdf +1fc249ec69b3e23856b42a4e591c59ac60d77118,http://cbl.uh.edu/pub_files/IJCB-2017-XX.pdf +1fbde67e87890e5d45864e66edb86136fbdbe20e,http://www.openu.ac.il/home/hassner/data/ASLAN/Papers/ASLAN_TPAMI12.pdf +1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6,http://www.cse.msu.edu/~liuxm/publication/Han_Otto_Liu_Jain_TPAMI14.pdf +1fcdc113a5df2f45a1f4b3249c041d942a3a730b,http://vipl.ict.ac.cn/homepage/CVPR15Metric/ref/Reconstruction-Based%20Metric%20Learning%20for%20Unconstrained%20Face%20Verification_TIFS2015.pdf +1fd2ed45fb3ba77f10c83f0eef3b66955645dfe0,http://pdfs.semanticscholar.org/d91a/de2712c65f45ed8b917414829ecb24c3c183.pdf +1fe59275142844ce3ade9e2aed900378dd025880,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Xiao_Facial_Landmark_Detection_ICCV_2015_paper.pdf +1f2d12531a1421bafafe71b3ad53cb080917b1a7,http://pdfs.semanticscholar.org/1f2d/12531a1421bafafe71b3ad53cb080917b1a7.pdf +1f35a65eab258f042edb8e1d4d5fff34f00a85bd,http://www.seattle.intel-research.net/~xren/publication/xren_cvpr08_casablanca.pdf +1fe121925668743762ce9f6e157081e087171f4c,https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Ylioinas_Unsupervised_Learning_of_2015_CVPR_paper.pdf +1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58d,http://pdfs.semanticscholar.org/1fef/b2f8dd1efcdb57d5c2966d81f9ab22c1c58d.pdf +1f8e44593eb335c2253d0f22f7f9dc1025af8c0d,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/22607/Patras%20Fine-tuning%20regression%202014%20Accepted.pdf?sequence=1 +1f94734847c15fa1da68d4222973950d6b683c9e,https://arxiv.org/pdf/1512.02895v1.pdf +1f745215cda3a9f00a65166bd744e4ec35644b02,http://www.eurecom.fr/en/publication/4044/download/mm-publi-4044.pdf +1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,http://pdfs.semanticscholar.org/1fd3/dbb6e910708fa85c8a86e17ba0b6fef5617c.pdf +1f24cef78d1de5aa1eefaf344244dcd1972797e8,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Outlier-Robust_Tensor_PCA_CVPR_2017_paper.pdf +1fe990ca6df273de10583860933d106298655ec8,http://pdfs.semanticscholar.org/1fe9/90ca6df273de10583860933d106298655ec8.pdf +73f467b4358ac1cafb57f58e902c1cab5b15c590,http://pdfs.semanticscholar.org/73f4/67b4358ac1cafb57f58e902c1cab5b15c590.pdf +732e8d8f5717f8802426e1b9debc18a8361c1782,http://pdfs.semanticscholar.org/732e/8d8f5717f8802426e1b9debc18a8361c1782.pdf +7384c39a2d084c93566b98bc4d81532b5ad55892,http://pdfs.semanticscholar.org/d0a5/0940a1bf951adaf22bd1fc72ea861b606cdb.pdf +739d400cb6fb730b894182b29171faaae79e3f01,http://pdfs.semanticscholar.org/739d/400cb6fb730b894182b29171faaae79e3f01.pdf +732e4016225280b485c557a119ec50cffb8fee98,http://pdfs.semanticscholar.org/732e/4016225280b485c557a119ec50cffb8fee98.pdf +7373c4a23684e2613f441f2236ed02e3f9942dd4,https://dr.ntu.edu.sg/bitstream/handle/10220/18012/Feature%20Extraction%20through%20Binary%20Pattern%20of%20Phase%20Congruency%20for%20Facial%20Expression%20Recognition.pdf?isAllowed=y&sequence=1 +732686d799d760ccca8ad47b49a8308b1ab381fb,http://pdfs.semanticscholar.org/7326/86d799d760ccca8ad47b49a8308b1ab381fb.pdf +73fbdd57270b9f91f2e24989178e264f2d2eb7ae,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001945.pdf +738c187d55745aac18d5fb5f6cc9e3568cd2d217,http://www-ee.ccny.cuny.edu/wwwn/yltian/Publications/ICMR130-2015.pdf +738a985fba44f9f5acd516e07d0d9578f2ffaa4e,http://pdfs.semanticscholar.org/738a/985fba44f9f5acd516e07d0d9578f2ffaa4e.pdf +73fd7e74457e0606704c5c3d3462549f1b2de1ad,http://pdfs.semanticscholar.org/73fd/7e74457e0606704c5c3d3462549f1b2de1ad.pdf +73c5bab5c664afa96b1c147ff21439135c7d968b,http://uclab.khu.ac.kr/resources/publication/C_109.pdf +877100f430b72c5d60de199603ab5c65f611ce17,http://pdfs.semanticscholar.org/8771/00f430b72c5d60de199603ab5c65f611ce17.pdf +87e5b4d95f95a0975e855cf5ad402db7a3c64ff5,http://www.researchgate.net/profile/Paul_Bodesheim/publication/269314560_Local_Novelty_Detection_in_Multi-class_Recognition_Problems/links/5486c2420cf289302e2c35eb.pdf +870433ba89d8cab1656e57ac78f1c26f4998edfb,https://arxiv.org/pdf/1612.04904v1.pdf +8796f2d54afb0e5c924101f54d469a1d54d5775d,http://pdfs.semanticscholar.org/8796/f2d54afb0e5c924101f54d469a1d54d5775d.pdf +87f285782d755eb85d8922840e67ed9602cfd6b9,http://pdfs.semanticscholar.org/87f2/85782d755eb85d8922840e67ed9602cfd6b9.pdf +871f5f1114949e3ddb1bca0982086cc806ce84a8,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01169.pdf +87bee0e68dfc86b714f0107860d600fffdaf7996,http://mi.informatik.uni-siegen.de/publications/piotraschke_autoreconst_cvpr16.pdf +87309bdb2b9d1fb8916303e3866eca6e3452c27d,http://pdfs.semanticscholar.org/8730/9bdb2b9d1fb8916303e3866eca6e3452c27d.pdf +87147418f863e3d8ff8c97db0b42695a1c28195b,http://pdfs.semanticscholar.org/8714/7418f863e3d8ff8c97db0b42695a1c28195b.pdf +87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5,http://pdfs.semanticscholar.org/87dd/3fd36bccbe1d5f1484ac05f1848b51c6eab5.pdf +87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd,http://pdfs.semanticscholar.org/87bb/183d8be0c2b4cfceb9ee158fee4bbf3e19fd.pdf +80193dd633513c2d756c3f568ffa0ebc1bb5213e,http://pdfs.semanticscholar.org/a3d8/8154a1253338b45f950bcf9cbe91ba5271ee.pdf +808b685d09912cbef4a009e74e10476304b4cccf,http://pdfs.semanticscholar.org/808b/685d09912cbef4a009e74e10476304b4cccf.pdf +804b4c1b553d9d7bae70d55bf8767c603c1a09e3,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001831.pdf +800cbbe16be0f7cb921842d54967c9a94eaa2a65,http://pdfs.semanticscholar.org/800c/bbe16be0f7cb921842d54967c9a94eaa2a65.pdf +808656563eea17470159e6540b05fe6f7ae58c2b,http://www.researchgate.net/profile/Songul_Varli_Albayrak/publication/235248598_Classification_with_Emotional_Faces_via_a_Robust_Sparse_Classifier/links/0912f510a44fb84bef000000.pdf +80135ed7e34ac1dcc7f858f880edc699a920bf53,http://pdfs.semanticscholar.org/8013/5ed7e34ac1dcc7f858f880edc699a920bf53.pdf +80277fb3a8a981933533cf478245f262652a33b5,http://pdfs.semanticscholar.org/8027/7fb3a8a981933533cf478245f262652a33b5.pdf +80840df0802399838fe5725cce829e1b417d7a2e,http://pdfs.semanticscholar.org/8084/0df0802399838fe5725cce829e1b417d7a2e.pdf +80c8d143e7f61761f39baec5b6dfb8faeb814be9,http://pdfs.semanticscholar.org/80c8/d143e7f61761f39baec5b6dfb8faeb814be9.pdf +809ea255d144cff780300440d0f22c96e98abd53,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf +80a6bb337b8fdc17bffb8038f3b1467d01204375,http://pdfs.semanticscholar.org/80a6/bb337b8fdc17bffb8038f3b1467d01204375.pdf +80be8624771104ff4838dcba9629bacfe6b3ea09,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf +8000c4f278e9af4d087c0d0895fff7012c5e3d78,https://www.cse.ust.hk/~yuzhangcse/papers/Zhang_Yeung_CVPR10.pdf +80bd795930837330e3ced199f5b9b75398336b87,http://pdfs.semanticscholar.org/80bd/795930837330e3ced199f5b9b75398336b87.pdf +74de03923a069ffc0fb79e492ee447299401001f,http://pdfs.semanticscholar.org/74de/03923a069ffc0fb79e492ee447299401001f.pdf +74f643579949ccd566f2638b85374e7a6857a9fc,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/ICPR/MBP%20ICPR10(Revise%20final).pdf +74408cfd748ad5553cba8ab64e5f83da14875ae8,http://pdfs.semanticscholar.org/7440/8cfd748ad5553cba8ab64e5f83da14875ae8.pdf +747fddd7345b60da121fc13c5440a18039b912e6,http://pdfs.semanticscholar.org/747f/ddd7345b60da121fc13c5440a18039b912e6.pdf +747d5fe667519acea1bee3df5cf94d9d6f874f20,http://pdfs.semanticscholar.org/747d/5fe667519acea1bee3df5cf94d9d6f874f20.pdf +740e095a65524d569244947f6eea3aefa3cca526,http://pdfs.semanticscholar.org/740e/095a65524d569244947f6eea3aefa3cca526.pdf +74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,http://pdfs.semanticscholar.org/74e8/69bc7c99093a5ff9f8cfc3f533ccf1b135d8.pdf +741485741734a99e933dd0302f457158c6842adf,http://pdfs.semanticscholar.org/7414/85741734a99e933dd0302f457158c6842adf.pdf +743e582c3e70c6ec07094887ce8dae7248b970ad,http://pdfs.semanticscholar.org/743e/582c3e70c6ec07094887ce8dae7248b970ad.pdf +74b0095944c6e29837c208307a67116ebe1231c8,http://web.eecs.umich.edu/~hero/Preprints/EuclideanK-Nearest.pdf +74156a11c2997517061df5629be78428e1f09cbd,http://cvrr.ucsd.edu/publications/2016/MartinRangeshTrivediICPR2016.pdf +748e72af01ba4ee742df65e9c030cacec88ce506,http://pdfs.semanticscholar.org/748e/72af01ba4ee742df65e9c030cacec88ce506.pdf +745b42050a68a294e9300228e09b5748d2d20b81,http://pdfs.semanticscholar.org/745b/42050a68a294e9300228e09b5748d2d20b81.pdf +749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7,http://pdfs.semanticscholar.org/7493/82d19bfe9fb8d0c5e94d0c9b0a63ab531cb7.pdf +74618fb4ce8ce0209db85cc6069fe64b1f268ff4,https://ir.canterbury.ac.nz/bitstream/handle/10092/6229/12636740_Y10_ICCSIT.pdf?isAllowed=y&sequence=1 +74875368649f52f74bfc4355689b85a724c3db47,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Yan_Object_Detection_by_2015_CVPR_paper.pdf +7492c611b1df6bce895bee6ba33737e7fc7f60a6,https://ibug.doc.ic.ac.uk/media/uploads/documents/zafeiriou_the_3d_menpo_iccv_2017_paper.pdf +74eae724ef197f2822fb7f3029c63014625ce1ca,http://pdfs.semanticscholar.org/74ea/e724ef197f2822fb7f3029c63014625ce1ca.pdf +7480d8739eb7ab97c12c14e75658e5444b852e9f,http://pdfs.semanticscholar.org/cfe4/b03951be323394e6749f6a30b2ac9b924479.pdf +74ba4ab407b90592ffdf884a20e10006d2223015,http://pdfs.semanticscholar.org/74ba/4ab407b90592ffdf884a20e10006d2223015.pdf +7405ed035d1a4b9787b78e5566340a98fe4b63a0,http://pdfs.semanticscholar.org/7405/ed035d1a4b9787b78e5566340a98fe4b63a0.pdf +744db9bd550bf5e109d44c2edabffec28c867b91,http://pdfs.semanticscholar.org/744d/b9bd550bf5e109d44c2edabffec28c867b91.pdf +74325f3d9aea3a810fe4eab8863d1a48c099de11,http://pdfs.semanticscholar.org/7432/5f3d9aea3a810fe4eab8863d1a48c099de11.pdf +744d23991a2c48d146781405e299e9b3cc14b731,http://www.cise.ufl.edu/~dihong/assets/LPS2016.pdf +1a45ddaf43bcd49d261abb4a27977a952b5fff12,http://pdfs.semanticscholar.org/1a45/ddaf43bcd49d261abb4a27977a952b5fff12.pdf +1a41e5d93f1ef5b23b95b7163f5f9aedbe661394,http://pdfs.semanticscholar.org/1a41/e5d93f1ef5b23b95b7163f5f9aedbe661394.pdf +1a65cc5b2abde1754b8c9b1d932a68519bcb1ada,http://pdfs.semanticscholar.org/e4ae/821e234c281aed6ba629c130be7c8eac4a31.pdf +1aa766bbd49bac8484e2545c20788d0f86e73ec2,http://inside.mines.edu/~jpaone/papers/IV15_BaselineFaceDetection_SHRP2NDS.pdf +1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,http://www.dabi.temple.edu/~hbling/publication/oria-12-final.pdf +1a878e4667fe55170252e3f41d38ddf85c87fcaf,http://pdfs.semanticscholar.org/1a87/8e4667fe55170252e3f41d38ddf85c87fcaf.pdf +1a41831a3d7b0e0df688fb6d4f861176cef97136,http://pdfs.semanticscholar.org/1fae/8f87f83bb707c4b38c23e93ae2bcb900b962.pdf +1ac2882559a4ff552a1a9956ebeadb035cb6df5b,http://www.pitt.edu/~jeffcohn/biblio/TrainData.pdf +1a7a17c4f97c68d68fbeefee1751d349b83eb14a,http://pdfs.semanticscholar.org/1a7a/17c4f97c68d68fbeefee1751d349b83eb14a.pdf +1aef6f7d2e3565f29125a4871cd60c4d86c48361,http://pdfs.semanticscholar.org/1aef/6f7d2e3565f29125a4871cd60c4d86c48361.pdf +1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f,http://pdfs.semanticscholar.org/1a6c/3c37c2e62b21ebc0f3533686dde4d0103b3f.pdf +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,http://disi.unitn.it/~duta/pubs/ICPR2016_Duta.pdf +1a3eee980a2252bb092666cf15dd1301fa84860e,https://www.uv.es/vista/vistavalencia/papers/ICIP09_GPCA.pdf +1a140d9265df8cf50a3cd69074db7e20dc060d14,http://pdfs.semanticscholar.org/1a14/0d9265df8cf50a3cd69074db7e20dc060d14.pdf +1a85956154c170daf7f15f32f29281269028ff69,http://ibug.doc.ic.ac.uk/media/uploads/documents/active_pictorial_structures.pdf +1a031378cf1d2b9088a200d9715d87db8a1bf041,http://pdfs.semanticscholar.org/1a03/1378cf1d2b9088a200d9715d87db8a1bf041.pdf +1a96d54c326d19e32bed00642a177ea439341fa2,http://vc.cs.nthu.edu.tw/home/paper/codfiles/tychiu/200808151557/Principal_Component_Analysis_Based_on_L1-Norm_Maximization.pdf +1afd481036d57320bf52d784a22dcb07b1ca95e2,http://pdfs.semanticscholar.org/e206/144fc1dee7f10079facf3b6a3d5d2bf5f8db.pdf +1a9337d70a87d0e30966ecd1d7a9b0bbc7be161f,http://pdfs.semanticscholar.org/1a93/37d70a87d0e30966ecd1d7a9b0bbc7be161f.pdf +1ae642a8d756c6aa7bc049c5c89d5072d8749637,http://www.cs.umd.edu/~behjat/papers/ICMR14_poster.pdf +1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6,http://pdfs.semanticscholar.org/1a4b/6ee6cd846ef5e3030a6ae59f026e5f50eda6.pdf +1a9a192b700c080c7887e5862c1ec578012f9ed1,http://pdfs.semanticscholar.org/1a9a/192b700c080c7887e5862c1ec578012f9ed1.pdf +1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9,http://pdfs.semanticscholar.org/1af5/2c853ff1d0ddb8265727c1d70d81b4f9b3a9.pdf +1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Zhou_Extensive_Facial_Landmark_2013_ICCV_paper.pdf +1a40092b493c6b8840257ab7f96051d1a4dbfeb2,http://web.cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf +1ad97cce5fa8e9c2e001f53f6f3202bddcefba22,http://files.is.tue.mpg.de/black/papers/RGA2014.pdf +1a1118cd4339553ad0544a0a131512aee50cf7de,http://pdfs.semanticscholar.org/1a11/18cd4339553ad0544a0a131512aee50cf7de.pdf +1a6c9ef99bf0ab9835a91fe5f1760d98a0606243,http://pdfs.semanticscholar.org/57ce/705f08ae7256b16eac2b8b40ae0c88d6cf23.pdf +1afdedba774f6689eb07e048056f7844c9083be9,http://ibug.doc.ic.ac.uk/media/uploads/documents/sandbach2013markov.pdf +1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43,http://pdfs.semanticscholar.org/676c/0fc58b6a0108326024f708e30d76cadbae58.pdf +1a7a2221fed183b6431e29a014539e45d95f0804,http://www.cs.colostate.edu/~vision/publications/Bolme2007b.pdf +1a5b39a4b29afc5d2a3cd49087ae23c6838eca2b,http://www.l3s.de/~siersdorfer/sources/2014/mtgame-2014.pdf +2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,http://www.cs.fsu.edu/~liux/research/pub/papers/Wu-Two-Stage-CVIU-2008.pdf +287795991fad3c61d6058352879c7d7ae1fdd2b6,http://pdfs.semanticscholar.org/2877/95991fad3c61d6058352879c7d7ae1fdd2b6.pdf +28a900a07c7cbce6b6297e4030be3229e094a950,http://pdfs.semanticscholar.org/28a9/00a07c7cbce6b6297e4030be3229e094a950.pdf +282503fa0285240ef42b5b4c74ae0590fe169211,http://pdfs.semanticscholar.org/2825/03fa0285240ef42b5b4c74ae0590fe169211.pdf +28e0ed749ebe7eb778cb13853c1456cb6817a166,http://pdfs.semanticscholar.org/28e0/ed749ebe7eb778cb13853c1456cb6817a166.pdf +28b9d92baea72ec665c54d9d32743cf7bc0912a7,http://pdfs.semanticscholar.org/a7f8/b6bf6aa7a12773ad9bcf1d040d4d74d12493.pdf +283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43,http://pdfs.semanticscholar.org/283d/226e346ac3e7685dd9a4ba8ae55ee4f2fe43.pdf +28d7029cfb73bcb4ad1997f3779c183972a406b4,https://arxiv.org/pdf/1705.00322v1.pdf +280d59fa99ead5929ebcde85407bba34b1fcfb59,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002662.pdf +28f5138d63e4acafca49a94ae1dc44f7e9d84827,http://pdfs.semanticscholar.org/28f5/138d63e4acafca49a94ae1dc44f7e9d84827.pdf +28e1668d7b61ce21bf306009a62b06593f1819e3,http://pdfs.semanticscholar.org/28e1/668d7b61ce21bf306009a62b06593f1819e3.pdf +28cd46a078e8fad370b1aba34762a874374513a5,http://pdfs.semanticscholar.org/28cd/46a078e8fad370b1aba34762a874374513a5.pdf +286adff6eff2f53e84fe5b4d4eb25837b46cae23,http://pdfs.semanticscholar.org/b17e/61972e674f8f734bd428cb882a9bb797abe2.pdf +286812ade95e6f1543193918e14ba84e5f8e852e,http://pdfs.semanticscholar.org/9b1d/a39168a7196c2f9c85e9b3d17debff04c988.pdf +282a3ee79a08486f0619caf0ada210f5c3572367,http://pdfs.semanticscholar.org/282a/3ee79a08486f0619caf0ada210f5c3572367.pdf +288dbc40c027af002298b38954d648fddd4e2fd3,http://pdfs.semanticscholar.org/288d/bc40c027af002298b38954d648fddd4e2fd3.pdf +28f311b16e4fe4cc0ff6560aae3bbd0cb6782966,http://pdfs.semanticscholar.org/4d59/7318188a9c7f7a78dadbe5b8f8385c1e1356.pdf +28312c3a47c1be3a67365700744d3d6665b86f22,http://pdfs.semanticscholar.org/2831/2c3a47c1be3a67365700744d3d6665b86f22.pdf +28d06fd508d6f14cd15f251518b36da17909b79e,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chen_Whats_in_a_2013_CVPR_paper.pdf +28b5b5f20ad584e560cd9fb4d81b0a22279b2e7b,http://pdfs.semanticscholar.org/28b5/b5f20ad584e560cd9fb4d81b0a22279b2e7b.pdf +28bc378a6b76142df8762cd3f80f737ca2b79208,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Vedaldi_Understanding_Objects_in_2014_CVPR_paper.pdf +287900f41dd880802aa57f602e4094a8a9e5ae56,https://www.comp.nus.edu.sg/~tsim/documents/cross-expression.pdf +28c0cb56e7f97046d6f3463378d084e9ea90a89a,http://www.robots.ox.ac.uk/~vgg/publications/2005/Arandjelovic05a/arandjelovic05a.pdf +28be652db01273289499bc6e56379ca0237506c0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_018_ext.pdf +28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d,http://pdfs.semanticscholar.org/28bc/f31f794dc27f73eb248e5a1b2c3294b3ec9d.pdf +2836d68c86f29bb87537ea6066d508fde838ad71,http://arxiv.org/pdf/1510.06503v1.pdf +28de411a5b3eb8411e7bcb0003c426aa91f33e97,http://pdfs.semanticscholar.org/28de/411a5b3eb8411e7bcb0003c426aa91f33e97.pdf +28b26597a7237f9ea6a9255cde4e17ee18122904,http://pdfs.semanticscholar.org/28b2/6597a7237f9ea6a9255cde4e17ee18122904.pdf +28fe6e785b32afdcd2c366c9240a661091b850cf,http://pdfs.semanticscholar.org/28fe/6e785b32afdcd2c366c9240a661091b850cf.pdf +28c9198d30447ffe9c96176805c1cd81615d98c8,http://pdfs.semanticscholar.org/28c9/198d30447ffe9c96176805c1cd81615d98c8.pdf +28d99dc2d673d62118658f8375b414e5192eac6f,http://www.cs.wayne.edu/~mdong/cvpr17.pdf +280bc9751593897091015aaf2cab39805768b463,http://pdfs.semanticscholar.org/280b/c9751593897091015aaf2cab39805768b463.pdf +28aa89b2c827e5dd65969a5930a0520fdd4a3dc7,http://pdfs.semanticscholar.org/28aa/89b2c827e5dd65969a5930a0520fdd4a3dc7.pdf +28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68,https://www.cc.gatech.edu/~parikh/Publications/annoyance_prediction_CVPR2014.pdf +285472527c5dc1c620d9644849e7519766c2d655,http://lear.inrialpes.fr/people/mpederso/papers/ICCV15_Parts.pdf +288d2704205d9ca68660b9f3a8fda17e18329c13,http://arxiv.org/pdf/1601.04153v2.pdf +17b46e2dad927836c689d6787ddb3387c6159ece,http://cs.uky.edu/~jacobs/papers/greenwell2014faceattributes.pdf +176a3e9e118712251124c1347516a92d5e315297,http://eprints.pascal-network.org/archive/00008997/01/ICMR11.pdf +17a85799c59c13f07d4b4d7cf9d7c7986475d01c,http://pdfs.semanticscholar.org/17a8/5799c59c13f07d4b4d7cf9d7c7986475d01c.pdf +1768909f779869c0e83d53f6c91764f41c338ab5,http://arxiv.org/pdf/1506.08959v1.pdf +171ca25bc2cdfc79cad63933bcdd420d35a541ab,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Alnajar_Calibration-Free_Gaze_Estimation_2013_ICCV_paper.pdf +176bd61cc843d0ed6aa5af83c22e3feb13b89fe1,http://pdfs.semanticscholar.org/648b/f64ff77aeccf761b83dd85143a6eb832b258.pdf +17d01f34dfe2136b404e8d7f59cebfb467b72b26,http://pdfs.semanticscholar.org/4cfb/51d3b8478d7e63ba2661385337abf94d2c48.pdf +176f26a6a8e04567ea71677b99e9818f8a8819d0,http://pdfs.semanticscholar.org/176f/26a6a8e04567ea71677b99e9818f8a8819d0.pdf +17cf838720f7892dbe567129dcf3f7a982e0b56e,http://pdfs.semanticscholar.org/6e0a/a9926e484e08b31fdeb85b73d1ae65ba47d6.pdf +17035089959a14fe644ab1d3b160586c67327db2,http://pdfs.semanticscholar.org/1703/5089959a14fe644ab1d3b160586c67327db2.pdf +17370f848801871deeed22af152489e39b6e1454,http://mml.citi.sinica.edu.tw/papers/ICME_2015_Wei.pdf +17fa1c2a24ba8f731c8b21f1244463bc4b465681,http://pdfs.semanticscholar.org/d5ba/a722b1bca1f95e4e1fad968b2b74ec1ecc7f.pdf +179e566a2c1a2a48aa3d0028209c11ebe7d6740e,http://homepages.rpi.edu/~wuy9/EyeDetectionDBM/DeepFeaturesEyeDetection.pdf +17579791ead67262fcfb62ed8765e115fb5eca6f,http://pdfs.semanticscholar.org/1757/9791ead67262fcfb62ed8765e115fb5eca6f.pdf +177d1e7bbea4318d379f46d8d17720ecef3086ac,http://pdfs.semanticscholar.org/177d/1e7bbea4318d379f46d8d17720ecef3086ac.pdf +17aa78bd4331ef490f24bdd4d4cd21d22a18c09c,http://pdfs.semanticscholar.org/17aa/78bd4331ef490f24bdd4d4cd21d22a18c09c.pdf +170a5f5da9ac9187f1c88f21a88d35db38b4111a,https://arxiv.org/pdf/1611.08563v3.pdf +176fc31a686fb70d73f1fa354bf043ad236f7aa3,http://www.cs.brown.edu/~black/Papers/ofevaltr.pdf +1742e6c347037d5d4ccbdf5c7a27dfbf0afedb91,http://www1.i2r.a-star.edu.sg/~htang/Unified_Framework_for_Subspace_Clustering-TNNLS.pdf +1742ffea0e1051b37f22773613f10f69d2e4ed2c,http://pdfs.semanticscholar.org/1742/ffea0e1051b37f22773613f10f69d2e4ed2c.pdf +1791f790b99471fc48b7e9ec361dc505955ea8b1,http://pdfs.semanticscholar.org/6fea/599d7b9fc72350d6e0947d3baaf44edc561b.pdf +171d8a39b9e3d21231004f7008397d5056ff23af,http://openaccess.thecvf.com/content_cvpr_2017/papers/Wu_Simultaneous_Facial_Landmark_CVPR_2017_paper.pdf +17045163860fc7c38a0f7d575f3e44aaa5fa40d7,http://pdfs.semanticscholar.org/38b9/57e2b5ec0ea852d22d1481ef924fbf7f72e2.pdf +176e5abddb87d029f85f60d1bbff67c66500e8c3,http://www.researchgate.net/profile/Tony_Han3/publication/220930104_Efficient_Facial_Attribute_Recognition_with_a_Spatial_Codebook/links/0046351affdf1f0d96000000.pdf +174930cac7174257515a189cd3ecfdd80ee7dd54,https://arxiv.org/pdf/1502.02766v3.pdf +17fad2cc826d2223e882c9fda0715fcd5475acf3,http://pdfs.semanticscholar.org/8f64/def1fe17e2711405d66898a578e3b20da29e.pdf +17e563af203d469c456bb975f3f88a741e43fb71,https://cvhci.anthropomatik.kit.edu/~mhaurile/papers/WACV2016.pdf +171389529df11cc5a8b1fbbe659813f8c3be024d,http://pdfs.semanticscholar.org/1713/89529df11cc5a8b1fbbe659813f8c3be024d.pdf +17d5e5c9a9ee4cf85dfbb9d9322968a6329c3735,http://pdfs.semanticscholar.org/17d5/e5c9a9ee4cf85dfbb9d9322968a6329c3735.pdf +1750db78b7394b8fb6f6f949d68f7c24d28d934f,https://www3.nd.edu/~kwb/Bharati_Singh_Vatsa_Bowyer_TIFS_2016.pdf +17cf6195fd2dfa42670dc7ada476e67b381b8f69,http://pdfs.semanticscholar.org/17cf/6195fd2dfa42670dc7ada476e67b381b8f69.pdf +174f46eccb5852c1f979d8c386e3805f7942bace,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Kae_The_Shape-Time_Random_2014_CVPR_paper.pdf +17670b60dcfb5cbf8fdae0b266e18cf995f6014c,https://arxiv.org/pdf/1606.02254v1.pdf +17027a05c1414c9a06a1c5046899abf382a1142d,http://www.cs.cmu.edu/~rahuls/pub/cvpr2015-alionment-rahuls.pdf +17ded725602b4329b1c494bfa41527482bf83a6f,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf +17738b0972571e7b4ae471d1b2dccea5ce057511,http://dayongwang.info/pdf/2011-MM.pdf +177bc509dd0c7b8d388bb47403f28d6228c14b5c,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Sun_Deep_Learning_Face_2014_CVPR_paper.pdf +7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889,http://pdfs.semanticscholar.org/c67c/5780cb9870b70b78e4c82da4f92c7bb2592d.pdf +7b63ed54345d8c06523f6b03c41a09b5c8f227e2,http://research.iaun.ac.ir/pd/pourghassem/pdfs/PaperC_1187.pdf +7bf0a1aa1d0228a51d24c0c3a83eceb937a6ae25,http://pdfs.semanticscholar.org/7bf0/a1aa1d0228a51d24c0c3a83eceb937a6ae25.pdf +7b9961094d3e664fc76b12211f06e12c47a7e77d,http://pdfs.semanticscholar.org/7b99/61094d3e664fc76b12211f06e12c47a7e77d.pdf +7bfe085c10761f5b0cc7f907bdafe1ff577223e0,http://pdfs.semanticscholar.org/c32b/aaa307da7376bcb5dfef7bb985c06d032a0f.pdf +7b43326477795a772c08aee750d3e433f00f20be,http://pdfs.semanticscholar.org/7b43/326477795a772c08aee750d3e433f00f20be.pdf +7b9b3794f79f87ca8a048d86954e0a72a5f97758,http://pdfs.semanticscholar.org/7b9b/3794f79f87ca8a048d86954e0a72a5f97758.pdf +7bce4f4e85a3bfcd6bfb3b173b2769b064fce0ed,http://pdfs.semanticscholar.org/7bce/4f4e85a3bfcd6bfb3b173b2769b064fce0ed.pdf +7be60f8c34a16f30735518d240a01972f3530e00,http://www.cs.utexas.edu/~suyog/expression_recog.pdf +7bdcd85efd1e3ce14b7934ff642b76f017419751,http://www.cbsr.ia.ac.cn/users/zlei/papers/Lei-DFD-PAMI-14.pdf +7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21f,http://cvrr.ucsd.edu/publications/2012/Martin_AutoUI2012.pdf +8f3e120b030e6c1d035cb7bd9c22f6cc75782025,http://pdfs.semanticscholar.org/8f3e/120b030e6c1d035cb7bd9c22f6cc75782025.pdf +8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483,http://pdfs.semanticscholar.org/8fb6/11aca3bd8a3a0527ac0f38561a5a9a5b8483.pdf +8fa3478aaf8e1f94e849d7ffbd12146946badaba,http://pdfs.semanticscholar.org/8fa3/478aaf8e1f94e849d7ffbd12146946badaba.pdf +8f8c0243816f16a21dea1c20b5c81bc223088594,http://pdfs.semanticscholar.org/8f8c/0243816f16a21dea1c20b5c81bc223088594.pdf +8f08b2101d43b1c0829678d6a824f0f045d57da5,http://pdfs.semanticscholar.org/b93b/f0a7e449cfd0db91a83284d9eba25a6094d8.pdf +8f992ed6686710164005c20ab16cef6c6ad8d0ea,http://sist.sysu.edu.cn/~zhwshi/Research/PreprintVersion/Half-quadratic%20based%20Iterative%20Minimization%20for%20Robust%20Sparse%20Representation.pdf +8fbec9105d346cd23d48536eb20c80b7c2bbbe30,http://conradsanderson.id.au/reading_group/Barr_Effectiveness_Face_WACV_2014.pdf +8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09,http://pdfs.semanticscholar.org/8f3e/3f0f97844d3bfd9e9ec566ac7a54f6931b09.pdf +8f8a5be9dc16d73664285a29993af7dc6a598c83,http://pdfs.semanticscholar.org/8f8a/5be9dc16d73664285a29993af7dc6a598c83.pdf +8f5ce25e6e1047e1bf5b782d045e1dac29ca747e,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Kotsia07b.pdf +8f89aed13cb3555b56fccd715753f9ea72f27f05,http://pdfs.semanticscholar.org/8f89/aed13cb3555b56fccd715753f9ea72f27f05.pdf +8f92cccacf2c84f5d69db3597a7c2670d93be781,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2006/papers/1568982203.pdf +8f6263e4d3775757e804796e104631c7a2bb8679,http://pdfs.semanticscholar.org/8f62/63e4d3775757e804796e104631c7a2bb8679.pdf +8f9f599c05a844206b1bd4947d0524234940803d,http://pdfs.semanticscholar.org/8f9f/599c05a844206b1bd4947d0524234940803d.pdf +8f60c343f76913c509ce623467bf086935bcadac,http://pdfs.semanticscholar.org/8f60/c343f76913c509ce623467bf086935bcadac.pdf +8fd9c22b00bd8c0bcdbd182e17694046f245335f,http://pdfs.semanticscholar.org/8fd9/c22b00bd8c0bcdbd182e17694046f245335f.pdf +8f5facdc0a2a79283864aad03edc702e2a400346,http://pdfs.semanticscholar.org/8f5f/acdc0a2a79283864aad03edc702e2a400346.pdf +8a09668efc95eafd6c3056ff1f0fbc43bb5774db,http://sist.sysu.edu.cn/~zhwshi/Research/PreprintVersion/Robust%20Principal%20Component%20Analysis%20Based%20on%20Maximum%20Correntropy%20Criterion.pdf +8a3c5507237957d013a0fe0f082cab7f757af6ee,http://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf +8af411697e73f6cfe691fe502d4bfb42510b4835,http://pdfs.semanticscholar.org/8af4/11697e73f6cfe691fe502d4bfb42510b4835.pdf +8a1ed5e23231e86216c9bdd62419c3b05f1e0b4d,http://pdfs.semanticscholar.org/8a1e/d5e23231e86216c9bdd62419c3b05f1e0b4d.pdf +8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,http://pdfs.semanticscholar.org/acf8/b9607ca39f20b9b1956b8761b37f14eb4284.pdf +8aae23847e1beb4a6d51881750ce36822ca7ed0b,http://pdfs.semanticscholar.org/8aae/23847e1beb4a6d51881750ce36822ca7ed0b.pdf +8a40b6c75dd6392ee0d3af73cdfc46f59337efa9,http://pdfs.semanticscholar.org/f656/f6682655180162b67042d9d37c4d57c49238.pdf +8a3bb63925ac2cdf7f9ecf43f71d65e210416e17,https://www.math.uh.edu/~dlabate/ShearFace_ICPR2014.pdf +8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b,http://pdfs.semanticscholar.org/8ad0/d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b.pdf +8adb2fcab20dab5232099becbd640e9c4b6a905a,http://pdfs.semanticscholar.org/d0d1/50a51c46cfb3bdd9d5fb570018c6534b57ff.pdf +8a0d10a7909b252d0e11bf32a7f9edd0c9a8030b,http://www.cs.unc.edu/~lazebnik/research/fall07/animals_on_the_web.pdf +8a91ad8c46ca8f4310a442d99b98c80fb8f7625f,http://vislab.isr.ist.utl.pt/wp-content/uploads/2016/02/2015_TIP.pdf +8aed6ec62cfccb4dba0c19ee000e6334ec585d70,http://pdfs.semanticscholar.org/8aed/6ec62cfccb4dba0c19ee000e6334ec585d70.pdf +8a336e9a4c42384d4c505c53fb8628a040f2468e,http://pdfs.semanticscholar.org/8a33/6e9a4c42384d4c505c53fb8628a040f2468e.pdf +7e1c419065fdb9cf2a31aa4b5d0c0e03f7afd54e,http://jpinfotech.org/wp-content/plugins/infotech/file/upload/pdf/8962Face-Sketch-Synthesis-via-Sparse-Representation-Based-Greedy-Search-pdf.pdf +7e8016bef2c180238f00eecc6a50eac473f3f138,http://pdfs.semanticscholar.org/7e80/16bef2c180238f00eecc6a50eac473f3f138.pdf +7ed2c84fdfc7d658968221d78e745dfd1def6332,http://pdfs.semanticscholar.org/7ed2/c84fdfc7d658968221d78e745dfd1def6332.pdf +7e3367b9b97f291835cfd0385f45c75ff84f4dc5,https://infoscience.epfl.ch/record/182226/files/fg2013.pdf +7e00fb79576fe213853aeea39a6bc51df9fdca16,http://www.ics.ele.tue.nl/~tbasten/papers/AVSS2015_final.pdf +7ee53d931668fbed1021839db4210a06e4f33190,http://crcv.ucf.edu/projects/videolocalization_images/CVPR16_Waqas_AL.pdf +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,http://pdfs.semanticscholar.org/7e18/b5f5b678aebc8df6246716bf63ea5d8d714e.pdf +7e9df45ece7843fe050033c81014cc30b3a8903a,http://pdfs.semanticscholar.org/7e9d/f45ece7843fe050033c81014cc30b3a8903a.pdf +7ebd323ddfe3b6de8368c4682db6d0db7b70df62,http://pdfs.semanticscholar.org/7ebd/323ddfe3b6de8368c4682db6d0db7b70df62.pdf +7eb85bcb372261bad707c05e496a09609e27fdb3,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W17/papers/Sathyanarayana_A_Compute-Efficient_Algorithm_2014_CVPR_paper.pdf +7ed6ff077422f156932fde320e6b3bd66f8ffbcb,http://pdfs.semanticscholar.org/7ed6/ff077422f156932fde320e6b3bd66f8ffbcb.pdf +7e0c75ce731131e613544e1a85ae0f2c28ee4c1f,http://pdfs.semanticscholar.org/7e0c/75ce731131e613544e1a85ae0f2c28ee4c1f.pdf +7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,http://pdfs.semanticscholar.org/7e1e/a2679a110241ed0dd38ff45cd4dfeb7a8e83.pdf +7e507370124a2ac66fb7a228d75be032ddd083cc,http://pdfs.semanticscholar.org/8992/4d7418df1380044af9ab706a019418952141.pdf +1056347fc5e8cd86c875a2747b5f84fd570ba232,http://arxiv.org/pdf/1607.06408v1.pdf +10550ee13855bd7403946032354b0cd92a10d0aa,http://www.public.asu.edu/~chaitali/confpapers/neuromorphic_dac12.pdf +10e12d11cb98ffa5ae82343f8904cfe321ae8004,http://pdfs.semanticscholar.org/10e1/2d11cb98ffa5ae82343f8904cfe321ae8004.pdf +10e7dd3bbbfbc25661213155e0de1a9f043461a2,http://pdfs.semanticscholar.org/eb9c/24686d2d8a65894e6d708c6107724f2b6c04.pdf +10a285260e822b49023c4324d0fbbca7df8e128b,https://staff.fnwi.uva.nl/m.jain/pub/jain-objects2action-iccv2015.pdf +100105d6c97b23059f7aa70589ead2f61969fbc3,http://www.rci.rutgers.edu/~vmp93/Conference_pub/WACV2016_CFP.pdf +100da509d4fa74afc6e86a49352751d365fceee5,http://vision.ucsd.edu/sites/default/files/iccv2011_20q_parts_final.pdf +10ab1b48b2a55ec9e2920a5397febd84906a7769,http://pdfs.semanticscholar.org/10ab/1b48b2a55ec9e2920a5397febd84906a7769.pdf +10ce3a4724557d47df8f768670bfdd5cd5738f95,http://pdfs.semanticscholar.org/10ce/3a4724557d47df8f768670bfdd5cd5738f95.pdf +100428708e4884300e4c1ac1f84cbb16e7644ccf,http://www.math.uh.edu/~dlabate/ICASSP_2014.pdf +102e374347698fe5404e1d83f441630b1abf62d9,https://infoscience.epfl.ch/record/209965/files/TBME-preprint-infoscience.pdf +1033ca56c7e88d8b3e80546848826f572c4cd63e,http://alumni.cs.ucsb.edu/~daniel/publications/conferences/fg11/DattaFerisVaqueroFG2011.pdf +10f17534dba06af1ddab96c4188a9c98a020a459,http://www.cs.umass.edu/~mccallum/papers/peoplelda-iccv07.pdf +10e0e6f1ec00b20bc78a5453a00c792f1334b016,http://pdfs.semanticscholar.org/672f/ae3da801b2a0d2bad65afdbbbf1b2320623e.pdf +102b968d836177f9c436141e382915a4f8549276,https://ibug.doc.ic.ac.uk/media/uploads/documents/PanticEtAl-ACM-MM05-Proc.pdf +100641ed8a5472536dde53c1f50fa2dd2d4e9be9,https://filebox.ece.vt.edu/~parikh/Publications/Parikh_hum_mac_com_Allerton_2013.pdf +10195a163ab6348eef37213a46f60a3d87f289c5,https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/156130/eth-50296-01.pdf +10b06d05b8b3a2c925b951a6d1d5919f536ffed4,http://gamesstudio.org/chek/wp-content/uploads/2014/01/interactivity_befaced.pdf +10e704c82616fb5d9c48e0e68ee86d4f83789d96,http://pdfs.semanticscholar.org/10e7/04c82616fb5d9c48e0e68ee86d4f83789d96.pdf +10f2b8188c745d43c1580f5ee6de71ad8d538b4d,http://staff.eng.bahcesehir.edu.tr/~cigdemeroglu/papers/international_conference_papers/2015_EmotiW.pdf +106732a010b1baf13c61d0994552aee8336f8c85,http://arxiv.org/pdf/1509.04186v2.pdf +10e70a34d56258d10f468f8252a7762950830d2b,http://intechweb.org/downloadpdf.php?id=5889 +102b27922e9bd56667303f986404f0e1243b68ab,https://applied-informatics-j.springeropen.com/track/pdf/10.1186/s40535-017-0042-5?site=applied-informatics-j.springeropen.com +10fcbf30723033a5046db791fec2d3d286e34daa,http://pdfs.semanticscholar.org/10fc/bf30723033a5046db791fec2d3d286e34daa.pdf +108b2581e07c6b7ca235717c749d45a1fa15bb24,http://www.cs.umd.edu/~djacobs/pubs_files/TPAMI_Proofs.pdf +10d334a98c1e2a9e96c6c3713aadd42a557abb8b,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Shi_Scene_Text_Recognition_2013_CVPR_paper.pdf +10f66f6550d74b817a3fdcef7fdeba13ccdba51c,http://pdfs.semanticscholar.org/10f6/6f6550d74b817a3fdcef7fdeba13ccdba51c.pdf +107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53,http://pdfs.semanticscholar.org/65ef/8706ae8c4e22d491550f5fff052ca3f5db21.pdf +1048c753e9488daa2441c50577fe5fdba5aa5d7c,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/473.pdf +10ca2e03ff995023a701e6d8d128455c6e8db030,http://pdfs.semanticscholar.org/a941/e5f8778cbac75e21172985a0575b51ea819b.pdf +1921e0a97904bdf61e17a165ab159443414308ed,http://pdfs.semanticscholar.org/1921/e0a97904bdf61e17a165ab159443414308ed.pdf +19dd371e1649ab55a46f4b98890d6937a411ec5d,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2011_11_17_DagliC_HST_FP.pdf +19841b721bfe31899e238982a22257287b9be66a,http://pdfs.semanticscholar.org/1984/1b721bfe31899e238982a22257287b9be66a.pdf +19746957aa0d800d550da246a025ad44409cdb03,http://pdfs.semanticscholar.org/1974/6957aa0d800d550da246a025ad44409cdb03.pdf +1922ad4978ab92ce0d23acc4c7441a8812f157e5,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2015_alignment.pdf +19e62a56b6772bbd37dfc6b8f948e260dbb474f5,http://pdfs.semanticscholar.org/19e6/2a56b6772bbd37dfc6b8f948e260dbb474f5.pdf +192723085945c1d44bdd47e516c716169c06b7c0,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/VisionandAttentionTheoryBasedSampling14.pdf +1943c6bf8df8a64bd539a5cd6d4e68785eb590c2,http://ccs.njit.edu/inst/source/02MDDM08.pdf +19fb5e5207b4a964e5ab50d421e2549ce472baa8,http://mmi.tudelft.nl/sites/default/files/e-FEDCompSys14final.pdf +1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2,http://www.es.ele.tue.nl/~sander/publications/icme16.pdf +1962e4c9f60864b96c49d85eb897141486e9f6d1,http://www.patternrecognition.cn/~zhongjin/2011/2011Lai_NCP.pdf +195df1106f4d7aff0e9cb609358abbf80f54a716,https://arxiv.org/pdf/1511.02917v1.pdf +193debca0be1c38dabc42dc772513e6653fd91d8,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf +191674c64f89c1b5cba19732869aa48c38698c84,http://pdfs.semanticscholar.org/1916/74c64f89c1b5cba19732869aa48c38698c84.pdf +190d8bd39c50b37b27b17ac1213e6dde105b21b8,https://dr.ntu.edu.sg/bitstream/handle/10220/18955/fp518-wang.pdf?isAllowed=y&sequence=1 +19af008599fb17bbd9b12288c44f310881df951c,http://pdfs.semanticscholar.org/19af/008599fb17bbd9b12288c44f310881df951c.pdf +19296e129c70b332a8c0a67af8990f2f4d4f44d1,http://lear.inrialpes.fr/pubs/2009/GVS09/supplmat.pdf +19666b9eefcbf764df7c1f5b6938031bcf777191,https://arxiv.org/pdf/1212.3913v4.pdf +198b6beb53e0e61357825d57938719f614685f75,http://pdfs.semanticscholar.org/198b/6beb53e0e61357825d57938719f614685f75.pdf +1939168a275013d9bc1afaefc418684caf99ba66,http://research.microsoft.com/en-us/um/people/jiansun/papers/CVPR11_FaceAPModel.pdf +190b3caa2e1a229aa68fd6b1a360afba6f50fde4,http://pdfs.semanticscholar.org/190b/3caa2e1a229aa68fd6b1a360afba6f50fde4.pdf +19e0cc41b9f89492b6b8c2a8a58d01b8242ce00b,http://pdfs.semanticscholar.org/4088/3844c1ceab95cb92498a92bfdf45beaa288e.pdf +19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54,http://cvrr.ucsd.edu/publications/2006/McCallTrivedi_v4hci_cvpr2006.pdf +1938d85feafdaa8a65cb9c379c9a81a0b0dcd3c4,http://www4.comp.polyu.edu.hk/~cslzhang/paper/MBC_TIFS_final.pdf +195d331c958f2da3431f37a344559f9bce09c0f7,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_066_ext.pdf +199c2df5f2847f685796c2523221c6436f022464,https://static.aminer.org/pdf/PDF/000/322/051/self_quotient_image_for_face_recognition.pdf +19c0069f075b5b2d8ac48ad28a7409179bd08b86,http://people.csail.mit.edu/torralba/publications/iccv2013_khosla.pdf +19c0c7835dba1a319b59359adaa738f0410263e8,http://www.svcl.ucsd.edu/publications/journal/2009/pami09-fs.pdf +19808134b780b342e21f54b60095b181dfc7a600,http://www.openu.ac.il/home/hassner/projects/siftscales/HassneretalTPAMI16.pdf +19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9,https://arxiv.org/pdf/1503.03832v2.pdf +19a9f658ea14701502d169dc086651b1d9b2a8ea,http://www.cbsr.ia.ac.cn/users/zlei/papers/JJYan-FG2013.pdf +19d4855f064f0d53cb851e9342025bd8503922e2,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d468.pdf +19d3b02185ad36fb0b792f2a15a027c58ac91e8e,http://pdfs.semanticscholar.org/19d3/b02185ad36fb0b792f2a15a027c58ac91e8e.pdf +193ec7bb21321fcf43bbe42233aed06dbdecbc5c,http://pdfs.semanticscholar.org/d40e/f2ca85d8b7540948677c2ed07f1f3677cfdd.pdf +19da9f3532c2e525bf92668198b8afec14f9efea,http://pdfs.semanticscholar.org/19da/9f3532c2e525bf92668198b8afec14f9efea.pdf +19868a469dc25ee0db00947e06c804b88ea94fd0,http://pdfs.semanticscholar.org/1986/8a469dc25ee0db00947e06c804b88ea94fd0.pdf +192235f5a9e4c9d6a28ec0d333e36f294b32f764,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf +197eaa59a003a4c7cc77c1abe0f99d942f716942,http://www.lv-nus.org/papers%5C2009%5C2009_mm_age.pdf +19878141fbb3117d411599b1a74a44fc3daf296d,http://pdfs.semanticscholar.org/1987/8141fbb3117d411599b1a74a44fc3daf296d.pdf +19f076998ba757602c8fec04ce6a4ca674de0e25,http://pdfs.semanticscholar.org/19f0/76998ba757602c8fec04ce6a4ca674de0e25.pdf +191d30e7e7360d565b0c1e2814b5bcbd86a11d41,http://homepages.rpi.edu/~wuy9/DiscriminativeDeepFaceShape/DiscriminativeDeepFaceShape_IJCV.pdf +19994e667d908bc0aacfb663ab0a2bb5ad16b221,http://pdfs.semanticscholar.org/65b1/70e5ec86f5fc500fd5cbd7bfe7b2ec4ef045.pdf +19eb486dcfa1963c6404a9f146c378fc7ae3a1df,https://pdfs.semanticscholar.org/3b4d/bd7be0b5b0df2e0c61a977974b1fc78ad3e5.pdf +4c6daffd092d02574efbf746d086e6dc0d3b1e91,http://pdfs.semanticscholar.org/4c6d/affd092d02574efbf746d086e6dc0d3b1e91.pdf +4cb8a691a15e050756640c0a35880cdd418e2b87,http://www.vision.caltech.edu/~bart/Publications/2004/BartUllmanClassBasedMatching.pdf +4c8581246ed4d90c942a23ed7c0e007221fa684d,http://welcome.isr.ist.utl.pt/img/pdfs/3439_14-ICIPb.pdf +4ca1fcfd7650eeb0ac8d51cff31b70717cdddfdd,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1563.pdf +4cc681239c8fda3fb04ba7ac6a1b9d85b68af31d,http://pdfs.semanticscholar.org/56a6/77c889e0e2c9f68ab8ca42a7e63acf986229.pdf +4c6e1840451e1f86af3ef1cb551259cb259493ba,http://pdfs.semanticscholar.org/4c6e/1840451e1f86af3ef1cb551259cb259493ba.pdf +4cf3419dbf83a76ccac11828ca57b46bbbe54e0a,https://www.researchgate.net/profile/Muhammad_Sharif9/publication/224173583_Illumination_normalization_preprocessing_for_face_recognition/links/02e7e51a47972ae996000000.pdf +4c87aafa779747828054cffee3125fcea332364d,http://pdfs.semanticscholar.org/4c87/aafa779747828054cffee3125fcea332364d.pdf +4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56,https://arxiv.org/pdf/1612.00523v1.pdf +4c8e5fc0877d066516bb63e6c31eb1b8b5f967eb,http://pdfs.semanticscholar.org/4c8e/5fc0877d066516bb63e6c31eb1b8b5f967eb.pdf +4cb0e0c0e9b92e457f2c546dc25b9a4ff87ff819,http://dayongwang.info/pdf/2012-CIKM.pdf +4c8ef4f98c6c8d340b011cfa0bb65a9377107970,http://pdfs.semanticscholar.org/4c8e/f4f98c6c8d340b011cfa0bb65a9377107970.pdf +4c822785c29ceaf67a0de9c699716c94fefbd37d,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhu_A_Key_Volume_CVPR_2016_paper.pdf +4c815f367213cc0fb8c61773cd04a5ca8be2c959,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0002470.pdf +4c1528bab3142ec957700ab502531e1a67e7f2f6,http://www.researchgate.net/profile/Xiaohua_Xie/publication/220932399_Restoration_of_a_Frontal_Illuminated_Face_Image_Based_on_KPCA/links/00b49522adfc6b1435000000.pdf +4c6233765b5f83333f6c675d3389bbbf503805e3,https://perceptual.mpi-inf.mpg.de/files/2015/03/Yan_Vis13.pdf +4c078c2919c7bdc26ca2238fa1a79e0331898b56,http://pdfs.semanticscholar.org/4c07/8c2919c7bdc26ca2238fa1a79e0331898b56.pdf +4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,https://arxiv.org/pdf/1611.09956v1.pdf +4cac9eda716a0addb73bd7ffea2a5fb0e6ec2367,http://pdfs.semanticscholar.org/4cac/9eda716a0addb73bd7ffea2a5fb0e6ec2367.pdf +4c4236b62302957052f1bbfbd34dbf71ac1650ec,http://www.eurecom.fr/en/publication/3397/download/mm-publi-3397.pdf +4cd0da974af9356027a31b8485a34a24b57b8b90,https://arxiv.org/pdf/1703.00862v2.pdf +4c170a0dcc8de75587dae21ca508dab2f9343974,http://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf +4c81c76f799c48c33bb63b9369d013f51eaf5ada,https://www.cmpe.boun.edu.tr/~salah/kaya17chalearn.pdf +4c1ce6bced30f5114f135cacf1a37b69bb709ea1,http://imag.pub.ro/common/staff/cflorea/papers/nlp_eye_MVA_site.pdf +4c5b38ac5d60ab0272145a5a4d50872c7b89fe1b,https://opus.lib.uts.edu.au/bitstream/10453/43339/1/APSIPA_ASC_2015_submission_313.pdf +4c523db33c56759255b2c58c024eb6112542014e,http://www0.cs.ucl.ac.uk/staff/P.Li/publication/ICCV09JaniaAghajanian.pdf +261c3e30bae8b8bdc83541ffa9331b52fcf015e6,http://pdfs.semanticscholar.org/a751/04bc7dbaaf549d89f163560525031b49df38.pdf +26f03693c50eb50a42c9117f107af488865f3dc1,http://pdfs.semanticscholar.org/26f0/3693c50eb50a42c9117f107af488865f3dc1.pdf +2661f38aaa0ceb424c70a6258f7695c28b97238a,http://mplab.ucsd.edu/wordpress/wp-content/uploads/multilayer2012.pdf +2609079d682998da2bc4315b55a29bafe4df414e,http://www.iab-rubric.org/papers/ICIP-13-camready.pdf +264a84f4d27cd4bca94270620907cffcb889075c,https://arxiv.org/pdf/1612.06615v1.pdf +26d407b911d1234e8e3601e586b49316f0818c95,https://arxiv.org/pdf/1709.00965v1.pdf +26a72e9dd444d2861298d9df9df9f7d147186bcd,https://engineering.purdue.edu/~qobi/papers/mvap2016.pdf +26433d86b9c215b5a6871c70197ff4081d63054a,https://www.researchgate.net/profile/WL_Woo/publication/221093080_Multimodal_biometric_fusion_at_feature_level_Face_and_palmprint/links/0fcfd5134b4f62c892000000.pdf +265af79627a3d7ccf64e9fe51c10e5268fee2aae,http://media.cs.tsinghua.edu.cn/~cvg/publications/ENGLISH%20JOURNAL%20PAPERS/A%20Mixture%20of%20Transformed%20Hidden%20Markov%20Models%20for%20Elastic%20Motion%20Estimation.pdf +267c6e8af71bab68547d17966adfaab3b4711e6b,http://pdfs.semanticscholar.org/3097/60122ce6215876c013b2b0211f1df8239df5.pdf +26af867977f90342c9648ccf7e30f94470d40a73,http://pdfs.semanticscholar.org/26af/867977f90342c9648ccf7e30f94470d40a73.pdf +26a89701f4d41806ce8dbc8ca00d901b68442d45,http://pdfs.semanticscholar.org/b7d8/fea52643236bd9b0dd7eec5f1cde248d10f6.pdf +26c884829897b3035702800937d4d15fef7010e4,http://pdfs.semanticscholar.org/9200/10cc55d2658e04b01783118b59b7d90420c6.pdf +266ed43dcea2e7db9f968b164ca08897539ca8dd,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Duong_Beyond_Principal_Components_2015_CVPR_paper.pdf +26ad6ceb07a1dc265d405e47a36570cb69b2ace6,http://pdfs.semanticscholar.org/26ad/6ceb07a1dc265d405e47a36570cb69b2ace6.pdf +26ec75b8ad066b36f814379a79ad57089c82c079,http://www.seas.upenn.edu/~bensapp/papers/ambig-tech-report-2009.pdf +2642810e6c74d900f653f9a800c0e6a14ca2e1c7,http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_Projection_Bank_From_ICCV_2015_paper.pdf +26437fb289cd7caeb3834361f0cc933a02267766,http://pdfs.semanticscholar.org/2643/7fb289cd7caeb3834361f0cc933a02267766.pdf +2654ef92491cebeef0997fd4b599ac903e48d07a,http://www.ee.oulu.fi/~gyzhao/Papers/2008/Facial%20Expression%20Recognition%20from%20Near-Infrared%20Video%20Sequences.pdf +2679e4f84c5e773cae31cef158eb358af475e22f,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Liu_Adaptive_Deep_Metric_CVPR_2017_paper.pdf +265e76285e18587065a1e28246971f003c5267f3,http://cortex.informatik.tu-ilmenau.de/~wilhelm/wilhelm-soave-2004a.pdf +26ac607a101492bc86fd81a141311066cfe9e2b5,http://www.eecs.qmul.ac.uk/~hy300/papers/YangPatrasiccv2013.pdf +21ef129c063bad970b309a24a6a18cbcdfb3aff5,http://pdfs.semanticscholar.org/21ef/129c063bad970b309a24a6a18cbcdfb3aff5.pdf +218b2c5c9d011eb4432be4728b54e39f366354c1,http://infolab.stanford.edu/~wangz/project/imsearch/ALIP/TIP13/sawant.pdf +217a21d60bb777d15cd9328970cab563d70b5d23,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf +21e828071249d25e2edaca0596e27dcd63237346,http://research.microsoft.com/pubs/122158/cvpr2010.pdf +21a2f67b21905ff6e0afa762937427e92dc5aa0b,http://pdfs.semanticscholar.org/21a2/f67b21905ff6e0afa762937427e92dc5aa0b.pdf +2179afa1cb4bd6d6ff0ca8df580ae511f59d99a3,http://pdfs.semanticscholar.org/f9f4/9f8347db35e721672955c3e24f60574553c0.pdf +2162654cb02bcd10794ae7e7d610c011ce0fb51b,http://www.jdl.ac.cn/doc/2011/201511610103648366_%E5%88%98%E8%B4%A4%E6%98%8E.pdf +21258aa3c48437a2831191b71cd069c05fb84cf7,http://pdfs.semanticscholar.org/2125/8aa3c48437a2831191b71cd069c05fb84cf7.pdf +211c42a567e02987a6f89b89527de3bf4d2e9f90,http://www.cs.dartmouth.edu/~dutran/papers/ijcv16_preprint.pdf +21f3c5b173503185c1e02a3eb4e76e13d7e9c5bc,http://pdfs.semanticscholar.org/21f3/c5b173503185c1e02a3eb4e76e13d7e9c5bc.pdf +21bd9374c211749104232db33f0f71eab4df35d5,http://www.eurecom.fr/en/publication/5184/download/sec-publi-5184.pdf +214db8a5872f7be48cdb8876e0233efecdcb6061,http://users.eecs.northwestern.edu/~mya671/mypapers/ICCV13_Zhang_Yang_Wang_Lin_Tian.pdf +21104bcf07ef0269ab133471a3200b9bf94b2948,http://www.cs.utexas.edu/~grauman/papers/liang-cvpr2014.pdf +21d9d0deed16f0ad62a4865e9acf0686f4f15492,http://amp.ece.cmu.edu/people/Andy/Andy_files/cvpr09.pdf +214ac8196d8061981bef271b37a279526aab5024,http://pdfs.semanticscholar.org/214a/c8196d8061981bef271b37a279526aab5024.pdf +213a579af9e4f57f071b884aa872651372b661fd,http://www.robots.ox.ac.uk/~vgg/publications/2013/Charles13a/charles13a.pdf +21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1,http://www.eecs.qmul.ac.uk/~jason/Research/PreprintVersion/Transductive%20VIS-NIR%20Face%20Matching.pdf +21ec41a6ee3c655cf54c6db659d56480fc76e742,http://www.liacs.nl/home/mlew/ivc2007.emotion.pdf +217de4ff802d4904d3f90d2e24a29371307942fe,http://www.cs.columbia.edu/~tberg/papers/poof-cvpr13.pdf +210b98394c3be96e7fd75d3eb11a391da1b3a6ca,http://pdfs.semanticscholar.org/210b/98394c3be96e7fd75d3eb11a391da1b3a6ca.pdf +21765df4c0224afcc25eb780bef654cbe6f0bc3a,http://ci2cv.net/media/papers/2013_ICCV_Kiani.pdf +21b16df93f0fab4864816f35ccb3207778a51952,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2015/06.18.19.06/doc/PID3766353.pdf +4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27,http://pdfs.semanticscholar.org/4d49/c6cff198cccb21f4fa35fd75cbe99cfcbf27.pdf +4d625677469be99e0a765a750f88cfb85c522cce,http://pdfs.semanticscholar.org/cccc/378e98218bbedfd93da956e4a07b9971b928.pdf +4d6c3a3f9410ca35eb3389ec7088f5e2c16ec3ea,http://www.researchgate.net/profile/Roland_Goecke/publication/221429947_Static_facial_expression_analysis_in_tough_conditions_Data_evaluation_protocol_and_benchmark/links/0fcfd50e81697312d6000000.pdf +4da735d2ed0deeb0cae4a9d4394449275e316df2,http://cvrr.ucsd.edu/publications/2016/0406.pdf +4d15254f6f31356963cc70319ce416d28d8924a3,http://pdfs.semanticscholar.org/4d15/254f6f31356963cc70319ce416d28d8924a3.pdf +4d530a4629671939d9ded1f294b0183b56a513ef,http://pdfs.semanticscholar.org/4d53/0a4629671939d9ded1f294b0183b56a513ef.pdf +4d2975445007405f8cdcd74b7fd1dd547066f9b8,http://pdfs.semanticscholar.org/4d29/75445007405f8cdcd74b7fd1dd547066f9b8.pdf +4df889b10a13021928007ef32dc3f38548e5ee56,http://ww2.cs.fsu.edu/~ywu/PDF-files/IJCNN.pdf +4d6462fb78db88afff44561d06dd52227190689c,http://pdfs.semanticscholar.org/4d64/62fb78db88afff44561d06dd52227190689c.pdf +4d423acc78273b75134e2afd1777ba6d3a398973,http://pdfs.semanticscholar.org/4d42/3acc78273b75134e2afd1777ba6d3a398973.pdf +4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41,http://pdfs.semanticscholar.org/4dd6/d511a8bbc4d9965d22d79ae6714ba48c8e41.pdf +4de757faa69c1632066391158648f8611889d862,http://pdfs.semanticscholar.org/4de7/57faa69c1632066391158648f8611889d862.pdf +4dd71a097e6b3cd379d8c802460667ee0cbc8463,http://www.dgcv.nii.ac.jp/Publications/Papers/2015/BWILD2015.pdf +4d9a02d080636e9666c4d1cc438b9893391ec6c7,http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf +4d9c02567e7b9e065108eb83ea3f03fcff880462,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Towards_Facial_Expression_CVPR_2016_paper.pdf +4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002352.pdf +4d90bab42806d082e3d8729067122a35bbc15e8d,http://pdfs.semanticscholar.org/4d90/bab42806d082e3d8729067122a35bbc15e8d.pdf +4d3c4c3fe8742821242368e87cd72da0bd7d3783,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTiccv13.pdf +4d01d78544ae0de3075304ff0efa51a077c903b7,http://pdfs.semanticscholar.org/8f82/71d557ae862866c692e556f610ab45dcc399.pdf +4dd2be07b4f0393995b57196f8fc79d666b3aec5,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p3572-lee.pdf +4d356f347ab6647fb3e8ed8c2154dbd359e479ed,http://www.researchgate.net/profile/Anna_Esposito/publication/225441684_Extracting_and_Associating_Meta-features_for_Understanding_Peoples_Emotional_Behaviour_Face_and_Speech/links/02e7e52bed3a1b106e000000.pdf +4d8ce7669d0346f63b20393ffaa438493e7adfec,http://pdfs.semanticscholar.org/4d8c/e7669d0346f63b20393ffaa438493e7adfec.pdf +4d21a2866cfd1f0fb2a223aab9eecfdec963059a,http://pdfs.semanticscholar.org/ddb3/5264ae7a74811bf8eb63d0eca7b7db07a4b1.pdf +4d16337cc0431cd43043dfef839ce5f0717c3483,http://pdfs.semanticscholar.org/4d16/337cc0431cd43043dfef839ce5f0717c3483.pdf +4d0b3921345ae373a4e04f068867181647d57d7d,http://people.cs.pitt.edu/~kovashka/murrugarra_llerena_kovashka_wacv2017_slides.pdf +4d0ef449de476631a8d107c8ec225628a67c87f9,http://www.wjscheirer.com/papers/wjs_btas2010b_photohead.pdf +4df3143922bcdf7db78eb91e6b5359d6ada004d2,http://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf +75fcbb01bc7e53e9de89cb1857a527f97ea532ce,http://pdfs.semanticscholar.org/75fc/bb01bc7e53e9de89cb1857a527f97ea532ce.pdf +7577a1ddf9195513a5c976887ad806d1386bb1e9,http://pdfs.semanticscholar.org/7577/a1ddf9195513a5c976887ad806d1386bb1e9.pdf +757e4cb981e807d83539d9982ad325331cb59b16,http://pdfs.semanticscholar.org/757e/4cb981e807d83539d9982ad325331cb59b16.pdf +75e9a141b85d902224f849ea61ab135ae98e7bfb,http://pdfs.semanticscholar.org/d1a5/0fffd1c9cf033943636b9e18172ed68582b1.pdf +75b833dde2e76c5de5912db3444d62c4131d15dc,http://www.researchgate.net/profile/Vassilios_Solachidis/publication/4303365_A_Face_Tracker_Trajectories_Clustering_Using_Mutual_Information/links/09e4150ca146dba69c000000.pdf +75503aff70a61ff4810e85838a214be484a674ba,https://www.ri.cmu.edu/pub_files/2012/0/Improved-Facial-Expression.pdf +75fd9acf5e5b7ed17c658cc84090c4659e5de01d,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_035_ext.pdf +75908b6460eb0781130ed0aa94585be25a584996,http://pdfs.semanticscholar.org/7590/8b6460eb0781130ed0aa94585be25a584996.pdf +75cd81d2513b7e41ac971be08bbb25c63c37029a,http://pdfs.semanticscholar.org/75cd/81d2513b7e41ac971be08bbb25c63c37029a.pdf +75bf3b6109d7a685236c8589f8ead7d769ea863f,http://pdfs.semanticscholar.org/75bf/3b6109d7a685236c8589f8ead7d769ea863f.pdf +751970d4fb6f61d1b94ca82682984fd03c74f127,http://pdfs.semanticscholar.org/7519/70d4fb6f61d1b94ca82682984fd03c74f127.pdf +759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,http://homes.cs.washington.edu/~neeraj/projects/faceverification/base/papers/nk_iccv2009_attrs.pdf +75ebe1e0ae9d42732e31948e2e9c03d680235c39,http://pdfs.semanticscholar.org/75eb/e1e0ae9d42732e31948e2e9c03d680235c39.pdf +75e5ba7621935b57b2be7bf4a10cad66a9c445b9,http://pdfs.semanticscholar.org/75e5/ba7621935b57b2be7bf4a10cad66a9c445b9.pdf +75859ac30f5444f0d9acfeff618444ae280d661d,http://www.cse.msu.edu/rgroups/biometrics/Publications/SecureBiometrics/NagarNandakumarJain_MultibiometricCryptosystems_TIFS11.pdf +7553fba5c7f73098524fbb58ca534a65f08e91e7,http://pdfs.semanticscholar.org/7553/fba5c7f73098524fbb58ca534a65f08e91e7.pdf +751b26e7791b29e4e53ab915bfd263f96f531f56,http://affect.media.mit.edu/pdfs/12.Hernandez-Hoque-Drevo-Picard-MoodMeter-Ubicomp.pdf +75da1df4ed319926c544eefe17ec8d720feef8c0,http://pdfs.semanticscholar.org/75da/1df4ed319926c544eefe17ec8d720feef8c0.pdf +75259a613285bdb339556ae30897cb7e628209fa,http://openaccess.thecvf.com/content_iccv_2015/papers/Kodirov_Unsupervised_Domain_Adaptation_ICCV_2015_paper.pdf +75d2ecbbcc934563dff6b39821605dc6f2d5ffcc,http://pdfs.semanticscholar.org/75d2/ecbbcc934563dff6b39821605dc6f2d5ffcc.pdf +81bfe562e42f2eab3ae117c46c2e07b3d142dade,http://pdfs.semanticscholar.org/81bf/e562e42f2eab3ae117c46c2e07b3d142dade.pdf +81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,http://pdfs.semanticscholar.org/8169/5fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f.pdf +8147ee02ec5ff3a585dddcd000974896cb2edc53,http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2012aePAMI.pdf +814b05113ba0397d236736f94c01e85bb034c833,http://pdfs.semanticscholar.org/814b/05113ba0397d236736f94c01e85bb034c833.pdf +816bd8a7f91824097f098e4f3e0f4b69f481689d,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00334.pdf +81831ed8e5b304e9d28d2d8524d952b12b4cbf55,http://pdfs.semanticscholar.org/8183/1ed8e5b304e9d28d2d8524d952b12b4cbf55.pdf +81b2a541d6c42679e946a5281b4b9dc603bc171c,http://pdfs.semanticscholar.org/81b2/a541d6c42679e946a5281b4b9dc603bc171c.pdf +81e11e33fc5785090e2d459da3ac3d3db5e43f65,http://pdfs.semanticscholar.org/81e1/1e33fc5785090e2d459da3ac3d3db5e43f65.pdf +81e366ed1834a8d01c4457eccae4d57d169cb932,http://www-public.int-edu.eu/~horain/Publications/Wesierski%20ICCV_2013.pdf +81fc86e86980a32c47410f0ba7b17665048141ec,http://pdfs.semanticscholar.org/81fc/86e86980a32c47410f0ba7b17665048141ec.pdf +8160b3b5f07deaa104769a2abb7017e9c031f1c1,http://www.aiia.csd.auth.gr/EN/cor_baayen/Exploiting_Discriminant_Information_in_NMF_for_FFV.pdf +816eff5e92a6326a8ab50c4c50450a6d02047b5e,http://pdfs.semanticscholar.org/816e/ff5e92a6326a8ab50c4c50450a6d02047b5e.pdf +8149c30a86e1a7db4b11965fe209fe0b75446a8c,http://www.cfar.umd.edu/~kale/ICVGIP2012.pdf +81dd68de9d88c49db1ae509dbc66c7a82809c026,http://atvs.ii.uam.es/files/2004_SPM_Biometrics_Ortega.pdf +81da427270c100241c07143885ba3051ec4a2ecb,http://pdfs.semanticscholar.org/81da/427270c100241c07143885ba3051ec4a2ecb.pdf +810f5606a4769fc3dd99611acf805596fb79223d,http://pdfs.semanticscholar.org/810f/5606a4769fc3dd99611acf805596fb79223d.pdf +861c650f403834163a2c27467a50713ceca37a3e,http://personal.stevens.edu/~hli18/data/papers/PEPICCV2013_CameraReady.pdf +86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663,http://pdfs.semanticscholar.org/8661/4c2d2f6ebcb9c600d4aef85fd6bf6eab6663.pdf +86b69b3718b9350c9d2008880ce88cd035828432,http://pdfs.semanticscholar.org/86b6/9b3718b9350c9d2008880ce88cd035828432.pdf +86904aee566716d9bef508aa9f0255dc18be3960,http://pdfs.semanticscholar.org/8690/4aee566716d9bef508aa9f0255dc18be3960.pdf +867e709a298024a3c9777145e037e239385c0129,http://pdfs.semanticscholar.org/867e/709a298024a3c9777145e037e239385c0129.pdf +86c5478f21c4a9f9de71b5ffa90f2a483ba5c497,http://pdfs.semanticscholar.org/86c5/478f21c4a9f9de71b5ffa90f2a483ba5c497.pdf +86c053c162c08bc3fe093cc10398b9e64367a100,http://pdfs.semanticscholar.org/86c0/53c162c08bc3fe093cc10398b9e64367a100.pdf +86b985b285c0982046650e8d9cf09565a939e4f9,http://pdfs.semanticscholar.org/86b9/85b285c0982046650e8d9cf09565a939e4f9.pdf +861802ac19653a7831b314cd751fd8e89494ab12,http://btpwpdf.ijoy365.com/time-of-flight-and-depth-imaging-marcin-63540537.pdf +86ed5b9121c02bcf26900913f2b5ea58ba23508f,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wang_Actions__Transformations_CVPR_2016_paper.pdf +861b12f405c464b3ffa2af7408bff0698c6c9bf0,http://pdfs.semanticscholar.org/861b/12f405c464b3ffa2af7408bff0698c6c9bf0.pdf +862d17895fe822f7111e737cbcdd042ba04377e8,http://pdfs.semanticscholar.org/862d/17895fe822f7111e737cbcdd042ba04377e8.pdf +86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6,http://pdfs.semanticscholar.org/86e1/bdbfd13b9ed137e4c4b8b459a3980eb257f6.pdf +86b6de59f17187f6c238853810e01596d37f63cd,http://pdfs.semanticscholar.org/86b6/de59f17187f6c238853810e01596d37f63cd.pdf +86b105c3619a433b6f9632adcf9b253ff98aee87,http://www.cecs.uci.edu/~papers/icme06/pdfs/0001013.pdf +862f2d84b4230d64ddb3e48967ad417089f2c291,http://www.umiacs.umd.edu/users/pvishalm/Conference_pub/ICIP14_landmarks.pdf +86d1fbaecd02b44309383830e6d985dc09e786aa,http://feng-xu.com/papers/ExpressionSynthesis_CVPR.pdf +86a8b3d0f753cb49ac3250fa14d277983e30a4b7,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W09/papers/Zhang_Exploiting_Unlabeled_Ages_2013_CVPR_paper.pdf +86b51bd0c80eecd6acce9fc538f284b2ded5bcdd,http://pdfs.semanticscholar.org/86b5/1bd0c80eecd6acce9fc538f284b2ded5bcdd.pdf +8699268ee81a7472a0807c1d3b1db0d0ab05f40d,http://pdfs.semanticscholar.org/8699/268ee81a7472a0807c1d3b1db0d0ab05f40d.pdf +86f8e6310d114bb24deb971e8bc7089df6ac3b57,http://ftp.ncbi.nlm.nih.gov/pub/pmc/84/69/40101_2015_Article_46.PMC4350291.pdf +72282287f25c5419dc6fd9e89ec9d86d660dc0b5,https://arxiv.org/pdf/1609.07495v1.pdf +72a87f509817b3369f2accd7024b2e4b30a1f588,http://hal.inria.fr/docs/00/75/05/89/PDF/paa2010last.pdf +72a00953f3f60a792de019a948174bf680cd6c9f,http://pdfs.semanticscholar.org/72a0/0953f3f60a792de019a948174bf680cd6c9f.pdf +726b8aba2095eef076922351e9d3a724bb71cb51,http://pdfs.semanticscholar.org/d06b/cb2d46342ee011e652990edf290a0876b502.pdf +727ecf8c839c9b5f7b6c7afffe219e8b270e7e15,http://pdfs.semanticscholar.org/727e/cf8c839c9b5f7b6c7afffe219e8b270e7e15.pdf +72a5e181ee8f71b0b153369963ff9bfec1c6b5b0,http://pdfs.semanticscholar.org/72a5/e181ee8f71b0b153369963ff9bfec1c6b5b0.pdf +72ecaff8b57023f9fbf8b5b2588f3c7019010ca7,http://pdfs.semanticscholar.org/72ec/aff8b57023f9fbf8b5b2588f3c7019010ca7.pdf +729dbe38538fbf2664bc79847601f00593474b05,http://pdfs.semanticscholar.org/729d/be38538fbf2664bc79847601f00593474b05.pdf +729a9d35bc291cc7117b924219bef89a864ce62c,http://pdfs.semanticscholar.org/729a/9d35bc291cc7117b924219bef89a864ce62c.pdf +72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_094_ext.pdf +72160aae43cd9b2c3aae5574acc0d00ea0993b9e,http://pdfs.semanticscholar.org/7216/0aae43cd9b2c3aae5574acc0d00ea0993b9e.pdf +72c0c8deb9ea6f59fde4f5043bff67366b86bd66,http://pdfs.semanticscholar.org/72c0/c8deb9ea6f59fde4f5043bff67366b86bd66.pdf +721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,http://pdfs.semanticscholar.org/74f1/9d0986c9d39aabb359abaa2a87a248a48deb.pdf +72f4aaf7e2e3f215cd8762ce283988220f182a5b,http://pdfs.semanticscholar.org/72f4/aaf7e2e3f215cd8762ce283988220f182a5b.pdf +72a55554b816b66a865a1ec1b4a5b17b5d3ba784,http://vislab.ucr.edu/Biometrics16/CVPRW_Vizilter.pdf +72450d7e5cbe79b05839c30a4f0284af5aa80053,http://pdfs.semanticscholar.org/7245/0d7e5cbe79b05839c30a4f0284af5aa80053.pdf +72bf9c5787d7ff56a1697a3389f11d14654b4fcf,http://pdfs.semanticscholar.org/7910/a98a1fe9f4bec4c0dc4dc3476e9405b1930d.pdf +445461a34adc4bcdccac2e3c374f5921c93750f8,https://arxiv.org/pdf/1306.1913v1.pdf +4414a328466db1e8ab9651bf4e0f9f1fe1a163e4,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2010/Contents/papers/1569290719.pdf +442f09ddb5bb7ba4e824c0795e37cad754967208,http://pdfs.semanticscholar.org/8c29/513c2621c26ac8491bb763674db475fe58c6.pdf +443acd268126c777bc7194e185bec0984c3d1ae7,https://eprints.soton.ac.uk/402985/1/icpr-16.pdf +442d3aeca486de787de10bc41bfeb0b42c81803f,http://pdfs.semanticscholar.org/442d/3aeca486de787de10bc41bfeb0b42c81803f.pdf +44f23600671473c3ddb65a308ca97657bc92e527,http://arxiv.org/pdf/1604.06573v2.pdf +4439746eeb7c7328beba3f3ef47dc67fbb52bcb3,http://pdfs.semanticscholar.org/4439/746eeb7c7328beba3f3ef47dc67fbb52bcb3.pdf +446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03,http://www.isir.upmc.fr/files/2014ACTI3172.pdf +4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,http://pdfs.semanticscholar.org/4467/a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f.pdf +44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,http://pdfs.semanticscholar.org/44f4/8a4b1ef94a9104d063e53bf88a69ff0f55f3.pdf +44a3ec27f92c344a15deb8e5dc3a5b3797505c06,http://pdfs.semanticscholar.org/44a3/ec27f92c344a15deb8e5dc3a5b3797505c06.pdf +44aeda8493ad0d44ca1304756cc0126a2720f07b,http://pdfs.semanticscholar.org/afbb/c0ea429ba0f5cf7790d23fc40d7d5342a53c.pdf +449b1b91029e84dab14b80852e35387a9275870e,https://pdfs.semanticscholar.org/608c/da0c14c3d134d9d18dd38f9682b23c31d367.pdf +44078d0daed8b13114cffb15b368acc467f96351,http://arxiv.org/pdf/1604.05417v1.pdf +44c9b5c55ca27a4313daf3760a3f24a440ce17ad,http://pdfs.semanticscholar.org/44c9/b5c55ca27a4313daf3760a3f24a440ce17ad.pdf +44dd150b9020b2253107b4a4af3644f0a51718a3,http://www.andrew.cmu.edu/user/kseshadr/TIFS_2012_Paper_Final_Submission.pdf +447d8893a4bdc29fa1214e53499ffe67b28a6db5,http://pdfs.semanticscholar.org/447d/8893a4bdc29fa1214e53499ffe67b28a6db5.pdf +44f65e3304bdde4be04823fd7ca770c1c05c2cef,http://pdfs.semanticscholar.org/44f6/5e3304bdde4be04823fd7ca770c1c05c2cef.pdf +44fbbaea6271e47ace47c27701ed05e15da8f7cf,http://pdfs.semanticscholar.org/44fb/baea6271e47ace47c27701ed05e15da8f7cf.pdf +44fb4dcf88eb482e2ab79fd4540caf941613b970,http://www.researchgate.net/profile/Masashi_Sugiyama/publication/220930547_Perceived_Age_Estimation_under_Lighting_Condition_Change_by_Covariate_Shift_Adaptation/links/0fcfd5122b4d406edd000000.pdf +44eb4d128b60485377e74ffb5facc0bf4ddeb022,https://pdfs.semanticscholar.org/44eb/4d128b60485377e74ffb5facc0bf4ddeb022.pdf +448ed201f6fceaa6533d88b0b29da3f36235e131,http://pdfs.semanticscholar.org/aa6a/0b92c60187c7fa9923b1c8433ec99a495df7.pdf +441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sundararajan_Head_Pose_Estimation_2015_CVPR_paper.pdf +447a5e1caf847952d2bb526ab2fb75898466d1bc,http://pdfs.semanticscholar.org/447a/5e1caf847952d2bb526ab2fb75898466d1bc.pdf +449808b7aa9ee6b13ad1a21d9f058efaa400639a,http://www.jdl.ac.cn/doc/2008/Recovering%203D%20Facial%20Shape%20via%20Coupled%202D-3D%20Space%20Learning.pdf +2a7bca56e2539c8cf1ae4e9da521879b7951872d,http://pdfs.semanticscholar.org/2a7b/ca56e2539c8cf1ae4e9da521879b7951872d.pdf +2a65d7d5336b377b7f5a98855767dd48fa516c0f,https://mug.ee.auth.gr/wp-content/uploads/fsLDA.pdf +2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,http://yugangjiang.info/publication/JCST-nameface.pdf +2aaa6969c03f435b3ea8431574a91a0843bd320b,http://pdfs.semanticscholar.org/2aaa/6969c03f435b3ea8431574a91a0843bd320b.pdf +2af620e17d0ed67d9ccbca624250989ce372e255,http://www.alessandrobergamo.com/data/bt_cvpr12.pdf +2a35d20b2c0a045ea84723f328321c18be6f555c,http://pdfs.semanticscholar.org/d1be/cba3c460892453939f9f3639d8beddf2a133.pdf +2ad7cef781f98fd66101fa4a78e012369d064830,http://arxiv.org/pdf/1603.05474v1.pdf +2ad29b2921aba7738c51d9025b342a0ec770c6ea,http://arxiv.org/pdf/1510.02781v1.pdf +2a9b398d358cf04dc608a298d36d305659e8f607,http://www.pitt.edu/~jeffcohn/biblio/MahoorFG2011.pdf +2a0efb1c17fbe78470acf01e4601a75735a805cc,http://pdfs.semanticscholar.org/2a0e/fb1c17fbe78470acf01e4601a75735a805cc.pdf +2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924,http://pdfs.semanticscholar.org/2a6b/ba2e81d5fb3c0fd0e6b757cf50ba7bf8e924.pdf +2ac21d663c25d11cda48381fb204a37a47d2a574,http://pdfs.semanticscholar.org/2ac2/1d663c25d11cda48381fb204a37a47d2a574.pdf +2a4153655ad1169d482e22c468d67f3bc2c49f12,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf +2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40,http://www.cl.cam.ac.uk/~pr10/publications/fg17.pdf +2ae139b247057c02cda352f6661f46f7feb38e45,http://www.iro.umontreal.ca/~memisevr/pubs/icmi_emotiw.pdf +2a3e19d7c54cba3805115497c69069dd5a91da65,http://pdfs.semanticscholar.org/2a3e/19d7c54cba3805115497c69069dd5a91da65.pdf +2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,http://pdfs.semanticscholar.org/2af1/9b5ff2ca428fa42ef4b85ddbb576b5d9a5cc.pdf +2a14b6d9f688714dc60876816c4b7cf763c029a9,http://tamaraberg.com/papers/wacv2016_combining.pdf +2a88541448be2eb1b953ac2c0c54da240b47dd8a,http://pdfs.semanticscholar.org/2c44/0d01738a2fed3e3bd6520471acacb6c96e3b.pdf +2a02355c1155f2d2e0cf7a8e197e0d0075437b19,http://pdfs.semanticscholar.org/cf2c/58a5efea263a878815e25148b1c6954a0cbe.pdf +2a171f8d14b6b8735001a11c217af9587d095848,http://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_Learning_Social_Relation_ICCV_2015_paper.pdf +2aea27352406a2066ddae5fad6f3f13afdc90be9,http://arxiv.org/pdf/1507.05699v4.pdf +2a0623ae989f2236f5e1fe3db25ab708f5d02955,http://pdfs.semanticscholar.org/2a06/23ae989f2236f5e1fe3db25ab708f5d02955.pdf +2ad0ee93d029e790ebb50574f403a09854b65b7e,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf +2afdda6fb85732d830cea242c1ff84497cd5f3cb,http://www.iis.sinica.edu.tw/papers/song/11489-F.pdf +2ff9618ea521df3c916abc88e7c85220d9f0ff06,http://pdfs.semanticscholar.org/bb08/f64565ee68e868dcab904cada9646dd5f676.pdf +2fda461869f84a9298a0e93ef280f79b9fb76f94,https://www.cl.cam.ac.uk/research/rainbow/projects/openface/wacv2016.pdf +2ff9ffedfc59422a8c7dac418a02d1415eec92f1,http://pdfs.semanticscholar.org/6e3b/778ad384101f792284b42844518f620143aa.pdf +2fdce3228d384456ea9faff108b9c6d0cf39e7c7,http://pdfs.semanticscholar.org/2fdc/e3228d384456ea9faff108b9c6d0cf39e7c7.pdf +2f7e9b45255c9029d2ae97bbb004d6072e70fa79,http://pdfs.semanticscholar.org/2f7e/9b45255c9029d2ae97bbb004d6072e70fa79.pdf +2f53b97f0de2194d588bc7fb920b89cd7bcf7663,http://pdfs.semanticscholar.org/2f53/b97f0de2194d588bc7fb920b89cd7bcf7663.pdf +2f16baddac6af536451b3216b02d3480fc361ef4,http://cs.nyu.edu/~fergus/teaching/vision/10_facerec.pdf +2f489bd9bfb61a7d7165a2f05c03377a00072477,http://pdfs.semanticscholar.org/2f48/9bd9bfb61a7d7165a2f05c03377a00072477.pdf +2f2aa67c5d6dbfaf218c104184a8c807e8b29286,http://sesame.comp.nus.edu.sg/components/com_flexicontent/uploads/lekhaicon13.pdf +2f16459e2e24dc91b3b4cac7c6294387d4a0eacf,http://pdfs.semanticscholar.org/2f16/459e2e24dc91b3b4cac7c6294387d4a0eacf.pdf +2f0b8579829b3d4efdbc03c96821e33d7cc65e1d,http://thoth.inrialpes.fr/people/mpederso/papers/cvpr14-facial.pdf +2f59f28a1ca3130d413e8e8b59fb30d50ac020e2,http://pralab.diee.unica.it/sites/default/files/Satta_ICPR2014.pdf +2f78e471d2ec66057b7b718fab8bfd8e5183d8f4,http://pdfs.semanticscholar.org/2f78/e471d2ec66057b7b718fab8bfd8e5183d8f4.pdf +2fda164863a06a92d3a910b96eef927269aeb730,http://www.cs.utexas.edu/~grauman/courses/spring2007/395T/papers/berg_names_and_faces.pdf +2fa057a20a2b4a4f344988fee0a49fce85b0dc33,http://next.comp.nus.edu.sg/sites/default/files/publication-attachments/eHeritage.pdf +2f8ef26bfecaaa102a55b752860dbb92f1a11dc6,http://pdfs.semanticscholar.org/2f8e/f26bfecaaa102a55b752860dbb92f1a11dc6.pdf +2f5ae4d6cd240ec7bc3f8ada47030e8439125df2,http://users.eecs.northwestern.edu/~xsh835/CVPR14_ExemplarFaceDetection.pdf +2f184c6e2c31d23ef083c881de36b9b9b6997ce9,http://pdfs.semanticscholar.org/2f18/4c6e2c31d23ef083c881de36b9b9b6997ce9.pdf +2f348a2ad3ba390ee178d400be0f09a0479ae17b,http://www.csee.wvu.edu/~richas/ML-Papers/Gabor-Based%20Kernel%20PCA.pdf +2f9c173ccd8c1e6b88d7fb95d6679838bc9ca51d,http://arxiv.org/pdf/1604.02917v1.pdf +2f598922f81e65c1f3ffbd8c2456d2e9dcd7124a,http://pdfs.semanticscholar.org/464c/21d54339c3f6e624ce026fef53b19c1edd86.pdf +2f8183b549ec51b67f7dad717f0db6bf342c9d02,http://www.wisdom.weizmann.ac.il/~ronen/papers/Kemelmacher%20Basri%20-%203D%20Face%20Reconstruction%20from%20a%20Single%20Image%20Using%20a%20Single%20Reference%20Face%20Shape.pdf +2f13dd8c82f8efb25057de1517746373e05b04c4,http://www.cfar.umd.edu/~rama/Publications/Ni_ICIP.pdf +2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475,http://pdfs.semanticscholar.org/2fa1/fc116731b2b5bb97f06d2ac494cb2b2fe475.pdf +2f2406551c693d616a840719ae1e6ea448e2f5d3,http://biometrics.cse.msu.edu/Presentations/CharlesOtto_ICB13_AgeEstimationFaceImages_HumanVsMachinePerformance.pdf +2f882ceaaf110046e63123b495212d7d4e99f33d,http://pdfs.semanticscholar.org/2f88/2ceaaf110046e63123b495212d7d4e99f33d.pdf +2f95340b01cfa48b867f336185e89acfedfa4d92,https://www2.informatik.uni-hamburg.de/wtm/ps/Hamester_IJCNN2015.pdf +2f7fc778e3dec2300b4081ba2a1e52f669094fcd,http://pdfs.semanticscholar.org/2f7f/c778e3dec2300b4081ba2a1e52f669094fcd.pdf +2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1,http://pdfs.semanticscholar.org/f39c/e446b7c76d24cc63df7837cb3be0ee235df2.pdf +2faa09413162b0a7629db93fbb27eda5aeac54ca,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=905048 +2f5e057e35a97278a9d824545d7196c301072ebf,http://vision.ics.uci.edu/papers/ZhuAR_CVPR_2014/ZhuAR_CVPR_2014.pdf +2f04ba0f74df046b0080ca78e56898bd4847898b,https://arxiv.org/pdf/1407.4023v2.pdf +433bb1eaa3751519c2e5f17f47f8532322abbe6d,http://pdfs.semanticscholar.org/433b/b1eaa3751519c2e5f17f47f8532322abbe6d.pdf +4300fa1221beb9dc81a496cd2f645c990a7ede53,http://pdfs.semanticscholar.org/da71/87e56b6da1b9c993d9a096d2f2b9d80fb14c.pdf +43010792bf5cdb536a95fba16b8841c534ded316,https://www.comp.nus.edu.sg/~tsim/documents/general-face-motion.pdf +43bb20ccfda7b111850743a80a5929792cb031f0,http://pdfs.semanticscholar.org/43bb/20ccfda7b111850743a80a5929792cb031f0.pdf +439ac8edfa1e7cbc65474cab544a5b8c4c65d5db,http://pdfs.semanticscholar.org/439a/c8edfa1e7cbc65474cab544a5b8c4c65d5db.pdf +43f6953804964037ff91a4f45d5b5d2f8edfe4d5,http://ias.cs.tum.edu/_media/spezial/bib/riaz09fit.pdf +439ec47725ae4a3660e509d32828599a495559bf,http://pdfs.semanticscholar.org/439e/c47725ae4a3660e509d32828599a495559bf.pdf +43e99b76ca8e31765d4571d609679a689afdc99e,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yu_Learning_Dense_Facial_ICCV_2017_paper.pdf +4377b03bbee1f2cf99950019a8d4111f8de9c34a,http://www.umiacs.umd.edu/~morariu/publications/LiSelectiveEncoderICCV15.pdf +43a03cbe8b704f31046a5aba05153eb3d6de4142,http://pdfs.semanticscholar.org/9594/3329cd6922a869dd6d58ef01e9492879034c.pdf +434bf475addfb580707208618f99c8be0c55cf95,http://pdfs.semanticscholar.org/8cea/404e8a5c4c11064923e5a6c023a0ae594a5a.pdf +43836d69f00275ba2f3d135f0ca9cf88d1209a87,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0030-7?site=ipsjcva.springeropen.com +4307e8f33f9e6c07c8fc2aeafc30b22836649d8c,http://pdfs.semanticscholar.org/ebff/0956c07185f7bb4e4ee5c7cc0aaa74aca05e.pdf +435642641312364e45f4989fac0901b205c49d53,http://pdfs.semanticscholar.org/4356/42641312364e45f4989fac0901b205c49d53.pdf +43aa40eaa59244c233f83d81f86e12eba8d74b59,http://pdfs.semanticscholar.org/43aa/40eaa59244c233f83d81f86e12eba8d74b59.pdf +4362368dae29cc66a47114d5ffeaf0534bf0159c,http://pdfs.semanticscholar.org/4362/368dae29cc66a47114d5ffeaf0534bf0159c.pdf +4350bb360797a4ade4faf616ed2ac8e27315968e,http://www.merl.com/publications/docs/TR2006-058.pdf +43476cbf2a109f8381b398e7a1ddd794b29a9a16,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Cao_A_Practical_Transfer_2013_ICCV_paper.pdf +4353d0dcaf450743e9eddd2aeedee4d01a1be78b,http://pdfs.semanticscholar.org/4353/d0dcaf450743e9eddd2aeedee4d01a1be78b.pdf +433d2d5528d1401a402f2c1db40b933c494f11ba,https://www.researchgate.net/profile/Xudong_Jiang3/publication/4248964_Face_Recognition_Based_on_Discriminant_Evaluation_in_the_Whole_Space/links/0046351ef2d1c48d55000000.pdf +437a720c6f6fc1959ba95e48e487eb3767b4e508,http://pdfs.semanticscholar.org/d4f0/960c6587379ad7df7928c256776e25952c60.pdf +436d80cc1b52365ed7b2477c0b385b6fbbb51d3b,http://pdfs.semanticscholar.org/436d/80cc1b52365ed7b2477c0b385b6fbbb51d3b.pdf +434d6726229c0f556841fad20391c18316806f73,https://arxiv.org/pdf/1704.03114v2.pdf +43b8b5eeb4869372ef896ca2d1e6010552cdc4d4,http://pdfs.semanticscholar.org/43b8/b5eeb4869372ef896ca2d1e6010552cdc4d4.pdf +43ae4867d058453e9abce760ff0f9427789bab3a,https://infoscience.epfl.ch/record/207780/files/tnnls_graph_embedding.pdf +435dc062d565ce87c6c20a5f49430eb9a4b573c4,http://pdfs.semanticscholar.org/435d/c062d565ce87c6c20a5f49430eb9a4b573c4.pdf +430c4d7ad76e51d83bbd7ec9d3f856043f054915,http://pdfs.semanticscholar.org/5176/899c80b3d4b3b8be34d35549f95bf2d55e7d.pdf +438b88fe40a6f9b5dcf08e64e27b2719940995e0,http://www.csd.uwo.ca/~olga/Courses/Fall2006/StudentPapers/ferenczMillerMalikICCV05.pdf +433a6d6d2a3ed8a6502982dccc992f91d665b9b3,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf +438e7999c937b94f0f6384dbeaa3febff6d283b6,https://arxiv.org/pdf/1705.02402v2.pdf +43776d1bfa531e66d5e9826ff5529345b792def7,http://cvrr.ucsd.edu/scmartin/presentation/DriveAnalysisByLookingIn-ITSC2015-NDS.pdf +43fb9efa79178cb6f481387b7c6e9b0ca3761da8,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Katti_Mixture_of_Parts_2015_CVPR_paper.pdf +43ed518e466ff13118385f4e5d039ae4d1c000fb,https://arxiv.org/pdf/1505.01350v1.pdf +439647914236431c858535a2354988dde042ef4d,http://eecs.qmul.ac.uk/~jason/Research/PreprintVersion/Face%20Illumination%20Normalization%20on%20Large%20and%20Small%20Scale%20Features.pdf +439ca6ded75dffa5ddea203dde5e621dc4a88c3e,http://research.cs.rutgers.edu/~hxp1/rc_images/hai_facetrack_icpr2016.pdf +8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4,http://www.apsipa.org/proceedings_2013/papers/280_automatic-facial-hsu-2931731.pdf +88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320,http://pdfs.semanticscholar.org/88c6/d4b73bd36e7b5a72f3c61536c8c93f8d2320.pdf +88ad82e6f2264f75f7783232ba9185a2f931a5d1,http://pdfs.semanticscholar.org/88ad/82e6f2264f75f7783232ba9185a2f931a5d1.pdf +8886b21f97c114a23b24dc7025bbf42885adc3a7,http://researchprofiles.herts.ac.uk/portal/files/10195320/UH_eval_deid_face_final.pdf +889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7,http://mmlab.ie.cuhk.edu.hk/archive/2007/IFS07_face.pdf +88f7a3d6f0521803ca59fde45601e94c3a34a403,http://pdfs.semanticscholar.org/88f7/a3d6f0521803ca59fde45601e94c3a34a403.pdf +8812aef6bdac056b00525f0642702ecf8d57790b,http://pdfs.semanticscholar.org/8812/aef6bdac056b00525f0642702ecf8d57790b.pdf +881066ec43bcf7476479a4146568414e419da804,http://pdfs.semanticscholar.org/8810/66ec43bcf7476479a4146568414e419da804.pdf +8813368c6c14552539137aba2b6f8c55f561b75f,https://arxiv.org/pdf/1607.05427v1.pdf +88e2574af83db7281c2064e5194c7d5dfa649846,http://pdfs.semanticscholar.org/88e2/574af83db7281c2064e5194c7d5dfa649846.pdf +88bef50410cea3c749c61ed68808fcff84840c37,https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiropoulos2011sparse.pdf +883006c0f76cf348a5f8339bfcb649a3e46e2690,http://mplab.ucsd.edu/~marni/pubs/Sikka_FG2013.pdf +88850b73449973a34fefe491f8836293fc208580,http://pdfs.semanticscholar.org/8885/0b73449973a34fefe491f8836293fc208580.pdf +8820d1d3fa73cde623662d92ecf2e3faf1e3f328,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w2/papers/Victor_Continuous_Video_to_CVPR_2017_paper.pdf +88f2952535df5859c8f60026f08b71976f8e19ec,http://pdfs.semanticscholar.org/88f2/952535df5859c8f60026f08b71976f8e19ec.pdf +8862a573a42bbaedd392e9e634c1ccbfd177a01d,https://arxiv.org/pdf/1605.06764v1.pdf +887b7676a4efde616d13f38fcbfe322a791d1413,http://pdfs.semanticscholar.org/b4a0/cff84c35f75bcdb7aec3a0b1395edd15189b.pdf +8878871ec2763f912102eeaff4b5a2febfc22fbe,http://www.ee.columbia.edu/~wliu/TIP15_action.pdf +8855d6161d7e5b35f6c59e15b94db9fa5bbf2912,http://pdfs.semanticscholar.org/8855/d6161d7e5b35f6c59e15b94db9fa5bbf2912.pdf +88bee9733e96958444dc9e6bef191baba4fa6efa,http://homepages.dcc.ufmg.br/~william/papers/paper_2014_SIBGRAPI.pdf +88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002697.pdf +887745c282edf9af40d38425d5fdc9b3fe139c08,https://arxiv.org/pdf/1407.2987v1.pdf +9f8ebf149aed8a0eda5c3375c9947c6b26eb7873,http://www.cais.ntu.edu.sg/~chhoi/paper_pdf/fp21-wang.pdf +9f6d04ce617d24c8001a9a31f11a594bd6fe3510,http://pdfs.semanticscholar.org/9f6d/04ce617d24c8001a9a31f11a594bd6fe3510.pdf +9f499948121abb47b31ca904030243e924585d5f,http://pdfs.semanticscholar.org/9f49/9948121abb47b31ca904030243e924585d5f.pdf +9fc04a13eef99851136eadff52e98eb9caac919d,http://pdfs.semanticscholar.org/9fc0/4a13eef99851136eadff52e98eb9caac919d.pdf +9f4078773c8ea3f37951bf617dbce1d4b3795839,http://pdfs.semanticscholar.org/9f40/78773c8ea3f37951bf617dbce1d4b3795839.pdf +9f65319b8a33c8ec11da2f034731d928bf92e29d,http://pdfs.semanticscholar.org/9f65/319b8a33c8ec11da2f034731d928bf92e29d.pdf +9fa1be81d31fba07a1bde0275b9d35c528f4d0b8,http://pdfs.semanticscholar.org/9fa1/be81d31fba07a1bde0275b9d35c528f4d0b8.pdf +9f094341bea610a10346f072bf865cb550a1f1c1,http://zhiweizhu.com/papers/FIVR_MobileDevice_2009.pdf +6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9,http://pdfs.semanticscholar.org/6b9a/a288ce7740ec5ce9826c66d059ddcfd8dba9.pdf +6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf +6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Afshar_Facial_Expression_Recognition_CVPR_2016_paper.pdf +6bca0d1f46b0f7546ad4846e89b6b842d538ee4e,http://pdfs.semanticscholar.org/6bca/0d1f46b0f7546ad4846e89b6b842d538ee4e.pdf +6b089627a4ea24bff193611e68390d1a4c3b3644,http://publications.idiap.ch/downloads/reports/2012/Wallace_Idiap-RR-03-2012.pdf +6be0ab66c31023762e26d309a4a9d0096f72a7f0,http://pdfs.semanticscholar.org/6be0/ab66c31023762e26d309a4a9d0096f72a7f0.pdf +6bcee7dba5ed67b3f9926d2ae49f9a54dee64643,http://pdfs.semanticscholar.org/6bce/e7dba5ed67b3f9926d2ae49f9a54dee64643.pdf +6b18628cc8829c3bf851ea3ee3bcff8543391819,http://engineering.cae.cn/fitee/fileup/2095-9184/SUPPL/20151221082702_2.pdf +6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6,http://pdfs.semanticscholar.org/6b7f/7817b2e5a7e7d409af2254a903fc0d6e02b6.pdf +6bb95a0f3668cd36407c85899b71c9fe44bf9573,http://pdfs.semanticscholar.org/6bb9/5a0f3668cd36407c85899b71c9fe44bf9573.pdf +6b1b43d58faed7b457b1d4e8c16f5f7e7d819239,http://pdfs.semanticscholar.org/6b1b/43d58faed7b457b1d4e8c16f5f7e7d819239.pdf +6bb0425baac448297fbd29a00e9c9b9926ce8870,http://pdfs.semanticscholar.org/6bb0/425baac448297fbd29a00e9c9b9926ce8870.pdf +6b35b15ceba2f26cf949f23347ec95bbbf7bed64,http://pdfs.semanticscholar.org/6b35/b15ceba2f26cf949f23347ec95bbbf7bed64.pdf +6b6493551017819a3d1f12bbf922a8a8c8cc2a03,http://pdfs.semanticscholar.org/6b64/93551017819a3d1f12bbf922a8a8c8cc2a03.pdf +6b17b219bd1a718b5cd63427032d93c603fcf24f,http://pdfs.semanticscholar.org/6b17/b219bd1a718b5cd63427032d93c603fcf24f.pdf +6bb630dfa797168e6627d972560c3d438f71ea99,http://arxiv.org/pdf/1609.03056v1.pdf +0729628db4bb99f1f70dd6cb2353d7b76a9fce47,http://pdfs.semanticscholar.org/f02a/dc21a307d32c1145f4ade65504b016b0faac.pdf +0728f788107122d76dfafa4fb0c45c20dcf523ca,http://arxiv.org/pdf/1505.04427v1.pdf +07c90e85ac0f74b977babe245dea0f0abcf177e3,http://pdfs.semanticscholar.org/07c9/0e85ac0f74b977babe245dea0f0abcf177e3.pdf +07ea3dd22d1ecc013b6649c9846d67f2bf697008,http://pdfs.semanticscholar.org/07ea/3dd22d1ecc013b6649c9846d67f2bf697008.pdf +071099a4c3eed464388c8d1bff7b0538c7322422,http://arxiv.org/pdf/1601.02487v1.pdf +07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf +076d3fc800d882445c11b9af466c3af7d2afc64f,http://slsp.kaist.ac.kr/paperdata/Face_attribute_classification.pdf +07ac2e342db42589322b28ef291c2702f4a793a8,http://www.cs.illinois.edu/homes/dhoiem/publications/cvpr2009_santosh_context.pdf +071af21377cc76d5c05100a745fb13cb2e40500f,http://pdfs.semanticscholar.org/071a/f21377cc76d5c05100a745fb13cb2e40500f.pdf +070ab604c3ced2c23cce2259043446c5ee342fd6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/Biometrics/papers/24-p75.pdf +0786a6d5ce6db8a68cef05bb5f5b84ec1b0c2cde,http://vipl.ict.ac.cn/sites/default/files/papers/files/2008_ACMMM_cxliu_Naming%20Faces%20in%20Broadcast%20News%20Video%20by%20Image%20Google.pdf +071135dfb342bff884ddb9a4d8af0e70055c22a1,http://pdfs.semanticscholar.org/0711/35dfb342bff884ddb9a4d8af0e70055c22a1.pdf +0754e769eb613fd3968b6e267a301728f52358be,http://www.umiacs.umd.edu/~cteo/public-shared/ICRA2012_ActionObjects_preprint.pdf +0773c320713dae62848fceac5a0ac346ba224eca,http://eudl.eu/pdf/10.4108/icst.intetain.2015.259444 +070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf +079edd5cf7968ac4759dfe72af2042cf6e990efc,http://pdfs.semanticscholar.org/079e/dd5cf7968ac4759dfe72af2042cf6e990efc.pdf +072db5ba5b375d439ba6dbb6427c63cd7da6e940,http://users.ece.cmu.edu/~juefeix/tip_2014_felix.pdf +0744af11a025e9c072ef6ad102af208e79cc6f44,https://www.researchgate.net/profile/Pascal_Frossard/publication/233799235_Learning_Smooth_Pattern_Transformation_Manifolds/links/00463533951057e9bb000000.pdf +07a472ea4b5a28b93678a2dcf89028b086e481a2,http://pdfs.semanticscholar.org/07a4/72ea4b5a28b93678a2dcf89028b086e481a2.pdf +0717b47ab84b848de37dbefd81cf8bf512b544ac,http://pdfs.semanticscholar.org/0717/b47ab84b848de37dbefd81cf8bf512b544ac.pdf +0708059e3bedbea1cbfae1c8cd6b7259d4b56b5b,http://www.cs.tut.fi/~iosifidi/files/conference/2016_EUSIPCO_GRMCSVM.pdf?dl=0 +074af31bd9caa61fea3c4216731420bd7c08b96a,http://www.umiacs.umd.edu/~jhchoi/paper/cvprw2012_sfv.pdf +078d507703fc0ac4bf8ca758be101e75ea286c80,http://pdfs.semanticscholar.org/078d/507703fc0ac4bf8ca758be101e75ea286c80.pdf +0716e1ad868f5f446b1c367721418ffadfcf0519,http://pdfs.semanticscholar.org/6e05/5db22fbddb524ccb0006145db7944d1ed31c.pdf +073eaa49ccde15b62425cda1d9feab0fea03a842,http://pdfs.semanticscholar.org/073e/aa49ccde15b62425cda1d9feab0fea03a842.pdf +07d95be4922670ef2f8b11997e0c00eb643f3fca,http://eprints.eemcs.utwente.nl/26833/01/Pantic_The_First_Facial_Landmark_Tracking_in-the-Wild_Challenge.pdf +07f31bef7a7035792e3791473b3c58d03928abbf,http://videolectures.net/site/normal_dl/tag=977248/fgconference2015_phillips_biometric_samples_01.pdf +0726a45eb129eed88915aa5a86df2af16a09bcc1,http://www.ri.cmu.edu/pub_files/2016/7/root-compressed.pdf +07de8371ad4901356145722aa29abaeafd0986b9,http://pdfs.semanticscholar.org/07de/8371ad4901356145722aa29abaeafd0986b9.pdf +07e639abf1621ceff27c9e3f548fadfa2052c912,http://pdfs.semanticscholar.org/07e6/39abf1621ceff27c9e3f548fadfa2052c912.pdf +07da958db2e561cc7c24e334b543d49084dd1809,https://infoscience.epfl.ch/record/117525/files/Classification.pdf?version=1 +0742d051caebf8a5d452c03c5d55dfb02f84baab,http://research.cs.tamu.edu/keyser/Papers/CGI05Blur-JonesBW.pdf?origin=publication_detail +07d986b1005593eda1aeb3b1d24078db864f8f6a,http://pdfs.semanticscholar.org/07d9/86b1005593eda1aeb3b1d24078db864f8f6a.pdf +38d56ddcea01ce99902dd75ad162213cbe4eaab7,http://pdfs.semanticscholar.org/38d5/6ddcea01ce99902dd75ad162213cbe4eaab7.pdf +389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26,http://pdfs.semanticscholar.org/3893/34e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26.pdf +38f7f3c72e582e116f6f079ec9ae738894785b96,http://pdfs.semanticscholar.org/38f7/f3c72e582e116f6f079ec9ae738894785b96.pdf +380dd0ddd5d69adc52defc095570d1c22952f5cc,http://pdfs.semanticscholar.org/380d/d0ddd5d69adc52defc095570d1c22952f5cc.pdf +38679355d4cfea3a791005f211aa16e76b2eaa8d,http://hub.hku.hk/bitstream/10722/127357/1/Content.pdf +3802c97f925cb03bac91d9db13d8b777dfd29dcc,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Martins_Non-Parametric_Bayesian_Constrained_2014_CVPR_paper.pdf +38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,http://www.cs.colostate.edu/~draper/papers/zhang_ijcb14.pdf +38682c7b19831e5d4f58e9bce9716f9c2c29c4e7,http://pdfs.semanticscholar.org/3868/2c7b19831e5d4f58e9bce9716f9c2c29c4e7.pdf +38787338ba659f0bfbeba11ec5b7748ffdbb1c3d,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr1885.pdf +385750bcf95036c808d63db0e0b14768463ff4c6,http://pdfs.semanticscholar.org/3857/50bcf95036c808d63db0e0b14768463ff4c6.pdf +3852968082a16db8be19b4cb04fb44820ae823d4,https://infoscience.epfl.ch/record/230240/files/1701.01821.pdf +38cc2f1c13420170c7adac30f9dfac69b297fb76,http://pdfs.semanticscholar.org/38cc/2f1c13420170c7adac30f9dfac69b297fb76.pdf +38cbb500823057613494bacd0078aa0e57b30af8,https://ibug.doc.ic.ac.uk/media/uploads/documents/08014986.pdf +384f972c81c52fe36849600728865ea50a0c4670,http://pdfs.semanticscholar.org/dad7/3d70b4fa77d67c5c02e3ecba21c52ab9a386.pdf +38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,http://pdfs.semanticscholar.org/e9a4/1f856a474aa346491fe76151869e3f548172.pdf +384945abd53f6a6af51faf254ba8ef0f0fb3f338,http://pdfs.semanticscholar.org/b42c/4b804d69a031aac797346acc337f486e4a09.pdf +38215c283ce4bf2c8edd597ab21410f99dc9b094,https://pure.qub.ac.uk/portal/files/9746839/IEEE_Transactions_on_Affective_Computing_2012_McKeown.pdf +38861d0d3a0292c1f54153b303b0d791cbba1d50,http://pdfs.semanticscholar.org/3886/1d0d3a0292c1f54153b303b0d791cbba1d50.pdf +3830047081ef4bc787f16edf5b244cb2793f75e5,https://www.cs.drexel.edu/~kon/publication/GSchwartz_CPCV13_slides.pdf +38d8ff137ff753f04689e6b76119a44588e143f3,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf +3896c62af5b65d7ba9e52f87505841341bb3e8df,http://pdfs.semanticscholar.org/3896/c62af5b65d7ba9e52f87505841341bb3e8df.pdf +38192a0f9261d9727b119e294a65f2e25f72d7e6,http://pdfs.semanticscholar.org/3819/2a0f9261d9727b119e294a65f2e25f72d7e6.pdf +38bbca5f94d4494494860c5fe8ca8862dcf9676e,http://pdfs.semanticscholar.org/c322/b770d2c7d9e70d196577bf0ae6b05205ebd7.pdf +38183fe28add21693729ddeaf3c8a90a2d5caea3,https://arxiv.org/pdf/1706.09876v1.pdf +38a9ca2c49a77b540be52377784b9f734e0417e4,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_IJCB_Faces.pdf +3802da31c6d33d71b839e260f4022ec4fbd88e2d,http://pdfs.semanticscholar.org/3802/da31c6d33d71b839e260f4022ec4fbd88e2d.pdf +00f7f7b72a92939c36e2ef9be97397d8796ee07c,http://pdfs.semanticscholar.org/00f7/f7b72a92939c36e2ef9be97397d8796ee07c.pdf +0021f46bda27ea105d722d19690f5564f2b8869e,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhao_Deep_Region_and_CVPR_2016_paper.pdf +0081e2188c8f34fcea3e23c49fb3e17883b33551,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf +00dc942f23f2d52ab8c8b76b6016d9deed8c468d,http://pdfs.semanticscholar.org/00dc/942f23f2d52ab8c8b76b6016d9deed8c468d.pdf +0077cd8f97cafd2b389783858a6e4ab7887b0b6b,http://pdfs.semanticscholar.org/b971/266b29fcecf1d5efe1c4dcdc2355cb188ab0.pdf +0055c7f32fa6d4b1ad586d5211a7afb030ca08cc,http://pdfs.semanticscholar.org/0055/c7f32fa6d4b1ad586d5211a7afb030ca08cc.pdf +009cd18ff06ff91c8c9a08a91d2516b264eee48e,http://pdfs.semanticscholar.org/009c/d18ff06ff91c8c9a08a91d2516b264eee48e.pdf +00214fe1319113e6649435cae386019235474789,http://pdfs.semanticscholar.org/0021/4fe1319113e6649435cae386019235474789.pdf +004e3292885463f97a70e1f511dc476289451ed5,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Law_Quadruplet-Wise_Image_Similarity_2013_ICCV_paper.pdf +00b08d22abc85361e1c781d969a1b09b97bc7010,http://www.umariqbal.info/uploads/1/4/8/3/14837880/visapp_2014.pdf +004d5491f673cd76150f43b0a0429214f5bfd823,http://www.cais.ntu.edu.sg/~chhoi/paper_pdf/fp130-wang.pdf +007250c2dce81dd839a55f9108677b4f13f2640a,http://pdfs.semanticscholar.org/0db7/735e7adbe6e34dd058af31e278033040ab18.pdf +00e3957212517a252258baef833833921dd308d4,http://www.yugangjiang.info/publication/17MM-PersonAttribute.pdf +00616b487d4094805107bb766da1c234c3c75e73,http://vision.ucmerced.edu/papers/Newsam_ACMGIS_2008.pdf +00f0ed04defec19b4843b5b16557d8d0ccc5bb42,http://pdfs.semanticscholar.org/00f0/ed04defec19b4843b5b16557d8d0ccc5bb42.pdf +0037bff7be6d463785d4e5b2671da664cd7ef746,http://pdfs.semanticscholar.org/0037/bff7be6d463785d4e5b2671da664cd7ef746.pdf +009a18d04a5e3ec23f8ffcfc940402fd8ec9488f,http://pdfs.semanticscholar.org/009a/18d04a5e3ec23f8ffcfc940402fd8ec9488f.pdf +0066caed1238de95a431d836d8e6e551b3cde391,http://humansensing.cs.cmu.edu/sites/default/files/7de_la_torre_frade_fernando_2007_3.pdf +00075519a794ea546b2ca3ca105e2f65e2f5f471,http://pdfs.semanticscholar.org/0007/5519a794ea546b2ca3ca105e2f65e2f5f471.pdf +0019925779bff96448f0c75492717e4473f88377,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w3/papers/Reale_Deep_Heterogeneous_Face_CVPR_2017_paper.pdf +00e9011f58a561500a2910a4013e6334627dee60,http://library.utia.cas.cz/separaty/2008/RO/somol-facial%20expression%20recognition%20using%20angle-related%20information%20from%20facial%20meshes.pdf +00d9d88bb1bdca35663946a76d807fff3dc1c15f,http://arxiv.org/pdf/1604.04842v1.pdf +00a967cb2d18e1394226ad37930524a31351f6cf,https://arxiv.org/pdf/1611.05377v1.pdf +00f1e5e954f9eb7ffde3ca74009a8c3c27358b58,http://www.vision.caltech.edu/holub/public_html/Papers/PDF/holub_et_al_face_clustering.pdf +00a3cfe3ce35a7ffb8214f6db15366f4e79761e3,http://engineering.cae.cn/fitee/fileup/2095-9184/SUPPL/20150414135701.pdf +0058cbe110933f73c21fa6cc9ae0cd23e974a9c7,http://pdfs.semanticscholar.org/0058/cbe110933f73c21fa6cc9ae0cd23e974a9c7.pdf +004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4,http://pdfs.semanticscholar.org/004a/1bb1a2c93b4f379468cca6b6cfc6d8746cc4.pdf +00d94b35ffd6cabfb70b9a1d220b6823ae9154ee,https://arxiv.org/pdf/1503.07989v1.pdf +00ebc3fa871933265711558fa9486057937c416e,http://pdfs.semanticscholar.org/00eb/c3fa871933265711558fa9486057937c416e.pdf +006f283a50d325840433f4cf6d15876d475bba77,http://lvdmaaten.github.io/publications/papers/TPAMI_2014.pdf +00b29e319ff8b3a521b1320cb8ab5e39d7f42281,http://pdfs.semanticscholar.org/8007/b8afa13869d2a7c681db8bd7c2e7df1ef02d.pdf +00d931eccab929be33caea207547989ae7c1ef39,http://pdfs.semanticscholar.org/00d9/31eccab929be33caea207547989ae7c1ef39.pdf +0059b3dfc7056f26de1eabaafd1ad542e34c2c2e,http://pdfs.semanticscholar.org/0059/b3dfc7056f26de1eabaafd1ad542e34c2c2e.pdf +0052de4885916cf6949a6904d02336e59d98544c,https://rd.springer.com/content/pdf/10.1007/s10994-005-3561-6.pdf +00d0b01d6a5f12216e078001b7c49225d2495b21,http://graphics.cs.uh.edu/publication/pub/2009_TVCJ_faceilluminationtransfer.pdf +6e60536c847ac25dba4c1c071e0355e5537fe061,http://www.cfar.umd.edu/~fer/postscript/CV_and_NLP.pdf +6e198f6cc4199e1c4173944e3df6f39a302cf787,http://pdfs.semanticscholar.org/6e19/8f6cc4199e1c4173944e3df6f39a302cf787.pdf +6eaf446dec00536858548fe7cc66025b70ce20eb,http://pdfs.semanticscholar.org/6eaf/446dec00536858548fe7cc66025b70ce20eb.pdf +6e173ad91b288418c290aa8891193873933423b3,http://pdfs.semanticscholar.org/eb3b/021406fe5a5002535b392cac60832aa8f162.pdf +6eba25166fe461dc388805cc2452d49f5d1cdadd,http://pdfs.semanticscholar.org/6eba/25166fe461dc388805cc2452d49f5d1cdadd.pdf +6ed738ff03fd9042965abdfaa3ed8322de15c116,https://dr.ntu.edu.sg/bitstream/handle/10220/39690/kmeap_icdm2014.pdf?isAllowed=y&sequence=1 +6ecd4025b7b5f4894c990614a9a65e3a1ac347b2,http://pdfs.semanticscholar.org/6ecd/4025b7b5f4894c990614a9a65e3a1ac347b2.pdf +6eddea1d991e81c1c3024a6cea422bc59b10a1dc,http://pdfs.semanticscholar.org/6edd/ea1d991e81c1c3024a6cea422bc59b10a1dc.pdf +6eaeac9ae2a1697fa0aa8e394edc64f32762f578,http://pdfs.semanticscholar.org/6eae/ac9ae2a1697fa0aa8e394edc64f32762f578.pdf +6ee2ea416382d659a0dddc7a88fc093accc2f8ee,https://pdfs.semanticscholar.org/6ee2/ea416382d659a0dddc7a88fc093accc2f8ee.pdf +6e97a99b2879634ecae962ddb8af7c1a0a653a82,http://pdfs.semanticscholar.org/7d37/7ba82df9cba0959cb910288415e568007792.pdf +6e9a8a34ab5b7cdc12ea52d94e3462225af2c32c,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Kim_Fusing_Aligned_and_CVPR_2016_paper.pdf +6ec004e4c1171c4c4858eec7c927f567684b80bc,http://www.researchgate.net/profile/Bongnam_Kang/publication/221292310_The_POSTECH_face_database_(PF07)_and_performance_evaluation/links/00463531e60efa5310000000.pdf +6e3a181bf388dd503c83dc324561701b19d37df1,http://pdfs.semanticscholar.org/9d91/213394fb411743b11bae74cf22f0ffca9191.pdf +6ef1996563835b4dfb7fda1d14abe01c8bd24a05,http://hera.inf-cv.uni-jena.de:6680/pdf/Goering14:NPT +6ee8a94ccba10062172e5b31ee097c846821a822,http://pdfs.semanticscholar.org/6ee8/a94ccba10062172e5b31ee097c846821a822.pdf +6ee64c19efa89f955011531cde03822c2d1787b8,http://pdfs.semanticscholar.org/6ee6/4c19efa89f955011531cde03822c2d1787b8.pdf +6e94c579097922f4bc659dd5d6c6238a428c4d22,http://pdfs.semanticscholar.org/6e94/c579097922f4bc659dd5d6c6238a428c4d22.pdf +6e379f2d34e14efd85ae51875a4fa7d7ae63a662,http://pdfs.semanticscholar.org/6e37/9f2d34e14efd85ae51875a4fa7d7ae63a662.pdf +6eb1e006b7758b636a569ca9e15aafd038d2c1b1,http://pdfs.semanticscholar.org/6eb1/e006b7758b636a569ca9e15aafd038d2c1b1.pdf +6eece104e430829741677cadc1dfacd0e058d60f,http://pdfs.semanticscholar.org/7a42/6d0b98c8f52d61f9d89cd7be5ab6119f0a4a.pdf +6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94,http://pdfs.semanticscholar.org/6e0a/05d87b3cc7e16b4b2870ca24cf5e806c0a94.pdf +6e1802874ead801a7e1072aa870681aa2f555f35,http://www.cs.yale.edu/homes/hw5/WebContent/ICASSP07_Yan.pdf +6ed22b934e382c6f72402747d51aa50994cfd97b,http://www.ifp.illinois.edu/~jyang29/papers/WACV16-Expression.pdf +6e93fd7400585f5df57b5343699cb7cda20cfcc2,http://pdfs.semanticscholar.org/a52f/4d315adf0aa60ba284fd4caf22485625cedf.pdf +6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,http://pdfs.semanticscholar.org/6eb1/b5935b0613a41b72fd9e7e53a3c0b32651e9.pdf +6e12ba518816cbc2d987200c461dc907fd19f533,http://pdfs.semanticscholar.org/6e12/ba518816cbc2d987200c461dc907fd19f533.pdf +6e782073a013ce3dbc5b9b56087fd0300c510f67,http://pdfs.semanticscholar.org/6e78/2073a013ce3dbc5b9b56087fd0300c510f67.pdf +9ab463d117219ed51f602ff0ddbd3414217e3166,http://pdfs.semanticscholar.org/d965/43e8ab524108cae8c12d3a65a54a295deae6.pdf +9ac82909d76b4c902e5dde5838130de6ce838c16,http://pdfs.semanticscholar.org/9ac8/2909d76b4c902e5dde5838130de6ce838c16.pdf +9a0c7a4652c49a177460b5d2fbbe1b2e6535e50a,http://arxiv.org/pdf/1602.01940v1.pdf +9ac15845defcd0d6b611ecd609c740d41f0c341d,http://pdfs.semanticscholar.org/9ac1/5845defcd0d6b611ecd609c740d41f0c341d.pdf +9af1cf562377b307580ca214ecd2c556e20df000,http://pdfs.semanticscholar.org/9af1/cf562377b307580ca214ecd2c556e20df000.pdf +9a4c45e5c6e4f616771a7325629d167a38508691,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf +9a7858eda9b40b16002c6003b6db19828f94a6c6,https://www1.icsi.berkeley.edu/~twke/pdfs/pubs/mooney_icip2017.pdf +9a3535cabf5d0f662bff1d897fb5b777a412d82e,http://pdfs.semanticscholar.org/9a35/35cabf5d0f662bff1d897fb5b777a412d82e.pdf +9abd35b37a49ee1295e8197aac59bde802a934f3,http://pdfs.semanticscholar.org/9abd/35b37a49ee1295e8197aac59bde802a934f3.pdf +9a276c72acdb83660557489114a494b86a39f6ff,http://pdfs.semanticscholar.org/9a27/6c72acdb83660557489114a494b86a39f6ff.pdf +9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e,http://pdfs.semanticscholar.org/9a1a/9dd3c471bba17e5ce80a53e52fcaaad4373e.pdf +9a6da02db99fcc0690d7ffdc15340b125726ab95,http://vision.ucla.edu/~vedaldi/assets/pubs/vedaldi07boosting.pdf +9a42c519f0aaa68debbe9df00b090ca446d25bc4,http://pdfs.semanticscholar.org/9a42/c519f0aaa68debbe9df00b090ca446d25bc4.pdf +36b40c75a3e53c633c4afb5a9309d10e12c292c7,https://pdfs.semanticscholar.org/36b4/0c75a3e53c633c4afb5a9309d10e12c292c7.pdf +363ca0a3f908859b1b55c2ff77cc900957653748,http://pdfs.semanticscholar.org/363c/a0a3f908859b1b55c2ff77cc900957653748.pdf +365f67fe670bf55dc9ccdcd6888115264b2a2c56,http://pdfs.semanticscholar.org/f431/d3d7a0323bf1150420c826dade2093a7dfa1.pdf +36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,http://pdfs.semanticscholar.org/36fe/39ed69a5c7ff9650fd5f4fe950b5880760b0.pdf +36a3a96ef54000a0cd63de867a5eb7e84396de09,http://www.cs.toronto.edu/~guerzhoy/oriviz/crv17.pdf +36fc4120fc0638b97c23f97b53e2184107c52233,http://pdfs.semanticscholar.org/36fc/4120fc0638b97c23f97b53e2184107c52233.pdf +36ce0b68a01b4c96af6ad8c26e55e5a30446f360,http://liris.cnrs.fr/Documents/Liris-6963.pdf +360d66e210f7011423364327b7eccdf758b5fdd2,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569190652.pdf +365866dc937529c3079a962408bffaa9b87c1f06,http://pdfs.semanticscholar.org/3658/66dc937529c3079a962408bffaa9b87c1f06.pdf +361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,http://pdfs.semanticscholar.org/361c/9ba853c7d69058ddc0f32cdbe94fbc2166d5.pdf +362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002792.pdf +36ea75e14b69bed454fde6076ea6b85ed87fbb14,http://pdfs.semanticscholar.org/36ea/75e14b69bed454fde6076ea6b85ed87fbb14.pdf +36df81e82ea5c1e5edac40b60b374979a43668a5,http://www.robots.ox.ac.uk/~vgg/publications/2012/Parkhi12b/parkhi12b.pdf +366d20f8fd25b4fe4f7dc95068abc6c6cabe1194,http://arxiv.org/pdf/1605.05411v1.pdf +3630324c2af04fd90f8668f9ee9709604fe980fd,http://www.yugangjiang.info/publication/TCSVT-Shu.pdf +362ba8317aba71c78dafca023be60fb71320381d,http://pdfs.semanticscholar.org/362b/a8317aba71c78dafca023be60fb71320381d.pdf +36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958,http://www.iab-rubric.org/papers/RGBD-Face.pdf +36e8ef2e5d52a78dddf0002e03918b101dcdb326,http://www.milbo.org/stasm-files/multiview-active-shape-models-with-sift-for-300w.pdf +36018404263b9bb44d1fddaddd9ee9af9d46e560,http://pdfs.semanticscholar.org/3601/8404263b9bb44d1fddaddd9ee9af9d46e560.pdf +367f2668b215e32aff9d5122ce1f1207c20336c8,http://pdfs.semanticscholar.org/367f/2668b215e32aff9d5122ce1f1207c20336c8.pdf +36c2db5ff76864d289781f93cbb3e6351f11984c,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569187194.pdf +3624ca25f09f3acbcf4d3a4c40b9e45a29c22b94,http://pdfs.semanticscholar.org/3624/ca25f09f3acbcf4d3a4c40b9e45a29c22b94.pdf +3661a34f302883c759b9fa2ce03de0c7173d2bb2,http://pdfs.semanticscholar.org/fd6d/14fb0bbca58e924c504d7dc57cb7f8d3707e.pdf +36c473fc0bf3cee5fdd49a13cf122de8be736977,http://pdfs.semanticscholar.org/bc6c/051b66ecadac7bb3e6ace66665e42875d790.pdf +368d59cf1733af511ed8abbcbeb4fb47afd4da1c,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf +366595171c9f4696ec5eef7c3686114fd3f116ad,http://pdfs.semanticscholar.org/3665/95171c9f4696ec5eef7c3686114fd3f116ad.pdf +36b9f46c12240898bafa10b0026a3fb5239f72f3,https://arxiv.org/pdf/1702.05573v1.pdf +3634b4dd263c0f330245c086ce646c9bb748cd6b,https://arxiv.org/pdf/1504.00983v2.pdf +367a786cfe930455cd3f6bd2492c304d38f6f488,http://pdfs.semanticscholar.org/367a/786cfe930455cd3f6bd2492c304d38f6f488.pdf +5c4ce36063dd3496a5926afd301e562899ff53ea,http://pdfs.semanticscholar.org/5c4c/e36063dd3496a5926afd301e562899ff53ea.pdf +5c6de2d9f93b90034f07860ae485a2accf529285,http://pdfs.semanticscholar.org/5c6d/e2d9f93b90034f07860ae485a2accf529285.pdf +5c624382057b55e46af4dc4c055a33c90e8bf08a,http://www.researchgate.net/profile/Ngoc_Son_Vu/publication/224114972_Illumination-robust_face_recognition_using_retina_modeling/links/0fcfd507f06292b0a5000000.pdf +5ca23ceb0636dfc34c114d4af7276a588e0e8dac,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SMC_2009/PDFs/116.pdf +5c2a7518fb26a37139cebff76753d83e4da25159,http://pdfs.semanticscholar.org/5c2a/7518fb26a37139cebff76753d83e4da25159.pdf +5cb83eba8d265afd4eac49eb6b91cdae47def26d,http://www.kresttechnology.com/krest-academic-projects/krest-major-projects/ECE/B-Tech%20Papers/21.pdf +5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,http://pdfs.semanticscholar.org/5c86/72c0d2f28fd5d2d2c4b9818fcff43fb01a48.pdf +5c3dce55c61ee86073575ac75cc882a215cb49e6,http://pdfs.semanticscholar.org/8d93/b33c38a26b97442b2f160e75212739c60bc5.pdf +5c2e264d6ac253693469bd190f323622c457ca05,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2013/Improving%20large%20scale%20image%20retrieval%20using%20multi-level%20features13.pdf +5c473cfda1d7c384724fbb139dfe8cb39f79f626,http://www.cs.zju.edu.cn/~gpan/publication/2012-PAA-face-expression-onlinefirst.pdf +5c820e47981d21c9dddde8d2f8020146e600368f,http://pdfs.semanticscholar.org/5c82/0e47981d21c9dddde8d2f8020146e600368f.pdf +5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0,http://www.cs.ucr.edu/~mkafai/papers/Paper_tifs2014.pdf +5c124b57699be19cd4eb4e1da285b4a8c84fc80d,http://www.iis.ee.ic.ac.uk/icvl/doc/cvpr14_xiaowei.pdf +5c435c4bc9c9667f968f891e207d241c3e45757a,http://pdfs.semanticscholar.org/eb6a/13c8a607dfc535e5f31b7c8843335674644c.pdf +5c7adde982efb24c3786fa2d1f65f40a64e2afbf,http://pdfs.semanticscholar.org/bd40/dee4f2bbb0e512575cc96a0e3a7918a0ce42.pdf +5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934,http://www.istc-cc.cmu.edu/publications/papers/2016/GeePS-cui-eurosys16.pdf +5cfbeae360398de9e20e4165485837bd42b93217,http://pdfs.semanticscholar.org/5cfb/eae360398de9e20e4165485837bd42b93217.pdf +5ca14fa73da37855bfa880b549483ee2aba26669,http://pdfs.semanticscholar.org/5ca1/4fa73da37855bfa880b549483ee2aba26669.pdf +5c92355b2808621d237a89dc7b3faa5cdb990ab5,http://www.researchgate.net/profile/Brian_Lovell2/publication/236124723_Dynamic_Amelioration_of_Resolution_Mismatches_for_Local_Feature_Based_Identity_Inference/links/0fcfd50741a027e848000000.pdf +5c02bd53c0a6eb361972e8a4df60cdb30c6e3930,http://arxiv.org/pdf/1303.4893v2.pdf +5c8ae37d532c7bb8d7f00dfde84df4ba63f46297,http://pdfs.semanticscholar.org/5c8a/e37d532c7bb8d7f00dfde84df4ba63f46297.pdf +5c717afc5a9a8ccb1767d87b79851de8d3016294,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001845.pdf +5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhao_Facial_Expression_Intensity_CVPR_2016_paper.pdf +09b80d8eea809529b08a8b0ff3417950c048d474,http://openaccess.thecvf.com/content_cvpr_2013/papers/Choi_Adding_Unlabeled_Samples_2013_CVPR_paper.pdf +09f58353e48780c707cf24a0074e4d353da18934,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/BestrowdenBishtKlontzJain_CrowdsourcingHumanPeformance_IJCB2014.pdf +096eb8b4b977aaf274c271058feff14c99d46af3,http://www.dtic.mil/dtic/tr/fulltext/u2/a585819.pdf +0952ac6ce94c98049d518d29c18d136b1f04b0c0,http://pdfs.semanticscholar.org/0952/ac6ce94c98049d518d29c18d136b1f04b0c0.pdf +0969e0dc05fca21ff572ada75cb4b703c8212e80,http://pdfs.semanticscholar.org/0969/e0dc05fca21ff572ada75cb4b703c8212e80.pdf +09dd01e19b247a33162d71f07491781bdf4bfd00,http://pdfs.semanticscholar.org/5991/0d557b54566ec97280480daca02685f21907.pdf +09cf3f1764ab1029f3a7d57b70ae5d5954486d69,http://pdfs.semanticscholar.org/09cf/3f1764ab1029f3a7d57b70ae5d5954486d69.pdf +09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081,http://acberg.com/papers/street2shop.pdf +09628e9116e7890bc65ebeabaaa5f607c9847bae,https://arxiv.org/pdf/1704.03039.pdf +09733129161ca7d65cf56a7ad63c17f493386027,http://pdfs.semanticscholar.org/0973/3129161ca7d65cf56a7ad63c17f493386027.pdf +09c586624ec65d7ef2d4d8d321e98f61698dcfe2,http://www.seas.upenn.edu/~timothee/papers/cvpr_2010_supplement.pdf +09718bf335b926907ded5cb4c94784fd20e5ccd8,http://parnec.nuaa.edu.cn/papers/journal/2005/xtan-TNN05.pdf +098a1ccc13b8d6409aa333c8a1079b2c9824705b,http://people.cs.pitt.edu/~kovashka/ut/pivots-kovashka-iccv2013.pdf +0903bb001c263e3c9a40f430116d1e629eaa616f,http://pdfs.semanticscholar.org/0903/bb001c263e3c9a40f430116d1e629eaa616f.pdf +090ff8f992dc71a1125636c1adffc0634155b450,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf +09b43b59879d59493df2a93c216746f2cf50f4ac,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_036_ext.pdf +098fa9b4c3f7fb41c7a178d36f5dbb50a3ffa377,http://oui.csail.mit.edu/camera_readys/13.pdf +09b0ef3248ff8f1a05b8704a1b4cf64951575be9,https://arxiv.org/pdf/1511.06783v1.pdf +097104fc731a15fad07479f4f2c4be2e071054a2,http://pdfs.semanticscholar.org/dbad/94c3506a342f55f54388e162e8481ae8b184.pdf +094357c1a2ba3fda22aa6dd9e496530d784e1721,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_A_Unified_Probabilistic_2013_ICCV_paper.pdf +09f853ce12f7361c4b50c494df7ce3b9fad1d221,http://files.is.tue.mpg.de/jgall/download/jgall_RFdepthFace_ijcv12.pdf +09111da0aedb231c8484601444296c50ca0b5388,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553737.pdf +09750c9bbb074bbc4eb66586b20822d1812cdb20,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001385.pdf +09ce14b84af2dc2f76ae1cf227356fa0ba337d07,http://grail.cs.washington.edu/3dfaces/paper.pdf +090e4713bcccff52dcd0c01169591affd2af7e76,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Shao_What_Do_You_2013_ICCV_paper.pdf +097f674aa9e91135151c480734dda54af5bc4240,http://pdfs.semanticscholar.org/097f/674aa9e91135151c480734dda54af5bc4240.pdf +5d485501f9c2030ab33f97972aa7585d3a0d59a7,http://pdfs.semanticscholar.org/5d48/5501f9c2030ab33f97972aa7585d3a0d59a7.pdf +5da740682f080a70a30dc46b0fc66616884463ec,http://pdfs.semanticscholar.org/5da7/40682f080a70a30dc46b0fc66616884463ec.pdf +5de5848dc3fc35e40420ffec70a407e4770e3a8d,http://pdfs.semanticscholar.org/5de5/848dc3fc35e40420ffec70a407e4770e3a8d.pdf +5da139fc43216c86d779938d1c219b950dd82a4c,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0200205.pdf +5d33a10752af9ea30993139ac6e3a323992a5831,http://web.engr.illinois.edu/~iendres2/publications/cvpr2010_att.pdf +5dc056fe911a3e34a932513abe637076250d96da,http://www.vision.ee.ethz.ch/~gfanelli/pubs/cvpr12.pdf +5d185d82832acd430981ffed3de055db34e3c653,http://pdfs.semanticscholar.org/fc70/92e72a2bae6f60266147e0fb587b1771699a.pdf +5d233e6f23b1c306cf62af49ce66faac2078f967,http://pdfs.semanticscholar.org/5d23/3e6f23b1c306cf62af49ce66faac2078f967.pdf +5dd496e58cfedfc11b4b43c4ffe44ac72493bf55,http://pdfs.semanticscholar.org/5dd4/96e58cfedfc11b4b43c4ffe44ac72493bf55.pdf +5db075a308350c083c3fa6722af4c9765c4b8fef,http://pdfs.semanticscholar.org/5db0/75a308350c083c3fa6722af4c9765c4b8fef.pdf +5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf,https://www.cl.cam.ac.uk/~hg410/SariyanidiEtAl-RobustRegistration-TIP2016.pdf +5dcf78de4d3d867d0fd4a3105f0defae2234b9cb,http://pdfs.semanticscholar.org/5dcf/78de4d3d867d0fd4a3105f0defae2234b9cb.pdf +5dfebcb7bfefb1af1cfef61a151abfe98a7e7cfa,http://vision.ucsd.edu/sites/default/files/cwah_cvpr2013_unfamiliar.pdf +5d88702cdc879396b8b2cc674e233895de99666b,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_Exploiting_Feature_Hierarchies_ICCV_2015_paper.pdf +5d44c675addcb6e74cbc5a9c48df0d754bdbcd98,http://pdfs.semanticscholar.org/9bc0/1fa9400c231e41e6a72ec509d76ca797207c.pdf +5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e,http://pdfs.semanticscholar.org/5d5c/d6fa5c41eb9d3d2bab3359b3e5eb60ae194e.pdf +5d09d5257139b563bd3149cfd5e6f9eae3c34776,http://pdfs.semanticscholar.org/5d09/d5257139b563bd3149cfd5e6f9eae3c34776.pdf +5d479f77ecccfac9f47d91544fd67df642dfab3c,http://pdfs.semanticscholar.org/7880/c21bb0de02cd4db095e011ac7aff47b35ee8.pdf +5d01283474b73a46d80745ad0cc0c4da14aae194,http://pdfs.semanticscholar.org/5d01/283474b73a46d80745ad0cc0c4da14aae194.pdf +5d197c8cd34473eb6cde6b65ced1be82a3a1ed14,http://cdn.intechopen.com/pdfs/20590/InTech-A_face_image_database_for_evaluating_out_of_focus_blur.pdf +5df376748fe5ccd87a724ef31d4fdb579dab693f,http://pdfs.semanticscholar.org/5df3/76748fe5ccd87a724ef31d4fdb579dab693f.pdf +31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a,http://pdfs.semanticscholar.org/31aa/20911cc7a2b556e7d273f0bdd5a2f0671e0a.pdf +31b05f65405534a696a847dd19c621b7b8588263,https://arxiv.org/pdf/1611.01484v1.pdf +31625522950e82ad4dffef7ed0df00fdd2401436,http://pdfs.semanticscholar.org/3162/5522950e82ad4dffef7ed0df00fdd2401436.pdf +3167f415a861f19747ab5e749e78000179d685bc,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICCV_2009/contents/pdf/iccv2009_131.pdf +3107316f243233d45e3c7e5972517d1ed4991f91,https://arxiv.org/pdf/1703.10155v1.pdf +31c0968fb5f587918f1c49bf7fa51453b3e89cf7,http://pdfs.semanticscholar.org/31c0/968fb5f587918f1c49bf7fa51453b3e89cf7.pdf +31e57fa83ac60c03d884774d2b515813493977b9,http://pdfs.semanticscholar.org/31e5/7fa83ac60c03d884774d2b515813493977b9.pdf +31a2fb63a3fc67da9932474cda078c9ac43f85c5,http://www.researchgate.net/profile/Sadeep_Jayasumana2/publication/269040853_Kernel_Methods_on_Riemannian_Manifolds_with_Gaussian_RBF_Kernels/links/54858a6a0cf283750c37264b.pdf +3137a3fedf23717c411483c7b4bd2ed646258401,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_iccv_13.pdf +31c34a5b42a640b824fa4e3d6187e3675226143e,http://pdfs.semanticscholar.org/31c3/4a5b42a640b824fa4e3d6187e3675226143e.pdf +316e67550fbf0ba54f103b5924e6537712f06bee,http://lear.inrialpes.fr/pubs/2010/GVS10/slides.pdf +31ef5419e026ef57ff20de537d82fe3cfa9ee741,http://pdfs.semanticscholar.org/9a10/78b6e3810c95fc4b87154ad62c0f133caebb.pdf +310da8bd81c963bd510bf9aaa4d028a643555c84,http://www.cs.sunysb.edu/~ial/content/papers/2005/Zhang2005cvpr2.pdf +31b58ced31f22eab10bd3ee2d9174e7c14c27c01,http://pdfs.semanticscholar.org/31b5/8ced31f22eab10bd3ee2d9174e7c14c27c01.pdf +31835472821c7e3090abb42e57c38f7043dc3636,http://pdfs.semanticscholar.org/3183/5472821c7e3090abb42e57c38f7043dc3636.pdf +31a38fd2d9d4f34d2b54318021209fe5565b8f7f,http://www.umiacs.umd.edu/~huytho/papers/HoChellappa_TIP2013.pdf +31aa7c992692b74f17ddec665cd862faaeafd673,http://www.researchgate.net/profile/Shinichi_Satoh/publication/221657297_Unsupervised_face_annotation_by_mining_the_web/links/0912f510a04034844d000000.pdf +3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,http://pdfs.semanticscholar.org/3152/e89963b8a4028c4abf6e1dc19e91c4c5a8f4.pdf +318a81acdd15a0ab2f706b5f53ee9d4d5d86237f,http://pdfs.semanticscholar.org/318a/81acdd15a0ab2f706b5f53ee9d4d5d86237f.pdf +31ace8c9d0e4550a233b904a0e2aabefcc90b0e3,http://pdfs.semanticscholar.org/31ac/e8c9d0e4550a233b904a0e2aabefcc90b0e3.pdf +316d51aaa37891d730ffded7b9d42946abea837f,http://pdfs.semanticscholar.org/9f00/3a5e727b99f792e600b93b6458b9cda3f0a5.pdf +31afdb6fa95ded37e5871587df38976fdb8c0d67,http://www3.ntu.edu.sg/home/EXDJiang/ICASSP15.pdf +31d60b2af2c0e172c1a6a124718e99075818c408,http://pdfs.semanticscholar.org/31d6/0b2af2c0e172c1a6a124718e99075818c408.pdf +31f1e711fcf82c855f27396f181bf5e565a2f58d,http://www.rci.rutgers.edu/~vmp93/Conference_pub/Age_iccv2015.pdf +312afff739d1e0fcd3410adf78be1c66b3480396,http://pdfs.semanticscholar.org/312a/fff739d1e0fcd3410adf78be1c66b3480396.pdf +315a90543d60a5b6c5d1716fe9076736f0e90d24,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553721.pdf +3107085973617bbfc434c6cb82c87f2a952021b7,http://pdfs.semanticscholar.org/cee6/6bd89d1e25355e78573220adcd017a2d97d8.pdf +31182c5ffc8c5d8772b6db01ec98144cd6e4e897,http://pdfs.semanticscholar.org/3118/2c5ffc8c5d8772b6db01ec98144cd6e4e897.pdf +31bb49ba7df94b88add9e3c2db72a4a98927bb05,http://pdfs.semanticscholar.org/31bb/49ba7df94b88add9e3c2db72a4a98927bb05.pdf +3146fabd5631a7d1387327918b184103d06c2211,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Jeni_Person-Independent_3D_Gaze_CVPR_2016_paper.pdf +91811203c2511e919b047ebc86edad87d985a4fa,http://pdfs.semanticscholar.org/9181/1203c2511e919b047ebc86edad87d985a4fa.pdf +910524c0d0fe062bf806bb545627bf2c9a236a03,http://pdfs.semanticscholar.org/9105/24c0d0fe062bf806bb545627bf2c9a236a03.pdf +9117fd5695582961a456bd72b157d4386ca6a174,http://pdfs.semanticscholar.org/9117/fd5695582961a456bd72b157d4386ca6a174.pdf +91df860368cbcebebd83d59ae1670c0f47de171d,http://pdfs.semanticscholar.org/91df/860368cbcebebd83d59ae1670c0f47de171d.pdf +91067f298e1ece33c47df65236853704f6700a0b,http://pdfs.semanticscholar.org/9106/7f298e1ece33c47df65236853704f6700a0b.pdf +91a1945b9c40af4944a6cdcfe59a0999de4f650a,http://ccbr2017.org/ccbr%20PPT/95%E5%8F%B7%E8%AE%BA%E6%96%87-%E7%94%B3%E6%99%9A%E9%9C%9E%20wanxiahen-ccbr.pdf +919d3067bce76009ce07b070a13728f549ebba49,http://pdfs.semanticscholar.org/919d/3067bce76009ce07b070a13728f549ebba49.pdf +9110c589c6e78daf4affd8e318d843dc750fb71a,http://pdfs.semanticscholar.org/9110/c589c6e78daf4affd8e318d843dc750fb71a.pdf +91e57667b6fad7a996b24367119f4b22b6892eca,http://pdfs.semanticscholar.org/91e5/7667b6fad7a996b24367119f4b22b6892eca.pdf +91883dabc11245e393786d85941fb99a6248c1fb,http://pdfs.semanticscholar.org/9188/3dabc11245e393786d85941fb99a6248c1fb.pdf +91b1a59b9e0e7f4db0828bf36654b84ba53b0557,http://www.kresttechnology.com/krest-academic-projects/krest-mtech-projects/ECE/MTech%20DSP%202015-16/MTech%20DSP%20BasePaper%202015-16/50.pdf +919d0e681c4ef687bf0b89fe7c0615221e9a1d30,http://pdfs.semanticscholar.org/919d/0e681c4ef687bf0b89fe7c0615221e9a1d30.pdf +912a6a97af390d009773452814a401e258b77640,http://pdfs.semanticscholar.org/912a/6a97af390d009773452814a401e258b77640.pdf +91d513af1f667f64c9afc55ea1f45b0be7ba08d4,http://pdfs.semanticscholar.org/91d5/13af1f667f64c9afc55ea1f45b0be7ba08d4.pdf +91e507d2d8375bf474f6ffa87788aa3e742333ce,http://pdfs.semanticscholar.org/91e5/07d2d8375bf474f6ffa87788aa3e742333ce.pdf +918b72a47b7f378bde0ba29c908babf6dab6f833,http://pdfs.semanticscholar.org/918b/72a47b7f378bde0ba29c908babf6dab6f833.pdf +91e58c39608c6eb97b314b0c581ddaf7daac075e,http://pdfs.semanticscholar.org/91e5/8c39608c6eb97b314b0c581ddaf7daac075e.pdf +91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0,http://pdfs.semanticscholar.org/94c3/624c54f8f070a9dc82a41cbf7a888fe8f477.pdf +91835984eaeb538606972de47c372c5fcfe8b6aa,http://www.cse.ust.hk/~qnature/pdf/IEEESMC2015.pdf +9103148dd87e6ff9fba28509f3b265e1873166c9,http://pdfs.semanticscholar.org/9103/148dd87e6ff9fba28509f3b265e1873166c9.pdf +915d4a0fb523249ecbc88eb62cb150a60cf60fa0,http://pdfs.semanticscholar.org/915d/4a0fb523249ecbc88eb62cb150a60cf60fa0.pdf +65126e0b1161fc8212643b8ff39c1d71d262fbc1,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ghiasi_Occlusion_Coherence_Localizing_2014_CVPR_paper.pdf +65b737e5cc4a565011a895c460ed8fd07b333600,http://pdfs.semanticscholar.org/7574/f999d2325803f88c4915ba8f304cccc232d1.pdf +6582f4ec2815d2106957215ca2fa298396dde274,http://mi.eng.cam.ac.uk/~cipolla/publications/article/2007-PAMI-face-sets.pdf +65b1760d9b1541241c6c0222cc4ee9df078b593a,http://pdfs.semanticscholar.org/65b1/760d9b1541241c6c0222cc4ee9df078b593a.pdf +65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220,http://pdfs.semanticscholar.org/65d7/f95fcbabcc3cdafc0ad38e81d1f473bb6220.pdf +65bba9fba03e420c96ec432a2a82521ddd848c09,http://pdfs.semanticscholar.org/65bb/a9fba03e420c96ec432a2a82521ddd848c09.pdf +655d9ba828eeff47c600240e0327c3102b9aba7c,http://cs.gmu.edu/~carlotta/publications/kpools.pdf +656a59954de3c9fcf82ffcef926af6ade2f3fdb5,http://pdfs.semanticscholar.org/656a/59954de3c9fcf82ffcef926af6ade2f3fdb5.pdf +652aac54a3caf6570b1c10c993a5af7fa2ef31ff,http://pdfs.semanticscholar.org/652a/ac54a3caf6570b1c10c993a5af7fa2ef31ff.pdf +656ef752b363a24f84cc1aeba91e4fa3d5dd66ba,http://pdfs.semanticscholar.org/656e/f752b363a24f84cc1aeba91e4fa3d5dd66ba.pdf +656aeb92e4f0e280576cbac57d4abbfe6f9439ea,http://pdfs.semanticscholar.org/656a/eb92e4f0e280576cbac57d4abbfe6f9439ea.pdf +6502cf30c088c6c7c4b2a05b7777b032c9dde7cd,http://vipl.ict.ac.cn/homepage/CVPR15Metric/ref/Learning%20compact%20binary%20face%20descriptor%20for%20face%20recognition_PAMI2015.pdf +6577c76395896dd4d352f7b1ee8b705b1a45fa90,http://ai.stanford.edu/~kdtang/papers/icip10_kinship.pdf +650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772,http://pdfs.semanticscholar.org/650b/fe7acc3f03eb4ba91d9f93da8ef0ae8ba772.pdf +65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,http://pdfs.semanticscholar.org/6529/3ecf6a4c5ab037a2afb4a9a1def95e194e5f.pdf +65817963194702f059bae07eadbf6486f18f4a0a,http://arxiv.org/pdf/1505.04141v2.pdf +6581c5b17db7006f4cc3575d04bfc6546854a785,http://pdfs.semanticscholar.org/6581/c5b17db7006f4cc3575d04bfc6546854a785.pdf +6515fe829d0b31a5e1f4dc2970a78684237f6edb,http://pdfs.semanticscholar.org/6515/fe829d0b31a5e1f4dc2970a78684237f6edb.pdf +62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4,http://pdfs.semanticscholar.org/62d1/a31b8acd2141d3a994f2d2ec7a3baf0e6dc4.pdf +62694828c716af44c300f9ec0c3236e98770d7cf,http://pdfs.semanticscholar.org/6269/4828c716af44c300f9ec0c3236e98770d7cf.pdf +6261eb75066f779e75b02209fbd3d0f02d3e1e45,http://pdfs.semanticscholar.org/6261/eb75066f779e75b02209fbd3d0f02d3e1e45.pdf +622daa25b5e6af69f0dac3a3eaf4050aa0860396,http://pdfs.semanticscholar.org/af52/4ffcedaa50cff30607e6ad8e270ad0d7bf71.pdf +62f0d8446adee6a5e8102053a63a61af07ac4098,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C072_yamashita2015.pdf +62f60039a95692baaeaae79a013c7f545e2a6c3d,http://www.researchgate.net/profile/G_Boato/publication/242336498_Identify_computer_generated_characters_by_analysing_facial_expressions_variation/links/0f3175360a34547478000000.pdf +62374b9e0e814e672db75c2c00f0023f58ef442c,http://pdfs.semanticscholar.org/6237/4b9e0e814e672db75c2c00f0023f58ef442c.pdf +6257a622ed6bd1b8759ae837b50580657e676192,http://pdfs.semanticscholar.org/b8d8/501595f38974e001a66752dc7098db13dfec.pdf +6226f2ea345f5f4716ac4ddca6715a47162d5b92,http://pdfs.semanticscholar.org/6226/f2ea345f5f4716ac4ddca6715a47162d5b92.pdf +62e913431bcef5983955e9ca160b91bb19d9de42,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf +62c435bc714f13a373926e3b1914786592ed1fef,http://assistech.iitd.ernet.in/mavi-embedded-device.pdf +624e9d9d3d941bab6aaccdd93432fc45cac28d4b,https://arxiv.org/pdf/1505.00296v1.pdf +620e1dbf88069408b008347cd563e16aeeebeb83,http://pdfs.semanticscholar.org/620e/1dbf88069408b008347cd563e16aeeebeb83.pdf +624496296af19243d5f05e7505fd927db02fd0ce,http://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_cvpr_2014.pdf +621ed006945e9438910b5aa4f6214888dea3d791,http://figment.cse.usf.edu/~sfefilat/data/papers/ThAT9.20.pdf +621ff353960d5d9320242f39f85921f72be69dc8,http://www.research.rutgers.edu/~xiangyu/paper/FG_2013.pdf +62a30f1b149843860938de6dd6d1874954de24b7,http://mmlab.ie.cuhk.edu.hk/archive/2009/09_fast_algorithm.pdf +621e8882c41cdaf03a2c4a986a6404f0272ba511,http://conradsanderson.id.au/pdfs/wong_ijcnn_2012.pdf +62e0380a86e92709fe2c64e6a71ed94d152c6643,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2012/Facial%20emotion%20recognition%20with%20expression%20energy12.pdf +621f656fedda378ceaa9c0096ebb1556a42e5e0f,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2016/07.19.17.24/doc/PID4367205.pdf?ibiurl.language=en +965f8bb9a467ce9538dec6bef57438964976d6d9,http://www4.comp.polyu.edu.hk/~csajaykr/myhome/papers/ISBA2016.pdf +961a5d5750f18e91e28a767b3cb234a77aac8305,http://pdfs.semanticscholar.org/961a/5d5750f18e91e28a767b3cb234a77aac8305.pdf +9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c,http://pdfs.semanticscholar.org/9626/bcb3fc7c7df2c5a423ae8d0a046b2f69180c.pdf +968b983fa9967ff82e0798a5967920188a3590a8,http://pdfs.semanticscholar.org/968b/983fa9967ff82e0798a5967920188a3590a8.pdf +969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,http://pdfs.semanticscholar.org/969f/d48e1a668ab5d3c6a80a3d2aeab77067c6ce.pdf +96faccdddef887673d6007fed8ff2574580cae1f,http://pdfs.semanticscholar.org/96fa/ccdddef887673d6007fed8ff2574580cae1f.pdf +961939e96eed6620b1752721ab520745ac5329c6,http://www.cs.umd.edu/~gaurav/research/frgcWorkshop.pdf +960ad662c2bb454d69006492cc3f52d1550de55d,http://www.research.att.com/~yifanhu/PUB/gmap_cga.pdf +9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4,http://pdfs.semanticscholar.org/9696/b172d66e402a2e9d0a8d2b3f204ad8b98cc4.pdf +964a3196d44f0fefa7de3403849d22bbafa73886,http://pdfs.semanticscholar.org/964a/3196d44f0fefa7de3403849d22bbafa73886.pdf +96f4a1dd1146064d1586ebe86293d02e8480d181,http://pdfs.semanticscholar.org/96f4/a1dd1146064d1586ebe86293d02e8480d181.pdf +9606b1c88b891d433927b1f841dce44b8d3af066,http://pdfs.semanticscholar.org/9606/b1c88b891d433927b1f841dce44b8d3af066.pdf +966e36f15b05ef8436afecf57a97b73d6dcada94,http://pdfs.semanticscholar.org/966e/36f15b05ef8436afecf57a97b73d6dcada94.pdf +969dd8bc1179c047523d257516ade5d831d701ad,http://pdfs.semanticscholar.org/969d/d8bc1179c047523d257516ade5d831d701ad.pdf +96578785836d7416bf2e9c154f687eed8f93b1e4,http://pdfs.semanticscholar.org/9657/8785836d7416bf2e9c154f687eed8f93b1e4.pdf +96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,http://megaface.cs.washington.edu/KemelmacherMegaFaceCVPR16.pdf +968f472477a8afbadb5d92ff1b9c7fdc89f0c009,http://pdfs.semanticscholar.org/968f/472477a8afbadb5d92ff1b9c7fdc89f0c009.pdf +96e731e82b817c95d4ce48b9e6b08d2394937cf8,http://arxiv.org/pdf/1508.01722v2.pdf +9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc,http://pdfs.semanticscholar.org/9686/dcf40e6fdc4152f38bd12b929bcd4f3bbbcc.pdf +9636c7d3643fc598dacb83d71f199f1d2cc34415,http://pdfs.semanticscholar.org/9636/c7d3643fc598dacb83d71f199f1d2cc34415.pdf +3abe50d0a806a9f5a5626f60f590632a6d87f0c4,http://vis.uky.edu/~gravity/publications/2008/Estimating_Xinyu.pdf +3af8d38469fb21368ee947d53746ea68cd64eeae,http://pdfs.semanticscholar.org/3af8/d38469fb21368ee947d53746ea68cd64eeae.pdf +3a2fc58222870d8bed62442c00341e8c0a39ec87,http://pdfs.semanticscholar.org/3a2f/c58222870d8bed62442c00341e8c0a39ec87.pdf +3a76e9fc2e89bdd10a9818f7249fbf61d216efc4,http://openaccess.thecvf.com/content_ICCV_2017/papers/Nagpal_Face_Sketch_Matching_ICCV_2017_paper.pdf +3a92de0a4a0ef4f88e1647633f1fbb13cd6a3c95,http://impca.cs.curtin.edu.au/pubs/2007/conferences/an_liu_venkatesh_cvpr07.pdf +3a0ea368d7606030a94eb5527a12e6789f727994,http://pdfs.semanticscholar.org/c7ca/eb8ecb6a38bdd65ddd25aca4fdd79203ddef.pdf +3a804cbf004f6d4e0b041873290ac8e07082b61f,http://pdfs.semanticscholar.org/5ce8/e665a6512c09f15d8528ce6bece1f6a4d138.pdf +3a04eb72aa64760dccd73e68a3b2301822e4cdc3,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Peng_Scalable_Sparse_Subspace_2013_CVPR_paper.pdf +3af130e2fd41143d5fc49503830bbd7bafd01f8b,http://pdfs.semanticscholar.org/db76/002794c12e5febc30510de58b54bb9344ea9.pdf +3a2cf589f5e11ca886417b72c2592975ff1d8472,http://pdfs.semanticscholar.org/3a2c/f589f5e11ca886417b72c2592975ff1d8472.pdf +3ada7640b1c525056e6fcd37eea26cd638815cd6,http://pdfs.semanticscholar.org/3ada/7640b1c525056e6fcd37eea26cd638815cd6.pdf +3abc833f4d689f37cc8a28f47fb42e32deaa4b17,http://www.cs.virginia.edu/~vicente/files/ijcv_bigdata.pdf +3acb6b3e3f09f528c88d5dd765fee6131de931ea,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2017/novelRepresentation.pdf +3a60678ad2b862fa7c27b11f04c93c010cc6c430,http://ibug.doc.ic.ac.uk/media/uploads/documents/taffcsi-2010-11-0112-2.pdf +3a591a9b5c6d4c62963d7374d58c1ae79e3a4039,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W04/papers/Artan_Driver_Cell_Phone_2014_CVPR_paper.pdf +3aa9c8c65ce63eb41580ba27d47babb1100df8a3,http://www.csb.uncw.edu/mscsis/complete/pdf/VandeventerJason_Final.pdf +3a0a839012575ba455f2b84c2d043a35133285f9,http://pdfs.semanticscholar.org/76a1/dca3a9c2b0229c1b12c95752dcf40dc95a11.pdf +3af1a375c7c1decbcf5c3a29774e165cafce390c,https://www.cbica.upenn.edu/sbia/papers/540.pdf +3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e,http://www.wjscheirer.com/papers/wjs_cswb2010_grab.pdf +3a2a37ca2bdc82bba4c8e80b45d9f038fe697c7d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Vahdat_Handling_Uncertain_Tags_2013_ICCV_paper.pdf +3a95eea0543cf05670e9ae28092a114e3dc3ab5c,https://arxiv.org/pdf/1209.0841v7.pdf +3a4f522fa9d2c37aeaed232b39fcbe1b64495134,http://ijireeice.com/upload/2016/may-16/IJIREEICE%20101.pdf +54bb25a213944b08298e4e2de54f2ddea890954a,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf +54bae57ed37ce50e859cbc4d94d70cc3a84189d5,http://pdfs.semanticscholar.org/af65/4a7ec15168b16382bd604889ea07a967dac6.pdf +54f442c7fa4603f1814ebd8eba912a00dceb5cb2,http://pdfs.semanticscholar.org/54f4/42c7fa4603f1814ebd8eba912a00dceb5cb2.pdf +543f21d81bbea89f901dfcc01f4e332a9af6682d,http://pdfs.semanticscholar.org/543f/21d81bbea89f901dfcc01f4e332a9af6682d.pdf +5456166e3bfe78a353df988897ec0bd66cee937f,http://pdfs.semanticscholar.org/5456/166e3bfe78a353df988897ec0bd66cee937f.pdf +541f1436c8ffef1118a0121088584ddbfd3a0a8a,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/A%20Spatio-Temporal%20Feature%20based%20on%20Triangulation%20of%20Dense%20SURF.pdf +54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3,http://www.cs.toronto.edu/~vnair/iccv11.pdf +541bccf19086755f8b5f57fd15177dc49e77d675,http://pdfs.semanticscholar.org/541b/ccf19086755f8b5f57fd15177dc49e77d675.pdf +5495e224ac7b45b9edc5cfeabbb754d8a40a879b,http://pdfs.semanticscholar.org/5495/e224ac7b45b9edc5cfeabbb754d8a40a879b.pdf +54756f824befa3f0c2af404db0122f5b5bbf16e0,http://pdfs.semanticscholar.org/5475/6f824befa3f0c2af404db0122f5b5bbf16e0.pdf +549c719c4429812dff4d02753d2db11dd490b2ae,http://openaccess.thecvf.com/content_cvpr_2017/papers/Real_YouTube-BoundingBoxes_A_Large_CVPR_2017_paper.pdf +98b2f21db344b8b9f7747feaf86f92558595990c,http://pdfs.semanticscholar.org/b9f0/29075a36f15202f0d213fe222dcf237fe65f.pdf +98142103c311b67eeca12127aad9229d56b4a9ff,http://pdfs.semanticscholar.org/9814/2103c311b67eeca12127aad9229d56b4a9ff.pdf +9820920d4544173e97228cb4ab8b71ecf4548475,http://pdfs.semanticscholar.org/9820/920d4544173e97228cb4ab8b71ecf4548475.pdf +989332c5f1b22604d6bb1f78e606cb6b1f694e1a,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf +982f5c625d6ad0dac25d7acbce4dabfb35dd7f23,http://pdfs.semanticscholar.org/982f/5c625d6ad0dac25d7acbce4dabfb35dd7f23.pdf +98af221afd64a23e82c40fd28d25210c352e41b7,http://pdfs.semanticscholar.org/d2fb/a31b394ea016b57f45bead77534fd8f7fbfa.pdf +9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5,http://pdfs.semanticscholar.org/9893/865afdb1de55fdd21e5d86bbdb5daa5fa3d5.pdf +988d1295ec32ce41d06e7cf928f14a3ee079a11e,http://pdfs.semanticscholar.org/988d/1295ec32ce41d06e7cf928f14a3ee079a11e.pdf +98a120802aef324599e8b9014decfeb2236a78a3,http://nyunetworks.com/Pubs/butler-chi16.pdf +98c548a4be0d3b62971e75259d7514feab14f884,http://pdfs.semanticscholar.org/98c5/48a4be0d3b62971e75259d7514feab14f884.pdf +9887ab220254859ffc7354d5189083a87c9bca6e,http://pdfs.semanticscholar.org/9887/ab220254859ffc7354d5189083a87c9bca6e.pdf +985cd420c00d2f53965faf63358e8c13d1951fa8,http://pdfs.semanticscholar.org/985c/d420c00d2f53965faf63358e8c13d1951fa8.pdf +981449cdd5b820268c0876477419cba50d5d1316,http://pdfs.semanticscholar.org/9814/49cdd5b820268c0876477419cba50d5d1316.pdf +9863dd1e2a3d3b4910a91176ac0f2fee5eb3b5e1,http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/kim-ieee-2006.pdf +9821669a989a3df9d598c1b4332d17ae8e35e294,http://pdfs.semanticscholar.org/9821/669a989a3df9d598c1b4332d17ae8e35e294.pdf +9854145f2f64d52aac23c0301f4bb6657e32e562,http://www.ucsp.edu.pe/sibgrapi2013/eproceedings/technical/114953_2.pdf +98c2053e0c31fab5bcb9ce5386335b647160cc09,https://smartech.gatech.edu/bitstream/handle/1853/45502/GT-CS-12-10.pdf +98127346920bdce9773aba6a2ffc8590b9558a4a,http://disi.unitn.it/~duta/pubs/MTAP2017_Duta.pdf +98a660c15c821ea6d49a61c5061cd88e26c18c65,http://pdfs.semanticscholar.org/98a6/60c15c821ea6d49a61c5061cd88e26c18c65.pdf +982fed5c11e76dfef766ad9ff081bfa25e62415a,https://pdfs.semanticscholar.org/c7fa/d91ba4e33f64d584c928b1200327815f09e6.pdf +98fb3890c565f1d32049a524ec425ceda1da5c24,http://pdfs.semanticscholar.org/98fb/3890c565f1d32049a524ec425ceda1da5c24.pdf +98519f3f615e7900578bc064a8fb4e5f429f3689,http://pdfs.semanticscholar.org/9851/9f3f615e7900578bc064a8fb4e5f429f3689.pdf +9825aa96f204c335ec23c2b872855ce0c98f9046,http://pdfs.semanticscholar.org/9825/aa96f204c335ec23c2b872855ce0c98f9046.pdf +980266ad6807531fea94252e8f2b771c20e173b3,http://pdfs.semanticscholar.org/9802/66ad6807531fea94252e8f2b771c20e173b3.pdf +53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9,http://pdfs.semanticscholar.org/53d7/8c8dbac7c9be8eb148c6a9e1d672f1dd72f9.pdf +53cfe4817ac2eecbe4e286709a9140a5fe729b35,http://www.cv.iit.nrc.ca/VI/fpiv04/pdf/17fa.pdf +5334ac0a6438483890d5eef64f6db93f44aacdf4,http://pdfs.semanticscholar.org/5334/ac0a6438483890d5eef64f6db93f44aacdf4.pdf +53e081f5af505374c3b8491e9c4470fe77fe7934,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hsieh_Unconstrained_Realtime_Facial_2015_CVPR_paper.pdf +53698b91709112e5bb71eeeae94607db2aefc57c,http://pdfs.semanticscholar.org/5369/8b91709112e5bb71eeeae94607db2aefc57c.pdf +531fd9be964d18ba7970bd1ca6c3b9dc91b8d2ab,http://pdfs.semanticscholar.org/531f/d9be964d18ba7970bd1ca6c3b9dc91b8d2ab.pdf +5394d42fd27b7e14bd875ec71f31fdd2fcc8f923,http://pdfs.semanticscholar.org/5394/d42fd27b7e14bd875ec71f31fdd2fcc8f923.pdf +5397c34a5e396658fa57e3ca0065a2878c3cced7,http://www.iis.sinica.edu.tw/papers/song/5959-F.pdf +539ca9db570b5e43be0576bb250e1ba7a727d640,http://pdfs.semanticscholar.org/539c/a9db570b5e43be0576bb250e1ba7a727d640.pdf +539287d8967cdeb3ef60d60157ee93e8724efcac,http://pdfs.semanticscholar.org/e5ae/05a05eefbf416eb2e13ec080f1a166dde735.pdf +532f7ec8e0c8f7331417dd4a45dc2e8930874066,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p6060-zoidi.pdf +53c8cbc4a3a3752a74f79b74370ed8aeed97db85,http://pdfs.semanticscholar.org/53c8/cbc4a3a3752a74f79b74370ed8aeed97db85.pdf +5366573e96a1dadfcd4fd592f83017e378a0e185,http://pdfs.semanticscholar.org/5366/573e96a1dadfcd4fd592f83017e378a0e185.pdf +533bfb82c54f261e6a2b7ed7d31a2fd679c56d18,http://biometrics.cse.msu.edu/Publications/Face/BestRowdenetal_UnconstrainedFaceRecognition_TechReport_MSU-CSE-14-1.pdf +539ae0920815eb248939165dd5d1b0188ff7dca2,http://www.ele.puc-rio.br/~visao/Topicos/Prince%20and%20Helder%202007%20Probabilistic%20linear%20discriminant%20analysis.pdf +537d8c4c53604fd419918ec90d6ef28d045311d0,https://arxiv.org/pdf/1704.08821v1.pdf +530ce1097d0681a0f9d3ce877c5ba31617b1d709,https://pdfs.semanticscholar.org/530c/e1097d0681a0f9d3ce877c5ba31617b1d709.pdf +3fbd68d1268922ee50c92b28bd23ca6669ff87e5,http://pdfs.semanticscholar.org/f563/6a8021c09870c350e7505c87625fe1681bd4.pdf +3fe4109ded039ac9d58eb9f5baa5327af30ad8b6,http://www.cvc.uab.cat/~ahernandez/files/CVPR2010STGRABCUT.pdf +3f22a4383c55ceaafe7d3cfed1b9ef910559d639,http://pdfs.semanticscholar.org/3f22/a4383c55ceaafe7d3cfed1b9ef910559d639.pdf +3fefc856a47726d19a9f1441168480cee6e9f5bb,http://pdfs.semanticscholar.org/e0e6/bf37d374f9c5cb2461ea87190e234c466d63.pdf +3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001,http://pdfs.semanticscholar.org/4032/8c9de5a0a90a8c24e80db7924f0281b46484.pdf +3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2014/MM02014.pdf +3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9,https://arxiv.org/pdf/1611.06638.pdf +3f848d6424f3d666a1b6dd405a48a35a797dd147,http://pdfs.semanticscholar.org/4f69/233cd6f0b56833c9395528aa007b63158a1d.pdf +3fa738ab3c79eacdbfafa4c9950ef74f115a3d84,http://pdfs.semanticscholar.org/3fa7/38ab3c79eacdbfafa4c9950ef74f115a3d84.pdf +3fb26f3abcf0d287243646426cd5ddeee33624d4,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Qin_Joint_Training_of_CVPR_2016_paper.pdf +3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Hsu_Face_Recognition_across_2013_CVPR_paper.pdf +3feb69531653e83d0986a0643e4a6210a088e3e5,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/SLAM2007/papers/10-1569042275.pdf +3f12701449a82a5e01845001afab3580b92da858,http://pdfs.semanticscholar.org/e4f5/2f5e116f0cc486d033e4b8fc737944343db7.pdf +3f204a413d9c8c16f146c306c8d96b91839fed0c,http://www.menpo.org/pages/paper/Menpo_ACM_MM_2014.pdf +3fde656343d3fd4223e08e0bc835552bff4bda40,http://pdfs.semanticscholar.org/3fde/656343d3fd4223e08e0bc835552bff4bda40.pdf +3f957142ef66f2921e7c8c7eadc8e548dccc1327,https://ibug.doc.ic.ac.uk/media/uploads/documents/combined_model_lda_&_svms.pdf +3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,http://pdfs.semanticscholar.org/3fdf/d6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3.pdf +3f540faf85e1f8de6ce04fb37e556700b67e4ad3,http://pdfs.semanticscholar.org/3f54/0faf85e1f8de6ce04fb37e556700b67e4ad3.pdf +3fb3c7dd12561e9443ac301f5527d539b1f4574e,http://www.research.rutgers.edu/~shaoting/paper/ICCV13.pdf +3f4bfa4e3655ef392eb5ad609d31c05f29826b45,http://pdfs.semanticscholar.org/3f4b/fa4e3655ef392eb5ad609d31c05f29826b45.pdf +3f5cf3771446da44d48f1d5ca2121c52975bb3d3,http://pdfs.semanticscholar.org/3f5c/f3771446da44d48f1d5ca2121c52975bb3d3.pdf +3f14b504c2b37a0e8119fbda0eff52efb2eb2461,https://ibug.doc.ic.ac.uk/media/uploads/documents/eleftheriadis_tip_2016.pdf +3fac7c60136a67b320fc1c132fde45205cd2ac66,http://pdfs.semanticscholar.org/3fac/7c60136a67b320fc1c132fde45205cd2ac66.pdf +3fd90098551bf88c7509521adf1c0ba9b5dfeb57,http://pub.ist.ac.at/~chl/papers/lampert-pami2013.pdf +3f623bb0c9c766a5ac612df248f4a59288e4d29f,http://pdfs.semanticscholar.org/3f62/3bb0c9c766a5ac612df248f4a59288e4d29f.pdf +3f4798c7701da044bdb7feb61ebdbd1d53df5cfe,http://sip.unige.ch/articles/2015/2015.EUSIPCO.Vector.quantization.pdf +3f4c262d836b2867a53eefb959057350bf7219c9,http://pdfs.semanticscholar.org/3f4c/262d836b2867a53eefb959057350bf7219c9.pdf +3f7723ab51417b85aa909e739fc4c43c64bf3e84,http://pdfs.semanticscholar.org/3f77/23ab51417b85aa909e739fc4c43c64bf3e84.pdf +3f63f9aaec8ba1fa801d131e3680900680f14139,http://dspace.nitrkl.ac.in/dspace/bitstream/2080/2288/1/4a.pdf +3f0e0739677eb53a9d16feafc2d9a881b9677b63,http://pdfs.semanticscholar.org/d309/e414f0d6e56e7ba45736d28ee58ae2bad478.pdf +3039627fa612c184228b0bed0a8c03c7f754748c,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wu_Robust_Regression_on_2015_CVPR_paper.pdf +303065c44cf847849d04da16b8b1d9a120cef73a,http://pdfs.semanticscholar.org/3030/65c44cf847849d04da16b8b1d9a120cef73a.pdf +303a7099c01530fa0beb197eb1305b574168b653,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf +30aa681ab80a830c3890090b0da3f1e786bd66ff,https://arxiv.org/pdf/1708.02337v1.pdf +30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,http://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf +303517dfc327c3004ae866a6a340f16bab2ee3e3,http://pdfs.semanticscholar.org/3035/17dfc327c3004ae866a6a340f16bab2ee3e3.pdf +309e17e6223e13b1f76b5b0eaa123b96ef22f51b,https://static.aminer.org/pdf/PDF/000/337/771/image_synthesis_and_face_recognition_based_on_d_face_model.pdf +3046baea53360a8c5653f09f0a31581da384202e,http://pdfs.semanticscholar.org/3046/baea53360a8c5653f09f0a31581da384202e.pdf +3026722b4cbe9223eda6ff2822140172e44ed4b1,http://chenlab.ece.cornell.edu/people/Andy/Andy_files/GallagherICCV09Demographics.pdf +3028690d00bd95f20842d4aec84dc96de1db6e59,http://pdfs.semanticscholar.org/775f/9b8bc0ff151ee62b5e777f0aa9b09484ef8a.pdf +30c96cc041bafa4f480b7b1eb5c45999701fe066,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/DiscreteCosineTransformLocality-SensitiveHashes14.pdf +306957285fea4ce11a14641c3497d01b46095989,http://pdfs.semanticscholar.org/3069/57285fea4ce11a14641c3497d01b46095989.pdf +304b1f14ca6a37552dbfac443f3d5b36dbe1a451,http://pdfs.semanticscholar.org/304b/1f14ca6a37552dbfac443f3d5b36dbe1a451.pdf +306127c3197eb5544ab1e1bf8279a01e0df26120,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Huang_Sparse_Coding_and_CVPR_2016_paper.pdf +307a810d1bf6f747b1bd697a8a642afbd649613d,http://pdfs.semanticscholar.org/307a/810d1bf6f747b1bd697a8a642afbd649613d.pdf +30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf +30c5d2ec584e7b8273af6915aab420fc23ff2761,http://imi.ntu.edu.sg/IMIGraduatePrograms/IMIResearchSeminars/Documents/29_April_2014/REN_Jianfeng_29_April_2014.pdf +3083d2c6d4f456e01cbb72930dc2207af98a6244,http://pdfs.semanticscholar.org/3083/d2c6d4f456e01cbb72930dc2207af98a6244.pdf +302c9c105d49c1348b8f1d8cc47bead70e2acf08,http://pdfs.semanticscholar.org/302c/9c105d49c1348b8f1d8cc47bead70e2acf08.pdf +30b74e60ec11c0ebc4e640637d56d85872dd17ce,http://pdfs.semanticscholar.org/c810/9382eea8f3fc49b3e6ed13d36eb95a06d0ed.pdf +304a306d2a55ea41c2355bd9310e332fa76b3cb0,http://pdfs.semanticscholar.org/95da/2d1137637e89da8b7a16e0dc6168cfceb693.pdf +3042d3727b2f80453ff5378b4b3043abb2d685a1,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0219.pdf +301b0da87027d6472b98361729faecf6e1d5e5f6,http://pdfs.semanticscholar.org/301b/0da87027d6472b98361729faecf6e1d5e5f6.pdf +30b103d59f8460d80bb9eac0aa09aaa56c98494f,http://pdfs.semanticscholar.org/30b1/03d59f8460d80bb9eac0aa09aaa56c98494f.pdf +5e97a1095f2811e0bc188f52380ea7c9c460c896,http://web.eecs.utk.edu/~rguo1/FacialParsing.pdf +5e59193a0fc22a0c37301fb05b198dd96df94266,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dessein_Example-Based_Modeling_of_ICCV_2015_paper.pdf +5e0eb34aeb2b58000726540336771053ecd335fc,http://ies.anthropomatik.kit.edu/ies/download/publ/ies_2016_herrmann_low_quality.pdf +5ebb247963d2d898d420f1f4a2486102a9d05aa9,http://bcmi.sjtu.edu.cn/~zhzhang/papers/nncw.pdf +5e28673a930131b1ee50d11f69573c17db8fff3e,http://pdfs.semanticscholar.org/f28d/fadba11bd3489d008827d9b1a539b34b50df.pdf +5ea9063b44b56d9c1942b8484572790dff82731e,https://ibug.doc.ic.ac.uk/media/uploads/documents/mlsp_2007_kotsia.pdf +5e16f10f2d667d17c029622b9278b6b0a206d394,http://pdfs.semanticscholar.org/5e16/f10f2d667d17c029622b9278b6b0a206d394.pdf +5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7,http://cbl.uh.edu/pub_files/ISBA-2016.pdf +5ea165d2bbd305dc125415487ef061bce75dac7d,http://www.ece.northwestern.edu/~zli/new_home/MyPublications/conf/ICME2009-human-act-apd-final.pdf +5e6ba16cddd1797853d8898de52c1f1f44a73279,http://pdfs.semanticscholar.org/5e6b/a16cddd1797853d8898de52c1f1f44a73279.pdf +5ea9cba00f74d2e113a10c484ebe4b5780493964,http://pdfs.semanticscholar.org/5ea9/cba00f74d2e113a10c484ebe4b5780493964.pdf +5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43,http://www.cs.cmu.edu/~juny/Prof/papers/acmmm04a-jyang.pdf +5ec94adc9e0f282597f943ea9f4502a2a34ecfc2,http://pdfs.semanticscholar.org/5ec9/4adc9e0f282597f943ea9f4502a2a34ecfc2.pdf +5e0e516226413ea1e973f1a24e2fdedde98e7ec0,http://pdfs.semanticscholar.org/74ce/97da57ec848db660ee69dec709f226c74f43.pdf +5e821cb036010bef259046a96fe26e681f20266e,https://pdfs.semanticscholar.org/d7e6/d52748c5ed386a90118fa385647c55954ab9.pdf +5e7cb894307f36651bdd055a85fdf1e182b7db30,http://pdfs.semanticscholar.org/5e7c/b894307f36651bdd055a85fdf1e182b7db30.pdf +5b693cb3bedaa2f1e84161a4261df9b3f8e77353,http://pdfs.semanticscholar.org/5b69/3cb3bedaa2f1e84161a4261df9b3f8e77353.pdf +5b73b7b335f33cda2d0662a8e9520f357b65f3ac,http://www.iis.sinica.edu.tw/papers/song/16795-F.pdf +5b6d05ce368e69485cb08dd97903075e7f517aed,http://pdfs.semanticscholar.org/5b6d/05ce368e69485cb08dd97903075e7f517aed.pdf +5b0bf1063b694e4b1575bb428edb4f3451d9bf04,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Yang_Facial_Shape_Tracking_ICCV_2015_paper.pdf +5b59e6b980d2447b2f3042bd811906694e4b0843,https://bib.irb.hr/datoteka/832723.PID4276755.pdf +5bb53fb36a47b355e9a6962257dd465cd7ad6827,http://pdfs.semanticscholar.org/5bb5/3fb36a47b355e9a6962257dd465cd7ad6827.pdf +5b89744d2ac9021f468b3ffd32edf9c00ed7fed7,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Bi_Beyond_Mahalanobis_Metric_2015_CVPR_paper.pdf +5bfc32d9457f43d2488583167af4f3175fdcdc03,http://pdfs.semanticscholar.org/5bfc/32d9457f43d2488583167af4f3175fdcdc03.pdf +5b7cb9b97c425b52b2e6f41ba8028836029c4432,http://www.cis.pku.edu.cn/faculty/vision/zlin/Publications/2014-CVPR-SMR.pdf +5b6f0a508c1f4097dd8dced751df46230450b01a,http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.pdf +5b9d41e2985fa815c0f38a2563cca4311ce82954,http://www.iti.gr/files/3dpvt04tsalakanidou.pdf +5b6593a6497868a0d19312952d2b753232414c23,http://pdfs.semanticscholar.org/5b65/93a6497868a0d19312952d2b753232414c23.pdf +5bb684dfe64171b77df06ba68997fd1e8daffbe1,http://pdfs.semanticscholar.org/f096/9403b5dfa54445d911aedd88ab25b0b6cd99.pdf +5b719410e7829c98c074bc2947697fac3b505b64,http://pdfs.semanticscholar.org/ecec/d5c8b2472364fd7816033e8355215e34bb1b.pdf +5bae9822d703c585a61575dced83fa2f4dea1c6d,http://pdfs.semanticscholar.org/5bae/9822d703c585a61575dced83fa2f4dea1c6d.pdf +5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f,http://pdfs.semanticscholar.org/7589/58f2340ba46c6708b73d5427985d5623a512.pdf +5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65,http://pdfs.semanticscholar.org/5b9d/9f5a59c48bc8dd409a1bd5abf1d642463d65.pdf +5bf70c1afdf4c16fd88687b4cf15580fd2f26102,http://pdfs.semanticscholar.org/5bf7/0c1afdf4c16fd88687b4cf15580fd2f26102.pdf +5b5962bdb75c72848c1fb4b34c113ff6101b5a87,http://research.microsoft.com/en-us/um/people/leizhang/paper/TMM2011_Xiao.pdf +5bcc8ef74efbb959407adfda15a01dad8fcf1648,http://pdfs.semanticscholar.org/5bcc/8ef74efbb959407adfda15a01dad8fcf1648.pdf +5b01d4338734aefb16ee82c4c59763d3abc008e6,http://pdfs.semanticscholar.org/5b01/d4338734aefb16ee82c4c59763d3abc008e6.pdf +5bdd9f807eec399bb42972a33b83afc8b607c05c,http://www.umiacs.umd.edu/~pvishalm/Journal_pub/SPM_DA_v9.pdf +5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Yang_Improving_3D_Face_2014_CVPR_paper.pdf +5b86c36e3eb59c347b81125d5dd57dd2a2c377a9,http://pdfs.semanticscholar.org/5b86/c36e3eb59c347b81125d5dd57dd2a2c377a9.pdf +5be3cc1650c918da1c38690812f74573e66b1d32,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Sandeep_Relative_Parts_Distinctive_2014_CVPR_paper.pdf +5bc0a89f4f73523967050374ed34d7bc89e4d9e1,http://pdfs.semanticscholar.org/5bc0/a89f4f73523967050374ed34d7bc89e4d9e1.pdf +5b6bed112e722c0629bcce778770d1b28e42fc96,http://pdfs.semanticscholar.org/5b6b/ed112e722c0629bcce778770d1b28e42fc96.pdf +5bde1718253ec28a753a892b0ba82d8e553b6bf3,http://pdfs.semanticscholar.org/5bde/1718253ec28a753a892b0ba82d8e553b6bf3.pdf +5b0ebb8430a04d9259b321fc3c1cc1090b8e600e,http://www.openu.ac.il/home/hassner/projects/Ossk/WolfHassnerTaigman_ICCV09.pdf +37c8514df89337f34421dc27b86d0eb45b660a5e,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Uricar_Facial_Landmark_Tracking_ICCV_2015_paper.pdf +371f40f6d32ece05cc879b6954db408b3d4edaf3,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_100_ext.pdf +374c7a2898180723f3f3980cbcb31c8e8eb5d7af,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Kotsia07a.pdf +37007af698b990a3ea8592b11d264b14d39c843f,http://acberg.com/papers/dcmsvm.pdf +374a0df2aa63b26737ee89b6c7df01e59b4d8531,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yuan_Temporal_Action_Localization_CVPR_2016_paper.pdf +378ae5ca649f023003021f5a63e393da3a4e47f0,http://vision.ucsd.edu/~carolina/files/galleguillos_cvpr10.pdf +37619564574856c6184005830deda4310d3ca580,http://arxiv.org/pdf/1508.04389v1.pdf +37ce1d3a6415d6fc1760964e2a04174c24208173,http://www.cse.msu.edu/~liuxm/publication/Jourabloo_Liu_ICCV2015.pdf +3765c26362ad1095dfe6744c6d52494ea106a42c,http://www.vision.ee.ethz.ch/~tquack/gammeter_quack_iccv2009.pdf +37179032085e710d1d62a1ba2e9c1f63bb4dde91,http://eprints.soton.ac.uk/363288/1/tome%20tifs.pdf +3727ac3d50e31a394b200029b2c350073c1b69e3,http://arxiv.org/pdf/1605.03639v2.pdf +37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e,http://www.cse.iitm.ac.in/~amittal/wacv2015_review.pdf +37278ffce3a0fe2c2bbf6232e805dd3f5267eba3,http://arxiv.org/pdf/1602.04504v1.pdf +377a1be5113f38297716c4bb951ebef7a93f949a,http://www.cris.ucr.edu/IGERT/Presentation2013/CruzAbstract.pdf +377c6563f97e76a4dc836a0bd23d7673492b1aae,http://pdfs.semanticscholar.org/377c/6563f97e76a4dc836a0bd23d7673492b1aae.pdf +370e0d9b89518a6b317a9f54f18d5398895a7046,http://pdfs.semanticscholar.org/370e/0d9b89518a6b317a9f54f18d5398895a7046.pdf +37105ca0bc1f11fcc7c6b7946603f3d572571d76,http://vipl.ict.ac.cn/sites/default/files/papers/files/2012_TIST_dmzhai_Multi-view%20metric%20learning%20with%20global%20consistency%20and%20local%20smoothness.pdf +37ba12271d09d219dd1a8283bc0b4659faf3a6c6,http://www.eecs.qmul.ac.uk/~sgg/papers/LayneEtAl_ARTERMIS2013.pdf +3773e5d195f796b0b7df1fca6e0d1466ad84b5e7,http://pdfs.semanticscholar.org/3773/e5d195f796b0b7df1fca6e0d1466ad84b5e7.pdf +37eb666b7eb225ffdafc6f318639bea7f0ba9a24,http://pdfs.semanticscholar.org/37eb/666b7eb225ffdafc6f318639bea7f0ba9a24.pdf +375435fb0da220a65ac9e82275a880e1b9f0a557,https://ibug.doc.ic.ac.uk/media/uploads/documents/tpami_alignment.pdf +37b6d6577541ed991435eaf899a2f82fdd72c790,http://pdfs.semanticscholar.org/37b6/d6577541ed991435eaf899a2f82fdd72c790.pdf +37d6f0eb074d207b53885bd2eb78ccc8a04be597,http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf +37ef18d71c1ca71c0a33fc625ef439391926bfbb,http://pdfs.semanticscholar.org/37ef/18d71c1ca71c0a33fc625ef439391926bfbb.pdf +370b5757a5379b15e30d619e4d3fb9e8e13f3256,http://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf +081189493ca339ca49b1913a12122af8bb431984,http://pdfs.semanticscholar.org/0811/89493ca339ca49b1913a12122af8bb431984.pdf +08ee541925e4f7f376538bc289503dd80399536f,http://pdfs.semanticscholar.org/08ee/541925e4f7f376538bc289503dd80399536f.pdf +08d2f655361335bdd6c1c901642981e650dff5ec,http://dro.deakin.edu.au/eserv/DU:30058435/arandjelovic-automaticcastlisting-2006.pdf +08fbe3187f31b828a38811cc8dc7ca17933b91e9,http://www.merl.com/publications/docs/TR2011-084.pdf +08ae100805d7406bf56226e9c3c218d3f9774d19,http://pdfs.semanticscholar.org/08ae/100805d7406bf56226e9c3c218d3f9774d19.pdf +085b5f9fd49432edab29e2c64f2a427fbce97f67,https://staff.fnwi.uva.nl/m.jain/pub/jain-objects-actions-cvpr2015.pdf +08c18b2f57c8e6a3bfe462e599a6e1ce03005876,http://ca.cs.cmu.edu/sites/default/files/8uca_final_revision.pdf +08f6ad0a3e75b715852f825d12b6f28883f5ca05,http://www.cse.msu.edu/biometrics/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf +08ff81f3f00f8f68b8abd910248b25a126a4dfa4,https://research-information.bristol.ac.uk/files/74279764/Ioannis_Pitas_Symmetric_Subspace_Learning_for_Image_Analysis_2014.pdf +081a431107eb38812b74a8cd036ca5e97235b499,http://webhost.uoradea.ro/ibuciu/IEEE_TNN_2008.pdf +084bd02d171e36458f108f07265386f22b34a1ae,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ren_Face_Alignment_at_2014_CVPR_paper.pdf +081cb09791e7ff33c5d86fd39db00b2f29653fa8,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/09/22.pdf +086131159999d79adf6b31c1e604b18809e70ba8,http://vinereactor.org/icpr2016.pdf +0831a511435fd7d21e0cceddb4a532c35700a622,http://pdfs.semanticscholar.org/0831/a511435fd7d21e0cceddb4a532c35700a622.pdf +0861f86fb65aa915fbfbe918b28aabf31ffba364,http://pdfs.semanticscholar.org/0861/f86fb65aa915fbfbe918b28aabf31ffba364.pdf +089513ca240c6d672c79a46fa94a92cde28bd567,http://pdfs.semanticscholar.org/0895/13ca240c6d672c79a46fa94a92cde28bd567.pdf +089b5e8eb549723020b908e8eb19479ba39812f5,http://www.face-recognition-challenge.com/RobustnessOfDCNN-preprint.pdf +080c204edff49bf85b335d3d416c5e734a861151,http://pdfs.semanticscholar.org/d3d1/09d81dd0911dfde259b6878d737e50c834eb.pdf +08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d,http://pdfs.semanticscholar.org/b680/2fb123c594a9fd621ae576651201fcc4329a.pdf +08d40ee6e1c0060d3b706b6b627e03d4b123377a,http://pdfs.semanticscholar.org/3daa/fe6389d877fe15d8823cdf5ac15fd919676f.pdf +08c1f8f0e69c0e2692a2d51040ef6364fb263a40,http://pdfs.semanticscholar.org/0b20/0cf032430d74fd612601cc59d5af5608ceb4.pdf +088aabe3da627432fdccf5077969e3f6402f0a80,http://pdfs.semanticscholar.org/088a/abe3da627432fdccf5077969e3f6402f0a80.pdf +087002ab569e35432cdeb8e63b2c94f1abc53ea9,http://sergioescalera.com/wp-content/uploads/2015/07/CVPR2015MoeslundSlides.pdf +08cb294a08365e36dd7ed4167b1fd04f847651a9,http://pdfs.semanticscholar.org/f75f/56bb1dcf721449f2fcc3634265f1e08e012c.pdf +081286ede247c5789081502a700b378b6223f94b,http://pdfs.semanticscholar.org/0812/86ede247c5789081502a700b378b6223f94b.pdf +08e995c080a566fe59884a527b72e13844b6f176,http://pdfs.semanticscholar.org/08e9/95c080a566fe59884a527b72e13844b6f176.pdf +08e24f9df3d55364290d626b23f3d42b4772efb6,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu06c.pdf +085ceda1c65caf11762b3452f87660703f914782,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jourabloo_Large-Pose_Face_Alignment_CVPR_2016_paper.pdf +0830c9b9f207007d5e07f5269ffba003235e4eff,http://pdfs.semanticscholar.org/cf2e/1ebb9609f46af6de0c15b4f48d03e37e54ba.pdf +08d55271589f989d90a7edce3345f78f2468a7e0,https://arxiv.org/pdf/1704.03373v1.pdf +081fb4e97d6bb357506d1b125153111b673cc128,http://pdfs.semanticscholar.org/081f/b4e97d6bb357506d1b125153111b673cc128.pdf +08a98822739bb8e6b1388c266938e10eaa01d903,http://homes.cs.washington.edu/~yoshi/papers/SensorSift_ACSAC_2012.pdf +08f1e9e14775757298afd9039f46ec56e80677f9,http://pdfs.semanticscholar.org/08f1/e9e14775757298afd9039f46ec56e80677f9.pdf +08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7,http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf +082ad50ac59fc694ba4369d0f9b87430553b11db,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553696.pdf +6dd052df6b0e89d394192f7f2af4a3e3b8f89875,http://pdfs.semanticscholar.org/6dd0/52df6b0e89d394192f7f2af4a3e3b8f89875.pdf +6d7a32f594d46f4087b71e2a2bb66a4b25da5e30,http://pdfs.semanticscholar.org/6d7a/32f594d46f4087b71e2a2bb66a4b25da5e30.pdf +6dd5dbb6735846b214be72983e323726ef77c7a9,http://pdfs.semanticscholar.org/6dd5/dbb6735846b214be72983e323726ef77c7a9.pdf +6d10beb027fd7213dd4bccf2427e223662e20b7d,http://pdfs.semanticscholar.org/6d10/beb027fd7213dd4bccf2427e223662e20b7d.pdf +6d2ca1ddacccc8c865112bd1fbf8b931c2ee8e75,http://hoques.com/Publications/2015/2015-ubicomp_rocspeak_Fung-etal.pdf +6d207360148ec3991b70952315cb3f1e8899e977,http://www.researchgate.net/profile/Edwin_Hancock/publication/224649584_Estimating_Cast_Shadows_using_SFS_and_Class-based_Surface_Completion/links/004635239fd1ed7ac5000000.pdf +6de18708218988b0558f6c2f27050bb4659155e4,https://arxiv.org/pdf/1611.05216v1.pdf +6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1,http://disi.unitn.it/~sebe/publications/MIR03.pdf +6d91da37627c05150cb40cac323ca12a91965759,http://pdfs.semanticscholar.org/6d91/da37627c05150cb40cac323ca12a91965759.pdf +6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf,http://pdfs.semanticscholar.org/6dd2/a0f9ca8a5fee12edec1485c0699770b4cfdf.pdf +6d4b5444c45880517213a2fdcdb6f17064b3fa91,http://pdfs.semanticscholar.org/6d4b/5444c45880517213a2fdcdb6f17064b3fa91.pdf +6d4e3616d0b27957c4107ae877dc0dd4504b69ab,http://pdfs.semanticscholar.org/6d4e/3616d0b27957c4107ae877dc0dd4504b69ab.pdf +6daccf3d15c617873954bb75de26f6b6b0a42772,http://arts.buaa.edu.cn/papers/Learning%20Templates%20for%20Artistic%20Portrait%20Lighting%20Analysis.pdf +6d8e3f3a83514381f890ab7cd2a1f1c5be597b69,http://pdfs.semanticscholar.org/aeb1/83983f4ae1ea9e01005f5d546480190e0345.pdf +6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19,http://pdfs.semanticscholar.org/6d8e/ef8f8d6cd8436c55018e6ca5c5907b31ac19.pdf +6d4103762e159130b32335cbf8893ee4dca26859,http://homepage.tudelft.nl/19j49/Publications_files/cogn_proc.pdf +6d618657fa5a584d805b562302fe1090957194ba,http://pdfs.semanticscholar.org/6d61/8657fa5a584d805b562302fe1090957194ba.pdf +6d66c98009018ac1512047e6bdfb525c35683b16,http://pdfs.semanticscholar.org/6d66/c98009018ac1512047e6bdfb525c35683b16.pdf +016cbf0878db5c40566c1fbc237686fbad666a33,http://pdfs.semanticscholar.org/5a07/986f0a202eafbd1f1574fe2c3ae6abe2281f.pdf +016800413ebd1a87730a5cf828e197f43a08f4b3,http://arxiv.org/pdf/1605.00743v1.pdf +0172867f4c712b33168d9da79c6d3859b198ed4c,http://www.cin.ufpe.br/~rps/Artigos/Expression%20and%20Illumination%20Invariant%20Preprocessing%20Technique%20for%20Face%20Recognition.pdf +0145dc4505041bf39efa70ea6d95cf392cfe7f19,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_046_ext.pdf +01bef320b83ac4405b3fc5b1cff788c124109fb9,http://pdfs.semanticscholar.org/49e4/37cc5b673c49b942e304607a0050dcc82dae.pdf +01c9dc5c677aaa980f92c4680229db482d5860db,https://pages.iai.uni-bonn.de/gall_juergen/download/jgall_actiondetect_cvpr16.pdf +013909077ad843eb6df7a3e8e290cfd5575999d2,http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf +01d2cf5398c2b3e0f4fc8e8318a4492c95a0b242,http://webee.technion.ac.il/~lihi/Publications/10-ANS-PAMI.pdf +01c7a778cde86ad1b89909ea809d55230e569390,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Siyahjani_A_Supervised_Low-Rank_ICCV_2015_paper.pdf +01c8d7a3460422412fba04e7ee14c4f6cdff9ad7,http://pdfs.semanticscholar.org/01c8/d7a3460422412fba04e7ee14c4f6cdff9ad7.pdf +0115f260069e2e501850a14845feb400142e2443,http://pdfs.semanticscholar.org/0115/f260069e2e501850a14845feb400142e2443.pdf +01cc8a712e67384f9ef9f30580b7415bfd71e980,http://pdfs.semanticscholar.org/01cc/8a712e67384f9ef9f30580b7415bfd71e980.pdf +01e12be4097fa8c94cabeef0ad61498c8e7762f2,http://pdfs.semanticscholar.org/10bf/f1957b8a4adce86efd10596186d905976c16.pdf +0163d847307fae508d8f40ad193ee542c1e051b4,http://www.alessandrobergamo.com/data/compact_descriptors_supplementary.pdf +01dc1e03f39901e212bdf291209b7686266aeb13,http://arxiv.org/pdf/1604.07279v1.pdf +016f49a54b79ec787e701cc8c7d0280273f9b1ef,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Kotropoulos06a.pdf +017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637,http://pdfs.semanticscholar.org/017c/e398e1eb9f2eed82d0b22fb1c21d3bcf9637.pdf +01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,http://openaccess.thecvf.com/content_ICCV_2017/papers/Jackson_Large_Pose_3D_ICCV_2017_paper.pdf +01c09acf0c046296643de4c8b55a9330e9c8a419,http://pdfs.semanticscholar.org/01c0/9acf0c046296643de4c8b55a9330e9c8a419.pdf +01d23cbac762b0e46251f5dbde08f49f2d13b9f8,http://pdfs.semanticscholar.org/01d2/3cbac762b0e46251f5dbde08f49f2d13b9f8.pdf +014143aa16604ec3f334c1407ceaa496d2ed726e,http://www.cs.cmu.edu/~har/cvpr2008-manifold.pdf +011e6146995d5d63c852bd776f782cc6f6e11b7b,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhuang_Fast_Training_of_CVPR_2016_paper.pdf +0182d090478be67241392df90212d6cd0fb659e6,http://www.cs.utexas.edu/~grauman/papers/localized_attributes_cvpr2012.pdf +016a8ed8f6ba49bc669dbd44de4ff31a79963078,http://www.jdl.ac.cn/user/sgshan/pub/icassp04_qing.pdf +01beab8f8293a30cf48f52caea6ca0fb721c8489,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553729.pdf +0178929595f505ef7655272cc2c339d7ed0b9507,http://pdfs.semanticscholar.org/7d84/151beccef17f71b3eeaca59ebc690561ab73.pdf +0181fec8e42d82bfb03dc8b82381bb329de00631,http://users.isy.liu.se/en/cvl/zografos/publications/CVPR2013.pdf +01b4b32c5ef945426b0396d32d2a12c69c282e29,http://pdfs.semanticscholar.org/1510/bfa3a31ccf47e0241d3528aeda4871597a0f.pdf +0113b302a49de15a1d41ca4750191979ad756d2f,http://www.cecs.uci.edu/~papers/icme06/pdfs/0000537.pdf +01379c50c392c104694ccb871a4b6a36d514f102,http://sse.tongji.edu.cn/hyli/Publications/icmla2010.pdf +01c948d2b73abe8be1ac128a6439c1081ebca95a,http://mla.sdu.edu.cn/PeopleInfo/lixuzhou/A%20hybrid%20biometric%20identification%20framework%20for%20high%20security%20applications.pdf +01733018a79aa447a27f269a1b9a58cd5f39603e,http://vc.sce.ntu.edu.sg/index_files/Semi-supervised%20Bilinear%20Subspace%20Learning.pdf +019e471667c72b5b3728b4a9ba9fe301a7426fb2,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_012.pdf +0601416ade6707c689b44a5bb67dab58d5c27814,http://pdfs.semanticscholar.org/0601/416ade6707c689b44a5bb67dab58d5c27814.pdf +064b797aa1da2000640e437cacb97256444dee82,http://pdfs.semanticscholar.org/064b/797aa1da2000640e437cacb97256444dee82.pdf +06f146dfcde10915d6284981b6b84b85da75acd4,http://cmlab.csie.ntu.edu.tw/~sirius42/papers/tmm12.pdf +067126ce1f1a205f98e33db7a3b77b7aec7fb45a,http://pdfs.semanticscholar.org/0671/26ce1f1a205f98e33db7a3b77b7aec7fb45a.pdf +06466276c4955257b15eff78ebc576662100f740,http://cmlab.csie.ntu.edu.tw/~sirius42/papers/sigir12.pdf +0697bd81844d54064d992d3229162fe8afcd82cb,http://pdfs.semanticscholar.org/0697/bd81844d54064d992d3229162fe8afcd82cb.pdf +06f8aa1f436a33014e9883153b93581eea8c5c70,http://pdfs.semanticscholar.org/8926/471921ff608f70c6c81777782974a91086ae.pdf +061c84a4143e859a7caf6e6d283dfb30c23ee56e,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_008_ext.pdf +06d93a40365da90f30a624f15bf22a90d9cfe6bb,http://pdfs.semanticscholar.org/6940/40e59bffd860640e45c54ca7b093630caa39.pdf +061e29eae705f318eee703b9e17dc0989547ba0c,http://pdfs.semanticscholar.org/061e/29eae705f318eee703b9e17dc0989547ba0c.pdf +06850b60e33baa4ea9473811d58c0d5015da079e,http://pdfs.semanticscholar.org/4cff/901521af06d6a0c98c9dce253296dd88b496.pdf +06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32,http://www.cs.utexas.edu/~grauman/papers/whittle-search-supp-cvpr2012.pdf +06a6347ac14fd0c6bb3ad8190cbe9cdfa5d59efc,https://www.cs.umd.edu/sites/default/files/scholarly_papers/Biswas_1.pdf +066d71fcd997033dce4ca58df924397dfe0b5fd1,http://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf +06526c52a999fdb0a9fd76e84f9795a69480cecf,http://pdfs.semanticscholar.org/0652/6c52a999fdb0a9fd76e84f9795a69480cecf.pdf +06bad0cdda63e3fd054e7b334a5d8a46d8542817,http://vision.cs.utexas.edu/projects/featuresharing/0975.pdf +06fe63b34fcc8ff68b72b5835c4245d3f9b8a016,http://chechiklab.biu.ac.il/~gal/Papers/Mesnil_MachineLearning2013_objects_and_their_parts.pdf +06aab105d55c88bd2baa058dc51fa54580746424,http://www4.comp.polyu.edu.hk/~cslzhang/paper/ISCRC_TIFS.pdf +0641dbee7202d07b6c78a39eecd312c17607412e,http://users.cecs.anu.edu.au/~hongdong/JiZhongLiSalzmannICIP14.pdf +06262d14323f9e499b7c6e2a3dec76ad9877ba04,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Juranek_Real-Time_Pose_Estimation_ICCV_2015_paper.pdf +06400a24526dd9d131dfc1459fce5e5189b7baec,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01054.pdf +062d67af7677db086ef35186dc936b4511f155d7,http://openaccess.thecvf.com/content_cvpr_2016/papers/Chang_They_Are_Not_CVPR_2016_paper.pdf +0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0,http://pdfs.semanticscholar.org/0694/b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0.pdf +060034b59275c13746413ca9c67d6304cba50da6,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W14/papers/Murthy_Ordered_Trajectories_for_2013_ICCV_paper.pdf +060820f110a72cbf02c14a6d1085bd6e1d994f6a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_113_ext.pdf +0653dcdff992ad980cd5ea5bc557efb6e2a53ba1,http://pdfs.semanticscholar.org/0653/dcdff992ad980cd5ea5bc557efb6e2a53ba1.pdf +063a3be18cc27ba825bdfb821772f9f59038c207,http://eprints.whiterose.ac.uk/125231/1/kaiser_et_al_17.pdf +064cd41d323441209ce1484a9bba02a22b625088,http://www.ri.cmu.edu/pub_files/2013/6/stm_final.pdf +06c2dfe1568266ad99368fc75edf79585e29095f,http://ibug.doc.ic.ac.uk/media/uploads/documents/joan_cvpr2014.pdf +06f39834e870278243dda826658319be2d5d8ded,http://www.public.asu.edu/~bli24/Papers/ICIP2016_video.pdf +06d7ef72fae1be206070b9119fb6b61ce4699587,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zafeiriou_On_One-Shot_Similarity_2013_ICCV_paper.pdf +062d0813815c2b9864cd9bb4f5a1dc2c580e0d90,https://infoscience.epfl.ch/record/230310/files/AliakbarianEtAlICCV17.pdf?version=1 +06a9ed612c8da85cb0ebb17fbe87f5a137541603,http://pdfs.semanticscholar.org/06a9/ed612c8da85cb0ebb17fbe87f5a137541603.pdf +06959f9cf3226179fa1b05efade843b7844fb2bc,http://www.researchgate.net/profile/Fei_Wu2/publication/4090506_Relevant_linear_feature_extraction_using_side-information_and_unlabeled_data/links/549062220cf214269f2668c9.pdf +06ad99f19cf9cb4a40741a789e4acbf4433c19ae,http://pdfs.semanticscholar.org/06ad/99f19cf9cb4a40741a789e4acbf4433c19ae.pdf +06fb92e110d077c27d401d2f9483964cd0615284,http://www.cs.sunysb.edu/~ial/content/papers/2009/wang_pami09.pdf +6c27eccf8c4b22510395baf9f0d0acc3ee547862,http://pdfs.semanticscholar.org/6c27/eccf8c4b22510395baf9f0d0acc3ee547862.pdf +6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,http://pdfs.semanticscholar.org/6cef/b70f4668ee6c0bf0c18ea36fd49dd60e8365.pdf +6c690af9701f35cd3c2f6c8d160b8891ad85822a,http://www.umiacs.umd.edu/~fyang/papers/iccv15.pdf +6ce23cf4f440021b7b05aa3c1c2700cc7560b557,http://pdfs.semanticscholar.org/6ce2/3cf4f440021b7b05aa3c1c2700cc7560b557.pdf +6c9266aa77ea01b9d26a98a483b56e9e8b80eeba,https://www.researchgate.net/profile/Stefano_Tubaro/publication/224641232_Mixed_2D-3D_Information_for_Pose_Estimation_and_Face_Recognition/links/00b7d5178477f30fb3000000.pdf +6c2b392b32b2fd0fe364b20c496fcf869eac0a98,http://www3.ntu.edu.sg/home/EXDJiang/JiangX.D.-MVA-13.pdf +6c6bb85a08b0bdc50cf8f98408d790ccdb418798,http://pdfs.semanticscholar.org/6c6b/b85a08b0bdc50cf8f98408d790ccdb418798.pdf +6c705285c554985ecfe1117e854e1fe1323f8c21,http://pdfs.semanticscholar.org/6c70/5285c554985ecfe1117e854e1fe1323f8c21.pdf +6cddc7e24c0581c50adef92d01bb3c73d8b80b41,http://users.soe.ucsc.edu/~milanfar/publications/journal/TIFS_Final.pdf +6cd96f2b63c6b6f33f15c0ea366e6003f512a951,http://pdfs.semanticscholar.org/6cd9/6f2b63c6b6f33f15c0ea366e6003f512a951.pdf +6c8c7065d1041146a3604cbe15c6207f486021ba,http://pdfs.semanticscholar.org/6c8c/7065d1041146a3604cbe15c6207f486021ba.pdf +390f3d7cdf1ce127ecca65afa2e24c563e9db93b,https://arxiv.org/pdf/1408.3967v2.pdf +391b86cf16c2702dcc4beee55a6dd6d3bd7cf27b,http://dayongwang.info/pdf/2014-MM.pdf +395a91d49e9283e1bf2d61a75c3dc846b347ea74,http://cake.fiu.edu/Publications/Reza+al-13-OV.On-demand_Virtual_Health.IEEE.downloaded.pdf +3918b425bb9259ddff9eca33e5d47bde46bd40aa,http://pdfs.semanticscholar.org/3918/b425bb9259ddff9eca33e5d47bde46bd40aa.pdf +39ce143238ea1066edf0389d284208431b53b802,http://pdfs.semanticscholar.org/39ce/143238ea1066edf0389d284208431b53b802.pdf +39ce2232452c0cd459e32a19c1abe2a2648d0c3f,http://pdfs.semanticscholar.org/4fac/61d638cf7a1ab995e2ee9a02d3672b12d2ca.pdf +39f7878f447df7703f2c4ddeeffd7eb0e21f6cd4,http://dev.pubs.doc.ic.ac.uk/Pantic-CVPR05/Pantic-CVPR05.pdf +3998c5aa6be58cce8cb65a64cb168864093a9a3e,http://cvrr.ucsd.edu/publications/2014/HeadHand.pdf +39dc2ce4cce737e78010642048b6ed1b71e8ac2f,http://www.mirlab.org/conference_papers/International_Conference/ICME%202004/html/papers/P59890.pdf +397aeaea61ecdaa005b09198942381a7a11cd129,http://pdfs.semanticscholar.org/e30b/df82a358587f7d27ee4ea0b34762328c2a8d.pdf +3991223b1dc3b87883cec7af97cf56534178f74a,http://www.ics.uci.edu/~dvk/pub/ICMR13_dvk.pdf +39b22bcbd452d5fea02a9ee63a56c16400af2b83,http://www.uoguelph.ca/~gwtaylor/publications/gwtaylor_crv2014.pdf +399a2c23bd2592ebe20aa35a8ea37d07c14199da,http://pdfs.semanticscholar.org/399a/2c23bd2592ebe20aa35a8ea37d07c14199da.pdf +396a19e29853f31736ca171a3f40c506ef418a9f,http://pdfs.semanticscholar.org/396a/19e29853f31736ca171a3f40c506ef418a9f.pdf +392d35bb359a3b61cca1360272a65690a97a2b3f,http://pdfs.semanticscholar.org/9cc1/0842f7701bfb92725b4dda4df391b0b341e3.pdf +397085122a5cade71ef6c19f657c609f0a4f7473,http://pdfs.semanticscholar.org/db11/4901d09a07ab66bffa6986bc81303e133ae1.pdf +39c48309b930396a5a8903fdfe781d3e40d415d0,http://www.ri.cmu.edu/pub_files/2017/5/ant_low.pdf +3986161c20c08fb4b9b791b57198b012519ea58b,http://pdfs.semanticscholar.org/3986/161c20c08fb4b9b791b57198b012519ea58b.pdf +392425be1c9d9c2ee6da45de9df7bef0d278e85f,http://pdfs.semanticscholar.org/3924/25be1c9d9c2ee6da45de9df7bef0d278e85f.pdf +392c3cabe516c0108b478152902a9eee94f4c81e,http://pdfs.semanticscholar.org/392c/3cabe516c0108b478152902a9eee94f4c81e.pdf +39f525f3a0475e6bbfbe781ae3a74aca5b401125,http://pdfs.semanticscholar.org/39f5/25f3a0475e6bbfbe781ae3a74aca5b401125.pdf +3946b8f862ecae64582ef0912ca2aa6d3f6f84dc,http://pdfs.semanticscholar.org/3946/b8f862ecae64582ef0912ca2aa6d3f6f84dc.pdf +3933416f88c36023a0cba63940eb92f5cef8001a,http://pdfs.semanticscholar.org/3933/416f88c36023a0cba63940eb92f5cef8001a.pdf +39150acac6ce7fba56d54248f9c0badbfaeef0ea,http://pdfs.semanticscholar.org/3915/0acac6ce7fba56d54248f9c0badbfaeef0ea.pdf +39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,http://openaccess.thecvf.com/content_iccv_2015/papers/Lu_Simultaneous_Local_Binary_ICCV_2015_paper.pdf +3983637022992a329f1d721bed246ae76bc934f7,http://www.cs.umd.edu/~djacobs/pubs_files/SlantCVPRFinal.pdf +3958db5769c927cfc2a9e4d1ee33ecfba86fe054,http://homes.cs.washington.edu/~neeraj/base/base/papers/nk_pami2011_faceattrs.pdf +39ecdbad173e45964ffe589b9ced9f1ebfe2d44e,http://measuringbehavior.org/files/ProceedingsPDF(website)/Gonzalez_FullPaper3.4.pdf +39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df,https://pdfs.semanticscholar.org/39b5/f6d6f8d8127b2b97ea1a4987732c0db6f9df.pdf +99ced8f36d66dce20d121f3a29f52d8b27a1da6c,http://pdfs.semanticscholar.org/99ce/d8f36d66dce20d121f3a29f52d8b27a1da6c.pdf +9949ac42f39aeb7534b3478a21a31bc37fe2ffe3,http://pdfs.semanticscholar.org/9949/ac42f39aeb7534b3478a21a31bc37fe2ffe3.pdf +999289b0ef76c4c6daa16a4f42df056bf3d68377,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf +9958942a0b7832e0774708a832d8b7d1a5d287ae,https://engineering.purdue.edu/~bouman/publications/pdf/tip29.pdf +995d55fdf5b6fe7fb630c93a424700d4bc566104,http://openaccess.thecvf.com/content_iccv_2015/papers/Nilsson_The_One_Triangle_ICCV_2015_paper.pdf +99726ad232cef837f37914b63de70d8c5101f4e2,http://pdfs.semanticscholar.org/9972/6ad232cef837f37914b63de70d8c5101f4e2.pdf +9931c6b050e723f5b2a189dd38c81322ac0511de,http://pdfs.semanticscholar.org/9931/c6b050e723f5b2a189dd38c81322ac0511de.pdf +994b52bf884c71a28b4f5be4eda6baaacad1beee,http://www.yugangjiang.info/publication/BIGMM15-summit-invited.pdf +9963c73b03e4649959f021ef6f4fb1eac0b617d2,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2017/Person%20Re-identification%20Using%20Multiple%20Egocentric%20Views.pdf +99001ac9fdaf7649c0d0bd8d2078719bafd216d9,http://people.ee.duke.edu/~lcarin/TPAMI_2007_General_tensor_analysis.pdf +9993f1a7cfb5b0078f339b9a6bfa341da76a3168,http://pdfs.semanticscholar.org/9993/f1a7cfb5b0078f339b9a6bfa341da76a3168.pdf +992ebd81eb448d1eef846bfc416fc929beb7d28b,http://pdfs.semanticscholar.org/992e/bd81eb448d1eef846bfc416fc929beb7d28b.pdf +9990e0b05f34b586ffccdc89de2f8b0e5d427067,http://pdfs.semanticscholar.org/9990/e0b05f34b586ffccdc89de2f8b0e5d427067.pdf +52012b4ecb78f6b4b9ea496be98bcfe0944353cd,http://pdfs.semanticscholar.org/5201/2b4ecb78f6b4b9ea496be98bcfe0944353cd.pdf +521cfbc1949289a7ffc3ff90af7c55adeb43db2a,http://pdfs.semanticscholar.org/521c/fbc1949289a7ffc3ff90af7c55adeb43db2a.pdf +529e2ce6fb362bfce02d6d9a9e5de635bde81191,http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2011/1/20111721232398113.pdf +52887969107956d59e1218abb84a1f834a314578,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/chen13travel.pdf +521482c2089c62a59996425603d8264832998403,http://pdfs.semanticscholar.org/5214/82c2089c62a59996425603d8264832998403.pdf +521b625eebea73b5deb171a350e3709a4910eebf,https://arxiv.org/pdf/1604.06397v1.pdf +52258ec5ec73ce30ca8bc215539c017d279517cf,http://pdfs.semanticscholar.org/5225/8ec5ec73ce30ca8bc215539c017d279517cf.pdf +5253c94f955146ba7d3566196e49fe2edea1c8f4,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Kemelmacher-Shlizerman_Internet_Based_Morphable_2013_ICCV_paper.pdf +527dda77a3864d88b35e017d542cb612f275a4ec,https://arxiv.org/pdf/1709.00531v1.pdf +529b1f33aed49dbe025a99ac1d211c777ad881ec,https://teresaproject.eu/wp-content/uploads/2015/07/kossaifi_bidirectional_icip.pdf +523b2cbc48decfabffb66ecaeced4fe6a6f2ac78,https://arxiv.org/pdf/1708.09126v1.pdf +5287d8fef49b80b8d500583c07e935c7f9798933,http://pdfs.semanticscholar.org/8e65/13b642dcd5dc0fb60173dd0da1d8440eba8d.pdf +52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,http://blogs.bu.edu/joewang/files/2013/06/allerton_2011_v2.pdf +52bf00df3b970e017e4e2f8079202460f1c0e1bd,http://pdfs.semanticscholar.org/52bf/00df3b970e017e4e2f8079202460f1c0e1bd.pdf +52c91fcf996af72d191520d659af44e310f86ef9,http://pdfs.semanticscholar.org/52c9/1fcf996af72d191520d659af44e310f86ef9.pdf +52a9f957f776c8b3d913cfcd20452b9e31c27845,http://pdfs.semanticscholar.org/52a9/f957f776c8b3d913cfcd20452b9e31c27845.pdf +52885fa403efbab5ef21274282edd98b9ca70cbf,http://www.aiia.csd.auth.gr/EN/cor_baayen/Discriminant_Graph_Structures_FER.pdf +52f23e1a386c87b0dab8bfdf9694c781cd0a3984,http://pdfs.semanticscholar.org/52f2/3e1a386c87b0dab8bfdf9694c781cd0a3984.pdf +528069963f0bd0861f380f53270c96c269a3ea1c,http://pdfs.semanticscholar.org/5280/69963f0bd0861f380f53270c96c269a3ea1c.pdf +5239001571bc64de3e61be0be8985860f08d7e7e,http://pdfs.semanticscholar.org/5239/001571bc64de3e61be0be8985860f08d7e7e.pdf +556b9aaf1bc15c928718bc46322d70c691111158,https://www.ecse.rpi.edu/~cvrl/lwh/myPublications/ICPR08_BNlearning_camera.pdf +550858b7f5efaca2ebed8f3969cb89017bdb739f,http://pdfs.semanticscholar.org/5508/58b7f5efaca2ebed8f3969cb89017bdb739f.pdf +554b9478fd285f2317214396e0ccd81309963efd,http://pdfs.semanticscholar.org/554b/9478fd285f2317214396e0ccd81309963efd.pdf +55cc90968e5e6ed413dd607af2a850ac2f54e378,http://pdfs.semanticscholar.org/55cc/90968e5e6ed413dd607af2a850ac2f54e378.pdf +559795d3f3b096ceddc03720ba62d79d50eae300,http://www3.nd.edu/~kwb/BarrBowyerFlynnTIFS_2014.pdf +558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f,http://pdfs.semanticscholar.org/558f/c9a2bce3d3993a9c1f41b6c7f290cefcf92f.pdf +55138c2b127ebdcc508503112bf1d1eeb5395604,http://pdfs.semanticscholar.org/7815/368a8f6474910d3faf798198ff9dae836360.pdf +5502dfe47ac26e60e0fb25fc0f810cae6f5173c0,http://pdfs.semanticscholar.org/5502/dfe47ac26e60e0fb25fc0f810cae6f5173c0.pdf +55e18e0dde592258882134d2dceeb86122b366ab,http://pdfs.semanticscholar.org/f863/ba982068d676084032146e8053d4791114e9.pdf +556545eec370b9d300fc044a1aa63fc44fd79b0f,http://www.cs.cmu.edu/~dhoiem/publications/cvpr2010_gangwang.pdf +55a158f4e7c38fe281d06ae45eb456e05516af50,http://pdfs.semanticscholar.org/55a1/58f4e7c38fe281d06ae45eb456e05516af50.pdf +5506a1a1e1255353fde05d9188cb2adc20553af5,http://pdfs.semanticscholar.org/ff69/cb49c8cb86d0afadbcfa0baa607d7065965a.pdf +55966926e7c28b1eee1c7eb7a0b11b10605a1af0,http://pdfs.semanticscholar.org/baa8/bdeb5aa545af5b5f43efaf9dda08490da0bc.pdf +552c55c71bccfc6de7ce1343a1cd12208e9a63b3,https://ivi.fnwi.uva.nl/isis/publications/2008/ValentiCVPR2008/ValentiCVPR2008.pdf +5517b28795d7a68777c9f3b2b46845dcdb425b2c,http://pdfs.semanticscholar.org/5517/b28795d7a68777c9f3b2b46845dcdb425b2c.pdf +55c81f15c89dc8f6eedab124ba4ccab18cf38327,http://pdfs.semanticscholar.org/d31e/258f6af40f457c27ce118986ea157673c9c4.pdf +55bc7abcef8266d76667896bbc652d081d00f797,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf +55b4b1168c734eeb42882082bd131206dbfedd5b,http://pdfs.semanticscholar.org/76fd/f16bcc2cb260b9e6b2880c8fe128533bc2c6.pdf +55079a93b7d1eb789193d7fcdcf614e6829fad0f,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w10/papers/Conde_Efficient_and_Robust_ICCV_2015_paper.pdf +55804f85613b8584d5002a5b0ddfe86b0d0e3325,http://pdfs.semanticscholar.org/ba13/b161aa8e6f6cb511592016058882d976a898.pdf +551fa37e8d6d03b89d195a5c00c74cc52ff1c67a,http://pdfs.semanticscholar.org/551f/a37e8d6d03b89d195a5c00c74cc52ff1c67a.pdf +55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,http://pdfs.semanticscholar.org/55eb/7ec9b9740f6c69d6e62062a24bfa091bbb0c.pdf +55b9b1c1c5487f5f62b44340104a9c4cc2ed7c96,http://pdfs.semanticscholar.org/55b9/b1c1c5487f5f62b44340104a9c4cc2ed7c96.pdf +973e3d9bc0879210c9fad145a902afca07370b86,http://pdfs.semanticscholar.org/973e/3d9bc0879210c9fad145a902afca07370b86.pdf +970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3,http://pdfs.semanticscholar.org/970c/0d6c0fd2ebe7c5921a45bc70f6345c844ff3.pdf +97b8249914e6b4f8757d22da51e8347995a40637,http://rogerioferis.com/VisualRecognitionAndSearch2014/material/papers/FerisTransMultimedia2012.pdf +972ef9ddd9059079bdec17abc8b33039ed25c99c,http://pdfs.semanticscholar.org/972e/f9ddd9059079bdec17abc8b33039ed25c99c.pdf +97032b13f1371c8a813802ade7558e816d25c73f,http://pdfs.semanticscholar.org/9703/2b13f1371c8a813802ade7558e816d25c73f.pdf +978a219e07daa046244821b341631c41f91daccd,http://pdfs.semanticscholar.org/e2b9/f8b66d3f9080ccb14f058cf4798cb4d89241.pdf +976e0264bb57786952a987d4456850e274714fb8,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Dehghan_Improving_Semantic_Concept_2014_CVPR_paper.pdf +9758f3fd94239a8d974217fe12599f88fb413f3d,http://pdfs.semanticscholar.org/9758/f3fd94239a8d974217fe12599f88fb413f3d.pdf +97f9c3bdb4668f3e140ded2da33fe704fc81f3ea,http://pdfs.semanticscholar.org/97f9/c3bdb4668f3e140ded2da33fe704fc81f3ea.pdf +97e569159d5658760eb00ca9cb662e6882d2ab0e,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989c291.pdf +97d1d561362a8b6beb0fdbee28f3862fb48f1380,http://pages.cs.wisc.edu/~gdguo/myPapersOnWeb/PAMI10Guo.pdf +97540905e4a9fdf425989a794f024776f28a3fa9,http://pdfs.semanticscholar.org/cc5a/1bf68ba00c20415e43684c6f75ce3fbc176c.pdf +97865d31b5e771cf4162bc9eae7de6991ceb8bbf,http://pdfs.semanticscholar.org/9786/5d31b5e771cf4162bc9eae7de6991ceb8bbf.pdf +9755554b13103df634f9b1ef50a147dd02eab02f,https://arxiv.org/pdf/1610.00134v1.pdf +635158d2da146e9de559d2742a2fa234e06b52db,http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf +63d8110ac76f57b3ba8a5947bc6bdbb86f25a342,http://pdfs.semanticscholar.org/63d8/110ac76f57b3ba8a5947bc6bdbb86f25a342.pdf +63f2d1a64737afa1608588b9651b1e4207e82d1c,http://staff.estem-uc.edu.au/roland/files/2009/05/Rajagopalan_Goecke_ICIP2014_DetectingSelf-StimulatoryBehavioursForAutismDiagnosis.pdf +63cf5fc2ee05eb9c6613043f585dba48c5561192,http://pdfs.semanticscholar.org/63cf/5fc2ee05eb9c6613043f585dba48c5561192.pdf +6339e9385ae3609cb22f6b87175c7e6850f2c05b,http://vision.ucmerced.edu/papers/Yang_WACV12_EstimatingTheSpatialExtent.pdf +6324fada2fb00bd55e7ff594cf1c41c918813030,http://pdfs.semanticscholar.org/6324/fada2fb00bd55e7ff594cf1c41c918813030.pdf +6308e9c991125ee6734baa3ec93c697211237df8,http://www.ifp.illinois.edu/~jyang29/papers/ICME-SSR.pdf +6342a4c54835c1e14159495373ab18b4233d2d9b,http://pdfs.semanticscholar.org/6342/a4c54835c1e14159495373ab18b4233d2d9b.pdf +63d8d69e90e79806a062cb8654ad78327c8957bb,http://pdfs.semanticscholar.org/63d8/d69e90e79806a062cb8654ad78327c8957bb.pdf +63c109946ffd401ee1195ed28f2fb87c2159e63d,http://pdfs.semanticscholar.org/63c1/09946ffd401ee1195ed28f2fb87c2159e63d.pdf +63b29886577a37032c7e32d8899a6f69b11a90de,http://pdfs.semanticscholar.org/63b2/9886577a37032c7e32d8899a6f69b11a90de.pdf +63a6c256ec2cf2e0e0c9a43a085f5bc94af84265,http://www.cs.tau.ac.il/~wolf/papers/complexity-multiverse-networks.pdf +63213d080a43660ac59ea12e3c35e6953f6d7ce8,https://arxiv.org/pdf/1704.02895v1.pdf +630d1728435a529d0b0bfecb0e7e335f8ea2596d,http://pdfs.semanticscholar.org/aa67/719e839d035e4d67e4434794b6cccaf091d6.pdf +63eefc775bcd8ccad343433fc7a1dd8e1e5ee796,http://www.lv-nus.org/papers%5C2008%5C2008_J_6.pdf +63340c00896d76f4b728dbef85674d7ea8d5ab26,https://www.comp.nus.edu.sg/~tsim/documents/fkt-dsa-pami-published.pdf +63ce37da6c0c789099307337bb913e1104473854,http://pdfs.semanticscholar.org/63ce/37da6c0c789099307337bb913e1104473854.pdf +63a2e2155193dc2da9764ae7380cdbd044ff2b94,http://pdfs.semanticscholar.org/a8fb/2c65a23d1e75c4923c36fdd6e3d2a4b3d8f7.pdf +63d865c66faaba68018defee0daf201db8ca79ed,http://pdfs.semanticscholar.org/63d8/65c66faaba68018defee0daf201db8ca79ed.pdf +63cff99eff0c38b633c8a3a2fec8269869f81850,http://pdfs.semanticscholar.org/63cf/f99eff0c38b633c8a3a2fec8269869f81850.pdf +634541661d976c4b82d590ef6d1f3457d2857b19,http://pdfs.semanticscholar.org/6345/41661d976c4b82d590ef6d1f3457d2857b19.pdf +6332a99e1680db72ae1145d65fa0cccb37256828,http://pdfs.semanticscholar.org/6332/a99e1680db72ae1145d65fa0cccb37256828.pdf +63488398f397b55552f484409b86d812dacde99a,http://pdfs.semanticscholar.org/6348/8398f397b55552f484409b86d812dacde99a.pdf +6341274aca0c2977c3e1575378f4f2126aa9b050,http://arxiv.org/pdf/1609.03536v1.pdf +63c022198cf9f084fe4a94aa6b240687f21d8b41,http://pdfs.semanticscholar.org/63c0/22198cf9f084fe4a94aa6b240687f21d8b41.pdf +632441c9324cd29489cee3da773a9064a46ae26b,http://pdfs.semanticscholar.org/6324/41c9324cd29489cee3da773a9064a46ae26b.pdf +0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab,http://arxiv.org/pdf/1401.5311v1.pdf +0f112e49240f67a2bd5aaf46f74a924129f03912,http://www.cse.msu.edu/biometrics/Publications/Face/ParkTongJain_AgeInvariantFaceRecognition_PAMI10.pdf +0fc254272db096a9305c760164520ad9914f4c9e,https://arxiv.org/pdf/1601.06087v1.pdf +0fae5d9d2764a8d6ea691b9835d497dd680bbccd,http://pdfs.semanticscholar.org/0fae/5d9d2764a8d6ea691b9835d497dd680bbccd.pdf +0f4cfcaca8d61b1f895aa8c508d34ad89456948e,http://signal.ee.bilkent.edu.tr/defevent/abstract/a2051.pdf +0fdcfb4197136ced766d538b9f505729a15f0daf,https://arxiv.org/pdf/0907.5321v2.pdf +0fad544edfc2cd2a127436a2126bab7ad31ec333,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7D609FEFFC36336C4A45ECA3B56C336A?doi=10.1.1.476.9590&rep=rep1&type=pdf +0f32df6ae76402b98b0823339bd115d33d3ec0a0,http://perceptual.mpi-inf.mpg.de/files/2015/07/Mueller15_ACII.pdf +0fd1715da386d454b3d6571cf6d06477479f54fc,http://pdfs.semanticscholar.org/0fd1/715da386d454b3d6571cf6d06477479f54fc.pdf +0f9bf5d8f9087fcba419379600b86ae9e9940013,http://pdfs.semanticscholar.org/0f9b/f5d8f9087fcba419379600b86ae9e9940013.pdf +0f829fee12e86f980a581480a9e0cefccb59e2c5,http://www.cs.columbia.edu/~liujx09/posters/birdpart_poster.pdf +0faee699eccb2da6cf4307ded67ba8434368257b,http://pdfs.semanticscholar.org/2396/5bd9b557b04b2c81a35ee5c16951c0e420f3.pdf +0fabb4a40f2e3a2502cd935e54e090a304006c1c,http://arxiv.org/pdf/1202.4207v2.pdf +0f92e9121e9c0addc35eedbbd25d0a1faf3ab529,http://pdfs.semanticscholar.org/0f92/e9121e9c0addc35eedbbd25d0a1faf3ab529.pdf +0f0366070b46972fcb2976775b45681e62a94a26,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Bendale_Reliable_Posterior_Probability_2014_CVPR_paper.pdf +0ff23392e1cb62a600d10bb462d7a1f171f579d0,http://www.umiacs.umd.edu/~jhchoi/paper/icpr2014_slide.pdf +0fd3a7ee228bbc3dd4a111dae04952a1ee58a8cd,http://media.cs.tsinghua.edu.cn/~ahz/papers/%5B2011%5D%5Bacpr%5Dwang%20nan.pdf +0f533bc9fdfb75a3680d71c84f906bbd59ee48f1,http://www.iis.sinica.edu.tw/papers/song/11837-F.pdf +0f53ab8b6c428127753281dd77cf94bdb889b624,https://www.researchgate.net/profile/Dian_Tjondronegoro/publication/224257559_Toward_a_more_robust_facial_expression_recognition_in_occluded_images_using_randomly_sampled_Gabor_based_templates/links/00b7d51f84babec8ad000000.pdf +0f4eb63402a4f3bae8f396e12133684fb760def1,http://pdfs.semanticscholar.org/8c4e/b15de264af9f92a93d6e89d36295c5c4bf37.pdf +0fba39bf12486c7684fd3d51322e3f0577d3e4e8,http://vision.ucsd.edu/~pdollar/files/papers/BabenkoICCV07boom.pdf +0f395a49ff6cbc7e796656040dbf446a40e300aa,http://pdfs.semanticscholar.org/0f39/5a49ff6cbc7e796656040dbf446a40e300aa.pdf +0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277,http://pdfs.semanticscholar.org/0fb8/317a8bf5feaf297af8e9b94c50c5ed0e8277.pdf +0fe96806c009e8d095205e8f954d41b2b9fd5dcf,http://pdfs.semanticscholar.org/51be/ffe5f96ccb6b64057a540a7874185ccad8d7.pdf +0f1cbe4e26d584c82008ccef9fb1e4669b82de1f,http://figment.cse.usf.edu/~sfefilat/data/papers/MoBT9.24.pdf +0f940d2cdfefc78c92ec6e533a6098985f47a377,https://www.ecse.rpi.edu/~cvrl/chenj/Expression_v6_submit.pdf +0faeec0d1c51623a511adb779dabb1e721a6309b,http://pdfs.semanticscholar.org/a075/782ea38167658fe28986755adddba7369b4f.pdf +0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,https://arxiv.org/pdf/1501.05152v1.pdf +0f0241124d6092a0bb56259ac091467c2c6938ca,http://mm.cs.uec.ac.jp/kitaha-a/research/maw2008.pdf?origin=publication_detail +0a6d344112b5af7d1abbd712f83c0d70105211d0,http://www.cl.cam.ac.uk/~tb346/pub/papers/iccv2013.pdf +0a64f4fec592662316764283575d05913eb2135b,http://pdfs.semanticscholar.org/0a64/f4fec592662316764283575d05913eb2135b.pdf +0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,http://pdfs.semanticscholar.org/0a2d/df88bd1a6c093aad87a8c7f4150bfcf27112.pdf +0a5ffc55b584da7918c2650f9d8602675d256023,http://pdfs.semanticscholar.org/0a5f/fc55b584da7918c2650f9d8602675d256023.pdf +0aeb5020003e0c89219031b51bd30ff1bceea363,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTarxiv15.pdf +0a511058edae582e8327e8b9d469588c25152dc6,http://pdfs.semanticscholar.org/0a51/1058edae582e8327e8b9d469588c25152dc6.pdf +0a4f3a423a37588fde9a2db71f114b293fc09c50,http://pdfs.semanticscholar.org/0a4f/3a423a37588fde9a2db71f114b293fc09c50.pdf +0aa74ad36064906e165ac4b79dec298911a7a4db,http://pdfs.semanticscholar.org/7645/11b63b0eeba9f3dfe1e5ec9ff261cdc59d25.pdf +0abf67e7bd470d9eb656ea2508beae13ca173198,http://www.cs.cmu.edu/~kkitani/pdf/MFK-CVPR16.pdf +0af33f6b5fcbc5e718f24591b030250c6eec027a,http://pdfs.semanticscholar.org/fa2c/96273027ff92f98109dbcef5b65f34b36627.pdf +0a3863a0915256082aee613ba6dab6ede962cdcd,http://pdfs.semanticscholar.org/0a38/63a0915256082aee613ba6dab6ede962cdcd.pdf +0a85bdff552615643dd74646ac881862a7c7072d,https://fbcdn-dragon-a.akamaihd.net/hphotos-ak-xpa1/t39.2365-6/10000000_1672336992989417_1391274031_n/Beyond_Frontal_Faces_Improving_Person_Recognition_Using_Multiple_Cues.pdf +0a325d70cc381b136a8f4e471b406cda6d27668c,http://pdfs.semanticscholar.org/0a32/5d70cc381b136a8f4e471b406cda6d27668c.pdf +0ad8149318912b5449085187eb3521786a37bc78,http://arxiv.org/pdf/1604.02975v1.pdf +0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7,http://pdfs.semanticscholar.org/0aa9/872daf2876db8d8e5d6197c1ce0f8efee4b7.pdf +0aae88cf63090ea5b2c80cd014ef4837bcbaadd8,http://pdfs.semanticscholar.org/0aae/88cf63090ea5b2c80cd014ef4837bcbaadd8.pdf +0a87d781fe2ae2e700237ddd00314dbc10b1429c,http://pdfs.semanticscholar.org/0a87/d781fe2ae2e700237ddd00314dbc10b1429c.pdf +0ad90118b4c91637ee165f53d557da7141c3fde0,http://pdfs.semanticscholar.org/0ad9/0118b4c91637ee165f53d557da7141c3fde0.pdf +0a82860d11fcbf12628724333f1e7ada8f3cd255,http://pdfs.semanticscholar.org/0a82/860d11fcbf12628724333f1e7ada8f3cd255.pdf +0a23d374c6cf71a65e845569230420362fe4903a,http://mplab.ucsd.edu/~ksikka/in_the_wild.pdf +0a6a818b634cca4eb75a37bfd23b5c5c21331b12,http://hal.cse.msu.edu/pdfs/papers/wacv-2015.pdf +0ac442bb570b086d04c4d51a8410fcbfd0b1779d,http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/cvpr16_warpnet.pdf +0af48a45e723f99b712a8ce97d7826002fe4d5a5,http://vision.seas.harvard.edu/papers/WideAngle_PAMI2013.pdf +0aa8a0203e5f406feb1815f9b3dd49907f5fd05b,http://www.iti.gr/~bmezaris/publications/spl11_preprint.pdf +0a68747d001aba014acd3b6ec83ba9534946a0da,http://staff.estem-uc.edu.au/roland/files/2009/05/Dhall_Goecke_Gedeon_TAC2015_AutomaticGroupHappinessIntensityAnalysis.pdf +0ac664519b2b8abfb8966dafe60d093037275573,http://face.cs.kit.edu/download/publications/supplemental_material.pdf +0a9345ea6e488fb936e26a9ba70b0640d3730ba7,http://www1.ece.neu.edu/~yuewu/files/2016/p52-jiang.pdf +0a79d0ba1a4876086e64fc0041ece5f0de90fbea,http://pdfs.semanticscholar.org/0a79/d0ba1a4876086e64fc0041ece5f0de90fbea.pdf +0a11b82aa207d43d1b4c0452007e9388a786be12,http://pdfs.semanticscholar.org/0a11/b82aa207d43d1b4c0452007e9388a786be12.pdf +0a1138276c52c734b67b30de0bf3f76b0351f097,https://ibug.doc.ic.ac.uk/media/uploads/documents/georgakis_dica.pdf +0aa405447a8797e509521f0570e4679a42fdac9b,http://mplab.ucsd.edu/~jake/AISeminar26Sep2011.pdf +0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7,http://pdfs.semanticscholar.org/0ae9/cc6a06cfd03d95eee4eca9ed77b818b59cb7.pdf +0acf23485ded5cb9cd249d1e4972119239227ddb,http://pdfs.semanticscholar.org/507e/2bad4851f04a686ae6e964e15bbef28583e9.pdf +0ad4a814b30e096ad0e027e458981f812c835aa0,http://arxiv.org/pdf/1602.01827v1.pdf +6448d23f317babb8d5a327f92e199aaa45f0efdc,http://pdfs.semanticscholar.org/6448/d23f317babb8d5a327f92e199aaa45f0efdc.pdf +6412d8bbcc01f595a2982d6141e4b93e7e982d0f,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Kang_Deep_Convolutional_Neural_CVPR_2017_paper.pdf +6409b8879c7e61acf3ca17bcc62f49edca627d4c,http://pdfs.semanticscholar.org/6409/b8879c7e61acf3ca17bcc62f49edca627d4c.pdf +64153df77fe137b7c6f820a58f0bdb4b3b1a879b,http://pdfs.semanticscholar.org/6415/3df77fe137b7c6f820a58f0bdb4b3b1a879b.pdf +649eb674fc963ce25e4e8ce53ac7ee20500fb0e3,http://chenlab.ece.cornell.edu/Publication/Kuan-Chuan/WACV16.pdf +642c66df8d0085d97dc5179f735eed82abf110d0,http://research.microsoft.com/users/leizhang/Paper/CVPR05-Shuicheng-Coupled.pdf +6459f1e67e1ea701b8f96177214583b0349ed964,http://vision.ece.ucsb.edu/publications/karthik_icip2011.pdf +64cf86ba3b23d3074961b485c16ecb99584401de,http://pdfs.semanticscholar.org/b54a/54a2f33c24123c6943597462ef02928ec99f.pdf +6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,http://arxiv.org/pdf/1411.7766v2.pdf +64cf1cda80a23ed6fc1c8e66065614ef7bdeadf3,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/PAMI_LIV.pdf +6479b61ea89e9d474ffdefa71f068fbcde22cc44,http://pdfs.semanticscholar.org/6479/b61ea89e9d474ffdefa71f068fbcde22cc44.pdf +64e75f53ff3991099c3fb72ceca55b76544374e5,http://pdfs.semanticscholar.org/eb48/804eefe4c61f62178d2a83a9ae0097091897.pdf +64f9519f20acdf703984f02e05fd23f5e2451977,http://arxiv.org/pdf/1509.01343v1.pdf +641f34deb3bdd123c6b6e7b917519c3e56010cb7,https://pdfs.semanticscholar.org/878d/68c5d016a0a63f328d72adda6b135432b66d.pdf +64782a2bc5da11b1b18ca20cecf7bdc26a538d68,http://pdfs.semanticscholar.org/6478/2a2bc5da11b1b18ca20cecf7bdc26a538d68.pdf +6462ef39ca88f538405616239471a8ea17d76259,http://pdfs.semanticscholar.org/6462/ef39ca88f538405616239471a8ea17d76259.pdf +64d5772f44efe32eb24c9968a3085bc0786bfca7,http://pdfs.semanticscholar.org/64d5/772f44efe32eb24c9968a3085bc0786bfca7.pdf +90d735cffd84e8f2ae4d0c9493590f3a7d99daf1,http://pdfs.semanticscholar.org/90d7/35cffd84e8f2ae4d0c9493590f3a7d99daf1.pdf +90298f9f80ebe03cb8b158fd724551ad711d4e71,http://pdfs.semanticscholar.org/9029/8f9f80ebe03cb8b158fd724551ad711d4e71.pdf +900207b3bc3a4e5244cae9838643a9685a84fee0,http://pdfs.semanticscholar.org/9002/07b3bc3a4e5244cae9838643a9685a84fee0.pdf +90fb58eeb32f15f795030c112f5a9b1655ba3624,http://pdfs.semanticscholar.org/90fb/58eeb32f15f795030c112f5a9b1655ba3624.pdf +90b7619eabe94731722ae884d0802256462457dc,https://arxiv.org/pdf/1511.09319v1.pdf +90c4f15f1203a3a8a5bf307f8641ba54172ead30,http://pdfs.semanticscholar.org/90c4/f15f1203a3a8a5bf307f8641ba54172ead30.pdf +902114feaf33deac209225c210bbdecbd9ef33b1,http://pdfs.semanticscholar.org/b5b0/8aaf56df40260abea890813503003485bda3.pdf +90ad0daa279c3e30b360f9fe9371293d68f4cebf,http://pdfs.semanticscholar.org/90ad/0daa279c3e30b360f9fe9371293d68f4cebf.pdf +90a754f597958a2717862fbaa313f67b25083bf9,http://pdfs.semanticscholar.org/90a7/54f597958a2717862fbaa313f67b25083bf9.pdf +90dd2a53236b058c79763459b9d8a7ba5e58c4f1,http://pdfs.semanticscholar.org/90dd/2a53236b058c79763459b9d8a7ba5e58c4f1.pdf +90cb074a19c5e7d92a1c0d328a1ade1295f4f311,http://pdfs.semanticscholar.org/90cb/074a19c5e7d92a1c0d328a1ade1295f4f311.pdf +90b11e095c807a23f517d94523a4da6ae6b12c76,https://arxiv.org/pdf/1609.08475v1.pdf +90c2d4d9569866a0b930e91713ad1da01c2a6846,http://pdfs.semanticscholar.org/90c2/d4d9569866a0b930e91713ad1da01c2a6846.pdf +907475a4febf3f1d4089a3e775ea018fbec895fe,http://pdfs.semanticscholar.org/9074/75a4febf3f1d4089a3e775ea018fbec895fe.pdf +9028fbbd1727215010a5e09bc5758492211dec19,http://pdfs.semanticscholar.org/9028/fbbd1727215010a5e09bc5758492211dec19.pdf +bff77a3b80f40cefe79550bf9e220fb82a74c084,http://pdfs.semanticscholar.org/bff7/7a3b80f40cefe79550bf9e220fb82a74c084.pdf +bf03f0fe8f3ba5b118bdcbb935bacb62989ecb11,http://pdfs.semanticscholar.org/bf03/f0fe8f3ba5b118bdcbb935bacb62989ecb11.pdf +bf1e0279a13903e1d43f8562aaf41444afca4fdc,http://pdfs.semanticscholar.org/bf1e/0279a13903e1d43f8562aaf41444afca4fdc.pdf +bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103,http://pdfs.semanticscholar.org/bf0f/0eb0fb31ee498da4ae2ca9b467f730ea9103.pdf +bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5,https://ubicomp-mental-health.github.io/papers/2017/perception-syeda.pdf +bf4825474673246ae855979034c8ffdb12c80a98,http://pdfs.semanticscholar.org/bf48/25474673246ae855979034c8ffdb12c80a98.pdf +bf8a520533f401347e2f55da17383a3e567ef6d8,http://pdfs.semanticscholar.org/bf8a/520533f401347e2f55da17383a3e567ef6d8.pdf +bfb98423941e51e3cd067cb085ebfa3087f3bfbe,http://pdfs.semanticscholar.org/bfb9/8423941e51e3cd067cb085ebfa3087f3bfbe.pdf +bffbd04ee5c837cd919b946fecf01897b2d2d432,http://pdfs.semanticscholar.org/bffb/d04ee5c837cd919b946fecf01897b2d2d432.pdf +d3424761e06a8f5f3c1f042f1f1163a469872129,http://pdfs.semanticscholar.org/d342/4761e06a8f5f3c1f042f1f1163a469872129.pdf +d33b26794ea6d744bba7110d2d4365b752d7246f,http://pdfs.semanticscholar.org/d33b/26794ea6d744bba7110d2d4365b752d7246f.pdf +d3b73e06d19da6b457924269bb208878160059da,http://pdfs.semanticscholar.org/d3b7/3e06d19da6b457924269bb208878160059da.pdf +d3e04963ff42284c721f2bc6a90b7a9e20f0242f,http://pdfs.semanticscholar.org/d3e0/4963ff42284c721f2bc6a90b7a9e20f0242f.pdf +d3d71a110f26872c69cf25df70043f7615edcf92,https://www.cise.ufl.edu/~dihong/assets/07094272.pdf +d35c82588645b94ce3f629a0b98f6a531e4022a3,http://pdfs.semanticscholar.org/d35c/82588645b94ce3f629a0b98f6a531e4022a3.pdf +d394bd9fbaad1f421df8a49347d4b3fca307db83,http://www.eecs.qmul.ac.uk/~sgg/papers/ShanEtAl_AVSS05.pdf +d3b550e587379c481392fb07f2cbbe11728cf7a6,http://pdfs.semanticscholar.org/d3b5/50e587379c481392fb07f2cbbe11728cf7a6.pdf +d30050cfd16b29e43ed2024ae74787ac0bbcf2f7,http://pdfs.semanticscholar.org/d300/50cfd16b29e43ed2024ae74787ac0bbcf2f7.pdf +d3c004125c71942846a9b32ae565c5216c068d1e,http://pdfs.semanticscholar.org/d3c0/04125c71942846a9b32ae565c5216c068d1e.pdf +d350a9390f0818703f886138da27bf8967fe8f51,http://mi.informatik.uni-siegen.de/publications/shahlaei_icip2016.pdf +d41c11ebcb06c82b7055e2964914b9af417abfb2,http://pdfs.semanticscholar.org/d41c/11ebcb06c82b7055e2964914b9af417abfb2.pdf +d46fda4b49bbc219e37ef6191053d4327e66c74b,http://pdfs.semanticscholar.org/d46f/da4b49bbc219e37ef6191053d4327e66c74b.pdf +d448d67c6371f9abf533ea0f894ef2f022b12503,http://pdfs.semanticscholar.org/d448/d67c6371f9abf533ea0f894ef2f022b12503.pdf +d4c7d1a7a03adb2338704d2be7467495f2eb6c7b,http://pdfs.semanticscholar.org/d4c7/d1a7a03adb2338704d2be7467495f2eb6c7b.pdf +d4001826cc6171c821281e2771af3a36dd01ffc0,http://pdfs.semanticscholar.org/d400/1826cc6171c821281e2771af3a36dd01ffc0.pdf +d46b4e6871fc9974542215f001e92e3035aa08d9,http://pdfs.semanticscholar.org/d46b/4e6871fc9974542215f001e92e3035aa08d9.pdf +d40cd10f0f3e64fd9b0c2728089e10e72bea9616,http://pdfs.semanticscholar.org/d40c/d10f0f3e64fd9b0c2728089e10e72bea9616.pdf +d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d,http://pdfs.semanticscholar.org/d4eb/f0a4f48275ecd8dbc2840b2a31cc07bd676d.pdf +d46e793b945c4f391031656357625e902c4405e8,http://140.118.9.222/publications/journal/faceoff.pdf +d4c2d26523f577e2d72fc80109e2540c887255c8,http://pdfs.semanticscholar.org/d4c2/d26523f577e2d72fc80109e2540c887255c8.pdf +d4b88be6ce77164f5eea1ed2b16b985c0670463a,http://pdfs.semanticscholar.org/d4b8/8be6ce77164f5eea1ed2b16b985c0670463a.pdf +d44ca9e7690b88e813021e67b855d871cdb5022f,http://pdfs.semanticscholar.org/d44c/a9e7690b88e813021e67b855d871cdb5022f.pdf +baaaf73ec28226d60d923bc639f3c7d507345635,http://pdfs.semanticscholar.org/baaa/f73ec28226d60d923bc639f3c7d507345635.pdf +ba2bbef34f05551291410103e3de9e82fdf9dddd,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Guo_A_Study_on_2014_CVPR_paper.pdf +bafb8812817db7445fe0e1362410a372578ec1fc,http://www.cin.ufpe.br/~rps/Artigos/Image-Quality-Based%20Adaptive%20Face%20Recognition.pdf +baa0fe4d0ac0c7b664d4c4dd00b318b6d4e09143,http://pdfs.semanticscholar.org/baa0/fe4d0ac0c7b664d4c4dd00b318b6d4e09143.pdf +ba99c37a9220e08e1186f21cab11956d3f4fccc2,https://arxiv.org/pdf/1609.08677v1.pdf +ba816806adad2030e1939450226c8647105e101c,http://pdfs.semanticscholar.org/ba81/6806adad2030e1939450226c8647105e101c.pdf +badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,http://pdfs.semanticscholar.org/badc/fb7d4e2ef0d3e332a19a3f93d59b4f85668e.pdf +ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,http://pdfs.semanticscholar.org/ba8a/99d35aee2c4e5e8a40abfdd37813bfdd0906.pdf +bac11ce0fb3e12c466f7ebfb6d036a9fe62628ea,http://pdfs.semanticscholar.org/bac1/1ce0fb3e12c466f7ebfb6d036a9fe62628ea.pdf +ba29ba8ec180690fca702ad5d516c3e43a7f0bb8,http://pdfs.semanticscholar.org/ba29/ba8ec180690fca702ad5d516c3e43a7f0bb8.pdf +bab88235a30e179a6804f506004468aa8c28ce4f,http://pdfs.semanticscholar.org/bab8/8235a30e179a6804f506004468aa8c28ce4f.pdf +a065080353d18809b2597246bb0b48316234c29a,http://pdfs.semanticscholar.org/a065/080353d18809b2597246bb0b48316234c29a.pdf +a0f94e9400938cbd05c4b60b06d9ed58c3458303,http://people.ee.duke.edu/~lcarin/Hoey_Little07.pdf +a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4,http://pdfs.semanticscholar.org/a0f1/93c86e3dd7e0020c0de3ec1e24eaff343ce4.pdf +a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf +a0021e3bbf942a88e13b67d83db7cf52e013abfd,http://pdfs.semanticscholar.org/a002/1e3bbf942a88e13b67d83db7cf52e013abfd.pdf +a0d6390dd28d802152f207940c7716fe5fae8760,http://pdfs.semanticscholar.org/a0d6/390dd28d802152f207940c7716fe5fae8760.pdf +a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670,http://webhost.uoradea.ro/ibuciu/ISCAS2006_Buciu.pdf +a02f0aad91c2d88b49c443e1e39c3acfc067a705,http://www.cs.columbia.edu/~wfan/PAPERS/SMC10cher.pdf +a0dfb8aae58bd757b801e2dcb717a094013bc178,http://pdfs.semanticscholar.org/a0df/b8aae58bd757b801e2dcb717a094013bc178.pdf +a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60,http://pdfs.semanticscholar.org/ac3b/033fd24913c31778cd4cb2d013239315d7a9.pdf +a06b6d30e2b31dc600f622ab15afe5e2929581a7,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf +a090d61bfb2c3f380c01c0774ea17929998e0c96,http://iitlab.bit.edu.cn/mcislab/~jiayunde/pdf/CVPR2012_BrickIllumDimension.pdf +a0e7f8771c7d83e502d52c276748a33bae3d5f81,http://pdfs.semanticscholar.org/a0e7/f8771c7d83e502d52c276748a33bae3d5f81.pdf +a0061dae94d916f60a5a5373088f665a1b54f673,http://pdfs.semanticscholar.org/a006/1dae94d916f60a5a5373088f665a1b54f673.pdf +a0848d7b1bb43f4b4f1b4016e58c830f40944817,http://lhncbc.nlm.nih.gov/system/files/pub8893.pdf +a000149e83b09d17e18ed9184155be140ae1266e,http://pdfs.semanticscholar.org/a000/149e83b09d17e18ed9184155be140ae1266e.pdf +a01f9461bc8cf8fe40c26d223ab1abea5d8e2812,http://pdfs.semanticscholar.org/a01f/9461bc8cf8fe40c26d223ab1abea5d8e2812.pdf +a702fc36f0644a958c08de169b763b9927c175eb,http://www.apsipa.org/proceedings_2013/papers/170_PID2935307.pdf +a7267bc781a4e3e79213bb9c4925dd551ea1f5c4,http://pdfs.semanticscholar.org/a726/7bc781a4e3e79213bb9c4925dd551ea1f5c4.pdf +a784a0d1cea26f18626682ab108ce2c9221d1e53,http://openaccess.thecvf.com/content_ICCV_2017/papers/Agustsson_Anchored_Regression_Networks_ICCV_2017_paper.pdf +a74251efa970b92925b89eeef50a5e37d9281ad0,http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf +a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51,http://pdfs.semanticscholar.org/a7d2/3c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51.pdf +a70e36daf934092f40a338d61e0fe27be633f577,http://pdfs.semanticscholar.org/a70e/36daf934092f40a338d61e0fe27be633f577.pdf +a7191958e806fce2505a057196ccb01ea763b6ea,http://pdfs.semanticscholar.org/a719/1958e806fce2505a057196ccb01ea763b6ea.pdf +a7e1327bd76945a315f2869bfae1ce55bb94d165,http://pdfs.semanticscholar.org/a7e1/327bd76945a315f2869bfae1ce55bb94d165.pdf +a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9,http://pdfs.semanticscholar.org/a7a6/eb53bee5e2224f2ecd56a14e3a5a717e55b9.pdf +a79704c1ce7bf10c8753a8f51437ccbc61947d03,http://www.eecs.qmul.ac.uk/~cfshan/papers/shan-etal-icip05.pdf +a7c39a4e9977a85673892b714fc9441c959bf078,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/Biometrics/papers/06-p71.pdf +a75edf8124f5b52690c08ff35b0c7eb8355fe950,http://pdfs.semanticscholar.org/a75e/df8124f5b52690c08ff35b0c7eb8355fe950.pdf +a75ee7f4c4130ef36d21582d5758f953dba03a01,http://pdfs.semanticscholar.org/a75e/e7f4c4130ef36d21582d5758f953dba03a01.pdf +a703d51c200724517f099ee10885286ddbd8b587,http://pdfs.semanticscholar.org/a703/d51c200724517f099ee10885286ddbd8b587.pdf +a75dfb5a839f0eb4b613d150f54a418b7812aa90,https://arxiv.org/pdf/1708.02314v1.pdf +b88ceded6467e9b286f048bb1b17be5998a077bd,http://pdfs.semanticscholar.org/b88c/eded6467e9b286f048bb1b17be5998a077bd.pdf +b871d1b8495025ff8a6255514ed39f7765415935,http://pdfs.semanticscholar.org/b871/d1b8495025ff8a6255514ed39f7765415935.pdf +b88d5e12089f6f598b8c72ebeffefc102cad1fc0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w24/papers/Wang_Robust_2DPCA_and_CVPR_2016_paper.pdf +b84b7b035c574727e4c30889e973423fe15560d7,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf +b8dba0504d6b4b557d51a6cf4de5507141db60cf,http://pdfs.semanticscholar.org/b8db/a0504d6b4b557d51a6cf4de5507141db60cf.pdf +b89862f38fff416d2fcda389f5c59daba56241db,http://pdfs.semanticscholar.org/b898/62f38fff416d2fcda389f5c59daba56241db.pdf +b8caf1b1bc3d7a26a91574b493c502d2128791f6,http://pdfs.semanticscholar.org/b8ca/f1b1bc3d7a26a91574b493c502d2128791f6.pdf +b8084d5e193633462e56f897f3d81b2832b72dff,http://pdfs.semanticscholar.org/b808/4d5e193633462e56f897f3d81b2832b72dff.pdf +b8378ab83bc165bc0e3692f2ce593dcc713df34a,http://cmp.felk.cvut.cz/ftp/articles/cech/Cech-ICPR-2014.pdf +b85580ff2d8d8be0a2c40863f04269df4cd766d9,http://pdfs.semanticscholar.org/b855/80ff2d8d8be0a2c40863f04269df4cd766d9.pdf +b87b0fa1ac0aad0ca563844daecaeecb2df8debf,http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/portraits-CAe.pdf +b87db5ac17312db60e26394f9e3e1a51647cca66,http://pdfs.semanticscholar.org/b87d/b5ac17312db60e26394f9e3e1a51647cca66.pdf +b81cae2927598253da37954fb36a2549c5405cdb,http://pdfs.semanticscholar.org/d892/753827950a227179b691e6df85820ab7c417.pdf +b8a829b30381106b806066d40dd372045d49178d,http://gavrila.net/tits15.pdf +b191aa2c5b8ece06c221c3a4a0914e8157a16129,http://pdfs.semanticscholar.org/b191/aa2c5b8ece06c221c3a4a0914e8157a16129.pdf +b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,http://pdfs.semanticscholar.org/b13b/f657ca6d34d0df90e7ae739c94a7efc30dc3.pdf +b13a882e6168afc4058fe14cc075c7e41434f43e,http://pdfs.semanticscholar.org/b13a/882e6168afc4058fe14cc075c7e41434f43e.pdf +b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,http://pdfs.semanticscholar.org/b166/5e1ddf9253dcaebecb48ac09a7ab4095a83e.pdf +b16580d27bbf4e17053f2f91bc1d0be12045e00b,http://pdfs.semanticscholar.org/b165/80d27bbf4e17053f2f91bc1d0be12045e00b.pdf +b11bb6bd63ee6f246d278dd4edccfbe470263803,http://pdfs.semanticscholar.org/b11b/b6bd63ee6f246d278dd4edccfbe470263803.pdf +b171f9e4245b52ff96790cf4f8d23e822c260780,http://pdfs.semanticscholar.org/b171/f9e4245b52ff96790cf4f8d23e822c260780.pdf +b1a3b19700b8738b4510eecf78a35ff38406df22,http://pdfs.semanticscholar.org/b1a3/b19700b8738b4510eecf78a35ff38406df22.pdf +b1301c722886b6028d11e4c2084ee96466218be4,http://pdfs.semanticscholar.org/b130/1c722886b6028d11e4c2084ee96466218be4.pdf +b1c5581f631dba78927aae4f86a839f43646220c,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553753.pdf +b18858ad6ec88d8b443dffd3e944e653178bc28b,http://pdfs.semanticscholar.org/b188/58ad6ec88d8b443dffd3e944e653178bc28b.pdf +b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1,http://pdfs.semanticscholar.org/b144/4b3bf15eec84f6d9a2ade7989bb980ea7bd1.pdf +b133b2d7df9b848253b9d75e2ca5c68e21eba008,http://pdfs.semanticscholar.org/c2c1/ab9eac2907e15618d80f5ce0c9b60f2c36cc.pdf +b1df214e0f1c5065f53054195cd15012e660490a,http://pdfs.semanticscholar.org/b1df/214e0f1c5065f53054195cd15012e660490a.pdf +b185f0a39384ceb3c4923196aeed6d68830a069f,http://pdfs.semanticscholar.org/b185/f0a39384ceb3c4923196aeed6d68830a069f.pdf +b19e83eda4a602abc5a8ef57467c5f47f493848d,http://www.cs.jhu.edu/~hwang/papers/SPL10.pdf +b1429e4d3dd3412e92a37d2f9e0721ea719a9b9e,http://www.hamedkiani.com/uploads/5/1/8/8/51882963/176.pdf +ddf55fc9cf57dabf4eccbf9daab52108df5b69aa,http://pdfs.semanticscholar.org/ddf5/5fc9cf57dabf4eccbf9daab52108df5b69aa.pdf +dda35768681f74dafd02a667dac2e6101926a279,http://www.cim.mcgill.ca/~clark/vmrl/web-content/papers/jjclark_icip_2014.pdf +dd0760bda44d4e222c0a54d41681f97b3270122b,http://pdfs.semanticscholar.org/dd07/60bda44d4e222c0a54d41681f97b3270122b.pdf +ddea3c352f5041fb34433b635399711a90fde0e8,http://pdfs.semanticscholar.org/fc6b/2eb9253f33197b1ba8a045525487a16e8756.pdf +dd033d4886f2e687b82d893a2c14dae02962ea70,http://pdfs.semanticscholar.org/dd03/3d4886f2e687b82d893a2c14dae02962ea70.pdf +ddf099f0e0631da4a6396a17829160301796151c,http://pdfs.semanticscholar.org/ddf0/99f0e0631da4a6396a17829160301796151c.pdf +dd0a334b767e0065c730873a95312a89ef7d1c03,http://pdfs.semanticscholar.org/dd0a/334b767e0065c730873a95312a89ef7d1c03.pdf +dd8ad6ce8701d4b09be460a6cf058fcd5318c700,https://www.researchgate.net/profile/Daniel_Riccio/publication/260652311_Robust_Face_Recognition_for_Uncontrolled_Pose_and_Illumination_Changes/links/5402f4450cf23d9765a55fbc.pdf +dd2f6a1ba3650075245a422319d86002e1e87808,http://pdfs.semanticscholar.org/dd2f/6a1ba3650075245a422319d86002e1e87808.pdf +ddaa8add8528857712424fd57179e5db6885df7c,http://pdfs.semanticscholar.org/ff63/a8e8e462d15c9d59ac66025a043d3c299aea.pdf +dd8d53e67668067fd290eb500d7dfab5b6f730dd,http://mmlab.ie.cuhk.edu.hk/archive/2007/IFS07_subspace.pdf +dd600e7d6e4443ebe87ab864d62e2f4316431293,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553774.pdf +dcb44fc19c1949b1eda9abe998935d567498467d,http://pdfs.semanticscholar.org/dcb4/4fc19c1949b1eda9abe998935d567498467d.pdf +dcc38db6c885444694f515d683bbb50521ff3990,http://pdfs.semanticscholar.org/dcc3/8db6c885444694f515d683bbb50521ff3990.pdf +dc5cde7e4554db012d39fc41ac8580f4f6774045,http://pdfs.semanticscholar.org/dc5c/de7e4554db012d39fc41ac8580f4f6774045.pdf +dc7df544d7c186723d754e2e7b7217d38a12fcf7,http://pdfs.semanticscholar.org/dc7d/f544d7c186723d754e2e7b7217d38a12fcf7.pdf +dc77287bb1fcf64358767dc5b5a8a79ed9abaa53,http://pdfs.semanticscholar.org/dc77/287bb1fcf64358767dc5b5a8a79ed9abaa53.pdf +dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb,http://pdfs.semanticscholar.org/dc2e/805d0038f9d1b3d1bc79192f1d90f6091ecb.pdf +dced05d28f353be971ea2c14517e85bc457405f3,http://pdfs.semanticscholar.org/dced/05d28f353be971ea2c14517e85bc457405f3.pdf +dcce3d7e8d59041e84fcdf4418702fb0f8e35043,http://www.cfar.umd.edu/~rama/Conf.pdf-files/zhou04cvpr-10.pdf +dce3dff9216d63c4a77a2fcb0ec1adf6d2489394,http://pdfs.semanticscholar.org/dce3/dff9216d63c4a77a2fcb0ec1adf6d2489394.pdf +b6f758be954d34817d4ebaa22b30c63a4b8ddb35,https://arxiv.org/pdf/1703.04835v1.pdf +b62571691a23836b35719fc457e093b0db187956,http://pdfs.semanticscholar.org/b625/71691a23836b35719fc457e093b0db187956.pdf +b69b239217d4e9a20fe4fe1417bf26c94ded9af9,http://pdfs.semanticscholar.org/b69b/239217d4e9a20fe4fe1417bf26c94ded9af9.pdf +b6c047ab10dd86b1443b088029ffe05d79bbe257,http://pdfs.semanticscholar.org/b6c0/47ab10dd86b1443b088029ffe05d79bbe257.pdf +b6052dc718c72f2506cfd9d29422642ecf3992ef,http://pdfs.semanticscholar.org/b605/2dc718c72f2506cfd9d29422642ecf3992ef.pdf +b6145d3268032da70edc9cfececa1f9ffa4e3f11,http://cnl.salk.edu/~zhafed/papers/fr_IJCV_2001.pdf +b6c53891dff24caa1f2e690552a1a5921554f994,http://pdfs.semanticscholar.org/b6c5/3891dff24caa1f2e690552a1a5921554f994.pdf +b613b30a7cbe76700855479a8d25164fa7b6b9f1,http://www.cs.ucf.edu/~kienhua/classes/COP6731/Reading/AffectiveComputing.pdf +b64cfb39840969b1c769e336a05a30e7f9efcd61,http://pdfs.semanticscholar.org/fde2/b8943eb429d35e649c56ce95658b44c49243.pdf +b689d344502419f656d482bd186a5ee6b0140891,http://pdfs.semanticscholar.org/b689/d344502419f656d482bd186a5ee6b0140891.pdf +b656abc4d1e9c8dc699906b70d6fcd609fae8182,http://pdfs.semanticscholar.org/b656/abc4d1e9c8dc699906b70d6fcd609fae8182.pdf +b6a01cd4572b5f2f3a82732ef07d7296ab0161d3,http://pdfs.semanticscholar.org/b6a0/1cd4572b5f2f3a82732ef07d7296ab0161d3.pdf +a9791544baa14520379d47afd02e2e7353df87e5,http://pdfs.semanticscholar.org/a979/1544baa14520379d47afd02e2e7353df87e5.pdf +a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd,http://pdfs.semanticscholar.org/a9eb/6e436cfcbded5a9f4b82f6b914c7f390adbd.pdf +a955033ca6716bf9957b362b77092592461664b4,http://pdfs.semanticscholar.org/a955/033ca6716bf9957b362b77092592461664b4.pdf +a956ff50ca958a3619b476d16525c6c3d17ca264,http://ce.sharif.edu/~amiryanj/downloads/novel_bidirectional_nn_for_face_recognition.pdf +a93781e6db8c03668f277676d901905ef44ae49f,http://pdfs.semanticscholar.org/a937/81e6db8c03668f277676d901905ef44ae49f.pdf +a947c21a15fb0a02378c36271e1addf6b6e110eb,http://www.researchgate.net/profile/Bryan_Conroy/publication/220734216_The_grouped_two-sided_orthogonal_Procrustes_problem/links/02e7e52541c3f27987000000.pdf +a9fc23d612e848250d5b675e064dba98f05ad0d9,http://pdfs.semanticscholar.org/a9fc/23d612e848250d5b675e064dba98f05ad0d9.pdf +a9adb6dcccab2d45828e11a6f152530ba8066de6,http://pdfs.semanticscholar.org/a9ad/b6dcccab2d45828e11a6f152530ba8066de6.pdf +a967426ec9b761a989997d6a213d890fc34c5fe3,http://vision.ucsd.edu/sites/default/files/043-wacv.pdf +a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6,http://pdfs.semanticscholar.org/a928/6519e12675302b1d7d2fe0ca3cc4dc7d17f6.pdf +a949b8700ca6ba96ee40f75dfee1410c5bbdb3db,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Haase_Instance-weighted_Transfer_Learning_2014_CVPR_paper.pdf +a9be20954e9177d8b2bc39747acdea4f5496f394,http://acsweb.ucsd.edu/~yuw176/report/cvpr_2016.pdf +d5afd7b76f1391321a1340a19ba63eec9e0f9833,http://pdfs.semanticscholar.org/d5af/d7b76f1391321a1340a19ba63eec9e0f9833.pdf +d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12,http://pdfs.semanticscholar.org/d537/5f51eeb0c6eff71d6c6ad73e11e9353c1f12.pdf +d50c6d22449cc9170ab868b42f8c72f8d31f9b6c,http://pdfs.semanticscholar.org/d50c/6d22449cc9170ab868b42f8c72f8d31f9b6c.pdf +d522c162bd03e935b1417f2e564d1357e98826d2,http://pdfs.semanticscholar.org/d522/c162bd03e935b1417f2e564d1357e98826d2.pdf +d59f18fcb07648381aa5232842eabba1db52383e,http://pdfs.semanticscholar.org/d59f/18fcb07648381aa5232842eabba1db52383e.pdf +d5fa9d98c8da54a57abf353767a927d662b7f026,http://pdfs.semanticscholar.org/f15e/9712b8731e1f5fd9566aca513edda910b5b8.pdf +d588dd4f305cdea37add2e9bb3d769df98efe880,http://pdfs.semanticscholar.org/d588/dd4f305cdea37add2e9bb3d769df98efe880.pdf +d5f751d31a9d2d754d0d136d5b02c24b28fb94a0,http://www.researchgate.net/profile/Marie-Francine_Moens/publication/220634584_Naming_People_in_News_Videos_with_Label_Propagation/links/0a85e52ecd01912489000000.pdf +d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e,http://pdfs.semanticscholar.org/d5ab/6aa15dad26a6ace5ab83ce62b7467a18a88e.pdf +d5b0e73b584be507198b6665bcddeba92b62e1e5,http://pdfs.semanticscholar.org/d5b0/e73b584be507198b6665bcddeba92b62e1e5.pdf +d56fe69cbfd08525f20679ffc50707b738b88031,http://pdfs.semanticscholar.org/d56f/e69cbfd08525f20679ffc50707b738b88031.pdf +d50751da2997e7ebc89244c88a4d0d18405e8507,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553713.pdf +d511e903a882658c9f6f930d6dd183007f508eda,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553766.pdf +d50a40f2d24363809a9ac57cf7fbb630644af0e5,http://pdfs.semanticscholar.org/d50a/40f2d24363809a9ac57cf7fbb630644af0e5.pdf +d5b5c63c5611d7b911bc1f7e161a0863a34d44ea,http://pdfs.semanticscholar.org/d5b5/c63c5611d7b911bc1f7e161a0863a34d44ea.pdf +d59404354f84ad98fa809fd1295608bf3d658bdc,http://pdfs.semanticscholar.org/d594/04354f84ad98fa809fd1295608bf3d658bdc.pdf +d57dca4413ad4f33c97ae06a5a7fc86dc5a75f8b,http://iplab.dmi.unict.it/sites/default/files/_11.pdf +d5e1173dcb2a51b483f86694889b015d55094634,http://pdfs.semanticscholar.org/d5e1/173dcb2a51b483f86694889b015d55094634.pdf +d28d32af7ef9889ef9cb877345a90ea85e70f7f1,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Kim_Local.pdf +d28d697b578867500632b35b1b19d3d76698f4a9,http://pdfs.semanticscholar.org/d28d/697b578867500632b35b1b19d3d76698f4a9.pdf +d231a81b38fde73bdbf13cfec57d6652f8546c3c,http://pdfs.semanticscholar.org/d231/a81b38fde73bdbf13cfec57d6652f8546c3c.pdf +d22785eae6b7503cb16402514fd5bd9571511654,http://pdfs.semanticscholar.org/d227/85eae6b7503cb16402514fd5bd9571511654.pdf +d24dafe10ec43ac8fb98715b0e0bd8e479985260,http://pdfs.semanticscholar.org/d24d/afe10ec43ac8fb98715b0e0bd8e479985260.pdf +d29eec5e047560627c16803029d2eb8a4e61da75,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf +d280bcbb387b1d548173917ae82cb6944e3ceca6,https://cse.sc.edu/~mengz/papers/ICIP2014.pdf +d24d3370b2e7d254e999140024d8a7bddf701502,https://www.researchgate.net/profile/Thang_Hoang2/publication/252047382_SVM_classifier_based_face_detection_system_using_BDIP_and_BVLC_moments/links/53f0b8be0cf2711e0c431012.pdf +d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,http://pdfs.semanticscholar.org/d2cd/9a7f19600370bce3ea29aba97d949fe0ceb9.pdf +d22b378fb4ef241d8d210202893518d08e0bb213,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Random_Faces_Guided_2013_ICCV_paper.pdf +aac39ca161dfc52aade063901f02f56d01a1693c,http://pdfs.semanticscholar.org/aac3/9ca161dfc52aade063901f02f56d01a1693c.pdf +aadf4b077880ae5eee5dd298ab9e79a1b0114555,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Presti_Using_Hankel_Matrices_2015_CVPR_paper.pdf +aa127e6b2dc0aaccfb85e93e8b557f83ebee816b,http://pdfs.semanticscholar.org/aa12/7e6b2dc0aaccfb85e93e8b557f83ebee816b.pdf +aafb271684a52a0b23debb3a5793eb618940c5dd,http://pdfs.semanticscholar.org/aafb/271684a52a0b23debb3a5793eb618940c5dd.pdf +aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52,http://www.gtti.it/gtti13/Presentazioni_GTTI13/25_Giugno/Sessioni_Scientifiche_Short_Presentation/Piacenza.pdf +aa912375eaf50439bec23de615aa8a31a3395ad3,http://pdfs.semanticscholar.org/aa91/2375eaf50439bec23de615aa8a31a3395ad3.pdf +aa52910c8f95e91e9fc96a1aefd406ffa66d797d,http://pdfs.semanticscholar.org/aa52/910c8f95e91e9fc96a1aefd406ffa66d797d.pdf +aaeb8b634bb96a372b972f63ec1dc4db62e7b62a,http://pdfs.semanticscholar.org/aaeb/8b634bb96a372b972f63ec1dc4db62e7b62a.pdf +aa0c30bd923774add6e2f27ac74acd197b9110f2,http://research.gold.ac.uk/20200/1/dplda.pdf +aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5,http://pdfs.semanticscholar.org/aaa4/c625f5f9b65c7f3df5c7bfe8a6595d0195a5.pdf +aac934f2eed758d4a27562dae4e9c5415ff4cdb7,http://pdfs.semanticscholar.org/aac9/34f2eed758d4a27562dae4e9c5415ff4cdb7.pdf +aa331fe378056b6d6031bb8fe6676e035ed60d6d,http://pdfs.semanticscholar.org/aa33/1fe378056b6d6031bb8fe6676e035ed60d6d.pdf +aae0e417bbfba701a1183d3d92cc7ad550ee59c3,https://staff.fnwi.uva.nl/th.gevers/pub/GeversTIP12-3.pdf +aa577652ce4dad3ca3dde44f881972ae6e1acce7,http://pdfs.semanticscholar.org/aa57/7652ce4dad3ca3dde44f881972ae6e1acce7.pdf +aa94f214bb3e14842e4056fdef834a51aecef39c,http://pdfs.semanticscholar.org/aa94/f214bb3e14842e4056fdef834a51aecef39c.pdf +aac101dd321e6d2199d8c0b48c543b541c181b66,http://pdfs.semanticscholar.org/aac1/01dd321e6d2199d8c0b48c543b541c181b66.pdf +af8fe1b602452cf7fc9ecea0fd4508ed4149834e,http://pdfs.semanticscholar.org/af8f/e1b602452cf7fc9ecea0fd4508ed4149834e.pdf +af6e351d58dba0962d6eb1baf4c9a776eb73533f,http://pdfs.semanticscholar.org/af6e/351d58dba0962d6eb1baf4c9a776eb73533f.pdf +aff92784567095ee526a705e21be4f42226bbaab,http://pdfs.semanticscholar.org/aff9/2784567095ee526a705e21be4f42226bbaab.pdf +af13c355a2a14bb74847aedeafe990db3fc9cbd4,http://publications.idiap.ch/downloads/papers/2015/Chavez-Martinez_MUM2015_2015.pdf +af0a8199328d4c806574866f419d1962def9305a,http://ttic.uchicago.edu/~smaji/papers/mr07mms.pdf +af62621816fbbe7582a7d237ebae1a4d68fcf97d,http://pdfs.semanticscholar.org/af62/621816fbbe7582a7d237ebae1a4d68fcf97d.pdf +af54dd5da722e104740f9b6f261df9d4688a9712,http://pdfs.semanticscholar.org/af54/dd5da722e104740f9b6f261df9d4688a9712.pdf +afe9cfba90d4b1dbd7db1cf60faf91f24d12b286,http://pdfs.semanticscholar.org/afe9/cfba90d4b1dbd7db1cf60faf91f24d12b286.pdf +af278274e4bda66f38fd296cfa5c07804fbc26ee,http://pdfs.semanticscholar.org/af27/8274e4bda66f38fd296cfa5c07804fbc26ee.pdf +afef2b1d35fb807f422cfec0a370f7d08d4651d1,http://www.researchgate.net/profile/Dong_Yi3/publication/228853254_A_robust_eye_localization_method_for_low_quality_face_images/links/0912f509c4d7ec1630000000.pdf +afc7092987f0d05f5685e9332d83c4b27612f964,http://ci2cv.net/media/papers/2011_AFGR_Chew.pdf +b730908bc1f80b711c031f3ea459e4de09a3d324,http://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf +b7426836ca364603ccab0e533891d8ac54cf2429,http://pdfs.semanticscholar.org/b742/6836ca364603ccab0e533891d8ac54cf2429.pdf +b7cf7bb574b2369f4d7ebc3866b461634147041a,http://www.patternrecognition.cn/~zhongjin/2012/2012_yinjun_NCA.pdf +b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24,http://grid.hust.edu.cn/xbliu/papers/ICDM09.pdf +b7eead8586ffe069edd190956bd338d82c69f880,http://pdfs.semanticscholar.org/b7ee/ad8586ffe069edd190956bd338d82c69f880.pdf +b75cee96293c11fe77ab733fc1147950abbe16f9,http://pdfs.semanticscholar.org/e1a6/16674f63dd54b495d06cf1b7bd59f4cb772e.pdf +b7f05d0771da64192f73bdb2535925b0e238d233,http://pdfs.semanticscholar.org/b7f0/5d0771da64192f73bdb2535925b0e238d233.pdf +b755505bdd5af078e06427d34b6ac2530ba69b12,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/Maengetal_NIFaceRecognitionDistance_IJCB11.pdf +b7b461f82c911f2596b310e2b18dd0da1d5d4491,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p2961-wang.pdf +b7740dba37a3cbd5c832a8deb9a710a28966486a,http://pdfs.semanticscholar.org/b774/0dba37a3cbd5c832a8deb9a710a28966486a.pdf +b73fdae232270404f96754329a1a18768974d3f6,http://pdfs.semanticscholar.org/b73f/dae232270404f96754329a1a18768974d3f6.pdf +b7c5f885114186284c51e863b58292583047a8b4,http://pdfs.semanticscholar.org/b7c5/f885114186284c51e863b58292583047a8b4.pdf +b73d9e1af36aabb81353f29c40ecdcbdf731dbed,http://pdfs.semanticscholar.org/b73d/9e1af36aabb81353f29c40ecdcbdf731dbed.pdf +b747fcad32484dfbe29530a15776d0df5688a7db,http://pdfs.semanticscholar.org/b747/fcad32484dfbe29530a15776d0df5688a7db.pdf +b7f7a4df251ff26aca83d66d6b479f1dc6cd1085,http://pdfs.semanticscholar.org/b7f7/a4df251ff26aca83d66d6b479f1dc6cd1085.pdf +db1f48a7e11174d4a724a4edb3a0f1571d649670,http://pdfs.semanticscholar.org/db1f/48a7e11174d4a724a4edb3a0f1571d649670.pdf +db227f72bb13a5acca549fab0dc76bce1fb3b948,http://pdfs.semanticscholar.org/e83d/6fd4502d6d31134ffddb80b6d5c752cf3123.pdf +dbaf89ca98dda2c99157c46abd136ace5bdc33b3,http://pdfs.semanticscholar.org/dbaf/89ca98dda2c99157c46abd136ace5bdc33b3.pdf +dbab6ac1a9516c360cdbfd5f3239a351a64adde7,http://pdfs.semanticscholar.org/dbab/6ac1a9516c360cdbfd5f3239a351a64adde7.pdf +dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8,http://pdfs.semanticscholar.org/dbb0/a527612c828d43bcb9a9c41f1bf7110b1dc8.pdf +db93049981abca0a281918b8d0655572922553de,http://www.cs.odu.edu/~sji/papers/pdf/Ji_TKDE08.pdf +dba493caf6647214c8c58967a8251641c2bda4c2,http://pdfs.semanticscholar.org/dba4/93caf6647214c8c58967a8251641c2bda4c2.pdf +dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57,http://pdfs.semanticscholar.org/dbb7/f37fb9b41d1aa862aaf2d2e721a470fd2c57.pdf +db36e682501582d1c7b903422993cf8d70bb0b42,http://pdfs.semanticscholar.org/db36/e682501582d1c7b903422993cf8d70bb0b42.pdf +dbe0e533d715f8543bcf197f3b8e5cffa969dfc0,http://pdfs.semanticscholar.org/dbe0/e533d715f8543bcf197f3b8e5cffa969dfc0.pdf +dbd5e9691cab2c515b50dda3d0832bea6eef79f2,http://pdfs.semanticscholar.org/dbd5/e9691cab2c515b50dda3d0832bea6eef79f2.pdf +db82f9101f64d396a86fc2bd05b352e433d88d02,http://pdfs.semanticscholar.org/db82/f9101f64d396a86fc2bd05b352e433d88d02.pdf +db428d03e3dfd98624c23e0462817ad17ef14493,http://pdfs.semanticscholar.org/db42/8d03e3dfd98624c23e0462817ad17ef14493.pdf +a83fc450c124b7e640adc762e95e3bb6b423b310,http://pdfs.semanticscholar.org/b908/edadad58c604a1e4b431f69ac8ded350589a.pdf +a8117a4733cce9148c35fb6888962f665ae65b1e,http://pdfs.semanticscholar.org/a811/7a4733cce9148c35fb6888962f665ae65b1e.pdf +a820941eaf03077d68536732a4d5f28d94b5864a,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf +a8affc2819f7a722a41bb913dea9149ee0e23a1f,http://robotics.szpku.edu.cn/c/publication/paper/ICIP2014-gaoyuan1.pdf +a8035ca71af8cc68b3e0ac9190a89fed50c92332,http://pdfs.semanticscholar.org/a803/5ca71af8cc68b3e0ac9190a89fed50c92332.pdf +a88640045d13fc0207ac816b0bb532e42bcccf36,http://pdfs.semanticscholar.org/a886/40045d13fc0207ac816b0bb532e42bcccf36.pdf +a8638a07465fe388ae5da0e8a68e62a4ee322d68,http://pdfs.semanticscholar.org/a863/8a07465fe388ae5da0e8a68e62a4ee322d68.pdf +a8e75978a5335fd3deb04572bb6ca43dbfad4738,http://pdfs.semanticscholar.org/a8e7/5978a5335fd3deb04572bb6ca43dbfad4738.pdf +a8583e80a455507a0f146143abeb35e769d25e4e,http://pdfs.semanticscholar.org/a858/3e80a455507a0f146143abeb35e769d25e4e.pdf +a87e37d43d4c47bef8992ace408de0f872739efc,http://pdfs.semanticscholar.org/a87e/37d43d4c47bef8992ace408de0f872739efc.pdf +a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,http://pdfs.semanticscholar.org/a8c8/a96b78e7b8e0d4a4a422fcb083e53ad06531.pdf +a8748a79e8d37e395354ba7a8b3038468cb37e1f,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w9/papers/Reale_Seeing_the_Forest_CVPR_2016_paper.pdf +de8381903c579a4fed609dff3e52a1dc51154951,http://pdfs.semanticscholar.org/de83/81903c579a4fed609dff3e52a1dc51154951.pdf +de15af84b1257211a11889b6c2adf0a2bcf59b42,http://pdfs.semanticscholar.org/de15/af84b1257211a11889b6c2adf0a2bcf59b42.pdf +dedabf9afe2ae4a1ace1279150e5f1d495e565da,http://www.citi.sinica.edu.tw/papers/ycwang/4156-F.pdf +de398bd8b7b57a3362c0c677ba8bf9f1d8ade583,http://www.cs.wayne.edu/~mdong/TMM16.pdf +ded41c9b027c8a7f4800e61b7cfb793edaeb2817,http://pdfs.semanticscholar.org/ded4/1c9b027c8a7f4800e61b7cfb793edaeb2817.pdf +defa8774d3c6ad46d4db4959d8510b44751361d8,http://pdfs.semanticscholar.org/defa/8774d3c6ad46d4db4959d8510b44751361d8.pdf +b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89,http://pdfs.semanticscholar.org/b03b/4d8b4190361ed2de66fcbb6fda0c9a0a7d89.pdf +b013cce42dd769db754a57351d49b7410b8e82ad,http://tlab.princeton.edu/publication_files/Rojas%20et%20al%20IEEE%202010.pdf +b07582d1a59a9c6f029d0d8328414c7bef64dca0,http://pdfs.semanticscholar.org/b075/82d1a59a9c6f029d0d8328414c7bef64dca0.pdf +b017963d83b3edf71e1673d7ffdec13a6d350a87,http://pdfs.semanticscholar.org/b017/963d83b3edf71e1673d7ffdec13a6d350a87.pdf +b03d6e268cde7380e090ddaea889c75f64560891,http://pdfs.semanticscholar.org/b03d/6e268cde7380e090ddaea889c75f64560891.pdf +b03446a2de01126e6a06eb5d526df277fa36099f,http://pdfs.semanticscholar.org/b034/46a2de01126e6a06eb5d526df277fa36099f.pdf +b0de0892d2092c8c70aa22500fed31aa7eb4dd3f,http://arxiv.org/pdf/1504.05524.pdf +b018fa5cb9793e260b8844ae155bd06380988584,http://pdfs.semanticscholar.org/b018/fa5cb9793e260b8844ae155bd06380988584.pdf +b073313325b6482e22032e259d7311fb9615356c,http://alumni.cs.ucr.edu/~hli/paper/hli05tumor.pdf +a6f81619158d9caeaa0863738ab400b9ba2d77c2,http://pdfs.semanticscholar.org/a6f8/1619158d9caeaa0863738ab400b9ba2d77c2.pdf +a6d621a5aae983a6996849db5e6bc63fe0a234af,http://mplab.ucsd.edu/~ksikka/pain_icmi14.pdf +a695c2240382e362262db72017ceae0365d63f8f,http://www3.nd.edu/~kwb/AggarwalBiswasFlynnBowyerWACV_2012.pdf +a66d89357ada66d98d242c124e1e8d96ac9b37a0,http://pdfs.semanticscholar.org/a66d/89357ada66d98d242c124e1e8d96ac9b37a0.pdf +a6d7cf29f333ea3d2aeac67cde39a73898e270b7,http://pdfs.semanticscholar.org/a6d7/cf29f333ea3d2aeac67cde39a73898e270b7.pdf +a611c978e05d7feab01fb8a37737996ad6e88bd9,http://cbl.uh.edu/pub_files/3_Benchmarking3DPoseEstimationForFaceRecognition_ICPR2014_v8.pdf +a608c5f8fd42af6e9bd332ab516c8c2af7063c61,http://mcl.usc.edu/wp-content/uploads/2016/01/Liu-TIFS-2015-10.pdf +a6ffe238eaf8632b4a8a6f718c8917e7f3261546,http://pdfs.semanticscholar.org/a6ff/e238eaf8632b4a8a6f718c8917e7f3261546.pdf +a6583c8daa7927eedb3e892a60fc88bdfe89a486,http://pdfs.semanticscholar.org/a658/3c8daa7927eedb3e892a60fc88bdfe89a486.pdf +a660390654498dff2470667b64ea656668c98ecc,https://pdfs.semanticscholar.org/b42a/97fb47bcd6bfa72e130c08960a77ee96f9ab.pdf +a60907b7ee346b567972074e3e03c82f64d7ea30,http://pdfs.semanticscholar.org/a609/07b7ee346b567972074e3e03c82f64d7ea30.pdf +a6e43b73f9f87588783988333997a81b4487e2d5,http://pdfs.semanticscholar.org/a6e4/3b73f9f87588783988333997a81b4487e2d5.pdf +a6496553fb9ab9ca5d69eb45af1bdf0b60ed86dc,http://pdfs.semanticscholar.org/a649/6553fb9ab9ca5d69eb45af1bdf0b60ed86dc.pdf +a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,http://pdfs.semanticscholar.org/bce2/02717ce134b317b39f0a18151659d643875b.pdf +a694180a683f7f4361042c61648aa97d222602db,http://www.iab-rubric.org/papers/ICB16-Autoscat.pdf +a6db73f10084ce6a4186363ea9d7475a9a658a11,http://pdfs.semanticscholar.org/afce/ebbea6e9130cf22142206c19a19cda226b13.pdf +a6634ff2f9c480e94ed8c01d64c9eb70e0d98487,http://pdfs.semanticscholar.org/a663/4ff2f9c480e94ed8c01d64c9eb70e0d98487.pdf +a6b1d79bc334c74cde199e26a7ef4c189e9acd46,http://pdfs.semanticscholar.org/a6b1/d79bc334c74cde199e26a7ef4c189e9acd46.pdf +a6ebe013b639f0f79def4c219f585b8a012be04f,http://pdfs.semanticscholar.org/a6eb/e013b639f0f79def4c219f585b8a012be04f.pdf +a6e21438695dbc3a184d33b6cf5064ddf655a9ba,http://pdfs.semanticscholar.org/b673/ffe63c5d0723009042f0f922f19f093b7e34.pdf +b9cedd09bdae827dacb138d6b054449d5346caf1,http://www.cs.colostate.edu/~lui/Papers/BTAS09LUIa.pdf +b9cad920a00fc0e997fc24396872e03f13c0bb9c,http://www.ic.unicamp.br/~rocha/pub/papers/2011-icip-spoofing-detection.pdf +b9c9c7ef82f31614c4b9226e92ab45de4394c5f6,http://pdfs.semanticscholar.org/b9c9/c7ef82f31614c4b9226e92ab45de4394c5f6.pdf +b9f2a755940353549e55690437eb7e13ea226bbf,http://pdfs.semanticscholar.org/b9f2/a755940353549e55690437eb7e13ea226bbf.pdf +b9cedd1960d5c025be55ade0a0aa81b75a6efa61,http://pdfs.semanticscholar.org/b9ce/dd1960d5c025be55ade0a0aa81b75a6efa61.pdf +a1dd806b8f4f418d01960e22fb950fe7a56c18f1,https://www.cc.gatech.edu/~parikh/Publications/ParikhGrauman_CVPR2011_nameable.pdf +a158c1e2993ac90a90326881dd5cb0996c20d4f3,http://pdfs.semanticscholar.org/a158/c1e2993ac90a90326881dd5cb0996c20d4f3.pdf +a15d9d2ed035f21e13b688a78412cb7b5a04c469,http://pdfs.semanticscholar.org/a15d/9d2ed035f21e13b688a78412cb7b5a04c469.pdf +a1b1442198f29072e907ed8cb02a064493737158,http://affect.media.mit.edu/pdfs/12.McDuff-etal-Crowdsourcing-TAC.pdf +a14db48785d41cd57d4eac75949a6b79fc684e70,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Barkan_Fast_High_Dimensional_2013_ICCV_paper.pdf +a15c728d008801f5ffc7898568097bbeac8270a4,http://pdfs.semanticscholar.org/a15c/728d008801f5ffc7898568097bbeac8270a4.pdf +a125bc55bdf4bec7484111eea9ae537be314ec62,http://pdfs.semanticscholar.org/a125/bc55bdf4bec7484111eea9ae537be314ec62.pdf +a14ae81609d09fed217aa12a4df9466553db4859,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_TIP.pdf +a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,http://pdfs.semanticscholar.org/a1ee/0176a9c71863d812fe012b5c6b9c15f9aa8a.pdf +a1f40bcfadbeee66f67ab0755dd3037c030a7450,http://www.researchgate.net/profile/Jiansheng_Chen/publication/265016758_Face_Image_Quality_Assessment_Based_on_Learning_to_Rank/links/546d662d0cf2193b94c5852b.pdf +a1e97c4043d5cc9896dc60ae7ca135782d89e5fc,http://pdfs.semanticscholar.org/a1e9/7c4043d5cc9896dc60ae7ca135782d89e5fc.pdf +efd308393b573e5410455960fe551160e1525f49,http://pdfs.semanticscholar.org/efd3/08393b573e5410455960fe551160e1525f49.pdf +efd28eabebb9815e34031316624e7f095c7dfcfe,http://pdfs.semanticscholar.org/efd2/8eabebb9815e34031316624e7f095c7dfcfe.pdf +eff87ecafed67cc6fc4f661cb077fed5440994bb,http://pdfs.semanticscholar.org/eff8/7ecafed67cc6fc4f661cb077fed5440994bb.pdf +ef2a5a26448636570986d5cda8376da83d96ef87,http://pdfs.semanticscholar.org/ef2a/5a26448636570986d5cda8376da83d96ef87.pdf +c32fb755856c21a238857b77d7548f18e05f482d,http://pdfs.semanticscholar.org/c32f/b755856c21a238857b77d7548f18e05f482d.pdf +c34e48d637705ffb52360c2afb6b03efdeb680bf,http://pdfs.semanticscholar.org/c34e/48d637705ffb52360c2afb6b03efdeb680bf.pdf +c3b3636080b9931ac802e2dd28b7b684d6cf4f8b,http://pdfs.semanticscholar.org/c3b3/636080b9931ac802e2dd28b7b684d6cf4f8b.pdf +c398684270543e97e3194674d9cce20acaef3db3,http://pdfs.semanticscholar.org/c398/684270543e97e3194674d9cce20acaef3db3.pdf +c3418f866a86dfd947c2b548cbdeac8ca5783c15,http://pdfs.semanticscholar.org/c341/8f866a86dfd947c2b548cbdeac8ca5783c15.pdf +c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0,http://pdfs.semanticscholar.org/c3bc/c4ee9e81ce9c5c0845f34e9992872a8defc0.pdf +c32383330df27625592134edd72d69bb6b5cff5c,http://www.iis.sinica.edu.tw/papers/song/13690-F.pdf +c3a3f7758bccbead7c9713cb8517889ea6d04687,http://pdfs.semanticscholar.org/c3a3/f7758bccbead7c9713cb8517889ea6d04687.pdf +c32f04ccde4f11f8717189f056209eb091075254,http://pdfs.semanticscholar.org/c32f/04ccde4f11f8717189f056209eb091075254.pdf +c30982d6d9bbe470a760c168002ed9d66e1718a2,http://facstaff.elon.edu/sspurlock/papers/spurlock15_head_pose.pdf +c32cd207855e301e6d1d9ddd3633c949630c793a,http://pdfs.semanticscholar.org/c32c/d207855e301e6d1d9ddd3633c949630c793a.pdf +c37a971f7a57f7345fdc479fa329d9b425ee02be,http://pdfs.semanticscholar.org/c37a/971f7a57f7345fdc479fa329d9b425ee02be.pdf +c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af,http://pdfs.semanticscholar.org/c363/8b026c7f80a2199b5ae89c8fcbedfc0bd8af.pdf +c32c8bfadda8f44d40c6cd9058a4016ab1c27499,http://pdfs.semanticscholar.org/c32c/8bfadda8f44d40c6cd9058a4016ab1c27499.pdf +c3fb2399eb4bcec22723715556e31c44d086e054,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p499-srinivasan.pdf +c418a3441f992fea523926f837f4bfb742548c16,http://pdfs.semanticscholar.org/c418/a3441f992fea523926f837f4bfb742548c16.pdf +c4b58ceafdf4cf55586b036b9eb4d6d3d9ecd9c4,http://www.serc.iisc.ernet.in/~venky/Papers/Action_Recognition_CD_ISSNIP14.pdf +c44c84540db1c38ace232ef34b03bda1c81ba039,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf +c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4,https://vision.cornell.edu/se3/wp-content/uploads/2015/02/ijcv2014.pdf +c46a4db7247d26aceafed3e4f38ce52d54361817,http://pdfs.semanticscholar.org/c46a/4db7247d26aceafed3e4f38ce52d54361817.pdf +c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad,http://pdfs.semanticscholar.org/c4dc/f41506c23aa45c33a0a5e51b5b9f8990e8ad.pdf +c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,http://pdfs.semanticscholar.org/c42a/8969cd76e9f54d43f7f4dd8f9b08da566c5f.pdf +c41de506423e301ef2a10ea6f984e9e19ba091b4,http://www.ee.columbia.edu/ln/dvmm/publications/14/felixyu_llp_mm2014.pdf +c4934d9f9c41dbc46f4173aad2775432fe02e0e6,http://pdfs.semanticscholar.org/c493/4d9f9c41dbc46f4173aad2775432fe02e0e6.pdf +c40c23e4afc81c8b119ea361e5582aa3adecb157,http://pdfs.semanticscholar.org/c40c/23e4afc81c8b119ea361e5582aa3adecb157.pdf +c49aed65fcf9ded15c44f9cbb4b161f851c6fa88,http://pdfs.semanticscholar.org/c49a/ed65fcf9ded15c44f9cbb4b161f851c6fa88.pdf +c472436764a30278337aca9681eee456bee95c34,http://pdfs.semanticscholar.org/c472/436764a30278337aca9681eee456bee95c34.pdf +c466ad258d6262c8ce7796681f564fec9c2b143d,http://pdfs.semanticscholar.org/c466/ad258d6262c8ce7796681f564fec9c2b143d.pdf +eacba5e8fbafb1302866c0860fc260a2bdfff232,http://pdfs.semanticscholar.org/eacb/a5e8fbafb1302866c0860fc260a2bdfff232.pdf +ea482bf1e2b5b44c520fc77eab288caf8b3f367a,http://pdfs.semanticscholar.org/ea48/2bf1e2b5b44c520fc77eab288caf8b3f367a.pdf +ea6f5c8e12513dbaca6bbdff495ef2975b8001bd,http://pdfs.semanticscholar.org/ea6f/5c8e12513dbaca6bbdff495ef2975b8001bd.pdf +ea85378a6549bb9eb9bcc13e31aa6a61b655a9af,http://pdfs.semanticscholar.org/ea85/378a6549bb9eb9bcc13e31aa6a61b655a9af.pdf +ea2ee5c53747878f30f6d9c576fd09d388ab0e2b,http://pdfs.semanticscholar.org/ea2e/e5c53747878f30f6d9c576fd09d388ab0e2b.pdf +ea218cebea2228b360680cb85ca133e8c2972e56,http://pdfs.semanticscholar.org/ea21/8cebea2228b360680cb85ca133e8c2972e56.pdf +ea96bc017fb56593a59149e10d5f14011a3744a0,http://pdfs.semanticscholar.org/ea96/bc017fb56593a59149e10d5f14011a3744a0.pdf +e10a257f1daf279e55f17f273a1b557141953ce2,http://pdfs.semanticscholar.org/e10a/257f1daf279e55f17f273a1b557141953ce2.pdf +e171fba00d88710e78e181c3e807c2fdffc6798a,http://pdfs.semanticscholar.org/e171/fba00d88710e78e181c3e807c2fdffc6798a.pdf +e1c59e00458b4dee3f0e683ed265735f33187f77,http://pdfs.semanticscholar.org/e1c5/9e00458b4dee3f0e683ed265735f33187f77.pdf +e1f790bbedcba3134277f545e56946bc6ffce48d,http://pdfs.semanticscholar.org/e1f7/90bbedcba3134277f545e56946bc6ffce48d.pdf +e1ab3b9dee2da20078464f4ad8deb523b5b1792e,http://pdfs.semanticscholar.org/e1ab/3b9dee2da20078464f4ad8deb523b5b1792e.pdf +e16efd2ae73a325b7571a456618bfa682b51aef8,http://pdfs.semanticscholar.org/e16e/fd2ae73a325b7571a456618bfa682b51aef8.pdf +e13360cda1ebd6fa5c3f3386c0862f292e4dbee4,http://pdfs.semanticscholar.org/e133/60cda1ebd6fa5c3f3386c0862f292e4dbee4.pdf +e1f6e2651b7294951b5eab5d2322336af1f676dc,http://pdfs.semanticscholar.org/e1f6/e2651b7294951b5eab5d2322336af1f676dc.pdf +e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2,http://pdfs.semanticscholar.org/e1e6/e6792e92f7110e26e27e80e0c30ec36ac9c2.pdf +cd9666858f6c211e13aa80589d75373fd06f6246,http://pdfs.semanticscholar.org/cd96/66858f6c211e13aa80589d75373fd06f6246.pdf +cd4c047f4d4df7937aff8fc76f4bae7718004f40,http://pdfs.semanticscholar.org/cd4c/047f4d4df7937aff8fc76f4bae7718004f40.pdf +cd6c2ae00157e3fb6ab56379843280eb4cbb01b4,http://www.umiacs.umd.edu/~yzyang/paper/ICRA_2013_Multi.pdf +cd596a2682d74bdfa7b7160dd070b598975e89d9,http://pdfs.semanticscholar.org/cd59/6a2682d74bdfa7b7160dd070b598975e89d9.pdf +cdb1d32bc5c1a9bb0d9a5b9c9222401eab3e9ca0,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Functional_Faces_Groupwise_CVPR_2016_paper.pdf +cda8fd9dd8b485e6854b1733d2294f69666c66f7,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2014/Activity%20Recognition%20in%20Unconstrained%20RGB-D%20Video%20using%203D%20Trajectories.pdf +cda4fb9df653b5721ad4fe8b4a88468a410e55ec,http://pdfs.semanticscholar.org/cda4/fb9df653b5721ad4fe8b4a88468a410e55ec.pdf +cd3005753012409361aba17f3f766e33e3a7320d,http://pdfs.semanticscholar.org/cd30/05753012409361aba17f3f766e33e3a7320d.pdf +cd687ddbd89a832f51d5510c478942800a3e6854,http://pdfs.semanticscholar.org/cd68/7ddbd89a832f51d5510c478942800a3e6854.pdf +cd436f05fb4aeeda5d1085f2fe0384526571a46e,http://pdfs.semanticscholar.org/cd43/6f05fb4aeeda5d1085f2fe0384526571a46e.pdf +cc589c499dcf323fe4a143bbef0074c3e31f9b60,http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf +ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18,http://ibug.doc.ic.ac.uk/media/uploads/documents/taud.pdf +cc2eaa182f33defbb33d69e9547630aab7ed9c9c,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf +ccbfc004e29b3aceea091056b0ec536e8ea7c47e,http://research.microsoft.com/~yqxu/papers/IEEE%20ICIP2005.pdf +ccdea57234d38c7831f1e9231efcb6352c801c55,http://pdfs.semanticscholar.org/ccde/a57234d38c7831f1e9231efcb6352c801c55.pdf +cc38942825d3a2c9ee8583c153d2c56c607e61a7,http://pdfs.semanticscholar.org/cc38/942825d3a2c9ee8583c153d2c56c607e61a7.pdf +cc3c273bb213240515147e8be68c50f7ea22777c,http://pdfs.semanticscholar.org/cc3c/273bb213240515147e8be68c50f7ea22777c.pdf +ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b,http://pdfs.semanticscholar.org/ccf4/3c62e4bf76b6a48ff588ef7ed51e87ddf50b.pdf +cc8bf03b3f5800ac23e1a833447c421440d92197,https://pdfs.semanticscholar.org/cc8b/f03b3f5800ac23e1a833447c421440d92197.pdf +cc91001f9d299ad70deb6453d55b2c0b967f8c0d,http://pdfs.semanticscholar.org/cc91/001f9d299ad70deb6453d55b2c0b967f8c0d.pdf +cc96eab1e55e771e417b758119ce5d7ef1722b43,http://pdfs.semanticscholar.org/cc96/eab1e55e771e417b758119ce5d7ef1722b43.pdf +cc7e66f2ba9ac0c639c80c65534ce6031997acd7,http://pdfs.semanticscholar.org/cc7e/66f2ba9ac0c639c80c65534ce6031997acd7.pdf +cc9057d2762e077c53e381f90884595677eceafa,http://pdfs.semanticscholar.org/cc90/57d2762e077c53e381f90884595677eceafa.pdf +e64b683e32525643a9ddb6b6af8b0472ef5b6a37,http://pdfs.semanticscholar.org/e64b/683e32525643a9ddb6b6af8b0472ef5b6a37.pdf +e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef,http://pdfs.semanticscholar.org/e69a/c130e3c7267cce5e1e3d9508ff76eb0e0eef.pdf +e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec,http://pdfs.semanticscholar.org/e686/5b000cf4d4e84c3fe895b7ddfc65a9c4aaec.pdf +e6d689054e87ad3b8fbbb70714d48712ad84dc1c,http://pdfs.semanticscholar.org/e6d6/89054e87ad3b8fbbb70714d48712ad84dc1c.pdf +e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=8BA80DE8A35C6665EB6C19D582E5689F?doi=10.1.1.227.7824&rep=rep1&type=pdf +e6f20e7431172c68f7fce0d4595100445a06c117,http://pdfs.semanticscholar.org/e6f2/0e7431172c68f7fce0d4595100445a06c117.pdf +e6540d70e5ffeed9f447602ea3455c7f0b38113e,http://pdfs.semanticscholar.org/e654/0d70e5ffeed9f447602ea3455c7f0b38113e.pdf +e6ee36444038de5885473693fb206f49c1369138,http://pdfs.semanticscholar.org/e6ee/36444038de5885473693fb206f49c1369138.pdf +e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,http://pdfs.semanticscholar.org/e617/8de1ef15a6a973aad2791ce5fbabc2cb8ae5.pdf +e6c8f5067ec2ad6af33745312b45fab03e7e038b,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1297.pdf +f913bb65b62b0a6391ffa8f59b1d5527b7eba948,http://pdfs.semanticscholar.org/f913/bb65b62b0a6391ffa8f59b1d5527b7eba948.pdf +f9784db8ff805439f0a6b6e15aeaf892dba47ca0,http://pdfs.semanticscholar.org/f978/4db8ff805439f0a6b6e15aeaf892dba47ca0.pdf +f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,http://pdfs.semanticscholar.org/f935/225e7811858fe9ef6b5fd3fdd59aec9abd1a.pdf +f963967e52a5fd97fa3ebd679fd098c3cb70340e,http://pdfs.semanticscholar.org/f963/967e52a5fd97fa3ebd679fd098c3cb70340e.pdf +f9e0209dc9e72d64b290d0622c1c1662aa2cc771,http://pdfs.semanticscholar.org/f9e0/209dc9e72d64b290d0622c1c1662aa2cc771.pdf +f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1,http://pdfs.semanticscholar.org/f96b/dd1e2a940030fb0a89abbe6c69b8d7f6f0c1.pdf +f93606d362fcbe62550d0bf1b3edeb7be684b000,http://pdfs.semanticscholar.org/f936/06d362fcbe62550d0bf1b3edeb7be684b000.pdf +f909d04c809013b930bafca12c0f9a8192df9d92,http://pdfs.semanticscholar.org/f909/d04c809013b930bafca12c0f9a8192df9d92.pdf +f9d1f12070e5267afc60828002137af949ff1544,http://pdfs.semanticscholar.org/f9d1/f12070e5267afc60828002137af949ff1544.pdf +f9ccfe000092121a2016639732cdb368378256d5,http://pdfs.semanticscholar.org/f9cc/fe000092121a2016639732cdb368378256d5.pdf +f02f0f6fcd56a9b1407045de6634df15c60a85cd,http://pdfs.semanticscholar.org/f02f/0f6fcd56a9b1407045de6634df15c60a85cd.pdf +f0ae807627f81acb63eb5837c75a1e895a92c376,http://pdfs.semanticscholar.org/f0ae/807627f81acb63eb5837c75a1e895a92c376.pdf +f074e86e003d5b7a3b6e1780d9c323598d93f3bc,http://pdfs.semanticscholar.org/f074/e86e003d5b7a3b6e1780d9c323598d93f3bc.pdf +f0681fc08f4d7198dcde803d69ca62f09f3db6c5,http://pdfs.semanticscholar.org/f068/1fc08f4d7198dcde803d69ca62f09f3db6c5.pdf +f0f501e1e8726148d18e70c8e9f6feea9360d119,http://pdfs.semanticscholar.org/f0f5/01e1e8726148d18e70c8e9f6feea9360d119.pdf +f06b015bb19bd3c39ac5b1e4320566f8d83a0c84,http://pdfs.semanticscholar.org/f06b/015bb19bd3c39ac5b1e4320566f8d83a0c84.pdf +f0a3f12469fa55ad0d40c21212d18c02be0d1264,http://pdfs.semanticscholar.org/f0a3/f12469fa55ad0d40c21212d18c02be0d1264.pdf +f05ad40246656a977cf321c8299158435e3f3b61,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Lu_Face_Recognition_Using_2013_ICCV_paper.pdf +f781e50caa43be13c5ceb13f4ccc2abc7d1507c5,http://pdfs.semanticscholar.org/f781/e50caa43be13c5ceb13f4ccc2abc7d1507c5.pdf +f74917fc0e55f4f5682909dcf6929abd19d33e2e,http://pdfs.semanticscholar.org/f749/17fc0e55f4f5682909dcf6929abd19d33e2e.pdf +f740bac1484f2f2c70777db6d2a11cf4280081d6,http://pdfs.semanticscholar.org/f740/bac1484f2f2c70777db6d2a11cf4280081d6.pdf +f7452a12f9bd927398e036ea6ede02da79097e6e,http://pdfs.semanticscholar.org/f745/2a12f9bd927398e036ea6ede02da79097e6e.pdf +f7093b138fd31956e30d411a7043741dcb8ca4aa,http://pdfs.semanticscholar.org/f709/3b138fd31956e30d411a7043741dcb8ca4aa.pdf +f7de943aa75406fe5568fdbb08133ce0f9a765d4,http://pdfs.semanticscholar.org/f7de/943aa75406fe5568fdbb08133ce0f9a765d4.pdf +f75852386e563ca580a48b18420e446be45fcf8d,http://pdfs.semanticscholar.org/f758/52386e563ca580a48b18420e446be45fcf8d.pdf +f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3,http://pdfs.semanticscholar.org/f7c5/0d2be9fba0e4527fd9fbe3095e9d9a94fdd3.pdf +f78863f4e7c4c57744715abe524ae4256be884a9,http://pdfs.semanticscholar.org/f788/63f4e7c4c57744715abe524ae4256be884a9.pdf +f77c9bf5beec7c975584e8087aae8d679664a1eb,http://pdfs.semanticscholar.org/f77c/9bf5beec7c975584e8087aae8d679664a1eb.pdf +e8686663aec64f4414eba6a0f821ab9eb9f93e38,http://pdfs.semanticscholar.org/e868/6663aec64f4414eba6a0f821ab9eb9f93e38.pdf +e82360682c4da11f136f3fccb73a31d7fd195694,http://pdfs.semanticscholar.org/e823/60682c4da11f136f3fccb73a31d7fd195694.pdf +e8410c4cd1689829c15bd1f34995eb3bd4321069,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553731.pdf +e8f0f9b74db6794830baa2cab48d99d8724e8cb6,http://pdfs.semanticscholar.org/e8f0/f9b74db6794830baa2cab48d99d8724e8cb6.pdf +e8b2a98f87b7b2593b4a046464c1ec63bfd13b51,http://pdfs.semanticscholar.org/e8b2/a98f87b7b2593b4a046464c1ec63bfd13b51.pdf +e8c9dcbf56714db53063b9c367e3e44300141ff6,http://faculty.virginia.edu/humandynamicslab/pubs/BrickHunterCohn-ACII2009.pdf +fac5a9a18157962cff38df6d4ae69f8a7da1cfa8,http://www.cs.sunysb.edu/~vislab/papers/01580481.pdf +fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,http://pdfs.semanticscholar.org/fab8/3bf8d7cab8fe069796b33d2a6bd70c8cefc6.pdf +faeefc5da67421ecd71d400f1505cfacb990119c,http://pdfs.semanticscholar.org/faee/fc5da67421ecd71d400f1505cfacb990119c.pdf +fa08a4da5f2fa39632d90ce3a2e1688d147ece61,http://pdfs.semanticscholar.org/fa08/a4da5f2fa39632d90ce3a2e1688d147ece61.pdf +fab2fc6882872746498b362825184c0fb7d810e4,http://pdfs.semanticscholar.org/fab2/fc6882872746498b362825184c0fb7d810e4.pdf +faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b,http://pdfs.semanticscholar.org/faea/d8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b.pdf +fa24bf887d3b3f6f58f8305dcd076f0ccc30272a,http://pdfs.semanticscholar.org/fa24/bf887d3b3f6f58f8305dcd076f0ccc30272a.pdf +faa29975169ba3bbb954e518bc9814a5819876f6,http://pdfs.semanticscholar.org/faa2/9975169ba3bbb954e518bc9814a5819876f6.pdf +fafe69a00565895c7d57ad09ef44ce9ddd5a6caa,http://pdfs.semanticscholar.org/fafe/69a00565895c7d57ad09ef44ce9ddd5a6caa.pdf +faca1c97ac2df9d972c0766a296efcf101aaf969,http://pdfs.semanticscholar.org/faca/1c97ac2df9d972c0766a296efcf101aaf969.pdf +fa398c6d6bd03df839dce7b59e04f473bc0ed660,https://www.researchgate.net/profile/Sujata_Pandey/publication/4308761_A_Novel_Approach_for_Face_Recognition_Using_DCT_Coefficients_Re-scaling_for_Illumination_Normalization/links/004635211c385bb7e3000000.pdf +fae83b145e5eeda8327de9f19df286edfaf5e60c,http://pdfs.semanticscholar.org/fae8/3b145e5eeda8327de9f19df286edfaf5e60c.pdf +ff8315c1a0587563510195356c9153729b533c5b,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/Zapping%20IndexUsing%20Smile%20to%20MeasureAdvertisement14.pdf +ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a,http://pdfs.semanticscholar.org/ff44/d8938c52cfdca48c80f8e1618bbcbf91cb2a.pdf +ff398e7b6584d9a692e70c2170b4eecaddd78357,http://pdfs.semanticscholar.org/ff39/8e7b6584d9a692e70c2170b4eecaddd78357.pdf +ffc5a9610df0341369aa75c0331ef021de0a02a9,http://pdfs.semanticscholar.org/ffc5/a9610df0341369aa75c0331ef021de0a02a9.pdf +ffd81d784549ee51a9b0b7b8aaf20d5581031b74,http://pdfs.semanticscholar.org/ffd8/1d784549ee51a9b0b7b8aaf20d5581031b74.pdf +ff01bc3f49130d436fca24b987b7e3beedfa404d,http://pdfs.semanticscholar.org/ff01/bc3f49130d436fca24b987b7e3beedfa404d.pdf +ff061f7e46a6213d15ac2eb2c49d9d3003612e49,http://pdfs.semanticscholar.org/ff06/1f7e46a6213d15ac2eb2c49d9d3003612e49.pdf +ff1f45bdad41d8b35435098041e009627e60d208,http://pdfs.semanticscholar.org/ff1f/45bdad41d8b35435098041e009627e60d208.pdf +ff60d4601adabe04214c67e12253ea3359f4e082,http://pdfs.semanticscholar.org/ff60/d4601adabe04214c67e12253ea3359f4e082.pdf +ffc9d6a5f353e5aec3116a10cf685294979c63d9,http://pdfs.semanticscholar.org/ffc9/d6a5f353e5aec3116a10cf685294979c63d9.pdf +ffaad0204f4af763e3390a2f6053c0e9875376be,http://pdfs.semanticscholar.org/ffaa/d0204f4af763e3390a2f6053c0e9875376be.pdf +ffcbedb92e76fbab083bb2c57d846a2a96b5ae30,http://pdfs.semanticscholar.org/ffcb/edb92e76fbab083bb2c57d846a2a96b5ae30.pdf +ff7bc7a6d493e01ec8fa2b889bcaf6349101676e,http://pdfs.semanticscholar.org/ff7b/c7a6d493e01ec8fa2b889bcaf6349101676e.pdf +fffa2943808509fdbd2fc817cc5366752e57664a,http://pdfs.semanticscholar.org/fffa/2943808509fdbd2fc817cc5366752e57664a.pdf +ff46c41e9ea139d499dd349e78d7cc8be19f936c,http://pdfs.semanticscholar.org/ff46/c41e9ea139d499dd349e78d7cc8be19f936c.pdf +ff5dd6f96e108d8233220cc262bc282229c1a582,http://pdfs.semanticscholar.org/ff5d/d6f96e108d8233220cc262bc282229c1a582.pdf +c5468665d98ce7349d38afb620adbf51757ab86f,http://pdfs.semanticscholar.org/c546/8665d98ce7349d38afb620adbf51757ab86f.pdf +c5d13e42071813a0a9dd809d54268712eba7883f,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%2016/PID2891229.pdf +c50d73557be96907f88b59cfbd1ab1b2fd696d41,http://pdfs.semanticscholar.org/c50d/73557be96907f88b59cfbd1ab1b2fd696d41.pdf +c54f9f33382f9f656ec0e97d3004df614ec56434,http://pdfs.semanticscholar.org/c54f/9f33382f9f656ec0e97d3004df614ec56434.pdf +c574c72b5ef1759b7fd41cf19a9dcd67e5473739,http://pdfs.semanticscholar.org/c574/c72b5ef1759b7fd41cf19a9dcd67e5473739.pdf +c5a561c662fc2b195ff80d2655cc5a13a44ffd2d,http://www.cs.toronto.edu/~suzanne/papers/JamiesonEtAlPAMI.pdf +c5366f412f2e8e78280afcccc544156f63b516e3,http://lep.unige.ch/system/files/biblio/2012_Valstar_MetaAnalysisGEMEP-FERA.pdf +c5fe40875358a286594b77fa23285fcfb7bda68e,http://pdfs.semanticscholar.org/edd1/cfb1caff16f80d807ff0821883ae855950c5.pdf +c5c379a807e02cab2e57de45699ababe8d13fb6d,http://pdfs.semanticscholar.org/c5c3/79a807e02cab2e57de45699ababe8d13fb6d.pdf +c5935b92bd23fd25cae20222c7c2abc9f4caa770,http://openaccess.thecvf.com/content_cvpr_2017/papers/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.pdf +c5421a18583f629b49ca20577022f201692c4f5d,http://pdfs.semanticscholar.org/c542/1a18583f629b49ca20577022f201692c4f5d.pdf +c5be0feacec2860982fbbb4404cf98c654142489,http://pdfs.semanticscholar.org/c5be/0feacec2860982fbbb4404cf98c654142489.pdf +c5844de3fdf5e0069d08e235514863c8ef900eb7,http://pdfs.semanticscholar.org/c584/4de3fdf5e0069d08e235514863c8ef900eb7.pdf +c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1,http://pdfs.semanticscholar.org/d6f1/42f5ddcb027e7b346eb20703abbf5cc4e883.pdf +c590c6c171392e9f66aab1bce337470c43b48f39,http://pdfs.semanticscholar.org/c590/c6c171392e9f66aab1bce337470c43b48f39.pdf +c5f1ae9f46dc44624591db3d5e9f90a6a8391111,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu_ICPR_2004.pdf +c53352a4239568cc915ad968aff51c49924a3072,http://pdfs.semanticscholar.org/c533/52a4239568cc915ad968aff51c49924a3072.pdf +c5765590c294146a8e3c9987d394c0990ab6a35b,http://media.cs.tsinghua.edu.cn/~imagevision/papers/%5B2012%5D084_P1B-31-cvpr2012-wan.pdf +c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4,http://pdfs.semanticscholar.org/c2c5/206f6a539b02f5d5a19bdb3a90584f7e6ba4.pdf +c2fa83e8a428c03c74148d91f60468089b80c328,http://pdfs.semanticscholar.org/c2fa/83e8a428c03c74148d91f60468089b80c328.pdf +c2c3ff1778ed9c33c6e613417832505d33513c55,http://pdfs.semanticscholar.org/c2c3/ff1778ed9c33c6e613417832505d33513c55.pdf +c27f64eaf48e88758f650e38fa4e043c16580d26,http://pdfs.semanticscholar.org/c27f/64eaf48e88758f650e38fa4e043c16580d26.pdf +c23153aade9be0c941390909c5d1aad8924821db,http://pdfs.semanticscholar.org/c231/53aade9be0c941390909c5d1aad8924821db.pdf +c207fd762728f3da4cddcfcf8bf19669809ab284,http://pdfs.semanticscholar.org/c207/fd762728f3da4cddcfcf8bf19669809ab284.pdf +c220f457ad0b28886f8b3ef41f012dd0236cd91a,http://pdfs.semanticscholar.org/c220/f457ad0b28886f8b3ef41f012dd0236cd91a.pdf +c2e03efd8c5217188ab685e73cc2e52c54835d1a,http://web.eecs.utk.edu/~ataalimi/wp-content/uploads/2016/09/Deep-Tree-structured-Face-A-Unified-Representation-for-Multi-task-Facial.pdf +c28461e266fe0f03c0f9a9525a266aa3050229f0,http://pdfs.semanticscholar.org/c284/61e266fe0f03c0f9a9525a266aa3050229f0.pdf +c29e33fbd078d9a8ab7adbc74b03d4f830714cd0,http://research.microsoft.com/en-us/um/people/leizhang/Paper/FG04-Longbin.pdf +c2e6daebb95c9dfc741af67464c98f1039127627,http://pdfs.semanticscholar.org/c2e6/daebb95c9dfc741af67464c98f1039127627.pdf +f6742010372210d06e531e7df7df9c01a185e241,http://pdfs.semanticscholar.org/f674/2010372210d06e531e7df7df9c01a185e241.pdf +f69de2b6770f0a8de6d3ec1a65cb7996b3c99317,http://pdfs.semanticscholar.org/f69d/e2b6770f0a8de6d3ec1a65cb7996b3c99317.pdf +f6ca29516cce3fa346673a2aec550d8e671929a6,http://pdfs.semanticscholar.org/f6ca/29516cce3fa346673a2aec550d8e671929a6.pdf +f67a73c9dd1e05bfc51219e70536dbb49158f7bc,http://pdfs.semanticscholar.org/f67a/73c9dd1e05bfc51219e70536dbb49158f7bc.pdf +f6c70635241968a6d5fd5e03cde6907022091d64,http://pdfs.semanticscholar.org/f6c7/0635241968a6d5fd5e03cde6907022091d64.pdf +f66f3d1e6e33cb9e9b3315d3374cd5f121144213,http://pdfs.semanticscholar.org/f66f/3d1e6e33cb9e9b3315d3374cd5f121144213.pdf +f6abecc1f48f6ec6eede4143af33cc936f14d0d0,http://pdfs.semanticscholar.org/f6ab/ecc1f48f6ec6eede4143af33cc936f14d0d0.pdf +f6fa97fbfa07691bc9ff28caf93d0998a767a5c1,http://pdfs.semanticscholar.org/f6fa/97fbfa07691bc9ff28caf93d0998a767a5c1.pdf +f68f20868a6c46c2150ca70f412dc4b53e6a03c2,http://pdfs.semanticscholar.org/f68f/20868a6c46c2150ca70f412dc4b53e6a03c2.pdf +e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66,http://pdfs.semanticscholar.org/e9ed/17fd8bf1f3d343198e206a4a7e0561ad7e66.pdf +e9e40e588f8e6510fa5537e0c9e083ceed5d07ad,http://pdfs.semanticscholar.org/e9e4/0e588f8e6510fa5537e0c9e083ceed5d07ad.pdf +e9bb045e702ee38e566ce46cc1312ed25cb59ea7,http://pdfs.semanticscholar.org/e9bb/045e702ee38e566ce46cc1312ed25cb59ea7.pdf +e9fcd15bcb0f65565138dda292e0c71ef25ea8bb,http://pdfs.semanticscholar.org/e9fc/d15bcb0f65565138dda292e0c71ef25ea8bb.pdf +e9f1cdd9ea95810efed306a338de9e0de25990a0,http://pdfs.semanticscholar.org/e9f1/cdd9ea95810efed306a338de9e0de25990a0.pdf +f16a605abb5857c39a10709bd9f9d14cdaa7918f,http://pdfs.semanticscholar.org/f16a/605abb5857c39a10709bd9f9d14cdaa7918f.pdf +f1748303cc02424704b3a35595610890229567f9,http://pdfs.semanticscholar.org/f174/8303cc02424704b3a35595610890229567f9.pdf +f1d090fcea63d9f9e835c49352a3cd576ec899c1,http://pdfs.semanticscholar.org/f1d0/90fcea63d9f9e835c49352a3cd576ec899c1.pdf +f19777e37321f79e34462fc4c416bd56772031bf,http://pdfs.semanticscholar.org/f197/77e37321f79e34462fc4c416bd56772031bf.pdf +f19ab817dd1ef64ee94e94689b0daae0f686e849,http://pdfs.semanticscholar.org/f19a/b817dd1ef64ee94e94689b0daae0f686e849.pdf +e76798bddd0f12ae03de26b7c7743c008d505215,http://pdfs.semanticscholar.org/e767/98bddd0f12ae03de26b7c7743c008d505215.pdf +e793f8644c94b81b7a0f89395937a7f8ad428a89,http://pdfs.semanticscholar.org/e793/f8644c94b81b7a0f89395937a7f8ad428a89.pdf +e726174d516605f80ff359e71f68b6e8e6ec6d5d,http://pdfs.semanticscholar.org/e726/174d516605f80ff359e71f68b6e8e6ec6d5d.pdf +e78394213ae07b682ce40dc600352f674aa4cb05,http://pdfs.semanticscholar.org/e783/94213ae07b682ce40dc600352f674aa4cb05.pdf +e726acda15d41b992b5a41feabd43617fab6dc23,http://pdfs.semanticscholar.org/e726/acda15d41b992b5a41feabd43617fab6dc23.pdf +e74816bc0803460e20edbd30a44ab857b06e288e,http://pdfs.semanticscholar.org/e748/16bc0803460e20edbd30a44ab857b06e288e.pdf +e7b6887cd06d0c1aa4902335f7893d7640aef823,http://pdfs.semanticscholar.org/e7b6/887cd06d0c1aa4902335f7893d7640aef823.pdf +e73b9b16adcf4339ff4d6723e61502489c50c2d9,http://pdfs.semanticscholar.org/e73b/9b16adcf4339ff4d6723e61502489c50c2d9.pdf +cb669c1d1e17c2a54d78711fa6a9f556b83f1987,http://satoh-lab.ex.nii.ac.jp/users/ledduy/pub/Ngo-RobustFaceTrackFindingUnsingTrackedPoints.pdf +cbcf5da9f09b12f53d656446fd43bc6df4b2fa48,http://pdfs.semanticscholar.org/cbcf/5da9f09b12f53d656446fd43bc6df4b2fa48.pdf +cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7a,http://pdfs.semanticscholar.org/cba4/5a87fc6cf12b3b0b6f57ba1a5282ef7fee7a.pdf +cb9092fe74ea6a5b2bb56e9226f1c88f96094388,http://pdfs.semanticscholar.org/cb90/92fe74ea6a5b2bb56e9226f1c88f96094388.pdf +cbd004d4c5e3b64321dc1a8f05fa5d64500389c2,http://www.researchgate.net/profile/Wen_Li38/publication/261711227_POSE-ROBUST_REPRESENTATION_FOR_FACE_VERIFICATION_IN_UNCONSTRAINED_VIDEOS/links/00b7d53535ed96428c000000.pdf +cb08f679f2cb29c7aa972d66fe9e9996c8dfae00,http://pdfs.semanticscholar.org/cb08/f679f2cb29c7aa972d66fe9e9996c8dfae00.pdf +cb84229e005645e8623a866d3d7956c197f85e11,http://pdfs.semanticscholar.org/cb84/229e005645e8623a866d3d7956c197f85e11.pdf +cb1b5e8b35609e470ce519303915236b907b13b6,http://dforte.ece.ufl.edu/Domenic_files/IJCB.pdf +cbe859d151466315a050a6925d54a8d3dbad591f,http://homes.di.unimi.it/~boccignone/GiuseppeBoccignone_webpage/Stochastic_files/Euvip2010.pdf +f86ddd6561f522d115614c93520faad122eb3b56,http://pdfs.semanticscholar.org/f86d/dd6561f522d115614c93520faad122eb3b56.pdf +f8015e31d1421f6aee5e17fc3907070b8e0a5e59,http://pdfs.semanticscholar.org/f801/5e31d1421f6aee5e17fc3907070b8e0a5e59.pdf +f83dd9ff002a40228bbe3427419b272ab9d5c9e4,http://pdfs.semanticscholar.org/f83d/d9ff002a40228bbe3427419b272ab9d5c9e4.pdf +f8c94afd478821681a1565d463fc305337b02779,http://pdfs.semanticscholar.org/f8c9/4afd478821681a1565d463fc305337b02779.pdf +f8f2d2910ce8b81cb4bbf84239f9229888158b34,http://pdfs.semanticscholar.org/f8f2/d2910ce8b81cb4bbf84239f9229888158b34.pdf +f8ec92f6d009b588ddfbb47a518dd5e73855547d,http://pdfs.semanticscholar.org/f8ec/92f6d009b588ddfbb47a518dd5e73855547d.pdf +f869601ae682e6116daebefb77d92e7c5dd2cb15,http://pdfs.semanticscholar.org/f869/601ae682e6116daebefb77d92e7c5dd2cb15.pdf +f8ddb2cac276812c25021b5b79bf720e97063b1e,http://www.eecs.qmul.ac.uk/~sgg/papers/ShanEtAl_HCI2006.pdf +f8ed5f2c71e1a647a82677df24e70cc46d2f12a8,http://pdfs.semanticscholar.org/f8ed/5f2c71e1a647a82677df24e70cc46d2f12a8.pdf +f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,http://pdfs.semanticscholar.org/f8a5/bc2bd26790d474a1f6cc246b2ba0bcde9464.pdf +cef841f27535c0865278ee9a4bc8ee113b4fb9f3,http://pdfs.semanticscholar.org/cef8/41f27535c0865278ee9a4bc8ee113b4fb9f3.pdf +ce6d60b69eb95477596535227958109e07c61e1e,http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf +ceb763d6657a07b47e48e8a2956bcfdf2cf10818,http://pdfs.semanticscholar.org/ceb7/63d6657a07b47e48e8a2956bcfdf2cf10818.pdf +cefd9936e91885ba7af9364d50470f6cb54315a4,http://pdfs.semanticscholar.org/cefd/9936e91885ba7af9364d50470f6cb54315a4.pdf +ce85d953086294d989c09ae5c41af795d098d5b2,http://mmlab.ie.cuhk.edu.hk/archive/2007/NN07_feature.pdf +ce5eac297174c17311ee28bda534faaa1d559bae,http://pdfs.semanticscholar.org/ce5e/ac297174c17311ee28bda534faaa1d559bae.pdf +ce5e50467e43e3178cbd86cfc3348e3f577c4489,https://www.computer.org/csdl/proceedings/avss/2013/9999/00/06636683.pdf +ce691a37060944c136d2795e10ed7ba751cd8394,http://pdfs.semanticscholar.org/ce69/1a37060944c136d2795e10ed7ba751cd8394.pdf +ce3f3088d0c0bf236638014a299a28e492069753,http://pdfs.semanticscholar.org/ce3f/3088d0c0bf236638014a299a28e492069753.pdf +ceeb67bf53ffab1395c36f1141b516f893bada27,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf +ce9a61bcba6decba72f91497085807bface02daf,http://www.jdl.ac.cn/user/sgshan/pub/FG04_Qing_LY.pdf +cef6cffd7ad15e7fa5632269ef154d32eaf057af,http://pdfs.semanticscholar.org/cef6/cffd7ad15e7fa5632269ef154d32eaf057af.pdf +cebfafea92ed51b74a8d27c730efdacd65572c40,http://biometrics.cse.msu.edu/Publications/Face/LuJainColbry_Matching2.5DFaceScans_PAMI06.pdf +ce56be1acffda599dec6cc2af2b35600488846c9,http://pdfs.semanticscholar.org/ce56/be1acffda599dec6cc2af2b35600488846c9.pdf +ce54e891e956d5b502a834ad131616786897dc91,http://pdfs.semanticscholar.org/ce54/e891e956d5b502a834ad131616786897dc91.pdf +ce6f459462ea9419ca5adcc549d1d10e616c0213,http://pdfs.semanticscholar.org/ce6f/459462ea9419ca5adcc549d1d10e616c0213.pdf +ce933821661a0139a329e6c8243e335bfa1022b1,http://pdfs.semanticscholar.org/ce93/3821661a0139a329e6c8243e335bfa1022b1.pdf +e0b71d3c7d551684bd334af5b3671df7053a529d,http://mplab.ucsd.edu/~jake/locality.pdf +e0e4910d575c4a8309f2069b38b99c972dbedc57,http://eprints.pascal-network.org/archive/00009548/01/PoseDetectRandomizedCascades.pdf +e0dedb6fc4d370f4399bf7d67e234dc44deb4333,http://pdfs.semanticscholar.org/e0de/db6fc4d370f4399bf7d67e234dc44deb4333.pdf +e0638e0628021712ac76e3472663ccc17bd8838c,http://pdfs.semanticscholar.org/e063/8e0628021712ac76e3472663ccc17bd8838c.pdf +e0c081a007435e0c64e208e9918ca727e2c1c44e,http://pdfs.semanticscholar.org/e0c0/81a007435e0c64e208e9918ca727e2c1c44e.pdf +e0d878cc095eaae220ad1f681b33d7d61eb5e425,http://pdfs.semanticscholar.org/e0d8/78cc095eaae220ad1f681b33d7d61eb5e425.pdf +e00d4e4ba25fff3583b180db078ef962bf7d6824,http://pdfs.semanticscholar.org/e00d/4e4ba25fff3583b180db078ef962bf7d6824.pdf +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,http://pdfs.semanticscholar.org/e0bf/cf965b402f3f209f26ae20ee88bc4d0002ab.pdf +e0ed0e2d189ff73701ec72e167d44df4eb6e864d,http://pdfs.semanticscholar.org/e0ed/0e2d189ff73701ec72e167d44df4eb6e864d.pdf +e0765de5cabe7e287582532456d7f4815acd74c1,http://pdfs.semanticscholar.org/e076/5de5cabe7e287582532456d7f4815acd74c1.pdf +e013c650c7c6b480a1b692bedb663947cd9d260f,http://www.nlpr.ia.ac.cn/2013papers/gjkw/gk25.pdf +e0dc6f1b740479098c1d397a7bc0962991b5e294,http://pdfs.semanticscholar.org/e0dc/6f1b740479098c1d397a7bc0962991b5e294.pdf +468c8f09d2ad8b558b65d11ec5ad49208c4da2f2,http://www.public.asu.edu/~bli24/Papers/ICPR2016_MSR-CNN.pdf +46a4551a6d53a3cd10474ef3945f546f45ef76ee,http://cvrr.ucsd.edu/publications/2014/TawariTrivedi_IV2014.pdf +4686bdcee01520ed6a769943f112b2471e436208,http://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0024-5?site=ipsjcva.springeropen.com +4688787d064e59023a304f7c9af950d192ddd33e,http://www.cse.msu.edu/~liuxm/publication/Roth_Liu_Ross_Metaxas_TIFS.pdf +466184b10fb7ce9857e6b5bd6b4e5003e09a0b16,http://pdfs.semanticscholar.org/a42f/433e500661589e567340fe7f7d761d1f14df.pdf +46e86cdb674440f61b6658ef3e84fea95ea51fb4,http://pdfs.semanticscholar.org/c075/e79a832d36e5b4c76b0f07c3b9d5f3be43e0.pdf +46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4,http://ibug.doc.ic.ac.uk/media/uploads/documents/3d_local_features.pdf +46ae4d593d89b72e1a479a91806c39095cd96615,http://www.idiap.ch/~odobez/publications/GayKhouryMeignierOdobezDeleglise-FaceNaming-ICIP-2014.pdf +467b602a67cfd7c347fe7ce74c02b38c4bb1f332,http://pdfs.semanticscholar.org/467b/602a67cfd7c347fe7ce74c02b38c4bb1f332.pdf +466f80b066215e85da63e6f30e276f1a9d7c843b,http://cbl.uh.edu/pub_files/07961802.pdf +464de30d3310123644ab81a1f0adc51598586fd2,http://pdfs.semanticscholar.org/464d/e30d3310123644ab81a1f0adc51598586fd2.pdf +466a5add15bb5f91e0cfd29a55f5fb159a7980e5,http://pdfs.semanticscholar.org/466a/5add15bb5f91e0cfd29a55f5fb159a7980e5.pdf +46f3b113838e4680caa5fc8bda6e9ae0d35a038c,http://pdfs.semanticscholar.org/46f3/b113838e4680caa5fc8bda6e9ae0d35a038c.pdf +465d5bb11912005f0a4f0569c6524981df18a7de,http://pdfs.semanticscholar.org/465d/5bb11912005f0a4f0569c6524981df18a7de.pdf +46c87fded035c97f35bb991fdec45634d15f9df2,https://arxiv.org/pdf/1707.09145v1.pdf +46f32991ebb6235509a6d297928947a8c483f29e,http://pdfs.semanticscholar.org/46f3/2991ebb6235509a6d297928947a8c483f29e.pdf +46551095a2cc4976d6be0165c31c37b0c5638719,http://staff.estem-uc.edu.au/roland/wp-content/uploads/file/roland/publications/Journal/JMUI/joshi_goecke_alghowinem_dhall_wagner_epps_parker_breakspear_JMUI2013_MultimodalAssistiveTechnologiesForDepressionDiagnosisAndMonitoring.pdf +46538b0d841654a0934e4c75ccd659f6c5309b72,http://pdfs.semanticscholar.org/4653/8b0d841654a0934e4c75ccd659f6c5309b72.pdf +46a29a5026142c91e5655454aa2c2f122561db7f,http://vipl.ict.ac.cn/sites/default/files/papers/files/2011_FG_sxli_Margin%20Emphasized%20Metric%20Learning%20and%20Its%20Application%20to%20Gabor%20Feature%20Based%20Face%20Recognition.pdf +469ee1b00f7bbfe17c698ccded6f48be398f2a44,http://pdfs.semanticscholar.org/469e/e1b00f7bbfe17c698ccded6f48be398f2a44.pdf +46196735a201185db3a6d8f6e473baf05ba7b68f,http://pdfs.semanticscholar.org/4619/6735a201185db3a6d8f6e473baf05ba7b68f.pdf +4682fee7dc045aea7177d7f3bfe344aabf153bd5,http://www.cs.utexas.edu/~cv-fall2012/slides/elad-paper.pdf +4657d87aebd652a5920ed255dca993353575f441,http://pdfs.semanticscholar.org/4657/d87aebd652a5920ed255dca993353575f441.pdf +4622b82a8aff4ac1e87b01d2708a333380b5913b,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICB2015/Zhu-ICB-15.pdf +46e866f58419ff4259c65e8256c1d4f14927b2c6,http://pdfs.semanticscholar.org/f03d/cfd956cf4404ec9f0c7fb451479d72a63e03.pdf +46072f872eee3413f9d05482be6446f6b96b6c09,http://pdfs.semanticscholar.org/4607/2f872eee3413f9d05482be6446f6b96b6c09.pdf +4698a599425c3a6bae1c698456029519f8f2befe,http://pdfs.semanticscholar.org/4698/a599425c3a6bae1c698456029519f8f2befe.pdf +2cf92ee60f719098acc3aae3981cedc47fa726b3,http://eksl.isi.edu/files/papers/sinjini_2007_1172280675.pdf +2c258eec8e4da9e65018f116b237f7e2e0b2ad17,http://openaccess.thecvf.com/content_cvpr_2017/papers/Qiu_Deep_Quantization_Encoding_CVPR_2017_paper.pdf +2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58,http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf +2c8743089d9c7df04883405a31b5fbe494f175b4,http://srl.informatik.uni-freiburg.de/publicationsdir/linderICRA15.pdf +2c61a9e26557dd0fe824909adeadf22a6a0d86b0,http://pdfs.semanticscholar.org/f117/3a4c5e3501323b37c1ae9a6d7dd8a236eab8.pdf +2c34bf897bad780e124d5539099405c28f3279ac,http://pdfs.semanticscholar.org/2c34/bf897bad780e124d5539099405c28f3279ac.pdf +2c203050a6cca0a0bff80e574bda16a8c46fe9c2,http://pdfs.semanticscholar.org/608f/43ee003c7c2e7f170336fda7a00cccd06311.pdf +2cc4ae2e864321cdab13c90144d4810464b24275,http://pdfs.semanticscholar.org/f3d2/c66630176cbb1409ebacd2dac4b30d8e3145.pdf +2cb5db4df50921d276ad9e7186119a276324e465,http://cbcl.mit.edu/projects/cbcl/publications/ps/Leibo_Liao_Poggio_VISAPP_2014.pdf +2c3430e0cbe6c8d7be3316a88a5c13a50e90021d,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Wang_Multi-feature_Spectral_Clustering_2014_CVPR_paper.pdf +2c2786ea6386f2d611fc9dbf209362699b104f83,http://pdfs.semanticscholar.org/2c27/86ea6386f2d611fc9dbf209362699b104f83.pdf +2c92839418a64728438c351a42f6dc5ad0c6e686,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Aware_Face_Recognition_CVPR_2016_paper.pdf +2c848cc514293414d916c0e5931baf1e8583eabc,http://pdfs.semanticscholar.org/2c84/8cc514293414d916c0e5931baf1e8583eabc.pdf +2c883977e4292806739041cf8409b2f6df171aee,http://pdfs.semanticscholar.org/c5fb/ef530eb28d4f787990e0b962a6a68e420e49.pdf +2cdd9e445e7259117b995516025fcfc02fa7eebb,http://hub.hku.hk/bitstream/10722/61208/1/Content.pdf +2cf9088e9faa81872b355a4ea0a9fae46d3c8a08,http://www.cvg.unibe.ch/tpapadhimitri/tech.pdf +2cdc40f20b70ca44d9fd8e7716080ee05ca7924a,http://pdfs.semanticscholar.org/2cdc/40f20b70ca44d9fd8e7716080ee05ca7924a.pdf +2cac70f9c8140a12b6a55cef834a3d7504200b62,http://www.eng.auburn.edu/~reevesj/Classes/ELEC6970-latex/posters/baposterex1.pdf +2c8f24f859bbbc4193d4d83645ef467bcf25adc2,http://romisatriawahono.net/lecture/rm/survey/machine%20learning/Frenay%20-%20Classification%20in%20the%20Presence%20of%20Label%20Noise%20-%202014.pdf +2ca43325a5dbde91af90bf850b83b0984587b3cc,http://pdfs.semanticscholar.org/2ca4/3325a5dbde91af90bf850b83b0984587b3cc.pdf +2cfc28a96b57e0817cc9624a5d553b3aafba56f3,https://web.njit.edu/~borcea/papers/ieee-sarnoff16.pdf +2cdd5b50a67e4615cb0892beaac12664ec53b81f,http://people.eecs.berkeley.edu/~junyanz/projects/mirrormirror/mirrormirror_small.pdf +2cae619d0209c338dc94593892a787ee712d9db0,http://vis-www.cs.umass.edu/papers/cvpr08shrf.pdf +2c0acaec54ab2585ff807e18b6b9550c44651eab,http://pdfs.semanticscholar.org/2c0a/caec54ab2585ff807e18b6b9550c44651eab.pdf +2c811b647a6aac924920c06e607e9e8d4b8d872d,http://pdfs.semanticscholar.org/2c81/1b647a6aac924920c06e607e9e8d4b8d872d.pdf +2cdde47c27a8ecd391cbb6b2dea64b73282c7491,http://pdfs.semanticscholar.org/2cdd/e47c27a8ecd391cbb6b2dea64b73282c7491.pdf +2c7c3a74da960cc76c00965bd3e343958464da45,http://pdfs.semanticscholar.org/2c7c/3a74da960cc76c00965bd3e343958464da45.pdf +2cf5f2091f9c2d9ab97086756c47cd11522a6ef3,http://pdfs.semanticscholar.org/2cf5/f2091f9c2d9ab97086756c47cd11522a6ef3.pdf +2c285dadfa6c07d392ee411d0213648a8a1cf68f,http://www.contrib.andrew.cmu.edu/~yzhiding/ICMI15.pdf +2c17d36bab56083293456fe14ceff5497cc97d75,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf +2c4b96f6c1a520e75eb37c6ee8b844332bc0435c,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w12/papers/Leo_Automatic_Emotion_Recognition_ICCV_2015_paper.pdf +2cd7821fcf5fae53a185624f7eeda007434ae037,http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf +79581c364cefe53bff6bdd224acd4f4bbc43d6d4,http://pdfs.semanticscholar.org/7958/1c364cefe53bff6bdd224acd4f4bbc43d6d4.pdf +794ddb1f3b7598985d4d289b5b0664be736a50c4,http://pdfs.semanticscholar.org/794d/db1f3b7598985d4d289b5b0664be736a50c4.pdf +790aa543151312aef3f7102d64ea699a1d15cb29,http://arxiv.org/pdf/1607.06290v1.pdf +795aa8064b34c4bf4acdd8be3f1e5d06da5a7756,http://pdfs.semanticscholar.org/795a/a8064b34c4bf4acdd8be3f1e5d06da5a7756.pdf +79617903c5cb56697f2e738e1463b9654e2d68ed,http://hal.cse.msu.edu/pdfs/papers/2013-mmcf-tip.pdf +795ea140df2c3d29753f40ccc4952ef24f46576c,http://pdfs.semanticscholar.org/795e/a140df2c3d29753f40ccc4952ef24f46576c.pdf +79b669abf65c2ca323098cf3f19fa7bdd837ff31,http://dro.deakin.edu.au/eserv/DU:30044585/venkatesh-efficienttensor-2008.pdf +794c0dc199f0bf778e2d40ce8e1969d4069ffa7b,http://hcil2.cs.umd.edu/trs/2011-17/2011-17.pdf +79dd787b2877cf9ce08762d702589543bda373be,http://fipa.cs.kit.edu/befit/workshop2011/pdf/slides/jianguo_li-slides.pdf +7966146d72f9953330556baa04be746d18702047,http://pdfs.semanticscholar.org/7966/146d72f9953330556baa04be746d18702047.pdf +79fa57dedafddd3f3720ca26eb41c82086bfb332,http://www.cis.pku.edu.cn/vision/Visual&Robot/publication/doc/IROS05_wu.pdf +79cdc8c786c535366cafeced1f3bdeb18ff04e66,http://www.researchgate.net/profile/Ziga_Spiclin/publication/221795259_Groupwise_registration_of_multimodal_images_by_an_efficient_joint_entropy_minimization_scheme/links/0deec520dd49e7bc24000000.pdf +793e7f1ba18848908da30cbad14323b0389fd2a8,http://pdfs.semanticscholar.org/793e/7f1ba18848908da30cbad14323b0389fd2a8.pdf +2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359,http://pdfs.semanticscholar.org/2d99/0b04c2bd61d3b7b922b8eed33aeeeb7b9359.pdf +2d25045ec63f9132371841c0beccd801d3733908,http://pdfs.semanticscholar.org/2d25/045ec63f9132371841c0beccd801d3733908.pdf +2dd6c988b279d89ab5fb5155baba65ce4ce53c1e,http://pdfs.semanticscholar.org/2dd6/c988b279d89ab5fb5155baba65ce4ce53c1e.pdf +2db05ef11041447dbc735362db68b04e562c1e35,http://www.cs.berkeley.edu/~daf/eccv-sft.pdf +2d080662a1653f523321974a57518e7cb67ecb41,http://pdfs.semanticscholar.org/2d08/0662a1653f523321974a57518e7cb67ecb41.pdf +2d4b9fe3854ccce24040074c461d0c516c46baf4,https://arxiv.org/pdf/1704.04671v1.pdf +2d294c58b2afb529b26c49d3c92293431f5f98d0,https://ibug.doc.ic.ac.uk/media/uploads/documents/mmpp_journal.pdf +2d1f86e2c7ba81392c8914edbc079ac64d29b666,https://arxiv.org/pdf/1702.04471v1.pdf +2d164f88a579ba53e06b601d39959aaaae9016b7,http://pdfs.semanticscholar.org/a666/2bf767df8f8a5bcb655142ac0fb7c4f524f1.pdf +2d23fa205acca9c21e3e1a04674f1e5a9528550e,http://pdfs.semanticscholar.org/2d23/fa205acca9c21e3e1a04674f1e5a9528550e.pdf +2d244d70ed1a2ba03d152189f1f90ff2b4f16a79,http://pdfs.semanticscholar.org/2d24/4d70ed1a2ba03d152189f1f90ff2b4f16a79.pdf +2d88e7922d9f046ace0234f9f96f570ee848a5b5,http://pdfs.semanticscholar.org/2d88/e7922d9f046ace0234f9f96f570ee848a5b5.pdf +2d31ab536b3c8a05de0d24e0257ca4433d5a7c75,http://tamaraberg.com/papers/xray.pdf +2dbde64ca75e7986a0fa6181b6940263bcd70684,http://www.micc.unifi.it/wp-content/uploads/2016/01/2014_pose_independent.pdf +2d146cc0908c931d87f6e6e5d08b117c30a69b8d,http://www.cs.cityu.edu.hk/~yihong/download/TSMC.pdf +2d0363a3ebda56d91d704d5ff5458a527775b609,http://pdfs.semanticscholar.org/2e07/a4c0f87ac078fcccf057d109f9387f4703a9.pdf +2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8,http://pdfs.semanticscholar.org/2d93/a9aa8bed51d0d1b940c73ac32c046ebf1eb8.pdf +2dd2c7602d7f4a0b78494ac23ee1e28ff489be88,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_cvpr_2012.pdf +2d84e30c61281d3d7cdd11676683d6e66a68aea6,http://pdfs.semanticscholar.org/2d84/e30c61281d3d7cdd11676683d6e66a68aea6.pdf +2d98a1cb0d1a37c79a7ebcb727066f9ccc781703,https://arxiv.org/pdf/1706.07525v1.pdf +2dced31a14401d465cd115902bf8f508d79de076,http://pdfs.semanticscholar.org/2dce/d31a14401d465cd115902bf8f508d79de076.pdf +2d05e768c64628c034db858b7154c6cbd580b2d5,http://pdfs.semanticscholar.org/2d05/e768c64628c034db858b7154c6cbd580b2d5.pdf +2d072cd43de8d17ce3198fae4469c498f97c6277,http://www.patrikhuber.ch/files/RCRC_SPL_2015.pdf +2d35a07c4fa03d78d5b622ab703ea44850de8d39,http://www.cs.sunysb.edu/~vislab/papers/Zhang2005cgi.pdf +2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,http://pdfs.semanticscholar.org/ca31/53a726d8c212a7fd92f696c7e00a3ae3b31f.pdf +2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3,http://pdfs.semanticscholar.org/77c1/56969e3b7fbc86432c5238a95679d25ac579.pdf +2d38fd1df95f5025e2cee5bc439ba92b369a93df,http://pdfs.semanticscholar.org/2d38/fd1df95f5025e2cee5bc439ba92b369a93df.pdf +2d83ba2d43306e3c0587ef16f327d59bf4888dc3,http://www.cs.colby.edu/courses/S16/cs365/papers/karpath-deepVideo-CVPR14.pdf +2d84c0d96332bb4fbd8acced98e726aabbf15591,http://pdfs.semanticscholar.org/2d84/c0d96332bb4fbd8acced98e726aabbf15591.pdf +2d79d338c114ece1d97cde1aa06ab4cf17d38254,http://crcv.ucf.edu/papers/cvpr2016/Borji_CVPR2016.pdf +2df4d05119fe3fbf1f8112b3ad901c33728b498a,http://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf +2d3482dcff69c7417c7b933f22de606a0e8e42d4,http://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf +2d748f8ee023a5b1fbd50294d176981ded4ad4ee,http://pdfs.semanticscholar.org/2d74/8f8ee023a5b1fbd50294d176981ded4ad4ee.pdf +2d3c17ced03e4b6c4b014490fe3d40c62d02e914,http://pdfs.semanticscholar.org/2d3c/17ced03e4b6c4b014490fe3d40c62d02e914.pdf +4188bd3ef976ea0dec24a2512b44d7673fd4ad26,http://ibug.doc.ic.ac.uk/media/uploads/documents/ieee_tip2010.pdf +416b559402d0f3e2b785074fcee989d44d82b8e5,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Cai_Multi-View_Super_Vector_2014_CVPR_paper.pdf +416364cfdbc131d6544582e552daf25f585c557d,http://www.dcs.qmw.ac.uk/~sgg/papers/Zalewski_Gong_FG04.pdf +41b38da2f4137c957537908f9cb70cbd2fac8bc1,https://arxiv.org/pdf/1701.01879v1.pdf +41cfc9edbf36754746991c2a1e9a47c0d129d105,https://www.cs.princeton.edu/~ohad/papers/FriedShechtmanGoldmanFinkelstein_SIGGRAPH2016.pdf +41000c3a3344676513ef4bfcd392d14c7a9a7599,http://pdfs.semanticscholar.org/d3ba/9ed56e9ddb73f0e0f2bea3fd3920db30f42e.pdf +411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8,http://pdfs.semanticscholar.org/411e/e9236095f8f5ca3b9ef18fd3381c1c68c4b8.pdf +4159663f0b292fd8cc7411929be9d669bb98b386,http://www.researchgate.net/profile/Pradeep_Khosla/publication/224752362_Cancelable_biometric_filters_for_face_recognition/links/00b4952ade904b0db4000000.pdf +4140498e96a5ff3ba816d13daf148fffb9a2be3f,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Li_Constrained.pdf +41f8477a6be9cd992a674d84062108c68b7a9520,http://pdfs.semanticscholar.org/41f8/477a6be9cd992a674d84062108c68b7a9520.pdf +411503a304a661b0c04c2b446a6e43e4a70942dc,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/CRV2010FaceClustFinal.pdf +41aa8c1c90d74f2653ef4b3a2e02ac473af61e47,http://pdfs.semanticscholar.org/41aa/8c1c90d74f2653ef4b3a2e02ac473af61e47.pdf +41ab4939db641fa4d327071ae9bb0df4a612dc89,http://pdfs.semanticscholar.org/41ab/4939db641fa4d327071ae9bb0df4a612dc89.pdf +41971dfbf404abeb8cf73fea29dc37b9aae12439,http://pdfs.semanticscholar.org/4197/1dfbf404abeb8cf73fea29dc37b9aae12439.pdf +4157e45f616233a0874f54a59c3df001b9646cd7,http://pdfs.semanticscholar.org/4157/e45f616233a0874f54a59c3df001b9646cd7.pdf +41a6196f88beced105d8bc48dd54d5494cc156fb,http://toc.proceedings.com/25848webtoc.pdf +41de109bca9343691f1d5720df864cdbeeecd9d0,http://pdfs.semanticscholar.org/41de/109bca9343691f1d5720df864cdbeeecd9d0.pdf +41d9a240b711ff76c5448d4bf4df840cc5dad5fc,https://arxiv.org/pdf/1206.2627v2.pdf +419a6fca4c8d73a1e43003edc3f6b610174c41d2,http://www.robots.newcastle.edu.au/~chalup/chalup_publications/p058_preprint.pdf +41c97af4801ac302f09902aeec2af17b481563ab,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2016/Collaborative%20Multi-View%20Metric%20Learning%20for%20Visual%20Classification.pdf +4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2c,http://www.ifp.illinois.edu/~dagli/papers/ICME07.pdf +4180978dbcd09162d166f7449136cb0b320adf1f,http://pdfs.semanticscholar.org/4180/978dbcd09162d166f7449136cb0b320adf1f.pdf +41b997f6cec7a6a773cd09f174cb6d2f036b36cd,http://pdfs.semanticscholar.org/41b9/97f6cec7a6a773cd09f174cb6d2f036b36cd.pdf +41aa209e9d294d370357434f310d49b2b0baebeb,https://arxiv.org/pdf/1605.05440v1.pdf +4118b4fc7d61068b9b448fd499876d139baeec81,http://www.cs.utexas.edu/~ssi/TKDE2010.pdf +413a184b584dc2b669fbe731ace1e48b22945443,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_00911.pdf +83b7578e2d9fa60d33d9336be334f6f2cc4f218f,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_101_ext.pdf +839a2155995acc0a053a326e283be12068b35cb8,http://pdfs.semanticscholar.org/839a/2155995acc0a053a326e283be12068b35cb8.pdf +83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,http://pdfs.semanticscholar.org/83fd/2d2d5ad6e4e153672c9b6d1a3785f754b60e.pdf +83ca4cca9b28ae58f461b5a192e08dffdc1c76f3,http://infoscience.epfl.ch/record/200407/files/icip1024-cam-ready.pdf +831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9,http://pdfs.semanticscholar.org/831f/bef657cc5e1bbf298ce6aad6b62f00a5b5d9.pdf +832e1d128059dd5ed5fa5a0b0f021a025903f9d5,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dapogny_Pairwise_Conditional_Random_ICCV_2015_paper.pdf +83e093a07efcf795db5e3aa3576531d61557dd0d,http://pdfs.semanticscholar.org/83e0/93a07efcf795db5e3aa3576531d61557dd0d.pdf +831d661d657d97a07894da8639a048c430c5536d,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Zhu_Weakly_Supervised_Facial_CVPR_2016_paper.pdf +83b4899d2899dd6a8d956eda3c4b89f27f1cd308,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0100377.pdf +830e5b1043227fe189b3f93619ef4c58868758a7,http://pdfs.semanticscholar.org/830e/5b1043227fe189b3f93619ef4c58868758a7.pdf +8323af714efe9a3cadb31b309fcc2c36c8acba8f,http://pdfs.semanticscholar.org/8323/af714efe9a3cadb31b309fcc2c36c8acba8f.pdf +831226405bb255527e9127b84e8eaedd7eb8e9f9,http://pdfs.semanticscholar.org/8312/26405bb255527e9127b84e8eaedd7eb8e9f9.pdf +83fd5c23204147844a0528c21e645b757edd7af9,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W05/papers/Bulan_USDOT_Number_Localization_2015_CVPR_paper.pdf +8384e104796488fa2667c355dd15b65d6d5ff957,http://pdfs.semanticscholar.org/feea/803c1eaedc825509e24a8c1279ffe0251d9d.pdf +8323529cf37f955fb3fc6674af6e708374006a28,http://researcher.ibm.com/researcher/files/us-smiyaza/FPIV04.pdf +8395cf3535a6628c3bdc9b8d0171568d551f5ff0,http://pdfs.semanticscholar.org/8395/cf3535a6628c3bdc9b8d0171568d551f5ff0.pdf +83ac942d71ba908c8d76fc68de6173151f012b38,http://pdfs.semanticscholar.org/83ac/942d71ba908c8d76fc68de6173151f012b38.pdf +834f5ab0cb374b13a6e19198d550e7a32901a4b2,http://pdfs.semanticscholar.org/834f/5ab0cb374b13a6e19198d550e7a32901a4b2.pdf +8320dbdd3e4712cca813451cd94a909527652d63,http://pdfs.semanticscholar.org/d921/1df11080fa5eb0dc1d62fb683b10c055673a.pdf +834b15762f97b4da11a2d851840123dbeee51d33,http://pdfs.semanticscholar.org/834b/15762f97b4da11a2d851840123dbeee51d33.pdf +833fa04463d90aab4a9fe2870d480f0b40df446e,http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf +833f6ab858f26b848f0d747de502127406f06417,http://mediatum.ub.tum.de/doc/980054/157447.pdf +8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff,http://pdfs.semanticscholar.org/8309/e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff.pdf +1b635f494eff2e5501607ebe55eda7bdfa8263b8,http://pdfs.semanticscholar.org/1b63/5f494eff2e5501607ebe55eda7bdfa8263b8.pdf +1b6394178dbc31d0867f0b44686d224a19d61cf4,http://pdfs.semanticscholar.org/ca8e/5419fd570f19643425b24da801283b706fc1.pdf +1bd50926079e68a6e32dc4412e9d5abe331daefb,https://pdfs.semanticscholar.org/544d/6cd24db5adad8453033e0cc1aa7d3d6224ab.pdf +1b150248d856f95da8316da868532a4286b9d58e,http://pdfs.semanticscholar.org/6724/41000751d58396790f4c993419d70f6af3f4.pdf +1be498d4bbc30c3bfd0029114c784bc2114d67c0,http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf +1be785355ae29e32d85d86285bb8f90ea83171df,http://staff.estem-uc.edu.au/roland/files/2009/05/Sharma_Dhall_Gedeon_Goecke_ACII2013_ModelingStressUsingThermalFacialPatterns_ASpatio-TemporalApproach.pdf +1b5875dbebc76fec87e72cee7a5263d325a77376,http://arxiv.org/pdf/1603.00560v2.pdf +1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9,http://pdfs.semanticscholar.org/1bdf/b3deae6e6c0df6537efcd1d7edcb4d7a96e9.pdf +1b300a7858ab7870d36622a51b0549b1936572d4,http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/Yimo-TIP2016.pdf +1b90507f02967ff143fce993a5abbfba173b1ed0,http://mrl.cs.vsb.cz/publications/fusek_ipta_2014.pdf +1b794b944fd462a2742b6c2f8021fecc663004c9,https://www.ecse.rpi.edu/~cvrl/wuy/HierarchicalShape/CVPR14_facialfeaturedetection_cameraready.pdf +1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,http://pdfs.semanticscholar.org/3a2f/aa145c5fe63ab906568a29fa4100220e03d9.pdf +1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,https://arxiv.org/pdf/1608.00486v3.pdf +1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913d,http://www.pitt.edu/~jeffcohn/biblio/dicta2010.pdf +1b0a071450c419138432c033f722027ec88846ea,http://cvrr.ucsd.edu/publications/2016/YuenMartinTrivediITSC2016.pdf +1b60b8e70859d5c85ac90510b370b501c5728620,http://pdfs.semanticscholar.org/1b60/b8e70859d5c85ac90510b370b501c5728620.pdf +1b3b01513f99d13973e631c87ffa43904cd8a821,http://pdfs.semanticscholar.org/1b3b/01513f99d13973e631c87ffa43904cd8a821.pdf +1bc214c39536c940b12c3a2a6b78cafcbfddb59a,http://pdfs.semanticscholar.org/1bc2/14c39536c940b12c3a2a6b78cafcbfddb59a.pdf +1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113,http://pdfs.semanticscholar.org/1bc9/aaa41c08bbd0c01dd5d7d7ebf3e48ae78113.pdf +1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3,http://pdfs.semanticscholar.org/1be1/8a701d5af2d8088db3e6aaa5b9b1d54b6fd3.pdf +1b79628af96eb3ad64dbb859dae64f31a09027d5,http://pdfs.semanticscholar.org/1b79/628af96eb3ad64dbb859dae64f31a09027d5.pdf +1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61,http://mplab.ucsd.edu/~marni/pubs/Bartlett_CVPR05.pdf +1bddad4dc0dfa8efa402aa5d18c29304a5760f12,https://www.researchgate.net/profile/Iickho_Song/publication/254062033_Complexity-Reduced_Scheme_for_Feature_Extraction_With_Linear_Discriminant_Analysis/links/53d694ce0cf228d363ea69d5.pdf +1b70bbf7cdfc692873ce98dd3c0e191580a1b041,http://pdfs.semanticscholar.org/1b70/bbf7cdfc692873ce98dd3c0e191580a1b041.pdf +1bc23c771688109bed9fd295ce82d7e702726327,http://pdfs.semanticscholar.org/1bc2/3c771688109bed9fd295ce82d7e702726327.pdf +1bad8a9640cdbc4fe7de12685651f44c4cff35ce,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W08/papers/Gourgari_THETIS_Three_Dimensional_2013_CVPR_paper.pdf +1b589016fbabe607a1fb7ce0c265442be9caf3a9,http://pdfs.semanticscholar.org/5efe/b55fe3f03cd16aa0c268d74a5ad2e03170cf.pdf +1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8,http://pdfs.semanticscholar.org/b1c8/4ab7cc0c85e8aa8be4c0ec32bad225c9c630.pdf +1b4bc7447f500af2601c5233879afc057a5876d8,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Wang2015g.pdf +1b27ca161d2e1d4dd7d22b1247acee5c53db5104,http://pdfs.semanticscholar.org/1b27/ca161d2e1d4dd7d22b1247acee5c53db5104.pdf +1b69b860e22278a6f482507b8ce879082dd00c44,http://www.cs.utexas.edu/~chaoyeh/cvpr_2014_Inferring_Analogous_Attributes.pdf +7711a7404f1f1ac3a0107203936e6332f50ac30c,http://pdfs.semanticscholar.org/7711/a7404f1f1ac3a0107203936e6332f50ac30c.pdf +7701952e405c3d8a0947e2a309de281aa76bd3f4,http://isl.ira.uka.de/~stiefel/papers/IEE_SIU_2LDA.pdf +778c9f88839eb26129427e1b8633caa4bd4d275e,http://www.cs.berkeley.edu/~nzhang/papers/cvpr12_ppk.pdf +7735f63e5790006cb3d989c8c19910e40200abfc,http://pdfs.semanticscholar.org/7735/f63e5790006cb3d989c8c19910e40200abfc.pdf +77b1db2281292372c38926cc4aca32ef056011dc,http://pdfs.semanticscholar.org/77b1/db2281292372c38926cc4aca32ef056011dc.pdf +776835eb176ed4655d6e6c308ab203126194c41e,http://pdfs.semanticscholar.org/7768/35eb176ed4655d6e6c308ab203126194c41e.pdf +77c53ec6ea448db4dad586e002a395c4a47ecf66,http://pdfs.semanticscholar.org/77c5/3ec6ea448db4dad586e002a395c4a47ecf66.pdf +778bff335ae1b77fd7ec67404f71a1446624331b,http://pdfs.semanticscholar.org/778b/ff335ae1b77fd7ec67404f71a1446624331b.pdf +7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0d,https://graphics.ethz.ch/Downloads/Publications/Papers/2013/Zun13a/Zun13a.pdf +774cbb45968607a027ae4729077734db000a1ec5,http://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf +7754b708d6258fb8279aa5667ce805e9f925dfd0,https://www.ecse.rpi.edu/~qji/Papers/PAMI_AU.pdf +77037a22c9b8169930d74d2ce6f50f1a999c1221,https://ueaeprints.uea.ac.uk/64308/1/Accepted_manuscript.pdf +779ad364cae60ca57af593c83851360c0f52c7bf,http://pdfs.semanticscholar.org/779a/d364cae60ca57af593c83851360c0f52c7bf.pdf +77a9b1856ebbc9a6170ee4c572a515d6db062cef,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1291.pdf +7792fbc59f3eafc709323cdb63852c5d3a4b23e9,http://pdfs.semanticscholar.org/7792/fbc59f3eafc709323cdb63852c5d3a4b23e9.pdf +77d31d2ec25df44781d999d6ff980183093fb3de,http://openaccess.thecvf.com/content_cvpr_2016/supplemental/Littwin_The_Multiverse_Loss_2016_CVPR_supplemental.pdf +77fb9e36196d7bb2b505340b6b94ba552a58b01b,http://pdfs.semanticscholar.org/77fb/9e36196d7bb2b505340b6b94ba552a58b01b.pdf +486840f4f524e97f692a7f6b42cd19019ee71533,https://arxiv.org/pdf/1703.08388v2.pdf +48463a119f67ff2c43b7c38f0a722a32f590dfeb,http://pdfs.semanticscholar.org/4846/3a119f67ff2c43b7c38f0a722a32f590dfeb.pdf +488d3e32d046232680cc0ba80ce3879f92f35cac,http://pdfs.semanticscholar.org/488d/3e32d046232680cc0ba80ce3879f92f35cac.pdf +486a82f50835ea888fbc5c6babf3cf8e8b9807bc,http://pdfs.semanticscholar.org/486a/82f50835ea888fbc5c6babf3cf8e8b9807bc.pdf +48fea82b247641c79e1994f4ac24cad6b6275972,http://wan.poly.edu/KDD2012/docs/p1469.pdf +48734cb558b271d5809286447ff105fd2e9a6850,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w41/papers/Mahoor_Facial_Expression_Recognition_CVPR_2017_paper.pdf +48a417cfeba06feb4c7ab30f06c57ffbc288d0b5,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Chen_Robust_Dictionary_Learning_2013_ICCV_paper.pdf +48853c25dc75481b0c77f408a8a76383287ebe2a,http://qil.uh.edu/qil/websitecontent/pdf/2015-45.pdf +48c41ffab7ff19d24e8df3092f0b5812c1d3fb6e,http://www.iri.upc.edu/files/scidoc/1938-Multi-Modal-Embedding-for-Main-Product-Detection-in-Fashion.pdf +488a61e0a1c3768affdcd3c694706e5bb17ae548,http://pdfs.semanticscholar.org/916b/f08e66c3dd11bec809dd8cbe384e8860bb66.pdf +48910f9b6ccc40226cd4f105ed5291571271b39e,http://pdfs.semanticscholar.org/4891/0f9b6ccc40226cd4f105ed5291571271b39e.pdf +48a9241edda07252c1aadca09875fabcfee32871,https://arxiv.org/pdf/1611.08657v5.pdf +48f0055295be7b175a06df5bc6fa5c6b69725785,http://pdfs.semanticscholar.org/48f0/055295be7b175a06df5bc6fa5c6b69725785.pdf +48729e4de8aa478ee5eeeb08a72a446b0f5367d5,http://faculty.ucmerced.edu/mhyang/papers/icip14_cfh.pdf +48174c414cfce7f1d71c4401d2b3d49ba91c5338,http://pdfs.semanticscholar.org/4817/4c414cfce7f1d71c4401d2b3d49ba91c5338.pdf +488375ae857a424febed7c0347cc9590989f01f7,http://pdfs.semanticscholar.org/4883/75ae857a424febed7c0347cc9590989f01f7.pdf +4836b084a583d2e794eb6a94982ea30d7990f663,http://pdfs.semanticscholar.org/4836/b084a583d2e794eb6a94982ea30d7990f663.pdf +4866a5d6d7a40a26f038fc743e16345c064e9842,http://pdfs.semanticscholar.org/4866/a5d6d7a40a26f038fc743e16345c064e9842.pdf +4805f41c4f8cfb932b011dfdd7f8907152590d1a,http://www.affectiva.com/wp-content/uploads/2014/09/From_Dials_to_Facial_Coding_Automated_Detection_of_Spontaneous_Facial_Expressions_fo.pdf +488e475eeb3bb39a145f23ede197cd3620f1d98a,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W10/papers/Zhu_Pedestrian_Attribute_Classification_2013_ICCV_paper.pdf +487df616e981557c8e1201829a1d0ec1ecb7d275,http://www.citi.sinica.edu.tw/papers/yu.tsao/4293-F.pdf +48f211a9764f2bf6d6dda4a467008eda5680837a,http://www.lv-nus.org/papers/2011/iccv2011-occupation.pdf +4858d014bb5119a199448fcd36746c413e60f295,http://pdfs.semanticscholar.org/4858/d014bb5119a199448fcd36746c413e60f295.pdf +48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,http://pdfs.semanticscholar.org/4831/9e611f0daaa758ed5dcf5a6496b4c6ef45f2.pdf +48cfc5789c246c6ad88ff841701204fc9d6577ed,http://pdfs.semanticscholar.org/48cf/c5789c246c6ad88ff841701204fc9d6577ed.pdf +481fb0a74528fa7706669a5cce6a212ac46eaea3,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Recognizing_RGB_Images_2014_CVPR_paper.pdf +70f189798c8b9f2b31c8b5566a5cf3107050b349,http://www.cs.colostate.edu/~vision/pasc/docs/pasc2013_NISTIR_061013.pdf +70580ed8bc482cad66e059e838e4a779081d1648,http://pdfs.semanticscholar.org/7058/0ed8bc482cad66e059e838e4a779081d1648.pdf +703890b7a50d6535900a5883e8d2a6813ead3a03,http://pdfs.semanticscholar.org/7038/90b7a50d6535900a5883e8d2a6813ead3a03.pdf +70db3a0d2ca8a797153cc68506b8650908cb0ada,http://pdfs.semanticscholar.org/70db/3a0d2ca8a797153cc68506b8650908cb0ada.pdf +706236308e1c8d8b8ba7749869c6b9c25fa9f957,http://affect.media.mit.edu/pdfs/11.McDuff-etal-Crowdsourced-2011.pdf +7002d6fc3e0453320da5c863a70dbb598415e7aa,http://www.cris.ucr.edu/IGERT/papers/SongfanAbstract.pdf +7071cd1ee46db4bc1824c4fd62d36f6d13cad08a,http://pdfs.semanticscholar.org/7071/cd1ee46db4bc1824c4fd62d36f6d13cad08a.pdf +70c2c2d2b7e34ff533a8477eff9763be196cd03a,http://iplab.dmi.unict.it/sites/default/files/_9.pdf +70569810e46f476515fce80a602a210f8d9a2b95,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Antipov_Apparent_Age_Estimation_CVPR_2016_paper.pdf +705a24f4e1766a44bbba7cf335f74229ed443c7b,http://web.ing.puc.cl/~asoto/papers/Maturana-09.pdf +70e79d7b64f5540d309465620b0dab19d9520df1,http://pdfs.semanticscholar.org/70e7/9d7b64f5540d309465620b0dab19d9520df1.pdf +7003d903d5e88351d649b90d378f3fc5f211282b,http://pdfs.semanticscholar.org/7003/d903d5e88351d649b90d378f3fc5f211282b.pdf +703c9c8f20860a1b1be63e6df1622b2021b003ca,http://openaccess.thecvf.com/content_ICCV_2017/papers/Kobayashi_Flip-Invariant_Motion_Representation_ICCV_2017_paper.pdf +70a69569ba61f3585cd90c70ca5832e838fa1584,http://pdfs.semanticscholar.org/70a6/9569ba61f3585cd90c70ca5832e838fa1584.pdf +7085d21f483743007cc6a8e3fa01d8bdf592ad33,http://www.meeting.edu.cn/meeting/UploadPapers/1282699022328.pdf +70bf1769d2d5737fc82de72c24adbb7882d2effd,http://pdfs.semanticscholar.org/70bf/1769d2d5737fc82de72c24adbb7882d2effd.pdf +1e5ca4183929929a4e6f09b1e1d54823b8217b8e,http://pdfs.semanticscholar.org/1e5c/a4183929929a4e6f09b1e1d54823b8217b8e.pdf +1e058b3af90d475bf53b3f977bab6f4d9269e6e8,http://pdfs.semanticscholar.org/30b9/7c36bcb99e857cd78fc55e2600d7851dc117.pdf +1e799047e294267087ec1e2c385fac67074ee5c8,http://pdfs.semanticscholar.org/1e79/9047e294267087ec1e2c385fac67074ee5c8.pdf +1ef4815f41fa3a9217a8a8af12cc385f6ed137e1,https://www.d2.mpi-inf.mpg.de/sites/default/files/wood2015_iccv.pdf +1eb4ea011a3122dc7ef3447e10c1dad5b69b0642,http://pdfs.semanticscholar.org/1eb4/ea011a3122dc7ef3447e10c1dad5b69b0642.pdf +1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3,http://pdfs.semanticscholar.org/1e7a/e86a78a9b4860aa720fb0fd0bdc199b092c3.pdf +1e8eee51fd3bf7a9570d6ee6aa9a09454254689d,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/WangOttoJain_FaceSearchAtScale_TPAMI.pdf +1ea8085fe1c79d12adffb02bd157b54d799568e4,http://pdfs.semanticscholar.org/1ea8/085fe1c79d12adffb02bd157b54d799568e4.pdf +1ebdfceebad642299e573a8995bc5ed1fad173e3,http://pdfs.semanticscholar.org/1ebd/fceebad642299e573a8995bc5ed1fad173e3.pdf +1eec03527703114d15e98ef9e55bee5d6eeba736,http://pdfs.semanticscholar.org/1eec/03527703114d15e98ef9e55bee5d6eeba736.pdf +1e07500b00fcd0f65cf30a11f9023f74fe8ce65c,http://vijaychan.github.io/Publications/2015%20ICIP%20-%20Whole%20Subspace%20Discriminant%20Analysis%20for%20Face%20Recognition.pdf +1e19ea6e7f1c04a18c952ce29386252485e4031e,http://pdfs.semanticscholar.org/1e19/ea6e7f1c04a18c952ce29386252485e4031e.pdf +1ec98785ac91808455b753d4bc00441d8572c416,https://www.cl.cam.ac.uk/~tb346/pub/papers/fg2017_curriculum.pdf +1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf +1eba6fc35a027134aa8997413647b49685f6fbd1,https://ubicomp-mental-health.github.io/papers/voss-glass.pdf +1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,http://personal.stevens.edu/~hli18//data/papers/CVPR2016_CameraReady.pdf +1ef5ce743a44d8a454dbfc2657e1e2e2d025e366,http://pdfs.semanticscholar.org/1ef5/ce743a44d8a454dbfc2657e1e2e2d025e366.pdf +1e58d7e5277288176456c66f6b1433c41ca77415,http://pdfs.semanticscholar.org/1e58/d7e5277288176456c66f6b1433c41ca77415.pdf +1e5a1619fe5586e5ded2c7a845e73f22960bbf5a,https://arxiv.org/pdf/1509.04783v1.pdf +1e213b03e1b8a6067bf37503904491e98b9e42df,http://figment.cse.usf.edu/~sfefilat/data/papers/TuAT10.9.pdf +1e9f1bbb751fe538dde9f612f60eb946747defaa,http://pdfs.semanticscholar.org/1e9f/1bbb751fe538dde9f612f60eb946747defaa.pdf +1e917fe7462445996837934a7e46eeec14ebc65f,http://pdfs.semanticscholar.org/1e91/7fe7462445996837934a7e46eeec14ebc65f.pdf +1e8394cc9fe7c2392aa36fb4878faf7e78bbf2de,https://arxiv.org/pdf/1410.3748v1.pdf +1ef4aac0ebc34e76123f848c256840d89ff728d0,http://www.openu.ac.il/home/hassner/projects/augmented_faces/Masietal2017rapid.pdf +1ecb56e7c06a380b3ce582af3a629f6ef0104457,http://pdfs.semanticscholar.org/1ecb/56e7c06a380b3ce582af3a629f6ef0104457.pdf +1e64b2d2f0a8a608d0d9d913c4baee6973995952,http://sergioescalera.com/wp-content/uploads/2017/06/FG_presentation.pdf +1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,http://pdfs.semanticscholar.org/1ee2/7c66fabde8ffe90bd2f4ccee5835f8dedbb9.pdf +1e41a3fdaac9f306c0ef0a978ae050d884d77d2a,http://www.cs.huji.ac.il/~daphna/course/CoursePapers/SerreEtAl%20PAMI2007.pdf +1e94cc91c5293c8fc89204d4b881552e5b2ce672,http://pdfs.semanticscholar.org/5893/7d427ff36e1470b18120245148355047e4ea.pdf +1e1e66783f51a206509b0a427e68b3f6e40a27c8,http://pdfs.semanticscholar.org/1e1e/66783f51a206509b0a427e68b3f6e40a27c8.pdf +1e0add381031245b1d5129b482853ee738b498e1,http://eprints.pascal-network.org/archive/00001829/01/CVPR05_Romdhani.pdf +1e8eec6fc0e4538e21909ab6037c228547a678ba,http://pdfs.semanticscholar.org/1e8e/ec6fc0e4538e21909ab6037c228547a678ba.pdf +1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,http://arxiv.org/pdf/1607.01450v1.pdf +84fe5b4ac805af63206012d29523a1e033bc827e,http://pdfs.semanticscholar.org/84fe/5b4ac805af63206012d29523a1e033bc827e.pdf +84e4b7469f9c4b6c9e73733fa28788730fd30379,http://pdfs.semanticscholar.org/84e4/b7469f9c4b6c9e73733fa28788730fd30379.pdf +84dcf04802743d9907b5b3ae28b19cbbacd97981,http://pdfs.semanticscholar.org/84dc/f04802743d9907b5b3ae28b19cbbacd97981.pdf +841bf196ee0086c805bd5d1d0bddfadc87e424ec,http://pdfs.semanticscholar.org/841b/f196ee0086c805bd5d1d0bddfadc87e424ec.pdf +842d82081f4b27ca2d4bc05c6c7e389378f0c7b8,http://pdfs.semanticscholar.org/842d/82081f4b27ca2d4bc05c6c7e389378f0c7b8.pdf +841a5de1d71a0b51957d9be9d9bebed33fb5d9fa,http://mx.nthu.edu.tw/~tsunghan/papers/journal%20papers/TIP_PCANet.pdf +84e6669b47670f9f4f49c0085311dce0e178b685,http://pdfs.semanticscholar.org/84e6/669b47670f9f4f49c0085311dce0e178b685.pdf +84bc3ca61fc63b47ec3a1a6566ab8dcefb3d0015,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2012/BTAS%20144.pdf +847e07387142c1bcc65035109ccce681ef88362c,http://pdfs.semanticscholar.org/847e/07387142c1bcc65035109ccce681ef88362c.pdf +8411fe1142935a86b819f065cd1f879f16e77401,http://pdfs.semanticscholar.org/8411/fe1142935a86b819f065cd1f879f16e77401.pdf +843e6f1e226480e8a6872d8fd7b7b2cd74b637a4,http://pdfs.semanticscholar.org/843e/6f1e226480e8a6872d8fd7b7b2cd74b637a4.pdf +84f904a71bee129a1cf00dc97f6cdbe1011657e6,http://pdfs.semanticscholar.org/84f9/04a71bee129a1cf00dc97f6cdbe1011657e6.pdf +84b4eb66ad75a74f77299f1ecb6aa6305362e8cd,https://www.researchgate.net/profile/Joao_Carvalho8/publication/4285113_A_Learning-based_Eye_Detector_Coupled_with_Eye_Candidate_Filtering_and_PCA_Features/links/0f31752d6b19aa31ec000000.pdf +846c028643e60fefc86bae13bebd27341b87c4d1,http://pdfs.semanticscholar.org/a06f/510ee0f206abc4c44a2b68455d88a1748427.pdf +4a14a321a9b5101b14ed5ad6aa7636e757909a7c,http://openaccess.thecvf.com/content_iccv_2015/papers/Li_Learning_Semi-Supervised_Representation_ICCV_2015_paper.pdf +4adca62f888226d3a16654ca499bf2a7d3d11b71,http://pdfs.semanticscholar.org/5525/119941f6710fcde85cf71cc2ca25484e78c6.pdf +4aa286914f17cd8cefa0320e41800a99c142a1cd,http://www.vbettadapura.com/egocentric/food/Food-Bettadapura15.pdf +4a9d906935c9de019c61aedc10b77ee10e3aec63,http://openaccess.thecvf.com/content_cvpr_2016/papers/Gupta_Cross_Modal_Distillation_CVPR_2016_paper.pdf +4a2d54ea1da851151d43b38652b7ea30cdb6dfb2,http://pdfs.semanticscholar.org/4a2d/54ea1da851151d43b38652b7ea30cdb6dfb2.pdf +4ae59d2a28abd76e6d9fb53c9e7ece833dce7733,http://pdfs.semanticscholar.org/4ae5/9d2a28abd76e6d9fb53c9e7ece833dce7733.pdf +4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8,http://pdfs.semanticscholar.org/4ab1/0174a4f98f7e2da7cf6ccfeb9bc64c8e7da8.pdf +4a484d97e402ed0365d6cf162f5a60a4d8000ea0,http://pdfs.semanticscholar.org/4a48/4d97e402ed0365d6cf162f5a60a4d8000ea0.pdf +4a64758786e3f49fc13781304197591ffbd69a6e,http://vicos.fri.uni-lj.si/alesl/files/2008/05/fidlerpami06.pdf +4a4da3d1bbf10f15b448577e75112bac4861620a,http://pdfs.semanticscholar.org/4a4d/a3d1bbf10f15b448577e75112bac4861620a.pdf +4abd49538d04ea5c7e6d31701b57ea17bc349412,http://resources.mpi-inf.mpg.de/publications/D2/2015/rohrbach15ijcv.pdf +4a0f98d7dbc31497106d4f652968c708f7da6692,http://arxiv.org/pdf/1605.05258v1.pdf +4aabd6db4594212019c9af89b3e66f39f3108aac,http://pdfs.semanticscholar.org/4aab/d6db4594212019c9af89b3e66f39f3108aac.pdf +4adb97b096b700af9a58d00e45a2f980136fcbb5,http://pdfs.semanticscholar.org/9ea2/23c070ec9a00f4cb5ca0de35d098eb9a8e32.pdf +4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,http://sergioescalera.com/wp-content/uploads/2015/08/cha11g-lopezATS.pdf +4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c,http://pdfs.semanticscholar.org/4a1a/5316e85528f4ff7a5f76699dfa8c70f6cc5c.pdf +4ae291b070ad7940b3c9d3cb10e8c05955c9e269,http://www.cl.cam.ac.uk/~pr10/publications/icmi14.pdf +4aa8db1a3379f00db2403bba7dade5d6e258b9e9,http://pdfs.semanticscholar.org/4aa8/db1a3379f00db2403bba7dade5d6e258b9e9.pdf +4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9,https://arxiv.org/pdf/1608.01866v1.pdf +4ac4e8d17132f2d9812a0088594d262a9a0d339b,http://pdfs.semanticscholar.org/4ac4/e8d17132f2d9812a0088594d262a9a0d339b.pdf +4abaebe5137d40c9fcb72711cdefdf13d9fc3e62,http://pdfs.semanticscholar.org/4aba/ebe5137d40c9fcb72711cdefdf13d9fc3e62.pdf +4acd683b5f91589002e6f50885df51f48bc985f4,http://www.albany.edu/faculty/mchang2/files/2015_09_ICIP_Darpa.pdf +4a1d640f5e25bb60bb2347d36009718249ce9230,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Xing_Towards_Multi-view_and_2014_CVPR_paper.pdf +4aeb87c11fb3a8ad603311c4650040fd3c088832,http://pdfs.semanticscholar.org/4aeb/87c11fb3a8ad603311c4650040fd3c088832.pdf +4a3d96b2a53114da4be3880f652a6eef3f3cc035,https://www.micc.unifi.it/wp-content/uploads/2018/01/07932891.pdf +4a6fcf714f663618657effc341ae5961784504c7,http://www.cs.tut.fi/~iosifidi/files/journal/2016_TIFS_ACSKDA.pdf?dl=0 +24b37016fee57057cf403fe2fc3dda78476a8262,http://pdfs.semanticscholar.org/24b3/7016fee57057cf403fe2fc3dda78476a8262.pdf +24830e3979d4ed01b9fd0feebf4a8fd22e0c35fd,http://www.researchgate.net/profile/Wei_Quan3/publication/221430048_High-resolution_comprehensive_3-D_dynamic_database_for_facial_articulation_analysis/links/0deec534309495805d000000.pdf +24c442ac3f6802296d71b1a1914b5d44e48b4f29,http://vision.caltech.edu/~xpburgos/papers/ICCVW15%20Burgos-Artizzu.pdf +247cab87b133bd0f4f9e8ce5e7fc682be6340eac,http://pdfs.semanticscholar.org/247c/ab87b133bd0f4f9e8ce5e7fc682be6340eac.pdf +245f8ec4373e0a6c1cae36cd6fed5a2babed1386,http://pdfs.semanticscholar.org/245f/8ec4373e0a6c1cae36cd6fed5a2babed1386.pdf +24cb375a998f4af278998f8dee1d33603057e525,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_016_ext.pdf +24aac045f1e1a4c13a58eab4c7618dccd4c0e671,https://arxiv.org/pdf/1706.04124v1.pdf +240d5390af19bb43761f112b0209771f19bfb696,http://pdfs.semanticscholar.org/4e10/0973f1540312df3465a087597018a7892310.pdf +24de12df6953151ef5cd0379e205eb0f57ff9d1f,http://www.researchgate.net/profile/Sebastian_Ventura/publication/270337594_A_Tutorial_on_Multi-Label_Learning/links/54bcd8460cf253b50e2d697b.pdf?origin=publication_list +24f9248f01df3020351347c2a3f632e01de72090,http://www.cs.utexas.edu/users/bwaters/publications/papers/luong-wacv2013.pdf +24e099e77ae7bae3df2bebdc0ee4e00acca71250,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/22467/Yang%20Robust%20Face%20Alignment%20Under%20Occlusion%20via%20Regional%20Predictive%20Power%20Estimation%202015%20Accepted.pdf?sequence=1 +24959d1a9c9faf29238163b6bcaf523e2b05a053,http://pdfs.semanticscholar.org/2495/9d1a9c9faf29238163b6bcaf523e2b05a053.pdf +24f1febcdf56cd74cb19d08010b6eb5e7c81c362,http://www.umiacs.umd.edu/~cteo/public-shared/language_robotsMethods_PerMIS2012.pdf +2450c618cca4cbd9b8cdbdb05bb57d67e63069b1,http://liris.cnrs.fr/Documents/Liris-6127.pdf +24496e4acfb8840616b2960b0e2c80cc4c9e5a87,http://ai2-s2-pdfs.s3.amazonaws.com/2449/6e4acfb8840616b2960b0e2c80cc4c9e5a87.pdf +244b57cc4a00076efd5f913cc2833138087e1258,http://pdfs.semanticscholar.org/dfa8/d0afc548a8086902412fb0eae0fcf881ed8a.pdf +24cf9fe9045f50c732fc9c602358af89ae40a9f7,http://pdfs.semanticscholar.org/b3e7/4cbe27454e32b4b35014af831783d3480ad5.pdf +241d2c517dbc0e22d7b8698e06ace67de5f26fdf,http://pdfs.semanticscholar.org/bfc3/546fa119443fdcbac3a5723647c2ba0007ac.pdf +24e6a28c133b7539a57896393a79d43dba46e0f6,http://arxiv.org/pdf/1605.02057v2.pdf +248db911e3a6a63ecd5ff6b7397a5d48ac15e77a,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Matthews_Enriching_Texture_Analysis_2013_CVPR_paper.pdf +24d376e4d580fb28fd66bc5e7681f1a8db3b6b78,http://pdfs.semanticscholar.org/24d3/76e4d580fb28fd66bc5e7681f1a8db3b6b78.pdf +24f1e2b7a48c2c88c9e44de27dc3eefd563f6d39,http://openaccess.thecvf.com/content_ICCV_2017/papers/Benitez-Quiroz_Recognition_of_Action_ICCV_2017_paper.pdf +2489a839d0a761ef8520393a7e412c36f5f26324,https://cs.adelaide.edu.au/~tjchin/lib/exe/fetch.php?media=eccv2014_hypergraph.pdf +243e9d490fe98d139003bb8dc95683b366866c57,http://pdfs.semanticscholar.org/243e/9d490fe98d139003bb8dc95683b366866c57.pdf +2465fc22e03faf030e5a319479a95ef1dfc46e14,https://www.fruct.org/publications/fruct20/files/Bel.pdf +2495ebdcb6da8d8c2e82cf57fcaab0ec003d571d,http://eprints.pascal-network.org/archive/00002118/01/russell06.pdf +247a6b0e97b9447850780fe8dbc4f94252251133,http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Conf_Arman_CVPR2010.pdf +24bf94f8090daf9bda56d54e42009067839b20df,https://www.computer.org/csdl/trans/tp/2015/06/06940284.pdf +240eb0b34872c431ecf9df504671281f59e7da37,http://www.ece.cmu.edu/~dbatra/publications/assets/cutout_tags_iv2009_small.pdf +230527d37421c28b7387c54e203deda64564e1b7,http://pdfs.semanticscholar.org/2305/27d37421c28b7387c54e203deda64564e1b7.pdf +23fdbef123bcda0f07d940c72f3b15704fd49a98,http://pdfs.semanticscholar.org/23fd/bef123bcda0f07d940c72f3b15704fd49a98.pdf +23ebbbba11c6ca785b0589543bf5675883283a57,https://pdfs.semanticscholar.org/23eb/bbba11c6ca785b0589543bf5675883283a57.pdf +23aef683f60cb8af239b0906c45d11dac352fb4e,http://pdfs.semanticscholar.org/b6cd/e64dcf864e457a83b72b7742fd19984a7552.pdf +235d5620d05bb7710f5c4fa6fceead0eb670dec5,http://pdfs.semanticscholar.org/7497/50d81dbd4d9fdcc9c1728b797dbb538a8747.pdf +23fd653b094c7e4591a95506416a72aeb50a32b5,http://pdfs.semanticscholar.org/8a92/17f540845a7d11d24f2d76c0b752ca439457.pdf +23172f9a397f13ae1ecb5793efd81b6aba9b4537,http://pdfs.semanticscholar.org/2317/2f9a397f13ae1ecb5793efd81b6aba9b4537.pdf +231a6d2ee1cc76f7e0c5912a530912f766e0b459,http://pdfs.semanticscholar.org/231a/6d2ee1cc76f7e0c5912a530912f766e0b459.pdf +236a4f38f79a4dcc2183e99b568f472cf45d27f4,https://jurie.users.greyc.fr/papers/moosman-nowak-jurie-pami08.pdf +230c4a30f439700355b268e5f57d15851bcbf41f,http://arxiv.org/pdf/1509.01509v2.pdf +237fa91c8e8098a0d44f32ce259ff0487aec02cf,http://ira.lib.polyu.edu.hk/bitstream/10397/241/1/SMCB_C_36_4_06_B.pdf +23d5b2dccd48a17e743d3a5a4d596111a2f16c41,http://pdfs.semanticscholar.org/8cda/dc4d5e7e4fe6a0dbe15611f6fc8b7c0f103e.pdf +23fc83c8cfff14a16df7ca497661264fc54ed746,http://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf +2331df8ca9f29320dd3a33ce68a539953fa87ff5,http://faculty.ucmerced.edu/mhyang/papers/aaai02.pdf +232b6e2391c064d483546b9ee3aafe0ba48ca519,https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_iccv2013.pdf +23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,http://pdfs.semanticscholar.org/23ba/9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3.pdf +237eba4822744a9eabb121fe7b50fd2057bf744c,http://pdfs.semanticscholar.org/ba2a/65bef17d9db7366fe8c1344ca918ba50b99a.pdf +23086a13b83d1b408b98346cf44f3e11920b404d,http://pdfs.semanticscholar.org/2308/6a13b83d1b408b98346cf44f3e11920b404d.pdf +238fc68b2e0ef9f5ec043d081451902573992a03,http://www.cbsr.ia.ac.cn/users/zlei/papers/ChuanxianRen-ELGOF-TCYB.pdf +23e75f5ce7e73714b63f036d6247fa0172d97cb6,http://pdfs.semanticscholar.org/23e7/5f5ce7e73714b63f036d6247fa0172d97cb6.pdf +23aba7b878544004b5dfa64f649697d9f082b0cf,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Wang_Locality-Constrained_Discriminative_Learning_2015_CVPR_paper.pdf +23120f9b39e59bbac4438bf4a8a7889431ae8adb,http://pdfs.semanticscholar.org/2312/0f9b39e59bbac4438bf4a8a7889431ae8adb.pdf +23d55061f7baf2ffa1c847d356d8f76d78ebc8c1,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0033-4?site=ipsjcva.springeropen.com +23c3eb6ad8e5f18f672f187a6e9e9b0d94042970,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_095_ext.pdf +23a8d02389805854cf41c9e5fa56c66ee4160ce3,http://www.advancedsourcecode.com/influencelow10.pdf +4fd29e5f4b7186e349ba34ea30738af7860cf21f,https://arxiv.org/pdf/1506.02588v1.pdf +4f0d9200647042e41dea71c35eb59e598e6018a7,http://pdfs.semanticscholar.org/4f0d/9200647042e41dea71c35eb59e598e6018a7.pdf +4faded442b506ad0f200a608a69c039e92eaff11,http://pdfs.semanticscholar.org/4fad/ed442b506ad0f200a608a69c039e92eaff11.pdf +4f7967158b257e86d66bdabfdc556c697d917d24,http://pdfs.semanticscholar.org/4f79/67158b257e86d66bdabfdc556c697d917d24.pdf +4fc7a540efb24bea338f82c8bdc64c214744a3de,http://www.researchgate.net/profile/Touradj_Ebrahimi/publication/41083907_Object-based_Tag_Propagation_for_Semi-automatic_Annotation_of_Images/links/02e7e515b3de45cd50000000.pdf +4fc936102e2b5247473ea2dd94c514e320375abb,http://pdfs.semanticscholar.org/4fc9/36102e2b5247473ea2dd94c514e320375abb.pdf +4f298d6d0c8870acdbf94fe473ebf6814681bd1f,http://pdfs.semanticscholar.org/9979/b794d0bd06a1959a6b169f2cf32ba8ba376b.pdf +4f6adc53798d9da26369bea5a0d91ed5e1314df2,http://pdfs.semanticscholar.org/4f6a/dc53798d9da26369bea5a0d91ed5e1314df2.pdf +4fbef7ce1809d102215453c34bf22b5f9f9aab26,http://pdfs.semanticscholar.org/4fbe/f7ce1809d102215453c34bf22b5f9f9aab26.pdf +4fa0d73b8ba114578744c2ebaf610d2ca9694f45,http://pdfs.semanticscholar.org/4fa0/d73b8ba114578744c2ebaf610d2ca9694f45.pdf +4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,https://arxiv.org/pdf/1510.00562v1.pdf +4f591e243a8f38ee3152300bbf42899ac5aae0a5,http://pdfs.semanticscholar.org/4f59/1e243a8f38ee3152300bbf42899ac5aae0a5.pdf +4f9958946ad9fc71c2299847e9ff16741401c591,http://pdfs.semanticscholar.org/4f99/58946ad9fc71c2299847e9ff16741401c591.pdf +4f773c8e7ca98ece9894ba3a22823127a70c6e6c,http://pdfs.semanticscholar.org/4f77/3c8e7ca98ece9894ba3a22823127a70c6e6c.pdf +4ff11512e4fde3d1a109546d9c61a963d4391add,http://pdfs.semanticscholar.org/4ff1/1512e4fde3d1a109546d9c61a963d4391add.pdf +4f028efe6708fc252851eee4a14292b7ce79d378,http://pdfs.semanticscholar.org/ae17/aca92b4710efb00e3180a46e56e463ae2a6f.pdf +4f0bf2508ae801aee082b37f684085adf0d06d23,http://pdfs.semanticscholar.org/4f0b/f2508ae801aee082b37f684085adf0d06d23.pdf +4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/CNN_Gender_Recognition.pdf +4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7,http://pdfs.semanticscholar.org/d8ca/e259c1c5bba0c096f480dc7322bbaebfac1a.pdf +4f0d5cbcd30fef3978b9691c2e736daed2f841c1,http://www.ics.uci.edu/~dramanan/papers/localdist_journal.pdf +4f77a37753c03886ca9c9349723ec3bbfe4ee967,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Hasan_Localizing_Facial_Keypoints_2013_ICCV_paper.pdf +4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf +8d71872d5877c575a52f71ad445c7e5124a4b174,http://pdfs.semanticscholar.org/8d71/872d5877c575a52f71ad445c7e5124a4b174.pdf +8de06a584955f04f399c10f09f2eed77722f6b1c,http://pdfs.semanticscholar.org/8de0/6a584955f04f399c10f09f2eed77722f6b1c.pdf +8d4f0517eae232913bf27f516101a75da3249d15,http://pdfs.semanticscholar.org/8d4f/0517eae232913bf27f516101a75da3249d15.pdf +8de2dbe2b03be8a99628ffa000ac78f8b66a1028,http://pdfs.semanticscholar.org/8de2/dbe2b03be8a99628ffa000ac78f8b66a1028.pdf +8d3fbdb9783716c1832a0b7ab1da6390c2869c14,http://pdfs.semanticscholar.org/ae81/6e7e0077fe94f1e62629647dc04263a970b5.pdf +8d42a24d570ad8f1e869a665da855628fcb1378f,http://pdfs.semanticscholar.org/8d42/a24d570ad8f1e869a665da855628fcb1378f.pdf +8d8461ed57b81e05cc46be8e83260cd68a2ebb4d,http://pdfs.semanticscholar.org/8d84/61ed57b81e05cc46be8e83260cd68a2ebb4d.pdf +8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3,http://vision.ucsd.edu/~pdollar/files/papers/DollarCVPR10pose.pdf +8d2c0c9155a1ed49ba576ac0446ec67725468d87,http://media.cs.tsinghua.edu.cn/~cvg/publications/ENGLISH%20CONFERENCE%20PAPERS/A%20Study%20of%20Two%20Image%20Representations%20for%20Head%20Pose%20Estimation.pdf +8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152,http://pdfs.semanticscholar.org/8d02/43b8b663ca0ab7cbe613e3b886a5d1c8c152.pdf +8d6c4af9d4c01ff47fe0be48155174158a9a5e08,http://pdfs.semanticscholar.org/8d6c/4af9d4c01ff47fe0be48155174158a9a5e08.pdf +8d2c43759e221f39ab1b4bf70d6891ffd19fb8da,https://www.researchgate.net/profile/Zhang_Pinzheng/publication/224711010_An_Automatic_Facial_Expression_Recognition_Approach_Based_on_Confusion-Crossed_Support_Vector_Machine_Tree/links/54658c630cf2052b509f3391.pdf +8dbe79830713925affc48d0afa04ed567c54724b,http://pdfs.semanticscholar.org/8dbe/79830713925affc48d0afa04ed567c54724b.pdf +8d1adf0ac74e901a94f05eca2f684528129a630a,http://www.denniscodd.com/dotnet-ieee/Facial%20Expression%20Recognition%20Using%20Facial.pdf +8d91f06af4ef65193f3943005922f25dbb483ee4,http://pdfs.semanticscholar.org/8d91/f06af4ef65193f3943005922f25dbb483ee4.pdf +8dc9de0c7324d098b537639c8214543f55392a6b,http://www.diva-portal.org/smash/get/diva2:280081/FULLTEXT01.pdf +8d712cef3a5a8a7b1619fb841a191bebc2a17f15,http://pdfs.semanticscholar.org/8d71/2cef3a5a8a7b1619fb841a191bebc2a17f15.pdf +8d646ac6e5473398d668c1e35e3daa964d9eb0f6,http://pdfs.semanticscholar.org/8d64/6ac6e5473398d668c1e35e3daa964d9eb0f6.pdf +8dffbb6d75877d7d9b4dcde7665888b5675deee1,http://pdfs.semanticscholar.org/8dff/bb6d75877d7d9b4dcde7665888b5675deee1.pdf +8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff,http://publications.idiap.ch/downloads/papers/2017/Le_CBMI_2017.pdf +153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4,http://pdfs.semanticscholar.org/153f/5ad54dd101f7f9c2ae17e96c69fe84aa9de4.pdf +155199d7f10218e29ddaee36ebe611c95cae68c4,http://pdfs.semanticscholar.org/1551/99d7f10218e29ddaee36ebe611c95cae68c4.pdf +15cd05baa849ab058b99a966c54d2f0bf82e7885,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_031_ext.pdf +15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,http://feiwang03.googlepages.com/CVPRposter.pdf +159e792096756b1ec02ec7a980d5ef26b434ff78,http://pdfs.semanticscholar.org/159e/792096756b1ec02ec7a980d5ef26b434ff78.pdf +153e5cddb79ac31154737b3e025b4fb639b3c9e7,http://pdfs.semanticscholar.org/d9f5/9178ef2d91c98e0f3108fe273cdc6c6590f4.pdf +1586871a1ddfe031b885b94efdbff647cf03eff1,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w18/papers/Ginosar_A_Century_of_ICCV_2015_paper.pdf +15b07dae17f184c8e6efbc9d2b58526d8e8dc9d4,https://arxiv.org/pdf/1707.07196v1.pdf +15cf7bdc36ec901596c56d04c934596cf7b43115,http://pdfs.semanticscholar.org/15cf/7bdc36ec901596c56d04c934596cf7b43115.pdf +1576ed0f3926c6ce65e0ca770475bca6adcfdbb4,http://openaccess.thecvf.com/content_cvpr_workshops_2015/W09/papers/Bagheri_Keep_it_Accurate_2015_CVPR_paper.pdf +156cd2a0e2c378e4c3649a1d046cd080d3338bca,http://pdfs.semanticscholar.org/156c/d2a0e2c378e4c3649a1d046cd080d3338bca.pdf +157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6,http://www.merl.com/publications/docs/TR2012-043.pdf +15e0b9ba3389a7394c6a1d267b6e06f8758ab82b,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0035-2?site=ipsjcva.springeropen.com +151481703aa8352dc78e2577f0601782b8c41b34,http://pdfs.semanticscholar.org/943c/f990952712673320b011e1e8092fad65eedd.pdf +1565721ebdbd2518224f54388ed4f6b21ebd26f3,http://cmp.felk.cvut.cz/ftp/articles/franc/Cevilkalp-FaceDetector-FG2013.pdf +15f3d47b48a7bcbe877f596cb2cfa76e798c6452,http://pdfs.semanticscholar.org/15f3/d47b48a7bcbe877f596cb2cfa76e798c6452.pdf +15728d6fd5c9fc20b40364b733228caf63558c31,http://pdfs.semanticscholar.org/1572/8d6fd5c9fc20b40364b733228caf63558c31.pdf +15252b7af081761bb00535aac6bd1987391f9b79,http://cvsp.cs.ntua.gr/publications/confr/KoutrasMaragos_EyeGaze_ICIP15.pdf +1513949773e3a47e11ab87d9a429864716aba42d,http://pdfs.semanticscholar.org/1513/949773e3a47e11ab87d9a429864716aba42d.pdf +15ee80e86e75bf1413dc38f521b9142b28fe02d1,https://arxiv.org/pdf/1612.05322v1.pdf +153c8715f491272b06dc93add038fae62846f498,http://pdfs.semanticscholar.org/153c/8715f491272b06dc93add038fae62846f498.pdf +15e27f968458bf99dd34e402b900ac7b34b1d575,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p8362-mahanta.pdf +15f70a0ad8903017250927595ae2096d8b263090,http://pdfs.semanticscholar.org/15f7/0a0ad8903017250927595ae2096d8b263090.pdf +1564bf0a268662df752b68bee5addc4b08868739,https://arxiv.org/pdf/1605.04129v2.pdf +158e32579e38c29b26dfd33bf93e772e6211e188,http://pdfs.semanticscholar.org/158e/32579e38c29b26dfd33bf93e772e6211e188.pdf +122f51cee489ba4da5ab65064457fbe104713526,http://www.speakit.cn/Group/file/2015_LongShortTerm_ACMAVEC@MM15_EI.pdf +125d82fee1b9fbcc616622b0977f3d06771fc152,http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTcvpr12.pdf +1255afbf86423c171349e874b3ac297de19f00cd,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SSCI_2015/data/7560a203.pdf +126535430845361cd7a3a6f317797fe6e53f5a3b,http://pdfs.semanticscholar.org/1265/35430845361cd7a3a6f317797fe6e53f5a3b.pdf +122ee00cc25c0137cab2c510494cee98bd504e9f,http://pdfs.semanticscholar.org/122e/e00cc25c0137cab2c510494cee98bd504e9f.pdf +121fe33daf55758219e53249cf8bcb0eb2b4db4b,http://pdfs.semanticscholar.org/121f/e33daf55758219e53249cf8bcb0eb2b4db4b.pdf +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf +12cb3bf6abf63d190f849880b1703ccc183692fe,http://pdfs.semanticscholar.org/12cb/3bf6abf63d190f849880b1703ccc183692fe.pdf +1246534c3104da030fdb9e041819257e0d57dcbf,http://home.isr.uc.pt/~joaoluis/papers/cvpr2015_2.pdf +12cd96a419b1bd14cc40942b94d9c4dffe5094d2,http://pdfs.semanticscholar.org/12cd/96a419b1bd14cc40942b94d9c4dffe5094d2.pdf +12055b8f82d5411f9ad196b60698d76fbd07ac1e,https://zhzhanp.github.io/papers/TCSVT2014.pdf +126214ef0dcef2b456cb413905fa13160c73ec8e,http://infoscience.epfl.ch/record/125056/files/MHFE_fg08.pdf +12692fbe915e6bb1c80733519371bbb90ae07539,http://pdfs.semanticscholar.org/50ef/4817a6e50a2ec525d6e417d05d2400983c11.pdf +12ccfc188de0b40c84d6a427999239c6a379cd66,http://pdfs.semanticscholar.org/12cc/fc188de0b40c84d6a427999239c6a379cd66.pdf +12c713166c46ac87f452e0ae383d04fb44fe4eb2,http://pdfs.semanticscholar.org/98dc/a90e43c7592ef81cf84445d73c8baa719686.pdf +1270044a3fa1a469ec2f4f3bd364754f58a1cb56,http://pdfs.semanticscholar.org/1270/044a3fa1a469ec2f4f3bd364754f58a1cb56.pdf +12150d8b51a2158e574e006d4fbdd3f3d01edc93,https://lmb.informatik.uni-freiburg.de/lectures/seminar_brox/seminar_ss16/DeepEnd2EndV2V.pdf +12003a7d65c4f98fb57587fd0e764b44d0d10125,http://luks.fe.uni-lj.si/en/staff/simond/publications/Dobrisek2015.pdf +124538b3db791e30e1b62f81d4101be435ee12ef,http://pdfs.semanticscholar.org/1245/38b3db791e30e1b62f81d4101be435ee12ef.pdf +12d8730da5aab242795bdff17b30b6e0bac82998,http://pdfs.semanticscholar.org/12d8/730da5aab242795bdff17b30b6e0bac82998.pdf +8c643e1a61f3f563ec382c1e450f4b2b28122614,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2012/BTAS147.pdf +8c13f2900264b5cf65591e65f11e3f4a35408b48,http://cvhci.ira.uka.de/~stiefel/papers/Ekenel_Local_Appearance.pdf +8cb3f421b55c78e56c8a1c1d96f23335ebd4a5bf,http://pdfs.semanticscholar.org/8cb3/f421b55c78e56c8a1c1d96f23335ebd4a5bf.pdf +8c955f3827a27e92b6858497284a9559d2d0623a,http://pdfs.semanticscholar.org/8c95/5f3827a27e92b6858497284a9559d2d0623a.pdf +8c8525e626c8857a4c6c385de34ffea31e7e41d1,http://arxiv.org/pdf/1505.07922.pdf +8c66378df977606d332fc3b0047989e890a6ac76,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_078_ext.pdf +8c9c8111e18f8798a612e7386e88536dfe26455e,http://pdfs.semanticscholar.org/8c9c/8111e18f8798a612e7386e88536dfe26455e.pdf +8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa,http://pdfs.semanticscholar.org/8c7f/4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa.pdf +8c81705e5e4a1e2068a5bd518adc6955d49ae434,http://pdfs.semanticscholar.org/8c81/705e5e4a1e2068a5bd518adc6955d49ae434.pdf +8cb403c733a5f23aefa6f583a17cf9b972e35c90,http://pdfs.semanticscholar.org/e4ca/1fa70823c4350888607df470248be0ed4c56.pdf +8c6b9c9c26ead75ce549a57c4fd0a12b46142848,http://pdfs.semanticscholar.org/97fc/47ba1427b0e50cd815b8b1657fea6fb9e25a.pdf +8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82,http://pdfs.semanticscholar.org/e09e/aa666f354d4262d5ff4cf4ef54a960561bbe.pdf +8c7bceba769762126fd3dae78d622908bb83c3d3,http://qil.uh.edu/qil/websitecontent/pdf/2015-33.pdf +8c6c0783d90e4591a407a239bf6684960b72f34e,http://pdfs.semanticscholar.org/8c6c/0783d90e4591a407a239bf6684960b72f34e.pdf +8cb55413f1c5b6bda943697bba1dc0f8fc880d28,http://cvhci.anthropomatik.kit.edu/~stiefel/papers/ICCV07_031.pdf +8cc07ae9510854ec6e79190cc150f9f1fe98a238,http://pdfs.semanticscholar.org/8cc0/7ae9510854ec6e79190cc150f9f1fe98a238.pdf +8509abbde2f4b42dc26a45cafddcccb2d370712f,http://pdfs.semanticscholar.org/ad9a/169042d887c33cfcec2716a453a0d3abcb0c.pdf +855bfc17e90ec1b240efba9100fb760c068a8efa,http://pdfs.semanticscholar.org/855b/fc17e90ec1b240efba9100fb760c068a8efa.pdf +858ddff549ae0a3094c747fb1f26aa72821374ec,https://arxiv.org/pdf/1606.03237v1.pdf +85041e48b51a2c498f22850ce7228df4e2263372,http://pdfs.semanticscholar.org/8504/1e48b51a2c498f22850ce7228df4e2263372.pdf +857ad04fca2740b016f0066b152bd1fa1171483f,http://pdfs.semanticscholar.org/857a/d04fca2740b016f0066b152bd1fa1171483f.pdf +858901405086056361f8f1839c2f3d65fc86a748,http://pdfs.semanticscholar.org/8589/01405086056361f8f1839c2f3d65fc86a748.pdf +85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9,http://pdfs.semanticscholar.org/8518/8c77f3b2de3a45f7d4f709b6ea79e36bd0d9.pdf +855882a5943fc12fa9c0e8439c482e055b4b46f3,http://humansensing.cs.cmu.edu/papers/Automated.pdf +8518b501425f2975ea6dcbf1e693d41e73d0b0af,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhang_Relative_Hidden_Markov_2013_CVPR_paper.pdf +8557914593e8540fcdd9b11aef076f68d41d3b4b,http://elwilber.com/papers/ecodes-2014.pdf +855184c789bca7a56bb223089516d1358823db0b,http://pdfs.semanticscholar.org/8551/84c789bca7a56bb223089516d1358823db0b.pdf +853bd61bc48a431b9b1c7cab10c603830c488e39,http://pdfs.semanticscholar.org/b8a2/0ed7e74325da76d7183d1ab77b082a92b447.pdf +85639cefb8f8deab7017ce92717674d6178d43cc,http://pdfs.semanticscholar.org/8563/9cefb8f8deab7017ce92717674d6178d43cc.pdf +854dbb4a0048007a49df84e3f56124d387588d99,http://pdfs.semanticscholar.org/854d/bb4a0048007a49df84e3f56124d387588d99.pdf +85674b1b6007634f362cbe9b921912b697c0a32c,http://pdfs.semanticscholar.org/8567/4b1b6007634f362cbe9b921912b697c0a32c.pdf +852ff0d410a25ebb7936043a05efe2469c699e4b,http://pdfs.semanticscholar.org/852f/f0d410a25ebb7936043a05efe2469c699e4b.pdf +1d21e5beef23eecff6fff7d4edc16247f0fd984a,http://pdfs.semanticscholar.org/1d21/e5beef23eecff6fff7d4edc16247f0fd984a.pdf +1dbbec4ad8429788e16e9f3a79a80549a0d7ac7b,http://pdfs.semanticscholar.org/9d44/ef9e28d7722c388091ec4c1fa7c05f085e53.pdf +1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de9,https://web.stanford.edu/~bgirod/pdfs/ChenHuizhongTransPAMISep2014.pdf +1d846934503e2bd7b8ea63b2eafe00e29507f06a,http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/manifold%20learning/20fa.pdf +1d19c6857e798943cd0ecd110a7a0d514c671fec,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w2/papers/Khorrami_Do_Deep_Neural_ICCV_2015_paper.pdf +1d1a7ef193b958f9074f4f236060a5f5e7642fc1,http://pdfs.semanticscholar.org/db40/804914afbb7f8279ca9a4f52e0ade695f19e.pdf +1d696a1beb42515ab16f3a9f6f72584a41492a03,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr15.pdf +1d1caaa2312390260f7d20ad5f1736099818d358,https://eprints.soton.ac.uk/271401/1/paperOnIEEEexplore.pdf +1dc241ee162db246882f366644171c11f7aed96d,http://pdfs.semanticscholar.org/1dc2/41ee162db246882f366644171c11f7aed96d.pdf +1d0128b9f96f4c11c034d41581f23eb4b4dd7780,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Snape_Automatic_Construction_Of_2015_CVPR_paper.pdf +1d79ec93a9feba817c75c31604c3f8df346eabe8,https://www.researchgate.net/profile/Manjunath_Aradhya/publication/254461422_The_study_of_different_similarity_measure_techniques_in_recognition_of_handwritten_characters/links/0046352049dae0d044000000.pdf +1d3dd9aba79a53390317ec1e0b7cd742cba43132,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf +1d0dd20b9220d5c2e697888e23a8d9163c7c814b,http://pdfs.semanticscholar.org/1d0d/d20b9220d5c2e697888e23a8d9163c7c814b.pdf +1d5aad4f7fae6d414ffb212cec1f7ac876de48bf,http://biometrics.cse.msu.edu/Publications/Face/WangJain_FaceRetriever_ICB15.pdf +1db23a0547700ca233aef9cfae2081cd8c5a04d7,http://pdfs.semanticscholar.org/1db2/3a0547700ca233aef9cfae2081cd8c5a04d7.pdf +1d97735bb0f0434dde552a96e1844b064af08f62,http://www.apsipa.org/proceedings_2015/pdf/290.pdf +1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb,http://research.microsoft.com/en-us/um/people/jiansun/papers/CVPR12_FaceAlignRegression.pdf +1dff919e51c262c22630955972968f38ba385d8a,http://pdfs.semanticscholar.org/1dff/919e51c262c22630955972968f38ba385d8a.pdf +1de8f38c35f14a27831130060810cf9471a62b45,http://www.psy.miami.edu/faculty/dmessinger/c_c/rsrcs/rdgs/emot/Unsupervised_Discovery.IJCompVis.2017.pdf +1da83903c8d476c64c14d6851c85060411830129,http://pdfs.semanticscholar.org/90c3/b003b85bd60ae06630bcef6abc03c3b1ef96.pdf +1d6068631a379adbcff5860ca2311b790df3a70f,http://pdfs.semanticscholar.org/c322/b1b998ec8f1892b29a1ebcbdc2f62e644cf1.pdf +1dacc2f4890431d867a038fd81c111d639cf4d7e,http://pdfs.semanticscholar.org/1dac/c2f4890431d867a038fd81c111d639cf4d7e.pdf +1dc6c0ad19b41e5190fc9fe50e3ae27f49f18fa2,http://www.researchgate.net/profile/Stefano_Alletto/publication/265611795_Head_Pose_Estimation_in_First-Person_Camera_Views/links/5416b5ef0cf2788c4b35e14b.pdf +1de690714f143a8eb0d6be35d98390257a3f4a47,http://www.cs.fsu.edu/~liux/research/publications/papers/waring-liu-face-detection-smcb-2005.pdf +1d6c09019149be2dc84b0c067595f782a5d17316,http://pdfs.semanticscholar.org/3e27/b747e272c2ab778df92ea802d30af15e43d6.pdf +1d58d83ee4f57351b6f3624ac7e727c944c0eb8d,http://parnec.nuaa.edu.cn/xtan/paper/amfg07_talk.pdf +71b376dbfa43a62d19ae614c87dd0b5f1312c966,http://www.cs.cmu.edu/~ltrutoiu/pdfs/FG2013_trutoiu.pdf +71b07c537a9e188b850192131bfe31ef206a39a0,http://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf +71fd29c2ae9cc9e4f959268674b6b563c06d9480,http://pdfs.semanticscholar.org/71fd/29c2ae9cc9e4f959268674b6b563c06d9480.pdf +71f36c8e17a5c080fab31fce1ffea9551fc49e47,http://openaccess.thecvf.com/content_cvpr_2014/papers/Zhang_Predicting_Failures_of_2014_CVPR_paper.pdf +71e6a46b32a8163c9eda69e1badcee6348f1f56a,http://pdfs.semanticscholar.org/71e6/a46b32a8163c9eda69e1badcee6348f1f56a.pdf +713594c18978b965be87651bb553c28f8501df0a,http://pdfs.semanticscholar.org/fbfc/a34d52422cf8eac9d92d68dd16f95db5ef36.pdf +718824256b4461d62d192ab9399cfc477d3660b4,http://pdfs.semanticscholar.org/7188/24256b4461d62d192ab9399cfc477d3660b4.pdf +718d3137adba9e3078fa1f698020b666449f3336,http://pdfs.semanticscholar.org/718d/3137adba9e3078fa1f698020b666449f3336.pdf +716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0,http://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf +7171b46d233810df57eaba44ccd8eabd0ad1f53a,http://pdfs.semanticscholar.org/7171/b46d233810df57eaba44ccd8eabd0ad1f53a.pdf +71e56f2aebeb3c4bb3687b104815e09bb4364102,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Guo_Video_Co-segmentation_for_2013_ICCV_paper.pdf +711bb5f63139ee7a9b9aef21533f959671a7d80e,http://pdfs.semanticscholar.org/711b/b5f63139ee7a9b9aef21533f959671a7d80e.pdf +76fd801981fd69ff1b18319c450cb80c4bc78959,http://pdfs.semanticscholar.org/76fd/801981fd69ff1b18319c450cb80c4bc78959.pdf +76dc11b2f141314343d1601635f721fdeef86fdb,http://pdfs.semanticscholar.org/8d19/1804f5b260807dac107b89a5837ac15857aa.pdf +76673de6d81bedd6b6be68953858c5f1aa467e61,http://pdfs.semanticscholar.org/8883/2abb9082af6a1395e1b9bd3d4c1b46d00616.pdf +7643861bb492bf303b25d0306462f8fb7dc29878,https://www-i6.informatik.rwth-aachen.de/publications/download/991/Hanselmann-FG-2015.pdf +760a712f570f7a618d9385c0cee7e4d0d6a78ed2,http://pdfs.semanticscholar.org/760a/712f570f7a618d9385c0cee7e4d0d6a78ed2.pdf +7698ba9fd1f49157ca2666a93311afbf1ff4e66c,http://www.ics.uci.edu/~dramanan/papers/dpm_acm.pdf +76ce3d35d9370f0e2e27cfd29ea0941f1462895f,http://pdfs.semanticscholar.org/76ce/3d35d9370f0e2e27cfd29ea0941f1462895f.pdf +76b9fe32d763e9abd75b427df413706c4170b95c,http://pdfs.semanticscholar.org/76b9/fe32d763e9abd75b427df413706c4170b95c.pdf +768c332650a44dee02f3d1d2be1debfa90a3946c,http://mmlab.ie.cuhk.edu.hk/archive/2004/CVPR04_Face3.pdf +769461ff717d987482b28b32b1e2a6e46570e3ff,http://pdfs.semanticscholar.org/7694/61ff717d987482b28b32b1e2a6e46570e3ff.pdf +76d9f5623d3a478677d3f519c6e061813e58e833,http://pdfs.semanticscholar.org/76d9/f5623d3a478677d3f519c6e061813e58e833.pdf +76e2d7621019bd45a5851740bd2742afdcf62837,http://pdfs.semanticscholar.org/76e2/d7621019bd45a5851740bd2742afdcf62837.pdf +765b2cb322646c52e20417c3b44b81f89860ff71,http://cg.cs.tsinghua.edu.cn/papers/TVCG_2013_poseshop.pdf +7644d90efef157e61fe4d773d8a3b0bad5feccec,http://pdfs.semanticscholar.org/7644/d90efef157e61fe4d773d8a3b0bad5feccec.pdf +763158cef9d1e4041f24fce4cf9d6a3b7a7f08ff,http://pdfs.semanticscholar.org/7631/58cef9d1e4041f24fce4cf9d6a3b7a7f08ff.pdf +76d939f73a327bf1087d91daa6a7824681d76ea1,http://pdfs.semanticscholar.org/76d9/39f73a327bf1087d91daa6a7824681d76ea1.pdf +760ba44792a383acd9ca8bef45765d11c55b48d4,http://class-specific.com/csf/papers/aes_tut.pdf +7636f94ddce79f3dea375c56fbdaaa0f4d9854aa,http://pdfs.semanticscholar.org/7636/f94ddce79f3dea375c56fbdaaa0f4d9854aa.pdf +1c80bc91c74d4984e6422e7b0856cf3cf28df1fb,http://refbase.cvc.uab.es/files/xrv2014d.pdf +1ce3a91214c94ed05f15343490981ec7cc810016,http://grail.cs.washington.edu/photobios/paper.pdf +1c2724243b27a18a2302f12dea79d9a1d4460e35,http://read.pudn.com/downloads157/doc/697237/kfd/Fisher+Kernel%20criterion%20for%20discriminant%20analysis.pdf +1ca8c09abb73a02519d8db77e4fe107acfc589b6,http://sci.pitt.edu/wp-content/uploads/2018/03/111_Zhang.pdf +1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,https://arxiv.org/pdf/1611.00142v2.pdf +1c30bb689a40a895bd089e55e0cad746e343d1e2,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf +1c4ceae745fe812d8251fda7aad03210448ae25e,http://pdfs.semanticscholar.org/98d3/6d12cf6f2da181a9c1fb9d652ceaa57eb7bb.pdf +1c3073b57000f9b6dbf1c5681c52d17c55d60fd7,http://pdfs.semanticscholar.org/1c30/73b57000f9b6dbf1c5681c52d17c55d60fd7.pdf +1cee993dc42626caf5dbc26c0a7790ca6571d01a,http://www.iri.upc.edu/people/fmoreno/Publications/2005/pdf/Moreno_siggraphsketch2005.pdf +1c147261f5ab1b8ee0a54021a3168fa191096df8,http://pdfs.semanticscholar.org/1c14/7261f5ab1b8ee0a54021a3168fa191096df8.pdf +1c5d7d02a26aa052ecc47d301de4929083e5d320,https://www.ll.mit.edu/news/avec2014_mitll.pdf +1c17450c4d616e1e1eece248c42eba4f87de9e0d,http://pdfs.semanticscholar.org/d269/39a00a8d3964de612cd3faa86764343d5622.pdf +1c93b48abdd3ef1021599095a1a5ab5e0e020dd5,http://www.stat.ucla.edu/~sczhu/papers/PAMI_FaceAging.pdf +1c1f957d85b59d23163583c421755869f248ceef,http://homepages.rpi.edu/~wuy9/ICCV15/FLD_iccv15.pdf +1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16,http://pdfs.semanticscholar.org/1cbd/3f96524ca2258fd2d5c504c7ea8da7fb1d16.pdf +1cad5d682393ffbb00fd26231532d36132582bb4,http://pdfs.semanticscholar.org/1cad/5d682393ffbb00fd26231532d36132582bb4.pdf +1c1a98df3d0d5e2034ea723994bdc85af45934db,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Jaiswal_Guided_Unsupervised_Learning_2013_ICCV_paper.pdf +1ca815327e62c70f4ee619a836e05183ef629567,http://www.humansensing.cs.cmu.edu/sites/default/files/Xiong_Global_Supervised_Descent_2015_CVPR_paper.pdf +1c6be6874e150898d9db984dd546e9e85c85724e,http://research.microsoft.com/~szli/papers/WHT-CVPR2004.pdf +1c65f3b3c70e1ea89114f955624d7adab620a013,http://pdfs.semanticscholar.org/ef34/cc2a26e88abd6a03d1a831c750440c6147d2.pdf +1c530de1a94ac70bf9086e39af1712ea8d2d2781,http://pdfs.semanticscholar.org/1c53/0de1a94ac70bf9086e39af1712ea8d2d2781.pdf +82f8652c2059187b944ce65e87bacb6b765521f6,http://pdfs.semanticscholar.org/82f8/652c2059187b944ce65e87bacb6b765521f6.pdf +82bef8481207de9970c4dc8b1d0e17dced706352,http://pdfs.semanticscholar.org/82be/f8481207de9970c4dc8b1d0e17dced706352.pdf +82d2af2ffa106160a183371946e466021876870d,http://pdfs.semanticscholar.org/82d2/af2ffa106160a183371946e466021876870d.pdf +82be2ede6b7613286b80c3e2afe3b5353f322bed,http://www.eecs.berkeley.edu/~jiayq/papers/iccv11_mm.pdf +82ccd62f70e669ec770daf11d9611cab0a13047e,http://www.csse.uwa.edu.au/~ajmal/papers/Farshid_DICTA2013.pdf +82c303cf4852ad18116a2eea31e2291325bc19c3,http://pdfs.semanticscholar.org/82c3/03cf4852ad18116a2eea31e2291325bc19c3.pdf +8210fd10ef1de44265632589f8fc28bc439a57e6,http://www.ytzhang.net/files/publications/2015-tifs-sup-ae.pdf +82a4a35b2bae3e5c51f4d24ea5908c52973bd5be,http://pdfs.semanticscholar.org/82a4/a35b2bae3e5c51f4d24ea5908c52973bd5be.pdf +82cd5a5fec8a27887a35f1ecec684ec55eefad73,http://www.researchgate.net/profile/Giuseppe_Boccignone/publication/265793480_Using_Sparse_Coding_for_Landmark_Localization_in_Facial_Expressions/links/541bf80b0cf241a65a0ba53a.pdf +82f4e8f053d20be64d9318529af9fadd2e3547ef,http://pdfs.semanticscholar.org/82f4/e8f053d20be64d9318529af9fadd2e3547ef.pdf +82b43bc9213230af9db17322301cbdf81e2ce8cc,http://pdfs.semanticscholar.org/82b4/3bc9213230af9db17322301cbdf81e2ce8cc.pdf +82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,http://pdfs.semanticscholar.org/82d7/81b7b6b7c8c992e0cb13f7ec3989c8eafb3d.pdf +82e66c4832386cafcec16b92ac88088ffd1a1bc9,http://pdfs.semanticscholar.org/82e6/6c4832386cafcec16b92ac88088ffd1a1bc9.pdf +82d79658805f6c1aedf7b0b88b47b9555584d7ae,http://cheonji.kaist.ac.kr/pdfsrc/ic/2008_KHAn_IROS.pdf +826c66bd182b54fea3617192a242de1e4f16d020,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0001602.pdf +499f1d647d938235e9186d968b7bb2ab20f2726d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Xiong_Face_Recognition_via_2013_ICCV_paper.pdf +4919663c62174a9bc0cc7f60da8f96974b397ad2,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/EBIF_5-2-2010_v_5.pdf +49f70f707c2e030fe16059635df85c7625b5dc7e,http://pdfs.semanticscholar.org/55b7/59b3e94088488334e3af2d17710c5e1fce4b.pdf +4967b0acc50995aa4b28e576c404dc85fefb0601,http://pdfs.semanticscholar.org/4967/b0acc50995aa4b28e576c404dc85fefb0601.pdf +49820ae612b3c0590a8a78a725f4f378cb605cd1,http://pdfs.semanticscholar.org/4982/0ae612b3c0590a8a78a725f4f378cb605cd1.pdf +49dd4b359f8014e85ed7c106e7848049f852a304,http://pdfs.semanticscholar.org/49dd/4b359f8014e85ed7c106e7848049f852a304.pdf +49e85869fa2cbb31e2fd761951d0cdfa741d95f3,http://studentnet.cs.manchester.ac.uk/pgt/COMP61021/reference/adaptive-manifold-learning.pdf +49659fb64b1d47fdd569e41a8a6da6aa76612903,http://pdfs.semanticscholar.org/4965/9fb64b1d47fdd569e41a8a6da6aa76612903.pdf +490a217a4e9a30563f3a4442a7d04f0ea34442c8,http://pdfs.semanticscholar.org/490a/217a4e9a30563f3a4442a7d04f0ea34442c8.pdf +49a7949fabcdf01bbae1c2eb38946ee99f491857,http://pdfs.semanticscholar.org/49a7/949fabcdf01bbae1c2eb38946ee99f491857.pdf +4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Luo_A_Deep_Sum-Product_2013_ICCV_paper.pdf +499343a2fd9421dca608d206e25e53be84489f44,http://pdfs.semanticscholar.org/4993/43a2fd9421dca608d206e25e53be84489f44.pdf +498fd231d7983433dac37f3c97fb1eafcf065268,http://pdfs.semanticscholar.org/498f/d231d7983433dac37f3c97fb1eafcf065268.pdf +49e1aa3ecda55465641b2c2acc6583b32f3f1fc6,http://pdfs.semanticscholar.org/49e1/aa3ecda55465641b2c2acc6583b32f3f1fc6.pdf +499f2b005e960a145619305814a4e9aa6a1bba6a,http://pdfs.semanticscholar.org/499f/2b005e960a145619305814a4e9aa6a1bba6a.pdf +497bf2df484906e5430aa3045cf04a40c9225f94,http://pdfs.semanticscholar.org/497b/f2df484906e5430aa3045cf04a40c9225f94.pdf +492f41e800c52614c5519f830e72561db205e86c,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lv_A_Deep_Regression_CVPR_2017_paper.pdf +493ec9e567c5587c4cbeb5f08ca47408ca2d6571,http://pdfs.semanticscholar.org/493e/c9e567c5587c4cbeb5f08ca47408ca2d6571.pdf +49570b41bd9574bd9c600e24b269d945c645b7bd,http://pdfs.semanticscholar.org/4957/0b41bd9574bd9c600e24b269d945c645b7bd.pdf +496074fcbeefd88664b7bd945012ca22615d812e,http://pdfs.semanticscholar.org/4960/74fcbeefd88664b7bd945012ca22615d812e.pdf +40205181ed1406a6f101c5e38c5b4b9b583d06bc,http://pdfs.semanticscholar.org/4020/5181ed1406a6f101c5e38c5b4b9b583d06bc.pdf +40dab43abef32deaf875c2652133ea1e2c089223,http://pdfs.semanticscholar.org/40da/b43abef32deaf875c2652133ea1e2c089223.pdf +40b0fced8bc45f548ca7f79922e62478d2043220,http://pdfs.semanticscholar.org/40b0/fced8bc45f548ca7f79922e62478d2043220.pdf +405b43f4a52f70336ac1db36d5fa654600e9e643,http://pdfs.semanticscholar.org/405b/43f4a52f70336ac1db36d5fa654600e9e643.pdf +40b86ce698be51e36884edcc8937998979cd02ec,http://www.cs.bilkent.edu.tr/~duygulu/papers/SIU2006-face.pdf +40a74eea514b389b480d6fe8b359cb6ad31b644a,http://pdfs.semanticscholar.org/7ac4/2be6c1f01ccc42b28c0bfa77856cc75b65a2.pdf +40ee38d7ff2871761663d8634c3a4970ed1dc058,http://pdfs.semanticscholar.org/40ee/38d7ff2871761663d8634c3a4970ed1dc058.pdf +402f6db00251a15d1d92507887b17e1c50feebca,http://pdfs.semanticscholar.org/402f/6db00251a15d1d92507887b17e1c50feebca.pdf +404042a1dcfde338cf24bc2742c57c0fb1f48359,http://pdfs.semanticscholar.org/4040/42a1dcfde338cf24bc2742c57c0fb1f48359.pdf +4015e8195db6edb0ef8520709ca9cb2c46f29be7,http://pdfs.semanticscholar.org/4015/e8195db6edb0ef8520709ca9cb2c46f29be7.pdf +404776aa18031828f3d5dbceed39907f038a47fe,http://pdfs.semanticscholar.org/4047/76aa18031828f3d5dbceed39907f038a47fe.pdf +407bb798ab153bf6156ba2956f8cf93256b6910a,http://pdfs.semanticscholar.org/407b/b798ab153bf6156ba2956f8cf93256b6910a.pdf +400e6c777d5894db2f6538c8ebd1124352b1c064,http://www.ee.ucr.edu/~lan/papers/FG13.pdf +40fb4e8932fb6a8fef0dddfdda57a3e142c3e823,http://gavrila.net/Publications/cvpr08.pdf +405526dfc79de98f5bf3c97bf4aa9a287700f15d,http://pdfs.semanticscholar.org/8a6c/57fcd99a77982ec754e0b97fd67519ccb60c.pdf +40cd062438c280c76110e7a3a0b2cf5ef675052c,http://pdfs.semanticscholar.org/40cd/062438c280c76110e7a3a0b2cf5ef675052c.pdf +40a5b32e261dc5ccc1b5df5d5338b7d3fe10370d,http://pdfs.semanticscholar.org/40a5/b32e261dc5ccc1b5df5d5338b7d3fe10370d.pdf +40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a,http://pdfs.semanticscholar.org/cea3/8a329e98900923e9c962b0d58bf8e15405d6.pdf +40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,http://www.site.uottawa.ca/~wslee/publication/CCECE2006.pdf +40389b941a6901c190fb74e95dc170166fd7639d,http://pdfs.semanticscholar.org/56f7/dad4d6d98292061a2c1e399d9a0ecfbbbde3.pdf +4068574b8678a117d9a434360e9c12fe6232dae0,http://www.visionmeetscognition.org/fpic2014/Camera_Ready/Paper%2031.pdf +40c8cffd5aac68f59324733416b6b2959cb668fd,https://arxiv.org/pdf/1701.08341v1.pdf +40b10e330a5511a6a45f42c8b86da222504c717f,http://pdfs.semanticscholar.org/40b1/0e330a5511a6a45f42c8b86da222504c717f.pdf +40bb090a4e303f11168dce33ed992f51afe02ff7,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Deng_Marginal_Loss_for_CVPR_2017_paper.pdf +40ca925befa1f7e039f0cd40d57dbef6007b4416,https://arxiv.org/pdf/1706.07567v1.pdf +4042bbb4e74e0934f4afbedbe92dd3e37336b2f4,http://pdfs.semanticscholar.org/b35a/6b2f335c28696eb78a02e0b30ee59a3e3fd2.pdf +4026dc62475d2ff2876557fc2b0445be898cd380,http://pdfs.semanticscholar.org/4026/dc62475d2ff2876557fc2b0445be898cd380.pdf +40f127fa4459a69a9a21884ee93d286e99b54c5f,http://graphics.tu-bs.de/media/publications/stengel2013resolution.pdf +401e6b9ada571603b67377b336786801f5b54eee,http://pdfs.semanticscholar.org/401e/6b9ada571603b67377b336786801f5b54eee.pdf +406431d2286a50205a71f04e0b311ba858fc7b6c,http://pdfs.semanticscholar.org/4064/31d2286a50205a71f04e0b311ba858fc7b6c.pdf +40217a8c60e0a7d1735d4f631171aa6ed146e719,http://pdfs.semanticscholar.org/4021/7a8c60e0a7d1735d4f631171aa6ed146e719.pdf +2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9,http://pdfs.semanticscholar.org/71f1/c8d39e1fbf1083a4616a3496f5c397a2daf5.pdf +2eb37a3f362cffdcf5882a94a20a1212dfed25d9,http://pdfs.semanticscholar.org/2eb3/7a3f362cffdcf5882a94a20a1212dfed25d9.pdf +2e0addeffba4be98a6ad0460453fbab52616b139,http://pdfs.semanticscholar.org/3cd7/8b1f43ead1226554f450bafcb8fbe208b5f0.pdf +2e091b311ac48c18aaedbb5117e94213f1dbb529,http://pdfs.semanticscholar.org/b1a1/a049f1d78f6e3d072236237c467292ccd537.pdf +2e1415a814ae9abace5550e4893e13bd988c7ba1,http://pdfs.semanticscholar.org/2e14/15a814ae9abace5550e4893e13bd988c7ba1.pdf +2e0e056ed5927a4dc6e5c633715beb762628aeb0,http://pdfs.semanticscholar.org/2e0e/056ed5927a4dc6e5c633715beb762628aeb0.pdf +2e8a0cc071017845ee6f67bd0633b8167a47abed,https://arxiv.org/pdf/1303.6021v1.pdf +2e68190ebda2db8fb690e378fa213319ca915cf8,http://pdfs.semanticscholar.org/a705/804fa2e97ce23619b4f43da1b75fb138296d.pdf +2e157e8b57f679c2f1b8e16d6e934f52312f08f6,http://pdfs.semanticscholar.org/2e15/7e8b57f679c2f1b8e16d6e934f52312f08f6.pdf +2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd,http://research.microsoft.com/users/byzhang/publications/20-81_01.pdf +2e475f1d496456831599ce86d8bbbdada8ee57ed,http://www.l3s.de/~siersdorfer/sources/2015/www2015groupsourcing.pdf +2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522,http://pdfs.semanticscholar.org/2ef5/1b57c4a3743ac33e47e0dc6a40b0afcdd522.pdf +2e6cfeba49d327de21ae3186532e56cadeb57c02,http://openaccess.thecvf.com/content_ICCV_2017/papers/Wang_Real_Time_Eye_ICCV_2017_paper.pdf +2ee817981e02c4709d65870c140665ed25b005cc,http://www.umiacs.umd.edu/users/rama/Publications/Patel_ICARCV_2010.pdf +2e98329fdec27d4b3b9b894687e7d1352d828b1d,http://pdfs.semanticscholar.org/2e98/329fdec27d4b3b9b894687e7d1352d828b1d.pdf +2e19371a2d797ab9929b99c80d80f01a1fbf9479,http://pdfs.semanticscholar.org/2e19/371a2d797ab9929b99c80d80f01a1fbf9479.pdf +2ebc35d196cd975e1ccbc8e98694f20d7f52faf3,http://pdfs.semanticscholar.org/2ebc/35d196cd975e1ccbc8e98694f20d7f52faf3.pdf +2e3d081c8f0e10f138314c4d2c11064a981c1327,http://arxiv.org/pdf/1603.06015v1.pdf +2ef328e035b2b5501ceddc0052615d4cebac6f1f,http://mi.eng.cam.ac.uk/~ss965/semantic_transform.pdf +2e86402b354516d0a8392f75430156d629ca6281,https://arxiv.org/pdf/1604.03628v2.pdf +2ea78e128bec30fb1a623c55ad5d55bb99190bd2,http://pdfs.semanticscholar.org/2ea7/8e128bec30fb1a623c55ad5d55bb99190bd2.pdf +2e8eb9dc07deb5142a99bc861e0b6295574d1fbd,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Hejrati_Analysis_by_Synthesis_2014_CVPR_paper.pdf +2e0f5e72ad893b049f971bc99b67ebf254e194f7,http://pdfs.semanticscholar.org/2e0f/5e72ad893b049f971bc99b67ebf254e194f7.pdf +2e3c893ac11e1a566971f64ae30ac4a1f36f5bb5,http://pdfs.semanticscholar.org/cb94/9e849b20ddc157aaf648dca1e8c71463c288.pdf +2ed3ce5cf9e262bcc48a6bd998e7fb70cf8a971c,http://pdfs.semanticscholar.org/6abe/c94e0af01d9706d73dfd91fd76139c7d99e0.pdf +2edc6df161f6aadbef9c12408bdb367e72c3c967,http://www.infomus.org/Events/proceedings/ICMI2014/icmi/p514.pdf +2ec7d6a04c8c72cc194d7eab7456f73dfa501c8c,http://pdfs.semanticscholar.org/2ec7/d6a04c8c72cc194d7eab7456f73dfa501c8c.pdf +2eb9f1dbea71bdc57821dedbb587ff04f3a25f07,http://pdfs.semanticscholar.org/2eb9/f1dbea71bdc57821dedbb587ff04f3a25f07.pdf +2e1fd8d57425b727fd850d7710d38194fa6e2654,http://www.cs.toronto.edu/~afsaneh/JamiesonEtAl2007.pdf +2e1b1969ded4d63b69a5ec854350c0f74dc4de36,http://pdfs.semanticscholar.org/2e1b/1969ded4d63b69a5ec854350c0f74dc4de36.pdf +2be0ab87dc8f4005c37c523f712dd033c0685827,http://www3.ntu.edu.sg/home/EXDJiang/ICIP2013_4.pdf +2bb2ba7c96d40e269fc6a2d5384c739ff9fa16eb,http://jmcauley.ucsd.edu/data/amazon/sigir_draft.pdf +2bbe89f61a8d6d4d6e39fdcaf8c185f110a01c78,http://www3.ntu.edu.sg/home/wanggang/TIFS15.pdf +2b339ece73e3787f445c5b92078e8f82c9b1c522,http://pdfs.semanticscholar.org/7a2e/e06aaa3f342937225272951c0b6dd4309a7a.pdf +2b4d092d70efc13790d0c737c916b89952d4d8c7,http://pdfs.semanticscholar.org/2b4d/092d70efc13790d0c737c916b89952d4d8c7.pdf +2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f,http://pdfs.semanticscholar.org/2b0f/f4b82bac85c4f980c40b3dc4fde05d3cc23f.pdf +2b3ceb40dced78a824cf67054959e250aeaa573b,http://pdfs.semanticscholar.org/7493/4a2b65538f42701e15f7f532437db2beead2.pdf +2be8e06bc3a4662d0e4f5bcfea45631b8beca4d0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_028_ext.pdf +2bcec23ac1486f4106a3aa588b6589e9299aba70,http://pdfs.semanticscholar.org/2bce/c23ac1486f4106a3aa588b6589e9299aba70.pdf +2b773fe8f0246536c9c40671dfa307e98bf365ad,http://pdfs.semanticscholar.org/2b77/3fe8f0246536c9c40671dfa307e98bf365ad.pdf +2bf08d4cb8d1201a9866ee7c4852bfcbf8f8e7f1,http://mplab.ucsd.edu/~jake/haar.pdf +2be9144a1e66de127192b01907c862381f4011d1,http://www1.cs.columbia.edu/~belhumeur/conference/eye-iccv05.pdf +2bab44d3a4c5ca79fb8f87abfef4456d326a0445,http://www.mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mir25.pdf +2b0102d77d3d3f9bc55420d862075934f5c85bec,http://openaccess.thecvf.com/content_cvpr_2016/papers/Shao_Slicing_Convolutional_Neural_CVPR_2016_paper.pdf +2b435ee691718d0b55d057d9be4c3dbb8a81526e,http://pdfs.semanticscholar.org/43ef/472c2c09d1ae2f2e5fc35d6d3ab7578658b4.pdf +2b1327a51412646fcf96aa16329f6f74b42aba89,http://pdfs.semanticscholar.org/8296/cb7fea317fcd0a7ff6b7e4486ab869a7231e.pdf +2be1e2f2b7208fdf7a379da37a2097cfe52bc196,http://www2.cvl.isy.liu.se/Education/Graduate/artikelklubb/aryananda_icra09.pdf +2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,https://www.cse.iitb.ac.in/~sharat/icvgip.org/icvgip2010/papers/53.sethuram.134.pdf +2b64a8c1f584389b611198d47a750f5d74234426,http://pdfs.semanticscholar.org/fb11/6f00320a37d80ec32561d1ab9b795c943202.pdf +2b632f090c09435d089ff76220fd31fd314838ae,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Hajibabaei_Early_Adaptation_of_ICCV_2017_paper.pdf +2b10a07c35c453144f22e8c539bf9a23695e85fc,http://pdfs.semanticscholar.org/2b10/a07c35c453144f22e8c539bf9a23695e85fc.pdf +2b84630680e2c906f8d7ac528e2eb32c99ef203a,http://disi.unitn.it/~zen/data/acmmm14_zen3_orlando.pdf +2b507f659b341ed0f23106446de8e4322f4a3f7e,http://pdfs.semanticscholar.org/2b50/7f659b341ed0f23106446de8e4322f4a3f7e.pdf +2b7ef95822a4d577021df16607bf7b4a4514eb4b,http://pdfs.semanticscholar.org/b596/9178f843bfaecd0026d04c41e79bcb9edab5.pdf +2b8dfbd7cae8f412c6c943ab48c795514d53c4a7,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p529-bordei.pdf +2b1129efcbafa61da1d660de3b5c84b646540311,http://www.researchgate.net/profile/Haizhou_Ai/publication/221368891_Distributing_expressional_faces_in_2-D_emotional_space/links/546b431f0cf20dedafd52906.pdf +2bae810500388dd595f4ebe992c36e1443b048d2,http://pdfs.semanticscholar.org/2bae/810500388dd595f4ebe992c36e1443b048d2.pdf +2b42f83a720bd4156113ba5350add2df2673daf0,http://pdfs.semanticscholar.org/2b42/f83a720bd4156113ba5350add2df2673daf0.pdf +2bbbbe1873ad2800954058c749a00f30fe61ab17,http://pdfs.semanticscholar.org/2bbb/be1873ad2800954058c749a00f30fe61ab17.pdf +2baec98c19804bf19b480a9a0aa814078e28bb3d,http://eprints.eemcs.utwente.nl/26841/01/Pantic_Multi-conditional_Latent_Variable_Model.pdf +47fdbd64edd7d348713253cf362a9c21f98e4296,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C071_yamashita2015.pdf +47382cb7f501188a81bb2e10cfd7aed20285f376,http://pdfs.semanticscholar.org/4738/2cb7f501188a81bb2e10cfd7aed20285f376.pdf +473366f025c4a6e0783e6174ca914f9cb328fe70,http://pdfs.semanticscholar.org/f021/cbfa5f3483889c3980b62c6cec329c8c5aec.pdf +4793f11fbca4a7dba898b9fff68f70d868e2497c,http://pdfs.semanticscholar.org/4793/f11fbca4a7dba898b9fff68f70d868e2497c.pdf +470dbd3238b857f349ebf0efab0d2d6e9779073a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_062_ext.pdf +473031328c58b7461753e81251379331467f7a69,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W09/papers/Wang_Exploring_Fisher_Vector_2015_CVPR_paper.pdf +47638197d83a8f8174cdddc44a2c7101fa8301b7,http://grail.cs.washington.edu/wp-content/uploads/2015/08/saleh2013oad.pdf +47541d04ec24662c0be438531527323d983e958e,http://pdfs.semanticscholar.org/4754/1d04ec24662c0be438531527323d983e958e.pdf +476f177b026830f7b31e94bdb23b7a415578f9a4,http://vision.ece.ucsb.edu/sites/vision.ece.ucsb.edu/files/publications/karthikeyan_icip2012_subspace_final.pdf +474b461cd12c6d1a2fbd67184362631681defa9e,http://toc.proceedings.com/24478webtoc.pdf +472ba8dd4ec72b34e85e733bccebb115811fd726,http://pdfs.semanticscholar.org/472b/a8dd4ec72b34e85e733bccebb115811fd726.pdf +47ca2df3d657d7938d7253bed673505a6a819661,http://pdfs.semanticscholar.org/47ca/2df3d657d7938d7253bed673505a6a819661.pdf +47d4838087a7ac2b995f3c5eba02ecdd2c28ba14,http://pdfs.semanticscholar.org/b2b5/35118c5c4dfcc96f547274cdc05dde629976.pdf +47eba2f95679e106e463e8296c1f61f6ddfe815b,https://www.csie.ntu.edu.tw/~cyy/publications/papers/Shih2017DCF.pdf +47a2727bd60e43f3253247b6d6f63faf2b67c54b,http://openaccess.thecvf.com/content_cvpr_2016/papers/Fu_Semi-Supervised_Vocabulary-Informed_Learning_CVPR_2016_paper.pdf +47d3b923730746bfaabaab29a35634c5f72c3f04,http://pdfs.semanticscholar.org/47d3/b923730746bfaabaab29a35634c5f72c3f04.pdf +47e3029a3d4cf0a9b0e96252c3dc1f646e750b14,http://mmi.tudelft.nl/pub/dragos/_CompSysTech07.pdf +475e16577be1bfc0dd1f74f67bb651abd6d63524,http://pdfs.semanticscholar.org/475e/16577be1bfc0dd1f74f67bb651abd6d63524.pdf +471befc1b5167fcfbf5280aa7f908eff0489c72b,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Goudelis07a.pdf +47f8b3b3f249830b6e17888df4810f3d189daac1,http://pdfs.semanticscholar.org/fd44/c0c238fe90d6ca61864010abd94768fcde0c.pdf +47e8db3d9adb79a87c8c02b88f432f911eb45dc5,http://pdfs.semanticscholar.org/5f99/63990ab7dd888ab33393f712f8d5c1463348.pdf +47aeb3b82f54b5ae8142b4bdda7b614433e69b9a,http://pdfs.semanticscholar.org/5d06/437656dd94616d7d87260d5eb77513ded30f.pdf +47dabb566f2bdd6b3e4fa7efc941824d8b923a13,http://pdfs.semanticscholar.org/47da/bb566f2bdd6b3e4fa7efc941824d8b923a13.pdf +47f5f740e225281c02c8a2ae809be201458a854f,http://pdfs.semanticscholar.org/5241/ad03e9276d4acd1c51eaa7f44e2d04d07b68.pdf +47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa,http://pdfs.semanticscholar.org/d948/50abdd272a402cd2f00e5b85311d87c75b16.pdf +47a003e6bbfc5bf04a099ca53c67ddfdbea71315,http://www.researchgate.net/profile/Andrzej_Drygajlo/publication/228669241_Q-stack_aging_model_for_face_verification/links/09e4150f7ffb6d3946000000.pdf +47b508abdaa5661fe14c13e8eb21935b8940126b,http://pdfs.semanticscholar.org/47b5/08abdaa5661fe14c13e8eb21935b8940126b.pdf +477811ff147f99b21e3c28309abff1304106dbbe,http://pdfs.semanticscholar.org/f0f8/23511188d8c10b67512d23eb9cb7f3dd2f9a.pdf +47506951d2dc7c4bb4d2d33dd25b67a767e56680,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2015_04_15_BradyJ_IEEEHST_FP.pdf +473cbc5ec2609175041e1410bc6602b187d03b23,http://pdfs.semanticscholar.org/473c/bc5ec2609175041e1410bc6602b187d03b23.pdf +78216cd51e6e1cc014b83e27e7e78631ad44b899,http://www.ami-lab.org/uploads/Publications/Conference/WP4/Tracking%20facial%20features%20under%20occlusions%20and%20recognizing%20facial%20expressions%20in%20sign%20language.pdf +78a4cabf0afc94da123e299df5b32550cd638939,http://pdfs.semanticscholar.org/78a4/cabf0afc94da123e299df5b32550cd638939.pdf +78f08cc9f845dc112f892a67e279a8366663e26d,http://pdfs.semanticscholar.org/78f0/8cc9f845dc112f892a67e279a8366663e26d.pdf +78d645d5b426247e9c8f359694080186681f57db,http://pdfs.semanticscholar.org/78d6/45d5b426247e9c8f359694080186681f57db.pdf +7862d40da0d4e33cd6f5c71bbdb47377e4c6b95a,https://arxiv.org/pdf/1709.07598v1.pdf +783f3fccde99931bb900dce91357a6268afecc52,http://pdfs.semanticscholar.org/d1ea/f2cc9dfc6cdbc5468ef2152c46e9111a3f3b.pdf +7897c8a9361b427f7b07249d21eb9315db189496,https://arxiv.org/pdf/1102.2743v2.pdf +7859667ed6c05a467dfc8a322ecd0f5e2337db56,http://pdfs.semanticscholar.org/7859/667ed6c05a467dfc8a322ecd0f5e2337db56.pdf +78436256ff8f2e448b28e854ebec5e8d8306cf21,http://pdfs.semanticscholar.org/7843/6256ff8f2e448b28e854ebec5e8d8306cf21.pdf +78f438ed17f08bfe71dfb205ac447ce0561250c6,http://pdfs.semanticscholar.org/78f4/38ed17f08bfe71dfb205ac447ce0561250c6.pdf +78f79c83b50ff94d3e922bed392737b47f93aa06,http://mplab.ucsd.edu/wp-content/uploads/2011-LittlewortEtAl-FG-CERT.pdf +78fede85d6595e7a0939095821121f8bfae05da6,http://pdfs.semanticscholar.org/78fe/de85d6595e7a0939095821121f8bfae05da6.pdf +7862f646d640cbf9f88e5ba94a7d642e2a552ec9,http://pdfs.semanticscholar.org/7862/f646d640cbf9f88e5ba94a7d642e2a552ec9.pdf +78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c,http://pdfs.semanticscholar.org/78a1/1b7d2d7e1b19d92d2afd51bd3624eca86c3c.pdf +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,https://graphics.stanford.edu/papers/ib-relighting/ib-relighting.pdf +781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7ed,https://ivi.fnwi.uva.nl/isis/publications/2017/JainIJCV2017/JainIJCV2017.pdf +78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e,http://arxiv.org/pdf/1503.01224.pdf +780557daaa39a445b24c41f637d5fc9b216a0621,http://www.ee.columbia.edu/ln/dvmm/publications/15/EventNetDemo.pdf +78fdf2b98cf6380623b0e20b0005a452e736181e,http://pdfs.semanticscholar.org/78fd/f2b98cf6380623b0e20b0005a452e736181e.pdf +788a7b59ea72e23ef4f86dc9abb4450efefeca41,http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf +787c1bb6d1f2341c5909a0d6d7314bced96f4681,http://pdfs.semanticscholar.org/787c/1bb6d1f2341c5909a0d6d7314bced96f4681.pdf +7808937b46acad36e43c30ae4e9f3fd57462853d,http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf +8ba67f45fbb1ce47a90df38f21834db37c840079,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/dsp006-chen.pdf +8b547b87fd95c8ff6a74f89a2b072b60ec0a3351,http://pdfs.semanticscholar.org/8b54/7b87fd95c8ff6a74f89a2b072b60ec0a3351.pdf +8b7191a2b8ab3ba97423b979da6ffc39cb53f46b,http://www.eurecom.fr/fr/publication/3472/download/mm-publi-3472.pdf +8bf57dc0dd45ed969ad9690033d44af24fd18e05,http://pdfs.semanticscholar.org/8bf5/7dc0dd45ed969ad9690033d44af24fd18e05.pdf +8bf243817112ac0aa1348b40a065bb0b735cdb9c,http://pdfs.semanticscholar.org/8bf2/43817112ac0aa1348b40a065bb0b735cdb9c.pdf +8bfada57140aa1aa22a575e960c2a71140083293,http://pdfs.semanticscholar.org/8bfa/da57140aa1aa22a575e960c2a71140083293.pdf +8b8728edc536020bc4871dc66b26a191f6658f7c,http://pdfs.semanticscholar.org/8b87/28edc536020bc4871dc66b26a191f6658f7c.pdf +8bbbdff11e88327816cad3c565f4ab1bb3ee20db,https://eprints.soton.ac.uk/410731/1/FG_soton_paper.pdf +8b10383ef569ea0029a2c4a60cc2d8c87391b4db,http://pdfs.semanticscholar.org/fe2d/20dca6dcedc7944cc2d9fea76de6cbb9d90c.pdf +8bfec7afcf5015017406fc04c43c1f43eb723631,http://www.umiacs.umd.edu/users/pvishalm/Journal_pub/DCS_TAC_2013.pdf +8b30259a8ab07394d4dac971f3d3bd633beac811,http://pdfs.semanticscholar.org/8b30/259a8ab07394d4dac971f3d3bd633beac811.pdf +8b19efa16a9e73125ab973429eb769d0ad5a8208,http://pdfs.semanticscholar.org/8b19/efa16a9e73125ab973429eb769d0ad5a8208.pdf +8b6fded4d08bf0b7c56966b60562ee096af1f0c4,http://pdfs.semanticscholar.org/8b6f/ded4d08bf0b7c56966b60562ee096af1f0c4.pdf +8bf647fed40bdc9e35560021636dfb892a46720e,https://arxiv.org/pdf/1612.04061v1.pdf +8b2704a5218a6ef70e553eaf0a463bd55129b69d,http://pdfs.semanticscholar.org/8b27/04a5218a6ef70e553eaf0a463bd55129b69d.pdf +8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,http://pdfs.semanticscholar.org/8bb2/1b1f8d6952d77cae95b4e0b8964c9e0201b0.pdf +8b1db0894a23c4d6535b5adf28692f795559be90,http://pdfs.semanticscholar.org/8b1d/b0894a23c4d6535b5adf28692f795559be90.pdf +8b2e3805b37c18618b74b243e7a6098018556559,http://pdfs.semanticscholar.org/8b2e/3805b37c18618b74b243e7a6098018556559.pdf +8b74252625c91375f55cbdd2e6415e752a281d10,http://epubs.surrey.ac.uk/813060/1/camgoz2016icprw.pdf +133f42368e63928dc860cce7618f30ee186d328c,http://pdfs.semanticscholar.org/50bd/1c76a5051db0b13fd76e7a633884ad49d5a8.pdf +134aad8153ab78345b2581efac2fe175a3084154,http://www.cs.utexas.edu/~ai-lab/pubs/vijayanarasimhan_grauman_cvpr2008.pdf +13719bbb4bb8bbe0cbcdad009243a926d93be433,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Tian_Deep_LDA-Pruned_Nets_CVPR_2017_paper.pdf +134db6ca13f808a848321d3998e4fe4cdc52fbc2,http://ibug.doc.ic.ac.uk/media/uploads/documents/PanticPatras-SMCB-2005-FINAL.pdf +133dd0f23e52c4e7bf254e8849ac6f8b17fcd22d,http://www.stat.ucla.edu/~caiming/pubs/1402.1783v2.pdf +1329206dbdb0a2b9e23102e1340c17bd2b2adcf5,http://pdfs.semanticscholar.org/a2f4/06c8babac96b2108c530974c4d3132106d42.pdf +1369e9f174760ea592a94177dbcab9ed29be1649,http://geza.kzoo.edu/~erdi/IJCNN2013/HTMLFiles/PDFs/P393-1401.pdf +133900a0e7450979c9491951a5f1c2a403a180f0,http://rlair.cs.ucr.edu/papers/docs/socgroup.pdf +13bda03fc8984d5943ed8d02e49a779d27c84114,http://www-ljk.imag.fr/Publications/Basilic/com.lmc.publi.PUBLI_Inproceedings@13730f58c78_1669a2e/cevikalp-cvpr12.pdf +13db9466d2ddf3c30b0fd66db8bfe6289e880802,http://pdfs.semanticscholar.org/13db/9466d2ddf3c30b0fd66db8bfe6289e880802.pdf +13a994d489c15d440c1238fc1ac37dad06dd928c,http://pdfs.semanticscholar.org/13a9/94d489c15d440c1238fc1ac37dad06dd928c.pdf +131178dad3c056458e0400bed7ee1a36de1b2918,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Deng_Visual_Reranking_through_2013_ICCV_paper.pdf +13141284f1a7e1fe255f5c2b22c09e32f0a4d465,http://www.micc.unifi.it/pernici/index_files/ALIEN_final.pdf +132527383890565d18f1b7ad50d76dfad2f14972,http://pdfs.semanticscholar.org/1325/27383890565d18f1b7ad50d76dfad2f14972.pdf +1394ca71fc52db972366602a6643dc3e65ee8726,https://www.cl.cam.ac.uk/~tb346/pub/papers/icmi2016EmoReact.pdf +137aa2f891d474fce1e7a1d1e9b3aefe21e22b34,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf +13b1b18b9cfa6c8c44addb9a81fe10b0e89db32a,http://www.sfu.ca/~smuralid/papers/thesis.pdf +131130f105661a47e0ffb85c2fe21595785f948a,http://pdfs.semanticscholar.org/1311/30f105661a47e0ffb85c2fe21595785f948a.pdf +1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,http://pdfs.semanticscholar.org/e5c5/e5531aaa661c223088454572de11d2f266c3.pdf +133da0d8c7719a219537f4a11c915bf74c320da7,http://pdfs.semanticscholar.org/4f4f/920eb43399d8d05b42808e45b56bdd36a929.pdf +13c250fb740cb5616aeb474869db6ab11560e2a6,http://pdfs.semanticscholar.org/13c2/50fb740cb5616aeb474869db6ab11560e2a6.pdf +13940d0cc90dbf854a58f92d533ce7053aac024a,http://pdfs.semanticscholar.org/949c/a8a6997aba88a162a36d48047f35ba8d0aab.pdf +133f01aec1534604d184d56de866a4bd531dac87,http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf +131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1,http://pdfs.semanticscholar.org/131b/fa2ae6a04fd3b921ccb82b1c3f18a400a9c1.pdf +13841d54c55bd74964d877b4b517fa94650d9b65,http://www98.griffith.edu.au/dspace/bitstream/handle/10072/30001/60226_1.pdf?sequence=1 +1389ba6c3ff34cdf452ede130c738f37dca7e8cb,http://pdfs.semanticscholar.org/1389/ba6c3ff34cdf452ede130c738f37dca7e8cb.pdf +131e395c94999c55c53afead65d81be61cd349a4,http://pdfs.semanticscholar.org/2c3f/aeaf0fe103e1e6cb8c2116728e2a5c7b7f29.pdf +1384a83e557b96883a6bffdb8433517ec52d0bea,http://pdfs.semanticscholar.org/6be6/392550222ca07ba4c47931bffaedace72d24.pdf +13fd0a4d06f30a665fc0f6938cea6572f3b496f7,http://pdfs.semanticscholar.org/13fd/0a4d06f30a665fc0f6938cea6572f3b496f7.pdf +132f88626f6760d769c95984212ed0915790b625,http://pdfs.semanticscholar.org/132f/88626f6760d769c95984212ed0915790b625.pdf +13f6ab2f245b4a871720b95045c41a4204626814,http://pdfs.semanticscholar.org/9d74/382b6c4209c49de7c2b0fab7b34483ba0ddb.pdf +13be4f13dac6c9a93f969f823c4b8c88f607a8c4,http://www1.ece.neu.edu/~yuewu/files/2016/p242-robinson.pdf +13afc4f8d08f766479577db2083f9632544c7ea6,https://cs.anu.edu.au/few/KSikka_EmotiW.pdf +13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd,http://pdfs.semanticscholar.org/1318/8a88bbf83a18dd4964e3f89d0bc0a4d3a0bd.pdf +13d9da779138af990d761ef84556e3e5c1e0eb94,http://www.cs.berkeley.edu/~malik/papers/ferencz-learnedmiller-malik08.pdf +7f57e9939560562727344c1c987416285ef76cda,http://people.cs.vt.edu/~gangwang/class/cs6604/papers/face.pdf +7fc5b6130e9d474dfb49d9612b6aa0297d481c8e,http://pdfs.semanticscholar.org/7fc5/b6130e9d474dfb49d9612b6aa0297d481c8e.pdf +7fce5769a7d9c69248178989a99d1231daa4fce9,http://pdfs.semanticscholar.org/7fce/5769a7d9c69248178989a99d1231daa4fce9.pdf +7fa2605676c589a7d1a90d759f8d7832940118b5,http://www.ces.clemson.edu/~stb/publications/willimon_clothing_classification_icra2013.pdf +7ff42ee09c9b1a508080837a3dc2ea780a1a839b,http://pdfs.semanticscholar.org/7ff4/2ee09c9b1a508080837a3dc2ea780a1a839b.pdf +7f533bd8f32525e2934a66a5b57d9143d7a89ee1,http://pdfs.semanticscholar.org/7f53/3bd8f32525e2934a66a5b57d9143d7a89ee1.pdf +7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5,http://www.cs.cmu.edu/~epxing/papers/2015/Zhao_Xing_IJCV15.pdf +7f6061c83dc36633911e4d726a497cdc1f31e58a,http://pdfs.semanticscholar.org/7f60/61c83dc36633911e4d726a497cdc1f31e58a.pdf +7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,http://pdfs.semanticscholar.org/d5a4/c2757619a1f2c8d9a879e6f26f539a4a18f2.pdf +7f82f8a416170e259b217186c9e38a9b05cb3eb4,http://pdfs.semanticscholar.org/7f82/f8a416170e259b217186c9e38a9b05cb3eb4.pdf +7f36dd9ead29649ed389306790faf3b390dc0aa2,http://pdfs.semanticscholar.org/7f36/dd9ead29649ed389306790faf3b390dc0aa2.pdf +7f6cd03e3b7b63fca7170e317b3bb072ec9889e0,http://pdfs.semanticscholar.org/7f6c/d03e3b7b63fca7170e317b3bb072ec9889e0.pdf +7f6599e674a33ed64549cd512ad75bdbd28c7f6c,http://pdfs.semanticscholar.org/7f65/99e674a33ed64549cd512ad75bdbd28c7f6c.pdf +7f9260c00a86a0d53df14469f1fa10e318ee2a3c,http://www.cse.msu.edu/~stockman/Book/projects.html/F06Docs/Papers/daugemanIrisICIP02.pdf +7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae,http://pdfs.semanticscholar.org/7f97/a36a5a634c30de5a8e8b2d1c812ca9f971ae.pdf +7f2a4cd506fe84dee26c0fb41848cb219305173f,http://pdfs.semanticscholar.org/7f2a/4cd506fe84dee26c0fb41848cb219305173f.pdf +7fd700f4a010d765c506841de9884df394c1de1c,http://www.kyb.tuebingen.mpg.de/publications/attachments/CVPR2008-Blaschko_5069%5B0%5D.pdf +7f59657c883f77dc26393c2f9ed3d19bdf51137b,http://pdfs.semanticscholar.org/7f59/657c883f77dc26393c2f9ed3d19bdf51137b.pdf +7ffc5c58e5b61ac7c45d8e6ed076248051ebea34,http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/238/1/SMCB_C_34_5_04.pdf +7f23a4bb0c777dd72cca7665a5f370ac7980217e,http://pdfs.semanticscholar.org/ce70/fecc7150816e081b422cbc157bd9019cdf25.pdf +7fb6bc6c920ca574677f0d3a40c5c377a095885b,http://www.cs.bris.ac.uk/Publications/Papers/2000124.pdf +7f268f29d2c8f58cea4946536f5e2325777fa8fa,http://pdfs.semanticscholar.org/7f26/8f29d2c8f58cea4946536f5e2325777fa8fa.pdf +7fc3442c8b4c96300ad3e860ee0310edb086de94,http://pdfs.semanticscholar.org/82f3/b7cacc15e026fd3a7639091d54162f6ae064.pdf +7f3a73babe733520112c0199ff8d26ddfc7038a0,http://pdfs.semanticscholar.org/7f3a/73babe733520112c0199ff8d26ddfc7038a0.pdf +7f8d44e7fd2605d580683e47bb185de7f9ea9e28,http://pdfs.semanticscholar.org/c84f/88b2a764ddcc22c4971827d58024b6017496.pdf +7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3a,http://pdfs.semanticscholar.org/7f1f/3d7b1a4e7fc895b77cb23b1119a6f13e4d3a.pdf +7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/He_Robust_FEC-CNN_A_CVPR_2017_paper.pdf +7f205b9fca7e66ac80758c4d6caabe148deb8581,http://pdfs.semanticscholar.org/7f20/5b9fca7e66ac80758c4d6caabe148deb8581.pdf +7fd6bb30ad5d7eb3078efbb85f94d2d60e701115,http://pdfs.semanticscholar.org/7fd6/bb30ad5d7eb3078efbb85f94d2d60e701115.pdf +7fc76446d2b11fc0479df6e285723ceb4244d4ef,http://pdfs.semanticscholar.org/7fc7/6446d2b11fc0479df6e285723ceb4244d4ef.pdf +7a9ef21a7f59a47ce53b1dff2dd49a8289bb5098,http://pdfs.semanticscholar.org/7a9e/f21a7f59a47ce53b1dff2dd49a8289bb5098.pdf +7af38f6dcfbe1cd89f2307776bcaa09c54c30a8b,http://pdfs.semanticscholar.org/7af3/8f6dcfbe1cd89f2307776bcaa09c54c30a8b.pdf +7ae0212d6bf8a067b468f2a78054c64ea6a577ce,http://pdfs.semanticscholar.org/7ae0/212d6bf8a067b468f2a78054c64ea6a577ce.pdf +7a9c317734acaf4b9bd8e07dd99221c457b94171,http://pdfs.semanticscholar.org/7a9c/317734acaf4b9bd8e07dd99221c457b94171.pdf +7a0fb972e524cb9115cae655e24f2ae0cfe448e0,http://pdfs.semanticscholar.org/7a0f/b972e524cb9115cae655e24f2ae0cfe448e0.pdf +7ad77b6e727795a12fdacd1f328f4f904471233f,https://ueaeprints.uea.ac.uk/65008/1/Accepted_manuscript.pdf +7a7f2403e3cc7207e76475e8f27a501c21320a44,http://www.apsipa2013.org/wp-content/uploads/2013/05/395_Emotion-recognition-Wu-2928773.pdf +7aafeb9aab48fb2c34bed4b86755ac71e3f00338,http://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf +7a84368ebb1a20cc0882237a4947efc81c56c0c0,https://ibug.doc.ic.ac.uk/media/uploads/documents/iccv_final.pdf +7aa4c16a8e1481629f16167dea313fe9256abb42,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf +7ad1638f7d76c7e885bc84cd694c60f109f02159,https://www.researchgate.net/profile/Wen-Jing_Yan/publication/236120483_Face_Recognition_and_Micro-expression_Recognition_Based_on_Discriminant_Tensor_Subspace_Analysis_Plus_Extreme_Learning_Machine/links/0deec51adcddd72a4f000000.pdf +7a6d9f89e0925a220fe3dfba4f0d2745f8be6c9a,http://www.faceplusplus.com/wp-content/uploads/2014/11/Learning-Compact-Face-Representation-Packing-a-Face-into-an-int32.pdf +7a85b3ab0efb6b6fcb034ce13145156ee9d10598,http://pdfs.semanticscholar.org/7a85/b3ab0efb6b6fcb034ce13145156ee9d10598.pdf +7ab930146f4b5946ec59459f8473c700bcc89233,http://pdfs.semanticscholar.org/7ab9/30146f4b5946ec59459f8473c700bcc89233.pdf +7a65fc9e78eff3ab6062707deaadde024d2fad40,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf +7ad7897740e701eae455457ea74ac10f8b307bed,http://pdfs.semanticscholar.org/7ad7/897740e701eae455457ea74ac10f8b307bed.pdf +7a1ce696e260899688cb705f243adf73c679f0d9,http://www.cse.msu.edu/~rossarun/pubs/SwearingenRossLabelPropagation_BIOSIG2016.pdf +7a061e7eab865fc8d2ef00e029b7070719ad2e9a,http://cvrr.ucsd.edu/ece285/papers/from_WI13/Ramanan_IJCV2013.pdf +7ab7befcd319d55d26c1e4b7b9560da5763906f3,http://www.researchgate.net/profile/Lee_Ping-Han/publication/236160185_Facial_Trait_Code/links/0c96051e26825bd65a000000.pdf +7a8c2743db1749c2d9f16f62ee633574c1176e34,http://pdfs.semanticscholar.org/7a8c/2743db1749c2d9f16f62ee633574c1176e34.pdf +1451e7b11e66c86104f9391b80d9fb422fb11c01,http://pdfs.semanticscholar.org/1451/e7b11e66c86104f9391b80d9fb422fb11c01.pdf +14761b89152aa1fc280a33ea4d77b723df4e3864,http://pdfs.semanticscholar.org/1476/1b89152aa1fc280a33ea4d77b723df4e3864.pdf +14b87359f6874ff9b8ee234b18b418e57e75b762,http://pdfs.semanticscholar.org/1b62/6c14544f249cd52ef86a4efc17f3d3834003.pdf +14fdec563788af3202ce71c021dd8b300ae33051,http://pdfs.semanticscholar.org/14fd/ec563788af3202ce71c021dd8b300ae33051.pdf +142e5b4492bc83b36191be4445ef0b8b770bf4b0,http://pdfs.semanticscholar.org/142e/5b4492bc83b36191be4445ef0b8b770bf4b0.pdf +14b016c7a87d142f4b9a0e6dc470dcfc073af517,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912 +14b66748d7c8f3752dca23991254fca81b6ee86c,http://pdfs.semanticscholar.org/4e92/a8dcfd802c3248d56ba16d2613dceacaef59.pdf +14e8dbc0db89ef722c3c198ae19bde58138e88bf,http://ascl.cis.fiu.edu/uploads/1/3/4/2/13423859/amini-lisetti-acii-2013-final.pdf +14fa27234fa2112014eda23da16af606db7f3637,http://pdfs.semanticscholar.org/14fa/27234fa2112014eda23da16af606db7f3637.pdf +1459d4d16088379c3748322ab0835f50300d9a38,https://arxiv.org/pdf/1605.04039v1.pdf +14e949f5754f9e5160e8bfa3f1364dd92c2bb8d6,http://pdfs.semanticscholar.org/4b76/694ff2efb302074adf1ba6052d643177abd1.pdf +146bbf00298ee1caecde3d74e59a2b8773d2c0fc,http://pdfs.semanticscholar.org/146b/bf00298ee1caecde3d74e59a2b8773d2c0fc.pdf +14e9158daf17985ccbb15c9cd31cf457e5551990,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf +14ce7635ff18318e7094417d0f92acbec6669f1c,http://www.cs.tau.ac.il/~wolf/papers/deepface_11_01_2013.pdf +143f7a51058b743a0d43026a523d9bbbc1ae43a8,http://www.researchgate.net/profile/Shinichi_Satoh/publication/221368838_An_efficient_method_for_face_retrieval_from_large_video_datasets/links/0912f510a0404c605f000000.pdf +14d4c019c3eac3c3fa888cb8c184f31457eced02,http://pdfs.semanticscholar.org/14d4/c019c3eac3c3fa888cb8c184f31457eced02.pdf +1450296fb936d666f2f11454cc8f0108e2306741,http://pdfs.semanticscholar.org/1450/296fb936d666f2f11454cc8f0108e2306741.pdf +140438a77a771a8fb656b39a78ff488066eb6b50,http://homes.cs.washington.edu/~neeraj/base/publications/base/papers/nk_cvpr2011_faceparts.pdf +143bee9120bcd7df29a0f2ad6f0f0abfb23977b8,http://pdfs.semanticscholar.org/143b/ee9120bcd7df29a0f2ad6f0f0abfb23977b8.pdf +14d72dc9f78d65534c68c3ed57305f14bd4b5753,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yan_Exploiting_Multi-Grain_Ranking_ICCV_2017_paper.pdf +14b162c2581aea1c0ffe84e7e9273ab075820f52,http://pdfs.semanticscholar.org/4b87/c72e53f19e29f2ccf4d24f9432ebbafcf1a8.pdf +14ff9c89f00dacc8e0c13c94f9fadcd90e4e604d,https://www.comp.nus.edu.sg/~tsim/documents/cascade-cf-landmarks.pdf +14fdce01c958043140e3af0a7f274517b235adf3,http://pdfs.semanticscholar.org/14fd/ce01c958043140e3af0a7f274517b235adf3.pdf +14b69626b64106bff20e17cf8681790254d1e81c,http://pdfs.semanticscholar.org/14b6/9626b64106bff20e17cf8681790254d1e81c.pdf +14070478b8f0d84e5597c3e67c30af91b5c3a917,http://pdfs.semanticscholar.org/f0a5/f885aa14ac2bbb3cc8e4c7530f2449b2f160.pdf +14fb3283d4e37760b7dc044a1e2906e3cbf4d23a,http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/felix_yu_attribute_cvpr2012.pdf +14811696e75ce09fd84b75fdd0569c241ae02f12,https://jurie.users.greyc.fr/papers/cvpr08-cevikalp.pdf +141eab5f7e164e4ef40dd7bc19df9c31bd200c5e,http://www.jdl.ac.cn/doc/2006/Local%20Linear%20Regression%20(LLR)%20for%20Pose%20Invariant%20Face%20Recognition.pdf +14e759cb019aaf812d6ac049fde54f40c4ed1468,http://pdfs.semanticscholar.org/14e7/59cb019aaf812d6ac049fde54f40c4ed1468.pdf +146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,https://arxiv.org/pdf/1611.06158v1.pdf +148eb413bede35487198ce7851997bf8721ea2d6,http://pdfs.semanticscholar.org/148e/b413bede35487198ce7851997bf8721ea2d6.pdf +1462bc73834e070201acd6e3eaddd23ce3c1a114,http://pdfs.semanticscholar.org/1462/bc73834e070201acd6e3eaddd23ce3c1a114.pdf +14014a1bdeb5d63563b68b52593e3ac1e3ce7312,http://pdfs.semanticscholar.org/1401/4a1bdeb5d63563b68b52593e3ac1e3ce7312.pdf +1473a233465ea664031d985e10e21de927314c94,http://pdfs.semanticscholar.org/e985/0501e707f8783172ecacfe0cd29159abda34.pdf +140c95e53c619eac594d70f6369f518adfea12ef,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf +14418ae9a6a8de2b428acb2c00064da129632f3e,http://fanyix.cs.ucdavis.edu/project/discovery/files/ext_abstract.pdf +14ba910c46d659871843b31d5be6cba59843a8b8,http://www.crcv.ucf.edu/papers/cvpr2013/ortiz_vfr_trailers.pdf +1467c4ab821c3b340abe05a1b13a19318ebbce98,http://pdfs.semanticscholar.org/1467/c4ab821c3b340abe05a1b13a19318ebbce98.pdf +14318d2b5f2cf731134a6964d8193ad761d86942,http://pdfs.semanticscholar.org/1431/8d2b5f2cf731134a6964d8193ad761d86942.pdf +142dcfc3c62b1f30a13f1f49c608be3e62033042,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Tsai_Adaptive_Region_Pooling_2015_CVPR_paper.pdf +14c0f9dc9373bea1e27b11fa0594c86c9e632c8d,http://openaccess.thecvf.com/content_iccv_2015/papers/Dang_Adaptive_Exponential_Smoothing_ICCV_2015_paper.pdf +1439bf9ba7ff97df9a2da6dae4784e68794da184,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Ptucha_LGE-KSVD_Flexible_Dictionary_2013_CVPR_paper.pdf +141768ab49a5a9f5adcf0cf7e43a23471a7e5d82,http://arxiv.org/pdf/1405.0085v1.pdf +14e428f2ff3dc5cf96e5742eedb156c1ea12ece1,http://www.univ-soukahras.dz/eprints/2014-150-03190.pdf +14bca107bb25c4dce89210049bf39ecd55f18568,http://pdfs.semanticscholar.org/6f56/b0fada68f36d78cf20148fd13de8bce8a93d.pdf +14a5feadd4209d21fa308e7a942967ea7c13b7b6,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001025.pdf +8ec82da82416bb8da8cdf2140c740e1574eaf84f,http://pdfs.semanticscholar.org/8ec8/2da82416bb8da8cdf2140c740e1574eaf84f.pdf +8ee62f7d59aa949b4a943453824e03f4ce19e500,http://arxiv.org/pdf/1603.09732v1.pdf +8e0ede53dc94a4bfcf1238869bf1113f2a37b667,http://www.ri.cmu.edu/pub_files/2015/6/jpml_final.pdf +8e33183a0ed7141aa4fa9d87ef3be334727c76c0,http://pdfs.semanticscholar.org/8e33/183a0ed7141aa4fa9d87ef3be334727c76c0.pdf +8e94ed0d7606408a0833e69c3185d6dcbe22bbbe,http://www.wjscheirer.com/papers/wjs_wacv2012_eyes.pdf +8eb9aa6349db3dd1b724266fcd5fc39a83da022a,http://www.hcii-lab.net/2009/%5BICIP%202009%5D%20A%20Novel%20feature%20extraction%20using%20PHOG%20for%20Smile%20Recognition.pdf +8e461978359b056d1b4770508e7a567dbed49776,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sikka_LOMo_Latent_Ordinal_CVPR_2016_paper.pdf +8e4808e71c9b9f852dc9558d7ef41566639137f3,http://pdfs.semanticscholar.org/8e48/08e71c9b9f852dc9558d7ef41566639137f3.pdf +8ea30ade85880b94b74b56a9bac013585cb4c34b,http://www.eurecom.fr/fr/publication/1392/download/mm-perrfl-040517.pdf +8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,http://pdfs.semanticscholar.org/bff6/c3acd48f34c671c48fae9b3fdf60f5d7b363.pdf +8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125,https://www.wjscheirer.com/papers/wjs_btas2012_smt.pdf +8e378ef01171b33c59c17ff5798f30293fe30686,http://pdfs.semanticscholar.org/8e37/8ef01171b33c59c17ff5798f30293fe30686.pdf +8ed051be31309a71b75e584bc812b71a0344a019,http://www.vision.caltech.edu/~bart/Publications/2007/BartUllmanMBE.pdf +8ee5b1c9fb0bded3578113c738060290403ed472,https://infoscience.epfl.ch/record/200452/files/wacv2014-RGE.pdf +8efda5708bbcf658d4f567e3866e3549fe045bbb,http://pdfs.semanticscholar.org/8efd/a5708bbcf658d4f567e3866e3549fe045bbb.pdf +225fb9181545f8750061c7693661b62d715dc542,http://pdfs.semanticscholar.org/c592/e408d95c838bced90b79640bead7c226fe64.pdf +22043cbd2b70cb8195d8d0500460ddc00ddb1a62,http://uir.ulster.ac.uk/37137/2/Separability-Oriented%20Subclass%20Discriminant%20Analysis.pdf +22137ce9c01a8fdebf92ef35407a5a5d18730dde,http://pdfs.semanticscholar.org/2213/7ce9c01a8fdebf92ef35407a5a5d18730dde.pdf +22e2066acfb795ac4db3f97d2ac176d6ca41836c,http://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf +22717ad3ad1dfcbb0fd2f866da63abbde9af0b09,http://pdfs.semanticscholar.org/2271/7ad3ad1dfcbb0fd2f866da63abbde9af0b09.pdf +224d0eee53c2aa5d426d2c9b7fa5d843a47cf1db,http://www.ifp.illinois.edu/~jyang29/papers/CVPR13-PEM.pdf +2288696b6558b7397bdebe3aed77bedec7b9c0a9,http://pdfs.semanticscholar.org/2288/696b6558b7397bdebe3aed77bedec7b9c0a9.pdf +22bebedc1a5f3556cb4f577bdbe032299a2865e8,http://pdfs.semanticscholar.org/22be/bedc1a5f3556cb4f577bdbe032299a2865e8.pdf +22264e60f1dfbc7d0b52549d1de560993dd96e46,http://arxiv.org/pdf/1608.01471v1.pdf +22dada4a7ba85625824489375184ba1c3f7f0c8f,http://arxiv.org/pdf/1506.02328v1.pdf +221252be5d5be3b3e53b3bbbe7a9930d9d8cad69,http://pdfs.semanticscholar.org/2212/52be5d5be3b3e53b3bbbe7a9930d9d8cad69.pdf +223ec77652c268b98c298327d42aacea8f3ce23f,http://pdfs.semanticscholar.org/223e/c77652c268b98c298327d42aacea8f3ce23f.pdf +22df6b6c87d26f51c0ccf3d4dddad07ce839deb0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Yu_Fast_Action_Proposals_2015_CVPR_paper.pdf +228558a2a38a6937e3c7b1775144fea290d65d6c,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Smith_Nonparametric_Context_Modeling_2014_CVPR_paper.pdf +22fdd8d65463f520f054bf4f6d2d216b54fc5677,http://pdfs.semanticscholar.org/22fd/d8d65463f520f054bf4f6d2d216b54fc5677.pdf +2251a88fbccb0228d6d846b60ac3eeabe468e0f1,http://pdfs.semanticscholar.org/2251/a88fbccb0228d6d846b60ac3eeabe468e0f1.pdf +22e678d3e915218a7c09af0d1602e73080658bb7,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/04/13.pdf +22ad2c8c0f4d6aa4328b38d894b814ec22579761,http://nichol.as/papers/Gallagher/Clothing%20Cosegmentation%20for%20Recognizing%20People.pdf +226a5ff790b969593596a52b55b3718dcdd7bb7f,https://www.cise.ufl.edu/~jho/papers/IEEE06.pdf +227b18fab568472bf14f9665cedfb95ed33e5fce,https://arxiv.org/pdf/1308.0271v2.pdf +2241eda10b76efd84f3c05bdd836619b4a3df97e,http://arxiv.org/pdf/1506.01342v5.pdf +22646cf884cc7093b0db2c1731bd52f43682eaa8,http://pdfs.semanticscholar.org/2264/6cf884cc7093b0db2c1731bd52f43682eaa8.pdf +22f94c43dd8b203f073f782d91e701108909690b,http://pdfs.semanticscholar.org/22f9/4c43dd8b203f073f782d91e701108909690b.pdf +22dabd4f092e7f3bdaf352edd925ecc59821e168,http://dro.deakin.edu.au/eserv/DU:30044576/venkatesh-exploitingside-2008.pdf +22f656d0f8426c84a33a267977f511f127bfd7f3,https://arxiv.org/pdf/1609.06426v2.pdf +22143664860c6356d3de3556ddebe3652f9c912a,http://pdfs.semanticscholar.org/2214/3664860c6356d3de3556ddebe3652f9c912a.pdf +2271d554787fdad561fafc6e9f742eea94d35518,http://pdfs.semanticscholar.org/2271/d554787fdad561fafc6e9f742eea94d35518.pdf +22ec256400e53cee35f999244fb9ba6ba11c1d06,http://pdfs.semanticscholar.org/2dbd/f0093228eee11ce9ef17365055dada756413.pdf +22ec8af0f0e5469e40592d29e28cfbdf1154c666,http://pdfs.semanticscholar.org/aa07/2c823da778a2b8bf1fc79141b3b228a14e99.pdf +22a7f1aebdb57eecd64be2a1f03aef25f9b0e9a7,http://pdfs.semanticscholar.org/22a7/f1aebdb57eecd64be2a1f03aef25f9b0e9a7.pdf +22e189a813529a8f43ad76b318207d9a4b6de71a,http://openaccess.thecvf.com/content_ICCV_2017/papers/Felsen_What_Will_Happen_ICCV_2017_paper.pdf +25d514d26ecbc147becf4117512523412e1f060b,http://www.iab-rubric.org/papers/2015_ICB_CrowdVideoFaceDataset.pdf +25c19d8c85462b3b0926820ee5a92fc55b81c35a,http://www.brl.ntt.co.jp/people/kumano/papers/Kumano.IJCV2009.pdf +258a8c6710a9b0c2dc3818333ec035730062b1a5,http://pdfs.semanticscholar.org/258a/8c6710a9b0c2dc3818333ec035730062b1a5.pdf +25695abfe51209798f3b68fb42cfad7a96356f1f,http://pdfs.semanticscholar.org/2569/5abfe51209798f3b68fb42cfad7a96356f1f.pdf +250ebcd1a8da31f0071d07954eea4426bb80644c,http://pdfs.semanticscholar.org/2e26/8598d9c2fd9757ba43f7967e57b8a2a871f4.pdf +2525f336af31178b836e27f8c60056e18f1455d2,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2017/TEMPORALLY%20ENHANCED%20IMAGE%20OBJECT%20PROPOSALS%20FOR%20VIDEOS.pdf +25337690fed69033ef1ce6944e5b78c4f06ffb81,http://pdfs.semanticscholar.org/2533/7690fed69033ef1ce6944e5b78c4f06ffb81.pdf +25c3cdbde7054fbc647d8be0d746373e7b64d150,http://openaccess.thecvf.com/content_cvpr_2016/papers/Ouyang_ForgetMeNot_Memory-Aware_Forensic_CVPR_2016_paper.pdf +25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,http://pdfs.semanticscholar.org/25bf/288b2d896f3c9dab7e7c3e9f9302e7d6806b.pdf +251281d9cbd207038efbde0515f4077541967239,http://staff.estem-uc.edu.au/roland/files/2009/05/Ramana-Murthy_Radwan_Goecke_ICIP2014_DenseBodyPartTrajectoriesForHumanActionRecognition.pdf +25d3e122fec578a14226dc7c007fb1f05ddf97f7,https://ibug.doc.ic.ac.uk/media/uploads/documents/pdf17.pdf +2597b0dccdf3d89eaffd32e202570b1fbbedd1d6,http://pdfs.semanticscholar.org/26f3/03ae1912c16f08523a7d8db926e35114e8f0.pdf +25c108a56e4cb757b62911639a40e9caf07f1b4f,https://arxiv.org/pdf/1707.09531v2.pdf +2594a77a3f0dd5073f79ba620e2f287804cec630,https://arxiv.org/pdf/1702.06925v1.pdf +25e2d3122d4926edaab56a576925ae7a88d68a77,http://pdfs.semanticscholar.org/25e2/d3122d4926edaab56a576925ae7a88d68a77.pdf +25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8,http://arxiv.org/pdf/1408.6027v2.pdf +2559b15f8d4a57694a0a33bdc4ac95c479a3c79a,http://vision.ucsd.edu/~carolina/files/mklmnn.pdf +256ef946b4cecd8889df8d799d0c9175ae986af9,https://pdfs.semanticscholar.org/cd73/8347673151b378f447119fe2665f5c8c2215.pdf +2574860616d7ffa653eb002bbaca53686bc71cdd,http://pdfs.semanticscholar.org/e01d/f3e6faffad3f304f6c40b133ae1dcf326662.pdf +2564848f094f7c1cd5e599aa907947b10b5c7df2,http://prr.hec.gov.pk/Thesis/252S.pdf +25f1f195c0efd84c221b62d1256a8625cb4b450c,http://www.ee.oulu.fi/~gyzhao/Papers/2007/04284844-ICME.pdf +25885e9292957feb89dcb4a30e77218ffe7b9868,http://pdfs.semanticscholar.org/2588/5e9292957feb89dcb4a30e77218ffe7b9868.pdf +259706f1fd85e2e900e757d2656ca289363e74aa,http://pdfs.semanticscholar.org/6f98/3e8f26066f2ea486f6653b87154360d948ca.pdf +25b2811118ed73c64682544fe78023bb8242c709,http://www.researchgate.net/profile/Xueyin_Lin/publication/4193803_Kernel-based_multifactor_analysis_for_image_synthesis_and_recognition/links/00b7d51a9fd4fb9962000000.pdf +25728e08b0ee482ee6ced79c74d4735bb5478e29,http://pdfs.semanticscholar.org/2572/8e08b0ee482ee6ced79c74d4735bb5478e29.pdf +258a2dad71cb47c71f408fa0611a4864532f5eba,http://pdfs.semanticscholar.org/258a/2dad71cb47c71f408fa0611a4864532f5eba.pdf +25127c2d9f14d36f03d200a65de8446f6a0e3bd6,http://pdfs.semanticscholar.org/2512/7c2d9f14d36f03d200a65de8446f6a0e3bd6.pdf diff --git a/scraper/reports/misc/db_paper_pdf_list.csv b/scraper/reports/misc/db_paper_pdf_list.csv new file mode 100644 index 00000000..e8a675d3 --- /dev/null +++ b/scraper/reports/misc/db_paper_pdf_list.csv @@ -0,0 +1,7615 @@ +Paper ID,PDF URL,IEEE URL,DOI URL,Extra URL +611961abc4dfc02b67edd8124abb08c449f5280a,http://pdfs.semanticscholar.org/6119/61abc4dfc02b67edd8124abb08c449f5280a.pdf,,https://doi.org/10.5244/C.29.60,http://www.bmva.org/bmvc/2015/papers/paper060/abstract060.pdf +61831364ddc8db869618f1c7f0ad35ab2ab6bcf7,,,https://doi.org/10.1109/ICIP.2013.6738496, +61a3c45c9f802f9d5fa8d94fee811e203bac6487,,,https://doi.org/10.1109/TIFS.2016.2567318, +6144af24ce06af7d8cdd606e79cea5d6e73e2135,,,, +6159908dec4bc2c1102f416f8a52a31bf3e666a4,,,https://doi.org/10.1109/ICIP.2012.6467431, +610a4451423ad7f82916c736cd8adb86a5a64c59,http://pdfs.semanticscholar.org/610a/4451423ad7f82916c736cd8adb86a5a64c59.pdf,,,http://www.ijarcsse.com/docs/papers/Volume_4/11_November2014/V4I11-0296.pdf +6196f4be3b28684f6528b8687adccbdf9ac5c67c,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.267 +6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2,http://pdfs.semanticscholar.org/6156/eaad00aad74c90cbcfd822fa0c9bd4eb14c2.pdf,,https://doi.org/10.1007/978-3-642-33868-7_33,https://pdfs.semanticscholar.org/6156/eaad00aad74c90cbcfd822fa0c9bd4eb14c2.pdf +612b8eda338fcde9400ea93779741282fe4132d6,,,, +61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,http://pdfs.semanticscholar.org/61ff/edd8a70a78332c2bbdc9feba6c3d1fd4f1b8.pdf,,,http://www.ece.rice.edu/~eld1/pubs/Dyer_JMLR13.pdf +61084a25ebe736e8f6d7a6e53b2c20d9723c4608,http://pdfs.semanticscholar.org/6108/4a25ebe736e8f6d7a6e53b2c20d9723c4608.pdf,,https://doi.org/10.1016/j.cviu.2013.09.004,http://briancbecker.com/files/downloads/publications/Ortiz_CVIU13.pdf +61542874efb0b4c125389793d8131f9f99995671,http://pdfs.semanticscholar.org/6154/2874efb0b4c125389793d8131f9f99995671.pdf,,,https://arxiv.org/pdf/1802.02531v1.pdf +61f93ed515b3bfac822deed348d9e21d5dffe373,http://dvmmweb.cs.columbia.edu/files/set_hash_wacv17.pdf,,https://doi.org/10.1109/WACV.2017.143,http://www.ee.columbia.edu/ln/dvmm/publications/17/set_hash_wacv17.pdf +6180bc0816b1776ca4b32ced8ea45c3c9ce56b47,http://pdfs.semanticscholar.org/793e/92ed3f89c8636c8ca1175c1183ba812da245.pdf,,,https://cloudfront.escholarship.org/dist/prd/content/qt5hq130q6/qt5hq130q6.pdf +61f1b14f04d2fa1d8a556adbdf93050b4637f44b,http://www.caam.rice.edu/~wy1/paperfiles/T.Chen%20W.Yin%20X.Zhou%20D.Comaniciu%20T.Huang%20-%20Total%20variation%20models%20for%20variable%20lighting%20face%20recognition.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.195 +612075999e82596f3b42a80e6996712cc52880a3,https://www.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Publications/Publications-2017/PID4875389.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078554 +614a7c42aae8946c7ad4c36b53290860f6256441,https://arxiv.org/pdf/1604.02878.pdf,,https://doi.org/10.1109/LSP.2016.2603342,https://zhzhanp.github.io/papers/SPL2016.pdf +61b22b1016bf13aca8d2e57c4e5e004d423f4865,,,https://doi.org/10.1109/TCYB.2016.2526630, +616d3d6d82dbc2697d150e879996d878ef74faef,https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2016_Khorrami_ICIP_FP.pdf,,https://doi.org/10.1109/ICIP.2016.7532431,http://arxiv.org/pdf/1602.07377v2.pdf +61bc124537f414f6fcb4d1ff476681b5a0ee222a,,,,http://doi.ieeecomputersociety.org/10.1109/WIW.2016.043 +0d90c992dd08bfb06df50ab5c5c77ce83061e830,,,https://doi.org/10.1109/UIC-ATC.2013.85, +0d746111135c2e7f91443869003d05cde3044beb,https://arxiv.org/pdf/1603.09364v1.pdf,,https://doi.org/10.1109/ICIP.2016.7532908,http://arxiv.org/abs/1603.09364 +0d7fcdb99dc0d65b510f2b0b09d3d3cfed390261,,,https://doi.org/10.1109/IJCB.2011.6117508, +0d6d9c4b5dd282b8f29cd3c200df02a00141f0a9,,,https://doi.org/10.1109/SIU.2014.6830193, +0d88ab0250748410a1bc990b67ab2efb370ade5d,http://signal.ee.bilkent.edu.tr/defevent/abstract/a1795.pdf,http://ieeexplore.ieee.org/document/7078366/,,http://signal.ee.bilkent.edu.tr/defevent/papers/cr1795.pdf +0db43ed25d63d801ce745fe04ca3e8b363bf3147,http://pdfs.semanticscholar.org/0db4/3ed25d63d801ce745fe04ca3e8b363bf3147.pdf,,,http://arxiv.org/abs/1207.3538 +0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,http://ca.cs.cmu.edu/sites/default/files/132010_CVPR_AU_Long.pdf,,,http://www.humansensing.cs.cmu.edu/projects/seg_au/2010_cvpr_au.pdf +0d538084f664b4b7c0e11899d08da31aead87c32,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Deformable_Part_Descriptors_2013_ICCV_paper.pdf,,,https://people.eecs.berkeley.edu/~nzhang/papers/dpd_poster_Ning.pdf +0dccc881cb9b474186a01fd60eb3a3e061fa6546,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_104_ext.pdf,,https://doi.org/10.1109/CVPR.2015.7299058,http://arxiv.org/abs/1411.7964 +0d467adaf936b112f570970c5210bdb3c626a717,http://pdfs.semanticscholar.org/0d46/7adaf936b112f570970c5210bdb3c626a717.pdf,,,https://lmb.informatik.uni-freiburg.de/Publications/2016/IMKDB16/FlowNet_2_0_Supplemental__arXiv.pdf +0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306,http://pdfs.semanticscholar.org/0d6b/28691e1aa2a17ffaa98b9b38ac3140fb3306.pdf,,,http://www.ijcsit.com/docs/Volume%206/vol6issue01/ijcsit2015060131.pdf +0d9815f62498db21f06ee0a9cc8b166acc93888e,,,https://doi.org/10.1016/j.neucom.2007.12.018, +0d8cec1b3f9b6e25d9d31eeb54d8894a1f2ef84f,,,https://doi.org/10.1109/LSP.2018.2810121, +0de91641f37b0a81a892e4c914b46d05d33fd36e,https://ibug.doc.ic.ac.uk/media/uploads/documents/raps.pdf,,,http://eprints.eemcs.utwente.nl/25816/01/Pantic_RAPS_Robust_and_Efficient_Automatic_Construction.pdf +0d3ff34d8490a9a53de1aac1dea70172cb02e013,,,https://doi.org/10.1109/ICPR.2014.542, +0df0d1adea39a5bef318b74faa37de7f3e00b452,https://scalable.mpi-inf.mpg.de/files/2015/09/zhang_CVPR15.pdf,,,https://arxiv.org/pdf/1504.02863v1.pdf +0deea943ac4dc1be822c02f97d0c6c97e201ba8d,,,, +0de1450369cb57e77ef61cd334c3192226e2b4c2,,,https://doi.org/10.1109/BTAS.2017.8272747, +0d3bb75852098b25d90f31d2f48fd0cb4944702b,http://stefan.winklerbros.net/Publications/icip2014a.pdf,,https://doi.org/10.1109/ICIP.2014.7025068,http://stefan.winkler.net/Publications/icip2014a.pdf +0d7652652c742149d925c4fb5c851f7c17382ab8,,,https://doi.org/10.1016/j.neucom.2015.05.057, +0da3c329ae14a4032b3ba38d4ea808cf6d115c4a,,,https://doi.org/10.1007/s00138-015-0709-7, +0db8e6eb861ed9a70305c1839eaef34f2c85bbaf,https://arxiv.org/pdf/1704.06244v1.pdf,,,http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/iccv17_face_frontalization.pdf +0d902541c26f03ff95221e0e71d67c39e094a61d,https://arxiv.org/pdf/1506.05085v1.pdf,,https://doi.org/10.1109/TNNLS.2017.2651018,http://arxiv.org/pdf/1506.05085v2.pdf +0d75c7d9a00f859cffe7d0bd78dd35d0b4bc7fa6,,,https://doi.org/10.1109/LSP.2005.863661, +0db1207563a66343cc7cb7b54356c767fc8b876c,,,, +0d0b880e2b531c45ee8227166a489bf35a528cb9,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhang_Structure_Preserving_Object_2013_CVPR_paper.pdf,,,http://www.cs.ucf.edu/courses/cap6412/spr2014/papers/SPOT-CVPR2013.pdf +0d3882b22da23497e5de8b7750b71f3a4b0aac6b,http://pdfs.semanticscholar.org/0d38/82b22da23497e5de8b7750b71f3a4b0aac6b.pdf,,,http://www.affective-science.org/pubs/2010/Barrett_Kensinger_2010.pdf +0dbf4232fcbd52eb4599dc0760b18fcc1e9546e9,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553740.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553740 +0d760e7d762fa449737ad51431f3ff938d6803fe,https://arxiv.org/pdf/1705.05922v1.pdf,,,https://vision.cornell.edu/se3/wp-content/uploads/2017/07/LCDet_CVPRW.pdf +0d3068b352c3733c9e1cc75e449bf7df1f7b10a4,http://users.cecs.anu.edu.au/~adhall/Dhall_ACII_DC_2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.111 +0dd72887465046b0f8fc655793c6eaaac9c03a3d,http://pdfs.semanticscholar.org/e112/df5539821a00dfa818617bf95f901f016763.pdf,,https://doi.org/10.1007/978-3-319-16811-1_6,https://pdfs.semanticscholar.org/0dd7/2887465046b0f8fc655793c6eaaac9c03a3d.pdf +0d087aaa6e2753099789cd9943495fbbd08437c0,http://pdfs.semanticscholar.org/beab/b0d9d30871d517c5d915cf852f7f5293f52f.pdf,,,http://arxiv.org/abs/1712.00311 +0d98750028ea7b84b86e6fec3e67d61e4f690d09,,,https://doi.org/10.1109/ACSSC.2015.7421092, +0d5824e14593bcb349d636d255ba274f98bbb88f,http://www.researchgate.net/profile/Claus_Neubauer/publication/224716248_A_Variational_Bayesian_Approach_for_Classification_with_Corrupted_Inputs/links/00b7d52dd1f690da64000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383102 +0d8415a56660d3969449e77095be46ef0254a448,http://www.lv-nus.org/papers/2004/2004_C_6.pdf,,https://doi.org/10.1109/TCSVT.2007.893837, +0dfa460a35f7cab4705726b6367557b9f7842c65,https://arxiv.org/pdf/1504.01561v1.pdf,,,http://doi.acm.org/10.1145/2733373.2806222 +0db371a6bc8794557b1bffc308814f53470e885a,,,https://doi.org/10.1007/s13042-015-0380-3, +0d3b167b52e9f0bf509e3af003ea320e6070b665,,,, +0d14261e69a4ad4140ce17c1d1cea76af6546056,http://pdfs.semanticscholar.org/0d14/261e69a4ad4140ce17c1d1cea76af6546056.pdf,,https://doi.org/10.1007/978-3-642-17289-2_13,https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/Projects/Toyota/Downloads/Caunce_ISVC10.pdf +0dbacb4fd069462841ebb26e1454b4d147cd8e98,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Nikitidis11c.pdf,,https://doi.org/10.1109/ACPR.2011.6166712,http://ibug.doc.ic.ac.uk/media/uploads/documents/acpr2011.pdf +0db36bf08140d53807595b6313201a7339470cfe,http://www.cfar.umd.edu/~rama/Publications/Shroff_CVPR_2010.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539864 +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,https://cs.uwaterloo.ca/~jhoey/papers/DhallICMI16.pdf,,,http://doi.acm.org/10.1145/2993148.2997638 +0d735e7552af0d1dcd856a8740401916e54b7eee,http://pdfs.semanticscholar.org/915f/f5da6658e800eb7ec1c8f3f26281e18d3cbf.pdf,,,http://ivizlab.sfu.ca/arya/Papers/Others/Neural%20Network%20That%20Categorizes%20Facial%20Expressions.pdf +0d06b3a4132d8a2effed115a89617e0a702c957a,http://arxiv.org/pdf/1605.08680v1.pdf,,https://doi.org/10.1109/IJCNN.2016.7727496,https://arxiv.org/pdf/1605.08680v1.pdf +0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e,http://pdfs.semanticscholar.org/0d2d/d4fc016cb6a517d8fb43a7cc3ff62964832e.pdf,,https://doi.org/10.1016/j.patrec.2017.03.006,https://arxiv.org/pdf/1602.06149v1.pdf +0d4d8ce029deead6f2ce7075047aa645299ddd41,,,, +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,http://pdfs.semanticscholar.org/0d1d/9a603b08649264f6e3b6d5a66bf1e1ac39d2.pdf,,,http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1339&context=usarmyresearch +951368a1a8b3c5cd286726050b8bdf75a80f7c37,https://vision.cornell.edu/se3/wp-content/uploads/2014/09/osb_iccv09_cam.pdf,,,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/osb_iccv09_cam.pdf +95f1790da3d0a4a5310a050512ce355b3c5aac86,,,https://doi.org/10.1109/ICIP.2016.7533142, +956e9b69b3366ed3e1670609b53ba4a7088b8b7e,http://pdfs.semanticscholar.org/956e/9b69b3366ed3e1670609b53ba4a7088b8b7e.pdf,,,http://yqsong.googlepages.com/article.pdf +956317de62bd3024d4ea5a62effe8d6623a64e53,https://research-repository.griffith.edu.au/bitstream/handle/10072/17889/47024_1.pdf;jsessionid=2146D7EB83BAD65DE653E0056477D61A?sequence=1,,https://doi.org/10.1109/DICTA.2007.4426825, +95023e3505263fac60b1759975f33090275768f3,,,,http://doi.acm.org/10.1145/2856767.2856770 +951f21a5671a4cd14b1ef1728dfe305bda72366f,http://pdfs.semanticscholar.org/951f/21a5671a4cd14b1ef1728dfe305bda72366f.pdf,,,https://www.ijsr.net/archive/v3i11/T0NUMTQ4Mjg=.pdf +95f26d1c80217706c00b6b4b605a448032b93b75,http://pdfs.semanticscholar.org/95f2/6d1c80217706c00b6b4b605a448032b93b75.pdf,,,http://www.researchgate.net/profile/Jin-Xing_Liu/publication/230646031_New_robust_face_recognition_methods_based_on_linear_regression/links/004635249518e588c8000000.pdf +95f12d27c3b4914e0668a268360948bce92f7db3,http://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf,,https://doi.org/10.1007/978-3-642-33712-3_49,http://www.ifp.illinois.edu/~vuongle2/helen/eccv2012_helen_final.pdf +95aef5184b89daebd0c820c8102f331ea7cae1ad,http://www.dia.fi.upm.es/~pcr/publications/paa2008.pdf,,https://doi.org/10.1007/s10044-007-0084-8,http://www.springerlink.com/content/q075h33723m475k1/fulltext.pdf +952138ae6534fad573dca0e6b221cdf042a36412,,,,http://doi.ieeecomputersociety.org/10.1109/DICTA.2005.38 +9547a7bce2b85ef159b2d7c1b73dea82827a449f,http://tdlc.ucsd.edu/research/publications/Wu_Bartlett_Movellan_Facial_Expression_2010.pdf,,https://doi.org/10.1109/CVPRW.2010.5543267,http://mplab.ucsd.edu/~marni/pubs/Wu_CVPR_2010.pdf +9513503867b29b10223f17c86e47034371b6eb4f,http://pdfs.semanticscholar.org/9513/503867b29b10223f17c86e47034371b6eb4f.pdf,,https://doi.org/10.1007/978-3-642-10520-3_105,https://users.isy.liu.se/en/cvl/zografos/publications/ISVC09.pdf +955e2a39f51c0b6f967199942d77625009e580f9,http://pdfs.semanticscholar.org/955e/2a39f51c0b6f967199942d77625009e580f9.pdf,,,http://www.cs.bilkent.edu.tr/tech-reports/2010/BU-CE-1012.pdf +956c634343e49319a5e3cba4f2bd2360bdcbc075,http://www.cse.ust.hk/~jamesk/papers/tsmc06.pdf,,,http://www.csee.wvu.edu/~richas/ML-Papers/incremental%20PCA.pdf +950bf95da60fd4e77d5159254fed906d5ed5fbcb,,,,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.24 +95d0cd902ff0fa253b6757ba3c8e09ce25b494cc,,,, +9590b09c34fffda08c8f54faffa379e478f84b04,,,https://doi.org/10.1109/TNNLS.2013.2275170, +95008358a631a10ee3c24bfa2bf0c39d136a916e,,,, +958c599a6f01678513849637bec5dc5dba592394,http://pdfs.semanticscholar.org/958c/599a6f01678513849637bec5dc5dba592394.pdf,,,https://arxiv.org/pdf/1710.07455v1.pdf +95e7cf27a8ee62b63ed9d1ecb02a7016e9a680a6,,,https://doi.org/10.1007/s11063-013-9322-9, +59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb,http://www.ccvcl.org/~wei/pdf/CNNExpRecog_CamReady.pdf,,https://doi.org/10.1109/MVA.2015.7153185,http://visionlab.engr.ccny.cuny.edu/ccvcl/assets/publications/140/paper/CNNExpRecog-MVA15_0029_Final.pdf +591a737c158be7b131121d87d9d81b471c400dba,http://affect.media.mit.edu/pdfs/10.McDuff-etal-Affect-2010.pdf,,https://doi.org/10.1109/CVPRW.2010.5543833, +59690814e916d1c0e7aa9190678ba847cbd0046f,http://figment.cse.usf.edu/~sfefilat/data/papers/ThBCT8.7.pdf,,https://doi.org/10.1109/ICPR.2008.4761296, +59bfeac0635d3f1f4891106ae0262b81841b06e4,http://pdfs.semanticscholar.org/59bf/eac0635d3f1f4891106ae0262b81841b06e4.pdf,,,http://www.cse.ucsc.edu/~milanfar/publications/journal/TIFS_Revised.pdf +59cdafed4eeb8ff7c9bb2d4ecd0edeb8a361ffc1,http://pdfs.semanticscholar.org/59cd/afed4eeb8ff7c9bb2d4ecd0edeb8a361ffc1.pdf,,,http://rspublication.com/ijca/JUNE12/37.pdf +590628a9584e500f3e7f349ba7e2046c8c273fcf,http://pdfs.semanticscholar.org/6893/c573d7abd3847d6ea2f0e79b6924ca124372.pdf,,,http://arxiv.org/pdf/1603.06059v3.pdf +593234ba1d2e16a887207bf65d6b55bbc7ea2247,http://pdfs.semanticscholar.org/73c4/47ea9f75b0ffbdd35c957aed88fe80b2ac07.pdf,,https://doi.org/10.1007/978-3-642-35749-7_2,http://www.researchgate.net/profile/Marcus_Rohrbach/publication/260106935_Combining_Language_Sources_and_Robust_Semantic_Relatedness_for_Attribute-Based_Knowledge_Transfer/links/54fb60070cf270426d0dcbfe.pdf +5957936195c10521dadc9b90ca9b159eb1fc4871,,,https://doi.org/10.1109/TCE.2016.7838098, +59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552862 +59eefa01c067a33a0b9bad31c882e2710748ea24,http://pdfs.semanticscholar.org/59ee/fa01c067a33a0b9bad31c882e2710748ea24.pdf,,,https://arxiv.org/pdf/1708.09580v1.pdf +59e2037f5079794cb9128c7f0900a568ced14c2a,https://arxiv.org/pdf/1704.02231v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.71 +592370b4c7b58a2a141e507f3a2cc5bbd247a62e,,,https://doi.org/10.1109/IJCNN.2017.7965911, +59b6ff409ae6f57525faff4b369af85c37a8dd80,,,,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.28 +59f788c69c2ce520fd6f0b80d01aca72f7f8d859,,,, +59c9d416f7b3d33141cc94567925a447d0662d80,http://pdfs.semanticscholar.org/59c9/d416f7b3d33141cc94567925a447d0662d80.pdf,,,http://people.mpi-inf.mpg.de/~skaraev/master_thesis.pdf +59bece468ed98397d54865715f40af30221aa08c,https://bib.irb.hr/datoteka/833608.BiForD2016_11.pdf,,https://doi.org/10.1109/MIPRO.2016.7522352, +59a35b63cf845ebf0ba31c290423e24eb822d245,http://biometrics.cse.msu.edu/Publications/Face/Klumetal_FaceSketchID_TIFS2014.pdf,,https://doi.org/10.1109/TIFS.2014.2360825,http://biometrics.cse.msu.edu/Publications/Face/Klumetal_FaceSketchID_TechReport_MSU-CSE-14-6.pdf +59f325e63f21b95d2b4e2700c461f0136aecc171,http://nlpr-web.ia.ac.cn/2011papers/gjhy/gh13.pdf,,https://doi.org/10.1109/ICIP.2011.6116296,http://www.cbsr.ia.ac.cn/users/scliao/papers/Kang-ICIP-2011-KernelSparseLBP.pdf +59420fd595ae745ad62c26ae55a754b97170b01f,http://pdfs.semanticscholar.org/5942/0fd595ae745ad62c26ae55a754b97170b01f.pdf,,https://doi.org/10.1007/978-3-642-35749-7_5,http://cs.stanford.edu/groups/vision/pdf/LiSuLimFeiFei_ECCV2010.pdf +59c21f5a24d0b408d528054b016915236bb85bf2,,,, +5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,,,https://doi.org/10.1109/ICT.2017.7998256, +5922e26c9eaaee92d1d70eae36275bb226ecdb2e,http://pdfs.semanticscholar.org/5922/e26c9eaaee92d1d70eae36275bb226ecdb2e.pdf,,https://doi.org/10.3233/978-1-61499-578-4-153,http://www.uv.es/grimo/publications/ccia2015b.pdf +59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Zafeiriou_The_Menpo_Facial_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.263 +5951e9e13ff99f97f301a336f24a14d80459c659,,,https://doi.org/10.1016/j.neucom.2017.09.009, +59e75aad529b8001afc7e194e21668425119b864,http://pdfs.semanticscholar.org/59e7/5aad529b8001afc7e194e21668425119b864.pdf,,https://doi.org/10.1007/978-3-642-15552-9_55,http://www.cs.drexel.edu/~kon/publication/GOxholm_ECCV10_preprint.pdf +5990c2e78394388e8a81a4b52baf35c13b22d2c9,,,, +594ec0a7839885169c65133cfe50164d4cc74b5c,,,, +59d45281707b85a33d6f50c6ac6b148eedd71a25,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Cheng_Rank_Minimization_across_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.77 +59319c128c8ac3c88b4ab81088efe8ae9c458e07,http://pdfs.semanticscholar.org/5931/9c128c8ac3c88b4ab81088efe8ae9c458e07.pdf,,,https://arxiv.org/pdf/1603.04550v1.pdf +59031a35b0727925f8c47c3b2194224323489d68,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/ICCV13/SVDL.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.91 +926c67a611824bc5ba67db11db9c05626e79de96,http://www.ee.columbia.edu/ln/dvmm/publications/09/xu_ebsl.pdf,,,http://research.microsoft.com/en-us/UM/people/stevelin/papers/pami09xu.pdf +923ede53b0842619831e94c7150e0fc4104e62f7,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001293.pdf,,https://doi.org/10.1109/ICASSP.2016.7471885, +9227c1a5b26556b9c34015b3ea5f9ae5f50e9b23,,,https://doi.org/10.1109/FCV.2015.7103729, +9264b390aa00521f9bd01095ba0ba4b42bf84d7e,http://pdfs.semanticscholar.org/9264/b390aa00521f9bd01095ba0ba4b42bf84d7e.pdf,,https://doi.org/10.1007/978-3-642-33715-4_16,http://web.unbc.ca/~chenl/papers-new/ECCVPaper1208.pdf +920a92900fbff22fdaaef4b128ca3ca8e8d54c3e,http://pdfs.semanticscholar.org/920a/92900fbff22fdaaef4b128ca3ca8e8d54c3e.pdf,,,http://infoscience.epfl.ch/record/163450/files/ParametricPTM.pdf +9215d36c501d6ee57d74c1eeb1475efd800d92d3,,,, +9277f1c5161bb41d4ed808c83d53509c8a1a2bdd,,,, +924b14a9e36d0523a267293c6d149bca83e73f3b,http://pdfs.semanticscholar.org/924b/14a9e36d0523a267293c6d149bca83e73f3b.pdf,,,http://www.psychnology.org/File/PNJ5(2)/PSYCHNOLOGY_JOURNAL_5_2_AOYAMA.pdf +9282239846d79a29392aa71fc24880651826af72,http://pdfs.semanticscholar.org/9282/239846d79a29392aa71fc24880651826af72.pdf,,https://doi.org/10.1186/1687-5281-2014-14,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos_classification_2014.pdf +92115b620c7f653c847f43b6c4ff0470c8e55dab,http://pdfs.semanticscholar.org/a77c/798d06060ece81c620458e4586819e75ae15.pdf,,https://doi.org/10.1007/978-3-319-10602-1_27,https://lmb.informatik.uni-freiburg.de/Publications/2014/DB14/ECCV_BenjaminDrayer.pdf +92c4636962b719542deb984bd2bf75af405b574c,http://www.umiacs.umd.edu/~arijit/projects/Active_clustering/active_clustering_ijcv.pdf,,https://doi.org/10.1007/s11263-013-0680-6,http://www.umiacs.umd.edu/~arijit/active_clustering_ijcv.pdf +92c2dd6b3ac9227fce0a960093ca30678bceb364,https://aran.library.nuigalway.ie/bitstream/handle/10379/1350/On%20color%20texture%20normalization%20for%20active%20appearance%20models.pdf?isAllowed=y&sequence=1,,https://doi.org/10.1109/TIP.2009.2017163,http://www.researchgate.net/profile/Peter_Corcoran/publication/24311132_On_color_texture_normalization_for_active_appearance_models/links/02bfe5118f5300f4dc000000.pdf +9255d3b2bfee4aaae349f68e67c76a077d2d07ad,,,https://doi.org/10.1109/TIP.2017.2713041, +922838dd98d599d1d229cc73896d55e7a769aa7c,http://www.cs.umass.edu/~elm/papers/HuangCVPR12.pdf,,,http://cs.umass.edu/~elm/papers/HuangCVPR12.pdf +9294739e24e1929794330067b84f7eafd286e1c8,http://pdfs.semanticscholar.org/9294/739e24e1929794330067b84f7eafd286e1c8.pdf,,https://doi.org/10.1007/11573548_2,https://static.aminer.org/pdf/PDF/000/018/706/expression_recognition_using_elastic_graph_matching.pdf +92fada7564d572b72fd3be09ea3c39373df3e27c,http://pdfs.semanticscholar.org/b8a4/f51a85fb801e1a5f04c213725d60133233a0.pdf,,https://doi.org/10.1016/j.patrec.2004.05.013,http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Patrec_ICA_Face.pdf +927ad0dceacce2bb482b96f42f2fe2ad1873f37a,http://pdfs.semanticscholar.org/927a/d0dceacce2bb482b96f42f2fe2ad1873f37a.pdf,,,http://cdn.intechopen.com/pdfs/10204/InTech-Interest_point_based_face_recognition_system.pdf +92de9a54515f4ac8cc8e4e6b0dfab20e5e6bb09d,,,https://doi.org/10.1109/ICIP.2016.7533062, +929bd1d11d4f9cbc638779fbaf958f0efb82e603,http://pdfs.semanticscholar.org/929b/d1d11d4f9cbc638779fbaf958f0efb82e603.pdf,,https://doi.org/10.1007/978-3-642-17534-3_72,http://www.researchgate.net/profile/Dian_Tjondronegoro/publication/221139535_Improving_the_Performance_of_Facial_Expression_Recognition_Using_Dynamic_Subtle_and_Regional_Features/links/00b7d51f84badba76c000000.pdf +9213a415d798426c8d84efc6d2a69a2cbfa2af84,,,https://doi.org/10.1016/j.cviu.2013.03.008, +0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,http://cs.nju.edu.cn/_upload/tpl/01/0b/267/template267/zhouzh.files/publication/aaai10LLD.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1626/2018 +0c435e7f49f3e1534af0829b7461deb891cf540a,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_Capturing_Global_Semantic_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.410 +0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf,http://pdfs.semanticscholar.org/0cb7/e4c2f6355c73bfc8e6d5cdfad26f3fde0baf.pdf,,,http://aircconline.com/ijaia/V5N3/5314ijaia01.pdf +0c30f6303dc1ff6d05c7cee4f8952b74b9533928,http://humansensing.cs.cmu.edu/sites/default/files/15parda.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539925 +0c378c8dcf707145e1e840a9951519d4176a301f,,,https://doi.org/10.1109/ICARCV.2010.5707434, +0ccc535d12ad2142a8310d957cc468bbe4c63647,http://arxiv.org/pdf/1510.03979v1.pdf,,,http://wangzheallen.github.io/papers/WangWGQ_ChaLearnLAP15_slide.pdf +0c8a0a81481ceb304bd7796e12f5d5fa869ee448,http://pdfs.semanticscholar.org/0c8a/0a81481ceb304bd7796e12f5d5fa869ee448.pdf,,https://doi.org/10.5391/IJFIS.2010.10.2.095,http://ocean.kisti.re.kr/downfile/volume/kfis/E1FLA5/2010/v10n2/E1FLA5_2010_v10n2_95.pdf +0c36c988acc9ec239953ff1b3931799af388ef70,http://pdfs.semanticscholar.org/0c36/c988acc9ec239953ff1b3931799af388ef70.pdf,,,https://arxiv.org/pdf/1802.02142v1.pdf +0c5ddfa02982dcad47704888b271997c4de0674b,http://pdfs.semanticscholar.org/0c5d/dfa02982dcad47704888b271997c4de0674b.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/11949/Gopalan_umd_0117E_12506.pdf?isAllowed=y&sequence=1 +0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1,http://faculty.iiit.ac.in/~anoop/papers/Vijay2014Face.pdf,,https://doi.org/10.1109/ICPR.2014.61, +0cccf576050f493c8b8fec9ee0238277c0cfd69a,http://pdfs.semanticscholar.org/0ccc/f576050f493c8b8fec9ee0238277c0cfd69a.pdf,,,https://arxiv.org/pdf/1704.01358v1.pdf +0cdb49142f742f5edb293eb9261f8243aee36e12,https://arxiv.org/pdf/1303.2783v1.pdf,,,http://conradsanderson.id.au/pdfs/sanderson_salient_local_descriptors_avss_2012.pdf +0c069a870367b54dd06d0da63b1e3a900a257298,http://pdfs.semanticscholar.org/cdb8/36785579a4ea3d0eff26dbba8cf845a347d2.pdf,,https://doi.org/10.1007/978-3-642-21738-8_2,http://hal.inria.fr/docs/00/60/96/81/PDF/mrbm_heess.pdf +0c75c7c54eec85e962b1720755381cdca3f57dfb,https://webpages.uncc.edu/~szhang16/paper/PAMI_face_landmark.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2509999 +0c65226edb466204189b5aec8f1033542e2c17aa,,,https://doi.org/10.1109/ICIP.2017.8296997, +0c167008408c301935bade9536084a527527ec74,http://www.micc.unifi.it/publications/2006/BDN06/bertini_nunziati-mm06.pdf,,,http://doi.acm.org/10.1145/1180639.1180778 +0c1d85a197a1f5b7376652a485523e616a406273,http://openaccess.thecvf.com/content_cvpr_2017/papers/Hayat_Joint_Registration_and_CVPR_2017_paper.pdf,,,http://staff.estem-uc.edu.au/munawar/files/2017/05/CVPR17.pdf +0ca66283f4fb7dbc682f789fcf6d6732006befd5,http://pdfs.semanticscholar.org/0ca6/6283f4fb7dbc682f789fcf6d6732006befd5.pdf,,,http://www.rci.rutgers.edu/~tw268/pubs/spie2015_activeDL.pdf +0c7f27d23a162d4f3896325d147f412c40160b52,http://pdfs.semanticscholar.org/0c7f/27d23a162d4f3896325d147f412c40160b52.pdf,,,http://www.cs.cmu.edu/~ILIM/publications/PDFs/N-THESIS03.pdf +0c20fd90d867fe1be2459223a3cb1a69fa3d44bf,http://pdfs.semanticscholar.org/0c20/fd90d867fe1be2459223a3cb1a69fa3d44bf.pdf,,https://doi.org/10.1007/978-3-642-40602-7_11,http://gravis.cs.unibas.ch/publications/2013/GCPR-Schoenborn2013.pdf +0c247ac797a5d4035469abc3f9a0a2ccba49f4d8,,,https://doi.org/10.1109/ICMLC.2011.6016715, +0cf1287c8fd41dcef4ac03ebeab20482f02dce20,,,https://doi.org/10.1109/MSN.2016.032, +0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,,,https://doi.org/10.1109/CIBIM.2014.7015437, +0c2875bb47db3698dbbb3304aca47066978897a4,http://slazebni.cs.illinois.edu/publications/iccv17_situation.pdf,,,https://arxiv.org/pdf/1703.06233v2.pdf +0c3f7272a68c8e0aa6b92d132d1bf8541c062141,http://pdfs.semanticscholar.org/0c3f/7272a68c8e0aa6b92d132d1bf8541c062141.pdf,,,https://pdfs.semanticscholar.org/0c3f/7272a68c8e0aa6b92d132d1bf8541c062141.pdf +0cbc4dcf2aa76191bbf641358d6cecf38f644325,http://pdfs.semanticscholar.org/0cbc/4dcf2aa76191bbf641358d6cecf38f644325.pdf,,,http://niclane.org/pubs/visage.pdf +0c0db39cac8cb76b52cfdbe10bde1c53d68d202f,,,,http://doi.acm.org/10.1145/3123266.3123334 +0c1314d98bb6b99af00817644c1803dbc0fb5ff5,,,,http://doi.ieeecomputersociety.org/10.1109/BigMM.2015.29 +0ce8a45a77e797e9d52604c29f4c1e227f604080,http://pdfs.semanticscholar.org/0ce8/a45a77e797e9d52604c29f4c1e227f604080.pdf,,,http://airccse.org/journal/ijcseit/papers/3613ijcseit01.pdf +0ce3a786aed896d128f5efdf78733cc675970854,http://pdfs.semanticscholar.org/3689/2b6bb4848a9c21158b8eded7f14a6654dd7e.pdf,,https://doi.org/10.1007/978-3-319-10593-2_9,http://luchaochao.me/papers/LearnedBayesian.pdf +0cc96359b1edba28d33fe9e663079c5674744672,,,, +0c93cb1af3bba1bd90a03e921ff2d55acf35c01f,http://www.researchgate.net/profile/Mohammed_Bennamoun/publication/220928947_Robust_Regression_for_Face_Recognition/links/542157f20cf203f155c65a23.pdf,,https://doi.org/10.1016/j.patcog.2011.07.003,https://www.researchgate.net/profile/Mohammed_Bennamoun/publication/220928947_Robust_Regression_for_Face_Recognition/links/542157f20cf203f155c65a23.pdf +0cf7741e1fdb11a77cdf39b4dda8c65a62af4f23,http://vipl.ict.ac.cn/sites/default/files/papers/files/2013_TIP_mnkan_Learning%20Prototype%20Hyperplanes%20for%20Face%20Verification%20in%20the%20Wild.pdf,,https://doi.org/10.1109/TIP.2013.2256918, +0c54e9ac43d2d3bab1543c43ee137fc47b77276e,http://pdfs.semanticscholar.org/0c54/e9ac43d2d3bab1543c43ee137fc47b77276e.pdf,,https://doi.org/10.1016/j.image.2016.06.004,http://arxiv.org/abs/1606.02792 +0c5afb209b647456e99ce42a6d9d177764f9a0dd,http://pdfs.semanticscholar.org/49ee/5e1f1cfa45aa105e4120e6b7fb5b14cc2877.pdf,,,http://www.pitt.edu/~jeffcohn/biblio/fulltext/2001/Tian_Recognizing.pdf +0c59071ddd33849bd431165bc2d21bbe165a81e0,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Oh_Person_Recognition_in_ICCV_2015_paper.pdf,,,http://arxiv.org/abs/1509.03502 +0c377fcbc3bbd35386b6ed4768beda7b5111eec6,http://www.ecse.rpi.edu/~qji/Papers/face_exp_pami.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.293 +0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Memory-Augmented_Attribute_Manipulation_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.652 +0cb2dd5f178e3a297a0c33068961018659d0f443,http://www.vislab.ucr.edu/Biometrics2017/program_slides/Noblis_CVPRW_IJBB.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.87 +0cd8895b4a8f16618686f622522726991ca2a324,http://pdfs.semanticscholar.org/0cd8/895b4a8f16618686f622522726991ca2a324.pdf,,https://doi.org/10.1007/11864349_65,https://infoscience.epfl.ch/record/91005/files/Antonini2006_1495.pdf +0cf7da0df64557a4774100f6fde898bc4a3c4840,https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/berg-cvpr05.pdf,,,http://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/berg-cvpr-05.pdf +0cbe059c181278a373292a6af1667c54911e7925,http://pdfs.semanticscholar.org/ea4e/15a4cf256599d11291040ad5e487f55ae514.pdf,,https://doi.org/10.1049/iet-cvi.2015.0296,https://arxiv.org/pdf/1508.04028v1.pdf +0c4659b35ec2518914da924e692deb37e96d6206,https://cs.uwaterloo.ca/~jhoey/teaching/cs793/papers/OrchardTIP10.pdf,,https://doi.org/10.1109/TIP.2009.2039371,https://cs.uwaterloo.ca/~mannr/papers/OrchardMann2010.pdf +0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dc,http://pdfs.semanticscholar.org/0c6e/29d82a5a080dc1db9eeabbd7d1529e78a3dc.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2003.1211408 +0c66d6162695ecbfc248074f58ced10d70a359ac,,,, +0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae,http://pdfs.semanticscholar.org/0ced/7b814ec3bb9aebe0fcf0cac3d78f36361eae.pdf,,,http://ijcsmc.com/docs/papers/January2017/V6I1201739.pdf +0c6a18b0cee01038eb1f9373c369835b236373ae,,,https://doi.org/10.1007/s11042-017-4359-9, +0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d,https://arxiv.org/pdf/1609.00153v1.pdf,,https://doi.org/10.1109/TIP.2017.2666739,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01377.pdf +0c60eebe10b56dbffe66bb3812793dd514865935,http://arxiv.org/pdf/1502.07209.pdf,,,http://www.yugangjiang.info/publication/15VideoDNN-arXiv.pdf +0c05f60998628884a9ac60116453f1a91bcd9dda,http://pdfs.semanticscholar.org/7b19/80d4ac1730fd0145202a8cb125bf05d96f01.pdf,,,http://arxiv.org/abs/1610.05377 +660b73b0f39d4e644bf13a1745d6ee74424d4a16,http://pdfs.semanticscholar.org/660b/73b0f39d4e644bf13a1745d6ee74424d4a16.pdf,,,https://cdn.intechopen.com/pdfs-wm/17177.pdf +66d512342355fb77a4450decc89977efe7e55fa2,http://pdfs.semanticscholar.org/66d5/12342355fb77a4450decc89977efe7e55fa2.pdf,,,https://openreview.net/pdf?id=SJzmJEq6W +66aad5b42b7dda077a492e5b2c7837a2a808c2fa,http://pdfs.semanticscholar.org/66aa/d5b42b7dda077a492e5b2c7837a2a808c2fa.pdf,,https://doi.org/10.1007/11608288_20,http://www.researchgate.net/profile/Zhong_Jin3/publication/221383625_A_Novel_PCA-Based_Bayes_Classifier_and_Face_Analysis/links/02bfe5102998036ea9000000.pdf +66b9d954dd8204c3a970d86d91dd4ea0eb12db47,http://pdfs.semanticscholar.org/f3ec/7e58da49f39b807ff1c98d0bf574ef5f0720.pdf,,,http://www.ri.cmu.edu/pub_files/pub3/tian_ying_li_2002_1/tian_ying_li_2002_1.pdf +6643a7feebd0479916d94fb9186e403a4e5f7cbf,http://pdfs.semanticscholar.org/6643/a7feebd0479916d94fb9186e403a4e5f7cbf.pdf,,,http://staffhome.ecm.uwa.edu.au/~00053650/papers/chapter8-3Dface.pdf +66ec085c362f698b40d6e0e7b10629462280c062,,,https://doi.org/10.1109/ICARCV.2004.1468855, +66dcd855a6772d2731b45cfdd75f084327b055c2,http://pdfs.semanticscholar.org/66dc/d855a6772d2731b45cfdd75f084327b055c2.pdf,,,https://arxiv.org/pdf/1801.06445v1.pdf +66ebb070ea8de63afa11cc856fe2754ea39a93ff,,,, +661c78a0e2b63cbdb9c20dcf89854ba029b6bc87,,,https://doi.org/10.1109/ICIP.2014.7025093, +666939690c564641b864eed0d60a410b31e49f80,http://pdfs.semanticscholar.org/6669/39690c564641b864eed0d60a410b31e49f80.pdf,,https://doi.org/10.1007/978-3-319-16865-4_16,http://research.microsoft.com/en-US/people/xjwang/accv2014finalpaper.pdf +66330846a03dcc10f36b6db9adf3b4d32e7a3127,http://pdfs.semanticscholar.org/6633/0846a03dcc10f36b6db9adf3b4d32e7a3127.pdf,,,http://www.aifb.kit.edu/images/8/87/ECML-PKDD-Doctoral-Camera-Ready.pdf +6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c,http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf +666300af8ffb8c903223f32f1fcc5c4674e2430b,http://pdfs.semanticscholar.org/6663/00af8ffb8c903223f32f1fcc5c4674e2430b.pdf,,,http://arxiv.org/abs/1703.07920 +66029f1be1a5cee9a4e3e24ed8fcb65d5d293720,http://pdfs.semanticscholar.org/6602/9f1be1a5cee9a4e3e24ed8fcb65d5d293720.pdf,,,http://www.bmva.org/bmvc/2010/conference/paper58/paper58.pdf +6691dfa1a83a04fdc0177d8d70e3df79f606b10f,http://pdfs.semanticscholar.org/6691/dfa1a83a04fdc0177d8d70e3df79f606b10f.pdf,,,http://www.cbsr.ia.ac.cn/Li%20Group/papers/FaceLighting.pdf +66f4d7c381bd1798703977de2e38b696c6641b77,,,https://doi.org/10.1109/FSKD.2015.7382360, +6688b2b1c1162bc00047075005ec5c7fca7219fd,,,https://doi.org/10.1109/SACI.2013.6608958, +66a2c229ac82e38f1b7c77a786d8cf0d7e369598,http://pdfs.semanticscholar.org/66a2/c229ac82e38f1b7c77a786d8cf0d7e369598.pdf,,,http://arxiv.org/abs/1604.08524 +66886997988358847615375ba7d6e9eb0f1bb27f,https://pdfs.semanticscholar.org/6688/6997988358847615375ba7d6e9eb0f1bb27f.pdf,,https://doi.org/10.1109/TCYB.2014.2376934,http://www.kinfacew.com/papers/PDFL_TCYB15.pdf +66a9935e958a779a3a2267c85ecb69fbbb75b8dc,http://pdfs.semanticscholar.org/66a9/935e958a779a3a2267c85ecb69fbbb75b8dc.pdf,,,http://arxiv.org/abs/1503.03004 +66533107f9abdc7d1cb8f8795025fc7e78eb1122,http://pdfs.semanticscholar.org/6653/3107f9abdc7d1cb8f8795025fc7e78eb1122.pdf,,https://doi.org/10.1109/ROBOT.2001.933187,http://www.researchgate.net/profile/Daejin_Kim2/publication/3902643_Visual_servoing_for_a_user's_mouth_with_effective_intention_reading_in_a_wheelchair-based_robotic_arm/links/00b4951f2a22fa3894000000.pdf +66810438bfb52367e3f6f62c24f5bc127cf92e56,http://pdfs.semanticscholar.org/6681/0438bfb52367e3f6f62c24f5bc127cf92e56.pdf,,https://doi.org/10.4304/jmm.9.1.83-91,http://ojs.academypublisher.com/index.php/jmm/article/download/jmm09018391/8389 +66af2afd4c598c2841dbfd1053bf0c386579234e,http://www.ics.uci.edu/~dvk/pub/J17_IJMIR14_Liyan.pdf,,https://doi.org/10.1007/s13735-014-0052-1, +66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,http://pdfs.semanticscholar.org/66f0/2fbcad13c6ee5b421be2fc72485aaaf6fcb5.pdf,,,https://www.cs.rit.edu/~reu/products/2016/papers/P5_AliyaGangjiTrevorWaldenetal_2017HAAI(AAAI)_paper.pdf +66e9fb4c2860eb4a15f713096020962553696e12,http://pdfs.semanticscholar.org/d42f/8e7283b20b89f55f8d36efcb1d8e2b774167.pdf,,,https://arxiv.org/pdf/1706.09308v1.pdf +66e6f08873325d37e0ec20a4769ce881e04e964e,http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf,,https://doi.org/10.1007/s11263-013-0695-z,https://cs.brown.edu/people/gen/pub_papers/sun_attributes_ijcv.pdf +661da40b838806a7effcb42d63a9624fcd684976,http://pdfs.semanticscholar.org/661d/a40b838806a7effcb42d63a9624fcd684976.pdf,,,http://hrcak.srce.hr/file/89702 +66886f5af67b22d14177119520bd9c9f39cdd2e6,http://pdfs.semanticscholar.org/6688/6f5af67b22d14177119520bd9c9f39cdd2e6.pdf,,,http://www.bmva.org/bmvc/2016/papers/paper098/index.html +6622776d1696e79223f999af51e3086ba075dbd1,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019454 +3edb0fa2d6b0f1984e8e2c523c558cb026b2a983,http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/tpami07.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.70733 +3e69ed088f588f6ecb30969bc6e4dbfacb35133e,http://pdfs.semanticscholar.org/3e69/ed088f588f6ecb30969bc6e4dbfacb35133e.pdf,,,http://searchdl.org/public/journals/2011/IJIT/1/2/165.pdf +3e01f2fefe219bfeb112f1d82e76ebba4c0e2aac,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836097 +3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,http://pdfs.semanticscholar.org/accb/d6cd5dd649137a7c57ad6ef99232759f7544.pdf,,,http://www.ee.oulu.fi/mvg/files/pdf/pdf_545.pdf +3ebb0209d5e99b22c67e425a67a959f4db8d1f47,,,https://doi.org/10.1109/ICDAR.2017.173, +3ee7a8107a805370b296a53e355d111118e96b7c,http://pdfs.semanticscholar.org/3ee7/a8107a805370b296a53e355d111118e96b7c.pdf,,,http://people.ee.duke.edu/~lcarin/gLASSO5.pdf +3ebce6710135d1f9b652815e59323858a7c60025,http://pdfs.semanticscholar.org/3ebc/e6710135d1f9b652815e59323858a7c60025.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2001.990537 +3ec05713a1eed6fa9b57fef718f369f68bbbe09f,http://pdfs.semanticscholar.org/3ec0/5713a1eed6fa9b57fef718f369f68bbbe09f.pdf,,https://doi.org/10.1016/j.patrec.2016.01.025,https://core.ac.uk/download/pdf/34657700.pdf +3e0035b447d0d4e11ceda45936c898256f321382,,,https://doi.org/10.1109/BMEI.2014.7002762, +3e3f305dac4fbb813e60ac778d6929012b4b745a,http://pdfs.semanticscholar.org/3e3f/305dac4fbb813e60ac778d6929012b4b745a.pdf,,,https://arxiv.org/pdf/1405.7545v1.pdf +3e1190655cc7c1159944d88bdbe591b53f48d761,,,https://doi.org/10.1007/s10489-013-0464-2, +3ea8a6dc79d79319f7ad90d663558c664cf298d4,http://pdfs.semanticscholar.org/3ea8/a6dc79d79319f7ad90d663558c664cf298d4.pdf,,,http://www.ifp.uiuc.edu/~iracohen/publications/IraCohenMSThesis.pdf +3e4f84ce00027723bdfdb21156c9003168bc1c80,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2011/papers/1569427521.pdf,http://ieeexplore.ieee.org/document/7074232/,,http://www.eurecom.fr/en/publication/3408/download/mm-publi-3408.pdf +3e04feb0b6392f94554f6d18e24fadba1a28b65f,http://pdfs.semanticscholar.org/b72c/5119c0aafa64f32e8e773638b5738f31b33c.pdf,,,http://webhost.uoradea.ro/ibuciu/buciu-pitas-chapter.pdf +3ed46ef5344927a30d71089ae203c9a9e35e4977,,,, +3e452ca67e17e4173ec8dfbd4a2b803ad2ee5a48,,,,http://doi.ieeecomputersociety.org/10.1109/WF-IoT.2016.7845505 +3e685704b140180d48142d1727080d2fb9e52163,http://pdfs.semanticscholar.org/3e68/5704b140180d48142d1727080d2fb9e52163.pdf,,,http://arxiv.org/abs/1705.04641 +3e51d634faacf58e7903750f17111d0d172a0bf1,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569924869.pdf,http://ieeexplore.ieee.org/document/6952589/,, +3ec860cfbd5d953f29c43c4e926d3647e532c8b0,,,https://doi.org/10.1109/TCSVT.2008.924108, +3e0377af0087b9b836bf6d95bc1c7085dfde4897,,,,http://doi.acm.org/10.1145/2671188.2749320 +3e7070323bca6106f19bea4c97ef67bd6249cb5d,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477448 +3e03d19b950edadc74ca047dec86227282eccf71,,,https://doi.org/10.1109/ACCESS.2017.2777003, +3e687d5ace90c407186602de1a7727167461194a,http://pdfs.semanticscholar.org/3e68/7d5ace90c407186602de1a7727167461194a.pdf,,,http://iris.sel.eesc.usp.br/wvc/Anais_WVC2012/pdf/97140.pdf +3e3a87eb24628ab075a3d2bde3abfd185591aa4c,http://pdfs.semanticscholar.org/3e3a/87eb24628ab075a3d2bde3abfd185591aa4c.pdf,,,https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2011-27.pdf +3edc43e336be075dca77c7e173b555b6c14274d8,http://pdfs.semanticscholar.org/3edc/43e336be075dca77c7e173b555b6c14274d8.pdf,,https://doi.org/10.1016/j.jvcir.2010.10.008,http://www.cs.ccu.edu.tw/~wtchu/papers/2011JVCI-chu.pdf +3e207c05f438a8cef7dd30b62d9e2c997ddc0d3f,http://pdfs.semanticscholar.org/bca7/c0a8c5b0503a4ee43f3561f540918071aaa3.pdf,,,http://calvin.inf.ed.ac.uk/wp-content/uploads/Publications/gonzalez18cvpr.pdf +5040f7f261872a30eec88788f98326395a44db03,http://pdfs.semanticscholar.org/5040/f7f261872a30eec88788f98326395a44db03.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/bmvc_final.pdf +50f0c495a214b8d57892d43110728e54e413d47d,http://pdfs.semanticscholar.org/50f0/c495a214b8d57892d43110728e54e413d47d.pdf,,,http://jmlr.org/papers/volume13/brunner12a/brunner12a.pdf +505e5fe9e897ddbddcf4edab8c8a97d5e56e9d8d,,,, +501096cca4d0b3d1ef407844642e39cd2ff86b37,http://pdfs.semanticscholar.org/5010/96cca4d0b3d1ef407844642e39cd2ff86b37.pdf,,https://doi.org/10.1007/978-3-642-16687-7_58,https://pdfs.semanticscholar.org/5010/96cca4d0b3d1ef407844642e39cd2ff86b37.pdf +500fbe18afd44312738cab91b4689c12b4e0eeee,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,,https://doi.org/10.1109/IJCNN.2015.7280614, +501eda2d04b1db717b7834800d74dacb7df58f91,http://pdfs.semanticscholar.org/501e/da2d04b1db717b7834800d74dacb7df58f91.pdf,,,https://estudogeral.sib.uc.pt/bitstream/10316/40573/1/Discriminative%20Sparse%20Representation%20for%20Expression%20Recognition%20in%20Natural%20Images.pdf +5083c6be0f8c85815ead5368882b584e4dfab4d1,http://pdfs.semanticscholar.org/5083/c6be0f8c85815ead5368882b584e4dfab4d1.pdf,,,http://www.pitt.edu/~jeffcohn/biblio/hac.pdf +50ce3f8744c219871fbdcab1342d49d589f2626b,http://www.public.asu.edu/~jye02/Publications/Papers/AML_cvpr07.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383103 +500b92578e4deff98ce20e6017124e6d2053b451,http://eprints.eemcs.utwente.nl/25818/01/Pantic_Incremental_Face_Alignment_in_the_Wild.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Asthana_Incremental_Face_Alignment_2014_CVPR_paper.pdf +503b6a490c2b24b9d2aaf642a0fdaf797a8cdb99,,,https://doi.org/10.1109/ACCESS.2017.2733718, +504d2675da7a56a36386568ee668938df6d82bbe,,,https://doi.org/10.1109/TCSVT.2016.2539604, +5058a7ec68c32984c33f357ebaee96c59e269425,http://pdfs.semanticscholar.org/5058/a7ec68c32984c33f357ebaee96c59e269425.pdf,,https://doi.org/10.1007/978-3-319-13737-7_12,http://www.hertasecurity.com/wp-content/uploads/2014/09/ICPRw14_CR_send1.pdf +50ff21e595e0ebe51ae808a2da3b7940549f4035,http://export.arxiv.org/pdf/1710.02985,,https://doi.org/10.1109/ACCESS.2017.2761849,http://arxiv.org/abs/1710.02985 +5042b358705e8d8e8b0655d07f751be6a1565482,http://pdfs.semanticscholar.org/5042/b358705e8d8e8b0655d07f751be6a1565482.pdf,,,http://www.ermt.net/docs/papers/Volume_4/8_August2015/V4N8-162.pdf +50e47857b11bfd3d420f6eafb155199f4b41f6d7,http://pdfs.semanticscholar.org/50e4/7857b11bfd3d420f6eafb155199f4b41f6d7.pdf,,,http://ij3c.ncuteecs.org/volume/paperfile/2-1/IJ3C_8.pdf +50614ff325f0c8ca20f99efc55d65a8d4cc768cd,http://www.genizah.org/professionalPapers/IJCinGeniza.pdf,,https://doi.org/10.1007/s11263-010-0389-8,http://www.cs.tau.ac.il/~wolf/papers/genizahijcv.pdf +50eb75dfece76ed9119ec543e04386dfc95dfd13,https://lirias.kuleuven.be/bitstream/123456789/197359/1/boiy-learningVisual.pdf,,,http://doi.ieeecomputersociety.org/10.1109/DEXA.2008.59 +5050807e90a925120cbc3a9cd13431b98965f4b9,http://pdfs.semanticscholar.org/5050/807e90a925120cbc3a9cd13431b98965f4b9.pdf,,https://doi.org/10.1007/978-3-642-33885-4_7,http://cs-people.bu.edu/shugaoma/eccv2012_PnA_shugao.pdf +502d30c5eac92c7db587d85d080343fbd9bc469e,,,https://doi.org/10.1109/TIFS.2016.2538744, +50333790dd98c052dfafe1f9bf7bf8b4fc9530ba,,,https://doi.org/10.1109/ICIP.2015.7351001, +5039834df68600a24e7e8eefb6ba44a5124e67fc,,,https://doi.org/10.1109/ICIP.2013.6738761, +50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,http://ajbasweb.com/old/ajbas/2017/April/1-11.pdf,,, +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,http://pdfs.semanticscholar.org/50e4/5e9c55c9e79aaae43aff7d9e2f079a2d787b.pdf,,, +5003754070f3a87ab94a2abb077c899fcaf936a6,http://pdfs.semanticscholar.org/5003/754070f3a87ab94a2abb077c899fcaf936a6.pdf,,,https://www.cs.umd.edu/sites/default/files/scholarly_papers/HyunjongCho.pdf +503c0b83c64878eddec6f71798b7877f2ae1967e,,,, +501076313de90aca7848e0249e7f0e7283d669a1,,,https://doi.org/10.1109/SOCPAR.2014.7007987, +503db524b9a99220d430e741c44cd9c91ce1ddf8,http://pdfs.semanticscholar.org/503d/b524b9a99220d430e741c44cd9c91ce1ddf8.pdf,,,https://arxiv.org/pdf/1703.09913v2.pdf +50d15cb17144344bb1879c0a5de7207471b9ff74,http://pdfs.semanticscholar.org/50d1/5cb17144344bb1879c0a5de7207471b9ff74.pdf,,,http://vision.cs.utexas.edu/projects/resistshare/book_chapter.pdf +5039b2081eb3c8efbf9e96fd27775731f38f6fc7,,,, +50d961508ec192197f78b898ff5d44dc004ef26d,http://pdfs.semanticscholar.org/50d9/61508ec192197f78b898ff5d44dc004ef26d.pdf,,,http://airccse.org/journal/jcsit/1109s5.pdf +50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Qu_Towards_Robust_Cascaded_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301348 +5028c0decfc8dd623c50b102424b93a8e9f2e390,http://pdfs.semanticscholar.org/5028/c0decfc8dd623c50b102424b93a8e9f2e390.pdf,,,https://openreview.net/pdf?id=SJkXfE5xx +505e55d0be8e48b30067fb132f05a91650666c41,http://pdfs.semanticscholar.org/505e/55d0be8e48b30067fb132f05a91650666c41.pdf,,,http://www.eurecom.fr/util/publidownload.fr.htm?id=1290 +507c9672e3673ed419075848b4b85899623ea4b0,http://pdfs.semanticscholar.org/507c/9672e3673ed419075848b4b85899623ea4b0.pdf,,,http://face.cs.kit.edu/download/thesis/da-hesse.pdf +50c0de2cccf7084a81debad5fdb34a9139496da0,http://pdfs.semanticscholar.org/50c0/de2cccf7084a81debad5fdb34a9139496da0.pdf,,https://doi.org/10.3389/fict.2016.00027, +681d222f91b12b00e9a4217b80beaa11d032f540,,,https://doi.org/10.1007/s10044-015-0493-z, +680d662c30739521f5c4b76845cb341dce010735,http://people.cs.umass.edu/~smaji/papers/maji15part.pdf,,https://doi.org/10.1007/s11263-014-0716-6,https://people.cs.umass.edu/~smaji/papers/maji15part.pdf +68f89c1ee75a018c8eff86e15b1d2383c250529b,http://pdfs.semanticscholar.org/68f8/9c1ee75a018c8eff86e15b1d2383c250529b.pdf,,,http://www.clsp.jhu.edu/vfsrv/workshops/ws10/documents/loavhat2010report.pdf +68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5,http://pdfs.semanticscholar.org/68a2/ee5c5b76b6feeb3170aaff09b1566ec2cdf5.pdf,,,http://www.enggjournals.com/ijcse/doc/IJCSE13-05-10-039.pdf +68a3f12382003bc714c51c85fb6d0557dcb15467,http://research.microsoft.com/pubs/217884/ZitnickSent2SceneICCV13.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zitnick_Learning_the_Visual_2013_ICCV_paper.pdf +6859b891a079a30ef16f01ba8b85dc45bd22c352,http://pdfs.semanticscholar.org/6859/b891a079a30ef16f01ba8b85dc45bd22c352.pdf,,,http://www.ijetae.com/files/Volume4Issue10/IJETAE_1014_67.pdf +68003e92a41d12647806d477dd7d20e4dcde1354,http://pdfs.semanticscholar.org/db86/41ed047da4a90d53414edfe126c845141d69.pdf,,,http://ictactjournals.in/paper/IJIVP_V4_I2_Paper_4_695_701.pdf +68d4056765c27fbcac233794857b7f5b8a6a82bf,http://pdfs.semanticscholar.org/68d4/056765c27fbcac233794857b7f5b8a6a82bf.pdf,,https://doi.org/10.1007/978-3-540-76631-5_72,http://biblioteca.cinvestav.mx/indicadores/texto_completo/cinvestav/2007/138375_1.pdf +68c5b4d9ce2a0c75ba515870923a4bd1b7d8f9b5,,,https://doi.org/10.1109/CISP-BMEI.2017.8301919, +68996c28bc050158f025a17908eb4bc805c3ee55,https://www.researchgate.net/profile/M_Yeasin/publication/4082331_From_facial_expression_to_level_of_interest_a_spatio-temporal_approach/links/54983d0a0cf2519f5a1dda62.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.112 +68c5238994e3f654adea0ccd8bca29f2a24087fc,http://web.fsktm.um.edu.my/~cschan/doc/ICIP2013.pdf,,https://doi.org/10.1109/ICIP.2013.6738885, +68bf7fc874c2db44d0446cdbb1e05f19c2239282,http://pdfs.semanticscholar.org/68bf/7fc874c2db44d0446cdbb1e05f19c2239282.pdf,,https://doi.org/10.1016/j.procs.2015.05.352,http://www.cs.tut.fi/~iosifidi/files/conference/2015_ICCS_FKMC.pdf?dl=0 +68cf263a17862e4dd3547f7ecc863b2dc53320d8,http://pdfs.semanticscholar.org/68cf/263a17862e4dd3547f7ecc863b2dc53320d8.pdf,,https://doi.org/10.1016/j.patcog.2012.11.022,https://pdfs.semanticscholar.org/68cf/263a17862e4dd3547f7ecc863b2dc53320d8.pdf +68e9c837431f2ba59741b55004df60235e50994d,http://pdfs.semanticscholar.org/68e9/c837431f2ba59741b55004df60235e50994d.pdf,,,https://export.arxiv.org/pdf/1709.05256 +685f8df14776457c1c324b0619c39b3872df617b,http://pdfs.semanticscholar.org/685f/8df14776457c1c324b0619c39b3872df617b.pdf,,,http://liu.diva-portal.org/smash/get/diva2:931705/FULLTEXT01.pdf +68eb6e0e3660009e8a046bff15cef6fe87d46477,,,https://doi.org/10.1109/ICIP.2017.8296999, +68d70d49ae5476181f3ceb4bc1caf493127b08b1,,,, +687e17db5043661f8921fb86f215e9ca2264d4d2,http://www.ece.northwestern.edu/~ganghua/publication/ICCV09a.pdf,,https://doi.org/10.1109/ICCV.2009.5459457,http://users.eecs.northwestern.edu/~ganghua/publication/ICCV09a.pdf +688754568623f62032820546ae3b9ca458ed0870,http://pdfs.semanticscholar.org/d6c2/108259edf97fabcbe608766a6baa98ac893d.pdf,,,http://biorxiv.org/content/biorxiv/early/2016/09/27/077784.full.pdf +68070526920b387bfb91e4753d57d8e07fac51ee,,,, +68f9cb5ee129e2b9477faf01181cd7e3099d1824,http://pdfs.semanticscholar.org/68f9/cb5ee129e2b9477faf01181cd7e3099d1824.pdf,,,http://www.cs.toronto.edu/~aliyari/papers/mvap.pdf +68e6cfb0d7423d3fae579919046639c8e2d04ad7,,,https://doi.org/10.1109/ICB.2016.7550058, +68bf34e383092eb827dd6a61e9b362fcba36a83a,http://pdfs.semanticscholar.org/68bf/34e383092eb827dd6a61e9b362fcba36a83a.pdf,,,http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/7112/2/b27472413_ir.pdf +68d40176e878ebffbc01ffb0556e8cb2756dd9e9,http://pdfs.semanticscholar.org/68d4/0176e878ebffbc01ffb0556e8cb2756dd9e9.pdf,,,http://www.ijera.com/special_issue/Humming%20Bird_March_2014/Version%20%201/AA0105.pdf +68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_AgeNet_Deeply_Learned_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.42 +6889d649c6bbd9c0042fadec6c813f8e894ac6cc,http://pdfs.semanticscholar.org/6889/d649c6bbd9c0042fadec6c813f8e894ac6cc.pdf,,,http://drops.dagstuhl.de/opus/volltexte/2009/2035/ +68f69e6c6c66cfde3d02237a6918c9d1ee678e1b,http://www.cs.fiu.edu/~chens/PDF/ISM09_Pruning.pdf,,,http://users.cis.fiu.edu/~chens/PDF/ISM09_Pruning.pdf +6813208b94ffa1052760d318169307d1d1c2438e,,,,http://doi.acm.org/10.1145/2818346.2830582 +68f19f06f49aa98b676fc6e315b25e23a1efb1f0,,,https://doi.org/10.1109/ICIP.2015.7351080, +683ec608442617d11200cfbcd816e86ce9ec0899,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Dual_Linear_Regression_2014_CVPR_paper.pdf,,,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Dual_Linear_Regression_2014_CVPR_paper.pdf +68c17aa1ecbff0787709be74d1d98d9efd78f410,http://pdfs.semanticscholar.org/68c1/7aa1ecbff0787709be74d1d98d9efd78f410.pdf,,,http://www.cec.uchile.cl/~clperez/papers/Gender%20Classification%20From%20Face%20Images%20Using%20Mutual%20Information%20and%20Feature%20Fusion.pdf +6821113166b030d2123c3cd793dd63d2c909a110,http://pdfs.semanticscholar.org/6821/113166b030d2123c3cd793dd63d2c909a110.pdf,,,http://studiainformatica.polsl.pl/index.php/SI/article/download/718/678 +68d566ed4041a7519acb87753036610bd64dcc09,,,https://doi.org/10.1007/s11390-013-1347-z, +68021c333559ab95ca10e0dbbcc8a4840c31e157,,,https://doi.org/10.1109/ICPR.2016.7900281, +681399aa0ea4cbffd9ab22bf17661d6df4047349,,,,http://doi.ieeecomputersociety.org/10.1109/CISIS.2012.207 +68a04a3ae2086986877fee2c82ae68e3631d0356,http://pdfs.semanticscholar.org/68a0/4a3ae2086986877fee2c82ae68e3631d0356.pdf,,,http://mi.eng.cam.ac.uk/~cipolla/publications/article/2007_PAMI_paper2.pdf +6888f3402039a36028d0a7e2c3df6db94f5cb9bb,http://pdfs.semanticscholar.org/6888/f3402039a36028d0a7e2c3df6db94f5cb9bb.pdf,,,https://openreview.net/pdf?id=SJOl4DlCZ +57f5711ca7ee5c7110b7d6d12c611d27af37875f,http://pdfs.semanticscholar.org/57f5/711ca7ee5c7110b7d6d12c611d27af37875f.pdf,,,http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435214 +570308801ff9614191cfbfd7da88d41fb441b423,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chu_Unsupervised_Synchrony_Discovery_ICCV_2015_paper.pdf,,,http://ca.cs.cmu.edu/sites/default/files/usd_final.pdf +57b7325b8027745b130490c8f736445c407f4c4c,,,,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.27 +57bf9888f0dfcc41c5ed5d4b1c2787afab72145a,http://pdfs.semanticscholar.org/57bf/9888f0dfcc41c5ed5d4b1c2787afab72145a.pdf,,,http://ocean.kisti.re.kr/downfile/volume/etri/HJTODO/2010/v32n5/HJTODO_2010_v32n5_784.pdf +5798055e11e25c404b1b0027bc9331bcc6e00555,,,,http://doi.acm.org/10.1145/2393347.2396357 +57eeaceb14a01a2560d0b90d38205e512dcca691,,,https://doi.org/10.1109/TIP.2017.2778563, +57ebeff9273dea933e2a75c306849baf43081a8c,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sun_Deep_Convolutional_Network_2013_CVPR_paper.pdf,,,http://www.iipl.fudan.edu.cn/~hdwu/liu_cvpr_01.pdf +574751dbb53777101502419127ba8209562c4758,http://pdfs.semanticscholar.org/5747/51dbb53777101502419127ba8209562c4758.pdf,,https://doi.org/10.1016/j.ins.2012.09.008,http://ochoa.pc.cs.cmu.edu/wschu/papers/doc/ins13-gender.pdf +5763b09ebca9a756b4adebf74d6d7de27e80e298,,,https://doi.org/10.1109/BTAS.2013.6712738, +5778d49c8d8d127351eee35047b8d0dc90defe85,http://pdfs.semanticscholar.org/ec31/6c1c182de9d7fe73c7fbbc1a121a7e43c100.pdf,,https://doi.org/10.1007/978-3-319-16817-3_21,https://www.cl.cam.ac.uk/~hg410/SariyanidiEtAl-ACCV2014.pdf +57034dc2d16ff1cbef24a61c0a415580820f9a15,,,, +57f4e54a63ef95596dbc743f391c3fff461f278b,,,https://doi.org/10.1109/ICMEW.2012.86, +57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,http://www.cs.toronto.edu/~rfm/pubs/morphBM.pdf,,,http://learning.cs.toronto.edu/~hinton/absps/morphBM.pdf +57fd229097e4822292d19329a17ceb013b2cb648,http://pdfs.semanticscholar.org/57fd/229097e4822292d19329a17ceb013b2cb648.pdf,,,https://www.ijcai.org/Proceedings/16/Papers/288.pdf +57c59011614c43f51a509e10717e47505c776389,http://users.cecs.anu.edu.au/~basura/papers/CVPR_2017_Workshop.pdf,,,https://arxiv.org/pdf/1612.00558v2.pdf +57ca530e9acb63487e8591cb6efb89473aa1e5b4,,,https://doi.org/10.1109/TIP.2014.2356292, +57b8b28f8748d998951b5a863ff1bfd7ca4ae6a5,http://pdfs.semanticscholar.org/57b8/b28f8748d998951b5a863ff1bfd7ca4ae6a5.pdf,,,https://www-users.cs.york.ac.uk/~wsmith/papers/CGFsupp.pdf +57101b29680208cfedf041d13198299e2d396314,http://pdfs.semanticscholar.org/5710/1b29680208cfedf041d13198299e2d396314.pdf,,,https://www.psychologie.uni-freiburg.de/Members/domes/domesoxteyetrack2012 +578117ff493d691166fefc52fd61bad70d8752a9,,,https://doi.org/10.1109/CCST.2016.7815707, +576d0fea5a1ae9ce22996e726787c49023fc7522,,,, +57893403f543db75d1f4e7355283bdca11f3ab1b,http://www.doc.ic.ac.uk/~maja/PAMI-KoelstraEtAl-accepted.pdf,,,http://eprints.eemcs.utwente.nl/19457/01/pantic_a_dynamic_texture-based_approach.pdf +571f493c0ade12bbe960cfefc04b0e4607d8d4b2,http://pdfs.semanticscholar.org/571f/493c0ade12bbe960cfefc04b0e4607d8d4b2.pdf,,,http://ijrsset.org/pdfs/v3-i2/4.pdf +57f8e1f461ab25614f5fe51a83601710142f8e88,http://pdfs.semanticscholar.org/57f8/e1f461ab25614f5fe51a83601710142f8e88.pdf,,, +57a1466c5985fe7594a91d46588d969007210581,https://www.wjscheirer.com/projects/unconstrained-face/amfg_2010_poster.pdf,,https://doi.org/10.1109/CVPRW.2010.5543603,http://www.wjscheirer.com/projects/unconstrained-face/amfg_2010_poster.pdf +57ba4b6de23a6fc9d45ff052ed2563e5de00b968,,,https://doi.org/10.1109/ICIP.2017.8296993, +5721216f2163d026e90d7cd9942aeb4bebc92334,http://pdfs.semanticscholar.org/5721/216f2163d026e90d7cd9942aeb4bebc92334.pdf,,,http://arxiv.org/abs/1612.05038 +5721cd4b898f0e7df8de1e0215f630af94656be9,,,,http://doi.acm.org/10.1145/3095140.3095164 +575141e42740564f64d9be8ab88d495192f5b3bc,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf,,https://doi.org/10.1007/978-3-319-46654-5_21,http://www.cbsr.ia.ac.cn/users/zlei/papers/Liu-Age-CCBR2016.pdf +57911d7f347dde0398f964e0c7ed8fdd0a882449,http://amp.ece.cmu.edu/people/Andy/Andy_files/1424CVPR08Gallagher.pdf,,,http://chenlab.ece.cornell.edu/people/Andy/publications/Andy_files/1424CVPR08Gallagher.pdf +5789f8420d8f15e7772580ec373112f864627c4b,http://openaccess.thecvf.com/content_ICCV_2017/papers/Schneider_Efficient_Global_Illumination_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.417 +574705812f7c0e776ad5006ae5e61d9b071eebdb,http://pdfs.semanticscholar.org/5747/05812f7c0e776ad5006ae5e61d9b071eebdb.pdf,,,http://ijcsmc.com/docs/papers/May2014/V3I5201499a75.pdf +5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725,http://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf,,https://doi.org/10.5244/C.27.58,http://www.vision.caltech.edu/~xpburgos/papers/BMVC13%20Burgos-Artizzu%20abstract.pdf +57c270a9f468f7129643852945cf3562cbb76e07,,,https://doi.org/10.1016/j.imavis.2016.07.004, +57b052cf826b24739cd7749b632f85f4b7bcf90b,http://pdfs.semanticscholar.org/57b0/52cf826b24739cd7749b632f85f4b7bcf90b.pdf,,https://doi.org/10.1007/978-3-319-54193-8_9,http://120.24.71.152/wp-content/themes/twentytwelve/pub_pdf/Fast%20Fashion%20Guided%20Clothing%20Image%20Retrieval.pdf +57d37ad025b5796457eee7392d2038910988655a,http://pdfs.semanticscholar.org/57d3/7ad025b5796457eee7392d2038910988655a.pdf,,,http://www.cs.huji.ac.il/~daphna/theses/Dagan_Eshar_2009.pdf +57f7d8c6ec690bd436e70d7761bc5f46e993be4c,https://opus.lib.uts.edu.au/bitstream/10453/10785/3/2009001878_Du.pdf,,https://doi.org/10.1109/WACV.2009.5403081, +57de1a09db680e0b4878ceda68d626ae4e44ccfe,,,https://doi.org/10.1016/j.neucom.2014.10.111, +57dc55edade7074f0b32db02939c00f4da8fe3a6,,,https://doi.org/10.1109/TITS.2014.2313371, +3b1260d78885e872cf2223f2c6f3d6f6ea254204,http://pdfs.semanticscholar.org/3b12/60d78885e872cf2223f2c6f3d6f6ea254204.pdf,,,http://www.cse.msu.edu/biometrics/Publications/Face/Choietal_FaceTrackingRecognitionDistancePTZCameraSystem.pdf +3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5,http://www.rci.rutgers.edu/~vmp93/Journal_pub/T-pami_openset.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2613924 +3ba74755c530347f14ec8261996dd9eae896e383,,,https://doi.org/10.1109/JSSC.2017.2767705, +3b092733f428b12f1f920638f868ed1e8663fe57,http://www.math.jhu.edu/~data/RamaPapers/PerformanceBounds.pdf,,https://doi.org/10.1109/ICPR.2016.7900188, +3b8c830b200f1df8ef705de37cbfe83945a3d307,,,https://doi.org/10.1007/s00138-017-0887-6, +3b2d5585af59480531616fe970cb265bbdf63f5b,http://pdfs.semanticscholar.org/3b2d/5585af59480531616fe970cb265bbdf63f5b.pdf,,,http://wscg.zcu.cz/wscg2008/Papers_2008/journal/!_WSCG2008_Journal_final.zip +3bf673a1f620015cb8b5106b85c7168431bb48ff,,,, +3bcdb430b373fc0fafec93bdcd8125db338b20e4,,,, +3b64efa817fd609d525c7244a0e00f98feacc8b4,https://arxiv.org/pdf/1502.04383v3.pdf,,,https://arxiv.org/pdf/1502.04383v2.pdf +3bf690a6e2751b23bd8ae65c2ad133b249840bf9,,,, +3bc776eb1f4e2776f98189e17f0d5a78bb755ef4,http://pdfs.semanticscholar.org/3bc7/76eb1f4e2776f98189e17f0d5a78bb755ef4.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/7318/umi-umd-4722.pdf?isAllowed=y&sequence=1 +3b7f6035a113b560760c5e8000540fc46f91fed5,http://www.vision.ee.ethz.ch/~zzhiwu/posters/ICCV13_Poster_ZhiwuHuang_v2.0.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Huang_Coupling_Alignments_with_2013_ICCV_paper.pdf +3b2a2357b12cf0a5c99c8bc06ef7b46e40dd888e,http://pdfs.semanticscholar.org/5141/cf2e59fb2ec9bb489b9c1832447d3cd93110.pdf,,,https://arxiv.org/pdf/1706.00893v1.pdf +3bd1d41a656c8159305ba2aa395f68f41ab84f31,http://pdfs.semanticscholar.org/3bd1/d41a656c8159305ba2aa395f68f41ab84f31.pdf,,https://doi.org/10.1007/978-3-319-18458-6_4,https://eprints.soton.ac.uk/379573/1/arcomem.pdf +3bcd72be6fbc1a11492df3d36f6d51696fd6bdad,http://pdfs.semanticscholar.org/3bcd/72be6fbc1a11492df3d36f6d51696fd6bdad.pdf,,https://doi.org/10.1007/978-3-319-46475-6_22,http://arxiv.org/abs/1611.08663 +3b9c08381282e65649cd87dfae6a01fe6abea79b,http://pdfs.semanticscholar.org/3b9c/08381282e65649cd87dfae6a01fe6abea79b.pdf,,,https://arxiv.org/pdf/1608.00797v1.pdf +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,http://nms.csail.mit.edu/papers/sen060-chenA.pdf,,,http://inat.lcs.mit.edu/papers/sen060-chenA.pdf +3bdaf59665e6effe323a1b61308bcac2da4c1b73,,,https://doi.org/10.1109/ROMAN.2012.6343736, +3bc376f29bc169279105d33f59642568de36f17f,http://www.dip.ee.uct.ac.za/~nicolls/publish/sm14-visapp.pdf,,https://doi.org/10.5220/0004680003800387,http://www.milbo.org/stasm-files/active-shape-models-with-sift-and-mars.pdf +3b38c06caf54f301847db0dd622a6622c3843957,http://pdfs.semanticscholar.org/3b38/c06caf54f301847db0dd622a6622c3843957.pdf,,, +3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0,http://pdfs.semanticscholar.org/3b15/a48ffe3c6b3f2518a7c395280a11a5f58ab0.pdf,,,http://d-nb.info/1008035602 +3b9b200e76a35178da940279d566bbb7dfebb787,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf,,,https://arxiv.org/pdf/1711.10103v1.pdf +3bfa630a6dc6d1ca98e7b43c90dd9e8b98e361d6,,,https://doi.org/10.1109/ICIP.2015.7351140, +3be8964cef223698e587b4f71fc0c72c2eeef8cf,https://www.researchgate.net/profile/Mohammad_Reza_Mohammadi3/publication/264394830_Simultaneous_recognition_of_facial_expression_and_identity_via_sparse_representation/links/53df5c5b0cf2a76fb6682872.pdf?origin=publication_list,,,https://www.researchgate.net/profile/Mohammad_Reza_Mohammadi3/publication/264394830_Simultaneous_recognition_of_facial_expression_and_identity_via_sparse_representation/links/53df5c5b0cf2a76fb6682872.pdf +3b408a3ca6fb39b0fda4d77e6a9679003b2dc9ab,http://pdfs.semanticscholar.org/3b40/8a3ca6fb39b0fda4d77e6a9679003b2dc9ab.pdf,,,https://arxiv.org/pdf/1703.08338v1.pdf +3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,http://pdfs.semanticscholar.org/3b02/aaccc9f063ae696c9d28bb06a8cd84b2abb8.pdf,,,http://arxiv.org/pdf/1608.07444v1.pdf +3ba8f8b6bfb36465018430ffaef10d2caf3cfa7e,http://www.chennaisunday.com/IEEE%202013%20Dotnet%20Basepaper/Local%20Directional%20Number%20Pattern%20for%20Face%20Analysis%20Face%20and%20Expression%20Recognition.pdf,,https://doi.org/10.1109/TIP.2012.2235848,https://pdfs.semanticscholar.org/3ba8/f8b6bfb36465018430ffaef10d2caf3cfa7e.pdf +3b80bf5a69a1b0089192d73fa3ace2fbb52a4ad5,http://pdfs.semanticscholar.org/3b80/bf5a69a1b0089192d73fa3ace2fbb52a4ad5.pdf,,https://doi.org/10.1016/j.jvlc.2015.01.001,http://ksiresearchorg.ipage.com/seke/dms14paper/paper22.pdf +3b9d94752f8488106b2c007e11c193f35d941e92,http://pdfs.semanticscholar.org/3b9d/94752f8488106b2c007e11c193f35d941e92.pdf,,,http://www.research.att.com/export/sites/att_labs/techdocs/TD_101048.pdf +3bebb79f8f49aa11dd4f6d60d903172db02bf4f3,http://hct.ece.ubc.ca/publications/pdf/oleinikov-etal-wacv2014.pdf,,,http://www.cs.ubc.ca/~little/links/papers/openvl.pdf +3b557c4fd6775afc80c2cf7c8b16edde125b270e,https://arxiv.org/pdf/1602.02999v1.pdf,,https://doi.org/10.1109/ICARCV.2016.7838675,http://arxiv.org/pdf/1602.02999v1.pdf +3b75681f0162752865d85befd8b15e7d954ebfe6,,,https://doi.org/10.1109/CLEI.2014.6965097, +3b3482e735698819a6a28dcac84912ec01a9eb8a,http://vislab.ee.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2003/Individual%20Recognition%20Using%20Gait%20Energy%20Image03.pdf,,,http://vision.lbl.gov/People/han/tpami06.pdf +3b37d95d2855c8db64bd6b1ee5659f87fce36881,http://pdfs.semanticscholar.org/3b37/d95d2855c8db64bd6b1ee5659f87fce36881.pdf,,,https://arxiv.org/pdf/1710.07735v2.pdf +3bfb9ba4b74b2b952868f590ff2f164de0c7d402,http://qil.uh.edu/qil/websitecontent/pdf/2015-8.pdf,,https://doi.org/10.1109/TCYB.2013.2291196,http://web.mit.edu/gevang/www/papers/Zhao_MinimizingIllumination3D2DFR_ieeeSMCB14/Zhao_MinimizingIllumination3D2DFR_ieeeSMCB14.pdf +3b64b8be33887e77e6def4c385985e43e2c15eea,,,https://doi.org/10.1109/TIP.2016.2576278, +3be7b7eb11714e6191dd301a696c734e8d07435f,http://pdfs.semanticscholar.org/3be7/b7eb11714e6191dd301a696c734e8d07435f.pdf,,,http://www.cs.unc.edu/~megha/user_interest_profiling_icme2015.pdf +3bd50e33220af76ffc32a7e57688e248843b7f25,http://staff.estem-uc.edu.au/roland/files/2009/05/Ramana_Murthy_Goecke_DICTA2014_TheInfluenceOfTemporalInformationOnHumanActionRecognitionWithLargeNumberOfClasses.pdf,,https://doi.org/10.1109/DICTA.2014.7008131, +3be027448ad49a79816cd21dcfcce5f4e1cec8a8,http://www.cs.utexas.edu/~grauman/papers/kovashka_iccv2011.pdf,,,http://vision.cs.utexas.edu/attributes_active/adriana_iccv11_poster.pdf +3bd56f4cf8a36dd2d754704bcb71415dcbc0a165,http://www.humansensing.cs.cmu.edu/sites/default/files/4robustreg.pdf,,https://doi.org/10.1007/978-3-642-33765-9_44,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2448091 +3b410ae97e4564bc19d6c37bc44ada2dcd608552,http://pdfs.semanticscholar.org/3b41/0ae97e4564bc19d6c37bc44ada2dcd608552.pdf,,https://doi.org/10.1007/3-540-44887-X_87,ftp://ftp.idiap.ch/pub/reports/2003/czyz_2003_avbpa.ps.gz +3b470b76045745c0ef5321e0f1e0e6a4b1821339,http://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf,,https://doi.org/10.1007/978-3-319-10593-2_8,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8692/86920105.pdf +6f6ce988a13ac08071a0e3349f80b7c8adc7a49d,,,, +6f5309d8cc76d3d300b72745887addd2a2480ba8,,,, +6f9026627fb31d4cfb08dbcc4ab852945dc42252,,,, +6f74c3885b684e52096497b811692bd766071530,,,https://doi.org/10.1016/j.neucom.2013.06.013, +6f68c49106b66a5bd71ba118273b4c5c64b6619f,,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190720 +6fa7a1c8a858157deee3b582099e5e234798bb4a,http://biometrics.nist.gov/cs_links/ibpc2014/presentations/14_wednesday_gentric_IBPC14_morpho.pdf,,,http://doi.acm.org/10.1145/2501105.2501107 +6ffdbac58e15e0ff084310b0a804520ad4bd013e,,,https://doi.org/10.1049/iet-bmt.2015.0078, +6f288a12033fa895fb0e9ec3219f3115904f24de,https://arxiv.org/pdf/1511.05204v1.pdf,,https://doi.org/10.1109/TIP.2016.2615424,http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1511.05204.pdf +6fa0c206873dcc5812f7ea74a48bb4bf4b273494,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W03/papers/Suk_Real-time_Mobile_Facial_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.25 +6f9824c5cb5ac08760b08e374031cbdabc953bae,https://eprints.soton.ac.uk/397973/1/PID4351119.pdf,,https://doi.org/10.1109/BTAS.2016.7791206, +6f22324fab61fbc5df1aac2c0c9c497e0a7db608,,,https://doi.org/10.1109/ICB.2013.6612990, +6f16f4bd01aeefdd03d6783beacb7de118f5af8a,,,https://doi.org/10.1109/VCIP.2013.6706330, +6f2dc51d607f491dbe6338711c073620c85351ac,http://pdfs.semanticscholar.org/6f2d/c51d607f491dbe6338711c073620c85351ac.pdf,,https://doi.org/10.1016/j.neucom.2015.07.134,http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/2Pool_nc_20150720.pdf +6fed504da4e192fe4c2d452754d23d3db4a4e5e3,http://pdfs.semanticscholar.org/85ee/d639f7367c794a6d8b38619697af3efaacfe.pdf,,,https://arxiv.org/pdf/1702.06890v1.pdf +6f957df9a7d3fc4eeba53086d3d154fc61ae88df,http://pdfs.semanticscholar.org/6f95/7df9a7d3fc4eeba53086d3d154fc61ae88df.pdf,,,https://tel.archives-ouvertes.fr/file/index/docid/185084/filename/2007.09.02_These_HM.pdf +6f0d3610c4ee7b67e9d435d48bc98167761251e8,http://www.cs.washington.edu/homes/wufei/papers/IJCNN.pdf,,, +6f0caff7c6de636486ff4ae913953f2a6078a0ab,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583081 +6ff0f804b8412a50ae2beea5cd020c94a5de5764,,,,http://doi.acm.org/10.1145/1877972.1877994 +6f1a784ebb8df0689361afe26a2e5f7a1f4c66ca,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553757.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553757 +6f26ab7edd971148723d9b4dc8ddf71b36be9bf7,http://pdfs.semanticscholar.org/6f26/ab7edd971148723d9b4dc8ddf71b36be9bf7.pdf,,,ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/37/9f/PLoS_One_2011_Mar_24_6(3)_e17481.tar.gz +6f75697a86d23d12a14be5466a41e5a7ffb79fad,https://www.computer.org/csdl/proceedings/icis/2016/0806/00/07550861.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICIS.2016.7550861 +6fdf2f4f7ae589af6016305a17d460617d9ef345,,,https://doi.org/10.1109/ICIP.2015.7350767, +6f48e5e258da11e6ba45eeabe65a5698f17e58ef,,,https://doi.org/10.1109/ICASSP.2013.6637968, +6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01293.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Uricar_Structured_Output_SVM_CVPR_2016_paper.pdf +6f08885b980049be95a991f6213ee49bbf05c48d,http://pdfs.semanticscholar.org/6f08/885b980049be95a991f6213ee49bbf05c48d.pdf,,,http://www.isir.upmc.fr/files/2013ACLI2838.pdf +6f0900a7fe8a774a1977c5f0a500b2898bcbe149,http://pdfs.semanticscholar.org/6f09/00a7fe8a774a1977c5f0a500b2898bcbe149.pdf,,,http://ijcsi.org/papers/7-3-10-18-27.pdf +6fbb179a4ad39790f4558dd32316b9f2818cd106,http://pdfs.semanticscholar.org/6fbb/179a4ad39790f4558dd32316b9f2818cd106.pdf,,,http://arxiv.org/abs/1603.06655 +6f84e61f33564e5188136474f9570b1652a0606f,https://arxiv.org/pdf/1708.00284v1.pdf,,,https://arxiv.org/pdf/1708.00284v2.pdf +6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3,http://www.ifp.uiuc.edu/~iracohen/publications/CohenSebeMS05.pdf,,https://doi.org/10.1007/s00530-005-0177-4,http://www.ifp.illinois.edu/~iracohen/publications/CohenSebeMS05.pdf +6fa3857faba887ed048a9e355b3b8642c6aab1d8,http://pdfs.semanticscholar.org/6fa3/857faba887ed048a9e355b3b8642c6aab1d8.pdf,,https://doi.org/10.1007/978-3-319-28501-6_11,https://infoscience.epfl.ch/record/217475/files/Gunther_SPRINGER_2016.pdf +6fda12c43b53c679629473806c2510d84358478f,http://pdfs.semanticscholar.org/6fda/12c43b53c679629473806c2510d84358478f.pdf,,,http://academians.org/Media/Default/Articles/June2011/paper2.pdf +6f8cffd9904415c8fa3a1e650ac143867a04f40a,,,https://doi.org/10.1016/j.neucom.2015.01.099, +6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0000937.pdf,,https://doi.org/10.1109/ICASSP.2012.6288039, +6fe2efbcb860767f6bb271edbb48640adbd806c3,https://eprints.soton.ac.uk/359808/1/version9.pdf,,,http://eprints.soton.ac.uk/359808/1/version9.pdf +6f5151c7446552fd6a611bf6263f14e729805ec7,http://pdfs.semanticscholar.org/6f51/51c7446552fd6a611bf6263f14e729805ec7.pdf,,,http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/Smith-SUEMA-2010.pdf +030c82b87e3cdc5ba35c443a93ff4a9d21c2bc2f,http://www.cfar.umd.edu/~shaohua/papers/zhou07tpami_gps.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.25 +03d9ccce3e1b4d42d234dba1856a9e1b28977640,http://pdfs.semanticscholar.org/03d9/ccce3e1b4d42d234dba1856a9e1b28977640.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/egpaper_final_1.pdf +036c41d67b49e5b0a578a401eb31e5f46b3624e0,http://www.infomus.org/Events/proceedings/ACII2015/papers/Main_Conference/M2_Poster/Poster_Teaser_5/ACII2015_submission_19.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344639 +03b03f5a301b2ff88ab3bb4969f54fd9a35c7271,http://pdfs.semanticscholar.org/03b0/3f5a301b2ff88ab3bb4969f54fd9a35c7271.pdf,,,http://arxiv.org/abs/1707.06923 +03f7041515d8a6dcb9170763d4f6debd50202c2b,http://biometrics.cse.msu.edu/Publications/Face/OttoWangJain_ClusteringMillionsOfFacesByIdentity_TPAMI17.pdf,,,http://arxiv.org/abs/1604.00989 +0387b32d0ebd034dc778972367e7d4194223785d,,,,http://doi.acm.org/10.1145/2522848.2531740 +03b99f5abe0e977ff4c902412c5cb832977cf18e,http://pdfs.semanticscholar.org/03b9/9f5abe0e977ff4c902412c5cb832977cf18e.pdf,,https://doi.org/10.5244/C.27.39,http://www.robots.ox.ac.uk/~vgg/publications/2013/Crowley13/crowley13.pdf +038ce930a02d38fb30d15aac654ec95640fe5cb0,http://www.robots.ox.ac.uk/~tvg/publications/2013/BVGFacialFeatureTrackerMobile.pdf,,,http://cms.brookes.ac.uk/research/visiongroup/publications/2013/BVGFacialFeatureTrackerMobile.pdf +03167776e17bde31b50f294403f97ee068515578,http://pdfs.semanticscholar.org/0316/7776e17bde31b50f294403f97ee068515578.pdf,,,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/FR-Handbook.pdf +0334a8862634988cc684dacd4279c5c0d03704da,https://arxiv.org/pdf/1609.06591v1.pdf,,,http://arxiv.org/pdf/1609.06591v2.pdf +03c1fc9c3339813ed81ad0de540132f9f695a0f8,http://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf,,,https://dam-prod.media.mit.edu/x/2018/02/06/Gender%20Shades%20Intersectional%20Accuracy%20Disparities.pdf +03333e7ec198208c13627066bc76b0367f5e270f,,,https://doi.org/10.1109/IJCNN.2017.7966100, +03e1480f1de2ffbd85655d68aae63a01685c5862,,,https://doi.org/10.1109/ICPR.2014.771, +0339459a5b5439d38acd9c40a0c5fea178ba52fb,http://pdfs.semanticscholar.org/0339/459a5b5439d38acd9c40a0c5fea178ba52fb.pdf,,,http://mmi.tudelft.nl/pub/dragos/Multimodal%20recognition%20of%20emotions%20in%20car%20environments.pdf +030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,http://pdfs.semanticscholar.org/030e/f31b51bd4c8d0d8f4a9a32b80b9192fe4c3f.pdf,,,http://www.jneurosci.org/content/jneuro/35/34/11936.full.pdf +03f98c175b4230960ac347b1100fbfc10c100d0c,http://courses.cs.washington.edu/courses/cse590v/13au/intraface.pdf,,,http://www.humansensing.cs.cmu.edu/sites/default/files/6main.pdf +0341405252c80ff029a0d0065ca46d0ade943b03,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.40 +0323b618d3a4c24bdda4f42361e19a2a7d497da5,http://www.ecse.rpi.edu/homepages/qji/Papers/Simultaneous%20Paper_TIP_Revised_V4_email.pdf,,https://doi.org/10.1109/TIP.2013.2253477,http://www.ecse.rpi.edu/~qji/Papers/TIP_Exp_AU_Fea.pdf +03264e2e2709d06059dd79582a5cc791cbef94b1,http://pdfs.semanticscholar.org/0326/4e2e2709d06059dd79582a5cc791cbef94b1.pdf,,,https://arxiv.org/pdf/1604.08865v2.pdf +03dba79518434ba4a937b2980fbdc8bafc048b36,http://people.ee.duke.edu/~jh313/resource/TRAIT.pdf,,https://doi.org/10.1109/TSP.2015.2500889,http://arxiv.org/abs/1507.04230 +03a8f53058127798bc2bc0245d21e78354f6c93b,http://www.robots.ox.ac.uk/~vgg/rg/slides/additiveclassifiers.pdf,,https://doi.org/10.1109/ICCV.2009.5459203,http://people.cs.umass.edu/~smaji/papers/additive-iccv09.pdf +03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20,https://ias.in.tum.de/_media/spezial/bib/mayer08arealtime.pdf,,https://doi.org/10.1109/AFGR.2008.4813440,http://ias.cs.tum.edu/_media/spezial/bib/mayer08arealtime.pdf +03babadaaa7e71d4b65203e27e8957db649155c6,,,https://doi.org/10.1109/TIP.2017.2725578, +0363e93d49d2a3dbe057cc7754825ebf30f0f816,http://nichol.as/papers/Everingham/Identifying%20individuals%20in%20video%20by%20combining%20generative.pdf,,,http://www.robots.ox.ac.uk/~vgg/publications/papers/everingham05.ps.gz +03b98b4a2c0b7cc7dae7724b5fe623a43eaf877b,http://pdfs.semanticscholar.org/03b9/8b4a2c0b7cc7dae7724b5fe623a43eaf877b.pdf,,,http://affect.media.mit.edu/pdfs/11.McDuff-etal-Acume-2011.pdf +0329d9be8ab1e3a1d5e4b9e7db5af5bbcc64e36f,,,, +03adcf58d947a412f3904a79f2ab51cfdf0e838a,http://pdfs.semanticscholar.org/03ad/cf58d947a412f3904a79f2ab51cfdf0e838a.pdf,,,http://www.stupros.com/site/postconcept/video_based_face_recognition.pdf +03104f9e0586e43611f648af1132064cadc5cc07,http://pdfs.semanticscholar.org/51c0/2f135d6c960b1141bde539059a279f9beb78.pdf,,https://doi.org/10.1016/j.knosys.2017.02.031,https://arxiv.org/pdf/1403.2330v3.pdf +03f14159718cb495ca50786f278f8518c0d8c8c9,http://www.acscrg.com/iccsce/2015/wp-content/uploads/2015/11/The-Latest-Schedule-23-Nov-2015.pdf,,https://doi.org/10.1109/ICCSCE.2015.7482159, +0394040749195937e535af4dda134206aa830258,http://web.eecs.umich.edu/~hero/Preprints/sp_mlsi_submitted_revised2.pdf,,https://doi.org/10.1109/TSP.2004.831130,http://web.eecs.umich.edu/~hero/Preprints/GeodesicEntropicGraphs.pdf +0334cc0374d9ead3dc69db4816d08c917316c6c4,http://pdfs.semanticscholar.org/0334/cc0374d9ead3dc69db4816d08c917316c6c4.pdf,,,https://arxiv.org/pdf/1708.02412v1.pdf +03c48d8376990cff9f541d542ef834728a2fcda2,http://dvmmweb.cs.columbia.edu/files/dvmm_scnn_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Shou_Temporal_Action_Localization_CVPR_2016_paper.pdf +0319332ded894bf1afe43f174f5aa405b49305f0,http://pdfs.semanticscholar.org/0319/332ded894bf1afe43f174f5aa405b49305f0.pdf,,https://doi.org/10.1007/978-3-642-41184-7_62,http://www.math.uh.edu/~dlabate/ICIAP_2013.pdf +03af8cf40283ff30f1da3637b024319d0c79bdf0,https://www.researchgate.net/profile/Gary_Mckeown/publication/224251574_The_Belfast_Induced_Natural_Emotion_Database/links/0fcfd510a6b4384822000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2011.26 +03d1d0a665e358863ff4de9ee7d78f64edd7e756,,,, +0343f9401b98de36be957a30209fef45dd684270,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163134 +03baf00a3d00887dd7c828c333d4a29f3aacd5f5,http://pdfs.semanticscholar.org/03ba/f00a3d00887dd7c828c333d4a29f3aacd5f5.pdf,,,http://i-rep.emu.edu.tr:8080/jspui/bitstream/11129/1686/1/YurtkanKamil.pdf +0359f7357ea8191206b9da45298902de9f054c92,http://arxiv.org/pdf/1511.04110v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477450 +0394e684bd0a94fc2ff09d2baef8059c2652ffb0,http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/TIP2522378.pdf,,https://doi.org/10.1109/TIP.2016.2522378,http://www.ee.cuhk.edu.hk/~xgwang/papers/liuLFGWPtip16.pdf +03e88bf3c5ddd44ebf0e580d4bd63072566613ad,http://pdfs.semanticscholar.org/03e8/8bf3c5ddd44ebf0e580d4bd63072566613ad.pdf,,,https://arxiv.org/pdf/1709.06126v1.pdf +03f4c0fe190e5e451d51310bca61c704b39dcac8,http://pdfs.semanticscholar.org/03f4/c0fe190e5e451d51310bca61c704b39dcac8.pdf,,https://doi.org/10.1007/s12652-016-0406-z,http://speakit.cn/Group/file/2016_CHEAVD_AIHC_SCI-Ya%20Li.pdf +03bd58a96f635059d4bf1a3c0755213a51478f12,https://arxiv.org/pdf/1401.7413v2.pdf,,https://doi.org/10.1109/TIP.2014.2380155,http://www.cis.pku.edu.cn/faculty/vision/zlin/Publications/2015-TIP-SmoothedLRR.pdf +031055c241b92d66b6984643eb9e05fd605f24e2,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Cinbis_Multi-fold_MIL_Training_2014_CVPR_paper.pdf,,,https://hal.inria.fr/hal-00975746/PDF/paper.pdf +0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136,https://ibug.doc.ic.ac.uk/media/uploads/documents/booth2017large.pdf,,https://doi.org/10.1007/s11263-017-1009-7,https://ibug.doc.ic.ac.uk/media/uploads/documents/ijcv-16_(1).pdf +032a1c95388fb5c6e6016dd8597149be40bc9d4d,http://people.eecs.berkeley.edu/~gkioxari/ActionTubes/action_tubes.pdf,,,https://people.eecs.berkeley.edu/~gkioxari/ActionTubes/action_tubes.pdf +034addac4637121e953511301ef3a3226a9e75fd,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Parikh_Implied_Feedback_Learning_2013_ICCV_paper.pdf,,,http://www.cs.utexas.edu/~grauman/papers/ParikhGrauman_ICCV_2013_nuances.pdf +03701e66eda54d5ab1dc36a3a6d165389be0ce79,http://www.eem.anadolu.edu.tr/atalaybarkan/EEM%20405%20(K)/icerik/improved%20pcr.pdf,,https://doi.org/10.1109/LSP.2012.2185492, +034c2ed71c31cb0d984d66c7ca753ef2cb6196ca,http://pdfs.semanticscholar.org/034c/2ed71c31cb0d984d66c7ca753ef2cb6196ca.pdf,,https://doi.org/10.1016/j.patcog.2017.03.034,https://panzhous.github.io/assets/pdf/2017-PR-FE-PDE.pdf +9b318098f3660b453fbdb7a579778ab5e9118c4c,http://humansensing.cs.cmu.edu/sites/default/files/07471506.pdf,,https://doi.org/10.1109/TIP.2016.2570550,http://www.humansensing.cs.cmu.edu/sites/default/files/07471506.pdf +9b78ce9fdac30864d1694a56328b3c8a96cccef5,,,https://doi.org/10.1089/cpb.2004.7.635, +9be94fa0330dd493f127d51e4ef7f9fd64613cfc,http://pdfs.semanticscholar.org/9be9/4fa0330dd493f127d51e4ef7f9fd64613cfc.pdf,,https://doi.org/10.1049/iet-bmt.2015.0008,http://eprints.eemcs.utwente.nl/26381/01/M_K_2015_IET_Biometrics.pdf +9b9ccd4954cf9dd605d49e9c3504224d06725ab7,,,, +9bd3cafa16a411815f8f87ed3eb3cafefc25e5a3,,,https://doi.org/10.1109/ICPR.2016.7899782, +9b000ccc04a2605f6aab867097ebf7001a52b459,http://pdfs.semanticscholar.org/9b00/0ccc04a2605f6aab867097ebf7001a52b459.pdf,,,http://arxiv.org/abs/1603.00944 +9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf,,,https://arxiv.org/pdf/1801.06665v1.pdf +9b474d6e81e3b94e0c7881210e249689139b3e04,http://pdfs.semanticscholar.org/a43c/c0c2f1d0e29cf1ee88f3bde4289a94b70409.pdf,,,https://www.inf.ufes.br/~claudine/Papers/2009_InTech_De_Souza.pdf +9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493,http://www.ifp.illinois.edu/~jyang29/papers/JRR_ICCV11.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126315 +9b43897c551b134852bda113355f340e605ad4e7,,,, +9b8830655d4a5a837e3ffe835d14d6d71932a4f2,,,https://doi.org/10.1109/TSMCB.2011.2169452, +9bcfadd22b2c84a717c56a2725971b6d49d3a804,http://pdfs.semanticscholar.org/9bcf/add22b2c84a717c56a2725971b6d49d3a804.pdf,,,http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Maat-Mark-ter.pdf +9ba358281f2946cba12fff266019193a2b059590,,,,http://doi.ieeecomputersociety.org/10.1109/ISM.2008.27 +9b42fb48d5ac70b6ca5382f50e71ed8bf3a84710,,,, +9b07084c074ba3710fee59ed749c001ae70aa408,http://pdfs.semanticscholar.org/9b07/084c074ba3710fee59ed749c001ae70aa408.pdf,,,http://cbcsl.ece.ohio-state.edu/CDPS698535_Martinez_REV.pdf +9b246c88a0435fd9f6d10dc88f47a1944dd8f89e,http://pdfs.semanticscholar.org/ffe3/a5a7c0faebd1719f7c77b5f7e05cae61a9ad.pdf,,,http://cs.dartmouth.edu/~lorenzo/Papers/btf-nips11.pdf +9b4d2cd2e5edbf5c8efddbdcce1db9a02a853534,,,https://doi.org/10.1016/j.neucom.2016.02.063, +9b164cef4b4ad93e89f7c1aada81ae7af802f3a4,http://pdfs.semanticscholar.org/9b16/4cef4b4ad93e89f7c1aada81ae7af802f3a4.pdf,,,http://www.isca.in/IJMS/Archive/v2/i1/4.ISCA-RJRS-2012-355.pdf +9b93406f3678cf0f16451140ea18be04784faeee,http://pdfs.semanticscholar.org/9b93/406f3678cf0f16451140ea18be04784faeee.pdf,,https://doi.org/10.1007/978-3-642-33786-4_18,http://people.csail.mit.edu/celiu/pdfs/ECCV12-ImageHallucination.pdf +9b9a1f18749e969c8f246894e59c62ae86b079be,,,, +9b1a70d6771547cbcf6ba646f8775614c0162aca,,,https://doi.org/10.1016/j.patrec.2016.11.005, +9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7,http://pdfs.semanticscholar.org/9b79/74d9ad19bb4ba1ea147c55e629ad7927c5d7.pdf,,,http://bcmi.sjtu.edu.cn/~duruofei/papers/ses2012.pdf +9b1c218a55ead45296bfd7ad315aaeff1ae9983e,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2481396 +9b6d0b3fbf7d07a7bb0d86290f97058aa6153179,http://pdfs.semanticscholar.org/9b6d/0b3fbf7d07a7bb0d86290f97058aa6153179.pdf,,,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/Paper%2031%20(Supplementary).pdf +9bc289a32bb5ab54b7a178b7234799f32e0568ce,,,, +9e8637a5419fec97f162153569ec4fc53579c21e,http://pdfs.semanticscholar.org/9e86/37a5419fec97f162153569ec4fc53579c21e.pdf,,https://doi.org/10.1007/978-3-319-11599-3_16,https://www.dasec.h-da.de/wp-content/uploads/2014/07/PflugBuch-CPR-NordSec2014.pdf +9e8382aa1de8f2012fd013d3b39838c6dad8fb4d,,,,http://doi.acm.org/10.1145/3123266.3123349 +9e4b052844d154c3431120ec27e78813b637b4fc,http://pdfs.semanticscholar.org/9e4b/052844d154c3431120ec27e78813b637b4fc.pdf,,,http://jad.shahroodut.ac.ir/article_147_65fecf9ec71ccfdba7f9ba1bf07251b1.pdf +9e42d44c07fbd800f830b4e83d81bdb9d106ed6b,http://openaccess.thecvf.com/content_ICCV_2017/papers/Rao_Learning_Discriminative_Aggregation_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.408 +9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0,http://pdfs.semanticscholar.org/9eb8/6327c82b76d77fee3fd72e2d9eff03bbe5e0.pdf,,,http://arxiv.org/abs/1710.08585 +9ea73660fccc4da51c7bc6eb6eedabcce7b5cead,http://pdfs.semanticscholar.org/9ea7/3660fccc4da51c7bc6eb6eedabcce7b5cead.pdf,,,http://www.isca-speech.org/archive/slam_2014/slm4_009.html +9e5690cdb4dfa30d98dff653be459e1c270cde7f,,,https://doi.org/10.1109/ICIP.2017.8297080, +9e9052256442f4e254663ea55c87303c85310df9,http://pdfs.semanticscholar.org/9e90/52256442f4e254663ea55c87303c85310df9.pdf,,,http://ijarcet.org/wp-content/uploads/IJARCET-VOL-4-ISSUE-10-3772-3774.pdf +9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7,http://pdfs.semanticscholar.org/9eea/da49fc2cba846b4dad1012ba8a7ee78a8bb7.pdf,,,http://www.matlabi.ir/wp-content/uploads/bank_papers/g_paper/g105_Matlabi.ir_A%20New%20Facial%20Expression%20Recognition%20Method%20Based%20on%20Local%20Gabor%20Filter%20Bank%20and%20PCA%20plus%20LDA.pdf +9ef2b2db11ed117521424c275c3ce1b5c696b9b3,http://pdfs.semanticscholar.org/c31b/dd00734807938dcfd8a12375bd9ffa556985.pdf,,https://doi.org/10.1007/978-3-319-46454-1_50,http://arxiv.org/pdf/1511.04404v1.pdf +9e5acdda54481104aaf19974dca6382ed5ff21ed,http://pdfs.semanticscholar.org/dd52/0f2ebcf8034cb168ab4e82acec9a69fe0188.pdf,,,http://www.sis.uta.fi/cs/reports/dsarja/D-2008-9.pdf +9e5809122c0880183c7e42c7edd997f92de6d81e,,,,http://doi.acm.org/10.1145/2451176.2451209 +9e7646b7e9e89be525cda1385cc1351cc28a896e,,,,http://doi.ieeecomputersociety.org/10.1109/TMC.2017.2702634 +9ed943f143d2deaac2efc9cf414b3092ed482610,http://www.jaist.ac.jp/~chen-fan/publication/ism2014-07032993.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ISM.2014.48 +9e1c3b8b1653337094c1b9dba389e8533bc885b0,http://pdfs.semanticscholar.org/9e1c/3b8b1653337094c1b9dba389e8533bc885b0.pdf,,https://doi.org/10.1007/978-3-540-74549-5_49,http://media.cs.tsinghua.edu.cn/~imagevision/papers/ICB07_demographic.pdf +9e99f818b37d44ec6aac345fb2c5356d83d511c7,,,https://doi.org/10.1109/ISSPA.2012.6310540, +9eaa967d19fc66010b7ade7d94eaf7971a1957f3,,,https://doi.org/10.1109/IWCIA.2013.6624793, +9eb13f8e8d948146bfbae1260e505ba209c7fdc1,,,https://doi.org/10.1109/AFGR.2008.4813404, +9e28243f047cc9f62a946bf87abedb65b0da0f0a,,,https://doi.org/10.1109/ICMLA.2013.141, +9e0285debd4b0ba7769b389181bd3e0fd7a02af6,http://pdfs.semanticscholar.org/9e02/85debd4b0ba7769b389181bd3e0fd7a02af6.pdf,,https://doi.org/10.1007/978-3-319-54187-7_21,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01314.pdf +9ed4ad41cbad645e7109e146ef6df73f774cd75d,http://pdfs.semanticscholar.org/a83e/175ad5b2066e207f5d2ec830ae05bac266b9.pdf,,https://doi.org/10.5244/C.27.77,http://www.bmva.org/bmvc/2013/Papers/paper0077/paper0077.pdf +9ef06cc958af2274afd193a1dca705c08234bcd3,,,https://doi.org/10.1109/ICIP.2014.7026207, +9e60614fd57afe381ae42c6ee0b18f32f60bb493,,,https://doi.org/10.1109/ICIP.2015.7351544, +9e8d87dc5d8a6dd832716a3f358c1cdbfa97074c,https://people.csail.mit.edu/khosla/papers/www2014_khosla.pdf,,,http://people.csail.mit.edu/khosla/papers/www2014_khosla.pdf +9e5c2d85a1caed701b68ddf6f239f3ff941bb707,http://pdfs.semanticscholar.org/ada4/4aa744f9703cacfcd0028372a2b1684a45a3.pdf,,,http://www.researchgate.net/profile/Ayseguel_Ucar/publication/258104959_A._Uar_Facial_Expression_Recognition_Based_on_Significant_Face_Components_Using_Steerable_Pyramid_Transform_2013_International_conference_on_Image_Processing_Computer_Vision_and_Pattern_Recognition_687-692_Las_Vegas_USA_22-25_July_2013/links/0deec526f5fb5bfdfb000000.pdf +044d9a8c61383312cdafbcc44b9d00d650b21c70,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Sagonas_300_Faces_in-the-Wild_2013_ICCV_paper.pdf +04bb3fa0824d255b01e9db4946ead9f856cc0b59,http://pdfs.semanticscholar.org/c1de/db5ac05c955e53d7ef1f6367fb7badea49b1.pdf,,,http://arxiv.org/abs/1708.07972 +04f0292d9a062634623516edd01d92595f03bd3f,http://www.cs.nott.ac.uk/~mfv/Documents/emotiw2013_cameraready.pdf,,,http://doi.acm.org/10.1145/2522848.2531742 +0486eb243d167ab4b197b682e9eff9684b273df4,,,, +047f6afa87f48de7e32e14229844d1587185ce45,http://pdfs.semanticscholar.org/047f/6afa87f48de7e32e14229844d1587185ce45.pdf,,https://doi.org/10.1007/978-3-319-07998-1_59,http://mrl.cs.vsb.cz/publications/fusek_icisp_2014.pdf +049186d674173ebb76496f9ecee55e17ed1ca41b,,,https://doi.org/10.1109/ACCESS.2017.2724763, +04522dc16114c88dfb0ebd3b95050fdbd4193b90,http://www.svcl.ucsd.edu/publications/conference/2005/crv05/FES.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2005.53 +04470861408d14cc860f24e73d93b3bb476492d0,http://pdfs.semanticscholar.org/0447/0861408d14cc860f24e73d93b3bb476492d0.pdf,,,http://waset.org/publications/4963/face-recognition-using-features-combination-and-a-new-non-linear-kernel +0486214fb58ee9a04edfe7d6a74c6d0f661a7668,http://conradsanderson.id.au/pdfs/wong_face_selection_cvpr_biometrics_2011.pdf,,https://doi.org/10.1109/CVPRW.2011.5981881,https://www.researchgate.net/profile/Brian_Lovell2/publication/224253078_Patch-based_probabilistic_image_quality_assessment_for_face_selection_and_improved_video-based_face_recognition/links/0c960522665933c95d000000.pdf?origin=publication_list +0447bdb71490c24dd9c865e187824dee5813a676,http://pdfs.semanticscholar.org/0447/bdb71490c24dd9c865e187824dee5813a676.pdf,,,http://www.vis.uky.edu/~cheung/doc/bmvc08.pdf +0435a34e93b8dda459de49b499dd71dbb478dc18,http://pdfs.semanticscholar.org/0435/a34e93b8dda459de49b499dd71dbb478dc18.pdf,,,https://arxiv.org/pdf/1803.05719v1.pdf +044ba70e6744e80c6a09fa63ed6822ae241386f2,http://pdfs.semanticscholar.org/044b/a70e6744e80c6a09fa63ed6822ae241386f2.pdf,,,https://arxiv.org/pdf/1709.09269v1.pdf +045e83272db5e92aa4dc8bdfee908534c2608711,,,,http://doi.ieeecomputersociety.org/10.1109/ICCABS.2016.7802775 +046770df59c49c7ca9a1a4c268176ede2aa89e37,,,, +047d3cb2a6a9628b28cac077b97d95b04ca9044c,,,https://doi.org/10.1109/FG.2011.5771332, +04661729f0ff6afe4b4d6223f18d0da1d479accf,https://arxiv.org/pdf/1509.06451v1.pdf,,,http://arxiv.org/abs/1509.06451 +041b51a81a977b5c64682c55414ad8d165c1f2ce,,,https://doi.org/10.1109/TCE.2014.7027339, +04f56dc5abee683b1e00cbb493d031d303c815fd,,,,http://doi.acm.org/10.1145/2808492.2808557 +04dcdb7cb0d3c462bdefdd05508edfcff5a6d315,http://pdfs.semanticscholar.org/04dc/db7cb0d3c462bdefdd05508edfcff5a6d315.pdf,,,http://diposit.ub.edu/dspace/bitstream/2445/67591/1/ADRIANA_ROMERO_PhD_THESIS.pdf +044fdb693a8d96a61a9b2622dd1737ce8e5ff4fa,http://www.ee.oulu.fi/mvg/files/pdf/pdf_740.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1110 +04f55f81bbd879773e2b8df9c6b7c1d324bc72d8,http://pdfs.semanticscholar.org/04f5/5f81bbd879773e2b8df9c6b7c1d324bc72d8.pdf,,,http://arxiv.org/pdf/1403.1327v1.pdf +04c07ecaf5e962ac847059ece3ae7b6962b4e5c4,,,,http://doi.acm.org/10.1145/2993148.2997631 +04250e037dce3a438d8f49a4400566457190f4e2,http://pdfs.semanticscholar.org/0425/0e037dce3a438d8f49a4400566457190f4e2.pdf,,https://doi.org/10.1016/S0031-3203(00)00162-X,http://www.cs.cmu.edu/~hyu/rjpr.pdf +0431e8a01bae556c0d8b2b431e334f7395dd803a,https://people.cs.umass.edu/~smaji/papers/localized-wacv15.pdf,,,http://vision.cs.utexas.edu/hmcv2014/wah_etal_hmcv2014.pdf +04616814f1aabe3799f8ab67101fbaf9fd115ae4,http://pdfs.semanticscholar.org/0461/6814f1aabe3799f8ab67101fbaf9fd115ae4.pdf,,,http://hal.inria.fr/docs/00/76/76/99/PDF/thesis.pdf +04c5268d7a4e3819344825e72167332240a69717,http://longwood.cs.ucf.edu/~vision/papers/cvpr2008/7.pdf,,,http://www.cs.ucf.edu/~vision/papers/cvpr2008/7.pdf +04c2cda00e5536f4b1508cbd80041e9552880e67,http://pdfs.semanticscholar.org/04c2/cda00e5536f4b1508cbd80041e9552880e67.pdf,,https://doi.org/10.1007/978-3-319-10590-1_31,http://tamaraberg.com/papers/hipster_eccv14.pdf +04644c97784700c449f2c885cb4cab86447f0bd4,http://www.seekdl.org/upload/files/20131209_014911.pdf,,, +04ff69aa20da4eeccdabbe127e3641b8e6502ec0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.194 +047ce307ad0c871bc2c9a5c1e4649cefae2ba50d,,,https://doi.org/10.1109/ICRA.2012.6224587, +046a694bbb3669f2ff705c6c706ca3af95db798c,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xiong_Conditional_Convolutional_Neural_ICCV_2015_paper.pdf,,,http://openaccess.thecvf.com/content_iccv_2015/papers/Xiong_Conditional_Convolutional_Neural_ICCV_2015_paper.pdf +047d7cf4301cae3d318468fe03a1c4ce43b086ed,http://webee.technion.ac.il/~yoav/publications/Delforge_taslp14R2.pdf,,https://doi.org/10.1109/TASLP.2015.2405475,http://arxiv.org/pdf/1408.2700v4.pdf +045275adac94cced8a898a815293700401e9955f,,,https://doi.org/10.1007/s00138-012-0447-z, +046865a5f822346c77e2865668ec014ec3282033,http://www.csie.ntu.edu.tw/~winston/papers/chen12discovering.pdf,,,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/fp060-chen.pdf +042825549296ea419d95fcf0b5e71f72070a5f0d,http://eprints.pascal-network.org/archive/00008397/01/paper.pdf,,https://doi.org/10.1007/s11263-011-0447-x,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01053.pdf +0470b0ab569fac5bbe385fa5565036739d4c37f8,https://hal.inria.fr/inria-00321048/file/verbeek08cvpr.pdf,,,http://lear.inrialpes.fr/pubs/2008/GMVS08/GMVS08.pdf +6a3a07deadcaaab42a0689fbe5879b5dfc3ede52,http://pdfs.semanticscholar.org/6a3a/07deadcaaab42a0689fbe5879b5dfc3ede52.pdf,,,http://arxiv.org/abs/1704.04081 +6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d,http://pdfs.semanticscholar.org/6a67/e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d.pdf,,,https://arxiv.org/pdf/1705.05512v1.pdf +6a3fa483c64e72d9c96663ff031446a2bdb6b2eb,,,https://doi.org/10.1016/j.patcog.2017.02.003, +6afed8dc29bc568b58778f066dc44146cad5366c,http://pdfs.semanticscholar.org/6afe/d8dc29bc568b58778f066dc44146cad5366c.pdf,,,http://eprints.pascal-network.org/archive/00000376/01/slcv04.pdf +6a184f111d26787703f05ce1507eef5705fdda83,http://pdfs.semanticscholar.org/6a18/4f111d26787703f05ce1507eef5705fdda83.pdf,,,http://centaur.reading.ac.uk/66125/1/1-s2.0-S1878929315301067-main.pdf +6a16b91b2db0a3164f62bfd956530a4206b23fea,http://pdfs.semanticscholar.org/6a16/b91b2db0a3164f62bfd956530a4206b23fea.pdf,,,https://www.cpe.ku.ac.th/~jeab/papers/chinnawat_JCSSE2009.pdf +6a806978ca5cd593d0ccd8b3711b6ef2a163d810,http://pdfs.semanticscholar.org/6a80/6978ca5cd593d0ccd8b3711b6ef2a163d810.pdf,,https://doi.org/10.1007/978-3-642-23687-7_45,http://www.isir.upmc.fr/files/2011ACTI2001.pdf +6a38e4bb35673a73f041e34d3f2db7067482a9b5,,,,http://doi.acm.org/10.1145/2663204.2666277 +6a8a3c604591e7dd4346611c14dbef0c8ce9ba54,http://pdfs.semanticscholar.org/6a8a/3c604591e7dd4346611c14dbef0c8ce9ba54.pdf,,,http://www.science.uva.nl/research/publications/2010/DibekliogluEISWMI2010/report03.pdf +6aa43f673cc42ed2fa351cbc188408b724cb8d50,http://pdfs.semanticscholar.org/6aa4/3f673cc42ed2fa351cbc188408b724cb8d50.pdf,,,http://arxiv.org/abs/1712.09915 +6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,http://openaccess.thecvf.com/content_iccv_2015/papers/Song_Top_Rank_Supervised_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.223 +6afe1f668eea8dfdd43f0780634073ed4545af23,,,https://doi.org/10.1007/s11042-017-4962-9, +6a5fe819d2b72b6ca6565a0de117c2b3be448b02,http://pdfs.semanticscholar.org/6a5f/e819d2b72b6ca6565a0de117c2b3be448b02.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/download/6471/7181 +6afeb764ee97fbdedfa8f66810dfc22feae3fa1f,http://pdfs.semanticscholar.org/928c/dc2049462f66460dc30aef5aaaa15e427d12.pdf,,,http://jmlr.org/proceedings/papers/v32/zhao14.html +6a527eeb0b2480109fe987ed7eb671e0d847fca8,,,https://doi.org/10.1007/978-3-319-28515-3, +6aa61d28750629febe257d1cb69379e14c66c67f,http://pdfs.semanticscholar.org/6aa6/1d28750629febe257d1cb69379e14c66c67f.pdf,,,http://www.kyb.tuebingen.mpg.de/publications/pdfs/pdf2302.pdf +6adecb82edbf84a0097ff623428f4f1936e31de0,,,https://doi.org/10.1007/s11760-011-0246-4, +6ae96f68187f1cdb9472104b5431ec66f4b2470f,http://pdfs.semanticscholar.org/6ae9/6f68187f1cdb9472104b5431ec66f4b2470f.pdf,,,http://repository.cmu.edu/cgi/viewcontent.cgi?article=1158&context=hsshonors +6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8,http://pdfs.semanticscholar.org/6af6/5e2a1eba6bd62843e7bf717b4ccc91bce2b8.pdf,,https://doi.org/10.1007/978-3-642-40705-5_10,http://www.researchgate.net/profile/Hefeng_Yin/publication/259005850_A_New_Weighted_Sparse_Representation_Based_on_MSLBP_and_Its_Application_to_Face_Recognition/links/02e7e529b45ff5ab4a000000.pdf +6a657995b02bc9dee130701138ea45183c18f4ae,http://pdfs.semanticscholar.org/6a65/7995b02bc9dee130701138ea45183c18f4ae.pdf,,https://doi.org/10.1142/S021969130400041X,http://www.pitt.edu/~emotion/fulltext/2004/Cohn_Timing.pdf +6a0368b4e132f4aa3bbdeada8d894396f201358a,http://pdfs.semanticscholar.org/6a03/68b4e132f4aa3bbdeada8d894396f201358a.pdf,,https://doi.org/10.1007/978-3-642-37331-2_19,http://mc.eistar.net/UpLoadFiles/Papers/%5B33%5D%202012%20ACCV%20Wangxinggang.pdf +6afccf6c6cebfaa0579a23e7cc7737837b090f0f,,,, +6ab33fa51467595f18a7a22f1d356323876f8262,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,,,http://www.iis.sinica.edu.tw/papers/song/12038-F.pdf +6ae75eaa7e9f1379338eae94fbb43664bb3c898a,https://www.researchgate.net/profile/Beom_Seok_Oh/publication/254016039_Fusion_of_structured_projections_for_cancelable_face_identity_verification/links/559156c108ae15962d8e145e.pdf?origin=publication_detail,,https://doi.org/10.1109/IJCB.2011.6117588, +6a26893ed63830d00f6d011679d1b1ed2d8466a9,,,, +6aefe7460e1540438ffa63f7757c4750c844764d,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Nascimento_Non-rigid_Segmentation_using_2014_CVPR_paper.pdf,,,http://cs.adelaide.edu.au/~carneiro/publications/CVPR2014_TPS.pdf +6aa0a47f4b986870370c622be51f00f3a1b9d364,,,https://doi.org/10.1109/TIP.2012.2192285, +6ab8f2081b1420a6214a6c127e5828c14979d414,http://pdfs.semanticscholar.org/6ab8/f2081b1420a6214a6c127e5828c14979d414.pdf,,,http://face.cs.kit.edu/download/publications/Analysis_of_Local_Appearance_Biometrics_Ekenel_H_2.pdf +6a38c575733b0f7118970238e8f9b480522a2dbc,http://pdfs.semanticscholar.org/fbee/265a61fd5ec15a6ed8f490a8fd8d3359506e.pdf,,,https://arxiv.org/pdf/1412.5083v3.pdf +6a4ebd91c4d380e21da0efb2dee276897f56467a,http://ibug.doc.ic.ac.uk/media/uploads/documents/07025044.pdf,,https://doi.org/10.1109/ICIP.2014.7025044,https://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2014hog.pdf +6ad5ac867c5ca56e0edaece153269d989b383b59,,,https://doi.org/10.1109/CISP-BMEI.2016.7852723, +6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2,http://pdfs.semanticscholar.org/6a1b/eb34a2dfcdf36ae3c16811f1aef6e64abff2.pdf,,,http://psych.nyu.edu/vanbavel/lab/documents/Park.etal.2012.Emotion.pdf +6a7e464464f70afea78552c8386f4d2763ea1d9c,http://pdfs.semanticscholar.org/6a7e/464464f70afea78552c8386f4d2763ea1d9c.pdf,,,http://inpressco.com/wp-content/uploads/2014/06/Paper1361901-1907.pdf +32925200665a1bbb4fc8131cd192cb34c2d7d9e3,http://pdfs.semanticscholar.org/3292/5200665a1bbb4fc8131cd192cb34c2d7d9e3.pdf,,,http://www.mva-org.jp/Proceedings/2009CD/papers/03-09.pdf +322c063e97cd26f75191ae908f09a41c534eba90,https://jurie.users.greyc.fr/papers/12_SEMATR_IJCV.pdf,,https://doi.org/10.1007/s11263-012-0529-4,https://hal.archives-ouvertes.fr/hal-00805996/document +325b048ecd5b4d14dce32f92bff093cd744aa7f8,http://pdfs.semanticscholar.org/325b/048ecd5b4d14dce32f92bff093cd744aa7f8.pdf,,,http://chenlab.ece.cornell.edu/people/Andy/publications/Andy_files/2670CVPR08Gallagher.pdf +32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347,https://arxiv.org/pdf/1410.1606v2.pdf,,https://doi.org/10.1109/ICASSP.2015.7178684,http://arxiv.org/abs/1410.1606 +32d8e555441c47fc27249940991f80502cb70bd5,https://arxiv.org/pdf/1709.07886v1.pdf,,,http://doi.acm.org/10.1145/3133956.3134077 +32d555faaaa0a6f6f9dfc9263e4dba75a38c3193,http://pdfs.semanticscholar.org/e119/eeee5025235c6f8dacc7c1812c0c52d595b9.pdf,,https://doi.org/10.1016/j.patcog.2015.09.024,http://www.comp.hkbu.edu.hk/~ymc/papers/journal/PR_5528_publication_version.pdf +324f39fb5673ec2296d90142cf9a909e595d82cf,http://pdfs.semanticscholar.org/324f/39fb5673ec2296d90142cf9a909e595d82cf.pdf,,,http://www.maths.tcd.ie/EMIS/journals/HOA/MPE/Volume2011/864540.pdf +321db1059032b828b223ca30f3304257f0c41e4c,,,https://doi.org/10.1109/ICACCI.2015.7275951, +321bd4d5d80abb1bae675a48583f872af3919172,http://pdfs.semanticscholar.org/321b/d4d5d80abb1bae675a48583f872af3919172.pdf,,https://doi.org/10.1186/s13640-016-0152-3,https://www.springeropen.com/track/pdf/10.1186/s13640-016-0152-3?site=jivp-eurasipjournals.springeropen.com +32b8c9fd4e3f44c371960eb0074b42515f318ee7,http://pdfs.semanticscholar.org/32b8/c9fd4e3f44c371960eb0074b42515f318ee7.pdf,,,https://arxiv.org/pdf/1707.00823v1.pdf +32575ffa69d85bbc6aef5b21d73e809b37bf376d,http://www.sce.carleton.ca/faculty/adler//publications/2006/youmaran-adler-bcc2006-quality.pdf,,,http://www.sce.carleton.ca/faculty/adler/publications/2006/youmaran-adler-bcc2006-quality.pdf +32ecbbd76fdce249f9109594eee2d52a1cafdfc7,http://pdfs.semanticscholar.org/32ec/bbd76fdce249f9109594eee2d52a1cafdfc7.pdf,,,http://arxiv.org/pdf/1609.01366v1.pdf +32b76220ed3a76310e3be72dab4e7d2db34aa490,,,https://doi.org/10.1109/SMC.2014.6974364, +32bab8fe6db08c9d1e906be8a9c7e8cf7a0f0b99,,,,http://doi.ieeecomputersociety.org/10.1109/CIS.2007.196 +32c20afb5c91ed7cdbafb76408c3a62b38dd9160,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Hassner_Viewing_Real-World_Faces_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.448 +327ae6742cca4a6a684a632b0d160dd84d0d8632,,,https://doi.org/10.1007/s10851-015-0629-1, +32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b,http://pdfs.semanticscholar.org/32a4/0c43a9bc1f1c1ed10be3b9f10609d7e0cb6b.pdf,,https://doi.org/10.1007/978-3-642-15552-9_23,http://vipl.ict.ac.cn/sites/default/files/papers/files/2010_ECCV_hhan_Lighting%20Aware%20Preprocessing%20for%20Face%20Recognition%20across%20Varying%20Illumination.pdf +32c5c65db2af9691f8bb749c953c978959329f8f,,,https://doi.org/10.1109/ICIP.2015.7351469, +329394480fc5e9e96de4250cc1a2b060c3677c94,https://arxiv.org/pdf/1604.08826v1.pdf,,,http://arxiv.org/abs/1604.08826 +326613b5528b7806d6a06f43211800b54f34965e,http://mplab.ucsd.edu/wp-content/uploads/cvpr2008/conference/data/papers/377.pdf,,https://doi.org/10.1109/ICME.2007.4284848,http://doi.ieeecomputersociety.org/10.1109/CVPR.2008.4587717 +322488c4000c686e9bfb7514ccdeacae33e53358,,,,http://doi.acm.org/10.1145/2671188.2749301 +32728e1eb1da13686b69cc0bd7cce55a5c963cdd,http://pdfs.semanticscholar.org/3272/8e1eb1da13686b69cc0bd7cce55a5c963cdd.pdf,,,http://jist.ir/WebUsers/jist/UploadFiles/OK/13951025102194610-F.pdf +32c9ebd2685f522821eddfc19c7c91fd6b3caf22,http://pdfs.semanticscholar.org/32c9/ebd2685f522821eddfc19c7c91fd6b3caf22.pdf,,https://doi.org/10.1007/978-3-642-33715-4_24,http://mx.nthu.edu.tw/~tsunghan/papers/conference%20papers/Finding%20Correspondence%20from%20Multiple%20Images%20via%20Sparse%20and%20Low-Rank%20Decomposition.pdf +322b7a4ce006e4d14748dd064e80ffba573ebcd7,http://cheonji.kaist.ac.kr/pdfsrc/ic/2008_KHAn_ROMAN.pdf,,https://doi.org/10.1109/ROMAN.2008.4600644, +3270b2672077cc345f188500902eaf7809799466,http://pdfs.semanticscholar.org/3270/b2672077cc345f188500902eaf7809799466.pdf,,,http://biometrics.cse.msu.edu/Publications/Thesis/Reserved/KarthikNandakumar_MultibiometricSystems_PhD08.pdf +32dfd4545c87d9820cc92ca912c7d490794a81d6,,,https://doi.org/10.1007/978-3-319-50551-0, +32adde2e33f4344900829c557c8533f8f0979f10,,,, +321c8ba38db118d8b02c0ba209be709e6792a2c7,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Yan_Learn_to_Combine_2013_ICCV_paper.pdf,,, +324b9369a1457213ec7a5a12fe77c0ee9aef1ad4,http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.167 +328da943e22adef5957c08b6909bda09d931a350,,,https://doi.org/10.1109/ICARCV.2008.4795605, +3288e16c62a215254e2ed7c39675482b356c3bef,,,https://doi.org/10.1109/SACI.2016.7507341, +329b2781007604652deb72139d14315df3bc2771,,,,http://doi.acm.org/10.1145/2671188.2749358 +32a440720ee988b7b41de204b2910775171ee12c,,,https://doi.org/10.1109/ICIP.2011.6116351, +3251f40ed1113d592c61d2017e67beca66e678bb,,,https://doi.org/10.1007/978-3-319-65172-9_17, +329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.261 +32df63d395b5462a8a4a3c3574ae7916b0cd4d1d,http://www.ppgia.pucpr.br/~alekoe/Papers/ALEKOE-FacialExpression-ICASSP2011.pdf,,https://doi.org/10.1109/ICASSP.2011.5946775,http://mirlab.org/conference_papers/International_Conference/ICASSP%202011/pdfs/0001489.pdf +35308a3fd49d4f33bdbd35fefee39e39fe6b30b7,https://biblio.ugent.be/publication/7238034/file/7238038.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163123 +353b6c1f431feac6edde12b2dde7e6e702455abd,http://pdfs.semanticscholar.org/8835/c80f8ad8ebd05771a9bce5a8637efbc4c8e3.pdf,,https://doi.org/10.1007/978-3-642-33718-5_59,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/MPCRC_eccv12.pdf +350da18d8f7455b0e2920bc4ac228764f8fac292,http://pdfs.semanticscholar.org/b1b1/19c94c8bf94da5c9974db537e356e4f80c67.pdf,,,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/Neutralface.pdf +3538d2b5f7ab393387ce138611ffa325b6400774,http://pdfs.semanticscholar.org/3538/d2b5f7ab393387ce138611ffa325b6400774.pdf,,https://doi.org/10.1109/ICASSP.2003.1202342,http://read.pudn.com/downloads159/doc/fileformat/713634/01202342.pdf +3519241c9ac13ca43e533844e2d3644d162dde22,,,, +3504907a2e3c81d78e9dfe71c93ac145b1318f9c,https://arxiv.org/pdf/1605.02686v3.pdf,,https://doi.org/10.1007/s11263-017-1029-3,http://arxiv.org/pdf/1605.02686v2.pdf +35f03f5cbcc21a9c36c84e858eeb15c5d6722309,http://www.ee.columbia.edu/ln/dvmm/publications/16/ACMMMVP_VAH_2016.pdf,,,http://doi.acm.org/10.1145/2964284.2970929 +35e4b6c20756cd6388a3c0012b58acee14ffa604,http://pdfs.semanticscholar.org/35e4/b6c20756cd6388a3c0012b58acee14ffa604.pdf,,https://doi.org/10.1007/978-3-642-33275-3_9,https://acceda.ulpgc.es:8443/bitstream/10553/15085/5/C082_LNCS_CIARP12_postprint.pdf +356b431d4f7a2a0a38cf971c84568207dcdbf189,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Xiong_Recognize_Complex_Events_2015_CVPR_paper.pdf,,https://doi.org/10.1109/CVPR.2015.7298768,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1B_054_ext.pdf +356a144d2aa5cc5e74d178dae3963003871aa8a1,,,https://doi.org/10.1007/978-3-319-27671-7_41, +359edbaa9cf56857dd5c7c94aaef77003ba8b860,,,https://doi.org/10.1007/978-3-319-02714-2, +35d90beea6b4dca8d949aae93f86cf53da72971f,,,https://doi.org/10.1109/ICIP.2011.6116672, +35f921def890210dda4b72247849ad7ba7d35250,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhou_Exemplar-Based_Graph_Matching_2013_ICCV_paper.pdf,,,http://www.ri.cmu.edu/pub_files/2013/12/2013_ICCV_EGM.pdf +357963a46dfc150670061dbc23da6ba7d6da786e,http://pdfs.semanticscholar.org/3579/63a46dfc150670061dbc23da6ba7d6da786e.pdf,,,https://arxiv.org/pdf/1803.11521v1.pdf +35ccc836df60cd99c731412fe44156c7fd057b99,,,https://doi.org/10.1109/ICCIS.2017.8274819, +35ec9b8811f2d755c7ad377bdc29741b55b09356,http://pdfs.semanticscholar.org/35ec/9b8811f2d755c7ad377bdc29741b55b09356.pdf,,,http://ljk.imag.fr/membres/Bill.Triggs/events/iccv03/cdrom/iccv03/0059_romdhani.pdf +35f1bcff4552632419742bbb6e1927ef5e998eb4,https://arxiv.org/pdf/1703.02521v1.pdf,,,http://cs.stanford.edu/groups/vision/pdf/huang2017cvpr.pdf +355746e6e1770cfcc2e91479f8134c854a77ff96,,,, +35c973dba6e1225196566200cfafa150dd231fa8,http://pdfs.semanticscholar.org/8af7/72ea2389b555c0b193624add6a1c5a49ff24.pdf,,https://doi.org/10.1016/j.imavis.2010.12.001,http://research.sabanciuniv.edu/16482/1/cosar_IVC11.pdf +35a39c7da14b1d288c0f9201374b307f667d63a3,http://media.au.tsinghua.edu.cn/liuyebin_files/TMM.pdf,,https://doi.org/10.1109/TMM.2013.2293064,http://media.au.tsinghua.edu.cn/kaili/TMM2014.pdf +35f084ddee49072fdb6e0e2e6344ce50c02457ef,https://dash.harvard.edu/bitstream/handle/1/4238979/Lee_Bilinear.pdf?sequence=2,,,http://vcg.seas.harvard.edu/files/pfister/files/iccv05_0.pdf +352c53e56c52a49d33dcdbec5690c2ba604b07d0,http://www.cs.huji.ac.il/~zweiga/Alons_Zweig_Hompage/Homepage_files/Zweig_ICCV7.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2007.4409064 +3598d10d7d4f2b543afa8bcf6b2c34a3696ef155,,,https://doi.org/10.1109/SPAC.2017.8304347, +3505c9b0a9631539e34663310aefe9b05ac02727,https://ibug.doc.ic.ac.uk/media/uploads/documents/pid4666647.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.24 +3506518d616343d3083f4fe257a5ee36b376b9e1,http://disi.unitn.it/~zen/data/icmi14_personalized.pdf,,,http://doi.acm.org/10.1145/2663204.2663247 +359b4a4c6cb58c8ab5e8eaaed0e8562c8c43a0f9,,,https://doi.org/10.1007/s10044-014-0377-7, +353a89c277cca3e3e4e8c6a199ae3442cdad59b5,http://pdfs.semanticscholar.org/353a/89c277cca3e3e4e8c6a199ae3442cdad59b5.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/16629/Sharma_umd_0117E_16103.pdf?isAllowed=y&sequence=1 +35e87e06cf19908855a16ede8c79a0d3d7687b5c,http://pdfs.semanticscholar.org/35e8/7e06cf19908855a16ede8c79a0d3d7687b5c.pdf,,,http://manzaramesh.in/Publication/All%20Research%20Paper/Strategies%20for%20Multi-View%20Face%20Recognition%20for%20Identification%20of%20Human%20Faces-%20A%20Review_Pritesh%20G%20Shah.pdf +352110778d2cc2e7110f0bf773398812fd905eb1,http://www.ca.cs.cmu.edu/sites/default/files/complete_14.pdf,,,http://humansensing.cs.cmu.edu/papers/complete_14.pdf +35d272877b178aa97c678e3fcbb619ff512af4c2,,,https://doi.org/10.1109/SMC.2017.8122743, +35b3dc0e961a15a7a60b95490a989f91680acc7c,,,,http://doi.ieeecomputersociety.org/10.1109/TDSC.2016.2550459 +351158e4481e3197bd63acdafd73a5df8336143b,http://pdfs.semanticscholar.org/3511/58e4481e3197bd63acdafd73a5df8336143b.pdf,,,http://www.www2015.it/documents/proceedings/companion/p893.pdf +359e8703fd6ca8172a645c5b5a45b1d2b30b1d14,,,, +35d42f4e7a1d898bc8e2d052c38e1106f3e80188,,,https://doi.org/10.1109/BTAS.2015.7358765, +35490b021dcdec12882870a31dce9a687205ab5c,http://www.ecse.rpi.edu/homepages/qji/Papers/BN_learning_CVPR08.pdf,,,http://mplab.ucsd.edu/wp-content/uploads/cvpr2008/conference/data/papers/028.pdf +35683a325c4fa02e9335dccbca9b67e2b55b87ec,,,, +69a9cf9bc8e585782824666fa3fb5ce5cf07cef2,,,https://doi.org/10.1007/s11390-017-1738-7, +699b8250fb93b3fa64b2fc8f59fef036e172564d,,,https://doi.org/10.1109/ICMLA.2016.0147, +697b0b9630213ca08a1ae1d459fabc13325bdcbb,http://pdfs.semanticscholar.org/697b/0b9630213ca08a1ae1d459fabc13325bdcbb.pdf,,,http://www.bmva.org/bmvc/2016/papers/paper029/index.html +69064c7b349bf6e7f4a802f4fd0da676c1bd1d8b,,,https://doi.org/10.1016/j.patcog.2014.06.016, +69ff40fd5ce7c3e6db95a2b63d763edd8db3a102,http://pdfs.semanticscholar.org/69ff/40fd5ce7c3e6db95a2b63d763edd8db3a102.pdf,,,http://vision.gyte.edu.tr/publications/2012/merve_HumanAgeEstimationviaGeometricandTexturalFeatures.pdf +69ba86f7aac7b7be0ac41d990f5cd38400158f96,,,https://doi.org/10.1109/TNNLS.2015.2504724, +69d29012d17cdf0a2e59546ccbbe46fa49afcd68,https://arxiv.org/pdf/1404.6818v1.pdf,,https://doi.org/10.1109/ISIT.2014.6875384,https://www.nari.ee.ethz.ch/commth/pubs/files/isit2014_dim_red.pdf +6909cd34a1eceba2140e2c02a842cefcecf33645,,,, +69a68f9cf874c69e2232f47808016c2736b90c35,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2016_imbalanced.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Huang_Learning_Deep_Representation_CVPR_2016_paper.pdf +69ad67e204fb3763d4c222a6c3d05d6725b638ed,,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890538 +69de532d93ad8099f4d4902c4cad28db958adfea,http://pdfs.semanticscholar.org/e6bc/c30d2be78797e0e2506567bc0f09b8eae21a.pdf,,,https://arxiv.org/pdf/1711.07246v2.pdf +694bdadb720d4237b701a5c8c10417843ed89c6f,,,, +69b18d62330711bfd7f01a45f97aaec71e9ea6a5,http://pdfs.semanticscholar.org/69b1/8d62330711bfd7f01a45f97aaec71e9ea6a5.pdf,,https://doi.org/10.1371/journal.pcbi.1005115, +69526cdf6abbfc4bcd39616acde544568326d856,http://speech.iiit.ac.in/svlpubs/article/SaoA.K.Yegna2007.pdf,,https://doi.org/10.1109/TIFS.2007.902920, +69b2a7533e38c2c8c9a0891a728abb423ad2c7e7,,,https://doi.org/10.1016/j.imavis.2013.03.003, +690d669115ad6fabd53e0562de95e35f1078dfbb,http://pdfs.semanticscholar.org/690d/669115ad6fabd53e0562de95e35f1078dfbb.pdf,,,"http://www.ece.rice.edu/~av21/Documents/2011/Progressive%20versus%20Random%20Projections%20for%20Compressive%20Capture%20of%20Images,.pdf" +69eb6c91788e7c359ddd3500d01fb73433ce2e65,http://pdfs.semanticscholar.org/69eb/6c91788e7c359ddd3500d01fb73433ce2e65.pdf,,,https://www.cc.gatech.edu/projects/up/publications/CAMGRAPH.pdf +69063f7e0a60ad6ce16a877bc8f11b59e5f7348e,http://openaccess.thecvf.com/content_iccv_2015/papers/Anwar_Class-Specific_Image_Deblurring_ICCV_2015_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Anwar_Class-Specific_Image_Deblurring_ICCV_2015_paper.pdf +69a9da55bd20ce4b83e1680fbc6be2c976067631,http://pdfs.semanticscholar.org/a9b4/d257d16e876302e3318ade42fcb2ab9ffdf9.pdf,,https://doi.org/10.5244/C.25.22,http://eprints.pascal-network.org/archive/00008324/01/marin11bmvc.pdf +69c2ac04693d53251500557316c854a625af84ee,http://pdfs.semanticscholar.org/dc97/ceb1faf945e780a92be651b022a82e3bff5a.pdf,,https://doi.org/10.1016/j.patrec.2015.12.013,http://www.cse.msu.edu/~rossarun/pubs/JainNandakumarRoss_50Years_PRL2016.pdf +6974449ce544dc208b8cc88b606b03d95c8fd368,https://ibug.doc.ic.ac.uk/media/uploads/documents/martinezvalstar-pami_final.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.205 +69a77cb816a31c65699cd11c4a3b1b82ae44e903,,,, +69fb98e11df56b5d7ec7d45442af274889e4be52,http://pdfs.semanticscholar.org/69fb/98e11df56b5d7ec7d45442af274889e4be52.pdf,,,http://arxiv.org/pdf/1512.06498v2.pdf +3c78b642289d6a15b0fb8a7010a1fb829beceee2,http://pdfs.semanticscholar.org/3c78/b642289d6a15b0fb8a7010a1fb829beceee2.pdf,,https://doi.org/10.4304/jmm.1.6.10-21,http://www.cs.bris.ac.uk/Publications/Papers/2000698.pdf +3c8db0d86a6aa51b64ec09c7d25a721adcdfb7a3,,,https://doi.org/10.1016/j.imavis.2015.06.009, +3c1b73509cc09200e96ab9cfb28ebfd9d1d6aa9a,,,https://doi.org/10.1109/LSP.2016.2639341, +3cc3cf57326eceb5f20a02aefae17108e8c8ab57,http://pdfs.semanticscholar.org/3cc3/cf57326eceb5f20a02aefae17108e8c8ab57.pdf,,,http://vision.ece.ucsb.edu/publications/gelasca_BIOW08.pdf +3c1f5580a66c9624c77f27ab8e4cf0d1b3d9d171,http://research.microsoft.com/en-us/um/people/luyuan/paper/skyfinder_siggraph09.pdf,,,http://research.microsoft.com/en-us/um/people/jiansun/papers/skyfinder_siggraph09.pdf +3c63fa505a44902f13698ec10d7f259b1d0878ee,http://www.ece.ucr.edu/~amitrc/publications/TMM2015.pdf,,https://doi.org/10.1109/TMM.2015.2477242,https://pdfs.semanticscholar.org/64e7/df0652f4c47482fd7ef49f011b7188d441fa.pdf +3cb488a3b71f221a8616716a1fc2b951dd0de549,http://cse.seu.edu.cn/people/xgeng/LDL/resource/icpr14.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.764 +3cfbe1f100619a932ba7e2f068cd4c41505c9f58,http://pdfs.semanticscholar.org/3cfb/e1f100619a932ba7e2f068cd4c41505c9f58.pdf,,https://doi.org/10.1007/978-3-642-20217-9_2,https://www.researchgate.net/profile/Rodrigo_Verschae/publication/220797244_A_Realistic_Simulation_Tool_for_Testing_Face_Recognition_Systems_under_Real-World_Conditions/links/00b7d5144e5c428da2000000.pdf +3c03d95084ccbe7bf44b6d54151625c68f6e74d0,http://pdfs.semanticscholar.org/3c03/d95084ccbe7bf44b6d54151625c68f6e74d0.pdf,,https://doi.org/10.1016/j.patrec.2010.12.001,http://www.cbsr.ia.ac.cn/users/zlei/papers/ZLEI-CCLDA-PRL-11.pdf +3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0,http://pdfs.semanticscholar.org/73cc/fdedbd7d72a147925727ba1932f9488cfde3.pdf,,,https://arxiv.org/pdf/1609.00408v1.pdf +3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,http://pdfs.semanticscholar.org/51f7/3cfcc6d671bd99b5c3c512ff9b7bb959f33b.pdf,,,http://dl.acm.org/citation.cfm?id=2188386 +3c97c32ff575989ef2869f86d89c63005fc11ba9,http://people.cs.umass.edu/~hzjiang/pubs/face_det_fg_2017.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.82 +3c7825dcf5a027bd07eb0fe4cce23910b89cf050,,,,http://doi.acm.org/10.1145/2987378 +3c4106f2c670362f620b33ad7715ab6fd3eb2458,,,, +3c086601ce0bac61047b5b931b253bd4035e1e7a,,,https://doi.org/10.1109/ICIP.2015.7350897, +3cbd3124b1b4f95fcdf53abd358d7ceec7861dda,,,,http://doi.acm.org/10.1145/3019612.3019641 +3c47022955c3274250630b042b53d3de2df8eeda,http://research.microsoft.com/en-us/um/people/leizhang/paper/cvpr05-shuicheng-discriminant.pdf,,,http://mmlab.ie.cuhk.edu.hk/2005/01467312.pdf +3cd5b1d71c1d6a50fcc986589f2d0026c68d9803,http://www.openu.ac.il/home/hassner/projects/siftscales/OnSiftsAndTheirScales-CVPR12.pdf,,,http://webee.technion.ac.il/people/lihi/Publications/12-CVPR-OnSiftsAndTheirScales.pdf +3ce2ecf3d6ace8d80303daf67345be6ec33b3a93,http://pdfs.semanticscholar.org/3ce2/ecf3d6ace8d80303daf67345be6ec33b3a93.pdf,,https://doi.org/10.1016/j.ijar.2007.02.003,http://tcts.fpms.ac.be/~couvreur/papers/ijar2007_paper.pdf +3c09d15b3e78f38618b60388ec9402e616fc6f8e,,,https://doi.org/10.1109/IJCNN.2010.5596793, +3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,http://pdfs.semanticscholar.org/3c37/4cb8e730b64dacb9fbf6eb67f5987c7de3c8.pdf,,,http://ceur-ws.org/Vol-693/paper2.pdf +3c0bbfe664fb083644301c67c04a7f1331d9515f,http://pdfs.semanticscholar.org/3c0b/bfe664fb083644301c67c04a7f1331d9515f.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w24/dibeklioglu.pdf +3ce96f03874d42345c0727edc78b6949b20b4a11,,,https://doi.org/10.1007/s11042-015-2630-5, +3cc3e01ac1369a0d1aa88fedda61d3c99a98b890,http://mi.eng.cam.ac.uk/~bdrs2/papers/mita_pami08.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.70767 +3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,http://pdfs.semanticscholar.org/3c4f/6d24b55b1fd3c5b85c70308d544faef3f69a.pdf,,,http://arxiv.org/abs/1703.02952 +3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f,http://pdfs.semanticscholar.org/3cb0/ef5aabc7eb4dd8d32a129cb12b3081ef264f.pdf,,,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/AMFG03.pdf +3cb64217ca2127445270000141cfa2959c84d9e7,http://staff.estem-uc.edu.au/roland/files/2009/05/Joshi_Goecke_Parker_Breakspear_FG2013_CanBodyExpressionsContributeToAutomaticDepressionAnalysis.pdf,,,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553796.pdf +3c2b6282811c3077b7807d84068e6a879d163854,,,, +3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bd,http://pdfs.semanticscholar.org/3c11/a1f2bd4b9ce70f699fb6ad6398171a8ad3bd.pdf,,,http://www.mirlabs.org/ijcisim/regular_papers_2009/IJCISIM_Vol_2_Paper_26.pdf +3c18fb8ff0f5003fefa8e9dc9bebaf88908d255c,,,https://doi.org/10.1109/ICIP.2014.7025145, +3cd8ab6bb4b038454861a36d5396f4787a21cc68,http://pdfs.semanticscholar.org/3cd8/ab6bb4b038454861a36d5396f4787a21cc68.pdf,,,http://journal.iis.sinica.edu.tw/paper/1/140379-3.pdf?cd=12E58A4F52B293826 +3cc2d6ace4cf0bc3a6c4df5ca8da892275ca201f,,,, +3c6542295cf7fe362d7d629ac10670bf30cdabce,,,https://doi.org/10.1109/DICTA.2015.7371264, +3ce37af3ac0ed2eba08267a3605730b2e0433da5,,,https://doi.org/10.1109/TIP.2016.2609811, +3cd5da596060819e2b156e8b3a28331ef633036b,http://pdfs.semanticscholar.org/3cd5/da596060819e2b156e8b3a28331ef633036b.pdf,,,https://www.sciencedirect.com/science/article/pii/S0042698915001662 +3ca5d3b8f5f071148cb50f22955fd8c1c1992719,http://pdfs.semanticscholar.org/3ca5/d3b8f5f071148cb50f22955fd8c1c1992719.pdf,,,https://arxiv.org/pdf/1707.02353v1.pdf +3cd22b5b81a0172d608ff14be71b755d1f68c201,,,https://doi.org/10.1109/ACCESS.2018.2812725, +3cc2a2eaaacbf96c6b9abc1cf91bfefabf6fcfdd,,,https://doi.org/10.1109/TCSVT.2014.2317887, +3cc46bf79fb9225cf308815c7d41c8dd5625cc29,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf,,https://doi.org/10.1109/IWBF.2016.7449694, +3ca6adc90aae5912baa376863807191ffd56b34e,,,https://doi.org/10.1109/LSP.2014.2316918, +3c8da376576938160cbed956ece838682fa50e9f,http://shodhganga.inflibnet.ac.in/bitstream/10603/49167/11/11_chapter%204.pdf,,https://doi.org/10.1109/BTAS.2014.6996266, +56e4dead93a63490e6c8402a3c7adc493c230da5,http://pdfs.semanticscholar.org/56e4/dead93a63490e6c8402a3c7adc493c230da5.pdf,,,http://www.hrpub.org/download/201309/wjcat.2013.010204.pdf +56e885b9094391f7d55023a71a09822b38b26447,http://pdfs.semanticscholar.org/56e8/85b9094391f7d55023a71a09822b38b26447.pdf,,,https://arxiv.org/pdf/1709.06508v1.pdf +56c700693b63e3da3b985777da6d9256e2e0dc21,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_079.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1A_079_ext.pdf +56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Li_Shape_Driven_Kernel_2015_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_025.pdf +5642bafa7955b69f05c11230151cd59fcbe43b8e,,,https://doi.org/10.1007/s11760-012-0404-3, +56e6f472090030a6f172a3e2f46ef9daf6cad757,http://pdfs.semanticscholar.org/56e6/f472090030a6f172a3e2f46ef9daf6cad757.pdf,,, +56e03f8fcd16332f764352ba6e72c9c5092cac0f,http://www.cs.utexas.edu/~ssi/DHE.pdf,,https://doi.org/10.1109/ICASSP.2010.5495241,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0005586.pdf +561bbc758f995894f43351b4267abf9748890705,,,, +564d4ee76c0511bc395dfc8ef8e3b3867fc34a6d,http://bcmi.sjtu.edu.cn/~pengyong/Pub2015/CCECE2015.pdf,,https://doi.org/10.1109/CCECE.2015.7129176, +56a653fea5c2a7e45246613049fb16b1d204fc96,http://ieeeprojectsmadurai.com/matlab2016base/Quaternion%20Collaborative%20and%20Sparse%20Representation.pdf,,https://doi.org/10.1109/TIP.2016.2567077, +56f86bef26209c85f2ef66ec23b6803d12ca6cd6,https://arxiv.org/pdf/1710.00307v1.pdf,,,http://arxiv.org/abs/1710.00307 +5666ed763698295e41564efda627767ee55cc943,http://i.cs.hku.hk/~kykwong/publications/zkuang_ijcv15.pdf,,https://doi.org/10.1007/s11263-014-0783-8, +56fb30b24e7277b47d366ca2c491749eee4d6bb1,,,https://doi.org/10.1109/ICAPR.2015.7050658, +566a39d753c494f57b4464d6bde61bf3593f7ceb,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W01/papers/Hassner_A_Critical_Review_2013_CVPR_paper.pdf,,,http://www.openu.ac.il//home/hassner/Events/ACTS13/papers/ACTS13Hassner.pdf +56bcc89fb1e05d21a8b7b880c6b4df79271ceca5,,,https://doi.org/10.1007/s11760-013-0441-6, +56c2fb2438f32529aec604e6fc3b06a595ddbfcc,http://pdfs.semanticscholar.org/56c2/fb2438f32529aec604e6fc3b06a595ddbfcc.pdf,,,http://ceur-ws.org/Vol-1584/paper21.pdf +56e25358ebfaf8a8b3c7c33ed007e24f026065d0,,,https://doi.org/10.1007/s10994-015-5541-9, +56f231fc40424ed9a7c93cbc9f5a99d022e1d242,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf,,https://doi.org/10.1007/978-3-319-54187-7_14,http://shuaizhou.me/papers/ACCV2016_age.pdf +5615d6045301ecbc5be35e46cab711f676aadf3a,https://arxiv.org/pdf/1705.10420v1.pdf,,https://doi.org/10.1007/s11263-017-1030-x,http://arxiv.org/abs/1705.10420 +568ced900cbf7437c9e87b60a17e16f0c1e0c442,,,https://doi.org/10.1109/CCECE.2012.6335026, +561ae67de137e75e9642ab3512d3749b34484310,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf,,,https://arxiv.org/pdf/1801.07637v1.pdf +568cff415e7e1bebd4769c4a628b90db293c1717,http://pdfs.semanticscholar.org/568c/ff415e7e1bebd4769c4a628b90db293c1717.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12259 +565590af15af3d02f0b592b2e201e36708e4fe50,,,, +564035f1b8f06e9bb061255f40e3139fa57ea879,http://pdfs.semanticscholar.org/fcbf/61524a3d775947ea8bcef46d1b0a9cce7bfb.pdf,,https://doi.org/10.4304/jmm.1.6.22-35,http://www.academypublisher.com/jmm/vol01/no06/jmm01062235.pdf +5613cb13ab381c8a8b81181ac786255705691626,,,https://doi.org/10.1109/VCIP.2015.7457876, +560e0e58d0059259ddf86fcec1fa7975dee6a868,http://www.cs.tau.ac.il/~wolf/papers/lvfw.pdf,,,http://www.wisdom.weizmann.ac.il/~hassner/projects/ytfaces/ytfaces.pdf +56c0b225fd57cfe173e5206a4bb0ce153bfecc29,http://www.sfu.ca/~wya16/ProfileFG08.pdf,,https://doi.org/10.1109/AFGR.2008.4813370, +566038a3c2867894a08125efe41ef0a40824a090,http://mirlab.org/conference_papers/international_conference/icassp%202009/pdfs/0001945.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICASSP.2009.4959991 +56fa0872ed73f7acfbfe83677fecb2dbc6eaa2fe,,,https://doi.org/10.1007/s11554-007-0031-3, +569988e19ab36582d4bd0ec98e344cbacf177f45,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2347960 +56f57786516dcc8ea3c0ffe877c1363bfb9981d2,,,https://doi.org/10.1109/CBMI.2014.6849823, +56ae6d94fc6097ec4ca861f0daa87941d1c10b70,http://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf,,https://doi.org/10.1007/978-3-319-10590-1_21,http://www.vision.caltech.edu/~xpburgos/papers/ECCV14%20Burgos-Artizzu.pdf +565f7c767e6b150ebda491e04e6b1de759fda2d4,,,https://doi.org/10.1016/j.patcog.2016.11.023, +56f812661c3248ed28859d3b2b39e033b04ae6ae,http://www.cs.wisc.edu/~gdguo/myPapersOnWeb/CIVR08.pdf,,,http://www.ifp.illinois.edu/~cao4/papers/fuyunCIVR08.pdf +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,http://pdfs.semanticscholar.org/bd42/e0a6a1082e8c197a7b0a9b710434cd7c5a47.pdf,,,http://cseweb.ucsd.edu/~gary/pubs/Dailey-CrossCultural.pdf +5145e42dc46845f3aeb8307452765ba8dc59d2da,http://pdcat13.csie.ntust.edu.tw/download/papers/P10003.pdf,,, +51c3050fb509ca685de3d9ac2e965f0de1fb21cc,http://www.cs.toronto.edu/~law/publications/CVPR/2014/fantope_regularization.pdf,,,http://www-poleia.lip6.fr/~lawm/publications/CVPR/2014/fantope_regularization.pdf +516d0d9eb08825809e4618ca73a0697137ebabd5,http://web.engr.oregonstate.edu/~sinisa/talks/cvpr16_multimodal_oral.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.333 +519a724426b5d9ad384d38aaf2a4632d3824f243,http://pdfs.semanticscholar.org/519a/724426b5d9ad384d38aaf2a4632d3824f243.pdf,,https://doi.org/10.5244/C.23.2,http://www.bmva.org/bmvc/2009/Papers/Paper106/Abstract106.pdf +51c7c5dfda47647aef2797ac3103cf0e108fdfb4,http://pdfs.semanticscholar.org/51c7/c5dfda47647aef2797ac3103cf0e108fdfb4.pdf,,,http://www.cs.utexas.edu/~quark/vision_project/report.pdf +519f4eb5fe15a25a46f1a49e2632b12a3b18c94d,https://www.cise.ufl.edu/~arunava/papers/pami-abrdf.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.67 +518edcd112991a1717856841c1a03dd94a250090,http://pdfs.semanticscholar.org/518e/dcd112991a1717856841c1a03dd94a250090.pdf,,,http://www.ece.rice.edu/~eld1/pubs/Dyer_MSThesis.pdf +51f626540860ad75b68206025a45466a6d087aa6,,,https://doi.org/10.1109/ICIP.2017.8296595, +516f784f145390e22cb4607cb525175ff4c7109b,,,, +51683eac8bbcd2944f811d9074a74d09d395c7f3,http://pdfs.semanticscholar.org/5168/3eac8bbcd2944f811d9074a74d09d395c7f3.pdf,,,http://www.ri.cmu.edu/pub_files/2017/2/w_chu_robotics_2017.pdf +51cc78bc719d7ff2956b645e2fb61bab59843d2b,http://pdfs.semanticscholar.org/51cc/78bc719d7ff2956b645e2fb61bab59843d2b.pdf,,https://doi.org/10.1007/11573548_35,https://static.aminer.org/pdf/PDF/000/290/979/implementation_of_embedded_system_for_intelligent_image_recognition_and_processing.pdf +516a556aa1019052f6a162ca9c1a345f553f7f25,,,, +511b06c26b0628175c66ab70dd4c1a4c0c19aee9,http://pdfs.semanticscholar.org/511b/06c26b0628175c66ab70dd4c1a4c0c19aee9.pdf,,,http://ijergs.org/files/documents/FACE-8.pdf +51528cdce7a92835657c0a616c0806594de7513b,http://pdfs.semanticscholar.org/5152/8cdce7a92835657c0a616c0806594de7513b.pdf,,https://doi.org/10.5244/C.29.95,http://www.bmva.org/bmvc/2015/papers/paper095/abstract095.pdf +514a74aefb0b6a71933013155bcde7308cad2b46,http://pdfs.semanticscholar.org/514a/74aefb0b6a71933013155bcde7308cad2b46.pdf,,,http://www.ece.cmu.edu/research/publications/2007/CMU-ECE-2007-029.pdf +51b770e6b2af994ffc8793f59b24a9f619033a3a,,,https://doi.org/10.1109/ICDSC.2011.6042899, +51a8dabe4dae157aeffa5e1790702d31368b9161,http://pdfs.semanticscholar.org/5621/adae20c1bc781a36c43a9ddbe5475ea4b6e8.pdf,,https://doi.org/10.1142/S0218001405004186,http://159.226.42.3/doc/2005/Face%20Recognition%20under%20Generic%20Illumination%20Based%20on%20Harmonic%20Relighting.pdf +51e87b14f39f44a9f2866d5cc6440e7496ed1298,,,, +51224ed7519e71346076060092462e3d59ca3ab9,http://www.iis.ee.ic.ac.uk/ComputerVision/docs/pubs/Chao_TM_2014.pdf,,,https://labicvl.github.io/docs/pubs/Chao_TM_2014.pdf +516f8728ad1d4f9f2701a2b5385f8c8e71b9d356,,,https://doi.org/10.1109/ACCESS.2017.2745903, +512b4c8f0f3fb23445c0c2dab768bcd848fa8392,http://pdfs.semanticscholar.org/b85d/ac54bfa985137b3b071593b986ac92f32bed.pdf,,,http://up.jiaeee.org/_file_3b41b7edd75fcdb001522eb58ee9714a_4.pdf +51eba481dac6b229a7490f650dff7b17ce05df73,http://grail.cs.washington.edu/wp-content/uploads/2016/09/yatskar2016srv.pdf,,,https://homes.cs.washington.edu/~ali/papers/SituationRecognition.pdf +51348e24d2199b06273e7b65ae5f3fc764a2efc7,http://pdfs.semanticscholar.org/c4b4/cbc801a4430be5fdd16ae34c68f53f772582.pdf,,,http://arxiv.org/abs/1307.7852 +5173a20304ea7baa6bfe97944a5c7a69ea72530f,http://pdfs.semanticscholar.org/5173/a20304ea7baa6bfe97944a5c7a69ea72530f.pdf,,https://doi.org/10.3390/s131012830,http://www.mdpi.com/1424-8220/13/10/12830/pdf +51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6,http://pdfs.semanticscholar.org/51ed/4c92cab9336a2ac41fa8e0293c2f5f9bf3b6.pdf,,,"http://cai.type.sk/content/2003/2/a-survey-of-face-detection,-extraction-and-recognition/1217.pdf" +51f311f724883218bcc511b0403b9a7745b9d40e,https://www.researchgate.net/profile/Xiangwei_Kong/publication/221190737_Biometrics-based_identifiers_for_digital_identity_management/links/00b7d51ca1f2a78c74000000.pdf,,,http://www.cerias.purdue.edu/ssl/techreports-ssl/2009-02.pdf +5101368f986aa9837fdb3a71cb4299dff6f6325d,,,https://doi.org/10.1109/ICIP.2008.4712155, +5121f42de7cb9e41f93646e087df82b573b23311,http://pdfs.semanticscholar.org/5121/f42de7cb9e41f93646e087df82b573b23311.pdf,,,https://arxiv.org/pdf/1803.04347v1.pdf +5180c98815d7034e753a14ef6f54583f115da3aa,,,,http://doi.ieeecomputersociety.org/10.1109/iV.2017.40 +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/SLAM2007/papers/11-1569042551.pdf,,,http://www.ifp.illinois.edu/~dagli/papers/CVPRSLAM2.pdf +5160569ca88171d5fa257582d161e9063c8f898d,http://infoscience.epfl.ch/record/83324/files/heusch-AFGR-2006.pdf,,,http://www.idiap.ch/~rodrig/publications/pdf/heusch-idiap-rr-05-76.pdf +5157dde17a69f12c51186ffc20a0a6c6847f1a29,http://arxiv.org/pdf/1505.04373v2.pdf,,https://doi.org/10.1109/TNNLS.2016.2607757,http://arxiv.org/pdf/1505.04373v1.pdf +51dc127f29d1bb076d97f515dca4cc42dda3d25b,http://pdfs.semanticscholar.org/7a1d/4a9ef5944217ee19aa642471b4746aaa2576.pdf,,https://doi.org/10.1007/978-3-642-24600-5_24,http://www.cl.cam.ac.uk/~mmam3/pub/ACII2011.pdf +3d2d439ead6e32877ce40e5568e62dee4a877836,,,, +3d143cfab13ecd9c485f19d988242e7240660c86,http://pdfs.semanticscholar.org/3d14/3cfab13ecd9c485f19d988242e7240660c86.pdf,,https://doi.org/10.1007/978-3-319-16817-3_14,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/646.pdf +3d2c932f4f2693a87a0b855048e60f142214f475,,,,http://doi.ieeecomputersociety.org/10.1109/CSE.2014.354 +3d1959048eba5495e765a80c8e0bbd3d65b3d544,,,https://doi.org/10.1016/j.neucom.2016.07.038, +3dabf7d853769cfc4986aec443cc8b6699136ed0,http://pdfs.semanticscholar.org/3dab/f7d853769cfc4986aec443cc8b6699136ed0.pdf,,https://doi.org/10.1007/978-3-540-70872-8_1,http://tdlc.ucsd.edu/publications/2008-2009/data_mining.pdf +3db75962857a602cae65f60f202d311eb4627b41,https://pdfs.semanticscholar.org/3db7/5962857a602cae65f60f202d311eb4627b41.pdf,,https://doi.org/10.1109/ICPR.2014.272,http://www.cripac.ia.ac.cn/People/lwang/M-MCG_EN/research/PHH-ICPR14/PHH2014ICPR.pdf +3daf1191d43e21a8302d98567630b0e2025913b0,http://pdfs.semanticscholar.org/3daf/1191d43e21a8302d98567630b0e2025913b0.pdf,,,https://arxiv.org/pdf/1803.05181v2.pdf +3d2c89676fcc9d64aaed38718146055152d22b39,,,https://doi.org/10.1109/ACPR.2013.10, +3d36f941d8ec613bb25e80fb8f4c160c1a2848df,https://arxiv.org/pdf/1502.02410v1.pdf,,https://doi.org/10.1109/TIP.2016.2520368,http://arxiv.org/abs/1502.02410 +3d5a1be4c1595b4805a35414dfb55716e3bf80d8,http://pdfs.semanticscholar.org/9e8e/bf5447fcd5b2ba4cdd53253f0049dacb2985.pdf,,,https://arxiv.org/pdf/1704.00389v2.pdf +3d62b2f9cef997fc37099305dabff356d39ed477,http://pdfs.semanticscholar.org/3d62/b2f9cef997fc37099305dabff356d39ed477.pdf,,,https://arxiv.org/pdf/1708.02734v1.pdf +3dc522a6576c3475e4a166377cbbf4ba389c041f,http://pdfs.semanticscholar.org/3dc5/22a6576c3475e4a166377cbbf4ba389c041f.pdf,,,https://arxiv.org/pdf/1707.06642v1.pdf +3dd4d719b2185f7c7f92cc97f3b5a65990fcd5dd,http://pdfs.semanticscholar.org/3dd4/d719b2185f7c7f92cc97f3b5a65990fcd5dd.pdf,,https://doi.org/10.1007/978-3-319-23234-8_54,http://arxiv.org/pdf/1507.03811v1.pdf +3d4b76fe73ea16400d62d0d776b3f43cc5ecf72b,,,https://doi.org/10.1109/TIFS.2015.2512561, +3d0ef9bfd08a9252db6acfece3b83f3aa58b4cae,http://perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BIOMET/Face/Kumar/CoreFaceCVPR04.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.1 +3d1f976db6495e2bb654115b939b863d13dd3d05,,,https://doi.org/10.1007/s11042-015-2581-x, +3d1a6a5fd5915e0efb953ede5af0b23debd1fc7f,http://pdfs.semanticscholar.org/3d1a/6a5fd5915e0efb953ede5af0b23debd1fc7f.pdf,,,"http://paspk.org/wp-content/uploads/proceedings/52,%20No.1/26edde54Bimodal%20Human.pdf" +3dce3bb30f0c19121a71e0bfe1d418f855cb13ce,,,, +3d0379688518cc0e8f896e30815d0b5e8452d4cd,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/007.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2008.4562956 +3dfbd17bd9caf7bd1d908ff469dec2b61e8a9548,,,https://doi.org/10.1109/ITSC.2015.252, +3dda181be266950ba1280b61eb63ac11777029f9,http://pdfs.semanticscholar.org/3dda/181be266950ba1280b61eb63ac11777029f9.pdf,,,https://arxiv.org/pdf/1712.09757v1.pdf +3de5dc06f5d089dee111e048c7174a834f1363c1,,,, +3d4d3f70352dc833e454a5756d682f27eca46e5d,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.32 +3d24b386d003bee176a942c26336dbe8f427aadd,https://arxiv.org/pdf/1611.09967v1.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Sequential_Person_Recognition_CVPR_2017_paper.pdf +3dcebd4a1d66313dcd043f71162d677761b07a0d,http://cvhci.ira.uka.de/download/publications/2008/siu2008_lbp.pdf,,,http://face.cs.kit.edu/download/publications/siu2008_lbp.pdf +3d0f9a3031bee4b89fab703ff1f1d6170493dc01,http://pdfs.semanticscholar.org/3d0f/9a3031bee4b89fab703ff1f1d6170493dc01.pdf,,https://doi.org/10.1007/978-3-540-74549-5_17,https://rd.springer.com/content/pdf/10.1007/978-3-540-74549-5_17.pdf +3d0c21d4780489bd624a74b07e28c16175df6355,http://pdfs.semanticscholar.org/3d0c/21d4780489bd624a74b07e28c16175df6355.pdf,,https://doi.org/10.1007/978-3-319-54427-4_32,http://pesona.mmu.edu.my/~johnsee/research/papers/files/deeporshallow_accvw16.pdf +3df8cc0384814c3fb05c44e494ced947a7d43f36,http://openaccess.thecvf.com/content_ICCV_2017/papers/Walker_The_Pose_Knows_ICCV_2017_paper.pdf,,,https://arxiv.org/pdf/1705.00053v1.pdf +3d42e17266475e5d34a32103d879b13de2366561,http://pdfs.semanticscholar.org/7450/7306832bd71884365ed81e1cc7866e47c399.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AFGR.2000.840645 +3dd906bc0947e56d2b7bf9530b11351bbdff2358,http://pdfs.semanticscholar.org/c57a/070724b48962935ff46ab1384d919e1d1089.pdf,,https://doi.org/10.1016/j.cviu.2016.10.018,http://arxiv.org/pdf/1604.06182v1.pdf +3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,,,https://arxiv.org/pdf/1803.03827v1.pdf +3dbfd2fdbd28e4518e2ae05de8374057307e97b3,http://pdfs.semanticscholar.org/3dbf/d2fdbd28e4518e2ae05de8374057307e97b3.pdf,,https://doi.org/10.1007/978-3-642-29139-5_7,http://www.researchgate.net/profile/Penousal_Machado/publication/232590119_Improving_Face_Detection/links/0fcfd5086be0106729000000.pdf +3d0b2da6169d38b56c58fe5f13342cf965992ece,,,https://doi.org/10.1109/ICIP.2016.7532909, +3df7401906ae315e6aef3b4f13126de64b894a54,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/067.pdf,,,http://mplab.ucsd.edu/wp-content/uploads/cvpr2008/conference/data/papers/067.pdf +3d68cedd80babfbb04ab197a0b69054e3c196cd9,http://www.cim.mcgill.ca/~mrl/pubs/malika/Meghjani09_Masters_Thesis.pdf,,https://doi.org/10.1109/WACV.2009.5403035,http://www.cim.mcgill.edu/~mrl/pubs/malika/Meghjani09_Masters_Thesis.pdf +3d89f9b4da3d6fb1fdb33dea7592b5992069a096,,,https://doi.org/10.1109/CISP-BMEI.2017.8302003, +3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a,http://www.cse.msu.edu/~rossarun/BiometricsTextBook/Papers/Security/Teoh_BioHash_PAMI06.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.250 +3d6943f1573f992d6897489b73ec46df983d776c,http://pdfs.semanticscholar.org/757d/223b8db29e4cfba9530c7f942304c78cfee1.pdf,,,http://repository.cmu.edu/cgi/viewcontent.cgi?article=1506&context=dissertations +3d948e4813a6856e5b8b54c20e50cc5050e66abe,http://pdfs.semanticscholar.org/3d94/8e4813a6856e5b8b54c20e50cc5050e66abe.pdf,,https://doi.org/10.1007/978-3-642-18405-5_8,http://www1.i2r.a-star.edu.sg/~ttng/papers/gao_iwdw10.pdf +3d94f81cf4c3a7307e1a976dc6cb7bf38068a381,http://faculty.ucmerced.edu/mhyang/papers/tip17_age.pdf,,https://doi.org/10.1109/TIP.2017.2655445, +3d9db1cacf9c3bb7af57b8112787b59f45927355,http://pdfs.semanticscholar.org/3d9d/b1cacf9c3bb7af57b8112787b59f45927355.pdf,,https://doi.org/10.3389/fict.2016.00011, +3d9e44d8f8bc2663192c7ce668ccbbb084e466e4,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019505 +3d6f59e0f0e16d01b9c588a53d3b6b3b984e991e,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.117 +582edc19f2b1ab2ac6883426f147196c8306685a,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf,,https://doi.org/10.1007/978-3-319-46454-1_35,http://www.openu.ac.il/home/hassner/projects/augmented_faces/Masietal2016really.pdf +5859774103306113707db02fe2dd3ac9f91f1b9e,http://www.wisdom.weizmann.ac.il/~shimon/papers/IJCV29_98.pdf,,https://doi.org/10.1023/A:1008088813977, +5892f8367639e9c1e3cf27fdf6c09bb3247651ed,http://pdfs.semanticscholar.org/5892/f8367639e9c1e3cf27fdf6c09bb3247651ed.pdf,,,http://www.cs.uh.edu/~abagherj/publications/Bagherjeiran07Estimating.pdf +5810ce61fda464d4de2769bd899e12727bee0382,,,https://doi.org/10.1109/IJCNN.2016.7727484, +58d43e32660446669ff54f29658961fe8bb6cc72,,,https://doi.org/10.1109/ISBI.2017.7950504, +583e0d218e1e7aaf9763a5493e7c18c2b8dd7464,,,,http://doi.acm.org/10.1145/2988240.2988243 +5850aab97e1709b45ac26bb7d205e2accc798a87,http://pdfs.semanticscholar.org/5850/aab97e1709b45ac26bb7d205e2accc798a87.pdf,,https://doi.org/10.1016/j.patcog.2015.04.012,http://www.ee.cuhk.edu.hk/~lma/welcome_files/lma_PR_2015.pdf +58684a925693a0e3e4bb1dd2ebe604885be034d2,,,https://doi.org/10.1109/ICASSP.2008.4517869, +587f81ae87b42c18c565694c694439c65557d6d5,http://pdfs.semanticscholar.org/aeff/403079022683b233decda556a6aee3225065.pdf,,,http://arxiv.org/abs/1701.01876 +580054294ca761500ada71f7d5a78acb0e622f19,http://www.jdl.ac.cn/project/faceId/paperreading/Paper/hhan_20090305_TIP2008_FaceRelighting.pdf,,https://doi.org/10.1109/TIP.2008.925390, +58778fafdc43f5d5b973c57843b13c6d2f05cf68,,,, +58483028445bf6b2d1ad6e4b1382939587513fe1,,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247763 +587c48ec417be8b0334fa39075b3bfd66cc29dbe,http://pdfs.semanticscholar.org/ff91/95f99a1a28ced431362f5363c9a5da47a37b.pdf,,,https://whitneylab.berkeley.edu/PDFs/Xia_JOV.pdf +58081cb20d397ce80f638d38ed80b3384af76869,http://pdfs.semanticscholar.org/5808/1cb20d397ce80f638d38ed80b3384af76869.pdf,,,https://arxiv.org/pdf/1711.11200v1.pdf +581e920ddb6ecfc2a313a3aa6fed3d933b917ab0,http://pdfs.semanticscholar.org/581e/920ddb6ecfc2a313a3aa6fed3d933b917ab0.pdf,,,http://www.ti.uni-tuebingen.de/uploads/tx_timitarbeiter/etel2017-classroom_camera-ready_01.pdf +58fa85ed57e661df93ca4cdb27d210afe5d2cdcd,http://www.dgcv.nii.ac.jp/Publications/Papers/2016/ICPR2016a.pdf,,https://doi.org/10.1109/ICPR.2016.7900279, +5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,,,https://doi.org/10.1109/ICPR.2016.7900278, +5860cf0f24f2ec3f8cbc39292976eed52ba2eafd,http://pdfs.semanticscholar.org/5860/cf0f24f2ec3f8cbc39292976eed52ba2eafd.pdf,,,http://www.serialsjournals.com/serialjournalmanager/pdf/1329982460.pdf +584909d2220b52c0d037e8761d80cb22f516773f,http://www.cs.tau.ac.il/~nachumd/papers/OFTA.pdf,,,http://www.cs.tau.ac.il/~wolf/papers/ofta-online-version.pdf +58eb9174211d58af76023ce33ee05769de57236c,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2636827 +58d0c140597aa658345230615fb34e2c750d164c,,,,http://doi.acm.org/10.1145/3098954.3098969 +5811944e93a1f3e35ece7a70a43a3de95c69b5ab,,,https://doi.org/10.1109/BTAS.2016.7791163,http://arxiv.org/abs/1604.08865 +58823377757e7dc92f3b70a973be697651089756,http://pdfs.semanticscholar.org/fa88/52e5b7849adf8e96a103ca67e4ca60bdf244.pdf,,,https://www.cl.cam.ac.uk/~tb346/pub/thesis/phd_thesis.pdf +580e48d3e7fe1ae0ceed2137976139852b1755df,http://pdfs.semanticscholar.org/580e/48d3e7fe1ae0ceed2137976139852b1755df.pdf,,,http://d-scholarship.pitt.edu/9210/1/main-file-etd-08202002-162757.pdf +58ca110261680a70480eb0fd5d6f609c6689323f,,,, +5865e824e3d8560e07840dd5f75cfe9bf68f9d96,http://pdfs.semanticscholar.org/5865/e824e3d8560e07840dd5f75cfe9bf68f9d96.pdf,,, +58bb77dff5f6ee0fb5ab7f5079a5e788276184cc,https://ram-lab.com/papers/2016/rcar_lyp_192.pdf,,https://doi.org/10.1109/RCAR.2016.7784056, +58ec93d804ceec167963d7ca1f6955a652b331aa,,,, +58df849378fbcfb6b1a8ebddfbe4caa450226b9d,,,https://doi.org/10.1109/ICIP.2017.8296770, +58b8588c01196070674ceabe5366b20f73c2912d,http://www.cse.ust.hk/~qnature/pdf/ICDM2015.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICDM.2015.52 +58b0be2db0aeda2edb641273fe52946a24a714c3,http://www.cs.ucsb.edu/~daniel/publications/conferences/wacv09/VaqueroWACV09.pdf,,https://doi.org/10.1109/WACV.2009.5403131,http://alumni.cs.ucsb.edu/~daniel/publications/conferences/wacv09/VaqueroWACV09.pdf +585260468d023ffc95f0e539c3fa87254c28510b,http://pdfs.semanticscholar.org/5852/60468d023ffc95f0e539c3fa87254c28510b.pdf,,,http://arxiv.org/abs/1610.00889 +58cb1414095f5eb6a8c6843326a6653403a0ee17,http://pdfs.semanticscholar.org/58cb/1414095f5eb6a8c6843326a6653403a0ee17.pdf,,https://doi.org/10.1016/j.patrec.2006.04.003,http://www.ee.iitm.ac.in/~raju/journals/j25.pdf +58db008b204d0c3c6744f280e8367b4057173259,http://pdfs.semanticscholar.org/58db/008b204d0c3c6744f280e8367b4057173259.pdf,,,http://inpressco.com/wp-content/uploads/2012/06/Paper8270-2781.pdf +58628e64e61bd2776a2a7258012eabe3c79ca90c,http://pdfs.semanticscholar.org/5862/8e64e61bd2776a2a7258012eabe3c79ca90c.pdf,,,https://www.cs.swarthmore.edu/~meeden/cs81/f17/papers/mitchell17.pdf +58e7dbbb58416b785b4a1733bf611f8106511aca,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273597 +676a136f5978783f75b5edbb38e8bb588e8efbbe,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_084_ext.pdf,,https://doi.org/10.1109/CVPR.2015.7299038,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_084_ext.pdf +676f9eabf4cfc1fd625228c83ff72f6499c67926,http://pdfs.semanticscholar.org/676f/9eabf4cfc1fd625228c83ff72f6499c67926.pdf,,,http://arxiv.org/abs/1704.08328 +677477e6d2ba5b99633aee3d60e77026fb0b9306,http://pdfs.semanticscholar.org/d105/b9b31106495f58fb951cfdbf64787ee89ab2.pdf,,,https://export.arxiv.org/pdf/1704.07863 +670531f3925c1ee6921f1550a988a034db727c3b,http://neerajkumar.org/base/papers/nk_www2014_photorecall.pdf,,https://doi.org/10.1007/978-3-319-25781-5_17,http://doi.acm.org/10.1145/2567948.2577360 +679b7fa9e74b2aa7892eaea580def6ed4332a228,http://pdfs.semanticscholar.org/679b/7fa9e74b2aa7892eaea580def6ed4332a228.pdf,,,http://disi.unitn.it/~sebe/publications/affective11.pdf +673541a8cb1aa3ac63a288523ba71aec2a38280e,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552971 +67a99c92166d77db02f6cc059f1aeddc32580d4b,,,, +67ae7ee9557cb486d5e1129b9b24466ffb8c4766,,,, +670637d0303a863c1548d5b19f705860a23e285c,https://classes.cs.uoregon.edu/16F/cis607photo/faces.pdf,,,http://www.cs.columbia.edu/~belhumeur/journal/siggraph08.pdf +67b79c2336b9a2efbfc805b9a6912a0959e392a9,https://www.researchgate.net/profile/Engin_Erzin/publication/220716898_RANSAC-Based_Training_Data_Selection_on_Spectral_Features_for_Emotion_Recognition_from_Spontaneous_Speech/links/0912f5089705e67f21000000.pdf,,,http://www.researchgate.net/profile/Engin_Erzin/publication/220716898_RANSAC-Based_Training_Data_Selection_on_Spectral_Features_for_Emotion_Recognition_from_Spontaneous_Speech/links/0912f5089705e67f21000000.pdf +6742c0a26315d7354ab6b1fa62a5fffaea06da14,http://pdfs.semanticscholar.org/ae08/778d8003933a02fd90a49b2e5f67ba56ad8d.pdf,,,http://arxiv.org/abs/1708.06703 +67a50752358d5d287c2b55e7a45cc39be47bf7d0,http://pdfs.semanticscholar.org/67a5/0752358d5d287c2b55e7a45cc39be47bf7d0.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/e6/70/pone.0117902.PMC4351105.pdf +67c3c1194ee72c54bc011b5768e153a035068c43,http://pdfs.semanticscholar.org/67c3/c1194ee72c54bc011b5768e153a035068c43.pdf,,,http://hdl.handle.net/1721.1/37896 +67c703a864aab47eba80b94d1935e6d244e00bcb,http://pdfs.semanticscholar.org/67c7/03a864aab47eba80b94d1935e6d244e00bcb.pdf,,,http://thesai.org/Downloads/Volume7No6/Paper_32-Face_Retrieval_Based_on_Local_Binary_Pattern_and_Its_Variants.pdf +67d7022462c98e6c5de9f2254b46f0b8d3b92089,,,, +67214e8d2f83eb41c14bfc86698eb6620e72e87c,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.263 +67e6ddce6fea17bb2b171c949ee224936d36c0d1,,,https://doi.org/10.1109/ICIP.2008.4712157, +677ebde61ba3936b805357e27fce06c44513a455,http://pdfs.semanticscholar.org/677e/bde61ba3936b805357e27fce06c44513a455.pdf,,,http://conf-scoop.org/ACV-2014/3.Z.Chi_ACV.pdf +67ba3524e135c1375c74fe53ebb03684754aae56,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0001767.pdf,,https://doi.org/10.1109/ICASSP.2017.7952460, +6769cfbd85329e4815bb1332b118b01119975a95,http://pdfs.semanticscholar.org/6769/cfbd85329e4815bb1332b118b01119975a95.pdf,,,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/BMVC2006TiedFactorAnalysis.pdf +0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,http://pdfs.semanticscholar.org/a32a/8d6d4c3b4d69544763be48ffa7cb0d7f2f23.pdf,,,http://wrap.warwick.ac.uk/80626/7/WRAP_zhang-bhalerao-bmvc-2016_.pdf +0b0c2d9db83b4f002f23f4a20cfc5a3d10295372,,,, +0b2277a0609565c30a8ee3e7e193ce7f79ab48b0,http://ivg.au.tsinghua.edu.cn/paper/2012_Cost-sensitive%20semi-supervised%20discriminant%20analysis%20for%20face%20recognition.pdf,,https://doi.org/10.1109/TIFS.2012.2188389, +0b58b3a5f153f653c138257426bf8d572ae35a67,,,https://doi.org/10.1109/SMC.2016.7844481, +0b3144cdc9d6d5a1498d6178db20d1c49fb64de9,,,,http://doi.acm.org/10.1145/1322192.1322203 +0b9ce839b3c77762fff947e60a0eb7ebbf261e84,http://pdfs.semanticscholar.org/0b9c/e839b3c77762fff947e60a0eb7ebbf261e84.pdf,,,http://www.cmeri.res.in/rnd/srlab/cvision/All%20papers/7%20.pdf +0b8b8776684009e537b9e2c0d87dbd56708ddcb4,http://pdfs.semanticscholar.org/0b8b/8776684009e537b9e2c0d87dbd56708ddcb4.pdf,,,https://arxiv.org/pdf/1709.03675v1.pdf +0ba64f4157d80720883a96a73e8d6a5f5b9f1d9b,http://pdfs.semanticscholar.org/84b7/e2138a3701432c33ea70a1297328cd814ab5.pdf,,,https://arxiv.org/pdf/1803.06542v2.pdf +0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7,http://pdfs.semanticscholar.org/0b6a/5200c33434cbfa9bf24ba482f6e06bf5fff7.pdf,,,http://arxiv.org/abs/1605.09612 +0bab5213911c19c40e936b08d2f8fba01e286b85,,,https://doi.org/10.1109/BigMM.2017.81, +0b605b40d4fef23baa5d21ead11f522d7af1df06,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a819.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Akata_Label-Embedding_for_Attribute-Based_2013_CVPR_paper.pdf +0b0e679e6d3abe3adc8525d4fee49b388ccfdf9a,,,, +0b0eb562d7341231c3f82a65cf51943194add0bb,http://pdfs.semanticscholar.org/0b0e/b562d7341231c3f82a65cf51943194add0bb.pdf,,,https://www.researchgate.net/profile/Mohsen_Ardabilian/publication/254762552_Facial_Image_Analysis_Based_on_Local_Binary_Patterns_A_Survey/links/54366c050cf2dc341db30747.pdf?origin=publication_list +0b3a146c474166bba71e645452b3a8276ac05998,http://pdfs.semanticscholar.org/c6e5/17eb85bc6c68dff5d3fadb2d817e839c966b.pdf,,,http://papers.nips.cc/paper/2708-whos-in-the-picture.pdf +0b78fd881d0f402fd9b773249af65819e48ad36d,http://mirlab.org/conference_papers/International_Conference/ISCSLP%202008/pdfs/281.pdf,,https://doi.org/10.1109/CHINSL.2008.ECP.82,http://www.isca-speech.org/archive_open/archive_papers/iscslp2008/281.pdf +0b835284b8f1f45f87b0ce004a4ad2aca1d9e153,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kapadia_Cartooning_for_Enhanced_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.175 +0b8839945259ec764ef0fad47471f34db39f40c3,,,https://doi.org/10.1109/DESEC.2017.8073838, +0b5bd3ce90bf732801642b9f55a781e7de7fdde0,http://pdfs.semanticscholar.org/0b5b/d3ce90bf732801642b9f55a781e7de7fdde0.pdf,,https://doi.org/10.1016/j.patrec.2011.01.004,http://lms.ctl.cyut.edu.tw/sysdata/26/21126/doc/555f4d2e898da8b3/attach/994939.pdf +0b0958493e43ca9c131315bcfb9a171d52ecbb8a,http://pdfs.semanticscholar.org/0b09/58493e43ca9c131315bcfb9a171d52ecbb8a.pdf,,,https://sbelharbi.github.io/publications/2015/belharbiCAP2015.pdf +0be418e63d111e3b94813875f75909e4dc27d13a,,,https://doi.org/10.1109/ICB.2016.7550057, +0b51197109813d921835cb9c4153b9d1e12a9b34,http://pdfs.semanticscholar.org/0b51/197109813d921835cb9c4153b9d1e12a9b34.pdf,,,https://newtraell.cs.uchicago.edu/files/ms_paper/liwenz.pdf +0bf3513d18ec37efb1d2c7934a837dabafe9d091,http://pdfs.semanticscholar.org/14ff/c760c1655524fc2a035357ad354664b5af5e.pdf,,,http://www1.i2r.a-star.edu.sg/~htang/AAAI2015_TRR.pdf +0bf1f999a16461a730dd80e3a187d0675c216292,,,,http://doi.ieeecomputersociety.org/10.1109/CW.2017.26 +0b20f75dbb0823766d8c7b04030670ef7147ccdd,http://pdfs.semanticscholar.org/0b20/f75dbb0823766d8c7b04030670ef7147ccdd.pdf,,,http://arxiv.org/abs/1201.5946 +0be49fc1e0c9a6a50e449015945dd1cf92ccd07e,,,, +0b174d4a67805b8796bfe86cd69a967d357ba9b6,http://pdfs.semanticscholar.org/0b17/4d4a67805b8796bfe86cd69a967d357ba9b6.pdf,,,http://www.isca.in/rjrs/archive/v3/i4/10.ISCA-RJRS-2013-216.pdf +0ba449e312894bca0d16348f3aef41ca01872383,http://pdfs.semanticscholar.org/0ba4/49e312894bca0d16348f3aef41ca01872383.pdf,,,https://arxiv.org/pdf/1705.06884v1.pdf +0b878d553f359b38753c6ea27d7acf500a90da15,,,, +0b87d91fbda61cdea79a4b4dcdcb6d579f063884,http://pdfs.semanticscholar.org/0b87/d91fbda61cdea79a4b4dcdcb6d579f063884.pdf,,,http://benthamopen.com/contents/pdf/TOAUTOCJ/TOAUTOCJ-7-569.pdf +0be2245b2b016de1dcce75ffb3371a5e4b1e731b,http://pdfs.semanticscholar.org/0be2/245b2b016de1dcce75ffb3371a5e4b1e731b.pdf,,https://doi.org/10.1007/11840817_45,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Moschou06a.pdf +0b79356e58a0df1d0efcf428d0c7c4651afa140d,http://pdfs.semanticscholar.org/7725/05d940a31ca237563cfb2d5c05c62742993f.pdf,,,http://www.merl.com/papers/docs/TR99-13.pdf +0be015e2f9a1d2acebc3afb6e0f6948dd2f9d23d,,,https://doi.org/10.1007/s12193-013-0133-0, +0b85b50b6ff03a7886c702ceabad9ab8c8748fdc,http://pdfs.semanticscholar.org/0b85/b50b6ff03a7886c702ceabad9ab8c8748fdc.pdf,,,http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933483/jov-11-3-17.pdf +0b84f07af44f964817675ad961def8a51406dd2e,https://arxiv.org/pdf/1604.02531v2.pdf,,,https://arxiv.org/pdf/1604.02531v1.pdf +0b242d5123f79defd5f775d49d8a7047ad3153bc,http://pdfs.semanticscholar.org/84db/c0010ae4f5206d689cf9f5bb176d18990bcd.pdf,,,https://arxiv.org/pdf/1510.05067v4.pdf +0b3786a3a0ea7ec08f01636124c183dbee8f625f,http://www.cs.uiuc.edu/homes/dhoiem/publications/pami2012_FlickrSimilaritiesSIKMA_Gang.pdf,,,http://www.cs.illinois.edu/homes/dhoiem/publications/pami2012_FlickrSimilaritiesSIKMA_Gang.pdf +0b50e223ad4d9465bb92dbf17a7b79eccdb997fb,http://users.eecs.northwestern.edu/~ganghua/publication/CVPR08a.pdf,,,http://projectsweb.cs.washington.edu/research/insects/CVPR2009/3D_data/randproj_facerecog.pdf +0badf61e8d3b26a0d8b60fe94ba5c606718daf0b,http://pdfs.semanticscholar.org/0bad/f61e8d3b26a0d8b60fe94ba5c606718daf0b.pdf,,,http://tjfeonline.com/admin/archive/5008.04.20161460097855.pdf +0b02bfa5f3a238716a83aebceb0e75d22c549975,http://pdfs.semanticscholar.org/0b02/bfa5f3a238716a83aebceb0e75d22c549975.pdf,,,http://www.cv.tu-berlin.de/fileadmin/fg140/Learning_Probabilistic.pdf +0b2966101fa617b90510e145ed52226e79351072,http://www.cs.umanitoba.ca/~ywang/papers/icpr16_videotext.pdf,,https://doi.org/10.1109/ICPR.2016.7899903, +0ba0f000baf877bc00a9e144b88fa6d373db2708,http://pdfs.semanticscholar.org/0ba0/f000baf877bc00a9e144b88fa6d373db2708.pdf,,,http://onlinepresent.org/proceedings/vol17_2013/29.pdf +0be80da851a17dd33f1e6ffdd7d90a1dc7475b96,http://pdfs.semanticscholar.org/0be8/0da851a17dd33f1e6ffdd7d90a1dc7475b96.pdf,,https://doi.org/10.1155/2016/7696035, +0b183f5260667c16ef6f640e5da50272c36d599b,http://pdfs.semanticscholar.org/0b18/3f5260667c16ef6f640e5da50272c36d599b.pdf,,https://doi.org/10.1007/978-3-319-10593-2_10,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8692/86920135.pdf +0b4c4ea4a133b9eab46b217e22bda4d9d13559e6,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_morph_random_forests.pdf,,,http://www.micc.unifi.it/publications/2015/DKBD15/PID3774829.pdf +0b9db62b26b811e8c24eb9edc37901a4b79a897f,https://eng.ucmerced.edu/people/cyang35/CVPR13/cvpr13_hallucination.pdf,,,http://faculty.ucmerced.edu/mhyang/papers/cvpr13_hallucination_sup.pdf +0ba99a709cd34654ac296418a4f41a9543928149,https://pdfs.semanticscholar.org/0ba9/9a709cd34654ac296418a4f41a9543928149.pdf,,https://doi.org/10.1109/TIP.2010.2049235,http://vc.sce.ntu.edu.sg/index_files/TIPClustering_double.pdf +0be764800507d2e683b3fb6576086e37e56059d1,http://pdfs.semanticscholar.org/0be7/64800507d2e683b3fb6576086e37e56059d1.pdf,,,http://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/12206/Huang_duke_0066D_13412.pdf?sequence=1 +0b80fdb5b78422efdb3cdb840c78630de0af61f3,,,, +0b642f6d48a51df64502462372a38c50df2051b1,https://infoscience.epfl.ch/record/231128/files/Le_ICMI_2017.pdf,,,http://doi.acm.org/10.1145/3136755.3136800 +0b7d1386df0cf957690f0fe330160723633d2305,http://www.cs.rpi.edu/~magdon/ps/conference/AccentICMLA2009.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2009.133 +0b6616f3ebff461e4b6c68205fcef1dae43e2a1a,http://pdfs.semanticscholar.org/0b66/16f3ebff461e4b6c68205fcef1dae43e2a1a.pdf,,,https://arxiv.org/pdf/1312.4384v1.pdf +0b8c92463f8f5087696681fb62dad003c308ebe2,https://www.iiitd.edu.in/~richa/papers/BTAS10-Sketch.pdf,,https://doi.org/10.1109/BTAS.2010.5634507, +0bc0f9178999e5c2f23a45325fa50300961e0226,http://pdfs.semanticscholar.org/0bc0/f9178999e5c2f23a45325fa50300961e0226.pdf,,,http://cs229.stanford.edu/proj2010/RaoThiagarajan-RecognizingFacialExpressionsFromVideosUsingDeepBeliefNetworks.pdf +0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,,,https://arxiv.org/pdf/1611.05916v2.pdf +0b3f354e6796ef7416bf6dde9e0779b2fcfabed2,http://pdfs.semanticscholar.org/fd60/5d123a0f777716f798f258fbbcd73d75fa8b.pdf,,,http://scholar.lib.vt.edu/theses/available/etd-04022005-235756/unrestricted/CJonesDissertation-ColorFaceRecognition.pdf +0b9d3a0c61ee498f8ed54aaa22d3c4e72aa56f40,http://www.researchgate.net/profile/Mark_Billinghurst/publication/221209697_A_Quadratic_Deformation_Model_for_Facial_Expression_Recognition/links/00b4952464de6e125e000000.pdf,,,https://www.researchgate.net/profile/Ramakrishnan_Mukundan/publication/221209697_A_Quadratic_Deformation_Model_for_Facial_Expression_Recognition/links/09e41510929d5d3c66000000.pdf?origin=publication_list +937e89cdf056358d1d5befe334a0e1f497f7d643,,,, +9391618c09a51f72a1c30b2e890f4fac1f595ebd,http://pdfs.semanticscholar.org/9391/618c09a51f72a1c30b2e890f4fac1f595ebd.pdf,,,https://arxiv.org/pdf/1503.08843v1.pdf +93675f86d03256f9a010033d3c4c842a732bf661,http://pdfs.semanticscholar.org/9367/5f86d03256f9a010033d3c4c842a732bf661.pdf,,,http://hal.archives-ouvertes.fr/docs/00/46/03/28/PDF/Thesis_Tao_XU.pdf +935a7793cbb8f102924fa34fce1049727de865c2,https://ivi.fnwi.uva.nl/isis/publications/2015/AlnajarICIP20015/AlnajarICIP20015.pdf,,https://doi.org/10.1109/ICIP.2015.7351554, +9326d1390e8601e2efc3c4032152844483038f3f,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Hsu_Landmark_Based_Facial_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.11 +93b7ee9842114bc15202ff97941892aa848c0716,,,, +93747de3d40376761d1ef83ffa72ec38cd385833,http://pdfs.semanticscholar.org/9374/7de3d40376761d1ef83ffa72ec38cd385833.pdf,,,http://www.jeffreysanchezburks.com/blog/wp-content/uploads/Team-members-emotional-displays.pdf +93d903d2e48d6a8ad3e3d2aff2e57622efe649cd,,,https://doi.org/10.1109/ICIP.2016.7532432, +936c7406de1dfdd22493785fc5d1e5614c6c2882,http://pdfs.semanticscholar.org/9d5e/1395e1ace37d9d5b7ce6854d518e7f128e79.pdf,,,http://tamaraberg.com/papers/desctext.pdf +93721023dd6423ab06ff7a491d01bdfe83db7754,http://pdfs.semanticscholar.org/9372/1023dd6423ab06ff7a491d01bdfe83db7754.pdf,,,http://liris.cnrs.fr/Documents/Liris-6081.pdf +93115b81d1efc1f6d2788972bdb89908764890b6,,,, +93971a49ef6cc88a139420349a1dfd85fb5d3f5c,http://pdfs.semanticscholar.org/9397/1a49ef6cc88a139420349a1dfd85fb5d3f5c.pdf,,,http://publications.idiap.ch/downloads/papers/2014/ElShafey_EABRA_2014.pdf +935924ddb5992c11f3202bf995183130ad83d07b,,,https://doi.org/10.1117/1.JEI.24.2.023015, +93d74b1315a09f568027b6d8b3068ef048d17889,,,, +93cbb3b3e40321c4990c36f89a63534b506b6daf,http://www.cs.wisc.edu/~gdguo/myPapersOnWeb/IEEESMC05Guo.pdf,,https://doi.org/10.1109/TSMCB.2005.846658,http://ftp.cs.wisc.edu/computer-vision/repository/PDF/guo.2005.smc.pdf +93e1e195f294c463f4832c4686775bf386b3de39,,,https://doi.org/10.1109/TIP.2015.2490551, +93108f1548e8766621565bdb780455023349d2b2,,,https://doi.org/10.1109/ICIP.2010.5653914, +937ffb1c303e0595317873eda5ce85b1a17f9943,https://ivi.fnwi.uva.nl/isis/publications/2010/DibekliogluICM2010/DibekliogluICM2010.pdf,,,http://www.science.uva.nl/research/publications/2010/DibekliogluICM2010/mmshc23317_dibeklioglu.pdf +931f99bc6865d3d0c80c15d5b1c05338dfe98982,,,, +939f9fa056f8be445da19b43da64bd2405851a43,,,https://doi.org/10.1109/ICSMC.2007.4413713, +934647c80f484340adecc74ac7141ed0b1d21c2f,,,, +9329523dc0bd4e2896d5f63cf2440f21b7a16f16,http://pdfs.semanticscholar.org/d853/107e81c3db4a7909b599bff82ab1c48772af.pdf,,,http://arxiv.org/abs/1610.01854 +939d28859c8bd2cca2d692901e174cfd599dac74,,,https://doi.org/10.1109/WOCC.2016.7506582, +9306f61c7c3bdcdcb257cd437ca59df8e599e326,http://www.umiacs.umd.edu/~pvishalm/Conference_pub/ACPR2011_v2.pdf,,https://doi.org/10.1109/ACPR.2011.6166711,http://www.rci.rutgers.edu/~vmp93/Conference_pub/ACPR2011_v2.pdf +9378ead3a09bc9f89fb711e2746facf399dd942e,,,https://doi.org/10.1109/TCSVT.2010.2045817, +93978ba84c8e95ff82e8b5960eab64e54ca36296,,,,http://doi.acm.org/10.1145/3136755.3136806 +93e451f71245f8e5ba346a48de2d09c0bccc3c22,,,, +934efd61b20f5b8b151a2df7cd373f0b387c02b0,,,https://doi.org/10.5220/0004673003290336,https://hal.inria.fr/hal-00925436/document +936227f7483938097cc1cdd3032016df54dbd5b6,http://pdfs.semanticscholar.org/9362/27f7483938097cc1cdd3032016df54dbd5b6.pdf,,,http://arxiv.org/abs/1608.07639 +93eb3963bc20e28af26c53ef3bce1e76b15e3209,,,https://doi.org/10.1109/ICIP.2017.8296992, +939123cf21dc9189a03671484c734091b240183e,http://publications.idiap.ch/downloads/papers/2015/Erdogmus_MMSP_2015.pdf,,https://doi.org/10.1109/MMSP.2014.6958797,http://infoscience.epfl.ch/record/213064/files/Erdogmus_MMSP_2015.pdf +93d11da02205bbc5ae68e521e421f70a4b74a7f7,,,, +94b9c0a6515913bad345f0940ee233cdf82fffe1,http://pdfs.semanticscholar.org/94b9/c0a6515913bad345f0940ee233cdf82fffe1.pdf,,,http://www.ijsr.net/archive/v3i12/U1VCMTQ3MzM=.pdf +94498fae459167841e8b2f4b911493fc3c7da22f,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/cvpr2016_ROF.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.142 +94a7c97d1e3eb5dbfb20b180780451486597a9be,http://pdfs.semanticscholar.org/94a7/c97d1e3eb5dbfb20b180780451486597a9be.pdf,,https://doi.org/10.1016/j.imavis.2016.05.004,http://www.rci.rutgers.edu/~vmp93/Journal_pub/attrspaper_final.pdf +945ef646679b6c575d3bbef9c6fc0a9629ac1b62,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477689 +94b60008e5f576f46bd3c385398cf2ecbb16f499,,,, +9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73,http://www.vision.ee.ethz.ch/~zzhiwu/papers/COX-Face-DB-TIP-final.pdf,,https://doi.org/10.1109/TIP.2015.2493448,http://vipl.ict.ac.cn/sites/default/files/people/attach/Revision_COX_TIP_v3.0_1.pdf +947cdeb52f694fb1c87fc16836f8877cd83dc652,,,https://doi.org/10.1109/SMAP.2017.8022671, +948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494,http://pdfs.semanticscholar.org/948a/f4b04b4a9ae4bff2777ffbcb29d5bfeeb494.pdf,,,https://pdfs.semanticscholar.org/948a/f4b04b4a9ae4bff2777ffbcb29d5bfeeb494.pdf +946b4d840b026d91608758d04f2763e9b981234e,,,,http://doi.acm.org/10.1145/2388676.2388792 +942f6eb2ec56809430c2243a71d03cc975d0a673,,,https://doi.org/10.1109/BigMM.2017.64, +942b89d8d17e89e58c82453de2bfcbbeb09adc81,,,https://doi.org/10.1016/j.patcog.2016.02.019, +94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81,http://ibug.doc.ic.ac.uk/media/uploads/documents/p148-cheng.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/p148-cheng.pdf +949fff3b0a73c81e7ff3d47caf7fbf9c664bcc70,,,, +94f74c6314ffd02db581e8e887b5fd81ce288dbf,http://pdfs.semanticscholar.org/94f7/4c6314ffd02db581e8e887b5fd81ce288dbf.pdf,,,https://arxiv.org/pdf/1511.02683v3.pdf +941166547968081463398c9eb041f00eb04304f7,http://people.duke.edu/~qq3/pub/ExpressionDictionary_TIP.pdf,,https://doi.org/10.1109/TIP.2014.2331141,https://www.cs.umd.edu/~qiu/pub/ExpressionDictionary_TIP.pdf +9441253b638373a0027a5b4324b4ee5f0dffd670,http://pdfs.semanticscholar.org/9441/253b638373a0027a5b4324b4ee5f0dffd670.pdf,,,http://arxiv.org/pdf/1312.7511v1.pdf +949699d0b865ef35b36f11564f9a4396f5c9cddb,http://pdfs.semanticscholar.org/9496/99d0b865ef35b36f11564f9a4396f5c9cddb.pdf,,,http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/SchWalCunChi2006_3872%5B0%5D.pdf +94ac3008bf6be6be6b0f5140a0bea738d4c75579,http://pdfs.semanticscholar.org/94ac/3008bf6be6be6b0f5140a0bea738d4c75579.pdf,,,https://arxiv.org/pdf/1712.01670v1.pdf +94e259345e82fa3015a381d6e91ec6cded3971b4,http://pdfs.semanticscholar.org/94e2/59345e82fa3015a381d6e91ec6cded3971b4.pdf,,https://doi.org/10.1007/11612704_61,http://www.am.sanken.osaka-u.ac.jp/~mukaigaw/papers/ACCV2006-PL.pdf +94b729f9d9171e7c4489995e6e1cb134c8521f4e,,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.055 +948f35344e6e063ffc35f10c547d5dd9204dee4e,,,https://doi.org/10.1016/j.eswa.2017.07.037, +940e5c45511b63f609568dce2ad61437c5e39683,,,https://doi.org/10.1109/TIP.2015.2390976, +0eed55ea9f401f25e1474cdbaf09367f44b4f490,,,https://doi.org/10.1016/j.neucom.2013.05.032, +0ea05bbc0b0c8b7df10f16e9429ef90177bf94fa,,,https://doi.org/10.1163/016918610X538534, +0efdd82a4753a8309ff0a3c22106c570d8a84c20,http://pdfs.semanticscholar.org/0efd/d82a4753a8309ff0a3c22106c570d8a84c20.pdf,,,https://labicvl.github.io/docs/pubs/Hwang_WIAMIS_2004.pdf +0e05b365af662bc6744106a7cdf5e77c9900e967,,,https://doi.org/10.1007/s11042-014-2234-5, +0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,http://pdfs.semanticscholar.org/0e5d/cc6ae52625fd0637c6bba46a973e46d58b9c.pdf,,,http://humansensing.cs.cmu.edu/papers/parda_pr.pdf +0ee83ed9bedc0cec5c3368144df0b6f4ee76ddff,,,,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.40 +0e73d2b0f943cf8559da7f5002414ccc26bc77cd,https://people.cs.umass.edu/~smaji/presentations/similarity-poster-cvpr14.pdf,,,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/cvpr2014_similarity.pdf +0e37d70794d5ccfef8b4cc22b4203245f33eec6e,,,https://doi.org/10.1109/ICIP.2010.5653034, +0e8a28511d8484ad220d3e8dde39220c74fab14b,,,https://doi.org/10.1109/TNNLS.2015.2477826, +0e454686f83284ced2ffc5740829552a032671a3,,,https://doi.org/10.1109/IJCNN.2015.7280802, +0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,,,https://doi.org/10.1109/TMM.2015.2500730, +0ed0e48b245f2d459baa3d2779bfc18fee04145b,http://pdfs.semanticscholar.org/0ed0/e48b245f2d459baa3d2779bfc18fee04145b.pdf,,https://doi.org/10.1137/1.9781611972771.73,http://parnec.nuaa.edu.cn/papers/conference/2007/dqzhang-SDM07.pdf +0ea6ee0931f2dc51b0440dfa197433faacd53010,,,, +0ed4b4d6d1a0c49c4eb619aab36db559b620d99f,,,https://doi.org/10.1016/j.neucom.2015.11.115, +0eac652139f7ab44ff1051584b59f2dc1757f53b,http://pdfs.semanticscholar.org/0eac/652139f7ab44ff1051584b59f2dc1757f53b.pdf,,,http://arxiv.org/abs/1611.01584 +0ef96d97365899af797628e80f8d1020c4c7e431,http://media.adelaide.edu.au/acvt/Publications/2006/2006-Improving%20the%20Speed%20of%20Kernel%20PCA%20on%20Large%20Scale%20Datasets.pdf,,,http://www1.i2r.a-star.edu.sg/~tjchin/chin_avss06.pdf +0e7f277538142fb50ce2dd9179cffdc36b794054,http://nb.vse.cz/~svatek/mdm08.pdf,,, +0e8760fc198a7e7c9f4193478c0e0700950a86cd,http://pdfs.semanticscholar.org/0e87/60fc198a7e7c9f4193478c0e0700950a86cd.pdf,,,https://arxiv.org/pdf/1802.01777v2.pdf +0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,http://pdfs.semanticscholar.org/0ec0/fc9ed165c40b1ef4a99e944abd8aa4e38056.pdf,,,http://thescipub.com/PDF/crpsp.2015.22.30.pdf +0e652a99761d2664f28f8931fee5b1d6b78c2a82,http://pdfs.semanticscholar.org/0e65/2a99761d2664f28f8931fee5b1d6b78c2a82.pdf,,,https://arxiv.org/pdf/1209.5111v1.pdf +0e50fe28229fea45527000b876eb4068abd6ed8c,http://pdfs.semanticscholar.org/0e50/fe28229fea45527000b876eb4068abd6ed8c.pdf,,https://doi.org/10.24963/ijcai.2017/409,https://www.ijcai.org/proceedings/2017/0409.pdf +0eff410cd6a93d0e37048e236f62e209bc4383d1,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICRA_2010/data/papers/0516.pdf,,https://doi.org/10.1109/ROBOT.2010.5509146, +0ea7b7fff090c707684fd4dc13e0a8f39b300a97,https://arxiv.org/pdf/1711.06055v1.pdf,,,http://doi.acm.org/10.1145/3123266.3123438 +0ef20991e0ecc7dc3f6e0e5fd6ee93c4970206f3,,,https://doi.org/10.1109/ICIP.2015.7351013, +0ee661a1b6bbfadb5a482ec643573de53a9adf5e,http://epubs.surrey.ac.uk/812523/1/yunlian_TIFS2014.pdf,,https://doi.org/10.1109/TIFS.2014.2362007, +0e36ada8cb9c91f07c9dcaf196d036564e117536,http://pdfs.semanticscholar.org/d0d5/aa7f797113c825053f4c4fd3772dc3601139.pdf,,,http://ai2-website.s3.amazonaws.com/publications/much_ado.pdf +0e986f51fe45b00633de9fd0c94d082d2be51406,http://vision.ics.uci.edu/papers/ZhuR_CVPR_2012/ZhuR_CVPR_2012.pdf,,,http://www.ics.uci.edu/~dramanan/papers/face_2012.pdf +0ebc50b6e4b01eb5eba5279ce547c838890b1418,http://pdfs.semanticscholar.org/0ebc/50b6e4b01eb5eba5279ce547c838890b1418.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8225 +0e49a23fafa4b2e2ac097292acf00298458932b4,http://pdfs.semanticscholar.org/0e49/a23fafa4b2e2ac097292acf00298458932b4.pdf,,,http://www.uav.ro/applications/se/journal/index.php/TAMCS/article/download/70/51/ +0ec1673609256b1e457f41ede5f21f05de0c054f,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d025.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.389 +0eb077a3e227b19f032f980d3a3206e4ae15e429,,,, +0e3840ea3227851aaf4633133dd3cbf9bbe89e5b,http://pdfs.semanticscholar.org/8d59/98cd984e7cce307da7d46f155f9db99c6590.pdf,,,http://arxiv.org/abs/1701.02664 +0e2d956790d3b8ab18cee8df6c949504ee78ad42,,,https://doi.org/10.1109/IVCNZ.2013.6727024, +0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a,http://www.openu.ac.il/home/hassner/projects/LATCH/LATCH.pdf,,,https://arxiv.org/pdf/1501.03719v1.pdf +0ea38a5ba0c8739d1196da5d20efb13406bb6550,https://filebox.ece.vt.edu/~parikh/Publications/ParikhGrauman_ICCV2011_relative.pdf,,,http://filebox.ece.vt.edu/~parikh/Publications/ParikhGrauman_ICCV2011_relative.pdf +0e21c9e5755c3dab6d8079d738d1188b03128a31,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Wu_Constrained_Clustering_and_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.450 +0e4baf74dfccef7a99c6954bb0968a2e35315c1f,,,https://doi.org/10.1109/SIU.2012.6204517, +0ed96cc68b1b61e9eb4096f67d3dcab9169148b9,,,,http://doi.acm.org/10.1145/2663204.2666279 +0e4fa61871755b5548a5c970c8103f7b2ada24f3,,,,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.19 +0e677f2b798f5c1f7143ba983467321a7851565a,http://www.cse.iitk.ac.in/users/rahulaaj/papers/BillyYL.pdf,,,https://pdfs.semanticscholar.org/cb0b/07abcddc5d88cb9d4aa212799a21a2e35508.pdf +0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698,http://pdfs.semanticscholar.org/0e78/af9bd0f9a0ce4ceb5f09f24bc4e4823bd698.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/698.pdf +0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5,http://ca.cs.cmu.edu/sites/default/files/9MMED_CVPR12.pdf,,https://doi.org/10.1007/s11263-013-0683-3,http://humansensing.cs.cmu.edu/sites/default/files/MMED_IJCV14.pdf +0e02dadab802128f6155e099135d03ca6b72f42c,,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2365793 +0e7c70321462694757511a1776f53d629a1b38f3,http://pdfs.semanticscholar.org/0e7c/70321462694757511a1776f53d629a1b38f3.pdf,,,http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1136.pdf +0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_Fast_Subspace_Search_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.345 +0ec67c69e0975cfcbd8ba787cc0889aec4cc5399,http://pdfs.semanticscholar.org/1af3/6a1fc18328e2a0310bc4208ef35ba882bdc1.pdf,,https://doi.org/10.5244/C.12.56,http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/Papers/walker_bmvc98.pdf +0e6f422c3f79c552c0c3d7eda0145aed8680f0ea,,,https://doi.org/10.1016/j.patrec.2012.09.008, +0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64,http://mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mm1039.pdf,,https://doi.org/10.1007/11612032_50,http://doi.acm.org/10.1145/1101149.1101364 +0e1a18576a7d3b40fe961ef42885101f4e2630f8,http://pdfs.semanticscholar.org/0e1a/18576a7d3b40fe961ef42885101f4e2630f8.pdf,,,http://www.robots.ox.ac.uk/~vgg/publications/papers/everingham05a.pdf +608b01c70f0d1166c10c3829c411424d9ef550e7,,,https://doi.org/10.1109/CISP-BMEI.2017.8301920, +6080f26675e44f692dd722b61905af71c5260af8,https://arxiv.org/pdf/1603.05073v1.pdf,,https://doi.org/10.1109/IJCNN.2016.7727584,http://arxiv.org/pdf/1603.05073v1.pdf +60a006bdfe5b8bf3243404fae8a5f4a9d58fa892,http://alumni.cs.ucr.edu/~mkafai/papers/Paper_bwild.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284836 +606dff86a34c67c79d93f1e536487847a5bb7002,,,https://doi.org/10.1109/WACV.2011.5711538, +6043006467fb3fd1e9783928d8040ee1f1db1f3a,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/CVPR10_FaceReco.pdf,,,http://research.microsoft.com/en-us/um/people/jiansun/papers/CVPR10_FaceReco.pdf +600025c9a13ff09c6d8b606a286a79c823d89db8,http://pdfs.semanticscholar.org/6000/25c9a13ff09c6d8b606a286a79c823d89db8.pdf,,,http://airccse.org/journal/mlaij/papers/1114mlaij06.pdf +60d765f2c0a1a674b68bee845f6c02741a49b44e,http://pdfs.semanticscholar.org/60d7/65f2c0a1a674b68bee845f6c02741a49b44e.pdf,,https://doi.org/10.1016/j.patrec.2005.09.026,https://www.researchgate.net/profile/Kin_Man_Lam/publication/220645679_An_efficient_illumination_normalization_method_for_face_recognition/links/0c96052f1d90e2224a000000.pdf +600075a1009b8692480726c9cff5246484a22ec8,,,, +607aebe7568407421e8ffc7b23a5fda52650ad93,,,https://doi.org/10.1109/ISBA.2016.7477237, +60d4cef56efd2f5452362d4d9ac1ae05afa970d1,http://pdfs.semanticscholar.org/60d4/cef56efd2f5452362d4d9ac1ae05afa970d1.pdf,,,http://www.jmlr.org/proceedings/papers/v48/fernando16.pdf +60ce4a9602c27ad17a1366165033fe5e0cf68078,http://pdfs.semanticscholar.org/60ce/4a9602c27ad17a1366165033fe5e0cf68078.pdf,,,http://atvs.ii.uam.es/audias/files/2015_JFO_FaceRegionFusion_Tome.pdf +6097ea6fd21a5f86a10a52e6e4dd5b78a436d5bf,http://arxiv.org/pdf/1512.05300v3.pdf,,,https://arxiv.org/pdf/1512.05300v5.pdf +60c699b9ec71f7dcbc06fa4fd98eeb08e915eb09,https://arxiv.org/pdf/1706.03947v1.pdf,,https://doi.org/10.1109/VCIP.2017.8305029,http://arxiv.org/abs/1706.03947 +60970e124aa5fb964c9a2a5d48cd6eee769c73ef,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Tierney_Subspace_Clustering_for_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.134 +60efdb2e204b2be6701a8e168983fa666feac1be,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01387.pdf,,https://doi.org/10.1007/s11263-017-1043-5, +60824ee635777b4ee30fcc2485ef1e103b8e7af9,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/Feng-TIP-2015.pdf,,https://doi.org/10.1109/TIP.2015.2446944,http://epubs.surrey.ac.uk/808177/1/Feng-TIP-2015.pdf +60643bdab1c6261576e6610ea64ea0c0b200a28d,http://pdfs.semanticscholar.org/6064/3bdab1c6261576e6610ea64ea0c0b200a28d.pdf,,https://doi.org/10.1016/j.jvcir.2014.08.006,https://dr.ntu.edu.sg/bitstream/handle/10220/24578/Multi-Manifold%20Metric%20Learning%20for%20Face%20Recognition.pdf?isAllowed=y&sequence=1 +60f980b1f146d659f8f8f0b4755ae2d5df64ca8d,,,, +609c35a6fa80af8b2e4ce46b1b16ec36578fd07f,,,https://doi.org/10.1155/2014/950349, +602f772c69e4a1a65de00443c30d51fdd47a80aa,,,https://doi.org/10.1109/IISA.2013.6623705, +60a20d5023f2bcc241eb9e187b4ddece695c2b9b,http://pdfs.semanticscholar.org/60a2/0d5023f2bcc241eb9e187b4ddece695c2b9b.pdf,,https://doi.org/10.1007/978-3-319-22482-4_32,https://www.gol.ei.tum.de/fileadmin/w00bhl/www/preprints/wei-lvaica15.pdf +609d81ddf393164581b3e3bf11609a712ac47522,,,https://doi.org/10.1109/APSIPA.2017.8282300, +60cdcf75e97e88638ec973f468598ae7f75c59b4,http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/tmm08face.pdf,,https://doi.org/10.1109/TMM.2007.911245,http://www.cais.ntu.edu.sg/~chhoi/paper_pdf/TMM08TKFD.pdf +60040e4eae81ab6974ce12f1c789e0c05be00303,http://pdfs.semanticscholar.org/6004/0e4eae81ab6974ce12f1c789e0c05be00303.pdf,,,http://www.utdallas.edu/~yonas.tadesse/data/GFEAD.pdf +60b3601d70f5cdcfef9934b24bcb3cc4dde663e7,http://pdfs.semanticscholar.org/60b3/601d70f5cdcfef9934b24bcb3cc4dde663e7.pdf,,,http://personalpages.manchester.ac.uk/staff/hujun.yin/pubs/BGCP_PAMI_rev_23rd_9.pdf +60bdff71e241f9afc411221bd20aaebb4608576b,,,, +60737db62fb5fab742371709485e4b2ddf64b7b2,http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/p307-weng.pdf,,,http://doi.acm.org/10.1145/3132847.3132891 +603231c507bb98cc8807b6cbe2c860f79e8f6645,,,https://doi.org/10.1109/EUSIPCO.2015.7362819, +60284c37249532fe7ff6b14834a2ae4d2a7fda02,,,https://doi.org/10.1109/SIU.2016.7495971, +601655a17ca199ef674079482c9b37cdf8e094a9,,,, +60496b400e70acfbbf5f2f35b4a49de2a90701b5,http://pdfs.semanticscholar.org/6049/6b400e70acfbbf5f2f35b4a49de2a90701b5.pdf,,https://doi.org/10.1007/978-3-540-74958-5_40,http://graphics.cs.msu.su/en/publications/text/ecml2007vb.pdf +60bffecd79193d05742e5ab8550a5f89accd8488,http://pdfs.semanticscholar.org/60bf/fecd79193d05742e5ab8550a5f89accd8488.pdf,,,https://ed-galilee.univ-paris13.fr/wp-content/uploads/Sujet-L2TI-Emmanuel-Viennet.pdf +601834a4150e9af028df90535ab61d812c45082c,http://pdfs.semanticscholar.org/6018/34a4150e9af028df90535ab61d812c45082c.pdf,,,http://arxiv.org/abs/1609.08345 +6014eeb333998c2b2929657d233ebbcb1c3412c9,,,,http://doi.acm.org/10.1145/2647868.2656406 +34546ef7e6148d9a1fb42cfab5f0ce11c92c760a,,,https://doi.org/10.1016/j.jvcir.2015.09.005, +346dbc7484a1d930e7cc44276c29d134ad76dc3f,http://pdfs.semanticscholar.org/346d/bc7484a1d930e7cc44276c29d134ad76dc3f.pdf,,,http://rifters.com/real/articles/Network_Redies_et_al_2007.pdf +34a41ec648d082270697b9ee264f0baf4ffb5c8d,http://pdfs.semanticscholar.org/34a4/1ec648d082270697b9ee264f0baf4ffb5c8d.pdf,,https://doi.org/10.1016/j.imavis.2013.10.002,http://www.cs.zju.edu.cn/people/wangdh/papers/IVC.pdf?doi=10.1016/j.imavis.2013.10.002&domain=f +34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4c,http://pdfs.semanticscholar.org/9e97/360b519d9912ded55618ccbb000d74d8e35c.pdf,,,http://www-nlpir.nist.gov/projects/tvpubs/tv13.papers/axes.pdf +34c2ea3c7e794215588c58adf0eaad6dc267d082,,,,http://doi.acm.org/10.1145/3136755.3143005 +34bb11bad04c13efd575224a5b4e58b9249370f3,http://cs.nju.edu.cn/wujx/paper/CVPR2014_Action.pdf,,,https://www.researchgate.net/profile/Weiyao_Lin/publication/266913116_Towards_Good_Practices_for_Action_Video_Encoding/links/543f65ee0cf2e76f02245267.pdf?origin=publication_list +3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,http://pdfs.semanticscholar.org/3411/ef1ff5ad11e45106f7863e8c7faf563f4ee1.pdf,,https://doi.org/10.1007/978-3-319-10590-1_37,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8689/86890569.pdf +34d484b47af705e303fc6987413dc0180f5f04a9,http://pdfs.semanticscholar.org/34d4/84b47af705e303fc6987413dc0180f5f04a9.pdf,,,http://www.cs.cmu.edu/~ftorre/nsf_grant_v2.pdf +34c1e9a6166f4732d1738db803467f7abc47ba87,,,https://doi.org/10.1109/WACV.2017.137, +346166da1a49e531923294300a731167e1436d5b,http://lear.inrialpes.fr/people/mpederso/papers/3DV14.pdf,,,http://thoth.inrialpes.fr/people/mpederso/papers/3DV14.pdf +34301fbf4624139a40176dbde6f5954b2df6de7b,,,, +345bea5f7d42926f857f395c371118a00382447f,http://grail.cs.washington.edu/wp-content/uploads/2016/09/kemelmacher2016tp.pdf,,,http://doi.acm.org/10.1145/2897824.2925871 +349434653429733f5f49fe0e160027d994cef115,,,, +3403cb92192dc6b2943d8dbfa8212cc65880159e,http://pdfs.semanticscholar.org/3403/cb92192dc6b2943d8dbfa8212cc65880159e.pdf,,,http://www.wiau.man.ac.uk/~knw/bmvc99.ps +3463f12ad434d256cd5f94c1c1bfd2dd6df36947,http://pdfs.semanticscholar.org/3463/f12ad434d256cd5f94c1c1bfd2dd6df36947.pdf,,https://doi.org/10.3390/s17040712,http://www.mdpi.com/1424-8220/17/4/712/pdf +346c9100b2fab35b162d7779002c974da5f069ee,http://cmlab.csie.ntu.edu.tw/~yanying/paper/p651-lei.pdf,,,http://doi.acm.org/10.1145/2072298.2072410 +34863ecc50722f0972e23ec117f80afcfe1411a9,http://nlpr-web.ia.ac.cn/2010papers/kz/gh3.pdf,,,http://www.nlpr.ia.ac.cn/2010papers/kz/gh3.pdf +34b7e826db49a16773e8747bc8dfa48e344e425d,http://www.comp.leeds.ac.uk/me/Publications/cvpr09_bsl.pdf,,,http://eprints.pascal-network.org/archive/00005401/01/buehler09.pdf +34c594abba9bb7e5813cfae830e2c4db78cf138c,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_047_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_047.pdf +34108098e1a378bc15a5824812bdf2229b938678,http://pdfs.semanticscholar.org/3410/8098e1a378bc15a5824812bdf2229b938678.pdf,,https://doi.org/10.1007/978-3-319-16817-3_18,http://www.eecs.berkeley.edu/~stellayu/publication/doc/2014codeTransferACCV.pdf +341ed69a6e5d7a89ff897c72c1456f50cfb23c96,http://pdfs.semanticscholar.org/cd7f/26c430363f90e530824446b3a4c85cfb94e5.pdf,,,http://arxiv.org/abs/1702.04280 +348a16b10d140861ece327886b85d96cce95711e,http://pdfs.semanticscholar.org/348a/16b10d140861ece327886b85d96cce95711e.pdf,,, +3419af6331e4099504255a38de6f6b7b3b1e5c14,http://pdfs.semanticscholar.org/3419/af6331e4099504255a38de6f6b7b3b1e5c14.pdf,,,http://web.stanford.edu/class/ee368/Project_07/reports/ee368group07.pdf +344c0917c8d9e13c6b3546da8695332f86b57bd3,,,https://doi.org/10.1109/ICIP.2017.8296715, +34c8de02a5064e27760d33b861b7e47161592e65,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w14/papers/Han_Video_Action_Recognition_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.162 +340d1a9852747b03061e5358a8d12055136599b0,http://pdfs.semanticscholar.org/340d/1a9852747b03061e5358a8d12055136599b0.pdf,,,http://www.iaeng.org/IJCS/issues_v36/issue_2/IJCS_36_2_08.pdf +349c909abf937ef0a5a12c28a28e98500598834b,,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2014.6890672 +34ccdec6c3f1edeeecae6a8f92e8bdb290ce40fd,http://pdfs.semanticscholar.org/34cc/dec6c3f1edeeecae6a8f92e8bdb290ce40fd.pdf,,,http://www.ijcai.org/Abstract/16/642 +34b42bcf84d79e30e26413f1589a9cf4b37076f9,http://pdfs.semanticscholar.org/34b4/2bcf84d79e30e26413f1589a9cf4b37076f9.pdf,,,http://papers.nips.cc/paper/4400-learning-sparse-representations-of-high-dimensional-data-on-large-scale-dictionaries +3409aa0ae519ee18043e347e60d85e53e452650a,,,, +34dd83115195676e7a8b008eb0e9abe84b330b32,,,https://doi.org/10.1007/s00371-014-0931-8, +5aafca76dbbbbaefd82f5f0265776afb5320dafe,http://pdfs.semanticscholar.org/5aaf/ca76dbbbbaefd82f5f0265776afb5320dafe.pdf,,https://doi.org/10.1016/j.imavis.2015.07.002,http://ibug.doc.ic.ac.uk/media/uploads/documents/jorozco_imavis_2015.pdf +5a93f9084e59cb9730a498ff602a8c8703e5d8a5,http://pdfs.semanticscholar.org/5a93/f9084e59cb9730a498ff602a8c8703e5d8a5.pdf,,https://doi.org/10.5244/C.26.99,https://hal.archives-ouvertes.fr/hal-00806104/document +5a259f2f5337435f841d39dada832ab24e7b3325,,,,http://doi.acm.org/10.1145/2964284.2984059 +5a87bc1eae2ec715a67db4603be3d1bb8e53ace2,http://pdfs.semanticscholar.org/5a87/bc1eae2ec715a67db4603be3d1bb8e53ace2.pdf,,,http://www.researchgate.net/profile/Monson_Hayes/publication/221364120_A_Novel_Convergence_Scheme_for_Active_Appearance_Models/links/0deec53509be947258000000.pdf +5aad56cfa2bac5d6635df4184047e809f8fecca2,http://chenlab.ece.cornell.edu/people/Amir/publications/picture_password.pdf,,https://doi.org/10.1109/ICIP.2013.6738916, +5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0,http://pdfs.semanticscholar.org/5a8c/a0cfad32f04449099e2e3f3e3a1c8f6541c0.pdf,,,https://core.ac.uk/download/pdf/82038403.pdf +5ac80e0b94200ee3ecd58a618fe6afd077be0a00,http://pdfs.semanticscholar.org/5ac8/0e0b94200ee3ecd58a618fe6afd077be0a00.pdf,,,http://arxiv.org/abs/1606.00822 +5a5f0287484f0d480fed1ce585dbf729586f0edc,http://www.researchgate.net/profile/Mohammad_Mahoor/publication/248703363_DISFA_A_Spontaneous_Facial_Action_Intensity_Database/links/0c960520903b2b8153000000.pdf,,,http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf +5aadd85e2a77e482d44ac2a215c1f21e4a30d91b,http://pdfs.semanticscholar.org/5aad/d85e2a77e482d44ac2a215c1f21e4a30d91b.pdf,,,http://www.wseas.us/e-library/conferences/2009/cambridge/ISPRA/ISPRA42.pdf +5a34a9bb264a2594c02b5f46b038aa1ec3389072,http://www.mpi-inf.mpg.de/fileadmin/inf/d2/akata/TPAMI2487986.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2487986 +5af06815baa4b8f53adc9dc22f6eb3f6f1ad8ff8,,,https://doi.org/10.1186/s13640-017-0178-1, +5a5511dd059d732e60c62ef817532689f4e0ab46,,,, +5a10d74c7fc3294f76d771df413fe0b0b35f2ab5,,,, +5a4c6246758c522f68e75491eb65eafda375b701,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0001118.pdf,,https://doi.org/10.1109/ICASSP.2010.5495357,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0001118.pdf +5aad5e7390211267f3511ffa75c69febe3b84cc7,http://pdfs.semanticscholar.org/5aad/5e7390211267f3511ffa75c69febe3b84cc7.pdf,,,https://arxiv.org/pdf/1507.04760v1.pdf +5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372,http://pdfs.semanticscholar.org/5a02/9a0b0ae8ae7fc9043f0711b7c0d442bfd372.pdf,,,http://arxiv.org/abs/1710.08310 +5a4881bfcb4ae49229f39320197c2d01b2fbf1f5,,,, +5ab96ace21bf54625f3d18ea11801f540519bd3a,,,, +5ae970294aaba5e0225122552c019eb56f20af74,http://pdfs.semanticscholar.org/5ae9/70294aaba5e0225122552c019eb56f20af74.pdf,,,http://www.ijcee.org/papers/866-TD018.pdf +5a86842ab586de9d62d5badb2ad8f4f01eada885,http://pdfs.semanticscholar.org/5a86/842ab586de9d62d5badb2ad8f4f01eada885.pdf,,,http://pnrsolution.org/Datacenter/Vol3/Issue3/105.pdf +5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0,http://pdfs.semanticscholar.org/c173/fa4456941b9c40d53d656b8ad84d24c16ec3.pdf,,,http://www.ccis2k.org/iajit/index.php?Itemid=346&id=91&option=com_content&task=blogcategory +5a7520380d9960ff3b4f5f0fe526a00f63791e99,http://arxiv.org/pdf/1512.00932v1.pdf,,,https://arxiv.org/pdf/1512.00932v2.pdf +5a0ae814be58d319dfc9fd98b058a2476801201c,,,https://doi.org/10.1007/s00521-012-1124-x, +5f871838710a6b408cf647aacb3b198983719c31,http://www.jdl.ac.cn/user/xlchen/Paper/TIP07b.pdf,,https://doi.org/10.1109/TIP.2007.899195, +5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9,http://pdfs.semanticscholar.org/e1dd/1c4de149c6b05eedd1728d57a18a074b9b2a.pdf,,,http://arxiv.org/abs/1711.09822 +5f344a4ef7edfd87c5c4bc531833774c3ed23542,http://pdfs.semanticscholar.org/5f34/4a4ef7edfd87c5c4bc531833774c3ed23542.pdf,,,http://www.ifp.uiuc.edu/~iracohen/publications/IraCohenThesis.pdf +5f6ab4543cc38f23d0339e3037a952df7bcf696b,http://www.public.asu.edu/~bli24/Papers/ICPR2016_video2vec.pdf,,https://doi.org/10.1109/ICPR.2016.7899735, +5feee69ed183954fa76c58735daa7dd3549e434d,,,https://doi.org/10.1109/ICIP.2008.4711697, +5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a,http://pdfs.semanticscholar.org/5fa0/e6da81acece7026ac1bc6dcdbd8b204a5f0a.pdf,,https://doi.org/10.1016/j.patrec.2008.01.003,http://cse.cnu.ac.kr/~cheonghee/papers/multi4.pdf +5fc97d6cb5af21ed196e44f22cee31ce8c51ef13,,,,http://doi.acm.org/10.1145/2742060.2743769 +5f7094ba898a248e1e6b37e3d9fb795e59131cdc,,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026246 +5feb1341a49dd7a597f4195004fe9b59f67e6707,http://pdfs.semanticscholar.org/5feb/1341a49dd7a597f4195004fe9b59f67e6707.pdf,,,https://arxiv.org/pdf/1801.10312v1.pdf +5f57a1a3a1e5364792b35e8f5f259f92ad561c1f,http://pdfs.semanticscholar.org/5f57/a1a3a1e5364792b35e8f5f259f92ad561c1f.pdf,,,http://arxiv.org/pdf/1512.00130v1.pdf +5fa932be4d30cad13ea3f3e863572372b915bec8,http://pdfs.semanticscholar.org/5fa9/32be4d30cad13ea3f3e863572372b915bec8.pdf,,https://doi.org/10.1016/j.patrec.2011.11.028,http://www.nlpr.ia.ac.cn/2012papers/gjkw/gk39.pdf +5fb9944b18f5a4a6d20778816290ed647f5e3853,,,,http://doi.acm.org/10.1145/3080538.3080540 +5f1cd82343f4bd6972f674d50aecb453d06f04ad,,,,http://doi.acm.org/10.1145/3125739.3125756 +5f5906168235613c81ad2129e2431a0e5ef2b6e4,https://arxiv.org/pdf/1601.00199v1.pdf,,https://doi.org/10.1007/s11263-016-0916-3,http://arxiv.org/pdf/1601.00199v1.pdf +5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,http://pdfs.semanticscholar.org/5fb5/d9389e2a2a4302c81bcfc068a4c8d4efe70c.pdf,,https://doi.org/10.1007/978-3-319-54427-4_29,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C082_fukui2016.pdf +5f1dcaff475ef18a2ecec0e114a9849a0a8002b9,http://pdfs.semanticscholar.org/5f1d/caff475ef18a2ecec0e114a9849a0a8002b9.pdf,,https://doi.org/10.1016/j.parco.2015.07.002,http://www.math.uci.edu/~jxin/Parallel-CVG-July2015.pdf +5f4219118556d2c627137827a617cf4e26242a6e,,,https://doi.org/10.1109/TMM.2017.2751143, +5f676d6eca4c72d1a3f3acf5a4081c29140650fb,http://www.cs.ucr.edu/~mkafai/papers/Paper_fg.pdf,,,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2015/To%20Skip%20or%20not%20to%20Skip%20A%20Dataset%20of%20Spontaneous%20Affective%20Response%20of%20Online%20Advertising%20(SARA)%20for%20Audience%20Behavior%20Analysis.pdf +5fa6f72d3fe16f9160d221e28da35c1e67a5d951,,,,http://doi.acm.org/10.1145/3061639.3062182 +5fb59cf5b31a80d8c70d91660092ef86494be577,,,https://doi.org/10.1109/CISP-BMEI.2017.8301923, +5f01f14ca354266106d8aa1b07c45e8c9ac3e273,,,, +5fc664202208aaf01c9b62da5dfdcd71fdadab29,http://pdfs.semanticscholar.org/5fc6/64202208aaf01c9b62da5dfdcd71fdadab29.pdf,,,https://arxiv.org/pdf/1504.05308v1.pdf +5fce9d893a40c4e0f2ae335b2e68bfd02f1cb2c6,,,https://doi.org/10.1109/ICTAI.2012.40, +5fac62a3de11125fc363877ba347122529b5aa50,http://openaccess.thecvf.com/content_ICCV_2017/papers/Saha_AMTnet_Action-Micro-Tube_Regression_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.473 +5f448ab700528888019542e6fea1d1e0db6c35f2,,,https://doi.org/10.1109/LSP.2016.2533721, +5fa1724a79a9f7090c54925f6ac52f1697d6b570,http://pdfs.semanticscholar.org/5fa1/724a79a9f7090c54925f6ac52f1697d6b570.pdf,,,http://www.aclweb.org/anthology/W/W16/W16-3807.pdf +5fba1b179ac80fee80548a0795d3f72b1b6e49cd,http://pdfs.semanticscholar.org/fe88/e30cfca9161b598ea8a26985df5832259924.pdf,,,https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_xu.pdf +5f9dc3919fb088eb84accb1e490921a134232466,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2007.49 +337b5f0e70e04349da17e8069936e2260390aca0,,,, +33f7e78950455c37236b31a6318194cfb2c302a4,http://pdfs.semanticscholar.org/33f7/e78950455c37236b31a6318194cfb2c302a4.pdf,,https://doi.org/10.1007/978-3-319-10593-2_30,http://cs-people.bu.edu/hekun/papers/posedet_eccv14_camready2.pdf +33bba39be70f21e13769a10dbf96689aa4d3ecc6,,,, +33ac7fd3a622da23308f21b0c4986ae8a86ecd2b,http://pdfs.semanticscholar.org/33ac/7fd3a622da23308f21b0c4986ae8a86ecd2b.pdf,,,http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS12/paper/download/4481/4789 +33c2131cc85c0f0fef0f15ac18f28312347d9ba4,,,https://doi.org/10.1016/j.neucom.2010.06.024, +33030c23f6e25e30b140615bb190d5e1632c3d3b,http://pdfs.semanticscholar.org/3303/0c23f6e25e30b140615bb190d5e1632c3d3b.pdf,,,http://tamaraberg.com/papers/workshopwhitepaper.pdf +33ba256d59aefe27735a30b51caf0554e5e3a1df,http://pdfs.semanticscholar.org/33ba/256d59aefe27735a30b51caf0554e5e3a1df.pdf,,,http://www.ijcai.org/Proceedings/13/Papers/234.pdf +33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13,http://pdfs.semanticscholar.org/33c3/702b0eee6fc26fc49f79f9133f3dd7fa3f13.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/rudovic-o-2013-phd-thesis.pdf +33aff42530c2fd134553d397bf572c048db12c28,http://openaccess.thecvf.com/content_iccv_2015/papers/Ruiz_From_Emotions_to_ICCV_2015_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Ruiz_From_Emotions_to_ICCV_2015_paper.pdf +33a1a049d15e22befc7ddefdd3ae719ced8394bf,http://pdfs.semanticscholar.org/33a1/a049d15e22befc7ddefdd3ae719ced8394bf.pdf,,,http://www.academypublisher.com/ijrte/vol02/no01/ijrte0201179182.pdf +33ec047f1084e290c8a6f516bc75345b6bcf02a0,https://www.researchgate.net/profile/Peter_Corcoran/publication/220168274_Smart_Cameras_2D_Affine_Models_for_Determining_Subject_Facial_Expressions/links/02bfe5118f52d3d59d000000.pdf,,https://doi.org/10.1109/TCE.2010.5505930,http://www.researchgate.net/profile/Peter_Corcoran/publication/220168274_Smart_Cameras_2D_Affine_Models_for_Determining_Subject_Facial_Expressions/links/02bfe5118f52d3d59d000000.pdf +334e65b31ad51b1c1f84ce12ef235096395f1ca7,http://pdfs.semanticscholar.org/334e/65b31ad51b1c1f84ce12ef235096395f1ca7.pdf,,,http://www.decf.berkeley.edu/~wendyju/restricted/Emotion.pdf +3399f8f0dff8fcf001b711174d29c9d4fde89379,http://pdfs.semanticscholar.org/3399/f8f0dff8fcf001b711174d29c9d4fde89379.pdf,,,https://arxiv.org/pdf/1706.01061v1.pdf +33b915476f798ca18ae80183bf40aea4aaf57d1e,,,https://doi.org/10.1109/TIP.2013.2271548, +333aa36e80f1a7fa29cf069d81d4d2e12679bc67,http://pdfs.semanticscholar.org/333a/a36e80f1a7fa29cf069d81d4d2e12679bc67.pdf,,https://doi.org/10.1007/978-3-319-48881-3_59,https://s3-us-west-1.amazonaws.com/disneyresearch/wp-content/uploads/20161014182443/Suggesting-Sounds-for-Images-from-Video-Collections-Paper.pdf +3312eb79e025b885afe986be8189446ba356a507,http://pdfs.semanticscholar.org/6007/292075f8a8538fa6f4c3d7a8676a595ab1f4.pdf,,https://doi.org/10.1007/978-3-319-46454-1_2,https://arxiv.org/pdf/1603.07027v2.pdf +33792bb27ef392973e951ca5a5a3be4a22a0d0c6,http://plaza.ufl.edu/xsshi2015/paper_list/TPAMI2016.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2501810 +3328674d71a18ed649e828963a0edb54348ee598,http://ai.pku.edu.cn/application/files/1415/1124/8089/A_face_and_palmprint_recognition_approach_based_on_discriminant_DCT_feature_extraction.pdf,,https://doi.org/10.1109/TSMCB.2004.837586,http://ai.pku.edu.cn/aiwebsite/research.files/collected%20papers%20-%20palmprint/A%20face%20and%20palmprint%20recognition%20approach%20based%20on%20discriminant%20DCT%20feature%20extraction.pdf +339937141ffb547af8e746718fbf2365cc1570c8,http://pdfs.semanticscholar.org/3399/37141ffb547af8e746718fbf2365cc1570c8.pdf,,,http://cs231n.stanford.edu/reports/2016/pdfs/022_Report.pdf +33402ee078a61c7d019b1543bb11cc127c2462d2,http://users.cecs.anu.edu.au/~sgould/papers/cvpr17-ooo.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Fernando_Self-Supervised_Video_Representation_CVPR_2017_paper.pdf +33ae696546eed070717192d393f75a1583cd8e2c,https://arxiv.org/pdf/1708.08508v2.pdf,,https://doi.org/10.1109/BTAS.2017.8272730,https://arxiv.org/pdf/1708.08508v1.pdf +33554ff9d1d3b32f67020598320d3d761d7ec81f,http://pdfs.semanticscholar.org/3355/4ff9d1d3b32f67020598320d3d761d7ec81f.pdf,,,http://arxiv.org/abs/1702.06086 +33f2b44742cc828347ccc5ec488200c25838b664,http://pdfs.semanticscholar.org/33f2/b44742cc828347ccc5ec488200c25838b664.pdf,,,http://arxiv.org/pdf/1511.02126v1.pdf +332d773b70f2f6fb725d49f314f57b8f8349a067,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.220 +3393459600368be2c4c9878a3f65a57dcc0c2cfa,http://pdfs.semanticscholar.org/3393/459600368be2c4c9878a3f65a57dcc0c2cfa.pdf,,https://doi.org/10.1007/978-3-319-16811-1_2,http://users.eecs.northwestern.edu/~xsh835/EigenPepACCV2014.pdf +3327e21b46434f6441018922ef31bddba6cc8176,http://www.metaio.com/fileadmin/upload/research_files/paper/ISMAR2014_Real-Time_Illumination_Estimation_from_Faces_for_Coherent_Rendering_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ISMAR.2014.6948416 +334d6c71b6bce8dfbd376c4203004bd4464c2099,http://pdfs.semanticscholar.org/ebbf/a07476257e1b7f4e259b29531a12eab575bd.pdf,,https://doi.org/10.1007/978-3-319-46466-4_43,http://www.csl.cornell.edu/~studer/papers/16ECCV-BCR.pdf +33695e0779e67c7722449e9a3e2e55fde64cfd99,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_064_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_064_ext.pdf +334ac2a459190b41923be57744aa6989f9a54a51,http://pdfs.semanticscholar.org/334a/c2a459190b41923be57744aa6989f9a54a51.pdf,,,https://cs.brown.edu/people/rebecca/rmason_naacl2012.pdf +33b61be191e63b0c9974be708180275c9d5b3057,,,https://doi.org/10.1109/ICRA.2011.5979705, +33e20449aa40488c6d4b430a48edf5c4b43afdab,http://mplab.ucsd.edu/wordpress/wp-content/uploads/EngagementRecognitionFinal.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2316163 +333e7ad7f915d8ee3bb43a93ea167d6026aa3c22,http://www.eurecom.fr/en/publication/4277/download/mm-publi-4277.pdf,,https://doi.org/10.1109/TIFS.2014.2309851, +334166a942acb15ccc4517cefde751a381512605,http://pdfs.semanticscholar.org/3341/66a942acb15ccc4517cefde751a381512605.pdf,,,https://www.irjet.net/archives/V4/i10/IRJET-V4I1014.pdf +33403e9b4bbd913ae9adafc6751b52debbd45b0e,http://pdfs.semanticscholar.org/3340/3e9b4bbd913ae9adafc6751b52debbd45b0e.pdf,,,http://www.itr-rescue.org/pubs/upload/358_McCall2005.pdf +33ad23377eaead8955ed1c2b087a5e536fecf44e,http://vis-www.cs.umass.edu/papers/gloc_cvpr13.pdf,,,http://web.eecs.umich.edu/~honglak/cvpr13_gloc.pdf +33bbf01413910bca26ed287112d32fe88c1cc0df,,,https://doi.org/10.1109/ICIP.2014.7026204, +331d6ace8d59fa211e5bc84a93fdc65695238c69,,,https://doi.org/10.1007/s10115-017-1115-4, +053b263b4a4ccc6f9097ad28ebf39c2957254dfb,http://pdfs.semanticscholar.org/7a49/4b4489408ec3adea15817978ecd2e733f5fe.pdf,,,https://arxiv.org/pdf/1404.3291v1.pdf +05184f01e66d7139530729b281da74db35a178d2,,http://ieeexplore.ieee.org/document/6460470/,, +054756fa720bdcf1d320ad7a353e54ca53d4d3af,http://www.stat.ucla.edu/~yuille/Pubs15/JianyuWangSemanticCVPR2015%20(1).pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_074_ext.pdf +05b8673d810fadf888c62b7e6c7185355ffa4121,https://nannanwang.github.io/My_Papers/IJCV2013.pdf,,https://doi.org/10.1007/s11263-013-0645-9,https://pdfs.semanticscholar.org/05b8/673d810fadf888c62b7e6c7185355ffa4121.pdf +056d5d942084428e97c374bb188efc386791e36d,http://pdfs.semanticscholar.org/056d/5d942084428e97c374bb188efc386791e36d.pdf,,https://doi.org/10.1007/978-3-319-46466-4_7,http://arxiv.org/pdf/1603.03968v1.pdf +05e658fed4a1ce877199a4ce1a8f8cf6f449a890,http://pdfs.semanticscholar.org/05e6/58fed4a1ce877199a4ce1a8f8cf6f449a890.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/17349/Zheng_umd_0117E_16726.pdf?isAllowed=y&sequence=1 +05ad478ca69b935c1bba755ac1a2a90be6679129,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Turakhia_Attribute_Dominance_What_2013_ICCV_paper.pdf,,,https://www.cc.gatech.edu/~parikh/Publications/TurakhiaParikh_attribute_dominance_ICCV_2013.pdf +0595d18e8d8c9fb7689f636341d8a55cc15b3e6a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_102.pdf,,https://doi.org/10.1109/TIP.2017.2746993,http://vipl.ict.ac.cn/resources/codes/code/Discriminant%20Analysis%20on%20Riemannian%20Manifold%20of%20Gaussian%20Distributions%20for%20Face%20Recognition%20with%20Image%20Sets.pdf +0573f3d2754df3a717368a6cbcd940e105d67f0b,http://cs.anu.edu.au/few/EmotiW_icmi_draft_ver_1_0.pdf,,,http://doi.acm.org/10.1145/2522848.2531739 +05a0d04693b2a51a8131d195c68ad9f5818b2ce1,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf,,,http://arxiv.org/abs/1706.00631 +0562fc7eca23d47096472a1d42f5d4d086e21871,http://pdfs.semanticscholar.org/0562/fc7eca23d47096472a1d42f5d4d086e21871.pdf,,,https://arxiv.org/pdf/1712.08416v1.pdf +052fb35f731680d9d4e7d89c8f70f14173efb015,,,,http://doi.acm.org/10.1145/2893487 +054738ce39920975b8dcc97e01b3b6cc0d0bdf32,http://ita.ucsd.edu/workshop/16/files/paper/paper_2663.pdf,,https://doi.org/10.1109/ITA.2016.7888183,https://arxiv.org/pdf/1601.07883v1.pdf +05bcc5235721fd6a465a63774d28720bacc60858,http://www.site.uottawa.ca/~fshi098/papers/Gradient_Boundary_Histograms_for_Action_Recognition.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.152 +05e03c48f32bd89c8a15ba82891f40f1cfdc7562,http://files.is.tue.mpg.de/black/papers/rgapami.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2511743 +05a312478618418a2efb0a014b45acf3663562d7,http://people.ee.duke.edu/~lcarin/AccelGibbs.pdf,,,http://people.csail.mit.edu/finale/papers/finale_icml09.pdf +05785cb0dcaace54801aa486d4f8fdad3245b27a,,,https://doi.org/10.1109/ICPR.2016.7899760, +056ba488898a1a1b32daec7a45e0d550e0c51ae4,http://pdfs.semanticscholar.org/056b/a488898a1a1b32daec7a45e0d550e0c51ae4.pdf,,https://doi.org/10.1007/978-3-319-46484-8_39,http://arxiv.org/pdf/1608.01137v1.pdf +053ee4a4793f54b02dfabde5436fd7ee479e79eb,,,,http://doi.acm.org/10.1145/3160504.3160507 +050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,http://www.springer.com/cda/content/document/cda_downloaddocument/9783319587707-t1.pdf?SGWID=0-0-45-1607395-p180855259,,https://doi.org/10.1007/978-3-319-58771-4_1, +0509c442550571907258f07aad9da9d00b1e468b,https://pdfs.semanticscholar.org/0509/c442550571907258f07aad9da9d00b1e468b.pdf,,https://doi.org/10.1109/IVCNZ.2013.6727016,http://www.researchgate.net/profile/Rodney_Nielsen/publication/267211830_On_multi-task_learning_for_facial_action_unit_detection/links/549449910cf20c4f741ecf30.pdf +056294ff40584cdce81702b948f88cebd731a93e,https://arxiv.org/pdf/1506.08438v3.pdf,,,http://openaccess.thecvf.com/content_iccv_2015/papers/Sener_Unsupervised_Semantic_Parsing_ICCV_2015_paper.pdf +052880031be0a760a5b606b2ad3d22f237e8af70,http://pdfs.semanticscholar.org/0528/80031be0a760a5b606b2ad3d22f237e8af70.pdf,,,http://arxiv.org/pdf/1607.00442v1.pdf +05c974b9fde42f87e28458fb7febf7a05f2dfd18,,,, +055de0519da7fdf27add848e691087e0af166637,http://pdfs.semanticscholar.org/d3f9/cf3fb66326e456587acb18cf3196d1e314c7.pdf,,https://doi.org/10.1007/978-3-319-10593-2_12,http://ibug.doc.ic.ac.uk/media/uploads/documents/eccv_2014.pdf +0515e43c92e4e52254a14660718a9e498bd61cf5,http://pdfs.semanticscholar.org/3a78/5f86c2109fe1ff242dcb26211abfb9b0a870.pdf,,,http://research.sabanciuniv.edu/6565/1/vural_DSPinCars07.pdf +053c2f592a7f153e5f3746aa5ab58b62f2cf1d21,http://pdfs.semanticscholar.org/053c/2f592a7f153e5f3746aa5ab58b62f2cf1d21.pdf,,,http://oaji.net/articles/2014/489-1392872280.pdf +052c5ef6b20bf3e88bc955b6b2e86571be08ba64,,,https://doi.org/10.1109/TIFS.2011.2170068, +0568fc777081cbe6de95b653644fec7b766537b2,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Liu_Learning_Expressionlets_on_2014_CVPR_paper.pdf,,,http://vipl.ict.ac.cn/resources/codes/code/2014_CVPR_Learning%20Expressionlets%20on%20Spatio-temporal%20Manifold%20for%20Dynamic%20Facial%20Expression%20Recognition.pdf +0561bed18b6278434deae562d646e8adad72e75d,,,https://doi.org/10.1016/j.neucom.2014.09.052, +05d80c59c6fcc4652cfc38ed63d4c13e2211d944,http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/35389.pdf,,,http://www-2.cs.cmu.edu/~skumar/nys_col_ICML.pdf +05ea7930ae26165e7e51ff11b91c7aa8d7722002,http://www.stat.ucla.edu/~sczhu/papers/PAMI_car_occlusion_AOG.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2497699 +055530f7f771bb1d5f352e2758d1242408d34e4d,http://pdfs.semanticscholar.org/0555/30f7f771bb1d5f352e2758d1242408d34e4d.pdf,,,http://worldcomp-proceedings.com/proc/p2014/IPC7095.pdf +05287cbad6093deffe9a0fdb9115605595dfeaf0,,,, +050eda213ce29da7212db4e85f948b812a215660,http://pdfs.semanticscholar.org/b598/4a1044d72224f99e959746a452fc1927a257.pdf,,,http://www-dev.ri.cmu.edu:8080/pub_files/pub3/sim_terence_2001_2/sim_terence_2001_2.pdf +051a84f0e39126c1ebeeb379a405816d5d06604d,http://static.springer.com/sgw/documents/1348632/application/pdf/Cognitive+Computation_Biometric+Recognition+Performing+in+a+Bioinspired+System.pdf,,https://doi.org/10.1007/s12559-009-9018-7,http://static.springer.com/sgw/documents/1348632/application/pdf/Cognitive%20Computation_Biometric%20Recognition%20Performing%20in%20a%20Bioinspired%20System.pdf +05e3acc8afabc86109d8da4594f3c059cf5d561f,https://www.cs.rochester.edu/u/cxu22/p/cvpr2016_a2s2_poster.pdf,,,http://www.cs.rochester.edu/u/cxu22/p/cvpr2016_a2s2_paper.pdf +05f4d907ee2102d4c63a3dc337db7244c570d067,http://pdfs.semanticscholar.org/3c52/2c9707eb795e0dba69202f1ec946a9072661.pdf,,https://doi.org/10.1016/j.patcog.2006.03.013,http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/pr06b.pdf +0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,http://pdfs.semanticscholar.org/0559/fb9f5e8627fecc026c8ee6f7ad30e54ee929.pdf,,,http://cdn.intechopen.com/pdfs/14644/InTech-Facial_expression_recognition.pdf +05a7be10fa9af8fb33ae2b5b72d108415519a698,http://jankautz.com/publications/MMFusion4Video_ACMM16.pdf,,,http://doi.acm.org/10.1145/2964284.2964297 +0553c6b9ee3f7d24f80e204d758c94a9d6b375d2,,,https://doi.org/10.1109/ICIP.2004.1419764, +05318a267226f6d855d83e9338eaa9e718b2a8dd,https://fruct.org/publications/fruct16/files/Khr.pdf,,https://doi.org/10.1109/FRUCT.2014.7000917,http://fruct.org/publications/fruct16/files/Khr.pdf +057d5f66a873ec80f8ae2603f937b671030035e6,http://cs.stanford.edu/~roozbeh/papers/Mottaghi16cvpr_a.pdf,,,https://homes.cs.washington.edu/~hessam/uploads/files/N3.pdf +055cd8173536031e189628c879a2acad6cf2a5d0,,,https://doi.org/10.1109/BTAS.2017.8272740, +05c91e8a29483ced50c5f2d869617b80f7dacdd9,http://www.cs.rochester.edu/~mehoque/Publications/2013/13.Hoque-etal-MACH-UbiComp.pdf,,,http://www.cs.rochester.edu/u/www/u/mehoque/Publications/13.Hoque-etal-MACH-UbiComp.pdf +05c5134125a333855e8d25500bf97a31496c9b3f,,,,http://doi.acm.org/10.1145/3132515.3132517 +0580edbd7865414c62a36da9504d1169dea78d6f,https://arxiv.org/pdf/1611.04251v1.pdf,,https://doi.org/10.1109/ROMAN.2016.7745199,http://arxiv.org/abs/1611.04251 +050a3346e44ca720a54afbf57d56b1ee45ffbe49,https://www.d2.mpi-inf.mpg.de/sites/default/files/cvpr16.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Akata_Multi-Cue_Zero-Shot_Learning_CVPR_2016_paper.pdf +05a116cb6e220f96837e4418de4aa8e39839c996,,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.30 +050e51268b0fb03033428ac777ccfef2db752ab3,,,https://doi.org/10.1109/DICTA.2007.4426834, +0517d08da7550241fb2afb283fc05d37fce5d7b7,http://pdfs.semanticscholar.org/0517/d08da7550241fb2afb283fc05d37fce5d7b7.pdf,,,http://www.sensorsportal.com/HTML/DIGEST/june_2013/P_1224.pdf +052cec9fdbfe12ccd02688f3b7f538c0d73555b3,,,https://doi.org/10.1109/ICIP.2016.7533172, +05f3d1e9fb254b275354ca69018e9ed321dd8755,http://pdfs.semanticscholar.org/05f3/d1e9fb254b275354ca69018e9ed321dd8755.pdf,,,http://arxiv.org/abs/1110.0264 +05e96d76ed4a044d8e54ef44dac004f796572f1a,http://www.cs.ucsb.edu/~mturk/595/papers/BRONSTEIN.pdf,,https://doi.org/10.1007/978-0-387-78414-4_2,http://www.cs.technion.ac.il/~bron/publications/BroBroKimIJCV05.pdf +051f03bc25ec633592aa2ff5db1d416b705eac6c,http://www.cse.msu.edu/biometrics/Publications/Face/LiaoJain_PartialFR_AlignmentFreeApproach_ICJB11.pdf,,https://doi.org/10.1109/IJCB.2011.6117573,http://biometrics.cse.msu.edu/Publications/Face/LiaoJain_PartialFR_AlignmentFreeApproach_ICJB11.pdf +05270b68547a2cd5bda302779cfc5dda876ae538,http://www.cs.sfu.ca/~mori/courses/cmpt882/fall05/papers/laplacianfaces.pdf,,,http://www.cs.uchicago.edu/~niyogi/papersps/Laplacianface.pdf +9d1cebed7672210f9c411c5ba422a931980da833,,,,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0078 +9da63f089b8ee23120bfa8b4d9d9c8f605f421fc,,,,http://doi.acm.org/10.1145/2072298.2072043 +9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6,http://pdfs.semanticscholar.org/9d8f/f782f68547cf72b7f3f3beda9dc3e8ecfce6.pdf,,https://doi.org/10.1142/S0218001412500024,https://maxwell.ict.griffith.edu.au/spl/publications/papers/ImpPseudoinverse_IJPRAI12.pdf +9d42df42132c3d76e3447ea61e900d3a6271f5fe,http://pdfs.semanticscholar.org/9d42/df42132c3d76e3447ea61e900d3a6271f5fe.pdf,,,http://research.ijcaonline.org/icaccthpa2014/number4/icaccthpa6045.pdf +9d55ec73cab779403cd933e6eb557fb04892b634,http://pdfs.semanticscholar.org/9d55/ec73cab779403cd933e6eb557fb04892b634.pdf,,,https://arxiv.org/pdf/1512.06337v1.pdf +9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2,http://pdfs.semanticscholar.org/9d8f/d639a7aeab0dd1bc6eef9d11540199fd6fe2.pdf,,,https://openreview.net/pdf?id=HkWTqLsIz +9d357bbf014289fb5f64183c32aa64dc0bd9f454,http://pdfs.semanticscholar.org/9d35/7bbf014289fb5f64183c32aa64dc0bd9f454.pdf,,https://doi.org/10.1007/3-540-47979-1_1,http://mi.informatik.uni-siegen.de/publications/romdhani_eccv02.pdf +9d66de2a59ec20ca00a618481498a5320ad38481,http://www.cs.iit.edu/~xli/paper/Conf/POP-ICDCS15.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICDCS.2015.39 +9d839dfc9b6a274e7c193039dfa7166d3c07040b,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00869.pdf,,https://doi.org/10.1109/ICCVW.2011.6130218,http://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00869.pdf +9d4692e243e25eb465a0480376beb60a5d2f0f13,,,https://doi.org/10.1109/ICCE.2016.7430617, +9d01eca806e0f98c5b3c9a865cec1bd8c78e0f0c,,,,http://doi.acm.org/10.1145/3136755.3137032 +9dcc6dde8d9f132577290d92a1e76b5decc6d755,http://pdfs.semanticscholar.org/a36a/3cd13c59777b6b07e41c4026e55b55e8096f.pdf,,,http://tmt.unze.ba/zbornik/TMT2012/108-TMT12-125.pdf +9d36c81b27e67c515df661913a54a797cd1260bb,http://pdfs.semanticscholar.org/9d36/c81b27e67c515df661913a54a797cd1260bb.pdf,,,http://www.ijera.com/papers/Vol2_issue1/DX21787792.pdf +9d757c0fede931b1c6ac344f67767533043cba14,http://pdfs.semanticscholar.org/9d75/7c0fede931b1c6ac344f67767533043cba14.pdf,,,http://www.ijcsit.com/docs/Volume%206/vol6issue04/ijcsit20150604151.pdf +9d941a99e6578b41e4e32d57ece580c10d578b22,http://pdfs.semanticscholar.org/9d94/1a99e6578b41e4e32d57ece580c10d578b22.pdf,,https://doi.org/10.3390/s150204326,http://www.mdpi.com/1424-8220/15/2/4326/pdf +9df86395c11565afa8683f6f0a9ca005485c5589,,,https://doi.org/10.1007/s00530-014-0400-2, +9d60ad72bde7b62be3be0c30c09b7d03f9710c5f,http://pdfs.semanticscholar.org/9d60/ad72bde7b62be3be0c30c09b7d03f9710c5f.pdf,,,http://ijcsit.com/docs/Volume%205/vol5issue06/ijcsit2014050676.pdf +9d896605fbf93315b68d4ee03be0770077f84e40,http://pdfs.semanticscholar.org/9d89/6605fbf93315b68d4ee03be0770077f84e40.pdf,,,http://www.cs.sunysb.edu/~ychoi/Papers/cvpr11_generation.pdf +9d61b0beb3c5903fc3032655dc0fd834ec0b2af3,http://pdfs.semanticscholar.org/c5ac/a3f653e2e8a58888492524fc1480608457b7.pdf,,,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4A55C18E69EA86A0718B3F59562E4F9D?doi=10.1.1.105.2608&rep=rep1&type=pdf +9dbd098975069d01efe7f5ddfb3dae6b6695be0d,,,, +9d24179aa33a94c8c61f314203bf9e906d6b64de,http://www.decom.ufop.br/sibgrapi2012/eproceedings/technical/ts9/102146_3.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2012.45 +9d3aa3b7d392fad596b067b13b9e42443bbc377c,http://pdfs.semanticscholar.org/9d3a/a3b7d392fad596b067b13b9e42443bbc377c.pdf,,,http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-475/ArtIBio/15-pp-142-149-309.pdf +9d06d43e883930ddb3aa6fe57c6a865425f28d44,http://pdfs.semanticscholar.org/dd08/039eb271af93810ba392728ff481d8ce7496.pdf,,,http://faculty.ucmerced.edu/mhyang/papers/cvpr03a.pdf +9c686b318cb7774b6da5e2c712743a5a6cafa423,,,https://doi.org/10.1016/j.neuroimage.2015.12.036, +9cda3e56cec21bd8f91f7acfcefc04ac10973966,,,https://doi.org/10.1109/IWBF.2016.7449688, +9ce4541d21ee3511bf3dc55bc3cd01222194d95a,,,https://doi.org/10.1016/j.cviu.2017.05.008, +9ce97efc1d520dadaa0d114192ca789f23442727,,,,http://doi.acm.org/10.1145/2597627 +9c1305383ce2c108421e9f5e75f092eaa4a5aa3c,http://pdfs.semanticscholar.org/9c13/05383ce2c108421e9f5e75f092eaa4a5aa3c.pdf,,,http://ceur-ws.org/Vol-379/paper2.pdf +9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1,http://pdfs.semanticscholar.org/9cfb/3a68fb10a59ec2a6de1b24799bf9154a8fd1.pdf,,,http://research-repository.uwa.edu.au/files/11544841/THESIS_MASTER_BY_RESEARCH_MEHDIZADEH_Maryam_2016.pdf +9c81d436b300494bc88d4de3ac3ec3cc9c43c161,,,https://doi.org/10.1007/s11042-017-5019-9, +9c1860de6d6e991a45325c997bf9651c8a9d716f,http://pdfs.semanticscholar.org/d02c/54192dbd0798b43231efe1159d6b4375ad36.pdf,,https://doi.org/10.1016/j.eswa.2010.10.015,http://edi-info.ir/files/3D-reconstruction-and-face-recognition-using-kernel-based-ICA-and-neural-networks.pdf +9c9ef6a46fb6395702fad622f03ceeffbada06e5,http://pdfs.semanticscholar.org/f1e3/d1d26e39f98608037b195761f61fa7532925.pdf,,https://doi.org/10.1111/j.1467-8659.2004.00799.x,http://domino.mpi-inf.mpg.de/intranet/ag4/ag4publ.nsf/0/CEA089FA1CCE94B7C1256F9D003AF9EB/$file/ExchangingFacesInImages.pdf +9cd4f72d33d1cedc89870b4f4421d496aa702897,,,https://doi.org/10.1117/1.JEI.22.2.023010, +9c1cdb795fd771003da4378f9a0585730d1c3784,http://pdfs.semanticscholar.org/9c1c/db795fd771003da4378f9a0585730d1c3784.pdf,,https://doi.org/10.1007/978-3-319-10605-2_37,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8690/86900568.pdf +9cb7b3b14fd01cc2ed76784ab76304132dab6ff3,,,https://doi.org/10.1109/ICIP.2015.7351174, +9ca93ad6200bfa9dd814ac64bfb1044c3a0c01ce,,,, +9c25e89c80b10919865b9c8c80aed98d223ca0c6,http://pdfs.semanticscholar.org/9c25/e89c80b10919865b9c8c80aed98d223ca0c6.pdf,,,http://www.iiisci.org/Journal/CV$/sci/pdfs/SA224OU15.pdf +9ce2fd6ae16b339886d0ce237faae811230c8ce6,,,, +9c7444c6949427994b430787a153d5cceff46d5c,http://pdfs.semanticscholar.org/9c74/44c6949427994b430787a153d5cceff46d5c.pdf,,,http://www.scipub.org/fulltext/jcs/jcs511801-810.pdf +9ccaa13a577b20e88420d0a4b8c9545d5560261d,,,, +9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6,http://pdfs.semanticscholar.org/9c78/1f7fd5d8168ddae1ce5bb4a77e3ca12b40b6.pdf,,,https://www.irjet.net/archives/V3/i7/IRJET-V3I758.pdf +9c373438285101d47ab9332cdb0df6534e3b93d1,http://pdfs.semanticscholar.org/9c37/3438285101d47ab9332cdb0df6534e3b93d1.pdf,,,http://arxiv.org/abs/1312.6024 +9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d,http://pdfs.semanticscholar.org/9cbb/6e42a35f26cf1d19f4875cd7f6953f10b95d.pdf,,https://doi.org/10.1007/978-3-319-54526-4_38,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2016/W12_02.pdf +9c4521dd25628b517dac3656410242b83b91e1e0,,,, +9c4cc11d0df2de42d6593f5284cfdf3f05da402a,http://pdfs.semanticscholar.org/ce1a/f0e944260efced743f371ba0cb06878582b6.pdf,,,http://www.cs.njit.edu/~liu/papers/icpr98.pdf +9cd6a81a519545bf8aa9023f6e879521f85d4cd1,http://pdfs.semanticscholar.org/9cd6/a81a519545bf8aa9023f6e879521f85d4cd1.pdf,,,https://www.cs.umd.edu/~qiu/pub/1308.0275v1.pdf +9cadd166893f1b8aaecb27280a0915e6694441f5,http://pdfs.semanticscholar.org/9cad/d166893f1b8aaecb27280a0915e6694441f5.pdf,,,http://naturalspublishing.com/files/published/529w55wf727af3.pdf +02e668f9b75f4a526c6fdf7268c8c1936d8e6f09,,,https://doi.org/10.1142/S0218001411008968, +02601d184d79742c7cd0c0ed80e846d95def052e,http://arxiv.org/pdf/1503.00488v3.pdf,,,http://export.arxiv.org/pdf/1503.00488v1 +02cc96ad997102b7c55e177ac876db3b91b4e72c,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_museum-visitors-dataset.pdf,,,http://www.micc.unifi.it/publications/2015/BLSKD15/egpaper_for_review.pdf +02a98118ce990942432c0147ff3c0de756b4b76a,http://eprints.pascal-network.org/archive/00005029/01/LaptevMarszalekSchmidRozenfeld-CVPR08-HumanActions.pdf,,,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/416.pdf +02e43d9ca736802d72824892c864e8cfde13718e,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/10075/shi%20Transferring%20a%20semantic%20representation%202015%20Accepted.pdf?sequence=1,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7299046 +02fda07735bdf84554c193811ba4267c24fe2e4a,http://www.cbsr.ia.ac.cn/Li%20Group/papers/Li-IR-Face-PAMI-07.pdf,,,http://www.nlpr.ia.ac.cn/2007papers/gjkw/gk6.pdf +02431ed90700d5cfe4e3d3a20f1e97de3e131569,http://www.di.ens.fr/~bojanowski/papers/bojanowski13finding.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Bojanowski_Finding_Actors_and_2013_ICCV_paper.pdf +023ed32ac3ea6029f09b8c582efbe3866de7d00a,http://pdfs.semanticscholar.org/023e/d32ac3ea6029f09b8c582efbe3866de7d00a.pdf,,,http://cyber.felk.cvut.cz/teaching/radaUIB/disertace_Antoniuk.pdf +0241513eeb4320d7848364e9a7ef134a69cbfd55,http://videolectures.net/site/normal_dl/tag=71121/cvpr2010_yang_stis_01.v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539958 +02dd0af998c3473d85bdd1f77254ebd71e6158c6,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_PPP_Joint_Pointwise_CVPR_2016_paper.pdf,,,http://www.public.asu.edu/~bli24/Papers/CVPR2016PPP.pdf +0290523cabea481e3e147b84dcaab1ef7a914612,http://pdfs.semanticscholar.org/0290/523cabea481e3e147b84dcaab1ef7a914612.pdf,,,https://openreview.net/pdf?id=S1ybBMw-W +0229829e9a1eed5769a2b5eccddcaa7cd9460b92,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_098_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1A_098_ext.pdf +025720574ef67672c44ba9e7065a83a5d6075c36,http://pdfs.semanticscholar.org/915f/dd2fdc7880074bd1c1d596f7e7d19ab34e8f.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/icml2015_srivastava15.pdf +029317f260b3303c20dd58e8404a665c7c5e7339,http://www.nlpr.ia.ac.cn/2009papers/gjkw/gk32.pdf?origin=publication_detail,,https://doi.org/10.1109/TMM.2009.2030629, +026e4ee480475e63ae68570d73388f8dfd4b4cde,http://pdfs.semanticscholar.org/026e/4ee480475e63ae68570d73388f8dfd4b4cde.pdf,,,https://arxiv.org/pdf/1711.09728v1.pdf +02e628e99f9a1b295458cb453c09863ea1641b67,http://pdfs.semanticscholar.org/02e6/28e99f9a1b295458cb453c09863ea1641b67.pdf,,https://doi.org/10.1007/978-3-319-48881-3_43,https://www.adrianbulat.com/downloads/ECCV-W16/two-stage-3D-pose-eccvw16.pdf +0273414ba7d56ab9ff894959b9d46e4b2fef7fd0,http://pdfs.semanticscholar.org/3ae9/29d33dd1e6acdf6c907a1115e5a21f6cb076.pdf,,,https://arxiv.org/pdf/1611.09942v1.pdf +028e237cb539b01ec72c244f57fdcfb65bbe53d4,,,,http://doi.ieeecomputersociety.org/10.1109/CIS.2010.65 +02e133aacde6d0977bca01ffe971c79097097b7f,http://pdfs.semanticscholar.org/02e1/33aacde6d0977bca01ffe971c79097097b7f.pdf,,,https://arxiv.org/pdf/1606.02492v4.pdf +0296ca8ffceef73d774dfd171447ff3ce2e764aa,,,, +02567fd428a675ca91a0c6786f47f3e35881bcbd,https://arxiv.org/pdf/1611.01731.pdf,,https://doi.org/10.1109/TIP.2017.2689998,https://arxiv.org/pdf/1611.01731v1.pdf +029b53f32079063047097fa59cfc788b2b550c4b,http://pdfs.semanticscholar.org/b71c/73fcae520f6a5cdbce18c813633fb3d66342.pdf,,https://doi.org/10.1007/978-3-319-10593-2_39,https://www.cl.cam.ac.uk/~tb346/pub/papers/eccv2014.pdf +026e96c3c4751e1583bfe78b8c28bdfe854c4988,,,https://doi.org/10.1109/ICIP.2017.8296442, +02bd665196bd50c4ecf05d6852a4b9ba027cd9d0,http://arxiv.org/pdf/1310.2880v6.pdf,,,https://arxiv.org/pdf/1310.2880v7.pdf +0247998a1c045e601dc4d65c53282b5e655be62b,,,https://doi.org/10.1109/ITSC.2017.8317782, +02c38fa9a8ada6040ef21de17daf8d5e5cdc60c7,http://members.e-inclusion.crim.ca/files/articles/CRV_2006.pdf,,,https://www.crim.ca/Publications/2006/documents/plein_texte/VIS_GagLals_CRV06.pdf +021a19e240f0ae0554eff814e838e1e396be6572,http://ci2cv.net/static/papers/2009_ICCV_Saragih_2.pdf,,https://doi.org/10.1109/ICCV.2009.5459377,http://ri.cmu.edu/pub_files/2009/9/CameraReady-6.pdf +026b5b8062e5a8d86c541cfa976f8eee97b30ab8,http://www.iab-rubric.org/papers/deeplearningvideo-CR.pdf,,https://doi.org/10.1109/BTAS.2014.6996299, +0235b2d2ae306b7755483ac4f564044f46387648,http://pdfs.semanticscholar.org/0235/b2d2ae306b7755483ac4f564044f46387648.pdf,,https://doi.org/10.1007/978-3-319-16181-5_59,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w16/W16-12.pdf +02467703b6e087799e04e321bea3a4c354c5487d,http://biometrics.cse.msu.edu/Publications/Face/AdamsAllenMillerKalkaJain_CVPRWB2016_GRPR.pdf,,,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/AdamsAllenMillerKalkaJain_CVPRWB2016_GRPR.pdf +02e39f23e08c2cb24d188bf0ca34141f3cc72d47,http://luks.fe.uni-lj.si/sl/osebje/vitomir/pub/ICASSP2010.pdf,,https://doi.org/10.1109/ICASSP.2010.5495203,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0000846.pdf +023be757b1769ecb0db810c95c010310d7daf00b,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf,,https://doi.org/10.5244/C.29.130,https://arxiv.org/pdf/1507.03148v2.pdf +021469757d626a39639e260492eea7d3e8563820,,,https://doi.org/10.1007/b116723, +026a9cfe3135b7b62279bc08e2fb97e0e9fad5c4,http://perso.telecom-paristech.fr/~sahbi/jstars2017.pdf,,, +0278acdc8632f463232e961563e177aa8c6d6833,http://www.pitt.edu/~jeffcohn/biblio/TPAMI2547397%20FINAL.pdf,,,http://ca.cs.cmu.edu/sites/default/files/07442563.pdf +02a92b79391ddac0acef4f665b396f7f39ca2972,,,https://doi.org/10.1016/j.patcog.2016.10.021, +0209389b8369aaa2a08830ac3b2036d4901ba1f1,https://arxiv.org/pdf/1612.01202v2.pdf,,,https://arxiv.org/pdf/1803.02188v1.pdf +02c993d361dddba9737d79e7251feca026288c9c,http://eprints.eemcs.utwente.nl/26377/01/Automatic_player_detection_and_recognition_in_images_using_AdaBoost.pdf,,, +02239ae5e922075a354169f75f684cad8fdfd5ab,http://ai2-website.s3.amazonaws.com/publications/CVPR_2017_Situation.pdf,,,https://arxiv.org/pdf/1612.00901v1.pdf +02c2a29a4695eab7a8f859bf8697a5ca9f910d70,,,, +02d650d8a3a9daaba523433fbe93705df0a7f4b1,http://pdfs.semanticscholar.org/02d6/50d8a3a9daaba523433fbe93705df0a7f4b1.pdf,,https://doi.org/10.1007/978-3-642-33868-7_19,http://www.cse.msu.edu/biometrics/Publications/Face/OttoHanJain_HowDoesAgingAffectFacialComponents_ECCV12.pdf +022ec7d1642727b2cc3d9a9d7999ca84a280443f,,,, +0294f992f8dfd8748703f953925f9aee14e1b2a2,http://pdfs.semanticscholar.org/0294/f992f8dfd8748703f953925f9aee14e1b2a2.pdf,,https://doi.org/10.1007/978-3-319-16634-6_2,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop12/pdffiles/w12-o8.pdf +02820c1491b10a1ff486fed32c269e4077c36551,https://arxiv.org/pdf/1610.07930v1.pdf,,https://doi.org/10.1109/BTAS.2016.7791155,http://arxiv.org/abs/1610.07930 +a458b319f5a2763ff9c6dc959eefa77673c56671,http://people.tamu.edu/~amir.tahmasbi/publications/Fisher_ICCEA2010.pdf,,,http://www.amirtahmasbi.com/publications_repository/Fisher_ICCEA2010.pdf +a42209dbfe6d2005295d790456ddb2138302cbe5,,,, +a4bb791b135bdc721c8fcc5bdef612ca654d7377,,,https://doi.org/10.1109/BTAS.2017.8272703, +a4725a5b43e7c36d9e30028dff66958f892254a0,,,,http://doi.acm.org/10.1145/2663204.2666271 +a46283e90bcdc0ee35c680411942c90df130f448,http://pdfs.semanticscholar.org/a462/83e90bcdc0ee35c680411942c90df130f448.pdf,,https://doi.org/10.1016/j.neucom.2012.06.031,https://pdfs.semanticscholar.org/a462/83e90bcdc0ee35c680411942c90df130f448.pdf +a4543226f6592786e9c38752440d9659993d3cb3,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.112 +a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2,http://pdfs.semanticscholar.org/a4a5/ad6f1cc489427ac1021da7d7b70fa9a770f2.pdf,,https://doi.org/10.1186/s13640-017-0235-9,https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-017-0235-9?site=jivp-eurasipjournals.springeropen.com +a422f2d0212f54807ff678f209293a27c7791ec5,,,, +a484243027b19b57b5063ad2e4b414e1d383d3e8,,,, +a4876b7493d8110d4be720942a0f98c2d116d2a0,http://pdfs.semanticscholar.org/a487/6b7493d8110d4be720942a0f98c2d116d2a0.pdf,,,http://arxiv.org/abs/1603.06829 +a40f8881a36bc01f3ae356b3e57eac84e989eef0,http://pdfs.semanticscholar.org/a40f/8881a36bc01f3ae356b3e57eac84e989eef0.pdf,,,https://arxiv.org/pdf/1703.03305v1.pdf +a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3,http://pdfs.semanticscholar.org/a4a0/b5f08198f6d7ea2d1e81bd97fea21afe3fc3.pdf,,,https://repository.tudelft.nl/islandora/object/uuid:04a446a8-546c-455d-8344-948c7e3cdff5/datastream/OBJ/download +a4e75766ef93b43608c463c233b8646439ce2415,,,https://doi.org/10.1109/ICCVW.2011.6130492, +a46086e210c98dcb6cb9a211286ef906c580f4e8,http://pdfs.semanticscholar.org/dc94/43e3ae2fe70282b1b30e3eda3717b58c0808.pdf,,,https://arxiv.org/pdf/1509.06086v1.pdf +a44590528b18059b00d24ece4670668e86378a79,http://pdfs.semanticscholar.org/a445/90528b18059b00d24ece4670668e86378a79.pdf,,,https://arxiv.org/pdf/1803.07226v1.pdf +a472d59cff9d822f15f326a874e666be09b70cfd,http://pdfs.semanticscholar.org/a472/d59cff9d822f15f326a874e666be09b70cfd.pdf,,,http://cs.stanford.edu/groups/vision/documents/Tang_PhD_thesis_2015.pdf +a4c430b7d849a8f23713dc283794d8c1782198b2,http://pdfs.semanticscholar.org/a4c4/30b7d849a8f23713dc283794d8c1782198b2.pdf,,,http://www.andrew.cmu.edu/user/avemula1/docs/pgm.pdf +a4cc626da29ac48f9b4ed6ceb63081f6a4b304a2,http://pdfs.semanticscholar.org/a4cc/626da29ac48f9b4ed6ceb63081f6a4b304a2.pdf,,https://doi.org/10.1016/j.patcog.2015.04.014,http://arxiv.org/abs/1410.4673 +a4f37cfdde3af723336205b361aefc9eca688f5c,http://pdfs.semanticscholar.org/a4f3/7cfdde3af723336205b361aefc9eca688f5c.pdf,,,http://www.face-rec.org/journals-books/Delac_Grgic_Bartlett_Recent_Advances_in_Face_Recognition.pdf +a481e394f58f2d6e998aa320dad35c0d0e15d43c,http://www.cs.colostate.edu/~draper/papers/wigness_wacv14.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836093 +a317083d9aac4062e77aa0854513383c87e47ece,,,https://doi.org/10.1016/j.patcog.2015.06.003, +a30869c5d4052ed1da8675128651e17f97b87918,http://pdfs.semanticscholar.org/a308/69c5d4052ed1da8675128651e17f97b87918.pdf,,,http://www.cs.utexas.edu/~grauman/papers/aron-preprint-book-springer16.pdf.pdf +a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7b,http://pdfs.semanticscholar.org/a3eb/acd8bcbc7ddbd5753935496e22a0f74dcf7b.pdf,,,https://engineering.purdue.edu/ASL4GUP/ASL4GUP_Proceedings.pdf +a35ed55dc330d470be2f610f4822f5152fcac4e1,,,https://doi.org/10.1109/ISBA.2015.7126369, +a324d61c79fe2e240e080f0dab358aa72dd002b3,,,https://doi.org/10.1016/j.patcog.2016.02.005, +a3017bb14a507abcf8446b56243cfddd6cdb542b,http://pdfs.semanticscholar.org/a301/7bb14a507abcf8446b56243cfddd6cdb542b.pdf,,,http://waset.org/publications/5662/face-localization-and-recognition-in-varied-expressions-and-illumination +a3c8c7da177cd08978b2ad613c1d5cb89e0de741,http://pdfs.semanticscholar.org/a3c8/c7da177cd08978b2ad613c1d5cb89e0de741.pdf,,https://doi.org/10.1007/978-3-319-11755-3_47,http://perso.telecom-paristech.fr/~bloch/papers/proceedings/ICIAR2014-Henrique.pdf +a378fc39128107815a9a68b0b07cffaa1ed32d1f,http://pdfs.semanticscholar.org/a378/fc39128107815a9a68b0b07cffaa1ed32d1f.pdf,,,http://www.researchgate.net/profile/Jordi_Vitria/publication/3974356_Determining_a_suitable_metric_when_using_non-negative_matrix_factorization/links/0c96052b0153b55bf8000000.pdf +a3add3268c26876eb76decdf5d7dd78a0d5cf304,,,https://doi.org/10.1016/j.specom.2017.07.003, +a3f689fa5d71bdc7e19a959ac5d0f995e8e56493,,,, +a34d75da87525d1192bda240b7675349ee85c123,http://pdfs.semanticscholar.org/a34d/75da87525d1192bda240b7675349ee85c123.pdf,,,http://arxiv.org/abs/1501.04690 +a3dc109b1dff3846f5a2cc1fe2448230a76ad83f,http://pdfs.semanticscholar.org/a3dc/109b1dff3846f5a2cc1fe2448230a76ad83f.pdf,,,http://ijcsmc.com/docs/papers/April2015/V4I4201599a11.pdf +a3f684930c5c45fcb56a2b407d26b63879120cbf,http://pdfs.semanticscholar.org/a3f6/84930c5c45fcb56a2b407d26b63879120cbf.pdf,,,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/Paper%2021%20(Supplementary).pdf +a3ed0f15824802359e05d9777cacd5488dfa7dba,,,,http://doi.acm.org/10.1145/2851581.2892282 +a33f20773b46283ea72412f9b4473a8f8ad751ae,http://pdfs.semanticscholar.org/a33f/20773b46283ea72412f9b4473a8f8ad751ae.pdf,,,https://www.cbica.upenn.edu/sbia/Birkan.Tunc/icerik/belgeler/birkan_phd.pdf +a35849af340f80791c4a901ec2f2bbbac06660f5,,,, +a3bf6129d1ae136709063a5639eafd8018f50feb,,,,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2017.8109741 +a3775b3a0e78b890d9ca79b0aabd982551474a88,,,, +a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7,http://pdfs.semanticscholar.org/a3a6/a6a2eb1d32b4dead9e702824375ee76e3ce7.pdf,,https://doi.org/10.1007/978-3-319-02714-2_12,http://infoscience.epfl.ch/record/188196/files/hbu_yuceetal.pdf +a32d4195f7752a715469ad99cb1e6ebc1a099de6,http://pdfs.semanticscholar.org/a32d/4195f7752a715469ad99cb1e6ebc1a099de6.pdf,,, +a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,http://pdfs.semanticscholar.org/a3d7/8bc94d99fdec9f44a7aa40c175d5a106f0b9.pdf,,,http://www.seas.upenn.edu/~cse400/CSE400_2010_2011/CIS401_final_rep/8.pdf +a3eab933e1b3db1a7377a119573ff38e780ea6a3,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0000838.pdf,,https://doi.org/10.1109/ICASSP.2010.5494903, +a308077e98a611a977e1e85b5a6073f1a9bae6f0,http://pdfs.semanticscholar.org/a308/077e98a611a977e1e85b5a6073f1a9bae6f0.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/97/97/TSWJ2014-810368.PMC4037632.pdf +a35dd69d63bac6f3296e0f1d148708cfa4ba80f6,http://pdfs.semanticscholar.org/a35d/d69d63bac6f3296e0f1d148708cfa4ba80f6.pdf,,,http://arxiv.org/abs/1603.08321 +a3a34c1b876002e0393038fcf2bcb00821737105,http://pdfs.semanticscholar.org/a3a3/4c1b876002e0393038fcf2bcb00821737105.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AFGR.2002.1004155 +a3f1db123ce1818971a57330d82901683d7c2b67,http://pdfs.semanticscholar.org/a3f1/db123ce1818971a57330d82901683d7c2b67.pdf,,,http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-52.pdf +a3a97bb5131e7e67316b649bbc2432aaa1a6556e,http://pdfs.semanticscholar.org/a3a9/7bb5131e7e67316b649bbc2432aaa1a6556e.pdf,,,http://www.bumc.bu.edu/anatneuro/files/2013/05/Ross_Stern_CABN2013inpress1.pdf +a38dd439209b0913b14b1c3c71143457d8cf9b78,,,https://doi.org/10.1109/IJCNN.2015.7280803, +a35d3ba191137224576f312353e1e0267e6699a1,http://pdfs.semanticscholar.org/a35d/3ba191137224576f312353e1e0267e6699a1.pdf,,,http://www2.hh.se/staff/josef/public/publications/garcia04spm.pdf +a3a2f3803bf403262b56ce88d130af15e984fff0,http://pdfs.semanticscholar.org/e538/e1f6557d2920b449249606f909b665fbb924.pdf,,https://doi.org/10.1007/978-3-540-88682-2_53,http://media.cs.tsinghua.edu.cn/~imagevision/papers/eccv08.pdf +b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae,http://pdfs.semanticscholar.org/b6d3/c8322d8e6a0212456cf38c6ef59c13d062dd.pdf,,,http://pages.ucsd.edu/~ztu/publication/cogsci14_motion.pdf +b5cd9e5d81d14868f1a86ca4f3fab079f63a366d,https://ivi.fnwi.uva.nl/isis/publications/2016/AgharwalWCACV2016/AgharwalWCACV2016.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477706 +b5ae8b69677fb962421fe7072f1e842e71f3bea5,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273641 +b5cd8151f9354ee38b73be1d1457d28e39d3c2c6,http://pdfs.semanticscholar.org/b5cd/8151f9354ee38b73be1d1457d28e39d3c2c6.pdf,,,http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2006-77.pdf +b5fc4f9ad751c3784eaf740880a1db14843a85ba,http://pdfs.semanticscholar.org/b5fc/4f9ad751c3784eaf740880a1db14843a85ba.pdf,,https://doi.org/10.1007/s11760-007-0016-5,http://www.researchgate.net/profile/B_Kumar8/publication/220437304_Significance_of_image_representation_for_face_verification/links/54a97f8e0cf256bf8bb95d00.pdf +b5979489e11edd76607c219a8bdc83ba4a88ab38,,,https://doi.org/10.1109/ACCESS.2017.2778011, +b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57,http://pdfs.semanticscholar.org/b506/aa23949b6d1f0c868ad03aaaeb5e5f7f6b57.pdf,,,https://www.base-search.net/Record/3b04a8f520744937ae3394bccbac1d98399bc9af219cd06cb618e7be7340943d +b5bda4e1374acc7414107cde529ad8b3263fae4b,,,https://doi.org/10.1007/s11370-010-0066-3, +b54fe193b6faf228e5ffc4b88818d6aa234b5bb9,,,,http://doi.acm.org/10.1145/2964284.2967287 +b599f323ee17f12bf251aba928b19a09bfbb13bb,http://pdfs.semanticscholar.org/b599/f323ee17f12bf251aba928b19a09bfbb13bb.pdf,,,http://ial.eecs.ucf.edu/pdf/ReyMS2015.pdf +b5690409be6c4e98bd37181d41121adfef218537,,,https://doi.org/10.1109/ICIP.2008.4711920, +b58d381f9f953bfe24915246b65da872aa94f9aa,,,https://doi.org/10.1109/SMAP.2013.13, +b5da4943c348a6b4c934c2ea7330afaf1d655e79,http://pdfs.semanticscholar.org/b5da/4943c348a6b4c934c2ea7330afaf1d655e79.pdf,,,https://arxiv.org/pdf/1803.06598v1.pdf +b5402c03a02b059b76be829330d38db8e921e4b5,http://pdfs.semanticscholar.org/b540/2c03a02b059b76be829330d38db8e921e4b5.pdf,,,http://www.lifesciencesite.com/lsj/life0601/12_life0601_61_66_Hybridized.pdf +b5160e95192340c848370f5092602cad8a4050cd,http://pdfs.semanticscholar.org/dd71/dc78e75f0de27263d508b3a8b29921cfea03.pdf,,,https://arxiv.org/pdf/1710.05112v2.pdf +b5f79df712ad535d88ae784a617a30c02e0551ca,,,https://doi.org/10.1109/LSP.2015.2480758, +b52c0faba5e1dc578a3c32a7f5cfb6fb87be06ad,http://pdfs.semanticscholar.org/b52c/0faba5e1dc578a3c32a7f5cfb6fb87be06ad.pdf,,,http://www.redalyc.org/pdf/474/47436895009.pdf +b56530be665b0e65933adec4cc5ed05840c37fc4,http://kobus.ca/research/publications/07/cvpr-07-region-www.pdf,,,http://www.researchgate.net/profile/Kobus_Barnard/publication/224716273_Reducing_correspondence_ambiguity_in_loosely_labeled_training_data/links/00b4951ed48b4a77dd000000.pdf +b5f4e617ac3fc4700ec8129fcd0dcf5f71722923,http://pdfs.semanticscholar.org/c4dd/f94ed445bad0793cd4ba2813506d02221ec0.pdf,,,http://bokertov.cs.aue.auc.dk/krueger02fg_c.ps.gz +b52886610eda6265a2c1aaf04ce209c047432b6d,http://infolab.stanford.edu/~wangz/project/imsearch/Aesthetics/TAC16/xu.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2518162 +b51b4ef97238940aaa4f43b20a861eaf66f67253,http://pdfs.semanticscholar.org/b51b/4ef97238940aaa4f43b20a861eaf66f67253.pdf,,https://doi.org/10.1155/2009/184618,http://amp.ece.cmu.edu/Publication/Devi/ParikhChen_hSO_journal_2008.pdf +b5d7c5aba7b1ededdf61700ca9d8591c65e84e88,http://pdfs.semanticscholar.org/b5d7/c5aba7b1ededdf61700ca9d8591c65e84e88.pdf,,,http://www.isca-speech.org/archive/interspeech_2010/i10_0901.html +b5c749f98710c19b6c41062c60fb605e1ef4312a,http://www.yugangjiang.info/publication/icmr15-eval2stream.pdf,,,http://arxiv.org/abs/1504.01920 +b5667d087aafcf6b91f3c77aa90cee1ac185f8f1,http://www-ee.ccny.cuny.edu/wwwn/yltian/Publications/ICIP17.pdf,,https://doi.org/10.1109/ICIP.2017.8296599, +b55f256bbd2e1a41ce6bfcd892dee12f5bcd7cb3,,,, +b5857b5bd6cb72508a166304f909ddc94afe53e3,http://pdfs.semanticscholar.org/b585/7b5bd6cb72508a166304f909ddc94afe53e3.pdf,,,http://ceur-ws.org/Vol-1436/Paper68.pdf +b51e3d59d1bcbc023f39cec233f38510819a2cf9,http://pdfs.semanticscholar.org/b51e/3d59d1bcbc023f39cec233f38510819a2cf9.pdf,,,http://arxiv.org/abs/1311.4082 +b503793943a17d2f569685cd17e86b5b4fffe3fd,,,, +b5efe2e53aa417367314c1a907d0fe8053c71ecd,,,, +b54c477885d53a27039c81f028e710ca54c83f11,http://coewww.rutgers.edu/riul/research/papers/pdf/skmspami.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.190 +b503f481120e69b62e076dcccf334ee50559451e,http://pdfs.semanticscholar.org/b503/f481120e69b62e076dcccf334ee50559451e.pdf,,https://doi.org/10.1007/978-3-319-16631-5_49,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop15/pdffiles/w15-p7.pdf +b50edfea790f86373407a964b4255bf8e436d377,,,,http://doi.acm.org/10.1145/3136755.3143008 +b55d0c9a022874fb78653a0004998a66f8242cad,http://pdfs.semanticscholar.org/b55d/0c9a022874fb78653a0004998a66f8242cad.pdf,,,http://ocean.kisti.re.kr/downfile/volume/etri/HJTODO/2013/v35n6/HJTODO_2013_v35n6_1021.pdf +b5930275813a7e7a1510035a58dd7ba7612943bc,http://pdfs.semanticscholar.org/b593/0275813a7e7a1510035a58dd7ba7612943bc.pdf,,,http://www.iis.sinica.edu.tw/page/jise/2010/201007_23.pdf +b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88,http://pdfs.semanticscholar.org/b59c/8b44a568587bc1b61d130f0ca2f7a2ae3b88.pdf,,https://doi.org/10.1007/978-3-319-47665-0_10,http://iva2016.ict.usc.edu/wp-content/uploads/Papers/100110106.pdf +b249f10a30907a80f2a73582f696bc35ba4db9e2,http://pdfs.semanticscholar.org/f06d/6161eef9325285b32356e1c4b5527479eb9b.pdf,,,http://arxiv.org/pdf/1601.03945v1.pdf +b2a0e5873c1a8f9a53a199eecae4bdf505816ecb,http://pdfs.semanticscholar.org/b2a0/e5873c1a8f9a53a199eecae4bdf505816ecb.pdf,,,https://arxiv.org/pdf/1711.11566v1.pdf +b299c292b84aeb4f080a8b39677a8e0d07d51b27,,,,http://doi.ieeecomputersociety.org/10.1109/ICDM.2015.23 +b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,,,https://arxiv.org/pdf/1603.01249v3.pdf +b216040f110d2549f61e3f5a7261cab128cab361,http://pdfs.semanticscholar.org/b216/040f110d2549f61e3f5a7261cab128cab361.pdf,,,https://www.jstage.jst.go.jp/article/transinf/E100.D/11/E100.D_2017EDL8124/_pdf/-char/en +b261439b5cde39ec52d932a222450df085eb5a91,http://pdfs.semanticscholar.org/b261/439b5cde39ec52d932a222450df085eb5a91.pdf,,,http://www.ijcttjournal.org/2015/Volume24/number-2/IJCTT-V24P114.pdf +b234cd7788a7f7fa410653ad2bafef5de7d5ad29,http://pdfs.semanticscholar.org/b234/cd7788a7f7fa410653ad2bafef5de7d5ad29.pdf,,https://doi.org/10.1007/978-3-319-16628-5_6,http://ci2cv.net/media/papers/2014_ACCV_Fagg.pdf +b2749caec0094e186d3ee850151c899b8508f47a,,,, +b2add9fad0bcf7bf0660f99f389672cdf7cc6a70,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226 +b2ae5c496fe01bb2e2dee107f75b82c6a2a23374,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.116 +b208f2fc776097e98b41a4ff71c18b393e0a0018,,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2003.1217900 +b235b4ccd01a204b95f7408bed7a10e080623d2e,http://pdfs.semanticscholar.org/b235/b4ccd01a204b95f7408bed7a10e080623d2e.pdf,,,http://ijcai.org/Abstract/15/516 +b259f57f41f4b3b5b7ca29c5acb6f42186bbcf23,,,https://doi.org/10.1109/SMC.2017.8122808, +b2f9e0497901d22b05b9699b0ea8147861c2e2cc,,,https://doi.org/10.1007/978-3-319-70353-4_3, +b209608a534957ec61e7a8f4b9d08286ae3d1d7f,,,https://doi.org/10.1111/j.1468-0394.2011.00589.x, +b29b42f7ab8d25d244bfc1413a8d608cbdc51855,http://pdfs.semanticscholar.org/b29b/42f7ab8d25d244bfc1413a8d608cbdc51855.pdf,,,https://arxiv.org/pdf/1702.02719v1.pdf +b22317a0bbbcc79425f7c8a871b2bf211ba2e9c4,,,https://doi.org/10.1109/ACCESS.2018.2805861, +b21bf45cd3aeaec3440eeca09a1c5a5ee3d24a3a,,,https://doi.org/10.1080/10798587.2014.934592, +b2e5df82c55295912194ec73f0dca346f7c113f6,http://pdfs.semanticscholar.org/b2e5/df82c55295912194ec73f0dca346f7c113f6.pdf,,,http://wangzheallen.github.io/papers/THUMOS.pdf +b2e6944bebab8e018f71f802607e6e9164ad3537,http://pdfs.semanticscholar.org/b2e6/944bebab8e018f71f802607e6e9164ad3537.pdf,,,http://ijcai.org/papers15/Papers/IJCAI15-514.pdf +b2c25af8a8e191c000f6a55d5f85cf60794c2709,http://pdfs.semanticscholar.org/b2c2/5af8a8e191c000f6a55d5f85cf60794c2709.pdf,,https://doi.org/10.1007/s11760-015-0832-y,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2015/A_Novel_Dimensionality_SIVP.pdf +b239a756f22201c2780e46754d06a82f108c1d03,http://www.rci.rutgers.edu/~vmp93/Conference_pub/Fusion_FG_camera_ready.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163146 +b234d429c9ea682e54fca52f4b889b3170f65ffc,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22 +b2ddea9c71cd73fa63e09e8121bc7a098fae70b4,,,https://doi.org/10.1109/ISCCSP.2012.6217849, +b20cfbb2348984b4e25b6b9174f3c7b65b6aed9e,http://pdfs.semanticscholar.org/b20c/fbb2348984b4e25b6b9174f3c7b65b6aed9e.pdf,,https://doi.org/10.1007/978-3-319-54187-7_22,http://vision.cs.tut.fi/data/publications/accv2016_cory.pdf +b262a2a543971e10fcbfc7f65f46115ae895d69e,,,https://doi.org/10.1109/DICTA.2015.7371266, +b2cb335ded99b10f37002d09753bd5a6ea522ef1,,,https://doi.org/10.1109/ISBA.2017.7947679, +d91fd82332a0db1bb4a8ac563f406098cfe9c4bb,,,, +d9c0310203179d5328c4f1475fa4d68c5f0c7324,,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.11 +d961617db4e95382ba869a7603006edc4d66ac3b,http://pdfs.semanticscholar.org/d961/617db4e95382ba869a7603006edc4d66ac3b.pdf,,,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/Paper%2037%20(Supplementary).pdf +d9810786fccee5f5affaef59bc58d2282718af9b,http://pdfs.semanticscholar.org/d981/0786fccee5f5affaef59bc58d2282718af9b.pdf,,,http://www.cse.msu.edu/~rossarun/pubs/JillelaMSThesis_Fall2009.pdf +d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0003031.pdf,,https://doi.org/10.1109/ICASSP.2017.7952713, +d98a36081a434451184fa4becb59bf5ec55f3a1e,,,https://doi.org/10.1016/j.neucom.2016.09.110, +d930ec59b87004fd172721f6684963e00137745f,http://pdfs.semanticscholar.org/d930/ec59b87004fd172721f6684963e00137745f.pdf,,,http://infoscience.epfl.ch/record/90995/files/CruzMota2006_1530.pdf +d9739d1b4478b0bf379fe755b3ce5abd8c668f89,http://pdfs.semanticscholar.org/d973/9d1b4478b0bf379fe755b3ce5abd8c668f89.pdf,,https://doi.org/10.1117/1.JEI.22.3.033033,http://www.ino.it/home/cosimo/public/JEI2013.pdf +d9c4586269a142faee309973e2ce8cde27bda718,http://pdfs.semanticscholar.org/d9c4/586269a142faee309973e2ce8cde27bda718.pdf,,,http://arxiv.org/abs/1612.02534 +d912b8d88d63a2f0cb5d58164e7414bfa6b41dfa,http://pdfs.semanticscholar.org/d912/b8d88d63a2f0cb5d58164e7414bfa6b41dfa.pdf,,,http://www.u-bourgogne.fr/SITIS/05/download/Proceedings/Files/f044.pdf +d9072e6b7999bc2d5750eb58c67a643f38d176d6,,,https://doi.org/10.1109/LSP.2009.2027636, +d903292dc4e752f6a3bf2abe668d17a2575044d4,,,, +d92084e376a795d3943df577d3b3f3b7d12eeae5,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.85 +d9318c7259e394b3060b424eb6feca0f71219179,http://biometrics.cse.msu.edu/Publications/Face/ParkJainFaceSoftBio_TIFS10.pdf,,https://doi.org/10.1109/TIFS.2010.2049842,http://www.cse.msu.edu/biometrics/Publications/Face/ParkJainFaceSoftBio_TIFS10.pdf +d963bdff2ce5212fa585a83ca8fad96875bc0057,,,https://doi.org/10.1016/j.neucom.2016.03.091, +d9a1dd762383213741de4c1c1fd9fccf44e6480d,http://pdfs.semanticscholar.org/d9a1/dd762383213741de4c1c1fd9fccf44e6480d.pdf,,https://doi.org/10.1016/j.patcog.2003.07.005, +d963e640d0bf74120f147329228c3c272764932b,http://pdfs.semanticscholar.org/d963/e640d0bf74120f147329228c3c272764932b.pdf,,,http://www.sersc.org/journals/IJAST/vol64/1.pdf +d983dda8b03ed60fa3afafe5c50f1d9a495f260b,,,https://doi.org/10.1016/j.patcog.2007.03.020, +d9e34af95c21c0e114b61abccbc653480b370c3b,,,https://doi.org/10.1016/j.patcog.2005.10.020, +d930c3d92a075d3f3dd9f5ea1a8f04e0d659b22b,,,, +d91a5589fd870bf62b7e4979d9d47e8acf6c655d,,,,http://doi.acm.org/10.1145/2382336.2382343 +d95e6185f82e3ef3880a98122522eca8c8c3f34e,http://bbs.utdallas.edu/facelab/docs/4_05_otoole-pami.pdf,,,http://www.utdallas.edu/~herve/abdi-pami2005.pdf +d9d7a4b64b13ed1bce89d3cbbabe62e78d70b3fb,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.16 +d9ef1a80738bbdd35655c320761f95ee609b8f49,http://pdfs.semanticscholar.org/d9ef/1a80738bbdd35655c320761f95ee609b8f49.pdf,,,http://ijarcsse.com/docs/papers/Volume_5/4_April2015/V5I4-0617.pdf +d9eed86e53ce5f7cba379fe77bbefb42e83c0d88,,,https://doi.org/10.1109/TIP.2017.2764262, +d9b4b49378fcd77dcd5e755975b99ed4c7962f17,,,https://doi.org/10.1109/TIP.2015.2473105, +d975a535cbf3e0a502a30ff7ad037241f9b798ae,,,, +d99743ab1760b09b1bb88bc6e1dc5b9d0e48baac,,,, +d91f9e8cbf271004ef1a293401197a10a26ccd1b,,,https://doi.org/10.1109/SOCPAR.2015.7492801, +d9327b9621a97244d351b5b93e057f159f24a21e,http://www.cil.pku.edu.cn/publications/papers/CS2010gusuicheng.pdf,,https://doi.org/10.1007/s11432-010-4099-1, +d915e634aec40d7ee00cbea96d735d3e69602f1a,http://pdfs.semanticscholar.org/d915/e634aec40d7ee00cbea96d735d3e69602f1a.pdf,,,http://cs231n.stanford.edu/reports/ken_final_report.pdf +ac1d97a465b7cc56204af5f2df0d54f819eef8a6,http://pdfs.semanticscholar.org/ac1d/97a465b7cc56204af5f2df0d54f819eef8a6.pdf,,,http://www.ic.unicamp.br/~rocha/pub/papers/a-look-at-eye-detection-for-unconstrained-environments.pdf +ac2e44622efbbab525d4301c83cb4d5d7f6f0e55,http://openaccess.thecvf.com/content_cvpr_2016/papers/Booth_A_3D_Morphable_CVPR_2016_paper.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/0002.pdf +ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,http://pdfs.semanticscholar.org/ac6c/3b3e92ff5fbcd8f7967696c7aae134bea209.pdf,,https://doi.org/10.1007/978-3-319-46454-1_37,http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2016_hallucination.pdf +ac21c8aceea6b9495574f8f9d916e571e2fc497f,http://pdfs.semanticscholar.org/ac21/c8aceea6b9495574f8f9d916e571e2fc497f.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop16/pdffiles/w16-p9.pdf +ace1e0f50fe39eb9a42586f841d53980c6f04b11,,,,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043849 +ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6,http://eprints.whiterose.ac.uk/104654/9/07289412.pdf,,https://doi.org/10.1109/TFUZZ.2015.2486803, +aca273a9350b10b6e2ef84f0e3a327255207d0f5,http://pdfs.semanticscholar.org/efb2/4d35d8f6a46e1ff3800a2481bc7e681e255e.pdf,,https://doi.org/10.1016/j.patrec.2015.08.006,http://vbn.aau.dk/files/219488771/on_softbiometrics_preprint.pdf +aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9,http://pdfs.semanticscholar.org/aca7/5c032cfb0b2eb4c0ae56f3d060d8875e43f9.pdf,,,http://www.ijcai.org/Proceedings/13/Papers/207.pdf +acab402d706dbde4bea4b7df52812681011f435e,,,https://doi.org/10.1109/HIS.2012.6421377, +ac98e7c570eb4a9db23f85164010f94afba1251e,,,, +ac51d9ddbd462d023ec60818bac6cdae83b66992,http://pdfs.semanticscholar.org/ac51/d9ddbd462d023ec60818bac6cdae83b66992.pdf,,https://doi.org/10.1155/2015/709072,http://ftp.ncbi.nlm.nih.gov/pub/pmc/67/f1/CIN2015-709072.PMC4609417.pdf +acc548285f362e6b08c2b876b628efceceeb813e,http://pdfs.semanticscholar.org/acc5/48285f362e6b08c2b876b628efceceeb813e.pdf,,https://doi.org/10.1155/2014/427826, +ac820d67b313c38b9add05abef8891426edd5afb,http://pdfs.semanticscholar.org/da4e/76b789f7ea8ed6c6d26858ac8a12bb1413fe.pdf,,https://doi.org/10.1016/j.patcog.2014.11.016,http://web.fsktm.um.edu.my/~cschan/doc/PR2015.pdf +ac9a331327cceda4e23f9873f387c9fd161fad76,http://pdfs.semanticscholar.org/ac9a/331327cceda4e23f9873f387c9fd161fad76.pdf,,,http://arxiv.org/abs/1709.01664 +acd4280453b995cb071c33f7c9db5760432f4279,,,https://doi.org/10.1007/s00138-018-0907-1, +ac48ecbc7c3c1a7eab08820845d47d6ce197707c,,,https://doi.org/10.1109/TIP.2017.2681841, +ac12ba5bf81de83991210b4cd95b4ad048317681,http://pdfs.semanticscholar.org/ac12/ba5bf81de83991210b4cd95b4ad048317681.pdf,,https://doi.org/10.1007/978-3-319-49409-8_30,https://www.cmpe.boun.edu.tr/~salah/gurpinar16combining.pdf +ac37285f2f5ccf99e9054735a36465ee35a6afdd,,,https://doi.org/10.1109/ISCAS.2006.1693880, +ac75c662568cbb7308400cc002469a14ff25edfd,http://www.dsp.toronto.edu/juwei/Publication/JuweiICIP04v2.pdf,,https://doi.org/10.1109/ICIP.2004.1418690,http://www.dsp.toronto.edu/~kostas/Publications2008/pub/proceed/113.pdf +ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea,http://pdfs.semanticscholar.org/ac9d/fbeb58d591b5aea13d13a83b1e23e7ef1fea.pdf,,,http://luks.fe.uni-lj.si/sl/osebje/vitomir/pub/InTech.pdf +acde297810059ca632ef3f7c002b63b40cb8796f,,,, +acb83d68345fe9a6eb9840c6e1ff0e41fa373229,http://pdfs.semanticscholar.org/acb8/3d68345fe9a6eb9840c6e1ff0e41fa373229.pdf,,,http://class.inrialpes.fr/pub/blaschko-phd09.pdf +ac206a97e981df4514dcae28442beaea31845f35,,,, +ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7,http://pdfs.semanticscholar.org/ade1/034d5daec9e3eba1d39ae3f33ebbe3e8e9a7.pdf,,,http://www.enterface.net/enterface05/docs/results/reports/project2.pdf +ad8540379884ec03327076b562b63bc47e64a2c7,http://pdfs.semanticscholar.org/ad85/40379884ec03327076b562b63bc47e64a2c7.pdf,,https://doi.org/10.1504/IJBIC.2013.055092,http://www.researchgate.net/profile/Md_Jan_Nordin/publication/249315811_Bee_royalty_offspring_algorithm_for_improvement_of_facial_expressions_classification_model/links/00b4951e4d046dddcd000000.pdf +ad08426ca57da2be0e9f8c1f673e491582edb896,,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.98 +adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,http://openaccess.thecvf.com/content_iccv_2015/papers/Li_Two_Birds_One_ICCV_2015_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Li_Two_Birds_One_ICCV_2015_paper.pdf +ad27d13d163757b65110f98a0e7dd7f5bc8c8030,,,, +adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9be,http://pdfs.semanticscholar.org/adf7/ccb81b8515a2d05fd3b4c7ce5adf5377d9be.pdf,,https://doi.org/10.24348/coria.2015.27,http://coria2015.lip6.fr/wp-content/uploads/2015/03/27.pdf +adad7446e371d27fdaee39475856e2058f3045e5,,,https://doi.org/10.1109/ISCAS.2013.6572295, +ada73060c0813d957576be471756fa7190d1e72d,http://pdfs.semanticscholar.org/ada7/3060c0813d957576be471756fa7190d1e72d.pdf,,,http://arxiv.org/abs/1610.05402 +add50a7d882eb38e35fe70d11cb40b1f0059c96f,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_086_ext.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298679 +ad6cc071b2585e4bdb6233b7ad8d63e12538537d,,,https://doi.org/10.1007/s10462-010-9172-z, +ad4d1ecf5c5473c050e11f6876ce148de1c8920a,,,https://doi.org/10.1109/IJCNN.2017.7965886, +ad784332cc37720f03df1c576e442c9c828a587a,http://pdfs.semanticscholar.org/ad78/4332cc37720f03df1c576e442c9c828a587a.pdf,,https://doi.org/10.1002/ima.10047,http://www.jdl.ac.cn/user/sgshan/pub/Shan-IJIST-2003.pdf +ad9ba7eade9d4299159512d6d5d07d7d3d26ae58,,,https://doi.org/10.1007/s11063-012-9252-y, +ad8bd7016132a2f98ff1f41dac695285e71cc4b1,,,https://doi.org/10.1109/CISP-BMEI.2017.8301964, +ada42b99f882ba69d70fff68c9ccbaff642d5189,http://pdfs.semanticscholar.org/ba11/4dfdd12b0f4323a8f28cd2bd770dfa74673e.pdf,,,http://www.robots.ox.ac.uk/~vgg/presentations/Schroff_Thesis_Talk_onlineVersion.pdf +add6d96fc018986f51a1aac47eae9ee3fc62fb66,,,,http://doi.acm.org/10.1145/3009977.3010074 +ad6c7cc5c0f4ab273fef105ff3761d2c08609a20,https://people.cs.clemson.edu/~jzwang/1701863/mm2016/p1405-huo-ACM%20MM-Jing%20HUO-2016-10-19.pdf,,,http://doi.acm.org/10.1145/2964284.2964311 +adfaf01773c8af859faa5a9f40fb3aa9770a8aa7,http://pdfs.semanticscholar.org/adfa/f01773c8af859faa5a9f40fb3aa9770a8aa7.pdf,,,http://cs.stanford.edu/groups/vision/documents/Deng_PhD_thesis_2012.pdf +ad5a35a251e07628dd035c68e44a64c53652be6b,,,https://doi.org/10.1016/j.patcog.2016.12.024, +adf5caca605e07ee40a3b3408f7c7c92a09b0f70,http://pdfs.semanticscholar.org/adf5/caca605e07ee40a3b3408f7c7c92a09b0f70.pdf,,https://doi.org/10.1007/11539117_17, +adaf2b138094981edd615dbfc4b7787693dbc396,http://pdfs.semanticscholar.org/adaf/2b138094981edd615dbfc4b7787693dbc396.pdf,,,http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442367 +adc4bc7639d5f1c5ead8728882e2390339d061ed,https://www.researchgate.net/profile/Fanbo_Meng2/publication/224144294_Emotional_Audio-Visual_Speech_Synthesis_Based_on_PAD/links/00b49538fd61d3280d000000.pdf?origin=publication_list,,https://doi.org/10.1109/TASL.2010.2052246, +ad6745dd793073f81abd1f3246ba4102046da022,http://pdfs.semanticscholar.org/ad67/45dd793073f81abd1f3246ba4102046da022.pdf,,https://doi.org/10.1016/j.patcog.2016.10.022,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Wu2016b.pdf +adf31283550ff810540bad0edd2c8878ac252b20,,,, +ad7b6d2e8d66f720cc83323a0700c25006d49609,,,https://doi.org/10.1109/TIP.2009.2028255, +adb040081974369c46b943e9f75be4e405623102,,,,http://doi.ieeecomputersociety.org/10.1109/PACCS.2009.191 +ad9cb522cc257e3c5d7f896fe6a526f6583ce46f,http://pdfs.semanticscholar.org/ad9c/b522cc257e3c5d7f896fe6a526f6583ce46f.pdf,,,https://tspace.library.utoronto.ca/bitstream/1807/25221/1/Christopher%20Wang.pdf +ad339a5fdaab95f3c8aad83b60ceba8d76107fa2,,,https://doi.org/10.1023/B:VISI.0000013090.39095.d5, +ad624331dc5f8dc3a72b1d5baf69634b2f345656,,,, +ad08c97a511091e0f59fc6a383615c0cc704f44a,http://pdfs.semanticscholar.org/ad08/c97a511091e0f59fc6a383615c0cc704f44a.pdf,,,http://ewic.bcs.org/upload/pdf/ewic_hci12_wip_paper10.pdf +ad5a1621190d18dd429930ab5125c849ce7e4506,http://www.cs.csub.edu/~acruz/papers/10.1109-ICIP.2014.7025275.pdf,,https://doi.org/10.1109/ICIP.2014.7025275, +ad37d01c4787d169daff7da52e80e2018aab6358,http://ibug.doc.ic.ac.uk/media/uploads/documents/bidirectional_newton_aam.pdf,,https://doi.org/10.1109/TIP.2016.2642828,http://ibug.doc.ic.ac.uk/media/uploads/documents/newton_and_bidirectional_aam.pdf +ada56c9ceef50aa5159f1f8aa45ca2040d1ed15c,,,https://doi.org/10.1109/TIFS.2017.2680246, +ad247138e751cefa3bb891c2fe69805da9c293d7,http://pdfs.semanticscholar.org/ad24/7138e751cefa3bb891c2fe69805da9c293d7.pdf,,,http://article.sciencepublishinggroup.com/pdf/10.11648.j.ajnc.20150404.12.pdf +ad75330953d9aacc05b5ca1a50c4fed3e7ca1e21,http://www.science.uva.nl/~asalah/dibeklioglu11design.pdf,,https://doi.org/10.1007/s12193-011-0057-5,https://staff.fnwi.uva.nl/th.gevers/pub/Hamdi2011.pdf +ad1679295a5e5ebe7ad05ea1502bce961ec68057,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344631 +adf9998214598469f7a097bc50de4c23784f2a5a,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.745 +ad50f6899103eff0ee4504e539c38eb965fd1309,,,https://doi.org/10.1109/IJCNN.2010.5596374, +bbc21d6b7c6e807c6886d237a04b501158ca6bb8,,,https://doi.org/10.1109/TMM.2016.2523421, +bbc4b376ebd296fb9848b857527a72c82828fc52,http://pdfs.semanticscholar.org/bbc4/b376ebd296fb9848b857527a72c82828fc52.pdf,,,https://www.cs.umd.edu/sites/default/files/scholarly_papers/EmilyHand.pdf +bb489e4de6f9b835d70ab46217f11e32887931a2,http://conteudo.icmc.usp.br/pessoas/moacir/p17sibgrapi-tutorial/2017-SIBGRAPI_Tutorial-Survey_Paper-Deep_Learning_for_Computer_Vision.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.12 +bba281fe9c309afe4e5cc7d61d7cff1413b29558,http://pdfs.semanticscholar.org/bba2/81fe9c309afe4e5cc7d61d7cff1413b29558.pdf,,, +bb557f4af797cae9205d5c159f1e2fdfe2d8b096,http://pdfs.semanticscholar.org/bb55/7f4af797cae9205d5c159f1e2fdfe2d8b096.pdf,,https://doi.org/10.1016/j.patcog.2015.02.020,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2015/8_N_Tsapanos_ADATKKMCBD.pdf +bb070c019c0885232f114c7dca970d2afd9cd828,,,https://doi.org/10.1109/DICTA.2014.7008089, +bb06ef67a49849c169781657be0bb717587990e0,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2017/papers/1570342773.pdf,,https://doi.org/10.23919/EUSIPCO.2017.8081357, +bb22104d2128e323051fb58a6fe1b3d24a9e9a46,http://pdfs.semanticscholar.org/bb22/104d2128e323051fb58a6fe1b3d24a9e9a46.pdf,,https://doi.org/10.1007/978-3-540-76390-1_61,http://www.iis.sinica.edu.tw/papers/song/4971-F.pdf +bbf20adb59b7461e0d040e665bf64ae5f478eda0,,,, +bbc47f421ab161f22f2699ee7bbb7fc8aec1cb7b,,,https://doi.org/10.1109/IJCNN.2017.7966271, +bbe1332b4d83986542f5db359aee1fd9b9ba9967,http://pdfs.semanticscholar.org/bbe1/332b4d83986542f5db359aee1fd9b9ba9967.pdf,,https://doi.org/10.1016/j.patcog.2017.10.030,http://arxiv.org/abs/1703.05530 +bbe949c06dc4872c7976950b655788555fe513b8,http://www.quaero.org/media/files/bibliographie/ekenel_automaticfrequency.pdf,,,https://cvhci.anthropomatik.kit.edu/~hgao/publications/icpr2010_Hazim.pdf +bbcb4920b312da201bf4d2359383fb4ee3b17ed9,http://pdfs.semanticscholar.org/bbcb/4920b312da201bf4d2359383fb4ee3b17ed9.pdf,,,http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159945&type=printable +bb6bf94bffc37ef2970410e74a6b6dc44a7f4feb,http://pdfs.semanticscholar.org/bb6b/f94bffc37ef2970410e74a6b6dc44a7f4feb.pdf,,,http://openaccess.thecvf.com/content_ICCV_2017/supplemental/Li_Situation_Recognition_With_ICCV_2017_supplemental.pdf +bb3698df3b4f40c0b7cc523d26ffb8c5276d5a1c,,,https://doi.org/10.1109/ICDSP.2016.7868528, +bb83d5c7c17832d1eef14aa5d303d9dd65748956,,,,http://doi.acm.org/10.1145/3139513.3139514 +bbc8ccd3f62615e3c0ce2c3aee5e4a223d215bbd,,,https://doi.org/10.1007/s11042-015-2497-5, +bbf01aa347982592b3e4c9e4f433e05d30e71305,https://pdfs.semanticscholar.org/bbf0/1aa347982592b3e4c9e4f433e05d30e71305.pdf,,https://doi.org/10.1109/ICIP.2013.6738760,http://koasas.kaist.ac.kr/bitstream/10203/188066/1/79087.pdf +bbfe0527e277e0213aafe068113d719b2e62b09c,http://pdfs.semanticscholar.org/bbfe/0527e277e0213aafe068113d719b2e62b09c.pdf,,https://doi.org/10.1007/978-3-642-33718-5_13,http://www.umiacs.umd.edu/~kanazawa/papers/eccv2012_dog_final.pdf +bbf1396eb826b3826c5a800975047beabde2f0de,http://pdfs.semanticscholar.org/bbf1/396eb826b3826c5a800975047beabde2f0de.pdf,,https://doi.org/10.1016/j.cviu.2004.01.002,http://vicos.fri.uni-lj.si/alesl/files/2008/05/bischofcviu04.pdf +bb451dc2420e1a090c4796c19716f93a9ef867c9,http://pdfs.semanticscholar.org/bb45/1dc2420e1a090c4796c19716f93a9ef867c9.pdf,,,http://research.ijcaonline.org/volume104/number5/pxc3899123.pdf +bb69f750ccec9624f6dabd334251def2bbddf166,http://research.microsoft.com/en-us/um/people/leizhang/Paper/FG04-Yuxiao.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AFGR.2004.1301639 +bb750b4c485bc90a47d4b2f723be4e4b74229f7a,http://pdfs.semanticscholar.org/bb75/0b4c485bc90a47d4b2f723be4e4b74229f7a.pdf,,,http://carol.wins.uva.nl/~nicu/publications/book.pdf +d73d2c9a6cef79052f9236e825058d5d9cdc1321,http://pdfs.semanticscholar.org/d73d/2c9a6cef79052f9236e825058d5d9cdc1321.pdf,,,http://www.eurecom.fr/en/publication/4335/download/mm-publi-4335.pdf +d794ffece3533567d838f1bd7f442afee13148fd,http://pdfs.semanticscholar.org/d794/ffece3533567d838f1bd7f442afee13148fd.pdf,,https://doi.org/10.1007/978-3-319-16628-5_2,http://img.cs.uec.ac.jp/pub/conf14/141105dohang_0.pdf +d7c87f4ca39f79d93c954ffacac32bc6eb527e2c,,,https://doi.org/10.1007/978-3-642-15696-0_57, +d75bd05865224a1341731da66b8d812a7924d6f6,,,https://doi.org/10.1109/TSMCB.2012.2217127, +d78077a7aa8a302d4a6a09fb9737ab489ae169a6,http://pdfs.semanticscholar.org/d780/77a7aa8a302d4a6a09fb9737ab489ae169a6.pdf,,https://doi.org/10.1016/j.patcog.2017.03.010,http://arxiv.org/abs/1506.00481 +d7ecfb6108a379a0abf76bf3105b4c9baca8f84f,,,, +d7312149a6b773d1d97c0c2b847609c07b5255ec,http://pdfs.semanticscholar.org/d731/2149a6b773d1d97c0c2b847609c07b5255ec.pdf,,,http://s3.amazonaws.com/kvaccaro.com/documents/aaai17.pdf +d79530e1745b33f3b771d0b38d090b40afc04191,,,https://doi.org/10.1007/s11042-015-2485-9, +d778c46657a974e6e87df82b7ee2ced8e5c6f151,,,, +d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f,http://pdfs.semanticscholar.org/d7d9/c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f.pdf,,,http://arxiv.org/abs/1702.00583 +d708ce7103a992634b1b4e87612815f03ba3ab24,http://pdfs.semanticscholar.org/d708/ce7103a992634b1b4e87612815f03ba3ab24.pdf,,,http://www.yugangjiang.info/publication/TPAMI17-supplementary.pdf +d7bd37920a3a4a4d681151131e23a839695c8d5b,,,https://doi.org/10.1109/ICRA.2011.5979870, +d7b7253f7d8b397d9d74057e1e72ed9c58e2ba6d,,,https://doi.org/10.1109/TII.2013.2271914, +d785fcf71cb22f9c33473cba35f075c1f0f06ffc,http://research.cs.rutgers.edu/~linzhong/PDF/Lin_cvpr2012.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247974 +d723ebf3288126fa8cbb10ba7e2a6308aede857c,,,https://doi.org/10.1117/12.968586, +d78373de773c2271a10b89466fe1858c3cab677f,http://pdfs.semanticscholar.org/d783/73de773c2271a10b89466fe1858c3cab677f.pdf,,https://doi.org/10.1016/j.imavis.2016.08.014,http://arxiv.org/abs/1503.07706 +d7a84db2a1bf7b97657b0250f354f249394dd700,,,https://doi.org/10.1109/ICIP.2010.5653518, +d78fbd11f12cbc194e8ede761d292dc2c02d38a2,http://pdfs.semanticscholar.org/d78f/bd11f12cbc194e8ede761d292dc2c02d38a2.pdf,,,http://thesai.org/Downloads/Volume8No10/Paper_3-Enhancing_Gray_Scale_Images_for_Face_Detection.pdf +d72973a72b5d891a4c2d873daeb1bc274b48cddf,http://pdfs.semanticscholar.org/d729/73a72b5d891a4c2d873daeb1bc274b48cddf.pdf,,,http://www.wseas.org/multimedia/journals/information/2013/045709-158.pdf +d7b4d741b1dd4fb3f278efa5fdf2a5d8523caa0e,,,, +d7d166aee5369b79ea2d71a6edd73b7599597aaa,http://pdfs.semanticscholar.org/d7d1/66aee5369b79ea2d71a6edd73b7599597aaa.pdf,,,https://arxiv.org/pdf/1803.05657v1.pdf +d79f9ada35e4410cd255db39d7cc557017f8111a,http://pdfs.semanticscholar.org/d79f/9ada35e4410cd255db39d7cc557017f8111a.pdf,,,http://www.jemr.org/download/pictures/be/0nj39rd90voe5y7vsyg6wrwzsxjh4h/bengoechea_et_al_petmei_jemr_2014.pdf +d05759932001aa6f1f71e7dc261c4716f57a5397,,,https://doi.org/10.1109/ISBA.2015.7126365, +d0e895a272d684a91c1b1b1af29747f92919d823,http://pdfs.semanticscholar.org/d0e8/95a272d684a91c1b1b1af29747f92919d823.pdf,,,http://cs-people.bu.edu/sbargal/ipcv_2012.pdf +d082f35534932dfa1b034499fc603f299645862d,http://pdfs.semanticscholar.org/d082/f35534932dfa1b034499fc603f299645862d.pdf,,,http://crcv.ucf.edu/papers/theses/Ortiz.pdf +d03265ea9200a993af857b473c6bf12a095ca178,http://pdfs.semanticscholar.org/d032/65ea9200a993af857b473c6bf12a095ca178.pdf,,https://doi.org/10.1117/1.JEI.24.3.033013,http://www.famt.net/up/uppaper/2015120843996089.pdf +d0ac9913a3b1784f94446db2f1fb4cf3afda151f,http://pdfs.semanticscholar.org/d0ac/9913a3b1784f94446db2f1fb4cf3afda151f.pdf,,,http://arxiv.org/pdf/1607.04780v1.pdf +d046030f7138e5a2dbe2b3eec1b948ad8c787538,,,https://doi.org/10.1109/ICIP.2009.5413447, +d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0,http://pdfs.semanticscholar.org/d0eb/3fd1b1750242f3bb39ce9ac27fc8cc7c5af0.pdf,,https://doi.org/10.1016/j.patrec.2015.11.011,http://www.eurecom.fr/en/publication/4768/download/mm-publi-4768.pdf +d0296efc3c532269aaa7e8f856f5d1807af847fb,,,, +d0b67ec62086b55f00dc461ab58dc87b85388b2b,,,https://doi.org/10.1109/ICIP.2014.7026206, +d00c335fbb542bc628642c1db36791eae24e02b7,http://pdfs.semanticscholar.org/d00c/335fbb542bc628642c1db36791eae24e02b7.pdf,,https://doi.org/10.3390/s18020456, +d06c8e3c266fbae4026d122ec9bd6c911fcdf51d,http://pdfs.semanticscholar.org/d06c/8e3c266fbae4026d122ec9bd6c911fcdf51d.pdf,,, +d074b33afd95074d90360095b6ecd8bc4e5bb6a2,http://pdfs.semanticscholar.org/d074/b33afd95074d90360095b6ecd8bc4e5bb6a2.pdf,,https://doi.org/10.1142/S0219843608001303,http://www.lsr.ei.tum.de/fileadmin/publications/bauer-2008-ijhr.pdf +d04d5692461d208dd5f079b98082eda887b62323,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICB2015/ZLEI-ICB-15.pdf,,https://doi.org/10.1109/ICB.2015.7139113, +d0a8889f694422614bf3ecccd69aa1d4f7822606,,,https://doi.org/10.1007/978-0-85729-997-0_22, +d0f9143f6f43a39bff47daf8c596681581db72ea,,,https://doi.org/10.1007/s11042-017-5241-5, +d0b7d3f9a59034d44e7cd1b434cfd27136a7c029,,,https://doi.org/10.1109/INCoS.2013.143, +d05513c754966801f26e446db174b7f2595805ba,http://pdfs.semanticscholar.org/d055/13c754966801f26e446db174b7f2595805ba.pdf,,https://doi.org/10.1007/978-3-319-16634-6_14,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop12/pdffiles/w12-o1.pdf +d0d75a7116a76ccd98a3aeb6f6fff10ba91de1c1,,,https://doi.org/10.1109/TIP.2015.2502144, +d03baf17dff5177d07d94f05f5791779adf3cd5f,http://pdfs.semanticscholar.org/d03b/af17dff5177d07d94f05f5791779adf3cd5f.pdf,,https://doi.org/10.1016/j.eswa.2008.08.001,http://cgit.nutn.edu.tw:8080/cgit/PaperDL/KYC_100705123805.PDF +d09fd7e0bb5d997963cfef45452724416b2bb052,,,https://doi.org/10.1109/EMEIT.2011.6023179, +d0a21f94de312a0ff31657fd103d6b29db823caa,http://pdfs.semanticscholar.org/d0a2/1f94de312a0ff31657fd103d6b29db823caa.pdf,,https://doi.org/10.1007/978-0-85729-997-0_19,http://www.ca.cs.cmu.edu/sites/default/files/9fea.pdf +d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea,http://pdfs.semanticscholar.org/d03e/4e938bcbc25aa0feb83d8a0830f9cd3eb3ea.pdf,,https://doi.org/10.1007/978-3-642-15549-9_23,https://www.researchgate.net/profile/Ngoc_Son_Vu/publication/226170268_Face_Recognition_with_Patterns_of_Oriented_Edge_Magnitudes/links/0fcfd507f0628f03e4000000.pdf +d0dd1364411a130448517ba532728d5c2fe78ed9,,,https://doi.org/10.1109/ISCAS.2016.7527183, +d0d7671c816ed7f37b16be86fa792a1b29ddd79b,http://pdfs.semanticscholar.org/d0d7/671c816ed7f37b16be86fa792a1b29ddd79b.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9929 +d00787e215bd74d32d80a6c115c4789214da5edb,http://pdfs.semanticscholar.org/d007/87e215bd74d32d80a6c115c4789214da5edb.pdf,,,http://gip.cs.technion.ac.il/projects/uploads/52_preport_7.pdf +be8c517406528edc47c4ec0222e2a603950c2762,http://pdfs.semanticscholar.org/be8c/517406528edc47c4ec0222e2a603950c2762.pdf,,,http://www.pitt.edu/~jeffcohn/biblio/Cohn&Ekman2005.pdf +beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2,http://pdfs.semanticscholar.org/beb3/fd2da7f8f3b0c3ebceaa2150a0e65736d1a2.pdf,,,http://ijrte.academypublisher.com/vol01/no01/ijrte0101318322.pdf +be86d88ecb4192eaf512f29c461e684eb6c35257,http://pdfs.semanticscholar.org/be86/d88ecb4192eaf512f29c461e684eb6c35257.pdf,,https://doi.org/10.1007/978-3-642-15549-9_48,http://acberg.com/papers/berg_attributediscovery_eccv2010.pdf +beb49072f5ba79ed24750108c593e8982715498e,http://pdfs.semanticscholar.org/beb4/9072f5ba79ed24750108c593e8982715498e.pdf,,,https://arxiv.org/pdf/1705.04932v1.pdf +becd5fd62f6301226b8e150e1a5ec3180f748ff8,http://pdfs.semanticscholar.org/becd/5fd62f6301226b8e150e1a5ec3180f748ff8.pdf,,https://doi.org/10.1007/978-3-642-33765-9_24,http://perception.csl.illinois.edu/recognition/Files/ECCV2012_Jia_Face_CameraReady.pdf +bebb8a97b2940a4e5f6e9d3caf6d71af21585eda,http://pdfs.semanticscholar.org/bebb/8a97b2940a4e5f6e9d3caf6d71af21585eda.pdf,,,https://www.researchgate.net/profile/Xueyin_Lin/publication/3974383_Mapping_emotional_status_to_facial_expressions/links/00b7d51a9fd50b8e43000000.pdf +be07f2950771d318a78d2b64de340394f7d6b717,http://pdfs.semanticscholar.org/be07/f2950771d318a78d2b64de340394f7d6b717.pdf,,,http://www.djamelbouchaffra.com/Papers/3D-HMM.pdf +be51854ef513362bc236b85dd6f0e2c2da51614b,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.298 +be068ce0d5284dbd2c4c8ba4a31a41da2f794193,,,, +be6bd94322dd0ecfc8ea99eb7f40a9a14dd3471f,,,https://doi.org/10.1109/UIC-ATC.2013.32, +beb4546ae95f79235c5f3c0e9cc301b5d6fc9374,http://pdfs.semanticscholar.org/beb4/546ae95f79235c5f3c0e9cc301b5d6fc9374.pdf,,,http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/expression_recognition.pdf +be02c2ea2b54d8fa30e2528f91a801ecf9f2185c,,,, +bec31269632c17206deb90cd74367d1e6586f75f,http://pdfs.semanticscholar.org/bec3/1269632c17206deb90cd74367d1e6586f75f.pdf,,,https://arxiv.org/pdf/1706.08690v1.pdf +be57d2aaab615ec8bc1dd2dba8bee41a4d038b85,https://www.cl.cam.ac.uk/~mmam3/pub/a19-mahmoud.pdf,,,http://www.cl.cam.ac.uk/~mmam3/pub/a19-mahmoud.pdf +be40014beffaa9faacee12bb3412969f98b6a43d,,,,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.454 +bef503cdfe38e7940141f70524ee8df4afd4f954,https://pdfs.semanticscholar.org/bef5/03cdfe38e7940141f70524ee8df4afd4f954.pdf,,https://doi.org/10.1007/s00138-011-0349-5,http://link.springer.com/content/pdf/10.1007/s00138-011-0349-5.pdf +be0a0e563445119b82d664d370e646e53e69a4c5,,,https://doi.org/10.1016/j.eswa.2017.05.037, +beab10d1bdb0c95b2f880a81a747f6dd17caa9c2,http://pdfs.semanticscholar.org/beab/10d1bdb0c95b2f880a81a747f6dd17caa9c2.pdf,,,https://arxiv.org/pdf/1711.09515v1.pdf +b3b532e8ea6304446b1623e83b0b9a96968f926c,http://pdfs.semanticscholar.org/b3b5/32e8ea6304446b1623e83b0b9a96968f926c.pdf,,,http://arxiv.org/abs/1611.05215 +b37f57edab685dba5c23de00e4fa032a3a6e8841,http://pdfs.semanticscholar.org/b37f/57edab685dba5c23de00e4fa032a3a6e8841.pdf,,https://doi.org/10.1117/12.2228606,http://www.cbi.gatech.edu/fpv2016/abstracts/egocentric_social_interaction_abstract.pdf +b3154d981eca98416074538e091778cbc031ca29,http://pdfs.semanticscholar.org/b315/4d981eca98416074538e091778cbc031ca29.pdf,,https://doi.org/10.1007/978-3-642-27355-1_50,https://pdfs.semanticscholar.org/b315/4d981eca98416074538e091778cbc031ca29.pdf +b340f275518aa5dd2c3663eed951045a5b8b0ab1,http://www.eecs.qmul.ac.uk/~sgg/papers/GongShanXiang_ACM_ICMI2007.pdf,,,http://doi.acm.org/10.1145/1322192.1322199 +b3050dc48600acf2f75edf1f580a1f9e9cb3c14a,,,https://doi.org/10.1007/s00138-013-0584-z, +b388bf63c79e429dafee16c62b2732bcbea0d026,,,https://doi.org/10.1109/ICIP.2016.7533051, +b351575e3eab724d62d0703e24ecae55025eef00,,,https://doi.org/10.1007/s10209-014-0369-9, +b34fdab6864782ce60fd90d09f5d886bd83f84f5,,,https://doi.org/10.1002/cpe.3766, +b375db63742f8a67c2a7d663f23774aedccc84e5,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W17/papers/Conti_Brain-inspired_Classroom_Occupancy_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.95 +b3330adb131fb4b6ebbfacce56f1aec2a61e0869,http://pdfs.semanticscholar.org/b333/0adb131fb4b6ebbfacce56f1aec2a61e0869.pdf,,,http://www.enggjournals.com/ijet/docs/IJET13-05-02-267.pdf +b36a80d15c3e48870ea6118b855055cc34307658,,,https://doi.org/10.1109/ICPR.2014.17, +b3c60b642a1c64699ed069e3740a0edeabf1922c,http://pdfs.semanticscholar.org/b3c6/0b642a1c64699ed069e3740a0edeabf1922c.pdf,,,https://arxiv.org/pdf/1502.00046v1.pdf +b3f3d6be11ace907c804c2d916830c85643e468d,http://pdfs.semanticscholar.org/b3f3/d6be11ace907c804c2d916830c85643e468d.pdf,,,https://www.irit.fr/publis/LILAC/Theses_et_habilitations/2010_Nguyen_PhD_logic_for_trust_ralated_emotions.pdf +b3067deb3110e3a7566c032ac0c1e1608668ef3d,,,, +b3f7c772acc8bc42291e09f7a2b081024a172564,http://pdfs.semanticscholar.org/b3f7/c772acc8bc42291e09f7a2b081024a172564.pdf,,,http://www.ijmer.com/papers/Vol3_Issue5/DW3532253229.pdf +b3c398da38d529b907b0bac7ec586c81b851708f,http://www.cbsr.ia.ac.cn/publications/Stan/WHT-FG2004.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AFGR.2004.1301635 +b3658514a0729694d86a8b89c875a66cde20480c,http://pdfs.semanticscholar.org/b365/8514a0729694d86a8b89c875a66cde20480c.pdf,,https://doi.org/10.1007/978-3-642-15819-3_63,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Bolis10a.pdf +b3e60bb5627312b72c99c5ef18aa41bcc1d21aea,,,https://doi.org/10.1109/SPAC.2014.6982690, +b3b4a7e29b9186e00d2948a1d706ee1605fe5811,http://pdfs.semanticscholar.org/b3b4/a7e29b9186e00d2948a1d706ee1605fe5811.pdf,,,http://www.nit.eu/czasopisma/JTIT/2010/4/19.pdf +b32631f456397462b3530757f3a73a2ccc362342,http://pdfs.semanticscholar.org/b326/31f456397462b3530757f3a73a2ccc362342.pdf,,https://doi.org/10.24963/ijcai.2017/428,http://www.ijcai.org/proceedings/2017/0428.pdf +b33e8db8ccabdfc49211e46d78d09b14557d4cba,http://pdfs.semanticscholar.org/b33e/8db8ccabdfc49211e46d78d09b14557d4cba.pdf,,,http://www.vbettadapura.com/files/FaceExpressionRecSurvey.pdf +df8da144a695269e159fb0120bf5355a558f4b02,http://pdfs.semanticscholar.org/df8d/a144a695269e159fb0120bf5355a558f4b02.pdf,,,http://research.ijcaonline.org/icrtet/number3/icrtet1328.pdf +dfd934ae448a1b8947d404b01303951b79b13801,http://pdfs.semanticscholar.org/dfd9/34ae448a1b8947d404b01303951b79b13801.pdf,,,http://eprints.bournemouth.ac.uk/23013/1/Facial%20Features%20In%20Learning%20New%20Faces.pdf +df0e280cae018cebd5b16ad701ad101265c369fa,http://pdfs.semanticscholar.org/df0e/280cae018cebd5b16ad701ad101265c369fa.pdf,,,http://arxiv.org/pdf/1509.02470v1.pdf +dfb8a04a80d4b0794c0679d797cb90ec101e162c,,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2014.6918665 +df1a10668eaad727ec3fdf0d5df405bbe29392c9,,,, +df2899462e04559c024a773d91f6e06c262e136b,,,, +dfbbe8100fcd70322a431bd5d2c2d52a65fd4bbd,,,,http://doi.acm.org/10.1145/2818346.2823313 +dfabe7ef245ca68185f4fcc96a08602ee1afb3f7,http://pdfs.semanticscholar.org/dfab/e7ef245ca68185f4fcc96a08602ee1afb3f7.pdf,,https://doi.org/10.1016/j.patcog.2016.10.026,http://ivg.au.tsinghua.edu.cn/paper/2017_Group-aware%20deep%20feature%20learning%20for%20facial%20age%20estimation.pdf +df51dfe55912d30fc2f792561e9e0c2b43179089,http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1512.06009.pdf,,https://doi.org/10.1109/TIP.2017.2717181,https://arxiv.org/pdf/1512.06009v1.pdf +df550cb749858648209707bec5410431ea95e027,,,https://doi.org/10.1109/TCYB.2015.2433926, +df054fa8ee6bb7d2a50909939d90ef417c73604c,http://pdfs.semanticscholar.org/df05/4fa8ee6bb7d2a50909939d90ef417c73604c.pdf,,https://doi.org/10.5220/0006626103510358,http://av.dfki.de/~pagani/papers/Selim2018_VISAPP.pdf +df80fed59ffdf751a20af317f265848fe6bfb9c9,http://ivg.au.tsinghua.edu.cn/paper/2017_Learning%20deep%20sharable%20and%20structural%20detectors%20for%20face%20alignment.pdf,,https://doi.org/10.1109/TIP.2017.2657118, +df7ff512e8324894d20103fd8ab5da650e4d86db,,,,http://doi.acm.org/10.1145/2043674.2043709 +dff38cac0a1004037024f0ed2a72f76f4e49318b,,,https://doi.org/10.1109/TNNLS.2015.2495268, +dff838ba0567ef0a6c8fbfff9837ea484314efc6,http://pdfs.semanticscholar.org/dff8/38ba0567ef0a6c8fbfff9837ea484314efc6.pdf,,,https://studentnet.cs.manchester.ac.uk/resources/library/thesis_abstracts/ProjProgReptsMSc14/ChaparroAlvarez-GermanAlfonso-ProgressReport.pdf +df7af280771a6c8302b75ed0a14ffe7854cca679,,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293 +dfa80e52b0489bc2585339ad3351626dee1a8395,http://pdfs.semanticscholar.org/dfa8/0e52b0489bc2585339ad3351626dee1a8395.pdf,,,https://arxiv.org/pdf/1709.06391v1.pdf +df71a00071d5a949f9c31371c2e5ee8b478e7dc8,http://studentlife.cs.dartmouth.edu/facelogging.pdf,,,https://www.cs.dartmouth.edu/~xia/papers/mcss15-facelogging.pdf +dfb6aa168177d4685420fcb184def0aa7db7cddb,http://pdfs.semanticscholar.org/dfb6/aa168177d4685420fcb184def0aa7db7cddb.pdf,,,http://cemrweb.cemr.wvu.edu/~sherbo/Publications/conference%20publications/The%20Effect%20of%20Lighting%20DirectionCondition%20on%20the%20Performance%20of%20Face%20Recognition%20Algorithms%20(SPIE%20Fahmy%20ElSherbeeny%20ety%20al%202005).pdf +df2841a1d2a21a0fc6f14fe53b6124519f3812f9,http://pdfs.semanticscholar.org/df28/41a1d2a21a0fc6f14fe53b6124519f3812f9.pdf,,,https://cs.brown.edu/research/pubs/theses/ugrad/2012/changpinyo.pdf +df5fe0c195eea34ddc8d80efedb25f1b9034d07d,http://www.andrew.cmu.edu/user/kseshadr/BTAS_2009_Paper_IEEE.pdf,,,http://www.andrew.cmu.edu/user/kseshadr/BTAS_2009_Paper_Camera_Ready.pdf +df2494da8efa44d70c27abf23f73387318cf1ca8,http://pdfs.semanticscholar.org/df24/94da8efa44d70c27abf23f73387318cf1ca8.pdf,,, +df674dc0fc813c2a6d539e892bfc74f9a761fbc8,http://pdfs.semanticscholar.org/df67/4dc0fc813c2a6d539e892bfc74f9a761fbc8.pdf,,,http://www.iosrjournals.org/iosr-jce/papers/Vol10-issue6/D01062129.pdf +da1477b4a65ae5a013e646b57e004f0cd60619a2,,,https://doi.org/10.1109/ICB.2012.6199764, +dae144d7b02aab7338b15d561ea18854df563cd4,,,, +dad7b8be074d7ea6c3f970bd18884d496cbb0f91,http://pdfs.semanticscholar.org/dad7/b8be074d7ea6c3f970bd18884d496cbb0f91.pdf,,https://doi.org/10.1007/978-3-319-23234-8_51,http://pralab.diee.unica.it/sites/default/files/demontis15-iciap.pdf +daf05febbe8406a480306683e46eb5676843c424,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Feng_Robust_Subspace_Segmentation_2014_CVPR_paper.pdf,,,http://www.cis.pku.edu.cn/faculty/vision/zlin/Publications/2014-CVPR-Block-Diagonal.pdf +da2b2be4c33e221c7f417875a6c5c74043b1b227,,,https://doi.org/10.1109/BTAS.2017.8272712, +da15344a4c10b91d6ee2e9356a48cb3a0eac6a97,http://pdfs.semanticscholar.org/da15/344a4c10b91d6ee2e9356a48cb3a0eac6a97.pdf,,https://doi.org/10.1016/j.comcom.2016.03.010,http://anrg.usc.edu/www/papers/Mano_ComCom_2016.pdf +dab795b562c7cc270c9099b925d685bea0abe82a,,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2382599 +dac6e9d708a9757f848409f25df99c5a561c863c,,,https://doi.org/10.1109/LSP.2014.2334656, +da5bfddcfe703ca60c930e79d6df302920ab9465,http://pdfs.semanticscholar.org/da5b/fddcfe703ca60c930e79d6df302920ab9465.pdf,,https://doi.org/10.1016/j.imavis.2007.11.004,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2008/Kotsia_2008_Journal.pdf +da928ac611e4e14e454e0b69dfbf697f7a09fb38,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477718 +dac2103843adc40191e48ee7f35b6d86a02ef019,http://www.chennaisunday.com/2015DOTNET/Unsupervised%20Celebrity%20Face%20Naming%20in%20Web%20Videos.pdf,,https://doi.org/10.1109/TMM.2015.2419452, +dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e,http://pdfs.semanticscholar.org/dae4/20b776957e6b8cf5fbbacd7bc0ec226b3e2e.pdf,,,http://www.sfb588.uni-karlsruhe.de/publikationen/2006/P3_Grimm_ISYC06.pdf +da54a3d6dc5827abba96edf5ec1e6791ad05760b,,,, +daa02cf195818cbf651ef81941a233727f71591f,http://pdfs.semanticscholar.org/daa0/2cf195818cbf651ef81941a233727f71591f.pdf,,,http://bite.edi.lv/wp-content/uploads/2015/04/ICIPCE2015_Nikisins_paper.pdf +daa52dd09b61ee94945655f0dde216cce0ebd505,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yonetani_Recognizing_Micro-Actions_and_CVPR_2016_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Yonetani_Recognizing_Micro-Actions_and_CVPR_2016_paper.pdf +daba8f0717f3f47c272f018d0a466a205eba6395,https://pdfs.semanticscholar.org/daba/8f0717f3f47c272f018d0a466a205eba6395.pdf,,https://doi.org/10.1007/s11263-014-0750-4,http://staff.ustc.edu.cn/~lszhuang/Doc/2014-IJCV-Gao.pdf +dab51ce14f59d552c0fc5c13b37ca64cae8d0164,,,, +dae9d0a9b77366f0cd52e38847e47691ee97bc1f,,,https://doi.org/10.1007/s11760-015-0822-0, +b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3,http://cs.adelaide.edu.au/~javen/pub/ShiLiShe10.pdf,,,http://eprints.pascal-network.org/archive/00007331/01/ShiLiShe10.pdf +b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,http://pdfs.semanticscholar.org/f269/c3573b39d26a5ad0754edb67a46ef57816c7.pdf,,,http://arxiv.org/abs/1608.08041 +b44ca5bb74b27d196f281b6741c645f425ff65c1,,,, +b446bcd7fb78adfe346cf7a01a38e4f43760f363,http://pdfs.semanticscholar.org/b446/bcd7fb78adfe346cf7a01a38e4f43760f363.pdf,,,http://biometrics.cse.msu.edu/Publications/Face/Debetal_LongitudinalStudyOfChildFaceRecognition_ICB2018.pdf +b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172,https://arxiv.org/pdf/1802.00237v1.pdf,,,http://liusi-group.com/pdf/faceaging-acmmm2017.pdf +b446cf353744a4b640af88d1848a1b958169c9f2,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553744.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553744 +b41374f4f31906cf1a73c7adda6c50a78b4eb498,http://isp.uv.es/papers/Laparra11.pdf,,https://doi.org/10.1109/TNN.2011.2106511,http://www.uv.es/gcamps/papers/Laparra11.pdf +b472f91390781611d4e197564b0016d9643a5518,,,,http://doi.acm.org/10.1145/2382336.2382345 +b4d7ca26deb83cec1922a6964c1193e8dd7270e7,http://pdfs.semanticscholar.org/b4d7/ca26deb83cec1922a6964c1193e8dd7270e7.pdf,,,https://arxiv.org/pdf/1802.02774v1.pdf +b40290a694075868e0daef77303f2c4ca1c43269,http://pdfs.semanticscholar.org/b402/90a694075868e0daef77303f2c4ca1c43269.pdf,,,http://media.cs.tsinghua.edu.cn/~ahz/papers/%5B2014%5DaasHairModel.pdf +b4362cd87ad219790800127ddd366cc465606a78,http://pdfs.semanticscholar.org/b436/2cd87ad219790800127ddd366cc465606a78.pdf,,https://doi.org/10.3390/s151026756,http://www.mdpi.com/1424-8220/15/10/26756/pdf +b47a3c909ee9b099854619054fd00e200b944aa9,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.77 +b42b535fcd0d9bd41a6594a910ea4623e907ceb9,,,https://doi.org/10.1109/ICTAI.2012.153, +b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,,,https://doi.org/10.1109/GlobalSIP.2017.8309138, +b4f4b0d39fd10baec34d3412d53515f1a4605222,http://pdfs.semanticscholar.org/eaae/d23a2d94feb2f1c3ff22a25777c7a78f3141.pdf,,https://doi.org/10.1007/978-3-642-15561-1_2,http://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf +b43b6551ecc556557b63edb8b0dc39901ed0343b,http://pdfs.semanticscholar.org/b43b/6551ecc556557b63edb8b0dc39901ed0343b.pdf,,https://doi.org/10.1109/ICIP.2003.1246815,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu_ICIP_2003.pdf +a255a54b8758050ea1632bf5a88a201cd72656e1,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Tamersoy_Nonparametric_Facial_Feature_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.160 +a2b9cee7a3866eb2db53a7d81afda72051fe9732,http://pdfs.semanticscholar.org/a2b9/cee7a3866eb2db53a7d81afda72051fe9732.pdf,,,http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2038.pdf +a2d04db895dd17f2a8291b300a63604842c06d09,http://www4.comp.polyu.edu.hk/~csdct/Publications/2006/TCSVT.pdf,,https://doi.org/10.1109/TCSVT.2006.877418,http://eprints.bbk.ac.uk/451/1/Binder1.pdf +a2bd81be79edfa8dcfde79173b0a895682d62329,http://pdfs.semanticscholar.org/a2bd/81be79edfa8dcfde79173b0a895682d62329.pdf,,,https://arxiv.org/pdf/1801.00712v1.pdf +a216f7863fc6ab15e2bb7a538dfe00924e1da0ab,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163087 +a2646865d7c3d7fb346cf714caf146de2ea0e68f,,,https://doi.org/10.1109/SMC.2016.7844390, +a2eb90e334575d9b435c01de4f4bf42d2464effc,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu04b.pdf,,, +a25106a76af723ba9b09308a7dcf4f76d9283589,http://pdfs.semanticscholar.org/a251/06a76af723ba9b09308a7dcf4f76d9283589.pdf,,,http://www.ijcsmc.com/docs/papers/April2014/V3I4201429.pdf +a200885bf6bfa0493d85e7617e65cdabe30a2dab,,,https://doi.org/10.1109/ICIP.2015.7351272, +a2d9c9ed29bbc2619d5e03320e48b45c15155195,http://pdfs.semanticscholar.org/a2d9/c9ed29bbc2619d5e03320e48b45c15155195.pdf,,https://doi.org/10.1016/j.cviu.2013.11.002,http://www.researchgate.net/profile/Taner_Eskil/publication/259142970_Facial_Expression_Recognition_Based_on_Anatomy/links/0c96052f37f9490839000000.pdf +a29a22878e1881d6cbf6acff2d0b209c8d3f778b,http://pdfs.semanticscholar.org/a29a/22878e1881d6cbf6acff2d0b209c8d3f778b.pdf,,https://doi.org/10.1007/978-3-642-37444-9_46,http://vipl.ict.ac.cn/sites/default/files/papers/files/2012_ACCV_zwhuang_Benchmarking%20Still-to-Video%20Face%20Recognition%20via%20Partial%20and%20Local%20Linear%20Discriminant%20Analysis%20on%20COX-S2V%20Dataset.pdf +a2cc3193ed56ef4cedaaf4402c844df28edb5639,,,https://doi.org/10.1016/j.patrec.2012.01.005, +a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,http://pdfs.semanticscholar.org/e12a/0f0bca1624965386ac9cf95f711c90441553.pdf,,,https://mindmodeling.org/cogsci2014/papers/485/ +a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d,http://pdfs.semanticscholar.org/a2b5/4f4d73bdb80854aa78f0c5aca3d8b56b571d.pdf,,,http://www.jsnc.caltech.edu/2001/Proceedings/Smith-E.pdf +a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa,http://pdfs.semanticscholar.org/d965/50536f2ff505f62aec841b3656d940e7f1cf.pdf,,,https://arxiv.org/pdf/1605.09526v4.pdf +a26379d9993073d51611588c36f12db2b4ecb39a,,,, +a2002279c36255c2c78cf5ec0c42cbfe32fe011f,,,, +a2af07176a38fe844b0e2fdf4abae65472628b38,,,https://doi.org/10.1109/ICIP.2014.7026060, +a2bcfba155c990f64ffb44c0a1bb53f994b68a15,http://ibug.doc.ic.ac.uk/media/uploads/documents/cvprw_photoface.pdf,,https://doi.org/10.1109/CVPRW.2011.5981840,https://ibug.doc.ic.ac.uk/media/uploads/documents/cvprw_photoface.pdf +a2b76ab614d92f5e71312b530f0b6281d0c500f7,,,https://doi.org/10.1007/s10898-014-0231-x, +a2fbaa0b849ecc74f34ebb36d1442d63212b29d2,http://pdfs.semanticscholar.org/a2fb/aa0b849ecc74f34ebb36d1442d63212b29d2.pdf,,,http://www.ijarcsse.com/docs/papers/Volume_5/6_June2015/V5I6-0501.pdf +a2136b13aa0bb4ea4e7fa99a6c657b11dffff563,,,, +a50b4d404576695be7cd4194a064f0602806f3c4,http://pdfs.semanticscholar.org/a50b/4d404576695be7cd4194a064f0602806f3c4.pdf,,https://doi.org/10.5244/C.20.7,http://www.dia.fi.upm.es/~pcr/publications/bmvc2006.pdf +a55c0810e6c84f8e51953c0d8fd9971696d205f0,,,, +a59cdc49185689f3f9efdf7ee261c78f9c180789,http://pdfs.semanticscholar.org/a59c/dc49185689f3f9efdf7ee261c78f9c180789.pdf,,,http://journal.iis.sinica.edu.tw/paper/1/150146-2.pdf?cd=607100EADB21EFEC9 +a5e5094a1e052fa44f539b0d62b54ef03c78bf6a,http://pdfs.semanticscholar.org/a5e5/094a1e052fa44f539b0d62b54ef03c78bf6a.pdf,,,http://vision.soic.indiana.edu/bright-and-dark-workshop-2017/Detection_without_Recognition_for_Redaction.pdf +a52c72cd8538c62156aaa4d7e5c54946be53b9bb,http://pdfs.semanticscholar.org/a52c/72cd8538c62156aaa4d7e5c54946be53b9bb.pdf,,https://doi.org/10.1016/j.patcog.2013.11.025,http://cvrc.ece.utexas.edu/Publications/Shaohuawan_PR2014.pdf +a5f200d52b588030c76dcc38c504f65d772a1f5e,,,, +a5eb36f1e77245dfc9e5c0c03998529331e4c89b,,,https://doi.org/10.1109/BTAS.2014.6996222, +a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,http://pdfs.semanticscholar.org/a5c8/fc1ca4f06a344b53dc81ebc6d87f54896722.pdf,,,https://arxiv.org/pdf/1705.04282v1.pdf +a5ade88747fa5769c9c92ffde9b7196ff085a9eb,http://face.cs.kit.edu/download/publications/gehrig-emotiw2013.pdf,,,http://doi.acm.org/10.1145/2531923.2531924 +a56c1331750bf3ac33ee07004e083310a1e63ddc,http://pdfs.semanticscholar.org/de99/1e4c18c21b3cdf6389b439c88709d62f4252.pdf,,https://doi.org/10.1137/130936166,http://www.columbia.edu/~jw2966/papers/SZW13-SJIS.pdf +a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,,,https://doi.org/10.1109/TIP.2015.2481327, +a56b0f76919aabe8b768f5fbaeca412276365aa2,http://www.mingzhao.org/Publications/ZM_2006_FG_3DReconstruction.pdf,,,http://www.researchgate.net/profile/Terence_Sim/publication/4232748_Morphable_face_reconstruction_with_multiple_images/links/00b7d52a6b3ec06ee0000000.pdf +a5b6a3234e15343d2e5417cff46c0a5f0943521e,,,https://doi.org/10.1109/TNNLS.2014.2321420, +a5ae44070857aa00e54ea80394a04fda412b335c,,,, +a54e0f2983e0b5af6eaafd4d3467b655a3de52f4,http://pdfs.semanticscholar.org/a54e/0f2983e0b5af6eaafd4d3467b655a3de52f4.pdf,,,http://ww1.ucmss.com/books/LFS/CSREA2006/ICA3925.pdf +a5625cfe16d72bd00e987857d68eb4d8fc3ce4fb,http://pdfs.semanticscholar.org/a562/5cfe16d72bd00e987857d68eb4d8fc3ce4fb.pdf,,https://doi.org/10.1007/978-3-319-54427-4_31,https://luannd.github.io/papers/ACCV2016.pdf +a5bf83f99f71e3840f651fbeef9f334d8e75fd75,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1927.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206584 +a5b9c6aa52f91092b5a8ab04ed1f7b60c0ea5260,,,,http://doi.ieeecomputersociety.org/10.1109/WI-IATW.2006.88 +a5d4cc596446517dfaa4d92276a12d5e1c0a284c,,,https://doi.org/10.1016/j.patrec.2009.06.002, +a5d76710dc15ebc7d8b4dc976604315f1e2fc3ba,,,,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2011.117 +a546fd229f99d7fe3cf634234e04bae920a2ec33,http://pdfs.semanticscholar.org/a546/fd229f99d7fe3cf634234e04bae920a2ec33.pdf,,,http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0120448&type=printable +a538b05ebb01a40323997629e171c91aa28b8e2f,http://pdfs.semanticscholar.org/a538/b05ebb01a40323997629e171c91aa28b8e2f.pdf,,,http://learning.cs.toronto.edu/~hinton/absps/reluICML.pdf +a513977bcd8cecd2ed1836bf91b31a80a1ebe27b,,,, +a57ee5a8fb7618004dd1def8e14ef97aadaaeef5,http://pdfs.semanticscholar.org/f1f5/b603dd34ec26939517348d77df10992798f0.pdf,,,https://infoscience.epfl.ch/record/140745/files/OLEN.pdf +a57b37549edba625f5955759e259e52eb0af8773,http://learning.cs.toronto.edu/~hinton/absps/ranzato_cvpr2011.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995710 +a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sikka_Exemplar_Hidden_Markov_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301350 +a5e436bb88ff28c68f981308faefd6eee48b9c8b,,,, +a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a,http://cvrr.ucsd.edu/publications/2014/TawariMartinTrivedi_IEEETITS2014.pdf,,https://doi.org/10.1109/TITS.2014.2300870, +a591639bfcabc4091ff556364074c58521159ff9,,,, +a51d5c2f8db48a42446cc4f1718c75ac9303cb7a,http://pdfs.semanticscholar.org/a51d/5c2f8db48a42446cc4f1718c75ac9303cb7a.pdf,,,http://www.lrec-conf.org/proceedings/lrec2016/pdf/591_Paper.pdf +a57b92ed2d8aa5b41fe513c3e98cbf83b7141741,http://pdfs.semanticscholar.org/a57b/92ed2d8aa5b41fe513c3e98cbf83b7141741.pdf,,,https://infoscience.epfl.ch/record/87190/files/Sorci2005_1414.pdf +a53f988d16f5828c961553e8efd38fed15e70bcc,,,https://doi.org/10.1109/BTAS.2015.7358787, +a52d9e9daf2cb26b31bf2902f78774bd31c0dd88,http://pdfs.semanticscholar.org/a52d/9e9daf2cb26b31bf2902f78774bd31c0dd88.pdf,,,https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-97.pdf +a51882cfd0706512bf50e12c0a7dd0775285030d,http://pdfs.semanticscholar.org/a518/82cfd0706512bf50e12c0a7dd0775285030d.pdf,,https://doi.org/10.1007/978-3-319-16808-1_15,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/696.pdf +a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be,http://pdfs.semanticscholar.org/d788/2e6bd512b190e47be944dc9b58b612f12581.pdf,,https://doi.org/10.1007/978-3-540-75773-3_13,http://ibug.doc.ic.ac.uk/media/uploads/documents/ICCV-HCI07_ValstarPantic-FINAL.pdf +a503eb91c0bce3a83bf6f524545888524b29b166,http://pdfs.semanticscholar.org/a503/eb91c0bce3a83bf6f524545888524b29b166.pdf,,,http://arxiv.org/abs/1801.09086 +a575009c1c25e27cdba8cc2c6930759a5416f37d,,,, +a52a69bf304d49fba6eac6a73c5169834c77042d,,,https://doi.org/10.1109/LSP.2017.2789251, +a52581a7b48138d7124afc7ccfcf8ec3b48359d0,http://pdfs.semanticscholar.org/a525/81a7b48138d7124afc7ccfcf8ec3b48359d0.pdf,,,http://www.jdl.ac.cn/doc/2006/Pose%20and%20Illumination%20Invariant%20Face%20Recognition%20Based%20on%203D%20Face%20Reconstruction.pdf +bdf5434648356ce22bdbf81d2951e4bb00228e4d,,,,http://doi.ieeecomputersociety.org/10.1109/SNPD.2007.415 +bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4,http://pdfs.semanticscholar.org/bd57/2e9cbec095bcf5700cb7cd73d1cdc2fe02f4.pdf,,https://doi.org/10.1155/2018/7068349, +bd6099429bb7bf248b1fd6a1739e744512660d55,http://pdfs.semanticscholar.org/bd60/99429bb7bf248b1fd6a1739e744512660d55.pdf,,,http://www.jmlr.org/papers/volume11/zhang10b/zhang10b.pdf +bdfcc45cfa495939789b73eec7e6e98a4d7e3f41,,,, +bd63d56bebbc5d7babc7c47cedcb11b8e3ad199c,,,, +bd8f3fef958ebed5576792078f84c43999b1b207,http://pdfs.semanticscholar.org/bd8f/3fef958ebed5576792078f84c43999b1b207.pdf,,,http://ceur-ws.org/Vol-1391/120-CR.pdf +bd9eb65d9f0df3379ef96e5491533326e9dde315,http://pdfs.semanticscholar.org/bd9e/b65d9f0df3379ef96e5491533326e9dde315.pdf,,,https://arxiv.org/pdf/1712.00108v1.pdf +bd07d1f68486052b7e4429dccecdb8deab1924db,http://pdfs.semanticscholar.org/bd07/d1f68486052b7e4429dccecdb8deab1924db.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2003.1221304 +bd0201b32e7eca7818468f2b5cb1fb4374de75b9,http://pdfs.semanticscholar.org/bd02/01b32e7eca7818468f2b5cb1fb4374de75b9.pdf,,,https://www.irjet.net/archives/V2/i2/Irjet-v2i276.pdf +bd8e2d27987be9e13af2aef378754f89ab20ce10,http://pdfs.semanticscholar.org/bd8e/2d27987be9e13af2aef378754f89ab20ce10.pdf,,https://doi.org/10.1016/j.patrec.2014.11.004,http://bksy.zju.edu.cn/attachments/tlxjxj/2016-10/99999-1477633998-1097578.pdf +bd236913cfe07896e171ece9bda62c18b8c8197e,http://pdfs.semanticscholar.org/bd23/6913cfe07896e171ece9bda62c18b8c8197e.pdf,,,http://arxiv.org/abs/1612.00986 +bd26faef48080b5af294b19139c804ffec70825e,,,https://doi.org/10.1007/s11390-015-1526-1, +bdd203bcd3c41c336c5635fb026a78279d75b4be,,,https://doi.org/10.1109/ICPR.2016.7899761, +bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,http://pdfs.semanticscholar.org/bd13/f50b8997d0733169ceba39b6eb1bda3eb1aa.pdf,,,https://arxiv.org/pdf/1506.08347v2.pdf +bd8b7599acf53e3053aa27cfd522764e28474e57,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf,,https://doi.org/10.1109/ICCV.2009.5459181, +bd9e0b6a90b51cc19b65f51dacd08ce1a7ccaac5,,,https://doi.org/10.1109/VSMM.2014.7136653, +bd78a853df61d03b7133aea58e45cd27d464c3cf,http://pdfs.semanticscholar.org/bd78/a853df61d03b7133aea58e45cd27d464c3cf.pdf,,,http://www.ijcsit.com/docs/Volume%204/Vol4Issue6/ijcsit2013040628.pdf +bd2d7c7f0145028e85c102fe52655c2b6c26aeb5,http://rogerioferis.com/publications/FerisICMR2014.pdf,,,http://doi.acm.org/10.1145/2578726.2578732 +bd25c4ad7471580ed9787eae041b80a3c4fe97bb,,,https://doi.org/10.1016/j.sigpro.2010.01.019, +bd9157331104a0708aa4f8ae79b7651a5be797c6,http://pdfs.semanticscholar.org/bd91/57331104a0708aa4f8ae79b7651a5be797c6.pdf,,,https://arxiv.org/pdf/1712.09374v1.pdf +bd66dc891270d858de3adf97d42ed714860ae94d,,,https://doi.org/10.1109/ACPR.2015.7486598, +bd74c3ca2ff03396109ac2d1131708636bd0d4d3,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.228 +d119443de1d75cad384d897c2ed5a7b9c1661d98,,,https://doi.org/10.1109/ICIP.2010.5650873, +d185f4f05c587e23c0119f2cdfac8ea335197ac0,http://pdfs.semanticscholar.org/d185/f4f05c587e23c0119f2cdfac8ea335197ac0.pdf,,,https://www.researchgate.net/profile/Michael_Lyons3/publication/220013373_Facial_Expression_Analysis_Modeling_and_Synthesis/links/0912f51006f4029ccc000000.pdf +d140c5add2cddd4a572f07358d666fe00e8f4fe1,http://pdfs.semanticscholar.org/d140/c5add2cddd4a572f07358d666fe00e8f4fe1.pdf,,https://doi.org/10.1007/978-3-319-16178-5_19,http://ibug.doc.ic.ac.uk/media/uploads/documents/paper_1.pdf +d1dae2993bdbb2667d1439ff538ac928c0a593dc,http://pdfs.semanticscholar.org/d1da/e2993bdbb2667d1439ff538ac928c0a593dc.pdf,,,http://www.periyaruniversity.ac.in/ijcii/issue/Vol3No1June2013/IJCII%203-1-93.pdf +d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,,,https://doi.org/10.1109/LSP.2017.2661983, +d1775eb9d8898a9f66c28bb92b648c3174caec18,,,, +d1184939e06dbc3b495c883c53b684c6d6aa9e48,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477669 +d1f58798db460996501f224fff6cceada08f59f9,http://pdfs.semanticscholar.org/d1f5/8798db460996501f224fff6cceada08f59f9.pdf,,,https://www.base-search.net/Record/fbecc46e223bba0d9f59521acb84a78488bbde1783da614b7f26af0046189b1d +d115c4a66d765fef596b0b171febca334cea15b5,http://pdfs.semanticscholar.org/d115/c4a66d765fef596b0b171febca334cea15b5.pdf,,https://doi.org/10.1007/978-3-319-48680-2_31,http://csvision.swan.ac.uk/uploads/Site/Publication/acivs16jd.pdf +d1dd80d77655876fb45b9420fe72444c303b219e,,,https://doi.org/10.1109/FG.2011.5771371, +d122d66c51606a8157a461b9d7eb8b6af3d819b0,http://pdfs.semanticscholar.org/d122/d66c51606a8157a461b9d7eb8b6af3d819b0.pdf,,,http://ijariie.com/AdminUploadPdf/Interpretation_and_Recognition_of_Dynamic_Facial_Movement_from_the_Image_Or_Video_ijariie6240.pdf +d142e74c6a7457e77237cf2a3ded4e20f8894e1a,http://pdfs.semanticscholar.org/d142/e74c6a7457e77237cf2a3ded4e20f8894e1a.pdf,,,http://airccj.org/CSCP/vol7/csit76404.pdf +d12bea587989fc78b47584470fd8f689b6ab81d2,,,https://doi.org/10.1109/TIP.2013.2246523, +d1bd956a8523629ed4e2533b01272f22cea534c6,,,https://doi.org/10.1016/j.patrec.2010.01.021, +d1082eff91e8009bf2ce933ac87649c686205195,http://epubs.surrey.ac.uk/807279/1/ML_Akyuz_Windeatt_Raymond.pdf,,https://doi.org/10.1007/s10994-014-5477-5, +d1959ba4637739dcc6cc6995e10fd41fd6604713,http://pdfs.semanticscholar.org/d195/9ba4637739dcc6cc6995e10fd41fd6604713.pdf,,,http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10689&context=theses +d1881993c446ea693bbf7f7d6e750798bf958900,http://pdfs.semanticscholar.org/d188/1993c446ea693bbf7f7d6e750798bf958900.pdf,,,https://arxiv.org/pdf/1706.04488v1.pdf +d18cca5e90884020e748e7fe2d13398d3cbd14fb,,,, +d11d0151618987ce00a88ceda55d35f0bb89122e,,,, +d60e3eef429ed2a51bbd806125fa31f5bea072a4,,,https://doi.org/10.1109/HIS.2013.6920481, +d6e3bd948aae43f7654ea1d9e89d88f20d8cf25f,,,https://doi.org/10.1109/ACPR.2013.98, +d6cf3cab269877c58a16be011b74e07838d957c2,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0162.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206830 +d61578468d267c2d50672077918c1cda9b91429b,http://pdfs.semanticscholar.org/d615/78468d267c2d50672077918c1cda9b91429b.pdf,,,http://ijcsmc.com/docs/papers/September2014/V3I9201452.pdf +d687fa99586a9ad229284229f20a157ba2d41aea,http://pdfs.semanticscholar.org/d687/fa99586a9ad229284229f20a157ba2d41aea.pdf,,,http://file.scirp.org/pdf/JILSA_2013052209085035.pdf +d6687d30a264974de234c48ac25616a112736f61,,,, +d691440030394c2e00a2ab47aba4f8b5fca5f25a,,,https://doi.org/10.1109/ICIP.2016.7532921, +d647099e571f9af3a1762f895fd8c99760a3916e,http://cbim.rutgers.edu/dmdocuments/CVPR10_Peng_Yang.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539978 +d6bdc70d259b38bbeb3a78db064232b4b4acc88f,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.27 +d6a9ea9b40a7377c91c705f4c7f206a669a9eea2,http://pdfs.semanticscholar.org/d6a9/ea9b40a7377c91c705f4c7f206a669a9eea2.pdf,,,https://www.base-search.net/Record/896c745aa5c994a4220032c0e15e0c3900c3d5edfa64e874781acea070176566 +d63bd06340dd35590a22222509e455c49165ee13,,,https://doi.org/10.1109/IJCNN.2016.7727234, +d6ca3dc01de060871839d5536e8112b551a7f9ff,https://arxiv.org/pdf/1802.08310v1.pdf,,https://doi.org/10.1109/BigData.2017.8258154,http://arxiv.org/abs/1802.08310 +d671a210990f67eba9b2d3dda8c2cb91575b4a7a,http://pdfs.semanticscholar.org/d671/a210990f67eba9b2d3dda8c2cb91575b4a7a.pdf,,,http://www.cvc.uab.es/~petia/2008/Piero%20cvcrd'10PierluigiCasale.pdf +d6a5eb4377e2a67420778eab61b5a89046307bae,,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2014.37 +d61e794ec22a4d4882181da17316438b5b24890f,http://pdfs.semanticscholar.org/d61e/794ec22a4d4882181da17316438b5b24890f.pdf,,,http://www4.comp.polyu.edu.hk/~csajaykr/myhome/papers/ICDP2016.pdf +d628aabf1a666a875e77c3d3fee857cd25891947,,,https://doi.org/10.1109/SMC.2016.7844663, +d65b82b862cf1dbba3dee6541358f69849004f30,http://pdfs.semanticscholar.org/d65b/82b862cf1dbba3dee6541358f69849004f30.pdf,,https://doi.org/10.1016/j.cviu.2010.12.008,https://ibug.doc.ic.ac.uk/media/uploads/documents/2_5d_egm_cviu.pdf +d6102a7ddb19a185019fd2112d2f29d9258f6dec,http://pdfs.semanticscholar.org/d610/2a7ddb19a185019fd2112d2f29d9258f6dec.pdf,,https://doi.org/10.24963/ijcai.2017/520,http://www.ijcai.org/proceedings/2017/0520.pdf +d6791b98353aa113d79f6fb96335aa6c7ea3b759,,,https://doi.org/10.1109/TNNLS.2017.2648122, +d6bfa9026a563ca109d088bdb0252ccf33b76bc6,http://pdfs.semanticscholar.org/d6bf/a9026a563ca109d088bdb0252ccf33b76bc6.pdf,,,http://www.cs.berkeley.edu/~akar/IITK_website/cs676/project/report.pdf +d67dcaf6e44afd30c5602172c4eec1e484fc7fb7,http://pdfs.semanticscholar.org/d67d/caf6e44afd30c5602172c4eec1e484fc7fb7.pdf,,https://doi.org/10.1007/978-3-642-17277-9_8,https://www.researchgate.net/profile/Amnart_Petpon/publication/220844647_Illumination_Normalization_for_Robust_Face_Recognition_Using_Discrete_Wavelet_Transform/links/09e41508e3554471ac000000.pdf +d6c7092111a8619ed7a6b01b00c5f75949f137bf,http://pdfs.semanticscholar.org/d6c7/092111a8619ed7a6b01b00c5f75949f137bf.pdf,,,http://www.ijcsi.org/papers/IJCSI-10-1-3-9-14.pdf +d68dbb71b34dfe98dee0680198a23d3b53056394,http://pdfs.semanticscholar.org/d68d/bb71b34dfe98dee0680198a23d3b53056394.pdf,,,http://cvrr.ucsd.edu/publications/2015/Martin_CVPRW_WiCV_2015.pdf +d6639263381c929ebc579a541045a85aa21680f8,,,, +d6fb606e538763282e3942a5fb45c696ba38aee6,https://pdfs.semanticscholar.org/d6fb/606e538763282e3942a5fb45c696ba38aee6.pdf,,,http://web4.cs.ucl.ac.uk/uclic/people/n.berthouze/KleinsmithBerthouze12.pdf +bcee40c25e8819955263b89a433c735f82755a03,http://pdfs.semanticscholar.org/bcee/40c25e8819955263b89a433c735f82755a03.pdf,,https://doi.org/10.1007/978-3-319-20681-3_48,https://kt54.host.cs.st-andrews.ac.uk/Papers/hci2015.pdf +bcf2710d46941695e421226372397c9544994214,,,https://doi.org/10.1109/ICNC.2015.7378076, +bc704680b5032eadf78c4e49f548ba14040965bf,http://pdfs.semanticscholar.org/ccbc/c676546a43cd4b714f0c85cbd493f9c61396.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.44 +bc66685acc64fa3c425c0ee6c443d3fa87db7364,,,https://doi.org/10.1109/TMM.2013.2279658, +bccb35704cdd3f2765b1a3f0296d1bff3be019c1,,,https://doi.org/10.1109/ICMLA.2016.0145, +bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,https://arxiv.org/pdf/1801.08329v1.pdf,,,http://arxiv.org/abs/1801.08329 +bcead1a92744e76c38caaa13159de4abfb81b1d0,,,https://doi.org/10.1109/ICIP.2014.7025310, +bcc172a1051be261afacdd5313619881cbe0f676,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002197.pdf,,https://doi.org/10.1109/ICASSP.2017.7952546, +bcfeac1e5c31d83f1ed92a0783501244dde5a471,http://pdfs.semanticscholar.org/bcfe/ac1e5c31d83f1ed92a0783501244dde5a471.pdf,,https://doi.org/10.1016/j.patcog.2012.06.024,http://mi.eng.cam.ac.uk/~cipolla/publications/article/2013-PR-face-recognition.pdf +bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,http://pdfs.semanticscholar.org/bc12/715a1ddf1a540dab06bf3ac4f3a32a26b135.pdf,,,http://arxiv.org/abs/1704.02781 +bc9ae4b87888202bfa174ec4e8caee1a087ab994,,,, +bc910ca355277359130da841a589a36446616262,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_Conditional_High-Order_Boltzmann_ICCV_2015_paper.pdf,,https://doi.org/10.1109/ICCV.2015.485,http://openaccess.thecvf.com/content_iccv_2015/papers/Huang_Conditional_High-Order_Boltzmann_ICCV_2015_paper.pdf +bcd162862b6d3a56b474039b2588a8f948d59fe0,,,, +bcc5cbbb540ee66dc8b9a3453b506e895d8395de,http://pdfs.semanticscholar.org/bcc5/cbbb540ee66dc8b9a3453b506e895d8395de.pdf,,https://doi.org/10.1007/978-3-319-16817-3_20,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/518.pdf +bc871497626afb469d25c4975aa657159269aefe,http://ir.ia.ac.cn/bitstream/173211/10560/1/Adaptive%20Learning%20Algorithm%20for%20Pattern%20Classification.pdf,,, +bc955487a0b8d2fae3f2f44320389a12ae28f0f5,,,, +bc2852fa0a002e683aad3fb0db5523d1190d0ca5,http://pdfs.semanticscholar.org/bc28/52fa0a002e683aad3fb0db5523d1190d0ca5.pdf,,,https://arxiv.org/pdf/1702.04455v1.pdf +bcb79e3ac69508060c8cba105f6a8622eb929ab1,,,, +bc866c2ced533252f29cf2111dd71a6d1724bd49,http://pdfs.semanticscholar.org/bc86/6c2ced533252f29cf2111dd71a6d1724bd49.pdf,,https://doi.org/10.3390/s141019561,http://ftp.ncbi.nlm.nih.gov/pub/pmc/d2/6d/sensors-14-19561.PMC4239878.pdf +bcb99d5150d792001a7d33031a3bd1b77bea706b,http://pdfs.semanticscholar.org/bcb9/9d5150d792001a7d33031a3bd1b77bea706b.pdf,,https://doi.org/10.1016/j.patrec.2016.01.002,http://arxiv.org/pdf/1509.05366v1.pdf +bc98027b331c090448492eb9e0b9721e812fac84,http://pdfs.semanticscholar.org/bc98/027b331c090448492eb9e0b9721e812fac84.pdf,,,http://file.scirp.org/pdf/JILSA20120400003_32881282.pdf +bca39960ba46dc3193defe0b286ee0bea4424041,,,https://doi.org/10.1016/j.patrec.2009.05.018, +bc6a7390135bf127b93b90a21b1fdebbfb56ad30,,,https://doi.org/10.1109/TIFS.2017.2766039, +bcac3a870501c5510df80c2a5631f371f2f6f74a,http://pdfs.semanticscholar.org/bcac/3a870501c5510df80c2a5631f371f2f6f74a.pdf,,,https://eng.ucmerced.edu/people/cyang35/CVPR13/cvpr13_hallucination_v12.pdf +ae73f771d0e429a74b04a6784b1b46dfe98f53e4,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.326 +aed321909bb87c81121c841b21d31509d6c78f69,http://pdfs.semanticscholar.org/aed3/21909bb87c81121c841b21d31509d6c78f69.pdf,,,http://www.sersc.org/journals/IJHIT/vol9_no11_2016/22.pdf +aecb15e3e9191eb135bdba2426967bfac3f068db,http://www.cvip.uofl.edu/wwwcvip/research/publications/Pub_Pdf/2010/3D%20Face%20Rcovery%20From%20Intensities_2010.pdf,,https://doi.org/10.1109/ICIP.2010.5648990,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2010/3D%20Face%20Rcovery%20From%20Intensities_2010.pdf +ae936628e78db4edb8e66853f59433b8cc83594f,http://pdfs.semanticscholar.org/ae93/6628e78db4edb8e66853f59433b8cc83594f.pdf,,,http://arxiv.org/abs/1406.4444 +ae0765ebdffffd6e6cc33c7705df33b7e8478627,http://pdfs.semanticscholar.org/ae07/65ebdffffd6e6cc33c7705df33b7e8478627.pdf,,,https://arxiv.org/pdf/1711.08624v1.pdf +ae425a2654a1064c2eda29b08a492c8d5aab27a2,,,https://doi.org/10.23919/MVA.2017.7986845, +aefc7c708269b874182a5c877fb6dae06da210d4,http://pdfs.semanticscholar.org/f6f4/60d4a4a5b4c077ab3ac7a972f52af17a4241.pdf,,,http://papers.nips.cc/paper/4730-deep-learning-of-invariant-features-via-simulated-fixations-in-video +aebb9649bc38e878baef082b518fa68f5cda23a5,http://pdfs.semanticscholar.org/aebb/9649bc38e878baef082b518fa68f5cda23a5.pdf,,,http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp563-568.pdf +ae89e464576209b1082da38e0cee7aeabd03d932,,,https://doi.org/10.1007/s00521-005-0017-7, +aece472ba64007f2e86300cc3486c84597f02ec7,http://doras.dcu.ie/439/1/ieee_smap_2007.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SMAP.2007.43 +ae7604b1840753e9c2e1ab7a97e02f91a9d81860,,,https://doi.org/10.1007/s10586-016-0535-3, +ae5bb02599244d6d88c4fe466a7fdd80aeb91af4,http://pdfs.semanticscholar.org/ae5b/b02599244d6d88c4fe466a7fdd80aeb91af4.pdf,,,http://www.cs.colostate.edu/evalfacerec/papers/iccv784public.pdf +ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9,http://pdfs.semanticscholar.org/ae18/ccb35a1a5d7b22f2a5760f706b1c11bf39a9.pdf,,,http://cecas.clemson.edu/~stb/students/willimon_phd_dissertation.pdf +aeeea6eec2f063c006c13be865cec0c350244e5b,http://pdfs.semanticscholar.org/aeee/a6eec2f063c006c13be865cec0c350244e5b.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/EMOTION-2010-ValstarPantic-CAMERA.pdf +aeb36fac7516753a14c3c690f352de78e70f8c6e,,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2013.13 +ae9257f3be9f815db8d72819332372ac59c1316b,http://pdfs.semanticscholar.org/ae92/57f3be9f815db8d72819332372ac59c1316b.pdf,,,https://www.researchgate.net/profile/Jeffrey_Cohn/publication/7868102_Deciphering_the_enigmatic_face_the_importance_of_facial_dynamics_in_interpreting_subtle_facial_expressions/links/09e4151226a7a402c6000000.pdf +ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,http://hal.inria.fr/docs/00/87/00/59/PDF/Ozerov_et_al_ICIP_2013.pdf,,https://doi.org/10.1109/ICIP.2013.6738618,http://hal.archives-ouvertes.fr/docs/00/87/00/59/PDF/Ozerov_et_al_ICIP_2013.pdf +ae1de0359f4ed53918824271c888b7b36b8a5d41,http://pdfs.semanticscholar.org/ae1d/e0359f4ed53918824271c888b7b36b8a5d41.pdf,,,http://www.cs.rug.nl/~alext/PAPERS/VISAPP13/finpaint.pdf +ae4390873485c9432899977499c3bf17886fa149,http://pdfs.semanticscholar.org/ae43/90873485c9432899977499c3bf17886fa149.pdf,,,http://airccj.org/CSCP/vol6/csit65804.pdf +ae753fd46a744725424690d22d0d00fb05e53350,http://pdfs.semanticscholar.org/ae75/3fd46a744725424690d22d0d00fb05e53350.pdf,,,http://chenlab.ece.cornell.edu/people/Andy/publications/ECCV2012_ClothingAttributes.pdf +aea977a3b5556957ed5fb3ef21685ee84921eaa3,,,https://doi.org/10.1007/s12193-017-0256-9, +aed6af12148b43e4a24ee6e2bc3604ca59bd99a5,,,https://doi.org/10.1109/TIP.2017.2717505, +aea4128ba18689ff1af27b90c111bbd34013f8d5,http://pdfs.semanticscholar.org/aea4/128ba18689ff1af27b90c111bbd34013f8d5.pdf,,https://doi.org/10.1007/978-3-319-10605-2_40,http://ss.sysu.edu.cn/~py/papers/ECCV-KSP.pdf +ae8240095c9cca2c395f173fece2f46277b94929,,,https://doi.org/10.1016/j.neucom.2017.06.045, +ae4e2c81c8a8354c93c4b21442c26773352935dd,http://pdfs.semanticscholar.org/ae4e/2c81c8a8354c93c4b21442c26773352935dd.pdf,,https://doi.org/10.1016/j.patrec.2014.12.003,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2015/1_A_Iosifidis_PRL_onKELM.pdf +ae85c822c6aec8b0f67762c625a73a5d08f5060d,http://tamaraberg.com/papers/yamaguchi2014retrieving.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2353624 +ae62c0a4b74ce672e8103dbf6d344d82c59f216c,,,, +ae96fc36c89e5c6c3c433c1163c25db1359e13ea,,,https://doi.org/10.1007/s10489-013-0485-x, +ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf,http://pdfs.semanticscholar.org/ae71/f69f1db840e0aa17f8c814316f0bd0f6fbbf.pdf,,https://doi.org/10.1016/j.chb.2017.02.029,http://orca-mwe.cf.ac.uk/98713/1/Fagerstr%C3%B8m_etal_2017.pdf +d8c9bad8d07ae4196027dfb8343b9d9aefb130ff,,,https://doi.org/10.1007/s00138-017-0848-0, +d893f75206b122973cdbf2532f506912ccd6fbe0,http://pdfs.semanticscholar.org/d893/f75206b122973cdbf2532f506912ccd6fbe0.pdf,,,http://www.enggjournals.com/ijcse/doc/IJCSE11-03-01-125.pdf +d861c658db2fd03558f44c265c328b53e492383a,http://www.cs.washington.edu/research/VACE/Multimedia/Jia_EMBC2014_final.pdf,,https://doi.org/10.1109/EMBC.2014.6943699,http://homes.cs.washington.edu/~shapiro/Multimedia/Jia_EMBC2014_final.pdf +d85813b58e10a35703df3a8acf41aafe4b6e1dd2,,,, +d8b99eada922bd2ce4e20dc09c61a0e3cc640a62,,,https://doi.org/10.1109/IJCNN.2014.6889675, +d878a67b2ef6a0a5dec72db15291f12419040ab1,,,https://doi.org/10.1109/IPTA.2016.7821012, +d84a48f7d242d73b32a9286f9b148f5575acf227,http://pdfs.semanticscholar.org/d84a/48f7d242d73b32a9286f9b148f5575acf227.pdf,,,https://arxiv.org/pdf/1801.08390v1.pdf +d8e5d94c3c8688f0ca0ee656c79847c7df04c77d,,,https://doi.org/10.1007/s12193-015-0187-2, +d8f0bda19a345fac81a1d560d7db73f2b4868836,http://pdfs.semanticscholar.org/d8f0/bda19a345fac81a1d560d7db73f2b4868836.pdf,,,http://www.ee.ucr.edu/~amitrc/THESIS/thesis-hasan.pdf +d82b93f848d5442f82154a6011d26df8a9cd00e7,http://pdfs.semanticscholar.org/d82b/93f848d5442f82154a6011d26df8a9cd00e7.pdf,,,http://interscience.in/ijic_vol1iss3/62-67.pdf +d8f72f50cbe6e0fa4025bc990b7e8a52cc6bbad9,,,, +d8722ffbca906a685abe57f3b7b9c1b542adfa0c,http://pdfs.semanticscholar.org/d872/2ffbca906a685abe57f3b7b9c1b542adfa0c.pdf,,,http://mattijs.tijsepijs.nl/publications/ghijsen04.pdf +d8896861126b7fd5d2ceb6fed8505a6dff83414f,http://pdfs.semanticscholar.org/d889/6861126b7fd5d2ceb6fed8505a6dff83414f.pdf,,https://doi.org/10.5220/0005308303920399,http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/VISAPP_2015_Rotation.pdf +d855791bc23b4aa8e751d6a4e2ae7f5566a991e8,,,,http://doi.acm.org/10.1145/3012941 +d83d2fb5403c823287f5889b44c1971f049a1c93,http://pdfs.semanticscholar.org/d83d/2fb5403c823287f5889b44c1971f049a1c93.pdf,,,https://www2.bc.edu/~russeljm/publications/Sick%20Face%202013.pdf +d8288322f32ee4501cef5a9b667e5bb79ebd7018,,,https://doi.org/10.1016/j.patcog.2011.12.018, +d8b568392970b68794a55c090c4dd2d7f90909d2,http://pdfs.semanticscholar.org/d8b5/68392970b68794a55c090c4dd2d7f90909d2.pdf,,,http://www.ece.cmu.edu/research/publications/2005/CMU-ECE-2005-007.pdf +d83ae5926b05894fcda0bc89bdc621e4f21272da,http://pdfs.semanticscholar.org/d83a/e5926b05894fcda0bc89bdc621e4f21272da.pdf,,,http://www.cs.utexas.edu/~grauman/research/theses/MS-JoshKelle2017.pdf +d84e3254e3c4f4c17484643b8c3abdf5b0dbb761,,,, +d8bf148899f09a0aad18a196ce729384a4464e2b,http://pdfs.semanticscholar.org/d8bf/148899f09a0aad18a196ce729384a4464e2b.pdf,,,https://rucore.libraries.rutgers.edu/rutgers-lib/34083/PDF/1/ +d83db03f8eae6dba91ce044c640c6b35ccf541f3,,,, +d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e,http://pdfs.semanticscholar.org/d850/aff9d10a01ad5f1d8a1b489fbb3998d0d80e.pdf,,,http://vision.ics.uci.edu/papers/Ghiasi_THESIS_2016/Ghiasi_THESIS_2016.pdf +d8c9ce0bd5e4b6d1465402a760845e23af5ac259,,,https://doi.org/10.1109/ITSC.2015.380, +ab7923968660d04434271559c4634790dc68c58e,,,https://doi.org/10.1109/ICIP.2015.7351111, +abf0aa1d8869d87f4ef62e2da058ccfb4bf46d18,,,https://doi.org/10.1007/s11042-015-2536-2, +ab8f9a6bd8f582501c6b41c0e7179546e21c5e91,http://pdfs.semanticscholar.org/ab8f/9a6bd8f582501c6b41c0e7179546e21c5e91.pdf,,,http://www.soe.ucsc.edu/~milanfar/publications/journal/FaceVerification_LFW_Sep8.pdf +abfba1dc9a9991897acd0e0d3d4ef9d4aef4151c,,,https://doi.org/10.1109/FUZZ-IEEE.2014.6891864, +ab68837d09986c592dcab7d08ee6dfb40e02916f,,,https://doi.org/10.1007/978-3-319-11289-3_23, +abce06a96a7c3095bfc36eed8779d89263769b85,http://ai.pku.edu.cn/aiwebsite/research.files/collected%20papers%20-%20others/Analyzing%20Asymmetry%20Biometric%20in%20the%20Frequency%20Domain%20for%20Face%20Recognition.pdf,,https://doi.org/10.1109/ICASSP.2005.1415564,https://pdfs.semanticscholar.org/abce/06a96a7c3095bfc36eed8779d89263769b85.pdf +aba9acb4a607071af10684f2cfbdefa0507a4e9a,,,https://doi.org/10.1016/j.patcog.2016.06.010, +aba770a7c45e82b2f9de6ea2a12738722566a149,http://pure.qub.ac.uk/portal/files/49719304/Face_Recognition_in_the_Scrambled.pdf,,https://doi.org/10.1109/TIFS.2016.2555792,https://pure.qub.ac.uk/portal/files/49719304/Face_Recognition_in_the_Scrambled.pdf +ab0f9bc35b777eaefff735cb0dd0663f0c34ad31,http://faculty.ucmerced.edu/snewsam/papers/Yang_ICPR14_SemiSupervisedLearning.pdf,,https://doi.org/10.1109/ICPR.2014.696, +abb396490ba8b112f10fbb20a0a8ce69737cd492,http://pdfs.semanticscholar.org/abb3/96490ba8b112f10fbb20a0a8ce69737cd492.pdf,,https://doi.org/10.1007/978-3-642-01793-3_13,https://www.researchgate.net/profile/Zhiming_Liu10/publication/221383547_Robust_Face_Recognition_Using_Color_Information/links/542c32850cf27e39fa9338cf.pdf +ab703224e3d6718bc28f7b9987eb6a5e5cce3b01,,,https://doi.org/10.1631/FITEE.1500235, +abac0fa75281c9a0690bf67586280ed145682422,http://pdfs.semanticscholar.org/abac/0fa75281c9a0690bf67586280ed145682422.pdf,,,http://www.cs.columbia.edu/~neeraj/base/papers/nk_phd_thesis2011.pdf +abe4c1d6b964c4f5443b0334a44f0b03dd1909f4,,,https://doi.org/10.1109/IJCNN.2017.7965950, +ab6776f500ed1ab23b7789599f3a6153cdac84f7,http://pdfs.semanticscholar.org/ab67/76f500ed1ab23b7789599f3a6153cdac84f7.pdf,,,http://www.ijser.org/researchpaper/A-Survey-on-Various-Facial-Expression-Techniques.pdf +ab2c07c9867243fad2d66fa6aeabfb780433f319,,,,http://doi.acm.org/10.1145/2967878.2967887 +ab540c5be9f7ef688d3cd76765fcb794b92531fb,,,, +ab87dfccb1818bdf0b41d732da1f9335b43b74ae,http://pdfs.semanticscholar.org/ab87/dfccb1818bdf0b41d732da1f9335b43b74ae.pdf,,,http://arxiv.org/pdf/1406.1943.pdf +abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72,http://pdfs.semanticscholar.org/abc1/ef570bb2d7ea92cbe69e101eefa9a53e1d72.pdf,,https://doi.org/10.3166/ria.31.11-39,https://perso.telecom-paristech.fr/bloch/papers/RIA2017_YANG.pdf +ab00ea1aa2f81fbe139b4632ec3682dfb7312ef0,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6835994 +abbc6dcbd032ff80e0535850f1bc27c4610b0d45,,,https://doi.org/10.1109/ICIP.2015.7350983, +ab1dfcd96654af0bf6e805ffa2de0f55a73c025d,http://pdfs.semanticscholar.org/ab1d/fcd96654af0bf6e805ffa2de0f55a73c025d.pdf,,https://doi.org/10.1016/j.dsp.2010.03.004,http://www.researchgate.net/profile/Zahir_Hussain3/publication/223065453_Higher_order_orthogonal_moments_for_invariant_facial_expression_recognition/links/53ed365b0cf26b9b7dc4644c.pdf +abeda55a7be0bbe25a25139fb9a3d823215d7536,http://pdfs.semanticscholar.org/abed/a55a7be0bbe25a25139fb9a3d823215d7536.pdf,,,http://arxiv.org/abs/1604.08164 +abf573864b8fbc0f1c491ca60b60527a3e75f0f5,,,https://doi.org/10.1007/s11042-014-2204-y, +ab427f0c7d4b0eb22c045392107509451165b2ba,http://cs.uky.edu/~zach/assets/papers/li2012learning.pdf,,https://doi.org/10.1109/ICIP.2012.6467426, +ab1900b5d7cf3317d17193e9327d57b97e24d2fc,http://pdfs.semanticscholar.org/ab19/00b5d7cf3317d17193e9327d57b97e24d2fc.pdf,,https://doi.org/10.1016/j.sigpro.2011.04.020,http://nlab.ee.tokushima-u.ac.jp/nishio/Pub-Data/PAPER/P088.pdf?origin=publication_detail +ab133af7ec2726f712dd049213e6a27449d28c78,,,, +ab8fb278db4405f7db08fa59404d9dd22d38bc83,http://pdfs.semanticscholar.org/ab8f/b278db4405f7db08fa59404d9dd22d38bc83.pdf,,,http://vision.unige.ch/publications/postscript/2011/Soleymani_thesis_2011.pdf +e52272f92fa553687f1ac068605f1de929efafc2,,,https://doi.org/10.1016/j.engappai.2017.06.003, +e5737ffc4e74374b0c799b65afdbf0304ff344cb,http://pdfs.semanticscholar.org/e573/7ffc4e74374b0c799b65afdbf0304ff344cb.pdf,,https://doi.org/10.1016/j.patcog.2013.05.009,http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/pr13eye.pdf +e585dc6c810264d9f07e38c412379734a920714e,,,,http://doi.acm.org/10.1145/2531923.2531926 +e51f1ee5535017e10a5f77100ff892509ec6b221,,,https://doi.org/10.1109/ICSMC.2007.4413825, +e50ee29ca12028cb903cd498bb9cacd41bd5ce3a,http://pdfs.semanticscholar.org/e50e/e29ca12028cb903cd498bb9cacd41bd5ce3a.pdf,,https://doi.org/10.1016/j.patcog.2014.07.013,http://www.researchgate.net/profile/Jaeik_Jo/publication/266563101_Single-view-based_3D_facial_reconstruction_method_robust_against_pose_variations/links/543c56be0cf20af5cfbf5c7c.pdf +e510f2412999399149d8635a83eca89c338a99a1,http://pdfs.semanticscholar.org/e510/f2412999399149d8635a83eca89c338a99a1.pdf,,,http://www.sciencepubco.com/index.php/JACST/article/download/484/414 +e57108607d94aa158eb22ae50540ae6080e48d4b,,,,http://doi.ieeecomputersociety.org/10.1109/ICMI.2002.1167051 +e577484e5c3ecc6f073faf124468c8ae2f827a0f,,,, +e59813940c5c83b1ce63f3f451d03d34d2f68082,http://pdfs.semanticscholar.org/e598/13940c5c83b1ce63f3f451d03d34d2f68082.pdf,,https://doi.org/10.1155/2008/542918,http://ro.uow.edu.au/cgi/viewcontent.cgi?article=9458&context=infopapers +e5b301ee349ba8e96ea6c71782295c4f06be6c31,http://pdfs.semanticscholar.org/e5b3/01ee349ba8e96ea6c71782295c4f06be6c31.pdf,,,http://research.microsoft.com/pubs/196173/paper44_hotos13_han_philipose.pdf +e5e9e7cae71b13aabb30f6fe1f97cd153400be6c,,,, +e5c687c8c84f1cdb9d9fbc9b6ff7518ff4d71056,,,https://doi.org/10.1109/TNN.2011.2170220, +e51e94cc3c74adf0cccfac3a8035a10016ce8a3b,,,, +e57ce6244ec696ff9aa42d6af7f09eed176153a8,,,https://doi.org/10.1109/ICIP.2015.7351449, +e5342233141a1d3858ed99ccd8ca0fead519f58b,http://pdfs.semanticscholar.org/e534/2233141a1d3858ed99ccd8ca0fead519f58b.pdf,,,http://ijarcsee.org/index.php/IJARCSEE/article/download/324/290 +e50ec6b6d1c189edc127eb403c41a64f34fc0a6c,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890187 +e52be9a083e621d9ed29c8e9914451a6a327ff59,http://pdfs.semanticscholar.org/e52b/e9a083e621d9ed29c8e9914451a6a327ff59.pdf,,,https://pure.uva.nl/ws/files/955352/147507_salah10affective.pdf +e51927b125640bfc47bbf1aa00c3c026748c75bd,,,,http://doi.acm.org/10.1145/2647868.2655015 +e55f7250f3b8ee722814f8809620a851c31e5b0e,,,https://doi.org/10.3182/20130902-3-CN-3020.00030, +e5fbaeddbf98c667ec7c5575bda2158a36b55409,,,,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.25 +e57e1dce81e888eb07054923602e35bfb5ef3eb8,,,https://doi.org/10.1109/IROS.2012.6385544, +e546572f8205570de4518bcf8d0345465e51d7a0,,,https://doi.org/10.1109/ICIP.2015.7351318, +e5799fd239531644ad9270f49a3961d7540ce358,http://chenlab.ece.cornell.edu/people/ruogu/publications/ICIP13_Kinship.pdf,,https://doi.org/10.1109/ICIP.2013.6738614,http://users.cis.fiu.edu/~rfang/publications/ICIP13_Kinship.pdf +e5eb7fa8c9a812d402facfe8e4672670541ed108,http://pdfs.semanticscholar.org/e5eb/7fa8c9a812d402facfe8e4672670541ed108.pdf,,https://doi.org/10.4304/jmm.6.5.404-415,http://ojs.academypublisher.com/index.php/jmm/article/download/jmm0605404415/3824 +e27b2cabdfdd6bf3ffb3ebce1b4c55adb1e80c8f,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.225 +e27c92255d7ccd1860b5fb71c5b1277c1648ed1e,http://pdfs.semanticscholar.org/e27c/92255d7ccd1860b5fb71c5b1277c1648ed1e.pdf,,https://doi.org/10.1016/j.patrec.2017.10.027,http://arxiv.org/abs/1710.10695 +e2f91b21f3755914c193a546ba8718acf81c845b,,,, +e23bc755f7e161d524fcc33b7d927d67dd4a5e76,,,, +e200c3f2849d56e08056484f3b6183aa43c0f13a,http://pdfs.semanticscholar.org/e200/c3f2849d56e08056484f3b6183aa43c0f13a.pdf,,https://doi.org/10.1016/j.patcog.2013.07.017,http://www.cnel.ufl.edu/files/1376330205.pdf +e26a7e343fe109e2b52d1eeea5b02dae836f3502,,,https://doi.org/10.1109/ACCESS.2017.2676238, +e2b3aae594035e58f72125e313e92c7c4cc9d5bb,,,https://doi.org/10.1007/s00138-014-0597-2, +e2d265f606cd25f1fd72e5ee8b8f4c5127b764df,http://pdfs.semanticscholar.org/e2d2/65f606cd25f1fd72e5ee8b8f4c5127b764df.pdf,,,https://arxiv.org/pdf/1802.08362v1.pdf +e2f78d2f75a807b89a13115a206da4661361fa71,,,https://doi.org/10.1109/TMM.2017.2696825, +f45d6a7bdb6741242da6192d18c97ac39e6308db,http://media.cs.tsinghua.edu.cn/~imagevision/papers/%5B2008%5D%5Bfg%5DPerson-Specific%20Face%20Recognition%20in%20Unconstrained%20Environments%20a%20Combination%20of%20Offline%20and%20Online%20Learning.pdf,,https://doi.org/10.1109/AFGR.2008.4813353,http://media.cs.tsinghua.edu.cn/~ahz/papers/%5B2008%5D%5Bfg%5DPerson-Specific%20Face%20Recognition%20in%20Unconstrained%20Environments%20a%20Combination%20of%20Offline%20and%20Online%20Learning.pdf +f437b3884a9e5fab66740ca2a6f1f3a5724385ea,http://pdfs.semanticscholar.org/f437/b3884a9e5fab66740ca2a6f1f3a5724385ea.pdf,,https://doi.org/10.1109/ICIP.2002.1037956,http://anadolu.sdsu.edu/abut/biometrics/darpa.pdf +f41d7f891a1fc4569fe2df66e67f277a1adef229,,,https://doi.org/10.1109/ICIP.2015.7351552, +f4411787688ca40466ee059ec64bf56d746733c1,,,https://doi.org/10.1007/s12652-012-0107-1, +f402e088dddfaad7667bd4def26092d05f247206,,,https://doi.org/10.1109/TITS.2015.2475721, +f43eeb578e0ca48abfd43397bbd15825f94302e4,http://pdfs.semanticscholar.org/f43e/eb578e0ca48abfd43397bbd15825f94302e4.pdf,,,http://www.med.upenn.edu/uep/user_documents/dfd5.pdf +f4465454811acb2021a46d84d94fc88e2dda00a6,,,https://doi.org/10.1007/s11042-007-0184-x, +f4f9697f2519f1fe725ee7e3788119ed217dca34,http://pdfs.semanticscholar.org/f4f9/697f2519f1fe725ee7e3788119ed217dca34.pdf,,,https://www.cc.gatech.edu/~irfan/p/2017-Deeb-Swihart-SELLCSCI.pdf +f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0,http://pdfs.semanticscholar.org/f4c0/1fc79c7ead67899f6fe7b79dd1ad249f71b0.pdf,,https://doi.org/10.1016/j.cviu.2010.12.006,http://www.researchgate.net/profile/Shervin_Arashloo/publication/220135084_Pose-invariant_face_recognition_by_matching_on_multi-resolution_MRFs_linked_by_supercoupling_transform/links/00b4953bd3b1f3b991000000.pdf +f4373f5631329f77d85182ec2df6730cbd4686a9,http://pdfs.semanticscholar.org/f437/3f5631329f77d85182ec2df6730cbd4686a9.pdf,,,https://arxiv.org/pdf/1712.01661v1.pdf +f4210309f29d4bbfea9642ecadfb6cf9581ccec7,http://pdfs.semanticscholar.org/f421/0309f29d4bbfea9642ecadfb6cf9581ccec7.pdf,,,http://mediatum.ub.tum.de/doc/1238173/130433.pdf +f41e80f941a45b5880f4c88e5bf721872db3400f,,,,http://doi.ieeecomputersociety.org/10.1109/IC3.2017.8284359 +f4c32b8bcf753033835c14a66e9c04b06bf086a3,,,, +f4fc77660665ae58993065c6a336367e9a6c85f7,,,https://doi.org/10.1016/j.patcog.2012.12.009, +f47404424270f6a20ba1ba8c2211adfba032f405,http://pdfs.semanticscholar.org/f474/04424270f6a20ba1ba8c2211adfba032f405.pdf,,,http://www.ijetae.com/files/Volume2Issue5/IJETAE_0512_41.pdf +f4ebbeb77249d1136c355f5bae30f02961b9a359,http://pdfs.semanticscholar.org/f4eb/beb77249d1136c355f5bae30f02961b9a359.pdf,,,http://www.cs.cmu.edu/afs/cs.cmu.edu/usr/mitchell/ftp/pubs/fgvc.pdf +f4aed1314b2d38fd8f1b9d2bc154295bbd45f523,http://pdfs.semanticscholar.org/f4ae/d1314b2d38fd8f1b9d2bc154295bbd45f523.pdf,,,https://arxiv.org/pdf/1709.04744v1.pdf +f4003cbbff3b3d008aa64c76fed163c10d9c68bd,,,https://doi.org/10.1016/j.neucom.2016.08.055, +f449c85b8ba5fa67ead341c7ad4ec396f4ab2dd6,,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2015.2448547 +f423d8be5e13d9ef979debd3baf0a1b2e1d3682f,,,https://doi.org/10.1016/j.imavis.2015.11.004, +f486624efa750d718a670fba3c7f21b1c84ebaeb,,,https://doi.org/10.1109/TCYB.2016.2581861, +f49aebe58d30241f12c1d7d9f4e04b6e524d7a45,,,https://doi.org/10.1109/ICB.2016.7550074, +f3fcaae2ea3e998395a1443c87544f203890ae15,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553791.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553791 +f3015be0f9dbc1a55b6f3dc388d97bb566ff94fe,http://pdfs.semanticscholar.org/f301/5be0f9dbc1a55b6f3dc388d97bb566ff94fe.pdf,,https://doi.org/10.1007/978-3-642-35136-5_5,http://www.researchgate.net/profile/Xiaohua_Xie/publication/256453652_A_Study_on_the_Effective_Approach_to_Illumination-Invariant_Face_Recognition_Based_on_a_Single_Image/links/00b49522ae66fb26e3000000.pdf +f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7,http://pdfs.semanticscholar.org/f3d9/e347eadcf0d21cb0e92710bc906b22f2b3e7.pdf,,,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2016/09.13.14.02/doc/nose_pose_camera_ready.pdf?choice=briefTitleAuthorMisc&languagebutton=en&metadatarepository=sid.inpe.br/sibgrapi/2016/09.13.14.02.37&requiredmirror=sid.inpe.br/banon/2001/03.30.15.38.24&searchmirror=sid.inpe.br/banon/2001/03.30.15.38.24&searchsite=sibgrapi.sid.inpe.br:80 +f3f77b803b375f0c63971b59d0906cb700ea24ed,http://pdfs.semanticscholar.org/f3f7/7b803b375f0c63971b59d0906cb700ea24ed.pdf,,,http://www.aece.ro/archive/2009/3/2009_3_12.pdf +f355e54ca94a2d8bbc598e06e414a876eb62ef99,http://pdfs.semanticscholar.org/f355/e54ca94a2d8bbc598e06e414a876eb62ef99.pdf,,https://doi.org/10.1016/j.imavis.2016.09.001,https://arxiv.org/pdf/1409.5114v2.pdf +f345a05353f5784b64eefb7785661cc0be519521,,,, +f3e005e567f16fa55c54b4c1b17f4538d799c7de,,,, +f3b84a03985de3890b400b68e2a92c0a00afd9d0,,,, +f35a493afa78a671b9d2392c69642dcc3dd2cdc2,http://pdfs.semanticscholar.org/f35a/493afa78a671b9d2392c69642dcc3dd2cdc2.pdf,,https://doi.org/10.1007/978-3-319-46493-0_16,https://arxiv.org/pdf/1607.07262v1.pdf +ebedc841a2c1b3a9ab7357de833101648281ff0e,http://pdfs.semanticscholar.org/ebed/c841a2c1b3a9ab7357de833101648281ff0e.pdf,,https://doi.org/10.1016/j.imavis.2015.01.004,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885615000116-main.pdf +eb3c45e78acee0824c8f7d997c6104d74e7213a8,,,,http://doi.ieeecomputersociety.org/10.1109/iThings/CPSCom.2011.116 +eb38f20eaa1b849cabec99815883390f84daf279,,,https://doi.org/10.1016/j.patcog.2008.11.026, +eb526174fa071345ff7b1fad1fad240cd943a6d7,http://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf,,https://doi.org/10.1049/iet-bmt.2017.0079,http://publications.idiap.ch/downloads/papers/2017/Mohammadi_IETBIOMETRICS_2017.pdf +eb9867f5efc98d3203ce1037f9a8814b0d15d0aa,,,https://doi.org/10.1109/ICIP.2014.7026008, +eb6ee56e085ebf473da990d032a4249437a3e462,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,,https://doi.org/10.1109/APSIPA.2017.8282221, +ebb1c29145d31c4afa3c9be7f023155832776cd3,http://pdfs.semanticscholar.org/ebb1/c29145d31c4afa3c9be7f023155832776cd3.pdf,,,http://cg.cs.tsinghua.edu.cn/people/~Yongjin/PLOS_ONE_2014.pdf +eb309b11fd2b8d28cbaf7a72a49df14630ed696a,,,, +eb9312458f84a366e98bd0a2265747aaed40b1a6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0400473.pdf,,https://doi.org/10.1109/ICIP.2007.4380057, +eb716dd3dbd0f04e6d89f1703b9975cad62ffb09,http://pdfs.semanticscholar.org/eb71/6dd3dbd0f04e6d89f1703b9975cad62ffb09.pdf,,,http://www.cs.utexas.edu/~grauman/research/theses/PHD-YongJaeLee.pdf +eb02daee558e483427ebcf5d1f142f6443a6de6b,,,,http://doi.acm.org/10.1145/2911996.2912019 +ebc2a3e8a510c625353637e8e8f07bd34410228f,,,https://doi.org/10.1109/TIP.2015.2502485, +ebabd1f7bc0274fec88a3dabaf115d3e226f198f,http://pdfs.semanticscholar.org/ebab/d1f7bc0274fec88a3dabaf115d3e226f198f.pdf,,https://doi.org/10.1007/978-3-319-54526-4_12,http://slsp.kaist.ac.kr/paperdata/Driver%20drowsiness%20detection.pdf +eb5c1e526fe2d17778c68f60c874c3da0129fabd,,,https://doi.org/10.1109/VCIP.2015.7457856, +ebce3f5c1801511de9e2e14465482260ba5933cc,,,,http://doi.acm.org/10.1145/3126594.3126640 +ebb9d53668205c5797045ba130df18842e3eadef,http://pdfs.semanticscholar.org/ebb9/d53668205c5797045ba130df18842e3eadef.pdf,,,https://arxiv.org/pdf/1710.08518v1.pdf +eb240521d008d582af37f0497f12c51f4bab16c8,,,https://doi.org/10.1023/A:1012365806338, +ebb3d5c70bedf2287f9b26ac0031004f8f617b97,,,https://doi.org/10.1109/MSP.2017.2764116, +ebeb0546efeab2be404c41a94f586c9107952bc3,,,,http://doi.acm.org/10.1145/2733373.2806290 +eb86c6642040944abc997848a32e631d1f25a2f5,,,, +eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5a,http://pdfs.semanticscholar.org/eb7b/387a3a006609b89ca5ed0e6b3a1d5ecb5e5a.pdf,,, +ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,http://pdfs.semanticscholar.org/f727/b58b84ccd8e7ed51a90ccc913d704b451191.pdf,,,https://arxiv.org/pdf/1403.6888v2.pdf +eb9bcf9e3f8856c92e7720b63b7e846df37de0c3,,,, +ebfdb4842c69177b65022f00d3d038d645f3260b,,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2006.154 +eb48170a6e1e020f002a6a0a808c1934d5c760b8,,,, +ebf204e0a3e137b6c24e271b0d55fa49a6c52b41,http://pdfs.semanticscholar.org/ebf2/04e0a3e137b6c24e271b0d55fa49a6c52b41.pdf,,,http://liu.diva-portal.org/smash/get/diva2:1071737/FULLTEXT01.pdf +eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,,,https://doi.org/10.1109/ICPR.2016.7899719, +c71f36c9376d444075de15b1102b4974481be84d,http://pdfs.semanticscholar.org/c71f/36c9376d444075de15b1102b4974481be84d.pdf,,,http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538649 +c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e,http://pdfs.semanticscholar.org/c7e4/c7be0d37013de07b6d829a3bf73e1b95ad4e.pdf,,,http://airccse.org/journal/jma/5513ijma05.pdf +c7cd490e43ee4ff81e8f86f790063695369c2830,,,https://doi.org/10.1109/VCIP.2016.7805472, +c7b58827b2d07ece676271ae0425e369e3bd2310,,,https://doi.org/10.1142/S0218001415560042, +c74aba9a096379b3dbe1ff95e7af5db45c0fd680,http://pdfs.semanticscholar.org/c74a/ba9a096379b3dbe1ff95e7af5db45c0fd680.pdf,,,http://www3.cis.fiu.edu/conferences/mipr09/Uploaded_Paper/39_Khademi_Neuro-fuzzy%20analysis%20of%20FAUs2.pdf +c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,http://pdfs.semanticscholar.org/c7c5/f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c.pdf,,,http://aisel.aisnet.org/pacis2014/325 +c7685fdbee2d96ef056a89ab4fa43df5aeae7ba7,http://staff.science.uva.nl/~nicu/publications/SMC04.pdf,,https://doi.org/10.1109/ICSMC.2004.1398369, +c7f752eea91bf5495a4f6e6a67f14800ec246d08,http://pdfs.semanticscholar.org/c7f7/52eea91bf5495a4f6e6a67f14800ec246d08.pdf,,,http://studentnet.cs.manchester.ac.uk/resources/library/thesis_abstracts/MSc15/FullText/Rodrigues-CrefedaFaviola-diss.pdf +c758b9c82b603904ba8806e6193c5fefa57e9613,http://pdfs.semanticscholar.org/c758/b9c82b603904ba8806e6193c5fefa57e9613.pdf,,https://doi.org/10.1007/978-3-319-49409-8_40,http://adas.cvc.uab.es/task-cv2016/papers/0014.pdf +c73199c180e5c01a5d53c19b8e079b0f6d07d618,,,, +c7c03324833ba262eeaada0349afa1b5990c1ea7,http://pdfs.semanticscholar.org/c7c0/3324833ba262eeaada0349afa1b5990c1ea7.pdf,,https://doi.org/10.1007/978-3-319-16634-6_31,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop14/pdffiles/w14-p7.pdf +c78fdd080df01fff400a32fb4cc932621926021f,http://pdfs.semanticscholar.org/c78f/dd080df01fff400a32fb4cc932621926021f.pdf,,,http://www.jsoftware.us/index.php?a=show&c=index&catid=86&id=1261&m=content +c74b1643a108939c6ba42ae4de55cb05b2191be5,http://pdfs.semanticscholar.org/c74b/1643a108939c6ba42ae4de55cb05b2191be5.pdf,,,http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/WangZK-ICARN-2008.pdf +c0723e0e154a33faa6ff959d084aebf07770ffaf,http://pdfs.semanticscholar.org/c072/3e0e154a33faa6ff959d084aebf07770ffaf.pdf,,https://doi.org/10.1007/978-3-540-76390-1_76,http://www.murase.nuie.nagoya-u.ac.jp/seikaweb/paper/2007/E07-conference-ttakahashi-2.pdf +c03f48e211ac81c3867c0e787bea3192fcfe323e,http://pdfs.semanticscholar.org/c03f/48e211ac81c3867c0e787bea3192fcfe323e.pdf,,https://doi.org/10.21437/Interspeech.2016-1071,http://www.isca-speech.org/archive/Interspeech_2016/pdfs/1071.PDF +c043f8924717a3023a869777d4c9bee33e607fb5,http://pdfs.semanticscholar.org/c043/f8924717a3023a869777d4c9bee33e607fb5.pdf,,,ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/28/13/PLoS_One_2010_Mar_22_5(3)_e9790.tar.gz +c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,http://pdfs.semanticscholar.org/c03e/01717b2d93f04cce9b5fd2dcfd1143bcc180.pdf,,https://doi.org/10.1007/978-3-642-37331-2_48,http://vipl.ict.ac.cn/sites/default/files/papers/files/2012_ACCV_xwzhao_Locality-constrained%20Active%20Appearance%20Model.pdf +c051ea35a0d490c00e2b3b0a42eb6b7682d8e947,,,, +c0270a57ad78da6c3982a4034ffa195b9e932fda,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.131 +c0f9fae059745e50658d9605bd8875fc3a2d0b4b,,,,http://doi.ieeecomputersociety.org/10.1109/BIGCOMP.2014.6741422 +c0ff7dc0d575658bf402719c12b676a34271dfcd,http://pdfs.semanticscholar.org/c0ff/7dc0d575658bf402719c12b676a34271dfcd.pdf,,https://doi.org/10.1007/978-3-540-74260-9_36,http://www.cs.toronto.edu/~aliyari/papers/ICIAR.pdf +c02847a04a99a5a6e784ab580907278ee3c12653,http://pdfs.semanticscholar.org/c028/47a04a99a5a6e784ab580907278ee3c12653.pdf,,,http://web.engr.oregonstate.edu/~sinisa/students/Theses/MS_ChenyuWang.pdf +c035c193eed5d72c7f187f0bc880a17d217dada0,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf,,,http://www.cse.msu.edu/~rossarun/pubs/ChenLGGP_SPIE2013.pdf +c0d1d9a585ef961f1c8e6a1e922822811181615c,http://pdfs.semanticscholar.org/c0d1/d9a585ef961f1c8e6a1e922822811181615c.pdf,,,https://www.sciencedirect.com/science/article/pii/S0925492717300835 +c0945953506a3d531331caf6c2b2a6d027e319f0,,,https://doi.org/10.1002/cav.49, +c06b13d0ec3f5c43e2782cd22542588e233733c3,,,https://doi.org/10.1016/j.cviu.2016.02.001, +c0a8c0e6ccf9882969ba0eda0b898affa015437b,http://stanford.edu/~verroios/papers/waldo.pdf,,,http://ilpubs.stanford.edu:8090/1137/1/ERMultiItemTechRep.pdf +c0cdaeccff78f49f4604a6d263dc6eb1bb8707d5,http://pdfs.semanticscholar.org/c0cd/aeccff78f49f4604a6d263dc6eb1bb8707d5.pdf,,,http://worldcomp-proceedings.com/proc/p2016/IPC6061.pdf +c0b02be66a5a1907e8cfb8117de50f80b90a65a8,,,,http://doi.acm.org/10.1145/2808492.2808523 +c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,http://pdfs.semanticscholar.org/c00f/402b9cfc3f8dd2c74d6b3552acbd1f358301.pdf,,,http://arxiv.org/pdf/1608.00207v1.pdf +c089c7d8d1413b54f59fc410d88e215902e51638,http://nlpr-web.ia.ac.cn/2011papers/gjhy/gh122.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995681 +c04843867ebbba4c3cac4febf9c500ba28ae66fc,,,, +c068263bb09968fe69c053906279b16532b778f4,http://www.researchgate.net/profile/Mahdi_Bejani/publication/257435889_Audiovisual_emotion_recognition_using_ANOVA_feature_selection_method_and_multi-classifier_neural_networks/links/0c960529aee6234edd000000.pdf,,https://doi.org/10.1007/s00521-012-1228-3,https://www.researchgate.net/profile/Mahdi_Bejani/publication/257435889_Audiovisual_emotion_recognition_using_ANOVA_feature_selection_method_and_multi-classifier_neural_networks/links/0c960529aee6234edd000000.pdf +c0ee89dc2dad76147780f96294de9e421348c1f4,http://pdfs.semanticscholar.org/c0ee/89dc2dad76147780f96294de9e421348c1f4.pdf,,,https://peerj.com/articles/1502.pdf +c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774,http://pdfs.semanticscholar.org/c0ca/6b992cbe46ea3003f4e9b48f4ef57e5fb774.pdf,,,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/Paper%2036%20(Supplementary).pdf +c007ee91452b6c99c351b149cb8673f945bf0dd4,,,, +c0d5c3aab87d6e8dd3241db1d931470c15b9e39d,http://pdfs.semanticscholar.org/facb/edfe90956c720f70aab14767b5e25dcc6478.pdf,,https://doi.org/10.1016/j.cviu.2016.03.013,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01301.pdf +c05441dd1bc418fb912a6fafa84c0659a6850bf0,http://pdfs.semanticscholar.org/c054/41dd1bc418fb912a6fafa84c0659a6850bf0.pdf,,https://doi.org/10.1049/iet-cvi.2014.0200,http://digital.cs.usu.edu/~xqi/Promotion/IETCV.FR.14.pdf +ee46e391288dd3bc3e71cb47715a83dacb9d2907,,,, +ee72673c0394d0fff2b3d8372d8a9401867b8e13,,,, +ee897a827bfc03e4682fb77018c27ec29a063d2c,,,, +eee8a37a12506ff5df72c402ccc3d59216321346,http://pdfs.semanticscholar.org/eee8/a37a12506ff5df72c402ccc3d59216321346.pdf,,,http://nl.ijs.si/isjt08/IS-LTC08-Proceedings.pdf +eefecac463ebfc0694b9831e842b574f3954fed6,,,,http://doi.ieeecomputersociety.org/10.1109/SNPD.2013.15 +eedb2c34c36017b9c5aa6ce8bff2ab152e713cee,,,https://doi.org/10.1007/s00521-008-0225-z, +ee6e4324123b99d94a7a23d9bddf026f39903693,,,https://doi.org/10.1109/ISMICT.2013.6521709, +ee5fe44871f5e36998a2fdfb20a511374cdd3877,,,, +ee03ed3a8a9a8b6bf35dda832c34160e62893f92,,,, +eef432868e85b95a7d9d9c7b8c461637052318ca,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.236 +eef0be751e9aca7776d83f25c8ffdc1a18201fd8,,,https://doi.org/10.1016/j.patcog.2016.10.015, +ee6b503ab512a293e3088fdd7a1c893a77902acb,http://pdfs.semanticscholar.org/ee6b/503ab512a293e3088fdd7a1c893a77902acb.pdf,,,http://ijcai.org/papers13/Papers/IJCAI13-407.pdf +ee2217f9d22d6a18aaf97f05768035c38305d1fa,,,https://doi.org/10.1109/APSIPA.2015.7415501, +ee18e29a2b998eddb7f6663bb07891bfc7262248,http://or.nsfc.gov.cn/bitstream/00001903-5/13750/1/1000007562815.pdf,,https://doi.org/10.1109/TNN.2011.2152852,https://www.researchgate.net/profile/Zizhu_Fan/publication/224242477_Local_Linear_Discriminant_Analysis_Framework_Using_Sample_Neighbors/links/0fcfd50a0e920c6043000000.pdf +eef725f4130ee326954e84e5f4ddf487da63c94e,,,, +eeb6d084f9906c53ec8da8c34583105ab5ab8284,http://pdfs.semanticscholar.org/eeb6/d084f9906c53ec8da8c34583105ab5ab8284.pdf,,,http://cdn.intechweb.org/pdfs/6067.pdf +eefe8bd6384f565d2e42881f1f9a468d1672989d,,,, +ee7093e91466b81d13f4d6933bcee48e4ee63a16,http://pdfs.semanticscholar.org/ee70/93e91466b81d13f4d6933bcee48e4ee63a16.pdf,,https://doi.org/10.1007/978-3-319-16634-6_44,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop16/pdffiles/w16-p10.pdf +ee461d060da58d6053d2f4988b54eff8655ecede,http://pdfs.semanticscholar.org/ee46/1d060da58d6053d2f4988b54eff8655ecede.pdf,,https://doi.org/10.1016/S0031-3203(98)00066-1,http://www.dcs.qmw.ac.uk/~sgg/papers/pr98.ps.gz +eed05da2c0ab7d2b0a3c665a5368efa81b185099,,,https://doi.org/10.1016/j.neucom.2014.05.020, +eefb8768f60c17d76fe156b55b8a00555eb40f4d,http://pdfs.semanticscholar.org/eefb/8768f60c17d76fe156b55b8a00555eb40f4d.pdf,,,http://www.cameronmusco.com/personal_site/pdfs/subspace_scores.pdf +eeaeca3a601d65d2d978bf3da43ab42fa5e08ed2,,,https://doi.org/10.1109/FSKD.2016.7603398, +eefdb69ac2c461e7791603d0f8c02ff3c8600adc,,,https://doi.org/10.1016/j.jvcir.2017.02.007, +ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,,,https://doi.org/10.1109/LSP.2016.2602538, +eed1dd2a5959647896e73d129272cb7c3a2e145c,http://s3.amazonaws.com/kvaccaro.com/documents/UIST16.pdf,,,http://doi.acm.org/10.1145/2984511.2984573 +ee92d36d72075048a7c8b2af5cc1720c7bace6dd,http://pdfs.semanticscholar.org/ee92/d36d72075048a7c8b2af5cc1720c7bace6dd.pdf,,https://doi.org/10.1109/ICIP.2002.1039897,http://amp.ece.cmu.edu/Publication/Deepak/icip2002_deepak.pdf +ee418372b0038bd3b8ae82bd1518d5c01a33a7ec,http://pdfs.semanticscholar.org/ee41/8372b0038bd3b8ae82bd1518d5c01a33a7ec.pdf,,,http://cseweb.ucsd.edu/~jmcauley/cse255/reports/wi15/Yuen_Kevan.pdf +ee744ea13a0bbeba5de85ca3c75c9749054835e7,,,, +ee6f9a0f6eb5b615a36acc1444f4df1359cc2a63,,,, +c94b3a05f6f41d015d524169972ae8fd52871b67,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Yan_The_Fastest_Deformable_2014_CVPR_paper.pdf,,,http://www.cbsr.ia.ac.cn/users/jjyan/Fastest_DPM.pdf +c9424d64b12a4abe0af201e7b641409e182babab,http://pdfs.semanticscholar.org/c942/4d64b12a4abe0af201e7b641409e182babab.pdf,,https://doi.org/10.3390/a9040088,http://www.mdpi.com/1999-4893/9/4/88/pdf +c91103e6612fa7e664ccbc3ed1b0b5deac865b02,http://pdfs.semanticscholar.org/c911/03e6612fa7e664ccbc3ed1b0b5deac865b02.pdf,,https://doi.org/10.1007/978-3-642-24085-0_60,http://www.researchgate.net/profile/Roberto_DAmbrosio/publication/221356704_Automatic_Facial_Expression_Recognition_Using_Statistical-Like_Moments/links/0912f50ebffed591b4000000.pdf +c903af0d69edacf8d1bff3bfd85b9470f6c4c243,http://pdfs.semanticscholar.org/c903/af0d69edacf8d1bff3bfd85b9470f6c4c243.pdf,,https://doi.org/10.1016/j.patcog.2016.03.018,http://www.cs.tut.fi/~iosifidi/files/journal/2016_PR_NystromNPT.pdf?dl=0 +c95cd36779fcbe45e3831ffcd3314e19c85defc5,https://arxiv.org/pdf/1703.04853v1.pdf,,https://doi.org/10.1109/ICIP.2017.8296448,http://arxiv.org/abs/1703.04853 +c98def5f9d0c6ae519fe0aeebe5378f65b14e496,,,https://doi.org/10.1117/12.2064730, +c92e36689ef561df726a7ae861d9c166c3934908,,,https://doi.org/10.1109/ICPR.2016.7900140, +c9e955cb9709f16faeb0c840f4dae92eb875450a,http://pdfs.semanticscholar.org/c9e9/55cb9709f16faeb0c840f4dae92eb875450a.pdf,,https://doi.org/10.1007/11552499_38,http://www.peihuali.org/36870334.pdf +c907104680ad53bdc673f2648d713e4d26335825,,,,http://doi.acm.org/10.1145/3077286.3077304 +c9c2de3628be7e249722b12911bebad84b567ce6,,,https://doi.org/10.1016/j.patcog.2017.06.028, +c9be1001706bcdd8b35fa9cae733c592e90c7ec3,,,,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.54 +c92bb26238f6e30196b0c4a737d8847e61cfb7d4,http://pdfs.semanticscholar.org/c92b/b26238f6e30196b0c4a737d8847e61cfb7d4.pdf,,,https://arxiv.org/pdf/1803.01555v1.pdf +c9527df51e63b56c61cbf16f83d1a3c5c2c82499,,,,http://doi.acm.org/10.1145/2072298.2072311 +c980443ca996402de4b5e5424f872acda0368831,http://homepage.tudelft.nl/19j49/Publications_files/Final_CVPR10.pdf,,https://doi.org/10.1109/CVPRW.2010.5543270,http://homepage.tudelft.nl/19j49/Software_files/Final_CVPR10.pdf +c9832564d5dc601113b4d80e5a05ede6fee9f7dd,,,https://doi.org/10.1109/ISBA.2017.7947687, +c9f588d295437009994ddaabb64fd4e4c499b294,http://pdfs.semanticscholar.org/c9f5/88d295437009994ddaabb64fd4e4c499b294.pdf,,,http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/download/7043/6741 +c92da368a6a886211dc759fe7b1b777a64d8b682,http://pdfs.semanticscholar.org/c92d/a368a6a886211dc759fe7b1b777a64d8b682.pdf,,,http://www.ijsat.com/admin/download/11-01-02-017.pdf +c90427085909029afd2af01d1967e80b78e01b88,,,https://doi.org/10.1109/ACCESS.2017.2753830, +fc1e37fb16006b62848def92a51434fc74a2431a,http://pdfs.semanticscholar.org/fc1e/37fb16006b62848def92a51434fc74a2431a.pdf,,,https://arxiv.org/pdf/1803.08450v1.pdf +fcd3d557863e71dd5ce8bcf918adbe22ec59e62f,,,,http://doi.acm.org/10.1145/2502081.2502148 +fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192,http://pdfs.semanticscholar.org/fc5b/db98ff97581d7c1e5eb2d24d3f10714aa192.pdf,,,http://arxiv.org/abs/1503.07274 +fc20149dfdff5fdf020647b57e8a09c06e11434b,http://pdfs.semanticscholar.org/fc20/149dfdff5fdf020647b57e8a09c06e11434b.pdf,,,http://dl.acm.org/citation.cfm?id=1314538 +fc516a492cf09aaf1d319c8ff112c77cfb55a0e5,http://pdfs.semanticscholar.org/fc51/6a492cf09aaf1d319c8ff112c77cfb55a0e5.pdf,,,http://ceur-ws.org/Vol-1957/CoSeCiVi17_paper_2.pdf +fcbec158e6a4ace3d4311b26195482b8388f0ee9,http://pdfs.semanticscholar.org/fcbe/c158e6a4ace3d4311b26195482b8388f0ee9.pdf,,,http://www.cfar.umd.edu/~shaohua/papers/zhou05hivp.pdf +fcd945eb1cf5f87eefa444660dbdf94f5bb0092e,,,, +fcd3d69b418d56ae6800a421c8b89ef363418665,http://pdfs.semanticscholar.org/fcd3/d69b418d56ae6800a421c8b89ef363418665.pdf,,,http://bilgin.esme.org/Portals/0/PhD/EffectsOfAgingOverFacialFeatureAnalysisAndFaceRecognition.pdf +fcd77f3ca6b40aad6edbd1dab9681d201f85f365,http://pdfs.semanticscholar.org/fcd7/7f3ca6b40aad6edbd1dab9681d201f85f365.pdf,,,https://homes.cs.washington.edu/~yoshi/papers/theses/miro-enev-dissertation.pdf +fc00d634797c5378ca9a441c2d4ce88761d3c7eb,,,, +fc798314994bf94d1cde8d615ba4d5e61b6268b6,http://pdfs.semanticscholar.org/fc79/8314994bf94d1cde8d615ba4d5e61b6268b6.pdf,,,http://www.cse.msu.edu/biometrics/Publications/Thesis/UnsangFaceRec_PhD09.pdf +fc45e44dd50915957e498186618f7a499953c6be,http://www.pami.sjtu.edu.cn/people/wangxh/Gabor%20Filter/Quaternion%20Correlation%20Filters%20for%20Face%20Recognition%20in%20Wavelet%20Domain.pdf,,https://doi.org/10.1109/ICASSP.2005.1415347,http://www.perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BIOMET/Face/Kumar/Quaternion01415347.pdf +fc23a386c2189f221b25dbd0bb34fcd26ccf60fa,http://pdfs.semanticscholar.org/fc23/a386c2189f221b25dbd0bb34fcd26ccf60fa.pdf,,https://doi.org/10.1007/978-3-642-15555-0_12,http://www.cs.sfu.ca/~mori/research/papers/wang_eccv10.pdf +fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f,http://pdfs.semanticscholar.org/fc68/c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f.pdf,,https://doi.org/10.1007/978-3-319-18422-7_52,http://kio.eti.pg.gda.pl/publications/files/BDAS2015_preprint.pdf +fc8990088e0f1f017540900bc3f5a4996192ff05,,,https://doi.org/10.1109/ICIP.2017.8296314, +fcb97ede372c5bddde7a61924ac2fd29788c82ce,,,https://doi.org/10.1109/TSMCC.2012.2192727, +fc2bad3544c7c8dc7cd182f54888baf99ed75e53,http://pdfs.semanticscholar.org/fc2b/ad3544c7c8dc7cd182f54888baf99ed75e53.pdf,,https://doi.org/10.1007/978-3-642-40602-7_32,http://lrs.icg.tugraz.at/pubs/koestinger_dagm_13.pdf +fc5538e60952f86fff22571c334a403619c742c3,,http://ieeexplore.ieee.org/document/6460202/,, +fc970d7694b1d2438dd101a146d2e4f29087963e,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.86 +fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46,http://pdfs.semanticscholar.org/fcf8/bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46.pdf,,,http://arxiv.org/abs/1102.2748 +fcbf808bdf140442cddf0710defb2766c2d25c30,http://pdfs.semanticscholar.org/fcbf/808bdf140442cddf0710defb2766c2d25c30.pdf,,,https://arxiv.org/pdf/1605.03324v1.pdf +fcb276874cd932c8f6204f767157420500c64bd0,,,https://doi.org/10.1007/978-3-319-04960-1_3, +fd4ac1da699885f71970588f84316589b7d8317b,http://pdfs.semanticscholar.org/fd4a/c1da699885f71970588f84316589b7d8317b.pdf,,,http://arxiv.org/abs/1405.0601 +fdf533eeb1306ba418b09210387833bdf27bb756,http://pdfs.semanticscholar.org/fdf5/33eeb1306ba418b09210387833bdf27bb756.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2012_Romera-ParedesABP12.pdf +fdfaf46910012c7cdf72bba12e802a318b5bef5a,http://pdfs.semanticscholar.org/fdfa/f46910012c7cdf72bba12e802a318b5bef5a.pdf,,,http://www.ee.ucr.edu/~amitrc/publications/spm2015.pdf +fdd19fee07f2404952e629cc7f7ffaac14febe01,,,https://doi.org/10.1109/CISP-BMEI.2016.7852754, +fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f,http://pdfs.semanticscholar.org/fd9f/eb21b3d1fab470ff82e3f03efce6a0e67a1f.pdf,,,http://essay.utwente.nl/71570/1/Hillerstrom_MA_SCS.pdf +fdca08416bdadda91ae977db7d503e8610dd744f,http://pdfs.semanticscholar.org/fdca/08416bdadda91ae977db7d503e8610dd744f.pdf,,,http://cms.ieis.tue.nl/ksera/documents/KSERA_D3.1.pdf +fdbc602a749ef070a7ac11c78dc8d468c0b60154,,,https://doi.org/10.1049/iet-ipr.2015.0519, +fdd80b2139ff1b9becb17badd053b9a4a6a243f2,,,, +fd126e36337999640a0b623611b5fec8de390d46,,,, +fd96432675911a702b8a4ce857b7c8619498bf9f,http://pdfs.semanticscholar.org/fd96/432675911a702b8a4ce857b7c8619498bf9f.pdf,,,https://arxiv.org/pdf/1707.09364v1.pdf +fd7b6c77b46420c27725757553fcd1fb24ea29a8,http://pdfs.semanticscholar.org/fd7b/6c77b46420c27725757553fcd1fb24ea29a8.pdf,,,http://www.cs.dartmouth.edu/reports/TR2013-726.pdf +fdb33141005ca1b208a725796732ab10a9c37d75,http://pdfs.semanticscholar.org/fdb3/3141005ca1b208a725796732ab10a9c37d75.pdf,,https://doi.org/10.1515/amcs-2016-0032,https://rua.ua.es/dspace/bitstream/10045/56228/1/2016_Pujol_etal_AMCS.pdf +fd60166c2619c0db5e5159a3dfe9068aa4f1b32f,,,, +fddca9e7d892a97073ada88eec39e03e44b8c46a,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.305 +fde0180735699ea31f6c001c71eae507848b190f,http://pdfs.semanticscholar.org/fde0/180735699ea31f6c001c71eae507848b190f.pdf,,,http://research.ijcaonline.org/volume76/number3/pxc3890645.pdf +fd649233d62bf43d589818fbb41295e2d0669aeb,,,, +fd615118fb290a8e3883e1f75390de8a6c68bfde,http://pdfs.semanticscholar.org/fd61/5118fb290a8e3883e1f75390de8a6c68bfde.pdf,,https://doi.org/10.1007/978-3-642-33712-3_4,http://pages.cs.wisc.edu/~lizhang/projects/joint-align/SmithECCV12.pdf +fd38163654a0551ed7f4e442851508106e6105d9,,,https://doi.org/10.1109/ICNSC.2008.4525311, +f28d549feffd414f38147d5e0460883fb487e2d3,,,https://doi.org/10.1007/s10462-011-9273-3, +f20ed84abcb1223f351a576ef10dfda9f277326b,,,, +f24e379e942e134d41c4acec444ecf02b9d0d3a9,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf,,,http://www.cis.temple.edu/~latecki/Papers/faceImageMV2012.pdf +f2b13946d42a50fa36a2c6d20d28de2234aba3b4,http://npl.mcgill.ca/Papers/Adaptive%20Facial%20Expression%20Recognition%20Using%20Inter-modal%20top-down%20context.pdf,,,http://doi.acm.org/10.1145/2070481.2070488 +f2c30594d917ea915028668bc2a481371a72a14d,http://pdfs.semanticscholar.org/f2c3/0594d917ea915028668bc2a481371a72a14d.pdf,,,http://grail.cs.washington.edu/theses/SimonPhD.pdf +f25aa838fb44087668206bf3d556d31ffd75235d,,,,http://doi.acm.org/10.1145/2911996.2912038 +f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,http://pdfs.semanticscholar.org/f2ad/9b43bac8c2bae9dea694f6a4e44c760e63da.pdf,,https://doi.org/10.1007/11427445_22,http://cs.ndsu.edu/~dxu/publications/MultiIlluminationStudy.pdf +f2e9494d0dca9fb6b274107032781d435a508de6,http://pdfs.semanticscholar.org/f2e9/494d0dca9fb6b274107032781d435a508de6.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/1800/umi-umd-1782.pdf?isAllowed=y&sequence=1 +f2d15482e7055dd5f54cf4a8a8f60d8e75af7edf,,,https://doi.org/10.1109/ICIP.2011.6115736, +f2c568fe945e5743635c13fe5535af157b1903d1,http://pdfs.semanticscholar.org/f2c5/68fe945e5743635c13fe5535af157b1903d1.pdf,,, +f2cc459ada3abd9d8aa82e92710676973aeff275,,http://ieeexplore.ieee.org/document/5967185/,, +f27fd2a1bc229c773238f1912db94991b8bf389a,,,https://doi.org/10.1109/IVCNZ.2016.7804414, +f2abeb1a8dd32afb9a78856db38e115046afeb34,,,, +f26097a1a479fb6f32b27a93f8f32609cfe30fdc,http://pdfs.semanticscholar.org/f260/97a1a479fb6f32b27a93f8f32609cfe30fdc.pdf,,https://doi.org/10.1016/j.patcog.2016.10.034,http://arxiv.org/abs/1610.04957 +f28ef0a61a45a8b9cd03aa0ca81863e1d54a31d1,,,https://doi.org/10.1109/VCIP.2016.7805483, +f2004fff215a17ac132310882610ddafe25ba153,,,,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.124 +f2f731feb9d376ac50b3347a93e73a0d6528cdd9,,,, +f214bcc6ecc3309e2efefdc21062441328ff6081,http://pdfs.semanticscholar.org/f214/bcc6ecc3309e2efefdc21062441328ff6081.pdf,,https://doi.org/10.1016/j.csl.2012.12.005,http://www.mee.tcd.ie/~sigmedia/pmwiki/uploads/Main.Publications/kelly_sv_score_age_quality.pdf +f231e9408da20498ba51d93459b3fcdb7b666efb,,,https://doi.org/10.1016/j.micpro.2012.01.002, +f5149fb6b455a73734f1252a96a9ce5caa95ae02,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhang_Low-Rank-Sparse_Subspace_Representation_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.317 +f5a95f857496db376d69f7ac844d1f56e3577b75,,,https://doi.org/10.1007/s12193-012-0107-7, +f5af4e9086b0c3aee942cb93ece5820bdc9c9748,http://pdfs.semanticscholar.org/f5af/4e9086b0c3aee942cb93ece5820bdc9c9748.pdf,,,http://doras.dcu.ie/594/1/thesis-saman.pdf +f5aee1529b98136194ef80961ba1a6de646645fe,http://pdfs.semanticscholar.org/f5ae/e1529b98136194ef80961ba1a6de646645fe.pdf,,,http://www.robots.ox.ac.uk/~vgg/publications/2013/Simonyan13c/simonyan13c.pdf +f510071fd7fdc6926e3958ebb85518bcfea17f89,,,, +f52efc206432a0cb860155c6d92c7bab962757de,http://pdfs.semanticscholar.org/f52e/fc206432a0cb860155c6d92c7bab962757de.pdf,,,http://www.metaverselab.org/pub/paper2/xiong_mugshot.pdf +f519723238701849f1160d5a9cedebd31017da89,http://pdfs.semanticscholar.org/f519/723238701849f1160d5a9cedebd31017da89.pdf,,,http://www.eurecom.fr/fr/publication/5023/download/sec-publi-5023.pdf +f531ce18befc03489f647560ad3e5639566b39dc,,,,http://doi.ieeecomputersociety.org/10.1109/ACOMP.2015.9 +f545b121b9612707339dfdc40eca32def5e60430,,,,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.33 +f58f30932e3464fc808e539897efa4ee4e7ac59f,,,https://doi.org/10.1109/DICTA.2016.7797023, +f557df59cd088ffb8e27506d8612d062407e96f4,,,https://doi.org/10.1007/s00521-014-1810-y, +f56c407f918cf89ffa2ec3c51c383d53510c10e1,,,, +f558af209dd4c48e4b2f551b01065a6435c3ef33,http://pdfs.semanticscholar.org/f558/af209dd4c48e4b2f551b01065a6435c3ef33.pdf,,,http://www.ijetcse.com/wp-content/plugins/ijetcse/file/upload/docx/574AN-ENHANCED-ATTRIBUTE-RERANKING-DESIGN-FOR-WEB-IMAGE-SEARCH-pdf.pdf +f5acfc4c017447ea94c9d9cb19a9f1fcd4aa51e6,,,, +e378ce25579f3676ca50c8f6454e92a886b9e4d7,http://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Robust_Video_Super-Resolution_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.274 +e35b09879a7df814b2be14d9102c4508e4db458b,http://pdfs.semanticscholar.org/e35b/09879a7df814b2be14d9102c4508e4db458b.pdf,,,https://arxiv.org/pdf/1310.4217.pdf +e3657ab4129a7570230ff25ae7fbaccb4ba9950c,http://pdfs.semanticscholar.org/e365/7ab4129a7570230ff25ae7fbaccb4ba9950c.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/final-tpami-rjive.pdf +e315959d6e806c8fbfc91f072c322fb26ce0862b,http://pdfs.semanticscholar.org/e315/959d6e806c8fbfc91f072c322fb26ce0862b.pdf,,,http://www.ijsce.org/attachments/File/Vol-1_Issue-6/F0333121611.pdf +e3a8f18e507d9f2b537ec3c3fcc1b874b8ccfc24,,,,http://doi.ieeecomputersociety.org/10.1109/MMUL.2016.27 +e39a0834122e08ba28e7b411db896d0fdbbad9ba,http://www.ece.ualberta.ca/~djoseph/publications/journal/TPAMI_2012.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.249 +e3a70f8ee84af6372b482c0b8b6e8e553dd0e1e5,,,, +e3bb83684817c7815f5005561a85c23942b1f46b,http://pdfs.semanticscholar.org/e3bb/83684817c7815f5005561a85c23942b1f46b.pdf,,,http://www.cedar.buffalo.edu/~govind/CSE717/papers/Face%20Verification%20using%20Correlation%20Filters.pdf +e30dc2abac4ecc48aa51863858f6f60c7afdf82a,http://pdfs.semanticscholar.org/e30d/c2abac4ecc48aa51863858f6f60c7afdf82a.pdf,,https://doi.org/10.5220/0004934405550562,http://users.ics.forth.gr/~ggian/publications/conferences/2014%20HealthInf%20Facial%20Signs%20and%20Psycho-physical%20Status%20Estimation%20for%20Well-being.pdf +e3e2c106ccbd668fb9fca851498c662add257036,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-et-al-Ensembles.pdf,,https://doi.org/10.1109/BTAS.2013.6712723,http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-et-al-Ensembles.pdf +e379e73e11868abb1728c3acdc77e2c51673eb0d,http://pdfs.semanticscholar.org/e379/e73e11868abb1728c3acdc77e2c51673eb0d.pdf,,,http://www.ri.cmu.edu/pub_files/pub4/gross_ralph_2005_1/gross_ralph_2005_1.pdf +e3a6e9ddbbfc4c5160082338d46808cea839848a,http://pdfs.semanticscholar.org/f5d0/2300271ab0f32f10bfbba5562c0fa83c5727.pdf,,https://doi.org/10.1007/978-3-319-46723-8_37,http://vision.stanford.edu/pdf/pusiol2016miccai.pdf +e3917d6935586b90baae18d938295e5b089b5c62,http://www.iti.gr/files/tip05tsalakanidou.pdf,,https://doi.org/10.1109/TIP.2004.840714, +e328d19027297ac796aae2470e438fe0bd334449,http://pdfs.semanticscholar.org/e328/d19027297ac796aae2470e438fe0bd334449.pdf,,https://doi.org/10.1007/978-3-319-54427-4_26,http://pesona.mmu.edu.my/~johnsee/research/papers/files/auto_accvw16.pdf +e3144f39f473e238374dd4005c8b83e19764ae9e,http://pdfs.semanticscholar.org/f42d/ca4a4426e5873a981712102aa961be34539a.pdf,,,http://arxiv.org/abs/1612.03777 +e309715b7865b9aa3027b7eb6fef9fb75a0cba28,,,, +cf4c1099bef189838877c8785812bc9baa5441ed,,,https://doi.org/10.1109/ICPR.2016.7899862, +cf98565a19ec05a63dbaf650660b7c3f72de7b2b,,,, +cf6c59d359466c41643017d2c212125aa0ee84b2,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552983 +cffebdf88e406c27b892857d1520cb2d7ccda573,http://pdfs.semanticscholar.org/cffe/bdf88e406c27b892857d1520cb2d7ccda573.pdf,,,http://www.cs.stanford.edu/people/asaxena/papers/ozan_sener_phdthesis_cornell_2016.pdf +cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2,https://www.computer.org/csdl/trans/ta/2017/03/07420600.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2535291 +cfd933f71f4a69625390819b7645598867900eab,http://pdfs.semanticscholar.org/cfd9/33f71f4a69625390819b7645598867900eab.pdf,,,http://www.ijteee.org/final-print/mar2015/Person-Authentication-Using-Face-And-Palm-Vein-A-Survey-Of-Recognition-And-Fusion-Techniques.pdf +cfdbcb796d028b073cdf7b91162384cd1c14e621,,,, +cf875336d5a196ce0981e2e2ae9602580f3f6243,http://pdfs.semanticscholar.org/cf87/5336d5a196ce0981e2e2ae9602580f3f6243.pdf,,,http://www.bartneck.de/wp-content/uploads/2008/02/affectivedesignreader01.pdf +cfd8c66e71e98410f564babeb1c5fd6f77182c55,http://pdfs.semanticscholar.org/cfd8/c66e71e98410f564babeb1c5fd6f77182c55.pdf,,,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/CoarseHeadPose.pdf +cf54a133c89f730adc5ea12c3ac646971120781c,http://pdfs.semanticscholar.org/cf54/a133c89f730adc5ea12c3ac646971120781c.pdf,,https://doi.org/10.1016/j.image.2016.11.003,https://web.cs.hacettepe.edu.tr/~erkut/publications/Learning-Dynamic-Saliency.pdf +cfbb2d32586b58f5681e459afd236380acd86e28,http://www.professeurs.polymtl.ca/christopher.pal/2011/ROSE.v2.5.pdf,,https://doi.org/10.1109/ROSE.2011.6058545, +cf7a4442a6aad0e08d4aade8ec379c44f84bca8a,,,,http://doi.acm.org/10.1145/1873951.1874054 +cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,,,http://arxiv.org/abs/1511.06627 +cf784156547c3be146706e2763c1a52d939d1722,,,https://doi.org/10.1007/s11042-017-5038-6, +cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,,,https://doi.org/10.1109/TIFS.2013.2286265, +cf09e2cb82961128302b99a34bff91ec7d198c7c,http://pdfs.semanticscholar.org/cf09/e2cb82961128302b99a34bff91ec7d198c7c.pdf,,,https://www.csie.ntu.edu.tw/~fuh/personal/OfficeEntranceControlwithFaceRecognition.pdf +cf185d0d8fcad2c7f0a28b7906353d4eca5a098b,,,https://doi.org/10.1186/s13640-017-0190-5, +cf54e9776d799aa183d7466094525251d66389a4,,,https://doi.org/10.1109/ICCE-Berlin.2017.8210589, +cf6851c24f489dabff0238e01554edea6aa0fc7c,,,https://doi.org/10.1109/ICSMC.2011.6083637, +cf86616b5a35d5ee777585196736dfafbb9853b5,http://www.research.rutgers.edu/~linzhong/PDF/TC_Facial.pdf,,https://doi.org/10.1109/TCYB.2014.2354351, +cfba667644508853844c45bfe5d0b8a2ffb756d3,,,https://doi.org/10.1109/ISBA.2018.8311455, +ca0185529706df92745e656639179675c717d8d5,,,https://doi.org/10.1504/IJCVR.2014.065571, +cae41c3d5508f57421faf672ee1bea0da4be66e0,,,https://doi.org/10.1109/ICPR.2016.7900298, +cacd51221c592012bf2d9e4894178c1c1fa307ca,http://pdfs.semanticscholar.org/cacd/51221c592012bf2d9e4894178c1c1fa307ca.pdf,,,http://www.ijeit.com/Vol%204/Issue%2011/IJEIT1412201505_34.pdf +ca0363d29e790f80f924cedaf93cb42308365b3d,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Kotsia07a.pdf,,https://doi.org/10.1109/TIP.2006.884954,http://www.eecs.qmul.ac.uk/~ioannisp/pubs/ecopies/kotsia_tip.pdf +ca447d6479554b27b4afbd0fd599b2ed39f2c335,,,https://doi.org/10.1109/ICPR.2014.459, +cad2bd940e7580490da9cc739e597d029e166504,,,, +ca9adaf5702a7eb9b69be98128e0cae7d6252f8b,,,, +cad52d74c1a21043f851ae14c924ac689e197d1f,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W16/papers/Alletto_From_Ego_to_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.91 +cac8bb0e393474b9fb3b810c61efdbc2e2c25c29,http://pdfs.semanticscholar.org/cac8/bb0e393474b9fb3b810c61efdbc2e2c25c29.pdf,,,http://www.roboticsproceedings.org/rss07/p30.html +cadab913f699adceebbd0f0abacb19d5f1deda84,,,, +ca0804050cf9d7e3ed311f9be9c7f829e5e6a003,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1333904 +caaa6e8e83abb97c78ff9b813b849d5ab56b5050,http://digital.cs.usu.edu/~xqi/Promotion/JSPL.FaceRecognition.14.pdf,,https://doi.org/10.1109/LSP.2014.2343213, +ca458f189c1167e42d3a5aaf81efc92a4c008976,,,https://doi.org/10.1109/TIP.2012.2202678, +ca8f23d9b9a40016eaf0467a3df46720ac718e1d,,,https://doi.org/10.1109/ICASSP.2015.7178214, +ca54d0a128b96b150baef392bf7e498793a6371f,http://pdfs.semanticscholar.org/ca54/d0a128b96b150baef392bf7e498793a6371f.pdf,,https://doi.org/10.1007/978-3-319-16634-6_40,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop16/pdffiles/w16-p14.pdf +ca83053d9a790319b11a04eac5ab412e7fcab914,http://pdfs.semanticscholar.org/ca83/053d9a790319b11a04eac5ab412e7fcab914.pdf,,https://doi.org/10.1016/j.imavis.2014.02.006,http://gec.di.uminho.pt/psantos/Publications_ficheiros/IMAVIS2014-FaceRecognition.pdf +ca3e88d87e1344d076c964ea89d91a75c417f5ee,,,, +cadba72aa3e95d6dcf0acac828401ddda7ed8924,http://pdfs.semanticscholar.org/cadb/a72aa3e95d6dcf0acac828401ddda7ed8924.pdf,,,http://doc.rero.ch/record/5526/files/1_these_NagelJL.pdf +cacce7f4ce74e3269f5555aa6fd83e48baaf9c96,,,,http://doi.acm.org/10.1145/2632165 +ca60d007af691558de377cab5e865b5373d80a44,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273630 +cab3c6069387461c3a9e5d77defe9a84fe9c9032,,,https://doi.org/10.1016/j.neucom.2016.12.056, +ca606186715e84d270fc9052af8500fe23befbda,http://www.amirtahmasbi.com/publications_repository/SDA_ICSPS2010.pdf,,,http://people.tamu.edu/~amir.tahmasbi/publications/SDA_ICSPS2010.pdf +ca37933b6297cdca211aa7250cbe6b59f8be40e5,,,,http://doi.acm.org/10.1145/3155133.3155207 +e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6,http://pdfs.semanticscholar.org/e48f/b3ee27eef1e503d7ba07df8eb1524c47f4a6.pdf,,,http://www.ece.cmu.edu/~casasent/rohit_face_illumination_SPIE05_final_dec2812.pdf +e4bf70e818e507b54f7d94856fecc42cc9e0f73d,http://pdfs.semanticscholar.org/e4bf/70e818e507b54f7d94856fecc42cc9e0f73d.pdf,,,http://esatjournals.net/ijret/2016v05/i04/IJRET20160504070.pdf +e480f8c00dfe217653c2569d0eec6e2ffa836d59,,,, +e41246837c25d629ca0fad74643fb9eb8bf38009,,,https://doi.org/10.1109/ICSIPA.2011.6144064, +e4bc529ced68fae154e125c72af5381b1185f34e,http://pdfs.semanticscholar.org/e4bc/529ced68fae154e125c72af5381b1185f34e.pdf,,,https://www.cc.gatech.edu/grads/a/aedwards/proposal_document.pdf +e465f596d73f3d2523dbf8334d29eb93a35f6da0,http://pdfs.semanticscholar.org/e465/f596d73f3d2523dbf8334d29eb93a35f6da0.pdf,,,https://arxiv.org/pdf/1704.06729v1.pdf +e4aeaf1af68a40907fda752559e45dc7afc2de67,http://pdfs.semanticscholar.org/e4ae/af1af68a40907fda752559e45dc7afc2de67.pdf,,,https://arxiv.org/pdf/1803.02504v1.pdf +e43a18384695ae0acc820171236a39811ec2cd58,,,, +e4c3d5d43cb62ac5b57d74d55925bdf76205e306,http://pdfs.semanticscholar.org/e4c3/d5d43cb62ac5b57d74d55925bdf76205e306.pdf,,,https://arxiv.org/pdf/1804.02051v1.pdf +e40df008fd0e5fd169840bf7d72a951411d13c59,,,, +e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,http://pdfs.semanticscholar.org/e429/98bbebddeeb4b2bedf5da23fa5c4efc976fa.pdf,,https://doi.org/10.1007/978-3-642-37431-9_50,https://ibug.doc.ic.ac.uk/media/uploads/documents/accv2012finalpaper.pdf +e4a1b46b5c639d433d21b34b788df8d81b518729,http://pdfs.semanticscholar.org/e4a1/b46b5c639d433d21b34b788df8d81b518729.pdf,,,https://arxiv.org/pdf/1801.07580v1.pdf +e4d53e7f4c2052940841abc08f9574655f3f7fb4,,,,http://doi.acm.org/10.1145/3078971.3079039 +e4c81c56966a763e021938be392718686ba9135e,http://pdfs.semanticscholar.org/e4c8/1c56966a763e021938be392718686ba9135e.pdf,,,https://cdn.intechopen.com/pdfs-wm/39298.pdf +e4e95b8bca585a15f13ef1ab4f48a884cd6ecfcc,http://pdfs.semanticscholar.org/e4e9/5b8bca585a15f13ef1ab4f48a884cd6ecfcc.pdf,,,https://www.researchgate.net/profile/Aytul_Ercil/publication/228354283_Face_recognition_with_independent_component-based_super-resolution/links/0fcfd50efc99268ee5000000.pdf +e4df83b7424842ff5864c10fa55d38eae1c45fac,http://pdfs.semanticscholar.org/e4df/83b7424842ff5864c10fa55d38eae1c45fac.pdf,,,https://www.researchgate.net/profile/EK_Wong/publication/40892077_Locally_Linear_Discriminate_Embedding_for_Face_Recognition/links/0a85e53b4d2549f617000000.pdf +e4df98e4b45a598661a47a0a8900065716dafd6d,,,,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2015.219 +e4ad82afc563b783475ed45e9f2cd4c9e2a53e83,,,https://doi.org/10.1109/AICCSA.2016.7945716, +e4e3faa47bb567491eaeaebb2213bf0e1db989e1,http://pdfs.semanticscholar.org/e4e3/faa47bb567491eaeaebb2213bf0e1db989e1.pdf,,,https://www.ijcai.org/Proceedings/16/Papers/323.pdf +e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5,http://pdfs.semanticscholar.org/e43e/a078749d1f9b8254e0c3df4c51ba2f4eebd5.pdf,,,http://e-university.tu-sofia.bg/e-publ/files/2301_ICEST2015_NN_ID_all.pdf +e47e8fa44decf9adbcdb02f8a64b802fe33b29ef,,,https://doi.org/10.1109/TIP.2017.2782366, +e476cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf,https://pdfs.semanticscholar.org/e476/cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf.pdf,,https://doi.org/10.1109/TNNLS.2013.2245340,http://www4.comp.polyu.edu.hk/~cslzhang/paper/RKR-TNN.pdf +e4c2f8e4aace8cb851cb74478a63d9111ca550ae,http://pdfs.semanticscholar.org/e4c2/f8e4aace8cb851cb74478a63d9111ca550ae.pdf,,,https://arxiv.org/pdf/1802.03583v1.pdf +e475e857b2f5574eb626e7e01be47b416deff268,http://pdfs.semanticscholar.org/e475/e857b2f5574eb626e7e01be47b416deff268.pdf,,,http://www.naun.org/main/NAUN/fuzzy/2017/a062017-077.pdf +e4391993f5270bdbc621b8d01702f626fba36fc2,http://pdfs.semanticscholar.org/e439/1993f5270bdbc621b8d01702f626fba36fc2.pdf,,https://doi.org/10.1007/978-3-642-38886-6_31,http://hal.inria.fr/docs/00/83/95/27/PDF/79440319.pdf +e42f3c27391821f9873539fc3da125b83bffd5a2,,,https://doi.org/10.1109/HPCS.2010.5547096, +e475deadd1e284428b5e6efd8fe0e6a5b83b9dcd,http://pdfs.semanticscholar.org/e475/deadd1e284428b5e6efd8fe0e6a5b83b9dcd.pdf,,,https://arxiv.org/pdf/1803.07385v1.pdf +e4b825bf9d5df47e01e8d7829371d05208fc272d,,,,http://doi.acm.org/10.1145/3055635.3056618 +e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Liu2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553767 +e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,http://pdfs.semanticscholar.org/e48e/94959c4ce799fc61f3f4aa8a209c00be8d7f.pdf,,, +e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,,,https://doi.org/10.1109/BTAS.2017.8272722, +e496d6be415038de1636bbe8202cac9c1cea9dbe,http://pdfs.semanticscholar.org/e496/d6be415038de1636bbe8202cac9c1cea9dbe.pdf,,,http://ceur-ws.org/Vol-2061/paper3.pdf +e43cc682453cf3874785584fca813665878adaa7,http://pdfs.semanticscholar.org/e43c/c682453cf3874785584fca813665878adaa7.pdf,,,http://www.ijecs.in/issue/v3-i10/63%20ijecs.pdf +e4c3587392d477b7594086c6f28a00a826abf004,,,https://doi.org/10.1109/ICIP.2017.8296998, +fec6648b4154fc7e0892c74f98898f0b51036dfe,http://pdfs.semanticscholar.org/fec6/648b4154fc7e0892c74f98898f0b51036dfe.pdf,,,http://www.cse.cuhk.edu.hk/~lyu/student/mphil/fung/fung-thesis.pdf +fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9,http://pdfs.semanticscholar.org/fea0/a5ed1bc83dd1b545a5d75db2e37a69489ac9.pdf,,https://doi.org/10.5220/0005861302430250,https://biblio.ugent.be/publication/8165069/file/8165102.pdf +fe9c460d5ca625402aa4d6dd308d15a40e1010fa,http://pdfs.semanticscholar.org/fe9c/460d5ca625402aa4d6dd308d15a40e1010fa.pdf,,https://doi.org/10.1007/978-3-540-24842-2_5,http://www.informatik.uni-ulm.de/ni/staff/HNeumann/publicationsYear/PDFs/CONFERENCES/ADS04SchweigerEtAl-LNCS3068preprint.pdf +fef6f1e04fa64f2f26ac9f01cd143dd19e549790,,,,http://doi.acm.org/10.1145/3123266.3123451 +fe6fefe5f2f8c97ed9a27f3171fc0afb62d5495e,,,, +fe556c18b7ab65ceb57e1dd054a2ca21cefe153c,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.145 +fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5,http://pdfs.semanticscholar.org/fe7e/3cc1f3412bbbf37d277eeb3b17b8b21d71d5.pdf,,,http://www.iosrjournals.org/iosr-jvlsi/papers/vol6-issue2/Version-1/J0602014753.pdf +fe5df5fe0e4745d224636a9ae196649176028990,http://pdfs.semanticscholar.org/fe5d/f5fe0e4745d224636a9ae196649176028990.pdf,,,http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1285&context=open_access_dissertations +fe9d9c298d2e0c72408668fcff996e4bf58cc6c6,,,, +fed8cc533037d7d925df572a440fd89f34d9c1fd,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.194 +fe961cbe4be0a35becd2d722f9f364ec3c26bd34,http://pdfs.semanticscholar.org/fe96/1cbe4be0a35becd2d722f9f364ec3c26bd34.pdf,,,http://paul.rutgers.edu/~jl1322/papers/LRECW2014_neidle.pdf +feb6e267923868bff6e2108603d00fdfd65251ca,http://pdfs.semanticscholar.org/feb6/e267923868bff6e2108603d00fdfd65251ca.pdf,,https://doi.org/10.1142/S0218213012500297,http://www.cs.unr.edu/~bebis/IJAIT13_Categorization.pdf +feb0bd4ad219dc5005da84561b97ae53f4207440,,,, +feeb0fd0e254f38b38fe5c1022e84aa43d63f7cc,http://pdfs.semanticscholar.org/feeb/0fd0e254f38b38fe5c1022e84aa43d63f7cc.pdf,,,http://www.eurecom.fr/en/publication/3413/download/mm-publi-3413.pdf +fe97d46c34630d14235132a95fb2d2ed7b2c4663,,,, +fe108803ee97badfa2a4abb80f27fa86afd9aad9,http://pdfs.semanticscholar.org/fe10/8803ee97badfa2a4abb80f27fa86afd9aad9.pdf,,https://doi.org/10.1016/j.patcog.2011.02.011,http://www.csie.kuas.edu.tw/~jcchen/pdf/Kernel%20discriminant%20transformation%20for%20image%20set-based%20face%20recognition.pdf +fefaa892f1f3ff78db4da55391f4a76d6536c49a,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2497689 +fe14d8177cbdb7e5b4085302e6e044f7a4c19cb2,,,https://doi.org/10.1109/ICSMC.2012.6377834, +fe5d6c65e51386f4d36f7434fe6fcd9494fe9361,,,https://doi.org/10.1109/ACCESS.2017.2730281, +c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d,http://pdfs.semanticscholar.org/c8db/8764f9d8f5d44e739bbcb663fbfc0a40fb3d.pdf,,,https://d-nb.info/1021938211/34 +c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3,http://www.isir.upmc.fr/files/2013ACTI2846.pdf,,https://doi.org/10.1109/ICIP.2013.6738613, +c83d142a47babe84e8c4addafa9e2bb9e9b757a5,,,https://doi.org/10.1109/MLSP.2012.6349762, +c8292aa152a962763185e12fd7391a1d6df60d07,http://pdfs.semanticscholar.org/c829/2aa152a962763185e12fd7391a1d6df60d07.pdf,,https://doi.org/10.1007/978-3-642-41939-3_50,https://vision.cornell.edu/se3/wp-content/uploads/2014/09/camera_distance_from_face_images.pdf +c82c147c4f13e79ad49ef7456473d86881428b89,http://pdfs.semanticscholar.org/c82c/147c4f13e79ad49ef7456473d86881428b89.pdf,,https://doi.org/10.2197/ipsjtcva.7.104,https://www.jstage.jst.go.jp/article/ipsjtcva/7/0/7_104/_pdf/-char/en +c833c2fb73decde1ad5b5432d16af9c7bee1c165,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.143 +c8e84cdff569dd09f8d31e9f9ba3218dee65e961,http://pdfs.semanticscholar.org/c8e8/4cdff569dd09f8d31e9f9ba3218dee65e961.pdf,,,http://www.rci.rutgers.edu/~vmp93/Journal_pub/JOSA_A_v2.pdf +c8829013bbfb19ccb731bd54c1a885c245b6c7d7,http://pdfs.semanticscholar.org/c882/9013bbfb19ccb731bd54c1a885c245b6c7d7.pdf,,,http://www.cs.ucl.ac.uk/staff/V.Zografos/DICTA2005.pdf +c8fb8872203ee694d95da47a1f9929ac27186d87,,,https://doi.org/10.1109/ICIP.2005.1530305, +c8fb8994190c1aa03c5c54c0af64c2c5c99139b4,,,https://doi.org/10.1007/s00138-016-0794-2, +c81ee278d27423fd16c1a114dcae486687ee27ff,http://pdfs.semanticscholar.org/c81e/e278d27423fd16c1a114dcae486687ee27ff.pdf,,,http://www.ijcsit.com/docs/Volume%206/vol6issue03/ijcsit20150603232.pdf +c8b9217ee36aebb9735e525b718490dc27c8c1cb,,,, +c84991fe3bf0635e326a05e34b11ccaf74d233dc,,,https://doi.org/10.1016/j.neucom.2016.08.069, +c8bc8c99acd009e4d27ddd8d9a6e0b899d48543e,,,https://doi.org/10.1109/IROS.2012.6386178, +c81b27932069e6c7016bfcaa5e861b99ac617934,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019469 +c88ce5ef33d5e544224ab50162d9883ff6429aa3,http://pdfs.semanticscholar.org/c88c/e5ef33d5e544224ab50162d9883ff6429aa3.pdf,,https://doi.org/10.4018/IJCVIP.2017040102,https://lhncbc.nlm.nih.gov/system/files/pub9530.pdf +c87c07d44633eca2cc1d11d2d967fc66eb8de871,,,, +c822bd0a005efe4ec1fea74de534900a9aa6fb93,http://pdfs.semanticscholar.org/c822/bd0a005efe4ec1fea74de534900a9aa6fb93.pdf,,,https://static.aminer.org/pdf/PDF/000/312/281/face_recognition_committee_machines_dynamic_vs_static_structures.pdf +c872d6310f2079db0cee0e69cc96da1470055225,,,https://doi.org/10.1007/978-3-319-46675-0_68, +c8adbe00b5661ab9b3726d01c6842c0d72c8d997,http://pdfs.semanticscholar.org/c8ad/be00b5661ab9b3726d01c6842c0d72c8d997.pdf,,https://doi.org/10.1007/978-3-319-54427-4_25,https://arxiv.org/pdf/1609.09018v1.pdf +fb4545782d9df65d484009558e1824538030bbb1,http://pdfs.semanticscholar.org/fb45/45782d9df65d484009558e1824538030bbb1.pdf,,,https://drum.lib.umd.edu/bitstream/handle/1903/11691/Farrell_umd_0117E_12105.pdf?isAllowed=y&sequence=1 +fbf196d83a41d57dfe577b3a54b1b7fa06666e3b,http://pdfs.semanticscholar.org/fbf1/96d83a41d57dfe577b3a54b1b7fa06666e3b.pdf,,,http://crcv.ucf.edu/THUMOS14/papers/Bogazici%20University.pdf +fb3aaf18ea07b30d1836e7cf2ab9fa898627fe93,,,https://doi.org/10.1109/ACCESS.2017.2784096, +fbb6ee4f736519f7231830a8e337b263e91f06fe,http://pdfs.semanticscholar.org/fbb6/ee4f736519f7231830a8e337b263e91f06fe.pdf,,https://doi.org/10.1007/978-3-319-20801-5_23,http://vip.uwaterloo.ca/files/publications/bchwyl_illumination_face_detect.pdf +fb1b6138aeb081adf853316c0d83ef4c5626a7fa,,,https://doi.org/10.1109/ICIP.2017.8296302, +fb7bf10cbc583db5d5eee945aa633fcb968e01ad,,,https://doi.org/10.1007/s00521-012-0962-x, +fb915bcc1623cdf999c0e95992c0e0cf85e64d8e,,,,http://doi.ieeecomputersociety.org/10.1109/iThings.2014.83 +fb557b79157a6dda15f3abdeb01a3308528f71f2,,,,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.310 +fb5280b80edcf088f9dd1da769463d48e7b08390,http://pdfs.semanticscholar.org/fb52/80b80edcf088f9dd1da769463d48e7b08390.pdf,,https://doi.org/10.1016/j.ins.2013.06.006,http://www.researchgate.net/profile/Marko_Tkalcic/publication/259038024_The_impact_of_weak_ground_truth_and_facial_expressiveness_on_affect_detection_accuracy_from_time-continuous_videos_of_facial_expressions/links/00b49529caac28b327000000.pdf +fb3da9b47460eedf857e386a562cc5348d78d544,,,, +fb1627ed224bf7b1e3d80c097316ed7703951df2,,,https://doi.org/10.1109/VCIP.2017.8305094, +fb3ff56ab12bd250caf8254eca30cd97984a949a,,,https://doi.org/10.3103/S0146411617010072, +fb0f5e06048c0274c2a4056e353fa31f5790e381,,,, +fb2bd6c2959a4f811b712840e599f695dad2967e,,,https://doi.org/10.1109/ISPA.2015.7306038, +fbc53ab5697ee6f4f270153dbdee2d93cfda7b5f,,,, +fba464cb8e3eff455fe80e8fb6d3547768efba2f,http://pdfs.semanticscholar.org/fba4/64cb8e3eff455fe80e8fb6d3547768efba2f.pdf,,,https://www.ijeas.org/download_data/IJEAS0302003.pdf +fb0774049f2f34be194592822c74e2f2e603dea8,,,, +fba386ac63fe87ee5a0cf64bf4fb90324b657d61,,,https://doi.org/10.1109/ICIP.2015.7351752, +fb228b214e28af26f77cc1195d03c9d851b78ec6,,,, +fb084b1fe52017b3898c871514cffcc2bdb40b73,http://pdfs.semanticscholar.org/fb08/4b1fe52017b3898c871514cffcc2bdb40b73.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/97/d9/pone.0122200.PMC4408076.pdf +ed9de242a23ad546902e1d5ec022dbb029cc2282,,,https://doi.org/10.1109/ICASSP.2015.7178138, +ed28e8367fcb7df7e51963add9e2d85b46e2d5d6,http://pdfs.semanticscholar.org/ed28/e8367fcb7df7e51963add9e2d85b46e2d5d6.pdf,,,http://www.ascent-journals.com/IJERIA/Vol9No3/3-T.SYED%20AKHEEL-131.pdf +edbddf8c176d6e914f0babe64ad56c051597d415,,,https://doi.org/10.1109/TMM.2016.2644866, +ed94e7689cdae87891f08428596dec2a2dc6a002,,,https://doi.org/10.1109/CAMSAP.2017.8313130, +ed0d8ca1701247b22516ffb1b47f28554b167608,,,, +ed273b5434013dcdb9029c1a9f1718da494a23a2,,,https://doi.org/10.1109/LSP.2018.2810106, +ed0d8997a4b7b80a7cd3592e98bdbe5c3aab0cee,,,https://doi.org/10.1007/s11042-014-2345-z, +ed779cc4f026f6ac22f5ef0c34126138e1ebc8b2,,,https://doi.org/10.1007/978-981-10-3005-5_57, +ed08ac6da6f8ead590b390b1d14e8a9b97370794,http://pdfs.semanticscholar.org/ed08/ac6da6f8ead590b390b1d14e8a9b97370794.pdf,,,http://www.ijircce.com/upload/2015/september/52_5_An.pdf +ed70d1a9435c0b32c0c75c1a062f4f07556f7016,,,https://doi.org/10.1109/ICIP.2015.7350774, +edef98d2b021464576d8d28690d29f5431fd5828,http://pdfs.semanticscholar.org/edef/98d2b021464576d8d28690d29f5431fd5828.pdf,,,https://arxiv.org/pdf/1802.02438v1.pdf +edc5a0a8b9fc6ae0e8d8091a2391767f645095d9,http://www.es.mdh.se/pdf_publications/3948.pdf,,https://doi.org/10.1109/ITSC.2015.424, +ed04e161c953d345bcf5b910991d7566f7c486f7,http://pdfs.semanticscholar.org/ed04/e161c953d345bcf5b910991d7566f7c486f7.pdf,,,http://www.lsr.ei.tum.de/fileadmin/publications/sosnowski/AISB_2010_Sosnowski_Mayer.pdf +edd7504be47ebc28b0d608502ca78c0aea6a65a2,http://pdfs.semanticscholar.org/edd7/504be47ebc28b0d608502ca78c0aea6a65a2.pdf,,https://doi.org/10.1007/978-3-319-66709-6_11,https://arxiv.org/pdf/1706.08807v1.pdf +ed82f10e5bfe1825b9fa5379a1d0017b96fa1ebf,,,,http://doi.ieeecomputersociety.org/10.1109/ICEBE.2017.36 +edbb8cce0b813d3291cae4088914ad3199736aa0,http://pdfs.semanticscholar.org/edbb/8cce0b813d3291cae4088914ad3199736aa0.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3435 +ed023651e31cdbcaa5ef2ee1d71ddbc2906c2f76,,,https://doi.org/10.1109/LSP.2010.2093600, +edcb662834aae8878a209c769ed664f8bd48b751,,,, +c178a86f4c120eca3850a4915134fff44cbccb48,http://pdfs.semanticscholar.org/c178/a86f4c120eca3850a4915134fff44cbccb48.pdf,,,http://waset.org/publications/16147/normalization-discriminant-independent-component-analysis +c1d2d12ade031d57f8d6a0333cbe8a772d752e01,http://pdfs.semanticscholar.org/c1d2/d12ade031d57f8d6a0333cbe8a772d752e01.pdf,,,http://j-mi.org/contents_file/contents_files/loader/0/Article/166/file/default/JMI2010B-5.pdf +c180f22a9af4a2f47a917fd8f15121412f2d0901,http://pdfs.semanticscholar.org/c180/f22a9af4a2f47a917fd8f15121412f2d0901.pdf,,https://doi.org/10.1007/11679363_117,http://www.jaist.ac.jp/~chen-fan/publication/ica2006.pdf +c1a16ee838d977160821951e7264af4b2e7c8265,,,, +c1f07ec629be1c6fe562af0e34b04c54e238dcd1,http://pdfs.semanticscholar.org/c1f0/7ec629be1c6fe562af0e34b04c54e238dcd1.pdf,,,https://pdfs.semanticscholar.org/c1f0/7ec629be1c6fe562af0e34b04c54e238dcd1.pdf +c1a70d63d1667abfb1f6267f3564110d55c79c0d,,,https://doi.org/10.1007/s00138-013-0488-y, +c138c76809b8da9e5822fb0ae38457e5d75287e0,,,https://doi.org/10.1109/TIP.2014.2378017, +c1581b5175994e33549b8e6d07b4ea0baf7fe517,,,https://doi.org/10.1109/IJCNN.2011.6033478, +c1173b8d8efb8c2d989ce0e51fe21f6b0b8d1478,,,https://doi.org/10.1109/TCYB.2016.2535122, +c1f05b723e53ac4eb1133249b445c0011d42ca79,,,https://doi.org/10.1162/neco_a_00990, +c10a15e52c85654db9c9343ae1dd892a2ac4a279,http://www.cs.utexas.edu/~grauman/papers/ijcv-sungju.pdf,,https://doi.org/10.1007/s11263-011-0494-3, +c1fb854d9a04b842ff38bd844b50115e33113539,,,https://doi.org/10.1007/s11042-016-3883-3, +c1fc70e0952f6a7587b84bf3366d2e57fc572fd7,http://pdfs.semanticscholar.org/c1fc/70e0952f6a7587b84bf3366d2e57fc572fd7.pdf,,https://doi.org/10.1016/j.patcog.2015.09.017,https://arxiv.org/pdf/1509.05536v1.pdf +c1c253a822f984de73f02d6a29c8c7cadc8f090c,,,, +c17c7b201cfd0bcd75441afeaa734544c6ca3416,,,https://doi.org/10.1109/TCSVT.2016.2587389, +c1dfabe36a4db26bf378417985a6aacb0f769735,http://pdfs.semanticscholar.org/c1df/abe36a4db26bf378417985a6aacb0f769735.pdf,,,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/NWPJ-201109-50.pdf +c13211a15abd3ca187ef36b9f816891f901ba788,,,, +c1482491f553726a8349337351692627a04d5dbe,http://pdfs.semanticscholar.org/c148/2491f553726a8349337351692627a04d5dbe.pdf,,https://doi.org/10.1007/978-3-319-67217-5_25,https://arxiv.org/pdf/1702.00048v1.pdf +c12034ca237ee330dd25843f2d05a6e1cfde1767,,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.298 +c1ff88493721af1940df0d00bcfeefaa14f1711f,http://pdfs.semanticscholar.org/c1ff/88493721af1940df0d00bcfeefaa14f1711f.pdf,,,http://www.cs.cmu.edu/~ftorre/sr_paper.pdf +c18d537037caf399c4fabfdec896c376675af58a,,,, +c17a332e59f03b77921942d487b4b102b1ee73b6,http://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf,,,https://perceptual.mpi-inf.mpg.de/files/2016/01/wood16_etra.pdf +c1e76c6b643b287f621135ee0c27a9c481a99054,http://pdfs.semanticscholar.org/c1e7/6c6b643b287f621135ee0c27a9c481a99054.pdf,,https://doi.org/10.1016/j.procs.2016.07.009,http://www.tina-vision.net/~pab/download_files/procedia_CompSci_miua_2016_bromiley.pdf +c10b0a6ba98aa95d740a0d60e150ffd77c7895ad,http://pdfs.semanticscholar.org/c10b/0a6ba98aa95d740a0d60e150ffd77c7895ad.pdf,,,https://www-i6.informatik.rwth-aachen.de/publications/download/1060/HanselmannHaraldYanShenNeyHermann--DeepFisherFaces--2017.pdf +c696c9bbe27434cb6279223a79b17535cd6e88c8,http://pdfs.semanticscholar.org/c696/c9bbe27434cb6279223a79b17535cd6e88c8.pdf,,,http://www.icis.ntu.edu.sg/scs-ijit/119/119_11.pdf +c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,http://pdfs.semanticscholar.org/c65e/4ffa2c07a37b0bb7781ca4ec2ed7542f18e3.pdf,,,http://www.prasa.org/proceedings/2010/prasa2010-45.pdf +c614450c9b1d89d5fda23a54dbf6a27a4b821ac0,http://pdfs.semanticscholar.org/c614/450c9b1d89d5fda23a54dbf6a27a4b821ac0.pdf,,,http://www.scielo.br/pdf/babt/v60/1516-8913-babt-60-e17160480.pdf +c69a66a8b9c71d6c3c19980969550090af854b89,,,, +c6096986b4d6c374ab2d20031e026b581e7bf7e9,http://pdfs.semanticscholar.org/c609/6986b4d6c374ab2d20031e026b581e7bf7e9.pdf,,,http://chenlab.ece.cornell.edu/Publication/Andy/GallagherThesis.pdf +c6608fdd919f2bc4f8d7412bab287527dcbcf505,http://pdfs.semanticscholar.org/c660/8fdd919f2bc4f8d7412bab287527dcbcf505.pdf,,,https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemFileId=167632&itemId=30953 +c64502696438b4c9f9e12e64daaf7605f62ce3f0,,,,http://doi.ieeecomputersociety.org/10.1109/WKDD.2009.195 +c6a4b23ead2dab3d5dc02a5916d4c383f0c53007,,,, +c65cfc9d3568c586faf18611c4124f6b7c0c1a13,,,https://doi.org/10.1109/ICACCI.2014.6968322, +c6ea6fee4823b511eecf41f6c2574a0728055baf,http://pdfs.semanticscholar.org/c6ea/6fee4823b511eecf41f6c2574a0728055baf.pdf,,,https://arxiv.org/pdf/1802.00278v1.pdf +c648d2394be3ff0c0ee5360787ff3777a3881b02,,,https://doi.org/10.1080/01449290903353047, +c62c910264658709e9bf0e769e011e7944c45c90,http://pdfs.semanticscholar.org/c62c/910264658709e9bf0e769e011e7944c45c90.pdf,,,https://arxiv.org/pdf/1706.04717v1.pdf +c66ecbae0f2bfa7cdbf5082fb8f0567878b4a599,,,, +c65d2ee433ae095652abe3860eeafe6082c636c6,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553714 +c660500b49f097e3af67bb14667de30d67db88e3,http://pdfs.semanticscholar.org/c660/500b49f097e3af67bb14667de30d67db88e3.pdf,,https://doi.org/10.1016/S1077-3142(03)00078-X,https://www.researchgate.net/profile/Yanxi_Liu/publication/222529129_Facial_asymmetry_quantification_for_expression_invariant_human_identification/links/00b49525783de59f21000000.pdf +c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6,http://pdfs.semanticscholar.org/c6ff/a09c4a6cacbbd3c41c8ae7a728b0de6e10b6.pdf,,https://doi.org/10.1016/j.patcog.2008.05.014,https://www.researchgate.net/profile/Kun_Hong_Liu/publication/222418323_Feature_extraction_using_constrained_maximum_variance_mapping/links/545331860cf26d5090a38868.pdf +c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,http://pdfs.semanticscholar.org/c652/6dd3060d63a6c90e8b7ff340383c4e0e0dd8.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/99/98/srep24746.PMC4838853.pdf +c6bbb56a26222bdb8ce7dd829cff38b67d4b03cd,,,,http://doi.acm.org/10.1145/2043674.2043677 +c675534be881e59a78a5986b8fb4e649ddd2abbe,,,https://doi.org/10.1109/ICIP.2017.8296548, +c65a394118d34beda5dd01ae0df163c3db88fceb,http://pdfs.semanticscholar.org/c65a/394118d34beda5dd01ae0df163c3db88fceb.pdf,,https://doi.org/10.1007/978-3-540-78646-7_53,http://class.inrialpes.fr/pub/207-deschacht-ecir08.pdf +c60601bdb5465d8270fdf444e5d8aeccab744e29,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2010.5583363 +ec6a2093059fd6eada9944212f64a659881abb95,,,https://doi.org/10.1016/j.patcog.2016.02.022, +ec89f2307e29cc4222b887eb0619e0b697cf110d,,,https://doi.org/10.1109/TIP.2009.2027361, +ece3407b15d7d2dcf37cfe9b8fc87542a2c1162d,,,, +ec40df721a80c62d4a768fe29b58d86b1a07f435,,,, +ec12f805a48004a90e0057c7b844d8119cb21b4a,http://pdfs.semanticscholar.org/ec12/f805a48004a90e0057c7b844d8119cb21b4a.pdf,,https://doi.org/10.1007/978-3-319-11752-2_40,http://mrl.cs.vsb.cz/publications/fusek_dagm_2014.pdf +ec1a57e609eda72b4eb60155fac12db1da31f6c0,,,https://doi.org/10.1007/11744085_41, +eccd9acba3f6a605053dbde7f0890836e52aa085,,,, +ec22eaa00f41a7f8e45ed833812d1ac44ee1174e,http://pdfs.semanticscholar.org/ec22/eaa00f41a7f8e45ed833812d1ac44ee1174e.pdf,,https://doi.org/10.1016/j.patrec.2014.06.009,https://dr.ntu.edu.sg/bitstream/handle/10220/39591/A%20novel%20phase%20congruency%20based%20descriptor%20for%20dynamic%20facial%20expression%20analysis.pdf;sequence=1 +ec28217290897a059348dcdf287540a2e2c68204,,,https://doi.org/10.1504/IJBM.2015.070928, +ec54000c6c0e660dd99051bdbd7aed2988e27ab8,http://pdfs.semanticscholar.org/ec54/000c6c0e660dd99051bdbd7aed2988e27ab8.pdf,,,http://gtav.upc.edu/en/publications/papers/2005/two-in-one-joint-pose-estimation-and-face-recognition-with-p2ca +ecfb93de88394a244896bfe6ee7bf39fb250b820,,,, +eca706b4d77708452bdad1c98a23e4e88ce941ab,,,https://doi.org/10.1142/S0218001416550144, +ec39e9c21d6e2576f21936b1ecc1574dadaf291e,,,https://doi.org/10.1109/WACV.2017.130, +ec44510ca9c0093c5eb860128d17506614168bcf,,,, +ec0104286c96707f57df26b4f0a4f49b774c486b,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf,,https://doi.org/10.1109/TIFS.2017.2766583, +ecca2a2b84ea01ea425b8d2d9f376f15a295a7f5,http://smie2.sysu.edu.cn/~wcd/Papers/2013_TPAMI_Wang_MEAP.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.28 +ec7cd3fff8bdbbe7005bc8d6b7f6b87d72aac2d9,http://www.mmp.rwth-aachen.de/publications/pdf/rafi_chalearn2015.pdf,,,http://www.vision.rwth-aachen.de/publications/pdf/rafi_chalearn2015.pdf +ecdd83002f69c2ccc644d07abb44dd939542d89d,,,https://doi.org/10.1016/j.neucom.2015.07.011, +ecfa56b38ac2b58428d59c9b630b1437a9ff8278,,,, +ec05078be14a11157ac0e1c6b430ac886124589b,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,,,https://arxiv.org/pdf/1802.08726v1.pdf +4e7ed13e541b8ed868480375785005d33530e06d,http://arxiv.org/pdf/1603.07388v1.pdf,,,https://arxiv.org/pdf/1603.07388v1.pdf +4e490cf3cf26fe46507bb55a548c403b9c685ba0,http://labnic.unige.ch/nic/papers/SJ_DG_SD_KND_IC_MIV_DS_PV_KRS_IEEETransac11.pdf,,,https://medweb4.unige.ch/labnic/papers/SJ_DG_SD_KND_IC_MIV_DS_PV_KRS_IEEETransac11.pdf +4e8f301dbedc9063831da1306b294f2bd5b10477,,,https://doi.org/10.1109/BIOSIG.2016.7736919, +4e94e7412d180da5a646f6a360e75ba2128f93aa,,,, +4e5dc3b397484326a4348ccceb88acf309960e86,http://pdfs.semanticscholar.org/4e5d/c3b397484326a4348ccceb88acf309960e86.pdf,,, +4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,,,https://doi.org/10.1109/TIFS.2017.2788002, +4e6c17966efae956133bf8f22edeffc24a0470c1,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf,,https://doi.org/10.1007/978-3-319-46654-5_3,https://davidsonic.github.io/index/ccbr2016.pdf +4e1836914bbcf94dc00e604b24b1b0d6d7b61e66,http://pdfs.semanticscholar.org/4e18/36914bbcf94dc00e604b24b1b0d6d7b61e66.pdf,,https://doi.org/10.1007/978-3-642-17691-3_29,http://www.ee.oulu.fi/~gyzhao/Papers/2010/ACVIS_Huang.pdf +4e1d89149fc4aa057a8becce2d730ec6afd60efa,,,https://doi.org/10.1109/ICSMC.2009.5346047, +4e4fa167d772f34dfffc374e021ab3044566afc3,http://pdfs.semanticscholar.org/4e4f/a167d772f34dfffc374e021ab3044566afc3.pdf,,,https://pdfs.semanticscholar.org/4e4f/a167d772f34dfffc374e021ab3044566afc3.pdf +4ed54d5093d240cc3644e4212f162a11ae7d1e3b,http://pdfs.semanticscholar.org/4ed5/4d5093d240cc3644e4212f162a11ae7d1e3b.pdf,,https://doi.org/10.1007/978-3-540-69321-5_49,http://www.cs.toronto.edu/~sven/Papers/dagm2008.pdf +4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_How_Related_Exemplars_2013_ICCV_paper.pdf,,,http://www.cs.cmu.edu/~yiyang/related_1015.pdf +4ea53e76246afae94758c1528002808374b75cfa,http://pdfs.semanticscholar.org/4ea5/3e76246afae94758c1528002808374b75cfa.pdf,,,http://www.luawms.edu.pk/lujstvolume4/lujst48.pdf +4ed2d7ecb34a13e12474f75d803547ad2ad811b2,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yang_Common_Action_Discovery_ICCV_2017_paper.pdf,,,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2017/Common%20Action%20Discovery%20and%20Localization%20in%20Unconstrained%20Videos.pdf +4e97b53926d997f451139f74ec1601bbef125599,http://pdfs.semanticscholar.org/4e97/b53926d997f451139f74ec1601bbef125599.pdf,,,https://arxiv.org/pdf/1602.03220v1.pdf +4e93a8a47473bf57e24aec048cb870ab366a43d6,http://pdfs.semanticscholar.org/4e93/a8a47473bf57e24aec048cb870ab366a43d6.pdf,,,http://web.cse.msu.edu/~liuxm/publication/PR_biometric.pdf +4e5760521356745548246b1cb74c8d69675d9923,,,, +4e8168fbaa615009d1618a9d6552bfad809309e9,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf,,,http://arxiv.org/abs/1611.01751 +4ecfd4273b5418fd0f3121eaefda0a4c48f6aaf0,,,, +4ea63435d7b58d41a5cbcdd34812201f302ca061,,,https://doi.org/10.1109/ICIP.2014.7025066, +4e626b2502ee042cf4d7425a8e7a228789b23856,,,, +4ea4116f57c5d5033569690871ba294dc3649ea5,http://pdfs.semanticscholar.org/4ea4/116f57c5d5033569690871ba294dc3649ea5.pdf,,https://doi.org/10.1007/978-3-642-01793-3_19,http://media.cs.tsinghua.edu.cn/~imagevision/papers/Multi-View%20Face%20Alignment%20Using%203D%20Shape%20Model%20for%20View%20Estimation.pdf +4e444db884b5272f3a41e4b68dc0d453d4ec1f4c,http://pdfs.semanticscholar.org/4e44/4db884b5272f3a41e4b68dc0d453d4ec1f4c.pdf,,,http://arxiv.org/abs/1706.04589 +4e5c1284c3ca475d1b5715b1e7f6ca4c9902d28d,,,, +4e6e5cb93e7e564bc426b5b27888d55101504c50,,,https://doi.org/10.1109/ICPR.2016.7900299, +4e343c66c5fe7426132869d552f0f205d1bc5307,,,https://doi.org/10.1109/ICPR.2014.452, +4e1258db62e4762fd8647b250fda9c3567f86eb8,,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2013.17 +4ef0a6817a7736c5641dc52cbc62737e2e063420,http://pdfs.semanticscholar.org/4ef0/a6817a7736c5641dc52cbc62737e2e063420.pdf,,,http://www.accentsjournals.org/PaperDirectory/Journal/IJACR/2014/12/6.pdf +4e4d034caa72dce6fca115e77c74ace826884c66,http://pdfs.semanticscholar.org/4e4d/034caa72dce6fca115e77c74ace826884c66.pdf,,, +4ee94572ae1d9c090fe81baa7236c7efbe1ca5b4,,,https://doi.org/10.1109/DICTA.2017.8227494, +4eeccbbb98de4f2e992600482fd6b881ace014bb,,,,http://doi.acm.org/10.1145/2964284.2967240 +4e7ebf3c4c0c4ecc48348a769dd6ae1ebac3bf1b,http://pdfs.semanticscholar.org/4e7e/bf3c4c0c4ecc48348a769dd6ae1ebac3bf1b.pdf,,https://doi.org/10.1016/j.imavis.2012.07.003,http://www.doc.ic.ac.uk/~kb709/Bousmalis-ADA-IVCJ2013.pdf +4e0e49c280acbff8ae394b2443fcff1afb9bdce6,http://pdfs.semanticscholar.org/4e0e/49c280acbff8ae394b2443fcff1afb9bdce6.pdf,,https://doi.org/10.1007/978-3-319-59147-6_23,http://arxiv.org/abs/1603.01006 +4e581831d24fd90b0b5228b9136e76fa3e8f8279,,,https://doi.org/10.1109/TIP.2014.2303648, +4eb8030b31ff86bdcb063403eef24e53b9ad4329,,,,http://doi.acm.org/10.1145/2993148.2997640 +4e3b71b1aa6b6cb7aa55843d2214441f0076fe69,,,, +4e4e8fc9bbee816e5c751d13f0d9218380d74b8f,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553711.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553711 +4ed40e6bb66dfa38a75d864d804d175a26b6c6f6,,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2011.41 +20a88cc454a03d62c3368aa1f5bdffa73523827b,http://pdfs.semanticscholar.org/d620/7593c39255ac8ce7536e5958a99f52d6bb60.pdf,,https://doi.org/10.1016/j.patcog.2006.06.030,http://repository.ust.hk/ir/bitstream/1783.1-2970/1/yeung.pr2007a1.pdf +20a432a065a06f088d96965f43d0055675f0a6c1,http://pdfs.semanticscholar.org/20a4/32a065a06f088d96965f43d0055675f0a6c1.pdf,,https://doi.org/10.1007/978-3-319-44781-0_10,https://www2.informatik.uni-hamburg.de/wtm/ps/Hinz_ICANN_2016.pdf +20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba,http://pdfs.semanticscholar.org/e805/bc872e18277c7cbfce82206cf1667cce22cc.pdf,,https://doi.org/10.1007/978-3-319-64689-3_20,http://av.dfki.de/~pagani/papers/Selim2017_CAIP.pdf +20da3ec27d221973c681ed8713f3e00ff10fef6b,,,, +20e504782951e0c2979d9aec88c76334f7505393,https://arxiv.org/pdf/1612.08534v1.pdf,,https://doi.org/10.1109/TIP.2017.2771408,http://arxiv.org/abs/1612.08534 +209324c152fa8fab9f3553ccb62b693b5b10fb4d,http://pdfs.semanticscholar.org/2093/24c152fa8fab9f3553ccb62b693b5b10fb4d.pdf,,,http://ai.stanford.edu/~ranjaykrishna/papers/thesis.pdf +203009d3608bdc31ffc3991a0310b9e98b630c4d,,,, +2050847bc7a1a0453891f03aeeb4643e360fde7d,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf,,,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/posters/ICMR2015.pdf +205f3d654b7d28d00d15b034a8c5b2a8740bd8b6,https://www.researchgate.net/profile/Ya_Su4/publication/51686551_Discriminant_learning_through_multiple_principal_angles_for_visual_recognition/links/00b495253b0057832b000000.pdf,,https://doi.org/10.1109/TIP.2011.2169972, +2045fe2f21c30f364d6e699ea0bf0ea21d7f460e,,,, +202d8d93b7b747cdbd6e24e5a919640f8d16298a,http://pdfs.semanticscholar.org/202d/8d93b7b747cdbd6e24e5a919640f8d16298a.pdf,,https://doi.org/10.1007/978-3-642-19530-3_16,http://cmpe.bilgi.edu.tr/wp-content/uploads/2013/10/ebs_publications_bioid022.pdf +20767ca3b932cbc7b8112db21980d7b9b3ea43a3,http://pdfs.semanticscholar.org/2076/7ca3b932cbc7b8112db21980d7b9b3ea43a3.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12499 +20a16efb03c366fa4180659c2b2a0c5024c679da,http://pdfs.semanticscholar.org/20a1/6efb03c366fa4180659c2b2a0c5024c679da.pdf,,,http://arxiv.org/abs/1410.6880 +205b34b6035aa7b23d89f1aed2850b1d3780de35,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p504-jiang.pdf,,https://doi.org/10.1109/ICASSP.2014.6853647, +20c2a5166206e7ffbb11a23387b9c5edf42b5230,http://pdfs.semanticscholar.org/aff0/51003a43736001aeb76e08cb86ce67d6c70d.pdf,,https://doi.org/10.1016/j.specom.2015.09.008,http://kuppl.ku.edu/sites/kuppl.ku.edu/files/docs/Tang%20Hannah%20Jongman%20Sereno%20Wang%20Harmarneh%20visible%20clear%20plain%20Speech%20Comm%202015.pdf +20e505cef6d40f896e9508e623bfc01aa1ec3120,http://pdfs.semanticscholar.org/20e5/05cef6d40f896e9508e623bfc01aa1ec3120.pdf,,,http://world-comp.org/p2011/IPC3297.pdf +2042f1cacea262ec924f74994e49d5e87d9d0445,,,, +205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2009/Vretos_2009_ICIP.pdf,,https://doi.org/10.1109/ICIP.2009.5413959, +2063222c5ce0dd233fa3056ddc245fca26bd5cf2,,,, +2098983dd521e78746b3b3fa35a22eb2fa630299,http://pdfs.semanticscholar.org/2098/983dd521e78746b3b3fa35a22eb2fa630299.pdf,,,http://arxiv.org/abs/1704.06925 +204f1cf56794bb23f9516b5f225a6ae00d3d30b8,,,https://doi.org/10.1109/JSYST.2015.2418680, +20b437dc4fc44c17f131713ffcbb4a8bd672ef00,http://pdfs.semanticscholar.org/20b4/37dc4fc44c17f131713ffcbb4a8bd672ef00.pdf,,https://doi.org/10.1007/978-3-319-19941-2_20,http://home.elka.pw.edu.pl/~astrupcz/uploads/7/4/5/7/74570135/2015_head_pose_tracking_from_rgbd_sensor_based_on_direct_motion_estimation_premi.pdf +20b405d658b7bb88d176653758384e2e3e367039,,,https://doi.org/10.1109/IJCNN.2012.6252677, +208a2c50edb5271a050fa9f29d3870f891daa4dc,http://pdfs.semanticscholar.org/c17c/55f43af5db44b6a4c17932aa3d7031985749.pdf,,,http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/932792/jov-11-13-24.pdf +207798603e3089a1c807c93e5f36f7767055ec06,http://www1.se.cuhk.edu.hk/~hccl/publications/pub/2012_APSIPA_FacialExpression.pdf,http://ieeexplore.ieee.org/document/6411903/,, +20be15dac7d8a5ba4688bf206ad24cab57d532d6,http://pdfs.semanticscholar.org/20be/15dac7d8a5ba4688bf206ad24cab57d532d6.pdf,,https://doi.org/10.1007/978-3-540-74272-2_50,http://www.researchgate.net/profile/Mario_Castelan2/publication/216360512_Face_Shape_Recovery_and_Recognition_Using_a_Surface_Gradient_Based_Statistical_Model/links/0912f51113bbd7e773000000.pdf +2042aed660796b14925db17c0a8b9fbdd7f3ebac,http://pdfs.semanticscholar.org/4a19/fd2eb09976128e33bd8f9411972146ac6c41.pdf,,https://doi.org/10.1007/978-3-319-10584-0_2,http://www-users.cs.umn.edu/~qzhao/publications/pdf/crowd_eccv14.pdf +20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6,http://pdfs.semanticscholar.org/ee89/f47ebfbebed7d6793a6774356ba63398f0d0.pdf,,,http://www.face-rec.org/algorithms/ica/liu99comparative.pdf +20532b1f80b509f2332b6cfc0126c0f80f438f10,https://arxiv.org/pdf/1509.03248v1.pdf,,,http://arxiv.org/pdf/1509.03248v1.pdf +205af28b4fcd6b569d0241bb6b255edb325965a4,http://pdfs.semanticscholar.org/205a/f28b4fcd6b569d0241bb6b255edb325965a4.pdf,,https://doi.org/10.1007/s11370-007-0014-z,http://dhoiem.web.engr.illinois.edu/courses/cs598_spring09/papers/fulltext.pdf +20eabf10e9591443de95b726d90cda8efa7e53bb,,,https://doi.org/10.1007/s11390-017-1740-0, +201802c83b4f161de764bb1480735e0b090b5c3b,,,, +20cfb4136c1a984a330a2a9664fcdadc2228b0bc,http://www.eecs.harvard.edu/~htk/publication/2015-amfg-chen-comiter-kung-mcdanel.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301357 +2020e8c0be8fa00d773fd99b6da55029a6a83e3d,http://pdfs.semanticscholar.org/9ca3/806dd01f8aded02e88c7022716b7fef46423.pdf,,,http://eudl.eu/pdf/10.1007/978-3-642-32615-8_48 +20a0b23741824a17c577376fdd0cf40101af5880,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Weinzaepfel_Learning_to_Track_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.362 +205f035ec90a7fa50fd04fdca390ce83c0eea958,,,,http://doi.acm.org/10.1145/3131287 +189e5a2fa51ed471c0e7227d82dffb52736070d8,,,https://doi.org/10.1109/ICIP.2017.8296995, +18c72175ddbb7d5956d180b65a96005c100f6014,http://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf,,,http://doi.ieeecomputersociety.org/10.1109/34.927464 +18636347b8741d321980e8f91a44ee054b051574,http://biometrics.cse.msu.edu/Publications/SoftBiometrics/JainParkFacemarks_ICIP09.pdf,,https://doi.org/10.1109/ICIP.2009.5413921,http://www.cse.msu.edu/biometrics/Publications/SoftBiometrics/JainParkFacemarks_ICIP09.pdf +18206e1b988389eaab86ef8c852662accf3c3663,http://pdfs.semanticscholar.org/d13e/5b4249cfe9672672eb573d15e7dc0a235e04.pdf,,,http://arxiv.org/abs/1712.00636 +189b1859f77ddc08027e1e0f92275341e5c0fdc6,http://pdfs.semanticscholar.org/189b/1859f77ddc08027e1e0f92275341e5c0fdc6.pdf,,https://doi.org/10.1007/978-3-642-35749-7_3,http://rogerioferis.com/PartsAndAttributes/pages/material/SparsePnA2010.pdf +18a9f3d855bd7728ed4f988675fa9405b5478845,http://pdfs.semanticscholar.org/18a9/f3d855bd7728ed4f988675fa9405b5478845.pdf,,,http://ictactjournals.in/paper/IJIVP_V4_I2_Paper_6_709_716.pdf +18409c220a0f330c24f0e095653a787813c3c85a,,,, +181045164df86c72923906aed93d7f2f987bce6c,http://pdfs.semanticscholar.org/1810/45164df86c72923906aed93d7f2f987bce6c.pdf,,,http://thomas.deselaers.de/teaching/files/belle_master.pdf +18166432309000d9a5873f989b39c72a682932f5,http://pdfs.semanticscholar.org/1816/6432309000d9a5873f989b39c72a682932f5.pdf,,,http://web.cse.ohio-state.edu/~hamm.95/papers/visapp08jh.pdf +18f57228614b1ea0f42e1376a78b94222e81bf7a,,,, +18d5b0d421332c9321920b07e0e8ac4a240e5f1f,http://pdfs.semanticscholar.org/18d5/b0d421332c9321920b07e0e8ac4a240e5f1f.pdf,,,http://arxiv.org/abs/1507.08064 +18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,http://pdfs.semanticscholar.org/18c6/c92c39c8a5a2bb8b5673f339d3c26b8dcaae.pdf,,,http://cbcl.mit.edu/projects/cbcl/publications/ps/liao_leibo_poggio_NIPS-2013.pdf +18bfda16116e76c2b21eb2b54494506cbb25e243,,,https://doi.org/10.1109/TIFS.2010.2051544, +1885acea0d24e7b953485f78ec57b2f04e946eaf,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w36/Xiong_Combining_Local_and_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.297 +18a013e1c72cf579d1b215f22d298521047e98a4,,,, +18d3532298fb7b8fb418453107f786178ca82e4a,,,https://doi.org/10.1109/TIFS.2017.2668221, +184750382fe9b722e78d22a543e852a6290b3f70,http://pdfs.semanticscholar.org/1847/50382fe9b722e78d22a543e852a6290b3f70.pdf,,https://doi.org/10.1016/j.patcog.2003.09.006,https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/pr04.pdf +18a849b1f336e3c3b7c0ee311c9ccde582d7214f,http://pdfs.semanticscholar.org/18a8/49b1f336e3c3b7c0ee311c9ccde582d7214f.pdf,,,http://web.mit.edu/vondrick/vatic/ijcv.pdf +18cd79f3c93b74d856bff6da92bfc87be1109f80,http://pdfs.semanticscholar.org/18cd/79f3c93b74d856bff6da92bfc87be1109f80.pdf,,,http://www.e-ijaet.org/media/41I8-IJAET0805954-AN-APPLICATION-TO-HUMAN.pdf +184dba921b932143d196c833310dee6884fa4a0a,,,https://doi.org/10.1109/SIU.2017.7960393, +18dd3867d68187519097c84b7be1da71771d01a3,,,,http://doi.acm.org/10.1145/2448556.2448563 +184fc019bbec7f07bd9e34406f95f07faf7ed96f,,,, +182470fd0c18d0c5979dff75d089f1da176ceeeb,https://repositori.upf.edu/bitstream/handle/10230/27207/dominguez_MARMI16_mult.pdf?isAllowed=y&sequence=1,,,http://doi.acm.org/10.1145/2927006.2927008 +1862cb5728990f189fa91c67028f6d77b5ac94f6,http://lvdmaaten.github.io/publications/papers/CVPR_2014.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.165 +18145b0b13aa477eeabef9ceec4299b60e87c563,,,https://doi.org/10.1007/s11042-011-0834-x, +1862bfca2f105fddfc79941c90baea7db45b8b16,http://vision.cs.utexas.edu/projects/rationales/rationales.pdf,,,http://jeffdonahue.com/papers/RationalesICCV2011.pdf +1886b6d9c303135c5fbdc33e5f401e7fc4da6da4,https://arxiv.org/pdf/1610.01119v1.pdf,,https://doi.org/10.1109/TIP.2017.2675339,http://arxiv.org/abs/1610.01119 +18b344b5394988544c386783e7bb8e73e0466e0e,,,, +1888bf50fd140767352158c0ad5748b501563833,http://pdfs.semanticscholar.org/1888/bf50fd140767352158c0ad5748b501563833.pdf,,, +187d4d9ba8e10245a34f72be96dd9d0fb393b1aa,http://pdfs.semanticscholar.org/187d/4d9ba8e10245a34f72be96dd9d0fb393b1aa.pdf,,https://doi.org/10.5244/C.23.125,http://www.bmva.org/bmvc/2009/Papers/Paper164/Paper164.pdf +182f3aa4b02248ff9c0f9816432a56d3c8880706,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Quan_Sparse_Coding_for_CVPR_2016_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Quan_Sparse_Coding_for_CVPR_2016_paper.pdf +189a839c708f95772ccaad72bfb4d0321d1535d6,,,, +1828b1b0f5395b163fef087a72df0605249300c2,http://pdfs.semanticscholar.org/8b18/66a150521bfa18c3e6ec633e1acc79683749.pdf,,https://doi.org/10.5244/C.24.55,http://www.bmva.org/bmvc/2010/conference/paper55/abstract55.pdf +1821510693f5bed360c81706c97330d2fa7d1290,,,, +187f3ee3bc50a1f2471edc80d707e4fa1cac5b0b,,,https://doi.org/10.1109/LSP.2015.2437883, +1831800ef8b1f262c92209f1ee16567105da35d6,,,https://doi.org/10.1016/j.sigpro.2014.01.010, +185360fe1d024a3313042805ee201a75eac50131,http://cvit.iiit.ac.in/papers/deidentTCSVT2k11.pdf,,https://doi.org/10.1007/978-3-642-12297-2_26,http://cvit.iiit.ac.in/papers/Prachi09Person.pdf +1824b1ccace464ba275ccc86619feaa89018c0ad,http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf,,,http://www.nada.kth.se/~sullivan/Papers/Kazemi_cvpr14.pdf +1890470d07a090e7b762091c7b9670b5c2e1c348,,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.20 +18dfc2434a95f149a6cbb583cca69a98c9de9887,http://pdfs.semanticscholar.org/18df/c2434a95f149a6cbb583cca69a98c9de9887.pdf,,,http://www.bmva.org/bmvc/2014/files/abstract039.pdf +181708b09bde7f4904f8fd92b3668d76e7aff527,http://mplab.ucsd.edu/~ksikka/emotiw14.pdf,,,http://doi.acm.org/10.1145/2663204.2666275 +271e2856e332634eccc5e80ba6fa9bbccf61f1be,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/176.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2008.4563125 +27846b464369095f4909f093d11ed481277c8bba,http://pdfs.semanticscholar.org/2784/6b464369095f4909f093d11ed481277c8bba.pdf,,,http://file.scirp.org/pdf/JSIP_2017051915464852.pdf +27eb7a6e1fb6b42516041def6fe64bd028b7614d,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zafeiriou_Joint_Unsupervised_Deformable_CVPR_2016_paper.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/zafeiriou2016joint.pdf +2717998d89d34f45a1cca8b663b26d8bf10608a9,http://wangzheallen.github.io/papers/ZhangWWQW_CVPR16.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Real-Time_Action_Recognition_CVPR_2016_paper.pdf +27c66b87e0fbb39f68ddb783d11b5b7e807c76e8,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w14/papers/Rodriguez_Fast_Simplex-HMM_for_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.166 +27a0a7837f9114143717fc63294a6500565294c2,http://pdfs.semanticscholar.org/27a0/a7837f9114143717fc63294a6500565294c2.pdf,,,https://hal.inria.fr/inria-00326730/document +27aadf6e7441bf40675874df1cf4bb7e2dffdd9e,http://www1.icsi.berkeley.edu/~farrell/birdlets/iccv11-camera-ready.pdf,,,http://www.umiacs.umd.edu/~morariu/publications/FarrellBirdletsICCV11.pdf +27d709f7b67204e1e5e05fe2cfac629afa21699d,http://pdfs.semanticscholar.org/2b88/db4294f11b0516a537b8720fcf416be80dbf.pdf,,,http://www.cs.utexas.edu/~grauman/papers/latent-look-iccv2017.pdf +27c9ddb72360f4cd0f715cd7ea82fa399af91f11,http://pdfs.semanticscholar.org/27c9/ddb72360f4cd0f715cd7ea82fa399af91f11.pdf,,https://doi.org/10.1016/j.imavis.2004.09.002,http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Multiresolution_Face.pdf +271df16f789bd2122f0268c3e2fa46bc0cb5f195,http://users.eecs.northwestern.edu/~mya671/mypapers/CVPR11_Yuan_Yang_Wu.pdf,,,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2011/Mining%20Discriminative%20Co-occurrence%20Patterns%20for%20Visual%20Recognition.pdf +27e0684fa5b57715162ac6c58a6ea283c7db1719,,,https://doi.org/10.1109/ICARCV.2004.1468857, +27218ff58c3f0e7d7779fba3bb465d746749ed7c,http://pdfs.semanticscholar.org/2721/8ff58c3f0e7d7779fba3bb465d746749ed7c.pdf,,,http://www.cs.utexas.edu/~grauman/research/theses/BS-LucyLiang.pdf +276dbb667a66c23545534caa80be483222db7769,http://pdfs.semanticscholar.org/276d/bb667a66c23545534caa80be483222db7769.pdf,,,https://www.researchgate.net/profile/Steffen_Herbort/publication/225729523_An_introduction_to_image-based_3D_surface_reconstruction_and_a_survey_of_photometric_stereo_methods/links/00b7d53a1737cbc0cf000000.pdf +27812db1d2f68611cc284d65d11818082e572008,,,https://doi.org/10.1109/MIPRO.2016.7522323, +27c6cd568d0623d549439edc98f6b92528d39bfe,http://openaccess.thecvf.com/content_iccv_2015/papers/Hsu_Regressive_Tree_Structured_ICCV_2015_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Hsu_Regressive_Tree_Structured_ICCV_2015_paper.pdf +273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,http://arxiv.org/pdf/1604.04334v1.pdf,,https://doi.org/10.1007/s11042-016-3428-9,https://arxiv.org/pdf/1604.04334v1.pdf +27169761aeab311a428a9dd964c7e34950a62a6b,http://academicjournals.org/article/article1380818227_Mostayed%20et%20al.pdf,,, +27961bc8173ac84fdbecacd01e5ed6f7ed92d4bd,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/NiinumaHanJain_MultiviewFaceRecognition_PoseRegularization_BTAS13.pdf,,https://doi.org/10.1109/BTAS.2013.6712735,http://www.cse.msu.edu/biometrics/Publications/Face/NiinumaHanJain_MultiviewFaceRecognition_PoseRegularization_BTAS13.pdf +27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5,http://pdfs.semanticscholar.org/2717/3d0b9bb5ce3a75d05e4dbd8f063375f24bb5.pdf,,,http://www.ijera.com/papers/Vol4_issue10/Part%20-%203/G410034044.pdf +27e5b7ae3506a0f7472ee9089cd2472442e71c14,,,https://doi.org/10.1007/s00521-015-1834-y, +2784d9212dee2f8a660814f4b85ba564ec333720,http://people.cs.umass.edu/~elm/papers/cvpr2010_imagetrans.pdf,,https://doi.org/10.1109/CVPRW.2010.5543185,http://vis-www.cs.umass.edu/papers/cvpr2010_imagetrans.pdf +275b3cb7c780c663eabbf4d6c6cbc8fe24287c70,https://www.researchgate.net/profile/Bisan_Alsalibi/publication/280839254_The_Impact_of_Bio-Inspired_Approaches_Toward_the_Advancement_of_Face_Recognition/links/55c8ce4608aeca747d67062e.pdf?origin=publication_list,,,http://doi.acm.org/10.1145/2791121 +278e1441a77fbeebb22c45932d76c557e5663197,http://sist.sysu.edu.cn/~zhwshi/research/preprintversion/two-stage%20nonnegative%20sparse%20representation%20for%20large-scale%20face%20recognition.pdf,,https://doi.org/10.1109/TNNLS.2012.2226471,http://www.cripac.ia.ac.cn/People/rhe/bare_jrnl_v5.pdf +27cccf992f54966feb2ab4831fab628334c742d8,http://pdfs.semanticscholar.org/27cc/cf992f54966feb2ab4831fab628334c742d8.pdf,,,http://www.ijcaonline.org/archives/volume64/number18/10733-5573?format=pdf +27883967d3dac734c207074eed966e83afccb8c3,http://www.ee.cuhk.edu.hk/~xgwang/papers/gaoGZHW.pdf,,https://doi.org/10.1109/TIP.2013.2262286, +270e5266a1f6e76954dedbc2caf6ff61a5fbf8d0,http://pdfs.semanticscholar.org/270e/5266a1f6e76954dedbc2caf6ff61a5fbf8d0.pdf,,,http://arxiv.org/abs/1703.01210 +27f8b01e628f20ebfcb58d14ea40573d351bbaad,http://pdfs.semanticscholar.org/27f8/b01e628f20ebfcb58d14ea40573d351bbaad.pdf,,,http://eprints-phd.biblio.unitn.it/2748/3/My_PhD_Thesis.pdf +2742a61d32053761bcc14bd6c32365bfcdbefe35,http://pdfs.semanticscholar.org/ee39/96dc3f451f480134e1a468c32762d688c51b.pdf,,,http://jmlr.csail.mit.edu/papers/volume16/qiu15a/qiu15a.pdf +27aa23d7a05368a6b5e3d95627f9bab34284e5c4,,,https://doi.org/10.1109/IJCNN.2012.6252705, +2729e12ecb777a553e5ed0a1ac52dd37924e813d,,,, +27dafedccd7b049e87efed72cabaa32ec00fdd45,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_074.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2A_074_ext.pdf +27a586a435efdcecb151c275947fe5b5b21cf59b,,,https://doi.org/10.1007/s12559-017-9530-0, +27a299b834a18e45d73e0bf784bbb5b304c197b3,http://ai.stanford.edu/~vigneshr/cvpr_13/cvpr13_social_roles.pdf,,,http://cs.stanford.edu/groups/vision/pdf/334.pdf +2710e1c58476e1996466530af825de6376a92833,,,, +279459cbbc5c6db4802e9c737cc72a612d76f7fc,,,https://doi.org/10.1109/SSCI.2017.8285296, +272e487dfa32f241b622ac625f42eae783b7d9aa,,,https://doi.org/10.1109/ICSIPA.2015.7412207, +27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba,http://pdfs.semanticscholar.org/27b1/670e1b91ab983b7b1ecfe9eb5e6ba951e0ba.pdf,,,https://pdfs.semanticscholar.org/27b1/670e1b91ab983b7b1ecfe9eb5e6ba951e0ba.pdf +274f87ad659cd90382ef38f7c6fafc4fc7f0d74d,http://www.deepkernel.com/Papers/mm2014.pdf,,,http://doi.acm.org/10.1145/2647868.2654928 +27ee8482c376ef282d5eb2e673ab042f5ded99d7,http://sylvain.legallou.fr/Fichiers/p_ICARCV06_NewNormalization_LeGallou.pdf,,https://doi.org/10.1109/ICARCV.2006.345451,https://hal.archives-ouvertes.fr/hal-00143460/document +4b28de1ebf6b6cb2479b9176fab50add6ed75b78,http://vision.ucsd.edu/sites/default/files/cvpr05a.pdf,,,https://vision.cornell.edu/se3/wp-content/uploads/2014/09/cvpr05a_0.pdf +4b4106614c1d553365bad75d7866bff0de6056ed,http://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf,,https://doi.org/10.1007/978-3-319-27101-9_26,http://home.zcu.cz/~pkral/papers/kral_micai15.pdf +4bb03b27bc625e53d8d444c0ba3ee235d2f17e86,http://www.cs.utexas.edu/~grauman/papers/hwang_cvpr2010.pdf,,,http://vision.cs.utexas.edu/projects/tag/0735.pdf +4b9b30066a05bdeb0e05025402668499ebf99a6b,,,https://doi.org/10.1109/ISPACS.2012.6473448, +4b89cf7197922ee9418ae93896586c990e0d2867,http://www.cs.cmu.edu/~ftorre/paper1.pdf,,,http://www.cs.sfu.ca/~mori/research/papers/wang_cluster_people_cvpr06.pdf +4b8c736524d548472d0725c971ee29240ae683f6,,,,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.31 +4bc9a767d7e63c5b94614ebdc24a8775603b15c9,http://pdfs.semanticscholar.org/4bc9/a767d7e63c5b94614ebdc24a8775603b15c9.pdf,,,http://eprints-phd.biblio.unitn.it/1443/1/GZen_final_thesis.pdf +4b519e2e88ccd45718b0fc65bfd82ebe103902f7,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,,https://doi.org/10.1109/TIFS.2011.2156787,http://www.cse.msu.edu/biometrics/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf +4b3f425274b0c2297d136f8833a31866db2f2aec,https://arxiv.org/pdf/1705.01567v2.pdf,,,http://www.vislab.ucr.edu/Biometrics2017/program_slides/TowardOpen-SetFaceRecognition.pdf +4b7c110987c1d89109355b04f8597ce427a7cd72,http://pdfs.semanticscholar.org/4b7c/110987c1d89109355b04f8597ce427a7cd72.pdf,,,http://journal-cdn.frontiersin.org/article/108202/files/pubmed-zip/versions/1/pdf +4bd088ba3f42aa1e43ae33b1988264465a643a1f,http://pdfs.semanticscholar.org/4bd0/88ba3f42aa1e43ae33b1988264465a643a1f.pdf,,,http://www.diva-portal.org/smash/get/diva2:239370/FULLTEXT01.pdf +4bc4a7c4142e8b37389fddd1e2338298b8b56e96,,,, +4bfce41cc72be315770861a15e467aa027d91641,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Branson_Active_Annotation_Translation_2014_CVPR_paper.pdf,,,http://www.vision.caltech.edu/~sbranson/files/cvpr14_annotation_translator.pdf +4bd3de97b256b96556d19a5db71dda519934fd53,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wen_Latent_Factor_Guided_CVPR_2016_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wen_Latent_Factor_Guided_CVPR_2016_paper.pdf +4b04247c7f22410681b6aab053d9655cf7f3f888,http://pdfs.semanticscholar.org/60e5/0494dc26bd30e3c49b93ca85d0f79bf5c53f.pdf,,,https://arxiv.org/pdf/1501.04717v1.pdf +4b7f21b48c7e0dc7334e36108f558d54642c17c0,,,https://doi.org/10.1109/WACV.2017.106, +4b6387e608afa83ac8d855de2c9b0ae3b86f31cc,http://www.researchgate.net/profile/Heng_Yang3/publication/263813517_Face_Sketch_Landmarks_Localization_in_the_Wild/links/53d3dd3b0cf220632f3ce8b3.pdf,,https://doi.org/10.1109/LSP.2014.2333544, +4b60e45b6803e2e155f25a2270a28be9f8bec130,http://www.cs.washington.edu/ai/Mobile_Robotics/postscripts/attribute-objects-icra-2013.pdf,,https://doi.org/10.1109/ICRA.2013.6630858,http://homes.cs.washington.edu/~lfb/paper/icra13.pdf +4ba2f445fcbbad464f107b036c57aa807ac5c0c2,,,https://doi.org/10.1109/TCSVT.2014.2367357, +4b5eeea5dd8bd69331bd4bd4c66098b125888dea,http://pdfs.semanticscholar.org/4b5e/eea5dd8bd69331bd4bd4c66098b125888dea.pdf,,,http://www.cs.uoi.gr/tech_reports//publications/PD-2016-1.pdf +4bbbee93519a4254736167b31be69ee1e537f942,https://arxiv.org/pdf/1611.05125v2.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.16 +4b74f2d56cd0dda6f459319fec29559291c61bff,http://pdfs.semanticscholar.org/96d1/e2686725f69b38b510a75b716caf3a48b3e2.pdf,,https://doi.org/10.5244/C.26.101,http://www.bmva.org/bmvc/2012/BMVC/paper101/paper101.pdf +4ba38262fe20fab3e4c80215147b498f83843b93,http://pdfs.semanticscholar.org/f2af/967e28c12de9d957c08ffbc7a982e4ccea1e.pdf,,https://doi.org/10.5244/C.23.39,http://www.bmva.org/bmvc/2009/Papers/Paper146/Abstract146.pdf +4b94f531c203743a9f7f1e9dd009cdbee22ea197,,,https://doi.org/10.1109/ICSMC.2005.1571393, +4b3eaedac75ac419c2609e131ea9377ba8c3d4b8,https://teresaproject.eu/wp-content/uploads/2015/07/kossaifi_tzimiro_pantic_icip_2014.pdf,,https://doi.org/10.1109/ICIP.2014.7025284,https://ibug.doc.ic.ac.uk/media/uploads/documents/kossaifi_tzimiro_pantic_icip_2014.pdf +4b507a161af8a7dd41e909798b9230f4ac779315,http://pdfs.semanticscholar.org/5202/4d271f516c7d0dfa73009bf7537549ef74f7.pdf,,,http://www1.cs.columbia.edu/~belhumeur/conference/multiplex-iccv03.pdf +4b02387c2db968a70b69d98da3c443f139099e91,http://pdfs.semanticscholar.org/4b02/387c2db968a70b69d98da3c443f139099e91.pdf,,,http://arxiv.org/abs/1609.06441 +4b6be933057d939ddfa665501568ec4704fabb39,http://pdfs.semanticscholar.org/59c4/c6ba21354675401a173eb6c70500b99571cd.pdf,,https://doi.org/10.1162/NECO_a_00233,http://www.dsi.unive.it/~pelillo/papers/Neural%20Computation%202012.pdf +4b71d1ff7e589b94e0f97271c052699157e6dc4a,http://pdfs.semanticscholar.org/4b71/d1ff7e589b94e0f97271c052699157e6dc4a.pdf,,https://doi.org/10.1155/2008/748483,http://asp.eurasipjournals.com/content/pdf/1687-6180-2008-748483.pdf +4b0a2937f64df66cadee459a32ad7ae6e9fd7ed2,https://arxiv.org/pdf/1705.07750v3.pdf,,,https://arxiv.org/pdf/1705.07750v2.pdf +4b4ecc1cb7f048235605975ab37bb694d69f63e5,http://pdfs.semanticscholar.org/4b4e/cc1cb7f048235605975ab37bb694d69f63e5.pdf,,https://doi.org/10.1007/978-3-319-49409-8_36,http://arxiv.org/abs/1706.07524 +4be03fd3a76b07125cd39777a6875ee59d9889bd,http://homes.esat.kuleuven.be/~tuytelaa/Tuytelaars-BeyondConceptSearch-WIAMIS12.pdf,,https://doi.org/10.1109/WIAMIS.2012.6226770, +4be774af78f5bf55f7b7f654f9042b6e288b64bd,http://pdfs.semanticscholar.org/4be7/74af78f5bf55f7b7f654f9042b6e288b64bd.pdf,,,https://arxiv.org/pdf/1603.01801v1.pdf +4b321065f6a45e55cb7f9d7b1055e8ac04713b41,http://pdfs.semanticscholar.org/4b32/1065f6a45e55cb7f9d7b1055e8ac04713b41.pdf,,,http://www.researchgate.net/profile/Ricardo_Duarte6/publication/232708766_Affective_Computing_Models_for_Character_Animation/links/0fcfd508d0ec5a4a62000000.pdf +4b605e6a9362485bfe69950432fa1f896e7d19bf,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Blanton_A_Comparison_of_CVPR_2016_paper.pdf +4b3dd18882ff2738aa867b60febd2b35ab34dffc,http://pdfs.semanticscholar.org/4b3d/d18882ff2738aa867b60febd2b35ab34dffc.pdf,,,http://www.cl.cam.ac.uk/~re227/publications/facialfeatureanalysis-AIAC2002.pdf +4b9c47856f8314ecbe4d0efc65278c2ededb2738,,,https://doi.org/10.1109/LSP.2012.2188890, +11a2ef92b6238055cf3f6dcac0ff49b7b803aee3,http://cs.adelaide.edu.au/~carneiro/publications/mainSPL.pdf,,https://doi.org/10.1109/ICIP.2015.7351701, +11dc744736a30a189f88fa81be589be0b865c9fa,http://openaccess.thecvf.com/content_iccv_2015/papers/Liang_A_Unified_Multiplicative_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.288 +1176a74fb9351ac2de81c198c4861d78e58f172d,,,https://doi.org/10.1016/j.patrec.2011.03.023, +1171e8a96ffb15fdb265aaba02be014a38137ad5,http://hal.cse.msu.edu/pdfs/papers/pdm-tifs-2015.pdf,,https://doi.org/10.1109/TIFS.2015.2434271, +11a210835b87ccb4989e9ba31e7559bb7a9fd292,http://profdoc.um.ac.ir/articles/a/1020638.pdf,,https://doi.org/10.1109/ISDA.2010.5687029, +11ba01ce7d606bab5c2d7e998c6d94325521b8a0,,,https://doi.org/10.1109/ICIP.2015.7350911, +118ca3b2e7c08094e2a50137b1548ada7935e505,http://pdfs.semanticscholar.org/dc5c/273198b16dc615888256da74758f4a4b128b.pdf,,,http://arxiv.org/abs/1802.08936 +11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,http://pdfs.semanticscholar.org/11aa/527c01e61ec3a7a67eef8d7ffe9d9ce63f1d.pdf,,,http://www.its.caltech.edu/~whong/PDF/2015_Hong_PNAS.pdf +11ddf5e47854e4e6109762835d2ce086bbdfbc5b,http://eprints.pascal-network.org/archive/00008322/01/schroff11.pdf,,,http://research.microsoft.com/users/antcrim/papers/Criminisi_iccv2007.pdf +110919f803740912e02bb7e1424373d325f558a9,,,,http://doi.acm.org/10.1145/3123266.3123421 +11ad162b3165b4353df8d7b4153fb26d6a310d11,,,, +113c22eed8383c74fe6b218743395532e2897e71,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sapp_MODEC_Multimodal_Decomposable_2013_CVPR_paper.pdf,,,http://homes.cs.washington.edu/~taskar/pubs/modec_cvpr13.pdf +110c55b440b7c6a1692da9d8ee52389e43f6e76e,http://cs.brown.edu/people/ls/Publications/wacv2015dai_supplement.pdf,,,http://web.engr.illinois.edu/~dhoiem/publications/dai_disney_wacv2015.pdf +11408af8861fb0a977412e58c1a23d61b8df458c,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2014/0265.pdf,,, +11cc0774365b0cc0d3fa1313bef3d32c345507b1,http://pdfs.semanticscholar.org/11cc/0774365b0cc0d3fa1313bef3d32c345507b1.pdf,,https://doi.org/10.5244/C.19.24,http://www.bmva.org/bmvc/2005/papers/143/paper.pdf +11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Caseiro_Rolling_Riemannian_Manifolds_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.13 +11e6cf1cbb33d67a3e3c87dcaf7031d6654bc0de,,,,http://doi.acm.org/10.1145/2522968.2522978 +113cd9e5a4081ce5a0585107951a0d36456ce7a8,,,https://doi.org/10.1109/ICSMC.2006.384939, +11269e98f072095ff94676d3dad34658f4876e0e,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2015/ACII2015_submission_70.pdf,,,http://www.infomus.org/Events/proceedings/ACII2015/papers/Main_Conference/M2_Poster/Poster_Teaser_5/ACII2015_submission_70.pdf +1176c886afbd8685ecf0094450a02eb96b950f71,http://pdfs.semanticscholar.org/1176/c886afbd8685ecf0094450a02eb96b950f71.pdf,,https://doi.org/10.1016/j.neucom.2016.05.097,http://www.yugangjiang.info/publication/Neurocomputing_BayesianHashing.pdf +113e5678ed8c0af2b100245057976baf82fcb907,http://www.humansensing.cs.cmu.edu/sites/default/files/4Jeni_Metrics.pdf,,,http://humansensing.cs.cmu.edu/sites/default/files/4Jeni_Metrics.pdf +11c2d40fc63ecd88febadd8a9cac9521a6b7de66,,,https://doi.org/10.1109/ICSIPA.2011.6144081, +11bda1f054effb3116115b0699d74abec3e93a4b,,,, +11c04c4f0c234a72f94222efede9b38ba6b2306c,http://www.ece.northwestern.edu/~zli/new_home/MyPublications/conf/ACMMM08-action-recog.pdf,,,http://users.eecs.northwestern.edu/~zli/new_home/MyPublications/conf/ACMMM08-action-recog.pdf +11ff2f54ecfda6c7f90ed84baf1cc5b4f07e726b,,,, +1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/icmr038-liA.pdf,,,http://doi.acm.org/10.1145/2911996.2912001 +1195f0bf8f745ba69da915203bcd79589b94aec5,,,https://doi.org/10.1016/j.procs.2010.11.004, +1149c6ac37ae2310fe6be1feb6e7e18336552d95,http://pdfs.semanticscholar.org/1149/c6ac37ae2310fe6be1feb6e7e18336552d95.pdf,,https://doi.org/10.1007/11550822_89,http://www.researchgate.net/profile/Horst-Michael_Gross/publication/225173459_Classification_of_Face_Images_for_Gender_Age_Facial_Expression_and_Identity/links/0912f50a5227991f45000000.pdf +11f17191bf74c80ad0b16b9f404df6d03f7c8814,http://pdfs.semanticscholar.org/11f5/c82e3a39b9c8b91370ef7286a748c19b658a.pdf,,,https://arxiv.org/pdf/1602.01921v1.pdf +11367581c308f4ba6a32aac1b4a7cdb32cd63137,https://pdfs.semanticscholar.org/82c3/367ca6fc95e705aa8f2270265d82e9d8eedd.pdf,,,http://mplab.ucsd.edu/wordpress/wp-content/uploads/CVPR2008/WorkShops/data/papers/100.pdf +11a47a91471f40af5cf00449954474fd6e9f7694,http://pdfs.semanticscholar.org/11a4/7a91471f40af5cf00449954474fd6e9f7694.pdf,,https://doi.org/10.3390/info7040061,http://www.mdpi.com/2078-2489/7/4/61/pdf +1181f1146db7170b09f28f7cc51c42c63547d84b,,,, +11fdff97f4511ae3d3691cfdeec5a19fa04db6ef,http://mclab.eic.hust.edu.cn/UpLoadFiles/Papers/SCA_TIP2016.pdf,,https://doi.org/10.1109/TIP.2016.2514498, +1198572784788a6d2c44c149886d4e42858d49e4,http://pdfs.semanticscholar.org/1198/572784788a6d2c44c149886d4e42858d49e4.pdf,,,https://arxiv.org/pdf/1607.01354v1.pdf +11f8d0a54e55c5e6537eef431cd548fa292ef90b,,,https://doi.org/10.1016/j.neucom.2017.05.042, +110359824a0e3b6480102b108372793265a24a86,,,https://doi.org/10.1016/j.image.2016.03.011, +1125760c14ea6182b85a09bf3f5bad1bdad43ef5,,,https://doi.org/10.1109/CVPR.2004.286, +11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8,http://elderlab.apps01.yorku.ca/wp-content/uploads/2016/12/PrincePAMI08.pdf,,,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/PAMI_FaceRecPose.pdf +1134a6be0f469ff2c8caab266bbdacf482f32179,http://pdfs.semanticscholar.org/1134/a6be0f469ff2c8caab266bbdacf482f32179.pdf,,,http://esatjournals.net/ijret/2015v04/i12/IJRET20150412017.pdf +11b3877df0213271676fa8aa347046fd4b1a99ad,http://pdfs.semanticscholar.org/11b3/877df0213271676fa8aa347046fd4b1a99ad.pdf,,https://doi.org/10.1007/978-3-540-76390-1_48,https://filebox.ece.vt.edu/~parikh/Publications/ParikhChen_ACCV_2007_dISCOVER.pdf +116d57b4e5dda41d72e497517f65159e6f12c517,,,, +11b904c9180686574e6047bbd9868c354ca46cb4,,,, +1130c38e88108cf68b92ecc61a9fc5aeee8557c9,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_058.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Feichtenhofer_Dynamically_Encoded_Actions_2015_CVPR_paper.pdf +11b89011298e193d9e6a1d99302221c1d8645bda,http://openaccess.thecvf.com/content_iccv_2015/papers/Gao_Structured_Feature_Selection_ICCV_2015_paper.pdf,,https://doi.org/10.1109/ICCV.2015.484,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Gao_Structured_Feature_Selection_ICCV_2015_paper.pdf +11a6593e6e35f95ebeb5233897d1d8bcad6f9c87,,,https://doi.org/10.1007/s11063-017-9615-5, +11d73f4f19077e6806d05dc7ecd17fbeb15bdf39,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.28 +1135a818b756b057104e45d976546970ba84e612,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.118 +111a9645ad0108ad472b2f3b243ed3d942e7ff16,http://pdfs.semanticscholar.org/111a/9645ad0108ad472b2f3b243ed3d942e7ff16.pdf,,,http://www.lvc.ele.puc-rio.br/users/raul_feitosa/publications/2001/Facial%20Expression%20Classification%20Using.pdf +1177977134f6663fff0137f11b81be9c64c1f424,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_003.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_003_ext.pdf +11fdd940c9a23a34f7ab59809c26a02bce35c5f3,,,, +11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0,http://pdfs.semanticscholar.org/11ac/88aebe0230e743c7ea2c2a76b5d4acbfecd0.pdf,,https://doi.org/10.1007/978-3-319-64698-5_32,https://bib.irb.hr/datoteka/891183.MARCETIC_HCM.pdf +117f164f416ea68e8b88a3005e55a39dbdf32ce4,http://www.cs.toronto.edu/~fidler/papers/fashionCVPR15.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_095.pdf +7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4,http://pdfs.semanticscholar.org/7dda/2eb0054eb1aeda576ed2b27a84ddf09b07d4.pdf,,,https://www.researchgate.net/profile/Keun-Chang_Kwak/publication/229011764_Face_Recognition_and_Representation_by_Tensor-based_MPCA_Approach/links/09e41509c4e166d6a3000000.pdf +7d94fd5b0ca25dd23b2e36a2efee93244648a27b,http://pdfs.semanticscholar.org/7d94/fd5b0ca25dd23b2e36a2efee93244648a27b.pdf,,,http://arxiv.org/pdf/1608.06434v1.pdf +7d81b804e23ee2bd04c1def6201b91be6de0d88a,,,, +7d8c2d29deb80ceed3c8568100376195ce0914cb,https://arxiv.org/pdf/1708.01988v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.209 +7d8798e7430dcc68fcdbd93053c884fc44978906,,,,http://doi.acm.org/10.1145/2506364.2506369 +7d50df03d0c8a26eaaeaef47de68691f9ac73701,http://media-lab.engr.ccny.cuny.edu/Paper/2011/HCBA11.pdf,,https://doi.org/10.1109/CVPRW.2011.5981880,https://pdfs.semanticscholar.org/90fe/65a5075ed16b4e76f7b3b87cd3a59b5c145b.pdf +7d306512b545df98243f87cb8173df83b4672b18,http://pdfs.semanticscholar.org/7d30/6512b545df98243f87cb8173df83b4672b18.pdf,,https://doi.org/10.1007/978-3-319-10705-9_45,http://www.cs.colostate.edu/~draper/papers/marrinan_enumath14.pdf +7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b,http://pdfs.semanticscholar.org/7d98/dcd15e28bcc57c9c59b7401fa4a5fdaa632b.pdf,,,http://www.hds.utc.fr/~fdavoine/mypublications/wiamis04_3.pdf +7df277c37ac75851684f926fd3fb4daced3e79f8,,,, +7da9464dbae52c8bda13461a4f44420c333b0342,,,, +7d41b67a641426cb8c0f659f0ba74cdb60e7159a,http://eprints.soton.ac.uk/389641/1/isba-16-camera.pdf,,https://doi.org/10.1109/ISBA.2016.7477240,https://eprints.soton.ac.uk/389641/1/isba-16-camera.pdf +7d1688ce0b48096e05a66ead80e9270260cb8082,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w44/Saxen_Real_vs._Fake_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.363 +7d61b70d922d20c52a4e629b09465076af71ddfd,,,https://doi.org/10.1007/s10044-011-0258-2, +7d53678ef6009a68009d62cd07c020706a2deac3,http://pdfs.semanticscholar.org/7d53/678ef6009a68009d62cd07c020706a2deac3.pdf,,https://doi.org/10.1007/978-3-540-71457-6_38,https://www.researchgate.net/profile/Whoi-Yul_Kim/publication/221055022_Facial_Feature_Point_Extraction_Using_the_Adaptive_Mean_Shape_in_Active_Shape_Model/links/00b7d517955c225f42000000.pdf +7d7be6172fc2884e1da22d1e96d5899a29831ad2,http://pdfs.semanticscholar.org/7d7b/e6172fc2884e1da22d1e96d5899a29831ad2.pdf,,,https://arxiv.org/pdf/1703.01605v1.pdf +7dcd3f58aa75f7ae96fdac9b1c2332a4f0b2dbd3,https://www.researchgate.net/profile/Symeon_Nikitidis/publication/221122322_Facial_expression_recognition_using_clustering_discriminant_Non-negative_Matrix_Factorization/links/54fee98e0cf2eaf210b4506c.pdf,,https://doi.org/10.1109/ICIP.2011.6116294,https://ibug.doc.ic.ac.uk/media/uploads/documents/sdnmf_icip.pdf +7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,http://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf,,,https://people.cs.umass.edu/~elm/papers/LFW_survey.pdf +7d73adcee255469aadc5e926066f71c93f51a1a5,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001283.pdf,,https://doi.org/10.1109/ICASSP.2016.7471883, +7d9fe410f24142d2057695ee1d6015fb1d347d4a,http://pdfs.semanticscholar.org/7d9f/e410f24142d2057695ee1d6015fb1d347d4a.pdf,,,http://ojs.academypublisher.com/index.php/jsw/article/download/jsw081127902795/8004 +7dd578878e84337d6d0f5eb593f22cabeacbb94c,http://pdfs.semanticscholar.org/7dd5/78878e84337d6d0f5eb593f22cabeacbb94c.pdf,,,http://www.cs.cmu.edu/~harini/journalTRC.pdf +7d7870b7633678db2d39d4a5d69d10337ca827d9,,,, +7d7b036ed01765c9473d695f029142128d442aaa,,,https://doi.org/10.1109/TIP.2018.2791180, +7dffe7498c67e9451db2d04bb8408f376ae86992,http://pdfs.semanticscholar.org/7dff/e7498c67e9451db2d04bb8408f376ae86992.pdf,,,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/Paper%2039%20(Supplementary).pdf +7dc498d45f9fcb97acee552c6f587b65d5122c35,,,https://doi.org/10.1109/ICIP.2015.7351618, +7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2,http://maths.dur.ac.uk/users/kasper.peeters/pdf/face_recognition/PCA/Togneri2010LinearRegressionFaceRecognition.pdf,,,http://staffhome.ecm.uwa.edu.au/~00014742/research/papers/IEEETPAMI_32_2010.pdf +7de386bf2a1b2436c836c0cc1f1f23fccb24aad6,http://pdfs.semanticscholar.org/7de3/86bf2a1b2436c836c0cc1f1f23fccb24aad6.pdf,,,http://www.cts.umn.edu/Publications/ResearchReports/pdfdownload.pl?id=802 +7de8a8b437ec7a18e395be9bf7c8f2d502025cc6,,,https://doi.org/10.1109/SIU.2017.7960528, +29ce6b54a87432dc8371f3761a9568eb3c5593b0,https://kar.kent.ac.uk/43222/1/Yatie_EST2013_vfinal.pdf,,,http://doi.ieeecomputersociety.org/10.1109/EST.2013.8 +2914e8c62f0432f598251fae060447f98141e935,http://pdfs.semanticscholar.org/2914/e8c62f0432f598251fae060447f98141e935.pdf,,,http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1122&context=computerscidiss +292eba47ef77495d2613373642b8372d03f7062b,http://pdfs.semanticscholar.org/292e/ba47ef77495d2613373642b8372d03f7062b.pdf,,,http://arxiv.org/pdf/1506.04340v1.pdf +29e96ec163cb12cd5bd33bdf3d32181c136abaf9,http://pdfs.semanticscholar.org/29e9/6ec163cb12cd5bd33bdf3d32181c136abaf9.pdf,,,http://www.cad.zju.edu.cn/home/dengcai/Publication/TR/UIUCDCS-R-2006-2748.pdf +29e793271370c1f9f5ac03d7b1e70d1efa10577c,http://pdfs.semanticscholar.org/29e7/93271370c1f9f5ac03d7b1e70d1efa10577c.pdf,,,http://www.sersc.org/journals/IJSIP/vol6_no5/37.pdf +298c2be98370de8af538c06c957ce35d00e93af8,,,https://doi.org/10.1109/IPTA.2016.7820988, +29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea,http://www.umiacs.umd.edu/~nshroff/DomainAdapt.pdf,,,http://doi.acm.org/10.1145/2683483.2683499 +29c7dfbbba7a74e9aafb6a6919629b0a7f576530,http://pdfs.semanticscholar.org/29c7/dfbbba7a74e9aafb6a6919629b0a7f576530.pdf,,,http://cbcl.mit.edu/publications/theses/thesis-masters-fischer-robert.pdf +292c6b743ff50757b8230395c4a001f210283a34,https://labicvl.github.io/docs/pubs/Oscar_VISAPP_2014.pdf,,https://doi.org/10.5220/0004695104780485,http://www.iis.ee.ic.ac.uk/icvl/doc/VISAPP2014.pdf +29fc4de6b680733e9447240b42db13d5832e408f,http://pdfs.semanticscholar.org/29fc/4de6b680733e9447240b42db13d5832e408f.pdf,,,http://www.sersc.org/journals/IJMUE/vol10_no3_2015/4.pdf +29c1f733a80c1e07acfdd228b7bcfb136c1dff98,http://pdfs.semanticscholar.org/29c1/f733a80c1e07acfdd228b7bcfb136c1dff98.pdf,,,https://arxiv.org/pdf/1608.02318v2.pdf +29f0a868644462aa7ebc21f4510d4209932a1b8c,http://yamdrok.stanford.edu/crowd/icmr.pdf,,,http://doi.acm.org/10.1145/2578726.2578775 +29322b9a3744afaa5fc986b805d9edb6ff5ea9fe,,,https://doi.org/10.1109/TNNLS.2011.2178037, +29f27448e8dd843e1c4d2a78e01caeaea3f46a2d,http://pdfs.semanticscholar.org/29f2/7448e8dd843e1c4d2a78e01caeaea3f46a2d.pdf,,https://doi.org/10.1016/j.patcog.2014.10.012,https://www.researchgate.net/profile/Ngo_Thanh_Trung/publication/270053105_Similar_gait_action_recognition_using_an_inertial_sensor/links/550f6a8b0cf2752610a03834.pdf?origin=publication_list +294d1fa4e1315e1cf7cc50be2370d24cc6363a41,http://pdfs.semanticscholar.org/294d/1fa4e1315e1cf7cc50be2370d24cc6363a41.pdf,,,https://www.researchgate.net/profile/Ivan_Bajla/publication/238588191_A_modular_non-negative_matrix_factorization_for_parts-based_object_recognition_using_subspace_representation/links/5444f96a0cf2e6f0c0fbfdd4.pdf +29d414bfde0dfb1478b2bdf67617597dd2d57fc6,http://pdfs.semanticscholar.org/29d4/14bfde0dfb1478b2bdf67617597dd2d57fc6.pdf,,,http://www.ece.uvic.ca/~wslu/Publications/Lu-Journal/10-2J.pdf +2912c3ea67678a1052d7d5cbe734a6ad90fc360e,http://pdfs.semanticscholar.org/2912/c3ea67678a1052d7d5cbe734a6ad90fc360e.pdf,,,http://staff.science.uva.nl/~rvalenti/publications/ASCI07.pdf +2945cc9e821ab87fa17afc8802f3858435d1264c,,,https://doi.org/10.1109/ICPR.2016.7899839, +29f4ac49fbd6ddc82b1bb697820100f50fa98ab6,http://dhoiem.cs.illinois.edu/publications/acvhl2010_annotation_ian.pdf,,https://doi.org/10.1109/CVPRW.2010.5543183,http://www.cs.cmu.edu/~dhoiem/publications/acvhl2010_annotation_ian.pdf +2910fcd11fafee3f9339387929221f4fc1160973,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Becker_Evaluating_Open-Universe_Face_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.133 +29659b6fc4dceb117cec687d8accda5f514080ed,,,, +29479bb4fe8c04695e6f5ae59901d15f8da6124b,http://www.mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mm31.pdf,,,http://doi.acm.org/10.1145/1101149.1101155 +2960500033eb31777ed1af1fcb133dcab1b4a857,,,,http://doi.acm.org/10.1145/3005467.3005471 +290136947fd44879d914085ee51d8a4f433765fa,http://www.cse.msu.edu/biometrics/Publications/Face/KlareJain_TaxonomyFacialFeatures_BTAS10.pdf,,https://doi.org/10.1109/BTAS.2010.5634533,http://biometrics.cse.msu.edu/Publications/Face/KlareJain_TaxonomyFacialFeatures_BTAS10.pdf +291f527598c589fb0519f890f1beb2749082ddfd,http://pdfs.semanticscholar.org/3215/ceb94227451a958bcf6b1205c710d17e53f5.pdf,,https://doi.org/10.1007/978-3-642-15555-0_13,http://courses.cs.washington.edu/courses/cse590v/11au/cse590v_07_faces_social_context.pdf +291265db88023e92bb8c8e6390438e5da148e8f5,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf,,https://doi.org/10.1007/978-3-319-46487-9_6,http://arxiv.org/pdf/1607.08221v1.pdf +297d3df0cf84d24f7efea44f87c090c7d9be4bed,http://pdfs.semanticscholar.org/297d/3df0cf84d24f7efea44f87c090c7d9be4bed.pdf,,https://doi.org/10.1007/3-540-45783-6_68,http://www.ri.cmu.edu/pub_files/pub3/krueger_volker_2002_1/krueger_volker_2002_1.pdf +29b86534d4b334b670914038c801987e18eb5532,http://www.cs.toronto.edu/~makarand/papers/ICVGIP2014.pdf,,,https://cvhci.anthropomatik.kit.edu/~mtapaswi/presentations/2014_12_ICVGIP.pdf +29631ca6cff21c9199c70bcdbbcd5f812d331a96,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/59/73/pone.0139827.PMC4605725.pdf +2965d092ed72822432c547830fa557794ae7e27b,http://pdfs.semanticscholar.org/f038/9424ab8c27e01843931fcbef7e3ca997e891.pdf,,,http://conradsanderson.id.au/pdfs/sanin_phd_thesis.pdf +291ce7be8daa99848bf13c32b237ad823d5738e9,,,, +2983efadb1f2980ab5ef20175f488f77b6f059d7,http://pdfs.semanticscholar.org/2983/efadb1f2980ab5ef20175f488f77b6f059d7.pdf,,,http://www.researchgate.net/profile/Luis_Encarnacao2/publication/216183331_Faces_of_emotion_in_human-computer_interaction/links/0a85e53c6a0d27707b000000.pdf +2911e7f0fb6803851b0eddf8067a6fc06e8eadd6,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Jung_Joint_Fine-Tuning_in_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.341 +29f298dd5f806c99951cb434834bc8dcc765df18,,,https://doi.org/10.1109/ICPR.2016.7899837, +293d69d042fe9bc4fea256c61915978ddaf7cc92,,,https://doi.org/10.1007/978-981-10-7302-1_6, +29fd98f096fc9d507cd5ee7d692600b1feaf7ed1,,,,http://doi.acm.org/10.1145/2988257.2988270 +2921719b57544cfe5d0a1614d5ae81710ba804fa,http://pdfs.semanticscholar.org/2921/719b57544cfe5d0a1614d5ae81710ba804fa.pdf,,,http://www.iaeng.org/publication/IMECS2014/IMECS2014_pp441-445.pdf +29a9e9b5926e65512c25c845cceba42fc1be2958,,,, +29a013b2faace976f2c532533bd6ab4178ccd348,http://or.nsfc.gov.cn/bitstream/00001903-5/94894/1/1000006589627.pdf,,https://doi.org/10.1109/TGRS.2013.2253559, +29921072d8628544114f68bdf84deaf20a8c8f91,https://arxiv.org/pdf/1610.03670v4.pdf,,https://doi.org/10.1109/WACV.2017.64,http://arxiv.org/abs/1610.03670 +2969f822b118637af29d8a3a0811ede2751897b5,http://iip.ict.ac.cn/sites/default/files/publication/2013_ICCV_xwzhao_Cascaded%20Shape%20Space%20Pruning%20for%20Robust%20Facial%20Landmark%20Detection.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.132 +29756b6b16d7b06ea211f21cdaeacad94533e8b4,http://pdfs.semanticscholar.org/2975/6b6b16d7b06ea211f21cdaeacad94533e8b4.pdf,,,http://rcs.cic.ipn.mx/2016_112/Thresholding%20Approach%20based%20on%20GPU%20for%20Facial%20Expression%20Recognition.pdf +293193d24d5c4d2975e836034bbb2329b71c4fe7,http://pdfs.semanticscholar.org/2931/93d24d5c4d2975e836034bbb2329b71c4fe7.pdf,,,http://rcs.cic.ipn.mx/2016_129/Building%20a%20Corpus%20of%20Facial%20Expressions%20for%20Learning-Centered%20Emotions.pdf +294bd7eb5dc24052237669cdd7b4675144e22306,http://pdfs.semanticscholar.org/294b/d7eb5dc24052237669cdd7b4675144e22306.pdf,,,http://www.ijsr.net/archive/v4i2/SUB151446.pdf +2988f24908e912259d7a34c84b0edaf7ea50e2b3,http://pdfs.semanticscholar.org/a779/e9432c3b6bfdcdbb1827757c3b8bf7c3aa4a.pdf,,https://doi.org/10.5244/C.22.47,http://www.bmva.org/bmvc/2008/papers/252.pdf +29156e4fe317b61cdcc87b0226e6f09e416909e0,http://pdfs.semanticscholar.org/b880/78d284c9f77172dd23970522856a7042c961.pdf,,,https://arxiv.org/pdf/1706.00906v1.pdf +29f0414c5d566716a229ab4c5794eaf9304d78b6,http://pdfs.semanticscholar.org/29f0/414c5d566716a229ab4c5794eaf9304d78b6.pdf,,https://doi.org/10.1155/2008/579416,http://biometrics.cse.msu.edu/Publications/SecureBiometrics/JainNandakumarNagar_TemplateSecuritySurvey_EURASIP08.pdf +29908288392a9326d7a2996c6cd6b3e6cb137265,http://people.cs.ubc.ca/~pcarbo/ijcvss.pdf,,https://doi.org/10.1007/s11263-007-0067-7,http://www.cs.ubc.ca/spider/kueck/papers/LearningToRecognizeObjectsWithLittleSupervision.pdf +293ade202109c7f23637589a637bdaed06dc37c9,http://pdfs.semanticscholar.org/293a/de202109c7f23637589a637bdaed06dc37c9.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/sup/antonakos2016adaptive_supp.pdf +7c8909da44e89a78fe88e815c83a4ced34f99149,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.326 +7c61d21446679776f7bdc7afd13aedc96f9acac1,http://pdfs.semanticscholar.org/e199/9cee8e6d717ad1181ae9e17c366e152e805e.pdf,,,http://arxiv.org/abs/1706.05028 +7cee802e083c5e1731ee50e731f23c9b12da7d36,http://pdfs.semanticscholar.org/7cee/802e083c5e1731ee50e731f23c9b12da7d36.pdf,,,https://arxiv.org/pdf/1803.02181v1.pdf +7c7ab59a82b766929defd7146fd039b89d67e984,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/wacv2014_ChaZhang.pdf,,,http://research.microsoft.com/en-us/um/people/chazhang/publications/wacv2014_chazhang.pdf +7ca337735ec4c99284e7c98f8d61fb901dbc9015,http://vision.psych.umn.edu/users/schrater/Papers/Veeretal05.pdf,,,http://www.cs.cmu.edu/~harini/itsc05.pdf +7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f,http://pdfs.semanticscholar.org/7c45/b5824645ba6d96beec17ca8ecfb22dfcdd7f.pdf,,,http://www.lrec-conf.org/proceedings/lrec2010/slides/772.pdf +7c0a6824b556696ad7bdc6623d742687655852db,http://2010.telfor.rs/files/radovi//TELFOR2010_05_35.pdf,,,http://2010.telfor.rs/files/radovi/TELFOR2010_05_35.pdf +7c95449a5712aac7e8c9a66d131f83a038bb7caa,http://pdfs.semanticscholar.org/7c95/449a5712aac7e8c9a66d131f83a038bb7caa.pdf,,,http://eprints.whiterose.ac.uk/102935/1/Sutherland_et_al_accepted_15_June_2016_BJP.pdf +7c4c442e9c04c6b98cd2aa221e9d7be15efd8663,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Classifier_Learning_With_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7299131 +7c54240c23d42703ddc85089d167f4985614cc3a,,,, +7cee0311e71dca540aaf3d87bef3a6c97ca39bc3,,,, +7c3e09e0bd992d3f4670ffacb4ec3a911141c51f,http://pdfs.semanticscholar.org/7c3e/09e0bd992d3f4670ffacb4ec3a911141c51f.pdf,,,http://arxiv.org/pdf/1609.00162v1.pdf +7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719d,http://pdfs.semanticscholar.org/7c2e/c6f4ab3eae86e0c1b4f586e9c158fb1d719d.pdf,,https://doi.org/10.1007/978-3-642-25085-9_50,http://homepage.tudelft.nl/a9p19/papers/ciarp_11_disspace.pdf +7cf8a841aad5b7bdbea46a7bb820790e9ce12d0b,http://pdfs.semanticscholar.org/7cf8/a841aad5b7bdbea46a7bb820790e9ce12d0b.pdf,,,http://www.cs.usu.edu/~xqi/Teaching/REU06/Website/Crystal/CrystalFinalPaper.pdf +7c9622ad1d8971cd74cc9e838753911fe27ccac4,http://pdfs.semanticscholar.org/7c96/22ad1d8971cd74cc9e838753911fe27ccac4.pdf,,https://doi.org/10.1007/978-3-319-16808-1_6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/574.pdf +7c457c9a658327af6f6490729b4cab1239c22005,,,https://doi.org/10.1109/ACCESS.2017.2672829, +7c2c9b083817f7a779d819afee383599d2e97ed8,http://pdfs.semanticscholar.org/bcad/d9c086ccd2f217da25f9550b06a429d53011.pdf,,,https://arxiv.org/pdf/1707.04092v1.pdf +7c45339253841b6f0efb28c75f2c898c79dfd038,http://vis-www.cs.umass.edu/papers/iccv07alignment.pdf,,,http://people.cs.umass.edu/~elm/papers/iccv07alignment.pdf +7c7b0550ec41e97fcfc635feffe2e53624471c59,http://cvrr.ucsd.edu/publications/2014/headhandeye.pdf,,https://doi.org/10.1109/ICPR.2014.124,https://eshed1.github.io/papers/headhandeye.pdf +7ce03597b703a3b6754d1adac5fbc98536994e8f,http://pdfs.semanticscholar.org/7ce0/3597b703a3b6754d1adac5fbc98536994e8f.pdf,,,https://arxiv.org/pdf/1803.09672v1.pdf +7c36afc9828379de97f226e131390af719dbc18d,http://www.cs.cornell.edu/~chenxiawu/papers/ufna.pdf,,,http://doi.acm.org/10.1145/2393347.2393383 +7c119e6bdada2882baca232da76c35ae9b5277f8,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SMC_2009/PDFs/1070.pdf,,https://doi.org/10.1109/ICSMC.2009.5346339, +7c42371bae54050dbbf7ded1e7a9b4109a23a482,http://pdfs.semanticscholar.org/7c42/371bae54050dbbf7ded1e7a9b4109a23a482.pdf,,,http://ccis2k.org/iajit/?Itemid=373&id=97&option=com_content&task=blogcategory +7c953868cd51f596300c8231192d57c9c514ae17,http://courses.cs.washington.edu/courses/cse590v/13au/CVPR13_FaceDetection.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.444 +7c6dbaebfe14878f3aee400d1378d90d61373921,http://pdfs.semanticscholar.org/7c6d/baebfe14878f3aee400d1378d90d61373921.pdf,,,http://www.wseas.us/e-library/conferences/2005corfu/c1/papers/498-618.pdf +7c25213a7fa5fe13199d3112613ea0b9045320d1,,,, +7c13fa0c742123a6a927771ce67da270492b588c,,,,http://doi.acm.org/10.1145/3152114 +7c1e1c767f7911a390d49bed4f73952df8445936,http://cmp.felk.cvut.cz/~zimmerk/zimmermann-TPAMI-2014.pdf,,,http://cmp.felk.cvut.cz/~hurycd1/data/publications/zimmermann-TPAMI2014.pdf +7c349932a3d083466da58ab1674129600b12b81c,http://pdfs.semanticscholar.org/7c34/9932a3d083466da58ab1674129600b12b81c.pdf,,,https://drum.lib.umd.edu/bitstream/handle/1903/18230/Yang_umd_0117E_16964.pdf?isAllowed=y&sequence=1 +1648cf24c042122af2f429641ba9599a2187d605,http://www.eurecom.fr/en/publication/5333/download/sec-publi-5333.pdf,,https://doi.org/10.1109/BTAS.2017.8272698, +160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b,https://infoscience.epfl.ch/record/207802/files/Discriminant-multilabel-Yuce.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284871 +16671b2dc89367ce4ed2a9c241246a0cec9ec10e,http://www.bsp.brain.riken.jp/publications/2010/PAMI-clustering-He-cichocki.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.15 +163ba5a998973f9ead6be0ca873aed5934d5022e,,,https://doi.org/10.1109/ACPR.2013.53, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf,,,http://doi.acm.org/10.1145/2807705 +16892074764386b74b6040fe8d6946b67a246a0b,http://pdfs.semanticscholar.org/5f92/7118a5634790fe660fea91aea163b7065ae2.pdf,,,http://journal-cdn.frontiersin.org/article/96929/files/pubmed-zip/versions/1/pdf +16395b40e19cbc6d5b82543039ffff2a06363845,https://arxiv.org/pdf/1605.03222v1.pdf,,,http://arxiv.org/pdf/1605.03222v1.pdf +16b0c171fb094f677fcdf78bbb9aaef0d5404942,,,https://doi.org/10.1109/TIP.2017.2733739, +1617f56c86bf8ea61de62062a97961d23fcf03d3,,,https://doi.org/10.1007/s11390-015-1540-3, +1677d29a108a1c0f27a6a630e74856e7bddcb70d,http://pdfs.semanticscholar.org/1677/d29a108a1c0f27a6a630e74856e7bddcb70d.pdf,,https://doi.org/10.1007/978-3-642-33718-5_61,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/MRR_eccv12.pdf +16c884be18016cc07aec0ef7e914622a1a9fb59d,http://pdfs.semanticscholar.org/16c8/84be18016cc07aec0ef7e914622a1a9fb59d.pdf,,,http://lear.inrialpes.fr/pubs/2010/Gui10/ThesisGuillaumin.pdf +162dfd0d2c9f3621d600e8a3790745395ab25ebc,http://cse.seu.edu.cn/people/xgeng/LDL/resource/cvpr14a.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Geng_Head_Pose_Estimation_2014_CVPR_paper.pdf +1606b1475e125bba1b2d87bcf1e33b06f42c5f0d,http://users.eecs.northwestern.edu/~xsh835/CVPR2015_CasCNN.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Li_A_Convolutional_Neural_2015_CVPR_paper.pdf +16f940b4b5da79072d64a77692a876627092d39c,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/10/10.pdf,,https://doi.org/10.1109/CVPRW.2009.5204259,http://www.psy.miami.edu/faculty/dmessinger/c_c/rsrcs/rdgs/emot/MMahoor_CVPR_uploaded.pdf +1672becb287ae3eaece3e216ba37677ed045db55,,,https://doi.org/10.1016/j.eswa.2015.10.047, +16572c545384174f8136d761d2b0866e968120a8,http://pdfs.semanticscholar.org/1657/2c545384174f8136d761d2b0866e968120a8.pdf,,https://doi.org/10.1007/978-3-319-10578-9_27,http://ca.cs.cmu.edu/sites/default/files/sequential.pdf +16820ccfb626dcdc893cc7735784aed9f63cbb70,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301367 +1630e839bc23811e340bdadad3c55b6723db361d,http://pdfs.semanticscholar.org/9fc9/f22e9e28eab53d426e9d848c0d7dcd2c2459.pdf,,https://doi.org/10.1016/j.cviu.2014.02.010,http://www.bmva.org/bmvc/2012/BMVC/paper027/paper027.pdf +167f07b9d2babb8920acfa320ab04ee2758b5db6,http://eprints.pascal-network.org/archive/00008391/01/paper_express.pdf,,,http://www.robots.ox.ac.uk/~vgg/rg/papers/metric_face.pdf +16eaa26a84468b27e559215db01c53286808ec2a,,,https://doi.org/10.1007/s11263-015-0859-0, +16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb,http://pdfs.semanticscholar.org/1628/6fb0f14f6a7a1acc10fcd28b3ac43f12f3eb.pdf,,,http://www.pitt.edu/~jeffcohn/biblio/Embarrassment.pdf +1667a77db764e03a87a3fd167d88b060ef47bb56,http://pdfs.semanticscholar.org/1667/a77db764e03a87a3fd167d88b060ef47bb56.pdf,,https://doi.org/10.1007/978-3-319-71249-9_6,http://arxiv.org/abs/1706.09317 +169618b8dc9b348694a31c6e9e17b989735b4d39,http://vllab.ucmerced.edu/hylee/publication/ICCV17_OPN.pdf,,,http://openaccess.thecvf.com/content_ICCV_2017/papers/Lee_Unsupervised_Representation_Learning_ICCV_2017_paper.pdf +16e95a907b016951da7c9327927bb039534151da,http://pdfs.semanticscholar.org/16e9/5a907b016951da7c9327927bb039534151da.pdf,,,http://journal.iis.sinica.edu.tw/paper/1/170008-2.pdf?cd=C0B3E61185F91E296 +16c1b592d85d13f1ba4eff0afb4441bb78650785,,,https://doi.org/10.1109/TIP.2017.2685343, +16d9b983796ffcd151bdb8e75fc7eb2e31230809,http://pdfs.semanticscholar.org/16d9/b983796ffcd151bdb8e75fc7eb2e31230809.pdf,,,http://www.cl.cam.ac.uk/~pr10/publications/eg18.pdf +1679943d22d60639b4670eba86665371295f52c3,http://pdfs.semanticscholar.org/1679/943d22d60639b4670eba86665371295f52c3.pdf,,https://doi.org/10.1016/j.cviu.2007.12.001,https://www.researchgate.net/profile/Hasan_Demirel/publication/222435585_Facial_feature_extraction_using_complex_dual-tree_wavelet_transform/links/09e41507fe3d2439a4000000.pdf +163d0e6ea8c8b88b4383a4eaa740870e2458b9b0,,,https://doi.org/10.1007/978-3-319-71928-3_18, +162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e,https://research-information.bristol.ac.uk/files/75922781/Ioannis_Pitas_Large_scale_classification_by_an_approximate_least_squares_one_class_support_vector_machine_ensemble_2015.pdf,,https://doi.org/10.1109/Trustcom.2015.555,http://www.cs.tut.fi/~iosifidi/files/conference/2015_BigDataSE_ALSOCSVM.pdf?dl=0 +1610d2d4947c03a89c0fda506a74ba1ae2bc54c2,http://research.cs.rutgers.edu/~hxp1/rc_images/hai_facetrackextreme_3dv2016.pdf,,,http://doi.ieeecomputersociety.org/10.1109/3DV.2016.54 +1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,http://www.dcs.gla.ac.uk/~vincia/papers/shortsurvey.pdf,,https://doi.org/10.1109/ICSMC.2011.6083695,http://www.cmpe.boun.edu.tr/~salah/salah11recent.pdf +169076ffe5e7a2310e98087ef7da25aceb12b62d,http://pdfs.semanticscholar.org/1690/76ffe5e7a2310e98087ef7da25aceb12b62d.pdf,,,http://www.ursulakhess.com/resources/HDH15b.pdf +167736556bea7fd57cfabc692ec4ae40c445f144,http://pdfs.semanticscholar.org/1677/36556bea7fd57cfabc692ec4ae40c445f144.pdf,,https://doi.org/10.3389/fict.2015.00028,https://ivi.fnwi.uva.nl/isis/publications/2016/JainFICT2016/JainFICT2016.pdf +167ea1631476e8f9332cef98cf470cb3d4847bc6,http://www.kevinjing.com/visual_search_at_pinterest.pdf,,,http://arxiv.org/pdf/1505.07647v1.pdf +16fc82d44188eb49a151bd5836a29911b3bfabcb,,,https://doi.org/10.1007/978-981-10-7302-1_50, +161eb88031f382e6a1d630cd9a1b9c4bc6b47652,http://arxiv.org/pdf/1505.04026v1.pdf,,,http://arxiv.org/pdf/1505.04026.pdf +420782499f38c1d114aabde7b8a8104c9e40a974,http://openaccess.thecvf.com/content_cvpr_2016/papers/Simo-Serra_Fashion_Style_in_CVPR_2016_paper.pdf,,,http://hi.cs.waseda.ac.jp/~esimo/publications/SimoSerraCVPR2016.pdf +42e3dac0df30d754c7c7dab9e1bb94990034a90d,https://arxiv.org/pdf/1311.5591v2.pdf,,,http://arxiv.org/abs/1311.5591 +42441f1fee81c8fd42a74504df21b3226a648739,,,https://doi.org/10.1007/s11554-008-0072-2, +4217473596b978f13a211cdf47b7d3f6588c785f,http://biometrics.cse.msu.edu/Publications/Face/OttoKlareJain_EfficientApproachClusteringFaceImages_ICB15.pdf,,https://doi.org/10.1109/ICB.2015.7139091,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/OttoKlareJain_EfficientApproachClusteringFaceImages_ICB15.pdf +4223666d1b0b1a60c74b14c2980069905088edc6,http://pdfs.semanticscholar.org/4223/666d1b0b1a60c74b14c2980069905088edc6.pdf,,https://doi.org/10.1007/978-3-319-10599-4_20,http://www.math.nus.edu.sg/~matjh/depository/ECCV_2014_incoherent.pdf +42afe6d016e52c99e2c0d876052ade9c192d91e7,https://ibug.doc.ic.ac.uk/media/uploads/documents/ValstarEtAl-ICMI2006-FINAL.pdf,,,http://dev.pubs.doc.ic.ac.uk/brow-deception/brow-deception.pdf +42765c170c14bd58e7200b09b2e1e17911eed42b,http://pdfs.semanticscholar.org/4276/5c170c14bd58e7200b09b2e1e17911eed42b.pdf,,,http://cdn.intechopen.com/pdfs/36481/InTech-Feature_extraction_based_on_wavelet_moments_and_moment_invariants_in_machine_vision_systems.pdf +429c3588ce54468090cc2cf56c9b328b549a86dc,http://pdfs.semanticscholar.org/429c/3588ce54468090cc2cf56c9b328b549a86dc.pdf,,https://doi.org/10.1016/j.patcog.2009.11.023,http://mi.eng.cam.ac.uk/~cipolla/publications/article/2010-PR-thermal-faces.pdf +4268ae436db79c4eee8bc06e9475caff3ff70d57,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.146 +42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Saxena_Coordinated_Local_Metric_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.56 +42350e28d11e33641775bef4c7b41a2c3437e4fd,http://mmlab.ie.cuhk.edu.hk/archive/2007/IP07_face02.pdf,,https://doi.org/10.1109/TIP.2006.884929, +42fff5b37006009c2dbfab63c0375c7c7d7d8ee3,,,https://doi.org/10.1007/s11042-014-2228-3, +42e155ea109eae773dadf74d713485be83fca105,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569924805.pdf,http://ieeexplore.ieee.org/document/6952588/,, +426913f890f07a5d79e6c23b83cd928ffc00e494,http://www2012.wwwconference.org/proceedings/proceedings/p939.pdf,,,http://doi.acm.org/10.1145/2187836.2187962 +4223917177405eaa6bdedca061eb28f7b440ed8e,http://pdfs.semanticscholar.org/4223/917177405eaa6bdedca061eb28f7b440ed8e.pdf,,,https://arxiv.org/pdf/1601.05644v1.pdf +42c9394ca1caaa36f535721fa9a64b2c8d4e0dee,http://pdfs.semanticscholar.org/5d2d/208fc245bb49148bffb3076b0660b98b4466.pdf,,,https://people.eecs.berkeley.edu/~jhoffman/papers/Luo_nips2017.pdf +4270460b8bc5299bd6eaf821d5685c6442ea179a,http://www.cs.technion.ac.il/~ron/PAPERS/BronBronBrucKimIJCV09.pdf,,https://doi.org/10.1007/s11263-008-0147-3,http://visl.technion.ac.il/bron/publications/BroBroBruKimIJCV08.pdf +4205cb47ba4d3c0f21840633bcd49349d1dc02c1,http://www.utdallas.edu/~cxc123730/ICIP_2017.pdf,,https://doi.org/10.1109/ICIP.2017.8296441, +42ded74d4858bea1070dadb08b037115d9d15db5,http://pdfs.semanticscholar.org/42de/d74d4858bea1070dadb08b037115d9d15db5.pdf,,,http://groups.csail.mit.edu/icelab/sites/default/files/pdf/kao2015exigent.pdf +42a5dc91852c8c14ed5f4c3b451c9dc98348bc02,,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.021 +42f6f5454dda99d8989f9814989efd50fe807ee8,http://pdfs.semanticscholar.org/42f6/f5454dda99d8989f9814989efd50fe807ee8.pdf,,,http://www.foldl.me/uploads/2015/conditional-gans-face-generation/paper.pdf +429d4848d03d2243cc6a1b03695406a6de1a7abd,http://pdfs.semanticscholar.org/429d/4848d03d2243cc6a1b03695406a6de1a7abd.pdf,,,http://www.ijsce.org/attachments/File/v2i3/C0832062312.pdf +425ea5656c7cf57f14781bafed51182b2e6da65f,,,https://doi.org/10.1109/TIP.2017.2718187, +42dc36550912bc40f7faa195c60ff6ffc04e7cd6,http://pdfs.semanticscholar.org/42dc/36550912bc40f7faa195c60ff6ffc04e7cd6.pdf,,,http://hal.inria.fr/docs/00/82/94/51/PDF/ISRN_Machine_Vision-2013.pdf +424259e9e917c037208125ccc1a02f8276afb667,http://arxiv.org/pdf/1604.06433v1.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wang_Walk_and_Learn_CVPR_2016_paper.pdf +42ecfc3221c2e1377e6ff849afb705ecd056b6ff,http://pdfs.semanticscholar.org/42ec/fc3221c2e1377e6ff849afb705ecd056b6ff.pdf,,https://doi.org/10.1007/978-3-540-25976-3_2,http://www3.cs.stonybrook.edu/~ial/content/papers/2004/Zhang2004bioaw.pdf +427bec487c330e7e34cc2c8fc2d6558690421ea0,,,,http://doi.ieeecomputersociety.org/10.1109/ISCSCT.2008.352 +4215b34597d8ce1e8985afa8043400caf0ec7230,,,,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2012.71 +421955c6d2f7a5ffafaf154a329a525e21bbd6d3,http://pdfs.semanticscholar.org/ea6c/4d71fafe4352e7c3aa2237f77af0c4050cef.pdf,,,https://frvp.njit.edu/images/new-slider/TPAMI00-EP.pdf +42e0127a3fd6a96048e0bc7aab6d0ae88ba00fb0,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553734.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553734 +42df75080e14d32332b39ee5d91e83da8a914e34,http://www.imlab.tw/wp-content/uploads/2015/11/Illumination-Compensation-Using-Oriented-Local-Histogram-Equalization-and-its-Application-to-Face-Recognition.pdf,,https://doi.org/10.1109/TIP.2012.2202670, +424745b006491ae2caef924287e50fc6706c06ee,,,, +4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,http://pdfs.semanticscholar.org/4276/eb27e2e4fc3e0ceb769eca75e3c73b7f2e99.pdf,,,http://www.cfar.umd.edu/~shaohua/papers/egvp_chapter.pdf +89e31777f221ddb3bc9940d7f520c8114c4148a2,,,https://doi.org/10.1007/s11063-012-9224-2, +89945b7cd614310ebae05b8deed0533a9998d212,http://pdfs.semanticscholar.org/8994/5b7cd614310ebae05b8deed0533a9998d212.pdf,,,https://arxiv.org/pdf/1202.5844v3.pdf +8990f8ea6441f97597429686542b9cdc46ed47de,,,, +8964524580ea2cff41a6b5858b623788bbefb8a4,,,, +89de30a75d3258816c2d4d5a733d2bef894b66b9,https://www.computer.org/csdl/trans/tp/2015/06/06915721.pdf,,,http://zhqiang.org/wp-content/uploads/2014/10/relative_hmm_pami.pdf +897aa4aaa474fed41233faec9b70b802aea5fdea,,,https://doi.org/10.1142/S0218001414560126, +89002a64e96a82486220b1d5c3f060654b24ef2a,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Peng_PIEFA_Personalized_Incremental_ICCV_2015_paper.pdf,,,http://webpages.uncc.edu/~szhang16/paper/ICCV15_face.pdf +89c84628b6f63554eec13830851a5d03d740261a,http://pdfs.semanticscholar.org/89c8/4628b6f63554eec13830851a5d03d740261a.pdf,,,http://www.dtic.mil/dtic/tr/fulltext/u2/a521885.pdf +89272b78b651038ff4d294b9ccca0018d2c9033b,,,https://doi.org/10.1109/ICPR.2014.777, +89c51f73ec5ebd1c2a9000123deaf628acf3cdd8,http://pdfs.semanticscholar.org/89c5/1f73ec5ebd1c2a9000123deaf628acf3cdd8.pdf,,,http://thescipub.com/PDF/ajassp.2008.574.580.pdf +89e7d23e0c6a1d636f2da68aaef58efee36b718b,http://pdfs.semanticscholar.org/89e7/d23e0c6a1d636f2da68aaef58efee36b718b.pdf,,,http://worldcomp-proceedings.com/proc/p2014/IPC2560.pdf +89f4bcbfeb29966ab969682eae235066a89fc151,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/short-fgr-2004.pdf,,,http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/short-fgr-2004.pdf +8913a5b7ed91c5f6dec95349fbc6919deee4fc75,https://people.eecs.berkeley.edu/~pabbeel/papers/2014-ICRA-BigBIRD.pdf,,https://doi.org/10.1109/ICRA.2014.6906903,http://www.cs.berkeley.edu/~pabbeel/papers/2014-ICRA-BigBIRD.pdf +89cabb60aa369486a1ebe586dbe09e3557615ef8,http://pdfs.semanticscholar.org/89ca/bb60aa369486a1ebe586dbe09e3557615ef8.pdf,,,http://publications.idiap.ch/downloads/papers/2009/Heusch_THESIS_2009.pdf +8959e0e9a24c0fe79f3fd3acca9d139edc0abcfd,,,, +8983485996d5d9d162e70d66399047c5d01ac451,https://arxiv.org/pdf/1602.04868v1.pdf,,https://doi.org/10.1109/ISBA.2016.7477230,http://www.rci.rutgers.edu/~vmp93/Conference_pub/ISBA_FD_v3_embed.pdf +89bc311df99ad0127383a9149d1684dfd8a5aa34,http://pdfs.semanticscholar.org/89bc/311df99ad0127383a9149d1684dfd8a5aa34.pdf,,,https://arxiv.org/pdf/1605.09757v1.pdf +89896474f007c99f5967bcc05a952654a3bbb736,,,, +89497854eada7e32f06aa8f3c0ceedc0e91ecfef,,,https://doi.org/10.1109/TIP.2017.2784571, +891b31be76e2baa83745f24c2e2013851dc83cbb,,,https://doi.org/10.1109/TSMCB.2009.2018137, +892400017e5c93611dc8361e7749135520d66f25,,,https://doi.org/10.1109/ICARCV.2010.5707394, +898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c,http://pdfs.semanticscholar.org/898a/66979c7e8b53a10fd58ac51fbfdb6e6e6e7c.pdf,,https://doi.org/10.1007/978-3-540-89617-3_2,http://www.cvc.uab.es/~bogdan/Publications/raducanu_AMI08.pdf +89d7cc9bbcd2fdc4f4434d153ecb83764242227b,http://pdfs.semanticscholar.org/89d7/cc9bbcd2fdc4f4434d153ecb83764242227b.pdf,,,http://www.ijera.com/papers/Vol2_issue1/Vol3_issue2/BB32351355.pdf +898ff1bafee2a6fb3c848ad07f6f292416b5f07d,,,https://doi.org/10.1109/TIP.2016.2518867, +896f4d87257abd0f628c1ffbbfdac38c86a56f50,http://pdfs.semanticscholar.org/cf5c/c511c7fd556aaf113de02fc88d7ba10928b0.pdf,,https://doi.org/10.1007/978-3-319-16178-5_36,http://wanglimin.github.io/contests/PengWCQ_LAP14_slide.pdf +454bf5b99607b4418e931092476ad1798ce5efa4,,,https://doi.org/10.1155/2011/790598, +45c340c8e79077a5340387cfff8ed7615efa20fd,http://pdfs.semanticscholar.org/45c3/40c8e79077a5340387cfff8ed7615efa20fd.pdf,,,http://mmi.tudelft.nl/pub/alin/Elearningberlin09.pdf +45dbf1b6fbc7fdae09e2a1928b18fbfff331a979,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0854.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206509 +455204fa201e9936b42756d362f62700597874c4,http://pdfs.semanticscholar.org/4552/04fa201e9936b42756d362f62700597874c4.pdf,,,http://www.qbase.gr/sites/default/files/C1_019_Koutlas.pdf +45877ff4694576f59c2a9ca45aa65f935378492a,,,,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.38 +4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,http://pdfs.semanticscholar.org/4541/c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6.pdf,,,http://www.pitt.edu/~kschmidt/schmidtetal06AE.pdf +459960be65dd04317dd325af5b7cbb883d822ee4,http://pdfs.semanticscholar.org/876c/c40c6c470f39fbda48dd394d0a9d5f6b147d.pdf,,,http://www.fdg2015.org/papers/fdg2015_paper_73.pdf +45f858f9e8d7713f60f52618e54089ba68dfcd6d,http://openaccess.thecvf.com/content_ICCV_2017/papers/Sigurdsson_What_Actions_Are_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.235 +4551194408383b12db19a22cca5db0f185cced5c,,,https://doi.org/10.1109/TNNLS.2014.2341634, +45e043dffc57a9070f483ac4aec2c5cd2cec22cb,,,,http://doi.acm.org/10.1145/3130977 +452ea180cf4d08d7500fc4bc046fd7141fd3d112,,,https://doi.org/10.1109/BTAS.2012.6374569, +45edb29fb7eed5a52040300e1fd3cd53f1bdb429,,,https://doi.org/10.1109/ICIP.2015.7351570, +45215e330a4251801877070c85c81f42c2da60fb,http://pdfs.semanticscholar.org/4521/5e330a4251801877070c85c81f42c2da60fb.pdf,,https://doi.org/10.1007/978-3-642-33765-9_45,https://www.cs.umd.edu/~qiu/pub/dadl-eccv12.pdf +457cf73263d80a1a1338dc750ce9a50313745d1d,http://pdfs.semanticscholar.org/457c/f73263d80a1a1338dc750ce9a50313745d1d.pdf,,,http://arxiv.org/abs/1706.08033 +4526992d4de4da2c5fae7a5ceaad6b65441adf9d,http://pdfs.semanticscholar.org/4526/992d4de4da2c5fae7a5ceaad6b65441adf9d.pdf,,https://doi.org/10.1007/978-3-319-19390-8_16,http://persoal.citius.usc.es/manuel.mucientes/pubs/Nieto-Rodriguez15_ibpria.pdf +45e616093a92e5f1e61a7c6037d5f637aa8964af,http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163158 +45efd6c2dd4ca19eed38ceeb7c2c5568231451e1,http://pdfs.semanticscholar.org/45ef/d6c2dd4ca19eed38ceeb7c2c5568231451e1.pdf,,,http://www.ijarse.com/images/fullpdf/1506940940_529.pdf +45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8,http://www.doc.ic.ac.uk/~maja/VukadinovicPantic-SMC05-FINAL.pdf,,https://doi.org/10.1109/ICSMC.2005.1571392,http://pubs.doc.ic.ac.uk/Pantic-SMC05-2/Pantic-SMC05-2.pdf +4571626d4d71c0d11928eb99a3c8b10955a74afe,http://pdfs.semanticscholar.org/4571/626d4d71c0d11928eb99a3c8b10955a74afe.pdf,,,https://arxiv.org/pdf/1712.03474v1.pdf +4512b87d68458d9ba0956c0f74b60371b6c69df4,,,https://doi.org/10.1109/TIP.2017.2708504, +4500888fd4db5d7c453617ee2b0047cedccf2a27,,,,http://doi.acm.org/10.1145/2647750 +4534d78f8beb8aad409f7bfcd857ec7f19247715,http://pdfs.semanticscholar.org/4534/d78f8beb8aad409f7bfcd857ec7f19247715.pdf,,,https://arxiv.org/pdf/1701.08435v1.pdf +4563b46d42079242f06567b3f2e2f7a80cb3befe,http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf,,https://doi.org/10.1109/ICCVW.2011.6130517, +459e840ec58ef5ffcee60f49a94424eb503e8982,http://pdfs.semanticscholar.org/459e/840ec58ef5ffcee60f49a94424eb503e8982.pdf,,,http://arxiv.org/abs/1707.05574 +45fbeed124a8956477dbfc862c758a2ee2681278,http://pdfs.semanticscholar.org/fb2a/66f842ca2577d9ea8a8300b555b71bd9cee8.pdf,,https://doi.org/10.1007/978-3-642-33783-3_2,https://www.researchgate.net/profile/E_Mostafa/publication/262327040_Pose_invariant_approach_for_face_recognition_at_distance/links/54efff330cf25f74d72351c5.pdf +451c42da244edcb1088e3c09d0f14c064ed9077e,https://ibug.doc.ic.ac.uk/media/uploads/documents/sdnmf_conf.pdf,http://ieeexplore.ieee.org/document/7074112/,,http://ibug.doc.ic.ac.uk/media/uploads/documents/sdnmf_conf.pdf +4562ea84ebfc8d9864e943ed9e44d35997bbdf43,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.19 +459eb3cfd9b52a0d416571e4bc4e75f979f4b901,,,https://doi.org/10.1109/ROBIO.2015.7418998, +4568063b7efb66801e67856b3f572069e774ad33,http://www.dbs.ifi.lmu.de/~yu_k/cvpr11_0712.pdf,,,http://users.eecs.northwestern.edu/~mya671/mypapers/CVPR11_Yang_Zhu_Lv_Yu.pdf +454283ee7ea757dd25780807e4017cf43b4fc593,,,, +45c31cde87258414f33412b3b12fc5bec7cb3ba9,http://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf,,,http://www.mis.atr.co.jp/~mlyons/pub_pdf/fg98-1.pdf +4542273a157bfd4740645a6129d1784d1df775d2,http://pdfs.semanticscholar.org/4542/273a157bfd4740645a6129d1784d1df775d2.pdf,,,http://mllab.csa.iisc.ernet.in/Thesis/ME_2007_mehul.pdf +4511e09ee26044cb46073a8c2f6e1e0fbabe33e8,http://pdfs.semanticscholar.org/4511/e09ee26044cb46073a8c2f6e1e0fbabe33e8.pdf,,,http://www.cs.bilkent.edu.tr/~duygulu/Thesis/DeryaOzkanThesis.pdf +45513d0f2f5c0dac5b61f9ff76c7e46cce62f402,http://pdfs.semanticscholar.org/4551/3d0f2f5c0dac5b61f9ff76c7e46cce62f402.pdf,,https://doi.org/10.5244/C.25.36,http://www.bmva.org/bmvc/2011/proceedings/paper36/paper36.pdf +458677de7910a5455283a2be99f776a834449f61,http://pdfs.semanticscholar.org/4586/77de7910a5455283a2be99f776a834449f61.pdf,,,http://www.ijcsit.com/docs/Volume%205/vol5issue02/ijcsit20140502150.pdf +45e9b5a7dba2f757567324fe35c2f2db87b015cc,,,, +4572fd17feb5d098e8044fe085e963036fea2a6d,,,, +453bf941f77234cb5abfda4e015b2b337cea4f17,,,https://doi.org/10.1007/s11042-014-2340-4, +1f9b2f70c24a567207752989c5bd4907442a9d0f,http://pdfs.semanticscholar.org/1f9b/2f70c24a567207752989c5bd4907442a9d0f.pdf,,https://doi.org/10.1007/978-3-319-16865-4_1,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop3/pdffiles/w3-p10.pdf +1fd7a17a6c630a122c1a3d1c0668d14c0c375de0,,,https://doi.org/10.1109/CIST.2016.7805097, +1f05473c587e2a3b587f51eb808695a1c10bc153,http://pdfs.semanticscholar.org/7246/bbdf4c125d9d216e560c87c58a8613bd2602.pdf,,,https://arxiv.org/pdf/1507.02159v1.pdf +1fa3948af1c338f9ae200038c45adadd2b39a3e4,http://pdfs.semanticscholar.org/7655/4182b4b0f3301afe8cfbc96a9d289b75254f.pdf,,,http://tdlc.ucsd.edu/publications/2007-2008/hsiao-cogsci07.pdf +1ff79eba66d838d8c1cc90c22fab251bb7babc42,,,, +1f8304f4b51033d2671147b33bb4e51b9a1e16fe,http://pdfs.semanticscholar.org/1f83/04f4b51033d2671147b33bb4e51b9a1e16fe.pdf,,,http://users.ece.cmu.edu/~dbatra/publications/assets/opd_ijcv_spi.pdf +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,http://pdfs.semanticscholar.org/1f89/439524e87a6514f4fbe7ed34bda4fd1ce286.pdf,,,http://www.stat.cmu.edu/tr/tr825/tr825.pdf +1f41bf5e8b8562ac7ef0013f4d0cf1c9e1a431f9,,,https://doi.org/10.1109/IJCNN.2017.7965955, +1f9ae272bb4151817866511bd970bffb22981a49,http://pdfs.semanticscholar.org/1f9a/e272bb4151817866511bd970bffb22981a49.pdf,,,https://arxiv.org/pdf/1709.03170v1.pdf +1fd6004345245daf101c98935387e6ef651cbb55,http://pdfs.semanticscholar.org/1fd6/004345245daf101c98935387e6ef651cbb55.pdf,,https://doi.org/10.1007/978-3-319-02961-0_20,http://www.nlpr.ia.ac.cn/2013papers/gnhy/nh2.pdf +1f8656e2254e353a91cceb08b33c25643a1b1fb7,,,https://doi.org/10.1109/LSP.2017.2736542, +1fc249ec69b3e23856b42a4e591c59ac60d77118,http://cbl.uh.edu/pub_files/IJCB-2017-XX.pdf,,https://doi.org/10.1109/BTAS.2017.8272729, +1fbde67e87890e5d45864e66edb86136fbdbe20e,http://www.openu.ac.il/home/hassner/data/ASLAN/Papers/ASLAN_TPAMI12.pdf,,,http://www.cs.tau.ac.il/~wolf/papers/aslan.pdf +1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6,http://www.cse.msu.edu/~liuxm/publication/Han_Otto_Liu_Jain_TPAMI14.pdf,,,http://web.cse.msu.edu/~liuxm/publication/Han_Otto_Liu_Jain_TPAMI14.pdf +1fef53b07c6c625545fc071c7386d41f87925675,,,, +1fcdc113a5df2f45a1f4b3249c041d942a3a730b,http://vipl.ict.ac.cn/homepage/CVPR15Metric/ref/Reconstruction-Based%20Metric%20Learning%20for%20Unconstrained%20Face%20Verification_TIFS2015.pdf,,https://doi.org/10.1109/TIFS.2014.2363792, +1fd2ed45fb3ba77f10c83f0eef3b66955645dfe0,http://pdfs.semanticscholar.org/d91a/de2712c65f45ed8b917414829ecb24c3c183.pdf,,,http://papers.nips.cc/paper/5620-generalized-unsupervised-manifold-alignment +1fe59275142844ce3ade9e2aed900378dd025880,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Xiao_Facial_Landmark_Detection_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.130 +1f2d12531a1421bafafe71b3ad53cb080917b1a7,http://pdfs.semanticscholar.org/1f2d/12531a1421bafafe71b3ad53cb080917b1a7.pdf,,,http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=5352&context=theses +1f35a65eab258f042edb8e1d4d5fff34f00a85bd,http://www.seattle.intel-research.net/~xren/publication/xren_cvpr08_casablanca.pdf,,,http://www2.seattle.intel-research.net/~xren/publication/xren_cvpr08_casablanca.pdf +1f02bf412a82ad99fe99dc3cfb3adec9dd41eabb,,,https://doi.org/10.1007/s11760-016-1052-9, +1f5725a4a2eb6cdaefccbc20dccadf893936df12,,,https://doi.org/10.1109/CCST.2012.6393544, +1fe121925668743762ce9f6e157081e087171f4c,https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Ylioinas_Unsupervised_Learning_of_2015_CVPR_paper.pdf,,,http://www.ee.oulu.fi/~jkannala/publications/cvprw2015.pdf +1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58d,http://pdfs.semanticscholar.org/1fef/b2f8dd1efcdb57d5c2966d81f9ab22c1c58d.pdf,,,http://ceur-ws.org/Vol-1996/paper5.pdf +1f8e44593eb335c2253d0f22f7f9dc1025af8c0d,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/22607/Patras%20Fine-tuning%20regression%202014%20Accepted.pdf?sequence=1,,https://doi.org/10.1109/TIP.2014.2383325, +1f94734847c15fa1da68d4222973950d6b683c9e,https://arxiv.org/pdf/1512.02895v1.pdf,,,http://webpages.uncc.edu/~szhang16/paper/CVPR16_structured_labels.pdf +1f745215cda3a9f00a65166bd744e4ec35644b02,http://www.eurecom.fr/en/publication/4044/download/mm-publi-4044.pdf,,https://doi.org/10.1109/MMSP.2013.6659328, +1f5b9ac2a37431b59fd1cecf8fe57b92b6b6398e,,,, +1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,http://pdfs.semanticscholar.org/1fd3/dbb6e910708fa85c8a86e17ba0b6fef5617c.pdf,,,http://ikee.lib.auth.gr/record/284544/files/GRI-2016-17200.pdf +1f24cef78d1de5aa1eefaf344244dcd1972797e8,http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Outlier-Robust_Tensor_PCA_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.419 +1fe990ca6df273de10583860933d106298655ec8,http://pdfs.semanticscholar.org/1fe9/90ca6df273de10583860933d106298655ec8.pdf,,,http://www.iis.sinica.edu.tw/page/jise/2015/201509_12.html +1f3ae376b22136a2fe2e96632d4383653a42e4d4,,,, +1fcb905e4505a781fb0b375eb470f5661e38ae39,,,,http://doi.acm.org/10.1145/3123266.3123450 +73f467b4358ac1cafb57f58e902c1cab5b15c590,http://pdfs.semanticscholar.org/73f4/67b4358ac1cafb57f58e902c1cab5b15c590.pdf,,,http://research.ijcaonline.org/ICACT2011/number2/ICACT1108.pdf +734d6049fe08d0a24f6aa70bf0d81c217dfca570,,,, +732e8d8f5717f8802426e1b9debc18a8361c1782,http://pdfs.semanticscholar.org/732e/8d8f5717f8802426e1b9debc18a8361c1782.pdf,,,http://proceedings.mlr.press/v70/beckham17a/beckham17a.pdf +73b05a7faf1b9363ffff125db101dbe2b0b3964f,,,, +7384c39a2d084c93566b98bc4d81532b5ad55892,http://pdfs.semanticscholar.org/d0a5/0940a1bf951adaf22bd1fc72ea861b606cdb.pdf,,https://doi.org/10.1186/1687-5281-2013-13,http://jivp.eurasipjournals.com/content/pdf/1687-5281-2013-13.pdf +739d400cb6fb730b894182b29171faaae79e3f01,http://pdfs.semanticscholar.org/739d/400cb6fb730b894182b29171faaae79e3f01.pdf,,,http://ijssst.info/Vol-17/No-47/paper25.pdf +732e4016225280b485c557a119ec50cffb8fee98,http://pdfs.semanticscholar.org/732e/4016225280b485c557a119ec50cffb8fee98.pdf,,,https://arxiv.org/pdf/1311.6510v1.pdf +7373c4a23684e2613f441f2236ed02e3f9942dd4,https://dr.ntu.edu.sg/bitstream/handle/10220/18012/Feature%20Extraction%20through%20Binary%20Pattern%20of%20Phase%20Congruency%20for%20Facial%20Expression%20Recognition.pdf?isAllowed=y&sequence=1,,https://doi.org/10.1109/ICARCV.2012.6485152, +732686d799d760ccca8ad47b49a8308b1ab381fb,http://pdfs.semanticscholar.org/7326/86d799d760ccca8ad47b49a8308b1ab381fb.pdf,,,http://www.uva.nl/binaries/content/documents/personalpages/a/b/c.s.abacioglu/en/downloads/downloads/assets/asset?1475751440086= +7384610776ec405dc84e47f2d353aa6d3cc03b1d,,,, +73fbdd57270b9f91f2e24989178e264f2d2eb7ae,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001945.pdf,,https://doi.org/10.1109/ICASSP.2012.6288286, +738c187d55745aac18d5fb5f6cc9e3568cd2d217,http://www-ee.ccny.cuny.edu/wwwn/yltian/Publications/ICMR130-2015.pdf,,,http://doi.acm.org/10.1145/2671188.2749339 +738a985fba44f9f5acd516e07d0d9578f2ffaa4e,http://pdfs.semanticscholar.org/738a/985fba44f9f5acd516e07d0d9578f2ffaa4e.pdf,,,http://mmi.tudelft.nl/pub/dragos/euromedia.pdf +73fd7e74457e0606704c5c3d3462549f1b2de1ad,http://pdfs.semanticscholar.org/73fd/7e74457e0606704c5c3d3462549f1b2de1ad.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9521 +73c5bab5c664afa96b1c147ff21439135c7d968b,http://uclab.khu.ac.kr/resources/publication/C_109.pdf,,,http://doi.acm.org/10.1145/1282280.1282318 +874713dfa7ba8b3ffcc47ed5f8b60849d77f6ea8,,,, +874da338c01fb7a87d605fcde6c52835eee03d5e,,,,http://doi.ieeecomputersociety.org/10.1109/ICAPR.2009.20 +87806c51dc8c1077953178367dcf5c75c553ce34,,,https://doi.org/10.1109/ICMLA.2015.146, +877100f430b72c5d60de199603ab5c65f611ce17,http://pdfs.semanticscholar.org/8771/00f430b72c5d60de199603ab5c65f611ce17.pdf,,,https://peerj.com/articles/1801.pdf +87e5b4d95f95a0975e855cf5ad402db7a3c64ff5,http://www.researchgate.net/profile/Paul_Bodesheim/publication/269314560_Local_Novelty_Detection_in_Multi-class_Recognition_Problems/links/5486c2420cf289302e2c35eb.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.113 +870433ba89d8cab1656e57ac78f1c26f4998edfb,https://arxiv.org/pdf/1612.04904v1.pdf,,,http://arxiv.org/abs/1612.04904 +87ee56feefdb39938cda7f872e784d9d986713af,,,,http://dl.acm.org/citation.cfm?id=3022247 +8796f2d54afb0e5c924101f54d469a1d54d5775d,http://pdfs.semanticscholar.org/8796/f2d54afb0e5c924101f54d469a1d54d5775d.pdf,,,http://file.scirp.org/pdf/JSIP20120100006_60760595.pdf +87f285782d755eb85d8922840e67ed9602cfd6b9,http://pdfs.semanticscholar.org/87f2/85782d755eb85d8922840e67ed9602cfd6b9.pdf,,,http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1153&context=dissertations_2 +871f5f1114949e3ddb1bca0982086cc806ce84a8,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01169.pdf,,https://doi.org/10.1109/MVA.2015.7153120, +87bee0e68dfc86b714f0107860d600fffdaf7996,http://mi.informatik.uni-siegen.de/publications/piotraschke_autoreconst_cvpr16.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.372 +87f738d3883fc56ef0841484478b89c0f241df02,,,, +87309bdb2b9d1fb8916303e3866eca6e3452c27d,http://pdfs.semanticscholar.org/8730/9bdb2b9d1fb8916303e3866eca6e3452c27d.pdf,,,http://arxiv.org/abs/1409.0084 +8754b7dba08911fca67db5bf13a6e6abd546d2e2,,,, +87552622efd0e85c2a71d4d2590e53d45f021dbf,,,https://doi.org/10.1109/ICIP.2016.7532435, +872ff48a3acfbf96376fd048348372f5137615e4,,,https://doi.org/10.1007/s41095-016-0051-7, +87147418f863e3d8ff8c97db0b42695a1c28195b,http://pdfs.semanticscholar.org/8714/7418f863e3d8ff8c97db0b42695a1c28195b.pdf,,,http://arxiv.org/pdf/1604.07360v1.pdf +876bae52a5edd6c9deb8bb8ad90dc5b74b640615,,,, +87a39f5002ef2de3143d1ea96ae19e002c44345b,,,, +87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5,http://pdfs.semanticscholar.org/87dd/3fd36bccbe1d5f1484ac05f1848b51c6eab5.pdf,,,http://www.cs.ucf.edu/~vision/papers/theses/Rodriguez_Mikel.pdf +87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd,http://pdfs.semanticscholar.org/87bb/183d8be0c2b4cfceb9ee158fee4bbf3e19fd.pdf,,https://doi.org/10.1007/978-3-319-17963-6_2,http://homes.cs.washington.edu/~shapiro/Multimedia/ezgi-Craniofacial.pdf +8706c3d49d1136035f298041f03bb70dc074f24d,,,,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.12 +876583a059154def7a4bc503b21542f80859affd,,,https://doi.org/10.1109/IWBF.2016.7449697, +80677676b127b67938c8db06a15d87f5dd4bd7f1,,,https://doi.org/10.1007/s11760-014-0623-x, +80f72b26c6571aee2ff04704bc7fd1a69bfa0b3f,,,https://doi.org/10.1016/j.patcog.2016.12.029, +8027a9093f9007200e8e69e05616778a910f4a5f,,,https://doi.org/10.1109/ICB.2013.6612997, +805a0f4b99f162ac4db0ef6e0456138c8d498c3a,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2465373 +80193dd633513c2d756c3f568ffa0ebc1bb5213e,http://pdfs.semanticscholar.org/a3d8/8154a1253338b45f950bcf9cbe91ba5271ee.pdf,,https://doi.org/10.1007/3-540-45404-7_25,http://www.cfar.umd.edu/~vok/krueger01dagm.ps.gz +808b685d09912cbef4a009e74e10476304b4cccf,http://pdfs.semanticscholar.org/808b/685d09912cbef4a009e74e10476304b4cccf.pdf,,,http://datasets.d2.mpi-inf.mpg.de/joon17cvprw/poster.pdf +804b4c1b553d9d7bae70d55bf8767c603c1a09e3,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0001831.pdf,,https://doi.org/10.1109/ICASSP.2016.7471993, +800cbbe16be0f7cb921842d54967c9a94eaa2a65,http://pdfs.semanticscholar.org/800c/bbe16be0f7cb921842d54967c9a94eaa2a65.pdf,,,http://mmi.tudelft.nl/pub/dragos/Dragos%20Datcu_PhD_Thesis.pdf +808656563eea17470159e6540b05fe6f7ae58c2b,http://www.researchgate.net/profile/Songul_Varli_Albayrak/publication/235248598_Classification_with_Emotional_Faces_via_a_Robust_Sparse_Classifier/links/0912f510a44fb84bef000000.pdf,,https://doi.org/10.1109/IPTA.2012.6469531,https://www.researchgate.net/profile/Songul_Varli_Albayrak/publication/235248598_Classification_with_Emotional_Faces_via_a_Robust_Sparse_Classifier/links/0912f510a44fb84bef000000.pdf +80135ed7e34ac1dcc7f858f880edc699a920bf53,http://pdfs.semanticscholar.org/8013/5ed7e34ac1dcc7f858f880edc699a920bf53.pdf,,,https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=X-M9ZoIuIoNTj2P7iY13hWe608GK8lqvFmtsZOLaUGG9GlzJk9ixrtaDRSSRfDtX +80277fb3a8a981933533cf478245f262652a33b5,http://pdfs.semanticscholar.org/8027/7fb3a8a981933533cf478245f262652a33b5.pdf,,https://doi.org/10.1007/978-3-642-32717-9_20,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_dagm_2012.pdf +803803b5c2c61046d63674f85ecf0123f9d2c4b8,,,https://doi.org/10.1049/iet-bmt.2013.0089, +80840df0802399838fe5725cce829e1b417d7a2e,http://pdfs.semanticscholar.org/8084/0df0802399838fe5725cce829e1b417d7a2e.pdf,,,http://arxiv.org/abs/1304.1250 +80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,,,https://doi.org/10.1109/TNNLS.2016.2522431, +80c8d143e7f61761f39baec5b6dfb8faeb814be9,http://pdfs.semanticscholar.org/80c8/d143e7f61761f39baec5b6dfb8faeb814be9.pdf,,,http://www.ijltet.org/journal/148604928843.pdf +809ea255d144cff780300440d0f22c96e98abd53,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf,,,https://arxiv.org/pdf/1801.07698v1.pdf +80a6bb337b8fdc17bffb8038f3b1467d01204375,http://pdfs.semanticscholar.org/80a6/bb337b8fdc17bffb8038f3b1467d01204375.pdf,,,http://www.cs.nthu.edu.tw/~cchen/Research/2015CIST.pdf +80aa455068018c63237c902001b58844fcc6f160,,,https://doi.org/10.1109/FG.2011.5771327, +80a5afeb6968c7e736adc48bd4d5ec5b45b13f71,,,https://doi.org/10.1007/978-3-319-15762-7, +80be8624771104ff4838dcba9629bacfe6b3ea09,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,,https://doi.org/10.1007/978-3-319-10590-1_18,http://www.ntu.edu.sg/home/wanggang/LuECCV2014.pdf +8000c4f278e9af4d087c0d0895fff7012c5e3d78,https://www.cse.ust.hk/~yuzhangcse/papers/Zhang_Yeung_CVPR10.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539975 +80e9c28c369a6c49f9dd10473c663a25dc9716d5,,,, +80bd795930837330e3ced199f5b9b75398336b87,http://pdfs.semanticscholar.org/80bd/795930837330e3ced199f5b9b75398336b87.pdf,,https://doi.org/10.1007/978-3-642-37331-2_24,http://www.jdl.ac.cn/doc/2011/201319112684605_2012_accv_sxli_relative%20forest%20for%20attribute%20prediction.pdf +741950ae2e503a614f257cdac653d1bb30cb8e79,,,, +74de03923a069ffc0fb79e492ee447299401001f,http://pdfs.semanticscholar.org/74de/03923a069ffc0fb79e492ee447299401001f.pdf,,,http://mi.eng.cam.ac.uk/~oa214/academic/publications/2006_IVAT_chapter1.pdf +74f643579949ccd566f2638b85374e7a6857a9fc,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/ICPR/MBP%20ICPR10(Revise%20final).pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.657 +74cec83ee694b5d0e07d5d0bacd0aa48a80776aa,,,https://doi.org/10.1109/ISCAS.2013.6572506, +74408cfd748ad5553cba8ab64e5f83da14875ae8,http://pdfs.semanticscholar.org/7440/8cfd748ad5553cba8ab64e5f83da14875ae8.pdf,,,http://arxiv.org/pdf/1506.00925v1.pdf +747fddd7345b60da121fc13c5440a18039b912e6,http://pdfs.semanticscholar.org/747f/ddd7345b60da121fc13c5440a18039b912e6.pdf,,,http://arxiv.org/abs/1711.06106 +747d5fe667519acea1bee3df5cf94d9d6f874f20,http://pdfs.semanticscholar.org/747d/5fe667519acea1bee3df5cf94d9d6f874f20.pdf,,,https://arxiv.org/pdf/1804.01077v1.pdf +745d49a2ff70450113f07124c2c5263105125f58,,,https://doi.org/10.1109/ICPR.2016.7899972, +740e095a65524d569244947f6eea3aefa3cca526,http://pdfs.semanticscholar.org/740e/095a65524d569244947f6eea3aefa3cca526.pdf,,,http://referaat.cs.utwente.nl/conference/24/paper/7523/towards-human-like-performance-face-detection-a-convolutional-neural-network-approach.pdf +74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,http://pdfs.semanticscholar.org/74e8/69bc7c99093a5ff9f8cfc3f533ccf1b135d8.pdf,,,http://www.ri.cmu.edu/pub_files/2012/8/divvalaThesis.pdf +741485741734a99e933dd0302f457158c6842adf,http://pdfs.semanticscholar.org/7414/85741734a99e933dd0302f457158c6842adf.pdf,,https://doi.org/10.4304/jcp.9.3.608-617,http://www.jcomputers.us/vol9/jcp0903-14.pdf +743e582c3e70c6ec07094887ce8dae7248b970ad,http://pdfs.semanticscholar.org/743e/582c3e70c6ec07094887ce8dae7248b970ad.pdf,,,http://www.sersc.org/journals/IJSIP/vol8_no10/4.pdf +74b0095944c6e29837c208307a67116ebe1231c8,http://web.eecs.umich.edu/~hero/Preprints/EuclideanK-Nearest.pdf,,https://doi.org/10.1109/ICASSP.2004.1326713,http://www.eecs.umich.edu/~hero/Preprints/EuclideanK-Nearest.pdf +74c8116d647612e8cd20a2528eeed38f76d09126,,,, +74156a11c2997517061df5629be78428e1f09cbd,http://cvrr.ucsd.edu/publications/2016/MartinRangeshTrivediICPR2016.pdf,,https://doi.org/10.1109/ICPR.2016.7900057, +748e72af01ba4ee742df65e9c030cacec88ce506,http://pdfs.semanticscholar.org/748e/72af01ba4ee742df65e9c030cacec88ce506.pdf,,,http://www.ijcsi.org/papers/IJCSI-11-5-1-50-57.pdf +745e74ae84e1b2b8690d07db523531642023d6c4,,,https://doi.org/10.1109/FSKD.2016.7603417, +745b42050a68a294e9300228e09b5748d2d20b81,http://pdfs.semanticscholar.org/745b/42050a68a294e9300228e09b5748d2d20b81.pdf,,,https://arxiv.org/pdf/1803.05790v2.pdf +749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7,http://pdfs.semanticscholar.org/7493/82d19bfe9fb8d0c5e94d0c9b0a63ab531cb7.pdf,,,http://subs.emis.de/LNI/Proceedings/Proceedings154/article2906.html +74618fb4ce8ce0209db85cc6069fe64b1f268ff4,https://ir.canterbury.ac.nz/bitstream/handle/10092/6229/12636740_Y10_ICCSIT.pdf?isAllowed=y&sequence=1,,,http://ir.canterbury.ac.nz/bitstream/handle/10092/6229/12636740_Y10_ICCSIT.pdf?isAllowed=y&sequence=1 +74875368649f52f74bfc4355689b85a724c3db47,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Yan_Object_Detection_by_2015_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_072_ext.pdf +7492c611b1df6bce895bee6ba33737e7fc7f60a6,https://ibug.doc.ic.ac.uk/media/uploads/documents/zafeiriou_the_3d_menpo_iccv_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.16 +74eae724ef197f2822fb7f3029c63014625ce1ca,http://pdfs.semanticscholar.org/74ea/e724ef197f2822fb7f3029c63014625ce1ca.pdf,,,http://www.sersc.org/journals/IJBSBT/vol5_no2/11.pdf +747dc0add50b86f5ba9e3e7315943d520e08f9eb,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.78 +7480d8739eb7ab97c12c14e75658e5444b852e9f,http://pdfs.semanticscholar.org/cfe4/b03951be323394e6749f6a30b2ac9b924479.pdf,,,http://www.bmva.org/bmvc/2016/papers/paper103/abstract103.pdf +74d3ff8324e02503c18fb2566ed29e2e22ce0d1b,,,,http://doi.ieeecomputersociety.org/10.1109/IAS.2009.266 +74ba4ab407b90592ffdf884a20e10006d2223015,http://pdfs.semanticscholar.org/74ba/4ab407b90592ffdf884a20e10006d2223015.pdf,,,http://arxiv.org/abs/1704.02117 +7405ed035d1a4b9787b78e5566340a98fe4b63a0,http://pdfs.semanticscholar.org/7405/ed035d1a4b9787b78e5566340a98fe4b63a0.pdf,,,http://arxiv.org/pdf/1505.00824v1.pdf +744db9bd550bf5e109d44c2edabffec28c867b91,http://pdfs.semanticscholar.org/744d/b9bd550bf5e109d44c2edabffec28c867b91.pdf,,https://doi.org/10.1007/978-3-319-07635-5_61,http://groupware.les.inf.puc-rio.br/public/papers/85190643.pdf +74325f3d9aea3a810fe4eab8863d1a48c099de11,http://pdfs.semanticscholar.org/7432/5f3d9aea3a810fe4eab8863d1a48c099de11.pdf,,,https://arxiv.org/pdf/1407.1957v1.pdf +744d23991a2c48d146781405e299e9b3cc14b731,http://www.cise.ufl.edu/~dihong/assets/LPS2016.pdf,,https://doi.org/10.1109/TIP.2016.2535284, +1a45ddaf43bcd49d261abb4a27977a952b5fff12,http://pdfs.semanticscholar.org/1a45/ddaf43bcd49d261abb4a27977a952b5fff12.pdf,,,https://arxiv.org/pdf/1803.07441v1.pdf +1ab19e516b318ed6ab64822efe9b2328836107a4,,,https://doi.org/10.1109/TIP.2010.2083674, +1a41e5d93f1ef5b23b95b7163f5f9aedbe661394,http://pdfs.semanticscholar.org/1a41/e5d93f1ef5b23b95b7163f5f9aedbe661394.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/4c/e7/TSWJ2014-903160.PMC3944647.pdf +1a65cc5b2abde1754b8c9b1d932a68519bcb1ada,http://pdfs.semanticscholar.org/e4ae/821e234c281aed6ba629c130be7c8eac4a31.pdf,,,http://www.bmva.org/bmvc/2014/files/paper116.pdf +1aa766bbd49bac8484e2545c20788d0f86e73ec2,http://inside.mines.edu/~jpaone/papers/IV15_BaselineFaceDetection_SHRP2NDS.pdf,,https://doi.org/10.1109/IVS.2015.7225682, +1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,http://www.dabi.temple.edu/~hbling/publication/oria-12-final.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247878 +1a71f9af98228f4d2b15cfaf415321813e29b087,,,, +1a878e4667fe55170252e3f41d38ddf85c87fcaf,http://pdfs.semanticscholar.org/1a87/8e4667fe55170252e3f41d38ddf85c87fcaf.pdf,,,http://www.cs.berkeley.edu/~slacoste/research/pubs/lacoste-thesis09-discMLstruct.pdf +1a41831a3d7b0e0df688fb6d4f861176cef97136,http://pdfs.semanticscholar.org/1fae/8f87f83bb707c4b38c23e93ae2bcb900b962.pdf,,,http://www.dtic.mil/get-tr-doc/pdf?AD=ADA455936 +1ab4fdcd431286a2fe9538cb9a9e3c67016fa98a,,,https://doi.org/10.1007/s11042-013-1754-8, +1a0e1ba4408d12f8a28049da0ff8cad4f91690d5,,,https://doi.org/10.1007/s12559-016-9445-1, +1ac2882559a4ff552a1a9956ebeadb035cb6df5b,http://www.pitt.edu/~jeffcohn/biblio/TrainData.pdf,,,http://ca.cs.cmu.edu/sites/default/files/Girard_2015_How.pdf +1ad5cb4c1eec5a9666b5dbbb6fab43576d0935db,,,https://doi.org/10.1109/ICIP.2016.7533026, +1a7a17c4f97c68d68fbeefee1751d349b83eb14a,http://pdfs.semanticscholar.org/1a7a/17c4f97c68d68fbeefee1751d349b83eb14a.pdf,,,http://www.jmlr.org/papers/volume17/14-460/14-460.pdf +1aef6f7d2e3565f29125a4871cd60c4d86c48361,http://pdfs.semanticscholar.org/1aef/6f7d2e3565f29125a4871cd60c4d86c48361.pdf,,,http://www.cs.utexas.edu/~ml/papers/venugopalan.proposal15.pdf +1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f,http://pdfs.semanticscholar.org/1a6c/3c37c2e62b21ebc0f3533686dde4d0103b3f.pdf,,,http://irdp.info/journals/j3/volume4/Implementation%20of%20Partial%20Face%20Recognition%20using%20Directional%20Binary%20Code.pdf +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,http://disi.unitn.it/~duta/pubs/ICPR2016_Duta.pdf,,https://doi.org/10.1109/ICPR.2016.7899964,http://imag.pub.ro/~bionescu/index_files/ICPR2016_DA-VLAD.pdf +1a3eee980a2252bb092666cf15dd1301fa84860e,https://www.uv.es/vista/vistavalencia/papers/ICIP09_GPCA.pdf,,https://doi.org/10.1109/ICIP.2009.5413808, +1a140d9265df8cf50a3cd69074db7e20dc060d14,http://pdfs.semanticscholar.org/1a14/0d9265df8cf50a3cd69074db7e20dc060d14.pdf,,https://doi.org/10.1007/978-3-642-37444-9_52,http://www.eecs.qmul.ac.uk/~hy300/papers/accv2012finalpaper.pdf +1a47f12a2490f6775c0ad863ac856de27f5b3e03,,,https://doi.org/10.1016/j.sigpro.2014.11.010, +1a862270ad9168e3bf5471bda2793c32d4043aa4,,,, +1a85956154c170daf7f15f32f29281269028ff69,http://ibug.doc.ic.ac.uk/media/uploads/documents/active_pictorial_structures.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/active_pictorial_structures.pdf +1a8d40bcfb087591cc221086440d9891749d47b8,,,https://doi.org/10.1109/ICCE.2012.6161859, +1a031378cf1d2b9088a200d9715d87db8a1bf041,http://pdfs.semanticscholar.org/1a03/1378cf1d2b9088a200d9715d87db8a1bf041.pdf,,,https://openreview.net/pdf?id=rJVoeUkvG +1a96d54c326d19e32bed00642a177ea439341fa2,http://vc.cs.nthu.edu.tw/home/paper/codfiles/tychiu/200808151557/Principal_Component_Analysis_Based_on_L1-Norm_Maximization.pdf,,,http://mipal.snu.ac.kr/images/b/be/L1PCA_TPAMI.pdf +1afd481036d57320bf52d784a22dcb07b1ca95e2,http://pdfs.semanticscholar.org/e206/144fc1dee7f10079facf3b6a3d5d2bf5f8db.pdf,,https://doi.org/10.1093/comjnl/bxs146,http://www.research.att.com/export/sites/att_labs/people/Gibbon_David_C/library/publications/dg20121202050000.pdf?services +1afef6b389bd727c566cd6fbcd99adefe4c0cf32,,,https://doi.org/10.1109/ICB.2016.7550087, +1a9337d70a87d0e30966ecd1d7a9b0bbc7be161f,http://pdfs.semanticscholar.org/1a93/37d70a87d0e30966ecd1d7a9b0bbc7be161f.pdf,,https://doi.org/10.1016/j.engappai.2014.04.006,http://www.researchgate.net/profile/Tapabrata_Chakraborti/publication/262340257_A_novel_binary_adaptive_weight_GSA_based_feature_selection_for_face_recognition_using_local_gradient_patterns_modified_census_transform_and_local_binary_patterns/links/54bf8c600cf2f6bf4e04fab5.pdf +1ae642a8d756c6aa7bc049c5c89d5072d8749637,http://www.cs.umd.edu/~behjat/papers/ICMR14_poster.pdf,,,http://doi.acm.org/10.1145/2578726.2578767 +1aeef2ab062c27e0dbba481047e818d4c471ca57,,,https://doi.org/10.1109/ICACCI.2015.7275860, +1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6,http://pdfs.semanticscholar.org/1a4b/6ee6cd846ef5e3030a6ae59f026e5f50eda6.pdf,,,https://arxiv.org/pdf/1609.06782v2.pdf +1addc5c1fa80086d1ed58f71a9315ad13bd87ca2,,,https://doi.org/10.1007/s10044-012-0279-5, +1a9a192b700c080c7887e5862c1ec578012f9ed1,http://pdfs.semanticscholar.org/1a9a/192b700c080c7887e5862c1ec578012f9ed1.pdf,,,http://www.ntu.edu.sg/home5/PG03454644/codes_and_paper/TSMC_Discriminant_Subspace_Analysis_for_Face_Recognition_with_Small_Number_of_Training_Samples.pdf +1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9,http://pdfs.semanticscholar.org/1af5/2c853ff1d0ddb8265727c1d70d81b4f9b3a9.pdf,,,http://cdn.intechopen.com/pdfs/40176/InTech-Face_recognition_under_illumination_variation_using_shadow_compensation_and_pixel_selection.pdf +1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Zhou_Extensive_Facial_Landmark_2013_ICCV_paper.pdf,,,http://www.faceplusplus.com/wp-content/uploads/FacialLandmarkpaper.pdf +1a40092b493c6b8840257ab7f96051d1a4dbfeb2,http://web.cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf,,,http://www.cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf +1ad97cce5fa8e9c2e001f53f6f3202bddcefba22,http://files.is.tue.mpg.de/black/papers/RGA2014.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Hauberg_Grassmann_Averages_for_2014_CVPR_paper.pdf +1a1118cd4339553ad0544a0a131512aee50cf7de,http://pdfs.semanticscholar.org/1a11/18cd4339553ad0544a0a131512aee50cf7de.pdf,,,https://arxiv.org/pdf/1711.00088v1.pdf +1a40c2a2d17c52c8b9d20648647d0886e30a60fa,,,https://doi.org/10.1109/ICPR.2016.7900283, +1a6c9ef99bf0ab9835a91fe5f1760d98a0606243,http://pdfs.semanticscholar.org/57ce/705f08ae7256b16eac2b8b40ae0c88d6cf23.pdf,,https://doi.org/10.1007/978-3-319-10584-0_29,http://www.researchgate.net/profile/Eren_Golge/publication/265528981_ConceptMap_Mining_noisy_web_data_for_concept_learning/links/54118fa20cf264cee28b3fdd.pdf +1a03dcc811131b0b702bd5a75c54ed26cd27151a,,,https://doi.org/10.1007/s11760-015-0810-4, +1ad780e02edf155c09ea84251289a054b671b98a,,,https://doi.org/10.1109/ICNIDC.2012.6418787, +1afdedba774f6689eb07e048056f7844c9083be9,http://ibug.doc.ic.ac.uk/media/uploads/documents/sandbach2013markov.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W22/papers/Sandbach_Markov_Random_Field_2013_ICCV_paper.pdf +1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43,http://pdfs.semanticscholar.org/676c/0fc58b6a0108326024f708e30d76cadbae58.pdf,,https://doi.org/10.5244/C.25.112,http://www.bmva.org/bmvc/2011/proceedings/paper112/abstract.pdf +1a7a2221fed183b6431e29a014539e45d95f0804,http://www.cs.colostate.edu/~vision/publications/Bolme2007b.pdf,,, +1a5b39a4b29afc5d2a3cd49087ae23c6838eca2b,http://www.l3s.de/~siersdorfer/sources/2014/mtgame-2014.pdf,,,http://doi.acm.org/10.1145/2661829.2661946 +2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,http://www.cs.fsu.edu/~liux/research/pub/papers/Wu-Two-Stage-CVIU-2008.pdf,,https://doi.org/10.1016/j.cviu.2007.04.005,http://ww2.cs.fsu.edu/~ywu/PDF-files/twostage.pdf +287795991fad3c61d6058352879c7d7ae1fdd2b6,http://pdfs.semanticscholar.org/2877/95991fad3c61d6058352879c7d7ae1fdd2b6.pdf,,,http://research.ijcaonline.org/volume66/number8/pxc3885774.pdf +287de191c49a3caa38ad7594093045dfba1eb420,,,https://doi.org/10.23919/MVA.2017.7986829, +28a900a07c7cbce6b6297e4030be3229e094a950,http://pdfs.semanticscholar.org/28a9/00a07c7cbce6b6297e4030be3229e094a950.pdf,,,http://www.ccis2k.org/iajit/index.php?Itemid=327&id=81&option=com_content&task=blogcategory +282503fa0285240ef42b5b4c74ae0590fe169211,http://pdfs.semanticscholar.org/2825/03fa0285240ef42b5b4c74ae0590fe169211.pdf,,,https://arxiv.org/pdf/1801.07848v1.pdf +28e0ed749ebe7eb778cb13853c1456cb6817a166,http://pdfs.semanticscholar.org/28e0/ed749ebe7eb778cb13853c1456cb6817a166.pdf,,https://doi.org/10.1016/j.neunet.2011.10.003,https://pdfs.semanticscholar.org/28e0/ed749ebe7eb778cb13853c1456cb6817a166.pdf +28b9d92baea72ec665c54d9d32743cf7bc0912a7,http://pdfs.semanticscholar.org/a7f8/b6bf6aa7a12773ad9bcf1d040d4d74d12493.pdf,,,http://eprints.eemcs.utwente.nl/25829/01/Pantic_Parametric_temporal_alignment.pdf +283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43,http://pdfs.semanticscholar.org/283d/226e346ac3e7685dd9a4ba8ae55ee4f2fe43.pdf,,,https://www.base-search.net/Record/3dbe9ce562db3466d1a42ef9ba0c3cadada3b193cd202d58984b6c8648d03c67 +28f7d3d894705a92cac9b08d22701fadb6472676,,,, +28d7029cfb73bcb4ad1997f3779c183972a406b4,https://arxiv.org/pdf/1705.00322v1.pdf,,https://doi.org/10.1109/TIP.2017.2700761,http://arxiv.org/abs/1705.00322 +280d59fa99ead5929ebcde85407bba34b1fcfb59,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002662.pdf,,https://doi.org/10.1109/ICASSP.2016.7472160,http://arxiv.org/abs/1604.02634 +28f5138d63e4acafca49a94ae1dc44f7e9d84827,http://pdfs.semanticscholar.org/28f5/138d63e4acafca49a94ae1dc44f7e9d84827.pdf,,,https://arxiv.org/pdf/1207.3438v1.pdf +281b91c35a1af97b1405bc724a04e2be6e24971b,,,https://doi.org/10.1109/ICMLC.2010.5580557, +28e1668d7b61ce21bf306009a62b06593f1819e3,http://pdfs.semanticscholar.org/28e1/668d7b61ce21bf306009a62b06593f1819e3.pdf,,, +28cd46a078e8fad370b1aba34762a874374513a5,http://pdfs.semanticscholar.org/28cd/46a078e8fad370b1aba34762a874374513a5.pdf,,,https://arxiv.org/pdf/1707.06436v1.pdf +286adff6eff2f53e84fe5b4d4eb25837b46cae23,http://pdfs.semanticscholar.org/b17e/61972e674f8f734bd428cb882a9bb797abe2.pdf,,,https://arxiv.org/pdf/1604.03901v1.pdf +286812ade95e6f1543193918e14ba84e5f8e852e,http://pdfs.semanticscholar.org/9b1d/a39168a7196c2f9c85e9b3d17debff04c988.pdf,,,http://www.bmva.org/bmvc/2014/files/abstract130.pdf +282a3ee79a08486f0619caf0ada210f5c3572367,http://pdfs.semanticscholar.org/282a/3ee79a08486f0619caf0ada210f5c3572367.pdf,,,https://arxiv.org/pdf/1801.01687v1.pdf +288dbc40c027af002298b38954d648fddd4e2fd3,http://pdfs.semanticscholar.org/288d/bc40c027af002298b38954d648fddd4e2fd3.pdf,,https://doi.org/10.1007/978-3-642-33786-4_1,http://grvsharma.com/hpresources/sharma_lhs_eccv12.pdf +28f311b16e4fe4cc0ff6560aae3bbd0cb6782966,http://pdfs.semanticscholar.org/4d59/7318188a9c7f7a78dadbe5b8f8385c1e1356.pdf,,,http://aclweb.org/anthology/E12-1061 +28312c3a47c1be3a67365700744d3d6665b86f22,http://pdfs.semanticscholar.org/2831/2c3a47c1be3a67365700744d3d6665b86f22.pdf,,,http://www.cfar.umd.edu/ftp/TRs/FaceSurvey.ps.gz +28d06fd508d6f14cd15f251518b36da17909b79e,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chen_Whats_in_a_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.432 +28b5b5f20ad584e560cd9fb4d81b0a22279b2e7b,http://pdfs.semanticscholar.org/28b5/b5f20ad584e560cd9fb4d81b0a22279b2e7b.pdf,,,https://arxiv.org/pdf/1204.0171v5.pdf +28bc378a6b76142df8762cd3f80f737ca2b79208,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Vedaldi_Understanding_Objects_in_2014_CVPR_paper.pdf,,,http://people.cs.umass.edu/~smaji/papers/oid-cvpr14.pdf +287900f41dd880802aa57f602e4094a8a9e5ae56,https://www.comp.nus.edu.sg/~tsim/documents/cross-expression.pdf,http://ieeexplore.ieee.org/document/6460447/,,http://www.comp.nus.edu.sg/~tsim/documents/cross-expression.pdf +28c0cb56e7f97046d6f3463378d084e9ea90a89a,http://www.robots.ox.ac.uk/~vgg/publications/2005/Arandjelovic05a/arandjelovic05a.pdf,,,http://dro.deakin.edu.au/eserv/DU:30058433/arandjelovic-automaticface-2005.pdf +28be652db01273289499bc6e56379ca0237506c0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_018_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Xiao_FaLRR_A_Fast_2015_CVPR_paper.pdf +28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d,http://pdfs.semanticscholar.org/28bc/f31f794dc27f73eb248e5a1b2c3294b3ec9d.pdf,,,http://research.ijcaonline.org/volume96/number13/pxc3896731.pdf +2836d68c86f29bb87537ea6066d508fde838ad71,http://arxiv.org/pdf/1510.06503v1.pdf,,,http://arxiv.org/abs/1510.06503 +28de411a5b3eb8411e7bcb0003c426aa91f33e97,http://pdfs.semanticscholar.org/28de/411a5b3eb8411e7bcb0003c426aa91f33e97.pdf,,,http://www.ijarcsse.com/docs/papers/Volume_4/4_April2014/V4I4-0235.pdf +28b26597a7237f9ea6a9255cde4e17ee18122904,http://pdfs.semanticscholar.org/28b2/6597a7237f9ea6a9255cde4e17ee18122904.pdf,,,http://cercor.oxfordjournals.org/content/25/9/2876.full.pdf +28d55935cc36df297fe21b98b4e2b07b5720612e,,,https://doi.org/10.1109/CISS.2016.7460569, +28a45770faf256f294ce3bbd5de25c6d5700976e,,,https://doi.org/10.1109/ICDSP.2016.7868531, +28fe6e785b32afdcd2c366c9240a661091b850cf,http://pdfs.semanticscholar.org/28fe/6e785b32afdcd2c366c9240a661091b850cf.pdf,,,http://www.ijais.org/research/volume10/number7/chandran-2016-ijais-451526.pdf +28c9198d30447ffe9c96176805c1cd81615d98c8,http://pdfs.semanticscholar.org/28c9/198d30447ffe9c96176805c1cd81615d98c8.pdf,,, +28d99dc2d673d62118658f8375b414e5192eac6f,http://www.cs.wayne.edu/~mdong/cvpr17.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Chen_Using_Ranking-CNN_for_CVPR_2017_paper.pdf +280bc9751593897091015aaf2cab39805768b463,http://pdfs.semanticscholar.org/280b/c9751593897091015aaf2cab39805768b463.pdf,,,http://ece.ubm.ro/cjece/vol/6-2013/102-6105.pdf +283d381c5c2ba243013b1c4f5e3b29eb906fa823,,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.222 +28aa89b2c827e5dd65969a5930a0520fdd4a3dc7,http://pdfs.semanticscholar.org/28aa/89b2c827e5dd65969a5930a0520fdd4a3dc7.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/9240/Ramanathan_umd_0117E_10110.pdf?isAllowed=y&sequence=1 +2884ff0d58a66d42371b548526d685760e514043,,,https://doi.org/10.1109/ICIP.2015.7351242, +28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68,https://www.cc.gatech.edu/~parikh/Publications/annoyance_prediction_CVPR2014.pdf,,,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Christie_Predicting_User_Annoyance_2014_CVPR_paper.pdf +285472527c5dc1c620d9644849e7519766c2d655,http://lear.inrialpes.fr/people/mpederso/papers/ICCV15_Parts.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pedersoli_Learning_Where_to_ICCV_2015_paper.pdf +288d2704205d9ca68660b9f3a8fda17e18329c13,http://arxiv.org/pdf/1601.04153v2.pdf,,,https://arxiv.org/pdf/1601.04153v1.pdf +17b46e2dad927836c689d6787ddb3387c6159ece,http://cs.uky.edu/~jacobs/papers/greenwell2014faceattributes.pdf,,,http://doi.acm.org/10.1145/2676440.2676443 +176a3e9e118712251124c1347516a92d5e315297,http://eprints.pascal-network.org/archive/00008997/01/ICMR11.pdf,,,http://eprints.pascal-network.org/archive/00008300/01/FerSidZhaPetetal11.pdf +17a85799c59c13f07d4b4d7cf9d7c7986475d01c,http://pdfs.semanticscholar.org/17a8/5799c59c13f07d4b4d7cf9d7c7986475d01c.pdf,,,http://upcommons.upc.edu/bitstream/handle/2117/95700/TXPS1de1.pdf;jsessionid=DB2E1A09C46D3D29B463696BD798DC89?sequence=1 +1768909f779869c0e83d53f6c91764f41c338ab5,http://arxiv.org/pdf/1506.08959v1.pdf,,,http://arxiv.org/pdf/1506.08959v2.pdf +171ca25bc2cdfc79cad63933bcdd420d35a541ab,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Alnajar_Calibration-Free_Gaze_Estimation_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.24 +176bd61cc843d0ed6aa5af83c22e3feb13b89fe1,http://pdfs.semanticscholar.org/648b/f64ff77aeccf761b83dd85143a6eb832b258.pdf,,,http://www.ri.cmu.edu/pub_files/pub4/lucey_simon_2007_2/lucey_simon_2007_2.pdf +17768efd76a681902a33994da4d3163262bf657f,,,https://doi.org/10.1007/s12559-017-9472-6, +17d01f34dfe2136b404e8d7f59cebfb467b72b26,http://pdfs.semanticscholar.org/4cfb/51d3b8478d7e63ba2661385337abf94d2c48.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/icml2013_cheng13.pdf +176f26a6a8e04567ea71677b99e9818f8a8819d0,http://pdfs.semanticscholar.org/176f/26a6a8e04567ea71677b99e9818f8a8819d0.pdf,,https://doi.org/10.1007/978-3-319-23231-7_2,https://acceda.ulpgc.es/bitstream/10553/20097/5/C095-ICIAP15_preprint.pdf +17cf838720f7892dbe567129dcf3f7a982e0b56e,http://pdfs.semanticscholar.org/6e0a/a9926e484e08b31fdeb85b73d1ae65ba47d6.pdf,,,http://arxiv.org/pdf/1603.07235v1.pdf +176d9121e4e645344de4706dfb345ad456bfb84a,,,https://doi.org/10.1117/1.JEI.24.2.023009, +17035089959a14fe644ab1d3b160586c67327db2,http://pdfs.semanticscholar.org/1703/5089959a14fe644ab1d3b160586c67327db2.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Li_VLAD3_Encoding_Dynamics_CVPR_2016_paper.pdf +17370f848801871deeed22af152489e39b6e1454,http://mml.citi.sinica.edu.tw/papers/ICME_2015_Wei.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2015.7177451 +17fa1c2a24ba8f731c8b21f1244463bc4b465681,http://pdfs.semanticscholar.org/d5ba/a722b1bca1f95e4e1fad968b2b74ec1ecc7f.pdf,,,https://arxiv.org/pdf/1511.05440v4.pdf +179e566a2c1a2a48aa3d0028209c11ebe7d6740e,http://homepages.rpi.edu/~wuy9/EyeDetectionDBM/DeepFeaturesEyeDetection.pdf,,,https://www.ecse.rpi.edu/~cvrl/wuy/EyeDetectionDBM/DeepFeaturesEyeDetection.pdf +17579791ead67262fcfb62ed8765e115fb5eca6f,http://pdfs.semanticscholar.org/1757/9791ead67262fcfb62ed8765e115fb5eca6f.pdf,,,http://o9vkm05l0.bkt.clouddn.com/clothing_parsing_aaai17.pdf +17189cfedbdbd219849b8e7f8cf0293d49465f9c,,,,http://doi.acm.org/10.1145/2393347.2396505 +170aa0f16cd655fdd4d087f5e9c99518949a1b5c,,,https://doi.org/10.1007/s11263-007-0074-8, +1772a7614c9b7daf01ffcda499c901ab7c768c4a,,,, +177d1e7bbea4318d379f46d8d17720ecef3086ac,http://pdfs.semanticscholar.org/177d/1e7bbea4318d379f46d8d17720ecef3086ac.pdf,,,http://jmlr.csail.mit.edu/proceedings/papers/v44/chen15learning.pdf +179545c1fc645cb2ad9b31a30f48352d541876ff,,,https://doi.org/10.1109/IJCNN.2007.4371116, +17aa78bd4331ef490f24bdd4d4cd21d22a18c09c,http://pdfs.semanticscholar.org/17aa/78bd4331ef490f24bdd4d4cd21d22a18c09c.pdf,,,http://www.cs.toronto.edu/~ranzato/publications/le_app_icml2012.pdf +170a5f5da9ac9187f1c88f21a88d35db38b4111a,https://arxiv.org/pdf/1611.08563v3.pdf,,,http://arxiv.org/abs/1611.08563 +17de5a9ce09f4834629cd76b8526071a956c9c6d,,,https://doi.org/10.1007/978-3-319-68063-7_8, +176fc31a686fb70d73f1fa354bf043ad236f7aa3,http://www.cs.brown.edu/~black/Papers/ofevaltr.pdf,,https://doi.org/10.1007/s11263-010-0390-2,http://research.microsoft.com/pubs/117766/ofevaltr2.pdf +1742e6c347037d5d4ccbdf5c7a27dfbf0afedb91,http://www1.i2r.a-star.edu.sg/~htang/Unified_Framework_for_Subspace_Clustering-TNNLS.pdf,,https://doi.org/10.1109/TNNLS.2015.2490080,https://pdfs.semanticscholar.org/1742/e6c347037d5d4ccbdf5c7a27dfbf0afedb91.pdf +1742ffea0e1051b37f22773613f10f69d2e4ed2c,http://pdfs.semanticscholar.org/1742/ffea0e1051b37f22773613f10f69d2e4ed2c.pdf,,,https://www.thinkmind.org/download.php?articleid=intsys_v9_n12_2016_13 +1791f790b99471fc48b7e9ec361dc505955ea8b1,http://pdfs.semanticscholar.org/6fea/599d7b9fc72350d6e0947d3baaf44edc561b.pdf,,,http://www.dcs.gla.ac.uk/~tao/docs/jn_brmic.pdf +171d8a39b9e3d21231004f7008397d5056ff23af,http://openaccess.thecvf.com/content_cvpr_2017/papers/Wu_Simultaneous_Facial_Landmark_CVPR_2017_paper.pdf,,,https://arxiv.org/pdf/1709.08130v1.pdf +1723227710869a111079be7d61ae3df48604e653,,,https://doi.org/10.1109/INISTA.2014.6873606, +17045163860fc7c38a0f7d575f3e44aaa5fa40d7,http://pdfs.semanticscholar.org/38b9/57e2b5ec0ea852d22d1481ef924fbf7f72e2.pdf,,https://doi.org/10.1007/978-3-319-10578-9_43,http://pengxj.github.io/papers/PWQP_ECCV14_SHVLAD.pdf +176e5abddb87d029f85f60d1bbff67c66500e8c3,http://www.researchgate.net/profile/Tony_Han3/publication/220930104_Efficient_Facial_Attribute_Recognition_with_a_Spatial_Codebook/links/0046351affdf1f0d96000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.361 +174930cac7174257515a189cd3ecfdd80ee7dd54,https://arxiv.org/pdf/1502.02766v3.pdf,,,http://soc.fudan.edu.cn/vip/attachments/download/3892/ICMR-2015-Multi-view-Face-Detection-Using-Deep-Convolutional-Neural-Networks.pdf +17fad2cc826d2223e882c9fda0715fcd5475acf3,http://pdfs.semanticscholar.org/8f64/def1fe17e2711405d66898a578e3b20da29e.pdf,,,http://ivizlab.sfu.ca/arya/Papers/Others/Facial%20Expressions%20as%20Adaptations.pdf +17e563af203d469c456bb975f3f88a741e43fb71,https://cvhci.anthropomatik.kit.edu/~mhaurile/papers/WACV2016.pdf,,,https://cvhci.anthropomatik.kit.edu/~zalhalah/papers/wacv_2016_personid.pdf +171389529df11cc5a8b1fbbe659813f8c3be024d,http://pdfs.semanticscholar.org/1713/89529df11cc5a8b1fbbe659813f8c3be024d.pdf,,https://doi.org/10.1007/978-3-642-12307-8_4,http://vis.uky.edu/~gravity/publications/2009/accv_face.pdf +17d5e5c9a9ee4cf85dfbb9d9322968a6329c3735,http://pdfs.semanticscholar.org/17d5/e5c9a9ee4cf85dfbb9d9322968a6329c3735.pdf,,,http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS13/paper/download/5880/6121 +1750db78b7394b8fb6f6f949d68f7c24d28d934f,https://www3.nd.edu/~kwb/Bharati_Singh_Vatsa_Bowyer_TIFS_2016.pdf,,https://doi.org/10.1109/TIFS.2016.2561898, +17cf6195fd2dfa42670dc7ada476e67b381b8f69,http://pdfs.semanticscholar.org/17cf/6195fd2dfa42670dc7ada476e67b381b8f69.pdf,,,http://iristown.engr.utk.edu/publications/papers/2003/kim_avsbs03.pdf +174f46eccb5852c1f979d8c386e3805f7942bace,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Kae_The_Shape-Time_Random_2014_CVPR_paper.pdf,,,http://vis-www.cs.umass.edu/papers/strf_cvpr14.pdf +177d03c5851f7082cb023a20fa8a2cd1dfb59467,,,, +17501551acce05bfde4f0af77c21005f96e80553,,,, +17670b60dcfb5cbf8fdae0b266e18cf995f6014c,https://arxiv.org/pdf/1606.02254v1.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Duong_Longitudinal_Face_Modeling_CVPR_2016_paper.pdf +178b37392b2c6f1a167ebc1a5baa5f2f5916e4c4,,,https://doi.org/10.1007/s11042-013-1578-6, +17027a05c1414c9a06a1c5046899abf382a1142d,http://www.cs.cmu.edu/~rahuls/pub/cvpr2015-alionment-rahuls.pdf,,https://doi.org/10.1109/CVPR.2015.7298827,https://arxiv.org/pdf/1411.7883v3.pdf +17ded725602b4329b1c494bfa41527482bf83a6f,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf,,,http://arxiv.org/abs/1508.01292 +17738b0972571e7b4ae471d1b2dccea5ce057511,http://dayongwang.info/pdf/2011-MM.pdf,,,http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=3285&context=sis_research +17d03da4db3bb89537d644b682b2a091d563af4a,,,https://doi.org/10.1109/TNN.2010.2050600, +177bc509dd0c7b8d388bb47403f28d6228c14b5c,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Sun_Deep_Learning_Face_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.244 +7b1ca9a74ab7fbfc32a69e8313ca2f2d78ac6c35,,,,http://doi.ieeecomputersociety.org/10.1109/ICSC.2017.61 +7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889,http://pdfs.semanticscholar.org/c67c/5780cb9870b70b78e4c82da4f92c7bb2592d.pdf,,,https://arxiv.org/pdf/1606.07373v5.pdf +7bc1e7d000ab517161a83b1fedf353e619516ddf,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836068 +7b63ed54345d8c06523f6b03c41a09b5c8f227e2,http://research.iaun.ac.ir/pd/pourghassem/pdfs/PaperC_1187.pdf,,, +7bf0a1aa1d0228a51d24c0c3a83eceb937a6ae25,http://pdfs.semanticscholar.org/7bf0/a1aa1d0228a51d24c0c3a83eceb937a6ae25.pdf,,,http://vision.ucsd.edu/belongie-grp/research/carRec/dlagnekov_thesis_2005.pdf +7b618a699b79c1272f6c83101917ad021a58d96b,,,https://doi.org/10.1007/s11042-014-1986-2, +7b9961094d3e664fc76b12211f06e12c47a7e77d,http://pdfs.semanticscholar.org/7b99/61094d3e664fc76b12211f06e12c47a7e77d.pdf,,https://doi.org/10.1117/12.766810,http://www.ecs.syr.edu/research/dreamsnet/publications/C_SPIECA2008_EI118.pdf +7bfe085c10761f5b0cc7f907bdafe1ff577223e0,http://pdfs.semanticscholar.org/c32b/aaa307da7376bcb5dfef7bb985c06d032a0f.pdf,,https://doi.org/10.24963/ijcai.2017/337,http://static.ijcai.org/proceedings-2017/0337.pdf +7b43326477795a772c08aee750d3e433f00f20be,http://pdfs.semanticscholar.org/7b43/326477795a772c08aee750d3e433f00f20be.pdf,,,https://thesis.library.caltech.edu/10281/7/eyjolfsdottir_eyrun_2017.pdf +7b9b3794f79f87ca8a048d86954e0a72a5f97758,http://pdfs.semanticscholar.org/7b9b/3794f79f87ca8a048d86954e0a72a5f97758.pdf,,https://doi.org/10.1515/jisys-2014-0085,http://oak.conncoll.edu/james-lee/publication/jisys-2013-0016.pdf +7bce4f4e85a3bfcd6bfb3b173b2769b064fce0ed,http://pdfs.semanticscholar.org/7bce/4f4e85a3bfcd6bfb3b173b2769b064fce0ed.pdf,,https://doi.org/10.1007/978-3-642-24571-8_45,http://www.cris.ucr.edu/IGERT/papers/Cruz_Bhanu_Yang_2011.pdf +7be60f8c34a16f30735518d240a01972f3530e00,http://www.cs.utexas.edu/~suyog/expression_recog.pdf,,https://doi.org/10.1109/ICCVW.2011.6130446,https://www.cs.utexas.edu/~suyog/expression_recog.pdf +7bdcd85efd1e3ce14b7934ff642b76f017419751,http://www.cbsr.ia.ac.cn/users/zlei/papers/Lei-DFD-PAMI-14.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.112 +7bd37e6721d198c555bf41a2d633c4f0a5aeecc1,,,https://doi.org/10.1109/ACPR.2013.58, +7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21f,http://cvrr.ucsd.edu/publications/2012/Martin_AutoUI2012.pdf,,,http://doi.acm.org/10.1145/2390256.2390281 +7b455cbb320684f78cd8f2443f14ecf5f50426db,,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.33 +8f3e120b030e6c1d035cb7bd9c22f6cc75782025,http://pdfs.semanticscholar.org/8f3e/120b030e6c1d035cb7bd9c22f6cc75782025.pdf,,https://doi.org/10.1007/978-3-642-22152-1_14,http://www.eeecs.qub.ac.uk/~c.decampos/publist/papers/decampos2011f.pdf +8f3675e979629ca9cee9436d37763f546edb8d40,,,https://doi.org/10.1109/SIU.2017.7960446, +8fee7b38358815e443f8316fa18768d76dba12e3,,,,http://doi.acm.org/10.1145/2063576.2063676 +8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483,http://pdfs.semanticscholar.org/8fb6/11aca3bd8a3a0527ac0f38561a5a9a5b8483.pdf,,,http://eprints.soton.ac.uk/388765/1/eprint.pdf +8fa3478aaf8e1f94e849d7ffbd12146946badaba,http://pdfs.semanticscholar.org/8fa3/478aaf8e1f94e849d7ffbd12146946badaba.pdf,,https://doi.org/10.1007/978-3-642-33712-3_26,http://courses.cs.washington.edu/courses/cse590v/13au/ParkashParikh_ECCV_2012_attributes_feedback.pdf +8fe5feeaa72eddc62e7e65665c98e5cb0acffa87,,,https://doi.org/10.1007/s12193-015-0209-0, +8f8c0243816f16a21dea1c20b5c81bc223088594,http://pdfs.semanticscholar.org/8f8c/0243816f16a21dea1c20b5c81bc223088594.pdf,,,https://ijmter.com/papers/volume-2/issue-5/local-directional-number-based-classification-and-recognition-of-expre.pdf +8f08b2101d43b1c0829678d6a824f0f045d57da5,http://pdfs.semanticscholar.org/b93b/f0a7e449cfd0db91a83284d9eba25a6094d8.pdf,,,http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Antonakos_Active_Pictorial_Structures_2015_CVPR_supplemental.pdf +8f992ed6686710164005c20ab16cef6c6ad8d0ea,http://sist.sysu.edu.cn/~zhwshi/Research/PreprintVersion/Half-quadratic%20based%20Iterative%20Minimization%20for%20Robust%20Sparse%20Representation.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.102 +8ff1f263d91f192269f6f3b324bdb1d30761ae41,,,, +8fbec9105d346cd23d48536eb20c80b7c2bbbe30,http://conradsanderson.id.au/reading_group/Barr_Effectiveness_Face_WACV_2014.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6835992 +8f73af52d87c94d0bd43242462fd68d974eda331,,,https://doi.org/10.1109/ICB.2013.6613009, +8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09,http://pdfs.semanticscholar.org/8f3e/3f0f97844d3bfd9e9ec566ac7a54f6931b09.pdf,,,http://ddd.uab.cat/pub/elcvia/elcvia_a2015v14n2/elcvia_a2015v14n2p24.pdf +8f99f7ccb85af6d4b9e015a9b215c529126e7844,,,https://doi.org/10.1109/ROMAN.2017.8172359, +8f8a5be9dc16d73664285a29993af7dc6a598c83,http://pdfs.semanticscholar.org/8f8a/5be9dc16d73664285a29993af7dc6a598c83.pdf,,,http://paper.ijcsns.org/07_book/201101/20110110.pdf +8f5ce25e6e1047e1bf5b782d045e1dac29ca747e,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Kotsia07b.pdf,,https://doi.org/10.1109/TIFS.2007.902017,https://ibug.doc.ic.ac.uk/media/uploads/documents/ieee_tifs_2007_kotsia.pdf +8f89aed13cb3555b56fccd715753f9ea72f27f05,http://pdfs.semanticscholar.org/8f89/aed13cb3555b56fccd715753f9ea72f27f05.pdf,,,http://arxiv.org/abs/1711.08690 +8f92cccacf2c84f5d69db3597a7c2670d93be781,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2006/papers/1568982203.pdf,http://ieeexplore.ieee.org/document/7071605/,, +8f6263e4d3775757e804796e104631c7a2bb8679,http://pdfs.semanticscholar.org/8f62/63e4d3775757e804796e104631c7a2bb8679.pdf,,,https://icmlviz.github.io/icmlviz2016/assets/papers/7.pdf +8f9f599c05a844206b1bd4947d0524234940803d,http://pdfs.semanticscholar.org/8f9f/599c05a844206b1bd4947d0524234940803d.pdf,,,http://www.jdl.ac.cn/doc/2005/Efficient%203D%20Reconstruction%20for%20Face%20Recognition.pdf +8fcf7dfa30fa0c4194aef41c508a95d59be38f23,,,, +8f60c343f76913c509ce623467bf086935bcadac,http://pdfs.semanticscholar.org/8f60/c343f76913c509ce623467bf086935bcadac.pdf,,,https://arxiv.org/pdf/1803.07835v1.pdf +8f051647bd8d23482c6c3866c0ce1959b8bd40f6,,,https://doi.org/10.1016/j.asoc.2017.04.041, +8f713e3c5b6b166c213e00a3873f750fb5939c9a,,,https://doi.org/10.1109/EUSIPCO.2015.7362563, +8fd9c22b00bd8c0bcdbd182e17694046f245335f,http://pdfs.semanticscholar.org/8fd9/c22b00bd8c0bcdbd182e17694046f245335f.pdf,,,http://www.cim.mcgill.ca/~siddiqi/COMP-558-2012/subalazsi.pdf +8fc36452a49cb0fd43d986da56f84b375a05b4c1,,,,http://doi.acm.org/10.1145/2542355.2542388 +8f5facdc0a2a79283864aad03edc702e2a400346,http://pdfs.semanticscholar.org/8f5f/acdc0a2a79283864aad03edc702e2a400346.pdf,,,http://www.ijeit.com/Vol%204/Issue%207/IJEIT1412201501_14.pdf +8a09668efc95eafd6c3056ff1f0fbc43bb5774db,http://sist.sysu.edu.cn/~zhwshi/Research/PreprintVersion/Robust%20Principal%20Component%20Analysis%20Based%20on%20Maximum%20Correntropy%20Criterion.pdf,,https://doi.org/10.1109/TIP.2010.2103949,https://www.researchgate.net/profile/Bao-Gang_Hu/publication/49738766_Robust_Principal_Component_Analysis_Based_on_Maximum_Correntropy_Criterion/links/02bfe510b293206140000000.pdf?origin=publication_list +8a3c5507237957d013a0fe0f082cab7f757af6ee,http://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf,,https://doi.org/10.1007/978-3-319-10599-4_7,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8694/86940094.pdf +8af411697e73f6cfe691fe502d4bfb42510b4835,http://pdfs.semanticscholar.org/8af4/11697e73f6cfe691fe502d4bfb42510b4835.pdf,,,http://www.wseas.us/e-library/conferences/2014/Tenerife/INFORM/INFORM-20.pdf +8aff9c8a0e17be91f55328e5be5e94aea5227a35,,,https://doi.org/10.1109/TNNLS.2012.2191620, +8a1e95b82d8cf27e0034e127091396efd4c8bd9e,,,https://doi.org/10.1109/IGARSS.2016.7729015, +8a1ed5e23231e86216c9bdd62419c3b05f1e0b4d,http://pdfs.semanticscholar.org/8a1e/d5e23231e86216c9bdd62419c3b05f1e0b4d.pdf,,,http://cs231n.stanford.edu/reports/2016/pdfs/010_Report.pdf +8a12934c4cb793c6f1e40129f37847414c1cc5c0,,,, +8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,http://pdfs.semanticscholar.org/acf8/b9607ca39f20b9b1956b8761b37f14eb4284.pdf,,https://doi.org/10.1117/12.2082817,https://hal.archives-ouvertes.fr/hal-01149535/file/Mazza_HVEIXX.pdf +8a2210bedeb1468f223c08eea4ad15a48d3bc894,,,,http://doi.acm.org/10.1145/2513383.2513438 +8aae23847e1beb4a6d51881750ce36822ca7ed0b,http://pdfs.semanticscholar.org/8aae/23847e1beb4a6d51881750ce36822ca7ed0b.pdf,,,http://www.mic.atr.co.jp/~mlyons/pub_pdf/fg98-2.pdf +8a40b6c75dd6392ee0d3af73cdfc46f59337efa9,http://pdfs.semanticscholar.org/f656/f6682655180162b67042d9d37c4d57c49238.pdf,,https://doi.org/10.1142/S0218001499000495,http://research.microsoft.com/en-us/um/people/zhang/Papers/IJPRAI.pdf +8a3bb63925ac2cdf7f9ecf43f71d65e210416e17,https://www.math.uh.edu/~dlabate/ShearFace_ICPR2014.pdf,,https://doi.org/10.1109/ICPR.2014.317,http://www.math.uh.edu/~dlabate/ShearFace_ICPR2014.pdf +8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b,http://pdfs.semanticscholar.org/8ad0/d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b.pdf,,,https://arxiv.org/pdf/1803.09760v1.pdf +8adb2fcab20dab5232099becbd640e9c4b6a905a,http://pdfs.semanticscholar.org/d0d1/50a51c46cfb3bdd9d5fb570018c6534b57ff.pdf,,,http://www.merl.com/reports/TR98-08/TR98-08.ps.Z +8a2bedaa38abf173823944f0de2c84f5b2549609,,,https://doi.org/10.1109/TNNLS.2016.2573644, +8ab465c1a131ee4bee6ac0a0b19dfe68f5dcdcc4,,,,http://doi.ieeecomputersociety.org/10.1109/CSSE.2008.575 +8a0d10a7909b252d0e11bf32a7f9edd0c9a8030b,http://www.cs.unc.edu/~lazebnik/research/fall07/animals_on_the_web.pdf,,,http://pages.cs.wisc.edu/~lizhang/courses/cs766-2008f/syllabus/11-08-texts/animals_on_the_web.pdf +8a91ad8c46ca8f4310a442d99b98c80fb8f7625f,http://vislab.isr.ist.utl.pt/wp-content/uploads/2016/02/2015_TIP.pdf,,https://doi.org/10.1109/TIP.2015.2424311, +8aed6ec62cfccb4dba0c19ee000e6334ec585d70,http://pdfs.semanticscholar.org/8aed/6ec62cfccb4dba0c19ee000e6334ec585d70.pdf,,,http://web.cs.ucdavis.edu/~yjlee/projects/attribute_springer_book_preprint.pdf +8a336e9a4c42384d4c505c53fb8628a040f2468e,http://pdfs.semanticscholar.org/8a33/6e9a4c42384d4c505c53fb8628a040f2468e.pdf,,https://doi.org/10.1186/s13637-016-0048-7,https://bsb-eurasipjournals.springeropen.com/track/pdf/10.1186/s13637-016-0048-7?site=bsb-eurasipjournals.springeropen.com +7e1c419065fdb9cf2a31aa4b5d0c0e03f7afd54e,http://jpinfotech.org/wp-content/plugins/infotech/file/upload/pdf/8962Face-Sketch-Synthesis-via-Sparse-Representation-Based-Greedy-Search-pdf.pdf,,https://doi.org/10.1109/TIP.2015.2422578, +7e8016bef2c180238f00eecc6a50eac473f3f138,http://pdfs.semanticscholar.org/7e80/16bef2c180238f00eecc6a50eac473f3f138.pdf,,,http://mediatum.ub.tum.de/doc/1305094/381270.pdf +7ed2c84fdfc7d658968221d78e745dfd1def6332,http://pdfs.semanticscholar.org/7ed2/c84fdfc7d658968221d78e745dfd1def6332.pdf,,,http://www.researchgate.net/profile/Vasileios_Zografos/publication/228943637_Evaluation_of_linear_combination_of_views_for_object_recognition_on_real_and_synthetic_datasets/links/02e7e51aef954ebf9c000000.pdf +7ebfa8f1c92ac213ff35fa27287dee94ae5735a1,,,https://doi.org/10.1109/TMM.2016.2614429, +7e3367b9b97f291835cfd0385f45c75ff84f4dc5,https://infoscience.epfl.ch/record/182226/files/fg2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553773 +7e456e94f3080c761f858264428ee4c91cd187b2,,http://ieeexplore.ieee.org/document/6460899/,, +7e00fb79576fe213853aeea39a6bc51df9fdca16,http://www.ics.ele.tue.nl/~tbasten/papers/AVSS2015_final.pdf,,,http://www.es.ele.tue.nl/~sander/publications/avss15.pdf +7ee53d931668fbed1021839db4210a06e4f33190,http://crcv.ucf.edu/projects/videolocalization_images/CVPR16_Waqas_AL.pdf,,,http://crcv.ucf.edu/projects/videolocalization_images//CVPR16_Waqas_AL.pdf +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,http://pdfs.semanticscholar.org/7e18/b5f5b678aebc8df6246716bf63ea5d8d714e.pdf,,, +7e9df45ece7843fe050033c81014cc30b3a8903a,http://pdfs.semanticscholar.org/7e9d/f45ece7843fe050033c81014cc30b3a8903a.pdf,,,http://www.clsp.jhu.edu/ws2000/groups/av_speech/papers/icassp_pose.pdf +7ebd323ddfe3b6de8368c4682db6d0db7b70df62,http://pdfs.semanticscholar.org/7ebd/323ddfe3b6de8368c4682db6d0db7b70df62.pdf,,,http://avestia.com/CIST2015_Proceedings/papers/111.pdf +7eb85bcb372261bad707c05e496a09609e27fdb3,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W17/papers/Sathyanarayana_A_Compute-Efficient_Algorithm_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.101 +7ed5036a7c1eb2ea08fa2a12a446a9ccb6171c92,,,, +7e48711c627edf90e9b232f2cbc0e3576c8f2f2a,,,https://doi.org/10.1007/s11760-015-0777-1, +7ed6ff077422f156932fde320e6b3bd66f8ffbcb,http://pdfs.semanticscholar.org/7ed6/ff077422f156932fde320e6b3bd66f8ffbcb.pdf,,,http://i3dea.asu.edu/data/docs_pubs/ChapterV2_1.pdf +7e0c75ce731131e613544e1a85ae0f2c28ee4c1f,http://pdfs.semanticscholar.org/7e0c/75ce731131e613544e1a85ae0f2c28ee4c1f.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/kaltwang2015regression.pdf +7e5aa453a21f56737db5e02d540f1b70ee6634ad,,,, +7ed5af241061a6d88e0632a51a91d59627b00c34,,,, +7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,http://pdfs.semanticscholar.org/7e1e/a2679a110241ed0dd38ff45cd4dfeb7a8e83.pdf,,,https://www.ini.rub.de/upload/file/1488546854_195f616be695515b1579/Dissertation_Alberto_Escalante_2017.pdf +7e507370124a2ac66fb7a228d75be032ddd083cc,http://pdfs.semanticscholar.org/8992/4d7418df1380044af9ab706a019418952141.pdf,,,http://arxiv.org/abs/1607.06250 +1056347fc5e8cd86c875a2747b5f84fd570ba232,http://arxiv.org/pdf/1607.06408v1.pdf,,https://doi.org/10.1109/WACV.2017.28,https://arxiv.org/pdf/1607.06408v3.pdf +10550ee13855bd7403946032354b0cd92a10d0aa,http://www.public.asu.edu/~chaitali/confpapers/neuromorphic_dac12.pdf,,,http://doi.acm.org/10.1145/2228360.2228465 +10e12d11cb98ffa5ae82343f8904cfe321ae8004,http://pdfs.semanticscholar.org/10e1/2d11cb98ffa5ae82343f8904cfe321ae8004.pdf,,,http://ijcai.org/Abstract/15/502 +10e7dd3bbbfbc25661213155e0de1a9f043461a2,http://pdfs.semanticscholar.org/eb9c/24686d2d8a65894e6d708c6107724f2b6c04.pdf,,,http://arxiv.org/pdf/1608.04200v1.pdf +10e2f2ad1dedec6066e063cb2098b089b35905a8,,,,http://doi.acm.org/10.1145/3052930 +10a285260e822b49023c4324d0fbbca7df8e128b,https://staff.fnwi.uva.nl/m.jain/pub/jain-objects2action-iccv2015.pdf,,,https://staff.fnwi.uva.nl/t.e.j.mensink/zsl2016/zslpubs/jain15iccv.pdf +100105d6c97b23059f7aa70589ead2f61969fbc3,http://www.rci.rutgers.edu/~vmp93/Conference_pub/WACV2016_CFP.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477558 +10df1d4b278da991848fb71b572f687bd189c10e,,,https://doi.org/10.1109/ICPR.2016.7899739, +100da509d4fa74afc6e86a49352751d365fceee5,http://vision.ucsd.edu/sites/default/files/iccv2011_20q_parts_final.pdf,,,http://www.vision.caltech.edu/visipedia/papers/WahEtal11.pdf +10ab1b48b2a55ec9e2920a5397febd84906a7769,http://pdfs.semanticscholar.org/10ab/1b48b2a55ec9e2920a5397febd84906a7769.pdf,,,https://people.mpi-sws.org/~druschel/publications/ipic.pdf +104ee18b513b52386f871e959c1f9e5072604e93,,,https://doi.org/10.1109/GlobalSIP.2017.8309189, +10ce3a4724557d47df8f768670bfdd5cd5738f95,http://pdfs.semanticscholar.org/10ce/3a4724557d47df8f768670bfdd5cd5738f95.pdf,,https://doi.org/10.1007/3-540-45783-6_58,http://www.ri.cmu.edu/pub_files/pub3/gross_ralph_2002_2/gross_ralph_2002_2.ps.gz +100428708e4884300e4c1ac1f84cbb16e7644ccf,http://www.math.uh.edu/~dlabate/ICASSP_2014.pdf,,https://doi.org/10.1109/ICASSP.2014.6853649,https://www.math.uh.edu/~dlabate/ICASSP_2014.pdf +10f4bbf87a44bab3d79e330e486c897e95f5f33f,,,https://doi.org/10.1109/TIFS.2012.2186292, +102e374347698fe5404e1d83f441630b1abf62d9,https://infoscience.epfl.ch/record/209965/files/TBME-preprint-infoscience.pdf,,https://doi.org/10.1109/TBME.2015.2457032,http://infoscience.epfl.ch/record/209965/files/TBME-preprint-infoscience.pdf +1033ca56c7e88d8b3e80546848826f572c4cd63e,http://alumni.cs.ucsb.edu/~daniel/publications/conferences/fg11/DattaFerisVaqueroFG2011.pdf,,https://doi.org/10.1109/FG.2011.5771429,http://www.cs.ucsb.edu/~daniel/publications/conferences/fg11/DattaFerisVaqueroFG2011.pdf +10f17534dba06af1ddab96c4188a9c98a020a459,http://www.cs.umass.edu/~mccallum/papers/peoplelda-iccv07.pdf,,,http://vis-www.cs.umass.edu/papers/iccv07PeopleLDA.pdf +1071dde48a77f81c35ad5f0ca90a9daedb54e893,,http://ieeexplore.ieee.org/document/7881657/,, +10e0e6f1ec00b20bc78a5453a00c792f1334b016,http://pdfs.semanticscholar.org/672f/ae3da801b2a0d2bad65afdbbbf1b2320623e.pdf,,,http://arxiv.org/pdf/1609.07042v1.pdf +102b968d836177f9c436141e382915a4f8549276,https://ibug.doc.ic.ac.uk/media/uploads/documents/PanticEtAl-ACM-MM05-Proc.pdf,,,http://doi.acm.org/10.1145/1101149.1101299 +100641ed8a5472536dde53c1f50fa2dd2d4e9be9,https://filebox.ece.vt.edu/~parikh/Publications/Parikh_hum_mac_com_Allerton_2013.pdf,,https://doi.org/10.1109/Allerton.2013.6736651,https://www.cc.gatech.edu/~parikh/Publications/Parikh_hum_mac_com_Allerton_2013.pdf +10195a163ab6348eef37213a46f60a3d87f289c5,https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/156130/eth-50296-01.pdf,,https://doi.org/10.1007/s11263-016-0940-3,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf +10b06d05b8b3a2c925b951a6d1d5919f536ffed4,http://gamesstudio.org/chek/wp-content/uploads/2014/01/interactivity_befaced.pdf,,,http://doi.acm.org/10.1145/2559206.2574773 +10e704c82616fb5d9c48e0e68ee86d4f83789d96,http://pdfs.semanticscholar.org/10e7/04c82616fb5d9c48e0e68ee86d4f83789d96.pdf,,,http://www.ks.informatik.uni-kiel.de/~vok/research/report_ifi_fill.ps.gz +10f2b8188c745d43c1580f5ee6de71ad8d538b4d,http://staff.eng.bahcesehir.edu.tr/~cigdemeroglu/papers/international_conference_papers/2015_EmotiW.pdf,,,http://doi.acm.org/10.1145/2818346.2830594 +106732a010b1baf13c61d0994552aee8336f8c85,http://arxiv.org/pdf/1509.04186v2.pdf,,,http://arxiv.org/abs/1509.04186 +10e70a34d56258d10f468f8252a7762950830d2b,http://intechweb.org/downloadpdf.php?id=5889,,,http://doi.ieeecomputersociety.org/10.1109/CIS.2007.221 +102b27922e9bd56667303f986404f0e1243b68ab,https://applied-informatics-j.springeropen.com/track/pdf/10.1186/s40535-017-0042-5?site=applied-informatics-j.springeropen.com,,, +10fcbf30723033a5046db791fec2d3d286e34daa,http://pdfs.semanticscholar.org/10fc/bf30723033a5046db791fec2d3d286e34daa.pdf,,,https://core.ac.uk/download/pdf/11784553.pdf +108b2581e07c6b7ca235717c749d45a1fa15bb24,http://www.cs.umd.edu/~djacobs/pubs_files/TPAMI_Proofs.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.123 +10d334a98c1e2a9e96c6c3713aadd42a557abb8b,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Shi_Scene_Text_Recognition_2013_CVPR_paper.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989c961.pdf +1050cd9bf281d0b7367c03d931e6e0b4fc08ccd3,,,,http://doi.ieeecomputersociety.org/10.1109/SMARTCOMP.2014.7043872 +10f66f6550d74b817a3fdcef7fdeba13ccdba51c,http://pdfs.semanticscholar.org/10f6/6f6550d74b817a3fdcef7fdeba13ccdba51c.pdf,,,http://fipa.cs.kit.edu/download/bfa.pdf +107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53,http://pdfs.semanticscholar.org/65ef/8706ae8c4e22d491550f5fff052ca3f5db21.pdf,,https://doi.org/10.1007/978-3-319-46448-0_31,https://arxiv.org/pdf/1604.01753v3.pdf +1048c753e9488daa2441c50577fe5fdba5aa5d7c,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/473.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2008.4587813 +10ca2e03ff995023a701e6d8d128455c6e8db030,http://pdfs.semanticscholar.org/a941/e5f8778cbac75e21172985a0575b51ea819b.pdf,,https://doi.org/10.1007/978-3-319-54184-6_9,http://grail.cs.washington.edu/wp-content/uploads/2016/09/aneja2016msc.pdf +1921e0a97904bdf61e17a165ab159443414308ed,http://pdfs.semanticscholar.org/1921/e0a97904bdf61e17a165ab159443414308ed.pdf,,,http://aiweb.techfak.uni-bielefeld.de/files/Linke_WebImageRetrieval.pdf +19dd371e1649ab55a46f4b98890d6937a411ec5d,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2011_11_17_DagliC_HST_FP.pdf,,,http://www.ll.mit.edu/mission/communications/publications/publication-files/full_papers/2011_11_17_DagliC_HST_FP.pdf +19841b721bfe31899e238982a22257287b9be66a,http://pdfs.semanticscholar.org/1984/1b721bfe31899e238982a22257287b9be66a.pdf,,,https://openreview.net/pdf?id=HkwVAXyCW +19746957aa0d800d550da246a025ad44409cdb03,http://pdfs.semanticscholar.org/1974/6957aa0d800d550da246a025ad44409cdb03.pdf,,,https://www.jstage.jst.go.jp/article/mta/3/3/3_156/_pdf +1922ad4978ab92ce0d23acc4c7441a8812f157e5,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2015_alignment.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_060_ext.pdf +19e62a56b6772bbd37dfc6b8f948e260dbb474f5,http://pdfs.semanticscholar.org/19e6/2a56b6772bbd37dfc6b8f948e260dbb474f5.pdf,,,https://pdfs.semanticscholar.org/19e6/2a56b6772bbd37dfc6b8f948e260dbb474f5.pdf +192723085945c1d44bdd47e516c716169c06b7c0,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/VisionandAttentionTheoryBasedSampling14.pdf,,,http://www.cs.csub.edu/~acruz/papers/10.1109-TAFFC.2014.2316151.pdf +1943c6bf8df8a64bd539a5cd6d4e68785eb590c2,http://ccs.njit.edu/inst/source/02MDDM08.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICDEW.2007.4400982 +19fb5e5207b4a964e5ab50d421e2549ce472baa8,http://mmi.tudelft.nl/sites/default/files/e-FEDCompSys14final.pdf,,,http://doi.acm.org/10.1145/2659532.2659627 +1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2,http://www.es.ele.tue.nl/~sander/publications/icme16.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552914 +1962e4c9f60864b96c49d85eb897141486e9f6d1,http://www.patternrecognition.cn/~zhongjin/2011/2011Lai_NCP.pdf,,https://doi.org/10.1007/s00521-011-0577-7, +195df1106f4d7aff0e9cb609358abbf80f54a716,https://arxiv.org/pdf/1511.02917v1.pdf,,,http://arxiv.org/pdf/1511.02917v2.pdf +193debca0be1c38dabc42dc772513e6653fd91d8,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf,,,http://research.gold.ac.uk/18543/1/trigeorgis2016mnemonic%5B1%5D.pdf +191674c64f89c1b5cba19732869aa48c38698c84,http://pdfs.semanticscholar.org/1916/74c64f89c1b5cba19732869aa48c38698c84.pdf,,,http://www.ijates.com/images/short_pdf/1427398120_P166-174.pdf +190d8bd39c50b37b27b17ac1213e6dde105b21b8,https://dr.ntu.edu.sg/bitstream/handle/10220/18955/fp518-wang.pdf?isAllowed=y&sequence=1,,,http://gmp.sce.ntu.edu.sg/papers/sigir.pdf +19af008599fb17bbd9b12288c44f310881df951c,http://pdfs.semanticscholar.org/19af/008599fb17bbd9b12288c44f310881df951c.pdf,,,http://arxiv.org/pdf/1111.1947.pdf +19296e129c70b332a8c0a67af8990f2f4d4f44d1,http://lear.inrialpes.fr/pubs/2009/GVS09/supplmat.pdf,,https://doi.org/10.1109/ICCV.2009.5459197,http://lear.inrialpes.fr/pubs/2009/GVS09/GVS09.pdf +19666b9eefcbf764df7c1f5b6938031bcf777191,https://arxiv.org/pdf/1212.3913v4.pdf,,https://doi.org/10.1109/TNNLS.2015.2487364,https://arxiv.org/pdf/1212.3913v2.pdf +198b6beb53e0e61357825d57938719f614685f75,http://pdfs.semanticscholar.org/198b/6beb53e0e61357825d57938719f614685f75.pdf,,,http://www.cs.uccs.edu/~jkalita/work/reu/REU2011/FinalPapers/Wilber.pdf +1939168a275013d9bc1afaefc418684caf99ba66,http://research.microsoft.com/en-us/um/people/jiansun/papers/CVPR11_FaceAPModel.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995494 +190b3caa2e1a229aa68fd6b1a360afba6f50fde4,http://pdfs.semanticscholar.org/190b/3caa2e1a229aa68fd6b1a360afba6f50fde4.pdf,,https://doi.org/10.1016/j.cviu.2017.10.011,http://arxiv.org/pdf/1607.01794v1.pdf +19e0cc41b9f89492b6b8c2a8a58d01b8242ce00b,http://pdfs.semanticscholar.org/4088/3844c1ceab95cb92498a92bfdf45beaa288e.pdf,,,http://arxiv.org/abs/1709.02848 +19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54,http://cvrr.ucsd.edu/publications/2006/McCallTrivedi_v4hci_cvpr2006.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2006.77 +1938d85feafdaa8a65cb9c379c9a81a0b0dcd3c4,http://www4.comp.polyu.edu.hk/~cslzhang/paper/MBC_TIFS_final.pdf,,https://doi.org/10.1109/TIFS.2012.2217332, +1966bddc083886a9b547e1817fe6abc352a00ec3,,,,http://doi.acm.org/10.1145/2733373.2806312 +195d331c958f2da3431f37a344559f9bce09c0f7,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_066_ext.pdf,,,https://arxiv.org/pdf/1412.1526v1.pdf +199c2df5f2847f685796c2523221c6436f022464,https://static.aminer.org/pdf/PDF/000/322/051/self_quotient_image_for_face_recognition.pdf,,https://doi.org/10.1109/ICIP.2004.1419763, +19c0069f075b5b2d8ac48ad28a7409179bd08b86,http://people.csail.mit.edu/torralba/publications/iccv2013_khosla.pdf,,,https://people.csail.mit.edu/khosla/papers/iccv2013_khosla.pdf +19705579b8e7d955092ef54a22f95f557a455338,,,https://doi.org/10.1109/ICIP.2014.7025277, +19c0c7835dba1a319b59359adaa738f0410263e8,http://www.svcl.ucsd.edu/publications/journal/2009/pami09-fs.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.77 +1979e270093b343d62e97816eeed956062e155a0,,,https://doi.org/10.1016/j.micpro.2005.07.003, +19808134b780b342e21f54b60095b181dfc7a600,http://www.openu.ac.il/home/hassner/projects/siftscales/HassneretalTPAMI16.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2592916 +19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9,https://arxiv.org/pdf/1503.03832v2.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1A_089_ext.pdf +194f5d3c240d06575403c9a422a0ebc86d43b91e,,,https://doi.org/10.1007/s11042-015-2580-y, +197efbef17f92e5cb5076961b6cd9f59e88ffd9a,,,https://doi.org/10.1109/ICMLA.2017.00-59, +19bbecead81e34b94111a2f584cf55db9a80e60c,,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248025 +19a9f658ea14701502d169dc086651b1d9b2a8ea,http://www.cbsr.ia.ac.cn/users/zlei/papers/JJYan-FG2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553703 +195b61470720c7faa523e10e68d0c8d8f27d7c7a,,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995618 +19d4855f064f0d53cb851e9342025bd8503922e2,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d468.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Li_Learning_SURF_Cascade_2013_CVPR_paper.pdf +19d3b02185ad36fb0b792f2a15a027c58ac91e8e,http://pdfs.semanticscholar.org/19d3/b02185ad36fb0b792f2a15a027c58ac91e8e.pdf,,,http://www.cs.sunysb.edu/~vordonezroma/generation_nips2011.pdf +193ec7bb21321fcf43bbe42233aed06dbdecbc5c,http://pdfs.semanticscholar.org/d40e/f2ca85d8b7540948677c2ed07f1f3677cfdd.pdf,,https://doi.org/10.1007/11564386_23,http://ilab.cs.ucsb.edu/projects/ya/AMFG_turk.pdf +19da9f3532c2e525bf92668198b8afec14f9efea,http://pdfs.semanticscholar.org/19da/9f3532c2e525bf92668198b8afec14f9efea.pdf,,,http://face.cs.kit.edu/download/BeFIT_Face_verification_across_age_progression_using_real-world_datachallenge_overview.pdf +1902288256839539aeb5feb3e1699b963a15aa1a,,,https://doi.org/10.1109/IJCNN.2016.7727435, +19868a469dc25ee0db00947e06c804b88ea94fd0,http://pdfs.semanticscholar.org/1986/8a469dc25ee0db00947e06c804b88ea94fd0.pdf,,,http://web.ics.purdue.edu/~wang868/aaai2015_235_Wang.pdf +192235f5a9e4c9d6a28ec0d333e36f294b32f764,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf,,,https://arxiv.org/pdf/1705.04352v2.pdf +197eaa59a003a4c7cc77c1abe0f99d942f716942,http://www.lv-nus.org/papers%5C2009%5C2009_mm_age.pdf,,,https://pdfs.semanticscholar.org/197e/aa59a003a4c7cc77c1abe0f99d942f716942.pdf +19c82eacd77b35f57ac8815b979716e08e3339ca,,,,http://doi.ieeecomputersociety.org/10.1109/ICITCS.2015.7292981 +19878141fbb3117d411599b1a74a44fc3daf296d,http://pdfs.semanticscholar.org/1987/8141fbb3117d411599b1a74a44fc3daf296d.pdf,,https://doi.org/10.1007/3-540-40063-X_19,http://www.ri.cmu.edu/pub_files/pub4/tian_ying_li_2000_1/tian_ying_li_2000_1.pdf +19f076998ba757602c8fec04ce6a4ca674de0e25,http://pdfs.semanticscholar.org/19f0/76998ba757602c8fec04ce6a4ca674de0e25.pdf,,,http://journals.tubitak.gov.tr/elektrik/issues/elk-16-24-1/elk-24-1-17-1304-139.pdf +191d30e7e7360d565b0c1e2814b5bcbd86a11d41,http://homepages.rpi.edu/~wuy9/DiscriminativeDeepFaceShape/DiscriminativeDeepFaceShape_IJCV.pdf,,https://doi.org/10.1007/s11263-014-0775-8,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Wu2014.pdf +19994e667d908bc0aacfb663ab0a2bb5ad16b221,http://pdfs.semanticscholar.org/65b1/70e5ec86f5fc500fd5cbd7bfe7b2ec4ef045.pdf,,https://doi.org/10.1007/978-3-319-10578-9_44,http://www.ee.columbia.edu/ln/dvmm/publications/14/key_dynamic_static_evidence.pdf +19eb486dcfa1963c6404a9f146c378fc7ae3a1df,https://pdfs.semanticscholar.org/3b4d/bd7be0b5b0df2e0c61a977974b1fc78ad3e5.pdf,,,https://scl.ece.ucsb.edu/sites/scl.ece.ucsb.edu/files/publications/b05_1_1.pdf +191b70fdd6678ef9a00fd63710c70b022d075362,,,https://doi.org/10.1109/ICIP.2003.1247347, +4c6daffd092d02574efbf746d086e6dc0d3b1e91,http://pdfs.semanticscholar.org/4c6d/affd092d02574efbf746d086e6dc0d3b1e91.pdf,,,http://www.cs.cmu.edu/~lujiang/camera_ready_papers/informedia_MED14.pdf +4cf68a0b1a3f49393a8c11f3a18cccc7912b8424,,,, +4c141534210df53e58352f30bab558a077fec3c6,,,https://doi.org/10.1109/TMM.2016.2557722, +4cb8a691a15e050756640c0a35880cdd418e2b87,http://www.vision.caltech.edu/~bart/Publications/2004/BartUllmanClassBasedMatching.pdf,,https://doi.org/10.1109/CVPR.2004.312, +4c19690889fb3a12ec03e65bae6f5f20420b4ba4,,,https://doi.org/10.1049/iet-ipr.2015.0699, +4c8581246ed4d90c942a23ed7c0e007221fa684d,http://welcome.isr.ist.utl.pt/img/pdfs/3439_14-ICIPb.pdf,,https://doi.org/10.1109/ICIP.2014.7026226,http://welcome.isr.tecnico.ulisboa.pt/wp-content/uploads/2015/05/3439_14-ICIPb.pdf +4ca1fcfd7650eeb0ac8d51cff31b70717cdddfdd,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1563.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206612 +4cc681239c8fda3fb04ba7ac6a1b9d85b68af31d,http://pdfs.semanticscholar.org/56a6/77c889e0e2c9f68ab8ca42a7e63acf986229.pdf,,,https://escholarship.org/content/qt9gp7w2h3/qt9gp7w2h3.pdf +4c6e1840451e1f86af3ef1cb551259cb259493ba,http://pdfs.semanticscholar.org/4c6e/1840451e1f86af3ef1cb551259cb259493ba.pdf,,,http://mozart.dis.ulpgc.es/Gias/Publications/luis-datasetCreation-2006.pdf +4c6886c489e93ccab5a1124555a6f3e5b0104464,,,https://doi.org/10.1109/ICIP.2017.8296921, +4cf3419dbf83a76ccac11828ca57b46bbbe54e0a,https://www.researchgate.net/profile/Muhammad_Sharif9/publication/224173583_Illumination_normalization_preprocessing_for_face_recognition/links/02e7e51a47972ae996000000.pdf,,, +4c87aafa779747828054cffee3125fcea332364d,http://pdfs.semanticscholar.org/4c87/aafa779747828054cffee3125fcea332364d.pdf,,https://doi.org/10.1007/978-3-319-14364-4_28,https://teresaproject.eu/wp-content/uploads/2015/07/isvc_submission_final.pdf +4c648fe9b7bfd25236164333beb51ed364a73253,,,,http://doi.acm.org/10.1145/3038924 +4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56,https://arxiv.org/pdf/1612.00523v1.pdf,,,http://arxiv.org/abs/1612.00523 +4c8e5fc0877d066516bb63e6c31eb1b8b5f967eb,http://pdfs.semanticscholar.org/4c8e/5fc0877d066516bb63e6c31eb1b8b5f967eb.pdf,,,http://people.cs.pitt.edu/~kovashka/modi_kovashka_bmvc2017.pdf +4cb0e0c0e9b92e457f2c546dc25b9a4ff87ff819,http://dayongwang.info/pdf/2012-CIKM.pdf,,,http://www.researchgate.net/profile/Dayong_Wang2/publication/262291079_A_unified_learning_framework_for_auto_face_annotation_by_mining_web_facial_images/links/564cf1fd08ae4988a7a410e8.pdf?origin=publication_list +4c8ef4f98c6c8d340b011cfa0bb65a9377107970,http://pdfs.semanticscholar.org/4c8e/f4f98c6c8d340b011cfa0bb65a9377107970.pdf,,https://doi.org/10.1007/978-3-319-58838-4_52,http://arxiv.org/abs/1703.09933 +4c822785c29ceaf67a0de9c699716c94fefbd37d,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhu_A_Key_Volume_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.219 +4c0846bcfa64d9e810802c5b7ef0f8b43523fe54,,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2324594 +4c815f367213cc0fb8c61773cd04a5ca8be2c959,http://mirlab.org/conference_papers/International_Conference/ICASSP%202010/pdfs/0002470.pdf,,https://doi.org/10.1109/ICASSP.2010.5494892,https://www.researchgate.net/profile/Q_M_Jonathan_Wu/publication/224149596_Facial_expression_recognition_using_curvelet_based_local_binary_patterns/links/0046351f53b05566bc000000.pdf +4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,,,https://doi.org/10.1109/TIP.2014.2387379, +4c1528bab3142ec957700ab502531e1a67e7f2f6,http://www.researchgate.net/profile/Xiaohua_Xie/publication/220932399_Restoration_of_a_Frontal_Illuminated_Face_Image_Based_on_KPCA/links/00b49522adfc6b1435000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.527 +4cec3e5776090852bef015a8bbe74fed862aa2dd,,,https://doi.org/10.1109/TSP.2013.2271479, +4c6233765b5f83333f6c675d3389bbbf503805e3,https://perceptual.mpi-inf.mpg.de/files/2015/03/Yan_Vis13.pdf,,https://doi.org/10.1109/ICB.2013.6612972,http://perceptual.mpi-inf.mpg.de/files/2015/03/Yan_Vis13.pdf +4c078c2919c7bdc26ca2238fa1a79e0331898b56,http://pdfs.semanticscholar.org/4c07/8c2919c7bdc26ca2238fa1a79e0331898b56.pdf,,,http://arxiv.org/pdf/1507.03409v1.pdf +4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,https://arxiv.org/pdf/1611.09956v1.pdf,,,http://arxiv.org/abs/1611.09956 +4cac9eda716a0addb73bd7ffea2a5fb0e6ec2367,http://pdfs.semanticscholar.org/4cac/9eda716a0addb73bd7ffea2a5fb0e6ec2367.pdf,,,https://arxiv.org/pdf/1804.01429v1.pdf +4c4236b62302957052f1bbfbd34dbf71ac1650ec,http://www.eurecom.fr/en/publication/3397/download/mm-publi-3397.pdf,,https://doi.org/10.1109/ICIP.2011.6116305,http://www.researchgate.net/profile/Nicholas_Evans3/publication/221125181_Semi-supervised_face_recognition_with_LDA_self-training/links/0deec51d2c4d78e47e000000.pdf +4cd0da974af9356027a31b8485a34a24b57b8b90,https://arxiv.org/pdf/1703.00862v2.pdf,,,https://www.adrianbulat.com/downloads/BinaryHumanPose/binarized_cnn_keypoints.pdf +4cb31f16e94067ce5eaeb8eae00eb0b0d49d46b2,,,, +4c170a0dcc8de75587dae21ca508dab2f9343974,http://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf,,https://doi.org/10.1007/978-3-540-88693-8_25,http://www.cs.columbia.edu/~belhumeur/conference/eccv08a.pdf +4c81c76f799c48c33bb63b9369d013f51eaf5ada,https://www.cmpe.boun.edu.tr/~salah/kaya17chalearn.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w26/papers/Kaya_Multi-Modal_Score_Fusion_CVPR_2017_paper.pdf +4c1ce6bced30f5114f135cacf1a37b69bb709ea1,http://imag.pub.ro/common/staff/cflorea/papers/nlp_eye_MVA_site.pdf,,https://doi.org/10.1007/s00138-014-0656-8, +4c5b38ac5d60ab0272145a5a4d50872c7b89fe1b,https://opus.lib.uts.edu.au/bitstream/10453/43339/1/APSIPA_ASC_2015_submission_313.pdf,,https://doi.org/10.1109/APSIPA.2015.7415453, +4c523db33c56759255b2c58c024eb6112542014e,http://www0.cs.ucl.ac.uk/staff/P.Li/publication/ICCV09JaniaAghajanian.pdf,,https://doi.org/10.1109/ICCV.2009.5459352,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/ICCVCameraReadyVersion12.pdf +4c842fbd4c032dd4d931eb6ff1eaa2a13450b7af,,,https://doi.org/10.1016/j.imavis.2014.06.004, +261c3e30bae8b8bdc83541ffa9331b52fcf015e6,http://pdfs.semanticscholar.org/a751/04bc7dbaaf549d89f163560525031b49df38.pdf,,https://doi.org/10.5244/C.23.22,http://www.bmva.org/bmvc/2009/Papers/Paper097/Paper097.pdf +26f03693c50eb50a42c9117f107af488865f3dc1,http://pdfs.semanticscholar.org/26f0/3693c50eb50a42c9117f107af488865f3dc1.pdf,,https://doi.org/10.1016/S0031-3203(00)00031-5,http://doi.ieeecomputersociety.org/10.1109/ICPR.2000.906203 +2661f38aaa0ceb424c70a6258f7695c28b97238a,http://mplab.ucsd.edu/wordpress/wp-content/uploads/multilayer2012.pdf,,https://doi.org/10.1109/TSMCB.2012.2195170,http://mplab.ucsd.edu/~marni/pubs/Wu_fera_smc_2011.pdf +2609079d682998da2bc4315b55a29bafe4df414e,http://www.iab-rubric.org/papers/ICIP-13-camready.pdf,,https://doi.org/10.1109/ICIP.2013.6738616, +264a84f4d27cd4bca94270620907cffcb889075c,https://arxiv.org/pdf/1612.06615v1.pdf,,https://doi.org/10.1109/ICPR.2016.7899807,http://arxiv.org/abs/1612.06615 +268c4bb54902433bf00d11391178a162e5d674c9,,,https://doi.org/10.1109/CVPRW.2010.5543261, +26d407b911d1234e8e3601e586b49316f0818c95,https://arxiv.org/pdf/1709.00965v1.pdf,,https://doi.org/10.1109/ISMAR-Adjunct.2017.29,http://arxiv.org/abs/1709.00965 +261a80216dda39b127d2b7497c068ec7e0fdf183,,,https://doi.org/10.1109/TCSVT.2013.2265571, +266ee26a6115f1521ce374e4ab106d997c7b1407,,,, +26ebe98753acec806b7281d085110c06d9cd1e16,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.22 +26973cf1552250f402c82e9a4445f03fe6757b58,,,,http://doi.acm.org/10.1145/3126686.3130239 +26a72e9dd444d2861298d9df9df9f7d147186bcd,https://engineering.purdue.edu/~qobi/papers/mvap2016.pdf,,https://doi.org/10.1007/s00138-016-0768-4,http://arxiv.org/pdf/1511.05914v1.pdf +26433d86b9c215b5a6871c70197ff4081d63054a,https://www.researchgate.net/profile/WL_Woo/publication/221093080_Multimodal_biometric_fusion_at_feature_level_Face_and_palmprint/links/0fcfd5134b4f62c892000000.pdf,http://ieeexplore.ieee.org/document/5580324/,,http://www.researchgate.net/profile/WL_Woo/publication/221093080_Multimodal_biometric_fusion_at_feature_level_Face_and_palmprint/links/0fcfd5134b4f62c892000000.pdf +2601b679fdd637f3cd978753ae2f15e8759dd267,,,https://doi.org/10.1109/ICIP.2015.7351306, +26fcefb80af66391e07e6239933de943c1cddc6e,,,, +265af79627a3d7ccf64e9fe51c10e5268fee2aae,http://media.cs.tsinghua.edu.cn/~cvg/publications/ENGLISH%20JOURNAL%20PAPERS/A%20Mixture%20of%20Transformed%20Hidden%20Markov%20Models%20for%20Elastic%20Motion%20Estimation.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.111 +262cdbc57ecf5c18756046c0d8b9aa7eb10e3b19,,,,http://dl.acm.org/citation.cfm?id=3007694 +26b606ac6beb2977a7853b032416c23c7b36cb8a,,,, +267c6e8af71bab68547d17966adfaab3b4711e6b,http://pdfs.semanticscholar.org/3097/60122ce6215876c013b2b0211f1df8239df5.pdf,,,https://export.arxiv.org/pdf/1711.03273 +26af867977f90342c9648ccf7e30f94470d40a73,http://pdfs.semanticscholar.org/26af/867977f90342c9648ccf7e30f94470d40a73.pdf,,,http://www.ijirst.org/articles/IJIRSTV3I4002.pdf +26a89701f4d41806ce8dbc8ca00d901b68442d45,http://pdfs.semanticscholar.org/b7d8/fea52643236bd9b0dd7eec5f1cde248d10f6.pdf,,https://doi.org/10.1016/S0031-3203(03)00057-8,http://chenlab.ece.cornell.edu/Publication/Xiaoming/pr2002_xiaoming.pdf +26c884829897b3035702800937d4d15fef7010e4,http://pdfs.semanticscholar.org/9200/10cc55d2658e04b01783118b59b7d90420c6.pdf,,https://doi.org/10.1093/ietisy/e91-d.2.341,https://www.researchgate.net/profile/Fan_Chen4/publication/235748000_Kotani_K._Facial_expression_recognition_by_supervised_independent_component_analysis_using_MAP_estimation._IEICE_Trans._Inf._Syst._E91-D(2)_341-350/links/0fcfd5109f01e01679000000.pdf +266ed43dcea2e7db9f968b164ca08897539ca8dd,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Duong_Beyond_Principal_Components_2015_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_037.pdf +26c7eda262dfda1c3a3597a3bf1f2f1cc4013425,,,, +26ad6ceb07a1dc265d405e47a36570cb69b2ace6,http://pdfs.semanticscholar.org/26ad/6ceb07a1dc265d405e47a36570cb69b2ace6.pdf,,,http://www.dtic.mil/dtic/tr/fulltext/u2/1017882.pdf +26ec75b8ad066b36f814379a79ad57089c82c079,http://www.seas.upenn.edu/~bensapp/papers/ambig-tech-report-2009.pdf,,,https://pdfs.semanticscholar.org/8933/c8d7d0edbef90597b4555aa5e9569e66ae2c.pdf +26b9d546a4e64c1d759c67cd134120f98a43c2a6,,,https://doi.org/10.1109/ICMLA.2012.120, +2642810e6c74d900f653f9a800c0e6a14ca2e1c7,http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_Projection_Bank_From_ICCV_2015_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Liu_Projection_Bank_From_ICCV_2015_paper.pdf +26947c3ead54e571286fdea25f1fc4d121817850,,,, +26bbe76d1ae9e05da75b0507510b92e7e6308c73,,,https://doi.org/10.1007/s00371-014-1049-8, +26949c1ba7f55f0c389000aa234238bf01a32d3b,,,https://doi.org/10.1109/ICIP.2017.8296814, +26437fb289cd7caeb3834361f0cc933a02267766,http://pdfs.semanticscholar.org/2643/7fb289cd7caeb3834361f0cc933a02267766.pdf,,,http://ipedr.com/vol37/030-ICMEI2012-E00070.pdf +26a5136ee4502500fb50cd5ade814aad45422771,,,https://doi.org/10.1142/S0218001413560028, +2654ef92491cebeef0997fd4b599ac903e48d07a,http://www.ee.oulu.fi/~gyzhao/Papers/2008/Facial%20Expression%20Recognition%20from%20Near-Infrared%20Video%20Sequences.pdf,,https://doi.org/10.1109/ICPR.2008.4761697,http://figment.cse.usf.edu/~sfefilat/data/papers/TuCT6.3.pdf +2679e4f84c5e773cae31cef158eb358af475e22f,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Liu_Adaptive_Deep_Metric_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.79 +265e76285e18587065a1e28246971f003c5267f3,http://cortex.informatik.tu-ilmenau.de/~wilhelm/wilhelm-soave-2004a.pdf,,https://doi.org/10.1109/ICSMC.2004.1400655,http://www.tu-ilmenau.de/fakia/fileadmin/template/startIA/neuroinformatik/misc/soave2004/Wilhelm-SOAVE-04a.pdf +26727dc7347e3338d22e8cf6092e3a3c7568d763,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163088 +26ac607a101492bc86fd81a141311066cfe9e2b5,http://www.eecs.qmul.ac.uk/~hy300/papers/YangPatrasiccv2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.243 +21ef129c063bad970b309a24a6a18cbcdfb3aff5,http://pdfs.semanticscholar.org/21ef/129c063bad970b309a24a6a18cbcdfb3aff5.pdf,,,https://infoscience.epfl.ch/record/216839/files/EPFL_TH6837.pdf +218b2c5c9d011eb4432be4728b54e39f366354c1,http://infolab.stanford.edu/~wangz/project/imsearch/ALIP/TIP13/sawant.pdf,,https://doi.org/10.1109/TIP.2013.2262289, +217a21d60bb777d15cd9328970cab563d70b5d23,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf,,,http://dahua.me/papers/dhlin_iccv13_hfa.pdf +21e828071249d25e2edaca0596e27dcd63237346,http://research.microsoft.com/pubs/122158/cvpr2010.pdf,,,http://research.microsoft.com/en-us/um/people/jiansun/papers/cvpr10_facesearch.pdf +21a2f67b21905ff6e0afa762937427e92dc5aa0b,http://pdfs.semanticscholar.org/21a2/f67b21905ff6e0afa762937427e92dc5aa0b.pdf,,https://doi.org/10.1155/2017/8710492, +2179afa1cb4bd6d6ff0ca8df580ae511f59d99a3,http://pdfs.semanticscholar.org/f9f4/9f8347db35e721672955c3e24f60574553c0.pdf,,,http://www.aprs.org.au/dicta2003/pdf/0899.pdf +2162654cb02bcd10794ae7e7d610c011ce0fb51b,http://www.jdl.ac.cn/doc/2011/201511610103648366_%E5%88%98%E8%B4%A4%E6%98%8E.pdf,,https://doi.org/10.1109/ICIP.2014.7025952, +21258aa3c48437a2831191b71cd069c05fb84cf7,http://pdfs.semanticscholar.org/2125/8aa3c48437a2831191b71cd069c05fb84cf7.pdf,,https://doi.org/10.1007/978-3-642-33765-9_46,http://www.cise.ufl.edu/~mliu/ECCV12_RegularizedMetricLearning_Liu.pdf +211c42a567e02987a6f89b89527de3bf4d2e9f90,http://www.cs.dartmouth.edu/~dutran/papers/ijcv16_preprint.pdf,,https://doi.org/10.1007/s11263-016-0905-6, +21f3c5b173503185c1e02a3eb4e76e13d7e9c5bc,http://pdfs.semanticscholar.org/21f3/c5b173503185c1e02a3eb4e76e13d7e9c5bc.pdf,,,http://dspace.mit.edu/bitstream/handle/1721.1/7171/AIM-2001-010.pdf?sequence=2 +21bd9374c211749104232db33f0f71eab4df35d5,http://www.eurecom.fr/en/publication/5184/download/sec-publi-5184.pdf,,https://doi.org/10.1109/IWBF.2017.7935101, +2138ccf78dcf428c22951cc066a11ba397f6fcef,,,https://doi.org/10.1109/BHI.2012.6211519, +214db8a5872f7be48cdb8876e0233efecdcb6061,http://users.eecs.northwestern.edu/~mya671/mypapers/ICCV13_Zhang_Yang_Wang_Lin_Tian.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Semantic-Aware_Co-indexing_for_2013_ICCV_paper.pdf +21104bcf07ef0269ab133471a3200b9bf94b2948,http://www.cs.utexas.edu/~grauman/papers/liang-cvpr2014.pdf,,,http://vision.cs.utexas.edu/projects/beyondpairs/liang-cvpr2014-poster.pdf +21bd60919e2e182a29af455353141ba4907b1b41,,,https://doi.org/10.1109/ACCESS.2018.2798573, +21d9d0deed16f0ad62a4865e9acf0686f4f15492,http://amp.ece.cmu.edu/people/Andy/Andy_files/cvpr09.pdf,,,http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf +21cbf46c6adfb3a44ed2b30ff0b21a8391c18b13,,,https://doi.org/10.1109/VCIP.2017.8305137, +214ac8196d8061981bef271b37a279526aab5024,http://pdfs.semanticscholar.org/214a/c8196d8061981bef271b37a279526aab5024.pdf,,https://doi.org/10.1007/978-3-319-19665-7_44,https://users.aalto.fi/~kannalj1/publications/scia2015.pdf +213a579af9e4f57f071b884aa872651372b661fd,http://www.robots.ox.ac.uk/~vgg/publications/2013/Charles13a/charles13a.pdf,,https://doi.org/10.1007/s11263-013-0672-6,http://tomas.pfister.fi/files/charles13ijcv.pdf +21f5f65e832c5472d6d08f6ee280d65ff0202e29,,,https://doi.org/10.1007/978-3-319-70353-4_44, +21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1,http://www.eecs.qmul.ac.uk/~jason/Research/PreprintVersion/Transductive%20VIS-NIR%20Face%20Matching.pdf,,https://doi.org/10.1109/ICIP.2012.6467140, +21ec41a6ee3c655cf54c6db659d56480fc76e742,http://www.liacs.nl/home/mlew/ivc2007.emotion.pdf,,https://doi.org/10.1016/j.imavis.2005.12.021,http://carol.wins.uva.nl/~nicu/publications/FG04.pdf +217de4ff802d4904d3f90d2e24a29371307942fe,http://www.cs.columbia.edu/~tberg/papers/poof-cvpr13.pdf,,,http://thomasberg.org/papers/poof-cvpr13.pdf +218139e5262cb4f012cd2e119074aa59b89ebc32,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.265 +217aa3aa0b3d9f6f394b5d26f03418187d775596,,,,http://doi.acm.org/10.1145/3123266.3123298 +2182ca35e1a5b3cff9c5ce5308f5d0d12e4f911a,,,, +210b98394c3be96e7fd75d3eb11a391da1b3a6ca,http://pdfs.semanticscholar.org/210b/98394c3be96e7fd75d3eb11a391da1b3a6ca.pdf,,https://doi.org/10.1007/978-3-319-16814-2_41,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/80.pdf +21765df4c0224afcc25eb780bef654cbe6f0bc3a,http://ci2cv.net/media/papers/2013_ICCV_Kiani.pdf,,,http://ci2cv.net/static/papers/2013_ICCV_Kiani.pdf +21b16df93f0fab4864816f35ccb3207778a51952,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2015/06.18.19.06/doc/PID3766353.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2015.26 +2116b13eb3af418ef02502715e8f3c98664e699a,,,, +218ce079b9e64288faf20a87043dc32884105102,,,, +2149d49c84a83848d6051867290d9c8bfcef0edb,,,https://doi.org/10.1109/TIFS.2017.2746062, +4d83a25931ff8f73130a4d07e0209fcb3191db4b,,,, +4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27,http://pdfs.semanticscholar.org/4d49/c6cff198cccb21f4fa35fd75cbe99cfcbf27.pdf,,,http://www.cvc.uab.es/~jordi/pub/TPCA_DEFINITIU.pdf +4d625677469be99e0a765a750f88cfb85c522cce,http://pdfs.semanticscholar.org/cccc/378e98218bbedfd93da956e4a07b9971b928.pdf,,,http://www.roboticsproceedings.org/rss12/p34.html +4d6c3a3f9410ca35eb3389ec7088f5e2c16ec3ea,http://www.researchgate.net/profile/Roland_Goecke/publication/221429947_Static_facial_expression_analysis_in_tough_conditions_Data_evaluation_protocol_and_benchmark/links/0fcfd50e81697312d6000000.pdf,,https://doi.org/10.1109/ICCVW.2011.6130508,http://staff.estem-uc.edu.au/roland/wp-content/uploads/file/roland/publications/Conference/ICCV/BeFIT2011/dhall_goecke_lucey_gedeon_BeFIT2011_StaticFacialExpressionAnalysisInToughConditions.pdf +4da735d2ed0deeb0cae4a9d4394449275e316df2,http://cvrr.ucsd.edu/publications/2016/0406.pdf,,https://doi.org/10.1109/IVS.2016.7535575,http://cvrr.ucsd.edu/publications/2016/HeadEyeHand.pdf +4dbfbe5fd96c9efc8c3c2fd54406b62979482678,,,https://doi.org/10.1016/j.jvcir.2014.07.007, +4d8de4dad40faa835e8a01e3aa465e1bb3a996f4,,,, +4d1f77d9418a212c61a3c75c04a5b3884f6441ba,,,https://doi.org/10.1109/TIP.2017.2788196, +4d15254f6f31356963cc70319ce416d28d8924a3,http://pdfs.semanticscholar.org/4d15/254f6f31356963cc70319ce416d28d8924a3.pdf,,,http://www.ri.cmu.edu/pub_files/pub3/gross_ralph_2001_4/gross_ralph_2001_4.pdf +4d530a4629671939d9ded1f294b0183b56a513ef,http://pdfs.semanticscholar.org/4d53/0a4629671939d9ded1f294b0183b56a513ef.pdf,,,http://ijmlc.org/papers/153-C00896-002.pdf +4d2975445007405f8cdcd74b7fd1dd547066f9b8,http://pdfs.semanticscholar.org/4d29/75445007405f8cdcd74b7fd1dd547066f9b8.pdf,,,http://www.image.ece.ntua.gr/papers/591.pdf +4df889b10a13021928007ef32dc3f38548e5ee56,http://ww2.cs.fsu.edu/~ywu/PDF-files/IJCNN.pdf,,https://doi.org/10.1109/IJCNN.2007.4371359,http://www.cs.fsu.edu/~liux/research/pub/papers/conferences/Wu-MOCA-IJCNN-2007.pdf +4dce568994fb43095067ac893bbc079058494587,,,, +4d6462fb78db88afff44561d06dd52227190689c,http://pdfs.semanticscholar.org/4d64/62fb78db88afff44561d06dd52227190689c.pdf,,https://doi.org/10.1007/978-3-642-02172-5_9,http://www.cvc.uab.es/~petia/2009/Face-to-Face%20Social%20Activity%20Detection%20Using%20Data%20Collected%20with%20a%20Wearable%20Device.pdf +4d423acc78273b75134e2afd1777ba6d3a398973,http://pdfs.semanticscholar.org/4d42/3acc78273b75134e2afd1777ba6d3a398973.pdf,,,http://www.ri.cmu.edu/pub_files/pub3/sim_terence_2002_1/sim_terence_2002_1.ps.gz +4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41,http://pdfs.semanticscholar.org/4dd6/d511a8bbc4d9965d22d79ae6714ba48c8e41.pdf,,,http://www.ieice.org/proceedings/ITC-CSCC2008/pdf/p33_A2-4.pdf +4de757faa69c1632066391158648f8611889d862,http://pdfs.semanticscholar.org/4de7/57faa69c1632066391158648f8611889d862.pdf,,,http://ijaers.com/Paper-1-2016/5%20IJAERS-MAR-2016-7-Review%20of%20Face%20Recognition%20Technology%20Using%20Feature%20Fusion%20Vector.pdf +4dd71a097e6b3cd379d8c802460667ee0cbc8463,http://www.dgcv.nii.ac.jp/Publications/Papers/2015/BWILD2015.pdf,,https://doi.org/10.1016/j.imavis.2016.02.004,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284810 +4d9a02d080636e9666c4d1cc438b9893391ec6c7,http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf,,https://doi.org/10.1109/CVPRW.2010.5543262,http://www.pitt.edu/~jeffcohn/CVPR2010_CK+2.pdf +4d9c02567e7b9e065108eb83ea3f03fcff880462,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Towards_Facial_Expression_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.192 +4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002352.pdf,,https://doi.org/10.1109/ICASSP.2017.7952577, +4d90bab42806d082e3d8729067122a35bbc15e8d,http://pdfs.semanticscholar.org/4d90/bab42806d082e3d8729067122a35bbc15e8d.pdf,,https://doi.org/10.1016/j.patrec.2012.07.015,https://www.researchgate.net/profile/Xiaohua_Huang2/publication/258807129_Towards_a_dynamic_expression_recognition_system_under_facial_occlusion/links/55640e2c08ae6f4dcc98bee3.pdf?origin=publication_list +4d3c4c3fe8742821242368e87cd72da0bd7d3783,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTiccv13.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.188 +4d01d78544ae0de3075304ff0efa51a077c903b7,http://pdfs.semanticscholar.org/8f82/71d557ae862866c692e556f610ab45dcc399.pdf,,,http://www.ijcaonline.org/archives/volume77/number13/13541-0861?format=pdf +4dd2be07b4f0393995b57196f8fc79d666b3aec5,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p3572-lee.pdf,,https://doi.org/10.1109/ICASSP.2014.6854261, +4d356f347ab6647fb3e8ed8c2154dbd359e479ed,http://www.researchgate.net/profile/Anna_Esposito/publication/225441684_Extracting_and_Associating_Meta-features_for_Understanding_Peoples_Emotional_Behaviour_Face_and_Speech/links/02e7e52bed3a1b106e000000.pdf,,https://doi.org/10.1007/s12559-010-9072-1, +4d8ce7669d0346f63b20393ffaa438493e7adfec,http://pdfs.semanticscholar.org/4d8c/e7669d0346f63b20393ffaa438493e7adfec.pdf,,https://doi.org/10.1007/978-3-540-88682-2_52,http://www.researchgate.net/profile/Dimitris_Metaxas/publication/221304074_Similarity_Features_for_Facial_Event_Analysis/links/0f317530e5f83f343f000000.pdf +4d4736173a5e72c266e52f3a43bdcb2b58f237a2,,,https://doi.org/10.1109/ISSPA.2012.6310583, +4d6d6369664a49f6992f65af4148cefef95055bc,,,https://doi.org/10.1109/ICIP.2014.7025407, +4d21a2866cfd1f0fb2a223aab9eecfdec963059a,http://pdfs.semanticscholar.org/ddb3/5264ae7a74811bf8eb63d0eca7b7db07a4b1.pdf,,,http://www.ri.cmu.edu/pub_files/pub2/tian_ying_li_2000_2/tian_ying_li_2000_2.ps.gz +4d16337cc0431cd43043dfef839ce5f0717c3483,http://pdfs.semanticscholar.org/4d16/337cc0431cd43043dfef839ce5f0717c3483.pdf,,,http://elijah.cs.cmu.edu/DOCS/wang-mmsys2017.pdf +4d0b3921345ae373a4e04f068867181647d57d7d,http://people.cs.pitt.edu/~kovashka/murrugarra_llerena_kovashka_wacv2017_slides.pdf,,https://doi.org/10.1109/WACV.2017.63,http://people.cs.pitt.edu/~kovashka/murrugarra_llerena_kovashka_wacv2017_poster.pdf +4d0ef449de476631a8d107c8ec225628a67c87f9,http://www.wjscheirer.com/papers/wjs_btas2010b_photohead.pdf,,https://doi.org/10.1109/BTAS.2010.5634517,https://www.wjscheirer.com/papers/wjs_btas2010b_photohead.pdf +4df3143922bcdf7db78eb91e6b5359d6ada004d2,http://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf,,,"http://www.csun.edu/~dma/Ma,%20Correll,%20&%20Wittenbrink,%202015.pdf" +7588388b3f68c1a1a6b3b336d8387fee5c57c985,,,, +75fcbb01bc7e53e9de89cb1857a527f97ea532ce,http://pdfs.semanticscholar.org/75fc/bb01bc7e53e9de89cb1857a527f97ea532ce.pdf,,,http://www.researchgate.net/profile/Veikko_Surakka/publication/221546584_Detection_of_Facial_Landmarks_from_Neutral_Happy_and_Disgust_Facial_Images/links/0fcfd50cadbc4a796f000000.pdf +75858dbee2c248a60741fbc64dcad4f8b63d51cb,,,https://doi.org/10.1109/TIP.2015.2460464, +7577a1ddf9195513a5c976887ad806d1386bb1e9,http://pdfs.semanticscholar.org/7577/a1ddf9195513a5c976887ad806d1386bb1e9.pdf,,,https://arxiv.org/pdf/1706.00699v1.pdf +757e4cb981e807d83539d9982ad325331cb59b16,http://pdfs.semanticscholar.org/757e/4cb981e807d83539d9982ad325331cb59b16.pdf,,https://doi.org/10.1007/978-3-642-41181-6_48,http://www.researchgate.net/profile/Daniel_Riccio/publication/265013202_Demographics_versus_biometric_automatic_interoperability/links/53fb93330cf2dca8fffe7f73.pdf +7535e3995deb84a879dc13857e2bc0796a2f7ce2,,,https://doi.org/10.1007/s10618-010-0207-5, +75d7ba926ef1cc2adab6c5019afbb2f69a5ca27d,,,https://doi.org/10.1007/s00521-012-1042-y, +75e9a141b85d902224f849ea61ab135ae98e7bfb,http://pdfs.semanticscholar.org/d1a5/0fffd1c9cf033943636b9e18172ed68582b1.pdf,,,https://www.sciencedirect.com/science/article/pii/S0042698914000960 +75b833dde2e76c5de5912db3444d62c4131d15dc,http://www.researchgate.net/profile/Vassilios_Solachidis/publication/4303365_A_Face_Tracker_Trajectories_Clustering_Using_Mutual_Information/links/09e4150ca146dba69c000000.pdf,,https://doi.org/10.1109/MMSP.2007.4412854, +75503aff70a61ff4810e85838a214be484a674ba,https://www.ri.cmu.edu/pub_files/2012/0/Improved-Facial-Expression.pdf,,,http://www.ri.cmu.edu/pub_files/2012/0/Improved-Facial-Expression.pdf +75fd9acf5e5b7ed17c658cc84090c4659e5de01d,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_035_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Tzimiropoulos_Project-Out_Cascaded_Regression_2015_CVPR_paper.pdf +75908b6460eb0781130ed0aa94585be25a584996,http://pdfs.semanticscholar.org/7590/8b6460eb0781130ed0aa94585be25a584996.pdf,,,http://fas.sfu.ca/pub/cs/TH/2004/DarrylAndersonMSc.pdf +75cd81d2513b7e41ac971be08bbb25c63c37029a,http://pdfs.semanticscholar.org/75cd/81d2513b7e41ac971be08bbb25c63c37029a.pdf,,https://doi.org/10.1016/j.image.2011.05.002,http://people.bu.edu/bsk/PDFs/Saghafi_SPIC12_Preprint.pdf +75bf3b6109d7a685236c8589f8ead7d769ea863f,http://pdfs.semanticscholar.org/75bf/3b6109d7a685236c8589f8ead7d769ea863f.pdf,,,https://arxiv.org/pdf/1706.07527v1.pdf +75b51140d08acdc7f0af11b0ffa1edb40ebbd059,,,https://doi.org/10.1007/s00521-010-0381-9, +751970d4fb6f61d1b94ca82682984fd03c74f127,http://pdfs.semanticscholar.org/7519/70d4fb6f61d1b94ca82682984fd03c74f127.pdf,,,http://csl.anthropomatik.kit.edu/downloads/BS13_WandSchulteJankeSchultz_ArrayBasedEMGSSI.pdf +7587a09d924cab41822a07cd1a988068b74baabb,,,, +759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,http://homes.cs.washington.edu/~neeraj/projects/faceverification/base/papers/nk_iccv2009_attrs.pdf,,https://doi.org/10.1109/ICCV.2009.5459250,http://homes.cs.washington.edu/~neeraj/base/publications/base/papers/nk_iccv2009_attrs.pdf +754626bd5fb06fee5e10962fdfeddd495513e84b,,,https://doi.org/10.1109/SIU.2017.7960646, +75ebe1e0ae9d42732e31948e2e9c03d680235c39,http://pdfs.semanticscholar.org/75eb/e1e0ae9d42732e31948e2e9c03d680235c39.pdf,,https://doi.org/10.5244/C.20.92,http://www.robots.ox.ac.uk:5000/~vgg/publications/papers/everingham06a.pdf +75e5ba7621935b57b2be7bf4a10cad66a9c445b9,http://pdfs.semanticscholar.org/75e5/ba7621935b57b2be7bf4a10cad66a9c445b9.pdf,,https://doi.org/10.1016/j.patcog.2014.06.020,http://www.pris.net.cn/wp-content/uploads/2010/11/whdeng_pr4.pdf +75859ac30f5444f0d9acfeff618444ae280d661d,http://www.cse.msu.edu/rgroups/biometrics/Publications/SecureBiometrics/NagarNandakumarJain_MultibiometricCryptosystems_TIFS11.pdf,,https://doi.org/10.1109/TIFS.2011.2166545,http://www.cse.msu.edu/biometrics/Publications/SecureBiometrics/NagarNandakumarJain_MultibiometricCryptosystems_TIFS11.pdf +750c19d5bb23ac6956b6cfff15129f226a61dfe9,,,, +7553fba5c7f73098524fbb58ca534a65f08e91e7,http://pdfs.semanticscholar.org/7553/fba5c7f73098524fbb58ca534a65f08e91e7.pdf,,,http://ijcsmc.com/docs/papers/June2014/V3I6201499a71.pdf +751b26e7791b29e4e53ab915bfd263f96f531f56,http://affect.media.mit.edu/pdfs/12.Hernandez-Hoque-Drevo-Picard-MoodMeter-Ubicomp.pdf,,,http://web.media.mit.edu/~mehoque/Publications/Hoque-ubicomp2012_mit_mood_meter.pdf +75da1df4ed319926c544eefe17ec8d720feef8c0,http://pdfs.semanticscholar.org/75da/1df4ed319926c544eefe17ec8d720feef8c0.pdf,,,http://people.cs.umass.edu/~elm/papers/fddb.pdf +751fb994b2c553dc843774a5620bfcab8bc657fd,,,https://doi.org/10.1007/978-3-319-67180-2_47, +75259a613285bdb339556ae30897cb7e628209fa,http://openaccess.thecvf.com/content_iccv_2015/papers/Kodirov_Unsupervised_Domain_Adaptation_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.282 +753a277c1632dd61233c488cc55d648de3caaaa3,,,https://doi.org/10.1016/j.patcog.2011.02.013, +75d2ecbbcc934563dff6b39821605dc6f2d5ffcc,http://pdfs.semanticscholar.org/75d2/ecbbcc934563dff6b39821605dc6f2d5ffcc.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2003.1238646 +81e2a458b894705cc21a9719f743bfa61f1e6436,,,, +81bfe562e42f2eab3ae117c46c2e07b3d142dade,http://pdfs.semanticscholar.org/81bf/e562e42f2eab3ae117c46c2e07b3d142dade.pdf,,,https://arxiv.org/pdf/1209.3433v1.pdf +81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,http://pdfs.semanticscholar.org/8169/5fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f.pdf,,,https://comserv.cs.ut.ee/home/files/Uibo_informaatika_2016.pdf?reference=81695FBBBEA2972D7AB1BFB1F3A6A0DBD3475C0F&study=ATILoputoo +81a4397d5108f6582813febc9ddbeff905474120,,,https://doi.org/10.1109/ICPR.2016.7899883, +8147ee02ec5ff3a585dddcd000974896cb2edc53,http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2012aePAMI.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.107 +814b05113ba0397d236736f94c01e85bb034c833,http://pdfs.semanticscholar.org/814b/05113ba0397d236736f94c01e85bb034c833.pdf,,https://doi.org/10.1016/j.ins.2016.02.034,http://www.cs.nott.ac.uk/~psxdmt/turcsany16_lrfdnn_infsci.pdf +81146c567fa5a3c83778c1c940780d00706fa2bf,,,, +812d3f6975f4cb87e9905ef18696c5c779227634,,,https://doi.org/10.1186/s13640-016-0151-4, +816bd8a7f91824097f098e4f3e0f4b69f481689d,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00334.pdf,,,http://doi.acm.org/10.1145/1026711.1026742 +8184a92e1ccc7fdeb4a198b226feb325c63d6870,,,https://doi.org/10.1109/ICCE.2017.7889290, +81831ed8e5b304e9d28d2d8524d952b12b4cbf55,http://pdfs.semanticscholar.org/8183/1ed8e5b304e9d28d2d8524d952b12b4cbf55.pdf,,https://doi.org/10.1016/j.patcog.2013.03.005,https://pdfs.semanticscholar.org/8183/1ed8e5b304e9d28d2d8524d952b12b4cbf55.pdf +8185be0689442db83813b49e215bf30870017459,,,https://doi.org/10.1109/TNNLS.2013.2293418, +81b2a541d6c42679e946a5281b4b9dc603bc171c,http://pdfs.semanticscholar.org/81b2/a541d6c42679e946a5281b4b9dc603bc171c.pdf,,,http://vts.uni-ulm.de/docs/2011/7560/vts_7560_10802.pdf +81e11e33fc5785090e2d459da3ac3d3db5e43f65,http://pdfs.semanticscholar.org/81e1/1e33fc5785090e2d459da3ac3d3db5e43f65.pdf,,,http://www.e-ijaet.org/media/52I7-IJAET0703792-A-NOVEL-FACE-RECOGNITION-APPROACH.pdf +81b8a6cabcd6451b21d5b44e69b0a355d9229cc4,,,https://doi.org/10.1109/ICDSP.2017.8096137, +81e366ed1834a8d01c4457eccae4d57d169cb932,http://www-public.int-edu.eu/~horain/Publications/Wesierski%20ICCV_2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.363 +81d81a2060366f29fd100f793c11acf000bd2a7f,,,https://doi.org/10.1007/11795131_112, +81fc86e86980a32c47410f0ba7b17665048141ec,http://pdfs.semanticscholar.org/81fc/86e86980a32c47410f0ba7b17665048141ec.pdf,,,https://arxiv.org/pdf/1801.03546v1.pdf +8160b3b5f07deaa104769a2abb7017e9c031f1c1,http://www.aiia.csd.auth.gr/EN/cor_baayen/Exploiting_Discriminant_Information_in_NMF_for_FFV.pdf,,https://doi.org/10.1109/TNN.2006.873291,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Zafeiriou06a.pdf +816eff5e92a6326a8ab50c4c50450a6d02047b5e,http://pdfs.semanticscholar.org/816e/ff5e92a6326a8ab50c4c50450a6d02047b5e.pdf,,,http://www.pengxi.me/wp-content/uploads/file/2014-ELL-fastLRR.pdf +81af86e3d343a40ce06a3927b6aa8c8853f6811a,,,,http://doi.acm.org/10.1145/3009977.3009996 +81c21f4aafab39b7f5965829ec9e0f828d6a6182,,,https://doi.org/10.1109/BTAS.2015.7358744, +8149c30a86e1a7db4b11965fe209fe0b75446a8c,http://www.cfar.umd.edu/~kale/ICVGIP2012.pdf,,,http://doi.acm.org/10.1145/2425333.2425346 +81dd68de9d88c49db1ae509dbc66c7a82809c026,http://atvs.ii.uam.es/files/2004_SPM_Biometrics_Ortega.pdf,,,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/040301_Ortega.pdf +813c93c54c19fd3ef850728e6d4a31d279d26021,,,, +81d232e1f432db7de67baf4f30f240c62d1a9055,,,https://doi.org/10.1109/ICIP.2017.8296405, +819c93dfe531ad6aba71cd48942c9e07b7a89b1b,,,, +817321d4008bf95e9be00cf6cb1554a1aed40027,,,, +81da427270c100241c07143885ba3051ec4a2ecb,http://pdfs.semanticscholar.org/81da/427270c100241c07143885ba3051ec4a2ecb.pdf,,,https://arxiv.org/pdf/1802.00941v1.pdf +810f5606a4769fc3dd99611acf805596fb79223d,http://pdfs.semanticscholar.org/810f/5606a4769fc3dd99611acf805596fb79223d.pdf,,https://doi.org/10.1016/j.patcog.2010.06.019,http://eecs.qmul.ac.uk/~jason/Research/PreprintVersion/Extraction%20of%20Illumination%20Invariant%20Facial%20Features%20from%20A%20Single%20Image%20Using%20Nonsubsampled%20Contourlet%20Transform.pdf +861c650f403834163a2c27467a50713ceca37a3e,http://personal.stevens.edu/~hli18/data/papers/PEPICCV2013_CameraReady.pdf,,,http://www.ifp.illinois.edu/~jyang29/papers/ICCV13c.pdf +86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663,http://pdfs.semanticscholar.org/8661/4c2d2f6ebcb9c600d4aef85fd6bf6eab6663.pdf,,,https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-142.pdf +86b69b3718b9350c9d2008880ce88cd035828432,http://pdfs.semanticscholar.org/86b6/9b3718b9350c9d2008880ce88cd035828432.pdf,,,https://lhncbc.nlm.nih.gov/system/files/pub9332.pdf +86904aee566716d9bef508aa9f0255dc18be3960,http://pdfs.semanticscholar.org/8690/4aee566716d9bef508aa9f0255dc18be3960.pdf,,,https://arxiv.org/pdf/1802.09386v1.pdf +86fa086d02f424705bbea53943390f009191740a,,,https://doi.org/10.1109/ICIP.2015.7351651, +867e709a298024a3c9777145e037e239385c0129,http://pdfs.semanticscholar.org/867e/709a298024a3c9777145e037e239385c0129.pdf,,,http://ijpres.com/pdf30/41.pdf +865d4ce1751ff3c0a8eb41077a9aa7bd94603c47,,,https://doi.org/10.1007/s12193-015-0210-7, +86597fe787e0bdd05935d25158790727257a40bd,,,,http://doi.ieeecomputersociety.org/10.1109/3DV.2016.72 +865e9346b05f14f9bf85c1522c5aebe85420a517,,,, +86afb1e38a96f2ac00e792ef353a971fd13c8474,,,https://doi.org/10.1109/BigData.2016.7840742, +86c5478f21c4a9f9de71b5ffa90f2a483ba5c497,http://pdfs.semanticscholar.org/86c5/478f21c4a9f9de71b5ffa90f2a483ba5c497.pdf,,,http://arxiv.org/abs/1610.00660 +8686b15802529ff8aea50995ef14079681788110,,,https://doi.org/10.1109/TNNLS.2014.2376936, +86c053c162c08bc3fe093cc10398b9e64367a100,http://pdfs.semanticscholar.org/86c0/53c162c08bc3fe093cc10398b9e64367a100.pdf,,https://doi.org/10.1049/iet-cvi.2014.0085,http://www.eecs.qmul.ac.uk/~hy300/papers/cascadeofforest.pdf +86b985b285c0982046650e8d9cf09565a939e4f9,http://pdfs.semanticscholar.org/86b9/85b285c0982046650e8d9cf09565a939e4f9.pdf,,,http://search.ieice.org/bin/summary.php?id=e96-d_1_81 +861802ac19653a7831b314cd751fd8e89494ab12,http://btpwpdf.ijoy365.com/time-of-flight-and-depth-imaging-marcin-63540537.pdf,,https://doi.org/10.1007/978-3-642-44964-2, +864d50327a88d1ff588601bf14139299ced2356f,,,https://doi.org/10.1109/FSKD.2016.7603151, +86ed5b9121c02bcf26900913f2b5ea58ba23508f,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wang_Actions__Transformations_CVPR_2016_paper.pdf,,,https://arxiv.org/pdf/1512.00795v1.pdf +861b12f405c464b3ffa2af7408bff0698c6c9bf0,http://pdfs.semanticscholar.org/861b/12f405c464b3ffa2af7408bff0698c6c9bf0.pdf,,,http://www.ijritcc.org/download/1433921207.pdf +861a51e66553979535df2b41971150453ab26372,,,, +862d17895fe822f7111e737cbcdd042ba04377e8,http://pdfs.semanticscholar.org/862d/17895fe822f7111e737cbcdd042ba04377e8.pdf,,,http://arxiv.org/abs/1704.02166 +861a832b87b071a5d479186bbb2822f9ddbb67e4,,,, +8697ccb156982d40e88fda7fbf4297fa5171f24d,,,,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2011.101 +86ab027a1930276bb2c4695d65668e6704538b01,,,, +86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6,http://pdfs.semanticscholar.org/86e1/bdbfd13b9ed137e4c4b8b459a3980eb257f6.pdf,,,https://arxiv.org/pdf/1705.06950v1.pdf +86b6de59f17187f6c238853810e01596d37f63cd,http://pdfs.semanticscholar.org/86b6/de59f17187f6c238853810e01596d37f63cd.pdf,,,http://thesai.org/Downloads/Volume7No3/Paper_14-Competitive_Representation_Based_Classification_Using_Facial_Noise_Detection.pdf +86b105c3619a433b6f9632adcf9b253ff98aee87,http://www.cecs.uci.edu/~papers/icme06/pdfs/0001013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2006.262705 +862f2d84b4230d64ddb3e48967ad417089f2c291,http://www.umiacs.umd.edu/users/pvishalm/Conference_pub/ICIP14_landmarks.pdf,,https://doi.org/10.1109/ICIP.2014.7025147,http://www.umiacs.umd.edu/~pvishalm/Conference_pub/ICIP14_landmarks.pdf +86d1fbaecd02b44309383830e6d985dc09e786aa,http://feng-xu.com/papers/ExpressionSynthesis_CVPR.pdf,,,http://media.au.tsinghua.edu.cn/kaili/CVPR2012.pdf +86881ce8f80adea201304ca6bb3aa413d94e9dd0,,,https://doi.org/10.1109/ICIP.2017.8297133, +86a8b3d0f753cb49ac3250fa14d277983e30a4b7,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W09/papers/Zhang_Exploiting_Unlabeled_Ages_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.75 +86b51bd0c80eecd6acce9fc538f284b2ded5bcdd,http://pdfs.semanticscholar.org/86b5/1bd0c80eecd6acce9fc538f284b2ded5bcdd.pdf,,,https://arxiv.org/pdf/1703.09911v1.pdf +8699268ee81a7472a0807c1d3b1db0d0ab05f40d,http://pdfs.semanticscholar.org/8699/268ee81a7472a0807c1d3b1db0d0ab05f40d.pdf,,,https://arxiv.org/pdf/1706.03729v2.pdf +86f8e6310d114bb24deb971e8bc7089df6ac3b57,http://ftp.ncbi.nlm.nih.gov/pub/pmc/84/69/40101_2015_Article_46.PMC4350291.pdf,,,https://jphysiolanthropol.biomedcentral.com/track/pdf/10.1186/s40101-015-0046-6?site=jphysiolanthropol.biomedcentral.com +86ec0e331dd494533e16dd638661463b7e03edb7,,,, +8605e8f5d84b8325b1a81d968c296a5a5d741f31,,,https://doi.org/10.1016/j.patcog.2017.04.010, +86bbead2fb5b77ceff7994be9474648672f244d9,,,, +72282287f25c5419dc6fd9e89ec9d86d660dc0b5,https://arxiv.org/pdf/1609.07495v1.pdf,,https://doi.org/10.1109/ICDM.2016.0156,http://www.vision.caltech.edu/~mronchi/papers/ICDM16_RotationInvariantMovemeDiscovery_PAPER_LONG.pdf +7212e033b37efa9c96ee51cb810c303249ab21e4,,,, +72a87f509817b3369f2accd7024b2e4b30a1f588,http://hal.inria.fr/docs/00/75/05/89/PDF/paa2010last.pdf,,https://doi.org/10.1007/s10044-011-0212-3,https://hal.archives-ouvertes.fr/hal-00750589/document +72a00953f3f60a792de019a948174bf680cd6c9f,http://pdfs.semanticscholar.org/72a0/0953f3f60a792de019a948174bf680cd6c9f.pdf,,https://doi.org/10.1007/s11222-006-9004-9,http://www.researchgate.net/profile/Yanxi_Liu/publication/220286456_Understanding_the_role_of_facial_asymmetry_in_human_face_identification/links/0deec51794a979fdd6000000.pdf +726b8aba2095eef076922351e9d3a724bb71cb51,http://pdfs.semanticscholar.org/d06b/cb2d46342ee011e652990edf290a0876b502.pdf,,,https://arxiv.org/pdf/1708.00980v1.pdf +72345fed8d068229e50f9ea694c4babfd23244a0,,,,http://doi.acm.org/10.1145/2632856.2632937 +727ecf8c839c9b5f7b6c7afffe219e8b270e7e15,http://pdfs.semanticscholar.org/727e/cf8c839c9b5f7b6c7afffe219e8b270e7e15.pdf,,,http://infolab.stanford.edu/~mor/research/naamanthesis.pdf +72a5e181ee8f71b0b153369963ff9bfec1c6b5b0,http://pdfs.semanticscholar.org/72a5/e181ee8f71b0b153369963ff9bfec1c6b5b0.pdf,,https://doi.org/10.1007/978-3-642-21227-7_53,https://www.researchgate.net/profile/Guoying_Zhao/publication/220809280_Expression_Recognition_in_Videos_Using_a_Weighted_Component-Based_Feature_Descriptor/links/02e7e528efcc42d041000000.pdf +72e603083c8b1cfa09200eb333927e8ea848fbc8,,,, +72ecaff8b57023f9fbf8b5b2588f3c7019010ca7,http://pdfs.semanticscholar.org/72ec/aff8b57023f9fbf8b5b2588f3c7019010ca7.pdf,,,https://arxiv.org/pdf/1710.05279v1.pdf +72ffcc5b654b2468b9eff761279b29164f1df5d9,,,, +72a03f06fcbf6af92fb3002e2fd9d43e75fd113e,,,, +729dbe38538fbf2664bc79847601f00593474b05,http://pdfs.semanticscholar.org/729d/be38538fbf2664bc79847601f00593474b05.pdf,,,http://ilab.usc.edu/publications/doc/Borji_etal14jov.pdf +729a9d35bc291cc7117b924219bef89a864ce62c,http://pdfs.semanticscholar.org/729a/9d35bc291cc7117b924219bef89a864ce62c.pdf,,,https://arxiv.org/pdf/1801.03127v1.pdf +72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_094_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_094_ext.pdf +72160aae43cd9b2c3aae5574acc0d00ea0993b9e,http://pdfs.semanticscholar.org/7216/0aae43cd9b2c3aae5574acc0d00ea0993b9e.pdf,,,http://www.ijcsi.org/papers/IJCSI-11-4-1-45-51.pdf +72c0c8deb9ea6f59fde4f5043bff67366b86bd66,http://pdfs.semanticscholar.org/72c0/c8deb9ea6f59fde4f5043bff67366b86bd66.pdf,,,http://www.umiacs.umd.edu/~soma/pdf/FacialAging_survey.pdf +721119b5f15ccccfd711571fb5a676d622d231bf,,,, +728b1b2a86a7ffda402e7ec1a97cd1988dcde868,,,https://doi.org/10.1016/j.procs.2016.04.083, +721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,http://pdfs.semanticscholar.org/74f1/9d0986c9d39aabb359abaa2a87a248a48deb.pdf,,,http://www.bmva.org/bmvc/2016/papers/paper086/paper086.pdf +72a3bb0fb490355a926c5a689e12268bff9ff842,,,https://doi.org/10.1109/ICIP.2006.312862, +7234468db46b37e2027ab2978c67b48b8581f796,,,https://doi.org/10.1109/ACPR.2015.7486464, +72f4aaf7e2e3f215cd8762ce283988220f182a5b,http://pdfs.semanticscholar.org/72f4/aaf7e2e3f215cd8762ce283988220f182a5b.pdf,,,http://journals.tubitak.gov.tr/elektrik/issues/elk-10-18-4/elk-18-4-13-0906-48.pdf +72a55554b816b66a865a1ec1b4a5b17b5d3ba784,http://vislab.ucr.edu/Biometrics16/CVPRW_Vizilter.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.25 +72450d7e5cbe79b05839c30a4f0284af5aa80053,http://pdfs.semanticscholar.org/7245/0d7e5cbe79b05839c30a4f0284af5aa80053.pdf,,https://doi.org/10.1007/978-3-642-10331-5_68,http://www.cvc.uab.es/~bogdan/Publications/raducanu_ISVC2009.pdf +72bf9c5787d7ff56a1697a3389f11d14654b4fcf,http://pdfs.semanticscholar.org/7910/a98a1fe9f4bec4c0dc4dc3476e9405b1930d.pdf,,,http://www.umiacs.umd.edu/users/wyzhao/IJCV_sfsface.ps.gz +72119cb98f9502ec639de317dccea57fd4b9ee55,,,https://doi.org/10.1109/GlobalSIP.2015.7418230, +72d110df78a7931f5f2beaa29f1eb528cf0995d3,,,https://doi.org/10.1007/s11517-015-1346-z, +445461a34adc4bcdccac2e3c374f5921c93750f8,https://arxiv.org/pdf/1306.1913v1.pdf,,,http://arxiv.org/abs/1306.1913 +4414a328466db1e8ab9651bf4e0f9f1fe1a163e4,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2010/Contents/papers/1569290719.pdf,http://ieeexplore.ieee.org/document/7096350/,, +442f09ddb5bb7ba4e824c0795e37cad754967208,http://pdfs.semanticscholar.org/8c29/513c2621c26ac8491bb763674db475fe58c6.pdf,,,http://www.seas.upenn.edu/~taskar/pubs/partial_labels_jmlr11.pdf +440b94b1624ca516b07e72ea8b3488072adc5e26,,,https://doi.org/10.1109/ITSC.2015.153, +44b827df6c433ca49bcf44f9f3ebfdc0774ee952,,,https://doi.org/10.1109/LSP.2017.2726105, +443acd268126c777bc7194e185bec0984c3d1ae7,https://eprints.soton.ac.uk/402985/1/icpr-16.pdf,,https://doi.org/10.1109/ICPR.2016.7900105, +442d3aeca486de787de10bc41bfeb0b42c81803f,http://pdfs.semanticscholar.org/442d/3aeca486de787de10bc41bfeb0b42c81803f.pdf,,,http://www.murase.m.is.nagoya-u.ac.jp/~ide/res/paper/E08-conference-ttakahashi-1pub.pdf +44f23600671473c3ddb65a308ca97657bc92e527,http://arxiv.org/pdf/1604.06573v2.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Feichtenhofer_Convolutional_Two-Stream_Network_CVPR_2016_paper.pdf +4439746eeb7c7328beba3f3ef47dc67fbb52bcb3,http://pdfs.semanticscholar.org/4439/746eeb7c7328beba3f3ef47dc67fbb52bcb3.pdf,,,http://ijssst.info/Vol-12/No-4/paper1.pdf +44c278cbecd6c1123bfa5df92e0bda156895fa48,,,https://doi.org/10.1109/ICPR.2014.316, +446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03,http://www.isir.upmc.fr/files/2014ACTI3172.pdf,,https://doi.org/10.1109/ICPR.2014.436, +4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,http://pdfs.semanticscholar.org/4467/a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f.pdf,,,http://www.sfu.ca/~smuralid/papers/activity_sportlogiq.pdf +44d2ab6b7166274cc13b52d8f73a36839ca0d4a8,,,, +44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,http://pdfs.semanticscholar.org/44f4/8a4b1ef94a9104d063e53bf88a69ff0f55f3.pdf,,,http://arxiv.org/abs/1611.08107 +44a3ec27f92c344a15deb8e5dc3a5b3797505c06,http://pdfs.semanticscholar.org/44a3/ec27f92c344a15deb8e5dc3a5b3797505c06.pdf,,,http://people.cs.umass.edu/~smaji/papers/chapter-attributes-preprint.pdf +4490b8d8ab2ac693c670751d4c2bff0a56d7393d,,,https://doi.org/10.1007/s11063-017-9648-9, +44aeda8493ad0d44ca1304756cc0126a2720f07b,http://pdfs.semanticscholar.org/afbb/c0ea429ba0f5cf7790d23fc40d7d5342a53c.pdf,,,http://people.cs.pitt.edu/~flying/File/Comp2005.pdf +4492914df003d690e5ff3cb3e0e0509a51f7753e,,,,http://doi.ieeecomputersociety.org/10.1109/ICCI-CC.2014.6921443 +449b1b91029e84dab14b80852e35387a9275870e,https://pdfs.semanticscholar.org/608c/da0c14c3d134d9d18dd38f9682b23c31d367.pdf,http://ieeexplore.ieee.org/document/6411899/,,http://www.apsipa.org/proceedings_2012/papers/278.pdf +44078d0daed8b13114cffb15b368acc467f96351,http://arxiv.org/pdf/1604.05417v1.pdf,,https://doi.org/10.1109/BTAS.2016.7791205,https://arxiv.org/pdf/1604.05417v1.pdf +44834929e56f2a8f16844fde519039d647006216,,,,http://doi.acm.org/10.1145/1460096.1460150 +44c9b5c55ca27a4313daf3760a3f24a440ce17ad,http://pdfs.semanticscholar.org/44c9/b5c55ca27a4313daf3760a3f24a440ce17ad.pdf,,,https://arxiv.org/pdf/1711.10143v1.pdf +44389d8e20cf9f1a8453f4ba033e03cff9bdfcbb,,,https://doi.org/10.1016/j.neucom.2017.07.052, +44dd150b9020b2253107b4a4af3644f0a51718a3,http://www.andrew.cmu.edu/user/kseshadr/TIFS_2012_Paper_Final_Submission.pdf,,https://doi.org/10.1109/TIFS.2012.2195175,http://www.andrew.cmu.edu/user/kseshadr/TIFS_2012_Paper_IEEE.pdf +447d8893a4bdc29fa1214e53499ffe67b28a6db5,http://pdfs.semanticscholar.org/447d/8893a4bdc29fa1214e53499ffe67b28a6db5.pdf,,,http://hal.archives-ouvertes.fr/docs/00/34/33/78/PDF/MaximeBerthe_Memoire_de_these.pdf +44f65e3304bdde4be04823fd7ca770c1c05c2cef,http://pdfs.semanticscholar.org/44f6/5e3304bdde4be04823fd7ca770c1c05c2cef.pdf,,https://doi.org/10.1007/s11760-009-0125-4,http://speech.iiit.ac.in/svlpubs/article/SaoAnilYegna2009.pdf +44fbbaea6271e47ace47c27701ed05e15da8f7cf,http://pdfs.semanticscholar.org/44fb/baea6271e47ace47c27701ed05e15da8f7cf.pdf,,,http://www.mariskakret.com/wp-content/uploads/2015/10/Kret_pupilmimicry_PsychScie_20151.pdf +44fb4dcf88eb482e2ab79fd4540caf941613b970,http://www.researchgate.net/profile/Masashi_Sugiyama/publication/220930547_Perceived_Age_Estimation_under_Lighting_Condition_Change_by_Covariate_Shift_Adaptation/links/0fcfd5122b4d406edd000000.pdf,,,http://www.ms.k.u-tokyo.ac.jp/2010/ICPR2010a.pdf +44eb4d128b60485377e74ffb5facc0bf4ddeb022,https://pdfs.semanticscholar.org/44eb/4d128b60485377e74ffb5facc0bf4ddeb022.pdf,,https://doi.org/10.1109/ISSNIP.2014.6827690,http://www.serc.iisc.ernet.in/~venky/Papers/Emotion_Recognition_ISSNIP14.pdf +448ed201f6fceaa6533d88b0b29da3f36235e131,http://pdfs.semanticscholar.org/aa6a/0b92c60187c7fa9923b1c8433ec99a495df7.pdf,,https://doi.org/10.1016/j.cviu.2014.12.005,http://arxiv.org/abs/1710.07831 +445e3ba7eabcc55b5d24f951b029196b47830684,,,https://doi.org/10.1109/TMM.2016.2591508, +441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sundararajan_Head_Pose_Estimation_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301354 +447a5e1caf847952d2bb526ab2fb75898466d1bc,http://pdfs.semanticscholar.org/447a/5e1caf847952d2bb526ab2fb75898466d1bc.pdf,,,https://openreview.net/pdf?id=SJzmJEq6W +449808b7aa9ee6b13ad1a21d9f058efaa400639a,http://www.jdl.ac.cn/doc/2008/Recovering%203D%20Facial%20Shape%20via%20Coupled%202D-3D%20Space%20Learning.pdf,,https://doi.org/10.1109/AFGR.2008.4813403, +2a7bca56e2539c8cf1ae4e9da521879b7951872d,http://pdfs.semanticscholar.org/2a7b/ca56e2539c8cf1ae4e9da521879b7951872d.pdf,,,http://ttic.uchicago.edu/~argyriou/papers/ortho-aistats.pdf +2a65d7d5336b377b7f5a98855767dd48fa516c0f,https://mug.ee.auth.gr/wp-content/uploads/fsLDA.pdf,,,http://avg.is.tuebingen.mpg.de/uploads_file/attachment/attachment/377/poster.pdf +2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,http://yugangjiang.info/publication/JCST-nameface.pdf,,https://doi.org/10.1007/s11390-014-1468-z,http://vireo.cs.cityu.edu.hk/papers/Chen-JCST2014.pdf +2aaa6969c03f435b3ea8431574a91a0843bd320b,http://pdfs.semanticscholar.org/2aaa/6969c03f435b3ea8431574a91a0843bd320b.pdf,,,http://www.waset.org/journals/waset/v7/v7-49.pdf +2a92bda6dbd5cce5894f7d370d798c07fa8783f4,,,https://doi.org/10.1109/TIFS.2014.2359587, +2af620e17d0ed67d9ccbca624250989ce372e255,http://www.alessandrobergamo.com/data/bt_cvpr12.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248040 +2a35d20b2c0a045ea84723f328321c18be6f555c,http://pdfs.semanticscholar.org/d1be/cba3c460892453939f9f3639d8beddf2a133.pdf,,,https://arxiv.org/pdf/1602.05659v3.pdf +2ad7cef781f98fd66101fa4a78e012369d064830,http://arxiv.org/pdf/1603.05474v1.pdf,,,https://arxiv.org/pdf/1603.05474v2.pdf +2ad29b2921aba7738c51d9025b342a0ec770c6ea,http://arxiv.org/pdf/1510.02781v1.pdf,,https://doi.org/10.1007/s11042-016-3824-1,https://arxiv.org/pdf/1510.02781v1.pdf +2a9b398d358cf04dc608a298d36d305659e8f607,http://www.pitt.edu/~jeffcohn/biblio/MahoorFG2011.pdf,,https://doi.org/10.1109/FG.2011.5771420,http://www.engr.du.edu/mmahoor/Papers/AU_sparse_rep_f&g11.pdf +2afde207bd6f2e5fa20f3cf81940b18cc14e7dbb,,,https://doi.org/10.1109/TIP.2013.2255300, +2a98b850139b911df5a336d6ebf33be7819ae122,,,https://doi.org/10.1109/ICIP.2015.7350806, +2a0efb1c17fbe78470acf01e4601a75735a805cc,http://pdfs.semanticscholar.org/2a0e/fb1c17fbe78470acf01e4601a75735a805cc.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2000.855831 +2ae2e29c3e9cc2d94a26da5730df7845de0d631b,,,https://doi.org/10.1109/TCSVT.2011.2129670, +2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924,http://pdfs.semanticscholar.org/2a6b/ba2e81d5fb3c0fd0e6b757cf50ba7bf8e924.pdf,,,https://apps.cs.utexas.edu/apps/sites/default/files/tech_reports/StevenChenThesis.pdf +2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,,,https://doi.org/10.1109/CVPRW.2010.5543608, +2ac21d663c25d11cda48381fb204a37a47d2a574,http://pdfs.semanticscholar.org/2ac2/1d663c25d11cda48381fb204a37a47d2a574.pdf,,https://doi.org/10.1007/978-3-642-24571-8_27,https://www.cl.cam.ac.uk/research/rainbow/emotions/pdf/ACII2011-Doctoral-2011.pdf +2a98351aef0eec1003bd5524933aed8d3f303927,,,https://doi.org/10.1109/CIRA.2007.382901, +2a4153655ad1169d482e22c468d67f3bc2c49f12,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.23 +2a41388040141ef6b016c100ef833a2a73ab8b42,,,https://doi.org/10.1016/j.neucom.2017.03.033, +2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40,http://www.cl.cam.ac.uk/~pr10/publications/fg17.pdf,,,https://www.cl.cam.ac.uk/~mmam3/pub/fg17.pdf +2ae139b247057c02cda352f6661f46f7feb38e45,http://www.iro.umontreal.ca/~memisevr/pubs/icmi_emotiw.pdf,,,http://doi.acm.org/10.1145/2522848.2531745 +2a3e19d7c54cba3805115497c69069dd5a91da65,http://pdfs.semanticscholar.org/2a3e/19d7c54cba3805115497c69069dd5a91da65.pdf,,,https://arxiv.org/pdf/1804.01176v1.pdf +2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,http://pdfs.semanticscholar.org/2af1/9b5ff2ca428fa42ef4b85ddbb576b5d9a5cc.pdf,,https://doi.org/10.1007/978-3-642-01793-3_21,http://ccc.inaoep.mx/~mdprl/documentos/1201.2207v1.pdf +2a79bd36c56fd1634ca0f8089fe8aa9343eb92ce,,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2006.104 +2a14b6d9f688714dc60876816c4b7cf763c029a9,http://tamaraberg.com/papers/wacv2016_combining.pdf,,,http://www.tamaraberg.com/papers/wacv2016_combining.pdf +2a84f7934365f05b6707ea0ac225210f78e547af,,,https://doi.org/10.1109/ICPR.2016.7899690, +2a88541448be2eb1b953ac2c0c54da240b47dd8a,http://pdfs.semanticscholar.org/2c44/0d01738a2fed3e3bd6520471acacb6c96e3b.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2014_5332.pdf +2adffdffa16475ae71bb2adcf65840f01f1e53f7,,,https://doi.org/10.1049/iet-cvi.2014.0094, +2a02355c1155f2d2e0cf7a8e197e0d0075437b19,http://pdfs.semanticscholar.org/cf2c/58a5efea263a878815e25148b1c6954a0cbe.pdf,,,http://waset.org/publications/10902/on-face-recognition-using-gabor-filters- +2a8c9e43459c1051f5b8048a3863c7bb8121abb2,,,, +2a171f8d14b6b8735001a11c217af9587d095848,http://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_Learning_Social_Relation_ICCV_2015_paper.pdf,,,http://mmlab.ie.cuhk.edu.hk/projects/socialrelation/support/ICCV15.pdf +2aea27352406a2066ddae5fad6f3f13afdc90be9,http://arxiv.org/pdf/1507.05699v4.pdf,,,https://pdfs.semanticscholar.org/b558/be7e182809f5404ea0fcf8a1d1d9498dc01a.pdf +2a4984fb48c175d1e42c6460c5f00963da9f26b6,,,https://doi.org/10.1109/MIPRO.2015.7160445, +2a0623ae989f2236f5e1fe3db25ab708f5d02955,http://pdfs.semanticscholar.org/2a06/23ae989f2236f5e1fe3db25ab708f5d02955.pdf,,,http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/tena-2007.pdf +2ad0ee93d029e790ebb50574f403a09854b65b7e,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.92 +2afdda6fb85732d830cea242c1ff84497cd5f3cb,http://www.iis.sinica.edu.tw/papers/song/11489-F.pdf,,https://doi.org/10.1109/ICPR.2008.4761284,http://figment.cse.usf.edu/~sfefilat/data/papers/ThBCT8.41.pdf +2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,,,,http://doi.acm.org/10.1145/3090311 +2ff9618ea521df3c916abc88e7c85220d9f0ff06,http://pdfs.semanticscholar.org/bb08/f64565ee68e868dcab904cada9646dd5f676.pdf,,,http://orzo.union.edu/Archives/SeniorProjects/2014/CS.2014/files/leveillc/leveille_thesis_presentation_slides.pdf +2fda461869f84a9298a0e93ef280f79b9fb76f94,https://www.cl.cam.ac.uk/research/rainbow/projects/openface/wacv2016.pdf,,,https://www.cl.cam.ac.uk/~tb346/pub/papers/wacv2016.pdf +2ff9ffedfc59422a8c7dac418a02d1415eec92f1,http://pdfs.semanticscholar.org/6e3b/778ad384101f792284b42844518f620143aa.pdf,,,http://www.crcv.ucf.edu/papers/CRCV-TR-13-01.pdf +2fb8d7601fc3ad637781127620104aaab5122acd,,,, +2fdce3228d384456ea9faff108b9c6d0cf39e7c7,http://pdfs.semanticscholar.org/2fdc/e3228d384456ea9faff108b9c6d0cf39e7c7.pdf,,https://doi.org/10.1109/FG.2011.5771370,http://mplab.ucsd.edu/~marni/pubs/Littlewort_FERA_FG2011.pdf +2f7e9b45255c9029d2ae97bbb004d6072e70fa79,http://pdfs.semanticscholar.org/2f7e/9b45255c9029d2ae97bbb004d6072e70fa79.pdf,,,https://arxiv.org/pdf/1605.08247v1.pdf +2f53b97f0de2194d588bc7fb920b89cd7bcf7663,http://pdfs.semanticscholar.org/2f53/b97f0de2194d588bc7fb920b89cd7bcf7663.pdf,,,http://arxiv.org/abs/1511.02023 +2f16baddac6af536451b3216b02d3480fc361ef4,http://cs.nyu.edu/~fergus/teaching/vision/10_facerec.pdf,,https://doi.org/10.1109/CVPR.2015.7298891,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2A_057_ext.pdf +2f489bd9bfb61a7d7165a2f05c03377a00072477,http://pdfs.semanticscholar.org/2f48/9bd9bfb61a7d7165a2f05c03377a00072477.pdf,,,http://www.bmva.org/bmvc/2014/papers/paper068/index.html +2f2aa67c5d6dbfaf218c104184a8c807e8b29286,http://sesame.comp.nus.edu.sg/components/com_flexicontent/uploads/lekhaicon13.pdf,,https://doi.org/10.1109/ICON.2013.6782002, +2f7aa942313b1eb12ebfab791af71d0a3830b24c,,,, +2fe86e9c115562df2114eeedc7db1aece07a3638,,,, +2f16459e2e24dc91b3b4cac7c6294387d4a0eacf,http://pdfs.semanticscholar.org/2f16/459e2e24dc91b3b4cac7c6294387d4a0eacf.pdf,,https://doi.org/10.1016/j.bdr.2017.06.002,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2017/triantafyllidou_nousi_tefas_big_data_and_neural_networks.pdf +2f8ef56c1007a02cdc016219553479d6b7e097fb,,,https://doi.org/10.1007/978-3-642-14834-7_2, +2f0b8579829b3d4efdbc03c96821e33d7cc65e1d,http://thoth.inrialpes.fr/people/mpederso/papers/cvpr14-facial.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Pedersoli_Using_a_Deformation_2014_CVPR_paper.pdf +2f3ec6d666d7b94b63a104f92859199428b77f78,,,, +2f59f28a1ca3130d413e8e8b59fb30d50ac020e2,http://pralab.diee.unica.it/sites/default/files/Satta_ICPR2014.pdf,,https://doi.org/10.1109/ICPR.2014.70, +2f78e471d2ec66057b7b718fab8bfd8e5183d8f4,http://pdfs.semanticscholar.org/2f78/e471d2ec66057b7b718fab8bfd8e5183d8f4.pdf,,,http://advances.utc.sk/index.php/AEEE/article/viewFile/1116/1199 +2fd007088a75916d0bf50c493d94f950bf55c5e6,,,https://doi.org/10.1007/978-981-10-7302-1_1, +2fda164863a06a92d3a910b96eef927269aeb730,http://www.cs.utexas.edu/~grauman/courses/spring2007/395T/papers/berg_names_and_faces.pdf,,,http://www.eecs.berkeley.edu/Research/Projects/CS/vision/human/berg-cvpr04.pdf +2fa057a20a2b4a4f344988fee0a49fce85b0dc33,http://next.comp.nus.edu.sg/sites/default/files/publication-attachments/eHeritage.pdf,,,http://doi.acm.org/10.1145/2502081.2502104 +2f8ef26bfecaaa102a55b752860dbb92f1a11dc6,http://pdfs.semanticscholar.org/2f8e/f26bfecaaa102a55b752860dbb92f1a11dc6.pdf,,https://doi.org/10.1007/978-3-642-10467-1_89,http://www.researchgate.net/profile/Gerard_Chollet/publication/220762911_A_Graph_Based_Approach_to_Speaker_Retrieval_in_Talk_Show_Videos_with_Transcript-Based_Supervision/links/09e4150405d7a48000000000.pdf +2ff6f7e489ae8ff054422444a5e0604e30f3e97b,,,, +2f43b614607163abf41dfe5d17ef6749a1b61304,,,https://doi.org/10.1109/TIFS.2014.2361479, +2f28db98e8250cff29bc64b569801c739036e4ef,,,, +2f5ae4d6cd240ec7bc3f8ada47030e8439125df2,http://users.eecs.northwestern.edu/~xsh835/CVPR14_ExemplarFaceDetection.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.238 +2f1b521c29ab075a0cd9bbf56ba26ee13d5e4d76,,,https://doi.org/10.1109/ACPR.2015.7486607, +2f5b51af8053cf82ab52bbfd46b56999222ec21c,,,https://doi.org/10.1109/ICPR.2014.788, +2f184c6e2c31d23ef083c881de36b9b9b6997ce9,http://pdfs.semanticscholar.org/2f18/4c6e2c31d23ef083c881de36b9b9b6997ce9.pdf,,https://doi.org/10.1007/978-3-642-34166-3_33,http://www.researchgate.net/profile/Roberto_DAmbrosio/publication/234062424_Polichotomies_on_Imbalanced_Domains_by_One-per-Class_Compensated_Reconstruction_Rule/links/0912f50ec10226f8fa000000.pdf +2f348a2ad3ba390ee178d400be0f09a0479ae17b,http://www.csee.wvu.edu/~richas/ML-Papers/Gabor-Based%20Kernel%20PCA.pdf,,,http://www.cs.njit.edu/~liu/papers/tPAMI_3.pdf +2f9c173ccd8c1e6b88d7fb95d6679838bc9ca51d,http://arxiv.org/pdf/1604.02917v1.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/gpde.pdf +2f598922f81e65c1f3ffbd8c2456d2e9dcd7124a,http://pdfs.semanticscholar.org/464c/21d54339c3f6e624ce026fef53b19c1edd86.pdf,,,http://www.jmlr.org/papers/volume17/15-176/15-176.pdf +2f8183b549ec51b67f7dad717f0db6bf342c9d02,http://www.wisdom.weizmann.ac.il/~ronen/papers/Kemelmacher%20Basri%20-%203D%20Face%20Reconstruction%20from%20a%20Single%20Image%20Using%20a%20Single%20Reference%20Face%20Shape.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.63 +2f841ff062053f38725030aa1b77db903dad1efb,,,https://doi.org/10.1109/ICRA.2014.6907748, +2facf3e85240042a02f289a0d40fee376c478d0f,,,https://doi.org/10.1109/BTAS.2010.5634544, +2f61d91033a06dd904ff9d1765d57e5b4d7f57a6,,,https://doi.org/10.1109/ICIP.2016.7532953, +2f160a6526ebf10773680dadaba44b006bcec2cb,,,https://doi.org/10.1016/j.neucom.2012.03.007, +2f13dd8c82f8efb25057de1517746373e05b04c4,http://www.cfar.umd.edu/~rama/Publications/Ni_ICIP.pdf,,https://doi.org/10.1109/ICIP.2010.5652608,http://www.umiacs.umd.edu/users/rama/Publications/Ni_ICIP.pdf +2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475,http://pdfs.semanticscholar.org/2fa1/fc116731b2b5bb97f06d2ac494cb2b2fe475.pdf,,,https://www.researchgate.net/profile/Filippo_Vella/publication/236025118_A_novel_approach_to_personal_photo_album_representation_and_management/links/54f487400cf2ba6150634dc4.pdf +2f2406551c693d616a840719ae1e6ea448e2f5d3,http://biometrics.cse.msu.edu/Presentations/CharlesOtto_ICB13_AgeEstimationFaceImages_HumanVsMachinePerformance.pdf,,https://doi.org/10.1109/ICB.2013.6613022,http://biometrics.cse.msu.edu/Publications/Face/HanOttoJain_AgeEstimationFaceImages_HumanvsMachinePerformance_ICB13.pdf +2f17c0514bb71e0ca20780d71ea0d50ff0da4938,,,,http://doi.acm.org/10.1145/1943403.1943490 +2f882ceaaf110046e63123b495212d7d4e99f33d,http://pdfs.semanticscholar.org/2f88/2ceaaf110046e63123b495212d7d4e99f33d.pdf,,,http://www.itr-rescue.org/pubs/upload/377_Wu2005.pdf +2f95340b01cfa48b867f336185e89acfedfa4d92,https://www2.informatik.uni-hamburg.de/wtm/ps/Hamester_IJCNN2015.pdf,,https://doi.org/10.1109/IJCNN.2015.7280539, +2f7fc778e3dec2300b4081ba2a1e52f669094fcd,http://pdfs.semanticscholar.org/2f7f/c778e3dec2300b4081ba2a1e52f669094fcd.pdf,,,https://arxiv.org/pdf/1704.01716v1.pdf +2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1,http://pdfs.semanticscholar.org/f39c/e446b7c76d24cc63df7837cb3be0ee235df2.pdf,,https://doi.org/10.1007/978-3-319-69456-6_12,https://arxiv.org/pdf/1608.02833v3.pdf +2faa09413162b0a7629db93fbb27eda5aeac54ca,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=905048,,https://doi.org/10.1109/CVPRW.2010.5543228,http://www.cs.colostate.edu/~draper/papers/beveridge_cvprw10.pdf +2f5e057e35a97278a9d824545d7196c301072ebf,http://vision.ics.uci.edu/papers/ZhuAR_CVPR_2014/ZhuAR_CVPR_2014.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Zhu_Capturing_Long-tail_Distributions_2014_CVPR_paper.pdf +2f04ba0f74df046b0080ca78e56898bd4847898b,https://arxiv.org/pdf/1407.4023v2.pdf,,https://doi.org/10.1109/BTAS.2014.6996284,http://www.cbsr.ia.ac.cn/users/zlei/papers/Yang-IJCB-14.pdf +433bb1eaa3751519c2e5f17f47f8532322abbe6d,http://pdfs.semanticscholar.org/433b/b1eaa3751519c2e5f17f47f8532322abbe6d.pdf,,,http://www.cps.msu.edu/~weng/research/BioChapter.ps +4300fa1221beb9dc81a496cd2f645c990a7ede53,http://pdfs.semanticscholar.org/da71/87e56b6da1b9c993d9a096d2f2b9d80fb14c.pdf,,https://doi.org/10.1016/j.patcog.2007.07.022,http://www.cc.gatech.edu/~hpark/papers/Article_cor_nostyle.pdf +43010792bf5cdb536a95fba16b8841c534ded316,https://www.comp.nus.edu.sg/~tsim/documents/general-face-motion.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539971 +43bb20ccfda7b111850743a80a5929792cb031f0,http://pdfs.semanticscholar.org/43bb/20ccfda7b111850743a80a5929792cb031f0.pdf,,,http://eprints-phd.biblio.unitn.it/1168/1/dnductien_PhDThesis.pdf +439ac8edfa1e7cbc65474cab544a5b8c4c65d5db,http://pdfs.semanticscholar.org/439a/c8edfa1e7cbc65474cab544a5b8c4c65d5db.pdf,,https://doi.org/10.1007/s11760-011-0244-6,https://www.researchgate.net/profile/Daniel_Riccio/publication/220437296_Face_authentication_with_undercontrolled_pose_and_illumination/links/53fb66060cf2dca8fffe696f.pdf +43f6953804964037ff91a4f45d5b5d2f8edfe4d5,http://ias.cs.tum.edu/_media/spezial/bib/riaz09fit.pdf,,,http://doi.acm.org/10.1145/1838002.1838039 +439ec47725ae4a3660e509d32828599a495559bf,http://pdfs.semanticscholar.org/439e/c47725ae4a3660e509d32828599a495559bf.pdf,,,https://www.researchgate.net/profile/Miguel_Dias2/publication/277722899_Facial_Expressions_Tracking_and_Recognition_Database_Protocols_for_Systems_Validation_and_Evaluation/links/55d10c1908aee19936fda410.pdf?origin=publication_list +43261920d2615f135d6e72b333fe55d3f2659145,,,,http://doi.acm.org/10.1145/3136273.3136301 +43e99b76ca8e31765d4571d609679a689afdc99e,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yu_Learning_Dense_Facial_ICCV_2017_paper.pdf,,,https://arxiv.org/pdf/1709.00536v1.pdf +4377b03bbee1f2cf99950019a8d4111f8de9c34a,http://www.umiacs.umd.edu/~morariu/publications/LiSelectiveEncoderICCV15.pdf,,,http://www.cs.umd.edu/~angli/paper/selectivecode-iccv2015.pdf +43a03cbe8b704f31046a5aba05153eb3d6de4142,http://pdfs.semanticscholar.org/9594/3329cd6922a869dd6d58ef01e9492879034c.pdf,,,http://www.ornl.gov/~webworks/cppr/y2001/pres/112191.pdf +434bf475addfb580707208618f99c8be0c55cf95,http://pdfs.semanticscholar.org/8cea/404e8a5c4c11064923e5a6c023a0ae594a5a.pdf,,,https://arxiv.org/pdf/1509.05371v1.pdf +43836d69f00275ba2f3d135f0ca9cf88d1209a87,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0030-7?site=ipsjcva.springeropen.com,,https://doi.org/10.1186/s41074-017-0030-7, +4307e8f33f9e6c07c8fc2aeafc30b22836649d8c,http://pdfs.semanticscholar.org/ebff/0956c07185f7bb4e4ee5c7cc0aaa74aca05e.pdf,,https://doi.org/10.1007/978-3-642-33718-5_32,http://geometry.stanford.edu//papers/wg-semdlcva-12/wg-semdlcva-12.pdf +435642641312364e45f4989fac0901b205c49d53,http://pdfs.semanticscholar.org/4356/42641312364e45f4989fac0901b205c49d53.pdf,,,http://www.ee.cuhk.edu.hk/~xgwang/papers/luoZLWXaaai16.pdf +43aa40eaa59244c233f83d81f86e12eba8d74b59,http://pdfs.semanticscholar.org/43aa/40eaa59244c233f83d81f86e12eba8d74b59.pdf,,https://doi.org/10.1016/j.patrec.2014.05.017,https://udrc.eng.ed.ac.uk/sites/udrc.eng.ed.ac.uk/files/publications/Pose_invariantPRL2014_kittler.pdf +4349f17ec319ac8b25c14c2ec8c35f374b958066,,,https://doi.org/10.1109/THMS.2017.2681425, +43cbe3522f356fbf07b1ff0def73756391dc3454,,,https://doi.org/10.1109/WIFS.2011.6123140, +4362368dae29cc66a47114d5ffeaf0534bf0159c,http://pdfs.semanticscholar.org/4362/368dae29cc66a47114d5ffeaf0534bf0159c.pdf,,,http://www.seekdl.org/upload/files/20130309_062502.pdf +4350bb360797a4ade4faf616ed2ac8e27315968e,http://www.merl.com/publications/docs/TR2006-058.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2006.106 +4398afa0aeb5749a12772f2d81ca688066636019,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2496320 +4344ba6e33faaa616d01248368e66799548ca48b,,,https://doi.org/10.1007/s10044-015-0474-2, +43476cbf2a109f8381b398e7a1ddd794b29a9a16,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Cao_A_Practical_Transfer_2013_ICCV_paper.pdf,,,https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/TransferLearning.pdf +43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,,,https://doi.org/10.1109/ICIP.2017.8296394, +4353d0dcaf450743e9eddd2aeedee4d01a1be78b,http://pdfs.semanticscholar.org/4353/d0dcaf450743e9eddd2aeedee4d01a1be78b.pdf,,https://doi.org/10.5244/C.22.27,http://www.comp.leeds.ac.uk/bmvc2008/proceedings/papers/100.pdf +43bb2b58f906262035ef61e41768375bc8d99ae3,,,https://doi.org/10.1016/j.procs.2016.04.072, +4328933890f5a89ad0af69990926d8484f403e4b,,,,http://doi.acm.org/10.1145/2072298.2071993 +433d2d5528d1401a402f2c1db40b933c494f11ba,https://www.researchgate.net/profile/Xudong_Jiang3/publication/4248964_Face_Recognition_Based_on_Discriminant_Evaluation_in_the_Whole_Space/links/0046351ef2d1c48d55000000.pdf,,https://doi.org/10.1109/ICASSP.2007.366218, +437a720c6f6fc1959ba95e48e487eb3767b4e508,http://pdfs.semanticscholar.org/d4f0/960c6587379ad7df7928c256776e25952c60.pdf,,,https://perso.telecom-paristech.fr/bloch/AIC/articles/BenYosef2017.pdf +436d80cc1b52365ed7b2477c0b385b6fbbb51d3b,http://pdfs.semanticscholar.org/436d/80cc1b52365ed7b2477c0b385b6fbbb51d3b.pdf,,,https://arxiv.org/pdf/1803.10837v1.pdf +434f1442533754b3098afd4e24abf1e3792b24db,,,https://doi.org/10.1109/CBMI.2015.7153627, +434d6726229c0f556841fad20391c18316806f73,https://arxiv.org/pdf/1704.03114v2.pdf,,,http://arxiv.org/abs/1704.03114 +43fca653880f4e4d238c73d864e964475e4b90c8,,,, +43b8b5eeb4869372ef896ca2d1e6010552cdc4d4,http://pdfs.semanticscholar.org/43b8/b5eeb4869372ef896ca2d1e6010552cdc4d4.pdf,,,http://arxiv.org/abs/1407.1490 +43ae4867d058453e9abce760ff0f9427789bab3a,https://infoscience.epfl.ch/record/207780/files/tnnls_graph_embedding.pdf,,https://doi.org/10.1109/TNNLS.2014.2329240,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2015/GRAPH_TNN.pdf +43eb03f95adc0df61af2c3b12a913c725b08d4f5,,,,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2011.101 +435dc062d565ce87c6c20a5f49430eb9a4b573c4,http://pdfs.semanticscholar.org/435d/c062d565ce87c6c20a5f49430eb9a4b573c4.pdf,,,https://www.researchgate.net/profile/Masashi_Sugiyama/publication/220239806_Lighting_Condition_Adaptation_for_Perceived_Age_Estimation/links/0fcfd51196d6cec38c000000.pdf +430c4d7ad76e51d83bbd7ec9d3f856043f054915,http://pdfs.semanticscholar.org/5176/899c80b3d4b3b8be34d35549f95bf2d55e7d.pdf,,,https://arxiv.org/pdf/1612.06795v2.pdf +438b88fe40a6f9b5dcf08e64e27b2719940995e0,http://www.csd.uwo.ca/~olga/Courses/Fall2006/StudentPapers/ferenczMillerMalikICCV05.pdf,,,https://people.cs.umass.edu/~elm/papers/ICCV_hyperfeatures.pdf +43af016138d541c95e9d1880413e05356fa9a323,,,, +433a6d6d2a3ed8a6502982dccc992f91d665b9b3,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,,,http://arxiv.org/abs/1409.0602 +438e7999c937b94f0f6384dbeaa3febff6d283b6,https://arxiv.org/pdf/1705.02402v2.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.262 +43776d1bfa531e66d5e9826ff5529345b792def7,http://cvrr.ucsd.edu/scmartin/presentation/DriveAnalysisByLookingIn-ITSC2015-NDS.pdf,,https://doi.org/10.1109/ITSC.2015.367,http://cvrr.ucsd.edu/publications/2015/MartinOhnbarTrivedi_ITSC2015.pdf +43fb9efa79178cb6f481387b7c6e9b0ca3761da8,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Katti_Mixture_of_Parts_2015_CVPR_paper.pdf,,,https://arxiv.org/pdf/1412.6791v1.pdf +43ed518e466ff13118385f4e5d039ae4d1c000fb,https://arxiv.org/pdf/1505.01350v1.pdf,,https://doi.org/10.1109/ICMLA.2015.149,http://arxiv.org/pdf/1505.01350v1.pdf +43a4dd79bb26e3b722ac8bea20f5916c30599851,,,, +4309faac3248663ed56a6a841cac1855e302f090,,,, +439647914236431c858535a2354988dde042ef4d,http://eecs.qmul.ac.uk/~jason/Research/PreprintVersion/Face%20Illumination%20Normalization%20on%20Large%20and%20Small%20Scale%20Features.pdf,,,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/471.pdf +439ca6ded75dffa5ddea203dde5e621dc4a88c3e,http://research.cs.rutgers.edu/~hxp1/rc_images/hai_facetrack_icpr2016.pdf,,https://doi.org/10.1109/ICPR.2016.7899906, +8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4,http://www.apsipa.org/proceedings_2013/papers/280_automatic-facial-hsu-2931731.pdf,,https://doi.org/10.1109/APSIPA.2013.6694238, +88780bd55615c58d9bacc4d66fc2198e603a1714,,,https://doi.org/10.1109/EMBC.2016.7590730, +88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320,http://pdfs.semanticscholar.org/88c6/d4b73bd36e7b5a72f3c61536c8c93f8d2320.pdf,,,http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-81.pdf +88ad82e6f2264f75f7783232ba9185a2f931a5d1,http://pdfs.semanticscholar.org/88ad/82e6f2264f75f7783232ba9185a2f931a5d1.pdf,,,https://arxiv.org/pdf/1802.08784v1.pdf +8886b21f97c114a23b24dc7025bbf42885adc3a7,http://researchprofiles.herts.ac.uk/portal/files/10195320/UH_eval_deid_face_final.pdf,,https://doi.org/10.1109/MIPRO.2016.7522350, +8816f93e46a2c47e02d82294f94aa83f95ac379b,,,, +8879083463a471898ff9ed9403b84db277be5bf6,,,https://doi.org/10.1016/j.patcog.2016.08.031, +889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7,http://mmlab.ie.cuhk.edu.hk/archive/2007/IFS07_face.pdf,,https://doi.org/10.1109/TIFS.2007.897247,http://vc.cs.nthu.edu.tw/home/paper/codfiles/clhsu/200706211216/Using_Support_Vector_Machines_to_Enhance_the_Performance.pdf +88f7a3d6f0521803ca59fde45601e94c3a34a403,http://pdfs.semanticscholar.org/88f7/a3d6f0521803ca59fde45601e94c3a34a403.pdf,,https://doi.org/10.1007/978-3-319-10590-1_50,http://www-scf.usc.edu/~chensun/data/SunNevatia_ECCV14.pdf +8812aef6bdac056b00525f0642702ecf8d57790b,http://pdfs.semanticscholar.org/8812/aef6bdac056b00525f0642702ecf8d57790b.pdf,,,http://ias.in.tum.de/_media/spezial/bib/riaz09acii.pdf +881066ec43bcf7476479a4146568414e419da804,http://pdfs.semanticscholar.org/8810/66ec43bcf7476479a4146568414e419da804.pdf,,https://doi.org/10.1007/978-3-319-45886-1_20,https://arxiv.org/pdf/1610.05613v1.pdf +884a9ce87d4d2338cb97bf4c8df3cdb079a87d5e,,,https://doi.org/10.1109/SMC.2016.7844717, +8879fed9f8f51a4c0734af22c5632cf6e9b07689,,,, +8813368c6c14552539137aba2b6f8c55f561b75f,https://arxiv.org/pdf/1607.05427v1.pdf,,,http://arxiv.org/pdf/1607.05427v1.pdf +88e2574af83db7281c2064e5194c7d5dfa649846,http://pdfs.semanticscholar.org/88e2/574af83db7281c2064e5194c7d5dfa649846.pdf,,https://doi.org/10.1155/2017/4579398, +88ed558bff3600f5354963d1abe762309f66111e,,,https://doi.org/10.1109/TIFS.2015.2393553, +88bef50410cea3c749c61ed68808fcff84840c37,https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiropoulos2011sparse.pdf,,https://doi.org/10.1109/CVPRW.2011.5981809,http://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiropoulos2011sparse.pdf +88399c7fa890f1252178cd5e4979971509bd904f,,,https://doi.org/10.1142/S0219878906000915, +883006c0f76cf348a5f8339bfcb649a3e46e2690,http://mplab.ucsd.edu/~marni/pubs/Sikka_FG2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553762 +88850b73449973a34fefe491f8836293fc208580,http://pdfs.semanticscholar.org/8885/0b73449973a34fefe491f8836293fc208580.pdf,,,http://www.ijaret.org/2.1/XBeats-An%20Emotion%20Based%20Music%20Player.pdf +8875dcf2836315839741fd6944f249263408c27f,,,, +8820d1d3fa73cde623662d92ecf2e3faf1e3f328,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w2/papers/Victor_Continuous_Video_to_CVPR_2017_paper.pdf,,,https://arxiv.org/pdf/1705.09894v1.pdf +880be65e233d4302744e2154b2ef172291ee9779,,,, +88f2952535df5859c8f60026f08b71976f8e19ec,http://pdfs.semanticscholar.org/88f2/952535df5859c8f60026f08b71976f8e19ec.pdf,,,http://www.inase.org/library/2015/barcelona/bypaper/ELECTR/ELECTR-12.pdf +8845c03bee88fdd2f400ed2bddba038366c82abe,,,,http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.135 +8862a573a42bbaedd392e9e634c1ccbfd177a01d,https://arxiv.org/pdf/1605.06764v1.pdf,,https://doi.org/10.1109/LSP.2016.2643284,http://arxiv.org/pdf/1605.06764v1.pdf +8882d39edae556a351b6445e7324ec2c473cadb1,,,https://doi.org/10.1109/TIP.2017.2755766, +88c21e06ed44da518a7e346fce416efedc771704,,,https://doi.org/10.1109/ICIP.2015.7351455, +887b7676a4efde616d13f38fcbfe322a791d1413,http://pdfs.semanticscholar.org/b4a0/cff84c35f75bcdb7aec3a0b1395edd15189b.pdf,,,http://arxiv.org/abs/1503.01532 +8878871ec2763f912102eeaff4b5a2febfc22fbe,http://www.ee.columbia.edu/~wliu/TIP15_action.pdf,,https://doi.org/10.1109/TIP.2015.2456412,http://vireo.cs.cityu.edu.hk/papers/TIP-Action-Motion.pdf +8855d6161d7e5b35f6c59e15b94db9fa5bbf2912,http://pdfs.semanticscholar.org/8855/d6161d7e5b35f6c59e15b94db9fa5bbf2912.pdf,,,https://macsphere.mcmaster.ca/bitstream/11375/11955/1/fulltext.pdf +88d63a0cc0b8a5303bdef286d6df118bb1d44d26,,,, +88bee9733e96958444dc9e6bef191baba4fa6efa,http://homepages.dcc.ufmg.br/~william/papers/paper_2014_SIBGRAPI.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2014.23 +888581e88c1cbfb8e905c317c6944b6ac2d4557c,,,, +88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002697.pdf,,https://doi.org/10.1109/ICASSP.2016.7472167, +887745c282edf9af40d38425d5fdc9b3fe139c08,https://arxiv.org/pdf/1407.2987v1.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Golge_FAME_Face_Association_2015_CVPR_paper.pdf +9f5e22fbc22e1b0a61bcd75202d299232e68de5d,,,https://doi.org/10.1109/IJCNN.2016.7727391, +9fab78015e6e91ba7241a923222acd6c576c6e27,,,,http://doi.ieeecomputersociety.org/10.1109/ICSS.2016.10 +9f8ebf149aed8a0eda5c3375c9947c6b26eb7873,http://www.cais.ntu.edu.sg/~chhoi/paper_pdf/fp21-wang.pdf,,,http://www2013.org/companion/p317.pdf +9f6d04ce617d24c8001a9a31f11a594bd6fe3510,http://pdfs.semanticscholar.org/9f6d/04ce617d24c8001a9a31f11a594bd6fe3510.pdf,,,https://sites.ualberta.ca/~efujiwar/PAID_ArndtFujiwara12.pdf +9f499948121abb47b31ca904030243e924585d5f,http://pdfs.semanticscholar.org/9f49/9948121abb47b31ca904030243e924585d5f.pdf,,,http://arxiv.org/abs/1607.06416 +9f3c9e41f46df9c94d714b1f080dafad6b4de1de,,,https://doi.org/10.1109/ICT.2017.7998260, +9f428db0d3cf26b9b929dd333a0445bcc7514cdf,,,https://doi.org/10.1016/j.cviu.2010.11.015, +9fc04a13eef99851136eadff52e98eb9caac919d,http://pdfs.semanticscholar.org/9fc0/4a13eef99851136eadff52e98eb9caac919d.pdf,,,http://www.andrew.cmu.edu/user/sjayasur/camera-wax.pdf +9f4078773c8ea3f37951bf617dbce1d4b3795839,http://pdfs.semanticscholar.org/9f40/78773c8ea3f37951bf617dbce1d4b3795839.pdf,,,https://www.ri.cmu.edu/wp-content/uploads/2017/05/Masters_Thesis.pdf +9fb701dd40e35a6abc973b6d89a455de45dd8616,,,, +9f65319b8a33c8ec11da2f034731d928bf92e29d,http://pdfs.semanticscholar.org/9f65/319b8a33c8ec11da2f034731d928bf92e29d.pdf,,,https://dds.cct.lsu.edu/ddslab/pdf/gallo2018.pdf +9fd1b8abbad25cb38f0c009288fb5db0fc862db6,,,https://doi.org/10.1109/ICASSP.2003.1199147, +9fbcf40b0649c03ba0f38f940c34e7e6c9e04c03,,,https://doi.org/10.1007/s10044-006-0033-y, +9fd8d24a9db7cbcdf607994051d89667e95d7186,,,, +9fa1be81d31fba07a1bde0275b9d35c528f4d0b8,http://pdfs.semanticscholar.org/9fa1/be81d31fba07a1bde0275b9d35c528f4d0b8.pdf,,,http://nichol.as/papers/thesis.pdf +9f094341bea610a10346f072bf865cb550a1f1c1,http://zhiweizhu.com/papers/FIVR_MobileDevice_2009.pdf,,https://doi.org/10.1109/WACV.2009.5403087, +9f4f890f74ac91bdc4323e061502331945474b90,,,, +9f49013657cbce384df9b16a2a17293bc4c9d967,,,, +6b44543571fe69f088be577d0c383ffc65eceb2a,,,,http://doi.ieeecomputersociety.org/10.1109/EST.2012.24 +6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9,http://pdfs.semanticscholar.org/6b9a/a288ce7740ec5ce9826c66d059ddcfd8dba9.pdf,,https://doi.org/10.1016/j.image.2017.08.012,http://www.bnusei.net/wp-content/uploads/2017/11/BNU-LSVED-2.pdf +6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553724 +6b0a2f9ab9b134d66a325525ea5d90ad546fe2b7,,,https://doi.org/10.1109/IJCNN.2016.7727803, +6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Afshar_Facial_Expression_Recognition_CVPR_2016_paper.pdf,,,https://www.cmpe.boun.edu.tr/~salah/afshar06cvprw.pdf +6b06b79ad1f1907e21380083b976b24a89a0f743,,,, +6bf88e29ac04d72297e6f8f2971c5b8579786e7f,,,, +6bca0d1f46b0f7546ad4846e89b6b842d538ee4e,http://pdfs.semanticscholar.org/6bca/0d1f46b0f7546ad4846e89b6b842d538ee4e.pdf,,,http://www3.nd.edu/~flynn/papers/DeborahThomasDissertation.pdf +6b089627a4ea24bff193611e68390d1a4c3b3644,http://publications.idiap.ch/downloads/reports/2012/Wallace_Idiap-RR-03-2012.pdf,,https://doi.org/10.1109/TIFS.2012.2184095, +6be0ab66c31023762e26d309a4a9d0096f72a7f0,http://pdfs.semanticscholar.org/6be0/ab66c31023762e26d309a4a9d0096f72a7f0.pdf,,,https://arxiv.org/pdf/1712.07732v1.pdf +6bacd4347f67ec60a69e24ed7cc0ac8073004e6f,,,https://doi.org/10.1109/VCIP.2014.7051528, +6bcee7dba5ed67b3f9926d2ae49f9a54dee64643,http://pdfs.semanticscholar.org/6bce/e7dba5ed67b3f9926d2ae49f9a54dee64643.pdf,,https://doi.org/10.1007/3-540-44887-X_6,https://www3.nd.edu/~kwb/Flynn_Bowyer_Phillips_AVBPA_2003.pdf +6b18628cc8829c3bf851ea3ee3bcff8543391819,http://engineering.cae.cn/fitee/fileup/2095-9184/SUPPL/20151221082702_2.pdf,,https://doi.org/10.1631/FITEE.1500085, +6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6,http://pdfs.semanticscholar.org/6b7f/7817b2e5a7e7d409af2254a903fc0d6e02b6.pdf,,https://doi.org/10.1142/S021800140900717X,http://www.researchgate.net/profile/Ioan_Nafornita/publication/220360447_Feature_Extraction_through_Cross-Phase_Congruency_for_Facial_Expression_Analysis/links/004635260b2a4e24f8000000.pdf +6bb95a0f3668cd36407c85899b71c9fe44bf9573,http://pdfs.semanticscholar.org/6bb9/5a0f3668cd36407c85899b71c9fe44bf9573.pdf,,,http://arxiv.org/pdf/1602.03935v1.pdf +6ba6045e4b404c44f9b4dfce2d946019f0e85a72,,,https://doi.org/10.1109/ICPR.2016.7899962, +6b8329730b2e13178a577b878631735a1cd58a71,,,,http://doi.ieeecomputersociety.org/10.1109/FiCloud.2015.78 +6b1b43d58faed7b457b1d4e8c16f5f7e7d819239,http://pdfs.semanticscholar.org/6b1b/43d58faed7b457b1d4e8c16f5f7e7d819239.pdf,,https://doi.org/10.1016/j.neucom.2015.06.079,https://pdfs.semanticscholar.org/6b1b/43d58faed7b457b1d4e8c16f5f7e7d819239.pdf +6b14d2554d653b0c2fd0537535e3411864979a37,,,, +6bb0425baac448297fbd29a00e9c9b9926ce8870,http://pdfs.semanticscholar.org/6bb0/425baac448297fbd29a00e9c9b9926ce8870.pdf,,,https://www.researchgate.net/profile/Zahir_Hussain3/publication/228525389_Facial_expression_recognition_using_log-Gabor_filters_and_local_binary_pattern_operators/links/0c96053a4a3f088f9b000000.pdf +6b35b15ceba2f26cf949f23347ec95bbbf7bed64,http://pdfs.semanticscholar.org/6b35/b15ceba2f26cf949f23347ec95bbbf7bed64.pdf,,https://doi.org/10.1016/j.imavis.2015.06.010,http://lhncbc.nlm.nih.gov/system/files/pub9220.pdf +6b6493551017819a3d1f12bbf922a8a8c8cc2a03,http://pdfs.semanticscholar.org/6b64/93551017819a3d1f12bbf922a8a8c8cc2a03.pdf,,https://doi.org/10.1007/978-3-642-01793-3_4,http://cvhci.ira.uka.de/download/publications/ICB_2009_208.pdf +6b17b219bd1a718b5cd63427032d93c603fcf24f,http://pdfs.semanticscholar.org/6b17/b219bd1a718b5cd63427032d93c603fcf24f.pdf,,,http://repository.cmu.edu/cgi/viewcontent.cgi?article=1243&context=lti +6bb630dfa797168e6627d972560c3d438f71ea99,http://arxiv.org/pdf/1609.03056v1.pdf,,https://doi.org/10.1109/TMM.2017.2666540,https://arxiv.org/pdf/1609.03056v2.pdf +0729628db4bb99f1f70dd6cb2353d7b76a9fce47,http://pdfs.semanticscholar.org/f02a/dc21a307d32c1145f4ade65504b016b0faac.pdf,,,http://www.nip-lr.info/V11N04-06/V11N04P4-91-100.pdf +0728f788107122d76dfafa4fb0c45c20dcf523ca,http://arxiv.org/pdf/1505.04427v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.152 +07c90e85ac0f74b977babe245dea0f0abcf177e3,http://pdfs.semanticscholar.org/07c9/0e85ac0f74b977babe245dea0f0abcf177e3.pdf,,https://doi.org/10.1007/3-540-44887-X_2,http://dagwood.vsam.ri.cmu.edu/ralph/Publications/avbpa03.pdf +07ea3dd22d1ecc013b6649c9846d67f2bf697008,http://pdfs.semanticscholar.org/07ea/3dd22d1ecc013b6649c9846d67f2bf697008.pdf,,,http://ai.stanford.edu/~vigneshr/thesis/vignesh_ramanathan_dissertation_v3.pdf +071099a4c3eed464388c8d1bff7b0538c7322422,http://arxiv.org/pdf/1601.02487v1.pdf,,https://doi.org/10.1109/ICIP.2015.7351443,http://arxiv.org/abs/1601.02487 +07dc9f3b34284cc915dea7575f40ef0c04338126,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2537337 +070c8ee3876c06f9a65693e536d61097ace40417,,,https://doi.org/10.1109/ACPR.2013.161, +07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf,,https://doi.org/10.1109/BTAS.2013.6712756,http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf +0733ec1953f6c774eb3a723618e1268586b46359,,,https://doi.org/10.1109/TMM.2006.870737, +076d3fc800d882445c11b9af466c3af7d2afc64f,http://slsp.kaist.ac.kr/paperdata/Face_attribute_classification.pdf,,https://doi.org/10.1109/ICIP.2015.7351743, +07ac2e342db42589322b28ef291c2702f4a793a8,http://www.cs.illinois.edu/homes/dhoiem/publications/cvpr2009_santosh_context.pdf,,,http://www.ri.cmu.edu/pub_files/2009/6/0987.pdf +0750c796467b6ef60b0caff5fb199337d54d431e,,,https://doi.org/10.1109/ICMLC.2016.7873015, +071af21377cc76d5c05100a745fb13cb2e40500f,http://pdfs.semanticscholar.org/071a/f21377cc76d5c05100a745fb13cb2e40500f.pdf,,,http://repository.cmu.edu/cgi/viewcontent.cgi?article=2174&context=robotics +0701b01bc99bf3b64050690ceadb58a8800e81ed,,,https://doi.org/10.1007/s11042-015-3107-2, +070ab604c3ced2c23cce2259043446c5ee342fd6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/Biometrics/papers/24-p75.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383399 +0786a6d5ce6db8a68cef05bb5f5b84ec1b0c2cde,http://vipl.ict.ac.cn/sites/default/files/papers/files/2008_ACMMM_cxliu_Naming%20Faces%20in%20Broadcast%20News%20Video%20by%20Image%20Google.pdf,,,http://doi.acm.org/10.1145/1459359.1459468 +071135dfb342bff884ddb9a4d8af0e70055c22a1,http://pdfs.semanticscholar.org/0711/35dfb342bff884ddb9a4d8af0e70055c22a1.pdf,,,https://arxiv.org/pdf/1711.08200v1.pdf +0754e769eb613fd3968b6e267a301728f52358be,http://www.umiacs.umd.edu/~cteo/public-shared/ICRA2012_ActionObjects_preprint.pdf,,https://doi.org/10.1109/ICRA.2012.6224589,http://www.umiacs.umd.edu/~yzyang/talk/ICRA12_ActionObjects.pdf +0773c320713dae62848fceac5a0ac346ba224eca,http://eudl.eu/pdf/10.4108/icst.intetain.2015.259444,http://ieeexplore.ieee.org/document/7325479/,https://doi.org/10.4108/icst.intetain.2015.259444, +070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126510 +079edd5cf7968ac4759dfe72af2042cf6e990efc,http://pdfs.semanticscholar.org/079e/dd5cf7968ac4759dfe72af2042cf6e990efc.pdf,,,https://arxiv.org/pdf/1511.06432v2.pdf +072db5ba5b375d439ba6dbb6427c63cd7da6e940,http://users.ece.cmu.edu/~juefeix/tip_2014_felix.pdf,,https://doi.org/10.1109/TIP.2014.2329460, +0744af11a025e9c072ef6ad102af208e79cc6f44,https://www.researchgate.net/profile/Pascal_Frossard/publication/233799235_Learning_Smooth_Pattern_Transformation_Manifolds/links/00463533951057e9bb000000.pdf,,https://doi.org/10.1109/TIP.2012.2227768,http://www.researchgate.net/profile/Pascal_Frossard/publication/233799235_Learning_Smooth_Pattern_Transformation_Manifolds/links/00463533951057e9bb000000.pdf +07a472ea4b5a28b93678a2dcf89028b086e481a2,http://pdfs.semanticscholar.org/07a4/72ea4b5a28b93678a2dcf89028b086e481a2.pdf,,https://doi.org/10.1007/978-3-642-41190-8_58,http://cvrr.ucsd.edu/publications/2013/TawariTrivedi_ICIAP2013.pdf +0717b47ab84b848de37dbefd81cf8bf512b544ac,http://pdfs.semanticscholar.org/0717/b47ab84b848de37dbefd81cf8bf512b544ac.pdf,,,http://www.ijera.com/special_issue/Humming%20Bird_March_2014/Version%20%204/DH4146.pdf +0708059e3bedbea1cbfae1c8cd6b7259d4b56b5b,http://www.cs.tut.fi/~iosifidi/files/conference/2016_EUSIPCO_GRMCSVM.pdf?dl=0,,https://doi.org/10.1109/EUSIPCO.2016.7760217, +074af31bd9caa61fea3c4216731420bd7c08b96a,http://www.umiacs.umd.edu/~jhchoi/paper/cvprw2012_sfv.pdf,,https://doi.org/10.1109/CVPRW.2012.6239213,http://vipl.ict.ac.cn/homepage/rpwang/publications/Face%20Verification%20Using%20Sparse%20Representations_CVPRW2012.pdf +078d507703fc0ac4bf8ca758be101e75ea286c80,http://pdfs.semanticscholar.org/078d/507703fc0ac4bf8ca758be101e75ea286c80.pdf,,,http://www.ijritcc.org/download/1441258440.pdf +0716e1ad868f5f446b1c367721418ffadfcf0519,http://pdfs.semanticscholar.org/6e05/5db22fbddb524ccb0006145db7944d1ed31c.pdf,,https://doi.org/10.1007/978-3-319-10599-4_22,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/html/8694/86940333/esm1.pdf +073eaa49ccde15b62425cda1d9feab0fea03a842,http://pdfs.semanticscholar.org/073e/aa49ccde15b62425cda1d9feab0fea03a842.pdf,,,http://pure.tudelft.nl/ws/files/11546461/1_s2.0_S1077314215002040_main.pdf +0756efe121e37479157010e18723e0c8da02a34b,,,, +076f2dca12b3e85c282fc678f0d22ad6a3e6dc14,,,, +0748b29b046d0659765649f7831a319ec23967e2,,,, +07d95be4922670ef2f8b11997e0c00eb643f3fca,http://eprints.eemcs.utwente.nl/26833/01/Pantic_The_First_Facial_Landmark_Tracking_in-the-Wild_Challenge.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/shen_the_first_facial_iccv_2015_paper.pdf +07f31bef7a7035792e3791473b3c58d03928abbf,http://videolectures.net/site/normal_dl/tag=977248/fgconference2015_phillips_biometric_samples_01.pdf,,https://doi.org/10.1016/j.imavis.2016.08.004,https://www3.nd.edu/~kwb/Flynn_Phillips_Bowyer_FG_2015.pdf +0726a45eb129eed88915aa5a86df2af16a09bcc1,http://www.ri.cmu.edu/pub_files/2016/7/root-compressed.pdf,,https://doi.org/10.1109/IROS.2016.7759279,http://ri.cmu.edu/pub_files/2016/7/root-compressed.pdf +07de8371ad4901356145722aa29abaeafd0986b9,http://pdfs.semanticscholar.org/07de/8371ad4901356145722aa29abaeafd0986b9.pdf,,,"https://www.lti.cs.cmu.edu/sites/default/files/lan,%20zhenzhong%20-%20CMU-LTI-17-002.pdf" +07e639abf1621ceff27c9e3f548fadfa2052c912,http://pdfs.semanticscholar.org/07e6/39abf1621ceff27c9e3f548fadfa2052c912.pdf,,,http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141474&type=printable +07da958db2e561cc7c24e334b543d49084dd1809,https://infoscience.epfl.ch/record/117525/files/Classification.pdf?version=1,,, +0742d051caebf8a5d452c03c5d55dfb02f84baab,http://research.cs.tamu.edu/keyser/Papers/CGI05Blur-JonesBW.pdf?origin=publication_detail,,,http://research.cs.tamu.edu/keyser/Papers/BlurPoster-SCA2004.pdf +07d986b1005593eda1aeb3b1d24078db864f8f6a,http://pdfs.semanticscholar.org/07d9/86b1005593eda1aeb3b1d24078db864f8f6a.pdf,,,http://pep.ijieee.org.in/journal_pdf/11-203-144896126418-21.pdf +076c97826df63f70d55ea11f0b7ae47a7ad81ad3,,,,http://doi.ieeecomputersociety.org/10.1109/SITIS.2011.40 +38d56ddcea01ce99902dd75ad162213cbe4eaab7,http://pdfs.semanticscholar.org/38d5/6ddcea01ce99902dd75ad162213cbe4eaab7.pdf,,https://doi.org/10.24963/ijcai.2017/369,http://www.ijcai.org/proceedings/2017/0369.pdf +38e7f3fe450b126367ec358be9b4cc04e82fa8c7,,,https://doi.org/10.1109/TIP.2014.2351265, +3813a77005fcc87e1a65c272c9c7a9a87c80c000,,,, +3888d7a40f3cea5e4a851c8ca97a2d7810a62867,,,https://doi.org/10.1109/CCECE.2016.7726684, +389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26,http://pdfs.semanticscholar.org/3893/34e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26.pdf,,https://doi.org/10.1109/ICIP.2001.959231,http://gps-tsc.upc.es/imatge/pub/ps/ICIP01_pardas_losada.pdf +38f7f3c72e582e116f6f079ec9ae738894785b96,http://pdfs.semanticscholar.org/38f7/f3c72e582e116f6f079ec9ae738894785b96.pdf,,,http://www.ijarcce.com/upload/2015/november-15/IJARCCE%2063.pdf +380dd0ddd5d69adc52defc095570d1c22952f5cc,http://pdfs.semanticscholar.org/380d/d0ddd5d69adc52defc095570d1c22952f5cc.pdf,,,https://arxiv.org/pdf/1712.00193v1.pdf +38f1d8d25c0332798e0929594af2c43092d2c5c8,,,, +38679355d4cfea3a791005f211aa16e76b2eaa8d,http://hub.hku.hk/bitstream/10722/127357/1/Content.pdf,,https://doi.org/10.1109/TIP.2009.2035867,http://www.cs.utexas.edu/~ssi/CDDHE.pdf +3802c97f925cb03bac91d9db13d8b777dfd29dcc,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Martins_Non-Parametric_Bayesian_Constrained_2014_CVPR_paper.pdf,,,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Martins_Non-Parametric_Bayesian_Constrained_2014_CVPR_paper.pdf +38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,http://www.cs.colostate.edu/~draper/papers/zhang_ijcb14.pdf,,https://doi.org/10.1109/BTAS.2014.6996258,http://www.cs.colostate.edu/~haozhang/linked_files/RIDMBC_oral_presentation.pdf +38682c7b19831e5d4f58e9bce9716f9c2c29c4e7,http://pdfs.semanticscholar.org/3868/2c7b19831e5d4f58e9bce9716f9c2c29c4e7.pdf,,,http://www.ijcttjournal.org/Volume18/number-5/IJCTT-V18P149.pdf +38787338ba659f0bfbeba11ec5b7748ffdbb1c3d,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr1885.pdf,http://ieeexplore.ieee.org/document/7078402/,,http://signal.ee.bilkent.edu.tr/defevent/abstract/a1885.pdf +383ff2d66fecdc2fd02a31ac1fa392f48e578296,,,https://doi.org/10.1016/j.cviu.2015.07.005, +387b54cf6c186c12d83f95df6bd458c5eb1254ee,,,https://doi.org/10.1109/VCIP.2017.8305123, +3826e47f0572ab4d0fe34f0ed6a49aa8303e0428,,,https://doi.org/10.1109/ACPR.2013.66, +385750bcf95036c808d63db0e0b14768463ff4c6,http://pdfs.semanticscholar.org/3857/50bcf95036c808d63db0e0b14768463ff4c6.pdf,,,http://jmlr.org/proceedings/papers/v48/larsen16.pdf +3852968082a16db8be19b4cb04fb44820ae823d4,https://infoscience.epfl.ch/record/230240/files/1701.01821.pdf,,,https://arxiv.org/pdf/1701.01821v2.pdf +38f61e422ef75df4b96fb6081ce866556b6b854f,,,, +38cc2f1c13420170c7adac30f9dfac69b297fb76,http://pdfs.semanticscholar.org/38cc/2f1c13420170c7adac30f9dfac69b297fb76.pdf,,,http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=4226&context=theses +38cbb500823057613494bacd0078aa0e57b30af8,https://ibug.doc.ic.ac.uk/media/uploads/documents/08014986.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Chrysos_Deep_Face_Deblurring_CVPR_2017_paper.pdf +383e64d9ef1fca9de677ac82486b4df42e96e861,,,,http://doi.ieeecomputersociety.org/10.1109/DSC.2017.78 +384f972c81c52fe36849600728865ea50a0c4670,http://pdfs.semanticscholar.org/dad7/3d70b4fa77d67c5c02e3ecba21c52ab9a386.pdf,,,https://arxiv.org/pdf/1604.07057v3.pdf +38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,http://pdfs.semanticscholar.org/e9a4/1f856a474aa346491fe76151869e3f548172.pdf,,https://doi.org/10.1007/978-3-319-10584-0_30,http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/SEAML_eccv14_sup.pdf +384945abd53f6a6af51faf254ba8ef0f0fb3f338,http://pdfs.semanticscholar.org/b42c/4b804d69a031aac797346acc337f486e4a09.pdf,,https://doi.org/10.1007/978-3-642-15561-1_32,http://people.cs.pitt.edu/~kovashka/cs3710_sp15/active_learning_yan.pdf +38215c283ce4bf2c8edd597ab21410f99dc9b094,https://pure.qub.ac.uk/portal/files/9746839/IEEE_Transactions_on_Affective_Computing_2012_McKeown.pdf,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2011.20 +38861d0d3a0292c1f54153b303b0d791cbba1d50,http://pdfs.semanticscholar.org/3886/1d0d3a0292c1f54153b303b0d791cbba1d50.pdf,,https://doi.org/10.1016/j.neucom.2014.09.081,https://arxiv.org/pdf/1403.3610v2.pdf +3830047081ef4bc787f16edf5b244cb2793f75e5,https://www.cs.drexel.edu/~kon/publication/GSchwartz_CPCV13_slides.pdf,,,https://www.cs.drexel.edu/~kon/pubs/GSchwartz_CPCV13.pdf +38d8ff137ff753f04689e6b76119a44588e143f3,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf,,,http://arxiv.org/abs/1709.06532 +38198502b6579354931bfa35e88dba6df806721c,,,, +3896c62af5b65d7ba9e52f87505841341bb3e8df,http://pdfs.semanticscholar.org/3896/c62af5b65d7ba9e52f87505841341bb3e8df.pdf,,https://doi.org/10.1007/978-1-4419-5906-5_739,http://www.ee.iisc.ernet.in/new/people/faculty/soma.biswas/pdf/Face_encyclopedia.pdf +38192a0f9261d9727b119e294a65f2e25f72d7e6,http://pdfs.semanticscholar.org/3819/2a0f9261d9727b119e294a65f2e25f72d7e6.pdf,,https://doi.org/10.1016/j.neucom.2017.05.013,https://www.researchgate.net/profile/Nannan_Wang/publication/266560944_Facial_Feature_Point_Detection_A_Comprehensive_Survey/links/5441bb330cf2e6f0c0f65d55.pdf?origin=publication_list +38345264a9ca188c4facffe6e18a7e6865fb2966,,,,http://doi.ieeecomputersociety.org/10.1109/BIBM.2017.8217969 +38bbca5f94d4494494860c5fe8ca8862dcf9676e,http://pdfs.semanticscholar.org/c322/b770d2c7d9e70d196577bf0ae6b05205ebd7.pdf,,,http://www.vision.caltech.edu/pmoreels/Publications/Thesis_PMoreels.pdf +38183fe28add21693729ddeaf3c8a90a2d5caea3,https://arxiv.org/pdf/1706.09876v1.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Hao_Scale-Aware_Face_Detection_CVPR_2017_paper.pdf +38a9ca2c49a77b540be52377784b9f734e0417e4,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_IJCB_Faces.pdf,,https://doi.org/10.1109/IJCB.2011.6117498, +38bb66c97b35851051e95834639c205254771adc,,,, +3802da31c6d33d71b839e260f4022ec4fbd88e2d,http://pdfs.semanticscholar.org/3802/da31c6d33d71b839e260f4022ec4fbd88e2d.pdf,,https://doi.org/10.1007/978-3-319-49409-8_44,http://adas.cvc.uab.es/task-cv2016/papers/0022.pdf +00f7f7b72a92939c36e2ef9be97397d8796ee07c,http://pdfs.semanticscholar.org/00f7/f7b72a92939c36e2ef9be97397d8796ee07c.pdf,,,http://cs231n.stanford.edu/reports/kjchavez_final.pdf +008528d5e27919ee95c311266041e4fb1711c254,,,https://doi.org/10.1007/s13735-015-0092-1, +0021f46bda27ea105d722d19690f5564f2b8869e,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhao_Deep_Region_and_CVPR_2016_paper.pdf,,,http://www.ri.cmu.edu/pub_files/2016/6/drml_low.pdf +00d4c2db10f3a32d505d7b8adc7179e421443dec,,,https://doi.org/10.1109/GlobalSIP.2014.7032080, +0081e2188c8f34fcea3e23c49fb3e17883b33551,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf,,,https://arxiv.org/pdf/1802.05891v1.pdf +00dc942f23f2d52ab8c8b76b6016d9deed8c468d,http://pdfs.semanticscholar.org/00dc/942f23f2d52ab8c8b76b6016d9deed8c468d.pdf,,,https://www.cis.rit.edu/~cnspci/references/theses/phd/walvrood2008.pdf +0077cd8f97cafd2b389783858a6e4ab7887b0b6b,http://pdfs.semanticscholar.org/b971/266b29fcecf1d5efe1c4dcdc2355cb188ab0.pdf,,,http://arxiv.org/abs/1703.00832 +00049f989067d082f7f8d0581608ad5441d09f8b,,,https://doi.org/10.1109/LSP.2016.2555480, +003ba2001bd2614d309d6ec15e9e2cbe86db03a1,,,https://doi.org/10.1109/ISCAS.2005.1465264, +0055c7f32fa6d4b1ad586d5211a7afb030ca08cc,http://pdfs.semanticscholar.org/0055/c7f32fa6d4b1ad586d5211a7afb030ca08cc.pdf,,,https://arxiv.org/pdf/1608.01529v1.pdf +00af9945a3401bdad3cffa89f7e5a15660399282,,,, +009cd18ff06ff91c8c9a08a91d2516b264eee48e,http://pdfs.semanticscholar.org/009c/d18ff06ff91c8c9a08a91d2516b264eee48e.pdf,,,https://cdn.intechopen.com/pdfs-wm/17175.pdf +00214fe1319113e6649435cae386019235474789,http://pdfs.semanticscholar.org/0021/4fe1319113e6649435cae386019235474789.pdf,,,http://www-i6.informatik.rwth-aachen.de/publications/download/662/Hanselmann--Face-Recognition-Using-Distortion-Models--bachelor2009.pdf +00eccc565b64f34ad53bf67dfaf44ffa3645adff,,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618328 +004e3292885463f97a70e1f511dc476289451ed5,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Law_Quadruplet-Wise_Image_Similarity_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.38 +00301c250d667700276b1e573640ff2fd7be574d,,,https://doi.org/10.1109/BTAS.2014.6996242, +00b08d22abc85361e1c781d969a1b09b97bc7010,http://www.umariqbal.info/uploads/1/4/8/3/14837880/visapp_2014.pdf,,https://doi.org/10.5220/0004738801620173, +004d5491f673cd76150f43b0a0429214f5bfd823,http://www.cais.ntu.edu.sg/~chhoi/paper_pdf/fp130-wang.pdf,,,http://dayongwang.info/pdf/2013-SIGIR.pdf +007250c2dce81dd839a55f9108677b4f13f2640a,http://pdfs.semanticscholar.org/0db7/735e7adbe6e34dd058af31e278033040ab18.pdf,,https://doi.org/10.1007/3-540-45665-1_11,http://cbcl.mit.edu/publications/ps/bileschi-01240837.pdf +00e3957212517a252258baef833833921dd308d4,http://www.yugangjiang.info/publication/17MM-PersonAttribute.pdf,,,http://doi.acm.org/10.1145/3123266.3123424 +00a38ebce124879738b04ffc1536018e75399193,,,https://doi.org/10.1109/BTAS.2017.8272766, +00616b487d4094805107bb766da1c234c3c75e73,http://vision.ucmerced.edu/papers/Newsam_ACMGIS_2008.pdf,,,http://faculty.ucmerced.edu/snewsam/papers/Newsam_ACMGIS_2008.pdf +00f0ed04defec19b4843b5b16557d8d0ccc5bb42,http://pdfs.semanticscholar.org/00f0/ed04defec19b4843b5b16557d8d0ccc5bb42.pdf,,,http://arxiv.org/abs/1608.00911 +0037bff7be6d463785d4e5b2671da664cd7ef746,http://pdfs.semanticscholar.org/0037/bff7be6d463785d4e5b2671da664cd7ef746.pdf,,https://doi.org/10.1007/978-3-642-15549-9_46,http://lear.inrialpes.fr/pubs/2010/GVS10a/GVS10a.pdf +009a18d04a5e3ec23f8ffcfc940402fd8ec9488f,http://pdfs.semanticscholar.org/009a/18d04a5e3ec23f8ffcfc940402fd8ec9488f.pdf,,,http://www.cs.ucf.edu/~smasood/publications/BMVC2014_ActionRecognition.pdf +0066caed1238de95a431d836d8e6e551b3cde391,http://humansensing.cs.cmu.edu/sites/default/files/7de_la_torre_frade_fernando_2007_3.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383056 +00075519a794ea546b2ca3ca105e2f65e2f5f471,http://pdfs.semanticscholar.org/0007/5519a794ea546b2ca3ca105e2f65e2f5f471.pdf,,,http://www.cs.uccs.edu/~kalita/work/reu/REUFinalPapers2010/Mears.pdf +00220a6783488054eb0fe7b915e882b1294f3318,,,, +0019925779bff96448f0c75492717e4473f88377,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w3/papers/Reale_Deep_Heterogeneous_Face_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.34 +009bf86913f1c366d9391bf236867d84d12fa20c,,,https://doi.org/10.1109/CVPRW.2010.5544620, +00bfef58353564f4e4bd7e2cb68cb66953cf9103,,,, +00e9011f58a561500a2910a4013e6334627dee60,http://library.utia.cas.cz/separaty/2008/RO/somol-facial%20expression%20recognition%20using%20angle-related%20information%20from%20facial%20meshes.pdf,http://ieeexplore.ieee.org/document/7080565/,, +00d9d88bb1bdca35663946a76d807fff3dc1c15f,http://arxiv.org/pdf/1604.04842v1.pdf,,https://doi.org/10.1007/s11263-016-0958-6,https://arxiv.org/pdf/1604.04842v1.pdf +00a967cb2d18e1394226ad37930524a31351f6cf,https://arxiv.org/pdf/1611.05377v1.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lu_Fully-Adaptive_Feature_Sharing_CVPR_2017_paper.pdf +00f1e5e954f9eb7ffde3ca74009a8c3c27358b58,http://www.vision.caltech.edu/holub/public_html/Papers/PDF/holub_et_al_face_clustering.pdf,,https://doi.org/10.1109/AFGR.2008.4813463,http://www.vision.caltech.edu/publications/holub_et_al_face_clustering.pdf +00a3cfe3ce35a7ffb8214f6db15366f4e79761e3,http://engineering.cae.cn/fitee/fileup/2095-9184/SUPPL/20150414135701.pdf,,https://doi.org/10.1631/FITEE.1400209, +0058cbe110933f73c21fa6cc9ae0cd23e974a9c7,http://pdfs.semanticscholar.org/0058/cbe110933f73c21fa6cc9ae0cd23e974a9c7.pdf,,,http://www.bmva.org/bmvc/2015/papers/paper010/paper010.pdf +004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4,http://pdfs.semanticscholar.org/004a/1bb1a2c93b4f379468cca6b6cfc6d8746cc4.pdf,,,http://www.researchgate.net/profile/Feiping_Nie/publication/268748091_Balanced_k-Means_and_Min-Cut_Clustering/links/54ebbf900cf2ff89649e537f.pdf +00d94b35ffd6cabfb70b9a1d220b6823ae9154ee,https://arxiv.org/pdf/1503.07989v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2527652 +00ebc3fa871933265711558fa9486057937c416e,http://pdfs.semanticscholar.org/00eb/c3fa871933265711558fa9486057937c416e.pdf,,,https://pdfs.semanticscholar.org/8ed8/261e3e85a156efc8c94523795ab6bb7cc287.pdf +006f283a50d325840433f4cf6d15876d475bba77,http://lvdmaaten.github.io/publications/papers/TPAMI_2014.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.221 +00b29e319ff8b3a521b1320cb8ab5e39d7f42281,http://pdfs.semanticscholar.org/8007/b8afa13869d2a7c681db8bd7c2e7df1ef02d.pdf,,https://doi.org/10.1007/978-3-319-10599-4_24,http://www.ri.cmu.edu/pub_files/2014/0/characterizing_mistakes_eccv2014.pdf +00d0f2ec2036fb26ffcf882eb0aa47da0693192e,,,, +0034e37a0faf0f71395245b266aacbf5412f190a,,,https://doi.org/10.1109/TMM.2014.2355134, +00d931eccab929be33caea207547989ae7c1ef39,http://pdfs.semanticscholar.org/00d9/31eccab929be33caea207547989ae7c1ef39.pdf,,,http://www.cogsci.northwestern.edu/cogsci2004/papers/paper435.pdf +0059b3dfc7056f26de1eabaafd1ad542e34c2c2e,http://pdfs.semanticscholar.org/0059/b3dfc7056f26de1eabaafd1ad542e34c2c2e.pdf,,,http://ascl.cis.fiu.edu/uploads/1/3/4/2/13423859/lisetti-acm-tmis-2013-final.pdf +0052de4885916cf6949a6904d02336e59d98544c,https://rd.springer.com/content/pdf/10.1007/s10994-005-3561-6.pdf,,https://doi.org/10.1007/s10994-005-3561-6,http://machinelearning.wustl.edu/mlpapers/paper_files/icml2004_Ye04.pdf +00d0b01d6a5f12216e078001b7c49225d2495b21,http://graphics.cs.uh.edu/publication/pub/2009_TVCJ_faceilluminationtransfer.pdf,,https://doi.org/10.1007/s00371-009-0375-8,http://graphics.cs.uh.edu/website/Publications/2009_TVCJ_faceilluminationtransfer.pdf +6e60536c847ac25dba4c1c071e0355e5537fe061,http://www.cfar.umd.edu/~fer/postscript/CV_and_NLP.pdf,,,http://www.cs.umd.edu/sites/default/files/scholarly_papers/PerathamW.pdf +6e198f6cc4199e1c4173944e3df6f39a302cf787,http://pdfs.semanticscholar.org/6e19/8f6cc4199e1c4173944e3df6f39a302cf787.pdf,,,http://libres.uncg.edu/ir/uncw/f/wangy2017-1.pdf +6eaf446dec00536858548fe7cc66025b70ce20eb,http://pdfs.semanticscholar.org/6eaf/446dec00536858548fe7cc66025b70ce20eb.pdf,,,https://arxiv.org/pdf/1710.00962v1.pdf +6e173ad91b288418c290aa8891193873933423b3,http://pdfs.semanticscholar.org/eb3b/021406fe5a5002535b392cac60832aa8f162.pdf,,,https://arxiv.org/pdf/1703.07595v2.pdf +6eba25166fe461dc388805cc2452d49f5d1cdadd,http://pdfs.semanticscholar.org/6eba/25166fe461dc388805cc2452d49f5d1cdadd.pdf,,,http://www.bmva.org/bmvc/2016/papers/paper122/paper122.pdf +6ed738ff03fd9042965abdfaa3ed8322de15c116,https://dr.ntu.edu.sg/bitstream/handle/10220/39690/kmeap_icdm2014.pdf?isAllowed=y&sequence=1,,,http://doi.ieeecomputersociety.org/10.1109/ICDM.2014.54 +6ecd4025b7b5f4894c990614a9a65e3a1ac347b2,http://pdfs.semanticscholar.org/6ecd/4025b7b5f4894c990614a9a65e3a1ac347b2.pdf,,,http://www.ijritcc.org/download/Automatic%20Naming%20of%20Character%20using%20Video%20Streaming%20for%20Face%20Recognition%20with%20Graph%20Matching.pdf +6eddea1d991e81c1c3024a6cea422bc59b10a1dc,http://pdfs.semanticscholar.org/6edd/ea1d991e81c1c3024a6cea422bc59b10a1dc.pdf,,,http://www.cl.cam.ac.uk/~pr10/publications/eai16.pdf +6eaeac9ae2a1697fa0aa8e394edc64f32762f578,http://pdfs.semanticscholar.org/6eae/ac9ae2a1697fa0aa8e394edc64f32762f578.pdf,,https://doi.org/10.1016/j.patcog.2007.10.009,http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/pr08.pdf +6ee2ea416382d659a0dddc7a88fc093accc2f8ee,https://pdfs.semanticscholar.org/6ee2/ea416382d659a0dddc7a88fc093accc2f8ee.pdf,,https://doi.org/10.1109/TSMCB.2010.2044788,http://people.kth.se/~mflierl/Publications/zhi10-GSNMF.pdf +6e97a99b2879634ecae962ddb8af7c1a0a653a82,http://pdfs.semanticscholar.org/7d37/7ba82df9cba0959cb910288415e568007792.pdf,,,https://arxiv.org/pdf/1703.06246v2.pdf +6e9a8a34ab5b7cdc12ea52d94e3462225af2c32c,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Kim_Fusing_Aligned_and_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.187 +6ec004e4c1171c4c4858eec7c927f567684b80bc,http://www.researchgate.net/profile/Bongnam_Kang/publication/221292310_The_POSTECH_face_database_(PF07)_and_performance_evaluation/links/00463531e60efa5310000000.pdf,,https://doi.org/10.1109/AFGR.2008.4813378, +6e3a181bf388dd503c83dc324561701b19d37df1,http://pdfs.semanticscholar.org/9d91/213394fb411743b11bae74cf22f0ffca9191.pdf,,https://doi.org/10.1007/s10107-016-1042-2,http://arxiv.org/abs/1503.08601 +6ef1996563835b4dfb7fda1d14abe01c8bd24a05,http://hera.inf-cv.uni-jena.de:6680/pdf/Goering14:NPT,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.319 +6e9de9c3af3258dd18142e9bef2977b7ce153bd5,,,https://doi.org/10.1007/978-3-319-48881-3, +6ee8a94ccba10062172e5b31ee097c846821a822,http://pdfs.semanticscholar.org/6ee8/a94ccba10062172e5b31ee097c846821a822.pdf,,,http://cogprints.org/8966/1/EscalanteWiskott-Cogprints-2013.pdf +6ee64c19efa89f955011531cde03822c2d1787b8,http://pdfs.semanticscholar.org/6ee6/4c19efa89f955011531cde03822c2d1787b8.pdf,,,ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/9e/af/PLoS_One_2012_Mar_15_7(3)_e32321.tar.gz +6e2041a9b5d840b0c3e4195241cd110640b1f5f3,,,https://doi.org/10.1007/s10044-013-0349-3, +6ed27a41214716259676b6949999cdf4b12d0bdd,,,, +6e7ffd67329ca6027357a133437505bc56044e65,,,https://doi.org/10.1109/IJCNN.2014.6889754, +6e94c579097922f4bc659dd5d6c6238a428c4d22,http://pdfs.semanticscholar.org/6e94/c579097922f4bc659dd5d6c6238a428c4d22.pdf,,https://doi.org/10.1007/11815921_49, +6e379f2d34e14efd85ae51875a4fa7d7ae63a662,http://pdfs.semanticscholar.org/6e37/9f2d34e14efd85ae51875a4fa7d7ae63a662.pdf,,,http://www.asafvarol.com/tezler/Naveed_Ahmed_Thesis.pdf +6eb1e006b7758b636a569ca9e15aafd038d2c1b1,http://pdfs.semanticscholar.org/6eb1/e006b7758b636a569ca9e15aafd038d2c1b1.pdf,,,http://ias.in.tum.de/_media/spezial/bib/wimmer07human.pdf +6eece104e430829741677cadc1dfacd0e058d60f,http://pdfs.semanticscholar.org/7a42/6d0b98c8f52d61f9d89cd7be5ab6119f0a4a.pdf,,,http://www.psychology.pitt.edu/research/publications/cohn_AFA_20April2004.pdf +6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94,http://pdfs.semanticscholar.org/6e0a/05d87b3cc7e16b4b2870ca24cf5e806c0a94.pdf,,,http://www.eecs.umich.edu/~hero/Preprints/costa_thesis.pdf +6e1802874ead801a7e1072aa870681aa2f555f35,http://www.cs.yale.edu/homes/hw5/WebContent/ICASSP07_Yan.pdf,,https://doi.org/10.1109/ICASSP.2007.365986, +6ed22b934e382c6f72402747d51aa50994cfd97b,http://www.ifp.illinois.edu/~jyang29/papers/WACV16-Expression.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477449 +6e93fd7400585f5df57b5343699cb7cda20cfcc2,http://pdfs.semanticscholar.org/a52f/4d315adf0aa60ba284fd4caf22485625cedf.pdf,,,http://mapageweb.umontreal.ca/gosselif/hammaletal09.pdf +6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,http://pdfs.semanticscholar.org/6eb1/b5935b0613a41b72fd9e7e53a3c0b32651e9.pdf,,,http://www.bartneck.de/publications/2015/LEGOPictorialScales/LegoPictorialScalesforAssessingAffectiveResponse.pdf +6ec275755f8776b620d0a4550be0e65caf2bc87a,,,https://doi.org/10.1109/IS.2016.7737496, +6e12ba518816cbc2d987200c461dc907fd19f533,http://pdfs.semanticscholar.org/6e12/ba518816cbc2d987200c461dc907fd19f533.pdf,,https://doi.org/10.1016/j.imavis.2013.03.001,http://pages.cs.wisc.edu/~gdguo/myPapers/BMIface2013.pdf +6e782073a013ce3dbc5b9b56087fd0300c510f67,http://pdfs.semanticscholar.org/6e78/2073a013ce3dbc5b9b56087fd0300c510f67.pdf,,,http://iosrjournals.org/iosr-jce/papers/Vol17-issue3/Version-2/K017326168.pdf +9ab463d117219ed51f602ff0ddbd3414217e3166,http://pdfs.semanticscholar.org/d965/43e8ab524108cae8c12d3a65a54a295deae6.pdf,,,http://hal.inria.fr/docs/00/64/56/08/PDF/RT-0415.pdf +9ac82909d76b4c902e5dde5838130de6ce838c16,http://pdfs.semanticscholar.org/9ac8/2909d76b4c902e5dde5838130de6ce838c16.pdf,,https://doi.org/10.1007/978-0-387-93808-0_18,http://www.researchgate.net/profile/Ralph_Braspenning/publication/226201524_Recognizing_Facial_Expressions_Automatically_from_Video/links/00b4951ecd5cf6a038000000.pdf +9ab963e473829739475b9e47514f454ab467a5af,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.33 +9abf6d56a7d336bc58f4e3328d2ee807032589f1,,,https://doi.org/10.1109/CEC.2017.7969500, +9a0c7a4652c49a177460b5d2fbbe1b2e6535e50a,http://arxiv.org/pdf/1602.01940v1.pdf,,,http://arxiv.org/abs/1602.01940 +9ac15845defcd0d6b611ecd609c740d41f0c341d,http://pdfs.semanticscholar.org/9ac1/5845defcd0d6b611ecd609c740d41f0c341d.pdf,,,http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2062.pdf +9af1cf562377b307580ca214ecd2c556e20df000,http://pdfs.semanticscholar.org/9af1/cf562377b307580ca214ecd2c556e20df000.pdf,,,http://arxiv.org/pdf/1503.01646v1.pdf +9abab00de61dd722b3ad1b8fa9bffd0001763f8b,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2420563 +9ab126760f68071a78cabe006cf92995d6427025,,,https://doi.org/10.1007/s11042-013-1703-6, +9a4c45e5c6e4f616771a7325629d167a38508691,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301324 +9a84588fe7e758cfbe7062686a648fab787fc32f,,,https://doi.org/10.1007/s11042-014-2333-3, +9a7858eda9b40b16002c6003b6db19828f94a6c6,https://www1.icsi.berkeley.edu/~twke/pdfs/pubs/mooney_icip2017.pdf,,https://doi.org/10.1109/ICIP.2017.8296637,http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2017mooneyICIP.pdf +9a3535cabf5d0f662bff1d897fb5b777a412d82e,http://pdfs.semanticscholar.org/9a35/35cabf5d0f662bff1d897fb5b777a412d82e.pdf,,https://doi.org/10.1186/s13640-015-0070-9,https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1006&context=cs_facpub&httpsredir=1&referer= +9abd35b37a49ee1295e8197aac59bde802a934f3,http://pdfs.semanticscholar.org/9abd/35b37a49ee1295e8197aac59bde802a934f3.pdf,,https://doi.org/10.1007/978-3-319-46604-0_47,https://arxiv.org/pdf/1608.04339v1.pdf +9aade3d26996ce7ef6d657130464504b8d812534,,,https://doi.org/10.1109/TNNLS.2016.2618340, +9a276c72acdb83660557489114a494b86a39f6ff,http://pdfs.semanticscholar.org/9a27/6c72acdb83660557489114a494b86a39f6ff.pdf,,,http://www.humanpub.org/JMMT/ppl/JMMT8PPL.pdf +9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e,http://pdfs.semanticscholar.org/9a1a/9dd3c471bba17e5ce80a53e52fcaaad4373e.pdf,,,http://mplab.ucsd.edu/pdfs/Bartlett-multimedia-inpress.pdf +9a6da02db99fcc0690d7ffdc15340b125726ab95,http://vision.ucla.edu/~vedaldi/assets/pubs/vedaldi07boosting.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2007.4408840 +9a42c519f0aaa68debbe9df00b090ca446d25bc4,http://pdfs.semanticscholar.org/9a42/c519f0aaa68debbe9df00b090ca446d25bc4.pdf,,,https://arxiv.org/pdf/1801.05678v1.pdf +9aba281955117eb4a7aed36775f55f27e4dde42f,,,,http://doi.ieeecomputersociety.org/10.1109/AFGR.2000.840635 +36b40c75a3e53c633c4afb5a9309d10e12c292c7,https://pdfs.semanticscholar.org/36b4/0c75a3e53c633c4afb5a9309d10e12c292c7.pdf,,,https://www.researchgate.net/profile/Weifeng_Liu/publication/200834313_Facial_Expression_Recognition_Based_on_Fusion_of_Multiple_Gabor_Features/links/00b7d51ee36a3dccd5000000.pdf +363ca0a3f908859b1b55c2ff77cc900957653748,http://pdfs.semanticscholar.org/363c/a0a3f908859b1b55c2ff77cc900957653748.pdf,,,http://www.ijcttjournal.org/Volume1/Issue-3/number-4/IJCTT-V1I3N4P5.pdf +36bb5cca0f6a75be8e66f58cba214b90982ee52f,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.73 +36219a3196aac2bd149bc786f083957a6e6da125,,,https://doi.org/10.1016/j.jvcir.2015.12.003, +3645d85ccd5bb7ce5df8d24e6ddb358eb1656df5,,,, +3690af0af51a067750f664c08e48b486d1cd476d,,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2012.41 +365f67fe670bf55dc9ccdcd6888115264b2a2c56,http://pdfs.semanticscholar.org/f431/d3d7a0323bf1150420c826dade2093a7dfa1.pdf,,https://doi.org/10.1016/j.imavis.2016.04.017,http://arxiv.org/abs/1512.08212 +36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,http://pdfs.semanticscholar.org/36fe/39ed69a5c7ff9650fd5f4fe950b5880760b0.pdf,,,http://ceur-ws.org/Vol-574/bvm2010_92.pdf +36a3a96ef54000a0cd63de867a5eb7e84396de09,http://www.cs.toronto.edu/~guerzhoy/oriviz/crv17.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2017.59 +36486944b4feeb88c0499fecd253c5a53034a23f,,,https://doi.org/10.1109/CISP-BMEI.2017.8301986, +36fc4120fc0638b97c23f97b53e2184107c52233,http://pdfs.semanticscholar.org/36fc/4120fc0638b97c23f97b53e2184107c52233.pdf,,,http://research.ijcaonline.org/ncipet2013/number3/ncipet1337.pdf +36ce0b68a01b4c96af6ad8c26e55e5a30446f360,http://liris.cnrs.fr/Documents/Liris-6963.pdf,,https://doi.org/10.1007/s11042-014-2322-6, +36b23007420b98f368d092bab196a8f3cbcf6f93,,,,http://doi.ieeecomputersociety.org/10.1109/ICNC.2009.106 +360d66e210f7011423364327b7eccdf758b5fdd2,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569190652.pdf,http://ieeexplore.ieee.org/document/7077513/,, +365866dc937529c3079a962408bffaa9b87c1f06,http://pdfs.semanticscholar.org/3658/66dc937529c3079a962408bffaa9b87c1f06.pdf,,,http://ijiset.com/v1s3/IJISET_V1_I3_36.pdf +36b13627ee8a5a8cd04645213aabfa917bbd32f5,,,https://doi.org/10.1109/TCSVT.2016.2602812, +363f540dc82ba8620262a04a67cfd6d3c85b0582,,,,http://doi.ieeecomputersociety.org/10.1109/WIAMIS.2009.5031445 +361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,http://pdfs.semanticscholar.org/361c/9ba853c7d69058ddc0f32cdbe94fbc2166d5.pdf,,,http://www.ai.rug.nl/~mwiering/Thesis_Jos_vd_Wolfshaar.pdf +362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c,http://mirlab.org/conference_papers/International_Conference/ICASSP%202016/pdfs/0002792.pdf,,https://doi.org/10.1109/ICASSP.2016.7472186, +36ea75e14b69bed454fde6076ea6b85ed87fbb14,http://pdfs.semanticscholar.org/36ea/75e14b69bed454fde6076ea6b85ed87fbb14.pdf,,,http://www.waset.org/journals/waset/v62/v62-90.pdf +36b19e6bf2f0abc0387052436956a25b37488134,,,, +366e650a578a3732ebe10267f04bcf9d3129f076,,,, +36df81e82ea5c1e5edac40b60b374979a43668a5,http://www.robots.ox.ac.uk/~vgg/publications/2012/Parkhi12b/parkhi12b.pdf,,https://doi.org/10.1109/WIAMIS.2012.6226775, +366d20f8fd25b4fe4f7dc95068abc6c6cabe1194,http://arxiv.org/pdf/1605.05411v1.pdf,,https://doi.org/10.1109/ICPR.2016.7900114,https://arxiv.org/pdf/1605.05411v1.pdf +3630324c2af04fd90f8668f9ee9709604fe980fd,http://www.yugangjiang.info/publication/TCSVT-Shu.pdf,,https://doi.org/10.1109/TCSVT.2016.2607345, +362ba8317aba71c78dafca023be60fb71320381d,http://pdfs.semanticscholar.org/362b/a8317aba71c78dafca023be60fb71320381d.pdf,,https://doi.org/10.1016/j.patcog.2014.06.004,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/KangHanJainLee_NighttimeFRatLargeStandoff_P.R.2014.pdf +36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958,http://www.iab-rubric.org/papers/RGBD-Face.pdf,,https://doi.org/10.1109/TIFS.2014.2343913, +36e8ef2e5d52a78dddf0002e03918b101dcdb326,http://www.milbo.org/stasm-files/multiview-active-shape-models-with-sift-for-300w.pdf,,, +36018404263b9bb44d1fddaddd9ee9af9d46e560,http://pdfs.semanticscholar.org/3601/8404263b9bb44d1fddaddd9ee9af9d46e560.pdf,,,http://www.researchgate.net/profile/Gozde_Akar/publication/267784070_OCCLUDED_FACE_RECOGNITION_BY_USING_GABOR_FEATURES/links/54be33140cf218d4a16a5385.pdf +367f2668b215e32aff9d5122ce1f1207c20336c8,http://pdfs.semanticscholar.org/367f/2668b215e32aff9d5122ce1f1207c20336c8.pdf,,,"http://paspk.org/wp-content/uploads/proceedings/52,%20No.1/a72449e2Speaker%20dependent%20human.pdf" +36c2db5ff76864d289781f93cbb3e6351f11984c,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569187194.pdf,http://ieeexplore.ieee.org/document/7077417/,, +3624ca25f09f3acbcf4d3a4c40b9e45a29c22b94,http://pdfs.semanticscholar.org/3624/ca25f09f3acbcf4d3a4c40b9e45a29c22b94.pdf,,https://doi.org/10.1016/j.neucom.2011.01.024,http://sujingwang.name/publication/neucom11.pdf +3661a34f302883c759b9fa2ce03de0c7173d2bb2,http://pdfs.semanticscholar.org/fd6d/14fb0bbca58e924c504d7dc57cb7f8d3707e.pdf,,https://doi.org/10.1007/978-3-319-46475-6_27,http://arxiv.org/abs/1607.06997 +36c473fc0bf3cee5fdd49a13cf122de8be736977,http://pdfs.semanticscholar.org/bc6c/051b66ecadac7bb3e6ace66665e42875d790.pdf,,https://doi.org/10.1007/978-3-319-46484-8_2,http://arxiv.org/abs/1608.00859 +368d59cf1733af511ed8abbcbeb4fb47afd4da1c,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,,,https://arxiv.org/pdf/1610.04823v1.pdf +366595171c9f4696ec5eef7c3686114fd3f116ad,http://pdfs.semanticscholar.org/3665/95171c9f4696ec5eef7c3686114fd3f116ad.pdf,,,http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-53.pdf +36b9f46c12240898bafa10b0026a3fb5239f72f3,https://arxiv.org/pdf/1702.05573v1.pdf,,,http://arxiv.org/abs/1702.05573 +3634b4dd263c0f330245c086ce646c9bb748cd6b,https://arxiv.org/pdf/1504.00983v2.pdf,,,http://arxiv.org/pdf/1504.00983.pdf +367a786cfe930455cd3f6bd2492c304d38f6f488,http://pdfs.semanticscholar.org/367a/786cfe930455cd3f6bd2492c304d38f6f488.pdf,,,http://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=3290&context=all_theses +36bb93c4f381adca267191811abb8cc7812363f9,,,https://doi.org/10.1109/CISP-BMEI.2017.8301987, +5c4ce36063dd3496a5926afd301e562899ff53ea,http://pdfs.semanticscholar.org/5c4c/e36063dd3496a5926afd301e562899ff53ea.pdf,,,https://arxiv.org/pdf/1703.01170v1.pdf +5c6de2d9f93b90034f07860ae485a2accf529285,http://pdfs.semanticscholar.org/5c6d/e2d9f93b90034f07860ae485a2accf529285.pdf,,https://doi.org/10.1504/IJBM.2013.055971,http://socia-lab.di.ubi.pt/~ubipr/Chandra_Hugo_Pose_Compensation_2013.pdf +5c8ab6a48bf7c5302b800c1077884f4898ad0beb,,,, +5c624382057b55e46af4dc4c055a33c90e8bf08a,http://www.researchgate.net/profile/Ngoc_Son_Vu/publication/224114972_Illumination-robust_face_recognition_using_retina_modeling/links/0fcfd507f06292b0a5000000.pdf,,https://doi.org/10.1109/ICIP.2009.5413963, +5c91fc106cfe9d57a9b149c1af29ca84d403fc7e,,,https://doi.org/10.1109/TCSVT.2015.2452782, +5ca23ceb0636dfc34c114d4af7276a588e0e8dac,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SMC_2009/PDFs/116.pdf,,https://doi.org/10.1109/ICSMC.2009.5346225, +5c3eb40b06543f00b2345f3291619a870672c450,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.539 +5c2a7518fb26a37139cebff76753d83e4da25159,http://pdfs.semanticscholar.org/5c2a/7518fb26a37139cebff76753d83e4da25159.pdf,,https://doi.org/10.1016/j.image.2016.05.020,http://researchprofiles.herts.ac.uk/portal/files/13112055/Accepted_Manuscript.pdf +5cb83eba8d265afd4eac49eb6b91cdae47def26d,http://www.kresttechnology.com/krest-academic-projects/krest-major-projects/ECE/B-Tech%20Papers/21.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICIG.2009.123 +5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,http://pdfs.semanticscholar.org/5c86/72c0d2f28fd5d2d2c4b9818fcff43fb01a48.pdf,,,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_dagm_cvaw_2012.pdf +5c3dce55c61ee86073575ac75cc882a215cb49e6,http://pdfs.semanticscholar.org/8d93/b33c38a26b97442b2f160e75212739c60bc5.pdf,,https://doi.org/10.1007/978-3-319-10590-1_38,http://sites.skoltech.ru/app/data/uploads/sites/25/2014/11/eccv14neuralcodes.pdf +5c2e264d6ac253693469bd190f323622c457ca05,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2013/Improving%20large%20scale%20image%20retrieval%20using%20multi-level%20features13.pdf,,https://doi.org/10.1109/ICIP.2013.6738900,http://www.ee.ucr.edu/~lan/papers/ChenICIP13.pdf +5c473cfda1d7c384724fbb139dfe8cb39f79f626,http://www.cs.zju.edu.cn/~gpan/publication/2012-PAA-face-expression-onlinefirst.pdf,,https://doi.org/10.1007/s10044-012-0315-5, +5c19c4c6a663fe185a739a5f50cef6a12a4635a1,,,https://doi.org/10.1016/j.imavis.2012.08.016, +5c820e47981d21c9dddde8d2f8020146e600368f,http://pdfs.semanticscholar.org/5c82/0e47981d21c9dddde8d2f8020146e600368f.pdf,,https://doi.org/10.1007/978-3-319-16634-6_6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop12/pdffiles/w12-p3.pdf +5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0,http://www.cs.ucr.edu/~mkafai/papers/Paper_tifs2014.pdf,,https://doi.org/10.1109/TIFS.2014.2359548,http://alumni.cs.ucr.edu/~mkafai/papers/Paper_tifs2014.pdf +5c124b57699be19cd4eb4e1da285b4a8c84fc80d,http://www.iis.ee.ic.ac.uk/icvl/doc/cvpr14_xiaowei.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.228 +5c435c4bc9c9667f968f891e207d241c3e45757a,http://pdfs.semanticscholar.org/eb6a/13c8a607dfc535e5f31b7c8843335674644c.pdf,,https://doi.org/10.5244/C.24.6,http://www.researchgate.net/profile/John_Alexander_Ruiz_Hernandez/publication/221259731_How_old_are_you__Age_Estimation_with_Tensors_of_Binary_Gaussian_Receptive_Maps/links/00b49522fa65f1298e000000.pdf +5c7adde982efb24c3786fa2d1f65f40a64e2afbf,http://pdfs.semanticscholar.org/bd40/dee4f2bbb0e512575cc96a0e3a7918a0ce42.pdf,,https://doi.org/10.1007/978-3-319-10590-1_51,http://grail.cs.washington.edu/wp-content/uploads/2015/08/sun2014rdh.pdf +5c526ee00ec0e80ba9678fee5134dae3f497ff08,,,https://doi.org/10.1109/TCE.2010.5606299, +5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934,http://www.istc-cc.cmu.edu/publications/papers/2016/GeePS-cui-eurosys16.pdf,,,http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf +5cfbeae360398de9e20e4165485837bd42b93217,http://pdfs.semanticscholar.org/5cfb/eae360398de9e20e4165485837bd42b93217.pdf,,,https://www.ijariit.com/manuscripts/v3i5/V3I5-1189.pdf?b23ae0&b23ae0 +5ca14fa73da37855bfa880b549483ee2aba26669,http://pdfs.semanticscholar.org/5ca1/4fa73da37855bfa880b549483ee2aba26669.pdf,,,http://www.ijceronline.com/papers/Vol7_issue7/J07076977.pdf +5c92355b2808621d237a89dc7b3faa5cdb990ab5,http://www.researchgate.net/profile/Brian_Lovell2/publication/236124723_Dynamic_Amelioration_of_Resolution_Mismatches_for_Local_Feature_Based_Identity_Inference/links/0fcfd50741a027e848000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.299 +5c4f9260762a450892856b189df240f25b5ed333,,,https://doi.org/10.1109/TIP.2017.2651396, +5c02bd53c0a6eb361972e8a4df60cdb30c6e3930,http://arxiv.org/pdf/1303.4893v2.pdf,,,https://arxiv.org/pdf/1303.4893v2.pdf +5c8ae37d532c7bb8d7f00dfde84df4ba63f46297,http://pdfs.semanticscholar.org/5c8a/e37d532c7bb8d7f00dfde84df4ba63f46297.pdf,,,http://arxiv.org/abs/1801.07230 +5c717afc5a9a8ccb1767d87b79851de8d3016294,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001845.pdf,,https://doi.org/10.1109/ICASSP.2012.6288261,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001845.pdf +5cb1dd76c672b99d9103db3842721289bacf6e1b,,,, +5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhao_Facial_Expression_Intensity_CVPR_2016_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhao_Facial_Expression_Intensity_CVPR_2016_paper.pdf +09b80d8eea809529b08a8b0ff3417950c048d474,http://openaccess.thecvf.com/content_cvpr_2013/papers/Choi_Adding_Unlabeled_Samples_2013_CVPR_paper.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a875.pdf +09f58353e48780c707cf24a0074e4d353da18934,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/BestrowdenBishtKlontzJain_CrowdsourcingHumanPeformance_IJCB2014.pdf,,https://doi.org/10.1109/BTAS.2014.6996296,http://biometrics.cse.msu.edu/Presentations/Crowdsourcing_IJCB_2014_ppt.pdf +096eb8b4b977aaf274c271058feff14c99d46af3,http://www.dtic.mil/dtic/tr/fulltext/u2/a585819.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126293 +0952ac6ce94c98049d518d29c18d136b1f04b0c0,http://pdfs.semanticscholar.org/0952/ac6ce94c98049d518d29c18d136b1f04b0c0.pdf,,https://doi.org/10.5244/C.20.96,http://www.macs.hw.ac.uk/bmvc2006/papers/006.pdf +0969e0dc05fca21ff572ada75cb4b703c8212e80,http://pdfs.semanticscholar.org/0969/e0dc05fca21ff572ada75cb4b703c8212e80.pdf,,https://doi.org/10.3390/a9030048,http://www.mdpi.com/1999-4893/9/3/48/pdf +09f9409430bba2afb84aa8214dbbb43bfd4cf056,,,https://doi.org/10.1109/TNN.2006.883012, +09dd01e19b247a33162d71f07491781bdf4bfd00,http://pdfs.semanticscholar.org/5991/0d557b54566ec97280480daca02685f21907.pdf,,https://doi.org/10.1007/978-3-642-15561-1_44,http://luci.ics.uci.edu/websiteContent/weAreLuci/biographies/faculty/djp3/LocalCopy/turk.pdf +09cf3f1764ab1029f3a7d57b70ae5d5954486d69,http://pdfs.semanticscholar.org/09cf/3f1764ab1029f3a7d57b70ae5d5954486d69.pdf,,https://doi.org/10.1007/s11760-008-0074-3,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Buciu08b.pdf +09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081,http://acberg.com/papers/street2shop.pdf,,,http://openaccess.thecvf.com/content_iccv_2015/papers/Kiapour_Where_to_Buy_ICCV_2015_paper.pdf +0974677f59e78649a40f0a1d85735410d21b906a,,,https://doi.org/10.1109/ISCAS.2017.8050798, +0931bef0a9c8c153184a1f9c286cf4883cbe99b6,,,https://doi.org/10.1007/s12193-015-0203-6, +09e7397fbcf4cc54ee085599a3b9bb72539ab251,,,, +09138ad5ad1aeef381f825481d1b4f6b345c438c,,,https://doi.org/10.1109/IIH-MSP.2012.41, +09628e9116e7890bc65ebeabaaa5f607c9847bae,https://arxiv.org/pdf/1704.03039.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Morgado_Semantically_Consistent_Regularization_CVPR_2017_paper.pdf +09733129161ca7d65cf56a7ad63c17f493386027,http://pdfs.semanticscholar.org/0973/3129161ca7d65cf56a7ad63c17f493386027.pdf,,,http://www.cg.tuwien.ac.at/research/publications/2007/vucini_erald-2007-FRI/vucini_erald-2007-FRI-Paper.pdf +09c586624ec65d7ef2d4d8d321e98f61698dcfe2,http://www.seas.upenn.edu/~timothee/papers/cvpr_2010_supplement.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5540106 +09718bf335b926907ded5cb4c94784fd20e5ccd8,http://parnec.nuaa.edu.cn/papers/journal/2005/xtan-TNN05.pdf,,https://doi.org/10.1109/TNN.2005.849817,http://www.researchgate.net/profile/Songcan_Chen/publication/7638460_Recognizing_partially_occluded_expression_variant_faces_from_single_training_image_per_person_with_SOM_and_soft_kappa-NN_ensemble/links/0046351406aaacc8d8000000.pdf +098a1ccc13b8d6409aa333c8a1079b2c9824705b,http://people.cs.pitt.edu/~kovashka/ut/pivots-kovashka-iccv2013.pdf,,,http://www.cs.utexas.edu/~grauman/papers/pivots-kovashka-iccv2013.pdf +0903bb001c263e3c9a40f430116d1e629eaa616f,http://pdfs.semanticscholar.org/0903/bb001c263e3c9a40f430116d1e629eaa616f.pdf,,,http://www.cs.cmu.edu/~santosh/projects/papers/cvpr_inReview.pdf +090ff8f992dc71a1125636c1adffc0634155b450,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,,https://doi.org/10.1007/978-3-319-16811-1_46,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop3/pdffiles/w3-p13.pdf +09b43b59879d59493df2a93c216746f2cf50f4ac,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_036_ext.pdf,,https://doi.org/10.1109/TIP.2016.2612827,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hu_Deep_Transfer_Metric_2015_CVPR_paper.pdf +098fa9b4c3f7fb41c7a178d36f5dbb50a3ffa377,http://oui.csail.mit.edu/camera_readys/13.pdf,,,http://arxiv.org/abs/1505.00295 +09b0ef3248ff8f1a05b8704a1b4cf64951575be9,https://arxiv.org/pdf/1511.06783v1.pdf,,,https://arxiv.org/pdf/1511.06783v2.pdf +097104fc731a15fad07479f4f2c4be2e071054a2,http://pdfs.semanticscholar.org/dbad/94c3506a342f55f54388e162e8481ae8b184.pdf,,https://doi.org/10.1016/j.patcog.2007.06.026,https://ibug.doc.ic.ac.uk/media/uploads/documents/pat_rec_2008.pdf +096ffc1ea5493242ba0c113178dab0c096412f81,,,,http://doi.acm.org/10.1145/3123266.3123441 +094357c1a2ba3fda22aa6dd9e496530d784e1721,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Wang_A_Unified_Probabilistic_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.264 +09686fd5eb5ec6f47d5ec24276c78d23607ec01e,,,, +092dd7cb6c9b415eb83afb104fa63d7d4290ac33,,,https://doi.org/10.1109/SPLIM.2016.7528409, +09f853ce12f7361c4b50c494df7ce3b9fad1d221,http://files.is.tue.mpg.de/jgall/download/jgall_RFdepthFace_ijcv12.pdf,,https://doi.org/10.1007/s11263-012-0549-0,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_00957.pdf +09111da0aedb231c8484601444296c50ca0b5388,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553737.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553737 +09750c9bbb074bbc4eb66586b20822d1812cdb20,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001385.pdf,,https://doi.org/10.1109/ICASSP.2012.6288149,http://staff.eng.bahcesehir.edu.tr/~cigdemeroglu/papers/international_conference_papers/C_2012_erdem_ICASSP.pdf +09ce14b84af2dc2f76ae1cf227356fa0ba337d07,http://grail.cs.washington.edu/3dfaces/paper.pdf,,,http://grail.cs.washington.edu/pub/papers/kemelmacher2011fri.pdf +090e4713bcccff52dcd0c01169591affd2af7e76,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Shao_What_Do_You_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.451 +097f674aa9e91135151c480734dda54af5bc4240,http://pdfs.semanticscholar.org/097f/674aa9e91135151c480734dda54af5bc4240.pdf,,,http://www.cmis.csiro.au/Hugues.Talbot/dicta2003/cdrom/pdf/0069.pdf +5d0f72174e9ca1d620227b53ab1bbd8263fb4a9e,,,, +5d485501f9c2030ab33f97972aa7585d3a0d59a7,http://pdfs.semanticscholar.org/5d48/5501f9c2030ab33f97972aa7585d3a0d59a7.pdf,,https://doi.org/10.1016/j.patcog.2009.04.006,https://www.ecse.rpi.edu/~qji/Papers/PR_BNlearning_revision_v2.pdf +5da740682f080a70a30dc46b0fc66616884463ec,http://pdfs.semanticscholar.org/5da7/40682f080a70a30dc46b0fc66616884463ec.pdf,,https://doi.org/10.1007/978-3-319-23117-4_22,http://av.dfki.de/~pagani/papers/Selim2015_CAIP.pdf +5dbb2d556f2e63a783a695a517f5deb11aafd7ea,,,https://doi.org/10.1109/ICB.2015.7139079, +5de5848dc3fc35e40420ffec70a407e4770e3a8d,http://pdfs.semanticscholar.org/5de5/848dc3fc35e40420ffec70a407e4770e3a8d.pdf,,,https://www.vision.ee.ethz.ch/webvision/files/1708.02862.pdf +5d9bed6974fb81efeaeeff605b075e73b119a2b5,,,, +5da139fc43216c86d779938d1c219b950dd82a4c,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0200205.pdf,,https://doi.org/10.1109/ICIP.2007.4379128, +5d33a10752af9ea30993139ac6e3a323992a5831,http://web.engr.illinois.edu/~iendres2/publications/cvpr2010_att.pdf,,,http://cs.uiuc.edu/homes/iendres2/publications/cvpr2010_att.pdf +5dc056fe911a3e34a932513abe637076250d96da,http://www.vision.ee.ethz.ch/~gfanelli/pubs/cvpr12.pdf,,,http://www.vision.ee.ethz.ch/~gallju/download/jgall_facialfeatures_cvpr12.pdf +5d185d82832acd430981ffed3de055db34e3c653,http://pdfs.semanticscholar.org/fc70/92e72a2bae6f60266147e0fb587b1771699a.pdf,,,http://www.redalyc.org/pdf/615/61520938004.pdf +5da3bb198b087c15509f933215b141de9e8f43ed,,,, +5dd57b7e0e82a33420c054da7ea3f435d49e910e,,,https://doi.org/10.1007/s10851-014-0493-4, +5d233e6f23b1c306cf62af49ce66faac2078f967,http://pdfs.semanticscholar.org/5d23/3e6f23b1c306cf62af49ce66faac2078f967.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/91/93/pone.0149003.PMC4747560.pdf +5dce578c8bc819592c9ec7bfab6302bbcd9a3f3d,,,, +5dd496e58cfedfc11b4b43c4ffe44ac72493bf55,http://pdfs.semanticscholar.org/5dd4/96e58cfedfc11b4b43c4ffe44ac72493bf55.pdf,,,https://arxiv.org/pdf/1707.06119v1.pdf +5db075a308350c083c3fa6722af4c9765c4b8fef,http://pdfs.semanticscholar.org/5db0/75a308350c083c3fa6722af4c9765c4b8fef.pdf,,,http://www.sensorsportal.com/HTML/DIGEST/july_2013/P_1260.pdf +5df17c81c266cf2ebb0778e48e825905e161a8d9,,,https://doi.org/10.1109/TMM.2016.2520091, +5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf,https://www.cl.cam.ac.uk/~hg410/SariyanidiEtAl-RobustRegistration-TIP2016.pdf,,https://doi.org/10.1109/TIP.2016.2639448,https://www.cl.cam.ac.uk/~hg410/SariyanidiEtAl-MUMIE-TIP2017.pdf +5dcf78de4d3d867d0fd4a3105f0defae2234b9cb,http://pdfs.semanticscholar.org/5dcf/78de4d3d867d0fd4a3105f0defae2234b9cb.pdf,,https://doi.org/10.5244/C.26.59,http://www.bmva.org/bmvc/2012/BMVC/paper059/abstract059.pdf +5da98f7590c08e83889f3cec7b0304b3610abf42,,,https://doi.org/10.1016/j.eswa.2017.07.018, +5dfebcb7bfefb1af1cfef61a151abfe98a7e7cfa,http://vision.ucsd.edu/sites/default/files/cwah_cvpr2013_unfamiliar.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a779.pdf +5d88702cdc879396b8b2cc674e233895de99666b,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_Exploiting_Feature_Hierarchies_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.44 +5d44c675addcb6e74cbc5a9c48df0d754bdbcd98,http://pdfs.semanticscholar.org/9bc0/1fa9400c231e41e6a72ec509d76ca797207c.pdf,,,http://www.waset.org/journals/waset/v63/v63-92.pdf +5d9f468a2841ea2f27bbe3ef2c6fe531d444be68,,,https://doi.org/10.1109/GlobalSIP.2017.8309167, +5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e,http://pdfs.semanticscholar.org/5d5c/d6fa5c41eb9d3d2bab3359b3e5eb60ae194e.pdf,,,http://www.ehu.eus/ccwintco/uploads/e/eb/PFC-IonMarques.pdf +5d09d5257139b563bd3149cfd5e6f9eae3c34776,http://pdfs.semanticscholar.org/5d09/d5257139b563bd3149cfd5e6f9eae3c34776.pdf,,,https://www.researchgate.net/profile/Victor_Diaz-Ramirez/publication/267511923_Pattern_recognition_with_composite_correlation_filters_designed_with_multi-objective_combinatorial_optimization/links/5451ab3e0cf2bf864cba99e0.pdf +5d479f77ecccfac9f47d91544fd67df642dfab3c,http://pdfs.semanticscholar.org/7880/c21bb0de02cd4db095e011ac7aff47b35ee8.pdf,,https://doi.org/10.1007/978-3-319-10590-1_7,http://cs.stanford.edu/~pliang/papers/linking-eccv2014.pdf +5d01283474b73a46d80745ad0cc0c4da14aae194,http://pdfs.semanticscholar.org/5d01/283474b73a46d80745ad0cc0c4da14aae194.pdf,,https://doi.org/10.1016/j.jvcir.2015.08.005,http://homepages.dcc.ufmg.br/~william/papers/paper_2015_JVCI.pdf +5ddfd3d372f7679518db8fd763d5f8bc5899ed67,,,https://doi.org/10.1109/ICPR.2014.797, +5d197c8cd34473eb6cde6b65ced1be82a3a1ed14,http://cdn.intechopen.com/pdfs/20590/InTech-A_face_image_database_for_evaluating_out_of_focus_blur.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ISDA.2008.300 +5df376748fe5ccd87a724ef31d4fdb579dab693f,http://pdfs.semanticscholar.org/5df3/76748fe5ccd87a724ef31d4fdb579dab693f.pdf,,,https://hotsoft.carleton.ca/hotsoft/wp-content/uploads/2015/06/submission_49447_UPDATE.pdf +31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a,http://pdfs.semanticscholar.org/31aa/20911cc7a2b556e7d273f0bdd5a2f0671e0a.pdf,,,https://arxiv.org/pdf/1804.01417v1.pdf +31ba7f5e09a2f0fe9cf7ea95314723206dcb6059,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.300 +3150e329e01be31ba08b6d76fc46b0da88a5ddeb,,,,http://doi.acm.org/10.1145/2927006.2927012 +31b05f65405534a696a847dd19c621b7b8588263,https://arxiv.org/pdf/1611.01484v1.pdf,,https://doi.org/10.1109/BTAS.2017.8272731,https://arxiv.org/pdf/1611.01484v2.pdf +31625522950e82ad4dffef7ed0df00fdd2401436,http://pdfs.semanticscholar.org/3162/5522950e82ad4dffef7ed0df00fdd2401436.pdf,,https://doi.org/10.1007/978-3-319-49409-8_3,https://arxiv.org/pdf/1608.08395v1.pdf +3167f415a861f19747ab5e749e78000179d685bc,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICCV_2009/contents/pdf/iccv2009_131.pdf,,https://doi.org/10.1109/ICCV.2009.5459371, +3107316f243233d45e3c7e5972517d1ed4991f91,https://arxiv.org/pdf/1703.10155v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.299 +3168e52567d564f0871c3f9ed7757dae9d66c55a,,,, +31c0968fb5f587918f1c49bf7fa51453b3e89cf7,http://pdfs.semanticscholar.org/31c0/968fb5f587918f1c49bf7fa51453b3e89cf7.pdf,,,https://arxiv.org/pdf/1611.05244v2.pdf +310fe4e6cb6d090f7817de4c1034e35567b56e34,,,https://doi.org/10.1109/ICPR.2014.313, +31e57fa83ac60c03d884774d2b515813493977b9,http://pdfs.semanticscholar.org/31e5/7fa83ac60c03d884774d2b515813493977b9.pdf,,https://doi.org/10.1016/j.patrec.2017.12.010,https://arxiv.org/pdf/1703.01597v1.pdf +31a2fb63a3fc67da9932474cda078c9ac43f85c5,http://www.researchgate.net/profile/Sadeep_Jayasumana2/publication/269040853_Kernel_Methods_on_Riemannian_Manifolds_with_Gaussian_RBF_Kernels/links/54858a6a0cf283750c37264b.pdf,,,https://arxiv.org/pdf/1412.0265v2.pdf +3137a3fedf23717c411483c7b4bd2ed646258401,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_iccv_13.pdf,,,http://lrs.icg.tugraz.at/pubs/koestinger_iccv_13.pdf +31c34a5b42a640b824fa4e3d6187e3675226143e,http://pdfs.semanticscholar.org/31c3/4a5b42a640b824fa4e3d6187e3675226143e.pdf,,,http://dl.acm.org/citation.cfm?id=2616112 +310dcf9edb491b63d09a9eb55a99ad6bb46da1d4,,,, +316e67550fbf0ba54f103b5924e6537712f06bee,http://lear.inrialpes.fr/pubs/2010/GVS10/slides.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5540120 +31697737707d7f661cbc6785b76cf9a79fee3ccd,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.100 +31ef5419e026ef57ff20de537d82fe3cfa9ee741,http://pdfs.semanticscholar.org/9a10/78b6e3810c95fc4b87154ad62c0f133caebb.pdf,,https://doi.org/10.1007/978-3-319-16181-5_10,http://www.professeurs.polymtl.ca/christopher.pal/eccv2014/eccv2014_LBP.pdf +310da8bd81c963bd510bf9aaa4d028a643555c84,http://www.cs.sunysb.edu/~ial/content/papers/2005/Zhang2005cvpr2.pdf,,,http://www3.cs.stonybrook.edu/~cvl/content/papers/2005/Zhang2005cvpr2.pdf +31146bd416626d2bf912e0a0d12ca619fb49011b,,,, +31b58ced31f22eab10bd3ee2d9174e7c14c27c01,http://pdfs.semanticscholar.org/31b5/8ced31f22eab10bd3ee2d9174e7c14c27c01.pdf,,,http://people.csail.mit.edu/torralba/publications/5papers/Torralba2008.pdf +31a36014354ee7c89aa6d94e656db77922b180a5,,,,http://doi.acm.org/10.1145/2304496.2304509 +31835472821c7e3090abb42e57c38f7043dc3636,http://pdfs.semanticscholar.org/3183/5472821c7e3090abb42e57c38f7043dc3636.pdf,,https://doi.org/10.1007/978-3-642-33885-4_20,http://www.maths.lth.se/vision/publdb/reports/pdf/ardo-nilsson-etal-3wartemis-12.pdf +31a38fd2d9d4f34d2b54318021209fe5565b8f7f,http://www.umiacs.umd.edu/~huytho/papers/HoChellappa_TIP2013.pdf,,https://doi.org/10.1109/TIP.2012.2233489, +31aa7c992692b74f17ddec665cd862faaeafd673,http://www.researchgate.net/profile/Shinichi_Satoh/publication/221657297_Unsupervised_face_annotation_by_mining_the_web/links/0912f510a04034844d000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICDM.2008.47 +3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,http://pdfs.semanticscholar.org/3152/e89963b8a4028c4abf6e1dc19e91c4c5a8f4.pdf,,,https://arxiv.org/pdf/1801.03261v1.pdf +318a81acdd15a0ab2f706b5f53ee9d4d5d86237f,http://pdfs.semanticscholar.org/318a/81acdd15a0ab2f706b5f53ee9d4d5d86237f.pdf,,https://doi.org/10.1002/widm.1139,https://www.researchgate.net/profile/Sebastian_Ventura/publication/267154292_Multilabel_Learning_A_Review_of_the_State_of_The_Art_and_Ongoing_Research/links/54a6bb5f0cf257a6360a918e.pdf +31ffc95167a2010ce7aab23db7d5fc7ec439f5fb,,,https://doi.org/10.1109/TNNLS.2017.2651169, +31ace8c9d0e4550a233b904a0e2aabefcc90b0e3,http://pdfs.semanticscholar.org/31ac/e8c9d0e4550a233b904a0e2aabefcc90b0e3.pdf,,,https://arxiv.org/pdf/1403.2802v1.pdf +31bf8d7f5d373a2dece747448306e2228be51016,,,, +316d51aaa37891d730ffded7b9d42946abea837f,http://pdfs.semanticscholar.org/9f00/3a5e727b99f792e600b93b6458b9cda3f0a5.pdf,,,http://cbcl.mit.edu/publications/ps/LiaoLeiboPoggio_SfN2014.pdf +31afdb6fa95ded37e5871587df38976fdb8c0d67,http://www3.ntu.edu.sg/home/EXDJiang/ICASSP15.pdf,,https://doi.org/10.1109/ICASSP.2015.7178221,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2015/Quantized%20Fuzzy%20LBP%20for%20Face%20Recognition.pdf +31d60b2af2c0e172c1a6a124718e99075818c408,http://pdfs.semanticscholar.org/31d6/0b2af2c0e172c1a6a124718e99075818c408.pdf,,https://doi.org/10.20965/jaciii.2012.p0341,http://www.laszlojeni.com/pub/articles/Jeni12JACIII.pdf +31f1e711fcf82c855f27396f181bf5e565a2f58d,http://www.rci.rutgers.edu/~vmp93/Conference_pub/Age_iccv2015.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Ranjan_Unconstrained_Age_Estimation_ICCV_2015_paper.pdf +312afff739d1e0fcd3410adf78be1c66b3480396,http://pdfs.semanticscholar.org/312a/fff739d1e0fcd3410adf78be1c66b3480396.pdf,,,https://arxiv.org/pdf/1801.02480v1.pdf +315a90543d60a5b6c5d1716fe9076736f0e90d24,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553721.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553721 +3107085973617bbfc434c6cb82c87f2a952021b7,http://pdfs.semanticscholar.org/cee6/6bd89d1e25355e78573220adcd017a2d97d8.pdf,,,https://arxiv.org/pdf/1707.07213v2.pdf +31ba9d0bfaa2a44bae039e5625eb580afd962892,,,https://doi.org/10.1016/j.cviu.2016.03.014, +31182c5ffc8c5d8772b6db01ec98144cd6e4e897,http://pdfs.semanticscholar.org/3118/2c5ffc8c5d8772b6db01ec98144cd6e4e897.pdf,,,https://arxiv.org/pdf/1801.01089v1.pdf +314c4c95694ff12b3419733db387476346969932,,,,http://dl.acm.org/citation.cfm?id=3007672 +31003ba1cf9f77ec5b7038996d2ce999fa04d0ea,,,, +31bb49ba7df94b88add9e3c2db72a4a98927bb05,http://pdfs.semanticscholar.org/31bb/49ba7df94b88add9e3c2db72a4a98927bb05.pdf,,https://doi.org/10.1016/j.imavis.2012.06.005,https://ibug.doc.ic.ac.uk/media/uploads/documents/sandbach2012survey.pdf +3146fabd5631a7d1387327918b184103d06c2211,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Jeni_Person-Independent_3D_Gaze_CVPR_2016_paper.pdf,,,http://www.pitt.edu/~jeffcohn/biblio/3D-Gaze.pdf +31f905d40a4ac3c16c91d5be8427762fa91277f1,,,https://doi.org/10.1109/TIP.2017.2704661, +91811203c2511e919b047ebc86edad87d985a4fa,http://pdfs.semanticscholar.org/9181/1203c2511e919b047ebc86edad87d985a4fa.pdf,,,http://sharif.edu/~hoda/paper_2D.pdf +91167aceafbc9c1560381b33c8adbc32a417231b,,,https://doi.org/10.1109/TCSVT.2009.2020337, +915ff2bedfa0b73eded2e2e08b17f861c0e82a58,,,https://doi.org/10.1109/UEMCON.2017.8249000, +910524c0d0fe062bf806bb545627bf2c9a236a03,http://pdfs.semanticscholar.org/9105/24c0d0fe062bf806bb545627bf2c9a236a03.pdf,,,http://isgwww.cs.uni-magdeburg.de/bv/theses/thesis_chaudhry.pdf +9117fd5695582961a456bd72b157d4386ca6a174,http://pdfs.semanticscholar.org/9117/fd5695582961a456bd72b157d4386ca6a174.pdf,,,http://www.eee.hku.hk/optima/pub/conference/1509_ISTb.pdf +91df860368cbcebebd83d59ae1670c0f47de171d,http://pdfs.semanticscholar.org/91df/860368cbcebebd83d59ae1670c0f47de171d.pdf,,https://doi.org/10.1007/978-3-319-46466-4_6,http://cs.brown.edu/~gen/website_imgs/cocottributes_eccv2016.pdf +91067f298e1ece33c47df65236853704f6700a0b,http://pdfs.semanticscholar.org/9106/7f298e1ece33c47df65236853704f6700a0b.pdf,,,http://www.ijste.org/articles/IJSTEV2I11323.pdf +916ad644614cccae728c8a12c089f01af62fb12e,,,, +91a1945b9c40af4944a6cdcfe59a0999de4f650a,http://ccbr2017.org/ccbr%20PPT/95%E5%8F%B7%E8%AE%BA%E6%96%87-%E7%94%B3%E6%99%9A%E9%9C%9E%20wanxiahen-ccbr.pdf,,https://doi.org/10.1007/978-3-319-69923-3_10, +919bdc161485615d5ee571b1585c1eb0539822c8,,http://ieeexplore.ieee.org/document/6460332/,, +919d3067bce76009ce07b070a13728f549ebba49,http://pdfs.semanticscholar.org/919d/3067bce76009ce07b070a13728f549ebba49.pdf,,,http://www.ijsrp.org/research-paper-0614/ijsrp-p30113.pdf +9110c589c6e78daf4affd8e318d843dc750fb71a,http://pdfs.semanticscholar.org/9110/c589c6e78daf4affd8e318d843dc750fb71a.pdf,,,http://www1.se.cuhk.edu.hk/~hccl/publications/pub/Facial%20Express%20Synthesis%20Based%20on%20Emotion%20Dimensions%20for%20Affective%20Talking%20Avatar.pdf +916fbe5e8bec5e7757eeb9d452385db320204ee0,,,, +9101363521de0ec1cf50349da701996e4d1148c8,,,,http://doi.ieeecomputersociety.org/10.1109/ICIAP.2007.28 +91e57667b6fad7a996b24367119f4b22b6892eca,http://pdfs.semanticscholar.org/91e5/7667b6fad7a996b24367119f4b22b6892eca.pdf,,,http://www.researchgate.net/profile/Marco_Morana2/publication/221355885_Probabilistic_Corner_Detection_for_Facial_Feature_Extraction/links/546bae460cf2397f7831c681.pdf +91883dabc11245e393786d85941fb99a6248c1fb,http://pdfs.semanticscholar.org/9188/3dabc11245e393786d85941fb99a6248c1fb.pdf,,https://doi.org/10.1016/j.cviu.2017.08.008,http://arxiv.org/abs/1608.04188 +919cb6160db66a8fe0b84cb7f171aded48a13632,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2327978 +91b1a59b9e0e7f4db0828bf36654b84ba53b0557,http://www.kresttechnology.com/krest-academic-projects/krest-mtech-projects/ECE/MTech%20DSP%202015-16/MTech%20DSP%20BasePaper%202015-16/50.pdf,,https://doi.org/10.1109/TCSVT.2015.2400772, +9166f46aa3e58befaefd3537e5a11b31ebeea4d0,,,https://doi.org/10.1109/ICIP.2015.7351505, +919d0e681c4ef687bf0b89fe7c0615221e9a1d30,http://pdfs.semanticscholar.org/919d/0e681c4ef687bf0b89fe7c0615221e9a1d30.pdf,,,http://eprints.qut.edu.au/16289/1/Hossein_Ebrahimpour-Komleh_Thesis.pdf +91d0e8610348ef4d5d4975e6de99bb2d429af778,,,,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.61 +913961d716a4102d3428224f999295f12438399f,,,https://doi.org/10.1016/j.patcog.2014.01.016, +912a6a97af390d009773452814a401e258b77640,http://pdfs.semanticscholar.org/912a/6a97af390d009773452814a401e258b77640.pdf,,https://doi.org/10.1016/j.cviu.2016.07.006,http://arxiv.org/abs/1509.01520 +913062218c7498b2617bb9d7821fe1201659c5cc,,,https://doi.org/10.1109/ICMLA.2012.178, +91d513af1f667f64c9afc55ea1f45b0be7ba08d4,http://pdfs.semanticscholar.org/91d5/13af1f667f64c9afc55ea1f45b0be7ba08d4.pdf,,,https://arxiv.org/pdf/1706.09887v1.pdf +91e507d2d8375bf474f6ffa87788aa3e742333ce,http://pdfs.semanticscholar.org/91e5/07d2d8375bf474f6ffa87788aa3e742333ce.pdf,,https://doi.org/10.1007/978-3-642-15549-9_20,https://www.researchgate.net/profile/Gee-Sern_Hsu/publication/221304002_Robust_Face_Recognition_Using_Probabilistic_Facial_Trait_Code/links/09e4150f7d5c0d3ae0000000.pdf +918b72a47b7f378bde0ba29c908babf6dab6f833,http://pdfs.semanticscholar.org/918b/72a47b7f378bde0ba29c908babf6dab6f833.pdf,,https://doi.org/10.1016/j.patrec.2010.11.008,http://www.researchgate.net/profile/Leihong_Zhang/publication/220646480_Uncorrelated_trace_ratio_linear_discriminant_analysis_for_undersampled_problems/links/02e7e52abf94f7b268000000.pdf +918fc4c77a436b8a588f63b2b37420b7868fbbf8,,,https://doi.org/10.1016/j.inffus.2015.03.005, +91e58c39608c6eb97b314b0c581ddaf7daac075e,http://pdfs.semanticscholar.org/91e5/8c39608c6eb97b314b0c581ddaf7daac075e.pdf,,,http://arxiv.org/abs/1702.00307 +91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0,http://pdfs.semanticscholar.org/94c3/624c54f8f070a9dc82a41cbf7a888fe8f477.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/396.pdf +91835984eaeb538606972de47c372c5fcfe8b6aa,http://www.cse.ust.hk/~qnature/pdf/IEEESMC2015.pdf,,https://doi.org/10.1109/SMC.2015.385, +9103148dd87e6ff9fba28509f3b265e1873166c9,http://pdfs.semanticscholar.org/9103/148dd87e6ff9fba28509f3b265e1873166c9.pdf,,,http://epubs.surrey.ac.uk/808011/1/thesis.pdf +915d4a0fb523249ecbc88eb62cb150a60cf60fa0,http://pdfs.semanticscholar.org/915d/4a0fb523249ecbc88eb62cb150a60cf60fa0.pdf,,,http://audias.ii.uam.es/files/2000_carnahan_face_scruz.pdf +65126e0b1161fc8212643b8ff39c1d71d262fbc1,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ghiasi_Occlusion_Coherence_Localizing_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.306 +65b737e5cc4a565011a895c460ed8fd07b333600,http://pdfs.semanticscholar.org/7574/f999d2325803f88c4915ba8f304cccc232d1.pdf,,,https://pdfs.semanticscholar.org/7574/f999d2325803f88c4915ba8f304cccc232d1.pdf +6582f4ec2815d2106957215ca2fa298396dde274,http://mi.eng.cam.ac.uk/~cipolla/publications/article/2007-PAMI-face-sets.pdf,,,http://svr-www.eng.cam.ac.uk/~tkk22/doc/tpami07_final.pdf +65b1760d9b1541241c6c0222cc4ee9df078b593a,http://pdfs.semanticscholar.org/65b1/760d9b1541241c6c0222cc4ee9df078b593a.pdf,,,http://parnec.nuaa.edu.cn/xtan/paper/xtan-cvpr09.pdf +655e94eccddbe1b1662432c1237e61cf13a7d57b,,,,http://doi.ieeecomputersociety.org/10.1109/ISIP.2008.147 +65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220,http://pdfs.semanticscholar.org/65d7/f95fcbabcc3cdafc0ad38e81d1f473bb6220.pdf,,,http://worldcomp-proceedings.com/proc/p2013/IKE3410.pdf +65bba9fba03e420c96ec432a2a82521ddd848c09,http://pdfs.semanticscholar.org/65bb/a9fba03e420c96ec432a2a82521ddd848c09.pdf,,https://doi.org/10.1007/978-3-319-46493-0_9,http://arxiv.org/abs/1607.08584 +6554ca3187b3cbe5d1221592eb546dfc11aac14b,,,,http://doi.acm.org/10.1145/2501643.2501647 +655d9ba828eeff47c600240e0327c3102b9aba7c,http://cs.gmu.edu/~carlotta/publications/kpools.pdf,,https://doi.org/10.1109/TSMCB.2005.846641,http://cs.gmu.edu/~carlotta/publications/zhang-final.pdf +656a59954de3c9fcf82ffcef926af6ade2f3fdb5,http://pdfs.semanticscholar.org/656a/59954de3c9fcf82ffcef926af6ade2f3fdb5.pdf,,,https://kth.diva-portal.org/smash/get/diva2:1054887/FULLTEXT02.pdf +65475ce4430fb524675ebab6bcb570dfa07e0041,,,https://doi.org/10.1109/ISR.2013.6695696, +652aac54a3caf6570b1c10c993a5af7fa2ef31ff,http://pdfs.semanticscholar.org/652a/ac54a3caf6570b1c10c993a5af7fa2ef31ff.pdf,,,http://amp.ece.cmu.edu/Publication/Deepak/thesis.pdf +656ef752b363a24f84cc1aeba91e4fa3d5dd66ba,http://pdfs.semanticscholar.org/656e/f752b363a24f84cc1aeba91e4fa3d5dd66ba.pdf,,https://doi.org/10.1007/978-3-642-15986-2_40,http://fipa.cs.kit.edu/397.php +656aeb92e4f0e280576cbac57d4abbfe6f9439ea,http://pdfs.semanticscholar.org/656a/eb92e4f0e280576cbac57d4abbfe6f9439ea.pdf,,,http://jestec.taylors.edu.my/Vol%2012%20issue%201%20January%202017/12_1_12.pdf +6502cf30c088c6c7c4b2a05b7777b032c9dde7cd,http://vipl.ict.ac.cn/homepage/CVPR15Metric/ref/Learning%20compact%20binary%20face%20descriptor%20for%20face%20recognition_PAMI2015.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2408359 +6577c76395896dd4d352f7b1ee8b705b1a45fa90,http://ai.stanford.edu/~kdtang/papers/icip10_kinship.pdf,,https://doi.org/10.1109/ICIP.2010.5652590,http://users.cis.fiu.edu/~rfang/publications/ICIP10_Kinship.pdf +65869cc5ef00d581c637ae8ea6ca02ae4bb2b996,,,,http://doi.ieeecomputersociety.org/10.1109/ICDM.2007.65 +659dc6aa517645a118b79f0f0273e46ab7b53cd9,,,https://doi.org/10.1109/ACPR.2015.7486608, +659db2ceb304984a23f883ee5414168131c3567d,,,, +650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772,http://pdfs.semanticscholar.org/650b/fe7acc3f03eb4ba91d9f93da8ef0ae8ba772.pdf,,,http://www.wseas.us/e-library/conferences/2013/Budapest/IPASRE/IPASRE-11.pdf +6592dcd17fc4df707020904cf5ff0927684f9f23,,,, +65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,http://pdfs.semanticscholar.org/6529/3ecf6a4c5ab037a2afb4a9a1def95e194e5f.pdf,,,http://www.site.uottawa.ca/~laganier/publications/thesis/MEMP_Thesis.pdf +65fc8393610fceec665726fe4e48f00dc90f55fb,,,https://doi.org/10.1109/CYBConf.2013.6617455, +65817963194702f059bae07eadbf6486f18f4a0a,http://arxiv.org/pdf/1505.04141v2.pdf,,https://doi.org/10.1007/s11263-015-0814-0,https://arxiv.org/pdf/1505.04141v2.pdf +65b9c71a4e5886e3ec8ff1f26038c3c08bd96dcb,,,, +6581c5b17db7006f4cc3575d04bfc6546854a785,http://pdfs.semanticscholar.org/6581/c5b17db7006f4cc3575d04bfc6546854a785.pdf,,,https://publikationen.bibliothek.kit.edu/1000047232/3527119 +6515fe829d0b31a5e1f4dc2970a78684237f6edb,http://pdfs.semanticscholar.org/6515/fe829d0b31a5e1f4dc2970a78684237f6edb.pdf,,https://doi.org/10.1007/978-3-540-88690-7_13,http://www.ecse.rpi.edu/homepages/qji/Papers/eccv_BN_learning.pdf +65f25a28629ecfe8bae42a33883a8b9ab3c7d047,,,, +62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4,http://pdfs.semanticscholar.org/62d1/a31b8acd2141d3a994f2d2ec7a3baf0e6dc4.pdf,,https://doi.org/10.1186/s13640-017-0188-z,https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-017-0188-z?site=jivp-eurasipjournals.springeropen.com +6256b47342f080c62acd106095cf164df2be6020,,,https://doi.org/10.1007/978-3-319-24702-1_6, +62694828c716af44c300f9ec0c3236e98770d7cf,http://pdfs.semanticscholar.org/6269/4828c716af44c300f9ec0c3236e98770d7cf.pdf,,,http://www.ifets.info/journals/19_2/7.pdf +62648f91e38b0e8f69dded13b9858bd3a86bb6ed,,,,http://doi.acm.org/10.1145/2647868.2655016 +6261eb75066f779e75b02209fbd3d0f02d3e1e45,http://pdfs.semanticscholar.org/6261/eb75066f779e75b02209fbd3d0f02d3e1e45.pdf,,,http://yugangjiang.info/publication/MediaEval2015-Fudan-Huawei.pdf +622daa25b5e6af69f0dac3a3eaf4050aa0860396,http://pdfs.semanticscholar.org/af52/4ffcedaa50cff30607e6ad8e270ad0d7bf71.pdf,,,https://arxiv.org/pdf/1303.4778v2.pdf +62c2d21f78fb89a11b436ab6ca9acd9abca145be,,,, +62f0d8446adee6a5e8102053a63a61af07ac4098,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C072_yamashita2015.pdf,,https://doi.org/10.1109/ICIP.2015.7351298, +622c84d79a9420ed6f3a78f29233d56b1e99cc21,,,, +62f60039a95692baaeaae79a013c7f545e2a6c3d,http://www.researchgate.net/profile/G_Boato/publication/242336498_Identify_computer_generated_characters_by_analysing_facial_expressions_variation/links/0f3175360a34547478000000.pdf,,https://doi.org/10.1109/WIFS.2012.6412658, +62374b9e0e814e672db75c2c00f0023f58ef442c,http://pdfs.semanticscholar.org/6237/4b9e0e814e672db75c2c00f0023f58ef442c.pdf,,,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/Kotropoulos00c/Kotropoulos00c.ps.Z +6257a622ed6bd1b8759ae837b50580657e676192,http://pdfs.semanticscholar.org/b8d8/501595f38974e001a66752dc7098db13dfec.pdf,,,http://arxiv.org/abs/1711.09265 +62c2f898fe70c2c7ee2435cbe837be18184431d4,,,, +6226f2ea345f5f4716ac4ddca6715a47162d5b92,http://pdfs.semanticscholar.org/6226/f2ea345f5f4716ac4ddca6715a47162d5b92.pdf,,https://doi.org/10.3389/frobt.2015.00029, +62e913431bcef5983955e9ca160b91bb19d9de42,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,,,http://arxiv.org/pdf/1511.04031v1.pdf +628f9c1454b85ff528a60cd8e43ec7874cf17931,,,,http://doi.acm.org/10.1145/2993148.2993193 +62c435bc714f13a373926e3b1914786592ed1fef,http://assistech.iitd.ernet.in/mavi-embedded-device.pdf,,,http://doi.ieeecomputersociety.org/10.1109/VLSID.2017.38 +62e834114b58a58a2ea2d7b6dd7b0ce657a64317,,,https://doi.org/10.1109/SMC.2014.6973987, +62415bbd69270e6577136ba7120f4a682251cdbb,,,, +624e9d9d3d941bab6aaccdd93432fc45cac28d4b,https://arxiv.org/pdf/1505.00296v1.pdf,,https://doi.org/10.1109/CVPRW.2015.7301333,http://wanglimin.github.io/papers/WangWDQ_ChaLearnLAP15_slide.pdf +620e1dbf88069408b008347cd563e16aeeebeb83,http://pdfs.semanticscholar.org/620e/1dbf88069408b008347cd563e16aeeebeb83.pdf,,https://doi.org/10.1016/j.future.2012.08.013,http://captcharesearch.com/media/1003/facedcaptcha.pdf +62e61f9f7445e8dec336415ac0c7e677f9f5f7c1,,,https://doi.org/10.1142/S0219467814500065, +624496296af19243d5f05e7505fd927db02fd0ce,http://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_cvpr_2014.pdf,,,http://eprints.eemcs.utwente.nl/25815/01/Pantic_Gauss-Newton_Deformable_Part_Models.pdf +621741b87258c745f8905d15ba81aaf2a8be60d2,,,, +621ed006945e9438910b5aa4f6214888dea3d791,http://figment.cse.usf.edu/~sfefilat/data/papers/ThAT9.20.pdf,,https://doi.org/10.1109/ICPR.2008.4761211, +621ff353960d5d9320242f39f85921f72be69dc8,http://www.research.rutgers.edu/~xiangyu/paper/FG_2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553723 +62a30f1b149843860938de6dd6d1874954de24b7,http://mmlab.ie.cuhk.edu.hk/archive/2009/09_fast_algorithm.pdf,,https://doi.org/10.1109/TIFS.2009.2025844, +621e8882c41cdaf03a2c4a986a6404f0272ba511,http://conradsanderson.id.au/pdfs/wong_ijcnn_2012.pdf,,https://doi.org/10.1109/IJCNN.2012.6252611,https://www.researchgate.net/profile/Brian_Lovell2/publication/261086998_On_robust_biometric_identity_verification_via_sparse_encoding_of_faces_Holistic_vs_local_approaches/links/54980c4f0cf2eeefc30f6410.pdf?origin=publication_list +62e0380a86e92709fe2c64e6a71ed94d152c6643,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2012/Facial%20emotion%20recognition%20with%20expression%20energy12.pdf,,,http://doi.acm.org/10.1145/2388676.2388777 +621f656fedda378ceaa9c0096ebb1556a42e5e0f,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2016/07.19.17.24/doc/PID4367205.pdf?ibiurl.language=en,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.022 +6267dbeb54889be5bdb50c338a7c6ef82287084c,,,https://doi.org/10.1109/ICMLC.2010.5580567, +963a004e208ce4bd26fa79a570af61d31651b3c3,,,https://doi.org/10.1016/j.jvlc.2009.01.011, +965f8bb9a467ce9538dec6bef57438964976d6d9,http://www4.comp.polyu.edu.hk/~csajaykr/myhome/papers/ISBA2016.pdf,,https://doi.org/10.1109/ISBA.2016.7477243, +96b6f8ac898c8ef6b947c50bb66fe6b1e6f2fb11,,,, +961a5d5750f18e91e28a767b3cb234a77aac8305,http://pdfs.semanticscholar.org/961a/5d5750f18e91e28a767b3cb234a77aac8305.pdf,,https://doi.org/10.1007/978-3-319-10593-2_47,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8692/86920720.pdf +9635493998ad60764d7bbf883351af57a668d159,,,https://doi.org/10.1109/IJCNN.2017.7966005, +96a8f115df9e2c938453282feb7d7b9fde6f4f95,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2593719 +965c4a8087ae208c08e58aaf630ad412ac8ce6e2,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.100 +96b1f2bde46fe4f6cc637398a6a71e8454291a6e,,,https://doi.org/10.1109/TIP.2010.2073476, +9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c,http://pdfs.semanticscholar.org/9626/bcb3fc7c7df2c5a423ae8d0a046b2f69180c.pdf,,,http://uu.diva-portal.org/smash/get/diva2:1157319/FULLTEXT01.pdf +968b983fa9967ff82e0798a5967920188a3590a8,http://pdfs.semanticscholar.org/968b/983fa9967ff82e0798a5967920188a3590a8.pdf,,,https://www2.bc.edu/~russeljm/publications/Children's%20recognition%20of%20disgust%20in%20others.pdf +969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,http://pdfs.semanticscholar.org/969f/d48e1a668ab5d3c6a80a3d2aeab77067c6ce.pdf,,,http://arxiv.org/abs/1703.10818 +96faccdddef887673d6007fed8ff2574580cae1f,http://pdfs.semanticscholar.org/96fa/ccdddef887673d6007fed8ff2574580cae1f.pdf,,,https://arxiv.org/pdf/1703.09145v1.pdf +96ec76d2579a3b877019e715da58d8c47d343399,,,, +96fbadc5fa1393d59ce0b8fd3d71aebc1fe35b40,,,https://doi.org/10.1109/ICIP.2016.7532959, +961939e96eed6620b1752721ab520745ac5329c6,http://www.cs.umd.edu/~gaurav/research/frgcWorkshop.pdf,,,http://www.umiacs.umd.edu/~soma/pdf/frgc_umd_data_cvpr05ws.pdf +966cf4ca224e239a7192f9e79b60cc88aa604e27,,,, +96ccd94151a348c9829ab1d943cb13e9e933952f,,,, +960ad662c2bb454d69006492cc3f52d1550de55d,http://www.research.att.com/~yifanhu/PUB/gmap_cga.pdf,,,http://doi.ieeecomputersociety.org/10.1109/MCG.2010.101 +9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4,http://pdfs.semanticscholar.org/9696/b172d66e402a2e9d0a8d2b3f204ad8b98cc4.pdf,,https://doi.org/10.3745/JIPS.2013.9.1.173,https://pdfs.semanticscholar.org/9696/b172d66e402a2e9d0a8d2b3f204ad8b98cc4.pdf +964a3196d44f0fefa7de3403849d22bbafa73886,http://pdfs.semanticscholar.org/964a/3196d44f0fefa7de3403849d22bbafa73886.pdf,,https://doi.org/10.1016/j.neucom.2015.05.079,http://www.escience.cn/system/download/82452 +96f4a1dd1146064d1586ebe86293d02e8480d181,http://pdfs.semanticscholar.org/96f4/a1dd1146064d1586ebe86293d02e8480d181.pdf,,,http://www.ijates.com/images/short_pdf/1457757107_1029B.pdf +9652f154f4ae7807bdaff32d3222cc0c485a6762,,,https://doi.org/10.1007/s00138-016-0760-z, +9606b1c88b891d433927b1f841dce44b8d3af066,http://pdfs.semanticscholar.org/9606/b1c88b891d433927b1f841dce44b8d3af066.pdf,,,https://arxiv.org/pdf/1803.05026v1.pdf +966e36f15b05ef8436afecf57a97b73d6dcada94,http://pdfs.semanticscholar.org/966e/36f15b05ef8436afecf57a97b73d6dcada94.pdf,,,http://mediatum.ub.tum.de/doc/1243842/284129.pdf +96d34c1a749e74af0050004162d9dc5132098a79,,,https://doi.org/10.1109/TNN.2005.844909, +962812d28a169b3fc1d4323f8d0fca69a22dac4c,,,, +969dd8bc1179c047523d257516ade5d831d701ad,http://pdfs.semanticscholar.org/969d/d8bc1179c047523d257516ade5d831d701ad.pdf,,https://doi.org/10.1016/j.patcog.2017.01.011,http://liusi-group.com/pdf/faceverification-pr-2017.pdf +96578785836d7416bf2e9c154f687eed8f93b1e4,http://pdfs.semanticscholar.org/9657/8785836d7416bf2e9c154f687eed8f93b1e4.pdf,,,https://www.cbica.upenn.edu/sbia/papers/503.pdf +965f3a60a762712c3fc040724e507d00357f8709,,,, +96ab0367d0112b6092cc130c330c8c11c2eb8238,,,, +96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,http://megaface.cs.washington.edu/KemelmacherMegaFaceCVPR16.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Kemelmacher-Shlizerman_The_MegaFace_Benchmark_CVPR_2016_paper.pdf +968f472477a8afbadb5d92ff1b9c7fdc89f0c009,http://pdfs.semanticscholar.org/968f/472477a8afbadb5d92ff1b9c7fdc89f0c009.pdf,,,http://www.ifaamas.org/Proceedings/aamas2017/pdfs/p1643.pdf +96e731e82b817c95d4ce48b9e6b08d2394937cf8,http://arxiv.org/pdf/1508.01722v2.pdf,,,http://www.rci.rutgers.edu/~vmp93/Conference_pub/WACV_2016_janus_DCNN.pdf +9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc,http://pdfs.semanticscholar.org/9686/dcf40e6fdc4152f38bd12b929bcd4f3bbbcc.pdf,,,http://pnrsolution.org/Datacenter/Vol3/Issue1/95.pdf +96e0b67f34208b85bd90aecffdb92bc5134befc8,,,https://doi.org/10.1016/j.patcog.2007.10.002, +9636c7d3643fc598dacb83d71f199f1d2cc34415,http://pdfs.semanticscholar.org/9636/c7d3643fc598dacb83d71f199f1d2cc34415.pdf,,https://doi.org/10.1016/j.patrec.2015.05.005,http://web.ing.puc.cl/~dmery/Prints/ISI-Journals/2015-PLR.pdf +3abe50d0a806a9f5a5626f60f590632a6d87f0c4,http://vis.uky.edu/~gravity/publications/2008/Estimating_Xinyu.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2008.4563129 +3af8d38469fb21368ee947d53746ea68cd64eeae,http://pdfs.semanticscholar.org/3af8/d38469fb21368ee947d53746ea68cd64eeae.pdf,,,http://www.ifaamas.org/Proceedings/aamas2013/docs/p1461.pdf +3a2fc58222870d8bed62442c00341e8c0a39ec87,http://pdfs.semanticscholar.org/3a2f/c58222870d8bed62442c00341e8c0a39ec87.pdf,,,http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2014/MSC/MSC-2014-02.pdf +3a9fbd05aaab081189a8eea6f23ed730fa6db03c,,,https://doi.org/10.1109/ICASSP.2013.6638305, +3a76e9fc2e89bdd10a9818f7249fbf61d216efc4,http://openaccess.thecvf.com/content_ICCV_2017/papers/Nagpal_Face_Sketch_Matching_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.579 +3a92de0a4a0ef4f88e1647633f1fbb13cd6a3c95,http://impca.cs.curtin.edu.au/pubs/2007/conferences/an_liu_venkatesh_cvpr07.pdf,,,http://www.impca.cs.curtin.edu.au/pubs/2007/conferences/an_liu_venkatesh_cvpr07.pdf +3a0ea368d7606030a94eb5527a12e6789f727994,http://pdfs.semanticscholar.org/c7ca/eb8ecb6a38bdd65ddd25aca4fdd79203ddef.pdf,,,http://www.bheisele.com/nips2001.pdf +3a804cbf004f6d4e0b041873290ac8e07082b61f,http://pdfs.semanticscholar.org/5ce8/e665a6512c09f15d8528ce6bece1f6a4d138.pdf,,,http://www.umiacs.umd.edu/~hal/docs/daume11robotic.pdf +3a04eb72aa64760dccd73e68a3b2301822e4cdc3,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Peng_Scalable_Sparse_Subspace_2013_CVPR_paper.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a430.pdf +3ab036b680e8408ec74f78a918f3ffbf6c906d70,,,, +3af130e2fd41143d5fc49503830bbd7bafd01f8b,http://pdfs.semanticscholar.org/db76/002794c12e5febc30510de58b54bb9344ea9.pdf,,,http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/download/8802/8329 +3a2cf589f5e11ca886417b72c2592975ff1d8472,http://pdfs.semanticscholar.org/3a2c/f589f5e11ca886417b72c2592975ff1d8472.pdf,,,http://www.ml.cmu.edu/research/dap-papers/F17/dap-wang-yijie.pdf +3ada7640b1c525056e6fcd37eea26cd638815cd6,http://pdfs.semanticscholar.org/3ada/7640b1c525056e6fcd37eea26cd638815cd6.pdf,,,http://arxiv.org/abs/1411.2214 +3abc833f4d689f37cc8a28f47fb42e32deaa4b17,http://www.cs.virginia.edu/~vicente/files/ijcv_bigdata.pdf,,https://doi.org/10.1007/s11263-015-0840-y,http://www.cs.unc.edu/~vicente/files/ijcv_bigdata.pdf +3aebaaf888cba25be25097173d0b3af73d9ce7f9,,,,http://doi.ieeecomputersociety.org/10.1109/MMUL.2014.49 +3acb6b3e3f09f528c88d5dd765fee6131de931ea,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2017/novelRepresentation.pdf,,https://doi.org/10.1109/ICIP.2017.8296393, +3a05415356bd574cad1a9f1be21214e428bbc81b,,,, +3a0796161d838f9dc51c0ee5f700e668fa206db3,,,, +3a60678ad2b862fa7c27b11f04c93c010cc6c430,http://ibug.doc.ic.ac.uk/media/uploads/documents/taffcsi-2010-11-0112-2.pdf,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2011.25 +3a591a9b5c6d4c62963d7374d58c1ae79e3a4039,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W04/papers/Artan_Driver_Cell_Phone_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.42 +3aa9c8c65ce63eb41580ba27d47babb1100df8a3,http://www.csb.uncw.edu/mscsis/complete/pdf/VandeventerJason_Final.pdf,,https://doi.org/10.1109/BTAS.2012.6374595, +3a0a839012575ba455f2b84c2d043a35133285f9,http://pdfs.semanticscholar.org/76a1/dca3a9c2b0229c1b12c95752dcf40dc95a11.pdf,,,http://www.umiacs.umd.edu/~yzyang/paper/sengen_emnlp2011_final.pdf +3af1a375c7c1decbcf5c3a29774e165cafce390c,https://www.cbica.upenn.edu/sbia/papers/540.pdf,,,http://www.researchgate.net/profile/Ruben_Gur/publication/232629150_Quantifying_Facial_Expression_Abnormality_in_Schizophrenia_by_Combining_2D_and_3D_Features/links/02e7e515c945fbbf9c000000.pdf +3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e,http://www.wjscheirer.com/papers/wjs_cswb2010_grab.pdf,,https://doi.org/10.1109/CVPRW.2010.5544597,http://www.cse.lehigh.edu/~tboult/PAPERS/Sapkota-et-al-FACEGRAB-IEEE-Bioworkshop-2010.pdf +3a2a37ca2bdc82bba4c8e80b45d9f038fe697c7d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Vahdat_Handling_Uncertain_Tags_2013_ICCV_paper.pdf,,,https://arash-vahdat.github.io/vahdat-iccv13a.pdf +3a95eea0543cf05670e9ae28092a114e3dc3ab5c,https://arxiv.org/pdf/1209.0841v7.pdf,,https://doi.org/10.1109/TCYB.2016.2536752,http://www.pengxi.me/wp-content/uploads/Papers/2016-TCYB-L2graph.pdf +3a1c40eced07d59a3ea7acda94fa833c493909c1,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.111 +3ad56aed164190e1124abea4a3c4e1e868b07dee,,,https://doi.org/10.1016/j.patcog.2015.12.016, +3a0425c25beea6c4c546771adaf5d2ced4954e0d,,,,https://link.springer.com/book/10.1007/978-3-319-58347-1 +3a4f522fa9d2c37aeaed232b39fcbe1b64495134,http://ijireeice.com/upload/2016/may-16/IJIREEICE%20101.pdf,,https://doi.org/10.1109/TMM.2015.2420374, +54bb25a213944b08298e4e2de54f2ddea890954a,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.250 +54bae57ed37ce50e859cbc4d94d70cc3a84189d5,http://pdfs.semanticscholar.org/af65/4a7ec15168b16382bd604889ea07a967dac6.pdf,,https://doi.org/10.1109/ICASSP.2003.1202497,http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/icassp03.pdf +54f442c7fa4603f1814ebd8eba912a00dceb5cb2,http://pdfs.semanticscholar.org/54f4/42c7fa4603f1814ebd8eba912a00dceb5cb2.pdf,,,http://people.csail.mit.edu/finale/papers/finale_msc.pdf +54058859a2ddf4ecfc0fe7ccbea7bb5f29d9201d,,,https://doi.org/10.1007/978-3-319-50832-0_36, +54483d8b537e51317a8e6c6caf4949d4440c9368,,,, +543f21d81bbea89f901dfcc01f4e332a9af6682d,http://pdfs.semanticscholar.org/543f/21d81bbea89f901dfcc01f4e332a9af6682d.pdf,,,https://arxiv.org/pdf/1511.06390v2.pdf +5456166e3bfe78a353df988897ec0bd66cee937f,http://pdfs.semanticscholar.org/5456/166e3bfe78a353df988897ec0bd66cee937f.pdf,,,http://www.csc.kth.se/cvap/cvg/papers/prune_v1_2_camera_ready.pdf +546b4a865af7e9493270ee2c8f644070b534019d,,,, +541f1436c8ffef1118a0121088584ddbfd3a0a8a,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/A%20Spatio-Temporal%20Feature%20based%20on%20Triangulation%20of%20Dense%20SURF.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W14/papers/Nga_A_Spatio-temporal_Feature_2013_ICCV_paper.pdf +548233d67f859491e50c5c343d7d77a7531d4221,,,https://doi.org/10.1007/s11042-007-0176-x, +54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3,http://www.cs.toronto.edu/~vnair/iccv11.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126373 +5491478ae2c58af21389ed3af21babd362511a8e,,,,http://doi.acm.org/10.1145/2949035.2949048 +54e988bc0764073a5db2955705d4bfa8365b7fa9,,,,http://doi.acm.org/10.1145/2522848.2531749 +541bccf19086755f8b5f57fd15177dc49e77d675,http://pdfs.semanticscholar.org/541b/ccf19086755f8b5f57fd15177dc49e77d675.pdf,,,http://dspace.mit.edu/bitstream/handle/1721.1/37144/MIT-CSAIL-TR-2007-022.pdf?sequence=1 +5480aee1d01700bb98f5a0e06dd15bf36a4e45ea,,,, +54966a5ac5a2aa19760fb5197889fa9dcccac1d1,,,, +5495e224ac7b45b9edc5cfeabbb754d8a40a879b,http://pdfs.semanticscholar.org/5495/e224ac7b45b9edc5cfeabbb754d8a40a879b.pdf,,,http://openaccess.thecvf.com/content_ICCV_2017/supplemental/Peng_Reconstruction-Based_Disentanglement_for_ICCV_2017_supplemental.pdf +54756f824befa3f0c2af404db0122f5b5bbf16e0,http://pdfs.semanticscholar.org/5475/6f824befa3f0c2af404db0122f5b5bbf16e0.pdf,,,http://www.cs.columbia.edu/~aberg/alex/aberg_research.pdf +549c719c4429812dff4d02753d2db11dd490b2ae,http://openaccess.thecvf.com/content_cvpr_2017/papers/Real_YouTube-BoundingBoxes_A_Large_CVPR_2017_paper.pdf,,,https://arxiv.org/pdf/1702.00824v1.pdf +98b2f21db344b8b9f7747feaf86f92558595990c,http://pdfs.semanticscholar.org/b9f0/29075a36f15202f0d213fe222dcf237fe65f.pdf,,,https://arxiv.org/pdf/1705.07904v1.pdf +98142103c311b67eeca12127aad9229d56b4a9ff,http://pdfs.semanticscholar.org/9814/2103c311b67eeca12127aad9229d56b4a9ff.pdf,,,http://pubman.mpdl.mpg.de/pubman/item/escidoc:2460750:1/component/escidoc:2460749/arXiv:1704.08763.pdf +9820920d4544173e97228cb4ab8b71ecf4548475,http://pdfs.semanticscholar.org/9820/920d4544173e97228cb4ab8b71ecf4548475.pdf,,, +989332c5f1b22604d6bb1f78e606cb6b1f694e1a,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf +982f5c625d6ad0dac25d7acbce4dabfb35dd7f23,http://pdfs.semanticscholar.org/982f/5c625d6ad0dac25d7acbce4dabfb35dd7f23.pdf,,,https://pdfs.semanticscholar.org/982f/5c625d6ad0dac25d7acbce4dabfb35dd7f23.pdf +98af221afd64a23e82c40fd28d25210c352e41b7,http://pdfs.semanticscholar.org/d2fb/a31b394ea016b57f45bead77534fd8f7fbfa.pdf,,,http://www.isca-speech.org/archive/avsp10/papers/av10_P7.pdf +9888ce5cb5cae8ba4f288806d126b1114e0a7f9b,,,, +9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5,http://pdfs.semanticscholar.org/9893/865afdb1de55fdd21e5d86bbdb5daa5fa3d5.pdf,,https://doi.org/10.1007/3-540-44887-X_65,http://perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BIOMET/Face/Kumar/IlluminLogAVBPA03.pdf +988d1295ec32ce41d06e7cf928f14a3ee079a11e,http://pdfs.semanticscholar.org/988d/1295ec32ce41d06e7cf928f14a3ee079a11e.pdf,,,https://www.cs.uoregon.edu/Reports/ORAL-201509-Wang.pdf +98a120802aef324599e8b9014decfeb2236a78a3,http://nyunetworks.com/Pubs/butler-chi16.pdf,,,http://doi.acm.org/10.1145/2851581.2892535 +98856ab9dc0eab6dccde514ab50c823684f0855c,,,https://doi.org/10.1109/TIFS.2012.2191962, +98c548a4be0d3b62971e75259d7514feab14f884,http://pdfs.semanticscholar.org/98c5/48a4be0d3b62971e75259d7514feab14f884.pdf,,,https://arxiv.org/pdf/1703.07140v1.pdf +9887ab220254859ffc7354d5189083a87c9bca6e,http://pdfs.semanticscholar.org/9887/ab220254859ffc7354d5189083a87c9bca6e.pdf,,,https://arxiv.org/pdf/1309.5594v2.pdf +985cd420c00d2f53965faf63358e8c13d1951fa8,http://pdfs.semanticscholar.org/985c/d420c00d2f53965faf63358e8c13d1951fa8.pdf,,https://doi.org/10.1007/978-3-319-16817-3_5,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/704.pdf +981449cdd5b820268c0876477419cba50d5d1316,http://pdfs.semanticscholar.org/9814/49cdd5b820268c0876477419cba50d5d1316.pdf,,,https://arxiv.org/pdf/1801.05365v1.pdf +982ede05154c1afdcf6fc623ba45186a34f4b9f2,,,https://doi.org/10.1109/TMM.2017.2659221, +9863dd1e2a3d3b4910a91176ac0f2fee5eb3b5e1,http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/kim-ieee-2006.pdf,,https://doi.org/10.1109/TCSVT.2006.881197,http://mi.eng.cam.ac.uk/~tkk22/doc/tcsvt06_pub.pdf +982d4f1dee188f662a4b5616a045d69fc5c21b54,,,https://doi.org/10.1109/IJCNN.2016.7727859, +9821669a989a3df9d598c1b4332d17ae8e35e294,http://pdfs.semanticscholar.org/9821/669a989a3df9d598c1b4332d17ae8e35e294.pdf,,https://doi.org/10.1007/978-3-642-33783-3_3,http://www.cs.tau.ac.il/~wolf/papers/minCorr.pdf +9854145f2f64d52aac23c0301f4bb6657e32e562,http://www.ucsp.edu.pe/sibgrapi2013/eproceedings/technical/114953_2.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2013.57 +985bbe1d47b843fa0b974b4db91be23f218d1ce7,,,https://doi.org/10.1007/978-3-319-68121-4, +98c2053e0c31fab5bcb9ce5386335b647160cc09,https://smartech.gatech.edu/bitstream/handle/1853/45502/GT-CS-12-10.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICDCSW.2013.44 +98127346920bdce9773aba6a2ffc8590b9558a4a,http://disi.unitn.it/~duta/pubs/MTAP2017_Duta.pdf,,https://doi.org/10.1007/s11042-017-4795-6, +98a660c15c821ea6d49a61c5061cd88e26c18c65,http://pdfs.semanticscholar.org/98a6/60c15c821ea6d49a61c5061cd88e26c18c65.pdf,,,http://www.iosrjen.org/Papers/vol3_issue4%20(part-1)/F03414348.pdf +982fed5c11e76dfef766ad9ff081bfa25e62415a,https://pdfs.semanticscholar.org/c7fa/d91ba4e33f64d584c928b1200327815f09e6.pdf,,https://doi.org/10.1109/TIP.2015.2409738,http://www.citi.sinica.edu.tw/papers/ycwang/4607-F.pdf +988849863c3a45bcedacf8bd5beae3cc9210ce28,,,,http://doi.ieeecomputersociety.org/10.1109/TPDS.2016.2539164 +98c5dc00bd21a39df1d4411641329bdd6928de8a,,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995447 +98fb3890c565f1d32049a524ec425ceda1da5c24,http://pdfs.semanticscholar.org/98fb/3890c565f1d32049a524ec425ceda1da5c24.pdf,,https://doi.org/10.1007/978-3-319-16631-5_46,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop15/pdffiles/w15-p3.pdf +98519f3f615e7900578bc064a8fb4e5f429f3689,http://pdfs.semanticscholar.org/9851/9f3f615e7900578bc064a8fb4e5f429f3689.pdf,,https://doi.org/10.1007/978-1-4471-6296-4_13,https://www.cs.umd.edu/~qiu/pub/da_chapter.pdf +9825aa96f204c335ec23c2b872855ce0c98f9046,http://pdfs.semanticscholar.org/9825/aa96f204c335ec23c2b872855ce0c98f9046.pdf,,,http://ijeee.in/wp-content/uploads/2014/05/jyoti-patil.pdf +98218fa05a171a641435c154afa17bc99cf3375e,,,, +980266ad6807531fea94252e8f2b771c20e173b3,http://pdfs.semanticscholar.org/9802/66ad6807531fea94252e8f2b771c20e173b3.pdf,,https://doi.org/10.1007/978-3-642-33786-4_19,http://humansensing.cs.cmu.edu/projects/contreg/contreg.pdf +53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9,http://pdfs.semanticscholar.org/53d7/8c8dbac7c9be8eb148c6a9e1d672f1dd72f9.pdf,,,http://www.vision.caltech.edu/publications/phdthesis_holub.pdf +5364e58ba1f4cdfcffb247c2421e8f56a75fad8d,,,https://doi.org/10.1109/VCIP.2017.8305113, +53fdcc3a5a7e42590c21bbb4fe90d7f353ca21e5,,,, +53cfe4817ac2eecbe4e286709a9140a5fe729b35,http://www.cv.iit.nrc.ca/VI/fpiv04/pdf/17fa.pdf,,https://doi.org/10.1109/CVPR.2004.349,http://www.ece.osu.edu/~aleix/fpiv04.pdf +539cb169fb65a5542c84f42efcd5d2d925e87ebb,,,https://doi.org/10.1109/ICB.2015.7139098, +5334ac0a6438483890d5eef64f6db93f44aacdf4,http://pdfs.semanticscholar.org/5334/ac0a6438483890d5eef64f6db93f44aacdf4.pdf,,,http://www.robots.ox.ac.uk/~minhhoai/papers/RMP_BMVC14.pdf +53e081f5af505374c3b8491e9c4470fe77fe7934,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hsieh_Unconstrained_Realtime_Facial_2015_CVPR_paper.pdf,,,http://www.cs.ubc.ca/~chyma/publications/ur/2015_ur_paper.pdf +53698b91709112e5bb71eeeae94607db2aefc57c,http://pdfs.semanticscholar.org/5369/8b91709112e5bb71eeeae94607db2aefc57c.pdf,,,http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf +5375a3344017d9502ebb4170325435de3da1fa16,,,https://doi.org/10.1007/978-3-642-37444-9, +5304cd17f9d6391bf31276e4419100f17d4423b2,,,https://doi.org/10.1109/ICIP.2012.6466930, +531fd9be964d18ba7970bd1ca6c3b9dc91b8d2ab,http://pdfs.semanticscholar.org/531f/d9be964d18ba7970bd1ca6c3b9dc91b8d2ab.pdf,,,http://www.psych.nyu.edu/vanbavel/lab/documents/Park.etal.2012.BP.pdf +53873fe7bbd5a2d171e2b1babc9cacaad6cabe45,,,https://doi.org/10.1109/TCYB.2015.2417211, +5394d42fd27b7e14bd875ec71f31fdd2fcc8f923,http://pdfs.semanticscholar.org/5394/d42fd27b7e14bd875ec71f31fdd2fcc8f923.pdf,,,http://arxiv.org/abs/1504.04792 +534159e498e9cc61ea10917347637a59af38142d,,,https://doi.org/10.1016/j.neucom.2016.01.126, +539bbf8e4916481bd089d5641175085edf4cf049,,,, +5397c34a5e396658fa57e3ca0065a2878c3cced7,http://www.iis.sinica.edu.tw/papers/song/5959-F.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.144 +539ca9db570b5e43be0576bb250e1ba7a727d640,http://pdfs.semanticscholar.org/539c/a9db570b5e43be0576bb250e1ba7a727d640.pdf,,https://doi.org/10.5244/C.25.29,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00865.pdf +539287d8967cdeb3ef60d60157ee93e8724efcac,http://pdfs.semanticscholar.org/e5ae/05a05eefbf416eb2e13ec080f1a166dde735.pdf,,,http://arxiv.org/pdf/1509.00153v2.pdf +532f7ec8e0c8f7331417dd4a45dc2e8930874066,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p6060-zoidi.pdf,,https://doi.org/10.1109/ICASSP.2014.6854759,https://research-information.bris.ac.uk/ws/files/77093301/Ioannis_Pitas_Semi_Supervised_Dimensionality_Reduction_on_Data_with_Multiple_Representations_for_Label_Propagation_on_Facial_Images.pdf +53c8cbc4a3a3752a74f79b74370ed8aeed97db85,http://pdfs.semanticscholar.org/53c8/cbc4a3a3752a74f79b74370ed8aeed97db85.pdf,,https://doi.org/10.1016/j.patrec.2013.02.002,http://www.cse.msu.edu/~liuxm/publication/chen_Liu_Tu_Aragones_PRL_2013.pdf +5366573e96a1dadfcd4fd592f83017e378a0e185,http://pdfs.semanticscholar.org/5366/573e96a1dadfcd4fd592f83017e378a0e185.pdf,,,https://arxiv.org/pdf/1711.08801v1.pdf +53509017a25ac074b5010bb1cdba293cdf399e9b,,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2012.41 +539f55c0e2501c1d86791c8b54b225d9b3187b9c,,,https://doi.org/10.1109/TIP.2017.2738560, +539ffd51f18404e1ef83371488cf5a27cd16d064,,,https://doi.org/10.1049/iet-ipr.2014.0733, +533bfb82c54f261e6a2b7ed7d31a2fd679c56d18,http://biometrics.cse.msu.edu/Publications/Face/BestRowdenetal_UnconstrainedFaceRecognition_TechReport_MSU-CSE-14-1.pdf,,https://doi.org/10.1109/TIFS.2014.2359577,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/BestRowdenetal_UnconstrainedFaceRecognition_TIFS2014.pdf +539ae0920815eb248939165dd5d1b0188ff7dca2,http://www.ele.puc-rio.br/~visao/Topicos/Prince%20and%20Helder%202007%20Probabilistic%20linear%20discriminant%20analysis.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2007.4409052 +537d8c4c53604fd419918ec90d6ef28d045311d0,https://arxiv.org/pdf/1704.08821v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078534 +530ce1097d0681a0f9d3ce877c5ba31617b1d709,https://pdfs.semanticscholar.org/530c/e1097d0681a0f9d3ce877c5ba31617b1d709.pdf,,https://doi.org/10.1109/CICAC.2013.6595214,http://ogma.newcastle.edu.au:8080/vital/access/services/Download/uon:14150/ATTACHMENT02 +5305bfdff39ae74d2958ba28d42c16495ce2ff86,,,https://doi.org/10.1109/DICTA.2014.7008128, +53e34ff4639806b7599c846f219c02b025da9d13,,,, +3fbd68d1268922ee50c92b28bd23ca6669ff87e5,http://pdfs.semanticscholar.org/f563/6a8021c09870c350e7505c87625fe1681bd4.pdf,,https://doi.org/10.1109/83.913594,http://www.cs.njit.edu/~liu/papers/ShapeTexture.pdf +3fe4109ded039ac9d58eb9f5baa5327af30ad8b6,http://www.cvc.uab.cat/~ahernandez/files/CVPR2010STGRABCUT.pdf,,https://doi.org/10.1109/CVPRW.2010.5543824,http://www.cvc.uab.es/~petia/2010/Toni%20CVPR2010STGRABCUT.pdf +3f22a4383c55ceaafe7d3cfed1b9ef910559d639,http://pdfs.semanticscholar.org/3f22/a4383c55ceaafe7d3cfed1b9ef910559d639.pdf,,,https://arxiv.org/pdf/1801.06432v1.pdf +3fefc856a47726d19a9f1441168480cee6e9f5bb,http://pdfs.semanticscholar.org/e0e6/bf37d374f9c5cb2461ea87190e234c466d63.pdf,,,http://ri.cmu.edu/pub_files/2014/8/l_trutoiu_robotics_2014-1.pdf +3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001,http://pdfs.semanticscholar.org/4032/8c9de5a0a90a8c24e80db7924f0281b46484.pdf,,https://doi.org/10.1007/978-3-319-22979-9_28,http://staffwww.dcs.shef.ac.uk/people/A.Damianou/papers/Damianou_LivMachines15.pdf +3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2014/MM02014.pdf,,https://doi.org/10.1109/TMM.2014.2315595, +3f2a44dcf0ba3fc72b24c7f09bb08e25797398c1,,,https://doi.org/10.1109/IJCNN.2017.7966210, +3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9,https://arxiv.org/pdf/1611.06638.pdf,,,http://arxiv.org/abs/1611.06638 +3f848d6424f3d666a1b6dd405a48a35a797dd147,http://pdfs.semanticscholar.org/4f69/233cd6f0b56833c9395528aa007b63158a1d.pdf,,,http://www.bmva.org/bmvc/2014/files/abstract048.pdf +3fe1cfd2dc69a23c0b0cdf9456c057e6ea1ee1b9,,,, +3fa738ab3c79eacdbfafa4c9950ef74f115a3d84,http://pdfs.semanticscholar.org/3fa7/38ab3c79eacdbfafa4c9950ef74f115a3d84.pdf,,https://doi.org/10.1007/978-3-319-10578-9_47,http://www.cs.ucf.edu/~aroshan/index_files/DaMN_ECCV14.pdf +3fb26f3abcf0d287243646426cd5ddeee33624d4,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Qin_Joint_Training_of_CVPR_2016_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Qin_Joint_Training_of_CVPR_2016_paper.pdf +3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Hsu_Face_Recognition_across_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.128 +3fa628e7cff0b1dad3f15de98f99b0fdb09df834,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2013.6607603 +3feb69531653e83d0986a0643e4a6210a088e3e5,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/SLAM2007/papers/10-1569042275.pdf,,,http://amp.ece.cmu.edu/people/Andy/Andy_files/slam2007IEEE.pdf +3ffbc912de7bad720c995385e1fdc439b1046148,,,,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2008.347 +3f12701449a82a5e01845001afab3580b92da858,http://pdfs.semanticscholar.org/e4f5/2f5e116f0cc486d033e4b8fc737944343db7.pdf,,https://doi.org/10.1007/978-3-319-10584-0_39,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8695/86950599.pdf +3f204a413d9c8c16f146c306c8d96b91839fed0c,http://www.menpo.org/pages/paper/Menpo_ACM_MM_2014.pdf,,,http://doi.acm.org/10.1145/2647868.2654890 +3fde656343d3fd4223e08e0bc835552bff4bda40,http://pdfs.semanticscholar.org/3fde/656343d3fd4223e08e0bc835552bff4bda40.pdf,,,http://www.ijcsmc.com/docs/papers/April2013/abstracts/V2I4201364.pdf +3fe3d6ff7e5320f4395571131708ecaef6ef4550,,,https://doi.org/10.1109/SITIS.2016.60, +3fd092b96c3339507732263c9e6379b307c26073,,,, +3f957142ef66f2921e7c8c7eadc8e548dccc1327,https://ibug.doc.ic.ac.uk/media/uploads/documents/combined_model_lda_&_svms.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.140 +3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,http://pdfs.semanticscholar.org/3fdf/d6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3.pdf,,https://doi.org/10.1007/978-3-319-26561-2_27,https://pdfs.semanticscholar.org/3fdf/d6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3.pdf +3f540faf85e1f8de6ce04fb37e556700b67e4ad3,http://pdfs.semanticscholar.org/3f54/0faf85e1f8de6ce04fb37e556700b67e4ad3.pdf,,https://doi.org/10.3390/e19050228,http://www.mdpi.com/1099-4300/19/5/228/pdf +3f88ea8cf2eade325b0f32832561483185db5c10,,,https://doi.org/10.1109/TIP.2017.2721838, +3fb3c7dd12561e9443ac301f5527d539b1f4574e,http://www.research.rutgers.edu/~shaoting/paper/ICCV13.pdf,,,http://www.research.rutgers.edu/~xiangyu/paper/iccv13_face_final.pdf +3f4bfa4e3655ef392eb5ad609d31c05f29826b45,http://pdfs.semanticscholar.org/3f4b/fa4e3655ef392eb5ad609d31c05f29826b45.pdf,,,http://arxiv.org/pdf/1003.5861v1.pdf +3f5cf3771446da44d48f1d5ca2121c52975bb3d3,http://pdfs.semanticscholar.org/3f5c/f3771446da44d48f1d5ca2121c52975bb3d3.pdf,,https://doi.org/10.1007/3-540-47977-5_10,http://www.ri.cmu.edu/pub_files/pub4/narasimhan_srinivasa_g_2002_2/narasimhan_srinivasa_g_2002_2.pdf +3f4711c315d156a972af37fe23642dc970a60acf,,,https://doi.org/10.1109/IJCNN.2008.4634393, +3fbe4a46b94cdacbf076a66da7ea7e6546e96025,,,, +3f14b504c2b37a0e8119fbda0eff52efb2eb2461,https://ibug.doc.ic.ac.uk/media/uploads/documents/eleftheriadis_tip_2016.pdf,,https://doi.org/10.1109/TIP.2016.2615288,https://ibug.doc.ic.ac.uk/media/uploads/documents/eleftheriadis_tip2.pdf +3fac7c60136a67b320fc1c132fde45205cd2ac66,http://pdfs.semanticscholar.org/3fac/7c60136a67b320fc1c132fde45205cd2ac66.pdf,,https://doi.org/10.1007/978-3-319-11071-4_2,https://www.researchgate.net/profile/Yunduan_Cui2/publication/283296874_Remarks_on_Computational_Facial_Expression_Recognition_from_HOG_Features_Using_Quaternion_Multi-layer_Neural_Network/links/56314b3108ae0530378d2c6a.pdf?inViewer=0&origin=publication_detail&pdfJsDownload=0 +3fd90098551bf88c7509521adf1c0ba9b5dfeb57,http://pub.ist.ac.at/~chl/papers/lampert-pami2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.140 +3f623bb0c9c766a5ac612df248f4a59288e4d29f,http://pdfs.semanticscholar.org/3f62/3bb0c9c766a5ac612df248f4a59288e4d29f.pdf,,https://doi.org/10.1007/978-3-319-30668-1_4,http://homepages.ecs.vuw.ac.nz/~xuebing/Papers/lensen2016genetic.pdf +3f4798c7701da044bdb7feb61ebdbd1d53df5cfe,http://sip.unige.ch/articles/2015/2015.EUSIPCO.Vector.quantization.pdf,,https://doi.org/10.1109/EUSIPCO.2015.7362361, +3f4c262d836b2867a53eefb959057350bf7219c9,http://pdfs.semanticscholar.org/3f4c/262d836b2867a53eefb959057350bf7219c9.pdf,,,http://www.wseas.us/e-library/conferences/2008/istanbul/sip-wave/6-587-235.pdf?origin=publication_detail +3f7723ab51417b85aa909e739fc4c43c64bf3e84,http://pdfs.semanticscholar.org/3f77/23ab51417b85aa909e739fc4c43c64bf3e84.pdf,,https://doi.org/10.1007/978-3-319-23234-8_48,https://www.researchgate.net/profile/Cosimo_Distante/publication/281589986_Improved_Performance_in_Facial_Expression_Recognition_Using_32_Geometric_Features/links/55eef99208aef559dc44a659.pdf?inViewer=0&origin=publication_detail&pdfJsDownload=0 +3ff418ac82df0b5c2f09f3571557e8a4b500a62c,,,https://doi.org/10.1007/s11554-007-0039-8,http://www.mip.informatik.uni-kiel.de/tiki-download_file.php?fileId=837 +3fc173805ed43602eebb7f64eea4d60c0386c612,,,,http://doi.ieeecomputersociety.org/10.1109/CyberC.2015.94 +3f63f9aaec8ba1fa801d131e3680900680f14139,http://dspace.nitrkl.ac.in/dspace/bitstream/2080/2288/1/4a.pdf,,, +3f0e0739677eb53a9d16feafc2d9a881b9677b63,http://pdfs.semanticscholar.org/d309/e414f0d6e56e7ba45736d28ee58ae2bad478.pdf,,,http://arxiv.org/pdf/1608.08851v1.pdf +3039627fa612c184228b0bed0a8c03c7f754748c,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wu_Robust_Regression_on_2015_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_034.pdf +30cc1ddd7a9b4878cca7783a59086bdc49dc4044,,,https://doi.org/10.1007/s11042-015-2599-0, +303065c44cf847849d04da16b8b1d9a120cef73a,http://pdfs.semanticscholar.org/3030/65c44cf847849d04da16b8b1d9a120cef73a.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.580 +303a7099c01530fa0beb197eb1305b574168b653,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.373 +30aa681ab80a830c3890090b0da3f1e786bd66ff,https://arxiv.org/pdf/1708.02337v1.pdf,,https://doi.org/10.1109/BTAS.2017.8272759,https://arxiv.org/pdf/1708.02337v2.pdf +30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,http://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,,,http://arxiv.org/pdf/1510.09083v1.pdf +303517dfc327c3004ae866a6a340f16bab2ee3e3,http://pdfs.semanticscholar.org/3035/17dfc327c3004ae866a6a340f16bab2ee3e3.pdf,,,http://ijetmas.com/admin/resources/project/paper/f201408191408462543.pdf +309e17e6223e13b1f76b5b0eaa123b96ef22f51b,https://static.aminer.org/pdf/PDF/000/337/771/image_synthesis_and_face_recognition_based_on_d_face_model.pdf,,,http://mi.informatik.uni-siegen.de/publications/fg06_blanz.pdf +3046baea53360a8c5653f09f0a31581da384202e,http://pdfs.semanticscholar.org/3046/baea53360a8c5653f09f0a31581da384202e.pdf,,,http://link.springer.com/content/pdf/10.1007/978-94-007-5446-1_8.pdf +3026722b4cbe9223eda6ff2822140172e44ed4b1,http://chenlab.ece.cornell.edu/people/Andy/Andy_files/GallagherICCV09Demographics.pdf,,https://doi.org/10.1109/ICCV.2009.5459340, +3028690d00bd95f20842d4aec84dc96de1db6e59,http://pdfs.semanticscholar.org/775f/9b8bc0ff151ee62b5e777f0aa9b09484ef8a.pdf,,,https://arxiv.org/pdf/1608.02146v1.pdf +30a4b4ef252cb509b58834e7c40862124c737b61,,,https://doi.org/10.1142/S0218001416560061, +30c96cc041bafa4f480b7b1eb5c45999701fe066,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/DiscreteCosineTransformLocality-SensitiveHashes14.pdf,,https://doi.org/10.1109/TMM.2014.2305633, +3060ac37dec4633ef69e7bc63488548ab3511f61,,,https://doi.org/10.1007/s00521-018-3358-8, +306957285fea4ce11a14641c3497d01b46095989,http://pdfs.semanticscholar.org/3069/57285fea4ce11a14641c3497d01b46095989.pdf,,https://doi.org/10.1007/978-3-540-30548-4_23,http://www.jdl.ac.cn/doc/2004/Face%20Recognition%20under%20Varying%20Lighting%20Based%20on%20Derivates%20of%20Log%20Image.pdf +304b1f14ca6a37552dbfac443f3d5b36dbe1a451,http://pdfs.semanticscholar.org/304b/1f14ca6a37552dbfac443f3d5b36dbe1a451.pdf,,,https://arxiv.org/pdf/1704.03966v1.pdf +30f62b05b9a69d671be4112d47eba90028a26c71,,,, +306127c3197eb5544ab1e1bf8279a01e0df26120,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Huang_Sparse_Coding_and_CVPR_2016_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Huang_Sparse_Coding_and_CVPR_2016_paper.pdf +307a810d1bf6f747b1bd697a8a642afbd649613d,http://pdfs.semanticscholar.org/307a/810d1bf6f747b1bd697a8a642afbd649613d.pdf,,,https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01342810/file/Abstract%20WASC_pierre_final.pdf +30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf,,,http://arxiv.org/pdf/1603.03958v2.pdf +30044dd951133187cb8b57e53a22cf9306fa7612,,,https://doi.org/10.1109/WACV.2017.52, +308025c378aef6acf9fe3acbddbfddcaa4271e8c,,,, +30f6c4bd29b9a8c94f37f3818cf6145c1507826f,,,, +30457461333c8797457c18636732327e6dde1d04,,,, +30c5d2ec584e7b8273af6915aab420fc23ff2761,http://imi.ntu.edu.sg/IMIGraduatePrograms/IMIResearchSeminars/Documents/29_April_2014/REN_Jianfeng_29_April_2014.pdf,,https://doi.org/10.1109/TIP.2013.2268976,http://www3.ntu.edu.sg/home/EXDJiang/JiangX.D.-TIP-13-1.pdf +3083d2c6d4f456e01cbb72930dc2207af98a6244,http://pdfs.semanticscholar.org/3083/d2c6d4f456e01cbb72930dc2207af98a6244.pdf,,,http://repositories.vnu.edu.vn/jspui/bitstream/123456789/16830/1/InTech-Perceived_age_estimation_from_face_images.pdf +302c9c105d49c1348b8f1d8cc47bead70e2acf08,http://pdfs.semanticscholar.org/302c/9c105d49c1348b8f1d8cc47bead70e2acf08.pdf,,,http://eprints.lancs.ac.uk/87886/4/07936556.pdf +30b74e60ec11c0ebc4e640637d56d85872dd17ce,http://pdfs.semanticscholar.org/c810/9382eea8f3fc49b3e6ed13d36eb95a06d0ed.pdf,,,https://arxiv.org/pdf/1706.07911v1.pdf +30188b836f2fa82209d7afbf0e4d0ee29c6b9a87,,,https://doi.org/10.1109/TIP.2013.2249077, +3080026f2f0846d520bd5bacb0cb2acea0ffe16b,,,https://doi.org/10.1109/BTAS.2017.8272690, +303828619630ca295f772be0a7b9fe8007dfaea3,,,, +304a306d2a55ea41c2355bd9310e332fa76b3cb0,http://pdfs.semanticscholar.org/95da/2d1137637e89da8b7a16e0dc6168cfceb693.pdf,,https://doi.org/10.1016/j.imavis.2016.04.009,https://www.doc.ic.ac.uk/~rw2614/pdfs/publications/vsl_crf_imavis_2016.pdf +3042d3727b2f80453ff5378b4b3043abb2d685a1,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0219.pdf,,,http://dhoiem.web.engr.illinois.edu/publications/cvpr2009_wang_flickr.pdf +301b0da87027d6472b98361729faecf6e1d5e5f6,http://pdfs.semanticscholar.org/301b/0da87027d6472b98361729faecf6e1d5e5f6.pdf,,,http://www.cv.tu-berlin.de/fileadmin/fg140/Head_Pose_Estimation.pdf +30b103d59f8460d80bb9eac0aa09aaa56c98494f,http://pdfs.semanticscholar.org/30b1/03d59f8460d80bb9eac0aa09aaa56c98494f.pdf,,,http://www.araa.asn.au/acra/acra2015/papers/pap132.pdf +30cace74a7d51e9a928287e25bcefb968c49f331,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344634 +5e97a1095f2811e0bc188f52380ea7c9c460c896,http://web.eecs.utk.edu/~rguo1/FacialParsing.pdf,,https://doi.org/10.1109/ICIP.2015.7351510, +5e59193a0fc22a0c37301fb05b198dd96df94266,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dessein_Example-Based_Modeling_of_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.444 +5e0eb34aeb2b58000726540336771053ecd335fc,http://ies.anthropomatik.kit.edu/ies/download/publ/ies_2016_herrmann_low_quality.pdf,,https://doi.org/10.1109/DICTA.2016.7797061, +5ee0103048e1ce46e34a04c45ff2c2c31529b466,,,https://doi.org/10.1109/ICIP.2015.7350886, +5e8de234b20f98f467581f6666f1ed90fd2a81be,,,,http://doi.acm.org/10.1145/2647868.2655042 +5ebb247963d2d898d420f1f4a2486102a9d05aa9,http://bcmi.sjtu.edu.cn/~zhzhang/papers/nncw.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539934 +5e53f530871b5167be0f224993be8a38e85796e8,,,, +5e99b49b4c5fb2a72392ea199edacd650bd122c5,,,, +5e28673a930131b1ee50d11f69573c17db8fff3e,http://pdfs.semanticscholar.org/f28d/fadba11bd3489d008827d9b1a539b34b50df.pdf,,,http://www.cs.weizmann.ac.il/~hassner/projects/Patchlbp/WolfHassnerTaigman_ECCVW08.pdf +5ea9063b44b56d9c1942b8484572790dff82731e,https://ibug.doc.ic.ac.uk/media/uploads/documents/mlsp_2007_kotsia.pdf,,, +5e87f5076952cd442718d6b4addce905bae1a1a4,,,https://doi.org/10.1109/ICMLC.2016.7872938, +5e16f10f2d667d17c029622b9278b6b0a206d394,http://pdfs.semanticscholar.org/5e16/f10f2d667d17c029622b9278b6b0a206d394.pdf,,,https://arxiv.org/pdf/1410.5524v1.pdf +5e19d7307ea67799eb830d5ce971f893e2b8a9ca,,,https://doi.org/10.1007/s11063-012-9214-4, +5e0b691e9e5812dd3cb120a8d77619a45aa8e4c4,,,https://doi.org/10.1109/ICIP.2016.7532567, +5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7,http://cbl.uh.edu/pub_files/ISBA-2016.pdf,,https://doi.org/10.1109/ISBA.2016.7477244, +5ea165d2bbd305dc125415487ef061bce75dac7d,http://www.ece.northwestern.edu/~zli/new_home/MyPublications/conf/ICME2009-human-act-apd-final.pdf,,https://doi.org/10.1109/ICME.2009.5202626,http://www1.ece.neu.edu/~yunfu/papers/ICME2009-human-act-apd-final.pdf +5e6ba16cddd1797853d8898de52c1f1f44a73279,http://pdfs.semanticscholar.org/5e6b/a16cddd1797853d8898de52c1f1f44a73279.pdf,,,https://arxiv.org/pdf/1406.6818v2.pdf +5ea9cba00f74d2e113a10c484ebe4b5780493964,http://pdfs.semanticscholar.org/5ea9/cba00f74d2e113a10c484ebe4b5780493964.pdf,,,http://research.sabanciuniv.edu/10444/1/icat.pdf +5ed5e534c8defd683909200c1dc31692942b7b5f,,,,http://doi.acm.org/10.1145/2983926 +5e62b2ab6fd3886e673fd5cbee160a5bee414507,,,,http://doi.ieeecomputersociety.org/10.1109/SITIS.2015.31 +5e09155cfb7a8bab2217e5d34cd0d6a4a0586868,,,, +5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43,http://www.cs.cmu.edu/~juny/Prof/papers/acmmm04a-jyang.pdf,,,http://lastchance.inf.cs.cmu.edu/alex/p580-yang.pdf +5ec94adc9e0f282597f943ea9f4502a2a34ecfc2,http://pdfs.semanticscholar.org/5ec9/4adc9e0f282597f943ea9f4502a2a34ecfc2.pdf,,,http://arxiv.org/abs/1506.04655 +5e0e516226413ea1e973f1a24e2fdedde98e7ec0,http://pdfs.semanticscholar.org/74ce/97da57ec848db660ee69dec709f226c74f43.pdf,,,http://cbcl.mit.edu/publications/theses/thesis-leibo.pdf +5e806d8fa48216041fe719309534e3fa903f7b5b,,,https://doi.org/10.1109/BTAS.2010.5634501, +5efdf48ca56b78e34dc2f2f0ce107a25793d3fc2,,,,http://doi.ieeecomputersociety.org/10.1109/TVCG.2016.2641442 +5e821cb036010bef259046a96fe26e681f20266e,https://pdfs.semanticscholar.org/d7e6/d52748c5ed386a90118fa385647c55954ab9.pdf,,,http://www.ee.oulu.fi/~hadid/IPTA2008.pdf +5e7cb894307f36651bdd055a85fdf1e182b7db30,http://pdfs.semanticscholar.org/5e7c/b894307f36651bdd055a85fdf1e182b7db30.pdf,,,http://note.sonots.com/?openfile=report.pdf&plugin=attach&refer=SciSoftware/MSVM +5b693cb3bedaa2f1e84161a4261df9b3f8e77353,http://pdfs.semanticscholar.org/5b69/3cb3bedaa2f1e84161a4261df9b3f8e77353.pdf,,,http://www.cmis.csiro.au/Hugues.Talbot/dicta2003/cdrom/pdf/0899.pdf +5b73b7b335f33cda2d0662a8e9520f357b65f3ac,http://www.iis.sinica.edu.tw/papers/song/16795-F.pdf,,https://doi.org/10.1109/SMC.2013.538, +5b6d05ce368e69485cb08dd97903075e7f517aed,http://pdfs.semanticscholar.org/5b6d/05ce368e69485cb08dd97903075e7f517aed.pdf,,,http://www.andrew.cmu.edu/user/kseshadr/CMU_2009_Tech_Rep.pdf +5b0bf1063b694e4b1575bb428edb4f3451d9bf04,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Yang_Facial_Shape_Tracking_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.131 +5b59e6b980d2447b2f3042bd811906694e4b0843,https://bib.irb.hr/datoteka/832723.PID4276755.pdf,,https://doi.org/10.1109/SPLIM.2016.7528404, +5bb6703bc01e4f7ab7e043964ec6579ac06a7c03,,,, +5bb53fb36a47b355e9a6962257dd465cd7ad6827,http://pdfs.semanticscholar.org/5bb5/3fb36a47b355e9a6962257dd465cd7ad6827.pdf,,,http://arxiv.org/abs/1610.08481 +5b809871a895ea8422afc31c918056614ea94688,,,, +5b89744d2ac9021f468b3ffd32edf9c00ed7fed7,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Bi_Beyond_Mahalanobis_Metric_2015_CVPR_paper.pdf,,https://doi.org/10.1109/CVPR.2015.7298847,http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Bi_Beyond_Mahalanobis_Metric_2015_CVPR_supplemental.pdf +5bfc32d9457f43d2488583167af4f3175fdcdc03,http://pdfs.semanticscholar.org/5bfc/32d9457f43d2488583167af4f3175fdcdc03.pdf,,,http://www.ijsr.net/archive/v2i8/MDIwMTMyODc=.pdf +5bed2453a5b0c54a4a4a294f29c9658658a9881e,,,https://doi.org/10.1109/TIP.2015.2451173, +5b7cb9b97c425b52b2e6f41ba8028836029c4432,http://www.cis.pku.edu.cn/faculty/vision/zlin/Publications/2014-CVPR-SMR.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.484 +5bff2ffe533eb53c2e0e13ce020cc76199c12c74,,,, +5b6f0a508c1f4097dd8dced751df46230450b01a,http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.pdf,,,https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.pdf +5b9d41e2985fa815c0f38a2563cca4311ce82954,http://www.iti.gr/files/3dpvt04tsalakanidou.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TDPVT.2004.1335141 +5b6593a6497868a0d19312952d2b753232414c23,http://pdfs.semanticscholar.org/5b65/93a6497868a0d19312952d2b753232414c23.pdf,,https://doi.org/10.1007/978-3-319-16199-0_53,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w22/W22-11.pdf +5b01c4eef1e83f98751bb3ef1e4fca34abb8f530,,,, +5bb684dfe64171b77df06ba68997fd1e8daffbe1,http://pdfs.semanticscholar.org/f096/9403b5dfa54445d911aedd88ab25b0b6cd99.pdf,,,https://arxiv.org/pdf/1706.00826v2.pdf +5b64584d6b01e66dfd0b6025b2552db1447ccdeb,,,https://doi.org/10.1109/BTAS.2017.8272697, +5b719410e7829c98c074bc2947697fac3b505b64,http://pdfs.semanticscholar.org/ecec/d5c8b2472364fd7816033e8355215e34bb1b.pdf,,,http://www.csb.uncw.edu/mscsis/complete/pdf/RatliffMatthew_Final.pdf +5bae9822d703c585a61575dced83fa2f4dea1c6d,http://pdfs.semanticscholar.org/5bae/9822d703c585a61575dced83fa2f4dea1c6d.pdf,,,http://arxiv.org/abs/1504.01942 +5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f,http://pdfs.semanticscholar.org/7589/58f2340ba46c6708b73d5427985d5623a512.pdf,,,https://arxiv.org/pdf/1506.07310v2.pdf +5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65,http://pdfs.semanticscholar.org/5b9d/9f5a59c48bc8dd409a1bd5abf1d642463d65.pdf,,,http://ncs.ethz.ch/projects/evospike/publications/file.2017-11-28.3773520729 +5bf70c1afdf4c16fd88687b4cf15580fd2f26102,http://pdfs.semanticscholar.org/5bf7/0c1afdf4c16fd88687b4cf15580fd2f26102.pdf,,,https://arxiv.org/pdf/1803.07386v1.pdf +5b5962bdb75c72848c1fb4b34c113ff6101b5a87,http://research.microsoft.com/en-us/um/people/leizhang/paper/TMM2011_Xiao.pdf,,https://doi.org/10.1109/TMM.2012.2186121,http://research.microsoft.com/en-us/people/xjwang/tmm12_facedb.pdf +5bcc8ef74efbb959407adfda15a01dad8fcf1648,http://pdfs.semanticscholar.org/5bcc/8ef74efbb959407adfda15a01dad8fcf1648.pdf,,,https://arxiv.org/pdf/1801.09103v1.pdf +5b01d4338734aefb16ee82c4c59763d3abc008e6,http://pdfs.semanticscholar.org/5b01/d4338734aefb16ee82c4c59763d3abc008e6.pdf,,,http://ijssst.info/Vol-17/No-35/paper32.pdf +5bdd9f807eec399bb42972a33b83afc8b607c05c,http://www.umiacs.umd.edu/~pvishalm/Journal_pub/SPM_DA_v9.pdf,,https://doi.org/10.1109/MSP.2014.2347059,http://www.umiacs.umd.edu/users/pvishalm/Journal_pub/SPM_DA_v9.pdf +5b8237ae83bc457e3b29e7209126f61120fba082,,,, +5bfad0355cdb62b22970777d140ea388a7057d4c,,,https://doi.org/10.1016/j.patcog.2011.05.006, +5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Yang_Improving_3D_Face_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.7 +5b86c36e3eb59c347b81125d5dd57dd2a2c377a9,http://pdfs.semanticscholar.org/5b86/c36e3eb59c347b81125d5dd57dd2a2c377a9.pdf,,,http://www.murase.nuie.nagoya-u.ac.jp/seikaweb/paper/2007/E07-conference-ide-1.pdf +5be3cc1650c918da1c38690812f74573e66b1d32,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Sandeep_Relative_Parts_Distinctive_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.462 +5bc0a89f4f73523967050374ed34d7bc89e4d9e1,http://pdfs.semanticscholar.org/5bc0/a89f4f73523967050374ed34d7bc89e4d9e1.pdf,,,http://ursulakhess.com/resources/HDH15.pdf +5b6bed112e722c0629bcce778770d1b28e42fc96,http://pdfs.semanticscholar.org/5b6b/ed112e722c0629bcce778770d1b28e42fc96.pdf,,https://doi.org/10.5244/C.27.60,http://www.bmva.org/bmvc/2013/Papers/paper0060/abstract0060.pdf +5bde1718253ec28a753a892b0ba82d8e553b6bf3,http://pdfs.semanticscholar.org/5bde/1718253ec28a753a892b0ba82d8e553b6bf3.pdf,,,http://www.jmlr.org/proceedings/papers/v13/kropotov10a.html +5b0ebb8430a04d9259b321fc3c1cc1090b8e600e,http://www.openu.ac.il/home/hassner/projects/Ossk/WolfHassnerTaigman_ICCV09.pdf,,https://doi.org/10.1109/ICCV.2009.5459323,http://www.wisdom.weizmann.ac.il/~hassner/projects/Ossk/WolfHassnerTaigman_ICCV09.pdf +5b4bbba68053d67d12bd3789286e8a9be88f7b9d,,,https://doi.org/10.1109/ICSMC.2008.4811353, +37c8514df89337f34421dc27b86d0eb45b660a5e,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Uricar_Facial_Landmark_Tracking_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.127 +37c5e3b6175db9eaadee425dc51bc7ce05b69a4e,,,https://doi.org/10.1007/s00521-013-1387-x, +3726d17fd7e57c75b8b9f7f57bdec9054534be5e,,,, +371f40f6d32ece05cc879b6954db408b3d4edaf3,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_100_ext.pdf,,https://doi.org/10.1109/CVPR.2015.7299054,http://web.eecs.umich.edu/~jiadeng/paper/chao_cvpr2015.pdf +374c7a2898180723f3f3980cbcb31c8e8eb5d7af,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Kotsia07a.pdf,,https://doi.org/10.1109/ICASSP.2007.366303, +37007af698b990a3ea8592b11d264b14d39c843f,http://acberg.com/papers/dcmsvm.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248099 +374a0df2aa63b26737ee89b6c7df01e59b4d8531,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yuan_Temporal_Action_Localization_CVPR_2016_paper.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/papers/Yuan_Temporal_Action_Localization_CVPR_2016_paper.pdf +378ae5ca649f023003021f5a63e393da3a4e47f0,http://vision.ucsd.edu/~carolina/files/galleguillos_cvpr10.pdf,,,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/1064.pdf +37619564574856c6184005830deda4310d3ca580,http://arxiv.org/pdf/1508.04389v1.pdf,,https://doi.org/10.1109/BTAS.2015.7358755,http://www.rci.rutgers.edu/~vmp93/Conference_pub/DeepPyramid_btas2015.pdf +3774ffc9523b8f4a148d5e93eaae317dc18af3e6,,,, +37ce1d3a6415d6fc1760964e2a04174c24208173,http://www.cse.msu.edu/~liuxm/publication/Jourabloo_Liu_ICCV2015.pdf,,,http://cvlab.cse.msu.edu/pdfs/Jourabloo_Liu_ICCV2015.pdf +3765c26362ad1095dfe6744c6d52494ea106a42c,http://www.vision.ee.ethz.ch/~tquack/gammeter_quack_iccv2009.pdf,,https://doi.org/10.1109/ICCV.2009.5459180,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICCV_2009/contents/pdf/iccv2009_079.pdf +37179032085e710d1d62a1ba2e9c1f63bb4dde91,http://eprints.soton.ac.uk/363288/1/tome%20tifs.pdf,,https://doi.org/10.1109/TIFS.2014.2299975,http://atvs.ii.uam.es/files/2014_TIFS_SoftBio_Tome.pdf +3769e65690e424808361e3eebfdec8ab91908aa9,,,,http://doi.acm.org/10.1145/2647868.2655035 +3727ac3d50e31a394b200029b2c350073c1b69e3,http://arxiv.org/pdf/1605.03639v2.pdf,,,http://arxiv.org/pdf/1605.03639v1.pdf +37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e,http://www.cse.iitm.ac.in/~amittal/wacv2015_review.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.21 +37278ffce3a0fe2c2bbf6232e805dd3f5267eba3,http://arxiv.org/pdf/1602.04504v1.pdf,,,http://vision.cornell.edu/se3/wp-content/uploads/2016/02/376.pdf +377a1be5113f38297716c4bb951ebef7a93f949a,http://www.cris.ucr.edu/IGERT/Presentation2013/CruzAbstract.pdf,,https://doi.org/10.1109/ICIP.2013.6738868,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2013/FACIAL%20EMOTION%20RECOGNITION%20WITH13.pdf +377c6563f97e76a4dc836a0bd23d7673492b1aae,http://pdfs.semanticscholar.org/377c/6563f97e76a4dc836a0bd23d7673492b1aae.pdf,,,https://arxiv.org/pdf/1803.03330v1.pdf +370e0d9b89518a6b317a9f54f18d5398895a7046,http://pdfs.semanticscholar.org/370e/0d9b89518a6b317a9f54f18d5398895a7046.pdf,,,http://www.researchgate.net/profile/Sebastien_Marcel/publication/230775868_Cross-Pollination_of_Normalization_Techniques_From_Speaker_to_Face_Authentication_Using_Gaussian_Mixture_Models/links/0fcfd50503fcb9dcc5000000.pdf +37105ca0bc1f11fcc7c6b7946603f3d572571d76,http://vipl.ict.ac.cn/sites/default/files/papers/files/2012_TIST_dmzhai_Multi-view%20metric%20learning%20with%20global%20consistency%20and%20local%20smoothness.pdf,,,http://doi.acm.org/10.1145/2168752.2168767 +37ba12271d09d219dd1a8283bc0b4659faf3a6c6,http://www.eecs.qmul.ac.uk/~sgg/papers/LayneEtAl_ARTERMIS2013.pdf,,,http://doi.acm.org/10.1145/2510650.2510658 +3773e5d195f796b0b7df1fca6e0d1466ad84b5e7,http://pdfs.semanticscholar.org/3773/e5d195f796b0b7df1fca6e0d1466ad84b5e7.pdf,,,http://alumni.cs.ucr.edu/~dyankov/DYankov_TSLearningWithNoise2008.pdf +37eb666b7eb225ffdafc6f318639bea7f0ba9a24,http://pdfs.semanticscholar.org/37eb/666b7eb225ffdafc6f318639bea7f0ba9a24.pdf,,,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/HanJain_UnconstrainedAgeGenderRaceEstimation_MSUTechReport2014.pdf +375435fb0da220a65ac9e82275a880e1b9f0a557,https://ibug.doc.ic.ac.uk/media/uploads/documents/tpami_alignment.pdf,,,http://eprints.lincoln.ac.uk/17528/7/__ddat02_staffhome_jpartridge_tzimiroTPAMI15.pdf +37f25732397864b739714aac001ea1574d813b0d,,,https://doi.org/10.1016/j.ijar.2017.09.002, +37b6d6577541ed991435eaf899a2f82fdd72c790,http://pdfs.semanticscholar.org/37b6/d6577541ed991435eaf899a2f82fdd72c790.pdf,,,https://arxiv.org/pdf/1204.1611.pdf +37d6f0eb074d207b53885bd2eb78ccc8a04be597,http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf,,https://doi.org/10.1109/BTAS.2012.6374605,http://www.cse.msu.edu/~climer/pdf/DantchevaChenRossFaceCosmetics_BTAS2012.pdf +373c4d6af0ee233f0d669c3955c3a3ef2a009638,,,https://doi.org/10.1109/APSIPA.2015.7415420, +3753b9fcf95b97e2baf952993905cd6dfa8561cb,,,, +37ef18d71c1ca71c0a33fc625ef439391926bfbb,http://pdfs.semanticscholar.org/37ef/18d71c1ca71c0a33fc625ef439391926bfbb.pdf,,https://doi.org/10.4304/jmm.3.2.60-67,http://www.academypublisher.com/jmm/vol03/no02/jmm03026067.pdf +370b5757a5379b15e30d619e4d3fb9e8e13f3256,http://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf,,,http://www.tamaraberg.com/papers/lfw.pdf +081189493ca339ca49b1913a12122af8bb431984,http://pdfs.semanticscholar.org/0811/89493ca339ca49b1913a12122af8bb431984.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/supplemental/Saito_Photorealistic_Facial_Texture_2017_CVPR_supplemental.pdf +08ee541925e4f7f376538bc289503dd80399536f,http://pdfs.semanticscholar.org/08ee/541925e4f7f376538bc289503dd80399536f.pdf,,,https://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf +08c76a4cc6f402c37a050cae5390427a5b66a467,,,, +08d2f655361335bdd6c1c901642981e650dff5ec,http://dro.deakin.edu.au/eserv/DU:30058435/arandjelovic-automaticcastlisting-2006.pdf,,,http://nichol.as/papers/Arandjelovic/Automatic%20Cast%20Listing%20in%20Feature-Length%20Films.pdf +08fbe3187f31b828a38811cc8dc7ca17933b91e9,http://www.merl.com/publications/docs/TR2011-084.pdf,,,http://www.cfar.umd.edu/~rama/Publications/Turaga_PAMI_2011.pdf +08ae100805d7406bf56226e9c3c218d3f9774d19,http://pdfs.semanticscholar.org/08ae/100805d7406bf56226e9c3c218d3f9774d19.pdf,,https://doi.org/10.1186/s13640-017-0211-4,https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-017-0211-4?site=jivp-eurasipjournals.springeropen.com +085b5f9fd49432edab29e2c64f2a427fbce97f67,https://staff.fnwi.uva.nl/m.jain/pub/jain-objects-actions-cvpr2015.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1A_006_ext.pdf +08c18b2f57c8e6a3bfe462e599a6e1ce03005876,http://ca.cs.cmu.edu/sites/default/files/8uca_final_revision.pdf,,,http://www.cs.cmu.edu/~ftorre/uca_new.pdf +08f6ad0a3e75b715852f825d12b6f28883f5ca05,http://www.cse.msu.edu/biometrics/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf,,https://doi.org/10.1109/FG.2011.5771338,http://biometrics.cse.msu.edu/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf +08ff81f3f00f8f68b8abd910248b25a126a4dfa4,https://research-information.bristol.ac.uk/files/74279764/Ioannis_Pitas_Symmetric_Subspace_Learning_for_Image_Analysis_2014.pdf,,https://doi.org/10.1109/TIP.2014.2367321, +0874734e2af06883599ed449532a015738a1e779,,,https://doi.org/10.1007/s10115-013-0702-2, +081a431107eb38812b74a8cd036ca5e97235b499,http://webhost.uoradea.ro/ibuciu/IEEE_TNN_2008.pdf,,https://doi.org/10.1109/TNN.2008.2000162,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/PNMF_final.pdf +084bd02d171e36458f108f07265386f22b34a1ae,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ren_Face_Alignment_at_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.218 +081cb09791e7ff33c5d86fd39db00b2f29653fa8,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/09/22.pdf,,https://doi.org/10.1109/CVPRW.2009.5204307, +086655743dc5f16563c012ad43b2f9d06771d9c0,,,, +086131159999d79adf6b31c1e604b18809e70ba8,http://vinereactor.org/icpr2016.pdf,,https://doi.org/10.1109/ICPR.2016.7900282, +0831a511435fd7d21e0cceddb4a532c35700a622,http://pdfs.semanticscholar.org/0831/a511435fd7d21e0cceddb4a532c35700a622.pdf,,https://doi.org/10.1016/j.neucom.2015.05.132,http://arxiv.org/pdf/1502.00478v1.pdf +0861f86fb65aa915fbfbe918b28aabf31ffba364,http://pdfs.semanticscholar.org/0861/f86fb65aa915fbfbe918b28aabf31ffba364.pdf,,,http://www.ijcttjournal.org/2015/Volume22/number-3/IJCTT-V22P122.pdf +089513ca240c6d672c79a46fa94a92cde28bd567,http://pdfs.semanticscholar.org/0895/13ca240c6d672c79a46fa94a92cde28bd567.pdf,,https://doi.org/10.1007/978-3-319-46466-4_50,http://www.cs.tau.ac.il/~wolf/papers/rnnfv.pdf +089b5e8eb549723020b908e8eb19479ba39812f5,http://www.face-recognition-challenge.com/RobustnessOfDCNN-preprint.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.89 +080c204edff49bf85b335d3d416c5e734a861151,http://pdfs.semanticscholar.org/d3d1/09d81dd0911dfde259b6878d737e50c834eb.pdf,,,https://arxiv.org/pdf/1709.03456v1.pdf +08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d,http://pdfs.semanticscholar.org/b680/2fb123c594a9fd621ae576651201fcc4329a.pdf,,https://doi.org/10.5244/C.26.129,http://www.bmva.org/bmvc/2012/BMVC/paper129/abstract129.pdf +0821028073981f9bd2dba2ad2557b25403fe7d7d,,,,http://doi.acm.org/10.1145/2733373.2806318 +08d40ee6e1c0060d3b706b6b627e03d4b123377a,http://pdfs.semanticscholar.org/3daa/fe6389d877fe15d8823cdf5ac15fd919676f.pdf,,,https://arxiv.org/pdf/1605.05197v2.pdf +08c1f8f0e69c0e2692a2d51040ef6364fb263a40,http://pdfs.semanticscholar.org/0b20/0cf032430d74fd612601cc59d5af5608ceb4.pdf,,,ftp://whitechapel.media.mit.edu/pub/tech-reports/TR-443.ps.Z +088aabe3da627432fdccf5077969e3f6402f0a80,http://pdfs.semanticscholar.org/088a/abe3da627432fdccf5077969e3f6402f0a80.pdf,,,https://openreview.net/pdf?id=SJOl4DlCZ +087002ab569e35432cdeb8e63b2c94f1abc53ea9,http://sergioescalera.com/wp-content/uploads/2015/07/CVPR2015MoeslundSlides.pdf,,,http://openaccess.thecvf.com/content_cvpr_workshops_2015/W09/papers/Irani_Spatiotemporal_Analysis_of_2015_CVPR_paper.pdf +08cb294a08365e36dd7ed4167b1fd04f847651a9,http://pdfs.semanticscholar.org/f75f/56bb1dcf721449f2fcc3634265f1e08e012c.pdf,,,https://www.cs.sfu.ca/~hamarneh/ecopy/icphs2015.pdf +081286ede247c5789081502a700b378b6223f94b,http://pdfs.semanticscholar.org/0812/86ede247c5789081502a700b378b6223f94b.pdf,,, +08e995c080a566fe59884a527b72e13844b6f176,http://pdfs.semanticscholar.org/08e9/95c080a566fe59884a527b72e13844b6f176.pdf,,https://doi.org/10.4304/jmm.6.1.39-47,http://ojs.academypublisher.com/index.php/jmm/article/download/06013947/2826 +08e24f9df3d55364290d626b23f3d42b4772efb6,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu06c.pdf,http://ieeexplore.ieee.org/document/7071425/,, +08872d801f134e41753601e85971769b28314ca2,,,,http://doi.acm.org/10.1145/2683483.2683560 +08f69a82fae49a4a1f13d06cae32d77bb8e5be1a,,,, +085ceda1c65caf11762b3452f87660703f914782,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jourabloo_Large-Pose_Face_Alignment_CVPR_2016_paper.pdf,,,http://cvlab.cse.msu.edu/pdfs/Jourabloo_Liu_CVPR2016.pdf +0830c9b9f207007d5e07f5269ffba003235e4eff,http://pdfs.semanticscholar.org/cf2e/1ebb9609f46af6de0c15b4f48d03e37e54ba.pdf,,,https://pdfs.semanticscholar.org/0830/c9b9f207007d5e07f5269ffba003235e4eff.pdf +08d55271589f989d90a7edce3345f78f2468a7e0,https://arxiv.org/pdf/1704.03373v1.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Liu_Quality_Aware_Network_CVPR_2017_paper.pdf +081fb4e97d6bb357506d1b125153111b673cc128,http://pdfs.semanticscholar.org/081f/b4e97d6bb357506d1b125153111b673cc128.pdf,,,https://arxiv.org/pdf/1710.03144v2.pdf +08a98822739bb8e6b1388c266938e10eaa01d903,http://homes.cs.washington.edu/~yoshi/papers/SensorSift_ACSAC_2012.pdf,,,http://research.cs.washington.edu/istc/lfb/paper/acsac12.pdf +080ab68a898a3703feead145e2c38361ae84a0a8,,,https://doi.org/10.1109/TIFS.2014.2343833, +08f1e9e14775757298afd9039f46ec56e80677f9,http://pdfs.semanticscholar.org/08f1/e9e14775757298afd9039f46ec56e80677f9.pdf,,,https://arxiv.org/pdf/1609.00072v1.pdf +08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7,http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf,,https://doi.org/10.1109/TMM.2012.2187436, +082ad50ac59fc694ba4369d0f9b87430553b11db,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553696.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553696 +6dd052df6b0e89d394192f7f2af4a3e3b8f89875,http://pdfs.semanticscholar.org/6dd0/52df6b0e89d394192f7f2af4a3e3b8f89875.pdf,,,http://cgit.nutn.edu.tw:8080/cgit/PaperDL/sars1013_130928095014.PDF +6d7a32f594d46f4087b71e2a2bb66a4b25da5e30,http://pdfs.semanticscholar.org/6d7a/32f594d46f4087b71e2a2bb66a4b25da5e30.pdf,,,http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2007-MM-chapter1.pdf +6dd5dbb6735846b214be72983e323726ef77c7a9,http://pdfs.semanticscholar.org/6dd5/dbb6735846b214be72983e323726ef77c7a9.pdf,,,http://libir.josai.ac.jp/il/user_contents/02/G0000284repository/pdf/JOS-13447777-07_25.pdf +6d10beb027fd7213dd4bccf2427e223662e20b7d,http://pdfs.semanticscholar.org/6d10/beb027fd7213dd4bccf2427e223662e20b7d.pdf,,https://doi.org/10.1155/2016/4789803,http://www.image.ece.ntua.gr/papers/870.pdf +6d4236a7a693555f701c0d149d1db89325035e23,,,, +6d2ca1ddacccc8c865112bd1fbf8b931c2ee8e75,http://hoques.com/Publications/2015/2015-ubicomp_rocspeak_Fung-etal.pdf,,,http://web.media.mit.edu/~mehoque/Publications/2015/2015-ubicomp_rocspeak_Fung-etal.pdf +6d207360148ec3991b70952315cb3f1e8899e977,http://www.researchgate.net/profile/Edwin_Hancock/publication/224649584_Estimating_Cast_Shadows_using_SFS_and_Class-based_Surface_Completion/links/004635239fd1ed7ac5000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.498 +6de18708218988b0558f6c2f27050bb4659155e4,https://arxiv.org/pdf/1611.05216v1.pdf,,,http://openaccess.thecvf.com/content_ICCV_2017/papers/Shi_Learning_Long-Term_Dependencies_ICCV_2017_paper.pdf +6d5f876a73799cc628e4ad2d9cfcd88091272342,,,https://doi.org/10.1109/TSMCC.2005.848193, +6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1,http://disi.unitn.it/~sebe/publications/MIR03.pdf,,,http://doi.acm.org/10.1145/973264.973268 +6dfe0dafb4ed4bcfce670f321e724682ab261060,,,, +6da3ff4250103369f4a6a39c8fb982438a97525c,,,https://doi.org/10.1109/THMS.2015.2404913, +6d91da37627c05150cb40cac323ca12a91965759,http://pdfs.semanticscholar.org/6d91/da37627c05150cb40cac323ca12a91965759.pdf,,https://doi.org/10.1007/978-3-319-60240-0_4,http://arxiv.org/abs/1611.02806 +6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf,http://pdfs.semanticscholar.org/6dd2/a0f9ca8a5fee12edec1485c0699770b4cfdf.pdf,,https://doi.org/10.1007/978-3-319-46487-9_52,http://crcv.ucf.edu/people/faculty/Gong/Paper/webly-supervised.pdf +6dd8d8be00376ac760dc92f9c5f20520872c5355,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2417578 +6d4b5444c45880517213a2fdcdb6f17064b3fa91,http://pdfs.semanticscholar.org/6d4b/5444c45880517213a2fdcdb6f17064b3fa91.pdf,,,http://www.iiste.org/Journals/index.php/JIEA/article/download/1598/1547 +6d67a7fd9a4fa99624721f37b077c71dad675805,,,https://doi.org/10.1007/s12193-015-0202-7, +6d670eb172355d46034a831d8dc569e17ab14d94,,,, +6d4e3616d0b27957c4107ae877dc0dd4504b69ab,http://pdfs.semanticscholar.org/6d4e/3616d0b27957c4107ae877dc0dd4504b69ab.pdf,,,http://arxiv.org/pdf/1603.08561v1.pdf +6daccf3d15c617873954bb75de26f6b6b0a42772,http://arts.buaa.edu.cn/papers/Learning%20Templates%20for%20Artistic%20Portrait%20Lighting%20Analysis.pdf,,https://doi.org/10.1109/TIP.2014.2369962, +6d8e3f3a83514381f890ab7cd2a1f1c5be597b69,http://pdfs.semanticscholar.org/aeb1/83983f4ae1ea9e01005f5d546480190e0345.pdf,,,https://web.cs.umass.edu/publication/docs/2014/UM-CS-PhD-2014-003.pdf +6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19,http://pdfs.semanticscholar.org/6d8e/ef8f8d6cd8436c55018e6ca5c5907b31ac19.pdf,,,http://theses.lib.vt.edu/theses/available/etd-03032016-170427/unrestricted/Cogswell_M_T_2016.pdf +6d4103762e159130b32335cbf8893ee4dca26859,http://homepage.tudelft.nl/19j49/Publications_files/cogn_proc.pdf,,https://doi.org/10.1007/s10339-011-0419-7, +6d618657fa5a584d805b562302fe1090957194ba,http://pdfs.semanticscholar.org/6d61/8657fa5a584d805b562302fe1090957194ba.pdf,,,http://ijnngt.org/upload/journal5/paper7.pdf +6d4c64ca6936f868d793e1b164ddaf19243c19a7,,,https://doi.org/10.1109/TNNLS.2015.2499273, +6d66c98009018ac1512047e6bdfb525c35683b16,http://pdfs.semanticscholar.org/6d66/c98009018ac1512047e6bdfb525c35683b16.pdf,,,http://www.cse.unr.edu/~bebis/CS790Q/PaperPresentations/FaceRecog_3D_Morphing.pdf +016cbf0878db5c40566c1fbc237686fbad666a33,http://pdfs.semanticscholar.org/5a07/986f0a202eafbd1f1574fe2c3ae6abe2281f.pdf,,https://doi.org/10.1016/j.imavis.2008.04.015,http://www.dia.fi.upm.es/~pcr/publications/ivc08FinalVersion.pdf +016800413ebd1a87730a5cf828e197f43a08f4b3,http://arxiv.org/pdf/1605.00743v1.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gan_Learning_Attributes_Equals_CVPR_2016_paper.pdf +0172867f4c712b33168d9da79c6d3859b198ed4c,http://www.cin.ufpe.br/~rps/Artigos/Expression%20and%20Illumination%20Invariant%20Preprocessing%20Technique%20for%20Face%20Recognition.pdf,,, +0145dc4505041bf39efa70ea6d95cf392cfe7f19,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_046_ext.pdf,,,http://web.eecs.umich.edu/~jjcorso/pubs/lu_corso_CVPR2015_actionvoxel.pdf +01bef320b83ac4405b3fc5b1cff788c124109fb9,http://pdfs.semanticscholar.org/49e4/37cc5b673c49b942e304607a0050dcc82dae.pdf,,,http://www.educationaldatamining.org/EDM2015/proceedings/full320-326.pdf +01729cb766b1016bac217a6a6cf24bbde19f56c8,,,https://doi.org/10.1109/CBMI.2010.5529888, +01c9dc5c677aaa980f92c4680229db482d5860db,https://pages.iai.uni-bonn.de/gall_juergen/download/jgall_actiondetect_cvpr16.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Richard_Temporal_Action_Detection_CVPR_2016_paper.pdf +013909077ad843eb6df7a3e8e290cfd5575999d2,http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/Workshops/4990a896.pdf +01d2cf5398c2b3e0f4fc8e8318a4492c95a0b242,http://webee.technion.ac.il/~lihi/Publications/10-ANS-PAMI.pdf,,,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E2065C91471A28DBCF992D5B41E94814?doi=10.1.1.180.4081&rep=rep1&type=pdf +01c7a778cde86ad1b89909ea809d55230e569390,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Siyahjani_A_Supervised_Low-Rank_ICCV_2015_paper.pdf,,https://doi.org/10.1109/ICCV.2015.480,http://openaccess.thecvf.com/content_iccv_2015/papers/Siyahjani_A_Supervised_Low-Rank_ICCV_2015_paper.pdf +01c8d7a3460422412fba04e7ee14c4f6cdff9ad7,http://pdfs.semanticscholar.org/01c8/d7a3460422412fba04e7ee14c4f6cdff9ad7.pdf,,,http://www.thesai.org/Downloads/Volume4No7/Paper_5-Rule_Based_System_for_Recognizing_Emotions_Using_Multimodal_Approach.pdf +013d0acff1e5410fd9f6e15520d16f4ea02f03f6,,,https://doi.org/10.1109/TMM.2015.2477681, +0115f260069e2e501850a14845feb400142e2443,http://pdfs.semanticscholar.org/0115/f260069e2e501850a14845feb400142e2443.pdf,,,http://cs.nyu.edu/csweb/Research/Theses/oh_jong.pdf +01cc8a712e67384f9ef9f30580b7415bfd71e980,http://pdfs.semanticscholar.org/01cc/8a712e67384f9ef9f30580b7415bfd71e980.pdf,,,http://www.jneurosci.org/content/jneuro/30/44/14750.full.pdf +01e12be4097fa8c94cabeef0ad61498c8e7762f2,http://pdfs.semanticscholar.org/10bf/f1957b8a4adce86efd10596186d905976c16.pdf,,,https://filebox.ece.vt.edu/~parikh/Publications/BiswasParikh_CVPR_2013_active_attributes_feedback.pdf +0163d847307fae508d8f40ad193ee542c1e051b4,http://www.alessandrobergamo.com/data/compact_descriptors_supplementary.pdf,,,http://www.cs.dartmouth.edu/~aleb/data/compact_descriptors_supplementary.pdf +01dc1e03f39901e212bdf291209b7686266aeb13,http://arxiv.org/pdf/1604.07279v1.pdf,,,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01300.pdf +016f49a54b79ec787e701cc8c7d0280273f9b1ef,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Kotropoulos06a.pdf,,https://doi.org/10.1109/ICASSP.2006.1661378, +017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637,http://pdfs.semanticscholar.org/017c/e398e1eb9f2eed82d0b22fb1c21d3bcf9637.pdf,,,http://www.jdl.ac.cn/user/sgshan/pub/ACCV2004-Laiyun-Harmonics.pdf +01e14d8ffd6767336d50c2b817a7b7744903e567,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.128 +01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,http://openaccess.thecvf.com/content_ICCV_2017/papers/Jackson_Large_Pose_3D_ICCV_2017_paper.pdf,,,https://arxiv.org/pdf/1703.07834v1.pdf +0133d1fe8a3138871075cd742c761a3de93a42ec,,,https://doi.org/10.1109/ICDSP.2015.7251932, +01c09acf0c046296643de4c8b55a9330e9c8a419,http://pdfs.semanticscholar.org/01c0/9acf0c046296643de4c8b55a9330e9c8a419.pdf,,,http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/manifold%20learning/costa_icassp04.pdf +01d23cbac762b0e46251f5dbde08f49f2d13b9f8,http://pdfs.semanticscholar.org/01d2/3cbac762b0e46251f5dbde08f49f2d13b9f8.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2002.1048228 +014143aa16604ec3f334c1407ceaa496d2ed726e,http://www.cs.cmu.edu/~har/cvpr2008-manifold.pdf,,,http://www.cs.nyu.edu/~ameet/largeManifold.pdf +011e6146995d5d63c852bd776f782cc6f6e11b7b,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhuang_Fast_Training_of_CVPR_2016_paper.pdf,,,https://arxiv.org/pdf/1603.02844v2.pdf +0182d090478be67241392df90212d6cd0fb659e6,http://www.cs.utexas.edu/~grauman/papers/localized_attributes_cvpr2012.pdf,,,https://www.cc.gatech.edu/~parikh/Publications/DuanParikhCrandallGrauman_CVPR_2012_local_attributes.pdf +016a8ed8f6ba49bc669dbd44de4ff31a79963078,http://www.jdl.ac.cn/user/sgshan/pub/icassp04_qing.pdf,,https://doi.org/10.1109/ICASSP.2004.1327215, +01e63d0a21fad7a29301749e9eafed826101b636,,,, +016194dbcd538ab5a129ef1bcff3c6e073db63f9,,,https://doi.org/10.1007/s10462-012-9334-2, +01beab8f8293a30cf48f52caea6ca0fb721c8489,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553729.pdf,,,http://parnec.nuaa.edu.cn/xtan/paper/fg2013.pdf +01f0a4e1442a7804e1fe95798eff777d08e42014,,,https://doi.org/10.1016/j.knosys.2017.09.005, +0178929595f505ef7655272cc2c339d7ed0b9507,http://pdfs.semanticscholar.org/7d84/151beccef17f71b3eeaca59ebc690561ab73.pdf,,,http://arxiv.org/pdf/1609.00496v1.pdf +0181fec8e42d82bfb03dc8b82381bb329de00631,http://users.isy.liu.se/en/cvl/zografos/publications/CVPR2013.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989c107.pdf +01b4b32c5ef945426b0396d32d2a12c69c282e29,http://pdfs.semanticscholar.org/1510/bfa3a31ccf47e0241d3528aeda4871597a0f.pdf,,https://doi.org/10.5244/C.27.85,http://www.bmva.org/bmvc/2013/Papers/paper0085/paper0085.pdf +016435db03820374d6af65b68f001f0918914e4f,,,, +01e27c91c7cef926389f913d12410725e7dd35ab,,,https://doi.org/10.1007/s11760-017-1140-5, +0113b302a49de15a1d41ca4750191979ad756d2f,http://www.cecs.uci.edu/~papers/icme06/pdfs/0000537.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2006.262444 +01379c50c392c104694ccb871a4b6a36d514f102,http://sse.tongji.edu.cn/hyli/Publications/icmla2010.pdf,,, +01c948d2b73abe8be1ac128a6439c1081ebca95a,http://mla.sdu.edu.cn/PeopleInfo/lixuzhou/A%20hybrid%20biometric%20identification%20framework%20for%20high%20security%20applications.pdf,,https://doi.org/10.1007/s11704-014-4070-1, +01733018a79aa447a27f269a1b9a58cd5f39603e,http://vc.sce.ntu.edu.sg/index_files/Semi-supervised%20Bilinear%20Subspace%20Learning.pdf,,https://doi.org/10.1109/TIP.2009.2018015,http://www.lv-nus.org/papers/2009/2009_J_3.pdf +019e471667c72b5b3728b4a9ba9fe301a7426fb2,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_012.pdf,,https://doi.org/10.1109/CVPR.2015.7298846,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2A_012_ext.pdf +0601416ade6707c689b44a5bb67dab58d5c27814,http://pdfs.semanticscholar.org/0601/416ade6707c689b44a5bb67dab58d5c27814.pdf,,,http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2007-99.pdf +064b797aa1da2000640e437cacb97256444dee82,http://pdfs.semanticscholar.org/064b/797aa1da2000640e437cacb97256444dee82.pdf,,,https://arxiv.org/pdf/1511.04901v1.pdf +06f146dfcde10915d6284981b6b84b85da75acd4,http://cmlab.csie.ntu.edu.tw/~sirius42/papers/tmm12.pdf,,https://doi.org/10.1109/TMM.2013.2242460,http://www.chennaisunday.com/IEEE%202013%20Java%20Basepaper/Scalable%20Face%20Image%20Retrieval%20using%20Attribute-Enhanced%20Sparse%20Codewords.pdf +067126ce1f1a205f98e33db7a3b77b7aec7fb45a,http://pdfs.semanticscholar.org/0671/26ce1f1a205f98e33db7a3b77b7aec7fb45a.pdf,,https://doi.org/10.1007/978-3-642-16687-7_56,http://www.rduin.nl/papers/ciarp_10_dismat.pdf +06466276c4955257b15eff78ebc576662100f740,http://cmlab.csie.ntu.edu.tw/~sirius42/papers/sigir12.pdf,,,http://www.csie.ntu.edu.tw/~winston/papers/lei12where.pdf +06d028bd761ad6f29e9f1835d6686d9880706438,,,, +0697bd81844d54064d992d3229162fe8afcd82cb,http://pdfs.semanticscholar.org/0697/bd81844d54064d992d3229162fe8afcd82cb.pdf,,,https://arxiv.org/pdf/1706.05850v1.pdf +06f8aa1f436a33014e9883153b93581eea8c5c70,http://pdfs.semanticscholar.org/8926/471921ff608f70c6c81777782974a91086ae.pdf,,https://doi.org/10.1007/978-3-319-46478-7_48,http://www.cs.utexas.edu/~ycsu/projects/leaving-some-stones-unturned/eccv2016-1542su.pdf +067fe74aec42cb82b92cf6742c7cfb4a65f16951,,,,http://doi.acm.org/10.1145/2601434 +061c84a4143e859a7caf6e6d283dfb30c23ee56e,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_008_ext.pdf,,https://doi.org/10.1109/CVPR.2015.7298962,http://arxiv.org/abs/1504.04871 +06d93a40365da90f30a624f15bf22a90d9cfe6bb,http://pdfs.semanticscholar.org/6940/40e59bffd860640e45c54ca7b093630caa39.pdf,,,http://publications.idiap.ch/downloads/papers/2010/Luo_NIPS10_2010.pdf +061e29eae705f318eee703b9e17dc0989547ba0c,http://pdfs.semanticscholar.org/061e/29eae705f318eee703b9e17dc0989547ba0c.pdf,,https://doi.org/10.1007/978-3-642-37444-9_45,http://vipl.ict.ac.cn/sites/default/files/papers/files/2012_ACCV_myliu_Enhancing%20Expression%20Recognition%20in%20the%20Wild%20with%20Unlabeled%20Reference%20Data.pdf +06402979cb55ec7c4488204aab5bc23d5f432f50,,,, +06850b60e33baa4ea9473811d58c0d5015da079e,http://pdfs.semanticscholar.org/4cff/901521af06d6a0c98c9dce253296dd88b496.pdf,,,https://arxiv.org/pdf/1511.02407v1.pdf +06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32,http://www.cs.utexas.edu/~grauman/papers/whittle-search-supp-cvpr2012.pdf,,,http://www.cs.utexas.edu/~grauman/papers/whittlesearch-poster-cvpr2012.pdf +06a6347ac14fd0c6bb3ad8190cbe9cdfa5d59efc,https://www.cs.umd.edu/sites/default/files/scholarly_papers/Biswas_1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247922 +0699475af70765d0810881d3536b44a3c1d745a2,,,, +0614cafad1b546faa7e99c67c9bda6bae2cacb5e,,,, +066d71fcd997033dce4ca58df924397dfe0b5fd1,http://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf,,,http://www.dehshibi.com/files/papers/Iranian%20Face%20Database%20and%20Evaluation%20with%20a%20new%20detection.pdf +06a799ad89a2a45aee685b9e892805e3e0251770,,,https://doi.org/10.1007/978-3-319-42147-6, +06526c52a999fdb0a9fd76e84f9795a69480cecf,http://pdfs.semanticscholar.org/0652/6c52a999fdb0a9fd76e84f9795a69480cecf.pdf,,https://doi.org/10.1007/978-3-319-14442-9_24,http://www.ceng.metu.edu.tr/~ys/pubs/others/imotion.pdf +06bad0cdda63e3fd054e7b334a5d8a46d8542817,http://vision.cs.utexas.edu/projects/featuresharing/0975.pdf,,,http://www.cs.utexas.edu/~sjhwang/0975.pdf +06fe63b34fcc8ff68b72b5835c4245d3f9b8a016,http://chechiklab.biu.ac.il/~gal/Papers/Mesnil_MachineLearning2013_objects_and_their_parts.pdf,,https://doi.org/10.1007/s10994-013-5336-9,http://www.iro.umontreal.ca/~lisa/pointeurs/2013_semantic_image_mlj.pdf +06aab105d55c88bd2baa058dc51fa54580746424,http://www4.comp.polyu.edu.hk/~cslzhang/paper/ISCRC_TIFS.pdf,,https://doi.org/10.1109/TIFS.2014.2324277,https://arxiv.org/pdf/1308.6687v1.pdf +0641dbee7202d07b6c78a39eecd312c17607412e,http://users.cecs.anu.edu.au/~hongdong/JiZhongLiSalzmannICIP14.pdf,,https://doi.org/10.1109/ICIP.2014.7025056, +06262d14323f9e499b7c6e2a3dec76ad9877ba04,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Juranek_Real-Time_Pose_Estimation_ICCV_2015_paper.pdf,,,http://www.fit.vutbr.cz/research/groups/graph/PoseEstimation/iccv2015/Juranek_ICCV2015_PoseEstimation.pdf +06400a24526dd9d131dfc1459fce5e5189b7baec,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01054.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Bossard_Event_Recognition_in_2013_ICCV_paper.pdf +062d67af7677db086ef35186dc936b4511f155d7,http://openaccess.thecvf.com/content_cvpr_2016/papers/Chang_They_Are_Not_CVPR_2016_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Chang_They_Are_Not_CVPR_2016_paper.pdf +0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0,http://pdfs.semanticscholar.org/0694/b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0.pdf,,https://doi.org/10.5220/0005038500490055,https://research-information.bris.ac.uk/ws/files/76352533/Ionnas_Pitas_Exploiting_Local_Class_Information_in_Extreme_Learning_Machine_2014.pdf +060034b59275c13746413ca9c67d6304cba50da6,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W14/papers/Murthy_Ordered_Trajectories_for_2013_ICCV_paper.pdf,,,http://staff.estem-uc.edu.au/roland/files/2009/05/Ramana-Murthy_Goecke_ICCV2013_THUMOS_OrderedTrajectoriesForLargeScaleHumanActionRecognition.pdf +060f67c8a0de8fee9c1732b63ab40627993f93d0,,,https://doi.org/10.1007/978-3-642-33564-8, +060820f110a72cbf02c14a6d1085bd6e1d994f6a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_113_ext.pdf,,,http://www.vision.caltech.edu/~dhall/projects/CRP/Data/CVPR2015_HALL.pdf +0653dcdff992ad980cd5ea5bc557efb6e2a53ba1,http://pdfs.semanticscholar.org/0653/dcdff992ad980cd5ea5bc557efb6e2a53ba1.pdf,,,http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/5698/2/b25512948_ir.pdf +063a3be18cc27ba825bdfb821772f9f59038c207,http://eprints.whiterose.ac.uk/125231/1/kaiser_et_al_17.pdf,,, +064cd41d323441209ce1484a9bba02a22b625088,http://www.ri.cmu.edu/pub_files/2013/6/stm_final.pdf,,,http://www.humansensing.cs.cmu.edu/sites/default/files/7cvpr13-stm.pdf +06719154ab53d3a57041b2099167e3619f1677bc,,,, +06c2dfe1568266ad99368fc75edf79585e29095f,http://ibug.doc.ic.ac.uk/media/uploads/documents/joan_cvpr2014.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Alabort-i-Medina_Bayesian_Active_Appearance_2014_CVPR_paper.pdf +06f39834e870278243dda826658319be2d5d8ded,http://www.public.asu.edu/~bli24/Papers/ICIP2016_video.pdf,,https://doi.org/10.1109/ICIP.2016.7533150, +06c956d4aac65752672ce4bd5a379f10a7fd6148,,,https://doi.org/10.1109/LSP.2017.2749763, +06d7ef72fae1be206070b9119fb6b61ce4699587,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zafeiriou_On_One-Shot_Similarity_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.297 +0629bc2b12245195af989e21573369329b7ef2b7,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2553038 +062d0813815c2b9864cd9bb4f5a1dc2c580e0d90,https://infoscience.epfl.ch/record/230310/files/AliakbarianEtAlICCV17.pdf?version=1,,,http://openaccess.thecvf.com/content_ICCV_2017/papers/Aliakbarian_Encouraging_LSTMs_to_ICCV_2017_paper.pdf +06a9ed612c8da85cb0ebb17fbe87f5a137541603,http://pdfs.semanticscholar.org/06a9/ed612c8da85cb0ebb17fbe87f5a137541603.pdf,,,http://www.sloansportsconference.com/wp-content/uploads/2018/02/2003.pdf +06959f9cf3226179fa1b05efade843b7844fb2bc,http://www.researchgate.net/profile/Fei_Wu2/publication/4090506_Relevant_linear_feature_extraction_using_side-information_and_unlabeled_data/links/549062220cf214269f2668c9.pdf,,,http://bigeye.au.tsinghua.edu.cn/english/paper/SERCA_ICPR_2th_byafei.pdf +06ad99f19cf9cb4a40741a789e4acbf4433c19ae,http://pdfs.semanticscholar.org/06ad/99f19cf9cb4a40741a789e4acbf4433c19ae.pdf,,,https://arxiv.org/pdf/1608.04489v1.pdf +06fb92e110d077c27d401d2f9483964cd0615284,http://www.cs.sunysb.edu/~ial/content/papers/2009/wang_pami09.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.244 +6cb4c7f52fbe386a4ab06d5ca61a11d69abba0e4,,,, +6c27eccf8c4b22510395baf9f0d0acc3ee547862,http://pdfs.semanticscholar.org/6c27/eccf8c4b22510395baf9f0d0acc3ee547862.pdf,,,http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2005-146.pdf +6c6f0e806e4e286f3b18b934f42c72b67030ce17,,,https://doi.org/10.1109/FG.2011.5771345, +6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,http://pdfs.semanticscholar.org/6cef/b70f4668ee6c0bf0c18ea36fd49dd60e8365.pdf,,,https://arxiv.org/pdf/1710.01727v3.pdf +6c28b3550f57262889fe101e5d027912eb39564e,,,https://doi.org/10.1109/LSP.2014.2338911, +6c690af9701f35cd3c2f6c8d160b8891ad85822a,http://www.umiacs.umd.edu/~fyang/papers/iccv15.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.426 +6c0048265758442d1620c2a239590d0d9060c09d,,,, +6c40fc9df6588f7cb721537883167eede1b8d369,,,, +6c0ad77af4c0850bd01bb118e175ecc313476f27,,,,http://doi.acm.org/10.1145/3009977.3010026 +6ce23cf4f440021b7b05aa3c1c2700cc7560b557,http://pdfs.semanticscholar.org/6ce2/3cf4f440021b7b05aa3c1c2700cc7560b557.pdf,,https://doi.org/10.1007/978-3-319-49409-8_62,https://www-i6.informatik.rwth-aachen.de/publications/download/1012/Hanselmann-ECCV-DESCRW-2016.pdf +6c9266aa77ea01b9d26a98a483b56e9e8b80eeba,https://www.researchgate.net/profile/Stefano_Tubaro/publication/224641232_Mixed_2D-3D_Information_for_Pose_Estimation_and_Face_Recognition/links/00b7d5178477f30fb3000000.pdf,,https://doi.org/10.1109/ICASSP.2006.1660354,http://gtav.upc.edu/en/publications/papers/2006/mixed-2d-3d-information-for-pose-estimation-and-face-recognition +6c36ed5391cb3fda6c55a4f71e991f9138e226d0,,,, +6c2b392b32b2fd0fe364b20c496fcf869eac0a98,http://www3.ntu.edu.sg/home/EXDJiang/JiangX.D.-MVA-13.pdf,,https://doi.org/10.1007/s00138-012-0423-7, +6c26744149ae08af8bc84137633495fa948b41ad,,,, +6c30b29b24dc11e37fe36c6e2c283e1c8fe5e339,,,, +6c6bb85a08b0bdc50cf8f98408d790ccdb418798,http://pdfs.semanticscholar.org/6c6b/b85a08b0bdc50cf8f98408d790ccdb418798.pdf,,,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu_PCI_2003.pdf +6c705285c554985ecfe1117e854e1fe1323f8c21,http://pdfs.semanticscholar.org/6c70/5285c554985ecfe1117e854e1fe1323f8c21.pdf,,,https://arxiv.org/pdf/1803.11264v1.pdf +6cddc7e24c0581c50adef92d01bb3c73d8b80b41,http://users.soe.ucsc.edu/~milanfar/publications/journal/TIFS_Final.pdf,,https://doi.org/10.1109/TIFS.2011.2159205,https://users.soe.ucsc.edu/~milanfar/publications/journal/TIFS_Final.pdf +6ca7a82ec1c51417c4f0b8eebddb53a73a3874b1,,,,http://doi.acm.org/10.1145/2708463.2709059 +6cd96f2b63c6b6f33f15c0ea366e6003f512a951,http://pdfs.semanticscholar.org/6cd9/6f2b63c6b6f33f15c0ea366e6003f512a951.pdf,,,http://www.icoci.cms.net.my/proceedings/2009/papers/PID29.pdf +6c8c7065d1041146a3604cbe15c6207f486021ba,http://pdfs.semanticscholar.org/6c8c/7065d1041146a3604cbe15c6207f486021ba.pdf,,,https://mindmodeling.org/cogsci2012/papers/0453/paper0453.pdf +6cd5b56f4262c7e13f61a4a6f28eaa805f4e3291,,,, +39c8ed5213882d4dbc74332245ffe201882c5de1,,,https://doi.org/10.1109/ICASSP.2013.6638045, +390f3d7cdf1ce127ecca65afa2e24c563e9db93b,https://arxiv.org/pdf/1408.3967v2.pdf,,,http://arxiv.org/pdf/1408.3967v4.pdf +391b86cf16c2702dcc4beee55a6dd6d3bd7cf27b,http://dayongwang.info/pdf/2014-MM.pdf,,,http://research.larc.smu.edu.sg/mlg/papers/MM14-fp336-hoi.pdf +395a91d49e9283e1bf2d61a75c3dc846b347ea74,http://cake.fiu.edu/Publications/Reza+al-13-OV.On-demand_Virtual_Health.IEEE.downloaded.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICHI.2013.13 +3918b425bb9259ddff9eca33e5d47bde46bd40aa,http://pdfs.semanticscholar.org/3918/b425bb9259ddff9eca33e5d47bde46bd40aa.pdf,,,http://www.cs.utexas.edu/users/ai-lab/pubs/chen-dissertation.pdf +39ce143238ea1066edf0389d284208431b53b802,http://pdfs.semanticscholar.org/39ce/143238ea1066edf0389d284208431b53b802.pdf,,https://doi.org/10.1016/j.patcog.2015.08.004,http://www.dcs.bbk.ac.uk/~sjmaybank/Facial%20Expression%20Transfer%20Method%20Based%20on%20Frequency%20Analysis_minor%20version.pdf +39ce2232452c0cd459e32a19c1abe2a2648d0c3f,http://pdfs.semanticscholar.org/4fac/61d638cf7a1ab995e2ee9a02d3672b12d2ca.pdf,,,http://psych.wisc.edu/niedenthal/fichiers_pdf/2009_mermillod-vermeulen-lundqvist-niedenthal_cognition.pdf +39f7878f447df7703f2c4ddeeffd7eb0e21f6cd4,http://dev.pubs.doc.ic.ac.uk/Pantic-CVPR05/Pantic-CVPR05.pdf,,,http://www.doc.ic.ac.uk/~maja/ValstarPatrasPantic-CVPR2005-Final.pdf +3998c5aa6be58cce8cb65a64cb168864093a9a3e,http://cvrr.ucsd.edu/publications/2014/HeadHand.pdf,,https://doi.org/10.1109/IVS.2014.6856610,http://cvrr.ucsd.edu/publications/2014/MartinOhnbarTawariTrivedi_IV2014.pdf +39dc2ce4cce737e78010642048b6ed1b71e8ac2f,http://www.mirlab.org/conference_papers/International_Conference/ICME%202004/html/papers/P59890.pdf,,, +397aeaea61ecdaa005b09198942381a7a11cd129,http://pdfs.semanticscholar.org/e30b/df82a358587f7d27ee4ea0b34762328c2a8d.pdf,,,https://arxiv.org/pdf/1712.02874v1.pdf +391642ec5ade3579654a14c3644af6f086af0158,,,, +3991223b1dc3b87883cec7af97cf56534178f74a,http://www.ics.uci.edu/~dvk/pub/ICMR13_dvk.pdf,,,http://doi.acm.org/10.1145/2461466.2461469 +396b2963f0403109d92a4d4f26205f279ea79d2c,,,https://doi.org/10.1109/TSMCB.2005.845399, +39b22bcbd452d5fea02a9ee63a56c16400af2b83,http://www.uoguelph.ca/~gwtaylor/publications/gwtaylor_crv2014.pdf,,,http://www.uoguelph.ca/~gwtaylor/publications/devries2014multi-task.pdf +399a2c23bd2592ebe20aa35a8ea37d07c14199da,http://pdfs.semanticscholar.org/399a/2c23bd2592ebe20aa35a8ea37d07c14199da.pdf,,https://doi.org/10.1016/j.image.2007.06.006,http://www.cvc.uab.es/~bogdan/Publications/raducanu_SPIC2007.pdf +397022a4460750c762dbb0aaebcacc829dee8002,,,https://doi.org/10.1109/TIFS.2013.2258152, +39acf4bb06b889686ca17fd8c89887a3cec26554,,,,http://www.springerlink.com/index/10.1007/s10044-004-0223-4 +396a19e29853f31736ca171a3f40c506ef418a9f,http://pdfs.semanticscholar.org/396a/19e29853f31736ca171a3f40c506ef418a9f.pdf,,,http://www.andrewsenior.com/papers/TianPETS03.pdf +392d35bb359a3b61cca1360272a65690a97a2b3f,http://pdfs.semanticscholar.org/9cc1/0842f7701bfb92725b4dda4df391b0b341e3.pdf,,https://doi.org/10.5244/C.29.37,http://www.bmva.org/bmvc/2015/papers/paper037/abstract037.pdf +39c10888a470b92b917788c57a6fd154c97b421c,,,https://doi.org/10.1109/VCIP.2017.8305036, +39d0de660e2116f32088ce07c3376759d0fdaff5,,,https://doi.org/10.1109/ICPR.2016.7900043, +397085122a5cade71ef6c19f657c609f0a4f7473,http://pdfs.semanticscholar.org/db11/4901d09a07ab66bffa6986bc81303e133ae1.pdf,,https://doi.org/10.5244/C.29.22,http://vision.ics.uci.edu/papers/GhiasiF_BMVC_2015/GhiasiF_BMVC_2015.pdf +39c48309b930396a5a8903fdfe781d3e40d415d0,http://www.ri.cmu.edu/pub_files/2017/5/ant_low.pdf,,,https://www.ri.cmu.edu/pub_files/2017/5/ant_low.pdf +396de136485d85242583951bee4e7b19234bc964,,,, +3986161c20c08fb4b9b791b57198b012519ea58b,http://pdfs.semanticscholar.org/3986/161c20c08fb4b9b791b57198b012519ea58b.pdf,,,http://ijsce.org/attachments/File/v4i4/D2354094414.pdf +392425be1c9d9c2ee6da45de9df7bef0d278e85f,http://pdfs.semanticscholar.org/3924/25be1c9d9c2ee6da45de9df7bef0d278e85f.pdf,,,http://cvrr.ucsd.edu/publications/2016/0411.pdf +392c3cabe516c0108b478152902a9eee94f4c81e,http://pdfs.semanticscholar.org/392c/3cabe516c0108b478152902a9eee94f4c81e.pdf,,,http://www.csd.uwo.ca/~olga/Courses/Fall2009/9840/Papers/TR_tiny_images.pdf +39f525f3a0475e6bbfbe781ae3a74aca5b401125,http://pdfs.semanticscholar.org/39f5/25f3a0475e6bbfbe781ae3a74aca5b401125.pdf,,,https://arxiv.org/pdf/1611.08091v1.pdf +3946b8f862ecae64582ef0912ca2aa6d3f6f84dc,http://pdfs.semanticscholar.org/3946/b8f862ecae64582ef0912ca2aa6d3f6f84dc.pdf,,,https://arxiv.org/pdf/1307.8405v1.pdf +3933416f88c36023a0cba63940eb92f5cef8001a,http://pdfs.semanticscholar.org/3933/416f88c36023a0cba63940eb92f5cef8001a.pdf,,,https://www.cs.umd.edu/~qiu/pub/1308.0273v1.pdf +39150acac6ce7fba56d54248f9c0badbfaeef0ea,http://pdfs.semanticscholar.org/3915/0acac6ce7fba56d54248f9c0badbfaeef0ea.pdf,,,http://mplab.ucsd.edu/~marni/pubs/Vural_DSP_2007.pdf +39d6339a39151b5f88ec2d7acc38fe0618d71b5f,,,https://doi.org/10.1109/MMSP.2013.6659285, +391b273af237b69ebbdfacb8e33b8e873421c780,,,, +39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,http://openaccess.thecvf.com/content_iccv_2015/papers/Lu_Simultaneous_Local_Binary_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.424 +3983637022992a329f1d721bed246ae76bc934f7,http://www.cs.umd.edu/~djacobs/pubs_files/SlantCVPRFinal.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995559 +3980dadd27933d99b2f576c3b36fe0d22ffc4746,,,https://doi.org/10.1109/ROBIO.2017.8324597, +3960882a7a1cd19dfb711e35a5fc1843ed9002e7,,,,http://doi.acm.org/10.1145/2487575.2487701 +3958db5769c927cfc2a9e4d1ee33ecfba86fe054,http://homes.cs.washington.edu/~neeraj/base/base/papers/nk_pami2011_faceattrs.pdf,,,http://homes.cs.washington.edu/~neeraj/base/projects/faceverification/base/papers/nk_pami2011_faceattrs.pdf +39ecdbad173e45964ffe589b9ced9f1ebfe2d44e,http://measuringbehavior.org/files/ProceedingsPDF(website)/Gonzalez_FullPaper3.4.pdf,,,http://doi.acm.org/10.1145/1931344.1931352 +398558817e05e8de184cc4c247d4ea51ab9d4d58,,,https://doi.org/10.1109/ICPR.2014.14, +39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df,https://pdfs.semanticscholar.org/39b5/f6d6f8d8127b2b97ea1a4987732c0db6f9df.pdf,,https://doi.org/10.1109/ICPR.2008.4761856,http://figment.cse.usf.edu/~sfefilat/data/papers/WeBCT9.21.pdf +99ced8f36d66dce20d121f3a29f52d8b27a1da6c,http://pdfs.semanticscholar.org/99ce/d8f36d66dce20d121f3a29f52d8b27a1da6c.pdf,,https://doi.org/10.1007/978-3-319-73013-4_20,https://arxiv.org/pdf/1709.05675v1.pdf +9949ac42f39aeb7534b3478a21a31bc37fe2ffe3,http://pdfs.semanticscholar.org/9949/ac42f39aeb7534b3478a21a31bc37fe2ffe3.pdf,,https://doi.org/10.1007/11564386_10,https://pdfs.semanticscholar.org/9949/ac42f39aeb7534b3478a21a31bc37fe2ffe3.pdf +999289b0ef76c4c6daa16a4f42df056bf3d68377,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf,,https://doi.org/10.1007/978-3-319-11839-0_5,https://www.cmpe.boun.edu.tr/~salah/dibeklioglu_hbu14.pdf +993934822a42e70dd35fb366693d847164ca15ff,,,https://doi.org/10.1109/ICME.2009.5202753, +998244a44f90b3b569f9c93226df70239818ead9,,,, +9958942a0b7832e0774708a832d8b7d1a5d287ae,https://engineering.purdue.edu/~bouman/publications/pdf/tip29.pdf,,https://doi.org/10.1109/TIP.2010.2071390,https://engineering.purdue.edu/~bouman/publications/orig-pdf/tip29.pdf +995d55fdf5b6fe7fb630c93a424700d4bc566104,http://openaccess.thecvf.com/content_iccv_2015/papers/Nilsson_The_One_Triangle_ICCV_2015_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Nilsson_The_One_Triangle_ICCV_2015_paper.pdf +99726ad232cef837f37914b63de70d8c5101f4e2,http://pdfs.semanticscholar.org/9972/6ad232cef837f37914b63de70d8c5101f4e2.pdf,,,https://www.ijser.org/researchpaper/Facial-Expression-Recognition-Using-PCA-Distance-Classifier.pdf +99a1180c3d39532efecfc5fa251d6893375c91a1,,,https://doi.org/10.1109/ICARCV.2012.6485394, +9931c6b050e723f5b2a189dd38c81322ac0511de,http://pdfs.semanticscholar.org/9931/c6b050e723f5b2a189dd38c81322ac0511de.pdf,,https://doi.org/10.1016/j.cviu.2015.10.010,http://arxiv.org/pdf/1511.05788v2.pdf +994b52bf884c71a28b4f5be4eda6baaacad1beee,http://www.yugangjiang.info/publication/BIGMM15-summit-invited.pdf,,,http://doi.ieeecomputersociety.org/10.1109/BigMM.2015.17 +9963c73b03e4649959f021ef6f4fb1eac0b617d2,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2017/Person%20Re-identification%20Using%20Multiple%20Egocentric%20Views.pdf,,https://doi.org/10.1109/TCSVT.2016.2615445, +99e0c03686f7bc9d7add6cff39a941a047c3600a,,,https://doi.org/10.1109/ACCESS.2017.2712788, +99001ac9fdaf7649c0d0bd8d2078719bafd216d9,http://people.ee.duke.edu/~lcarin/TPAMI_2007_General_tensor_analysis.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1096 +99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,,,https://doi.org/10.1109/ACCESS.2017.2752176, +9993f1a7cfb5b0078f339b9a6bfa341da76a3168,http://pdfs.semanticscholar.org/9993/f1a7cfb5b0078f339b9a6bfa341da76a3168.pdf,,,http://arxiv.org/abs/1609.09058 +998542e5e3882bb0ce563d390b1e1bff5460e80c,,,https://doi.org/10.1109/AFGR.2008.4813471, +992ebd81eb448d1eef846bfc416fc929beb7d28b,http://pdfs.semanticscholar.org/992e/bd81eb448d1eef846bfc416fc929beb7d28b.pdf,,,http://pages.cs.wisc.edu/~lizhang/projects/face-parsing/SmithCVPR2013_supplementary.pdf +992e4119d885f866cb715f4fbf0250449ce0db05,,,https://doi.org/10.1007/s00138-015-0674-1, +9990e0b05f34b586ffccdc89de2f8b0e5d427067,http://pdfs.semanticscholar.org/9990/e0b05f34b586ffccdc89de2f8b0e5d427067.pdf,,,http://www.ijmo.org/papers/247-T091.pdf +9989eda2f5392cfe1f789bb0f6213a46d92d1302,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477584 +997c7ebf467c579b55859315c5a7f15c1df43432,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.141 +993374c1c9d58a3dec28160188ff6ac1227d02f5,,,https://doi.org/10.1109/ICARCV.2016.7838650, +99cd84a62edb2bda2fc2fdc362a72413941f6aa4,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.109 +52012b4ecb78f6b4b9ea496be98bcfe0944353cd,http://pdfs.semanticscholar.org/5201/2b4ecb78f6b4b9ea496be98bcfe0944353cd.pdf,,,https://scienceq.org/Uploaded/Editorial/631997492.pdf +5278b7a6f1178bf5f90cd3388908925edff5ad46,,,https://doi.org/10.1007/s11704-015-4291-y, +521cfbc1949289a7ffc3ff90af7c55adeb43db2a,http://pdfs.semanticscholar.org/521c/fbc1949289a7ffc3ff90af7c55adeb43db2a.pdf,,,https://arxiv.org/pdf/1711.07430v1.pdf +529e2ce6fb362bfce02d6d9a9e5de635bde81191,http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2011/1/20111721232398113.pdf,,https://doi.org/10.1109/TIP.2010.2097270,http://www.researchgate.net/profile/Xiaohua_Xie/publication/224203021_Normalization_of_Face_Illumination_Based_on_Large-and_Small-Scale_Features/links/0c9605204502666709000000.pdf +52887969107956d59e1218abb84a1f834a314578,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/chen13travel.pdf,,https://doi.org/10.1109/TMM.2013.2265077, +520782f07474616879f94aae0d9d1fff48910254,,,https://doi.org/10.1016/j.neucom.2014.11.038, +52d4952426f40394af1db43f429e0b2a2e326197,,,, +521482c2089c62a59996425603d8264832998403,http://pdfs.semanticscholar.org/5214/82c2089c62a59996425603d8264832998403.pdf,,https://doi.org/10.1016/j.cviu.2015.06.006,http://www.cs.binghamton.edu/~scanavan/papers/CVIU_2015.pdf +5217ab9b723158b3ba2235e807d165e72fd33007,,,,http://doi.acm.org/10.1145/2043674.2043710 +524c25217a6f1ed17f47871e947a5581d775fa56,,,https://doi.org/10.1117/12.2030875, +52e2dab86eb1444750b5dc45885288216741220b,,,, +521b625eebea73b5deb171a350e3709a4910eebf,https://arxiv.org/pdf/1604.06397v1.pdf,,,http://www3.cs.stonybrook.edu/~minhhoai/papers/GAC_CVPR16_final.pdf +52258ec5ec73ce30ca8bc215539c017d279517cf,http://pdfs.semanticscholar.org/5225/8ec5ec73ce30ca8bc215539c017d279517cf.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2002.1044632 +5253c94f955146ba7d3566196e49fe2edea1c8f4,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Kemelmacher-Shlizerman_Internet_Based_Morphable_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.404 +527dda77a3864d88b35e017d542cb612f275a4ec,https://arxiv.org/pdf/1709.00531v1.pdf,,https://doi.org/10.1109/BTAS.2017.8272734,http://arxiv.org/abs/1709.00531 +529b1f33aed49dbe025a99ac1d211c777ad881ec,https://teresaproject.eu/wp-content/uploads/2015/07/kossaifi_bidirectional_icip.pdf,,https://doi.org/10.1109/ICIP.2015.7350977,https://ibug.doc.ic.ac.uk/media/uploads/documents/kossaifi_bidirectional_icip.pdf +523b2cbc48decfabffb66ecaeced4fe6a6f2ac78,https://arxiv.org/pdf/1708.09126v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273626 +5287d8fef49b80b8d500583c07e935c7f9798933,http://pdfs.semanticscholar.org/8e65/13b642dcd5dc0fb60173dd0da1d8440eba8d.pdf,,,http://www-personal.umich.edu/~reedscot/files/icml2016.pdf +52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,http://blogs.bu.edu/joewang/files/2013/06/allerton_2011_v2.pdf,,https://doi.org/10.1109/Allerton.2011.6120242, +52c71d20dced998a607c466241dfc2eb88183de8,,,, +52e270ca8f5b53eabfe00a21850a17b5cc10f6d5,,,https://doi.org/10.1109/ROBIO.2013.6739643, +5226296884b3e151ce317a37f94827dbda0b9d16,,,https://doi.org/10.1109/IWBF.2016.7449690, +52bf00df3b970e017e4e2f8079202460f1c0e1bd,http://pdfs.semanticscholar.org/52bf/00df3b970e017e4e2f8079202460f1c0e1bd.pdf,,,http://arxiv.org/pdf/1511.06988v1.pdf +5213549200bccec57232fc3ff788ddf1043af7b3,,,,http://doi.acm.org/10.1145/2601097.2601204 +52c91fcf996af72d191520d659af44e310f86ef9,http://pdfs.semanticscholar.org/52c9/1fcf996af72d191520d659af44e310f86ef9.pdf,,,http://ttic.uchicago.edu/~smaji/cvhc2014/kovashkainteractive2014.pdf +52a9f957f776c8b3d913cfcd20452b9e31c27845,http://pdfs.semanticscholar.org/52a9/f957f776c8b3d913cfcd20452b9e31c27845.pdf,,https://doi.org/10.1016/j.patcog.2017.03.016,https://arxiv.org/pdf/1609.09178v1.pdf +526c79c6ce39882310b814b7918449d48662e2a9,,,https://doi.org/10.1109/ICASSP.2005.1416338, +52885fa403efbab5ef21274282edd98b9ca70cbf,http://www.aiia.csd.auth.gr/EN/cor_baayen/Discriminant_Graph_Structures_FER.pdf,,https://doi.org/10.1109/TMM.2008.2007292,http://ikee.lib.auth.gr/record/115043/files/Zafeiriou.pdf +524f6dc7441a3899ea8eb5d3e0d5d70e50ba566a,,,,http://doi.acm.org/10.1145/2797143.2797165 +52f23e1a386c87b0dab8bfdf9694c781cd0a3984,http://pdfs.semanticscholar.org/52f2/3e1a386c87b0dab8bfdf9694c781cd0a3984.pdf,,https://doi.org/10.1016/j.neucom.2015.04.006,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2015/2_A_Iosifidis_NEUCOM_DropELM.pdf +528069963f0bd0861f380f53270c96c269a3ea1c,http://pdfs.semanticscholar.org/5280/69963f0bd0861f380f53270c96c269a3ea1c.pdf,,,http://orca.cf.ac.uk/82405/1/2015vandeventerjphd.pdf +5239001571bc64de3e61be0be8985860f08d7e7e,http://pdfs.semanticscholar.org/5239/001571bc64de3e61be0be8985860f08d7e7e.pdf,,,https://arxiv.org/pdf/1607.06871v2.pdf +52b102620fff029b80b3193bec147fe6afd6f42e,,,,http://dl.acm.org/citation.cfm?id=3028863 +556b9aaf1bc15c928718bc46322d70c691111158,https://www.ecse.rpi.edu/~cvrl/lwh/myPublications/ICPR08_BNlearning_camera.pdf,,https://doi.org/10.1109/ICPR.2008.4761074,http://figment.cse.usf.edu/~sfefilat/data/papers/MoBT9.33.pdf +550858b7f5efaca2ebed8f3969cb89017bdb739f,http://pdfs.semanticscholar.org/5508/58b7f5efaca2ebed8f3969cb89017bdb739f.pdf,,https://doi.org/10.1109/ICRA.2011.5980310,http://www.researchgate.net/profile/Gn_Desouza/publication/224252716_Wii_Using_Only_We_Using_background_subtraction_and_human_pose_recognition_to_eliminate_game_controllers/links/02e7e53c6d2dd70b9a000000.pdf +5551a03353f571b552125dd4ee57301b69a10c46,,,https://doi.org/10.1016/j.neucom.2015.09.083, +55c46ae1154ed310610bdf5f6d9e7023d14c7eb4,,,,http://doi.acm.org/10.1145/1027933.1028013 +554b9478fd285f2317214396e0ccd81309963efd,http://pdfs.semanticscholar.org/554b/9478fd285f2317214396e0ccd81309963efd.pdf,,,http://www-l2ti.univ-paris13.fr/~beghdadi/wp-content/uploads/2012/09/SPIE_2015_MMBS.pdf +55cc90968e5e6ed413dd607af2a850ac2f54e378,http://pdfs.semanticscholar.org/55cc/90968e5e6ed413dd607af2a850ac2f54e378.pdf,,https://doi.org/10.1016/j.cviu.2014.03.008,http://www.umiacs.umd.edu/~arijit/subclustering.pdf +55ee484f9cbd62111512485e3c1c3eadbf2e15c0,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.25 +559795d3f3b096ceddc03720ba62d79d50eae300,http://www3.nd.edu/~kwb/BarrBowyerFlynnTIFS_2014.pdf,,https://doi.org/10.1109/TIFS.2014.2359369,https://www3.nd.edu/~kwb/Barr_Bowyer_Flynn_TIFS_2014.pdf +559645d2447004355c83737a19c9a811b45780f1,,,https://doi.org/10.1109/ICB.2015.7139114, +558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f,http://pdfs.semanticscholar.org/558f/c9a2bce3d3993a9c1f41b6c7f290cefcf92f.pdf,,,http://eprints-phd.biblio.unitn.it/2669/1/Duta_PhD-Thesis.pdf +55138c2b127ebdcc508503112bf1d1eeb5395604,http://pdfs.semanticscholar.org/7815/368a8f6474910d3faf798198ff9dae836360.pdf,,,http://www.eecs.berkeley.edu/~ameet/ens.pdf +5502dfe47ac26e60e0fb25fc0f810cae6f5173c0,http://pdfs.semanticscholar.org/5502/dfe47ac26e60e0fb25fc0f810cae6f5173c0.pdf,,,http://www.cc.gatech.edu/~thermans/papers/hermans-icra-spme2011.pdf +55e18e0dde592258882134d2dceeb86122b366ab,http://pdfs.semanticscholar.org/f863/ba982068d676084032146e8053d4791114e9.pdf,,https://doi.org/10.1613/jair.2962,http://arxiv.org/pdf/1405.7711v1.pdf +550351edcfd59d3666984771f5248d95548f465a,,,https://doi.org/10.1109/TIP.2014.2327805, +556545eec370b9d300fc044a1aa63fc44fd79b0f,http://www.cs.cmu.edu/~dhoiem/publications/cvpr2010_gangwang.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539955 +55a158f4e7c38fe281d06ae45eb456e05516af50,http://pdfs.semanticscholar.org/55a1/58f4e7c38fe281d06ae45eb456e05516af50.pdf,,,http://www.graphicon.ru/proceedings/2012/conference/RU1%20-%20Biometry/gc2012konushin.pdf +5594beb2b314f5433bd7581f64bdbc58f2933dc4,,,https://doi.org/10.1016/j.neucom.2016.12.013, +5506a1a1e1255353fde05d9188cb2adc20553af5,http://pdfs.semanticscholar.org/ff69/cb49c8cb86d0afadbcfa0baa607d7065965a.pdf,,,https://arxiv.org/pdf/1611.00284v1.pdf +55966926e7c28b1eee1c7eb7a0b11b10605a1af0,http://pdfs.semanticscholar.org/baa8/bdeb5aa545af5b5f43efaf9dda08490da0bc.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/download/9845/9816 +552c55c71bccfc6de7ce1343a1cd12208e9a63b3,https://ivi.fnwi.uva.nl/isis/publications/2008/ValentiCVPR2008/ValentiCVPR2008.pdf,,,http://staff.science.uva.nl/~rvalenti/publications/CVPR08.pdf +55fdff2881d43050a8c51c7fdc094dbfbbe6fa46,,,https://doi.org/10.1109/ICB.2016.7550064, +5517b28795d7a68777c9f3b2b46845dcdb425b2c,http://pdfs.semanticscholar.org/5517/b28795d7a68777c9f3b2b46845dcdb425b2c.pdf,,,http://arxiv.org/abs/1603.06531 +55c81f15c89dc8f6eedab124ba4ccab18cf38327,http://pdfs.semanticscholar.org/d31e/258f6af40f457c27ce118986ea157673c9c4.pdf,,https://doi.org/10.5244/C.20.37,http://www.bmva.ac.uk/bmvc/2006/papers/157.pdf +55bc7abcef8266d76667896bbc652d081d00f797,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf,,https://doi.org/10.5220/0004746001820190, +55b4b1168c734eeb42882082bd131206dbfedd5b,http://pdfs.semanticscholar.org/76fd/f16bcc2cb260b9e6b2880c8fe128533bc2c6.pdf,,,http://papers.nips.cc/paper/4769-learning-to-align-from-scratch +55079a93b7d1eb789193d7fcdcf614e6829fad0f,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w10/papers/Conde_Efficient_and_Robust_ICCV_2015_paper.pdf,,,http://mi.informatik.uni-siegen.de/publications/Conde_Efficient_and_Robust_ICCV_2015_paper.pdf +553a605243b77a76c1ed4c1ad4f9a43ff45e391b,,,https://doi.org/10.1109/CISP-BMEI.2017.8302001, +55804f85613b8584d5002a5b0ddfe86b0d0e3325,http://pdfs.semanticscholar.org/ba13/b161aa8e6f6cb511592016058882d976a898.pdf,,,http://authors.library.caltech.edu/27081/1/dcomplex.pdf +557115454c1b8e6eaf8dbb65122c5b00dc713d51,,,https://doi.org/10.1109/LSP.2011.2140370, +551fa37e8d6d03b89d195a5c00c74cc52ff1c67a,http://pdfs.semanticscholar.org/551f/a37e8d6d03b89d195a5c00c74cc52ff1c67a.pdf,,https://doi.org/10.1007/978-3-319-48881-3_58,http://arxiv.org/pdf/1609.05281v1.pdf +55266ddbe9d5366e8cd1b0b645971cad6d12157a,,,https://doi.org/10.1109/SIU.2017.7960368, +556875fb04ed6043620d7ca04dfe3d8b3a9284f5,,,https://doi.org/10.1109/ICPR.2014.437, +55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,http://pdfs.semanticscholar.org/55eb/7ec9b9740f6c69d6e62062a24bfa091bbb0c.pdf,,https://doi.org/10.1007/978-3-319-39513-5_5,http://sujingwang.name/publication/Casme2.pdf +5599ac2cd569ed83ecab8449d2f245e13034da06,,,, +55b9b1c1c5487f5f62b44340104a9c4cc2ed7c96,http://pdfs.semanticscholar.org/55b9/b1c1c5487f5f62b44340104a9c4cc2ed7c96.pdf,,,http://arxiv.org/abs/1609.06657 +55fd4639c2126de5ad69d23b8a6e670a05911b9d,,,, +9745a7f38c9bba9d2fd076813fc9ab7a128a3e19,,,,http://doi.acm.org/10.1145/2393347.2396335 +97f3d35d3567cd3d973c4c435cdd6832461b7c3c,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.75 +979fd81d135078886808839391adf1249c354cca,,,, +97c554fbcf783d554c4f6c2f3fcc0a0f9dba0759,,,,http://doi.ieeecomputersociety.org/10.1109/ISM.2016.0085 +973e3d9bc0879210c9fad145a902afca07370b86,http://pdfs.semanticscholar.org/973e/3d9bc0879210c9fad145a902afca07370b86.pdf,,,http://thesai.org/Downloads/Volume7No7/Paper_72-From_Emotion_Recognition_to_Website.pdf +9776a9f3c59907f45baaeda4b8907dcdac98aef1,,,https://doi.org/10.1109/CISP-BMEI.2017.8301924, +970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3,http://pdfs.semanticscholar.org/970c/0d6c0fd2ebe7c5921a45bc70f6345c844ff3.pdf,,,https://www.ijcai.org/Proceedings/16/Papers/475.pdf +97b8249914e6b4f8757d22da51e8347995a40637,http://rogerioferis.com/VisualRecognitionAndSearch2014/material/papers/FerisTransMultimedia2012.pdf,,https://doi.org/10.1109/TMM.2011.2170666,http://rogerioferis.com/publications/FerisTransMultimedia2012.pdf +972ef9ddd9059079bdec17abc8b33039ed25c99c,http://pdfs.semanticscholar.org/972e/f9ddd9059079bdec17abc8b33039ed25c99c.pdf,,,http://ijiet.com/wp-content/uploads/2014/12/36.pdf +97c59db934ff85c60c460a4591106682b5ab9caa,,,https://doi.org/10.1109/BTAS.2012.6374568, +97032b13f1371c8a813802ade7558e816d25c73f,http://pdfs.semanticscholar.org/9703/2b13f1371c8a813802ade7558e816d25c73f.pdf,,,http://www.doc.ic.ac.uk/~khilan/index_files/fr-report.pdf +978a219e07daa046244821b341631c41f91daccd,http://pdfs.semanticscholar.org/e2b9/f8b66d3f9080ccb14f058cf4798cb4d89241.pdf,,https://doi.org/10.1007/978-3-540-78293-3_5,http://www.cs.bham.ac.uk/~cpc/publications/creed_handbook_emotion_08.pdf +976e0264bb57786952a987d4456850e274714fb8,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Dehghan_Improving_Semantic_Concept_2014_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Dehghan_Improving_Semantic_Concept_2014_CVPR_paper.pdf +978b32ff990d636f7e2050bb05b8df7dfcbb42a1,,,https://doi.org/10.1109/BTAS.2014.6996270, +9758f3fd94239a8d974217fe12599f88fb413f3d,http://pdfs.semanticscholar.org/9758/f3fd94239a8d974217fe12599f88fb413f3d.pdf,,,http://crcv.ucf.edu/THUMOS14/papers/Univ%20of%20Canberra-HCC.pdf +97f9c3bdb4668f3e140ded2da33fe704fc81f3ea,http://pdfs.semanticscholar.org/97f9/c3bdb4668f3e140ded2da33fe704fc81f3ea.pdf,,https://doi.org/10.1007/3-540-61750-7_32,ftp://ftp-robotvis.inria.fr/pub/html/Papers/mundy-liu-etal:96.ps.gz +9729930ab0f9cbcd07f1105bc69c540330cda50a,,,https://doi.org/10.1109/ACCESS.2017.2749331, +97946f13c1cf8924b0c1ce88682290ae87d630a1,,,, +9790ec6042fb2665c7d9369bf28566b0ce75a936,,,,http://doi.acm.org/10.1145/3056540.3056546 +97e569159d5658760eb00ca9cb662e6882d2ab0e,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989c291.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.297 +97d1d561362a8b6beb0fdbee28f3862fb48f1380,http://pages.cs.wisc.edu/~gdguo/myPapersOnWeb/PAMI10Guo.pdf,,,http://www.cs.wisc.edu/~gdguo/myPapersOnWeb/PAMI10Guo.pdf +97540905e4a9fdf425989a794f024776f28a3fa9,http://pdfs.semanticscholar.org/cc5a/1bf68ba00c20415e43684c6f75ce3fbc176c.pdf,,,http://arxiv.org/abs/1801.08297 +97865d31b5e771cf4162bc9eae7de6991ceb8bbf,http://pdfs.semanticscholar.org/9786/5d31b5e771cf4162bc9eae7de6991ceb8bbf.pdf,,,https://repository.iiitd.edu.in/jspui/bitstream/handle/123456789/357/MT13100.pdf;sequence=1 +973022a1f9e30a624f5e8f7158b5bbb114f4af32,,,,http://doi.acm.org/10.1145/3011077.3011138 +9774430006f1ed017156b17f3cf669071e398c58,,,https://doi.org/10.1109/SMC.2013.513, +9797de286a3101fc31fb51995c18ec7d3eab804d,,,, +976c9f88c23e892c75c452b450407841e5161a32,,,, +9753ee59db115e1e84a7c045f2234a3f63f255b1,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344683 +9771e04f48d8a1d7ae262539de8924117a04c20d,,,,http://doi.ieeecomputersociety.org/10.1109/CGIV.2007.70 +9755554b13103df634f9b1ef50a147dd02eab02f,https://arxiv.org/pdf/1610.00134v1.pdf,,https://doi.org/10.1109/BIOSIG.2016.7736925,http://arxiv.org/abs/1610.00134 +635158d2da146e9de559d2742a2fa234e06b52db,http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf,,,"http://www.docum-enter.com/get/d1y3RvllH36yjINsiopl5jjhARrn10ldjnlVrCiMGlM,/Emotion-Recognition-in-the-Wild-via-Convolutional-Neural.pdf" +63a4105adbe182e67d8fd324de5c84a6df444294,,,, +63d8110ac76f57b3ba8a5947bc6bdbb86f25a342,http://pdfs.semanticscholar.org/63d8/110ac76f57b3ba8a5947bc6bdbb86f25a342.pdf,,,http://web.cse.msu.edu/~liuxm/publication/FG2002_xiaoming1.pdf +63f2d1a64737afa1608588b9651b1e4207e82d1c,http://staff.estem-uc.edu.au/roland/files/2009/05/Rajagopalan_Goecke_ICIP2014_DetectingSelf-StimulatoryBehavioursForAutismDiagnosis.pdf,,https://doi.org/10.1109/ICIP.2014.7025294, +63c74794aedb40dd6b1650352a2da7a968180302,,,https://doi.org/10.1016/j.neucom.2016.09.015, +63cf5fc2ee05eb9c6613043f585dba48c5561192,http://pdfs.semanticscholar.org/63cf/5fc2ee05eb9c6613043f585dba48c5561192.pdf,,,http://repository.tudelft.nl/assets/uuid:4a8f0412-fc16-4dc7-8f42-cb223c64de1b/thesis_final.pdf +6339e9385ae3609cb22f6b87175c7e6850f2c05b,http://vision.ucmerced.edu/papers/Yang_WACV12_EstimatingTheSpatialExtent.pdf,,,http://vision.ucmerced.edu/projects/integrating/papers/Yang_WACV2012_EstimatingTheSpatialExtents.pdf +637b31157386efbde61505365c0720545248fbae,,,https://doi.org/10.1109/BTAS.2017.8272721, +6324fada2fb00bd55e7ff594cf1c41c918813030,http://pdfs.semanticscholar.org/6324/fada2fb00bd55e7ff594cf1c41c918813030.pdf,,,http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/download/7013/6753 +6308e9c991125ee6734baa3ec93c697211237df8,http://www.ifp.illinois.edu/~jyang29/papers/ICME-SSR.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2011.6012083 +6342a4c54835c1e14159495373ab18b4233d2d9b,http://pdfs.semanticscholar.org/6342/a4c54835c1e14159495373ab18b4233d2d9b.pdf,,,http://eprints.qut.edu.au/77836/1/Moh%20Edi_Wibowo_Thesis.pdf +63d8d69e90e79806a062cb8654ad78327c8957bb,http://pdfs.semanticscholar.org/63d8/d69e90e79806a062cb8654ad78327c8957bb.pdf,,https://doi.org/10.1016/j.procs.2010.11.003,http://eprints.uwe.ac.uk/17653/1/icebt10_repo.pdf +63c109946ffd401ee1195ed28f2fb87c2159e63d,http://pdfs.semanticscholar.org/63c1/09946ffd401ee1195ed28f2fb87c2159e63d.pdf,,,https://pdfs.semanticscholar.org/63c1/09946ffd401ee1195ed28f2fb87c2159e63d.pdf +63b29886577a37032c7e32d8899a6f69b11a90de,http://pdfs.semanticscholar.org/63b2/9886577a37032c7e32d8899a6f69b11a90de.pdf,,https://doi.org/10.1007/978-3-642-12307-8_30,http://www.cvlab.cs.tsukuba.ac.jp/~kfukui/english/epapers/MO8-3-594.pdf +638e0d6f9f5d714d8a0edcf65297e8735b30db71,,,, +6345c0062885b82ccb760c738a9ab7fdce8cd577,,,https://doi.org/10.1109/EMBC.2016.7590729, +63a6c256ec2cf2e0e0c9a43a085f5bc94af84265,http://www.cs.tau.ac.il/~wolf/papers/complexity-multiverse-networks.pdf,,https://doi.org/10.1109/ICPR.2016.7899662, +63213d080a43660ac59ea12e3c35e6953f6d7ce8,https://arxiv.org/pdf/1704.02895v1.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Girdhar_ActionVLAD_Learning_Spatio-Temporal_CVPR_2017_paper.pdf +630d1728435a529d0b0bfecb0e7e335f8ea2596d,http://pdfs.semanticscholar.org/aa67/719e839d035e4d67e4434794b6cccaf091d6.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Ding_Facial_Action_Unit_2013_ICCV_paper.pdf +63eefc775bcd8ccad343433fc7a1dd8e1e5ee796,http://www.lv-nus.org/papers%5C2008%5C2008_J_6.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.154 +635d2696aa597a278dd6563f079be06aa76a33c0,,,https://doi.org/10.1109/ICIP.2016.7532429, +636c786d4e4ac530ac85e3883a2f2cf469e45fe2,,,https://doi.org/10.1016/j.neucom.2016.12.043, +63340c00896d76f4b728dbef85674d7ea8d5ab26,https://www.comp.nus.edu.sg/~tsim/documents/fkt-dsa-pami-published.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1089 +6343bc0013343b6a5f96154f02d18dcd36a3f74c,,,https://doi.org/10.1007/s11042-014-2083-2, +63ce37da6c0c789099307337bb913e1104473854,http://pdfs.semanticscholar.org/63ce/37da6c0c789099307337bb913e1104473854.pdf,,,http://web.cse.msu.edu/~liuxm/publication/Chen_Liu_PRL_OneClassTransfer.pdf +63a2e2155193dc2da9764ae7380cdbd044ff2b94,http://pdfs.semanticscholar.org/a8fb/2c65a23d1e75c4923c36fdd6e3d2a4b3d8f7.pdf,,https://doi.org/10.1007/978-3-319-04114-8_32,http://img.cs.uec.ac.jp/pub/conf13/140108dohang_0_ppt.pdf +63367972e1ada96dd47211d86ddee83f65ca1880,,,, +63d865c66faaba68018defee0daf201db8ca79ed,http://pdfs.semanticscholar.org/63d8/65c66faaba68018defee0daf201db8ca79ed.pdf,,,http://arxiv.org/abs/1409.5230 +63cff99eff0c38b633c8a3a2fec8269869f81850,http://pdfs.semanticscholar.org/63cf/f99eff0c38b633c8a3a2fec8269869f81850.pdf,,https://doi.org/10.1007/978-3-540-74549-5_9,http://www.ics.uci.edu/~xzhu/paper/FCF-ICB07.pdf +634541661d976c4b82d590ef6d1f3457d2857b19,http://pdfs.semanticscholar.org/6345/41661d976c4b82d590ef6d1f3457d2857b19.pdf,,,http://amsdottorato.unibo.it/6355/1/sun_yunlian_tesi.pdf +6332a99e1680db72ae1145d65fa0cccb37256828,http://pdfs.semanticscholar.org/6332/a99e1680db72ae1145d65fa0cccb37256828.pdf,,,http://www.maia.ub.es/~sergio/linked/tonitesis.pdf +63488398f397b55552f484409b86d812dacde99a,http://pdfs.semanticscholar.org/6348/8398f397b55552f484409b86d812dacde99a.pdf,,,http://www.comp.nus.edu.sg/~tsim/documents/age-iccv.pdf +6341274aca0c2977c3e1575378f4f2126aa9b050,http://arxiv.org/pdf/1609.03536v1.pdf,,https://doi.org/10.1109/ICPR.2016.7899705,https://arxiv.org/pdf/1609.03536v1.pdf +63c022198cf9f084fe4a94aa6b240687f21d8b41,http://pdfs.semanticscholar.org/63c0/22198cf9f084fe4a94aa6b240687f21d8b41.pdf,,,http://research.microsoft.com/en-us/um/people/pkohli/papers/jetkw_aistats2015.pdf +632441c9324cd29489cee3da773a9064a46ae26b,http://pdfs.semanticscholar.org/6324/41c9324cd29489cee3da773a9064a46ae26b.pdf,,,https://open.library.ubc.ca/media/download/pdf/24/1.0166350/1/1695 +0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab,http://arxiv.org/pdf/1401.5311v1.pdf,,,http://arxiv.org/pdf/1401.5311v2.pdf +0fc5c6f06e40014a56f492172f44c073d269e95c,,,https://doi.org/10.1108/17563781311301490, +0f9dd79de75a3dce394846369f09c05ddf250e31,,,, +0f112e49240f67a2bd5aaf46f74a924129f03912,http://www.cse.msu.edu/biometrics/Publications/Face/ParkTongJain_AgeInvariantFaceRecognition_PAMI10.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.14 +0fb45e704ef3ca1f9c70e7be3fb93b53714ed8b5,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.142 +0fc254272db096a9305c760164520ad9914f4c9e,https://arxiv.org/pdf/1601.06087v1.pdf,,https://doi.org/10.1109/ICIP.2016.7532634,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/18791/Ahmadi%20Unsupervised%20convolutional%20neural%202016%20Accepted.pdf?sequence=1 +0fae5d9d2764a8d6ea691b9835d497dd680bbccd,http://pdfs.semanticscholar.org/0fae/5d9d2764a8d6ea691b9835d497dd680bbccd.pdf,,,http://www.ncc.org.in/download.php?f=NCC2007/1.2.4.pdf +0f4cfcaca8d61b1f895aa8c508d34ad89456948e,http://signal.ee.bilkent.edu.tr/defevent/abstract/a2051.pdf,http://ieeexplore.ieee.org/document/7078507/,,http://isl.ira.uka.de/~stiefel/papers/EUSIPCO05_ekenel.pdf +0fdcfb4197136ced766d538b9f505729a15f0daf,https://arxiv.org/pdf/0907.5321v2.pdf,,,http://arxiv.org/pdf/0907.5321v1.pdf +0fad544edfc2cd2a127436a2126bab7ad31ec333,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7D609FEFFC36336C4A45ECA3B56C336A?doi=10.1.1.476.9590&rep=rep1&type=pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.211 +0f32df6ae76402b98b0823339bd115d33d3ec0a0,http://perceptual.mpi-inf.mpg.de/files/2015/07/Mueller15_ACII.pdf,,,http://datasets.d2.mpi-inf.mpg.de/MPIIEmo/supp_mat.pdf +0fee3b9191dc1cef21f54232a23530cd8169d3b2,,,https://doi.org/10.1109/ICDM.2016.0050, +0fd1715da386d454b3d6571cf6d06477479f54fc,http://pdfs.semanticscholar.org/0fd1/715da386d454b3d6571cf6d06477479f54fc.pdf,,https://doi.org/10.1007/s10846-015-0259-2,http://www.cs.columbia.edu/~allen/S17/Student_Papers/emotion_survey.pdf +0f9bf5d8f9087fcba419379600b86ae9e9940013,http://pdfs.semanticscholar.org/0f9b/f5d8f9087fcba419379600b86ae9e9940013.pdf,,https://doi.org/10.1016/j.neucom.2016.02.011,http://www.ee.cuhk.edu.hk/~knngan/2016/NC_v194_p10-23.pdf +0f829fee12e86f980a581480a9e0cefccb59e2c5,http://www.cs.columbia.edu/~liujx09/posters/birdpart_poster.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.313 +0faee699eccb2da6cf4307ded67ba8434368257b,http://pdfs.semanticscholar.org/2396/5bd9b557b04b2c81a35ee5c16951c0e420f3.pdf,,,http://www.openu.ac.il/home/hassner/projects/multishot/TWH_BMVC09_Multishot.pdf +0fabb4a40f2e3a2502cd935e54e090a304006c1c,http://arxiv.org/pdf/1202.4207v2.pdf,,https://doi.org/10.1109/TIP.2012.2235849,http://www.matlabi.ir/wp-content/uploads/bank_papers/ipaper/i23_www.Matlabi.ir_Regularized%20Robust%20Coding%20for%20Face%20Recognition.pdf +0f92e9121e9c0addc35eedbbd25d0a1faf3ab529,http://pdfs.semanticscholar.org/0f92/e9121e9c0addc35eedbbd25d0a1faf3ab529.pdf,,,http://libres.uncg.edu/ir/uncw/f/wangy2017-2.pdf +0f2461a265be997c962fa562ae48378fb964b7b4,,,https://doi.org/10.1109/BigData.2016.7841028, +0f0366070b46972fcb2976775b45681e62a94a26,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W01/papers/Bendale_Reliable_Posterior_Probability_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2014.14 +0ff23392e1cb62a600d10bb462d7a1f171f579d0,http://www.umiacs.umd.edu/~jhchoi/paper/icpr2014_slide.pdf,,https://doi.org/10.1109/ICPR.2014.757,http://www.umiacs.umd.edu/~jhchoi/paper/icpr2014_cossparse.pdf +0fd3a7ee228bbc3dd4a111dae04952a1ee58a8cd,http://media.cs.tsinghua.edu.cn/~ahz/papers/%5B2011%5D%5Bacpr%5Dwang%20nan.pdf,,https://doi.org/10.1109/ACPR.2011.6166682,http://media.cs.tsinghua.edu.cn/~imagevision/papers/%5B2011%5D%5Bacpr%5Dwang%20nan.pdf +0faf441a1ef1e788fb9ccd20484b104a1fa95ee8,,,, +0f533bc9fdfb75a3680d71c84f906bbd59ee48f1,http://www.iis.sinica.edu.tw/papers/song/11837-F.pdf,,,https://www.iis.sinica.edu.tw/papers/song/11837-F.pdf +0f53ab8b6c428127753281dd77cf94bdb889b624,https://www.researchgate.net/profile/Dian_Tjondronegoro/publication/224257559_Toward_a_more_robust_facial_expression_recognition_in_occluded_images_using_randomly_sampled_Gabor_based_templates/links/00b7d51f84babec8ad000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2011.6012015 +0f4eb63402a4f3bae8f396e12133684fb760def1,http://pdfs.semanticscholar.org/8c4e/b15de264af9f92a93d6e89d36295c5c4bf37.pdf,,,http://www.bmva.org/bmvc/2016/papers/paper040/paper040.pdf +0fba39bf12486c7684fd3d51322e3f0577d3e4e8,http://vision.ucsd.edu/~pdollar/files/papers/BabenkoICCV07boom.pdf,,,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/boom_iccv07.pdf +0f395a49ff6cbc7e796656040dbf446a40e300aa,http://pdfs.semanticscholar.org/0f39/5a49ff6cbc7e796656040dbf446a40e300aa.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/e1/17/fpsyg-06-01937.PMC4686644.pdf +0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277,http://pdfs.semanticscholar.org/0fb8/317a8bf5feaf297af8e9b94c50c5ed0e8277.pdf,,https://doi.org/10.1007/978-3-319-74727-9_39,https://arxiv.org/pdf/1709.02780v1.pdf +0f22b89341d162a7a0ebaa3c622d9731e5551064,,,,http://doi.ieeecomputersociety.org/10.1109/AIPR.2011.6176352 +0f8116b631c17f7adf55df3faafc6f2c316599f6,,,, +0fdc3cbf92027cb1200f3f94927bef017d7325ae,,,https://doi.org/10.1109/BTAS.2015.7358771, +0f29bc5d8458358d74dc8c4fd6968b4182dd71d2,,,https://doi.org/10.1109/ICIP.2016.7532637, +0f811d717c459c897a4fbffb3ccd9ac794be0b8f,,,, +0fe96806c009e8d095205e8f954d41b2b9fd5dcf,http://pdfs.semanticscholar.org/51be/ffe5f96ccb6b64057a540a7874185ccad8d7.pdf,,,https://arxiv.org/pdf/1506.03140v2.pdf +0f1cb558b32c516e2b6919fea0f97a307aaa9091,,,https://doi.org/10.1007/s41095-017-0091-7, +0f1d42e1296474c9211fb57604574ba0cae4380d,,,, +0f1cbe4e26d584c82008ccef9fb1e4669b82de1f,http://figment.cse.usf.edu/~sfefilat/data/papers/MoBT9.24.pdf,,https://doi.org/10.1109/ICPR.2008.4761064, +0f940d2cdfefc78c92ec6e533a6098985f47a377,https://www.ecse.rpi.edu/~cvrl/chenj/Expression_v6_submit.pdf,,https://doi.org/10.1109/FG.2011.5771330,http://www.ecse.rpi.edu/~cvrl/chenj/Expression_v6_submit.pdf +0fcf04fda0bea5265b73c85d2cc2f7f70416537b,,,https://doi.org/10.1109/TCSVT.2015.2409012, +0f64e26d6dd6f1c99fe2050887fac26cafe9ed60,,,https://doi.org/10.1109/MCI.2016.2627668, +0faeec0d1c51623a511adb779dabb1e721a6309b,http://pdfs.semanticscholar.org/a075/782ea38167658fe28986755adddba7369b4f.pdf,,https://doi.org/10.1007/978-3-319-10602-1_40,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8693/86930612.pdf +0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,https://arxiv.org/pdf/1501.05152v1.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_026_ext.pdf +0f0241124d6092a0bb56259ac091467c2c6938ca,http://mm.cs.uec.ac.jp/kitaha-a/research/maw2008.pdf?origin=publication_detail,,,http://doi.ieeecomputersociety.org/10.1109/WAINA.2008.97 +0a6d344112b5af7d1abbd712f83c0d70105211d0,http://www.cl.cam.ac.uk/~tb346/pub/papers/iccv2013.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Baltrusaitis_Constrained_Local_Neural_2013_ICCV_paper.pdf +0a15b8c7d529c7facc2d3b4c2111801dd4adfc28,,,, +0a64f4fec592662316764283575d05913eb2135b,http://pdfs.semanticscholar.org/0a64/f4fec592662316764283575d05913eb2135b.pdf,,,https://arxiv.org/pdf/1803.00068v1.pdf +0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,http://pdfs.semanticscholar.org/0a2d/df88bd1a6c093aad87a8c7f4150bfcf27112.pdf,,,http://discovery.ucl.ac.uk/1306170/1/1306170.pdf +0a5ffc55b584da7918c2650f9d8602675d256023,http://pdfs.semanticscholar.org/0a5f/fc55b584da7918c2650f9d8602675d256023.pdf,,,https://arxiv.org/pdf/1507.07073v2.pdf +0a297523188b03fdf9d2155bfdcca7e1bcab3762,,,, +0aeb5020003e0c89219031b51bd30ff1bceea363,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTarxiv15.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sun_Sparsifying_Neural_Network_CVPR_2016_paper.pdf +0a511058edae582e8327e8b9d469588c25152dc6,http://pdfs.semanticscholar.org/0a51/1058edae582e8327e8b9d469588c25152dc6.pdf,,,http://research.microsoft.com/en-us/um/people/horvitz/memory_constrained_face_recognition.pdf +0a4f3a423a37588fde9a2db71f114b293fc09c50,http://pdfs.semanticscholar.org/0a4f/3a423a37588fde9a2db71f114b293fc09c50.pdf,,https://doi.org/10.1016/j.cviu.2014.04.006,http://porto.polito.it/2541099/1/Analyzing_human_beauty_R2_2.0.pdf +0aa74ad36064906e165ac4b79dec298911a7a4db,http://pdfs.semanticscholar.org/7645/11b63b0eeba9f3dfe1e5ec9ff261cdc59d25.pdf,,,http://finale.seas.harvard.edu/files/finale/files/2009_variational_inference_for_the_indian_buffet_process.pdf?m=1455122778 +0abf67e7bd470d9eb656ea2508beae13ca173198,http://www.cs.cmu.edu/~kkitani/pdf/MFK-CVPR16.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Ma_Going_Deeper_into_CVPR_2016_paper.pdf +0af33f6b5fcbc5e718f24591b030250c6eec027a,http://pdfs.semanticscholar.org/fa2c/96273027ff92f98109dbcef5b65f34b36627.pdf,,,https://www2.cs.kuleuven.be/cwis/research/liir/publication_files/BNAIC-abstract-2007.pdf +0a3863a0915256082aee613ba6dab6ede962cdcd,http://pdfs.semanticscholar.org/0a38/63a0915256082aee613ba6dab6ede962cdcd.pdf,,,http://jmlr.csail.mit.edu/proceedings/papers/v48/sangnier16.pdf +0a4a8768c1ed419baebe1c420bd9051760875cbe,,,https://doi.org/10.1109/EUSIPCO.2016.7760451, +0a85bdff552615643dd74646ac881862a7c7072d,https://fbcdn-dragon-a.akamaihd.net/hphotos-ak-xpa1/t39.2365-6/10000000_1672336992989417_1391274031_n/Beyond_Frontal_Faces_Improving_Person_Recognition_Using_Multiple_Cues.pdf,,https://doi.org/10.1109/CVPR.2015.7299113,https://people.eecs.berkeley.edu/~nzhang/papers/piper_camera_ready.pdf +0a5b2e642683ff20b6f0cee16a32a68ba0099908,,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2012.6239342 +0a325d70cc381b136a8f4e471b406cda6d27668c,http://pdfs.semanticscholar.org/0a32/5d70cc381b136a8f4e471b406cda6d27668c.pdf,,https://doi.org/10.1016/j.patcog.2015.12.003,https://www.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Publications/Publications-2016/F1b-PR2016.pdf +0a88f5936528dcfdd27df886b07e62f2fd2072d0,,,, +0ad8149318912b5449085187eb3521786a37bc78,http://arxiv.org/pdf/1604.02975v1.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Bhattarai_CP-mtML_Coupled_Projection_CVPR_2016_paper.pdf +0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7,http://pdfs.semanticscholar.org/0aa9/872daf2876db8d8e5d6197c1ce0f8efee4b7.pdf,,,http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.484803 +0aae88cf63090ea5b2c80cd014ef4837bcbaadd8,http://pdfs.semanticscholar.org/0aae/88cf63090ea5b2c80cd014ef4837bcbaadd8.pdf,,,http://idea.library.drexel.edu/bitstream/1860/1294/1/Zhang_Cuiping.pdf +0aebe97a92f590bdf21cdadfddec8061c682cdb2,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2695183 +0a87d781fe2ae2e700237ddd00314dbc10b1429c,http://pdfs.semanticscholar.org/0a87/d781fe2ae2e700237ddd00314dbc10b1429c.pdf,,,http://bengal.missouri.edu/~kes25c/SPIE_2015-Multiscale_HOG_FLIR_FLGPR.pdf +0ad90118b4c91637ee165f53d557da7141c3fde0,http://pdfs.semanticscholar.org/0ad9/0118b4c91637ee165f53d557da7141c3fde0.pdf,,https://doi.org/10.1109/TNN.2002.1000134,http://www.dsp.toronto.edu/juwei/Publication/Juwei_RBF.pdf +0a82860d11fcbf12628724333f1e7ada8f3cd255,http://pdfs.semanticscholar.org/0a82/860d11fcbf12628724333f1e7ada8f3cd255.pdf,,,http://arxiv.org/pdf/1601.02129v1.pdf +0a23d374c6cf71a65e845569230420362fe4903a,http://mplab.ucsd.edu/~ksikka/in_the_wild.pdf,,,http://users.cecs.anu.edu.au/~adhall/Head_Pose_Normalisation_in_The_Wild.pdf +0a0b9a9ff827065e4ff11022b0e417ddf1d3734e,,,,http://dl.acm.org/citation.cfm?id=2935856 +0a6a818b634cca4eb75a37bfd23b5c5c21331b12,http://hal.cse.msu.edu/pdfs/papers/wacv-2015.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.29 +0ac442bb570b086d04c4d51a8410fcbfd0b1779d,http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/cvpr16_warpnet.pdf,,,http://arxiv.org/pdf/1604.05592v1.pdf +0af48a45e723f99b712a8ce97d7826002fe4d5a5,http://vision.seas.harvard.edu/papers/WideAngle_PAMI2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.22 +0aa8a0203e5f406feb1815f9b3dd49907f5fd05b,http://www.iti.gr/~bmezaris/publications/spl11_preprint.pdf,,https://doi.org/10.1109/LSP.2011.2127474,http://mkg.iti.gr/files/spl11_preprint.pdf +0a68747d001aba014acd3b6ec83ba9534946a0da,http://staff.estem-uc.edu.au/roland/files/2009/05/Dhall_Goecke_Gedeon_TAC2015_AutomaticGroupHappinessIntensityAnalysis.pdf,,,http://videolectures.net/site/normal_dl/tag=977253/fgconference2015_goecke_intensity_analysis_01.pdf +0ac664519b2b8abfb8966dafe60d093037275573,http://face.cs.kit.edu/download/publications/supplemental_material.pdf,,https://doi.org/10.1109/ICCVW.2011.6130506, +0a9345ea6e488fb936e26a9ba70b0640d3730ba7,http://www1.ece.neu.edu/~yuewu/files/2016/p52-jiang.pdf,,,http://doi.acm.org/10.1145/2964284.2967182 +0a79d0ba1a4876086e64fc0041ece5f0de90fbea,http://pdfs.semanticscholar.org/0a79/d0ba1a4876086e64fc0041ece5f0de90fbea.pdf,,,http://amp.ece.cmu.edu/Publication/Avinash/abaliga-thesis-20040510.pdf +0a451fc7d2c6b3509d213c210ae880645edf90ed,,,https://doi.org/10.1109/IJCNN.2014.6889591, +0abfb5b89e9546f8a5c569ab35b39b888e7cea46,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.68 +0a11b82aa207d43d1b4c0452007e9388a786be12,http://pdfs.semanticscholar.org/0a11/b82aa207d43d1b4c0452007e9388a786be12.pdf,,https://doi.org/10.1007/978-3-642-38067-9_7,http://epubs.surrey.ac.uk/802295/1/mcs2013_submission_32.pdf +0a29cee986471b495728b08756f135a2377d5a2a,,,, +0a1138276c52c734b67b30de0bf3f76b0351f097,https://ibug.doc.ic.ac.uk/media/uploads/documents/georgakis_dica.pdf,,https://doi.org/10.1109/TIP.2016.2539502, +0a4b808ff800fb0041132854361f591ad01067a5,,,, +0aa405447a8797e509521f0570e4679a42fdac9b,http://mplab.ucsd.edu/~jake/AISeminar26Sep2011.pdf,,,https://arxiv.org/pdf/1110.0585v1.pdf +0abc13166e4a098fc34d4c708f3349fdd8f6f4c6,,,, +0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7,http://pdfs.semanticscholar.org/0ae9/cc6a06cfd03d95eee4eca9ed77b818b59cb7.pdf,,,https://arxiv.org/pdf/1802.06664v1.pdf +0ac2e8bd5a77d83bae9b49daab2c6f321e9b7a4e,,,https://doi.org/10.1109/SCIS-ISIS.2016.0166, +0acf23485ded5cb9cd249d1e4972119239227ddb,http://pdfs.semanticscholar.org/507e/2bad4851f04a686ae6e964e15bbef28583e9.pdf,,,http://arxiv.org/abs/1312.1743 +0ad4a814b30e096ad0e027e458981f812c835aa0,http://arxiv.org/pdf/1602.01827v1.pdf,,https://doi.org/10.1109/ICIP.2016.7532958,https://arxiv.org/pdf/1602.01827v3.pdf +6448d23f317babb8d5a327f92e199aaa45f0efdc,http://pdfs.semanticscholar.org/6448/d23f317babb8d5a327f92e199aaa45f0efdc.pdf,,,http://www.mic.atr.co.jp/~mlyons/pub_pdf/fg00.pdf +642417f2bb1ff98989e0a0aa855253fed1fffe04,,,https://doi.org/10.1117/12.2004255, +6412d8bbcc01f595a2982d6141e4b93e7e982d0f,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Kang_Deep_Convolutional_Neural_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.89 +6440d6c7081efe4538a1c75e93144f3d142feb41,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.280 +646c38494aa960c1c120c26619473f5968e5dc34,,,, +6486a58f675461d1c9f42a39e942bf39f4427f7d,,,, +6486b36c6f7fd7675257d26e896223a02a1881d9,,,https://doi.org/10.1109/THMS.2014.2376874, +6409b8879c7e61acf3ca17bcc62f49edca627d4c,http://pdfs.semanticscholar.org/6409/b8879c7e61acf3ca17bcc62f49edca627d4c.pdf,,,http://ijcai.org/Proceedings/13/Papers/199.pdf +64153df77fe137b7c6f820a58f0bdb4b3b1a879b,http://pdfs.semanticscholar.org/6415/3df77fe137b7c6f820a58f0bdb4b3b1a879b.pdf,,,http://ias.in.tum.de/_media/spezial/bib/riaz08inmic.pdf +649eb674fc963ce25e4e8ce53ac7ee20500fb0e3,http://chenlab.ece.cornell.edu/Publication/Kuan-Chuan/WACV16.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477616 +647b2e162e9c476728172f62463a8547d245cde3,,,https://doi.org/10.1109/ICPR.2016.7899898, +642b5173644caa5c5189982a3d1e41163fa9d595,,,, +64e216c128164f56bc91a33c18ab461647384869,,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2016.7738017 +6411c72a2da7180538baf316bac54748fdf2243c,,,, +642c66df8d0085d97dc5179f735eed82abf110d0,http://research.microsoft.com/users/leizhang/Paper/CVPR05-Shuicheng-Coupled.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2005.114 +6489ad111fee8224b34f99d1bcfb5122786508cd,,,https://doi.org/10.1109/ICIP.2014.7025280, +6459f1e67e1ea701b8f96177214583b0349ed964,http://vision.ece.ucsb.edu/publications/karthik_icip2011.pdf,,https://doi.org/10.1109/ICIP.2011.6115826,https://labs.psych.ucsb.edu/grafton/scott/Papers/Shanmuga%20Vadivel%202011.pdf +64a08beb073f62d2ce44e25c4f887de9208625a4,,,https://doi.org/10.1080/09540090701725557, +64c4019f1ea9b54b1848418ac53c4e2584dc62d4,,,, +64e82b42e1c41250bdf9eb952686631287cfd410,,,https://doi.org/10.1111/cgf.12760, +64b9ad39d115f3e375bde4f70fb8fdef5d681df8,,,https://doi.org/10.1109/ICB.2016.7550088, +64cf86ba3b23d3074961b485c16ecb99584401de,http://pdfs.semanticscholar.org/b54a/54a2f33c24123c6943597462ef02928ec99f.pdf,,https://doi.org/10.1007/978-3-319-46466-4_22,http://3dinterpreter.csail.mit.edu/talks/3dinn_poster_eccv.pdf +6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,http://arxiv.org/pdf/1411.7766v2.pdf,,,http://www.ee.cuhk.edu.hk/~xgwang/papers/liuLWTiccv05.pdf +64cf1cda80a23ed6fc1c8e66065614ef7bdeadf3,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/PAMI_LIV.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.104 +6479b61ea89e9d474ffdefa71f068fbcde22cc44,http://pdfs.semanticscholar.org/6479/b61ea89e9d474ffdefa71f068fbcde22cc44.pdf,,,http://www.robots.ox.ac.uk/~qiong/publications/thesis-2015.pdf +64102c217cba63a89cd2227dc4b3a9ed2104b73e,,,, +64e75f53ff3991099c3fb72ceca55b76544374e5,http://pdfs.semanticscholar.org/eb48/804eefe4c61f62178d2a83a9ae0097091897.pdf,,,http://pages.cs.wisc.edu/~gdguo/myPapersOnWeb/cvpr03Guo.pdf +64fd48fae4d859583c4a031b51ce76ecb5de614c,,,https://doi.org/10.1109/ICARCV.2008.4795556, +64ca0dbe60bf8f8243fad73a2494c3fa7a2770e2,,,, +646ef290bc69ab38547632cb12ef1dd74a7c97ee,,,, +64f9519f20acdf703984f02e05fd23f5e2451977,http://arxiv.org/pdf/1509.01343v1.pdf,,https://doi.org/10.1109/DICTA.2015.7371278,http://ci2cv.net/media/papers/2015_DICTA_Iman.pdf +641f34deb3bdd123c6b6e7b917519c3e56010cb7,https://pdfs.semanticscholar.org/878d/68c5d016a0a63f328d72adda6b135432b66d.pdf,,,http://whdeng.cn/whdeng_pami2.pdf +64782a2bc5da11b1b18ca20cecf7bdc26a538d68,http://pdfs.semanticscholar.org/6478/2a2bc5da11b1b18ca20cecf7bdc26a538d68.pdf,,,http://www.iis.sinica.edu.tw/page/jise/2013/201309_07.pdf +64ba203c8cfc631d5f3f20419880523155fbeeb2,,,,http://doi.acm.org/10.1145/3009977.3010008 +6462ef39ca88f538405616239471a8ea17d76259,http://pdfs.semanticscholar.org/6462/ef39ca88f538405616239471a8ea17d76259.pdf,,https://doi.org/10.1016/j.patcog.2017.05.021,http://www.cse.msu.edu/~rossarun/pubs/NguyenLongRangeIris_PR2017.pdf +64d5772f44efe32eb24c9968a3085bc0786bfca7,http://pdfs.semanticscholar.org/64d5/772f44efe32eb24c9968a3085bc0786bfca7.pdf,,https://doi.org/10.1007/978-3-642-33718-5_8,http://www.jdl.ac.cn/doc/2011/20131910341623527_2012_eccv_sxli_mdf.pdf +90d735cffd84e8f2ae4d0c9493590f3a7d99daf1,http://pdfs.semanticscholar.org/90d7/35cffd84e8f2ae4d0c9493590f3a7d99daf1.pdf,,,http://thescipub.com/PDF/ajeassp.2017.726.732.pdf +90298f9f80ebe03cb8b158fd724551ad711d4e71,http://pdfs.semanticscholar.org/9029/8f9f80ebe03cb8b158fd724551ad711d4e71.pdf,,,http://arxiv.org/abs/1703.02716 +900207b3bc3a4e5244cae9838643a9685a84fee0,http://pdfs.semanticscholar.org/9002/07b3bc3a4e5244cae9838643a9685a84fee0.pdf,,,https://idea.library.drexel.edu/islandora/object/idea:4562/datastream/OBJ/download/Reconstructing_Geometry_from_Its_Latent_Structures.pdf +90ddf1aabf1c73b5fc45254a2de46e53a0bde857,,,https://doi.org/10.1109/ROBIO.2015.7418917, +907bb6c2b292e6db74fad5c0b7a7f1cc2a4d4224,,,https://doi.org/10.1016/j.patcog.2014.07.010, +9048732c8591a92a1f4f589b520a733f07578f80,,,https://doi.org/10.1109/CISP-BMEI.2017.8301921, +901b0a76fde57c262fabd3a35d3d5ec8366a8480,,,, +90f4b20f4b7115cb84dda22e5e4eb9c50d7fddce,,,, +90fb58eeb32f15f795030c112f5a9b1655ba3624,http://pdfs.semanticscholar.org/90fb/58eeb32f15f795030c112f5a9b1655ba3624.pdf,,,http://www.ijrcar.com/Volume_4_Issue_6/v4i605.pdf +9055b155cbabdce3b98e16e5ac9c0edf00f9552f,,,,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78 +90b7619eabe94731722ae884d0802256462457dc,https://arxiv.org/pdf/1511.09319v1.pdf,,https://doi.org/10.1007/s11263-016-0939-9,http://arxiv.org/abs/1511.09319 +90c4f15f1203a3a8a5bf307f8641ba54172ead30,http://pdfs.semanticscholar.org/90c4/f15f1203a3a8a5bf307f8641ba54172ead30.pdf,,https://doi.org/10.1007/978-3-319-60964-5_64,http://www-users.cs.york.ac.uk/~nep/research/papers/miua17dai.pdf +902114feaf33deac209225c210bbdecbd9ef33b1,http://pdfs.semanticscholar.org/b5b0/8aaf56df40260abea890813503003485bda3.pdf,,https://doi.org/10.5244/C.25.125,http://www.bmva.org/bmvc/2011/proceedings/paper125/paper125.pdf +909c23143162d98ffb2447f0018f92ac6cf8591b,,,, +902cc7dd4ecfb2b6750905ef08bceeed24e1eeeb,,,https://doi.org/10.1016/j.patcog.2016.03.002, +90ad0daa279c3e30b360f9fe9371293d68f4cebf,http://pdfs.semanticscholar.org/90ad/0daa279c3e30b360f9fe9371293d68f4cebf.pdf,,,http://pesona.mmu.edu.my/~johnsee/research/papers/files/phdthesis_johnsee.pdf +90eb66e75381cce7146b3953a2ae479a7beec539,,,,http://doi.ieeecomputersociety.org/10.1109/AIPR.2015.7444542 +90ae02da16b750a9fd43f8a38440f848309c2fe0,,,https://doi.org/10.1007/s10044-015-0499-6, +90a754f597958a2717862fbaa313f67b25083bf9,http://pdfs.semanticscholar.org/90a7/54f597958a2717862fbaa313f67b25083bf9.pdf,,https://doi.org/10.3389/frobt.2015.00028, +90dd2a53236b058c79763459b9d8a7ba5e58c4f1,http://pdfs.semanticscholar.org/90dd/2a53236b058c79763459b9d8a7ba5e58c4f1.pdf,,https://doi.org/10.5244/C.21.51,http://www.dcs.warwick.ac.uk/bmvc2007/proceedings/CD-ROM/papers/169/bmvc_v2.pdf +9026ee8a89ecfa6bd2688a4943eee027e3fc4b0f,,,,http://doi.ieeecomputersociety.org/10.1109/CGIV.2011.28 +90cb074a19c5e7d92a1c0d328a1ade1295f4f311,http://pdfs.semanticscholar.org/90cb/074a19c5e7d92a1c0d328a1ade1295f4f311.pdf,,,http://vismod.media.mit.edu//tech-reports/TR-571.pdf +90b11e095c807a23f517d94523a4da6ae6b12c76,https://arxiv.org/pdf/1609.08475v1.pdf,,https://doi.org/10.1109/TIP.2017.2686003,http://arxiv.org/abs/1609.08475 +90c2d4d9569866a0b930e91713ad1da01c2a6846,http://pdfs.semanticscholar.org/90c2/d4d9569866a0b930e91713ad1da01c2a6846.pdf,,,http://www.bentham-open.com/contents/pdf/TOAUTOCJ/TOAUTOCJ-6-528.pdf +90c4a6c6f790dbcef9a29c9a755458be09e319b6,,,,http://doi.acm.org/10.1145/2964284.2967242 +9026eb610916ec4ce77f0d7d543b7c2482ba4173,,,https://doi.org/10.1016/j.patrec.2012.03.006, +907475a4febf3f1d4089a3e775ea018fbec895fe,http://pdfs.semanticscholar.org/9074/75a4febf3f1d4089a3e775ea018fbec895fe.pdf,,https://doi.org/10.1109/ICIP.2003.1247046,http://www.hds.utc.fr/~fdavoine/mypublications/icip03.pdf +9028fbbd1727215010a5e09bc5758492211dec19,http://pdfs.semanticscholar.org/9028/fbbd1727215010a5e09bc5758492211dec19.pdf,,https://doi.org/10.1007/978-3-642-38267-3_23,http://ubee.enseeiht.fr/photometricstereo/pdf/ssvm2013.pdf +90c4deaa538da42b9b044d7b68c3692cced66036,,,,http://doi.ieeecomputersociety.org/10.1109/SITIS.2007.89 +bf30477f4bd70a585588528355b7418d2f37953e,,,https://doi.org/10.1109/ICPR.2016.7900280, +bff77a3b80f40cefe79550bf9e220fb82a74c084,http://pdfs.semanticscholar.org/bff7/7a3b80f40cefe79550bf9e220fb82a74c084.pdf,,,http://www.wseas.org/multimedia/journals/signal/2012/53-718.pdf +bf03f0fe8f3ba5b118bdcbb935bacb62989ecb11,http://pdfs.semanticscholar.org/bf03/f0fe8f3ba5b118bdcbb935bacb62989ecb11.pdf,,,http://www.sis.uta.fi/~gofase/docs/papers/2008_Gizatdinova_Surakka_(Effect%20of%20facial%20expressions%20on%20feature-based%20landmark%20localization%20in%20static%20grey%20scale%20images).pdf +bf1e0545785b05b47caa3ffe7d16982769986f38,,,https://doi.org/10.1016/j.asoc.2010.12.002, +bf1e0279a13903e1d43f8562aaf41444afca4fdc,http://pdfs.semanticscholar.org/bf1e/0279a13903e1d43f8562aaf41444afca4fdc.pdf,,,https://www.irjet.net/archives/V4/i10/IRJET-V4I10219.pdf +bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103,http://pdfs.semanticscholar.org/bf0f/0eb0fb31ee498da4ae2ca9b467f730ea9103.pdf,,,http://orca.cf.ac.uk/76770/1/brainsci-94385-update.pdf +bf0836e5c10add0b13005990ba019a9c4b744b06,,,https://doi.org/10.1109/TCE.2009.5373791, +bf4f79fd31493648d80d0a4a8da5edeeaba74055,,,,http://doi.acm.org/10.1145/2783258.2783280 +bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5,https://ubicomp-mental-health.github.io/papers/2017/perception-syeda.pdf,,,http://doi.acm.org/10.1145/3123024.3125618 +bf4825474673246ae855979034c8ffdb12c80a98,http://pdfs.semanticscholar.org/bf48/25474673246ae855979034c8ffdb12c80a98.pdf,,,http://www.ee.ucr.edu/~amitrc/THESIS/thesis-abir.pdf +bf00071a7c4c559022272ca5d39e07f727ebb479,,,https://doi.org/10.1109/MMSP.2016.7813388, +bf2f2696fdb4077b5ab18aa583f6376acadf2438,,,, +bf2eb77e9b795a4a0a38ed4b1c8dd4b2c9a74317,,,https://doi.org/10.1007/978-3-319-69900-4_70, +bf776e3483419d7e0cb1dfd770be02d552e1fedf,,,, +bf8a520533f401347e2f55da17383a3e567ef6d8,http://pdfs.semanticscholar.org/bf8a/520533f401347e2f55da17383a3e567ef6d8.pdf,,,http://www.cs.toronto.edu/~rjliao/papers/arXiv_2015_Bounded.pdf +bfb98423941e51e3cd067cb085ebfa3087f3bfbe,http://pdfs.semanticscholar.org/bfb9/8423941e51e3cd067cb085ebfa3087f3bfbe.pdf,,,https://arxiv.org/pdf/1511.08956v1.pdf +bffbd04ee5c837cd919b946fecf01897b2d2d432,http://pdfs.semanticscholar.org/bffb/d04ee5c837cd919b946fecf01897b2d2d432.pdf,,,http://www.cs.bu.edu/techreports/pdf/2005-024-tracking-occlusion-ASL.pdf +bf1ebcaad91c2c0ed35544159415b3ad388cc7a9,,,https://doi.org/10.1007/s11042-015-2665-7, +bfd0dd2d13166a9c59e04c62f5463eacfc8d0d2b,,,, +d3424761e06a8f5f3c1f042f1f1163a469872129,http://pdfs.semanticscholar.org/d342/4761e06a8f5f3c1f042f1f1163a469872129.pdf,,,http://www.bmva.org/thesis-archive/2009/2009-zografos.pdf +d33b26794ea6d744bba7110d2d4365b752d7246f,http://pdfs.semanticscholar.org/d33b/26794ea6d744bba7110d2d4365b752d7246f.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9574/9983 +d37ca68742b2999667faf464f78d2fbf81e0cb07,,,https://doi.org/10.1007/978-3-319-25417-3_76, +d3b73e06d19da6b457924269bb208878160059da,http://pdfs.semanticscholar.org/d3b7/3e06d19da6b457924269bb208878160059da.pdf,,,http://icoci.cms.net.my/PROCEEDINGS/2015/PDF/PID065.pdf +d3f40b393e0e6a88ae4b4072e01ddb0b420300af,,,, +d3367c9a4825295301225a05a190c0b7ed62736e,,,, +d3e04963ff42284c721f2bc6a90b7a9e20f0242f,http://pdfs.semanticscholar.org/d3e0/4963ff42284c721f2bc6a90b7a9e20f0242f.pdf,,,http://www.researchgate.net/profile/Xingjie_Wei/publication/269037172_On_Forensic_Use_of_Biometrics/links/54916f230cf2d1800d886901.pdf +d3d71a110f26872c69cf25df70043f7615edcf92,https://www.cise.ufl.edu/~dihong/assets/07094272.pdf,,https://doi.org/10.1109/TIP.2015.2426413, +d38b32d91d56b01c77ef4dd7d625ce5217c6950b,,,, +d35c82588645b94ce3f629a0b98f6a531e4022a3,http://pdfs.semanticscholar.org/d35c/82588645b94ce3f629a0b98f6a531e4022a3.pdf,,,http://epubs.surrey.ac.uk/812816/1/draft_final_charles_gray_mphil_corrections.pdf +d394bd9fbaad1f421df8a49347d4b3fca307db83,http://www.eecs.qmul.ac.uk/~sgg/papers/ShanEtAl_AVSS05.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2005.1577290 +d3b550e587379c481392fb07f2cbbe11728cf7a6,http://pdfs.semanticscholar.org/d3b5/50e587379c481392fb07f2cbbe11728cf7a6.pdf,,,http://vision.kuee.kyoto-u.ac.jp/japanese/happyou/pdf/Zhang_ICDP_201312.pdf +d3a3d15a32644beffaac4322b9f165ed51cfd99b,,,https://doi.org/10.1109/SIU.2016.7496197, +d3409f66d35f5828affda26fc3416771eb8154b1,,,, +d30050cfd16b29e43ed2024ae74787ac0bbcf2f7,http://pdfs.semanticscholar.org/d300/50cfd16b29e43ed2024ae74787ac0bbcf2f7.pdf,,,http://coviss.org/wp-content/uploads/2016/09/Pilla2016Facial.pdf +d3c004125c71942846a9b32ae565c5216c068d1e,http://pdfs.semanticscholar.org/d3c0/04125c71942846a9b32ae565c5216c068d1e.pdf,,,http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0112234&type=printable +d350a9390f0818703f886138da27bf8967fe8f51,http://mi.informatik.uni-siegen.de/publications/shahlaei_icip2016.pdf,,https://doi.org/10.1109/ICIP.2016.7532624, +d42dbc995318e2936714c65c028700bfd3633049,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477592 +d42a8c6528cdf1a63050f9a282f6b5daec6b4e73,,,, +d41bcb0c79f46aca47b9f9b8a779ce80a2a351f9,,,, +d4331a8dd47b03433f8390da2eaa618751861c64,,,https://doi.org/10.1109/TIP.2012.2192125, +d41c11ebcb06c82b7055e2964914b9af417abfb2,http://pdfs.semanticscholar.org/d41c/11ebcb06c82b7055e2964914b9af417abfb2.pdf,,,http://www.cs.cmu.edu/~ftorre/nsf_grant_v3.pdf +d4d1ac1cfb2ca703c4db8cc9a1c7c7531fa940f9,,,, +d46fda4b49bbc219e37ef6191053d4327e66c74b,http://pdfs.semanticscholar.org/d46f/da4b49bbc219e37ef6191053d4327e66c74b.pdf,,,https://arxiv.org/pdf/1803.00185v1.pdf +d448d67c6371f9abf533ea0f894ef2f022b12503,http://pdfs.semanticscholar.org/d448/d67c6371f9abf533ea0f894ef2f022b12503.pdf,,,https://arxiv.org/pdf/1802.04668v1.pdf +d4353952a408e1eae8c27a45cc358976d38dde00,,,https://doi.org/10.1007/s00138-014-0594-5, +d4c7d1a7a03adb2338704d2be7467495f2eb6c7b,http://pdfs.semanticscholar.org/d4c7/d1a7a03adb2338704d2be7467495f2eb6c7b.pdf,,,http://www.research.ed.ac.uk/portal/files/31544439/823094d18e41e7fa9c58918d818ecbde20a7d3d6.pdf +d4001826cc6171c821281e2771af3a36dd01ffc0,http://pdfs.semanticscholar.org/d400/1826cc6171c821281e2771af3a36dd01ffc0.pdf,,,https://pastel.archives-ouvertes.fr/file/index/docid/958135/filename/2013ENMP0051.pdf +d4ccc4f18a824af08649657660e60b67c6868d9c,,,https://doi.org/10.1142/S021800141655020X, +d46b4e6871fc9974542215f001e92e3035aa08d9,http://pdfs.semanticscholar.org/d46b/4e6871fc9974542215f001e92e3035aa08d9.pdf,,https://doi.org/10.1007/978-3-540-89646-3_50,https://www.researchgate.net/profile/Amnart_Petpon/publication/220845032_A_Gabor_Quotient_Image_for_Face_Recognition_under_Varying_Illumination/links/0fcfd508de5db4a7ab000000.pdf +d40c16285d762f7a1c862b8ac05a0fdb24af1202,,,https://doi.org/10.1109/BESC.2017.8256378, +d40cd10f0f3e64fd9b0c2728089e10e72bea9616,http://pdfs.semanticscholar.org/d40c/d10f0f3e64fd9b0c2728089e10e72bea9616.pdf,,https://doi.org/10.3390/jimaging3030037,http://mdpi.com/2313-433X/3/3/37/pdf +d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d,http://pdfs.semanticscholar.org/d4eb/f0a4f48275ecd8dbc2840b2a31cc07bd676d.pdf,,,https://arxiv.org/pdf/1802.00421v1.pdf +d43b6ca9257e9b24f89eb3867f2c04068a78c778,,,, +d4ec62efcc631fa720dfaa1cbc5692b39e649008,,,https://doi.org/10.1109/ICDM.2016.0026, +d46e793b945c4f391031656357625e902c4405e8,http://140.118.9.222/publications/journal/faceoff.pdf,,https://doi.org/10.1007/s11042-010-0624-x, +d4c2d26523f577e2d72fc80109e2540c887255c8,http://pdfs.semanticscholar.org/d4c2/d26523f577e2d72fc80109e2540c887255c8.pdf,,,http://arxiv.org/pdf/1601.04293v1.pdf +d4fb26f5528b9a1f04ea773cc2b920e01fc0edd4,,,https://doi.org/10.1109/TSMCB.2009.2032155, +d4b88be6ce77164f5eea1ed2b16b985c0670463a,http://pdfs.semanticscholar.org/d4b8/8be6ce77164f5eea1ed2b16b985c0670463a.pdf,,,https://msu.edu/~jourablo/images/TechnicalReport160115.pdf +d4fba386caca1b5b2ee35ee5310b5fce50b2b1c3,,,https://doi.org/10.23919/MVA.2017.7986886, +d44d911c045a6df610cb4103f1ab09827fab8296,,,, +d4026438ce2b92302fa635c05507cf0e888414c0,,,, +d44ca9e7690b88e813021e67b855d871cdb5022f,http://pdfs.semanticscholar.org/d44c/a9e7690b88e813021e67b855d871cdb5022f.pdf,,https://doi.org/10.1007/978-3-642-10677-4_83,http://eprints.qut.edu.au/28618/1/c28618.pdf +baaaf73ec28226d60d923bc639f3c7d507345635,http://pdfs.semanticscholar.org/baaa/f73ec28226d60d923bc639f3c7d507345635.pdf,,,http://cs229.stanford.edu/proj2015/158_report.pdf +ba2bbef34f05551291410103e3de9e82fdf9dddd,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Guo_A_Study_on_2014_CVPR_paper.pdf,,https://doi.org/10.1109/CVPR.2014.542, +bafb8812817db7445fe0e1362410a372578ec1fc,http://www.cin.ufpe.br/~rps/Artigos/Image-Quality-Based%20Adaptive%20Face%20Recognition.pdf,,https://doi.org/10.1109/TIM.2009.2037989, +baa0fe4d0ac0c7b664d4c4dd00b318b6d4e09143,http://pdfs.semanticscholar.org/baa0/fe4d0ac0c7b664d4c4dd00b318b6d4e09143.pdf,,,http://www.sersc.org/journals/IJSIP/vol8_no1/2.pdf +bab2f4949a38a712a78aafbc0a3c392227c65f56,,,https://doi.org/10.1109/CISP-BMEI.2017.8302191, +ba99c37a9220e08e1186f21cab11956d3f4fccc2,https://arxiv.org/pdf/1609.08677v1.pdf,,https://doi.org/10.1109/ICDM.2016.0149,http://arxiv.org/abs/1609.08677 +ba816806adad2030e1939450226c8647105e101c,http://pdfs.semanticscholar.org/ba81/6806adad2030e1939450226c8647105e101c.pdf,,,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/Paper%2047%20(Supplementary).pdf +ba30cc9d8bac724dafc0aea247159cc7e7105784,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019360 +ba017a8d16e47e57a1f3eb5a94c1ba24e6952274,,,, +ba6769c165967c8dcb11fe5e0be2153ddbe99c7e,,,, +bad15b4dea2399d57ee17f33a5ba8f04b012ef63,,,, +ba83b28ac5ce92ef8437fdd499132823f487ff83,,,, +ba931c3f90dd40a5db4301a8f0c71779a23043d6,,,https://doi.org/10.1109/ICPR.2014.136, +badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,http://pdfs.semanticscholar.org/badc/fb7d4e2ef0d3e332a19a3f93d59b4f85668e.pdf,,https://doi.org/10.1007/11608288_26,http://www.jdl.ac.cn/doc/2006/The%20Application%20of%20Extended%20Geodesic%20Distance%20in%20Head%20Poses%20Estimation.pdf +ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,http://pdfs.semanticscholar.org/ba8a/99d35aee2c4e5e8a40abfdd37813bfdd0906.pdf,,,http://ev.fe.uni-lj.si/1-2-2011/STkalcic.pdf +bac11ce0fb3e12c466f7ebfb6d036a9fe62628ea,http://pdfs.semanticscholar.org/bac1/1ce0fb3e12c466f7ebfb6d036a9fe62628ea.pdf,,https://doi.org/10.1007/978-3-319-46466-4_17,http://www.public.asu.edu/~kkulkar1/wslhc.pdf +baad4e7ab0942a6b93ee2df39685f928efdae006,,,, +ba29ba8ec180690fca702ad5d516c3e43a7f0bb8,http://pdfs.semanticscholar.org/ba29/ba8ec180690fca702ad5d516c3e43a7f0bb8.pdf,,https://doi.org/10.1016/j.patcog.2017.01.027,http://cs-people.bu.edu/sbargal/Do-Less-and-Achieve-More.pdf +bab88235a30e179a6804f506004468aa8c28ce4f,http://pdfs.semanticscholar.org/bab8/8235a30e179a6804f506004468aa8c28ce4f.pdf,,https://doi.org/10.1016/j.patcog.2013.01.016,http://www4.comp.polyu.edu.hk/~cslzhang/paper/PR-JDDLDR.pdf +ba69d464bc360f94303ffc9f710009d16a5673a0,,,, +a065080353d18809b2597246bb0b48316234c29a,http://pdfs.semanticscholar.org/a065/080353d18809b2597246bb0b48316234c29a.pdf,,,http://arxiv.org/abs/1712.03687 +a0f94e9400938cbd05c4b60b06d9ed58c3458303,http://people.ee.duke.edu/~lcarin/Hoey_Little07.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1145 +a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4,http://pdfs.semanticscholar.org/a0f1/93c86e3dd7e0020c0de3ec1e24eaff343ce4.pdf,,,http://www.iis.sinica.edu.tw/page/jise/2005/200507_10.html +a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf,,https://doi.org/10.1109/IJCB.2011.6117490,https://www.wjscheirer.com/projects/unconstrained-face/ijcb_2011_slides.pdf +a0021e3bbf942a88e13b67d83db7cf52e013abfd,http://pdfs.semanticscholar.org/a002/1e3bbf942a88e13b67d83db7cf52e013abfd.pdf,,,https://www.jstage.jst.go.jp/article/jamdsm/9/5/9_2015jamdsm0072/_pdf +a0beb0cc6f167373f8b4b7458ff0ec42fc290a75,,,, +a0d6390dd28d802152f207940c7716fe5fae8760,http://pdfs.semanticscholar.org/a0d6/390dd28d802152f207940c7716fe5fae8760.pdf,,https://doi.org/10.1007/978-3-642-33712-3_41,https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/JointBayesian.pdf +a07f78124f83eef1ed3a6f54ba982664ae7ca82a,,http://ieeexplore.ieee.org/document/6460481/,, +a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670,http://webhost.uoradea.ro/ibuciu/ISCAS2006_Buciu.pdf,,https://doi.org/10.1109/ISCAS.2006.1693672,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu06b.pdf +a0d5990eb150cdcb1c8b2967e6a4fe7a5d85063b,,,https://doi.org/10.1109/ICIP.2017.8296805, +a02f0aad91c2d88b49c443e1e39c3acfc067a705,http://www.cs.columbia.edu/~wfan/PAPERS/SMC10cher.pdf,,https://doi.org/10.1109/ICSMC.2010.5641971,https://www.researchgate.net/profile/Stefan_Robila/publication/220755300_Analysis_of_Chernoff_criterion_for_linear_dimensionality_reduction/links/09e41510bdf965a63e000000.pdf +a05b1254630257fe27ee195ef05cc50ce6e41f22,,,, +a0dfb8aae58bd757b801e2dcb717a094013bc178,http://pdfs.semanticscholar.org/a0df/b8aae58bd757b801e2dcb717a094013bc178.pdf,,,http://rcs.cic.ipn.mx/2017_140/Reconocimiento%20de%20expresiones%20faciales%20con%20base%20en%20la%20dinamica%20de%20puntos%20de%20referencia%20faciales.pdf +a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60,http://pdfs.semanticscholar.org/ac3b/033fd24913c31778cd4cb2d013239315d7a9.pdf,,,http://vision.ucsd.edu/~pdollar/research/papers/BabenkoEtAlECCV08simul.pdf +a06b6d30e2b31dc600f622ab15afe5e2929581a7,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Sagonas_Robust_Joint_and_CVPR_2017_paper.pdf +a090d61bfb2c3f380c01c0774ea17929998e0c96,http://iitlab.bit.edu.cn/mcislab/~jiayunde/pdf/CVPR2012_BrickIllumDimension.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247679 +a094e52771baabe4ab37ef7853f9a4f534227457,,,https://doi.org/10.1109/TITS.2016.2551298, +a0f6196d27a39cde2dbf62c08d89cbe489600bb0,,,https://doi.org/10.1016/j.cose.2016.03.007, +a0e7f8771c7d83e502d52c276748a33bae3d5f81,http://pdfs.semanticscholar.org/a0e7/f8771c7d83e502d52c276748a33bae3d5f81.pdf,,,http://www.cs.nyu.edu/~mohri/pub/ens_springer.pdf +a0061dae94d916f60a5a5373088f665a1b54f673,http://pdfs.semanticscholar.org/a006/1dae94d916f60a5a5373088f665a1b54f673.pdf,,,http://arxiv.org/abs/1702.08516 +a0848d7b1bb43f4b4f1b4016e58c830f40944817,http://lhncbc.nlm.nih.gov/system/files/pub8893.pdf,,,http://www.lhncbc.nlm.nih.gov/system/files/pub8893.pdf +a006cd95c14de399706c5709b86ac17fce93fcba,,,https://doi.org/10.1109/ICPR.2014.343, +a000149e83b09d17e18ed9184155be140ae1266e,http://pdfs.semanticscholar.org/a000/149e83b09d17e18ed9184155be140ae1266e.pdf,,,http://crcv.ucf.edu/papers/Springer2015_UCFSports_Action.pdf +a01f9461bc8cf8fe40c26d223ab1abea5d8e2812,http://pdfs.semanticscholar.org/a01f/9461bc8cf8fe40c26d223ab1abea5d8e2812.pdf,,https://doi.org/10.1007/978-3-319-16181-5_51,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w16/W16-02.pdf +a000e15656e84dd538f1f0b8f8639dd29f122c95,,,, +a7c066e636b8953481b4a8d8ff25a43a96dd348f,,,https://doi.org/10.1109/ATSIP.2017.8075517, +a702fc36f0644a958c08de169b763b9927c175eb,http://www.apsipa.org/proceedings_2013/papers/170_PID2935307.pdf,,https://doi.org/10.1109/APSIPA.2013.6694152, +a7267bc781a4e3e79213bb9c4925dd551ea1f5c4,http://pdfs.semanticscholar.org/a726/7bc781a4e3e79213bb9c4925dd551ea1f5c4.pdf,,,https://arxiv.org/pdf/1801.06349v1.pdf +a784a0d1cea26f18626682ab108ce2c9221d1e53,http://openaccess.thecvf.com/content_ICCV_2017/papers/Agustsson_Anchored_Regression_Networks_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.182 +a7a5d9a2dece15ddbab77b7ecc81294cfa1fafdb,,,, +a76e57c1b2e385b68ffdf7609802d71244804c1d,,,https://doi.org/10.1016/j.patrec.2016.05.027, +a777101b56fe46c4d377941afcf34edc2b8b5f6f,,,, +a729d0243b1e3b055f44248a32b3caf20b7e93be,,,, +a72f0be803c9290923643660caf3bffec4ea3611,,,, +a7da7e5a6a4b53bf8736c470ff8381a654e8c965,,,https://doi.org/10.1007/s13042-011-0045-9, +a74251efa970b92925b89eeef50a5e37d9281ad0,http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf,,https://doi.org/10.1109/ICCVW.2011.6130513,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_befit_11.pdf +a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51,http://pdfs.semanticscholar.org/a7d2/3c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51.pdf,,, +a78ef252d7e7cd86e4a72c2a7be628e73824fb92,,,, +a70e36daf934092f40a338d61e0fe27be633f577,http://pdfs.semanticscholar.org/a70e/36daf934092f40a338d61e0fe27be633f577.pdf,,,http://www.cl.cam.ac.uk/~re227/publications/EnhancedFacialFeatureTracking-HCII2001.pdf +a7191958e806fce2505a057196ccb01ea763b6ea,http://pdfs.semanticscholar.org/a719/1958e806fce2505a057196ccb01ea763b6ea.pdf,,,https://openresearch-repository.anu.edu.au/bitstream/1885/102510/1/Qiu%20Thesis%202016.pdf +a7e1327bd76945a315f2869bfae1ce55bb94d165,http://pdfs.semanticscholar.org/a7e1/327bd76945a315f2869bfae1ce55bb94d165.pdf,,https://doi.org/10.1080/18756891.2013.816051,http://download.atlantis-press.com/php/download_paper.php?id=25868440 +a7a3ec1128f920066c25cb86fbc33445ce613919,,,https://doi.org/10.1109/VCIP.2017.8305115, +a71bd4b94f67a71bc5c3563884bb9d12134ee46a,,,https://doi.org/10.1016/j.asoc.2015.05.006, +a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9,http://pdfs.semanticscholar.org/a7a6/eb53bee5e2224f2ecd56a14e3a5a717e55b9.pdf,,https://doi.org/10.1007/11008941_21,http://www.cvlab.cs.tsukuba.ac.jp/~kfukui/papers/isrrModifiedwithHeaders.pdf +a79704c1ce7bf10c8753a8f51437ccbc61947d03,http://www.eecs.qmul.ac.uk/~cfshan/papers/shan-etal-icip05.pdf,,https://doi.org/10.1109/ICIP.2005.1530069, +a7c39a4e9977a85673892b714fc9441c959bf078,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2007/data/papers/workshops/Biometrics/papers/06-p71.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383381 +a735c6330430c0ff0752d117c54281b1396b16bf,,,https://doi.org/10.1109/SMC.2014.6974118, +a75edf8124f5b52690c08ff35b0c7eb8355fe950,http://pdfs.semanticscholar.org/a75e/df8124f5b52690c08ff35b0c7eb8355fe950.pdf,,https://doi.org/10.1007/978-3-540-24837-8_10,http://carol.wins.uva.nl/~nicu/publications/Yafei_hci04.pdf +a73405038fdc0d8bf986539ef755a80ebd341e97,,,https://doi.org/10.1109/TIP.2017.2698918, +a713a01971e73d0c3118d0409dc7699a24f521d6,,,https://doi.org/10.1109/SSCI.2017.8285381, +a75ee7f4c4130ef36d21582d5758f953dba03a01,http://pdfs.semanticscholar.org/a75e/e7f4c4130ef36d21582d5758f953dba03a01.pdf,,,https://mohaseeb.github.io/public/posts_imgs/mohamed_abdulaziz_project_report.pdf +a7f188a7161b6605d58e48b2537c18a69bd2446f,,,https://doi.org/10.1109/PIMRC.2011.6139898, +a752ed42171c49c4616c9a367d2ff4b1eac09cbe,,,, +a703d51c200724517f099ee10885286ddbd8b587,http://pdfs.semanticscholar.org/a703/d51c200724517f099ee10885286ddbd8b587.pdf,,https://doi.org/10.1109/FUZZ.2003.1206552,http://www.robotian.net/akaii/about/paper/FUZZ-IEEE2003-1.pdf +a76969df111f9ee9f0b898b51ad23a721d289bdc,,,https://doi.org/10.1109/ICMLA.2015.185, +a75dfb5a839f0eb4b613d150f54a418b7812aa90,https://arxiv.org/pdf/1708.02314v1.pdf,,https://doi.org/10.1109/GlobalSIP.2017.8308652,http://arxiv.org/abs/1708.02314 +a75de488eaacb1dafffbe667465390f101498aaf,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.47 +b839bc95794dc65340b6e5fea098fa6e6ea5e430,,,https://doi.org/10.1109/WACVW.2017.8, +b8e5800dfc590f82a0f7eedefce9abebf8088d12,,,https://doi.org/10.1109/DCC.2017.87, +b86c49c6e3117ea116ec2d8174fa957f83502e89,,,https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.149, +b85d0aef3ee2883daca2835a469f5756917e76b7,,,https://doi.org/10.1007/s41095-015-0015-3, +b88ceded6467e9b286f048bb1b17be5998a077bd,http://pdfs.semanticscholar.org/b88c/eded6467e9b286f048bb1b17be5998a077bd.pdf,,,http://arxiv.org/pdf/1608.01793v1.pdf +b89d4c474b42f9a241e347915391b4aba391c307,,,, +b871d1b8495025ff8a6255514ed39f7765415935,http://pdfs.semanticscholar.org/b871/d1b8495025ff8a6255514ed39f7765415935.pdf,,,http://www.aicit.org/JDCTA/ppl/JDCTA3439PPL.pdf +b856d8d6bff745bb1b4beb67e4b821fc20073840,,,https://doi.org/10.1109/ICMLC.2016.7872935, +b84dde74dddf6a3281a0b22c68999942d2722919,,,,http://dl.acm.org/citation.cfm?id=2910703 +b85b754ace15f4e9bee4ee76296580ddfbc3a11e,,,, +b88d5e12089f6f598b8c72ebeffefc102cad1fc0,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w24/papers/Wang_Robust_2DPCA_and_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.147 +b8a16fcb65a8cee8dd32310a03fe36b5dff9266a,,,https://doi.org/10.1109/SIU.2014.6830473, +b803cdb3377fa3b6194932607f51f2d1fafbf964,,,, +b8b9cef0938975c5b640b7ada4e3dea6c06d64e9,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.119 +b85d953de16eecaecccaa8fad4081bd6abda9b1b,,,https://doi.org/10.1016/j.neuroimage.2015.12.020, +b84b7b035c574727e4c30889e973423fe15560d7,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf,,https://doi.org/10.1007/978-3-642-35136-5_39,http://www.nlpr.ia.ac.cn/2012papers/gnhy/nh12.pdf +b8dba0504d6b4b557d51a6cf4de5507141db60cf,http://pdfs.semanticscholar.org/b8db/a0504d6b4b557d51a6cf4de5507141db60cf.pdf,,,http://ceur-ws.org/Vol-2037/paper_21.pdf +b89862f38fff416d2fcda389f5c59daba56241db,http://pdfs.semanticscholar.org/b898/62f38fff416d2fcda389f5c59daba56241db.pdf,,,https://infoscience.epfl.ch/record/125065/files/SorciAntoniniSurvey_fg08_tr.pdf +b84f164dbccb16da75a61323adaca730f528edde,,,https://doi.org/10.1109/TIP.2013.2237914, +b8caf1b1bc3d7a26a91574b493c502d2128791f6,http://pdfs.semanticscholar.org/b8ca/f1b1bc3d7a26a91574b493c502d2128791f6.pdf,,,"https://orca.cf.ac.uk/97929/1/Burley,%20Snowden%20PLOS%20ONE.pdf" +b8084d5e193633462e56f897f3d81b2832b72dff,http://pdfs.semanticscholar.org/b808/4d5e193633462e56f897f3d81b2832b72dff.pdf,,,http://arxiv.org/abs/1502.00873 +b8bcf9c773da1c5ee76db4bf750c9ff5d159f1a0,,,,http://doi.acm.org/10.1145/2911996.2911999 +b8378ab83bc165bc0e3692f2ce593dcc713df34a,http://cmp.felk.cvut.cz/ftp/articles/cech/Cech-ICPR-2014.pdf,,https://doi.org/10.1109/ICPR.2014.378, +b85580ff2d8d8be0a2c40863f04269df4cd766d9,http://pdfs.semanticscholar.org/b855/80ff2d8d8be0a2c40863f04269df4cd766d9.pdf,,,http://ceur-ws.org/Vol-1739/MediaEval_2016_paper_49.pdf +b8978a5251b6e341a1171e4fd9177aec1432dd3a,,,https://doi.org/10.1016/j.image.2016.04.004, +b87b0fa1ac0aad0ca563844daecaeecb2df8debf,http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/portraits-CAe.pdf,,,http://orca.cf.ac.uk/76344/1/portraits-CAe.pdf +b87db5ac17312db60e26394f9e3e1a51647cca66,http://pdfs.semanticscholar.org/b87d/b5ac17312db60e26394f9e3e1a51647cca66.pdf,,https://doi.org/10.1007/978-3-540-74958-5_79,https://pdfs.semanticscholar.org/b87d/b5ac17312db60e26394f9e3e1a51647cca66.pdf +b81cae2927598253da37954fb36a2549c5405cdb,http://pdfs.semanticscholar.org/d892/753827950a227179b691e6df85820ab7c417.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8570/8398 +b8f64a94f536b46ef34a0223272e02f9be785ef9,,,https://doi.org/10.1109/EMBC.2012.6346590, +b8a829b30381106b806066d40dd372045d49178d,http://gavrila.net/tits15.pdf,,https://doi.org/10.1109/TITS.2014.2379441,http://www.gavrila.net/tits15.pdf +b8d4754813b88ef1a583da2fcd164398824d04db,,,, +b191aa2c5b8ece06c221c3a4a0914e8157a16129,http://pdfs.semanticscholar.org/b191/aa2c5b8ece06c221c3a4a0914e8157a16129.pdf,,,https://arxiv.org/pdf/1705.03148v1.pdf +b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,http://pdfs.semanticscholar.org/b13b/f657ca6d34d0df90e7ae739c94a7efc30dc3.pdf,,,http://acberg.com/papers/iccv09_faces.pdf +b13a882e6168afc4058fe14cc075c7e41434f43e,http://pdfs.semanticscholar.org/b13a/882e6168afc4058fe14cc075c7e41434f43e.pdf,,https://doi.org/10.2200/S00002ED1V01Y200508IVM001,http://www.ee.ucr.edu/~amitrc/mono.pdf +b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,http://pdfs.semanticscholar.org/b166/5e1ddf9253dcaebecb48ac09a7ab4095a83e.pdf,,,http://people.uncw.edu/pattersone/research/publications/RatliffPatterson_HCI2008.pdf +b16580d27bbf4e17053f2f91bc1d0be12045e00b,http://pdfs.semanticscholar.org/b165/80d27bbf4e17053f2f91bc1d0be12045e00b.pdf,,https://doi.org/10.1007/978-3-642-38628-2_2,https://www-i6.informatik.rwth-aachen.de/publications/download/944/HanselmannHaraldNeyHermannDreuwPhilippe--Pose-invariantFaceRecognitionwithaTwo-LevelDynamicProgrammingAlgorithm--2013.pdf +b1ed708d090dd155ffa9ac9699a876292f31aaff,,,, +b11bb6bd63ee6f246d278dd4edccfbe470263803,http://pdfs.semanticscholar.org/b11b/b6bd63ee6f246d278dd4edccfbe470263803.pdf,,,https://arxiv.org/pdf/1801.09242v1.pdf +b171f9e4245b52ff96790cf4f8d23e822c260780,http://pdfs.semanticscholar.org/b171/f9e4245b52ff96790cf4f8d23e822c260780.pdf,,,http://www.ri.cmu.edu/downloads/other_pdfs/2014RISSJournal.pdf +b1a3b19700b8738b4510eecf78a35ff38406df22,http://pdfs.semanticscholar.org/b1a3/b19700b8738b4510eecf78a35ff38406df22.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/tac_survey_2017.pdf +b1301c722886b6028d11e4c2084ee96466218be4,http://pdfs.semanticscholar.org/b130/1c722886b6028d11e4c2084ee96466218be4.pdf,,,https://arxiv.org/pdf/1804.02740v1.pdf +b1a8315b4843da3d0b61c933a11d9b152cfaae70,,,, +b1c5581f631dba78927aae4f86a839f43646220c,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553753.pdf,,,http://cvrc.ece.utexas.edu/Publications/ShaohuaFG2013.pdf +b1891010a0722117c57e98809e1f2b26cd8e9ee3,,,,http://doi.acm.org/10.1145/2330784.2331026 +b1efefcc9a5d30be90776571a6cc0071f3679753,,,https://doi.org/10.1109/ROBIO.2016.7866471, +b1bb517bd87a1212174033fc786b2237844b04e6,,,https://doi.org/10.1016/j.neucom.2015.03.078, +b18858ad6ec88d8b443dffd3e944e653178bc28b,http://pdfs.semanticscholar.org/b188/58ad6ec88d8b443dffd3e944e653178bc28b.pdf,,,https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2782&context=cstech +b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1,http://pdfs.semanticscholar.org/b144/4b3bf15eec84f6d9a2ade7989bb980ea7bd1.pdf,,,https://arxiv.org/pdf/1709.09518v1.pdf +b1534888673e6119f324082246016d28eba249aa,,,https://doi.org/10.1109/MMSP.2017.8122229, +b133b2d7df9b848253b9d75e2ca5c68e21eba008,http://pdfs.semanticscholar.org/c2c1/ab9eac2907e15618d80f5ce0c9b60f2c36cc.pdf,,,https://www-nlpir.nist.gov/projects/tvpubs/tv17.papers/kobe_nict_siegen.pdf +b13b101b6197048710e82f044ad2eda6b93affd8,,,,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.91 +b1df214e0f1c5065f53054195cd15012e660490a,http://pdfs.semanticscholar.org/b1df/214e0f1c5065f53054195cd15012e660490a.pdf,,,http://openaccess.thecvf.com/content_cvpr_2016/supplemental/Huang_Sparse_Coding_and_2016_CVPR_supplemental.pdf +b185f0a39384ceb3c4923196aeed6d68830a069f,http://pdfs.semanticscholar.org/b185/f0a39384ceb3c4923196aeed6d68830a069f.pdf,,https://doi.org/10.1007/978-3-642-33712-3_44,http://web.stanford.edu/~hchen2/papers/ECCV2012_ClothingAttributes.pdf +b11df79c812ff7ea63f7c93ec8eafefc3fd04f7e,,,, +b19e83eda4a602abc5a8ef57467c5f47f493848d,http://www.cs.jhu.edu/~hwang/papers/SPL10.pdf,,https://doi.org/10.1109/LSP.2009.2036653,http://www.cs.adelaide.edu.au/~hanzi/papers/SPL10.pdf +b1429e4d3dd3412e92a37d2f9e0721ea719a9b9e,http://www.hamedkiani.com/uploads/5/1/8/8/51882963/176.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477676 +ddf55fc9cf57dabf4eccbf9daab52108df5b69aa,http://pdfs.semanticscholar.org/ddf5/5fc9cf57dabf4eccbf9daab52108df5b69aa.pdf,,,http://www.sersc.org/journals/IJGDC/vol4_no3/7.pdf +ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,,,https://doi.org/10.1109/ICDSP.2016.7868598, +dd05cbfa0045759088d610173a78c792a4f17e4c,,,, +dda35768681f74dafd02a667dac2e6101926a279,http://www.cim.mcgill.ca/~clark/vmrl/web-content/papers/jjclark_icip_2014.pdf,,https://doi.org/10.1109/ICIP.2014.7025686, +dd0760bda44d4e222c0a54d41681f97b3270122b,http://pdfs.semanticscholar.org/dd07/60bda44d4e222c0a54d41681f97b3270122b.pdf,,https://doi.org/10.1016/j.engappai.2007.11.010,http://rtpis.org/documents/mypaper/RTPIS_publication_1291227544.pdf +ddea3c352f5041fb34433b635399711a90fde0e8,http://pdfs.semanticscholar.org/fc6b/2eb9253f33197b1ba8a045525487a16e8756.pdf,,,http://www.cs.berkeley.edu/~akar/IITK_website/se367/project/report.pdf +dd031dbf634103ff3c58ce87aa74ec6921b2e21d,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344664 +dddd70fb2746a944e7428e2eb61ca06faff3fce9,,,, +ddb1a392582c624c9116cb00eac01aba220fad84,,,, +dd8a851f2a0c63bb97e33aaff1841695f601c863,,,https://doi.org/10.1109/BTAS.2014.6996260, +dd033d4886f2e687b82d893a2c14dae02962ea70,http://pdfs.semanticscholar.org/dd03/3d4886f2e687b82d893a2c14dae02962ea70.pdf,,,https://ddd.uab.cat/pub/elcvia/elcvia_a2012v11n1/elcvia_a2012v11n1p41.pdf +dd3181c229819679186056cdfe94a772929ca758,,,, +ddf099f0e0631da4a6396a17829160301796151c,http://pdfs.semanticscholar.org/ddf0/99f0e0631da4a6396a17829160301796151c.pdf,,,http://biometrics.cse.msu.edu/Publications/Face/BestRowdenJain_FaceQualityHumanAssessments_TIFS2018.pdf +dd0a334b767e0065c730873a95312a89ef7d1c03,http://pdfs.semanticscholar.org/dd0a/334b767e0065c730873a95312a89ef7d1c03.pdf,,https://doi.org/10.1007/978-3-642-38628-2_90,http://luismarco.nom.es/wp/wp-content/uploads/2014/03/egpaper_IbPRIA-2013_v2.pdf +dd8ad6ce8701d4b09be460a6cf058fcd5318c700,https://www.researchgate.net/profile/Daniel_Riccio/publication/260652311_Robust_Face_Recognition_for_Uncontrolled_Pose_and_Illumination_Changes/links/5402f4450cf23d9765a55fbc.pdf,,https://doi.org/10.1109/TSMCA.2012.2192427, +dd0258367fadb632b612ccd84fbc1ef892e70aeb,,,, +ddd9d7cb809589b701fba9f326d7cf998a63b14f,,,,http://doi.acm.org/10.1145/2647868.2654992 +dd2f6a1ba3650075245a422319d86002e1e87808,http://pdfs.semanticscholar.org/dd2f/6a1ba3650075245a422319d86002e1e87808.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/2017_pami_offline_deformable_tracking.pdf +ddf577e8b7c86b1122c1bc90cba79f641d2b33fa,,,,http://doi.acm.org/10.1145/3013971.3014026 +dd8d09eab82d7ec4457317d9f9427122d2ffb649,,,, +dd715a98dab34437ad05758b20cc640c2cdc5715,,,https://doi.org/10.1007/s41095-017-0082-8, +ddaa8add8528857712424fd57179e5db6885df7c,http://pdfs.semanticscholar.org/ff63/a8e8e462d15c9d59ac66025a043d3c299aea.pdf,,,http://arxiv.org/abs/1707.09143 +dd8d53e67668067fd290eb500d7dfab5b6f730dd,http://mmlab.ie.cuhk.edu.hk/archive/2007/IFS07_subspace.pdf,,https://doi.org/10.1109/TIFS.2006.890313, +dd600e7d6e4443ebe87ab864d62e2f4316431293,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553774.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553774 +dcb50e1f439d1f9b14ae85866f4542e51b830a07,,,https://doi.org/10.1109/FSKD.2012.6234354, +dcc44853911c3df7db9c3ea5068e6c16aeec71c1,,,, +dcea30602c4e0b7525a1bf4088620128d4cbb800,,,https://doi.org/10.1109/VCIP.2013.6706430, +dcdece0d0ee382e2f388dcd7f5bd9721bb7354d6,,,https://doi.org/10.1109/TCYB.2014.2311033, +dc2f16f967eac710cb9b7553093e9c977e5b761d,,,https://doi.org/10.1109/ICPR.2016.7900141, +dcb44fc19c1949b1eda9abe998935d567498467d,http://pdfs.semanticscholar.org/dcb4/4fc19c1949b1eda9abe998935d567498467d.pdf,,https://doi.org/10.24963/ijcai.2017/266,https://www.ijcai.org/proceedings/2017/0266.pdf +dcc38db6c885444694f515d683bbb50521ff3990,http://pdfs.semanticscholar.org/dcc3/8db6c885444694f515d683bbb50521ff3990.pdf,,https://doi.org/10.24963/ijcai.2017/633,http://www.ijcai.org/proceedings/2017/0633.pdf +dc5cde7e4554db012d39fc41ac8580f4f6774045,http://pdfs.semanticscholar.org/dc5c/de7e4554db012d39fc41ac8580f4f6774045.pdf,,,http://www.bmva.org/bmvc/2014/files/abstract008.pdf +dc7df544d7c186723d754e2e7b7217d38a12fcf7,http://pdfs.semanticscholar.org/dc7d/f544d7c186723d754e2e7b7217d38a12fcf7.pdf,,,http://wscg.zcu.cz/wscg2016/short/E89-full.pdf +dc77287bb1fcf64358767dc5b5a8a79ed9abaa53,http://pdfs.semanticscholar.org/dc77/287bb1fcf64358767dc5b5a8a79ed9abaa53.pdf,,,http://arxiv.org/abs/1704.04137 +dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb,http://pdfs.semanticscholar.org/dc2e/805d0038f9d1b3d1bc79192f1d90f6091ecb.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/15884/Ho_umd_0117E_15444.pdf?isAllowed=y&sequence=1 +dc84d3f29c52e6d296b5d457962c02074aa75d0f,,,https://doi.org/10.1109/TIP.2016.2580939, +dced05d28f353be971ea2c14517e85bc457405f3,http://pdfs.semanticscholar.org/dced/05d28f353be971ea2c14517e85bc457405f3.pdf,,https://doi.org/10.1007/11760023_22,http://iiclab.kw.ac.kr/pdf/Manuscript-051228-final.pdf +dc0341e5392c853f11283e99a7dc5c51be730aca,,,, +dc295e85e698af56cd115e5531b66e19f3b9e0ce,,,, +dcce3d7e8d59041e84fcdf4418702fb0f8e35043,http://www.cfar.umd.edu/~rama/Conf.pdf-files/zhou04cvpr-10.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.190 +dce3dff9216d63c4a77a2fcb0ec1adf6d2489394,http://pdfs.semanticscholar.org/dce3/dff9216d63c4a77a2fcb0ec1adf6d2489394.pdf,,https://doi.org/10.1007/978-3-642-01793-3_9,http://www.ee.oulu.fi/~hadid/ICB2009.pdf +dca2bb023b076de1ccd0c6b8d71faeb3fccb3978,,,,http://doi.acm.org/10.1145/3152118 +b69e7e2a7705a58a0e3f1b80ae542907b89ce02e,,,https://doi.org/10.1007/s11042-015-2614-5, +b6f758be954d34817d4ebaa22b30c63a4b8ddb35,https://arxiv.org/pdf/1703.04835v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.134 +b6259115b819424de53bb92f64cc459dcb649f31,,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078466 +b62571691a23836b35719fc457e093b0db187956,http://pdfs.semanticscholar.org/b625/71691a23836b35719fc457e093b0db187956.pdf,,,http://www.ijarcsse.com/docs/papers/Volume_3/5_May2013/V3I5-0197.pdf +b69b239217d4e9a20fe4fe1417bf26c94ded9af9,http://pdfs.semanticscholar.org/b69b/239217d4e9a20fe4fe1417bf26c94ded9af9.pdf,,,https://arxiv.org/pdf/1803.07218v1.pdf +b6c047ab10dd86b1443b088029ffe05d79bbe257,http://pdfs.semanticscholar.org/b6c0/47ab10dd86b1443b088029ffe05d79bbe257.pdf,,https://doi.org/10.1016/j.patcog.2013.05.016,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/2013/PR_SVM_2013.pdf +b6052dc718c72f2506cfd9d29422642ecf3992ef,http://pdfs.semanticscholar.org/b605/2dc718c72f2506cfd9d29422642ecf3992ef.pdf,,https://doi.org/10.1007/978-3-642-44964-2_8,http://files.is.tue.mpg.de/jgall/tutorials/slides/motionanalysis_DRAFT.pdf +b6145d3268032da70edc9cfececa1f9ffa4e3f11,http://cnl.salk.edu/~zhafed/papers/fr_IJCV_2001.pdf,,https://doi.org/10.1023/A:1011183429707,http://www.researchgate.net/profile/Martin_Levine3/publication/220660033_Face_Recognition_Using_the_Discrete_Cosine_Transform/links/5446c5dc0cf22b3c14e0b3a1.pdf +b68452e28951bf8db5f1193eca3a8fd9e2d0d7ef,,,https://doi.org/10.1109/ICACCI.2015.7275752, +b6c53891dff24caa1f2e690552a1a5921554f994,http://pdfs.semanticscholar.org/b6c5/3891dff24caa1f2e690552a1a5921554f994.pdf,,https://doi.org/10.1007/978-3-319-16817-3_10,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop3/pdffiles/w3-p18.pdf +b6ac33d2c470077fa8dcbfe9b113beccfbd739f8,,,,http://doi.acm.org/10.1145/2509896.2509905 +b68f55bab12ca50b033d8b5c773ce5fe88c5923d,,,, +b6685941588febbf66f9bf6a074cd548bc8a567f,,,, +b6ae677b26da039e0112e434d40baf7dd929a3ba,,,, +b65b51c796ed667c4c7914bf12b1926fd6bbaa0c,,,https://doi.org/10.1016/j.neuroimage.2013.05.108, +b6c83e6706a9931a2670bc686485d76b67cb92ea,,,, +b613b30a7cbe76700855479a8d25164fa7b6b9f1,http://www.cs.ucf.edu/~kienhua/classes/COP6731/Reading/AffectiveComputing.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2015.2495222 +b6a23f72007cb40223d7e1e1cc47e466716de945,,,https://doi.org/10.1109/CVPRW.2010.5544598, +b64cfb39840969b1c769e336a05a30e7f9efcd61,http://pdfs.semanticscholar.org/fde2/b8943eb429d35e649c56ce95658b44c49243.pdf,,https://doi.org/10.3389/fict.2016.00009,http://publications.idiap.ch/downloads/papers/2017/Gay_FRONTIERS-CIA_2016.pdf +b6c00e51590c48a48fae51385b3534c4d282f76c,,,https://doi.org/10.1109/TIFS.2015.2427778, +b689d344502419f656d482bd186a5ee6b0140891,http://pdfs.semanticscholar.org/b689/d344502419f656d482bd186a5ee6b0140891.pdf,,,http://www.cns.nyu.edu/~csaid/publications/SaidSebeTodorov2009.pdf +b631f3c212aab45d73ddc119f1f7d00c3c502a72,,,https://doi.org/10.1109/TIFS.2009.2035976, +b6530ea4c42f0133468d1ff0a44738b505152a8e,,,, +b656abc4d1e9c8dc699906b70d6fcd609fae8182,http://pdfs.semanticscholar.org/b656/abc4d1e9c8dc699906b70d6fcd609fae8182.pdf,,https://doi.org/10.1016/j.patrec.2006.12.006,http://amp.ece.cmu.edu/Publication/simon/cvpr05-a.pdf +b6a01cd4572b5f2f3a82732ef07d7296ab0161d3,http://pdfs.semanticscholar.org/b6a0/1cd4572b5f2f3a82732ef07d7296ab0161d3.pdf,,https://doi.org/10.1007/978-3-319-46478-7_26,https://www.cise.ufl.edu/~zizhao/paper_list/eccv2016.pdf +b63b6ed78b39166d87d4c56f8890873aa65976a2,,,https://doi.org/10.1109/ICRA.2011.5979953, +a9f0e940cfba3663dc8304dd5dc77509f024a3cc,,,, +a9881ae58987da71b4c1ce01ba213eb4be2eef02,,,, +a92e24c8c53e31fc444a13bd75b434b7207c58f1,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2317711 +a9791544baa14520379d47afd02e2e7353df87e5,http://pdfs.semanticscholar.org/a979/1544baa14520379d47afd02e2e7353df87e5.pdf,,, +a9756ca629f73dc8f84ee97cfa8b34b8207392dc,,,https://doi.org/10.1109/ICIP.2017.8296542, +a9cecfbc47a39fa0158a5f6fd883e0e5ac2aa134,,,https://doi.org/10.1142/S0218001405004071, +a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd,http://pdfs.semanticscholar.org/a9eb/6e436cfcbded5a9f4b82f6b914c7f390adbd.pdf,,,http://thesai.org/Downloads/IJARAI/Volume5No6/Paper_8-A_Model_for_Facial_Emotion_Inference.pdf +a955033ca6716bf9957b362b77092592461664b4,http://pdfs.semanticscholar.org/a955/033ca6716bf9957b362b77092592461664b4.pdf,,,http://ijircce.com/upload/2015/june/163_santhy.pdf +a956ff50ca958a3619b476d16525c6c3d17ca264,http://ce.sharif.edu/~amiryanj/downloads/novel_bidirectional_nn_for_face_recognition.pdf,,, +a93781e6db8c03668f277676d901905ef44ae49f,http://pdfs.semanticscholar.org/a937/81e6db8c03668f277676d901905ef44ae49f.pdf,,,http://rpal.cse.usf.edu/products/bigdata_2016.pdf +a947c21a15fb0a02378c36271e1addf6b6e110eb,http://www.researchgate.net/profile/Bryan_Conroy/publication/220734216_The_grouped_two-sided_orthogonal_Procrustes_problem/links/02e7e52541c3f27987000000.pdf,,https://doi.org/10.1109/ICASSP.2011.5947151,http://mirlab.org/conference_papers/International_Conference/ICASSP%202011/pdfs/0003688.pdf +a94d2bc6854ee329ee02910e6cdb9d9228f85944,,,, +a9fc23d612e848250d5b675e064dba98f05ad0d9,http://pdfs.semanticscholar.org/a9fc/23d612e848250d5b675e064dba98f05ad0d9.pdf,,,http://thesai.org/Downloads/Volume9No2/Paper_22-Face_Age_Estimation_Approach_based_on_Deep_Learning.pdf +a9af0dc1e7a724464d4b9d174c9cf2441e34d487,,,https://doi.org/10.1142/S0219691316500351, +a9adb6dcccab2d45828e11a6f152530ba8066de6,http://pdfs.semanticscholar.org/a9ad/b6dcccab2d45828e11a6f152530ba8066de6.pdf,,,http://face.cs.kit.edu/download/publications/Kern_Illumination_Subspaces.pdf +a967426ec9b761a989997d6a213d890fc34c5fe3,http://vision.ucsd.edu/sites/default/files/043-wacv.pdf,,,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/043-wacv.pdf +a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6,http://pdfs.semanticscholar.org/a928/6519e12675302b1d7d2fe0ca3cc4dc7d17f6.pdf,,,https://arxiv.org/pdf/1705.08197v1.pdf +a949b8700ca6ba96ee40f75dfee1410c5bbdb3db,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Haase_Instance-weighted_Transfer_Learning_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.185 +a98a69739527f46c0a73c983789210d098c1eb09,,,, +a9d861e270b8b1e6deea1936b258f49f1823005b,,,, +a9506c60ec48056087ee3e10d28ff7774fbbd553,,,https://doi.org/10.1109/TCSVT.2014.2376136, +a941434fce5d3fddcd78e2b82d46ccab0411fca9,,,, +a9be20954e9177d8b2bc39747acdea4f5496f394,http://acsweb.ucsd.edu/~yuw176/report/cvpr_2016.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.520 +a9d1d00d6897ae23c9a7e9fb75a3c7417a6730a4,,,https://doi.org/10.1049/iet-ipr.2016.1074, +a9426cb98c8aedf79ea19839643a7cf1e435aeaa,,,https://doi.org/10.1109/GlobalSIP.2016.7905998, +d5afd7b76f1391321a1340a19ba63eec9e0f9833,http://pdfs.semanticscholar.org/d5af/d7b76f1391321a1340a19ba63eec9e0f9833.pdf,,,http://bit.kuas.edu.tw/~jihmsp/2010/vol1/JIH-MSP-2010-03-007.pdf +d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12,http://pdfs.semanticscholar.org/d537/5f51eeb0c6eff71d6c6ad73e11e9353c1f12.pdf,,https://doi.org/10.1007/978-3-642-23887-1_84,http://ebooks.narotama.ac.id/files/Artificial%20Intelligence%20and%20Computational%20Intelligence;%202nd%20AICIS%202011%20PART%20II/Chapter%2084%20Manifold%20Ranking-Based%20Locality%20Preserving%20Projections.pdf +d5f8827fc7d66643bf018d5636e81ed41026b61a,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.36 +d50c6d22449cc9170ab868b42f8c72f8d31f9b6c,http://pdfs.semanticscholar.org/d50c/6d22449cc9170ab868b42f8c72f8d31f9b6c.pdf,,https://doi.org/10.24963/ijcai.2017/231,http://www.ijcai.org/proceedings/2017/0231.pdf +d569c3e62f471aa75ed53e631ec05c1a3d594595,,,https://doi.org/10.1109/NNSP.2002.1030072, +d5b445c5716952be02172ca4d40c44f4f04067fa,,,https://doi.org/10.1109/ICICS.2011.6173537, +d522c162bd03e935b1417f2e564d1357e98826d2,http://pdfs.semanticscholar.org/d522/c162bd03e935b1417f2e564d1357e98826d2.pdf,,https://doi.org/10.1186/1687-6180-2013-19,http://asp.eurasipjournals.com/content/pdf/1687-6180-2013-19.pdf +d59f18fcb07648381aa5232842eabba1db52383e,http://pdfs.semanticscholar.org/d59f/18fcb07648381aa5232842eabba1db52383e.pdf,,,http://www.cs.stanford.edu/people/asaxena/papers/icsci2004_facial.pdf +d5fa9d98c8da54a57abf353767a927d662b7f026,http://pdfs.semanticscholar.org/f15e/9712b8731e1f5fd9566aca513edda910b5b8.pdf,,,http://www.researchgate.net/profile/Nabil_Hewahi/publication/47277288_Age_Estimation_based_on_Neural_Networks_using_Face_Features/links/0912f50a9b50c57f08000000.pdf +d588dd4f305cdea37add2e9bb3d769df98efe880,http://pdfs.semanticscholar.org/d588/dd4f305cdea37add2e9bb3d769df98efe880.pdf,,,http://www.iaeng.org/publication/IMECS2009/IMECS2009_pp938-943.pdf +d5f751d31a9d2d754d0d136d5b02c24b28fb94a0,http://www.researchgate.net/profile/Marie-Francine_Moens/publication/220634584_Naming_People_in_News_Videos_with_Label_Propagation/links/0a85e52ecd01912489000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/MMUL.2011.22 +d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e,http://pdfs.semanticscholar.org/d5ab/6aa15dad26a6ace5ab83ce62b7467a18a88e.pdf,,,http://www.hrpub.org/download/20141201/WJCAT1-13702887.pdf +d57ce0ff4acb2910c2d1afee2ebb7aa1e72a4584,,,https://doi.org/10.1109/CVPRW.2010.5543816, +d57c25c50e5e25fb07fc80b3c3d77b45e16e98cf,,,, +d5b0e73b584be507198b6665bcddeba92b62e1e5,http://pdfs.semanticscholar.org/d5b0/e73b584be507198b6665bcddeba92b62e1e5.pdf,,,http://www.cbsr.ia.ac.cn/users/jwan/papers/BMVC2017_age.pdf +d5c66a48bc0a324750db3d295803f47f6060043d,,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2006.109 +d56fe69cbfd08525f20679ffc50707b738b88031,http://pdfs.semanticscholar.org/d56f/e69cbfd08525f20679ffc50707b738b88031.pdf,,,https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2011-80.pdf +d58fce50e9028dfc12cb2e7964f83d3b28bcc2fc,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.101 +d50751da2997e7ebc89244c88a4d0d18405e8507,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553713.pdf,,,http://www.vision.ee.ethz.ch/~gfanelli/pubs/fanelli_fg2013.pdf +d511e903a882658c9f6f930d6dd183007f508eda,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553766.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553766 +d567f2bbc6ce6d6acf0114e6514f31eff4da68f6,,,, +d50a40f2d24363809a9ac57cf7fbb630644af0e5,http://pdfs.semanticscholar.org/d50a/40f2d24363809a9ac57cf7fbb630644af0e5.pdf,,,https://arxiv.org/pdf/1711.07201v1.pdf +d5b5c63c5611d7b911bc1f7e161a0863a34d44ea,http://pdfs.semanticscholar.org/d5b5/c63c5611d7b911bc1f7e161a0863a34d44ea.pdf,,https://doi.org/10.1007/978-3-642-22819-3_43,http://www.researchgate.net/profile/Rui_Ishiyama/publication/220744975_Extracting_Scene-Dependent_Discriminant_Features_for_Enhancing_Face_Recognition_under_Severe_Conditions/links/5449185c0cf2ea65413021fe.pdf +d59404354f84ad98fa809fd1295608bf3d658bdc,http://pdfs.semanticscholar.org/d594/04354f84ad98fa809fd1295608bf3d658bdc.pdf,,,https://arxiv.org/pdf/1801.00077v1.pdf +d57dca4413ad4f33c97ae06a5a7fc86dc5a75f8b,http://iplab.dmi.unict.it/sites/default/files/_11.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2015.7169756 +d5e1173dcb2a51b483f86694889b015d55094634,http://pdfs.semanticscholar.org/d5e1/173dcb2a51b483f86694889b015d55094634.pdf,,https://doi.org/10.1016/j.patrec.2005.05.004,https://www.researchgate.net/profile/Shiqian_Wu/publication/222879673_PCA_and_LDA_in_DCT_domain/links/09e415044106815b65000000.pdf +d5dc78eae7a3cb5c953c89376e06531d39b34836,,,https://doi.org/10.1007/s00521-009-0242-6, +d2d9612d3d67582d0cd7c1833599b88d84288fab,,,https://doi.org/10.1049/iet-cvi.2015.0222, +d2a415365f997c8fe2dbdd4e06ceab2e654172f6,,,,http://doi.acm.org/10.1145/2425333.2425361 +d28d32af7ef9889ef9cb877345a90ea85e70f7f1,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Kim_Local.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84 +d2bad850d30973a61b1a7d7dc582241a41e5c326,,,,http://doi.ieeecomputersociety.org/10.1109/ICICIC.2006.12 +d2a6f77ce311e51bb36a5301c1a4a2d220a2947b,,,, +d28d697b578867500632b35b1b19d3d76698f4a9,http://pdfs.semanticscholar.org/d28d/697b578867500632b35b1b19d3d76698f4a9.pdf,,,http://www.cs.njit.edu/~liu/papers/mypdfs/cvpr99.pdf +d231a81b38fde73bdbf13cfec57d6652f8546c3c,http://pdfs.semanticscholar.org/d231/a81b38fde73bdbf13cfec57d6652f8546c3c.pdf,,,http://www.ece.gatech.edu/research/labs/MCCL/pubs/dwnlds/Osman_Gokhan_Sezer_Tez.pdf +d22785eae6b7503cb16402514fd5bd9571511654,http://pdfs.semanticscholar.org/d227/85eae6b7503cb16402514fd5bd9571511654.pdf,,,http://www.ijcsit.com/docs/Volume%205/vol5issue06/ijcsit20140506149.pdf +d24dafe10ec43ac8fb98715b0e0bd8e479985260,http://pdfs.semanticscholar.org/d24d/afe10ec43ac8fb98715b0e0bd8e479985260.pdf,,, +d29eec5e047560627c16803029d2eb8a4e61da75,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf,,,https://arxiv.org/pdf/1803.09014v1.pdf +d280bcbb387b1d548173917ae82cb6944e3ceca6,https://cse.sc.edu/~mengz/papers/ICIP2014.pdf,,https://doi.org/10.1109/ICIP.2014.7025283, +d2baa43471d959075fc4c93485643cbd009797fd,,,,http://doi.ieeecomputersociety.org/10.1109/MM.2017.4241350 +d2598c088b0664c084413796f39697c6f821d56e,,,https://doi.org/10.1109/VCIP.2016.7805451, +d2fac640086ba89271ad7c1ebf36239ecd64605e,,http://ieeexplore.ieee.org/document/6460449/,, +d24d3370b2e7d254e999140024d8a7bddf701502,https://www.researchgate.net/profile/Thang_Hoang2/publication/252047382_SVM_classifier_based_face_detection_system_using_BDIP_and_BVLC_moments/links/53f0b8be0cf2711e0c431012.pdf,,, +d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,http://pdfs.semanticscholar.org/d2cd/9a7f19600370bce3ea29aba97d949fe0ceb9.pdf,,https://doi.org/10.1007/978-3-642-33786-4_23,http://www.jdl.ac.cn/doc/2011/20131910374671726_2012_eccv_hhan_sop.pdf +d2b3166b8a6a3e6e7bc116257e718e4fe94a0638,,,https://doi.org/10.1007/s00521-010-0411-7, +d22b378fb4ef241d8d210202893518d08e0bb213,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Random_Faces_Guided_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.300 +d2cb8814068c5a64a54ac8e5d0d3df6986370295,,,, +aa5eeb1ab953411e915ea5e6298474dbebfa6fb6,,,, +aa0be8029ea4c657ac8440958364add54ce8c29c,,,, +aac39ca161dfc52aade063901f02f56d01a1693c,http://pdfs.semanticscholar.org/aac3/9ca161dfc52aade063901f02f56d01a1693c.pdf,,https://doi.org/10.1007/978-3-642-21524-7_40,http://sujingwang.name/publication/icsi11.pdf +aadf4b077880ae5eee5dd298ab9e79a1b0114555,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Presti_Using_Hankel_Matrices_2015_CVPR_paper.pdf,,,http://arxiv.org/abs/1506.05001 +aa7c72f874951ff7ca3769439f2f39b7cfd4b202,,,https://doi.org/10.1109/JPROC.2009.2032355, +aa127e6b2dc0aaccfb85e93e8b557f83ebee816b,http://pdfs.semanticscholar.org/aa12/7e6b2dc0aaccfb85e93e8b557f83ebee816b.pdf,,,http://ora.ox.ac.uk/objects/uuid:64e5b1be-231e-49ed-b385-e87db6dbeed8 +aafb271684a52a0b23debb3a5793eb618940c5dd,http://pdfs.semanticscholar.org/aafb/271684a52a0b23debb3a5793eb618940c5dd.pdf,,,http://cs.stanford.edu/groups/vision/documents/DengBergFei-Fei_CVPR2011_supp.pdf +aaf2436bc63a58d18192b71cc8100768e2f8a6cb,,,,http://doi.ieeecomputersociety.org/10.1109/ICDIP.2009.77 +aad6fc5bd7631d2e68b7a5a01ac5d578899c43e5,,,,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.80 +aa892fe17c06e2b18db2b12314499a741e755df7,,,https://doi.org/10.1109/IJCNN.2017.7966089, +aab9a617be6e5507beb457b1e6c2e5b046f9cff0,,,https://doi.org/10.1109/ICIP.2008.4712153, +aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52,http://www.gtti.it/gtti13/Presentazioni_GTTI13/25_Giugno/Sessioni_Scientifiche_Short_Presentation/Piacenza.pdf,http://ieeexplore.ieee.org/document/6811660/,, +aade6c3dbea3b0a918f87c85a36cb6b06eff4f5b,,,, +aa4af9b3811db6a30e1c7cc1ebf079078c1ee152,,,,http://doi.acm.org/10.1145/3129416.3129451 +aa912375eaf50439bec23de615aa8a31a3395ad3,http://pdfs.semanticscholar.org/aa91/2375eaf50439bec23de615aa8a31a3395ad3.pdf,,,http://wireilla.com/papers/ijcis/V2N2/2212ijcis02.pdf +aa52910c8f95e91e9fc96a1aefd406ffa66d797d,http://pdfs.semanticscholar.org/aa52/910c8f95e91e9fc96a1aefd406ffa66d797d.pdf,,,http://ijcset.com/docs/IJCSET13-04-05-090.pdf +aad7b12936e0ced60bc0be95e8670b60b5d5ce20,,,https://doi.org/10.1109/URAI.2013.6677383, +aaeb8b634bb96a372b972f63ec1dc4db62e7b62a,http://pdfs.semanticscholar.org/aaeb/8b634bb96a372b972f63ec1dc4db62e7b62a.pdf,,,http://www.ijceronline.com/papers/Vol4_issue12/Version-2/A0412201012.pdf +aa0c30bd923774add6e2f27ac74acd197b9110f2,http://research.gold.ac.uk/20200/1/dplda.pdf,,https://doi.org/10.1109/ICASSP.2017.7952663,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002781.pdf +aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5,http://pdfs.semanticscholar.org/aaa4/c625f5f9b65c7f3df5c7bfe8a6595d0195a5.pdf,,https://doi.org/10.1007/s12652-010-0033-z,https://www.researchgate.net/profile/Massimo_Tistarelli/publication/225122788_Biometrics_in_ambient_intelligence/links/0fcfd50192d9ed333f000000.pdf +aac934f2eed758d4a27562dae4e9c5415ff4cdb7,http://pdfs.semanticscholar.org/aac9/34f2eed758d4a27562dae4e9c5415ff4cdb7.pdf,,,http://arxiv.org/abs/1703.10667 +aa331fe378056b6d6031bb8fe6676e035ed60d6d,http://pdfs.semanticscholar.org/aa33/1fe378056b6d6031bb8fe6676e035ed60d6d.pdf,,https://doi.org/10.1016/j.patcog.2016.07.010,http://www.cs.sfu.ca/~li/papers-on-line/Haoyu-PR-2016.pdf +aa90a466a2ff7781c36e7da7df0013aa5b117510,,,,http://doi.ieeecomputersociety.org/10.1109/AICCSA.2017.159 +aa8341cb5d8f0b95f619d9949131ed5c896d6470,,,,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2007.403 +aae0e417bbfba701a1183d3d92cc7ad550ee59c3,https://staff.fnwi.uva.nl/th.gevers/pub/GeversTIP12-3.pdf,,https://doi.org/10.1109/TIP.2011.2163162,http://staff.science.uva.nl/~gevers/pub/GeversTIP12-3.pdf +aaec8141d57d29aa3cedf1baec9633180ddb7a3d,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552916 +aa577652ce4dad3ca3dde44f881972ae6e1acce7,http://pdfs.semanticscholar.org/aa57/7652ce4dad3ca3dde44f881972ae6e1acce7.pdf,,,https://arxiv.org/pdf/1211.2881v3.pdf +aa94f214bb3e14842e4056fdef834a51aecef39c,http://pdfs.semanticscholar.org/aa94/f214bb3e14842e4056fdef834a51aecef39c.pdf,,,http://www.lbd.dcc.ufmg.br/colecoes/eniac/2015/034.pdf +aac101dd321e6d2199d8c0b48c543b541c181b66,http://pdfs.semanticscholar.org/aac1/01dd321e6d2199d8c0b48c543b541c181b66.pdf,,,https://web.cs.umass.edu/publication/docs/2010/UM-CS-PhD-2010-008.pdf +aae31f092fadd09a843e1ca62af52dc15fc33c56,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273609 +af8fe1b602452cf7fc9ecea0fd4508ed4149834e,http://pdfs.semanticscholar.org/af8f/e1b602452cf7fc9ecea0fd4508ed4149834e.pdf,,https://doi.org/10.1016/j.cviu.2008.07.010,http://mi.eng.cam.ac.uk/~cipolla/publications/article/2009-CVIU-face-manifold.pdf +af6e351d58dba0962d6eb1baf4c9a776eb73533f,http://pdfs.semanticscholar.org/af6e/351d58dba0962d6eb1baf4c9a776eb73533f.pdf,,,https://arxiv.org/pdf/1612.07454v1.pdf +aff92784567095ee526a705e21be4f42226bbaab,http://pdfs.semanticscholar.org/aff9/2784567095ee526a705e21be4f42226bbaab.pdf,,,http://discovery.ucl.ac.uk/1468901/1/Yun%20Fu's%20UCL%20PhD%20thesis.pdf +affa61d044daa1a7d43a6803a743eab47c89c45d,,,https://doi.org/10.1109/TNNLS.2015.2405574, +afba76d0fe40e1be381182aec822431e20de8153,,,https://doi.org/10.1007/s00521-014-1768-9, +af13c355a2a14bb74847aedeafe990db3fc9cbd4,http://publications.idiap.ch/downloads/papers/2015/Chavez-Martinez_MUM2015_2015.pdf,,,http://www.idiap.ch/~gatica/publications/ChavezRuizGatica-mum15.pdf +af0a8199328d4c806574866f419d1962def9305a,http://ttic.uchicago.edu/~smaji/papers/mr07mms.pdf,,,http://people.cs.umass.edu/~smaji/papers/alignment-acmmm07.pdf +af12a79892bd030c19dfea392f7a7ccb0e7ebb72,,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247972 +afdbbc5c84eb4e535c7c478b5227c0138b57af64,,,,http://doi.ieeecomputersociety.org/10.1109/TMC.2016.2593919 +af62621816fbbe7582a7d237ebae1a4d68fcf97d,http://pdfs.semanticscholar.org/af62/621816fbbe7582a7d237ebae1a4d68fcf97d.pdf,,,http://www.ijera.com/special_issue/Humming%20Bird_March_2014/Version%20%201/AF3033.pdf +af54dd5da722e104740f9b6f261df9d4688a9712,http://pdfs.semanticscholar.org/af54/dd5da722e104740f9b6f261df9d4688a9712.pdf,,,http://www.dehshibi.com/files/papers/Portability%20A%20New%20Challenge%20on%20Designing%20Family%20Image%20Database.pdf +af2d30fdb8c611dc5b883b90311d873e336fc534,,,https://doi.org/10.1109/ISCAS.2017.8050275, +af3e6e20de06b03c33f8e85eced74c2d096730ea,,,https://doi.org/10.1109/CISP-BMEI.2017.8301972, +afe9cfba90d4b1dbd7db1cf60faf91f24d12b286,http://pdfs.semanticscholar.org/afe9/cfba90d4b1dbd7db1cf60faf91f24d12b286.pdf,,https://doi.org/10.1007/978-3-642-19530-3_17,http://luks.fe.uni-lj.si/sl/osebje/vitomir/pub/BioID11.pdf +af53ce0f3a039c685b754e1f704817e03e182412,,,, +af7553d833886663550ce83b087a592a04b36419,,,https://doi.org/10.1109/TIFS.2015.2390138, +af8e22ef8c405f9cc9ad26314cb7a9e7d3d4eec2,,,https://doi.org/10.1007/s00521-014-1569-1, +afca252f314b46d5c1f2cb4e75ce15d551069b05,,,, +af97e792827438ddea1d5900960571939fc0533e,,,https://doi.org/10.1109/ICSMC.2005.1571460, +af278274e4bda66f38fd296cfa5c07804fbc26ee,http://pdfs.semanticscholar.org/af27/8274e4bda66f38fd296cfa5c07804fbc26ee.pdf,,, +af97a51f56cd6b793cf96692931a8d1ddbe4e3cc,,,https://doi.org/10.1109/ICPR.2014.57, +afef2b1d35fb807f422cfec0a370f7d08d4651d1,http://www.researchgate.net/profile/Dong_Yi3/publication/228853254_A_robust_eye_localization_method_for_low_quality_face_images/links/0912f509c4d7ec1630000000.pdf,,https://doi.org/10.1109/IJCB.2011.6117499, +afc7092987f0d05f5685e9332d83c4b27612f964,http://ci2cv.net/media/papers/2011_AFGR_Chew.pdf,,https://doi.org/10.1109/FG.2011.5771373,http://ci2cv.net/static/papers/2011_AFGR_Chew.pdf +b749ca71c60904d7dad6fc8fa142bf81f6e56a62,,,https://doi.org/10.1109/TIP.2013.2292560, +b730908bc1f80b711c031f3ea459e4de09a3d324,http://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf,,https://doi.org/10.1109/TIFS.2014.2361018,https://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf +b7426836ca364603ccab0e533891d8ac54cf2429,http://pdfs.semanticscholar.org/b742/6836ca364603ccab0e533891d8ac54cf2429.pdf,,, +b7128e0fe18dcb42e8a2ac5cf6794f64a8e37bd0,,,https://doi.org/10.1109/SERA.2017.7965717, +b7cf7bb574b2369f4d7ebc3866b461634147041a,http://www.patternrecognition.cn/~zhongjin/2012/2012_yinjun_NCA.pdf,,https://doi.org/10.1007/s00521-011-0728-x, +b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24,http://grid.hust.edu.cn/xbliu/papers/ICDM09.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICDM.2009.18 +b7845e0b0ce17cde7db37d5524ef2a61dee3e540,,,https://doi.org/10.1109/ICPR.2016.7899608, +b75eecc879da38138bf3ace9195ae1613fb6e3cc,,,https://doi.org/10.1007/s10278-015-9808-2, +b7eead8586ffe069edd190956bd338d82c69f880,http://pdfs.semanticscholar.org/b7ee/ad8586ffe069edd190956bd338d82c69f880.pdf,,,https://acceda.ulpgc.es:8443/bitstream/10553/15078/5/C081_JRBP12.pdf +b7b8e7813fbc12849f2daba5cab604abd8cbaab6,,,https://doi.org/10.1109/ICCE.2014.6775938, +b704eaa339d55ef7eac56d0117a8e127fc597686,,,, +b75cee96293c11fe77ab733fc1147950abbe16f9,http://pdfs.semanticscholar.org/e1a6/16674f63dd54b495d06cf1b7bd59f4cb772e.pdf,,https://doi.org/10.5244/C.20.27,http://www.bmva.org/bmvc/2006/papers/081.pdf +b7a0c70a320c1ac3e92f4bf0b50a7d8ceb757c41,,,https://doi.org/10.1109/IJCNN.2016.7727203, +b7f05d0771da64192f73bdb2535925b0e238d233,http://pdfs.semanticscholar.org/b7f0/5d0771da64192f73bdb2535925b0e238d233.pdf,,,http://www.mva-org.jp/Proceedings/CommemorativeDVD/2005/papers/2005172.pdf +b784bb1d2b2720dac8d4b92851a8d6360c35b0b2,,,https://doi.org/10.1109/ICDM.2016.0041, +b755505bdd5af078e06427d34b6ac2530ba69b12,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/Maengetal_NIFaceRecognitionDistance_IJCB11.pdf,,https://doi.org/10.1109/IJCB.2011.6117486,http://www.cse.msu.edu/biometrics/Publications/Face/Maengetal_NIFaceRecognitionDistance_IJCB11.pdf +b7b461f82c911f2596b310e2b18dd0da1d5d4491,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p2961-wang.pdf,,https://doi.org/10.1109/ICASSP.2014.6854138, +b7740dba37a3cbd5c832a8deb9a710a28966486a,http://pdfs.semanticscholar.org/b774/0dba37a3cbd5c832a8deb9a710a28966486a.pdf,,,http://cepa.stanford.edu/sites/default/files/widen%20etal%202015-story%20superiority%20adol.pdf +b73fdae232270404f96754329a1a18768974d3f6,http://pdfs.semanticscholar.org/b73f/dae232270404f96754329a1a18768974d3f6.pdf,,,http://cdn.intechopen.com/pdfs-wm/40174.pdf +b7c5f885114186284c51e863b58292583047a8b4,http://pdfs.semanticscholar.org/b7c5/f885114186284c51e863b58292583047a8b4.pdf,,https://doi.org/10.5220/0006041101560163,http://arxiv.org/abs/1609.06260 +b728e7db6e5559a77dc59381bfb8df96d482a721,,,,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.28 +b73d9e1af36aabb81353f29c40ecdcbdf731dbed,http://pdfs.semanticscholar.org/b73d/9e1af36aabb81353f29c40ecdcbdf731dbed.pdf,,https://doi.org/10.3390/s150920945,http://ftp.ncbi.nlm.nih.gov/pub/pmc/d7/3b/sensors-15-20945.PMC4610497.pdf +b747fcad32484dfbe29530a15776d0df5688a7db,http://pdfs.semanticscholar.org/b747/fcad32484dfbe29530a15776d0df5688a7db.pdf,,https://doi.org/10.1016/j.patrec.2014.10.001,http://www.cs.csub.edu/~acruz/papers/10.1016-j.patrec.2014.10.001.pdf +b7fa06b76f4b9263567875b2988fb7bbc753e69f,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469282 +b7043048b4ba748c9c6317b6d8206192c34f57ff,,,https://doi.org/10.1109/ICIP.2016.7533061, +b7f7a4df251ff26aca83d66d6b479f1dc6cd1085,http://pdfs.semanticscholar.org/b7f7/a4df251ff26aca83d66d6b479f1dc6cd1085.pdf,,https://doi.org/10.1186/1687-5281-2013-55,http://jivp.eurasipjournals.com/content/pdf/1687-5281-2013-55.pdf +b736bf09e1f94a8722c121c19f7a22d340c13e0b,,,, +b74a3ede83e10544640e5f58707f567e00281f54,,,, +b71d1aa90dcbe3638888725314c0d56640c1fef1,,,, +db1f48a7e11174d4a724a4edb3a0f1571d649670,http://pdfs.semanticscholar.org/db1f/48a7e11174d4a724a4edb3a0f1571d649670.pdf,,,http://summit.sfu.ca/system/files/iritems1/17516/etd10355_XLiu.pdf +db9ef28cc3531a27c273d769e1b1d6b8aeff2db4,,,, +db227f72bb13a5acca549fab0dc76bce1fb3b948,http://pdfs.semanticscholar.org/e83d/6fd4502d6d31134ffddb80b6d5c752cf3123.pdf,,,http://www.ijmer.com/papers/%5BNC-%20DATES2K16%5D%20-%202016/CSE/Version-1/CSE-32-38.pdf +dbaf89ca98dda2c99157c46abd136ace5bdc33b3,http://pdfs.semanticscholar.org/dbaf/89ca98dda2c99157c46abd136ace5bdc33b3.pdf,,https://doi.org/10.1007/978-3-319-16199-0_4,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w18/1.pdf +dbab6ac1a9516c360cdbfd5f3239a351a64adde7,http://pdfs.semanticscholar.org/dbab/6ac1a9516c360cdbfd5f3239a351a64adde7.pdf,,https://doi.org/10.1016/j.patrec.2015.11.014,http://www.cs.nott.ac.uk/~pszmv/Documents/prl_blockwise_SDM.pdf +dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8,http://pdfs.semanticscholar.org/dbb0/a527612c828d43bcb9a9c41f1bf7110b1dc8.pdf,,https://doi.org/10.1007/978-3-540-75171-7_7,http://sightcorp.com/downloads/Machine%20Learning%20Techniques%20for%20Face%20Analysis.pdf +db3984b143c59584a32d762d712d21c0e8cf38b8,,,https://doi.org/10.1109/SMC.2015.324, +db93049981abca0a281918b8d0655572922553de,http://www.cs.odu.edu/~sji/papers/pdf/Ji_TKDE08.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2008.57 +dba493caf6647214c8c58967a8251641c2bda4c2,http://pdfs.semanticscholar.org/dba4/93caf6647214c8c58967a8251641c2bda4c2.pdf,,,http://www.visgraf.impa.br/Data/RefBib/PS_PDF/amfg05/amfg05.pdf +dbcfefa92edab8d1ffe8bc1cc66ad80fb13d2b6a,,,https://doi.org/10.1007/s00521-010-0519-9, +dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57,http://pdfs.semanticscholar.org/dbb7/f37fb9b41d1aa862aaf2d2e721a470fd2c57.pdf,,,http://www.freidok.uni-freiburg.de/volltexte/4835/pdf/thesis_final.pdf +dbf2d2ca28582031be6d16519ab887248f5e8ad8,,,https://doi.org/10.1109/TMM.2015.2410135, +db36e682501582d1c7b903422993cf8d70bb0b42,http://pdfs.semanticscholar.org/db36/e682501582d1c7b903422993cf8d70bb0b42.pdf,,,https://arxiv.org/pdf/1509.08038v1.pdf +dbe0e533d715f8543bcf197f3b8e5cffa969dfc0,http://pdfs.semanticscholar.org/dbe0/e533d715f8543bcf197f3b8e5cffa969dfc0.pdf,,,http://www.ijareeie.com/upload/2014/may/48_AComprehensive.pdf +dbd5e9691cab2c515b50dda3d0832bea6eef79f2,http://pdfs.semanticscholar.org/dbd5/e9691cab2c515b50dda3d0832bea6eef79f2.pdf,,,http://www.umiacs.umd.edu/~wyzhao/Chapter_figure.ps +dbfe62c02b544b48354fac741d90eb4edf815db5,,,https://doi.org/10.1109/SITIS.2016.43, +db150d158ca696c7fb4f39b707f71d609481a250,,,, +db82f9101f64d396a86fc2bd05b352e433d88d02,http://pdfs.semanticscholar.org/db82/f9101f64d396a86fc2bd05b352e433d88d02.pdf,,https://doi.org/10.1007/978-3-642-24571-8_74,http://cvpia.memphis.edu/wp-content/uploads/2012/05/69750598.pdf +dbc3ab8c9f564f038e7779b87900c4a0426f3dd1,,,,http://doi.acm.org/10.1145/1386352.1386401 +db428d03e3dfd98624c23e0462817ad17ef14493,http://pdfs.semanticscholar.org/db42/8d03e3dfd98624c23e0462817ad17ef14493.pdf,,,http://www.itl.nist.gov/iaui/894.02/projects/tvpubs/tv6.papers/oxford.pdf +a83fc450c124b7e640adc762e95e3bb6b423b310,http://pdfs.semanticscholar.org/b908/edadad58c604a1e4b431f69ac8ded350589a.pdf,,,http://arxiv.org/abs/1708.02721 +a8117a4733cce9148c35fb6888962f665ae65b1e,http://pdfs.semanticscholar.org/a811/7a4733cce9148c35fb6888962f665ae65b1e.pdf,,,http://arxiv.org/abs/1704.00438 +a820941eaf03077d68536732a4d5f28d94b5864a,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf,,,http://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf +a8faeef97e2a00eddfb17a44d4892c179a7cc277,,,https://doi.org/10.1109/FG.2011.5771459, +a8affc2819f7a722a41bb913dea9149ee0e23a1f,http://robotics.szpku.edu.cn/c/publication/paper/ICIP2014-gaoyuan1.pdf,,https://doi.org/10.1109/ICIP.2014.7025291, +a8035ca71af8cc68b3e0ac9190a89fed50c92332,http://pdfs.semanticscholar.org/a803/5ca71af8cc68b3e0ac9190a89fed50c92332.pdf,,https://doi.org/10.1007/978-3-319-46604-0_3,https://cvit.iiit.ac.in/images/ConferencePapers/2016/Mishra-ECCVW2016.pdf +a88640045d13fc0207ac816b0bb532e42bcccf36,http://pdfs.semanticscholar.org/a886/40045d13fc0207ac816b0bb532e42bcccf36.pdf,,,https://arxiv.org/pdf/1709.02896v1.pdf +a8638a07465fe388ae5da0e8a68e62a4ee322d68,http://pdfs.semanticscholar.org/a863/8a07465fe388ae5da0e8a68e62a4ee322d68.pdf,,,https://hal.archives-ouvertes.fr/hal-01198718/document +a8e75978a5335fd3deb04572bb6ca43dbfad4738,http://pdfs.semanticscholar.org/a8e7/5978a5335fd3deb04572bb6ca43dbfad4738.pdf,,,https://arxiv.org/pdf/1607.00137v1.pdf +a8583e80a455507a0f146143abeb35e769d25e4e,http://pdfs.semanticscholar.org/a858/3e80a455507a0f146143abeb35e769d25e4e.pdf,,,http://staff.csie.ncu.edu.tw/yunghui/resources/2013_ILT.pdf +a8c62833f5e57d4cd060d6b5f0f9cfe486ee6825,,,,http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.808 +a87e37d43d4c47bef8992ace408de0f872739efc,http://pdfs.semanticscholar.org/a87e/37d43d4c47bef8992ace408de0f872739efc.pdf,,,http://www.mdpi.com/2076-3417/7/1/110/pdf +a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,http://pdfs.semanticscholar.org/a8c8/a96b78e7b8e0d4a4a422fcb083e53ad06531.pdf,,,http://thesai.org/Downloads/Volume8No4/Paper_3-3D_Human_Action_Recognition_using_Hu_Moment_Invariants.pdf +a8fd23934e5039bb818b8d1c47ccb540ce2c253c,,,https://doi.org/10.1007/s11760-015-0808-y, +a8f1fc34089c4f2bc618a122be71c25813cae354,,,https://doi.org/10.1142/S0219467816500194, +a8748a79e8d37e395354ba7a8b3038468cb37e1f,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w9/papers/Reale_Seeing_the_Forest_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.47 +de048065ea2c5b3e306e2c963533df055e7dfcaa,,,https://doi.org/10.1109/LSP.2016.2598878, +de8381903c579a4fed609dff3e52a1dc51154951,http://pdfs.semanticscholar.org/de83/81903c579a4fed609dff3e52a1dc51154951.pdf,,,http://www.icg.tugraz.at/publications/pdf/shape-and-appearance-based-analysis-of-facial-images-for-assessing-icao-compliance/ +ded8252fc6df715753e75ba7b7fee518361266ef,,,https://doi.org/10.1109/SIU.2012.6204837, +de79437f74e8e3b266afc664decf4e6e4bdf34d7,,,https://doi.org/10.1109/IVCNZ.2016.7804415, +dee39ab960882e70a87501118dfb61cf7a0cd017,,,, +de8657e9eab0296ac062c60a6e10339ccf173ec1,,,,http://doi.ieeecomputersociety.org/10.1109/BRACIS.2014.51 +dea409847d52bb0ad54bf586cb0482a29a584a7e,,,,http://doi.ieeecomputersociety.org/10.1109/ISM.2009.115 +de15af84b1257211a11889b6c2adf0a2bcf59b42,http://pdfs.semanticscholar.org/de15/af84b1257211a11889b6c2adf0a2bcf59b42.pdf,,,http://epubs.surrey.ac.uk/809414/1/Colin_OReilly_PhD_thesis.pdf +de0ee491d2747a6f3d171f813fe6f5cdb3a27fd6,,,https://doi.org/10.1002/cpe.3850, +dedabf9afe2ae4a1ace1279150e5f1d495e565da,http://www.citi.sinica.edu.tw/papers/ycwang/4156-F.pdf,,https://doi.org/10.1109/TIP.2014.2329451, +dee36d438d7dcb5923ab63dfe1e8676726dd4d69,,,, +dec5b11b01f35f72adb41d2be26b9b95870c5c00,,http://ieeexplore.ieee.org/document/7071948/,, +deb89950939ae9847f0a1a4bb198e6dbfed62778,,,https://doi.org/10.1109/LSP.2016.2543019, +de398bd8b7b57a3362c0c677ba8bf9f1d8ade583,http://www.cs.wayne.edu/~mdong/TMM16.pdf,,https://doi.org/10.1109/TMM.2016.2629282, +de878384f00b6ce1caa66ac01735fb4b63ad0279,,,https://doi.org/10.1049/iet-ipr.2014.0670, +defd44b02a1532f47bdd8c8f2375e3df64ac5d79,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.139 +ded41c9b027c8a7f4800e61b7cfb793edaeb2817,http://pdfs.semanticscholar.org/ded4/1c9b027c8a7f4800e61b7cfb793edaeb2817.pdf,,,https://arxiv.org/pdf/1803.07201v1.pdf +defa8774d3c6ad46d4db4959d8510b44751361d8,http://pdfs.semanticscholar.org/defa/8774d3c6ad46d4db4959d8510b44751361d8.pdf,,,http://vision.soic.indiana.edu/b657/sp2016/projects/prmurali/paper.pdf +b0d7013577219f34dc8208d31b2af3ee4c358157,,,, +b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89,http://pdfs.semanticscholar.org/b03b/4d8b4190361ed2de66fcbb6fda0c9a0a7d89.pdf,,,http://papers.nips.cc/paper/6335-deep-alternative-neural-network-exploring-contexts-as-early-as-possible-for-action-recognition +b05943b05ef45e8ea8278e8f0870f23db5c83b23,,,https://doi.org/10.1109/ROBIO.2010.5723349, +b084ad222c1fc9409d355d8e54ac3d1e86f2ca18,,,https://doi.org/10.1016/j.neucom.2017.04.001, +b013cce42dd769db754a57351d49b7410b8e82ad,http://tlab.princeton.edu/publication_files/Rojas%20et%20al%20IEEE%202010.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539993 +b0358af78b7c5ee7adc883ef513bbcc84a18a02b,,,https://doi.org/10.1109/WACV.2017.10, +b07582d1a59a9c6f029d0d8328414c7bef64dca0,http://pdfs.semanticscholar.org/b075/82d1a59a9c6f029d0d8328414c7bef64dca0.pdf,,,https://arxiv.org/pdf/1710.07662v1.pdf +b017963d83b3edf71e1673d7ffdec13a6d350a87,http://pdfs.semanticscholar.org/b017/963d83b3edf71e1673d7ffdec13a6d350a87.pdf,,,https://static.aminer.org/pdf/PDF/000/273/088/view_independent_video_based_face_recognition_using_posterior_probability_in.pdf +b03d6e268cde7380e090ddaea889c75f64560891,http://pdfs.semanticscholar.org/b03d/6e268cde7380e090ddaea889c75f64560891.pdf,,,http://students.cse.tamu.edu/fuhaoshi/FacefromVideo/paper/facefromvideo_supplementary_material.pdf +b03446a2de01126e6a06eb5d526df277fa36099f,http://pdfs.semanticscholar.org/b034/46a2de01126e6a06eb5d526df277fa36099f.pdf,,,http://cs231n.stanford.edu/reports/2016/pdfs/221_Report.pdf +b0de0892d2092c8c70aa22500fed31aa7eb4dd3f,http://arxiv.org/pdf/1504.05524.pdf,,https://doi.org/10.1007/s11263-015-0846-5,https://arxiv.org/pdf/1504.05524v1.pdf +b018fa5cb9793e260b8844ae155bd06380988584,http://pdfs.semanticscholar.org/b018/fa5cb9793e260b8844ae155bd06380988584.pdf,,,http://www.esat.kuleuven.ac.be/~knummiar/star/KUL_deliverable_6_3.pdf +b07f9dfc904d317fa71c1efa9b466460abc0bee5,,,, +b073313325b6482e22032e259d7311fb9615356c,http://alumni.cs.ucr.edu/~hli/paper/hli05tumor.pdf,,,http://conferences.computer.org/bioinformatics/CSB2005/PDF3/35_lih_robust.pdf +b0502dcc6df378ee3ddeefeeb1cc51a20e04f39b,,,, +b0f59b71f86f18495b9f4de7c5dbbebed4ae1607,,,https://doi.org/10.1016/j.neucom.2015.04.085, +a6f81619158d9caeaa0863738ab400b9ba2d77c2,http://pdfs.semanticscholar.org/a6f8/1619158d9caeaa0863738ab400b9ba2d77c2.pdf,,,http://dap.vsb.cz/wsc17conf/Media/Default/Page/online_wsc17_submission_59.pdf +a6d621a5aae983a6996849db5e6bc63fe0a234af,http://mplab.ucsd.edu/~ksikka/pain_icmi14.pdf,,,http://doi.acm.org/10.1145/2663204.2666282 +a63ec22e84106685c15c869aeb157aa48259e855,,,https://doi.org/10.1142/S0219691312500294, +a65301ec723dfac73c1e884d26dedeb4de309429,,,, +a695c2240382e362262db72017ceae0365d63f8f,http://www3.nd.edu/~kwb/AggarwalBiswasFlynnBowyerWACV_2012.pdf,,,https://www3.nd.edu/~kwb/AggarwalBiswasFlynnBowyerWACV_2012.pdf +a66d89357ada66d98d242c124e1e8d96ac9b37a0,http://pdfs.semanticscholar.org/a66d/89357ada66d98d242c124e1e8d96ac9b37a0.pdf,,https://doi.org/10.1007/978-3-319-54427-4_27,https://arxiv.org/pdf/1608.06451v1.pdf +a6d7cf29f333ea3d2aeac67cde39a73898e270b7,http://pdfs.semanticscholar.org/a6d7/cf29f333ea3d2aeac67cde39a73898e270b7.pdf,,,http://www.researchgate.net/profile/Ihsan_Ullah5/publication/266318027_Gender_Classification_from_Facial_Images_Using_Texture_Descriptors/links/542c5fbd0cf27e39fa93e742.pdf +a611c978e05d7feab01fb8a37737996ad6e88bd9,http://cbl.uh.edu/pub_files/3_Benchmarking3DPoseEstimationForFaceRecognition_ICPR2014_v8.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.42 +a608c5f8fd42af6e9bd332ab516c8c2af7063c61,http://mcl.usc.edu/wp-content/uploads/2016/01/Liu-TIFS-2015-10.pdf,,https://doi.org/10.1109/TIFS.2015.2462732, +a6ffe238eaf8632b4a8a6f718c8917e7f3261546,http://pdfs.semanticscholar.org/a6ff/e238eaf8632b4a8a6f718c8917e7f3261546.pdf,,,http://www.amj.net.au/index.php?journal=AMJ&op=viewFile&page=article&path%5B%5D=921&path%5B%5D=840 +a6e75b4ccc793a58ef0f6dbe990633f7658c7241,,,https://doi.org/10.1016/j.cviu.2016.10.007, +a6583c8daa7927eedb3e892a60fc88bdfe89a486,http://pdfs.semanticscholar.org/a658/3c8daa7927eedb3e892a60fc88bdfe89a486.pdf,,https://doi.org/10.1016/j.patrec.2016.06.020,http://mediatum.ub.tum.de/doc/1315864/359237.pdf +a660390654498dff2470667b64ea656668c98ecc,https://pdfs.semanticscholar.org/b42a/97fb47bcd6bfa72e130c08960a77ee96f9ab.pdf,,https://doi.org/10.1109/ICIP.2009.5413940,http://people.kth.se/~mflierl/Publications/zhi09-ICIP.pdf +a60907b7ee346b567972074e3e03c82f64d7ea30,http://pdfs.semanticscholar.org/a609/07b7ee346b567972074e3e03c82f64d7ea30.pdf,,https://doi.org/10.1007/978-3-319-16811-1_21,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/PDF/374.pdf +a6e43b73f9f87588783988333997a81b4487e2d5,http://pdfs.semanticscholar.org/a6e4/3b73f9f87588783988333997a81b4487e2d5.pdf,,https://doi.org/10.1007/978-3-319-42911-3_50,https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/pricai16.pdf +a6496553fb9ab9ca5d69eb45af1bdf0b60ed86dc,http://pdfs.semanticscholar.org/a649/6553fb9ab9ca5d69eb45af1bdf0b60ed86dc.pdf,,https://doi.org/10.1007/978-3-642-19318-7_16,http://www.researchgate.net/profile/Ramzan_Khan/publication/220744786_Semi-supervised_Neighborhood_Preserving_Discriminant_Embedding_A_Semi-supervised_Subspace_Learning_Algorithm/links/0c96052ec3a26284f5000000.pdf +a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,http://pdfs.semanticscholar.org/bce2/02717ce134b317b39f0a18151659d643875b.pdf,,https://doi.org/10.1007/978-3-642-24471-1_3,http://www.cs.tau.ac.il/~wolf/papers/ossml.pdf +a6771936ffeba6e7fffad1d2c60e42519c615e24,,,, +a694180a683f7f4361042c61648aa97d222602db,http://www.iab-rubric.org/papers/ICB16-Autoscat.pdf,,https://doi.org/10.1109/ICB.2016.7550091, +a6db73f10084ce6a4186363ea9d7475a9a658a11,http://pdfs.semanticscholar.org/afce/ebbea6e9130cf22142206c19a19cda226b13.pdf,,,https://arxiv.org/pdf/1612.03052v3.pdf +a6634ff2f9c480e94ed8c01d64c9eb70e0d98487,http://pdfs.semanticscholar.org/a663/4ff2f9c480e94ed8c01d64c9eb70e0d98487.pdf,,https://doi.org/10.1016/j.ipl.2004.09.014,http://www.researchgate.net/profile/Tee_Connie/publication/220114011_PalmHashing_a_novel_approach_for_cancelable_biometrics/links/00b4951830c68b2d5e000000.pdf +a6e2ee89cbe6fabad88713ef1f8e9da5dd7cf167,,,, +a62997208fec1b2fbca6557198eb7bc9340b2409,,,https://doi.org/10.1109/HPCC.and.EUC.2013.241, +a6b1d79bc334c74cde199e26a7ef4c189e9acd46,http://pdfs.semanticscholar.org/a6b1/d79bc334c74cde199e26a7ef4c189e9acd46.pdf,,,http://www.biorxiv.org/content/biorxiv/early/2017/08/17/177196.full.pdf +a6ebe013b639f0f79def4c219f585b8a012be04f,http://pdfs.semanticscholar.org/a6eb/e013b639f0f79def4c219f585b8a012be04f.pdf,,https://doi.org/10.1007/978-3-319-22053-6_33,https://pdfs.semanticscholar.org/a6eb/e013b639f0f79def4c219f585b8a012be04f.pdf +a6ab23f67d85da26592055c0eac4c34f05c26519,,,,http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.15 +a6e21438695dbc3a184d33b6cf5064ddf655a9ba,http://pdfs.semanticscholar.org/b673/ffe63c5d0723009042f0f922f19f093b7e34.pdf,,,https://arxiv.org/pdf/1703.07475v1.pdf +a6793de9a01afe47ffbb516cc32f66625f313231,,,,http://doi.acm.org/10.1145/2939672.2939853 +b944cc4241d195b1609a7a9d87fce0e9ba1498bc,,,https://doi.org/10.1109/TSP.2011.2179539, +b95d13d321d016077bd2906f7fbd9be7c3643475,,,, +b934f730a81c071dbfc08eb4c360d6fca2daa08f,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2015.7177496 +b9cedd09bdae827dacb138d6b054449d5346caf1,http://www.cs.colostate.edu/~lui/Papers/BTAS09LUIa.pdf,,, +b98e7a8f605c21e25ac5e32bfb1851a01f30081b,,,,http://doi.acm.org/10.1145/2393347.2396303 +b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,,,,http://doi.acm.org/10.1145/2733373.2807962 +b9cad920a00fc0e997fc24396872e03f13c0bb9c,http://www.ic.unicamp.br/~rocha/pub/papers/2011-icip-spoofing-detection.pdf,,https://doi.org/10.1109/ICIP.2011.6116484, +b972683d702a65d3ee7a25bc931a5890d1072b6b,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2669035 +b9c9c7ef82f31614c4b9226e92ab45de4394c5f6,http://pdfs.semanticscholar.org/b9c9/c7ef82f31614c4b9226e92ab45de4394c5f6.pdf,,,http://cdn.intechopen.com/pdfs/12307/InTech-Face_recognition_under_varying_illumination.pdf +b910590a0eb191d03e1aedb3d55c905129e92e6b,,,,http://doi.acm.org/10.1145/2808492.2808570 +b9b5624045c6f9d77fd1a029f4ff27aab26fa9fe,,,, +b9f2a755940353549e55690437eb7e13ea226bbf,http://pdfs.semanticscholar.org/b9f2/a755940353549e55690437eb7e13ea226bbf.pdf,,,http://vision.cs.utexas.edu/aavl_workshop_eccv16/papers/AAVL_PID3.pdf +b9cedd1960d5c025be55ade0a0aa81b75a6efa61,http://pdfs.semanticscholar.org/b9ce/dd1960d5c025be55ade0a0aa81b75a6efa61.pdf,,,http://arxiv.org/pdf/1512.06500v1.pdf +b959055bae89f279015f0f6b1eca3e37ecbdd339,,,, +a180dc9766490416246e7fbafadca14a3c500a46,,,https://doi.org/10.1016/S0167-8655(03)00112-0, +a1dd806b8f4f418d01960e22fb950fe7a56c18f1,https://www.cc.gatech.edu/~parikh/Publications/ParikhGrauman_CVPR2011_nameable.pdf,,,https://filebox.ece.vt.edu/~parikh/Publications/ParikhGrauman_CVPR2011_nameable.pdf +a158c1e2993ac90a90326881dd5cb0996c20d4f3,http://pdfs.semanticscholar.org/a158/c1e2993ac90a90326881dd5cb0996c20d4f3.pdf,,https://doi.org/10.3390/sym2020554,http://www.mdpi.com/2073-8994/2/2/554/pdf-vor +a15d9d2ed035f21e13b688a78412cb7b5a04c469,http://pdfs.semanticscholar.org/a15d/9d2ed035f21e13b688a78412cb7b5a04c469.pdf,,https://doi.org/10.1007/978-3-642-33718-5_60,http://www.csc.kth.se/~azizpour/papers/ha_eccv12.pdf +a1b1442198f29072e907ed8cb02a064493737158,http://affect.media.mit.edu/pdfs/12.McDuff-etal-Crowdsourcing-TAC.pdf,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.19 +a100595c66f84c3ddd3da8d362a53f7a82f6e3eb,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.46 +a1cda8e30ce35445e4f51b47ab65b775f75c9f18,,,https://doi.org/10.1109/ISBA.2018.8311462, +a14db48785d41cd57d4eac75949a6b79fc684e70,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Barkan_Fast_High_Dimensional_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.246 +a15c728d008801f5ffc7898568097bbeac8270a4,http://pdfs.semanticscholar.org/a15c/728d008801f5ffc7898568097bbeac8270a4.pdf,,,https://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP4_D4.4.pdf +a13a27e65c88b6cb4a414fd4f6bca780751a59db,,,https://doi.org/10.1109/SMC.2016.7844934, +a1cecbb759c266133084d98747d022c1e638340d,,,,http://doi.acm.org/10.1145/2670473.2670501 +a11ce3c9b78bf3f868b1467b620219ff651fe125,,,,http://doi.acm.org/10.1145/2911996.2912073 +a192845a7695bdb372cccf008e6590a14ed82761,,,https://doi.org/10.1109/TIP.2014.2321495, +a119844792fd9157dec87e3937685c8319cac62f,,,https://doi.org/10.1109/APSIPA.2015.7415395, +a125bc55bdf4bec7484111eea9ae537be314ec62,http://pdfs.semanticscholar.org/a125/bc55bdf4bec7484111eea9ae537be314ec62.pdf,,,http://apsipa.org/proceedings_2009/pdf/MA-L1-2.pdf +a14ae81609d09fed217aa12a4df9466553db4859,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_TIP.pdf,,https://doi.org/10.1109/TIP.2011.2176951,http://www.umiacs.umd.edu/~jhchoi/paper/tip12.pdf +a1a5143a962ab3dc6f2a0d5300cde71d9f087404,,,, +a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,http://pdfs.semanticscholar.org/a1ee/0176a9c71863d812fe012b5c6b9c15f9aa8a.pdf,,,http://ceur-ws.org/Vol-811/paper2.pdf +a1f40bcfadbeee66f67ab0755dd3037c030a7450,http://www.researchgate.net/profile/Jiansheng_Chen/publication/265016758_Face_Image_Quality_Assessment_Based_on_Learning_to_Rank/links/546d662d0cf2193b94c5852b.pdf,,https://doi.org/10.1109/LSP.2014.2347419, +a1e97c4043d5cc9896dc60ae7ca135782d89e5fc,http://pdfs.semanticscholar.org/a1e9/7c4043d5cc9896dc60ae7ca135782d89e5fc.pdf,,,http://arxiv.org/abs/1612.02155 +efd308393b573e5410455960fe551160e1525f49,http://pdfs.semanticscholar.org/efd3/08393b573e5410455960fe551160e1525f49.pdf,,,https://arxiv.org/pdf/1710.02139v1.pdf +efeeb000107745e3fba04ee4676c0435eaf4257b,,,, +ef36ca8abf0a23e661f3b1603057963a70e16704,,,, +efd28eabebb9815e34031316624e7f095c7dfcfe,http://pdfs.semanticscholar.org/efd2/8eabebb9815e34031316624e7f095c7dfcfe.pdf,,https://doi.org/10.1007/978-3-642-31298-4_10,http://wavelab.at/papers/Uhl12b.pdf +eff87ecafed67cc6fc4f661cb077fed5440994bb,http://pdfs.semanticscholar.org/eff8/7ecafed67cc6fc4f661cb077fed5440994bb.pdf,,https://doi.org/10.1007/3-540-45113-7_19,http://carol.science.uva.nl/~nicu/publications/CIVR03_salient.pdf +ef2a5a26448636570986d5cda8376da83d96ef87,http://pdfs.semanticscholar.org/ef2a/5a26448636570986d5cda8376da83d96ef87.pdf,,,http://cs231n.stanford.edu/reports/giel_diaz.pdf +ef9b8724f857daec94690d03764dd1299d0cbbcd,,,, +ef7b8f73e95faa7a747e0b04363fced0a38d33b0,,,https://doi.org/10.1109/ICIP.2017.8297028, +ef26b36eb5966364c71d4fed135fe68f891127e5,,,, +ef35c30529df914a6975af62aca1b9428f678e9f,,,https://doi.org/10.1007/s00138-016-0817-z, +ef3a0b454370991a9c18ac7bfd228cf15ad53da0,,,https://doi.org/10.1109/ICNC.2010.5582886, +ef761435c1af2b3e5caba5e8bbbf5aeab69d934e,,,, +c3c463a9ee464bb610423b7203300a83a166b500,,,https://doi.org/10.1109/ICIP.2014.7025069, +c3ae4a4c9a9528791e36b64fea8d02b2fced7955,,,, +c32fb755856c21a238857b77d7548f18e05f482d,http://pdfs.semanticscholar.org/c32f/b755856c21a238857b77d7548f18e05f482d.pdf,,,https://www.ijser.org/researchpaper/Multimodal-Emotion-Recognition-for-Human-Computer-Interaction-A-Survey.pdf +c34e48d637705ffb52360c2afb6b03efdeb680bf,http://pdfs.semanticscholar.org/c34e/48d637705ffb52360c2afb6b03efdeb680bf.pdf,,https://doi.org/10.1016/j.patcog.2012.04.030,http://ibug.doc.ic.ac.uk/media/uploads/documents/sdnmf_journal.pdf +c3b3636080b9931ac802e2dd28b7b684d6cf4f8b,http://pdfs.semanticscholar.org/c3b3/636080b9931ac802e2dd28b7b684d6cf4f8b.pdf,,,http://www.sersc.org/journals/IJSIA/vol7_no2_2013/15.pdf +c398684270543e97e3194674d9cce20acaef3db3,http://pdfs.semanticscholar.org/c398/684270543e97e3194674d9cce20acaef3db3.pdf,,,http://www.springer.com/cda/content/document/cda_downloaddocument/9783319685328-c2.pdf?SGWID=0-0-45-1625643-p181166578 +c352b5ccd6fa1812b108d74d268ce3f19efccf0b,,,, +c3418f866a86dfd947c2b548cbdeac8ca5783c15,http://pdfs.semanticscholar.org/c341/8f866a86dfd947c2b548cbdeac8ca5783c15.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/disentangling-modes-variation.pdf +c3390711f5ce6f5f0728ef88c54148bf9d8783a2,,,https://doi.org/10.1016/j.engappai.2015.03.016, +c3f76a9ebe53825e14f851120cca4e1fc29807de,,,, +c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0,http://pdfs.semanticscholar.org/c3bc/c4ee9e81ce9c5c0845f34e9992872a8defc0.pdf,,,http://b2.cvl.iis.u-tokyo.ac.jp/mva/proceedings/CommemorativeDVD/2005/papers/2005265.pdf +c32383330df27625592134edd72d69bb6b5cff5c,http://www.iis.sinica.edu.tw/papers/song/13690-F.pdf,,https://doi.org/10.1109/TSMCB.2011.2167322, +c3a3f7758bccbead7c9713cb8517889ea6d04687,http://pdfs.semanticscholar.org/c3a3/f7758bccbead7c9713cb8517889ea6d04687.pdf,,https://doi.org/10.1016/j.neucom.2016.09.072,http://arxiv.org/abs/1609.07304 +c3cfbd03efca980431e17fcbc507962377821681,,,, +c3e53788370341afe426f2216bed452cbbdaf117,,,,http://doi.ieeecomputersociety.org/10.1109/ATNAC.2017.8215436 +c32f04ccde4f11f8717189f056209eb091075254,http://pdfs.semanticscholar.org/c32f/04ccde4f11f8717189f056209eb091075254.pdf,,,http://www.cs.bris.ac.uk/Publications/Papers/2000687.pdf +c30982d6d9bbe470a760c168002ed9d66e1718a2,http://facstaff.elon.edu/sspurlock/papers/spurlock15_head_pose.pdf,,,http://doi.acm.org/10.1145/2789116.2789123 +c32cd207855e301e6d1d9ddd3633c949630c793a,http://pdfs.semanticscholar.org/c32c/d207855e301e6d1d9ddd3633c949630c793a.pdf,,,http://www.cise.ufl.edu/~jho/papers/BookChapter.pdf +c37a971f7a57f7345fdc479fa329d9b425ee02be,http://pdfs.semanticscholar.org/c37a/971f7a57f7345fdc479fa329d9b425ee02be.pdf,,,http://arxiv.org/abs/1509.01074 +c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af,http://pdfs.semanticscholar.org/c363/8b026c7f80a2199b5ae89c8fcbedfc0bd8af.pdf,,,http://acberg.com/papers/berg_thesis.pdf +c363c5d44214bf518a085fb13896909f821f39e8,,,, +c3a53b308c7a75c66759cbfdf52359d9be4f552b,,,,http://doi.ieeecomputersociety.org/10.1109/ISPAN-FCST-ISCC.2017.16 +c36f3cabeddce0263c944e9fe4afd510b5bae816,,,https://doi.org/10.1109/DICTA.2017.8227399, +c32c8bfadda8f44d40c6cd9058a4016ab1c27499,http://pdfs.semanticscholar.org/c32c/8bfadda8f44d40c6cd9058a4016ab1c27499.pdf,,,http://www.cfar.umd.edu/~shaohua/papers/egip_chapter.pdf +c3fb2399eb4bcec22723715556e31c44d086e054,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p499-srinivasan.pdf,,https://doi.org/10.1109/ICASSP.2014.6853646, +c418a3441f992fea523926f837f4bfb742548c16,http://pdfs.semanticscholar.org/c418/a3441f992fea523926f837f4bfb742548c16.pdf,,https://doi.org/10.1007/978-3-642-13059-5_57,https://pdfs.semanticscholar.org/c418/a3441f992fea523926f837f4bfb742548c16.pdf +c4b00e86841db3fced2a5d8ac65f80d0d3bbe352,,,,http://doi.ieeecomputersociety.org/10.1109/AIPR.2004.4 +c4b58ceafdf4cf55586b036b9eb4d6d3d9ecd9c4,http://www.serc.iisc.ernet.in/~venky/Papers/Action_Recognition_CD_ISSNIP14.pdf,,https://doi.org/10.1109/ISSNIP.2014.6827622,https://pdfs.semanticscholar.org/c4b5/8ceafdf4cf55586b036b9eb4d6d3d9ecd9c4.pdf +c44c84540db1c38ace232ef34b03bda1c81ba039,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf,,https://doi.org/10.1007/978-3-319-10599-4_49,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8694/86940768.pdf +c41a3c31972cf0c1be6b6895f3bf97181773fcfb,,,https://doi.org/10.1109/ICPR.2014.103, +c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4,https://vision.cornell.edu/se3/wp-content/uploads/2015/02/ijcv2014.pdf,,https://doi.org/10.1007/s11263-014-0698-4,http://vision.cornell.edu/se3/wp-content/uploads/2015/02/ijcv2014.pdf +c4ca092972abb74ee1c20b7cae6e69c654479e2c,,,https://doi.org/10.1109/ICIP.2016.7532960, +c4c1fb882ae8b48c461e1f7c359ea3ea15da29fa,,,, +c444c4dab97dd6d6696f56c1cacda051dde60448,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37 +c459014131cbcd85f5bd5c0a89115b5cc1512be9,,,,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.23 +c46a4db7247d26aceafed3e4f38ce52d54361817,http://pdfs.semanticscholar.org/c46a/4db7247d26aceafed3e4f38ce52d54361817.pdf,,https://doi.org/10.1007/978-3-319-49409-8_14,http://arxiv.org/abs/1609.09642 +c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad,http://pdfs.semanticscholar.org/c4dc/f41506c23aa45c33a0a5e51b5b9f8990e8ad.pdf,,,http://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-05/FS05-05-017.pdf +c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,http://pdfs.semanticscholar.org/c42a/8969cd76e9f54d43f7f4dd8f9b08da566c5f.pdf,,,http://cdn.intechopen.com/pdfs/21764/InTech-Towards_unconstrained_face_recognition_using_3d_face_model.pdf +c49075ead6eb07ede5ada4fe372899bd0cfb83ac,,,https://doi.org/10.1109/ICSPCS.2015.7391782, +c41de506423e301ef2a10ea6f984e9e19ba091b4,http://www.ee.columbia.edu/ln/dvmm/publications/14/felixyu_llp_mm2014.pdf,,,http://doi.acm.org/10.1145/2647868.2654993 +c4541802086461420afb1ecb5bb8ccd5962a9f02,,,https://doi.org/10.1109/TSMCB.2009.2029076, +c4d439fe07a65b735d0c8604bd5fdaea13f6b072,,,,http://doi.acm.org/10.1145/2671188.2749294 +c4d0d09115a0df856cdb389fbccb20f62b07b14e,,,https://doi.org/10.1109/ICIP.2012.6466925, +c4934d9f9c41dbc46f4173aad2775432fe02e0e6,http://pdfs.semanticscholar.org/c493/4d9f9c41dbc46f4173aad2775432fe02e0e6.pdf,,,https://openreview.net/pdf?id=rJvPIReKx +c40c23e4afc81c8b119ea361e5582aa3adecb157,http://pdfs.semanticscholar.org/c40c/23e4afc81c8b119ea361e5582aa3adecb157.pdf,,https://doi.org/10.1007/978-3-642-33868-7_24,http://vishnu.boddeti.net/papers/eccv-2012.pdf +c49aed65fcf9ded15c44f9cbb4b161f851c6fa88,http://pdfs.semanticscholar.org/c49a/ed65fcf9ded15c44f9cbb4b161f851c6fa88.pdf,,,http://www.ee.iitb.ac.in/~icvgip/PAPERS/298.pdf +c472436764a30278337aca9681eee456bee95c34,http://pdfs.semanticscholar.org/c472/436764a30278337aca9681eee456bee95c34.pdf,,,http://labconscious.huji.ac.il/wp-content/uploads/2017/09/1-s2.0-S2352250X1730043X-main.pdf +c466ad258d6262c8ce7796681f564fec9c2b143d,http://pdfs.semanticscholar.org/c466/ad258d6262c8ce7796681f564fec9c2b143d.pdf,,,http://www.mva-org.jp/Proceedings/2013USB/papers/14-21.pdf +ea3fa5e6004c0504feaa31e01b2ea19f138e9a78,,,, +eacba5e8fbafb1302866c0860fc260a2bdfff232,http://pdfs.semanticscholar.org/eacb/a5e8fbafb1302866c0860fc260a2bdfff232.pdf,,,https://arxiv.org/pdf/1803.09092v1.pdf +ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,,,https://doi.org/10.1109/ICIP.2017.8296549, +ea8fa68b74ffefbe79a3576d7e4ae4365a1346ff,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.113 +ea8d217231d4380071132ce37bf997164b60ec44,,,https://doi.org/10.1109/SIU.2016.7496031, +ea2b3efd4d317ebaffaf7dc8c62db5ff1eab0e1b,,,https://doi.org/10.1109/FRUCT-ISPIT.2016.7561522, +ea026456729f0ec54c697198e1fd089310de4ae2,,,https://doi.org/10.1109/CIBIM.2013.6607917, +ea79a2ad4ac307cb8c586b52bf06d7bf783003a8,,,, +ea482bf1e2b5b44c520fc77eab288caf8b3f367a,http://pdfs.semanticscholar.org/ea48/2bf1e2b5b44c520fc77eab288caf8b3f367a.pdf,,https://doi.org/10.24963/ijcai.2017/361,http://www.ijcai.org/proceedings/2017/0361.pdf +ea6f5c8e12513dbaca6bbdff495ef2975b8001bd,http://pdfs.semanticscholar.org/ea6f/5c8e12513dbaca6bbdff495ef2975b8001bd.pdf,,,https://www.amhsr.org/articles/applying-a-set-of-gabor-filter-to-2dretinal-fundus-image-to-detect-the-optic-nerve-head-onh.pdf +eab53c9e3e8442050aa6ad97003f2356a365adaa,,,, +ea1eeefb676d39b5f456937f8894311587cc7c2f,,,, +ea85378a6549bb9eb9bcc13e31aa6a61b655a9af,http://pdfs.semanticscholar.org/ea85/378a6549bb9eb9bcc13e31aa6a61b655a9af.pdf,,,http://www.gris.informatik.tu-darmstadt.de/lehre/dipl_bachl_mastr/DanielHartungDiplomarbeit.pdf +ea2ee5c53747878f30f6d9c576fd09d388ab0e2b,http://pdfs.semanticscholar.org/ea2e/e5c53747878f30f6d9c576fd09d388ab0e2b.pdf,,https://doi.org/10.1007/978-3-642-21257-4_37,https://acceda.ulpgc.es:8443/bitstream/10553/15079/5/C075_LNCS_IBPRIA11_postprint.pdf +ea86b75427f845f04e96bdaadfc0d67b3f460005,,,https://doi.org/10.1109/ICIP.2016.7532686, +ea5c9d5438cde6d907431c28c2f1f35e02b64b33,,,https://doi.org/10.1109/SPAC.2017.8304257, +ea218cebea2228b360680cb85ca133e8c2972e56,http://pdfs.semanticscholar.org/ea21/8cebea2228b360680cb85ca133e8c2972e56.pdf,,,http://arxiv.org/pdf/1404.3543v2.pdf +ea96bc017fb56593a59149e10d5f14011a3744a0,http://pdfs.semanticscholar.org/ea96/bc017fb56593a59149e10d5f14011a3744a0.pdf,,https://doi.org/10.1016/j.sigpro.2015.09.038,http://www.cse.ust.hk/~qnature/pdf/SignalProcessing2016.pdf +e12b2c468850acb456b0097d5535fc6a0d34efe3,,,https://doi.org/10.1016/j.neucom.2011.03.009, +e1c50cf0c08d70ff90cf515894b2b360b2bc788b,,,https://doi.org/10.1109/ICSMC.2007.4414085, +e10cbd049ac2f5cc8af9eb8e587b3408ad4bb111,,,https://doi.org/10.1117/1.JEI.24.5.053028, +e1b656c846a360d816a9f240499ec4f306897b98,,,, +e10a257f1daf279e55f17f273a1b557141953ce2,http://pdfs.semanticscholar.org/e10a/257f1daf279e55f17f273a1b557141953ce2.pdf,,https://doi.org/10.1016/j.imavis.2014.02.001,http://qil.uh.edu/qil/websitecontent/pdf/2015-9.pdf +e171fba00d88710e78e181c3e807c2fdffc6798a,http://pdfs.semanticscholar.org/e171/fba00d88710e78e181c3e807c2fdffc6798a.pdf,,https://doi.org/10.1016/S0031-3203(03)00008-6,https://pdfs.semanticscholar.org/e171/fba00d88710e78e181c3e807c2fdffc6798a.pdf +e1c59e00458b4dee3f0e683ed265735f33187f77,http://pdfs.semanticscholar.org/e1c5/9e00458b4dee3f0e683ed265735f33187f77.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/download/6462/7178 +e111624fb4c5dc60b9e8223abfbf7c4196d34b21,,,,http://doi.ieeecomputersociety.org/10.1109/BIBM.2016.7822814 +e101bab97bce2733222db9cfbb92a82779966508,,,https://doi.org/10.1109/TCYB.2016.2549639, +e1f790bbedcba3134277f545e56946bc6ffce48d,http://pdfs.semanticscholar.org/e1f7/90bbedcba3134277f545e56946bc6ffce48d.pdf,,,http://ijirset.com/upload/2014/may/71_Image_Retrieval.pdf +e14b046a564604508ea8e3369e7e9f612e148511,,,https://doi.org/10.1007/978-3-642-17829-0_4, +e1ab3b9dee2da20078464f4ad8deb523b5b1792e,http://pdfs.semanticscholar.org/e1ab/3b9dee2da20078464f4ad8deb523b5b1792e.pdf,,,http://www.ni.tu-berlin.de/fileadmin/fg215/teaching/nnproject/cnn_pre_trainin_paper.pdf +e16efd2ae73a325b7571a456618bfa682b51aef8,http://pdfs.semanticscholar.org/e16e/fd2ae73a325b7571a456618bfa682b51aef8.pdf,,,http://cse.seu.edu.cn/people/xgeng/LDL/resource/aaai16b.pdf +e16eeed2ada9166a035d238b1609462928db69db,,,, +e13360cda1ebd6fa5c3f3386c0862f292e4dbee4,http://pdfs.semanticscholar.org/e133/60cda1ebd6fa5c3f3386c0862f292e4dbee4.pdf,,,http://arxiv.org/abs/1611.08976 +e1f6e2651b7294951b5eab5d2322336af1f676dc,http://pdfs.semanticscholar.org/e1f6/e2651b7294951b5eab5d2322336af1f676dc.pdf,,,http://naturalspublishing.com/files/published/947g26k9xcj6vx.pdf +e198a7b9e61dd19c620e454aaa81ae8f7377ade0,,,https://doi.org/10.1109/CVPRW.2010.5543611, +e1dd586842419f3c40c0d7b70c120cdea72f5b5c,,,, +e1449be4951ba7519945cd1ad50656c3516113da,,,https://doi.org/10.1109/TCSVT.2016.2603535, +e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2,http://pdfs.semanticscholar.org/e1e6/e6792e92f7110e26e27e80e0c30ec36ac9c2.pdf,,,https://arxiv.org/pdf/1803.05105v1.pdf +cd9666858f6c211e13aa80589d75373fd06f6246,http://pdfs.semanticscholar.org/cd96/66858f6c211e13aa80589d75373fd06f6246.pdf,,https://doi.org/10.1007/978-3-319-54187-7_29,http://www.diid.unipa.it/cvip/pdf/ACCV2016.pdf +cd4c047f4d4df7937aff8fc76f4bae7718004f40,http://pdfs.semanticscholar.org/cd4c/047f4d4df7937aff8fc76f4bae7718004f40.pdf,,https://doi.org/10.1016/j.cviu.2015.01.008,http://gravis.cs.unibas.ch/publications/2015/2015_Background_Modeling_Generative_Models.pdf +cd2bf0e1d19babe51eaa94cbc24b223e9c048ad6,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2016.2581168 +cd6c2ae00157e3fb6ab56379843280eb4cbb01b4,http://www.umiacs.umd.edu/~yzyang/paper/ICRA_2013_Multi.pdf,,https://doi.org/10.1109/ICRA.2013.6631179,http://www.umiacs.umd.edu/~cteo/public-shared/ICRA_2013_Multi_preprint.pdf +cd596a2682d74bdfa7b7160dd070b598975e89d9,http://pdfs.semanticscholar.org/cd59/6a2682d74bdfa7b7160dd070b598975e89d9.pdf,,,http://cs229.stanford.edu/proj2009/AgrawalCosgriffMudur.pdf +cde7901c0945683d0c677b1bb415786e4f6081e6,,,,http://doi.ieeecomputersociety.org/10.1109/IRI.2015.44 +cdb1d32bc5c1a9bb0d9a5b9c9222401eab3e9ca0,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Functional_Faces_Groupwise_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.544 +cdf2c8752f1070b0385a94c7bf22e8b54cac521b,,,https://doi.org/10.1007/s11265-010-0541-2, +cda8fd9dd8b485e6854b1733d2294f69666c66f7,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2014/Activity%20Recognition%20in%20Unconstrained%20RGB-D%20Video%20using%203D%20Trajectories.pdf,,,http://doi.acm.org/10.1145/2668956.2668961 +cd33b3ca8d7f00c1738c41b2071a3164ba42ea61,,,https://doi.org/10.1142/S0218213008003832,http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.25 +cda4fb9df653b5721ad4fe8b4a88468a410e55ec,http://pdfs.semanticscholar.org/cda4/fb9df653b5721ad4fe8b4a88468a410e55ec.pdf,,,http://disp.ee.ntu.edu.tw/~pujols/Gabor%20wavelet%20transform%20and%20its%20application.pdf +cdf0dc4e06d56259f6c621741b1ada5c88963c6d,,,https://doi.org/10.1109/ICIP.2014.7025061, +cd85f71907f1c27349947690b48bfb84e44a3db0,,,https://doi.org/10.1007/978-981-10-4840-1, +cdfa7dccbc9e9d466f8a5847004973a33c7fcc89,,,https://doi.org/10.1109/TIFS.2013.2263498, +cd3005753012409361aba17f3f766e33e3a7320d,http://pdfs.semanticscholar.org/cd30/05753012409361aba17f3f766e33e3a7320d.pdf,,,http://arxiv.org/abs/1004.0517 +cd64530a910ba28cbd127c78913dd787184f8e6d,,,, +cd687ddbd89a832f51d5510c478942800a3e6854,http://pdfs.semanticscholar.org/cd68/7ddbd89a832f51d5510c478942800a3e6854.pdf,,,http://www.fdg2014.org/papers/fdg2014_demo_12.pdf +cde373b159361705580498d8712b9b7063c0d58c,,,, +cd3b713722ccb1e2ae3b050837ca296b2a2dd82a,,,https://doi.org/10.1016/j.jvcir.2016.07.015, +cd436f05fb4aeeda5d1085f2fe0384526571a46e,http://pdfs.semanticscholar.org/cd43/6f05fb4aeeda5d1085f2fe0384526571a46e.pdf,,https://doi.org/10.1007/978-3-319-46478-7_39,http://vision.csee.wvu.edu/~doretto/publications/motiianD16eccv.pdf +cd74d606e76ecddee75279679d9770cdc0b49861,,,https://doi.org/10.1109/TIP.2014.2365725, +cdd30bd77c7a4fa21176a21498f65f6b8b873965,,,, +cc589c499dcf323fe4a143bbef0074c3e31f9b60,http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.6 +ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18,http://ibug.doc.ic.ac.uk/media/uploads/documents/taud.pdf,,https://doi.org/10.1109/TCYB.2013.2249063,https://ibug.doc.ic.ac.uk/media/uploads/documents/taud.pdf +cc2eaa182f33defbb33d69e9547630aab7ed9c9c,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf,,,http://www.aaai.org/ocs/index.php/HCOMP/HCOMP15/paper/view/11593 +cc1b093cfb97475faabab414878fa7e4a2d97cd7,,,,http://doi.ieeecomputersociety.org/10.1109/ICALT.2017.141 +ccca2263786429b1b3572886ce6a2bea8f0dfb26,,,https://doi.org/10.1007/s10044-014-0388-4, +ccbfc004e29b3aceea091056b0ec536e8ea7c47e,http://research.microsoft.com/~yqxu/papers/IEEE%20ICIP2005.pdf,,https://doi.org/10.1109/ICIP.2005.1530073, +ccdea57234d38c7831f1e9231efcb6352c801c55,http://pdfs.semanticscholar.org/ccde/a57234d38c7831f1e9231efcb6352c801c55.pdf,,https://doi.org/10.1142/S0218001414560114,http://cdn.intechopen.com/pdfs/10200/InTech-Illumination_processing_in_face_recognition.pdf +cc47368fe303c6cbda38caf5ac0e1d1c9d7e2a52,,,, +cc38942825d3a2c9ee8583c153d2c56c607e61a7,http://pdfs.semanticscholar.org/cc38/942825d3a2c9ee8583c153d2c56c607e61a7.pdf,,,http://doc.utwente.nl/84357/1/dutta2012database.pdf +cc3c273bb213240515147e8be68c50f7ea22777c,http://pdfs.semanticscholar.org/cc3c/273bb213240515147e8be68c50f7ea22777c.pdf,,,http://piim.newschool.edu/journal/issues/2015/01/pdfs/ParsonsJournalForInformationMapping_Misha_Rabinovich.pdf +cc7c63473c5bef5ae09f26b2258691d9ffdd5f93,,,https://doi.org/10.1109/ICMLA.2012.17, +cc44f1d99b17a049a8186ec04c6a1ecf1906c3c8,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.87 +ccb95192001b07bb25fc924587f9682b0df3de8e,,,https://doi.org/10.1109/ICACCI.2016.7732123, +cc70fb1ab585378c79a2ab94776723e597afe379,,,https://doi.org/10.1109/ICIP.2017.8297067, +cc6d3ccc9e3dd0a43313a714316c8783cd879572,,,https://doi.org/10.1109/ICIP.2017.8296802, +cc9a61a30afdb8a5bc7088e1cef814b53dc4fc66,,,https://doi.org/10.1142/s0218213015400199, +ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b,http://pdfs.semanticscholar.org/ccf4/3c62e4bf76b6a48ff588ef7ed51e87ddf50b.pdf,,,http://files.aiscience.org/journal/article/pdf/70160033.pdf +cc5edaa1b0e91bc3577547fc30ea094aa2722bf0,,,https://doi.org/10.1109/CICARE.2014.7007832, +cce2f036d0c5f47c25e459b2f2c49fa992595654,,,,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.93 +cca476114c48871d05537abb303061de5ab010d6,,,https://doi.org/10.15439/2016F472, +cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,,,https://doi.org/10.1109/SIU.2016.7495874, +cc8bf03b3f5800ac23e1a833447c421440d92197,https://pdfs.semanticscholar.org/cc8b/f03b3f5800ac23e1a833447c421440d92197.pdf,,https://doi.org/10.1007/s00138-009-0232-9,https://www.researchgate.net/profile/Reza_Ebrahimpour/publication/220464885_Improving_mixture_of_experts_for_view-independent_face_recognition_using_teacher-directed_learning/links/0fcfd50774e2478b5e000000.pdf +ccebd3bf069f5c73ea2ccc5791976f894bc6023d,,,https://doi.org/10.1109/ICPR.2016.7900186, +cc713a92d8a3aff6f1586923ca9ba267d5e89251,,,, +cc91001f9d299ad70deb6453d55b2c0b967f8c0d,http://pdfs.semanticscholar.org/cc91/001f9d299ad70deb6453d55b2c0b967f8c0d.pdf,,https://doi.org/10.3390/sym7031475,http://www.mdpi.com/2073-8994/7/3/1475/pdf +cc96eab1e55e771e417b758119ce5d7ef1722b43,http://pdfs.semanticscholar.org/cc96/eab1e55e771e417b758119ce5d7ef1722b43.pdf,,,http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1511.05049.pdf +cceec87bad847b9b87178bde8ce5cce6bf1a8e99,,,https://doi.org/10.1109/RIISS.2014.7009163, +ccfebdf7917cb50b5fcd56fb837f841a2246a149,,,https://doi.org/10.1109/ICIP.2015.7351065, +cc7e66f2ba9ac0c639c80c65534ce6031997acd7,http://pdfs.semanticscholar.org/cc7e/66f2ba9ac0c639c80c65534ce6031997acd7.pdf,,,https://infoscience.epfl.ch/record/187534/files/top_1.pdf?version=1 +cc9057d2762e077c53e381f90884595677eceafa,http://pdfs.semanticscholar.org/cc90/57d2762e077c53e381f90884595677eceafa.pdf,,https://doi.org/10.1007/978-3-319-16865-4_44,http://web.cse.msu.edu/~liuxm/publication/Roth_Liu_ACCV2014.pdf +e692870efb009da4b9316678b354ae935fdf48eb,,,, +e64b683e32525643a9ddb6b6af8b0472ef5b6a37,http://pdfs.semanticscholar.org/e64b/683e32525643a9ddb6b6af8b0472ef5b6a37.pdf,,https://doi.org/10.1007/978-3-642-12900-1_9,http://bi.snu.ac.kr/Courses/DMIR/files/face%20recog.pdf +e6f3707a75d760c8590292b54bc8a48582da2cd4,,,https://doi.org/10.1007/s11760-012-0410-5, +e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef,http://pdfs.semanticscholar.org/e69a/c130e3c7267cce5e1e3d9508ff76eb0e0eef.pdf,,https://doi.org/10.1049/iet-cvi.2014.0086,http://cbl.uh.edu/pub_files/CVI-2014-0086.pdf +e6c491fb6a57c9a7c2d71522a1a066be2e681c84,,,https://doi.org/10.1016/j.imavis.2016.06.002, +e6d46d923f201da644ae8d8bd04721dd9ac0e73d,,,https://doi.org/10.1109/ISBA.2016.7477226, +e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec,http://pdfs.semanticscholar.org/e686/5b000cf4d4e84c3fe895b7ddfc65a9c4aaec.pdf,,,http://user.phil-fak.uni-duesseldorf.de/~petersen/WiSe1213_InfowiColl/cap15.pdf +e6c4715476216be00ea61fc276ff39fb4620d785,,,, +e6d689054e87ad3b8fbbb70714d48712ad84dc1c,http://pdfs.semanticscholar.org/e6d6/89054e87ad3b8fbbb70714d48712ad84dc1c.pdf,,https://doi.org/10.5244/C.14.24,http://www.bmva.org/bmvc/2000/papers/p24.pdf +e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd,http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=8BA80DE8A35C6665EB6C19D582E5689F?doi=10.1.1.227.7824&rep=rep1&type=pdf,,https://doi.org/10.1109/TIP.2010.2044958,http://c2inet.sce.ntu.edu.sg/ivor/publication/TIP_FME.pdf +e6f20e7431172c68f7fce0d4595100445a06c117,http://pdfs.semanticscholar.org/e6f2/0e7431172c68f7fce0d4595100445a06c117.pdf,,https://doi.org/10.1007/978-3-319-54184-6_24,http://arxiv.org/abs/1608.06495 +e6c834c816b5366875cf3060ccc20e16f19a9fc6,,,https://doi.org/10.1109/BTAS.2016.7791185, +e6540d70e5ffeed9f447602ea3455c7f0b38113e,http://pdfs.semanticscholar.org/e654/0d70e5ffeed9f447602ea3455c7f0b38113e.pdf,,https://doi.org/10.1016/j.neucom.2016.12.017,http://www.ic.unicamp.br/~sandra/pdf/perez_Neurocomputing17.pdf +e66a6ae542907d6a0ebc45da60a62d3eecf17839,,,https://doi.org/10.1109/EUVIP.2014.7018366, +e66b4aa85524f493dafde8c75176ac0afad5b79c,,,https://doi.org/10.1109/SSCI.2017.8285219, +e6ee36444038de5885473693fb206f49c1369138,http://pdfs.semanticscholar.org/e6ee/36444038de5885473693fb206f49c1369138.pdf,,,https://arxiv.org/pdf/1801.06345v1.pdf +e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,http://pdfs.semanticscholar.org/e617/8de1ef15a6a973aad2791ce5fbabc2cb8ae5.pdf,,https://doi.org/10.1007/978-3-319-66709-6_20,http://mediatum.ub.tum.de/doc/1368388/62577.pdf +e6d6d1b0a8b414160f67142fc18e1321fe3f1c49,,,https://doi.org/10.1109/FSKD.2015.7382037, +e6c8f5067ec2ad6af33745312b45fab03e7e038b,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1297.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206657 +e69a765d033ef6ea55c57ca41c146b27964c5cf2,,,https://doi.org/10.1109/ISCAS.2017.8050764, +f913bb65b62b0a6391ffa8f59b1d5527b7eba948,http://pdfs.semanticscholar.org/f913/bb65b62b0a6391ffa8f59b1d5527b7eba948.pdf,,https://doi.org/10.1016/j.patrec.2013.03.001,https://riunet.upv.es/bitstream/handle/10251/40332/Villegas13_PRL_TSRDA_draft.pdf;jsessionid=E2F74A7179A7A6CAE63858FAE0AE7190?sequence=2 +f9784db8ff805439f0a6b6e15aeaf892dba47ca0,http://pdfs.semanticscholar.org/f978/4db8ff805439f0a6b6e15aeaf892dba47ca0.pdf,,,http://www.wseas.org/multimedia/journals/information/2017/a405909-078.pdf +f9fb7979af4233c2dd14813da94ec7c38ce9232a,,,,http://doi.acm.org/10.1145/3131902 +f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,http://pdfs.semanticscholar.org/f935/225e7811858fe9ef6b5fd3fdd59aec9abd1a.pdf,,,http://aaiscs.com/LHBD/papers/Liu_2006_NeuroImage.pdf +f9752fd07b14505d0438bc3e14b23d7f0fe7f48b,,,,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2009.114 +f95321f4348cfacc52084aae2a19127d74426047,,,https://doi.org/10.1109/ICMLC.2013.6890897, +f963967e52a5fd97fa3ebd679fd098c3cb70340e,http://pdfs.semanticscholar.org/f963/967e52a5fd97fa3ebd679fd098c3cb70340e.pdf,,https://doi.org/10.1007/978-3-642-12159-3_15,https://arxiv.org/pdf/1004.0512v1.pdf +f9e0209dc9e72d64b290d0622c1c1662aa2cc771,http://pdfs.semanticscholar.org/f9e0/209dc9e72d64b290d0622c1c1662aa2cc771.pdf,,,http://www.cse.msu.edu/biometrics/Publications/Thesis/AlessandraPaulino_ContributionsBiometricRecognitionIdenticalTwinsLatentFp_PhD13.pdf +f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1,http://pdfs.semanticscholar.org/f96b/dd1e2a940030fb0a89abbe6c69b8d7f6f0c1.pdf,,https://doi.org/10.1016/j.imavis.2013.12.002,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=913011 +f93606d362fcbe62550d0bf1b3edeb7be684b000,http://pdfs.semanticscholar.org/f936/06d362fcbe62550d0bf1b3edeb7be684b000.pdf,,https://doi.org/10.1093/comjnl/bxs001,http://www.researchgate.net/profile/Alex_James/publication/232710120_Nearest_Neighbor_Classifier_Based_on_Nearest_Feature_Decisions/links/09e4150a1e9ce1a6db000000.pdf +f909d04c809013b930bafca12c0f9a8192df9d92,http://pdfs.semanticscholar.org/f909/d04c809013b930bafca12c0f9a8192df9d92.pdf,,https://doi.org/10.1007/978-3-540-75690-3_16,http://parnec.nuaa.edu.cn/papers/conference/2007/jliu-AMFG07.pdf +f9c86f8b0d312ceec871c8a3b6bc79bbe76c1069,,,, +f925879459848a3eeb0035fe206c4645e3f20d42,,,,http://doi.acm.org/10.1145/3025453.3025472 +f9d1f12070e5267afc60828002137af949ff1544,http://pdfs.semanticscholar.org/f9d1/f12070e5267afc60828002137af949ff1544.pdf,,,http://arxiv.org/pdf/1512.01691v1.pdf +f9ccfe000092121a2016639732cdb368378256d5,http://pdfs.semanticscholar.org/f9cc/fe000092121a2016639732cdb368378256d5.pdf,,,http://www-rech.telecom-lille.fr/uha3ds2016/Papers/Cognitive%20behaviour%20analysis.pdf +f0ba5c89094b15469f95fd2a05a46b68b8faf1ca,,,, +f02f0f6fcd56a9b1407045de6634df15c60a85cd,http://pdfs.semanticscholar.org/f02f/0f6fcd56a9b1407045de6634df15c60a85cd.pdf,,,http://arxiv.org/abs/1712.05015 +f08cb47cd91a83ea849f2dfe2682529f3bb95aa9,,,, +f0f80055ab85254ca58c1b08017969a0c355881f,,,, +f0ae807627f81acb63eb5837c75a1e895a92c376,http://pdfs.semanticscholar.org/f0ae/807627f81acb63eb5837c75a1e895a92c376.pdf,,,http://www.ijeert.org/pdf/v3-i12/15.pdf +f074e86e003d5b7a3b6e1780d9c323598d93f3bc,http://pdfs.semanticscholar.org/f074/e86e003d5b7a3b6e1780d9c323598d93f3bc.pdf,,https://doi.org/10.3390/axioms3020202,http://www.mdpi.com/2075-1680/3/2/202/pdf +f0dac9a55443aa39fd9832bdff202a579b835e88,,,https://doi.org/10.1109/JSTSP.2016.2543681, +f0681fc08f4d7198dcde803d69ca62f09f3db6c5,http://pdfs.semanticscholar.org/f068/1fc08f4d7198dcde803d69ca62f09f3db6c5.pdf,,https://doi.org/10.1007/978-3-642-35749-7_16,http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Conf_ECCV_Girit_2010.pdf +f0a9d69028edd1a39147848ad1116ca308d7491e,,,https://doi.org/10.1007/11573548_11, +f09d5b6433f63d7403df5650893b78cdcf7319b3,,,https://doi.org/10.1109/AFGR.2008.4813384, +f0de1e61ba806f3db918f9e498fcc6dfa223b13d,,,, +f0f501e1e8726148d18e70c8e9f6feea9360d119,http://pdfs.semanticscholar.org/f0f5/01e1e8726148d18e70c8e9f6feea9360d119.pdf,,,http://jultika.oulu.fi/files/isbn9789526208732.pdf +f06b015bb19bd3c39ac5b1e4320566f8d83a0c84,http://pdfs.semanticscholar.org/f06b/015bb19bd3c39ac5b1e4320566f8d83a0c84.pdf,,https://doi.org/10.1016/j.imavis.2014.02.008,http://www.emotient.com/wp-content/uploads/Sikka_IMAVIS_2014.pdf +f0b4f5104571020206b2d5e606c4d70f496983f9,,,https://doi.org/10.1109/FUZZ-IEEE.2014.6891674, +f0a3f12469fa55ad0d40c21212d18c02be0d1264,http://pdfs.semanticscholar.org/f0a3/f12469fa55ad0d40c21212d18c02be0d1264.pdf,,https://doi.org/10.1007/978-3-642-37444-9_49,http://slsp.kaist.ac.kr/paperdata/sparsitysharing.pdf +f05ad40246656a977cf321c8299158435e3f3b61,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Lu_Face_Recognition_Using_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.408 +f702f1294c0cd74b31db39c698281744d3137eb4,,,, +f781e50caa43be13c5ceb13f4ccc2abc7d1507c5,http://pdfs.semanticscholar.org/f781/e50caa43be13c5ceb13f4ccc2abc7d1507c5.pdf,,,http://www.mva-org.jp/Proceedings/CommemorativeDVD/2005/papers/2005430.pdf +f74917fc0e55f4f5682909dcf6929abd19d33e2e,http://pdfs.semanticscholar.org/f749/17fc0e55f4f5682909dcf6929abd19d33e2e.pdf,,,https://openreview.net/pdf?id=S1CIev1vM +f7911b9ff58d07d19c68f4a30f40621f63c0f385,,,,http://dl.acm.org/citation.cfm?id=3007693 +f740bac1484f2f2c70777db6d2a11cf4280081d6,http://pdfs.semanticscholar.org/f740/bac1484f2f2c70777db6d2a11cf4280081d6.pdf,,,https://arxiv.org/pdf/1801.03754v1.pdf +f7452a12f9bd927398e036ea6ede02da79097e6e,http://pdfs.semanticscholar.org/f745/2a12f9bd927398e036ea6ede02da79097e6e.pdf,,,https://arxiv.org/pdf/1803.09851v1.pdf +f7093b138fd31956e30d411a7043741dcb8ca4aa,http://pdfs.semanticscholar.org/f709/3b138fd31956e30d411a7043741dcb8ca4aa.pdf,,,https://arxiv.org/pdf/1605.06052v1.pdf +f7ffc2dc6801b0feee7d863f02ae2ca34c3e6a66,,,, +f762afd65f3b680330e390f88d4cc39485345a01,,,,http://doi.ieeecomputersociety.org/10.1109/ACIIW.2017.8272606 +f7de943aa75406fe5568fdbb08133ce0f9a765d4,http://pdfs.semanticscholar.org/f7de/943aa75406fe5568fdbb08133ce0f9a765d4.pdf,,,http://borders.arizona.edu/cms/sites/default/files/BORDERS_YR5-T1%204-TechReport.pdf +f75852386e563ca580a48b18420e446be45fcf8d,http://pdfs.semanticscholar.org/f758/52386e563ca580a48b18420e446be45fcf8d.pdf,,,http://www.umiacs.umd.edu/~raghuram/Publications/CourseProjects/ENEE631.pdf +f702a6cf6bc5e4cf53ea72baa4fc9d80cdbbae93,,,https://doi.org/10.1109/TCSVT.2007.903317, +f73174cfcc5c329b63f19fffdd706e1df4cc9e20,,,,http://doi.ieeecomputersociety.org/10.1109/FIT.2015.13 +f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3,http://pdfs.semanticscholar.org/f7c5/0d2be9fba0e4527fd9fbe3095e9d9a94fdd3.pdf,,https://doi.org/10.1007/978-3-319-16811-1_17,http://www.kinfacew.com/papers/LM3L_accv14.pdf +f78863f4e7c4c57744715abe524ae4256be884a9,http://pdfs.semanticscholar.org/f788/63f4e7c4c57744715abe524ae4256be884a9.pdf,,https://doi.org/10.1016/j.neucom.2010.07.017,http://cgit.nutn.edu.tw:8080/cgit/PaperDL/LZJ_120826151743.PDF +f77c9bf5beec7c975584e8087aae8d679664a1eb,http://pdfs.semanticscholar.org/f77c/9bf5beec7c975584e8087aae8d679664a1eb.pdf,,,http://arxiv.org/abs/1703.08497 +f7bebb2d5ef7c9bd38808b8e615756efafc2a1e7,,,https://doi.org/10.1109/ICIP.2012.6467434, +f79e4ba09402adab54d2efadd1c4bfe4e20c5da5,,,https://doi.org/10.1109/ICIP.2017.8296364, +f772af1dbed4ae31d75ff257e6ba42a70039b417,,,, +e8686663aec64f4414eba6a0f821ab9eb9f93e38,http://pdfs.semanticscholar.org/e868/6663aec64f4414eba6a0f821ab9eb9f93e38.pdf,,https://doi.org/10.1109/ICIP.2003.1247391,http://www.gts.tsc.uvigo.es/~jalba/papers/icip03.pdf +e83e5960c2aabab654e1545eb419ef64c25800d5,,,https://doi.org/10.1016/j.neunet.2016.08.011, +e860db656f39d738050b5f3e0bf72724e6a4ad5c,,,, +e8f4a4e0fe0b2f0054b44b947828d71e10ec61a7,,,, +e82360682c4da11f136f3fccb73a31d7fd195694,http://pdfs.semanticscholar.org/e823/60682c4da11f136f3fccb73a31d7fd195694.pdf,,,https://aaltodoc.aalto.fi/bitstream/handle/123456789/3242/urn100224.pdf?isAllowed=y&sequence=1 +e8951cc76af80da43e3528fe6d984071f17f57e7,,,https://doi.org/10.1109/WACVW.2017.9, +e8410c4cd1689829c15bd1f34995eb3bd4321069,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553731.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553731 +e8c051d9e7eb8891b23cde6cbfad203011318a4f,,,,http://doi.acm.org/10.1145/3013971.3014015 +e88988f4696e7e2925ed96467fde4314bfa95eff,,,https://doi.org/10.1016/j.neucom.2015.01.076, +e8f0f9b74db6794830baa2cab48d99d8724e8cb6,http://pdfs.semanticscholar.org/e8f0/f9b74db6794830baa2cab48d99d8724e8cb6.pdf,,https://doi.org/10.1007/978-3-540-88688-4_52,http://www.ecse.rpi.edu/homepages/qji/Papers/activelabeling.pdf +e82a0976db908e6f074b926f58223ac685533c65,,,https://doi.org/10.1007/s11042-015-2848-2, +e8b2a98f87b7b2593b4a046464c1ec63bfd13b51,http://pdfs.semanticscholar.org/e8b2/a98f87b7b2593b4a046464c1ec63bfd13b51.pdf,,,http://arxiv.org/abs/1606.05413 +e86008f6aebd0ab26bdb69d2549b2e8454b8959c,,,, +e8c9dcbf56714db53063b9c367e3e44300141ff6,http://faculty.virginia.edu/humandynamicslab/pubs/BrickHunterCohn-ACII2009.pdf,,https://doi.org/10.1109/ACII.2009.5349600, +e865908ed5e5d7469b412b081ca8abd738c72121,,,https://doi.org/10.1109/TIP.2016.2621667, +e8b56ed34ece9b1739fff0df6af3b65390c468d3,,,, +e8c6853135856515fc88fff7c55737a292b0a15b,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.46 +fa54ab106c7f6dbd3c004cea4ef74ea580cf50bf,,,,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.18 +fadafdd7dedd2bdd775b4591a998c8b5254081e1,,,, +fac5a9a18157962cff38df6d4ae69f8a7da1cfa8,http://www.cs.sunysb.edu/~vislab/papers/01580481.pdf,,,http://www3.cs.stonybrook.edu/~ial/content/papers/2006/lzhang-pami2006.pdf +faf19885431cb39360158982c3a1127f6090a1f6,,,https://doi.org/10.1109/BTAS.2015.7358768, +fa72e39971855dff6beb8174b5fa654e0ab7d324,,,https://doi.org/10.1007/s11042-013-1793-1, +fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,http://pdfs.semanticscholar.org/fab8/3bf8d7cab8fe069796b33d2a6bd70c8cefc6.pdf,,,http://fipa.cs.kit.edu/download/befit-evaluation_guidelines.pdf +faeefc5da67421ecd71d400f1505cfacb990119c,http://pdfs.semanticscholar.org/faee/fc5da67421ecd71d400f1505cfacb990119c.pdf,,https://doi.org/10.3389/frobt.2017.00061, +fa08a4da5f2fa39632d90ce3a2e1688d147ece61,http://pdfs.semanticscholar.org/fa08/a4da5f2fa39632d90ce3a2e1688d147ece61.pdf,,,http://openaccess.thecvf.com/content_ICCV_2017/supplemental/Wolf_Unsupervised_Creation_of_ICCV_2017_supplemental.pdf +fab2fc6882872746498b362825184c0fb7d810e4,http://pdfs.semanticscholar.org/fab2/fc6882872746498b362825184c0fb7d810e4.pdf,,, +faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b,http://pdfs.semanticscholar.org/faea/d8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b.pdf,,,https://arxiv.org/pdf/1611.10152v1.pdf +faa46ef96493b04694555738100d9f983915cf9b,,,https://doi.org/10.1007/s10489-015-0735-1, +fa24bf887d3b3f6f58f8305dcd076f0ccc30272a,http://pdfs.semanticscholar.org/fa24/bf887d3b3f6f58f8305dcd076f0ccc30272a.pdf,,,http://www.jmlr.org/proceedings/papers/v39/antoniuk14.pdf +faa29975169ba3bbb954e518bc9814a5819876f6,http://pdfs.semanticscholar.org/faa2/9975169ba3bbb954e518bc9814a5819876f6.pdf,,,https://arxiv.org/pdf/1702.04037v1.pdf +fafe69a00565895c7d57ad09ef44ce9ddd5a6caa,http://pdfs.semanticscholar.org/fafe/69a00565895c7d57ad09ef44ce9ddd5a6caa.pdf,,,http://file.scirp.org/pdf/AM_2012123109350553.pdf +fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,,,https://doi.org/10.1109/TIM.2015.2415012, +fadbb3a447d697d52771e237173b80782caaa936,,,https://doi.org/10.1007/s00530-012-0290-0, +faca1c97ac2df9d972c0766a296efcf101aaf969,http://pdfs.semanticscholar.org/faca/1c97ac2df9d972c0766a296efcf101aaf969.pdf,,https://doi.org/10.1007/978-3-319-46478-7_43,https://arxiv.org/pdf/1608.07138v1.pdf +fa9610c2dc7e2a79e0096ac033b11508d8ae7ed7,,,https://doi.org/10.1109/FSKD.2016.7603418, +fa398c6d6bd03df839dce7b59e04f473bc0ed660,https://www.researchgate.net/profile/Sujata_Pandey/publication/4308761_A_Novel_Approach_for_Face_Recognition_Using_DCT_Coefficients_Re-scaling_for_Illumination_Normalization/links/004635211c385bb7e3000000.pdf,,, +fa5ab4b1b45bf22ce7b194c20c724946de2f2dd4,,,https://doi.org/10.1109/TIP.2015.2421437, +fae83b145e5eeda8327de9f19df286edfaf5e60c,http://pdfs.semanticscholar.org/fae8/3b145e5eeda8327de9f19df286edfaf5e60c.pdf,,,http://academia.edu.documents.s3.amazonaws.com/1938721/ICICTE_2010.pdf +ff82825a04a654ca70e6d460c8d88080ee4a7fcc,,,,http://doi.acm.org/10.1145/2683483.2683533 +ff8315c1a0587563510195356c9153729b533c5b,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2014/Zapping%20IndexUsing%20Smile%20to%20MeasureAdvertisement14.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2364581 +ff9e042cccbed7e350a25b7d806cd17fb79dfdf9,,,https://doi.org/10.1007/s11760-016-0882-9, +fff31548617f208cd5ae5c32917afd48abc4ff6a,,,,http://doi.acm.org/10.1145/3139295.3139309 +ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a,http://pdfs.semanticscholar.org/ff44/d8938c52cfdca48c80f8e1618bbcbf91cb2a.pdf,,https://doi.org/10.1007/978-3-319-68548-9_36,http://imagelab.ing.unimore.it/imagelab/pubblicazioni/2017_ICIAP_Naming.pdf +ff3859917d4121f47de0d46922a103c78514fcab,,,https://doi.org/10.1109/ICB.2016.7550050, +ff402bd06c9c4e94aa47ad80ccc4455efa869af3,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334120 +ff42ec628b0980909bbb84225d0c4f8d9ac51e03,,,https://doi.org/10.1109/TCSVT.2008.2005799, +ff398e7b6584d9a692e70c2170b4eecaddd78357,http://pdfs.semanticscholar.org/ff39/8e7b6584d9a692e70c2170b4eecaddd78357.pdf,,,https://drum.lib.umd.edu/bitstream/handle/1903/13813/Guo_umd_0117E_13642.pdf?isAllowed=y&sequence=1 +ffc5a9610df0341369aa75c0331ef021de0a02a9,http://pdfs.semanticscholar.org/ffc5/a9610df0341369aa75c0331ef021de0a02a9.pdf,,https://doi.org/10.1007/978-3-540-87481-2_36,http://www.researchgate.net/profile/Yangqiu_Song/publication/220698949_Transferred_Dimensionality_Reduction/links/551e3c950cf29dcabb03a72d.pdf +ffd81d784549ee51a9b0b7b8aaf20d5581031b74,http://pdfs.semanticscholar.org/ffd8/1d784549ee51a9b0b7b8aaf20d5581031b74.pdf,,,http://www.rcs.cic.ipn.mx/2014_80/Performance%20Analysis%20of%20Retina%20and%20DoG%20Filtering%20Applied%20to%20Face%20Images%20for%20Training.pdf +ffd4a5bf55fe089ac05ca96285e4e563325f3d1b,,,, +ff01bc3f49130d436fca24b987b7e3beedfa404d,http://pdfs.semanticscholar.org/ff01/bc3f49130d436fca24b987b7e3beedfa404d.pdf,,https://doi.org/10.3390/sym8080075,http://www.mdpi.com/2073-8994/8/8/75/pdf +ff061f7e46a6213d15ac2eb2c49d9d3003612e49,http://pdfs.semanticscholar.org/ff06/1f7e46a6213d15ac2eb2c49d9d3003612e49.pdf,,,http://www.csse.monash.edu.au/~app/recent/ThesisFinal.pdf +ff1f45bdad41d8b35435098041e009627e60d208,http://pdfs.semanticscholar.org/ff1f/45bdad41d8b35435098041e009627e60d208.pdf,,,http://www.robots.ox.ac.uk/~vgg/publications/2017/Nagrani17b/nagrani17b.pdf +ffea4184a0b24807b5f4ed87f9a985c2a27027d9,,,https://doi.org/10.1007/s00530-012-0297-6, +ff60d4601adabe04214c67e12253ea3359f4e082,http://pdfs.semanticscholar.org/ff60/d4601adabe04214c67e12253ea3359f4e082.pdf,,https://doi.org/10.1016/j.imavis.2017.01.012,https://www.cmpe.boun.edu.tr/~salah/imavis_emotiw15_v10.pdf +ff8db3810f927506f3aa594d66d5e8658f3cf4d5,,,,http://doi.acm.org/10.1145/3078971.3079026 +ffea2b26e422c1009afa7e200a43b31a1fae86a9,,,https://doi.org/10.1007/s00500-009-0441-1, +ffb1cb0f9fd65247f02c92cfcb152590a5d68741,,,https://doi.org/10.1109/CISS.2012.6310782, +ffec78f270dba4bdaf6bca7aedc16798bb9347ef,,,, +ffc9d6a5f353e5aec3116a10cf685294979c63d9,http://pdfs.semanticscholar.org/ffc9/d6a5f353e5aec3116a10cf685294979c63d9.pdf,,,https://bib.irb.hr/datoteka/486456.Eigenphase_ERK_Final.pdf +ffaad0204f4af763e3390a2f6053c0e9875376be,http://pdfs.semanticscholar.org/ffaa/d0204f4af763e3390a2f6053c0e9875376be.pdf,,https://doi.org/10.3390/s17071633,http://www.mdpi.com/1424-8220/17/7/1633/pdf +ffcbedb92e76fbab083bb2c57d846a2a96b5ae30,http://pdfs.semanticscholar.org/ffcb/edb92e76fbab083bb2c57d846a2a96b5ae30.pdf,,,https://www.base-search.net/Record/0a42c9d890b1fc4865681a773a3723eacc13f90f30363de110f261027caa5c49 +ff7bc7a6d493e01ec8fa2b889bcaf6349101676e,http://pdfs.semanticscholar.org/ff7b/c7a6d493e01ec8fa2b889bcaf6349101676e.pdf,,,http://www.ee.oulu.fi/~gyzhao/Papers/2008/Facial%20expression%20recognition%20with%20spatiotemporal%20local%20descriptors.pdf +fffa2943808509fdbd2fc817cc5366752e57664a,http://pdfs.semanticscholar.org/fffa/2943808509fdbd2fc817cc5366752e57664a.pdf,,,http://crcv.ucf.edu/ICCV13-Action-Workshop/index.files/NotebookPapers13/Paper%2035%20(Supplementary).pdf +ff46c41e9ea139d499dd349e78d7cc8be19f936c,http://pdfs.semanticscholar.org/ff46/c41e9ea139d499dd349e78d7cc8be19f936c.pdf,,,http://www.ijmer.com/papers/Vol2_Issue4/Vol3_Issue3/AO3313391342.pdf +ff3f128f5addc6ce6b41f19f3d679282bbdaa2ee,,,,http://doi.acm.org/10.1145/2903220.2903255 +ff0617d750fa49416514c1363824b8f61baf8fb5,,,https://doi.org/10.1587/elex.7.1125, +ff5dd6f96e108d8233220cc262bc282229c1a582,http://pdfs.semanticscholar.org/ff5d/d6f96e108d8233220cc262bc282229c1a582.pdf,,,http://ijera.com/papers/Vol2_issue6/DC26708715.pdf +ff946df1cea6c107b2c336419c34ea69cc3ddbc4,,,, +c570d1247e337f91e555c3be0e8c8a5aba539d9f,,,https://doi.org/10.1007/s11042-012-1352-1, +c586463b8dbedce2bfce3ee90517085a9d9e2e13,,,,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2006.9 +c5468665d98ce7349d38afb620adbf51757ab86f,http://pdfs.semanticscholar.org/c546/8665d98ce7349d38afb620adbf51757ab86f.pdf,,https://doi.org/10.1007/11564386_18,http://www.umiacs.umd.edu/~rama/Conf.pdf-files/amfg2005.pdf +c5fff7adc5084d69390918daf09e832ec191144b,,,, +c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6,,,https://doi.org/10.1109/BTAS.2017.8272773, +c5022fbeb65b70f6fe11694575b8ad1b53412a0d,,,https://doi.org/10.1109/ICIP.2005.1530209, +c5adb33bd3557c94d0e54cfe2036a1859118a65e,,,, +c5d13e42071813a0a9dd809d54268712eba7883f,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%2016/PID2891229.pdf,,https://doi.org/10.1109/BTAS.2013.6712718, +c50d73557be96907f88b59cfbd1ab1b2fd696d41,http://pdfs.semanticscholar.org/c50d/73557be96907f88b59cfbd1ab1b2fd696d41.pdf,,https://doi.org/10.1117/1.1763586,http://web.ornl.gov/sci/ees/eesrd/pdfs/publications/semiconductorsidewallshapeestimation.pdf +c54f9f33382f9f656ec0e97d3004df614ec56434,http://pdfs.semanticscholar.org/c54f/9f33382f9f656ec0e97d3004df614ec56434.pdf,,https://doi.org/10.1016/j.patrec.2010.07.020,http://www.sis.uta.fi/~gofase/docs/papers/2010_Gizatdinova_Surakka_(Automatic_edge-based_localization_of_facial_features).pdf +c574c72b5ef1759b7fd41cf19a9dcd67e5473739,http://pdfs.semanticscholar.org/c574/c72b5ef1759b7fd41cf19a9dcd67e5473739.pdf,,https://doi.org/10.1186/s13640-017-0194-1,https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-017-0194-1?site=jivp-eurasipjournals.springeropen.com +c5c56e9c884ac4070880ac481909bb6b621d2a3f,,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126466 +c5a561c662fc2b195ff80d2655cc5a13a44ffd2d,http://www.cs.toronto.edu/~suzanne/papers/JamiesonEtAlPAMI.pdf,,,http://www.cs.toronto.edu/~afsaneh/JamiesonEtAl-PAMI10.pdf +c553f0334fcadf43607925733685adef81fbe406,,,https://doi.org/10.1109/ICSIPA.2017.8120636, +c5366f412f2e8e78280afcccc544156f63b516e3,http://lep.unige.ch/system/files/biblio/2012_Valstar_MetaAnalysisGEMEP-FERA.pdf,,https://doi.org/10.1109/TSMCB.2012.2200675,http://www.cs.nott.ac.uk/~mfv/Documents/fera_smcb.pdf +c5fe40875358a286594b77fa23285fcfb7bda68e,http://pdfs.semanticscholar.org/edd1/cfb1caff16f80d807ff0821883ae855950c5.pdf,,https://doi.org/10.1016/j.neucom.2012.06.032,https://cis.temple.edu/~latecki/Papers/FaceIdentificationNeuro2013.pdf +c58ece1a3fa23608f022e424ec5a93cddda31308,,,https://doi.org/10.1109/JSYST.2014.2325957, +c5c379a807e02cab2e57de45699ababe8d13fb6d,http://pdfs.semanticscholar.org/c5c3/79a807e02cab2e57de45699ababe8d13fb6d.pdf,,,http://www.wseas.org/multimedia/journals/systems/2012/56-519.pdf +c59a9151cef054984607b7253ef189c12122a625,,,https://doi.org/10.1007/s00138-016-0791-5, +c5935b92bd23fd25cae20222c7c2abc9f4caa770,http://openaccess.thecvf.com/content_cvpr_2017/papers/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.787 +c5421a18583f629b49ca20577022f201692c4f5d,http://pdfs.semanticscholar.org/c542/1a18583f629b49ca20577022f201692c4f5d.pdf,,,http://world-comp.org/p2011/IPC4140.pdf +c5be0feacec2860982fbbb4404cf98c654142489,http://pdfs.semanticscholar.org/c5be/0feacec2860982fbbb4404cf98c654142489.pdf,,,http://ipg.idsia.ch/preprints/decampos2009c.pdf +c59b62864a6d86eead075c88137a87070a984550,,,https://doi.org/10.1109/IVCNZ.2015.7761546, +c5844de3fdf5e0069d08e235514863c8ef900eb7,http://pdfs.semanticscholar.org/c584/4de3fdf5e0069d08e235514863c8ef900eb7.pdf,,,http://www.enggjournals.com/ijcse/doc/IJCSE10-02-08-106.pdf +c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1,http://pdfs.semanticscholar.org/d6f1/42f5ddcb027e7b346eb20703abbf5cc4e883.pdf,,https://doi.org/10.1007/978-3-319-46454-1_20,http://porikli.com/mysite/pdfs/porikli%202016%20-%20Ultra%20resolving%20face%20images%20by%20discriminative%20generative%20networks.pdf +c590c6c171392e9f66aab1bce337470c43b48f39,http://pdfs.semanticscholar.org/c590/c6c171392e9f66aab1bce337470c43b48f39.pdf,,,http://www.aicit.org/IJEI/ppl/IJEI%20vol3.no1_06.pdf +c5f1ae9f46dc44624591db3d5e9f90a6a8391111,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Buciu_ICPR_2004.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334109 +c53352a4239568cc915ad968aff51c49924a3072,http://pdfs.semanticscholar.org/c533/52a4239568cc915ad968aff51c49924a3072.pdf,,,http://imageanalysis.cs.ucl.ac.uk/documents/JAndrews-ADWorkshop-ICML.pdf +c5765590c294146a8e3c9987d394c0990ab6a35b,http://media.cs.tsinghua.edu.cn/~imagevision/papers/%5B2012%5D084_P1B-31-cvpr2012-wan.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247734 +c5437496932dcb9d33519a120821da755951e1a9,,,,http://doi.acm.org/10.1145/2487575.2487604 +c2b10909a0dd068b8e377a55b0a1827c8319118a,,,https://doi.org/10.1109/TCYB.2016.2565898, +c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4,http://pdfs.semanticscholar.org/c2c5/206f6a539b02f5d5a19bdb3a90584f7e6ba4.pdf,,https://doi.org/10.1007/11573548_125,http://speakit.cn/Group/file/ACReview_ACII05.pdf +c270aff2b066ee354b4fe7e958a40a37f7bfca45,,,https://doi.org/10.1109/WCSP.2017.8170910, +c2fa83e8a428c03c74148d91f60468089b80c328,http://pdfs.semanticscholar.org/c2fa/83e8a428c03c74148d91f60468089b80c328.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c2_nieb14.pdf +c2c3ff1778ed9c33c6e613417832505d33513c55,http://pdfs.semanticscholar.org/c2c3/ff1778ed9c33c6e613417832505d33513c55.pdf,,https://doi.org/10.1007/978-3-642-32695-0_54,https://tapchikhdt.lhu.edu.vn/Data/News/136/files/74580613_spost.pdf +c252bc84356ed69ccf53507752135b6e98de8db4,,,https://doi.org/10.1016/j.neucom.2015.02.067, +c291f0e29871c8b9509d1a2876c3e305839ad4ac,,,https://doi.org/10.1109/ICARCV.2014.7064432, +c244c3c797574048d6931b6714ebac64d820dbb3,,,,http://doi.acm.org/10.1145/2808492.2808500 +c27f64eaf48e88758f650e38fa4e043c16580d26,http://pdfs.semanticscholar.org/c27f/64eaf48e88758f650e38fa4e043c16580d26.pdf,,,http://intranet.daiict.ac.in/~daiict_nt01/Lecture/SUMAN%20MITRA/Sample_TCS_Research%20Proposal.pdf +c222f8079c246ead285894c47bdbb2dfc7741044,,,https://doi.org/10.1109/ICIP.2015.7351631, +c2be82ed0db509087b08423c8cf39ab3c36549c3,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019363 +c23bd1917badd27093c8284bd324332b8c45bfcf,,,https://doi.org/10.1109/IJCNN.2010.5596316, +c2474202d56bb80663e7bece5924245978425fc1,,,https://doi.org/10.1109/ICIP.2016.7532771, +c23153aade9be0c941390909c5d1aad8924821db,http://pdfs.semanticscholar.org/c231/53aade9be0c941390909c5d1aad8924821db.pdf,,,https://infoscience.epfl.ch/record/220905/files/Le_ICPR_2016.pdf +c207fd762728f3da4cddcfcf8bf19669809ab284,http://pdfs.semanticscholar.org/c207/fd762728f3da4cddcfcf8bf19669809ab284.pdf,,https://doi.org/10.1007/978-3-642-12304-7_11,http://www.researchgate.net/profile/Mannes_Poel/publication/220744810_Face_Alignment_Using_Boosting_and_Evolutionary_Search/links/0a85e53b125fdb3c39000000.pdf +c20b2d365186f4471950fbe1ef8755de90efc000,,,, +c259db2675f3bfb157f37e6c93b03d1d14dab4c7,,,, +c220f457ad0b28886f8b3ef41f012dd0236cd91a,http://pdfs.semanticscholar.org/c220/f457ad0b28886f8b3ef41f012dd0236cd91a.pdf,,,https://arxiv.org/pdf/1804.01159v1.pdf +c2422c975d9f9b62fbb19738e5ce5e818a6e1752,,,https://doi.org/10.1109/TNNLS.2015.2481006, +c2e03efd8c5217188ab685e73cc2e52c54835d1a,http://web.eecs.utk.edu/~ataalimi/wp-content/uploads/2016/09/Deep-Tree-structured-Face-A-Unified-Representation-for-Multi-task-Facial.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477585 +c2dc29e0db76122dfed075c3b9ee48503b027809,,,https://doi.org/10.1109/ICIP.2016.7532632, +c28461e266fe0f03c0f9a9525a266aa3050229f0,http://pdfs.semanticscholar.org/c284/61e266fe0f03c0f9a9525a266aa3050229f0.pdf,,https://doi.org/10.1007/978-3-642-21257-4_46,http://www.cvc.uab.es/~davidm/pdfs/IBPRIA2011.pdf +c29e33fbd078d9a8ab7adbc74b03d4f830714cd0,http://research.microsoft.com/en-us/um/people/leizhang/Paper/FG04-Longbin.pdf,,,http://research.microsoft.com/users/leizhang/Paper/FG04-Longbin.pdf +c2e6daebb95c9dfc741af67464c98f1039127627,http://pdfs.semanticscholar.org/c2e6/daebb95c9dfc741af67464c98f1039127627.pdf,,,http://www.mva-org.jp/Proceedings/2013USB/papers/05-01.pdf +f6b4811c5e7111485e2c9cc5bf63f8ac80f3e2d7,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2569436 +f604c312ff4706f1849078b2ca28409f0fcd859d,,,, +f6742010372210d06e531e7df7df9c01a185e241,http://pdfs.semanticscholar.org/f674/2010372210d06e531e7df7df9c01a185e241.pdf,,,https://arxiv.org/pdf/1707.09599v1.pdf +f69de2b6770f0a8de6d3ec1a65cb7996b3c99317,http://pdfs.semanticscholar.org/f69d/e2b6770f0a8de6d3ec1a65cb7996b3c99317.pdf,,,http://www.maxwellsci.com/print/rjaset/v8-2265-2271.pdf +f6311d6b3f4d3bd192d866d2e898c30eea37d7d5,,http://ieeexplore.ieee.org/document/6460511/,, +f6ca29516cce3fa346673a2aec550d8e671929a6,http://pdfs.semanticscholar.org/f6ca/29516cce3fa346673a2aec550d8e671929a6.pdf,,,http://www.ijeat.org/attachments/File/v2i4/D1388042413.pdf +f67a73c9dd1e05bfc51219e70536dbb49158f7bc,http://pdfs.semanticscholar.org/f67a/73c9dd1e05bfc51219e70536dbb49158f7bc.pdf,,https://doi.org/10.3844/jcssp.2014.2292.2298,http://thescipub.com/PDF/jcssp.2014.2292.2298.pdf +f6c70635241968a6d5fd5e03cde6907022091d64,http://pdfs.semanticscholar.org/f6c7/0635241968a6d5fd5e03cde6907022091d64.pdf,,,http://drum.lib.umd.edu/bitstream/handle/1903/13217/Jorstad_umd_0117E_13521.pdf?isAllowed=y&sequence=1 +f63b3b8388bc4dcd4a0330402af37a59ce37e4f3,,,https://doi.org/10.1109/SIU.2013.6531214, +f66f3d1e6e33cb9e9b3315d3374cd5f121144213,http://pdfs.semanticscholar.org/f66f/3d1e6e33cb9e9b3315d3374cd5f121144213.pdf,,,http://www.jneurosci.org/content/jneuro/33/44/17435.full.pdf +f6abecc1f48f6ec6eede4143af33cc936f14d0d0,http://pdfs.semanticscholar.org/f6ab/ecc1f48f6ec6eede4143af33cc936f14d0d0.pdf,,,https://arxiv.org/pdf/1705.08764v1.pdf +f6ebfa0cb3865c316f9072ded26725fd9881e73e,,,,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.109 +f6fa97fbfa07691bc9ff28caf93d0998a767a5c1,http://pdfs.semanticscholar.org/f6fa/97fbfa07691bc9ff28caf93d0998a767a5c1.pdf,,,https://arxiv.org/pdf/1605.09299v1.pdf +f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,,,https://doi.org/10.1109/TMM.2015.2476657, +f66add890c2458466e1cb942ad3981f8651ace2d,,,, +f6511d8156058737ec5354c66ef6fdcf035d714d,,,,http://doi.ieeecomputersociety.org/10.1109/BWCCA.2014.115 +f68f20868a6c46c2150ca70f412dc4b53e6a03c2,http://pdfs.semanticscholar.org/f68f/20868a6c46c2150ca70f412dc4b53e6a03c2.pdf,,,http://hrcak.srce.hr/file/206247 +f652cb159a2cf2745aabcbf6a7beed4415e79e34,,,,http://doi.acm.org/10.1145/1460096.1460119 +f6dabb4d91bf7389f3af219d486d4e67cec18c17,,,https://doi.org/10.1016/j.compeleceng.2014.08.010, +e95895262f66f7c5e47dd46a70110d89c3b4c203,,,https://doi.org/10.1016/j.neucom.2016.09.023, +e96540252f2f83e394012d653452411efb9f744f,,,, +e957d0673af7454dbf0a14813201b0e2570577e9,,,https://doi.org/10.1109/ICPR.2016.7899699, +e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66,http://pdfs.semanticscholar.org/e9ed/17fd8bf1f3d343198e206a4a7e0561ad7e66.pdf,,,http://www.erpublications.com/uploaded_files/download/download_07_02_2014_12_23_06.pdf +e95c5aaa72e72761b05f00fad6aec11c3e2f8d0f,,,,http://doi.acm.org/10.1145/2791405.2791505 +e9cebf627c204c6949dcc077d04c57eb66b2c038,,,https://doi.org/10.1109/SIU.2013.6531371, +e9d147e657619c393ca702117602fd7d15675f69,,,, +e9b731f00d16a10a31ceea446b2baa38719a31f1,,,https://doi.org/10.1109/ICSMC.2012.6378271, +e9e40e588f8e6510fa5537e0c9e083ceed5d07ad,http://pdfs.semanticscholar.org/e9e4/0e588f8e6510fa5537e0c9e083ceed5d07ad.pdf,,,http://www.ijcsit.com/docs/Volume%202/vol2issue3/ijcsit2011020328.pdf +e9d1b3767c06c896f89690deea7a95401ae4582b,,,https://doi.org/10.1109/VCIP.2016.7805565, +e9d77a85bc2fa672cc1bd10258c896c8d89b41e8,,,https://doi.org/10.1109/ICTAI.2012.25, +e9bb045e702ee38e566ce46cc1312ed25cb59ea7,http://pdfs.semanticscholar.org/e9bb/045e702ee38e566ce46cc1312ed25cb59ea7.pdf,,https://doi.org/10.1007/978-981-10-2104-6_55,https://samyak-268.github.io/pdfs/cvip_paper.pdf +e908ce44fa94bb7ecf2a8b70cb5ec0b1a00b311a,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019548 +e94168c35be1d4b4d2aaf42ef892e64a3874ed8c,,,https://doi.org/10.1109/TSMCB.2008.2010715, +e96ce25d11296fce4e2ecc2da03bd207dc118724,,,https://doi.org/10.1007/s00138-007-0095-x, +e99718d08aca2c49cd2848eebdbb7c7855b4e484,,,, +e9fcd15bcb0f65565138dda292e0c71ef25ea8bb,http://pdfs.semanticscholar.org/e9fc/d15bcb0f65565138dda292e0c71ef25ea8bb.pdf,,https://doi.org/10.1007/978-3-642-38061-7_22,https://repositorio.uam.es/xmlui/bitstream/handle/10486/663763/analysing_tome_CCIS_2013_ps.pdf?sequence=3 +e9b6804cd56cadb9342ec2ce412aacba7afd0723,,,, +e935270db6bd778283de9767075763a538181d8e,,,, +e98551055bdcf8e25e07f4ffdbf39d0a4a57bffc,,,https://doi.org/10.1109/ICPR.2014.440, +e9331ae2a887c02e0a908ebae2810a681aedee29,,,https://doi.org/10.1016/j.image.2011.05.003,http://doi.ieeecomputersociety.org/10.1109/ICIG.2009.106 +e9f1cdd9ea95810efed306a338de9e0de25990a0,http://pdfs.semanticscholar.org/e9f1/cdd9ea95810efed306a338de9e0de25990a0.pdf,,,http://cvpia.memphis.edu/wp-content/uploads/2011/04/CVPIA-TR2011-001.pdf +f1e44e64957397d167d13f8f551cae99e5c16c75,,,https://doi.org/10.1007/s11042-013-1548-z, +f1e13c1e8426243320014c45cf2c9382d9cbfac2,,,, +f17d8f14651c123d39e13a39dc79b7eb3659fe68,,,https://doi.org/10.1007/s11042-013-1803-3, +f16a605abb5857c39a10709bd9f9d14cdaa7918f,http://pdfs.semanticscholar.org/f16a/605abb5857c39a10709bd9f9d14cdaa7918f.pdf,,,http://www.cvc.uab.es/~petia/sergi%20road_sign_recognition.pdf +f1da4d705571312b244ebfd2b450692fd875cd1f,,,https://doi.org/10.1109/TIP.2014.2322446, +f1748303cc02424704b3a35595610890229567f9,http://pdfs.semanticscholar.org/f174/8303cc02424704b3a35595610890229567f9.pdf,,https://doi.org/10.1016/j.imavis.2012.07.009,http://staff.science.uva.nl/~gevers/pub/GeversIVC2012.pdf +f1d6da83dcf71eda45a56a86c5ae13e7f45a8536,,,https://doi.org/10.1109/ACCESS.2017.2737544, +f18ff597bbfca10f84d017ac5e1ef0de6d7ad66c,,,,http://doi.ieeecomputersociety.org/10.1109/SNPD.2016.7515888 +f1d090fcea63d9f9e835c49352a3cd576ec899c1,http://pdfs.semanticscholar.org/f1d0/90fcea63d9f9e835c49352a3cd576ec899c1.pdf,,,http://research-information.bristol.ac.uk/files/75922825/Ioannis_Pitas_Single_hidden_Layer_Feedforward_Neual_network_training_using_class_geometric_information_2015.pdf +f1061b2b5b7ca32edd5aa486aecc63a0972c84f3,,,https://doi.org/10.1109/TIP.2017.2760512, +f19777e37321f79e34462fc4c416bd56772031bf,http://pdfs.semanticscholar.org/f197/77e37321f79e34462fc4c416bd56772031bf.pdf,,,https://www.ijser.org/researchpaper/Literature-Review-of-Image-Compression-Algorithm.pdf +f19ab817dd1ef64ee94e94689b0daae0f686e849,http://pdfs.semanticscholar.org/f19a/b817dd1ef64ee94e94689b0daae0f686e849.pdf,,,http://d-nb.info/999629263 +f180cb7111e9a6ba7cfe0b251c0c35daaef4f517,,,https://doi.org/10.1109/TIP.2015.2417502, +f1ea8bdb3bd39d8269628bc7b99b2d918ea23ef7,,,, +f19bf8b5c1860cd81b5339804d5db9e791085aa7,,,https://doi.org/10.1109/SMC.2017.8122640, +f14403d9d5fbc4c6e8aeb7505b5d887c50bad8a4,,,https://doi.org/10.1109/ICIP.2012.6467433, +f1af714b92372c8e606485a3982eab2f16772ad8,,http://ieeexplore.ieee.org/document/5617662/,, +e76798bddd0f12ae03de26b7c7743c008d505215,http://pdfs.semanticscholar.org/e767/98bddd0f12ae03de26b7c7743c008d505215.pdf,,,https://arxiv.org/pdf/1706.04122v1.pdf +e7436b8e68bb7139b823a7572af3decd96241e78,,,https://doi.org/10.1109/ROBIO.2011.6181560, +e7144f5c19848e037bb96e225d1cfd961f82bd9f,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.126 +e793f8644c94b81b7a0f89395937a7f8ad428a89,http://pdfs.semanticscholar.org/e793/f8644c94b81b7a0f89395937a7f8ad428a89.pdf,,,http://crcv.ucf.edu/THUMOS14/papers/Univesiry%20of%20Ottawa.pdf +e726174d516605f80ff359e71f68b6e8e6ec6d5d,http://pdfs.semanticscholar.org/e726/174d516605f80ff359e71f68b6e8e6ec6d5d.pdf,,,http://www.iis.sinica.edu.tw/page/jise/2010/201011_22.html +e78394213ae07b682ce40dc600352f674aa4cb05,http://pdfs.semanticscholar.org/e783/94213ae07b682ce40dc600352f674aa4cb05.pdf,,,https://www.researchgate.net/profile/Ron_Kimmel/publication/228856957_Expression-invariant_three-dimensional_face_recognition/links/0fcfd50870bbb5510d000000.pdf +e73b1137099368dd7909d203b80c3d5164885e44,,,,http://doi.ieeecomputersociety.org/10.1109/FSKD.2008.116 +e73f2839fc232c03e9f027c78bc419ee15810fe8,,,https://doi.org/10.1109/ICIP.2017.8296413, +e71c15f5650a59755619b2a62fa93ac922151fd6,,,,http://doi.ieeecomputersociety.org/10.1109/AUTOID.2005.22 +e726acda15d41b992b5a41feabd43617fab6dc23,http://pdfs.semanticscholar.org/e726/acda15d41b992b5a41feabd43617fab6dc23.pdf,,https://doi.org/10.1016/j.patrec.2005.07.026,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Journals/2006/evolutionaryfeaturesynthesis06.pdf +e74a2159f0f7afb35c7318a6e035bc31b8e69634,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019503 +e790a2538579c8e2ef9b314962ab26197d6664c6,,,https://doi.org/10.1109/ICIP.2016.7532915, +e7e8c0bbee09b5af6f7df1de8f0f26da992737c4,,,https://doi.org/10.1109/IJCNN.2011.6033417, +e74816bc0803460e20edbd30a44ab857b06e288e,http://pdfs.semanticscholar.org/e748/16bc0803460e20edbd30a44ab857b06e288e.pdf,,,http://arxiv.org/abs/1612.01035 +e724c9a69613bef36f67ae7ed6850b1942918804,,,, +e7b6887cd06d0c1aa4902335f7893d7640aef823,http://pdfs.semanticscholar.org/e7b6/887cd06d0c1aa4902335f7893d7640aef823.pdf,,,https://arxiv.org/pdf/1802.04636v1.pdf +e73b9b16adcf4339ff4d6723e61502489c50c2d9,http://pdfs.semanticscholar.org/e73b/9b16adcf4339ff4d6723e61502489c50c2d9.pdf,,,http://airccse.org/journal/ieij/papers/2114ieij01.pdf +e7b7df786cf5960d55cbac4e696ca37b7cee8dcd,,,https://doi.org/10.1109/IJCNN.2012.6252728, +cb669c1d1e17c2a54d78711fa6a9f556b83f1987,http://satoh-lab.ex.nii.ac.jp/users/ledduy/pub/Ngo-RobustFaceTrackFindingUnsingTrackedPoints.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SITIS.2008.74 +cba090a5bfae7dd8a60a973259f0870ed68c4dd3,,,,http://doi.ieeecomputersociety.org/10.1109/ISM.2017.22 +cb4d3d1b8fbb6df71a184dd8f00f89f84fa8373b,,,,http://doi.ieeecomputersociety.org/10.1109/IJCNN.2009.5179002 +cb992fe67f0d4025e876161bfd2dda467eaec741,,,https://doi.org/10.1109/IPTA.2015.7367144, +cbcf5da9f09b12f53d656446fd43bc6df4b2fa48,http://pdfs.semanticscholar.org/cbcf/5da9f09b12f53d656446fd43bc6df4b2fa48.pdf,,,http://www.ijeit.com/vol%202/Issue%206/IJEIT1412201212_84.pdf +cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7a,http://pdfs.semanticscholar.org/cba4/5a87fc6cf12b3b0b6f57ba1a5282ef7fee7a.pdf,,,http://web.stanford.edu/class/cs231a/prev_projects_2016/emotion-ai-real.pdf +cbc2de9b919bc63590b6ee2dfd9dda134af45286,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477561 +cbf3e848c5d2130dd640d9bd546403b8d78ce0f9,,,https://doi.org/10.1109/IJCNN.2012.6252385, +cbe1df2213a88eafc5dcaf55264f2523fe3ec981,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.34 +cb4d8cef8cec9406b1121180d47c14dfef373882,,,https://doi.org/10.1109/ICPR.2014.301, +cb8c067aeabacd0eb723c5bb23eb41d8d219c57d,,,, +cb9092fe74ea6a5b2bb56e9226f1c88f96094388,http://pdfs.semanticscholar.org/cb90/92fe74ea6a5b2bb56e9226f1c88f96094388.pdf,,https://doi.org/10.1016/j.robot.2014.03.022,http://www.dei.unipd.it/~ghidoni/papers/ghidoni_distributed_perception.pdf +cbd004d4c5e3b64321dc1a8f05fa5d64500389c2,http://www.researchgate.net/profile/Wen_Li38/publication/261711227_POSE-ROBUST_REPRESENTATION_FOR_FACE_VERIFICATION_IN_UNCONSTRAINED_VIDEOS/links/00b7d53535ed96428c000000.pdf,,https://doi.org/10.1109/ICIP.2013.6738766, +cb08f679f2cb29c7aa972d66fe9e9996c8dfae00,http://pdfs.semanticscholar.org/cb08/f679f2cb29c7aa972d66fe9e9996c8dfae00.pdf,,,https://arxiv.org/pdf/1704.08723v1.pdf +cb84229e005645e8623a866d3d7956c197f85e11,http://pdfs.semanticscholar.org/cb84/229e005645e8623a866d3d7956c197f85e11.pdf,,,http://homepages.inf.ed.ac.uk/keller/publications/pami18.pdf +cb5cda13a4ccbc32ce912d51e402363c1b501b32,,,, +cb1b5e8b35609e470ce519303915236b907b13b6,http://dforte.ece.ufl.edu/Domenic_files/IJCB.pdf,,https://doi.org/10.1109/BTAS.2017.8272692, +cb7a743b9811d20682c13c4ee7b791ff01c62155,,,https://doi.org/10.1109/MMSP.2015.7340789, +cb9921d5fc4ffa50be537332e111f03d74622442,,,https://doi.org/10.1007/978-3-319-46654-5_79, +cbdcc28d36f1135d235b5067383b25dcac5d2ff3,,,, +cbe859d151466315a050a6925d54a8d3dbad591f,http://homes.di.unimi.it/~boccignone/GiuseppeBoccignone_webpage/Stochastic_files/Euvip2010.pdf,,https://doi.org/10.1109/EUVIP.2010.5699099,http://homes.dsi.unimi.it/~boccignone/GiuseppeBoccignone_webpage/Stochastic_Gaze_Shift_files/Euvip2010.pdf +cbaa17be8c22e219a9c656559e028867dfb2c2ed,,,https://doi.org/10.1109/ICIP.2016.7532636, +cb160c5c2a0b34aba7b0f39f5dda6aca8135f880,,,https://doi.org/10.1109/SIU.2016.7496023, +f86ddd6561f522d115614c93520faad122eb3b56,http://pdfs.semanticscholar.org/f86d/dd6561f522d115614c93520faad122eb3b56.pdf,,,https://bi.snu.ac.kr/Publications/Conferences/International/PACS2016_HKwak.pdf +f8015e31d1421f6aee5e17fc3907070b8e0a5e59,http://pdfs.semanticscholar.org/f801/5e31d1421f6aee5e17fc3907070b8e0a5e59.pdf,,,http://www.cs.cmu.edu/~lanzhzh/thesis/proposal_draft.pdf +f839ae810338e3b12c8e2f8db6ce4d725738d2d9,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.115 +f83dd9ff002a40228bbe3427419b272ab9d5c9e4,http://pdfs.semanticscholar.org/f83d/d9ff002a40228bbe3427419b272ab9d5c9e4.pdf,,,http://www.science.uva.nl/research/publications/2008/ValentiSEI2008/SPIE08.pdf +f8c94afd478821681a1565d463fc305337b02779,http://pdfs.semanticscholar.org/f8c9/4afd478821681a1565d463fc305337b02779.pdf,,,http://www.ijsetr.com/uploads/631425IJSETR2137-899.pdf +f888c165f45febf3d17b8604a99a2f684d689cbc,,,,http://doi.ieeecomputersociety.org/10.1109/CIT.2004.1357196 +f8f2d2910ce8b81cb4bbf84239f9229888158b34,http://pdfs.semanticscholar.org/f8f2/d2910ce8b81cb4bbf84239f9229888158b34.pdf,,,http://www.ijcai.org/Proceedings/16/Papers/514.pdf +f8ec92f6d009b588ddfbb47a518dd5e73855547d,http://pdfs.semanticscholar.org/f8ec/92f6d009b588ddfbb47a518dd5e73855547d.pdf,,https://doi.org/10.3745/JIPS.02.0004,http://www.jips-k.org/dlibrary/JIPS_v10_no3_paper8.pdf +f8ba921670c94ed94d94a98d64f38b857b0dc104,,,, +f869601ae682e6116daebefb77d92e7c5dd2cb15,http://pdfs.semanticscholar.org/f869/601ae682e6116daebefb77d92e7c5dd2cb15.pdf,,,https://cis.temple.edu/~latecki/Papers/RDP_AAAI2017.pdf +f8ddb2cac276812c25021b5b79bf720e97063b1e,http://www.eecs.qmul.ac.uk/~sgg/papers/ShanEtAl_HCI2006.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2006.13 +f8ed5f2c71e1a647a82677df24e70cc46d2f12a8,http://pdfs.semanticscholar.org/f8ed/5f2c71e1a647a82677df24e70cc46d2f12a8.pdf,,,http://www.ijser.org/researchpaper/Artificial-Neural-Network-Design-and-Parameter-Optimization-for-Facial-Expressions-Recognition.pdf +f812347d46035d786de40c165a158160bb2988f0,,,https://doi.org/10.1007/s10339-016-0765-6, +f856532a729bd337fae1eb7dbe55129ae7788f45,,,,http://doi.ieeecomputersociety.org/10.1109/ARTCom.2009.26 +f88ce52c5042f9f200405f58dbe94b4e82cf0d34,,,https://doi.org/10.1109/TNNLS.2015.2508025, +f8fe1b57347cdcbea755722bf1ae85c4b26f3e5c,,,https://doi.org/10.1007/s00138-016-0790-6, +f86c6942a7e187c41dd0714531efd2be828e18ad,,,https://doi.org/10.1109/VCIP.2016.7805514, +f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,http://pdfs.semanticscholar.org/f8a5/bc2bd26790d474a1f6cc246b2ba0bcde9464.pdf,,, +f834c50e249c9796eb7f03da7459b71205dc0737,,,https://doi.org/10.1109/TIP.2011.2166974, +cef841f27535c0865278ee9a4bc8ee113b4fb9f3,http://pdfs.semanticscholar.org/cef8/41f27535c0865278ee9a4bc8ee113b4fb9f3.pdf,,https://doi.org/10.1016/j.eswa.2012.07.074,http://www.ppgia.pucpr.br/~alekoe/Papers/ESWA2012-Koerich.pdf +cead57f2f7f7b733f4524c4b5a7ba7f271749b5f,,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.46 +ce6d60b69eb95477596535227958109e07c61e1e,http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf,,https://doi.org/10.1109/BTAS.2015.7358802, +cefaad8241bceb24827a71bf7c2556e458e57faa,,,https://doi.org/10.1109/TIP.2013.2264676, +ceb763d6657a07b47e48e8a2956bcfdf2cf10818,http://pdfs.semanticscholar.org/ceb7/63d6657a07b47e48e8a2956bcfdf2cf10818.pdf,,,http://airccse.org/journal/ijcsity/papers/2114ijcsity01.pdf +ce3304119ba6391cb6bb25c4b3dff79164df9ac6,,,https://doi.org/10.1016/j.imavis.2016.03.004, +cefd9936e91885ba7af9364d50470f6cb54315a4,http://pdfs.semanticscholar.org/cefd/9936e91885ba7af9364d50470f6cb54315a4.pdf,,,http://www.jneurosci.org/content/jneuro/30/49/16601.full.pdf +ce85d953086294d989c09ae5c41af795d098d5b2,http://mmlab.ie.cuhk.edu.hk/archive/2007/NN07_feature.pdf,,https://doi.org/10.1109/TNN.2007.894042, +ce5eac297174c17311ee28bda534faaa1d559bae,http://pdfs.semanticscholar.org/ce5e/ac297174c17311ee28bda534faaa1d559bae.pdf,,,http://www.bmva.org/thesis-archive/2016/2016-abdallahi.pdf +ce5e50467e43e3178cbd86cfc3348e3f577c4489,https://www.computer.org/csdl/proceedings/avss/2013/9999/00/06636683.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2013.6636683 +ce691a37060944c136d2795e10ed7ba751cd8394,http://pdfs.semanticscholar.org/ce69/1a37060944c136d2795e10ed7ba751cd8394.pdf,,,https://arxiv.org/pdf/1803.09202v1.pdf +ce8db0fe11e7c96d08de561506f9f8f399dabbb2,,,https://doi.org/10.1109/ICIP.2015.7351677, +ce11b2d7905d2955c4282db5b68482edb846f29f,,,,http://doi.acm.org/10.1145/3126686.3126705 +ce3f3088d0c0bf236638014a299a28e492069753,http://pdfs.semanticscholar.org/ce3f/3088d0c0bf236638014a299a28e492069753.pdf,,,http://www.researchgate.net/profile/Ilan_Shimshoni/publication/265253067_Online_Action_Recognition_Using_Covariance_of_Shape_and_Motion/links/54ae415a0cf24aca1c6f812d.pdf +ceeb67bf53ffab1395c36f1141b516f893bada27,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,,,http://arxiv.org/abs/1601.07950 +ce9a61bcba6decba72f91497085807bface02daf,http://www.jdl.ac.cn/user/sgshan/pub/FG04_Qing_LY.pdf,,,http://www.jdl.ac.cn/project/faceId/articles/FRJDL-LaiyunQing-FGR04.pdf +cef6cffd7ad15e7fa5632269ef154d32eaf057af,http://pdfs.semanticscholar.org/cef6/cffd7ad15e7fa5632269ef154d32eaf057af.pdf,,,https://web.stanford.edu/class/ee368/Project_Autumn_1617/Reports/report_pao.pdf +cebfafea92ed51b74a8d27c730efdacd65572c40,http://biometrics.cse.msu.edu/Publications/Face/LuJainColbry_Matching2.5DFaceScans_PAMI06.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.15 +ce56be1acffda599dec6cc2af2b35600488846c9,http://pdfs.semanticscholar.org/ce56/be1acffda599dec6cc2af2b35600488846c9.pdf,,,http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/download/10532/10530 +ce30ddb5ceaddc0e7d308880a45c135287573d0e,,,https://doi.org/10.1109/ICSMC.2012.6378304, +ce54e891e956d5b502a834ad131616786897dc91,http://pdfs.semanticscholar.org/ce54/e891e956d5b502a834ad131616786897dc91.pdf,,,https://www.ijsr.net/archive/v4i12/NOV152507.pdf +ce6f459462ea9419ca5adcc549d1d10e616c0213,http://pdfs.semanticscholar.org/ce6f/459462ea9419ca5adcc549d1d10e616c0213.pdf,,,http://www.ijcsit.com/docs/Volume%205/vol5issue05/ijcsit20140505147.pdf +ce933821661a0139a329e6c8243e335bfa1022b1,http://pdfs.semanticscholar.org/ce93/3821661a0139a329e6c8243e335bfa1022b1.pdf,,,https://static.googleusercontent.com/media/research.google.com/en//youtube8m/workshop2017/c14.pdf +ce6a6d35f65e584214aaf24378ab85038decddbb,,,, +e0b71d3c7d551684bd334af5b3671df7053a529d,http://mplab.ucsd.edu/~jake/locality.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.74 +e0e4910d575c4a8309f2069b38b99c972dbedc57,http://eprints.pascal-network.org/archive/00009548/01/PoseDetectRandomizedCascades.pdf,,https://doi.org/10.1007/s11263-012-0516-9,http://vision.ics.uci.edu/papers/RogezROT_IJCV_2012/RogezROT_IJCV_2012.pdf +e0fe68c92fefa80992f4861b0c45a3fbec7cf1c9,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2015.7344671 +e0dedb6fc4d370f4399bf7d67e234dc44deb4333,http://pdfs.semanticscholar.org/e0de/db6fc4d370f4399bf7d67e234dc44deb4333.pdf,,,http://anthology.aclweb.org/attachments/P/P17/P17-1117.Notes.pdf +e0638e0628021712ac76e3472663ccc17bd8838c,http://pdfs.semanticscholar.org/e063/8e0628021712ac76e3472663ccc17bd8838c.pdf,,,http://arpnjournals.com/jeas/research_papers/rp_2014/jeas_0214_1007.pdf +e084b0e477ee07d78c32c3696ea22c94f5fdfbec,,,https://doi.org/10.1109/ICIP.2013.6738565, +e0c081a007435e0c64e208e9918ca727e2c1c44e,http://pdfs.semanticscholar.org/e0c0/81a007435e0c64e208e9918ca727e2c1c44e.pdf,,,http://mozart.dis.ulpgc.es/Gias/Publications/coolbot-thesis.pdf +e0cc2a9fe6b5086c55fdbf0021aca3dc1a77a1ca,,,,http://doi.ieeecomputersociety.org/10.1109/BLISS.2008.25 +e0d878cc095eaae220ad1f681b33d7d61eb5e425,http://pdfs.semanticscholar.org/e0d8/78cc095eaae220ad1f681b33d7d61eb5e425.pdf,,https://doi.org/10.3390/s18020627, +e00d4e4ba25fff3583b180db078ef962bf7d6824,http://pdfs.semanticscholar.org/e00d/4e4ba25fff3583b180db078ef962bf7d6824.pdf,,,https://www.preprints.org/manuscript/201703.0152/v1/download +e0ab926cd48a47a8c7b16e27583421141f71f6df,,,https://doi.org/10.1109/HPCSim.2016.7568383, +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,http://pdfs.semanticscholar.org/e0bf/cf965b402f3f209f26ae20ee88bc4d0002ab.pdf,,,https://scholarspace.manoa.hawaii.edu/bitstream/10125/49890/1/paper0003.pdf +e0423788eb91772de9d708a17799179cf3230d63,,,,http://doi.acm.org/10.1145/3093241.3093277 +e0ed0e2d189ff73701ec72e167d44df4eb6e864d,http://pdfs.semanticscholar.org/e0ed/0e2d189ff73701ec72e167d44df4eb6e864d.pdf,,,http://www.scielo.br/pdf/epsic/v18n1/20.pdf +e03f69bad7e6537794a50a99da807c9df4ff5186,,,,http://doi.acm.org/10.1145/2708463.2709060 +e0765de5cabe7e287582532456d7f4815acd74c1,http://pdfs.semanticscholar.org/e076/5de5cabe7e287582532456d7f4815acd74c1.pdf,,https://doi.org/10.1016/j.cviu.2009.06.007,http://ir.lib.hiroshima-u.ac.jp/files/public/27686/20141016161839215539/CVIU_113_1210.pdf +e013c650c7c6b480a1b692bedb663947cd9d260f,http://www.nlpr.ia.ac.cn/2013papers/gjkw/gk25.pdf,,https://doi.org/10.1109/TIP.2012.2219543, +e0dc6f1b740479098c1d397a7bc0962991b5e294,http://pdfs.semanticscholar.org/e0dc/6f1b740479098c1d397a7bc0962991b5e294.pdf,,,http://www.jdl.ac.cn/doc/2004/Face%20Detection%20a%20Survey.pdf +e0446d14d25a178702c10752b803966a54b539e4,,,, +e0793fd343aa63b5f366c8ace61b9c5489c51a4d,,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2016.46 +465faf9974a60da00950be977f3bc2fc3e56f5d2,,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2017.8273631 +468c8f09d2ad8b558b65d11ec5ad49208c4da2f2,http://www.public.asu.edu/~bli24/Papers/ICPR2016_MSR-CNN.pdf,,https://doi.org/10.1109/ICPR.2016.7900180, +46a4551a6d53a3cd10474ef3945f546f45ef76ee,http://cvrr.ucsd.edu/publications/2014/TawariTrivedi_IV2014.pdf,,https://doi.org/10.1109/IVS.2014.6856607, +4686bdcee01520ed6a769943f112b2471e436208,http://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0024-5?site=ipsjcva.springeropen.com,,https://doi.org/10.23919/MVA.2017.7986831, +4688787d064e59023a304f7c9af950d192ddd33e,http://www.cse.msu.edu/~liuxm/publication/Roth_Liu_Ross_Metaxas_TIFS.pdf,,https://doi.org/10.1109/TIFS.2014.2374424,http://www.cse.msu.edu/~rothjos1/papers/2015TIFS_Roth_Liu_Ross_Metaxas.pdf +466184b10fb7ce9857e6b5bd6b4e5003e09a0b16,http://pdfs.semanticscholar.org/a42f/433e500661589e567340fe7f7d761d1f14df.pdf,,,http://papers.nips.cc/paper/3433-extended-grassmann-kernels-for-subspace-based-learning +46e86cdb674440f61b6658ef3e84fea95ea51fb4,http://pdfs.semanticscholar.org/c075/e79a832d36e5b4c76b0f07c3b9d5f3be43e0.pdf,,,http://www.waset.org/journals/waset/v28/v28-94.pdf +46b2ecef197b465abc43e0e017543b1af61921ac,,,https://doi.org/10.1109/ICPR.2016.7899652, +467747f86df4537d6deff03dee8e552f760d7c16,,,, +464ef1b3dcbe84099c904b6f9e9281c5f6fd75eb,,,https://doi.org/10.1109/TIP.2014.2359765, +46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4,http://ibug.doc.ic.ac.uk/media/uploads/documents/3d_local_features.pdf,,https://doi.org/10.1109/ICIP.2014.7025285,http://doc.utwente.nl/95232/1/Pantic_3D_facial_geometric_features.pdf +46ae4d593d89b72e1a479a91806c39095cd96615,http://www.idiap.ch/~odobez/publications/GayKhouryMeignierOdobezDeleglise-FaceNaming-ICIP-2014.pdf,,https://doi.org/10.1109/ICIP.2014.7025063,http://publications.idiap.ch/downloads/papers/2015/Gay_ICIP_2014.pdf +467b602a67cfd7c347fe7ce74c02b38c4bb1f332,http://pdfs.semanticscholar.org/467b/602a67cfd7c347fe7ce74c02b38c4bb1f332.pdf,,https://doi.org/10.1007/978-3-319-10605-2_44,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8690/86900679.pdf +466f80b066215e85da63e6f30e276f1a9d7c843b,http://cbl.uh.edu/pub_files/07961802.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.81 +464de30d3310123644ab81a1f0adc51598586fd2,http://pdfs.semanticscholar.org/464d/e30d3310123644ab81a1f0adc51598586fd2.pdf,,https://doi.org/10.1016/j.imavis.2014.04.002,https://hal.archives-ouvertes.fr/file/index/docid/1009958/filename/14_IMAVIS_REID.pdf +466a5add15bb5f91e0cfd29a55f5fb159a7980e5,http://pdfs.semanticscholar.org/466a/5add15bb5f91e0cfd29a55f5fb159a7980e5.pdf,,https://doi.org/10.1007/978-3-642-12900-1_12,https://bi.snu.ac.kr/Courses/DMIR/files/Video%20Repeat%20Recognition%20and%20Mining%20by%20Visual%20Features.pdf +46f3b113838e4680caa5fc8bda6e9ae0d35a038c,http://pdfs.semanticscholar.org/46f3/b113838e4680caa5fc8bda6e9ae0d35a038c.pdf,,,http://www.mdpi.com/2072-6694/2/2/262/pdf/ +465d5bb11912005f0a4f0569c6524981df18a7de,http://pdfs.semanticscholar.org/465d/5bb11912005f0a4f0569c6524981df18a7de.pdf,,https://doi.org/10.1007/978-3-319-27674-8_36,http://user.ceng.metu.edu.tr/~ys/pubs/others/imotionmultishot.pdf +46c87fded035c97f35bb991fdec45634d15f9df2,https://arxiv.org/pdf/1707.09145v1.pdf,,,https://ivi.fnwi.uva.nl/isis/publications/2017/MettesICCV2017/MettesICCV2017.pdf +46f32991ebb6235509a6d297928947a8c483f29e,http://pdfs.semanticscholar.org/46f3/2991ebb6235509a6d297928947a8c483f29e.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2003.1211375 +46551095a2cc4976d6be0165c31c37b0c5638719,http://staff.estem-uc.edu.au/roland/wp-content/uploads/file/roland/publications/Journal/JMUI/joshi_goecke_alghowinem_dhall_wagner_epps_parker_breakspear_JMUI2013_MultimodalAssistiveTechnologiesForDepressionDiagnosisAndMonitoring.pdf,,https://doi.org/10.1007/s12193-013-0123-2,http://users.cecs.anu.edu.au/~adhall/Joshi_MultiModal_Depression_Analysis.pdf +46538b0d841654a0934e4c75ccd659f6c5309b72,http://pdfs.semanticscholar.org/4653/8b0d841654a0934e4c75ccd659f6c5309b72.pdf,,,http://aircconline.com/sipij/V5N1/5114sipij04.pdf +4672513d0dbc398719d66bba36183f6e2b78947b,,,https://doi.org/10.1016/j.ipm.2015.05.007, +46a29a5026142c91e5655454aa2c2f122561db7f,http://vipl.ict.ac.cn/sites/default/files/papers/files/2011_FG_sxli_Margin%20Emphasized%20Metric%20Learning%20and%20Its%20Application%20to%20Gabor%20Feature%20Based%20Face%20Recognition.pdf,,https://doi.org/10.1109/FG.2011.5771461, +469ee1b00f7bbfe17c698ccded6f48be398f2a44,http://pdfs.semanticscholar.org/469e/e1b00f7bbfe17c698ccded6f48be398f2a44.pdf,,,https://pdfs.semanticscholar.org/469e/e1b00f7bbfe17c698ccded6f48be398f2a44.pdf +4613b3a9344622b2997039afe3d47df1fd4de72f,,,, +46196735a201185db3a6d8f6e473baf05ba7b68f,http://pdfs.semanticscholar.org/4619/6735a201185db3a6d8f6e473baf05ba7b68f.pdf,,https://doi.org/10.1109/TCYB.2013.2262936,http://mipal.snu.ac.kr/images/5/59/PCA_Lp.pdf +4682fee7dc045aea7177d7f3bfe344aabf153bd5,http://www.cs.utexas.edu/~cv-fall2012/slides/elad-paper.pdf,,,http://people.csail.mit.edu/yusuf/publications/2011/Aytar11/aytar11.pdf +46c1af268d4b3c61a0a12be091ca008a3a60e4cd,,,https://doi.org/10.1007/s11042-016-3592-y, +4657d87aebd652a5920ed255dca993353575f441,http://pdfs.semanticscholar.org/4657/d87aebd652a5920ed255dca993353575f441.pdf,,,http://www.cim.mcgill.ca/~levine/IlluminationReport.pdf +4622b82a8aff4ac1e87b01d2708a333380b5913b,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICB2015/Zhu-ICB-15.pdf,,https://doi.org/10.1109/ICB.2015.7139070, +46ded0e6e0042e43b94cf179b902d7932fbbdae1,,,, +46e866f58419ff4259c65e8256c1d4f14927b2c6,http://pdfs.semanticscholar.org/f03d/cfd956cf4404ec9f0c7fb451479d72a63e03.pdf,,,http://www2.warwick.ac.uk/fac/sci/dcs/people/chang-tsun_li/publications/ijdcf_2014.pdf +46072f872eee3413f9d05482be6446f6b96b6c09,http://pdfs.semanticscholar.org/4607/2f872eee3413f9d05482be6446f6b96b6c09.pdf,,https://doi.org/10.1007/11744047_18,http://www.lv-nus.org/papers%5C2006%5C2006_C_9.pdf +4698a599425c3a6bae1c698456029519f8f2befe,http://pdfs.semanticscholar.org/4698/a599425c3a6bae1c698456029519f8f2befe.pdf,,,https://arxiv.org/pdf/1803.07253v1.pdf +2cf92ee60f719098acc3aae3981cedc47fa726b3,http://eksl.isi.edu/files/papers/sinjini_2007_1172280675.pdf,,,https://www.researchgate.net/profile/Marios_Savvides/publication/6506611_Statistical_performance_evaluation_of_biometric_authentication_systems_using_random_effects_models/links/0a85e53c8443fd25ae000000.pdf +2c258eec8e4da9e65018f116b237f7e2e0b2ad17,http://openaccess.thecvf.com/content_cvpr_2017/papers/Qiu_Deep_Quantization_Encoding_CVPR_2017_paper.pdf,,,http://arxiv.org/abs/1611.09502 +2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58,http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301352 +2ccedc961d4d9cd9a88297c0061d67f81773f8b8,,,, +2c8743089d9c7df04883405a31b5fbe494f175b4,http://srl.informatik.uni-freiburg.de/publicationsdir/linderICRA15.pdf,,https://doi.org/10.1109/ICRA.2015.7139616, +2c61a9e26557dd0fe824909adeadf22a6a0d86b0,http://pdfs.semanticscholar.org/f117/3a4c5e3501323b37c1ae9a6d7dd8a236eab8.pdf,,,http://arxiv.org/pdf/1504.07339v3.pdf +2c34bf897bad780e124d5539099405c28f3279ac,http://pdfs.semanticscholar.org/2c34/bf897bad780e124d5539099405c28f3279ac.pdf,,,https://arxiv.org/pdf/1301.6847v2.pdf +2c203050a6cca0a0bff80e574bda16a8c46fe9c2,http://pdfs.semanticscholar.org/608f/43ee003c7c2e7f170336fda7a00cccd06311.pdf,,https://doi.org/10.24963/ijcai.2017/315,http://www.ijcai.org/proceedings/2017/0315.pdf +2cc4ae2e864321cdab13c90144d4810464b24275,http://pdfs.semanticscholar.org/f3d2/c66630176cbb1409ebacd2dac4b30d8e3145.pdf,,https://doi.org/10.1007/11559573_127,http://s.i-techonline.com/Book/Face-Recognition/ISBN978-3-902613-03-5-fr23.pdf +2cb5db4df50921d276ad9e7186119a276324e465,http://cbcl.mit.edu/projects/cbcl/publications/ps/Leibo_Liao_Poggio_VISAPP_2014.pdf,,https://doi.org/10.5220/0004694201130121,http://cbcl.mit.edu/publications/ps/Subtasks_Presentation_VISAPP2014.pdf +2c3430e0cbe6c8d7be3316a88a5c13a50e90021d,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Wang_Multi-feature_Spectral_Clustering_2014_CVPR_paper.pdf,,https://doi.org/10.1109/CVPR.2014.523,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2014/Multi-feature%20Spectral%20Clustering%20with%20Minimax%20Optimization.pdf +2c2786ea6386f2d611fc9dbf209362699b104f83,http://pdfs.semanticscholar.org/2c27/86ea6386f2d611fc9dbf209362699b104f83.pdf,,,http://libdcms.nida.ac.th/thesis6/2013/b179796.pdf +2c92839418a64728438c351a42f6dc5ad0c6e686,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Aware_Face_Recognition_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.523 +2c848cc514293414d916c0e5931baf1e8583eabc,http://pdfs.semanticscholar.org/2c84/8cc514293414d916c0e5931baf1e8583eabc.pdf,,,http://www.researchgate.net/profile/Andrews_Sobral/publication/264295959_An_automatic_facial_expression_recognition_system_evaluated_with_different_classifiers/links/543691580cf2dc341db35eea.pdf +2c883977e4292806739041cf8409b2f6df171aee,http://pdfs.semanticscholar.org/c5fb/ef530eb28d4f787990e0b962a6a68e420e49.pdf,,https://doi.org/10.1007/978-3-642-41827-3_42,http://vbn.aau.dk/files/80006265/CIARP.pdf +2cdd9e445e7259117b995516025fcfc02fa7eebb,http://hub.hku.hk/bitstream/10722/61208/1/Content.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICMLA.2008.9 +2cf9088e9faa81872b355a4ea0a9fae46d3c8a08,http://www.cvg.unibe.ch/tpapadhimitri/tech.pdf,,,http://www.cvg.unibe.ch/tpapadhimitri/0206.pdf +2cdc40f20b70ca44d9fd8e7716080ee05ca7924a,http://pdfs.semanticscholar.org/2cdc/40f20b70ca44d9fd8e7716080ee05ca7924a.pdf,,,https://arxiv.org/pdf/1710.07557v1.pdf +2cac70f9c8140a12b6a55cef834a3d7504200b62,http://www.eng.auburn.edu/~reevesj/Classes/ELEC6970-latex/posters/baposterex1.pdf,,,http://www.brian-amberg.de/uni/poster/brian_iccv07.pdf +2cf3564d7421b661e84251d280d159d4b3ebb336,,,https://doi.org/10.1109/BTAS.2014.6996287, +2c8f24f859bbbc4193d4d83645ef467bcf25adc2,http://romisatriawahono.net/lecture/rm/survey/machine%20learning/Frenay%20-%20Classification%20in%20the%20Presence%20of%20Label%20Noise%20-%202014.pdf,,https://doi.org/10.1109/TNNLS.2013.2292894, +2ca43325a5dbde91af90bf850b83b0984587b3cc,http://pdfs.semanticscholar.org/2ca4/3325a5dbde91af90bf850b83b0984587b3cc.pdf,,,http://worldcomp-proceedings.com/proc/p2013/EEE2665.pdf +2c6ab32a03c4862ee3e2bc02e7e74745cd523ad2,,,https://doi.org/10.1109/IC3.2013.6612218, +2ca10da4b59b406533ad1dc7740156e01782658f,,,https://doi.org/10.1109/SIU.2016.7496207, +2cfc28a96b57e0817cc9624a5d553b3aafba56f3,https://web.njit.edu/~borcea/papers/ieee-sarnoff16.pdf,,https://doi.org/10.1109/SARNOF.2016.7846758,https://web.njit.edu/~crix/publications/sarnoff16.pdf +2cdd5b50a67e4615cb0892beaac12664ec53b81f,http://people.eecs.berkeley.edu/~junyanz/projects/mirrormirror/mirrormirror_small.pdf,,,http://www.eecs.berkeley.edu/~junyanz/projects/mirrormirror/mirrormirror_small.pdf +2cae619d0209c338dc94593892a787ee712d9db0,http://vis-www.cs.umass.edu/papers/cvpr08shrf.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/091.pdf +2c0acaec54ab2585ff807e18b6b9550c44651eab,http://pdfs.semanticscholar.org/2c0a/caec54ab2585ff807e18b6b9550c44651eab.pdf,,,http://www.graphicon.ru/html/2014/papers/111-114.pdf +2c811b647a6aac924920c06e607e9e8d4b8d872d,http://pdfs.semanticscholar.org/2c81/1b647a6aac924920c06e607e9e8d4b8d872d.pdf,,https://doi.org/10.1016/j.patcog.2006.03.017,http://www.inf.unideb.hu/~sajolevente/papers/lipContour/2009%20Recognizing%20facial%20action%20units%20using%20independent%20component%20analysis%20and%20support%20vector%20machine.pdf +2cdde47c27a8ecd391cbb6b2dea64b73282c7491,http://pdfs.semanticscholar.org/2cdd/e47c27a8ecd391cbb6b2dea64b73282c7491.pdf,,,http://arxiv.org/pdf/1602.00224v1.pdf +2c7c3a74da960cc76c00965bd3e343958464da45,http://pdfs.semanticscholar.org/2c7c/3a74da960cc76c00965bd3e343958464da45.pdf,,,http://search.ieice.org/bin/summary.php?id=e94-d_5_1099 +2cf5f2091f9c2d9ab97086756c47cd11522a6ef3,http://pdfs.semanticscholar.org/2cf5/f2091f9c2d9ab97086756c47cd11522a6ef3.pdf,,,http://arxiv.org/abs/1711.09017 +2cd426f10178bd95fef3dede69ae7b67e73bb70c,,,https://doi.org/10.1109/ROBIO.2016.7866457, +2c285dadfa6c07d392ee411d0213648a8a1cf68f,http://www.contrib.andrew.cmu.edu/~yzhiding/ICMI15.pdf,,,http://doi.acm.org/10.1145/2818346.2830595 +2c6e65d8ef8c17387b839ab6a82fb469117ae396,,,, +2c2f03edc9b76e5ac132b54b2e3313237e22b5e7,,,, +2c17d36bab56083293456fe14ceff5497cc97d75,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.371 +2c06781ba75d51f5246d65d1acf66ab182e9bde6,,,https://doi.org/10.1016/j.imavis.2016.11.002, +2c4b96f6c1a520e75eb37c6ee8b844332bc0435c,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w12/papers/Leo_Automatic_Emotion_Recognition_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.76 +2cd7821fcf5fae53a185624f7eeda007434ae037,http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6835989 +2ce84465b9759166effc7302c2f5339766cc523d,,,https://doi.org/10.1109/VCIP.2015.7457830, +79581c364cefe53bff6bdd224acd4f4bbc43d6d4,http://pdfs.semanticscholar.org/7958/1c364cefe53bff6bdd224acd4f4bbc43d6d4.pdf,,https://doi.org/10.1016/j.imavis.2016.10.004,https://arxiv.org/pdf/1507.06838v1.pdf +794ddb1f3b7598985d4d289b5b0664be736a50c4,http://pdfs.semanticscholar.org/794d/db1f3b7598985d4d289b5b0664be736a50c4.pdf,,,http://www.dabi.temple.edu/~hbling/publication/aaai_compboost-2.pdf +790aa543151312aef3f7102d64ea699a1d15cb29,http://arxiv.org/pdf/1607.06290v1.pdf,,https://doi.org/10.1007/s11263-017-1010-1,https://arxiv.org/pdf/1607.06290v1.pdf +795aa8064b34c4bf4acdd8be3f1e5d06da5a7756,http://pdfs.semanticscholar.org/795a/a8064b34c4bf4acdd8be3f1e5d06da5a7756.pdf,,,https://arxiv.org/pdf/1803.05258v1.pdf +79617903c5cb56697f2e738e1463b9654e2d68ed,http://hal.cse.msu.edu/pdfs/papers/2013-mmcf-tip.pdf,,https://doi.org/10.1109/TIP.2012.2220151,http://vishnu.boddeti.net/papers/mmcf-tip-2013.pdf +7957abae15f631c5f5c50de68aa2ad08fe1f366f,,,, +795ea140df2c3d29753f40ccc4952ef24f46576c,http://pdfs.semanticscholar.org/795e/a140df2c3d29753f40ccc4952ef24f46576c.pdf,,,https://arxiv.org/pdf/1711.00111v1.pdf +795b555abb26e62ad89a93645122da530327c447,,,, +79b669abf65c2ca323098cf3f19fa7bdd837ff31,http://dro.deakin.edu.au/eserv/DU:30044585/venkatesh-efficienttensor-2008.pdf,,https://doi.org/10.1109/ICPR.2008.4761706,http://figment.cse.usf.edu/~sfefilat/data/papers/WeAT2.2.pdf +798e58c181f3ba3aecbe41acd1881860c5e2df3a,,,https://doi.org/10.1109/TNNLS.2012.2237038, +794c0dc199f0bf778e2d40ce8e1969d4069ffa7b,http://hcil2.cs.umd.edu/trs/2011-17/2011-17.pdf,,https://doi.org/10.1109/PASSAT/SocialCom.2011.225,http://hcil.cs.umd.edu/trs/2011-17/2011-17.pdf +7975f12187a7686d861054649845ccc634c3b00f,,,, +79dd787b2877cf9ce08762d702589543bda373be,http://fipa.cs.kit.edu/befit/workshop2011/pdf/slides/jianguo_li-slides.pdf,,https://doi.org/10.1109/ICCVW.2011.6130518,http://face.cs.kit.edu/befit/workshop2011/pdf/slides/jianguo_li-slides.pdf +7935f644c8044c0d3b81e2842e5ecc3672698bbb,,,https://doi.org/10.1109/ICIP.2011.6116258, +7966146d72f9953330556baa04be746d18702047,http://pdfs.semanticscholar.org/7966/146d72f9953330556baa04be746d18702047.pdf,,,http://www.ri.cmu.edu/pub_files/2013/2/Mason2013.pdf +79fa57dedafddd3f3720ca26eb41c82086bfb332,http://www.cis.pku.edu.cn/vision/Visual&Robot/publication/doc/IROS05_wu.pdf,,https://doi.org/10.1109/IROS.2005.1545532, +79cdc8c786c535366cafeced1f3bdeb18ff04e66,http://www.researchgate.net/profile/Ziga_Spiclin/publication/221795259_Groupwise_registration_of_multimodal_images_by_an_efficient_joint_entropy_minimization_scheme/links/0deec520dd49e7bc24000000.pdf,,https://doi.org/10.1109/TIP.2012.2186145,https://www.researchgate.net/profile/Ziga_Spiclin/publication/221795259_Groupwise_registration_of_multimodal_images_by_an_efficient_joint_entropy_minimization_scheme/links/0deec520dd49e7bc24000000.pdf +79fd4baca5f840d6534a053b22e0029948b9075e,,,https://doi.org/10.1109/ISDA.2012.6416647, +793e7f1ba18848908da30cbad14323b0389fd2a8,http://pdfs.semanticscholar.org/793e/7f1ba18848908da30cbad14323b0389fd2a8.pdf,,,http://openaccess.thecvf.com/content_ICCV_2017/supplemental/Jin_End-To-End_Face_Detection_ICCV_2017_supplemental.pdf +2d5d3905adfea7a6a8371dc2c5edc669cadacf70,,,, +2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359,http://pdfs.semanticscholar.org/2d99/0b04c2bd61d3b7b922b8eed33aeeeb7b9359.pdf,,https://doi.org/10.1007/978-3-642-37331-2_25,http://www.umiacs.umd.edu/~zhuolin/Publications/DDLPC_ACCV2012_Slide.pdf +2d25045ec63f9132371841c0beccd801d3733908,http://pdfs.semanticscholar.org/2d25/045ec63f9132371841c0beccd801d3733908.pdf,,https://doi.org/10.3390/s150306719,http://www.mdpi.com/1424-8220/15/3/6719/pdf +2dd6c988b279d89ab5fb5155baba65ce4ce53c1e,http://pdfs.semanticscholar.org/2dd6/c988b279d89ab5fb5155baba65ce4ce53c1e.pdf,,https://doi.org/10.1016/j.patcog.2011.09.023,http://www2.ece.ohio-state.edu/~aleix/PR12.pdf +2db05ef11041447dbc735362db68b04e562c1e35,http://www.cs.berkeley.edu/~daf/eccv-sft.pdf,,https://doi.org/10.1007/3-540-47977-5_15,http://vision.cse.psu.edu/research/3Dreconstruction/relatedWork/papers/forsythIJCV.pdf +2d94dfa9c8f6708e071ef38d58f9f9bcb374cd84,,,https://doi.org/10.1109/CVPRW.2011.5981817, +2d080662a1653f523321974a57518e7cb67ecb41,http://pdfs.semanticscholar.org/2d08/0662a1653f523321974a57518e7cb67ecb41.pdf,,https://doi.org/10.1007/978-3-319-47665-0_35,http://iva2016.ict.usc.edu/wp-content/uploads/Papers/100110358.pdf +2d4b9fe3854ccce24040074c461d0c516c46baf4,https://arxiv.org/pdf/1704.04671v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.342 +2d294c58b2afb529b26c49d3c92293431f5f98d0,https://ibug.doc.ic.ac.uk/media/uploads/documents/mmpp_journal.pdf,,https://doi.org/10.1109/TIP.2014.2348868,http://ibug.doc.ic.ac.uk/media/uploads/documents/mmpp_journal.pdf +2d1f86e2c7ba81392c8914edbc079ac64d29b666,https://arxiv.org/pdf/1702.04471v1.pdf,,https://doi.org/10.1109/WACV.2017.71,http://arxiv.org/abs/1702.04471 +2d87f4bf0606ce9939033b8f1fbc64b539eb18a6,,,, +2d164f88a579ba53e06b601d39959aaaae9016b7,http://pdfs.semanticscholar.org/a666/2bf767df8f8a5bcb655142ac0fb7c4f524f1.pdf,,https://doi.org/10.5244/C.20.31,http://www.comp.leeds.ac.uk/bmvc2008/proceedings/2006/papers/099.pdf +2d23fa205acca9c21e3e1a04674f1e5a9528550e,http://pdfs.semanticscholar.org/2d23/fa205acca9c21e3e1a04674f1e5a9528550e.pdf,,https://doi.org/10.1007/978-3-642-21257-4_7,https://www-i6.informatik.rwth-aachen.de/publications/download/703/Pishchulin-IbPRIA-2011.pdf +2d244d70ed1a2ba03d152189f1f90ff2b4f16a79,http://pdfs.semanticscholar.org/2d24/4d70ed1a2ba03d152189f1f90ff2b4f16a79.pdf,,https://doi.org/10.5244/C.17.1,http://www.bmva.org/bmvc/2003/papers/46/BMVC_0418.pdf +2d88e7922d9f046ace0234f9f96f570ee848a5b5,http://pdfs.semanticscholar.org/2d88/e7922d9f046ace0234f9f96f570ee848a5b5.pdf,,,http://arxiv.org/pdf/1603.09638v2.pdf +2d31ab536b3c8a05de0d24e0257ca4433d5a7c75,http://tamaraberg.com/papers/xray.pdf,,,http://www.tamaraberg.com/papers/xray.pdf +2dbde64ca75e7986a0fa6181b6940263bcd70684,http://www.micc.unifi.it/wp-content/uploads/2016/01/2014_pose_independent.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.766 +2d146cc0908c931d87f6e6e5d08b117c30a69b8d,http://www.cs.cityu.edu.hk/~yihong/download/TSMC.pdf,,https://doi.org/10.1109/TSMCB.2008.2006641, +2d0363a3ebda56d91d704d5ff5458a527775b609,http://pdfs.semanticscholar.org/2e07/a4c0f87ac078fcccf057d109f9387f4703a9.pdf,,https://doi.org/10.1007/978-3-319-46493-0_47,http://arxiv.org/abs/1512.00570 +2debdb6a772312788251cc3bd1cb7cc8a6072214,,,https://doi.org/10.1142/S0218001415560157, +2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8,http://pdfs.semanticscholar.org/2d93/a9aa8bed51d0d1b940c73ac32c046ebf1eb8.pdf,,,http://arxiv.org/abs/1608.03824 +2dd2c7602d7f4a0b78494ac23ee1e28ff489be88,https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/koestinger_cvpr_2012.pdf,,,http://lrs.icg.tugraz.at/research/kissme/paper/lrs_icg_koestinger_cvpr_2012.pdf +2d411826cd7865638b65e1b5f92043c245f009f9,,,,http://doi.acm.org/10.1145/2733373.2806239 +2d79dece7890121469f515a6e773ba0251fc2d98,,,https://doi.org/10.1109/ICIP.2017.8296756, +2d84e30c61281d3d7cdd11676683d6e66a68aea6,http://pdfs.semanticscholar.org/2d84/e30c61281d3d7cdd11676683d6e66a68aea6.pdf,,https://doi.org/10.1007/978-3-319-29451-3_14,http://img.cs.uec.ac.jp/e/pub/conf15/151125dohang_0.pdf +2d98a1cb0d1a37c79a7ebcb727066f9ccc781703,https://arxiv.org/pdf/1706.07525v1.pdf,,,http://doi.acm.org/10.1145/2733373.2806334 +2dced31a14401d465cd115902bf8f508d79de076,http://pdfs.semanticscholar.org/2dce/d31a14401d465cd115902bf8f508d79de076.pdf,,,http://journal-cdn.frontiersin.org/article/127212/files/pubmed-zip/versions/3/pdf +2d05e768c64628c034db858b7154c6cbd580b2d5,http://pdfs.semanticscholar.org/2d05/e768c64628c034db858b7154c6cbd580b2d5.pdf,,,http://ijcsmc.com/docs/papers/August2015/V4I8201567.pdf +2d072cd43de8d17ce3198fae4469c498f97c6277,http://www.patrikhuber.ch/files/RCRC_SPL_2015.pdf,,https://doi.org/10.1109/LSP.2014.2347011,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/Feng-IEEE-SPL-2015.pdf +2d35a07c4fa03d78d5b622ab703ea44850de8d39,http://www.cs.sunysb.edu/~vislab/papers/Zhang2005cgi.pdf,,,http://www3.cs.stonybrook.edu/~cvl/content/papers/2005/Zhang2005cgi.pdf +2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,http://pdfs.semanticscholar.org/ca31/53a726d8c212a7fd92f696c7e00a3ae3b31f.pdf,,,http://s.i-techonline.com/Book/Face-Recognition/ISBN978-3-902613-03-5-fr20.pdf +2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3,http://pdfs.semanticscholar.org/77c1/56969e3b7fbc86432c5238a95679d25ac579.pdf,,,http://research.ijcaonline.org/ncacit2016/number7/ncacit3093.pdf +2d38fd1df95f5025e2cee5bc439ba92b369a93df,http://pdfs.semanticscholar.org/2d38/fd1df95f5025e2cee5bc439ba92b369a93df.pdf,,,http://www.cs.dartmouth.edu/reports/TR2011-700.pdf +2d83ba2d43306e3c0587ef16f327d59bf4888dc3,http://www.cs.colby.edu/courses/S16/cs365/papers/karpath-deepVideo-CVPR14.pdf,,,http://cs.stanford.edu/people/karpathy/deepvideo/deepvideo_cvpr2014.pdf +2df4d0c06f4f68060cecbbb8e2088d9c6b20d04f,,,https://doi.org/10.1109/ICIP.2014.7026056, +2d84c0d96332bb4fbd8acced98e726aabbf15591,http://pdfs.semanticscholar.org/2d84/c0d96332bb4fbd8acced98e726aabbf15591.pdf,,,http://www.ee.ucr.edu/~amitrc/THESIS/thesis-ramya.pdf +2d79d338c114ece1d97cde1aa06ab4cf17d38254,http://crcv.ucf.edu/papers/cvpr2016/Borji_CVPR2016.pdf,,,http://crcv-web.eecs.ucf.edu/papers/cvpr2016/Borji_CVPR2016.pdf +2df4d05119fe3fbf1f8112b3ad901c33728b498a,http://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf,,,https://pdfs.semanticscholar.org/9ca7/899338129f4ba6744f801e722d53a44e4622.pdf +2d3482dcff69c7417c7b933f22de606a0e8e42d4,http://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf,,,http://people.cs.umass.edu/~elm/papers/lfw_update.pdf +2d925cddb4a42d235b637e4888e24ba876b09e4a,,,, +2d2fb01f761d21a459cfb34935bc47ab45a9913b,,,,http://doi.ieeecomputersociety.org/10.1109/TAFFC.2014.2346515 +2d748f8ee023a5b1fbd50294d176981ded4ad4ee,http://pdfs.semanticscholar.org/2d74/8f8ee023a5b1fbd50294d176981ded4ad4ee.pdf,,,http://arxiv.org/pdf/1602.03418v1.pdf +2d3c17ced03e4b6c4b014490fe3d40c62d02e914,http://pdfs.semanticscholar.org/2d3c/17ced03e4b6c4b014490fe3d40c62d02e914.pdf,,https://doi.org/10.1002/cav.1455,http://www.cs.siue.edu/~wwhite/CS582/ResearchPapers/Eccher_FacialAnimation/VideoDrivenStateAware_CAVW0512.pdf +4188bd3ef976ea0dec24a2512b44d7673fd4ad26,http://ibug.doc.ic.ac.uk/media/uploads/documents/ieee_tip2010.pdf,,https://doi.org/10.1109/TIP.2009.2038816,https://ibug.doc.ic.ac.uk/media/uploads/documents/ieee_tip2010.pdf +416b559402d0f3e2b785074fcee989d44d82b8e5,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Cai_Multi-View_Super_Vector_2014_CVPR_paper.pdf,,,http://xjpeng.weebly.com/uploads/5/5/4/4/55444193/caiwpq_cvpr14.pdf +416364cfdbc131d6544582e552daf25f585c557d,http://www.dcs.qmw.ac.uk/~sgg/papers/Zalewski_Gong_FG04.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AFGR.2004.1301581 +41b38da2f4137c957537908f9cb70cbd2fac8bc1,https://arxiv.org/pdf/1701.01879v1.pdf,,https://doi.org/10.1109/ICASSP.2017.7952406,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0001497.pdf +41cfc9edbf36754746991c2a1e9a47c0d129d105,https://www.cs.princeton.edu/~ohad/papers/FriedShechtmanGoldmanFinkelstein_SIGGRAPH2016.pdf,,,http://gfx.cs.princeton.edu/pubs/Fried_2016_PMO/fried2016-portraits.pdf +41000c3a3344676513ef4bfcd392d14c7a9a7599,http://pdfs.semanticscholar.org/d3ba/9ed56e9ddb73f0e0f2bea3fd3920db30f42e.pdf,,,https://arxiv.org/pdf/1401.0092v1.pdf +411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8,http://pdfs.semanticscholar.org/411e/e9236095f8f5ca3b9ef18fd3381c1c68c4b8.pdf,,,http://www.scielo.br/pdf/babt/v59nspe2/1516-8913-babt-59-16161057.pdf +41e5d92b13d36da61287c7ffd77ee71de9eb2942,,,https://doi.org/10.1016/j.asoc.2016.12.033, +4159663f0b292fd8cc7411929be9d669bb98b386,http://www.researchgate.net/profile/Pradeep_Khosla/publication/224752362_Cancelable_biometric_filters_for_face_recognition/links/00b4952ade904b0db4000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334679 +410bc0b3bd82c85c98df71ec0cfe995f14621077,,,, +41781474d834c079e8fafea154d7916b77991b15,,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2017.60 +4140498e96a5ff3ba816d13daf148fffb9a2be3f,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Li_Constrained.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.88 +41f8477a6be9cd992a674d84062108c68b7a9520,http://pdfs.semanticscholar.org/41f8/477a6be9cd992a674d84062108c68b7a9520.pdf,,,http://ivpl.eecs.northwestern.edu/sites/default/files/allerton_2007.pdf +41c8e222ebb26e72050f5d26c82f25d7618b700f,,,, +417c2fa930bb7078fdf10cb85c503bd5270b9dc2,,,https://doi.org/10.1109/ICSIPA.2015.7412169, +411503a304a661b0c04c2b446a6e43e4a70942dc,http://www0.cs.ucl.ac.uk/staff/s.prince/Papers/CRV2010FaceClustFinal.pdf,,,http://www.researchgate.net/profile/Simon_Prince/publication/221469462_Bayesian_Identity_Clustering/links/09e41510ae5d48f567000000.pdf +41aa8c1c90d74f2653ef4b3a2e02ac473af61e47,http://pdfs.semanticscholar.org/41aa/8c1c90d74f2653ef4b3a2e02ac473af61e47.pdf,,,https://arxiv.org/pdf/1410.5861v1.pdf +41ab4939db641fa4d327071ae9bb0df4a612dc89,http://pdfs.semanticscholar.org/41ab/4939db641fa4d327071ae9bb0df4a612dc89.pdf,,https://doi.org/10.1007/978-3-642-01811-4_33,http://www.researchgate.net/profile/Leopoldo_Altamirano_Robles/publication/221055031_Interpreting_Face_Images_by_Fitting_a_Fast_Illumination-Based_3D_Active_Appearance_Model/links/54b002da0cf28ebe92de3cdd.pdf +41971dfbf404abeb8cf73fea29dc37b9aae12439,http://pdfs.semanticscholar.org/4197/1dfbf404abeb8cf73fea29dc37b9aae12439.pdf,,,http://sitis.u-bourgogne.fr/06/Proceedings/SIT/f23.pdf +4157e45f616233a0874f54a59c3df001b9646cd7,http://pdfs.semanticscholar.org/4157/e45f616233a0874f54a59c3df001b9646cd7.pdf,,,https://elifesciences.org/content/3/e02020-download.pdf +41a6196f88beced105d8bc48dd54d5494cc156fb,http://toc.proceedings.com/25848webtoc.pdf,,, +41de109bca9343691f1d5720df864cdbeeecd9d0,http://pdfs.semanticscholar.org/41de/109bca9343691f1d5720df864cdbeeecd9d0.pdf,,https://doi.org/10.3390/s18020416, +41d9a240b711ff76c5448d4bf4df840cc5dad5fc,https://arxiv.org/pdf/1206.2627v2.pdf,,https://doi.org/10.1109/TMM.2014.2306175, +419a6fca4c8d73a1e43003edc3f6b610174c41d2,http://www.robots.newcastle.edu.au/~chalup/chalup_publications/p058_preprint.pdf,,https://doi.org/10.1109/IJCNN.2010.5596836,http://www.robots.newcastle.edu.au/~chalup/chalup_publications/p058.pdf +41c97af4801ac302f09902aeec2af17b481563ab,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2016/Collaborative%20Multi-View%20Metric%20Learning%20for%20Visual%20Classification.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552996 +41f195f421b548357088c2985077d6b14003ce7e,,,, +4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2c,http://www.ifp.illinois.edu/~dagli/papers/ICME07.pdf,,https://doi.org/10.1109/ICME.2007.4284961, +4180978dbcd09162d166f7449136cb0b320adf1f,http://pdfs.semanticscholar.org/4180/978dbcd09162d166f7449136cb0b320adf1f.pdf,,,http://www.cvc.uab.es/~petia/2011/Miguel%20Real-time%20head%20pose%20classificatio%20cvcrd2010reyes.pdf +414fdfe5f2e4f32a59bf15062b6e524cbf970637,,,https://doi.org/10.1109/TIFS.2014.2361028, +41b997f6cec7a6a773cd09f174cb6d2f036b36cd,http://pdfs.semanticscholar.org/41b9/97f6cec7a6a773cd09f174cb6d2f036b36cd.pdf,,https://doi.org/10.1016/j.cviu.2010.12.001,https://pdfs.semanticscholar.org/41b9/97f6cec7a6a773cd09f174cb6d2f036b36cd.pdf +41aa209e9d294d370357434f310d49b2b0baebeb,https://arxiv.org/pdf/1605.05440v1.pdf,,https://doi.org/10.1109/ICIP.2016.7532983,http://arxiv.org/pdf/1605.05440v1.pdf +4118b4fc7d61068b9b448fd499876d139baeec81,http://www.cs.utexas.edu/~ssi/TKDE2010.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.126 +413a184b584dc2b669fbe731ace1e48b22945443,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_00911.pdf,,,http://groups.inf.ed.ac.uk/calvin/Publications/eichner-techreport11.pdf +83b7578e2d9fa60d33d9336be334f6f2cc4f218f,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_101_ext.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298815 +839a2155995acc0a053a326e283be12068b35cb8,http://pdfs.semanticscholar.org/839a/2155995acc0a053a326e283be12068b35cb8.pdf,,,http://arxiv.org/pdf/1511.05045v2.pdf +83b54b8c97dc14e302dad191327407ec0d5fb4a6,,,https://doi.org/10.1109/ICIP.2017.8296913, +83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,http://pdfs.semanticscholar.org/83fd/2d2d5ad6e4e153672c9b6d1a3785f754b60e.pdf,,,http://langcog.stanford.edu/papers_new/hall-2015-ajmg.pdf +83c1fee5ef4b7ba9d9730f3b550dd7bfbdaf591d,,,, +83ca4cca9b28ae58f461b5a192e08dffdc1c76f3,http://infoscience.epfl.ch/record/200407/files/icip1024-cam-ready.pdf,,https://doi.org/10.1109/ICIP.2014.7026203,https://infoscience.epfl.ch/record/200407/files/icip1024-cam-ready.pdf +831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9,http://pdfs.semanticscholar.org/831f/bef657cc5e1bbf298ce6aad6b62f00a5b5d9.pdf,,,https://arxiv.org/pdf/1712.05526v1.pdf +83011670e083dd52484578f8b6b3b4ccde3237ec,,,, +832e1d128059dd5ed5fa5a0b0f021a025903f9d5,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dapogny_Pairwise_Conditional_Random_ICCV_2015_paper.pdf,,,http://www.isir.upmc.fr/files/2015ACTI3549.pdf +83e093a07efcf795db5e3aa3576531d61557dd0d,http://pdfs.semanticscholar.org/83e0/93a07efcf795db5e3aa3576531d61557dd0d.pdf,,https://doi.org/10.1007/978-3-319-27863-6_34,https://www.tnt.uni-hannover.de/papers/data/1124/paper.pdf +831d661d657d97a07894da8639a048c430c5536d,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Zhu_Weakly_Supervised_Facial_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.19 +8383faea09b4b4bef8117a1da897495ebd68691b,,,https://doi.org/10.1109/TCYB.2015.2493538, +83b4899d2899dd6a8d956eda3c4b89f27f1cd308,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICIP_2007/pdfs/0100377.pdf,,https://doi.org/10.1109/ICIP.2007.4378970, +83f3491249f1ec8b546267f53449686754f2f7fd,,,, +830e5b1043227fe189b3f93619ef4c58868758a7,http://pdfs.semanticscholar.org/830e/5b1043227fe189b3f93619ef4c58868758a7.pdf,,https://doi.org/10.1016/j.cviu.2015.03.015,http://ibug.doc.ic.ac.uk/media/uploads/documents/face_detection_survey.pdf +8323af714efe9a3cadb31b309fcc2c36c8acba8f,http://pdfs.semanticscholar.org/8323/af714efe9a3cadb31b309fcc2c36c8acba8f.pdf,,,http://mplab.ucsd.edu/~jake/thesis.pdf +831226405bb255527e9127b84e8eaedd7eb8e9f9,http://pdfs.semanticscholar.org/8312/26405bb255527e9127b84e8eaedd7eb8e9f9.pdf,,, +83fd5c23204147844a0528c21e645b757edd7af9,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W05/papers/Bulan_USDOT_Number_Localization_2015_CVPR_paper.pdf,,https://doi.org/10.1109/CVPRW.2015.7301301, +838dad9d1d68d29be280d92e69410eaac40084bc,,,https://doi.org/10.1109/HPCSim.2014.6903749, +8384e104796488fa2667c355dd15b65d6d5ff957,http://pdfs.semanticscholar.org/feea/803c1eaedc825509e24a8c1279ffe0251d9d.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2010_0097.pdf +8323529cf37f955fb3fc6674af6e708374006a28,http://researcher.ibm.com/researcher/files/us-smiyaza/FPIV04.pdf,,https://doi.org/10.1109/CVPR.2004.334,http://www-ee.ccny.cuny.edu/www/web/yltian/Publications/FPIV04.pdf +8395cf3535a6628c3bdc9b8d0171568d551f5ff0,http://pdfs.semanticscholar.org/8395/cf3535a6628c3bdc9b8d0171568d551f5ff0.pdf,,,http://arxiv.org/abs/1702.04389 +83ac942d71ba908c8d76fc68de6173151f012b38,http://pdfs.semanticscholar.org/83ac/942d71ba908c8d76fc68de6173151f012b38.pdf,,https://doi.org/10.1016/j.patcog.2012.05.017,https://www.cbica.upenn.edu/sbia/Birkan.Tunc/icerik/belgeler/cdfa.pdf +834f5ab0cb374b13a6e19198d550e7a32901a4b2,http://pdfs.semanticscholar.org/834f/5ab0cb374b13a6e19198d550e7a32901a4b2.pdf,,,https://arxiv.org/pdf/1712.00971v1.pdf +831a64f59944fa05f023288f284325429026e4e8,,,, +8320dbdd3e4712cca813451cd94a909527652d63,http://pdfs.semanticscholar.org/d921/1df11080fa5eb0dc1d62fb683b10c055673a.pdf,,,http://www.cs.armstrong.edu/burge/pdf/burge-burger-us.pdf +83d50257eb4c0aa8d16d27bf2ee8d0614fd63bf6,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284834 +834b15762f97b4da11a2d851840123dbeee51d33,http://pdfs.semanticscholar.org/834b/15762f97b4da11a2d851840123dbeee51d33.pdf,,,http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2016/09.13.14.06/doc/Landmark_free_smile_intensity_estimation.pdf +83bce0907937f09f5ccde26c361d52fe55fc8979,,,,http://doi.acm.org/10.1145/2993148.2993185 +833fa04463d90aab4a9fe2870d480f0b40df446e,http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf,,,http://static.cs.brown.edu/people/gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf +833f6ab858f26b848f0d747de502127406f06417,http://mediatum.ub.tum.de/doc/980054/157447.pdf,,https://doi.org/10.1109/ICIP.2009.5413952,http://www.mmk.ei.tum.de/publ/pdf/09/09sto1.pdf +8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff,http://pdfs.semanticscholar.org/8309/e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff.pdf,,https://doi.org/10.1007/978-3-642-01793-3_38,http://cvhci.ira.uka.de/download/publications/ICB_2009_241.pdf +1b8541ec28564db66a08185510c8b300fa4dc793,,,https://doi.org/10.1109/LSP.2015.2499778, +1b211f8221162ce7ef212956b637b50e30ad48f4,,,https://doi.org/10.1109/ICIP.2016.7532925, +1b635f494eff2e5501607ebe55eda7bdfa8263b8,http://pdfs.semanticscholar.org/1b63/5f494eff2e5501607ebe55eda7bdfa8263b8.pdf,,,http://crcv.ucf.edu/THUMOS14/papers/USC.pdf +1b6394178dbc31d0867f0b44686d224a19d61cf4,http://pdfs.semanticscholar.org/ca8e/5419fd570f19643425b24da801283b706fc1.pdf,,https://doi.org/10.1007/978-3-319-16817-3_4,https://hal.archives-ouvertes.fr/hal-01070657/document +1bd50926079e68a6e32dc4412e9d5abe331daefb,https://pdfs.semanticscholar.org/544d/6cd24db5adad8453033e0cc1aa7d3d6224ab.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126286 +1b150248d856f95da8316da868532a4286b9d58e,http://pdfs.semanticscholar.org/6724/41000751d58396790f4c993419d70f6af3f4.pdf,,,http://courses.cs.washington.edu/courses/cse590v/13au/car.pdf +1be498d4bbc30c3bfd0029114c784bc2114d67c0,http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf,,https://doi.org/10.1109/TIFS.2014.2359646, +1be785355ae29e32d85d86285bb8f90ea83171df,http://staff.estem-uc.edu.au/roland/files/2009/05/Sharma_Dhall_Gedeon_Goecke_ACII2013_ModelingStressUsingThermalFacialPatterns_ASpatio-TemporalApproach.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.70 +1b6c65442f2b572fb6c8fc9a7d5ae49a8e6d32ab,,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.537 +1b5acd1736f18e4fa202d88a80f774c6deea5733,,,, +1b5875dbebc76fec87e72cee7a5263d325a77376,http://arxiv.org/pdf/1603.00560v2.pdf,,,https://arxiv.org/pdf/1603.00560v2.pdf +1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9,http://pdfs.semanticscholar.org/1bdf/b3deae6e6c0df6537efcd1d7edcb4d7a96e9.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2012Li_214.pdf +1bba358c9323883ddd54224ad24d2ac4d8218fec,,,, +1b29f23f3517ac5bbe9bf5e80cda741b61bb9b12,,,https://doi.org/10.1016/j.patcog.2017.01.007, +1b300a7858ab7870d36622a51b0549b1936572d4,http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/Yimo-TIP2016.pdf,,https://doi.org/10.1109/TIP.2016.2537215, +1b90507f02967ff143fce993a5abbfba173b1ed0,http://mrl.cs.vsb.cz/publications/fusek_ipta_2014.pdf,,https://doi.org/10.1109/IPTA.2014.7001946, +1b794b944fd462a2742b6c2f8021fecc663004c9,https://www.ecse.rpi.edu/~cvrl/wuy/HierarchicalShape/CVPR14_facialfeaturedetection_cameraready.pdf,,,https://arxiv.org/pdf/1709.05732v1.pdf +1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,http://pdfs.semanticscholar.org/3a2f/aa145c5fe63ab906568a29fa4100220e03d9.pdf,,,http://www.cs.columbia.edu/~belhumeu/conference/few2many-fg00.pdf +1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,https://arxiv.org/pdf/1608.00486v3.pdf,,https://doi.org/10.1109/DICTA.2016.7797039,http://arxiv.org/pdf/1608.00486v1.pdf +1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913d,http://www.pitt.edu/~jeffcohn/biblio/dicta2010.pdf,,,http://doi.ieeecomputersociety.org/10.1109/DICTA.2010.53 +1b0a071450c419138432c033f722027ec88846ea,http://cvrr.ucsd.edu/publications/2016/YuenMartinTrivediITSC2016.pdf,,https://doi.org/10.1109/ITSC.2016.7795622, +1b60b8e70859d5c85ac90510b370b501c5728620,http://pdfs.semanticscholar.org/1b60/b8e70859d5c85ac90510b370b501c5728620.pdf,,https://doi.org/10.1007/978-3-642-33191-6_39,https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/Projects/Toyota/Downloads/Caunce_ISVC12.pdf +1b3b01513f99d13973e631c87ffa43904cd8a821,http://pdfs.semanticscholar.org/1b3b/01513f99d13973e631c87ffa43904cd8a821.pdf,,https://doi.org/10.1109/ICASSP.2003.1199141,http://landabaso.org/publications/icassp-03-landabaso.pdf +1bc214c39536c940b12c3a2a6b78cafcbfddb59a,http://pdfs.semanticscholar.org/1bc2/14c39536c940b12c3a2a6b78cafcbfddb59a.pdf,,https://doi.org/10.5220/0005723700490058,http://www.diva-portal.org/smash/get/diva2:944056/FULLTEXT01.pdf +1b4b3d0ce900996a6da8928e16370e21d15ed83e,,,https://doi.org/10.1109/BigDataService.2017.38, +1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113,http://pdfs.semanticscholar.org/1bc9/aaa41c08bbd0c01dd5d7d7ebf3e48ae78113.pdf,,https://doi.org/10.3390/e20010060,http://www.mdpi.com/1099-4300/20/1/60/pdf +1b9976fea3c1cf13f0a102a884f027d9d80a14b3,,,https://doi.org/10.1109/ROMAN.2014.6926354, +1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,,,,http://doi.acm.org/10.1145/2964284.2984061 +1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3,http://pdfs.semanticscholar.org/1be1/8a701d5af2d8088db3e6aaa5b9b1d54b6fd3.pdf,,,https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/237/2017/isprs-archives-XLII-2-W4-237-2017.pdf +1bcb1c6d6cebc9737f9933fcefbf3da8a612f994,,,https://doi.org/10.1016/j.jvcir.2017.10.008, +1b79628af96eb3ad64dbb859dae64f31a09027d5,http://pdfs.semanticscholar.org/1b79/628af96eb3ad64dbb859dae64f31a09027d5.pdf,,,http://csjarchive.cogsci.rpi.edu/2006v30/1/s15516709HCOG0000_48/s15516709HCOG0000_48.pdf +1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61,http://mplab.ucsd.edu/~marni/pubs/Bartlett_CVPR05.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2005.297 +1bddad4dc0dfa8efa402aa5d18c29304a5760f12,https://www.researchgate.net/profile/Iickho_Song/publication/254062033_Complexity-Reduced_Scheme_for_Feature_Extraction_With_Linear_Discriminant_Analysis/links/53d694ce0cf228d363ea69d5.pdf,,https://doi.org/10.1109/TNNLS.2012.2194793,https://www.researchgate.net/profile/Iickho_Song/publication/254062033_Complexity-Reduced_Scheme_for_Feature_Extraction_With_Linear_Discriminant_Analysis/links/53d694ce0cf228d363ea69d5.pdf?inViewer=0&origin=publication_detail&pdfJsDownload=0 +1b70bbf7cdfc692873ce98dd3c0e191580a1b041,http://pdfs.semanticscholar.org/1b70/bbf7cdfc692873ce98dd3c0e191580a1b041.pdf,,,https://www.irjet.net/archives/V3/i10/IRJET-V3I1096.pdf +1bd8ab47177997acb3b0cca4b6a801e6e6ec3eac,,,https://doi.org/10.1109/ICIP.2014.7025273, +1bc23c771688109bed9fd295ce82d7e702726327,http://pdfs.semanticscholar.org/1bc2/3c771688109bed9fd295ce82d7e702726327.pdf,,,https://www.ideals.illinois.edu/bitstream/handle/2142/29816/Yang_Jianchao.pdf?sequence=1 +1bad8a9640cdbc4fe7de12685651f44c4cff35ce,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W08/papers/Gourgari_THETIS_Three_Dimensional_2013_CVPR_paper.pdf,,,http://www.image.ece.ntua.gr/papers/783.pdf +1b589016fbabe607a1fb7ce0c265442be9caf3a9,http://pdfs.semanticscholar.org/5efe/b55fe3f03cd16aa0c268d74a5ad2e03170cf.pdf,,,http://library.allanschore.com/docs/PerceptualExpertPollak09.pdf +1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8,http://pdfs.semanticscholar.org/b1c8/4ab7cc0c85e8aa8be4c0ec32bad225c9c630.pdf,,,https://arxiv.org/pdf/1312.5785v3.pdf +1b4bc7447f500af2601c5233879afc057a5876d8,https://www.ecse.rpi.edu/~cvrl/Publication/pdf/Wang2015g.pdf,,,http://doi.acm.org/10.1145/2671188.2749311 +1b27ca161d2e1d4dd7d22b1247acee5c53db5104,http://pdfs.semanticscholar.org/1b27/ca161d2e1d4dd7d22b1247acee5c53db5104.pdf,,,http://atvs.ii.uam.es/audias/files/2015_FSI_ForensicFacialFeat_PTome_final.pdf +1b2d9a1c067f692dd48991beff03cd62b9faebf2,,,https://doi.org/10.1109/ICIP.2011.6116302, +1b69b860e22278a6f482507b8ce879082dd00c44,http://www.cs.utexas.edu/~chaoyeh/cvpr_2014_Inferring_Analogous_Attributes.pdf,,,http://vision.cs.utexas.edu/projects/inferring_analogous_attribute/inferring-analogous-attributes-poster.pdf +7711a7404f1f1ac3a0107203936e6332f50ac30c,http://pdfs.semanticscholar.org/7711/a7404f1f1ac3a0107203936e6332f50ac30c.pdf,,,https://arxiv.org/pdf/1708.09522v1.pdf +7782627fa2e545276996ff9e9a1686ac496df081,,,,http://doi.acm.org/10.1145/2663204.2666276 +771a6a80dd08212d83a4e976522e1ce108881401,,,https://doi.org/10.1109/IPTA.2016.7820979, +7755bac678027f23fe59e13119182a9c7c18f9f7,,,, +77652e55f73539df94f03489544504874f96d25e,,,, +7701952e405c3d8a0947e2a309de281aa76bd3f4,http://isl.ira.uka.de/~stiefel/papers/IEE_SIU_2LDA.pdf,,,http://face.cs.kit.edu/download/publications/IEE_SIU_2LDA.pdf +778c9f88839eb26129427e1b8633caa4bd4d275e,http://www.cs.berkeley.edu/~nzhang/papers/cvpr12_ppk.pdf,,,http://www.icsi.berkeley.edu/pubs/vision/ICSI_posepooling12.pdf +7735f63e5790006cb3d989c8c19910e40200abfc,http://pdfs.semanticscholar.org/7735/f63e5790006cb3d989c8c19910e40200abfc.pdf,,,https://www.imaging.utk.edu/publications/papers/dissertation/2008-dec-thesis-hchang.pdf +77223849321d57a03e0571a08e71eba06e38834a,,,,http://doi.ieeecomputersociety.org/10.1109/EMS.2011.20 +77b1db2281292372c38926cc4aca32ef056011dc,http://pdfs.semanticscholar.org/77b1/db2281292372c38926cc4aca32ef056011dc.pdf,,,https://www2.bc.edu/~russeljm/publications/adjectives.pdf +77c5437107f8138d48cb7e10b2b286fa51473678,,,https://doi.org/10.1109/URAI.2016.7734005, +776835eb176ed4655d6e6c308ab203126194c41e,http://pdfs.semanticscholar.org/7768/35eb176ed4655d6e6c308ab203126194c41e.pdf,,https://doi.org/10.1109/TMM.2008.921737,http://www.ifp.illinois.edu/~zhzeng/Trans_Multimedia_2008.pdf +77c53ec6ea448db4dad586e002a395c4a47ecf66,http://pdfs.semanticscholar.org/77c5/3ec6ea448db4dad586e002a395c4a47ecf66.pdf,,,https://www.researchgate.net/profile/Muhammad_Sharif9/publication/236953573_Face_Recognition_Based_on_Facial_Features/links/0deec5235811606ab6000000.pdf +77c3574a020757769b2ca807ff4b95a88eaa2a37,,,https://doi.org/10.1109/MSP.2015.2410783, +77cea27494499dd162221d1476bf70a87391790a,,,https://doi.org/10.1109/VCIP.2015.7457930, +778bff335ae1b77fd7ec67404f71a1446624331b,http://pdfs.semanticscholar.org/778b/ff335ae1b77fd7ec67404f71a1446624331b.pdf,,https://doi.org/10.1007/978-3-642-35749-7_15,http://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00743.pdf +77816b9567d5fed1f6085f33e1ddbcc73af2010e,,,https://doi.org/10.1109/MRA.2012.2201574, +7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0d,https://graphics.ethz.ch/Downloads/Publications/Papers/2013/Zun13a/Zun13a.pdf,,https://doi.org/10.1109/ICIP.2013.6738380,http://www.disneyresearch.com/wp-content/uploads/Content-Aware-Compression-using-Saliency-Driven-Image-Retargeting-for-Wireless-Video.pdf +774cbb45968607a027ae4729077734db000a1ec5,http://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf,,https://doi.org/10.5244/C.27.14,http://vision.cornell.edu/se3/wp-content/uploads/2014/09/utribes_bmvc13_final.pdf +77362789d04db4c51be61eaffa4f43e03759e677,,,, +772a30f1a7a3071e5ce6ad4b0dbddc67889f5873,,,, +7754b708d6258fb8279aa5667ce805e9f925dfd0,https://www.ecse.rpi.edu/~qji/Papers/PAMI_AU.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1094 +77037a22c9b8169930d74d2ce6f50f1a999c1221,https://ueaeprints.uea.ac.uk/64308/1/Accepted_manuscript.pdf,,https://doi.org/10.1109/TIP.2017.2716180, +778c1e95b6ea4ccf89067b83364036ab08797256,,,https://doi.org/10.1109/TIFS.2012.2224866, +779ad364cae60ca57af593c83851360c0f52c7bf,http://pdfs.semanticscholar.org/779a/d364cae60ca57af593c83851360c0f52c7bf.pdf,,,http://www.dcc.ufla.br/infocomp/artigos/v8.3/art09.pdf +77a9b1856ebbc9a6170ee4c572a515d6db062cef,http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1291.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206654 +7753e3b9e158289cbaa22203166424ca9c229f68,,,,http://doi.ieeecomputersociety.org/10.1109/ICDM.2014.29 +7792fbc59f3eafc709323cdb63852c5d3a4b23e9,http://pdfs.semanticscholar.org/7792/fbc59f3eafc709323cdb63852c5d3a4b23e9.pdf,,,http://arxiv.org/abs/1609.05420 +77869f274d4be4d4b4c438dbe7dff4baed521bd8,,,https://doi.org/10.1109/TIP.2016.2551362, +77be118034a700e5b7d9633f50f6fbb7fabec8ef,,,, +77d31d2ec25df44781d999d6ff980183093fb3de,http://openaccess.thecvf.com/content_cvpr_2016/supplemental/Littwin_The_Multiverse_Loss_2016_CVPR_supplemental.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Littwin_The_Multiverse_Loss_CVPR_2016_paper.pdf +77e747b12d22827fa84f506eefdac4ec37948359,,,, +7767059c935fb773d5e6f559b9eca6e72caa456d,,,, +773ce00841a23d32727aa1f54c29865fefd4ce02,,,,http://doi.ieeecomputersociety.org/10.1109/AIPR.2006.24 +772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,,,https://doi.org/10.1109/BTAS.2017.8272716, +77fb9e36196d7bb2b505340b6b94ba552a58b01b,http://pdfs.semanticscholar.org/77fb/9e36196d7bb2b505340b6b94ba552a58b01b.pdf,,,https://arxiv.org/pdf/1710.02310v1.pdf +486840f4f524e97f692a7f6b42cd19019ee71533,https://arxiv.org/pdf/1703.08388v2.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.197 +48af47406ec14b561a9cdfafc5b8bdfdc746eb8a,,,, +48463a119f67ff2c43b7c38f0a722a32f590dfeb,http://pdfs.semanticscholar.org/4846/3a119f67ff2c43b7c38f0a722a32f590dfeb.pdf,,,http://research.ijcaonline.org/volume52/number4/pxc3881569.pdf +488d3e32d046232680cc0ba80ce3879f92f35cac,http://pdfs.semanticscholar.org/488d/3e32d046232680cc0ba80ce3879f92f35cac.pdf,,,https://www.researchgate.net/profile/Hamid_Sadeghi6/publication/269694109_Facial_Expression_Recognition_Using_Texture_Description_of_Displacement_Image/links/549264c80cf2ac83c53dc1b8.pdf +480858e55abdbc07ca47b7dc10204613fdd9783c,,,https://doi.org/10.1109/ICPR.2014.786, +486a82f50835ea888fbc5c6babf3cf8e8b9807bc,http://pdfs.semanticscholar.org/486a/82f50835ea888fbc5c6babf3cf8e8b9807bc.pdf,,,http://arxiv.org/pdf/1507.07242v1.pdf +48901e44cd3e17efcfc9866982f8bd7b2c26b99d,,,, +48a6a1c6a0ac5f2b7912b3ccb40b0c07f62ddfdf,,,https://doi.org/10.1016/j.imavis.2015.12.003, +48d18b5f17672af694f0f5b5ec577516dbf697f4,,,, +487f9ab19ca6779a014278d93f3e56ff82dac2e3,,,, +48fea82b247641c79e1994f4ac24cad6b6275972,http://wan.poly.edu/KDD2012/docs/p1469.pdf,,,http://doi.acm.org/10.1145/2339530.2339760 +480ab25eba799b59e0a1a51021c5126c88a58a0c,,,, +48734cb558b271d5809286447ff105fd2e9a6850,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w41/papers/Mahoor_Facial_Expression_Recognition_CVPR_2017_paper.pdf,,,https://arxiv.org/pdf/1705.07871v1.pdf +48a417cfeba06feb4c7ab30f06c57ffbc288d0b5,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Chen_Robust_Dictionary_Learning_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.276 +48853c25dc75481b0c77f408a8a76383287ebe2a,http://qil.uh.edu/qil/websitecontent/pdf/2015-45.pdf,,https://doi.org/10.1109/IJCB.2011.6117477,http://www.csis.pace.edu/~ctappert/dps/2011IJCB/papers/322.pdf +489b7e12a420eff0d585f3f866e76b838c2cd275,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477675 +48dcf45a1e38adbb9826594f7ffaa5e95ef78395,,,https://doi.org/10.1109/VCIP.2017.8305111, +48db8bf18e2f6f19e07e88384be855c8b7ea0ead,,,,http://doi.acm.org/10.1145/2964284.2967225 +4848a48a2b8bacd2092e87961cd86818da8e7151,,,https://doi.org/10.1109/VCIP.2017.8305080, +48c41ffab7ff19d24e8df3092f0b5812c1d3fb6e,http://www.iri.upc.edu/files/scidoc/1938-Multi-Modal-Embedding-for-Main-Product-Detection-in-Fashion.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.261 +488a61e0a1c3768affdcd3c694706e5bb17ae548,http://pdfs.semanticscholar.org/916b/f08e66c3dd11bec809dd8cbe384e8860bb66.pdf,,https://doi.org/10.1007/978-3-319-54427-4_28,https://arxiv.org/pdf/1602.01125v1.pdf +48910f9b6ccc40226cd4f105ed5291571271b39e,http://pdfs.semanticscholar.org/4891/0f9b6ccc40226cd4f105ed5291571271b39e.pdf,,,http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Van_178.pdf +48a9241edda07252c1aadca09875fabcfee32871,https://arxiv.org/pdf/1611.08657v5.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Zadeh_Convolutional_Experts_Constrained_CVPR_2017_paper.pdf +48f0055295be7b175a06df5bc6fa5c6b69725785,http://pdfs.semanticscholar.org/48f0/055295be7b175a06df5bc6fa5c6b69725785.pdf,,,http://www.ijcaonline.org/archives/volume96/number19/16904-6971?format=pdf +48729e4de8aa478ee5eeeb08a72a446b0f5367d5,http://faculty.ucmerced.edu/mhyang/papers/icip14_cfh.pdf,,https://doi.org/10.1109/ICIP.2014.7025819, +48174c414cfce7f1d71c4401d2b3d49ba91c5338,http://pdfs.semanticscholar.org/4817/4c414cfce7f1d71c4401d2b3d49ba91c5338.pdf,,,https://arxiv.org/pdf/1507.02779v1.pdf +48255c9e1d6e1d030728d33a71699757e337be08,,,https://doi.org/10.1109/ISSNIP.2013.6529832, +4863333b9e5f25423e273a0581de3edee8bb3b97,,,, +488375ae857a424febed7c0347cc9590989f01f7,http://pdfs.semanticscholar.org/4883/75ae857a424febed7c0347cc9590989f01f7.pdf,,,http://users.ics.forth.gr/~tsakalid/PAPERS/CNFRS/2018-EI3-Greg.pdf +48121f5937accc8050b0c9bf2be6d1c58b07a8a0,,,, +4836b084a583d2e794eb6a94982ea30d7990f663,http://pdfs.semanticscholar.org/4836/b084a583d2e794eb6a94982ea30d7990f663.pdf,,,http://arxiv.org/abs/1611.06642 +4866a5d6d7a40a26f038fc743e16345c064e9842,http://pdfs.semanticscholar.org/4866/a5d6d7a40a26f038fc743e16345c064e9842.pdf,,https://doi.org/10.1016/j.patcog.2012.09.005,https://www.researchgate.net/profile/Xutao_Li2/publication/256822697_Stratified_sampling_for_feature_subspace_selection_in_random_forests_for_high_dimensional_data/links/00b7d538f49502957b000000.pdf +48906f609446afcdaacbe1d65770d7a6165a8eee,,,https://doi.org/10.1007/s12559-017-9482-4, +48cf1105eca8049e8625c5b30a69620b2381589c,,,, +4805f41c4f8cfb932b011dfdd7f8907152590d1a,http://www.affectiva.com/wp-content/uploads/2014/09/From_Dials_to_Facial_Coding_Automated_Detection_of_Spontaneous_Facial_Expressions_fo.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553780 +488e475eeb3bb39a145f23ede197cd3620f1d98a,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W10/papers/Zhu_Pedestrian_Attribute_Classification_2013_ICCV_paper.pdf,,, +487df616e981557c8e1201829a1d0ec1ecb7d275,http://www.citi.sinica.edu.tw/papers/yu.tsao/4293-F.pdf,,https://doi.org/10.1109/LSP.2014.2360099, +48f211a9764f2bf6d6dda4a467008eda5680837a,http://www.lv-nus.org/papers/2011/iccv2011-occupation.pdf,,,http://www.lv-nus.org/%5C/papers/2011/iccv2011-occupation.pdf +4858d014bb5119a199448fcd36746c413e60f295,http://pdfs.semanticscholar.org/4858/d014bb5119a199448fcd36746c413e60f295.pdf,,https://doi.org/10.5244/C.27.28,http://www.bmva.org/bmvc/2013/Papers/paper0028/abstract0028.pdf +48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,http://pdfs.semanticscholar.org/4831/9e611f0daaa758ed5dcf5a6496b4c6ef45f2.pdf,,,http://arxiv.org/abs/1411.0442 +48cfc5789c246c6ad88ff841701204fc9d6577ed,http://pdfs.semanticscholar.org/48cf/c5789c246c6ad88ff841701204fc9d6577ed.pdf,,https://doi.org/10.3745/JIPS.02.0043,http://jips.jatsxml.org/upload/pdf/jips-12-3-392.pdf +481fb0a74528fa7706669a5cce6a212ac46eaea3,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Recognizing_RGB_Images_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.184 +486f5e85944404a1b57333443070b0b8c588c262,,,,http://doi.ieeecomputersociety.org/10.1109/IRI.2014.7051957 +70f189798c8b9f2b31c8b5566a5cf3107050b349,http://www.cs.colostate.edu/~vision/pasc/docs/pasc2013_NISTIR_061013.pdf,,https://doi.org/10.1109/BTAS.2013.6712704,https://www3.nd.edu/~kwb/Beveridge_EtAl_BTAS_2013.pdf +7049187c5155d9652747413ce1ebc8dbb209fd69,,,https://doi.org/10.1109/ICPR.2016.7899808, +70580ed8bc482cad66e059e838e4a779081d1648,http://pdfs.semanticscholar.org/7058/0ed8bc482cad66e059e838e4a779081d1648.pdf,,,http://www.uni-obuda.hu/journal/Khan_Nazir_Riaz_42.pdf +70769def1284fe88fd57a477cde8a9c9a3dff13f,,,https://doi.org/10.1016/j.neucom.2006.10.036, +70341f61dfe2b92d8607814b52dfd0863a94310e,,,,http://doi.ieeecomputersociety.org/10.1109/AVSS.2015.7301750 +703890b7a50d6535900a5883e8d2a6813ead3a03,http://pdfs.semanticscholar.org/7038/90b7a50d6535900a5883e8d2a6813ead3a03.pdf,,https://doi.org/10.1016/j.patcog.2015.04.025,http://wrap.warwick.ac.uk/71508/1/WRAP_8471118-es-200815-fantjahjadi-pr2015.pdf +70db3a0d2ca8a797153cc68506b8650908cb0ada,http://pdfs.semanticscholar.org/70db/3a0d2ca8a797153cc68506b8650908cb0ada.pdf,,https://doi.org/10.1007/978-3-319-16181-5_56,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w16/W16-07.pdf +706236308e1c8d8b8ba7749869c6b9c25fa9f957,http://affect.media.mit.edu/pdfs/11.McDuff-etal-Crowdsourced-2011.pdf,,,http://www.affectiva.com/wp-content/uploads/2014/09/Crowdsourced_Data_Collection_of_Facial_Expressions.pdf +7002d6fc3e0453320da5c863a70dbb598415e7aa,http://www.cris.ucr.edu/IGERT/papers/SongfanAbstract.pdf,,https://doi.org/10.1109/TSMCB.2012.2192269,http://www.ee.ucr.edu/~syang/attach/Yang_SMC12.pdf +7071cd1ee46db4bc1824c4fd62d36f6d13cad08a,http://pdfs.semanticscholar.org/7071/cd1ee46db4bc1824c4fd62d36f6d13cad08a.pdf,,,http://shuoyang1213.me/projects/ScaleFace/support/ScaleFace.pdf +70444627cb765a67a2efba17b0f4b81ce1fc20ff,,,https://doi.org/10.1109/TNNLS.2016.2609434, +70c2c2d2b7e34ff533a8477eff9763be196cd03a,http://iplab.dmi.unict.it/sites/default/files/_9.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2015.7169755 +70c25293e33f5c37143ae20e3b0198a68083a5ed,,,, +70569810e46f476515fce80a602a210f8d9a2b95,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Antipov_Apparent_Age_Estimation_CVPR_2016_paper.pdf,,,http://www.eurecom.fr/en/publication/4908/download/sec-publi-4908.pdf +705a24f4e1766a44bbba7cf335f74229ed443c7b,http://web.ing.puc.cl/~asoto/papers/Maturana-09.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SCCC.2009.21 +70e79d7b64f5540d309465620b0dab19d9520df1,http://pdfs.semanticscholar.org/70e7/9d7b64f5540d309465620b0dab19d9520df1.pdf,,,https://www.ijser.org/researchpaper/Facial-Expression-Recognition-System-Using-Extreme-Learning-Machine.pdf +70516aede32cf0dbc539abd9416c44faafc868bd,,,https://doi.org/10.1109/MICAI.2013.16, +7003d903d5e88351d649b90d378f3fc5f211282b,http://pdfs.semanticscholar.org/7003/d903d5e88351d649b90d378f3fc5f211282b.pdf,,,http://research.ijcaonline.org/volume68/number23/pxc3887290.pdf +703c9c8f20860a1b1be63e6df1622b2021b003ca,http://openaccess.thecvf.com/content_ICCV_2017/papers/Kobayashi_Flip-Invariant_Motion_Representation_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.600 +70a69569ba61f3585cd90c70ca5832e838fa1584,http://pdfs.semanticscholar.org/70a6/9569ba61f3585cd90c70ca5832e838fa1584.pdf,,https://doi.org/10.1007/978-3-319-13737-7_11,http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/2014/Marter_ICPR_2014.pdf +7085d21f483743007cc6a8e3fa01d8bdf592ad33,http://www.meeting.edu.cn/meeting/UploadPapers/1282699022328.pdf,,, +70bf1769d2d5737fc82de72c24adbb7882d2effd,http://pdfs.semanticscholar.org/70bf/1769d2d5737fc82de72c24adbb7882d2effd.pdf,,https://doi.org/10.1007/978-3-319-00566-9_25,http://mmi.tudelft.nl/sites/default/files/Face%20detection%20in%20intelligent%20ambiences%20with%20colored%20illumination.pdf +7081958a390d3033f5f33e22bbfec7055ea8d601,,,https://doi.org/10.1109/MCI.2015.2437318, +70d8bda4aafb0272ac4b93cd43e2448446b8e94d,,,https://doi.org/10.1109/ICMLC.2010.5580938, +705e086bb666d129a6969882cfa49282116a638e,,,https://doi.org/10.1109/TNNLS.2014.2376963, +70d0bffa288e317bc62376f4f577c5bd7712e521,,,https://doi.org/10.1049/iet-cvi.2012.0094, +70d2f5e897086b8d3914f8fa1d9e479d71597e96,,,, +1e5ca4183929929a4e6f09b1e1d54823b8217b8e,http://pdfs.semanticscholar.org/1e5c/a4183929929a4e6f09b1e1d54823b8217b8e.pdf,,,http://summit.sfu.ca/system/files/iritems1/17453/etd10244_ZZhao.pdf +1e058b3af90d475bf53b3f977bab6f4d9269e6e8,http://pdfs.semanticscholar.org/30b9/7c36bcb99e857cd78fc55e2600d7851dc117.pdf,,,http://icml.cc/2012//papers/94.pdf +1e799047e294267087ec1e2c385fac67074ee5c8,http://pdfs.semanticscholar.org/1e79/9047e294267087ec1e2c385fac67074ee5c8.pdf,,,http://doi.ieeecomputersociety.org/10.1109/34.817413 +1ef4815f41fa3a9217a8a8af12cc385f6ed137e1,https://www.d2.mpi-inf.mpg.de/sites/default/files/wood2015_iccv.pdf,,,http://arxiv.org/abs/1505.05916 +1eb4ea011a3122dc7ef3447e10c1dad5b69b0642,http://pdfs.semanticscholar.org/1eb4/ea011a3122dc7ef3447e10c1dad5b69b0642.pdf,,,https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-132.pdf +1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3,http://pdfs.semanticscholar.org/1e7a/e86a78a9b4860aa720fb0fd0bdc199b092c3.pdf,,https://doi.org/10.3390/s18020401, +1e8eee51fd3bf7a9570d6ee6aa9a09454254689d,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/WangOttoJain_FaceSearchAtScale_TPAMI.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2582166 +1ea8085fe1c79d12adffb02bd157b54d799568e4,http://pdfs.semanticscholar.org/1ea8/085fe1c79d12adffb02bd157b54d799568e4.pdf,,,https://vision.cornell.edu/se3/wp-content/uploads/2014/09/eccv96.pdf +1ebdfceebad642299e573a8995bc5ed1fad173e3,http://pdfs.semanticscholar.org/1ebd/fceebad642299e573a8995bc5ed1fad173e3.pdf,,https://doi.org/10.1016/j.cviu.2015.10.005,http://imag.pub.ro/~bionescu/index_files/Mironica_CVIU_2015.pdf +1eec03527703114d15e98ef9e55bee5d6eeba736,http://pdfs.semanticscholar.org/1eec/03527703114d15e98ef9e55bee5d6eeba736.pdf,,,https://cvhci.anthropomatik.kit.edu/~stiefel/diplomarbeiten/DA_MikaFischer.pdf +1e07500b00fcd0f65cf30a11f9023f74fe8ce65c,http://vijaychan.github.io/Publications/2015%20ICIP%20-%20Whole%20Subspace%20Discriminant%20Analysis%20for%20Face%20Recognition.pdf,,https://doi.org/10.1109/ICIP.2015.7350814, +1e19ea6e7f1c04a18c952ce29386252485e4031e,http://pdfs.semanticscholar.org/1e19/ea6e7f1c04a18c952ce29386252485e4031e.pdf,,,http://www.iasir.net/IJETCASpapers/IJETCAS12-205.pdf +1ec98785ac91808455b753d4bc00441d8572c416,https://www.cl.cam.ac.uk/~tb346/pub/papers/fg2017_curriculum.pdf,,,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Gui_Curriculum.pdf +1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,,,http://arxiv.org/pdf/1404.3596v5.pdf +1eba6fc35a027134aa8997413647b49685f6fbd1,https://ubicomp-mental-health.github.io/papers/voss-glass.pdf,,,http://doi.acm.org/10.1145/2968219.2968310 +1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,http://personal.stevens.edu/~hli18//data/papers/CVPR2016_CameraReady.pdf,,,http://users.eecs.northwestern.edu/~xsh835/assets/cvpr2016_peoplerecognition.pdf +1ef5ce743a44d8a454dbfc2657e1e2e2d025e366,http://pdfs.semanticscholar.org/1ef5/ce743a44d8a454dbfc2657e1e2e2d025e366.pdf,,,http://globaljournals.org/GJCST_Volume11/3-Accurate-Corner-Detection-Methods-using-Two-Step-Approach.pdf +1e2770ce52d581d9a39642b40bfa827e3abf7ea2,,,,http://doi.acm.org/10.1145/2425333.2425362 +1eb48895d86404251aa21323e5a811c19f9a55f9,,,,http://doi.ieeecomputersociety.org/10.1109/CIS.2015.22 +1e58d7e5277288176456c66f6b1433c41ca77415,http://pdfs.semanticscholar.org/1e58/d7e5277288176456c66f6b1433c41ca77415.pdf,,,http://static.cs.brown.edu/people/gen/pub_papers/nips_workshop_2013.pdf +1e5a1619fe5586e5ded2c7a845e73f22960bbf5a,https://arxiv.org/pdf/1509.04783v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.446 +1e213b03e1b8a6067bf37503904491e98b9e42df,http://figment.cse.usf.edu/~sfefilat/data/papers/TuAT10.9.pdf,,https://doi.org/10.1109/ICPR.2008.4761433, +1e8fd77d4717e9cb6079e10771dd2ed772098cb3,,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2016.7574681 +1e7c73602e6a17986b2e66ef411748056acf2545,,,, +1e9f1bbb751fe538dde9f612f60eb946747defaa,http://pdfs.semanticscholar.org/1e9f/1bbb751fe538dde9f612f60eb946747defaa.pdf,,,http://vision.cs.tut.fi/data/publications/jsee2017.pdf +1e917fe7462445996837934a7e46eeec14ebc65f,http://pdfs.semanticscholar.org/1e91/7fe7462445996837934a7e46eeec14ebc65f.pdf,,,https://www.ri.cmu.edu/pub_files/pub4/teng_kenny_2006_1/teng_kenny_2006_1.pdf +1e8394cc9fe7c2392aa36fb4878faf7e78bbf2de,https://arxiv.org/pdf/1410.3748v1.pdf,,https://doi.org/10.1109/THMS.2014.2358649,http://arxiv.org/abs/1410.3748 +1ef4aac0ebc34e76123f848c256840d89ff728d0,http://www.openu.ac.il/home/hassner/projects/augmented_faces/Masietal2017rapid.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.76 +1ecb56e7c06a380b3ce582af3a629f6ef0104457,http://pdfs.semanticscholar.org/1ecb/56e7c06a380b3ce582af3a629f6ef0104457.pdf,,https://doi.org/10.20965/jaciii.2004.p0002, +1e62ca5845a6f0492574a5da049e9b43dbeadb1b,,,https://doi.org/10.1109/LSP.2016.2637400, +1e64b2d2f0a8a608d0d9d913c4baee6973995952,http://sergioescalera.com/wp-content/uploads/2017/06/FG_presentation.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.106 +1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,http://pdfs.semanticscholar.org/1ee2/7c66fabde8ffe90bd2f4ccee5835f8dedbb9.pdf,,,http://www.iro.umontreal.ca/~lisa/pointeurs/entropy_regularization_2006.pdf +1e344b99583b782e3eaf152cdfa15f217b781181,,,,http://doi.acm.org/10.1145/2499788.2499789 +1eb9c859ff7537182a25556635954bcd11830822,,,https://doi.org/10.1109/ICDSP.2015.7252004, +1ef6ad9e1742d0b2588deaf506ef83b894fb9956,,,https://doi.org/10.1007/s12193-016-0213-z, +1ed617d14dbc53b20287d3405b14c68d8dad3965,,,https://doi.org/10.1109/TCYB.2016.2582918, +1ec73ee49e422b4509c016ce244822144c849089,,,, +1e41a3fdaac9f306c0ef0a978ae050d884d77d2a,http://www.cs.huji.ac.il/~daphna/course/CoursePapers/SerreEtAl%20PAMI2007.pdf,,,http://cbcl.mit.edu/publications/ps/serre-wolf-poggio-PAMI-07.pdf +1ed49161e58559be399ce7092569c19ddd39ca0b,,,https://doi.org/10.1109/ICPR.2016.7899973, +1eeb39d618f5fab243dd07b955a8e0e722f6dfdb,,,, +1e94cc91c5293c8fc89204d4b881552e5b2ce672,http://pdfs.semanticscholar.org/5893/7d427ff36e1470b18120245148355047e4ea.pdf,,,https://www.ijcai.org/Proceedings/16/Papers/289.pdf +1e1e66783f51a206509b0a427e68b3f6e40a27c8,http://pdfs.semanticscholar.org/1e1e/66783f51a206509b0a427e68b3f6e40a27c8.pdf,,,http://sugiyama-www.cs.titech.ac.jp/~sugi/2010/VISAPP2010.pdf +1eb1fdc5c933d2483ba1acbfa8c457fae87e71e5,,,https://doi.org/10.1109/ICPR.2016.7899945, +1ea4347def5868c622d7ce57cbe171fa68207e2b,,,https://doi.org/10.1007/978-3-642-41181-6_23, +1e0add381031245b1d5129b482853ee738b498e1,http://eprints.pascal-network.org/archive/00001829/01/CVPR05_Romdhani.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2005.145 +1e8eec6fc0e4538e21909ab6037c228547a678ba,http://pdfs.semanticscholar.org/1e8e/ec6fc0e4538e21909ab6037c228547a678ba.pdf,,,http://www.imperial.ac.uk/pls/portallive/docs/1/18619709.PDF +1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,http://arxiv.org/pdf/1607.01450v1.pdf,,,https://arxiv.org/pdf/1607.01450v1.pdf +84fe5b4ac805af63206012d29523a1e033bc827e,http://pdfs.semanticscholar.org/84fe/5b4ac805af63206012d29523a1e033bc827e.pdf,,https://doi.org/10.1016/j.neucom.2016.08.139,http://arxiv.org/abs/1611.06203 +84e4b7469f9c4b6c9e73733fa28788730fd30379,http://pdfs.semanticscholar.org/84e4/b7469f9c4b6c9e73733fa28788730fd30379.pdf,,,https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13634-017-0521-9?site=asp-eurasipjournals.springeropen.com +84dcf04802743d9907b5b3ae28b19cbbacd97981,http://pdfs.semanticscholar.org/84dc/f04802743d9907b5b3ae28b19cbbacd97981.pdf,,,http://arxiv.org/abs/1701.08289 +841bf196ee0086c805bd5d1d0bddfadc87e424ec,http://pdfs.semanticscholar.org/841b/f196ee0086c805bd5d1d0bddfadc87e424ec.pdf,,,http://www.sersc.org/journals/IJSIP/vol5_no4/10.pdf +849a1d1accafe9e41b7015bf8cf85efe7e742df3,,,, +842d82081f4b27ca2d4bc05c6c7e389378f0c7b8,http://pdfs.semanticscholar.org/842d/82081f4b27ca2d4bc05c6c7e389378f0c7b8.pdf,,,http://ev.fe.uni-lj.si/1-2-2011/Tkalcic.pdf +84f3c4937cd006888b82f2eb78e884f2247f0c4e,,,https://doi.org/10.1109/CCNC.2012.6181097,http://cgit.nutn.edu.tw:8080/cgit/PaperDL/LZJ_120807051353.PDF +841a5de1d71a0b51957d9be9d9bebed33fb5d9fa,http://mx.nthu.edu.tw/~tsunghan/papers/journal%20papers/TIP_PCANet.pdf,,https://doi.org/10.1109/TIP.2015.2475625,http://vision.sysu.edu.cn/vision_sysu/wp-content/uploads/2014/04/PCANet-slides.pdf +84be18c7683417786c13d59026f30daeed8bd8c9,,,https://doi.org/10.1007/s00138-016-0755-9, +84d7af78c8dba3cad0380a33511725db4db1a54d,,,, +84e6669b47670f9f4f49c0085311dce0e178b685,http://pdfs.semanticscholar.org/84e6/669b47670f9f4f49c0085311dce0e178b685.pdf,,,http://arxiv.org/abs/1502.00852 +84f86f8c559a38752ddfb417e58f98e1f8402f17,,,,http://doi.ieeecomputersociety.org/10.1109/EST.2013.10 +844e3e6992c98e53b45e4eb88368d0d6e27fc1d6,,,https://doi.org/10.1109/ICIP.2014.7026057, +84bc3ca61fc63b47ec3a1a6566ab8dcefb3d0015,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2012/BTAS%20144.pdf,,https://doi.org/10.1109/BTAS.2012.6374602, +84ae55603bffda40c225fe93029d39f04793e01f,,,https://doi.org/10.1109/ICB.2016.7550066, +84ec0983adb8821f0655f83b8ce47f36896ca9ee,,,https://doi.org/10.1109/SMC.2017.8122985, +847e07387142c1bcc65035109ccce681ef88362c,http://pdfs.semanticscholar.org/847e/07387142c1bcc65035109ccce681ef88362c.pdf,,https://doi.org/10.1007/978-3-540-24855-2_103,http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2004/Feature%20Synthesis%20Using%20Genetic%20Programming03.pdf +8411fe1142935a86b819f065cd1f879f16e77401,http://pdfs.semanticscholar.org/8411/fe1142935a86b819f065cd1f879f16e77401.pdf,,,http://airccse.org/journal/ijaia/papers/4613ijaia03.pdf +843e6f1e226480e8a6872d8fd7b7b2cd74b637a4,http://pdfs.semanticscholar.org/843e/6f1e226480e8a6872d8fd7b7b2cd74b637a4.pdf,,,http://maxwellsci.com/print/rjaset/v4-4724-4728.pdf +841c99e887eb262e397fdf5b0490a2ae6c82d6b5,,,, +84f904a71bee129a1cf00dc97f6cdbe1011657e6,http://pdfs.semanticscholar.org/84f9/04a71bee129a1cf00dc97f6cdbe1011657e6.pdf,,,https://kddfashion2017.mybluemix.net/final_submissions/ML4Fashion_paper_19.pdf +84b4eb66ad75a74f77299f1ecb6aa6305362e8cd,https://www.researchgate.net/profile/Joao_Carvalho8/publication/4285113_A_Learning-based_Eye_Detector_Coupled_with_Eye_Candidate_Filtering_and_PCA_Features/links/0f31752d6b19aa31ec000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2007.44 +846c028643e60fefc86bae13bebd27341b87c4d1,http://pdfs.semanticscholar.org/a06f/510ee0f206abc4c44a2b68455d88a1748427.pdf,,https://doi.org/10.1007/11612032_58,http://www.hci.iis.u-tokyo.ac.jp/~ysato/papers/Shimano-ACCV06.pdf +4a14a321a9b5101b14ed5ad6aa7636e757909a7c,http://openaccess.thecvf.com/content_iccv_2015/papers/Li_Learning_Semi-Supervised_Representation_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.317 +4adca62f888226d3a16654ca499bf2a7d3d11b71,http://pdfs.semanticscholar.org/5525/119941f6710fcde85cf71cc2ca25484e78c6.pdf,,,http://www.aclweb.org/anthology/P13-1056 +4aa286914f17cd8cefa0320e41800a99c142a1cd,http://www.vbettadapura.com/egocentric/food/Food-Bettadapura15.pdf,,,http://arxiv.org/abs/1510.02078 +4a9d906935c9de019c61aedc10b77ee10e3aec63,http://openaccess.thecvf.com/content_cvpr_2016/papers/Gupta_Cross_Modal_Distillation_CVPR_2016_paper.pdf,,,https://arxiv.org/pdf/1507.00448.pdf +4a2d54ea1da851151d43b38652b7ea30cdb6dfb2,http://pdfs.semanticscholar.org/4a2d/54ea1da851151d43b38652b7ea30cdb6dfb2.pdf,,https://doi.org/10.1017/CBO9781107360181.013,https://www.ece.rice.edu/~km23/files/paper/faceRegMotBlurCUP.pdf +4ae59d2a28abd76e6d9fb53c9e7ece833dce7733,http://pdfs.semanticscholar.org/4ae5/9d2a28abd76e6d9fb53c9e7ece833dce7733.pdf,,https://doi.org/10.1016/j.cosrev.2017.07.002,https://arxiv.org/pdf/1410.1648v5.pdf +4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8,http://pdfs.semanticscholar.org/4ab1/0174a4f98f7e2da7cf6ccfeb9bc64c8e7da8.pdf,,,http://lrs.icg.tugraz.at/pubs/koestinger_phd_13.pdf +4a484d97e402ed0365d6cf162f5a60a4d8000ea0,http://pdfs.semanticscholar.org/4a48/4d97e402ed0365d6cf162f5a60a4d8000ea0.pdf,,,https://www.ideals.illinois.edu/bitstream/handle/2142/47409/061_ready.pdf?isAllowed=y&sequence=2 +4a64758786e3f49fc13781304197591ffbd69a6e,http://vicos.fri.uni-lj.si/alesl/files/2008/05/fidlerpami06.pdf,,,http://www.cs.toronto.edu/~fidler/papers/Fidler2006Combining.pdf +4aa27c1f8118dbb39809a0f79a28c0cbc3ede276,,,,http://doi.acm.org/10.1145/2683483.2683530 +4a4da3d1bbf10f15b448577e75112bac4861620a,http://pdfs.semanticscholar.org/4a4d/a3d1bbf10f15b448577e75112bac4861620a.pdf,,,http://ftp.cs.wisc.edu/computer-vision/repository/PDF/guo.2006.thesis.pdf +4abd49538d04ea5c7e6d31701b57ea17bc349412,http://resources.mpi-inf.mpg.de/publications/D2/2015/rohrbach15ijcv.pdf,,https://doi.org/10.1007/s11263-015-0851-8,https://arxiv.org/pdf/1502.06648v2.pdf +4a0f98d7dbc31497106d4f652968c708f7da6692,http://arxiv.org/pdf/1605.05258v1.pdf,,,https://arxiv.org/pdf/1605.05258v1.pdf +4aabd6db4594212019c9af89b3e66f39f3108aac,http://pdfs.semanticscholar.org/4aab/d6db4594212019c9af89b3e66f39f3108aac.pdf,,,https://pdfs.semanticscholar.org/4aab/d6db4594212019c9af89b3e66f39f3108aac.pdf +4adb97b096b700af9a58d00e45a2f980136fcbb5,http://pdfs.semanticscholar.org/9ea2/23c070ec9a00f4cb5ca0de35d098eb9a8e32.pdf,,,https://arxiv.org/pdf/1708.03280v1.pdf +4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,http://sergioescalera.com/wp-content/uploads/2015/08/cha11g-lopezATS.pdf,,,http://doi.acm.org/10.1145/2522848.2532594 +4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c,http://pdfs.semanticscholar.org/4a1a/5316e85528f4ff7a5f76699dfa8c70f6cc5c.pdf,,,http://b2.cvl.iis.u-tokyo.ac.jp/mva/proceedings/CommemorativeDVD/2005/papers/2005104.pdf +4ae291b070ad7940b3c9d3cb10e8c05955c9e269,http://www.cl.cam.ac.uk/~pr10/publications/icmi14.pdf,,,http://doi.acm.org/10.1145/2663204.2663258 +4aa8db1a3379f00db2403bba7dade5d6e258b9e9,http://pdfs.semanticscholar.org/4aa8/db1a3379f00db2403bba7dade5d6e258b9e9.pdf,,https://doi.org/10.1007/978-3-642-12127-2_31,http://www.cs.unc.edu/~hadi/mcs_2010.pdf +4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9,https://arxiv.org/pdf/1608.01866v1.pdf,,,http://arxiv.org/pdf/1608.01866v1.pdf +4ac4e8d17132f2d9812a0088594d262a9a0d339b,http://pdfs.semanticscholar.org/4ac4/e8d17132f2d9812a0088594d262a9a0d339b.pdf,,,http://doi.ieeecomputersociety.org/10.1109/AMFG.2003.1240818 +4a03f07397c5d32463750facf010c532f45233a5,,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2012.32 +4abaebe5137d40c9fcb72711cdefdf13d9fc3e62,http://pdfs.semanticscholar.org/4aba/ebe5137d40c9fcb72711cdefdf13d9fc3e62.pdf,,https://doi.org/10.1007/978-3-642-15381-5_5,http://www.lce.hut.fi/~eiparvia/publ/IDEAL2010_cready_Parviainen.pdf +4aea1213bdb5aa6c74b99fca1afc72d8a99503c6,,,https://doi.org/10.1109/ICDIM.2010.5664688, +4acd683b5f91589002e6f50885df51f48bc985f4,http://www.albany.edu/faculty/mchang2/files/2015_09_ICIP_Darpa.pdf,,https://doi.org/10.1109/ICIP.2015.7350914, +4a1d640f5e25bb60bb2347d36009718249ce9230,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Xing_Towards_Multi-view_and_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.236 +4a4b5ae5793696b861aa009932e7a121d36ad67a,,,, +4aefd3ffa712a9b7d9db0615d4ee1932de6060d6,,,, +4aeb87c11fb3a8ad603311c4650040fd3c088832,http://pdfs.semanticscholar.org/4aeb/87c11fb3a8ad603311c4650040fd3c088832.pdf,,https://doi.org/10.24963/ijcai.2017/252,http://www.ijcai.org/proceedings/2017/0252.pdf +4a7e5a0f6a0df8f5ed25ef356cd67745cd854bea,,,https://doi.org/10.1007/978-3-642-14922-1_68, +4a3d96b2a53114da4be3880f652a6eef3f3cc035,https://www.micc.unifi.it/wp-content/uploads/2018/01/07932891.pdf,,https://doi.org/10.1109/TMM.2017.2707341, +4a6fcf714f663618657effc341ae5961784504c7,http://www.cs.tut.fi/~iosifidi/files/journal/2016_TIFS_ACSKDA.pdf?dl=0,,https://doi.org/10.1109/TIFS.2016.2582562, +24b37016fee57057cf403fe2fc3dda78476a8262,http://pdfs.semanticscholar.org/24b3/7016fee57057cf403fe2fc3dda78476a8262.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICPR.2002.1047404 +243cd27dce38fd756a840b397c28ad21cfb78897,,,https://doi.org/10.1049/iet-ipr.2013.0003, +24830e3979d4ed01b9fd0feebf4a8fd22e0c35fd,http://www.researchgate.net/profile/Wei_Quan3/publication/221430048_High-resolution_comprehensive_3-D_dynamic_database_for_facial_articulation_analysis/links/0deec534309495805d000000.pdf,,https://doi.org/10.1109/ICCVW.2011.6130511,https://www.researchgate.net/profile/Wei_Quan3/publication/221430048_High-resolution_comprehensive_3-D_dynamic_database_for_facial_articulation_analysis/links/0deec534309495805d000000.pdf +24b5ea4e262e22768813e7b6581f60e4ab9a8de7,,,https://doi.org/10.1109/TIFS.2018.2807791, +24c442ac3f6802296d71b1a1914b5d44e48b4f29,http://vision.caltech.edu/~xpburgos/papers/ICCVW15%20Burgos-Artizzu.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w24/papers/Burgos-Artizzu_Pose_and_Expression-Coherent_ICCV_2015_paper.pdf +247cab87b133bd0f4f9e8ce5e7fc682be6340eac,http://pdfs.semanticscholar.org/247c/ab87b133bd0f4f9e8ce5e7fc682be6340eac.pdf,,, +24936849676b25a36eb6216e458286dcaee314e5,,,, +244293024aebbb0ff42a7cf2ba49b1164697a127,,,https://doi.org/10.1109/BTAS.2016.7791187, +245f8ec4373e0a6c1cae36cd6fed5a2babed1386,http://pdfs.semanticscholar.org/245f/8ec4373e0a6c1cae36cd6fed5a2babed1386.pdf,,,"https://www.textroad.com/pdf/JAEBS/J.%20Appl.%20Environ.%20Biol.%20Sci.,%207(3S)1-10,%202017.pdf" +24cb375a998f4af278998f8dee1d33603057e525,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_016_ext.pdf,,,http://vipl.ict.ac.cn/resources/codes/code/Huang_Projection_Metric_Learning_2015_CVPR_paper_2.pdf +24aac045f1e1a4c13a58eab4c7618dccd4c0e671,https://arxiv.org/pdf/1706.04124v1.pdf,,,https://arxiv.org/pdf/1706.04124v2.pdf +24eeb748a5e431510381ec7c8253bcb70eff8526,,,https://doi.org/10.1109/TIP.2017.2746270, +240d5390af19bb43761f112b0209771f19bfb696,http://pdfs.semanticscholar.org/4e10/0973f1540312df3465a087597018a7892310.pdf,,https://doi.org/10.1016/j.neunet.2014.10.005,http://www.sentic.net/multimodal-affective-data-analysis.pdf +24de12df6953151ef5cd0379e205eb0f57ff9d1f,http://www.researchgate.net/profile/Sebastian_Ventura/publication/270337594_A_Tutorial_on_Multi-Label_Learning/links/54bcd8460cf253b50e2d697b.pdf?origin=publication_list,,,http://doi.acm.org/10.1145/2716262 +24f9248f01df3020351347c2a3f632e01de72090,http://www.cs.utexas.edu/users/bwaters/publications/papers/luong-wacv2013.pdf,,,http://www.cs.utexas.edu/~grauman/papers/luong-wacv2013.pdf +24e099e77ae7bae3df2bebdc0ee4e00acca71250,https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/22467/Yang%20Robust%20Face%20Alignment%20Under%20Occlusion%20via%20Regional%20Predictive%20Power%20Estimation%202015%20Accepted.pdf?sequence=1,,https://doi.org/10.1109/TIP.2015.2421438,http://www.eecs.qmul.ac.uk/~ioannisp/pubs/ecopies/2015-TIP-Yang-Patras-Robust-Face-Alignment-under-Occlusion-final-submitted.pdf +24959d1a9c9faf29238163b6bcaf523e2b05a053,http://pdfs.semanticscholar.org/2495/9d1a9c9faf29238163b6bcaf523e2b05a053.pdf,,https://doi.org/10.1007/978-3-319-09912-5_34,http://home.elka.pw.edu.pl/~astrupcz/uploads/7/4/5/7/74570135/2014_high_accuracy_head_pose_tracking_survey_amt.pdf +24f1febcdf56cd74cb19d08010b6eb5e7c81c362,http://www.umiacs.umd.edu/~cteo/public-shared/language_robotsMethods_PerMIS2012.pdf,,,http://doi.acm.org/10.1145/2393091.2393109 +2450c618cca4cbd9b8cdbdb05bb57d67e63069b1,http://liris.cnrs.fr/Documents/Liris-6127.pdf,,,http://www.cs.uwyo.edu/~dspears/courses/ML/NN_facial.pdf +24cce97c3fe3c3fc21f1225e4a9f6c1e736e6bb9,,,, +24496e4acfb8840616b2960b0e2c80cc4c9e5a87,http://ai2-s2-pdfs.s3.amazonaws.com/2449/6e4acfb8840616b2960b0e2c80cc4c9e5a87.pdf,,,http://www.cs.washington.edu/homes/neeraj/papers/nk_cvpr2012_multiattrs.pdf +2400c4994655c4dd59f919c4d6e9640f57f2009f,,,https://doi.org/10.1109/IPTA.2015.7367096, +244b57cc4a00076efd5f913cc2833138087e1258,http://pdfs.semanticscholar.org/dfa8/d0afc548a8086902412fb0eae0fcf881ed8a.pdf,,,https://arxiv.org/pdf/1609.04382.pdf +24cf9fe9045f50c732fc9c602358af89ae40a9f7,http://pdfs.semanticscholar.org/b3e7/4cbe27454e32b4b35014af831783d3480ad5.pdf,,,https://arxiv.org/pdf/1607.01437v1.pdf +241d2c517dbc0e22d7b8698e06ace67de5f26fdf,http://pdfs.semanticscholar.org/bfc3/546fa119443fdcbac3a5723647c2ba0007ac.pdf,,https://doi.org/10.1007/978-3-319-10590-1_24,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8689/86890361.pdf +24e6a28c133b7539a57896393a79d43dba46e0f6,http://arxiv.org/pdf/1605.02057v2.pdf,,https://doi.org/10.1109/ICIP.2016.7533085,https://arxiv.org/pdf/1605.02057v2.pdf +24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,,,https://doi.org/10.1109/GlobalSIP.2016.7906030, +248db911e3a6a63ecd5ff6b7397a5d48ac15e77a,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Matthews_Enriching_Texture_Analysis_2013_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.165 +24b637c98b22cd932f74acfeecdb50533abea9ae,,,https://doi.org/10.1109/TIP.2015.2492819, +24d376e4d580fb28fd66bc5e7681f1a8db3b6b78,http://pdfs.semanticscholar.org/24d3/76e4d580fb28fd66bc5e7681f1a8db3b6b78.pdf,,,https://arxiv.org/pdf/1707.06330v1.pdf +24f1e2b7a48c2c88c9e44de27dc3eefd563f6d39,http://openaccess.thecvf.com/content_ICCV_2017/papers/Benitez-Quiroz_Recognition_of_Action_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.428 +2489a839d0a761ef8520393a7e412c36f5f26324,https://cs.adelaide.edu.au/~tjchin/lib/exe/fetch.php?media=eccv2014_hypergraph.pdf,,https://doi.org/10.1007/978-3-319-10593-2_44,http://www.tnt.uni-hannover.de/papers/data/1032/Pulak14_Hypergraph.pdf +243e9d490fe98d139003bb8dc95683b366866c57,http://pdfs.semanticscholar.org/243e/9d490fe98d139003bb8dc95683b366866c57.pdf,,,http://web2py.iiit.ac.in/research_centres/publications/download/mastersthesis.pdf.a9b6d5276b7588be.46696e616c5468657369732e706466.pdf +2465fc22e03faf030e5a319479a95ef1dfc46e14,https://www.fruct.org/publications/fruct20/files/Bel.pdf,,https://doi.org/10.23919/FRUCT.2017.8071290, +24205a60cbf1cc12d7e0a9d44ed3c2ea64ed7852,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.30 +2495ebdcb6da8d8c2e82cf57fcaab0ec003d571d,http://eprints.pascal-network.org/archive/00002118/01/russell06.pdf,,,http://repository.cmu.edu/cgi/viewcontent.cgi?article=1283&context=robotics +24e42e6889314099549583c7e19b1cb4cc995226,,,https://doi.org/10.1109/ACPR.2011.6166646, +247a6b0e97b9447850780fe8dbc4f94252251133,http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Conf_Arman_CVPR2010.pdf,,https://doi.org/10.1109/CVPRW.2010.5543263, +24bf94f8090daf9bda56d54e42009067839b20df,https://www.computer.org/csdl/trans/tp/2015/06/06940284.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2366127 +24f3dfeb95bdecdc604d630acdfcafa1dc7c9124,,,,http://doi.acm.org/10.1145/2994258.2994270 +240eb0b34872c431ecf9df504671281f59e7da37,http://www.ece.cmu.edu/~dbatra/publications/assets/cutout_tags_iv2009_small.pdf,,https://doi.org/10.1109/CVPRW.2009.5204195,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/04/20.pdf +245d98726674297208e76308c3a11ce3fc43bee2,,,https://doi.org/10.1007/s11042-015-2699-x, +230527d37421c28b7387c54e203deda64564e1b7,http://pdfs.semanticscholar.org/2305/27d37421c28b7387c54e203deda64564e1b7.pdf,,https://doi.org/10.1007/978-1-4471-6296-4_17,http://www.ee.cuhk.edu.hk/~xgwang/papers/wangZreid.pdf +23fdbef123bcda0f07d940c72f3b15704fd49a98,http://pdfs.semanticscholar.org/23fd/bef123bcda0f07d940c72f3b15704fd49a98.pdf,,,http://humansensing.cs.cmu.edu/sites/default/files/1nips2011.pdf +2348f1fa2940b01ec90e023fac8cc96812189774,,,,http://doi.ieeecomputersociety.org/10.1109/EWDTS.2017.8110157 +23ebbbba11c6ca785b0589543bf5675883283a57,https://pdfs.semanticscholar.org/23eb/bbba11c6ca785b0589543bf5675883283a57.pdf,,https://doi.org/10.1007/s11042-010-0602-3,http://webia.lip6.fr/~cord/Publications_files/KernelVideo.pdf +23aef683f60cb8af239b0906c45d11dac352fb4e,http://pdfs.semanticscholar.org/b6cd/e64dcf864e457a83b72b7742fd19984a7552.pdf,,,http://www.cs.cmu.edu/~ymiao/thesis/thesis.pdf +23860d947cf221b6ddb6d6cf3a7ac4b08c7cb8d3,,,, +235d5620d05bb7710f5c4fa6fceead0eb670dec5,http://pdfs.semanticscholar.org/7497/50d81dbd4d9fdcc9c1728b797dbb538a8747.pdf,,,http://infoscience.epfl.ch/record/146070/files/Jie_NIPS2009.pdf +2360ecf058393141ead1ca6b587efa2461e120e4,,,https://doi.org/10.1007/s00138-017-0895-6, +235a347cb96ef22bf35b4cf37e2b4ee5cde9df77,,,,http://doi.ieeecomputersociety.org/10.1109/DICTA.2008.13 +23ecc496eaa238ac884e6bae5763f6138a9c90a3,,,https://doi.org/10.1109/ICB.2016.7550085, +23fd653b094c7e4591a95506416a72aeb50a32b5,http://pdfs.semanticscholar.org/8a92/17f540845a7d11d24f2d76c0b752ca439457.pdf,,,http://research.ijcaonline.org/volume93/number11/pxc3895920.pdf +23172f9a397f13ae1ecb5793efd81b6aba9b4537,http://pdfs.semanticscholar.org/2317/2f9a397f13ae1ecb5793efd81b6aba9b4537.pdf,,https://doi.org/10.18653/v1/W15-2805,http://aclweb.org/anthology/W/W15/W15-2805.pdf +2336de3a81dada63eb00ea82f7570c4069342fb5,,,,http://doi.acm.org/10.1145/2361407.2361428 +231a6d2ee1cc76f7e0c5912a530912f766e0b459,http://pdfs.semanticscholar.org/231a/6d2ee1cc76f7e0c5912a530912f766e0b459.pdf,,,http://arxiv.org/abs/1312.7446 +236a4f38f79a4dcc2183e99b568f472cf45d27f4,https://jurie.users.greyc.fr/papers/moosman-nowak-jurie-pami08.pdf,,,http://www.mrt.kit.edu/z/publ/download/Moosmann_al2008pami.pdf +230c4a30f439700355b268e5f57d15851bcbf41f,http://arxiv.org/pdf/1509.01509v2.pdf,,,http://arxiv.org/abs/1509.01509 +237fa91c8e8098a0d44f32ce259ff0487aec02cf,http://ira.lib.polyu.edu.hk/bitstream/10397/241/1/SMCB_C_36_4_06_B.pdf,,,http://www.baskent.edu.tr/~mudogan/eem513/PCA.pdf +235bebe7d0db37e6727dfa1246663be34027d96b,,,https://doi.org/10.1109/NAFIPS.2016.7851625, +233be88c7ce1fbf1c1680643dca7869dc637b379,,,, +23d5b2dccd48a17e743d3a5a4d596111a2f16c41,http://pdfs.semanticscholar.org/8cda/dc4d5e7e4fe6a0dbe15611f6fc8b7c0f103e.pdf,,https://doi.org/10.1016/j.imavis.2012.02.003,http://www.gatsby.ucl.ac.uk/~szabo/publications/jeni12shape.pdf +23fc83c8cfff14a16df7ca497661264fc54ed746,http://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf,,,http://www.pitt.edu/~jeffcohn/biblio/Cohn-Kanade_Database.pdf +2331df8ca9f29320dd3a33ce68a539953fa87ff5,http://faculty.ucmerced.edu/mhyang/papers/aaai02.pdf,,,http://www.aaai.org/Library/AAAI/2002/aaai02-035.php +2340d810c515dc0c9fd319f598fa8012dc0368a0,,,https://doi.org/10.1109/AFGR.2008.4813420, +232b6e2391c064d483546b9ee3aafe0ba48ca519,https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_iccv2013.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Tzimiropoulos_Optimization_Problems_for_2013_ICCV_paper.pdf +23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,http://pdfs.semanticscholar.org/23ba/9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3.pdf,,,"http://cs229.stanford.edu/proj2014/Matthew%20Wang,%20Spencer%20Yee,%20Determining%20Mood%20From%20Facial%20Expressions.pdf" +237eba4822744a9eabb121fe7b50fd2057bf744c,http://pdfs.semanticscholar.org/ba2a/65bef17d9db7366fe8c1344ca918ba50b99a.pdf,,https://doi.org/10.1007/978-3-540-74889-2_3,http://www.se.cuhk.edu.hk/hccl/publications/pub/ACII2007.pdf +23086a13b83d1b408b98346cf44f3e11920b404d,http://pdfs.semanticscholar.org/2308/6a13b83d1b408b98346cf44f3e11920b404d.pdf,,https://doi.org/10.1016/j.imavis.2016.03.008,http://ca.cs.cmu.edu/sites/default/files/main.pdf +238fc68b2e0ef9f5ec043d081451902573992a03,http://www.cbsr.ia.ac.cn/users/zlei/papers/ChuanxianRen-ELGOF-TCYB.pdf,,https://doi.org/10.1109/TCYB.2015.2484356, +23e75f5ce7e73714b63f036d6247fa0172d97cb6,http://pdfs.semanticscholar.org/23e7/5f5ce7e73714b63f036d6247fa0172d97cb6.pdf,,,http://www.biomedical-engineering-online.com/content/pdf/1475-925X-8-16.pdf +23c66ab737367a96f1422ce5c4ff8421709ef70d,,,, +23675cb2180aac466944df0edda4677a77c455cd,,,,http://doi.ieeecomputersociety.org/10.1109/IIH-MSP.2009.142 +23aba7b878544004b5dfa64f649697d9f082b0cf,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Wang_Locality-Constrained_Discriminative_Learning_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301315 +23120f9b39e59bbac4438bf4a8a7889431ae8adb,http://pdfs.semanticscholar.org/2312/0f9b39e59bbac4438bf4a8a7889431ae8adb.pdf,,https://doi.org/10.1049/iet-bmt.2015.0057,http://vbn.aau.dk/files/230667133/IET_BMT_preprint.pdf +23d55061f7baf2ffa1c847d356d8f76d78ebc8c1,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0033-4?site=ipsjcva.springeropen.com,,https://doi.org/10.1186/s41074-017-0033-4, +23c3eb6ad8e5f18f672f187a6e9e9b0d94042970,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_095_ext.pdf,,https://doi.org/10.1109/CVPR.2015.7299169,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_095_ext.pdf +23a8d02389805854cf41c9e5fa56c66ee4160ce3,http://www.advancedsourcecode.com/influencelow10.pdf,,https://doi.org/10.1007/s11042-013-1568-8, +4fee2f524ef12741d2b0fa96f45a5ef9d20ada83,,,, +4ffd744a5f079c2d65f36e3ee0979b978f522a13,,,,http://doi.ieeecomputersociety.org/10.1109/SITIS.2009.15 +4fd29e5f4b7186e349ba34ea30738af7860cf21f,https://arxiv.org/pdf/1506.02588v1.pdf,,https://doi.org/10.1007/s11263-015-0875-0,http://arxiv.org/pdf/1506.02588v2.pdf +4fbc0189252ed4fe8f9cffd3ea0ebbb0c621e3ef,,,https://doi.org/10.1049/iet-cvi.2012.0127, +4f742c09ce12859b20deaa372c8f1575acfc99c9,,,https://doi.org/10.1016/j.neucom.2017.01.020, +4f0d9200647042e41dea71c35eb59e598e6018a7,http://pdfs.semanticscholar.org/4f0d/9200647042e41dea71c35eb59e598e6018a7.pdf,,,https://mice.cs.columbia.edu/getTechreport.php?format=pdf&techreportID=1505 +4f00a48a60cbf750b4ccbd698d5547d83b3eaf3f,,,, +4faded442b506ad0f200a608a69c039e92eaff11,http://pdfs.semanticscholar.org/4fad/ed442b506ad0f200a608a69c039e92eaff11.pdf,,,https://www.cg.tuwien.ac.at/research/publications/2006/vucini_2006/vucini_2006-thesis.pdf +4f7967158b257e86d66bdabfdc556c697d917d24,http://pdfs.semanticscholar.org/4f79/67158b257e86d66bdabfdc556c697d917d24.pdf,,,http://www.ri.cmu.edu/pub_files/2016/8/3-CMU-RI-MS-Thesis.pdf +4fc7a540efb24bea338f82c8bdc64c214744a3de,http://www.researchgate.net/profile/Touradj_Ebrahimi/publication/41083907_Object-based_Tag_Propagation_for_Semi-automatic_Annotation_of_Images/links/02e7e515b3de45cd50000000.pdf,,,https://infoscience.epfl.ch/record/143543/files/Ivanov_201003_ACMMIR2010.pdf +4fc936102e2b5247473ea2dd94c514e320375abb,http://pdfs.semanticscholar.org/4fc9/36102e2b5247473ea2dd94c514e320375abb.pdf,,,https://arxiv.org/pdf/1804.01824v1.pdf +4f298d6d0c8870acdbf94fe473ebf6814681bd1f,http://pdfs.semanticscholar.org/9979/b794d0bd06a1959a6b169f2cf32ba8ba376b.pdf,,https://doi.org/10.1016/j.imavis.2017.01.010,https://arxiv.org/pdf/1605.04988v1.pdf +4f6adc53798d9da26369bea5a0d91ed5e1314df2,http://pdfs.semanticscholar.org/4f6a/dc53798d9da26369bea5a0d91ed5e1314df2.pdf,,,https://arxiv.org/pdf/1608.00075v2.pdf +4fbef7ce1809d102215453c34bf22b5f9f9aab26,http://pdfs.semanticscholar.org/4fbe/f7ce1809d102215453c34bf22b5f9f9aab26.pdf,,,http://espace.library.uq.edu.au/eserv/UQ:18/Robust_Face_Recognition_for_Data_Mining.pdf +4fa0d73b8ba114578744c2ebaf610d2ca9694f45,http://pdfs.semanticscholar.org/4fa0/d73b8ba114578744c2ebaf610d2ca9694f45.pdf,,,https://arxiv.org/pdf/1712.04851v1.pdf +4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,https://arxiv.org/pdf/1510.00562v1.pdf,,,http://arxiv.org/abs/1510.00562 +4f591e243a8f38ee3152300bbf42899ac5aae0a5,http://pdfs.semanticscholar.org/4f59/1e243a8f38ee3152300bbf42899ac5aae0a5.pdf,,,https://arxiv.org/pdf/1612.06836v2.pdf +4f9958946ad9fc71c2299847e9ff16741401c591,http://pdfs.semanticscholar.org/4f99/58946ad9fc71c2299847e9ff16741401c591.pdf,,,http://www6.in.tum.de/Main/Publications/graves2008d.pdf +4f03ba35440436cfa06a2ed2a571fea01cb36598,,,https://doi.org/10.1109/SPAC.2017.8304260, +4fb0954ef02a178fd64f1c8cd0408866982bac2c,,,, +4f773c8e7ca98ece9894ba3a22823127a70c6e6c,http://pdfs.semanticscholar.org/4f77/3c8e7ca98ece9894ba3a22823127a70c6e6c.pdf,,https://doi.org/10.1007/978-3-642-35749-7_26,http://humansensing.cs.cmu.edu/sites/default/files/real_time.pdf +4fac09969ee80d485876e3198c7177181c600a4a,,,,http://doi.ieeecomputersociety.org/10.1109/CRV.2015.32 +4f3b652c75b1d7cf4997e0baaef2067b61e3a79b,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552910 +4ff11512e4fde3d1a109546d9c61a963d4391add,http://pdfs.semanticscholar.org/4ff1/1512e4fde3d1a109546d9c61a963d4391add.pdf,,,http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12838 +4f028efe6708fc252851eee4a14292b7ce79d378,http://pdfs.semanticscholar.org/ae17/aca92b4710efb00e3180a46e56e463ae2a6f.pdf,,https://doi.org/10.1109/IJCNN.1999.836189,http://www.cs.njit.edu/~liu/papers/ijcnn99.pdf +4f0bf2508ae801aee082b37f684085adf0d06d23,http://pdfs.semanticscholar.org/4f0b/f2508ae801aee082b37f684085adf0d06d23.pdf,,https://doi.org/10.1016/j.imavis.2012.02.010,http://www.eecs.qmul.ac.uk/~ioannisp/pubs/ecopies/2012-IVC-KumarKotsiaPatras_mnmf.pdf +4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/CNN_Gender_Recognition.pdf,,https://doi.org/10.1109/SSCI.2015.37,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SSCI_2015/data/7560a188.pdf +4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7,http://pdfs.semanticscholar.org/d8ca/e259c1c5bba0c096f480dc7322bbaebfac1a.pdf,,https://doi.org/10.1007/978-3-319-46475-6_15,http://www.ee.cuhk.edu.hk/~xgwang/papers/liuYLWTeccv16.pdf +4f0d5cbcd30fef3978b9691c2e736daed2f841c1,http://www.ics.uci.edu/~dramanan/papers/localdist_journal.pdf,,https://doi.org/10.1109/ICCV.2009.5459265,http://research.microsoft.com/pubs/120617/main.pdf +4f77a37753c03886ca9c9349723ec3bbfe4ee967,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Hasan_Localizing_Facial_Keypoints_2013_ICCV_paper.pdf,,, +4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf,,,http://www.bmva.org/bmvc/2014/files/abstract128.pdf +8d71872d5877c575a52f71ad445c7e5124a4b174,http://pdfs.semanticscholar.org/8d71/872d5877c575a52f71ad445c7e5124a4b174.pdf,,https://doi.org/10.1016/j.patcog.2006.11.020,https://www.researchgate.net/profile/Chunghoon_Kim/publication/222416291_Shadow_compensation_in_2D_images_for_face_recognition/links/53fc340a0cf2dca8fffeefb0.pdf?origin=publication_list +8de06a584955f04f399c10f09f2eed77722f6b1c,http://pdfs.semanticscholar.org/8de0/6a584955f04f399c10f09f2eed77722f6b1c.pdf,,,http://hal.archives-ouvertes.fr/docs/00/81/88/08/PDF/article-Visapp.pdf +8d4f0517eae232913bf27f516101a75da3249d15,http://pdfs.semanticscholar.org/8d4f/0517eae232913bf27f516101a75da3249d15.pdf,,,https://arxiv.org/pdf/1803.10106v1.pdf +8dd3f05071fd70fb1c349460b526b0e69dcc65bf,,,https://doi.org/10.1109/TIP.2017.2726010, +8de2dbe2b03be8a99628ffa000ac78f8b66a1028,http://pdfs.semanticscholar.org/8de2/dbe2b03be8a99628ffa000ac78f8b66a1028.pdf,,,http://lear.inrialpes.fr/people/gaidon/pubmedia/data/master_rapport.pdf +8d3e95c31c93548b8c71dbeee2e9f7180067a888,,,https://doi.org/10.1109/ICPR.2016.7899841, +8d3fbdb9783716c1832a0b7ab1da6390c2869c14,http://pdfs.semanticscholar.org/ae81/6e7e0077fe94f1e62629647dc04263a970b5.pdf,,,http://cdn.intechopen.com/pdfs/5899/InTech-Discriminant_subspace_analysis_for_uncertain_situation_in_facial_recognition.pdf +8d42a24d570ad8f1e869a665da855628fcb1378f,http://pdfs.semanticscholar.org/8d42/a24d570ad8f1e869a665da855628fcb1378f.pdf,,,http://www.cs.cmu.edu/~santosh/projects/papers/contextInDetectn_cvpr09_preCRC.pdf +8d8461ed57b81e05cc46be8e83260cd68a2ebb4d,http://pdfs.semanticscholar.org/8d84/61ed57b81e05cc46be8e83260cd68a2ebb4d.pdf,,,http://www.ijcsit.com/docs/Volume%203/vol3Issue3/ijcsit2012030384.pdf +8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3,http://vision.ucsd.edu/~pdollar/files/papers/DollarCVPR10pose.pdf,,,http://pdollar.github.io/files/papers/DollarCVPR10pose.pdf +8d2c0c9155a1ed49ba576ac0446ec67725468d87,http://media.cs.tsinghua.edu.cn/~cvg/publications/ENGLISH%20CONFERENCE%20PAPERS/A%20Study%20of%20Two%20Image%20Representations%20for%20Head%20Pose%20Estimation.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICIG.2009.141 +8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152,http://pdfs.semanticscholar.org/8d02/43b8b663ca0ab7cbe613e3b886a5d1c8c152.pdf,,,http://www.dsls.usra.edu/meetings/IAA/pdf/2306.pdf +8db9188e5137e167bffb3ee974732c1fe5f7a7dc,,,https://doi.org/10.1109/TIP.2016.2612885, +8d6c4af9d4c01ff47fe0be48155174158a9a5e08,http://pdfs.semanticscholar.org/8d6c/4af9d4c01ff47fe0be48155174158a9a5e08.pdf,,,http://homes.cs.washington.edu/~bcr/papers/RussellThesis.pdf +8d2c43759e221f39ab1b4bf70d6891ffd19fb8da,https://www.researchgate.net/profile/Zhang_Pinzheng/publication/224711010_An_Automatic_Facial_Expression_Recognition_Approach_Based_on_Confusion-Crossed_Support_Vector_Machine_Tree/links/54658c630cf2052b509f3391.pdf,,https://doi.org/10.1109/ICASSP.2007.365985, +8dbe79830713925affc48d0afa04ed567c54724b,http://pdfs.semanticscholar.org/8dbe/79830713925affc48d0afa04ed567c54724b.pdf,,,https://core.ac.uk/download/pdf/42415427.pdf +8d1adf0ac74e901a94f05eca2f684528129a630a,http://www.denniscodd.com/dotnet-ieee/Facial%20Expression%20Recognition%20Using%20Facial.pdf,,,http://doi.ieeecomputersociety.org/10.1109/T-AFFC.2011.13 +8db609d84190b905913eb2f17f4e558c6e982208,,,,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.182 +8d91f06af4ef65193f3943005922f25dbb483ee4,http://pdfs.semanticscholar.org/8d91/f06af4ef65193f3943005922f25dbb483ee4.pdf,,,http://arxiv.org/abs/1607.01040 +8dc9de0c7324d098b537639c8214543f55392a6b,http://www.diva-portal.org/smash/get/diva2:280081/FULLTEXT01.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCTA.2007.105 +8d712cef3a5a8a7b1619fb841a191bebc2a17f15,http://pdfs.semanticscholar.org/8d71/2cef3a5a8a7b1619fb841a191bebc2a17f15.pdf,,https://doi.org/10.1016/j.patrec.2015.07.040,https://pdfs.semanticscholar.org/8d71/2cef3a5a8a7b1619fb841a191bebc2a17f15.pdf +8d646ac6e5473398d668c1e35e3daa964d9eb0f6,http://pdfs.semanticscholar.org/8d64/6ac6e5473398d668c1e35e3daa964d9eb0f6.pdf,,,https://arxiv.org/pdf/1702.08481v1.pdf +8dffbb6d75877d7d9b4dcde7665888b5675deee1,http://pdfs.semanticscholar.org/8dff/bb6d75877d7d9b4dcde7665888b5675deee1.pdf,,,http://cs229.stanford.edu/proj2010/McLaughlinLeBayanbat-RecognizingEmotionsWithDeepBeliefNets.pdf +8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff,http://publications.idiap.ch/downloads/papers/2017/Le_CBMI_2017.pdf,,,http://doi.acm.org/10.1145/3095713.3095732 +153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4,http://pdfs.semanticscholar.org/153f/5ad54dd101f7f9c2ae17e96c69fe84aa9de4.pdf,,,"http://www.fer.unizg.hr/_download/repository/KDI,_Nenad_Markus.pdf" +15ef449ac443c494ceeea8a9c425043f4079522e,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477583 +155199d7f10218e29ddaee36ebe611c95cae68c4,http://pdfs.semanticscholar.org/1551/99d7f10218e29ddaee36ebe611c95cae68c4.pdf,,,http://ri.cmu.edu/pub_files/2016/4/main2-daftry.pdf +157647b0968d95f9288b27d6d9179a8e1ef5c970,,,https://doi.org/10.1049/iet-bmt.2014.0086, +15ef65fd68d61f3d47326e358c446b0f054f093a,,,https://doi.org/10.1109/MLSP.2017.8168180, +15bf0e70b069cea62d87d3bf706172c4a6a7779e,,,, +1584edf8106e8f697f19b726e011b9717de0e4db,,,https://doi.org/10.1049/iet-cvi.2015.0350, +15a9f812e781cf85c283f7cf2aa2928b370329c5,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2469281 +15cd05baa849ab058b99a966c54d2f0bf82e7885,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_031_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1A_031_ext.pdf +15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,http://feiwang03.googlepages.com/CVPRposter.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2006.272 +159e792096756b1ec02ec7a980d5ef26b434ff78,http://pdfs.semanticscholar.org/159e/792096756b1ec02ec7a980d5ef26b434ff78.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8165 +1541d5cb8af55930968c02f9185c1a3b5da6b7ea,,,, +153e5cddb79ac31154737b3e025b4fb639b3c9e7,http://pdfs.semanticscholar.org/d9f5/9178ef2d91c98e0f3108fe273cdc6c6590f4.pdf,,,https://arxiv.org/pdf/1409.5763v2.pdf +1586871a1ddfe031b885b94efdbff647cf03eff1,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w18/papers/Ginosar_A_Century_of_ICCV_2015_paper.pdf,,https://doi.org/10.1109/TCI.2017.2699865,http://www.cs.berkeley.edu/~shiry/publications/Ginosar15_Yearbooks.pdf +158aa18c724107587bcc4137252d0ba10debf417,,,https://doi.org/10.1109/ACSSC.2016.7869522, +15b07dae17f184c8e6efbc9d2b58526d8e8dc9d4,https://arxiv.org/pdf/1707.07196v1.pdf,,https://doi.org/10.1109/TSP.2017.2781649,https://arxiv.org/pdf/1707.07196v2.pdf +159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,,,https://doi.org/10.1109/TIP.2017.2694226, +152683f3ac99f829b476ea1b1b976dec6e17b911,,,https://doi.org/10.1109/MIXDES.2016.7529773, +15cf7bdc36ec901596c56d04c934596cf7b43115,http://pdfs.semanticscholar.org/15cf/7bdc36ec901596c56d04c934596cf7b43115.pdf,,,http://thesai.org/Downloads/Volume8No9/Paper_14-Face_Extraction_from_Image_based_on_K_Means.pdf +1576ed0f3926c6ce65e0ca770475bca6adcfdbb4,http://openaccess.thecvf.com/content_cvpr_workshops_2015/W09/papers/Bagheri_Keep_it_Accurate_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301332 +156cd2a0e2c378e4c3649a1d046cd080d3338bca,http://pdfs.semanticscholar.org/156c/d2a0e2c378e4c3649a1d046cd080d3338bca.pdf,,,http://web2py.iiit.ac.in/research_centres/publications/download/mastersthesis.pdf.bdab7fb0f6a384af.4578656d706c617220626173656420617070726f6163686573206f6e204661636520466964756369616c20446574656374696f6e20616e642046726f6e74616c697a6174696f6e20284d616c6c696b61726a756e204220522d323031333037363831292e706466.pdf +157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6,http://www.merl.com/publications/docs/TR2012-043.pdf,,,http://www2.ece.ohio-state.edu/~chi/papers/CROC_CVPR2012.pdf +15e0b9ba3389a7394c6a1d267b6e06f8758ab82b,https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0035-2?site=ipsjcva.springeropen.com,,https://doi.org/10.1186/s41074-017-0035-2, +151481703aa8352dc78e2577f0601782b8c41b34,http://pdfs.semanticscholar.org/943c/f990952712673320b011e1e8092fad65eedd.pdf,,https://doi.org/10.1007/11573425_22,http://www.dcs.qmul.ac.uk/~sgg/papers/Shan_etal_HCI05.pdf +159caaa56c2291bedbd41d12af5546a7725c58d4,,,https://doi.org/10.1109/ICIP.2016.7532910, +1565721ebdbd2518224f54388ed4f6b21ebd26f3,http://cmp.felk.cvut.cz/ftp/articles/franc/Cevilkalp-FaceDetector-FG2013.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553705 +15f3d47b48a7bcbe877f596cb2cfa76e798c6452,http://pdfs.semanticscholar.org/15f3/d47b48a7bcbe877f596cb2cfa76e798c6452.pdf,,,http://www.cl.cam.ac.uk/~pr10/publications/idgei15b.pdf +15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,,,https://doi.org/10.1109/TMM.2011.2167317, +15728d6fd5c9fc20b40364b733228caf63558c31,http://pdfs.semanticscholar.org/1572/8d6fd5c9fc20b40364b733228caf63558c31.pdf,,,http://web.engr.illinois.edu/~iendres2/publications/dissertation2013.pdf +15252b7af081761bb00535aac6bd1987391f9b79,http://cvsp.cs.ntua.gr/publications/confr/KoutrasMaragos_EyeGaze_ICIP15.pdf,,https://doi.org/10.1109/ICIP.2015.7351237, +1513949773e3a47e11ab87d9a429864716aba42d,http://pdfs.semanticscholar.org/1513/949773e3a47e11ab87d9a429864716aba42d.pdf,,https://doi.org/10.1016/j.neucom.2011.10.040,http://www.ee.oulu.fi/~hadid/Neurocomputing.pdf +15ee80e86e75bf1413dc38f521b9142b28fe02d1,https://arxiv.org/pdf/1612.05322v1.pdf,,https://doi.org/10.1109/BTAS.2016.7791203,https://arxiv.org/pdf/1612.05322v2.pdf +15e12d5c4d80a2b6f4d957a3ffd130564e9bab3a,,,https://doi.org/10.5220/0004736505740580, +1599718bf756a0fb7157277b93f21cfcad04e383,,,, +153c8715f491272b06dc93add038fae62846f498,http://pdfs.semanticscholar.org/153c/8715f491272b06dc93add038fae62846f498.pdf,,,http://vision.ucsd.edu/~jwlim/files/phdthesis.pdf +15e27f968458bf99dd34e402b900ac7b34b1d575,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p8362-mahanta.pdf,,https://doi.org/10.1109/ICASSP.2014.6855221, +15f70a0ad8903017250927595ae2096d8b263090,http://pdfs.semanticscholar.org/15f7/0a0ad8903017250927595ae2096d8b263090.pdf,,,http://arxiv.org/abs/1507.04844 +1564bf0a268662df752b68bee5addc4b08868739,https://arxiv.org/pdf/1605.04129v2.pdf,,https://doi.org/10.1109/ICPR.2016.7900087,https://arxiv.org/pdf/1605.04129v1.pdf +158e32579e38c29b26dfd33bf93e772e6211e188,http://pdfs.semanticscholar.org/158e/32579e38c29b26dfd33bf93e772e6211e188.pdf,,,https://curve.carleton.ca/system/files/etd/9d64f172-02e4-4172-890e-d751eee18de4/etd_pdf/e5ac8a1b25ad65e92ce18a84241280f8/fratesi-automatedrealtimeemotionrecognitionusingfacial.pdf +1277b1b8b609a18b94e4907d76a117c9783a5373,,,,http://doi.ieeecomputersociety.org/10.1109/ASONAM.2016.7752438 +122f51cee489ba4da5ab65064457fbe104713526,http://www.speakit.cn/Group/file/2015_LongShortTerm_ACMAVEC@MM15_EI.pdf,,,http://doi.acm.org/10.1145/2808196.2811634 +12c4ba96eaa37586f07be0d82b2e99964048dcb5,,,https://doi.org/10.1109/LSP.2017.2694460, +125d82fee1b9fbcc616622b0977f3d06771fc152,http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTcvpr12.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247963 +1255afbf86423c171349e874b3ac297de19f00cd,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SSCI_2015/data/7560a203.pdf,,https://doi.org/10.1109/SSCI.2015.39,http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/Multi_HOG_Face_Recognition.pdf +122f52fadd4854cf6c9287013520eced3c91e71a,,,https://doi.org/10.1109/TIP.2016.2515987, +1283398de84ec0178dc74d41a87febfbfbcbbb02,,,, +1280b35e4a20036fcfd82ee09f45a3fca190276f,,,,http://doi.ieeecomputersociety.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.166 +1252727e8096f48096ef89483d30c3a74500dd15,,,https://doi.org/10.1007/s00138-016-0746-x, +126535430845361cd7a3a6f317797fe6e53f5a3b,http://pdfs.semanticscholar.org/1265/35430845361cd7a3a6f317797fe6e53f5a3b.pdf,,https://doi.org/10.1007/978-3-642-19318-7_55,http://perception.csl.uiuc.edu/matrix-rank/Files/robust_stereo.pdf +122ee00cc25c0137cab2c510494cee98bd504e9f,http://pdfs.semanticscholar.org/122e/e00cc25c0137cab2c510494cee98bd504e9f.pdf,,,http://www.mmer-systems.eu/uploads/media/MMER_AAM_Evaluation.pdf +1286641b8896ae737e140cfd3da2d081d4cd548e,,,, +126204b377029feb500e9b081136e7a9010e3b6b,,,,http://doi.ieeecomputersociety.org/10.1109/ICDMW.2010.50 +121fe33daf55758219e53249cf8bcb0eb2b4db4b,http://pdfs.semanticscholar.org/121f/e33daf55758219e53249cf8bcb0eb2b4db4b.pdf,,https://doi.org/10.5244/C.23.51,http://www.bmva.org/bmvc/2009/Papers/Paper364/Paper364.pdf +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,,,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=917840 +12cb3bf6abf63d190f849880b1703ccc183692fe,http://pdfs.semanticscholar.org/12cb/3bf6abf63d190f849880b1703ccc183692fe.pdf,,,http://cgit.nutn.edu.tw:8080/cgit/PaperDL/LZJ_130102123815.PDF +1246534c3104da030fdb9e041819257e0d57dcbf,http://home.isr.uc.pt/~joaoluis/papers/cvpr2015_2.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2A_078_ext.pdf +12cd96a419b1bd14cc40942b94d9c4dffe5094d2,http://pdfs.semanticscholar.org/12cd/96a419b1bd14cc40942b94d9c4dffe5094d2.pdf,,,http://aclweb.org/anthology//W/W16/W16-3204.pdf +12bb0cb32e48269da2902c4c6d41ea2966ba8462,,,, +12055b8f82d5411f9ad196b60698d76fbd07ac1e,https://zhzhanp.github.io/papers/TCSVT2014.pdf,,https://doi.org/10.1109/TCSVT.2014.2308639, +126214ef0dcef2b456cb413905fa13160c73ec8e,http://infoscience.epfl.ch/record/125056/files/MHFE_fg08.pdf,,https://doi.org/10.1109/AFGR.2008.4813428,https://www.researchgate.net/profile/Gianluca_Antonini/publication/37462834_Modelling_human_perception_of_static_facial_expressions/links/0912f50c1ab55c4a91000000.pdf +12692fbe915e6bb1c80733519371bbb90ae07539,http://pdfs.semanticscholar.org/50ef/4817a6e50a2ec525d6e417d05d2400983c11.pdf,,,http://repository.cmu.edu/cgi/viewcontent.cgi?article=1226&context=machine_learning +1226a230b0be43d03b6e0ff5a22f5752f30834bb,,,, +12ded6a869b4e21149452234140257019af9494d,,,, +12ccfc188de0b40c84d6a427999239c6a379cd66,http://pdfs.semanticscholar.org/12cc/fc188de0b40c84d6a427999239c6a379cd66.pdf,,,https://arxiv.org/pdf/1803.02536v1.pdf +12c713166c46ac87f452e0ae383d04fb44fe4eb2,http://pdfs.semanticscholar.org/98dc/a90e43c7592ef81cf84445d73c8baa719686.pdf,,,http://www.waset.org/journals/waset/v32/v32-129.pdf +1270044a3fa1a469ec2f4f3bd364754f58a1cb56,http://pdfs.semanticscholar.org/1270/044a3fa1a469ec2f4f3bd364754f58a1cb56.pdf,,,http://vision.ucsd.edu/kriegman-grp/papers/papers/cvpr03b.pdf +12150d8b51a2158e574e006d4fbdd3f3d01edc93,https://lmb.informatik.uni-freiburg.de/lectures/seminar_brox/seminar_ss16/DeepEnd2EndV2V.pdf,,,http://www.cs.dartmouth.edu/~dutran/papers/cvpr16w_voxel.pdf +12003a7d65c4f98fb57587fd0e764b44d0d10125,http://luks.fe.uni-lj.si/en/staff/simond/publications/Dobrisek2015.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284835 +126076774da192d4d3f4efcd1accc719ee5f9683,,,https://doi.org/10.1109/SIU.2012.6204774, +124538b3db791e30e1b62f81d4101be435ee12ef,http://pdfs.semanticscholar.org/1245/38b3db791e30e1b62f81d4101be435ee12ef.pdf,,,http://cs.brown.edu/people/gen/pub_papers/BasicLevelSceneUnderstanding_FrontiersPsychology.pdf +12d8730da5aab242795bdff17b30b6e0bac82998,http://pdfs.semanticscholar.org/12d8/730da5aab242795bdff17b30b6e0bac82998.pdf,,https://doi.org/10.1007/978-3-319-19665-7_21,http://arxiv.org/abs/1411.6509 +120b9c271c3a4ea0ad12bbc71054664d4d460bc3,,,https://doi.org/10.1109/DICTA.2015.7371259, +12b533f7c6847616393591dcfe4793cfe9c4bb17,,,https://doi.org/10.1109/TIFS.2017.2765519, +8c643e1a61f3f563ec382c1e450f4b2b28122614,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2012/BTAS147.pdf,,https://doi.org/10.1109/BTAS.2012.6374603, +8c13f2900264b5cf65591e65f11e3f4a35408b48,http://cvhci.ira.uka.de/~stiefel/papers/Ekenel_Local_Appearance.pdf,,,https://cvhci.anthropomatik.kit.edu/~stiefel/papers/Ekenel_Local_Appearance.pdf +8cb3f421b55c78e56c8a1c1d96f23335ebd4a5bf,http://pdfs.semanticscholar.org/8cb3/f421b55c78e56c8a1c1d96f23335ebd4a5bf.pdf,,https://doi.org/10.1016/j.image.2004.05.009,https://www.hds.utc.fr/~fdavoine/mypublications/spic04.pdf +8c955f3827a27e92b6858497284a9559d2d0623a,http://pdfs.semanticscholar.org/8c95/5f3827a27e92b6858497284a9559d2d0623a.pdf,,, +8c8525e626c8857a4c6c385de34ffea31e7e41d1,http://arxiv.org/pdf/1505.07922.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_Cross-Domain_Image_Retrieval_ICCV_2015_paper.pdf +8c66378df977606d332fc3b0047989e890a6ac76,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_078_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_078_ext.pdf +8c9c8111e18f8798a612e7386e88536dfe26455e,http://pdfs.semanticscholar.org/8c9c/8111e18f8798a612e7386e88536dfe26455e.pdf,,,http://mail.isr.uc.pt/~mrl/admin/upload/Ra10_CS_JP_JD_correction_03.pdf +8c5cf18c456957c63248245791f44a685e832345,,,, +8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa,http://pdfs.semanticscholar.org/8c7f/4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa.pdf,,,https://arxiv.org/pdf/1704.04326v1.pdf +8cd9475a3a1b2bcccf2034ce8f4fe691c57a4889,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.138 +8c81705e5e4a1e2068a5bd518adc6955d49ae434,http://pdfs.semanticscholar.org/8c81/705e5e4a1e2068a5bd518adc6955d49ae434.pdf,,https://doi.org/10.1007/978-3-319-54526-4_26,http://www.cvlab.cs.tsukuba.ac.jp/~lincons/papers/egda.pdf +8cb403c733a5f23aefa6f583a17cf9b972e35c90,http://pdfs.semanticscholar.org/e4ca/1fa70823c4350888607df470248be0ed4c56.pdf,,,http://www.robots.ox.ac.uk/~vgg/publications/2016/Novotny16B/novotny16b.pdf +8cffe360a05085d4bcba111a3a3cd113d96c0369,,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248 +8c85ef961826575bc2c2f4da7784bc3bfcf8b188,,,https://doi.org/10.1109/ICIP.2015.7350871, +8c6b9c9c26ead75ce549a57c4fd0a12b46142848,http://pdfs.semanticscholar.org/97fc/47ba1427b0e50cd815b8b1657fea6fb9e25a.pdf,,https://doi.org/10.1007/978-0-387-34747-9_38,http://dl.ifip.org/db/conf/ifip12/ai2006/KotsiaP06.pdf +8c50869b745fc094a4fb1b27861934c3c14d7199,,,https://doi.org/10.1109/EMBC.2016.7591826, +8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82,http://pdfs.semanticscholar.org/e09e/aa666f354d4262d5ff4cf4ef54a960561bbe.pdf,,https://doi.org/10.3390/rs9050446,http://www.mdpi.com/2072-4292/9/5/446/pdf +8cedb92694845854f3ad0daf6c9adb6b81c293de,,,,http://doi.acm.org/10.1145/1839379.1839431 +8c3f7bd8ae50337dd812b370ce4c4ea9375a9f58,,,https://doi.org/10.1109/ICIP.2014.7025276, +8c7bceba769762126fd3dae78d622908bb83c3d3,http://qil.uh.edu/qil/websitecontent/pdf/2015-33.pdf,,https://doi.org/10.1109/WIFS.2012.6412618,http://cbl.uh.edu/pub_files/facial-landmark-configuration-for-improved-detection.pdf +8c37bd06e1a637c6f249dcd1d2c4bc9589ae24b3,,,https://doi.org/10.1007/11608288_28, +8c6c0783d90e4591a407a239bf6684960b72f34e,http://pdfs.semanticscholar.org/8c6c/0783d90e4591a407a239bf6684960b72f34e.pdf,,,http://worldcomp-proceedings.com/proc/proc2013/ike/IKE_Papers.pdf +8c2b663f8be1702ed3e377b5e6e85921fe7c6389,,,https://doi.org/10.1109/IPTA.2016.7821006, +8cd0855ca967ce47b0225b58bbadd38d8b1b41a1,,,https://doi.org/10.1109/TIP.2017.2721106, +8cb55413f1c5b6bda943697bba1dc0f8fc880d28,http://cvhci.anthropomatik.kit.edu/~stiefel/papers/ICCV07_031.pdf,,,http://isl.ira.uka.de/~stiefel/papers/ICCV07_031.pdf +8c048be9dd2b601808b893b5d3d51f00907bdee0,,,https://doi.org/10.1631/FITEE.1600041, +8cc07ae9510854ec6e79190cc150f9f1fe98a238,http://pdfs.semanticscholar.org/8cc0/7ae9510854ec6e79190cc150f9f1fe98a238.pdf,,https://doi.org/10.3390/jimaging2010006,http://www.mdpi.com/2313-433X/2/1/6/pdf +8509abbde2f4b42dc26a45cafddcccb2d370712f,http://pdfs.semanticscholar.org/ad9a/169042d887c33cfcec2716a453a0d3abcb0c.pdf,,,http://arxiv.org/abs/1709.03872 +855bfc17e90ec1b240efba9100fb760c068a8efa,http://pdfs.semanticscholar.org/855b/fc17e90ec1b240efba9100fb760c068a8efa.pdf,,https://doi.org/10.1016/j.engappai.2012.09.002,http://www.researchgate.net/profile/Abdelmalik_Moujahid/publication/257392756_Facial_expression_recognition_using_tracked_facial_actions_Classifier_performance_analysis/links/00b7d532d6de5cbd82000000.pdf +858ddff549ae0a3094c747fb1f26aa72821374ec,https://arxiv.org/pdf/1606.03237v1.pdf,,,http://arxiv.org/pdf/1606.03237v1.pdf +85041e48b51a2c498f22850ce7228df4e2263372,http://pdfs.semanticscholar.org/8504/1e48b51a2c498f22850ce7228df4e2263372.pdf,,,http://www.ca.cs.cmu.edu/sites/default/files/2accv2010finalpaper.pdf +85785ae222c6a9e01830d73a120cdac75d0b838a,,,https://doi.org/10.1007/978-3-319-11782-9, +857ad04fca2740b016f0066b152bd1fa1171483f,http://pdfs.semanticscholar.org/857a/d04fca2740b016f0066b152bd1fa1171483f.pdf,,,http://www.sce.carleton.ca/faculty/adler//publications/2003/adler-2003-ccece-restore-face-recognition-templates.pdf +858901405086056361f8f1839c2f3d65fc86a748,http://pdfs.semanticscholar.org/8589/01405086056361f8f1839c2f3d65fc86a748.pdf,,,http://www.menet.umn.edu/~zhangs/Reports/2013_CLZ.pdf +85567174a61b5b526e95cd148da018fa2a041d43,,,https://doi.org/10.1109/TMM.2016.2515367, +85c007758e409eb3a9ae83375c7427dd517f4ab9,,,, +8576d0031f2b0fe1a0f93dd454e73d48d98a4c63,,,,http://doi.acm.org/10.1145/2522848.2531743 +85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9,http://pdfs.semanticscholar.org/8518/8c77f3b2de3a45f7d4f709b6ea79e36bd0d9.pdf,,,http://hal.archives-ouvertes.fr/docs/00/32/67/33/PDF/Karlinsky_ECCV2008.pdf +857544746a1d1071739d98718df51936a3488737,,,, +8598d31c7ca9c8f5bb433409af5e472a75037b4d,,,https://doi.org/10.1109/JPROC.2008.916364, +85f27ec70474fe93f32864dd03c1d0f321979100,,,https://doi.org/10.1109/IJCNN.2014.6889381, +85ccf2c9627a988ebab7032d0ec2d76ec7832c98,,,, +85f7f03b79d03da5fae3a7f79d9aac228a635166,,,https://doi.org/10.1109/WACV.2009.5403085, +855882a5943fc12fa9c0e8439c482e055b4b46f3,http://humansensing.cs.cmu.edu/papers/Automated.pdf,,,http://www.ca.cs.cmu.edu/sites/default/files/5Automated.pdf +8536fd81b568b2c9e567adad83be3a048664ade6,,,, +8518b501425f2975ea6dcbf1e693d41e73d0b0af,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhang_Relative_Hidden_Markov_2013_CVPR_paper.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a548.pdf +8557914593e8540fcdd9b11aef076f68d41d3b4b,http://elwilber.com/papers/ecodes-2014.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6836099 +855184c789bca7a56bb223089516d1358823db0b,http://pdfs.semanticscholar.org/8551/84c789bca7a56bb223089516d1358823db0b.pdf,,,https://inst.eecs.berkeley.edu/~cs194-26/fa16/upload/files/projFinalGrad/cs194-26-aai/doc/Hung_Vu_report_final.pdf +85f6eaa1ed3ae15ec7e777b7f90a277eda38cf7f,,,, +853bd61bc48a431b9b1c7cab10c603830c488e39,http://pdfs.semanticscholar.org/b8a2/0ed7e74325da76d7183d1ab77b082a92b447.pdf,,,https://arxiv.org/pdf/1411.7923v1.pdf +85639cefb8f8deab7017ce92717674d6178d43cc,http://pdfs.semanticscholar.org/8563/9cefb8f8deab7017ce92717674d6178d43cc.pdf,,,http://mplab.ucsd.edu/grants/project1/publications/pdfs/cia_techreport-10.pdf +85205914a99374fa87e004735fe67fc6aec29d36,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2392774 +854dbb4a0048007a49df84e3f56124d387588d99,http://pdfs.semanticscholar.org/854d/bb4a0048007a49df84e3f56124d387588d99.pdf,,,https://arxiv.org/pdf/1705.04515v1.pdf +85674b1b6007634f362cbe9b921912b697c0a32c,http://pdfs.semanticscholar.org/8567/4b1b6007634f362cbe9b921912b697c0a32c.pdf,,,https://www.cc.gatech.edu/~parikh/PnA2014/posters/Posters/ZhanpengZhangPnA2014.pdf +852ff0d410a25ebb7936043a05efe2469c699e4b,http://pdfs.semanticscholar.org/852f/f0d410a25ebb7936043a05efe2469c699e4b.pdf,,https://doi.org/10.1016/j.patrec.2011.05.016,http://repository.tudelft.nl/assets/uuid:678436fb-d859-4c4a-8842-f1b4bb5a0fe3/MS-32.590.pdf +1db45038ff49e4220a56b17a3b255df1c97b32c1,,,, +1d21e5beef23eecff6fff7d4edc16247f0fd984a,http://pdfs.semanticscholar.org/1d21/e5beef23eecff6fff7d4edc16247f0fd984a.pdf,,https://doi.org/10.1007/11744085_3,http://mi.eng.cam.ac.uk/~cipolla/publications/inproceedings/2006-ECCV-Arandjelovic-face.pdf +1ddea58d04e29069b583ac95bc0ae9bebb0bed07,,,https://doi.org/10.1109/KSE.2015.50, +1dbbec4ad8429788e16e9f3a79a80549a0d7ac7b,http://pdfs.semanticscholar.org/9d44/ef9e28d7722c388091ec4c1fa7c05f085e53.pdf,,,http://papers.nips.cc/paper/5472-global-sensitivity-analysis-for-map-inference-in-graphical-models +1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de9,https://web.stanford.edu/~bgirod/pdfs/ChenHuizhongTransPAMISep2014.pdf,,,http://web.stanford.edu/~bgirod/pdfs/ChenHuizhongTransPAMISep2014.pdf +1d846934503e2bd7b8ea63b2eafe00e29507f06a,http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/manifold%20learning/20fa.pdf,,https://doi.org/10.1109/CVPR.2004.390,http://www.psych.ucsb.edu/research/recveb/pdfs/1_PID34511.pdf +1dabb080e3e968633f4b3774f19192f8378f5b67,,,https://doi.org/10.1109/ICPR.2016.7899664, +1d19c6857e798943cd0ecd110a7a0d514c671fec,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w2/papers/Khorrami_Do_Deep_Neural_ICCV_2015_paper.pdf,,,http://arxiv.org/pdf/1510.02969v1.pdf +1d1a7ef193b958f9074f4f236060a5f5e7642fc1,http://pdfs.semanticscholar.org/db40/804914afbb7f8279ca9a4f52e0ade695f19e.pdf,,,http://www.brahnam.info/EN4005.pdf +1d3bd75e2fb95cc0996a1a2eeaf21dfa42ab7ca0,,,, +1d696a1beb42515ab16f3a9f6f72584a41492a03,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr15.pdf,,https://doi.org/10.1109/CVPR.2015.7298907,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_073.pdf +1d1caaa2312390260f7d20ad5f1736099818d358,https://eprints.soton.ac.uk/271401/1/paperOnIEEEexplore.pdf,,, +1dc241ee162db246882f366644171c11f7aed96d,http://pdfs.semanticscholar.org/1dc2/41ee162db246882f366644171c11f7aed96d.pdf,,,https://arxiv.org/pdf/1611.05520v2.pdf +1d0128b9f96f4c11c034d41581f23eb4b4dd7780,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Snape_Automatic_Construction_Of_2015_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_011_ext.pdf +1d79ec93a9feba817c75c31604c3f8df346eabe8,https://www.researchgate.net/profile/Manjunath_Aradhya/publication/254461422_The_study_of_different_similarity_measure_techniques_in_recognition_of_handwritten_characters/links/0046352049dae0d044000000.pdf,,,http://doi.acm.org/10.1145/2345396.2345524 +1da5fc63d66fbf750b0e15c5ef6d4274ca73cca1,,,, +1d3dd9aba79a53390317ec1e0b7cd742cba43132,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_092_ext.pdf +1d0dd20b9220d5c2e697888e23a8d9163c7c814b,http://pdfs.semanticscholar.org/1d0d/d20b9220d5c2e697888e23a8d9163c7c814b.pdf,,https://doi.org/10.5244/C.29.139,http://www.bmva.org/bmvc/2015/papers/paper139/abstract139.pdf +1d5aad4f7fae6d414ffb212cec1f7ac876de48bf,http://biometrics.cse.msu.edu/Publications/Face/WangJain_FaceRetriever_ICB15.pdf,,https://doi.org/10.1109/ICB.2015.7139112,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/WangJain_FaceRetriever_ICB15.pdf +1db23a0547700ca233aef9cfae2081cd8c5a04d7,http://pdfs.semanticscholar.org/1db2/3a0547700ca233aef9cfae2081cd8c5a04d7.pdf,,,http://ijecs.in/issue/v4-i5/44%20ijecs.pdf +1d7dde30b8d0f75576f4a23b75b8350071fd4839,,,, +1d10010ea7af43d59e1909d27e4e0e987264c667,,,https://doi.org/10.1016/j.neunet.2004.06.006, +1d97735bb0f0434dde552a96e1844b064af08f62,http://www.apsipa.org/proceedings_2015/pdf/290.pdf,,https://doi.org/10.1109/APSIPA.2015.7415432, +1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb,http://research.microsoft.com/en-us/um/people/jiansun/papers/CVPR12_FaceAlignRegression.pdf,,https://doi.org/10.1007/s11263-013-0667-3,http://www.tpbin.com/Uploads/Subjects/c94b2e5f-171c-4387-8fe1-e005afe2f0cd.pdf +1dff919e51c262c22630955972968f38ba385d8a,http://pdfs.semanticscholar.org/1dff/919e51c262c22630955972968f38ba385d8a.pdf,,,http://www.cs.pitt.edu/~litman/courses/ads/readings/Pantic.M-ProcIEEE2003.pdf +1de8f38c35f14a27831130060810cf9471a62b45,http://www.psy.miami.edu/faculty/dmessinger/c_c/rsrcs/rdgs/emot/Unsupervised_Discovery.IJCompVis.2017.pdf,,https://doi.org/10.1007/s11263-017-0989-7,http://www.pitt.edu/~jeffcohn/biblio/NIHMS851317_2017.pdf +1da83903c8d476c64c14d6851c85060411830129,http://pdfs.semanticscholar.org/90c3/b003b85bd60ae06630bcef6abc03c3b1ef96.pdf,,,http://www.researchgate.net/profile/Wangmeng_Zuo/publication/271771444_Iterated_Support_Vector_Machines_for_Distance_Metric_Learning/links/54d473800cf2970e4e6338d2.pdf +1dae2f492d3ca2351349a73df6ee8a99b05ffc30,,,https://doi.org/10.1137/110842570, +1d6068631a379adbcff5860ca2311b790df3a70f,http://pdfs.semanticscholar.org/c322/b1b998ec8f1892b29a1ebcbdc2f62e644cf1.pdf,,https://doi.org/10.1016/j.neucom.2014.04.072,http://www.ee.ucr.edu/~lan/papers/AnNeurocomputing14.pdf +1dacc2f4890431d867a038fd81c111d639cf4d7e,http://pdfs.semanticscholar.org/1dac/c2f4890431d867a038fd81c111d639cf4d7e.pdf,,,"http://socrates.berkeley.edu/~akring/Campellone,%20Fisher,%20&%20Kring%202016.pdf" +1dc6c0ad19b41e5190fc9fe50e3ae27f49f18fa2,http://www.researchgate.net/profile/Stefano_Alletto/publication/265611795_Head_Pose_Estimation_in_First-Person_Camera_Views/links/5416b5ef0cf2788c4b35e14b.pdf,,https://doi.org/10.1109/ICPR.2014.718, +1d6d6399fd98472012edb211981d5eb8370a07b0,,,, +1de690714f143a8eb0d6be35d98390257a3f4a47,http://www.cs.fsu.edu/~liux/research/publications/papers/waring-liu-face-detection-smcb-2005.pdf,,https://doi.org/10.1109/TSMCB.2005.846655,http://www.cs.fsu.edu/~liux/research/pub/papers/smcb-25-2005-waring-detection.pdf +1da1299088a6bf28167c58bbd46ca247de41eb3c,,,https://doi.org/10.1109/ICASSP.2002.5745055, +1d6c09019149be2dc84b0c067595f782a5d17316,http://pdfs.semanticscholar.org/3e27/b747e272c2ab778df92ea802d30af15e43d6.pdf,,,https://static.googleusercontent.com/media/research.google.com/en//youtube8m/workshop2017/c08.pdf +1d58d83ee4f57351b6f3624ac7e727c944c0eb8d,http://parnec.nuaa.edu.cn/xtan/paper/amfg07_talk.pdf,,https://doi.org/10.1007/978-3-540-75690-3_13,http://eprints.pascal-network.org/archive/00003658/01/08-x-tan-amfg2007.pdf +71d786fdb563bdec6ca0bbf69eba8e3f37c48c6f,,,https://doi.org/10.1109/SMC.2016.7844680, +710c3aaffef29730ffd909a63798e9185f488327,,,https://doi.org/10.1109/ICPR.2016.7900095, +71a9d7cf8cf1e206cb5fa18795f5ab7588c61aba,,,https://doi.org/10.1109/TIM.2011.2141270, +71b376dbfa43a62d19ae614c87dd0b5f1312c966,http://www.cs.cmu.edu/~ltrutoiu/pdfs/FG2013_trutoiu.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553736 +71b07c537a9e188b850192131bfe31ef206a39a0,http://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,,https://doi.org/10.1016/j.imavis.2016.01.002,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_2016_imavis.pdf +71fd29c2ae9cc9e4f959268674b6b563c06d9480,http://pdfs.semanticscholar.org/71fd/29c2ae9cc9e4f959268674b6b563c06d9480.pdf,,,https://arxiv.org/pdf/1711.05858v1.pdf +71e95c3a31dceabe9cde9f117615be8bf8f6d40e,,,https://doi.org/10.1109/ICIP.2010.5653024, +71f07c95a2b039cc21854c602f29e5be053f2aba,,,https://doi.org/10.1007/s00138-010-0250-7, +7123e510dea783035b02f6c35e35a1a09677c5ab,,,https://doi.org/10.1109/ICPR.2016.7900297, +71f36c8e17a5c080fab31fce1ffea9551fc49e47,http://openaccess.thecvf.com/content_cvpr_2014/papers/Zhang_Predicting_Failures_of_2014_CVPR_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Zhang_Predicting_Failures_of_2014_CVPR_paper.pdf +715d3eb3665f46cd2fab74d35578a72aafbad799,,,,http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2013.118 +7177649ece5506b315cb73c36098baac1681b8d2,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.130 +71e6a46b32a8163c9eda69e1badcee6348f1f56a,http://pdfs.semanticscholar.org/71e6/a46b32a8163c9eda69e1badcee6348f1f56a.pdf,,,http://www.fxpal.com/publications/visually-interpreting-names-as-demographic-attributes-by-exploiting-click-through-data.pdf +713594c18978b965be87651bb553c28f8501df0a,http://pdfs.semanticscholar.org/fbfc/a34d52422cf8eac9d92d68dd16f95db5ef36.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11883 +718824256b4461d62d192ab9399cfc477d3660b4,http://pdfs.semanticscholar.org/7188/24256b4461d62d192ab9399cfc477d3660b4.pdf,,,http://www.mmk.ei.tum.de/publ/pdf/11/11sch4.pdf +71d68af11df855f886b511e4fc1635c1e9e789b0,,,https://doi.org/10.1109/TCSVT.2011.2133210, +719a5286611c2a89890f713af54f4a00d10967e6,,,, +71bbda43b97e8dc8b67b2bde3c873fa6aacd439f,,,https://doi.org/10.1016/j.patcog.2015.09.012, +718d3137adba9e3078fa1f698020b666449f3336,http://pdfs.semanticscholar.org/718d/3137adba9e3078fa1f698020b666449f3336.pdf,,,http://thesai.org/Downloads/Volume8No10/Paper_48-Accuracy_based_Feature_Ranking_Metric.pdf +7196b3832065aec49859c61318037b0c8c12363a,,,https://doi.org/10.1007/s11432-014-5151-3, +716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0,http://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf,,,http://pages.cs.wisc.edu/~bmsmith/projects/2016/face-landmarks-3d/SmithBMVC2016_poster.pdf +71bece8ec4934e3034f76d8ba19199c5b8ec52ea,,,, +7171b46d233810df57eaba44ccd8eabd0ad1f53a,http://pdfs.semanticscholar.org/7171/b46d233810df57eaba44ccd8eabd0ad1f53a.pdf,,,http://mmlab.ie.cuhk.edu.hk/projects/DeepFaceClustering/support/sm.pdf +71f9861df104b90399dc15e12bbb14cd03f16e0b,,,,http://doi.ieeecomputersociety.org/10.1109/CGIV.2009.7 +71e56f2aebeb3c4bb3687b104815e09bb4364102,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Guo_Video_Co-segmentation_for_2013_ICCV_paper.pdf,,,https://www.ece.nus.edu.sg/stfpage/eleclf/Video%20Co-segmentation%20for%20Meaningful%20Action%20Extraction.pdf +7118162a994c564004d167018c0048386f408dd6,,,, +711bb5f63139ee7a9b9aef21533f959671a7d80e,http://pdfs.semanticscholar.org/711b/b5f63139ee7a9b9aef21533f959671a7d80e.pdf,,,https://aaltodoc.aalto.fi/bitstream/handle/123456789/2973/isbn9789512291342.pdf?isAllowed=y&sequence=1 +76fd801981fd69ff1b18319c450cb80c4bc78959,http://pdfs.semanticscholar.org/76fd/801981fd69ff1b18319c450cb80c4bc78959.pdf,,,http://aclweb.org/anthology/W15-0111 +76dc11b2f141314343d1601635f721fdeef86fdb,http://pdfs.semanticscholar.org/8d19/1804f5b260807dac107b89a5837ac15857aa.pdf,,https://doi.org/10.1007/978-3-642-03999-7_4,http://epubs.surrey.ac.uk/7129/2/windeatt_suema_chap08.pdf +76673de6d81bedd6b6be68953858c5f1aa467e61,http://pdfs.semanticscholar.org/8883/2abb9082af6a1395e1b9bd3d4c1b46d00616.pdf,,https://doi.org/10.1007/978-3-642-33885-4_3,http://ttic.uchicago.edu/~smaji/papers/lexiconDiscoveryECCVWS2012.pdf +7644b3a0871b8e0e7e1cdf06099e295f1e5fbdf7,,,https://doi.org/10.1007/s11063-015-9464-z, +7643861bb492bf303b25d0306462f8fb7dc29878,https://www-i6.informatik.rwth-aachen.de/publications/download/991/Hanselmann-FG-2015.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163136 +760a712f570f7a618d9385c0cee7e4d0d6a78ed2,http://pdfs.semanticscholar.org/760a/712f570f7a618d9385c0cee7e4d0d6a78ed2.pdf,,,http://c2inet.sce.ntu.edu.sg/ivor/publication/KSR.pdf +76669f166ddd3fb830dbaacb3daa875cfedc24d9,,,https://doi.org/10.1109/ICPR.2016.7899840, +7698ba9fd1f49157ca2666a93311afbf1ff4e66c,http://www.ics.uci.edu/~dramanan/papers/dpm_acm.pdf,,,http://doi.acm.org/10.1145/2494532 +76ce3d35d9370f0e2e27cfd29ea0941f1462895f,http://pdfs.semanticscholar.org/76ce/3d35d9370f0e2e27cfd29ea0941f1462895f.pdf,,, +76dff7008d9b8bf44ec5348f294d5518877c6182,,,https://doi.org/10.1016/j.imavis.2014.09.004, +76b9fe32d763e9abd75b427df413706c4170b95c,http://pdfs.semanticscholar.org/76b9/fe32d763e9abd75b427df413706c4170b95c.pdf,,https://doi.org/10.1016/j.patcog.2012.06.022,http://www4.comp.polyu.edu.hk/~cslzhang/paper/GOD_SI_PR.pdf +768c332650a44dee02f3d1d2be1debfa90a3946c,http://mmlab.ie.cuhk.edu.hk/archive/2004/CVPR04_Face3.pdf,,,http://mmlab.ie.cuhk.edu.hk/2004/CVPR04_Face3.pdf +769461ff717d987482b28b32b1e2a6e46570e3ff,http://pdfs.semanticscholar.org/7694/61ff717d987482b28b32b1e2a6e46570e3ff.pdf,,,http://ceur-ws.org/Vol-1984/Mediaeval_2017_paper_13.pdf +76d9f5623d3a478677d3f519c6e061813e58e833,http://pdfs.semanticscholar.org/76d9/f5623d3a478677d3f519c6e061813e58e833.pdf,,https://doi.org/10.1137/080720863,http://www.optimization-online.org/DB_FILE///2009/01/2189.pdf +7668ce758af72df8e0a10d4b3cb0fd58092fe3e1,,,, +76e2d7621019bd45a5851740bd2742afdcf62837,http://pdfs.semanticscholar.org/76e2/d7621019bd45a5851740bd2742afdcf62837.pdf,,https://doi.org/10.3390/s16071105,http://www.mdpi.com/1424-8220/16/7/1105/pdf +765b2cb322646c52e20417c3b44b81f89860ff71,http://cg.cs.tsinghua.edu.cn/papers/TVCG_2013_poseshop.pdf,,,http://mmcheng.net/mftp/Papers/PoseShop.pdf +76640cb1a683a479ce2e0d6681d821ff39126d63,,,https://doi.org/10.1109/IJCNN.2011.6033408, +7644d90efef157e61fe4d773d8a3b0bad5feccec,http://pdfs.semanticscholar.org/7644/d90efef157e61fe4d773d8a3b0bad5feccec.pdf,,https://doi.org/10.1016/j.neucom.2006.11.007,http://www.pami.sjtu.edu.cn/people/zhangth/Linear%20local%20tangent%20space%20alignment%20and%20application%20to%20face%20recognition.pdf +763158cef9d1e4041f24fce4cf9d6a3b7a7f08ff,http://pdfs.semanticscholar.org/7631/58cef9d1e4041f24fce4cf9d6a3b7a7f08ff.pdf,,,http://www.cs.huji.ac.il/~daphna/theses/Alon_Zweig_2013.pdf +76d939f73a327bf1087d91daa6a7824681d76ea1,http://pdfs.semanticscholar.org/76d9/39f73a327bf1087d91daa6a7824681d76ea1.pdf,,https://doi.org/10.1007/978-3-642-53842-1_34,http://www.jaist.ac.jp/~chen-fan/publication/PSIVT2013.pdf +760ba44792a383acd9ca8bef45765d11c55b48d4,http://class-specific.com/csf/papers/aes_tut.pdf,,, +76a52ebfc5afd547f8b73430ec81456cf25ddd69,,,,http://doi.ieeecomputersociety.org/10.1109/AIPR.2014.7041914 +76d1c6c6b67e67ced1f19a89a5034dafc9599f25,,,,http://doi.acm.org/10.1145/2590296.2590315 +761304bbd259a9e419a2518193e1ff1face9fd2d,,,https://doi.org/10.1007/978-3-642-33885-4_57, +7636f94ddce79f3dea375c56fbdaaa0f4d9854aa,http://pdfs.semanticscholar.org/7636/f94ddce79f3dea375c56fbdaaa0f4d9854aa.pdf,,,http://www.naturalspublishing.com/files/published/27twqs294z2r34.pdf +1c80bc91c74d4984e6422e7b0856cf3cf28df1fb,http://refbase.cvc.uab.es/files/xrv2014d.pdf,,https://doi.org/10.1007/s11263-016-0885-6,https://arxiv.org/pdf/1408.5400v1.pdf +1ce3a91214c94ed05f15343490981ec7cc810016,http://grail.cs.washington.edu/photobios/paper.pdf,,,http://www.cs.toronto.edu/~kyros/courses/2530/papers/Lecture-14/Kemelmacher2011.pdf +1c2724243b27a18a2302f12dea79d9a1d4460e35,http://read.pudn.com/downloads157/doc/697237/kfd/Fisher+Kernel%20criterion%20for%20discriminant%20analysis.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2005.162 +1ca8c09abb73a02519d8db77e4fe107acfc589b6,http://sci.pitt.edu/wp-content/uploads/2018/03/111_Zhang.pdf,,,http://people.cs.pitt.edu/~kovashka/hussain_zhang_kovashka_ads_cvpr2017.pdf +1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,https://arxiv.org/pdf/1611.00142v2.pdf,,,http://arxiv.org/abs/1611.00142 +1c30bb689a40a895bd089e55e0cad746e343d1e2,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf,,,https://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w07-conv3d.pdf +1c4ceae745fe812d8251fda7aad03210448ae25e,http://pdfs.semanticscholar.org/98d3/6d12cf6f2da181a9c1fb9d652ceaa57eb7bb.pdf,,https://doi.org/10.1155/S1110865704401073,http://www.asp.eurasipjournals.com/content/pdf/1687-6180-2004-948790.pdf +1c3073b57000f9b6dbf1c5681c52d17c55d60fd7,http://pdfs.semanticscholar.org/1c30/73b57000f9b6dbf1c5681c52d17c55d60fd7.pdf,,,http://hal-enpc.archives-ouvertes.fr/docs/00/55/51/40/PDF/ThA_se_ENPC_charlotte_GHYS_19_mai_2010.pdf +1cee993dc42626caf5dbc26c0a7790ca6571d01a,http://www.iri.upc.edu/people/fmoreno/Publications/2005/pdf/Moreno_siggraphsketch2005.pdf,,,http://www1.cs.columbia.edu/CAVE/publications/pdfs/Moreno_CVMP05.pdf +1ca1b4f787712ede215030d22a0eea41534a601e,,,https://doi.org/10.1109/CVPRW.2010.5543609, +1c147261f5ab1b8ee0a54021a3168fa191096df8,http://pdfs.semanticscholar.org/1c14/7261f5ab1b8ee0a54021a3168fa191096df8.pdf,,,http://file.scirp.org/pdf/JIS_2016041115320819.pdf +1c5d7d02a26aa052ecc47d301de4929083e5d320,https://www.ll.mit.edu/news/avec2014_mitll.pdf,,,http://web.mit.edu/dmehta/www/docs/WilliamsonAVEC2014%20Vocal%20and%20facial%20biomarkers%20of%20depression%20based%20on%20motor%20incoordination%20and%20timing.pdf +1c17450c4d616e1e1eece248c42eba4f87de9e0d,http://pdfs.semanticscholar.org/d269/39a00a8d3964de612cd3faa86764343d5622.pdf,,https://doi.org/10.5244/C.29.55,http://www.bmva.org/bmvc/2015/papers/paper055/abstract055.pdf +1c93b48abdd3ef1021599095a1a5ab5e0e020dd5,http://www.stat.ucla.edu/~sczhu/papers/PAMI_FaceAging.pdf,,,http://www.stat.ucla.edu/~sczhu/papers/FaceAging_PAMI.pdf +1c1f957d85b59d23163583c421755869f248ceef,http://homepages.rpi.edu/~wuy9/ICCV15/FLD_iccv15.pdf,,,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Wu_Robust_Facial_Landmark_ICCV_2015_paper.pdf +1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16,http://pdfs.semanticscholar.org/1cbd/3f96524ca2258fd2d5c504c7ea8da7fb1d16.pdf,,https://doi.org/10.5220/0004828606710678,http://www.researchgate.net/profile/Markus_Kaechele/publication/266815457_Fusion_of_audio-visual_features_using_hierarchical_classifier_systems_for_the_recognition_of_affective_states_and_the_state_of_depression/links/546c6a090cf257ec78ffea7a.pdf +1cad5d682393ffbb00fd26231532d36132582bb4,http://pdfs.semanticscholar.org/1cad/5d682393ffbb00fd26231532d36132582bb4.pdf,,,http://export.arxiv.org/pdf/1708.00042 +1c1a98df3d0d5e2034ea723994bdc85af45934db,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Jaiswal_Guided_Unsupervised_Learning_2013_ICCV_paper.pdf,,,http://www.researchgate.net/profile/Michel_Valstar/publication/262361649_Guided_Unsupervised_Learning_of_Mode_Specific_Models_for_Facial_Point_Detection_in_the_Wild/links/54006a5b0cf24c81027deadb.pdf +1ca815327e62c70f4ee619a836e05183ef629567,http://www.humansensing.cs.cmu.edu/sites/default/files/Xiong_Global_Supervised_Descent_2015_CVPR_paper.pdf,,https://doi.org/10.1109/CVPR.2015.7298882,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_048.pdf +1cb0c11620bde2734c1a428c789158ffff0d6c7b,,,,http://doi.ieeecomputersociety.org/10.1109/BigMM.2016.62 +1c5a5d58a92c161e9ba27e2dfe490e7caaee1ff5,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163119 +1c4404885443b65b7cbda3c131e54f769fbd827d,,,, +1c6be6874e150898d9db984dd546e9e85c85724e,http://research.microsoft.com/~szli/papers/WHT-CVPR2004.pdf,,,http://www.researchgate.net/profile/Yangsheng_Wang/publication/4082380_Generalized_quotient_image/links/0c9605320fb0488f51000000.pdf +1ce29d6b820ed4a24da27b76ffd9605d5b3b10b5,,,https://doi.org/10.1016/j.imavis.2015.01.007, +1cfe8c1d341dbf8cc43040b37ca3552385adb10b,,,,http://doi.acm.org/10.1145/2461466.2461473 +1c65f3b3c70e1ea89114f955624d7adab620a013,http://pdfs.semanticscholar.org/ef34/cc2a26e88abd6a03d1a831c750440c6147d2.pdf,,,http://www.imaging.org/site/PDFS/Reporter/Articles/2011_26/REP26_2_EI2011_MEHTA_7881_23.pdf +1c530de1a94ac70bf9086e39af1712ea8d2d2781,http://pdfs.semanticscholar.org/1c53/0de1a94ac70bf9086e39af1712ea8d2d2781.pdf,,,http://www.ijcai.org/Proceedings/16/Papers/322.pdf +82f8652c2059187b944ce65e87bacb6b765521f6,http://pdfs.semanticscholar.org/82f8/652c2059187b944ce65e87bacb6b765521f6.pdf,,,http://www.cs.utexas.edu/~sjhwang/proposal.pdf +82e1692467969940a6d6ac40eae606b8b4981f7e,,,https://doi.org/10.1109/ICMEW.2012.56, +82bef8481207de9970c4dc8b1d0e17dced706352,http://pdfs.semanticscholar.org/82be/f8481207de9970c4dc8b1d0e17dced706352.pdf,,,http://dev.pubs.doc.ic.ac.uk/Pantic-SMC04/Pantic-SMC04.pdf +8274069feeff6392b6c5d45d8bfaaacd36daedad,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019312 +826015d9ade1637b3fcbeca071e3137d3ac1ef56,,,https://doi.org/10.1109/WACV.2017.84, +82d2af2ffa106160a183371946e466021876870d,http://pdfs.semanticscholar.org/82d2/af2ffa106160a183371946e466021876870d.pdf,,,https://arxiv.org/pdf/1707.06440v1.pdf +82be2ede6b7613286b80c3e2afe3b5353f322bed,http://www.eecs.berkeley.edu/~jiayq/papers/iccv11_mm.pdf,,,http://www.eecs.berkeley.edu/~trevor/iccv11-mm.pdf +82ccd62f70e669ec770daf11d9611cab0a13047e,http://www.csse.uwa.edu.au/~ajmal/papers/Farshid_DICTA2013.pdf,,https://doi.org/10.1109/DICTA.2013.6691530, +828d7553a45eb0c3132e406105732a254369eb4d,,,https://doi.org/10.1016/j.neunet.2017.09.001, +82c303cf4852ad18116a2eea31e2291325bc19c3,http://pdfs.semanticscholar.org/82c3/03cf4852ad18116a2eea31e2291325bc19c3.pdf,,,http://www.joig.org/uploadfile/2014/0516/20140516015550766.pdf +8210fd10ef1de44265632589f8fc28bc439a57e6,http://www.ytzhang.net/files/publications/2015-tifs-sup-ae.pdf,,https://doi.org/10.1109/TIFS.2015.2446438, +82a4a35b2bae3e5c51f4d24ea5908c52973bd5be,http://pdfs.semanticscholar.org/82a4/a35b2bae3e5c51f4d24ea5908c52973bd5be.pdf,,,http://arxiv.org/abs/1408.3750 +82cd5a5fec8a27887a35f1ecec684ec55eefad73,http://www.researchgate.net/profile/Giuseppe_Boccignone/publication/265793480_Using_Sparse_Coding_for_Landmark_Localization_in_Facial_Expressions/links/541bf80b0cf241a65a0ba53a.pdf,,https://doi.org/10.1109/EUVIP.2014.7018369,https://www.researchgate.net/profile/Giuseppe_Boccignone/publication/265793480_Using_Sparse_Coding_for_Landmark_Localization_in_Facial_Expressions/links/541bf80b0cf241a65a0ba53a.pdf +82953e7b3d28ccd1534eedbb6de7984c59d38cd4,,,https://doi.org/10.1109/TNNLS.2014.2356856, +8229f2735a0db0ad41f4d7252129311f06959907,,,https://doi.org/10.1109/TIP.2011.2106794, +82f4e8f053d20be64d9318529af9fadd2e3547ef,http://pdfs.semanticscholar.org/82f4/e8f053d20be64d9318529af9fadd2e3547ef.pdf,,,http://www.cse.msu.edu/rgroups/biometrics/Publications/SecureBiometrics/NagarNandakumarJain_MultibiometricCryptosystems_TIFS11_TechRep.pdf +82b43bc9213230af9db17322301cbdf81e2ce8cc,http://pdfs.semanticscholar.org/82b4/3bc9213230af9db17322301cbdf81e2ce8cc.pdf,,,https://arxiv.org/pdf/1704.03805v3.pdf +82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,http://pdfs.semanticscholar.org/82d7/81b7b6b7c8c992e0cb13f7ec3989c8eafb3d.pdf,,,http://shodhganga.inflibnet.ac.in/bitstream/10603/9927/13/13_references.pdf +82e66c4832386cafcec16b92ac88088ffd1a1bc9,http://pdfs.semanticscholar.org/82e6/6c4832386cafcec16b92ac88088ffd1a1bc9.pdf,,,http://elijah.cs.cmu.edu/DOCS/CMU-CS-16-118.pdf +82d79658805f6c1aedf7b0b88b47b9555584d7ae,http://cheonji.kaist.ac.kr/pdfsrc/ic/2008_KHAn_IROS.pdf,,https://doi.org/10.1109/IROS.2008.4650742, +82dad0941a7cada11d2e2f2359293fe5fabf913f,,,https://doi.org/10.1109/ICIP.2017.8296810, +826c66bd182b54fea3617192a242de1e4f16d020,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0001602.pdf,,https://doi.org/10.1109/ICASSP.2017.7952427, +499f1d647d938235e9186d968b7bb2ab20f2726d,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Xiong_Face_Recognition_via_2013_ICCV_paper.pdf,,,http://www.ee.columbia.edu/~wliu/ICCV13_face_poster.pdf +4919663c62174a9bc0cc7f60da8f96974b397ad2,https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/EBIF_5-2-2010_v_5.pdf,,https://doi.org/10.1109/ICIP.2010.5651440,http://research.microsoft.com/pubs/131914/EBIF_5-2-2010_v_5.pdf +49f70f707c2e030fe16059635df85c7625b5dc7e,http://pdfs.semanticscholar.org/55b7/59b3e94088488334e3af2d17710c5e1fce4b.pdf,,https://doi.org/10.1049/iet-bmt.2014.0033,http://digital.cs.usu.edu/~xqi/Promotion/IETBio.FRProof.14.pdf +493bc7071e35e7428336a515d1d26020a5fb9015,,,https://doi.org/10.1109/ACSSC.2013.6810420, +4967b0acc50995aa4b28e576c404dc85fefb0601,http://pdfs.semanticscholar.org/4967/b0acc50995aa4b28e576c404dc85fefb0601.pdf,,,http://www.cisjournal.org/journalofcomputing/archive/vol4no1/vol4no1_2.pdf +49820ae612b3c0590a8a78a725f4f378cb605cd1,http://pdfs.semanticscholar.org/4982/0ae612b3c0590a8a78a725f4f378cb605cd1.pdf,,https://doi.org/10.1007/978-3-319-16634-6_13,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ACCV_2014/pages/workshop12/pdffiles/w12-p4.pdf +49dd4b359f8014e85ed7c106e7848049f852a304,http://pdfs.semanticscholar.org/49dd/4b359f8014e85ed7c106e7848049f852a304.pdf,,https://doi.org/10.1016/j.patcog.2010.05.009,https://www.researchgate.net/profile/Zhouchen_Lin/publication/236023274_Feature_extraction_by_learning_Lorentzian_metric_tensor_and_its_extensions/links/0deec515d63a9bb7d8000000.pdf +4958c06da5581fd0b4904d3bf0ee09958ecdba5b,,,https://doi.org/10.1016/j.knosys.2016.12.005, +492afe8f07de6225f70b72c922df83effd909334,,,, +49e85869fa2cbb31e2fd761951d0cdfa741d95f3,http://studentnet.cs.manchester.ac.uk/pgt/COMP61021/reference/adaptive-manifold-learning.pdf,,,http://papers.nips.cc/paper/2560-adaptive-manifold-learning +49ed46d45d7a9cbb1077d6f7cf151a63c2f02cab,,,, +49659fb64b1d47fdd569e41a8a6da6aa76612903,http://pdfs.semanticscholar.org/4965/9fb64b1d47fdd569e41a8a6da6aa76612903.pdf,,,http://behav.zoology.unibe.ch/sysuif/uploads/files/Mu__ller_etal_2015_Dogs_Can_Discriminate_Emotional_Expressions.pdf +490a217a4e9a30563f3a4442a7d04f0ea34442c8,http://pdfs.semanticscholar.org/490a/217a4e9a30563f3a4442a7d04f0ea34442c8.pdf,,,http://airccse.org/journal/ijscai/papers/2413ijscai05.pdf +4909ed22b1310f1c6f2005be5ce3349e3259ff6a,,,https://doi.org/10.1109/ROBIO.2009.4913106, +49e4f05fa98f63510de76e7abd8856ff8db0f38d,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.110 +49a7949fabcdf01bbae1c2eb38946ee99f491857,http://pdfs.semanticscholar.org/49a7/949fabcdf01bbae1c2eb38946ee99f491857.pdf,,,http://arxiv.org/abs/1710.00974 +4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Luo_A_Deep_Sum-Product_2013_ICCV_paper.pdf,,,http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTiccv13a.pdf +4932b929a2e09ddebedcb1abe8c62f269e7d4e33,,,https://doi.org/10.1109/SIU.2016.7496076, +492116d16a39eb54454c7ffb1754cea27ad3a171,,,,http://doi.acm.org/10.1145/3132525.3134823 +499343a2fd9421dca608d206e25e53be84489f44,http://pdfs.semanticscholar.org/4993/43a2fd9421dca608d206e25e53be84489f44.pdf,,,http://www.ijtes.com/upload/8.%20FINAL%20PAPER.pdf +498fd231d7983433dac37f3c97fb1eafcf065268,http://pdfs.semanticscholar.org/498f/d231d7983433dac37f3c97fb1eafcf065268.pdf,,,http://arxiv.org/abs/1701.03102 +49e1aa3ecda55465641b2c2acc6583b32f3f1fc6,http://pdfs.semanticscholar.org/49e1/aa3ecda55465641b2c2acc6583b32f3f1fc6.pdf,,,http://www.ijetae.com/files/Volume2Issue5/IJETAE_0512_21.pdf +49394a5e0ca1d4bb77d8c9bfa963b8b8cb761ecf,,,, +499f2b005e960a145619305814a4e9aa6a1bba6a,http://pdfs.semanticscholar.org/499f/2b005e960a145619305814a4e9aa6a1bba6a.pdf,,https://doi.org/10.1117/12.2042506,http://sip.unige.ch/articles/2014/SPIE-2014-EXTENTION-FINAL_SVv1.pdf +497bf2df484906e5430aa3045cf04a40c9225f94,http://pdfs.semanticscholar.org/497b/f2df484906e5430aa3045cf04a40c9225f94.pdf,,https://doi.org/10.3390/s131216682,http://www.mdpi.com/1424-8220/13/12/16682/pdf +492f41e800c52614c5519f830e72561db205e86c,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lv_A_Deep_Regression_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.393 +496f3d14cf466f054d395a3c71fa2cd6a3dda61d,,,,http://doi.acm.org/10.1145/3009977.3010055 +493ec9e567c5587c4cbeb5f08ca47408ca2d6571,http://pdfs.semanticscholar.org/493e/c9e567c5587c4cbeb5f08ca47408ca2d6571.pdf,,https://doi.org/10.1186/s40294-016-0034-7,http://casmodeling.springeropen.com/track/pdf/10.1186/s40294-016-0034-7?site=casmodeling.springeropen.com +49570b41bd9574bd9c600e24b269d945c645b7bd,http://pdfs.semanticscholar.org/4957/0b41bd9574bd9c600e24b269d945c645b7bd.pdf,,,https://pdfs.semanticscholar.org/4957/0b41bd9574bd9c600e24b269d945c645b7bd.pdf +49fdafef327069516d887d8e69b5e96c983c3dd0,,,https://doi.org/10.1109/DICTA.2017.8227433, +496074fcbeefd88664b7bd945012ca22615d812e,http://pdfs.semanticscholar.org/4960/74fcbeefd88664b7bd945012ca22615d812e.pdf,,https://doi.org/10.3390/s16111805,http://www.mdpi.com/1424-8220/16/11/1805/pdf +496d62741e8baf3859c24bb22eaccd3043322126,,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2017.2728531 +49fe4f387ac7e5852a78b327ec42cc7300c5f8e0,,,https://doi.org/10.1007/s11042-014-2055-6, +40205181ed1406a6f101c5e38c5b4b9b583d06bc,http://pdfs.semanticscholar.org/4020/5181ed1406a6f101c5e38c5b4b9b583d06bc.pdf,,https://doi.org/10.2197/ipsjtcva.1.115,http://chenlab.ece.cornell.edu/people/Andy/publications/Andy_files/cva1042.pdf +40dab43abef32deaf875c2652133ea1e2c089223,http://pdfs.semanticscholar.org/40da/b43abef32deaf875c2652133ea1e2c089223.pdf,,https://doi.org/10.1007/s12369-012-0145-z,http://d-nb.info/1027478891 +40b0fced8bc45f548ca7f79922e62478d2043220,http://pdfs.semanticscholar.org/40b0/fced8bc45f548ca7f79922e62478d2043220.pdf,,,http://papers.nips.cc/paper/5420-do-convnets-learn-correspondence +405b43f4a52f70336ac1db36d5fa654600e9e643,http://pdfs.semanticscholar.org/405b/43f4a52f70336ac1db36d5fa654600e9e643.pdf,,,https://arxiv.org/pdf/1512.01320v2.pdf +40b86ce698be51e36884edcc8937998979cd02ec,http://www.cs.bilkent.edu.tr/~duygulu/papers/SIU2006-face.pdf,,, +40a74eea514b389b480d6fe8b359cb6ad31b644a,http://pdfs.semanticscholar.org/7ac4/2be6c1f01ccc42b28c0bfa77856cc75b65a2.pdf,,,http://jmlr.org/proceedings/papers/v48/wiatowski16.html +40ee38d7ff2871761663d8634c3a4970ed1dc058,http://pdfs.semanticscholar.org/40ee/38d7ff2871761663d8634c3a4970ed1dc058.pdf,,https://doi.org/10.1007/978-3-540-30126-4_83,http://www-users.cs.york.ac.uk/~nep/research/papers/iciar04heseltine.pdf +402f6db00251a15d1d92507887b17e1c50feebca,http://pdfs.semanticscholar.org/402f/6db00251a15d1d92507887b17e1c50feebca.pdf,,,https://arxiv.org/pdf/1712.00195v1.pdf +404042a1dcfde338cf24bc2742c57c0fb1f48359,http://pdfs.semanticscholar.org/4040/42a1dcfde338cf24bc2742c57c0fb1f48359.pdf,,,http://www.cs.zju.edu.cn/people/gpan/publication/JIG03-localizationsurvey.pdf +4015e8195db6edb0ef8520709ca9cb2c46f29be7,http://pdfs.semanticscholar.org/4015/e8195db6edb0ef8520709ca9cb2c46f29be7.pdf,,,https://comserv.cs.ut.ee/home/files/thesis.pdf?reference=4015E8195DB6EDB0EF8520709CA9CB2C46F29BE7&study=ATILoputoo +404776aa18031828f3d5dbceed39907f038a47fe,http://pdfs.semanticscholar.org/4047/76aa18031828f3d5dbceed39907f038a47fe.pdf,,https://doi.org/10.1016/j.neucom.2014.06.044,http://vipl.ict.ac.cn/homepage/rpwang/publications/Sparsely%20Encoded%20Local%20Descriptor%20for%20Face%20Verification_NECO2015.pdf +407bb798ab153bf6156ba2956f8cf93256b6910a,http://pdfs.semanticscholar.org/407b/b798ab153bf6156ba2956f8cf93256b6910a.pdf,,,https://arxiv.org/pdf/1803.08134v1.pdf +400e6c777d5894db2f6538c8ebd1124352b1c064,http://www.ee.ucr.edu/~lan/papers/FG13.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2013.6553790 +40fb4e8932fb6a8fef0dddfdda57a3e142c3e823,http://gavrila.net/Publications/cvpr08.pdf,,,http://www.gavrila.net/Publications/cvpr08.pdf +4033ac52dba394e390a86cd149b9838f1d7834b5,,,https://doi.org/10.1109/ICMLC.2012.6359009, +406c5aeca71011fd8f8bd233744a81b53ccf635a,,,, +405526dfc79de98f5bf3c97bf4aa9a287700f15d,http://pdfs.semanticscholar.org/8a6c/57fcd99a77982ec754e0b97fd67519ccb60c.pdf,,,http://arxiv.org/pdf/1505.02108v2.pdf +40cd062438c280c76110e7a3a0b2cf5ef675052c,http://pdfs.semanticscholar.org/40cd/062438c280c76110e7a3a0b2cf5ef675052c.pdf,,,http://liris.cnrs.fr/Documents/Liris-6108.pdf +40a5b32e261dc5ccc1b5df5d5338b7d3fe10370d,http://pdfs.semanticscholar.org/40a5/b32e261dc5ccc1b5df5d5338b7d3fe10370d.pdf,,,https://arxiv.org/pdf/1608.06010v2.pdf +40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a,http://pdfs.semanticscholar.org/cea3/8a329e98900923e9c962b0d58bf8e15405d6.pdf,,,http://www.cs.utah.edu/~jeffp/papers/alternative.pdf +40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,http://www.site.uottawa.ca/~wslee/publication/CCECE2006.pdf,,https://doi.org/10.1109/CCECE.2006.277379, +4014d74e8f5ea4d76c2c1add81d0c88d6e342478,,,,http://doi.acm.org/10.1145/3136755.3143010 +4014e8c1a1b49ad2b9b2c45c328ec9f1fd56f676,,,https://doi.org/10.1109/IJCNN.2017.7966191, +40389b941a6901c190fb74e95dc170166fd7639d,http://pdfs.semanticscholar.org/56f7/dad4d6d98292061a2c1e399d9a0ecfbbbde3.pdf,,,http://mplab.ucsd.edu/wp-content/uploads/chapter.pdf +4068574b8678a117d9a434360e9c12fe6232dae0,http://www.visionmeetscognition.org/fpic2014/Camera_Ready/Paper%2031.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos_automatic_2014_poster.pdf +40c8cffd5aac68f59324733416b6b2959cb668fd,https://arxiv.org/pdf/1701.08341v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.80 +4097fef623185557bb1842501cfdc97f812fc66d,,,,http://doi.acm.org/10.1145/3126686.3126755 +40b10e330a5511a6a45f42c8b86da222504c717f,http://pdfs.semanticscholar.org/40b1/0e330a5511a6a45f42c8b86da222504c717f.pdf,,,http://etd.dtu.dk/thesis/223656/ep08_93.pdf +40bb090a4e303f11168dce33ed992f51afe02ff7,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Deng_Marginal_Loss_for_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.251 +40ca925befa1f7e039f0cd40d57dbef6007b4416,https://arxiv.org/pdf/1706.07567v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.309 +40dd736c803720890d6bfc1e083f6050e35d8f7a,,,,http://doi.acm.org/10.1145/3139958.3140055 +4042bbb4e74e0934f4afbedbe92dd3e37336b2f4,http://pdfs.semanticscholar.org/b35a/6b2f335c28696eb78a02e0b30ee59a3e3fd2.pdf,,https://doi.org/10.1016/j.patrec.2008.04.013,https://ome.irp.nia.nih.gov/wnd-charm/PRL_2008.pdf +4026dc62475d2ff2876557fc2b0445be898cd380,http://pdfs.semanticscholar.org/4026/dc62475d2ff2876557fc2b0445be898cd380.pdf,,https://doi.org/10.1007/11573548_116,http://www.researchgate.net/profile/Yong-Guk_Kim/publication/221622144_An_Affective_User_Interface_Based_on_Facial_Expression_Recognition_and_Eye-Gaze_Tracking/links/0c960516f7b83381c8000000.pdf +40f06e5c052d34190832b8c963b462ade739cbf0,,,https://doi.org/10.1109/ICNC.2010.5583821, +40f127fa4459a69a9a21884ee93d286e99b54c5f,http://graphics.tu-bs.de/media/publications/stengel2013resolution.pdf,,https://doi.org/10.1109/TIP.2013.2265885,http://www.cg.cs.tu-bs.de/media/publications/stengel2013resolution.pdf +401e6b9ada571603b67377b336786801f5b54eee,http://pdfs.semanticscholar.org/401e/6b9ada571603b67377b336786801f5b54eee.pdf,,,http://www.umiacs.umd.edu/~arijit/Active_Image_Clustering_sup_material.pdf +406431d2286a50205a71f04e0b311ba858fc7b6c,http://pdfs.semanticscholar.org/4064/31d2286a50205a71f04e0b311ba858fc7b6c.pdf,,,http://etheses.bham.ac.uk/4371/9/UjirH13PhD.pdf +40854850a1ca24d9f1e62f2a0432edcbb5633f76,,,, +40217a8c60e0a7d1735d4f631171aa6ed146e719,http://pdfs.semanticscholar.org/4021/7a8c60e0a7d1735d4f631171aa6ed146e719.pdf,,https://doi.org/10.1007/978-3-319-10605-2_30,http://www.cs.columbia.edu/~yli/papers/Parts_Localization_ECCV2014.pdf +405cf40f3ce74210f7e9862b2b828ce002b409ed,,,https://doi.org/10.1109/IJCNN.2017.7966244, +407a26fff7fac195b74de9fcb556005e8785a4e9,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.29 +2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9,http://pdfs.semanticscholar.org/71f1/c8d39e1fbf1083a4616a3496f5c397a2daf5.pdf,,,http://www.cs.berkeley.edu/~feisha/pubs/nips08.pdf +2eb37a3f362cffdcf5882a94a20a1212dfed25d9,http://pdfs.semanticscholar.org/2eb3/7a3f362cffdcf5882a94a20a1212dfed25d9.pdf,,,http://cdn.intechopen.com/pdfs/20587/InTech-Local_feature_based_face_recognition.pdf +2e0addeffba4be98a6ad0460453fbab52616b139,http://pdfs.semanticscholar.org/3cd7/8b1f43ead1226554f450bafcb8fbe208b5f0.pdf,,,http://www.cs.cmu.edu/~jiangni/jiang_thesis.pdf +2e36b63fdf1353425a57a0665b0d0274efe92963,,,,http://doi.acm.org/10.1145/3152771.3156179 +2e5d173ee0d1d7f88c335ade6a7b879b2d987ab4,,,https://doi.org/10.1109/ICASSP.2015.7178367, +2e535b8cd02c2f767670ba47a43ad449fa1faad7,,,https://doi.org/10.1109/MSP.2017.2740460, +2e091b311ac48c18aaedbb5117e94213f1dbb529,http://pdfs.semanticscholar.org/b1a1/a049f1d78f6e3d072236237c467292ccd537.pdf,,https://doi.org/10.1007/978-3-319-10599-4_6,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8694/86940078.pdf +2e1415a814ae9abace5550e4893e13bd988c7ba1,http://pdfs.semanticscholar.org/2e14/15a814ae9abace5550e4893e13bd988c7ba1.pdf,,,http://ijettjournal.org/2015/volume-21/number-3/IJETT-V21P226.pdf +2e0e056ed5927a4dc6e5c633715beb762628aeb0,http://pdfs.semanticscholar.org/2e0e/056ed5927a4dc6e5c633715beb762628aeb0.pdf,,,http://www.researchgate.net/profile/Xian_Hua_Han/publication/221926748_Multilinear_Supervised_Neighborhood_Preserving_Embedding_Analysis_of_Local_Descriptor_Tensor/links/00463531e6d0c26e27000000.pdf +2e9e07b871e7703c60d6849282174d99977ccea7,,,, +2e8a0cc071017845ee6f67bd0633b8167a47abed,https://arxiv.org/pdf/1303.6021v1.pdf,,,http://arxiv.org/abs/1303.6021 +2e68190ebda2db8fb690e378fa213319ca915cf8,http://pdfs.semanticscholar.org/a705/804fa2e97ce23619b4f43da1b75fb138296d.pdf,,,http://arxiv.org/abs/1609.02612 +2e157e8b57f679c2f1b8e16d6e934f52312f08f6,http://pdfs.semanticscholar.org/2e15/7e8b57f679c2f1b8e16d6e934f52312f08f6.pdf,,,http://waset.org/publications/6318/2d-spherical-spaces-for-face-relighting-under-harsh-illumination +2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd,http://research.microsoft.com/users/byzhang/publications/20-81_01.pdf,,,https://pdfs.semanticscholar.org/2ee8/900bbde5d3c81b7ed4725710ed46cc7e91cd.pdf +2e475f1d496456831599ce86d8bbbdada8ee57ed,http://www.l3s.de/~siersdorfer/sources/2015/www2015groupsourcing.pdf,,,http://doi.acm.org/10.1145/2736277.2741097 +2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522,http://pdfs.semanticscholar.org/2ef5/1b57c4a3743ac33e47e0dc6a40b0afcdd522.pdf,,,http://arxiv.org/abs/1108.1122 +2ed7d95588200c8c738c7dd61b8338538e04ea30,,,https://doi.org/10.1109/ICIP.2010.5654063, +2ee1ba1c3d4797fdae46d3d5f01db7ef5903dadd,,,https://doi.org/10.1016/j.neucom.2015.07.031, +2e6cfeba49d327de21ae3186532e56cadeb57c02,http://openaccess.thecvf.com/content_ICCV_2017/papers/Wang_Real_Time_Eye_ICCV_2017_paper.pdf,,,http://homepages.rpi.edu/~wangk10/papers/wang2017_webcam.pdf +2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d,,,https://doi.org/10.1109/CVPRW.2011.5981801, +2ea247029ac1b8ded60023a369e8d259a8637bd2,,,, +2ee817981e02c4709d65870c140665ed25b005cc,http://www.umiacs.umd.edu/users/rama/Publications/Patel_ICARCV_2010.pdf,,https://doi.org/10.1109/ICARCV.2010.5707955,http://www.umiacs.umd.edu/users/pvishalm/Conference_pub/ICARCV2010.pdf +2e98329fdec27d4b3b9b894687e7d1352d828b1d,http://pdfs.semanticscholar.org/2e98/329fdec27d4b3b9b894687e7d1352d828b1d.pdf,,,http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS14/paper/download/7839/7835 +2e19371a2d797ab9929b99c80d80f01a1fbf9479,http://pdfs.semanticscholar.org/2e19/371a2d797ab9929b99c80d80f01a1fbf9479.pdf,,https://doi.org/10.1016/j.imavis.2015.09.003,http://www.cs.nott.ac.uk/~pszmv/Documents/2015IVC_L21.pdf +2ebc35d196cd975e1ccbc8e98694f20d7f52faf3,http://pdfs.semanticscholar.org/2ebc/35d196cd975e1ccbc8e98694f20d7f52faf3.pdf,,,http://vision.seas.harvard.edu/papers/WideAngle_PAMI2013.pdf +2e3d081c8f0e10f138314c4d2c11064a981c1327,http://arxiv.org/pdf/1603.06015v1.pdf,,https://doi.org/10.1007/s11263-017-0999-5,http://ibug.doc.ic.ac.uk/media/uploads/documents/1603.06015v1.pdf +2ef1b1b5ed732634e005df779fd9b21da0ffe60c,,,https://doi.org/10.1016/j.image.2017.03.012, +2ef328e035b2b5501ceddc0052615d4cebac6f1f,http://mi.eng.cam.ac.uk/~ss965/semantic_transform.pdf,,,http://mi.eng.cam.ac.uk/~cipolla/publications/inproceedings/2013-ICCV-Shankar-attrirbutes.pdf +2e86402b354516d0a8392f75430156d629ca6281,https://arxiv.org/pdf/1604.03628v2.pdf,,,http://arxiv.org/pdf/1604.03628v2.pdf +2e5b160892b70a1e846aa9dcdf132b8011937ec6,,,https://doi.org/10.1109/LSP.2017.2689921, +2e27667421a7eeab278e0b761db4d2c725683c3f,,,https://doi.org/10.1007/s11042-013-1815-z, +2ea78e128bec30fb1a623c55ad5d55bb99190bd2,http://pdfs.semanticscholar.org/2ea7/8e128bec30fb1a623c55ad5d55bb99190bd2.pdf,,https://doi.org/10.1007/978-3-319-59129-2_32,http://ies.anthropomatik.kit.edu/ies/download/publ/ies_2017_herrmann_low_resolution.pdf +2e8eb9dc07deb5142a99bc861e0b6295574d1fbd,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Hejrati_Analysis_by_Synthesis_2014_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.314 +2e0f5e72ad893b049f971bc99b67ebf254e194f7,http://pdfs.semanticscholar.org/2e0f/5e72ad893b049f971bc99b67ebf254e194f7.pdf,,https://doi.org/10.1007/978-3-642-37447-0_25,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00974.pdf +2e3c893ac11e1a566971f64ae30ac4a1f36f5bb5,http://pdfs.semanticscholar.org/cb94/9e849b20ddc157aaf648dca1e8c71463c288.pdf,,,http://www.vision.ucla.edu/~vedaldi/assets/pubs/blaschko10simultaneous.pdf +2ed3ce5cf9e262bcc48a6bd998e7fb70cf8a971c,http://pdfs.semanticscholar.org/6abe/c94e0af01d9706d73dfd91fd76139c7d99e0.pdf,,https://doi.org/10.3390/s17020275,https://www.preprints.org/manuscript/201701.0120/v1/download +2e6776cd582c015b46faf616f29c98ce9cff51a2,,,https://doi.org/10.1109/TNN.2005.860849, +2edc6df161f6aadbef9c12408bdb367e72c3c967,http://www.infomus.org/Events/proceedings/ICMI2014/icmi/p514.pdf,,,http://doi.acm.org/10.1145/2663204.2666278 +2eca099b90274fb28569f19ef945f43758f5b367,,,, +2ec7d6a04c8c72cc194d7eab7456f73dfa501c8c,http://pdfs.semanticscholar.org/2ec7/d6a04c8c72cc194d7eab7456f73dfa501c8c.pdf,,,http://www.ijsrms.com/media/0002/4I28-IJSRMS0303119-v3-i4-pp164-169.pdf +2eb9f1dbea71bdc57821dedbb587ff04f3a25f07,http://pdfs.semanticscholar.org/2eb9/f1dbea71bdc57821dedbb587ff04f3a25f07.pdf,,https://doi.org/10.1007/11825890_2,https://ibug.doc.ic.ac.uk/media/uploads/documents/Pantic-FaceAmI-PUBLISHED.pdf +2e12c5ea432004de566684b29a8e148126ef5b70,,,https://doi.org/10.1007/s12193-015-0204-5, +2e1fd8d57425b727fd850d7710d38194fa6e2654,http://www.cs.toronto.edu/~afsaneh/JamiesonEtAl2007.pdf,,,http://www.cs.utoronto.ca/~jamieson/Jamieson_ICCV07.pdf +2e1b1969ded4d63b69a5ec854350c0f74dc4de36,http://pdfs.semanticscholar.org/2e1b/1969ded4d63b69a5ec854350c0f74dc4de36.pdf,,https://doi.org/10.1016/j.patcog.2011.07.022,http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Jour_PR_3DAU_Detection_final.pdf +2b286ed9f36240e1d11b585d65133db84b52122c,,,,http://doi.acm.org/10.1145/3130800.3130837 +2b8c5017633a82b15dbe0047cfc76ffdce462176,,,, +2babf665198a91932a4ce557f627c28e7e8f31f2,,,,http://doi.acm.org/10.1145/3009977.3010004 +2be0ab87dc8f4005c37c523f712dd033c0685827,http://www3.ntu.edu.sg/home/EXDJiang/ICIP2013_4.pdf,,https://doi.org/10.1109/ICIP.2013.6738759, +2b60fe300735ea7c63f91c1121e89ba66040b833,,,, +2bb2ba7c96d40e269fc6a2d5384c739ff9fa16eb,http://jmcauley.ucsd.edu/data/amazon/sigir_draft.pdf,,,http://cseweb.ucsd.edu/~jmcauley/pdfs/sigir15.pdf +2bbe89f61a8d6d4d6e39fdcaf8c185f110a01c78,http://www3.ntu.edu.sg/home/wanggang/TIFS15.pdf,,https://doi.org/10.1109/TIFS.2015.2408431,https://pdfs.semanticscholar.org/2bbe/89f61a8d6d4d6e39fdcaf8c185f110a01c78.pdf +2b339ece73e3787f445c5b92078e8f82c9b1c522,http://pdfs.semanticscholar.org/7a2e/e06aaa3f342937225272951c0b6dd4309a7a.pdf,,https://doi.org/10.1007/978-3-319-46475-6_8,http://crcv.ucf.edu/papers/eccv2016/AssariIdreesShah_ECCV16_ReIdCrowds.pdf +2b4d092d70efc13790d0c737c916b89952d4d8c7,http://pdfs.semanticscholar.org/2b4d/092d70efc13790d0c737c916b89952d4d8c7.pdf,,,http://journal.iis.sinica.edu.tw/paper/1/170093-2.pdf?cd=4E628A37ADB11E9D1 +2b7b55a4143ad23aa31f00b11efebdd8246231a8,,,, +2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f,http://pdfs.semanticscholar.org/2b0f/f4b82bac85c4f980c40b3dc4fde05d3cc23f.pdf,,,http://www.globalcis.org/rnis/ppl/RNIS237PPL.pdf +2b3ceb40dced78a824cf67054959e250aeaa573b,http://pdfs.semanticscholar.org/7493/4a2b65538f42701e15f7f532437db2beead2.pdf,,,http://yining-wang.com/private-sc.pdf +2b300985a507533db3ec9bd38ade16a32345968e,,,https://doi.org/10.1007/s11042-015-3070-y, +2be8e06bc3a4662d0e4f5bcfea45631b8beca4d0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_028_ext.pdf,,,http://arxiv.org/abs/1505.05769 +2bf03e8fb775718ac9730524a176ddd189c0e457,,,, +2b5005c2abf2d9a8c16afa50306b6959dfc72275,,,https://doi.org/10.1109/ICARCV.2010.5707216, +2bcec23ac1486f4106a3aa588b6589e9299aba70,http://pdfs.semanticscholar.org/2bce/c23ac1486f4106a3aa588b6589e9299aba70.pdf,,https://doi.org/10.1007/978-3-319-46478-7_51,http://vision.cs.utexas.edu/aavl_workshop_eccv16/papers/AAVL_PID14.pdf +2b0d14dbd079b3d78631117b1304d6c1579e1940,,,https://doi.org/10.1007/s11063-016-9524-z, +2b773fe8f0246536c9c40671dfa307e98bf365ad,http://pdfs.semanticscholar.org/2b77/3fe8f0246536c9c40671dfa307e98bf365ad.pdf,,https://doi.org/10.1155/2013/106867, +2b43100a13811b33cc9f905fa1334bfd8b1873ba,,,https://doi.org/10.1109/IVCNZ.2015.7761564, +2bf08d4cb8d1201a9866ee7c4852bfcbf8f8e7f1,http://mplab.ucsd.edu/~jake/haar.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.61 +2be9144a1e66de127192b01907c862381f4011d1,http://www1.cs.columbia.edu/~belhumeur/conference/eye-iccv05.pdf,,,http://www.cs.columbia.edu/~belhumeu/conference/eye-iccv05.pdf +2bab44d3a4c5ca79fb8f87abfef4456d326a0445,http://www.mirlab.org/conference_papers/International_Conference/ACM%202005/docs/mir25.pdf,,,http://viplab.dsi.unifi.it/~nunziati/files/mir2005_nunziati.pdf +2b0102d77d3d3f9bc55420d862075934f5c85bec,http://openaccess.thecvf.com/content_cvpr_2016/papers/Shao_Slicing_Convolutional_Neural_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.606 +2b435ee691718d0b55d057d9be4c3dbb8a81526e,http://pdfs.semanticscholar.org/43ef/472c2c09d1ae2f2e5fc35d6d3ab7578658b4.pdf,,https://doi.org/10.5244/C.23.7,http://www-i6.informatik.rwth-aachen.de/publications/download/625/DreuwPhilippeSteingrubePascalHanselmannHaraldNeyHermann--SURF-FaceFaceRecognitionUnderViewpointConsistencyConstraints--2009.pdf +2b2924af7ec219bd1fadcbd2c57014ed54efec86,,,,http://doi.ieeecomputersociety.org/10.1109/SSIAI.2014.6806053 +2b1327a51412646fcf96aa16329f6f74b42aba89,http://pdfs.semanticscholar.org/8296/cb7fea317fcd0a7ff6b7e4486ab869a7231e.pdf,,,https://arxiv.org/pdf/1511.03771v2.pdf +2be1e2f2b7208fdf7a379da37a2097cfe52bc196,http://www2.cvl.isy.liu.se/Education/Graduate/artikelklubb/aryananda_icra09.pdf,,https://doi.org/10.1109/ROBOT.2009.5152362,https://pdfs.semanticscholar.org/a8d8/2439d91f7c6c5d0f907e3f30730d0f5bdf12.pdf +2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,https://www.cse.iitb.ac.in/~sharat/icvgip.org/icvgip2010/papers/53.sethuram.134.pdf,,,http://doi.acm.org/10.1145/1924559.1924608 +2b2e6e073fe0876fdf96a336cbc14de0217ce070,,,, +2b64a8c1f584389b611198d47a750f5d74234426,http://pdfs.semanticscholar.org/fb11/6f00320a37d80ec32561d1ab9b795c943202.pdf,,https://doi.org/10.1007/978-3-319-10584-0_4,http://faculty.ucmerced.edu/mhyang/papers/eccv14_deblur.pdf +2b632f090c09435d089ff76220fd31fd314838ae,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Hajibabaei_Early_Adaptation_of_ICCV_2017_paper.pdf,,,http://www.vision.ee.ethz.ch/~timofter/publications/Hajibabaei-ICCVW-2017.pdf +2b10a07c35c453144f22e8c539bf9a23695e85fc,http://pdfs.semanticscholar.org/2b10/a07c35c453144f22e8c539bf9a23695e85fc.pdf,,https://doi.org/10.1007/978-3-540-74549-5_26,http://www.researchgate.net/profile/Stan_Li3/publication/221383502_Standardization_of_Face_Image_Sample_Quality/links/0c960533189badd44c000000.pdf +2b84630680e2c906f8d7ac528e2eb32c99ef203a,http://disi.unitn.it/~zen/data/acmmm14_zen3_orlando.pdf,,,http://disi.unitn.it/~zen/data/acmmm14_weareallnotequal.pdf +2b507f659b341ed0f23106446de8e4322f4a3f7e,http://pdfs.semanticscholar.org/2b50/7f659b341ed0f23106446de8e4322f4a3f7e.pdf,,,https://arxiv.org/pdf/1610.05586v1.pdf +2b7ef95822a4d577021df16607bf7b4a4514eb4b,http://pdfs.semanticscholar.org/b596/9178f843bfaecd0026d04c41e79bcb9edab5.pdf,,,http://books.nips.cc/papers/files/nips25/NIPS2012_1248.pdf +2b8dfbd7cae8f412c6c943ab48c795514d53c4a7,http://mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p529-bordei.pdf,,https://doi.org/10.1109/ICASSP.2014.6853652, +2b1129efcbafa61da1d660de3b5c84b646540311,http://www.researchgate.net/profile/Haizhou_Ai/publication/221368891_Distributing_expressional_faces_in_2-D_emotional_space/links/546b431f0cf20dedafd52906.pdf,,,http://doi.acm.org/10.1145/1282280.1282339 +2bae810500388dd595f4ebe992c36e1443b048d2,http://pdfs.semanticscholar.org/2bae/810500388dd595f4ebe992c36e1443b048d2.pdf,,,http://www.ijbem.org/volume18/number1/ijbem_vol18_no1_pp13-18.pdf +2b42f83a720bd4156113ba5350add2df2673daf0,http://pdfs.semanticscholar.org/2b42/f83a720bd4156113ba5350add2df2673daf0.pdf,,,http://crcv.ucf.edu/THUMOS14/papers/CUHK&SIAT.pdf +2bbbbe1873ad2800954058c749a00f30fe61ab17,http://pdfs.semanticscholar.org/2bbb/be1873ad2800954058c749a00f30fe61ab17.pdf,,,https://www.rroij.com/open-access/face-verification-across-ages-using-selforganizing-map.pdf +2baec98c19804bf19b480a9a0aa814078e28bb3d,http://eprints.eemcs.utwente.nl/26841/01/Pantic_Multi-conditional_Latent_Variable_Model.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/eleftheriadis_iccv2015.pdf +2be9284d531b8c573a4c39503ca50606446041a3,,,https://doi.org/10.1109/ICIP.2005.1530004, +2be24e8a3f2b89bdaccd02521eff3b7bb917003e,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.96 +47fdbd64edd7d348713253cf362a9c21f98e4296,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C071_yamashita2015.pdf,,https://doi.org/10.1109/ICIP.2015.7351325, +47382cb7f501188a81bb2e10cfd7aed20285f376,http://pdfs.semanticscholar.org/4738/2cb7f501188a81bb2e10cfd7aed20285f376.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12318 +473366f025c4a6e0783e6174ca914f9cb328fe70,http://pdfs.semanticscholar.org/f021/cbfa5f3483889c3980b62c6cec329c8c5aec.pdf,,,https://arxiv.org/pdf/1610.06906v1.pdf +476755252e53799b490c5a88fde81eef9a64fb7e,,,, +4793f11fbca4a7dba898b9fff68f70d868e2497c,http://pdfs.semanticscholar.org/4793/f11fbca4a7dba898b9fff68f70d868e2497c.pdf,,https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-422,http://ijcai.org/Proceedings/11/Papers/422.pdf +470dbd3238b857f349ebf0efab0d2d6e9779073a,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_062_ext.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7299136 +473031328c58b7461753e81251379331467f7a69,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W09/papers/Wang_Exploring_Fisher_Vector_2015_CVPR_paper.pdf,,,http://wangzheallen.github.io/papers/05.pdf +47638197d83a8f8174cdddc44a2c7101fa8301b7,http://grail.cs.washington.edu/wp-content/uploads/2015/08/saleh2013oad.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Saleh_Object-Centric_Anomaly_Detection_2013_CVPR_paper.pdf +47541d04ec24662c0be438531527323d983e958e,http://pdfs.semanticscholar.org/4754/1d04ec24662c0be438531527323d983e958e.pdf,,,http://www.doc.ic.ac.uk/~maja/BookChapter_ZengPanticHuang-CAMERA.pdf +476f177b026830f7b31e94bdb23b7a415578f9a4,http://vision.ece.ucsb.edu/sites/vision.ece.ucsb.edu/files/publications/karthikeyan_icip2012_subspace_final.pdf,,https://doi.org/10.1109/ICIP.2012.6467074,https://labs.psych.ucsb.edu/grafton/scott/Papers/Karthikeyan%202012.pdf +47cd161546c59ab1e05f8841b82e985f72e5ddcb,,,https://doi.org/10.1109/ICIP.2017.8296552, +47109343e502a4097cb7efee54bc5fbb14598c05,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.182 +4786638ffb3b2fb385cec80720cc6e7c3588b773,,,https://doi.org/10.1007/s11042-015-2598-1, +474b461cd12c6d1a2fbd67184362631681defa9e,http://toc.proceedings.com/24478webtoc.pdf,,https://doi.org/10.1109/SMC.2014.6973888, +472ba8dd4ec72b34e85e733bccebb115811fd726,http://pdfs.semanticscholar.org/472b/a8dd4ec72b34e85e733bccebb115811fd726.pdf,,https://doi.org/10.1007/978-3-642-19309-5_55,http://www.researchgate.net/profile/Li_Bai/publication/220745463_Cosine_Similarity_Metric_Learning_for_Face_Verification/links/54dcd4880cf25b09b912d2ed.pdf +471bef061653366ba66a7ac4f29268e8444f146e,,,https://doi.org/10.1109/SMC.2015.524, +47ca2df3d657d7938d7253bed673505a6a819661,http://pdfs.semanticscholar.org/47ca/2df3d657d7938d7253bed673505a6a819661.pdf,,,http://ilab.cs.ucsb.edu/publications/ChangPhD.pdf +47d4838087a7ac2b995f3c5eba02ecdd2c28ba14,http://pdfs.semanticscholar.org/b2b5/35118c5c4dfcc96f547274cdc05dde629976.pdf,,,http://arxiv.org/abs/1707.04061 +47eba2f95679e106e463e8296c1f61f6ddfe815b,https://www.csie.ntu.edu.tw/~cyy/publications/papers/Shih2017DCF.pdf,,,http://openaccess.thecvf.com/content_cvpr_2017/papers/Shih_Deep_Co-Occurrence_Feature_CVPR_2017_paper.pdf +47fb74785fbd8870c2e819fc91d04b9d9722386f,,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.161 +47a2727bd60e43f3253247b6d6f63faf2b67c54b,http://openaccess.thecvf.com/content_cvpr_2016/papers/Fu_Semi-Supervised_Vocabulary-Informed_Learning_CVPR_2016_paper.pdf,,,http://arxiv.org/abs/1604.07093 +47d3b923730746bfaabaab29a35634c5f72c3f04,http://pdfs.semanticscholar.org/47d3/b923730746bfaabaab29a35634c5f72c3f04.pdf,,,http://www.ijera.com/papers/Vol7_issue7/Part-3/F0707033038.pdf +47e3029a3d4cf0a9b0e96252c3dc1f646e750b14,http://mmi.tudelft.nl/pub/dragos/_CompSysTech07.pdf,,,http://www.mmi.tudelft.nl/pub/dragos/_CompSysTech07.pdf +475e16577be1bfc0dd1f74f67bb651abd6d63524,http://pdfs.semanticscholar.org/475e/16577be1bfc0dd1f74f67bb651abd6d63524.pdf,,,https://arxiv.org/pdf/1609.01885v2.pdf +471befc1b5167fcfbf5280aa7f908eff0489c72b,http://poseidon.csd.auth.gr/papers/PUBLISHED/JOURNAL/pdf/Goudelis07a.pdf,,https://doi.org/10.1109/TIFS.2007.902915,https://ibug.doc.ic.ac.uk/media/uploads/documents/ieee_tifs_2007_goudelis.pdf +47f8b3b3f249830b6e17888df4810f3d189daac1,http://pdfs.semanticscholar.org/fd44/c0c238fe90d6ca61864010abd94768fcde0c.pdf,,https://doi.org/10.1016/j.cviu.2012.01.005,http://www.ece.ualberta.ca/~djoseph/publications/journal/CVIU_2012.pdf +47e8db3d9adb79a87c8c02b88f432f911eb45dc5,http://pdfs.semanticscholar.org/5f99/63990ab7dd888ab33393f712f8d5c1463348.pdf,,https://doi.org/10.1137/15M104013X,http://ibug.doc.ic.ac.uk/media/uploads/documents/magma.pdf +47aeb3b82f54b5ae8142b4bdda7b614433e69b9a,http://pdfs.semanticscholar.org/5d06/437656dd94616d7d87260d5eb77513ded30f.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.130 +47dabb566f2bdd6b3e4fa7efc941824d8b923a13,http://pdfs.semanticscholar.org/47da/bb566f2bdd6b3e4fa7efc941824d8b923a13.pdf,,https://doi.org/10.1007/978-3-319-10590-1_22,http://www.cim.mcgill.ca/~clark/vmrl/web-content/papers/jjclark_eccv_2014.pdf +47f5f740e225281c02c8a2ae809be201458a854f,http://pdfs.semanticscholar.org/5241/ad03e9276d4acd1c51eaa7f44e2d04d07b68.pdf,,https://doi.org/10.1002/sam.10007,http://www.cs.utexas.edu/users/inderjit/public_papers/disparate_sama.pdf +47d07217c501644d63adfec740346f244abaaae8,,,https://doi.org/10.1016/j.patcog.2016.05.017, +47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa,http://pdfs.semanticscholar.org/d948/50abdd272a402cd2f00e5b85311d87c75b16.pdf,,,http://www.ijcaonline.org/archives/volume83/number5/14443-2602?format=pdf +47a003e6bbfc5bf04a099ca53c67ddfdbea71315,http://www.researchgate.net/profile/Andrzej_Drygajlo/publication/228669241_Q-stack_aging_model_for_face_verification/links/09e4150f7ffb6d3946000000.pdf,http://ieeexplore.ieee.org/document/7077723/,,https://www.researchgate.net/profile/Andrzej_Drygajlo/publication/228669241_Q-stack_aging_model_for_face_verification/links/09e4150f7ffb6d3946000000.pdf +47b508abdaa5661fe14c13e8eb21935b8940126b,http://pdfs.semanticscholar.org/47b5/08abdaa5661fe14c13e8eb21935b8940126b.pdf,,,http://www.ijarcsse.com/docs/papers/Volume_4/12_December2014/V4I11-0350.pdf +477811ff147f99b21e3c28309abff1304106dbbe,http://pdfs.semanticscholar.org/f0f8/23511188d8c10b67512d23eb9cb7f3dd2f9a.pdf,,https://doi.org/10.1016/j.neucom.2011.05.043,http://www.csie.ntu.edu.tw/~winston/papers/wang11learning.pdf +47506951d2dc7c4bb4d2d33dd25b67a767e56680,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2015_04_15_BradyJ_IEEEHST_FP.pdf,,, +473cbc5ec2609175041e1410bc6602b187d03b23,http://pdfs.semanticscholar.org/473c/bc5ec2609175041e1410bc6602b187d03b23.pdf,,,http://mmi.tudelft.nl/pub/dragos/datcu_euromedia08.pdf +78b457f8b1ba4fbd1c50c32ec1f02f4f58764ad7,,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2015.99 +78d4d861c766af2a8da8855bece5da4e6eed2e1c,,,,http://doi.acm.org/10.1145/3129416.3129455 +78216cd51e6e1cc014b83e27e7e78631ad44b899,http://www.ami-lab.org/uploads/Publications/Conference/WP4/Tracking%20facial%20features%20under%20occlusions%20and%20recognizing%20facial%20expressions%20in%20sign%20language.pdf,,https://doi.org/10.1109/AFGR.2008.4813464, +78a4cabf0afc94da123e299df5b32550cd638939,http://pdfs.semanticscholar.org/78a4/cabf0afc94da123e299df5b32550cd638939.pdf,,https://doi.org/10.1016/j.cviu.2017.04.008,https://engineering.purdue.edu/kak/FaceRecognitionUnconstrainedPurdueRVL.pdf +78f08cc9f845dc112f892a67e279a8366663e26d,http://pdfs.semanticscholar.org/78f0/8cc9f845dc112f892a67e279a8366663e26d.pdf,,,http://mediatum.ub.tum.de/doc/1289837/548618.pdf +78d645d5b426247e9c8f359694080186681f57db,http://pdfs.semanticscholar.org/78d6/45d5b426247e9c8f359694080186681f57db.pdf,,https://doi.org/10.1007/978-3-319-19665-7_45,http://publications.idiap.ch/downloads/papers/2015/Metha_SCIA_2015.pdf +78e1798c3077f4f8a4df04ca35cd73f82e9a38f3,,http://ieeexplore.ieee.org/document/6460640/,, +7862d40da0d4e33cd6f5c71bbdb47377e4c6b95a,https://arxiv.org/pdf/1709.07598v1.pdf,,https://doi.org/10.1109/BTAS.2017.8272732,http://arxiv.org/abs/1709.07598 +783f3fccde99931bb900dce91357a6268afecc52,http://pdfs.semanticscholar.org/d1ea/f2cc9dfc6cdbc5468ef2152c46e9111a3f3b.pdf,,https://doi.org/10.1155/2009/945717,http://liris.cnrs.fr/Documents/Liris-6083.pdf +78f244dc2a171944836a89874b8f60e9fe80865d,,,,http://doi.ieeecomputersociety.org/10.1109/ICIG.2011.181 +7897c8a9361b427f7b07249d21eb9315db189496,https://arxiv.org/pdf/1102.2743v2.pdf,,https://doi.org/10.1109/ICIP.2011.6116674,http://arxiv.org/abs/1102.2743 +7825708552c86079d0d11f48033ced391c0754ce,,,, +7859667ed6c05a467dfc8a322ecd0f5e2337db56,http://pdfs.semanticscholar.org/7859/667ed6c05a467dfc8a322ecd0f5e2337db56.pdf,,,http://www.cs.tau.ac.il/~wolf/papers/webscale.pdf +78436256ff8f2e448b28e854ebec5e8d8306cf21,http://pdfs.semanticscholar.org/7843/6256ff8f2e448b28e854ebec5e8d8306cf21.pdf,,,https://arxiv.org/pdf/1502.04972v1.pdf +78f57e5e23ca40af858e6e97ebecb694036bd8a8,,,, +78f438ed17f08bfe71dfb205ac447ce0561250c6,http://pdfs.semanticscholar.org/78f4/38ed17f08bfe71dfb205ac447ce0561250c6.pdf,,,https://www.base-search.net/Record/7483cf20f0148b75b45a67b3dd9f384588cce0b62ea55846263e07c9a6375fad +78f79c83b50ff94d3e922bed392737b47f93aa06,http://mplab.ucsd.edu/wp-content/uploads/2011-LittlewortEtAl-FG-CERT.pdf,,https://doi.org/10.1109/FG.2011.5771414,http://mplab.ucsd.edu/wordpress/wp-content/uploads/2011-LittlewortEtAl-FG-CERT.pdf +7887824e9cc42914165dd3d96b956bff7560e4e4,,,, +78fede85d6595e7a0939095821121f8bfae05da6,http://pdfs.semanticscholar.org/78fe/de85d6595e7a0939095821121f8bfae05da6.pdf,,https://doi.org/10.3837/tiis.2015.02.015,http://www.csie.kuas.edu.tw/~jcchen/pdf/Discriminant%20metric%20learning%20approach%20for%20face%20verification.pdf +7862f646d640cbf9f88e5ba94a7d642e2a552ec9,http://pdfs.semanticscholar.org/7862/f646d640cbf9f88e5ba94a7d642e2a552ec9.pdf,,https://doi.org/10.1007/978-3-642-15549-9_25,http://grail.cs.washington.edu/projects/malkovich/eccv10paper.pdf +780c8a795baca1ba4cb4956cded877dd3d1ca313,,,,http://doi.ieeecomputersociety.org/10.1109/ISSPIT.2013.6781879 +789b8fff223b0db0fe3babf46ea98b1d5197f0c0,,,https://doi.org/10.1002/ima.20245, +785eeac2e236a85a45b4e0356c0745279c31e089,,,https://doi.org/10.1109/TIFS.2014.2359543, +78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c,http://pdfs.semanticscholar.org/78a1/1b7d2d7e1b19d92d2afd51bd3624eca86c3c.pdf,,,http://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multi-class-n-pair-loss-objective +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,https://graphics.stanford.edu/papers/ib-relighting/ib-relighting.pdf,,,http://www.graphics.stanford.edu/papers/ib-relighting/ib-relighting.pdf +781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7ed,https://ivi.fnwi.uva.nl/isis/publications/2017/JainIJCV2017/JainIJCV2017.pdf,,https://doi.org/10.1007/s11263-017-1023-9,http://arxiv.org/pdf/1607.02003v1.pdf +7813d405450013bbdb0b3a917319d5964a89484a,,,https://doi.org/10.1109/WACV.2017.62, +78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e,http://arxiv.org/pdf/1503.01224.pdf,,https://doi.org/10.1109/TCSVT.2016.2576761, +780557daaa39a445b24c41f637d5fc9b216a0621,http://www.ee.columbia.edu/ln/dvmm/publications/15/EventNetDemo.pdf,,,http://doi.acm.org/10.1145/2733373.2807973 +78fdf2b98cf6380623b0e20b0005a452e736181e,http://pdfs.semanticscholar.org/78fd/f2b98cf6380623b0e20b0005a452e736181e.pdf,,,https://drum.lib.umd.edu/bitstream/handle/1903/12631/Castillo_umd_0117E_13012.pdf?isAllowed=y&sequence=1 +788a7b59ea72e23ef4f86dc9abb4450efefeca41,http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/robust_frontalization.pdf +787c1bb6d1f2341c5909a0d6d7314bced96f4681,http://pdfs.semanticscholar.org/787c/1bb6d1f2341c5909a0d6d7314bced96f4681.pdf,,,https://repository.iiitd.edu.in/jspui/bitstream/handle/123456789/360/MT13106.pdf;sequence=1 +7808937b46acad36e43c30ae4e9f3fd57462853d,http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf,,,http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/attributes-poselets-iccv11.pdf +789a43f51e0a3814327dab4299e4eda8165a5748,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.189 +782eee555067b2d6d24db87775e1ded5fb047491,,,https://doi.org/10.1109/MMSP.2008.4665158, +8ba67f45fbb1ce47a90df38f21834db37c840079,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/dsp006-chen.pdf,,,http://cmlab.csie.ntu.edu.tw/~yanying/paper/dsp006-chen.pdf +8b547b87fd95c8ff6a74f89a2b072b60ec0a3351,http://pdfs.semanticscholar.org/8b54/7b87fd95c8ff6a74f89a2b072b60ec0a3351.pdf,,,http://www.fdg2014.org/papers/fdg2014_wip_19.pdf +8b7191a2b8ab3ba97423b979da6ffc39cb53f46b,http://www.eurecom.fr/fr/publication/3472/download/mm-publi-3472.pdf,,https://doi.org/10.1109/ICCVW.2011.6130409,http://www.eurecom.fr/en/publication/3472/download/mm-publi-3472.pdf +8bf57dc0dd45ed969ad9690033d44af24fd18e05,http://pdfs.semanticscholar.org/8bf5/7dc0dd45ed969ad9690033d44af24fd18e05.pdf,,,http://www.wseas.us/e-library/conferences/2011/Florence/GAVTASC/GAVTASC-46.pdf +8bf243817112ac0aa1348b40a065bb0b735cdb9c,http://pdfs.semanticscholar.org/8bf2/43817112ac0aa1348b40a065bb0b735cdb9c.pdf,,,https://arxiv.org/pdf/1708.02386v1.pdf +8bfada57140aa1aa22a575e960c2a71140083293,http://pdfs.semanticscholar.org/8bfa/da57140aa1aa22a575e960c2a71140083293.pdf,,,https://multispectral-imagery-lab.sandbox.wvu.edu/files/d/5c237606-30f4-43e3-a12e-c1ebad1bb99b/spieuv_neeru.pdf +8b8728edc536020bc4871dc66b26a191f6658f7c,http://pdfs.semanticscholar.org/8b87/28edc536020bc4871dc66b26a191f6658f7c.pdf,,https://doi.org/10.1016/j.patrec.2013.04.028,http://www.dia.fi.upm.es/~pcr/publications/prl2013.pdf +8be60114634caa0eff8566f3252cb9a1b7d5ef10,,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2014.6890133 +8bbbdff11e88327816cad3c565f4ab1bb3ee20db,https://eprints.soton.ac.uk/410731/1/FG_soton_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.31 +8b4124bb68e5b3e6b8b77888beae7350dc594a40,,,https://doi.org/10.1109/ICSMC.2005.1571395, +8bf945166305eb8e304a9471c591139b3b01a1e1,,,https://doi.org/10.1109/ACCESS.2017.2756451, +8b10383ef569ea0029a2c4a60cc2d8c87391b4db,http://pdfs.semanticscholar.org/fe2d/20dca6dcedc7944cc2d9fea76de6cbb9d90c.pdf,,https://doi.org/10.5244/C.25.28,http://staff.computing.dundee.ac.uk/jgzhang/publications/zhou_bmvc11.pdf +8bfec7afcf5015017406fc04c43c1f43eb723631,http://www.umiacs.umd.edu/users/pvishalm/Journal_pub/DCS_TAC_2013.pdf,,,http://www.rci.rutgers.edu/~vmp93/Journal_pub/DCS_TAC_2013.pdf +8b1fa60b9164b60d1ca2705611fab063505a3ef5,,,,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2013.6618337 +8b30259a8ab07394d4dac971f3d3bd633beac811,http://pdfs.semanticscholar.org/8b30/259a8ab07394d4dac971f3d3bd633beac811.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11743 +8b3c867e67b263d7a0577a112173a64009a3b4ba,,,https://doi.org/10.1109/ICIP.2010.5652374, +8b19efa16a9e73125ab973429eb769d0ad5a8208,http://pdfs.semanticscholar.org/8b19/efa16a9e73125ab973429eb769d0ad5a8208.pdf,,https://doi.org/10.1007/978-3-642-33191-6_18,http://www.cs.stevens-tech.edu/~kamberov/Papers/isvc2012_186_SCAR_KamberovEtAL.pdf +8b1f697d81de1245c283b4f8f055b9b76badfa66,,,https://doi.org/10.1142/S0218126616500171, +8b6fded4d08bf0b7c56966b60562ee096af1f0c4,http://pdfs.semanticscholar.org/8b6f/ded4d08bf0b7c56966b60562ee096af1f0c4.pdf,,,http://research.ijcaonline.org/volume59/number3/pxc3883956.pdf +8bf647fed40bdc9e35560021636dfb892a46720e,https://arxiv.org/pdf/1612.04061v1.pdf,,,http://doi.acm.org/10.1145/3009977.3010035 +8b2704a5218a6ef70e553eaf0a463bd55129b69d,http://pdfs.semanticscholar.org/8b27/04a5218a6ef70e553eaf0a463bd55129b69d.pdf,,https://doi.org/10.3390/s130607714,http://arxiv.org/pdf/1604.03225v1.pdf +8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,http://pdfs.semanticscholar.org/8bb2/1b1f8d6952d77cae95b4e0b8964c9e0201b0.pdf,,,https://mediatum.ub.tum.de/doc/1323920/1323920.pdf +8b1db0894a23c4d6535b5adf28692f795559be90,http://pdfs.semanticscholar.org/8b1d/b0894a23c4d6535b5adf28692f795559be90.pdf,,,http://homes.cs.washington.edu/~neeraj/publications/base/papers/nk_spie2013_reliability.pdf +8b2e3805b37c18618b74b243e7a6098018556559,http://pdfs.semanticscholar.org/8b2e/3805b37c18618b74b243e7a6098018556559.pdf,,,https://openreview.net/pdf?id=ryn-581vM +8b74252625c91375f55cbdd2e6415e752a281d10,http://epubs.surrey.ac.uk/813060/1/camgoz2016icprw.pdf,,https://doi.org/10.1109/ICPR.2016.7899606, +133f42368e63928dc860cce7618f30ee186d328c,http://pdfs.semanticscholar.org/50bd/1c76a5051db0b13fd76e7a633884ad49d5a8.pdf,,https://doi.org/10.5244/C.27.108,http://www.cl.cam.ac.uk/~hg410/SariyanidiEtAl-BMVC2013.pdf +134aad8153ab78345b2581efac2fe175a3084154,http://www.cs.utexas.edu/~ai-lab/pubs/vijayanarasimhan_grauman_cvpr2008.pdf,,,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/292.pdf +13907865a97afde053d7bb7134d58a7bbc12043c,,,https://doi.org/10.1016/j.patcog.2014.05.001, +13fd25a18ab3faebcd6a4ab95f4cc814fcda337a,,,, +134cea33099cafc6615e57437e29d7c3906a2b48,,,,http://doi.ieeecomputersociety.org/10.1109/ICETET.2010.80 +13719bbb4bb8bbe0cbcdad009243a926d93be433,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Tian_Deep_LDA-Pruned_Nets_CVPR_2017_paper.pdf,,,http://www.vislab.ucr.edu/Biometrics2017/program_slides/deep-lda-pruned-final.pdf +134db6ca13f808a848321d3998e4fe4cdc52fbc2,http://ibug.doc.ic.ac.uk/media/uploads/documents/PanticPatras-SMCB-2005-FINAL.pdf,,https://doi.org/10.1109/TSMCB.2005.859075,http://www.doc.ic.ac.uk/~maja/PanticPatras-SMCB-2005-FINAL.pdf +133dd0f23e52c4e7bf254e8849ac6f8b17fcd22d,http://www.stat.ucla.edu/~caiming/pubs/1402.1783v2.pdf,,,http://web.eecs.umich.edu/~jjcorso/pubs/cxiong_TPAMI_ace.pdf +136aae348c7ebc6fd9df970b0657241983075795,,,https://doi.org/10.1109/ICIP.2015.7351542, +13f065d4e6dfe2a130bd64d73eee97d10d9f7d33,,,https://doi.org/10.1109/DICTA.2015.7371222, +1329206dbdb0a2b9e23102e1340c17bd2b2adcf5,http://pdfs.semanticscholar.org/a2f4/06c8babac96b2108c530974c4d3132106d42.pdf,,https://doi.org/10.1007/978-3-319-10590-1_54,http://people.eecs.berkeley.edu/~rbg/papers/part-rcnn.pdf +1369e9f174760ea592a94177dbcab9ed29be1649,http://geza.kzoo.edu/~erdi/IJCNN2013/HTMLFiles/PDFs/P393-1401.pdf,,https://doi.org/10.1109/IJCNN.2013.6707085, +133900a0e7450979c9491951a5f1c2a403a180f0,http://rlair.cs.ucr.edu/papers/docs/socgroup.pdf,,,http://www.cs.ucr.edu/~cshelton/papers/docs/socgroup.pdf +13bda03fc8984d5943ed8d02e49a779d27c84114,http://www-ljk.imag.fr/Publications/Basilic/com.lmc.publi.PUBLI_Inproceedings@13730f58c78_1669a2e/cevikalp-cvpr12.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248047 +13db9466d2ddf3c30b0fd66db8bfe6289e880802,http://pdfs.semanticscholar.org/13db/9466d2ddf3c30b0fd66db8bfe6289e880802.pdf,,,http://www.mecs-press.org/ijigsp/ijigsp-v9-n1/IJIGSP-V9-N1-4.pdf +13a994d489c15d440c1238fc1ac37dad06dd928c,http://pdfs.semanticscholar.org/13a9/94d489c15d440c1238fc1ac37dad06dd928c.pdf,,https://doi.org/10.1007/978-3-642-37444-9_58,http://www.cbsr.ia.ac.cn/users/zlei/papers/ACCV2012/LEI-ACCV12.pdf +131178dad3c056458e0400bed7ee1a36de1b2918,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Deng_Visual_Reranking_through_2013_ICCV_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2013.323 +13141284f1a7e1fe255f5c2b22c09e32f0a4d465,http://www.micc.unifi.it/pernici/index_files/ALIEN_final.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.250 +132527383890565d18f1b7ad50d76dfad2f14972,http://pdfs.semanticscholar.org/1325/27383890565d18f1b7ad50d76dfad2f14972.pdf,,,http://www.iis.sinica.edu.tw/JISE/2006/200609_03.html +1394ca71fc52db972366602a6643dc3e65ee8726,https://www.cl.cam.ac.uk/~tb346/pub/papers/icmi2016EmoReact.pdf,,,http://www.cl.cam.ac.uk/~tb346/pub/papers/icmi2016EmoReact.pdf +137aa2f891d474fce1e7a1d1e9b3aefe21e22b34,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf,,https://doi.org/10.1109/BTAS.2013.6712710, +13b1b18b9cfa6c8c44addb9a81fe10b0e89db32a,http://www.sfu.ca/~smuralid/papers/thesis.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Ibrahim_A_Hierarchical_Deep_CVPR_2016_paper.pdf +131130f105661a47e0ffb85c2fe21595785f948a,http://pdfs.semanticscholar.org/1311/30f105661a47e0ffb85c2fe21595785f948a.pdf,,,http://www.umiacs.umd.edu/~morariu/publications/WangLatLRRWACV15_supplementary.pdf +1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,http://pdfs.semanticscholar.org/e5c5/e5531aaa661c223088454572de11d2f266c3.pdf,,https://doi.org/10.1007/11957959_2,http://www.cs.huji.ac.il/~daphna/course/student%20lectures/elad%20mezuman.pdf +133da0d8c7719a219537f4a11c915bf74c320da7,http://pdfs.semanticscholar.org/4f4f/920eb43399d8d05b42808e45b56bdd36a929.pdf,,,https://www.ijcaonline.org/archives/volume123/number4/21946-21946-2015905254?format=pdf +13901473a12061f080b9d54219f16db7d406e769,,,https://doi.org/10.1109/TIP.2012.2222895, +13c250fb740cb5616aeb474869db6ab11560e2a6,http://pdfs.semanticscholar.org/13c2/50fb740cb5616aeb474869db6ab11560e2a6.pdf,,,http://www.umiacs.umd.edu/~lsd/papers/JamiesonThesis.pdf +13940d0cc90dbf854a58f92d533ce7053aac024a,http://pdfs.semanticscholar.org/949c/a8a6997aba88a162a36d48047f35ba8d0aab.pdf,,,https://open.bu.edu/bitstream/handle/2144/15204/Wang_bu_0017E_11004.pdf?isAllowed=y&sequence=1 +133f01aec1534604d184d56de866a4bd531dac87,http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf,,,http://www.openu.ac.il/home/hassner/projects/Patchlbp/WolfHassnerTaigman_TPAMI11.pdf +131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1,http://pdfs.semanticscholar.org/131b/fa2ae6a04fd3b921ccb82b1c3f18a400a9c1.pdf,,,https://ibug.doc.ic.ac.uk/media/uploads/documents/nsip_2005.pdf +13841d54c55bd74964d877b4b517fa94650d9b65,http://www98.griffith.edu.au/dspace/bitstream/handle/10072/30001/60226_1.pdf?sequence=1,,https://doi.org/10.1109/ICIP.2009.5413812,https://research-repository.griffith.edu.au/bitstream/handle/10072/30001/60226_1.pdf;jsessionid=124E47B54EACEDD66110AD26E5A124AF?sequence=1 +1389ba6c3ff34cdf452ede130c738f37dca7e8cb,http://pdfs.semanticscholar.org/1389/ba6c3ff34cdf452ede130c738f37dca7e8cb.pdf,,,http://arxiv.org/abs/1704.01880 +131e395c94999c55c53afead65d81be61cd349a4,http://pdfs.semanticscholar.org/2c3f/aeaf0fe103e1e6cb8c2116728e2a5c7b7f29.pdf,,,https://arxiv.org/pdf/1612.02203v2.pdf +1384a83e557b96883a6bffdb8433517ec52d0bea,http://pdfs.semanticscholar.org/6be6/392550222ca07ba4c47931bffaedace72d24.pdf,,,https://arxiv.org/pdf/1612.05203v5.pdf +13fd0a4d06f30a665fc0f6938cea6572f3b496f7,http://pdfs.semanticscholar.org/13fd/0a4d06f30a665fc0f6938cea6572f3b496f7.pdf,,https://doi.org/10.1016/j.procs.2015.07.319,http://www.cs.tut.fi/~iosifidi/files/conference/2015_INNS_RELM.pdf?dl=0 +132f88626f6760d769c95984212ed0915790b625,http://pdfs.semanticscholar.org/132f/88626f6760d769c95984212ed0915790b625.pdf,,,https://escholarship.org/content/qt9t59f756/qt9t59f756.pdf +13f6ab2f245b4a871720b95045c41a4204626814,http://pdfs.semanticscholar.org/9d74/382b6c4209c49de7c2b0fab7b34483ba0ddb.pdf,,,http://elife-publishing-cdn.s3.amazonaws.com/10774/elife-10774-v2.pdf +136f92989e982ecf795cb27d65b48464eaec9323,,,, +13be4f13dac6c9a93f969f823c4b8c88f607a8c4,http://www1.ece.neu.edu/~yuewu/files/2016/p242-robinson.pdf,,,https://export.arxiv.org/pdf/1604.02182 +13afc4f8d08f766479577db2083f9632544c7ea6,https://cs.anu.edu.au/few/KSikka_EmotiW.pdf,,,http://mplab.ucsd.edu/~ksikka/EmotiW%20presentation.pdf +13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd,http://pdfs.semanticscholar.org/1318/8a88bbf83a18dd4964e3f89d0bc0a4d3a0bd.pdf,,,https://www.ijsr.net/archive/v3i11/T0NUMTQxMzY3.pdf +13d9da779138af990d761ef84556e3e5c1e0eb94,http://www.cs.berkeley.edu/~malik/papers/ferencz-learnedmiller-malik08.pdf,,https://doi.org/10.1007/s11263-007-0093-5,http://www.eecs.berkeley.edu/Research/Projects/CS/vision/papers/ferenczMillerMalikIJCV06.pdf +7f57e9939560562727344c1c987416285ef76cda,http://people.cs.vt.edu/~gangwang/class/cs6604/papers/face.pdf,,,http://doi.acm.org/10.1145/2976749.2978392 +7f9be0e08784835de0f8bc3a82fcca02b3721dc1,,,https://doi.org/10.1109/IJCNN.2014.6889744, +7f415aee0137acab659c664eb1dff15f7b726bdd,,,https://doi.org/10.1109/TCSVT.2014.2302522, +7f5346a169c9784ca79aca5d95ae8bf2ebab58e3,,,https://doi.org/10.1109/ICIP.2015.7351304, +7fc5b6130e9d474dfb49d9612b6aa0297d481c8e,http://pdfs.semanticscholar.org/7fc5/b6130e9d474dfb49d9612b6aa0297d481c8e.pdf,,,https://arxiv.org/pdf/1711.06382v1.pdf +7fce5769a7d9c69248178989a99d1231daa4fce9,http://pdfs.semanticscholar.org/7fce/5769a7d9c69248178989a99d1231daa4fce9.pdf,,,http://thesai.org/Downloads/Volume7No5/Paper_5-Towards_Face_Recognition_Using_Eigenface.pdf +7fa2605676c589a7d1a90d759f8d7832940118b5,http://www.ces.clemson.edu/~stb/publications/willimon_clothing_classification_icra2013.pdf,,https://doi.org/10.1109/ICRA.2013.6631181,http://cecas.clemson.edu/~stb/publications/willimon_clothing_classification_icra2013.pdf +7ff42ee09c9b1a508080837a3dc2ea780a1a839b,http://pdfs.semanticscholar.org/7ff4/2ee09c9b1a508080837a3dc2ea780a1a839b.pdf,,https://doi.org/10.1080/10447318.2016.1159799,"http://dspace.ou.nl/bitstream/1820/6749/2/Bahreini,%20Nadolski,%20Westera,%202016a.pdf" +7f533bd8f32525e2934a66a5b57d9143d7a89ee1,http://pdfs.semanticscholar.org/7f53/3bd8f32525e2934a66a5b57d9143d7a89ee1.pdf,,,http://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2014_06_28_BradyJ_IEEECVPRBigDataWorkshop_FP.pdf +7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5,http://www.cs.cmu.edu/~epxing/papers/2015/Zhao_Xing_IJCV15.pdf,,https://doi.org/10.1007/s11263-015-0839-4, +7f6061c83dc36633911e4d726a497cdc1f31e58a,http://pdfs.semanticscholar.org/7f60/61c83dc36633911e4d726a497cdc1f31e58a.pdf,,,http://arxiv.org/abs/1609.08675 +7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,http://pdfs.semanticscholar.org/d5a4/c2757619a1f2c8d9a879e6f26f539a4a18f2.pdf,,https://doi.org/10.1007/978-3-319-16178-5_54,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2014/Efficient%20Online%20Spatio-Temporal%20Filtering%20for%20Video%20Event%20Detection.pdf +7f82f8a416170e259b217186c9e38a9b05cb3eb4,http://pdfs.semanticscholar.org/7f82/f8a416170e259b217186c9e38a9b05cb3eb4.pdf,,,https://arxiv.org/pdf/1712.05799v1.pdf +7f36dd9ead29649ed389306790faf3b390dc0aa2,http://pdfs.semanticscholar.org/7f36/dd9ead29649ed389306790faf3b390dc0aa2.pdf,,,http://www.pitt.edu/~kschmidt/schmidt06DS.pdf +7f4040b482d16354d5938c1d1b926b544652bf5b,,,,http://doi.acm.org/10.1145/2502081.2502115 +7f6cd03e3b7b63fca7170e317b3bb072ec9889e0,http://pdfs.semanticscholar.org/7f6c/d03e3b7b63fca7170e317b3bb072ec9889e0.pdf,,,https://arxiv.org/pdf/1803.09359v1.pdf +7f703613149b190ea3bb0e3c803844895419846b,,,, +7f6599e674a33ed64549cd512ad75bdbd28c7f6c,http://pdfs.semanticscholar.org/7f65/99e674a33ed64549cd512ad75bdbd28c7f6c.pdf,,https://doi.org/10.1007/978-3-662-44845-8_26,https://arxiv.org/pdf/1610.04576v1.pdf +7f8d2d7eaa03132caefe0f3b126b5b369a712c9d,,,,http://doi.ieeecomputersociety.org/10.1109/ACHI.2009.33 +7f9260c00a86a0d53df14469f1fa10e318ee2a3c,http://www.cse.msu.edu/~stockman/Book/projects.html/F06Docs/Papers/daugemanIrisICIP02.pdf,,https://doi.org/10.1109/ICIP.2002.1037952,http://www.cl.cam.ac.uk/~jgd1000/irisrecog.pdf +7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae,http://pdfs.semanticscholar.org/7f97/a36a5a634c30de5a8e8b2d1c812ca9f971ae.pdf,,,https://arxiv.org/pdf/1802.00853v1.pdf +7f2a4cd506fe84dee26c0fb41848cb219305173f,http://pdfs.semanticscholar.org/7f2a/4cd506fe84dee26c0fb41848cb219305173f.pdf,,,http://www.sersc.org/journals/IJHIT/vol8_no2_2015/10.pdf +7fd700f4a010d765c506841de9884df394c1de1c,http://www.kyb.tuebingen.mpg.de/publications/attachments/CVPR2008-Blaschko_5069%5B0%5D.pdf,,,http://pub.ist.ac.at/~chl/papers/blaschko-cvpr2008.pdf +7f59657c883f77dc26393c2f9ed3d19bdf51137b,http://pdfs.semanticscholar.org/7f59/657c883f77dc26393c2f9ed3d19bdf51137b.pdf,,,http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2355&context=infopapers +7ffc5c58e5b61ac7c45d8e6ed076248051ebea34,http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/238/1/SMCB_C_34_5_04.pdf,,https://doi.org/10.1109/TSMCB.2004.831770,http://ira.lib.polyu.edu.hk/bitstream/10397/238/1/SMCB_C_34_5_04.pdf +7f23a4bb0c777dd72cca7665a5f370ac7980217e,http://pdfs.semanticscholar.org/ce70/fecc7150816e081b422cbc157bd9019cdf25.pdf,,,https://arxiv.org/pdf/1703.07220v2.pdf +7fb6bc6c920ca574677f0d3a40c5c377a095885b,http://www.cs.bris.ac.uk/Publications/Papers/2000124.pdf,,,http://www.cs.bris.ac.uk/Research/Vision/MotionRipper/pdf/graphite04.pdf +7fa00c81f7c2d8da1551334b0e7bc3d7fd43130c,,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2353635 +7f268f29d2c8f58cea4946536f5e2325777fa8fa,http://pdfs.semanticscholar.org/7f26/8f29d2c8f58cea4946536f5e2325777fa8fa.pdf,,,http://www.researchgate.net/profile/Gyanendra_Verma/publication/216673522_Facial_Emotion_Recognition_in_Curvelet_Domain/links/09e4150f631bb57c16000000.pdf +7fc3442c8b4c96300ad3e860ee0310edb086de94,http://pdfs.semanticscholar.org/82f3/b7cacc15e026fd3a7639091d54162f6ae064.pdf,,https://doi.org/10.1007/978-3-642-12304-7_9,http://www.openu.ac.il/home/hassner/projects/bgoss/ACCV09WolfHassnerTaigman.pdf +7fcd03407c084023606c901e8933746b80d2ad57,,,https://doi.org/10.1109/BTAS.2017.8272694, +7f3a73babe733520112c0199ff8d26ddfc7038a0,http://pdfs.semanticscholar.org/7f3a/73babe733520112c0199ff8d26ddfc7038a0.pdf,,https://doi.org/10.5220/0005722305820589,http://www.ai.rug.nl/~mrolarik/Publications/VISAPP_2016_135.pdf +7f8d44e7fd2605d580683e47bb185de7f9ea9e28,http://pdfs.semanticscholar.org/c84f/88b2a764ddcc22c4971827d58024b6017496.pdf,,,http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12384 +7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3a,http://pdfs.semanticscholar.org/7f1f/3d7b1a4e7fc895b77cb23b1119a6f13e4d3a.pdf,,https://doi.org/10.1109/CIRA.2003.1222308,http://www.ri.cmu.edu/pub_files/pub4/kanade_takeo_2003_1/kanade_takeo_2003_1.pdf +7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/He_Robust_FEC-CNN_A_CVPR_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.255 +7f8cef6ba2f059e465b1b23057a6dbb23fba1c63,,,https://doi.org/10.1109/TCSVT.2016.2539541, +7f205b9fca7e66ac80758c4d6caabe148deb8581,http://pdfs.semanticscholar.org/7f20/5b9fca7e66ac80758c4d6caabe148deb8581.pdf,,,http://epubs.surrey.ac.uk/809838/1/mssp-survey-firstlook.pdf +7fd6bb30ad5d7eb3078efbb85f94d2d60e701115,http://pdfs.semanticscholar.org/7fd6/bb30ad5d7eb3078efbb85f94d2d60e701115.pdf,,,https://arxiv.org/pdf/1802.09745v1.pdf +7fc76446d2b11fc0479df6e285723ceb4244d4ef,http://pdfs.semanticscholar.org/7fc7/6446d2b11fc0479df6e285723ceb4244d4ef.pdf,,,https://pdfs.semanticscholar.org/7fc7/6446d2b11fc0479df6e285723ceb4244d4ef.pdf +7f1078a2ebfa23a58adb050084d9034bd48a8a99,,,https://doi.org/10.1007/s00371-015-1169-9, +7aa32e0639e0750e9eee3ce16e51e9f94241ae88,,,, +7a9ef21a7f59a47ce53b1dff2dd49a8289bb5098,http://pdfs.semanticscholar.org/7a9e/f21a7f59a47ce53b1dff2dd49a8289bb5098.pdf,,,http://www.eecs.harvard.edu/~zickler/papers/Appearance_CGV2009.pdf +7a595800b490ff437ab06fe7612a678d5fe2b57d,,,https://doi.org/10.1109/MMSP.2009.5293285, +7af38f6dcfbe1cd89f2307776bcaa09c54c30a8b,http://pdfs.semanticscholar.org/7af3/8f6dcfbe1cd89f2307776bcaa09c54c30a8b.pdf,,,http://www.cse.msu.edu/rgroups/amdl/papers/VCIPchapter.pdf +7ae0212d6bf8a067b468f2a78054c64ea6a577ce,http://pdfs.semanticscholar.org/7ae0/212d6bf8a067b468f2a78054c64ea6a577ce.pdf,,,http://www.nii.ac.jp/graduate/thesis/pdf/duy_Dr_thesis.pdf +7a9c317734acaf4b9bd8e07dd99221c457b94171,http://pdfs.semanticscholar.org/7a9c/317734acaf4b9bd8e07dd99221c457b94171.pdf,,https://doi.org/10.1007/978-3-642-12297-2_30,http://research.microsoft.com/en-us/people/zhoulin/Publications/2009-ACCV-LDP.pdf +7a0fb972e524cb9115cae655e24f2ae0cfe448e0,http://pdfs.semanticscholar.org/7a0f/b972e524cb9115cae655e24f2ae0cfe448e0.pdf,,,http://www.researchgate.net/profile/Marley_Vellasco/publication/239691628_Facial_Expression_Classification_Using_RBF_AND_Back-Propagation_Neural_Networks/links/0a85e537b87c780f17000000.pdf +7ad77b6e727795a12fdacd1f328f4f904471233f,https://ueaeprints.uea.ac.uk/65008/1/Accepted_manuscript.pdf,,https://doi.org/10.1109/TMM.2017.2700204, +7adaad633d3002f88cdee105d9c148e013202a06,,,, +7a09e8f65bd85d4c79f0ae90d4e2685869a9894f,,,https://doi.org/10.1109/TMM.2016.2551698, +7ab8cafe454a9fd0fe5d51e718a010ef552b9271,,,, +7a7f2403e3cc7207e76475e8f27a501c21320a44,http://www.apsipa2013.org/wp-content/uploads/2013/05/395_Emotion-recognition-Wu-2928773.pdf,,https://doi.org/10.1109/APSIPA.2013.6694347,http://apsipa2013.org/wp-content/uploads/2013/05/395_Emotion-recognition-Wu-2928773.pdf +7aafeb9aab48fb2c34bed4b86755ac71e3f00338,http://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf,,https://doi.org/10.3390/s16081157,http://www.mdpi.com/1424-8220/16/8/1157/pdf +7a6e3ed956f71b20c41fbec008b1fa8dacad31a6,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7163117 +7a84368ebb1a20cc0882237a4947efc81c56c0c0,https://ibug.doc.ic.ac.uk/media/uploads/documents/iccv_final.pdf,,,http://ibug.doc.ic.ac.uk/media/uploads/documents/iccv_final.pdf +7a91617ec959acedc5ec8b65e55b9490b76ab871,,,https://doi.org/10.1109/RAIT.2012.6194481, +7a666a91a47da0d371a9ba288912673bcd5881e4,,,https://doi.org/10.1016/j.patrec.2009.05.011, +7ab238c23c6640fe0b23d635d6b5fc38fa4a3b46,,,, +7aa4c16a8e1481629f16167dea313fe9256abb42,http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf,,https://doi.org/10.1109/ICASSP.2017.7952703, +7ad1638f7d76c7e885bc84cd694c60f109f02159,https://www.researchgate.net/profile/Wen-Jing_Yan/publication/236120483_Face_Recognition_and_Micro-expression_Recognition_Based_on_Discriminant_Tensor_Subspace_Analysis_Plus_Extreme_Learning_Machine/links/0deec51adcddd72a4f000000.pdf,,https://doi.org/10.1007/s11063-013-9288-7,https://pdfs.semanticscholar.org/8b3f/6cbd296ee28c9154ec020b2df7ca6201b045.pdf +7a6d9f89e0925a220fe3dfba4f0d2745f8be6c9a,http://www.faceplusplus.com/wp-content/uploads/2014/11/Learning-Compact-Face-Representation-Packing-a-Face-into-an-int32.pdf,,,http://doi.acm.org/10.1145/2647868.2654960 +7a85b3ab0efb6b6fcb034ce13145156ee9d10598,http://pdfs.semanticscholar.org/7a85/b3ab0efb6b6fcb034ce13145156ee9d10598.pdf,,https://doi.org/10.1016/j.patcog.2010.07.005,http://www98.griffith.edu.au/dspace/bitstream/10072/34436/1/64724_1.pdf +7ab930146f4b5946ec59459f8473c700bcc89233,http://pdfs.semanticscholar.org/7ab9/30146f4b5946ec59459f8473c700bcc89233.pdf,,https://doi.org/10.1016/j.neucom.2016.04.023,http://arxiv.org/pdf/1602.07464v1.pdf +7a65fc9e78eff3ab6062707deaadde024d2fad40,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.43 +7ad7897740e701eae455457ea74ac10f8b307bed,http://pdfs.semanticscholar.org/7ad7/897740e701eae455457ea74ac10f8b307bed.pdf,,,https://arxiv.org/pdf/1711.00575v1.pdf +7adfc2f854e2ea45c29d22d6e2dcccdd527f46a8,,,https://doi.org/10.1007/s00138-015-0677-y, +7a94936ce558627afde4d5b439ec15c59dbcdaa4,,,https://doi.org/10.1007/s11263-013-0665-5, +7a1ce696e260899688cb705f243adf73c679f0d9,http://www.cse.msu.edu/~rossarun/pubs/SwearingenRossLabelPropagation_BIOSIG2016.pdf,,https://doi.org/10.1109/BIOSIG.2016.7736932, +7a061e7eab865fc8d2ef00e029b7070719ad2e9a,http://cvrr.ucsd.edu/ece285/papers/from_WI13/Ramanan_IJCV2013.pdf,,https://doi.org/10.1007/s11263-012-0564-1, +7ae8acf20f9415f99bfb95aa000d698b8499f1ee,,,, +7ab7befcd319d55d26c1e4b7b9560da5763906f3,http://www.researchgate.net/profile/Lee_Ping-Han/publication/236160185_Facial_Trait_Code/links/0c96051e26825bd65a000000.pdf,,https://doi.org/10.1109/TCSVT.2012.2211951, +7a8c2743db1749c2d9f16f62ee633574c1176e34,http://pdfs.semanticscholar.org/7a8c/2743db1749c2d9f16f62ee633574c1176e34.pdf,,,http://ijetae.com/files/Volume2Issue2/IJETAE_0212_52.pdf +1451e7b11e66c86104f9391b80d9fb422fb11c01,http://pdfs.semanticscholar.org/1451/e7b11e66c86104f9391b80d9fb422fb11c01.pdf,,,https://infoscience.epfl.ch/record/229463/files/IET-SPR.2016.0756.pdf +14d7bce17265738f10f48987bb7bffb3eafc676e,,http://ieeexplore.ieee.org/document/7514504/,, +14761b89152aa1fc280a33ea4d77b723df4e3864,http://pdfs.semanticscholar.org/1476/1b89152aa1fc280a33ea4d77b723df4e3864.pdf,,https://doi.org/10.1007/978-3-319-10593-2_27,https://computing.ece.vt.edu/~santol/projects/zsl_via_visual_abstraction/eccv2014_zsl_via_visual_abstraction.pdf +14b87359f6874ff9b8ee234b18b418e57e75b762,http://pdfs.semanticscholar.org/1b62/6c14544f249cd52ef86a4efc17f3d3834003.pdf,,https://doi.org/10.5244/C.26.118,http://www.researchgate.net/profile/Hua_Gao3/publication/266458682_Face_Alignment_Using_a_Ranking_Model_based_on_Regression_Trees/links/54d393e70cf2501791825481.pdf +14fdec563788af3202ce71c021dd8b300ae33051,http://pdfs.semanticscholar.org/14fd/ec563788af3202ce71c021dd8b300ae33051.pdf,,,http://ceur-ws.org/Vol-1622/SocInf2016_Paper2.pdf +143571c2fc9b1b69d3172f8a35b8fad50bc8202a,,,https://doi.org/10.1016/j.neucom.2014.07.066, +142e5b4492bc83b36191be4445ef0b8b770bf4b0,http://pdfs.semanticscholar.org/142e/5b4492bc83b36191be4445ef0b8b770bf4b0.pdf,,https://doi.org/10.1007/11566489_58,http://www.nlpr.ia.ac.cn/2005papers/gjhy/gh65.pdf +14b016c7a87d142f4b9a0e6dc470dcfc073af517,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912,,https://doi.org/10.1109/BTAS.2015.7358778,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=918912 +142e233adceed9171f718a214a7eba8497af4324,,,https://doi.org/10.1109/IJCNN.2014.6889504, +14b66748d7c8f3752dca23991254fca81b6ee86c,http://pdfs.semanticscholar.org/4e92/a8dcfd802c3248d56ba16d2613dceacaef59.pdf,,https://doi.org/10.5244/C.29.57,http://www.iai.uni-bonn.de/~gall/download/jgall_bowrnn_bmvc15.pdf +14e8dbc0db89ef722c3c198ae19bde58138e88bf,http://ascl.cis.fiu.edu/uploads/1/3/4/2/13423859/amini-lisetti-acii-2013-final.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.51 +14fa27234fa2112014eda23da16af606db7f3637,http://pdfs.semanticscholar.org/14fa/27234fa2112014eda23da16af606db7f3637.pdf,,https://doi.org/10.1016/j.patcog.2010.08.026,http://www.deakin.edu.au/research/src/prada/publications/2010/journals/an_liu_venkatesh_yan_pr10.pdf +1459d4d16088379c3748322ab0835f50300d9a38,https://arxiv.org/pdf/1605.04039v1.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2567386 +14e949f5754f9e5160e8bfa3f1364dd92c2bb8d6,http://pdfs.semanticscholar.org/4b76/694ff2efb302074adf1ba6052d643177abd1.pdf,,https://doi.org/10.1016/j.patcog.2014.05.004,http://arxiv.org/abs/1603.07604 +146bbf00298ee1caecde3d74e59a2b8773d2c0fc,http://pdfs.semanticscholar.org/146b/bf00298ee1caecde3d74e59a2b8773d2c0fc.pdf,,,http://www.rug.nl/research/portal/files/19536021/4d_face_recognition.pdf +14e9158daf17985ccbb15c9cd31cf457e5551990,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,,,http://proceedings.mlr.press/v54/hou17a/hou17a.pdf +14ce7635ff18318e7094417d0f92acbec6669f1c,http://www.cs.tau.ac.il/~wolf/papers/deepface_11_01_2013.pdf,,,http://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf +143f7a51058b743a0d43026a523d9bbbc1ae43a8,http://www.researchgate.net/profile/Shinichi_Satoh/publication/221368838_An_efficient_method_for_face_retrieval_from_large_video_datasets/links/0912f510a0404c605f000000.pdf,,,https://www.researchgate.net/profile/Shinichi_Satoh/publication/221368838_An_efficient_method_for_face_retrieval_from_large_video_datasets/links/0912f510a0404c605f000000.pdf +14d4c019c3eac3c3fa888cb8c184f31457eced02,http://pdfs.semanticscholar.org/14d4/c019c3eac3c3fa888cb8c184f31457eced02.pdf,,https://doi.org/10.1162/NECO_a_00555,http://yima.csl.illinois.edu/psfile/subspace_discovery_v7.pdf +1450296fb936d666f2f11454cc8f0108e2306741,http://pdfs.semanticscholar.org/1450/296fb936d666f2f11454cc8f0108e2306741.pdf,,,http://axon.cs.byu.edu/Dan/673/papers/kim.pdf +140438a77a771a8fb656b39a78ff488066eb6b50,http://homes.cs.washington.edu/~neeraj/base/publications/base/papers/nk_cvpr2011_faceparts.pdf,,,http://neerajkumar.org/projects/face-parts/base/papers/nk_pami2013_faceparts.pdf +143bee9120bcd7df29a0f2ad6f0f0abfb23977b8,http://pdfs.semanticscholar.org/143b/ee9120bcd7df29a0f2ad6f0f0abfb23977b8.pdf,,https://doi.org/10.1007/978-3-642-41914-0_52,https://ibug.doc.ic.ac.uk/media/uploads/documents/isvc_submission_new.pdf +14d72dc9f78d65534c68c3ed57305f14bd4b5753,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yan_Exploiting_Multi-Grain_Ranking_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.68 +14b162c2581aea1c0ffe84e7e9273ab075820f52,http://pdfs.semanticscholar.org/4b87/c72e53f19e29f2ccf4d24f9432ebbafcf1a8.pdf,,https://doi.org/10.1007/978-3-319-10602-1_24,http://homepages.inf.ed.ac.uk/keller/publications/eccv14.pdf +14ff9c89f00dacc8e0c13c94f9fadcd90e4e604d,https://www.comp.nus.edu.sg/~tsim/documents/cascade-cf-landmarks.pdf,,,http://www.hamedkiani.com/uploads/5/1/8/8/51882963/wacv_presentation.pdf +14fdce01c958043140e3af0a7f274517b235adf3,http://pdfs.semanticscholar.org/14fd/ce01c958043140e3af0a7f274517b235adf3.pdf,,https://doi.org/10.1016/j.neucom.2009.09.021,http://www.cil.pku.edu.cn/publications/papers/NC2010Gusuicheng.pdf +14b69626b64106bff20e17cf8681790254d1e81c,http://pdfs.semanticscholar.org/14b6/9626b64106bff20e17cf8681790254d1e81c.pdf,,,http://crcv.ucf.edu/THUMOS14/index.files/NotebookPapers13/Paper%2038%20(Supplementary).pdf +14efb131bed66f1874dd96170f714def8db45d90,,,,http://doi.acm.org/10.1145/2818346.2830585 +14070478b8f0d84e5597c3e67c30af91b5c3a917,http://pdfs.semanticscholar.org/f0a5/f885aa14ac2bbb3cc8e4c7530f2449b2f160.pdf,,https://doi.org/10.1007/978-3-319-10605-2_50,http://www.vision.caltech.edu/~eeyjolfs/papers/EyjolfsdottirECCV2014.pdf +14fb3283d4e37760b7dc044a1e2906e3cbf4d23a,http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/felix_yu_attribute_cvpr2012.pdf,,,http://felixyu.org/pdf/weak_poster.pdf +14ae16e9911f6504d994503989db34d2d1cb2cd4,,,https://doi.org/10.1007/s11042-013-1616-4, +14811696e75ce09fd84b75fdd0569c241ae02f12,https://jurie.users.greyc.fr/papers/cvpr08-cevikalp.pdf,,,http://mplab.ucsd.edu/wp-content/uploads/cvpr2008/conference/data/papers/251.pdf +14bdd23ea8f4f6d7f4c193e5cbb0622362e12ae1,,,https://doi.org/10.1109/TIP.2006.884932, +141eab5f7e164e4ef40dd7bc19df9c31bd200c5e,http://www.jdl.ac.cn/doc/2006/Local%20Linear%20Regression%20(LLR)%20for%20Pose%20Invariant%20Face%20Recognition.pdf,,,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.73 +14e759cb019aaf812d6ac049fde54f40c4ed1468,http://pdfs.semanticscholar.org/14e7/59cb019aaf812d6ac049fde54f40c4ed1468.pdf,,https://doi.org/10.1007/978-0-387-31439-6_708,http://www.cvlab.cs.tsukuba.ac.jp/~kfukui/english/epapers/subspace_method.pdf +146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,https://arxiv.org/pdf/1611.06158v1.pdf,,https://doi.org/10.1109/BTAS.2017.8272686,http://arxiv.org/abs/1611.06158 +148eb413bede35487198ce7851997bf8721ea2d6,http://pdfs.semanticscholar.org/148e/b413bede35487198ce7851997bf8721ea2d6.pdf,,,http://www.cs.ucsb.edu/~daniel/publications/abstracts/VaqueroGSWC09PeopleSearch.pdf +1462bc73834e070201acd6e3eaddd23ce3c1a114,http://pdfs.semanticscholar.org/1462/bc73834e070201acd6e3eaddd23ce3c1a114.pdf,,,http://www.advancedsourcecode.com/V2I460.pdf +14014a1bdeb5d63563b68b52593e3ac1e3ce7312,http://pdfs.semanticscholar.org/1401/4a1bdeb5d63563b68b52593e3ac1e3ce7312.pdf,,,https://staff.fnwi.uva.nl/z.lou/pub/AgeExpressionBMVC2014.pdf +1473a233465ea664031d985e10e21de927314c94,http://pdfs.semanticscholar.org/e985/0501e707f8783172ecacfe0cd29159abda34.pdf,,,https://arxiv.org/pdf/1611.00050v2.pdf +140c95e53c619eac594d70f6369f518adfea12ef,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Klare_Pushing_the_Frontiers_2015_CVPR_paper.pdf +14418ae9a6a8de2b428acb2c00064da129632f3e,http://fanyix.cs.ucdavis.edu/project/discovery/files/ext_abstract.pdf,,,http://openaccess.thecvf.com/content_iccv_2015/papers/Xiao_Discovering_the_Spatial_ICCV_2015_paper.pdf +14ba910c46d659871843b31d5be6cba59843a8b8,http://www.crcv.ucf.edu/papers/cvpr2013/ortiz_vfr_trailers.pdf,,,http://www.enriquegortiz.com/publications/VFR_MSSRC.pdf +1467c4ab821c3b340abe05a1b13a19318ebbce98,http://pdfs.semanticscholar.org/1467/c4ab821c3b340abe05a1b13a19318ebbce98.pdf,,,http://discovery.ucl.ac.uk/1457869/1/thesis_final.pdf +14318d2b5f2cf731134a6964d8193ad761d86942,http://pdfs.semanticscholar.org/1431/8d2b5f2cf731134a6964d8193ad761d86942.pdf,,,http://worldcomp-proceedings.com/proc/p2016/IPC3819.pdf +142dcfc3c62b1f30a13f1f49c608be3e62033042,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Tsai_Adaptive_Region_Pooling_2015_CVPR_paper.pdf,,,http://faculty.ucmerced.edu/mhyang/papers/cvpr15_object_detection.pdf +14c0f9dc9373bea1e27b11fa0594c86c9e632c8d,http://openaccess.thecvf.com/content_iccv_2015/papers/Dang_Adaptive_Exponential_Smoothing_ICCV_2015_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.367 +1439bf9ba7ff97df9a2da6dae4784e68794da184,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Ptucha_LGE-KSVD_Flexible_Dictionary_2013_CVPR_paper.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/Workshops/4990a854.pdf +1473e6f2d250307f0421f1e2ea68b6485d3bd481,,,https://doi.org/10.1109/IJCNN.2016.7727333, +141768ab49a5a9f5adcf0cf7e43a23471a7e5d82,http://arxiv.org/pdf/1405.0085v1.pdf,,,http://ict.usc.edu/pubs/Relative%20Facial%20Action%20Unit%20Detection.pdf +1455591d81c4ddabfe31de9f57f53e9b91e71fa2,,,, +14e428f2ff3dc5cf96e5742eedb156c1ea12ece1,http://www.univ-soukahras.dz/eprints/2014-150-03190.pdf,,, +14bca107bb25c4dce89210049bf39ecd55f18568,http://pdfs.semanticscholar.org/6f56/b0fada68f36d78cf20148fd13de8bce8a93d.pdf,,https://doi.org/10.5244/C.27.76,http://www.bmva.org/bmvc/2013/Papers/paper0076/paper0076.pdf +14a5feadd4209d21fa308e7a942967ea7c13b7b6,http://mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001025.pdf,,https://doi.org/10.1109/ICASSP.2012.6288060,http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202012/pdfs/0001025.pdf +8ec82da82416bb8da8cdf2140c740e1574eaf84f,http://pdfs.semanticscholar.org/8ec8/2da82416bb8da8cdf2140c740e1574eaf84f.pdf,,,http://www.robots.ox.ac.uk/~vgg/publications/2017/Chung17a/chung17a.pdf +8ee62f7d59aa949b4a943453824e03f4ce19e500,http://arxiv.org/pdf/1603.09732v1.pdf,,https://doi.org/10.1109/TIP.2017.2654165,http://arxiv.org/pdf/1603.09732v2.pdf +8e0ede53dc94a4bfcf1238869bf1113f2a37b667,http://www.ri.cmu.edu/pub_files/2015/6/jpml_final.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Joint_Patch_and_2015_CVPR_paper.pdf +8e33183a0ed7141aa4fa9d87ef3be334727c76c0,http://pdfs.semanticscholar.org/8e33/183a0ed7141aa4fa9d87ef3be334727c76c0.pdf,,,http://www.cs.princeton.edu/courses/archive/fall17/cos429/COS429-proj/COS429_facerobustness_CathyLindyZachary.pdf +8e9b92a805d1ce0bf4e0c04133d26e28db036e6a,,,https://doi.org/10.1109/DICTA.2017.8227428, +8e94ed0d7606408a0833e69c3185d6dcbe22bbbe,http://www.wjscheirer.com/papers/wjs_wacv2012_eyes.pdf,,,https://www.wjscheirer.com/papers/wjs_wacv2012_eyes.pdf +8eb9aa6349db3dd1b724266fcd5fc39a83da022a,http://www.hcii-lab.net/2009/%5BICIP%202009%5D%20A%20Novel%20feature%20extraction%20using%20PHOG%20for%20Smile%20Recognition.pdf,,https://doi.org/10.1109/ICIP.2009.5413938, +8e461978359b056d1b4770508e7a567dbed49776,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sikka_LOMo_Latent_Ordinal_CVPR_2016_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.602 +8e4808e71c9b9f852dc9558d7ef41566639137f3,http://pdfs.semanticscholar.org/8e48/08e71c9b9f852dc9558d7ef41566639137f3.pdf,,,https://arxiv.org/pdf/1801.00349v1.pdf +8ef465ff12ee1d2be2a99d1c628117a4ce890a6b,,,https://doi.org/10.1016/j.camwa.2010.08.082, +8ea30ade85880b94b74b56a9bac013585cb4c34b,http://www.eurecom.fr/fr/publication/1392/download/mm-perrfl-040517.pdf,,https://doi.org/10.1109/ICASSP.2004.1326473,http://www.eurecom.fr/en/publication/1392/download/mm-perrfl-040517.pdf +8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,http://pdfs.semanticscholar.org/bff6/c3acd48f34c671c48fae9b3fdf60f5d7b363.pdf,,,http://repository.cmu.edu/cgi/viewcontent.cgi?article=1209&context=dissertations +8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125,https://www.wjscheirer.com/papers/wjs_btas2012_smt.pdf,,https://doi.org/10.1109/BTAS.2012.6374555,http://www.wjscheirer.com/papers/wjs_btas2012_smt.pdf +8e29884d4a0a1a53412e115e43f1b1cefe3bbc34,,,, +8e55486aa456cae7f04fe922689b3e99a0e409fe,,,,http://doi.acm.org/10.1145/3123266.3123342 +8e378ef01171b33c59c17ff5798f30293fe30686,http://pdfs.semanticscholar.org/8e37/8ef01171b33c59c17ff5798f30293fe30686.pdf,,,http://mediatum2.ub.tum.de/doc/635955/document.pdf +8ebe2df4d82af79f0f082ced70f3a73d7fb93b66,,,https://doi.org/10.1109/URAI.2015.7358851, +8e272978dd1500ce6e4c2ef5e91d4332078ff757,,,https://doi.org/10.1007/11848035_5, +8ed051be31309a71b75e584bc812b71a0344a019,http://www.vision.caltech.edu/~bart/Publications/2007/BartUllmanMBE.pdf,,,http://www.vision.caltech.edu/~bart/Publications/2007/BartUllmanMBEAppendix.pdf +8e8a6623b4abd2452779c43f3c2085488dfcb323,,,,http://doi.acm.org/10.1145/2993148.2997630 +8e21399bb102e993edd82b003c306a068a2474da,,,https://doi.org/10.1109/ICIP.2013.6738758, +8ee5b1c9fb0bded3578113c738060290403ed472,https://infoscience.epfl.ch/record/200452/files/wacv2014-RGE.pdf,,,http://doi.ieeecomputersociety.org/10.1109/WACV.2014.6835993 +8edc48e7a110f176ca08c26c0085c4dbb4146c5b,,,, +8efda5708bbcf658d4f567e3866e3549fe045bbb,http://pdfs.semanticscholar.org/8efd/a5708bbcf658d4f567e3866e3549fe045bbb.pdf,,,http://www.ai.rug.nl/~mwiering/Master_Thesis_Siebert_Looije.pdf +225fb9181545f8750061c7693661b62d715dc542,http://pdfs.semanticscholar.org/c592/e408d95c838bced90b79640bead7c226fe64.pdf,,,https://arxiv.org/pdf/1711.08238v2.pdf +22043cbd2b70cb8195d8d0500460ddc00ddb1a62,http://uir.ulster.ac.uk/37137/2/Separability-Oriented%20Subclass%20Discriminant%20Analysis.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2672557 +22137ce9c01a8fdebf92ef35407a5a5d18730dde,http://pdfs.semanticscholar.org/2213/7ce9c01a8fdebf92ef35407a5a5d18730dde.pdf,,,https://www.base-search.net/Record/f1103b37cf20d990aad077f2155946031c72f354c51d2e5bd4a1ffbb0ccdb842 +22e2066acfb795ac4db3f97d2ac176d6ca41836c,http://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,,https://doi.org/10.1007/978-3-319-10605-2_1,http://vipl.ict.ac.cn/sites/default/files/papers/files/2014_ECCV_Coarse-to-Fine%20Auto-encoder%20Networks%20(CFAN)%20for%20Real-time%20Face%20Alignment.pdf +22717ad3ad1dfcbb0fd2f866da63abbde9af0b09,http://pdfs.semanticscholar.org/2271/7ad3ad1dfcbb0fd2f866da63abbde9af0b09.pdf,,,https://tspace.library.utoronto.ca/bitstream/1807/30536/6/Chan_Jeanie_201111_MASc_thesis.pdf +224d0eee53c2aa5d426d2c9b7fa5d843a47cf1db,http://www.ifp.illinois.edu/~jyang29/papers/CVPR13-PEM.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Li_Probabilistic_Elastic_Matching_2013_CVPR_paper.pdf +2288696b6558b7397bdebe3aed77bedec7b9c0a9,http://pdfs.semanticscholar.org/2288/696b6558b7397bdebe3aed77bedec7b9c0a9.pdf,,,http://arxiv.org/abs/1607.02556 +22c06284a908d8ad0994ad52119773a034eed7ee,,,,http://doi.acm.org/10.1145/2964284.2967236 +22bebedc1a5f3556cb4f577bdbe032299a2865e8,http://pdfs.semanticscholar.org/22be/bedc1a5f3556cb4f577bdbe032299a2865e8.pdf,,https://doi.org/10.1016/j.patcog.2017.06.031,http://www.eurecom.fr/fr/publication/5252/download/sec-publi-5252.pdf +22264e60f1dfbc7d0b52549d1de560993dd96e46,http://arxiv.org/pdf/1608.01471v1.pdf,,,https://arxiv.org/pdf/1608.01471v1.pdf +22dada4a7ba85625824489375184ba1c3f7f0c8f,http://arxiv.org/pdf/1506.02328v1.pdf,,,https://arxiv.org/pdf/1506.02328v1.pdf +2238dddb76499b19035641d97711cf30d899dadb,,,https://doi.org/10.1109/SIU.2016.7496098, +221252be5d5be3b3e53b3bbbe7a9930d9d8cad69,http://pdfs.semanticscholar.org/2212/52be5d5be3b3e53b3bbbe7a9930d9d8cad69.pdf,,https://doi.org/10.5244/C.26.80,http://www.bmva.org/bmvc/2012/BMVC/paper080/abstract080.pdf +22894c7a84984bd4822dcfe7c76a74673a242c36,,,,http://doi.acm.org/10.1145/2993148.2997634 +223ec77652c268b98c298327d42aacea8f3ce23f,http://pdfs.semanticscholar.org/223e/c77652c268b98c298327d42aacea8f3ce23f.pdf,,,http://cs.anu.edu.au/techreports/2011/TR-CS-11-02.pdf +22df6b6c87d26f51c0ccf3d4dddad07ce839deb0,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Yu_Fast_Action_Proposals_2015_CVPR_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298735 +228558a2a38a6937e3c7b1775144fea290d65d6c,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Smith_Nonparametric_Context_Modeling_2014_CVPR_paper.pdf,,,http://pages.cs.wisc.edu/~lizhang/projects/face-landmark-localization/SmithCVPR2014.pdf +22a10d8d2a2cb9055557a3b335d6706100890afb,,,https://doi.org/10.1109/SIU.2016.7496121, +22ccd537857aca1ee4b961f081f07c58d42a7f32,,,https://doi.org/10.1109/DICTA.2015.7371260, +22fdd8d65463f520f054bf4f6d2d216b54fc5677,http://pdfs.semanticscholar.org/22fd/d8d65463f520f054bf4f6d2d216b54fc5677.pdf,,,http://www.ijetae.com/files/Volume3Issue8/IJETAE_0813_63.pdf +2251a88fbccb0228d6d846b60ac3eeabe468e0f1,http://pdfs.semanticscholar.org/2251/a88fbccb0228d6d846b60ac3eeabe468e0f1.pdf,,,http://www.cfar.umd.edu/~shaohua/papers/zhou05tr_mtx.pdf +22e678d3e915218a7c09af0d1602e73080658bb7,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/04/13.pdf,,https://doi.org/10.1109/CVPRW.2009.5204185,http://www.cse.wustl.edu/~jacobsn/papers/iv_2009/jacobs09webcamdata.pdf +22ad2c8c0f4d6aa4328b38d894b814ec22579761,http://nichol.as/papers/Gallagher/Clothing%20Cosegmentation%20for%20Recognizing%20People.pdf,,,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/141.pdf +226a5ff790b969593596a52b55b3718dcdd7bb7f,https://www.cise.ufl.edu/~jho/papers/IEEE06.pdf,,https://doi.org/10.1109/JPROC.2006.886019,http://www.cise.ufl.edu/~jho/papers/IEEE06.pdf +22d5aeb25bb034f6ae2fc50b5cdd9934a85d6505,,,,http://doi.acm.org/10.1145/2808469.2810102 +227b18fab568472bf14f9665cedfb95ed33e5fce,https://arxiv.org/pdf/1308.0271v2.pdf,,https://doi.org/10.1109/TIP.2015.2479456,https://arxiv.org/pdf/1308.0271v1.pdf +2241eda10b76efd84f3c05bdd836619b4a3df97e,http://arxiv.org/pdf/1506.01342v5.pdf,,,http://arxiv.org/pdf/1506.01342v4.pdf +22dbdace88c8f4bda2843ed421e3708ec0744237,,,https://doi.org/10.1016/j.cviu.2013.12.010, +22646cf884cc7093b0db2c1731bd52f43682eaa8,http://pdfs.semanticscholar.org/2264/6cf884cc7093b0db2c1731bd52f43682eaa8.pdf,,,https://arxiv.org/pdf/1802.01144v2.pdf +22f94c43dd8b203f073f782d91e701108909690b,http://pdfs.semanticscholar.org/22f9/4c43dd8b203f073f782d91e701108909690b.pdf,,,http://www.cs.virginia.edu/~gs9ed/reports/moviescope.pdf +22dabd4f092e7f3bdaf352edd925ecc59821e168,http://dro.deakin.edu.au/eserv/DU:30044576/venkatesh-exploitingside-2008.pdf,,,http://mplab.ucsd.edu/wordpress/wp-content/uploads/cvpr2008/conference/data/papers/256.pdf +22f656d0f8426c84a33a267977f511f127bfd7f3,https://arxiv.org/pdf/1609.06426v2.pdf,,https://doi.org/10.1007/s11263-017-1055-1,http://arxiv.org/pdf/1609.06426v2.pdf +22143664860c6356d3de3556ddebe3652f9c912a,http://pdfs.semanticscholar.org/2214/3664860c6356d3de3556ddebe3652f9c912a.pdf,,https://doi.org/10.1007/978-3-540-78157-8_11,http://ias.cs.tum.edu/_media/spezial/bib/wimmer08facial.pdf +2271d554787fdad561fafc6e9f742eea94d35518,http://pdfs.semanticscholar.org/2271/d554787fdad561fafc6e9f742eea94d35518.pdf,,,http://mediatum.ub.tum.de/doc/1189694/528291.pdf +2293413ebd24e377c1785113b695cc8a918a5fdb,,,, +22ec256400e53cee35f999244fb9ba6ba11c1d06,http://pdfs.semanticscholar.org/2dbd/f0093228eee11ce9ef17365055dada756413.pdf,,,https://arxiv.org/pdf/1712.01619v2.pdf +22ec8af0f0e5469e40592d29e28cfbdf1154c666,http://pdfs.semanticscholar.org/aa07/2c823da778a2b8bf1fc79141b3b228a14e99.pdf,,,http://hal.upmc.fr/hal-01518089/document +22a7f1aebdb57eecd64be2a1f03aef25f9b0e9a7,http://pdfs.semanticscholar.org/22a7/f1aebdb57eecd64be2a1f03aef25f9b0e9a7.pdf,,https://doi.org/10.1016/j.patcog.2012.05.019,https://www.ece.nus.edu.sg/stfpage/eleqiz/publications/pdf/person_reidentification_pr12.pdf +22e189a813529a8f43ad76b318207d9a4b6de71a,http://openaccess.thecvf.com/content_ICCV_2017/papers/Felsen_What_Will_Happen_ICCV_2017_paper.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.362 +259ddd3c618feec51576baac7eaaf80ea924b791,,,https://doi.org/10.1007/s11257-007-9039-4, +254964096e523d5e48e03390ce440c9af337d200,,,,http://dl.acm.org/citation.cfm?id=3005378 +25d514d26ecbc147becf4117512523412e1f060b,http://www.iab-rubric.org/papers/2015_ICB_CrowdVideoFaceDataset.pdf,,https://doi.org/10.1109/ICB.2015.7139083, +2533c88b278e84a248200d3c5a281177d392e78f,,,, +25866eb48b94e85fa675b1d393163d27ffd62ba6,,,, +25de28e6470b742539f124b93181166a3812e3af,,,, +250b73ec5a4f78b7b4ea3aba65c27fc1352154d5,,,https://doi.org/10.1109/TIP.2015.2463223, +25c19d8c85462b3b0926820ee5a92fc55b81c35a,http://www.brl.ntt.co.jp/people/kumano/papers/Kumano.IJCV2009.pdf,,https://doi.org/10.1007/978-3-540-76386-4_30,http://www.hci.iis.u-tokyo.ac.jp/~ysato/papers/Kumano-IJCV09.pdf +258a8c6710a9b0c2dc3818333ec035730062b1a5,http://pdfs.semanticscholar.org/258a/8c6710a9b0c2dc3818333ec035730062b1a5.pdf,,,http://eprints.eemcs.utwente.nl/10036/01/benelearn05.pdf +25695abfe51209798f3b68fb42cfad7a96356f1f,http://pdfs.semanticscholar.org/2569/5abfe51209798f3b68fb42cfad7a96356f1f.pdf,,,"http://eprints.lincoln.ac.uk/26652/1/McDonagh,%20John%20-%20Computer%20Science%20-%20December%202016.pdf" +250ebcd1a8da31f0071d07954eea4426bb80644c,http://pdfs.semanticscholar.org/2e26/8598d9c2fd9757ba43f7967e57b8a2a871f4.pdf,,,http://arxiv.org/pdf/1509.04874v2.pdf +2525f336af31178b836e27f8c60056e18f1455d2,http://eeeweba.ntu.edu.sg/computervision/Research%20Papers/2017/TEMPORALLY%20ENHANCED%20IMAGE%20OBJECT%20PROPOSALS%20FOR%20VIDEOS.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019495 +25337690fed69033ef1ce6944e5b78c4f06ffb81,http://pdfs.semanticscholar.org/2533/7690fed69033ef1ce6944e5b78c4f06ffb81.pdf,,,http://udspace.udel.edu/bitstream/handle/19716/13396/2014_Leitner_Jordan_PhD.pdf?isAllowed=y&sequence=1 +25c3cdbde7054fbc647d8be0d746373e7b64d150,http://openaccess.thecvf.com/content_cvpr_2016/papers/Ouyang_ForgetMeNot_Memory-Aware_Forensic_CVPR_2016_paper.pdf,,,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Ouyang_ForgetMeNot_Memory-Aware_Forensic_CVPR_2016_paper.pdf +256b46b12ab47283e6ada05fad6a2b501de35323,,,https://doi.org/10.1109/ICPR.2016.7900275, +252f202bfb14d363a969fce19df2972b83fa7ec0,,,,http://doi.ieeecomputersociety.org/10.1109/FG.2017.120 +25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,http://pdfs.semanticscholar.org/25bf/288b2d896f3c9dab7e7c3e9f9302e7d6806b.pdf,,,http://arxiv.org/abs/1608.06557 +251281d9cbd207038efbde0515f4077541967239,http://staff.estem-uc.edu.au/roland/files/2009/05/Ramana-Murthy_Radwan_Goecke_ICIP2014_DenseBodyPartTrajectoriesForHumanActionRecognition.pdf,,https://doi.org/10.1109/ICIP.2014.7025293, +25bcd5aa3bbe56c992547fba683418655b46fc4a,,,https://doi.org/10.1016/j.eswa.2017.03.030, +25d3e122fec578a14226dc7c007fb1f05ddf97f7,https://ibug.doc.ic.ac.uk/media/uploads/documents/pdf17.pdf,,https://doi.org/10.1109/FG.2011.5771374,http://ibug.doc.ic.ac.uk/media/uploads/documents/pdf17.pdf +2597b0dccdf3d89eaffd32e202570b1fbbedd1d6,http://pdfs.semanticscholar.org/26f3/03ae1912c16f08523a7d8db926e35114e8f0.pdf,,,http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1511.05296.pdf +2546dc7e2c2390233de16502413fe1097ecf3fb5,,,https://doi.org/10.1016/j.patrec.2011.01.009, +25c108a56e4cb757b62911639a40e9caf07f1b4f,https://arxiv.org/pdf/1707.09531v2.pdf,,,https://arxiv.org/pdf/1707.09531v1.pdf +2594a77a3f0dd5073f79ba620e2f287804cec630,https://arxiv.org/pdf/1702.06925v1.pdf,,https://doi.org/10.1109/ICIP.2017.8296449,https://arxiv.org/pdf/1702.06925v2.pdf +258b3b1df82186dd76064ef86b28555e91389b73,,,https://doi.org/10.1109/ACCESS.2017.2739822, +25f7f03acf62b2cf3672bb506c8827d00b048608,,,, +25e2d3122d4926edaab56a576925ae7a88d68a77,http://pdfs.semanticscholar.org/25e2/d3122d4926edaab56a576925ae7a88d68a77.pdf,,,http://ftp.ncbi.nlm.nih.gov/pub/pmc/8d/1d/fpsyg-07-00166.PMC4762993.pdf +25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8,http://arxiv.org/pdf/1408.6027v2.pdf,,,http://doi.ieeecomputersociety.org/10.1109/TKDE.2016.2545658 +2559b15f8d4a57694a0a33bdc4ac95c479a3c79a,http://vision.ucsd.edu/~carolina/files/mklmnn.pdf,,https://doi.org/10.1109/TIP.2010.2068556,http://bmcfee.github.io/papers/contextmklmnn.pdf +256ef946b4cecd8889df8d799d0c9175ae986af9,https://pdfs.semanticscholar.org/cd73/8347673151b378f447119fe2665f5c8c2215.pdf,,https://doi.org/10.1109/TIP.2015.2405346,https://www.researchgate.net/profile/Muhammad_Siddiqi2/publication/273003972_Human_Facial_Expression_Recognition_Using_Stepwise_Linear_Discriminant_Analysis_and_Hidden_Conditional_Random_Fields/links/54f54d120cf2ba6150657d84.pdf +251e386a90f21db6d02806395b012b297cbf06ff,,,, +2549ac0d3f40c1f6d72f641c2f05a17aef4bf42a,,,, +2574860616d7ffa653eb002bbaca53686bc71cdd,http://pdfs.semanticscholar.org/e01d/f3e6faffad3f304f6c40b133ae1dcf326662.pdf,,,http://www.cell.com/cms/attachment/2062283687/2063980138/mmc1.pdf +2564848f094f7c1cd5e599aa907947b10b5c7df2,http://prr.hec.gov.pk/Thesis/252S.pdf,,https://doi.org/10.1109/TCE.2007.381732, +25f1f195c0efd84c221b62d1256a8625cb4b450c,http://www.ee.oulu.fi/~gyzhao/Papers/2007/04284844-ICME.pdf,,https://doi.org/10.1109/ICME.2007.4284844,http://www.researchgate.net/profile/Guoying_Zhao/publication/221264253_Experiments_with_Facial_Expression_Recognition_using_Spatiotemporal_Local_Binary_Patterns/links/02e7e528efcc290e81000000.pdf +25885e9292957feb89dcb4a30e77218ffe7b9868,http://pdfs.semanticscholar.org/2588/5e9292957feb89dcb4a30e77218ffe7b9868.pdf,,,https://arxiv.org/pdf/1610.03640v1.pdf +259706f1fd85e2e900e757d2656ca289363e74aa,http://pdfs.semanticscholar.org/6f98/3e8f26066f2ea486f6653b87154360d948ca.pdf,,,https://hal.inria.fr/inria-00321045v2/file/MV08.slides.pdf +25b2811118ed73c64682544fe78023bb8242c709,http://www.researchgate.net/profile/Xueyin_Lin/publication/4193803_Kernel-based_multifactor_analysis_for_image_synthesis_and_recognition/links/00b7d51a9fd4fb9962000000.pdf,,,http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.131 +25728e08b0ee482ee6ced79c74d4735bb5478e29,http://pdfs.semanticscholar.org/2572/8e08b0ee482ee6ced79c74d4735bb5478e29.pdf,,https://doi.org/10.1186/1687-5281-2014-28,http://www.researchgate.net/profile/Abhinav_Dhall/publication/263518292_Thermal_spatio-temporal_data_for_stress_recognition/links/0a85e53b27e43f3d61000000.pdf +258a2dad71cb47c71f408fa0611a4864532f5eba,http://pdfs.semanticscholar.org/258a/2dad71cb47c71f408fa0611a4864532f5eba.pdf,,,http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/azizpour_hossein_11111.pdf +25127c2d9f14d36f03d200a65de8446f6a0e3bd6,http://pdfs.semanticscholar.org/2512/7c2d9f14d36f03d200a65de8446f6a0e3bd6.pdf,,,http://www.jatit.org/volumes/Vol87No2/10Vol87No2.pdf diff --git a/scraper/reports/misc/missing-1.csv b/scraper/reports/misc/missing-1.csv new file mode 100644 index 00000000..ade27ed5 --- /dev/null +++ b/scraper/reports/misc/missing-1.csv @@ -0,0 +1,817 @@ +57246142814d7010d3592e3a39a1ed819dd01f3b +7788fa76f1488b1597ee2bebc462f628e659f61e +cca9ae621e8228cfa787ec7954bb375536160e0d +75249ebb85b74e8932496272f38af274fbcfd696 +47190d213caef85e8b9dd0d271dbadc29ed0a953 +8bdf6f03bde08c424c214188b35be8b2dec7cdea +3dfb822e16328e0f98a47209d7ecd242e4211f82 +d0509afe9c2c26fe021889f8efae1d85b519452a +4b48e912a17c79ac95d6a60afed8238c9ab9e553 +084bebc5c98872e9307cd8e7f571d39ef9c1b81e +a32c5138c6a0b3d3aff69bcab1015d8b043c91fb +1275d6a800f8cf93c092603175fdad362b69c191 +b4ee64022cc3ccd14c7f9d4935c59b16456067d3 +d46b790d22cb59df87f9486da28386b0f99339d3 +d7cbedbee06293e78661335c7dd9059c70143a28 +eb027969f9310e0ae941e2adee2d42cdf07d938c +7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a +be4faea0971ef74096ec9800750648b7601dda65 +831b4d8b0c0173b0bac0e328e844a0fbafae6639 +746c0205fdf191a737df7af000eaec9409ede73f +b0c1615ebcad516b5a26d45be58068673e2ff217 +c866a2afc871910e3282fd9498dce4ab20f6a332 +9131c990fad219726eb38384976868b968ee9d9c +511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7 +e1256ff535bf4c024dd62faeb2418d48674ddfa2 +8ccde9d80706a59e606f6e6d48d4260b60ccc736 +6789bddbabf234f31df992a3356b36a47451efc7 +2c052a1c77a3ec2604b3deb702d77c41418c7d3e +f442a2f2749f921849e22f37e0480ac04a3c3fec +ef230e3df720abf2983ba6b347c9d46283e4b690 +bd8f77b7d3b9d272f7a68defc1412f73e5ac3135 +54a9ed950458f4b7e348fa78a718657c8d3d0e05 +d02e27e724f9b9592901ac1f45830341d37140fe +6993bca2b3471f26f2c8a47adfe444bfc7852484 +00fb2836068042c19b5197d0999e8e93b920eb9c +007fbc7a1d7eae33b2bb59b175dd1033e5e178f3 +c5e37630d0672e4d44f7dee83ac2c1528be41c2e +ff9195f99a1a28ced431362f5363c9a5da47a37b +9865fe20df8fe11717d92b5ea63469f59cf1635a +1badfeece64d1bf43aa55c141afe61c74d0bd25e +1e21b925b65303ef0299af65e018ec1e1b9b8d60 +1b55c4e804d1298cbbb9c507497177014a923d22 +23ce6f404c504592767b8bec7d844d87b462de71 +ada063ce9a1ff230791c48b6afa29c401a9007f1 +59fc69b3bc4759eef1347161e1248e886702f8f7 +0750a816858b601c0dbf4cfb68066ae7e788f05d +552122432b92129d7e7059ef40dc5f6045f422b5 +368e99f669ea5fd395b3193cd75b301a76150f9d +e3d76f1920c5bf4a60129516abb4a2d8683e48ae +3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827 +6c66ae815e7e508e852ecb122fb796abbcda16a8 +28d4e027c7e90b51b7d8908fce68128d1964668a +5da827fe558fb2e1124dcc84ef08311241761726 +30870ef75aa57e41f54310283c0057451c8c822b +b9d0774b0321a5cfc75471b62c8c5ef6c15527f5 +e87d6c284cdd6828dfe7c092087fbd9ff5091ee4 +305346d01298edeb5c6dc8b55679e8f60ba97efb +ee2ec0836ded2f3f37bf49fa0e985280a8addaca +c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8 +61f04606528ecf4a42b49e8ac2add2e9f92c0def +4c4e49033737467e28aa2bb32f6c21000deda2ef +7c6686fa4d8c990e931f1d16deabf647bf3b1986 +12095f9b35ee88272dd5abc2d942a4f55804b31e +6de935a02f87aa31e33245c3b85ea3b7f8b1111c +cf736f596bf881ca97ec4b29776baaa493b9d50e +eb48a58b873295d719827e746d51b110f5716d6c +dce5e0a1f2cdc3d4e0e7ca0507592860599b0454 +b76af8fcf9a3ebc421b075b689defb6dc4282670 +54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6 +9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb +3c6cac7ecf546556d7c6050f7b693a99cc8a57b3 +5b5b9c6c67855ede21a60c834aea5379df7d51b7 +c858c74d30c02be2d992f82a821b925669bfca13 +713db3874b77212492d75fb100a345949f3d3235 +ccf16bcf458e4d7a37643b8364594656287f5bfc +ed1886e233c8ecef7f414811a61a83e44c8bbf50 +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f +9ca7899338129f4ba6744f801e722d53a44e4622 +034b3f3bac663fb814336a69a9fd3514ca0082b9 +f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53 +bbf28f39e5038813afd74cf1bc78d55fcbe630f1 +4ac3cd8b6c50f7a26f27eefc64855134932b39be +4a8480d58c30dc484bda08969e754cd13a64faa1 +766728bac030b169fcbc2fbafe24c6e22a58ef3c +701f56f0eac9f88387de1f556acef78016b05d52 +ed96f2eb1771f384df2349879970065a87975ca7 +45e7ddd5248977ba8ec61be111db912a4387d62f +afdf9a3464c3b015f040982750f6b41c048706f5 +ba1c0600d3bdb8ed9d439e8aa736a96214156284 +a0b1990dd2b4cd87e4fd60912cc1552c34792770 +e4fa062bff299a0bcef9f6b2e593c85be116c9f1 +963d0d40de8780161b70d28d2b125b5222e75596 +ed09db68bf317cad27df6ed96a0c16eab6b2f827 +a0fd85b3400c7b3e11122f44dc5870ae2de9009a +ce9e1dfa7705623bb67df3a91052062a0a0ca456 +daa4cfde41d37b2ab497458e331556d13dd14d0b +4b936847f39094d6cb0bde68cea654d948c4735d +c5ea084531212284ce3f1ca86a6209f0001de9d1 +f095b5770f0ff13ba9670e3d480743c5e9ad1036 +bbc5f4052674278c96abe7ff9dc2d75071b6e3f3 +3be8f1f7501978287af8d7ebfac5963216698249 +7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4 +b1fdd4ae17d82612cefd4e78b690847b071379d3 +708f4787bec9d7563f4bb8b33834de445147133b +88e2efab01e883e037a416c63a03075d66625c26 +696236fb6f986f6d5565abb01f402d09db68e5fa +f61829274cfe64b94361e54351f01a0376cd1253 +96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d +0a34fe39e9938ae8c813a81ae6d2d3a325600e5c +837e99301e00c2244023a8a48ff98d7b521c93ac +fdff2da5bdca66e0ab5874ef58ac2205fb088ed7 +3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f +d9deafd9d9e60657a7f34df5f494edff546c4fb8 +9207671d9e2b668c065e06d9f58f597601039e5e +a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc +6d8c9a1759e7204eacb4eeb06567ad0ef4229f93 +87e6cb090aecfc6f03a3b00650a5c5f475dfebe1 +1fb980e137b2c9f8781a0d98c026e164b497ddb1 +6966d9d30fa9b7c01523425726ab417fd8428790 +01e27b6d1af4c9c2f50e2908b5f3b2331ff24846 +5bd3d08335bb4e444a86200c5e9f57fd9d719e14 +a40edf6eb979d1ddfe5894fac7f2cf199519669f +40e1743332523b2ab5614bae5e10f7a7799161f4 +f201baf618574108bcee50e9a8b65f5174d832ee +80ed678ef28ccc1b942e197e0393229cd99d55c8 +5fa6e4a23da0b39e4b35ac73a15d55cee8608736 +17c0d99171efc957b88c31a465c59485ab033234 +6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d +530243b61fa5aea19b454b7dbcac9f463ed0460e +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e +d4a5eaf2e9f2fd3e264940039e2cbbf08880a090 +0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a +3352426a67eabe3516812cb66a77aeb8b4df4d1b +2724ba85ec4a66de18da33925e537f3902f21249 +234c106036964131c0f2daf76c47ced802652046 +f0a4a3fb6997334511d7b8fc090f9ce894679faf +83295bce2340cb87901499cff492ae6ff3365475 +fd809ee36fa6832dda57a0a2403b4b52c207549d +74ce7e5e677a4925489897665c152a352c49d0a2 +e4754afaa15b1b53e70743880484b8d0736990ff +185263189a30986e31566394680d6d16b0089772 +2c62b9e64aeddf12f9d399b43baaefbca8e11148 +7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0 +c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd +6b8d0569fffce5cc221560d459d6aa10c4db2f03 +56fd4c05869e11e4935d48aa1d7abb96072ac242 +1fe1a78c941e03abe942498249c041b2703fd3d2 +f070d739fb812d38571ec77490ccd8777e95ce7a +ec1e03ec72186224b93b2611ff873656ed4d2f74 +dcf6ecd51ba135d432fcb7697fc6c52e4e7b0a43 +e97ba85a4550667b8a28f83a98808d489e0ff3bc +6e38011e38a1c893b90a48e8f8eae0e22d2008e8 +86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd +dee406a7aaa0f4c9d64b7550e633d81bc66ff451 +51b42da0706a1260430f27badcf9ee6694768b9b +891b10c4b3b92ca30c9b93170ec9abd71f6099c4 +f2d5bb329c09a5867045721112a7dad82ca757a3 +8f772d9ce324b2ef5857d6e0b2a420bc93961196 +6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb +927ba64123bd4a8a31163956b3d1765eb61e4426 +e01bb53b611c679141494f3ffe6f0b91953af658 +f7ae38a073be7c9cd1b92359131b9c8374579b13 +f7dea4454c2de0b96ab5cf95008ce7144292e52a +c3d3d2229500c555c7a7150a8b126ef874cbee1c +eee06d68497be8bf3a8aba4fde42a13aa090b301 +bbd1eb87c0686fddb838421050007e934b2d74ab +370b6b83c7512419188f5373a962dd3175a56a9b +2201f187a7483982c2e8e2585ad9907c5e66671d +438c4b320b9a94a939af21061b4502f4a86960e3 +cb13e29fb8af6cfca568c6dc523da04d1db1fff5 +b26e8f6ad7c2d4c838660d5a17337ce241442ed9 +ec8ec2dfd73cf3667f33595fef84c95c42125945 +8a63a2b10068b6a917e249fdc73173f5fd918db0 +7cfbf90368553333b47731729e0e358479c25340 +9b2c359c36c38c289c5bacaeb5b1dd06b464f301 +7b0f1fc93fb24630eb598330e13f7b839fb46cce +0f21a39fa4c0a19c4a5b4733579e393cb1d04f71 +9901f473aeea177a55e58bac8fd4f1b086e575a4 +754f7f3e9a44506b814bf9dc06e44fecde599878 +127c7f87f289b1d32e729738475b337a6b042cf7 +30fd1363fa14965e3ab48a7d6235e4b3516c1da1 +9627f28ea5f4c389350572b15968386d7ce3fe49 +b93bf0a7e449cfd0db91a83284d9eba25a6094d8 +6a52e6fce541126ff429f3c6d573bc774f5b8d89 +c38b1fa00f1f370c029984c55d4d2d40b529d00c +a60db9ca8bc144a37fe233b08232d9c91641cbb5 +6932baa348943507d992aba75402cfe8545a1a9b +badb95dbdfb3f044a46d7ba0ee69dba929c511b1 +f4ba07d2ae6c9673502daf50ee751a5e9262848f +d06bcb2d46342ee011e652990edf290a0876b502 +91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11 +4342a2b63c9c344d78cf153600cd918a5fecad59 +5b2cfee6e81ef36507ebf3c305e84e9e0473575a +8e24db957be2b643db464cc566bfabc650f1ffac +ded968b97bd59465d5ccda4f1e441f24bac7ede5 +6ad107c08ac018bfc6ab31ec92c8a4b234f67d49 +6dcf418c778f528b5792104760f1fbfe90c6dd6a +5a3da29970d0c3c75ef4cb372b336fc8b10381d7 +e0162dea3746d58083dd1d061fb276015d875b2e +b6bb883dd14f2737d0d6225cf4acbf050d307634 +92e464a5a67582d5209fa75e3b29de05d82c7c86 +9939498315777b40bed9150d8940fc1ac340e8ba +3176ee88d1bb137d0b561ee63edf10876f805cf0 +fb87045600da73b07f0757f345a937b1c8097463 +88a898592b4c1dfd707f04f09ca58ec769a257de +b908edadad58c604a1e4b431f69ac8ded350589a +7df4f96138a4e23492ea96cf921794fc5287ba72 +a6ce2f0795839d9c2543d64a08e043695887e0eb +3bb670b2afdcc45da2b09a02aac07e22ea7dbdc2 +013305c13cfabaea82c218b841dbe71e108d2b97 +f472cb8380a41c540cfea32ebb4575da241c0288 +4bbe460ab1b279a55e3c9d9f488ff79884d01608 +6ca2c5ff41e91c34696f84291a458d1312d15bf2 +3e40991ab1daa2a4906eb85a5d6a01a958b6e674 +85ae6fa48e07857e17ac4bd48fb804785483e268 +657e702326a1cbc561e059476e9be4d417c37795 +93dcea2419ca95b96a47e541748c46220d289d77 +1a327c588b8f1057b40ecba451145dd885598e5d +34fd227f4fdbc7fe028cc1f7d92cb59204333718 +42a6beed493c69d5bad99ae47ea76497c8e5fdae +849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b +96a9ca7a8366ae0efe6b58a515d15b44776faf6e +8986585975c0090e9ad97bec2ba6c4b437419dae +d3b0839324d0091e70ce34f44c979b9366547327 +badcd992266c6813063c153c41b87babc0ba36a3 +51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee +38f1fac3ed0fd054e009515e7bbc72cdd4cf801a +a1e07c31184d3728e009d4d1bebe21bf9fe95c8e +b6f682648418422e992e3ef78a6965773550d36b +2d8001ffee6584b3f4d951d230dc00a06e8219f8 +e4d7b8eb0a8e6d2bb5b90b027c1bf32bad320ba5 +e1630014a5ae3d2fb7ff6618f1470a567f4d90f5 +6c58e3a8209fef0e28ca2219726c15ea5f284f4f +9cc8cf0c7d7fa7607659921b6ff657e17e135ecc +58bf72750a8f5100e0c01e55fd1b959b31e7dbce +c39ffc56a41d436748b9b57bdabd8248b2d28a32 +85ec86f8320ba2ed8b3da04d1c291ce88b8969c0 +93420d9212dd15b3ef37f566e4d57e76bb2fab2f +acee2201f8a15990551804dd382b86973eb7c0a8 +6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd +fe48f0e43dbdeeaf4a03b3837e27f6705783e576 +d4f0960c6587379ad7df7928c256776e25952c60 +c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee +9e105c4a176465d14434fb3f5bae67f57ff5fba2 +94eeae23786e128c0635f305ba7eebbb89af0023 +b3b467961ba66264bb73ffe00b1830d7874ae8ce +40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b +6dbdb07ce2991db0f64c785ad31196dfd4dae721 +9bd35145c48ce172b80da80130ba310811a44051 +67484723e0c2cbeb936b2e863710385bdc7d5368 +f3b7938de5f178e25a3cf477107c76286c0ad691 +c86e6ed734d3aa967deae00df003557b6e937d3d +7eb895e7de883d113b75eda54389460c61d63f67 +5c35ac04260e281141b3aaa7bbb147032c887f0c +cd023d2d067365c83d8e27431e83e7e66082f718 +d69271c7b77bc3a06882884c21aa1b609b3f76cc +b084683e5bab9b2bc327788e7b9a8e049d5fff8f +e5d53a335515107452a30b330352cad216f88fc3 +52d7eb0fbc3522434c13cc247549f74bb9609c5d +6dc1f94b852538d572e4919238ddb10e2ee449a4 +878301453e3d5cb1a1f7828002ea00f59cbeab06 +405d9a71350c9a13adea41f9d7f7f9274793824f +d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1 +96ba65bffdddef7c7737c0f42ff4299e95cd85c2 +c9c9ade2ef4dffb7582a629a47ea70c31be7a35e +e065a2cb4534492ccf46d0afc81b9ad8b420c5ec +dcf71245addaf66a868221041aabe23c0a074312 +9efdb73c6833df57732b727c6aeac510cadb53fe +0b82bf595e76898993ed4f4b2883c42720c0f277 +a896ddeb0d253739c9aaef7fc1f170a2ba8407d3 +72cbbdee4f6eeee8b7dd22cea6092c532271009f +24286ef164f0e12c3e9590ec7f636871ba253026 +377f2b65e6a9300448bdccf678cde59449ecd337 +1ee3b4ba04e54bfbacba94d54bf8d05fd202931d +55e87050b998eb0a8f0b16163ef5a28f984b01fa +4d90d7834ae25ee6176c096d5d6608555766c0b1 +878169be6e2c87df2d8a1266e9e37de63b524ae7 +bc607bee2002c6c6bf694a15efd0a5d049767237 +68caf5d8ef325d7ea669f3fb76eac58e0170fff0 +53bfe2ab770e74d064303f3bd2867e5bf7b86379 +c9bbd7828437e70cc3e6863b278aa56a7d545150 +8818b12aa0ff3bf0b20f9caa250395cbea0e8769 +6f7a8b3e8f212d80f0fb18860b2495be4c363eac +4db0968270f4e7b3fa73e41c50d13d48e20687be +bd9c9729475ba7e3b255e24e7478a5acb393c8e9 +64d7e62f46813b5ad08289aed5dc4825d7ec5cff +30fb5c24cc15eb8cde5e389bf368d65fb96513e4 +bf5940d57f97ed20c50278a81e901ae4656f0f2c +69a55c30c085ad1b72dd2789b3f699b2f4d3169f +ef5531711a69ed687637c48930261769465457f0 +8a8861ad6caedc3993e31d46e7de6c251a8cda22 +ef458499c3856a6e9cd4738b3e97bef010786adb +3b84d074b8622fac125f85ab55b63e876fed4628 +18010284894ed0edcca74e5bf768ee2e15ef7841 +bb2f61a057bbf176e402d171d79df2635ccda9f6 +35e0256b33212ddad2db548484c595334f15b4da +782188821963304fb78791e01665590f0cd869e8 +83f80fd4eb614777285202fa99e8314e3e5b169c +4e0636a1b92503469b44e2807f0bb35cc0d97652 +0ee5c4112208995bf2bb0fb8a87efba933a94579 +e85a255a970ee4c1eecc3e3d110e157f3e0a4629 +923ec0da8327847910e8dd71e9d801abcbc93b08 +9b0ead0a20a2b7c4ae40568d8d1c0c2b23a6b807 +572dbaee6648eefa4c9de9b42551204b985ff863 +2480f8dccd9054372d696e1e521e057d9ac9de17 +556b05ab6eff48d32ffbd04f9008b9a5c78a4ad7 +86f3552b822f6af56cb5079cc31616b4035ccc4e +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae +8fa9cb5dac394e30e4089bf5f4ffecc873d1da96 +e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf +4bf85ef995c684b841d0a5a002d175fadd922ff0 +58d47c187b38b8a2bad319c789a09781073d052d +59d225486161b43b7bf6919b4a4b4113eb50f039 +c038beaa228aeec174e5bd52460f0de75e9cccbe +e43045a061421bd79713020bc36d2cf4653c044d +d1edb8ba9d50817dbfec7e30f25b1846941e84d8 +d307a766cc9c728a24422313d4c3dcfdb0d16dd5 +ed2f4e5ecbc4b08ee0784e97760a7f9e5ea9efae +1c9efb6c895917174ac6ccc3bae191152f90c625 +02fc9e7283b79183eb3757a9b6ddeb8c91c209bb +7ec431e36919e29524eceb1431d3e1202637cf19 +44d23df380af207f5ac5b41459c722c87283e1eb +dc5d04d34b278b944097b8925a9147773bbb80cc +b999364980e4c21d9c22cc5a9f14501432999ca4 +e8f4ded98f5955aad114f55e7aca6b540599236b +d3d39e419ac98db2de1a9d5a05cb0b4ca5cae8fd +206e24f7d4b3943b35b069ae2d028143fcbd0704 +4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec +7ef0cc4f3f7566f96f168123bac1e07053a939b2 +25960f0a2ed38a89fa8076a448ca538de2f1e183 +a5f70e0cd7da2b2df05fadb356a24743f3cf459a +872dfdeccf99bbbed7c8f1ea08afb2d713ebe085 +e9c008d31da38d9eef67a28d2c77cb7daec941fb +c75e6ce54caf17b2780b4b53f8d29086b391e839 +a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d +5435d5f8b9f4def52ac84bee109320e64e58ab8f +9af9a88c60d9e4b53e759823c439fc590a4b5bc5 +b72eebffe697008048781ab7b768e0c96e52236a +57178b36c21fd7f4529ac6748614bb3374714e91 +361eaef45fccfffd5b7df12fba902490a7d24a8d +380d5138cadccc9b5b91c707ba0a9220b0f39271 +4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f +ba01dbfa29dc86d1279b2e9b9eeca1c52509bbda +1860b8f63ce501bd0dfa9e6f2debc080e88d9baa +b59f441234d2d8f1765a20715e227376c7251cd7 +43dce79cf815b5c7068b1678f6200dabf8f5de31 +571b83f7fc01163383e6ca6a9791aea79cafa7dd +ab80582807506c0f840bd1ba03a8b84f8ac72f79 +5180df9d5eb26283fb737f491623395304d57497 +885c37f94e9edbbb2177cfba8cb1ad840b2a5f20 +9fc993aeb0a007ccfaca369a9a8c0ccf7697261d +5e7e055ef9ba6e8566a400a8b1c6d8f827099553 +c87f7ee391d6000aef2eadb49f03fc237f4d1170 +3bb6570d81685b769dc9e74b6e4958894087f3f1 +27da432cf2b9129dce256e5bf7f2f18953eef5a5 +173657da03e3249f4e47457d360ab83b3cefbe63 +ccb54fc5f263a8bc2a8373839cb6855f528f10d3 +a6d47f7aa361ab9b37c7f3f868280318f355fadc +7c8e0f3053e09da6d8f9a1812591a35bccd5c669 +c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0 +e79bacc03152ea55343e6af97bcd17d8904cf5ef +bb0ecedde7d6e837dc9a5e115302a2aaad1035e1 +cdae8e9cc9d605856cf5709b2fdf61f722d450c1 +4d6ad0c7b3cf74adb0507dc886993e603c863e8c +2770b095613d4395045942dc60e6c560e882f887 +17479e015a2dcf15d40190e06419a135b66da4e0 +03ac1c694bc84a27621da6bfe73ea9f7210c6d45 +dbb16032dd8f19bdfd045a1fc0fc51f29c70f70a +59a6c9333c941faf2540979dcfcb5d503a49b91e +84574aa43a98ad8a29470977e7b091f5a5ec2366 +46e72046a9bb2d4982d60bcf5c63dbc622717f0f +ec00ecb64fa206cea8b2e716955a738a96424084 +cd55fb30737625e86454a2861302b96833ed549d +eed93d2e16b55142b3260d268c9e72099c53d5bc +b5fdd7778503f27c9d9bf77fab193b475fab6076 +08903bf161a1e8dec29250a752ce9e2a508a711c +672fae3da801b2a0d2bad65afdbbbf1b2320623e +3ac3a714042d3ebc159546c26321a1f8f4f5f80c +f997a71f1e54d044184240b38d9dc680b3bbbbc0 +bb4be8e24d7b8ed56d81edec435b7b59bad96214 +cef73d305e5368ee269baff53ec20ea3ae7cdd82 +f28b7d62208fdaaa658716403106a2b0b527e763 +76cd5e43df44e389483f23cb578a9015d1483d70 +341002fac5ae6c193b78018a164d3c7295a495e4 +c68ec931585847b37cde9f910f40b2091a662e83 +89d3a57f663976a9ac5e9cdad01267c1fc1a7e06 +bec0c33d330385d73a5b6a05ad642d6954a6d632 +54204e28af73c7aca073835a14afcc5d8f52a515 +2c1ffb0feea5f707c890347d2c2882be0494a67a +7ebb153704706e457ab57b432793d2b6e5d12592 +a1d86c898da3aea54deafd60864aa05dff8a4c9c +49df381ea2a1e7f4059346311f1f9f45dd997164 +a59c0cf3d2c5bf144ee0dbc1152b1b5dd7634990 +f3ca2c43e8773b7062a8606286529c5bc9b3ce25 +b7ec41005ce4384e76e3be854ecccd564d2f89fb +fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139 +c5c53d42e551f3c8f6ca2c13335af80a882009fa +4896909796f9bd2f70a2cb24bf18daacd6a12128 +a98316980b126f90514f33214dde51813693fe0d +3bd10f7603c4f5a4737c5613722124787d0dd818 +809e5884cf26b71dc7abc56ac0bad40fb29c671c +de0df8b2b4755da9f70cf1613d7b12040d0ce8ef +cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce +d44a93027208816b9e871101693b05adab576d89 +841855205818d3a6d6f85ec17a22515f4f062882 +1773d65c1dc566fd6128db65e907ac91b4583bed +021e008282714eaefc0796303f521c9e4f199d7e +f03a82fd4a039c1b94a0e8719284a777f776fb22 +e9a5a38e7da3f0aa5d21499149536199f2e0e1f7 +4e061a302816f5890a621eb278c6efa6e37d7e2f +ac8441e30833a8e2a96a57c5e6fede5df81794af +052f994898c79529955917f3dfc5181586282cf8 +4cdb6144d56098b819076a8572a664a2c2d27f72 +dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935 +b971266b29fcecf1d5efe1c4dcdc2355cb188ab0 +58542eeef9317ffab9b155579256d11efb4610f2 +2983cf95743be82671a71528004036bd19172712 +d9e66b877b277d73f8876f537206395e71f58269 +2a612a7037646276ff98141d3e7abbc9c91fccb8 +6d70344ae6f6108144a15e9debc7b0be4e3335f1 +78174c2be084e67f48f3e8ea5cb6c9968615a42c +ab734bac3994b00bf97ce22b9abc881ee8c12918 +df577a89830be69c1bfb196e925df3055cafc0ed +a3d8b5622c4b9af1f753aade57e4774730787a00 +bb4f83458976755e9310b241a689c8d21b481238 +e00d391d7943561f5c7b772ab68e2bb6a85e64c4 +432d8cba544bf7b09b0455561fea098177a85db1 +6f22628d34a486d73c6b46eb071200a00e3abae3 +73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2 +5b5b568a0ba63d00e16a263051c73e09ab83e245 +fdaf65b314faee97220162980e76dbc8f32db9d6 +d31328b12eef33e7722b8e5505d0f9d9abe2ffd9 +f2700e3d69d3cce2e0b1aea0d7f87e74aff437cd +9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682 +39d6f8b791995dc5989f817373391189d7ac478a +be393cd567b338da6ed60181c8ad429627578a31 +cbca355c5467f501d37b919d8b2a17dcb39d3ef9 +56dca23481de9119aa21f9044efd7db09f618704 +a9ae55c83a8047c6cdf7c958fd3d4a6bfb0a13df +7831ab4f8c622d91974579c1ff749dadc170c73c +d3d5d86afec84c0713ec868cf5ed41661fc96edc +a1081cb856faae25df14e25045cd682db8028141 +ec90738b6de83748957ff7c8aeb3150b4c9b68bb +993d189548e8702b1cb0b02603ef02656802c92b +098363b29eef1471c494382338687f2fe98f6e15 +e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227 +9be653e1bc15ef487d7f93aad02f3c9552f3ee4a +8bebb26880274bdb840ebcca530caf26c393bf45 +feea73095b1be0cbae1ad7af8ba2c4fb6f316d35 +c05ae45c262b270df1e99a32efa35036aae8d950 +b8fc620a1563511744f1a9386bdfa09a2ea0f71b +d3edbfe18610ce63f83db83f7fbc7634dde1eb40 +ed184fda0306079f2ee55a1ae60fbf675c8e11c6 +4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e +e96cef8732f3021080c362126518455562606f2d +9f2984081ef88c20d43b29788fdf732ceabd5d6a +e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69 +80d4cf7747abfae96328183dd1f84133023c2668 +2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44 +c1298120e9ab0d3764512cbd38b47cd3ff69327b +fab60b3db164327be8588bce6ce5e45d5b882db6 +c6382de52636705be5898017f2f8ed7c70d7ae96 +45b9b7fe3850ef83d39d52f6edcc0c24fcc0bc73 +fcf91995dc4d9b0cee84bda5b5b0ce5b757740ac +48499deeaa1e31ac22c901d115b8b9867f89f952 +33ef419dffef85443ec9fe89a93f928bafdc922e +cdcfc75f54405c77478ab776eb407c598075d9f8 +a92147bed9c17c311c6081beb0ef4c3165b6268e +e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7 +e7b2b0538731adaacb2255235e0a07d5ccf09189 +fd15e397629e0241642329fc8ee0b8cd6c6ac807 +5779e3e439c90d43648db107e848aeb954d3e347 +16b9d258547f1eccdb32111c9f45e2e4bbee79af +628a3f027b7646f398c68a680add48c7969ab1d9 +8da32ff9e3759dc236878ac240728b344555e4e9 +014e3d0fa5248e6f4634dc237e2398160294edce +7f26c615dd187ca5e4b15759d5cb23ab3ea9d9a9 +275b5091c50509cc8861e792e084ce07aa906549 +cd4941cbef1e27d7afdc41b48c1aff5338aacf06 +b3ba7ab6de023a0d58c741d6abfa3eae67227caf +1b3587363d37dd197b6adbcfa79d49b5486f27d8 +7d2556d674ad119cf39df1f65aedbe7493970256 +2d8d089d368f2982748fde93a959cf5944873673 +22648dcd3100432fe0cc71e09de5ee855c61f12b +51faacfa4fb1e6aa252c6970e85ff35c5719f4ff +55ea0c775b25d9d04b5886e322db852e86a556cd +3240c9359061edf7a06bfeb7cc20c103a65904c2 +23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f +60542b1a857024c79db8b5b03db6e79f74ec8f9f +aa3c9de34ef140ec812be85bb8844922c35eba47 +8164ebc07f51c9e0db4902980b5ac3f5a8d8d48c +ee463f1f72a7e007bae274d2d42cd2e5d817e751 +d5de42d37ee84c86b8f9a054f90ddb4566990ec0 +b2c60061ad32e28eb1e20aff42e062c9160786be +4641986af5fc8836b2c883ea1a65278d58fe4577 +fa90b825346a51562d42f6b59a343b98ea2e501a +daefac0610fdeff415c2a3f49b47968d84692e87 +f08e425c2fce277aedb51d93757839900d591008 +b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000 +8f3da45ff0c3e1777c3a7830f79c10f5896bcc21 +7697295ee6fc817296bed816ac5cae97644c2d5b +efa08283656714911acff2d5022f26904e451113 +5a5f9e0ed220ce51b80cd7b7ede22e473a62062c +fdfd57d4721174eba288e501c0c120ad076cdca8 +a8d52265649c16f95af71d6f548c15afc85ac905 +f6e00d6430cbbaa64789d826d093f7f3e323b082 +4f8345f31e38f65f1155569238d14bd8517606f4 +16fadde3e68bba301f9829b3f99157191106bd0f +1287bfe73e381cc8042ac0cc27868ae086e1ce3b +663efaa0671eace1100fdbdecacd94216a17b1db +7bbaa09c9e318da4370a83b126bcdb214e7f8428 +103c8eaca2a2176babab2cc6e9b25d48870d6928 +e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa +4f8b4784d0fca31840307650f7052b0dde736a76 +6c01b349edb2d33530e8bb07ba338f009663a9dd +d9a5c82b710b1f4f1ffb67be2ae1d3c0ae7f6c55 +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d +68604e7e1b01cdbd3c23832976d66f1a86edaa8f +cfffae38fe34e29d47e6deccfd259788176dc213 +8ed33184fccde677ec8413ae06f28ea9f2ca70f3 +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4 +b7461aac36fc0b8a24ecadf6c5b5caf54f2aa2f7 +61971f8e6fff5b35faed610d02ad14ccfc186c70 +2902f62457fdf7e8e8ee77a9155474107a2f423e +6cfc337069868568148f65732c52cbcef963f79d +c84233f854bbed17c22ba0df6048cbb1dd4d3248 +f33bd953d2df0a5305fc8a93a37ff754459a906c +e9d43231a403b4409633594fa6ccc518f035a135 +b558be7e182809f5404ea0fcf8a1d1d9498dc01a +64ec02e1056de4b400f9547ce56e69ba8393e2ca +e3b324101157daede3b4d16bdc9c2388e849c7d4 +a4898f55f12e6393b1c078803909ea715bf71730 +4e27fec1703408d524d6b7ed805cdb6cba6ca132 +193bc8b663d041bc34134a8407adc3e546daa9cc +3f9a7d690db82cf5c3940fbb06b827ced59ec01e +6da711d07b63c9f24d143ca3991070736baeb412 +113b06e70b7eead8ae7450bafe9c91656705024c +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab +1d729693a888a460ee855040f62bdde39ae273af +b0c512fcfb7bd6c500429cbda963e28850f2e948 +de162d4b8450bf2b80f672478f987f304b7e6ae4 +e295c1aa47422eb35123053038e62e9aa50a2e3a +bad2df94fa771869fa35bd11a1a7ab2e3f6d1da3 +c98b13871a3bc767df0bdd51ff00c5254ede8b22 +b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4 +7a81967598c2c0b3b3771c1af943efb1defd4482 +31d51e48dbd9e7253eafe0719f3788adb564a971 +506c2fbfa9d16037d50d650547ad3366bb1e1cde +d2f2b10a8f29165d815e652f8d44955a12d057e6 +5cbe1445d683d605b31377881ac8540e1d17adf0 +f1173a4c5e3501323b37c1ae9a6d7dd8a236eab8 +529baf1a79cca813f8c9966ceaa9b3e42748c058 +42ea8a96eea023361721f0ea34264d3d0fc49ebd +632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c +e4abc40f79f86dbc06f5af1df314c67681dedc51 +59b83666c1031c3f509f063b9963c7ad9781ca23 +c12260540ec14910f5ec6e38d95bdb606826b32e +8633732d9f787f8497c2696309c7d70176995c15 +ca44a838da4187617dca9f6249d8c4b604661ec7 +239958d6778643101ab631ec354ea1bc4d33e7e0 +cd444ee7f165032b97ee76b21b9ff58c10750570 +e9809c0c6bf33cfe232a63b0a13f9b1263c58cb8 +4f051022de100241e5a4ba8a7514db9167eabf6e +f94f366ce14555cf0d5d34248f9467c18241c3ee +982fcead58be419e4f34df6e806204674a4bc579 +55c4efc082a8410b528af7325de8148b80cf41e3 +b53485dbdd2dc5e4f3c7cff26bd8707964bb0503 +3803b91e784922a2dacd6a18f61b3100629df932 +fcceea054cb59f1409dda181198ed4070ed762c9 +562f7555e5cb79ce0fe834c4613264d8378dd007 +614079f1a0d0938f9c30a1585f617fa278816d53 +1025c4922491745534d5d4e8c6e74ba2dc57b138 +cbe021d840f9fc1cb191cba79d3f7e3bbcda78d3 +30c93fec078b98453a71f9f21fbc9512ab3e916f +a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892 +2866cbeb25551257683cf28f33d829932be651fe +e16f73f3a63c44cf285b8c1bc630eb8377b85b6d +a00fdf49e5e0a73eb24345cb25a0bd1383a10021 +6a931e7b7475635f089dd33e8d9a2899ae963804 +2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b +6754c98ba73651f69525c770fb0705a1fae78eb5 +9d57c4036a0e5f1349cd11bc342ac515307b6720 +9296f4ac0180e29226d6c016b5a4d5d2964eaaf6 +cc31db984282bb70946f6881bab741aa841d3a7c +fb9ad920809669c1b1455cc26dbd900d8e719e61 +3619a9b46ad4779d0a63b20f7a6a8d3d49530339 +aff8705fb2f2ae460cb3980b47f2e85c2e6dd41a +e287ff7997297ce1197359ed0fb2a0bd381638c9 +beae35eb5b2c7f63dfa9115f07b5ba0319709951 +79744fc71bea58d2e1918c9e254b10047472bd76 +950171acb24bb24a871ba0d02d580c09829de372 +1a849b694f2d68c3536ed849ed78c82e979d64d5 +77fbbf0c5729f97fcdbfdc507deee3d388cd4889 +39c8b34c1b678235b60b648d0b11d241a34c8e32 +26e570049aaedcfa420fc8c7b761bc70a195657c +a775da3e6e6ea64bffab7f9baf665528644c7ed3 +e896389891ba84af58a8c279cf8ab5de3e9320ee +55aafdef9d9798611ade1a387d1e4689f2975e51 +860588fafcc80c823e66429fadd7e816721da42a +1fdeba9c4064b449231eac95e610f3288801fd3e +df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb +652ec3947d3d04dda719b1f5ba7c975e567166ef +0bf0029c9bdb0ac61fda35c075deb1086c116956 +281486d172cf0c78d348ce7d977a82ff763efccd +b104c8ef6735eba1d29f50c99bbbf99d33fc8dc2 +68f61154a0080c4aae9322110c8827978f01ac2e +747c25bff37b96def96dc039cc13f8a7f42dbbc7 +fc0f5859a111fb17e6dcf6ba63dd7b751721ca61 +b6d0e461535116a675a0354e7da65b2c1d2958d4 +f5c57979ec3d8baa6f934242965350865c0121bd +ae2cf545565c157813798910401e1da5dc8a6199 +ef4ecb76413a05c96eac4c743d2c2a3886f2ae07 +f76a6b1d6029769e2dc1be4dadbee6a7ba777429 +2cac8ab4088e2bdd32dcb276b86459427355085c +eaf020bc8a3ed5401fc3852f7037a03b2525586a +90e7a86a57079f17f1089c3a46ea9bfd1d49226c +1c25a3c8ef3e2c4dbff337aa727d13f5eba40fb2 +e569f4bd41895028c4c009e5b46b935056188e91 +264f7ab36ff2e23a1514577a6404229d7fe1242b +214072c84378802a0a0fde0b93ffb17bc04f3759 +18941b52527e6f15abfdf5b86a0086935706e83b +51d048b92f6680aca4a8adf07deb380c0916c808 +8bbd40558a99e33fac18f6736b8fe99f4a97d9b1 +0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a +b51d11fa400d66b9f9d903a60c4ebe03fd77c8f2 +b5f3b0f45cf7f462a9c463a941e34e102a029506 +9f1a854d574d0bd14786c41247db272be6062581 +8cb6daba2cb1e208e809633133adfee0183b8dd2 +50a0930cb8cc353e15a5cb4d2f41b365675b5ebf +31dd6bafd6e7c6095eb8d0591abac3b0106a75e3 +73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c +e57014b4106dd1355e69a0f60bb533615a705606 +f4f6fc473effb063b7a29aa221c65f64a791d7f4 +6e00a406edb508312108f683effe6d3c1db020fb +e393a038d520a073b9835df7a3ff104ad610c552 +d904f945c1506e7b51b19c99c632ef13f340ef4c +587b8c147c6253878128ddacf6e5faf8272842a4 +af29ad70ab148c83e1faa8b3098396bc1cd87790 +91ead35d1d2ff2ea7cf35d15b14996471404f68d +93dd4e512cd7647aecbfc0cd4767adf5d9289c3d +19b492d426f092d80825edba3b02e354c312295f +f3ea181507db292b762aa798da30bc307be95344 +7343f0b7bcdaf909c5e37937e295bf0ac7b69499 +2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c +a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8 +3157be811685c93d0cef7fa4c489efea581f9b8e +437642cfc8c34e445ea653929e2d183aaaeeb704 +ccb2ecb30a50460c9189bb55ba594f2300882747 +76b11c281ac47fe6d95e124673a408ee9eb568e3 +4850af6b54391fc33c8028a0b7fafe05855a96ff +f7824758800a7b1a386db5bd35f84c81454d017a +e5fbffd3449a2bfe0acb4ec339a19f5b88fff783 +ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6 +166ef5d3fd96d99caeabe928eba291c082ec75a0 +5632ba72b2652df3b648b2ee698233e76a4eee65 +397257783ccc8cace5b67cc71e0c73034d559a4f +6b333b2c6311e36c2bde920ab5813f8cfcf2b67b +9285f4a6a06e975bde3ae3267fccd971d4fff98a +55cfc3c08000f9d21879582c6296f2a864b657e8 +a812368fe1d4a186322bf72a6d07e1cf60067234 +b8f3f6d8f188f65ca8ea2725b248397c7d1e662d +60777fbca8bff210398ec8b1179bc4ecb72dfec0 +8ad0a88a7583af819af66cf2d9e8adb860cf9c34 +8a8127a06f432982bfb0150df3212f379b36840b +d6e08345ba293565086cb282ba08b225326022fc +a136ccaa67f660c45d3abb8551c5ed357faf7081 +d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0 +f5770dd225501ff3764f9023f19a76fad28127d4 +b5f2846a506fc417e7da43f6a7679146d99c5e96 +1fa426496ed6bcd0c0b17b8b935a14c84a7ee1c2 +2cde051e04569496fb525d7f1b1e5ce6364c8b21 +a5f11c132eaab258a7cea2d681875af09cddba65 +f42dca4a4426e5873a981712102aa961be34539a +35e6f6e5f4f780508e5f58e87f9efe2b07d8a864 +a6e25cab2251a8ded43c44b28a87f4c62e3a548a +e8b3a257a0a44d2859862cdec91c8841dc69144d +8e3c97e420e0112c043929087d6456d8ab61e95c +48186494fc7c0cc664edec16ce582b3fcb5249c0 +fd33df02f970055d74fbe69b05d1a7a1b9b2219b +b8d8501595f38974e001a66752dc7098db13dfec +2fea258320c50f36408032c05c54ba455d575809 +656f05741c402ba43bb1b9a58bcc5f7ce2403d9a +1b71d3f30238cb6621021a95543cce3aab96a21b +d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9 +e096b11b3988441c0995c13742ad188a80f2b461 +b9081856963ceb78dcb44ac410c6fca0533676a3 +d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5 +f22d6d59e413ee255e5e0f2104f1e03be1a6722e +0831794eddcbac1f601dcb9be9d45531a56dbf7e +70c9d11cad12dc1692a4507a97f50311f1689dbf +8aa1591bf8fcb44f2e9f2f10d1029720ccbb8832 +1f59e0818e7b16c0d39dd08eb90533ea0ae0be5e +464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a +e38371b69be4f341baa95bc854584e99b67c6d3a +947ee3452e4f3d657b16325c6b959f8b8768efad +7c17280c9193da3e347416226b8713b99e7825b8 +2f69e9964f3b6bdc0d18749b48bb6b44a4171c64 +61e2044184d86d0f13e50ecaa3da6a4913088c76 +16fdd6d842475e6fbe58fc809beabbed95f0642e +98e098ba9ff98fc58f22fed6d3d8540116284b91 +362bfeb28adac5f45b6ef46c07c59744b4ed6a52 +b3ad7bc128b77d9254aa38c5e1ead7fa10b07d29 +6c80c834d426f0bc4acd6355b1946b71b50cbc0b +1221e25763c3be95c1b6626ca9e7feaa3b636d9a +bd243d77076b3b8fe046bd3dc6e8a02aa9b38d62 +944faf7f14f1bead911aeec30cc80c861442b610 +5ac946fc6543a445dd1ee6d5d35afd3783a31353 +11691f1e7c9dbcbd6dfd256ba7ac710581552baa +20eeb83a8b6fea64c746bf993f9c991bb34a4b30 +193474d008cab9fa1c1fa81ce094d415f00b075c +620339aef06aed07a78f9ed1a057a25433faa58b +a6b5ca99432c23392cec682aebb8295c0283728b +704d88168bdfabe31b6ff484507f4a2244b8c52b +db848c3c32464d12da33b2f4c3a29fe293fc35d1 +bd21109e40c26af83c353a3271d0cd0b5c4b4ade +fc8fb68a7e3b79c37108588671c0e1abf374f501 +2d9e58ea582e054e9d690afca8b6a554c3687ce6 +e19ebad4739d59f999d192bac7d596b20b887f78 +2303d07d839e8b20f33d6e2ec78d1353cac256cf +a36c8a4213251d3fd634e8893ad1b932205ad1ca +2c19d3d35ef7062061b9e16d040cebd7e45f281d +5c493c42bfd93e4d08517438983e3af65e023a87 +101d4cfbd6f8a7a10bd33505e2b183183f1d8770 +aafb8dc8fda3b13a64ec3f1ca7911df01707c453 +dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335 +ddfae3a96bd341109d75cedeaebb5ed2362b903f +f257300b2b4141aab73f93c146bf94846aef5fa1 +15d653972d176963ef0ad2cc582d3b35ca542673 +6c304f3b9c3a711a0cca5c62ce221fb098dccff0 +ce450e4849490924488664b44769b4ca57f1bc1a +6fef65bd7287b57f0c3b36bf8e6bc987fd161b7d +c76f64e87f88475069f7707616ad9df1719a6099 +86374bb8d309ad4dbde65c21c6fda6586ae4147a +1c41965c5e1f97b1504c1bdde8037b5e0417da5e +799c02a3cde2c0805ea728eb778161499017396b +28f1542c63f5949ee6f2d51a6422244192b5a900 +85c90ad5eebb637f048841ebfded05942bb786b7 +05891725f5b27332836cf058f04f18d74053803f +03ce2ff688f9b588b6f264ca79c6857f0d80ceae +d141c31e3f261d7d5214f07886c1a29ac734d6fc +c0c8d720658374cc1ffd6116554a615e846c74b5 +ad2339c48ad4ffdd6100310dcbb1fb78e72fac98 +bc36badb6606b8162d821a227dda09a94aac537f +3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1 +b759936982d6fb25c55c98955f6955582bdaeb27 +5e6f546a50ed97658be9310d5e0a67891fe8a102 +6b99cd366f2ea8e1c9abadf73b05388c0e24fec3 +6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a +631483c15641c3652377f66c8380ff684f3e365c +2bb53e66aa9417b6560e588b6235e7b8ebbc294c +dee6609615b73b10540f32537a242baa3c9fca4d +959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c +1442319de86d171ce9595b20866ec865003e66fc +ac559873b288f3ac28ee8a38c0f3710ea3f986d9 +8d384e8c45a429f5c5f6628e8ba0d73c60a51a89 +fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81 +825f56ff489cdd3bcc41e76426d0070754eab1a8 +f1250900074689061196d876f551ba590fc0a064 +1bbec7190ac3ba34ca91d28f145e356a11418b67 +41f26101fed63a8d149744264dd5aa79f1928265 +06f585a3a05dd3371cd600a40dc35500e2f82f9b +49be50efc87c5df7a42905e58b092729ea04c2f5 +bcf19b964e7d1134d00332cf1acf1ee6184aff00 +fa4f59397f964a23e3c10335c67d9a24ef532d5c +31ec1e5c3b5e020af4a5a3c1be2724c7429a7c78 +c535d4d61aa0f1d8aadb4082bdcc19f4cbdf0eaf +fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3 +e03e86ac61cfac9148b371d75ce81a55e8b332ca +8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f +202dc3c6fda654aeb39aee3e26a89340fb06802a +247a8040447b6577aa33648395d95d80441a0cf3 +626859fe8cafd25da13b19d44d8d9eb6f0918647 +a0c37f07710184597befaa7e6cf2f0893ff440e9 +d44e6baf3464bf56d3a29daf280b1b525ac30f7d +10cb39e93fac194220237f15dae084136fdc6740 +7e2f7c0eeaeb47b163a7258665324643669919e8 +351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd +d86fabd4498c8feaed80ec342d254fb877fb92f5 +4c0cc732314ba3ccccd9036e019b1cfc27850c17 +446dc1413e1cfaee0030dc74a3cee49a47386355 +cb2917413c9b36c3bb9739bce6c03a1a6eb619b3 +521aa8dcd66428b07728b91722cc8f2b5a73944b +11bb2abe0ca614c15701961428eb2f260e3e2eef +863ad2838b9b90d4461995f498a39bcd2fb87c73 +cd22e6532211f679ba6057d15a801ba448b9915c +df9269657505fcdc1e10cf45bbb8e325678a40f5 +673d4885370b27c863e11a4ece9189a6a45931cc +48e6c6d981efe2c2fb0ae9287376fcae59da9878 +6cb7648465ba7757ecc9c222ac1ab6402933d983 +407de9da58871cae7a6ded2f3a6162b9dc371f38 +97b5800e144a8df48f1f7e91383b0f37bc37cf60 +9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32 +14558a70418ec4012c5f058145eef2d22d89284a +097340d3ac939ce181c829afb6b6faff946cdce0 +a8a61badec9b8bc01f002a06e1426a623456d121 +ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e +b6ef158d95042f39765df04373c01546524c9ccd +ae78469de00ea1e7602ca468dcf188cdfe2c80d4 +09926ed62511c340f4540b5bc53cf2480e8063f8 +46f2611dc4a9302e0ac00a79456fa162461a8c80 +f02a6bccdaee14ab55ad94263539f4f33f1b15bb +6964af90cf8ac336a2a55800d9c510eccc7ba8e1 +17a8d1b1b4c23a630b051f35e47663fc04dcf043 +be5276e9744c4445fe5b12b785650e8f173f56ff +580f86f1ace1feed16b592d05c2b07f26c429b4b +09507f1f1253101d04a975fc5600952eac868602 +2d4a3e9361505616fa4851674eb5c8dd18e0c3cf +f2a7f9bd040aa8ea87672d38606a84c31163e171 +d700aedcb22a4be374c40d8bee50aef9f85d98ef +d289ce63055c10937e5715e940a4bb9d0af7a8c5 +9aad8e52aff12bd822f0011e6ef85dfc22fe8466 +645f09f4bc2e6a13663564ee9032ca16e35fc52d +39b452453bea9ce398613d8dd627984fd3a0d53c +20c02e98602f6adf1cebaba075d45cef50de089f +73ed64803d6f2c49f01cffef8e6be8fc9b5273b8 +8befcd91c24038e5c26df0238d26e2311b21719a +10af69f11301679b6fbb23855bf10f6af1f3d2e6 diff --git a/scraper/reports/misc/missing-2.csv b/scraper/reports/misc/missing-2.csv new file mode 100644 index 00000000..c3182fe7 --- /dev/null +++ b/scraper/reports/misc/missing-2.csv @@ -0,0 +1,817 @@ +a14ed872503a2f03d2b59e049fd6b4d61ab4d6ca +504028218290d68859f45ec686f435f473aa326c +164b0e2a03a5a402f66c497e6c327edf20f8827b +4d19401e44848fe65b721971bc71a9250870ed5f +ab0981d1da654f37620ca39c6b42de21d7eb58eb +b09b693708f412823053508578df289b8403100a +c9b958c2494b7ba08b5b460f19a06814dba8aee0 +badd371a49d2c4126df95120902a34f4bee01b00 +bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab +f571fe3f753765cf695b75b1bd8bed37524a52d2 +d3008b4122e50a28f6cc1fa98ac6af28b42271ea +70c58700eb89368e66a8f0d3fc54f32f69d423e1 +5945464d47549e8dcaec37ad41471aa70001907f +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7 +c6241e6fc94192df2380d178c4c96cf071e7a3ac +f0f854f8cfe826fd08385c0c3c8097488f468076 +35b1c1f2851e9ac4381ef41b4d980f398f1aad68 +7ed3b79248d92b255450c7becd32b9e5c834a31e +30cbd41e997445745b6edd31f2ebcc7533453b61 +24115d209e0733e319e39badc5411bbfd82c5133 +0a9d204db13d395f024067cf70ac19c2eeb5f942 +74c19438c78a136677a7cb9004c53684a4ae56ff +d5d5cc27ca519d1300e77e3c1a535a089f52f646 +d309e414f0d6e56e7ba45736d28ee58ae2bad478 +a87ab836771164adb95d6744027e62e05f47fd96 +e75a589ca27dc4f05c2715b9d54206dee37af266 +e2faaebd17d10e2919bd69492787e7565546a63f +bd0e100a91ff179ee5c1d3383c75c85eddc81723 +9c065dfb26ce280610a492c887b7f6beccf27319 +81a142c751bf0b23315fb6717bc467aa4fdfbc92 +8b744786137cf6be766778344d9f13abf4ec0683 +9077365c9486e54e251dd0b6f6edaeda30ae52b9 +928b8eb47288a05611c140d02441660277a7ed54 +1ea74780d529a458123a08250d8fa6ef1da47a25 +5a12e1d4d74fe1a57929eaaa14f593b80f907ea3 +691964c43bfd282f6f4d00b8b0310c554b613e3b +bff567c58db554858c7f39870cff7c306523dfee +82e3f4099503633c042a425e9217bfe47cfe9d4b +062c41dad67bb68fefd9ff0c5c4d296e796004dc +95d858b39227edeaf75b7fad71f3dc081e415d16 +2c5d1e0719f3ad7f66e1763685ae536806f0c23b +c4cfdcf19705f9095fb60fb2e569a9253a475f11 +d3b18ba0d9b247bfa2fb95543d172ef888dfff95 +b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89 +95288fa7ff4683e32fe021a78cbf7d3376e6e400 +51cb09ee04831b95ae02e1bee9b451f8ac4526e3 +151b87de997e55db892b122c211f9c749f4293de +e060e32f8ad98f10277b582393df50ac17f2836c +7fe2ab9f54242ef8609ef9bf988f008c7d42407c +8356832f883207187437872742d6b7dc95b51fde +8981be3a69cd522b4e57e9914bf19f034d4b530c +ca37eda56b9ee53610c66951ee7ca66a35d0a846 +b8375ff50b8a6f1a10dd809129a18df96888ac8b +c588c89a72f89eed29d42f34bfa5d4cffa530732 +a92b5234b8b73e06709dd48ec5f0ec357c1aabed +1efacaa0eaa7e16146c34cd20814d1411b35538e +4f0b8f730273e9f11b2bfad2415485414b96299f +d02b32b012ffba2baeb80dca78e7857aaeececb0 +a9fc8efd1aa3d58f89c0f53f0cb112725b5bda10 +cb8a1b8d87a3fef15635eb4a32173f9c6f966055 +ae8d5be3caea59a21221f02ef04d49a86cb80191 +26575ad9e75efb440a7dc4ef8e548eed4e19dbd1 +94806f0967931d376d1729c29702f3d3bb70167c +ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98 +533d14e539ae5cdca0ece392487a2b19106d468a +24ff832171cb774087a614152c21f54589bf7523 +62dccab9ab715f33761a5315746ed02e48eed2a0 +506ea19145838a035e7dba535519fb40a3a0018c +677585ccf8619ec2330b7f2d2b589a37146ffad7 +508702ed2bf7d1b0655ea7857dd8e52d6537e765 +f38813f1c9dac44dcb992ebe51c5ede66fd0f491 +9d58e8ab656772d2c8a99a9fb876d5611fe2fe20 +3c56acaa819f4e2263638b67cea1ec37a226691d +90d9209d5dd679b159051a8315423a7f796d704d +c83e26622b275fdf878135e71c23325a31d0e5fc +3fb98e76ffd8ba79e1c22eda4d640da0c037e98a +62fddae74c553ac9e34f511a2957b1614eb4f937 +fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1 +54969bcd728b0f2d3285866c86ef0b4797c2a74d +2ce1bac5ddc4cf668bbbb8879cd21dfb94b5cfe4 +55c68c1237166679d2cb65f266f496d1ecd4bec6 +f0f4f16d5b5f9efe304369120651fa688a03d495 +baafe3253702955c6904f0b233e661b47aa067e1 +cfc4aa456d9da1a6fabd7c6ca199332f03e35b29 +8895d6ae9f095a8413f663cc83f5b7634b3dc805 +3daafe6389d877fe15d8823cdf5ac15fd919676f +c0f67e850176bb778b6c048d81c3d7e4d8c41003 +3328413ee9944de1cc7c9c1d1bf2fece79718ba1 +14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b +be4a20113bc204019ea79c6557a0bece23da1121 +6318d3842b36362bb45527b717e1a45ae46151d5 +6cbde27d9a287ae926979dbb18dfef61cf49860e +a6270914cf5f60627a1332bcc3f5951c9eea3be0 +e52f73c77c7eaece6f2d8fdd0f15327f9f007261 +93f37c69dd92c4e038710cdeef302c261d3a4f92 +cec8936d97dea2fcf04f175d3facaaeb65e574bf +bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17 +cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66 +86f191616423efab8c0d352d986126a964983219 +378418fdd28f9022b02857ef7dbab6b0b9a02dbe +263ed62f94ea615c747c00ebbb4008385285b33b +414715421e01e8c8b5743c5330e6d2553a08c16d +6fea198a41d2f6f73e47f056692f365c8e6b04ce +2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87 +6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f +d1dfdc107fa5f2c4820570e369cda10ab1661b87 +106092fafb53e36077eba88f06feecd07b9e78e7 +782a05fbe30269ff8ab427109f5c4d0a577e5284 +a5a44a32a91474f00a3cda671a802e87c899fbb4 +2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a +6c1227659878e867a01888eef472dd96b679adb6 +cad24ba99c7b6834faf6f5be820dd65f1a755b29 +17a995680482183f3463d2e01dd4c113ebb31608 +057b80e235b10799d03876ad25465208a4c64caf +edf60d081ffdfa80243217a50a411ab5407c961d +90cc2f08a6c2f0c41a9dd1786bae097f9292105e +afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3 +162403e189d1b8463952fa4f18a291241275c354 +ea46951b070f37ad95ea4ed08c7c2a71be2daedc +6d5125c9407c7762620eeea7570af1a8ee7d76f3 +2227f978f084ebb18cb594c0cfaf124b0df6bf95 +398e0771e64cab6ca5d21754e32dce63f9e3c223 +04b851f25d6d49e61a528606953e11cfac7df2b2 +5dd473a4a9c6337b083edf38b6ddf5a6aece8908 +695426275dee2ec56bc0c0afe1c5b4227a350840 +7142ac9e4d5498037aeb0f459f278fd28dae8048 +5f758a29dae102511576c0a5c6beda264060a401 +aef58a54d458ab76f62c9b6de61af4f475e0f616 +69a41c98f6b71764913145dbc2bb4643c9bc4b0a +eb100638ed73b82e1cce8475bb8e180cb22a09a2 +3c09fb7fe1886072670e0c4dd632d052102a3733 +9730b9cd998c0a549601c554221a596deda8af5b +a301ddc419cbd900b301a95b1d9e4bb770afc6a3 +2e3b981b9f3751fc5873f77ad2aa7789c3e1d1d2 +1ffb39ed4d684a80652dfa30d604b82b4c542615 +83d41f6548bb76241737dcd3fed9e182ee901ff9 +ae5f32e489c4d52e7311b66060c7381d932f4193 +a3f78cc944ac189632f25925ba807a0e0678c4d5 +a2359c0f81a7eb032cff1fe45e3b80007facaa2a +5141cf2e59fb2ec9bb489b9c1832447d3cd93110 +7e467e686f9468b826133275484e0a1ec0f5bde6 +8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8 +911bef7465665d8b194b6b0370b2b2389dfda1a1 +645de797f936cb19c1b8dba3b862543645510544 +40dd2b9aace337467c6e1e269d0cb813442313d7 +fecccc79548001ecbd6cafd3067bcf14de80b11a +34ec83c8ff214128e7a4a4763059eebac59268a6 +a1af7ec84472afba0451b431dfdb59be323e35b7 +56a677c889e0e2c9f68ab8ca42a7e63acf986229 +ebde9b9c714ed326157f41add8c781f826c1d864 +60462b981fda63c5f9d780528a37c46884fe0b54 +b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3 +c843f591658ca9dbb77944a89372a92006defe68 +6c5fbf156ef9fc782be0089309074cc52617b868 +2bb36c875754a2a8919f2f9b00a336c00006e453 +3b60b047831146044d154156441c60f6edd80346 +ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff +eac1b644492c10546a50f3e125a1f790ec46365f +451b6409565a5ad18ea49b063561a2645fa4281b +a78b5495a4223b9784cc53670cc10b6f0beefd32 +c15b68986ecfa1e13e3791686ae9024f66983f14 +96b1000031c53cd4c1c154013bb722ffd87fa7da +2588acc7a730d864f84d4e1a050070ff873b03d5 +98fd92d68a143a5ced4a016fa3b7addd6b4a0122 +b3afa234996f44852317af382b98f5f557cab25a +9b684e2e2bb43862f69b12c6be94db0e7a756187 +12408baf69419409d228d96c6f88b6bcde303505 +e1312b0b0fd660de87fa42de39316b28f9336e70 +574ad7ef015995efb7338829a021776bf9daaa08 +cfc30ce53bfc204b8764ebb764a029a8d0ad01f4 +68d08ed9470d973a54ef7806318d8894d87ba610 +e00241f00fb31c660df6c6f129ca38370e6eadb3 +07c83f544d0604e6bab5d741b0bf9a3621d133da +eee2d2ac461f46734c8e674ae14ed87bbc8d45c6 +9888edfb6276887eb56a6da7fe561e508e72a517 +2f1485994ef2c09a7bb2874eb8252be8fe710db1 +04b4c779b43b830220bf938223f685d1057368e9 +beabb0d9d30871d517c5d915cf852f7f5293f52f +45e459462a80af03e1bb51a178648c10c4250925 +18b9dc55e5221e704f90eea85a81b41dab51f7da +675b2caee111cb6aa7404b4d6aa371314bf0e647 +372a8bf0ef757c08551d41e40cb7a485527b6cd7 +09903df21a38e069273b80e94c8c29324963a832 +07fa153b8e6196ee6ef6efd8b743de8485a07453 +7e27d946d23229220bcb6672aacab88e09516d39 +f0398ee5291b153b716411c146a17d4af9cb0edc +beb2f1a6f3f781443580ffec9161d9ce6852bf48 +aa581b481d400982a7e2a88830a33ec42ad0414f +997b9ffe2f752ba84a66730cfd320d040e7ba2e2 +5c4d4fd37e8c80ae95c00973531f34a6d810ea3a +06262d6beeccf2784e4e36a995d5ee2ff73c8d11 +9c1664f69d0d832e05759e8f2f001774fad354d6 +7f511a6a2b38a26f077a5aec4baf5dffc981d881 +43c3b6a564b284382fdf8ae33f974f4e7a89600e +70109c670471db2e0ede3842cbb58ba6be804561 +c61eaf172820fcafaabf39005bd4536f0c45f995 +cec70cf159b51a18b39c80fac1ad34f65f3691ef +0a7309147d777c2f20f780a696efe743520aa2db +c317181fa1de2260e956f05cd655642607520a4f +6e46d8aa63db3285417c8ebb65340b5045ca106f +f6fc112ff7e4746b040c13f28700a9c47992045e +e8d1b134d48eb0928bc999923a4e092537e106f6 +afa57e50570a6599508ee2d50a7b8ca6be04834a +b7c6df1ae0e8348feecd65e9ad574d1e04d212a5 +b3200539538eca54a85223bf0ec4f3ed132d0493 +7f445191fa0475ff0113577d95502a96dc702ef9 +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec +b08203fca1af7b95fda8aa3d29dcacd182375385 +4e6c9be0b646d60390fe3f72ce5aeb0136222a10 +34c062e2b8a3f6421b9f4ff22f115a36d4aba823 +b9dc8cc479cacda1f23b91df00eb03f88cc0c260 +a77e9f0bd205a7733431a6d1028f09f57f9f73b0 +7c30ea47f5ae1c5abd6981d409740544ed16ed16 +ed388878151a3b841f95a62c42382e634d4ab82e +749d605dd12a4af58de1fae6f5ef5e65eb06540e +f27e5a13c1c424504b63a9084c50f491c1b17978 +703dc33736939f88625227e38367cfb2a65319fe +de3285da34df0262a4548574c2383c51387a24bf +d444e010049944c1b3438c9a25ae09b292b17371 +ec576efd18203bcb8273539fa277839ec92232a1 +0bce54bfbd8119c73eb431559fc6ffbba741e6aa +7306d42ca158d40436cc5167e651d7ebfa6b89c1 +1fe1bd6b760e3059fff73d53a57ce3a6079adea1 +53a41c711b40e7fe3dc2b12e0790933d9c99a6e0 +8fe38962c24300129391f6d7ac24d7783e0fddd0 +dc974c31201b6da32f48ef81ae5a9042512705fe +b4d209845e1c67870ef50a7c37abaf3770563f3e +480ccd25cb2a851745f5e6e95d33edb703efb49e +38c901a58244be9a2644d486f9a1284dc0edbf8a +f1ae9f5338fcff577b1ae9becdb66007fe57bd45 +a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f +3266fcd1886e8ad883714e38203e66c0c6487f7b +e3ce4c3e1279e3dc0c14ff3bb2920aced9e62638 +c829be73584966e3162f7ccae72d9284a2ebf358 +ddbd24a73ba3d74028596f393bb07a6b87a469c0 +eb566490cd1aa9338831de8161c6659984e923fd +5a07945293c6b032e465d64f2ec076b82e113fa6 +bd26dabab576adb6af30484183c9c9c8379bf2e0 +4cc326fc977cf967eef5f3135bf0c48d07b79e2d +c3d874336eb8fae92ab335393fd801fa8df98412 +fcc6fe6007c322641796cb8792718641856a22a7 +23e824d1dfc33f3780dd18076284f07bd99f1c43 +1a53ca294bbe5923c46a339955e8207907e9c8c6 +a8bb698d1bb21b81497ef68f0f52fa6eaf14a6bf +e1179a5746b4bf12e1c8a033192326bf7f670a4d +fb6f5cb26395608a3cf0e9c6c618293a4278a8ad +55c40cbcf49a0225e72d911d762c27bb1c2d14aa +d4885ca24189b4414031ca048a8b7eb2c9ac646c +8a6033cbba8598945bfadd2dd04023c2a9f31681 +c26b43c2e1e2da96e7caabd46e1d7314acac0992 +289cfcd081c4393c7d6f63510747b5372202f855 +0b5a82f8c0ee3640503ba24ef73e672d93aeebbf +120785f9b4952734818245cc305148676563a99b +8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259 +9b1022a01ca4ecf8c1fa99b1b39a93924de2fcfb +dbed26cc6d818b3679e46677abc9fa8e04e8c6a6 +7789a5d87884f8bafec8a82085292e87d4e2866f +78f2c8671d1a79c08c80ac857e89315197418472 +5b97e997b9b654373bd129b3baf5b82c2def13d1 +758d7e1be64cc668c59ef33ba8882c8597406e53 +9db4b25df549555f9ffd05962b5adf2fd9c86543 +926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0 +bebea83479a8e1988a7da32584e37bfc463d32d4 +aa1607090fbc80ab1e9c0f25ffe8b75b777e5fd8 +67386772c289cd40db343bdc4cb8cb4f58271df2 +5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e +7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922 +dd6826e9520a6e72bcd24d1bdb930e78c1083b31 +2322ec2f3571e0ddc593c4e2237a6a794c61251d +2ed4973984b254be5cba3129371506275fe8a8eb +75308067ddd3c53721430d7984295838c81d4106 +f412d9d7bc7534e7daafa43f8f5eab811e7e4148 +0450dacc43171c6e623d0d5078600dd570de777e +892c911ca68f5b4bad59cde7eeb6c738ec6c4586 +85fd2bda5eb3afe68a5a78c30297064aec1361f6 +faf5583063682e70dedc4466ac0f74eeb63169e7 +18d51a366ce2b2068e061721f43cb798177b4bb7 +372fb32569ced35eaf3740a29890bec2be1869fa +34bc8ecec0c0b328cd8c485cb34d4d2f4b84e0c9 +57a14a65e8ae15176c9afae874854e8b0f23dca7 +1159ff04fd17c59515199e0fc2d5e01e72818b59 +0da4c3d898ca2fff9e549d18f513f4898e960aca +e0244a8356b57a5721c101ead351924bcfb2eef4 +a9fdbe102f266cc20e600fa6b060a7bc8d1134e9 +b32cf547a764a4efa475e9c99a72a5db36eeced6 +d7fe2a52d0ad915b78330340a8111e0b5a66513a +e180572400b64860e190a8bc04ef839fa491e056 +e7cac91da51b78eb4a28e194d3f599f95742e2a2 +b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c +814d091c973ff6033a83d4e44ab3b6a88cc1cb66 +2dfe0e7e81f65716b09c590652a4dd8452c10294 +ee7e8aec3ebb37e41092e1285e4f81916ce92c18 +869583b700ecf33a9987447aee9444abfe23f343 +239e305c24155add73f2a0ba5ccbd66b37f77e14 +794a51097385648e3909a1acae7188f5ab881710 +f0ca31fd5cad07e84b47d50dc07db9fc53482a46 +50ee027c63dcc5ab5cd0a6cdffb1994f83916a46 +f842b13bd494be1bbc1161dc6df244340b28a47f +ea80a050d20c0e24e0625a92e5c03e5c8db3e786 +1e0d92b9b4011822825d1f7dc0eba6d83504d45d +d34f546e61eccbac2450ca7490f558e751e13ec3 +9bac481dc4171aa2d847feac546c9f7299cc5aa0 +02f4b900deabbe7efa474f2815dc122a4ddb5b76 +61329bc767152f01aa502989abc854b53047e52c +da7bbfa905d88834f8929cb69f41a1b683639f4b +fbc591cde7fb7beb985437a22466f9cf4b16f8b1 +22e121a8dea49e3042de305574356477ecacadda +bef926d63512dbffcf1af59f72295ef497f5acf9 +605f6817018a572797095b83bec7fae7195b2abc +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734 +9dcfa771a7e87d7681348dd9f6cf9803699b16ce +d4df31006798ee091b86e091a7bf5dce6e51ba3e +9f62ac43a1086c22b9a3d9f192c975d1a5a4b31f +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9 +5167e16b53283be5587659ea8eaa3b8ef3fddd33 +352d61eb66b053ae5689bd194840fd5d33f0e9c0 +e6e5a6090016810fb902b51d5baa2469ae28b8a1 +a8e7561ada380f2f50211c67fc45c3b3dea96bdb +e5ea7295b89ef679e74919bf957f58d55ad49489 +97c1f68fb7162af326cd0f1bc546908218ec5da6 +78c1ad33772237bf138084220d1ffab800e1200d +5f0d4657eab4152a1785ee0a25b5b499cd1163ec +ede16b198b83d04b52dc3f0dafc11fd82c5abac4 +92292fffc36336d63f4f77d6b8fc23b0c54090e9 +7477cf04c6b086108f459f693a60272523c134db +18855be5e7a60269c0652e9567484ce5b9617caa +4ca9753ab023accbfa75a547a65344ee17b549ba +41c56c69b20b3f0b6c8a625009fc0a4d317e047a +43e268c118ac25f1f0e984b57bc54f0119ded520 +1fff309330f85146134e49e0022ac61ac60506a9 +e2106bb3febb4fc8fe91f0fcbc241bcda0e56b1e +2bf646a6efd15ab830344ae9d43e10cc89e29f34 +6e8a81d452a91f5231443ac83e4c0a0db4579974 +7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d +f1ba2fe3491c715ded9677862fea966b32ca81f0 +0a4fc9016aacae9cdf40663a75045b71e64a70c9 +856317f27248cdb20226eaae599e46de628fb696 +65b1209d38c259fe9ca17b537f3fb4d1857580ae +d02c54192dbd0798b43231efe1159d6b4375ad36 +5b0008ba87667085912ea474025d2323a14bfc90 +6689aee6c9599c1af4c607ea5385ac0c2cf0c4b3 +e7cfaff65541cde4298a04882e00608d992f6703 +dba7d8c4d2fca41269a2c96b1ea594e2d0b9bdda +78cec49ca0acd3b961021bc27d5cf78cbbbafc7e +894f27b6ea68a1ec9b7632533eabf2353b1e9d79 +dfd8602820c0e94b624d02f2e10ce6c798193a25 +bd70f832e133fb87bae82dfaa0ae9d1599e52e4b +7aa062c6c90dba866273f5edd413075b90077b51 +a20036b7fbf6c0db454c8711e72d78f145560dc8 +8f6d05b8f9860c33c7b1a5d704694ed628db66c7 +d7b6bbb94ac20f5e75893f140ef7e207db7cd483 +fc7b34a2e43bb3d3585e1963bb64a488e2f278a0 +1b5d445741473ced3d4d33732c9c9225148ed4a1 +3b21aaf7def52964cf1fcc5f11520a7618c8fae3 +39af06d29a74ad371a1846259e01c14b5343e3d1 +eaaed082762337e7c3f8a1b1dfea9c0d3ca281bf +a7ec294373ccc0598cbb0bbb6340c4e56fe5d979 +9853136dbd7d5f6a9c57dc66060cab44a86cd662 +771505abd38641454757de75fe751d41e87f89a4 +5e6fc99d8f5ebaab0e9c29bc0969530d201e0708 +d1079444ceddb1de316983f371ecd1db7a0c2f38 +72591a75469321074b072daff80477d8911c3af3 +cea2911ccabab40e9c1e5bcc0aa1127cab0c789f +e8fdacbd708feb60fd6e7843b048bf3c4387c6db +b97c7f82c1439fa1e4525e5860cb05a39cc412ea +13d430257d595231bda216ef859950caa736ad1d +11df25b4e074b7610ec304a8733fa47625d9faca +758d481bbf24d12615b751fd9ec121500a648bce +8694cd9748fb1c128f91a572119978075fede848 +8ce9b7b52d05701d5ef4a573095db66ce60a7e1c +c73dd452c20460f40becb1fd8146239c88347d87 +3f9ca2526013e358cd8caeb66a3d7161f5507cbc +8c4042191431e9eb43f00b0f14c23765ab9c6688 +90ac0f32c0c29aa4545ed3d5070af17f195d015f +9c6dfd3a38374399d998d5a130ffc2864c37f554 +6d2fd0a9cbea13e840f962ba7c8a9771ec437d3a +e68869499471bcd6fa8b4dc02aa00633673c0917 +856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b +197c64c36e8a9d624a05ee98b740d87f94b4040c +3294e27356c3b1063595885a6d731d625b15505a +2a2df7e790737a026434187f9605c4763ff71292 +535cdce8264ac0813d5bb8b19ceafa77a1674adf +fa052fd40e717773c6dc9cc4a2f5c10b8760339f +ecac3da2ff8bc2ba55981467f7fdea9de80e2092 +9d46485ca2c562d5e295251530a99dd5df99b589 +83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05 +7ac9aaafe4d74542832c273acf9d631cb8ea6193 +9d5bfaf6191484022a6731ce13ac1b866d21ad18 +35208eda874591eac70286441d19785726578946 +fd10b0c771a2620c0db294cfb82b80d65f73900d +a1132e2638a8abd08bdf7fc4884804dd6654fa63 +c4e2d5ebfebbb9dcee6a9866c3d6290481496df5 +8ed32c8fad924736ebc6d99c5c319312ba1fa80b +f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca +6b742055a664bcbd1c6a85ae6796bd15bc945367 +eedfb384a5e42511013b33104f4cd3149432bd9e +7f203f2ff6721e73738720589ea83adddb7fdd27 +188abc5bad3a3663d042ce98c7a7327e5a1ae298 +519f1486f0755ef3c1f05700ea8a05f52f83387b +829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a +aca232de87c4c61537c730ee59a8f7ebf5ecb14f +d20ea5a4fa771bc4121b5654a7483ced98b39148 +ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9 +09df62fd17d3d833ea6b5a52a232fc052d4da3f5 +edf98a925bb24e39a6e6094b0db839e780a77b08 +b313751548018e4ecd5ae2ce6b3b94fbd9cae33e +cfeb26245b57dd10de8f187506d4ed5ce1e2b7dd +ab58a7db32683aea9281c188c756ddf969b4cdbd +85a136b48c2036b16f444f93b086e2bd8539a498 +522a4ca705c06a0436bbe62f46efe24d67a82422 +8e452379fda31744d4a4383fcb8a9eab6dbc4ae4 +5a547df635a9a56ac224d556333d36ff68cbf088 +af654a7ec15168b16382bd604889ea07a967dac6 +080e0efc3cf71260bfe9bdc62cd86614d1ebca46 +d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c +ae836e2be4bb784760e43de88a68c97f4f9e44a1 +efc78a7d95b14abacdfde5c78007eabf9a21689c +f2eab39cf68de880ee7264b454044a55098e8163 +7d18e9165312cf669b799aa1b883c6bbe95bf40e +721b109970bf5f1862767a1bec3f9a79e815f79a +c43862db5eb7e43e3ef45b5eac4ab30e318f2002 +8e63868e552e433dc536ba732f4c2af095602869 +edd6ed94207ab614c71ac0591d304a708d708e7b +bd0265ba7f391dc3df9059da3f487f7ef17144df +45a6333fc701d14aab19f9e2efd59fe7b0e89fec +59dac8b460a89e03fa616749a08e6149708dcc3a +d26b443f87df76034ff0fa9c5de9779152753f0c +2564920d6976be68bb22e299b0b8098090bbf259 +20ade100a320cc761c23971d2734388bfe79f7c5 +10bfa4cecd64b9584c901075d6b50f4fad898d0b +0b572a2b7052b15c8599dbb17d59ff4f02838ff7 +7f2a234ad5c256733a837dbf98f25ed5aad214e8 +8fed5ea3b69ea441a8b02f61473eafee25fb2374 +1efaa128378f988965841eb3f49d1319a102dc36 +a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b +78598e7005f7c96d64cc47ff47e6f13ae52245b8 +c7c8d150ece08b12e3abdb6224000c07a6ce7d47 +3f0c6dbfd3c9cd5625ba748327d69324baa593a6 +15aa6c457678e25f6bc0e818e5fc39e42dd8e533 +768f6a14a7903099729872e0db231ea814eb05e9 +0141cb33c822e87e93b0c1bad0a09db49b3ad470 +29c340c83b3bbef9c43b0c50b4d571d5ed037cbd +b806a31c093b31e98cc5fca7e3ec53f2cc169db9 +9b4b2a575641f3a7f8a5ce28b6a06c36694a9ddf +8dfe43c76b76a97f8938f5f5f81059a1f1fa74ed +206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8 +599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0a +598744c8620e4ecbf449d14d7081fbf1cd05851f +a85e9e11db5665c89b057a124547377d3e1c27ef +d4453ec649dbde752e74da8ab0984c6f15cc6e06 +a26fd9df58bb76d6c7a3254820143b3da5bd584b +66490b5869822b31d32af7108eaff193fbdb37b0 +2f73203fd71b755a9601d00fc202bbbd0a595110 +fbe4f8a6af19f63e47801c6f31402f9baae5fecf +b6f15bf8723b2d5390122442ab04630d2d3878d8 +f11c76efdc9651db329c8c862652820d61933308 +39ed31ced75e6151dde41944a47b4bdf324f922b +411318684bd2d42e4b663a37dcf0532a48f0146d +352a620f0b96a7e76b9195a7038d5eec257fd994 +0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457 +7a131fafa7058fb75fdca32d0529bc7cb50429bd +27a00f2490284bc0705349352d36e9749dde19ab +212608e00fc1e8912ff845ee7a4a67f88ba938fc +96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9 +69adf2f122ff18848ff85e8de3ee3b2bc495838e +9e182e0cd9d70f876f1be7652c69373bcdf37fb4 +3a27d164e931c422d16481916a2fa6401b74bcef +d8526863f35b29cbf8ac2ae756eaae0d2930ffb1 +e5e5f31b81ed6526c26d277056b6ab4909a56c6c +2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4 +c71217b2b111a51a31cf1107c71d250348d1ff68 +c11eb653746afa8148dc9153780a4584ea529d28 +b73795963dc623a634d218d29e4a5b74dfbc79f1 +bd379f8e08f88729a9214260e05967f4ca66cd65 +d80a3d1f3a438e02a6685e66ee908446766fefa9 +8e0ab1b08964393e4f9f42ca037220fe98aad7ac +040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d +7c80d91db5977649487388588c0c823080c9f4b4 +4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0 +c808c784237f167c78a87cc5a9d48152579c27a4 +3e3227c8e9f44593d2499f4d1302575c77977b2e +4209783b0cab1f22341f0600eed4512155b1dee6 +f61d5f2a082c65d5330f21b6f36312cc4fab8a3b +d78734c54f29e4474b4d47334278cfde6efe963a +cb2470aade8e5630dcad5e479ab220db94ecbf91 +dd8084b2878ca95d8f14bae73e1072922f0cc5da +3795974e24296185d9b64454cde6f796ca235387 +e5823a9d3e5e33e119576a34cb8aed497af20eea +d1a43737ca8be02d65684cf64ab2331f66947207 +ba788365d70fa6c907b71a01d846532ba3110e31 +266766818dbc5a4ca1161ae2bc14c9e269ddc490 +1316296fae6485c1510f00b1b57fb171b9320ac2 +fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb +e3c011d08d04c934197b2a4804c90be55e21d572 +c9efcd8e32dced6efa2bba64789df8d0a8e4996a +7323b594d3a8508f809e276aa2d224c4e7ec5a80 +a322479a6851f57a3d74d017a9cb6d71395ed806 +d949fadc9b6c5c8b067fa42265ad30945f9caa99 +3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f +ffea8775fc9c32f573d1251e177cd283b4fe09c9 +8199803f476c12c7f6c0124d55d156b5d91314b6 +dec0c26855da90876c405e9fd42830c3051c2f5f +d35534f3f59631951011539da2fe83f2844ca245 +8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8 +2e0d56794379c436b2d1be63e71a215dd67eb2ca +6ca6ade6c9acb833790b1b4e7ee8842a04c607f7 +23dd8d17ce09c22d367e4d62c1ccf507bcbc64da +313d5eba97fe064bdc1f00b7587a4b3543ef712a +3cb2841302af1fb9656f144abc79d4f3d0b27380 +a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1 +3933e323653ff27e68c3458d245b47e3e37f52fd +37c5c65ae204ad3692cd30a3dc62f28a263ad468 +3827f1cab643a57e3cd22fbffbf19dd5e8a298a8 +707a542c580bcbf3a5a75cce2df80d75990853cc +4735fa28fa2a2af98f7b266efd300a00e60dddf7 +6584c3c877400e1689a11ef70133daa86a238602 +84a74ef8680b66e6dccbc69ae80321a52780a68e +911505a4242da555c6828509d1b47ba7854abb7a +c175ebe550761b18bac24d394d85bdfaf3b7718c +d4b4020e289c095ce2c2941685c6cd37667f5cc9 +b331ca23aed90394c05f06701f90afd550131fe3 +3a49507c46a2b8c6411809c81ac47b2b1d2282c3 +c48b68dc780c71ab0f0f530cd160aa564ed08ade +75a74a74d6abbbb302a99de3225c8870fa149aee +7ac4fc169fffa8e962b9df94f61e2adf6bac8f97 +180bd019eab85bbf01d9cddc837242e111825750 +fe50efe9e282c63941ec23eb9b8c7510b6283228 +35265cbd9c6ea95753f7c6b71659f7f7ef9081b6 +81706277ed180a92d2eeb94ac0560f7dc591ee13 +62f017907e19766c76887209d01d4307be0cc573 +d9218c2bbc7449dbccac351f55675efd810535db +ea890846912f16a0f3a860fce289596a7dac575f +403a108dec92363fd1f465340bd54dbfe65af870 +52af7625f7e7a0bd9f9d8eeafd631c4d431e67e7 +763b60feaabceebbe9eddfbaa0378b8b454327aa +46976097c54e86032932d559c8eb82ffea4bb6bb +5f453a35d312debfc993d687fd0b7c36c1704b16 +88535dba55b0a80975df179d31a6cc80cae1cc92 +1d51b256af68c5546d230f3e6f41da029e0f5852 +cb8382f43ce073322eba82809f02d3084dad7969 +8ccbbd9da0749d96f09164e28480d54935ee171c +1b02b9413b730b96b91d16dcd61b2420aef97414 +0322e69172f54b95ae6a90eb3af91d3daa5e36ea +7918e3e15099b4b2943746e1f6c9e3992a79c5f3 +099053f2cbfa06c0141371b9f34e26970e316426 +77db171a523fc3d08c91cea94c9562f3edce56e1 +bf54b5586cdb0b32f6eed35798ff91592b03fbc4 +40c9dce0a4c18829c4100bff5845eb7799b54ca1 +dc550f361ae82ec6e1a0cf67edf6a0138163382e +7ef44b7c2b5533d00001ae81f9293bdb592f1146 +f78fe101b21be36e98cd3da010051bb9b9829a1e +ee1465cbbc1d03cb9eddaad8618a4feea78a01ce +eed7920682789a9afd0de4efd726cd9a706940c8 +6316a4b689706b0f01b40f9a3cef47b92bc52411 +aca728cab26b95fbe04ec230b389878656d8af5b +3db6fd6a0e9bb30f2421e84ee5e433683d17d9c1 +c3dc4f414f5233df96a9661609557e341b71670d +fad895771260048f58d12158a4d4d6d0623f4158 +38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7 +8ac2d704f27a2ddf19b40c8e4695da629aa52a54 +dc34ab49d378ddcf6c8e2dbf5472784c5bfa8006 +2f837ff8b134b785ee185a9c24e1f82b4e54df04 +984edce0b961418d81203ec477b9bfa5a8197ba3 +fd5376fcb09001a3acccc03159e8ff5801129683 +d7b8f285b0701ba7b1a11d1c7dd3d1e7e304083f +ac2e166c76c103f17fdea2b4ecb137200b8d4703 +179564f157a96787b1b3380a9f79701e3394013d +accbd6cd5dd649137a7c57ad6ef99232759f7544 +acff2dc5d601887741002a78f8c0c35a799e6403 +f3fed71cc4fc49b02067b71c2df80e83084b2a82 +b1f4423c227fa37b9680787be38857069247a307 +443f4421e44d4f374c265e6f2551bf9830de5597 +9c2f20ed168743071db6268480a966d5d238a7ee +d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f +6dcf6b028a6042a9904628a3395520995b1d0ef9 +43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a +0ca36ecaf4015ca4095e07f0302d28a5d9424254 +312b2566e315dd6e65bd42cfcbe4d919159de8a1 +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4 +9bc01fa9400c231e41e6a72ec509d76ca797207c +cbbd9880fb28bef4e33da418a3795477d3a1616e +675b1fd2aaebe9c62be6b22b9ac6d278193cc581 +468bb5344f74842a9a43a7e1a3333ebd394929b4 +ceba8ca45bad226c401a509e6b8ccbf31361b0c9 +111d0b588f3abbbea85d50a28c0506f74161e091 +fde611bf25a89fe11e077692070f89dcdede043a +2ac7bb3fb014d27d3928a9b4bc1bf019627e0c1a +516a27d5dd06622f872f5ef334313350745eadc3 +b8048a7661bdb73d3613fde9d710bd45a20d13e7 +3a6334953cd2775fab7a8e7b72ed63468c71dee7 +ec983394f800da971d243f4143ab7f8421aa967c +a45e6172713a56736a2565ddea9cb8b1d94721cd +7c9a65f18f7feb473e993077d087d4806578214e +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e +d33fcdaf2c0bd0100ec94b2c437dccdacec66476 +12226bca7a891e25b7d1e1a34a089521bba75731 +971cb1bfe3d10fcb2037e684c48bd99842f42fa4 +cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150 +cc8e378fd05152a81c2810f682a78c5057c8a735 +640e12837241d52d04379d3649d050ee3760048c +48de3ca194c3830daa7495603712496fe908375c +bddc822cf20b31d8f714925bec192c39294184f7 +f6f2a212505a118933ef84110e487551b6591553 +58538cc418bf41197fad4fc4ee2449b2daeb08b1 +dbd958ffedc3eae8032be67599ec281310c05630 +62750d78e819d745b9200b0c5c35fcae6fb9f404 +32e4fc2f0d9c535b1aca95aeb5bcc0623bcd2cf2 +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8 +ab6886252aea103b3d974462f589b4886ef2735a +65babb10e727382b31ca5479b452ee725917c739 +87610276ccbc12d0912b23fd493019f06256f94e +1c6e22516ceb5c97c3caf07a9bd5df357988ceda +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225 +3d6ee995bc2f3e0f217c053368df659a5d14d5b5 +f3a59d85b7458394e3c043d8277aa1ffe3cdac91 +b59cee1f647737ec3296ccb3daa25c890359c307 +62007c30f148334fb4d8975f80afe76e5aef8c7f +626913b8fcbbaee8932997d6c4a78fe1ce646127 +cfd4004054399f3a5f536df71f9b9987f060f434 +dc13229afbbc8b7a31ed5adfe265d971850c0976 +1ffe20eb32dbc4fa85ac7844178937bba97f4bf0 +30b15cdb72760f20f80e04157b57be9029d8a1ab +fd53be2e0a9f33080a9db4b5a5e416e24ae8e198 +d444368421f456baf8c3cb089244e017f8d32c41 +fffefc1fb840da63e17428fd5de6e79feb726894 +1d776bfe627f1a051099997114ba04678c45f0f5 +cb27b45329d61f5f95ed213798d4b2a615e76be2 +d0144d76b8b926d22411d388e7a26506519372eb +08d41d2f68a2bf0091dc373573ca379de9b16385 +4f1249369127cc2e2894f6b2f1052d399794919a +2e231f1e7e641dd3619bec59e14d02e91360ac01 +632fa986bed53862d83918c2b71ab953fd70d6cc +112780a7fe259dc7aff2170d5beda50b2bfa7bda +93af335bf8c610f34ce0cadc15d1dd592debc706 +5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b +975978ee6a32383d6f4f026b944099e7739e5890 +c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c +5f94969b9491db552ffebc5911a45def99026afe +28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08 +d00e9a6339e34c613053d3b2c132fccbde547b56 +288964068cd87d97a98b8bc927d6e0d2349458a2 +aeb6b9aba5bb08cde2aebfeda7ced6c38c84df4a +56e079f4eb40744728fd1d7665938b06426338e5 +92b61b09d2eed4937058d0f9494d9efeddc39002 +36939e6a365e9db904d81325212177c9e9e76c54 +2957715e96a18dbb5ed5c36b92050ec375214aa6 +1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc +7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697 +7f21a7441c6ded38008c1fd0b91bdd54425d3f80 +f5fae7810a33ed67852ad6a3e0144cb278b24b41 +24f022d807352abf071880877c38e53a98254dcd +361d6345919c2edc5c3ce49bb4915ed2b4ee49be +d454ad60b061c1a1450810a0f335fafbfeceeccc +2c1f8ddbfbb224271253a27fed0c2425599dfe47 +ed9d11e995baeec17c5d2847ec1a8d5449254525 +493c8591d6a1bef5d7b84164a73761cefb9f5a25 +d5444f9475253bbcfef85c351ea9dab56793b9ea +86d0127e1fd04c3d8ea78401c838af621647dc95 +4560491820e0ee49736aea9b81d57c3939a69e12 +c62c07de196e95eaaf614fb150a4fa4ce49588b4 +64ec0c53dd1aa51eb15e8c2a577701e165b8517b +8f9c37f351a91ed416baa8b6cdb4022b231b9085 +a022eff5470c3446aca683eae9c18319fd2406d5 +af6cae71f24ea8f457e581bfe1240d5fa63faaf7 +a81c86cda6f1da2aa09b6737297addd3d4a64ffa +633c851ebf625ad7abdda2324e9de093cf623141 +13179bb3f2867ea44647b6fe0c8fb4109207e9f5 +7fab17ef7e25626643f1d55257a3e13348e435bd +523854a7d8755e944bd50217c14481fe1329a969 +6e911227e893d0eecb363015754824bf4366bdb7 +7c1cfab6b60466c13f07fe028e5085a949ec8b30 +ff8ef43168b9c8dd467208a0b1b02e223b731254 +7eaa97be59019f0d36aa7dac27407b004cad5e93 +2bcd9b2b78eb353ea57cf50387083900eae5384a +61e9e180d3d1d8b09f1cc59bdd9f98c497707eff +f16599e4ec666c6390c90ff9a253162178a70ef5 +37866fea39deeff453802cde529dd9d32e0205a5 +7c57ac7c9f84fbd093f6393e2b63c18078bf0fdf +4c72a51a7c7288e6e17dfefe4f87df47929608e7 +06560d5721ecc487a4d70905a485e22c9542a522 +8006219efb6ab76754616b0e8b7778dcfb46603d +7a3d46f32f680144fd2ba261681b43b86b702b85 +8202da548a128b28dd1f3aa9f86a0523ec2ecb26 +95289007f2f336e6636cf8f920225b8d47c6e94f +db1a9b8d8ce9a5696a96f8db4206b6f72707730e +2ffcd35d9b8867a42be23978079f5f24be8d3e35 +10e4172dd4f4a633f10762fc5d4755e61d52dc36 +2563fc1797f187e2f6f9d9f4387d4bcadd3fbd02 +eba4cfd76f99159ccc0a65cab0a02db42b548d85 +21d5c838d19fcb4d624b69fe9d98e84d88f18e79 +484bac2a9ff3a43a6f85d109bbc579a4346397f5 +d383ba7bbf8b7b49dcef9f8abab47521966546bb +a1dd9038b1e1e59c9d564e252d3e14705872fdec +24869258fef8f47623b5ef43bd978a525f0af60e +6c92d87c84fa5e5d2bb5bed3ef38168786bacc49 +6baaa8b763cc5553715766e7fbe7abb235fae33c +88e090ffc1f75eed720b5afb167523eb2e316f7f +2961e14c327341d22d5f266a6872aa174add8ac4 +7f4bc8883c3b9872408cc391bcd294017848d0cf +f7dcadc5288653ec6764600c7c1e2b49c305dfaa +cff911786b5ac884bb71788c5bc6acf6bf569eff +0b45aeb0aede5e0c19b508ede802bdfec668aefd +c79cf7f61441195404472102114bcf079a72138a +4686df20f0ee40cd411e4b43860ef56de5531d9e +93cd5c47e4a3425d23e3db32c6eaef53745bb32e +f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a +fd9ab411dc6258763c95b7741e3d51adf5504040 +29a5d38390857e234c111f8bb787724c08f39110 +06ab24721d7117974a6039eb2e57d1545eee5e46 +55432723c728a2ce90d817e9e9877ae9fbad6fe5 +e9b0a27018c7151016a9fe01c98b4c21d6ebf4be +40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd +5748652924084b7b0220cddcd28f6b2222004359 +3cd7b15f5647e650db66fbe2ce1852e00c05b2e4 +0004f72a00096fa410b179ad12aa3a0d10fc853c +27b451abfe321a696c852215bb7efb4c2e50c89f +18e54b74ed1f3c02b7569f53a7d930d72fc329f5 +8562b4f63e49847692b8cb31ef0bdec416b9a87a +b562def2624f59f7d3824e43ecffc990ad780898 +6e91be2ad74cf7c5969314b2327b513532b1be09 +4ed6c7740ba93d75345397ef043f35c0562fb0fd +d7dd35a86117e46d24914ef49ccd99ea0a7bf705 +10bf35bf98cfe555dfc03b5f03f2769d330e3af9 +a03448488950ee5bf50e9e1d744129fbba066c50 +1d30f813798c55ae4fe454829be6e2948ee841da +54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7 +fb8eb4a7b9b9602992e5982c9e0d6d7f7b8210ef +9057044c0347fb9798a9b552910a9aff150385db +5b4b84ce3518c8a14f57f5f95a1d07fb60e58223 +99facca6fc50cc30f13b7b6dd49ace24bc94f702 +49068538b7eef66b4254cc11914128097302fab8 +51dcb36a6c247189be4420562f19feb00c9487f8 +e03bda45248b4169e2a20cb9124ae60440cad2de +f60a85bd35fa85739d712f4c93ea80d31aa7de07 +21b5af67618fcc047b495d2d5d7c2bf145753633 +023decb4c56f2e97d345593e4f7b89b667a6763d +73d53a7c27716ae9a6d3484e78883545e53117ae +a803453edd2b4a85b29da74dcc551b3c53ff17f9 +e90e12e77cab78ba8f8f657db2bf4ae3dabd5166 +44b91268fbbf62e1d2ba1d5331ec7aedac30dbe8 +4e37cd250130c6fd60e066f0c8efb3cbb778c421 +38c7f80a1e7fa1bdec632042318dc7cdd3c9aad4 +5dafab3c936763294257af73baf9fb3bb1696654 +a96c45ed3a44ad79a72499be238264ae38857988 +2696d3708d6c6cccbd701f0dac14cc94d72dd76d +6b3e360b80268fda4e37ff39b7f303e3684e8719 +60e2b9b2e0db3089237d0208f57b22a3aac932c1 +df767f62a6bf3b09e6417d801726f2d5d642a202 +41c42cb001f34c43d4d8dd8fb72a982854e173fb +aadfcaf601630bdc2af11c00eb34220da59b7559 +f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f +e52f57a7de675d14aed28e5d0f2f3c5a01715337 +ab989225a55a2ddcd3b60a99672e78e4373c0df1 +cbfcd1ec8aa30e31faf205c73d350d447704afee +dc1510110c23f7b509035a1eda22879ef2506e61 +d1ee9e63c8826a39d75fa32711fddbcc58d5161a +db67edbaeb78e1dd734784cfaaa720ba86ceb6d2 +3a0558ebfde592bd8bd07cb72b8ca8f700715bfb +6c7a42b4f43b3a2f9b250f5803b697857b1444ac +44d93039eec244083ac7c46577b9446b3a071f3e +f68ed499e9d41f9c3d16d843db75dc12833d988d +f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e +764882e6779fbee29c3d87e00302befc52d2ea8d +1951dc9dd4601168ab5acf4c14043b124a8e2f67 +dc964b9c7242a985eb255b2410a9c45981c2f4d0 +0532cbcf616f27e5f6a4054f818d4992b99d201d +fac8cff9052fc5fab7d5ef114d1342daba5e4b82 +8acdc4be8274e5d189fb67b841c25debf5223840 +ad77056780328bdcc6b7a21bce4ddd49c49e2013 +814369f171337ee1d8809446b7dbfc5e1ef9f4b5 +4972aadcce369a8c0029e6dc2f288dfd0241e144 +8fb2ec3bbd862f680be05ef348b595e142463524 +684f5166d8147b59d9e0938d627beff8c9d208dd +06b4e41185734f70ce432fdb2b121a7eb01140af +dd0086da7c4efe61abb70dd012538f5deb9a8d16 +3e59d97d42f36fc96d33a5658951856a555e997b +bc9003ad368cb79d8a8ac2ad025718da5ea36bc4 +40c1de7b1b0a087c590537df55ecd089c86e8bfc +32f62da99ec9f58dd93e3be667612abcf00df16a +81f101cea3c451754506bf1c7edf80a661fa4dd1 +dfecaedeaf618041a5498cd3f0942c15302e75c3 +5ba7882700718e996d576b58528f1838e5559225 +7f68a5429f150f9eb7550308bb47a363f2989cb3 +cc2a9f4be1e465cb4ba702539f0f088ac3383834 +c8585c95215bc53e28edb740678b3a0460ca8aa4 +da23d90bacf246b75ef752a2cbb138c4fcd789b7 +d31af74425719a3840b496b7932e0887b35e9e0d +a5acda0e8c0937bfed013e6382da127103e41395 +df87193e15a19d5620f5a6458b05fee0cf03729f +eece52bd0ed4d7925c49b34e67dbb6657d2d649b +f3df296de36b7c114451865778e211350d153727 +7cf579088e0456d04b531da385002825ca6314e2 +a939e287feb3166983e36b8573cd161d12097ad8 +97137d5154a9f22a5d9ecc32e8e2b95d07a5a571 +938ae9597f71a21f2e47287cca318d4a2113feb2 +e4d8ba577cabcb67b4e9e1260573aea708574886 +ebc3d7f50231cdb18a8107433ae9adc7bd94b97a +196c12571ab51273f44ea3469d16301d5b8d2828 +abba1bf1348a6f1b70a26aac237338ee66764458 +af3b803188344971aa89fee861a6a598f30c6f10 +6af75a8572965207c2b227ad35d5c61a5bd69f45 +9d24812d942e69f86279a26932df53c0a68c4111 +1bdef21f093c41df2682a07f05f3548717c7a3d1 +8a866bc0d925dfd8bb10769b8b87d7d0ff01774d +3cd380bd0f3b164b44c49e3b01f6ac9798b6b6f9 +857c64060963dd8d28e4740f190d321298ddd503 +540b39ba1b8ef06293ed793f130e0483e777e278 +b8ebda42e272d3617375118542d4675a0c0e501d +c1c2775e19d6fd2ad6616f69bda92ac8927106a2 +2d3af3ee03793f76fb8ff15e7d7515ff1e03f34c +4b0cb10c6c3f2d581ac9eb654412f70bc72ed661 +97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5 +cfa931e6728a825caada65624ea22b840077f023 +f87b22e7f0c66225824a99cada71f9b3e66b5742 +d69719b42ee53b666e56ed476629a883c59ddf66 +d916602f694ebb9cf95d85e08dd53f653b6196c3 diff --git a/scraper/reports/misc/missing-3.csv b/scraper/reports/misc/missing-3.csv new file mode 100644 index 00000000..a11c16e4 --- /dev/null +++ b/scraper/reports/misc/missing-3.csv @@ -0,0 +1,815 @@ +8dcc95debd07ebab1721c53fa50d846fef265022 +aa5a7a9900548a1f1381389fc8695ced0c34261a +48a402593ca4896ac34fbebf1e725ab1226ecdb7 +ef23e82180508606a3ab8d9a30205b5e3c0daf67 +5760d29574d78e79e8343b74e6e30b3555e48676 +8eb40d0a0a1339469a05711f532839e8ffd8126c +f7a271acccf9ec66c9b114d36eec284fbb89c7ef +a082c77e9a6c2e2313d8255e8e4c0677d325ce3e +c9367ed83156d4d682cefc59301b67f5460013e0 +bf37a81d572bb154581845b65a766fab1e5c7dda +c997744db532767ee757197491d8ac28d10f1c0f +d36a1e4637618304c2093f72702dcdcc4dcd41d1 +ce70dd0d613b840754dce528c14c0ebadd20ffaa +525da67fb524d46f2afa89478cd482a68be8a42b +b5f9180666924a3215ab0b1faf712e70b353444d +f3cdd2c3180aa2bf08320ddd3b9a56f9fe00e72b +60c24e44fce158c217d25c1bae9f880a8bd19fc3 +2dbc57abf3ceda80827b85593ce1f457b76a870b +592f14f4b12225fc691477a180a2a3226a5ef4f0 +81513764b73dae486a9d2df28269c7db75e9beb3 +be48b5dcd10ab834cd68d5b2a24187180e2b408f +ec1bec7344d07417fb04e509a9d3198da850349f +a313851ed00074a4a6c0fccf372acb6a68d9bc0b +2c93c8da5dfe5c50119949881f90ac5a0a4f39fe +176e6ba56e04c98e1997ffdef964ece90fd827b4 +9e2ab407ff36f3b793d78d9118ea25622f4b7434 +9ce0d64125fbaf625c466d86221505ad2aced7b1 +df6e68db278bedf5486a80697dec6623958edba8 +7d45f1878d8048f6b3de5b3ec912c49742d5e968 +610779e90b644cc18696d7ac7820d3e0598e24d0 +3b350afd8b82487aa97097170c269a25daa0c82d +ee815f60dc4a090fa9fcfba0135f4707af21420d +7ee7b0602ef517b445316ca8aa525e28ea79307e +74dbe6e0486e417a108923295c80551b6d759dbe +81b0550c58e7409b4f1a1cd7838669cfaa512eb3 +f3553148e322f4f64545d6667dfbc7607c82703a +f9bce7bd7909f1c75dbeb44900d374bc89072df0 +265a88a8805f6ba3efae3fcc93d810be1ea68866 +84508e846af3ac509f7e1d74b37709107ba48bde +ab2b09b65fdc91a711e424524e666fc75aae7a51 +318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a +4983076c1a8b80ff5cd68b924b11df58a68b6c84 +a98ff1c2e3c22e3d0a41a2718e4587537b92da0a +a6ce1a1de164f41cb8999c728bceedf65d66bb23 +a88ced67f4ed7940c76b666e1c9c0f08b59f9cf8 +f6cf2108ec9d0f59124454d88045173aa328bd2e +73b90573d272887a6d835ace89bfaf717747c59b +1c0acf9c2f2c43be47b34acbd4e7338de360e555 +ef940b76e40e18f329c43a3f545dc41080f68748 +ef559d5f02e43534168fbec86707915a70cd73a0 +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d +e45a556df61e2357a8f422bdf864b7a5ed3b8627 +bc08dfa22949fbe54e15b1a6379afade71835968 +bef4df99e1dc6f696f9b3732ab6bac8e85d3fb3c +85e78aa374d85f9a61da693e5010e40decd3f986 +de92951ea021ec56492d76381a8ae560a972dd68 +116f9e9cda25ff3187bc777ceb3ecd28077a7eca +03c56c176ec6377dddb6a96c7b2e95408db65a7a +c631a31be2c793d398175ceef7daff1848bb6408 +1ef1f33c48bc159881c5c8536cbbd533d31b0e9a +f85ccab7173e543f2bfd4c7a81fb14e147695740 +d62d82c312c40437bc4c1c91caedac2ba5beb292 +858b51a8a8aa082732e9c7fbbd1ea9df9c76b013 +75ce75c1a5c35ecdba99dd8b7ba900d073e35f78 +de45bf9e5593a5549a60ca01f2988266d04d77da +4da4e58072c15904d4ce31076061ebd3ab1cdcd5 +744fa8062d0ae1a11b79592f0cd3fef133807a03 +d264dedfdca8dc4c71c50311bcdd6ba3980eb331 +aeaf5dbb3608922246c7cd8a619541ea9e4a7028 +1feeab271621128fe864e4c64bab9b2e2d0ed1f1 +77d929b3c4bf546557815b41ed5c076a5792dc6b +ab8ecf98f457e29b000c44d49f5bf49ec92e571c +daca9d03c1c951ed518248de7f75ff51e5c272cb +24603ed946cb9385ec541c86d2e42db47361c102 +b82f89d6ef94d26bf4fec4d49437346b727c3bd4 +c37de914c6e9b743d90e2566723d0062bedc9e6a +b2b535118c5c4dfcc96f547274cdc05dde629976 +dec76940896a41a8a7b6e9684df326b23737cd5d +99d06fe2f4d6d76acf40b6da67c5052e82055f5a +0ba1d855cd38b6a2c52860ae4d1a85198b304be4 +03fe3d031afdcddf38e5cc0d908b734884542eeb +c0c0b8558b17aa20debc4611275a4c69edd1e2a7 +4cfe921ac4650470b0473fd52a2b801f4494ee64 +6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae +715b69575dadd7804b4f8ccb419a3ad8b7b7ca89 +20a0f71d2c667f3c69df18f097f2b5678ac7d214 +1297ee7a41aa4e8499c7ddb3b1fed783eba19056 +721d9c387ed382988fce6fa864446fed5fb23173 +d116bac3b6ad77084c12bea557d42ed4c9d78433 +7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b +5ed66fb992bfefb070b5c39dc45b6e3ff5248c10 +e14cc2715b806288fe457d88c1ad07ef55c65318 +835e510fcf22b4b9097ef51b8d0bb4e7b806bdfd +25982e2bef817ebde7be5bb80b22a9864b979fb0 +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae +1f5f67d315c9dad341d39129d8f8fe7fa58e564c +d57982dc55dbed3d0f89589e319dc2d2bd598532 +714d487571ca0d676bad75c8fa622d6f50df953b +b11b71b704629357fe13ed97b216b9554b0e7463 +c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f +bdbba95e5abc543981fb557f21e3e6551a563b45 +779d3f0cf74b7d33344eea210170c7c981a7e27b +972b1a7ef8cc9c83c2c6d8d126f94f27b567d7d0 +a9215666b4bcdf8d510de8952cf0d55b635727dc +91495c689e6e614247495c3f322d400d8098de43 +8bed7ff2f75d956652320270eaf331e1f73efb35 +2a826273e856939b58be8779d2136bffa0dddb08 +53c36186bf0ffbe2f39165a1824c965c6394fe0d +c900e0ad4c95948baaf0acd8449fde26f9b4952a +a168ca2e199121258fbb2b6c821207456e5bf994 +4e43408a59852c1bbaa11596a5da3e42034d9380 +fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e +ce75deb5c645eeb08254e9a7962c74cab1e4c480 +9f43caad22803332400f498ca4dd0429fe7da0aa +2a7058a720fa9da4b9b607ea00bfdb63652dff95 +ea1303f6746f815b7518c82c9c4d4a00cd6328b9 +914d7527678b514e3ee9551655f55ffbd3f0eb0a +aae742779e8b754da7973949992d258d6ca26216 +b41d585246360646c677a8238ec35e8605b083b0 +7acbf0b060e948589b38d5501ca217463cfd5c2f +1251deae1b4a722a2155d932bdfb6fe4ae28dd22 +23ee7b7a9ca5948e81555aaf3a044cfec778f148 +776362314f1479f5319aaf989624ac604ba42c65 +bfdafe932f93b01632a5ba590627f0d41034705d +ee1f9637f372d2eccc447461ef834a9859011ec1 +9b9f6e5eb6d7fa50300d67502e8fda1006594b84 +b0b944b3a783c2d9f12637b471fe1efb44deb52b +82417d8ec8ac6406f2d55774a35af2a1b3f4b66e +bc9bad25f8149318314971d8b8c170064e220ea8 +053931267af79a89791479b18d1b9cde3edcb415 +b6620027b441131a18f383d544779521b119c1aa +90221884fe2643b80203991686af78a9da0f9791 +48a5b6ee60475b18411a910c6084b3a32147b8cd +53ce84598052308b86ba79d873082853022aa7e9 +be4f7679797777f2bc1fd6aad8af67cce5e5ce87 +b7774c096dc18bb0be2acef07ff5887a22c2a848 +0e93a5a7f6dbdb3802173dca05717d27d72bfec0 +5fea26746f3140b12317fcf3bc1680f2746e172e +dc5d9399b3796db7fd850990402dce221b98c8be +c88c21eb9a8e08b66c981db35f6556f4974d27a8 +e3a6e5a573619a97bd6662b652ea7d088ec0b352 +16de1324459fe8fdcdca80bba04c3c30bb789bdf +46c82cfadd9f885f5480b2d7155f0985daf949fc +be437b53a376085b01ebd0f4c7c6c9e40a4b1a75 +32e9c9520cf6acb55dde672b73760442b2f166f5 +55a7286f014cc6b51a3f50b1e6bc8acc8166f231 +7574f999d2325803f88c4915ba8f304cccc232d1 +450c6a57f19f5aa45626bb08d7d5d6acdb863b4b +641f0989b87bf7db67a64900dcc9568767b7b50f +9aab33ce8d6786b3b77900a9b25f5f4577cea461 +fa32b29e627086d4302db4d30c07a9d11dcd6b84 +af4745a3c3c7b51dab0fd90d68b53e60225aa4a9 +a325d5ea42a0b6aeb0390318e9f65f584bd67edd +dac8fc521dfafb2d082faa4697f491eae00472c7 +c3beae515f38daf4bd8053a7d72f6d2ed3b05d88 +d066575b48b552a38e63095bb1f7b56cbb1fbea4 +706b9767a444de4fe153b2f3bff29df7674c3161 +fffe5ab3351deab81f7562d06764551422dbd9c4 +5fe3a9d54d5070308803dd8ef611594f59805400 +def934edb7c7355757802a95218c6e4ed6122a72 +071ec4f3fb4bfe6ae9980477d208a7b12691710e +d79365336115661b0e8dbbcd4b2aa1f504b91af6 +d666ce9d783a2d31550a8aa47da45128a67304a7 +b13e2e43672e66ba45d1b852a34737e4ce04226b +ab1719f573a6c121d7d7da5053fe5f12de0182e7 +79dc84a3bf76f1cb983902e2591d913cee5bdb0e +fbc9ba70e36768efff130c7d970ce52810b044ff +46f48211716062744ddec5824e9de9322704dea1 +784a83437b3dba49c0d7ccc10ac40497b84661a5 +824d1db06e1c25f7681e46199fd02cb5fc343784 +20d6a4aaf5abf2925fdce2780e38ab1771209f76 +588bed36b3cc9e2f26c39b5d99d6687f36ae1177 +73ba33e933e834b815f62a50aa1a0e15c6547e83 +ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d +94a11b601af77f0ad46338afd0fa4ccbab909e82 +2f88d3189723669f957d83ad542ac5c2341c37a5 +f39783847499dd56ba39c1f3b567f64dfdfa8527 +b5747ecfa0f3be0adaad919d78763b1133c4d662 +bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197 +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc +633101e794d7b80f55f466fd2941ea24595e10e6 +d01303062b21cd9ff46d5e3ff78897b8499480de +07a31bd7a0bd7118f8ac0bc735feef90e304fb08 +1910f5f7ac81d4fcc30284e88dee3537887acdf3 +7923742e2af655dee4f9a99e39916d164bc30178 +44b1399e8569a29eed0d22d88767b1891dbcf987 +dc107e7322f7059430b4ef4991507cb18bcc5d95 +f0f0e94d333b4923ae42ee195df17c0df62ea0b1 +7e8c8b1d72c67e2e241184448715a8d4bd88a727 +f7b4bc4ef14349a6e66829a0101d5b21129dcf55 +d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576 +bc27434e376db89fe0e6ef2d2fabc100d2575ec6 +1b4f6f73c70353869026e5eec1dd903f9e26d43f +7f904093e6933cab876e87532111db94c71a304f +3f5693584d7dab13ffc12122d6ddbf862783028b +710011644006c18291ad512456b7580095d628a2 +34ce703b7e79e3072eed7f92239a4c08517b0c55 +dbb9601a1d2febcce4c07dd2b819243d81abb2c2 +eac97959f2fcd882e8236c5dd6035870878eb36b +a6e8a8bb99e30a9e80dbf80c46495cf798066105 +e506cdb250eba5e70c5147eb477fbd069714765b +9b6d9f0923e1d42c86a1154897b1a9bd7ba6716c +1a81c722727299e45af289d905d7dcf157174248 +e1d726d812554f2b2b92cac3a4d2bec678969368 +79f6a8f777a11fd626185ab549079236629431ac +aeff403079022683b233decda556a6aee3225065 +cd23dc3227ee2a3ab0f4de1817d03ca771267aeb +a8154d043f187c6640cb6aedeaa8385a323e46cf +e3b9863e583171ac9ae7b485f88e503852c747b6 +7914c3f510e84a3d83d66717aad0d852d6a4d148 +42eda7c20db9dc0f42f72bb997dd191ed8499b10 +46e0703044811c941f0b5418139f89d46b360aa3 +7fcecaef60a681c47f0476e54e08712ee05d6154 +5bb4fd87fa4a27ddacd570aa81c2d66eb4721019 +53f5cb365806c57811319a42659c9f68b879454a +477236563c6a6c6db922045453b74d3f9535bfa1 +91e17338a12b5e570907e816bff296b13177971e +346752e3ab96c93483413be4feaa024ccfe9499f +da4170c862d8ae39861aa193667bfdbdf0ecb363 +8de5dc782178114d9424d33d9adabb2f29a1ab17 +9a59abdf3460970de53e09cb397f47d86744f472 +99d7678039ad96ee29ab520ff114bb8021222a91 +6d07e176c754ac42773690d4b4919a39df85d7ec +4a733a0862bd5f7be73fb4040c1375a6d17c9276 +1d4c25f9f8f08f5a756d6f472778ab54a7e6129d +bed06e7ff0b510b4a1762283640b4233de4c18e0 +09137e3c267a3414314d1e7e4b0e3a4cae801f45 +682760f2f767fb47e1e2ca35db3becbb6153756f +9c23859ec7313f2e756a3e85575735e0c52249f4 +869a2fbe42d3fdf40ed8b768edbf54137be7ac71 +70e14e216b12bed2211c4df66ef5f0bdeaffe774 +f4b5a8f6462a68e79d643648c780efe588e4b6ca +345cc31c85e19cea9f8b8521be6a37937efd41c2 +6359fcb0b4546979c54818df8271debc0d653257 +cf2e1ebb9609f46af6de0c15b4f48d03e37e54ba +9d3377313759dfdc1a702b341d8d8e4b1469460c +b14b672e09b5b2d984295dfafb05604492bfaec5 +720763bcb5e0507f13a8a319018676eb24270ff0 +0fd1bffb171699a968c700f206665b2f8837d953 +67af3ec65f1dc535018f3671624e72c96a611c39 +82a0a5d0785fb2c2282ed901a15c3ff02f8567df +f113aed343bcac1021dc3e57ba6cc0647a8f5ce1 +a6902db7972a7631d186bbf59c5ef116c205b1e8 +44855e53801d09763c1fb5f90ab73e5c3758a728 +121503705689f46546cade78ff62963574b4750b +4113269f916117f975d5d2a0e60864735b73c64c +b85c198ce09ffc4037582a544c7ffb6ebaeff198 +c6724c2bb7f491c92c8dd4a1f01a80b82644b793 +4f064c2a0ef0849eed61ab816ff0c2ff6d9d7308 +b49affdff167f5d170da18de3efa6fd6a50262a2 +e19fb22b35c352f57f520f593d748096b41a4a7b +99c20eb5433ed27e70881d026d1dbe378a12b342 +642a386c451e94d9c44134e03052219a7512b9de +3779e0599481f11fc1acee60d5108d63e55819b3 +a6eb6ad9142130406fb4ffd4d60e8348c2442c29 +eb70c38a350d13ea6b54dc9ebae0b64171d813c9 +ed07856461da6c7afa4f1782b5b607b45eebe9f6 +a2e0966f303f38b58b898d388d1c83e40b605262 +6a4419ce2338ea30a570cf45624741b754fa52cb +c146aa6d56233ce700032f1cb179700778557601 +4db9e5f19366fe5d6a98ca43c1d113dac823a14d +cbbd13c29d042743f0139f1e044b6bca731886d0 +4dca3d6341e1d991c902492952e726dc2a443d1c +8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b +7cffcb4f24343a924a8317d560202ba9ed26cd0b +228ea13041910c41b50d0052bdce924037c3bc6a +c98983592777952d1751103b4d397d3ace00852d +eb8519cec0d7a781923f68fdca0891713cb81163 +dde5125baefa1141f1ed50479a3fd67c528a965f +5fff61302adc65d554d5db3722b8a604e62a8377 +6193c833ad25ac27abbde1a31c1cabe56ce1515b +047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff +d2eb1079552fb736e3ba5e494543e67620832c52 +62fd622b3ca97eb5577fd423fb9efde9a849cbef +93af36da08bf99e68c9b0d36e141ed8154455ac2 +ea079334121a0ba89452036e5d7f8e18f6851519 +b55e70df03d9b80c91446a97957bc95772dcc45b +fe7c0bafbd9a28087e0169259816fca46db1a837 +b15a06d701f0a7f508e3355a09d0016de3d92a6d +0647c9d56cf11215894d57d677997826b22f6a13 +28e1982d20b6eff33989abbef3e9e74400dbf508 +bc811a66855aae130ca78cd0016fd820db1603ec +af9419f2155785961a5c16315c70b8228435d5f8 +8a0159919ee4e1a9f4cbfb652a1be212bf0554fd +407806f5fe3c5ecc2dc15b75d3d2b0359b4ee7e0 +3ff79cf6df1937949cc9bc522041a9a39d314d83 +e8aa1f207b4b0bb710f79ab47a671d5639696a56 +cb522b2e16b11dde48203bef97131ddca3cdaebd +fea83550a21f4b41057b031ac338170bacda8805 +e293a31260cf20996d12d14b8f29a9d4d99c4642 +dac34b590adddef2fc31f26e2aeb0059115d07a1 +845f45f8412905137bf4e46a0d434f5856cd3aec +cc9d068cf6c4a30da82fd6350a348467cb5086d4 +b3cb91a08be4117d6efe57251061b62417867de9 +d77f18917a58e7d4598d31af4e7be2762d858370 +e9363f4368b04aeaa6d6617db0a574844fc59338 +d458c49a5e34263c95b3393386b5d76ba770e497 +b97f694c2a111b5b1724eefd63c8d64c8e19f6c9 +134f1cee8408cca648d8b4ca44b38b0a7023af71 +9c59bb28054eee783a40b467c82f38021c19ff3e +518a3ce2a290352afea22027b64bf3950bffc65a +ffe4bb47ec15f768e1744bdf530d5796ba56cfc1 +e3c8e49ffa7beceffca3f7f276c27ae6d29b35db +e20e2db743e8db1ff61279f4fda32bf8cf381f8e +dc3dc18b6831c867a8d65da130a9ff147a736745 +7783095a565094ae5b3dccf082d504ddd7255a5c +54948ee407b5d32da4b2eee377cc44f20c3a7e0c +a532cfc69259254192aee3fc5be614d9197e7824 +abdd17e411a7bfe043f280abd4e560a04ab6e992 +f6f06be05981689b94809130e251f9e4bf932660 +bf3bf5400b617fef2825eb987eb496fea99804b9 +15136c2f94fd29fc1cb6bedc8c1831b7002930a6 +3e9ab40e6e23f09d16c852b74d40264067ac6abc +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5 +9989ad33b64accea8042e386ff3f1216386ba7f1 +20111924fbf616a13d37823cd8712a9c6b458cd6 +5134353bd01c4ea36bd007c460e8972b1541d0ad +e6da1fcd2a8cda0c69b3d94812caa7d844903007 +1921795408345751791b44b379f51b7dd54ebfa2 +96e1ccfe96566e3c96d7b86e134fa698c01f2289 +b166ce267ddb705e6ed855c6b679ec699d62e9cb +972e044f69443dfc5c987e29250b2b88a6d2f986 +e6d6203fa911429d76f026e2ec2de260ec520432 +f1aa120fb720f6cfaab13aea4b8379275e6d40a2 +8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2 +d340a135a55ecf7506010e153d5f23155dcfa7e8 +ef032afa4bdb18b328ffcc60e2dc5229cc1939bc +f92ade569cbe54344ffd3bb25efd366dcd8ad659 +dcb6f06631021811091ce691592b12a237c12907 +01c4cf9c7c08f0ad3f386d88725da564f3c54679 +f5eb0cf9c57716618fab8e24e841f9536057a28a +9825c4dddeb2ed7eaab668b55403aa2c38bc3320 +9806d3dc7805dd8c9c20d7222c915fc4beee7099 +93c0405b1f5432eab11cb5180229720604ffd030 +4aa093d1986b4ad9b073ac9edfb903f62c00e0b0 +a961f1234e963a7945fed70197015678149b37d8 +9f131b4e036208f2402182a1af2a59e3c5d7dd44 +e049d3db7c59f8173aa91dd4bd1bd0beebdaa260 +d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d +660c99ac408b535bb0468ab3708d0d1d5db30180 +3965d61c4f3b72044f43609c808f8760af8781a2 +96f0e7416994035c91f4e0dfa40fd45090debfc5 +f4d30896c5f808a622824a2d740b3130be50258e +d6ae7941dcec920d5726d50d1b1cdfe4dde34d35 +5de9670f72d10682bf2cb3156988346257e0489f +69adbfa7b0b886caac15ebe53b89adce390598a3 +a92c207031b0778572bf41803dba1a21076e128b +c18a03568d4b512a0d8380cbb1fbf6bd56d11f05 +7fb5006b6522436ece5bedf509e79bdb7b79c9a7 +c4f3185f010027a0a97fcb9753d74eb27a9cfd3e +eac6aee477446a67d491ef7c95abb21867cf71fc +71ca8b6e84c17b3e68f980bfb8cddc837100f8bf +70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e +3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b +79db191ca1268dc88271abef3179c4fe4ee92aed +c07ab025d9e3c885ad5386e6f000543efe091c4b +9ff931ca721d50e470e1a38e583c7b18b6cdc2cc +47e14fdc6685f0b3800f709c32e005068dfc8d47 +06518858bd99cddf9bc9200fac5311fc29ac33b4 +178a82e3a0541fa75c6a11350be5bded133a59fd +5dd3c9ac3c6d826e17c5b378d1575b68d02432d7 +1de23d7fe718d9fab0159f58f422099e44ad3f0a +0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f +e40cb4369c6402ae53c81ce52b73df3ef89f578b +d99b5ee3e2d7e3a016fbc5fd417304e15efbd1f8 +dbe255d3d2a5d960daaaba71cb0da292e0af36a7 +21959bc56a160ebd450606867dce1462a913afab +2717b044ae9933f9ab87f16d6c611352f66b2033 +04317e63c08e7888cef480fe79f12d3c255c5b00 +2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd +166186e551b75c9b5adcc9218f0727b73f5de899 +0857281a3b6a5faba1405e2c11f4e17191d3824d +653d19e64bd75648cdb149f755d59e583b8367e3 +4007bf090887d8a0e907ab5e17ecfcdbbdafc2e4 +edfce091688bc88389dd4877950bd58e00ff1253 +917bea27af1846b649e2bced624e8df1d9b79d6f +e22adcd2a6a7544f017ec875ce8f89d5c59e09c8 +3c1aef7c2d32a219bdbc89a44d158bc2695e360a +1e3068886b138304ec5a7296702879cc8788143d +54ba18952fe36c9be9f2ab11faecd43d123b389b +a95dc0c4a9d882a903ce8c70e80399f38d2dcc89 +2e5cfa97f3ecc10ae8f54c1862433285281e6a7c +f65b47093e4d45013f54c3ba09bbcce7140af6bb +c3285a1d6ec6972156fea9e6dc9a8d88cd001617 +2004afb2276a169cdb1f33b2610c5218a1e47332 +3a9681e2e07be7b40b59c32a49a6ff4c40c962a2 +e988be047b28ba3b2f1e4cdba3e8c94026139fcf +d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e +8e3d0b401dec8818cd0245c540c6bc032f169a1d +2ab034e1f54c37bfc8ae93f7320160748310dc73 +53507e2de66eaba996f14fd2f54a5535056f1e59 +9788b491ddc188941dadf441fc143a4075bff764 +661ca4bbb49bb496f56311e9d4263dfac8eb96e9 +b68150bfdec373ed8e025f448b7a3485c16e3201 +3a3f75e0ffdc0eef07c42b470593827fcd4020b4 +ac86ccc16d555484a91741e4cb578b75599147b2 +ee56823f2f00c8c773e4ebc725ca57d2f9242947 +3f5e8f884e71310d7d5571bd98e5a049b8175075 +270acff7916589a6cc9ca915b0012ffcb75d4899 +7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794 +40273657e6919455373455bd9a5355bb46a7d614 +be28ed1be084385f5d389db25fd7f56cd2d7f7bf +2c424f21607ff6c92e640bfe3da9ff105c08fac4 +aa1129780cc496918085cd0603a774345c353c54 +f1280f76933ba8b7f4a6b8662580504f02bb4ab6 +9649a19b49607459cef32f43db4f6e6727080bdb +765be0c44a67e41e0f8f0b5d8a3af0ff40a00c7d +20b994a78cd1db6ba86ea5aab7211574df5940b3 +68484ae8a042904a95a8d284a7f85a4e28e37513 +6ba3cb67bcdb7aea8a07e144c03b8c5a79c19bc0 +7143518f847b0ec57a0ff80e0304c89d7e924d9a +8e36100cb144685c26e46ad034c524b830b8b2f2 +8dd9c97b85e883c16e5b1ec260f9cd610df52dec +9487cea80f23afe9bccc94deebaa3eefa6affa99 +43fce0c6b11eb50f597aa573611ac6dc47e088d3 +7c66e7f357553fd4b362d00ff377bffb9197410e +5e9ec3b8daa95d45138e30c07321e386590f8ec7 +aafeb3d76155ec28e8ab6b4d063105d5e04e471d +032825000c03b8ab4c207e1af4daeb1f225eb025 +fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a +3fb4bf38d34f7f7e5b3df36de2413d34da3e174a +95ea564bd983129ddb5535a6741e72bb1162c779 +4e30107ee6a2e087f14a7725e7fc5535ec2f5a5f +7c825562b3ff4683ed049a372cb6807abb09af2a +d5d7e89e6210fcbaa52dc277c1e307632cd91dab +cf805d478aeb53520c0ab4fcdc9307d093c21e52 +b1d89015f9b16515735d4140c84b0bacbbef19ac +c6f3399edb73cfba1248aec964630c8d54a9c534 +5fa04523ff13a82b8b6612250a39e1edb5066521 +ede5982980aa76deae8f9dc5143a724299d67742 +f5eb411217f729ad7ae84bfd4aeb3dedb850206a +3a3e55cf5bfd689d6c922e082efa0cd71cd2ae5c +59e9934720baf3c5df3a0e1e988202856e1f83ce +25ff865460c2b5481fa4161749d5da8501010aa0 +7f5b379b12505d60f9303aab1fea48515d36d098 +8f71c97206a03c366ddefaa6812f865ac6df87e9 +aab3561acbd19f7397cbae39dd34b3be33220309 +9ac43a98fe6fde668afb4fcc115e4ee353a6732d +636b8ffc09b1b23ff714ac8350bb35635e49fa3c +84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1 +c7de0c85432ad17a284b5b97c4f36c23f506d9d1 +13604bbdb6f04a71dea4bd093794e46730b0a488 +d790093cb85fc556c0089610026e0ec3466ab845 +aa6e8a2a9d3ed59d2ae72add84176e7b7f4b2912 +dc9d62087ff93a821e6bb8a15a8ae2da3e39dcdd +5f7c4c20ae2731bfb650a96b69fd065bf0bb950e +cd2c54705c455a4379f45eefdf32d8d10087e521 +0da75b0d341c8f945fae1da6c77b6ec345f47f2a +b5968e7bb23f5f03213178c22fd2e47af3afa04c +3e0a1884448bfd7f416c6a45dfcdfc9f2e617268 +0aaf785d7f21d2b5ad582b456896495d30b0a4e2 +c97a5f2241cc6cd99ef0c4527ea507a50841f60b +eb8a3948c4be0d23eb7326d27f2271be893b3409 +725c3605c2d26d113637097358cd4c08c19ff9e1 +2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83 +ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb +ca096e158912080493a898b0b8a4bd2902674fed +5f771fed91c8e4b666489ba2384d0705bcf75030 +dad6b36fd515bda801f3d22a462cc62348f6aad8 +2d7c2c015053fff5300515a7addcd74b523f3f66 +29db16efc3b378c50511f743e5197a4c0b9e902f +cd63759842a56bd2ede3999f6e11a74ccbec318b +893239f17dc2d17183410d8a98b0440d98fa2679 +e5dfd17dbfc9647ccc7323a5d62f65721b318ba9 +cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f +87b607b8d4858a16731144d17f457a54e488f15d +be7444c891caf295d162233bdae0e1c79791d566 +ffc81ced9ee8223ab0adb18817321cbee99606e6 +4b9ec224949c79a980a5a66664d0ac6233c3d575 +c7c53d75f6e963b403057d8ba5952e4974a779ad +4a3758f283b7c484d3f164528d73bc8667eb1591 +3dce635ce4b55fb63fc6d41b38640403b152a048 +0cf2eecf20cfbcb7f153713479e3206670ea0e9c +f2902f5956d7e2dca536d9131d4334f85f52f783 +ff012c56b9b1de969328dacd13e26b7138ff298b +ebbceab4e15bf641f74e335b70c6c4490a043961 +0c6a566ebdac4bd14e80cd6bf4631bc7458e1595 +fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f +604a281100784b4d5bc1a6db993d423abc5dc8f0 +23edcd0d2011d9c0d421193af061f2eb3e155da3 +8355d095d3534ef511a9af68a3b2893339e3f96b +b034cc919af30e96ee7bed769b93ea5828ae361b +834736698f2cc5c221c22369abe95515243a9fc3 +c29fe5ed41d2240352fcb8d8196eb2f31d009522 +3337cfc3de2c16dee6f7cbeda5f263409a9ad81e +d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d +7c11fa4fd91cb57e6e216117febcdd748e595760 +c05a7c72e679745deab9c9d7d481f7b5b9b36bdd +f374ac9307be5f25145b44931f5a53b388a77e49 +141cb9ee401f223220d3468592effa90f0c255fa +f4251e02f87ac3fcae70bdb313f13ed16ff6ff0a +414d78e32ac41e6ff8b192bc095fe55f865a02f4 +cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab +ed32df6b122b15a52238777c9993ed31107b4bed +b5f9306c3207ac12ac761e7d028c78b3009a219c +51bb86dc8748088a198b216f7e97616634147388 +6a5d7d20a8c4993d56bcf702c772aa3f95f99450 +cb004e9706f12d1de83b88c209ac948b137caae0 +f231046d5f5d87e2ca5fae88f41e8d74964e8f4f +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5 +d6c8f5674030cf3f5a2f7cc929bad37a422b26a0 +b7894c1f805ffd90ab4ab06002c70de68d6982ab +f2896dd2701fbb3564492a12c64f11a5ad456a67 +fe866887d3c26ee72590c440ed86ffc80e980293 +daa120032d8f141bc6aae20e23b1b754a0dd7d5f +ac26166857e55fd5c64ae7194a169ff4e473eb8b +13aef395f426ca8bd93640c9c3f848398b189874 +7195cb08ba2248f3214f5dc5d7881533dd1f46d9 +4b5ff8c67f3496a414f94e35cb35a601ec98e5cf +4ab84f203b0e752be83f7f213d7495b04b1c4c79 +1f3f7df159c338884ddfd38ee2d3ba2e1e3ada69 +bc6de183cd8b2baeebafeefcf40be88468b04b74 +d4288daef6519f6852f59ac6b85e21b8910f2207 +efb24d35d8f6a46e1ff3800a2481bc7e681e255e +aee3427d0814d8a398fd31f4f46941e9e5488d83 +0e192ca16ce1c967e21d62f9810591eed3d6904b +4f37f71517420c93c6841beb33ca0926354fa11d +cce332405ce9cd9dccc45efac26d1d614eaa982d +a5f35880477ae82902c620245e258cf854c09be9 +9944c451b4a487940d3fd8819080fe16d627892d +7117ed0be436c0291bc6fb6ea6db18de74e2464a +62b3598b401c807288a113796f424612cc5833ca +3cb057a24a8adba6fe964b5d461ba4e4af68af14 +68c1090f912b69b76437644dd16922909dd40d60 +c4fb2de4a5dc28710d9880aece321acf68338fde +c00df53bd46f78ae925c5768d46080159d4ef87d +68d2afd8c5c1c3a9bbda3dd209184e368e4376b9 +fdf8e293a7618f560e76bd83e3c40a0788104547 +759cf57215fcfdd8f59c97d14e7f3f62fafa2b30 +043efe5f465704ced8d71a067d2b9d5aa5b59c29 +14ee4948be56caeb30aa3b94968ce663e7496ce4 +3b73f8a2b39751efb7d7b396bf825af2aaadee24 +be632b206f1cd38eab0c01c5f2004d1e8fc72880 +8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a +dbc8ffd6457147ff06cd3f56834e3ec6dccb2057 +c34532fe6bfbd1e6df477c9ffdbb043b77e7804d +d7593148e4319df7a288180d920f2822eeecea0b +ed0cf5f577f5030ac68ab62fee1cf065349484cc +e853484dc585bed4b0ed0c5eb4bc6d9d93a16211 +87e592ee1a7e2d34e6b115da08700a1ae02e9355 +0a85afebaa19c80fddb660110a4352fd22eb2801 +c7f0c0636d27a1d45b8fcef37e545b902195d937 +4ccf64fc1c9ca71d6aefdf912caf8fea048fb211 +fd892e912149e3f5ddd82499e16f9ea0f0063fa3 +06c2086f7f72536bf970ca629151b16927104df3 +6dddf1440617bf7acda40d4d75c7fb4bf9517dbb +3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2 +8d5998cd984e7cce307da7d46f155f9db99c6590 +6f3054f182c34ace890a32fdf1656b583fbc7445 +803c92a3f0815dbf97e30c4ee9450fd005586e1a +a7664247a37a89c74d0e1a1606a99119cffc41d4 +f7b422df567ce9813926461251517761e3e6cda0 +71c4b8e1bb25ee80f4317411ea8180dae6499524 +4b61d8490bf034a2ee8aa26601d13c83ad7f843a +26a44feb7a64db7986473ca801c251aa88748477 +854b1f0581f5d3340f15eb79452363cbf38c04c8 +b40c001b3e304dccb28c745bd54aa281c8ff1f29 +a16fb74ea66025d1f346045fda00bd287c20af0e +0951f42abbf649bb564a21d4ff5dddf9a5ea54d9 +c19222d138eb45903a3aa7e46030979d50769771 +6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc +ec5c63609cf56496715b0eba0e906de3231ad6d1 +16d6737b50f969247339a6860da2109a8664198a +31ea88f29e7f01a9801648d808f90862e066f9ea +cd7a7be3804fd217e9f10682e0c0bfd9583a08db +f0cee87e9ecedeb927664b8da44b8649050e1c86 +5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c +d0471d5907d6557cf081edf4c7c2296c3c221a38 +7361b900018f22e37499443643be1ff9d20edfd6 +2e9c780ee8145f29bd1a000585dd99b14d1f5894 +d278e020be85a1ccd90aa366b70c43884dd3f798 +017e94ad51c9be864b98c9b75582753ce6ee134f +0cfca73806f443188632266513bac6aaf6923fa8 +b161d261fabb507803a9e5834571d56a3b87d147 +cfdc632adcb799dba14af6a8339ca761725abf0a +c254b4c0f6d5a5a45680eb3742907ec93c3a222b +eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6 +ced7811f2b694e54e3d96ec5398e4b6afca67fc0 +6601a0906e503a6221d2e0f2ca8c3f544a4adab7 +1bd9dbe78918ed17b0a3ac40623f044cb3d3552c +9961f1e5cf8fda29912344773bc75c47f18333a0 +8de6deefb90fb9b3f7d451b9d8a1a3264b768482 +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4 +9e10ea753b9767aa2f91dafe8545cd6f44befd7f +286a5c19a43382a21c8d96d847b52bba6b715a71 +33aa980544a9d627f305540059828597354b076c +6b6ff9d55e1df06f8b3e6f257e23557a73b2df96 +26c8ed504f852eda4a2e63dbbbc3480e57f43c70 +1aa61dd85d3a5a2fe819cba21192ec4471c08628 +969626c52d30ea803064ddef8fb4613fa73ba11d +66837add89caffd9c91430820f49adb5d3f40930 +07a328999666ef2dc28ce57bc1881d10e6f0b370 +b484141b99d3478a12b8a6854864c4b875d289b8 +80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923 +adf62dfa00748381ac21634ae97710bb80fc2922 +c7745f941532b7d6fa70db09e81eb1167f70f8a7 +895081d6a5545ad6385bfc6fcf460fc0b13bac86 +7b47dd9302b3085cd6705614b88d7bdbc8ae5c13 +6a6269e591e11f41d59c2ca1e707aaa1f0d57de6 +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac +3266fbaaa317a796d0934b9a3f3bb7c64992ac7d +58217ae5423828ed5e1569bee93d491569d79970 +eb6f2b5529f2a7bc8b5b03b1171f75a4c753a0b2 +c362116a358320e71fb6bc8baa559142677622d2 +23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e +ddbb6e0913ac127004be73e2d4097513a8f02d37 +12ebeb2176a5043ad57bc5f3218e48a96254e3e9 +f8162276f3b21a3873dde7a507fd68b4ab858bcc +e1d1540a718bb7a933e21339f1a2d90660af7353 +f64574ee0e6247b84d573ddb5c6e2c4ba798ffff +ecc4be938f0e61a9c6b5111e0a99013f2edc54b9 +7e600faee0ba11467d3f7aed57258b0db0448a72 +73dcb4c452badb3ee39a2f222298b234d08c21eb +fa80344137c4d158bf59be4ac5591d074483157a +0f7e9199dad3237159e985e430dd2bf619ef2db5 +ec90d333588421764dff55658a73bbd3ea3016d2 +7e56d9ebd47490bb06a8ff0bd5bcd8672ec52364 +bed8feb11e8077df158e16bce064853cf217ba62 +b3add9bc9e70b6b28ba31e843e9155e7c37f3958 +79c3a7131c6c176b02b97d368cd0cd0bc713ff7e +53dd25350d3b3aaf19beb2104f1e389e3442df61 +b598f7761b153ecb26e9d08d3c5817aac5b34b52 +679b72d23a9cfca8a7fe14f1d488363f2139265f +c91da328fe50821182e1ae4e7bcbe2b62496f8b9 +a758b744a6d6962f1ddce6f0d04292a0b5cf8e07 +0ba5369c5e1e87ea172089d84a5610435c73de00 +49358915ae259271238c7690694e6a887b16f7ed +f3cf10c84c4665a0b28734f5233d423a65ef1f23 +72167c9e4e03e78152f6df44c782571c3058050e +8a4893d825db22f398b81d6a82ad2560832cd890 +afdc303b3325fbc1baa9f18a66bcad59d5aa675b +b69bcb5f73999ea12ff4ac1ac853b72cd5096b2d +4f9e00aaf2736b79e415f5e7c8dfebda3043a97d +db0379c9b02e514f10f778cccff0d6a6acf40519 +db3545a983ffd24c97c18bf7f068783102548ad7 +ac03849956ac470c41585d2ee34d8bb58bb3c764 +b91f54e1581fbbf60392364323d00a0cd43e493c +9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd +c84de67ec2a5d687869d0c3ca8ac974aaa5ee765 +95b9df34bcf4ae04beea55c11cf0cc4095aa38dc +994f7c469219ccce59c89badf93c0661aae34264 +a38045ed82d6800cbc7a4feb498e694740568258 +51410d6bd9a41eacb105f15dbdaee520e050d646 +e0939b4518a5ad649ba04194f74f3413c793f28e +60821d447e5b8a96dd9294a0514911e1141ff620 +eafda8a94e410f1ad53b3e193ec124e80d57d095 +629a973ca5f3c7d2f4a9befab97d0044dfd3167a +395bf182983e0917f33b9701e385290b64e22f9a +d89a754d7c59e025d2bfcdb872d2d061e2e371ba +82a610a59c210ff77cfdde7fd10c98067bd142da +2f67d5448b5372f639633d8d29aac9c0295b4d72 +fc7f140fcedfe54dd63769268a36ff3f175662b5 +0be43cf4299ce2067a0435798ef4ca2fbd255901 +ba17782ca5fc0d932317389c2adf94b5dbd3ebfe +2e7e1ee7e3ee1445939480efd615e8828b9838f8 +2c7185bcf31a4950b014b67ca7c63735ee00d56f +d10cfcf206b0991e3bc20ac28df1f61c63516f30 +bd8d579715d58405dfd5a77f32920aafe018fce4 +3674f3597bbca3ce05e4423611d871d09882043b +3e2b9ffeb708b4362ebfad95fa7bb0101db1579d +1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc +7eb8476024413269bfb2abd54e88d3e131d0aa0e +5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6 +9ac2960f646a46b701963230e6949abd9ac0a9b3 +3bf579baf0903ee4d4180a29739bf05cbe8f4a74 +f8f872044be2918de442ba26a30336d80d200c42 +98d1b5515b079492c8e7f0f9688df7d42d96da8e +d3dea0cd65ab3da14cb7b3bd0ec59531d98508aa +8fba84af61ac9b5e2bcb69b6730a597d7521ad73 +c4a2cd5ec81cdfd894c9a20d4ffb8cda637aab1f +734cdda4a4de2a635404e4c6b61f1b2edb3f501d +c61a8940d66eed9850b35dd3768f18b59471ca34 +5f2c210644c1e567435d78522258e0ae036deedb +15cf1f17aeba62cd834116b770f173b0aa614bf4 +e8c6c3fc9b52dffb15fe115702c6f159d955d308 +95b5296f7ec70455b0cf1748cddeaa099284bfed +51d6a8a61ea9588a795b20353c97efccec73f5db +ac8e09128e1e48a2eae5fa90f252ada689f6eae7 +4f4f920eb43399d8d05b42808e45b56bdd36a929 +fcf393a90190e376b617cc02e4a473106684d066 +5550a6df1b118a80c00a2459bae216a7e8e3966c +33548531f9ed2ce6f87b3a1caad122c97f1fd2e9 +f6532bf13a4649b7599eb40f826aa5281e392c61 +292e1c88d43a77dbe5c610f4f611cfdb6d3212b6 +270733d986a1eb72efda847b4b55bc6ba9686df4 +5d2e5833ca713f95adcf4267148ac2ccf2318539 +8b2c090d9007e147b8c660f9282f357336358061 +df90850f1c153bfab691b985bfe536a5544e438b +ae2c71080b0e17dee4e5a019d87585f2987f0508 +8127b7654d6e5c46caaf2404270b74c6b0967e19 +b42a97fb47bcd6bfa72e130c08960a77ee96f9ab +2e832d5657bf9e5678fd45b118fc74db07dac9da +75879ab7a77318bbe506cb9df309d99205862f6c +9436170c648c40b6f4cc3751fca3674aa82ffe9a +f7be8956639e66e534ed6195d929aed4e0b90cad +fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59 +f5603ceaebe3caf6a812edef9c4b38def78cbf34 +c30e4e4994b76605dcb2071954eaaea471307d80 +cfa92e17809e8d20ebc73b4e531a1b106d02b38c +335435a94f8fa9c128b9f278d929c9d0e45e2510 +bcc346f4a287d96d124e1163e4447bfc47073cd8 +5d9971c6a9d5c56463ea186850b16f8969a58e67 +b961e512242ddad7712855ab00b4d37723376e5d +49e975a4c60d99bcc42c921d73f8d89ec7130916 +6a6406906470be10f6d6d94a32741ba370a1db68 +5f27ed82c52339124aa368507d66b71d96862cb7 +5db4fe0ce9e9227042144758cf6c4c2de2042435 +6856a11b98ffffeff6e2f991d3d1a1232c029ea1 +b14e3fe0d320c0d7c09154840250d70bc88bb6c0 +31f1c92dbfa5aa338a21a0cb15d071cb9dc6e362 +89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199 +eacf974e235add458efb815ada1e5b82a05878fa +fe464b2b54154d231671750053861f5fd14454f5 +08f4832507259ded9700de81f5fd462caf0d5be8 +c87d5036d3a374c66ec4f5870df47df7176ce8b9 +59efb1ac77c59abc8613830787d767100387c680 +a285b6edd47f9b8966935878ad4539d270b406d1 +c72e6992f44ce75a40f44be4365dc4f264735cfb +6cb8c52bb421ce04898fa42cb997c04097ddd328 +08fbbfe87563595508a77629e47613d6bd1119eb +ce2945e369603fcec1fcdc6e19aac5996325cba9 +4db99a2268a120c7af636387241188064ea42338 +2744e6d526b8f2c1b297ac2d2458aaa08b0cda11 +db5a00984fa54b9d2a1caad0067a9ff0d0489517 +ae5e92abd5929ee7f0a5aa1622aa094bac4fae29 +9e297343da13cf9ba0ad8b5b75c07723136f4885 +edff76149ec44f6849d73f019ef9bded534a38c2 +1d7df3df839a6aa8f5392310d46b2a89080a3c25 +07377c375ac76a34331c660fe87ebd7f9b3d74c4 +52472ec859131844f38fc7d57944778f01d109ac +a2b4a6c6b32900a066d0257ae6d4526db872afe2 +9ca542d744149f0efc8b8aac8289f5e38e6d200c +4317856a1458baa427dc00e8ea505d2fc5f118ab +eb3066de677f9f6131aab542d9d426aaf50ed2ce +574b62c845809fd54cc168492424c5fac145bc83 +84c5b45328dee855c4855a104ac9c0558cc8a328 +7e2cfbfd43045fbd6aabd9a45090a5716fc4e179 +fb85867c989b9ee6b7899134136f81d6372526a9 +946017d5f11aa582854ac4c0e0f1b18b06127ef1 +050a149051a5d268fcc5539e8b654c2240070c82 +8334da483f1986aea87b62028672836cb3dc6205 +b2470969e4fba92f7909eac26b77d08cc5575533 +c678920facffd35853c9d185904f4aebcd2d8b49 +cdef0eaff4a3c168290d238999fc066ebc3a93e8 +fa641327dc5873276f0af453a2caa1634c16f143 +b5ca8d4f259f35c1f3edfd9f108ce29881e478b0 +61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa +7df268a3f4da7d747b792882dfb0cbdb7cc431bc +ea03a569272d329090fe60d6bff8d119e18057d7 +cbb27980eb04f68d9f10067d3d3c114efa9d0054 +90498b95fe8b299ce65d5cafaef942aa58bd68b7 +92be73dffd3320fe7734258961fe5a5f2a43390e +ac855f0de9086e9e170072cb37400637f0c9b735 +ef2bb8bd93fa8b44414565b32735334fa6823b56 +f20e0eefd007bc310d2a753ba526d33a8aba812c +80097a879fceff2a9a955bf7613b0d3bfa68dc23 +1275852f2e78ed9afd189e8b845fdb5393413614 +82eff71af91df2ca18aebb7f1153a7aed16ae7cc +0ee737085af468f264f57f052ea9b9b1f58d7222 +566563a02dbaebec07429046122426acd7039166 +a3201e955d6607d383332f3a12a7befa08c5a18c +5babbad3daac5c26503088782fd5b62067b94fa5 +0e2ea7af369dbcaeb5e334b02dd9ba5271b10265 +de0eb358b890d92e8f67592c6e23f0e3b2ba3f66 +3c563542db664321aa77a9567c1601f425500f94 +7224d58a7e1f02b84994b60dc3b84d9fe6941ff5 +cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae +7d40e7e5c01bd551edf65902386401e1b8b8014b +dbced84d839165d9b494982449aa2eb9109b8467 +035c8632c1ffbeb75efe16a4ec50c91e20e6e189 +ff76ff05aa1ab17e5ca9864df2252e6bb44c8a17 +be4f18e25b06f430e2de0cc8fddcac8585b00beb +ecd08edab496801fd4fde45362dde462d00ee91c +6cce5ccc5d366996f5a32de17a403341db5fddc6 +1063be2ad265751fb958b396ee26167fa0e844d2 +101569eeef2cecc576578bd6500f1c2dcc0274e2 +5b721f86f4a394f05350641e639a9d6cb2046c45 +53de11d144cd2eda7cf1bb644ae27f8ef2489289 +84c0f814951b80c3b2e39caf3925b56a9b2e1733 +3bf8e4d89b9e6d004de6ea52e3e9d68f6015f94b +651cafb2620ab60a0e4f550c080231f20ae6d26e +b712f08f819b925ff7587b6c09a8855bc295d795 +c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290 +5161e38e4ea716dcfb554ccb88901b3d97778f64 +9a98dd6d6aaba05c9e46411ea263f74df908203d +9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca +f2d605985821597773bc6b956036bdbc5d307386 +ce032dae834f383125cdd852e7c1bc793d4c3ba3 +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39 +656531036cee6b2c2c71954bb6540ef6b2e016d0 +63fd7a159e58add133b9c71c4b1b37b899dd646f +3646b42511a6a0df5470408bc9a7a69bb3c5d742 +82eb267b8e86be0b444e841b4b4ed4814b6f1942 +d3faed04712b4634b47e1de0340070653546deb2 +7c47da191f935811f269f9ba3c59556c48282e80 +227b1a09b942eaf130d1d84cdcabf98921780a22 +aad4c94fd55d33a3f3a5377bbe441c9474cdbd1e +31cdaaa7a47efe2ce0e78ebec29df4d2d81df265 +b1451721864e836069fa299a64595d1655793757 +cccd0edb5dafb3a160179a60f75fd8c835c0be82 +e7697c7b626ba3a426106d83f4c3a052fcde02a4 +66d087f3dd2e19ffe340c26ef17efe0062a59290 +def569db592ed1715ae509644444c3feda06a536 +a6590c49e44aa4975b2b0152ee21ac8af3097d80 +c847de9faa1f1a06d5647949a23f523f84aba7f3 +edde81b2bdd61bd757b71a7b3839b6fef81f4be4 +a29566375836f37173ccaffa47dea25eb1240187 +5fea59ccdab484873081eaa37af88e26e3db2aed +94325522c9be8224970f810554611d6a73877c13 +4e32fbb58154e878dd2fd4b06398f85636fd0cf4 +61262450d4d814865a4f9a84299c24daa493f66e +c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74 +f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a +a3f69a073dcfb6da8038607a9f14eb28b5dab2db diff --git a/scraper/reports/misc/missing.csv b/scraper/reports/misc/missing.csv new file mode 100644 index 00000000..62bee46d --- /dev/null +++ b/scraper/reports/misc/missing.csv @@ -0,0 +1,2449 @@ +57246142814d7010d3592e3a39a1ed819dd01f3b +7788fa76f1488b1597ee2bebc462f628e659f61e +cca9ae621e8228cfa787ec7954bb375536160e0d +75249ebb85b74e8932496272f38af274fbcfd696 +47190d213caef85e8b9dd0d271dbadc29ed0a953 +8bdf6f03bde08c424c214188b35be8b2dec7cdea +3dfb822e16328e0f98a47209d7ecd242e4211f82 +d0509afe9c2c26fe021889f8efae1d85b519452a +4b48e912a17c79ac95d6a60afed8238c9ab9e553 +084bebc5c98872e9307cd8e7f571d39ef9c1b81e +a32c5138c6a0b3d3aff69bcab1015d8b043c91fb +1275d6a800f8cf93c092603175fdad362b69c191 +b4ee64022cc3ccd14c7f9d4935c59b16456067d3 +d46b790d22cb59df87f9486da28386b0f99339d3 +d7cbedbee06293e78661335c7dd9059c70143a28 +eb027969f9310e0ae941e2adee2d42cdf07d938c +7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a +be4faea0971ef74096ec9800750648b7601dda65 +831b4d8b0c0173b0bac0e328e844a0fbafae6639 +746c0205fdf191a737df7af000eaec9409ede73f +b0c1615ebcad516b5a26d45be58068673e2ff217 +c866a2afc871910e3282fd9498dce4ab20f6a332 +9131c990fad219726eb38384976868b968ee9d9c +511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7 +e1256ff535bf4c024dd62faeb2418d48674ddfa2 +8ccde9d80706a59e606f6e6d48d4260b60ccc736 +6789bddbabf234f31df992a3356b36a47451efc7 +2c052a1c77a3ec2604b3deb702d77c41418c7d3e +f442a2f2749f921849e22f37e0480ac04a3c3fec +ef230e3df720abf2983ba6b347c9d46283e4b690 +bd8f77b7d3b9d272f7a68defc1412f73e5ac3135 +54a9ed950458f4b7e348fa78a718657c8d3d0e05 +d02e27e724f9b9592901ac1f45830341d37140fe +6993bca2b3471f26f2c8a47adfe444bfc7852484 +00fb2836068042c19b5197d0999e8e93b920eb9c +007fbc7a1d7eae33b2bb59b175dd1033e5e178f3 +c5e37630d0672e4d44f7dee83ac2c1528be41c2e +ff9195f99a1a28ced431362f5363c9a5da47a37b +9865fe20df8fe11717d92b5ea63469f59cf1635a +1badfeece64d1bf43aa55c141afe61c74d0bd25e +1e21b925b65303ef0299af65e018ec1e1b9b8d60 +1b55c4e804d1298cbbb9c507497177014a923d22 +23ce6f404c504592767b8bec7d844d87b462de71 +ada063ce9a1ff230791c48b6afa29c401a9007f1 +59fc69b3bc4759eef1347161e1248e886702f8f7 +0750a816858b601c0dbf4cfb68066ae7e788f05d +552122432b92129d7e7059ef40dc5f6045f422b5 +368e99f669ea5fd395b3193cd75b301a76150f9d +e3d76f1920c5bf4a60129516abb4a2d8683e48ae +3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827 +6c66ae815e7e508e852ecb122fb796abbcda16a8 +28d4e027c7e90b51b7d8908fce68128d1964668a +5da827fe558fb2e1124dcc84ef08311241761726 +30870ef75aa57e41f54310283c0057451c8c822b +b9d0774b0321a5cfc75471b62c8c5ef6c15527f5 +e87d6c284cdd6828dfe7c092087fbd9ff5091ee4 +305346d01298edeb5c6dc8b55679e8f60ba97efb +ee2ec0836ded2f3f37bf49fa0e985280a8addaca +c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8 +61f04606528ecf4a42b49e8ac2add2e9f92c0def +4c4e49033737467e28aa2bb32f6c21000deda2ef +7c6686fa4d8c990e931f1d16deabf647bf3b1986 +12095f9b35ee88272dd5abc2d942a4f55804b31e +6de935a02f87aa31e33245c3b85ea3b7f8b1111c +cf736f596bf881ca97ec4b29776baaa493b9d50e +eb48a58b873295d719827e746d51b110f5716d6c +dce5e0a1f2cdc3d4e0e7ca0507592860599b0454 +b76af8fcf9a3ebc421b075b689defb6dc4282670 +54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6 +9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb +3c6cac7ecf546556d7c6050f7b693a99cc8a57b3 +5b5b9c6c67855ede21a60c834aea5379df7d51b7 +c858c74d30c02be2d992f82a821b925669bfca13 +713db3874b77212492d75fb100a345949f3d3235 +ccf16bcf458e4d7a37643b8364594656287f5bfc +ed1886e233c8ecef7f414811a61a83e44c8bbf50 +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f +9ca7899338129f4ba6744f801e722d53a44e4622 +034b3f3bac663fb814336a69a9fd3514ca0082b9 +f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53 +bbf28f39e5038813afd74cf1bc78d55fcbe630f1 +4ac3cd8b6c50f7a26f27eefc64855134932b39be +4a8480d58c30dc484bda08969e754cd13a64faa1 +766728bac030b169fcbc2fbafe24c6e22a58ef3c +701f56f0eac9f88387de1f556acef78016b05d52 +ed96f2eb1771f384df2349879970065a87975ca7 +45e7ddd5248977ba8ec61be111db912a4387d62f +afdf9a3464c3b015f040982750f6b41c048706f5 +ba1c0600d3bdb8ed9d439e8aa736a96214156284 +a0b1990dd2b4cd87e4fd60912cc1552c34792770 +e4fa062bff299a0bcef9f6b2e593c85be116c9f1 +963d0d40de8780161b70d28d2b125b5222e75596 +ed09db68bf317cad27df6ed96a0c16eab6b2f827 +a0fd85b3400c7b3e11122f44dc5870ae2de9009a +ce9e1dfa7705623bb67df3a91052062a0a0ca456 +daa4cfde41d37b2ab497458e331556d13dd14d0b +4b936847f39094d6cb0bde68cea654d948c4735d +c5ea084531212284ce3f1ca86a6209f0001de9d1 +f095b5770f0ff13ba9670e3d480743c5e9ad1036 +bbc5f4052674278c96abe7ff9dc2d75071b6e3f3 +3be8f1f7501978287af8d7ebfac5963216698249 +7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4 +b1fdd4ae17d82612cefd4e78b690847b071379d3 +708f4787bec9d7563f4bb8b33834de445147133b +88e2efab01e883e037a416c63a03075d66625c26 +696236fb6f986f6d5565abb01f402d09db68e5fa +f61829274cfe64b94361e54351f01a0376cd1253 +96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d +0a34fe39e9938ae8c813a81ae6d2d3a325600e5c +837e99301e00c2244023a8a48ff98d7b521c93ac +fdff2da5bdca66e0ab5874ef58ac2205fb088ed7 +3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f +d9deafd9d9e60657a7f34df5f494edff546c4fb8 +9207671d9e2b668c065e06d9f58f597601039e5e +a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc +6d8c9a1759e7204eacb4eeb06567ad0ef4229f93 +87e6cb090aecfc6f03a3b00650a5c5f475dfebe1 +1fb980e137b2c9f8781a0d98c026e164b497ddb1 +6966d9d30fa9b7c01523425726ab417fd8428790 +01e27b6d1af4c9c2f50e2908b5f3b2331ff24846 +5bd3d08335bb4e444a86200c5e9f57fd9d719e14 +a40edf6eb979d1ddfe5894fac7f2cf199519669f +40e1743332523b2ab5614bae5e10f7a7799161f4 +f201baf618574108bcee50e9a8b65f5174d832ee +80ed678ef28ccc1b942e197e0393229cd99d55c8 +5fa6e4a23da0b39e4b35ac73a15d55cee8608736 +17c0d99171efc957b88c31a465c59485ab033234 +6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d +530243b61fa5aea19b454b7dbcac9f463ed0460e +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e +d4a5eaf2e9f2fd3e264940039e2cbbf08880a090 +0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a +3352426a67eabe3516812cb66a77aeb8b4df4d1b +2724ba85ec4a66de18da33925e537f3902f21249 +234c106036964131c0f2daf76c47ced802652046 +f0a4a3fb6997334511d7b8fc090f9ce894679faf +83295bce2340cb87901499cff492ae6ff3365475 +fd809ee36fa6832dda57a0a2403b4b52c207549d +74ce7e5e677a4925489897665c152a352c49d0a2 +e4754afaa15b1b53e70743880484b8d0736990ff +185263189a30986e31566394680d6d16b0089772 +2c62b9e64aeddf12f9d399b43baaefbca8e11148 +7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0 +c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd +6b8d0569fffce5cc221560d459d6aa10c4db2f03 +56fd4c05869e11e4935d48aa1d7abb96072ac242 +1fe1a78c941e03abe942498249c041b2703fd3d2 +f070d739fb812d38571ec77490ccd8777e95ce7a +ec1e03ec72186224b93b2611ff873656ed4d2f74 +dcf6ecd51ba135d432fcb7697fc6c52e4e7b0a43 +e97ba85a4550667b8a28f83a98808d489e0ff3bc +6e38011e38a1c893b90a48e8f8eae0e22d2008e8 +86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd +dee406a7aaa0f4c9d64b7550e633d81bc66ff451 +51b42da0706a1260430f27badcf9ee6694768b9b +891b10c4b3b92ca30c9b93170ec9abd71f6099c4 +f2d5bb329c09a5867045721112a7dad82ca757a3 +8f772d9ce324b2ef5857d6e0b2a420bc93961196 +6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb +927ba64123bd4a8a31163956b3d1765eb61e4426 +e01bb53b611c679141494f3ffe6f0b91953af658 +f7ae38a073be7c9cd1b92359131b9c8374579b13 +f7dea4454c2de0b96ab5cf95008ce7144292e52a +c3d3d2229500c555c7a7150a8b126ef874cbee1c +eee06d68497be8bf3a8aba4fde42a13aa090b301 +bbd1eb87c0686fddb838421050007e934b2d74ab +370b6b83c7512419188f5373a962dd3175a56a9b +2201f187a7483982c2e8e2585ad9907c5e66671d +438c4b320b9a94a939af21061b4502f4a86960e3 +cb13e29fb8af6cfca568c6dc523da04d1db1fff5 +b26e8f6ad7c2d4c838660d5a17337ce241442ed9 +ec8ec2dfd73cf3667f33595fef84c95c42125945 +8a63a2b10068b6a917e249fdc73173f5fd918db0 +7cfbf90368553333b47731729e0e358479c25340 +9b2c359c36c38c289c5bacaeb5b1dd06b464f301 +7b0f1fc93fb24630eb598330e13f7b839fb46cce +0f21a39fa4c0a19c4a5b4733579e393cb1d04f71 +9901f473aeea177a55e58bac8fd4f1b086e575a4 +754f7f3e9a44506b814bf9dc06e44fecde599878 +127c7f87f289b1d32e729738475b337a6b042cf7 +30fd1363fa14965e3ab48a7d6235e4b3516c1da1 +9627f28ea5f4c389350572b15968386d7ce3fe49 +b93bf0a7e449cfd0db91a83284d9eba25a6094d8 +6a52e6fce541126ff429f3c6d573bc774f5b8d89 +c38b1fa00f1f370c029984c55d4d2d40b529d00c +a60db9ca8bc144a37fe233b08232d9c91641cbb5 +6932baa348943507d992aba75402cfe8545a1a9b +badb95dbdfb3f044a46d7ba0ee69dba929c511b1 +f4ba07d2ae6c9673502daf50ee751a5e9262848f +d06bcb2d46342ee011e652990edf290a0876b502 +91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11 +4342a2b63c9c344d78cf153600cd918a5fecad59 +5b2cfee6e81ef36507ebf3c305e84e9e0473575a +8e24db957be2b643db464cc566bfabc650f1ffac +ded968b97bd59465d5ccda4f1e441f24bac7ede5 +6ad107c08ac018bfc6ab31ec92c8a4b234f67d49 +6dcf418c778f528b5792104760f1fbfe90c6dd6a +5a3da29970d0c3c75ef4cb372b336fc8b10381d7 +e0162dea3746d58083dd1d061fb276015d875b2e +b6bb883dd14f2737d0d6225cf4acbf050d307634 +92e464a5a67582d5209fa75e3b29de05d82c7c86 +9939498315777b40bed9150d8940fc1ac340e8ba +3176ee88d1bb137d0b561ee63edf10876f805cf0 +fb87045600da73b07f0757f345a937b1c8097463 +88a898592b4c1dfd707f04f09ca58ec769a257de +b908edadad58c604a1e4b431f69ac8ded350589a +7df4f96138a4e23492ea96cf921794fc5287ba72 +a6ce2f0795839d9c2543d64a08e043695887e0eb +3bb670b2afdcc45da2b09a02aac07e22ea7dbdc2 +013305c13cfabaea82c218b841dbe71e108d2b97 +f472cb8380a41c540cfea32ebb4575da241c0288 +4bbe460ab1b279a55e3c9d9f488ff79884d01608 +6ca2c5ff41e91c34696f84291a458d1312d15bf2 +3e40991ab1daa2a4906eb85a5d6a01a958b6e674 +85ae6fa48e07857e17ac4bd48fb804785483e268 +657e702326a1cbc561e059476e9be4d417c37795 +93dcea2419ca95b96a47e541748c46220d289d77 +1a327c588b8f1057b40ecba451145dd885598e5d +34fd227f4fdbc7fe028cc1f7d92cb59204333718 +42a6beed493c69d5bad99ae47ea76497c8e5fdae +849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b +96a9ca7a8366ae0efe6b58a515d15b44776faf6e +8986585975c0090e9ad97bec2ba6c4b437419dae +d3b0839324d0091e70ce34f44c979b9366547327 +badcd992266c6813063c153c41b87babc0ba36a3 +51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee +38f1fac3ed0fd054e009515e7bbc72cdd4cf801a +a1e07c31184d3728e009d4d1bebe21bf9fe95c8e +b6f682648418422e992e3ef78a6965773550d36b +2d8001ffee6584b3f4d951d230dc00a06e8219f8 +e4d7b8eb0a8e6d2bb5b90b027c1bf32bad320ba5 +e1630014a5ae3d2fb7ff6618f1470a567f4d90f5 +6c58e3a8209fef0e28ca2219726c15ea5f284f4f +9cc8cf0c7d7fa7607659921b6ff657e17e135ecc +58bf72750a8f5100e0c01e55fd1b959b31e7dbce +c39ffc56a41d436748b9b57bdabd8248b2d28a32 +85ec86f8320ba2ed8b3da04d1c291ce88b8969c0 +93420d9212dd15b3ef37f566e4d57e76bb2fab2f +acee2201f8a15990551804dd382b86973eb7c0a8 +6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd +fe48f0e43dbdeeaf4a03b3837e27f6705783e576 +d4f0960c6587379ad7df7928c256776e25952c60 +c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee +9e105c4a176465d14434fb3f5bae67f57ff5fba2 +94eeae23786e128c0635f305ba7eebbb89af0023 +b3b467961ba66264bb73ffe00b1830d7874ae8ce +40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b +6dbdb07ce2991db0f64c785ad31196dfd4dae721 +9bd35145c48ce172b80da80130ba310811a44051 +67484723e0c2cbeb936b2e863710385bdc7d5368 +f3b7938de5f178e25a3cf477107c76286c0ad691 +c86e6ed734d3aa967deae00df003557b6e937d3d +7eb895e7de883d113b75eda54389460c61d63f67 +5c35ac04260e281141b3aaa7bbb147032c887f0c +cd023d2d067365c83d8e27431e83e7e66082f718 +d69271c7b77bc3a06882884c21aa1b609b3f76cc +b084683e5bab9b2bc327788e7b9a8e049d5fff8f +e5d53a335515107452a30b330352cad216f88fc3 +52d7eb0fbc3522434c13cc247549f74bb9609c5d +6dc1f94b852538d572e4919238ddb10e2ee449a4 +878301453e3d5cb1a1f7828002ea00f59cbeab06 +405d9a71350c9a13adea41f9d7f7f9274793824f +d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1 +96ba65bffdddef7c7737c0f42ff4299e95cd85c2 +c9c9ade2ef4dffb7582a629a47ea70c31be7a35e +e065a2cb4534492ccf46d0afc81b9ad8b420c5ec +dcf71245addaf66a868221041aabe23c0a074312 +9efdb73c6833df57732b727c6aeac510cadb53fe +0b82bf595e76898993ed4f4b2883c42720c0f277 +a896ddeb0d253739c9aaef7fc1f170a2ba8407d3 +72cbbdee4f6eeee8b7dd22cea6092c532271009f +24286ef164f0e12c3e9590ec7f636871ba253026 +377f2b65e6a9300448bdccf678cde59449ecd337 +1ee3b4ba04e54bfbacba94d54bf8d05fd202931d +55e87050b998eb0a8f0b16163ef5a28f984b01fa +4d90d7834ae25ee6176c096d5d6608555766c0b1 +878169be6e2c87df2d8a1266e9e37de63b524ae7 +bc607bee2002c6c6bf694a15efd0a5d049767237 +68caf5d8ef325d7ea669f3fb76eac58e0170fff0 +53bfe2ab770e74d064303f3bd2867e5bf7b86379 +c9bbd7828437e70cc3e6863b278aa56a7d545150 +8818b12aa0ff3bf0b20f9caa250395cbea0e8769 +6f7a8b3e8f212d80f0fb18860b2495be4c363eac +4db0968270f4e7b3fa73e41c50d13d48e20687be +bd9c9729475ba7e3b255e24e7478a5acb393c8e9 +64d7e62f46813b5ad08289aed5dc4825d7ec5cff +30fb5c24cc15eb8cde5e389bf368d65fb96513e4 +bf5940d57f97ed20c50278a81e901ae4656f0f2c +69a55c30c085ad1b72dd2789b3f699b2f4d3169f +ef5531711a69ed687637c48930261769465457f0 +8a8861ad6caedc3993e31d46e7de6c251a8cda22 +ef458499c3856a6e9cd4738b3e97bef010786adb +3b84d074b8622fac125f85ab55b63e876fed4628 +18010284894ed0edcca74e5bf768ee2e15ef7841 +bb2f61a057bbf176e402d171d79df2635ccda9f6 +35e0256b33212ddad2db548484c595334f15b4da +782188821963304fb78791e01665590f0cd869e8 +83f80fd4eb614777285202fa99e8314e3e5b169c +4e0636a1b92503469b44e2807f0bb35cc0d97652 +0ee5c4112208995bf2bb0fb8a87efba933a94579 +e85a255a970ee4c1eecc3e3d110e157f3e0a4629 +923ec0da8327847910e8dd71e9d801abcbc93b08 +9b0ead0a20a2b7c4ae40568d8d1c0c2b23a6b807 +572dbaee6648eefa4c9de9b42551204b985ff863 +2480f8dccd9054372d696e1e521e057d9ac9de17 +556b05ab6eff48d32ffbd04f9008b9a5c78a4ad7 +86f3552b822f6af56cb5079cc31616b4035ccc4e +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae +8fa9cb5dac394e30e4089bf5f4ffecc873d1da96 +e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf +4bf85ef995c684b841d0a5a002d175fadd922ff0 +58d47c187b38b8a2bad319c789a09781073d052d +59d225486161b43b7bf6919b4a4b4113eb50f039 +c038beaa228aeec174e5bd52460f0de75e9cccbe +e43045a061421bd79713020bc36d2cf4653c044d +d1edb8ba9d50817dbfec7e30f25b1846941e84d8 +d307a766cc9c728a24422313d4c3dcfdb0d16dd5 +ed2f4e5ecbc4b08ee0784e97760a7f9e5ea9efae +1c9efb6c895917174ac6ccc3bae191152f90c625 +02fc9e7283b79183eb3757a9b6ddeb8c91c209bb +7ec431e36919e29524eceb1431d3e1202637cf19 +44d23df380af207f5ac5b41459c722c87283e1eb +dc5d04d34b278b944097b8925a9147773bbb80cc +b999364980e4c21d9c22cc5a9f14501432999ca4 +e8f4ded98f5955aad114f55e7aca6b540599236b +d3d39e419ac98db2de1a9d5a05cb0b4ca5cae8fd +206e24f7d4b3943b35b069ae2d028143fcbd0704 +4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec +7ef0cc4f3f7566f96f168123bac1e07053a939b2 +25960f0a2ed38a89fa8076a448ca538de2f1e183 +a5f70e0cd7da2b2df05fadb356a24743f3cf459a +872dfdeccf99bbbed7c8f1ea08afb2d713ebe085 +e9c008d31da38d9eef67a28d2c77cb7daec941fb +c75e6ce54caf17b2780b4b53f8d29086b391e839 +a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d +5435d5f8b9f4def52ac84bee109320e64e58ab8f +9af9a88c60d9e4b53e759823c439fc590a4b5bc5 +b72eebffe697008048781ab7b768e0c96e52236a +57178b36c21fd7f4529ac6748614bb3374714e91 +361eaef45fccfffd5b7df12fba902490a7d24a8d +380d5138cadccc9b5b91c707ba0a9220b0f39271 +4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f +ba01dbfa29dc86d1279b2e9b9eeca1c52509bbda +1860b8f63ce501bd0dfa9e6f2debc080e88d9baa +b59f441234d2d8f1765a20715e227376c7251cd7 +43dce79cf815b5c7068b1678f6200dabf8f5de31 +571b83f7fc01163383e6ca6a9791aea79cafa7dd +ab80582807506c0f840bd1ba03a8b84f8ac72f79 +5180df9d5eb26283fb737f491623395304d57497 +885c37f94e9edbbb2177cfba8cb1ad840b2a5f20 +9fc993aeb0a007ccfaca369a9a8c0ccf7697261d +5e7e055ef9ba6e8566a400a8b1c6d8f827099553 +c87f7ee391d6000aef2eadb49f03fc237f4d1170 +3bb6570d81685b769dc9e74b6e4958894087f3f1 +27da432cf2b9129dce256e5bf7f2f18953eef5a5 +173657da03e3249f4e47457d360ab83b3cefbe63 +ccb54fc5f263a8bc2a8373839cb6855f528f10d3 +a6d47f7aa361ab9b37c7f3f868280318f355fadc +7c8e0f3053e09da6d8f9a1812591a35bccd5c669 +c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0 +e79bacc03152ea55343e6af97bcd17d8904cf5ef +bb0ecedde7d6e837dc9a5e115302a2aaad1035e1 +cdae8e9cc9d605856cf5709b2fdf61f722d450c1 +4d6ad0c7b3cf74adb0507dc886993e603c863e8c +2770b095613d4395045942dc60e6c560e882f887 +17479e015a2dcf15d40190e06419a135b66da4e0 +03ac1c694bc84a27621da6bfe73ea9f7210c6d45 +dbb16032dd8f19bdfd045a1fc0fc51f29c70f70a +59a6c9333c941faf2540979dcfcb5d503a49b91e +84574aa43a98ad8a29470977e7b091f5a5ec2366 +46e72046a9bb2d4982d60bcf5c63dbc622717f0f +ec00ecb64fa206cea8b2e716955a738a96424084 +cd55fb30737625e86454a2861302b96833ed549d +eed93d2e16b55142b3260d268c9e72099c53d5bc +b5fdd7778503f27c9d9bf77fab193b475fab6076 +08903bf161a1e8dec29250a752ce9e2a508a711c +672fae3da801b2a0d2bad65afdbbbf1b2320623e +3ac3a714042d3ebc159546c26321a1f8f4f5f80c +f997a71f1e54d044184240b38d9dc680b3bbbbc0 +bb4be8e24d7b8ed56d81edec435b7b59bad96214 +cef73d305e5368ee269baff53ec20ea3ae7cdd82 +f28b7d62208fdaaa658716403106a2b0b527e763 +76cd5e43df44e389483f23cb578a9015d1483d70 +341002fac5ae6c193b78018a164d3c7295a495e4 +c68ec931585847b37cde9f910f40b2091a662e83 +89d3a57f663976a9ac5e9cdad01267c1fc1a7e06 +bec0c33d330385d73a5b6a05ad642d6954a6d632 +54204e28af73c7aca073835a14afcc5d8f52a515 +2c1ffb0feea5f707c890347d2c2882be0494a67a +7ebb153704706e457ab57b432793d2b6e5d12592 +a1d86c898da3aea54deafd60864aa05dff8a4c9c +49df381ea2a1e7f4059346311f1f9f45dd997164 +a59c0cf3d2c5bf144ee0dbc1152b1b5dd7634990 +f3ca2c43e8773b7062a8606286529c5bc9b3ce25 +b7ec41005ce4384e76e3be854ecccd564d2f89fb +fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139 +c5c53d42e551f3c8f6ca2c13335af80a882009fa +4896909796f9bd2f70a2cb24bf18daacd6a12128 +a98316980b126f90514f33214dde51813693fe0d +3bd10f7603c4f5a4737c5613722124787d0dd818 +809e5884cf26b71dc7abc56ac0bad40fb29c671c +de0df8b2b4755da9f70cf1613d7b12040d0ce8ef +cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce +d44a93027208816b9e871101693b05adab576d89 +841855205818d3a6d6f85ec17a22515f4f062882 +1773d65c1dc566fd6128db65e907ac91b4583bed +021e008282714eaefc0796303f521c9e4f199d7e +f03a82fd4a039c1b94a0e8719284a777f776fb22 +e9a5a38e7da3f0aa5d21499149536199f2e0e1f7 +4e061a302816f5890a621eb278c6efa6e37d7e2f +ac8441e30833a8e2a96a57c5e6fede5df81794af +052f994898c79529955917f3dfc5181586282cf8 +4cdb6144d56098b819076a8572a664a2c2d27f72 +dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935 +b971266b29fcecf1d5efe1c4dcdc2355cb188ab0 +58542eeef9317ffab9b155579256d11efb4610f2 +2983cf95743be82671a71528004036bd19172712 +d9e66b877b277d73f8876f537206395e71f58269 +2a612a7037646276ff98141d3e7abbc9c91fccb8 +6d70344ae6f6108144a15e9debc7b0be4e3335f1 +78174c2be084e67f48f3e8ea5cb6c9968615a42c +ab734bac3994b00bf97ce22b9abc881ee8c12918 +df577a89830be69c1bfb196e925df3055cafc0ed +a3d8b5622c4b9af1f753aade57e4774730787a00 +bb4f83458976755e9310b241a689c8d21b481238 +e00d391d7943561f5c7b772ab68e2bb6a85e64c4 +432d8cba544bf7b09b0455561fea098177a85db1 +6f22628d34a486d73c6b46eb071200a00e3abae3 +73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2 +5b5b568a0ba63d00e16a263051c73e09ab83e245 +fdaf65b314faee97220162980e76dbc8f32db9d6 +d31328b12eef33e7722b8e5505d0f9d9abe2ffd9 +f2700e3d69d3cce2e0b1aea0d7f87e74aff437cd +9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682 +39d6f8b791995dc5989f817373391189d7ac478a +be393cd567b338da6ed60181c8ad429627578a31 +cbca355c5467f501d37b919d8b2a17dcb39d3ef9 +56dca23481de9119aa21f9044efd7db09f618704 +a9ae55c83a8047c6cdf7c958fd3d4a6bfb0a13df +7831ab4f8c622d91974579c1ff749dadc170c73c +d3d5d86afec84c0713ec868cf5ed41661fc96edc +a1081cb856faae25df14e25045cd682db8028141 +ec90738b6de83748957ff7c8aeb3150b4c9b68bb +993d189548e8702b1cb0b02603ef02656802c92b +098363b29eef1471c494382338687f2fe98f6e15 +e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227 +9be653e1bc15ef487d7f93aad02f3c9552f3ee4a +8bebb26880274bdb840ebcca530caf26c393bf45 +feea73095b1be0cbae1ad7af8ba2c4fb6f316d35 +c05ae45c262b270df1e99a32efa35036aae8d950 +b8fc620a1563511744f1a9386bdfa09a2ea0f71b +d3edbfe18610ce63f83db83f7fbc7634dde1eb40 +ed184fda0306079f2ee55a1ae60fbf675c8e11c6 +4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e +e96cef8732f3021080c362126518455562606f2d +9f2984081ef88c20d43b29788fdf732ceabd5d6a +e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69 +80d4cf7747abfae96328183dd1f84133023c2668 +2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44 +c1298120e9ab0d3764512cbd38b47cd3ff69327b +fab60b3db164327be8588bce6ce5e45d5b882db6 +c6382de52636705be5898017f2f8ed7c70d7ae96 +45b9b7fe3850ef83d39d52f6edcc0c24fcc0bc73 +fcf91995dc4d9b0cee84bda5b5b0ce5b757740ac +48499deeaa1e31ac22c901d115b8b9867f89f952 +33ef419dffef85443ec9fe89a93f928bafdc922e +cdcfc75f54405c77478ab776eb407c598075d9f8 +a92147bed9c17c311c6081beb0ef4c3165b6268e +e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7 +e7b2b0538731adaacb2255235e0a07d5ccf09189 +fd15e397629e0241642329fc8ee0b8cd6c6ac807 +5779e3e439c90d43648db107e848aeb954d3e347 +16b9d258547f1eccdb32111c9f45e2e4bbee79af +628a3f027b7646f398c68a680add48c7969ab1d9 +8da32ff9e3759dc236878ac240728b344555e4e9 +014e3d0fa5248e6f4634dc237e2398160294edce +7f26c615dd187ca5e4b15759d5cb23ab3ea9d9a9 +275b5091c50509cc8861e792e084ce07aa906549 +cd4941cbef1e27d7afdc41b48c1aff5338aacf06 +b3ba7ab6de023a0d58c741d6abfa3eae67227caf +1b3587363d37dd197b6adbcfa79d49b5486f27d8 +7d2556d674ad119cf39df1f65aedbe7493970256 +2d8d089d368f2982748fde93a959cf5944873673 +22648dcd3100432fe0cc71e09de5ee855c61f12b +51faacfa4fb1e6aa252c6970e85ff35c5719f4ff +55ea0c775b25d9d04b5886e322db852e86a556cd +3240c9359061edf7a06bfeb7cc20c103a65904c2 +23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f +60542b1a857024c79db8b5b03db6e79f74ec8f9f +aa3c9de34ef140ec812be85bb8844922c35eba47 +8164ebc07f51c9e0db4902980b5ac3f5a8d8d48c +ee463f1f72a7e007bae274d2d42cd2e5d817e751 +d5de42d37ee84c86b8f9a054f90ddb4566990ec0 +b2c60061ad32e28eb1e20aff42e062c9160786be +4641986af5fc8836b2c883ea1a65278d58fe4577 +fa90b825346a51562d42f6b59a343b98ea2e501a +daefac0610fdeff415c2a3f49b47968d84692e87 +f08e425c2fce277aedb51d93757839900d591008 +b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000 +8f3da45ff0c3e1777c3a7830f79c10f5896bcc21 +7697295ee6fc817296bed816ac5cae97644c2d5b +efa08283656714911acff2d5022f26904e451113 +5a5f9e0ed220ce51b80cd7b7ede22e473a62062c +fdfd57d4721174eba288e501c0c120ad076cdca8 +a8d52265649c16f95af71d6f548c15afc85ac905 +f6e00d6430cbbaa64789d826d093f7f3e323b082 +4f8345f31e38f65f1155569238d14bd8517606f4 +16fadde3e68bba301f9829b3f99157191106bd0f +1287bfe73e381cc8042ac0cc27868ae086e1ce3b +663efaa0671eace1100fdbdecacd94216a17b1db +7bbaa09c9e318da4370a83b126bcdb214e7f8428 +103c8eaca2a2176babab2cc6e9b25d48870d6928 +e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa +4f8b4784d0fca31840307650f7052b0dde736a76 +6c01b349edb2d33530e8bb07ba338f009663a9dd +d9a5c82b710b1f4f1ffb67be2ae1d3c0ae7f6c55 +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d +68604e7e1b01cdbd3c23832976d66f1a86edaa8f +cfffae38fe34e29d47e6deccfd259788176dc213 +8ed33184fccde677ec8413ae06f28ea9f2ca70f3 +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4 +b7461aac36fc0b8a24ecadf6c5b5caf54f2aa2f7 +61971f8e6fff5b35faed610d02ad14ccfc186c70 +2902f62457fdf7e8e8ee77a9155474107a2f423e +6cfc337069868568148f65732c52cbcef963f79d +c84233f854bbed17c22ba0df6048cbb1dd4d3248 +f33bd953d2df0a5305fc8a93a37ff754459a906c +e9d43231a403b4409633594fa6ccc518f035a135 +b558be7e182809f5404ea0fcf8a1d1d9498dc01a +64ec02e1056de4b400f9547ce56e69ba8393e2ca +e3b324101157daede3b4d16bdc9c2388e849c7d4 +a4898f55f12e6393b1c078803909ea715bf71730 +4e27fec1703408d524d6b7ed805cdb6cba6ca132 +193bc8b663d041bc34134a8407adc3e546daa9cc +3f9a7d690db82cf5c3940fbb06b827ced59ec01e +6da711d07b63c9f24d143ca3991070736baeb412 +113b06e70b7eead8ae7450bafe9c91656705024c +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab +1d729693a888a460ee855040f62bdde39ae273af +b0c512fcfb7bd6c500429cbda963e28850f2e948 +de162d4b8450bf2b80f672478f987f304b7e6ae4 +e295c1aa47422eb35123053038e62e9aa50a2e3a +bad2df94fa771869fa35bd11a1a7ab2e3f6d1da3 +c98b13871a3bc767df0bdd51ff00c5254ede8b22 +b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4 +7a81967598c2c0b3b3771c1af943efb1defd4482 +31d51e48dbd9e7253eafe0719f3788adb564a971 +506c2fbfa9d16037d50d650547ad3366bb1e1cde +d2f2b10a8f29165d815e652f8d44955a12d057e6 +5cbe1445d683d605b31377881ac8540e1d17adf0 +f1173a4c5e3501323b37c1ae9a6d7dd8a236eab8 +529baf1a79cca813f8c9966ceaa9b3e42748c058 +42ea8a96eea023361721f0ea34264d3d0fc49ebd +632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c +e4abc40f79f86dbc06f5af1df314c67681dedc51 +59b83666c1031c3f509f063b9963c7ad9781ca23 +c12260540ec14910f5ec6e38d95bdb606826b32e +8633732d9f787f8497c2696309c7d70176995c15 +ca44a838da4187617dca9f6249d8c4b604661ec7 +239958d6778643101ab631ec354ea1bc4d33e7e0 +cd444ee7f165032b97ee76b21b9ff58c10750570 +e9809c0c6bf33cfe232a63b0a13f9b1263c58cb8 +4f051022de100241e5a4ba8a7514db9167eabf6e +f94f366ce14555cf0d5d34248f9467c18241c3ee +982fcead58be419e4f34df6e806204674a4bc579 +55c4efc082a8410b528af7325de8148b80cf41e3 +b53485dbdd2dc5e4f3c7cff26bd8707964bb0503 +3803b91e784922a2dacd6a18f61b3100629df932 +fcceea054cb59f1409dda181198ed4070ed762c9 +562f7555e5cb79ce0fe834c4613264d8378dd007 +614079f1a0d0938f9c30a1585f617fa278816d53 +1025c4922491745534d5d4e8c6e74ba2dc57b138 +cbe021d840f9fc1cb191cba79d3f7e3bbcda78d3 +30c93fec078b98453a71f9f21fbc9512ab3e916f +a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892 +2866cbeb25551257683cf28f33d829932be651fe +e16f73f3a63c44cf285b8c1bc630eb8377b85b6d +a00fdf49e5e0a73eb24345cb25a0bd1383a10021 +6a931e7b7475635f089dd33e8d9a2899ae963804 +2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b +6754c98ba73651f69525c770fb0705a1fae78eb5 +9d57c4036a0e5f1349cd11bc342ac515307b6720 +9296f4ac0180e29226d6c016b5a4d5d2964eaaf6 +cc31db984282bb70946f6881bab741aa841d3a7c +fb9ad920809669c1b1455cc26dbd900d8e719e61 +3619a9b46ad4779d0a63b20f7a6a8d3d49530339 +aff8705fb2f2ae460cb3980b47f2e85c2e6dd41a +e287ff7997297ce1197359ed0fb2a0bd381638c9 +beae35eb5b2c7f63dfa9115f07b5ba0319709951 +79744fc71bea58d2e1918c9e254b10047472bd76 +950171acb24bb24a871ba0d02d580c09829de372 +1a849b694f2d68c3536ed849ed78c82e979d64d5 +77fbbf0c5729f97fcdbfdc507deee3d388cd4889 +39c8b34c1b678235b60b648d0b11d241a34c8e32 +26e570049aaedcfa420fc8c7b761bc70a195657c +a775da3e6e6ea64bffab7f9baf665528644c7ed3 +e896389891ba84af58a8c279cf8ab5de3e9320ee +55aafdef9d9798611ade1a387d1e4689f2975e51 +860588fafcc80c823e66429fadd7e816721da42a +1fdeba9c4064b449231eac95e610f3288801fd3e +df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb +652ec3947d3d04dda719b1f5ba7c975e567166ef +0bf0029c9bdb0ac61fda35c075deb1086c116956 +281486d172cf0c78d348ce7d977a82ff763efccd +b104c8ef6735eba1d29f50c99bbbf99d33fc8dc2 +68f61154a0080c4aae9322110c8827978f01ac2e +747c25bff37b96def96dc039cc13f8a7f42dbbc7 +fc0f5859a111fb17e6dcf6ba63dd7b751721ca61 +b6d0e461535116a675a0354e7da65b2c1d2958d4 +f5c57979ec3d8baa6f934242965350865c0121bd +ae2cf545565c157813798910401e1da5dc8a6199 +ef4ecb76413a05c96eac4c743d2c2a3886f2ae07 +f76a6b1d6029769e2dc1be4dadbee6a7ba777429 +2cac8ab4088e2bdd32dcb276b86459427355085c +eaf020bc8a3ed5401fc3852f7037a03b2525586a +90e7a86a57079f17f1089c3a46ea9bfd1d49226c +1c25a3c8ef3e2c4dbff337aa727d13f5eba40fb2 +e569f4bd41895028c4c009e5b46b935056188e91 +264f7ab36ff2e23a1514577a6404229d7fe1242b +214072c84378802a0a0fde0b93ffb17bc04f3759 +18941b52527e6f15abfdf5b86a0086935706e83b +51d048b92f6680aca4a8adf07deb380c0916c808 +8bbd40558a99e33fac18f6736b8fe99f4a97d9b1 +0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a +b51d11fa400d66b9f9d903a60c4ebe03fd77c8f2 +b5f3b0f45cf7f462a9c463a941e34e102a029506 +9f1a854d574d0bd14786c41247db272be6062581 +8cb6daba2cb1e208e809633133adfee0183b8dd2 +50a0930cb8cc353e15a5cb4d2f41b365675b5ebf +31dd6bafd6e7c6095eb8d0591abac3b0106a75e3 +73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c +e57014b4106dd1355e69a0f60bb533615a705606 +f4f6fc473effb063b7a29aa221c65f64a791d7f4 +6e00a406edb508312108f683effe6d3c1db020fb +e393a038d520a073b9835df7a3ff104ad610c552 +d904f945c1506e7b51b19c99c632ef13f340ef4c +587b8c147c6253878128ddacf6e5faf8272842a4 +af29ad70ab148c83e1faa8b3098396bc1cd87790 +91ead35d1d2ff2ea7cf35d15b14996471404f68d +93dd4e512cd7647aecbfc0cd4767adf5d9289c3d +19b492d426f092d80825edba3b02e354c312295f +f3ea181507db292b762aa798da30bc307be95344 +7343f0b7bcdaf909c5e37937e295bf0ac7b69499 +2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c +a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8 +3157be811685c93d0cef7fa4c489efea581f9b8e +437642cfc8c34e445ea653929e2d183aaaeeb704 +ccb2ecb30a50460c9189bb55ba594f2300882747 +76b11c281ac47fe6d95e124673a408ee9eb568e3 +4850af6b54391fc33c8028a0b7fafe05855a96ff +f7824758800a7b1a386db5bd35f84c81454d017a +e5fbffd3449a2bfe0acb4ec339a19f5b88fff783 +ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6 +166ef5d3fd96d99caeabe928eba291c082ec75a0 +5632ba72b2652df3b648b2ee698233e76a4eee65 +397257783ccc8cace5b67cc71e0c73034d559a4f +6b333b2c6311e36c2bde920ab5813f8cfcf2b67b +9285f4a6a06e975bde3ae3267fccd971d4fff98a +55cfc3c08000f9d21879582c6296f2a864b657e8 +a812368fe1d4a186322bf72a6d07e1cf60067234 +b8f3f6d8f188f65ca8ea2725b248397c7d1e662d +60777fbca8bff210398ec8b1179bc4ecb72dfec0 +8ad0a88a7583af819af66cf2d9e8adb860cf9c34 +8a8127a06f432982bfb0150df3212f379b36840b +d6e08345ba293565086cb282ba08b225326022fc +a136ccaa67f660c45d3abb8551c5ed357faf7081 +d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0 +f5770dd225501ff3764f9023f19a76fad28127d4 +b5f2846a506fc417e7da43f6a7679146d99c5e96 +1fa426496ed6bcd0c0b17b8b935a14c84a7ee1c2 +2cde051e04569496fb525d7f1b1e5ce6364c8b21 +a5f11c132eaab258a7cea2d681875af09cddba65 +f42dca4a4426e5873a981712102aa961be34539a +35e6f6e5f4f780508e5f58e87f9efe2b07d8a864 +a6e25cab2251a8ded43c44b28a87f4c62e3a548a +e8b3a257a0a44d2859862cdec91c8841dc69144d +8e3c97e420e0112c043929087d6456d8ab61e95c +48186494fc7c0cc664edec16ce582b3fcb5249c0 +fd33df02f970055d74fbe69b05d1a7a1b9b2219b +b8d8501595f38974e001a66752dc7098db13dfec +2fea258320c50f36408032c05c54ba455d575809 +656f05741c402ba43bb1b9a58bcc5f7ce2403d9a +1b71d3f30238cb6621021a95543cce3aab96a21b +d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9 +e096b11b3988441c0995c13742ad188a80f2b461 +b9081856963ceb78dcb44ac410c6fca0533676a3 +d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5 +f22d6d59e413ee255e5e0f2104f1e03be1a6722e +0831794eddcbac1f601dcb9be9d45531a56dbf7e +70c9d11cad12dc1692a4507a97f50311f1689dbf +8aa1591bf8fcb44f2e9f2f10d1029720ccbb8832 +1f59e0818e7b16c0d39dd08eb90533ea0ae0be5e +464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a +e38371b69be4f341baa95bc854584e99b67c6d3a +947ee3452e4f3d657b16325c6b959f8b8768efad +7c17280c9193da3e347416226b8713b99e7825b8 +2f69e9964f3b6bdc0d18749b48bb6b44a4171c64 +61e2044184d86d0f13e50ecaa3da6a4913088c76 +16fdd6d842475e6fbe58fc809beabbed95f0642e +98e098ba9ff98fc58f22fed6d3d8540116284b91 +362bfeb28adac5f45b6ef46c07c59744b4ed6a52 +b3ad7bc128b77d9254aa38c5e1ead7fa10b07d29 +6c80c834d426f0bc4acd6355b1946b71b50cbc0b +1221e25763c3be95c1b6626ca9e7feaa3b636d9a +bd243d77076b3b8fe046bd3dc6e8a02aa9b38d62 +944faf7f14f1bead911aeec30cc80c861442b610 +5ac946fc6543a445dd1ee6d5d35afd3783a31353 +11691f1e7c9dbcbd6dfd256ba7ac710581552baa +20eeb83a8b6fea64c746bf993f9c991bb34a4b30 +193474d008cab9fa1c1fa81ce094d415f00b075c +620339aef06aed07a78f9ed1a057a25433faa58b +a6b5ca99432c23392cec682aebb8295c0283728b +704d88168bdfabe31b6ff484507f4a2244b8c52b +db848c3c32464d12da33b2f4c3a29fe293fc35d1 +bd21109e40c26af83c353a3271d0cd0b5c4b4ade +fc8fb68a7e3b79c37108588671c0e1abf374f501 +2d9e58ea582e054e9d690afca8b6a554c3687ce6 +e19ebad4739d59f999d192bac7d596b20b887f78 +2303d07d839e8b20f33d6e2ec78d1353cac256cf +a36c8a4213251d3fd634e8893ad1b932205ad1ca +2c19d3d35ef7062061b9e16d040cebd7e45f281d +5c493c42bfd93e4d08517438983e3af65e023a87 +101d4cfbd6f8a7a10bd33505e2b183183f1d8770 +aafb8dc8fda3b13a64ec3f1ca7911df01707c453 +dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335 +ddfae3a96bd341109d75cedeaebb5ed2362b903f +f257300b2b4141aab73f93c146bf94846aef5fa1 +15d653972d176963ef0ad2cc582d3b35ca542673 +6c304f3b9c3a711a0cca5c62ce221fb098dccff0 +ce450e4849490924488664b44769b4ca57f1bc1a +6fef65bd7287b57f0c3b36bf8e6bc987fd161b7d +c76f64e87f88475069f7707616ad9df1719a6099 +86374bb8d309ad4dbde65c21c6fda6586ae4147a +1c41965c5e1f97b1504c1bdde8037b5e0417da5e +799c02a3cde2c0805ea728eb778161499017396b +28f1542c63f5949ee6f2d51a6422244192b5a900 +85c90ad5eebb637f048841ebfded05942bb786b7 +05891725f5b27332836cf058f04f18d74053803f +03ce2ff688f9b588b6f264ca79c6857f0d80ceae +d141c31e3f261d7d5214f07886c1a29ac734d6fc +c0c8d720658374cc1ffd6116554a615e846c74b5 +ad2339c48ad4ffdd6100310dcbb1fb78e72fac98 +bc36badb6606b8162d821a227dda09a94aac537f +3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1 +b759936982d6fb25c55c98955f6955582bdaeb27 +5e6f546a50ed97658be9310d5e0a67891fe8a102 +6b99cd366f2ea8e1c9abadf73b05388c0e24fec3 +6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a +631483c15641c3652377f66c8380ff684f3e365c +2bb53e66aa9417b6560e588b6235e7b8ebbc294c +dee6609615b73b10540f32537a242baa3c9fca4d +959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c +1442319de86d171ce9595b20866ec865003e66fc +ac559873b288f3ac28ee8a38c0f3710ea3f986d9 +8d384e8c45a429f5c5f6628e8ba0d73c60a51a89 +fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81 +825f56ff489cdd3bcc41e76426d0070754eab1a8 +f1250900074689061196d876f551ba590fc0a064 +1bbec7190ac3ba34ca91d28f145e356a11418b67 +41f26101fed63a8d149744264dd5aa79f1928265 +06f585a3a05dd3371cd600a40dc35500e2f82f9b +49be50efc87c5df7a42905e58b092729ea04c2f5 +bcf19b964e7d1134d00332cf1acf1ee6184aff00 +fa4f59397f964a23e3c10335c67d9a24ef532d5c +31ec1e5c3b5e020af4a5a3c1be2724c7429a7c78 +c535d4d61aa0f1d8aadb4082bdcc19f4cbdf0eaf +fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3 +e03e86ac61cfac9148b371d75ce81a55e8b332ca +8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f +202dc3c6fda654aeb39aee3e26a89340fb06802a +247a8040447b6577aa33648395d95d80441a0cf3 +626859fe8cafd25da13b19d44d8d9eb6f0918647 +a0c37f07710184597befaa7e6cf2f0893ff440e9 +d44e6baf3464bf56d3a29daf280b1b525ac30f7d +10cb39e93fac194220237f15dae084136fdc6740 +7e2f7c0eeaeb47b163a7258665324643669919e8 +351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd +d86fabd4498c8feaed80ec342d254fb877fb92f5 +4c0cc732314ba3ccccd9036e019b1cfc27850c17 +446dc1413e1cfaee0030dc74a3cee49a47386355 +cb2917413c9b36c3bb9739bce6c03a1a6eb619b3 +521aa8dcd66428b07728b91722cc8f2b5a73944b +11bb2abe0ca614c15701961428eb2f260e3e2eef +863ad2838b9b90d4461995f498a39bcd2fb87c73 +cd22e6532211f679ba6057d15a801ba448b9915c +df9269657505fcdc1e10cf45bbb8e325678a40f5 +673d4885370b27c863e11a4ece9189a6a45931cc +48e6c6d981efe2c2fb0ae9287376fcae59da9878 +6cb7648465ba7757ecc9c222ac1ab6402933d983 +407de9da58871cae7a6ded2f3a6162b9dc371f38 +97b5800e144a8df48f1f7e91383b0f37bc37cf60 +9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32 +14558a70418ec4012c5f058145eef2d22d89284a +097340d3ac939ce181c829afb6b6faff946cdce0 +a8a61badec9b8bc01f002a06e1426a623456d121 +ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e +b6ef158d95042f39765df04373c01546524c9ccd +ae78469de00ea1e7602ca468dcf188cdfe2c80d4 +09926ed62511c340f4540b5bc53cf2480e8063f8 +46f2611dc4a9302e0ac00a79456fa162461a8c80 +f02a6bccdaee14ab55ad94263539f4f33f1b15bb +6964af90cf8ac336a2a55800d9c510eccc7ba8e1 +17a8d1b1b4c23a630b051f35e47663fc04dcf043 +be5276e9744c4445fe5b12b785650e8f173f56ff +580f86f1ace1feed16b592d05c2b07f26c429b4b +09507f1f1253101d04a975fc5600952eac868602 +2d4a3e9361505616fa4851674eb5c8dd18e0c3cf +f2a7f9bd040aa8ea87672d38606a84c31163e171 +d700aedcb22a4be374c40d8bee50aef9f85d98ef +d289ce63055c10937e5715e940a4bb9d0af7a8c5 +9aad8e52aff12bd822f0011e6ef85dfc22fe8466 +645f09f4bc2e6a13663564ee9032ca16e35fc52d +39b452453bea9ce398613d8dd627984fd3a0d53c +20c02e98602f6adf1cebaba075d45cef50de089f +73ed64803d6f2c49f01cffef8e6be8fc9b5273b8 +8befcd91c24038e5c26df0238d26e2311b21719a +10af69f11301679b6fbb23855bf10f6af1f3d2e6 +a14ed872503a2f03d2b59e049fd6b4d61ab4d6ca +504028218290d68859f45ec686f435f473aa326c +164b0e2a03a5a402f66c497e6c327edf20f8827b +4d19401e44848fe65b721971bc71a9250870ed5f +ab0981d1da654f37620ca39c6b42de21d7eb58eb +b09b693708f412823053508578df289b8403100a +c9b958c2494b7ba08b5b460f19a06814dba8aee0 +badd371a49d2c4126df95120902a34f4bee01b00 +bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab +f571fe3f753765cf695b75b1bd8bed37524a52d2 +d3008b4122e50a28f6cc1fa98ac6af28b42271ea +70c58700eb89368e66a8f0d3fc54f32f69d423e1 +5945464d47549e8dcaec37ad41471aa70001907f +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7 +c6241e6fc94192df2380d178c4c96cf071e7a3ac +f0f854f8cfe826fd08385c0c3c8097488f468076 +35b1c1f2851e9ac4381ef41b4d980f398f1aad68 +7ed3b79248d92b255450c7becd32b9e5c834a31e +30cbd41e997445745b6edd31f2ebcc7533453b61 +24115d209e0733e319e39badc5411bbfd82c5133 +0a9d204db13d395f024067cf70ac19c2eeb5f942 +74c19438c78a136677a7cb9004c53684a4ae56ff +d5d5cc27ca519d1300e77e3c1a535a089f52f646 +d309e414f0d6e56e7ba45736d28ee58ae2bad478 +a87ab836771164adb95d6744027e62e05f47fd96 +e75a589ca27dc4f05c2715b9d54206dee37af266 +e2faaebd17d10e2919bd69492787e7565546a63f +bd0e100a91ff179ee5c1d3383c75c85eddc81723 +9c065dfb26ce280610a492c887b7f6beccf27319 +81a142c751bf0b23315fb6717bc467aa4fdfbc92 +8b744786137cf6be766778344d9f13abf4ec0683 +9077365c9486e54e251dd0b6f6edaeda30ae52b9 +928b8eb47288a05611c140d02441660277a7ed54 +1ea74780d529a458123a08250d8fa6ef1da47a25 +5a12e1d4d74fe1a57929eaaa14f593b80f907ea3 +691964c43bfd282f6f4d00b8b0310c554b613e3b +bff567c58db554858c7f39870cff7c306523dfee +82e3f4099503633c042a425e9217bfe47cfe9d4b +062c41dad67bb68fefd9ff0c5c4d296e796004dc +95d858b39227edeaf75b7fad71f3dc081e415d16 +2c5d1e0719f3ad7f66e1763685ae536806f0c23b +c4cfdcf19705f9095fb60fb2e569a9253a475f11 +d3b18ba0d9b247bfa2fb95543d172ef888dfff95 +b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89 +95288fa7ff4683e32fe021a78cbf7d3376e6e400 +51cb09ee04831b95ae02e1bee9b451f8ac4526e3 +151b87de997e55db892b122c211f9c749f4293de +e060e32f8ad98f10277b582393df50ac17f2836c +7fe2ab9f54242ef8609ef9bf988f008c7d42407c +8356832f883207187437872742d6b7dc95b51fde +8981be3a69cd522b4e57e9914bf19f034d4b530c +ca37eda56b9ee53610c66951ee7ca66a35d0a846 +b8375ff50b8a6f1a10dd809129a18df96888ac8b +c588c89a72f89eed29d42f34bfa5d4cffa530732 +a92b5234b8b73e06709dd48ec5f0ec357c1aabed +1efacaa0eaa7e16146c34cd20814d1411b35538e +4f0b8f730273e9f11b2bfad2415485414b96299f +d02b32b012ffba2baeb80dca78e7857aaeececb0 +a9fc8efd1aa3d58f89c0f53f0cb112725b5bda10 +cb8a1b8d87a3fef15635eb4a32173f9c6f966055 +ae8d5be3caea59a21221f02ef04d49a86cb80191 +26575ad9e75efb440a7dc4ef8e548eed4e19dbd1 +94806f0967931d376d1729c29702f3d3bb70167c +ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98 +533d14e539ae5cdca0ece392487a2b19106d468a +24ff832171cb774087a614152c21f54589bf7523 +62dccab9ab715f33761a5315746ed02e48eed2a0 +506ea19145838a035e7dba535519fb40a3a0018c +677585ccf8619ec2330b7f2d2b589a37146ffad7 +508702ed2bf7d1b0655ea7857dd8e52d6537e765 +f38813f1c9dac44dcb992ebe51c5ede66fd0f491 +9d58e8ab656772d2c8a99a9fb876d5611fe2fe20 +3c56acaa819f4e2263638b67cea1ec37a226691d +90d9209d5dd679b159051a8315423a7f796d704d +c83e26622b275fdf878135e71c23325a31d0e5fc +3fb98e76ffd8ba79e1c22eda4d640da0c037e98a +62fddae74c553ac9e34f511a2957b1614eb4f937 +fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1 +54969bcd728b0f2d3285866c86ef0b4797c2a74d +2ce1bac5ddc4cf668bbbb8879cd21dfb94b5cfe4 +55c68c1237166679d2cb65f266f496d1ecd4bec6 +f0f4f16d5b5f9efe304369120651fa688a03d495 +baafe3253702955c6904f0b233e661b47aa067e1 +cfc4aa456d9da1a6fabd7c6ca199332f03e35b29 +8895d6ae9f095a8413f663cc83f5b7634b3dc805 +3daafe6389d877fe15d8823cdf5ac15fd919676f +c0f67e850176bb778b6c048d81c3d7e4d8c41003 +3328413ee9944de1cc7c9c1d1bf2fece79718ba1 +14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b +be4a20113bc204019ea79c6557a0bece23da1121 +6318d3842b36362bb45527b717e1a45ae46151d5 +6cbde27d9a287ae926979dbb18dfef61cf49860e +a6270914cf5f60627a1332bcc3f5951c9eea3be0 +e52f73c77c7eaece6f2d8fdd0f15327f9f007261 +93f37c69dd92c4e038710cdeef302c261d3a4f92 +cec8936d97dea2fcf04f175d3facaaeb65e574bf +bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17 +cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66 +86f191616423efab8c0d352d986126a964983219 +378418fdd28f9022b02857ef7dbab6b0b9a02dbe +263ed62f94ea615c747c00ebbb4008385285b33b +414715421e01e8c8b5743c5330e6d2553a08c16d +6fea198a41d2f6f73e47f056692f365c8e6b04ce +2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87 +6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f +d1dfdc107fa5f2c4820570e369cda10ab1661b87 +106092fafb53e36077eba88f06feecd07b9e78e7 +782a05fbe30269ff8ab427109f5c4d0a577e5284 +a5a44a32a91474f00a3cda671a802e87c899fbb4 +2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a +6c1227659878e867a01888eef472dd96b679adb6 +cad24ba99c7b6834faf6f5be820dd65f1a755b29 +17a995680482183f3463d2e01dd4c113ebb31608 +057b80e235b10799d03876ad25465208a4c64caf +edf60d081ffdfa80243217a50a411ab5407c961d +90cc2f08a6c2f0c41a9dd1786bae097f9292105e +afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3 +162403e189d1b8463952fa4f18a291241275c354 +ea46951b070f37ad95ea4ed08c7c2a71be2daedc +6d5125c9407c7762620eeea7570af1a8ee7d76f3 +2227f978f084ebb18cb594c0cfaf124b0df6bf95 +398e0771e64cab6ca5d21754e32dce63f9e3c223 +04b851f25d6d49e61a528606953e11cfac7df2b2 +5dd473a4a9c6337b083edf38b6ddf5a6aece8908 +695426275dee2ec56bc0c0afe1c5b4227a350840 +7142ac9e4d5498037aeb0f459f278fd28dae8048 +5f758a29dae102511576c0a5c6beda264060a401 +aef58a54d458ab76f62c9b6de61af4f475e0f616 +69a41c98f6b71764913145dbc2bb4643c9bc4b0a +eb100638ed73b82e1cce8475bb8e180cb22a09a2 +3c09fb7fe1886072670e0c4dd632d052102a3733 +9730b9cd998c0a549601c554221a596deda8af5b +a301ddc419cbd900b301a95b1d9e4bb770afc6a3 +2e3b981b9f3751fc5873f77ad2aa7789c3e1d1d2 +1ffb39ed4d684a80652dfa30d604b82b4c542615 +83d41f6548bb76241737dcd3fed9e182ee901ff9 +ae5f32e489c4d52e7311b66060c7381d932f4193 +a3f78cc944ac189632f25925ba807a0e0678c4d5 +a2359c0f81a7eb032cff1fe45e3b80007facaa2a +5141cf2e59fb2ec9bb489b9c1832447d3cd93110 +7e467e686f9468b826133275484e0a1ec0f5bde6 +8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8 +911bef7465665d8b194b6b0370b2b2389dfda1a1 +645de797f936cb19c1b8dba3b862543645510544 +40dd2b9aace337467c6e1e269d0cb813442313d7 +fecccc79548001ecbd6cafd3067bcf14de80b11a +34ec83c8ff214128e7a4a4763059eebac59268a6 +a1af7ec84472afba0451b431dfdb59be323e35b7 +56a677c889e0e2c9f68ab8ca42a7e63acf986229 +ebde9b9c714ed326157f41add8c781f826c1d864 +60462b981fda63c5f9d780528a37c46884fe0b54 +b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3 +c843f591658ca9dbb77944a89372a92006defe68 +6c5fbf156ef9fc782be0089309074cc52617b868 +2bb36c875754a2a8919f2f9b00a336c00006e453 +3b60b047831146044d154156441c60f6edd80346 +ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff +eac1b644492c10546a50f3e125a1f790ec46365f +451b6409565a5ad18ea49b063561a2645fa4281b +a78b5495a4223b9784cc53670cc10b6f0beefd32 +c15b68986ecfa1e13e3791686ae9024f66983f14 +96b1000031c53cd4c1c154013bb722ffd87fa7da +2588acc7a730d864f84d4e1a050070ff873b03d5 +98fd92d68a143a5ced4a016fa3b7addd6b4a0122 +b3afa234996f44852317af382b98f5f557cab25a +9b684e2e2bb43862f69b12c6be94db0e7a756187 +12408baf69419409d228d96c6f88b6bcde303505 +e1312b0b0fd660de87fa42de39316b28f9336e70 +574ad7ef015995efb7338829a021776bf9daaa08 +cfc30ce53bfc204b8764ebb764a029a8d0ad01f4 +68d08ed9470d973a54ef7806318d8894d87ba610 +e00241f00fb31c660df6c6f129ca38370e6eadb3 +07c83f544d0604e6bab5d741b0bf9a3621d133da +eee2d2ac461f46734c8e674ae14ed87bbc8d45c6 +9888edfb6276887eb56a6da7fe561e508e72a517 +2f1485994ef2c09a7bb2874eb8252be8fe710db1 +04b4c779b43b830220bf938223f685d1057368e9 +beabb0d9d30871d517c5d915cf852f7f5293f52f +45e459462a80af03e1bb51a178648c10c4250925 +18b9dc55e5221e704f90eea85a81b41dab51f7da +675b2caee111cb6aa7404b4d6aa371314bf0e647 +372a8bf0ef757c08551d41e40cb7a485527b6cd7 +09903df21a38e069273b80e94c8c29324963a832 +07fa153b8e6196ee6ef6efd8b743de8485a07453 +7e27d946d23229220bcb6672aacab88e09516d39 +f0398ee5291b153b716411c146a17d4af9cb0edc +beb2f1a6f3f781443580ffec9161d9ce6852bf48 +aa581b481d400982a7e2a88830a33ec42ad0414f +997b9ffe2f752ba84a66730cfd320d040e7ba2e2 +5c4d4fd37e8c80ae95c00973531f34a6d810ea3a +06262d6beeccf2784e4e36a995d5ee2ff73c8d11 +9c1664f69d0d832e05759e8f2f001774fad354d6 +7f511a6a2b38a26f077a5aec4baf5dffc981d881 +43c3b6a564b284382fdf8ae33f974f4e7a89600e +70109c670471db2e0ede3842cbb58ba6be804561 +c61eaf172820fcafaabf39005bd4536f0c45f995 +cec70cf159b51a18b39c80fac1ad34f65f3691ef +0a7309147d777c2f20f780a696efe743520aa2db +c317181fa1de2260e956f05cd655642607520a4f +6e46d8aa63db3285417c8ebb65340b5045ca106f +f6fc112ff7e4746b040c13f28700a9c47992045e +e8d1b134d48eb0928bc999923a4e092537e106f6 +afa57e50570a6599508ee2d50a7b8ca6be04834a +b7c6df1ae0e8348feecd65e9ad574d1e04d212a5 +b3200539538eca54a85223bf0ec4f3ed132d0493 +7f445191fa0475ff0113577d95502a96dc702ef9 +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec +b08203fca1af7b95fda8aa3d29dcacd182375385 +4e6c9be0b646d60390fe3f72ce5aeb0136222a10 +34c062e2b8a3f6421b9f4ff22f115a36d4aba823 +b9dc8cc479cacda1f23b91df00eb03f88cc0c260 +a77e9f0bd205a7733431a6d1028f09f57f9f73b0 +7c30ea47f5ae1c5abd6981d409740544ed16ed16 +ed388878151a3b841f95a62c42382e634d4ab82e +749d605dd12a4af58de1fae6f5ef5e65eb06540e +f27e5a13c1c424504b63a9084c50f491c1b17978 +703dc33736939f88625227e38367cfb2a65319fe +de3285da34df0262a4548574c2383c51387a24bf +d444e010049944c1b3438c9a25ae09b292b17371 +ec576efd18203bcb8273539fa277839ec92232a1 +0bce54bfbd8119c73eb431559fc6ffbba741e6aa +7306d42ca158d40436cc5167e651d7ebfa6b89c1 +1fe1bd6b760e3059fff73d53a57ce3a6079adea1 +53a41c711b40e7fe3dc2b12e0790933d9c99a6e0 +8fe38962c24300129391f6d7ac24d7783e0fddd0 +dc974c31201b6da32f48ef81ae5a9042512705fe +b4d209845e1c67870ef50a7c37abaf3770563f3e +480ccd25cb2a851745f5e6e95d33edb703efb49e +38c901a58244be9a2644d486f9a1284dc0edbf8a +f1ae9f5338fcff577b1ae9becdb66007fe57bd45 +a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f +3266fcd1886e8ad883714e38203e66c0c6487f7b +e3ce4c3e1279e3dc0c14ff3bb2920aced9e62638 +c829be73584966e3162f7ccae72d9284a2ebf358 +ddbd24a73ba3d74028596f393bb07a6b87a469c0 +eb566490cd1aa9338831de8161c6659984e923fd +5a07945293c6b032e465d64f2ec076b82e113fa6 +bd26dabab576adb6af30484183c9c9c8379bf2e0 +4cc326fc977cf967eef5f3135bf0c48d07b79e2d +c3d874336eb8fae92ab335393fd801fa8df98412 +fcc6fe6007c322641796cb8792718641856a22a7 +23e824d1dfc33f3780dd18076284f07bd99f1c43 +1a53ca294bbe5923c46a339955e8207907e9c8c6 +a8bb698d1bb21b81497ef68f0f52fa6eaf14a6bf +e1179a5746b4bf12e1c8a033192326bf7f670a4d +fb6f5cb26395608a3cf0e9c6c618293a4278a8ad +55c40cbcf49a0225e72d911d762c27bb1c2d14aa +d4885ca24189b4414031ca048a8b7eb2c9ac646c +8a6033cbba8598945bfadd2dd04023c2a9f31681 +c26b43c2e1e2da96e7caabd46e1d7314acac0992 +289cfcd081c4393c7d6f63510747b5372202f855 +0b5a82f8c0ee3640503ba24ef73e672d93aeebbf +120785f9b4952734818245cc305148676563a99b +8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259 +9b1022a01ca4ecf8c1fa99b1b39a93924de2fcfb +dbed26cc6d818b3679e46677abc9fa8e04e8c6a6 +7789a5d87884f8bafec8a82085292e87d4e2866f +78f2c8671d1a79c08c80ac857e89315197418472 +5b97e997b9b654373bd129b3baf5b82c2def13d1 +758d7e1be64cc668c59ef33ba8882c8597406e53 +9db4b25df549555f9ffd05962b5adf2fd9c86543 +926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0 +bebea83479a8e1988a7da32584e37bfc463d32d4 +aa1607090fbc80ab1e9c0f25ffe8b75b777e5fd8 +67386772c289cd40db343bdc4cb8cb4f58271df2 +5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e +7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922 +dd6826e9520a6e72bcd24d1bdb930e78c1083b31 +2322ec2f3571e0ddc593c4e2237a6a794c61251d +2ed4973984b254be5cba3129371506275fe8a8eb +75308067ddd3c53721430d7984295838c81d4106 +f412d9d7bc7534e7daafa43f8f5eab811e7e4148 +0450dacc43171c6e623d0d5078600dd570de777e +892c911ca68f5b4bad59cde7eeb6c738ec6c4586 +85fd2bda5eb3afe68a5a78c30297064aec1361f6 +faf5583063682e70dedc4466ac0f74eeb63169e7 +18d51a366ce2b2068e061721f43cb798177b4bb7 +372fb32569ced35eaf3740a29890bec2be1869fa +34bc8ecec0c0b328cd8c485cb34d4d2f4b84e0c9 +57a14a65e8ae15176c9afae874854e8b0f23dca7 +1159ff04fd17c59515199e0fc2d5e01e72818b59 +0da4c3d898ca2fff9e549d18f513f4898e960aca +e0244a8356b57a5721c101ead351924bcfb2eef4 +a9fdbe102f266cc20e600fa6b060a7bc8d1134e9 +b32cf547a764a4efa475e9c99a72a5db36eeced6 +d7fe2a52d0ad915b78330340a8111e0b5a66513a +e180572400b64860e190a8bc04ef839fa491e056 +e7cac91da51b78eb4a28e194d3f599f95742e2a2 +b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c +814d091c973ff6033a83d4e44ab3b6a88cc1cb66 +2dfe0e7e81f65716b09c590652a4dd8452c10294 +ee7e8aec3ebb37e41092e1285e4f81916ce92c18 +869583b700ecf33a9987447aee9444abfe23f343 +239e305c24155add73f2a0ba5ccbd66b37f77e14 +794a51097385648e3909a1acae7188f5ab881710 +f0ca31fd5cad07e84b47d50dc07db9fc53482a46 +50ee027c63dcc5ab5cd0a6cdffb1994f83916a46 +f842b13bd494be1bbc1161dc6df244340b28a47f +ea80a050d20c0e24e0625a92e5c03e5c8db3e786 +1e0d92b9b4011822825d1f7dc0eba6d83504d45d +d34f546e61eccbac2450ca7490f558e751e13ec3 +9bac481dc4171aa2d847feac546c9f7299cc5aa0 +02f4b900deabbe7efa474f2815dc122a4ddb5b76 +61329bc767152f01aa502989abc854b53047e52c +da7bbfa905d88834f8929cb69f41a1b683639f4b +fbc591cde7fb7beb985437a22466f9cf4b16f8b1 +22e121a8dea49e3042de305574356477ecacadda +bef926d63512dbffcf1af59f72295ef497f5acf9 +605f6817018a572797095b83bec7fae7195b2abc +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734 +9dcfa771a7e87d7681348dd9f6cf9803699b16ce +d4df31006798ee091b86e091a7bf5dce6e51ba3e +9f62ac43a1086c22b9a3d9f192c975d1a5a4b31f +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9 +5167e16b53283be5587659ea8eaa3b8ef3fddd33 +352d61eb66b053ae5689bd194840fd5d33f0e9c0 +e6e5a6090016810fb902b51d5baa2469ae28b8a1 +a8e7561ada380f2f50211c67fc45c3b3dea96bdb +e5ea7295b89ef679e74919bf957f58d55ad49489 +97c1f68fb7162af326cd0f1bc546908218ec5da6 +78c1ad33772237bf138084220d1ffab800e1200d +5f0d4657eab4152a1785ee0a25b5b499cd1163ec +ede16b198b83d04b52dc3f0dafc11fd82c5abac4 +92292fffc36336d63f4f77d6b8fc23b0c54090e9 +7477cf04c6b086108f459f693a60272523c134db +18855be5e7a60269c0652e9567484ce5b9617caa +4ca9753ab023accbfa75a547a65344ee17b549ba +41c56c69b20b3f0b6c8a625009fc0a4d317e047a +43e268c118ac25f1f0e984b57bc54f0119ded520 +1fff309330f85146134e49e0022ac61ac60506a9 +e2106bb3febb4fc8fe91f0fcbc241bcda0e56b1e +2bf646a6efd15ab830344ae9d43e10cc89e29f34 +6e8a81d452a91f5231443ac83e4c0a0db4579974 +7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d +f1ba2fe3491c715ded9677862fea966b32ca81f0 +0a4fc9016aacae9cdf40663a75045b71e64a70c9 +856317f27248cdb20226eaae599e46de628fb696 +65b1209d38c259fe9ca17b537f3fb4d1857580ae +d02c54192dbd0798b43231efe1159d6b4375ad36 +5b0008ba87667085912ea474025d2323a14bfc90 +6689aee6c9599c1af4c607ea5385ac0c2cf0c4b3 +e7cfaff65541cde4298a04882e00608d992f6703 +dba7d8c4d2fca41269a2c96b1ea594e2d0b9bdda +78cec49ca0acd3b961021bc27d5cf78cbbbafc7e +894f27b6ea68a1ec9b7632533eabf2353b1e9d79 +dfd8602820c0e94b624d02f2e10ce6c798193a25 +bd70f832e133fb87bae82dfaa0ae9d1599e52e4b +7aa062c6c90dba866273f5edd413075b90077b51 +a20036b7fbf6c0db454c8711e72d78f145560dc8 +8f6d05b8f9860c33c7b1a5d704694ed628db66c7 +d7b6bbb94ac20f5e75893f140ef7e207db7cd483 +fc7b34a2e43bb3d3585e1963bb64a488e2f278a0 +1b5d445741473ced3d4d33732c9c9225148ed4a1 +3b21aaf7def52964cf1fcc5f11520a7618c8fae3 +39af06d29a74ad371a1846259e01c14b5343e3d1 +eaaed082762337e7c3f8a1b1dfea9c0d3ca281bf +a7ec294373ccc0598cbb0bbb6340c4e56fe5d979 +9853136dbd7d5f6a9c57dc66060cab44a86cd662 +771505abd38641454757de75fe751d41e87f89a4 +5e6fc99d8f5ebaab0e9c29bc0969530d201e0708 +d1079444ceddb1de316983f371ecd1db7a0c2f38 +72591a75469321074b072daff80477d8911c3af3 +cea2911ccabab40e9c1e5bcc0aa1127cab0c789f +e8fdacbd708feb60fd6e7843b048bf3c4387c6db +b97c7f82c1439fa1e4525e5860cb05a39cc412ea +13d430257d595231bda216ef859950caa736ad1d +11df25b4e074b7610ec304a8733fa47625d9faca +758d481bbf24d12615b751fd9ec121500a648bce +8694cd9748fb1c128f91a572119978075fede848 +8ce9b7b52d05701d5ef4a573095db66ce60a7e1c +c73dd452c20460f40becb1fd8146239c88347d87 +3f9ca2526013e358cd8caeb66a3d7161f5507cbc +8c4042191431e9eb43f00b0f14c23765ab9c6688 +90ac0f32c0c29aa4545ed3d5070af17f195d015f +9c6dfd3a38374399d998d5a130ffc2864c37f554 +6d2fd0a9cbea13e840f962ba7c8a9771ec437d3a +e68869499471bcd6fa8b4dc02aa00633673c0917 +856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b +197c64c36e8a9d624a05ee98b740d87f94b4040c +3294e27356c3b1063595885a6d731d625b15505a +2a2df7e790737a026434187f9605c4763ff71292 +535cdce8264ac0813d5bb8b19ceafa77a1674adf +fa052fd40e717773c6dc9cc4a2f5c10b8760339f +ecac3da2ff8bc2ba55981467f7fdea9de80e2092 +9d46485ca2c562d5e295251530a99dd5df99b589 +83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05 +7ac9aaafe4d74542832c273acf9d631cb8ea6193 +9d5bfaf6191484022a6731ce13ac1b866d21ad18 +35208eda874591eac70286441d19785726578946 +fd10b0c771a2620c0db294cfb82b80d65f73900d +a1132e2638a8abd08bdf7fc4884804dd6654fa63 +c4e2d5ebfebbb9dcee6a9866c3d6290481496df5 +8ed32c8fad924736ebc6d99c5c319312ba1fa80b +f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca +6b742055a664bcbd1c6a85ae6796bd15bc945367 +eedfb384a5e42511013b33104f4cd3149432bd9e +7f203f2ff6721e73738720589ea83adddb7fdd27 +188abc5bad3a3663d042ce98c7a7327e5a1ae298 +519f1486f0755ef3c1f05700ea8a05f52f83387b +829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a +aca232de87c4c61537c730ee59a8f7ebf5ecb14f +d20ea5a4fa771bc4121b5654a7483ced98b39148 +ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9 +09df62fd17d3d833ea6b5a52a232fc052d4da3f5 +edf98a925bb24e39a6e6094b0db839e780a77b08 +b313751548018e4ecd5ae2ce6b3b94fbd9cae33e +cfeb26245b57dd10de8f187506d4ed5ce1e2b7dd +ab58a7db32683aea9281c188c756ddf969b4cdbd +85a136b48c2036b16f444f93b086e2bd8539a498 +522a4ca705c06a0436bbe62f46efe24d67a82422 +8e452379fda31744d4a4383fcb8a9eab6dbc4ae4 +5a547df635a9a56ac224d556333d36ff68cbf088 +af654a7ec15168b16382bd604889ea07a967dac6 +080e0efc3cf71260bfe9bdc62cd86614d1ebca46 +d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c +ae836e2be4bb784760e43de88a68c97f4f9e44a1 +efc78a7d95b14abacdfde5c78007eabf9a21689c +f2eab39cf68de880ee7264b454044a55098e8163 +7d18e9165312cf669b799aa1b883c6bbe95bf40e +721b109970bf5f1862767a1bec3f9a79e815f79a +c43862db5eb7e43e3ef45b5eac4ab30e318f2002 +8e63868e552e433dc536ba732f4c2af095602869 +edd6ed94207ab614c71ac0591d304a708d708e7b +bd0265ba7f391dc3df9059da3f487f7ef17144df +45a6333fc701d14aab19f9e2efd59fe7b0e89fec +59dac8b460a89e03fa616749a08e6149708dcc3a +d26b443f87df76034ff0fa9c5de9779152753f0c +2564920d6976be68bb22e299b0b8098090bbf259 +20ade100a320cc761c23971d2734388bfe79f7c5 +10bfa4cecd64b9584c901075d6b50f4fad898d0b +0b572a2b7052b15c8599dbb17d59ff4f02838ff7 +7f2a234ad5c256733a837dbf98f25ed5aad214e8 +8fed5ea3b69ea441a8b02f61473eafee25fb2374 +1efaa128378f988965841eb3f49d1319a102dc36 +a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b +78598e7005f7c96d64cc47ff47e6f13ae52245b8 +c7c8d150ece08b12e3abdb6224000c07a6ce7d47 +3f0c6dbfd3c9cd5625ba748327d69324baa593a6 +15aa6c457678e25f6bc0e818e5fc39e42dd8e533 +768f6a14a7903099729872e0db231ea814eb05e9 +0141cb33c822e87e93b0c1bad0a09db49b3ad470 +29c340c83b3bbef9c43b0c50b4d571d5ed037cbd +b806a31c093b31e98cc5fca7e3ec53f2cc169db9 +9b4b2a575641f3a7f8a5ce28b6a06c36694a9ddf +8dfe43c76b76a97f8938f5f5f81059a1f1fa74ed +206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8 +599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0a +598744c8620e4ecbf449d14d7081fbf1cd05851f +a85e9e11db5665c89b057a124547377d3e1c27ef +d4453ec649dbde752e74da8ab0984c6f15cc6e06 +a26fd9df58bb76d6c7a3254820143b3da5bd584b +66490b5869822b31d32af7108eaff193fbdb37b0 +2f73203fd71b755a9601d00fc202bbbd0a595110 +fbe4f8a6af19f63e47801c6f31402f9baae5fecf +b6f15bf8723b2d5390122442ab04630d2d3878d8 +f11c76efdc9651db329c8c862652820d61933308 +39ed31ced75e6151dde41944a47b4bdf324f922b +411318684bd2d42e4b663a37dcf0532a48f0146d +352a620f0b96a7e76b9195a7038d5eec257fd994 +0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457 +7a131fafa7058fb75fdca32d0529bc7cb50429bd +27a00f2490284bc0705349352d36e9749dde19ab +212608e00fc1e8912ff845ee7a4a67f88ba938fc +96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9 +69adf2f122ff18848ff85e8de3ee3b2bc495838e +9e182e0cd9d70f876f1be7652c69373bcdf37fb4 +3a27d164e931c422d16481916a2fa6401b74bcef +d8526863f35b29cbf8ac2ae756eaae0d2930ffb1 +e5e5f31b81ed6526c26d277056b6ab4909a56c6c +2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4 +c71217b2b111a51a31cf1107c71d250348d1ff68 +c11eb653746afa8148dc9153780a4584ea529d28 +b73795963dc623a634d218d29e4a5b74dfbc79f1 +bd379f8e08f88729a9214260e05967f4ca66cd65 +d80a3d1f3a438e02a6685e66ee908446766fefa9 +8e0ab1b08964393e4f9f42ca037220fe98aad7ac +040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d +7c80d91db5977649487388588c0c823080c9f4b4 +4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0 +c808c784237f167c78a87cc5a9d48152579c27a4 +3e3227c8e9f44593d2499f4d1302575c77977b2e +4209783b0cab1f22341f0600eed4512155b1dee6 +f61d5f2a082c65d5330f21b6f36312cc4fab8a3b +d78734c54f29e4474b4d47334278cfde6efe963a +cb2470aade8e5630dcad5e479ab220db94ecbf91 +dd8084b2878ca95d8f14bae73e1072922f0cc5da +3795974e24296185d9b64454cde6f796ca235387 +e5823a9d3e5e33e119576a34cb8aed497af20eea +d1a43737ca8be02d65684cf64ab2331f66947207 +ba788365d70fa6c907b71a01d846532ba3110e31 +266766818dbc5a4ca1161ae2bc14c9e269ddc490 +1316296fae6485c1510f00b1b57fb171b9320ac2 +fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb +e3c011d08d04c934197b2a4804c90be55e21d572 +c9efcd8e32dced6efa2bba64789df8d0a8e4996a +7323b594d3a8508f809e276aa2d224c4e7ec5a80 +a322479a6851f57a3d74d017a9cb6d71395ed806 +d949fadc9b6c5c8b067fa42265ad30945f9caa99 +3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f +ffea8775fc9c32f573d1251e177cd283b4fe09c9 +8199803f476c12c7f6c0124d55d156b5d91314b6 +dec0c26855da90876c405e9fd42830c3051c2f5f +d35534f3f59631951011539da2fe83f2844ca245 +8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8 +2e0d56794379c436b2d1be63e71a215dd67eb2ca +6ca6ade6c9acb833790b1b4e7ee8842a04c607f7 +23dd8d17ce09c22d367e4d62c1ccf507bcbc64da +313d5eba97fe064bdc1f00b7587a4b3543ef712a +3cb2841302af1fb9656f144abc79d4f3d0b27380 +a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1 +3933e323653ff27e68c3458d245b47e3e37f52fd +37c5c65ae204ad3692cd30a3dc62f28a263ad468 +3827f1cab643a57e3cd22fbffbf19dd5e8a298a8 +707a542c580bcbf3a5a75cce2df80d75990853cc +4735fa28fa2a2af98f7b266efd300a00e60dddf7 +6584c3c877400e1689a11ef70133daa86a238602 +84a74ef8680b66e6dccbc69ae80321a52780a68e +911505a4242da555c6828509d1b47ba7854abb7a +c175ebe550761b18bac24d394d85bdfaf3b7718c +d4b4020e289c095ce2c2941685c6cd37667f5cc9 +b331ca23aed90394c05f06701f90afd550131fe3 +3a49507c46a2b8c6411809c81ac47b2b1d2282c3 +c48b68dc780c71ab0f0f530cd160aa564ed08ade +75a74a74d6abbbb302a99de3225c8870fa149aee +7ac4fc169fffa8e962b9df94f61e2adf6bac8f97 +180bd019eab85bbf01d9cddc837242e111825750 +fe50efe9e282c63941ec23eb9b8c7510b6283228 +35265cbd9c6ea95753f7c6b71659f7f7ef9081b6 +81706277ed180a92d2eeb94ac0560f7dc591ee13 +62f017907e19766c76887209d01d4307be0cc573 +d9218c2bbc7449dbccac351f55675efd810535db +ea890846912f16a0f3a860fce289596a7dac575f +403a108dec92363fd1f465340bd54dbfe65af870 +52af7625f7e7a0bd9f9d8eeafd631c4d431e67e7 +763b60feaabceebbe9eddfbaa0378b8b454327aa +46976097c54e86032932d559c8eb82ffea4bb6bb +5f453a35d312debfc993d687fd0b7c36c1704b16 +88535dba55b0a80975df179d31a6cc80cae1cc92 +1d51b256af68c5546d230f3e6f41da029e0f5852 +cb8382f43ce073322eba82809f02d3084dad7969 +8ccbbd9da0749d96f09164e28480d54935ee171c +1b02b9413b730b96b91d16dcd61b2420aef97414 +0322e69172f54b95ae6a90eb3af91d3daa5e36ea +7918e3e15099b4b2943746e1f6c9e3992a79c5f3 +099053f2cbfa06c0141371b9f34e26970e316426 +77db171a523fc3d08c91cea94c9562f3edce56e1 +bf54b5586cdb0b32f6eed35798ff91592b03fbc4 +40c9dce0a4c18829c4100bff5845eb7799b54ca1 +dc550f361ae82ec6e1a0cf67edf6a0138163382e +7ef44b7c2b5533d00001ae81f9293bdb592f1146 +f78fe101b21be36e98cd3da010051bb9b9829a1e +ee1465cbbc1d03cb9eddaad8618a4feea78a01ce +eed7920682789a9afd0de4efd726cd9a706940c8 +6316a4b689706b0f01b40f9a3cef47b92bc52411 +aca728cab26b95fbe04ec230b389878656d8af5b +3db6fd6a0e9bb30f2421e84ee5e433683d17d9c1 +c3dc4f414f5233df96a9661609557e341b71670d +fad895771260048f58d12158a4d4d6d0623f4158 +38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7 +8ac2d704f27a2ddf19b40c8e4695da629aa52a54 +dc34ab49d378ddcf6c8e2dbf5472784c5bfa8006 +2f837ff8b134b785ee185a9c24e1f82b4e54df04 +984edce0b961418d81203ec477b9bfa5a8197ba3 +fd5376fcb09001a3acccc03159e8ff5801129683 +d7b8f285b0701ba7b1a11d1c7dd3d1e7e304083f +ac2e166c76c103f17fdea2b4ecb137200b8d4703 +179564f157a96787b1b3380a9f79701e3394013d +accbd6cd5dd649137a7c57ad6ef99232759f7544 +acff2dc5d601887741002a78f8c0c35a799e6403 +f3fed71cc4fc49b02067b71c2df80e83084b2a82 +b1f4423c227fa37b9680787be38857069247a307 +443f4421e44d4f374c265e6f2551bf9830de5597 +9c2f20ed168743071db6268480a966d5d238a7ee +d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f +6dcf6b028a6042a9904628a3395520995b1d0ef9 +43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a +0ca36ecaf4015ca4095e07f0302d28a5d9424254 +312b2566e315dd6e65bd42cfcbe4d919159de8a1 +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4 +9bc01fa9400c231e41e6a72ec509d76ca797207c +cbbd9880fb28bef4e33da418a3795477d3a1616e +675b1fd2aaebe9c62be6b22b9ac6d278193cc581 +468bb5344f74842a9a43a7e1a3333ebd394929b4 +ceba8ca45bad226c401a509e6b8ccbf31361b0c9 +111d0b588f3abbbea85d50a28c0506f74161e091 +fde611bf25a89fe11e077692070f89dcdede043a +2ac7bb3fb014d27d3928a9b4bc1bf019627e0c1a +516a27d5dd06622f872f5ef334313350745eadc3 +b8048a7661bdb73d3613fde9d710bd45a20d13e7 +3a6334953cd2775fab7a8e7b72ed63468c71dee7 +ec983394f800da971d243f4143ab7f8421aa967c +a45e6172713a56736a2565ddea9cb8b1d94721cd +7c9a65f18f7feb473e993077d087d4806578214e +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e +d33fcdaf2c0bd0100ec94b2c437dccdacec66476 +12226bca7a891e25b7d1e1a34a089521bba75731 +971cb1bfe3d10fcb2037e684c48bd99842f42fa4 +cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150 +cc8e378fd05152a81c2810f682a78c5057c8a735 +640e12837241d52d04379d3649d050ee3760048c +48de3ca194c3830daa7495603712496fe908375c +bddc822cf20b31d8f714925bec192c39294184f7 +f6f2a212505a118933ef84110e487551b6591553 +58538cc418bf41197fad4fc4ee2449b2daeb08b1 +dbd958ffedc3eae8032be67599ec281310c05630 +62750d78e819d745b9200b0c5c35fcae6fb9f404 +32e4fc2f0d9c535b1aca95aeb5bcc0623bcd2cf2 +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8 +ab6886252aea103b3d974462f589b4886ef2735a +65babb10e727382b31ca5479b452ee725917c739 +87610276ccbc12d0912b23fd493019f06256f94e +1c6e22516ceb5c97c3caf07a9bd5df357988ceda +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225 +3d6ee995bc2f3e0f217c053368df659a5d14d5b5 +f3a59d85b7458394e3c043d8277aa1ffe3cdac91 +b59cee1f647737ec3296ccb3daa25c890359c307 +62007c30f148334fb4d8975f80afe76e5aef8c7f +626913b8fcbbaee8932997d6c4a78fe1ce646127 +cfd4004054399f3a5f536df71f9b9987f060f434 +dc13229afbbc8b7a31ed5adfe265d971850c0976 +1ffe20eb32dbc4fa85ac7844178937bba97f4bf0 +30b15cdb72760f20f80e04157b57be9029d8a1ab +fd53be2e0a9f33080a9db4b5a5e416e24ae8e198 +d444368421f456baf8c3cb089244e017f8d32c41 +fffefc1fb840da63e17428fd5de6e79feb726894 +1d776bfe627f1a051099997114ba04678c45f0f5 +cb27b45329d61f5f95ed213798d4b2a615e76be2 +d0144d76b8b926d22411d388e7a26506519372eb +08d41d2f68a2bf0091dc373573ca379de9b16385 +4f1249369127cc2e2894f6b2f1052d399794919a +2e231f1e7e641dd3619bec59e14d02e91360ac01 +632fa986bed53862d83918c2b71ab953fd70d6cc +112780a7fe259dc7aff2170d5beda50b2bfa7bda +93af335bf8c610f34ce0cadc15d1dd592debc706 +5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b +975978ee6a32383d6f4f026b944099e7739e5890 +c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c +5f94969b9491db552ffebc5911a45def99026afe +28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08 +d00e9a6339e34c613053d3b2c132fccbde547b56 +288964068cd87d97a98b8bc927d6e0d2349458a2 +aeb6b9aba5bb08cde2aebfeda7ced6c38c84df4a +56e079f4eb40744728fd1d7665938b06426338e5 +92b61b09d2eed4937058d0f9494d9efeddc39002 +36939e6a365e9db904d81325212177c9e9e76c54 +2957715e96a18dbb5ed5c36b92050ec375214aa6 +1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc +7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697 +7f21a7441c6ded38008c1fd0b91bdd54425d3f80 +f5fae7810a33ed67852ad6a3e0144cb278b24b41 +24f022d807352abf071880877c38e53a98254dcd +361d6345919c2edc5c3ce49bb4915ed2b4ee49be +d454ad60b061c1a1450810a0f335fafbfeceeccc +2c1f8ddbfbb224271253a27fed0c2425599dfe47 +ed9d11e995baeec17c5d2847ec1a8d5449254525 +493c8591d6a1bef5d7b84164a73761cefb9f5a25 +d5444f9475253bbcfef85c351ea9dab56793b9ea +86d0127e1fd04c3d8ea78401c838af621647dc95 +4560491820e0ee49736aea9b81d57c3939a69e12 +c62c07de196e95eaaf614fb150a4fa4ce49588b4 +64ec0c53dd1aa51eb15e8c2a577701e165b8517b +8f9c37f351a91ed416baa8b6cdb4022b231b9085 +a022eff5470c3446aca683eae9c18319fd2406d5 +af6cae71f24ea8f457e581bfe1240d5fa63faaf7 +a81c86cda6f1da2aa09b6737297addd3d4a64ffa +633c851ebf625ad7abdda2324e9de093cf623141 +13179bb3f2867ea44647b6fe0c8fb4109207e9f5 +7fab17ef7e25626643f1d55257a3e13348e435bd +523854a7d8755e944bd50217c14481fe1329a969 +6e911227e893d0eecb363015754824bf4366bdb7 +7c1cfab6b60466c13f07fe028e5085a949ec8b30 +ff8ef43168b9c8dd467208a0b1b02e223b731254 +7eaa97be59019f0d36aa7dac27407b004cad5e93 +2bcd9b2b78eb353ea57cf50387083900eae5384a +61e9e180d3d1d8b09f1cc59bdd9f98c497707eff +f16599e4ec666c6390c90ff9a253162178a70ef5 +37866fea39deeff453802cde529dd9d32e0205a5 +7c57ac7c9f84fbd093f6393e2b63c18078bf0fdf +4c72a51a7c7288e6e17dfefe4f87df47929608e7 +06560d5721ecc487a4d70905a485e22c9542a522 +8006219efb6ab76754616b0e8b7778dcfb46603d +7a3d46f32f680144fd2ba261681b43b86b702b85 +8202da548a128b28dd1f3aa9f86a0523ec2ecb26 +95289007f2f336e6636cf8f920225b8d47c6e94f +db1a9b8d8ce9a5696a96f8db4206b6f72707730e +2ffcd35d9b8867a42be23978079f5f24be8d3e35 +10e4172dd4f4a633f10762fc5d4755e61d52dc36 +2563fc1797f187e2f6f9d9f4387d4bcadd3fbd02 +eba4cfd76f99159ccc0a65cab0a02db42b548d85 +21d5c838d19fcb4d624b69fe9d98e84d88f18e79 +484bac2a9ff3a43a6f85d109bbc579a4346397f5 +d383ba7bbf8b7b49dcef9f8abab47521966546bb +a1dd9038b1e1e59c9d564e252d3e14705872fdec +24869258fef8f47623b5ef43bd978a525f0af60e +6c92d87c84fa5e5d2bb5bed3ef38168786bacc49 +6baaa8b763cc5553715766e7fbe7abb235fae33c +88e090ffc1f75eed720b5afb167523eb2e316f7f +2961e14c327341d22d5f266a6872aa174add8ac4 +7f4bc8883c3b9872408cc391bcd294017848d0cf +f7dcadc5288653ec6764600c7c1e2b49c305dfaa +cff911786b5ac884bb71788c5bc6acf6bf569eff +0b45aeb0aede5e0c19b508ede802bdfec668aefd +c79cf7f61441195404472102114bcf079a72138a +4686df20f0ee40cd411e4b43860ef56de5531d9e +93cd5c47e4a3425d23e3db32c6eaef53745bb32e +f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a +fd9ab411dc6258763c95b7741e3d51adf5504040 +29a5d38390857e234c111f8bb787724c08f39110 +06ab24721d7117974a6039eb2e57d1545eee5e46 +55432723c728a2ce90d817e9e9877ae9fbad6fe5 +e9b0a27018c7151016a9fe01c98b4c21d6ebf4be +40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd +5748652924084b7b0220cddcd28f6b2222004359 +3cd7b15f5647e650db66fbe2ce1852e00c05b2e4 +0004f72a00096fa410b179ad12aa3a0d10fc853c +27b451abfe321a696c852215bb7efb4c2e50c89f +18e54b74ed1f3c02b7569f53a7d930d72fc329f5 +8562b4f63e49847692b8cb31ef0bdec416b9a87a +b562def2624f59f7d3824e43ecffc990ad780898 +6e91be2ad74cf7c5969314b2327b513532b1be09 +4ed6c7740ba93d75345397ef043f35c0562fb0fd +d7dd35a86117e46d24914ef49ccd99ea0a7bf705 +10bf35bf98cfe555dfc03b5f03f2769d330e3af9 +a03448488950ee5bf50e9e1d744129fbba066c50 +1d30f813798c55ae4fe454829be6e2948ee841da +54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7 +fb8eb4a7b9b9602992e5982c9e0d6d7f7b8210ef +9057044c0347fb9798a9b552910a9aff150385db +5b4b84ce3518c8a14f57f5f95a1d07fb60e58223 +99facca6fc50cc30f13b7b6dd49ace24bc94f702 +49068538b7eef66b4254cc11914128097302fab8 +51dcb36a6c247189be4420562f19feb00c9487f8 +e03bda45248b4169e2a20cb9124ae60440cad2de +f60a85bd35fa85739d712f4c93ea80d31aa7de07 +21b5af67618fcc047b495d2d5d7c2bf145753633 +023decb4c56f2e97d345593e4f7b89b667a6763d +73d53a7c27716ae9a6d3484e78883545e53117ae +a803453edd2b4a85b29da74dcc551b3c53ff17f9 +e90e12e77cab78ba8f8f657db2bf4ae3dabd5166 +44b91268fbbf62e1d2ba1d5331ec7aedac30dbe8 +4e37cd250130c6fd60e066f0c8efb3cbb778c421 +38c7f80a1e7fa1bdec632042318dc7cdd3c9aad4 +5dafab3c936763294257af73baf9fb3bb1696654 +a96c45ed3a44ad79a72499be238264ae38857988 +2696d3708d6c6cccbd701f0dac14cc94d72dd76d +6b3e360b80268fda4e37ff39b7f303e3684e8719 +60e2b9b2e0db3089237d0208f57b22a3aac932c1 +df767f62a6bf3b09e6417d801726f2d5d642a202 +41c42cb001f34c43d4d8dd8fb72a982854e173fb +aadfcaf601630bdc2af11c00eb34220da59b7559 +f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f +e52f57a7de675d14aed28e5d0f2f3c5a01715337 +ab989225a55a2ddcd3b60a99672e78e4373c0df1 +cbfcd1ec8aa30e31faf205c73d350d447704afee +dc1510110c23f7b509035a1eda22879ef2506e61 +d1ee9e63c8826a39d75fa32711fddbcc58d5161a +db67edbaeb78e1dd734784cfaaa720ba86ceb6d2 +3a0558ebfde592bd8bd07cb72b8ca8f700715bfb +6c7a42b4f43b3a2f9b250f5803b697857b1444ac +44d93039eec244083ac7c46577b9446b3a071f3e +f68ed499e9d41f9c3d16d843db75dc12833d988d +f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e +764882e6779fbee29c3d87e00302befc52d2ea8d +1951dc9dd4601168ab5acf4c14043b124a8e2f67 +dc964b9c7242a985eb255b2410a9c45981c2f4d0 +0532cbcf616f27e5f6a4054f818d4992b99d201d +fac8cff9052fc5fab7d5ef114d1342daba5e4b82 +8acdc4be8274e5d189fb67b841c25debf5223840 +ad77056780328bdcc6b7a21bce4ddd49c49e2013 +814369f171337ee1d8809446b7dbfc5e1ef9f4b5 +4972aadcce369a8c0029e6dc2f288dfd0241e144 +8fb2ec3bbd862f680be05ef348b595e142463524 +684f5166d8147b59d9e0938d627beff8c9d208dd +06b4e41185734f70ce432fdb2b121a7eb01140af +dd0086da7c4efe61abb70dd012538f5deb9a8d16 +3e59d97d42f36fc96d33a5658951856a555e997b +bc9003ad368cb79d8a8ac2ad025718da5ea36bc4 +40c1de7b1b0a087c590537df55ecd089c86e8bfc +32f62da99ec9f58dd93e3be667612abcf00df16a +81f101cea3c451754506bf1c7edf80a661fa4dd1 +dfecaedeaf618041a5498cd3f0942c15302e75c3 +5ba7882700718e996d576b58528f1838e5559225 +7f68a5429f150f9eb7550308bb47a363f2989cb3 +cc2a9f4be1e465cb4ba702539f0f088ac3383834 +c8585c95215bc53e28edb740678b3a0460ca8aa4 +da23d90bacf246b75ef752a2cbb138c4fcd789b7 +d31af74425719a3840b496b7932e0887b35e9e0d +a5acda0e8c0937bfed013e6382da127103e41395 +df87193e15a19d5620f5a6458b05fee0cf03729f +eece52bd0ed4d7925c49b34e67dbb6657d2d649b +f3df296de36b7c114451865778e211350d153727 +7cf579088e0456d04b531da385002825ca6314e2 +a939e287feb3166983e36b8573cd161d12097ad8 +97137d5154a9f22a5d9ecc32e8e2b95d07a5a571 +938ae9597f71a21f2e47287cca318d4a2113feb2 +e4d8ba577cabcb67b4e9e1260573aea708574886 +ebc3d7f50231cdb18a8107433ae9adc7bd94b97a +196c12571ab51273f44ea3469d16301d5b8d2828 +abba1bf1348a6f1b70a26aac237338ee66764458 +af3b803188344971aa89fee861a6a598f30c6f10 +6af75a8572965207c2b227ad35d5c61a5bd69f45 +9d24812d942e69f86279a26932df53c0a68c4111 +1bdef21f093c41df2682a07f05f3548717c7a3d1 +8a866bc0d925dfd8bb10769b8b87d7d0ff01774d +3cd380bd0f3b164b44c49e3b01f6ac9798b6b6f9 +857c64060963dd8d28e4740f190d321298ddd503 +540b39ba1b8ef06293ed793f130e0483e777e278 +b8ebda42e272d3617375118542d4675a0c0e501d +c1c2775e19d6fd2ad6616f69bda92ac8927106a2 +2d3af3ee03793f76fb8ff15e7d7515ff1e03f34c +4b0cb10c6c3f2d581ac9eb654412f70bc72ed661 +97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5 +cfa931e6728a825caada65624ea22b840077f023 +f87b22e7f0c66225824a99cada71f9b3e66b5742 +d69719b42ee53b666e56ed476629a883c59ddf66 +d916602f694ebb9cf95d85e08dd53f653b6196c3 +8dcc95debd07ebab1721c53fa50d846fef265022 +aa5a7a9900548a1f1381389fc8695ced0c34261a +48a402593ca4896ac34fbebf1e725ab1226ecdb7 +ef23e82180508606a3ab8d9a30205b5e3c0daf67 +5760d29574d78e79e8343b74e6e30b3555e48676 +8eb40d0a0a1339469a05711f532839e8ffd8126c +f7a271acccf9ec66c9b114d36eec284fbb89c7ef +a082c77e9a6c2e2313d8255e8e4c0677d325ce3e +c9367ed83156d4d682cefc59301b67f5460013e0 +bf37a81d572bb154581845b65a766fab1e5c7dda +c997744db532767ee757197491d8ac28d10f1c0f +d36a1e4637618304c2093f72702dcdcc4dcd41d1 +ce70dd0d613b840754dce528c14c0ebadd20ffaa +525da67fb524d46f2afa89478cd482a68be8a42b +b5f9180666924a3215ab0b1faf712e70b353444d +f3cdd2c3180aa2bf08320ddd3b9a56f9fe00e72b +60c24e44fce158c217d25c1bae9f880a8bd19fc3 +2dbc57abf3ceda80827b85593ce1f457b76a870b +592f14f4b12225fc691477a180a2a3226a5ef4f0 +81513764b73dae486a9d2df28269c7db75e9beb3 +be48b5dcd10ab834cd68d5b2a24187180e2b408f +ec1bec7344d07417fb04e509a9d3198da850349f +a313851ed00074a4a6c0fccf372acb6a68d9bc0b +2c93c8da5dfe5c50119949881f90ac5a0a4f39fe +176e6ba56e04c98e1997ffdef964ece90fd827b4 +9e2ab407ff36f3b793d78d9118ea25622f4b7434 +9ce0d64125fbaf625c466d86221505ad2aced7b1 +df6e68db278bedf5486a80697dec6623958edba8 +7d45f1878d8048f6b3de5b3ec912c49742d5e968 +610779e90b644cc18696d7ac7820d3e0598e24d0 +3b350afd8b82487aa97097170c269a25daa0c82d +ee815f60dc4a090fa9fcfba0135f4707af21420d +7ee7b0602ef517b445316ca8aa525e28ea79307e +74dbe6e0486e417a108923295c80551b6d759dbe +81b0550c58e7409b4f1a1cd7838669cfaa512eb3 +f3553148e322f4f64545d6667dfbc7607c82703a +f9bce7bd7909f1c75dbeb44900d374bc89072df0 +265a88a8805f6ba3efae3fcc93d810be1ea68866 +84508e846af3ac509f7e1d74b37709107ba48bde +ab2b09b65fdc91a711e424524e666fc75aae7a51 +318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a +4983076c1a8b80ff5cd68b924b11df58a68b6c84 +a98ff1c2e3c22e3d0a41a2718e4587537b92da0a +a6ce1a1de164f41cb8999c728bceedf65d66bb23 +a88ced67f4ed7940c76b666e1c9c0f08b59f9cf8 +f6cf2108ec9d0f59124454d88045173aa328bd2e +73b90573d272887a6d835ace89bfaf717747c59b +1c0acf9c2f2c43be47b34acbd4e7338de360e555 +ef940b76e40e18f329c43a3f545dc41080f68748 +ef559d5f02e43534168fbec86707915a70cd73a0 +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d +e45a556df61e2357a8f422bdf864b7a5ed3b8627 +bc08dfa22949fbe54e15b1a6379afade71835968 +bef4df99e1dc6f696f9b3732ab6bac8e85d3fb3c +85e78aa374d85f9a61da693e5010e40decd3f986 +de92951ea021ec56492d76381a8ae560a972dd68 +116f9e9cda25ff3187bc777ceb3ecd28077a7eca +03c56c176ec6377dddb6a96c7b2e95408db65a7a +c631a31be2c793d398175ceef7daff1848bb6408 +1ef1f33c48bc159881c5c8536cbbd533d31b0e9a +f85ccab7173e543f2bfd4c7a81fb14e147695740 +d62d82c312c40437bc4c1c91caedac2ba5beb292 +858b51a8a8aa082732e9c7fbbd1ea9df9c76b013 +75ce75c1a5c35ecdba99dd8b7ba900d073e35f78 +de45bf9e5593a5549a60ca01f2988266d04d77da +4da4e58072c15904d4ce31076061ebd3ab1cdcd5 +744fa8062d0ae1a11b79592f0cd3fef133807a03 +d264dedfdca8dc4c71c50311bcdd6ba3980eb331 +aeaf5dbb3608922246c7cd8a619541ea9e4a7028 +1feeab271621128fe864e4c64bab9b2e2d0ed1f1 +77d929b3c4bf546557815b41ed5c076a5792dc6b +ab8ecf98f457e29b000c44d49f5bf49ec92e571c +daca9d03c1c951ed518248de7f75ff51e5c272cb +24603ed946cb9385ec541c86d2e42db47361c102 +b82f89d6ef94d26bf4fec4d49437346b727c3bd4 +c37de914c6e9b743d90e2566723d0062bedc9e6a +b2b535118c5c4dfcc96f547274cdc05dde629976 +dec76940896a41a8a7b6e9684df326b23737cd5d +99d06fe2f4d6d76acf40b6da67c5052e82055f5a +0ba1d855cd38b6a2c52860ae4d1a85198b304be4 +03fe3d031afdcddf38e5cc0d908b734884542eeb +c0c0b8558b17aa20debc4611275a4c69edd1e2a7 +4cfe921ac4650470b0473fd52a2b801f4494ee64 +6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae +715b69575dadd7804b4f8ccb419a3ad8b7b7ca89 +20a0f71d2c667f3c69df18f097f2b5678ac7d214 +1297ee7a41aa4e8499c7ddb3b1fed783eba19056 +721d9c387ed382988fce6fa864446fed5fb23173 +d116bac3b6ad77084c12bea557d42ed4c9d78433 +7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b +5ed66fb992bfefb070b5c39dc45b6e3ff5248c10 +e14cc2715b806288fe457d88c1ad07ef55c65318 +835e510fcf22b4b9097ef51b8d0bb4e7b806bdfd +25982e2bef817ebde7be5bb80b22a9864b979fb0 +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae +1f5f67d315c9dad341d39129d8f8fe7fa58e564c +d57982dc55dbed3d0f89589e319dc2d2bd598532 +714d487571ca0d676bad75c8fa622d6f50df953b +b11b71b704629357fe13ed97b216b9554b0e7463 +c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f +bdbba95e5abc543981fb557f21e3e6551a563b45 +779d3f0cf74b7d33344eea210170c7c981a7e27b +972b1a7ef8cc9c83c2c6d8d126f94f27b567d7d0 +a9215666b4bcdf8d510de8952cf0d55b635727dc +91495c689e6e614247495c3f322d400d8098de43 +8bed7ff2f75d956652320270eaf331e1f73efb35 +2a826273e856939b58be8779d2136bffa0dddb08 +53c36186bf0ffbe2f39165a1824c965c6394fe0d +c900e0ad4c95948baaf0acd8449fde26f9b4952a +a168ca2e199121258fbb2b6c821207456e5bf994 +4e43408a59852c1bbaa11596a5da3e42034d9380 +fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e +ce75deb5c645eeb08254e9a7962c74cab1e4c480 +9f43caad22803332400f498ca4dd0429fe7da0aa +2a7058a720fa9da4b9b607ea00bfdb63652dff95 +ea1303f6746f815b7518c82c9c4d4a00cd6328b9 +914d7527678b514e3ee9551655f55ffbd3f0eb0a +aae742779e8b754da7973949992d258d6ca26216 +b41d585246360646c677a8238ec35e8605b083b0 +7acbf0b060e948589b38d5501ca217463cfd5c2f +1251deae1b4a722a2155d932bdfb6fe4ae28dd22 +23ee7b7a9ca5948e81555aaf3a044cfec778f148 +776362314f1479f5319aaf989624ac604ba42c65 +bfdafe932f93b01632a5ba590627f0d41034705d +ee1f9637f372d2eccc447461ef834a9859011ec1 +9b9f6e5eb6d7fa50300d67502e8fda1006594b84 +b0b944b3a783c2d9f12637b471fe1efb44deb52b +82417d8ec8ac6406f2d55774a35af2a1b3f4b66e +bc9bad25f8149318314971d8b8c170064e220ea8 +053931267af79a89791479b18d1b9cde3edcb415 +b6620027b441131a18f383d544779521b119c1aa +90221884fe2643b80203991686af78a9da0f9791 +48a5b6ee60475b18411a910c6084b3a32147b8cd +53ce84598052308b86ba79d873082853022aa7e9 +be4f7679797777f2bc1fd6aad8af67cce5e5ce87 +b7774c096dc18bb0be2acef07ff5887a22c2a848 +0e93a5a7f6dbdb3802173dca05717d27d72bfec0 +5fea26746f3140b12317fcf3bc1680f2746e172e +dc5d9399b3796db7fd850990402dce221b98c8be +c88c21eb9a8e08b66c981db35f6556f4974d27a8 +e3a6e5a573619a97bd6662b652ea7d088ec0b352 +16de1324459fe8fdcdca80bba04c3c30bb789bdf +46c82cfadd9f885f5480b2d7155f0985daf949fc +be437b53a376085b01ebd0f4c7c6c9e40a4b1a75 +32e9c9520cf6acb55dde672b73760442b2f166f5 +55a7286f014cc6b51a3f50b1e6bc8acc8166f231 +7574f999d2325803f88c4915ba8f304cccc232d1 +450c6a57f19f5aa45626bb08d7d5d6acdb863b4b +641f0989b87bf7db67a64900dcc9568767b7b50f +9aab33ce8d6786b3b77900a9b25f5f4577cea461 +fa32b29e627086d4302db4d30c07a9d11dcd6b84 +af4745a3c3c7b51dab0fd90d68b53e60225aa4a9 +a325d5ea42a0b6aeb0390318e9f65f584bd67edd +dac8fc521dfafb2d082faa4697f491eae00472c7 +c3beae515f38daf4bd8053a7d72f6d2ed3b05d88 +d066575b48b552a38e63095bb1f7b56cbb1fbea4 +706b9767a444de4fe153b2f3bff29df7674c3161 +fffe5ab3351deab81f7562d06764551422dbd9c4 +5fe3a9d54d5070308803dd8ef611594f59805400 +def934edb7c7355757802a95218c6e4ed6122a72 +071ec4f3fb4bfe6ae9980477d208a7b12691710e +d79365336115661b0e8dbbcd4b2aa1f504b91af6 +d666ce9d783a2d31550a8aa47da45128a67304a7 +b13e2e43672e66ba45d1b852a34737e4ce04226b +ab1719f573a6c121d7d7da5053fe5f12de0182e7 +79dc84a3bf76f1cb983902e2591d913cee5bdb0e +fbc9ba70e36768efff130c7d970ce52810b044ff +46f48211716062744ddec5824e9de9322704dea1 +784a83437b3dba49c0d7ccc10ac40497b84661a5 +824d1db06e1c25f7681e46199fd02cb5fc343784 +20d6a4aaf5abf2925fdce2780e38ab1771209f76 +588bed36b3cc9e2f26c39b5d99d6687f36ae1177 +73ba33e933e834b815f62a50aa1a0e15c6547e83 +ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d +94a11b601af77f0ad46338afd0fa4ccbab909e82 +2f88d3189723669f957d83ad542ac5c2341c37a5 +f39783847499dd56ba39c1f3b567f64dfdfa8527 +b5747ecfa0f3be0adaad919d78763b1133c4d662 +bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197 +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc +633101e794d7b80f55f466fd2941ea24595e10e6 +d01303062b21cd9ff46d5e3ff78897b8499480de +07a31bd7a0bd7118f8ac0bc735feef90e304fb08 +1910f5f7ac81d4fcc30284e88dee3537887acdf3 +7923742e2af655dee4f9a99e39916d164bc30178 +44b1399e8569a29eed0d22d88767b1891dbcf987 +dc107e7322f7059430b4ef4991507cb18bcc5d95 +f0f0e94d333b4923ae42ee195df17c0df62ea0b1 +7e8c8b1d72c67e2e241184448715a8d4bd88a727 +f7b4bc4ef14349a6e66829a0101d5b21129dcf55 +d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576 +bc27434e376db89fe0e6ef2d2fabc100d2575ec6 +1b4f6f73c70353869026e5eec1dd903f9e26d43f +7f904093e6933cab876e87532111db94c71a304f +3f5693584d7dab13ffc12122d6ddbf862783028b +710011644006c18291ad512456b7580095d628a2 +34ce703b7e79e3072eed7f92239a4c08517b0c55 +dbb9601a1d2febcce4c07dd2b819243d81abb2c2 +eac97959f2fcd882e8236c5dd6035870878eb36b +a6e8a8bb99e30a9e80dbf80c46495cf798066105 +e506cdb250eba5e70c5147eb477fbd069714765b +9b6d9f0923e1d42c86a1154897b1a9bd7ba6716c +1a81c722727299e45af289d905d7dcf157174248 +e1d726d812554f2b2b92cac3a4d2bec678969368 +79f6a8f777a11fd626185ab549079236629431ac +aeff403079022683b233decda556a6aee3225065 +cd23dc3227ee2a3ab0f4de1817d03ca771267aeb +a8154d043f187c6640cb6aedeaa8385a323e46cf +e3b9863e583171ac9ae7b485f88e503852c747b6 +7914c3f510e84a3d83d66717aad0d852d6a4d148 +42eda7c20db9dc0f42f72bb997dd191ed8499b10 +46e0703044811c941f0b5418139f89d46b360aa3 +7fcecaef60a681c47f0476e54e08712ee05d6154 +5bb4fd87fa4a27ddacd570aa81c2d66eb4721019 +53f5cb365806c57811319a42659c9f68b879454a +477236563c6a6c6db922045453b74d3f9535bfa1 +91e17338a12b5e570907e816bff296b13177971e +346752e3ab96c93483413be4feaa024ccfe9499f +da4170c862d8ae39861aa193667bfdbdf0ecb363 +8de5dc782178114d9424d33d9adabb2f29a1ab17 +9a59abdf3460970de53e09cb397f47d86744f472 +99d7678039ad96ee29ab520ff114bb8021222a91 +6d07e176c754ac42773690d4b4919a39df85d7ec +4a733a0862bd5f7be73fb4040c1375a6d17c9276 +1d4c25f9f8f08f5a756d6f472778ab54a7e6129d +bed06e7ff0b510b4a1762283640b4233de4c18e0 +09137e3c267a3414314d1e7e4b0e3a4cae801f45 +682760f2f767fb47e1e2ca35db3becbb6153756f +9c23859ec7313f2e756a3e85575735e0c52249f4 +869a2fbe42d3fdf40ed8b768edbf54137be7ac71 +70e14e216b12bed2211c4df66ef5f0bdeaffe774 +f4b5a8f6462a68e79d643648c780efe588e4b6ca +345cc31c85e19cea9f8b8521be6a37937efd41c2 +6359fcb0b4546979c54818df8271debc0d653257 +cf2e1ebb9609f46af6de0c15b4f48d03e37e54ba +9d3377313759dfdc1a702b341d8d8e4b1469460c +b14b672e09b5b2d984295dfafb05604492bfaec5 +720763bcb5e0507f13a8a319018676eb24270ff0 +0fd1bffb171699a968c700f206665b2f8837d953 +67af3ec65f1dc535018f3671624e72c96a611c39 +82a0a5d0785fb2c2282ed901a15c3ff02f8567df +f113aed343bcac1021dc3e57ba6cc0647a8f5ce1 +a6902db7972a7631d186bbf59c5ef116c205b1e8 +44855e53801d09763c1fb5f90ab73e5c3758a728 +121503705689f46546cade78ff62963574b4750b +4113269f916117f975d5d2a0e60864735b73c64c +b85c198ce09ffc4037582a544c7ffb6ebaeff198 +c6724c2bb7f491c92c8dd4a1f01a80b82644b793 +4f064c2a0ef0849eed61ab816ff0c2ff6d9d7308 +b49affdff167f5d170da18de3efa6fd6a50262a2 +e19fb22b35c352f57f520f593d748096b41a4a7b +99c20eb5433ed27e70881d026d1dbe378a12b342 +642a386c451e94d9c44134e03052219a7512b9de +3779e0599481f11fc1acee60d5108d63e55819b3 +a6eb6ad9142130406fb4ffd4d60e8348c2442c29 +eb70c38a350d13ea6b54dc9ebae0b64171d813c9 +ed07856461da6c7afa4f1782b5b607b45eebe9f6 +a2e0966f303f38b58b898d388d1c83e40b605262 +6a4419ce2338ea30a570cf45624741b754fa52cb +c146aa6d56233ce700032f1cb179700778557601 +4db9e5f19366fe5d6a98ca43c1d113dac823a14d +cbbd13c29d042743f0139f1e044b6bca731886d0 +4dca3d6341e1d991c902492952e726dc2a443d1c +8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b +7cffcb4f24343a924a8317d560202ba9ed26cd0b +228ea13041910c41b50d0052bdce924037c3bc6a +c98983592777952d1751103b4d397d3ace00852d +eb8519cec0d7a781923f68fdca0891713cb81163 +dde5125baefa1141f1ed50479a3fd67c528a965f +5fff61302adc65d554d5db3722b8a604e62a8377 +6193c833ad25ac27abbde1a31c1cabe56ce1515b +047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff +d2eb1079552fb736e3ba5e494543e67620832c52 +62fd622b3ca97eb5577fd423fb9efde9a849cbef +93af36da08bf99e68c9b0d36e141ed8154455ac2 +ea079334121a0ba89452036e5d7f8e18f6851519 +b55e70df03d9b80c91446a97957bc95772dcc45b +fe7c0bafbd9a28087e0169259816fca46db1a837 +b15a06d701f0a7f508e3355a09d0016de3d92a6d +0647c9d56cf11215894d57d677997826b22f6a13 +28e1982d20b6eff33989abbef3e9e74400dbf508 +bc811a66855aae130ca78cd0016fd820db1603ec +af9419f2155785961a5c16315c70b8228435d5f8 +8a0159919ee4e1a9f4cbfb652a1be212bf0554fd +407806f5fe3c5ecc2dc15b75d3d2b0359b4ee7e0 +3ff79cf6df1937949cc9bc522041a9a39d314d83 +e8aa1f207b4b0bb710f79ab47a671d5639696a56 +cb522b2e16b11dde48203bef97131ddca3cdaebd +fea83550a21f4b41057b031ac338170bacda8805 +e293a31260cf20996d12d14b8f29a9d4d99c4642 +dac34b590adddef2fc31f26e2aeb0059115d07a1 +845f45f8412905137bf4e46a0d434f5856cd3aec +cc9d068cf6c4a30da82fd6350a348467cb5086d4 +b3cb91a08be4117d6efe57251061b62417867de9 +d77f18917a58e7d4598d31af4e7be2762d858370 +e9363f4368b04aeaa6d6617db0a574844fc59338 +d458c49a5e34263c95b3393386b5d76ba770e497 +b97f694c2a111b5b1724eefd63c8d64c8e19f6c9 +134f1cee8408cca648d8b4ca44b38b0a7023af71 +9c59bb28054eee783a40b467c82f38021c19ff3e +518a3ce2a290352afea22027b64bf3950bffc65a +ffe4bb47ec15f768e1744bdf530d5796ba56cfc1 +e3c8e49ffa7beceffca3f7f276c27ae6d29b35db +e20e2db743e8db1ff61279f4fda32bf8cf381f8e +dc3dc18b6831c867a8d65da130a9ff147a736745 +7783095a565094ae5b3dccf082d504ddd7255a5c +54948ee407b5d32da4b2eee377cc44f20c3a7e0c +a532cfc69259254192aee3fc5be614d9197e7824 +abdd17e411a7bfe043f280abd4e560a04ab6e992 +f6f06be05981689b94809130e251f9e4bf932660 +bf3bf5400b617fef2825eb987eb496fea99804b9 +15136c2f94fd29fc1cb6bedc8c1831b7002930a6 +3e9ab40e6e23f09d16c852b74d40264067ac6abc +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5 +9989ad33b64accea8042e386ff3f1216386ba7f1 +20111924fbf616a13d37823cd8712a9c6b458cd6 +5134353bd01c4ea36bd007c460e8972b1541d0ad +e6da1fcd2a8cda0c69b3d94812caa7d844903007 +1921795408345751791b44b379f51b7dd54ebfa2 +96e1ccfe96566e3c96d7b86e134fa698c01f2289 +b166ce267ddb705e6ed855c6b679ec699d62e9cb +972e044f69443dfc5c987e29250b2b88a6d2f986 +e6d6203fa911429d76f026e2ec2de260ec520432 +f1aa120fb720f6cfaab13aea4b8379275e6d40a2 +8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2 +d340a135a55ecf7506010e153d5f23155dcfa7e8 +ef032afa4bdb18b328ffcc60e2dc5229cc1939bc +f92ade569cbe54344ffd3bb25efd366dcd8ad659 +dcb6f06631021811091ce691592b12a237c12907 +01c4cf9c7c08f0ad3f386d88725da564f3c54679 +f5eb0cf9c57716618fab8e24e841f9536057a28a +9825c4dddeb2ed7eaab668b55403aa2c38bc3320 +9806d3dc7805dd8c9c20d7222c915fc4beee7099 +93c0405b1f5432eab11cb5180229720604ffd030 +4aa093d1986b4ad9b073ac9edfb903f62c00e0b0 +a961f1234e963a7945fed70197015678149b37d8 +9f131b4e036208f2402182a1af2a59e3c5d7dd44 +e049d3db7c59f8173aa91dd4bd1bd0beebdaa260 +d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d +660c99ac408b535bb0468ab3708d0d1d5db30180 +3965d61c4f3b72044f43609c808f8760af8781a2 +96f0e7416994035c91f4e0dfa40fd45090debfc5 +f4d30896c5f808a622824a2d740b3130be50258e +d6ae7941dcec920d5726d50d1b1cdfe4dde34d35 +5de9670f72d10682bf2cb3156988346257e0489f +69adbfa7b0b886caac15ebe53b89adce390598a3 +a92c207031b0778572bf41803dba1a21076e128b +c18a03568d4b512a0d8380cbb1fbf6bd56d11f05 +7fb5006b6522436ece5bedf509e79bdb7b79c9a7 +c4f3185f010027a0a97fcb9753d74eb27a9cfd3e +eac6aee477446a67d491ef7c95abb21867cf71fc +71ca8b6e84c17b3e68f980bfb8cddc837100f8bf +70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e +3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b +79db191ca1268dc88271abef3179c4fe4ee92aed +c07ab025d9e3c885ad5386e6f000543efe091c4b +9ff931ca721d50e470e1a38e583c7b18b6cdc2cc +47e14fdc6685f0b3800f709c32e005068dfc8d47 +06518858bd99cddf9bc9200fac5311fc29ac33b4 +178a82e3a0541fa75c6a11350be5bded133a59fd +5dd3c9ac3c6d826e17c5b378d1575b68d02432d7 +1de23d7fe718d9fab0159f58f422099e44ad3f0a +0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f +e40cb4369c6402ae53c81ce52b73df3ef89f578b +d99b5ee3e2d7e3a016fbc5fd417304e15efbd1f8 +dbe255d3d2a5d960daaaba71cb0da292e0af36a7 +21959bc56a160ebd450606867dce1462a913afab +2717b044ae9933f9ab87f16d6c611352f66b2033 +04317e63c08e7888cef480fe79f12d3c255c5b00 +2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd +166186e551b75c9b5adcc9218f0727b73f5de899 +0857281a3b6a5faba1405e2c11f4e17191d3824d +653d19e64bd75648cdb149f755d59e583b8367e3 +4007bf090887d8a0e907ab5e17ecfcdbbdafc2e4 +edfce091688bc88389dd4877950bd58e00ff1253 +917bea27af1846b649e2bced624e8df1d9b79d6f +e22adcd2a6a7544f017ec875ce8f89d5c59e09c8 +3c1aef7c2d32a219bdbc89a44d158bc2695e360a +1e3068886b138304ec5a7296702879cc8788143d +54ba18952fe36c9be9f2ab11faecd43d123b389b +a95dc0c4a9d882a903ce8c70e80399f38d2dcc89 +2e5cfa97f3ecc10ae8f54c1862433285281e6a7c +f65b47093e4d45013f54c3ba09bbcce7140af6bb +c3285a1d6ec6972156fea9e6dc9a8d88cd001617 +2004afb2276a169cdb1f33b2610c5218a1e47332 +3a9681e2e07be7b40b59c32a49a6ff4c40c962a2 +e988be047b28ba3b2f1e4cdba3e8c94026139fcf +d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e +8e3d0b401dec8818cd0245c540c6bc032f169a1d +2ab034e1f54c37bfc8ae93f7320160748310dc73 +53507e2de66eaba996f14fd2f54a5535056f1e59 +9788b491ddc188941dadf441fc143a4075bff764 +661ca4bbb49bb496f56311e9d4263dfac8eb96e9 +b68150bfdec373ed8e025f448b7a3485c16e3201 +3a3f75e0ffdc0eef07c42b470593827fcd4020b4 +ac86ccc16d555484a91741e4cb578b75599147b2 +ee56823f2f00c8c773e4ebc725ca57d2f9242947 +3f5e8f884e71310d7d5571bd98e5a049b8175075 +270acff7916589a6cc9ca915b0012ffcb75d4899 +7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794 +40273657e6919455373455bd9a5355bb46a7d614 +be28ed1be084385f5d389db25fd7f56cd2d7f7bf +2c424f21607ff6c92e640bfe3da9ff105c08fac4 +aa1129780cc496918085cd0603a774345c353c54 +f1280f76933ba8b7f4a6b8662580504f02bb4ab6 +9649a19b49607459cef32f43db4f6e6727080bdb +765be0c44a67e41e0f8f0b5d8a3af0ff40a00c7d +20b994a78cd1db6ba86ea5aab7211574df5940b3 +68484ae8a042904a95a8d284a7f85a4e28e37513 +6ba3cb67bcdb7aea8a07e144c03b8c5a79c19bc0 +7143518f847b0ec57a0ff80e0304c89d7e924d9a +8e36100cb144685c26e46ad034c524b830b8b2f2 +8dd9c97b85e883c16e5b1ec260f9cd610df52dec +9487cea80f23afe9bccc94deebaa3eefa6affa99 +43fce0c6b11eb50f597aa573611ac6dc47e088d3 +7c66e7f357553fd4b362d00ff377bffb9197410e +5e9ec3b8daa95d45138e30c07321e386590f8ec7 +aafeb3d76155ec28e8ab6b4d063105d5e04e471d +032825000c03b8ab4c207e1af4daeb1f225eb025 +fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a +3fb4bf38d34f7f7e5b3df36de2413d34da3e174a +95ea564bd983129ddb5535a6741e72bb1162c779 +4e30107ee6a2e087f14a7725e7fc5535ec2f5a5f +7c825562b3ff4683ed049a372cb6807abb09af2a +d5d7e89e6210fcbaa52dc277c1e307632cd91dab +cf805d478aeb53520c0ab4fcdc9307d093c21e52 +b1d89015f9b16515735d4140c84b0bacbbef19ac +c6f3399edb73cfba1248aec964630c8d54a9c534 +5fa04523ff13a82b8b6612250a39e1edb5066521 +ede5982980aa76deae8f9dc5143a724299d67742 +f5eb411217f729ad7ae84bfd4aeb3dedb850206a +3a3e55cf5bfd689d6c922e082efa0cd71cd2ae5c +59e9934720baf3c5df3a0e1e988202856e1f83ce +25ff865460c2b5481fa4161749d5da8501010aa0 +7f5b379b12505d60f9303aab1fea48515d36d098 +8f71c97206a03c366ddefaa6812f865ac6df87e9 +aab3561acbd19f7397cbae39dd34b3be33220309 +9ac43a98fe6fde668afb4fcc115e4ee353a6732d +636b8ffc09b1b23ff714ac8350bb35635e49fa3c +84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1 +c7de0c85432ad17a284b5b97c4f36c23f506d9d1 +13604bbdb6f04a71dea4bd093794e46730b0a488 +d790093cb85fc556c0089610026e0ec3466ab845 +aa6e8a2a9d3ed59d2ae72add84176e7b7f4b2912 +dc9d62087ff93a821e6bb8a15a8ae2da3e39dcdd +5f7c4c20ae2731bfb650a96b69fd065bf0bb950e +cd2c54705c455a4379f45eefdf32d8d10087e521 +0da75b0d341c8f945fae1da6c77b6ec345f47f2a +b5968e7bb23f5f03213178c22fd2e47af3afa04c +3e0a1884448bfd7f416c6a45dfcdfc9f2e617268 +0aaf785d7f21d2b5ad582b456896495d30b0a4e2 +c97a5f2241cc6cd99ef0c4527ea507a50841f60b +eb8a3948c4be0d23eb7326d27f2271be893b3409 +725c3605c2d26d113637097358cd4c08c19ff9e1 +2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83 +ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb +ca096e158912080493a898b0b8a4bd2902674fed +5f771fed91c8e4b666489ba2384d0705bcf75030 +dad6b36fd515bda801f3d22a462cc62348f6aad8 +2d7c2c015053fff5300515a7addcd74b523f3f66 +29db16efc3b378c50511f743e5197a4c0b9e902f +cd63759842a56bd2ede3999f6e11a74ccbec318b +893239f17dc2d17183410d8a98b0440d98fa2679 +e5dfd17dbfc9647ccc7323a5d62f65721b318ba9 +cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f +87b607b8d4858a16731144d17f457a54e488f15d +be7444c891caf295d162233bdae0e1c79791d566 +ffc81ced9ee8223ab0adb18817321cbee99606e6 +4b9ec224949c79a980a5a66664d0ac6233c3d575 +c7c53d75f6e963b403057d8ba5952e4974a779ad +4a3758f283b7c484d3f164528d73bc8667eb1591 +3dce635ce4b55fb63fc6d41b38640403b152a048 +0cf2eecf20cfbcb7f153713479e3206670ea0e9c +f2902f5956d7e2dca536d9131d4334f85f52f783 +ff012c56b9b1de969328dacd13e26b7138ff298b +ebbceab4e15bf641f74e335b70c6c4490a043961 +0c6a566ebdac4bd14e80cd6bf4631bc7458e1595 +fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f +604a281100784b4d5bc1a6db993d423abc5dc8f0 +23edcd0d2011d9c0d421193af061f2eb3e155da3 +8355d095d3534ef511a9af68a3b2893339e3f96b +b034cc919af30e96ee7bed769b93ea5828ae361b +834736698f2cc5c221c22369abe95515243a9fc3 +c29fe5ed41d2240352fcb8d8196eb2f31d009522 +3337cfc3de2c16dee6f7cbeda5f263409a9ad81e +d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d +7c11fa4fd91cb57e6e216117febcdd748e595760 +c05a7c72e679745deab9c9d7d481f7b5b9b36bdd +f374ac9307be5f25145b44931f5a53b388a77e49 +141cb9ee401f223220d3468592effa90f0c255fa +f4251e02f87ac3fcae70bdb313f13ed16ff6ff0a +414d78e32ac41e6ff8b192bc095fe55f865a02f4 +cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab +ed32df6b122b15a52238777c9993ed31107b4bed +b5f9306c3207ac12ac761e7d028c78b3009a219c +51bb86dc8748088a198b216f7e97616634147388 +6a5d7d20a8c4993d56bcf702c772aa3f95f99450 +cb004e9706f12d1de83b88c209ac948b137caae0 +f231046d5f5d87e2ca5fae88f41e8d74964e8f4f +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5 +d6c8f5674030cf3f5a2f7cc929bad37a422b26a0 +b7894c1f805ffd90ab4ab06002c70de68d6982ab +f2896dd2701fbb3564492a12c64f11a5ad456a67 +fe866887d3c26ee72590c440ed86ffc80e980293 +daa120032d8f141bc6aae20e23b1b754a0dd7d5f +ac26166857e55fd5c64ae7194a169ff4e473eb8b +13aef395f426ca8bd93640c9c3f848398b189874 +7195cb08ba2248f3214f5dc5d7881533dd1f46d9 +4b5ff8c67f3496a414f94e35cb35a601ec98e5cf +4ab84f203b0e752be83f7f213d7495b04b1c4c79 +1f3f7df159c338884ddfd38ee2d3ba2e1e3ada69 +bc6de183cd8b2baeebafeefcf40be88468b04b74 +d4288daef6519f6852f59ac6b85e21b8910f2207 +efb24d35d8f6a46e1ff3800a2481bc7e681e255e +aee3427d0814d8a398fd31f4f46941e9e5488d83 +0e192ca16ce1c967e21d62f9810591eed3d6904b +4f37f71517420c93c6841beb33ca0926354fa11d +cce332405ce9cd9dccc45efac26d1d614eaa982d +a5f35880477ae82902c620245e258cf854c09be9 +9944c451b4a487940d3fd8819080fe16d627892d +7117ed0be436c0291bc6fb6ea6db18de74e2464a +62b3598b401c807288a113796f424612cc5833ca +3cb057a24a8adba6fe964b5d461ba4e4af68af14 +68c1090f912b69b76437644dd16922909dd40d60 +c4fb2de4a5dc28710d9880aece321acf68338fde +c00df53bd46f78ae925c5768d46080159d4ef87d +68d2afd8c5c1c3a9bbda3dd209184e368e4376b9 +fdf8e293a7618f560e76bd83e3c40a0788104547 +759cf57215fcfdd8f59c97d14e7f3f62fafa2b30 +043efe5f465704ced8d71a067d2b9d5aa5b59c29 +14ee4948be56caeb30aa3b94968ce663e7496ce4 +3b73f8a2b39751efb7d7b396bf825af2aaadee24 +be632b206f1cd38eab0c01c5f2004d1e8fc72880 +8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a +dbc8ffd6457147ff06cd3f56834e3ec6dccb2057 +c34532fe6bfbd1e6df477c9ffdbb043b77e7804d +d7593148e4319df7a288180d920f2822eeecea0b +ed0cf5f577f5030ac68ab62fee1cf065349484cc +e853484dc585bed4b0ed0c5eb4bc6d9d93a16211 +87e592ee1a7e2d34e6b115da08700a1ae02e9355 +0a85afebaa19c80fddb660110a4352fd22eb2801 +c7f0c0636d27a1d45b8fcef37e545b902195d937 +4ccf64fc1c9ca71d6aefdf912caf8fea048fb211 +fd892e912149e3f5ddd82499e16f9ea0f0063fa3 +06c2086f7f72536bf970ca629151b16927104df3 +6dddf1440617bf7acda40d4d75c7fb4bf9517dbb +3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2 +8d5998cd984e7cce307da7d46f155f9db99c6590 +6f3054f182c34ace890a32fdf1656b583fbc7445 +803c92a3f0815dbf97e30c4ee9450fd005586e1a +a7664247a37a89c74d0e1a1606a99119cffc41d4 +f7b422df567ce9813926461251517761e3e6cda0 +71c4b8e1bb25ee80f4317411ea8180dae6499524 +4b61d8490bf034a2ee8aa26601d13c83ad7f843a +26a44feb7a64db7986473ca801c251aa88748477 +854b1f0581f5d3340f15eb79452363cbf38c04c8 +b40c001b3e304dccb28c745bd54aa281c8ff1f29 +a16fb74ea66025d1f346045fda00bd287c20af0e +0951f42abbf649bb564a21d4ff5dddf9a5ea54d9 +c19222d138eb45903a3aa7e46030979d50769771 +6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc +ec5c63609cf56496715b0eba0e906de3231ad6d1 +16d6737b50f969247339a6860da2109a8664198a +31ea88f29e7f01a9801648d808f90862e066f9ea +cd7a7be3804fd217e9f10682e0c0bfd9583a08db +f0cee87e9ecedeb927664b8da44b8649050e1c86 +5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c +d0471d5907d6557cf081edf4c7c2296c3c221a38 +7361b900018f22e37499443643be1ff9d20edfd6 +2e9c780ee8145f29bd1a000585dd99b14d1f5894 +d278e020be85a1ccd90aa366b70c43884dd3f798 +017e94ad51c9be864b98c9b75582753ce6ee134f +0cfca73806f443188632266513bac6aaf6923fa8 +b161d261fabb507803a9e5834571d56a3b87d147 +cfdc632adcb799dba14af6a8339ca761725abf0a +c254b4c0f6d5a5a45680eb3742907ec93c3a222b +eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6 +ced7811f2b694e54e3d96ec5398e4b6afca67fc0 +6601a0906e503a6221d2e0f2ca8c3f544a4adab7 +1bd9dbe78918ed17b0a3ac40623f044cb3d3552c +9961f1e5cf8fda29912344773bc75c47f18333a0 +8de6deefb90fb9b3f7d451b9d8a1a3264b768482 +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4 +9e10ea753b9767aa2f91dafe8545cd6f44befd7f +286a5c19a43382a21c8d96d847b52bba6b715a71 +33aa980544a9d627f305540059828597354b076c +6b6ff9d55e1df06f8b3e6f257e23557a73b2df96 +26c8ed504f852eda4a2e63dbbbc3480e57f43c70 +1aa61dd85d3a5a2fe819cba21192ec4471c08628 +969626c52d30ea803064ddef8fb4613fa73ba11d +66837add89caffd9c91430820f49adb5d3f40930 +07a328999666ef2dc28ce57bc1881d10e6f0b370 +b484141b99d3478a12b8a6854864c4b875d289b8 +80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923 +adf62dfa00748381ac21634ae97710bb80fc2922 +c7745f941532b7d6fa70db09e81eb1167f70f8a7 +895081d6a5545ad6385bfc6fcf460fc0b13bac86 +7b47dd9302b3085cd6705614b88d7bdbc8ae5c13 +6a6269e591e11f41d59c2ca1e707aaa1f0d57de6 +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac +3266fbaaa317a796d0934b9a3f3bb7c64992ac7d +58217ae5423828ed5e1569bee93d491569d79970 +eb6f2b5529f2a7bc8b5b03b1171f75a4c753a0b2 +c362116a358320e71fb6bc8baa559142677622d2 +23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e +ddbb6e0913ac127004be73e2d4097513a8f02d37 +12ebeb2176a5043ad57bc5f3218e48a96254e3e9 +f8162276f3b21a3873dde7a507fd68b4ab858bcc +e1d1540a718bb7a933e21339f1a2d90660af7353 +f64574ee0e6247b84d573ddb5c6e2c4ba798ffff +ecc4be938f0e61a9c6b5111e0a99013f2edc54b9 +7e600faee0ba11467d3f7aed57258b0db0448a72 +73dcb4c452badb3ee39a2f222298b234d08c21eb +fa80344137c4d158bf59be4ac5591d074483157a +0f7e9199dad3237159e985e430dd2bf619ef2db5 +ec90d333588421764dff55658a73bbd3ea3016d2 +7e56d9ebd47490bb06a8ff0bd5bcd8672ec52364 +bed8feb11e8077df158e16bce064853cf217ba62 +b3add9bc9e70b6b28ba31e843e9155e7c37f3958 +79c3a7131c6c176b02b97d368cd0cd0bc713ff7e +53dd25350d3b3aaf19beb2104f1e389e3442df61 +b598f7761b153ecb26e9d08d3c5817aac5b34b52 +679b72d23a9cfca8a7fe14f1d488363f2139265f +c91da328fe50821182e1ae4e7bcbe2b62496f8b9 +a758b744a6d6962f1ddce6f0d04292a0b5cf8e07 +0ba5369c5e1e87ea172089d84a5610435c73de00 +49358915ae259271238c7690694e6a887b16f7ed +f3cf10c84c4665a0b28734f5233d423a65ef1f23 +72167c9e4e03e78152f6df44c782571c3058050e +8a4893d825db22f398b81d6a82ad2560832cd890 +afdc303b3325fbc1baa9f18a66bcad59d5aa675b +b69bcb5f73999ea12ff4ac1ac853b72cd5096b2d +4f9e00aaf2736b79e415f5e7c8dfebda3043a97d +db0379c9b02e514f10f778cccff0d6a6acf40519 +db3545a983ffd24c97c18bf7f068783102548ad7 +ac03849956ac470c41585d2ee34d8bb58bb3c764 +b91f54e1581fbbf60392364323d00a0cd43e493c +9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd +c84de67ec2a5d687869d0c3ca8ac974aaa5ee765 +95b9df34bcf4ae04beea55c11cf0cc4095aa38dc +994f7c469219ccce59c89badf93c0661aae34264 +a38045ed82d6800cbc7a4feb498e694740568258 +51410d6bd9a41eacb105f15dbdaee520e050d646 +e0939b4518a5ad649ba04194f74f3413c793f28e +60821d447e5b8a96dd9294a0514911e1141ff620 +eafda8a94e410f1ad53b3e193ec124e80d57d095 +629a973ca5f3c7d2f4a9befab97d0044dfd3167a +395bf182983e0917f33b9701e385290b64e22f9a +d89a754d7c59e025d2bfcdb872d2d061e2e371ba +82a610a59c210ff77cfdde7fd10c98067bd142da +2f67d5448b5372f639633d8d29aac9c0295b4d72 +fc7f140fcedfe54dd63769268a36ff3f175662b5 +0be43cf4299ce2067a0435798ef4ca2fbd255901 +ba17782ca5fc0d932317389c2adf94b5dbd3ebfe +2e7e1ee7e3ee1445939480efd615e8828b9838f8 +2c7185bcf31a4950b014b67ca7c63735ee00d56f +d10cfcf206b0991e3bc20ac28df1f61c63516f30 +bd8d579715d58405dfd5a77f32920aafe018fce4 +3674f3597bbca3ce05e4423611d871d09882043b +3e2b9ffeb708b4362ebfad95fa7bb0101db1579d +1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc +7eb8476024413269bfb2abd54e88d3e131d0aa0e +5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6 +9ac2960f646a46b701963230e6949abd9ac0a9b3 +3bf579baf0903ee4d4180a29739bf05cbe8f4a74 +f8f872044be2918de442ba26a30336d80d200c42 +98d1b5515b079492c8e7f0f9688df7d42d96da8e +d3dea0cd65ab3da14cb7b3bd0ec59531d98508aa +8fba84af61ac9b5e2bcb69b6730a597d7521ad73 +c4a2cd5ec81cdfd894c9a20d4ffb8cda637aab1f +734cdda4a4de2a635404e4c6b61f1b2edb3f501d +c61a8940d66eed9850b35dd3768f18b59471ca34 +5f2c210644c1e567435d78522258e0ae036deedb +15cf1f17aeba62cd834116b770f173b0aa614bf4 +e8c6c3fc9b52dffb15fe115702c6f159d955d308 +95b5296f7ec70455b0cf1748cddeaa099284bfed +51d6a8a61ea9588a795b20353c97efccec73f5db +ac8e09128e1e48a2eae5fa90f252ada689f6eae7 +4f4f920eb43399d8d05b42808e45b56bdd36a929 +fcf393a90190e376b617cc02e4a473106684d066 +5550a6df1b118a80c00a2459bae216a7e8e3966c +33548531f9ed2ce6f87b3a1caad122c97f1fd2e9 +f6532bf13a4649b7599eb40f826aa5281e392c61 +292e1c88d43a77dbe5c610f4f611cfdb6d3212b6 +270733d986a1eb72efda847b4b55bc6ba9686df4 +5d2e5833ca713f95adcf4267148ac2ccf2318539 +8b2c090d9007e147b8c660f9282f357336358061 +df90850f1c153bfab691b985bfe536a5544e438b +ae2c71080b0e17dee4e5a019d87585f2987f0508 +8127b7654d6e5c46caaf2404270b74c6b0967e19 +b42a97fb47bcd6bfa72e130c08960a77ee96f9ab +2e832d5657bf9e5678fd45b118fc74db07dac9da +75879ab7a77318bbe506cb9df309d99205862f6c +9436170c648c40b6f4cc3751fca3674aa82ffe9a +f7be8956639e66e534ed6195d929aed4e0b90cad +fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59 +f5603ceaebe3caf6a812edef9c4b38def78cbf34 +c30e4e4994b76605dcb2071954eaaea471307d80 +cfa92e17809e8d20ebc73b4e531a1b106d02b38c +335435a94f8fa9c128b9f278d929c9d0e45e2510 +bcc346f4a287d96d124e1163e4447bfc47073cd8 +5d9971c6a9d5c56463ea186850b16f8969a58e67 +b961e512242ddad7712855ab00b4d37723376e5d +49e975a4c60d99bcc42c921d73f8d89ec7130916 +6a6406906470be10f6d6d94a32741ba370a1db68 +5f27ed82c52339124aa368507d66b71d96862cb7 +5db4fe0ce9e9227042144758cf6c4c2de2042435 +6856a11b98ffffeff6e2f991d3d1a1232c029ea1 +b14e3fe0d320c0d7c09154840250d70bc88bb6c0 +31f1c92dbfa5aa338a21a0cb15d071cb9dc6e362 +89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199 +eacf974e235add458efb815ada1e5b82a05878fa +fe464b2b54154d231671750053861f5fd14454f5 +08f4832507259ded9700de81f5fd462caf0d5be8 +c87d5036d3a374c66ec4f5870df47df7176ce8b9 +59efb1ac77c59abc8613830787d767100387c680 +a285b6edd47f9b8966935878ad4539d270b406d1 +c72e6992f44ce75a40f44be4365dc4f264735cfb +6cb8c52bb421ce04898fa42cb997c04097ddd328 +08fbbfe87563595508a77629e47613d6bd1119eb +ce2945e369603fcec1fcdc6e19aac5996325cba9 +4db99a2268a120c7af636387241188064ea42338 +2744e6d526b8f2c1b297ac2d2458aaa08b0cda11 +db5a00984fa54b9d2a1caad0067a9ff0d0489517 +ae5e92abd5929ee7f0a5aa1622aa094bac4fae29 +9e297343da13cf9ba0ad8b5b75c07723136f4885 +edff76149ec44f6849d73f019ef9bded534a38c2 +1d7df3df839a6aa8f5392310d46b2a89080a3c25 +07377c375ac76a34331c660fe87ebd7f9b3d74c4 +52472ec859131844f38fc7d57944778f01d109ac +a2b4a6c6b32900a066d0257ae6d4526db872afe2 +9ca542d744149f0efc8b8aac8289f5e38e6d200c +4317856a1458baa427dc00e8ea505d2fc5f118ab +eb3066de677f9f6131aab542d9d426aaf50ed2ce +574b62c845809fd54cc168492424c5fac145bc83 +84c5b45328dee855c4855a104ac9c0558cc8a328 +7e2cfbfd43045fbd6aabd9a45090a5716fc4e179 +fb85867c989b9ee6b7899134136f81d6372526a9 +946017d5f11aa582854ac4c0e0f1b18b06127ef1 +050a149051a5d268fcc5539e8b654c2240070c82 +8334da483f1986aea87b62028672836cb3dc6205 +b2470969e4fba92f7909eac26b77d08cc5575533 +c678920facffd35853c9d185904f4aebcd2d8b49 +cdef0eaff4a3c168290d238999fc066ebc3a93e8 +fa641327dc5873276f0af453a2caa1634c16f143 +b5ca8d4f259f35c1f3edfd9f108ce29881e478b0 +61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa +7df268a3f4da7d747b792882dfb0cbdb7cc431bc +ea03a569272d329090fe60d6bff8d119e18057d7 +cbb27980eb04f68d9f10067d3d3c114efa9d0054 +90498b95fe8b299ce65d5cafaef942aa58bd68b7 +92be73dffd3320fe7734258961fe5a5f2a43390e +ac855f0de9086e9e170072cb37400637f0c9b735 +ef2bb8bd93fa8b44414565b32735334fa6823b56 +f20e0eefd007bc310d2a753ba526d33a8aba812c +80097a879fceff2a9a955bf7613b0d3bfa68dc23 +1275852f2e78ed9afd189e8b845fdb5393413614 +82eff71af91df2ca18aebb7f1153a7aed16ae7cc +0ee737085af468f264f57f052ea9b9b1f58d7222 +566563a02dbaebec07429046122426acd7039166 +a3201e955d6607d383332f3a12a7befa08c5a18c +5babbad3daac5c26503088782fd5b62067b94fa5 +0e2ea7af369dbcaeb5e334b02dd9ba5271b10265 +de0eb358b890d92e8f67592c6e23f0e3b2ba3f66 +3c563542db664321aa77a9567c1601f425500f94 +7224d58a7e1f02b84994b60dc3b84d9fe6941ff5 +cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae +7d40e7e5c01bd551edf65902386401e1b8b8014b +dbced84d839165d9b494982449aa2eb9109b8467 +035c8632c1ffbeb75efe16a4ec50c91e20e6e189 +ff76ff05aa1ab17e5ca9864df2252e6bb44c8a17 +be4f18e25b06f430e2de0cc8fddcac8585b00beb +ecd08edab496801fd4fde45362dde462d00ee91c +6cce5ccc5d366996f5a32de17a403341db5fddc6 +1063be2ad265751fb958b396ee26167fa0e844d2 +101569eeef2cecc576578bd6500f1c2dcc0274e2 +5b721f86f4a394f05350641e639a9d6cb2046c45 +53de11d144cd2eda7cf1bb644ae27f8ef2489289 +84c0f814951b80c3b2e39caf3925b56a9b2e1733 +3bf8e4d89b9e6d004de6ea52e3e9d68f6015f94b +651cafb2620ab60a0e4f550c080231f20ae6d26e +b712f08f819b925ff7587b6c09a8855bc295d795 +c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290 +5161e38e4ea716dcfb554ccb88901b3d97778f64 +9a98dd6d6aaba05c9e46411ea263f74df908203d +9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca +f2d605985821597773bc6b956036bdbc5d307386 +ce032dae834f383125cdd852e7c1bc793d4c3ba3 +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39 +656531036cee6b2c2c71954bb6540ef6b2e016d0 +63fd7a159e58add133b9c71c4b1b37b899dd646f +3646b42511a6a0df5470408bc9a7a69bb3c5d742 +82eb267b8e86be0b444e841b4b4ed4814b6f1942 +d3faed04712b4634b47e1de0340070653546deb2 +7c47da191f935811f269f9ba3c59556c48282e80 +227b1a09b942eaf130d1d84cdcabf98921780a22 +aad4c94fd55d33a3f3a5377bbe441c9474cdbd1e +31cdaaa7a47efe2ce0e78ebec29df4d2d81df265 +b1451721864e836069fa299a64595d1655793757 +cccd0edb5dafb3a160179a60f75fd8c835c0be82 +e7697c7b626ba3a426106d83f4c3a052fcde02a4 +66d087f3dd2e19ffe340c26ef17efe0062a59290 +def569db592ed1715ae509644444c3feda06a536 +a6590c49e44aa4975b2b0152ee21ac8af3097d80 +c847de9faa1f1a06d5647949a23f523f84aba7f3 +edde81b2bdd61bd757b71a7b3839b6fef81f4be4 +a29566375836f37173ccaffa47dea25eb1240187 +5fea59ccdab484873081eaa37af88e26e3db2aed +94325522c9be8224970f810554611d6a73877c13 +4e32fbb58154e878dd2fd4b06398f85636fd0cf4 +61262450d4d814865a4f9a84299c24daa493f66e +c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74 +f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a +a3f69a073dcfb6da8038607a9f14eb28b5dab2db diff --git a/scraper/reports/misc/raw_paper_doi.csv b/scraper/reports/misc/raw_paper_doi.csv new file mode 100644 index 00000000..bd56e667 --- /dev/null +++ b/scraper/reports/misc/raw_paper_doi.csv @@ -0,0 +1,1067 @@ +610779e90b644cc18696d7ac7820d3e0598e24d0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7067419 +61262450d4d814865a4f9a84299c24daa493f66e,http://doi.org/10.1007/s10462-016-9474-x +61971f8e6fff5b35faed610d02ad14ccfc186c70,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373843 +61e2044184d86d0f13e50ecaa3da6a4913088c76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7572183 +61329bc767152f01aa502989abc854b53047e52c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450832 +95b9df34bcf4ae04beea55c11cf0cc4095aa38dc,http://doi.org/10.1007/11527923_7 +95289007f2f336e6636cf8f920225b8d47c6e94f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6472796 +95b5296f7ec70455b0cf1748cddeaa099284bfed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443886 +95d858b39227edeaf75b7fad71f3dc081e415d16,http://doi.org/10.1007/s11042-017-5073-3 +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e,http://doi.org/10.1007/s11042-016-4261-x +95288fa7ff4683e32fe021a78cbf7d3376e6e400,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014759 +598744c8620e4ecbf449d14d7081fbf1cd05851f,https://www.ncbi.nlm.nih.gov/pubmed/29731533 +59b83666c1031c3f509f063b9963c7ad9781ca23,http://dl.acm.org/citation.cfm?id=2830590 +592f14f4b12225fc691477a180a2a3226a5ef4f0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789592 +9285f4a6a06e975bde3ae3267fccd971d4fff98a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099853 +9296f4ac0180e29226d6c016b5a4d5d2964eaaf6,http://doi.org/10.1038/s41598-017-07122-x +92292fffc36336d63f4f77d6b8fc23b0c54090e9,http://doi.org/10.1016/j.jvcir.2015.03.001 +0c6a566ebdac4bd14e80cd6bf4631bc7458e1595,http://doi.org/10.1016/j.patcog.2013.03.010 +6689aee6c9599c1af4c607ea5385ac0c2cf0c4b3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8335166 +660c99ac408b535bb0468ab3708d0d1d5db30180,http://doi.org/10.1007/s11042-015-3083-6 +66490b5869822b31d32af7108eaff193fbdb37b0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373857 +663efaa0671eace1100fdbdecacd94216a17b1db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619243 +3e3227c8e9f44593d2499f4d1302575c77977b2e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347112 +3e59d97d42f36fc96d33a5658951856a555e997b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163128 +3e9ab40e6e23f09d16c852b74d40264067ac6abc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619307 +3e2b9ffeb708b4362ebfad95fa7bb0101db1579d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553717 +50ee027c63dcc5ab5cd0a6cdffb1994f83916a46,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995354 +506ea19145838a035e7dba535519fb40a3a0018c,http://arxiv.org/abs/1806.08251 +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,http://doi.org/10.1134/S1054661818030136 +6856a11b98ffffeff6e2f991d3d1a1232c029ea1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771409 +68c1090f912b69b76437644dd16922909dd40d60,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6987312 +5760d29574d78e79e8343b74e6e30b3555e48676,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8447743 +572dbaee6648eefa4c9de9b42551204b985ff863,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163151 +5779e3e439c90d43648db107e848aeb954d3e347,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7927417 +5748652924084b7b0220cddcd28f6b2222004359,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7492255 +57178b36c21fd7f4529ac6748614bb3374714e91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217 +3b350afd8b82487aa97097170c269a25daa0c82d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8248664 +3b21aaf7def52964cf1fcc5f11520a7618c8fae3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099900 +3bf8e4d89b9e6d004de6ea52e3e9d68f6015f94b,http://dl.acm.org/citation.cfm?id=3240893 +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393012 +3bf579baf0903ee4d4180a29739bf05cbe8f4a74,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270392 +3bd10f7603c4f5a4737c5613722124787d0dd818,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415949 +6f22628d34a486d73c6b46eb071200a00e3abae3,https://www.ncbi.nlm.nih.gov/pubmed/29994497 +6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885 +035c8632c1ffbeb75efe16a4ec50c91e20e6e189,http://doi.org/10.1007/s00138-018-0943-x +034b3f3bac663fb814336a69a9fd3514ca0082b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298991 +9b4b2a575641f3a7f8a5ce28b6a06c36694a9ddf,http://doi.org/10.1007/s00371-015-1158-z +9b9f6e5eb6d7fa50300d67502e8fda1006594b84,http://dl.acm.org/citation.cfm?id=3123323 +9b1022a01ca4ecf8c1fa99b1b39a93924de2fcfb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316962 +9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354113 +9b0ead0a20a2b7c4ae40568d8d1c0c2b23a6b807,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354290 +9b6d9f0923e1d42c86a1154897b1a9bd7ba6716c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7114333 +9efdb73c6833df57732b727c6aeac510cadb53fe,http://dl.acm.org/citation.cfm?id=3184071 +9e105c4a176465d14434fb3f5bae67f57ff5fba2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354230 +9e2ab407ff36f3b793d78d9118ea25622f4b7434,http://doi.org/10.1007/s11042-018-5679-0 +9e10ea753b9767aa2f91dafe8545cd6f44befd7f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771444 +0450dacc43171c6e623d0d5078600dd570de777e,http://doi.org/10.1007/s10339-016-0774-5 +6af75a8572965207c2b227ad35d5c61a5bd69f45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433687 +6a6269e591e11f41d59c2ca1e707aaa1f0d57de6,http://doi.org/10.1007/s10044-016-0531-5 +6a931e7b7475635f089dd33e8d9a2899ae963804,http://doi.org/10.1007/s00371-018-1561-3 +6a6406906470be10f6d6d94a32741ba370a1db68,http://doi.org/10.1007/s11042-016-4213-5 +6a5d7d20a8c4993d56bcf702c772aa3f95f99450,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813408 +3266fcd1886e8ad883714e38203e66c0c6487f7b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7533149 +3266fbaaa317a796d0934b9a3f3bb7c64992ac7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4527244 +32f62da99ec9f58dd93e3be667612abcf00df16a,http://doi.org/10.1007/s11042-017-5583-z +32e4fc2f0d9c535b1aca95aeb5bcc0623bcd2cf2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1334680 +32e9c9520cf6acb55dde672b73760442b2f166f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7970176 +35208eda874591eac70286441d19785726578946,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789507 +35265cbd9c6ea95753f7c6b71659f7f7ef9081b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7052327 +352a620f0b96a7e76b9195a7038d5eec257fd994,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373823 +69adf2f122ff18848ff85e8de3ee3b2bc495838e,http://arxiv.org/abs/1711.10678 +69a41c98f6b71764913145dbc2bb4643c9bc4b0a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8444452 +695426275dee2ec56bc0c0afe1c5b4227a350840,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7878535 +696236fb6f986f6d5565abb01f402d09db68e5fa,http://doi.org/10.1007/s41095-018-0112-1 +6932baa348943507d992aba75402cfe8545a1a9b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014987 +6966d9d30fa9b7c01523425726ab417fd8428790,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619291 +3cb057a24a8adba6fe964b5d461ba4e4af68af14,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6701391 +3c09fb7fe1886072670e0c4dd632d052102a3733,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101020 +3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373845 +3cd380bd0f3b164b44c49e3b01f6ac9798b6b6f9,http://doi.org/10.1007/s00371-016-1323-z +562f7555e5cb79ce0fe834c4613264d8378dd007,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7153112 +56fd4c05869e11e4935d48aa1d7abb96072ac242,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373812 +566563a02dbaebec07429046122426acd7039166,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461618 +5632ba72b2652df3b648b2ee698233e76a4eee65,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8346387 +51b42da0706a1260430f27badcf9ee6694768b9b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471882 +51410d6bd9a41eacb105f15dbdaee520e050d646,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412888 +51d6a8a61ea9588a795b20353c97efccec73f5db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460308 +518a3ce2a290352afea22027b64bf3950bffc65a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204174 +51dcb36a6c247189be4420562f19feb00c9487f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1394433 +519f1486f0755ef3c1f05700ea8a05f52f83387b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595846 +5167e16b53283be5587659ea8eaa3b8ef3fddd33,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813364 +51bb86dc8748088a198b216f7e97616634147388,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890496 +3dce635ce4b55fb63fc6d41b38640403b152a048,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411225 +3db6fd6a0e9bb30f2421e84ee5e433683d17d9c1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8402469 +588bed36b3cc9e2f26c39b5d99d6687f36ae1177,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771389 +58217ae5423828ed5e1569bee93d491569d79970,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1578742 +587b8c147c6253878128ddacf6e5faf8272842a4,http://dl.acm.org/citation.cfm?id=2638549 +58538cc418bf41197fad4fc4ee2449b2daeb08b1,http://doi.org/10.1007/s11042-017-4343-4 +67386772c289cd40db343bdc4cb8cb4f58271df2,http://doi.org/10.1038/s41598-017-10745-9 +675b1fd2aaebe9c62be6b22b9ac6d278193cc581,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699428 +67af3ec65f1dc535018f3671624e72c96a611c39,http://doi.org/10.1007/s11042-016-4058-y +0b45aeb0aede5e0c19b508ede802bdfec668aefd,http://dl.acm.org/citation.cfm?id=1963206 +0ba5369c5e1e87ea172089d84a5610435c73de00,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347111 +0b82bf595e76898993ed4f4b2883c42720c0f277,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411229 +93af335bf8c610f34ce0cadc15d1dd592debc706,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8267475 +93cd5c47e4a3425d23e3db32c6eaef53745bb32e,http://doi.org/10.1007/s11042-017-5062-6 +93dcea2419ca95b96a47e541748c46220d289d77,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014993 +93c0405b1f5432eab11cb5180229720604ffd030,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462228 +93dd4e512cd7647aecbfc0cd4767adf5d9289c3d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952499 +94806f0967931d376d1729c29702f3d3bb70167c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780581 +9436170c648c40b6f4cc3751fca3674aa82ffe9a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6811741 +947ee3452e4f3d657b16325c6b959f8b8768efad,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952677 +604a281100784b4d5bc1a6db993d423abc5dc8f0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681 +60777fbca8bff210398ec8b1179bc4ecb72dfec0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751535 +60821d447e5b8a96dd9294a0514911e1141ff620,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813328 +605f6817018a572797095b83bec7fae7195b2abc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339020 +60462b981fda63c5f9d780528a37c46884fe0b54,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397015 +34c062e2b8a3f6421b9f4ff22f115a36d4aba823,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7872382 +34bc8ecec0c0b328cd8c485cb34d4d2f4b84e0c9,https://www.ncbi.nlm.nih.gov/pubmed/29069621 +346752e3ab96c93483413be4feaa024ccfe9499f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6960834 +34fd227f4fdbc7fe028cc1f7d92cb59204333718,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446331 +5a12e1d4d74fe1a57929eaaa14f593b80f907ea3,http://doi.org/10.1007/s13735-016-0117-4 +5a547df635a9a56ac224d556333d36ff68cbf088,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359041 +5fea59ccdab484873081eaa37af88e26e3db2aed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8263394 +5f2c210644c1e567435d78522258e0ae036deedb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4036602 +5fe3a9d54d5070308803dd8ef611594f59805400,http://doi.org/10.1016/j.patcog.2016.02.006 +5f0d4657eab4152a1785ee0a25b5b499cd1163ec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853687 +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762938 +335435a94f8fa9c128b9f278d929c9d0e45e2510,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849440 +3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398675 +057b80e235b10799d03876ad25465208a4c64caf,http://dl.acm.org/citation.cfm?id=3123427 +0532cbcf616f27e5f6a4054f818d4992b99d201d,http://doi.org/10.1007/s11042-015-3042-2 +9d5bfaf6191484022a6731ce13ac1b866d21ad18,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139086 +9d24812d942e69f86279a26932df53c0a68c4111,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8417316 +9d46485ca2c562d5e295251530a99dd5df99b589,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813386 +9d3377313759dfdc1a702b341d8d8e4b1469460c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7342926 +9dcfa771a7e87d7681348dd9f6cf9803699b16ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1385984 +9c2f20ed168743071db6268480a966d5d238a7ee,http://dl.acm.org/citation.cfm?id=1456304 +9cc8cf0c7d7fa7607659921b6ff657e17e135ecc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099536 +9c6dfd3a38374399d998d5a130ffc2864c37f554,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553738 +9c23859ec7313f2e756a3e85575735e0c52249f4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981788 +9ca542d744149f0efc8b8aac8289f5e38e6d200c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789587 +9c59bb28054eee783a40b467c82f38021c19ff3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7178311 +023decb4c56f2e97d345593e4f7b89b667a6763d,http://doi.org/10.1007/s10994-005-3561-6 +02fc9e7283b79183eb3757a9b6ddeb8c91c209bb,http://doi.org/10.1007/s11042-018-6146-7 +021e008282714eaefc0796303f521c9e4f199d7e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354319 +a4898f55f12e6393b1c078803909ea715bf71730,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6957817 +a45e6172713a56736a2565ddea9cb8b1d94721cd,http://doi.org/10.1038/s41746-018-0035-3 +a325d5ea42a0b6aeb0390318e9f65f584bd67edd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909426 +a3201e955d6607d383332f3a12a7befa08c5a18c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276 +a313851ed00074a4a6c0fccf372acb6a68d9bc0b,http://doi.org/10.1007/s11042-016-4324-z +b5f9180666924a3215ab0b1faf712e70b353444d,http://doi.org/10.1007/s11042-017-4661-6 +b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,http://doi.org/10.1007/s11263-017-1012-z +b5747ecfa0f3be0adaad919d78763b1133c4d662,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397022 +b5f3b0f45cf7f462a9c463a941e34e102a029506,http://dl.acm.org/citation.cfm?id=3143004 +b51d11fa400d66b9f9d903a60c4ebe03fd77c8f2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8358588 +b5fdd7778503f27c9d9bf77fab193b475fab6076,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373891 +b598f7761b153ecb26e9d08d3c5817aac5b34b52,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4618852 +b55e70df03d9b80c91446a97957bc95772dcc45b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329 +b5ca8d4f259f35c1f3edfd9f108ce29881e478b0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099624 +b5f9306c3207ac12ac761e7d028c78b3009a219c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6093779 +b26e8f6ad7c2d4c838660d5a17337ce241442ed9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462692 +b2470969e4fba92f7909eac26b77d08cc5575533,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8326475 +d916602f694ebb9cf95d85e08dd53f653b6196c3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237607 +d9e66b877b277d73f8876f537206395e71f58269,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7225130 +d9deafd9d9e60657a7f34df5f494edff546c4fb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100124 +d9218c2bbc7449dbccac351f55675efd810535db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5699141 +d9a5c82b710b1f4f1ffb67be2ae1d3c0ae7f6c55,http://doi.org/10.1016/j.jvcir.2015.11.002 +d99b5ee3e2d7e3a016fbc5fd417304e15efbd1f8,http://doi.org/10.1007/s11063-017-9578-6 +aca728cab26b95fbe04ec230b389878656d8af5b,http://doi.org/10.1007/978-981-10-8258-0 +acff2dc5d601887741002a78f8c0c35a799e6403,http://doi.org/10.1007/978-3-662-44654-6 +ac2e166c76c103f17fdea2b4ecb137200b8d4703,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5373798 +ac03849956ac470c41585d2ee34d8bb58bb3c764,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853690 +ad77056780328bdcc6b7a21bce4ddd49c49e2013,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398021 +ada063ce9a1ff230791c48b6afa29c401a9007f1,http://doi.org/10.1007/978-3-319-97909-0 +bb4f83458976755e9310b241a689c8d21b481238,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265393 +bb4be8e24d7b8ed56d81edec435b7b59bad96214,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7060677 +bb2f61a057bbf176e402d171d79df2635ccda9f6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296311 +bb0ecedde7d6e837dc9a5e115302a2aaad1035e1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373838 +d7b8f285b0701ba7b1a11d1c7dd3d1e7e304083f,http://dl.acm.org/citation.cfm?id=3164593 +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,http://doi.org/10.1007/s10994-014-5463-y +d790093cb85fc556c0089610026e0ec3466ab845,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4721612 +d77f18917a58e7d4598d31af4e7be2762d858370,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6289062 +d00e9a6339e34c613053d3b2c132fccbde547b56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154 +d06bcb2d46342ee011e652990edf290a0876b502,http://arxiv.org/abs/1708.00980 +d066575b48b552a38e63095bb1f7b56cbb1fbea4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359888 +bed8feb11e8077df158e16bce064853cf217ba62,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6191360 +bef4df99e1dc6f696f9b3732ab6bac8e85d3fb3c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344632 +be7444c891caf295d162233bdae0e1c79791d566,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014816 +bec0c33d330385d73a5b6a05ad642d6954a6d632,http://doi.org/10.1007/s11042-017-4491-6 +bef926d63512dbffcf1af59f72295ef497f5acf9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6990726 +be632b206f1cd38eab0c01c5f2004d1e8fc72880,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607601 +beb2f1a6f3f781443580ffec9161d9ce6852bf48,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424735 +beae35eb5b2c7f63dfa9115f07b5ba0319709951,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163096 +be4faea0971ef74096ec9800750648b7601dda65,http://doi.org/10.1007/s11063-017-9724-1 +b313751548018e4ecd5ae2ce6b3b94fbd9cae33e,http://doi.org/10.1007/s11263-008-0143-7 +b3ad7bc128b77d9254aa38c5e1ead7fa10b07d29,http://dl.acm.org/citation.cfm?id=3206041 +b3add9bc9e70b6b28ba31e843e9155e7c37f3958,http://doi.org/10.1007/s10766-017-0552-8 +df767f62a6bf3b09e6417d801726f2d5d642a202,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699727 +df87193e15a19d5620f5a6458b05fee0cf03729f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363421 +df6e68db278bedf5486a80697dec6623958edba8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952696 +da7bbfa905d88834f8929cb69f41a1b683639f4b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199752 +daa120032d8f141bc6aae20e23b1b754a0dd7d5f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789593 +dad6b36fd515bda801f3d22a462cc62348f6aad8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117531 +daca9d03c1c951ed518248de7f75ff51e5c272cb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6976977 +dac8fc521dfafb2d082faa4697f491eae00472c7,http://dl.acm.org/citation.cfm?id=3123423 +daa4cfde41d37b2ab497458e331556d13dd14d0b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406477 +da23d90bacf246b75ef752a2cbb138c4fcd789b7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406360 +dac34b590adddef2fc31f26e2aeb0059115d07a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436078 +b484141b99d3478a12b8a6854864c4b875d289b8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117595 +b41d585246360646c677a8238ec35e8605b083b0,http://doi.org/10.1007/s11042-018-6017-2 +b40c001b3e304dccb28c745bd54aa281c8ff1f29,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072 +a2e0966f303f38b58b898d388d1c83e40b605262,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354125 +a2b4a6c6b32900a066d0257ae6d4526db872afe2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466 +a20036b7fbf6c0db454c8711e72d78f145560dc8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761890 +a26fd9df58bb76d6c7a3254820143b3da5bd584b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446759 +a5acda0e8c0937bfed013e6382da127103e41395,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789672 +a532cfc69259254192aee3fc5be614d9197e7824,http://doi.org/10.1016/j.patcog.2016.12.028 +a59c0cf3d2c5bf144ee0dbc1152b1b5dd7634990,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7350093 +a5f35880477ae82902c620245e258cf854c09be9,http://doi.org/10.1016/j.imavis.2013.12.004 +a5f70e0cd7da2b2df05fadb356a24743f3cf459a,http://doi.org/10.1007/s11063-017-9649-8 +bddc822cf20b31d8f714925bec192c39294184f7,http://doi.org/10.1134/S1054661807040190 +bd243d77076b3b8fe046bd3dc6e8a02aa9b38d62,http://arxiv.org/abs/1412.0767 +bd8d579715d58405dfd5a77f32920aafe018fce4,http://doi.org/10.1016/j.imavis.2008.08.005 +d141c31e3f261d7d5214f07886c1a29ac734d6fc,http://doi.org/10.1007/s11063-018-9812-x +d1ee9e63c8826a39d75fa32711fddbcc58d5161a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613000 +d10cfcf206b0991e3bc20ac28df1f61c63516f30,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553776 +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,http://doi.org/10.1007/s13735-016-0112-9 +d116bac3b6ad77084c12bea557d42ed4c9d78433,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471886 +d1079444ceddb1de316983f371ecd1db7a0c2f38,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460478 +d6c8f5674030cf3f5a2f7cc929bad37a422b26a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337371 +d6ae7941dcec920d5726d50d1b1cdfe4dde34d35,http://dl.acm.org/citation.cfm?id=31310887 +d6e08345ba293565086cb282ba08b225326022fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7490397 +d62d82c312c40437bc4c1c91caedac2ba5beb292,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461322 +bc607bee2002c6c6bf694a15efd0a5d049767237,http://doi.org/10.1007/s11042-017-4364-z +bc9bad25f8149318314971d8b8c170064e220ea8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8078542 +bc08dfa22949fbe54e15b1a6379afade71835968,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899970 +bc36badb6606b8162d821a227dda09a94aac537f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337442 +ae78469de00ea1e7602ca468dcf188cdfe2c80d4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466467 +ae5e92abd5929ee7f0a5aa1622aa094bac4fae29,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373805 +aeb6b9aba5bb08cde2aebfeda7ced6c38c84df4a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424644 +aef58a54d458ab76f62c9b6de61af4f475e0f616,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706790 +aee3427d0814d8a398fd31f4f46941e9e5488d83,http://dl.acm.org/citation.cfm?id=1924573 +d8526863f35b29cbf8ac2ae756eaae0d2930ffb1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265439 +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7,http://doi.org/10.1007/s11042-018-6047-9 +d89a754d7c59e025d2bfcdb872d2d061e2e371ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5598629 +d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952553 +ab8ecf98f457e29b000c44d49f5bf49ec92e571c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8439631 +ab0981d1da654f37620ca39c6b42de21d7eb58eb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8016651 +ab80582807506c0f840bd1ba03a8b84f8ac72f79,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462326 +ab6886252aea103b3d974462f589b4886ef2735a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4371439 +e5ea7295b89ef679e74919bf957f58d55ad49489,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401948 +e52f73c77c7eaece6f2d8fdd0f15327f9f007261,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099713 +e52f57a7de675d14aed28e5d0f2f3c5a01715337,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319987 +e57014b4106dd1355e69a0f60bb533615a705606,http://doi.org/10.1007/s13748-018-0143-y +e295c1aa47422eb35123053038e62e9aa50a2e3a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406389 +e287ff7997297ce1197359ed0fb2a0bd381638c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7795253 +e2faaebd17d10e2919bd69492787e7565546a63f,http://doi.org/10.1007/s11042-017-4514-3 +e2106bb3febb4fc8fe91f0fcbc241bcda0e56b1e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952626 +f472cb8380a41c540cfea32ebb4575da241c0288,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284869 +f4ba07d2ae6c9673502daf50ee751a5e9262848f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810 +f4251e02f87ac3fcae70bdb313f13ed16ff6ff0a,https://www.ncbi.nlm.nih.gov/pubmed/24314504 +f4b5a8f6462a68e79d643648c780efe588e4b6ca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995700 +f39783847499dd56ba39c1f3b567f64dfdfa8527,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791189 +f3cdd2c3180aa2bf08320ddd3b9a56f9fe00e72b,http://doi.org/10.1016/j.patrec.2013.03.022 +f374ac9307be5f25145b44931f5a53b388a77e49,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339060 +f38813f1c9dac44dcb992ebe51c5ede66fd0f491,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354277 +f3553148e322f4f64545d6667dfbc7607c82703a,http://doi.org/10.1007/s00138-016-0763-9 +f33bd953d2df0a5305fc8a93a37ff754459a906c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961800 +ebbceab4e15bf641f74e335b70c6c4490a043961,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813349 +ebc3d7f50231cdb18a8107433ae9adc7bd94b97a,http://doi.org/10.1111/cgf.13218 +eba4cfd76f99159ccc0a65cab0a02db42b548d85,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751379 +ebde9b9c714ed326157f41add8c781f826c1d864,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014758 +eb3066de677f9f6131aab542d9d426aaf50ed2ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373860 +eb8a3948c4be0d23eb7326d27f2271be893b3409,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914701 +eb6f2b5529f2a7bc8b5b03b1171f75a4c753a0b2,http://doi.org/10.1117/12.650555 +c7745f941532b7d6fa70db09e81eb1167f70f8a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1640757 +c05ae45c262b270df1e99a32efa35036aae8d950,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354120 +c07ab025d9e3c885ad5386e6f000543efe091c4b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302601 +c0c0b8558b17aa20debc4611275a4c69edd1e2a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909629 +c0f67e850176bb778b6c048d81c3d7e4d8c41003,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296441 +eece52bd0ed4d7925c49b34e67dbb6657d2d649b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014982 +ee1465cbbc1d03cb9eddaad8618a4feea78a01ce,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6998872 +ee7e8aec3ebb37e41092e1285e4f81916ce92c18,https://www.sciencedirect.com/science/article/pii/S0197458017301859 +ee1f9637f372d2eccc447461ef834a9859011ec1,http://doi.org/10.1007/s11042-016-3950-9 +ee56823f2f00c8c773e4ebc725ca57d2f9242947,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7110235 +ee2ec0836ded2f3f37bf49fa0e985280a8addaca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368755 +c91da328fe50821182e1ae4e7bcbe2b62496f8b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4453844 +c9b958c2494b7ba08b5b460f19a06814dba8aee0,https://www.ncbi.nlm.nih.gov/pubmed/30080142 +c9c9ade2ef4dffb7582a629a47ea70c31be7a35e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237606 +c997744db532767ee757197491d8ac28d10f1c0f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364339 +c9efcd8e32dced6efa2bba64789df8d0a8e4996a,http://dl.acm.org/citation.cfm?id=2984060 +c900e0ad4c95948baaf0acd8449fde26f9b4952a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780969 +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225,http://doi.org/10.1007/978-3-319-11071-4 +c98b13871a3bc767df0bdd51ff00c5254ede8b22,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909913 +fc7b34a2e43bb3d3585e1963bb64a488e2f278a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7045492 +fcc6fe6007c322641796cb8792718641856a22a7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612994 +fc8fb68a7e3b79c37108588671c0e1abf374f501,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565615 +fcf393a90190e376b617cc02e4a473106684d066,http://doi.org/10.1007/s10044-015-0507-x +fcceea054cb59f1409dda181198ed4070ed762c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8388318 +fc7f140fcedfe54dd63769268a36ff3f175662b5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8013122 +fd9ab411dc6258763c95b7741e3d51adf5504040,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595808 +fd809ee36fa6832dda57a0a2403b4b52c207549d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409768 +fde611bf25a89fe11e077692070f89dcdede043a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7322904 +fd5376fcb09001a3acccc03159e8ff5801129683,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373899 +f2902f5956d7e2dca536d9131d4334f85f52f783,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460191 +f2d605985821597773bc6b956036bdbc5d307386,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8027090 +f2896dd2701fbb3564492a12c64f11a5ad456a67,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414 +f2700e3d69d3cce2e0b1aea0d7f87e74aff437cd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237686 +f27e5a13c1c424504b63a9084c50f491c1b17978,http://dl.acm.org/citation.cfm?id=3097991 +f2eab39cf68de880ee7264b454044a55098e8163,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5539989 +f2d5bb329c09a5867045721112a7dad82ca757a3,http://doi.org/10.1007/s11042-015-3009-3 +f201baf618574108bcee50e9a8b65f5174d832ee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057 +f5c57979ec3d8baa6f934242965350865c0121bd,http://doi.org/10.1007/s12539-018-0281-8 +f5603ceaebe3caf6a812edef9c4b38def78cbf34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4455998 +e3ce4c3e1279e3dc0c14ff3bb2920aced9e62638,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099824 +e3d76f1920c5bf4a60129516abb4a2d8683e48ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907 +e3b9863e583171ac9ae7b485f88e503852c747b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7494596 +cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6737950 +cf736f596bf881ca97ec4b29776baaa493b9d50e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629 +cf2e1ebb9609f46af6de0c15b4f48d03e37e54ba,http://arxiv.org/abs/1503.01521 +ca096e158912080493a898b0b8a4bd2902674fed,http://dl.acm.org/citation.cfm?id=3264899 +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734,http://doi.org/10.1007/s11042-018-5945-1 +ca44a838da4187617dca9f6249d8c4b604661ec7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7351564 +e4754afaa15b1b53e70743880484b8d0736990ff,http://doi.org/10.1016/j.imavis.2016.01.002 +e40cb4369c6402ae53c81ce52b73df3ef89f578b,http://doi.org/10.1016/j.image.2015.01.009 +e45a556df61e2357a8f422bdf864b7a5ed3b8627,http://doi.org/10.1016/j.image.2017.08.001 +e4d7b8eb0a8e6d2bb5b90b027c1bf32bad320ba5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8023876 +e4fa062bff299a0bcef9f6b2e593c85be116c9f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407641 +fe866887d3c26ee72590c440ed86ffc80e980293,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397011 +fe50efe9e282c63941ec23eb9b8c7510b6283228,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7314574 +feea73095b1be0cbae1ad7af8ba2c4fb6f316d35,http://dl.acm.org/citation.cfm?id=3126693 +fecccc79548001ecbd6cafd3067bcf14de80b11a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354157 +c847de9faa1f1a06d5647949a23f523f84aba7f3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199761 +c8585c95215bc53e28edb740678b3a0460ca8aa4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373829 +c84de67ec2a5d687869d0c3ca8ac974aaa5ee765,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7090979 +c83e26622b275fdf878135e71c23325a31d0e5fc,http://dl.acm.org/citation.cfm?id=3164611 +c808c784237f167c78a87cc5a9d48152579c27a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265437 +c858c74d30c02be2d992f82a821b925669bfca13,http://doi.org/10.1007/978-3-319-10605-2 +c843f591658ca9dbb77944a89372a92006defe68,http://doi.org/10.1007/s11042-015-2550-4 +fb6f5cb26395608a3cf0e9c6c618293a4278a8ad,http://doi.org/10.1007/s11390-018-1835-2 +fbc591cde7fb7beb985437a22466f9cf4b16f8b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463262 +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339084 +fbe4f8a6af19f63e47801c6f31402f9baae5fecf,http://dl.acm.org/citation.cfm?id=2820910 +fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb,https://www.ncbi.nlm.nih.gov/pubmed/30040629 +fbc9ba70e36768efff130c7d970ce52810b044ff,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738500 +fb8eb4a7b9b9602992e5982c9e0d6d7f7b8210ef,https://www.ncbi.nlm.nih.gov/pubmed/29994550 +edfce091688bc88389dd4877950bd58e00ff1253,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553700 +ed32df6b122b15a52238777c9993ed31107b4bed,http://doi.org/10.1016/j.eswa.2017.03.008 +ed2f4e5ecbc4b08ee0784e97760a7f9e5ea9efae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8241843 +ede5982980aa76deae8f9dc5143a724299d67742,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081396 +ed184fda0306079f2ee55a1ae60fbf675c8e11c6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6802347 +edd6ed94207ab614c71ac0591d304a708d708e7b,http://doi.org/10.1016/j.neucom.2012.02.001 +edf60d081ffdfa80243217a50a411ab5407c961d,http://doi.org/10.1007/s11263-016-0893-6 +ede16b198b83d04b52dc3f0dafc11fd82c5abac4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952343 +c15b68986ecfa1e13e3791686ae9024f66983f14,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014747 +c12260540ec14910f5ec6e38d95bdb606826b32e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7005459 +c18a03568d4b512a0d8380cbb1fbf6bd56d11f05,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8430403 +c1c2775e19d6fd2ad6616f69bda92ac8927106a2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6196236 +c175ebe550761b18bac24d394d85bdfaf3b7718c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301582 +c6724c2bb7f491c92c8dd4a1f01a80b82644b793,https://www.ncbi.nlm.nih.gov/pubmed/19167865 +c61eaf172820fcafaabf39005bd4536f0c45f995,http://doi.org/10.1007/978-3-319-58771-4_1 +c6382de52636705be5898017f2f8ed7c70d7ae96,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089 +c631a31be2c793d398175ceef7daff1848bb6408,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466318 +c61a8940d66eed9850b35dd3768f18b59471ca34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1374768 +ecac3da2ff8bc2ba55981467f7fdea9de80e2092,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301635 +ec576efd18203bcb8273539fa277839ec92232a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7994601 +ecc4be938f0e61a9c6b5111e0a99013f2edc54b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771439 +ec1bec7344d07417fb04e509a9d3198da850349f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342699 +ec983394f800da971d243f4143ab7f8421aa967c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340635 +ecd08edab496801fd4fde45362dde462d00ee91c,https://www.ncbi.nlm.nih.gov/pubmed/29994561 +ec5c63609cf56496715b0eba0e906de3231ad6d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364651 +ec00ecb64fa206cea8b2e716955a738a96424084,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265512 +ec90738b6de83748957ff7c8aeb3150b4c9b68bb,http://doi.org/10.1016/j.patcog.2015.03.011 +4e061a302816f5890a621eb278c6efa6e37d7e2f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909638 +4e43408a59852c1bbaa11596a5da3e42034d9380,http://doi.org/10.1007/s11042-018-6040-3 +4ed6c7740ba93d75345397ef043f35c0562fb0fd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117516 +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d,http://doi.org/10.1007/s11227-018-2408-4 +4e37cd250130c6fd60e066f0c8efb3cbb778c421,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8419742 +20a0f71d2c667f3c69df18f097f2b5678ac7d214,http://doi.org/10.1007/s10055-018-0357-0 +20d6a4aaf5abf2925fdce2780e38ab1771209f76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446795 +20eeb83a8b6fea64c746bf993f9c991bb34a4b30,http://doi.org/10.1007/s00138-018-0956-5 +18855be5e7a60269c0652e9567484ce5b9617caa,http://doi.org/10.1007/s11042-017-4579-z +1860b8f63ce501bd0dfa9e6f2debc080e88d9baa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7894195 +18010284894ed0edcca74e5bf768ee2e15ef7841,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780493 +18e54b74ed1f3c02b7569f53a7d930d72fc329f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7902214 +188abc5bad3a3663d042ce98c7a7327e5a1ae298,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6152129 +180bd019eab85bbf01d9cddc837242e111825750,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239690 +270acff7916589a6cc9ca915b0012ffcb75d4899,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659 +27b451abfe321a696c852215bb7efb4c2e50c89f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7898447 +2744e6d526b8f2c1b297ac2d2458aaa08b0cda11,http://doi.org/10.1007/s11042-017-5571-3 +2724ba85ec4a66de18da33925e537f3902f21249,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751298 +4b0cb10c6c3f2d581ac9eb654412f70bc72ed661,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8172386 +4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306 +4b9ec224949c79a980a5a66664d0ac6233c3d575,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501 +4bf85ef995c684b841d0a5a002d175fadd922ff0,http://dl.acm.org/citation.cfm?id=3199668 +4b936847f39094d6cb0bde68cea654d948c4735d,http://doi.org/10.1007/s11042-016-3470-7 +11bb2abe0ca614c15701961428eb2f260e3e2eef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343867 +113b06e70b7eead8ae7450bafe9c91656705024c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373832 +116f9e9cda25ff3187bc777ceb3ecd28077a7eca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373864 +11df25b4e074b7610ec304a8733fa47625d9faca,http://doi.org/10.1016/j.patrec.2012.09.024 +7d18e9165312cf669b799aa1b883c6bbe95bf40e,http://doi.org/10.1007/s11042-016-3492-1 +7d45f1878d8048f6b3de5b3ec912c49742d5e968,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7747479 +7d40e7e5c01bd551edf65902386401e1b8b8014b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7303876 +29db16efc3b378c50511f743e5197a4c0b9e902f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406401 +2961e14c327341d22d5f266a6872aa174add8ac4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6654170 +2983cf95743be82671a71528004036bd19172712,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7915734 +29a5d38390857e234c111f8bb787724c08f39110,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813387 +292e1c88d43a77dbe5c610f4f611cfdb6d3212b6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301520 +7c57ac7c9f84fbd093f6393e2b63c18078bf0fdf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6218178 +7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,http://doi.org/10.1007/s11263-016-0967-5 +7c11fa4fd91cb57e6e216117febcdd748e595760,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597453 +7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,http://doi.org/10.1007/s11263-016-0920-7 +7c8e0f3053e09da6d8f9a1812591a35bccd5c669,http://doi.org/10.1007/978-3-030-00470-5 +7cfbf90368553333b47731729e0e358479c25340,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346480 +7c66e7f357553fd4b362d00ff377bffb9197410e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961231 +7c6686fa4d8c990e931f1d16deabf647bf3b1986,http://arxiv.org/abs/1504.07550 +166ef5d3fd96d99caeabe928eba291c082ec75a0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237597 +16fadde3e68bba301f9829b3f99157191106bd0f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4562953 +42a6beed493c69d5bad99ae47ea76497c8e5fdae,http://doi.org/10.1007/s11704-017-6613-8 +895081d6a5545ad6385bfc6fcf460fc0b13bac86,http://doi.org/10.1016/S0167-8655%2899%2900134-8 +45b9b7fe3850ef83d39d52f6edcc0c24fcc0bc73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888593 +1f3f7df159c338884ddfd38ee2d3ba2e1e3ada69,http://doi.org/10.1162/jocn_a_00645 +1f5f67d315c9dad341d39129d8f8fe7fa58e564c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397536 +1fe1a78c941e03abe942498249c041b2703fd3d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393355 +1f59e0818e7b16c0d39dd08eb90533ea0ae0be5e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8385089 +1fa426496ed6bcd0c0b17b8b935a14c84a7ee1c2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100195 +1fb980e137b2c9f8781a0d98c026e164b497ddb1,http://dl.acm.org/citation.cfm?id=3213539 +7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373833 +73ba33e933e834b815f62a50aa1a0e15c6547e83,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368754 +7361b900018f22e37499443643be1ff9d20edfd6,http://doi.org/10.1049/iet-bmt.2016.0169 +73d53a7c27716ae9a6d3484e78883545e53117ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8371978 +7343f0b7bcdaf909c5e37937e295bf0ac7b69499,http://doi.org/10.1016/j.csi.2015.06.004 +73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198 +73dcb4c452badb3ee39a2f222298b234d08c21eb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6779478 +87610276ccbc12d0912b23fd493019f06256f94e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706757 +87b607b8d4858a16731144d17f457a54e488f15d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597532 +80d4cf7747abfae96328183dd1f84133023c2668,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369786 +80ed678ef28ccc1b942e197e0393229cd99d55c8,http://doi.org/10.1007/s10044-015-0456-4 +809e5884cf26b71dc7abc56ac0bad40fb29c671c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6247842 +7477cf04c6b086108f459f693a60272523c134db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618937 +746c0205fdf191a737df7af000eaec9409ede73f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119 +1aa61dd85d3a5a2fe819cba21192ec4471c08628,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359518 +1a53ca294bbe5923c46a339955e8207907e9c8c6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870 +1a81c722727299e45af289d905d7dcf157174248,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995466 +286a5c19a43382a21c8d96d847b52bba6b715a71,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6876188 +289cfcd081c4393c7d6f63510747b5372202f855,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373873 +28e1982d20b6eff33989abbef3e9e74400dbf508,http://doi.org/10.1007/s11042-015-3007-5 +28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406402 +28f1542c63f5949ee6f2d51a6422244192b5a900,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780475 +176e6ba56e04c98e1997ffdef964ece90fd827b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8322125 +179564f157a96787b1b3380a9f79701e3394013d,http://dl.acm.org/citation.cfm?id=2493502 +1773d65c1dc566fd6128db65e907ac91b4583bed,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8328914 +7b47dd9302b3085cd6705614b88d7bdbc8ae5c13,http://doi.org/10.1007/s11063-017-9693-4 +8f71c97206a03c366ddefaa6812f865ac6df87e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342943 +8fa9cb5dac394e30e4089bf5f4ffecc873d1da96,http://doi.org/10.1007/s11042-017-5245-1 +8fba84af61ac9b5e2bcb69b6730a597d7521ad73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771329 +8fb2ec3bbd862f680be05ef348b595e142463524,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699880 +8a8127a06f432982bfb0150df3212f379b36840b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373884 +8ad0a88a7583af819af66cf2d9e8adb860cf9c34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539153 +8ac2d704f27a2ddf19b40c8e4695da629aa52a54,http://doi.org/10.1007/s11042-015-2945-2 +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae,http://dl.acm.org/citation.cfm?id=3123271 +8a6033cbba8598945bfadd2dd04023c2a9f31681,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014991 +8a63a2b10068b6a917e249fdc73173f5fd918db0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8120021 +8a4893d825db22f398b81d6a82ad2560832cd890,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5349489 +8aa1591bf8fcb44f2e9f2f10d1029720ccbb8832,http://dl.acm.org/citation.cfm?id=3078988 +7eb8476024413269bfb2abd54e88d3e131d0aa0e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4284739 +7e56d9ebd47490bb06a8ff0bd5bcd8672ec52364,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1275543 +7ee7b0602ef517b445316ca8aa525e28ea79307e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418530 +7e8c8b1d72c67e2e241184448715a8d4bd88a727,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8097314 +7e2f7c0eeaeb47b163a7258665324643669919e8,http://doi.org/10.1007/s11042-018-5801-3 +7e27d946d23229220bcb6672aacab88e09516d39,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900131 +7ec431e36919e29524eceb1431d3e1202637cf19,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8365242 +10cb39e93fac194220237f15dae084136fdc6740,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457972 +10bfa4cecd64b9584c901075d6b50f4fad898d0b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728013 +10e4172dd4f4a633f10762fc5d4755e61d52dc36,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100146 +1025c4922491745534d5d4e8c6e74ba2dc57b138,http://doi.org/10.1007/s11263-017-1014-x +1063be2ad265751fb958b396ee26167fa0e844d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369056 +10bf35bf98cfe555dfc03b5f03f2769d330e3af9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8000333 +193474d008cab9fa1c1fa81ce094d415f00b075c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466415 +196c12571ab51273f44ea3469d16301d5b8d2828,http://doi.org/10.1007/s00371-018-1494-x +19b492d426f092d80825edba3b02e354c312295f,http://doi.org/10.1007/s00371-016-1332-y +1951dc9dd4601168ab5acf4c14043b124a8e2f67,http://doi.org/10.1162/neco_a_01116 +193bc8b663d041bc34134a8407adc3e546daa9cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373908 +4c72a51a7c7288e6e17dfefe4f87df47929608e7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736912 +4cc326fc977cf967eef5f3135bf0c48d07b79e2d,http://doi.org/10.1007/s11042-016-3830-3 +4ca9753ab023accbfa75a547a65344ee17b549ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457710 +4cfe921ac4650470b0473fd52a2b801f4494ee64,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6467429 +4c0cc732314ba3ccccd9036e019b1cfc27850c17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854473 +263ed62f94ea615c747c00ebbb4008385285b33b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319974 +2696d3708d6c6cccbd701f0dac14cc94d72dd76d,http://doi.org/10.1007/s10044-017-0633-8 +265a88a8805f6ba3efae3fcc93d810be1ea68866,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342346 +26575ad9e75efb440a7dc4ef8e548eed4e19dbd1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411910 +26c8ed504f852eda4a2e63dbbbc3480e57f43c70,http://doi.org/10.1142/S0218001415560078 +21d5c838d19fcb4d624b69fe9d98e84d88f18e79,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7358748 +21b5af67618fcc047b495d2d5d7c2bf145753633,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771442 +21959bc56a160ebd450606867dce1462a913afab,http://doi.org/10.1007/s11042-018-6071-9 +214072c84378802a0a0fde0b93ffb17bc04f3759,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301397 +4d90d7834ae25ee6176c096d5d6608555766c0b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354115 +4da4e58072c15904d4ce31076061ebd3ab1cdcd5,http://doi.org/10.1007/s00371-018-1477-y +4d19401e44848fe65b721971bc71a9250870ed5f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462612 +4db99a2268a120c7af636387241188064ea42338,https://www.ncbi.nlm.nih.gov/pubmed/21820862 +75ce75c1a5c35ecdba99dd8b7ba900d073e35f78,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163152 +75a74a74d6abbbb302a99de3225c8870fa149aee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914657 +758d481bbf24d12615b751fd9ec121500a648bce,http://doi.org/10.1007/s11042-015-2914-9 +814369f171337ee1d8809446b7dbfc5e1ef9f4b5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597559 +81513764b73dae486a9d2df28269c7db75e9beb3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7839217 +8127b7654d6e5c46caaf2404270b74c6b0967e19,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813406 +81b0550c58e7409b4f1a1cd7838669cfaa512eb3,http://doi.org/10.1016/j.patcog.2015.08.026 +81f101cea3c451754506bf1c7edf80a661fa4dd1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163081 +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369725 +863ad2838b9b90d4461995f498a39bcd2fb87c73,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265580 +8633732d9f787f8497c2696309c7d70176995c15,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298967 +8694cd9748fb1c128f91a572119978075fede848,http://doi.org/10.1016/j.neucom.2017.08.028 +720763bcb5e0507f13a8a319018676eb24270ff0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5202783 +72167c9e4e03e78152f6df44c782571c3058050e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771464 +443f4421e44d4f374c265e6f2551bf9830de5597,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771467 +44855e53801d09763c1fb5f90ab73e5c3758a728,http://doi.org/10.1007/s11263-017-1018-6 +44b91268fbbf62e1d2ba1d5331ec7aedac30dbe8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342368 +44d93039eec244083ac7c46577b9446b3a071f3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1415571 +2a826273e856939b58be8779d2136bffa0dddb08,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373892 +2ac7bb3fb014d27d3928a9b4bc1bf019627e0c1a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8432363 +2a7058a720fa9da4b9b607ea00bfdb63652dff95,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590031 +2a612a7037646276ff98141d3e7abbc9c91fccb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909615 +2a2df7e790737a026434187f9605c4763ff71292,http://doi.org/10.1007/s11042-017-4665-2 +2f1485994ef2c09a7bb2874eb8252be8fe710db1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780700 +2f67d5448b5372f639633d8d29aac9c0295b4d72,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460923 +2f69e9964f3b6bdc0d18749b48bb6b44a4171c64,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7801496 +2f837ff8b134b785ee185a9c24e1f82b4e54df04,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5739539 +2f73203fd71b755a9601d00fc202bbbd0a595110,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868 +43fce0c6b11eb50f597aa573611ac6dc47e088d3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465617 +43dce79cf815b5c7068b1678f6200dabf8f5de31,http://arxiv.org/abs/1709.03196 +43c3b6a564b284382fdf8ae33f974f4e7a89600e,http://dl.acm.org/citation.cfm?id=3190784 +437642cfc8c34e445ea653929e2d183aaaeeb704,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014815 +4317856a1458baa427dc00e8ea505d2fc5f118ab,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296449 +4342a2b63c9c344d78cf153600cd918a5fecad59,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237671 +88535dba55b0a80975df179d31a6cc80cae1cc92,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355366 +885c37f94e9edbbb2177cfba8cb1ad840b2a5f20,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8006255 +88e2efab01e883e037a416c63a03075d66625c26,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265507 +9ff931ca721d50e470e1a38e583c7b18b6cdc2cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407637 +9f1a854d574d0bd14786c41247db272be6062581,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8360155 +9f62ac43a1086c22b9a3d9f192c975d1a5a4b31f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4426825 +9f131b4e036208f2402182a1af2a59e3c5d7dd44,http://dl.acm.org/citation.cfm?id=3206038 +9f2984081ef88c20d43b29788fdf732ceabd5d6a,http://arxiv.org/abs/1806.01547 +9fc993aeb0a007ccfaca369a9a8c0ccf7697261d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7936534 +9f43caad22803332400f498ca4dd0429fe7da0aa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6239186 +6baaa8b763cc5553715766e7fbe7abb235fae33c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789589 +6ba3cb67bcdb7aea8a07e144c03b8c5a79c19bc0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8246530 +6b99cd366f2ea8e1c9abadf73b05388c0e24fec3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100204 +6b742055a664bcbd1c6a85ae6796bd15bc945367,http://doi.org/10.1007/s00138-006-0052-0 +07a31bd7a0bd7118f8ac0bc735feef90e304fb08,http://doi.org/10.1007/s11042-015-3120-5 +071ec4f3fb4bfe6ae9980477d208a7b12691710e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6552193 +38c7f80a1e7fa1bdec632042318dc7cdd3c9aad4,http://doi.org/10.1016/j.asoc.2018.03.030 +3827f1cab643a57e3cd22fbffbf19dd5e8a298a8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373804 +007fbc7a1d7eae33b2bb59b175dd1033e5e178f3,http://dl.acm.org/citation.cfm?id=3209659 +6e46d8aa63db3285417c8ebb65340b5045ca106f,http://dl.acm.org/citation.cfm?id=3183751 +6e38011e38a1c893b90a48e8f8eae0e22d2008e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265376 +9a98dd6d6aaba05c9e46411ea263f74df908203d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7859405 +9a59abdf3460970de53e09cb397f47d86744f472,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995399 +9aab33ce8d6786b3b77900a9b25f5f4577cea461,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961739 +9ac2960f646a46b701963230e6949abd9ac0a9b3,http://doi.org/10.1162/jocn_a_01174 +361eaef45fccfffd5b7df12fba902490a7d24a8d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404319 +09903df21a38e069273b80e94c8c29324963a832,http://doi.org/10.1007/s11042-017-4980-7 +098363b29eef1471c494382338687f2fe98f6e15,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411212 +099053f2cbfa06c0141371b9f34e26970e316426,http://doi.org/10.1007/s11042-016-4079-6 +5dafab3c936763294257af73baf9fb3bb1696654,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5514556 +5d9971c6a9d5c56463ea186850b16f8969a58e67,http://doi.org/10.1007/s11042-017-5354-x +5da827fe558fb2e1124dcc84ef08311241761726,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139096 +5dd473a4a9c6337b083edf38b6ddf5a6aece8908,http://arxiv.org/abs/1711.08238 +5de9670f72d10682bf2cb3156988346257e0489f,http://doi.org/10.1016/j.inffus.2015.12.004 +5d2e5833ca713f95adcf4267148ac2ccf2318539,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6121744 +5dd3c9ac3c6d826e17c5b378d1575b68d02432d7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7292416 +31cdaaa7a47efe2ce0e78ebec29df4d2d81df265,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776921 +31f1c92dbfa5aa338a21a0cb15d071cb9dc6e362,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337733 +31dd6bafd6e7c6095eb8d0591abac3b0106a75e3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457336 +31d51e48dbd9e7253eafe0719f3788adb564a971,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410588 +3157be811685c93d0cef7fa4c489efea581f9b8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411222 +31ec1e5c3b5e020af4a5a3c1be2724c7429a7c78,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354285 +914d7527678b514e3ee9551655f55ffbd3f0eb0a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404350 +91e17338a12b5e570907e816bff296b13177971e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272751 +91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,http://doi.org/10.1007/s41095-016-0068-y +657e702326a1cbc561e059476e9be4d417c37795,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343704 +651cafb2620ab60a0e4f550c080231f20ae6d26e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6360717 +6584c3c877400e1689a11ef70133daa86a238602,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8039231 +629a973ca5f3c7d2f4a9befab97d0044dfd3167a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4427488 +62fddae74c553ac9e34f511a2957b1614eb4f937,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406684 +62750d78e819d745b9200b0c5c35fcae6fb9f404,http://doi.org/10.1007/s11042-016-4085-8 +62f017907e19766c76887209d01d4307be0cc573,http://doi.org/10.1016/j.imavis.2012.02.001 +969626c52d30ea803064ddef8fb4613fa73ba11d,http://doi.org/10.1007/BF02683992 +96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364450 +96ba65bffdddef7c7737c0f42ff4299e95cd85c2,http://doi.org/10.1007/s11042-018-5658-5 +9649a19b49607459cef32f43db4f6e6727080bdb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395207 +3a0558ebfde592bd8bd07cb72b8ca8f700715bfb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6636646 +3a3e55cf5bfd689d6c922e082efa0cd71cd2ae5c,http://dl.acm.org/citation.cfm?id=3184081 +3ac3a714042d3ebc159546c26321a1f8f4f5f80c,http://dl.acm.org/citation.cfm?id=3025149 +3a49507c46a2b8c6411809c81ac47b2b1d2282c3,http://doi.org/10.1007/s11042-017-5319-0 +3a6334953cd2775fab7a8e7b72ed63468c71dee7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7591180 +5435d5f8b9f4def52ac84bee109320e64e58ab8f,http://doi.org/10.1007/s11042-016-4321-2 +54ba18952fe36c9be9f2ab11faecd43d123b389b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163085 +54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334 +982fcead58be419e4f34df6e806204674a4bc579,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613012 +9888edfb6276887eb56a6da7fe561e508e72a517,http://dl.acm.org/citation.cfm?id=3243904 +984edce0b961418d81203ec477b9bfa5a8197ba3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369732 +98d1b5515b079492c8e7f0f9688df7d42d96da8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204260 +9806d3dc7805dd8c9c20d7222c915fc4beee7099,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6755972 +98e098ba9ff98fc58f22fed6d3d8540116284b91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8332532 +98fd92d68a143a5ced4a016fa3b7addd6b4a0122,http://doi.org/10.1007/s11704-016-6066-5 +53507e2de66eaba996f14fd2f54a5535056f1e59,http://doi.org/10.1016/j.sigpro.2017.10.024 +53de11d144cd2eda7cf1bb644ae27f8ef2489289,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424637 +535cdce8264ac0813d5bb8b19ceafa77a1674adf,http://doi.org/10.1007/s12559-016-9402-z +53f5cb365806c57811319a42659c9f68b879454a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8356995 +3ff79cf6df1937949cc9bc522041a9a39d314d83,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406730 +3f0c6dbfd3c9cd5625ba748327d69324baa593a6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373880 +30c93fec078b98453a71f9f21fbc9512ab3e916f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395274 +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392250 +30fb5c24cc15eb8cde5e389bf368d65fb96513e4,http://dl.acm.org/citation.cfm?id=3206048 +5e6fc99d8f5ebaab0e9c29bc0969530d201e0708,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8017477 +5ed66fb992bfefb070b5c39dc45b6e3ff5248c10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163116 +5e9ec3b8daa95d45138e30c07321e386590f8ec7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6967830 +5b5b9c6c67855ede21a60c834aea5379df7d51b7,http://hdl.handle.net/10044/1/45280 +5bb4fd87fa4a27ddacd570aa81c2d66eb4721019,http://doi.org/10.1016/j.neucom.2017.07.014 +5b5b568a0ba63d00e16a263051c73e09ab83e245,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8416840 +378418fdd28f9022b02857ef7dbab6b0b9a02dbe,http://doi.org/10.1007/978-3-319-75420-8 +37866fea39deeff453802cde529dd9d32e0205a5,http://dl.acm.org/citation.cfm?id=2393385 +3779e0599481f11fc1acee60d5108d63e55819b3,http://doi.org/10.1007/s11280-018-0581-2 +0831794eddcbac1f601dcb9be9d45531a56dbf7e,http://doi.org/10.1007/s11042-017-4416-4 +080e0efc3cf71260bfe9bdc62cd86614d1ebca46,http://doi.org/10.1007/s10851-017-0771-z +6d2fd0a9cbea13e840f962ba7c8a9771ec437d3a,http://doi.org/10.1007/s11063-017-9715-2 +6dcf6b028a6042a9904628a3395520995b1d0ef9,http://dl.acm.org/citation.cfm?id=3158392 +6dcf418c778f528b5792104760f1fbfe90c6dd6a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014984 +6de935a02f87aa31e33245c3b85ea3b7f8b1111c,http://doi.org/10.1007/s11263-017-1029-3 +6da711d07b63c9f24d143ca3991070736baeb412,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7000295 +6d70344ae6f6108144a15e9debc7b0be4e3335f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8390318 +013305c13cfabaea82c218b841dbe71e108d2b97,http://doi.org/10.1007/s11063-016-9554-6 +017e94ad51c9be864b98c9b75582753ce6ee134f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892240 +01e27b6d1af4c9c2f50e2908b5f3b2331ff24846,http://doi.org/10.1007/s11263-017-0996-8 +0141cb33c822e87e93b0c1bad0a09db49b3ad470,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298876 +0647c9d56cf11215894d57d677997826b22f6a13,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401557 +06518858bd99cddf9bc9200fac5311fc29ac33b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392777 +06ab24721d7117974a6039eb2e57d1545eee5e46,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373809 +06b4e41185734f70ce432fdb2b121a7eb01140af,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362753 +6c1227659878e867a01888eef472dd96b679adb6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354280 +6ca6ade6c9acb833790b1b4e7ee8842a04c607f7,http://dl.acm.org/citation.cfm?id=3234805 +6cb8c52bb421ce04898fa42cb997c04097ddd328,http://doi.org/10.1007/978-3-319-11289-3 +6c01b349edb2d33530e8bb07ba338f009663a9dd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5332299 +6cce5ccc5d366996f5a32de17a403341db5fddc6,http://doi.org/10.1016/j.cviu.2016.04.012 +6c92d87c84fa5e5d2bb5bed3ef38168786bacc49,http://dl.acm.org/citation.cfm?id=2501650 +6c7a42b4f43b3a2f9b250f5803b697857b1444ac,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553718 +6cbde27d9a287ae926979dbb18dfef61cf49860e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8253589 +6c58e3a8209fef0e28ca2219726c15ea5f284f4f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899896 +397257783ccc8cace5b67cc71e0c73034d559a4f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6918513 +398e0771e64cab6ca5d21754e32dce63f9e3c223,http://dl.acm.org/citation.cfm?id=3206028 +39af06d29a74ad371a1846259e01c14b5343e3d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8046026 +39d6f8b791995dc5989f817373391189d7ac478a,http://doi.org/10.1016/j.patrec.2015.09.015 +9944c451b4a487940d3fd8819080fe16d627892d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612967 +9939498315777b40bed9150d8940fc1ac340e8ba,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789583 +997b9ffe2f752ba84a66730cfd320d040e7ba2e2,http://dl.acm.org/citation.cfm?id=2967199 +99d06fe2f4d6d76acf40b6da67c5052e82055f5a,http://dl.acm.org/citation.cfm?id=3268909 +9989ad33b64accea8042e386ff3f1216386ba7f1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393320 +9961f1e5cf8fda29912344773bc75c47f18333a0,http://doi.org/10.1007/s10044-017-0618-7 +521aa8dcd66428b07728b91722cc8f2b5a73944b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367126 +52af7625f7e7a0bd9f9d8eeafd631c4d431e67e7,http://doi.org/10.1007/s00371-018-1585-8 +525da67fb524d46f2afa89478cd482a68be8a42b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354128 +522a4ca705c06a0436bbe62f46efe24d67a82422,http://doi.org/10.1007/s11042-017-5475-2 +55432723c728a2ce90d817e9e9877ae9fbad6fe5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412925 +55cfc3c08000f9d21879582c6296f2a864b657e8,http://doi.org/10.1049/iet-cvi.2015.0287 +556b05ab6eff48d32ffbd04f9008b9a5c78a4ad7,http://dl.acm.org/citation.cfm?id=2926713 +552122432b92129d7e7059ef40dc5f6045f422b5,http://doi.org/10.1007/s11263-017-1000-3 +55aafdef9d9798611ade1a387d1e4689f2975e51,http://doi.org/10.1007/s11263-017-1044-4 +55c4efc082a8410b528af7325de8148b80cf41e3,http://dl.acm.org/citation.cfm?id=3231899 +55a7286f014cc6b51a3f50b1e6bc8acc8166f231,http://arxiv.org/abs/1603.02814 +97b5800e144a8df48f1f7e91383b0f37bc37cf60,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237657 +972e044f69443dfc5c987e29250b2b88a6d2f986,http://doi.org/10.1134/S1054661811020738 +971cb1bfe3d10fcb2037e684c48bd99842f42fa4,http://doi.org/10.1007/s11042-017-5141-8 +972b1a7ef8cc9c83c2c6d8d126f94f27b567d7d0,http://doi.org/10.1007/978-3-319-99978-4 +97c1f68fb7162af326cd0f1bc546908218ec5da6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471977 +63fd7a159e58add133b9c71c4b1b37b899dd646f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6603332 +6318d3842b36362bb45527b717e1a45ae46151d5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780708 +636b8ffc09b1b23ff714ac8350bb35635e49fa3c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467308 +6359fcb0b4546979c54818df8271debc0d653257,http://doi.org/10.1007/s11704-017-6275-6 +633c851ebf625ad7abdda2324e9de093cf623141,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727 +6316a4b689706b0f01b40f9a3cef47b92bc52411,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699534 +0f7e9199dad3237159e985e430dd2bf619ef2db5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883882 +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39,http://doi.org/10.1007/s11042-016-4105-8 +0aaf785d7f21d2b5ad582b456896495d30b0a4e2,http://dl.acm.org/citation.cfm?id=3173789 +642a386c451e94d9c44134e03052219a7512b9de,http://doi.org/10.1016/j.imavis.2008.04.018 +640e12837241d52d04379d3649d050ee3760048c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5692624 +64ec02e1056de4b400f9547ce56e69ba8393e2ca,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446491 +645f09f4bc2e6a13663564ee9032ca16e35fc52d,http://dl.acm.org/citation.cfm?id=3193542 +9057044c0347fb9798a9b552910a9aff150385db,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6778411 +9077365c9486e54e251dd0b6f6edaeda30ae52b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373910 +90e7a86a57079f17f1089c3a46ea9bfd1d49226c,https://www.sciencedirect.com/science/article/pii/S0042698914002739 +90221884fe2643b80203991686af78a9da0f9791,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995467 +bfdafe932f93b01632a5ba590627f0d41034705d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6134770 +bf3bf5400b617fef2825eb987eb496fea99804b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461385 +bf37a81d572bb154581845b65a766fab1e5c7dda,http://doi.org/10.1007/s11760-017-1111-x +d34f546e61eccbac2450ca7490f558e751e13ec3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461800 +d3008b4122e50a28f6cc1fa98ac6af28b42271ea,http://dl.acm.org/citation.cfm?id=2806218 +d3dea0cd65ab3da14cb7b3bd0ec59531d98508aa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728015 +d31328b12eef33e7722b8e5505d0f9d9abe2ffd9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373866 +d36a1e4637618304c2093f72702dcdcc4dcd41d1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961791 +d383ba7bbf8b7b49dcef9f8abab47521966546bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995471 +d3d39e419ac98db2de1a9d5a05cb0b4ca5cae8fd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619296 +d340a135a55ecf7506010e153d5f23155dcfa7e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7884781 +d4f0960c6587379ad7df7928c256776e25952c60,https://www.ncbi.nlm.nih.gov/pubmed/29107889 +d4453ec649dbde752e74da8ab0984c6f15cc6e06,http://doi.org/10.1007/s11042-016-3361-y +d4288daef6519f6852f59ac6b85e21b8910f2207,https://www.ncbi.nlm.nih.gov/pubmed/29994505 +d4b4020e289c095ce2c2941685c6cd37667f5cc9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7489442 +d4df31006798ee091b86e091a7bf5dce6e51ba3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1612996 +d44e6baf3464bf56d3a29daf280b1b525ac30f7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265336 +ba01dbfa29dc86d1279b2e9b9eeca1c52509bbda,http://doi.org/10.1007/s00530-017-0566-5 +bad2df94fa771869fa35bd11a1a7ab2e3f6d1da3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344635 +ba1c0600d3bdb8ed9d439e8aa736a96214156284,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081394 +badb95dbdfb3f044a46d7ba0ee69dba929c511b1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363515 +baafe3253702955c6904f0b233e661b47aa067e1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776926 +ba17782ca5fc0d932317389c2adf94b5dbd3ebfe,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509290 +a082c77e9a6c2e2313d8255e8e4c0677d325ce3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163111 +a00fdf49e5e0a73eb24345cb25a0bd1383a10021,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892186 +a03448488950ee5bf50e9e1d744129fbba066c50,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367180 +a7ec294373ccc0598cbb0bbb6340c4e56fe5d979,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699580 +a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357 +a78b5495a4223b9784cc53670cc10b6f0beefd32,http://doi.org/10.1007/s11042-018-6260-6 +b8fc620a1563511744f1a9386bdfa09a2ea0f71b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411214 +b8048a7661bdb73d3613fde9d710bd45a20d13e7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8468792 +b85c198ce09ffc4037582a544c7ffb6ebaeff198,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100113 +b82f89d6ef94d26bf4fec4d49437346b727c3bd4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6894202 +b8d8501595f38974e001a66752dc7098db13dfec,http://arxiv.org/abs/1711.09265 +b806a31c093b31e98cc5fca7e3ec53f2cc169db9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995928 +b14e3fe0d320c0d7c09154840250d70bc88bb6c0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699097 +b161d261fabb507803a9e5834571d56a3b87d147,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8122913 +b1f4423c227fa37b9680787be38857069247a307,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6200254 +b104c8ef6735eba1d29f50c99bbbf99d33fc8dc2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415357 +b11b71b704629357fe13ed97b216b9554b0e7463,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736040 +dd0086da7c4efe61abb70dd012538f5deb9a8d16,http://doi.org/10.1007/s11704-016-5024-6 +dd6826e9520a6e72bcd24d1bdb930e78c1083b31,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7106467 +ddfae3a96bd341109d75cedeaebb5ed2362b903f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6837429 +dc1510110c23f7b509035a1eda22879ef2506e61,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909642 +dc107e7322f7059430b4ef4991507cb18bcc5d95,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995338 +dcf6ecd51ba135d432fcb7697fc6c52e4e7b0a43,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100120 +dc964b9c7242a985eb255b2410a9c45981c2f4d0,http://doi.org/10.1007/s10851-018-0837-6 +dc5d04d34b278b944097b8925a9147773bbb80cc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354149 +dc5d9399b3796db7fd850990402dce221b98c8be,http://dl.acm.org/citation.cfm?id=3220016 +dc3dc18b6831c867a8d65da130a9ff147a736745,http://dl.acm.org/citation.cfm?id=2750679 +dc34ab49d378ddcf6c8e2dbf5472784c5bfa8006,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462222 +dcb6f06631021811091ce691592b12a237c12907,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8438999 +dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,http://doi.org/10.1007/s11042-017-4646-5 +b6bb883dd14f2737d0d6225cf4acbf050d307634,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382306 +b6f15bf8723b2d5390122442ab04630d2d3878d8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163142 +b6620027b441131a18f383d544779521b119c1aa,http://doi.org/10.1016/j.patcog.2013.04.013 +b69bcb5f73999ea12ff4ac1ac853b72cd5096b2d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613024 +a9fc8efd1aa3d58f89c0f53f0cb112725b5bda10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316891 +a9ae55c83a8047c6cdf7c958fd3d4a6bfb0a13df,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014745 +a9fdbe102f266cc20e600fa6b060a7bc8d1134e9,https://www.ncbi.nlm.nih.gov/pubmed/29334821 +a92147bed9c17c311c6081beb0ef4c3165b6268e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6805594 +a98ff1c2e3c22e3d0a41a2718e4587537b92da0a,http://doi.org/10.1007/978-3-319-68548-9_19 +a939e287feb3166983e36b8573cd161d12097ad8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550048 +a961f1234e963a7945fed70197015678149b37d8,http://dl.acm.org/citation.cfm?id=3206068 +a96c45ed3a44ad79a72499be238264ae38857988,http://doi.org/10.1007/s00138-016-0786-2 +a92c207031b0778572bf41803dba1a21076e128b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433557 +a9215666b4bcdf8d510de8952cf0d55b635727dc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7498613 +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4,http://doi.org/10.1007/s11042-018-5806-y +d57982dc55dbed3d0f89589e319dc2d2bd598532,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099760 +d5d5cc27ca519d1300e77e3c1a535a089f52f646,http://doi.org/10.1007/s11042-016-3768-5 +d289ce63055c10937e5715e940a4bb9d0af7a8c5,http://dl.acm.org/citation.cfm?id=3081360 +d264dedfdca8dc4c71c50311bcdd6ba3980eb331,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392234 +d2f2b10a8f29165d815e652f8d44955a12d057e6,http://doi.org/10.1007/s10044-015-0475-1 +d20ea5a4fa771bc4121b5654a7483ced98b39148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430554 +aad4c94fd55d33a3f3a5377bbe441c9474cdbd1e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7777820 +aa581b481d400982a7e2a88830a33ec42ad0414f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7313922 +aa5a7a9900548a1f1381389fc8695ced0c34261a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900274 +aafeb3d76155ec28e8ab6b4d063105d5e04e471d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014781 +aa6e8a2a9d3ed59d2ae72add84176e7b7f4b2912,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8203756 +aa1129780cc496918085cd0603a774345c353c54,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7779010 +aa1607090fbc80ab1e9c0f25ffe8b75b777e5fd8,https://www.sciencedirect.com/science/article/pii/S0006322316331110 +af29ad70ab148c83e1faa8b3098396bc1cd87790,http://doi.org/10.1007/s40012-016-0149-1 +afdc303b3325fbc1baa9f18a66bcad59d5aa675b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595920 +af4745a3c3c7b51dab0fd90d68b53e60225aa4a9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7873272 +af3b803188344971aa89fee861a6a598f30c6f10,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404811 +af9419f2155785961a5c16315c70b8228435d5f8,http://doi.org/10.1016/j.patrec.2015.12.013 +b712f08f819b925ff7587b6c09a8855bc295d795,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450858 +b759936982d6fb25c55c98955f6955582bdaeb27,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7472169 +b7ec41005ce4384e76e3be854ecccd564d2f89fb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8441009 +b72eebffe697008048781ab7b768e0c96e52236a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100092 +b7461aac36fc0b8a24ecadf6c5b5caf54f2aa2f7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528404 +b7c6df1ae0e8348feecd65e9ad574d1e04d212a5,http://doi.org/10.1007/s11704-018-8015-y +db0379c9b02e514f10f778cccff0d6a6acf40519,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6130343 +dba7d8c4d2fca41269a2c96b1ea594e2d0b9bdda,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7422069 +db1a9b8d8ce9a5696a96f8db4206b6f72707730e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961838 +dbb9601a1d2febcce4c07dd2b819243d81abb2c2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361884 +dbc8ffd6457147ff06cd3f56834e3ec6dccb2057,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265396 +dbced84d839165d9b494982449aa2eb9109b8467,http://arxiv.org/abs/1712.05083 +a8bb698d1bb21b81497ef68f0f52fa6eaf14a6bf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6587752 +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423530 +a88ced67f4ed7940c76b666e1c9c0f08b59f9cf8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771415 +a8e7561ada380f2f50211c67fc45c3b3dea96bdb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401921 +a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265434 +de162d4b8450bf2b80f672478f987f304b7e6ae4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237454 +def934edb7c7355757802a95218c6e4ed6122a72,http://doi.org/10.1007/978-0-387-31439-6 +dec76940896a41a8a7b6e9684df326b23737cd5d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607638 +de92951ea021ec56492d76381a8ae560a972dd68,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738246 +dee6609615b73b10540f32537a242baa3c9fca4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015006 +de0df8b2b4755da9f70cf1613d7b12040d0ce8ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791166 +de45bf9e5593a5549a60ca01f2988266d04d77da,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404529 +b0b944b3a783c2d9f12637b471fe1efb44deb52b,http://dl.acm.org/citation.cfm?id=2591684 +b034cc919af30e96ee7bed769b93ea5828ae361b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099915 +a6b5ca99432c23392cec682aebb8295c0283728b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302395 +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5,http://doi.org/10.1007/s11042-017-4572-6 +a60db9ca8bc144a37fe233b08232d9c91641cbb5,http://doi.org/10.1007/s11280-018-0615-9 +a6902db7972a7631d186bbf59c5ef116c205b1e8,http://dl.acm.org/citation.cfm?id=1276381 +a6ce1a1de164f41cb8999c728bceedf65d66bb23,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7170694 +a6d47f7aa361ab9b37c7f3f868280318f355fadc,https://ora.ox.ac.uk/objects/uuid:7704244a-b327-4e5c-a58e-7bfe769ed988 +b97c7f82c1439fa1e4525e5860cb05a39cc412ea,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430537 +b999364980e4c21d9c22cc5a9f14501432999ca4,http://doi.org/10.1007/s10044-018-0727-y +b9dc8cc479cacda1f23b91df00eb03f88cc0c260,http://dl.acm.org/citation.cfm?id=2964287 +b91f54e1581fbbf60392364323d00a0cd43e493c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553788 +b961e512242ddad7712855ab00b4d37723376e5d,http://doi.org/10.1007/s11554-010-0178-1 +a1e07c31184d3728e009d4d1bebe21bf9fe95c8e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900056 +a168ca2e199121258fbb2b6c821207456e5bf994,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553808 +a1081cb856faae25df14e25045cd682db8028141,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462122 +a136ccaa67f660c45d3abb8551c5ed357faf7081,https://www.ncbi.nlm.nih.gov/pubmed/27078863 +ef2bb8bd93fa8b44414565b32735334fa6823b56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393076 +efc78a7d95b14abacdfde5c78007eabf9a21689c,http://dl.acm.org/citation.cfm?id=2939840 +efb24d35d8f6a46e1ff3800a2481bc7e681e255e,http://doi.org/10.1016/j.patrec.2015.08.006 +c3d3d2229500c555c7a7150a8b126ef874cbee1c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406478 +c3d874336eb8fae92ab335393fd801fa8df98412,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952438 +c362116a358320e71fb6bc8baa559142677622d2,http://doi.org/10.1016/j.patcog.2011.07.009 +c38b1fa00f1f370c029984c55d4d2d40b529d00c,http://doi.org/10.1007/978-3-319-26561-2 +c4a2cd5ec81cdfd894c9a20d4ffb8cda637aab1f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5326314 +c4cfdcf19705f9095fb60fb2e569a9253a475f11,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237333 +c4e2d5ebfebbb9dcee6a9866c3d6290481496df5,http://doi.org/10.1007/s00138-012-0439-z +c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763 +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae,http://dl.acm.org/citation.cfm?id=3230921 +c4f3185f010027a0a97fcb9753d74eb27a9cfd3e,http://doi.org/10.1016/j.patrec.2015.02.006 +c48b68dc780c71ab0f0f530cd160aa564ed08ade,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1357193 +eaf020bc8a3ed5401fc3852f7037a03b2525586a,http://arxiv.org/abs/1710.07735 +eac97959f2fcd882e8236c5dd6035870878eb36b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890147 +ea1303f6746f815b7518c82c9c4d4a00cd6328b9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411434 +eacf974e235add458efb815ada1e5b82a05878fa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4577667 +ea03a569272d329090fe60d6bff8d119e18057d7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532906 +e1312b0b0fd660de87fa42de39316b28f9336e70,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369055 +e1d1540a718bb7a933e21339f1a2d90660af7353,http://doi.org/10.1007/s11063-018-9852-2 +e1179a5746b4bf12e1c8a033192326bf7f670a4d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163104 +e16f73f3a63c44cf285b8c1bc630eb8377b85b6d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373816 +e14cc2715b806288fe457d88c1ad07ef55c65318,http://dl.acm.org/citation.cfm?id=2830583 +e180572400b64860e190a8bc04ef839fa491e056,http://doi.org/10.1038/s41598-017-12097-w +cdcfc75f54405c77478ab776eb407c598075d9f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410829 +cd22e6532211f679ba6057d15a801ba448b9915c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434092 +cd55fb30737625e86454a2861302b96833ed549d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094 +cd63759842a56bd2ede3999f6e11a74ccbec318b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995404 +cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7945277 +cc9d068cf6c4a30da82fd6350a348467cb5086d4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411204 +ccb2ecb30a50460c9189bb55ba594f2300882747,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8334751 +cccd0edb5dafb3a160179a60f75fd8c835c0be82,http://doi.org/10.1007/s12193-017-0241-3 +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854428 +cce332405ce9cd9dccc45efac26d1d614eaa982d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597533 +ccb54fc5f263a8bc2a8373839cb6855f528f10d3,http://doi.org/10.1016/j.patcog.2015.11.008 +cc2a9f4be1e465cb4ba702539f0f088ac3383834,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344595 +e6d6203fa911429d76f026e2ec2de260ec520432,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899663 +e6da1fcd2a8cda0c69b3d94812caa7d844903007,http://dl.acm.org/citation.cfm?id=3137154 +e68869499471bcd6fa8b4dc02aa00633673c0917,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595885 +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e,http://doi.org/10.1007/s11042-018-6110-6 +f03a82fd4a039c1b94a0e8719284a777f776fb22,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355453 +f095b5770f0ff13ba9670e3d480743c5e9ad1036,http://doi.org/10.1007/s11263-016-0950-1 +f0f854f8cfe826fd08385c0c3c8097488f468076,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406454 +f070d739fb812d38571ec77490ccd8777e95ce7a,http://doi.org/10.1016/j.patcog.2014.09.007 +f7ae38a073be7c9cd1b92359131b9c8374579b13,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7487053 +f76a6b1d6029769e2dc1be4dadbee6a7ba777429,http://doi.org/10.1007/s12559-017-9506-0 +f7be8956639e66e534ed6195d929aed4e0b90cad,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4117059 +e8aa1f207b4b0bb710f79ab47a671d5639696a56,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7362364 +e853484dc585bed4b0ed0c5eb4bc6d9d93a16211,http://dl.acm.org/citation.cfm?id=3130971 +e8f4ded98f5955aad114f55e7aca6b540599236b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7047804 +e896389891ba84af58a8c279cf8ab5de3e9320ee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6958874 +fa052fd40e717773c6dc9cc4a2f5c10b8760339f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595883 +fa641327dc5873276f0af453a2caa1634c16f143,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789590 +fa80344137c4d158bf59be4ac5591d074483157a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1470219 +fa32b29e627086d4302db4d30c07a9d11dcd6b84,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354123 +ff76ff05aa1ab17e5ca9864df2252e6bb44c8a17,http://dl.acm.org/citation.cfm?id=3173582 +ffc81ced9ee8223ab0adb18817321cbee99606e6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157 +fffe5ab3351deab81f7562d06764551422dbd9c4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163114 +ff012c56b9b1de969328dacd13e26b7138ff298b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921 +c5c53d42e551f3c8f6ca2c13335af80a882009fa,http://doi.org/10.1007/s11263-018-1088-0 +c5e37630d0672e4d44f7dee83ac2c1528be41c2e,http://dl.acm.org/citation.cfm?id=3078973 +c535d4d61aa0f1d8aadb4082bdcc19f4cbdf0eaf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237344 +c26b43c2e1e2da96e7caabd46e1d7314acac0992,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466510 +c29fe5ed41d2240352fcb8d8196eb2f31d009522,http://doi.org/10.1007/s11042-015-3230-0 +c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014811 +f64574ee0e6247b84d573ddb5c6e2c4ba798ffff,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699435 +f6fc112ff7e4746b040c13f28700a9c47992045e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7442559 +f6532bf13a4649b7599eb40f826aa5281e392c61,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6202713 +f61829274cfe64b94361e54351f01a0376cd1253,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410784 +f6f2a212505a118933ef84110e487551b6591553,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952474 +f65b47093e4d45013f54c3ba09bbcce7140af6bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354117 +e9809c0c6bf33cfe232a63b0a13f9b1263c58cb8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7172556 +e97ba85a4550667b8a28f83a98808d489e0ff3bc,http://doi.org/10.1155/2018%2F9729014 +e9b0a27018c7151016a9fe01c98b4c21d6ebf4be,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471957 +e96cef8732f3021080c362126518455562606f2d,http://dl.acm.org/citation.cfm?id=3206058 +f1ae9f5338fcff577b1ae9becdb66007fe57bd45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099873 +f16599e4ec666c6390c90ff9a253162178a70ef5,http://dl.acm.org/citation.cfm?id=3206050 +f1280f76933ba8b7f4a6b8662580504f02bb4ab6,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7836703 +f1173a4c5e3501323b37c1ae9a6d7dd8a236eab8,http://arxiv.org/abs/1504.07339 +f11c76efdc9651db329c8c862652820d61933308,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100 +e75a589ca27dc4f05c2715b9d54206dee37af266,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409973 +e7cfaff65541cde4298a04882e00608d992f6703,http://doi.org/10.1007/s00521-018-3554-6 +e7697c7b626ba3a426106d83f4c3a052fcde02a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553713 +e79bacc03152ea55343e6af97bcd17d8904cf5ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237669 +cb8382f43ce073322eba82809f02d3084dad7969,http://dl.acm.org/citation.cfm?id=3232664 +cbbd9880fb28bef4e33da418a3795477d3a1616e,http://doi.org/10.1016/j.patcog.2016.02.002 +cbe021d840f9fc1cb191cba79d3f7e3bbcda78d3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406479 +cb522b2e16b11dde48203bef97131ddca3cdaebd,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979 +cbfcd1ec8aa30e31faf205c73d350d447704afee,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7955089 +cb8a1b8d87a3fef15635eb4a32173f9c6f966055,http://dl.acm.org/citation.cfm?id=3234150 +cb27b45329d61f5f95ed213798d4b2a615e76be2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236 +cb2470aade8e5630dcad5e479ab220db94ecbf91,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397018 +f85ccab7173e543f2bfd4c7a81fb14e147695740,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5946910 +f8162276f3b21a3873dde7a507fd68b4ab858bcc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761923 +cef73d305e5368ee269baff53ec20ea3ae7cdd82,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461485 +cec70cf159b51a18b39c80fac1ad34f65f3691ef,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7949100 +cea2911ccabab40e9c1e5bcc0aa1127cab0c789f,http://doi.org/10.1007/s11042-015-2847-3 +cec8936d97dea2fcf04f175d3facaaeb65e574bf,http://dl.acm.org/citation.cfm?id=3134264 +ce70dd0d613b840754dce528c14c0ebadd20ffaa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7973159 +ceba8ca45bad226c401a509e6b8ccbf31361b0c9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7129813 +ce75deb5c645eeb08254e9a7962c74cab1e4c480,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373839 +ced7811f2b694e54e3d96ec5398e4b6afca67fc0,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1605391 +ce2945e369603fcec1fcdc6e19aac5996325cba9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771366 +e060e32f8ad98f10277b582393df50ac17f2836c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099600 +e0162dea3746d58083dd1d061fb276015d875b2e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014992 +46f48211716062744ddec5824e9de9322704dea1,http://doi.org/10.1007/s11263-016-0923-4 +468bb5344f74842a9a43a7e1a3333ebd394929b4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373896 +46e0703044811c941f0b5418139f89d46b360aa3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883945 +4686df20f0ee40cd411e4b43860ef56de5531d9e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301536 +46c82cfadd9f885f5480b2d7155f0985daf949fc,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780537 +46976097c54e86032932d559c8eb82ffea4bb6bb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738868 +2c052a1c77a3ec2604b3deb702d77c41418c7d3e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373863 +2ce1bac5ddc4cf668bbbb8879cd21dfb94b5cfe4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099709 +7923742e2af655dee4f9a99e39916d164bc30178,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272743 +7914c3f510e84a3d83d66717aad0d852d6a4d148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532448 +7918e3e15099b4b2943746e1f6c9e3992a79c5f3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995492 +794a51097385648e3909a1acae7188f5ab881710,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813382 +2d3af3ee03793f76fb8ff15e7d7515ff1e03f34c,http://doi.org/10.1007/s11042-017-4818-3 +2d7c2c015053fff5300515a7addcd74b523f3f66,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8323422 +2dbc57abf3ceda80827b85593ce1f457b76a870b,http://doi.org/10.1007/s11042-018-6133-z +4113269f916117f975d5d2a0e60864735b73c64c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613059 +41c56c69b20b3f0b6c8a625009fc0a4d317e047a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5720366 +41c42cb001f34c43d4d8dd8fb72a982854e173fb,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5308445 +414d78e32ac41e6ff8b192bc095fe55f865a02f4,http://arxiv.org/abs/1706.00631 +834736698f2cc5c221c22369abe95515243a9fc3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249 +83d41f6548bb76241737dcd3fed9e182ee901ff9,http://dl.acm.org/citation.cfm?id=2964328 +8355d095d3534ef511a9af68a3b2893339e3f96b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390 +83f80fd4eb614777285202fa99e8314e3e5b169c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265544 +1bd9dbe78918ed17b0a3ac40623f044cb3d3552c,http://doi.org/10.1038/nn870 +1b5d445741473ced3d4d33732c9c9225148ed4a1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8452894 +7783095a565094ae5b3dccf082d504ddd7255a5c,http://dl.acm.org/citation.cfm?id=2502258 +77d929b3c4bf546557815b41ed5c076a5792dc6b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265399 +779d3f0cf74b7d33344eea210170c7c981a7e27b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8115237 +7788fa76f1488b1597ee2bebc462f628e659f61e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8063888 +771505abd38641454757de75fe751d41e87f89a4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401561 +48a402593ca4896ac34fbebf1e725ab1226ecdb7,http://doi.org/10.1016/j.patcog.2015.01.022 +48de3ca194c3830daa7495603712496fe908375c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619283 +480ccd25cb2a851745f5e6e95d33edb703efb49e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461792 +484bac2a9ff3a43a6f85d109bbc579a4346397f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6011991 +70e14e216b12bed2211c4df66ef5f0bdeaffe774,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237666 +708f4787bec9d7563f4bb8b33834de445147133b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237449 +70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e,http://doi.org/10.1007/s11042-018-5608-2 +1e0d92b9b4011822825d1f7dc0eba6d83504d45d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4497872 +1e3068886b138304ec5a7296702879cc8788143d,http://doi.org/10.1007/s11263-013-0630-3 +84c5b45328dee855c4855a104ac9c0558cc8a328,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411213 +84574aa43a98ad8a29470977e7b091f5a5ec2366,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301321 +84a74ef8680b66e6dccbc69ae80321a52780a68e,http://doi.org/10.1007/978-0-85729-932-1_19 +845f45f8412905137bf4e46a0d434f5856cd3aec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418618 +4a733a0862bd5f7be73fb4040c1375a6d17c9276,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618949 +4a8480d58c30dc484bda08969e754cd13a64faa1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406475 +24603ed946cb9385ec541c86d2e42db47361c102,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373865 +24286ef164f0e12c3e9590ec7f636871ba253026,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369721 +2480f8dccd9054372d696e1e521e057d9ac9de17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8396968 +247a8040447b6577aa33648395d95d80441a0cf3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362745 +23edcd0d2011d9c0d421193af061f2eb3e155da3,http://doi.org/10.1007/s00371-015-1137-4 +23ee7b7a9ca5948e81555aaf3a044cfec778f148,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771385 +239e305c24155add73f2a0ba5ccbd66b37f77e14,http://dl.acm.org/citation.cfm?id=1219097 +23e824d1dfc33f3780dd18076284f07bd99f1c43,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7947686 +239958d6778643101ab631ec354ea1bc4d33e7e0,http://doi.org/10.1016/j.patcog.2017.06.009 +234c106036964131c0f2daf76c47ced802652046,http://doi.org/10.1016/j.cviu.2015.07.007 +4f37f71517420c93c6841beb33ca0926354fa11d,http://doi.org/10.1016/j.neucom.2017.08.062 +4f064c2a0ef0849eed61ab816ff0c2ff6d9d7308,http://dl.acm.org/citation.cfm?id=2396318 +4f1249369127cc2e2894f6b2f1052d399794919a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663 +4f8345f31e38f65f1155569238d14bd8517606f4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618941 +4f8b4784d0fca31840307650f7052b0dde736a76,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7017496 +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc,http://doi.org/10.1007/978-3-319-16865-4 +8dd9c97b85e883c16e5b1ec260f9cd610df52dec,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404159 +8da32ff9e3759dc236878ac240728b344555e4e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014820 +8dfe43c76b76a97f8938f5f5f81059a1f1fa74ed,http://doi.org/10.1038/s41598-017-18993-5 +8de5dc782178114d9424d33d9adabb2f29a1ab17,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7053946 +151b87de997e55db892b122c211f9c749f4293de,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237481 +127c7f87f289b1d32e729738475b337a6b042cf7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436988 +1221e25763c3be95c1b6626ca9e7feaa3b636d9a,http://doi.org/10.1007/s11042-017-4353-2 +12226bca7a891e25b7d1e1a34a089521bba75731,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373861 +8c4042191431e9eb43f00b0f14c23765ab9c6688,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532956 +8ccbbd9da0749d96f09164e28480d54935ee171c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597578 +856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014 +85a136b48c2036b16f444f93b086e2bd8539a498,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7885525 +85e78aa374d85f9a61da693e5010e40decd3f986,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619100 +854b1f0581f5d3340f15eb79452363cbf38c04c8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648 +85ec86f8320ba2ed8b3da04d1c291ce88b8969c0,http://dl.acm.org/citation.cfm?id=3264947 +85ae6fa48e07857e17ac4bd48fb804785483e268,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7755833 +85c90ad5eebb637f048841ebfded05942bb786b7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977163 +8562b4f63e49847692b8cb31ef0bdec416b9a87a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8128909 +857c64060963dd8d28e4740f190d321298ddd503,http://doi.org/10.1007/s11042-015-3103-6 +1d30f813798c55ae4fe454829be6e2948ee841da,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270396 +1d51b256af68c5546d230f3e6f41da029e0f5852,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590015 +1de23d7fe718d9fab0159f58f422099e44ad3f0a,http://doi.org/10.1007/s11063-016-9558-2 +71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774 +7195cb08ba2248f3214f5dc5d7881533dd1f46d9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5673820 +71c4b8e1bb25ee80f4317411ea8180dae6499524,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463396 +765be0c44a67e41e0f8f0b5d8a3af0ff40a00c7d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373821 +768f6a14a7903099729872e0db231ea814eb05e9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411205 +1c25a3c8ef3e2c4dbff337aa727d13f5eba40fb2,http://doi.org/10.1007/s00371-016-1290-4 +1c0acf9c2f2c43be47b34acbd4e7338de360e555,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461986 +8202da548a128b28dd1f3aa9f86a0523ec2ecb26,http://doi.org/10.1016/j.ijar.2012.01.003 +82a0a5d0785fb2c2282ed901a15c3ff02f8567df,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849828 +82e3f4099503633c042a425e9217bfe47cfe9d4b,http://doi.org/10.1007/s11042-015-2819-7 +49358915ae259271238c7690694e6a887b16f7ed,http://doi.org/10.1007/BF02884429 +4983076c1a8b80ff5cd68b924b11df58a68b6c84,http://doi.org/10.1007/s11704-017-6114-9 +49068538b7eef66b4254cc11914128097302fab8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339040 +49be50efc87c5df7a42905e58b092729ea04c2f5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7177489 +493c8591d6a1bef5d7b84164a73761cefb9f5a25,http://dl.acm.org/citation.cfm?id=3159691 +40c9dce0a4c18829c4100bff5845eb7799b54ca1,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5346008 +405d9a71350c9a13adea41f9d7f7f9274793824f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373834 +40c1de7b1b0a087c590537df55ecd089c86e8bfc,http://doi.org/10.1162/NECO_a_00401 +4007bf090887d8a0e907ab5e17ecfcdbbdafc2e4,http://doi.org/10.1007/s13735-017-0144-9 +407806f5fe3c5ecc2dc15b75d3d2b0359b4ee7e0,http://doi.org/10.1007/s11042-017-5028-8 +2e7e1ee7e3ee1445939480efd615e8828b9838f8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5643167 +2e3b981b9f3751fc5873f77ad2aa7789c3e1d1d2,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397046 +2bb36c875754a2a8919f2f9b00a336c00006e453,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373869 +2bf646a6efd15ab830344ae9d43e10cc89e29f34,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8387808 +2bcd9b2b78eb353ea57cf50387083900eae5384a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995329 +4735fa28fa2a2af98f7b266efd300a00e60dddf7,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460647 +7831ab4f8c622d91974579c1ff749dadc170c73c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6712699 +78f2c8671d1a79c08c80ac857e89315197418472,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237443 +784a83437b3dba49c0d7ccc10ac40497b84661a5,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100224 +78cec49ca0acd3b961021bc27d5cf78cbbbafc7e,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995556 +782a05fbe30269ff8ab427109f5c4d0a577e5284,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8038860 +8bebb26880274bdb840ebcca530caf26c393bf45,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369529 +8bbd40558a99e33fac18f6736b8fe99f4a97d9b1,http://doi.org/10.1007/s11263-016-0986-2 +13d430257d595231bda216ef859950caa736ad1d,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394947 +13179bb3f2867ea44647b6fe0c8fb4109207e9f5,http://doi.org/10.1007/s00779-018-1171-0 +7fcecaef60a681c47f0476e54e08712ee05d6154,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7299097 +7f203f2ff6721e73738720589ea83adddb7fdd27,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301513 +7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404767 +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4,http://doi.org/10.1007/s11554-016-0645-4 +7fe2ab9f54242ef8609ef9bf988f008c7d42407c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382330 +7f904093e6933cab876e87532111db94c71a304f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117544 +7f26c615dd187ca5e4b15759d5cb23ab3ea9d9a9,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7781761 +7f2a234ad5c256733a837dbf98f25ed5aad214e8,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7207289 +7f5b379b12505d60f9303aab1fea48515d36d098,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411873 +7f68a5429f150f9eb7550308bb47a363f2989cb3,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977004 +7acbf0b060e948589b38d5501ca217463cfd5c2f,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6940304 +7ac4fc169fffa8e962b9df94f61e2adf6bac8f97,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8453893 +141cb9ee401f223220d3468592effa90f0c255fa,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815403 +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74,http://doi.org/10.1007/s00138-016-0820-4 +8e63868e552e433dc536ba732f4c2af095602869,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699730 +8eb40d0a0a1339469a05711f532839e8ffd8126c,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7890464 +8e452379fda31744d4a4383fcb8a9eab6dbc4ae4,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4586390 +22648dcd3100432fe0cc71e09de5ee855c61f12b,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393188 +228ea13041910c41b50d0052bdce924037c3bc6a,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434495 +22e121a8dea49e3042de305574356477ecacadda,http://doi.org/10.1007/s00138-018-0935-x +25960f0a2ed38a89fa8076a448ca538de2f1e183,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411220 +2563fc1797f187e2f6f9d9f4387d4bcadd3fbd02,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410635 +2564920d6976be68bb22e299b0b8098090bbf259,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8407761 diff --git a/scraper/reports/misc/raw_paper_pdf.csv b/scraper/reports/misc/raw_paper_pdf.csv new file mode 100644 index 00000000..c9827c27 --- /dev/null +++ b/scraper/reports/misc/raw_paper_pdf.csv @@ -0,0 +1,1354 @@ +61f04606528ecf4a42b49e8ac2add2e9f92c0def,https://arxiv.org/pdf/1605.01014.pdf +61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa,https://arxiv.org/pdf/1809.01604.pdf +61e9e180d3d1d8b09f1cc59bdd9f98c497707eff,https://pdfs.semanticscholar.org/61e9/e180d3d1d8b09f1cc59bdd9f98c497707eff.pdf +6193c833ad25ac27abbde1a31c1cabe56ce1515b,https://pdfs.semanticscholar.org/5f25/7ca18a92c3595db3bda3224927ec494003a5.pdf +614079f1a0d0938f9c30a1585f617fa278816d53,https://arxiv.org/pdf/1612.02374.pdf +0da75b0d341c8f945fae1da6c77b6ec345f47f2a,https://pdfs.semanticscholar.org/0da7/5b0d341c8f945fae1da6c77b6ec345f47f2a.pdf +0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a,https://pdfs.semanticscholar.org/0d33/b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a.pdf +0da4c3d898ca2fff9e549d18f513f4898e960aca,https://pdfs.semanticscholar.org/0da4/c3d898ca2fff9e549d18f513f4898e960aca.pdf +959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c,https://pdfs.semanticscholar.org/959b/cb16afdf303c34a8bfc11e9fcc9d40d76b1c.pdf +95ea564bd983129ddb5535a6741e72bb1162c779,https://arxiv.org/pdf/1711.00111.pdf +950171acb24bb24a871ba0d02d580c09829de372,https://pdfs.semanticscholar.org/9501/71acb24bb24a871ba0d02d580c09829de372.pdf +59fc69b3bc4759eef1347161e1248e886702f8f7,https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf +59efb1ac77c59abc8613830787d767100387c680,https://arxiv.org/pdf/1805.10030.pdf +59dac8b460a89e03fa616749a08e6149708dcc3a,https://pdfs.semanticscholar.org/59da/c8b460a89e03fa616749a08e6149708dcc3a.pdf +59e9934720baf3c5df3a0e1e988202856e1f83ce,https://arxiv.org/pdf/1511.04136.pdf +59d225486161b43b7bf6919b4a4b4113eb50f039,https://arxiv.org/pdf/1701.04769.pdf +5945464d47549e8dcaec37ad41471aa70001907f,https://arxiv.org/pdf/1507.05738.pdf +599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0a,https://arxiv.org/pdf/1808.09316.pdf +59a6c9333c941faf2540979dcfcb5d503a49b91e,https://arxiv.org/pdf/1806.08245.pdf +92b61b09d2eed4937058d0f9494d9efeddc39002,https://pdfs.semanticscholar.org/92b6/1b09d2eed4937058d0f9494d9efeddc39002.pdf +92be73dffd3320fe7734258961fe5a5f2a43390e,https://pdfs.semanticscholar.org/92be/73dffd3320fe7734258961fe5a5f2a43390e.pdf +9207671d9e2b668c065e06d9f58f597601039e5e,https://pdfs.semanticscholar.org/9207/671d9e2b668c065e06d9f58f597601039e5e.pdf +928b8eb47288a05611c140d02441660277a7ed54,https://arxiv.org/pdf/1805.04384.pdf +926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0,https://arxiv.org/pdf/1705.07871.pdf +92e464a5a67582d5209fa75e3b29de05d82c7c86,https://pdfs.semanticscholar.org/92e4/64a5a67582d5209fa75e3b29de05d82c7c86.pdf +927ba64123bd4a8a31163956b3d1765eb61e4426,https://pdfs.semanticscholar.org/927b/a64123bd4a8a31163956b3d1765eb61e4426.pdf +923ec0da8327847910e8dd71e9d801abcbc93b08,https://arxiv.org/pdf/1704.04232.pdf +0cf2eecf20cfbcb7f153713479e3206670ea0e9c,https://arxiv.org/pdf/1806.08906.pdf +0ca36ecaf4015ca4095e07f0302d28a5d9424254,https://arxiv.org/pdf/1810.00360.pdf +0cfca73806f443188632266513bac6aaf6923fa8,https://arxiv.org/pdf/1805.04756.pdf +6601a0906e503a6221d2e0f2ca8c3f544a4adab7,https://pdfs.semanticscholar.org/6601/a0906e503a6221d2e0f2ca8c3f544a4adab7.pdf +661ca4bbb49bb496f56311e9d4263dfac8eb96e9,https://arxiv.org/pdf/1803.09010.pdf +66d087f3dd2e19ffe340c26ef17efe0062a59290,https://pdfs.semanticscholar.org/66d0/87f3dd2e19ffe340c26ef17efe0062a59290.pdf +66837add89caffd9c91430820f49adb5d3f40930,https://pdfs.semanticscholar.org/4a6d/20f60ff06cca446578ea1218737190e288e6.pdf +3e0a1884448bfd7f416c6a45dfcdfc9f2e617268,https://arxiv.org/pdf/1805.05838.pdf +3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b,https://arxiv.org/pdf/1703.04363.pdf +3e40991ab1daa2a4906eb85a5d6a01a958b6e674,https://arxiv.org/pdf/1611.01599.pdf +506c2fbfa9d16037d50d650547ad3366bb1e1cde,https://pdfs.semanticscholar.org/506c/2fbfa9d16037d50d650547ad3366bb1e1cde.pdf +504028218290d68859f45ec686f435f473aa326c,https://arxiv.org/pdf/1807.11195.pdf +50a0930cb8cc353e15a5cb4d2f41b365675b5ebf,https://pdfs.semanticscholar.org/50a0/930cb8cc353e15a5cb4d2f41b365675b5ebf.pdf +508702ed2bf7d1b0655ea7857dd8e52d6537e765,https://pdfs.semanticscholar.org/5087/02ed2bf7d1b0655ea7857dd8e52d6537e765.pdf +68d2afd8c5c1c3a9bbda3dd209184e368e4376b9,https://arxiv.org/pdf/1705.11136.pdf +68d08ed9470d973a54ef7806318d8894d87ba610,https://arxiv.org/pdf/1804.02555.pdf +68caf5d8ef325d7ea669f3fb76eac58e0170fff0,https://arxiv.org/pdf/1805.07646.pdf +684f5166d8147b59d9e0938d627beff8c9d208dd,https://arxiv.org/pdf/1707.03548.pdf +68484ae8a042904a95a8d284a7f85a4e28e37513,https://pdfs.semanticscholar.org/6848/4ae8a042904a95a8d284a7f85a4e28e37513.pdf +682760f2f767fb47e1e2ca35db3becbb6153756f,https://arxiv.org/pdf/1804.03507.pdf +68f61154a0080c4aae9322110c8827978f01ac2e,https://pdfs.semanticscholar.org/68f6/1154a0080c4aae9322110c8827978f01ac2e.pdf +574b62c845809fd54cc168492424c5fac145bc83,https://arxiv.org/pdf/1804.04829.pdf +57246142814d7010d3592e3a39a1ed819dd01f3b,https://pdfs.semanticscholar.org/5724/6142814d7010d3592e3a39a1ed819dd01f3b.pdf +571b83f7fc01163383e6ca6a9791aea79cafa7dd,https://arxiv.org/pdf/1803.06524.pdf +574ad7ef015995efb7338829a021776bf9daaa08,https://arxiv.org/pdf/1611.08240.pdf +57a14a65e8ae15176c9afae874854e8b0f23dca7,https://pdfs.semanticscholar.org/57a1/4a65e8ae15176c9afae874854e8b0f23dca7.pdf +3b73f8a2b39751efb7d7b396bf825af2aaadee24,https://arxiv.org/pdf/1712.01066.pdf +3b84d074b8622fac125f85ab55b63e876fed4628,https://arxiv.org/pdf/1608.02676.pdf +3be8f1f7501978287af8d7ebfac5963216698249,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf +3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f,https://arxiv.org/pdf/1707.07923.pdf +3bb6570d81685b769dc9e74b6e4958894087f3f1,https://arxiv.org/pdf/1805.05098.pdf +6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,https://arxiv.org/pdf/1706.06247.pdf +6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd,https://pdfs.semanticscholar.org/6f7d/06ced04ead3b9a5da86b37e7c27bfcedbbdd.pdf +6f7a8b3e8f212d80f0fb18860b2495be4c363eac,https://arxiv.org/pdf/1712.02662.pdf +6fea198a41d2f6f73e47f056692f365c8e6b04ce,https://arxiv.org/pdf/1807.03658.pdf +6f3054f182c34ace890a32fdf1656b583fbc7445,https://pdfs.semanticscholar.org/6f30/54f182c34ace890a32fdf1656b583fbc7445.pdf +6fef65bd7287b57f0c3b36bf8e6bc987fd161b7d,https://arxiv.org/pdf/1807.08259.pdf +6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae,https://pdfs.semanticscholar.org/6fdc/0bc13f2517061eaa1364dcf853f36e1ea5ae.pdf +03c56c176ec6377dddb6a96c7b2e95408db65a7a,https://arxiv.org/pdf/1807.00676.pdf +0322e69172f54b95ae6a90eb3af91d3daa5e36ea,https://pdfs.semanticscholar.org/0322/e69172f54b95ae6a90eb3af91d3daa5e36ea.pdf +03ce2ff688f9b588b6f264ca79c6857f0d80ceae,https://arxiv.org/pdf/1711.09550.pdf +032825000c03b8ab4c207e1af4daeb1f225eb025,https://pdfs.semanticscholar.org/0328/25000c03b8ab4c207e1af4daeb1f225eb025.pdf +03ac1c694bc84a27621da6bfe73ea9f7210c6d45,https://pdfs.semanticscholar.org/03ac/1c694bc84a27621da6bfe73ea9f7210c6d45.pdf +03fe3d031afdcddf38e5cc0d908b734884542eeb,https://pdfs.semanticscholar.org/03fe/3d031afdcddf38e5cc0d908b734884542eeb.pdf +9bd35145c48ce172b80da80130ba310811a44051,https://arxiv.org/pdf/1606.00850.pdf +9bc01fa9400c231e41e6a72ec509d76ca797207c,https://pdfs.semanticscholar.org/9bc0/1fa9400c231e41e6a72ec509d76ca797207c.pdf +9b2c359c36c38c289c5bacaeb5b1dd06b464f301,https://arxiv.org/pdf/1709.01442.pdf +9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca,https://pdfs.semanticscholar.org/9b1b/cef8bfef0fb5eb5ea9af0b699aa0534fceca.pdf +9be653e1bc15ef487d7f93aad02f3c9552f3ee4a,https://pdfs.semanticscholar.org/9be6/53e1bc15ef487d7f93aad02f3c9552f3ee4a.pdf +9bac481dc4171aa2d847feac546c9f7299cc5aa0,https://arxiv.org/pdf/1609.04541.pdf +9b684e2e2bb43862f69b12c6be94db0e7a756187,https://arxiv.org/pdf/1709.04666.pdf +9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32,https://arxiv.org/pdf/1708.03280.pdf +9e182e0cd9d70f876f1be7652c69373bcdf37fb4,https://arxiv.org/pdf/1807.07860.pdf +040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d,https://arxiv.org/pdf/1806.03018.pdf +04b851f25d6d49e61a528606953e11cfac7df2b2,https://arxiv.org/pdf/1711.11152.pdf +043efe5f465704ced8d71a067d2b9d5aa5b59c29,https://pdfs.semanticscholar.org/000a/c6b0865c79bcf0d6f7f069b3abfe229e1462.pdf +04b4c779b43b830220bf938223f685d1057368e9,https://arxiv.org/pdf/1712.00133.pdf +04317e63c08e7888cef480fe79f12d3c255c5b00,https://pdfs.semanticscholar.org/0431/7e63c08e7888cef480fe79f12d3c255c5b00.pdf +047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff,https://arxiv.org/pdf/1806.06098.pdf +6ad107c08ac018bfc6ab31ec92c8a4b234f67d49,https://arxiv.org/pdf/1807.00966.pdf +6a52e6fce541126ff429f3c6d573bc774f5b8d89,https://pdfs.semanticscholar.org/6a52/e6fce541126ff429f3c6d573bc774f5b8d89.pdf +6a4419ce2338ea30a570cf45624741b754fa52cb,https://arxiv.org/pdf/1804.02541.pdf +6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a,https://arxiv.org/pdf/1805.09092.pdf +3294e27356c3b1063595885a6d731d625b15505a,https://pdfs.semanticscholar.org/89b6/fe99faefb8ff4c54f9e7a88fde2470a51ed1.pdf +3240c9359061edf7a06bfeb7cc20c103a65904c2,https://arxiv.org/pdf/1708.01956.pdf +352d61eb66b053ae5689bd194840fd5d33f0e9c0,https://arxiv.org/pdf/1807.04899.pdf +35b1c1f2851e9ac4381ef41b4d980f398f1aad68,https://pdfs.semanticscholar.org/35b1/c1f2851e9ac4381ef41b4d980f398f1aad68.pdf +351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd,https://pdfs.semanticscholar.org/351c/02d4775ae95e04ab1e5dd0c758d2d80c3ddd.pdf +35e0256b33212ddad2db548484c595334f15b4da,https://pdfs.semanticscholar.org/35e0/256b33212ddad2db548484c595334f15b4da.pdf +35e6f6e5f4f780508e5f58e87f9efe2b07d8a864,https://arxiv.org/pdf/1709.08421.pdf +6964af90cf8ac336a2a55800d9c510eccc7ba8e1,https://arxiv.org/pdf/1711.08496.pdf +69adbfa7b0b886caac15ebe53b89adce390598a3,https://arxiv.org/pdf/1805.10938.pdf +69a55c30c085ad1b72dd2789b3f699b2f4d3169f,https://pdfs.semanticscholar.org/69a5/5c30c085ad1b72dd2789b3f699b2f4d3169f.pdf +6993bca2b3471f26f2c8a47adfe444bfc7852484,https://arxiv.org/pdf/1705.07426.pdf +691964c43bfd282f6f4d00b8b0310c554b613e3b,https://pdfs.semanticscholar.org/6919/64c43bfd282f6f4d00b8b0310c554b613e3b.pdf +3cb2841302af1fb9656f144abc79d4f3d0b27380,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf +3c563542db664321aa77a9567c1601f425500f94,https://arxiv.org/pdf/1712.02514.pdf +3cd7b15f5647e650db66fbe2ce1852e00c05b2e4,https://pdfs.semanticscholar.org/3cd7/b15f5647e650db66fbe2ce1852e00c05b2e4.pdf +3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf +3c1aef7c2d32a219bdbc89a44d158bc2695e360a,https://arxiv.org/pdf/1809.00594.pdf +3c56acaa819f4e2263638b67cea1ec37a226691d,https://arxiv.org/pdf/1704.07160.pdf +56e079f4eb40744728fd1d7665938b06426338e5,https://arxiv.org/pdf/1705.04293.pdf +56a677c889e0e2c9f68ab8ca42a7e63acf986229,https://pdfs.semanticscholar.org/56a6/77c889e0e2c9f68ab8ca42a7e63acf986229.pdf +56dca23481de9119aa21f9044efd7db09f618704,https://arxiv.org/pdf/1507.02772.pdf +516a27d5dd06622f872f5ef334313350745eadc3,https://arxiv.org/pdf/1805.01024.pdf +5180df9d5eb26283fb737f491623395304d57497,https://arxiv.org/pdf/1804.10899.pdf +51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,https://arxiv.org/pdf/1807.04979.pdf +51cb09ee04831b95ae02e1bee9b451f8ac4526e3,https://arxiv.org/pdf/1503.08909.pdf +5161e38e4ea716dcfb554ccb88901b3d97778f64,https://arxiv.org/pdf/1702.04069.pdf +51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee,https://arxiv.org/pdf/1809.07586.pdf +5141cf2e59fb2ec9bb489b9c1832447d3cd93110,https://arxiv.org/pdf/1706.00893.pdf +511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf +51d048b92f6680aca4a8adf07deb380c0916c808,https://pdfs.semanticscholar.org/51d0/48b92f6680aca4a8adf07deb380c0916c808.pdf +5134353bd01c4ea36bd007c460e8972b1541d0ad,https://pdfs.semanticscholar.org/5134/353bd01c4ea36bd007c460e8972b1541d0ad.pdf +3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,https://arxiv.org/pdf/1511.07212.pdf +3daafe6389d877fe15d8823cdf5ac15fd919676f,https://arxiv.org/pdf/1605.05197.pdf +3d6ee995bc2f3e0f217c053368df659a5d14d5b5,https://pdfs.semanticscholar.org/3d6e/e995bc2f3e0f217c053368df659a5d14d5b5.pdf +3dfb822e16328e0f98a47209d7ecd242e4211f82,https://arxiv.org/pdf/1708.08197.pdf +580f86f1ace1feed16b592d05c2b07f26c429b4b,https://arxiv.org/pdf/1705.00754.pdf +58d47c187b38b8a2bad319c789a09781073d052d,https://arxiv.org/pdf/1806.11538.pdf +58bf72750a8f5100e0c01e55fd1b959b31e7dbce,https://arxiv.org/pdf/1803.07737.pdf +58542eeef9317ffab9b155579256d11efb4610f2,https://pdfs.semanticscholar.org/5854/2eeef9317ffab9b155579256d11efb4610f2.pdf +677585ccf8619ec2330b7f2d2b589a37146ffad7,https://arxiv.org/pdf/1806.11328.pdf +6789bddbabf234f31df992a3356b36a47451efc7,https://pdfs.semanticscholar.org/6789/bddbabf234f31df992a3356b36a47451efc7.pdf +675b2caee111cb6aa7404b4d6aa371314bf0e647,https://arxiv.org/pdf/1705.08421.pdf +679b72d23a9cfca8a7fe14f1d488363f2139265f,https://pdfs.semanticscholar.org/e7c4/bfe5ea260450f124f4253f2ebe0fff1d308f.pdf +67484723e0c2cbeb936b2e863710385bdc7d5368,https://arxiv.org/pdf/1805.03363.pdf +673d4885370b27c863e11a4ece9189a6a45931cc,https://arxiv.org/pdf/1802.09723.pdf +6754c98ba73651f69525c770fb0705a1fae78eb5,https://pdfs.semanticscholar.org/f68b/3031e7092072bd7b38c05448031f17b087d1.pdf +672fae3da801b2a0d2bad65afdbbbf1b2320623e,https://arxiv.org/pdf/1609.07042.pdf +0be43cf4299ce2067a0435798ef4ca2fbd255901,https://pdfs.semanticscholar.org/0be4/3cf4299ce2067a0435798ef4ca2fbd255901.pdf +0b5a82f8c0ee3640503ba24ef73e672d93aeebbf,https://arxiv.org/pdf/1808.09560.pdf +0b572a2b7052b15c8599dbb17d59ff4f02838ff7,https://pdfs.semanticscholar.org/0b57/2a2b7052b15c8599dbb17d59ff4f02838ff7.pdf +0ba1d855cd38b6a2c52860ae4d1a85198b304be4,https://arxiv.org/pdf/1510.03909.pdf +0bce54bfbd8119c73eb431559fc6ffbba741e6aa,https://pdfs.semanticscholar.org/f9b2/3a7270939136872d5e170b4a80aad68a4e66.pdf +0bf0029c9bdb0ac61fda35c075deb1086c116956,https://pdfs.semanticscholar.org/c37d/3c53687b2b1654e20a5f67dce6585afc109a.pdf +93420d9212dd15b3ef37f566e4d57e76bb2fab2f,https://arxiv.org/pdf/1611.00851.pdf +93af36da08bf99e68c9b0d36e141ed8154455ac2,https://pdfs.semanticscholar.org/93af/36da08bf99e68c9b0d36e141ed8154455ac2.pdf +93f37c69dd92c4e038710cdeef302c261d3a4f92,https://arxiv.org/pdf/1712.00636.pdf +938ae9597f71a21f2e47287cca318d4a2113feb2,https://pdfs.semanticscholar.org/938a/e9597f71a21f2e47287cca318d4a2113feb2.pdf +946017d5f11aa582854ac4c0e0f1b18b06127ef1,https://pdfs.semanticscholar.org/9460/17d5f11aa582854ac4c0e0f1b18b06127ef1.pdf +94eeae23786e128c0635f305ba7eebbb89af0023,https://arxiv.org/pdf/1706.01350.pdf +944faf7f14f1bead911aeec30cc80c861442b610,https://arxiv.org/pdf/1705.01861.pdf +94325522c9be8224970f810554611d6a73877c13,https://arxiv.org/pdf/1807.11440.pdf +9487cea80f23afe9bccc94deebaa3eefa6affa99,https://arxiv.org/pdf/1612.05332.pdf +94a11b601af77f0ad46338afd0fa4ccbab909e82,https://pdfs.semanticscholar.org/94a1/1b601af77f0ad46338afd0fa4ccbab909e82.pdf +0ee737085af468f264f57f052ea9b9b1f58d7222,https://arxiv.org/pdf/1807.08370.pdf +0e93a5a7f6dbdb3802173dca05717d27d72bfec0,https://arxiv.org/pdf/1709.08553.pdf +0e2ea7af369dbcaeb5e334b02dd9ba5271b10265,https://arxiv.org/pdf/1807.01332.pdf +0ee5c4112208995bf2bb0fb8a87efba933a94579,https://arxiv.org/pdf/1807.03235.pdf +60c24e44fce158c217d25c1bae9f880a8bd19fc3,https://arxiv.org/pdf/1808.02992.pdf +60e2b9b2e0db3089237d0208f57b22a3aac932c1,https://arxiv.org/pdf/1603.06470.pdf +60542b1a857024c79db8b5b03db6e79f74ec8f9f,https://arxiv.org/pdf/1702.05448.pdf +345cc31c85e19cea9f8b8521be6a37937efd41c2,https://arxiv.org/pdf/1511.06421.pdf +341002fac5ae6c193b78018a164d3c7295a495e4,https://arxiv.org/pdf/1706.04264.pdf +34ce703b7e79e3072eed7f92239a4c08517b0c55,https://pdfs.semanticscholar.org/34ce/703b7e79e3072eed7f92239a4c08517b0c55.pdf +34ec83c8ff214128e7a4a4763059eebac59268a6,https://arxiv.org/pdf/1808.00141.pdf +5a3da29970d0c3c75ef4cb372b336fc8b10381d7,https://arxiv.org/pdf/1708.00980.pdf +5a5f9e0ed220ce51b80cd7b7ede22e473a62062c,https://arxiv.org/pdf/1806.01810.pdf +5ac946fc6543a445dd1ee6d5d35afd3783a31353,https://arxiv.org/pdf/1803.06962.pdf +5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c,https://pdfs.semanticscholar.org/2e36/a706bbec0f1adb7484e5d7416c3e612f43a1.pdf +5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6,https://pdfs.semanticscholar.org/5aed/0f26549c6e64c5199048c4fd5fdb3c5e69d6.pdf +5a07945293c6b032e465d64f2ec076b82e113fa6,https://pdfs.semanticscholar.org/5a07/945293c6b032e465d64f2ec076b82e113fa6.pdf +5fff61302adc65d554d5db3722b8a604e62a8377,https://arxiv.org/pdf/1801.05599.pdf +5f771fed91c8e4b666489ba2384d0705bcf75030,https://arxiv.org/pdf/1804.03287.pdf +5fa04523ff13a82b8b6612250a39e1edb5066521,https://arxiv.org/pdf/1708.04370.pdf +5fa6e4a23da0b39e4b35ac73a15d55cee8608736,https://arxiv.org/pdf/1801.06066.pdf +5f7c4c20ae2731bfb650a96b69fd065bf0bb950e,https://pdfs.semanticscholar.org/5f7c/4c20ae2731bfb650a96b69fd065bf0bb950e.pdf +5f94969b9491db552ffebc5911a45def99026afe,https://pdfs.semanticscholar.org/5f94/969b9491db552ffebc5911a45def99026afe.pdf +5f758a29dae102511576c0a5c6beda264060a401,https://arxiv.org/pdf/1804.01373.pdf +5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf +5f27ed82c52339124aa368507d66b71d96862cb7,https://pdfs.semanticscholar.org/5f27/ed82c52339124aa368507d66b71d96862cb7.pdf +5fea26746f3140b12317fcf3bc1680f2746e172e,https://arxiv.org/pdf/1612.06341.pdf +5f453a35d312debfc993d687fd0b7c36c1704b16,https://pdfs.semanticscholar.org/5f45/3a35d312debfc993d687fd0b7c36c1704b16.pdf +33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,https://pdfs.semanticscholar.org/c4e8/3800fae0d6065aca19aa2a2fbff29ca6be1e.pdf +3328413ee9944de1cc7c9c1d1bf2fece79718ba1,https://arxiv.org/pdf/1807.00230.pdf +33aa980544a9d627f305540059828597354b076c,https://pdfs.semanticscholar.org/18a6/9db63820183a7ed0d810c2fdf18865fdf10e.pdf +3352426a67eabe3516812cb66a77aeb8b4df4d1b,https://arxiv.org/pdf/1708.06023.pdf +33ef419dffef85443ec9fe89a93f928bafdc922e,https://arxiv.org/pdf/1809.08493.pdf +05891725f5b27332836cf058f04f18d74053803f,https://pdfs.semanticscholar.org/0589/1725f5b27332836cf058f04f18d74053803f.pdf +052f994898c79529955917f3dfc5181586282cf8,https://arxiv.org/pdf/1708.02191.pdf +050a149051a5d268fcc5539e8b654c2240070c82,https://pdfs.semanticscholar.org/050a/149051a5d268fcc5539e8b654c2240070c82.pdf +053931267af79a89791479b18d1b9cde3edcb415,https://pdfs.semanticscholar.org/0539/31267af79a89791479b18d1b9cde3edcb415.pdf +9d58e8ab656772d2c8a99a9fb876d5611fe2fe20,https://arxiv.org/pdf/1506.01911.pdf +9d57c4036a0e5f1349cd11bc342ac515307b6720,https://arxiv.org/pdf/1808.05399.pdf +9db4b25df549555f9ffd05962b5adf2fd9c86543,https://arxiv.org/pdf/1804.03786.pdf +9ca7899338129f4ba6744f801e722d53a44e4622,https://arxiv.org/pdf/1504.07550.pdf +9c1664f69d0d832e05759e8f2f001774fad354d6,https://arxiv.org/pdf/1809.04317.pdf +9c065dfb26ce280610a492c887b7f6beccf27319,https://arxiv.org/pdf/1707.09074.pdf +9ce0d64125fbaf625c466d86221505ad2aced7b1,https://pdfs.semanticscholar.org/9ce0/d64125fbaf625c466d86221505ad2aced7b1.pdf +02f4b900deabbe7efa474f2815dc122a4ddb5b76,https://pdfs.semanticscholar.org/02f4/b900deabbe7efa474f2815dc122a4ddb5b76.pdf +a40edf6eb979d1ddfe5894fac7f2cf199519669f,https://arxiv.org/pdf/1704.08740.pdf +a3d8b5622c4b9af1f753aade57e4774730787a00,https://arxiv.org/pdf/1705.10120.pdf +a322479a6851f57a3d74d017a9cb6d71395ed806,https://pdfs.semanticscholar.org/a322/479a6851f57a3d74d017a9cb6d71395ed806.pdf +a301ddc419cbd900b301a95b1d9e4bb770afc6a3,https://pdfs.semanticscholar.org/a301/ddc419cbd900b301a95b1d9e4bb770afc6a3.pdf +a3f69a073dcfb6da8038607a9f14eb28b5dab2db,https://pdfs.semanticscholar.org/a3f6/9a073dcfb6da8038607a9f14eb28b5dab2db.pdf +a38045ed82d6800cbc7a4feb498e694740568258,https://pdfs.semanticscholar.org/8f15/c3a426d307dd1e72f7feab1e671d20fb1adb.pdf +a3f78cc944ac189632f25925ba807a0e0678c4d5,https://pdfs.semanticscholar.org/a3f7/8cc944ac189632f25925ba807a0e0678c4d5.pdf +a32c5138c6a0b3d3aff69bcab1015d8b043c91fb,https://pdfs.semanticscholar.org/a32c/5138c6a0b3d3aff69bcab1015d8b043c91fb.pdf +a36c8a4213251d3fd634e8893ad1b932205ad1ca,https://pdfs.semanticscholar.org/a36c/8a4213251d3fd634e8893ad1b932205ad1ca.pdf +b5968e7bb23f5f03213178c22fd2e47af3afa04c,https://arxiv.org/pdf/1705.07206.pdf +b558be7e182809f5404ea0fcf8a1d1d9498dc01a,https://pdfs.semanticscholar.org/dc8a/57827ffbe7064979638cf909abf7fcf7fb8d.pdf +b562def2624f59f7d3824e43ecffc990ad780898,https://arxiv.org/pdf/1710.08310.pdf +b5f2846a506fc417e7da43f6a7679146d99c5e96,https://arxiv.org/pdf/1212.0402.pdf +b59f441234d2d8f1765a20715e227376c7251cd7,https://arxiv.org/pdf/1803.01449.pdf +b59cee1f647737ec3296ccb3daa25c890359c307,https://pdfs.semanticscholar.org/b59c/ee1f647737ec3296ccb3daa25c890359c307.pdf +b2c60061ad32e28eb1e20aff42e062c9160786be,https://arxiv.org/pdf/1805.12589.pdf +b2b535118c5c4dfcc96f547274cdc05dde629976,https://arxiv.org/pdf/1707.04061.pdf +d904f945c1506e7b51b19c99c632ef13f340ef4c,https://pdfs.semanticscholar.org/d904/f945c1506e7b51b19c99c632ef13f340ef4c.pdf +d949fadc9b6c5c8b067fa42265ad30945f9caa99,https://arxiv.org/pdf/1710.00870.pdf +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,https://arxiv.org/pdf/1804.04803.pdf +d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c,https://arxiv.org/pdf/1709.00069.pdf +d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f,https://arxiv.org/pdf/1807.00046.pdf +aca232de87c4c61537c730ee59a8f7ebf5ecb14f,https://pdfs.semanticscholar.org/aca2/32de87c4c61537c730ee59a8f7ebf5ecb14f.pdf +ac855f0de9086e9e170072cb37400637f0c9b735,https://arxiv.org/pdf/1809.08999.pdf +accbd6cd5dd649137a7c57ad6ef99232759f7544,https://pdfs.semanticscholar.org/accb/d6cd5dd649137a7c57ad6ef99232759f7544.pdf +acee2201f8a15990551804dd382b86973eb7c0a8,https://arxiv.org/pdf/1701.01692.pdf +ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e,https://pdfs.semanticscholar.org/c67c/5780cb9870b70b78e4c82da4f92c7bb2592d.pdf +ac26166857e55fd5c64ae7194a169ff4e473eb8b,https://arxiv.org/pdf/1706.01039.pdf +ac559873b288f3ac28ee8a38c0f3710ea3f986d9,https://pdfs.semanticscholar.org/ac55/9873b288f3ac28ee8a38c0f3710ea3f986d9.pdf +ac8e09128e1e48a2eae5fa90f252ada689f6eae7,https://arxiv.org/pdf/1806.01526.pdf +ac8441e30833a8e2a96a57c5e6fede5df81794af,https://arxiv.org/pdf/1805.10557.pdf +ac86ccc16d555484a91741e4cb578b75599147b2,https://arxiv.org/pdf/1709.08398.pdf +ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff,https://arxiv.org/pdf/1712.05080.pdf +ad2339c48ad4ffdd6100310dcbb1fb78e72fac98,https://arxiv.org/pdf/1704.04689.pdf +adf62dfa00748381ac21634ae97710bb80fc2922,https://pdfs.semanticscholar.org/adf6/2dfa00748381ac21634ae97710bb80fc2922.pdf +bbf28f39e5038813afd74cf1bc78d55fcbe630f1,https://arxiv.org/pdf/1803.04108.pdf +bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197,https://arxiv.org/pdf/1612.06836.pdf +bbc5f4052674278c96abe7ff9dc2d75071b6e3f3,https://pdfs.semanticscholar.org/287b/7baff99d6995fd5852002488eb44659be6c1.pdf +bbd1eb87c0686fddb838421050007e934b2d74ab,https://arxiv.org/pdf/1805.10483.pdf +d7593148e4319df7a288180d920f2822eeecea0b,https://pdfs.semanticscholar.org/192e/b550675b0f9cc69389ef2ec27efa72851253.pdf +d7fe2a52d0ad915b78330340a8111e0b5a66513a,https://arxiv.org/pdf/1711.10735.pdf +d7cbedbee06293e78661335c7dd9059c70143a28,https://arxiv.org/pdf/1804.07573.pdf +d78734c54f29e4474b4d47334278cfde6efe963a,https://arxiv.org/pdf/1804.03487.pdf +d79365336115661b0e8dbbcd4b2aa1f504b91af6,https://arxiv.org/pdf/1603.01801.pdf +d7b6bbb94ac20f5e75893f140ef7e207db7cd483,https://pdfs.semanticscholar.org/d7b6/bbb94ac20f5e75893f140ef7e207db7cd483.pdf +d700aedcb22a4be374c40d8bee50aef9f85d98ef,https://arxiv.org/pdf/1712.04851.pdf +d0471d5907d6557cf081edf4c7c2296c3c221a38,https://pdfs.semanticscholar.org/d047/1d5907d6557cf081edf4c7c2296c3c221a38.pdf +d0509afe9c2c26fe021889f8efae1d85b519452a,https://arxiv.org/pdf/1803.07140.pdf +d0144d76b8b926d22411d388e7a26506519372eb,https://arxiv.org/pdf/1806.04613.pdf +d02e27e724f9b9592901ac1f45830341d37140fe,https://arxiv.org/pdf/1802.06454.pdf +d02b32b012ffba2baeb80dca78e7857aaeececb0,https://pdfs.semanticscholar.org/d02b/32b012ffba2baeb80dca78e7857aaeececb0.pdf +d01303062b21cd9ff46d5e3ff78897b8499480de,https://pdfs.semanticscholar.org/d013/03062b21cd9ff46d5e3ff78897b8499480de.pdf +d02c54192dbd0798b43231efe1159d6b4375ad36,https://pdfs.semanticscholar.org/d02c/54192dbd0798b43231efe1159d6b4375ad36.pdf +d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5,https://arxiv.org/pdf/1803.08460.pdf +be48b5dcd10ab834cd68d5b2a24187180e2b408f,https://arxiv.org/pdf/1611.04870.pdf +be4a20113bc204019ea79c6557a0bece23da1121,https://arxiv.org/pdf/1712.01670.pdf +be437b53a376085b01ebd0f4c7c6c9e40a4b1a75,https://pdfs.semanticscholar.org/be43/7b53a376085b01ebd0f4c7c6c9e40a4b1a75.pdf +be4f7679797777f2bc1fd6aad8af67cce5e5ce87,https://pdfs.semanticscholar.org/be4f/7679797777f2bc1fd6aad8af67cce5e5ce87.pdf +be28ed1be084385f5d389db25fd7f56cd2d7f7bf,https://arxiv.org/pdf/1706.03864.pdf +bebea83479a8e1988a7da32584e37bfc463d32d4,https://arxiv.org/pdf/1807.03146.pdf +bed06e7ff0b510b4a1762283640b4233de4c18e0,https://pdfs.semanticscholar.org/bed0/6e7ff0b510b4a1762283640b4233de4c18e0.pdf +be5276e9744c4445fe5b12b785650e8f173f56ff,https://pdfs.semanticscholar.org/be52/76e9744c4445fe5b12b785650e8f173f56ff.pdf +be4f18e25b06f430e2de0cc8fddcac8585b00beb,https://pdfs.semanticscholar.org/be4f/18e25b06f430e2de0cc8fddcac8585b00beb.pdf +b331ca23aed90394c05f06701f90afd550131fe3,https://pdfs.semanticscholar.org/b331/ca23aed90394c05f06701f90afd550131fe3.pdf +b3cb91a08be4117d6efe57251061b62417867de9,https://pdfs.semanticscholar.org/b3cb/91a08be4117d6efe57251061b62417867de9.pdf +b3200539538eca54a85223bf0ec4f3ed132d0493,https://pdfs.semanticscholar.org/b320/0539538eca54a85223bf0ec4f3ed132d0493.pdf +b3b467961ba66264bb73ffe00b1830d7874ae8ce,https://arxiv.org/pdf/1612.04402.pdf +b3ba7ab6de023a0d58c741d6abfa3eae67227caf,https://arxiv.org/pdf/1707.09468.pdf +b32cf547a764a4efa475e9c99a72a5db36eeced6,https://pdfs.semanticscholar.org/b32c/f547a764a4efa475e9c99a72a5db36eeced6.pdf +b3afa234996f44852317af382b98f5f557cab25a,https://arxiv.org/pdf/1711.11248.pdf +df90850f1c153bfab691b985bfe536a5544e438b,https://pdfs.semanticscholar.org/df90/850f1c153bfab691b985bfe536a5544e438b.pdf +df577a89830be69c1bfb196e925df3055cafc0ed,https://arxiv.org/pdf/1711.08141.pdf +df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb,https://arxiv.org/pdf/1704.06693.pdf +dfd8602820c0e94b624d02f2e10ce6c798193a25,https://arxiv.org/pdf/1805.00597.pdf +df9269657505fcdc1e10cf45bbb8e325678a40f5,https://pdfs.semanticscholar.org/1b38/1e864fa35cde69d85eada0eb515d274a6b74.pdf +dfecaedeaf618041a5498cd3f0942c15302e75c3,https://arxiv.org/pdf/1608.01647.pdf +da4170c862d8ae39861aa193667bfdbdf0ecb363,https://arxiv.org/pdf/1601.00400.pdf +daefac0610fdeff415c2a3f49b47968d84692e87,https://pdfs.semanticscholar.org/daef/ac0610fdeff415c2a3f49b47968d84692e87.pdf +b49affdff167f5d170da18de3efa6fd6a50262a2,https://pdfs.semanticscholar.org/b49a/ffdff167f5d170da18de3efa6fd6a50262a2.pdf +b42a97fb47bcd6bfa72e130c08960a77ee96f9ab,https://pdfs.semanticscholar.org/b42a/97fb47bcd6bfa72e130c08960a77ee96f9ab.pdf +b4d209845e1c67870ef50a7c37abaf3770563f3e,https://arxiv.org/pdf/1807.06980.pdf +b4ee64022cc3ccd14c7f9d4935c59b16456067d3,https://pdfs.semanticscholar.org/b4ee/64022cc3ccd14c7f9d4935c59b16456067d3.pdf +b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4,https://pdfs.semanticscholar.org/cbb4/4f0a4b5d76152b90a24a1470cb4cc860587d.pdf +a285b6edd47f9b8966935878ad4539d270b406d1,https://pdfs.semanticscholar.org/a285/b6edd47f9b8966935878ad4539d270b406d1.pdf +a2359c0f81a7eb032cff1fe45e3b80007facaa2a,https://arxiv.org/pdf/1712.08714.pdf +a5f11c132eaab258a7cea2d681875af09cddba65,https://arxiv.org/pdf/1707.02069.pdf +a5a44a32a91474f00a3cda671a802e87c899fbb4,https://arxiv.org/pdf/1801.03150.pdf +bd0265ba7f391dc3df9059da3f487f7ef17144df,https://pdfs.semanticscholar.org/bd02/65ba7f391dc3df9059da3f487f7ef17144df.pdf +bd0e100a91ff179ee5c1d3383c75c85eddc81723,https://arxiv.org/pdf/1706.03038.pdf +bd379f8e08f88729a9214260e05967f4ca66cd65,https://arxiv.org/pdf/1711.06148.pdf +bd21109e40c26af83c353a3271d0cd0b5c4b4ade,https://arxiv.org/pdf/1808.08803.pdf +bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,https://arxiv.org/pdf/1704.08063.pdf +bd26dabab576adb6af30484183c9c9c8379bf2e0,https://arxiv.org/pdf/1511.02459.pdf +bd9c9729475ba7e3b255e24e7478a5acb393c8e9,https://arxiv.org/pdf/1806.04845.pdf +bdbba95e5abc543981fb557f21e3e6551a563b45,https://arxiv.org/pdf/1807.07362.pdf +bd70f832e133fb87bae82dfaa0ae9d1599e52e4b,https://pdfs.semanticscholar.org/acc6/bd697d46121c95f40b62eff7641ffa8d2318.pdf +d1dfdc107fa5f2c4820570e369cda10ab1661b87,https://arxiv.org/pdf/1712.00080.pdf +d1a43737ca8be02d65684cf64ab2331f66947207,https://pdfs.semanticscholar.org/d1a4/3737ca8be02d65684cf64ab2331f66947207.pdf +d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576,https://arxiv.org/pdf/1704.04131.pdf +d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0,https://pdfs.semanticscholar.org/d69d/f51cff3d6b9b0625acdcbea27cd2bbf4b9c0.pdf +d69719b42ee53b666e56ed476629a883c59ddf66,https://pdfs.semanticscholar.org/d697/19b42ee53b666e56ed476629a883c59ddf66.pdf +d69271c7b77bc3a06882884c21aa1b609b3f76cc,https://arxiv.org/pdf/1708.05234.pdf +d666ce9d783a2d31550a8aa47da45128a67304a7,https://pdfs.semanticscholar.org/c508/532efb1c02dcae0224e9e6894d232a1f4f6b.pdf +bc6de183cd8b2baeebafeefcf40be88468b04b74,https://pdfs.semanticscholar.org/e057/e713301e089887295543226b79b534fdd145.pdf +bcf19b964e7d1134d00332cf1acf1ee6184aff00,https://pdfs.semanticscholar.org/bcf1/9b964e7d1134d00332cf1acf1ee6184aff00.pdf +bc9003ad368cb79d8a8ac2ad025718da5ea36bc4,https://pdfs.semanticscholar.org/bc90/03ad368cb79d8a8ac2ad025718da5ea36bc4.pdf +bcc346f4a287d96d124e1163e4447bfc47073cd8,https://arxiv.org/pdf/1707.05395.pdf +bc27434e376db89fe0e6ef2d2fabc100d2575ec6,https://arxiv.org/pdf/1607.08438.pdf +bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17,https://pdfs.semanticscholar.org/bc8e/11b8cdf0cfbedde798a53a0318e8d6f67e17.pdf +bc811a66855aae130ca78cd0016fd820db1603ec,https://pdfs.semanticscholar.org/62ca/3c9b00bf3d9ff319afdee04dfa27ae2e0bdb.pdf +bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab,https://arxiv.org/pdf/1707.04993.pdf +ae8d5be3caea59a21221f02ef04d49a86cb80191,https://arxiv.org/pdf/1708.06834.pdf +ae2cf545565c157813798910401e1da5dc8a6199,https://pdfs.semanticscholar.org/eef4/c6bb430c4792522866fdad40a0ed8e76809f.pdf +aeaf5dbb3608922246c7cd8a619541ea9e4a7028,https://pdfs.semanticscholar.org/aeaf/5dbb3608922246c7cd8a619541ea9e4a7028.pdf +ae836e2be4bb784760e43de88a68c97f4f9e44a1,https://pdfs.semanticscholar.org/ae83/6e2be4bb784760e43de88a68c97f4f9e44a1.pdf +aeff403079022683b233decda556a6aee3225065,https://arxiv.org/pdf/1701.01876.pdf +ae2c71080b0e17dee4e5a019d87585f2987f0508,https://pdfs.semanticscholar.org/ae2c/71080b0e17dee4e5a019d87585f2987f0508.pdf +ae5f32e489c4d52e7311b66060c7381d932f4193,https://arxiv.org/pdf/1711.09125.pdf +d86fabd4498c8feaed80ec342d254fb877fb92f5,https://pdfs.semanticscholar.org/d86f/abd4498c8feaed80ec342d254fb877fb92f5.pdf +d80a3d1f3a438e02a6685e66ee908446766fefa9,https://arxiv.org/pdf/1708.09687.pdf +d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d,https://arxiv.org/pdf/1509.00244.pdf +ab58a7db32683aea9281c188c756ddf969b4cdbd,https://arxiv.org/pdf/1804.06291.pdf +ab734bac3994b00bf97ce22b9abc881ee8c12918,https://pdfs.semanticscholar.org/ab73/4bac3994b00bf97ce22b9abc881ee8c12918.pdf +ab989225a55a2ddcd3b60a99672e78e4373c0df1,https://arxiv.org/pdf/1706.05599.pdf +ab1719f573a6c121d7d7da5053fe5f12de0182e7,https://pdfs.semanticscholar.org/ab17/19f573a6c121d7d7da5053fe5f12de0182e7.pdf +ab2b09b65fdc91a711e424524e666fc75aae7a51,https://pdfs.semanticscholar.org/ab2b/09b65fdc91a711e424524e666fc75aae7a51.pdf +abba1bf1348a6f1b70a26aac237338ee66764458,https://arxiv.org/pdf/1808.03457.pdf +abdd17e411a7bfe043f280abd4e560a04ab6e992,https://arxiv.org/pdf/1803.00839.pdf +e5e5f31b81ed6526c26d277056b6ab4909a56c6c,https://arxiv.org/pdf/1809.06131.pdf +e506cdb250eba5e70c5147eb477fbd069714765b,https://pdfs.semanticscholar.org/e506/cdb250eba5e70c5147eb477fbd069714765b.pdf +e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,https://pdfs.semanticscholar.org/e572/c42d8ef2e0fadedbaae77c8dfe05c4933fbf.pdf +e5823a9d3e5e33e119576a34cb8aed497af20eea,https://arxiv.org/pdf/1809.05620.pdf +e5dfd17dbfc9647ccc7323a5d62f65721b318ba9,https://pdfs.semanticscholar.org/e5df/d17dbfc9647ccc7323a5d62f65721b318ba9.pdf +e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69,https://arxiv.org/pdf/1806.05226.pdf +e569f4bd41895028c4c009e5b46b935056188e91,https://pdfs.semanticscholar.org/e569/f4bd41895028c4c009e5b46b935056188e91.pdf +e5fbffd3449a2bfe0acb4ec339a19f5b88fff783,https://arxiv.org/pdf/1808.06882.pdf +e5d53a335515107452a30b330352cad216f88fc3,https://pdfs.semanticscholar.org/e5d5/3a335515107452a30b330352cad216f88fc3.pdf +e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,https://arxiv.org/pdf/1807.11936.pdf +e293a31260cf20996d12d14b8f29a9d4d99c4642,https://arxiv.org/pdf/1703.01560.pdf +e20e2db743e8db1ff61279f4fda32bf8cf381f8e,https://arxiv.org/pdf/1801.01486.pdf +f412d9d7bc7534e7daafa43f8f5eab811e7e4148,https://pdfs.semanticscholar.org/f412/d9d7bc7534e7daafa43f8f5eab811e7e4148.pdf +f442a2f2749f921849e22f37e0480ac04a3c3fec,https://pdfs.semanticscholar.org/f442/a2f2749f921849e22f37e0480ac04a3c3fec.pdf +f4f6fc473effb063b7a29aa221c65f64a791d7f4,https://pdfs.semanticscholar.org/48ec/4b2c3b6c6549fa7a988f8db135a41691f605.pdf +f4d30896c5f808a622824a2d740b3130be50258e,https://arxiv.org/pdf/1705.06148.pdf +f42dca4a4426e5873a981712102aa961be34539a,https://pdfs.semanticscholar.org/f42d/ca4a4426e5873a981712102aa961be34539a.pdf +f3ca2c43e8773b7062a8606286529c5bc9b3ce25,https://arxiv.org/pdf/1704.06327.pdf +f3a59d85b7458394e3c043d8277aa1ffe3cdac91,https://arxiv.org/pdf/1802.09900.pdf +f3df296de36b7c114451865778e211350d153727,https://arxiv.org/pdf/1703.06995.pdf +f3ea181507db292b762aa798da30bc307be95344,https://arxiv.org/pdf/1805.04855.pdf +f3fed71cc4fc49b02067b71c2df80e83084b2a82,https://arxiv.org/pdf/1804.06216.pdf +f3cf10c84c4665a0b28734f5233d423a65ef1f23,https://pdfs.semanticscholar.org/203d/7c52e2bd0da104516abbe34cd5aa5cfc8368.pdf +f3b7938de5f178e25a3cf477107c76286c0ad691,https://arxiv.org/pdf/1807.05511.pdf +eb100638ed73b82e1cce8475bb8e180cb22a09a2,https://arxiv.org/pdf/1704.06228.pdf +eb8519cec0d7a781923f68fdca0891713cb81163,https://arxiv.org/pdf/1703.08617.pdf +eb566490cd1aa9338831de8161c6659984e923fd,https://arxiv.org/pdf/1712.02310.pdf +eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6,https://pdfs.semanticscholar.org/eb4d/2ec77fae67141f6cf74b3ed773997c2c0cf6.pdf +ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9,https://arxiv.org/pdf/1411.4324.pdf +eb70c38a350d13ea6b54dc9ebae0b64171d813c9,https://pdfs.semanticscholar.org/a531/bf1b04b794b19e6a563afe077f78a82ecbd6.pdf +eb027969f9310e0ae941e2adee2d42cdf07d938c,https://arxiv.org/pdf/1710.08092.pdf +eb48a58b873295d719827e746d51b110f5716d6c,https://arxiv.org/pdf/1706.01820.pdf +c7c53d75f6e963b403057d8ba5952e4974a779ad,https://pdfs.semanticscholar.org/c7c5/3d75f6e963b403057d8ba5952e4974a779ad.pdf +c79cf7f61441195404472102114bcf079a72138a,https://pdfs.semanticscholar.org/9704/8d901389535b122f82a6a949bd8f596790f2.pdf +c73dd452c20460f40becb1fd8146239c88347d87,https://arxiv.org/pdf/1708.01846.pdf +c72e6992f44ce75a40f44be4365dc4f264735cfb,https://arxiv.org/pdf/1807.11122.pdf +c7de0c85432ad17a284b5b97c4f36c23f506d9d1,https://pdfs.semanticscholar.org/a908/f786591a846f9c48e1ee5a134603efd32f9c.pdf +c71217b2b111a51a31cf1107c71d250348d1ff68,https://arxiv.org/pdf/1703.09912.pdf +c76f64e87f88475069f7707616ad9df1719a6099,https://arxiv.org/pdf/1803.08094.pdf +c7f0c0636d27a1d45b8fcef37e545b902195d937,https://arxiv.org/pdf/1709.00966.pdf +c7c8d150ece08b12e3abdb6224000c07a6ce7d47,https://arxiv.org/pdf/1611.05271.pdf +c75e6ce54caf17b2780b4b53f8d29086b391e839,https://arxiv.org/pdf/1802.00542.pdf +c038beaa228aeec174e5bd52460f0de75e9cccbe,https://arxiv.org/pdf/1705.02953.pdf +c05a7c72e679745deab9c9d7d481f7b5b9b36bdd,https://pdfs.semanticscholar.org/c05a/7c72e679745deab9c9d7d481f7b5b9b36bdd.pdf +c0c8d720658374cc1ffd6116554a615e846c74b5,https://arxiv.org/pdf/1706.04508.pdf +c00df53bd46f78ae925c5768d46080159d4ef87d,https://arxiv.org/pdf/1707.08105.pdf +ee815f60dc4a090fa9fcfba0135f4707af21420d,https://arxiv.org/pdf/1702.02925.pdf +eed7920682789a9afd0de4efd726cd9a706940c8,https://pdfs.semanticscholar.org/3115/90680f1ae14864df886af20699d2eca7099f.pdf +ee463f1f72a7e007bae274d2d42cd2e5d817e751,https://pdfs.semanticscholar.org/ee46/3f1f72a7e007bae274d2d42cd2e5d817e751.pdf +eee06d68497be8bf3a8aba4fde42a13aa090b301,https://arxiv.org/pdf/1806.11191.pdf +eee2d2ac461f46734c8e674ae14ed87bbc8d45c6,https://arxiv.org/pdf/1704.02112.pdf +eed93d2e16b55142b3260d268c9e72099c53d5bc,https://arxiv.org/pdf/1801.01262.pdf +eedfb384a5e42511013b33104f4cd3149432bd9e,https://pdfs.semanticscholar.org/eedf/b384a5e42511013b33104f4cd3149432bd9e.pdf +c97a5f2241cc6cd99ef0c4527ea507a50841f60b,https://arxiv.org/pdf/1807.10510.pdf +c9bbd7828437e70cc3e6863b278aa56a7d545150,https://arxiv.org/pdf/1708.02044.pdf +c98983592777952d1751103b4d397d3ace00852d,https://pdfs.semanticscholar.org/c989/83592777952d1751103b4d397d3ace00852d.pdf +c9367ed83156d4d682cefc59301b67f5460013e0,https://arxiv.org/pdf/1802.01822.pdf +fc0f5859a111fb17e6dcf6ba63dd7b751721ca61,https://pdfs.semanticscholar.org/fc0f/5859a111fb17e6dcf6ba63dd7b751721ca61.pdf +fcf91995dc4d9b0cee84bda5b5b0ce5b757740ac,https://pdfs.semanticscholar.org/fcf9/1995dc4d9b0cee84bda5b5b0ce5b757740ac.pdf +fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf +fdfd57d4721174eba288e501c0c120ad076cdca8,https://arxiv.org/pdf/1704.07129.pdf +fd33df02f970055d74fbe69b05d1a7a1b9b2219b,https://arxiv.org/pdf/1710.06236.pdf +fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3,https://arxiv.org/pdf/1712.04109.pdf +fd15e397629e0241642329fc8ee0b8cd6c6ac807,https://arxiv.org/pdf/1806.01547.pdf +fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,https://arxiv.org/pdf/1809.01990.pdf +fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,https://arxiv.org/pdf/1606.02909.pdf +fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81,https://arxiv.org/pdf/1807.11332.pdf +fd10b0c771a2620c0db294cfb82b80d65f73900d,https://arxiv.org/pdf/1809.02860.pdf +fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e,https://pdfs.semanticscholar.org/fdba/cf2ff0fc21e021c830cdcff7d347f2fddd8e.pdf +fd892e912149e3f5ddd82499e16f9ea0f0063fa3,https://pdfs.semanticscholar.org/fd89/2e912149e3f5ddd82499e16f9ea0f0063fa3.pdf +fdf8e293a7618f560e76bd83e3c40a0788104547,https://arxiv.org/pdf/1704.04023.pdf +fdaf65b314faee97220162980e76dbc8f32db9d6,https://pdfs.semanticscholar.org/fdaf/65b314faee97220162980e76dbc8f32db9d6.pdf +f22d6d59e413ee255e5e0f2104f1e03be1a6722e,https://arxiv.org/pdf/1708.03958.pdf +f2a7f9bd040aa8ea87672d38606a84c31163e171,https://arxiv.org/pdf/1608.07876.pdf +f257300b2b4141aab73f93c146bf94846aef5fa1,https://arxiv.org/pdf/1708.05465.pdf +f20e0eefd007bc310d2a753ba526d33a8aba812c,https://pdfs.semanticscholar.org/116e/c3a1a8225362a3e3e445df45036fae7cadc6.pdf +f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,https://pdfs.semanticscholar.org/f231/046d5f5d87e2ca5fae88f41e8d74964e8f4f.pdf +f28b7d62208fdaaa658716403106a2b0b527e763,https://arxiv.org/pdf/1803.08457.pdf +f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e,https://pdfs.semanticscholar.org/f58d/584c4ac93b4e7620ef6e5a8f20c6f6da295e.pdf +f5eb0cf9c57716618fab8e24e841f9536057a28a,https://arxiv.org/pdf/1803.02988.pdf +f571fe3f753765cf695b75b1bd8bed37524a52d2,https://pdfs.semanticscholar.org/8203/70a36ec56f8987fbec5ca2769f996d03d79b.pdf +f5fae7810a33ed67852ad6a3e0144cb278b24b41,https://pdfs.semanticscholar.org/f5fa/e7810a33ed67852ad6a3e0144cb278b24b41.pdf +f5770dd225501ff3764f9023f19a76fad28127d4,https://pdfs.semanticscholar.org/f577/0dd225501ff3764f9023f19a76fad28127d4.pdf +f5eb411217f729ad7ae84bfd4aeb3dedb850206a,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf +e393a038d520a073b9835df7a3ff104ad610c552,https://pdfs.semanticscholar.org/b6aa/94b81b2165e492cc2900e05dd997619bfe7a.pdf +e3b324101157daede3b4d16bdc9c2388e849c7d4,https://pdfs.semanticscholar.org/e3b3/24101157daede3b4d16bdc9c2388e849c7d4.pdf +e3c011d08d04c934197b2a4804c90be55e21d572,https://arxiv.org/pdf/1709.02940.pdf +e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,https://pdfs.semanticscholar.org/e39a/66a6d1c5e753f8e6c33cd5d335f9bc9c07fa.pdf +e3c8e49ffa7beceffca3f7f276c27ae6d29b35db,https://arxiv.org/pdf/1604.02182.pdf +e38371b69be4f341baa95bc854584e99b67c6d3a,https://arxiv.org/pdf/1803.07201.pdf +e3a6e5a573619a97bd6662b652ea7d088ec0b352,https://arxiv.org/pdf/1804.00112.pdf +cfeb26245b57dd10de8f187506d4ed5ce1e2b7dd,https://arxiv.org/pdf/1805.11195.pdf +cfffae38fe34e29d47e6deccfd259788176dc213,https://pdfs.semanticscholar.org/cfff/ae38fe34e29d47e6deccfd259788176dc213.pdf +cfd4004054399f3a5f536df71f9b9987f060f434,https://arxiv.org/pdf/1710.03224.pdf +cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce,https://arxiv.org/pdf/1807.08512.pdf +cfa92e17809e8d20ebc73b4e531a1b106d02b38c,https://pdfs.semanticscholar.org/cfa9/2e17809e8d20ebc73b4e531a1b106d02b38c.pdf +cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,https://pdfs.semanticscholar.org/e36f/a8b870fd155f9df898bcc6613f6554eab519.pdf +cfdc632adcb799dba14af6a8339ca761725abf0a,https://arxiv.org/pdf/1804.01575.pdf +cfa931e6728a825caada65624ea22b840077f023,https://arxiv.org/pdf/1806.06298.pdf +cfc30ce53bfc204b8764ebb764a029a8d0ad01f4,https://arxiv.org/pdf/1710.05179.pdf +cff911786b5ac884bb71788c5bc6acf6bf569eff,https://arxiv.org/pdf/1805.01290.pdf +cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,https://pdfs.semanticscholar.org/cfc4/aa456d9da1a6fabd7c6ca199332f03e35b29.pdf +cf805d478aeb53520c0ab4fcdc9307d093c21e52,https://pdfs.semanticscholar.org/cf80/5d478aeb53520c0ab4fcdc9307d093c21e52.pdf +cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,https://pdfs.semanticscholar.org/cfdc/4d0f8e1b4b9ced35317d12b4229f2e3311ab.pdf +cad24ba99c7b6834faf6f5be820dd65f1a755b29,https://arxiv.org/pdf/1807.08254.pdf +ca37eda56b9ee53610c66951ee7ca66a35d0a846,https://pdfs.semanticscholar.org/ca37/eda56b9ee53610c66951ee7ca66a35d0a846.pdf +e43045a061421bd79713020bc36d2cf4653c044d,https://arxiv.org/pdf/1703.03492.pdf +e4d8ba577cabcb67b4e9e1260573aea708574886,https://pdfs.semanticscholar.org/e4d8/ba577cabcb67b4e9e1260573aea708574886.pdf +e4abc40f79f86dbc06f5af1df314c67681dedc51,https://arxiv.org/pdf/1707.06786.pdf +fe464b2b54154d231671750053861f5fd14454f5,https://pdfs.semanticscholar.org/fe46/4b2b54154d231671750053861f5fd14454f5.pdf +fe7c0bafbd9a28087e0169259816fca46db1a837,https://arxiv.org/pdf/1804.00326.pdf +fe48f0e43dbdeeaf4a03b3837e27f6705783e576,https://arxiv.org/pdf/1607.05477.pdf +fea83550a21f4b41057b031ac338170bacda8805,https://arxiv.org/pdf/1605.07270.pdf +fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139,https://pdfs.semanticscholar.org/fe0c/51fd41cb2d5afa1bc1900bbbadb38a0de139.pdf +c86e6ed734d3aa967deae00df003557b6e937d3d,https://arxiv.org/pdf/1807.03923.pdf +c87f7ee391d6000aef2eadb49f03fc237f4d1170,https://arxiv.org/pdf/1804.03547.pdf +c866a2afc871910e3282fd9498dce4ab20f6a332,https://arxiv.org/pdf/1804.09691.pdf +c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,https://arxiv.org/pdf/1609.02825.pdf +c84233f854bbed17c22ba0df6048cbb1dd4d3248,https://pdfs.semanticscholar.org/c842/33f854bbed17c22ba0df6048cbb1dd4d3248.pdf +c829be73584966e3162f7ccae72d9284a2ebf358,https://pdfs.semanticscholar.org/c829/be73584966e3162f7ccae72d9284a2ebf358.pdf +c87d5036d3a374c66ec4f5870df47df7176ce8b9,https://pdfs.semanticscholar.org/c87d/5036d3a374c66ec4f5870df47df7176ce8b9.pdf +c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f,https://arxiv.org/pdf/1705.01842.pdf +c88c21eb9a8e08b66c981db35f6556f4974d27a8,https://pdfs.semanticscholar.org/c88c/21eb9a8e08b66c981db35f6556f4974d27a8.pdf +fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1,https://arxiv.org/pdf/1602.01168.pdf +fb87045600da73b07f0757f345a937b1c8097463,https://pdfs.semanticscholar.org/5c54/2fef80a35a4f930e5c82040b52c58e96ce87.pdf +fb85867c989b9ee6b7899134136f81d6372526a9,https://arxiv.org/pdf/1808.01424.pdf +fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a,https://pdfs.semanticscholar.org/c21b/ccf1ab4bb090fd5fc1109421a1a3979e7106.pdf +fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59,https://pdfs.semanticscholar.org/fbb2/f81fc00ee0f257d4aa79bbef8cad5000ac59.pdf +fb9ad920809669c1b1455cc26dbd900d8e719e61,https://pdfs.semanticscholar.org/fb9a/d920809669c1b1455cc26dbd900d8e719e61.pdf +ed0cf5f577f5030ac68ab62fee1cf065349484cc,https://pdfs.semanticscholar.org/ed0c/f5f577f5030ac68ab62fee1cf065349484cc.pdf +edde81b2bdd61bd757b71a7b3839b6fef81f4be4,https://arxiv.org/pdf/1507.06332.pdf +edf98a925bb24e39a6e6094b0db839e780a77b08,https://arxiv.org/pdf/1807.09930.pdf +ed9d11e995baeec17c5d2847ec1a8d5449254525,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf +ed07856461da6c7afa4f1782b5b607b45eebe9f6,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf +ed1886e233c8ecef7f414811a61a83e44c8bbf50,https://arxiv.org/pdf/1706.01789.pdf +ed388878151a3b841f95a62c42382e634d4ab82e,https://arxiv.org/pdf/1805.07550.pdf +edff76149ec44f6849d73f019ef9bded534a38c2,https://arxiv.org/pdf/1704.02203.pdf +ed96f2eb1771f384df2349879970065a87975ca7,https://arxiv.org/pdf/1805.12302.pdf +c146aa6d56233ce700032f1cb179700778557601,https://arxiv.org/pdf/1708.07199.pdf +c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf +c11eb653746afa8148dc9153780a4584ea529d28,https://arxiv.org/pdf/1809.07764.pdf +c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee,https://arxiv.org/pdf/1805.05612.pdf +c1298120e9ab0d3764512cbd38b47cd3ff69327b,https://pdfs.semanticscholar.org/c129/8120e9ab0d3764512cbd38b47cd3ff69327b.pdf +c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,https://pdfs.semanticscholar.org/7f02/61a759807f2ff57102a4e93318916232473f.pdf +c68ec931585847b37cde9f910f40b2091a662e83,https://pdfs.semanticscholar.org/c68e/c931585847b37cde9f910f40b2091a662e83.pdf +c6f3399edb73cfba1248aec964630c8d54a9c534,https://arxiv.org/pdf/1809.03336.pdf +c678920facffd35853c9d185904f4aebcd2d8b49,https://arxiv.org/pdf/1803.11556.pdf +c6241e6fc94192df2380d178c4c96cf071e7a3ac,https://arxiv.org/pdf/1505.04868.pdf +c62c07de196e95eaaf614fb150a4fa4ce49588b4,https://pdfs.semanticscholar.org/c62c/07de196e95eaaf614fb150a4fa4ce49588b4.pdf +ec90d333588421764dff55658a73bbd3ea3016d2,https://pdfs.semanticscholar.org/ec90/d333588421764dff55658a73bbd3ea3016d2.pdf +ec8ec2dfd73cf3667f33595fef84c95c42125945,https://arxiv.org/pdf/1707.06286.pdf +ec1e03ec72186224b93b2611ff873656ed4d2f74,https://pdfs.semanticscholar.org/ec1e/03ec72186224b93b2611ff873656ed4d2f74.pdf +4e30107ee6a2e087f14a7725e7fc5535ec2f5a5f,https://pdfs.semanticscholar.org/4e30/107ee6a2e087f14a7725e7fc5535ec2f5a5f.pdf +4e32fbb58154e878dd2fd4b06398f85636fd0cf4,https://arxiv.org/pdf/1805.02339.pdf +4e0636a1b92503469b44e2807f0bb35cc0d97652,https://pdfs.semanticscholar.org/4e06/36a1b92503469b44e2807f0bb35cc0d97652.pdf +4e27fec1703408d524d6b7ed805cdb6cba6ca132,https://pdfs.semanticscholar.org/7714/a5aa27ab5ad4d06a81fbb3e973d3b1002ac1.pdf +4e6c9be0b646d60390fe3f72ce5aeb0136222a10,https://arxiv.org/pdf/1604.04494.pdf +20b994a78cd1db6ba86ea5aab7211574df5940b3,https://arxiv.org/pdf/1805.08417.pdf +2004afb2276a169cdb1f33b2610c5218a1e47332,https://pdfs.semanticscholar.org/2004/afb2276a169cdb1f33b2610c5218a1e47332.pdf +20ade100a320cc761c23971d2734388bfe79f7c5,https://pdfs.semanticscholar.org/20ad/e100a320cc761c23971d2734388bfe79f7c5.pdf +206e24f7d4b3943b35b069ae2d028143fcbd0704,https://arxiv.org/pdf/1803.11405.pdf +2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b,https://arxiv.org/pdf/1408.2700.pdf +206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8,https://arxiv.org/pdf/1706.02932.pdf +202dc3c6fda654aeb39aee3e26a89340fb06802a,https://arxiv.org/pdf/1807.02800.pdf +20111924fbf616a13d37823cd8712a9c6b458cd6,https://pdfs.semanticscholar.org/2011/1924fbf616a13d37823cd8712a9c6b458cd6.pdf +20c02e98602f6adf1cebaba075d45cef50de089f,https://arxiv.org/pdf/1808.07507.pdf +18d51a366ce2b2068e061721f43cb798177b4bb7,https://pdfs.semanticscholar.org/18d5/1a366ce2b2068e061721f43cb798177b4bb7.pdf +185263189a30986e31566394680d6d16b0089772,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf +18b9dc55e5221e704f90eea85a81b41dab51f7da,https://arxiv.org/pdf/1803.07179.pdf +18941b52527e6f15abfdf5b86a0086935706e83b,https://arxiv.org/pdf/1808.09211.pdf +27a00f2490284bc0705349352d36e9749dde19ab,https://arxiv.org/pdf/1806.05622.pdf +275b5091c50509cc8861e792e084ce07aa906549,https://pdfs.semanticscholar.org/275b/5091c50509cc8861e792e084ce07aa906549.pdf +270733d986a1eb72efda847b4b55bc6ba9686df4,https://pdfs.semanticscholar.org/2707/33d986a1eb72efda847b4b55bc6ba9686df4.pdf +27da432cf2b9129dce256e5bf7f2f18953eef5a5,https://arxiv.org/pdf/1805.11519.pdf +2717b044ae9933f9ab87f16d6c611352f66b2033,https://arxiv.org/pdf/1804.06964.pdf +2770b095613d4395045942dc60e6c560e882f887,https://arxiv.org/pdf/1808.06210.pdf +4b61d8490bf034a2ee8aa26601d13c83ad7f843a,https://arxiv.org/pdf/1807.06708.pdf +4b48e912a17c79ac95d6a60afed8238c9ab9e553,https://arxiv.org/pdf/1805.06741.pdf +4bbe460ab1b279a55e3c9d9f488ff79884d01608,https://arxiv.org/pdf/1712.00684.pdf +11691f1e7c9dbcbd6dfd256ba7ac710581552baa,https://arxiv.org/pdf/1804.04527.pdf +112780a7fe259dc7aff2170d5beda50b2bfa7bda,https://arxiv.org/pdf/1805.00833.pdf +1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf +111d0b588f3abbbea85d50a28c0506f74161e091,https://pdfs.semanticscholar.org/111d/0b588f3abbbea85d50a28c0506f74161e091.pdf +7d2556d674ad119cf39df1f65aedbe7493970256,https://pdfs.semanticscholar.org/7f01/762f2daf27282197cb84751eb30550417d41.pdf +7df4f96138a4e23492ea96cf921794fc5287ba72,https://arxiv.org/pdf/1707.08705.pdf +7df268a3f4da7d747b792882dfb0cbdb7cc431bc,https://arxiv.org/pdf/1804.03675.pdf +2902f62457fdf7e8e8ee77a9155474107a2f423e,https://arxiv.org/pdf/1803.07973.pdf +2957715e96a18dbb5ed5c36b92050ec375214aa6,https://arxiv.org/pdf/1712.00193.pdf +29c340c83b3bbef9c43b0c50b4d571d5ed037cbd,https://pdfs.semanticscholar.org/29c3/40c83b3bbef9c43b0c50b4d571d5ed037cbd.pdf +7c47da191f935811f269f9ba3c59556c48282e80,https://arxiv.org/pdf/1503.07697.pdf +7c1cfab6b60466c13f07fe028e5085a949ec8b30,https://arxiv.org/pdf/1610.00291.pdf +7c17280c9193da3e347416226b8713b99e7825b8,https://arxiv.org/pdf/1805.08162.pdf +7cffcb4f24343a924a8317d560202ba9ed26cd0b,https://arxiv.org/pdf/1708.06997.pdf +7c825562b3ff4683ed049a372cb6807abb09af2a,https://pdfs.semanticscholar.org/7c82/5562b3ff4683ed049a372cb6807abb09af2a.pdf +7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d,https://pdfs.semanticscholar.org/7ca7/255c2e0c86e4adddbbff2ce74f36b1dc522d.pdf +7c9a65f18f7feb473e993077d087d4806578214e,https://pdfs.semanticscholar.org/7c9a/65f18f7feb473e993077d087d4806578214e.pdf +7cf579088e0456d04b531da385002825ca6314e2,https://arxiv.org/pdf/1708.04299.pdf +7c80d91db5977649487388588c0c823080c9f4b4,https://arxiv.org/pdf/1805.02283.pdf +7c30ea47f5ae1c5abd6981d409740544ed16ed16,https://pdfs.semanticscholar.org/7c30/ea47f5ae1c5abd6981d409740544ed16ed16.pdf +162403e189d1b8463952fa4f18a291241275c354,https://arxiv.org/pdf/1801.10304.pdf +16fdd6d842475e6fbe58fc809beabbed95f0642e,https://arxiv.org/pdf/1505.00315.pdf +16de1324459fe8fdcdca80bba04c3c30bb789bdf,https://arxiv.org/pdf/1712.02765.pdf +16b9d258547f1eccdb32111c9f45e2e4bbee79af,https://arxiv.org/pdf/1704.06369.pdf +164b0e2a03a5a402f66c497e6c327edf20f8827b,https://pdfs.semanticscholar.org/164b/0e2a03a5a402f66c497e6c327edf20f8827b.pdf +166186e551b75c9b5adcc9218f0727b73f5de899,https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf +16d6737b50f969247339a6860da2109a8664198a,https://pdfs.semanticscholar.org/16d6/737b50f969247339a6860da2109a8664198a.pdf +4209783b0cab1f22341f0600eed4512155b1dee6,https://arxiv.org/pdf/1806.00365.pdf +42eda7c20db9dc0f42f72bb997dd191ed8499b10,https://arxiv.org/pdf/1611.09309.pdf +42ea8a96eea023361721f0ea34264d3d0fc49ebd,https://arxiv.org/pdf/1608.04695.pdf +89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199,https://pdfs.semanticscholar.org/89c7/3b1e7c9b5e126a26ed5b7caccd7cd30ab199.pdf +893239f17dc2d17183410d8a98b0440d98fa2679,https://pdfs.semanticscholar.org/d5b1/6481d34838cc92593f5f311badbf7f18ed5a.pdf +892c911ca68f5b4bad59cde7eeb6c738ec6c4586,https://pdfs.semanticscholar.org/892c/911ca68f5b4bad59cde7eeb6c738ec6c4586.pdf +8986585975c0090e9ad97bec2ba6c4b437419dae,https://arxiv.org/pdf/1808.04285.pdf +89d3a57f663976a9ac5e9cdad01267c1fc1a7e06,https://arxiv.org/pdf/1708.09642.pdf +8981be3a69cd522b4e57e9914bf19f034d4b530c,https://pdfs.semanticscholar.org/8981/be3a69cd522b4e57e9914bf19f034d4b530c.pdf +891b10c4b3b92ca30c9b93170ec9abd71f6099c4,https://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf +451b6409565a5ad18ea49b063561a2645fa4281b,https://arxiv.org/pdf/1706.00699.pdf +4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec,https://arxiv.org/pdf/1803.11366.pdf +45e7ddd5248977ba8ec61be111db912a4387d62f,https://arxiv.org/pdf/1711.00253.pdf +4560491820e0ee49736aea9b81d57c3939a69e12,https://arxiv.org/pdf/1712.04008.pdf +45e459462a80af03e1bb51a178648c10c4250925,https://arxiv.org/pdf/1606.08998.pdf +45a6333fc701d14aab19f9e2efd59fe7b0e89fec,https://pdfs.semanticscholar.org/45a6/333fc701d14aab19f9e2efd59fe7b0e89fec.pdf +450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,https://arxiv.org/pdf/1805.00611.pdf +1fe1bd6b760e3059fff73d53a57ce3a6079adea1,https://pdfs.semanticscholar.org/1fe1/bd6b760e3059fff73d53a57ce3a6079adea1.pdf +1ffe20eb32dbc4fa85ac7844178937bba97f4bf0,https://arxiv.org/pdf/1706.05067.pdf +1fdeba9c4064b449231eac95e610f3288801fd3e,https://arxiv.org/pdf/1710.00925.pdf +1fff309330f85146134e49e0022ac61ac60506a9,https://arxiv.org/pdf/1701.07569.pdf +1feeab271621128fe864e4c64bab9b2e2d0ed1f1,https://pdfs.semanticscholar.org/e230/e2e60b1d20a5334f59ca669bbd35f9391d2e.pdf +73b90573d272887a6d835ace89bfaf717747c59b,https://pdfs.semanticscholar.org/73b9/0573d272887a6d835ace89bfaf717747c59b.pdf +7323b594d3a8508f809e276aa2d224c4e7ec5a80,https://arxiv.org/pdf/1808.05508.pdf +73ed64803d6f2c49f01cffef8e6be8fc9b5273b8,https://arxiv.org/pdf/1508.06073.pdf +7306d42ca158d40436cc5167e651d7ebfa6b89c1,https://arxiv.org/pdf/1511.04458.pdf +734cdda4a4de2a635404e4c6b61f1b2edb3f501d,https://pdfs.semanticscholar.org/734c/dda4a4de2a635404e4c6b61f1b2edb3f501d.pdf +73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c,https://arxiv.org/pdf/1705.02193.pdf +872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,https://arxiv.org/pdf/1703.09507.pdf +87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf +8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f,https://arxiv.org/pdf/1701.03246.pdf +878169be6e2c87df2d8a1266e9e37de63b524ae7,https://pdfs.semanticscholar.org/8781/69be6e2c87df2d8a1266e9e37de63b524ae7.pdf +878301453e3d5cb1a1f7828002ea00f59cbeab06,https://arxiv.org/pdf/1701.08393.pdf +87e592ee1a7e2d34e6b115da08700a1ae02e9355,https://arxiv.org/pdf/1807.10002.pdf +8006219efb6ab76754616b0e8b7778dcfb46603d,https://pdfs.semanticscholar.org/7f79/e78e52883994a8a843af48922980ae730e65.pdf +803c92a3f0815dbf97e30c4ee9450fd005586e1a,https://arxiv.org/pdf/1802.09308.pdf +80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923,https://pdfs.semanticscholar.org/4569/f8e017af1e052b075d8a267116a8b795bd84.pdf +80097a879fceff2a9a955bf7613b0d3bfa68dc23,https://arxiv.org/pdf/1701.03555.pdf +74ce7e5e677a4925489897665c152a352c49d0a2,https://arxiv.org/pdf/1805.03356.pdf +74dbe6e0486e417a108923295c80551b6d759dbe,https://pdfs.semanticscholar.org/ab95/1e780a7e8e28866b44c6a1a591ec470904b4.pdf +747c25bff37b96def96dc039cc13f8a7f42dbbc7,https://arxiv.org/pdf/1503.01800.pdf +744fa8062d0ae1a11b79592f0cd3fef133807a03,https://pdfs.semanticscholar.org/b5fd/440edd27702c8dbfa38fac0bf23deacf33cb.pdf +749d605dd12a4af58de1fae6f5ef5e65eb06540e,https://arxiv.org/pdf/1704.07489.pdf +74c19438c78a136677a7cb9004c53684a4ae56ff,https://pdfs.semanticscholar.org/74c1/9438c78a136677a7cb9004c53684a4ae56ff.pdf +1a849b694f2d68c3536ed849ed78c82e979d64d5,https://pdfs.semanticscholar.org/318c/a222a7a4dfc63807c6b6c4285cc63c8610ba.pdf +281486d172cf0c78d348ce7d977a82ff763efccd,https://arxiv.org/pdf/1708.03911.pdf +288964068cd87d97a98b8bc927d6e0d2349458a2,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf +28d4e027c7e90b51b7d8908fce68128d1964668a,https://arxiv.org/pdf/1705.00393.pdf +2866cbeb25551257683cf28f33d829932be651fe,https://arxiv.org/pdf/1809.04621.pdf +178a82e3a0541fa75c6a11350be5bded133a59fd,https://pdfs.semanticscholar.org/178a/82e3a0541fa75c6a11350be5bded133a59fd.pdf +17479e015a2dcf15d40190e06419a135b66da4e0,https://arxiv.org/pdf/1610.08119.pdf +17a995680482183f3463d2e01dd4c113ebb31608,https://arxiv.org/pdf/1802.06459.pdf +17c0d99171efc957b88c31a465c59485ab033234,https://arxiv.org/pdf/1807.11458.pdf +17a8d1b1b4c23a630b051f35e47663fc04dcf043,https://arxiv.org/pdf/1612.02372.pdf +173657da03e3249f4e47457d360ab83b3cefbe63,https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf +7bbaa09c9e318da4370a83b126bcdb214e7f8428,https://pdfs.semanticscholar.org/7bba/a09c9e318da4370a83b126bcdb214e7f8428.pdf +7b0f1fc93fb24630eb598330e13f7b839fb46cce,https://arxiv.org/pdf/1805.04771.pdf +8fe38962c24300129391f6d7ac24d7783e0fddd0,https://arxiv.org/pdf/1801.01967.pdf +8f6d05b8f9860c33c7b1a5d704694ed628db66c7,https://pdfs.semanticscholar.org/f1db/7f2e05e9c955cd59ac3d9040ab9b406c0b66.pdf +8f772d9ce324b2ef5857d6e0b2a420bc93961196,https://arxiv.org/pdf/1805.01760.pdf +8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a,https://pdfs.semanticscholar.org/8fda/2f6b85c7e34d3e23927e501a4b4f7fc15b2a.pdf +8fed5ea3b69ea441a8b02f61473eafee25fb2374,https://pdfs.semanticscholar.org/8fed/5ea3b69ea441a8b02f61473eafee25fb2374.pdf +8f3da45ff0c3e1777c3a7830f79c10f5896bcc21,https://pdfs.semanticscholar.org/8f3d/a45ff0c3e1777c3a7830f79c10f5896bcc21.pdf +8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf +8f9c37f351a91ed416baa8b6cdb4022b231b9085,https://pdfs.semanticscholar.org/8f9c/37f351a91ed416baa8b6cdb4022b231b9085.pdf +8acdc4be8274e5d189fb67b841c25debf5223840,https://pdfs.semanticscholar.org/8acd/c4be8274e5d189fb67b841c25debf5223840.pdf +8a8861ad6caedc3993e31d46e7de6c251a8cda22,https://arxiv.org/pdf/1706.01869.pdf +8a866bc0d925dfd8bb10769b8b87d7d0ff01774d,https://pdfs.semanticscholar.org/34b7/2d4fb60b36bbf34ff3b1ce3045ba303ab643.pdf +8a0159919ee4e1a9f4cbfb652a1be212bf0554fd,https://pdfs.semanticscholar.org/8a01/59919ee4e1a9f4cbfb652a1be212bf0554fd.pdf +7e600faee0ba11467d3f7aed57258b0db0448a72,https://pdfs.semanticscholar.org/0f09/4a0cef9f81da0e4915e6ed45f73aef6d6976.pdf +7ed3b79248d92b255450c7becd32b9e5c834a31e,https://pdfs.semanticscholar.org/7ed3/b79248d92b255450c7becd32b9e5c834a31e.pdf +7eaa97be59019f0d36aa7dac27407b004cad5e93,https://arxiv.org/pdf/1609.04468.pdf +7eb895e7de883d113b75eda54389460c61d63f67,https://arxiv.org/pdf/1709.02993.pdf +7e467e686f9468b826133275484e0a1ec0f5bde6,https://arxiv.org/pdf/1407.4764.pdf +7ef0cc4f3f7566f96f168123bac1e07053a939b2,https://pdfs.semanticscholar.org/e735/b8212d8a81909753291d5d06789a917014f8.pdf +7e2cfbfd43045fbd6aabd9a45090a5716fc4e179,https://arxiv.org/pdf/1808.00435.pdf +7ebb153704706e457ab57b432793d2b6e5d12592,https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf +7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922,https://pdfs.semanticscholar.org/7ec7/163ec1bc237c4c2f2841c386f2dbfd0cc922.pdf +7ef44b7c2b5533d00001ae81f9293bdb592f1146,https://pdfs.semanticscholar.org/7ef4/4b7c2b5533d00001ae81f9293bdb592f1146.pdf +10af69f11301679b6fbb23855bf10f6af1f3d2e6,https://arxiv.org/pdf/1411.6660.pdf +101569eeef2cecc576578bd6500f1c2dcc0274e2,https://arxiv.org/pdf/1805.12317.pdf +101d4cfbd6f8a7a10bd33505e2b183183f1d8770,https://pdfs.semanticscholar.org/d2d7/3d4a60ff9a4bb9544d05796637cb6a419e6a.pdf +106092fafb53e36077eba88f06feecd07b9e78e7,https://arxiv.org/pdf/1711.06330.pdf +103c8eaca2a2176babab2cc6e9b25d48870d6928,https://pdfs.semanticscholar.org/14ad/c9c2b776c751d254f9c924fcb7578563f8b8.pdf +1921795408345751791b44b379f51b7dd54ebfa2,https://arxiv.org/pdf/1807.07872.pdf +1910f5f7ac81d4fcc30284e88dee3537887acdf3,https://pdfs.semanticscholar.org/1910/f5f7ac81d4fcc30284e88dee3537887acdf3.pdf +197c64c36e8a9d624a05ee98b740d87f94b4040c,https://arxiv.org/pdf/1804.04421.pdf +4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc,https://arxiv.org/pdf/1807.09192.pdf +4ccf64fc1c9ca71d6aefdf912caf8fea048fb211,https://arxiv.org/pdf/1804.08572.pdf +4cdb6144d56098b819076a8572a664a2c2d27f72,https://arxiv.org/pdf/1806.01196.pdf +4c4e49033737467e28aa2bb32f6c21000deda2ef,https://arxiv.org/pdf/1709.01591.pdf +26a44feb7a64db7986473ca801c251aa88748477,https://arxiv.org/pdf/1804.02744.pdf +264f7ab36ff2e23a1514577a6404229d7fe1242b,https://pdfs.semanticscholar.org/264f/7ab36ff2e23a1514577a6404229d7fe1242b.pdf +266766818dbc5a4ca1161ae2bc14c9e269ddc490,https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf +26e570049aaedcfa420fc8c7b761bc70a195657c,https://pdfs.semanticscholar.org/26e5/70049aaedcfa420fc8c7b761bc70a195657c.pdf +2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44,https://pdfs.semanticscholar.org/2135/a3d9f4b8f5771fa5fc7c7794abf8c2840c44.pdf +212608e00fc1e8912ff845ee7a4a67f88ba938fc,https://arxiv.org/pdf/1704.02450.pdf +4db9e5f19366fe5d6a98ca43c1d113dac823a14d,https://pdfs.semanticscholar.org/a55d/ea7981ea0f90d1110005b5f5ca68a3175910.pdf +4db0968270f4e7b3fa73e41c50d13d48e20687be,https://arxiv.org/pdf/1705.06394.pdf +4d6ad0c7b3cf74adb0507dc886993e603c863e8c,https://pdfs.semanticscholar.org/4d6a/d0c7b3cf74adb0507dc886993e603c863e8c.pdf +4dca3d6341e1d991c902492952e726dc2a443d1c,https://arxiv.org/pdf/1805.09298.pdf +4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f,https://arxiv.org/pdf/1709.03196.pdf +75879ab7a77318bbe506cb9df309d99205862f6c,https://pdfs.semanticscholar.org/7587/9ab7a77318bbe506cb9df309d99205862f6c.pdf +7574f999d2325803f88c4915ba8f304cccc232d1,https://arxiv.org/pdf/1705.04396.pdf +75308067ddd3c53721430d7984295838c81d4106,https://pdfs.semanticscholar.org/7530/8067ddd3c53721430d7984295838c81d4106.pdf +759cf57215fcfdd8f59c97d14e7f3f62fafa2b30,https://arxiv.org/pdf/1706.09498.pdf +758d7e1be64cc668c59ef33ba8882c8597406e53,https://arxiv.org/pdf/1708.03985.pdf +754f7f3e9a44506b814bf9dc06e44fecde599878,https://arxiv.org/pdf/1808.02194.pdf +75249ebb85b74e8932496272f38af274fbcfd696,https://pdfs.semanticscholar.org/7524/9ebb85b74e8932496272f38af274fbcfd696.pdf +81a142c751bf0b23315fb6717bc467aa4fdfbc92,https://pdfs.semanticscholar.org/81a1/42c751bf0b23315fb6717bc467aa4fdfbc92.pdf +8199803f476c12c7f6c0124d55d156b5d91314b6,https://arxiv.org/pdf/1707.06642.pdf +81706277ed180a92d2eeb94ac0560f7dc591ee13,https://pdfs.semanticscholar.org/8170/6277ed180a92d2eeb94ac0560f7dc591ee13.pdf +8164ebc07f51c9e0db4902980b5ac3f5a8d8d48c,https://arxiv.org/pdf/1808.00171.pdf +814d091c973ff6033a83d4e44ab3b6a88cc1cb66,https://pdfs.semanticscholar.org/814d/091c973ff6033a83d4e44ab3b6a88cc1cb66.pdf +86f191616423efab8c0d352d986126a964983219,https://arxiv.org/pdf/1712.01393.pdf +869a2fbe42d3fdf40ed8b768edbf54137be7ac71,https://pdfs.semanticscholar.org/915d/4a7202060d77c46e99121c1c8ca875898a11.pdf +86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf +86d0127e1fd04c3d8ea78401c838af621647dc95,https://arxiv.org/pdf/1804.02810.pdf +86f3552b822f6af56cb5079cc31616b4035ccc4e,https://arxiv.org/pdf/1604.07547.pdf +860588fafcc80c823e66429fadd7e816721da42a,https://arxiv.org/pdf/1804.04412.pdf +86374bb8d309ad4dbde65c21c6fda6586ae4147a,https://arxiv.org/pdf/1712.09184.pdf +869583b700ecf33a9987447aee9444abfe23f343,https://arxiv.org/pdf/1702.01005.pdf +721b109970bf5f1862767a1bec3f9a79e815f79a,https://pdfs.semanticscholar.org/721b/109970bf5f1862767a1bec3f9a79e815f79a.pdf +72591a75469321074b072daff80477d8911c3af3,https://arxiv.org/pdf/1212.3913.pdf +7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,https://arxiv.org/pdf/1504.02351.pdf +72cbbdee4f6eeee8b7dd22cea6092c532271009f,https://arxiv.org/pdf/1709.05188.pdf +721d9c387ed382988fce6fa864446fed5fb23173,https://pdfs.semanticscholar.org/721d/9c387ed382988fce6fa864446fed5fb23173.pdf +725c3605c2d26d113637097358cd4c08c19ff9e1,https://arxiv.org/pdf/1807.00504.pdf +44b1399e8569a29eed0d22d88767b1891dbcf987,https://pdfs.semanticscholar.org/44b1/399e8569a29eed0d22d88767b1891dbcf987.pdf +446dc1413e1cfaee0030dc74a3cee49a47386355,https://arxiv.org/pdf/1710.04837.pdf +44d23df380af207f5ac5b41459c722c87283e1eb,https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf +2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c,https://arxiv.org/pdf/1708.05340.pdf +2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,https://arxiv.org/pdf/1805.01515.pdf +2ab034e1f54c37bfc8ae93f7320160748310dc73,https://arxiv.org/pdf/1805.07242.pdf +2ffcd35d9b8867a42be23978079f5f24be8d3e35,https://pdfs.semanticscholar.org/2ffc/d35d9b8867a42be23978079f5f24be8d3e35.pdf +2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,https://arxiv.org/pdf/1711.09618.pdf +2f88d3189723669f957d83ad542ac5c2341c37a5,https://pdfs.semanticscholar.org/2f88/d3189723669f957d83ad542ac5c2341c37a5.pdf +2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd,https://pdfs.semanticscholar.org/2f17/f6c460e02bd105dcbf14c9b73f34c5fb59bd.pdf +2fea258320c50f36408032c05c54ba455d575809,https://arxiv.org/pdf/1603.08199.pdf +438c4b320b9a94a939af21061b4502f4a86960e3,https://arxiv.org/pdf/1702.03041.pdf +43e268c118ac25f1f0e984b57bc54f0119ded520,https://arxiv.org/pdf/1410.4828.pdf +432d8cba544bf7b09b0455561fea098177a85db1,https://arxiv.org/pdf/1606.02185.pdf +43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a,https://pdfs.semanticscholar.org/4e42/182d40e0ea82bcab2289ae7c8b191dc834f1.pdf +88e090ffc1f75eed720b5afb167523eb2e316f7f,https://pdfs.semanticscholar.org/88e0/90ffc1f75eed720b5afb167523eb2e316f7f.pdf +88a898592b4c1dfd707f04f09ca58ec769a257de,https://arxiv.org/pdf/1809.08809.pdf +8818b12aa0ff3bf0b20f9caa250395cbea0e8769,https://pdfs.semanticscholar.org/8818/b12aa0ff3bf0b20f9caa250395cbea0e8769.pdf +8895d6ae9f095a8413f663cc83f5b7634b3dc805,https://pdfs.semanticscholar.org/8895/d6ae9f095a8413f663cc83f5b7634b3dc805.pdf +9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,https://pdfs.semanticscholar.org/9fdf/e1695adac2380f99d3d5cb6879f0ac7f2bfd.pdf +6b333b2c6311e36c2bde920ab5813f8cfcf2b67b,https://pdfs.semanticscholar.org/d330/64c32527a2690bd1b430b1d9f90a2a609a13.pdf +6b3e360b80268fda4e37ff39b7f303e3684e8719,https://pdfs.semanticscholar.org/75d2/de5858dd45aca9c5db8af6f44617f521cb77.pdf +6b8d0569fffce5cc221560d459d6aa10c4db2f03,https://arxiv.org/pdf/1806.02479.pdf +6b6ff9d55e1df06f8b3e6f257e23557a73b2df96,https://pdfs.semanticscholar.org/6b6f/f9d55e1df06f8b3e6f257e23557a73b2df96.pdf +07377c375ac76a34331c660fe87ebd7f9b3d74c4,https://arxiv.org/pdf/1808.01338.pdf +07c83f544d0604e6bab5d741b0bf9a3621d133da,https://arxiv.org/pdf/1708.07632.pdf +07fa153b8e6196ee6ef6efd8b743de8485a07453,https://pdfs.semanticscholar.org/07fa/153b8e6196ee6ef6efd8b743de8485a07453.pdf +0750a816858b601c0dbf4cfb68066ae7e788f05d,https://arxiv.org/pdf/1801.09414.pdf +3803b91e784922a2dacd6a18f61b3100629df932,https://arxiv.org/pdf/1709.07200.pdf +38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7,https://arxiv.org/pdf/1807.00451.pdf +38c901a58244be9a2644d486f9a1284dc0edbf8a,https://arxiv.org/pdf/1607.06408.pdf +38f1fac3ed0fd054e009515e7bbc72cdd4cf801a,https://arxiv.org/pdf/1806.08246.pdf +380d5138cadccc9b5b91c707ba0a9220b0f39271,https://arxiv.org/pdf/1806.00194.pdf +00fb2836068042c19b5197d0999e8e93b920eb9c,https://pdfs.semanticscholar.org/00fb/2836068042c19b5197d0999e8e93b920eb9c.pdf +0004f72a00096fa410b179ad12aa3a0d10fc853c,https://pdfs.semanticscholar.org/0004/f72a00096fa410b179ad12aa3a0d10fc853c.pdf +6e91be2ad74cf7c5969314b2327b513532b1be09,https://arxiv.org/pdf/1412.2404.pdf +6e8a81d452a91f5231443ac83e4c0a0db4579974,https://pdfs.semanticscholar.org/3f64/a5b26a8297d4b832bc5bb95264cdfabde105.pdf +6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f,https://arxiv.org/pdf/1801.04134.pdf +6e911227e893d0eecb363015754824bf4366bdb7,https://arxiv.org/pdf/1712.01026.pdf +6e00a406edb508312108f683effe6d3c1db020fb,https://arxiv.org/pdf/1803.06340.pdf +9ac43a98fe6fde668afb4fcc115e4ee353a6732d,https://arxiv.org/pdf/1804.07362.pdf +9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb,https://arxiv.org/pdf/1711.11585.pdf +9af9a88c60d9e4b53e759823c439fc590a4b5bc5,https://arxiv.org/pdf/1708.00277.pdf +9aad8e52aff12bd822f0011e6ef85dfc22fe8466,https://arxiv.org/pdf/1809.03669.pdf +36939e6a365e9db904d81325212177c9e9e76c54,https://pdfs.semanticscholar.org/941b/5492e6ac98355fd7bc7531f846d638e814ac.pdf +3646b42511a6a0df5470408bc9a7a69bb3c5d742,https://pdfs.semanticscholar.org/2a6a/8d8ed0f980cc3b20d743f43c9e36dec3150e.pdf +3674f3597bbca3ce05e4423611d871d09882043b,https://pdfs.semanticscholar.org/3674/f3597bbca3ce05e4423611d871d09882043b.pdf +362bfeb28adac5f45b6ef46c07c59744b4ed6a52,https://arxiv.org/pdf/1808.01727.pdf +368e99f669ea5fd395b3193cd75b301a76150f9d,https://arxiv.org/pdf/1506.01342.pdf +3619a9b46ad4779d0a63b20f7a6a8d3d49530339,https://pdfs.semanticscholar.org/3619/a9b46ad4779d0a63b20f7a6a8d3d49530339.pdf +361d6345919c2edc5c3ce49bb4915ed2b4ee49be,https://pdfs.semanticscholar.org/399e/d1c6b72c765c2c8ec6437c9ef7a1866d0f29.pdf +5cbe1445d683d605b31377881ac8540e1d17adf0,https://arxiv.org/pdf/1509.06161.pdf +5c493c42bfd93e4d08517438983e3af65e023a87,https://pdfs.semanticscholar.org/5c49/3c42bfd93e4d08517438983e3af65e023a87.pdf +5c35ac04260e281141b3aaa7bbb147032c887f0c,https://pdfs.semanticscholar.org/5c35/ac04260e281141b3aaa7bbb147032c887f0c.pdf +5c4d4fd37e8c80ae95c00973531f34a6d810ea3a,https://arxiv.org/pdf/1603.09439.pdf +09137e3c267a3414314d1e7e4b0e3a4cae801f45,https://arxiv.org/pdf/1711.06078.pdf +09926ed62511c340f4540b5bc53cf2480e8063f8,https://pdfs.semanticscholar.org/0992/6ed62511c340f4540b5bc53cf2480e8063f8.pdf +0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,https://arxiv.org/pdf/1806.02023.pdf +097340d3ac939ce181c829afb6b6faff946cdce0,https://arxiv.org/pdf/1805.11119.pdf +09507f1f1253101d04a975fc5600952eac868602,https://arxiv.org/pdf/1807.10037.pdf +09df62fd17d3d833ea6b5a52a232fc052d4da3f5,https://pdfs.semanticscholar.org/5baf/412bc25d131c2da702a6d3b972de7212c50b.pdf +5db4fe0ce9e9227042144758cf6c4c2de2042435,https://pdfs.semanticscholar.org/5db4/fe0ce9e9227042144758cf6c4c2de2042435.pdf +5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e,https://pdfs.semanticscholar.org/0946/ce4615f74c4666878757a5eb89494a1f208b.pdf +318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a,https://arxiv.org/pdf/1601.04805.pdf +313d5eba97fe064bdc1f00b7587a4b3543ef712a,https://pdfs.semanticscholar.org/313d/5eba97fe064bdc1f00b7587a4b3543ef712a.pdf +31ea88f29e7f01a9801648d808f90862e066f9ea,https://arxiv.org/pdf/1605.06391.pdf +3176ee88d1bb137d0b561ee63edf10876f805cf0,https://arxiv.org/pdf/1511.07356.pdf +312b2566e315dd6e65bd42cfcbe4d919159de8a1,https://pdfs.semanticscholar.org/312b/2566e315dd6e65bd42cfcbe4d919159de8a1.pdf +91495c689e6e614247495c3f322d400d8098de43,https://pdfs.semanticscholar.org/9149/5c689e6e614247495c3f322d400d8098de43.pdf +917bea27af1846b649e2bced624e8df1d9b79d6f,https://arxiv.org/pdf/1805.00361.pdf +911bef7465665d8b194b6b0370b2b2389dfda1a1,https://arxiv.org/pdf/1806.05666.pdf +91ead35d1d2ff2ea7cf35d15b14996471404f68d,https://arxiv.org/pdf/1702.01325.pdf +9131c990fad219726eb38384976868b968ee9d9c,https://arxiv.org/pdf/1804.08348.pdf +911505a4242da555c6828509d1b47ba7854abb7a,https://pdfs.semanticscholar.org/9115/05a4242da555c6828509d1b47ba7854abb7a.pdf +656531036cee6b2c2c71954bb6540ef6b2e016d0,https://arxiv.org/pdf/1511.04601.pdf +65b1209d38c259fe9ca17b537f3fb4d1857580ae,https://arxiv.org/pdf/1805.08672.pdf +656f05741c402ba43bb1b9a58bcc5f7ce2403d9a,https://pdfs.semanticscholar.org/656f/05741c402ba43bb1b9a58bcc5f7ce2403d9a.pdf +653d19e64bd75648cdb149f755d59e583b8367e3,https://arxiv.org/pdf/1706.02613.pdf +65babb10e727382b31ca5479b452ee725917c739,https://arxiv.org/pdf/1408.6027.pdf +62dccab9ab715f33761a5315746ed02e48eed2a0,https://arxiv.org/pdf/1808.01340.pdf +620339aef06aed07a78f9ed1a057a25433faa58b,https://arxiv.org/pdf/1806.11230.pdf +62b3598b401c807288a113796f424612cc5833ca,https://arxiv.org/pdf/1807.10550.pdf +628a3f027b7646f398c68a680add48c7969ab1d9,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf +626913b8fcbbaee8932997d6c4a78fe1ce646127,https://arxiv.org/pdf/1711.05942.pdf +626859fe8cafd25da13b19d44d8d9eb6f0918647,https://arxiv.org/pdf/1708.06637.pdf +62fd622b3ca97eb5577fd423fb9efde9a849cbef,https://arxiv.org/pdf/1809.02169.pdf +62007c30f148334fb4d8975f80afe76e5aef8c7f,https://arxiv.org/pdf/1712.03999.pdf +96f0e7416994035c91f4e0dfa40fd45090debfc5,https://arxiv.org/pdf/1803.01260.pdf +963d0d40de8780161b70d28d2b125b5222e75596,https://arxiv.org/pdf/1611.08657.pdf +96a9ca7a8366ae0efe6b58a515d15b44776faf6e,https://arxiv.org/pdf/1609.00129.pdf +96e1ccfe96566e3c96d7b86e134fa698c01f2289,https://arxiv.org/pdf/1712.00321.pdf +9627f28ea5f4c389350572b15968386d7ce3fe49,https://arxiv.org/pdf/1802.07447.pdf +96b1000031c53cd4c1c154013bb722ffd87fa7da,https://arxiv.org/pdf/1710.08518.pdf +96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,https://arxiv.org/pdf/1611.05396.pdf +3a27d164e931c422d16481916a2fa6401b74bcef,https://arxiv.org/pdf/1709.03654.pdf +3a3f75e0ffdc0eef07c42b470593827fcd4020b4,https://arxiv.org/pdf/1805.05269.pdf +3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2,https://arxiv.org/pdf/1710.03804.pdf +3a9681e2e07be7b40b59c32a49a6ff4c40c962a2,https://pdfs.semanticscholar.org/1c95/1714996c573b00e63878acdc48cdc4ddc183.pdf +54948ee407b5d32da4b2eee377cc44f20c3a7e0c,https://arxiv.org/pdf/1806.06296.pdf +540b39ba1b8ef06293ed793f130e0483e777e278,https://pdfs.semanticscholar.org/540b/39ba1b8ef06293ed793f130e0483e777e278.pdf +54969bcd728b0f2d3285866c86ef0b4797c2a74d,https://arxiv.org/pdf/1804.09869.pdf +54a9ed950458f4b7e348fa78a718657c8d3d0e05,https://arxiv.org/pdf/1807.04001.pdf +54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7,https://pdfs.semanticscholar.org/54ce/3ff2ab6e4465c2f94eb4d636183fa7878ab7.pdf +54204e28af73c7aca073835a14afcc5d8f52a515,https://arxiv.org/pdf/1805.12185.pdf +9853136dbd7d5f6a9c57dc66060cab44a86cd662,https://pdfs.semanticscholar.org/f3fb/f05026afb46b0186f6abbcbbcc08887f1be5.pdf +9865fe20df8fe11717d92b5ea63469f59cf1635a,https://arxiv.org/pdf/1805.07566.pdf +9825c4dddeb2ed7eaab668b55403aa2c38bc3320,https://arxiv.org/pdf/1807.09532.pdf +533d14e539ae5cdca0ece392487a2b19106d468a,https://arxiv.org/pdf/1611.09053.pdf +53dd25350d3b3aaf19beb2104f1e389e3442df61,https://pdfs.semanticscholar.org/a2ee/e3191d860c854936d11365d4745224d89b53.pdf +530243b61fa5aea19b454b7dbcac9f463ed0460e,https://arxiv.org/pdf/1807.11079.pdf +53c36186bf0ffbe2f39165a1824c965c6394fe0d,https://arxiv.org/pdf/1805.00326.pdf +53a41c711b40e7fe3dc2b12e0790933d9c99a6e0,https://arxiv.org/pdf/1611.06492.pdf +53bfe2ab770e74d064303f3bd2867e5bf7b86379,https://pdfs.semanticscholar.org/d989/c3064d49bf8e63587ada4ed2bdb0d32b120a.pdf +53ce84598052308b86ba79d873082853022aa7e9,https://pdfs.semanticscholar.org/4f07/b70883a98a69be3b3e29de06c73e59a9ba0e.pdf +3f9ca2526013e358cd8caeb66a3d7161f5507cbc,https://arxiv.org/pdf/1607.01059.pdf +3fb98e76ffd8ba79e1c22eda4d640da0c037e98a,https://pdfs.semanticscholar.org/b49a/a569ff63d045b7c0ce66d77e1345d4f9745c.pdf +3fb4bf38d34f7f7e5b3df36de2413d34da3e174a,https://arxiv.org/pdf/1807.09882.pdf +3f9a7d690db82cf5c3940fbb06b827ced59ec01e,https://arxiv.org/pdf/1502.05678.pdf +3f5e8f884e71310d7d5571bd98e5a049b8175075,https://pdfs.semanticscholar.org/3f5e/8f884e71310d7d5571bd98e5a049b8175075.pdf +3f5693584d7dab13ffc12122d6ddbf862783028b,https://arxiv.org/pdf/1804.04082.pdf +30b15cdb72760f20f80e04157b57be9029d8a1ab,https://pdfs.semanticscholar.org/30b1/5cdb72760f20f80e04157b57be9029d8a1ab.pdf +30870ef75aa57e41f54310283c0057451c8c822b,https://arxiv.org/pdf/1801.01423.pdf +305346d01298edeb5c6dc8b55679e8f60ba97efb,https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf +30fd1363fa14965e3ab48a7d6235e4b3516c1da1,https://pdfs.semanticscholar.org/6bc2/07bab6a2b4ec335023474b391c9cb23e2e6d.pdf +30cbd41e997445745b6edd31f2ebcc7533453b61,https://pdfs.semanticscholar.org/1a50/4cdd40877e3d74ed87666c8c540bb1643c79.pdf +5e6f546a50ed97658be9310d5e0a67891fe8a102,https://arxiv.org/pdf/1711.09577.pdf +5e7e055ef9ba6e8566a400a8b1c6d8f827099553,https://pdfs.semanticscholar.org/5e7e/055ef9ba6e8566a400a8b1c6d8f827099553.pdf +5ba7882700718e996d576b58528f1838e5559225,https://pdfs.semanticscholar.org/5ba7/882700718e996d576b58528f1838e5559225.pdf +5b0008ba87667085912ea474025d2323a14bfc90,https://pdfs.semanticscholar.org/5b00/08ba87667085912ea474025d2323a14bfc90.pdf +5b97e997b9b654373bd129b3baf5b82c2def13d1,https://pdfs.semanticscholar.org/5b97/e997b9b654373bd129b3baf5b82c2def13d1.pdf +5bd3d08335bb4e444a86200c5e9f57fd9d719e14,https://pdfs.semanticscholar.org/5bd3/d08335bb4e444a86200c5e9f57fd9d719e14.pdf +5babbad3daac5c26503088782fd5b62067b94fa5,https://arxiv.org/pdf/1809.02652.pdf +5b2cfee6e81ef36507ebf3c305e84e9e0473575a,https://arxiv.org/pdf/1704.02402.pdf +5b721f86f4a394f05350641e639a9d6cb2046c45,https://arxiv.org/pdf/1603.09638.pdf +5b4b84ce3518c8a14f57f5f95a1d07fb60e58223,https://pdfs.semanticscholar.org/9f92/05a60ddf1135929e0747db34363b3a8c6bc8.pdf +372fb32569ced35eaf3740a29890bec2be1869fa,https://pdfs.semanticscholar.org/372f/b32569ced35eaf3740a29890bec2be1869fa.pdf +3795974e24296185d9b64454cde6f796ca235387,https://arxiv.org/pdf/1806.05252.pdf +377f2b65e6a9300448bdccf678cde59449ecd337,https://arxiv.org/pdf/1804.10275.pdf +370b6b83c7512419188f5373a962dd3175a56a9b,https://pdfs.semanticscholar.org/370b/6b83c7512419188f5373a962dd3175a56a9b.pdf +372a8bf0ef757c08551d41e40cb7a485527b6cd7,https://pdfs.semanticscholar.org/2dcf/a8d72fee8732350935718ab86f3d9f3458cb.pdf +08f4832507259ded9700de81f5fd462caf0d5be8,https://pdfs.semanticscholar.org/ad40/d61bf27e177d078df12727267f3190eee2b0.pdf +08903bf161a1e8dec29250a752ce9e2a508a711c,https://pdfs.semanticscholar.org/e7f6/bfb9bb591eb1404ae13f0fa13ad4a3179150.pdf +084bebc5c98872e9307cd8e7f571d39ef9c1b81e,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf +0857281a3b6a5faba1405e2c11f4e17191d3824d,https://pdfs.semanticscholar.org/0857/281a3b6a5faba1405e2c11f4e17191d3824d.pdf +08d41d2f68a2bf0091dc373573ca379de9b16385,https://arxiv.org/pdf/1802.05023.pdf +6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,https://arxiv.org/pdf/1607.00659.pdf +6dbdb07ce2991db0f64c785ad31196dfd4dae721,https://arxiv.org/pdf/1802.09058.pdf +6dddf1440617bf7acda40d4d75c7fb4bf9517dbb,https://arxiv.org/pdf/1705.10118.pdf +6d07e176c754ac42773690d4b4919a39df85d7ec,https://pdfs.semanticscholar.org/6d07/e176c754ac42773690d4b4919a39df85d7ec.pdf +6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,https://arxiv.org/pdf/1707.05938.pdf +6dc1f94b852538d572e4919238ddb10e2ee449a4,https://arxiv.org/pdf/1703.09529.pdf +6d5125c9407c7762620eeea7570af1a8ee7d76f3,https://arxiv.org/pdf/1807.01462.pdf +01c4cf9c7c08f0ad3f386d88725da564f3c54679,https://pdfs.semanticscholar.org/01c4/cf9c7c08f0ad3f386d88725da564f3c54679.pdf +014e3d0fa5248e6f4634dc237e2398160294edce,https://arxiv.org/pdf/1708.06703.pdf +06262d6beeccf2784e4e36a995d5ee2ff73c8d11,https://pdfs.semanticscholar.org/0626/2d6beeccf2784e4e36a995d5ee2ff73c8d11.pdf +06f585a3a05dd3371cd600a40dc35500e2f82f9b,https://arxiv.org/pdf/1804.10069.pdf +06560d5721ecc487a4d70905a485e22c9542a522,https://pdfs.semanticscholar.org/0656/0d5721ecc487a4d70905a485e22c9542a522.pdf +062c41dad67bb68fefd9ff0c5c4d296e796004dc,https://arxiv.org/pdf/1611.06624.pdf +06c2086f7f72536bf970ca629151b16927104df3,https://arxiv.org/pdf/1805.03064.pdf +6c66ae815e7e508e852ecb122fb796abbcda16a8,https://pdfs.semanticscholar.org/6c66/ae815e7e508e852ecb122fb796abbcda16a8.pdf +6ca2c5ff41e91c34696f84291a458d1312d15bf2,https://pdfs.semanticscholar.org/c70b/2c373917ba61a871b97119413db1eadcf423.pdf +6c5fbf156ef9fc782be0089309074cc52617b868,https://pdfs.semanticscholar.org/fe4c/3f97a80b73be4fad18cc1bfb72354efb528e.pdf +6c304f3b9c3a711a0cca5c62ce221fb098dccff0,https://arxiv.org/pdf/1708.05980.pdf +6c80c834d426f0bc4acd6355b1946b71b50cbc0b,https://arxiv.org/pdf/1805.08484.pdf +6cb7648465ba7757ecc9c222ac1ab6402933d983,https://arxiv.org/pdf/1708.05827.pdf +6cfc337069868568148f65732c52cbcef963f79d,https://pdfs.semanticscholar.org/80d7/8415aee24e65ea3031c31adc1dabc1956f8a.pdf +39ed31ced75e6151dde41944a47b4bdf324f922b,https://pdfs.semanticscholar.org/39ed/31ced75e6151dde41944a47b4bdf324f922b.pdf +39c8b34c1b678235b60b648d0b11d241a34c8e32,https://arxiv.org/pdf/1805.05503.pdf +3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1,https://arxiv.org/pdf/1612.00738.pdf +3965d61c4f3b72044f43609c808f8760af8781a2,https://arxiv.org/pdf/1808.01121.pdf +395bf182983e0917f33b9701e385290b64e22f9a,https://pdfs.semanticscholar.org/8ab5/18efa79af7d45faa425d1ccd82cfa3aba547.pdf +3933e323653ff27e68c3458d245b47e3e37f52fd,https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf +39b452453bea9ce398613d8dd627984fd3a0d53c,https://arxiv.org/pdf/1611.02155.pdf +994f7c469219ccce59c89badf93c0661aae34264,https://pdfs.semanticscholar.org/994f/7c469219ccce59c89badf93c0661aae34264.pdf +993d189548e8702b1cb0b02603ef02656802c92b,https://arxiv.org/pdf/1809.05992.pdf +9901f473aeea177a55e58bac8fd4f1b086e575a4,https://arxiv.org/pdf/1509.04954.pdf +99c20eb5433ed27e70881d026d1dbe378a12b342,https://pdfs.semanticscholar.org/2eb3/74476c9431a614b1841df1a7c32a4cd095e0.pdf +99facca6fc50cc30f13b7b6dd49ace24bc94f702,https://arxiv.org/pdf/1609.03892.pdf +99d7678039ad96ee29ab520ff114bb8021222a91,https://pdfs.semanticscholar.org/99d7/678039ad96ee29ab520ff114bb8021222a91.pdf +523854a7d8755e944bd50217c14481fe1329a969,https://arxiv.org/pdf/1808.00380.pdf +52472ec859131844f38fc7d57944778f01d109ac,https://arxiv.org/pdf/1707.02749.pdf +52d7eb0fbc3522434c13cc247549f74bb9609c5d,https://arxiv.org/pdf/1511.06523.pdf +529baf1a79cca813f8c9966ceaa9b3e42748c058,https://pdfs.semanticscholar.org/6ae7/47cf58eeda0687a3f779aaecfa12403b9684.pdf +55ea0c775b25d9d04b5886e322db852e86a556cd,https://arxiv.org/pdf/1804.01077.pdf +55c68c1237166679d2cb65f266f496d1ecd4bec6,https://arxiv.org/pdf/1802.02774.pdf +5550a6df1b118a80c00a2459bae216a7e8e3966c,https://pdfs.semanticscholar.org/5550/a6df1b118a80c00a2459bae216a7e8e3966c.pdf +55e87050b998eb0a8f0b16163ef5a28f984b01fa,https://arxiv.org/pdf/1710.10736.pdf +55c40cbcf49a0225e72d911d762c27bb1c2d14aa,https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf +9788b491ddc188941dadf441fc143a4075bff764,https://pdfs.semanticscholar.org/9788/b491ddc188941dadf441fc143a4075bff764.pdf +97137d5154a9f22a5d9ecc32e8e2b95d07a5a571,https://arxiv.org/pdf/1604.04337.pdf +9730b9cd998c0a549601c554221a596deda8af5b,https://arxiv.org/pdf/1704.07945.pdf +97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5,https://arxiv.org/pdf/1804.10938.pdf +975978ee6a32383d6f4f026b944099e7739e5890,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf +632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c,https://arxiv.org/pdf/1604.02647.pdf +631483c15641c3652377f66c8380ff684f3e365c,https://arxiv.org/pdf/1611.10314.pdf +632fa986bed53862d83918c2b71ab953fd70d6cc,https://arxiv.org/pdf/1805.10355.pdf +633101e794d7b80f55f466fd2941ea24595e10e6,https://pdfs.semanticscholar.org/6331/01e794d7b80f55f466fd2941ea24595e10e6.pdf +0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,https://pdfs.semanticscholar.org/0f21/a39fa4c0a19c4a5b4733579e393cb1d04f71.pdf +0fd1bffb171699a968c700f206665b2f8837d953,https://arxiv.org/pdf/1503.00949.pdf +0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457,https://pdfs.semanticscholar.org/0a03/21785c8beac1cbaaec4d8ad0cfd4a0d6d457.pdf +0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f,https://pdfs.semanticscholar.org/0de4/0e8adc31a15af7496c92f261f9f703afed1d.pdf +0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,https://arxiv.org/pdf/1708.07517.pdf +0a9d204db13d395f024067cf70ac19c2eeb5f942,https://arxiv.org/pdf/1804.02843.pdf +0a4fc9016aacae9cdf40663a75045b71e64a70c9,https://pdfs.semanticscholar.org/0235/563971fcf8b517271f8e4f424305fffa10f2.pdf +0a85afebaa19c80fddb660110a4352fd22eb2801,https://arxiv.org/pdf/1809.03658.pdf +0a7309147d777c2f20f780a696efe743520aa2db,https://arxiv.org/pdf/1805.05622.pdf +0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,https://arxiv.org/pdf/1807.05292.pdf +641f0989b87bf7db67a64900dcc9568767b7b50f,https://pdfs.semanticscholar.org/e25a/6836e5f5dc6cf691cd9c42224c0f7f4bb42c.pdf +64ec0c53dd1aa51eb15e8c2a577701e165b8517b,https://arxiv.org/pdf/1803.11521.pdf +645de797f936cb19c1b8dba3b862543645510544,https://arxiv.org/pdf/1611.06678.pdf +64d7e62f46813b5ad08289aed5dc4825d7ec5cff,https://pdfs.semanticscholar.org/f7e1/251d831b763d1ee10bfc6fae78990405f9f9.pdf +90ac0f32c0c29aa4545ed3d5070af17f195d015f,https://pdfs.semanticscholar.org/2322/1b7ff507d23da4e4b47b7228170b4fd224b8.pdf +90498b95fe8b299ce65d5cafaef942aa58bd68b7,https://arxiv.org/pdf/1804.08790.pdf +90cc2f08a6c2f0c41a9dd1786bae097f9292105e,https://arxiv.org/pdf/1808.09892.pdf +90d9209d5dd679b159051a8315423a7f796d704d,https://arxiv.org/pdf/1808.05085.pdf +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,https://pdfs.semanticscholar.org/5db5/7be8bfed8f3a34aebc45dc69c4d4a7dee570.pdf +bf54b5586cdb0b32f6eed35798ff91592b03fbc4,https://pdfs.semanticscholar.org/bf54/b5586cdb0b32f6eed35798ff91592b03fbc4.pdf +bf5940d57f97ed20c50278a81e901ae4656f0f2c,https://arxiv.org/pdf/1711.00248.pdf +bff567c58db554858c7f39870cff7c306523dfee,https://arxiv.org/pdf/1807.03480.pdf +d35534f3f59631951011539da2fe83f2844ca245,https://arxiv.org/pdf/1705.07904.pdf +d3edbfe18610ce63f83db83f7fbc7634dde1eb40,https://pdfs.semanticscholar.org/d3ed/bfe18610ce63f83db83f7fbc7634dde1eb40.pdf +d3d5d86afec84c0713ec868cf5ed41661fc96edc,https://arxiv.org/pdf/1606.02894.pdf +d3b18ba0d9b247bfa2fb95543d172ef888dfff95,https://pdfs.semanticscholar.org/0a92/0b6ed81de2e7665784eba433cb1cf15e73ad.pdf +d309e414f0d6e56e7ba45736d28ee58ae2bad478,https://pdfs.semanticscholar.org/d309/e414f0d6e56e7ba45736d28ee58ae2bad478.pdf +d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9,https://arxiv.org/pdf/1804.04326.pdf +d307a766cc9c728a24422313d4c3dcfdb0d16dd5,https://arxiv.org/pdf/1804.10021.pdf +d31af74425719a3840b496b7932e0887b35e9e0d,https://pdfs.semanticscholar.org/d31a/f74425719a3840b496b7932e0887b35e9e0d.pdf +d3b0839324d0091e70ce34f44c979b9366547327,https://arxiv.org/pdf/1804.10743.pdf +d3faed04712b4634b47e1de0340070653546deb2,https://arxiv.org/pdf/1805.04140.pdf +d33fcdaf2c0bd0100ec94b2c437dccdacec66476,https://pdfs.semanticscholar.org/d33f/cdaf2c0bd0100ec94b2c437dccdacec66476.pdf +d4a5eaf2e9f2fd3e264940039e2cbbf08880a090,https://arxiv.org/pdf/1802.02137.pdf +d46b790d22cb59df87f9486da28386b0f99339d3,https://pdfs.semanticscholar.org/d46b/790d22cb59df87f9486da28386b0f99339d3.pdf +d444e010049944c1b3438c9a25ae09b292b17371,https://pdfs.semanticscholar.org/d444/e010049944c1b3438c9a25ae09b292b17371.pdf +d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf +d444368421f456baf8c3cb089244e017f8d32c41,https://arxiv.org/pdf/1712.06352.pdf +d4885ca24189b4414031ca048a8b7eb2c9ac646c,https://arxiv.org/pdf/1807.07718.pdf +d458c49a5e34263c95b3393386b5d76ba770e497,https://pdfs.semanticscholar.org/d458/c49a5e34263c95b3393386b5d76ba770e497.pdf +d454ad60b061c1a1450810a0f335fafbfeceeccc,https://arxiv.org/pdf/1712.07195.pdf +d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e,https://pdfs.semanticscholar.org/d4e6/69d5d35fa0ca9f8d9a193c82d4153f5ffc4e.pdf +d44a93027208816b9e871101693b05adab576d89,https://arxiv.org/pdf/1709.10433.pdf +badcd992266c6813063c153c41b87babc0ba36a3,https://arxiv.org/pdf/1809.03193.pdf +ba788365d70fa6c907b71a01d846532ba3110e31,https://arxiv.org/pdf/1805.08657.pdf +ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb,https://arxiv.org/pdf/1711.09001.pdf +badd371a49d2c4126df95120902a34f4bee01b00,https://arxiv.org/pdf/1809.04096.pdf +a022eff5470c3446aca683eae9c18319fd2406d5,https://pdfs.semanticscholar.org/a022/eff5470c3446aca683eae9c18319fd2406d5.pdf +a0c37f07710184597befaa7e6cf2f0893ff440e9,https://arxiv.org/pdf/1805.06374.pdf +a0fd85b3400c7b3e11122f44dc5870ae2de9009a,https://arxiv.org/pdf/1408.3967.pdf +a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b,https://pdfs.semanticscholar.org/a0aa/32bb7f406693217fba6dcd4aeb6c4d5a479b.pdf +a0b1990dd2b4cd87e4fd60912cc1552c34792770,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf +a77e9f0bd205a7733431a6d1028f09f57f9f73b0,https://arxiv.org/pdf/1806.07753.pdf +a7664247a37a89c74d0e1a1606a99119cffc41d4,https://pdfs.semanticscholar.org/a766/4247a37a89c74d0e1a1606a99119cffc41d4.pdf +a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,https://pdfs.semanticscholar.org/a758/b744a6d6962f1ddce6f0d04292a0b5cf8e07.pdf +a775da3e6e6ea64bffab7f9baf665528644c7ed3,https://pdfs.semanticscholar.org/0e01/3be45033d43cc658b464cdb55cbf46a994b8.pdf +b8375ff50b8a6f1a10dd809129a18df96888ac8b,https://pdfs.semanticscholar.org/e94d/8395ab477091c433b020f8fb535eae5c1df5.pdf +b8f3f6d8f188f65ca8ea2725b248397c7d1e662d,https://arxiv.org/pdf/1611.04357.pdf +b8ebda42e272d3617375118542d4675a0c0e501d,https://arxiv.org/pdf/1706.07522.pdf +b1d89015f9b16515735d4140c84b0bacbbef19ac,https://arxiv.org/pdf/1709.00235.pdf +b14b672e09b5b2d984295dfafb05604492bfaec5,https://pdfs.semanticscholar.org/b14b/672e09b5b2d984295dfafb05604492bfaec5.pdf +b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000,https://arxiv.org/pdf/1703.03054.pdf +b166ce267ddb705e6ed855c6b679ec699d62e9cb,https://pdfs.semanticscholar.org/b166/ce267ddb705e6ed855c6b679ec699d62e9cb.pdf +b13e2e43672e66ba45d1b852a34737e4ce04226b,https://pdfs.semanticscholar.org/3552/4e63c11f13fe08b2996a7bc0a9105e7c407b.pdf +b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c,https://pdfs.semanticscholar.org/dcc4/b241debf72f3898a69f32185b21766200771.pdf +b15a06d701f0a7f508e3355a09d0016de3d92a6d,https://pdfs.semanticscholar.org/b15a/06d701f0a7f508e3355a09d0016de3d92a6d.pdf +b1451721864e836069fa299a64595d1655793757,https://arxiv.org/pdf/1706.03863.pdf +b1fdd4ae17d82612cefd4e78b690847b071379d3,https://pdfs.semanticscholar.org/4fc5/416b6c7173d3462e5be796bda3ad8d5645a1.pdf +dde5125baefa1141f1ed50479a3fd67c528a965f,https://arxiv.org/pdf/1701.04851.pdf +dd8084b2878ca95d8f14bae73e1072922f0cc5da,https://arxiv.org/pdf/1709.02929.pdf +dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335,https://arxiv.org/pdf/1803.09490.pdf +ddbd24a73ba3d74028596f393bb07a6b87a469c0,https://pdfs.semanticscholar.org/ddbd/24a73ba3d74028596f393bb07a6b87a469c0.pdf +ddbb6e0913ac127004be73e2d4097513a8f02d37,https://pdfs.semanticscholar.org/d3ea/05926b22a9c45687d435611db14f608e410d.pdf +dc550f361ae82ec6e1a0cf67edf6a0138163382e,https://pdfs.semanticscholar.org/dc55/0f361ae82ec6e1a0cf67edf6a0138163382e.pdf +dcf71245addaf66a868221041aabe23c0a074312,https://arxiv.org/pdf/1708.05237.pdf +dce5e0a1f2cdc3d4e0e7ca0507592860599b0454,https://arxiv.org/pdf/1803.05576.pdf +dc9d62087ff93a821e6bb8a15a8ae2da3e39dcdd,https://arxiv.org/pdf/1705.01936.pdf +dc974c31201b6da32f48ef81ae5a9042512705fe,https://arxiv.org/pdf/1705.01781.pdf +b6ef158d95042f39765df04373c01546524c9ccd,https://pdfs.semanticscholar.org/b6ef/158d95042f39765df04373c01546524c9ccd.pdf +b68150bfdec373ed8e025f448b7a3485c16e3201,https://arxiv.org/pdf/1703.09471.pdf +b6f682648418422e992e3ef78a6965773550d36b,https://pdfs.semanticscholar.org/b6f6/82648418422e992e3ef78a6965773550d36b.pdf +b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3,https://arxiv.org/pdf/1711.10305.pdf +b6d0e461535116a675a0354e7da65b2c1d2958d4,https://arxiv.org/pdf/1805.03430.pdf +a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f,https://arxiv.org/pdf/1708.05038.pdf +a98316980b126f90514f33214dde51813693fe0d,https://arxiv.org/pdf/1805.01887.pdf +a95dc0c4a9d882a903ce8c70e80399f38d2dcc89,https://pdfs.semanticscholar.org/a95d/c0c4a9d882a903ce8c70e80399f38d2dcc89.pdf +a92b5234b8b73e06709dd48ec5f0ec357c1aabed,https://arxiv.org/pdf/1802.04962.pdf +d5d7e89e6210fcbaa52dc277c1e307632cd91dab,https://arxiv.org/pdf/1711.10398.pdf +d5444f9475253bbcfef85c351ea9dab56793b9ea,https://arxiv.org/pdf/1703.00686.pdf +d5de42d37ee84c86b8f9a054f90ddb4566990ec0,https://arxiv.org/pdf/1612.06371.pdf +d2eb1079552fb736e3ba5e494543e67620832c52,https://arxiv.org/pdf/1807.04050.pdf +d278e020be85a1ccd90aa366b70c43884dd3f798,https://arxiv.org/pdf/1805.11191.pdf +d26b443f87df76034ff0fa9c5de9779152753f0c,https://arxiv.org/pdf/1807.03425.pdf +aae742779e8b754da7973949992d258d6ca26216,https://arxiv.org/pdf/1505.04030.pdf +aab3561acbd19f7397cbae39dd34b3be33220309,https://arxiv.org/pdf/1805.02152.pdf +aafb8dc8fda3b13a64ec3f1ca7911df01707c453,https://arxiv.org/pdf/1711.06778.pdf +aadfcaf601630bdc2af11c00eb34220da59b7559,https://arxiv.org/pdf/1804.07237.pdf +aa3c9de34ef140ec812be85bb8844922c35eba47,https://arxiv.org/pdf/1707.09457.pdf +aff8705fb2f2ae460cb3980b47f2e85c2e6dd41a,https://arxiv.org/pdf/1805.09203.pdf +af6cae71f24ea8f457e581bfe1240d5fa63faaf7,https://arxiv.org/pdf/1805.09791.pdf +afdf9a3464c3b015f040982750f6b41c048706f5,https://arxiv.org/pdf/1608.05477.pdf +afa57e50570a6599508ee2d50a7b8ca6be04834a,https://pdfs.semanticscholar.org/bc26/4e51ea341744eba137e9dd0e6adf8cbc01d0.pdf +afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3,https://arxiv.org/pdf/1708.09268.pdf +af654a7ec15168b16382bd604889ea07a967dac6,https://pdfs.semanticscholar.org/af65/4a7ec15168b16382bd604889ea07a967dac6.pdf +b73795963dc623a634d218d29e4a5b74dfbc79f1,https://arxiv.org/pdf/1807.08772.pdf +b7894c1f805ffd90ab4ab06002c70de68d6982ab,https://pdfs.semanticscholar.org/5e87/06fab62a5716c30a245e5963f51793e1d0ed.pdf +b7774c096dc18bb0be2acef07ff5887a22c2a848,https://pdfs.semanticscholar.org/d589/29d6cc1dfa513b145e47598c446b16487861.pdf +b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89,https://arxiv.org/pdf/1804.10073.pdf +b76af8fcf9a3ebc421b075b689defb6dc4282670,https://arxiv.org/pdf/1807.09207.pdf +db848c3c32464d12da33b2f4c3a29fe293fc35d1,https://arxiv.org/pdf/1807.11152.pdf +dbb16032dd8f19bdfd045a1fc0fc51f29c70f70a,https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf +dbe255d3d2a5d960daaaba71cb0da292e0af36a7,https://arxiv.org/pdf/1505.04373.pdf +db5a00984fa54b9d2a1caad0067a9ff0d0489517,https://pdfs.semanticscholar.org/dd47/1f321ead8b405da6194057b2778ef3db7ea7.pdf +dbd958ffedc3eae8032be67599ec281310c05630,https://pdfs.semanticscholar.org/d051/86de8343813a738c1fa5da9bf5165ee63bb7.pdf +dbed26cc6d818b3679e46677abc9fa8e04e8c6a6,https://pdfs.semanticscholar.org/dbed/26cc6d818b3679e46677abc9fa8e04e8c6a6.pdf +db3545a983ffd24c97c18bf7f068783102548ad7,https://pdfs.semanticscholar.org/080e/660b47647e81dadaec27365b3d5b88f3ae68.pdf +db67edbaeb78e1dd734784cfaaa720ba86ceb6d2,https://arxiv.org/pdf/1509.04853.pdf +a85e9e11db5665c89b057a124547377d3e1c27ef,https://arxiv.org/pdf/1802.00066.pdf +a87ab836771164adb95d6744027e62e05f47fd96,https://arxiv.org/pdf/1808.00022.pdf +a896ddeb0d253739c9aaef7fc1f170a2ba8407d3,https://arxiv.org/pdf/1708.03979.pdf +a803453edd2b4a85b29da74dcc551b3c53ff17f9,https://pdfs.semanticscholar.org/a803/453edd2b4a85b29da74dcc551b3c53ff17f9.pdf +a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8,https://pdfs.semanticscholar.org/3bf2/79c782cee5b43a766d248810d602b24033c9.pdf +a8d52265649c16f95af71d6f548c15afc85ac905,https://arxiv.org/pdf/1708.04320.pdf +a8a61badec9b8bc01f002a06e1426a623456d121,https://pdfs.semanticscholar.org/a8a6/1badec9b8bc01f002a06e1426a623456d121.pdf +a8154d043f187c6640cb6aedeaa8385a323e46cf,https://arxiv.org/pdf/1805.03134.pdf +a812368fe1d4a186322bf72a6d07e1cf60067234,https://pdfs.semanticscholar.org/a812/368fe1d4a186322bf72a6d07e1cf60067234.pdf +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,https://arxiv.org/pdf/1707.03986.pdf +ded968b97bd59465d5ccda4f1e441f24bac7ede5,https://pdfs.semanticscholar.org/ded9/68b97bd59465d5ccda4f1e441f24bac7ede5.pdf +de0eb358b890d92e8f67592c6e23f0e3b2ba3f66,https://arxiv.org/pdf/1711.01587.pdf +def569db592ed1715ae509644444c3feda06a536,https://arxiv.org/pdf/1804.04604.pdf +dee406a7aaa0f4c9d64b7550e633d81bc66ff451,https://arxiv.org/pdf/1710.01453.pdf +de3285da34df0262a4548574c2383c51387a24bf,https://arxiv.org/pdf/1706.06982.pdf +dec0c26855da90876c405e9fd42830c3051c2f5f,https://pdfs.semanticscholar.org/dec0/c26855da90876c405e9fd42830c3051c2f5f.pdf +b0c512fcfb7bd6c500429cbda963e28850f2e948,https://arxiv.org/pdf/1408.1656.pdf +b08203fca1af7b95fda8aa3d29dcacd182375385,https://arxiv.org/pdf/1805.01818.pdf +b09b693708f412823053508578df289b8403100a,https://pdfs.semanticscholar.org/b09b/693708f412823053508578df289b8403100a.pdf +b084683e5bab9b2bc327788e7b9a8e049d5fff8f,https://arxiv.org/pdf/1712.08263.pdf +b0c1615ebcad516b5a26d45be58068673e2ff217,https://arxiv.org/pdf/1608.05246.pdf +a6e8a8bb99e30a9e80dbf80c46495cf798066105,https://pdfs.semanticscholar.org/a6e8/a8bb99e30a9e80dbf80c46495cf798066105.pdf +a6eb6ad9142130406fb4ffd4d60e8348c2442c29,https://arxiv.org/pdf/1806.00186.pdf +a6590c49e44aa4975b2b0152ee21ac8af3097d80,https://arxiv.org/pdf/1804.00782.pdf +a6e25cab2251a8ded43c44b28a87f4c62e3a548a,https://arxiv.org/pdf/1801.07388.pdf +a6270914cf5f60627a1332bcc3f5951c9eea3be0,https://arxiv.org/pdf/1802.02522.pdf +a6ce2f0795839d9c2543d64a08e043695887e0eb,https://arxiv.org/pdf/1507.04760.pdf +b9081856963ceb78dcb44ac410c6fca0533676a3,https://arxiv.org/pdf/1703.03329.pdf +b97f694c2a111b5b1724eefd63c8d64c8e19f6c9,https://arxiv.org/pdf/1710.01216.pdf +b9d0774b0321a5cfc75471b62c8c5ef6c15527f5,https://pdfs.semanticscholar.org/b9d0/774b0321a5cfc75471b62c8c5ef6c15527f5.pdf +b908edadad58c604a1e4b431f69ac8ded350589a,https://arxiv.org/pdf/1708.02721.pdf +b93bf0a7e449cfd0db91a83284d9eba25a6094d8,https://pdfs.semanticscholar.org/b93b/f0a7e449cfd0db91a83284d9eba25a6094d8.pdf +b971266b29fcecf1d5efe1c4dcdc2355cb188ab0,https://arxiv.org/pdf/1703.00832.pdf +a1af7ec84472afba0451b431dfdb59be323e35b7,https://pdfs.semanticscholar.org/a1af/7ec84472afba0451b431dfdb59be323e35b7.pdf +a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1,https://arxiv.org/pdf/1711.03990.pdf +a14ed872503a2f03d2b59e049fd6b4d61ab4d6ca,https://arxiv.org/pdf/1711.01467.pdf +a1132e2638a8abd08bdf7fc4884804dd6654fa63,https://pdfs.semanticscholar.org/a113/2e2638a8abd08bdf7fc4884804dd6654fa63.pdf +a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892,https://arxiv.org/pdf/1603.08895.pdf +a1dd9038b1e1e59c9d564e252d3e14705872fdec,https://arxiv.org/pdf/1803.09851.pdf +a16fb74ea66025d1f346045fda00bd287c20af0e,https://arxiv.org/pdf/1809.07447.pdf +ef940b76e40e18f329c43a3f545dc41080f68748,https://pdfs.semanticscholar.org/ef94/0b76e40e18f329c43a3f545dc41080f68748.pdf +ef230e3df720abf2983ba6b347c9d46283e4b690,https://pdfs.semanticscholar.org/ef23/0e3df720abf2983ba6b347c9d46283e4b690.pdf +ef4ecb76413a05c96eac4c743d2c2a3886f2ae07,https://pdfs.semanticscholar.org/ef4e/cb76413a05c96eac4c743d2c2a3886f2ae07.pdf +ef458499c3856a6e9cd4738b3e97bef010786adb,https://arxiv.org/pdf/1803.09196.pdf +ef032afa4bdb18b328ffcc60e2dc5229cc1939bc,https://pdfs.semanticscholar.org/ef03/2afa4bdb18b328ffcc60e2dc5229cc1939bc.pdf +ef5531711a69ed687637c48930261769465457f0,https://arxiv.org/pdf/1807.00556.pdf +ef559d5f02e43534168fbec86707915a70cd73a0,https://pdfs.semanticscholar.org/ef55/9d5f02e43534168fbec86707915a70cd73a0.pdf +efa08283656714911acff2d5022f26904e451113,https://arxiv.org/pdf/1607.00548.pdf +ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98,https://arxiv.org/pdf/1406.1881.pdf +ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d,https://pdfs.semanticscholar.org/001e/ad9b99ee57af44e1831be1670c40711d348d.pdf +c3beae515f38daf4bd8053a7d72f6d2ed3b05d88,https://pdfs.semanticscholar.org/1093/3b6c487a269b87f9b561c5eedfdab6be306b.pdf +c3dc4f414f5233df96a9661609557e341b71670d,https://pdfs.semanticscholar.org/c3dc/4f414f5233df96a9661609557e341b71670d.pdf +c3285a1d6ec6972156fea9e6dc9a8d88cd001617,https://arxiv.org/pdf/1712.05083.pdf +c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,https://pdfs.semanticscholar.org/0d43/3b9435b874a1eea6d7999e86986c910fa285.pdf +c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0,https://pdfs.semanticscholar.org/2a1c/16f418d8d8e6fa179a8e6a368bb0b47266d0.pdf +c39ffc56a41d436748b9b57bdabd8248b2d28a32,https://arxiv.org/pdf/1704.06904.pdf +c317181fa1de2260e956f05cd655642607520a4f,https://arxiv.org/pdf/1708.07549.pdf +c30e4e4994b76605dcb2071954eaaea471307d80,https://pdfs.semanticscholar.org/c30e/4e4994b76605dcb2071954eaaea471307d80.pdf +c37de914c6e9b743d90e2566723d0062bedc9e6a,https://pdfs.semanticscholar.org/c37d/e914c6e9b743d90e2566723d0062bedc9e6a.pdf +c4fb2de4a5dc28710d9880aece321acf68338fde,https://arxiv.org/pdf/1801.09092.pdf +c43862db5eb7e43e3ef45b5eac4ab30e318f2002,https://arxiv.org/pdf/1704.03925.pdf +ea46951b070f37ad95ea4ed08c7c2a71be2daedc,https://arxiv.org/pdf/1809.03258.pdf +eac6aee477446a67d491ef7c95abb21867cf71fc,https://arxiv.org/pdf/1602.07017.pdf +ea079334121a0ba89452036e5d7f8e18f6851519,https://arxiv.org/pdf/1708.03615.pdf +eac1b644492c10546a50f3e125a1f790ec46365f,https://arxiv.org/pdf/1704.00616.pdf +ea80a050d20c0e24e0625a92e5c03e5c8db3e786,https://pdfs.semanticscholar.org/ea80/a050d20c0e24e0625a92e5c03e5c8db3e786.pdf +eafda8a94e410f1ad53b3e193ec124e80d57d095,https://pdfs.semanticscholar.org/eafd/a8a94e410f1ad53b3e193ec124e80d57d095.pdf +ea890846912f16a0f3a860fce289596a7dac575f,https://pdfs.semanticscholar.org/ea89/0846912f16a0f3a860fce289596a7dac575f.pdf +eaaed082762337e7c3f8a1b1dfea9c0d3ca281bf,https://pdfs.semanticscholar.org/eaae/d082762337e7c3f8a1b1dfea9c0d3ca281bf.pdf +e1630014a5ae3d2fb7ff6618f1470a567f4d90f5,https://arxiv.org/pdf/1602.04364.pdf +e19fb22b35c352f57f520f593d748096b41a4a7b,https://pdfs.semanticscholar.org/cbd8/716132ed289d21bdc2e031b7dea4849aae5d.pdf +e19ebad4739d59f999d192bac7d596b20b887f78,https://arxiv.org/pdf/1709.03655.pdf +e1d726d812554f2b2b92cac3a4d2bec678969368,https://pdfs.semanticscholar.org/c134/a2441bc1f3ec6b85f22868284c279881b918.pdf +e1256ff535bf4c024dd62faeb2418d48674ddfa2,https://arxiv.org/pdf/1803.11182.pdf +cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66,https://pdfs.semanticscholar.org/cdc7/bd87a2c9983dab728dbc8aac74d8c9ed7e66.pdf +cd4941cbef1e27d7afdc41b48c1aff5338aacf06,https://arxiv.org/pdf/1712.06761.pdf +cdef0eaff4a3c168290d238999fc066ebc3a93e8,https://arxiv.org/pdf/1707.07391.pdf +cd444ee7f165032b97ee76b21b9ff58c10750570,https://pdfs.semanticscholar.org/cd44/4ee7f165032b97ee76b21b9ff58c10750570.pdf +cd23dc3227ee2a3ab0f4de1817d03ca771267aeb,https://pdfs.semanticscholar.org/cd23/dc3227ee2a3ab0f4de1817d03ca771267aeb.pdf +cd2c54705c455a4379f45eefdf32d8d10087e521,https://arxiv.org/pdf/1804.04779.pdf +cd7a7be3804fd217e9f10682e0c0bfd9583a08db,https://arxiv.org/pdf/1807.00517.pdf +cd023d2d067365c83d8e27431e83e7e66082f718,https://arxiv.org/pdf/1804.06039.pdf +cca9ae621e8228cfa787ec7954bb375536160e0d,https://arxiv.org/pdf/1805.07410.pdf +cc8e378fd05152a81c2810f682a78c5057c8a735,https://pdfs.semanticscholar.org/cc8e/378fd05152a81c2810f682a78c5057c8a735.pdf +cc31db984282bb70946f6881bab741aa841d3a7c,https://arxiv.org/pdf/1610.02255.pdf +ccf16bcf458e4d7a37643b8364594656287f5bfc,https://pdfs.semanticscholar.org/ccf1/6bcf458e4d7a37643b8364594656287f5bfc.pdf +e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227,https://arxiv.org/pdf/1808.04976.pdf +e6e5a6090016810fb902b51d5baa2469ae28b8a1,https://pdfs.semanticscholar.org/e6e5/a6090016810fb902b51d5baa2469ae28b8a1.pdf +f92ade569cbe54344ffd3bb25efd366dcd8ad659,https://arxiv.org/pdf/1704.01464.pdf +f94f366ce14555cf0d5d34248f9467c18241c3ee,https://pdfs.semanticscholar.org/f94f/366ce14555cf0d5d34248f9467c18241c3ee.pdf +f997a71f1e54d044184240b38d9dc680b3bbbbc0,https://arxiv.org/pdf/1807.11688.pdf +f08e425c2fce277aedb51d93757839900d591008,https://arxiv.org/pdf/1711.06640.pdf +f0cee87e9ecedeb927664b8da44b8649050e1c86,https://arxiv.org/pdf/1805.02901.pdf +f0f4f16d5b5f9efe304369120651fa688a03d495,https://pdfs.semanticscholar.org/f0f4/f16d5b5f9efe304369120651fa688a03d495.pdf +f0ca31fd5cad07e84b47d50dc07db9fc53482a46,https://pdfs.semanticscholar.org/f0ca/31fd5cad07e84b47d50dc07db9fc53482a46.pdf +f0a4a3fb6997334511d7b8fc090f9ce894679faf,https://arxiv.org/pdf/1704.05838.pdf +f0398ee5291b153b716411c146a17d4af9cb0edc,https://arxiv.org/pdf/1805.02733.pdf +f0f0e94d333b4923ae42ee195df17c0df62ea0b1,https://pdfs.semanticscholar.org/f0f0/e94d333b4923ae42ee195df17c0df62ea0b1.pdf +f02a6bccdaee14ab55ad94263539f4f33f1b15bb,https://pdfs.semanticscholar.org/f02a/6bccdaee14ab55ad94263539f4f33f1b15bb.pdf +f7dea4454c2de0b96ab5cf95008ce7144292e52a,https://arxiv.org/pdf/1805.05563.pdf +f7b4bc4ef14349a6e66829a0101d5b21129dcf55,https://pdfs.semanticscholar.org/f7b4/bc4ef14349a6e66829a0101d5b21129dcf55.pdf +f7b422df567ce9813926461251517761e3e6cda0,https://arxiv.org/pdf/1702.01983.pdf +f7824758800a7b1a386db5bd35f84c81454d017a,https://arxiv.org/pdf/1702.05085.pdf +f78fe101b21be36e98cd3da010051bb9b9829a1e,https://pdfs.semanticscholar.org/f78f/e101b21be36e98cd3da010051bb9b9829a1e.pdf +f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,https://pdfs.semanticscholar.org/f79c/97e7c3f9a98cf6f4a5d2431f149ffacae48f.pdf +f7a271acccf9ec66c9b114d36eec284fbb89c7ef,https://pdfs.semanticscholar.org/f7a2/71acccf9ec66c9b114d36eec284fbb89c7ef.pdf +f7dcadc5288653ec6764600c7c1e2b49c305dfaa,https://pdfs.semanticscholar.org/f7dc/adc5288653ec6764600c7c1e2b49c305dfaa.pdf +f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a,https://arxiv.org/pdf/1611.06179.pdf +e8fdacbd708feb60fd6e7843b048bf3c4387c6db,https://pdfs.semanticscholar.org/e8fd/acbd708feb60fd6e7843b048bf3c4387c6db.pdf +e87d6c284cdd6828dfe7c092087fbd9ff5091ee4,https://arxiv.org/pdf/1704.05693.pdf +e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7,https://arxiv.org/pdf/1701.07174.pdf +e85a255a970ee4c1eecc3e3d110e157f3e0a4629,https://arxiv.org/pdf/1803.03415.pdf +e8d1b134d48eb0928bc999923a4e092537e106f6,https://pdfs.semanticscholar.org/e8d1/b134d48eb0928bc999923a4e092537e106f6.pdf +e8c6c3fc9b52dffb15fe115702c6f159d955d308,https://pdfs.semanticscholar.org/d927/77953677da471c060cbabc2c5b15de8d60b2.pdf +e8b3a257a0a44d2859862cdec91c8841dc69144d,https://arxiv.org/pdf/1808.01725.pdf +fa90b825346a51562d42f6b59a343b98ea2e501a,https://arxiv.org/pdf/1805.06533.pdf +fa4f59397f964a23e3c10335c67d9a24ef532d5c,https://arxiv.org/pdf/1602.03346.pdf +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,https://pdfs.semanticscholar.org/fac8/cff9052fc5fab7d5ef114d1342daba5e4b82.pdf +faf5583063682e70dedc4466ac0f74eeb63169e7,https://pdfs.semanticscholar.org/6ca0/be5608fc00181596e562eb867eeb8cb43a4a.pdf +fab60b3db164327be8588bce6ce5e45d5b882db6,https://pdfs.semanticscholar.org/fab6/0b3db164327be8588bce6ce5e45d5b882db6.pdf +fad895771260048f58d12158a4d4d6d0623f4158,https://pdfs.semanticscholar.org/fad8/95771260048f58d12158a4d4d6d0623f4158.pdf +ffea8775fc9c32f573d1251e177cd283b4fe09c9,https://arxiv.org/pdf/1804.04418.pdf +fffefc1fb840da63e17428fd5de6e79feb726894,https://arxiv.org/pdf/1805.10445.pdf +ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,https://arxiv.org/pdf/1706.04277.pdf +ff8ef43168b9c8dd467208a0b1b02e223b731254,https://arxiv.org/pdf/1603.07141.pdf +ff9195f99a1a28ced431362f5363c9a5da47a37b,https://pdfs.semanticscholar.org/ff91/95f99a1a28ced431362f5363c9a5da47a37b.pdf +c588c89a72f89eed29d42f34bfa5d4cffa530732,https://arxiv.org/pdf/1705.01734.pdf +c5ea084531212284ce3f1ca86a6209f0001de9d1,https://pdfs.semanticscholar.org/c5ea/084531212284ce3f1ca86a6209f0001de9d1.pdf +c254b4c0f6d5a5a45680eb3742907ec93c3a222b,https://arxiv.org/pdf/1711.06451.pdf +f60a85bd35fa85739d712f4c93ea80d31aa7de07,https://arxiv.org/pdf/1710.06924.pdf +f6f06be05981689b94809130e251f9e4bf932660,https://pdfs.semanticscholar.org/fa86/ec19c1aec46202e0df12d209eb8062d53f7b.pdf +f68ed499e9d41f9c3d16d843db75dc12833d988d,https://arxiv.org/pdf/1805.05029.pdf +f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a,https://arxiv.org/pdf/1806.09755.pdf +f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca,https://arxiv.org/pdf/1705.02928.pdf +f61d5f2a082c65d5330f21b6f36312cc4fab8a3b,https://arxiv.org/pdf/1705.08841.pdf +f6cf2108ec9d0f59124454d88045173aa328bd2e,https://pdfs.semanticscholar.org/f6cf/2108ec9d0f59124454d88045173aa328bd2e.pdf +f6e00d6430cbbaa64789d826d093f7f3e323b082,https://pdfs.semanticscholar.org/5255/490925aa1e01ac0b9a55e93ec8c82efc07b7.pdf +e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,https://pdfs.semanticscholar.org/e9a5/a38e7da3f0aa5d21499149536199f2e0e1f7.pdf +e988be047b28ba3b2f1e4cdba3e8c94026139fcf,https://arxiv.org/pdf/1702.04710.pdf +e9d43231a403b4409633594fa6ccc518f035a135,https://pdfs.semanticscholar.org/e9d4/3231a403b4409633594fa6ccc518f035a135.pdf +e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,https://arxiv.org/pdf/1712.02979.pdf +e9c008d31da38d9eef67a28d2c77cb7daec941fb,https://arxiv.org/pdf/1708.03769.pdf +e9363f4368b04aeaa6d6617db0a574844fc59338,https://arxiv.org/pdf/1710.08315.pdf +f1250900074689061196d876f551ba590fc0a064,https://arxiv.org/pdf/1710.07354.pdf +f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,https://arxiv.org/pdf/1707.05653.pdf +f1aa120fb720f6cfaab13aea4b8379275e6d40a2,https://pdfs.semanticscholar.org/f1aa/120fb720f6cfaab13aea4b8379275e6d40a2.pdf +f1ba2fe3491c715ded9677862fea966b32ca81f0,https://pdfs.semanticscholar.org/f1ba/2fe3491c715ded9677862fea966b32ca81f0.pdf +f113aed343bcac1021dc3e57ba6cc0647a8f5ce1,https://pdfs.semanticscholar.org/f113/aed343bcac1021dc3e57ba6cc0647a8f5ce1.pdf +e7cac91da51b78eb4a28e194d3f599f95742e2a2,https://pdfs.semanticscholar.org/e7ca/c91da51b78eb4a28e194d3f599f95742e2a2.pdf +e7b2b0538731adaacb2255235e0a07d5ccf09189,https://arxiv.org/pdf/1803.10837.pdf +cbca355c5467f501d37b919d8b2a17dcb39d3ef9,https://pdfs.semanticscholar.org/cbca/355c5467f501d37b919d8b2a17dcb39d3ef9.pdf +cbbd13c29d042743f0139f1e044b6bca731886d0,https://pdfs.semanticscholar.org/cbbd/13c29d042743f0139f1e044b6bca731886d0.pdf +cb004e9706f12d1de83b88c209ac948b137caae0,https://arxiv.org/pdf/1511.01186.pdf +cb2917413c9b36c3bb9739bce6c03a1a6eb619b3,https://pdfs.semanticscholar.org/cb29/17413c9b36c3bb9739bce6c03a1a6eb619b3.pdf +cb13e29fb8af6cfca568c6dc523da04d1db1fff5,https://arxiv.org/pdf/1806.05781.pdf +cbb27980eb04f68d9f10067d3d3c114efa9d0054,https://arxiv.org/pdf/1807.03380.pdf +f842b13bd494be1bbc1161dc6df244340b28a47f,https://pdfs.semanticscholar.org/f842/b13bd494be1bbc1161dc6df244340b28a47f.pdf +f8f872044be2918de442ba26a30336d80d200c42,https://pdfs.semanticscholar.org/f8f8/72044be2918de442ba26a30336d80d200c42.pdf +f87b22e7f0c66225824a99cada71f9b3e66b5742,https://arxiv.org/pdf/1709.03126.pdf +ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6,https://pdfs.semanticscholar.org/535a/b2d3a443235ef98d818f133a26c7445214a7.pdf +ce450e4849490924488664b44769b4ca57f1bc1a,https://arxiv.org/pdf/1612.00881.pdf +ce032dae834f383125cdd852e7c1bc793d4c3ba3,https://pdfs.semanticscholar.org/e459/e31cfd985ec0031d5e9ff4896a84ebaff972.pdf +ce9e1dfa7705623bb67df3a91052062a0a0ca456,https://arxiv.org/pdf/1611.05507.pdf +e03bda45248b4169e2a20cb9124ae60440cad2de,https://pdfs.semanticscholar.org/0434/9d5d7c72d7fa3d1427b7afbfaa3ae07992ed.pdf +e03e86ac61cfac9148b371d75ce81a55e8b332ca,https://pdfs.semanticscholar.org/e03e/86ac61cfac9148b371d75ce81a55e8b332ca.pdf +e096b11b3988441c0995c13742ad188a80f2b461,https://arxiv.org/pdf/1606.04702.pdf +e01bb53b611c679141494f3ffe6f0b91953af658,https://arxiv.org/pdf/1711.10703.pdf +e0939b4518a5ad649ba04194f74f3413c793f28e,https://pdfs.semanticscholar.org/02ce/655ade8d052d099ae145afd032eb39d089b4.pdf +e00d391d7943561f5c7b772ab68e2bb6a85e64c4,https://pdfs.semanticscholar.org/e00d/391d7943561f5c7b772ab68e2bb6a85e64c4.pdf +e065a2cb4534492ccf46d0afc81b9ad8b420c5ec,https://arxiv.org/pdf/1804.06559.pdf +e00241f00fb31c660df6c6f129ca38370e6eadb3,https://arxiv.org/pdf/1801.01415.pdf +e0244a8356b57a5721c101ead351924bcfb2eef4,https://pdfs.semanticscholar.org/e024/4a8356b57a5721c101ead351924bcfb2eef4.pdf +46f2611dc4a9302e0ac00a79456fa162461a8c80,https://arxiv.org/pdf/1806.07754.pdf +46e72046a9bb2d4982d60bcf5c63dbc622717f0f,https://arxiv.org/pdf/1605.02424.pdf +4641986af5fc8836b2c883ea1a65278d58fe4577,https://arxiv.org/pdf/1701.02426.pdf +464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a,https://arxiv.org/pdf/1808.07272.pdf +2c424f21607ff6c92e640bfe3da9ff105c08fac4,https://pdfs.semanticscholar.org/3f25/e17eb717e5894e0404ea634451332f85d287.pdf +2c93c8da5dfe5c50119949881f90ac5a0a4f39fe,https://arxiv.org/pdf/1805.01951.pdf +2cac8ab4088e2bdd32dcb276b86459427355085c,https://pdfs.semanticscholar.org/2cac/8ab4088e2bdd32dcb276b86459427355085c.pdf +2cde051e04569496fb525d7f1b1e5ce6364c8b21,https://arxiv.org/pdf/1505.02890.pdf +2c1ffb0feea5f707c890347d2c2882be0494a67a,https://arxiv.org/pdf/1807.08919.pdf +2c5d1e0719f3ad7f66e1763685ae536806f0c23b,https://arxiv.org/pdf/1701.00599.pdf +2c1f8ddbfbb224271253a27fed0c2425599dfe47,https://arxiv.org/pdf/1708.07689.pdf +2c62b9e64aeddf12f9d399b43baaefbca8e11148,https://arxiv.org/pdf/1803.05536.pdf +2c19d3d35ef7062061b9e16d040cebd7e45f281d,https://arxiv.org/pdf/1711.04161.pdf +79f6a8f777a11fd626185ab549079236629431ac,https://pdfs.semanticscholar.org/79f6/a8f777a11fd626185ab549079236629431ac.pdf +79dc84a3bf76f1cb983902e2591d913cee5bdb0e,https://pdfs.semanticscholar.org/1e9e/87fc99430a82621810b3ce7db51e339be315.pdf +79744fc71bea58d2e1918c9e254b10047472bd76,https://arxiv.org/pdf/1802.06713.pdf +79c3a7131c6c176b02b97d368cd0cd0bc713ff7e,https://pdfs.semanticscholar.org/538a/30196253e458a2a30d530218ffa449c4d24e.pdf +799c02a3cde2c0805ea728eb778161499017396b,https://arxiv.org/pdf/1711.01984.pdf +79db191ca1268dc88271abef3179c4fe4ee92aed,https://pdfs.semanticscholar.org/79db/191ca1268dc88271abef3179c4fe4ee92aed.pdf +2d9e58ea582e054e9d690afca8b6a554c3687ce6,https://arxiv.org/pdf/1706.08580.pdf +2d8001ffee6584b3f4d951d230dc00a06e8219f8,https://arxiv.org/pdf/1712.00721.pdf +2dfe0e7e81f65716b09c590652a4dd8452c10294,https://pdfs.semanticscholar.org/2dfe/0e7e81f65716b09c590652a4dd8452c10294.pdf +2d8d089d368f2982748fde93a959cf5944873673,https://pdfs.semanticscholar.org/2d8d/089d368f2982748fde93a959cf5944873673.pdf +2d4a3e9361505616fa4851674eb5c8dd18e0c3cf,https://arxiv.org/pdf/1807.08379.pdf +41f26101fed63a8d149744264dd5aa79f1928265,https://arxiv.org/pdf/1604.07602.pdf +411318684bd2d42e4b663a37dcf0532a48f0146d,https://pdfs.semanticscholar.org/4e20/8cfff33327863b5aeef0bf9b327798a5610c.pdf +414715421e01e8c8b5743c5330e6d2553a08c16d,https://pdfs.semanticscholar.org/4147/15421e01e8c8b5743c5330e6d2553a08c16d.pdf +8356832f883207187437872742d6b7dc95b51fde,https://arxiv.org/pdf/1807.00458.pdf +835e510fcf22b4b9097ef51b8d0bb4e7b806bdfd,https://arxiv.org/pdf/1804.00946.pdf +83295bce2340cb87901499cff492ae6ff3365475,https://arxiv.org/pdf/1808.01558.pdf +83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05,https://pdfs.semanticscholar.org/d726/6bf19e202f62f31c363a5a5656c67c03118b.pdf +837e99301e00c2244023a8a48ff98d7b521c93ac,https://pdfs.semanticscholar.org/b7b7/4e0ec15c22e1c94406c592bbb83c8e865f52.pdf +8334da483f1986aea87b62028672836cb3dc6205,https://arxiv.org/pdf/1805.06306.pdf +831b4d8b0c0173b0bac0e328e844a0fbafae6639,https://arxiv.org/pdf/1809.01407.pdf +1b02b9413b730b96b91d16dcd61b2420aef97414,https://pdfs.semanticscholar.org/1b02/b9413b730b96b91d16dcd61b2420aef97414.pdf +1b55c4e804d1298cbbb9c507497177014a923d22,https://pdfs.semanticscholar.org/1b55/c4e804d1298cbbb9c507497177014a923d22.pdf +1bdef21f093c41df2682a07f05f3548717c7a3d1,https://pdfs.semanticscholar.org/1bde/f21f093c41df2682a07f05f3548717c7a3d1.pdf +1bbec7190ac3ba34ca91d28f145e356a11418b67,https://pdfs.semanticscholar.org/1bbe/c7190ac3ba34ca91d28f145e356a11418b67.pdf +1b3587363d37dd197b6adbcfa79d49b5486f27d8,https://arxiv.org/pdf/1806.06371.pdf +1b71d3f30238cb6621021a95543cce3aab96a21b,https://arxiv.org/pdf/1804.09235.pdf +1b4f6f73c70353869026e5eec1dd903f9e26d43f,https://arxiv.org/pdf/1501.06202.pdf +1badfeece64d1bf43aa55c141afe61c74d0bd25e,https://arxiv.org/pdf/1712.01727.pdf +7789a5d87884f8bafec8a82085292e87d4e2866f,https://arxiv.org/pdf/1612.09548.pdf +77db171a523fc3d08c91cea94c9562f3edce56e1,https://pdfs.semanticscholar.org/49af/c659fd0709511759fd220f49b5eb2265e815.pdf +77fbbf0c5729f97fcdbfdc507deee3d388cd4889,https://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf +776362314f1479f5319aaf989624ac604ba42c65,https://pdfs.semanticscholar.org/78aa/2775625c85aedd6a2adc90eb94b8cafd6e91.pdf +48186494fc7c0cc664edec16ce582b3fcb5249c0,https://arxiv.org/pdf/1506.03607.pdf +48499deeaa1e31ac22c901d115b8b9867f89f952,https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf +4850af6b54391fc33c8028a0b7fafe05855a96ff,https://arxiv.org/pdf/1605.00707.pdf +48e6c6d981efe2c2fb0ae9287376fcae59da9878,https://arxiv.org/pdf/1807.11010.pdf +48a5b6ee60475b18411a910c6084b3a32147b8cd,https://pdfs.semanticscholar.org/48a5/b6ee60475b18411a910c6084b3a32147b8cd.pdf +4896909796f9bd2f70a2cb24bf18daacd6a12128,https://pdfs.semanticscholar.org/4896/909796f9bd2f70a2cb24bf18daacd6a12128.pdf +70109c670471db2e0ede3842cbb58ba6be804561,https://arxiv.org/pdf/1607.02104.pdf +703dc33736939f88625227e38367cfb2a65319fe,https://arxiv.org/pdf/1703.09026.pdf +701f56f0eac9f88387de1f556acef78016b05d52,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf +706b9767a444de4fe153b2f3bff29df7674c3161,https://arxiv.org/pdf/1511.06442.pdf +70c58700eb89368e66a8f0d3fc54f32f69d423e1,https://pdfs.semanticscholar.org/70c5/8700eb89368e66a8f0d3fc54f32f69d423e1.pdf +707a542c580bcbf3a5a75cce2df80d75990853cc,https://arxiv.org/pdf/1809.01936.pdf +704d88168bdfabe31b6ff484507f4a2244b8c52b,https://arxiv.org/pdf/1803.07445.pdf +70c9d11cad12dc1692a4507a97f50311f1689dbf,https://arxiv.org/pdf/1702.02463.pdf +1ea74780d529a458123a08250d8fa6ef1da47a25,https://pdfs.semanticscholar.org/1ea7/4780d529a458123a08250d8fa6ef1da47a25.pdf +1efacaa0eaa7e16146c34cd20814d1411b35538e,https://arxiv.org/pdf/1805.06749.pdf +1ef1f33c48bc159881c5c8536cbbd533d31b0e9a,https://pdfs.semanticscholar.org/1ef1/f33c48bc159881c5c8536cbbd533d31b0e9a.pdf +1e21b925b65303ef0299af65e018ec1e1b9b8d60,https://arxiv.org/pdf/1611.02200.pdf +1ee3b4ba04e54bfbacba94d54bf8d05fd202931d,https://pdfs.semanticscholar.org/1ee3/b4ba04e54bfbacba94d54bf8d05fd202931d.pdf +1efaa128378f988965841eb3f49d1319a102dc36,https://arxiv.org/pdf/1808.04803.pdf +8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2,https://pdfs.semanticscholar.org/8451/bf3dd6bcd946be14b1a75af8bbb65a42d4b2.pdf +841855205818d3a6d6f85ec17a22515f4f062882,https://arxiv.org/pdf/1805.11529.pdf +84c0f814951b80c3b2e39caf3925b56a9b2e1733,https://pdfs.semanticscholar.org/84c0/f814951b80c3b2e39caf3925b56a9b2e1733.pdf +84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1,https://pdfs.semanticscholar.org/db88/70aba4eca31ba56e993e4e94ae86eed6589a.pdf +84508e846af3ac509f7e1d74b37709107ba48bde,https://pdfs.semanticscholar.org/8450/8e846af3ac509f7e1d74b37709107ba48bde.pdf +849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b,https://pdfs.semanticscholar.org/849f/891973ad2b6c6f70d7d43d9ac5805f1a1a5b.pdf +4ab84f203b0e752be83f7f213d7495b04b1c4c79,https://arxiv.org/pdf/1711.00659.pdf +4a3758f283b7c484d3f164528d73bc8667eb1591,https://arxiv.org/pdf/1809.06647.pdf +4aa093d1986b4ad9b073ac9edfb903f62c00e0b0,https://arxiv.org/pdf/1809.06218.pdf +4ac3cd8b6c50f7a26f27eefc64855134932b39be,https://pdfs.semanticscholar.org/4ac3/cd8b6c50f7a26f27eefc64855134932b39be.pdf +24115d209e0733e319e39badc5411bbfd82c5133,https://arxiv.org/pdf/1411.4389.pdf +24f022d807352abf071880877c38e53a98254dcd,https://arxiv.org/pdf/1809.05465.pdf +24869258fef8f47623b5ef43bd978a525f0af60e,https://pdfs.semanticscholar.org/c2b3/d8ac1f02e63809c74d2eacb37329ec139ce2.pdf +24ff832171cb774087a614152c21f54589bf7523,https://arxiv.org/pdf/1508.03755.pdf +23ce6f404c504592767b8bec7d844d87b462de71,https://arxiv.org/pdf/1805.00324.pdf +2322ec2f3571e0ddc593c4e2237a6a794c61251d,https://pdfs.semanticscholar.org/2322/ec2f3571e0ddc593c4e2237a6a794c61251d.pdf +23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f,https://arxiv.org/pdf/1704.06456.pdf +2303d07d839e8b20f33d6e2ec78d1353cac256cf,https://arxiv.org/pdf/1806.00631.pdf +23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,https://pdfs.semanticscholar.org/23dd/8d17ce09c22d367e4d62c1ccf507bcbc64da.pdf +23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e,https://pdfs.semanticscholar.org/21b0/fe87731197c94f9e282e995c8f75a9b721a5.pdf +4f9e00aaf2736b79e415f5e7c8dfebda3043a97d,https://pdfs.semanticscholar.org/d713/d11d5c8f466ad56286f407991b2d88b606ff.pdf +4f051022de100241e5a4ba8a7514db9167eabf6e,https://arxiv.org/pdf/1708.03736.pdf +4f4f920eb43399d8d05b42808e45b56bdd36a929,https://pdfs.semanticscholar.org/4f4f/920eb43399d8d05b42808e45b56bdd36a929.pdf +4f0b8f730273e9f11b2bfad2415485414b96299f,https://arxiv.org/pdf/1805.04687.pdf +4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf +8de6deefb90fb9b3f7d451b9d8a1a3264b768482,https://pdfs.semanticscholar.org/8de6/deefb90fb9b3f7d451b9d8a1a3264b768482.pdf +8d384e8c45a429f5c5f6628e8ba0d73c60a51a89,https://arxiv.org/pdf/1708.00666.pdf +8dcc95debd07ebab1721c53fa50d846fef265022,https://arxiv.org/pdf/1711.07011.pdf +8d5998cd984e7cce307da7d46f155f9db99c6590,https://arxiv.org/pdf/1701.02664.pdf +15136c2f94fd29fc1cb6bedc8c1831b7002930a6,https://arxiv.org/pdf/1802.09990.pdf +15d653972d176963ef0ad2cc582d3b35ca542673,https://arxiv.org/pdf/1612.05203.pdf +15aa6c457678e25f6bc0e818e5fc39e42dd8e533,https://arxiv.org/pdf/1806.07823.pdf +15cf1f17aeba62cd834116b770f173b0aa614bf4,https://pdfs.semanticscholar.org/15cf/1f17aeba62cd834116b770f173b0aa614bf4.pdf +121503705689f46546cade78ff62963574b4750b,https://arxiv.org/pdf/1602.08405.pdf +1275d6a800f8cf93c092603175fdad362b69c191,https://arxiv.org/pdf/1804.06655.pdf +1287bfe73e381cc8042ac0cc27868ae086e1ce3b,https://pdfs.semanticscholar.org/1287/bfe73e381cc8042ac0cc27868ae086e1ce3b.pdf +12408baf69419409d228d96c6f88b6bcde303505,https://arxiv.org/pdf/1612.06950.pdf +12095f9b35ee88272dd5abc2d942a4f55804b31e,https://pdfs.semanticscholar.org/1209/5f9b35ee88272dd5abc2d942a4f55804b31e.pdf +1275852f2e78ed9afd189e8b845fdb5393413614,https://arxiv.org/pdf/1808.04068.pdf +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,https://pdfs.semanticscholar.org/1297/ee7a41aa4e8499c7ddb3b1fed783eba19056.pdf +120785f9b4952734818245cc305148676563a99b,https://pdfs.semanticscholar.org/1207/85f9b4952734818245cc305148676563a99b.pdf +1251deae1b4a722a2155d932bdfb6fe4ae28dd22,https://arxiv.org/pdf/1804.04314.pdf +12ebeb2176a5043ad57bc5f3218e48a96254e3e9,https://pdfs.semanticscholar.org/c5ae/ec7db8132685f408ca17a7a5c45c196b0323.pdf +8ccde9d80706a59e606f6e6d48d4260b60ccc736,https://arxiv.org/pdf/1805.06846.pdf +8ce9b7b52d05701d5ef4a573095db66ce60a7e1c,https://arxiv.org/pdf/1610.05211.pdf +8cb6daba2cb1e208e809633133adfee0183b8dd2,https://pdfs.semanticscholar.org/8cb6/daba2cb1e208e809633133adfee0183b8dd2.pdf +85fd2bda5eb3afe68a5a78c30297064aec1361f6,https://pdfs.semanticscholar.org/85fd/2bda5eb3afe68a5a78c30297064aec1361f6.pdf +858b51a8a8aa082732e9c7fbbd1ea9df9c76b013,https://pdfs.semanticscholar.org/858b/51a8a8aa082732e9c7fbbd1ea9df9c76b013.pdf +856317f27248cdb20226eaae599e46de628fb696,https://arxiv.org/pdf/1805.12467.pdf +1d776bfe627f1a051099997114ba04678c45f0f5,https://arxiv.org/pdf/1805.10604.pdf +1d7df3df839a6aa8f5392310d46b2a89080a3c25,https://arxiv.org/pdf/1612.02295.pdf +1d729693a888a460ee855040f62bdde39ae273af,https://pdfs.semanticscholar.org/9da1/91858f65fd99c9b204a6f68916711d4bd51b.pdf +1d4c25f9f8f08f5a756d6f472778ab54a7e6129d,https://pdfs.semanticscholar.org/1d4c/25f9f8f08f5a756d6f472778ab54a7e6129d.pdf +7142ac9e4d5498037aeb0f459f278fd28dae8048,https://pdfs.semanticscholar.org/a148/0722ce6c89468ef44548c39fb79012f91a64.pdf +7117ed0be436c0291bc6fb6ea6db18de74e2464a,https://pdfs.semanticscholar.org/7117/ed0be436c0291bc6fb6ea6db18de74e2464a.pdf +714d487571ca0d676bad75c8fa622d6f50df953b,https://arxiv.org/pdf/1511.06491.pdf +7143518f847b0ec57a0ff80e0304c89d7e924d9a,https://arxiv.org/pdf/1805.08373.pdf +710011644006c18291ad512456b7580095d628a2,https://arxiv.org/pdf/1612.05363.pdf +713db3874b77212492d75fb100a345949f3d3235,https://arxiv.org/pdf/1803.03345.pdf +715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,https://arxiv.org/pdf/1610.03207.pdf +76cd5e43df44e389483f23cb578a9015d1483d70,https://pdfs.semanticscholar.org/76cd/5e43df44e389483f23cb578a9015d1483d70.pdf +76b11c281ac47fe6d95e124673a408ee9eb568e3,https://pdfs.semanticscholar.org/76b1/1c281ac47fe6d95e124673a408ee9eb568e3.pdf +764882e6779fbee29c3d87e00302befc52d2ea8d,https://arxiv.org/pdf/1711.07437.pdf +766728bac030b169fcbc2fbafe24c6e22a58ef3c,https://pdfs.semanticscholar.org/7667/28bac030b169fcbc2fbafe24c6e22a58ef3c.pdf +7697295ee6fc817296bed816ac5cae97644c2d5b,https://arxiv.org/pdf/1704.07333.pdf +1c9efb6c895917174ac6ccc3bae191152f90c625,https://arxiv.org/pdf/1806.03084.pdf +1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc,https://pdfs.semanticscholar.org/6a82/2f65c3a49525ffa0dc896ac24e9ad3dca62e.pdf +1c41965c5e1f97b1504c1bdde8037b5e0417da5e,https://arxiv.org/pdf/1808.01106.pdf +1c6e22516ceb5c97c3caf07a9bd5df357988ceda,https://arxiv.org/pdf/1806.05476.pdf +825f56ff489cdd3bcc41e76426d0070754eab1a8,https://pdfs.semanticscholar.org/bc51/1519cf8d4e3e247d7506c38d80f64c6a859e.pdf +824d1db06e1c25f7681e46199fd02cb5fc343784,https://pdfs.semanticscholar.org/824d/1db06e1c25f7681e46199fd02cb5fc343784.pdf +82eff71af91df2ca18aebb7f1153a7aed16ae7cc,https://pdfs.semanticscholar.org/82ef/f71af91df2ca18aebb7f1153a7aed16ae7cc.pdf +82a610a59c210ff77cfdde7fd10c98067bd142da,https://pdfs.semanticscholar.org/82a6/10a59c210ff77cfdde7fd10c98067bd142da.pdf +829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a,https://pdfs.semanticscholar.org/bbf4/f0ce0838c8eec048e3a9b212053fd98dde5a.pdf +82417d8ec8ac6406f2d55774a35af2a1b3f4b66e,https://pdfs.semanticscholar.org/8241/7d8ec8ac6406f2d55774a35af2a1b3f4b66e.pdf +82eb267b8e86be0b444e841b4b4ed4814b6f1942,https://arxiv.org/pdf/1604.08685.pdf +4972aadcce369a8c0029e6dc2f288dfd0241e144,https://arxiv.org/pdf/1809.00852.pdf +49e975a4c60d99bcc42c921d73f8d89ec7130916,https://pdfs.semanticscholar.org/49e9/75a4c60d99bcc42c921d73f8d89ec7130916.pdf +49df381ea2a1e7f4059346311f1f9f45dd997164,https://arxiv.org/pdf/1807.00848.pdf +403a108dec92363fd1f465340bd54dbfe65af870,https://arxiv.org/pdf/1510.00542.pdf +40dd2b9aace337467c6e1e269d0cb813442313d7,https://pdfs.semanticscholar.org/40dd/2b9aace337467c6e1e269d0cb813442313d7.pdf +407de9da58871cae7a6ded2f3a6162b9dc371f38,https://arxiv.org/pdf/1808.00297.pdf +40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b,https://arxiv.org/pdf/1804.05197.pdf +40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd,https://pdfs.semanticscholar.org/8ef1/0da52c6b2c3856f56aa9d68acab4c1649ed8.pdf +40e1743332523b2ab5614bae5e10f7a7799161f4,https://arxiv.org/pdf/1711.06753.pdf +40273657e6919455373455bd9a5355bb46a7d614,https://arxiv.org/pdf/1805.09380.pdf +2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87,https://arxiv.org/pdf/1805.11333.pdf +2e5cfa97f3ecc10ae8f54c1862433285281e6a7c,https://pdfs.semanticscholar.org/2e5c/fa97f3ecc10ae8f54c1862433285281e6a7c.pdf +2e0d56794379c436b2d1be63e71a215dd67eb2ca,https://arxiv.org/pdf/1709.03872.pdf +2e231f1e7e641dd3619bec59e14d02e91360ac01,https://arxiv.org/pdf/1807.10421.pdf +2ed4973984b254be5cba3129371506275fe8a8eb,https://pdfs.semanticscholar.org/2ed4/973984b254be5cba3129371506275fe8a8eb.pdf +2e9c780ee8145f29bd1a000585dd99b14d1f5894,https://arxiv.org/pdf/1807.08108.pdf +2e832d5657bf9e5678fd45b118fc74db07dac9da,https://pdfs.semanticscholar.org/2e83/2d5657bf9e5678fd45b118fc74db07dac9da.pdf +2bb53e66aa9417b6560e588b6235e7b8ebbc294c,https://arxiv.org/pdf/1502.01540.pdf +2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,https://arxiv.org/pdf/1803.00130.pdf +477236563c6a6c6db922045453b74d3f9535bfa1,https://pdfs.semanticscholar.org/3c3a/e3a2e7c3ee00f33a87a82d5783e84c3a1de2.pdf +47190d213caef85e8b9dd0d271dbadc29ed0a953,https://arxiv.org/pdf/1807.11649.pdf +47e14fdc6685f0b3800f709c32e005068dfc8d47,https://arxiv.org/pdf/1805.00577.pdf +782188821963304fb78791e01665590f0cd869e8,https://arxiv.org/pdf/1708.01311.pdf +78c1ad33772237bf138084220d1ffab800e1200d,https://arxiv.org/pdf/1804.08450.pdf +78598e7005f7c96d64cc47ff47e6f13ae52245b8,https://arxiv.org/pdf/1708.00370.pdf +78174c2be084e67f48f3e8ea5cb6c9968615a42c,https://arxiv.org/pdf/1809.06157.pdf +8b2c090d9007e147b8c660f9282f357336358061,https://pdfs.semanticscholar.org/8b2c/090d9007e147b8c660f9282f357336358061.pdf +8bed7ff2f75d956652320270eaf331e1f73efb35,https://arxiv.org/pdf/1709.03820.pdf +8befcd91c24038e5c26df0238d26e2311b21719a,https://arxiv.org/pdf/1808.02559.pdf +8bdf6f03bde08c424c214188b35be8b2dec7cdea,https://arxiv.org/pdf/1805.04049.pdf +8b744786137cf6be766778344d9f13abf4ec0683,https://pdfs.semanticscholar.org/8b74/4786137cf6be766778344d9f13abf4ec0683.pdf +8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8,https://pdfs.semanticscholar.org/8b61/fdc47b5eeae6bc0a52523f519eaeaadbc8c8.pdf +8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259,https://pdfs.semanticscholar.org/8b38/124ff02a9cf8ad00de5521a7f8a9fa4d7259.pdf +134f1cee8408cca648d8b4ca44b38b0a7023af71,https://pdfs.semanticscholar.org/134f/1cee8408cca648d8b4ca44b38b0a7023af71.pdf +13604bbdb6f04a71dea4bd093794e46730b0a488,https://arxiv.org/pdf/1712.09482.pdf +13aef395f426ca8bd93640c9c3f848398b189874,https://pdfs.semanticscholar.org/13ae/f395f426ca8bd93640c9c3f848398b189874.pdf +1316296fae6485c1510f00b1b57fb171b9320ac2,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf +7f511a6a2b38a26f077a5aec4baf5dffc981d881,https://arxiv.org/pdf/1805.02877.pdf +7f21a7441c6ded38008c1fd0b91bdd54425d3f80,https://arxiv.org/pdf/1809.05474.pdf +7fb5006b6522436ece5bedf509e79bdb7b79c9a7,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf +7f4bc8883c3b9872408cc391bcd294017848d0cf,https://pdfs.semanticscholar.org/7f4b/c8883c3b9872408cc391bcd294017848d0cf.pdf +7f445191fa0475ff0113577d95502a96dc702ef9,https://arxiv.org/pdf/1805.04026.pdf +7fab17ef7e25626643f1d55257a3e13348e435bd,https://arxiv.org/pdf/1702.08423.pdf +7a81967598c2c0b3b3771c1af943efb1defd4482,https://arxiv.org/pdf/1503.01508.pdf +7a3d46f32f680144fd2ba261681b43b86b702b85,https://arxiv.org/pdf/1805.01282.pdf +7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b,https://arxiv.org/pdf/1709.08129.pdf +7ac9aaafe4d74542832c273acf9d631cb8ea6193,https://arxiv.org/pdf/1809.04185.pdf +7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697,https://arxiv.org/pdf/1807.07320.pdf +7aa062c6c90dba866273f5edd413075b90077b51,https://pdfs.semanticscholar.org/7aa0/62c6c90dba866273f5edd413075b90077b51.pdf +7a131fafa7058fb75fdca32d0529bc7cb50429bd,https://arxiv.org/pdf/1704.04086.pdf +1442319de86d171ce9595b20866ec865003e66fc,https://pdfs.semanticscholar.org/1442/319de86d171ce9595b20866ec865003e66fc.pdf +14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b,https://arxiv.org/pdf/1806.11008.pdf +14ee4948be56caeb30aa3b94968ce663e7496ce4,https://pdfs.semanticscholar.org/14ee/4948be56caeb30aa3b94968ce663e7496ce4.pdf +8e3d0b401dec8818cd0245c540c6bc032f169a1d,https://arxiv.org/pdf/1702.08398.pdf +8e3c97e420e0112c043929087d6456d8ab61e95c,https://pdfs.semanticscholar.org/0e44/90f7616634e06a0b89eedbe37433d7f5392d.pdf +8e0ab1b08964393e4f9f42ca037220fe98aad7ac,https://arxiv.org/pdf/1712.04695.pdf +8ed32c8fad924736ebc6d99c5c319312ba1fa80b,https://pdfs.semanticscholar.org/8ed3/2c8fad924736ebc6d99c5c319312ba1fa80b.pdf +8e36100cb144685c26e46ad034c524b830b8b2f2,https://pdfs.semanticscholar.org/8e36/100cb144685c26e46ad034c524b830b8b2f2.pdf +8ed33184fccde677ec8413ae06f28ea9f2ca70f3,https://arxiv.org/pdf/1712.00796.pdf +8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b,https://arxiv.org/pdf/1711.10520.pdf +2227f978f084ebb18cb594c0cfaf124b0df6bf95,https://pdfs.semanticscholar.org/2227/f978f084ebb18cb594c0cfaf124b0df6bf95.pdf +2201f187a7483982c2e8e2585ad9907c5e66671d,https://pdfs.semanticscholar.org/1cad/9aa5095733b56e998ad0cd396e89c2bc9928.pdf +227b1a09b942eaf130d1d84cdcabf98921780a22,https://pdfs.semanticscholar.org/227b/1a09b942eaf130d1d84cdcabf98921780a22.pdf +25ff865460c2b5481fa4161749d5da8501010aa0,https://arxiv.org/pdf/1702.07971.pdf +2588acc7a730d864f84d4e1a050070ff873b03d5,https://pdfs.semanticscholar.org/2588/acc7a730d864f84d4e1a050070ff873b03d5.pdf +25982e2bef817ebde7be5bb80b22a9864b979fb0,https://arxiv.org/pdf/1709.05731.pdf diff --git a/scraper/reports/misc/raw_paper_pdf_list.csv b/scraper/reports/misc/raw_paper_pdf_list.csv new file mode 100644 index 00000000..b78a3755 --- /dev/null +++ b/scraper/reports/misc/raw_paper_pdf_list.csv @@ -0,0 +1,2434 @@ +Paper ID,PDF URL,IEEE URL,DOI URL,Extra URL +610779e90b644cc18696d7ac7820d3e0598e24d0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7067419,, +61262450d4d814865a4f9a84299c24daa493f66e,,,http://doi.org/10.1007/s10462-016-9474-x, +61971f8e6fff5b35faed610d02ad14ccfc186c70,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373843,, +61e2044184d86d0f13e50ecaa3da6a4913088c76,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7572183,, +61f04606528ecf4a42b49e8ac2add2e9f92c0def,https://arxiv.org/pdf/1605.01014.pdf,,,https://arxiv.org/pdf/1605.01014.pdf +61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa,https://arxiv.org/pdf/1809.01604.pdf,,,https://arxiv.org/pdf/1809.01604.pdf +61e9e180d3d1d8b09f1cc59bdd9f98c497707eff,https://pdfs.semanticscholar.org/61e9/e180d3d1d8b09f1cc59bdd9f98c497707eff.pdf,,,https://pdfs.semanticscholar.org/61e9/e180d3d1d8b09f1cc59bdd9f98c497707eff.pdf +61329bc767152f01aa502989abc854b53047e52c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450832,, +6193c833ad25ac27abbde1a31c1cabe56ce1515b,https://pdfs.semanticscholar.org/5f25/7ca18a92c3595db3bda3224927ec494003a5.pdf,,,https://pdfs.semanticscholar.org/5f25/7ca18a92c3595db3bda3224927ec494003a5.pdf +614079f1a0d0938f9c30a1585f617fa278816d53,https://arxiv.org/pdf/1612.02374.pdf,,,https://arxiv.org/pdf/1612.02374.pdf +0da75b0d341c8f945fae1da6c77b6ec345f47f2a,https://pdfs.semanticscholar.org/0da7/5b0d341c8f945fae1da6c77b6ec345f47f2a.pdf,,,https://pdfs.semanticscholar.org/0da7/5b0d341c8f945fae1da6c77b6ec345f47f2a.pdf +0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a,https://pdfs.semanticscholar.org/0d33/b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a.pdf,,,https://pdfs.semanticscholar.org/0d33/b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a.pdf +0da4c3d898ca2fff9e549d18f513f4898e960aca,https://pdfs.semanticscholar.org/0da4/c3d898ca2fff9e549d18f513f4898e960aca.pdf,,,https://pdfs.semanticscholar.org/0da4/c3d898ca2fff9e549d18f513f4898e960aca.pdf +95b9df34bcf4ae04beea55c11cf0cc4095aa38dc,,,http://doi.org/10.1007/11527923_7, +959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c,https://pdfs.semanticscholar.org/959b/cb16afdf303c34a8bfc11e9fcc9d40d76b1c.pdf,,,https://pdfs.semanticscholar.org/959b/cb16afdf303c34a8bfc11e9fcc9d40d76b1c.pdf +95289007f2f336e6636cf8f920225b8d47c6e94f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6472796,, +95b5296f7ec70455b0cf1748cddeaa099284bfed,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443886,, +95ea564bd983129ddb5535a6741e72bb1162c779,https://arxiv.org/pdf/1711.00111.pdf,,,https://arxiv.org/pdf/1711.00111.pdf +95d858b39227edeaf75b7fad71f3dc081e415d16,,,http://doi.org/10.1007/s11042-017-5073-3, +95e3b78eb4d5b469f66648ed4f37e45e0e01e63e,,,http://doi.org/10.1007/s11042-016-4261-x, +950171acb24bb24a871ba0d02d580c09829de372,https://pdfs.semanticscholar.org/9501/71acb24bb24a871ba0d02d580c09829de372.pdf,,,https://pdfs.semanticscholar.org/9501/71acb24bb24a871ba0d02d580c09829de372.pdf +95288fa7ff4683e32fe021a78cbf7d3376e6e400,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014759,, +59fc69b3bc4759eef1347161e1248e886702f8f7,https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf,,,https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf +59efb1ac77c59abc8613830787d767100387c680,https://arxiv.org/pdf/1805.10030.pdf,,,https://arxiv.org/pdf/1805.10030.pdf +598744c8620e4ecbf449d14d7081fbf1cd05851f,,,,https://www.ncbi.nlm.nih.gov/pubmed/29731533 +59dac8b460a89e03fa616749a08e6149708dcc3a,https://pdfs.semanticscholar.org/59da/c8b460a89e03fa616749a08e6149708dcc3a.pdf,,,https://pdfs.semanticscholar.org/59da/c8b460a89e03fa616749a08e6149708dcc3a.pdf +59e9934720baf3c5df3a0e1e988202856e1f83ce,https://arxiv.org/pdf/1511.04136.pdf,,,https://arxiv.org/pdf/1511.04136.pdf +59d225486161b43b7bf6919b4a4b4113eb50f039,https://arxiv.org/pdf/1701.04769.pdf,,,https://arxiv.org/pdf/1701.04769.pdf +5945464d47549e8dcaec37ad41471aa70001907f,https://arxiv.org/pdf/1507.05738.pdf,,,https://arxiv.org/pdf/1507.05738.pdf +59b83666c1031c3f509f063b9963c7ad9781ca23,,,,http://dl.acm.org/citation.cfm?id=2830590 +592f14f4b12225fc691477a180a2a3226a5ef4f0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789592,, +599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0a,https://arxiv.org/pdf/1808.09316.pdf,,,https://arxiv.org/pdf/1808.09316.pdf +59a6c9333c941faf2540979dcfcb5d503a49b91e,https://arxiv.org/pdf/1806.08245.pdf,,,https://arxiv.org/pdf/1806.08245.pdf +9285f4a6a06e975bde3ae3267fccd971d4fff98a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099853,, +9296f4ac0180e29226d6c016b5a4d5d2964eaaf6,,,http://doi.org/10.1038/s41598-017-07122-x, +92b61b09d2eed4937058d0f9494d9efeddc39002,https://pdfs.semanticscholar.org/92b6/1b09d2eed4937058d0f9494d9efeddc39002.pdf,,,https://pdfs.semanticscholar.org/92b6/1b09d2eed4937058d0f9494d9efeddc39002.pdf +92be73dffd3320fe7734258961fe5a5f2a43390e,https://pdfs.semanticscholar.org/92be/73dffd3320fe7734258961fe5a5f2a43390e.pdf,,,https://pdfs.semanticscholar.org/92be/73dffd3320fe7734258961fe5a5f2a43390e.pdf +9207671d9e2b668c065e06d9f58f597601039e5e,https://pdfs.semanticscholar.org/9207/671d9e2b668c065e06d9f58f597601039e5e.pdf,,,https://pdfs.semanticscholar.org/9207/671d9e2b668c065e06d9f58f597601039e5e.pdf +92292fffc36336d63f4f77d6b8fc23b0c54090e9,,,http://doi.org/10.1016/j.jvcir.2015.03.001, +928b8eb47288a05611c140d02441660277a7ed54,https://arxiv.org/pdf/1805.04384.pdf,,,https://arxiv.org/pdf/1805.04384.pdf +926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0,https://arxiv.org/pdf/1705.07871.pdf,,,https://arxiv.org/pdf/1705.07871.pdf +92e464a5a67582d5209fa75e3b29de05d82c7c86,https://pdfs.semanticscholar.org/92e4/64a5a67582d5209fa75e3b29de05d82c7c86.pdf,,,https://pdfs.semanticscholar.org/92e4/64a5a67582d5209fa75e3b29de05d82c7c86.pdf +927ba64123bd4a8a31163956b3d1765eb61e4426,https://pdfs.semanticscholar.org/927b/a64123bd4a8a31163956b3d1765eb61e4426.pdf,,,https://pdfs.semanticscholar.org/927b/a64123bd4a8a31163956b3d1765eb61e4426.pdf +923ec0da8327847910e8dd71e9d801abcbc93b08,https://arxiv.org/pdf/1704.04232.pdf,,,https://arxiv.org/pdf/1704.04232.pdf +0c6a566ebdac4bd14e80cd6bf4631bc7458e1595,,,http://doi.org/10.1016/j.patcog.2013.03.010, +0cf2eecf20cfbcb7f153713479e3206670ea0e9c,https://arxiv.org/pdf/1806.08906.pdf,,,https://arxiv.org/pdf/1806.08906.pdf +0ca36ecaf4015ca4095e07f0302d28a5d9424254,https://arxiv.org/pdf/1810.00360.pdf,,,https://arxiv.org/pdf/1810.00360.pdf +0cfca73806f443188632266513bac6aaf6923fa8,https://arxiv.org/pdf/1805.04756.pdf,,,https://arxiv.org/pdf/1805.04756.pdf +6689aee6c9599c1af4c607ea5385ac0c2cf0c4b3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8335166,, +6601a0906e503a6221d2e0f2ca8c3f544a4adab7,https://pdfs.semanticscholar.org/6601/a0906e503a6221d2e0f2ca8c3f544a4adab7.pdf,,,https://pdfs.semanticscholar.org/6601/a0906e503a6221d2e0f2ca8c3f544a4adab7.pdf +661ca4bbb49bb496f56311e9d4263dfac8eb96e9,https://arxiv.org/pdf/1803.09010.pdf,,,https://arxiv.org/pdf/1803.09010.pdf +66d087f3dd2e19ffe340c26ef17efe0062a59290,https://pdfs.semanticscholar.org/66d0/87f3dd2e19ffe340c26ef17efe0062a59290.pdf,,,https://pdfs.semanticscholar.org/66d0/87f3dd2e19ffe340c26ef17efe0062a59290.pdf +66837add89caffd9c91430820f49adb5d3f40930,https://pdfs.semanticscholar.org/4a6d/20f60ff06cca446578ea1218737190e288e6.pdf,,,https://pdfs.semanticscholar.org/4a6d/20f60ff06cca446578ea1218737190e288e6.pdf +660c99ac408b535bb0468ab3708d0d1d5db30180,,,http://doi.org/10.1007/s11042-015-3083-6, +66490b5869822b31d32af7108eaff193fbdb37b0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373857,, +663efaa0671eace1100fdbdecacd94216a17b1db,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619243,, +3e0a1884448bfd7f416c6a45dfcdfc9f2e617268,https://arxiv.org/pdf/1805.05838.pdf,,,https://arxiv.org/pdf/1805.05838.pdf +3e3227c8e9f44593d2499f4d1302575c77977b2e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347112,, +3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b,https://arxiv.org/pdf/1703.04363.pdf,,,https://arxiv.org/pdf/1703.04363.pdf +3e59d97d42f36fc96d33a5658951856a555e997b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163128,, +3e9ab40e6e23f09d16c852b74d40264067ac6abc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619307,, +3e40991ab1daa2a4906eb85a5d6a01a958b6e674,https://arxiv.org/pdf/1611.01599.pdf,,,https://arxiv.org/pdf/1611.01599.pdf +3e2b9ffeb708b4362ebfad95fa7bb0101db1579d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553717,, +506c2fbfa9d16037d50d650547ad3366bb1e1cde,https://pdfs.semanticscholar.org/506c/2fbfa9d16037d50d650547ad3366bb1e1cde.pdf,,,https://pdfs.semanticscholar.org/506c/2fbfa9d16037d50d650547ad3366bb1e1cde.pdf +504028218290d68859f45ec686f435f473aa326c,https://arxiv.org/pdf/1807.11195.pdf,,,https://arxiv.org/pdf/1807.11195.pdf +50ee027c63dcc5ab5cd0a6cdffb1994f83916a46,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995354,, +50a0930cb8cc353e15a5cb4d2f41b365675b5ebf,https://pdfs.semanticscholar.org/50a0/930cb8cc353e15a5cb4d2f41b365675b5ebf.pdf,,,https://pdfs.semanticscholar.org/50a0/930cb8cc353e15a5cb4d2f41b365675b5ebf.pdf +508702ed2bf7d1b0655ea7857dd8e52d6537e765,https://pdfs.semanticscholar.org/5087/02ed2bf7d1b0655ea7857dd8e52d6537e765.pdf,,,https://pdfs.semanticscholar.org/5087/02ed2bf7d1b0655ea7857dd8e52d6537e765.pdf +506ea19145838a035e7dba535519fb40a3a0018c,,,,http://arxiv.org/abs/1806.08251 +68d2afd8c5c1c3a9bbda3dd209184e368e4376b9,https://arxiv.org/pdf/1705.11136.pdf,,,https://arxiv.org/pdf/1705.11136.pdf +68d08ed9470d973a54ef7806318d8894d87ba610,https://arxiv.org/pdf/1804.02555.pdf,,,https://arxiv.org/pdf/1804.02555.pdf +68caf5d8ef325d7ea669f3fb76eac58e0170fff0,https://arxiv.org/pdf/1805.07646.pdf,,,https://arxiv.org/pdf/1805.07646.pdf +684f5166d8147b59d9e0938d627beff8c9d208dd,https://arxiv.org/pdf/1707.03548.pdf,,,https://arxiv.org/pdf/1707.03548.pdf +68604e7e1b01cdbd3c23832976d66f1a86edaa8f,,,http://doi.org/10.1134/S1054661818030136, +68484ae8a042904a95a8d284a7f85a4e28e37513,https://pdfs.semanticscholar.org/6848/4ae8a042904a95a8d284a7f85a4e28e37513.pdf,,,https://pdfs.semanticscholar.org/6848/4ae8a042904a95a8d284a7f85a4e28e37513.pdf +682760f2f767fb47e1e2ca35db3becbb6153756f,https://arxiv.org/pdf/1804.03507.pdf,,,https://arxiv.org/pdf/1804.03507.pdf +6856a11b98ffffeff6e2f991d3d1a1232c029ea1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771409,, +68f61154a0080c4aae9322110c8827978f01ac2e,https://pdfs.semanticscholar.org/68f6/1154a0080c4aae9322110c8827978f01ac2e.pdf,,,https://pdfs.semanticscholar.org/68f6/1154a0080c4aae9322110c8827978f01ac2e.pdf +68c1090f912b69b76437644dd16922909dd40d60,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6987312,, +5760d29574d78e79e8343b74e6e30b3555e48676,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8447743,, +572dbaee6648eefa4c9de9b42551204b985ff863,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163151,, +574b62c845809fd54cc168492424c5fac145bc83,https://arxiv.org/pdf/1804.04829.pdf,,,https://arxiv.org/pdf/1804.04829.pdf +57246142814d7010d3592e3a39a1ed819dd01f3b,https://pdfs.semanticscholar.org/5724/6142814d7010d3592e3a39a1ed819dd01f3b.pdf,,,https://pdfs.semanticscholar.org/5724/6142814d7010d3592e3a39a1ed819dd01f3b.pdf +5779e3e439c90d43648db107e848aeb954d3e347,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7927417,, +571b83f7fc01163383e6ca6a9791aea79cafa7dd,https://arxiv.org/pdf/1803.06524.pdf,,,https://arxiv.org/pdf/1803.06524.pdf +574ad7ef015995efb7338829a021776bf9daaa08,https://arxiv.org/pdf/1611.08240.pdf,,,https://arxiv.org/pdf/1611.08240.pdf +57a14a65e8ae15176c9afae874854e8b0f23dca7,https://pdfs.semanticscholar.org/57a1/4a65e8ae15176c9afae874854e8b0f23dca7.pdf,,,https://pdfs.semanticscholar.org/57a1/4a65e8ae15176c9afae874854e8b0f23dca7.pdf +5748652924084b7b0220cddcd28f6b2222004359,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7492255,, +57178b36c21fd7f4529ac6748614bb3374714e91,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217,, +3b350afd8b82487aa97097170c269a25daa0c82d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8248664,, +3b21aaf7def52964cf1fcc5f11520a7618c8fae3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099900,, +3b73f8a2b39751efb7d7b396bf825af2aaadee24,https://arxiv.org/pdf/1712.01066.pdf,,,https://arxiv.org/pdf/1712.01066.pdf +3bf8e4d89b9e6d004de6ea52e3e9d68f6015f94b,,,,http://dl.acm.org/citation.cfm?id=3240893 +3b84d074b8622fac125f85ab55b63e876fed4628,https://arxiv.org/pdf/1608.02676.pdf,,,https://arxiv.org/pdf/1608.02676.pdf +3bcb93aa2a5e5eda039679516292af2f7c0ff9ac,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393012,, +3be8f1f7501978287af8d7ebfac5963216698249,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,,,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf +3bf579baf0903ee4d4180a29739bf05cbe8f4a74,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270392,, +3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f,https://arxiv.org/pdf/1707.07923.pdf,,,https://arxiv.org/pdf/1707.07923.pdf +3bb670b2afdcc45da2b09a02aac07e22ea7dbdc2,,,, +3bd10f7603c4f5a4737c5613722124787d0dd818,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415949,, +3bb6570d81685b769dc9e74b6e4958894087f3f1,https://arxiv.org/pdf/1805.05098.pdf,,,https://arxiv.org/pdf/1805.05098.pdf +6f22628d34a486d73c6b46eb071200a00e3abae3,,,,https://www.ncbi.nlm.nih.gov/pubmed/29994497 +6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,https://arxiv.org/pdf/1706.06247.pdf,,,https://arxiv.org/pdf/1706.06247.pdf +6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885,, +6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd,https://pdfs.semanticscholar.org/6f7d/06ced04ead3b9a5da86b37e7c27bfcedbbdd.pdf,,,https://pdfs.semanticscholar.org/6f7d/06ced04ead3b9a5da86b37e7c27bfcedbbdd.pdf +6f7a8b3e8f212d80f0fb18860b2495be4c363eac,https://arxiv.org/pdf/1712.02662.pdf,,,https://arxiv.org/pdf/1712.02662.pdf +6fea198a41d2f6f73e47f056692f365c8e6b04ce,https://arxiv.org/pdf/1807.03658.pdf,,,https://arxiv.org/pdf/1807.03658.pdf +6f3054f182c34ace890a32fdf1656b583fbc7445,https://pdfs.semanticscholar.org/6f30/54f182c34ace890a32fdf1656b583fbc7445.pdf,,,https://pdfs.semanticscholar.org/6f30/54f182c34ace890a32fdf1656b583fbc7445.pdf +6fef65bd7287b57f0c3b36bf8e6bc987fd161b7d,https://arxiv.org/pdf/1807.08259.pdf,,,https://arxiv.org/pdf/1807.08259.pdf +6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae,https://pdfs.semanticscholar.org/6fdc/0bc13f2517061eaa1364dcf853f36e1ea5ae.pdf,,,https://pdfs.semanticscholar.org/6fdc/0bc13f2517061eaa1364dcf853f36e1ea5ae.pdf +03c56c176ec6377dddb6a96c7b2e95408db65a7a,https://arxiv.org/pdf/1807.00676.pdf,,,https://arxiv.org/pdf/1807.00676.pdf +0322e69172f54b95ae6a90eb3af91d3daa5e36ea,https://pdfs.semanticscholar.org/0322/e69172f54b95ae6a90eb3af91d3daa5e36ea.pdf,,,https://pdfs.semanticscholar.org/0322/e69172f54b95ae6a90eb3af91d3daa5e36ea.pdf +03ce2ff688f9b588b6f264ca79c6857f0d80ceae,https://arxiv.org/pdf/1711.09550.pdf,,,https://arxiv.org/pdf/1711.09550.pdf +032825000c03b8ab4c207e1af4daeb1f225eb025,https://pdfs.semanticscholar.org/0328/25000c03b8ab4c207e1af4daeb1f225eb025.pdf,,,https://pdfs.semanticscholar.org/0328/25000c03b8ab4c207e1af4daeb1f225eb025.pdf +035c8632c1ffbeb75efe16a4ec50c91e20e6e189,,,http://doi.org/10.1007/s00138-018-0943-x, +034b3f3bac663fb814336a69a9fd3514ca0082b9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298991,, +03ac1c694bc84a27621da6bfe73ea9f7210c6d45,https://pdfs.semanticscholar.org/03ac/1c694bc84a27621da6bfe73ea9f7210c6d45.pdf,,,https://pdfs.semanticscholar.org/03ac/1c694bc84a27621da6bfe73ea9f7210c6d45.pdf +03fe3d031afdcddf38e5cc0d908b734884542eeb,https://pdfs.semanticscholar.org/03fe/3d031afdcddf38e5cc0d908b734884542eeb.pdf,,,https://pdfs.semanticscholar.org/03fe/3d031afdcddf38e5cc0d908b734884542eeb.pdf +9b4b2a575641f3a7f8a5ce28b6a06c36694a9ddf,,,http://doi.org/10.1007/s00371-015-1158-z, +9bd35145c48ce172b80da80130ba310811a44051,https://arxiv.org/pdf/1606.00850.pdf,,,https://arxiv.org/pdf/1606.00850.pdf +9b9f6e5eb6d7fa50300d67502e8fda1006594b84,,,,http://dl.acm.org/citation.cfm?id=3123323 +9b1022a01ca4ecf8c1fa99b1b39a93924de2fcfb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316962,, +9bc01fa9400c231e41e6a72ec509d76ca797207c,https://pdfs.semanticscholar.org/9bc0/1fa9400c231e41e6a72ec509d76ca797207c.pdf,,,https://pdfs.semanticscholar.org/9bc0/1fa9400c231e41e6a72ec509d76ca797207c.pdf +9b2c359c36c38c289c5bacaeb5b1dd06b464f301,https://arxiv.org/pdf/1709.01442.pdf,,,https://arxiv.org/pdf/1709.01442.pdf +9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca,https://pdfs.semanticscholar.org/9b1b/cef8bfef0fb5eb5ea9af0b699aa0534fceca.pdf,,,https://pdfs.semanticscholar.org/9b1b/cef8bfef0fb5eb5ea9af0b699aa0534fceca.pdf +9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354113,, +9be653e1bc15ef487d7f93aad02f3c9552f3ee4a,https://pdfs.semanticscholar.org/9be6/53e1bc15ef487d7f93aad02f3c9552f3ee4a.pdf,,,https://pdfs.semanticscholar.org/9be6/53e1bc15ef487d7f93aad02f3c9552f3ee4a.pdf +9b0ead0a20a2b7c4ae40568d8d1c0c2b23a6b807,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354290,, +9b6d9f0923e1d42c86a1154897b1a9bd7ba6716c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7114333,, +9bac481dc4171aa2d847feac546c9f7299cc5aa0,https://arxiv.org/pdf/1609.04541.pdf,,,https://arxiv.org/pdf/1609.04541.pdf +9b684e2e2bb43862f69b12c6be94db0e7a756187,https://arxiv.org/pdf/1709.04666.pdf,,,https://arxiv.org/pdf/1709.04666.pdf +9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32,https://arxiv.org/pdf/1708.03280.pdf,,,https://arxiv.org/pdf/1708.03280.pdf +9efdb73c6833df57732b727c6aeac510cadb53fe,,,,http://dl.acm.org/citation.cfm?id=3184071 +9e105c4a176465d14434fb3f5bae67f57ff5fba2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354230,, +9e2ab407ff36f3b793d78d9118ea25622f4b7434,,,http://doi.org/10.1007/s11042-018-5679-0, +9e297343da13cf9ba0ad8b5b75c07723136f4885,,,, +9e182e0cd9d70f876f1be7652c69373bcdf37fb4,https://arxiv.org/pdf/1807.07860.pdf,,,https://arxiv.org/pdf/1807.07860.pdf +9e10ea753b9767aa2f91dafe8545cd6f44befd7f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771444,, +040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d,https://arxiv.org/pdf/1806.03018.pdf,,,https://arxiv.org/pdf/1806.03018.pdf +04b851f25d6d49e61a528606953e11cfac7df2b2,https://arxiv.org/pdf/1711.11152.pdf,,,https://arxiv.org/pdf/1711.11152.pdf +043efe5f465704ced8d71a067d2b9d5aa5b59c29,https://pdfs.semanticscholar.org/000a/c6b0865c79bcf0d6f7f069b3abfe229e1462.pdf,,,https://pdfs.semanticscholar.org/000a/c6b0865c79bcf0d6f7f069b3abfe229e1462.pdf +0450dacc43171c6e623d0d5078600dd570de777e,,,http://doi.org/10.1007/s10339-016-0774-5, +04b4c779b43b830220bf938223f685d1057368e9,https://arxiv.org/pdf/1712.00133.pdf,,,https://arxiv.org/pdf/1712.00133.pdf +04317e63c08e7888cef480fe79f12d3c255c5b00,https://pdfs.semanticscholar.org/0431/7e63c08e7888cef480fe79f12d3c255c5b00.pdf,,,https://pdfs.semanticscholar.org/0431/7e63c08e7888cef480fe79f12d3c255c5b00.pdf +047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff,https://arxiv.org/pdf/1806.06098.pdf,,,https://arxiv.org/pdf/1806.06098.pdf +6ad107c08ac018bfc6ab31ec92c8a4b234f67d49,https://arxiv.org/pdf/1807.00966.pdf,,,https://arxiv.org/pdf/1807.00966.pdf +6af75a8572965207c2b227ad35d5c61a5bd69f45,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433687,, +6a6269e591e11f41d59c2ca1e707aaa1f0d57de6,,,http://doi.org/10.1007/s10044-016-0531-5, +6a52e6fce541126ff429f3c6d573bc774f5b8d89,https://pdfs.semanticscholar.org/6a52/e6fce541126ff429f3c6d573bc774f5b8d89.pdf,,,https://pdfs.semanticscholar.org/6a52/e6fce541126ff429f3c6d573bc774f5b8d89.pdf +6a4419ce2338ea30a570cf45624741b754fa52cb,https://arxiv.org/pdf/1804.02541.pdf,,,https://arxiv.org/pdf/1804.02541.pdf +6a931e7b7475635f089dd33e8d9a2899ae963804,,,http://doi.org/10.1007/s00371-018-1561-3, +6a6406906470be10f6d6d94a32741ba370a1db68,,,http://doi.org/10.1007/s11042-016-4213-5, +6a5d7d20a8c4993d56bcf702c772aa3f95f99450,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813408,, +6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a,https://arxiv.org/pdf/1805.09092.pdf,,,https://arxiv.org/pdf/1805.09092.pdf +3294e27356c3b1063595885a6d731d625b15505a,https://pdfs.semanticscholar.org/89b6/fe99faefb8ff4c54f9e7a88fde2470a51ed1.pdf,,,https://pdfs.semanticscholar.org/89b6/fe99faefb8ff4c54f9e7a88fde2470a51ed1.pdf +3266fcd1886e8ad883714e38203e66c0c6487f7b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7533149,, +3266fbaaa317a796d0934b9a3f3bb7c64992ac7d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4527244,, +32f62da99ec9f58dd93e3be667612abcf00df16a,,,http://doi.org/10.1007/s11042-017-5583-z, +3240c9359061edf7a06bfeb7cc20c103a65904c2,https://arxiv.org/pdf/1708.01956.pdf,,,https://arxiv.org/pdf/1708.01956.pdf +32e4fc2f0d9c535b1aca95aeb5bcc0623bcd2cf2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1334680,, +32e9c9520cf6acb55dde672b73760442b2f166f5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7970176,, +352d61eb66b053ae5689bd194840fd5d33f0e9c0,https://arxiv.org/pdf/1807.04899.pdf,,,https://arxiv.org/pdf/1807.04899.pdf +35b1c1f2851e9ac4381ef41b4d980f398f1aad68,https://pdfs.semanticscholar.org/35b1/c1f2851e9ac4381ef41b4d980f398f1aad68.pdf,,,https://pdfs.semanticscholar.org/35b1/c1f2851e9ac4381ef41b4d980f398f1aad68.pdf +351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd,https://pdfs.semanticscholar.org/351c/02d4775ae95e04ab1e5dd0c758d2d80c3ddd.pdf,,,https://pdfs.semanticscholar.org/351c/02d4775ae95e04ab1e5dd0c758d2d80c3ddd.pdf +35208eda874591eac70286441d19785726578946,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789507,, +35265cbd9c6ea95753f7c6b71659f7f7ef9081b6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7052327,, +352a620f0b96a7e76b9195a7038d5eec257fd994,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373823,, +35e0256b33212ddad2db548484c595334f15b4da,https://pdfs.semanticscholar.org/35e0/256b33212ddad2db548484c595334f15b4da.pdf,,,https://pdfs.semanticscholar.org/35e0/256b33212ddad2db548484c595334f15b4da.pdf +35e6f6e5f4f780508e5f58e87f9efe2b07d8a864,https://arxiv.org/pdf/1709.08421.pdf,,,https://arxiv.org/pdf/1709.08421.pdf +69adf2f122ff18848ff85e8de3ee3b2bc495838e,,,,http://arxiv.org/abs/1711.10678 +6964af90cf8ac336a2a55800d9c510eccc7ba8e1,https://arxiv.org/pdf/1711.08496.pdf,,,https://arxiv.org/pdf/1711.08496.pdf +69adbfa7b0b886caac15ebe53b89adce390598a3,https://arxiv.org/pdf/1805.10938.pdf,,,https://arxiv.org/pdf/1805.10938.pdf +69a41c98f6b71764913145dbc2bb4643c9bc4b0a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8444452,, +69a55c30c085ad1b72dd2789b3f699b2f4d3169f,https://pdfs.semanticscholar.org/69a5/5c30c085ad1b72dd2789b3f699b2f4d3169f.pdf,,,https://pdfs.semanticscholar.org/69a5/5c30c085ad1b72dd2789b3f699b2f4d3169f.pdf +695426275dee2ec56bc0c0afe1c5b4227a350840,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7878535,, +6993bca2b3471f26f2c8a47adfe444bfc7852484,https://arxiv.org/pdf/1705.07426.pdf,,,https://arxiv.org/pdf/1705.07426.pdf +696236fb6f986f6d5565abb01f402d09db68e5fa,,,http://doi.org/10.1007/s41095-018-0112-1, +691964c43bfd282f6f4d00b8b0310c554b613e3b,https://pdfs.semanticscholar.org/6919/64c43bfd282f6f4d00b8b0310c554b613e3b.pdf,,,https://pdfs.semanticscholar.org/6919/64c43bfd282f6f4d00b8b0310c554b613e3b.pdf +6932baa348943507d992aba75402cfe8545a1a9b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014987,, +6966d9d30fa9b7c01523425726ab417fd8428790,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619291,, +3cb2841302af1fb9656f144abc79d4f3d0b27380,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf,,,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf +3c563542db664321aa77a9567c1601f425500f94,https://arxiv.org/pdf/1712.02514.pdf,,,https://arxiv.org/pdf/1712.02514.pdf +3cd7b15f5647e650db66fbe2ce1852e00c05b2e4,https://pdfs.semanticscholar.org/3cd7/b15f5647e650db66fbe2ce1852e00c05b2e4.pdf,,,https://pdfs.semanticscholar.org/3cd7/b15f5647e650db66fbe2ce1852e00c05b2e4.pdf +3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf,,,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf +3cb057a24a8adba6fe964b5d461ba4e4af68af14,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6701391,, +3c09fb7fe1886072670e0c4dd632d052102a3733,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101020,, +3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373845,, +3c1aef7c2d32a219bdbc89a44d158bc2695e360a,https://arxiv.org/pdf/1809.00594.pdf,,,https://arxiv.org/pdf/1809.00594.pdf +3cd380bd0f3b164b44c49e3b01f6ac9798b6b6f9,,,http://doi.org/10.1007/s00371-016-1323-z, +3c56acaa819f4e2263638b67cea1ec37a226691d,https://arxiv.org/pdf/1704.07160.pdf,,,https://arxiv.org/pdf/1704.07160.pdf +562f7555e5cb79ce0fe834c4613264d8378dd007,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7153112,, +56e079f4eb40744728fd1d7665938b06426338e5,https://arxiv.org/pdf/1705.04293.pdf,,,https://arxiv.org/pdf/1705.04293.pdf +56fd4c05869e11e4935d48aa1d7abb96072ac242,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373812,, +566563a02dbaebec07429046122426acd7039166,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461618,, +5632ba72b2652df3b648b2ee698233e76a4eee65,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8346387,, +56a677c889e0e2c9f68ab8ca42a7e63acf986229,https://pdfs.semanticscholar.org/56a6/77c889e0e2c9f68ab8ca42a7e63acf986229.pdf,,,https://pdfs.semanticscholar.org/56a6/77c889e0e2c9f68ab8ca42a7e63acf986229.pdf +56dca23481de9119aa21f9044efd7db09f618704,https://arxiv.org/pdf/1507.02772.pdf,,,https://arxiv.org/pdf/1507.02772.pdf +516a27d5dd06622f872f5ef334313350745eadc3,https://arxiv.org/pdf/1805.01024.pdf,,,https://arxiv.org/pdf/1805.01024.pdf +51b42da0706a1260430f27badcf9ee6694768b9b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471882,, +5180df9d5eb26283fb737f491623395304d57497,https://arxiv.org/pdf/1804.10899.pdf,,,https://arxiv.org/pdf/1804.10899.pdf +51410d6bd9a41eacb105f15dbdaee520e050d646,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412888,, +51d6a8a61ea9588a795b20353c97efccec73f5db,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460308,, +518a3ce2a290352afea22027b64bf3950bffc65a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204174,, +51dcb36a6c247189be4420562f19feb00c9487f8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1394433,, +51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,https://arxiv.org/pdf/1807.04979.pdf,,,https://arxiv.org/pdf/1807.04979.pdf +519f1486f0755ef3c1f05700ea8a05f52f83387b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595846,, +51cb09ee04831b95ae02e1bee9b451f8ac4526e3,https://arxiv.org/pdf/1503.08909.pdf,,,https://arxiv.org/pdf/1503.08909.pdf +5161e38e4ea716dcfb554ccb88901b3d97778f64,https://arxiv.org/pdf/1702.04069.pdf,,,https://arxiv.org/pdf/1702.04069.pdf +5167e16b53283be5587659ea8eaa3b8ef3fddd33,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813364,, +51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee,https://arxiv.org/pdf/1809.07586.pdf,,,https://arxiv.org/pdf/1809.07586.pdf +5141cf2e59fb2ec9bb489b9c1832447d3cd93110,https://arxiv.org/pdf/1706.00893.pdf,,,https://arxiv.org/pdf/1706.00893.pdf +511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf,,,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf +51d048b92f6680aca4a8adf07deb380c0916c808,https://pdfs.semanticscholar.org/51d0/48b92f6680aca4a8adf07deb380c0916c808.pdf,,,https://pdfs.semanticscholar.org/51d0/48b92f6680aca4a8adf07deb380c0916c808.pdf +5134353bd01c4ea36bd007c460e8972b1541d0ad,https://pdfs.semanticscholar.org/5134/353bd01c4ea36bd007c460e8972b1541d0ad.pdf,,,https://pdfs.semanticscholar.org/5134/353bd01c4ea36bd007c460e8972b1541d0ad.pdf +51bb86dc8748088a198b216f7e97616634147388,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890496,, +3dce635ce4b55fb63fc6d41b38640403b152a048,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411225,, +3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,https://arxiv.org/pdf/1511.07212.pdf,,,https://arxiv.org/pdf/1511.07212.pdf +3daafe6389d877fe15d8823cdf5ac15fd919676f,https://arxiv.org/pdf/1605.05197.pdf,,,https://arxiv.org/pdf/1605.05197.pdf +3db6fd6a0e9bb30f2421e84ee5e433683d17d9c1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8402469,, +3d6ee995bc2f3e0f217c053368df659a5d14d5b5,https://pdfs.semanticscholar.org/3d6e/e995bc2f3e0f217c053368df659a5d14d5b5.pdf,,,https://pdfs.semanticscholar.org/3d6e/e995bc2f3e0f217c053368df659a5d14d5b5.pdf +3dfb822e16328e0f98a47209d7ecd242e4211f82,https://arxiv.org/pdf/1708.08197.pdf,,,https://arxiv.org/pdf/1708.08197.pdf +580f86f1ace1feed16b592d05c2b07f26c429b4b,https://arxiv.org/pdf/1705.00754.pdf,,,https://arxiv.org/pdf/1705.00754.pdf +58d47c187b38b8a2bad319c789a09781073d052d,https://arxiv.org/pdf/1806.11538.pdf,,,https://arxiv.org/pdf/1806.11538.pdf +588bed36b3cc9e2f26c39b5d99d6687f36ae1177,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771389,, +58217ae5423828ed5e1569bee93d491569d79970,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1578742,, +58bf72750a8f5100e0c01e55fd1b959b31e7dbce,https://arxiv.org/pdf/1803.07737.pdf,,,https://arxiv.org/pdf/1803.07737.pdf +58542eeef9317ffab9b155579256d11efb4610f2,https://pdfs.semanticscholar.org/5854/2eeef9317ffab9b155579256d11efb4610f2.pdf,,,https://pdfs.semanticscholar.org/5854/2eeef9317ffab9b155579256d11efb4610f2.pdf +587b8c147c6253878128ddacf6e5faf8272842a4,,,,http://dl.acm.org/citation.cfm?id=2638549 +58538cc418bf41197fad4fc4ee2449b2daeb08b1,,,http://doi.org/10.1007/s11042-017-4343-4, +67386772c289cd40db343bdc4cb8cb4f58271df2,,,http://doi.org/10.1038/s41598-017-10745-9, +677585ccf8619ec2330b7f2d2b589a37146ffad7,https://arxiv.org/pdf/1806.11328.pdf,,,https://arxiv.org/pdf/1806.11328.pdf +6789bddbabf234f31df992a3356b36a47451efc7,https://pdfs.semanticscholar.org/6789/bddbabf234f31df992a3356b36a47451efc7.pdf,,,https://pdfs.semanticscholar.org/6789/bddbabf234f31df992a3356b36a47451efc7.pdf +675b2caee111cb6aa7404b4d6aa371314bf0e647,https://arxiv.org/pdf/1705.08421.pdf,,,https://arxiv.org/pdf/1705.08421.pdf +679b72d23a9cfca8a7fe14f1d488363f2139265f,https://pdfs.semanticscholar.org/e7c4/bfe5ea260450f124f4253f2ebe0fff1d308f.pdf,,,https://pdfs.semanticscholar.org/e7c4/bfe5ea260450f124f4253f2ebe0fff1d308f.pdf +67484723e0c2cbeb936b2e863710385bdc7d5368,https://arxiv.org/pdf/1805.03363.pdf,,,https://arxiv.org/pdf/1805.03363.pdf +673d4885370b27c863e11a4ece9189a6a45931cc,https://arxiv.org/pdf/1802.09723.pdf,,,https://arxiv.org/pdf/1802.09723.pdf +6754c98ba73651f69525c770fb0705a1fae78eb5,https://pdfs.semanticscholar.org/f68b/3031e7092072bd7b38c05448031f17b087d1.pdf,,,https://pdfs.semanticscholar.org/f68b/3031e7092072bd7b38c05448031f17b087d1.pdf +672fae3da801b2a0d2bad65afdbbbf1b2320623e,https://arxiv.org/pdf/1609.07042.pdf,,,https://arxiv.org/pdf/1609.07042.pdf +675b1fd2aaebe9c62be6b22b9ac6d278193cc581,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699428,, +67af3ec65f1dc535018f3671624e72c96a611c39,,,http://doi.org/10.1007/s11042-016-4058-y, +0be43cf4299ce2067a0435798ef4ca2fbd255901,https://pdfs.semanticscholar.org/0be4/3cf4299ce2067a0435798ef4ca2fbd255901.pdf,,,https://pdfs.semanticscholar.org/0be4/3cf4299ce2067a0435798ef4ca2fbd255901.pdf +0b45aeb0aede5e0c19b508ede802bdfec668aefd,,,,http://dl.acm.org/citation.cfm?id=1963206 +0ba5369c5e1e87ea172089d84a5610435c73de00,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347111,, +0b5a82f8c0ee3640503ba24ef73e672d93aeebbf,https://arxiv.org/pdf/1808.09560.pdf,,,https://arxiv.org/pdf/1808.09560.pdf +0b82bf595e76898993ed4f4b2883c42720c0f277,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411229,, +0b572a2b7052b15c8599dbb17d59ff4f02838ff7,https://pdfs.semanticscholar.org/0b57/2a2b7052b15c8599dbb17d59ff4f02838ff7.pdf,,,https://pdfs.semanticscholar.org/0b57/2a2b7052b15c8599dbb17d59ff4f02838ff7.pdf +0ba1d855cd38b6a2c52860ae4d1a85198b304be4,https://arxiv.org/pdf/1510.03909.pdf,,,https://arxiv.org/pdf/1510.03909.pdf +0bce54bfbd8119c73eb431559fc6ffbba741e6aa,https://pdfs.semanticscholar.org/f9b2/3a7270939136872d5e170b4a80aad68a4e66.pdf,,,https://pdfs.semanticscholar.org/f9b2/3a7270939136872d5e170b4a80aad68a4e66.pdf +0bf0029c9bdb0ac61fda35c075deb1086c116956,https://pdfs.semanticscholar.org/c37d/3c53687b2b1654e20a5f67dce6585afc109a.pdf,,,https://pdfs.semanticscholar.org/c37d/3c53687b2b1654e20a5f67dce6585afc109a.pdf +93af335bf8c610f34ce0cadc15d1dd592debc706,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8267475,, +93cd5c47e4a3425d23e3db32c6eaef53745bb32e,,,http://doi.org/10.1007/s11042-017-5062-6, +93420d9212dd15b3ef37f566e4d57e76bb2fab2f,https://arxiv.org/pdf/1611.00851.pdf,,,https://arxiv.org/pdf/1611.00851.pdf +93af36da08bf99e68c9b0d36e141ed8154455ac2,https://pdfs.semanticscholar.org/93af/36da08bf99e68c9b0d36e141ed8154455ac2.pdf,,,https://pdfs.semanticscholar.org/93af/36da08bf99e68c9b0d36e141ed8154455ac2.pdf +93dcea2419ca95b96a47e541748c46220d289d77,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014993,, +93c0405b1f5432eab11cb5180229720604ffd030,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462228,, +93f37c69dd92c4e038710cdeef302c261d3a4f92,https://arxiv.org/pdf/1712.00636.pdf,,,https://arxiv.org/pdf/1712.00636.pdf +93dd4e512cd7647aecbfc0cd4767adf5d9289c3d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952499,, +938ae9597f71a21f2e47287cca318d4a2113feb2,https://pdfs.semanticscholar.org/938a/e9597f71a21f2e47287cca318d4a2113feb2.pdf,,,https://pdfs.semanticscholar.org/938a/e9597f71a21f2e47287cca318d4a2113feb2.pdf +946017d5f11aa582854ac4c0e0f1b18b06127ef1,https://pdfs.semanticscholar.org/9460/17d5f11aa582854ac4c0e0f1b18b06127ef1.pdf,,,https://pdfs.semanticscholar.org/9460/17d5f11aa582854ac4c0e0f1b18b06127ef1.pdf +94eeae23786e128c0635f305ba7eebbb89af0023,https://arxiv.org/pdf/1706.01350.pdf,,,https://arxiv.org/pdf/1706.01350.pdf +944faf7f14f1bead911aeec30cc80c861442b610,https://arxiv.org/pdf/1705.01861.pdf,,,https://arxiv.org/pdf/1705.01861.pdf +94806f0967931d376d1729c29702f3d3bb70167c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780581,, +9436170c648c40b6f4cc3751fca3674aa82ffe9a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6811741,, +94325522c9be8224970f810554611d6a73877c13,https://arxiv.org/pdf/1807.11440.pdf,,,https://arxiv.org/pdf/1807.11440.pdf +9487cea80f23afe9bccc94deebaa3eefa6affa99,https://arxiv.org/pdf/1612.05332.pdf,,,https://arxiv.org/pdf/1612.05332.pdf +947ee3452e4f3d657b16325c6b959f8b8768efad,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952677,, +94a11b601af77f0ad46338afd0fa4ccbab909e82,https://pdfs.semanticscholar.org/94a1/1b601af77f0ad46338afd0fa4ccbab909e82.pdf,,,https://pdfs.semanticscholar.org/94a1/1b601af77f0ad46338afd0fa4ccbab909e82.pdf +0ee737085af468f264f57f052ea9b9b1f58d7222,https://arxiv.org/pdf/1807.08370.pdf,,,https://arxiv.org/pdf/1807.08370.pdf +0e93a5a7f6dbdb3802173dca05717d27d72bfec0,https://arxiv.org/pdf/1709.08553.pdf,,,https://arxiv.org/pdf/1709.08553.pdf +0e2ea7af369dbcaeb5e334b02dd9ba5271b10265,https://arxiv.org/pdf/1807.01332.pdf,,,https://arxiv.org/pdf/1807.01332.pdf +0ee5c4112208995bf2bb0fb8a87efba933a94579,https://arxiv.org/pdf/1807.03235.pdf,,,https://arxiv.org/pdf/1807.03235.pdf +604a281100784b4d5bc1a6db993d423abc5dc8f0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,, +60c24e44fce158c217d25c1bae9f880a8bd19fc3,https://arxiv.org/pdf/1808.02992.pdf,,,https://arxiv.org/pdf/1808.02992.pdf +60777fbca8bff210398ec8b1179bc4ecb72dfec0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751535,, +60e2b9b2e0db3089237d0208f57b22a3aac932c1,https://arxiv.org/pdf/1603.06470.pdf,,,https://arxiv.org/pdf/1603.06470.pdf +60821d447e5b8a96dd9294a0514911e1141ff620,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813328,, +60542b1a857024c79db8b5b03db6e79f74ec8f9f,https://arxiv.org/pdf/1702.05448.pdf,,,https://arxiv.org/pdf/1702.05448.pdf +605f6817018a572797095b83bec7fae7195b2abc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339020,, +60462b981fda63c5f9d780528a37c46884fe0b54,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397015,, +34c062e2b8a3f6421b9f4ff22f115a36d4aba823,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7872382,, +345cc31c85e19cea9f8b8521be6a37937efd41c2,https://arxiv.org/pdf/1511.06421.pdf,,,https://arxiv.org/pdf/1511.06421.pdf +341002fac5ae6c193b78018a164d3c7295a495e4,https://arxiv.org/pdf/1706.04264.pdf,,,https://arxiv.org/pdf/1706.04264.pdf +34ce703b7e79e3072eed7f92239a4c08517b0c55,https://pdfs.semanticscholar.org/34ce/703b7e79e3072eed7f92239a4c08517b0c55.pdf,,,https://pdfs.semanticscholar.org/34ce/703b7e79e3072eed7f92239a4c08517b0c55.pdf +34ec83c8ff214128e7a4a4763059eebac59268a6,https://arxiv.org/pdf/1808.00141.pdf,,,https://arxiv.org/pdf/1808.00141.pdf +34bc8ecec0c0b328cd8c485cb34d4d2f4b84e0c9,,,,https://www.ncbi.nlm.nih.gov/pubmed/29069621 +346752e3ab96c93483413be4feaa024ccfe9499f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6960834,, +34fd227f4fdbc7fe028cc1f7d92cb59204333718,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446331,, +5a3da29970d0c3c75ef4cb372b336fc8b10381d7,https://arxiv.org/pdf/1708.00980.pdf,,,https://arxiv.org/pdf/1708.00980.pdf +5a5f9e0ed220ce51b80cd7b7ede22e473a62062c,https://arxiv.org/pdf/1806.01810.pdf,,,https://arxiv.org/pdf/1806.01810.pdf +5a12e1d4d74fe1a57929eaaa14f593b80f907ea3,,,http://doi.org/10.1007/s13735-016-0117-4, +5ac946fc6543a445dd1ee6d5d35afd3783a31353,https://arxiv.org/pdf/1803.06962.pdf,,,https://arxiv.org/pdf/1803.06962.pdf +5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c,https://pdfs.semanticscholar.org/2e36/a706bbec0f1adb7484e5d7416c3e612f43a1.pdf,,,https://pdfs.semanticscholar.org/2e36/a706bbec0f1adb7484e5d7416c3e612f43a1.pdf +5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6,https://pdfs.semanticscholar.org/5aed/0f26549c6e64c5199048c4fd5fdb3c5e69d6.pdf,,,https://pdfs.semanticscholar.org/5aed/0f26549c6e64c5199048c4fd5fdb3c5e69d6.pdf +5a547df635a9a56ac224d556333d36ff68cbf088,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359041,, +5a07945293c6b032e465d64f2ec076b82e113fa6,https://pdfs.semanticscholar.org/5a07/945293c6b032e465d64f2ec076b82e113fa6.pdf,,,https://pdfs.semanticscholar.org/5a07/945293c6b032e465d64f2ec076b82e113fa6.pdf +5fff61302adc65d554d5db3722b8a604e62a8377,https://arxiv.org/pdf/1801.05599.pdf,,,https://arxiv.org/pdf/1801.05599.pdf +5f771fed91c8e4b666489ba2384d0705bcf75030,https://arxiv.org/pdf/1804.03287.pdf,,,https://arxiv.org/pdf/1804.03287.pdf +5fa04523ff13a82b8b6612250a39e1edb5066521,https://arxiv.org/pdf/1708.04370.pdf,,,https://arxiv.org/pdf/1708.04370.pdf +5fa6e4a23da0b39e4b35ac73a15d55cee8608736,https://arxiv.org/pdf/1801.06066.pdf,,,https://arxiv.org/pdf/1801.06066.pdf +5f7c4c20ae2731bfb650a96b69fd065bf0bb950e,https://pdfs.semanticscholar.org/5f7c/4c20ae2731bfb650a96b69fd065bf0bb950e.pdf,,,https://pdfs.semanticscholar.org/5f7c/4c20ae2731bfb650a96b69fd065bf0bb950e.pdf +5f94969b9491db552ffebc5911a45def99026afe,https://pdfs.semanticscholar.org/5f94/969b9491db552ffebc5911a45def99026afe.pdf,,,https://pdfs.semanticscholar.org/5f94/969b9491db552ffebc5911a45def99026afe.pdf +5fea59ccdab484873081eaa37af88e26e3db2aed,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8263394,, +5f758a29dae102511576c0a5c6beda264060a401,https://arxiv.org/pdf/1804.01373.pdf,,,https://arxiv.org/pdf/1804.01373.pdf +5f2c210644c1e567435d78522258e0ae036deedb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4036602,, +5fe3a9d54d5070308803dd8ef611594f59805400,,,http://doi.org/10.1016/j.patcog.2016.02.006, +5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf,,,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf +5f27ed82c52339124aa368507d66b71d96862cb7,https://pdfs.semanticscholar.org/5f27/ed82c52339124aa368507d66b71d96862cb7.pdf,,,https://pdfs.semanticscholar.org/5f27/ed82c52339124aa368507d66b71d96862cb7.pdf +5fea26746f3140b12317fcf3bc1680f2746e172e,https://arxiv.org/pdf/1612.06341.pdf,,,https://arxiv.org/pdf/1612.06341.pdf +5f0d4657eab4152a1785ee0a25b5b499cd1163ec,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853687,, +5f453a35d312debfc993d687fd0b7c36c1704b16,https://pdfs.semanticscholar.org/5f45/3a35d312debfc993d687fd0b7c36c1704b16.pdf,,,https://pdfs.semanticscholar.org/5f45/3a35d312debfc993d687fd0b7c36c1704b16.pdf +33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,https://pdfs.semanticscholar.org/c4e8/3800fae0d6065aca19aa2a2fbff29ca6be1e.pdf,,,https://pdfs.semanticscholar.org/c4e8/3800fae0d6065aca19aa2a2fbff29ca6be1e.pdf +3328413ee9944de1cc7c9c1d1bf2fece79718ba1,https://arxiv.org/pdf/1807.00230.pdf,,,https://arxiv.org/pdf/1807.00230.pdf +336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762938,, +335435a94f8fa9c128b9f278d929c9d0e45e2510,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849440,, +3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398675,, +33aa980544a9d627f305540059828597354b076c,https://pdfs.semanticscholar.org/18a6/9db63820183a7ed0d810c2fdf18865fdf10e.pdf,,,https://pdfs.semanticscholar.org/18a6/9db63820183a7ed0d810c2fdf18865fdf10e.pdf +3352426a67eabe3516812cb66a77aeb8b4df4d1b,https://arxiv.org/pdf/1708.06023.pdf,,,https://arxiv.org/pdf/1708.06023.pdf +33ef419dffef85443ec9fe89a93f928bafdc922e,https://arxiv.org/pdf/1809.08493.pdf,,,https://arxiv.org/pdf/1809.08493.pdf +05891725f5b27332836cf058f04f18d74053803f,https://pdfs.semanticscholar.org/0589/1725f5b27332836cf058f04f18d74053803f.pdf,,,https://pdfs.semanticscholar.org/0589/1725f5b27332836cf058f04f18d74053803f.pdf +057b80e235b10799d03876ad25465208a4c64caf,,,,http://dl.acm.org/citation.cfm?id=3123427 +052f994898c79529955917f3dfc5181586282cf8,https://arxiv.org/pdf/1708.02191.pdf,,,https://arxiv.org/pdf/1708.02191.pdf +050a149051a5d268fcc5539e8b654c2240070c82,https://pdfs.semanticscholar.org/050a/149051a5d268fcc5539e8b654c2240070c82.pdf,,,https://pdfs.semanticscholar.org/050a/149051a5d268fcc5539e8b654c2240070c82.pdf +0532cbcf616f27e5f6a4054f818d4992b99d201d,,,http://doi.org/10.1007/s11042-015-3042-2, +053931267af79a89791479b18d1b9cde3edcb415,https://pdfs.semanticscholar.org/0539/31267af79a89791479b18d1b9cde3edcb415.pdf,,,https://pdfs.semanticscholar.org/0539/31267af79a89791479b18d1b9cde3edcb415.pdf +9d58e8ab656772d2c8a99a9fb876d5611fe2fe20,https://arxiv.org/pdf/1506.01911.pdf,,,https://arxiv.org/pdf/1506.01911.pdf +9d5bfaf6191484022a6731ce13ac1b866d21ad18,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139086,, +9d24812d942e69f86279a26932df53c0a68c4111,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8417316,, +9d46485ca2c562d5e295251530a99dd5df99b589,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813386,, +9d57c4036a0e5f1349cd11bc342ac515307b6720,https://arxiv.org/pdf/1808.05399.pdf,,,https://arxiv.org/pdf/1808.05399.pdf +9d3377313759dfdc1a702b341d8d8e4b1469460c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7342926,, +9dcfa771a7e87d7681348dd9f6cf9803699b16ce,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1385984,, +9db4b25df549555f9ffd05962b5adf2fd9c86543,https://arxiv.org/pdf/1804.03786.pdf,,,https://arxiv.org/pdf/1804.03786.pdf +9c2f20ed168743071db6268480a966d5d238a7ee,,,,http://dl.acm.org/citation.cfm?id=1456304 +9ca7899338129f4ba6744f801e722d53a44e4622,https://arxiv.org/pdf/1504.07550.pdf,,,https://arxiv.org/pdf/1504.07550.pdf +9cc8cf0c7d7fa7607659921b6ff657e17e135ecc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099536,, +9c1664f69d0d832e05759e8f2f001774fad354d6,https://arxiv.org/pdf/1809.04317.pdf,,,https://arxiv.org/pdf/1809.04317.pdf +9c6dfd3a38374399d998d5a130ffc2864c37f554,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553738,, +9c065dfb26ce280610a492c887b7f6beccf27319,https://arxiv.org/pdf/1707.09074.pdf,,,https://arxiv.org/pdf/1707.09074.pdf +9c23859ec7313f2e756a3e85575735e0c52249f4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981788,, +9ca542d744149f0efc8b8aac8289f5e38e6d200c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789587,, +9c59bb28054eee783a40b467c82f38021c19ff3e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7178311,, +9ce0d64125fbaf625c466d86221505ad2aced7b1,https://pdfs.semanticscholar.org/9ce0/d64125fbaf625c466d86221505ad2aced7b1.pdf,,,https://pdfs.semanticscholar.org/9ce0/d64125fbaf625c466d86221505ad2aced7b1.pdf +02f4b900deabbe7efa474f2815dc122a4ddb5b76,https://pdfs.semanticscholar.org/02f4/b900deabbe7efa474f2815dc122a4ddb5b76.pdf,,,https://pdfs.semanticscholar.org/02f4/b900deabbe7efa474f2815dc122a4ddb5b76.pdf +023decb4c56f2e97d345593e4f7b89b667a6763d,,,http://doi.org/10.1007/s10994-005-3561-6, +02fc9e7283b79183eb3757a9b6ddeb8c91c209bb,,,http://doi.org/10.1007/s11042-018-6146-7, +021e008282714eaefc0796303f521c9e4f199d7e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354319,, +a40edf6eb979d1ddfe5894fac7f2cf199519669f,https://arxiv.org/pdf/1704.08740.pdf,,,https://arxiv.org/pdf/1704.08740.pdf +a4898f55f12e6393b1c078803909ea715bf71730,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6957817,, +a45e6172713a56736a2565ddea9cb8b1d94721cd,,,http://doi.org/10.1038/s41746-018-0035-3, +a3d8b5622c4b9af1f753aade57e4774730787a00,https://arxiv.org/pdf/1705.10120.pdf,,,https://arxiv.org/pdf/1705.10120.pdf +a322479a6851f57a3d74d017a9cb6d71395ed806,https://pdfs.semanticscholar.org/a322/479a6851f57a3d74d017a9cb6d71395ed806.pdf,,,https://pdfs.semanticscholar.org/a322/479a6851f57a3d74d017a9cb6d71395ed806.pdf +a325d5ea42a0b6aeb0390318e9f65f584bd67edd,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909426,, +a301ddc419cbd900b301a95b1d9e4bb770afc6a3,https://pdfs.semanticscholar.org/a301/ddc419cbd900b301a95b1d9e4bb770afc6a3.pdf,,,https://pdfs.semanticscholar.org/a301/ddc419cbd900b301a95b1d9e4bb770afc6a3.pdf +a3f69a073dcfb6da8038607a9f14eb28b5dab2db,https://pdfs.semanticscholar.org/a3f6/9a073dcfb6da8038607a9f14eb28b5dab2db.pdf,,,https://pdfs.semanticscholar.org/a3f6/9a073dcfb6da8038607a9f14eb28b5dab2db.pdf +a3201e955d6607d383332f3a12a7befa08c5a18c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,, +a38045ed82d6800cbc7a4feb498e694740568258,https://pdfs.semanticscholar.org/8f15/c3a426d307dd1e72f7feab1e671d20fb1adb.pdf,,,https://pdfs.semanticscholar.org/8f15/c3a426d307dd1e72f7feab1e671d20fb1adb.pdf +a313851ed00074a4a6c0fccf372acb6a68d9bc0b,,,http://doi.org/10.1007/s11042-016-4324-z, +a3f78cc944ac189632f25925ba807a0e0678c4d5,https://pdfs.semanticscholar.org/a3f7/8cc944ac189632f25925ba807a0e0678c4d5.pdf,,,https://pdfs.semanticscholar.org/a3f7/8cc944ac189632f25925ba807a0e0678c4d5.pdf +a32c5138c6a0b3d3aff69bcab1015d8b043c91fb,https://pdfs.semanticscholar.org/a32c/5138c6a0b3d3aff69bcab1015d8b043c91fb.pdf,,,https://pdfs.semanticscholar.org/a32c/5138c6a0b3d3aff69bcab1015d8b043c91fb.pdf +a36c8a4213251d3fd634e8893ad1b932205ad1ca,https://pdfs.semanticscholar.org/a36c/8a4213251d3fd634e8893ad1b932205ad1ca.pdf,,,https://pdfs.semanticscholar.org/a36c/8a4213251d3fd634e8893ad1b932205ad1ca.pdf +b5f9180666924a3215ab0b1faf712e70b353444d,,,http://doi.org/10.1007/s11042-017-4661-6, +b5968e7bb23f5f03213178c22fd2e47af3afa04c,https://arxiv.org/pdf/1705.07206.pdf,,,https://arxiv.org/pdf/1705.07206.pdf +b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,,,http://doi.org/10.1007/s11263-017-1012-z, +b558be7e182809f5404ea0fcf8a1d1d9498dc01a,https://pdfs.semanticscholar.org/dc8a/57827ffbe7064979638cf909abf7fcf7fb8d.pdf,,,https://pdfs.semanticscholar.org/dc8a/57827ffbe7064979638cf909abf7fcf7fb8d.pdf +b562def2624f59f7d3824e43ecffc990ad780898,https://arxiv.org/pdf/1710.08310.pdf,,,https://arxiv.org/pdf/1710.08310.pdf +b5747ecfa0f3be0adaad919d78763b1133c4d662,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397022,, +b5f3b0f45cf7f462a9c463a941e34e102a029506,,,,http://dl.acm.org/citation.cfm?id=3143004 +b5f2846a506fc417e7da43f6a7679146d99c5e96,https://arxiv.org/pdf/1212.0402.pdf,,,https://arxiv.org/pdf/1212.0402.pdf +b51d11fa400d66b9f9d903a60c4ebe03fd77c8f2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8358588,, +b5fdd7778503f27c9d9bf77fab193b475fab6076,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373891,, +b598f7761b153ecb26e9d08d3c5817aac5b34b52,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4618852,, +b55e70df03d9b80c91446a97957bc95772dcc45b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,, +b5ca8d4f259f35c1f3edfd9f108ce29881e478b0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099624,, +b5f9306c3207ac12ac761e7d028c78b3009a219c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6093779,, +b59f441234d2d8f1765a20715e227376c7251cd7,https://arxiv.org/pdf/1803.01449.pdf,,,https://arxiv.org/pdf/1803.01449.pdf +b59cee1f647737ec3296ccb3daa25c890359c307,https://pdfs.semanticscholar.org/b59c/ee1f647737ec3296ccb3daa25c890359c307.pdf,,,https://pdfs.semanticscholar.org/b59c/ee1f647737ec3296ccb3daa25c890359c307.pdf +b26e8f6ad7c2d4c838660d5a17337ce241442ed9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462692,, +b2470969e4fba92f7909eac26b77d08cc5575533,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8326475,, +b2c60061ad32e28eb1e20aff42e062c9160786be,https://arxiv.org/pdf/1805.12589.pdf,,,https://arxiv.org/pdf/1805.12589.pdf +b2b535118c5c4dfcc96f547274cdc05dde629976,https://arxiv.org/pdf/1707.04061.pdf,,,https://arxiv.org/pdf/1707.04061.pdf +d904f945c1506e7b51b19c99c632ef13f340ef4c,https://pdfs.semanticscholar.org/d904/f945c1506e7b51b19c99c632ef13f340ef4c.pdf,,,https://pdfs.semanticscholar.org/d904/f945c1506e7b51b19c99c632ef13f340ef4c.pdf +d949fadc9b6c5c8b067fa42265ad30945f9caa99,https://arxiv.org/pdf/1710.00870.pdf,,,https://arxiv.org/pdf/1710.00870.pdf +d916602f694ebb9cf95d85e08dd53f653b6196c3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237607,, +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,https://arxiv.org/pdf/1804.04803.pdf,,,https://arxiv.org/pdf/1804.04803.pdf +d9e66b877b277d73f8876f537206395e71f58269,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7225130,, +d9deafd9d9e60657a7f34df5f494edff546c4fb8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100124,, +d9218c2bbc7449dbccac351f55675efd810535db,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5699141,, +d9a5c82b710b1f4f1ffb67be2ae1d3c0ae7f6c55,,,http://doi.org/10.1016/j.jvcir.2015.11.002, +d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c,https://arxiv.org/pdf/1709.00069.pdf,,,https://arxiv.org/pdf/1709.00069.pdf +d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f,https://arxiv.org/pdf/1807.00046.pdf,,,https://arxiv.org/pdf/1807.00046.pdf +d99b5ee3e2d7e3a016fbc5fd417304e15efbd1f8,,,http://doi.org/10.1007/s11063-017-9578-6, +aca232de87c4c61537c730ee59a8f7ebf5ecb14f,https://pdfs.semanticscholar.org/aca2/32de87c4c61537c730ee59a8f7ebf5ecb14f.pdf,,,https://pdfs.semanticscholar.org/aca2/32de87c4c61537c730ee59a8f7ebf5ecb14f.pdf +ac855f0de9086e9e170072cb37400637f0c9b735,https://arxiv.org/pdf/1809.08999.pdf,,,https://arxiv.org/pdf/1809.08999.pdf +aca728cab26b95fbe04ec230b389878656d8af5b,,,http://doi.org/10.1007/978-981-10-8258-0, +acff2dc5d601887741002a78f8c0c35a799e6403,,,http://doi.org/10.1007/978-3-662-44654-6, +accbd6cd5dd649137a7c57ad6ef99232759f7544,https://pdfs.semanticscholar.org/accb/d6cd5dd649137a7c57ad6ef99232759f7544.pdf,,,https://pdfs.semanticscholar.org/accb/d6cd5dd649137a7c57ad6ef99232759f7544.pdf +acee2201f8a15990551804dd382b86973eb7c0a8,https://arxiv.org/pdf/1701.01692.pdf,,,https://arxiv.org/pdf/1701.01692.pdf +ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e,https://pdfs.semanticscholar.org/c67c/5780cb9870b70b78e4c82da4f92c7bb2592d.pdf,,,https://pdfs.semanticscholar.org/c67c/5780cb9870b70b78e4c82da4f92c7bb2592d.pdf +ac26166857e55fd5c64ae7194a169ff4e473eb8b,https://arxiv.org/pdf/1706.01039.pdf,,,https://arxiv.org/pdf/1706.01039.pdf +ac559873b288f3ac28ee8a38c0f3710ea3f986d9,https://pdfs.semanticscholar.org/ac55/9873b288f3ac28ee8a38c0f3710ea3f986d9.pdf,,,https://pdfs.semanticscholar.org/ac55/9873b288f3ac28ee8a38c0f3710ea3f986d9.pdf +ac8e09128e1e48a2eae5fa90f252ada689f6eae7,https://arxiv.org/pdf/1806.01526.pdf,,,https://arxiv.org/pdf/1806.01526.pdf +ac8441e30833a8e2a96a57c5e6fede5df81794af,https://arxiv.org/pdf/1805.10557.pdf,,,https://arxiv.org/pdf/1805.10557.pdf +ac2e166c76c103f17fdea2b4ecb137200b8d4703,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5373798,, +ac86ccc16d555484a91741e4cb578b75599147b2,https://arxiv.org/pdf/1709.08398.pdf,,,https://arxiv.org/pdf/1709.08398.pdf +ac03849956ac470c41585d2ee34d8bb58bb3c764,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6853690,, +ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff,https://arxiv.org/pdf/1712.05080.pdf,,,https://arxiv.org/pdf/1712.05080.pdf +ad77056780328bdcc6b7a21bce4ddd49c49e2013,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398021,, +ada063ce9a1ff230791c48b6afa29c401a9007f1,,,http://doi.org/10.1007/978-3-319-97909-0, +ad2339c48ad4ffdd6100310dcbb1fb78e72fac98,https://arxiv.org/pdf/1704.04689.pdf,,,https://arxiv.org/pdf/1704.04689.pdf +adf62dfa00748381ac21634ae97710bb80fc2922,https://pdfs.semanticscholar.org/adf6/2dfa00748381ac21634ae97710bb80fc2922.pdf,,,https://pdfs.semanticscholar.org/adf6/2dfa00748381ac21634ae97710bb80fc2922.pdf +bbf28f39e5038813afd74cf1bc78d55fcbe630f1,https://arxiv.org/pdf/1803.04108.pdf,,,https://arxiv.org/pdf/1803.04108.pdf +bb4f83458976755e9310b241a689c8d21b481238,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265393,, +bb4be8e24d7b8ed56d81edec435b7b59bad96214,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7060677,, +bb2f61a057bbf176e402d171d79df2635ccda9f6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296311,, +bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197,https://arxiv.org/pdf/1612.06836.pdf,,,https://arxiv.org/pdf/1612.06836.pdf +bb0ecedde7d6e837dc9a5e115302a2aaad1035e1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373838,, +bbc5f4052674278c96abe7ff9dc2d75071b6e3f3,https://pdfs.semanticscholar.org/287b/7baff99d6995fd5852002488eb44659be6c1.pdf,,,https://pdfs.semanticscholar.org/287b/7baff99d6995fd5852002488eb44659be6c1.pdf +bbd1eb87c0686fddb838421050007e934b2d74ab,https://arxiv.org/pdf/1805.10483.pdf,,,https://arxiv.org/pdf/1805.10483.pdf +d7b8f285b0701ba7b1a11d1c7dd3d1e7e304083f,,,,http://dl.acm.org/citation.cfm?id=3164593 +d7dd35a86117e46d24914ef49ccd99ea0a7bf705,,,http://doi.org/10.1007/s10994-014-5463-y, +d790093cb85fc556c0089610026e0ec3466ab845,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4721612,, +d7593148e4319df7a288180d920f2822eeecea0b,https://pdfs.semanticscholar.org/192e/b550675b0f9cc69389ef2ec27efa72851253.pdf,,,https://pdfs.semanticscholar.org/192e/b550675b0f9cc69389ef2ec27efa72851253.pdf +d7fe2a52d0ad915b78330340a8111e0b5a66513a,https://arxiv.org/pdf/1711.10735.pdf,,,https://arxiv.org/pdf/1711.10735.pdf +d7cbedbee06293e78661335c7dd9059c70143a28,https://arxiv.org/pdf/1804.07573.pdf,,,https://arxiv.org/pdf/1804.07573.pdf +d78734c54f29e4474b4d47334278cfde6efe963a,https://arxiv.org/pdf/1804.03487.pdf,,,https://arxiv.org/pdf/1804.03487.pdf +d79365336115661b0e8dbbcd4b2aa1f504b91af6,https://arxiv.org/pdf/1603.01801.pdf,,,https://arxiv.org/pdf/1603.01801.pdf +d7b6bbb94ac20f5e75893f140ef7e207db7cd483,https://pdfs.semanticscholar.org/d7b6/bbb94ac20f5e75893f140ef7e207db7cd483.pdf,,,https://pdfs.semanticscholar.org/d7b6/bbb94ac20f5e75893f140ef7e207db7cd483.pdf +d700aedcb22a4be374c40d8bee50aef9f85d98ef,https://arxiv.org/pdf/1712.04851.pdf,,,https://arxiv.org/pdf/1712.04851.pdf +d77f18917a58e7d4598d31af4e7be2762d858370,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6289062,, +d0471d5907d6557cf081edf4c7c2296c3c221a38,https://pdfs.semanticscholar.org/d047/1d5907d6557cf081edf4c7c2296c3c221a38.pdf,,,https://pdfs.semanticscholar.org/d047/1d5907d6557cf081edf4c7c2296c3c221a38.pdf +d00e9a6339e34c613053d3b2c132fccbde547b56,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,, +d06bcb2d46342ee011e652990edf290a0876b502,,,,http://arxiv.org/abs/1708.00980 +d0509afe9c2c26fe021889f8efae1d85b519452a,https://arxiv.org/pdf/1803.07140.pdf,,,https://arxiv.org/pdf/1803.07140.pdf +d0144d76b8b926d22411d388e7a26506519372eb,https://arxiv.org/pdf/1806.04613.pdf,,,https://arxiv.org/pdf/1806.04613.pdf +d02e27e724f9b9592901ac1f45830341d37140fe,https://arxiv.org/pdf/1802.06454.pdf,,,https://arxiv.org/pdf/1802.06454.pdf +d02b32b012ffba2baeb80dca78e7857aaeececb0,https://pdfs.semanticscholar.org/d02b/32b012ffba2baeb80dca78e7857aaeececb0.pdf,,,https://pdfs.semanticscholar.org/d02b/32b012ffba2baeb80dca78e7857aaeececb0.pdf +d066575b48b552a38e63095bb1f7b56cbb1fbea4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359888,, +d01303062b21cd9ff46d5e3ff78897b8499480de,https://pdfs.semanticscholar.org/d013/03062b21cd9ff46d5e3ff78897b8499480de.pdf,,,https://pdfs.semanticscholar.org/d013/03062b21cd9ff46d5e3ff78897b8499480de.pdf +d02c54192dbd0798b43231efe1159d6b4375ad36,https://pdfs.semanticscholar.org/d02c/54192dbd0798b43231efe1159d6b4375ad36.pdf,,,https://pdfs.semanticscholar.org/d02c/54192dbd0798b43231efe1159d6b4375ad36.pdf +d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5,https://arxiv.org/pdf/1803.08460.pdf,,,https://arxiv.org/pdf/1803.08460.pdf +beabb0d9d30871d517c5d915cf852f7f5293f52f,,,, +bed8feb11e8077df158e16bce064853cf217ba62,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6191360,, +be48b5dcd10ab834cd68d5b2a24187180e2b408f,https://arxiv.org/pdf/1611.04870.pdf,,,https://arxiv.org/pdf/1611.04870.pdf +be4a20113bc204019ea79c6557a0bece23da1121,https://arxiv.org/pdf/1712.01670.pdf,,,https://arxiv.org/pdf/1712.01670.pdf +bef4df99e1dc6f696f9b3732ab6bac8e85d3fb3c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344632,, +be437b53a376085b01ebd0f4c7c6c9e40a4b1a75,https://pdfs.semanticscholar.org/be43/7b53a376085b01ebd0f4c7c6c9e40a4b1a75.pdf,,,https://pdfs.semanticscholar.org/be43/7b53a376085b01ebd0f4c7c6c9e40a4b1a75.pdf +be4f7679797777f2bc1fd6aad8af67cce5e5ce87,https://pdfs.semanticscholar.org/be4f/7679797777f2bc1fd6aad8af67cce5e5ce87.pdf,,,https://pdfs.semanticscholar.org/be4f/7679797777f2bc1fd6aad8af67cce5e5ce87.pdf +be7444c891caf295d162233bdae0e1c79791d566,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014816,, +be28ed1be084385f5d389db25fd7f56cd2d7f7bf,https://arxiv.org/pdf/1706.03864.pdf,,,https://arxiv.org/pdf/1706.03864.pdf +bec0c33d330385d73a5b6a05ad642d6954a6d632,,,http://doi.org/10.1007/s11042-017-4491-6, +bebea83479a8e1988a7da32584e37bfc463d32d4,https://arxiv.org/pdf/1807.03146.pdf,,,https://arxiv.org/pdf/1807.03146.pdf +bef926d63512dbffcf1af59f72295ef497f5acf9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6990726,, +be632b206f1cd38eab0c01c5f2004d1e8fc72880,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607601,, +bed06e7ff0b510b4a1762283640b4233de4c18e0,https://pdfs.semanticscholar.org/bed0/6e7ff0b510b4a1762283640b4233de4c18e0.pdf,,,https://pdfs.semanticscholar.org/bed0/6e7ff0b510b4a1762283640b4233de4c18e0.pdf +beb2f1a6f3f781443580ffec9161d9ce6852bf48,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424735,, +beae35eb5b2c7f63dfa9115f07b5ba0319709951,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163096,, +be5276e9744c4445fe5b12b785650e8f173f56ff,https://pdfs.semanticscholar.org/be52/76e9744c4445fe5b12b785650e8f173f56ff.pdf,,,https://pdfs.semanticscholar.org/be52/76e9744c4445fe5b12b785650e8f173f56ff.pdf +be4f18e25b06f430e2de0cc8fddcac8585b00beb,https://pdfs.semanticscholar.org/be4f/18e25b06f430e2de0cc8fddcac8585b00beb.pdf,,,https://pdfs.semanticscholar.org/be4f/18e25b06f430e2de0cc8fddcac8585b00beb.pdf +be4faea0971ef74096ec9800750648b7601dda65,,,http://doi.org/10.1007/s11063-017-9724-1, +b313751548018e4ecd5ae2ce6b3b94fbd9cae33e,,,http://doi.org/10.1007/s11263-008-0143-7, +b331ca23aed90394c05f06701f90afd550131fe3,https://pdfs.semanticscholar.org/b331/ca23aed90394c05f06701f90afd550131fe3.pdf,,,https://pdfs.semanticscholar.org/b331/ca23aed90394c05f06701f90afd550131fe3.pdf +b3ad7bc128b77d9254aa38c5e1ead7fa10b07d29,,,,http://dl.acm.org/citation.cfm?id=3206041 +b3cb91a08be4117d6efe57251061b62417867de9,https://pdfs.semanticscholar.org/b3cb/91a08be4117d6efe57251061b62417867de9.pdf,,,https://pdfs.semanticscholar.org/b3cb/91a08be4117d6efe57251061b62417867de9.pdf +b3200539538eca54a85223bf0ec4f3ed132d0493,https://pdfs.semanticscholar.org/b320/0539538eca54a85223bf0ec4f3ed132d0493.pdf,,,https://pdfs.semanticscholar.org/b320/0539538eca54a85223bf0ec4f3ed132d0493.pdf +b3add9bc9e70b6b28ba31e843e9155e7c37f3958,,,http://doi.org/10.1007/s10766-017-0552-8, +b3b467961ba66264bb73ffe00b1830d7874ae8ce,https://arxiv.org/pdf/1612.04402.pdf,,,https://arxiv.org/pdf/1612.04402.pdf +b3ba7ab6de023a0d58c741d6abfa3eae67227caf,https://arxiv.org/pdf/1707.09468.pdf,,,https://arxiv.org/pdf/1707.09468.pdf +b32cf547a764a4efa475e9c99a72a5db36eeced6,https://pdfs.semanticscholar.org/b32c/f547a764a4efa475e9c99a72a5db36eeced6.pdf,,,https://pdfs.semanticscholar.org/b32c/f547a764a4efa475e9c99a72a5db36eeced6.pdf +b3afa234996f44852317af382b98f5f557cab25a,https://arxiv.org/pdf/1711.11248.pdf,,,https://arxiv.org/pdf/1711.11248.pdf +df90850f1c153bfab691b985bfe536a5544e438b,https://pdfs.semanticscholar.org/df90/850f1c153bfab691b985bfe536a5544e438b.pdf,,,https://pdfs.semanticscholar.org/df90/850f1c153bfab691b985bfe536a5544e438b.pdf +df767f62a6bf3b09e6417d801726f2d5d642a202,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699727,, +df577a89830be69c1bfb196e925df3055cafc0ed,https://arxiv.org/pdf/1711.08141.pdf,,,https://arxiv.org/pdf/1711.08141.pdf +df87193e15a19d5620f5a6458b05fee0cf03729f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363421,, +df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb,https://arxiv.org/pdf/1704.06693.pdf,,,https://arxiv.org/pdf/1704.06693.pdf +dfd8602820c0e94b624d02f2e10ce6c798193a25,https://arxiv.org/pdf/1805.00597.pdf,,,https://arxiv.org/pdf/1805.00597.pdf +df9269657505fcdc1e10cf45bbb8e325678a40f5,https://pdfs.semanticscholar.org/1b38/1e864fa35cde69d85eada0eb515d274a6b74.pdf,,,https://pdfs.semanticscholar.org/1b38/1e864fa35cde69d85eada0eb515d274a6b74.pdf +dfecaedeaf618041a5498cd3f0942c15302e75c3,https://arxiv.org/pdf/1608.01647.pdf,,,https://arxiv.org/pdf/1608.01647.pdf +df6e68db278bedf5486a80697dec6623958edba8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952696,, +da7bbfa905d88834f8929cb69f41a1b683639f4b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199752,, +daa120032d8f141bc6aae20e23b1b754a0dd7d5f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789593,, +dad6b36fd515bda801f3d22a462cc62348f6aad8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117531,, +da4170c862d8ae39861aa193667bfdbdf0ecb363,https://arxiv.org/pdf/1601.00400.pdf,,,https://arxiv.org/pdf/1601.00400.pdf +daca9d03c1c951ed518248de7f75ff51e5c272cb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6976977,, +dac8fc521dfafb2d082faa4697f491eae00472c7,,,,http://dl.acm.org/citation.cfm?id=3123423 +daa4cfde41d37b2ab497458e331556d13dd14d0b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406477,, +da23d90bacf246b75ef752a2cbb138c4fcd789b7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406360,, +daefac0610fdeff415c2a3f49b47968d84692e87,https://pdfs.semanticscholar.org/daef/ac0610fdeff415c2a3f49b47968d84692e87.pdf,,,https://pdfs.semanticscholar.org/daef/ac0610fdeff415c2a3f49b47968d84692e87.pdf +dac34b590adddef2fc31f26e2aeb0059115d07a1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436078,, +b49affdff167f5d170da18de3efa6fd6a50262a2,https://pdfs.semanticscholar.org/b49a/ffdff167f5d170da18de3efa6fd6a50262a2.pdf,,,https://pdfs.semanticscholar.org/b49a/ffdff167f5d170da18de3efa6fd6a50262a2.pdf +b42a97fb47bcd6bfa72e130c08960a77ee96f9ab,https://pdfs.semanticscholar.org/b42a/97fb47bcd6bfa72e130c08960a77ee96f9ab.pdf,,,https://pdfs.semanticscholar.org/b42a/97fb47bcd6bfa72e130c08960a77ee96f9ab.pdf +b4d209845e1c67870ef50a7c37abaf3770563f3e,https://arxiv.org/pdf/1807.06980.pdf,,,https://arxiv.org/pdf/1807.06980.pdf +b4ee64022cc3ccd14c7f9d4935c59b16456067d3,https://pdfs.semanticscholar.org/b4ee/64022cc3ccd14c7f9d4935c59b16456067d3.pdf,,,https://pdfs.semanticscholar.org/b4ee/64022cc3ccd14c7f9d4935c59b16456067d3.pdf +b484141b99d3478a12b8a6854864c4b875d289b8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117595,, +b41d585246360646c677a8238ec35e8605b083b0,,,http://doi.org/10.1007/s11042-018-6017-2, +b40c001b3e304dccb28c745bd54aa281c8ff1f29,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072,, +b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4,https://pdfs.semanticscholar.org/cbb4/4f0a4b5d76152b90a24a1470cb4cc860587d.pdf,,,https://pdfs.semanticscholar.org/cbb4/4f0a4b5d76152b90a24a1470cb4cc860587d.pdf +a285b6edd47f9b8966935878ad4539d270b406d1,https://pdfs.semanticscholar.org/a285/b6edd47f9b8966935878ad4539d270b406d1.pdf,,,https://pdfs.semanticscholar.org/a285/b6edd47f9b8966935878ad4539d270b406d1.pdf +a2e0966f303f38b58b898d388d1c83e40b605262,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354125,, +a2359c0f81a7eb032cff1fe45e3b80007facaa2a,https://arxiv.org/pdf/1712.08714.pdf,,,https://arxiv.org/pdf/1712.08714.pdf +a2b4a6c6b32900a066d0257ae6d4526db872afe2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466,, +a20036b7fbf6c0db454c8711e72d78f145560dc8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761890,, +a26fd9df58bb76d6c7a3254820143b3da5bd584b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446759,, +a5acda0e8c0937bfed013e6382da127103e41395,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789672,, +a532cfc69259254192aee3fc5be614d9197e7824,,,http://doi.org/10.1016/j.patcog.2016.12.028, +a59c0cf3d2c5bf144ee0dbc1152b1b5dd7634990,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7350093,, +a5f11c132eaab258a7cea2d681875af09cddba65,https://arxiv.org/pdf/1707.02069.pdf,,,https://arxiv.org/pdf/1707.02069.pdf +a5f35880477ae82902c620245e258cf854c09be9,,,http://doi.org/10.1016/j.imavis.2013.12.004, +a5f70e0cd7da2b2df05fadb356a24743f3cf459a,,,http://doi.org/10.1007/s11063-017-9649-8, +a5a44a32a91474f00a3cda671a802e87c899fbb4,https://arxiv.org/pdf/1801.03150.pdf,,,https://arxiv.org/pdf/1801.03150.pdf +bd0265ba7f391dc3df9059da3f487f7ef17144df,https://pdfs.semanticscholar.org/bd02/65ba7f391dc3df9059da3f487f7ef17144df.pdf,,,https://pdfs.semanticscholar.org/bd02/65ba7f391dc3df9059da3f487f7ef17144df.pdf +bddc822cf20b31d8f714925bec192c39294184f7,,,http://doi.org/10.1134/S1054661807040190, +bd0e100a91ff179ee5c1d3383c75c85eddc81723,https://arxiv.org/pdf/1706.03038.pdf,,,https://arxiv.org/pdf/1706.03038.pdf +bd243d77076b3b8fe046bd3dc6e8a02aa9b38d62,,,,http://arxiv.org/abs/1412.0767 +bd8d579715d58405dfd5a77f32920aafe018fce4,,,http://doi.org/10.1016/j.imavis.2008.08.005, +bd379f8e08f88729a9214260e05967f4ca66cd65,https://arxiv.org/pdf/1711.06148.pdf,,,https://arxiv.org/pdf/1711.06148.pdf +bd21109e40c26af83c353a3271d0cd0b5c4b4ade,https://arxiv.org/pdf/1808.08803.pdf,,,https://arxiv.org/pdf/1808.08803.pdf +bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,https://arxiv.org/pdf/1704.08063.pdf,,,https://arxiv.org/pdf/1704.08063.pdf +bd26dabab576adb6af30484183c9c9c8379bf2e0,https://arxiv.org/pdf/1511.02459.pdf,,,https://arxiv.org/pdf/1511.02459.pdf +bd9c9729475ba7e3b255e24e7478a5acb393c8e9,https://arxiv.org/pdf/1806.04845.pdf,,,https://arxiv.org/pdf/1806.04845.pdf +bdbba95e5abc543981fb557f21e3e6551a563b45,https://arxiv.org/pdf/1807.07362.pdf,,,https://arxiv.org/pdf/1807.07362.pdf +bd70f832e133fb87bae82dfaa0ae9d1599e52e4b,https://pdfs.semanticscholar.org/acc6/bd697d46121c95f40b62eff7641ffa8d2318.pdf,,,https://pdfs.semanticscholar.org/acc6/bd697d46121c95f40b62eff7641ffa8d2318.pdf +d141c31e3f261d7d5214f07886c1a29ac734d6fc,,,http://doi.org/10.1007/s11063-018-9812-x, +d1dfdc107fa5f2c4820570e369cda10ab1661b87,https://arxiv.org/pdf/1712.00080.pdf,,,https://arxiv.org/pdf/1712.00080.pdf +d1ee9e63c8826a39d75fa32711fddbcc58d5161a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613000,, +d10cfcf206b0991e3bc20ac28df1f61c63516f30,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553776,, +d1edb8ba9d50817dbfec7e30f25b1846941e84d8,,,http://doi.org/10.1007/s13735-016-0112-9, +d116bac3b6ad77084c12bea557d42ed4c9d78433,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471886,, +d1079444ceddb1de316983f371ecd1db7a0c2f38,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460478,, +d1a43737ca8be02d65684cf64ab2331f66947207,https://pdfs.semanticscholar.org/d1a4/3737ca8be02d65684cf64ab2331f66947207.pdf,,,https://pdfs.semanticscholar.org/d1a4/3737ca8be02d65684cf64ab2331f66947207.pdf +d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576,https://arxiv.org/pdf/1704.04131.pdf,,,https://arxiv.org/pdf/1704.04131.pdf +d6c8f5674030cf3f5a2f7cc929bad37a422b26a0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337371,, +d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0,https://pdfs.semanticscholar.org/d69d/f51cff3d6b9b0625acdcbea27cd2bbf4b9c0.pdf,,,https://pdfs.semanticscholar.org/d69d/f51cff3d6b9b0625acdcbea27cd2bbf4b9c0.pdf +d6ae7941dcec920d5726d50d1b1cdfe4dde34d35,,,,http://dl.acm.org/citation.cfm?id=31310887 +d69719b42ee53b666e56ed476629a883c59ddf66,https://pdfs.semanticscholar.org/d697/19b42ee53b666e56ed476629a883c59ddf66.pdf,,,https://pdfs.semanticscholar.org/d697/19b42ee53b666e56ed476629a883c59ddf66.pdf +d69271c7b77bc3a06882884c21aa1b609b3f76cc,https://arxiv.org/pdf/1708.05234.pdf,,,https://arxiv.org/pdf/1708.05234.pdf +d6e08345ba293565086cb282ba08b225326022fc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7490397,, +d666ce9d783a2d31550a8aa47da45128a67304a7,https://pdfs.semanticscholar.org/c508/532efb1c02dcae0224e9e6894d232a1f4f6b.pdf,,,https://pdfs.semanticscholar.org/c508/532efb1c02dcae0224e9e6894d232a1f4f6b.pdf +d62d82c312c40437bc4c1c91caedac2ba5beb292,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461322,, +bc607bee2002c6c6bf694a15efd0a5d049767237,,,http://doi.org/10.1007/s11042-017-4364-z, +bc6de183cd8b2baeebafeefcf40be88468b04b74,https://pdfs.semanticscholar.org/e057/e713301e089887295543226b79b534fdd145.pdf,,,https://pdfs.semanticscholar.org/e057/e713301e089887295543226b79b534fdd145.pdf +bcf19b964e7d1134d00332cf1acf1ee6184aff00,https://pdfs.semanticscholar.org/bcf1/9b964e7d1134d00332cf1acf1ee6184aff00.pdf,,,https://pdfs.semanticscholar.org/bcf1/9b964e7d1134d00332cf1acf1ee6184aff00.pdf +bc9003ad368cb79d8a8ac2ad025718da5ea36bc4,https://pdfs.semanticscholar.org/bc90/03ad368cb79d8a8ac2ad025718da5ea36bc4.pdf,,,https://pdfs.semanticscholar.org/bc90/03ad368cb79d8a8ac2ad025718da5ea36bc4.pdf +bc9bad25f8149318314971d8b8c170064e220ea8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8078542,, +bcc346f4a287d96d124e1163e4447bfc47073cd8,https://arxiv.org/pdf/1707.05395.pdf,,,https://arxiv.org/pdf/1707.05395.pdf +bc27434e376db89fe0e6ef2d2fabc100d2575ec6,https://arxiv.org/pdf/1607.08438.pdf,,,https://arxiv.org/pdf/1607.08438.pdf +bc08dfa22949fbe54e15b1a6379afade71835968,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899970,, +bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17,https://pdfs.semanticscholar.org/bc8e/11b8cdf0cfbedde798a53a0318e8d6f67e17.pdf,,,https://pdfs.semanticscholar.org/bc8e/11b8cdf0cfbedde798a53a0318e8d6f67e17.pdf +bc811a66855aae130ca78cd0016fd820db1603ec,https://pdfs.semanticscholar.org/62ca/3c9b00bf3d9ff319afdee04dfa27ae2e0bdb.pdf,,,https://pdfs.semanticscholar.org/62ca/3c9b00bf3d9ff319afdee04dfa27ae2e0bdb.pdf +bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab,https://arxiv.org/pdf/1707.04993.pdf,,,https://arxiv.org/pdf/1707.04993.pdf +bc36badb6606b8162d821a227dda09a94aac537f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337442,, +ae8d5be3caea59a21221f02ef04d49a86cb80191,https://arxiv.org/pdf/1708.06834.pdf,,,https://arxiv.org/pdf/1708.06834.pdf +ae78469de00ea1e7602ca468dcf188cdfe2c80d4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466467,, +ae5e92abd5929ee7f0a5aa1622aa094bac4fae29,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373805,, +ae2cf545565c157813798910401e1da5dc8a6199,https://pdfs.semanticscholar.org/eef4/c6bb430c4792522866fdad40a0ed8e76809f.pdf,,,https://pdfs.semanticscholar.org/eef4/c6bb430c4792522866fdad40a0ed8e76809f.pdf +aeaf5dbb3608922246c7cd8a619541ea9e4a7028,https://pdfs.semanticscholar.org/aeaf/5dbb3608922246c7cd8a619541ea9e4a7028.pdf,,,https://pdfs.semanticscholar.org/aeaf/5dbb3608922246c7cd8a619541ea9e4a7028.pdf +ae836e2be4bb784760e43de88a68c97f4f9e44a1,https://pdfs.semanticscholar.org/ae83/6e2be4bb784760e43de88a68c97f4f9e44a1.pdf,,,https://pdfs.semanticscholar.org/ae83/6e2be4bb784760e43de88a68c97f4f9e44a1.pdf +aeff403079022683b233decda556a6aee3225065,https://arxiv.org/pdf/1701.01876.pdf,,,https://arxiv.org/pdf/1701.01876.pdf +aeb6b9aba5bb08cde2aebfeda7ced6c38c84df4a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424644,, +aef58a54d458ab76f62c9b6de61af4f475e0f616,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706790,, +ae2c71080b0e17dee4e5a019d87585f2987f0508,https://pdfs.semanticscholar.org/ae2c/71080b0e17dee4e5a019d87585f2987f0508.pdf,,,https://pdfs.semanticscholar.org/ae2c/71080b0e17dee4e5a019d87585f2987f0508.pdf +aee3427d0814d8a398fd31f4f46941e9e5488d83,,,,http://dl.acm.org/citation.cfm?id=1924573 +ae5f32e489c4d52e7311b66060c7381d932f4193,https://arxiv.org/pdf/1711.09125.pdf,,,https://arxiv.org/pdf/1711.09125.pdf +d8526863f35b29cbf8ac2ae756eaae0d2930ffb1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265439,, +d833268a8ea9278e68aaf3bd9bc2c11a5bb0bab7,,,http://doi.org/10.1007/s11042-018-6047-9, +d89a754d7c59e025d2bfcdb872d2d061e2e371ba,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5598629,, +d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952553,, +d86fabd4498c8feaed80ec342d254fb877fb92f5,https://pdfs.semanticscholar.org/d86f/abd4498c8feaed80ec342d254fb877fb92f5.pdf,,,https://pdfs.semanticscholar.org/d86f/abd4498c8feaed80ec342d254fb877fb92f5.pdf +d80a3d1f3a438e02a6685e66ee908446766fefa9,https://arxiv.org/pdf/1708.09687.pdf,,,https://arxiv.org/pdf/1708.09687.pdf +d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d,https://arxiv.org/pdf/1509.00244.pdf,,,https://arxiv.org/pdf/1509.00244.pdf +ab58a7db32683aea9281c188c756ddf969b4cdbd,https://arxiv.org/pdf/1804.06291.pdf,,,https://arxiv.org/pdf/1804.06291.pdf +ab734bac3994b00bf97ce22b9abc881ee8c12918,https://pdfs.semanticscholar.org/ab73/4bac3994b00bf97ce22b9abc881ee8c12918.pdf,,,https://pdfs.semanticscholar.org/ab73/4bac3994b00bf97ce22b9abc881ee8c12918.pdf +ab8ecf98f457e29b000c44d49f5bf49ec92e571c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8439631,, +ab989225a55a2ddcd3b60a99672e78e4373c0df1,https://arxiv.org/pdf/1706.05599.pdf,,,https://arxiv.org/pdf/1706.05599.pdf +ab0981d1da654f37620ca39c6b42de21d7eb58eb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8016651,, +ab1719f573a6c121d7d7da5053fe5f12de0182e7,https://pdfs.semanticscholar.org/ab17/19f573a6c121d7d7da5053fe5f12de0182e7.pdf,,,https://pdfs.semanticscholar.org/ab17/19f573a6c121d7d7da5053fe5f12de0182e7.pdf +ab2b09b65fdc91a711e424524e666fc75aae7a51,https://pdfs.semanticscholar.org/ab2b/09b65fdc91a711e424524e666fc75aae7a51.pdf,,,https://pdfs.semanticscholar.org/ab2b/09b65fdc91a711e424524e666fc75aae7a51.pdf +abba1bf1348a6f1b70a26aac237338ee66764458,https://arxiv.org/pdf/1808.03457.pdf,,,https://arxiv.org/pdf/1808.03457.pdf +abdd17e411a7bfe043f280abd4e560a04ab6e992,https://arxiv.org/pdf/1803.00839.pdf,,,https://arxiv.org/pdf/1803.00839.pdf +ab80582807506c0f840bd1ba03a8b84f8ac72f79,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462326,, +ab6886252aea103b3d974462f589b4886ef2735a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4371439,, +e5e5f31b81ed6526c26d277056b6ab4909a56c6c,https://arxiv.org/pdf/1809.06131.pdf,,,https://arxiv.org/pdf/1809.06131.pdf +e506cdb250eba5e70c5147eb477fbd069714765b,https://pdfs.semanticscholar.org/e506/cdb250eba5e70c5147eb477fbd069714765b.pdf,,,https://pdfs.semanticscholar.org/e506/cdb250eba5e70c5147eb477fbd069714765b.pdf +e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,https://pdfs.semanticscholar.org/e572/c42d8ef2e0fadedbaae77c8dfe05c4933fbf.pdf,,,https://pdfs.semanticscholar.org/e572/c42d8ef2e0fadedbaae77c8dfe05c4933fbf.pdf +e5823a9d3e5e33e119576a34cb8aed497af20eea,https://arxiv.org/pdf/1809.05620.pdf,,,https://arxiv.org/pdf/1809.05620.pdf +e5ea7295b89ef679e74919bf957f58d55ad49489,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401948,, +e5dfd17dbfc9647ccc7323a5d62f65721b318ba9,https://pdfs.semanticscholar.org/e5df/d17dbfc9647ccc7323a5d62f65721b318ba9.pdf,,,https://pdfs.semanticscholar.org/e5df/d17dbfc9647ccc7323a5d62f65721b318ba9.pdf +e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69,https://arxiv.org/pdf/1806.05226.pdf,,,https://arxiv.org/pdf/1806.05226.pdf +e52f73c77c7eaece6f2d8fdd0f15327f9f007261,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099713,, +e52f57a7de675d14aed28e5d0f2f3c5a01715337,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319987,, +e569f4bd41895028c4c009e5b46b935056188e91,https://pdfs.semanticscholar.org/e569/f4bd41895028c4c009e5b46b935056188e91.pdf,,,https://pdfs.semanticscholar.org/e569/f4bd41895028c4c009e5b46b935056188e91.pdf +e5fbffd3449a2bfe0acb4ec339a19f5b88fff783,https://arxiv.org/pdf/1808.06882.pdf,,,https://arxiv.org/pdf/1808.06882.pdf +e5d53a335515107452a30b330352cad216f88fc3,https://pdfs.semanticscholar.org/e5d5/3a335515107452a30b330352cad216f88fc3.pdf,,,https://pdfs.semanticscholar.org/e5d5/3a335515107452a30b330352cad216f88fc3.pdf +e57014b4106dd1355e69a0f60bb533615a705606,,,http://doi.org/10.1007/s13748-018-0143-y, +e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,https://arxiv.org/pdf/1807.11936.pdf,,,https://arxiv.org/pdf/1807.11936.pdf +e295c1aa47422eb35123053038e62e9aa50a2e3a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406389,, +e287ff7997297ce1197359ed0fb2a0bd381638c9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7795253,, +e2faaebd17d10e2919bd69492787e7565546a63f,,,http://doi.org/10.1007/s11042-017-4514-3, +e2106bb3febb4fc8fe91f0fcbc241bcda0e56b1e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952626,, +e293a31260cf20996d12d14b8f29a9d4d99c4642,https://arxiv.org/pdf/1703.01560.pdf,,,https://arxiv.org/pdf/1703.01560.pdf +e20e2db743e8db1ff61279f4fda32bf8cf381f8e,https://arxiv.org/pdf/1801.01486.pdf,,,https://arxiv.org/pdf/1801.01486.pdf +f472cb8380a41c540cfea32ebb4575da241c0288,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284869,, +f412d9d7bc7534e7daafa43f8f5eab811e7e4148,https://pdfs.semanticscholar.org/f412/d9d7bc7534e7daafa43f8f5eab811e7e4148.pdf,,,https://pdfs.semanticscholar.org/f412/d9d7bc7534e7daafa43f8f5eab811e7e4148.pdf +f442a2f2749f921849e22f37e0480ac04a3c3fec,https://pdfs.semanticscholar.org/f442/a2f2749f921849e22f37e0480ac04a3c3fec.pdf,,,https://pdfs.semanticscholar.org/f442/a2f2749f921849e22f37e0480ac04a3c3fec.pdf +f4f6fc473effb063b7a29aa221c65f64a791d7f4,https://pdfs.semanticscholar.org/48ec/4b2c3b6c6549fa7a988f8db135a41691f605.pdf,,,https://pdfs.semanticscholar.org/48ec/4b2c3b6c6549fa7a988f8db135a41691f605.pdf +f4ba07d2ae6c9673502daf50ee751a5e9262848f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810,, +f4d30896c5f808a622824a2d740b3130be50258e,https://arxiv.org/pdf/1705.06148.pdf,,,https://arxiv.org/pdf/1705.06148.pdf +f4251e02f87ac3fcae70bdb313f13ed16ff6ff0a,,,,https://www.ncbi.nlm.nih.gov/pubmed/24314504 +f4b5a8f6462a68e79d643648c780efe588e4b6ca,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995700,, +f42dca4a4426e5873a981712102aa961be34539a,https://pdfs.semanticscholar.org/f42d/ca4a4426e5873a981712102aa961be34539a.pdf,,,https://pdfs.semanticscholar.org/f42d/ca4a4426e5873a981712102aa961be34539a.pdf +f3ca2c43e8773b7062a8606286529c5bc9b3ce25,https://arxiv.org/pdf/1704.06327.pdf,,,https://arxiv.org/pdf/1704.06327.pdf +f39783847499dd56ba39c1f3b567f64dfdfa8527,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791189,, +f3cdd2c3180aa2bf08320ddd3b9a56f9fe00e72b,,,http://doi.org/10.1016/j.patrec.2013.03.022, +f374ac9307be5f25145b44931f5a53b388a77e49,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339060,, +f38813f1c9dac44dcb992ebe51c5ede66fd0f491,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354277,, +f3a59d85b7458394e3c043d8277aa1ffe3cdac91,https://arxiv.org/pdf/1802.09900.pdf,,,https://arxiv.org/pdf/1802.09900.pdf +f3df296de36b7c114451865778e211350d153727,https://arxiv.org/pdf/1703.06995.pdf,,,https://arxiv.org/pdf/1703.06995.pdf +f3ea181507db292b762aa798da30bc307be95344,https://arxiv.org/pdf/1805.04855.pdf,,,https://arxiv.org/pdf/1805.04855.pdf +f3fed71cc4fc49b02067b71c2df80e83084b2a82,https://arxiv.org/pdf/1804.06216.pdf,,,https://arxiv.org/pdf/1804.06216.pdf +f3553148e322f4f64545d6667dfbc7607c82703a,,,http://doi.org/10.1007/s00138-016-0763-9, +f3cf10c84c4665a0b28734f5233d423a65ef1f23,https://pdfs.semanticscholar.org/203d/7c52e2bd0da104516abbe34cd5aa5cfc8368.pdf,,,https://pdfs.semanticscholar.org/203d/7c52e2bd0da104516abbe34cd5aa5cfc8368.pdf +f33bd953d2df0a5305fc8a93a37ff754459a906c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961800,, +f3b7938de5f178e25a3cf477107c76286c0ad691,https://arxiv.org/pdf/1807.05511.pdf,,,https://arxiv.org/pdf/1807.05511.pdf +eb100638ed73b82e1cce8475bb8e180cb22a09a2,https://arxiv.org/pdf/1704.06228.pdf,,,https://arxiv.org/pdf/1704.06228.pdf +ebbceab4e15bf641f74e335b70c6c4490a043961,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813349,, +eb8519cec0d7a781923f68fdca0891713cb81163,https://arxiv.org/pdf/1703.08617.pdf,,,https://arxiv.org/pdf/1703.08617.pdf +eb566490cd1aa9338831de8161c6659984e923fd,https://arxiv.org/pdf/1712.02310.pdf,,,https://arxiv.org/pdf/1712.02310.pdf +eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6,https://pdfs.semanticscholar.org/eb4d/2ec77fae67141f6cf74b3ed773997c2c0cf6.pdf,,,https://pdfs.semanticscholar.org/eb4d/2ec77fae67141f6cf74b3ed773997c2c0cf6.pdf +ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9,https://arxiv.org/pdf/1411.4324.pdf,,,https://arxiv.org/pdf/1411.4324.pdf +eb70c38a350d13ea6b54dc9ebae0b64171d813c9,https://pdfs.semanticscholar.org/a531/bf1b04b794b19e6a563afe077f78a82ecbd6.pdf,,,https://pdfs.semanticscholar.org/a531/bf1b04b794b19e6a563afe077f78a82ecbd6.pdf +ebc3d7f50231cdb18a8107433ae9adc7bd94b97a,,,http://doi.org/10.1111/cgf.13218, +eba4cfd76f99159ccc0a65cab0a02db42b548d85,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751379,, +ebde9b9c714ed326157f41add8c781f826c1d864,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014758,, +eb027969f9310e0ae941e2adee2d42cdf07d938c,https://arxiv.org/pdf/1710.08092.pdf,,,https://arxiv.org/pdf/1710.08092.pdf +eb48a58b873295d719827e746d51b110f5716d6c,https://arxiv.org/pdf/1706.01820.pdf,,,https://arxiv.org/pdf/1706.01820.pdf +eb3066de677f9f6131aab542d9d426aaf50ed2ce,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373860,, +eb8a3948c4be0d23eb7326d27f2271be893b3409,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914701,, +eb6f2b5529f2a7bc8b5b03b1171f75a4c753a0b2,,,http://doi.org/10.1117/12.650555, +c7c53d75f6e963b403057d8ba5952e4974a779ad,https://pdfs.semanticscholar.org/c7c5/3d75f6e963b403057d8ba5952e4974a779ad.pdf,,,https://pdfs.semanticscholar.org/c7c5/3d75f6e963b403057d8ba5952e4974a779ad.pdf +c79cf7f61441195404472102114bcf079a72138a,https://pdfs.semanticscholar.org/9704/8d901389535b122f82a6a949bd8f596790f2.pdf,,,https://pdfs.semanticscholar.org/9704/8d901389535b122f82a6a949bd8f596790f2.pdf +c73dd452c20460f40becb1fd8146239c88347d87,https://arxiv.org/pdf/1708.01846.pdf,,,https://arxiv.org/pdf/1708.01846.pdf +c7745f941532b7d6fa70db09e81eb1167f70f8a7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1640757,, +c72e6992f44ce75a40f44be4365dc4f264735cfb,https://arxiv.org/pdf/1807.11122.pdf,,,https://arxiv.org/pdf/1807.11122.pdf +c7de0c85432ad17a284b5b97c4f36c23f506d9d1,https://pdfs.semanticscholar.org/a908/f786591a846f9c48e1ee5a134603efd32f9c.pdf,,,https://pdfs.semanticscholar.org/a908/f786591a846f9c48e1ee5a134603efd32f9c.pdf +c71217b2b111a51a31cf1107c71d250348d1ff68,https://arxiv.org/pdf/1703.09912.pdf,,,https://arxiv.org/pdf/1703.09912.pdf +c76f64e87f88475069f7707616ad9df1719a6099,https://arxiv.org/pdf/1803.08094.pdf,,,https://arxiv.org/pdf/1803.08094.pdf +c7f0c0636d27a1d45b8fcef37e545b902195d937,https://arxiv.org/pdf/1709.00966.pdf,,,https://arxiv.org/pdf/1709.00966.pdf +c7c8d150ece08b12e3abdb6224000c07a6ce7d47,https://arxiv.org/pdf/1611.05271.pdf,,,https://arxiv.org/pdf/1611.05271.pdf +c75e6ce54caf17b2780b4b53f8d29086b391e839,https://arxiv.org/pdf/1802.00542.pdf,,,https://arxiv.org/pdf/1802.00542.pdf +c05ae45c262b270df1e99a32efa35036aae8d950,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354120,, +c038beaa228aeec174e5bd52460f0de75e9cccbe,https://arxiv.org/pdf/1705.02953.pdf,,,https://arxiv.org/pdf/1705.02953.pdf +c05a7c72e679745deab9c9d7d481f7b5b9b36bdd,https://pdfs.semanticscholar.org/c05a/7c72e679745deab9c9d7d481f7b5b9b36bdd.pdf,,,https://pdfs.semanticscholar.org/c05a/7c72e679745deab9c9d7d481f7b5b9b36bdd.pdf +c07ab025d9e3c885ad5386e6f000543efe091c4b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302601,, +c0c0b8558b17aa20debc4611275a4c69edd1e2a7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909629,, +c0c8d720658374cc1ffd6116554a615e846c74b5,https://arxiv.org/pdf/1706.04508.pdf,,,https://arxiv.org/pdf/1706.04508.pdf +c0f67e850176bb778b6c048d81c3d7e4d8c41003,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296441,, +c00df53bd46f78ae925c5768d46080159d4ef87d,https://arxiv.org/pdf/1707.08105.pdf,,,https://arxiv.org/pdf/1707.08105.pdf +eece52bd0ed4d7925c49b34e67dbb6657d2d649b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014982,, +ee1465cbbc1d03cb9eddaad8618a4feea78a01ce,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6998872,, +ee7e8aec3ebb37e41092e1285e4f81916ce92c18,,,,https://www.sciencedirect.com/science/article/pii/S0197458017301859 +ee815f60dc4a090fa9fcfba0135f4707af21420d,https://arxiv.org/pdf/1702.02925.pdf,,,https://arxiv.org/pdf/1702.02925.pdf +eed7920682789a9afd0de4efd726cd9a706940c8,https://pdfs.semanticscholar.org/3115/90680f1ae14864df886af20699d2eca7099f.pdf,,,https://pdfs.semanticscholar.org/3115/90680f1ae14864df886af20699d2eca7099f.pdf +ee1f9637f372d2eccc447461ef834a9859011ec1,,,http://doi.org/10.1007/s11042-016-3950-9, +ee56823f2f00c8c773e4ebc725ca57d2f9242947,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7110235,, +ee2ec0836ded2f3f37bf49fa0e985280a8addaca,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368755,, +ee463f1f72a7e007bae274d2d42cd2e5d817e751,https://pdfs.semanticscholar.org/ee46/3f1f72a7e007bae274d2d42cd2e5d817e751.pdf,,,https://pdfs.semanticscholar.org/ee46/3f1f72a7e007bae274d2d42cd2e5d817e751.pdf +eee06d68497be8bf3a8aba4fde42a13aa090b301,https://arxiv.org/pdf/1806.11191.pdf,,,https://arxiv.org/pdf/1806.11191.pdf +eee2d2ac461f46734c8e674ae14ed87bbc8d45c6,https://arxiv.org/pdf/1704.02112.pdf,,,https://arxiv.org/pdf/1704.02112.pdf +eed93d2e16b55142b3260d268c9e72099c53d5bc,https://arxiv.org/pdf/1801.01262.pdf,,,https://arxiv.org/pdf/1801.01262.pdf +eedfb384a5e42511013b33104f4cd3149432bd9e,https://pdfs.semanticscholar.org/eedf/b384a5e42511013b33104f4cd3149432bd9e.pdf,,,https://pdfs.semanticscholar.org/eedf/b384a5e42511013b33104f4cd3149432bd9e.pdf +c91da328fe50821182e1ae4e7bcbe2b62496f8b9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4453844,, +c9b958c2494b7ba08b5b460f19a06814dba8aee0,,,,https://www.ncbi.nlm.nih.gov/pubmed/30080142 +c9c9ade2ef4dffb7582a629a47ea70c31be7a35e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237606,, +c97a5f2241cc6cd99ef0c4527ea507a50841f60b,https://arxiv.org/pdf/1807.10510.pdf,,,https://arxiv.org/pdf/1807.10510.pdf +c997744db532767ee757197491d8ac28d10f1c0f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364339,, +c9efcd8e32dced6efa2bba64789df8d0a8e4996a,,,,http://dl.acm.org/citation.cfm?id=2984060 +c9bbd7828437e70cc3e6863b278aa56a7d545150,https://arxiv.org/pdf/1708.02044.pdf,,,https://arxiv.org/pdf/1708.02044.pdf +c98983592777952d1751103b4d397d3ace00852d,https://pdfs.semanticscholar.org/c989/83592777952d1751103b4d397d3ace00852d.pdf,,,https://pdfs.semanticscholar.org/c989/83592777952d1751103b4d397d3ace00852d.pdf +c900e0ad4c95948baaf0acd8449fde26f9b4952a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780969,, +c9367ed83156d4d682cefc59301b67f5460013e0,https://arxiv.org/pdf/1802.01822.pdf,,,https://arxiv.org/pdf/1802.01822.pdf +c914d2ba06ec3fd1baa0010dcc4d16c7c34fc225,,,http://doi.org/10.1007/978-3-319-11071-4, +c98b13871a3bc767df0bdd51ff00c5254ede8b22,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909913,, +fc7b34a2e43bb3d3585e1963bb64a488e2f278a0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7045492,, +fc0f5859a111fb17e6dcf6ba63dd7b751721ca61,https://pdfs.semanticscholar.org/fc0f/5859a111fb17e6dcf6ba63dd7b751721ca61.pdf,,,https://pdfs.semanticscholar.org/fc0f/5859a111fb17e6dcf6ba63dd7b751721ca61.pdf +fcc6fe6007c322641796cb8792718641856a22a7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612994,, +fcf91995dc4d9b0cee84bda5b5b0ce5b757740ac,https://pdfs.semanticscholar.org/fcf9/1995dc4d9b0cee84bda5b5b0ce5b757740ac.pdf,,,https://pdfs.semanticscholar.org/fcf9/1995dc4d9b0cee84bda5b5b0ce5b757740ac.pdf +fc8fb68a7e3b79c37108588671c0e1abf374f501,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565615,, +fcf393a90190e376b617cc02e4a473106684d066,,,http://doi.org/10.1007/s10044-015-0507-x, +fcceea054cb59f1409dda181198ed4070ed762c9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8388318,, +fc7f140fcedfe54dd63769268a36ff3f175662b5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8013122,, +fd9ab411dc6258763c95b7741e3d51adf5504040,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595808,, +fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,,,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf +fdfd57d4721174eba288e501c0c120ad076cdca8,https://arxiv.org/pdf/1704.07129.pdf,,,https://arxiv.org/pdf/1704.07129.pdf +fd809ee36fa6832dda57a0a2403b4b52c207549d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409768,, +fd33df02f970055d74fbe69b05d1a7a1b9b2219b,https://arxiv.org/pdf/1710.06236.pdf,,,https://arxiv.org/pdf/1710.06236.pdf +fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3,https://arxiv.org/pdf/1712.04109.pdf,,,https://arxiv.org/pdf/1712.04109.pdf +fd15e397629e0241642329fc8ee0b8cd6c6ac807,https://arxiv.org/pdf/1806.01547.pdf,,,https://arxiv.org/pdf/1806.01547.pdf +fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,https://arxiv.org/pdf/1809.01990.pdf,,,https://arxiv.org/pdf/1809.01990.pdf +fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,https://arxiv.org/pdf/1606.02909.pdf,,,https://arxiv.org/pdf/1606.02909.pdf +fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81,https://arxiv.org/pdf/1807.11332.pdf,,,https://arxiv.org/pdf/1807.11332.pdf +fd10b0c771a2620c0db294cfb82b80d65f73900d,https://arxiv.org/pdf/1809.02860.pdf,,,https://arxiv.org/pdf/1809.02860.pdf +fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e,https://pdfs.semanticscholar.org/fdba/cf2ff0fc21e021c830cdcff7d347f2fddd8e.pdf,,,https://pdfs.semanticscholar.org/fdba/cf2ff0fc21e021c830cdcff7d347f2fddd8e.pdf +fd892e912149e3f5ddd82499e16f9ea0f0063fa3,https://pdfs.semanticscholar.org/fd89/2e912149e3f5ddd82499e16f9ea0f0063fa3.pdf,,,https://pdfs.semanticscholar.org/fd89/2e912149e3f5ddd82499e16f9ea0f0063fa3.pdf +fde611bf25a89fe11e077692070f89dcdede043a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7322904,, +fdf8e293a7618f560e76bd83e3c40a0788104547,https://arxiv.org/pdf/1704.04023.pdf,,,https://arxiv.org/pdf/1704.04023.pdf +fd5376fcb09001a3acccc03159e8ff5801129683,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373899,, +fdaf65b314faee97220162980e76dbc8f32db9d6,https://pdfs.semanticscholar.org/fdaf/65b314faee97220162980e76dbc8f32db9d6.pdf,,,https://pdfs.semanticscholar.org/fdaf/65b314faee97220162980e76dbc8f32db9d6.pdf +f2902f5956d7e2dca536d9131d4334f85f52f783,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460191,, +f2d605985821597773bc6b956036bdbc5d307386,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8027090,, +f2896dd2701fbb3564492a12c64f11a5ad456a67,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414,, +f22d6d59e413ee255e5e0f2104f1e03be1a6722e,https://arxiv.org/pdf/1708.03958.pdf,,,https://arxiv.org/pdf/1708.03958.pdf +f2700e3d69d3cce2e0b1aea0d7f87e74aff437cd,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237686,, +f27e5a13c1c424504b63a9084c50f491c1b17978,,,,http://dl.acm.org/citation.cfm?id=3097991 +f2eab39cf68de880ee7264b454044a55098e8163,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5539989,, +f2a7f9bd040aa8ea87672d38606a84c31163e171,https://arxiv.org/pdf/1608.07876.pdf,,,https://arxiv.org/pdf/1608.07876.pdf +f257300b2b4141aab73f93c146bf94846aef5fa1,https://arxiv.org/pdf/1708.05465.pdf,,,https://arxiv.org/pdf/1708.05465.pdf +f20e0eefd007bc310d2a753ba526d33a8aba812c,https://pdfs.semanticscholar.org/116e/c3a1a8225362a3e3e445df45036fae7cadc6.pdf,,,https://pdfs.semanticscholar.org/116e/c3a1a8225362a3e3e445df45036fae7cadc6.pdf +f2d5bb329c09a5867045721112a7dad82ca757a3,,,http://doi.org/10.1007/s11042-015-3009-3, +f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,https://pdfs.semanticscholar.org/f231/046d5f5d87e2ca5fae88f41e8d74964e8f4f.pdf,,,https://pdfs.semanticscholar.org/f231/046d5f5d87e2ca5fae88f41e8d74964e8f4f.pdf +f201baf618574108bcee50e9a8b65f5174d832ee,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,, +f28b7d62208fdaaa658716403106a2b0b527e763,https://arxiv.org/pdf/1803.08457.pdf,,,https://arxiv.org/pdf/1803.08457.pdf +f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e,https://pdfs.semanticscholar.org/f58d/584c4ac93b4e7620ef6e5a8f20c6f6da295e.pdf,,,https://pdfs.semanticscholar.org/f58d/584c4ac93b4e7620ef6e5a8f20c6f6da295e.pdf +f5c57979ec3d8baa6f934242965350865c0121bd,,,http://doi.org/10.1007/s12539-018-0281-8, +f5eb0cf9c57716618fab8e24e841f9536057a28a,https://arxiv.org/pdf/1803.02988.pdf,,,https://arxiv.org/pdf/1803.02988.pdf +f5603ceaebe3caf6a812edef9c4b38def78cbf34,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4455998,, +f571fe3f753765cf695b75b1bd8bed37524a52d2,https://pdfs.semanticscholar.org/8203/70a36ec56f8987fbec5ca2769f996d03d79b.pdf,,,https://pdfs.semanticscholar.org/8203/70a36ec56f8987fbec5ca2769f996d03d79b.pdf +f5fae7810a33ed67852ad6a3e0144cb278b24b41,https://pdfs.semanticscholar.org/f5fa/e7810a33ed67852ad6a3e0144cb278b24b41.pdf,,,https://pdfs.semanticscholar.org/f5fa/e7810a33ed67852ad6a3e0144cb278b24b41.pdf +f5770dd225501ff3764f9023f19a76fad28127d4,https://pdfs.semanticscholar.org/f577/0dd225501ff3764f9023f19a76fad28127d4.pdf,,,https://pdfs.semanticscholar.org/f577/0dd225501ff3764f9023f19a76fad28127d4.pdf +f5eb411217f729ad7ae84bfd4aeb3dedb850206a,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf,,,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf +e393a038d520a073b9835df7a3ff104ad610c552,https://pdfs.semanticscholar.org/b6aa/94b81b2165e492cc2900e05dd997619bfe7a.pdf,,,https://pdfs.semanticscholar.org/b6aa/94b81b2165e492cc2900e05dd997619bfe7a.pdf +e3ce4c3e1279e3dc0c14ff3bb2920aced9e62638,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099824,, +e3b324101157daede3b4d16bdc9c2388e849c7d4,https://pdfs.semanticscholar.org/e3b3/24101157daede3b4d16bdc9c2388e849c7d4.pdf,,,https://pdfs.semanticscholar.org/e3b3/24101157daede3b4d16bdc9c2388e849c7d4.pdf +e3d76f1920c5bf4a60129516abb4a2d8683e48ae,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907,, +e3c011d08d04c934197b2a4804c90be55e21d572,https://arxiv.org/pdf/1709.02940.pdf,,,https://arxiv.org/pdf/1709.02940.pdf +e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,https://pdfs.semanticscholar.org/e39a/66a6d1c5e753f8e6c33cd5d335f9bc9c07fa.pdf,,,https://pdfs.semanticscholar.org/e39a/66a6d1c5e753f8e6c33cd5d335f9bc9c07fa.pdf +e3c8e49ffa7beceffca3f7f276c27ae6d29b35db,https://arxiv.org/pdf/1604.02182.pdf,,,https://arxiv.org/pdf/1604.02182.pdf +e38371b69be4f341baa95bc854584e99b67c6d3a,https://arxiv.org/pdf/1803.07201.pdf,,,https://arxiv.org/pdf/1803.07201.pdf +e3b9863e583171ac9ae7b485f88e503852c747b6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7494596,, +e3a6e5a573619a97bd6662b652ea7d088ec0b352,https://arxiv.org/pdf/1804.00112.pdf,,,https://arxiv.org/pdf/1804.00112.pdf +cfeb26245b57dd10de8f187506d4ed5ce1e2b7dd,https://arxiv.org/pdf/1805.11195.pdf,,,https://arxiv.org/pdf/1805.11195.pdf +cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6737950,, +cfffae38fe34e29d47e6deccfd259788176dc213,https://pdfs.semanticscholar.org/cfff/ae38fe34e29d47e6deccfd259788176dc213.pdf,,,https://pdfs.semanticscholar.org/cfff/ae38fe34e29d47e6deccfd259788176dc213.pdf +cfd4004054399f3a5f536df71f9b9987f060f434,https://arxiv.org/pdf/1710.03224.pdf,,,https://arxiv.org/pdf/1710.03224.pdf +cf736f596bf881ca97ec4b29776baaa493b9d50e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629,, +cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce,https://arxiv.org/pdf/1807.08512.pdf,,,https://arxiv.org/pdf/1807.08512.pdf +cf2e1ebb9609f46af6de0c15b4f48d03e37e54ba,,,,http://arxiv.org/abs/1503.01521 +cfa92e17809e8d20ebc73b4e531a1b106d02b38c,https://pdfs.semanticscholar.org/cfa9/2e17809e8d20ebc73b4e531a1b106d02b38c.pdf,,,https://pdfs.semanticscholar.org/cfa9/2e17809e8d20ebc73b4e531a1b106d02b38c.pdf +cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,https://pdfs.semanticscholar.org/e36f/a8b870fd155f9df898bcc6613f6554eab519.pdf,,,https://pdfs.semanticscholar.org/e36f/a8b870fd155f9df898bcc6613f6554eab519.pdf +cfdc632adcb799dba14af6a8339ca761725abf0a,https://arxiv.org/pdf/1804.01575.pdf,,,https://arxiv.org/pdf/1804.01575.pdf +cfa931e6728a825caada65624ea22b840077f023,https://arxiv.org/pdf/1806.06298.pdf,,,https://arxiv.org/pdf/1806.06298.pdf +cfc30ce53bfc204b8764ebb764a029a8d0ad01f4,https://arxiv.org/pdf/1710.05179.pdf,,,https://arxiv.org/pdf/1710.05179.pdf +cff911786b5ac884bb71788c5bc6acf6bf569eff,https://arxiv.org/pdf/1805.01290.pdf,,,https://arxiv.org/pdf/1805.01290.pdf +cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,https://pdfs.semanticscholar.org/cfc4/aa456d9da1a6fabd7c6ca199332f03e35b29.pdf,,,https://pdfs.semanticscholar.org/cfc4/aa456d9da1a6fabd7c6ca199332f03e35b29.pdf +cf805d478aeb53520c0ab4fcdc9307d093c21e52,https://pdfs.semanticscholar.org/cf80/5d478aeb53520c0ab4fcdc9307d093c21e52.pdf,,,https://pdfs.semanticscholar.org/cf80/5d478aeb53520c0ab4fcdc9307d093c21e52.pdf +cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,https://pdfs.semanticscholar.org/cfdc/4d0f8e1b4b9ced35317d12b4229f2e3311ab.pdf,,,https://pdfs.semanticscholar.org/cfdc/4d0f8e1b4b9ced35317d12b4229f2e3311ab.pdf +ca096e158912080493a898b0b8a4bd2902674fed,,,,http://dl.acm.org/citation.cfm?id=3264899 +ca902aeec4fa54d32a4fed9ba89a7fb2f7131734,,,http://doi.org/10.1007/s11042-018-5945-1, +cad24ba99c7b6834faf6f5be820dd65f1a755b29,https://arxiv.org/pdf/1807.08254.pdf,,,https://arxiv.org/pdf/1807.08254.pdf +ca44a838da4187617dca9f6249d8c4b604661ec7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7351564,, +ca37eda56b9ee53610c66951ee7ca66a35d0a846,https://pdfs.semanticscholar.org/ca37/eda56b9ee53610c66951ee7ca66a35d0a846.pdf,,,https://pdfs.semanticscholar.org/ca37/eda56b9ee53610c66951ee7ca66a35d0a846.pdf +e4754afaa15b1b53e70743880484b8d0736990ff,,,http://doi.org/10.1016/j.imavis.2016.01.002, +e40cb4369c6402ae53c81ce52b73df3ef89f578b,,,http://doi.org/10.1016/j.image.2015.01.009, +e45a556df61e2357a8f422bdf864b7a5ed3b8627,,,http://doi.org/10.1016/j.image.2017.08.001, +e4d7b8eb0a8e6d2bb5b90b027c1bf32bad320ba5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8023876,, +e4fa062bff299a0bcef9f6b2e593c85be116c9f1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407641,, +e43045a061421bd79713020bc36d2cf4653c044d,https://arxiv.org/pdf/1703.03492.pdf,,,https://arxiv.org/pdf/1703.03492.pdf +e4d8ba577cabcb67b4e9e1260573aea708574886,https://pdfs.semanticscholar.org/e4d8/ba577cabcb67b4e9e1260573aea708574886.pdf,,,https://pdfs.semanticscholar.org/e4d8/ba577cabcb67b4e9e1260573aea708574886.pdf +e4abc40f79f86dbc06f5af1df314c67681dedc51,https://arxiv.org/pdf/1707.06786.pdf,,,https://arxiv.org/pdf/1707.06786.pdf +fe866887d3c26ee72590c440ed86ffc80e980293,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397011,, +fe464b2b54154d231671750053861f5fd14454f5,https://pdfs.semanticscholar.org/fe46/4b2b54154d231671750053861f5fd14454f5.pdf,,,https://pdfs.semanticscholar.org/fe46/4b2b54154d231671750053861f5fd14454f5.pdf +fe7c0bafbd9a28087e0169259816fca46db1a837,https://arxiv.org/pdf/1804.00326.pdf,,,https://arxiv.org/pdf/1804.00326.pdf +fe50efe9e282c63941ec23eb9b8c7510b6283228,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7314574,, +fe48f0e43dbdeeaf4a03b3837e27f6705783e576,https://arxiv.org/pdf/1607.05477.pdf,,,https://arxiv.org/pdf/1607.05477.pdf +fea83550a21f4b41057b031ac338170bacda8805,https://arxiv.org/pdf/1605.07270.pdf,,,https://arxiv.org/pdf/1605.07270.pdf +feea73095b1be0cbae1ad7af8ba2c4fb6f316d35,,,,http://dl.acm.org/citation.cfm?id=3126693 +fecccc79548001ecbd6cafd3067bcf14de80b11a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354157,, +fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139,https://pdfs.semanticscholar.org/fe0c/51fd41cb2d5afa1bc1900bbbadb38a0de139.pdf,,,https://pdfs.semanticscholar.org/fe0c/51fd41cb2d5afa1bc1900bbbadb38a0de139.pdf +c847de9faa1f1a06d5647949a23f523f84aba7f3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199761,, +c86e6ed734d3aa967deae00df003557b6e937d3d,https://arxiv.org/pdf/1807.03923.pdf,,,https://arxiv.org/pdf/1807.03923.pdf +c8585c95215bc53e28edb740678b3a0460ca8aa4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373829,, +c87f7ee391d6000aef2eadb49f03fc237f4d1170,https://arxiv.org/pdf/1804.03547.pdf,,,https://arxiv.org/pdf/1804.03547.pdf +c84de67ec2a5d687869d0c3ca8ac974aaa5ee765,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7090979,, +c866a2afc871910e3282fd9498dce4ab20f6a332,https://arxiv.org/pdf/1804.09691.pdf,,,https://arxiv.org/pdf/1804.09691.pdf +c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,https://arxiv.org/pdf/1609.02825.pdf,,,https://arxiv.org/pdf/1609.02825.pdf +c83e26622b275fdf878135e71c23325a31d0e5fc,,,,http://dl.acm.org/citation.cfm?id=3164611 +c84233f854bbed17c22ba0df6048cbb1dd4d3248,https://pdfs.semanticscholar.org/c842/33f854bbed17c22ba0df6048cbb1dd4d3248.pdf,,,https://pdfs.semanticscholar.org/c842/33f854bbed17c22ba0df6048cbb1dd4d3248.pdf +c829be73584966e3162f7ccae72d9284a2ebf358,https://pdfs.semanticscholar.org/c829/be73584966e3162f7ccae72d9284a2ebf358.pdf,,,https://pdfs.semanticscholar.org/c829/be73584966e3162f7ccae72d9284a2ebf358.pdf +c87d5036d3a374c66ec4f5870df47df7176ce8b9,https://pdfs.semanticscholar.org/c87d/5036d3a374c66ec4f5870df47df7176ce8b9.pdf,,,https://pdfs.semanticscholar.org/c87d/5036d3a374c66ec4f5870df47df7176ce8b9.pdf +c808c784237f167c78a87cc5a9d48152579c27a4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265437,, +c858c74d30c02be2d992f82a821b925669bfca13,,,http://doi.org/10.1007/978-3-319-10605-2, +c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f,https://arxiv.org/pdf/1705.01842.pdf,,,https://arxiv.org/pdf/1705.01842.pdf +c843f591658ca9dbb77944a89372a92006defe68,,,http://doi.org/10.1007/s11042-015-2550-4, +c88c21eb9a8e08b66c981db35f6556f4974d27a8,https://pdfs.semanticscholar.org/c88c/21eb9a8e08b66c981db35f6556f4974d27a8.pdf,,,https://pdfs.semanticscholar.org/c88c/21eb9a8e08b66c981db35f6556f4974d27a8.pdf +fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1,https://arxiv.org/pdf/1602.01168.pdf,,,https://arxiv.org/pdf/1602.01168.pdf +fb6f5cb26395608a3cf0e9c6c618293a4278a8ad,,,http://doi.org/10.1007/s11390-018-1835-2, +fb87045600da73b07f0757f345a937b1c8097463,https://pdfs.semanticscholar.org/5c54/2fef80a35a4f930e5c82040b52c58e96ce87.pdf,,,https://pdfs.semanticscholar.org/5c54/2fef80a35a4f930e5c82040b52c58e96ce87.pdf +fb85867c989b9ee6b7899134136f81d6372526a9,https://arxiv.org/pdf/1808.01424.pdf,,,https://arxiv.org/pdf/1808.01424.pdf +fbc591cde7fb7beb985437a22466f9cf4b16f8b1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463262,, +fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a,https://pdfs.semanticscholar.org/c21b/ccf1ab4bb090fd5fc1109421a1a3979e7106.pdf,,,https://pdfs.semanticscholar.org/c21b/ccf1ab4bb090fd5fc1109421a1a3979e7106.pdf +fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339084,, +fbe4f8a6af19f63e47801c6f31402f9baae5fecf,,,,http://dl.acm.org/citation.cfm?id=2820910 +fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb,,,,https://www.ncbi.nlm.nih.gov/pubmed/30040629 +fbc9ba70e36768efff130c7d970ce52810b044ff,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738500,, +fb8eb4a7b9b9602992e5982c9e0d6d7f7b8210ef,,,,https://www.ncbi.nlm.nih.gov/pubmed/29994550 +fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59,https://pdfs.semanticscholar.org/fbb2/f81fc00ee0f257d4aa79bbef8cad5000ac59.pdf,,,https://pdfs.semanticscholar.org/fbb2/f81fc00ee0f257d4aa79bbef8cad5000ac59.pdf +fb9ad920809669c1b1455cc26dbd900d8e719e61,https://pdfs.semanticscholar.org/fb9a/d920809669c1b1455cc26dbd900d8e719e61.pdf,,,https://pdfs.semanticscholar.org/fb9a/d920809669c1b1455cc26dbd900d8e719e61.pdf +edfce091688bc88389dd4877950bd58e00ff1253,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553700,, +ed32df6b122b15a52238777c9993ed31107b4bed,,,http://doi.org/10.1016/j.eswa.2017.03.008, +ed2f4e5ecbc4b08ee0784e97760a7f9e5ea9efae,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8241843,, +ed0cf5f577f5030ac68ab62fee1cf065349484cc,https://pdfs.semanticscholar.org/ed0c/f5f577f5030ac68ab62fee1cf065349484cc.pdf,,,https://pdfs.semanticscholar.org/ed0c/f5f577f5030ac68ab62fee1cf065349484cc.pdf +edde81b2bdd61bd757b71a7b3839b6fef81f4be4,https://arxiv.org/pdf/1507.06332.pdf,,,https://arxiv.org/pdf/1507.06332.pdf +edf98a925bb24e39a6e6094b0db839e780a77b08,https://arxiv.org/pdf/1807.09930.pdf,,,https://arxiv.org/pdf/1807.09930.pdf +ed9d11e995baeec17c5d2847ec1a8d5449254525,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf,,,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf +ede5982980aa76deae8f9dc5143a724299d67742,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081396,, +ed07856461da6c7afa4f1782b5b607b45eebe9f6,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,,,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf +ed184fda0306079f2ee55a1ae60fbf675c8e11c6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6802347,, +ed1886e233c8ecef7f414811a61a83e44c8bbf50,https://arxiv.org/pdf/1706.01789.pdf,,,https://arxiv.org/pdf/1706.01789.pdf +ed388878151a3b841f95a62c42382e634d4ab82e,https://arxiv.org/pdf/1805.07550.pdf,,,https://arxiv.org/pdf/1805.07550.pdf +edd6ed94207ab614c71ac0591d304a708d708e7b,,,http://doi.org/10.1016/j.neucom.2012.02.001, +edf60d081ffdfa80243217a50a411ab5407c961d,,,http://doi.org/10.1007/s11263-016-0893-6, +ede16b198b83d04b52dc3f0dafc11fd82c5abac4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952343,, +edff76149ec44f6849d73f019ef9bded534a38c2,https://arxiv.org/pdf/1704.02203.pdf,,,https://arxiv.org/pdf/1704.02203.pdf +ed96f2eb1771f384df2349879970065a87975ca7,https://arxiv.org/pdf/1805.12302.pdf,,,https://arxiv.org/pdf/1805.12302.pdf +c15b68986ecfa1e13e3791686ae9024f66983f14,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014747,, +c146aa6d56233ce700032f1cb179700778557601,https://arxiv.org/pdf/1708.07199.pdf,,,https://arxiv.org/pdf/1708.07199.pdf +c12260540ec14910f5ec6e38d95bdb606826b32e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7005459,, +c18a03568d4b512a0d8380cbb1fbf6bd56d11f05,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8430403,, +c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf,,,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf +c1c2775e19d6fd2ad6616f69bda92ac8927106a2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6196236,, +c11eb653746afa8148dc9153780a4584ea529d28,https://arxiv.org/pdf/1809.07764.pdf,,,https://arxiv.org/pdf/1809.07764.pdf +c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee,https://arxiv.org/pdf/1805.05612.pdf,,,https://arxiv.org/pdf/1805.05612.pdf +c175ebe550761b18bac24d394d85bdfaf3b7718c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301582,, +c1298120e9ab0d3764512cbd38b47cd3ff69327b,https://pdfs.semanticscholar.org/c129/8120e9ab0d3764512cbd38b47cd3ff69327b.pdf,,,https://pdfs.semanticscholar.org/c129/8120e9ab0d3764512cbd38b47cd3ff69327b.pdf +c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,https://pdfs.semanticscholar.org/7f02/61a759807f2ff57102a4e93318916232473f.pdf,,,https://pdfs.semanticscholar.org/7f02/61a759807f2ff57102a4e93318916232473f.pdf +c68ec931585847b37cde9f910f40b2091a662e83,https://pdfs.semanticscholar.org/c68e/c931585847b37cde9f910f40b2091a662e83.pdf,,,https://pdfs.semanticscholar.org/c68e/c931585847b37cde9f910f40b2091a662e83.pdf +c6f3399edb73cfba1248aec964630c8d54a9c534,https://arxiv.org/pdf/1809.03336.pdf,,,https://arxiv.org/pdf/1809.03336.pdf +c6724c2bb7f491c92c8dd4a1f01a80b82644b793,,,,https://www.ncbi.nlm.nih.gov/pubmed/19167865 +c61eaf172820fcafaabf39005bd4536f0c45f995,,,http://doi.org/10.1007/978-3-319-58771-4_1, +c6382de52636705be5898017f2f8ed7c70d7ae96,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,, +c678920facffd35853c9d185904f4aebcd2d8b49,https://arxiv.org/pdf/1803.11556.pdf,,,https://arxiv.org/pdf/1803.11556.pdf +c6241e6fc94192df2380d178c4c96cf071e7a3ac,https://arxiv.org/pdf/1505.04868.pdf,,,https://arxiv.org/pdf/1505.04868.pdf +c631a31be2c793d398175ceef7daff1848bb6408,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466318,, +c62c07de196e95eaaf614fb150a4fa4ce49588b4,https://pdfs.semanticscholar.org/c62c/07de196e95eaaf614fb150a4fa4ce49588b4.pdf,,,https://pdfs.semanticscholar.org/c62c/07de196e95eaaf614fb150a4fa4ce49588b4.pdf +c61a8940d66eed9850b35dd3768f18b59471ca34,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1374768,, +ec90d333588421764dff55658a73bbd3ea3016d2,https://pdfs.semanticscholar.org/ec90/d333588421764dff55658a73bbd3ea3016d2.pdf,,,https://pdfs.semanticscholar.org/ec90/d333588421764dff55658a73bbd3ea3016d2.pdf +ec8ec2dfd73cf3667f33595fef84c95c42125945,https://arxiv.org/pdf/1707.06286.pdf,,,https://arxiv.org/pdf/1707.06286.pdf +ec1e03ec72186224b93b2611ff873656ed4d2f74,https://pdfs.semanticscholar.org/ec1e/03ec72186224b93b2611ff873656ed4d2f74.pdf,,,https://pdfs.semanticscholar.org/ec1e/03ec72186224b93b2611ff873656ed4d2f74.pdf +ecac3da2ff8bc2ba55981467f7fdea9de80e2092,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301635,, +ec576efd18203bcb8273539fa277839ec92232a1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7994601,, +ecc4be938f0e61a9c6b5111e0a99013f2edc54b9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771439,, +ec1bec7344d07417fb04e509a9d3198da850349f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342699,, +ec983394f800da971d243f4143ab7f8421aa967c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340635,, +ecd08edab496801fd4fde45362dde462d00ee91c,,,,https://www.ncbi.nlm.nih.gov/pubmed/29994561 +ec5c63609cf56496715b0eba0e906de3231ad6d1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364651,, +ec00ecb64fa206cea8b2e716955a738a96424084,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265512,, +ec90738b6de83748957ff7c8aeb3150b4c9b68bb,,,http://doi.org/10.1016/j.patcog.2015.03.011, +4e30107ee6a2e087f14a7725e7fc5535ec2f5a5f,https://pdfs.semanticscholar.org/4e30/107ee6a2e087f14a7725e7fc5535ec2f5a5f.pdf,,,https://pdfs.semanticscholar.org/4e30/107ee6a2e087f14a7725e7fc5535ec2f5a5f.pdf +4e061a302816f5890a621eb278c6efa6e37d7e2f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909638,, +4e32fbb58154e878dd2fd4b06398f85636fd0cf4,https://arxiv.org/pdf/1805.02339.pdf,,,https://arxiv.org/pdf/1805.02339.pdf +4e0636a1b92503469b44e2807f0bb35cc0d97652,https://pdfs.semanticscholar.org/4e06/36a1b92503469b44e2807f0bb35cc0d97652.pdf,,,https://pdfs.semanticscholar.org/4e06/36a1b92503469b44e2807f0bb35cc0d97652.pdf +4e27fec1703408d524d6b7ed805cdb6cba6ca132,https://pdfs.semanticscholar.org/7714/a5aa27ab5ad4d06a81fbb3e973d3b1002ac1.pdf,,,https://pdfs.semanticscholar.org/7714/a5aa27ab5ad4d06a81fbb3e973d3b1002ac1.pdf +4e43408a59852c1bbaa11596a5da3e42034d9380,,,http://doi.org/10.1007/s11042-018-6040-3, +4e6c9be0b646d60390fe3f72ce5aeb0136222a10,https://arxiv.org/pdf/1604.04494.pdf,,,https://arxiv.org/pdf/1604.04494.pdf +4ed6c7740ba93d75345397ef043f35c0562fb0fd,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117516,, +4ef09fe9f7fa027427414cf1f2e9050ac7f5e34d,,,http://doi.org/10.1007/s11227-018-2408-4, +4e37cd250130c6fd60e066f0c8efb3cbb778c421,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8419742,, +20b994a78cd1db6ba86ea5aab7211574df5940b3,https://arxiv.org/pdf/1805.08417.pdf,,,https://arxiv.org/pdf/1805.08417.pdf +20a0f71d2c667f3c69df18f097f2b5678ac7d214,,,http://doi.org/10.1007/s10055-018-0357-0, +2004afb2276a169cdb1f33b2610c5218a1e47332,https://pdfs.semanticscholar.org/2004/afb2276a169cdb1f33b2610c5218a1e47332.pdf,,,https://pdfs.semanticscholar.org/2004/afb2276a169cdb1f33b2610c5218a1e47332.pdf +20ade100a320cc761c23971d2734388bfe79f7c5,https://pdfs.semanticscholar.org/20ad/e100a320cc761c23971d2734388bfe79f7c5.pdf,,,https://pdfs.semanticscholar.org/20ad/e100a320cc761c23971d2734388bfe79f7c5.pdf +20d6a4aaf5abf2925fdce2780e38ab1771209f76,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446795,, +206e24f7d4b3943b35b069ae2d028143fcbd0704,https://arxiv.org/pdf/1803.11405.pdf,,,https://arxiv.org/pdf/1803.11405.pdf +20eeb83a8b6fea64c746bf993f9c991bb34a4b30,,,http://doi.org/10.1007/s00138-018-0956-5, +2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b,https://arxiv.org/pdf/1408.2700.pdf,,,https://arxiv.org/pdf/1408.2700.pdf +206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8,https://arxiv.org/pdf/1706.02932.pdf,,,https://arxiv.org/pdf/1706.02932.pdf +202dc3c6fda654aeb39aee3e26a89340fb06802a,https://arxiv.org/pdf/1807.02800.pdf,,,https://arxiv.org/pdf/1807.02800.pdf +20111924fbf616a13d37823cd8712a9c6b458cd6,https://pdfs.semanticscholar.org/2011/1924fbf616a13d37823cd8712a9c6b458cd6.pdf,,,https://pdfs.semanticscholar.org/2011/1924fbf616a13d37823cd8712a9c6b458cd6.pdf +20c02e98602f6adf1cebaba075d45cef50de089f,https://arxiv.org/pdf/1808.07507.pdf,,,https://arxiv.org/pdf/1808.07507.pdf +18855be5e7a60269c0652e9567484ce5b9617caa,,,http://doi.org/10.1007/s11042-017-4579-z, +18d51a366ce2b2068e061721f43cb798177b4bb7,https://pdfs.semanticscholar.org/18d5/1a366ce2b2068e061721f43cb798177b4bb7.pdf,,,https://pdfs.semanticscholar.org/18d5/1a366ce2b2068e061721f43cb798177b4bb7.pdf +1860b8f63ce501bd0dfa9e6f2debc080e88d9baa,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7894195,, +185263189a30986e31566394680d6d16b0089772,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf,,,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf +18010284894ed0edcca74e5bf768ee2e15ef7841,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780493,, +18b9dc55e5221e704f90eea85a81b41dab51f7da,https://arxiv.org/pdf/1803.07179.pdf,,,https://arxiv.org/pdf/1803.07179.pdf +18941b52527e6f15abfdf5b86a0086935706e83b,https://arxiv.org/pdf/1808.09211.pdf,,,https://arxiv.org/pdf/1808.09211.pdf +18e54b74ed1f3c02b7569f53a7d930d72fc329f5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7902214,, +188abc5bad3a3663d042ce98c7a7327e5a1ae298,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6152129,, +180bd019eab85bbf01d9cddc837242e111825750,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239690,, +27a00f2490284bc0705349352d36e9749dde19ab,https://arxiv.org/pdf/1806.05622.pdf,,,https://arxiv.org/pdf/1806.05622.pdf +270acff7916589a6cc9ca915b0012ffcb75d4899,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659,, +275b5091c50509cc8861e792e084ce07aa906549,https://pdfs.semanticscholar.org/275b/5091c50509cc8861e792e084ce07aa906549.pdf,,,https://pdfs.semanticscholar.org/275b/5091c50509cc8861e792e084ce07aa906549.pdf +270733d986a1eb72efda847b4b55bc6ba9686df4,https://pdfs.semanticscholar.org/2707/33d986a1eb72efda847b4b55bc6ba9686df4.pdf,,,https://pdfs.semanticscholar.org/2707/33d986a1eb72efda847b4b55bc6ba9686df4.pdf +27da432cf2b9129dce256e5bf7f2f18953eef5a5,https://arxiv.org/pdf/1805.11519.pdf,,,https://arxiv.org/pdf/1805.11519.pdf +2717b044ae9933f9ab87f16d6c611352f66b2033,https://arxiv.org/pdf/1804.06964.pdf,,,https://arxiv.org/pdf/1804.06964.pdf +2770b095613d4395045942dc60e6c560e882f887,https://arxiv.org/pdf/1808.06210.pdf,,,https://arxiv.org/pdf/1808.06210.pdf +27b451abfe321a696c852215bb7efb4c2e50c89f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7898447,, +2744e6d526b8f2c1b297ac2d2458aaa08b0cda11,,,http://doi.org/10.1007/s11042-017-5571-3, +2724ba85ec4a66de18da33925e537f3902f21249,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751298,, +4b0cb10c6c3f2d581ac9eb654412f70bc72ed661,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8172386,, +4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306,, +4b61d8490bf034a2ee8aa26601d13c83ad7f843a,https://arxiv.org/pdf/1807.06708.pdf,,,https://arxiv.org/pdf/1807.06708.pdf +4b9ec224949c79a980a5a66664d0ac6233c3d575,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,, +4b48e912a17c79ac95d6a60afed8238c9ab9e553,https://arxiv.org/pdf/1805.06741.pdf,,,https://arxiv.org/pdf/1805.06741.pdf +4bbe460ab1b279a55e3c9d9f488ff79884d01608,https://arxiv.org/pdf/1712.00684.pdf,,,https://arxiv.org/pdf/1712.00684.pdf +4bf85ef995c684b841d0a5a002d175fadd922ff0,,,,http://dl.acm.org/citation.cfm?id=3199668 +4b936847f39094d6cb0bde68cea654d948c4735d,,,http://doi.org/10.1007/s11042-016-3470-7, +11bb2abe0ca614c15701961428eb2f260e3e2eef,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343867,, +11691f1e7c9dbcbd6dfd256ba7ac710581552baa,https://arxiv.org/pdf/1804.04527.pdf,,,https://arxiv.org/pdf/1804.04527.pdf +113b06e70b7eead8ae7450bafe9c91656705024c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373832,, +116f9e9cda25ff3187bc777ceb3ecd28077a7eca,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373864,, +112780a7fe259dc7aff2170d5beda50b2bfa7bda,https://arxiv.org/pdf/1805.00833.pdf,,,https://arxiv.org/pdf/1805.00833.pdf +1159ff04fd17c59515199e0fc2d5e01e72818b59,,,, +11df25b4e074b7610ec304a8733fa47625d9faca,,,http://doi.org/10.1016/j.patrec.2012.09.024, +1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf,,,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf +111d0b588f3abbbea85d50a28c0506f74161e091,https://pdfs.semanticscholar.org/111d/0b588f3abbbea85d50a28c0506f74161e091.pdf,,,https://pdfs.semanticscholar.org/111d/0b588f3abbbea85d50a28c0506f74161e091.pdf +7d2556d674ad119cf39df1f65aedbe7493970256,https://pdfs.semanticscholar.org/7f01/762f2daf27282197cb84751eb30550417d41.pdf,,,https://pdfs.semanticscholar.org/7f01/762f2daf27282197cb84751eb30550417d41.pdf +7d18e9165312cf669b799aa1b883c6bbe95bf40e,,,http://doi.org/10.1007/s11042-016-3492-1, +7df4f96138a4e23492ea96cf921794fc5287ba72,https://arxiv.org/pdf/1707.08705.pdf,,,https://arxiv.org/pdf/1707.08705.pdf +7d45f1878d8048f6b3de5b3ec912c49742d5e968,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7747479,, +7d40e7e5c01bd551edf65902386401e1b8b8014b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7303876,, +7df268a3f4da7d747b792882dfb0cbdb7cc431bc,https://arxiv.org/pdf/1804.03675.pdf,,,https://arxiv.org/pdf/1804.03675.pdf +2902f62457fdf7e8e8ee77a9155474107a2f423e,https://arxiv.org/pdf/1803.07973.pdf,,,https://arxiv.org/pdf/1803.07973.pdf +29db16efc3b378c50511f743e5197a4c0b9e902f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406401,, +2957715e96a18dbb5ed5c36b92050ec375214aa6,https://arxiv.org/pdf/1712.00193.pdf,,,https://arxiv.org/pdf/1712.00193.pdf +29c340c83b3bbef9c43b0c50b4d571d5ed037cbd,https://pdfs.semanticscholar.org/29c3/40c83b3bbef9c43b0c50b4d571d5ed037cbd.pdf,,,https://pdfs.semanticscholar.org/29c3/40c83b3bbef9c43b0c50b4d571d5ed037cbd.pdf +2961e14c327341d22d5f266a6872aa174add8ac4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6654170,, +2983cf95743be82671a71528004036bd19172712,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7915734,, +29a5d38390857e234c111f8bb787724c08f39110,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813387,, +292e1c88d43a77dbe5c610f4f611cfdb6d3212b6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301520,, +7c57ac7c9f84fbd093f6393e2b63c18078bf0fdf,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6218178,, +7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,,,http://doi.org/10.1007/s11263-016-0967-5, +7c47da191f935811f269f9ba3c59556c48282e80,https://arxiv.org/pdf/1503.07697.pdf,,,https://arxiv.org/pdf/1503.07697.pdf +7c11fa4fd91cb57e6e216117febcdd748e595760,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597453,, +7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,,,http://doi.org/10.1007/s11263-016-0920-7, +7c1cfab6b60466c13f07fe028e5085a949ec8b30,https://arxiv.org/pdf/1610.00291.pdf,,,https://arxiv.org/pdf/1610.00291.pdf +7c17280c9193da3e347416226b8713b99e7825b8,https://arxiv.org/pdf/1805.08162.pdf,,,https://arxiv.org/pdf/1805.08162.pdf +7cffcb4f24343a924a8317d560202ba9ed26cd0b,https://arxiv.org/pdf/1708.06997.pdf,,,https://arxiv.org/pdf/1708.06997.pdf +7c8e0f3053e09da6d8f9a1812591a35bccd5c669,,,http://doi.org/10.1007/978-3-030-00470-5, +7c825562b3ff4683ed049a372cb6807abb09af2a,https://pdfs.semanticscholar.org/7c82/5562b3ff4683ed049a372cb6807abb09af2a.pdf,,,https://pdfs.semanticscholar.org/7c82/5562b3ff4683ed049a372cb6807abb09af2a.pdf +7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d,https://pdfs.semanticscholar.org/7ca7/255c2e0c86e4adddbbff2ce74f36b1dc522d.pdf,,,https://pdfs.semanticscholar.org/7ca7/255c2e0c86e4adddbbff2ce74f36b1dc522d.pdf +7cfbf90368553333b47731729e0e358479c25340,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346480,, +7c9a65f18f7feb473e993077d087d4806578214e,https://pdfs.semanticscholar.org/7c9a/65f18f7feb473e993077d087d4806578214e.pdf,,,https://pdfs.semanticscholar.org/7c9a/65f18f7feb473e993077d087d4806578214e.pdf +7c66e7f357553fd4b362d00ff377bffb9197410e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961231,, +7c6686fa4d8c990e931f1d16deabf647bf3b1986,,,,http://arxiv.org/abs/1504.07550 +7cf579088e0456d04b531da385002825ca6314e2,https://arxiv.org/pdf/1708.04299.pdf,,,https://arxiv.org/pdf/1708.04299.pdf +7c80d91db5977649487388588c0c823080c9f4b4,https://arxiv.org/pdf/1805.02283.pdf,,,https://arxiv.org/pdf/1805.02283.pdf +7c30ea47f5ae1c5abd6981d409740544ed16ed16,https://pdfs.semanticscholar.org/7c30/ea47f5ae1c5abd6981d409740544ed16ed16.pdf,,,https://pdfs.semanticscholar.org/7c30/ea47f5ae1c5abd6981d409740544ed16ed16.pdf +162403e189d1b8463952fa4f18a291241275c354,https://arxiv.org/pdf/1801.10304.pdf,,,https://arxiv.org/pdf/1801.10304.pdf +16fdd6d842475e6fbe58fc809beabbed95f0642e,https://arxiv.org/pdf/1505.00315.pdf,,,https://arxiv.org/pdf/1505.00315.pdf +16de1324459fe8fdcdca80bba04c3c30bb789bdf,https://arxiv.org/pdf/1712.02765.pdf,,,https://arxiv.org/pdf/1712.02765.pdf +16b9d258547f1eccdb32111c9f45e2e4bbee79af,https://arxiv.org/pdf/1704.06369.pdf,,,https://arxiv.org/pdf/1704.06369.pdf +164b0e2a03a5a402f66c497e6c327edf20f8827b,https://pdfs.semanticscholar.org/164b/0e2a03a5a402f66c497e6c327edf20f8827b.pdf,,,https://pdfs.semanticscholar.org/164b/0e2a03a5a402f66c497e6c327edf20f8827b.pdf +166ef5d3fd96d99caeabe928eba291c082ec75a0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237597,, +166186e551b75c9b5adcc9218f0727b73f5de899,https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf,,,https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf +16d6737b50f969247339a6860da2109a8664198a,https://pdfs.semanticscholar.org/16d6/737b50f969247339a6860da2109a8664198a.pdf,,,https://pdfs.semanticscholar.org/16d6/737b50f969247339a6860da2109a8664198a.pdf +16fadde3e68bba301f9829b3f99157191106bd0f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4562953,, +4209783b0cab1f22341f0600eed4512155b1dee6,https://arxiv.org/pdf/1806.00365.pdf,,,https://arxiv.org/pdf/1806.00365.pdf +42a6beed493c69d5bad99ae47ea76497c8e5fdae,,,http://doi.org/10.1007/s11704-017-6613-8, +42eda7c20db9dc0f42f72bb997dd191ed8499b10,https://arxiv.org/pdf/1611.09309.pdf,,,https://arxiv.org/pdf/1611.09309.pdf +42ea8a96eea023361721f0ea34264d3d0fc49ebd,https://arxiv.org/pdf/1608.04695.pdf,,,https://arxiv.org/pdf/1608.04695.pdf +89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199,https://pdfs.semanticscholar.org/89c7/3b1e7c9b5e126a26ed5b7caccd7cd30ab199.pdf,,,https://pdfs.semanticscholar.org/89c7/3b1e7c9b5e126a26ed5b7caccd7cd30ab199.pdf +893239f17dc2d17183410d8a98b0440d98fa2679,https://pdfs.semanticscholar.org/d5b1/6481d34838cc92593f5f311badbf7f18ed5a.pdf,,,https://pdfs.semanticscholar.org/d5b1/6481d34838cc92593f5f311badbf7f18ed5a.pdf +892c911ca68f5b4bad59cde7eeb6c738ec6c4586,https://pdfs.semanticscholar.org/892c/911ca68f5b4bad59cde7eeb6c738ec6c4586.pdf,,,https://pdfs.semanticscholar.org/892c/911ca68f5b4bad59cde7eeb6c738ec6c4586.pdf +8986585975c0090e9ad97bec2ba6c4b437419dae,https://arxiv.org/pdf/1808.04285.pdf,,,https://arxiv.org/pdf/1808.04285.pdf +89d3a57f663976a9ac5e9cdad01267c1fc1a7e06,https://arxiv.org/pdf/1708.09642.pdf,,,https://arxiv.org/pdf/1708.09642.pdf +8981be3a69cd522b4e57e9914bf19f034d4b530c,https://pdfs.semanticscholar.org/8981/be3a69cd522b4e57e9914bf19f034d4b530c.pdf,,,https://pdfs.semanticscholar.org/8981/be3a69cd522b4e57e9914bf19f034d4b530c.pdf +895081d6a5545ad6385bfc6fcf460fc0b13bac86,,,http://doi.org/10.1016/S0167-8655%2899%2900134-8, +891b10c4b3b92ca30c9b93170ec9abd71f6099c4,https://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf,,,https://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf +451b6409565a5ad18ea49b063561a2645fa4281b,https://arxiv.org/pdf/1706.00699.pdf,,,https://arxiv.org/pdf/1706.00699.pdf +4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec,https://arxiv.org/pdf/1803.11366.pdf,,,https://arxiv.org/pdf/1803.11366.pdf +45e7ddd5248977ba8ec61be111db912a4387d62f,https://arxiv.org/pdf/1711.00253.pdf,,,https://arxiv.org/pdf/1711.00253.pdf +45b9b7fe3850ef83d39d52f6edcc0c24fcc0bc73,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888593,, +4560491820e0ee49736aea9b81d57c3939a69e12,https://arxiv.org/pdf/1712.04008.pdf,,,https://arxiv.org/pdf/1712.04008.pdf +45e459462a80af03e1bb51a178648c10c4250925,https://arxiv.org/pdf/1606.08998.pdf,,,https://arxiv.org/pdf/1606.08998.pdf +45a6333fc701d14aab19f9e2efd59fe7b0e89fec,https://pdfs.semanticscholar.org/45a6/333fc701d14aab19f9e2efd59fe7b0e89fec.pdf,,,https://pdfs.semanticscholar.org/45a6/333fc701d14aab19f9e2efd59fe7b0e89fec.pdf +450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,https://arxiv.org/pdf/1805.00611.pdf,,,https://arxiv.org/pdf/1805.00611.pdf +1f3f7df159c338884ddfd38ee2d3ba2e1e3ada69,,,http://doi.org/10.1162/jocn_a_00645, +1fe1bd6b760e3059fff73d53a57ce3a6079adea1,https://pdfs.semanticscholar.org/1fe1/bd6b760e3059fff73d53a57ce3a6079adea1.pdf,,,https://pdfs.semanticscholar.org/1fe1/bd6b760e3059fff73d53a57ce3a6079adea1.pdf +1ffe20eb32dbc4fa85ac7844178937bba97f4bf0,https://arxiv.org/pdf/1706.05067.pdf,,,https://arxiv.org/pdf/1706.05067.pdf +1f5f67d315c9dad341d39129d8f8fe7fa58e564c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397536,, +1fe1a78c941e03abe942498249c041b2703fd3d2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393355,, +1f59e0818e7b16c0d39dd08eb90533ea0ae0be5e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8385089,, +1fdeba9c4064b449231eac95e610f3288801fd3e,https://arxiv.org/pdf/1710.00925.pdf,,,https://arxiv.org/pdf/1710.00925.pdf +1fff309330f85146134e49e0022ac61ac60506a9,https://arxiv.org/pdf/1701.07569.pdf,,,https://arxiv.org/pdf/1701.07569.pdf +1fa426496ed6bcd0c0b17b8b935a14c84a7ee1c2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100195,, +1feeab271621128fe864e4c64bab9b2e2d0ed1f1,https://pdfs.semanticscholar.org/e230/e2e60b1d20a5334f59ca669bbd35f9391d2e.pdf,,,https://pdfs.semanticscholar.org/e230/e2e60b1d20a5334f59ca669bbd35f9391d2e.pdf +1fb980e137b2c9f8781a0d98c026e164b497ddb1,,,,http://dl.acm.org/citation.cfm?id=3213539 +73b90573d272887a6d835ace89bfaf717747c59b,https://pdfs.semanticscholar.org/73b9/0573d272887a6d835ace89bfaf717747c59b.pdf,,,https://pdfs.semanticscholar.org/73b9/0573d272887a6d835ace89bfaf717747c59b.pdf +7323b594d3a8508f809e276aa2d224c4e7ec5a80,https://arxiv.org/pdf/1808.05508.pdf,,,https://arxiv.org/pdf/1808.05508.pdf +7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373833,, +73ba33e933e834b815f62a50aa1a0e15c6547e83,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8368754,, +7361b900018f22e37499443643be1ff9d20edfd6,,,http://doi.org/10.1049/iet-bmt.2016.0169, +73ed64803d6f2c49f01cffef8e6be8fc9b5273b8,https://arxiv.org/pdf/1508.06073.pdf,,,https://arxiv.org/pdf/1508.06073.pdf +73d53a7c27716ae9a6d3484e78883545e53117ae,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8371978,, +7343f0b7bcdaf909c5e37937e295bf0ac7b69499,,,http://doi.org/10.1016/j.csi.2015.06.004, +7306d42ca158d40436cc5167e651d7ebfa6b89c1,https://arxiv.org/pdf/1511.04458.pdf,,,https://arxiv.org/pdf/1511.04458.pdf +734cdda4a4de2a635404e4c6b61f1b2edb3f501d,https://pdfs.semanticscholar.org/734c/dda4a4de2a635404e4c6b61f1b2edb3f501d.pdf,,,https://pdfs.semanticscholar.org/734c/dda4a4de2a635404e4c6b61f1b2edb3f501d.pdf +73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198,, +73dcb4c452badb3ee39a2f222298b234d08c21eb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6779478,, +73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c,https://arxiv.org/pdf/1705.02193.pdf,,,https://arxiv.org/pdf/1705.02193.pdf +872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,https://arxiv.org/pdf/1703.09507.pdf,,,https://arxiv.org/pdf/1703.09507.pdf +87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,,,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf +87610276ccbc12d0912b23fd493019f06256f94e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6706757,, +87b607b8d4858a16731144d17f457a54e488f15d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597532,, +8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f,https://arxiv.org/pdf/1701.03246.pdf,,,https://arxiv.org/pdf/1701.03246.pdf +878169be6e2c87df2d8a1266e9e37de63b524ae7,https://pdfs.semanticscholar.org/8781/69be6e2c87df2d8a1266e9e37de63b524ae7.pdf,,,https://pdfs.semanticscholar.org/8781/69be6e2c87df2d8a1266e9e37de63b524ae7.pdf +878301453e3d5cb1a1f7828002ea00f59cbeab06,https://arxiv.org/pdf/1701.08393.pdf,,,https://arxiv.org/pdf/1701.08393.pdf +87e592ee1a7e2d34e6b115da08700a1ae02e9355,https://arxiv.org/pdf/1807.10002.pdf,,,https://arxiv.org/pdf/1807.10002.pdf +8006219efb6ab76754616b0e8b7778dcfb46603d,https://pdfs.semanticscholar.org/7f79/e78e52883994a8a843af48922980ae730e65.pdf,,,https://pdfs.semanticscholar.org/7f79/e78e52883994a8a843af48922980ae730e65.pdf +803c92a3f0815dbf97e30c4ee9450fd005586e1a,https://arxiv.org/pdf/1802.09308.pdf,,,https://arxiv.org/pdf/1802.09308.pdf +80d4cf7747abfae96328183dd1f84133023c2668,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369786,, +80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923,https://pdfs.semanticscholar.org/4569/f8e017af1e052b075d8a267116a8b795bd84.pdf,,,https://pdfs.semanticscholar.org/4569/f8e017af1e052b075d8a267116a8b795bd84.pdf +80ed678ef28ccc1b942e197e0393229cd99d55c8,,,http://doi.org/10.1007/s10044-015-0456-4, +809e5884cf26b71dc7abc56ac0bad40fb29c671c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6247842,, +80097a879fceff2a9a955bf7613b0d3bfa68dc23,https://arxiv.org/pdf/1701.03555.pdf,,,https://arxiv.org/pdf/1701.03555.pdf +74ce7e5e677a4925489897665c152a352c49d0a2,https://arxiv.org/pdf/1805.03356.pdf,,,https://arxiv.org/pdf/1805.03356.pdf +7477cf04c6b086108f459f693a60272523c134db,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618937,, +746c0205fdf191a737df7af000eaec9409ede73f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,, +74dbe6e0486e417a108923295c80551b6d759dbe,https://pdfs.semanticscholar.org/ab95/1e780a7e8e28866b44c6a1a591ec470904b4.pdf,,,https://pdfs.semanticscholar.org/ab95/1e780a7e8e28866b44c6a1a591ec470904b4.pdf +747c25bff37b96def96dc039cc13f8a7f42dbbc7,https://arxiv.org/pdf/1503.01800.pdf,,,https://arxiv.org/pdf/1503.01800.pdf +744fa8062d0ae1a11b79592f0cd3fef133807a03,https://pdfs.semanticscholar.org/b5fd/440edd27702c8dbfa38fac0bf23deacf33cb.pdf,,,https://pdfs.semanticscholar.org/b5fd/440edd27702c8dbfa38fac0bf23deacf33cb.pdf +749d605dd12a4af58de1fae6f5ef5e65eb06540e,https://arxiv.org/pdf/1704.07489.pdf,,,https://arxiv.org/pdf/1704.07489.pdf +74c19438c78a136677a7cb9004c53684a4ae56ff,https://pdfs.semanticscholar.org/74c1/9438c78a136677a7cb9004c53684a4ae56ff.pdf,,,https://pdfs.semanticscholar.org/74c1/9438c78a136677a7cb9004c53684a4ae56ff.pdf +1a849b694f2d68c3536ed849ed78c82e979d64d5,https://pdfs.semanticscholar.org/318c/a222a7a4dfc63807c6b6c4285cc63c8610ba.pdf,,,https://pdfs.semanticscholar.org/318c/a222a7a4dfc63807c6b6c4285cc63c8610ba.pdf +1aa61dd85d3a5a2fe819cba21192ec4471c08628,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359518,, +1a53ca294bbe5923c46a339955e8207907e9c8c6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870,, +1a81c722727299e45af289d905d7dcf157174248,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995466,, +286a5c19a43382a21c8d96d847b52bba6b715a71,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6876188,, +289cfcd081c4393c7d6f63510747b5372202f855,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373873,, +28e1982d20b6eff33989abbef3e9e74400dbf508,,,http://doi.org/10.1007/s11042-015-3007-5, +281486d172cf0c78d348ce7d977a82ff763efccd,https://arxiv.org/pdf/1708.03911.pdf,,,https://arxiv.org/pdf/1708.03911.pdf +288964068cd87d97a98b8bc927d6e0d2349458a2,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,,,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf +28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406402,, +28f1542c63f5949ee6f2d51a6422244192b5a900,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780475,, +28d4e027c7e90b51b7d8908fce68128d1964668a,https://arxiv.org/pdf/1705.00393.pdf,,,https://arxiv.org/pdf/1705.00393.pdf +2866cbeb25551257683cf28f33d829932be651fe,https://arxiv.org/pdf/1809.04621.pdf,,,https://arxiv.org/pdf/1809.04621.pdf +176e6ba56e04c98e1997ffdef964ece90fd827b4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8322125,, +178a82e3a0541fa75c6a11350be5bded133a59fd,https://pdfs.semanticscholar.org/178a/82e3a0541fa75c6a11350be5bded133a59fd.pdf,,,https://pdfs.semanticscholar.org/178a/82e3a0541fa75c6a11350be5bded133a59fd.pdf +17479e015a2dcf15d40190e06419a135b66da4e0,https://arxiv.org/pdf/1610.08119.pdf,,,https://arxiv.org/pdf/1610.08119.pdf +17a995680482183f3463d2e01dd4c113ebb31608,https://arxiv.org/pdf/1802.06459.pdf,,,https://arxiv.org/pdf/1802.06459.pdf +17c0d99171efc957b88c31a465c59485ab033234,https://arxiv.org/pdf/1807.11458.pdf,,,https://arxiv.org/pdf/1807.11458.pdf +17a8d1b1b4c23a630b051f35e47663fc04dcf043,https://arxiv.org/pdf/1612.02372.pdf,,,https://arxiv.org/pdf/1612.02372.pdf +179564f157a96787b1b3380a9f79701e3394013d,,,,http://dl.acm.org/citation.cfm?id=2493502 +173657da03e3249f4e47457d360ab83b3cefbe63,https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf,,,https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf +1773d65c1dc566fd6128db65e907ac91b4583bed,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8328914,, +7bbaa09c9e318da4370a83b126bcdb214e7f8428,https://pdfs.semanticscholar.org/7bba/a09c9e318da4370a83b126bcdb214e7f8428.pdf,,,https://pdfs.semanticscholar.org/7bba/a09c9e318da4370a83b126bcdb214e7f8428.pdf +7b47dd9302b3085cd6705614b88d7bdbc8ae5c13,,,http://doi.org/10.1007/s11063-017-9693-4, +7b0f1fc93fb24630eb598330e13f7b839fb46cce,https://arxiv.org/pdf/1805.04771.pdf,,,https://arxiv.org/pdf/1805.04771.pdf +8fe38962c24300129391f6d7ac24d7783e0fddd0,https://arxiv.org/pdf/1801.01967.pdf,,,https://arxiv.org/pdf/1801.01967.pdf +8f6d05b8f9860c33c7b1a5d704694ed628db66c7,https://pdfs.semanticscholar.org/f1db/7f2e05e9c955cd59ac3d9040ab9b406c0b66.pdf,,,https://pdfs.semanticscholar.org/f1db/7f2e05e9c955cd59ac3d9040ab9b406c0b66.pdf +8f71c97206a03c366ddefaa6812f865ac6df87e9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342943,, +8f772d9ce324b2ef5857d6e0b2a420bc93961196,https://arxiv.org/pdf/1805.01760.pdf,,,https://arxiv.org/pdf/1805.01760.pdf +8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a,https://pdfs.semanticscholar.org/8fda/2f6b85c7e34d3e23927e501a4b4f7fc15b2a.pdf,,,https://pdfs.semanticscholar.org/8fda/2f6b85c7e34d3e23927e501a4b4f7fc15b2a.pdf +8fa9cb5dac394e30e4089bf5f4ffecc873d1da96,,,http://doi.org/10.1007/s11042-017-5245-1, +8fed5ea3b69ea441a8b02f61473eafee25fb2374,https://pdfs.semanticscholar.org/8fed/5ea3b69ea441a8b02f61473eafee25fb2374.pdf,,,https://pdfs.semanticscholar.org/8fed/5ea3b69ea441a8b02f61473eafee25fb2374.pdf +8fba84af61ac9b5e2bcb69b6730a597d7521ad73,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771329,, +8f3da45ff0c3e1777c3a7830f79c10f5896bcc21,https://pdfs.semanticscholar.org/8f3d/a45ff0c3e1777c3a7830f79c10f5896bcc21.pdf,,,https://pdfs.semanticscholar.org/8f3d/a45ff0c3e1777c3a7830f79c10f5896bcc21.pdf +8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,,,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf +8f9c37f351a91ed416baa8b6cdb4022b231b9085,https://pdfs.semanticscholar.org/8f9c/37f351a91ed416baa8b6cdb4022b231b9085.pdf,,,https://pdfs.semanticscholar.org/8f9c/37f351a91ed416baa8b6cdb4022b231b9085.pdf +8fb2ec3bbd862f680be05ef348b595e142463524,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699880,, +8a8127a06f432982bfb0150df3212f379b36840b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373884,, +8ad0a88a7583af819af66cf2d9e8adb860cf9c34,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539153,, +8acdc4be8274e5d189fb67b841c25debf5223840,https://pdfs.semanticscholar.org/8acd/c4be8274e5d189fb67b841c25debf5223840.pdf,,,https://pdfs.semanticscholar.org/8acd/c4be8274e5d189fb67b841c25debf5223840.pdf +8ac2d704f27a2ddf19b40c8e4695da629aa52a54,,,http://doi.org/10.1007/s11042-015-2945-2, +8ae642c87f0d6eeff1c6362571e7cd36dcda60ae,,,,http://dl.acm.org/citation.cfm?id=3123271 +8a8861ad6caedc3993e31d46e7de6c251a8cda22,https://arxiv.org/pdf/1706.01869.pdf,,,https://arxiv.org/pdf/1706.01869.pdf +8a6033cbba8598945bfadd2dd04023c2a9f31681,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014991,, +8a866bc0d925dfd8bb10769b8b87d7d0ff01774d,https://pdfs.semanticscholar.org/34b7/2d4fb60b36bbf34ff3b1ce3045ba303ab643.pdf,,,https://pdfs.semanticscholar.org/34b7/2d4fb60b36bbf34ff3b1ce3045ba303ab643.pdf +8a63a2b10068b6a917e249fdc73173f5fd918db0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8120021,, +8a0159919ee4e1a9f4cbfb652a1be212bf0554fd,https://pdfs.semanticscholar.org/8a01/59919ee4e1a9f4cbfb652a1be212bf0554fd.pdf,,,https://pdfs.semanticscholar.org/8a01/59919ee4e1a9f4cbfb652a1be212bf0554fd.pdf +8a4893d825db22f398b81d6a82ad2560832cd890,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5349489,, +8aa1591bf8fcb44f2e9f2f10d1029720ccbb8832,,,,http://dl.acm.org/citation.cfm?id=3078988 +7e600faee0ba11467d3f7aed57258b0db0448a72,https://pdfs.semanticscholar.org/0f09/4a0cef9f81da0e4915e6ed45f73aef6d6976.pdf,,,https://pdfs.semanticscholar.org/0f09/4a0cef9f81da0e4915e6ed45f73aef6d6976.pdf +7ed3b79248d92b255450c7becd32b9e5c834a31e,https://pdfs.semanticscholar.org/7ed3/b79248d92b255450c7becd32b9e5c834a31e.pdf,,,https://pdfs.semanticscholar.org/7ed3/b79248d92b255450c7becd32b9e5c834a31e.pdf +7eaa97be59019f0d36aa7dac27407b004cad5e93,https://arxiv.org/pdf/1609.04468.pdf,,,https://arxiv.org/pdf/1609.04468.pdf +7eb895e7de883d113b75eda54389460c61d63f67,https://arxiv.org/pdf/1709.02993.pdf,,,https://arxiv.org/pdf/1709.02993.pdf +7e467e686f9468b826133275484e0a1ec0f5bde6,https://arxiv.org/pdf/1407.4764.pdf,,,https://arxiv.org/pdf/1407.4764.pdf +7eb8476024413269bfb2abd54e88d3e131d0aa0e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4284739,, +7e56d9ebd47490bb06a8ff0bd5bcd8672ec52364,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1275543,, +7ef0cc4f3f7566f96f168123bac1e07053a939b2,https://pdfs.semanticscholar.org/e735/b8212d8a81909753291d5d06789a917014f8.pdf,,,https://pdfs.semanticscholar.org/e735/b8212d8a81909753291d5d06789a917014f8.pdf +7e2cfbfd43045fbd6aabd9a45090a5716fc4e179,https://arxiv.org/pdf/1808.00435.pdf,,,https://arxiv.org/pdf/1808.00435.pdf +7ee7b0602ef517b445316ca8aa525e28ea79307e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418530,, +7e8c8b1d72c67e2e241184448715a8d4bd88a727,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8097314,, +7e2f7c0eeaeb47b163a7258665324643669919e8,,,http://doi.org/10.1007/s11042-018-5801-3, +7ebb153704706e457ab57b432793d2b6e5d12592,https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf,,,https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf +7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922,https://pdfs.semanticscholar.org/7ec7/163ec1bc237c4c2f2841c386f2dbfd0cc922.pdf,,,https://pdfs.semanticscholar.org/7ec7/163ec1bc237c4c2f2841c386f2dbfd0cc922.pdf +7ef44b7c2b5533d00001ae81f9293bdb592f1146,https://pdfs.semanticscholar.org/7ef4/4b7c2b5533d00001ae81f9293bdb592f1146.pdf,,,https://pdfs.semanticscholar.org/7ef4/4b7c2b5533d00001ae81f9293bdb592f1146.pdf +7e27d946d23229220bcb6672aacab88e09516d39,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900131,, +7ec431e36919e29524eceb1431d3e1202637cf19,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8365242,, +10cb39e93fac194220237f15dae084136fdc6740,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457972,, +10af69f11301679b6fbb23855bf10f6af1f3d2e6,https://arxiv.org/pdf/1411.6660.pdf,,,https://arxiv.org/pdf/1411.6660.pdf +10bfa4cecd64b9584c901075d6b50f4fad898d0b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728013,, +10e4172dd4f4a633f10762fc5d4755e61d52dc36,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100146,, +101569eeef2cecc576578bd6500f1c2dcc0274e2,https://arxiv.org/pdf/1805.12317.pdf,,,https://arxiv.org/pdf/1805.12317.pdf +1025c4922491745534d5d4e8c6e74ba2dc57b138,,,http://doi.org/10.1007/s11263-017-1014-x, +101d4cfbd6f8a7a10bd33505e2b183183f1d8770,https://pdfs.semanticscholar.org/d2d7/3d4a60ff9a4bb9544d05796637cb6a419e6a.pdf,,,https://pdfs.semanticscholar.org/d2d7/3d4a60ff9a4bb9544d05796637cb6a419e6a.pdf +1063be2ad265751fb958b396ee26167fa0e844d2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369056,, +10bf35bf98cfe555dfc03b5f03f2769d330e3af9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8000333,, +106092fafb53e36077eba88f06feecd07b9e78e7,https://arxiv.org/pdf/1711.06330.pdf,,,https://arxiv.org/pdf/1711.06330.pdf +103c8eaca2a2176babab2cc6e9b25d48870d6928,https://pdfs.semanticscholar.org/14ad/c9c2b776c751d254f9c924fcb7578563f8b8.pdf,,,https://pdfs.semanticscholar.org/14ad/c9c2b776c751d254f9c924fcb7578563f8b8.pdf +193474d008cab9fa1c1fa81ce094d415f00b075c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466415,, +196c12571ab51273f44ea3469d16301d5b8d2828,,,http://doi.org/10.1007/s00371-018-1494-x, +19b492d426f092d80825edba3b02e354c312295f,,,http://doi.org/10.1007/s00371-016-1332-y, +1921795408345751791b44b379f51b7dd54ebfa2,https://arxiv.org/pdf/1807.07872.pdf,,,https://arxiv.org/pdf/1807.07872.pdf +1910f5f7ac81d4fcc30284e88dee3537887acdf3,https://pdfs.semanticscholar.org/1910/f5f7ac81d4fcc30284e88dee3537887acdf3.pdf,,,https://pdfs.semanticscholar.org/1910/f5f7ac81d4fcc30284e88dee3537887acdf3.pdf +197c64c36e8a9d624a05ee98b740d87f94b4040c,https://arxiv.org/pdf/1804.04421.pdf,,,https://arxiv.org/pdf/1804.04421.pdf +1951dc9dd4601168ab5acf4c14043b124a8e2f67,,,http://doi.org/10.1162/neco_a_01116, +193bc8b663d041bc34134a8407adc3e546daa9cc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373908,, +4c72a51a7c7288e6e17dfefe4f87df47929608e7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736912,, +4cc326fc977cf967eef5f3135bf0c48d07b79e2d,,,http://doi.org/10.1007/s11042-016-3830-3, +4ca9753ab023accbfa75a547a65344ee17b549ba,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457710,, +4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc,https://arxiv.org/pdf/1807.09192.pdf,,,https://arxiv.org/pdf/1807.09192.pdf +4cfe921ac4650470b0473fd52a2b801f4494ee64,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6467429,, +4ccf64fc1c9ca71d6aefdf912caf8fea048fb211,https://arxiv.org/pdf/1804.08572.pdf,,,https://arxiv.org/pdf/1804.08572.pdf +4cdb6144d56098b819076a8572a664a2c2d27f72,https://arxiv.org/pdf/1806.01196.pdf,,,https://arxiv.org/pdf/1806.01196.pdf +4c4e49033737467e28aa2bb32f6c21000deda2ef,https://arxiv.org/pdf/1709.01591.pdf,,,https://arxiv.org/pdf/1709.01591.pdf +4c0cc732314ba3ccccd9036e019b1cfc27850c17,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854473,, +26a44feb7a64db7986473ca801c251aa88748477,https://arxiv.org/pdf/1804.02744.pdf,,,https://arxiv.org/pdf/1804.02744.pdf +264f7ab36ff2e23a1514577a6404229d7fe1242b,https://pdfs.semanticscholar.org/264f/7ab36ff2e23a1514577a6404229d7fe1242b.pdf,,,https://pdfs.semanticscholar.org/264f/7ab36ff2e23a1514577a6404229d7fe1242b.pdf +266766818dbc5a4ca1161ae2bc14c9e269ddc490,https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf,,,https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf +263ed62f94ea615c747c00ebbb4008385285b33b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8319974,, +2696d3708d6c6cccbd701f0dac14cc94d72dd76d,,,http://doi.org/10.1007/s10044-017-0633-8, +265a88a8805f6ba3efae3fcc93d810be1ea68866,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342346,, +26e570049aaedcfa420fc8c7b761bc70a195657c,https://pdfs.semanticscholar.org/26e5/70049aaedcfa420fc8c7b761bc70a195657c.pdf,,,https://pdfs.semanticscholar.org/26e5/70049aaedcfa420fc8c7b761bc70a195657c.pdf +26575ad9e75efb440a7dc4ef8e548eed4e19dbd1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411910,, +26c8ed504f852eda4a2e63dbbbc3480e57f43c70,,,http://doi.org/10.1142/S0218001415560078, +21d5c838d19fcb4d624b69fe9d98e84d88f18e79,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7358748,, +21b5af67618fcc047b495d2d5d7c2bf145753633,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771442,, +21959bc56a160ebd450606867dce1462a913afab,,,http://doi.org/10.1007/s11042-018-6071-9, +214072c84378802a0a0fde0b93ffb17bc04f3759,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301397,, +2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44,https://pdfs.semanticscholar.org/2135/a3d9f4b8f5771fa5fc7c7794abf8c2840c44.pdf,,,https://pdfs.semanticscholar.org/2135/a3d9f4b8f5771fa5fc7c7794abf8c2840c44.pdf +212608e00fc1e8912ff845ee7a4a67f88ba938fc,https://arxiv.org/pdf/1704.02450.pdf,,,https://arxiv.org/pdf/1704.02450.pdf +4d90d7834ae25ee6176c096d5d6608555766c0b1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354115,, +4da4e58072c15904d4ce31076061ebd3ab1cdcd5,,,http://doi.org/10.1007/s00371-018-1477-y, +4db9e5f19366fe5d6a98ca43c1d113dac823a14d,https://pdfs.semanticscholar.org/a55d/ea7981ea0f90d1110005b5f5ca68a3175910.pdf,,,https://pdfs.semanticscholar.org/a55d/ea7981ea0f90d1110005b5f5ca68a3175910.pdf +4d19401e44848fe65b721971bc71a9250870ed5f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462612,, +4db0968270f4e7b3fa73e41c50d13d48e20687be,https://arxiv.org/pdf/1705.06394.pdf,,,https://arxiv.org/pdf/1705.06394.pdf +4d6ad0c7b3cf74adb0507dc886993e603c863e8c,https://pdfs.semanticscholar.org/4d6a/d0c7b3cf74adb0507dc886993e603c863e8c.pdf,,,https://pdfs.semanticscholar.org/4d6a/d0c7b3cf74adb0507dc886993e603c863e8c.pdf +4dca3d6341e1d991c902492952e726dc2a443d1c,https://arxiv.org/pdf/1805.09298.pdf,,,https://arxiv.org/pdf/1805.09298.pdf +4db99a2268a120c7af636387241188064ea42338,,,,https://www.ncbi.nlm.nih.gov/pubmed/21820862 +4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f,https://arxiv.org/pdf/1709.03196.pdf,,,https://arxiv.org/pdf/1709.03196.pdf +75879ab7a77318bbe506cb9df309d99205862f6c,https://pdfs.semanticscholar.org/7587/9ab7a77318bbe506cb9df309d99205862f6c.pdf,,,https://pdfs.semanticscholar.org/7587/9ab7a77318bbe506cb9df309d99205862f6c.pdf +7574f999d2325803f88c4915ba8f304cccc232d1,https://arxiv.org/pdf/1705.04396.pdf,,,https://arxiv.org/pdf/1705.04396.pdf +75ce75c1a5c35ecdba99dd8b7ba900d073e35f78,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163152,, +75308067ddd3c53721430d7984295838c81d4106,https://pdfs.semanticscholar.org/7530/8067ddd3c53721430d7984295838c81d4106.pdf,,,https://pdfs.semanticscholar.org/7530/8067ddd3c53721430d7984295838c81d4106.pdf +759cf57215fcfdd8f59c97d14e7f3f62fafa2b30,https://arxiv.org/pdf/1706.09498.pdf,,,https://arxiv.org/pdf/1706.09498.pdf +75a74a74d6abbbb302a99de3225c8870fa149aee,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914657,, +758d481bbf24d12615b751fd9ec121500a648bce,,,http://doi.org/10.1007/s11042-015-2914-9, +758d7e1be64cc668c59ef33ba8882c8597406e53,https://arxiv.org/pdf/1708.03985.pdf,,,https://arxiv.org/pdf/1708.03985.pdf +754f7f3e9a44506b814bf9dc06e44fecde599878,https://arxiv.org/pdf/1808.02194.pdf,,,https://arxiv.org/pdf/1808.02194.pdf +75249ebb85b74e8932496272f38af274fbcfd696,https://pdfs.semanticscholar.org/7524/9ebb85b74e8932496272f38af274fbcfd696.pdf,,,https://pdfs.semanticscholar.org/7524/9ebb85b74e8932496272f38af274fbcfd696.pdf +81a142c751bf0b23315fb6717bc467aa4fdfbc92,https://pdfs.semanticscholar.org/81a1/42c751bf0b23315fb6717bc467aa4fdfbc92.pdf,,,https://pdfs.semanticscholar.org/81a1/42c751bf0b23315fb6717bc467aa4fdfbc92.pdf +8199803f476c12c7f6c0124d55d156b5d91314b6,https://arxiv.org/pdf/1707.06642.pdf,,,https://arxiv.org/pdf/1707.06642.pdf +81706277ed180a92d2eeb94ac0560f7dc591ee13,https://pdfs.semanticscholar.org/8170/6277ed180a92d2eeb94ac0560f7dc591ee13.pdf,,,https://pdfs.semanticscholar.org/8170/6277ed180a92d2eeb94ac0560f7dc591ee13.pdf +8164ebc07f51c9e0db4902980b5ac3f5a8d8d48c,https://arxiv.org/pdf/1808.00171.pdf,,,https://arxiv.org/pdf/1808.00171.pdf +814369f171337ee1d8809446b7dbfc5e1ef9f4b5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597559,, +814d091c973ff6033a83d4e44ab3b6a88cc1cb66,https://pdfs.semanticscholar.org/814d/091c973ff6033a83d4e44ab3b6a88cc1cb66.pdf,,,https://pdfs.semanticscholar.org/814d/091c973ff6033a83d4e44ab3b6a88cc1cb66.pdf +81513764b73dae486a9d2df28269c7db75e9beb3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7839217,, +8127b7654d6e5c46caaf2404270b74c6b0967e19,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813406,, +81b0550c58e7409b4f1a1cd7838669cfaa512eb3,,,http://doi.org/10.1016/j.patcog.2015.08.026, +81f101cea3c451754506bf1c7edf80a661fa4dd1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163081,, +81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369725,, +86f191616423efab8c0d352d986126a964983219,https://arxiv.org/pdf/1712.01393.pdf,,,https://arxiv.org/pdf/1712.01393.pdf +869a2fbe42d3fdf40ed8b768edbf54137be7ac71,https://pdfs.semanticscholar.org/915d/4a7202060d77c46e99121c1c8ca875898a11.pdf,,,https://pdfs.semanticscholar.org/915d/4a7202060d77c46e99121c1c8ca875898a11.pdf +86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,,,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf +86d0127e1fd04c3d8ea78401c838af621647dc95,https://arxiv.org/pdf/1804.02810.pdf,,,https://arxiv.org/pdf/1804.02810.pdf +863ad2838b9b90d4461995f498a39bcd2fb87c73,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265580,, +86f3552b822f6af56cb5079cc31616b4035ccc4e,https://arxiv.org/pdf/1604.07547.pdf,,,https://arxiv.org/pdf/1604.07547.pdf +860588fafcc80c823e66429fadd7e816721da42a,https://arxiv.org/pdf/1804.04412.pdf,,,https://arxiv.org/pdf/1804.04412.pdf +8633732d9f787f8497c2696309c7d70176995c15,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298967,, +86374bb8d309ad4dbde65c21c6fda6586ae4147a,https://arxiv.org/pdf/1712.09184.pdf,,,https://arxiv.org/pdf/1712.09184.pdf +8694cd9748fb1c128f91a572119978075fede848,,,http://doi.org/10.1016/j.neucom.2017.08.028, +869583b700ecf33a9987447aee9444abfe23f343,https://arxiv.org/pdf/1702.01005.pdf,,,https://arxiv.org/pdf/1702.01005.pdf +721b109970bf5f1862767a1bec3f9a79e815f79a,https://pdfs.semanticscholar.org/721b/109970bf5f1862767a1bec3f9a79e815f79a.pdf,,,https://pdfs.semanticscholar.org/721b/109970bf5f1862767a1bec3f9a79e815f79a.pdf +72591a75469321074b072daff80477d8911c3af3,https://arxiv.org/pdf/1212.3913.pdf,,,https://arxiv.org/pdf/1212.3913.pdf +7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,https://arxiv.org/pdf/1504.02351.pdf,,,https://arxiv.org/pdf/1504.02351.pdf +72cbbdee4f6eeee8b7dd22cea6092c532271009f,https://arxiv.org/pdf/1709.05188.pdf,,,https://arxiv.org/pdf/1709.05188.pdf +721d9c387ed382988fce6fa864446fed5fb23173,https://pdfs.semanticscholar.org/721d/9c387ed382988fce6fa864446fed5fb23173.pdf,,,https://pdfs.semanticscholar.org/721d/9c387ed382988fce6fa864446fed5fb23173.pdf +720763bcb5e0507f13a8a319018676eb24270ff0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5202783,, +72167c9e4e03e78152f6df44c782571c3058050e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771464,, +725c3605c2d26d113637097358cd4c08c19ff9e1,https://arxiv.org/pdf/1807.00504.pdf,,,https://arxiv.org/pdf/1807.00504.pdf +44b1399e8569a29eed0d22d88767b1891dbcf987,https://pdfs.semanticscholar.org/44b1/399e8569a29eed0d22d88767b1891dbcf987.pdf,,,https://pdfs.semanticscholar.org/44b1/399e8569a29eed0d22d88767b1891dbcf987.pdf +443f4421e44d4f374c265e6f2551bf9830de5597,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771467,, +446dc1413e1cfaee0030dc74a3cee49a47386355,https://arxiv.org/pdf/1710.04837.pdf,,,https://arxiv.org/pdf/1710.04837.pdf +44855e53801d09763c1fb5f90ab73e5c3758a728,,,http://doi.org/10.1007/s11263-017-1018-6, +44d23df380af207f5ac5b41459c722c87283e1eb,https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf,,,https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf +44b91268fbbf62e1d2ba1d5331ec7aedac30dbe8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8342368,, +44d93039eec244083ac7c46577b9446b3a071f3e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1415571,, +2a826273e856939b58be8779d2136bffa0dddb08,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373892,, +2ac7bb3fb014d27d3928a9b4bc1bf019627e0c1a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8432363,, +2a7058a720fa9da4b9b607ea00bfdb63652dff95,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590031,, +2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c,https://arxiv.org/pdf/1708.05340.pdf,,,https://arxiv.org/pdf/1708.05340.pdf +2a612a7037646276ff98141d3e7abbc9c91fccb8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909615,, +2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,https://arxiv.org/pdf/1805.01515.pdf,,,https://arxiv.org/pdf/1805.01515.pdf +2a2df7e790737a026434187f9605c4763ff71292,,,http://doi.org/10.1007/s11042-017-4665-2, +2ab034e1f54c37bfc8ae93f7320160748310dc73,https://arxiv.org/pdf/1805.07242.pdf,,,https://arxiv.org/pdf/1805.07242.pdf +2f1485994ef2c09a7bb2874eb8252be8fe710db1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780700,, +2ffcd35d9b8867a42be23978079f5f24be8d3e35,https://pdfs.semanticscholar.org/2ffc/d35d9b8867a42be23978079f5f24be8d3e35.pdf,,,https://pdfs.semanticscholar.org/2ffc/d35d9b8867a42be23978079f5f24be8d3e35.pdf +2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,https://arxiv.org/pdf/1711.09618.pdf,,,https://arxiv.org/pdf/1711.09618.pdf +2f88d3189723669f957d83ad542ac5c2341c37a5,https://pdfs.semanticscholar.org/2f88/d3189723669f957d83ad542ac5c2341c37a5.pdf,,,https://pdfs.semanticscholar.org/2f88/d3189723669f957d83ad542ac5c2341c37a5.pdf +2f67d5448b5372f639633d8d29aac9c0295b4d72,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460923,, +2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd,https://pdfs.semanticscholar.org/2f17/f6c460e02bd105dcbf14c9b73f34c5fb59bd.pdf,,,https://pdfs.semanticscholar.org/2f17/f6c460e02bd105dcbf14c9b73f34c5fb59bd.pdf +2f69e9964f3b6bdc0d18749b48bb6b44a4171c64,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7801496,, +2f837ff8b134b785ee185a9c24e1f82b4e54df04,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5739539,, +2f73203fd71b755a9601d00fc202bbbd0a595110,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868,, +2fea258320c50f36408032c05c54ba455d575809,https://arxiv.org/pdf/1603.08199.pdf,,,https://arxiv.org/pdf/1603.08199.pdf +438c4b320b9a94a939af21061b4502f4a86960e3,https://arxiv.org/pdf/1702.03041.pdf,,,https://arxiv.org/pdf/1702.03041.pdf +43fce0c6b11eb50f597aa573611ac6dc47e088d3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465617,, +43dce79cf815b5c7068b1678f6200dabf8f5de31,,,,http://arxiv.org/abs/1709.03196 +43e268c118ac25f1f0e984b57bc54f0119ded520,https://arxiv.org/pdf/1410.4828.pdf,,,https://arxiv.org/pdf/1410.4828.pdf +43c3b6a564b284382fdf8ae33f974f4e7a89600e,,,,http://dl.acm.org/citation.cfm?id=3190784 +437642cfc8c34e445ea653929e2d183aaaeeb704,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014815,, +432d8cba544bf7b09b0455561fea098177a85db1,https://arxiv.org/pdf/1606.02185.pdf,,,https://arxiv.org/pdf/1606.02185.pdf +4317856a1458baa427dc00e8ea505d2fc5f118ab,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296449,, +4342a2b63c9c344d78cf153600cd918a5fecad59,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237671,, +43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a,https://pdfs.semanticscholar.org/4e42/182d40e0ea82bcab2289ae7c8b191dc834f1.pdf,,,https://pdfs.semanticscholar.org/4e42/182d40e0ea82bcab2289ae7c8b191dc834f1.pdf +88e090ffc1f75eed720b5afb167523eb2e316f7f,https://pdfs.semanticscholar.org/88e0/90ffc1f75eed720b5afb167523eb2e316f7f.pdf,,,https://pdfs.semanticscholar.org/88e0/90ffc1f75eed720b5afb167523eb2e316f7f.pdf +88a898592b4c1dfd707f04f09ca58ec769a257de,https://arxiv.org/pdf/1809.08809.pdf,,,https://arxiv.org/pdf/1809.08809.pdf +88535dba55b0a80975df179d31a6cc80cae1cc92,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355366,, +885c37f94e9edbbb2177cfba8cb1ad840b2a5f20,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8006255,, +8818b12aa0ff3bf0b20f9caa250395cbea0e8769,https://pdfs.semanticscholar.org/8818/b12aa0ff3bf0b20f9caa250395cbea0e8769.pdf,,,https://pdfs.semanticscholar.org/8818/b12aa0ff3bf0b20f9caa250395cbea0e8769.pdf +88e2efab01e883e037a416c63a03075d66625c26,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265507,, +8895d6ae9f095a8413f663cc83f5b7634b3dc805,https://pdfs.semanticscholar.org/8895/d6ae9f095a8413f663cc83f5b7634b3dc805.pdf,,,https://pdfs.semanticscholar.org/8895/d6ae9f095a8413f663cc83f5b7634b3dc805.pdf +9ff931ca721d50e470e1a38e583c7b18b6cdc2cc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407637,, +9f1a854d574d0bd14786c41247db272be6062581,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8360155,, +9f62ac43a1086c22b9a3d9f192c975d1a5a4b31f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4426825,, +9f131b4e036208f2402182a1af2a59e3c5d7dd44,,,,http://dl.acm.org/citation.cfm?id=3206038 +9f2984081ef88c20d43b29788fdf732ceabd5d6a,,,,http://arxiv.org/abs/1806.01547 +9fc993aeb0a007ccfaca369a9a8c0ccf7697261d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7936534,, +9f43caad22803332400f498ca4dd0429fe7da0aa,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6239186,, +9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,https://pdfs.semanticscholar.org/9fdf/e1695adac2380f99d3d5cb6879f0ac7f2bfd.pdf,,,https://pdfs.semanticscholar.org/9fdf/e1695adac2380f99d3d5cb6879f0ac7f2bfd.pdf +6b333b2c6311e36c2bde920ab5813f8cfcf2b67b,https://pdfs.semanticscholar.org/d330/64c32527a2690bd1b430b1d9f90a2a609a13.pdf,,,https://pdfs.semanticscholar.org/d330/64c32527a2690bd1b430b1d9f90a2a609a13.pdf +6baaa8b763cc5553715766e7fbe7abb235fae33c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789589,, +6ba3cb67bcdb7aea8a07e144c03b8c5a79c19bc0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8246530,, +6b3e360b80268fda4e37ff39b7f303e3684e8719,https://pdfs.semanticscholar.org/75d2/de5858dd45aca9c5db8af6f44617f521cb77.pdf,,,https://pdfs.semanticscholar.org/75d2/de5858dd45aca9c5db8af6f44617f521cb77.pdf +6b8d0569fffce5cc221560d459d6aa10c4db2f03,https://arxiv.org/pdf/1806.02479.pdf,,,https://arxiv.org/pdf/1806.02479.pdf +6b99cd366f2ea8e1c9abadf73b05388c0e24fec3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100204,, +6b742055a664bcbd1c6a85ae6796bd15bc945367,,,http://doi.org/10.1007/s00138-006-0052-0, +6b6ff9d55e1df06f8b3e6f257e23557a73b2df96,https://pdfs.semanticscholar.org/6b6f/f9d55e1df06f8b3e6f257e23557a73b2df96.pdf,,,https://pdfs.semanticscholar.org/6b6f/f9d55e1df06f8b3e6f257e23557a73b2df96.pdf +07377c375ac76a34331c660fe87ebd7f9b3d74c4,https://arxiv.org/pdf/1808.01338.pdf,,,https://arxiv.org/pdf/1808.01338.pdf +07a31bd7a0bd7118f8ac0bc735feef90e304fb08,,,http://doi.org/10.1007/s11042-015-3120-5, +071ec4f3fb4bfe6ae9980477d208a7b12691710e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6552193,, +07c83f544d0604e6bab5d741b0bf9a3621d133da,https://arxiv.org/pdf/1708.07632.pdf,,,https://arxiv.org/pdf/1708.07632.pdf +07fa153b8e6196ee6ef6efd8b743de8485a07453,https://pdfs.semanticscholar.org/07fa/153b8e6196ee6ef6efd8b743de8485a07453.pdf,,,https://pdfs.semanticscholar.org/07fa/153b8e6196ee6ef6efd8b743de8485a07453.pdf +0750a816858b601c0dbf4cfb68066ae7e788f05d,https://arxiv.org/pdf/1801.09414.pdf,,,https://arxiv.org/pdf/1801.09414.pdf +38c7f80a1e7fa1bdec632042318dc7cdd3c9aad4,,,http://doi.org/10.1016/j.asoc.2018.03.030, +3803b91e784922a2dacd6a18f61b3100629df932,https://arxiv.org/pdf/1709.07200.pdf,,,https://arxiv.org/pdf/1709.07200.pdf +38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7,https://arxiv.org/pdf/1807.00451.pdf,,,https://arxiv.org/pdf/1807.00451.pdf +38c901a58244be9a2644d486f9a1284dc0edbf8a,https://arxiv.org/pdf/1607.06408.pdf,,,https://arxiv.org/pdf/1607.06408.pdf +38f1fac3ed0fd054e009515e7bbc72cdd4cf801a,https://arxiv.org/pdf/1806.08246.pdf,,,https://arxiv.org/pdf/1806.08246.pdf +380d5138cadccc9b5b91c707ba0a9220b0f39271,https://arxiv.org/pdf/1806.00194.pdf,,,https://arxiv.org/pdf/1806.00194.pdf +3827f1cab643a57e3cd22fbffbf19dd5e8a298a8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373804,, +00fb2836068042c19b5197d0999e8e93b920eb9c,https://pdfs.semanticscholar.org/00fb/2836068042c19b5197d0999e8e93b920eb9c.pdf,,,https://pdfs.semanticscholar.org/00fb/2836068042c19b5197d0999e8e93b920eb9c.pdf +0004f72a00096fa410b179ad12aa3a0d10fc853c,https://pdfs.semanticscholar.org/0004/f72a00096fa410b179ad12aa3a0d10fc853c.pdf,,,https://pdfs.semanticscholar.org/0004/f72a00096fa410b179ad12aa3a0d10fc853c.pdf +007fbc7a1d7eae33b2bb59b175dd1033e5e178f3,,,,http://dl.acm.org/citation.cfm?id=3209659 +6e91be2ad74cf7c5969314b2327b513532b1be09,https://arxiv.org/pdf/1412.2404.pdf,,,https://arxiv.org/pdf/1412.2404.pdf +6e8a81d452a91f5231443ac83e4c0a0db4579974,https://pdfs.semanticscholar.org/3f64/a5b26a8297d4b832bc5bb95264cdfabde105.pdf,,,https://pdfs.semanticscholar.org/3f64/a5b26a8297d4b832bc5bb95264cdfabde105.pdf +6e46d8aa63db3285417c8ebb65340b5045ca106f,,,,http://dl.acm.org/citation.cfm?id=3183751 +6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f,https://arxiv.org/pdf/1801.04134.pdf,,,https://arxiv.org/pdf/1801.04134.pdf +6e911227e893d0eecb363015754824bf4366bdb7,https://arxiv.org/pdf/1712.01026.pdf,,,https://arxiv.org/pdf/1712.01026.pdf +6e00a406edb508312108f683effe6d3c1db020fb,https://arxiv.org/pdf/1803.06340.pdf,,,https://arxiv.org/pdf/1803.06340.pdf +6e38011e38a1c893b90a48e8f8eae0e22d2008e8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265376,, +9ac43a98fe6fde668afb4fcc115e4ee353a6732d,https://arxiv.org/pdf/1804.07362.pdf,,,https://arxiv.org/pdf/1804.07362.pdf +9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb,https://arxiv.org/pdf/1711.11585.pdf,,,https://arxiv.org/pdf/1711.11585.pdf +9af9a88c60d9e4b53e759823c439fc590a4b5bc5,https://arxiv.org/pdf/1708.00277.pdf,,,https://arxiv.org/pdf/1708.00277.pdf +9a98dd6d6aaba05c9e46411ea263f74df908203d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7859405,, +9a59abdf3460970de53e09cb397f47d86744f472,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995399,, +9aab33ce8d6786b3b77900a9b25f5f4577cea461,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961739,, +9aad8e52aff12bd822f0011e6ef85dfc22fe8466,https://arxiv.org/pdf/1809.03669.pdf,,,https://arxiv.org/pdf/1809.03669.pdf +9ac2960f646a46b701963230e6949abd9ac0a9b3,,,http://doi.org/10.1162/jocn_a_01174, +36939e6a365e9db904d81325212177c9e9e76c54,https://pdfs.semanticscholar.org/941b/5492e6ac98355fd7bc7531f846d638e814ac.pdf,,,https://pdfs.semanticscholar.org/941b/5492e6ac98355fd7bc7531f846d638e814ac.pdf +3646b42511a6a0df5470408bc9a7a69bb3c5d742,https://pdfs.semanticscholar.org/2a6a/8d8ed0f980cc3b20d743f43c9e36dec3150e.pdf,,,https://pdfs.semanticscholar.org/2a6a/8d8ed0f980cc3b20d743f43c9e36dec3150e.pdf +361eaef45fccfffd5b7df12fba902490a7d24a8d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404319,, +3674f3597bbca3ce05e4423611d871d09882043b,https://pdfs.semanticscholar.org/3674/f3597bbca3ce05e4423611d871d09882043b.pdf,,,https://pdfs.semanticscholar.org/3674/f3597bbca3ce05e4423611d871d09882043b.pdf +362bfeb28adac5f45b6ef46c07c59744b4ed6a52,https://arxiv.org/pdf/1808.01727.pdf,,,https://arxiv.org/pdf/1808.01727.pdf +368e99f669ea5fd395b3193cd75b301a76150f9d,https://arxiv.org/pdf/1506.01342.pdf,,,https://arxiv.org/pdf/1506.01342.pdf +3619a9b46ad4779d0a63b20f7a6a8d3d49530339,https://pdfs.semanticscholar.org/3619/a9b46ad4779d0a63b20f7a6a8d3d49530339.pdf,,,https://pdfs.semanticscholar.org/3619/a9b46ad4779d0a63b20f7a6a8d3d49530339.pdf +361d6345919c2edc5c3ce49bb4915ed2b4ee49be,https://pdfs.semanticscholar.org/399e/d1c6b72c765c2c8ec6437c9ef7a1866d0f29.pdf,,,https://pdfs.semanticscholar.org/399e/d1c6b72c765c2c8ec6437c9ef7a1866d0f29.pdf +5cbe1445d683d605b31377881ac8540e1d17adf0,https://arxiv.org/pdf/1509.06161.pdf,,,https://arxiv.org/pdf/1509.06161.pdf +5c493c42bfd93e4d08517438983e3af65e023a87,https://pdfs.semanticscholar.org/5c49/3c42bfd93e4d08517438983e3af65e023a87.pdf,,,https://pdfs.semanticscholar.org/5c49/3c42bfd93e4d08517438983e3af65e023a87.pdf +5c35ac04260e281141b3aaa7bbb147032c887f0c,https://pdfs.semanticscholar.org/5c35/ac04260e281141b3aaa7bbb147032c887f0c.pdf,,,https://pdfs.semanticscholar.org/5c35/ac04260e281141b3aaa7bbb147032c887f0c.pdf +5c4d4fd37e8c80ae95c00973531f34a6d810ea3a,https://arxiv.org/pdf/1603.09439.pdf,,,https://arxiv.org/pdf/1603.09439.pdf +09137e3c267a3414314d1e7e4b0e3a4cae801f45,https://arxiv.org/pdf/1711.06078.pdf,,,https://arxiv.org/pdf/1711.06078.pdf +09903df21a38e069273b80e94c8c29324963a832,,,http://doi.org/10.1007/s11042-017-4980-7, +09926ed62511c340f4540b5bc53cf2480e8063f8,https://pdfs.semanticscholar.org/0992/6ed62511c340f4540b5bc53cf2480e8063f8.pdf,,,https://pdfs.semanticscholar.org/0992/6ed62511c340f4540b5bc53cf2480e8063f8.pdf +0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,https://arxiv.org/pdf/1806.02023.pdf,,,https://arxiv.org/pdf/1806.02023.pdf +097340d3ac939ce181c829afb6b6faff946cdce0,https://arxiv.org/pdf/1805.11119.pdf,,,https://arxiv.org/pdf/1805.11119.pdf +09507f1f1253101d04a975fc5600952eac868602,https://arxiv.org/pdf/1807.10037.pdf,,,https://arxiv.org/pdf/1807.10037.pdf +098363b29eef1471c494382338687f2fe98f6e15,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411212,, +099053f2cbfa06c0141371b9f34e26970e316426,,,http://doi.org/10.1007/s11042-016-4079-6, +09df62fd17d3d833ea6b5a52a232fc052d4da3f5,https://pdfs.semanticscholar.org/5baf/412bc25d131c2da702a6d3b972de7212c50b.pdf,,,https://pdfs.semanticscholar.org/5baf/412bc25d131c2da702a6d3b972de7212c50b.pdf +5dafab3c936763294257af73baf9fb3bb1696654,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5514556,, +5d9971c6a9d5c56463ea186850b16f8969a58e67,,,http://doi.org/10.1007/s11042-017-5354-x, +5da827fe558fb2e1124dcc84ef08311241761726,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139096,, +5dd473a4a9c6337b083edf38b6ddf5a6aece8908,,,,http://arxiv.org/abs/1711.08238 +5db4fe0ce9e9227042144758cf6c4c2de2042435,https://pdfs.semanticscholar.org/5db4/fe0ce9e9227042144758cf6c4c2de2042435.pdf,,,https://pdfs.semanticscholar.org/5db4/fe0ce9e9227042144758cf6c4c2de2042435.pdf +5de9670f72d10682bf2cb3156988346257e0489f,,,http://doi.org/10.1016/j.inffus.2015.12.004, +5d2e5833ca713f95adcf4267148ac2ccf2318539,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6121744,, +5dd3c9ac3c6d826e17c5b378d1575b68d02432d7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7292416,, +5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e,https://pdfs.semanticscholar.org/0946/ce4615f74c4666878757a5eb89494a1f208b.pdf,,,https://pdfs.semanticscholar.org/0946/ce4615f74c4666878757a5eb89494a1f208b.pdf +31cdaaa7a47efe2ce0e78ebec29df4d2d81df265,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776921,, +31f1c92dbfa5aa338a21a0cb15d071cb9dc6e362,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337733,, +318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a,https://arxiv.org/pdf/1601.04805.pdf,,,https://arxiv.org/pdf/1601.04805.pdf +313d5eba97fe064bdc1f00b7587a4b3543ef712a,https://pdfs.semanticscholar.org/313d/5eba97fe064bdc1f00b7587a4b3543ef712a.pdf,,,https://pdfs.semanticscholar.org/313d/5eba97fe064bdc1f00b7587a4b3543ef712a.pdf +31dd6bafd6e7c6095eb8d0591abac3b0106a75e3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457336,, +31ea88f29e7f01a9801648d808f90862e066f9ea,https://arxiv.org/pdf/1605.06391.pdf,,,https://arxiv.org/pdf/1605.06391.pdf +3176ee88d1bb137d0b561ee63edf10876f805cf0,https://arxiv.org/pdf/1511.07356.pdf,,,https://arxiv.org/pdf/1511.07356.pdf +31d51e48dbd9e7253eafe0719f3788adb564a971,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410588,, +3157be811685c93d0cef7fa4c489efea581f9b8e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411222,, +312b2566e315dd6e65bd42cfcbe4d919159de8a1,https://pdfs.semanticscholar.org/312b/2566e315dd6e65bd42cfcbe4d919159de8a1.pdf,,,https://pdfs.semanticscholar.org/312b/2566e315dd6e65bd42cfcbe4d919159de8a1.pdf +31ec1e5c3b5e020af4a5a3c1be2724c7429a7c78,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354285,, +914d7527678b514e3ee9551655f55ffbd3f0eb0a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404350,, +91495c689e6e614247495c3f322d400d8098de43,https://pdfs.semanticscholar.org/9149/5c689e6e614247495c3f322d400d8098de43.pdf,,,https://pdfs.semanticscholar.org/9149/5c689e6e614247495c3f322d400d8098de43.pdf +91e17338a12b5e570907e816bff296b13177971e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272751,, +917bea27af1846b649e2bced624e8df1d9b79d6f,https://arxiv.org/pdf/1805.00361.pdf,,,https://arxiv.org/pdf/1805.00361.pdf +911bef7465665d8b194b6b0370b2b2389dfda1a1,https://arxiv.org/pdf/1806.05666.pdf,,,https://arxiv.org/pdf/1806.05666.pdf +91ead35d1d2ff2ea7cf35d15b14996471404f68d,https://arxiv.org/pdf/1702.01325.pdf,,,https://arxiv.org/pdf/1702.01325.pdf +91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,,,http://doi.org/10.1007/s41095-016-0068-y, +9131c990fad219726eb38384976868b968ee9d9c,https://arxiv.org/pdf/1804.08348.pdf,,,https://arxiv.org/pdf/1804.08348.pdf +911505a4242da555c6828509d1b47ba7854abb7a,https://pdfs.semanticscholar.org/9115/05a4242da555c6828509d1b47ba7854abb7a.pdf,,,https://pdfs.semanticscholar.org/9115/05a4242da555c6828509d1b47ba7854abb7a.pdf +656531036cee6b2c2c71954bb6540ef6b2e016d0,https://arxiv.org/pdf/1511.04601.pdf,,,https://arxiv.org/pdf/1511.04601.pdf +65b1209d38c259fe9ca17b537f3fb4d1857580ae,https://arxiv.org/pdf/1805.08672.pdf,,,https://arxiv.org/pdf/1805.08672.pdf +657e702326a1cbc561e059476e9be4d417c37795,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343704,, +656f05741c402ba43bb1b9a58bcc5f7ce2403d9a,https://pdfs.semanticscholar.org/656f/05741c402ba43bb1b9a58bcc5f7ce2403d9a.pdf,,,https://pdfs.semanticscholar.org/656f/05741c402ba43bb1b9a58bcc5f7ce2403d9a.pdf +651cafb2620ab60a0e4f550c080231f20ae6d26e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6360717,, +6584c3c877400e1689a11ef70133daa86a238602,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8039231,, +652ec3947d3d04dda719b1f5ba7c975e567166ef,,,, +653d19e64bd75648cdb149f755d59e583b8367e3,https://arxiv.org/pdf/1706.02613.pdf,,,https://arxiv.org/pdf/1706.02613.pdf +65babb10e727382b31ca5479b452ee725917c739,https://arxiv.org/pdf/1408.6027.pdf,,,https://arxiv.org/pdf/1408.6027.pdf +62dccab9ab715f33761a5315746ed02e48eed2a0,https://arxiv.org/pdf/1808.01340.pdf,,,https://arxiv.org/pdf/1808.01340.pdf +629a973ca5f3c7d2f4a9befab97d0044dfd3167a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4427488,, +620339aef06aed07a78f9ed1a057a25433faa58b,https://arxiv.org/pdf/1806.11230.pdf,,,https://arxiv.org/pdf/1806.11230.pdf +62fddae74c553ac9e34f511a2957b1614eb4f937,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406684,, +62b3598b401c807288a113796f424612cc5833ca,https://arxiv.org/pdf/1807.10550.pdf,,,https://arxiv.org/pdf/1807.10550.pdf +628a3f027b7646f398c68a680add48c7969ab1d9,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf,,,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf +626913b8fcbbaee8932997d6c4a78fe1ce646127,https://arxiv.org/pdf/1711.05942.pdf,,,https://arxiv.org/pdf/1711.05942.pdf +62750d78e819d745b9200b0c5c35fcae6fb9f404,,,http://doi.org/10.1007/s11042-016-4085-8, +626859fe8cafd25da13b19d44d8d9eb6f0918647,https://arxiv.org/pdf/1708.06637.pdf,,,https://arxiv.org/pdf/1708.06637.pdf +62fd622b3ca97eb5577fd423fb9efde9a849cbef,https://arxiv.org/pdf/1809.02169.pdf,,,https://arxiv.org/pdf/1809.02169.pdf +62007c30f148334fb4d8975f80afe76e5aef8c7f,https://arxiv.org/pdf/1712.03999.pdf,,,https://arxiv.org/pdf/1712.03999.pdf +62f017907e19766c76887209d01d4307be0cc573,,,http://doi.org/10.1016/j.imavis.2012.02.001, +969626c52d30ea803064ddef8fb4613fa73ba11d,,,http://doi.org/10.1007/BF02683992, +96f0e7416994035c91f4e0dfa40fd45090debfc5,https://arxiv.org/pdf/1803.01260.pdf,,,https://arxiv.org/pdf/1803.01260.pdf +963d0d40de8780161b70d28d2b125b5222e75596,https://arxiv.org/pdf/1611.08657.pdf,,,https://arxiv.org/pdf/1611.08657.pdf +96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364450,, +96ba65bffdddef7c7737c0f42ff4299e95cd85c2,,,http://doi.org/10.1007/s11042-018-5658-5, +96a9ca7a8366ae0efe6b58a515d15b44776faf6e,https://arxiv.org/pdf/1609.00129.pdf,,,https://arxiv.org/pdf/1609.00129.pdf +9649a19b49607459cef32f43db4f6e6727080bdb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395207,, +96e1ccfe96566e3c96d7b86e134fa698c01f2289,https://arxiv.org/pdf/1712.00321.pdf,,,https://arxiv.org/pdf/1712.00321.pdf +9627f28ea5f4c389350572b15968386d7ce3fe49,https://arxiv.org/pdf/1802.07447.pdf,,,https://arxiv.org/pdf/1802.07447.pdf +96b1000031c53cd4c1c154013bb722ffd87fa7da,https://arxiv.org/pdf/1710.08518.pdf,,,https://arxiv.org/pdf/1710.08518.pdf +96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,https://arxiv.org/pdf/1611.05396.pdf,,,https://arxiv.org/pdf/1611.05396.pdf +3a27d164e931c422d16481916a2fa6401b74bcef,https://arxiv.org/pdf/1709.03654.pdf,,,https://arxiv.org/pdf/1709.03654.pdf +3a0558ebfde592bd8bd07cb72b8ca8f700715bfb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6636646,, +3a3e55cf5bfd689d6c922e082efa0cd71cd2ae5c,,,,http://dl.acm.org/citation.cfm?id=3184081 +3a3f75e0ffdc0eef07c42b470593827fcd4020b4,https://arxiv.org/pdf/1805.05269.pdf,,,https://arxiv.org/pdf/1805.05269.pdf +3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2,https://arxiv.org/pdf/1710.03804.pdf,,,https://arxiv.org/pdf/1710.03804.pdf +3ac3a714042d3ebc159546c26321a1f8f4f5f80c,,,,http://dl.acm.org/citation.cfm?id=3025149 +3a49507c46a2b8c6411809c81ac47b2b1d2282c3,,,http://doi.org/10.1007/s11042-017-5319-0, +3a9681e2e07be7b40b59c32a49a6ff4c40c962a2,https://pdfs.semanticscholar.org/1c95/1714996c573b00e63878acdc48cdc4ddc183.pdf,,,https://pdfs.semanticscholar.org/1c95/1714996c573b00e63878acdc48cdc4ddc183.pdf +3a6334953cd2775fab7a8e7b72ed63468c71dee7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7591180,, +54948ee407b5d32da4b2eee377cc44f20c3a7e0c,https://arxiv.org/pdf/1806.06296.pdf,,,https://arxiv.org/pdf/1806.06296.pdf +540b39ba1b8ef06293ed793f130e0483e777e278,https://pdfs.semanticscholar.org/540b/39ba1b8ef06293ed793f130e0483e777e278.pdf,,,https://pdfs.semanticscholar.org/540b/39ba1b8ef06293ed793f130e0483e777e278.pdf +5435d5f8b9f4def52ac84bee109320e64e58ab8f,,,http://doi.org/10.1007/s11042-016-4321-2, +54969bcd728b0f2d3285866c86ef0b4797c2a74d,https://arxiv.org/pdf/1804.09869.pdf,,,https://arxiv.org/pdf/1804.09869.pdf +54a9ed950458f4b7e348fa78a718657c8d3d0e05,https://arxiv.org/pdf/1807.04001.pdf,,,https://arxiv.org/pdf/1807.04001.pdf +54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7,https://pdfs.semanticscholar.org/54ce/3ff2ab6e4465c2f94eb4d636183fa7878ab7.pdf,,,https://pdfs.semanticscholar.org/54ce/3ff2ab6e4465c2f94eb4d636183fa7878ab7.pdf +54ba18952fe36c9be9f2ab11faecd43d123b389b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163085,, +54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334,, +54204e28af73c7aca073835a14afcc5d8f52a515,https://arxiv.org/pdf/1805.12185.pdf,,,https://arxiv.org/pdf/1805.12185.pdf +982fcead58be419e4f34df6e806204674a4bc579,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613012,, +9888edfb6276887eb56a6da7fe561e508e72a517,,,,http://dl.acm.org/citation.cfm?id=3243904 +9853136dbd7d5f6a9c57dc66060cab44a86cd662,https://pdfs.semanticscholar.org/f3fb/f05026afb46b0186f6abbcbbcc08887f1be5.pdf,,,https://pdfs.semanticscholar.org/f3fb/f05026afb46b0186f6abbcbbcc08887f1be5.pdf +984edce0b961418d81203ec477b9bfa5a8197ba3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369732,, +98d1b5515b079492c8e7f0f9688df7d42d96da8e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204260,, +9806d3dc7805dd8c9c20d7222c915fc4beee7099,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6755972,, +9865fe20df8fe11717d92b5ea63469f59cf1635a,https://arxiv.org/pdf/1805.07566.pdf,,,https://arxiv.org/pdf/1805.07566.pdf +98e098ba9ff98fc58f22fed6d3d8540116284b91,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8332532,, +98fd92d68a143a5ced4a016fa3b7addd6b4a0122,,,http://doi.org/10.1007/s11704-016-6066-5, +9825c4dddeb2ed7eaab668b55403aa2c38bc3320,https://arxiv.org/pdf/1807.09532.pdf,,,https://arxiv.org/pdf/1807.09532.pdf +533d14e539ae5cdca0ece392487a2b19106d468a,https://arxiv.org/pdf/1611.09053.pdf,,,https://arxiv.org/pdf/1611.09053.pdf +53507e2de66eaba996f14fd2f54a5535056f1e59,,,http://doi.org/10.1016/j.sigpro.2017.10.024, +53dd25350d3b3aaf19beb2104f1e389e3442df61,https://pdfs.semanticscholar.org/a2ee/e3191d860c854936d11365d4745224d89b53.pdf,,,https://pdfs.semanticscholar.org/a2ee/e3191d860c854936d11365d4745224d89b53.pdf +53de11d144cd2eda7cf1bb644ae27f8ef2489289,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424637,, +530243b61fa5aea19b454b7dbcac9f463ed0460e,https://arxiv.org/pdf/1807.11079.pdf,,,https://arxiv.org/pdf/1807.11079.pdf +53c36186bf0ffbe2f39165a1824c965c6394fe0d,https://arxiv.org/pdf/1805.00326.pdf,,,https://arxiv.org/pdf/1805.00326.pdf +535cdce8264ac0813d5bb8b19ceafa77a1674adf,,,http://doi.org/10.1007/s12559-016-9402-z, +53a41c711b40e7fe3dc2b12e0790933d9c99a6e0,https://arxiv.org/pdf/1611.06492.pdf,,,https://arxiv.org/pdf/1611.06492.pdf +53f5cb365806c57811319a42659c9f68b879454a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8356995,, +53bfe2ab770e74d064303f3bd2867e5bf7b86379,https://pdfs.semanticscholar.org/d989/c3064d49bf8e63587ada4ed2bdb0d32b120a.pdf,,,https://pdfs.semanticscholar.org/d989/c3064d49bf8e63587ada4ed2bdb0d32b120a.pdf +53ce84598052308b86ba79d873082853022aa7e9,https://pdfs.semanticscholar.org/4f07/b70883a98a69be3b3e29de06c73e59a9ba0e.pdf,,,https://pdfs.semanticscholar.org/4f07/b70883a98a69be3b3e29de06c73e59a9ba0e.pdf +3f9ca2526013e358cd8caeb66a3d7161f5507cbc,https://arxiv.org/pdf/1607.01059.pdf,,,https://arxiv.org/pdf/1607.01059.pdf +3fb98e76ffd8ba79e1c22eda4d640da0c037e98a,https://pdfs.semanticscholar.org/b49a/a569ff63d045b7c0ce66d77e1345d4f9745c.pdf,,,https://pdfs.semanticscholar.org/b49a/a569ff63d045b7c0ce66d77e1345d4f9745c.pdf +3fb4bf38d34f7f7e5b3df36de2413d34da3e174a,https://arxiv.org/pdf/1807.09882.pdf,,,https://arxiv.org/pdf/1807.09882.pdf +3f9a7d690db82cf5c3940fbb06b827ced59ec01e,https://arxiv.org/pdf/1502.05678.pdf,,,https://arxiv.org/pdf/1502.05678.pdf +3ff79cf6df1937949cc9bc522041a9a39d314d83,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406730,, +3f0c6dbfd3c9cd5625ba748327d69324baa593a6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373880,, +3f5e8f884e71310d7d5571bd98e5a049b8175075,https://pdfs.semanticscholar.org/3f5e/8f884e71310d7d5571bd98e5a049b8175075.pdf,,,https://pdfs.semanticscholar.org/3f5e/8f884e71310d7d5571bd98e5a049b8175075.pdf +3f5693584d7dab13ffc12122d6ddbf862783028b,https://arxiv.org/pdf/1804.04082.pdf,,,https://arxiv.org/pdf/1804.04082.pdf +30b15cdb72760f20f80e04157b57be9029d8a1ab,https://pdfs.semanticscholar.org/30b1/5cdb72760f20f80e04157b57be9029d8a1ab.pdf,,,https://pdfs.semanticscholar.org/30b1/5cdb72760f20f80e04157b57be9029d8a1ab.pdf +30870ef75aa57e41f54310283c0057451c8c822b,https://arxiv.org/pdf/1801.01423.pdf,,,https://arxiv.org/pdf/1801.01423.pdf +305346d01298edeb5c6dc8b55679e8f60ba97efb,https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf,,,https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf +30fd1363fa14965e3ab48a7d6235e4b3516c1da1,https://pdfs.semanticscholar.org/6bc2/07bab6a2b4ec335023474b391c9cb23e2e6d.pdf,,,https://pdfs.semanticscholar.org/6bc2/07bab6a2b4ec335023474b391c9cb23e2e6d.pdf +30c93fec078b98453a71f9f21fbc9512ab3e916f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395274,, +3083bd7a442af6a1d72cdc04ae1ad7c30697a4e8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392250,, +30fb5c24cc15eb8cde5e389bf368d65fb96513e4,,,,http://dl.acm.org/citation.cfm?id=3206048 +30cbd41e997445745b6edd31f2ebcc7533453b61,https://pdfs.semanticscholar.org/1a50/4cdd40877e3d74ed87666c8c540bb1643c79.pdf,,,https://pdfs.semanticscholar.org/1a50/4cdd40877e3d74ed87666c8c540bb1643c79.pdf +5e6fc99d8f5ebaab0e9c29bc0969530d201e0708,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8017477,, +5e6f546a50ed97658be9310d5e0a67891fe8a102,https://arxiv.org/pdf/1711.09577.pdf,,,https://arxiv.org/pdf/1711.09577.pdf +5e7e055ef9ba6e8566a400a8b1c6d8f827099553,https://pdfs.semanticscholar.org/5e7e/055ef9ba6e8566a400a8b1c6d8f827099553.pdf,,,https://pdfs.semanticscholar.org/5e7e/055ef9ba6e8566a400a8b1c6d8f827099553.pdf +5ed66fb992bfefb070b5c39dc45b6e3ff5248c10,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163116,, +5e9ec3b8daa95d45138e30c07321e386590f8ec7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6967830,, +5b5b9c6c67855ede21a60c834aea5379df7d51b7,,,,http://hdl.handle.net/10044/1/45280 +5ba7882700718e996d576b58528f1838e5559225,https://pdfs.semanticscholar.org/5ba7/882700718e996d576b58528f1838e5559225.pdf,,,https://pdfs.semanticscholar.org/5ba7/882700718e996d576b58528f1838e5559225.pdf +5bb4fd87fa4a27ddacd570aa81c2d66eb4721019,,,http://doi.org/10.1016/j.neucom.2017.07.014, +5b0008ba87667085912ea474025d2323a14bfc90,https://pdfs.semanticscholar.org/5b00/08ba87667085912ea474025d2323a14bfc90.pdf,,,https://pdfs.semanticscholar.org/5b00/08ba87667085912ea474025d2323a14bfc90.pdf +5b5b568a0ba63d00e16a263051c73e09ab83e245,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8416840,, +5b97e997b9b654373bd129b3baf5b82c2def13d1,https://pdfs.semanticscholar.org/5b97/e997b9b654373bd129b3baf5b82c2def13d1.pdf,,,https://pdfs.semanticscholar.org/5b97/e997b9b654373bd129b3baf5b82c2def13d1.pdf +5bd3d08335bb4e444a86200c5e9f57fd9d719e14,https://pdfs.semanticscholar.org/5bd3/d08335bb4e444a86200c5e9f57fd9d719e14.pdf,,,https://pdfs.semanticscholar.org/5bd3/d08335bb4e444a86200c5e9f57fd9d719e14.pdf +5babbad3daac5c26503088782fd5b62067b94fa5,https://arxiv.org/pdf/1809.02652.pdf,,,https://arxiv.org/pdf/1809.02652.pdf +5b2cfee6e81ef36507ebf3c305e84e9e0473575a,https://arxiv.org/pdf/1704.02402.pdf,,,https://arxiv.org/pdf/1704.02402.pdf +5b721f86f4a394f05350641e639a9d6cb2046c45,https://arxiv.org/pdf/1603.09638.pdf,,,https://arxiv.org/pdf/1603.09638.pdf +5b4b84ce3518c8a14f57f5f95a1d07fb60e58223,https://pdfs.semanticscholar.org/9f92/05a60ddf1135929e0747db34363b3a8c6bc8.pdf,,,https://pdfs.semanticscholar.org/9f92/05a60ddf1135929e0747db34363b3a8c6bc8.pdf +378418fdd28f9022b02857ef7dbab6b0b9a02dbe,,,http://doi.org/10.1007/978-3-319-75420-8, +372fb32569ced35eaf3740a29890bec2be1869fa,https://pdfs.semanticscholar.org/372f/b32569ced35eaf3740a29890bec2be1869fa.pdf,,,https://pdfs.semanticscholar.org/372f/b32569ced35eaf3740a29890bec2be1869fa.pdf +3795974e24296185d9b64454cde6f796ca235387,https://arxiv.org/pdf/1806.05252.pdf,,,https://arxiv.org/pdf/1806.05252.pdf +37866fea39deeff453802cde529dd9d32e0205a5,,,,http://dl.acm.org/citation.cfm?id=2393385 +377f2b65e6a9300448bdccf678cde59449ecd337,https://arxiv.org/pdf/1804.10275.pdf,,,https://arxiv.org/pdf/1804.10275.pdf +370b6b83c7512419188f5373a962dd3175a56a9b,https://pdfs.semanticscholar.org/370b/6b83c7512419188f5373a962dd3175a56a9b.pdf,,,https://pdfs.semanticscholar.org/370b/6b83c7512419188f5373a962dd3175a56a9b.pdf +372a8bf0ef757c08551d41e40cb7a485527b6cd7,https://pdfs.semanticscholar.org/2dcf/a8d72fee8732350935718ab86f3d9f3458cb.pdf,,,https://pdfs.semanticscholar.org/2dcf/a8d72fee8732350935718ab86f3d9f3458cb.pdf +3779e0599481f11fc1acee60d5108d63e55819b3,,,http://doi.org/10.1007/s11280-018-0581-2, +0831794eddcbac1f601dcb9be9d45531a56dbf7e,,,http://doi.org/10.1007/s11042-017-4416-4, +080e0efc3cf71260bfe9bdc62cd86614d1ebca46,,,http://doi.org/10.1007/s10851-017-0771-z, +08f4832507259ded9700de81f5fd462caf0d5be8,https://pdfs.semanticscholar.org/ad40/d61bf27e177d078df12727267f3190eee2b0.pdf,,,https://pdfs.semanticscholar.org/ad40/d61bf27e177d078df12727267f3190eee2b0.pdf +08903bf161a1e8dec29250a752ce9e2a508a711c,https://pdfs.semanticscholar.org/e7f6/bfb9bb591eb1404ae13f0fa13ad4a3179150.pdf,,,https://pdfs.semanticscholar.org/e7f6/bfb9bb591eb1404ae13f0fa13ad4a3179150.pdf +08fbbfe87563595508a77629e47613d6bd1119eb,,,, +084bebc5c98872e9307cd8e7f571d39ef9c1b81e,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf,,,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf +0857281a3b6a5faba1405e2c11f4e17191d3824d,https://pdfs.semanticscholar.org/0857/281a3b6a5faba1405e2c11f4e17191d3824d.pdf,,,https://pdfs.semanticscholar.org/0857/281a3b6a5faba1405e2c11f4e17191d3824d.pdf +08d41d2f68a2bf0091dc373573ca379de9b16385,https://arxiv.org/pdf/1802.05023.pdf,,,https://arxiv.org/pdf/1802.05023.pdf +6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,https://arxiv.org/pdf/1607.00659.pdf,,,https://arxiv.org/pdf/1607.00659.pdf +6dbdb07ce2991db0f64c785ad31196dfd4dae721,https://arxiv.org/pdf/1802.09058.pdf,,,https://arxiv.org/pdf/1802.09058.pdf +6d2fd0a9cbea13e840f962ba7c8a9771ec437d3a,,,http://doi.org/10.1007/s11063-017-9715-2, +6dddf1440617bf7acda40d4d75c7fb4bf9517dbb,https://arxiv.org/pdf/1705.10118.pdf,,,https://arxiv.org/pdf/1705.10118.pdf +6dcf6b028a6042a9904628a3395520995b1d0ef9,,,,http://dl.acm.org/citation.cfm?id=3158392 +6dcf418c778f528b5792104760f1fbfe90c6dd6a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014984,, +6de935a02f87aa31e33245c3b85ea3b7f8b1111c,,,http://doi.org/10.1007/s11263-017-1029-3, +6d07e176c754ac42773690d4b4919a39df85d7ec,https://pdfs.semanticscholar.org/6d07/e176c754ac42773690d4b4919a39df85d7ec.pdf,,,https://pdfs.semanticscholar.org/6d07/e176c754ac42773690d4b4919a39df85d7ec.pdf +6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,https://arxiv.org/pdf/1707.05938.pdf,,,https://arxiv.org/pdf/1707.05938.pdf +6dc1f94b852538d572e4919238ddb10e2ee449a4,https://arxiv.org/pdf/1703.09529.pdf,,,https://arxiv.org/pdf/1703.09529.pdf +6d5125c9407c7762620eeea7570af1a8ee7d76f3,https://arxiv.org/pdf/1807.01462.pdf,,,https://arxiv.org/pdf/1807.01462.pdf +6da711d07b63c9f24d143ca3991070736baeb412,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7000295,, +6d70344ae6f6108144a15e9debc7b0be4e3335f1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8390318,, +013305c13cfabaea82c218b841dbe71e108d2b97,,,http://doi.org/10.1007/s11063-016-9554-6, +01c4cf9c7c08f0ad3f386d88725da564f3c54679,https://pdfs.semanticscholar.org/01c4/cf9c7c08f0ad3f386d88725da564f3c54679.pdf,,,https://pdfs.semanticscholar.org/01c4/cf9c7c08f0ad3f386d88725da564f3c54679.pdf +014e3d0fa5248e6f4634dc237e2398160294edce,https://arxiv.org/pdf/1708.06703.pdf,,,https://arxiv.org/pdf/1708.06703.pdf +017e94ad51c9be864b98c9b75582753ce6ee134f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892240,, +01e27b6d1af4c9c2f50e2908b5f3b2331ff24846,,,http://doi.org/10.1007/s11263-017-0996-8, +0141cb33c822e87e93b0c1bad0a09db49b3ad470,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298876,, +06262d6beeccf2784e4e36a995d5ee2ff73c8d11,https://pdfs.semanticscholar.org/0626/2d6beeccf2784e4e36a995d5ee2ff73c8d11.pdf,,,https://pdfs.semanticscholar.org/0626/2d6beeccf2784e4e36a995d5ee2ff73c8d11.pdf +0647c9d56cf11215894d57d677997826b22f6a13,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401557,, +06f585a3a05dd3371cd600a40dc35500e2f82f9b,https://arxiv.org/pdf/1804.10069.pdf,,,https://arxiv.org/pdf/1804.10069.pdf +06560d5721ecc487a4d70905a485e22c9542a522,https://pdfs.semanticscholar.org/0656/0d5721ecc487a4d70905a485e22c9542a522.pdf,,,https://pdfs.semanticscholar.org/0656/0d5721ecc487a4d70905a485e22c9542a522.pdf +062c41dad67bb68fefd9ff0c5c4d296e796004dc,https://arxiv.org/pdf/1611.06624.pdf,,,https://arxiv.org/pdf/1611.06624.pdf +06c2086f7f72536bf970ca629151b16927104df3,https://arxiv.org/pdf/1805.03064.pdf,,,https://arxiv.org/pdf/1805.03064.pdf +06518858bd99cddf9bc9200fac5311fc29ac33b4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392777,, +06ab24721d7117974a6039eb2e57d1545eee5e46,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373809,, +06b4e41185734f70ce432fdb2b121a7eb01140af,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362753,, +6c66ae815e7e508e852ecb122fb796abbcda16a8,https://pdfs.semanticscholar.org/6c66/ae815e7e508e852ecb122fb796abbcda16a8.pdf,,,https://pdfs.semanticscholar.org/6c66/ae815e7e508e852ecb122fb796abbcda16a8.pdf +6c1227659878e867a01888eef472dd96b679adb6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354280,, +6ca2c5ff41e91c34696f84291a458d1312d15bf2,https://pdfs.semanticscholar.org/c70b/2c373917ba61a871b97119413db1eadcf423.pdf,,,https://pdfs.semanticscholar.org/c70b/2c373917ba61a871b97119413db1eadcf423.pdf +6ca6ade6c9acb833790b1b4e7ee8842a04c607f7,,,,http://dl.acm.org/citation.cfm?id=3234805 +6cb8c52bb421ce04898fa42cb997c04097ddd328,,,http://doi.org/10.1007/978-3-319-11289-3, +6c5fbf156ef9fc782be0089309074cc52617b868,https://pdfs.semanticscholar.org/fe4c/3f97a80b73be4fad18cc1bfb72354efb528e.pdf,,,https://pdfs.semanticscholar.org/fe4c/3f97a80b73be4fad18cc1bfb72354efb528e.pdf +6c304f3b9c3a711a0cca5c62ce221fb098dccff0,https://arxiv.org/pdf/1708.05980.pdf,,,https://arxiv.org/pdf/1708.05980.pdf +6c01b349edb2d33530e8bb07ba338f009663a9dd,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5332299,, +6cce5ccc5d366996f5a32de17a403341db5fddc6,,,http://doi.org/10.1016/j.cviu.2016.04.012, +6c80c834d426f0bc4acd6355b1946b71b50cbc0b,https://arxiv.org/pdf/1805.08484.pdf,,,https://arxiv.org/pdf/1805.08484.pdf +6cb7648465ba7757ecc9c222ac1ab6402933d983,https://arxiv.org/pdf/1708.05827.pdf,,,https://arxiv.org/pdf/1708.05827.pdf +6c92d87c84fa5e5d2bb5bed3ef38168786bacc49,,,,http://dl.acm.org/citation.cfm?id=2501650 +6c7a42b4f43b3a2f9b250f5803b697857b1444ac,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553718,, +6cbde27d9a287ae926979dbb18dfef61cf49860e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8253589,, +6cfc337069868568148f65732c52cbcef963f79d,https://pdfs.semanticscholar.org/80d7/8415aee24e65ea3031c31adc1dabc1956f8a.pdf,,,https://pdfs.semanticscholar.org/80d7/8415aee24e65ea3031c31adc1dabc1956f8a.pdf +6c58e3a8209fef0e28ca2219726c15ea5f284f4f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899896,, +39ed31ced75e6151dde41944a47b4bdf324f922b,https://pdfs.semanticscholar.org/39ed/31ced75e6151dde41944a47b4bdf324f922b.pdf,,,https://pdfs.semanticscholar.org/39ed/31ced75e6151dde41944a47b4bdf324f922b.pdf +397257783ccc8cace5b67cc71e0c73034d559a4f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6918513,, +398e0771e64cab6ca5d21754e32dce63f9e3c223,,,,http://dl.acm.org/citation.cfm?id=3206028 +39c8b34c1b678235b60b648d0b11d241a34c8e32,https://arxiv.org/pdf/1805.05503.pdf,,,https://arxiv.org/pdf/1805.05503.pdf +39af06d29a74ad371a1846259e01c14b5343e3d1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8046026,, +3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1,https://arxiv.org/pdf/1612.00738.pdf,,,https://arxiv.org/pdf/1612.00738.pdf +39d6f8b791995dc5989f817373391189d7ac478a,,,http://doi.org/10.1016/j.patrec.2015.09.015, +3965d61c4f3b72044f43609c808f8760af8781a2,https://arxiv.org/pdf/1808.01121.pdf,,,https://arxiv.org/pdf/1808.01121.pdf +395bf182983e0917f33b9701e385290b64e22f9a,https://pdfs.semanticscholar.org/8ab5/18efa79af7d45faa425d1ccd82cfa3aba547.pdf,,,https://pdfs.semanticscholar.org/8ab5/18efa79af7d45faa425d1ccd82cfa3aba547.pdf +3933e323653ff27e68c3458d245b47e3e37f52fd,https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf,,,https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf +39b452453bea9ce398613d8dd627984fd3a0d53c,https://arxiv.org/pdf/1611.02155.pdf,,,https://arxiv.org/pdf/1611.02155.pdf +994f7c469219ccce59c89badf93c0661aae34264,https://pdfs.semanticscholar.org/994f/7c469219ccce59c89badf93c0661aae34264.pdf,,,https://pdfs.semanticscholar.org/994f/7c469219ccce59c89badf93c0661aae34264.pdf +9944c451b4a487940d3fd8819080fe16d627892d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612967,, +9939498315777b40bed9150d8940fc1ac340e8ba,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789583,, +993d189548e8702b1cb0b02603ef02656802c92b,https://arxiv.org/pdf/1809.05992.pdf,,,https://arxiv.org/pdf/1809.05992.pdf +997b9ffe2f752ba84a66730cfd320d040e7ba2e2,,,,http://dl.acm.org/citation.cfm?id=2967199 +99d06fe2f4d6d76acf40b6da67c5052e82055f5a,,,,http://dl.acm.org/citation.cfm?id=3268909 +9989ad33b64accea8042e386ff3f1216386ba7f1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393320,, +9961f1e5cf8fda29912344773bc75c47f18333a0,,,http://doi.org/10.1007/s10044-017-0618-7, +9901f473aeea177a55e58bac8fd4f1b086e575a4,https://arxiv.org/pdf/1509.04954.pdf,,,https://arxiv.org/pdf/1509.04954.pdf +99c20eb5433ed27e70881d026d1dbe378a12b342,https://pdfs.semanticscholar.org/2eb3/74476c9431a614b1841df1a7c32a4cd095e0.pdf,,,https://pdfs.semanticscholar.org/2eb3/74476c9431a614b1841df1a7c32a4cd095e0.pdf +99facca6fc50cc30f13b7b6dd49ace24bc94f702,https://arxiv.org/pdf/1609.03892.pdf,,,https://arxiv.org/pdf/1609.03892.pdf +99d7678039ad96ee29ab520ff114bb8021222a91,https://pdfs.semanticscholar.org/99d7/678039ad96ee29ab520ff114bb8021222a91.pdf,,,https://pdfs.semanticscholar.org/99d7/678039ad96ee29ab520ff114bb8021222a91.pdf +523854a7d8755e944bd50217c14481fe1329a969,https://arxiv.org/pdf/1808.00380.pdf,,,https://arxiv.org/pdf/1808.00380.pdf +521aa8dcd66428b07728b91722cc8f2b5a73944b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367126,, +52af7625f7e7a0bd9f9d8eeafd631c4d431e67e7,,,http://doi.org/10.1007/s00371-018-1585-8, +52472ec859131844f38fc7d57944778f01d109ac,https://arxiv.org/pdf/1707.02749.pdf,,,https://arxiv.org/pdf/1707.02749.pdf +525da67fb524d46f2afa89478cd482a68be8a42b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354128,, +522a4ca705c06a0436bbe62f46efe24d67a82422,,,http://doi.org/10.1007/s11042-017-5475-2, +52d7eb0fbc3522434c13cc247549f74bb9609c5d,https://arxiv.org/pdf/1511.06523.pdf,,,https://arxiv.org/pdf/1511.06523.pdf +529baf1a79cca813f8c9966ceaa9b3e42748c058,https://pdfs.semanticscholar.org/6ae7/47cf58eeda0687a3f779aaecfa12403b9684.pdf,,,https://pdfs.semanticscholar.org/6ae7/47cf58eeda0687a3f779aaecfa12403b9684.pdf +55ea0c775b25d9d04b5886e322db852e86a556cd,https://arxiv.org/pdf/1804.01077.pdf,,,https://arxiv.org/pdf/1804.01077.pdf +55432723c728a2ce90d817e9e9877ae9fbad6fe5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8412925,, +55c68c1237166679d2cb65f266f496d1ecd4bec6,https://arxiv.org/pdf/1802.02774.pdf,,,https://arxiv.org/pdf/1802.02774.pdf +55cfc3c08000f9d21879582c6296f2a864b657e8,,,http://doi.org/10.1049/iet-cvi.2015.0287, +556b05ab6eff48d32ffbd04f9008b9a5c78a4ad7,,,,http://dl.acm.org/citation.cfm?id=2926713 +5550a6df1b118a80c00a2459bae216a7e8e3966c,https://pdfs.semanticscholar.org/5550/a6df1b118a80c00a2459bae216a7e8e3966c.pdf,,,https://pdfs.semanticscholar.org/5550/a6df1b118a80c00a2459bae216a7e8e3966c.pdf +55e87050b998eb0a8f0b16163ef5a28f984b01fa,https://arxiv.org/pdf/1710.10736.pdf,,,https://arxiv.org/pdf/1710.10736.pdf +552122432b92129d7e7059ef40dc5f6045f422b5,,,http://doi.org/10.1007/s11263-017-1000-3, +55aafdef9d9798611ade1a387d1e4689f2975e51,,,http://doi.org/10.1007/s11263-017-1044-4, +55c4efc082a8410b528af7325de8148b80cf41e3,,,,http://dl.acm.org/citation.cfm?id=3231899 +55c40cbcf49a0225e72d911d762c27bb1c2d14aa,https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf,,,https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf +55a7286f014cc6b51a3f50b1e6bc8acc8166f231,,,,http://arxiv.org/abs/1603.02814 +97b5800e144a8df48f1f7e91383b0f37bc37cf60,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237657,, +972e044f69443dfc5c987e29250b2b88a6d2f986,,,http://doi.org/10.1134/S1054661811020738, +9788b491ddc188941dadf441fc143a4075bff764,https://pdfs.semanticscholar.org/9788/b491ddc188941dadf441fc143a4075bff764.pdf,,,https://pdfs.semanticscholar.org/9788/b491ddc188941dadf441fc143a4075bff764.pdf +971cb1bfe3d10fcb2037e684c48bd99842f42fa4,,,http://doi.org/10.1007/s11042-017-5141-8, +97137d5154a9f22a5d9ecc32e8e2b95d07a5a571,https://arxiv.org/pdf/1604.04337.pdf,,,https://arxiv.org/pdf/1604.04337.pdf +9730b9cd998c0a549601c554221a596deda8af5b,https://arxiv.org/pdf/1704.07945.pdf,,,https://arxiv.org/pdf/1704.07945.pdf +972b1a7ef8cc9c83c2c6d8d126f94f27b567d7d0,,,http://doi.org/10.1007/978-3-319-99978-4, +97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5,https://arxiv.org/pdf/1804.10938.pdf,,,https://arxiv.org/pdf/1804.10938.pdf +97c1f68fb7162af326cd0f1bc546908218ec5da6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471977,, +975978ee6a32383d6f4f026b944099e7739e5890,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf,,,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf +63fd7a159e58add133b9c71c4b1b37b899dd646f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6603332,, +6318d3842b36362bb45527b717e1a45ae46151d5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780708,, +632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c,https://arxiv.org/pdf/1604.02647.pdf,,,https://arxiv.org/pdf/1604.02647.pdf +636b8ffc09b1b23ff714ac8350bb35635e49fa3c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467308,, +631483c15641c3652377f66c8380ff684f3e365c,https://arxiv.org/pdf/1611.10314.pdf,,,https://arxiv.org/pdf/1611.10314.pdf +6359fcb0b4546979c54818df8271debc0d653257,,,http://doi.org/10.1007/s11704-017-6275-6, +633c851ebf625ad7abdda2324e9de093cf623141,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727,, +632fa986bed53862d83918c2b71ab953fd70d6cc,https://arxiv.org/pdf/1805.10355.pdf,,,https://arxiv.org/pdf/1805.10355.pdf +633101e794d7b80f55f466fd2941ea24595e10e6,https://pdfs.semanticscholar.org/6331/01e794d7b80f55f466fd2941ea24595e10e6.pdf,,,https://pdfs.semanticscholar.org/6331/01e794d7b80f55f466fd2941ea24595e10e6.pdf +6316a4b689706b0f01b40f9a3cef47b92bc52411,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699534,, +0f7e9199dad3237159e985e430dd2bf619ef2db5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883882,, +0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,https://pdfs.semanticscholar.org/0f21/a39fa4c0a19c4a5b4733579e393cb1d04f71.pdf,,,https://pdfs.semanticscholar.org/0f21/a39fa4c0a19c4a5b4733579e393cb1d04f71.pdf +0fd1bffb171699a968c700f206665b2f8837d953,https://arxiv.org/pdf/1503.00949.pdf,,,https://arxiv.org/pdf/1503.00949.pdf +0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457,https://pdfs.semanticscholar.org/0a03/21785c8beac1cbaaec4d8ad0cfd4a0d6d457.pdf,,,https://pdfs.semanticscholar.org/0a03/21785c8beac1cbaaec4d8ad0cfd4a0d6d457.pdf +0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f,https://pdfs.semanticscholar.org/0de4/0e8adc31a15af7496c92f261f9f703afed1d.pdf,,,https://pdfs.semanticscholar.org/0de4/0e8adc31a15af7496c92f261f9f703afed1d.pdf +0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,https://arxiv.org/pdf/1708.07517.pdf,,,https://arxiv.org/pdf/1708.07517.pdf +0a9d204db13d395f024067cf70ac19c2eeb5f942,https://arxiv.org/pdf/1804.02843.pdf,,,https://arxiv.org/pdf/1804.02843.pdf +0a0007cfd40ae9694c84f109aea11ec4f2b6cf39,,,http://doi.org/10.1007/s11042-016-4105-8, +0a4fc9016aacae9cdf40663a75045b71e64a70c9,https://pdfs.semanticscholar.org/0235/563971fcf8b517271f8e4f424305fffa10f2.pdf,,,https://pdfs.semanticscholar.org/0235/563971fcf8b517271f8e4f424305fffa10f2.pdf +0a85afebaa19c80fddb660110a4352fd22eb2801,https://arxiv.org/pdf/1809.03658.pdf,,,https://arxiv.org/pdf/1809.03658.pdf +0a7309147d777c2f20f780a696efe743520aa2db,https://arxiv.org/pdf/1805.05622.pdf,,,https://arxiv.org/pdf/1805.05622.pdf +0aaf785d7f21d2b5ad582b456896495d30b0a4e2,,,,http://dl.acm.org/citation.cfm?id=3173789 +0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,https://arxiv.org/pdf/1807.05292.pdf,,,https://arxiv.org/pdf/1807.05292.pdf +641f0989b87bf7db67a64900dcc9568767b7b50f,https://pdfs.semanticscholar.org/e25a/6836e5f5dc6cf691cd9c42224c0f7f4bb42c.pdf,,,https://pdfs.semanticscholar.org/e25a/6836e5f5dc6cf691cd9c42224c0f7f4bb42c.pdf +642a386c451e94d9c44134e03052219a7512b9de,,,http://doi.org/10.1016/j.imavis.2008.04.018, +640e12837241d52d04379d3649d050ee3760048c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5692624,, +64ec0c53dd1aa51eb15e8c2a577701e165b8517b,https://arxiv.org/pdf/1803.11521.pdf,,,https://arxiv.org/pdf/1803.11521.pdf +64ec02e1056de4b400f9547ce56e69ba8393e2ca,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446491,, +645f09f4bc2e6a13663564ee9032ca16e35fc52d,,,,http://dl.acm.org/citation.cfm?id=3193542 +645de797f936cb19c1b8dba3b862543645510544,https://arxiv.org/pdf/1611.06678.pdf,,,https://arxiv.org/pdf/1611.06678.pdf +64d7e62f46813b5ad08289aed5dc4825d7ec5cff,https://pdfs.semanticscholar.org/f7e1/251d831b763d1ee10bfc6fae78990405f9f9.pdf,,,https://pdfs.semanticscholar.org/f7e1/251d831b763d1ee10bfc6fae78990405f9f9.pdf +90ac0f32c0c29aa4545ed3d5070af17f195d015f,https://pdfs.semanticscholar.org/2322/1b7ff507d23da4e4b47b7228170b4fd224b8.pdf,,,https://pdfs.semanticscholar.org/2322/1b7ff507d23da4e4b47b7228170b4fd224b8.pdf +9057044c0347fb9798a9b552910a9aff150385db,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6778411,, +9077365c9486e54e251dd0b6f6edaeda30ae52b9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373910,, +90498b95fe8b299ce65d5cafaef942aa58bd68b7,https://arxiv.org/pdf/1804.08790.pdf,,,https://arxiv.org/pdf/1804.08790.pdf +90cc2f08a6c2f0c41a9dd1786bae097f9292105e,https://arxiv.org/pdf/1808.09892.pdf,,,https://arxiv.org/pdf/1808.09892.pdf +90e7a86a57079f17f1089c3a46ea9bfd1d49226c,,,,https://www.sciencedirect.com/science/article/pii/S0042698914002739 +90221884fe2643b80203991686af78a9da0f9791,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995467,, +90d9209d5dd679b159051a8315423a7f796d704d,https://arxiv.org/pdf/1808.05085.pdf,,,https://arxiv.org/pdf/1808.05085.pdf +bfdafe932f93b01632a5ba590627f0d41034705d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6134770,, +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,https://pdfs.semanticscholar.org/5db5/7be8bfed8f3a34aebc45dc69c4d4a7dee570.pdf,,,https://pdfs.semanticscholar.org/5db5/7be8bfed8f3a34aebc45dc69c4d4a7dee570.pdf +bf3bf5400b617fef2825eb987eb496fea99804b9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461385,, +bf54b5586cdb0b32f6eed35798ff91592b03fbc4,https://pdfs.semanticscholar.org/bf54/b5586cdb0b32f6eed35798ff91592b03fbc4.pdf,,,https://pdfs.semanticscholar.org/bf54/b5586cdb0b32f6eed35798ff91592b03fbc4.pdf +bf37a81d572bb154581845b65a766fab1e5c7dda,,,http://doi.org/10.1007/s11760-017-1111-x, +bf5940d57f97ed20c50278a81e901ae4656f0f2c,https://arxiv.org/pdf/1711.00248.pdf,,,https://arxiv.org/pdf/1711.00248.pdf +bff567c58db554858c7f39870cff7c306523dfee,https://arxiv.org/pdf/1807.03480.pdf,,,https://arxiv.org/pdf/1807.03480.pdf +d35534f3f59631951011539da2fe83f2844ca245,https://arxiv.org/pdf/1705.07904.pdf,,,https://arxiv.org/pdf/1705.07904.pdf +d3edbfe18610ce63f83db83f7fbc7634dde1eb40,https://pdfs.semanticscholar.org/d3ed/bfe18610ce63f83db83f7fbc7634dde1eb40.pdf,,,https://pdfs.semanticscholar.org/d3ed/bfe18610ce63f83db83f7fbc7634dde1eb40.pdf +d34f546e61eccbac2450ca7490f558e751e13ec3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461800,, +d3008b4122e50a28f6cc1fa98ac6af28b42271ea,,,,http://dl.acm.org/citation.cfm?id=2806218 +d3dea0cd65ab3da14cb7b3bd0ec59531d98508aa,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7728015,, +d3d5d86afec84c0713ec868cf5ed41661fc96edc,https://arxiv.org/pdf/1606.02894.pdf,,,https://arxiv.org/pdf/1606.02894.pdf +d31328b12eef33e7722b8e5505d0f9d9abe2ffd9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373866,, +d36a1e4637618304c2093f72702dcdcc4dcd41d1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961791,, +d3b18ba0d9b247bfa2fb95543d172ef888dfff95,https://pdfs.semanticscholar.org/0a92/0b6ed81de2e7665784eba433cb1cf15e73ad.pdf,,,https://pdfs.semanticscholar.org/0a92/0b6ed81de2e7665784eba433cb1cf15e73ad.pdf +d383ba7bbf8b7b49dcef9f8abab47521966546bb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995471,, +d3d39e419ac98db2de1a9d5a05cb0b4ca5cae8fd,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619296,, +d340a135a55ecf7506010e153d5f23155dcfa7e8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7884781,, +d309e414f0d6e56e7ba45736d28ee58ae2bad478,https://pdfs.semanticscholar.org/d309/e414f0d6e56e7ba45736d28ee58ae2bad478.pdf,,,https://pdfs.semanticscholar.org/d309/e414f0d6e56e7ba45736d28ee58ae2bad478.pdf +d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9,https://arxiv.org/pdf/1804.04326.pdf,,,https://arxiv.org/pdf/1804.04326.pdf +d307a766cc9c728a24422313d4c3dcfdb0d16dd5,https://arxiv.org/pdf/1804.10021.pdf,,,https://arxiv.org/pdf/1804.10021.pdf +d31af74425719a3840b496b7932e0887b35e9e0d,https://pdfs.semanticscholar.org/d31a/f74425719a3840b496b7932e0887b35e9e0d.pdf,,,https://pdfs.semanticscholar.org/d31a/f74425719a3840b496b7932e0887b35e9e0d.pdf +d3b0839324d0091e70ce34f44c979b9366547327,https://arxiv.org/pdf/1804.10743.pdf,,,https://arxiv.org/pdf/1804.10743.pdf +d3faed04712b4634b47e1de0340070653546deb2,https://arxiv.org/pdf/1805.04140.pdf,,,https://arxiv.org/pdf/1805.04140.pdf +d33fcdaf2c0bd0100ec94b2c437dccdacec66476,https://pdfs.semanticscholar.org/d33f/cdaf2c0bd0100ec94b2c437dccdacec66476.pdf,,,https://pdfs.semanticscholar.org/d33f/cdaf2c0bd0100ec94b2c437dccdacec66476.pdf +d4a5eaf2e9f2fd3e264940039e2cbbf08880a090,https://arxiv.org/pdf/1802.02137.pdf,,,https://arxiv.org/pdf/1802.02137.pdf +d46b790d22cb59df87f9486da28386b0f99339d3,https://pdfs.semanticscholar.org/d46b/790d22cb59df87f9486da28386b0f99339d3.pdf,,,https://pdfs.semanticscholar.org/d46b/790d22cb59df87f9486da28386b0f99339d3.pdf +d4f0960c6587379ad7df7928c256776e25952c60,,,,https://www.ncbi.nlm.nih.gov/pubmed/29107889 +d444e010049944c1b3438c9a25ae09b292b17371,https://pdfs.semanticscholar.org/d444/e010049944c1b3438c9a25ae09b292b17371.pdf,,,https://pdfs.semanticscholar.org/d444/e010049944c1b3438c9a25ae09b292b17371.pdf +d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,,,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf +d444368421f456baf8c3cb089244e017f8d32c41,https://arxiv.org/pdf/1712.06352.pdf,,,https://arxiv.org/pdf/1712.06352.pdf +d4453ec649dbde752e74da8ab0984c6f15cc6e06,,,http://doi.org/10.1007/s11042-016-3361-y, +d4885ca24189b4414031ca048a8b7eb2c9ac646c,https://arxiv.org/pdf/1807.07718.pdf,,,https://arxiv.org/pdf/1807.07718.pdf +d4288daef6519f6852f59ac6b85e21b8910f2207,,,,https://www.ncbi.nlm.nih.gov/pubmed/29994505 +d458c49a5e34263c95b3393386b5d76ba770e497,https://pdfs.semanticscholar.org/d458/c49a5e34263c95b3393386b5d76ba770e497.pdf,,,https://pdfs.semanticscholar.org/d458/c49a5e34263c95b3393386b5d76ba770e497.pdf +d4b4020e289c095ce2c2941685c6cd37667f5cc9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7489442,, +d454ad60b061c1a1450810a0f335fafbfeceeccc,https://arxiv.org/pdf/1712.07195.pdf,,,https://arxiv.org/pdf/1712.07195.pdf +d4df31006798ee091b86e091a7bf5dce6e51ba3e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1612996,, +d44e6baf3464bf56d3a29daf280b1b525ac30f7d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265336,, +d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e,https://pdfs.semanticscholar.org/d4e6/69d5d35fa0ca9f8d9a193c82d4153f5ffc4e.pdf,,,https://pdfs.semanticscholar.org/d4e6/69d5d35fa0ca9f8d9a193c82d4153f5ffc4e.pdf +d44a93027208816b9e871101693b05adab576d89,https://arxiv.org/pdf/1709.10433.pdf,,,https://arxiv.org/pdf/1709.10433.pdf +ba01dbfa29dc86d1279b2e9b9eeca1c52509bbda,,,http://doi.org/10.1007/s00530-017-0566-5, +bad2df94fa771869fa35bd11a1a7ab2e3f6d1da3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344635,, +ba1c0600d3bdb8ed9d439e8aa736a96214156284,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081394,, +badcd992266c6813063c153c41b87babc0ba36a3,https://arxiv.org/pdf/1809.03193.pdf,,,https://arxiv.org/pdf/1809.03193.pdf +ba788365d70fa6c907b71a01d846532ba3110e31,https://arxiv.org/pdf/1805.08657.pdf,,,https://arxiv.org/pdf/1805.08657.pdf +badb95dbdfb3f044a46d7ba0ee69dba929c511b1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363515,, +baafe3253702955c6904f0b233e661b47aa067e1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7776926,, +ba17782ca5fc0d932317389c2adf94b5dbd3ebfe,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509290,, +ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb,https://arxiv.org/pdf/1711.09001.pdf,,,https://arxiv.org/pdf/1711.09001.pdf +badd371a49d2c4126df95120902a34f4bee01b00,https://arxiv.org/pdf/1809.04096.pdf,,,https://arxiv.org/pdf/1809.04096.pdf +a082c77e9a6c2e2313d8255e8e4c0677d325ce3e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163111,, +a022eff5470c3446aca683eae9c18319fd2406d5,https://pdfs.semanticscholar.org/a022/eff5470c3446aca683eae9c18319fd2406d5.pdf,,,https://pdfs.semanticscholar.org/a022/eff5470c3446aca683eae9c18319fd2406d5.pdf +a0c37f07710184597befaa7e6cf2f0893ff440e9,https://arxiv.org/pdf/1805.06374.pdf,,,https://arxiv.org/pdf/1805.06374.pdf +a0fd85b3400c7b3e11122f44dc5870ae2de9009a,https://arxiv.org/pdf/1408.3967.pdf,,,https://arxiv.org/pdf/1408.3967.pdf +a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b,https://pdfs.semanticscholar.org/a0aa/32bb7f406693217fba6dcd4aeb6c4d5a479b.pdf,,,https://pdfs.semanticscholar.org/a0aa/32bb7f406693217fba6dcd4aeb6c4d5a479b.pdf +a0b1990dd2b4cd87e4fd60912cc1552c34792770,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf,,,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf +a00fdf49e5e0a73eb24345cb25a0bd1383a10021,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892186,, +a03448488950ee5bf50e9e1d744129fbba066c50,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367180,, +a77e9f0bd205a7733431a6d1028f09f57f9f73b0,https://arxiv.org/pdf/1806.07753.pdf,,,https://arxiv.org/pdf/1806.07753.pdf +a7ec294373ccc0598cbb0bbb6340c4e56fe5d979,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699580,, +a7664247a37a89c74d0e1a1606a99119cffc41d4,https://pdfs.semanticscholar.org/a766/4247a37a89c74d0e1a1606a99119cffc41d4.pdf,,,https://pdfs.semanticscholar.org/a766/4247a37a89c74d0e1a1606a99119cffc41d4.pdf +a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357,, +a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,https://pdfs.semanticscholar.org/a758/b744a6d6962f1ddce6f0d04292a0b5cf8e07.pdf,,,https://pdfs.semanticscholar.org/a758/b744a6d6962f1ddce6f0d04292a0b5cf8e07.pdf +a78b5495a4223b9784cc53670cc10b6f0beefd32,,,http://doi.org/10.1007/s11042-018-6260-6, +a775da3e6e6ea64bffab7f9baf665528644c7ed3,https://pdfs.semanticscholar.org/0e01/3be45033d43cc658b464cdb55cbf46a994b8.pdf,,,https://pdfs.semanticscholar.org/0e01/3be45033d43cc658b464cdb55cbf46a994b8.pdf +b8fc620a1563511744f1a9386bdfa09a2ea0f71b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411214,, +b8375ff50b8a6f1a10dd809129a18df96888ac8b,https://pdfs.semanticscholar.org/e94d/8395ab477091c433b020f8fb535eae5c1df5.pdf,,,https://pdfs.semanticscholar.org/e94d/8395ab477091c433b020f8fb535eae5c1df5.pdf +b8048a7661bdb73d3613fde9d710bd45a20d13e7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8468792,, +b85c198ce09ffc4037582a544c7ffb6ebaeff198,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100113,, +b82f89d6ef94d26bf4fec4d49437346b727c3bd4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6894202,, +b8f3f6d8f188f65ca8ea2725b248397c7d1e662d,https://arxiv.org/pdf/1611.04357.pdf,,,https://arxiv.org/pdf/1611.04357.pdf +b8ebda42e272d3617375118542d4675a0c0e501d,https://arxiv.org/pdf/1706.07522.pdf,,,https://arxiv.org/pdf/1706.07522.pdf +b8d8501595f38974e001a66752dc7098db13dfec,,,,http://arxiv.org/abs/1711.09265 +b806a31c093b31e98cc5fca7e3ec53f2cc169db9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995928,, +b14e3fe0d320c0d7c09154840250d70bc88bb6c0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699097,, +b1d89015f9b16515735d4140c84b0bacbbef19ac,https://arxiv.org/pdf/1709.00235.pdf,,,https://arxiv.org/pdf/1709.00235.pdf +b14b672e09b5b2d984295dfafb05604492bfaec5,https://pdfs.semanticscholar.org/b14b/672e09b5b2d984295dfafb05604492bfaec5.pdf,,,https://pdfs.semanticscholar.org/b14b/672e09b5b2d984295dfafb05604492bfaec5.pdf +b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000,https://arxiv.org/pdf/1703.03054.pdf,,,https://arxiv.org/pdf/1703.03054.pdf +b161d261fabb507803a9e5834571d56a3b87d147,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8122913,, +b166ce267ddb705e6ed855c6b679ec699d62e9cb,https://pdfs.semanticscholar.org/b166/ce267ddb705e6ed855c6b679ec699d62e9cb.pdf,,,https://pdfs.semanticscholar.org/b166/ce267ddb705e6ed855c6b679ec699d62e9cb.pdf +b13e2e43672e66ba45d1b852a34737e4ce04226b,https://pdfs.semanticscholar.org/3552/4e63c11f13fe08b2996a7bc0a9105e7c407b.pdf,,,https://pdfs.semanticscholar.org/3552/4e63c11f13fe08b2996a7bc0a9105e7c407b.pdf +b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c,https://pdfs.semanticscholar.org/dcc4/b241debf72f3898a69f32185b21766200771.pdf,,,https://pdfs.semanticscholar.org/dcc4/b241debf72f3898a69f32185b21766200771.pdf +b15a06d701f0a7f508e3355a09d0016de3d92a6d,https://pdfs.semanticscholar.org/b15a/06d701f0a7f508e3355a09d0016de3d92a6d.pdf,,,https://pdfs.semanticscholar.org/b15a/06d701f0a7f508e3355a09d0016de3d92a6d.pdf +b1f4423c227fa37b9680787be38857069247a307,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6200254,, +b104c8ef6735eba1d29f50c99bbbf99d33fc8dc2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415357,, +b11b71b704629357fe13ed97b216b9554b0e7463,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7736040,, +b1451721864e836069fa299a64595d1655793757,https://arxiv.org/pdf/1706.03863.pdf,,,https://arxiv.org/pdf/1706.03863.pdf +b1fdd4ae17d82612cefd4e78b690847b071379d3,https://pdfs.semanticscholar.org/4fc5/416b6c7173d3462e5be796bda3ad8d5645a1.pdf,,,https://pdfs.semanticscholar.org/4fc5/416b6c7173d3462e5be796bda3ad8d5645a1.pdf +dde5125baefa1141f1ed50479a3fd67c528a965f,https://arxiv.org/pdf/1701.04851.pdf,,,https://arxiv.org/pdf/1701.04851.pdf +dd8084b2878ca95d8f14bae73e1072922f0cc5da,https://arxiv.org/pdf/1709.02929.pdf,,,https://arxiv.org/pdf/1709.02929.pdf +dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335,https://arxiv.org/pdf/1803.09490.pdf,,,https://arxiv.org/pdf/1803.09490.pdf +dd0086da7c4efe61abb70dd012538f5deb9a8d16,,,http://doi.org/10.1007/s11704-016-5024-6, +ddbd24a73ba3d74028596f393bb07a6b87a469c0,https://pdfs.semanticscholar.org/ddbd/24a73ba3d74028596f393bb07a6b87a469c0.pdf,,,https://pdfs.semanticscholar.org/ddbd/24a73ba3d74028596f393bb07a6b87a469c0.pdf +dd6826e9520a6e72bcd24d1bdb930e78c1083b31,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7106467,, +ddbb6e0913ac127004be73e2d4097513a8f02d37,https://pdfs.semanticscholar.org/d3ea/05926b22a9c45687d435611db14f608e410d.pdf,,,https://pdfs.semanticscholar.org/d3ea/05926b22a9c45687d435611db14f608e410d.pdf +ddfae3a96bd341109d75cedeaebb5ed2362b903f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6837429,, +dc1510110c23f7b509035a1eda22879ef2506e61,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909642,, +dc107e7322f7059430b4ef4991507cb18bcc5d95,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995338,, +dcf6ecd51ba135d432fcb7697fc6c52e4e7b0a43,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100120,, +dc964b9c7242a985eb255b2410a9c45981c2f4d0,,,http://doi.org/10.1007/s10851-018-0837-6, +dc550f361ae82ec6e1a0cf67edf6a0138163382e,https://pdfs.semanticscholar.org/dc55/0f361ae82ec6e1a0cf67edf6a0138163382e.pdf,,,https://pdfs.semanticscholar.org/dc55/0f361ae82ec6e1a0cf67edf6a0138163382e.pdf +dc5d04d34b278b944097b8925a9147773bbb80cc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354149,, +dcf71245addaf66a868221041aabe23c0a074312,https://arxiv.org/pdf/1708.05237.pdf,,,https://arxiv.org/pdf/1708.05237.pdf +dc5d9399b3796db7fd850990402dce221b98c8be,,,,http://dl.acm.org/citation.cfm?id=3220016 +dc3dc18b6831c867a8d65da130a9ff147a736745,,,,http://dl.acm.org/citation.cfm?id=2750679 +dc34ab49d378ddcf6c8e2dbf5472784c5bfa8006,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462222,, +dce5e0a1f2cdc3d4e0e7ca0507592860599b0454,https://arxiv.org/pdf/1803.05576.pdf,,,https://arxiv.org/pdf/1803.05576.pdf +dcb6f06631021811091ce691592b12a237c12907,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8438999,, +dc9d62087ff93a821e6bb8a15a8ae2da3e39dcdd,https://arxiv.org/pdf/1705.01936.pdf,,,https://arxiv.org/pdf/1705.01936.pdf +dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,,,http://doi.org/10.1007/s11042-017-4646-5, +dc13229afbbc8b7a31ed5adfe265d971850c0976,,,, +dc974c31201b6da32f48ef81ae5a9042512705fe,https://arxiv.org/pdf/1705.01781.pdf,,,https://arxiv.org/pdf/1705.01781.pdf +b6bb883dd14f2737d0d6225cf4acbf050d307634,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382306,, +b6f15bf8723b2d5390122442ab04630d2d3878d8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163142,, +b6620027b441131a18f383d544779521b119c1aa,,,http://doi.org/10.1016/j.patcog.2013.04.013, +b6ef158d95042f39765df04373c01546524c9ccd,https://pdfs.semanticscholar.org/b6ef/158d95042f39765df04373c01546524c9ccd.pdf,,,https://pdfs.semanticscholar.org/b6ef/158d95042f39765df04373c01546524c9ccd.pdf +b68150bfdec373ed8e025f448b7a3485c16e3201,https://arxiv.org/pdf/1703.09471.pdf,,,https://arxiv.org/pdf/1703.09471.pdf +b6f682648418422e992e3ef78a6965773550d36b,https://pdfs.semanticscholar.org/b6f6/82648418422e992e3ef78a6965773550d36b.pdf,,,https://pdfs.semanticscholar.org/b6f6/82648418422e992e3ef78a6965773550d36b.pdf +b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3,https://arxiv.org/pdf/1711.10305.pdf,,,https://arxiv.org/pdf/1711.10305.pdf +b6d0e461535116a675a0354e7da65b2c1d2958d4,https://arxiv.org/pdf/1805.03430.pdf,,,https://arxiv.org/pdf/1805.03430.pdf +b69bcb5f73999ea12ff4ac1ac853b72cd5096b2d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613024,, +a9fc8efd1aa3d58f89c0f53f0cb112725b5bda10,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8316891,, +a9ae55c83a8047c6cdf7c958fd3d4a6bfb0a13df,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014745,, +a9fdbe102f266cc20e600fa6b060a7bc8d1134e9,,,,https://www.ncbi.nlm.nih.gov/pubmed/29334821 +a92147bed9c17c311c6081beb0ef4c3165b6268e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6805594,, +a98ff1c2e3c22e3d0a41a2718e4587537b92da0a,,,http://doi.org/10.1007/978-3-319-68548-9_19, +a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f,https://arxiv.org/pdf/1708.05038.pdf,,,https://arxiv.org/pdf/1708.05038.pdf +a939e287feb3166983e36b8573cd161d12097ad8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550048,, +a98316980b126f90514f33214dde51813693fe0d,https://arxiv.org/pdf/1805.01887.pdf,,,https://arxiv.org/pdf/1805.01887.pdf +a961f1234e963a7945fed70197015678149b37d8,,,,http://dl.acm.org/citation.cfm?id=3206068 +a95dc0c4a9d882a903ce8c70e80399f38d2dcc89,https://pdfs.semanticscholar.org/a95d/c0c4a9d882a903ce8c70e80399f38d2dcc89.pdf,,,https://pdfs.semanticscholar.org/a95d/c0c4a9d882a903ce8c70e80399f38d2dcc89.pdf +a92b5234b8b73e06709dd48ec5f0ec357c1aabed,https://arxiv.org/pdf/1802.04962.pdf,,,https://arxiv.org/pdf/1802.04962.pdf +a96c45ed3a44ad79a72499be238264ae38857988,,,http://doi.org/10.1007/s00138-016-0786-2, +a92c207031b0778572bf41803dba1a21076e128b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8433557,, +a9215666b4bcdf8d510de8952cf0d55b635727dc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7498613,, +d5d7e89e6210fcbaa52dc277c1e307632cd91dab,https://arxiv.org/pdf/1711.10398.pdf,,,https://arxiv.org/pdf/1711.10398.pdf +d5444f9475253bbcfef85c351ea9dab56793b9ea,https://arxiv.org/pdf/1703.00686.pdf,,,https://arxiv.org/pdf/1703.00686.pdf +d57c8d46a869c63fb20e33bc21bc2a3c4628f5b4,,,http://doi.org/10.1007/s11042-018-5806-y, +d57982dc55dbed3d0f89589e319dc2d2bd598532,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099760,, +d5de42d37ee84c86b8f9a054f90ddb4566990ec0,https://arxiv.org/pdf/1612.06371.pdf,,,https://arxiv.org/pdf/1612.06371.pdf +d5d5cc27ca519d1300e77e3c1a535a089f52f646,,,http://doi.org/10.1007/s11042-016-3768-5, +d289ce63055c10937e5715e940a4bb9d0af7a8c5,,,,http://dl.acm.org/citation.cfm?id=3081360 +d264dedfdca8dc4c71c50311bcdd6ba3980eb331,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392234,, +d2eb1079552fb736e3ba5e494543e67620832c52,https://arxiv.org/pdf/1807.04050.pdf,,,https://arxiv.org/pdf/1807.04050.pdf +d278e020be85a1ccd90aa366b70c43884dd3f798,https://arxiv.org/pdf/1805.11191.pdf,,,https://arxiv.org/pdf/1805.11191.pdf +d2f2b10a8f29165d815e652f8d44955a12d057e6,,,http://doi.org/10.1007/s10044-015-0475-1, +d20ea5a4fa771bc4121b5654a7483ced98b39148,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430554,, +d26b443f87df76034ff0fa9c5de9779152753f0c,https://arxiv.org/pdf/1807.03425.pdf,,,https://arxiv.org/pdf/1807.03425.pdf +aad4c94fd55d33a3f3a5377bbe441c9474cdbd1e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7777820,, +aae742779e8b754da7973949992d258d6ca26216,https://arxiv.org/pdf/1505.04030.pdf,,,https://arxiv.org/pdf/1505.04030.pdf +aa581b481d400982a7e2a88830a33ec42ad0414f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7313922,, +aa5a7a9900548a1f1381389fc8695ced0c34261a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900274,, +aab3561acbd19f7397cbae39dd34b3be33220309,https://arxiv.org/pdf/1805.02152.pdf,,,https://arxiv.org/pdf/1805.02152.pdf +aafeb3d76155ec28e8ab6b4d063105d5e04e471d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014781,, +aafb8dc8fda3b13a64ec3f1ca7911df01707c453,https://arxiv.org/pdf/1711.06778.pdf,,,https://arxiv.org/pdf/1711.06778.pdf +aadfcaf601630bdc2af11c00eb34220da59b7559,https://arxiv.org/pdf/1804.07237.pdf,,,https://arxiv.org/pdf/1804.07237.pdf +aa6e8a2a9d3ed59d2ae72add84176e7b7f4b2912,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8203756,, +aa1129780cc496918085cd0603a774345c353c54,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7779010,, +aa1607090fbc80ab1e9c0f25ffe8b75b777e5fd8,,,,https://www.sciencedirect.com/science/article/pii/S0006322316331110 +aa3c9de34ef140ec812be85bb8844922c35eba47,https://arxiv.org/pdf/1707.09457.pdf,,,https://arxiv.org/pdf/1707.09457.pdf +af29ad70ab148c83e1faa8b3098396bc1cd87790,,,http://doi.org/10.1007/s40012-016-0149-1, +aff8705fb2f2ae460cb3980b47f2e85c2e6dd41a,https://arxiv.org/pdf/1805.09203.pdf,,,https://arxiv.org/pdf/1805.09203.pdf +af6cae71f24ea8f457e581bfe1240d5fa63faaf7,https://arxiv.org/pdf/1805.09791.pdf,,,https://arxiv.org/pdf/1805.09791.pdf +afdf9a3464c3b015f040982750f6b41c048706f5,https://arxiv.org/pdf/1608.05477.pdf,,,https://arxiv.org/pdf/1608.05477.pdf +afdc303b3325fbc1baa9f18a66bcad59d5aa675b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595920,, +afa57e50570a6599508ee2d50a7b8ca6be04834a,https://pdfs.semanticscholar.org/bc26/4e51ea341744eba137e9dd0e6adf8cbc01d0.pdf,,,https://pdfs.semanticscholar.org/bc26/4e51ea341744eba137e9dd0e6adf8cbc01d0.pdf +afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3,https://arxiv.org/pdf/1708.09268.pdf,,,https://arxiv.org/pdf/1708.09268.pdf +af4745a3c3c7b51dab0fd90d68b53e60225aa4a9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7873272,, +af3b803188344971aa89fee861a6a598f30c6f10,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404811,, +af9419f2155785961a5c16315c70b8228435d5f8,,,http://doi.org/10.1016/j.patrec.2015.12.013, +af654a7ec15168b16382bd604889ea07a967dac6,https://pdfs.semanticscholar.org/af65/4a7ec15168b16382bd604889ea07a967dac6.pdf,,,https://pdfs.semanticscholar.org/af65/4a7ec15168b16382bd604889ea07a967dac6.pdf +b73795963dc623a634d218d29e4a5b74dfbc79f1,https://arxiv.org/pdf/1807.08772.pdf,,,https://arxiv.org/pdf/1807.08772.pdf +b712f08f819b925ff7587b6c09a8855bc295d795,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8450858,, +b7894c1f805ffd90ab4ab06002c70de68d6982ab,https://pdfs.semanticscholar.org/5e87/06fab62a5716c30a245e5963f51793e1d0ed.pdf,,,https://pdfs.semanticscholar.org/5e87/06fab62a5716c30a245e5963f51793e1d0ed.pdf +b759936982d6fb25c55c98955f6955582bdaeb27,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7472169,, +b7ec41005ce4384e76e3be854ecccd564d2f89fb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8441009,, +b7774c096dc18bb0be2acef07ff5887a22c2a848,https://pdfs.semanticscholar.org/d589/29d6cc1dfa513b145e47598c446b16487861.pdf,,,https://pdfs.semanticscholar.org/d589/29d6cc1dfa513b145e47598c446b16487861.pdf +b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89,https://arxiv.org/pdf/1804.10073.pdf,,,https://arxiv.org/pdf/1804.10073.pdf +b72eebffe697008048781ab7b768e0c96e52236a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100092,, +b7461aac36fc0b8a24ecadf6c5b5caf54f2aa2f7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528404,, +b76af8fcf9a3ebc421b075b689defb6dc4282670,https://arxiv.org/pdf/1807.09207.pdf,,,https://arxiv.org/pdf/1807.09207.pdf +b7c6df1ae0e8348feecd65e9ad574d1e04d212a5,,,http://doi.org/10.1007/s11704-018-8015-y, +db848c3c32464d12da33b2f4c3a29fe293fc35d1,https://arxiv.org/pdf/1807.11152.pdf,,,https://arxiv.org/pdf/1807.11152.pdf +dbb16032dd8f19bdfd045a1fc0fc51f29c70f70a,https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf,,,https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf +db0379c9b02e514f10f778cccff0d6a6acf40519,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6130343,, +dba7d8c4d2fca41269a2c96b1ea594e2d0b9bdda,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7422069,, +dbe255d3d2a5d960daaaba71cb0da292e0af36a7,https://arxiv.org/pdf/1505.04373.pdf,,,https://arxiv.org/pdf/1505.04373.pdf +db1a9b8d8ce9a5696a96f8db4206b6f72707730e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961838,, +dbb9601a1d2febcce4c07dd2b819243d81abb2c2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361884,, +db5a00984fa54b9d2a1caad0067a9ff0d0489517,https://pdfs.semanticscholar.org/dd47/1f321ead8b405da6194057b2778ef3db7ea7.pdf,,,https://pdfs.semanticscholar.org/dd47/1f321ead8b405da6194057b2778ef3db7ea7.pdf +dbd958ffedc3eae8032be67599ec281310c05630,https://pdfs.semanticscholar.org/d051/86de8343813a738c1fa5da9bf5165ee63bb7.pdf,,,https://pdfs.semanticscholar.org/d051/86de8343813a738c1fa5da9bf5165ee63bb7.pdf +dbed26cc6d818b3679e46677abc9fa8e04e8c6a6,https://pdfs.semanticscholar.org/dbed/26cc6d818b3679e46677abc9fa8e04e8c6a6.pdf,,,https://pdfs.semanticscholar.org/dbed/26cc6d818b3679e46677abc9fa8e04e8c6a6.pdf +db3545a983ffd24c97c18bf7f068783102548ad7,https://pdfs.semanticscholar.org/080e/660b47647e81dadaec27365b3d5b88f3ae68.pdf,,,https://pdfs.semanticscholar.org/080e/660b47647e81dadaec27365b3d5b88f3ae68.pdf +dbc8ffd6457147ff06cd3f56834e3ec6dccb2057,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265396,, +db67edbaeb78e1dd734784cfaaa720ba86ceb6d2,https://arxiv.org/pdf/1509.04853.pdf,,,https://arxiv.org/pdf/1509.04853.pdf +dbced84d839165d9b494982449aa2eb9109b8467,,,,http://arxiv.org/abs/1712.05083 +a8bb698d1bb21b81497ef68f0f52fa6eaf14a6bf,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6587752,, +a85f691c9f82a248aa2c86d4a63b9036d6cf47ab,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423530,, +a85e9e11db5665c89b057a124547377d3e1c27ef,https://arxiv.org/pdf/1802.00066.pdf,,,https://arxiv.org/pdf/1802.00066.pdf +a87ab836771164adb95d6744027e62e05f47fd96,https://arxiv.org/pdf/1808.00022.pdf,,,https://arxiv.org/pdf/1808.00022.pdf +a896ddeb0d253739c9aaef7fc1f170a2ba8407d3,https://arxiv.org/pdf/1708.03979.pdf,,,https://arxiv.org/pdf/1708.03979.pdf +a88ced67f4ed7940c76b666e1c9c0f08b59f9cf8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771415,, +a803453edd2b4a85b29da74dcc551b3c53ff17f9,https://pdfs.semanticscholar.org/a803/453edd2b4a85b29da74dcc551b3c53ff17f9.pdf,,,https://pdfs.semanticscholar.org/a803/453edd2b4a85b29da74dcc551b3c53ff17f9.pdf +a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8,https://pdfs.semanticscholar.org/3bf2/79c782cee5b43a766d248810d602b24033c9.pdf,,,https://pdfs.semanticscholar.org/3bf2/79c782cee5b43a766d248810d602b24033c9.pdf +a8e7561ada380f2f50211c67fc45c3b3dea96bdb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401921,, +a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265434,, +a8d52265649c16f95af71d6f548c15afc85ac905,https://arxiv.org/pdf/1708.04320.pdf,,,https://arxiv.org/pdf/1708.04320.pdf +a8a61badec9b8bc01f002a06e1426a623456d121,https://pdfs.semanticscholar.org/a8a6/1badec9b8bc01f002a06e1426a623456d121.pdf,,,https://pdfs.semanticscholar.org/a8a6/1badec9b8bc01f002a06e1426a623456d121.pdf +a8154d043f187c6640cb6aedeaa8385a323e46cf,https://arxiv.org/pdf/1805.03134.pdf,,,https://arxiv.org/pdf/1805.03134.pdf +a812368fe1d4a186322bf72a6d07e1cf60067234,https://pdfs.semanticscholar.org/a812/368fe1d4a186322bf72a6d07e1cf60067234.pdf,,,https://pdfs.semanticscholar.org/a812/368fe1d4a186322bf72a6d07e1cf60067234.pdf +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,https://arxiv.org/pdf/1707.03986.pdf,,,https://arxiv.org/pdf/1707.03986.pdf +ded968b97bd59465d5ccda4f1e441f24bac7ede5,https://pdfs.semanticscholar.org/ded9/68b97bd59465d5ccda4f1e441f24bac7ede5.pdf,,,https://pdfs.semanticscholar.org/ded9/68b97bd59465d5ccda4f1e441f24bac7ede5.pdf +de0eb358b890d92e8f67592c6e23f0e3b2ba3f66,https://arxiv.org/pdf/1711.01587.pdf,,,https://arxiv.org/pdf/1711.01587.pdf +de162d4b8450bf2b80f672478f987f304b7e6ae4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237454,, +def934edb7c7355757802a95218c6e4ed6122a72,,,http://doi.org/10.1007/978-0-387-31439-6, +def569db592ed1715ae509644444c3feda06a536,https://arxiv.org/pdf/1804.04604.pdf,,,https://arxiv.org/pdf/1804.04604.pdf +dec76940896a41a8a7b6e9684df326b23737cd5d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607638,, +dee406a7aaa0f4c9d64b7550e633d81bc66ff451,https://arxiv.org/pdf/1710.01453.pdf,,,https://arxiv.org/pdf/1710.01453.pdf +de92951ea021ec56492d76381a8ae560a972dd68,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738246,, +de3285da34df0262a4548574c2383c51387a24bf,https://arxiv.org/pdf/1706.06982.pdf,,,https://arxiv.org/pdf/1706.06982.pdf +dee6609615b73b10540f32537a242baa3c9fca4d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015006,, +de0df8b2b4755da9f70cf1613d7b12040d0ce8ef,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791166,, +dec0c26855da90876c405e9fd42830c3051c2f5f,https://pdfs.semanticscholar.org/dec0/c26855da90876c405e9fd42830c3051c2f5f.pdf,,,https://pdfs.semanticscholar.org/dec0/c26855da90876c405e9fd42830c3051c2f5f.pdf +de45bf9e5593a5549a60ca01f2988266d04d77da,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404529,, +b0c512fcfb7bd6c500429cbda963e28850f2e948,https://arxiv.org/pdf/1408.1656.pdf,,,https://arxiv.org/pdf/1408.1656.pdf +b08203fca1af7b95fda8aa3d29dcacd182375385,https://arxiv.org/pdf/1805.01818.pdf,,,https://arxiv.org/pdf/1805.01818.pdf +b0b944b3a783c2d9f12637b471fe1efb44deb52b,,,,http://dl.acm.org/citation.cfm?id=2591684 +b09b693708f412823053508578df289b8403100a,https://pdfs.semanticscholar.org/b09b/693708f412823053508578df289b8403100a.pdf,,,https://pdfs.semanticscholar.org/b09b/693708f412823053508578df289b8403100a.pdf +b084683e5bab9b2bc327788e7b9a8e049d5fff8f,https://arxiv.org/pdf/1712.08263.pdf,,,https://arxiv.org/pdf/1712.08263.pdf +b0c1615ebcad516b5a26d45be58068673e2ff217,https://arxiv.org/pdf/1608.05246.pdf,,,https://arxiv.org/pdf/1608.05246.pdf +b034cc919af30e96ee7bed769b93ea5828ae361b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099915,, +a6b5ca99432c23392cec682aebb8295c0283728b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302395,, +a6e8a8bb99e30a9e80dbf80c46495cf798066105,https://pdfs.semanticscholar.org/a6e8/a8bb99e30a9e80dbf80c46495cf798066105.pdf,,,https://pdfs.semanticscholar.org/a6e8/a8bb99e30a9e80dbf80c46495cf798066105.pdf +a6eb6ad9142130406fb4ffd4d60e8348c2442c29,https://arxiv.org/pdf/1806.00186.pdf,,,https://arxiv.org/pdf/1806.00186.pdf +a6e4f924cf9a12625e85c974f0ed136b43c2f3b5,,,http://doi.org/10.1007/s11042-017-4572-6, +a6590c49e44aa4975b2b0152ee21ac8af3097d80,https://arxiv.org/pdf/1804.00782.pdf,,,https://arxiv.org/pdf/1804.00782.pdf +a6e25cab2251a8ded43c44b28a87f4c62e3a548a,https://arxiv.org/pdf/1801.07388.pdf,,,https://arxiv.org/pdf/1801.07388.pdf +a6270914cf5f60627a1332bcc3f5951c9eea3be0,https://arxiv.org/pdf/1802.02522.pdf,,,https://arxiv.org/pdf/1802.02522.pdf +a6ce2f0795839d9c2543d64a08e043695887e0eb,https://arxiv.org/pdf/1507.04760.pdf,,,https://arxiv.org/pdf/1507.04760.pdf +a60db9ca8bc144a37fe233b08232d9c91641cbb5,,,http://doi.org/10.1007/s11280-018-0615-9, +a6902db7972a7631d186bbf59c5ef116c205b1e8,,,,http://dl.acm.org/citation.cfm?id=1276381 +a6ce1a1de164f41cb8999c728bceedf65d66bb23,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7170694,, +a6d47f7aa361ab9b37c7f3f868280318f355fadc,,,,https://ora.ox.ac.uk/objects/uuid:7704244a-b327-4e5c-a58e-7bfe769ed988 +b9081856963ceb78dcb44ac410c6fca0533676a3,https://arxiv.org/pdf/1703.03329.pdf,,,https://arxiv.org/pdf/1703.03329.pdf +b97c7f82c1439fa1e4525e5860cb05a39cc412ea,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4430537,, +b999364980e4c21d9c22cc5a9f14501432999ca4,,,http://doi.org/10.1007/s10044-018-0727-y, +b97f694c2a111b5b1724eefd63c8d64c8e19f6c9,https://arxiv.org/pdf/1710.01216.pdf,,,https://arxiv.org/pdf/1710.01216.pdf +b9d0774b0321a5cfc75471b62c8c5ef6c15527f5,https://pdfs.semanticscholar.org/b9d0/774b0321a5cfc75471b62c8c5ef6c15527f5.pdf,,,https://pdfs.semanticscholar.org/b9d0/774b0321a5cfc75471b62c8c5ef6c15527f5.pdf +b908edadad58c604a1e4b431f69ac8ded350589a,https://arxiv.org/pdf/1708.02721.pdf,,,https://arxiv.org/pdf/1708.02721.pdf +b93bf0a7e449cfd0db91a83284d9eba25a6094d8,https://pdfs.semanticscholar.org/b93b/f0a7e449cfd0db91a83284d9eba25a6094d8.pdf,,,https://pdfs.semanticscholar.org/b93b/f0a7e449cfd0db91a83284d9eba25a6094d8.pdf +b9dc8cc479cacda1f23b91df00eb03f88cc0c260,,,,http://dl.acm.org/citation.cfm?id=2964287 +b91f54e1581fbbf60392364323d00a0cd43e493c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553788,, +b971266b29fcecf1d5efe1c4dcdc2355cb188ab0,https://arxiv.org/pdf/1703.00832.pdf,,,https://arxiv.org/pdf/1703.00832.pdf +b961e512242ddad7712855ab00b4d37723376e5d,,,http://doi.org/10.1007/s11554-010-0178-1, +a1af7ec84472afba0451b431dfdb59be323e35b7,https://pdfs.semanticscholar.org/a1af/7ec84472afba0451b431dfdb59be323e35b7.pdf,,,https://pdfs.semanticscholar.org/a1af/7ec84472afba0451b431dfdb59be323e35b7.pdf +a1e07c31184d3728e009d4d1bebe21bf9fe95c8e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900056,, +a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1,https://arxiv.org/pdf/1711.03990.pdf,,,https://arxiv.org/pdf/1711.03990.pdf +a14ed872503a2f03d2b59e049fd6b4d61ab4d6ca,https://arxiv.org/pdf/1711.01467.pdf,,,https://arxiv.org/pdf/1711.01467.pdf +a1132e2638a8abd08bdf7fc4884804dd6654fa63,https://pdfs.semanticscholar.org/a113/2e2638a8abd08bdf7fc4884804dd6654fa63.pdf,,,https://pdfs.semanticscholar.org/a113/2e2638a8abd08bdf7fc4884804dd6654fa63.pdf +a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892,https://arxiv.org/pdf/1603.08895.pdf,,,https://arxiv.org/pdf/1603.08895.pdf +a168ca2e199121258fbb2b6c821207456e5bf994,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553808,, +a1081cb856faae25df14e25045cd682db8028141,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462122,, +a1dd9038b1e1e59c9d564e252d3e14705872fdec,https://arxiv.org/pdf/1803.09851.pdf,,,https://arxiv.org/pdf/1803.09851.pdf +a16fb74ea66025d1f346045fda00bd287c20af0e,https://arxiv.org/pdf/1809.07447.pdf,,,https://arxiv.org/pdf/1809.07447.pdf +a136ccaa67f660c45d3abb8551c5ed357faf7081,,,,https://www.ncbi.nlm.nih.gov/pubmed/27078863 +ef2bb8bd93fa8b44414565b32735334fa6823b56,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393076,, +ef940b76e40e18f329c43a3f545dc41080f68748,https://pdfs.semanticscholar.org/ef94/0b76e40e18f329c43a3f545dc41080f68748.pdf,,,https://pdfs.semanticscholar.org/ef94/0b76e40e18f329c43a3f545dc41080f68748.pdf +ef230e3df720abf2983ba6b347c9d46283e4b690,https://pdfs.semanticscholar.org/ef23/0e3df720abf2983ba6b347c9d46283e4b690.pdf,,,https://pdfs.semanticscholar.org/ef23/0e3df720abf2983ba6b347c9d46283e4b690.pdf +ef4ecb76413a05c96eac4c743d2c2a3886f2ae07,https://pdfs.semanticscholar.org/ef4e/cb76413a05c96eac4c743d2c2a3886f2ae07.pdf,,,https://pdfs.semanticscholar.org/ef4e/cb76413a05c96eac4c743d2c2a3886f2ae07.pdf +efc78a7d95b14abacdfde5c78007eabf9a21689c,,,,http://dl.acm.org/citation.cfm?id=2939840 +ef458499c3856a6e9cd4738b3e97bef010786adb,https://arxiv.org/pdf/1803.09196.pdf,,,https://arxiv.org/pdf/1803.09196.pdf +ef032afa4bdb18b328ffcc60e2dc5229cc1939bc,https://pdfs.semanticscholar.org/ef03/2afa4bdb18b328ffcc60e2dc5229cc1939bc.pdf,,,https://pdfs.semanticscholar.org/ef03/2afa4bdb18b328ffcc60e2dc5229cc1939bc.pdf +ef5531711a69ed687637c48930261769465457f0,https://arxiv.org/pdf/1807.00556.pdf,,,https://arxiv.org/pdf/1807.00556.pdf +ef559d5f02e43534168fbec86707915a70cd73a0,https://pdfs.semanticscholar.org/ef55/9d5f02e43534168fbec86707915a70cd73a0.pdf,,,https://pdfs.semanticscholar.org/ef55/9d5f02e43534168fbec86707915a70cd73a0.pdf +efa08283656714911acff2d5022f26904e451113,https://arxiv.org/pdf/1607.00548.pdf,,,https://arxiv.org/pdf/1607.00548.pdf +ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98,https://arxiv.org/pdf/1406.1881.pdf,,,https://arxiv.org/pdf/1406.1881.pdf +efb24d35d8f6a46e1ff3800a2481bc7e681e255e,,,http://doi.org/10.1016/j.patrec.2015.08.006, +ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d,https://pdfs.semanticscholar.org/001e/ad9b99ee57af44e1831be1670c40711d348d.pdf,,,https://pdfs.semanticscholar.org/001e/ad9b99ee57af44e1831be1670c40711d348d.pdf +c3d3d2229500c555c7a7150a8b126ef874cbee1c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406478,, +c3beae515f38daf4bd8053a7d72f6d2ed3b05d88,https://pdfs.semanticscholar.org/1093/3b6c487a269b87f9b561c5eedfdab6be306b.pdf,,,https://pdfs.semanticscholar.org/1093/3b6c487a269b87f9b561c5eedfdab6be306b.pdf +c3dc4f414f5233df96a9661609557e341b71670d,https://pdfs.semanticscholar.org/c3dc/4f414f5233df96a9661609557e341b71670d.pdf,,,https://pdfs.semanticscholar.org/c3dc/4f414f5233df96a9661609557e341b71670d.pdf +c3d874336eb8fae92ab335393fd801fa8df98412,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952438,, +c362116a358320e71fb6bc8baa559142677622d2,,,http://doi.org/10.1016/j.patcog.2011.07.009, +c3285a1d6ec6972156fea9e6dc9a8d88cd001617,https://arxiv.org/pdf/1712.05083.pdf,,,https://arxiv.org/pdf/1712.05083.pdf +c38b1fa00f1f370c029984c55d4d2d40b529d00c,,,http://doi.org/10.1007/978-3-319-26561-2, +c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,https://pdfs.semanticscholar.org/0d43/3b9435b874a1eea6d7999e86986c910fa285.pdf,,,https://pdfs.semanticscholar.org/0d43/3b9435b874a1eea6d7999e86986c910fa285.pdf +c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0,https://pdfs.semanticscholar.org/2a1c/16f418d8d8e6fa179a8e6a368bb0b47266d0.pdf,,,https://pdfs.semanticscholar.org/2a1c/16f418d8d8e6fa179a8e6a368bb0b47266d0.pdf +c39ffc56a41d436748b9b57bdabd8248b2d28a32,https://arxiv.org/pdf/1704.06904.pdf,,,https://arxiv.org/pdf/1704.06904.pdf +c317181fa1de2260e956f05cd655642607520a4f,https://arxiv.org/pdf/1708.07549.pdf,,,https://arxiv.org/pdf/1708.07549.pdf +c30e4e4994b76605dcb2071954eaaea471307d80,https://pdfs.semanticscholar.org/c30e/4e4994b76605dcb2071954eaaea471307d80.pdf,,,https://pdfs.semanticscholar.org/c30e/4e4994b76605dcb2071954eaaea471307d80.pdf +c37de914c6e9b743d90e2566723d0062bedc9e6a,https://pdfs.semanticscholar.org/c37d/e914c6e9b743d90e2566723d0062bedc9e6a.pdf,,,https://pdfs.semanticscholar.org/c37d/e914c6e9b743d90e2566723d0062bedc9e6a.pdf +c4a2cd5ec81cdfd894c9a20d4ffb8cda637aab1f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5326314,, +c4cfdcf19705f9095fb60fb2e569a9253a475f11,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237333,, +c4fb2de4a5dc28710d9880aece321acf68338fde,https://arxiv.org/pdf/1801.09092.pdf,,,https://arxiv.org/pdf/1801.09092.pdf +c4e2d5ebfebbb9dcee6a9866c3d6290481496df5,,,http://doi.org/10.1007/s00138-012-0439-z, +c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,, +c47bd9f6eb255da525dbcdfc111609c90bc4d2ae,,,,http://dl.acm.org/citation.cfm?id=3230921 +c4f3185f010027a0a97fcb9753d74eb27a9cfd3e,,,http://doi.org/10.1016/j.patrec.2015.02.006, +c43862db5eb7e43e3ef45b5eac4ab30e318f2002,https://arxiv.org/pdf/1704.03925.pdf,,,https://arxiv.org/pdf/1704.03925.pdf +c48b68dc780c71ab0f0f530cd160aa564ed08ade,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1357193,, +ea46951b070f37ad95ea4ed08c7c2a71be2daedc,https://arxiv.org/pdf/1809.03258.pdf,,,https://arxiv.org/pdf/1809.03258.pdf +eac6aee477446a67d491ef7c95abb21867cf71fc,https://arxiv.org/pdf/1602.07017.pdf,,,https://arxiv.org/pdf/1602.07017.pdf +eaf020bc8a3ed5401fc3852f7037a03b2525586a,,,,http://arxiv.org/abs/1710.07735 +ea079334121a0ba89452036e5d7f8e18f6851519,https://arxiv.org/pdf/1708.03615.pdf,,,https://arxiv.org/pdf/1708.03615.pdf +eac1b644492c10546a50f3e125a1f790ec46365f,https://arxiv.org/pdf/1704.00616.pdf,,,https://arxiv.org/pdf/1704.00616.pdf +ea80a050d20c0e24e0625a92e5c03e5c8db3e786,https://pdfs.semanticscholar.org/ea80/a050d20c0e24e0625a92e5c03e5c8db3e786.pdf,,,https://pdfs.semanticscholar.org/ea80/a050d20c0e24e0625a92e5c03e5c8db3e786.pdf +eac97959f2fcd882e8236c5dd6035870878eb36b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890147,, +ea1303f6746f815b7518c82c9c4d4a00cd6328b9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411434,, +eacf974e235add458efb815ada1e5b82a05878fa,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4577667,, +eafda8a94e410f1ad53b3e193ec124e80d57d095,https://pdfs.semanticscholar.org/eafd/a8a94e410f1ad53b3e193ec124e80d57d095.pdf,,,https://pdfs.semanticscholar.org/eafd/a8a94e410f1ad53b3e193ec124e80d57d095.pdf +ea890846912f16a0f3a860fce289596a7dac575f,https://pdfs.semanticscholar.org/ea89/0846912f16a0f3a860fce289596a7dac575f.pdf,,,https://pdfs.semanticscholar.org/ea89/0846912f16a0f3a860fce289596a7dac575f.pdf +eaaed082762337e7c3f8a1b1dfea9c0d3ca281bf,https://pdfs.semanticscholar.org/eaae/d082762337e7c3f8a1b1dfea9c0d3ca281bf.pdf,,,https://pdfs.semanticscholar.org/eaae/d082762337e7c3f8a1b1dfea9c0d3ca281bf.pdf +ea03a569272d329090fe60d6bff8d119e18057d7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532906,, +e1630014a5ae3d2fb7ff6618f1470a567f4d90f5,https://arxiv.org/pdf/1602.04364.pdf,,,https://arxiv.org/pdf/1602.04364.pdf +e19fb22b35c352f57f520f593d748096b41a4a7b,https://pdfs.semanticscholar.org/cbd8/716132ed289d21bdc2e031b7dea4849aae5d.pdf,,,https://pdfs.semanticscholar.org/cbd8/716132ed289d21bdc2e031b7dea4849aae5d.pdf +e1312b0b0fd660de87fa42de39316b28f9336e70,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369055,, +e1d1540a718bb7a933e21339f1a2d90660af7353,,,http://doi.org/10.1007/s11063-018-9852-2, +e1179a5746b4bf12e1c8a033192326bf7f670a4d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163104,, +e19ebad4739d59f999d192bac7d596b20b887f78,https://arxiv.org/pdf/1709.03655.pdf,,,https://arxiv.org/pdf/1709.03655.pdf +e16f73f3a63c44cf285b8c1bc630eb8377b85b6d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373816,, +e14cc2715b806288fe457d88c1ad07ef55c65318,,,,http://dl.acm.org/citation.cfm?id=2830583 +e1d726d812554f2b2b92cac3a4d2bec678969368,https://pdfs.semanticscholar.org/c134/a2441bc1f3ec6b85f22868284c279881b918.pdf,,,https://pdfs.semanticscholar.org/c134/a2441bc1f3ec6b85f22868284c279881b918.pdf +e1256ff535bf4c024dd62faeb2418d48674ddfa2,https://arxiv.org/pdf/1803.11182.pdf,,,https://arxiv.org/pdf/1803.11182.pdf +e180572400b64860e190a8bc04ef839fa491e056,,,http://doi.org/10.1038/s41598-017-12097-w, +cdcfc75f54405c77478ab776eb407c598075d9f8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410829,, +cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66,https://pdfs.semanticscholar.org/cdc7/bd87a2c9983dab728dbc8aac74d8c9ed7e66.pdf,,,https://pdfs.semanticscholar.org/cdc7/bd87a2c9983dab728dbc8aac74d8c9ed7e66.pdf +cd4941cbef1e27d7afdc41b48c1aff5338aacf06,https://arxiv.org/pdf/1712.06761.pdf,,,https://arxiv.org/pdf/1712.06761.pdf +cdef0eaff4a3c168290d238999fc066ebc3a93e8,https://arxiv.org/pdf/1707.07391.pdf,,,https://arxiv.org/pdf/1707.07391.pdf +cd444ee7f165032b97ee76b21b9ff58c10750570,https://pdfs.semanticscholar.org/cd44/4ee7f165032b97ee76b21b9ff58c10750570.pdf,,,https://pdfs.semanticscholar.org/cd44/4ee7f165032b97ee76b21b9ff58c10750570.pdf +cd23dc3227ee2a3ab0f4de1817d03ca771267aeb,https://pdfs.semanticscholar.org/cd23/dc3227ee2a3ab0f4de1817d03ca771267aeb.pdf,,,https://pdfs.semanticscholar.org/cd23/dc3227ee2a3ab0f4de1817d03ca771267aeb.pdf +cd22e6532211f679ba6057d15a801ba448b9915c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434092,, +cd55fb30737625e86454a2861302b96833ed549d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,, +cd63759842a56bd2ede3999f6e11a74ccbec318b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995404,, +cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7945277,, +cd2c54705c455a4379f45eefdf32d8d10087e521,https://arxiv.org/pdf/1804.04779.pdf,,,https://arxiv.org/pdf/1804.04779.pdf +cd7a7be3804fd217e9f10682e0c0bfd9583a08db,https://arxiv.org/pdf/1807.00517.pdf,,,https://arxiv.org/pdf/1807.00517.pdf +cdae8e9cc9d605856cf5709b2fdf61f722d450c1,,,, +cd023d2d067365c83d8e27431e83e7e66082f718,https://arxiv.org/pdf/1804.06039.pdf,,,https://arxiv.org/pdf/1804.06039.pdf +cca9ae621e8228cfa787ec7954bb375536160e0d,https://arxiv.org/pdf/1805.07410.pdf,,,https://arxiv.org/pdf/1805.07410.pdf +cc9d068cf6c4a30da82fd6350a348467cb5086d4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411204,, +ccb2ecb30a50460c9189bb55ba594f2300882747,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8334751,, +cccd0edb5dafb3a160179a60f75fd8c835c0be82,,,http://doi.org/10.1007/s12193-017-0241-3, +cc8e378fd05152a81c2810f682a78c5057c8a735,https://pdfs.semanticscholar.org/cc8e/378fd05152a81c2810f682a78c5057c8a735.pdf,,,https://pdfs.semanticscholar.org/cc8e/378fd05152a81c2810f682a78c5057c8a735.pdf +cc31db984282bb70946f6881bab741aa841d3a7c,https://arxiv.org/pdf/1610.02255.pdf,,,https://arxiv.org/pdf/1610.02255.pdf +cc05f758ccdf57d77b06b96b9d601bf2795a6cc4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6854428,, +cce332405ce9cd9dccc45efac26d1d614eaa982d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597533,, +ccb54fc5f263a8bc2a8373839cb6855f528f10d3,,,http://doi.org/10.1016/j.patcog.2015.11.008, +cc2a9f4be1e465cb4ba702539f0f088ac3383834,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7344595,, +ccf16bcf458e4d7a37643b8364594656287f5bfc,https://pdfs.semanticscholar.org/ccf1/6bcf458e4d7a37643b8364594656287f5bfc.pdf,,,https://pdfs.semanticscholar.org/ccf1/6bcf458e4d7a37643b8364594656287f5bfc.pdf +e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227,https://arxiv.org/pdf/1808.04976.pdf,,,https://arxiv.org/pdf/1808.04976.pdf +e6d6203fa911429d76f026e2ec2de260ec520432,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899663,, +e6e5a6090016810fb902b51d5baa2469ae28b8a1,https://pdfs.semanticscholar.org/e6e5/a6090016810fb902b51d5baa2469ae28b8a1.pdf,,,https://pdfs.semanticscholar.org/e6e5/a6090016810fb902b51d5baa2469ae28b8a1.pdf +e6da1fcd2a8cda0c69b3d94812caa7d844903007,,,,http://dl.acm.org/citation.cfm?id=3137154 +e68869499471bcd6fa8b4dc02aa00633673c0917,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595885,, +f9bce7bd7909f1c75dbeb44900d374bc89072df0,,,, +f9d9b2a1197cdb73e977490756c0ff8a30cafc3e,,,http://doi.org/10.1007/s11042-018-6110-6, +f92ade569cbe54344ffd3bb25efd366dcd8ad659,https://arxiv.org/pdf/1704.01464.pdf,,,https://arxiv.org/pdf/1704.01464.pdf +f94f366ce14555cf0d5d34248f9467c18241c3ee,https://pdfs.semanticscholar.org/f94f/366ce14555cf0d5d34248f9467c18241c3ee.pdf,,,https://pdfs.semanticscholar.org/f94f/366ce14555cf0d5d34248f9467c18241c3ee.pdf +f997a71f1e54d044184240b38d9dc680b3bbbbc0,https://arxiv.org/pdf/1807.11688.pdf,,,https://arxiv.org/pdf/1807.11688.pdf +f08e425c2fce277aedb51d93757839900d591008,https://arxiv.org/pdf/1711.06640.pdf,,,https://arxiv.org/pdf/1711.06640.pdf +f03a82fd4a039c1b94a0e8719284a777f776fb22,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8355453,, +f0cee87e9ecedeb927664b8da44b8649050e1c86,https://arxiv.org/pdf/1805.02901.pdf,,,https://arxiv.org/pdf/1805.02901.pdf +f0f4f16d5b5f9efe304369120651fa688a03d495,https://pdfs.semanticscholar.org/f0f4/f16d5b5f9efe304369120651fa688a03d495.pdf,,,https://pdfs.semanticscholar.org/f0f4/f16d5b5f9efe304369120651fa688a03d495.pdf +f0ca31fd5cad07e84b47d50dc07db9fc53482a46,https://pdfs.semanticscholar.org/f0ca/31fd5cad07e84b47d50dc07db9fc53482a46.pdf,,,https://pdfs.semanticscholar.org/f0ca/31fd5cad07e84b47d50dc07db9fc53482a46.pdf +f0a4a3fb6997334511d7b8fc090f9ce894679faf,https://arxiv.org/pdf/1704.05838.pdf,,,https://arxiv.org/pdf/1704.05838.pdf +f0398ee5291b153b716411c146a17d4af9cb0edc,https://arxiv.org/pdf/1805.02733.pdf,,,https://arxiv.org/pdf/1805.02733.pdf +f0f0e94d333b4923ae42ee195df17c0df62ea0b1,https://pdfs.semanticscholar.org/f0f0/e94d333b4923ae42ee195df17c0df62ea0b1.pdf,,,https://pdfs.semanticscholar.org/f0f0/e94d333b4923ae42ee195df17c0df62ea0b1.pdf +f095b5770f0ff13ba9670e3d480743c5e9ad1036,,,http://doi.org/10.1007/s11263-016-0950-1, +f0f854f8cfe826fd08385c0c3c8097488f468076,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406454,, +f02a6bccdaee14ab55ad94263539f4f33f1b15bb,https://pdfs.semanticscholar.org/f02a/6bccdaee14ab55ad94263539f4f33f1b15bb.pdf,,,https://pdfs.semanticscholar.org/f02a/6bccdaee14ab55ad94263539f4f33f1b15bb.pdf +f070d739fb812d38571ec77490ccd8777e95ce7a,,,http://doi.org/10.1016/j.patcog.2014.09.007, +f7ae38a073be7c9cd1b92359131b9c8374579b13,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7487053,, +f7dea4454c2de0b96ab5cf95008ce7144292e52a,https://arxiv.org/pdf/1805.05563.pdf,,,https://arxiv.org/pdf/1805.05563.pdf +f7b4bc4ef14349a6e66829a0101d5b21129dcf55,https://pdfs.semanticscholar.org/f7b4/bc4ef14349a6e66829a0101d5b21129dcf55.pdf,,,https://pdfs.semanticscholar.org/f7b4/bc4ef14349a6e66829a0101d5b21129dcf55.pdf +f7b422df567ce9813926461251517761e3e6cda0,https://arxiv.org/pdf/1702.01983.pdf,,,https://arxiv.org/pdf/1702.01983.pdf +f7824758800a7b1a386db5bd35f84c81454d017a,https://arxiv.org/pdf/1702.05085.pdf,,,https://arxiv.org/pdf/1702.05085.pdf +f76a6b1d6029769e2dc1be4dadbee6a7ba777429,,,http://doi.org/10.1007/s12559-017-9506-0, +f78fe101b21be36e98cd3da010051bb9b9829a1e,https://pdfs.semanticscholar.org/f78f/e101b21be36e98cd3da010051bb9b9829a1e.pdf,,,https://pdfs.semanticscholar.org/f78f/e101b21be36e98cd3da010051bb9b9829a1e.pdf +f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,https://pdfs.semanticscholar.org/f79c/97e7c3f9a98cf6f4a5d2431f149ffacae48f.pdf,,,https://pdfs.semanticscholar.org/f79c/97e7c3f9a98cf6f4a5d2431f149ffacae48f.pdf +f7a271acccf9ec66c9b114d36eec284fbb89c7ef,https://pdfs.semanticscholar.org/f7a2/71acccf9ec66c9b114d36eec284fbb89c7ef.pdf,,,https://pdfs.semanticscholar.org/f7a2/71acccf9ec66c9b114d36eec284fbb89c7ef.pdf +f7dcadc5288653ec6764600c7c1e2b49c305dfaa,https://pdfs.semanticscholar.org/f7dc/adc5288653ec6764600c7c1e2b49c305dfaa.pdf,,,https://pdfs.semanticscholar.org/f7dc/adc5288653ec6764600c7c1e2b49c305dfaa.pdf +f7be8956639e66e534ed6195d929aed4e0b90cad,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4117059,, +f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a,https://arxiv.org/pdf/1611.06179.pdf,,,https://arxiv.org/pdf/1611.06179.pdf +e8fdacbd708feb60fd6e7843b048bf3c4387c6db,https://pdfs.semanticscholar.org/e8fd/acbd708feb60fd6e7843b048bf3c4387c6db.pdf,,,https://pdfs.semanticscholar.org/e8fd/acbd708feb60fd6e7843b048bf3c4387c6db.pdf +e8aa1f207b4b0bb710f79ab47a671d5639696a56,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7362364,, +e87d6c284cdd6828dfe7c092087fbd9ff5091ee4,https://arxiv.org/pdf/1704.05693.pdf,,,https://arxiv.org/pdf/1704.05693.pdf +e853484dc585bed4b0ed0c5eb4bc6d9d93a16211,,,,http://dl.acm.org/citation.cfm?id=3130971 +e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7,https://arxiv.org/pdf/1701.07174.pdf,,,https://arxiv.org/pdf/1701.07174.pdf +e8f4ded98f5955aad114f55e7aca6b540599236b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7047804,, +e896389891ba84af58a8c279cf8ab5de3e9320ee,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6958874,, +e85a255a970ee4c1eecc3e3d110e157f3e0a4629,https://arxiv.org/pdf/1803.03415.pdf,,,https://arxiv.org/pdf/1803.03415.pdf +e8d1b134d48eb0928bc999923a4e092537e106f6,https://pdfs.semanticscholar.org/e8d1/b134d48eb0928bc999923a4e092537e106f6.pdf,,,https://pdfs.semanticscholar.org/e8d1/b134d48eb0928bc999923a4e092537e106f6.pdf +e8c6c3fc9b52dffb15fe115702c6f159d955d308,https://pdfs.semanticscholar.org/d927/77953677da471c060cbabc2c5b15de8d60b2.pdf,,,https://pdfs.semanticscholar.org/d927/77953677da471c060cbabc2c5b15de8d60b2.pdf +e8b3a257a0a44d2859862cdec91c8841dc69144d,https://arxiv.org/pdf/1808.01725.pdf,,,https://arxiv.org/pdf/1808.01725.pdf +fa90b825346a51562d42f6b59a343b98ea2e501a,https://arxiv.org/pdf/1805.06533.pdf,,,https://arxiv.org/pdf/1805.06533.pdf +fa4f59397f964a23e3c10335c67d9a24ef532d5c,https://arxiv.org/pdf/1602.03346.pdf,,,https://arxiv.org/pdf/1602.03346.pdf +fa052fd40e717773c6dc9cc4a2f5c10b8760339f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5595883,, +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,https://pdfs.semanticscholar.org/fac8/cff9052fc5fab7d5ef114d1342daba5e4b82.pdf,,,https://pdfs.semanticscholar.org/fac8/cff9052fc5fab7d5ef114d1342daba5e4b82.pdf +fa641327dc5873276f0af453a2caa1634c16f143,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789590,, +fa80344137c4d158bf59be4ac5591d074483157a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1470219,, +faf5583063682e70dedc4466ac0f74eeb63169e7,https://pdfs.semanticscholar.org/6ca0/be5608fc00181596e562eb867eeb8cb43a4a.pdf,,,https://pdfs.semanticscholar.org/6ca0/be5608fc00181596e562eb867eeb8cb43a4a.pdf +fa32b29e627086d4302db4d30c07a9d11dcd6b84,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354123,, +fab60b3db164327be8588bce6ce5e45d5b882db6,https://pdfs.semanticscholar.org/fab6/0b3db164327be8588bce6ce5e45d5b882db6.pdf,,,https://pdfs.semanticscholar.org/fab6/0b3db164327be8588bce6ce5e45d5b882db6.pdf +fad895771260048f58d12158a4d4d6d0623f4158,https://pdfs.semanticscholar.org/fad8/95771260048f58d12158a4d4d6d0623f4158.pdf,,,https://pdfs.semanticscholar.org/fad8/95771260048f58d12158a4d4d6d0623f4158.pdf +ffea8775fc9c32f573d1251e177cd283b4fe09c9,https://arxiv.org/pdf/1804.04418.pdf,,,https://arxiv.org/pdf/1804.04418.pdf +fffefc1fb840da63e17428fd5de6e79feb726894,https://arxiv.org/pdf/1805.10445.pdf,,,https://arxiv.org/pdf/1805.10445.pdf +ff76ff05aa1ab17e5ca9864df2252e6bb44c8a17,,,,http://dl.acm.org/citation.cfm?id=3173582 +ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,https://arxiv.org/pdf/1706.04277.pdf,,,https://arxiv.org/pdf/1706.04277.pdf +ff8ef43168b9c8dd467208a0b1b02e223b731254,https://arxiv.org/pdf/1603.07141.pdf,,,https://arxiv.org/pdf/1603.07141.pdf +ff9195f99a1a28ced431362f5363c9a5da47a37b,https://pdfs.semanticscholar.org/ff91/95f99a1a28ced431362f5363c9a5da47a37b.pdf,,,https://pdfs.semanticscholar.org/ff91/95f99a1a28ced431362f5363c9a5da47a37b.pdf +ffc81ced9ee8223ab0adb18817321cbee99606e6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157,, +fffe5ab3351deab81f7562d06764551422dbd9c4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163114,, +ff012c56b9b1de969328dacd13e26b7138ff298b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,, +c588c89a72f89eed29d42f34bfa5d4cffa530732,https://arxiv.org/pdf/1705.01734.pdf,,,https://arxiv.org/pdf/1705.01734.pdf +c5c53d42e551f3c8f6ca2c13335af80a882009fa,,,http://doi.org/10.1007/s11263-018-1088-0, +c5e37630d0672e4d44f7dee83ac2c1528be41c2e,,,,http://dl.acm.org/citation.cfm?id=3078973 +c535d4d61aa0f1d8aadb4082bdcc19f4cbdf0eaf,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237344,, +c5ea084531212284ce3f1ca86a6209f0001de9d1,https://pdfs.semanticscholar.org/c5ea/084531212284ce3f1ca86a6209f0001de9d1.pdf,,,https://pdfs.semanticscholar.org/c5ea/084531212284ce3f1ca86a6209f0001de9d1.pdf +c26b43c2e1e2da96e7caabd46e1d7314acac0992,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8466510,, +c254b4c0f6d5a5a45680eb3742907ec93c3a222b,https://arxiv.org/pdf/1711.06451.pdf,,,https://arxiv.org/pdf/1711.06451.pdf +c29fe5ed41d2240352fcb8d8196eb2f31d009522,,,http://doi.org/10.1007/s11042-015-3230-0, +c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014811,, +f60a85bd35fa85739d712f4c93ea80d31aa7de07,https://arxiv.org/pdf/1710.06924.pdf,,,https://arxiv.org/pdf/1710.06924.pdf +f64574ee0e6247b84d573ddb5c6e2c4ba798ffff,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699435,, +f6f06be05981689b94809130e251f9e4bf932660,https://pdfs.semanticscholar.org/fa86/ec19c1aec46202e0df12d209eb8062d53f7b.pdf,,,https://pdfs.semanticscholar.org/fa86/ec19c1aec46202e0df12d209eb8062d53f7b.pdf +f68ed499e9d41f9c3d16d843db75dc12833d988d,https://arxiv.org/pdf/1805.05029.pdf,,,https://arxiv.org/pdf/1805.05029.pdf +f6fc112ff7e4746b040c13f28700a9c47992045e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7442559,, +f6532bf13a4649b7599eb40f826aa5281e392c61,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6202713,, +f61829274cfe64b94361e54351f01a0376cd1253,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410784,, +f6f2a212505a118933ef84110e487551b6591553,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952474,, +f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a,https://arxiv.org/pdf/1806.09755.pdf,,,https://arxiv.org/pdf/1806.09755.pdf +f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca,https://arxiv.org/pdf/1705.02928.pdf,,,https://arxiv.org/pdf/1705.02928.pdf +f61d5f2a082c65d5330f21b6f36312cc4fab8a3b,https://arxiv.org/pdf/1705.08841.pdf,,,https://arxiv.org/pdf/1705.08841.pdf +f65b47093e4d45013f54c3ba09bbcce7140af6bb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354117,, +f6cf2108ec9d0f59124454d88045173aa328bd2e,https://pdfs.semanticscholar.org/f6cf/2108ec9d0f59124454d88045173aa328bd2e.pdf,,,https://pdfs.semanticscholar.org/f6cf/2108ec9d0f59124454d88045173aa328bd2e.pdf +f6e00d6430cbbaa64789d826d093f7f3e323b082,https://pdfs.semanticscholar.org/5255/490925aa1e01ac0b9a55e93ec8c82efc07b7.pdf,,,https://pdfs.semanticscholar.org/5255/490925aa1e01ac0b9a55e93ec8c82efc07b7.pdf +e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,https://pdfs.semanticscholar.org/e9a5/a38e7da3f0aa5d21499149536199f2e0e1f7.pdf,,,https://pdfs.semanticscholar.org/e9a5/a38e7da3f0aa5d21499149536199f2e0e1f7.pdf +e988be047b28ba3b2f1e4cdba3e8c94026139fcf,https://arxiv.org/pdf/1702.04710.pdf,,,https://arxiv.org/pdf/1702.04710.pdf +e9809c0c6bf33cfe232a63b0a13f9b1263c58cb8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7172556,, +e9d43231a403b4409633594fa6ccc518f035a135,https://pdfs.semanticscholar.org/e9d4/3231a403b4409633594fa6ccc518f035a135.pdf,,,https://pdfs.semanticscholar.org/e9d4/3231a403b4409633594fa6ccc518f035a135.pdf +e97ba85a4550667b8a28f83a98808d489e0ff3bc,,,http://doi.org/10.1155/2018%2F9729014, +e9b0a27018c7151016a9fe01c98b4c21d6ebf4be,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471957,, +e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,https://arxiv.org/pdf/1712.02979.pdf,,,https://arxiv.org/pdf/1712.02979.pdf +e96cef8732f3021080c362126518455562606f2d,,,,http://dl.acm.org/citation.cfm?id=3206058 +e9c008d31da38d9eef67a28d2c77cb7daec941fb,https://arxiv.org/pdf/1708.03769.pdf,,,https://arxiv.org/pdf/1708.03769.pdf +e9363f4368b04aeaa6d6617db0a574844fc59338,https://arxiv.org/pdf/1710.08315.pdf,,,https://arxiv.org/pdf/1710.08315.pdf +f1ae9f5338fcff577b1ae9becdb66007fe57bd45,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099873,, +f1250900074689061196d876f551ba590fc0a064,https://arxiv.org/pdf/1710.07354.pdf,,,https://arxiv.org/pdf/1710.07354.pdf +f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,https://arxiv.org/pdf/1707.05653.pdf,,,https://arxiv.org/pdf/1707.05653.pdf +f1aa120fb720f6cfaab13aea4b8379275e6d40a2,https://pdfs.semanticscholar.org/f1aa/120fb720f6cfaab13aea4b8379275e6d40a2.pdf,,,https://pdfs.semanticscholar.org/f1aa/120fb720f6cfaab13aea4b8379275e6d40a2.pdf +f16599e4ec666c6390c90ff9a253162178a70ef5,,,,http://dl.acm.org/citation.cfm?id=3206050 +f1ba2fe3491c715ded9677862fea966b32ca81f0,https://pdfs.semanticscholar.org/f1ba/2fe3491c715ded9677862fea966b32ca81f0.pdf,,,https://pdfs.semanticscholar.org/f1ba/2fe3491c715ded9677862fea966b32ca81f0.pdf +f1280f76933ba8b7f4a6b8662580504f02bb4ab6,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7836703,, +f113aed343bcac1021dc3e57ba6cc0647a8f5ce1,https://pdfs.semanticscholar.org/f113/aed343bcac1021dc3e57ba6cc0647a8f5ce1.pdf,,,https://pdfs.semanticscholar.org/f113/aed343bcac1021dc3e57ba6cc0647a8f5ce1.pdf +f1173a4c5e3501323b37c1ae9a6d7dd8a236eab8,,,,http://arxiv.org/abs/1504.07339 +f11c76efdc9651db329c8c862652820d61933308,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100,, +e7cac91da51b78eb4a28e194d3f599f95742e2a2,https://pdfs.semanticscholar.org/e7ca/c91da51b78eb4a28e194d3f599f95742e2a2.pdf,,,https://pdfs.semanticscholar.org/e7ca/c91da51b78eb4a28e194d3f599f95742e2a2.pdf +e75a589ca27dc4f05c2715b9d54206dee37af266,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8409973,, +e7cfaff65541cde4298a04882e00608d992f6703,,,http://doi.org/10.1007/s00521-018-3554-6, +e7b2b0538731adaacb2255235e0a07d5ccf09189,https://arxiv.org/pdf/1803.10837.pdf,,,https://arxiv.org/pdf/1803.10837.pdf +e7697c7b626ba3a426106d83f4c3a052fcde02a4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553713,, +e79bacc03152ea55343e6af97bcd17d8904cf5ef,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237669,, +cb8382f43ce073322eba82809f02d3084dad7969,,,,http://dl.acm.org/citation.cfm?id=3232664 +cbca355c5467f501d37b919d8b2a17dcb39d3ef9,https://pdfs.semanticscholar.org/cbca/355c5467f501d37b919d8b2a17dcb39d3ef9.pdf,,,https://pdfs.semanticscholar.org/cbca/355c5467f501d37b919d8b2a17dcb39d3ef9.pdf +cbbd9880fb28bef4e33da418a3795477d3a1616e,,,http://doi.org/10.1016/j.patcog.2016.02.002, +cbe021d840f9fc1cb191cba79d3f7e3bbcda78d3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406479,, +cb522b2e16b11dde48203bef97131ddca3cdaebd,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979,, +cbbd13c29d042743f0139f1e044b6bca731886d0,https://pdfs.semanticscholar.org/cbbd/13c29d042743f0139f1e044b6bca731886d0.pdf,,,https://pdfs.semanticscholar.org/cbbd/13c29d042743f0139f1e044b6bca731886d0.pdf +cb004e9706f12d1de83b88c209ac948b137caae0,https://arxiv.org/pdf/1511.01186.pdf,,,https://arxiv.org/pdf/1511.01186.pdf +cb2917413c9b36c3bb9739bce6c03a1a6eb619b3,https://pdfs.semanticscholar.org/cb29/17413c9b36c3bb9739bce6c03a1a6eb619b3.pdf,,,https://pdfs.semanticscholar.org/cb29/17413c9b36c3bb9739bce6c03a1a6eb619b3.pdf +cbfcd1ec8aa30e31faf205c73d350d447704afee,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7955089,, +cb13e29fb8af6cfca568c6dc523da04d1db1fff5,https://arxiv.org/pdf/1806.05781.pdf,,,https://arxiv.org/pdf/1806.05781.pdf +cb8a1b8d87a3fef15635eb4a32173f9c6f966055,,,,http://dl.acm.org/citation.cfm?id=3234150 +cb27b45329d61f5f95ed213798d4b2a615e76be2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,, +cbb27980eb04f68d9f10067d3d3c114efa9d0054,https://arxiv.org/pdf/1807.03380.pdf,,,https://arxiv.org/pdf/1807.03380.pdf +cb2470aade8e5630dcad5e479ab220db94ecbf91,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397018,, +f842b13bd494be1bbc1161dc6df244340b28a47f,https://pdfs.semanticscholar.org/f842/b13bd494be1bbc1161dc6df244340b28a47f.pdf,,,https://pdfs.semanticscholar.org/f842/b13bd494be1bbc1161dc6df244340b28a47f.pdf +f85ccab7173e543f2bfd4c7a81fb14e147695740,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5946910,, +f8162276f3b21a3873dde7a507fd68b4ab858bcc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4761923,, +f8f872044be2918de442ba26a30336d80d200c42,https://pdfs.semanticscholar.org/f8f8/72044be2918de442ba26a30336d80d200c42.pdf,,,https://pdfs.semanticscholar.org/f8f8/72044be2918de442ba26a30336d80d200c42.pdf +f87b22e7f0c66225824a99cada71f9b3e66b5742,https://arxiv.org/pdf/1709.03126.pdf,,,https://arxiv.org/pdf/1709.03126.pdf +cef73d305e5368ee269baff53ec20ea3ae7cdd82,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461485,, +cec70cf159b51a18b39c80fac1ad34f65f3691ef,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7949100,, +cea2911ccabab40e9c1e5bcc0aa1127cab0c789f,,,http://doi.org/10.1007/s11042-015-2847-3, +cec8936d97dea2fcf04f175d3facaaeb65e574bf,,,,http://dl.acm.org/citation.cfm?id=3134264 +ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6,https://pdfs.semanticscholar.org/535a/b2d3a443235ef98d818f133a26c7445214a7.pdf,,,https://pdfs.semanticscholar.org/535a/b2d3a443235ef98d818f133a26c7445214a7.pdf +ce70dd0d613b840754dce528c14c0ebadd20ffaa,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7973159,, +ceba8ca45bad226c401a509e6b8ccbf31361b0c9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7129813,, +ce450e4849490924488664b44769b4ca57f1bc1a,https://arxiv.org/pdf/1612.00881.pdf,,,https://arxiv.org/pdf/1612.00881.pdf +ce032dae834f383125cdd852e7c1bc793d4c3ba3,https://pdfs.semanticscholar.org/e459/e31cfd985ec0031d5e9ff4896a84ebaff972.pdf,,,https://pdfs.semanticscholar.org/e459/e31cfd985ec0031d5e9ff4896a84ebaff972.pdf +ce9e1dfa7705623bb67df3a91052062a0a0ca456,https://arxiv.org/pdf/1611.05507.pdf,,,https://arxiv.org/pdf/1611.05507.pdf +ce75deb5c645eeb08254e9a7962c74cab1e4c480,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373839,, +ced7811f2b694e54e3d96ec5398e4b6afca67fc0,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1605391,, +ce2945e369603fcec1fcdc6e19aac5996325cba9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771366,, +e03bda45248b4169e2a20cb9124ae60440cad2de,https://pdfs.semanticscholar.org/0434/9d5d7c72d7fa3d1427b7afbfaa3ae07992ed.pdf,,,https://pdfs.semanticscholar.org/0434/9d5d7c72d7fa3d1427b7afbfaa3ae07992ed.pdf +e03e86ac61cfac9148b371d75ce81a55e8b332ca,https://pdfs.semanticscholar.org/e03e/86ac61cfac9148b371d75ce81a55e8b332ca.pdf,,,https://pdfs.semanticscholar.org/e03e/86ac61cfac9148b371d75ce81a55e8b332ca.pdf +e096b11b3988441c0995c13742ad188a80f2b461,https://arxiv.org/pdf/1606.04702.pdf,,,https://arxiv.org/pdf/1606.04702.pdf +e060e32f8ad98f10277b582393df50ac17f2836c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099600,, +e0162dea3746d58083dd1d061fb276015d875b2e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014992,, +e01bb53b611c679141494f3ffe6f0b91953af658,https://arxiv.org/pdf/1711.10703.pdf,,,https://arxiv.org/pdf/1711.10703.pdf +e0939b4518a5ad649ba04194f74f3413c793f28e,https://pdfs.semanticscholar.org/02ce/655ade8d052d099ae145afd032eb39d089b4.pdf,,,https://pdfs.semanticscholar.org/02ce/655ade8d052d099ae145afd032eb39d089b4.pdf +e00d391d7943561f5c7b772ab68e2bb6a85e64c4,https://pdfs.semanticscholar.org/e00d/391d7943561f5c7b772ab68e2bb6a85e64c4.pdf,,,https://pdfs.semanticscholar.org/e00d/391d7943561f5c7b772ab68e2bb6a85e64c4.pdf +e065a2cb4534492ccf46d0afc81b9ad8b420c5ec,https://arxiv.org/pdf/1804.06559.pdf,,,https://arxiv.org/pdf/1804.06559.pdf +e00241f00fb31c660df6c6f129ca38370e6eadb3,https://arxiv.org/pdf/1801.01415.pdf,,,https://arxiv.org/pdf/1801.01415.pdf +e0244a8356b57a5721c101ead351924bcfb2eef4,https://pdfs.semanticscholar.org/e024/4a8356b57a5721c101ead351924bcfb2eef4.pdf,,,https://pdfs.semanticscholar.org/e024/4a8356b57a5721c101ead351924bcfb2eef4.pdf +46f48211716062744ddec5824e9de9322704dea1,,,http://doi.org/10.1007/s11263-016-0923-4, +46f2611dc4a9302e0ac00a79456fa162461a8c80,https://arxiv.org/pdf/1806.07754.pdf,,,https://arxiv.org/pdf/1806.07754.pdf +468bb5344f74842a9a43a7e1a3333ebd394929b4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373896,, +46e72046a9bb2d4982d60bcf5c63dbc622717f0f,https://arxiv.org/pdf/1605.02424.pdf,,,https://arxiv.org/pdf/1605.02424.pdf +46e0703044811c941f0b5418139f89d46b360aa3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883945,, +4641986af5fc8836b2c883ea1a65278d58fe4577,https://arxiv.org/pdf/1701.02426.pdf,,,https://arxiv.org/pdf/1701.02426.pdf +464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a,https://arxiv.org/pdf/1808.07272.pdf,,,https://arxiv.org/pdf/1808.07272.pdf +4686df20f0ee40cd411e4b43860ef56de5531d9e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301536,, +46c82cfadd9f885f5480b2d7155f0985daf949fc,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780537,, +46976097c54e86032932d559c8eb82ffea4bb6bb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738868,, +2c424f21607ff6c92e640bfe3da9ff105c08fac4,https://pdfs.semanticscholar.org/3f25/e17eb717e5894e0404ea634451332f85d287.pdf,,,https://pdfs.semanticscholar.org/3f25/e17eb717e5894e0404ea634451332f85d287.pdf +2c93c8da5dfe5c50119949881f90ac5a0a4f39fe,https://arxiv.org/pdf/1805.01951.pdf,,,https://arxiv.org/pdf/1805.01951.pdf +2cac8ab4088e2bdd32dcb276b86459427355085c,https://pdfs.semanticscholar.org/2cac/8ab4088e2bdd32dcb276b86459427355085c.pdf,,,https://pdfs.semanticscholar.org/2cac/8ab4088e2bdd32dcb276b86459427355085c.pdf +2cde051e04569496fb525d7f1b1e5ce6364c8b21,https://arxiv.org/pdf/1505.02890.pdf,,,https://arxiv.org/pdf/1505.02890.pdf +2c7185bcf31a4950b014b67ca7c63735ee00d56f,,,, +2c1ffb0feea5f707c890347d2c2882be0494a67a,https://arxiv.org/pdf/1807.08919.pdf,,,https://arxiv.org/pdf/1807.08919.pdf +2c5d1e0719f3ad7f66e1763685ae536806f0c23b,https://arxiv.org/pdf/1701.00599.pdf,,,https://arxiv.org/pdf/1701.00599.pdf +2c1f8ddbfbb224271253a27fed0c2425599dfe47,https://arxiv.org/pdf/1708.07689.pdf,,,https://arxiv.org/pdf/1708.07689.pdf +2c052a1c77a3ec2604b3deb702d77c41418c7d3e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373863,, +2c62b9e64aeddf12f9d399b43baaefbca8e11148,https://arxiv.org/pdf/1803.05536.pdf,,,https://arxiv.org/pdf/1803.05536.pdf +2c19d3d35ef7062061b9e16d040cebd7e45f281d,https://arxiv.org/pdf/1711.04161.pdf,,,https://arxiv.org/pdf/1711.04161.pdf +2ce1bac5ddc4cf668bbbb8879cd21dfb94b5cfe4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099709,, +79f6a8f777a11fd626185ab549079236629431ac,https://pdfs.semanticscholar.org/79f6/a8f777a11fd626185ab549079236629431ac.pdf,,,https://pdfs.semanticscholar.org/79f6/a8f777a11fd626185ab549079236629431ac.pdf +7923742e2af655dee4f9a99e39916d164bc30178,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272743,, +79dc84a3bf76f1cb983902e2591d913cee5bdb0e,https://pdfs.semanticscholar.org/1e9e/87fc99430a82621810b3ce7db51e339be315.pdf,,,https://pdfs.semanticscholar.org/1e9e/87fc99430a82621810b3ce7db51e339be315.pdf +79744fc71bea58d2e1918c9e254b10047472bd76,https://arxiv.org/pdf/1802.06713.pdf,,,https://arxiv.org/pdf/1802.06713.pdf +79c3a7131c6c176b02b97d368cd0cd0bc713ff7e,https://pdfs.semanticscholar.org/538a/30196253e458a2a30d530218ffa449c4d24e.pdf,,,https://pdfs.semanticscholar.org/538a/30196253e458a2a30d530218ffa449c4d24e.pdf +7914c3f510e84a3d83d66717aad0d852d6a4d148,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532448,, +799c02a3cde2c0805ea728eb778161499017396b,https://arxiv.org/pdf/1711.01984.pdf,,,https://arxiv.org/pdf/1711.01984.pdf +7918e3e15099b4b2943746e1f6c9e3992a79c5f3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995492,, +794a51097385648e3909a1acae7188f5ab881710,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813382,, +79db191ca1268dc88271abef3179c4fe4ee92aed,https://pdfs.semanticscholar.org/79db/191ca1268dc88271abef3179c4fe4ee92aed.pdf,,,https://pdfs.semanticscholar.org/79db/191ca1268dc88271abef3179c4fe4ee92aed.pdf +2d3af3ee03793f76fb8ff15e7d7515ff1e03f34c,,,http://doi.org/10.1007/s11042-017-4818-3, +2d9e58ea582e054e9d690afca8b6a554c3687ce6,https://arxiv.org/pdf/1706.08580.pdf,,,https://arxiv.org/pdf/1706.08580.pdf +2d7c2c015053fff5300515a7addcd74b523f3f66,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8323422,, +2dbc57abf3ceda80827b85593ce1f457b76a870b,,,http://doi.org/10.1007/s11042-018-6133-z, +2d8001ffee6584b3f4d951d230dc00a06e8219f8,https://arxiv.org/pdf/1712.00721.pdf,,,https://arxiv.org/pdf/1712.00721.pdf +2dfe0e7e81f65716b09c590652a4dd8452c10294,https://pdfs.semanticscholar.org/2dfe/0e7e81f65716b09c590652a4dd8452c10294.pdf,,,https://pdfs.semanticscholar.org/2dfe/0e7e81f65716b09c590652a4dd8452c10294.pdf +2d8d089d368f2982748fde93a959cf5944873673,https://pdfs.semanticscholar.org/2d8d/089d368f2982748fde93a959cf5944873673.pdf,,,https://pdfs.semanticscholar.org/2d8d/089d368f2982748fde93a959cf5944873673.pdf +2d4a3e9361505616fa4851674eb5c8dd18e0c3cf,https://arxiv.org/pdf/1807.08379.pdf,,,https://arxiv.org/pdf/1807.08379.pdf +41f26101fed63a8d149744264dd5aa79f1928265,https://arxiv.org/pdf/1604.07602.pdf,,,https://arxiv.org/pdf/1604.07602.pdf +411318684bd2d42e4b663a37dcf0532a48f0146d,https://pdfs.semanticscholar.org/4e20/8cfff33327863b5aeef0bf9b327798a5610c.pdf,,,https://pdfs.semanticscholar.org/4e20/8cfff33327863b5aeef0bf9b327798a5610c.pdf +4113269f916117f975d5d2a0e60864735b73c64c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613059,, +414715421e01e8c8b5743c5330e6d2553a08c16d,https://pdfs.semanticscholar.org/4147/15421e01e8c8b5743c5330e6d2553a08c16d.pdf,,,https://pdfs.semanticscholar.org/4147/15421e01e8c8b5743c5330e6d2553a08c16d.pdf +41c56c69b20b3f0b6c8a625009fc0a4d317e047a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5720366,, +41c42cb001f34c43d4d8dd8fb72a982854e173fb,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5308445,, +414d78e32ac41e6ff8b192bc095fe55f865a02f4,,,,http://arxiv.org/abs/1706.00631 +8356832f883207187437872742d6b7dc95b51fde,https://arxiv.org/pdf/1807.00458.pdf,,,https://arxiv.org/pdf/1807.00458.pdf +835e510fcf22b4b9097ef51b8d0bb4e7b806bdfd,https://arxiv.org/pdf/1804.00946.pdf,,,https://arxiv.org/pdf/1804.00946.pdf +83295bce2340cb87901499cff492ae6ff3365475,https://arxiv.org/pdf/1808.01558.pdf,,,https://arxiv.org/pdf/1808.01558.pdf +83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05,https://pdfs.semanticscholar.org/d726/6bf19e202f62f31c363a5a5656c67c03118b.pdf,,,https://pdfs.semanticscholar.org/d726/6bf19e202f62f31c363a5a5656c67c03118b.pdf +837e99301e00c2244023a8a48ff98d7b521c93ac,https://pdfs.semanticscholar.org/b7b7/4e0ec15c22e1c94406c592bbb83c8e865f52.pdf,,,https://pdfs.semanticscholar.org/b7b7/4e0ec15c22e1c94406c592bbb83c8e865f52.pdf +834736698f2cc5c221c22369abe95515243a9fc3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249,, +83d41f6548bb76241737dcd3fed9e182ee901ff9,,,,http://dl.acm.org/citation.cfm?id=2964328 +8355d095d3534ef511a9af68a3b2893339e3f96b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390,, +83f80fd4eb614777285202fa99e8314e3e5b169c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265544,, +8334da483f1986aea87b62028672836cb3dc6205,https://arxiv.org/pdf/1805.06306.pdf,,,https://arxiv.org/pdf/1805.06306.pdf +831b4d8b0c0173b0bac0e328e844a0fbafae6639,https://arxiv.org/pdf/1809.01407.pdf,,,https://arxiv.org/pdf/1809.01407.pdf +1b02b9413b730b96b91d16dcd61b2420aef97414,https://pdfs.semanticscholar.org/1b02/b9413b730b96b91d16dcd61b2420aef97414.pdf,,,https://pdfs.semanticscholar.org/1b02/b9413b730b96b91d16dcd61b2420aef97414.pdf +1b55c4e804d1298cbbb9c507497177014a923d22,https://pdfs.semanticscholar.org/1b55/c4e804d1298cbbb9c507497177014a923d22.pdf,,,https://pdfs.semanticscholar.org/1b55/c4e804d1298cbbb9c507497177014a923d22.pdf +1bdef21f093c41df2682a07f05f3548717c7a3d1,https://pdfs.semanticscholar.org/1bde/f21f093c41df2682a07f05f3548717c7a3d1.pdf,,,https://pdfs.semanticscholar.org/1bde/f21f093c41df2682a07f05f3548717c7a3d1.pdf +1bbec7190ac3ba34ca91d28f145e356a11418b67,https://pdfs.semanticscholar.org/1bbe/c7190ac3ba34ca91d28f145e356a11418b67.pdf,,,https://pdfs.semanticscholar.org/1bbe/c7190ac3ba34ca91d28f145e356a11418b67.pdf +1b3587363d37dd197b6adbcfa79d49b5486f27d8,https://arxiv.org/pdf/1806.06371.pdf,,,https://arxiv.org/pdf/1806.06371.pdf +1bd9dbe78918ed17b0a3ac40623f044cb3d3552c,,,http://doi.org/10.1038/nn870, +1b71d3f30238cb6621021a95543cce3aab96a21b,https://arxiv.org/pdf/1804.09235.pdf,,,https://arxiv.org/pdf/1804.09235.pdf +1b4f6f73c70353869026e5eec1dd903f9e26d43f,https://arxiv.org/pdf/1501.06202.pdf,,,https://arxiv.org/pdf/1501.06202.pdf +1b5d445741473ced3d4d33732c9c9225148ed4a1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8452894,, +1badfeece64d1bf43aa55c141afe61c74d0bd25e,https://arxiv.org/pdf/1712.01727.pdf,,,https://arxiv.org/pdf/1712.01727.pdf +7783095a565094ae5b3dccf082d504ddd7255a5c,,,,http://dl.acm.org/citation.cfm?id=2502258 +7789a5d87884f8bafec8a82085292e87d4e2866f,https://arxiv.org/pdf/1612.09548.pdf,,,https://arxiv.org/pdf/1612.09548.pdf +77d929b3c4bf546557815b41ed5c076a5792dc6b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265399,, +779d3f0cf74b7d33344eea210170c7c981a7e27b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8115237,, +7788fa76f1488b1597ee2bebc462f628e659f61e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8063888,, +77db171a523fc3d08c91cea94c9562f3edce56e1,https://pdfs.semanticscholar.org/49af/c659fd0709511759fd220f49b5eb2265e815.pdf,,,https://pdfs.semanticscholar.org/49af/c659fd0709511759fd220f49b5eb2265e815.pdf +77fbbf0c5729f97fcdbfdc507deee3d388cd4889,https://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf,,,https://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf +776362314f1479f5319aaf989624ac604ba42c65,https://pdfs.semanticscholar.org/78aa/2775625c85aedd6a2adc90eb94b8cafd6e91.pdf,,,https://pdfs.semanticscholar.org/78aa/2775625c85aedd6a2adc90eb94b8cafd6e91.pdf +771505abd38641454757de75fe751d41e87f89a4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401561,, +48186494fc7c0cc664edec16ce582b3fcb5249c0,https://arxiv.org/pdf/1506.03607.pdf,,,https://arxiv.org/pdf/1506.03607.pdf +48499deeaa1e31ac22c901d115b8b9867f89f952,https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf,,,https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf +48a402593ca4896ac34fbebf1e725ab1226ecdb7,,,http://doi.org/10.1016/j.patcog.2015.01.022, +4850af6b54391fc33c8028a0b7fafe05855a96ff,https://arxiv.org/pdf/1605.00707.pdf,,,https://arxiv.org/pdf/1605.00707.pdf +48e6c6d981efe2c2fb0ae9287376fcae59da9878,https://arxiv.org/pdf/1807.11010.pdf,,,https://arxiv.org/pdf/1807.11010.pdf +48a5b6ee60475b18411a910c6084b3a32147b8cd,https://pdfs.semanticscholar.org/48a5/b6ee60475b18411a910c6084b3a32147b8cd.pdf,,,https://pdfs.semanticscholar.org/48a5/b6ee60475b18411a910c6084b3a32147b8cd.pdf +48de3ca194c3830daa7495603712496fe908375c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619283,, +480ccd25cb2a851745f5e6e95d33edb703efb49e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461792,, +484bac2a9ff3a43a6f85d109bbc579a4346397f5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6011991,, +4896909796f9bd2f70a2cb24bf18daacd6a12128,https://pdfs.semanticscholar.org/4896/909796f9bd2f70a2cb24bf18daacd6a12128.pdf,,,https://pdfs.semanticscholar.org/4896/909796f9bd2f70a2cb24bf18daacd6a12128.pdf +70e14e216b12bed2211c4df66ef5f0bdeaffe774,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237666,, +70109c670471db2e0ede3842cbb58ba6be804561,https://arxiv.org/pdf/1607.02104.pdf,,,https://arxiv.org/pdf/1607.02104.pdf +708f4787bec9d7563f4bb8b33834de445147133b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237449,, +70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e,,,http://doi.org/10.1007/s11042-018-5608-2, +703dc33736939f88625227e38367cfb2a65319fe,https://arxiv.org/pdf/1703.09026.pdf,,,https://arxiv.org/pdf/1703.09026.pdf +701f56f0eac9f88387de1f556acef78016b05d52,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,,,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf +706b9767a444de4fe153b2f3bff29df7674c3161,https://arxiv.org/pdf/1511.06442.pdf,,,https://arxiv.org/pdf/1511.06442.pdf +70c58700eb89368e66a8f0d3fc54f32f69d423e1,https://pdfs.semanticscholar.org/70c5/8700eb89368e66a8f0d3fc54f32f69d423e1.pdf,,,https://pdfs.semanticscholar.org/70c5/8700eb89368e66a8f0d3fc54f32f69d423e1.pdf +707a542c580bcbf3a5a75cce2df80d75990853cc,https://arxiv.org/pdf/1809.01936.pdf,,,https://arxiv.org/pdf/1809.01936.pdf +704d88168bdfabe31b6ff484507f4a2244b8c52b,https://arxiv.org/pdf/1803.07445.pdf,,,https://arxiv.org/pdf/1803.07445.pdf +70c9d11cad12dc1692a4507a97f50311f1689dbf,https://arxiv.org/pdf/1702.02463.pdf,,,https://arxiv.org/pdf/1702.02463.pdf +1ea74780d529a458123a08250d8fa6ef1da47a25,https://pdfs.semanticscholar.org/1ea7/4780d529a458123a08250d8fa6ef1da47a25.pdf,,,https://pdfs.semanticscholar.org/1ea7/4780d529a458123a08250d8fa6ef1da47a25.pdf +1e0d92b9b4011822825d1f7dc0eba6d83504d45d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4497872,, +1efacaa0eaa7e16146c34cd20814d1411b35538e,https://arxiv.org/pdf/1805.06749.pdf,,,https://arxiv.org/pdf/1805.06749.pdf +1e3068886b138304ec5a7296702879cc8788143d,,,http://doi.org/10.1007/s11263-013-0630-3, +1ef1f33c48bc159881c5c8536cbbd533d31b0e9a,https://pdfs.semanticscholar.org/1ef1/f33c48bc159881c5c8536cbbd533d31b0e9a.pdf,,,https://pdfs.semanticscholar.org/1ef1/f33c48bc159881c5c8536cbbd533d31b0e9a.pdf +1e21b925b65303ef0299af65e018ec1e1b9b8d60,https://arxiv.org/pdf/1611.02200.pdf,,,https://arxiv.org/pdf/1611.02200.pdf +1ee3b4ba04e54bfbacba94d54bf8d05fd202931d,https://pdfs.semanticscholar.org/1ee3/b4ba04e54bfbacba94d54bf8d05fd202931d.pdf,,,https://pdfs.semanticscholar.org/1ee3/b4ba04e54bfbacba94d54bf8d05fd202931d.pdf +1efaa128378f988965841eb3f49d1319a102dc36,https://arxiv.org/pdf/1808.04803.pdf,,,https://arxiv.org/pdf/1808.04803.pdf +8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2,https://pdfs.semanticscholar.org/8451/bf3dd6bcd946be14b1a75af8bbb65a42d4b2.pdf,,,https://pdfs.semanticscholar.org/8451/bf3dd6bcd946be14b1a75af8bbb65a42d4b2.pdf +841855205818d3a6d6f85ec17a22515f4f062882,https://arxiv.org/pdf/1805.11529.pdf,,,https://arxiv.org/pdf/1805.11529.pdf +84c0f814951b80c3b2e39caf3925b56a9b2e1733,https://pdfs.semanticscholar.org/84c0/f814951b80c3b2e39caf3925b56a9b2e1733.pdf,,,https://pdfs.semanticscholar.org/84c0/f814951b80c3b2e39caf3925b56a9b2e1733.pdf +84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1,https://pdfs.semanticscholar.org/db88/70aba4eca31ba56e993e4e94ae86eed6589a.pdf,,,https://pdfs.semanticscholar.org/db88/70aba4eca31ba56e993e4e94ae86eed6589a.pdf +84508e846af3ac509f7e1d74b37709107ba48bde,https://pdfs.semanticscholar.org/8450/8e846af3ac509f7e1d74b37709107ba48bde.pdf,,,https://pdfs.semanticscholar.org/8450/8e846af3ac509f7e1d74b37709107ba48bde.pdf +84c5b45328dee855c4855a104ac9c0558cc8a328,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411213,, +84574aa43a98ad8a29470977e7b091f5a5ec2366,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301321,, +84a74ef8680b66e6dccbc69ae80321a52780a68e,,,http://doi.org/10.1007/978-0-85729-932-1_19, +845f45f8412905137bf4e46a0d434f5856cd3aec,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418618,, +849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b,https://pdfs.semanticscholar.org/849f/891973ad2b6c6f70d7d43d9ac5805f1a1a5b.pdf,,,https://pdfs.semanticscholar.org/849f/891973ad2b6c6f70d7d43d9ac5805f1a1a5b.pdf +4ab84f203b0e752be83f7f213d7495b04b1c4c79,https://arxiv.org/pdf/1711.00659.pdf,,,https://arxiv.org/pdf/1711.00659.pdf +4a3758f283b7c484d3f164528d73bc8667eb1591,https://arxiv.org/pdf/1809.06647.pdf,,,https://arxiv.org/pdf/1809.06647.pdf +4aa093d1986b4ad9b073ac9edfb903f62c00e0b0,https://arxiv.org/pdf/1809.06218.pdf,,,https://arxiv.org/pdf/1809.06218.pdf +4a733a0862bd5f7be73fb4040c1375a6d17c9276,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618949,, +4ac3cd8b6c50f7a26f27eefc64855134932b39be,https://pdfs.semanticscholar.org/4ac3/cd8b6c50f7a26f27eefc64855134932b39be.pdf,,,https://pdfs.semanticscholar.org/4ac3/cd8b6c50f7a26f27eefc64855134932b39be.pdf +4a8480d58c30dc484bda08969e754cd13a64faa1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406475,, +24603ed946cb9385ec541c86d2e42db47361c102,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373865,, +24115d209e0733e319e39badc5411bbfd82c5133,https://arxiv.org/pdf/1411.4389.pdf,,,https://arxiv.org/pdf/1411.4389.pdf +24286ef164f0e12c3e9590ec7f636871ba253026,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369721,, +24f022d807352abf071880877c38e53a98254dcd,https://arxiv.org/pdf/1809.05465.pdf,,,https://arxiv.org/pdf/1809.05465.pdf +2480f8dccd9054372d696e1e521e057d9ac9de17,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8396968,, +24869258fef8f47623b5ef43bd978a525f0af60e,https://pdfs.semanticscholar.org/c2b3/d8ac1f02e63809c74d2eacb37329ec139ce2.pdf,,,https://pdfs.semanticscholar.org/c2b3/d8ac1f02e63809c74d2eacb37329ec139ce2.pdf +247a8040447b6577aa33648395d95d80441a0cf3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8362745,, +24ff832171cb774087a614152c21f54589bf7523,https://arxiv.org/pdf/1508.03755.pdf,,,https://arxiv.org/pdf/1508.03755.pdf +23edcd0d2011d9c0d421193af061f2eb3e155da3,,,http://doi.org/10.1007/s00371-015-1137-4, +23ce6f404c504592767b8bec7d844d87b462de71,https://arxiv.org/pdf/1805.00324.pdf,,,https://arxiv.org/pdf/1805.00324.pdf +23ee7b7a9ca5948e81555aaf3a044cfec778f148,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771385,, +239e305c24155add73f2a0ba5ccbd66b37f77e14,,,,http://dl.acm.org/citation.cfm?id=1219097 +23e824d1dfc33f3780dd18076284f07bd99f1c43,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7947686,, +2322ec2f3571e0ddc593c4e2237a6a794c61251d,https://pdfs.semanticscholar.org/2322/ec2f3571e0ddc593c4e2237a6a794c61251d.pdf,,,https://pdfs.semanticscholar.org/2322/ec2f3571e0ddc593c4e2237a6a794c61251d.pdf +239958d6778643101ab631ec354ea1bc4d33e7e0,,,http://doi.org/10.1016/j.patcog.2017.06.009, +23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f,https://arxiv.org/pdf/1704.06456.pdf,,,https://arxiv.org/pdf/1704.06456.pdf +2303d07d839e8b20f33d6e2ec78d1353cac256cf,https://arxiv.org/pdf/1806.00631.pdf,,,https://arxiv.org/pdf/1806.00631.pdf +23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,https://pdfs.semanticscholar.org/23dd/8d17ce09c22d367e4d62c1ccf507bcbc64da.pdf,,,https://pdfs.semanticscholar.org/23dd/8d17ce09c22d367e4d62c1ccf507bcbc64da.pdf +234c106036964131c0f2daf76c47ced802652046,,,http://doi.org/10.1016/j.cviu.2015.07.007, +23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e,https://pdfs.semanticscholar.org/21b0/fe87731197c94f9e282e995c8f75a9b721a5.pdf,,,https://pdfs.semanticscholar.org/21b0/fe87731197c94f9e282e995c8f75a9b721a5.pdf +4f9e00aaf2736b79e415f5e7c8dfebda3043a97d,https://pdfs.semanticscholar.org/d713/d11d5c8f466ad56286f407991b2d88b606ff.pdf,,,https://pdfs.semanticscholar.org/d713/d11d5c8f466ad56286f407991b2d88b606ff.pdf +4f37f71517420c93c6841beb33ca0926354fa11d,,,http://doi.org/10.1016/j.neucom.2017.08.062, +4f051022de100241e5a4ba8a7514db9167eabf6e,https://arxiv.org/pdf/1708.03736.pdf,,,https://arxiv.org/pdf/1708.03736.pdf +4f064c2a0ef0849eed61ab816ff0c2ff6d9d7308,,,,http://dl.acm.org/citation.cfm?id=2396318 +4f1249369127cc2e2894f6b2f1052d399794919a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663,, +4f8345f31e38f65f1155569238d14bd8517606f4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6618941,, +4f4f920eb43399d8d05b42808e45b56bdd36a929,https://pdfs.semanticscholar.org/4f4f/920eb43399d8d05b42808e45b56bdd36a929.pdf,,,https://pdfs.semanticscholar.org/4f4f/920eb43399d8d05b42808e45b56bdd36a929.pdf +4f0b8f730273e9f11b2bfad2415485414b96299f,https://arxiv.org/pdf/1805.04687.pdf,,,https://arxiv.org/pdf/1805.04687.pdf +4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf,,,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf +4f8b4784d0fca31840307650f7052b0dde736a76,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7017496,, +8d0bc14589dea1f4f88914ffcb57a5c54830f2cc,,,http://doi.org/10.1007/978-3-319-16865-4, +8dd9c97b85e883c16e5b1ec260f9cd610df52dec,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404159,, +8de6deefb90fb9b3f7d451b9d8a1a3264b768482,https://pdfs.semanticscholar.org/8de6/deefb90fb9b3f7d451b9d8a1a3264b768482.pdf,,,https://pdfs.semanticscholar.org/8de6/deefb90fb9b3f7d451b9d8a1a3264b768482.pdf +8da32ff9e3759dc236878ac240728b344555e4e9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014820,, +8d384e8c45a429f5c5f6628e8ba0d73c60a51a89,https://arxiv.org/pdf/1708.00666.pdf,,,https://arxiv.org/pdf/1708.00666.pdf +8dcc95debd07ebab1721c53fa50d846fef265022,https://arxiv.org/pdf/1711.07011.pdf,,,https://arxiv.org/pdf/1711.07011.pdf +8dfe43c76b76a97f8938f5f5f81059a1f1fa74ed,,,http://doi.org/10.1038/s41598-017-18993-5, +8d5998cd984e7cce307da7d46f155f9db99c6590,https://arxiv.org/pdf/1701.02664.pdf,,,https://arxiv.org/pdf/1701.02664.pdf +8de5dc782178114d9424d33d9adabb2f29a1ab17,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7053946,, +15136c2f94fd29fc1cb6bedc8c1831b7002930a6,https://arxiv.org/pdf/1802.09990.pdf,,,https://arxiv.org/pdf/1802.09990.pdf +15d653972d176963ef0ad2cc582d3b35ca542673,https://arxiv.org/pdf/1612.05203.pdf,,,https://arxiv.org/pdf/1612.05203.pdf +15aa6c457678e25f6bc0e818e5fc39e42dd8e533,https://arxiv.org/pdf/1806.07823.pdf,,,https://arxiv.org/pdf/1806.07823.pdf +15cf1f17aeba62cd834116b770f173b0aa614bf4,https://pdfs.semanticscholar.org/15cf/1f17aeba62cd834116b770f173b0aa614bf4.pdf,,,https://pdfs.semanticscholar.org/15cf/1f17aeba62cd834116b770f173b0aa614bf4.pdf +151b87de997e55db892b122c211f9c749f4293de,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237481,, +121503705689f46546cade78ff62963574b4750b,https://arxiv.org/pdf/1602.08405.pdf,,,https://arxiv.org/pdf/1602.08405.pdf +1275d6a800f8cf93c092603175fdad362b69c191,https://arxiv.org/pdf/1804.06655.pdf,,,https://arxiv.org/pdf/1804.06655.pdf +127c7f87f289b1d32e729738475b337a6b042cf7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436988,, +1287bfe73e381cc8042ac0cc27868ae086e1ce3b,https://pdfs.semanticscholar.org/1287/bfe73e381cc8042ac0cc27868ae086e1ce3b.pdf,,,https://pdfs.semanticscholar.org/1287/bfe73e381cc8042ac0cc27868ae086e1ce3b.pdf +1221e25763c3be95c1b6626ca9e7feaa3b636d9a,,,http://doi.org/10.1007/s11042-017-4353-2, +12226bca7a891e25b7d1e1a34a089521bba75731,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373861,, +12408baf69419409d228d96c6f88b6bcde303505,https://arxiv.org/pdf/1612.06950.pdf,,,https://arxiv.org/pdf/1612.06950.pdf +12095f9b35ee88272dd5abc2d942a4f55804b31e,https://pdfs.semanticscholar.org/1209/5f9b35ee88272dd5abc2d942a4f55804b31e.pdf,,,https://pdfs.semanticscholar.org/1209/5f9b35ee88272dd5abc2d942a4f55804b31e.pdf +1275852f2e78ed9afd189e8b845fdb5393413614,https://arxiv.org/pdf/1808.04068.pdf,,,https://arxiv.org/pdf/1808.04068.pdf +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,https://pdfs.semanticscholar.org/1297/ee7a41aa4e8499c7ddb3b1fed783eba19056.pdf,,,https://pdfs.semanticscholar.org/1297/ee7a41aa4e8499c7ddb3b1fed783eba19056.pdf +120785f9b4952734818245cc305148676563a99b,https://pdfs.semanticscholar.org/1207/85f9b4952734818245cc305148676563a99b.pdf,,,https://pdfs.semanticscholar.org/1207/85f9b4952734818245cc305148676563a99b.pdf +1251deae1b4a722a2155d932bdfb6fe4ae28dd22,https://arxiv.org/pdf/1804.04314.pdf,,,https://arxiv.org/pdf/1804.04314.pdf +12ebeb2176a5043ad57bc5f3218e48a96254e3e9,https://pdfs.semanticscholar.org/c5ae/ec7db8132685f408ca17a7a5c45c196b0323.pdf,,,https://pdfs.semanticscholar.org/c5ae/ec7db8132685f408ca17a7a5c45c196b0323.pdf +8ccde9d80706a59e606f6e6d48d4260b60ccc736,https://arxiv.org/pdf/1805.06846.pdf,,,https://arxiv.org/pdf/1805.06846.pdf +8ce9b7b52d05701d5ef4a573095db66ce60a7e1c,https://arxiv.org/pdf/1610.05211.pdf,,,https://arxiv.org/pdf/1610.05211.pdf +8cb6daba2cb1e208e809633133adfee0183b8dd2,https://pdfs.semanticscholar.org/8cb6/daba2cb1e208e809633133adfee0183b8dd2.pdf,,,https://pdfs.semanticscholar.org/8cb6/daba2cb1e208e809633133adfee0183b8dd2.pdf +8c4042191431e9eb43f00b0f14c23765ab9c6688,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532956,, +8ccbbd9da0749d96f09164e28480d54935ee171c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597578,, +85fd2bda5eb3afe68a5a78c30297064aec1361f6,https://pdfs.semanticscholar.org/85fd/2bda5eb3afe68a5a78c30297064aec1361f6.pdf,,,https://pdfs.semanticscholar.org/85fd/2bda5eb3afe68a5a78c30297064aec1361f6.pdf +856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014,, +85a136b48c2036b16f444f93b086e2bd8539a498,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7885525,, +858b51a8a8aa082732e9c7fbbd1ea9df9c76b013,https://pdfs.semanticscholar.org/858b/51a8a8aa082732e9c7fbbd1ea9df9c76b013.pdf,,,https://pdfs.semanticscholar.org/858b/51a8a8aa082732e9c7fbbd1ea9df9c76b013.pdf +85e78aa374d85f9a61da693e5010e40decd3f986,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6619100,, +854b1f0581f5d3340f15eb79452363cbf38c04c8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,, +85ec86f8320ba2ed8b3da04d1c291ce88b8969c0,,,,http://dl.acm.org/citation.cfm?id=3264947 +856317f27248cdb20226eaae599e46de628fb696,https://arxiv.org/pdf/1805.12467.pdf,,,https://arxiv.org/pdf/1805.12467.pdf +85ae6fa48e07857e17ac4bd48fb804785483e268,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7755833,, +85c90ad5eebb637f048841ebfded05942bb786b7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977163,, +8562b4f63e49847692b8cb31ef0bdec416b9a87a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8128909,, +857c64060963dd8d28e4740f190d321298ddd503,,,http://doi.org/10.1007/s11042-015-3103-6, +1d30f813798c55ae4fe454829be6e2948ee841da,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270396,, +1d51b256af68c5546d230f3e6f41da029e0f5852,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7590015,, +1d776bfe627f1a051099997114ba04678c45f0f5,https://arxiv.org/pdf/1805.10604.pdf,,,https://arxiv.org/pdf/1805.10604.pdf +1de23d7fe718d9fab0159f58f422099e44ad3f0a,,,http://doi.org/10.1007/s11063-016-9558-2, +1d7df3df839a6aa8f5392310d46b2a89080a3c25,https://arxiv.org/pdf/1612.02295.pdf,,,https://arxiv.org/pdf/1612.02295.pdf +1d729693a888a460ee855040f62bdde39ae273af,https://pdfs.semanticscholar.org/9da1/91858f65fd99c9b204a6f68916711d4bd51b.pdf,,,https://pdfs.semanticscholar.org/9da1/91858f65fd99c9b204a6f68916711d4bd51b.pdf +1d4c25f9f8f08f5a756d6f472778ab54a7e6129d,https://pdfs.semanticscholar.org/1d4c/25f9f8f08f5a756d6f472778ab54a7e6129d.pdf,,,https://pdfs.semanticscholar.org/1d4c/25f9f8f08f5a756d6f472778ab54a7e6129d.pdf +7142ac9e4d5498037aeb0f459f278fd28dae8048,https://pdfs.semanticscholar.org/a148/0722ce6c89468ef44548c39fb79012f91a64.pdf,,,https://pdfs.semanticscholar.org/a148/0722ce6c89468ef44548c39fb79012f91a64.pdf +7117ed0be436c0291bc6fb6ea6db18de74e2464a,https://pdfs.semanticscholar.org/7117/ed0be436c0291bc6fb6ea6db18de74e2464a.pdf,,,https://pdfs.semanticscholar.org/7117/ed0be436c0291bc6fb6ea6db18de74e2464a.pdf +71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774,, +7195cb08ba2248f3214f5dc5d7881533dd1f46d9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5673820,, +714d487571ca0d676bad75c8fa622d6f50df953b,https://arxiv.org/pdf/1511.06491.pdf,,,https://arxiv.org/pdf/1511.06491.pdf +7143518f847b0ec57a0ff80e0304c89d7e924d9a,https://arxiv.org/pdf/1805.08373.pdf,,,https://arxiv.org/pdf/1805.08373.pdf +710011644006c18291ad512456b7580095d628a2,https://arxiv.org/pdf/1612.05363.pdf,,,https://arxiv.org/pdf/1612.05363.pdf +713db3874b77212492d75fb100a345949f3d3235,https://arxiv.org/pdf/1803.03345.pdf,,,https://arxiv.org/pdf/1803.03345.pdf +715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,https://arxiv.org/pdf/1610.03207.pdf,,,https://arxiv.org/pdf/1610.03207.pdf +71c4b8e1bb25ee80f4317411ea8180dae6499524,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8463396,, +765be0c44a67e41e0f8f0b5d8a3af0ff40a00c7d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373821,, +76cd5e43df44e389483f23cb578a9015d1483d70,https://pdfs.semanticscholar.org/76cd/5e43df44e389483f23cb578a9015d1483d70.pdf,,,https://pdfs.semanticscholar.org/76cd/5e43df44e389483f23cb578a9015d1483d70.pdf +76b11c281ac47fe6d95e124673a408ee9eb568e3,https://pdfs.semanticscholar.org/76b1/1c281ac47fe6d95e124673a408ee9eb568e3.pdf,,,https://pdfs.semanticscholar.org/76b1/1c281ac47fe6d95e124673a408ee9eb568e3.pdf +768f6a14a7903099729872e0db231ea814eb05e9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411205,, +764882e6779fbee29c3d87e00302befc52d2ea8d,https://arxiv.org/pdf/1711.07437.pdf,,,https://arxiv.org/pdf/1711.07437.pdf +763b60feaabceebbe9eddfbaa0378b8b454327aa,,,, +766728bac030b169fcbc2fbafe24c6e22a58ef3c,https://pdfs.semanticscholar.org/7667/28bac030b169fcbc2fbafe24c6e22a58ef3c.pdf,,,https://pdfs.semanticscholar.org/7667/28bac030b169fcbc2fbafe24c6e22a58ef3c.pdf +7697295ee6fc817296bed816ac5cae97644c2d5b,https://arxiv.org/pdf/1704.07333.pdf,,,https://arxiv.org/pdf/1704.07333.pdf +1c25a3c8ef3e2c4dbff337aa727d13f5eba40fb2,,,http://doi.org/10.1007/s00371-016-1290-4, +1c0acf9c2f2c43be47b34acbd4e7338de360e555,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8461986,, +1c9efb6c895917174ac6ccc3bae191152f90c625,https://arxiv.org/pdf/1806.03084.pdf,,,https://arxiv.org/pdf/1806.03084.pdf +1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc,https://pdfs.semanticscholar.org/6a82/2f65c3a49525ffa0dc896ac24e9ad3dca62e.pdf,,,https://pdfs.semanticscholar.org/6a82/2f65c3a49525ffa0dc896ac24e9ad3dca62e.pdf +1c41965c5e1f97b1504c1bdde8037b5e0417da5e,https://arxiv.org/pdf/1808.01106.pdf,,,https://arxiv.org/pdf/1808.01106.pdf +1c6e22516ceb5c97c3caf07a9bd5df357988ceda,https://arxiv.org/pdf/1806.05476.pdf,,,https://arxiv.org/pdf/1806.05476.pdf +825f56ff489cdd3bcc41e76426d0070754eab1a8,https://pdfs.semanticscholar.org/bc51/1519cf8d4e3e247d7506c38d80f64c6a859e.pdf,,,https://pdfs.semanticscholar.org/bc51/1519cf8d4e3e247d7506c38d80f64c6a859e.pdf +824d1db06e1c25f7681e46199fd02cb5fc343784,https://pdfs.semanticscholar.org/824d/1db06e1c25f7681e46199fd02cb5fc343784.pdf,,,https://pdfs.semanticscholar.org/824d/1db06e1c25f7681e46199fd02cb5fc343784.pdf +82eff71af91df2ca18aebb7f1153a7aed16ae7cc,https://pdfs.semanticscholar.org/82ef/f71af91df2ca18aebb7f1153a7aed16ae7cc.pdf,,,https://pdfs.semanticscholar.org/82ef/f71af91df2ca18aebb7f1153a7aed16ae7cc.pdf +82a610a59c210ff77cfdde7fd10c98067bd142da,https://pdfs.semanticscholar.org/82a6/10a59c210ff77cfdde7fd10c98067bd142da.pdf,,,https://pdfs.semanticscholar.org/82a6/10a59c210ff77cfdde7fd10c98067bd142da.pdf +829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a,https://pdfs.semanticscholar.org/bbf4/f0ce0838c8eec048e3a9b212053fd98dde5a.pdf,,,https://pdfs.semanticscholar.org/bbf4/f0ce0838c8eec048e3a9b212053fd98dde5a.pdf +8202da548a128b28dd1f3aa9f86a0523ec2ecb26,,,http://doi.org/10.1016/j.ijar.2012.01.003, +82a0a5d0785fb2c2282ed901a15c3ff02f8567df,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6849828,, +82417d8ec8ac6406f2d55774a35af2a1b3f4b66e,https://pdfs.semanticscholar.org/8241/7d8ec8ac6406f2d55774a35af2a1b3f4b66e.pdf,,,https://pdfs.semanticscholar.org/8241/7d8ec8ac6406f2d55774a35af2a1b3f4b66e.pdf +82e3f4099503633c042a425e9217bfe47cfe9d4b,,,http://doi.org/10.1007/s11042-015-2819-7, +82eb267b8e86be0b444e841b4b4ed4814b6f1942,https://arxiv.org/pdf/1604.08685.pdf,,,https://arxiv.org/pdf/1604.08685.pdf +49358915ae259271238c7690694e6a887b16f7ed,,,http://doi.org/10.1007/BF02884429, +4972aadcce369a8c0029e6dc2f288dfd0241e144,https://arxiv.org/pdf/1809.00852.pdf,,,https://arxiv.org/pdf/1809.00852.pdf +4983076c1a8b80ff5cd68b924b11df58a68b6c84,,,http://doi.org/10.1007/s11704-017-6114-9, +49e975a4c60d99bcc42c921d73f8d89ec7130916,https://pdfs.semanticscholar.org/49e9/75a4c60d99bcc42c921d73f8d89ec7130916.pdf,,,https://pdfs.semanticscholar.org/49e9/75a4c60d99bcc42c921d73f8d89ec7130916.pdf +49068538b7eef66b4254cc11914128097302fab8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339040,, +49be50efc87c5df7a42905e58b092729ea04c2f5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7177489,, +49df381ea2a1e7f4059346311f1f9f45dd997164,https://arxiv.org/pdf/1807.00848.pdf,,,https://arxiv.org/pdf/1807.00848.pdf +493c8591d6a1bef5d7b84164a73761cefb9f5a25,,,,http://dl.acm.org/citation.cfm?id=3159691 +403a108dec92363fd1f465340bd54dbfe65af870,https://arxiv.org/pdf/1510.00542.pdf,,,https://arxiv.org/pdf/1510.00542.pdf +40c9dce0a4c18829c4100bff5845eb7799b54ca1,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5346008,, +40dd2b9aace337467c6e1e269d0cb813442313d7,https://pdfs.semanticscholar.org/40dd/2b9aace337467c6e1e269d0cb813442313d7.pdf,,,https://pdfs.semanticscholar.org/40dd/2b9aace337467c6e1e269d0cb813442313d7.pdf +407de9da58871cae7a6ded2f3a6162b9dc371f38,https://arxiv.org/pdf/1808.00297.pdf,,,https://arxiv.org/pdf/1808.00297.pdf +40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b,https://arxiv.org/pdf/1804.05197.pdf,,,https://arxiv.org/pdf/1804.05197.pdf +405d9a71350c9a13adea41f9d7f7f9274793824f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373834,, +40c1de7b1b0a087c590537df55ecd089c86e8bfc,,,http://doi.org/10.1162/NECO_a_00401, +40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd,https://pdfs.semanticscholar.org/8ef1/0da52c6b2c3856f56aa9d68acab4c1649ed8.pdf,,,https://pdfs.semanticscholar.org/8ef1/0da52c6b2c3856f56aa9d68acab4c1649ed8.pdf +40e1743332523b2ab5614bae5e10f7a7799161f4,https://arxiv.org/pdf/1711.06753.pdf,,,https://arxiv.org/pdf/1711.06753.pdf +4007bf090887d8a0e907ab5e17ecfcdbbdafc2e4,,,http://doi.org/10.1007/s13735-017-0144-9, +40273657e6919455373455bd9a5355bb46a7d614,https://arxiv.org/pdf/1805.09380.pdf,,,https://arxiv.org/pdf/1805.09380.pdf +407806f5fe3c5ecc2dc15b75d3d2b0359b4ee7e0,,,http://doi.org/10.1007/s11042-017-5028-8, +2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87,https://arxiv.org/pdf/1805.11333.pdf,,,https://arxiv.org/pdf/1805.11333.pdf +2e7e1ee7e3ee1445939480efd615e8828b9838f8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5643167,, +2e5cfa97f3ecc10ae8f54c1862433285281e6a7c,https://pdfs.semanticscholar.org/2e5c/fa97f3ecc10ae8f54c1862433285281e6a7c.pdf,,,https://pdfs.semanticscholar.org/2e5c/fa97f3ecc10ae8f54c1862433285281e6a7c.pdf +2e3b981b9f3751fc5873f77ad2aa7789c3e1d1d2,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397046,, +2e0d56794379c436b2d1be63e71a215dd67eb2ca,https://arxiv.org/pdf/1709.03872.pdf,,,https://arxiv.org/pdf/1709.03872.pdf +2e231f1e7e641dd3619bec59e14d02e91360ac01,https://arxiv.org/pdf/1807.10421.pdf,,,https://arxiv.org/pdf/1807.10421.pdf +2ed4973984b254be5cba3129371506275fe8a8eb,https://pdfs.semanticscholar.org/2ed4/973984b254be5cba3129371506275fe8a8eb.pdf,,,https://pdfs.semanticscholar.org/2ed4/973984b254be5cba3129371506275fe8a8eb.pdf +2e9c780ee8145f29bd1a000585dd99b14d1f5894,https://arxiv.org/pdf/1807.08108.pdf,,,https://arxiv.org/pdf/1807.08108.pdf +2e832d5657bf9e5678fd45b118fc74db07dac9da,https://pdfs.semanticscholar.org/2e83/2d5657bf9e5678fd45b118fc74db07dac9da.pdf,,,https://pdfs.semanticscholar.org/2e83/2d5657bf9e5678fd45b118fc74db07dac9da.pdf +2bb53e66aa9417b6560e588b6235e7b8ebbc294c,https://arxiv.org/pdf/1502.01540.pdf,,,https://arxiv.org/pdf/1502.01540.pdf +2bb36c875754a2a8919f2f9b00a336c00006e453,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373869,, +2bf646a6efd15ab830344ae9d43e10cc89e29f34,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8387808,, +2bcd9b2b78eb353ea57cf50387083900eae5384a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995329,, +2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,https://arxiv.org/pdf/1803.00130.pdf,,,https://arxiv.org/pdf/1803.00130.pdf +477236563c6a6c6db922045453b74d3f9535bfa1,https://pdfs.semanticscholar.org/3c3a/e3a2e7c3ee00f33a87a82d5783e84c3a1de2.pdf,,,https://pdfs.semanticscholar.org/3c3a/e3a2e7c3ee00f33a87a82d5783e84c3a1de2.pdf +47190d213caef85e8b9dd0d271dbadc29ed0a953,https://arxiv.org/pdf/1807.11649.pdf,,,https://arxiv.org/pdf/1807.11649.pdf +4735fa28fa2a2af98f7b266efd300a00e60dddf7,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460647,, +47e14fdc6685f0b3800f709c32e005068dfc8d47,https://arxiv.org/pdf/1805.00577.pdf,,,https://arxiv.org/pdf/1805.00577.pdf +7831ab4f8c622d91974579c1ff749dadc170c73c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6712699,, +78f2c8671d1a79c08c80ac857e89315197418472,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237443,, +782188821963304fb78791e01665590f0cd869e8,https://arxiv.org/pdf/1708.01311.pdf,,,https://arxiv.org/pdf/1708.01311.pdf +784a83437b3dba49c0d7ccc10ac40497b84661a5,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100224,, +78cec49ca0acd3b961021bc27d5cf78cbbbafc7e,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995556,, +78c1ad33772237bf138084220d1ffab800e1200d,https://arxiv.org/pdf/1804.08450.pdf,,,https://arxiv.org/pdf/1804.08450.pdf +78598e7005f7c96d64cc47ff47e6f13ae52245b8,https://arxiv.org/pdf/1708.00370.pdf,,,https://arxiv.org/pdf/1708.00370.pdf +782a05fbe30269ff8ab427109f5c4d0a577e5284,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8038860,, +78174c2be084e67f48f3e8ea5cb6c9968615a42c,https://arxiv.org/pdf/1809.06157.pdf,,,https://arxiv.org/pdf/1809.06157.pdf +8b2c090d9007e147b8c660f9282f357336358061,https://pdfs.semanticscholar.org/8b2c/090d9007e147b8c660f9282f357336358061.pdf,,,https://pdfs.semanticscholar.org/8b2c/090d9007e147b8c660f9282f357336358061.pdf +8bed7ff2f75d956652320270eaf331e1f73efb35,https://arxiv.org/pdf/1709.03820.pdf,,,https://arxiv.org/pdf/1709.03820.pdf +8befcd91c24038e5c26df0238d26e2311b21719a,https://arxiv.org/pdf/1808.02559.pdf,,,https://arxiv.org/pdf/1808.02559.pdf +8bdf6f03bde08c424c214188b35be8b2dec7cdea,https://arxiv.org/pdf/1805.04049.pdf,,,https://arxiv.org/pdf/1805.04049.pdf +8b744786137cf6be766778344d9f13abf4ec0683,https://pdfs.semanticscholar.org/8b74/4786137cf6be766778344d9f13abf4ec0683.pdf,,,https://pdfs.semanticscholar.org/8b74/4786137cf6be766778344d9f13abf4ec0683.pdf +8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8,https://pdfs.semanticscholar.org/8b61/fdc47b5eeae6bc0a52523f519eaeaadbc8c8.pdf,,,https://pdfs.semanticscholar.org/8b61/fdc47b5eeae6bc0a52523f519eaeaadbc8c8.pdf +8bebb26880274bdb840ebcca530caf26c393bf45,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369529,, +8bbd40558a99e33fac18f6736b8fe99f4a97d9b1,,,http://doi.org/10.1007/s11263-016-0986-2, +8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259,https://pdfs.semanticscholar.org/8b38/124ff02a9cf8ad00de5521a7f8a9fa4d7259.pdf,,,https://pdfs.semanticscholar.org/8b38/124ff02a9cf8ad00de5521a7f8a9fa4d7259.pdf +134f1cee8408cca648d8b4ca44b38b0a7023af71,https://pdfs.semanticscholar.org/134f/1cee8408cca648d8b4ca44b38b0a7023af71.pdf,,,https://pdfs.semanticscholar.org/134f/1cee8408cca648d8b4ca44b38b0a7023af71.pdf +13d430257d595231bda216ef859950caa736ad1d,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394947,, +13604bbdb6f04a71dea4bd093794e46730b0a488,https://arxiv.org/pdf/1712.09482.pdf,,,https://arxiv.org/pdf/1712.09482.pdf +13179bb3f2867ea44647b6fe0c8fb4109207e9f5,,,http://doi.org/10.1007/s00779-018-1171-0, +13aef395f426ca8bd93640c9c3f848398b189874,https://pdfs.semanticscholar.org/13ae/f395f426ca8bd93640c9c3f848398b189874.pdf,,,https://pdfs.semanticscholar.org/13ae/f395f426ca8bd93640c9c3f848398b189874.pdf +1316296fae6485c1510f00b1b57fb171b9320ac2,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,,,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf +7f511a6a2b38a26f077a5aec4baf5dffc981d881,https://arxiv.org/pdf/1805.02877.pdf,,,https://arxiv.org/pdf/1805.02877.pdf +7f21a7441c6ded38008c1fd0b91bdd54425d3f80,https://arxiv.org/pdf/1809.05474.pdf,,,https://arxiv.org/pdf/1809.05474.pdf +7fcecaef60a681c47f0476e54e08712ee05d6154,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7299097,, +7fb5006b6522436ece5bedf509e79bdb7b79c9a7,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf,,,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf +7f4bc8883c3b9872408cc391bcd294017848d0cf,https://pdfs.semanticscholar.org/7f4b/c8883c3b9872408cc391bcd294017848d0cf.pdf,,,https://pdfs.semanticscholar.org/7f4b/c8883c3b9872408cc391bcd294017848d0cf.pdf +7f445191fa0475ff0113577d95502a96dc702ef9,https://arxiv.org/pdf/1805.04026.pdf,,,https://arxiv.org/pdf/1805.04026.pdf +7f203f2ff6721e73738720589ea83adddb7fdd27,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1301513,, +7fab17ef7e25626643f1d55257a3e13348e435bd,https://arxiv.org/pdf/1702.08423.pdf,,,https://arxiv.org/pdf/1702.08423.pdf +7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404767,, +7f44e5929b11ce2192c3ae81fbe602081a7ab5c4,,,http://doi.org/10.1007/s11554-016-0645-4, +7fe2ab9f54242ef8609ef9bf988f008c7d42407c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8382330,, +7f904093e6933cab876e87532111db94c71a304f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117544,, +7f26c615dd187ca5e4b15759d5cb23ab3ea9d9a9,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7781761,, +7f2a234ad5c256733a837dbf98f25ed5aad214e8,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7207289,, +7f5b379b12505d60f9303aab1fea48515d36d098,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411873,, +7f68a5429f150f9eb7550308bb47a363f2989cb3,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6977004,, +7a81967598c2c0b3b3771c1af943efb1defd4482,https://arxiv.org/pdf/1503.01508.pdf,,,https://arxiv.org/pdf/1503.01508.pdf +7a3d46f32f680144fd2ba261681b43b86b702b85,https://arxiv.org/pdf/1805.01282.pdf,,,https://arxiv.org/pdf/1805.01282.pdf +7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b,https://arxiv.org/pdf/1709.08129.pdf,,,https://arxiv.org/pdf/1709.08129.pdf +7acbf0b060e948589b38d5501ca217463cfd5c2f,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6940304,, +7ac4fc169fffa8e962b9df94f61e2adf6bac8f97,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8453893,, +7ac9aaafe4d74542832c273acf9d631cb8ea6193,https://arxiv.org/pdf/1809.04185.pdf,,,https://arxiv.org/pdf/1809.04185.pdf +7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697,https://arxiv.org/pdf/1807.07320.pdf,,,https://arxiv.org/pdf/1807.07320.pdf +7aa062c6c90dba866273f5edd413075b90077b51,https://pdfs.semanticscholar.org/7aa0/62c6c90dba866273f5edd413075b90077b51.pdf,,,https://pdfs.semanticscholar.org/7aa0/62c6c90dba866273f5edd413075b90077b51.pdf +7a131fafa7058fb75fdca32d0529bc7cb50429bd,https://arxiv.org/pdf/1704.04086.pdf,,,https://arxiv.org/pdf/1704.04086.pdf +141cb9ee401f223220d3468592effa90f0c255fa,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815403,, +1442319de86d171ce9595b20866ec865003e66fc,https://pdfs.semanticscholar.org/1442/319de86d171ce9595b20866ec865003e66fc.pdf,,,https://pdfs.semanticscholar.org/1442/319de86d171ce9595b20866ec865003e66fc.pdf +14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74,,,http://doi.org/10.1007/s00138-016-0820-4, +14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b,https://arxiv.org/pdf/1806.11008.pdf,,,https://arxiv.org/pdf/1806.11008.pdf +14ee4948be56caeb30aa3b94968ce663e7496ce4,https://pdfs.semanticscholar.org/14ee/4948be56caeb30aa3b94968ce663e7496ce4.pdf,,,https://pdfs.semanticscholar.org/14ee/4948be56caeb30aa3b94968ce663e7496ce4.pdf +8e63868e552e433dc536ba732f4c2af095602869,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1699730,, +8eb40d0a0a1339469a05711f532839e8ffd8126c,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7890464,, +8e3d0b401dec8818cd0245c540c6bc032f169a1d,https://arxiv.org/pdf/1702.08398.pdf,,,https://arxiv.org/pdf/1702.08398.pdf +8e3c97e420e0112c043929087d6456d8ab61e95c,https://pdfs.semanticscholar.org/0e44/90f7616634e06a0b89eedbe37433d7f5392d.pdf,,,https://pdfs.semanticscholar.org/0e44/90f7616634e06a0b89eedbe37433d7f5392d.pdf +8e0ab1b08964393e4f9f42ca037220fe98aad7ac,https://arxiv.org/pdf/1712.04695.pdf,,,https://arxiv.org/pdf/1712.04695.pdf +8e452379fda31744d4a4383fcb8a9eab6dbc4ae4,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4586390,, +8ed32c8fad924736ebc6d99c5c319312ba1fa80b,https://pdfs.semanticscholar.org/8ed3/2c8fad924736ebc6d99c5c319312ba1fa80b.pdf,,,https://pdfs.semanticscholar.org/8ed3/2c8fad924736ebc6d99c5c319312ba1fa80b.pdf +8e24db957be2b643db464cc566bfabc650f1ffac,,,, +8e36100cb144685c26e46ad034c524b830b8b2f2,https://pdfs.semanticscholar.org/8e36/100cb144685c26e46ad034c524b830b8b2f2.pdf,,,https://pdfs.semanticscholar.org/8e36/100cb144685c26e46ad034c524b830b8b2f2.pdf +8ed33184fccde677ec8413ae06f28ea9f2ca70f3,https://arxiv.org/pdf/1712.00796.pdf,,,https://arxiv.org/pdf/1712.00796.pdf +8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b,https://arxiv.org/pdf/1711.10520.pdf,,,https://arxiv.org/pdf/1711.10520.pdf +2227f978f084ebb18cb594c0cfaf124b0df6bf95,https://pdfs.semanticscholar.org/2227/f978f084ebb18cb594c0cfaf124b0df6bf95.pdf,,,https://pdfs.semanticscholar.org/2227/f978f084ebb18cb594c0cfaf124b0df6bf95.pdf +22648dcd3100432fe0cc71e09de5ee855c61f12b,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393188,, +228ea13041910c41b50d0052bdce924037c3bc6a,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8434495,, +2201f187a7483982c2e8e2585ad9907c5e66671d,https://pdfs.semanticscholar.org/1cad/9aa5095733b56e998ad0cd396e89c2bc9928.pdf,,,https://pdfs.semanticscholar.org/1cad/9aa5095733b56e998ad0cd396e89c2bc9928.pdf +227b1a09b942eaf130d1d84cdcabf98921780a22,https://pdfs.semanticscholar.org/227b/1a09b942eaf130d1d84cdcabf98921780a22.pdf,,,https://pdfs.semanticscholar.org/227b/1a09b942eaf130d1d84cdcabf98921780a22.pdf +22e121a8dea49e3042de305574356477ecacadda,,,http://doi.org/10.1007/s00138-018-0935-x, +25ff865460c2b5481fa4161749d5da8501010aa0,https://arxiv.org/pdf/1702.07971.pdf,,,https://arxiv.org/pdf/1702.07971.pdf +25960f0a2ed38a89fa8076a448ca538de2f1e183,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411220,, +2563fc1797f187e2f6f9d9f4387d4bcadd3fbd02,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410635,, +2588acc7a730d864f84d4e1a050070ff873b03d5,https://pdfs.semanticscholar.org/2588/acc7a730d864f84d4e1a050070ff873b03d5.pdf,,,https://pdfs.semanticscholar.org/2588/acc7a730d864f84d4e1a050070ff873b03d5.pdf +25982e2bef817ebde7be5bb80b22a9864b979fb0,https://arxiv.org/pdf/1709.05731.pdf,,,https://arxiv.org/pdf/1709.05731.pdf +2564920d6976be68bb22e299b0b8098090bbf259,,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8407761,, diff --git a/scraper/reports/pdf_institutions_deduped.csv b/scraper/reports/pdf_institutions_deduped.csv new file mode 100644 index 00000000..6a5e23e0 --- /dev/null +++ b/scraper/reports/pdf_institutions_deduped.csv @@ -0,0 +1,1676 @@ +Canonical Name,Name,Address,Lat,Lng +Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.0,10.0 +Aalborg University,"Aalborg University, Denmark","AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.0,10.0 +Aalto University,AALTO UNIVERSITY,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.2,24.8 +Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.2,24.8 +Aalto University,"Aalto University, Finland","Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.2,24.8 +Aberystwyth University,Aberystwyth University,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.4,-4.1 +Aberystwyth University,"Aberystwyth University, UK","Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.4,-4.1 +AGH University of Science and Technology,AGH University of Science and Technology,"AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP",50.1,19.9 +AGH University of Science and Technology,"AGH University of Science and Technology, Kraków, Poland","AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP",50.1,19.9 +Ahmedabad University,Ahmedabad University,"School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India",23.0,72.6 +Ahmedabad University,"Ahmedabad University, Gujarat, India 380009","School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India",23.0,72.6 +Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.3,127.0 +Akita Prefectural University,Akita Prefectural University,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本",39.8,140.0 +Akita Prefectural University,"Akita Prefectural University, Yurihonjo, Japan","秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本",39.4,140.1 +Akita University,Akita University,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本",39.7,140.1 +Akita University,"Akita University, Akita, Japan","秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本",39.7,140.1 +Alexandria University,Alexandria University,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.2,29.9 +Alexandria University,"Alexandria University, Alexandria, Egypt","جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.2,29.9 +"Alibaba Group, Hangzhou, China","Alibaba Group, Hangzhou, China","Alibaba Group, 五常街道, 余杭区 (Yuhang), 杭州市 Hangzhou, 浙江省, 中国",30.3,120.0 +"Amazon, Inc.","Amazon, Berkshire, U.K.","Amazon Logistics, Exeter Road, Theale, West Berkshire, South East, England, RG7 4PL, UK",51.4,-1.1 +American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.9,-77.1 +American University,"American University, Washington, DC, USA","American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.9,-77.1 +American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.0,31.2 +American University in Cairo,"The American University in Cairo, Egypt","الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.0,31.2 +Amherst College,Amherst College,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA",42.4,-72.5 +Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.7,51.4 +Amirkabir University of Technology,"Amirkabir University of Technology, Tehran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.7,51.4 +Amirkabir University of Technology,"Amirkabir University of Technology, Tehran, Iran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.7,51.4 +Amirkabir University of Technology,"Amirkabir University of Technology, Tehran. Iran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.7,51.4 +Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.9,81.0 +Amity University,"Amity University, Lucknow, India","Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.9,81.0 +Amity University Uttar Pradesh,Amity University Uttar Pradesh,"Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India",28.5,77.3 +Amity University Uttar Pradesh,"Amity University Uttar Pradesh, Noida","Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India",28.5,77.3 +Anhui Polytechnic University,Anhui Polytechnic University,"安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.3,118.4 +Anhui Polytechnic University,"Anhui Polytechnic University, Wuhu, China","安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.3,118.4 +Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.8,117.2 +Anhui University,"Anhui University, Hefei, China","安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.8,117.2 +Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0,80.2 +Anna University,Anna University Chennai,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0,80.2 +Anna University,"Anna University Chennai, India","Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0,80.2 +Anna University,"Anna University, Chennai","Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0,80.2 +Aristotle University of Thessaloniki,ARISTOTLE UNIVERSITY OF THESSALONIKI,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +Aristotle University of Thessaloniki,Aristotle University of Thessaloniki GR,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.3,-111.7 +Arizona State University,"Arizona State University, AZ, USA","Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.3,-111.7 +Arizona State University,"Arizona State University, Tempe AZ","Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA",33.4,-111.9 +Arizona State University,"Arizona State University, Tempe, AZ, USA","Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA",33.4,-111.9 +Asia Pacific University of Technology and Innovation,Asia Pacific University of Technology and Innovation,"Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia",3.1,101.7 +Asia Pacific University of Technology and Innovation,"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia","Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia",3.1,101.7 +Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.2,31.2 +Assiut University,"Assiut University, Asyut, Egypt","Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.2,31.2 +Aston University,Aston University,"Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK",52.5,-1.9 +Aston University,"Aston University, Birmingham, U.K.","Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK",52.5,-1.9 +Australian Institute of Sport,Australian Institute of Sport,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.2,149.1 +Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8,145.0 +Australian National University,The Australian National University Canberra ACT 2601,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.3,149.1 +Australian National University,"The Australian National University Canberra ACT 2601, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.3,149.1 +Australian National University,"The Australian National University, Canberra, ACT, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.3,149.1 +Australian National University,"The Australian National University, Canberra, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.3,149.1 +"Australian National University, Canberra","Australian National University, Canberra","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.3,149.1 +"Australian National University, Canberra","Australian National University, Canberra, ACT 0200, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.3,149.1 +"Australian National University, Melbourne","Australian National University, Melbourne","Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8,145.0 +Azad University,Azad University,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎",36.3,50.0 +Azad University,"Azad University, Qazvin, Iran","پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎",36.3,50.0 +Azad University,"Central Tehran Branch, Azad University","دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ‏ایران‎",35.8,51.4 +Bahcesehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.0,29.0 +Bahcesehir University,"Bahcesehir University, Istanbul, Turkey","BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.0,29.0 +Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.3,83.0 +Bangalore Institute of Technology,Bangalore Institute of Technology,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India",13.0,77.6 +"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India","Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India","Bapuji Institute of Engineering and Technology, 2nd Cross Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4,75.9 +Bar-Ilan University,Bar-Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.1,34.8 +Bar-Ilan University,Bar Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.1,34.8 +Bar-Ilan University,"Bar Ilan University, Israel","אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.1,34.8 +Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.1,-88.2 +Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",40.0,116.3 +Beihang University,"Beihang University, Beijing 100191, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",40.0,116.3 +Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",40.0,116.3 +Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",40.0,116.3 +Beijing Institute of Technology,"Beijing Institute of Technology University, P. R. China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",40.0,116.3 +Beijing Institute of Technology,"Beijing Institute of Technology, Beijing 100081 CHINA","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",40.0,116.3 +Beijing Institute of Technology,"Beijing Institute of Technology, Beijing, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",40.0,116.3 +Beijing Institute of Technology,"Beijing Institute of Technology, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",40.0,116.3 +Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.9,116.3 +Beijing Jiaotong University,"Beijing Jiaotong University, Beijing, 100044, China","北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.9,116.3 +Beijing Normal University,Beijing Normal University,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",40.0,116.4 +Beijing Normal University,"Beijing Normal University, China","北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",40.0,116.4 +Beijing Union University,Beijing Union University,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",40.0,116.4 +Beijing Union University,"Beijing Union University, 100101, China","北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",40.0,116.4 +Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",40.0,116.4 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",40.0,116.4 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",40.0,116.4 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, P.R. China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",40.0,116.4 +Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",40.0,116.4 +Beijing University of Technology,Beijing University of Technology,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.9,116.5 +Beijing University of Technology,"Beijing University of Technology, Beijing 100022, China","北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.9,116.5 +"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.9,116.4 +"Beijing, Haidian, China","Beijing, Haidian, China","北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",40.0,116.4 +Benha University,Benha University,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.1,31.2 +Benha University,"Benha University, Egypt","كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.1,31.2 +Bharathidasan University,Bharathidasan University,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.8,78.7 +Bharathidasan University,"Bharathidasan University, Trichy, India","Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.8,78.7 +Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.0,8.5 +Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.9,32.8 +Bilkent University,"Bilkent University, 06800 Cankaya, Turkey","Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.9,32.8 +Bilkent University,of bilkent university,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.9,32.8 +Binghamton University,Binghamton University,"Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.1,-75.9 +Binghamton University,"Binghamton University, Binghamton, NY","Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.1,-75.9 +Bogazici University,Bogazici University,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.1,29.0 +Bogazici University,"Bogazici University, Bebek","Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.1,29.0 +Bogazici University,"Bogazici University, Turkey","Boğaziçi Üniversitesi Güney Yerleşkesi, Sehitlikdergahı Sokağı, Beşiktaş, İstanbul, Marmara Bölgesi, 33345, Türkiye",41.1,29.1 +Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3,-71.2 +Boston College,"Boston College, USA","Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3,-71.2 +Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.4,-71.1 +Boston University,"Boston University, Boston, MA","BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.4,-71.1 +Boston University,"Boston University, USA","BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.4,-71.1 +Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.7,-1.9 +Bournemouth University,"Bournemouth University, UK","Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.7,-1.9 +Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8,-71.4 +Brown University,"Brown University, Providence Rhode Island, 02912, USA","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8,-71.4 +Brown University,"Brown University, Providence, RI","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8,-71.4 +Brown University,"Brown University, United States","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8,-71.4 +Brunel University,Brunel University,"Brunel University London, The Strip, Hillingdon, London, Greater London, England, UB8 3PH, UK",51.5,-0.5 +California Institute of Technology,CALIFORNIA INSTITUTE OF TECHNOLOGY,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.1,-118.1 +California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.1,-118.1 +California Institute of Technology,"California Institute of Technology, Pasadena, CA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.1,-118.1 +California Institute of Technology,"California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.1,-118.1 +California Institute of Technology,"California Institute of Technology, Pasadena, California, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.1,-118.1 +California Institute of Technology,"California Institute of Technology, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.1,-118.1 +Cambridge Research Laboratory,Cambridge Research Laboratory,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK",52.2,0.1 +Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.8,-1.1 +Capital Normal University,Capital Normal University,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.9,116.3 +Capital Normal University,"Capital Normal University, 100048, China","首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.9,116.3 +Cardiff University,Cardi University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.5,-3.2 +Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.5,-3.2 +Cardiff University,"Cardiff University, UK","Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.5,-3.2 +Carleton University,Carleton University,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada",45.4,-75.7 +Carnegie Mellon University,CARNEGIE MELLON UNIVERSITY,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4,-122.1 +Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4,-122.1 +Carnegie Mellon University,"Carnegie Mellon University Pittsburgh, PA - 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Carnegie Mellon University,"Carnegie Mellon University, USA","Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4,-122.1 +Carnegie Mellon University,The Robotics Institute,,, +Carnegie Mellon University ,Carnegie Mellon University Pittsburgh,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-79.9 +Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.0,-120.5 +Chang Gung University,Chang Gung University,"長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣",25.0,121.4 +Chang Gung University,"Chang Gung University, Taoyuan, Taiwan","長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣",25.0,121.4 +Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.1,147.4 +China University of Mining and Technology,China University of Mining and Technology,"China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.2,117.1 +China University of Mining and Technology,"China University of Mining and Technology, Xuzhou, China","China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.2,117.1 +Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0,116.4 +Chinese Academy of Sciences,"Chinese Academy of Sciences, Beijing","中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0,116.4 +Chinese Academy of Sciences,"Chinese Academy of Sciences, China","中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0,116.4 +Chinese Academy of Sciences,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.7,135.2 +Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4,114.2 +Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4,114.2 +Chinese University of Hong Kong,"The Chinese University of Hong Kong, China","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4,114.2 +Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4,114.2 +Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong, China","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4,114.2 +Chinese University of Hong Kong,"The Chinese University of Hong Kong, New Territories, Hong Kong","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4,114.2 +Chittagong University of Engineering and Technology,Chittagong University of Engineering and Technology,"Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ",22.5,92.0 +Chittagong University of Engineering and Technology,"Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh","Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ",22.5,92.0 +Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.8,127.1 +Chonbuk National University,"Chonbuk National University, Jeonju-si","전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.8,127.1 +Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5,106.6 +Chongqing University,"Chongqing University, China","重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5,106.6 +Chongqing University,"Chongqing University, Chongqing, China","重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5,106.6 +Chongqing University of Posts and Telecommunications,Chongqing University of Posts and Telecommunications,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.5,106.6 +Chongqing University of Posts and Telecommunications,"Chongqing University of Posts and Telecommunications, Chongqing, China","重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.5,106.6 +Chosun University,Chosun University,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국",35.1,126.9 +"Chu Hai College of Higher Education, Hong Kong","Chu Hai College of Higher Education, Hong Kong","珠海學院 Chu Hai College of Higher Education, 80, 青盈路 Tsing Ying Road, 嘉和里 Ka Wo Lei, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国",22.4,114.0 +"Chu Hai College of Higher Education, Hong Kong","Chu Hai College of Higher Education, Tsuen Wan, Hong Kong","珠海學院, 80, 青山公路-青山灣段 Castle Peak Road – Castle Peak Bay, 良田村 Leung Tin Tsuen, 青山灣 Castle Peak Bay, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国",22.4,114.0 +Chubu University,Chubu University,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本",35.3,137.0 +Chulalongkorn University,Chulalongkorn University,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.7,100.5 +Chulalongkorn University,"Chulalongkorn University, Bangkok","จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.7,100.5 +Chulalongkorn University ,Chulalongkorn University Bangkok,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.7,100.5 +Chulalongkorn University ,"Chulalongkorn University Bangkok, Thailand","จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.7,100.5 +Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.5,127.0 +Chung-Ang University,"Chung-Ang University, Seoul, Korea","중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.5,127.0 +Chung-Ang University,"Chung-Ang University, Seoul, South Korea","중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.5,127.0 +Chungnam National University,Chungnam National University,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국",36.4,127.3 +City College of New York,"The City College of New York, New York, NY 10031, USA","CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA",40.8,-74.0 +City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.3,114.2 +City University of Hong Kong,"City University of Hong Kong, Hong Kong","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.3,114.2 +City University of Hong Kong,"City University of Hong Kong, Hong Kong, China","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.3,114.2 +City University of Hong Kong,"City University of Hong Kong, Kowloon, Hong Kong","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.3,114.2 +City University of New York,The City University of New York,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA",40.9,-73.9 +Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.7,-82.8 +Clemson University,"Clemson University, Clemson, SC","E-06 Parking, Parkway Drive, Pickens County, South Carolina, SC, USA",34.7,-82.8 +Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.3,11.0 +"College of Engineering, Pune, India","College of Engineering Pune, India","College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India",18.5,73.9 +"College of Engineering, Pune, India","College of Engineering, Pune, India","College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India",18.5,73.9 +Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.6,-105.1 +Colorado State University,"Colorado State University, Fort Collins","Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.6,-105.1 +Colorado State University,"Colorado State University, Fort Collins, Colorado, USA","Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.6,-105.1 +Columbia University,COLUMBIA UNIVERSITY,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University,"Columbia University, New York","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University,"Columbia University, New York NY 10027, USA","Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.8,-74.0 +Columbia University,"Columbia University, New York, NY","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University,"Columbia University, New York, NY 10027, USA","Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.8,-74.0 +Columbia University,"Columbia University, New York, NY, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University,"Columbia University, New York, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University,"Columbia University, United States","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University,"Columbia University, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8,-73.9 +Columbia University ,Columbia University in the City of New York,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.8,-74.0 +Communication University of China,Communication University of China,"中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.9,116.6 +Communication University of China,"Communication University of China, Beijing, China","中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.9,116.6 +"COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎",33.7,73.2 +"COMSATS Institute of Information Technology, Lahore",COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.4,74.2 +"COMSATS Institute of Information Technology, Lahore ","COMSATS Institute of Information Technology, Lahore 54000, Pakistan","COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.4,74.2 +"COMSATS Institute of Information Technology, Lahore ","COMSATS Institute of Information Technology, Pakistan","COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.4,74.2 +Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.6,-122.6 +Concordia University,"Concordia University, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.5,-73.6 +Concordia University,"Concordia University, Montreal, QC, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.5,-73.6 +Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.5,-76.5 +Cornell University,"Cornell University, Ithaca, New York","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.5,-76.5 +Cornell University,"Cornell University, Ithaca, NY, USA","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.5,-76.5 +Cornell University,"Cornell University, USA","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.5,-76.5 +Cornell University,of Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.5,-76.5 +Courant Institute of Mathematical Sciences,Courant Institute,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7,-74.0 +Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7,-74.0 +Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, New York, NY","Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7,-74.0 +CUNY City College,CUNY City College,"CUNY City College, 205 East 42nd Street, New York, NY 10017",45.6,5.4 +Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.0,115.9 +Curtin University,"Curtin University, Perth WA 6102, Australia","Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.0,115.9 +Curtin University,"Curtin University, Perth WA, Australia","A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia",-32.0,115.9 +Curtin University,"Curtin University, Perth, Australia","Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia",-32.0,115.9 +Curtin University,"Curtin University, Perth, Western Australia 6012","A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia",-32.0,115.9 +Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.7,33.0 +Cyprus University of Technology,"Cyprus University of Technology, Cyprus","Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.7,33.0 +Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.1,14.4 +Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.9,121.5 +Dalian University of Technology,"Dalian University of Technology, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.9,121.5 +Dalian University of Technology,"Dalian University of Technology, Dalian 116024, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.9,121.5 +Dalian University of Technology,"Dalian University of Technology, Dalian, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.9,121.5 +Dalian University of Technology,"Dalian University of Technology, Dalian, Liaoning, 116024, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.9,121.5 +Dankook University,Dankook University,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3,127.1 +Dankook University,"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea","단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3,127.1 +Dankook University,"Dankook University, Yongin, South Korea","단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3,127.1 +Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7,-72.3 +Dartmouth College,"Dartmouth College, NH 03755 USA","Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA",43.7,-72.3 +Deakin University,Deakin University,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.2,144.3 +Deakin University,"Deakin University, Geelong, VIC 3216, Australia","Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.2,144.3 +Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",52.0,4.4 +Delft University of Technology,"Delft University of Technology, Mekelweg 4, Netherlands","TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",52.0,4.4 +Delft University of Technology,"Delft University of Technology, The Netherlands","TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",52.0,4.4 +Democritus University of Thrace,Democritus University of Thrace,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα",40.8,25.8 +"Deutsche Welle, Bonn, Germany","Deutsche Welle, Bonn, Germany","DW, Gronau, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7,7.1 +Dhaka University,Dhaka University,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ",23.7,90.4 +"Disney Research, Zurich","Disney Research, CH","Disney Research Zürich, 48, Stampfenbachstrasse, Unterstrass, Kreis 6, Zürich, Bezirk Zürich, Zürich, 8006, Schweiz/Suisse/Svizzera/Svizra",47.4,8.5 +DIT University,DIT UNIVERSITY,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.4,78.1 +DIT University,"DIT UNIVERSITY, DEHRADUN","DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.4,78.1 +Donghua University,Donghua University,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.2,121.4 +Donghua University,"Donghua University, China","东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.2,121.4 +Dr. B. C. Roy Engineering College,Dr. B. C. Roy Engineering College,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India",23.5,87.3 +Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",40.0,-75.2 +Dublin City University,DUBLIN CITY UNIVERSITY,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland",53.4,-6.3 +Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",36.0,-78.9 +East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2,121.4 +Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.1,33.9 +Eastern University,Eastern University,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA",40.1,-75.4 +Ecole Centrale de Lyon,"Ecole Centrale de Lyon, Lyon, 69134, France","EC de Lyon, 36, Avenue Guy de Collongue, Écully, Lyon, Métropole de Lyon, Circonscription départementale du Rhône, Auvergne-Rhône-Alpes, France métropolitaine, 69134, France",45.8,4.8 +École Polytechnique Fédérale de Lausanne,"École Polytechnique Fédérale de Lausanne (EPFL), Switzerland","Bibliothèque de l'EPFL, Route des Noyerettes, Ecublens, District de l'Ouest lausannois, Vaud, 1024, Schweiz/Suisse/Svizzera/Svizra",46.5,6.6 +Edge Hill University,Edge Hill University,"Edge Hill University, St Helens Road, West Lancashire, Lancs, North West England, England, L39 4QP, UK",53.6,-2.9 +Education University of Hong Kong,The Education University of Hong Kong,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国",22.5,114.2 +Eindhoven University of Technology,Eindhoven University of Technology,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4,5.5 +Eindhoven University of Technology,"Eindhoven University of Technology, The Netherlands","Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4,5.5 +Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.6,-101.9 +Elon University,Elon University,"Amphitheater, North Antioch Avenue, Elon, Alamance County, North Carolina, 27244, USA",36.1,-79.5 +Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.7,30.5 +"Facebook, Inc.","Facebook Inc., San Francisco, CA, USA","Facebook Inc., San Francisco Bay Trail, Menlo Park, San Mateo County, California, 94025-1246, USA",37.5,-122.2 +"Facebook, Singapore","Facebook, Singapore","Ewe Boon back lane, between Palm Spring, City Towers and Wing On Life Garden, Farrer Park Gardens, Novena, Singapore, Central, 259803, Singapore",1.3,103.8 +Feng Chia University,Feng Chia University,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.2,120.6 +Feng Chia University,"Feng Chia University, Taichung, Taiwan","逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.2,120.6 +Ferdowsi University of Mashhad,Ferdowsi University of Mashhad,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎",36.3,59.5 +Ferdowsi University of Mashhad,"Ferdowsi University of Mashhad, Mashhad, Iran","دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎",36.3,59.5 +Firat University,Firat University,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye",39.7,39.5 +Florida Institute of Technology,"Florida Institute Of Technology, Melbourne Fl","Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA",28.1,-80.6 +Florida Institute of Technology,"Florida Institute of Technology, Melbourne, USA","Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA",28.1,-80.6 +Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.8,-80.4 +Florida International University,"Florida International University, Miami, FL","FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.8,-80.4 +Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.4,-84.3 +Florida State University,"Florida State University, Tallahassee, FL 32306, USA","Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.4,-84.3 +Florida State University,The Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.4,-84.3 +Fordham University,Fordham University,"Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA",40.8,-74.0 +Fordham University,"Fordham University, New York, 10023, USA","Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA",40.8,-74.0 +Foundation University Rawalpindi Campus,Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎",33.6,73.1 +Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Pakistan","Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎",33.6,73.1 +Fraser University,Fraser University,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA",45.0,-93.2 +Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.3,121.5 +Fudan University,"Fudan University, Shanghai, China","复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.3,121.5 +Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.4,18.6 +GE Global Research Center,GE Global Research,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8,-73.9 +GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8,-73.9 +George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.8,-77.3 +George Mason University,"George Mason University, Fairfax Virginia, USA","George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.8,-77.3 +George Mason University,"George Mason University, Fairfax, VA 22030","George Mason University, University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA",38.8,-77.3 +George Mason University,"George Mason University, Fairfax, VA, USA","George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.8,-77.3 +Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.8,-84.4 +Georgia Institute of Technology,"Georgia Institute of Technology, Atlanta, 30332-0250, USA","Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.8,-84.4 +Georgia Institute of Technology,"Georgia Institute of Technology, Atlanta, Georgia, USA","Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.8,-84.4 +Georgia Southern University,Georgia Southern University,"Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA",32.4,-81.8 +Georgia Southern University,"Georgia Southern University, Statesboro, USA","Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA",32.4,-81.8 +"GIPSA-Lab, Grenoble, France","GIPSA-Lab, Grenoble, France","GIPSA-lab, 11, Rue des Mathématiques, Médiat Rhône-Alpes, Saint-Martin-d'Hères, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38400, France",45.2,5.8 +Glyndwr University,Glyndwr University,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK",53.1,-3.0 +Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.1,15.5 +Graz University of Technology,"Graz University of Technology, Austria","TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.1,15.5 +Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.6,153.1 +Griffith University,"Griffith University, Australia","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.6,153.1 +Griffith University,"Griffith University, Brisbane","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.6,153.1 +Griffith University,"Griffith University, Nathan, QLD, Australia","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.6,153.1 +Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.1,113.3 +Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1,113.3 +Guangdong University of Technology,"Guangdong University of Technology, China","广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1,113.3 +Guangzhou University,Guangzhou University,"广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0,113.4 +Guangzhou University,"Guangzhou University, Guangzhou, China","广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0,113.4 +Guilin University of Electronic Technology Guangxi Guilin,Guilin University of Electronic Technology Guangxi Guilin,"桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.3,110.3 +Guilin University of Electronic Technology Guangxi Guilin,"Guilin University of Electronic Technology Guangxi Guilin, China","桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.3,110.3 +Hacettepe University,Hacettepe University,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.9,32.7 +Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.7,12.9 +Halmstad University,"Halmstad University, Halmstad, Sweden","Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.7,12.9 +Hangzhou Dianzi University,Hangzhou Dianzi University,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.3,120.3 +Hangzhou Dianzi University,"Hangzhou Dianzi University, Hangzhou, China","杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.3,120.3 +Hankuk University of Foreign Studies,Hankuk University of Foreign Studies,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.6,127.1 +Hankuk University of Foreign Studies,"Hankuk University of Foreign Studies, South Korea","외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.6,127.1 +Hanoi University of Science and Technology,Hanoi University of Science and Technology,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam",21.0,105.8 +Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.6,127.0 +Harbin Engineering University,Harbin Engineering University,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.8,126.7 +Harbin Engineering University,"Harbin Engineering University, Harbin, Heilongjiang, 150001, China","哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.8,126.7 +Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7,126.6 +Harbin Institute of Technology,"Harbin Institute of Technology, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7,126.6 +Harbin Institute of Technology,"Harbin Institute of Technology, China, 150001","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7,126.6 +Harbin Institute of Technology,"Harbin Institute of Technology, Harbin 150001, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7,126.6 +Harbin Institute of Technology,"Harbin Institute of Technology, Harbin, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7,126.6 +Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.4,-71.1 +Harvard University,"Harvard University, Cambridge","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.4,-71.1 +Harvard University,"Harvard University, Cambridge, MA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.4,-71.1 +Harvard University,"Harvard University, Cambridge, MA 02138","Harvard University, Rotterdam Street, North Brighton, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.4,-71.1 +Harvard University,"Harvard University, Cambridge, MA, USA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.4,-71.1 +Harvard University,"Harvard University, USA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.4,-71.1 +Hebrew University of Jerusalem,The Hebrew University of Jerusalem,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.8,35.2 +Hebrew University of Jerusalem,"The Hebrew University of Jerusalem, Israel","האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.8,35.2 +Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.8,117.3 +Hefei University of Technology,"Hefei University of Technology, Hefei, Anhui, 230601, China","合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.8,117.3 +Hefei University of Technology,"Hefei University of Technology, Hefei, China","合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.8,117.3 +Hengyang Normal University,Hengyang Normal University,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.9,112.6 +Hengyang Normal University,"Hengyang Normal University, Hengyang, China","衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.9,112.6 +Heriot-Watt University,Heriot-Watt University,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK",55.9,-3.3 +Hiroshima University,Hiroshima University,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4,132.7 +Hiroshima University,"Hiroshima University, Japan","Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4,132.7 +Hofstra University,Hofstra University,"Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA",40.7,-73.6 +Hofstra University,"Hofstra University, Hempstead, NY 11549","Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA",40.7,-73.6 +HoHai University,HoHai University,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国",32.1,118.8 +Hong Kong Baptist University,Hong Kong Baptist University,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.4,114.2 +Hong Kong Baptist University,"Hong Kong Baptist University, Hong Kong","香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.4,114.2 +Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,"Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,"Hong Kong Polytechnic University, Hong Kong, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,The Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,"the Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Hong Kong, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Kowloon, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.3,114.2 +Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3,114.3 +Hong Kong University of Science and Technology,"Hong Kong University of Science and Technology, Hong Kong","香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3,114.3 +Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3,114.3 +Hong Kong University of Science and Technology,"The Hong Kong University of Science and Technology, Hong Kong","香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3,114.3 +Howard University,Howard University,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.9,-77.0 +Howard University,"Howard University, Washington DC","Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.9,-77.0 +Huaqiao University,Huaqiao University,"华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国",24.6,118.1 +Huaqiao University,"Huaqiao University, Xiamen, China","华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国",24.6,118.1 +Huazhong University of Science and Technology,Huazhong University of,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国",22.5,113.9 +Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5,114.4 +Huazhong University of Science and Technology,"Huazhong University of Science and Technology, Wuhan, China","华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5,114.4 +Huazhong University of Science and Technology,"Huazhong University of Science and Technology, Wuhan, China 430074","华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5,114.4 +Humboldt University,Humboldt University,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.5,13.4 +Humboldt University,Humboldt-University,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.5,13.4 +Humboldt University,"Humboldt-University, Berlin, Germany","Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.5,13.4 +Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.9,112.6 +IBM Almaden Research Center,IBM Almaden Research Center,"IBM Almaden Research Center, San José, Santa Clara County, California, USA",37.2,-121.8 +IBM Almaden Research Center,"IBM Almaden Research Center, San Jose CA","IBM Almaden Research Center, San José, Santa Clara County, California, USA",37.2,-121.8 +IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9,-78.9 +IBM Research,"IBM Research, USA","IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9,-78.9 +IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.2,-73.8 +IDIAP Research Institute,IDIAP RESEARCH INSTITUTE,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.1,7.1 +IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.1,7.1 +Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.1,7.1 +IDIAP Research Institute,"IDIAP Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.1,7.1 +Idiap Research Institute,"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.1,7.1 +Idiap Research Institute,"Idiap Research Institute, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.1,7.1 +IDIAP Research Institute,"IDIAP, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.1,7.1 +Illinois Institute of Technology,Illinois Institute of Technology,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8,-87.6 +Illinois Institute of Technology,"Illinois Institute of Technology, Chicago, Illinois, USA","Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8,-87.6 +Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.5,-0.2 +Imperial College London,"Imperial College London, London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.5,-0.2 +Imperial College London,"Imperial College London, London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.5,-0.2 +Imperial College London,"Imperial College London, U.K","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.5,-0.2 +Imperial College London,"Imperial College London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.5,-0.2 +Imperial College London,"Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.5,-0.2 +Imperial College London,"Imperial College London, United Kingdom","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.5,-0.2 +Imperial College London,"Imperial College, London, UK","Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK",51.5,-0.2 +Indian Institute of Science Bangalore,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0,77.6 +Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0,77.6 +Indian Institute of Science Bangalore,"Indian Institute of Science, India","IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0,77.6 +Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.5,77.3 +Indian Institute of Technology Delhi,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5,77.2 +Indian Institute of Technology Delhi,"Indian Institute of Technology Delhi, New Delhi, India","Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5,77.2 +Indian Institute of Technology Guwahati,"IIT Guwahati, Guwahati, India","Indian Institute of Technology Guwahati - IIT Guwahati, NH27, Amingaon, Guwahati, Kamrup, Assam, 781015, India",26.2,91.7 +Indian Institute of Technology Kanpur,Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.5,80.2 +Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, Kanpur, India","Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.5,80.2 +Indian Institute of Technology Roorkee,"Indian Institute of Technology, Roorkee","Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India",29.9,77.9 +Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.9,-84.9 +Indiana University Bloomington,Indiana University Bloomington,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA",39.2,-86.5 +"Industrial Technology Research Institute, Hsinchu, Taiwan","Industrial Technology Research Institute, Hsinchu, Taiwan","工研院, 195, 中興路四段, 頭重里, 竹東鎮, 新竹縣, 31040, 臺灣",24.8,121.0 +Information Technologies Institute,Information Technologies Institute,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本",33.6,130.4 +Information Technology University,Information Technology University (ITU),"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎",31.5,74.3 +Information Technology University,"Information Technology University (ITU), Punjab, Lahore, Pakistan","Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎",31.5,74.3 +INRIA,"INRIA Grenoble Rhone-Alpes, FRANCE","INRIA, 655, Avenue de l'Europe, Innovallée Montbonnot, Montbonnot-Saint-Martin, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38330, France",45.2,5.8 +Institute for Communication Systems,Institute for Communication Systems,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK",51.2,-0.6 +"Institute for System Programming, Moscow",Institute for System Programming,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ",55.7,37.7 +"Institute of Engineering and Management, Kolkata, India","Institute of Engineering and Management, Kolkata, India","Institute of Engineering and Management, Block -EP, Ring Road, GP Block, Kolkata, Twenty-four Parganas, West Bengal, 700091, India",22.6,88.4 +Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.1,140.1 +Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0,121.6 +Institute of Information Technology,Institute of Information Technology,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7,90.4 +Institute of Media Innovation,Institute of Media Innovation,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore",1.3,103.7 +Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.8,10.7 +International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4,78.3 +International Institute of Information Technology,"International Institute of Information Technology (IIIT) Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4,78.3 +International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4,78.3 +International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Telangana, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4,78.3 +Ionian University,Ionian University,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.3,21.8 +Iowa State University,Iowa State University,"Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA",42.0,-93.6 +Iowa State University,"Iowa State University, Ames, IA, USA","Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA",42.0,-93.6 +Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.8,48.6 +"Islamic University of Gaza, Palestine",Islamic University of Gaza - Palestine,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية",31.5,34.4 +Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.1,29.0 +Istanbul Technical University,Istanbul Technical University (ITU),"ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye",41.1,29.0 +Istanbul Technical University,"Istanbul Technical University (ITU), Turkey","ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye",41.1,29.0 +Istanbul Technical University,"Istanbul Technical University, Istanbul, 34469, TURKEY","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.1,29.0 +Istanbul Technical University,"Istanbul Technical University, Istanbul, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.1,29.0 +Istanbul Technical University,"Istanbul Technical University, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.1,29.0 +Istanbul University,Istanbul University,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.0,29.0 +Istanbul University,"Istanbul University, Istanbul, Turkey","İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.0,29.0 +Jacobs University,Jacobs University,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK",53.4,-3.0 +Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.6,88.4 +Jadavpur University,"Jadavpur University, India","Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.6,88.4 +Jahangirnagar University,Jahangirnagar University,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.9,90.3 +Jahangirnagar University,"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh","Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.9,90.3 +Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4,136.6 +Japan Advanced Institute of Science and Technology,"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan","JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4,136.6 +Jaypee Institute of Information Technology,Jaypee Institute of Information Technology,"Jaypee Institute of Information Technology, Noida, A-10, National Highway 24 Bypass, Asha Pushp Vihar, Kaushambi, Ghaziabad, Uttar Pradesh, 201001, India",28.6,77.4 +Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.5,120.3 +Jiangnan University,Jiangnan University Jiangsu Wuxi,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.5,120.3 +Jiangnan University,"Jiangnan University Jiangsu Wuxi, PR China","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.5,120.3 +Jiangnan University,"Jiangnan University, Jiangsu Wuxi, PR China","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.5,120.3 +Jiangnan University,"Jiangnan University, Wuxi","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.5,120.3 +Jiangsu University,Jiangsu University,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.2,119.5 +Jiangsu University,"Jiangsu University, Zhenjiang, China","江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.2,119.5 +Jiangsu University,"Jiangsu University, ZhenJiang, Jiangsu, 212013, P. R. China","江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.2,119.5 +Jiangsu University of Science and Technology,Jiangsu University of Science and Technology,"江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.2,119.5 +Jiangsu University of Science and Technology,"Jiangsu University of Science and Technology, Zhenjiang, China","江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.2,119.5 +Jilin University,Jilin University,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.1,113.4 +Jilin University,"Jilin University, China","吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.1,113.4 +"Joint Research Institute, Foshan, China","Joint Research Institute, Foshan, China","广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国",22.8,113.3 +Jordan University of Science and Technology,Jordan University of Science and Technology,"Jordan University of Science and Technology, شارع الأردن, إربد‎, إربد, الأردن",32.5,36.0 +Jordan University of Science and Technology,"Jordan University of Science and Technology, Irbid, Jordan","Jordan University of Science and Technology, شارع الأردن, إربد‎, إربد, الأردن",32.5,36.0 +K.N. Toosi University of Technology,K.N. Toosi University of Technology,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎",35.8,51.4 +K.N. Toosi University of Technology,"K.N. Toosi University of Technology, Tehran, Iran","دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎",35.8,51.4 +"KAIST, Daejeon, Korea","KAIST, Daejeon, Korea","궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국",36.4,127.4 +"KAIST, Daejeon, Korea","KAIST, Korea","궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국",36.4,127.4 +Karlsruhe Institute of Technology,Karlsruhe Institute of,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.1,8.4 +Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.1,8.4 +Karlsruhe Institute of Technology,"Karlsruhe Institute of Technology (KIT), Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.1,8.4 +Karlsruhe Institute of Technology,"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.1,8.4 +Karlsruhe Institute of Technology,"Karlsruhe Institute of Technology, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.1,8.4 +Karlsruhe Institute of Technology,"Karlsruhe Institute of Technology, Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.1,8.4 +Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.9,4.7 +KAUST,King Abdullah University of Science and Technology 4700,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.3,39.1 +KAUST,King Abdullah University of Science and Technology 4700,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.3,39.1 +KAUST,"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia","KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.3,39.1 +Keio University,"Information, Keio University","綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5,139.6 +Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5,139.6 +Keio University,"Keio University, Yokohama 223-8522, Japan","慶應義塾大学 (矢上キャンパス), 理工坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-8522, 日本",35.6,139.7 +Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1,-81.3 +Kent State University,"Kent State University, Kent, Ohio, USA","Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1,-81.3 +Khalifa University,Khalifa University,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.4,54.4 +Khalifa University,"Khalifa University, Abu Dhabi, United Arab Emirates","Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.4,54.4 +Khon Kaen University,Khon Kaen University,"มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.5,102.8 +Khon Kaen University,"Khon Kaen University, Khon Kaen, 40002, Thailand","มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.5,102.8 +King Faisal University,King Faisal University,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.4,50.2 +King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7,46.6 +King Saud University,"King Saud University, Riyadh","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7,46.6 +King Saud University,"King Saud University, Riyadh 11543, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7,46.6 +King Saud University,"King Saud University, Riyadh, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7,46.6 +Kingston University,Kingston University,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4,-0.3 +Kingston University,"Kingston University, UK","Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4,-0.3 +Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7,135.2 +Kobe University,"Kobe University, Japan","神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7,135.2 +Kogakuin University,Kogakuin University,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.7,139.7 +Kogakuin University,"Kogakuin University, Tokyo, Japan","工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.7,139.7 +Kookmin University,Kookmin University,"국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국",37.6,127.0 +Kookmin University,"Kookmin University, Seoul, Korea","국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국",37.6,127.0 +Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.4,127.4 +Korea Advanced Institute of Science and Technology,Korea Advanced institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.4,127.4 +Korea Advanced Institute of Science and Technology,"Korea Advanced Institute of Science and Technology, Daejeon, Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.4,127.4 +Korea Advanced Institute of Science and Technology,"Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.4,127.4 +Korea Advanced Institute of Science and Technology,"Korea Advanced Institute of Science and Technology, Daejeon, South Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.4,127.4 +Korea Advanced Institute of Science and Technology,"Korea Advanced Institute of Science and Technology, Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.4,127.4 +Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.6,127.0 +Korea University,"Korea University, Seoul, South Korea","고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.6,127.0 +"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.3,18.1 +"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, 100 44 Stockholm, Sweden","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.3,18.1 +"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm, Sweden","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.3,18.1 +Kumamoto University,Kumamoto University,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.8,130.7 +Kumamoto University,"Kumamoto University, Kumamoto, Japan","熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.8,130.7 +Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",30.0,76.8 +Kurukshetra University,"Kurukshetra University, Kurukshetra","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",30.0,76.8 +Kurukshetra University,"Kurukshetra University, Kurukshetra, India","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",30.0,76.8 +Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0,135.8 +Kyoto University,"Kyoto University, Kyoto, Japan","京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0,135.8 +Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.9,-117.2 +Kyung Hee University,"Kyung Hee University, Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.6,127.1 +Kyung Hee University,"Kyung Hee University, Seoul, South Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.6,127.1 +Kyung Hee University,"Kyung Hee University, South Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.6,127.1 +Kyung Hee University,"Kyung Hee University, Yongin, South Korea","경희대학교 국제캠퍼스, 서천동로21번길, 서천동, 기흥구, 용인시, 경기, 17108, 대한민국",37.2,127.1 +Kyushu University,Kyushu University,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本",33.6,130.2 +La Trobe University,La Trobe University,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.8,144.3 +La Trobe University,"La Trobe University, Australia","La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.8,144.3 +Lancaster University,Lancaster University,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.0,-2.8 +Lancaster University,"Lancaster University, Lancaster, UK","Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.0,-2.8 +Lehigh University,Lehigh University,"Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA",40.6,-75.4 +Lehigh University,"Lehigh University, Bethlehem, PA 18015, USA","Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA",40.6,-75.4 +Liverpool John Moores University,Liverpool John Moores University,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK",53.4,-3.0 +Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.7,37.5 +"London, United Kingdom","London, United Kingdom","London, Greater London, England, SW1A 2DU, UK",51.5,-0.1 +Loughborough University,"Computer Science, Loughborough University, Loughborough, UK","Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK",52.8,-1.2 +Loughborough University,Loughborough University,"Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK",52.8,-1.2 +Louisiana State University,Louisiana State University,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA",30.4,-91.2 +Lund University,Lund University,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7,13.2 +Lund University,"Lund University, Lund, Sweden","TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7,13.2 +"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India","M S Ramaiah Institute of Technology, Bangalore, Karnataka, India","M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India",13.0,77.6 +Maastricht University,Maastricht University,"UNS60, Professor Ten Hoorlaan, Randwyck, Maastricht, Limburg, Nederland, 6229EV, Nederland",50.8,5.7 +Maastricht University,"Maastricht University, Maastricht, Netherlands","University College Maastricht, 4, Zwingelput, Jekerkwartier, Maastricht, Limburg, Nederland, 6211KH, Nederland",50.8,5.7 +Macau University of Science and Technology,Macau University of Science and,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3,114.3 +Macau University of Science and Technology,Macau University of Science and Technology,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.2,113.6 +Macau University of Science and Technology,"Macau University of Science and Technology, Macau","Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.2,113.6 +Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.8,100.9 +Manchester University,Manchester University,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.5,-2.2 +Manchester University,"Manchester University, UK","Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.5,-2.2 +Mangalore University,Mangalore University,"Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India",12.8,74.9 +Mangalore University,"Mangalore University, India","Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India",12.8,74.9 +Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.8,77.7 +Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, India","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.8,77.7 +Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tirunelveli","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.8,77.7 +Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tirunelveli, India","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.8,77.7 +Marquette University,Marquette University,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA",43.0,-87.9 +"Massachusetts General Hospital, Boston, MA, USA","Massachusetts General Hospital, Boston, MA, USA","Mass General, 55, Fruit Street, Downtown Crossing, Beacon Hill, Boston, Suffolk County, Massachusetts, 02114, USA",42.4,-71.1 +Massachusetts Institute of Technology,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +Massachusetts Institute of Technology,MASSACHUSETTS INSTITUTE OF TECHNOLOGY,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +Massachusetts Institute of Technology,MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +Massachusetts Institute of Technology,Massachusetts Institute of Technology (MIT,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +Massachusetts Institute of Technology,"Massachusetts Institute of Technology, Cambridge, MA 02139, USA","MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.5,9.1 +Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.3,7.0 +Max Planck Institute for Informatics,"Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.3,7.0 +Max Planck Institute for Informatics,"Max Planck Institute for Informatics, Saarbrucken, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.3,7.0 +Max Planck Institute for Informatics,Max-Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.3,7.0 +Max Planck Institute for Informatics,"MPI Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.3,7.0 +McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5,-73.6 +McGill University,"McGill University, Montreal, Canada","McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada",45.5,-73.6 +McGovern Institute for Brain Research,McGovern Institute,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.4,-71.1 +McMaster University,McMaster University,"McMaster University, Westdale, Hamilton, Ontario, Canada",43.3,-79.9 +Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.7,139.8 +Memorial University of Newfoundland,Memorial University of Newfoundland,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.6,-52.7 +Memorial University of Newfoundland,"Memorial University of Newfoundland, Canada","Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.6,-52.7 +Memorial University of Newfoundland,"Memorial University of Newfoundland, Saint John's, NL, Canada","Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.6,-52.7 +Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, E. Lansing, MI 48823, USA","Dero Fixit Bike Station, Grand River Avenue, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, East Lansing 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, East Lansing MI","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, East Lansing, 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, East Lansing, MI","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, East Lansing, MI 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, East Lansing, MI, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, United States of America","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,"Michigan State University, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.7,-84.5 +Michigan State University,to Michigan State University,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA",42.7,-84.4 +Microsoft Research Asia,"Microsoft Res. Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",40.0,116.3 +Microsoft Research Asia,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.2,0.1 +Microsoft Research Asia,"Microsoft Research Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",40.0,116.3 +Microsoft Research Asia,"Microsoft Research Asia, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",40.0,116.3 +Microsoft Research Asia,"Microsoft Research, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",40.0,116.3 +"Microsoft, Inc.","Microsoft, Bellevue, WA, USA","Microsoft, 10455, Northeast 8th Street, Bellevue, King County, Washington, 98004-5002, USA",47.6,-122.2 +"Microsoft, Inc.","Microsoft, Inc.","Microsoft, 10455, Northeast 8th Street, Bellevue, King County, Washington, 98004-5002, USA",47.6,-122.2 +"Microsoft, Inc.","Microsoft, Redmond, WA","Microsoft Cafe RedW-F, Bridle Crest Trail, Microsoft Redwest Campus, Redmond, King County, Washington, W LAKE SAMMAMISH PKWY NE, USA",47.7,-122.1 +Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.9,32.8 +Middlebury College,Middlebury College,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA",44.0,-73.2 +Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.6,-0.2 +Middlesex University,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.6,-0.2 +Middlesex University,"Middlesex University London, London, UK","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.6,-0.2 +Middlesex University,"Middlesex University London, UK","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.6,-0.2 +Middlesex University,"Middlesex University, London","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.6,-0.2 +Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.8,145.0 +Monash University,"Monash University, Caulfield East, Australia","Monash University (Caulfield campus), Queens Avenue, Caulfield East, City of Glen Eira, Victoria, 3163, Australia",-37.9,145.0 +Monash University,"Monash University, Victoria, Australia","Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia",-37.9,145.1 +Monash University Malaysia,Monash University Malaysia,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.1,101.6 +Monash University Malaysia,"Monash University Malaysia, Bandar Sunway, Malaysia","Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.1,101.6 +"Moscow Institute of Physics and Technology, Russia","Moscow Institute of Physics and Technology, Russia","МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ",55.9,37.5 +Muhlenberg College,Muhlenberg College,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA",40.6,-75.5 +Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.9,101.6 +Multimedia University,"Multimedia University, Cyberjaya, Malaysia","Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.9,101.6 +Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.2,127.2 +Nagaoka University of Technology,Nagaoka University of Technology,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本",37.4,138.8 +Nagaoka University of Technology,"Nagaoka University of Technology, Japan","長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本",37.4,138.8 +Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.5,143.6 +Nagoya University,"Nagoya University, Japan","SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.5,143.6 +Nanjing Normal University,Nanjing Normal University,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1,118.9 +Nanjing Normal University,"Nanjing Normal University, China","南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1,118.9 +Nanjing Normal University,"Nanjing Normal University, Nanjing, China","南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1,118.9 +Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.1,118.8 +Nanjing University,Nanjing University of Aeronautics and Astronautics,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0,118.8 +Nanjing University,"Nanjing University of Aeronautics and Astronautics, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0,118.8 +Nanjing University,"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0,118.8 +Nanjing University,"Nanjing University of Aeronautics and Astronautics, Nanjing, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0,118.8 +Nanjing University,Nanjing University of Information Science and Technology,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2,118.7 +Nanjing University,"Nanjing University of Information Science and Technology, Nanjing, China","南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2,118.7 +Nanjing University,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.0,118.9 +Nanjing University,"Nanjing University of Science and Technology, China","南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.0,118.9 +Nanjing University,"Nanjing University of Science and Technology, Nanjing, China","南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.0,118.9 +Nanjing University,"Nanjing University, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.1,118.8 +Nanjing University,"Nanjing University, Nanjing 210023, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.1,118.8 +Nanjing University,"Nanjing University, Nanjing 210093, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.1,118.8 +Nanjing University,"Nanjing University, Nanjing 210093, P.R.China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.1,118.8 +Nantong University,Nantong University,"南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国",32.0,120.9 +Nantong University,"Nantong University, Nantong, China","南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国",32.0,120.9 +Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +Nanyang Technological University,"Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +Nanyang Technological University,"Nanyang Technological University, Singapore 639798","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +Nanyang Technological University,"Nanyang Technological University, Singapore 639798, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +Nanyang Technological University,"Nanyang Technological University, Singapore, 639798","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +Nanyang Technological University,"Nanyang Technological University, Singapore, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +Nanyang Technological University,The Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +Nanyang Technological University,"The Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3,103.7 +National Central University,National Central University,"NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣",25.0,121.2 +National Central University,"National Central University, Taoyuan County, Taiwan","NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣",25.0,121.2 +National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",23.0,120.2 +National Cheng Kung University,"National Cheng Kung University, Tainan, Taiwan","成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",23.0,120.2 +National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.8,121.0 +National Chiao Tung University,"National Chiao Tung University, Hsinchu, Taiwan","NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.8,121.0 +National Chiao Tung University,"National Chiao Tung University, Taiwan","NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.8,121.0 +National Chiao Tung University,National Chiao-Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.8,121.0 +National Chung Cheng University,National Chung Cheng University,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.6,120.5 +National Chung Cheng University,"National Chung Cheng University, Chiayi, Taiwan","國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.6,120.5 +National Chung Hsing University,National Chung Hsing University,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.1,120.7 +National Chung Hsing University,"National Chung Hsing University, Taichung","國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.1,120.7 +National Chung Hsing University,"National Chung Hsing University, Taiwan","國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.1,120.7 +National Institute of Advanced Industrial Science and Technology,National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.1,140.1 +National Institute of Advanced Industrial Science and Technology,y National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.1,140.1 +National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1,-77.2 +National Institute of Standards and Technology,"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA","National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1,-77.2 +"National Institute of Technology, Durgapur","National Institute of Technology, Durgapur, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.5,87.3 +"National Institute of Technology, Durgapur","National Institute of Technology, Durgapur, West Bengal, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.5,87.3 +"National Institute of Technology, Karnataka",National Institute of Technology Karnataka,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India",13.0,74.8 +"National Institute of Technology, Rourkela",National Institute of Technology Rourkela,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.3,84.9 +"National Institute of Technology, Rourkela","National Institute of Technology, Rourkela (Odisha), India","National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.3,84.9 +National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.0,-77.1 +National Institutes of Health,"National Institutes of Health, Bethesda, Maryland 20892","NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.0,-77.1 +National Sun Yat Sen University,National Sun Yat Sen University,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣",22.6,120.3 +National Sun Yat Sen University,"National Sun Yat Sen University, 804 Kaohsiung, Taiwan","國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣",22.6,120.3 +National Taichung University of Science and Technology,National Taichung University of science and Technology,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.2,120.7 +National Taichung University of Science and Technology,"National Taichung University of science and Technology, Taichung","臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.2,120.7 +National Taipei University,National Taipei University,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣",24.9,121.4 +National Taipei University of Technology,National Taipei University of Technology,"NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣",25.0,121.5 +National Taipei University of Technology,"National Taipei University of Technology, Taipei, Taiwan","NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣",25.0,121.5 +National Taiwan Normal University,National Taiwan Normal University,"師大分部, 88, 汀州路四段, 萬年里, 文山區, 臺北市, 11677, 臺灣",25.0,121.5 +National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.0,121.5 +National Taiwan University,"National Taiwan University, 10647, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.0,121.5 +National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.0,121.5 +National Taiwan University,"National Taiwan University, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.0,121.5 +National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.0,121.5 +National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei 10607, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.0,121.5 +National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.0,121.5 +National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",38.0,23.7 +National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.8,121.0 +National Tsing Hua University,"National Tsing Hua University, Hsinchu, Taiwan","國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.8,121.0 +National Tsing Hua University,"National Tsing Hua University, Taiwan","國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.8,121.0 +National University of Defense Technology,National University of Defense and Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2,113.0 +National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2,113.0 +National University of Defense Technology,"National University of Defense Technology, Changsha 410073, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2,113.0 +National University of Defense Technology,"National University of Defense Technology, Changsha, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2,113.0 +National University of Ireland Galway,National University of Ireland Galway,"National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland",53.3,-9.1 +National University of Ireland Galway,"National University of Ireland Galway, Galway, Ireland","National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland",53.3,-9.1 +National University of Ireland Maynooth,National University of Ireland Maynooth,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.4,-6.6 +National University of Ireland Maynooth,"National University of Ireland Maynooth, Co. Kildare, Ireland","National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.4,-6.6 +National University of Kaohsiung,National University of Kaohsiung,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.7,120.3 +National University of Kaohsiung,"National University of Kaohsiung, 811 Kaohsiung, Taiwan","國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.7,120.3 +National University of Sciences and Technology,National University of Science and Technology,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.6,73.0 +National University of Sciences and Technology,National University of Sciences and Technology,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.6,73.0 +National University of Sciences and Technology,National University of Sciences and Technology (NUST),"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.6,73.0 +National University of Sciences and Technology,"National University of Sciences and Technology (NUST), Islamabad, Pakistan","National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.6,73.0 +National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.3,103.8 +National University of Singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.3,103.8 +National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.3,103.8 +National University of Singapore,"National University of Singapore, Singapore 117576","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.3,103.8 +National University of Singapore,"National University of Singapore, Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.3,103.8 +Naval Research Laboratory,Naval Research Laboratory,"Naval Research Laboratory Post Office, 4555, Overlook Avenue Southwest, Washington, D.C., 20375, USA",38.8,-77.0 +Naval Research Laboratory,"Naval Research Laboratory, Washington DC","Naval Research Laboratory Post Office, 4555, Overlook Avenue Southwest, Washington, D.C., 20375, USA",38.8,-77.0 +Nazarbayev University,Nazarbayev University,"Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.1,71.4 +Nazarbayev University,"Nazarbayev University, Astana, Kazakhstan","Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.1,71.4 +New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New Jersey Institute of Technology,"New Jersey Institute of Technology, Newark , NJ, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New Jersey Institute of Technology,"New Jersey Institute of Technology, Newark, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New Jersey Institute of Technology,"New Jersey Institute of Technology, University Heights Newark, NJ 07102 USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New Jersey Institute of Technology,"New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New Jersey Institute of Technology,"New Jersey Institute of Technology, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New Jersey Institute of Technology,University Heights,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New Jersey Institute of Technology,University Heights Newark,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7,-74.2 +New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7,-74.0 +Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",55.0,-1.6 +Newcastle University,"Newcastle University, Newcastle upon Tyne","Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",55.0,-1.6 +Normal University,Normal University,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.1,102.7 +Normal University,"Normal University, Kunming, China","云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.1,102.7 +"North Acton, London","North Acton, London","North Acton, Victoria Road, Acton, London Borough of Ealing, London, Greater London, England, W3 6UP, UK",51.5,-0.3 +North Carolina Central University,North Carolina Central University,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA",36.0,-78.9 +North Carolina State University,North Carolina State University,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.8,-78.7 +North Carolina State University,"North Carolina State University, Raleigh, United States of America","North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.8,-78.7 +North China Electric Power University,North China Electric Power University,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.9,115.5 +North China Electric Power University,"North China Electric Power University, Baoding, China","华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.9,115.5 +North Dakota State University,North Dakota State University,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.9,-96.8 +North Dakota State University,"North Dakota State University, Fargo, ND 58108-6050, USA","North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.9,-96.8 +Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3,-71.1 +Northeastern University,"Northeastern University, Boston, MA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3,-71.1 +Northeastern University,"Northeastern University, Boston, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3,-71.1 +Northeastern University,"Northeastern University, Boston, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3,-71.1 +Northeastern University,"Northeastern University, Boston, USA, 02115","Northeastern University, Public Alley 807, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3,-71.1 +Northeastern University,"Northeastern University, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3,-71.1 +Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0,-1.6 +Northumbria University,"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK","Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK",55.0,-1.6 +Northumbria University,"Northumbria University, Newcastle Upon Tyne, Tyne and Wear","Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0,-1.6 +Northumbria University,"Northumbria University, Newcastle upon Tyne, U.K.","Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0,-1.6 +Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2,108.9 +Northwestern Polytechnical University,"Northwestern Polytechnical University, Xi’an, China","西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2,108.9 +Northwestern Polytechnical University,"Northwestern Polytechnical University, Xian 710072, Shaanxi, China","西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2,108.9 +Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.1,-87.7 +Northwestern University,"Northwestern University, Evanston, IL, USA","Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.1,-87.7 +Nottingham Trent University,Nottingham Trent University,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",53.0,-1.2 +Nottingham Trent University,"Nottingham Trent University, Nottingham, UK","Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",53.0,-1.2 +Nottingham University Hospital,Nottingham University Hospital,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.9,-1.2 +Nottingham University Hospital,"Nottingham University Hospital, Nottingham, UK","Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.9,-1.2 +Oak Ridge National Laboratory,Oak Ridge National Laboratory,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.9,-84.3 +Oak Ridge National Laboratory,"Oak Ridge National Laboratory, USA","Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.9,-84.3 +Oakland University,Oakland University,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA",42.7,-83.2 +Ocean University of China,Ocean University of China,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.2,120.5 +Ocean University of China,"Ocean University of China, Qingdao, China","中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.2,120.5 +Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.0,-83.0 +Ohio State University,"The Ohio State University, Columbus, OH, USA","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.0,-83.0 +Ohio State University,"The Ohio State University, OH","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.0,-83.0 +Okayama University,Okayama University,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.7,133.9 +Okayama University,"Okayama University, Okayama, Japan","岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.7,133.9 +Oklahoma State University,Oklahoma State University,"Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA",36.1,-97.1 +Oklahoma State University,"Oklahoma State University, Stillwater, OK, USA","Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA",36.1,-97.1 +Old Dominion University,Old Dominion University,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.9,-76.3 +Old Dominion University,"Old Dominion University, Norfolk, VA 23529, USA","Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.9,-76.3 +Old Dominion University,"Old Dominion University, Norfolk, VA, 23529","Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.9,-76.3 +Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.0,-0.7 +Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.8,35.0 +Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.8,35.0 +"Orange Labs, R&D, Meylan, France","Orange Labs, R&D, Meylan, France","Orange Labs, 28, Chemin du Vieux Chêne, Inovallée Meylan, Le Mas du Bruchet, Meylan, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38240, France",45.2,5.8 +Oregon State University,Oregon State University,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA",45.5,-122.7 +Osaka University,Osaka University,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.8,135.5 +Osaka University,Osaka university,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.8,135.5 +Osaka University,"Osaka university, Japan","大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.8,135.5 +Otto von Guericke University,Otto von Guericke University,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.1,11.6 +Otto von Guericke University,Otto-von-Guericke University Magdeburg,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.1,11.6 +Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.8,-1.2 +Oxford Brookes University,"Oxford Brookes University, Oxford, United Kingdom","Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.8,-1.2 +Oxford University,Oxford University,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK",51.8,-1.3 +Oxford University,"Oxford University, UK","James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK",51.7,-1.2 +Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",40.0,116.3 +Peking University,"Peking University, Beijing","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",40.0,116.3 +Peking University,"Peking University, Beijing 100871, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",40.0,116.3 +Peking University,"Peking University, Beijing, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",40.0,116.3 +Philipps-Universität Marburg,Philipps-Universität Marburg,"FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland",50.8,8.8 +Philipps-Universität Marburg,"Philipps-Universität Marburg, D-35032, Germany","FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland",50.8,8.8 +Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.4,-4.1 +Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.0,129.3 +Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.0,129.3 +Pohang University of Science and Technology,Pohang University of Science and Technology (POSTECH),"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.0,129.3 +Pohang University of Science and Technology,"Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.0,129.3 +Pohang University of Science and Technology,"Pohang University of Science and Technology (POSTECH), South Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.0,129.3 +Pohang University of Science and Technology,"Pohang University of Science and Technology, Pohang, Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.0,129.3 +Pohang University of Science and Technology,"POSTECH, Pohang, South Korea, 37673","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.0,129.3 +"Politecnico di Torino, Italy","Politecnico di Torino, Italy","Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia",45.1,7.7 +"Politecnico di Torino, Italy","Politecnico di Torino, Torino, Italy","Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia",45.1,7.7 +Politehnica University of Timisoara,Politehnica University of Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.7,21.2 +Politehnica University of Timisoara,Politehnica University of Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.7,21.2 +Pondicherry Engineering College,Pondicherry Engineering College,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India",12.0,79.8 +Pontificia Universidad Catolica de Chile,Pontificia Universidad Catolica de Chile,"Pontificia Universidad Católica de Chile - Campus Lo Contador, 1916, El Comendador, Pedro de Valdivia Norte, Providencia, Provincia de Santiago, Región Metropolitana de Santiago, 7500000, Chile",-33.4,-70.6 +Portland State University,Portland State University,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.5,-122.7 +Portland State University,"Portland State University, USA","Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.5,-122.7 +Poznan University of Technology,Poznan University of Technology,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP",52.4,17.0 +Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.3,-74.7 +Princeton University,"Princeton University, Princeton, New Jersey, USA","Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.3,-74.7 +Princeton University,"Princeton University, Princeton, NJ, USA","Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA",40.3,-74.7 +PSG College of Technology,"PSG College of Technology, Coimbatore, Tamil Nadu, India","PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India",11.0,77.0 +"PSG College of Technology, Coimbatore, Tamil Nadu, India","PSG College of Technology, Coimbatore, Tamil Nadu, India","PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India",11.0,77.0 +Pune Institute of Computer Technology,"Pune Institute of Computer Technology, Pune, ( India","Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India",18.5,73.9 +Punjabi University Patiala,Punjabi University Patiala,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India",30.4,76.5 +Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4,-86.9 +Purdue University,"Purdue University, West Lafayette, IN 47907, USA","Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4,-86.9 +Purdue University,"Purdue University, West Lafayette, IN, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4,-86.9 +Purdue University,"Purdue University, West Lafayette, IN. 47907, USA","Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4,-86.9 +Purdue University,"Purdue University, West Lafayette, Indiana, 47906, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4,-86.9 +Qatar University,Qatar University,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎",25.4,51.5 +Qatar University,"Qatar University, Doha, Qatar","Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎",25.4,51.5 +Qatar University,"Qatar University, Qatar","Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎",25.4,51.5 +Quanzhou Normal University,Quanzhou Normal University,"泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国",24.9,118.7 +Quanzhou Normal University,"Quanzhou Normal University, Quanzhou, China","泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国",24.9,118.7 +Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.1,21.9 +Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5,0.0 +Queen Mary University of London,"Queen Mary University of London, London","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5,0.0 +Queen Mary University of London,"Queen Mary University of London, London E1 4NS, UK","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5,0.0 +Queen Mary University of London,"Queen Mary University of London, London, U.K.","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5,0.0 +Queen Mary University of London,"Queen Mary University of London, UK","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5,0.0 +Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.5,153.0 +Queensland University of Technology,Queensland University of Technology (QUT,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.5,153.0 +Queensland University of Technology,"Queensland University of Technology, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.5,153.0 +Queensland University of Technology,"Queensland University of Technology, Brisbane, QLD, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.5,153.0 +Queensland University of Technology,Queensland University of Technology(QUT,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.5,153.0 +"R V College of Engineering, Bangalore, India","R V College of Engineering, Bangalore, India","R. V. College of Engineering, Bangalore-Mysore Road, Kengeri, Rajarajeshwari Nagar Zone, Bengaluru, Bangalore Urban, Karnataka, 560059, India",12.9,77.5 +Raipur Institute of Technology,Raipur Institute of Technology,"Raipur Institute of Technology, NH53, Raipur, Chhattisgarh, 492101, India",21.2,81.8 +Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7,-73.7 +Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Troy, NY 12180, USA","Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7,-73.7 +Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, USA","Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7,-73.7 +Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.5,9.2 +RheinAhrCampus der Hochschule Koblenz,"RheinAhrCampus der Hochschule Koblenz, Remagen, Germany","RheinAhrCampus, 2, Joseph-Rovan-Allee, Remagen, Landkreis Ahrweiler, Rheinland-Pfalz, 53424, Deutschland",50.6,7.3 +Rheinische-Friedrich-Wilhelms University,Rheinische-Friedrich-Wilhelms University,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7,7.1 +Rheinische-Friedrich-Wilhelms University,"Rheinische-Friedrich-Wilhelms University, Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7,7.1 +Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.7,-95.4 +Rice University,"Rice University, Houston, TX, 77005, USA","Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.7,-95.4 +Rio de Janeiro State University,Rio de Janeiro State University,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.9,-43.2 +Rio de Janeiro State University,"Rio de Janeiro State University, Brazil","UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.9,-43.2 +Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0,135.7 +Ritsumeikan University,"Ritsumeikan University, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0,135.7 +Ritsumeikan University,"Ritsumeikan University, Kyoto, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0,135.7 +RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8,145.0 +RMIT University,"RMIT University, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8,145.0 +RMIT University,"RMIT University, Melbourne, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8,145.0 +RMIT University,"RMIT University, Melbourne, VIC, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8,145.0 +"RMIT University, Vietnam","RMIT University, Vietnam","RMIT University Vietnam - Saigon South Campus, 702, Nguyễn Văn Linh, Khu 3 - Khu Đại học, Phường Tân Phong, Quận 7, Tp HCM, 756604, Việt Nam",10.7,106.7 +Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.7,100.5 +Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.1,-77.7 +Rowan University,Rowan University,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA",39.7,-75.1 +Rowan University,"Rowan University, Glassboro, NJ- 08028","Wellness Center (Winans Hall), Mullica Hill Road, Beau Rivage, Glassboro, Gloucester County, New Jersey, 08028:08062, USA",39.7,-75.1 +Rowland Institute,Rowland Institute,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA",42.4,-71.1 +Ruhr-University Bochum,Ruhr University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.4,7.3 +Ruhr-University Bochum,Ruhr-University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.4,7.3 +Ruhr-University Bochum,"Ruhr-University Bochum, Germany","RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.4,7.3 +Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.5,-74.4 +Rutgers University,"Rutgers University, New Brunswick, NJ","Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA",40.5,-74.4 +Rutgers University,"Rutgers University, Newark, NJ, USA","Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA",40.7,-74.2 +Rutgers University,"Rutgers University, Piscataway","James Dickson Carr Library, 75, Avenue E, Piscataway Township, Middlesex County, New Jersey, 08854-8040, USA",40.5,-74.4 +Rutgers University,"Rutgers University, Piscataway NJ 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5,-74.4 +Rutgers University,"Rutgers University, Piscataway, New Jersey 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5,-74.4 +Rutgers University,"Rutgers University, Piscataway, NJ","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5,-74.4 +Rutgers University,"Rutgers University, Piscataway, NJ 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5,-74.4 +Rutgers University,"Rutgers University, Piscataway, NJ, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5,-74.4 +Rutgers University,"Rutgers University, USA","Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.5,-74.4 +RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.8,6.1 +RWTH Aachen University,"RWTH Aachen University, Aachen, Germany","RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.8,6.1 +Ryerson University,Ryerson University,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.7,-79.4 +Ryerson University,"Ryerson University, Canada","Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.7,-79.4 +Ryerson University,"Ryerson University, Toronto, ON, Canada","Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.7,-79.4 +Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.9,29.4 +Sakarya University,Sakarya University,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye",40.8,30.4 +San Jose State University,San Jose State University,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.3,-121.9 +San Jose State University,"San Jose State University, San Jose, CA","SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.3,-121.9 +Santa Clara University,Santa Clara University,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.3,-121.9 +Santa Clara University,"Santa Clara University, Santa Clara, CA. 95053, USA","Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.3,-121.9 +Santa Fe Institute,Santa Fe Institute,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA",35.7,-105.9 +SASTRA University,SASTRA University,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",11.0,79.4 +SASTRA University,"SASTRA University, Thanjavur, Tamil Nadu, India","SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",11.0,79.4 +Selçuk University,Selçuk University,"Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye",38.0,32.5 +Selçuk University,"Selçuk University, Konya, Turkey","Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye",38.0,32.5 +Semarang State University,Semarang State University,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia",-7.0,110.4 +Semnan University,Semnan University,"دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ‏ایران‎",35.6,53.4 +Semnan University,"Semnan University, Semnan, Iran","دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ‏ایران‎",35.6,53.4 +Seoul National University,Seoul Nat'l Univ.,"서울대입구, 지하 1822, 남부순환로, 중앙동, 봉천동, 관악구, 서울특별시, 08787, 대한민국",37.5,127.0 +Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.3,127.0 +Seoul National University,"Seoul National University, Korea","서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.3,127.0 +Seoul National University,"Seoul National University, Seoul, Korea","서울대학교, 1, 관악로, 서림동, 신림동, 관악구, 서울특별시, 08825, 대한민국",37.5,126.9 +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology,Shaheed Zulfikar Ali Bhutto Institute of,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎",24.8,67.0 +Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.4,120.7 +Shandong University,"Shandong University, Shandong, China","山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.4,120.7 +Shandong University of Science and Technology,Shandong University of Science and Technology,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国",36.0,120.1 +"Shanghai Institute of Technology, Shanghai, China","Shanghai Institute of Technology, Shanghai, China","上海应用技术大学, 康健路, 长桥, 徐汇区, 上海市, 200233, 中国",31.2,121.4 +Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.2,121.4 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.2,121.4 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, People's Republic of China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.2,121.4 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai 200240, China","上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国",31.0,121.4 +Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai, China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.2,121.4 +Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.3,121.4 +Shanghai University,Shanghai university,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.3,121.4 +Shanghai University,"Shanghai University, Shanghai, China","上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.3,121.4 +Sharda University,Sharda University,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.5,77.5 +Sharda University,"Sharda University, Greater Noida, India","Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.5,77.5 +Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.7,51.4 +Sharif University of Technology,"Sharif University of Technology, Tehran. Iran","دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.7,51.4 +Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.6,114.0 +Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.5,113.9 +Shenzhen University,"Shenzhen University, Shenzhen China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.5,113.9 +Shenzhen University,"Shenzhen University, Shenzhen, China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.5,113.9 +Shibaura Institute of Technology,Shibaura Institute of Technology,"芝浦工業大学 豊洲キャンパス, 晴海通り, 豊洲2, 豊洲, 富岡一丁目, 江東区, 東京都, 関東地方, 135-6001, 日本",35.7,139.8 +Shibaura Institute of Technology,"Shibaura Institute of Technology, Tokyo, Japan","芝浦工業大学 豊洲キャンパス, 晴海通り, 豊洲2, 豊洲, 富岡一丁目, 江東区, 東京都, 関東地方, 135-6001, 日本",35.7,139.8 +Shiraz University,Shiraz University,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎",29.6,52.5 +"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.6,104.1 +Simon Fraser University,SIMON FRASER UNIVERSITY,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.3,-122.9 +Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.3,-122.9 +Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.3,103.8 +Singapore Management University,"Singapore Management University, Singapore","Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.3,103.8 +Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.3,104.0 +Singapore University of Technology and Design,"Singapore University of Technology and Design, Singapore","Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.3,104.0 +Soochow University,Soochow University,"苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国",31.3,120.6 +Soochow University,"Soochow University, Suzhou, China","苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国",31.3,120.6 +South China Normal University,South China Normal University,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.1,113.3 +South China Normal University,"South China Normal University, Guangzhou, China","华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.1,113.3 +South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0,113.4 +South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.1,113.4 +South China University of Technology,"South China University of Technology, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.1,113.4 +South China University of Technology,"South China University of Technology, Guangzhou, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.1,113.4 +South China University of Technology,"South China University of Technology, Guangzhou, Guangdong, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.1,113.4 +South East European University,South East European University,"Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија",42.0,21.0 +South East European University,"South East European University, Tetovo, Macedonia","Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија",42.0,21.0 +Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.1,118.8 +Southeast University,"Southeast University, Nanjing, China","SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.1,118.8 +Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.7,104.1 +Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.7,104.1 +Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, P.R. China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.7,104.1 +Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.8,106.4 +Southwest University,"Southwest University, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.8,106.4 +Southwest University,"Southwest University, Chongqing 400715, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.8,106.4 +Southwest University,"Southwest University, Chongqing, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.8,106.4 +SRI International,SRI International,"SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA",37.5,-122.2 +SRI International,"SRI International, Menlo Park, USA","SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA",37.5,-122.2 +Sri Krishna College of Technology,"Sri Krishna College of Technology, Coimbatore, India","Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India",10.9,76.9 +Stamford University Bangladesh,Stamford University Bangladesh,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7,90.4 +Stamford University Bangladesh,"Stamford University Bangladesh, Dhaka-1209, Bangladesh","Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7,90.4 +Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.4,-122.2 +Stanford University,"Stanford University, CA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.4,-122.2 +Stanford University,"Stanford University, CA, United States","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.4,-122.2 +Stanford University,"Stanford University, Stanford, CA, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.4,-122.2 +Stanford University,"Stanford University, Stanford, California","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.4,-122.2 +Stanford University,"Stanford University, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.4,-122.2 +State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5,-74.4 +State University of New York at Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.1,-76.0 +State University of New York at Binghamton,"State University of New York at Binghamton, USA","State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.1,-76.0 +State University of New York at Buffalo,State University of New York at Buffalo,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",43.0,-78.8 +State University of New York at Buffalo,The State University of New York at Buffalo,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",43.0,-78.8 +State University of New York at Buffalo,"The State University of New York at Buffalo, New York, USA","University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",43.0,-78.8 +State University of New York Polytechnic Institute,State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.1,-75.2 +State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, Utica, New York","State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.1,-75.2 +Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.7,-74.0 +Stevens Institute of Technology,"Stevens Institute of Technology, Hoboken, New Jersey, 07030","Stevens Institute of Technology, Hudson Street, Hoboken, Hudson County, New Jersey, 07030, USA",40.7,-74.0 +Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9,-73.1 +Stony Brook University,"Stony Brook University, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9,-73.1 +Stony Brook University,"Stony Brook University, NY, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9,-73.1 +Stony Brook University,"Stony Brook University, Stony Brook NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9,-73.1 +Stony Brook University,"Stony Brook University, Stony Brook, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9,-73.1 +Stony Brook University,"Stony Brook University, Stony Brook, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9,-73.1 +Stony Brook University Hospital,Stony Brook University Hospital,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9,-73.1 +Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +Sun Yat-Sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +Sun Yat-Sen University,"Sun Yat-Sen University, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +Sun Yat-Sen University,"Sun Yat-sen University, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +Sun Yat-Sen University,"Sun Yat-Sen University, GuangZhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +Sun Yat-Sen University,"Sun Yat-Sen University, Guangzhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +Sun Yat-Sen University,"Sun Yat-sen University, Guangzhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +Sun Yat-Sen University,"Sun Yat-Sen University, Guangzhou, P.R. China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.1,113.3 +SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3,127.0 +SungKyunKwan University,Sungkyunkwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3,127.0 +SungKyunKwan University,"Sungkyunkwan University, Suwon, Republic of Korea","성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3,127.0 +SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.9,-78.9 +Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6,-4.0 +Swansea University,"Swansea University, Swansea, UK","Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6,-4.0 +Swiss Federal Institute of Technology,Swiss Federal Institute of Technology,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.4,8.5 +Tafresh University,Tafresh University,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎",34.7,50.1 +Tafresh University,"Tafresh University, Tafresh, Iran","دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎",34.7,50.1 +Tamkang University,Tamkang University,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.2,121.5 +Tamkang University,"Tamkang University, Taipei, Taiwan","淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.2,121.5 +Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.4,23.9 +Tampere University of Technology,"Tampere University of Technology, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.4,23.9 +Tampere University of Technology,"Tampere University of Technology, Tampere 33720, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.4,23.9 +Tampere University of Technology,"Tampere University of Technology, Tampere, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.4,23.9 +Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.1,11.6 +Technical University Munich,"Technical University Munich, Germany","TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.1,11.6 +"Technicolor, France","Technicolor, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.8,2.3 +"Technicolor, France","Technicolor, Paris, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.8,2.3 +Technion Israel Institute of Technology,Technion Israel Institute of Technology,"הטכניון - מכון טכנולוגי לישראל, דוד רוז, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל",32.8,35.0 +Teesside University,Teesside University,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.6,-1.2 +Teesside University,"Teesside University, Middlesbrough, UK","Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.6,-1.2 +Teesside University,"Teesside University, UK","Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.6,-1.2 +Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1,34.8 +Tel Aviv University,"Tel Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1,34.8 +Tel Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1,34.8 +Tel Aviv University,"Tel-Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1,34.8 +Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",40.0,-75.2 +Temple University,"Temple University, Philadelphia, PA 19122, USA","Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA",40.0,-75.1 +Temple University,"Temple University, Philadelphia, PA, 19122, USA","Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA",40.0,-75.1 +Temple University,"Temple University, Philadelphia, PA, USA","Temple University, Beasley's Walk, Stanton, Philadelphia, Philadelphia County, Pennsylvania, 19132:19133, USA",40.0,-75.2 +Temple University,"Temple University, Philadelphia, USA","Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",40.0,-75.2 +Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6,-96.4 +Texas A&M University,"Texas A&M University, College Station, TX, USA","Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6,-96.4 +Thapar University,Thapar University,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India",30.4,76.4 +Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.2,117.1 +Tianjin University,"Tianjin University, 300072, China","泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.2,117.1 +Tianjin University,"Tianjin University, China","Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国",39.0,117.3 +Tianjin University,"Tianjin University, Tianjin, China","Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国",39.0,117.3 +Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.3,140.9 +Tohoku University,"Tohoku University, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.3,140.9 +Tohoku University,"Tohoku University, Sendai, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.3,140.9 +Tokyo Denki University,Tokyo Denki University,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.7,139.5 +Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5,139.5 +Tokyo Institute of Technology,"Tokyo Institute of Technology, Japan","東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5,139.5 +Tokyo Institute of Technology,"Tokyo Institute of Technology, Kanagawa, Japan","東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5,139.5 +Tokyo Metropolitan University,Tokyo Metropolitan University,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本",35.6,139.4 +Tomsk Polytechnic University,Tomsk Polytechnic University,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ",56.5,85.0 +Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.3,121.5 +Tongji University,"Tongji University, Shanghai 201804, China","同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.3,121.5 +Tongji University,"Tongji University, Shanghai, China","同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.3,121.5 +Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.4,-122.1 +"Toyota Technological Institute, Chicago","Toyota Technological Institute (Chicago, US","Toyota Technological Institute, 6045, South Kenwood Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.8,-87.6 +Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, 100084 Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing 100084, P.R. China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing 100084, P.R.China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing, 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing, P. R. China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, Beijing,China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +Tsinghua University,"Tsinghua University, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.0,116.3 +TU Darmstadt,"TU Darmstadt, D-64283, Germany","Institut für Psychologie, 10, Alexanderstraße, Darmstadt-Mitte, Darmstadt, Regierungsbezirk Darmstadt, Hessen, 64283, Deutschland",49.9,8.7 +Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.4,10.0 +Ulm University,"Ulm University, Germany","HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.4,10.0 +Universidad Autonoma de Madrid,Universidad Autonoma de Madrid,"Facultad de Medicina de la Universidad Autónoma de Madrid, Calle de Arturo Duperier, Fuencarral, Fuencarral-El Pardo, Madrid, Área metropolitana de Madrid y Corredor del Henares, Comunidad de Madrid, 28001, España",40.5,-3.7 +"Universidad Tecnica Federico Santa Maria, Valparaiso, Chile","Universidad Tecnica Federico Santa Maria, Valparaiso, Chile","Universidad Técnica Federico Santa María, Condominio Esmeralda, Valparaíso, Provincia de Valparaíso, V Región de Valparaíso, 2390382, Chile",-33.0,-71.6 +Università degli Studi di Milano,Università degli Studi di Milano,"Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia",45.5,9.2 +Università degli Studi di Milano,"Università degli Studi di Milano, Italy","Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia",45.5,9.2 +Università di Salerno Italy,Università di Salerno Italy,"Università, Autostrada del Mediterraneo, Fisciano, SA, CAM, 84084, Italia",40.8,14.8 +Universitat Autònoma de Barcelona,"Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain","Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España",41.5,2.1 +Universitat Autònoma de Barcelona,Universitat Autònoma de Barcelona,"Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España",41.5,2.1 +Universitat de València,Universitat de València,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.5,-0.3 +Universitat de València,"Universitat de València, Valencia, Spain","Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.5,-0.3 +Universität Hamburg,"Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany","Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland",53.6,9.9 +Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.4,2.2 +Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, Barcelona, Spain","Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.4,2.2 +Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.4,2.2 +Universitat Pompeu Fabra,"Universitat Pompeu Fabra, Barcelona, Spain","Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.4,2.2 +Université du Québec à Chicoutimi,Université du Québec à Chicoutimi (UQAC),"Université du Québec à Chicoutimi (UQAC), Chicoutimi, Ville de Saguenay, Saguenay - Lac-Saint-Jean, Québec, G7H 2B1, Canada",48.4,-71.1 +Universiti Teknologi Petronas,Universiti Teknologi PETRONAS,"UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia",4.4,101.0 +Universiti Teknologi Petronas,"Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia","UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia",4.4,101.0 +University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5,-0.1 +University College London,"University College London, London WC1N 3BG, United Kingdom","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5,-0.1 +University College London,"University College London, London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5,-0.1 +University College London,"University College London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5,-0.1 +University of Aberdeen,University of Aberdeen,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK",57.2,-2.1 +University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.5,-3.0 +University of Adelaide,The University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9,138.6 +University of Adelaide,"The University of Adelaide, Adelaide, SA, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9,138.6 +University of Adelaide,"The University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9,138.6 +University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9,138.6 +University of Adelaide,"University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9,138.6 +University of Adelaide,"University of Adelaide, SA, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9,138.6 +University of Agder,University of Agder,"UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge",58.2,8.0 +University of Agder,"University of Agder, Kristiansand, Norway","UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge",58.2,8.0 +University of Aizu,University of Aizu,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.5,139.9 +University of Aizu,"University of Aizu, Japan","会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.5,139.9 +University of Akron,University of Akron,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.1,-81.5 +University of Akron,"University of Akron, Akron","University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.1,-81.5 +University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5,-113.5 +University of Alberta,"University of Alberta, Edmonton, Canada","University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5,-113.5 +University of Amsterdam,"Science, University of Amsterdam","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.4,5.0 +University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.4,5.0 +University of Amsterdam,"University of Amsterdam, Amsterdam, The","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.4,5.0 +University of Amsterdam,"University of Amsterdam, Amsterdam, The Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.4,5.0 +University of Amsterdam,"University of Amsterdam, The Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.4,5.0 +University of Amsterdam,"University of Amsterdam, the Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.4,5.0 +University of Arizona,THE UNIVERSITY OF ARIZONA,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2,-111.0 +University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2,-111.0 +University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.7,-92.3 +University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.4,2.2 +University of Barcelona,"University of Barcelona, Spain","Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.4,2.2 +University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.6,7.6 +University of Basel,"University of Basel, Switzerland","Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.6,7.6 +University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.4,-2.3 +University of Bath,"University of Bath, Bath, Somerset, United Kingdom","University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.4,-2.3 +University of Bath,"University of Bath, Bath, United Kingdom","University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.4,-2.3 +University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.5,-1.9 +University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7,7.1 +University of Bonn,"University of Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7,7.1 +University of Brescia,University of Brescia,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA",37.8,-87.1 +University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.2,-73.2 +University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.5,-2.6 +University of Bristol,"University of Bristol, Bristol, BS8 1UB, UK","University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK",51.5,-2.6 +University of Bristol,"University of Bristol, Bristol, UK","Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.5,-2.6 +University of British Columbia,The University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.3,-123.2 +University of British Columbia,University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.3,-123.2 +University of British Columbia,"University of British Columbia, Canada","University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.3,-123.2 +University of British Columbia,"University of British Columbia, Vancouver, Canada","University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.3,-123.2 +University of Buffalo,University of Buffalo,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA",40.7,-99.1 +University of Caen,University of Caen,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0,135.8 +University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.1,-114.1 +University of Calgary,"University of Calgary, Calgary, Alberta, Canada","University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.1,-114.1 +"University of California, Berkeley",University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.9,-122.2 +"University of California, Berkeley",University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.9,-122.2 +"University of California, Berkeley","UNIVERSITY OF CALIFORNIA, BERKELEY","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.9,-122.3 +"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.9,-122.3 +"University of California, Berkeley","University of California, Berkeley, Berkeley CA 94720, USA","Goldman School of Public Policy, Hearst Avenue, Northside, Berkeley, Alameda County, California, 94720, USA",37.9,-122.3 +"University of California, Davis",University of California Davis,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.5,-121.8 +"University of California, Irvine","University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6,-117.8 +"University of California, Irvine","University of California, Irvine, USA","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6,-117.8 +"University of California, Merced","UC Merced, USA","UC Merced Venture Lab, 1735, M Street, Merced, Merced County, California, 95340, USA",37.3,-120.5 +"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.4,-120.4 +"University of California, Merced","University of California, Merced, CA 95344, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.4,-120.4 +"University of California, Merced","University of California, Merced, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.4,-120.4 +"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",34.0,-117.3 +"University of California, Riverside","University of California, Riverside CA 92521-0425, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",34.0,-117.3 +"University of California, Riverside","University of California, Riverside, California 92521, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",34.0,-117.3 +"University of California, Riverside","University of California, Riverside, Riverside CA, California 92521 United States","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",34.0,-117.3 +"University of California, San Diego",University Of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego",University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","University of California San Diego, United States of America","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","University of California San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","UNIVERSITY OF CALIFORNIA, SAN DIEGO","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","University of California, San Diego, CA, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","University of California, San Diego, California, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","University of California, San Diego, La Jolla","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, San Diego","University of California, San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.9,-117.2 +"University of California, Santa Barbara",University of California Santa Barbara,"UCSB, Santa Barbara County, California, 93106, USA",34.4,-119.8 +"University of California, Santa Barbara","University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.4,-119.8 +University of Cambridge,The University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.2,0.1 +University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.2,0.1 +University of Cambridge,"University of Cambridge, United Kingdom","Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.2,0.1 +University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.6,-48.6 +University of Campinas,University of Campinas (Unicamp,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil",-22.8,-47.1 +University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.2,149.1 +University of Canterbury,University of Canterbury,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5,172.6 +University of Canterbury,"University of Canterbury, New Zealand","University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5,172.6 +University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-34.0,18.5 +University of Cape Town,"University of Cape Town, South Africa","University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-34.0,18.5 +University of Central Florida,B.S. University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.6,-81.2 +University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.6,-81.2 +University of Central Florida,"University of Central Florida, Orlando","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.4,-81.4 +University of Central Florida,"University of Central Florida, Orlando, 32816, United States of America","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.4,-81.4 +University of Central Florida,"University of Central Florida, Orlando, FL, USA","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.4,-81.4 +University of Central Florida,"University of Central Florida, Orlando, USA","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.4,-81.4 +University of Central Florida,"University of Central Florida, USA","University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.6,-81.2 +University of Central Punjab,University of Central Punjab,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎",31.4,74.3 +University of Central Punjab,"University of Central Punjab, Pakistan","University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎",31.4,74.3 +University of Chicago,THE UNIVERSITY OF CHICAGO,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.8,-87.6 +University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,University of Chinese Academy of Sciences (UCAS,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 100190, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 101408, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9,116.2 +University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2,-8.4 +University of Coimbra,"University of Coimbra, Portugal","Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2,-8.4 +"University of Colorado, Boulder","University of Colorado, Boulder","Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.0,-105.3 +"University of Colorado, Colorado Springs",University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.9,-104.8 +"University of Colorado, Denver",University of Colorado Denver,"University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA",39.7,-105.0 +"University of Colorado, Denver","University of Colorado Denver, Denver, CO, USA","University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA",39.7,-105.0 +University of Connecticut,University of Connecticut,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA",41.8,-72.3 +University of Copenhagen,University of Copenhagen,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark",55.7,12.6 +University of Crete,University of Crete,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.4,24.5 +University of Crete,"University of Crete, Crete, 73100, Greece","House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.4,24.5 +University of Dammam,University of Dammam,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.4,50.2 +University of Dammam,"University of Dammam, Saudi Arabia","University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.4,50.2 +University of Dayton,University of Dayton,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.7,-84.2 +University of Dayton,"University of Dayton, Dayton, OH, USA","University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.7,-84.2 +University of Dayton,"University of Dayton, Ohio, USA","University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.7,-84.2 +University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.7,-75.8 +University of Delaware,"University of Delaware, Newark, 19716, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.7,-75.8 +University of Delaware,"University of Delaware, Newark, DE, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.7,-75.8 +University of Delaware,"University of Delaware, Newark, DE. USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.7,-75.8 +University of Delaware,"University of Delaware, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.7,-75.8 +University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.7,-105.0 +University of Denver,"University of Denver, Denver, CO","University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.7,-105.0 +University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7,90.4 +University of Dhaka,"University of Dhaka, Bangladesh","World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7,90.4 +University of Dschang,University of Dschang,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4,10.1 +University of Dschang,"University of Dschang, Cameroon","Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4,10.1 +University of Dundee,University of Dundee,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK",56.5,-3.0 +University of East Anglia,University of East Anglia,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.6,1.2 +University of East Anglia,"University of East Anglia, Norwich, U.K.","Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.6,1.2 +University of Edinburgh,The University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.9,-3.2 +University of Edinburgh,"The University of Edinburgh, Edinburgh, U.K.","New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.9,-3.2 +University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.9,-3.2 +University of Edinburgh,"University of Edinburgh, Edinburgh, UK","New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.9,-3.2 +University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.7,139.5 +University of Electro-Communications,"The University of Electro-Communications, JAPAN","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.7,139.5 +University of Electro-Communications,"The University of Electro-Communications, Japan","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.7,139.5 +University of Electro-Communications,"The University of Electro-Communications, Tokyo","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.7,139.5 +University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7,-3.5 +University of Exeter,"University of Exeter, UK","University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7,-3.5 +University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6,-82.3 +University of Florida,"University of Florida, Gainesville, FL","University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6,-82.3 +University of Florida,"University of Florida, Gainesville, FL, 32611, USA","University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA",29.6,-82.4 +University of Frankfurt,University of Frankfurt,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland",50.1,8.7 +University of Geneva,University of Geneva,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA",42.6,-88.6 +University of Glasgow,University of Glasgow,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK",55.9,-4.3 +University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.2,6.6 +University of Groningen,"University of Groningen, Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.2,6.6 +University of Groningen,"University of Groningen, The Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.2,6.6 +University of Gujrat,University of Gujrat,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎",32.6,74.2 +University of Gujrat,"University of Gujrat, Pakistan","University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎",32.6,74.2 +University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.8,35.0 +University of Haifa,"University of Haifa, Haifa, Israel","אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.8,35.0 +University of Hawaii,University of Hawaii,"University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA",21.3,-157.8 +University of Hawaii,"University of Hawaii, Manoa, Honolulu, HI, 96822","University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA",21.3,-157.8 +University of Hong Kong,"The Univ of Hong Kong, China","海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2,114.3 +University of Hong Kong,The University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2,114.3 +University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2,114.3 +University of Hong Kong,"University of Hong Kong, China","海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2,114.3 +University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7,-95.3 +University of Houston,"University of Houston, Houston, TX 77204, USA","UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7,-95.3 +University of Houston,"University of Houston, Houston, TX, USA","UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7,-95.3 +University of Iceland,University of Iceland,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland",64.1,-21.9 +University of Illinois at Chicago,University of Illinois at Chicago,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.9,-87.6 +University of Illinois at Chicago,"University of Illinois at Chicago, Chicago, IL","University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.9,-87.6 +"University of Illinois, Urbana-Champaign",University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign",University of Illinois at,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign",University of Illinois at Urbana,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign",University of Illinois at Urbana Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois at Urbana Champaign, Urbana","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois at Urbana Champaign, Urbana, IL 61801, USA","University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign",University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois at Urbana-Champaign, IL USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois at Urbana-Champaign, Urbana, IL","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois at Urbana-Champaign, Urbana, IL, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois at Urbana-Champaign, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign",University of Illinois at Urbana—Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois at Urbana—Champaign, Champaign, IL, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign",University of Illinois Urbana Champaign,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.1,-88.2 +"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.1,-88.2 +University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6,20.8 +University of Ioannina,"University of Ioannina, 45110, Greece","Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6,20.8 +University of Ioannina,"University of Ioannina, Ioannina, Greece","Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6,20.8 +University of Iowa,University of Iowa,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA",41.7,-91.6 +University of Karlsruhe,University of Karlsruhe,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.0,8.4 +University of Karlsruhe,"University of Karlsruhe, Germany","Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.0,8.4 +University of Kent,University of Kent,"University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK",51.3,1.1 +University of Kent,"University of Kent, Canterbury, U.K.","University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK",51.3,1.1 +University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0,-84.5 +University of Kentucky,"University of Kentucky, USA","University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0,-84.5 +University of Leeds,University of Leeds,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK",53.8,-1.6 +University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.2,-0.5 +University of Lincoln,"University of Lincoln, U. K.","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.2,-0.5 +University of Lincoln,"University of Lincoln, U.K","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.2,-0.5 +University of Lincoln,"University of Lincoln, UK","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.2,-0.5 +University of Liverpool,University of Liverpool,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.4,-3.0 +University of Liverpool,"University of Liverpool, Liverpool, U.K.","Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.4,-3.0 +University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.1,14.5 +University of Ljubljana,University of Ljubljana Faculty,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.1,14.5 +University of Ljubljana,"University of Ljubljana, Ljubljana, Slovenia","UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.1,14.5 +University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5,-0.1 +University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2,-85.8 +University of Louisville,"University of Louisville, Louisville, KY 40292 USA","University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2,-85.8 +University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1,113.5 +University of Macau,"University of Macau, Taipa, Macau","研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1,113.5 +University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.1,101.7 +University of Malaya,"University of Malaya, 50603 Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.1,101.7 +University of Malaya,"University of Malaya, Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.1,101.7 +University of Malta,University of Malta,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.9,14.5 +University of Malta,"University of Malta, Msida, Malta","University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.9,14.5 +University of Manchester,The University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.5,-2.2 +University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.5,-2.2 +University of Manchester,"University of Manchester, Manchester, U.K.","University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.5,-2.2 +University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8,-97.1 +University of Maryland,The University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.3,-76.6 +University of Maryland,University Of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.3,-76.6 +University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.3,-76.6 +University of Maryland,"Y. Li, University of Maryland","Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA",39.3,-76.6 +University of Maryland College Park,"College Park, Maryland","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,"College Park, MD","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,"College Park, MD 20742 USA","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,"College Park, MD, 20740, USA","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,"College Park, United States","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,"College Park, USA","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,University of Maryland-College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,"University of Maryland-College Park, USA","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",39.0,-76.9 +University of Maryland College Park,"University of Maryland, College Park, MD, USA","The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.3,-76.6 +University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.4,-72.5 +University of Massachusetts,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.4,-72.5 +University of Massachusetts,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.4,-72.5 +University of Massachusetts,"University of Massachusetts Amherst, Amherst MA, 01003","Murray D. Lincoln Campus Center, 1, Campus Center Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.4,-72.5 +University of Massachusetts,"University of Massachusetts, Amherst","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.4,-72.5 +University of Massachusetts,"University of Massachusetts, Amherst MA, USA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.4,-72.5 +University of Massachusetts,"University of Massachusetts, Amherst, MA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.4,-72.5 +University of Massachusetts Dartmouth,University of Massachusetts Dartmouth,"University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA",41.6,-71.0 +University of Massachusetts Dartmouth,"University of Massachusetts Dartmouth, Dartmouth, MA, USA","University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA",41.6,-71.0 +University of Memphis,University of Memphis,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA",35.1,-89.9 +University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7,-80.3 +University of Miami,"University of Miami, Coral Gables, FL","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7,-80.3 +University of Miami,"University of Miami, USA","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7,-80.3 +University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.3,-83.7 +University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.3,-83.7 +University of Michigan,"University of Michigan, Ann Arbor, MI","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.3,-83.7 +University of Michigan,"University of Michigan, Ann Arbor, MI 48109 USA","Power Center for the Performing Arts, 121, Fletcher Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.3,-83.7 +University of Michigan,"University of Michigan, Ann Arbor, MI, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.3,-83.7 +University of Michigan,"University of Michigan, Ann Arbor, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.3,-83.7 +University of Michigan,"University of Michigan, Ann, Arbor, MI USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.3,-83.7 +University of Milan,University of Milan,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA",38.7,-90.3 +University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",45.0,-93.2 +University of Missouri,University of Missouri,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.9,-92.3 +University of Missouri,"University of Missouri, Columbia, MO","L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.9,-92.3 +University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.8,-96.7 +University of Nevada,University of Nevada,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5,-119.8 +University of Nevada,"University of Nevada, Reno, Reno, NV, USA","Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5,-119.8 +University of Nevada,"University of Nevada, Reno, USA","Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5,-119.8 +University of New South Wales,The University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.9,151.2 +University of New South Wales,"The University of New South Wales, Australia","UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.9,151.2 +University of New South Wales,University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.9,151.2 +University of New South Wales,"University of New South Wales, Sydney, NSW, Australia","UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.9,151.2 +University of Newcastle,The University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.4,151.4 +University of Newcastle,"The University of Newcastle, Callaghan 2308, Australia","University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia",-32.9,151.7 +University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.4,151.4 +University of Newcastle,"University of Newcastle, Newcastle, Australia","University of Newcastle, Christie Street, Newcastle, Newcastle-Maitland, Newcastle, NSW, 2300, Australia",-32.9,151.8 +"University of Newcastle, Australia","Callaghan, NSW 2308, Australia","Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia",-32.9,151.7 +University of North Carolina,The University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.9,-79.0 +University of North Carolina,"The University of North Carolina, Chapel Hill","University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.9,-79.0 +University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.9,-79.0 +University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9,-79.1 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, Chapel Hill, NC","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9,-79.1 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9,-79.1 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9,-79.1 +University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9,-79.1 +University of North Carolina at Charlotte,The University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3,-80.7 +University of North Carolina at Charlotte,"The University of North Carolina at Charlotte, USA","Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3,-80.7 +University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3,-80.7 +University of North Carolina at Wilmington,University of North Carolina at Wilmington,"University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2,-77.9 +University of North Carolina at Wilmington,"University of North Carolina at Wilmington, USA","University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2,-77.9 +University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2,-77.9 +University of North Carolina Wilmington,"University of North Carolina Wilmington, USA","Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2,-77.9 +University of North Carolina Wilmington,"University of North Carolina Wilmington, Wilmington, NC, USA","Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA",34.2,-77.9 +University of North Carolina Wilmington,"University of North Carolina Wilmington, Wilmington, United States","Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2,-77.9 +University of North Texas,University of North Texas,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2,-97.2 +University of North Texas,"University of North Texas, Denton, Texas, USA","University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2,-97.2 +University of Northern British Columbia,University of Northern British Columbia,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.9,-122.8 +University of Northern British Columbia,"University of Northern British Columbia, Canada","UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.9,-122.8 +University of Northern British Columbia,"University of Northern British Columbia, Prince George, Canada","UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.9,-122.8 +University of Notre Dame,of the University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.7,-86.2 +University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.7,-86.2 +University of Notre Dame,"University of Notre Dame, Notre Dame, IN, USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.7,-86.2 +University of Notre Dame,"University of Notre Dame, USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.7,-86.2 +University of Notre Dame,University of Notre Dame. Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.7,-86.2 +University of Notre Dame,"University of Notre Dame. Notre Dame, IN 46556.USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.7,-86.2 +University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9,-1.2 +University of Nottingham,"The University of Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9,-1.2 +University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9,-1.2 +University of Nottingham,"University of Nottingham, Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9,-1.2 +University of Nottingham Malaysia Campus,a The University of Nottingham Malaysia Campus,"The University of Nottingham Malaysia Campus, Jalan Broga, Bandar Rinching, Semenyih, Selangor, 43500, Malaysia",2.9,101.9 +University of Oradea,University of Oradea,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.1,21.9 +University of Oslo,University of Oslo,"UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge",59.9,10.7 +University of Oslo,"University of Oslo, Oslo, Norway","UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge",59.9,10.7 +University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.4,-75.7 +University of Ottawa,"University of Ottawa, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.4,-75.7 +University of Ottawa,"University of Ottawa, Ottawa, On, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.4,-75.7 +University of Oulu,UNIVERSITY OF OULU,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.1,25.5 +University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.1,25.5 +University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.1,25.5 +University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.8,-1.3 +University of Oxford,"University of Oxford, Oxford, United Kingdom","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.8,-1.3 +University of Oxford,"University of Oxford, UK","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.8,-1.3 +University of Oxford,"University of Oxford, United Kingdom","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.8,-1.3 +University of Patras,University of Patras,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.3,21.8 +University of Patras,"University of Patras, Greece","Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.3,21.8 +University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9,-75.2 +University of Pennsylvania,"University of Pennsylvania, Philadelphia, PA","40th Street Parking Lot, Walnut Street, Southwest Schuylkill, Philadelphia, Philadelphia County, Pennsylvania, 19104-1469, USA",40.0,-75.2 +University of Perugia,University of Perugia,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.3,-123.2 +University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.0,71.5 +University of Peshawar,"University of Peshawar, Pakistan","University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.0,71.5 +University of Peshawar,"University of Peshawar, Peshawar, Pakistan","University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.0,71.5 +University of Piraeus,University of Piraeus,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα",37.9,23.7 +University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7,10.4 +University of Pisa,"University of Pisa, Pisa, Italy","Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7,10.4 +University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.4,-80.0 +University of Pittsburgh,"University of Pittsburgh, PA 15213, USA","Nationality Rooms, 4200, Omicron Delta Kappa Walk, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-80.0 +University of Pittsburgh,"University of Pittsburgh, PA, 15260, USA","Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-80.0 +University of Pittsburgh,"University of Pittsburgh, PA, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.4,-80.0 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.4,-80.0 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh PA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4,-79.9 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4,-79.9 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA , USA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4,-79.9 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA 15260, USA","Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4,-80.0 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA, USA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4,-79.9 +University of Pittsburgh,"University of Pittsburgh, Pittsburgh, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.4,-80.0 +University of Pittsburgh,"University of Pittsburgh, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.4,-80.0 +University of Plymouth,University of Plymouth,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.4,-4.1 +University of Plymouth,"University of Plymouth, UK","Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.4,-4.1 +University of Portsmouth,University of Portsmouth,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.8,-1.1 +University of Portsmouth,"University of Portsmouth, United Kingdom","University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.8,-1.1 +University of Queensland,The University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,"The University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,"The University of Queensland, Brisbane, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,"the University of Queensland, Brisbane, Qld, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,"The University of Queensland, QLD 4072, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,"University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Queensland,"University of Queensland, St Lucia, QLD, Australia","Anthropology Museum, Chancellors Place, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.5,153.0 +University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.2,-77.6 +University of Rochester,"University of Rochester, NY 14627, USA","Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA",43.1,-77.6 +University of Rochester,"University of Rochester, Rochester, NY, USA","Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.2,-77.6 +University of Salzburg,University of Salzburg,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.8,13.1 +University of Salzburg,"University of Salzburg, Austria","Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.8,13.1 +University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.8,117.3 +University of Science and Technology of China,"University of Science and Technology of China, Hefei 230026, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.8,117.3 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, 230027, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.8,117.3 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.8,117.3 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.8,117.3 +University of Science and Technology of China,"University of Science and Technology of China, Hefei, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.8,117.3 +University of Sheffield,The University of Sheffield,"University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK",53.4,-1.5 +University of Sheffield,"The University of Sheffield, Sheffield, U.K.","University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK",53.4,-1.5 +University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4,114.2 +University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",34.0,-81.0 +University of South Carolina,"University of South Carolina, Columbia, USA","University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",34.0,-81.0 +University of South Carolina,"University of South Carolina, USA","University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",34.0,-81.0 +University of South Florida,University of South Florida,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.1,-82.4 +University of South Florida,"University of South Florida, Tampa, Florida 33620","University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.1,-82.4 +University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.9,-1.4 +University of Southampton,"University of Southampton, SO17 1BJ, UK","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.9,-1.4 +University of Southampton,"University of Southampton, Southampton, U.K.","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.9,-1.4 +University of Southampton,"University of Southampton, United Kingdom","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.9,-1.4 +University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0,-118.3 +University of Southern California,"University of Southern California, Los Angeles, CA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0,-118.3 +University of Southern California,"University of Southern California, Los Angeles, CA 90089, USA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0,-118.3 +University of Southern California,"University of Southern California, Los Angeles, USA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0,-118.3 +University of St Andrews,University of St Andrews,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.3,-2.8 +University of St Andrews,"University of St Andrews, United Kingdom","University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.3,-2.8 +University of Stuttgart,University of Stuttgart,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland",48.9,9.2 +University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.2,-0.6 +University of Surrey,"University of Surrey, Guildford, Surrey GU2 7XH, UK","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.2,-0.6 +University of Surrey,"University of Surrey, Guildford, Surrey, GU2 7XH, UK","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.2,-0.6 +University of Surrey,"University of Surrey, United Kingdom","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.2,-0.6 +University of Sydney,"School, The University of Sydney, Sydney, NSW, Australia","Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia",-33.9,151.2 +University of Sydney,The University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.9,151.2 +University of Sydney,"The University of Sydney, NSW 2006, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.9,151.2 +University of Sydney,"The University of Sydney, Sydney, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.9,151.2 +University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.9,151.2 +University of Sydney,"University of Sydney, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.9,151.2 +University of Sydney,"University of Sydney, Sydney, NSW, Australia","Sand Roll House, Parramatta Road, Camperdown, Sydney, NSW, 2050, Australia",-33.9,151.2 +University of Tabriz,University of Tabriz,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎",38.1,46.3 +University of Tabriz,"University of Tabriz, Tabriz, Iran","دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎",38.1,46.3 +University of Tampere,UNIVERSITY OF TAMPERE,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.5,23.8 +University of Tampere,University of Tampere,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.5,23.8 +University of Tartu,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.4,26.7 +University of Technology Baghdad,"University of Technology, Baghdad, Iraq","الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3,44.4 +University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Technology Sydney,"University of Technology Sydney, New South Wales, Australia","University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Technology Sydney,"University of Technology Sydney, Sydney, NSW, Australia","University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Technology Sydney,"University of Technology Sydney, Ultimo, NSW, Australia","University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Technology Sydney,"University of Technology, Sydney","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Technology Sydney,"University of Technology, Sydney, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Technology Sydney,"University of Technology, Sydney, NSW, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Technology Sydney,"University of Technology, Sydney, Sydney, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.9,151.2 +University of Tennessee,The University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",36.0,-83.9 +University of Tennessee,"The University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",36.0,-83.9 +University of Tennessee,University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",36.0,-83.9 +University of Tennessee,"University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",36.0,-83.9 +University of Texas,The University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3,-95.3 +University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7,-97.1 +University of Texas at Arlington,"University of Texas at Arlington, Arlington, Texas 76019, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7,-97.1 +University of Texas at Arlington,"University of Texas at Arlington, Arlington, TX","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7,-97.1 +University of Texas at Arlington,"University of Texas at Arlington, Arlington, TX, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7,-97.1 +University of Texas at Arlington,"University of Texas at Arlington, TX, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7,-97.1 +University of Texas at Austin,The University of Texas at,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3,-95.3 +University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.3,-97.7 +University of Texas at Austin,The University of Texas at Austin Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.3,-97.7 +University of Texas at Austin,"The University of Texas at Austin Austin, Texas, USA","University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.3,-97.7 +University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.3,-97.7 +University of Texas at Austin,"University of Texas, Austin, TX 78712-1188, USA","University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA",30.3,-97.7 +University of Texas at Dallas,The University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",33.0,-96.8 +University of Texas at Dallas,"The University of Texas at Dallas, Richardson, TX","University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",33.0,-96.8 +University of Texas at Dallas,University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",33.0,-96.8 +University of Texas at Dallas,"University of Texas at Dallas, Richardson, 75080, USA","University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",33.0,-96.8 +University of Texas at San Antonio,The University of Texas at San Antonio,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.4,-98.5 +University of Texas at San Antonio,"The University of Texas at San Antonio, San Antonio, TX, USA","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.4,-98.5 +University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.6,-98.6 +University of Texas at San Antonio,"University of Texas at San Antonio, 78249, USA","UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.6,-98.6 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, Texas","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.4,-98.5 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, TX","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.4,-98.5 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, TX, USA","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.4,-98.5 +University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, United States","UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.6,-98.6 +University of Texas at San Antonio,"University of Texas, San Antonio, TX, USA","University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA",30.3,-97.7 +University of the Basque Country,University of the Basque Country,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.3,-2.0 +University of the Basque Country,"University of the Basque Country, San Sebastian, Spain","Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.3,-2.0 +University of the Humanities,The University of the Humanities,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс",47.9,106.9 +University of the Western Cape,University of the Western Cape,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa",-33.9,18.6 +University of the Witwatersrand,University of the Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.2,28.0 +University of the Witwatersrand,"University of the Witwatersrand, Johannesburg, South Africa","University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.2,28.0 +University of Thessaloniki,University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.6,23.0 +University of Tokushima,The University of Tokushima,"大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本",34.1,134.6 +University of Tokushima,"The University of Tokushima, Japan","大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本",34.1,134.6 +University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9,139.9 +University of Tokyo,"The University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9,139.9 +University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9,139.9 +University of Tokyo,"University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9,139.9 +University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.7,-79.4 +University of Toronto,"University of Toronto, Toronto, ON, Canada","University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.7,-79.4 +University of Toronto Toronto,University of Toronto Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.7,-79.4 +University of Toronto Toronto,"University of Toronto Toronto, Canada","University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.7,-79.4 +University of Toulouse,University of Toulouse,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA",30.2,-93.2 +University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.1,11.1 +University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.1,11.1 +University of Trento,"University of Trento, Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.1,11.1 +University of Trento,"University of Trento, Trento, TN, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.1,11.1 +University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1,140.1 +University of Tsukuba,"University of Tsukuba, Japan","University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1,140.1 +University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2,6.9 +University of Twente,"University of Twente, Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2,6.9 +University of Twente,"University of Twente, The Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2,6.9 +University of Venezia,University of Venezia,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia",45.4,12.3 +University of Vermont,University of Vermont,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.5,-73.2 +University of Vermont,"University of Vermont, 33 Colchester Avenue, Burlington","University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.5,-73.2 +University of Vienna,University of Vienna,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2,16.4 +University of Vienna,"University of Vienna, Austria","Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2,16.4 +University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.0,-78.5 +University of Virginia,"University of Virginia, Charlottesville, VA","University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA",38.0,-78.5 +University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.4,-1.6 +University of Warwick,"University of Warwick, Coventry, U.K.","University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.4,-1.6 +University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.7,-122.3 +University of Washington,"University of Washington, Seattle, USA","University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.7,-122.3 +University of Washington,"University of Washington, Seattle, WA 98195, United States","University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.7,-122.3 +University of Washington,"University of Washington, Seattle, WA, USA","University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA",47.7,-122.3 +University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.5,-80.5 +University of Western Australia,The University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-32.0,115.8 +University of Western Australia,"The University of Western Australia, Crawley, WA, Australia","University of Western Australia (Crawley Campus), 35, Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia",-32.0,115.8 +University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-32.0,115.8 +University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.3,-83.1 +University of Windsor,"University of Windsor, Canada","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.3,-83.1 +University of Windsor,"University of Windsor, Canada N9B 3P4","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.3,-83.1 +University of Windsor,"University of Windsor, Ontario, Canada","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.3,-83.1 +University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.1,-89.4 +University of Wisconsin Madison,University of Wisconsin - Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.1,-89.4 +University of Wisconsin Madison,UNIVERSITY OF WISCONSIN MADISON,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.1,-89.4 +University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.1,-89.4 +University of Wisconsin Madison,University of Wisconsin-Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.1,-89.4 +University of Wisconsin Madison,"University of Wisconsin-Madison, Madison, WI, USA","UW Geology Museum, 1215, West Dayton Street, South Campus, Madison, Dane County, Wisconsin, 53715, USA",43.1,-89.4 +University of Witwatersrand,University of Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.2,28.0 +University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.4,150.9 +University of Wollongong,"University of Wollongong, Wollongong, Australia","University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.4,150.9 +University of York,The University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.9,-1.0 +University of York,"The University of York, Heslington, York YO10 5DD, United Kingdom","Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK",53.9,-1.1 +University of York,"The University of York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.9,-1.0 +University of York,"The University of York, United Kingdom","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.9,-1.0 +University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.9,-1.0 +University of York,"University of York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.9,-1.0 +University of York,"University of York, York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.9,-1.0 +University of York,"University of York, York, United Kingdom","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.9,-1.0 +University of Zurich,University of Zurich,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.5,8.7 +University of Zurich,"University of Zurich, Zurich, Switzerland","ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.5,8.7 +University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.4,26.1 +University Politehnica of Bucharest,University POLITEHNICA of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.4,26.1 +University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.4,26.1 +University Politehnica of Bucharest,"University POLITEHNICA of Bucharest, Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.4,26.1 +University Politehnica of Bucharest,"University Politehnica of Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.4,26.1 +University Politehnica Timisoara,University POLITEHNICA Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.7,21.2 +University Politehnica Timisoara,"University POLITEHNICA Timisoara, Timisoara, 300223, Romania","UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.7,21.2 +Ural Federal University,Ural Federal University (UrFU,"УрФУ, улица Гагарина, Эврика, Втузгородок, Кировский район, Екатеринбург, городской округ Екатеринбург, Свердловская область, Уральский федеральный округ, 620062, РФ",56.8,60.6 +Urmia University,Urmia University,"دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ‏ایران‎",37.5,45.0 +Urmia University,"Urmia University, Urmia, Iran","دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ‏ایران‎",37.5,45.0 +Ursinus College,"Ursinus College, Collegeville, PA","Ursinus College, East Main Street, Collegeville, Montgomery County, Pennsylvania, 19426, USA",40.2,-75.5 +Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7,-111.8 +Utah State University,"Utah State University, Logan UT","Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7,-111.8 +Utah State University,"Utah State University, Logan, UT 84322-4205, USA","Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7,-111.8 +Varendra University,Varendra University,"department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ",24.4,88.6 +Varendra University,"Varendra University, Rajshahi, Bangladesh","department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ",24.4,88.6 +Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.3,174.8 +Vienna University of Technology,Vienna University of Technology,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich",48.2,16.4 +Vignan University,Vignan University,"Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India",16.2,80.5 +Vignan University,"Vignan University, Andhra Pradesh, India","Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India",16.2,80.5 +Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.0,-75.3 +Virginia Commonwealth University,Virginia Commonwealth University,"Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA",37.5,-77.5 +Virginia Commonwealth University,"Virginia Commonwealth University, Richmond, VA, USA","Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA",37.5,-77.5 +Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.2,-80.4 +Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Blacksburg","Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.2,-80.4 +Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Blacksburg, Virginia","Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.2,-80.4 +Virginia Tech Carilion Research Institute,Virginia Tech Carilion Research Institute,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA",37.3,-79.9 +Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.8,4.3 +Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 1050 Brussels, Belgium","Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien",50.8,4.4 +"Vulcan, Inc.","Vulcan Inc, Seattle, WA 98104","Vulcan Inc., 505, Downtown Seattle Transit Tunnel, Seattle Downtown, International District/Chinatown, Seattle, King County, Washington, 98191, USA",47.6,-122.3 +Walt Disney Imagineering,"Walt Disney Imagineering, USA","Walt Disney Imagineering, 1401, Flower Street, Grand Central Creative Campus, Glendale, Los Angeles County, California, 91201, USA",34.2,-118.3 +Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.2,21.0 +Warsaw University of Technology,"Warsaw University of Technology, Poland","Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.2,21.0 +Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.9,130.7 +Waseda University,"Waseda University, Kitakyushu, Japan 808-0135","早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.9,130.7 +Washington University,Washington University,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.6,-90.3 +Washington University,"Washington University, St. Louis, MO, USA","Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.6,-90.3 +Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.4,-83.1 +Wayne State University,"Wayne State University, Detroit, MI 48202, USA","Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA",42.4,-83.1 +Wayne State University,"Wayne State University, Detroit, MI, USA","Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA",42.4,-83.1 +Weizmann Institute of Science,The Weizmann Institute of,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל",31.9,34.8 +Weizmann Institute of Science,The Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9,34.8 +Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9,34.8 +Weizmann Institute of Science,"Weizmann Institute of Science, Rehovot, 76100, Israel","מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9,34.8 +West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.7,-80.0 +West Virginia University,"West Virginia University, Morgantown WV 26506, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.7,-80.0 +West Virginia University,"West Virginia University, Morgantown, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.7,-80.0 +West Virginia University,"West Virginia University, Morgantown, WV","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.7,-80.0 +West Virginia University,"West Virginia University, Morgantown, WV 26506, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.7,-80.0 +West Virginia University,"West Virginia University, Morgantown, WV, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.7,-80.0 +Western Kentucky University,Western Kentucky University,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA",37.0,-86.5 +Western Sydney University,Western Sydney University,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.8,151.0 +Western Sydney University,"Western Sydney University, Parramatta, NSW 2150, Australia","Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.8,151.0 +Wolfson College,Wolfson College,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK",51.8,-1.3 +Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.6,114.4 +Wuhan University of Technology,"Wuhan University of Technology, Wuhan, China","武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.6,114.4 +Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.5,-79.7 +Xi'an Jiaotong University,Xi'an Jiaotong University,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.2,109.0 +Xi'an Jiaotong University,"Xi'an Jiaotong University, Xi'an, China","西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.2,109.0 +Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4,118.1 +Xiamen University,"Xiamen University, Xiamen 361005, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4,118.1 +Xiamen University,"Xiamen University, Xiamen, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4,118.1 +Xiamen University,"Xiamen University, Xiamen, Fujian, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4,118.1 +Xiamen University,"Xiamen University, Xiamen, P. R. China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4,118.1 +Xiangtan University,Xiangtan University,"湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国",27.9,112.9 +Xiangtan University,"Xiangtan University, Xiangtan, China","湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国",27.9,112.9 +Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1,108.8 +Xidian University,"Xidian University, Xi an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1,108.8 +Xidian University,"Xidian University, Xi'an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1,108.8 +Xidian University,"Xidian University, Xi’an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1,108.8 +Yale University,Yale University,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA",41.3,-73.0 +Yaroslavl State University,Yaroslavl State University,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ",57.6,39.9 +Yeungnam University,Yeungnam University,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국",35.8,128.8 +Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.6,126.9 +Yonsei University,"Yonsei University, 50 Yonsei-ro, Seodaemun-gu, SEOUL, Republic of Korea","연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.6,126.9 +Yonsei University,"Yonsei University, 50 Yonsei-ro, SEOUL, Republic of Korea","연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.6,126.9 +York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.8,-79.5 +York University,"York University, Toronto","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.8,-79.5 +York University,"York University, Toronto, Canada","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.8,-79.5 +Yunnan University,Yunnan University,"云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.1,102.7 +Yunnan University,"Yunnan University, Kunming, P. R. China","云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.1,102.7 +Zaragoza University,Zaragoza University,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España",41.6,-0.9 +Zhejiang Normal University,Zhejiang Normal University,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.1,119.6 +Zhejiang Normal University,"Zhejiang Normal University, Jinhua, China","浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.1,119.6 +Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.2,120.1 +Zhejiang University,"Zhejiang University, Hangzhou, China","浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.2,120.1 +Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.3,120.2 +Zhejiang University of Technology,"Zhejiang University of Technology, Hangzhou, China","浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.3,120.2 +Zhengzhou University,Zhengzhou University,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8,113.5 +Zhengzhou University,"Zhengzhou University, China","科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8,113.5 +Zhengzhou University,"Zhengzhou University, Zhengzhou, Henan 450052, China","科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8,113.5 \ No newline at end of file diff --git a/scraper/reports/pdf_unknown_bigrams.html b/scraper/reports/pdf_unknown_bigrams.html new file mode 100644 index 00000000..e04bafda --- /dev/null +++ b/scraper/reports/pdf_unknown_bigrams.html @@ -0,0 +1 @@ +PDF Report: Unknown Bigrams

PDF Report: Unknown Bigrams

of the1403
computer science959
of computer889
face recognition876
in the796
science and536
member ieee531
facial expression507
of technology393
for the374
to the373
on the345
of electrical299
for face296
expression recognition277
computer vision259
and technology259
facial expressions251
in this248
by the247
and computer241
classi cation239
computer engineering234
and the229
from the229
of engineering221
international journal215
has been209
and engineering206
of information202
beijing china197
of facial195
engineering and193
electrical engineering192
of science187
center for177
is the177
this paper176
with the171
electrical and167
carnegie mellon163
mellon university162
open access157
http www153
of this152
the face150
of california146
recognition using143
of face139
neural networks139
the degree138
of sciences136
that the136
of computing135
senior member134
and information134
hong kong132
face detection131
ieee and130
for facial129
have been128
institute for125
this work123
real time122
fellow ieee122
pattern recognition121
chinese academy121
action recognition121
the university120
information technology120
state university118
the same116
doi org109
student member107
the wild106
in partial103
face images103
this article100
the requirements100
deep learning100
as the99
veri cation98
emotion recognition97
feature extraction95
at the92
vision and92
identi cation91
of philosophy91
national university89
information engineering89
large scale87
in computer87
neural network86
recognition with86
the proposed86
the art85
the most84
machine learning83
the netherlands82
research article82
signal processing82
we propose82
detection and81
of human81
college london80
information science79
learning for78
convolutional neural77
dx doi76
arti cial76
requirements for74
recognition and72
the facial71
face and71
the original71
of psychology71
engineering university71
of advanced70
pa usa70
of maryland70
of informatics70
of electronics70
science university70
recognition system70
united kingdom70
volume issue69
partial ful69
expression analysis68
key laboratory68
face alignment68
for action67
of our67
the image67
analysis and66
ful llment66
in video65
international conference65
age estimation65
under the64
face image64
of hong64
of chinese63
based face62
san diego62
ca usa62
image processing62
human computer62
the problem62
as well62
face veri61
cial intelligence61
that are61
new york61
of these61
college park60
facial feature60
in order60
for example60
science department59
be addressed59
there are59
be used59
is not59
method for58
using the58
robust face58
centre for58
of emotion58
computer and57
in face57
image and57
electronics and57
used for56
research center56
facial landmark56
model for56
creative commons56
real world56
the author55
they are55
the main55
research institute55
show that54
networks for54
an open54
in any54
of automation54
the chinese54
imperial college53
for video53
graduate school53
technology and53
for human53
the data53
facial action52
we present52
recognition based52
the number52
spatio temporal52
chinese university52
in videos51
assistant professor51
component analysis51
recognition from51
pose estimation51
and communication51
and recognition51
for each50
information processing50
and applications50
correspondence should50
local binary50
the other50
for research50
the performance49
information and49
volume article49
support vector49
object detection48
of intelligent48
science engineering48
commons attribution48
head pose48
approach for48
the rst48
of each48
low rank48
facial images47
facial features47
national laboratory47
computing and47
it has46
sparse representation46
ieee transactions46
eth zurich46
of electronic46
in which46
of images46
published online46
computer interaction46
ny usa46
discriminant analysis46
feature selection45
stefanos zafeiriou45
to face45
of pattern45
dictionary learning45
the human45
and face45
automatic facial45
the system45
sciences beijing45
the training45
that can45
to this45
electronic engineering45
technical university45
technical report44
invariant face44
which are44
massachusetts institute44
human face44
semi supervised44
in addition43
key lab43
be inserted43
received date43
accepted date43
ma usa43
features for43
between the43
over the43
rama chellappa42
ef cient42
the editor42
date accepted42
barcelona spain42
and video42
of china42
intelligent systems42
is used42
images and42
action units42
in real42
to improve42
shiguang shan42
corresponding author42
university china42
computer applications42
available online41
network for41
are not41
framework for41
accepted for41
and research41
engineering department41
national institute41
and facial41
high dimensional41
low resolution41
maryland college40
of faces40
the following40
this material40
the creative40
do not40
the recognition40
vol issue40
our method40
and machine40
issn online39
on image39
rights reserved39
machine vision39
dimensionality reduction39
associated with39
of surrey39
of amsterdam39
image analysis39
tsinghua university39
de ned39
robotics institute38
of mathematics38
eurasip journal38
models for38
to cite38
recognition systems38
artificial intelligence38
provided the38
microsoft research38
michigan state38
to recognize38
in many38
features and38
an image38
super resolution38
metric learning38
of texas37
deep neural37
of illinois37
cite this37
experimental results37
technology cas37
and its37
system for37
all rights37
human action37
recognition under37
we are37
the first36
is that36
mathematics and36
pose and36
psychology university36
the visual36
for image36
to extract36
the authors36
to learn36
the state35
maja pantic35
representation for35
action unit35
by using35
is one35
the user35
weakly supervised35
is also35
all the35
for visual35
of oxford35
of image35
based methods35
data and35
of cse35
learning and35
engineering the35
we use35
activity recognition35
to make34
the model34
of thessaloniki34
published version34
max planck34
facial emotion34
or not34
the use34
access article34
distributed under34
distribution and34
original work34
for this34
binary pattern34
analysis for34
when the34
the last34
improve the34
of social34
we also34
is available34
california san34
wang and34
university beijing34
university college34
from video34
of all33
fine grained33
of southern33
southern california33
the work33
urbana champaign33
anil jain33
to achieve33
for informatics33
affective computing33
speech and33
cas beijing33
of applied33
where the33
supervised learning33
visual recognition33
at http32
https doi32
and computing32
van gool32
shuicheng yan32
active appearance32
the best32
permits unrestricted32
is properly32
the feature32
stanford university32
the results32
to solve32
and then32
automatic face32
an important32
video based32
xiaoou tang32
on computer32
thesis submitted32
people with31
intelligent information31
shanghai china31
indian institute31
to facial31
luc van31
the images31
the video31
of features31
planck institute31
of singapore31
object recognition31
zhang and31
tokyo japan31
facial image31
the accuracy31
training data31
and image31
dr ing31
processing and31
research and31
li and31
in our31
engineering national31
model based31
in figure31
and electronic31
of central31
taipei taiwan31
in social31
tehran iran31
on facial31
been accepted31
we will31
the department30
this version30
pose invariant30
not the30
article distributed30
unrestricted use30
any medium30
medium provided30
illumination and30
into the30
during the30
xilin chen30
computing technology30
on face30
and signal30
the development30
as follows30
domain adaptation30
signi cant30
tel aviv30
of washington30
cation and30
subspace clustering29
jeffrey cohn29
the shape29
using deep29
aristotle university29
thessaloniki greece29
landmark localization29
come from29
which permits29
use distribution29
and reproduction29
recent years29
of data29
information sciences29
from face29
of research29
academic editor29
proposed method29
vector machine29
of london29
united states29
methods for29
the scene29
linear discriminant29
facial landmarks29
software engineering28
computer sciences28
information about28
we show28
and pattern28
to detect28
of visual28
attribution license28
image retrieval28
engineering research28
and their28
technische universit28
technological university28
at unchen28
columbia university28
cordelia schmid28
systems and28
use the28
central florida28
human robot28
please contact27
material for27
downloaded from27
principal component27
in facial27
noname manuscript27
appearance models27
advanced technology27
id pages27
properly cited27
of different27
automation chinese27
been proposed27
the computer27
for robust27
queen mary27
liu and27
engineering college27
deep convolutional27
in particular27
this chapter27
peking university27
laboratory for27
for all27
machine intelligence27
we can27
unconstrained face27
in human27
multi task26
of new26
to identify26
in unconstrained26
the paper26
in other26
at urbana26
nd the26
from facial26
cation using26
detection using26
images for26
more information26
whether they26
teaching and26
of massachusetts26
features are26
research group26
we have26
recognition has26
the local26
engineering science26
which can26
of pennsylvania26
this study26
human faces26
expression and26
however the26
ku leuven26
nanyang technological26
seoul korea26
of deep26
md usa26
does not26
communication engineering26
national taiwan26
algorithm for26
learning based26
the past26
intelligence and26
dissertation submitted26
the object26
if the26
for automation25
this problem25
information systems25
vision lab25
of emotional25
personal use25
and systems25
de lausanne25
video processing25
for more25
is multi25
are the25
classi ers25
face analysis25
of pittsburgh25
our approach25
to build25
to obtain25
latex class25
class files25
extracted from25
it can25
than the25
signi cantly25
robust facial25
shape and25
technology sydney25
of tokyo25
of objects25
optical flow25
images are25
research portal25
taiwan university25
at www24
electrical computer24
automation research24
the full24
to publication24
this document24
from public24
thomas huang24
vision center24
images with24
ecole polytechnique24
and dissemination24
the documents24
may come24
or from24
hindawi publishing24
publishing corporation24
the two24
kristen grauman24
and security24
of training24
the journal24
transfer learning24
issn print24
la jolla24
and pose24
correspondence tel24
california berkeley24
the task24
the identity24
the input24
local features24
normal university24
pattern analysis24
of any24
massachusetts amherst24
in section24
learning from24
of latex24
to have24
this journal24
google research24
algorithms for23
and are23
video and23
peer reviewed23
the published23
if you23
no august23
ieee international23
multi disciplinary23
disciplinary open23
rchive for23
the deposit23
deposit and23
of sci23
research documents23
documents whether23
are pub23
documents may23
research institutions23
in france23
or private23
private research23
research centers23
archive ouverte23
ouverte pluridisciplinaire23
pluridisciplinaire hal23
hal est23
la diffusion23
de documents23
de niveau23
niveau recherche23
recherche publi23
ou non23
recherche fran23
des laboratoires23
ou priv23
representations for23
for learning23
of interest23
in terms23
appearance based23
and intelligent23
tel fax23
al this23
the high23
is more23
face representation23
ef icient23
key words23
files vol23
of automatic23
the current23
the ability23
of them23
for vision23
mary university23
large number23
ground truth23
recognition for23
of video23
each other23
singapore singapore23
amsterdam the23
north carolina23
state key23
east lansing23
these methods23
generative adversarial23
of doctor23
andrew zisserman23
speci cally23
istanbul turkey23
of people22
based facial22
video classi22
and tracking22
research online22
was submitted22
extraction and22
nanjing university22
in image22
under varying22
polytechnic university22
to end22
applied sciences22
article was22
www frontiersin22
frontiersin org22
the research22
and illumination22
is very22
feature based22
of two22
of toronto22
stony brook22
received march22
methods have22
for large22
chen and22
still images22
differences between22
such that22
in recent22
decision making22
to determine22
for publication22
cornell university21
for instance21
and low21
and gender21
of twente21
and ioannis21
works for21
for pose21
deep face21
the second21
system and21
jiaotong university21
conference paper21
institute carnegie21
illumination invariant21
recognition rate21
binary patterns21
while the21
learning with21
original research21
of emotions21
expressions are21
studies have21
through the21
gender classi21
and other21
and expression21
expressions and21
low dimensional21
international joint21
electronic and21
recognition via21
about the21
tracking and21
reduce the21
is still21
engineering technology21
using local21
gesture recognition21
on pattern21
face hallucination21
polytechnic institute21
not been21
the dataset21
of computational21
computational intelligence21
of statistics21
event detection21
data points21
article has21
the method21
tx usa20
to address20
matrix factorization20
for inclusion20
of use20
is permitted20
obtained from20
landmark detection20
systems for20
nanjing china20
or the20
recognition algorithms20
our system20
and david20
shenzhen institutes20
electronics engineering20
nicu sebe20
visual attributes20
springer science20
science business20
business media20
illumination variations20
are used20
for real20
to overcome20
vision group20
single image20
and local20
and analysis20
the target20
to human20
sciences cas20
not only20
the person20
wide range20
for recognition20
dacheng tao20
video sequence20
at austin20
of machine20
in part20
this research20
zurich switzerland20
final publication20
based approach20
shanghai jiao20
jiao tong20
natural language20
received july20
to its20
and human20
robotics and20
associate professor20
and peter20
in future20
future issue20
human activity20
doi fpsyg20
in psychology20
university pittsburgh19
the role19
images using19
australian national19
of korea19
non negative19
ioannis pitas19
of defense19
follow this19
and open19
are available19
and texture19
new collective19
to servers19
or lists19
be obtained19
the ieee19
zero shot19
dataset for19
dimitris metaxas19
rutgers university19
archives ouvertes19
learned miller19
of michigan19
that our19
springer verlag19
received december19
the set19
spontaneous facial19
lausanne switzerland19
as conference19
at iclr19
cedex france19
results show19
which the19
face reconstruction19
is based19
shown that19
ai research19
received may19
idiap research19
learning algorithms19
the twenty19
joint conference19
of its19
of biometric19
in cvpr19
and social19
adobe research19
gender and19
note that19
access control19
visual information19
received april19
on machine19
cation with19
los angeles19
notre dame19
tong university19
paris france19
the robotics19
of posts19
posts and19
and telecommunications19
of their19
non verbal19
optimization problem19
professor department19
and cognitive19
we introduce19
video sequences19
th international19
the entire19
has not19
and software18
objects and18
more than18
la torre18
this and18
and additional18
additional works18
free and18
in accordance18
for advertising18
other works18
volume number18
the goal18
been made18
propose novel18
hyderabad india18
of software18
recognition accuracy18
de barcelona18
then the18
the literature18
the key18
\ No newline at end of file diff --git a/scraper/reports/pdf_unknown_terms.html b/scraper/reports/pdf_unknown_terms.html new file mode 100644 index 00000000..ff2c563e --- /dev/null +++ b/scraper/reports/pdf_unknown_terms.html @@ -0,0 +1 @@ +PDF Report: Unknown Terms

PDF Report: Unknown Terms

the9970
and8790
for3944
university3631
face2589
recognition2357
computer1860
facial1740
science1495
with1467
department1445
this1375
engineering1348
that1228
from1201
research1193
are1157
technology1085
based1016
image964
using958
information915
learning906
ieee901
institute883
expression772
images699
china660
video645
human643
analysis598
usa592
feature577
data560
which558
member544
detection539
school520
can519
features513
journal509
has475
vision473
model466
cation456
have455
system447
such444
deep437
systems436
college421
electrical416
expressions413
our406
http404
action394
visual389
these389
faces385
not381
been380
international374
article372
doi369
sciences361
processing357
www352
method352
may349
paper348
center342
one341
wang339
more331
methods329
emotion329
applications328
used327
india325
work323
accepted322
zhang320
neural319
local315
computing314
pose314
classi312
social309
published308
use303
object302
new299
national297
two293
networks292
received292
state291
each290
different290
representation289
problem288
other283
approach279
under278
machine278
laboratory277
pattern273
high272
illumination271
beijing270
time268
chen268
performance253
multi251
all251
training250
robust250
liu248
org246
california245
videos245
models244
results243
real242
low239
yang234
issn233
set231
introduction230
email230
large230
online229
person229
network228
automatic228
proposed228
access227
dataset227
their225
age225
estimation224
lab221
algorithm220
vol219
open218
also211
group210
between210
dept208
most207
was205
mail205
submitted204
when203
its203
number201
will199
shape199
part198
key197
many197
intelligence196
matrix195
however195
faculty195
author193
com192
database189
into188
temporal188
available187
where187
volume185
via185
sparse185
conference184
universit182
people182
issue181
london181
non179
linear179
chinese179
appearance178
hong175
intelligent174
france174
algorithms173
task173
but171
supervised169
interaction169
classification168
they167
techniques167
professor166
emotional166
motion166
scale166
clustering165
student165
some165
class165
space165
carnegie164
mellon164
version164
degree162
than161
level161
study160
how159
any158
there158
tracking157
germany157
subspace154
informatics154
figure152
copyright152
only150
extraction150
vector147
emotions147
well147
then146
senior145
date145
academy145
advanced144
japan144
correspondence144
psychology143
were143
attribute142
june142
both141
over141
given141
while141
convolutional140
huang140
same139
multiple139
identity139
alignment138
kong138
accuracy137
pittsburgh136
recent136
thesis136
biometric135
framework135
approaches134
partial134
objects134
electronics134
regression134
requirements134
signal134
security133
applied133
single132
dynamic132
resolution132
content131
novel131
publication131
fellow131
tel131
important131
section131
communication130
prof128
datasets128
keywords127
hal126
attributes126
computational125
edu124
matching124
understanding124
dimensional124
august122
park122
like122
activity122
singapore121
review120
about119
should119
technical118
localization118
view118
application118
robotics116
through116
first115
david115
september115
example114
des114
eye114
domain114
texture113
perception113
identi113
april113
active112
order112
original112
problems112
natural112
show111
general111
head111
discriminant111
you111
wei111
scene111
conditions111
still111
ing111
very111
input110
december110
user110
wild110
veri109
july109
studies109
selection108
media108
gender107
because107
points107
variations107
march107
due107
several107
propose106
shown106
lin106
present106
distribution106
brain106
inc105
modeling105
works105
https104
component104
sun104
united104
world103
biometrics103
dissertation103
art102
invariant102
yan102
electronic102
search101
report101
canada101
netherlands101
korea101
cross100
january100
centre100
including100
representations100
technologies100
optimization99
zhao99
unsupervised99
unconstrained99
rank99
italy98
spain98
dictionary98
cognitive98
editor97
landmark97
joint97
multimedia97
process97
context97
authors97
philosophy97
surveillance96
tech96
during96
see96
corresponding95
der95
control95
proceedings95
binary95
affective95
automation94
speci94
rights94
label94
michael94
doctor94
prediction93
related93
three93
cnn93
color93
cas93
form93
revised93
zhou92
sample92
terms92
mathematics91
various91
provided90
lighting90
graduate90
attention90
cambridge90
berkeley89
language89
even89
cial89
february89
distance89
rst89
behavior89
hand89
kim89
switzerland88
project88
role88
australia88
manuscript88
graph88
taiwan88
november87
san87
zhu87
evaluation87
lee87
changes87
ali87
kernel87
automated87
october87
imaging86
actions86
current86
discriminative86
retrieval86
make85
tion85
please85
public85
material85
reconstruction85
occlusion85
those85
experimental85
presented85
design85
function85
without84
made84
provide84
barcelona84
box84
personal83
structure83
pca83
what83
them83
frame83
citation82
development82
univ82
digital81
van81
fast80
known80
main80
humans80
software79
maryland79
thomas79
transactions79
coding79
test79
survey78
obtained78
massachusetts78
similarity78
towards78
arti78
semantic78
embedding78
subject78
amsterdam78
ful78
gabor77
event77
robot77
google76
components76
camera76
rate76
patterns76
years76
interactions76
whether75
further75
web75
global75
york75
learn75
region75
fusion75
recognizing74
way73
descriptors73
identification73
documents73
tokyo73
oxford73
often73
parts73
static72
dimensionality72
areas72
support71
medical71
learned71
commons71
compared71
central71
end71
samples71
kingdom71
result70
point70
out70
similar70
metric70
manifold70
address69
found69
challenging69
shanghai69
peter69
tasks69
since69
across69
basis69
databases69
per68
gao68
kumar68
technique68
higher68
improve68
jda68
landmarks68
better67
cient67
fig67
thessaloniki67
dong67
final67
unit67
peng67
limited67
creative67
independent67
recognize67
objective67
could67
shan67
long67
self66
must66
challenge66
best66
experiments66
knowledge66
speech66
quality66
potential66
svm66
segmentation66
llment66
future66
mobile65
diego65
additional65
cheng65
interest65
addressed65
disgust65
states65
statistics65
jun65
participants64
spatial64
assistant64
contact64
labeling64
andrew64
iran64
gaze64
con64
neutral64
small64
signi64
differences64
full63
regions63
thus63
possible63
improved63
etc63
therefore63
within63
cost63
feng62
distributed62
michigan62
accurate62
decision62
target62
song62
semi62
prior62
eecs61
photo61
reference61
previous61
negative61
link61
shenzhen61
complex61
examples61
microsoft61
cse61
singh61
recently61
sequence61
multimodal60
wen60
existing60
performed60
classes60
layer60
tang60
comparison59
effective59
zafeiriou59
solution59
few59
recherche59
among59
reduction59
relative59
license59
labeled59
basic59
florida59
labels59
pages58
top58
adversarial58
academic58
light58
road58
feedback58
categories58
machines58
extract58
tao58
washington58
annotation57
correlation57
details57
document57
generative57
impact57
lei57
chang57
zurich57
improving57
hierarchical57
grenoble57
individual57
parameters57
subjects57
eld57
here57
following56
need56
frames56
hua56
jain56
zheng56
springer56
much56
alexander56
simple56
inria56
individuals56
transfer56
making56
others55
cohn55
master55
street55
second55
guo55
lda55
extracted55
loss55
geometric55
spatio55
area55
last55
random55
authentication54
projection54
stefanos54
include54
mit54
variation54
eth54
change54
eyes54
units54
jean54
queen54
turkey54
imperial53
jiang53
net53
shen53
useful53
pairs53
neuroscience53
factors53
pre53
specific53
jia53
grained52
program52
fully52
greece52
step52
detect52
artificial52
efficient52
developed52
ability52
being52
stimuli52
life52
malaysia52
super52
phase52
photos51
description51
users51
pantic51
james51
ming51
words51
attribution51
memory51
environment51
response51
sequences51
campus51
less51
according51
shi51
associated51
range51
size51
surrey51
optimal51
virginia51
positive51
texas50
common50
frontal50
preserving50
reviewed50
cite50
zhen50
fax50
polytechnic50
martin50
responses50
particular50
cues50
pro50
sensors50
xiang49
chellappa49
pennsylvania49
peer49
stage49
daniel49
max49
lausanne49
signals49
mohammad49
fisher49
detector49
publications49
ekman49
adaptation49
committee49
patients49
effect48
instance48
simon48
israel48
shows48
sets48
norm48
urbana48
principal48
inference48
luc48
normalization48
sci48
amherst48
publishing48
brazil48
adaptive48
demonstrate48
vectors48
trained48
edited48
detecting48
uses48
ned48
does48
tan48
tsinghua48
synthesis48
und48
fine47
ioannis47
challenges47
computation47
han47
management47
labs47
nanjing47
would47
source47
cnrs47
technological47
output47
business47
researchers47
intensity47
generation47
ased47
term47
statistical46
addition46
text46
error46
cmu46
sydney46
cvpr46
medicine46
xin46
east46
describe46
structured46
education46
karlsruhe46
optical46
geometry46
south46
map46
skin45
rama45
generated45
facebook45
evidence45
publisher45
above45
illinois45
focus45
means45
varying45
constraints45
encoding45
perform45
especially45
noise45
lower45
major45
wide45
automatically45
after45
avenue45
paris45
facs45
pune44
good44
benchmark44
template44
dense44
anil44
scienti44
stanford44
aware44
captured44
literature44
category44
obtain44
condition44
average44
body44
who44
liang44
case44
scenarios44
descriptor44
service44
ltd44
theses44
develop44
istanbul44
anxiety44
weakly43
identify43
perceptual43
free43
inserted43
affect43
mouth43
patches43
lbp43
happiness43
values43
frontiers43
theory43
behavioral43
respectively43
progress43
pair43
weighted43
nonlinear43
trait43
activities43
engg42
issues42
permission42
hybrid42
advances42
exploiting42
private42
medium42
achieve42
austin42
value42
fear42
types42
shiguang42
short42
effects41
team41
interactive41
man41
standard41
eurasip41
transform41
patrick41
generally41
architecture41
leuven41
called41
print41
combination41
library41
william41
jeffrey40
constrained40
boston40
bristol40
mining40
george40
goal40
del40
\ No newline at end of file diff --git a/scraper/reports/pdf_unknown_trigram.html b/scraper/reports/pdf_unknown_trigram.html new file mode 100644 index 00000000..e75d48b3 --- /dev/null +++ b/scraper/reports/pdf_unknown_trigram.html @@ -0,0 +1 @@ +PDF Report: Unknown Trigrams

PDF Report: Unknown Trigrams

of computer science646
department of computer501
computer science and312
institute of technology224
facial expression recognition208
science and engineering187
science and technology185
department of electrical179
carnegie mellon university161
university of california144
for face recognition142
university of technology137
school of computer136
of electrical and135
senior member ieee133
for the degree129
academy of sciences128
of electrical engineering125
member ieee and121
and computer engineering112
of science and110
electrical and computer108
student member ieee107
in the wild104
in this paper102
of the requirements90
doctor of philosophy89
state of the86
of the art81
journal of computer81
and computer science78
dx doi org76
http dx doi73
one of the73
of computer engineering71
requirements for the71
of engineering and69
university of science69
in partial ful69
university of maryland68
college of engineering67
electrical engineering and66
engineering and computer65
partial ful llment65
of hong kong64
proceedings of the63
university of hong63
department of information62
of chinese academy62
face veri cation61
arti cial intelligence60
the requirements for58
should be addressed57
submitted in partial57
facial expression analysis56
face recognition using56
computer science department55
computer vision and55
dept of computer55
of information technology54
for facial expression54
department of psychology54
of information science54
computer science university52
pittsburgh pa usa51
based on the51
the chinese university50
of facial expressions49
llment of the49
imperial college london47
for action recognition47
creative commons attribution45
department of computing44
and information engineering44
of sciences beijing44
human computer interaction44
school of electrical43
department of informatics42
expression recognition using42
will be inserted42
inserted by the42
by the editor42
received date accepted42
date accepted date42
sciences beijing china42
of the face41
school of information41
of maryland college40
maryland college park40
computer science engineering40
of pattern recognition40
convolutional neural networks39
engineering and technology39
of electronics and39
in computer vision39
of computer applications39
of this work38
of computer and38
of face recognition38
university of chinese38
school of computing38
university of surrey38
information science and38
university of illinois37
is an open37
an open access37
the creative commons37
all rights reserved37
faculty of engineering37
university of amsterdam37
submitted to the36
invariant face recognition36
faculty of electrical36
of the most36
department of electronics36
michigan state university36
of information engineering36
university of texas35
laboratory of pattern35
face recognition with35
center for research35
university of thessaloniki34
face recognition system34
open access article34
the original work34
university of oxford34
college of computer34
automatic facial expression34
of california san34
california san diego34
university of southern33
of southern california33
robust face recognition33
to cite this33
provided the original33
institute of computing33
cas beijing china33
https doi org32
master of science32
based face recognition32
work is properly32
science and information32
institute of automation32
due to the32
journal of engineering32
face detection and31
in face recognition31
luc van gool31
institute of information31
institute of science31
under the creative31
reproduction in any31
max planck institute31
university of singapore31
has been accepted31
been accepted for31
access article distributed30
article distributed under30
distributed under the30
permits unrestricted use30
in any medium30
any medium provided30
medium provided the30
planck institute for30
university of central30
university college london30
of intelligent information29
which permits unrestricted29
unrestricted use distribution29
use distribution and29
distribution and reproduction29
and information technology29
it has been29
convolutional neural network29
university of washington29
journal of advanced28
institute for informatics28
of psychology university28
cambridge ma usa28
department of engineering28
of computing technology28
university of london28
university beijing china28
lab of intelligent27
in computer science27
image and video27
article id pages27
commons attribution license27
is properly cited27
of automation chinese27
automation chinese academy27
can be used27
part of the27
support vector machine27
face recognition under27
universit at unchen27
deep neural networks27
of central florida27
computer and information27
and pattern recognition26
of facial expression26
recognition in the26
of information and26
department of mathematics26
intelligent information processing25
illinois at urbana25
at urbana champaign25
journal on image25
university of massachusetts25
faces in the25
university of pittsburgh25
latex class files25
image processing and25
and signal processing25
of technology sydney25
head pose estimation25
university of tokyo25
national taiwan university25
recognition of facial25
online at www24
center for automation24
for automation research24
computer vision center24
whether they are24
may come from24
dept of electrical24
in this work24
computing technology cas24
technology cas beijing24
speech and signal24
and electronic engineering24
of massachusetts amherst24
journal of latex24
of latex class24
pose invariant face23
technology of china23
cite this version23
hal is multi23
is multi disciplinary23
multi disciplinary open23
disciplinary open access23
rchive for the23
for the deposit23
the deposit and23
deposit and dissemination23
dissemination of sci23
research documents whether23
documents whether they23
they are pub23
lished or not23
or not the23
not the documents23
the documents may23
documents may come23
teaching and research23
and research institutions23
institutions in france23
broad or from23
or from public23
public or private23
or private research23
private research centers23
archive ouverte pluridisciplinaire23
ouverte pluridisciplinaire hal23
pluridisciplinaire hal est23
et la diffusion23
diffusion de documents23
de niveau recherche23
niveau recherche publi23
publics ou priv23
hindawi publishing corporation23
et al this23
have been proposed23
of engineering science23
class files vol23
queen mary university23
such as the23
information engineering the23
engineering the chinese23
computer vision lab22
video classi cation22
of computer vision22
paper we propose22
facial emotion recognition22
this article was22
www frontiersin org22
university of pennsylvania22
processing of chinese22
university of toronto22
the proposed method22
amsterdam the netherlands22
nanyang technological university22
of california berkeley22
electrical computer engineering21
link to publication21
facial action unit21
of advanced technology21
institute carnegie mellon21
face recognition based21
end to end21
to improve the21
department of electronic21
electrical and electronic21
this article has21
article has been21
university of twente20
institute of engineering20
principal component analysis20
mathematics and computer20
active appearance models20
some of the20
institutes of advanced20
springer science business20
science business media20
local binary pattern20
gender classi cation20
in real time20
texas at austin20
research in computer20
facial landmark localization20
and communication engineering20
pattern analysis and20
shanghai jiao tong20
degree of doctor20
in recent years20
in future issue20
issue of this20
of this journal20
accepted for publication20
of electrical computer19
mellon university pittsburgh19
australian national university19
use of this19
of this material19
material is permitted19
servers or lists19
school of engineering19
university of michigan19
as conference paper19
paper at iclr19
robotics institute carnegie19
local binary patterns19
prof dr ing19
idiap research institute19
of sciences cas19
of the twenty19
international joint conference19
show that the19
human action recognition19
ieee international conference19
for face detection19
on pattern analysis19
analysis and machine19
and machine intelligence19
jiao tong university19
of the same19
university of posts19
of posts and19
department of statistics19
de la torre18
follow this and18
this and additional18
and additional works18
accepted for inclusion18
terms of use18
this material for18
material for advertising18
redistribution to servers18
vol no august18
this is the18
university of oulu18
analysis of facial18
article was submitted18
university of cambridge18
simon fraser university18
tel aviv university18
the robotics institute18
university of north18
university of wollongong18
brought to you17
to you for17
you for free17
for free and17
free and open17
and open access17
ieee personal use17
in partial fulfillment17
of mathematics and17
on image and17
erik learned miller17
research center for17
face recognition systems17
we propose novel17
results show that17
xi an china17
of computing and17
facebook ai research17
universit degli studi17
to this work17
dept of cse17
face recognition from17
sun yat sen17
and electrical engineering17
on computer vision17
and computer vision17
new collective works17
collective works for17
transactions on pattern17
to whom correspondence17
posts and telecommunications17
section of the17
of north carolina17
th international conference17
and information sciences17
linear discriminant analysis17
journal of information17
frontiers in psychology17
neural networks for16
works at http16
by an authorized16
in accordance with16
in other works16
http hdl handle16
hdl handle net16
fulfillment of the16
ming hsuan yang16
and video processing16
for more information16
for face veri16
expression recognition based16
and intelligent systems16
image classi cation16
most of the16
real world applications16
face recognition has16
from face images16
face identi cation16
is an important16
on artificial intelligence16
of the university16
of electronic and16
wang member ieee16
and anil jain16
and rama chellappa16
and engineering university16
electronics and communication16
of electronic engineering16
face recognition and16
whom correspondence should16
the hong kong16
department of cse16
hong kong china16
publication in future16
this journal but16
journal but has16
but has not16
has not been16
not been fully16
been fully edited16
fully edited content16
edited content may16
content may change16
may change prior16
prior to final16
to final publication16
science and software15
and software engineering15
and computer sciences15
http www eecs15
university of new15
of the facial15
uc san diego15
access by the15
an authorized administrator15
university of bristol15
creating new collective15
facial landmark detection15
laboratory of intelligent15
www intechopen com15
conference on artificial15
for arti cial15
feature extraction and15
microsoft research asia15
and mobile computing15
the fact that15
expression recognition with15
and facial expression15
zhang member ieee15
for face alignment15
of the data15
of the journal15
of the main15
on the other15
the other hand15
for vision speech15
vision speech and15
this work was15
deep convolutional neural15
yat sen university15
face recognition via15
engineering national university15
of california riverside15
in this chapter15
video based face15
and machine learning15
faculty of computer15
conference on computer15
conference on machine15
authors contributed equally15
classi cation and15
et al and15
based on facial15
on arti cial15
center for excellence15
excellence in brain15
science and intelligence15
and intelligence technology15
rio de janeiro15
california at berkeley14
based facial expression14
detection and tracking14
advertising or promotional14
work in other14
must be obtained14
computer vision laboratory14
to facial expression14
university of barcelona14
information and communication14
shih fu chang14
et al eurasip14
al eurasip journal14
vision and pattern14
engineering and information14
science and mobile14
int comput vis14
expression recognition and14
issn volume issue14
haz kemal ekenel14
equally to this14
university of rochester14
of this paper14
centre for vision14
in this study14
west virginia university14
for large scale14
in the context14
tsinghua university beijing14
eth zurich switzerland14
university of nottingham14
expressions of emotion14
state key laboratory14
university of trento14
these authors contributed14
to deal with14
forbes ave pittsburgh14
hong kong polytechnic14
semi supervised learning14
institute of computer14
component of this14
department of psychiatry14
research on intelligent14
on intelligent perception14
intelligent perception and14
perception and computing14
in brain science14
brain science and14
report no ucb13
no ucb eecs13
www eecs berkeley13
eecs berkeley edu13
berkeley edu pubs13
edu pubs techrpts13
pubs techrpts eecs13
techrpts eecs html13
performance of face13
we show that13
university shanghai china13
and ioannis pitas13
peer reviewed version13
or promotional purposes13
works for resale13
resale or redistribution13
journal of science13
university of defense13
anil jain fellow13
jain fellow ieee13
more information please13
entific research documents13
scientifiques de niveau13
publi ou non13
manant des tablissements13
des tablissements enseignement13
recherche fran ais13
ais ou trangers13
ou trangers des13
trangers des laboratoires13
face recognition algorithms13
the face recognition13
recognition in videos13
institute of advanced13
of advanced computer13
for real time13
to solve the13
of oulu finland13
support vector machines13
johns hopkins university13
engineering research and13
detection and recognition13
according to the13
submitted for the13
of the image13
college of information13
technology chinese academy13
itet eth zurich13
methods have been13
computer vision group13
neural network for13
queen university belfast13
university of notre13
of notre dame13
of engineering technology13
human robot interaction13
information technology and13
on facial expression13
author to whom13
be addressed mail13
for classi cation13
berkeley ca usa13
kong polytechnic university13
rensselaer polytechnic institute13
of michigan ann13
of biomedical engineering13
unconstrained face recognition13
electrical and electronics13
for all other13
classi cation with13
der technischen universit13
zur erlangung des13
of face images13
politehnica of bucharest13
of the proposed13
human activity recognition13
university istanbul turkey13
af nity matrix13
recognition in video12
yu gang jiang12
of nebraska lincoln12
if you believe12
version of the12
application to face12
of defense technology12
computer engineering department12
polytechnique ed erale12
the author and12
hal id hal12
university nanjing china12
is the author12
and face recognition12
because of the12
advanced computer science12
real time face12
illumination invariant face12
electronics and information12
refers to the12
and classi cation12
processing and analysis12
facial expressions are12
shiguang shan xilin12
shan xilin chen12
of new york12
work was supported12
supported by the12
recognition under varying12
pattern recognition and12
video face recognition12
computer engineering national12
classi cation using12
the facial expression12
low rank representation12
received april accepted12
based on local12
facial expression classification12
university belfast research12
belfast research portal12
taiwan university taipei12
university taipei taiwan12
permission from ieee12
reuse of any12
university of ljubljana12
shown in figure12
this paper presents12
there are many12
in revised form12
of facial images12
hong kong university12
re identi cation12
michigan ann arbor12
conference on arti12
to the same12
facial action units12
arizona state university12
islamic azad university12
information please contact12
natural language processing12
we use the12
of the human12
of arti cial12
university of groningen12
heterogeneous face recognition12
louis philippe morency12
philadelphia pa usa12
final publication citation12
houston tx usa11
this work for11
and maja pantic11
explore bristol research11
obtained from the11
to the department11
to face recognition11
erale de lausanne11
shenzhen key lab11
received december accepted11
and jeffrey cohn11
watson research center11
for age estimation11
in real world11
biometrics and security11
faculty of information11
published as conference11
of engineering research11
ability to recognize11
on face recognition11
expression recognition system11
computer engineering university11
terms of the11
that has been11
can be found11
citation for published11
it is not11
electrical engineering university11
stony brook university11
ieee and anil11
in the eld11
have been developed11
of computing imperial11
computing imperial college11
in the scene11
of applied sciences11
school of electronic11
electronic and information11
chen change loy11
research showcase cmu11
fr ed eric11
ed eric jurie11
faculty of science11
in any current11
state university east11
university east lansing11
lansing mi usa11
university of houston11
machine learning techniques11
that the proposed11
www mdpi com11
mdpi com journal11
computational intelligence and11
dept of computing11
box thessaloniki greece11
school of automation11
in the face11
university of wisconsin11
brain and cognitive11
cial intelligence ijcai11
in partial satisfaction11
volume issue may11
in human computer11
information about this11
university of colorado11
erlangung des akademischen11
des akademischen grades11
the main paper11
hand over face11
tadas baltru saitis11
ur elektrotechnik und11
elektrotechnik und informationstechnik11
computer science the11
publication citation information11
citation information doi11
of advanced research10
and information systems10
to publication record10
take down policy10
you believe that10
science and research10
for pose invariant10
deep face recognition10
pattern recognition casia10
learning for face10
ouvertes fr hal10
southeast university nanjing10
in pattern recognition10
ibm watson research10
of advanced industrial10
in the literature10
representation of the10
vision center uab10
center for biometrics10
for biometrics and10
and security research10
is licensed under10
creativecommons org licenses10
received june accepted10
have shown that10
regression for face10
jean luc dugelay10
computer interaction hci10
is that the10
additional key words10
key words and10
words and phrases10
of our method10
facial expression and10
and physical sciences10
because of its10
such as face10
college of engg10
for published version10
of the author10
of singapore singapore10
enti research documents10
ques de niveau10
es ou non10
emanant des etablissements10
des etablissements enseignement10
recherche fran cais10
cais ou etrangers10
ou etrangers des10
etrangers des laboratoires10
de minas gerais10
received march accepted10
real time facial10
in facial expression10
retained by the10
has been made10
on automatic face10
from ieee must10
obtained for all10
republishing this material10
promotional purposes creating10
machine intelligence vol10
advanced technology chinese10
detection in the10
college of technology10
to the faculty10
forbes avenue pittsburgh10
in the image10
science and applications10
facial image analysis10
and technology tsinghua10
technology tsinghua university10
the art methods10
to predict the10
association for computational10
for computational linguistics10
robotics and intelligent10
of wisconsin madison10
department of biomedical10
visual geometry group10
business media llc10
and arti cial10
structure of the10
action coding system10
in the training10
is de ned10
shown in the10
due to its10
accepted june published10
https hal archives10
hal archives ouvertes10
of automatic control10
the most popular10
beijing jiaotong university10
park md usa10
seattle wa usa10
in this section10
deep learning for10
the human face10
pose and illumination10
study of the10
automatic face recognition10
component analysis pca10
at ur elektrotechnik10
generative adversarial networks10
white rose research10
technological university singapore10
in the main10
metric learning for10
people with schizophrenia10
nec laboratories america9
texas at arlington9
acm reference format9
republic of korea9
for video classi9
is made available9
nature of the9
any copyrighted component9
and research ijsr9
on systems man9
man and cybernetics9
and cybernetics part9
rwth aachen university9
mit media lab9
university of the9
provided by the9
at the same9
the experimental results9
ying li tian9
fellow ieee and9
jean philippe thiran9
onoma de barcelona9
action unit recognition9
advanced industrial science9
industrial science and9
show that our9
electrical and information9
expression recognition from9
novel method for9
action classi cation9
expression analysis and9
work is licensed9
cite this article9
high dimensional data9
for robust face9
faculty of informatics9
of technology and9
liu member ieee9
journal of emerging9
emotional facial expressions9
in the case9
on the face9
facial expressions and9
robust facial expression9
paper we present9
in the presence9
from the same9
mitsubishi electric research9
federal de minas9
www elsevier com9
facial feature detection9
center for cognitive9
networks for facial9
vision and machine9
state key lab9
recognition using local9
content in the9
academia sinica taipei9
sinica taipei taiwan9
facial feature tracking9
albert ali salah9
department of ece9
on machine vision9
machine vision applications9
key laboratory for9
unsupervised domain adaptation9
is permitted permission9
permitted permission from9
uses in any9
current or future9
reprinting republishing this9
lists or reuse9
action recognition with9
in the past9
for object detection9
face recognition techniques9
tel aviv israel9
over the past9
allen institute for9
com journal sensors9
department of mechanical9
identi cation and9
school of medicine9
for emotion recognition9
degree of master9
has been shown9
ijacsa international journal9
of bucharest romania9
for feature extraction9
the graduate school9
pose estimation and9
associate professor department9
of brain and9
the twenty sixth9
twenty sixth international9
sixth international joint9
facial action coding9
king saud university9
transactions on affective9
on affective computing9
under varying illumination9
all other uses9
center for machine9
\ No newline at end of file diff --git a/scraper/reports/reddot.png b/scraper/reports/reddot.png new file mode 100644 index 00000000..c414a464 Binary files /dev/null and b/scraper/reports/reddot.png differ diff --git a/scraper/reports/report_coverage.html b/scraper/reports/report_coverage.html new file mode 100644 index 00000000..08ab4630 --- /dev/null +++ b/scraper/reports/report_coverage.html @@ -0,0 +1 @@ +Coverage

Coverage

Paper IDMegapixels KeyReport LinkPDF LinkJournalTypeAddressLatLngCoverageTotal CitationsGeocoded CitationsUnknown CitationsEmpty CitationsWith PDFWith DOI
0e986f51fe45b00633de9fd0c94d082d2be51406Face detection, pose estimation, and landmark localization in the wild[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduUniversity of California, Irvine33.64319010-117.8401649454%99954145852601303
b5f2846a506fc417e7da43f6a7679146d99c5e96UCF101UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[pdf]CoRReduUniversity of Central Florida28.59899755-81.1971250157%93453140065658230
370b5757a5379b15e30d619e4d3fb9e8e13f3256Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments[pdf]50%99949650062613293
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dAttribute and simile classifiers for face verification[pdf]2009 IEEE 12th International Conference on Computer VisioneduColumbia University40.84198360-73.9436897153%86245740546556232
18c72175ddbb7d5956d180b65a96005c100f6014Yale Face Database BFrom Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[pdf]IEEE Trans. Pattern Anal. Mach. Intell.45%99944555365519330
4d9a02d080636e9666c4d1cc438b9893391ec6c7The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops44%91640351151420361
23fc83c8cfff14a16df7ca497661264fc54ed746CKComprehensive Database for Facial Expression Analysis[pdf]eduCarnegie Mellon University37.41021930-122.0596548739%99938661264536263
4d423acc78273b75134e2afd1777ba6d3a398973International Conference on Automatic Face and Gesture Recognition The CMU Pose , Illumination , and Expression ( PIE ) Database[pdf]46%72333139255392237
45c31cde87258414f33412b3b12fc5bec7cb3ba9JAFFECoding Facial Expressions with Gabor Wavelets[pdf]eduKyushu University33.59914655130.2235984839%80431049445383263
140438a77a771a8fb656b39a78ff488066eb6b50LFWPLocalizing Parts of Faces Using a Consensus of Exemplars[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduColumbia University40.84198360-73.9436897154%50627323236309150
560e0e58d0059259ddf86fcec1fa7975dee6a868Face recognition in unconstrained videos with matched background similarity[pdf]CVPR 2011eduOpen University of Israel32.7782416534.9956567353%45724121427273149
853bd61bc48a431b9b1c7cab10c603830c488e39CAISA WebfaceLearning Face Representation from Scratch[pdf]CoRR58%40123216828261125
1ea8085fe1c79d12adffb02bd157b54d799568e4Eigenfaces vs. Fisherfaces: Recognition Using Class Speciic Linear Projection[pdf]33%58319438844300162
9055b155cbabdce3b98e16e5ac9c0edf00f9552fMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)47%40619121222208161
95f12d27c3b4914e0668a268360948bce92f7db3HelenInteractive Facial Feature Localization[pdf]eduUniversity of Illinois, Urbana-Champaign40.11116745-88.2258766554%32317514723198105
2724ba85ec4a66de18da33925e537f3902f21249Robust Face Landmark Estimation under Occlusion[pdf]2013 IEEE International Conference on Computer Vision56%2961671281417999
044d9a8c61383312cdafbcc44b9d00d650b21c70300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge[pdf]2013 IEEE International Conference on Computer Vision WorkshopseduUniversity of Twente52.238013906.8566761056%2851591252518582
a74251efa970b92925b89eeef50a5e37d9281ad0Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)55%2781531253019565
2fda164863a06a92d3a910b96eef927269aeb730Names and faces in the news[pdf]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.41%2901181721919745
4c170a0dcc8de75587dae21ca508dab2f9343974FaceTracerFaceTracer: A Search Engine for Large Collections of Images with Faces[pdf]eduColumbia University40.84198360-73.9436897149%2121031091313752
013909077ad843eb6df7a3e8e290cfd5575999d2A Semi-automatic Methodology for Facial Landmark Annotation[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition WorkshopseduUniversity of Twente52.238013906.8566761059%169100691411249
140c95e53c619eac594d70f6369f518adfea12efIJB-APushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)47%208981072014452
04661729f0ff6afe4b4d6223f18d0da1d479accfCelebAFrom Facial Parts Responses to Face Detection: A Deep Learning Approach[pdf]2015 IEEE International Conference on Computer Vision (ICCV)eduShenzhen Institutes of Advanced Technology22.59805605113.9853378457%1508663129348
291265db88023e92bb8c8e6390438e5da148e8f5MsCelebMS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition[pdf]49%15073761411529
133f01aec1534604d184d56de866a4bd531dac87Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence42%1687197159555
52d7eb0fbc3522434c13cc247549f74bb9609c5dWIDER FACEWIDER FACE: A Face Detection Benchmark[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduChinese University of Hong Kong22.42031295114.2078864454%1297059118934
1be498d4bbc30c3bfd0029114c784bc2114d67c0AdienceAge and Gender Estimation of Unfiltered Faces[pdf]IEEE Transactions on Information Forensics and Security45%155698658055
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0MegaFace 2The MegaFace Benchmark: 1 Million Faces for Recognition at Scale[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of Washington47.65432380-122.3080089453%1146054108822
10195a163ab6348eef37213a46f60a3d87f289c5Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks[pdf]International Journal of Computer Vision49%1215961108429
0d3bb75852098b25d90f31d2f48fd0cb4944702bFaceScrubA data-driven approach to cleaning large face datasets[pdf]2014 IEEE International Conference on Image Processing (ICIP)eduUniversity of Illinois, Urbana-Champaign40.11116745-88.2258766548%120576359324
04c2cda00e5536f4b1508cbd80041e9552880e67Hipster Wars: Discovering Elements of Fashion Styles[pdf]eduTohoku University38.25309450140.8736593058%85493635519
e4754afaa15b1b53e70743880484b8d0736990ff300 Faces In-The-Wild Challenge: database and results[pdf]Image Vision Comput.47%1034855106530
8355d095d3534ef511a9af68a3b2893339e3f96bDEX: Deep EXpectation of Apparent Age from a Single Image[pdf]2015 IEEE International Conference on Computer Vision Workshop (ICCVW)44%102455456128
0b3a146c474166bba71e645452b3a8276ac05998Whos In the Picture[pdf]39%99396066523
636b8ffc09b1b23ff714ac8350bb35635e49fa3cPruning training sets for learning of object categories[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)58%60352544112
203009d3608bdc31ffc3991a0310b9e98b630c4dMoving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES).[pdf]Emotion39%77304765214
fcc6fe6007c322641796cb8792718641856a22a7Automatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia University39.65404635-79.9647535567%43291401621
0a85bdff552615643dd74646ac881862a7c7072dBeyond frontal faces: Improving Person Recognition using multiple cues[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)64%4529152375
51eba481dac6b229a7490f650dff7b17ce05df73imSituSituation Recognition: Visual Semantic Role Labeling for Image Understanding[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of Washington47.65432380-122.3080089464%4428162412
356b431d4f7a2a0a38cf971c84568207dcdbf189Recognize complex events from static images by fusing deep channels[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduShenzhen Institutes of Advanced Technology22.59805605113.9853378460%43261713012
37d6f0eb074d207b53885bd2eb78ccc8a04be597Can facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)50%46232301722
c34532fe6bfbd1e6df477c9ffdbb043b77e7804dA 3D Morphable Eye Region Model for Gaze Estimation[pdf]UnknowneduCarnegie Mellon University37.41021930-122.0596548771%211560174
31b05f65405534a696a847dd19c621b7b8588263UMDFaces: An annotated face dataset for training deep networks[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)48%2914154206
45e616093a92e5f1e61a7c6037d5f637aa8964afFine-grained evaluation on face detection in the wild[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduChinese Academy of Sciences40.00447950116.3702380071%171250134
28d4e027c7e90b51b7d8908fce68128d1964668aMegaFace 2Level Playing Field for Million Scale Face Recognition[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)41%2711162224
ca3e88d87e1344d076c964ea89d91a75c417f5eeIndian Movie Face Database: A benchmark for face recognition under wide variations[pdf]2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)64%14950104
6dcf418c778f528b5792104760f1fbfe90c6dd6aAgeDB: The First Manually Collected, In-the-Wild Age Database[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)70%1072190
bd26dabab576adb6af30484183c9c9c8379bf2e0SCUT-FBPSCUT-FBP: A Benchmark Dataset for Facial Beauty Perception[pdf]2015 IEEE International Conference on Systems, Man, and CyberneticseduSouth China University of Technology23.05020420113.3988032343%1468357
1a40092b493c6b8840257ab7f96051d1a4dbfeb2Sports Videos in the Wild (SVW): A video dataset for sports analysis[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduMichigan State University42.71856800-84.4779157167%642150
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduUniversity of North Carolina Wilmington34.23755810-77.9270129057%743124
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832eLarge Age-Gap face verification by feature injection in deep networks[pdf]Pattern Recognition Letters40%523022
56ae6d94fc6097ec4ca861f0daa87941d1c10b70CMDPDistance Estimation of an Unknown Person from a Portrait[pdf]eduCalifornia Institute of Technology34.13710185-118.1252748725%826051
670637d0303a863c1548d5b19f705860a23e285cFace swapping: automatically replacing faces in photographs[pdf]ACM Trans. Graph.eduColumbia University40.84198360-73.94368971100%220011
3c8db0d86a6aa51b64ec09c7d25a721adcdfb7a3Ordered trajectories for human action recognition with large number of classes[pdf]Image Vision Comput.100%110001
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.[pdf]Scientific reportseduUniversity College London51.52316070-0.1282037025%413022
23e824d1dfc33f3780dd18076284f07bd99f1c43Spoofing faces using makeup: An investigative study[pdf]2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)eduINRIA Méditerranée43.615813107.0683800033%312012
75da1df4ed319926c544eefe17ec8d720feef8c0FDDBFDDB: A Benchmark for Face Detection in Unconstrained Settings[pdf]eduUniversity of Massachusetts42.38897850-72.528698700%101000
447d8893a4bdc29fa1214e53499ffe67b28a6db5Electronic Transport in Quantum Confined Systems[pdf]0%101010
\ No newline at end of file diff --git a/scraper/reports/report_index.html b/scraper/reports/report_index.html new file mode 100644 index 00000000..d876ee3a --- /dev/null +++ b/scraper/reports/report_index.html @@ -0,0 +1 @@ +All Papers

All Papers

Paper IDMegapixels KeyReport LinkPDF LinkJournalTypeAddressLatLngCoverageTotal CitationsGeocoded CitationsUnknown CitationsEmpty CitationsWith PDFWith DOI
e4754afaa15b1b53e70743880484b8d0736990ff300 Faces In-The-Wild Challenge: database and results[pdf]Image Vision Comput.47%1034855106530
044d9a8c61383312cdafbcc44b9d00d650b21c70300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge[pdf]2013 IEEE International Conference on Computer Vision WorkshopseduUniversity of Twente52.238013906.8566761056%2851591252518582
c34532fe6bfbd1e6df477c9ffdbb043b77e7804dA 3D Morphable Eye Region Model for Gaze Estimation[pdf]UnknowneduCarnegie Mellon University37.41021930-122.0596548771%211560174
013909077ad843eb6df7a3e8e290cfd5575999d2A Semi-automatic Methodology for Facial Landmark Annotation[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition WorkshopseduUniversity of Twente52.238013906.8566761059%169100691411249
0d3bb75852098b25d90f31d2f48fd0cb4944702bFaceScrubA data-driven approach to cleaning large face datasets[pdf]2014 IEEE International Conference on Image Processing (ICIP)eduUniversity of Illinois, Urbana-Champaign40.11116745-88.2258766548%120576359324
1be498d4bbc30c3bfd0029114c784bc2114d67c0AdienceAge and Gender Estimation of Unfiltered Faces[pdf]IEEE Transactions on Information Forensics and Security45%155698658055
6dcf418c778f528b5792104760f1fbfe90c6dd6aAgeDB: The First Manually Collected, In-the-Wild Age Database[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)70%1072190
a74251efa970b92925b89eeef50a5e37d9281ad0Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)55%2781531253019565
c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.[pdf]Scientific reportseduUniversity College London51.52316070-0.1282037025%413022
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dAttribute and simile classifiers for face verification[pdf]2009 IEEE 12th International Conference on Computer VisioneduColumbia University40.84198360-73.9436897153%86245740546556232
fcc6fe6007c322641796cb8792718641856a22a7Automatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia University39.65404635-79.9647535567%43291401621
0a85bdff552615643dd74646ac881862a7c7072dBeyond frontal faces: Improving Person Recognition using multiple cues[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)64%4529152375
37d6f0eb074d207b53885bd2eb78ccc8a04be597Can facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)50%46232301722
45c31cde87258414f33412b3b12fc5bec7cb3ba9JAFFECoding Facial Expressions with Gabor Wavelets[pdf]eduKyushu University33.59914655130.2235984839%80431049445383263
23fc83c8cfff14a16df7ca497661264fc54ed746CKComprehensive Database for Facial Expression Analysis[pdf]eduCarnegie Mellon University37.41021930-122.0596548739%99938661264536263
8355d095d3534ef511a9af68a3b2893339e3f96bDEX: Deep EXpectation of Apparent Age from a Single Image[pdf]2015 IEEE International Conference on Computer Vision Workshop (ICCVW)44%102455456128
10195a163ab6348eef37213a46f60a3d87f289c5Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks[pdf]International Journal of Computer Vision49%1215961108429
56ae6d94fc6097ec4ca861f0daa87941d1c10b70CMDPDistance Estimation of an Unknown Person from a Portrait[pdf]eduCalifornia Institute of Technology34.13710185-118.1252748725%826051
133f01aec1534604d184d56de866a4bd531dac87Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence42%1687197159555
1ea8085fe1c79d12adffb02bd157b54d799568e4Eigenfaces vs. Fisherfaces: Recognition Using Class Speciic Linear Projection[pdf]33%58319438844300162
447d8893a4bdc29fa1214e53499ffe67b28a6db5Electronic Transport in Quantum Confined Systems[pdf]0%101010
75da1df4ed319926c544eefe17ec8d720feef8c0FDDBFDDB: A Benchmark for Face Detection in Unconstrained Settings[pdf]eduUniversity of Massachusetts42.38897850-72.528698700%101000
0e986f51fe45b00633de9fd0c94d082d2be51406Face detection, pose estimation, and landmark localization in the wild[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduUniversity of California, Irvine33.64319010-117.8401649454%99954145852601303
560e0e58d0059259ddf86fcec1fa7975dee6a868Face recognition in unconstrained videos with matched background similarity[pdf]CVPR 2011eduOpen University of Israel32.7782416534.9956567353%45724121427273149
670637d0303a863c1548d5b19f705860a23e285cFace swapping: automatically replacing faces in photographs[pdf]ACM Trans. Graph.eduColumbia University40.84198360-73.94368971100%220011
4c170a0dcc8de75587dae21ca508dab2f9343974FaceTracerFaceTracer: A Search Engine for Large Collections of Images with Faces[pdf]eduColumbia University40.84198360-73.9436897149%2121031091313752
45e616093a92e5f1e61a7c6037d5f637aa8964afFine-grained evaluation on face detection in the wild[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduChinese Academy of Sciences40.00447950116.3702380071%171250134
04661729f0ff6afe4b4d6223f18d0da1d479accfCelebAFrom Facial Parts Responses to Face Detection: A Deep Learning Approach[pdf]2015 IEEE International Conference on Computer Vision (ICCV)eduShenzhen Institutes of Advanced Technology22.59805605113.9853378457%1508663129348
18c72175ddbb7d5956d180b65a96005c100f6014Yale Face Database BFrom Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[pdf]IEEE Trans. Pattern Anal. Mach. Intell.45%99944555365519330
04c2cda00e5536f4b1508cbd80041e9552880e67Hipster Wars: Discovering Elements of Fashion Styles[pdf]eduTohoku University38.25309450140.8736593058%85493635519
ca3e88d87e1344d076c964ea89d91a75c417f5eeIndian Movie Face Database: A benchmark for face recognition under wide variations[pdf]2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)64%14950104
95f12d27c3b4914e0668a268360948bce92f7db3HelenInteractive Facial Feature Localization[pdf]eduUniversity of Illinois, Urbana-Champaign40.11116745-88.2258766554%32317514723198105
4d423acc78273b75134e2afd1777ba6d3a398973International Conference on Automatic Face and Gesture Recognition The CMU Pose , Illumination , and Expression ( PIE ) Database[pdf]46%72333139255392237
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduUniversity of North Carolina Wilmington34.23755810-77.9270129057%743124
370b5757a5379b15e30d619e4d3fb9e8e13f3256Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments[pdf]50%99949650062613293
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832eLarge Age-Gap face verification by feature injection in deep networks[pdf]Pattern Recognition Letters40%523022
853bd61bc48a431b9b1c7cab10c603830c488e39CAISA WebfaceLearning Face Representation from Scratch[pdf]CoRR58%40123216828261125
28d4e027c7e90b51b7d8908fce68128d1964668aMegaFace 2Level Playing Field for Million Scale Face Recognition[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)41%2711162224
140438a77a771a8fb656b39a78ff488066eb6b50LFWPLocalizing Parts of Faces Using a Consensus of Exemplars[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduColumbia University40.84198360-73.9436897154%50627323236309150
9055b155cbabdce3b98e16e5ac9c0edf00f9552fMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)47%40619121222208161
291265db88023e92bb8c8e6390438e5da148e8f5MsCelebMS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition[pdf]49%15073761411529
203009d3608bdc31ffc3991a0310b9e98b630c4dMoving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES).[pdf]Emotion39%77304765214
2fda164863a06a92d3a910b96eef927269aeb730Names and faces in the news[pdf]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.41%2901181721919745
3c8db0d86a6aa51b64ec09c7d25a721adcdfb7a3Ordered trajectories for human action recognition with large number of classes[pdf]Image Vision Comput.100%110001
636b8ffc09b1b23ff714ac8350bb35635e49fa3cPruning training sets for learning of object categories[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)58%60352544112
140c95e53c619eac594d70f6369f518adfea12efIJB-APushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)47%208981072014452
356b431d4f7a2a0a38cf971c84568207dcdbf189Recognize complex events from static images by fusing deep channels[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduShenzhen Institutes of Advanced Technology22.59805605113.9853378460%43261713012
2724ba85ec4a66de18da33925e537f3902f21249Robust Face Landmark Estimation under Occlusion[pdf]2013 IEEE International Conference on Computer Vision56%2961671281417999
bd26dabab576adb6af30484183c9c9c8379bf2e0SCUT-FBPSCUT-FBP: A Benchmark Dataset for Facial Beauty Perception[pdf]2015 IEEE International Conference on Systems, Man, and CyberneticseduSouth China University of Technology23.05020420113.3988032343%1468357
51eba481dac6b229a7490f650dff7b17ce05df73imSituSituation Recognition: Visual Semantic Role Labeling for Image Understanding[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of Washington47.65432380-122.3080089464%4428162412
23e824d1dfc33f3780dd18076284f07bd99f1c43Spoofing faces using makeup: An investigative study[pdf]2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)eduINRIA Méditerranée43.615813107.0683800033%312012
1a40092b493c6b8840257ab7f96051d1a4dbfeb2Sports Videos in the Wild (SVW): A video dataset for sports analysis[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduMichigan State University42.71856800-84.4779157167%642150
4d9a02d080636e9666c4d1cc438b9893391ec6c7The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops44%91640351151420361
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0MegaFace 2The MegaFace Benchmark: 1 Million Faces for Recognition at Scale[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of Washington47.65432380-122.3080089453%1146054108822
b5f2846a506fc417e7da43f6a7679146d99c5e96UCF101UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[pdf]CoRReduUniversity of Central Florida28.59899755-81.1971250157%93453140065658230
31b05f65405534a696a847dd19c621b7b8588263UMDFaces: An annotated face dataset for training deep networks[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)48%2914154206
52d7eb0fbc3522434c13cc247549f74bb9609c5dWIDER FACEWIDER FACE: A Face Detection Benchmark[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduChinese University of Hong Kong22.42031295114.2078864454%1297059118934
0b3a146c474166bba71e645452b3a8276ac05998Whos In the Picture[pdf]39%99396066523
\ No newline at end of file diff --git a/scraper/reports/reports.css b/scraper/reports/reports.css new file mode 100644 index 00000000..d5a9755d --- /dev/null +++ b/scraper/reports/reports.css @@ -0,0 +1,18 @@ +body { font-size: smaller; } +td,th { vertical-align: top; } +td { + max-width: 500px; + overflow: hidden; +} +#mapid { + width: 100vw; + height: 30vw; +} +.gray { color: #888; } +html.map, html.map body { + margin: 0; padding: 0; + width: 100%; height: 100%; +} +.map #mapid { + height: 100vh; +} \ No newline at end of file diff --git a/scraper/reports/snap.svg-min.js b/scraper/reports/snap.svg-min.js new file mode 100755 index 00000000..a9551b5f --- /dev/null +++ b/scraper/reports/snap.svg-min.js @@ -0,0 +1,21 @@ +// Snap.svg 0.5.1 +// +// Copyright (c) 2013 – 2017 Adobe Systems Incorporated. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// build: 2017-02-07 + +!function(a){var b,c,d="0.5.0",e="hasOwnProperty",f=/[\.\/]/,g=/\s*,\s*/,h="*",i=function(a,b){return a-b},j={n:{}},k=function(){for(var a=0,b=this.length;b>a;a++)if("undefined"!=typeof this[a])return this[a]},l=function(){for(var a=this.length;--a;)if("undefined"!=typeof this[a])return this[a]},m=Object.prototype.toString,n=String,o=Array.isArray||function(a){return a instanceof Array||"[object Array]"==m.call(a)};eve=function(a,d){var e,f=c,g=Array.prototype.slice.call(arguments,2),h=eve.listeners(a),j=0,m=[],n={},o=[],p=b;o.firstDefined=k,o.lastDefined=l,b=a,c=0;for(var q=0,r=h.length;r>q;q++)"zIndex"in h[q]&&(m.push(h[q].zIndex),h[q].zIndex<0&&(n[h[q].zIndex]=h[q]));for(m.sort(i);m[j]<0;)if(e=n[m[j++]],o.push(e.apply(d,g)),c)return c=f,o;for(q=0;r>q;q++)if(e=h[q],"zIndex"in e)if(e.zIndex==m[j]){if(o.push(e.apply(d,g)),c)break;do if(j++,e=n[m[j]],e&&o.push(e.apply(d,g)),c)break;while(e)}else n[e.zIndex]=e;else if(o.push(e.apply(d,g)),c)break;return c=f,b=p,o},eve._events=j,eve.listeners=function(a){var b,c,d,e,g,i,k,l,m=o(a)?a:a.split(f),n=j,p=[n],q=[];for(e=0,g=m.length;g>e;e++){for(l=[],i=0,k=p.length;k>i;i++)for(n=p[i].n,c=[n[m[e]],n[h]],d=2;d--;)b=c[d],b&&(l.push(b),q=q.concat(b.f||[]));p=l}return q},eve.separator=function(a){a?(a=n(a).replace(/(?=[\.\^\]\[\-])/g,"\\"),a="["+a+"]",f=new RegExp(a)):f=/[\.\/]/},eve.on=function(a,b){if("function"!=typeof b)return function(){};for(var c=o(a)?o(a[0])?a:[a]:n(a).split(g),d=0,e=c.length;e>d;d++)!function(a){for(var c,d=o(a)?a:n(a).split(f),e=j,g=0,h=d.length;h>g;g++)e=e.n,e=e.hasOwnProperty(d[g])&&e[d[g]]||(e[d[g]]={n:{}});for(e.f=e.f||[],g=0,h=e.f.length;h>g;g++)if(e.f[g]==b){c=!0;break}!c&&e.f.push(b)}(c[d]);return function(a){+a==+a&&(b.zIndex=+a)}},eve.f=function(a){var b=[].slice.call(arguments,1);return function(){eve.apply(null,[a,null].concat(b).concat([].slice.call(arguments,0)))}},eve.stop=function(){c=1},eve.nt=function(a){var c=o(b)?b.join("."):b;return a?new RegExp("(?:\\.|\\/|^)"+a+"(?:\\.|\\/|$)").test(c):c},eve.nts=function(){return o(b)?b:b.split(f)},eve.off=eve.unbind=function(a,b){if(!a)return void(eve._events=j={n:{}});var c=o(a)?o(a[0])?a:[a]:n(a).split(g);if(c.length>1)for(var d=0,i=c.length;i>d;d++)eve.off(c[d],b);else{c=o(a)?a:n(a).split(f);var k,l,m,d,i,p,q,r=[j],s=[];for(d=0,i=c.length;i>d;d++)for(p=0;pd;d++)for(k=r[d];k.n;){if(b){if(k.f){for(p=0,q=k.f.length;q>p;p++)if(k.f[p]==b){k.f.splice(p,1);break}!k.f.length&&delete k.f}for(l in k.n)if(k.n[e](l)&&k.n[l].f){var t=k.n[l].f;for(p=0,q=t.length;q>p;p++)if(t[p]==b){t.splice(p,1);break}!t.length&&delete k.n[l].f}}else{delete k.f;for(l in k.n)k.n[e](l)&&k.n[l].f&&delete k.n[l].f}k=k.n}a:for(d=0,i=s.length;i>d;d++){k=s[d];for(l in k.n[k.name].f)continue a;for(l in k.n[k.name].n)continue a;delete k.n[k.name]}}},eve.once=function(a,b){var c=function(){return eve.off(a,c),b.apply(this,arguments)};return eve.on(a,c)},eve.version=d,eve.toString=function(){return"You are running Eve "+d},"undefined"!=typeof module&&module.exports?module.exports=eve:"function"==typeof define&&define.amd?define("eve",[],function(){return eve}):a.eve=eve}(this),function(a,b){if("function"==typeof define&&define.amd)define(["eve"],function(c){return b(a,c)});else if("undefined"!=typeof exports){var c=require("eve");module.exports=b(a,c)}else b(a,a.eve)}(window||this,function(a,b){var c=function(b){var c,d={},e=a.requestAnimationFrame||a.webkitRequestAnimationFrame||a.mozRequestAnimationFrame||a.oRequestAnimationFrame||a.msRequestAnimationFrame||function(a){return setTimeout(a,16,(new Date).getTime()),!0},f=Array.isArray||function(a){return a instanceof Array||"[object Array]"==Object.prototype.toString.call(a)},g=0,h="M"+(+new Date).toString(36),i=function(){return h+(g++).toString(36)},j=Date.now||function(){return+new Date},k=function(a){var b=this;if(null==a)return b.s;var c=b.s-a;b.b+=b.dur*c,b.B+=b.dur*c,b.s=a},l=function(a){var b=this;return null==a?b.spd:void(b.spd=a)},m=function(a){var b=this;return null==a?b.dur:(b.s=b.s*a/b.dur,void(b.dur=a))},n=function(){var a=this;delete d[a.id],a.update(),b("mina.stop."+a.id,a)},o=function(){var a=this;a.pdif||(delete d[a.id],a.update(),a.pdif=a.get()-a.b)},p=function(){var a=this;a.pdif&&(a.b=a.get()-a.pdif,delete a.pdif,d[a.id]=a,r())},q=function(){var a,b=this;if(f(b.start)){a=[];for(var c=0,d=b.start.length;d>c;c++)a[c]=+b.start[c]+(b.end[c]-b.start[c])*b.easing(b.s)}else a=+b.start+(b.end-b.start)*b.easing(b.s);b.set(a)},r=function(a){if(!a)return void(c||(c=e(r)));var f=0;for(var g in d)if(d.hasOwnProperty(g)){var h=d[g],i=h.get();f++,h.s=(i-h.b)/(h.dur/h.spd),h.s>=1&&(delete d[g],h.s=1,f--,function(a){setTimeout(function(){b("mina.finish."+a.id,a)})}(h)),h.update()}c=f?e(r):!1},s=function(a,b,c,e,f,g,h){var j={id:i(),start:a,end:b,b:c,s:0,dur:e-c,spd:1,get:f,set:g,easing:h||s.linear,status:k,speed:l,duration:m,stop:n,pause:o,resume:p,update:q};d[j.id]=j;var t,u=0;for(t in d)if(d.hasOwnProperty(t)&&(u++,2==u))break;return 1==u&&r(),j};return s.time=j,s.getById=function(a){return d[a]||null},s.linear=function(a){return a},s.easeout=function(a){return Math.pow(a,1.7)},s.easein=function(a){return Math.pow(a,.48)},s.easeinout=function(a){if(1==a)return 1;if(0==a)return 0;var b=.48-a/1.04,c=Math.sqrt(.1734+b*b),d=c-b,e=Math.pow(Math.abs(d),1/3)*(0>d?-1:1),f=-c-b,g=Math.pow(Math.abs(f),1/3)*(0>f?-1:1),h=e+g+.5;return 3*(1-h)*h*h+h*h*h},s.backin=function(a){if(1==a)return 1;var b=1.70158;return a*a*((b+1)*a-b)},s.backout=function(a){if(0==a)return 0;a-=1;var b=1.70158;return a*a*((b+1)*a+b)+1},s.elastic=function(a){return a==!!a?a:Math.pow(2,-10*a)*Math.sin((a-.075)*(2*Math.PI)/.3)+1},s.bounce=function(a){var b,c=7.5625,d=2.75;return 1/d>a?b=c*a*a:2/d>a?(a-=1.5/d,b=c*a*a+.75):2.5/d>a?(a-=2.25/d,b=c*a*a+.9375):(a-=2.625/d,b=c*a*a+.984375),b},a.mina=s,s}("undefined"==typeof b?function(){}:b),d=function(a){function c(a,b){if(a){if(a.nodeType)return w(a);if(e(a,"array")&&c.set)return c.set.apply(c,a);if(a instanceof s)return a;if(null==b)try{return a=y.doc.querySelector(String(a)),w(a)}catch(d){return null}}return a=null==a?"100%":a,b=null==b?"100%":b,new v(a,b)}function d(a,b){if(b){if("#text"==a&&(a=y.doc.createTextNode(b.text||b["#text"]||"")),"#comment"==a&&(a=y.doc.createComment(b.text||b["#text"]||"")),"string"==typeof a&&(a=d(a)),"string"==typeof b)return 1==a.nodeType?"xlink:"==b.substring(0,6)?a.getAttributeNS(T,b.substring(6)):"xml:"==b.substring(0,4)?a.getAttributeNS(U,b.substring(4)):a.getAttribute(b):"text"==b?a.nodeValue:null;if(1==a.nodeType){for(var c in b)if(b[z](c)){var e=A(b[c]);e?"xlink:"==c.substring(0,6)?a.setAttributeNS(T,c.substring(6),e):"xml:"==c.substring(0,4)?a.setAttributeNS(U,c.substring(4),e):a.setAttribute(c,e):a.removeAttribute(c)}}else"text"in b&&(a.nodeValue=b.text)}else a=y.doc.createElementNS(U,a);return a}function e(a,b){return b=A.prototype.toLowerCase.call(b),"finite"==b?isFinite(a):"array"==b&&(a instanceof Array||Array.isArray&&Array.isArray(a))?!0:"null"==b&&null===a||b==typeof a&&null!==a||"object"==b&&a===Object(a)||J.call(a).slice(8,-1).toLowerCase()==b}function f(a){if("function"==typeof a||Object(a)!==a)return a;var b=new a.constructor;for(var c in a)a[z](c)&&(b[c]=f(a[c]));return b}function h(a,b){for(var c=0,d=a.length;d>c;c++)if(a[c]===b)return a.push(a.splice(c,1)[0])}function i(a,b,c){function d(){var e=Array.prototype.slice.call(arguments,0),f=e.join("␀"),g=d.cache=d.cache||{},i=d.count=d.count||[];return g[z](f)?(h(i,f),c?c(g[f]):g[f]):(i.length>=1e3&&delete g[i.shift()],i.push(f),g[f]=a.apply(b,e),c?c(g[f]):g[f])}return d}function j(a,b,c,d,e,f){if(null==e){var g=a-c,h=b-d;return g||h?(180+180*D.atan2(-h,-g)/H+360)%360:0}return j(a,b,e,f)-j(c,d,e,f)}function k(a){return a%360*H/180}function l(a){return 180*a/H%360}function m(a){var b=[];return a=a.replace(/(?:^|\s)(\w+)\(([^)]+)\)/g,function(a,c,d){return d=d.split(/\s*,\s*|\s+/),"rotate"==c&&1==d.length&&d.push(0,0),"scale"==c&&(d.length>2?d=d.slice(0,2):2==d.length&&d.push(0,0),1==d.length&&d.push(d[0],0,0)),"skewX"==c?b.push(["m",1,0,D.tan(k(d[0])),1,0,0]):"skewY"==c?b.push(["m",1,D.tan(k(d[0])),0,1,0,0]):b.push([c.charAt(0)].concat(d)),a}),b}function n(a,b){var d=aa(a),e=new c.Matrix;if(d)for(var f=0,g=d.length;g>f;f++){var h,i,j,k,l,m=d[f],n=m.length,o=A(m[0]).toLowerCase(),p=m[0]!=o,q=p?e.invert():0;"t"==o&&2==n?e.translate(m[1],0):"t"==o&&3==n?p?(h=q.x(0,0),i=q.y(0,0),j=q.x(m[1],m[2]),k=q.y(m[1],m[2]),e.translate(j-h,k-i)):e.translate(m[1],m[2]):"r"==o?2==n?(l=l||b,e.rotate(m[1],l.x+l.width/2,l.y+l.height/2)):4==n&&(p?(j=q.x(m[2],m[3]),k=q.y(m[2],m[3]),e.rotate(m[1],j,k)):e.rotate(m[1],m[2],m[3])):"s"==o?2==n||3==n?(l=l||b,e.scale(m[1],m[n-1],l.x+l.width/2,l.y+l.height/2)):4==n?p?(j=q.x(m[2],m[3]),k=q.y(m[2],m[3]),e.scale(m[1],m[1],j,k)):e.scale(m[1],m[1],m[2],m[3]):5==n&&(p?(j=q.x(m[3],m[4]),k=q.y(m[3],m[4]),e.scale(m[1],m[2],j,k)):e.scale(m[1],m[2],m[3],m[4])):"m"==o&&7==n&&e.add(m[1],m[2],m[3],m[4],m[5],m[6])}return e}function o(a){var b=a.node.ownerSVGElement&&w(a.node.ownerSVGElement)||a.node.parentNode&&w(a.node.parentNode)||c.select("svg")||c(0,0),d=b.select("defs"),e=null==d?!1:d.node;return e||(e=u("defs",b.node).node),e}function p(a){return a.node.ownerSVGElement&&w(a.node.ownerSVGElement)||c.select("svg")}function q(a,b,c){function e(a){if(null==a)return I;if(a==+a)return a;d(j,{width:a});try{return j.getBBox().width}catch(b){return 0}}function f(a){if(null==a)return I;if(a==+a)return a;d(j,{height:a});try{return j.getBBox().height}catch(b){return 0}}function g(d,e){null==b?i[d]=e(a.attr(d)||0):d==b&&(i=e(null==c?a.attr(d)||0:c))}var h=p(a).node,i={},j=h.querySelector(".svg---mgr");switch(j||(j=d("rect"),d(j,{x:-9e9,y:-9e9,width:10,height:10,"class":"svg---mgr",fill:"none"}),h.appendChild(j)),a.type){case"rect":g("rx",e),g("ry",f);case"image":g("width",e),g("height",f);case"text":g("x",e),g("y",f);break;case"circle":g("cx",e),g("cy",f),g("r",e);break;case"ellipse":g("cx",e),g("cy",f),g("rx",e),g("ry",f);break;case"line":g("x1",e),g("x2",e),g("y1",f),g("y2",f);break;case"marker":g("refX",e),g("markerWidth",e),g("refY",f),g("markerHeight",f);break;case"radialGradient":g("fx",e),g("fy",f);break;case"tspan":g("dx",e),g("dy",f);break;default:g(b,e)}return h.removeChild(j),i}function r(a){e(a,"array")||(a=Array.prototype.slice.call(arguments,0));for(var b=0,c=0,d=this.node;this[b];)delete this[b++];for(b=0;bc;c++){var e={type:a[c].type,attr:a[c].attr()},f=a[c].children();b.push(e),f.length&&x(f,e.childNodes=[])}}c.version="0.5.1",c.toString=function(){return"Snap v"+this.version},c._={};var y={win:a.window,doc:a.window.document};c._.glob=y;var z="hasOwnProperty",A=String,B=parseFloat,C=parseInt,D=Math,E=D.max,F=D.min,G=D.abs,H=(D.pow,D.PI),I=(D.round,""),J=Object.prototype.toString,K=/^\s*((#[a-f\d]{6})|(#[a-f\d]{3})|rgba?\(\s*([\d\.]+%?\s*,\s*[\d\.]+%?\s*,\s*[\d\.]+%?(?:\s*,\s*[\d\.]+%?)?)\s*\)|hsba?\(\s*([\d\.]+(?:deg|\xb0|%)?\s*,\s*[\d\.]+%?\s*,\s*[\d\.]+(?:%?\s*,\s*[\d\.]+)?%?)\s*\)|hsla?\(\s*([\d\.]+(?:deg|\xb0|%)?\s*,\s*[\d\.]+%?\s*,\s*[\d\.]+(?:%?\s*,\s*[\d\.]+)?%?)\s*\))\s*$/i,L=(c._.separator=/[,\s]+/,/[\s]*,[\s]*/),M={hs:1,rg:1},N=/([a-z])[\s,]*((-?\d*\.?\d*(?:e[\-+]?\d+)?[\s]*,?[\s]*)+)/gi,O=/([rstm])[\s,]*((-?\d*\.?\d*(?:e[\-+]?\d+)?[\s]*,?[\s]*)+)/gi,P=/(-?\d*\.?\d*(?:e[\-+]?\d+)?)[\s]*,?[\s]*/gi,Q=0,R="S"+(+new Date).toString(36),S=function(a){return(a&&a.type?a.type:I)+R+(Q++).toString(36)},T="http://www.w3.org/1999/xlink",U="http://www.w3.org/2000/svg",V={};c.url=function(a){return"url('#"+a+"')"};c._.$=d,c._.id=S,c.format=function(){var a=/\{([^\}]+)\}/g,b=/(?:(?:^|\.)(.+?)(?=\[|\.|$|\()|\[('|")(.+?)\2\])(\(\))?/g,c=function(a,c,d){var e=d;return c.replace(b,function(a,b,c,d,f){b=b||d,e&&(b in e&&(e=e[b]),"function"==typeof e&&f&&(e=e()))}),e=(null==e||e==d?a:e)+""};return function(b,d){return A(b).replace(a,function(a,b){return c(a,b,d)})}}(),c._.clone=f,c._.cacher=i,c.rad=k,c.deg=l,c.sin=function(a){return D.sin(c.rad(a))},c.tan=function(a){return D.tan(c.rad(a))},c.cos=function(a){return D.cos(c.rad(a))},c.asin=function(a){return c.deg(D.asin(a))},c.acos=function(a){return c.deg(D.acos(a))},c.atan=function(a){return c.deg(D.atan(a))},c.atan2=function(a){return c.deg(D.atan2(a))},c.angle=j,c.len=function(a,b,d,e){return Math.sqrt(c.len2(a,b,d,e))},c.len2=function(a,b,c,d){return(a-c)*(a-c)+(b-d)*(b-d)},c.closestPoint=function(a,b,c){function d(a){var d=a.x-b,e=a.y-c;return d*d+e*e}for(var e,f,g,h,i=a.node,j=i.getTotalLength(),k=j/i.pathSegList.numberOfItems*.125,l=1/0,m=0;j>=m;m+=k)(h=d(g=i.getPointAtLength(m))).5;){var n,o,p,q,r,s;(p=f-k)>=0&&(r=d(n=i.getPointAtLength(p)))f)return b-f;if(f>a-c)return b-f+a}return b},c.getRGB=i(function(a){if(!a||(a=A(a)).indexOf("-")+1)return{r:-1,g:-1,b:-1,hex:"none",error:1,toString:Z};if("none"==a)return{r:-1,g:-1,b:-1,hex:"none",toString:Z};if(!(M[z](a.toLowerCase().substring(0,2))||"#"==a.charAt())&&(a=W(a)),!a)return{r:-1,g:-1,b:-1,hex:"none",error:1,toString:Z};var b,d,f,g,h,i,j=a.match(K);return j?(j[2]&&(f=C(j[2].substring(5),16),d=C(j[2].substring(3,5),16),b=C(j[2].substring(1,3),16)),j[3]&&(f=C((h=j[3].charAt(3))+h,16),d=C((h=j[3].charAt(2))+h,16),b=C((h=j[3].charAt(1))+h,16)),j[4]&&(i=j[4].split(L),b=B(i[0]),"%"==i[0].slice(-1)&&(b*=2.55),d=B(i[1]),"%"==i[1].slice(-1)&&(d*=2.55),f=B(i[2]),"%"==i[2].slice(-1)&&(f*=2.55),"rgba"==j[1].toLowerCase().slice(0,4)&&(g=B(i[3])),i[3]&&"%"==i[3].slice(-1)&&(g/=100)),j[5]?(i=j[5].split(L),b=B(i[0]),"%"==i[0].slice(-1)&&(b/=100),d=B(i[1]),"%"==i[1].slice(-1)&&(d/=100),f=B(i[2]),"%"==i[2].slice(-1)&&(f/=100),("deg"==i[0].slice(-3)||"°"==i[0].slice(-1))&&(b/=360),"hsba"==j[1].toLowerCase().slice(0,4)&&(g=B(i[3])),i[3]&&"%"==i[3].slice(-1)&&(g/=100),c.hsb2rgb(b,d,f,g)):j[6]?(i=j[6].split(L),b=B(i[0]),"%"==i[0].slice(-1)&&(b/=100),d=B(i[1]),"%"==i[1].slice(-1)&&(d/=100),f=B(i[2]),"%"==i[2].slice(-1)&&(f/=100),("deg"==i[0].slice(-3)||"°"==i[0].slice(-1))&&(b/=360),"hsla"==j[1].toLowerCase().slice(0,4)&&(g=B(i[3])),i[3]&&"%"==i[3].slice(-1)&&(g/=100),c.hsl2rgb(b,d,f,g)):(b=F(D.round(b),255),d=F(D.round(d),255),f=F(D.round(f),255),g=F(E(g,0),1),j={r:b,g:d,b:f,toString:Z},j.hex="#"+(16777216|f|d<<8|b<<16).toString(16).slice(1),j.opacity=e(g,"finite")?g:1,j)):{r:-1,g:-1,b:-1,hex:"none",error:1,toString:Z}},c),c.hsb=i(function(a,b,d){return c.hsb2rgb(a,b,d).hex}),c.hsl=i(function(a,b,d){return c.hsl2rgb(a,b,d).hex}),c.rgb=i(function(a,b,c,d){if(e(d,"finite")){var f=D.round;return"rgba("+[f(a),f(b),f(c),+d.toFixed(2)]+")"}return"#"+(16777216|c|b<<8|a<<16).toString(16).slice(1)});var W=function(a){var b=y.doc.getElementsByTagName("head")[0]||y.doc.getElementsByTagName("svg")[0],c="rgb(255, 0, 0)";return(W=i(function(a){if("red"==a.toLowerCase())return c;b.style.color=c,b.style.color=a;var d=y.doc.defaultView.getComputedStyle(b,I).getPropertyValue("color");return d==c?null:d}))(a)},X=function(){return"hsb("+[this.h,this.s,this.b]+")"},Y=function(){return"hsl("+[this.h,this.s,this.l]+")"},Z=function(){return 1==this.opacity||null==this.opacity?this.hex:"rgba("+[this.r,this.g,this.b,this.opacity]+")"},$=function(a,b,d){if(null==b&&e(a,"object")&&"r"in a&&"g"in a&&"b"in a&&(d=a.b,b=a.g,a=a.r),null==b&&e(a,string)){var f=c.getRGB(a);a=f.r,b=f.g,d=f.b}return(a>1||b>1||d>1)&&(a/=255,b/=255,d/=255),[a,b,d]},_=function(a,b,d,f){a=D.round(255*a),b=D.round(255*b),d=D.round(255*d);var g={r:a,g:b,b:d,opacity:e(f,"finite")?f:1,hex:c.rgb(a,b,d),toString:Z};return e(f,"finite")&&(g.opacity=f),g};c.color=function(a){var b;return e(a,"object")&&"h"in a&&"s"in a&&"b"in a?(b=c.hsb2rgb(a),a.r=b.r,a.g=b.g,a.b=b.b,a.opacity=1,a.hex=b.hex):e(a,"object")&&"h"in a&&"s"in a&&"l"in a?(b=c.hsl2rgb(a),a.r=b.r,a.g=b.g,a.b=b.b,a.opacity=1,a.hex=b.hex):(e(a,"string")&&(a=c.getRGB(a)),e(a,"object")&&"r"in a&&"g"in a&&"b"in a&&!("error"in a)?(b=c.rgb2hsl(a),a.h=b.h,a.s=b.s,a.l=b.l,b=c.rgb2hsb(a),a.v=b.b):(a={hex:"none"},a.r=a.g=a.b=a.h=a.s=a.v=a.l=-1,a.error=1)),a.toString=Z,a},c.hsb2rgb=function(a,b,c,d){e(a,"object")&&"h"in a&&"s"in a&&"b"in a&&(c=a.b,b=a.s,d=a.o,a=a.h),a*=360;var f,g,h,i,j;return a=a%360/60,j=c*b,i=j*(1-G(a%2-1)),f=g=h=c-j,a=~~a,f+=[j,i,0,0,i,j][a],g+=[i,j,j,i,0,0][a],h+=[0,0,i,j,j,i][a],_(f,g,h,d)},c.hsl2rgb=function(a,b,c,d){e(a,"object")&&"h"in a&&"s"in a&&"l"in a&&(c=a.l,b=a.s,a=a.h),(a>1||b>1||c>1)&&(a/=360,b/=100,c/=100),a*=360;var f,g,h,i,j;return a=a%360/60,j=2*b*(.5>c?c:1-c),i=j*(1-G(a%2-1)),f=g=h=c-j/2,a=~~a,f+=[j,i,0,0,i,j][a],g+=[i,j,j,i,0,0][a],h+=[0,0,i,j,j,i][a],_(f,g,h,d)},c.rgb2hsb=function(a,b,c){c=$(a,b,c),a=c[0],b=c[1],c=c[2];var d,e,f,g;return f=E(a,b,c),g=f-F(a,b,c),d=0==g?null:f==a?(b-c)/g:f==b?(c-a)/g+2:(a-b)/g+4,d=(d+360)%6*60/360,e=0==g?0:g/f,{h:d,s:e,b:f,toString:X}},c.rgb2hsl=function(a,b,c){c=$(a,b,c),a=c[0],b=c[1],c=c[2];var d,e,f,g,h,i;return g=E(a,b,c),h=F(a,b,c),i=g-h,d=0==i?null:g==a?(b-c)/i:g==b?(c-a)/i+2:(a-b)/i+4,d=(d+360)%6*60/360,f=(g+h)/2,e=0==i?0:.5>f?i/(2*f):i/(2-2*f),{h:d,s:e,l:f,toString:Y}},c.parsePathString=function(a){if(!a)return null;var b=c.path(a);if(b.arr)return c.path.clone(b.arr);var d={a:7,c:6,o:2,h:1,l:2,m:2,r:4,q:4,s:4,t:2,v:1,u:3,z:0},f=[];return e(a,"array")&&e(a[0],"array")&&(f=c.path.clone(a)),f.length||A(a).replace(N,function(a,b,c){var e=[],g=b.toLowerCase();if(c.replace(P,function(a,b){b&&e.push(+b)}),"m"==g&&e.length>2&&(f.push([b].concat(e.splice(0,2))),g="l",b="m"==b?"l":"L"),"o"==g&&1==e.length&&f.push([b,e[0]]),"r"==g)f.push([b].concat(e));else for(;e.length>=d[g]&&(f.push([b].concat(e.splice(0,d[g]))),d[g]););}),f.toString=c.path.toString,b.arr=c.path.clone(f),f};var aa=c.parseTransformString=function(a){if(!a)return null;var b=[];return e(a,"array")&&e(a[0],"array")&&(b=c.path.clone(a)),b.length||A(a).replace(O,function(a,c,d){var e=[];c.toLowerCase();d.replace(P,function(a,b){b&&e.push(+b)}),b.push([c].concat(e))}),b.toString=c.path.toString,b};c._.svgTransform2string=m,c._.rgTransform=/^[a-z][\s]*-?\.?\d/i,c._.transform2matrix=n,c._unit2px=q;y.doc.contains||y.doc.compareDocumentPosition?function(a,b){var c=9==a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a==d||!(!d||1!=d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)for(;b;)if(b=b.parentNode,b==a)return!0;return!1};c._.getSomeDefs=o,c._.getSomeSVG=p,c.select=function(a){return a=A(a).replace(/([^\\]):/g,"$1\\:"),w(y.doc.querySelector(a))},c.selectAll=function(a){for(var b=y.doc.querySelectorAll(a),d=(c.set||Array)(),e=0;ei;i++)h[g[i].nodeName]=g[i].nodeValue;return h}if(e(a,"string")){if(!(arguments.length>1))return b("snap.util.getattr."+a,d).firstDefined();var k={};k[a]=c,a=k}for(var l in a)a[z](l)&&b("snap.util.attr."+l,d,a[l]);return d},c.parse=function(a){var b=y.doc.createDocumentFragment(),c=!0,d=y.doc.createElement("div");if(a=A(a),a.match(/^\s*<\s*svg(?:\s|>)/)||(a=""+a+"",c=!1),d.innerHTML=a,a=d.getElementsByTagName("svg")[0])if(c)b=a;else for(;a.firstChild;)b.appendChild(a.firstChild);return new t(b)},c.fragment=function(){for(var a=Array.prototype.slice.call(arguments,0),b=y.doc.createDocumentFragment(),d=0,e=a.length;e>d;d++){var f=a[d];f.node&&f.node.nodeType&&b.appendChild(f.node),f.nodeType&&b.appendChild(f),"string"==typeof f&&b.appendChild(c.parse(f).node)}return new t(b)},c._.make=u,c._.wrap=w,v.prototype.el=function(a,b){var c=u(a,this.node);return b&&c.attr(b),c},s.prototype.children=function(){for(var a=[],b=this.node.childNodes,d=0,e=b.length;e>d;d++)a[d]=c(b[d]);return a},s.prototype.toJSON=function(){var a=[];return x([this],a),a[0]},b.on("snap.util.getattr",function(){var a=b.nt();a=a.substring(a.lastIndexOf(".")+1);var c=a.replace(/[A-Z]/g,function(a){return"-"+a.toLowerCase()});return ba[z](c)?this.node.ownerDocument.defaultView.getComputedStyle(this.node,null).getPropertyValue(c):d(this.node,a)});var ba={"alignment-baseline":0,"baseline-shift":0,clip:0,"clip-path":0,"clip-rule":0,color:0,"color-interpolation":0,"color-interpolation-filters":0,"color-profile":0,"color-rendering":0,cursor:0,direction:0,display:0,"dominant-baseline":0,"enable-background":0,fill:0,"fill-opacity":0,"fill-rule":0,filter:0,"flood-color":0,"flood-opacity":0,font:0,"font-family":0,"font-size":0,"font-size-adjust":0,"font-stretch":0,"font-style":0,"font-variant":0,"font-weight":0,"glyph-orientation-horizontal":0,"glyph-orientation-vertical":0,"image-rendering":0,kerning:0,"letter-spacing":0,"lighting-color":0,marker:0,"marker-end":0,"marker-mid":0,"marker-start":0,mask:0,opacity:0,overflow:0,"pointer-events":0,"shape-rendering":0,"stop-color":0,"stop-opacity":0,stroke:0,"stroke-dasharray":0,"stroke-dashoffset":0,"stroke-linecap":0,"stroke-linejoin":0,"stroke-miterlimit":0,"stroke-opacity":0,"stroke-width":0,"text-anchor":0,"text-decoration":0,"text-rendering":0,"unicode-bidi":0,visibility:0,"word-spacing":0,"writing-mode":0};b.on("snap.util.attr",function(a){var c=b.nt(),e={};c=c.substring(c.lastIndexOf(".")+1),e[c]=a;var f=c.replace(/-(\w)/gi,function(a,b){return b.toUpperCase()}),g=c.replace(/[A-Z]/g,function(a){return"-"+a.toLowerCase()});ba[z](g)?this.node.style[f]=null==a?I:a:d(this.node,e)}),function(a){}(v.prototype),c.ajax=function(a,c,d,f){var g=new XMLHttpRequest,h=S();if(g){if(e(c,"function"))f=d,d=c,c=null;else if(e(c,"object")){var i=[];for(var j in c)c.hasOwnProperty(j)&&i.push(encodeURIComponent(j)+"="+encodeURIComponent(c[j]));c=i.join("&")}return g.open(c?"POST":"GET",a,!0),c&&(g.setRequestHeader("X-Requested-With","XMLHttpRequest"),g.setRequestHeader("Content-type","application/x-www-form-urlencoded")),d&&(b.once("snap.ajax."+h+".0",d),b.once("snap.ajax."+h+".200",d),b.once("snap.ajax."+h+".304",d)),g.onreadystatechange=function(){4==g.readyState&&b("snap.ajax."+h+"."+g.status,f,g)},4==g.readyState?g:(g.send(c),g)}},c.load=function(a,b,d){c.ajax(a,function(a){var e=c.parse(a.responseText);d?b.call(d,e):b(e)})};var ca=function(a){var b=a.getBoundingClientRect(),c=a.ownerDocument,d=c.body,e=c.documentElement,f=e.clientTop||d.clientTop||0,h=e.clientLeft||d.clientLeft||0,i=b.top+(g.win.pageYOffset||e.scrollTop||d.scrollTop)-f,j=b.left+(g.win.pageXOffset||e.scrollLeft||d.scrollLeft)-h;return{y:i,x:j}};return c.getElementByPoint=function(a,b){var c=this,d=(c.canvas,y.doc.elementFromPoint(a,b));if(y.win.opera&&"svg"==d.tagName){var e=ca(d),f=d.createSVGRect();f.x=a-e.x,f.y=b-e.y,f.width=f.height=1;var g=d.getIntersectionList(f,null);g.length&&(d=g[g.length-1])}return d?w(d):null},c.plugin=function(a){a(c,s,v,y,t)},y.win.Snap=c,c}(a||this);return d.plugin(function(c,d,e,f,g){function h(a,b){if(null==b){var d=!0;if(b="linearGradient"==a.type||"radialGradient"==a.type?a.node.getAttribute("gradientTransform"):"pattern"==a.type?a.node.getAttribute("patternTransform"):a.node.getAttribute("transform"),!b)return new c.Matrix;b=c._.svgTransform2string(b)}else b=c._.rgTransform.test(b)?m(b).replace(/\.{3}|\u2026/g,a._.transform||""):c._.svgTransform2string(b),l(b,"array")&&(b=c.path?c.path.toString.call(b):m(b)),a._.transform=b;var e=c._.transform2matrix(b,a.getBBox(1));return d?e:void(a.matrix=e)}function i(a){function b(a,b){var d=o(a.node,b);d=d&&d.match(g),d=d&&d[2],d&&"#"==d.charAt()&&(d=d.substring(1),d&&(i[d]=(i[d]||[]).concat(function(d){var e={};e[b]=c.url(d),o(a.node,e)})))}function d(a){var b=o(a.node,"xlink:href");b&&"#"==b.charAt()&&(b=b.substring(1),b&&(i[b]=(i[b]||[]).concat(function(b){a.attr("xlink:href","#"+b)})))}for(var e,f=a.selectAll("*"),g=/^\s*url\(("|'|)(.*)\1\)\s*$/,h=[],i={},j=0,k=f.length;k>j;j++){e=f[j],b(e,"fill"),b(e,"stroke"),b(e,"filter"),b(e,"mask"),b(e,"clip-path"),d(e);var l=o(e.node,"id");l&&(o(e.node,{id:e.id}),h.push({old:l,id:e.id}))}for(j=0,k=h.length;k>j;j++){var m=i[h[j].old];if(m)for(var n=0,p=m.length;p>n;n++)m[n](h[j].id)}}function j(a){return function(){var b=a?"<"+this.type:"",c=this.node.attributes,d=this.node.childNodes;if(a)for(var e=0,f=c.length;f>e;e++)b+=" "+c[e].name+'="'+c[e].value.replace(/"/g,'\\"')+'"';if(d.length){for(a&&(b+=">"),e=0,f=d.length;f>e;e++)3==d[e].nodeType?b+=d[e].nodeValue:1==d[e].nodeType&&(b+=s(d[e]).toString());a&&(b+="")}else a&&(b+="/>");return b}}var k=d.prototype,l=c.is,m=String,n=c._unit2px,o=c._.$,p=c._.make,q=c._.getSomeDefs,r="hasOwnProperty",s=c._.wrap;k.getBBox=function(a){if("tspan"==this.type)return c._.box(this.node.getClientRects().item(0));if(!c.Matrix||!c.path)return this.node.getBBox();var b=this,d=new c.Matrix;if(b.removed)return c._.box();for(;"use"==b.type;)if(a||(d=d.add(b.transform().localMatrix.translate(b.attr("x")||0,b.attr("y")||0))),b.original)b=b.original;else{var e=b.attr("xlink:href");b=b.original=b.node.ownerDocument.getElementById(e.substring(e.indexOf("#")+1))}var f=b._,g=c.path.get[b.type]||c.path.get.deflt;try{return a?(f.bboxwt=g?c.path.getBBox(b.realPath=g(b)):c._.box(b.node.getBBox()),c._.box(f.bboxwt)):(b.realPath=g(b),b.matrix=b.transform().localMatrix,f.bbox=c.path.getBBox(c.path.map(b.realPath,d.add(b.matrix))),c._.box(f.bbox))}catch(h){return c._.box()}};var t=function(){return this.string};k.transform=function(a){var b=this._;if(null==a){for(var d,e=this,f=new c.Matrix(this.node.getCTM()),g=h(this),i=[g],j=new c.Matrix,k=g.toTransformString(),l=m(g)==m(this.matrix)?m(b.transform):k;"svg"!=e.type&&(e=e.parent());)i.push(h(e));for(d=i.length;d--;)j.add(i[d]);return{string:l,globalMatrix:f,totalMatrix:j,localMatrix:g,diffMatrix:f.clone().add(g.invert()),global:f.toTransformString(),total:j.toTransformString(),local:k,toString:t}}return a instanceof c.Matrix?(this.matrix=a,this._.transform=a.toTransformString()):h(this,a),this.node&&("linearGradient"==this.type||"radialGradient"==this.type?o(this.node,{gradientTransform:this.matrix}):"pattern"==this.type?o(this.node,{patternTransform:this.matrix}):o(this.node,{transform:this.matrix})),this},k.parent=function(){return s(this.node.parentNode)},k.append=k.add=function(a){if(a){if("set"==a.type){var b=this;return a.forEach(function(a){b.add(a)}),this}a=s(a),this.node.appendChild(a.node),a.paper=this.paper}return this},k.appendTo=function(a){return a&&(a=s(a),a.append(this)),this},k.prepend=function(a){if(a){if("set"==a.type){var b,c=this;return a.forEach(function(a){b?b.after(a):c.prepend(a),b=a}),this}a=s(a);var d=a.parent();this.node.insertBefore(a.node,this.node.firstChild),this.add&&this.add(),a.paper=this.paper,this.parent()&&this.parent().add(),d&&d.add()}return this},k.prependTo=function(a){return a=s(a),a.prepend(this),this},k.before=function(a){if("set"==a.type){var b=this;return a.forEach(function(a){var c=a.parent();b.node.parentNode.insertBefore(a.node,b.node),c&&c.add()}),this.parent().add(),this}a=s(a);var c=a.parent();return this.node.parentNode.insertBefore(a.node,this.node),this.parent()&&this.parent().add(),c&&c.add(),a.paper=this.paper,this},k.after=function(a){a=s(a);var b=a.parent();return this.node.nextSibling?this.node.parentNode.insertBefore(a.node,this.node.nextSibling):this.node.parentNode.appendChild(a.node),this.parent()&&this.parent().add(),b&&b.add(),a.paper=this.paper,this},k.insertBefore=function(a){a=s(a);var b=this.parent();return a.node.parentNode.insertBefore(this.node,a.node),this.paper=a.paper,b&&b.add(),a.parent()&&a.parent().add(),this},k.insertAfter=function(a){a=s(a);var b=this.parent();return a.node.parentNode.insertBefore(this.node,a.node.nextSibling),this.paper=a.paper,b&&b.add(),a.parent()&&a.parent().add(),this},k.remove=function(){var a=this.parent();return this.node.parentNode&&this.node.parentNode.removeChild(this.node),delete this.paper,this.removed=!0,a&&a.add(),this},k.select=function(a){return s(this.node.querySelector(a))},k.selectAll=function(a){for(var b=this.node.querySelectorAll(a),d=(c.set||Array)(),e=0;e{contents}',{x:+b.x.toFixed(3),y:+b.y.toFixed(3),width:+b.width.toFixed(3),height:+b.height.toFixed(3), +contents:this.outerSVG()});return"data:image/svg+xml;base64,"+btoa(unescape(encodeURIComponent(d)))}},g.prototype.select=k.select,g.prototype.selectAll=k.selectAll}),d.plugin(function(a,d,e,f,g){function h(a,b,c){return function(d){var e=d.slice(a,b);return 1==e.length&&(e=e[0]),c?c(e):e}}var i=d.prototype,j=a.is,k=String,l="hasOwnProperty",m=function(a,b,d,e){"function"!=typeof d||d.length||(e=d,d=c.linear),this.attr=a,this.dur=b,d&&(this.easing=d),e&&(this.callback=e)};a._.Animation=m,a.animation=function(a,b,c,d){return new m(a,b,c,d)},i.inAnim=function(){var a=this,b=[];for(var c in a.anims)a.anims[l](c)&&!function(a){b.push({anim:new m(a._attrs,a.dur,a.easing,a._callback),mina:a,curStatus:a.status(),status:function(b){return a.status(b)},stop:function(){a.stop()}})}(a.anims[c]);return b},a.animate=function(a,d,e,f,g,h){"function"!=typeof g||g.length||(h=g,g=c.linear);var i=c.time(),j=c(a,d,i,i+f,c.time,e,g);return h&&b.once("mina.finish."+j.id,h),j},i.stop=function(){for(var a=this.inAnim(),b=0,c=a.length;c>b;b++)a[b].stop();return this},i.animate=function(a,d,e,f){"function"!=typeof e||e.length||(f=e,e=c.linear),a instanceof m&&(f=a.callback,e=a.easing,d=a.dur,a=a.attr);var g,i,n,o,p=[],q=[],r={},s=this;for(var t in a)if(a[l](t)){s.equal?(o=s.equal(t,k(a[t])),g=o.from,i=o.to,n=o.f):(g=+s.attr(t),i=+a[t]);var u=j(g,"array")?g.length:1;r[t]=h(p.length,p.length+u,n),p=p.concat(g),q=q.concat(i)}var v=c.time(),w=c(p,q,v,v+d,c.time,function(a){var b={};for(var c in r)r[l](c)&&(b[c]=r[c](a));s.attr(b)},e);return s.anims[w.id]=w,w._attrs=a,w._callback=f,b("snap.animcreated."+s.id,w),b.once("mina.finish."+w.id,function(){b.off("mina.*."+w.id),delete s.anims[w.id],f&&f.call(s)}),b.once("mina.stop."+w.id,function(){b.off("mina.*."+w.id),delete s.anims[w.id]}),s}}),d.plugin(function(a,b,c,d,e){function f(a,b,c,d,e,f){return null==b&&"[object SVGMatrix]"==g.call(a)?(this.a=a.a,this.b=a.b,this.c=a.c,this.d=a.d,this.e=a.e,void(this.f=a.f)):void(null!=a?(this.a=+a,this.b=+b,this.c=+c,this.d=+d,this.e=+e,this.f=+f):(this.a=1,this.b=0,this.c=0,this.d=1,this.e=0,this.f=0))}var g=Object.prototype.toString,h=String,i=Math,j="";!function(b){function c(a){return a[0]*a[0]+a[1]*a[1]}function d(a){var b=i.sqrt(c(a));a[0]&&(a[0]/=b),a[1]&&(a[1]/=b)}b.add=function(a,b,c,d,e,g){if(a&&a instanceof f)return this.add(a.a,a.b,a.c,a.d,a.e,a.f);var h=a*this.a+b*this.c,i=a*this.b+b*this.d;return this.e+=e*this.a+g*this.c,this.f+=e*this.b+g*this.d,this.c=c*this.a+d*this.c,this.d=c*this.b+d*this.d,this.a=h,this.b=i,this},f.prototype.multLeft=function(a,b,c,d,e,g){if(a&&a instanceof f)return this.multLeft(a.a,a.b,a.c,a.d,a.e,a.f);var h=a*this.a+c*this.b,i=a*this.c+c*this.d,j=a*this.e+c*this.f+e;return this.b=b*this.a+d*this.b,this.d=b*this.c+d*this.d,this.f=b*this.e+d*this.f+g,this.a=h,this.c=i,this.e=j,this},b.invert=function(){var a=this,b=a.a*a.d-a.b*a.c;return new f(a.d/b,-a.b/b,-a.c/b,a.a/b,(a.c*a.f-a.d*a.e)/b,(a.b*a.e-a.a*a.f)/b)},b.clone=function(){return new f(this.a,this.b,this.c,this.d,this.e,this.f)},b.translate=function(a,b){return this.e+=a*this.a+b*this.c,this.f+=a*this.b+b*this.d,this},b.scale=function(a,b,c,d){return null==b&&(b=a),(c||d)&&this.translate(c,d),this.a*=a,this.b*=a,this.c*=b,this.d*=b,(c||d)&&this.translate(-c,-d),this},b.rotate=function(b,c,d){b=a.rad(b),c=c||0,d=d||0;var e=+i.cos(b).toFixed(9),f=+i.sin(b).toFixed(9);return this.add(e,f,-f,e,c,d),this.add(1,0,0,1,-c,-d)},b.skewX=function(a){return this.skew(a,0)},b.skewY=function(a){return this.skew(0,a)},b.skew=function(b,c){b=b||0,c=c||0,b=a.rad(b),c=a.rad(c);var d=i.tan(b).toFixed(9),e=i.tan(c).toFixed(9);return this.add(1,e,d,1,0,0)},b.x=function(a,b){return a*this.a+b*this.c+this.e},b.y=function(a,b){return a*this.b+b*this.d+this.f},b.get=function(a){return+this[h.fromCharCode(97+a)].toFixed(4)},b.toString=function(){return"matrix("+[this.get(0),this.get(1),this.get(2),this.get(3),this.get(4),this.get(5)].join()+")"},b.offset=function(){return[this.e.toFixed(4),this.f.toFixed(4)]},b.determinant=function(){return this.a*this.d-this.b*this.c},b.split=function(){var b={};b.dx=this.e,b.dy=this.f;var e=[[this.a,this.b],[this.c,this.d]];b.scalex=i.sqrt(c(e[0])),d(e[0]),b.shear=e[0][0]*e[1][0]+e[0][1]*e[1][1],e[1]=[e[1][0]-e[0][0]*b.shear,e[1][1]-e[0][1]*b.shear],b.scaley=i.sqrt(c(e[1])),d(e[1]),b.shear/=b.scaley,this.determinant()<0&&(b.scalex=-b.scalex);var f=e[0][1],g=e[1][1];return 0>g?(b.rotate=a.deg(i.acos(g)),0>f&&(b.rotate=360-b.rotate)):b.rotate=a.deg(i.asin(f)),b.isSimple=!(+b.shear.toFixed(9)||b.scalex.toFixed(9)!=b.scaley.toFixed(9)&&b.rotate),b.isSuperSimple=!+b.shear.toFixed(9)&&b.scalex.toFixed(9)==b.scaley.toFixed(9)&&!b.rotate,b.noRotation=!+b.shear.toFixed(9)&&!b.rotate,b},b.toTransformString=function(a){var b=a||this.split();return+b.shear.toFixed(9)?"m"+[this.get(0),this.get(1),this.get(2),this.get(3),this.get(4),this.get(5)]:(b.scalex=+b.scalex.toFixed(4),b.scaley=+b.scaley.toFixed(4),b.rotate=+b.rotate.toFixed(4),(b.dx||b.dy?"t"+[+b.dx.toFixed(4),+b.dy.toFixed(4)]:j)+(b.rotate?"r"+[+b.rotate.toFixed(4),0,0]:j)+(1!=b.scalex||1!=b.scaley?"s"+[b.scalex,b.scaley,0,0]:j))}}(f.prototype),a.Matrix=f,a.matrix=function(a,b,c,d,e,g){return new f(a,b,c,d,e,g)}}),d.plugin(function(a,c,d,e,f){function g(d){return function(e){if(b.stop(),e instanceof f&&1==e.node.childNodes.length&&("radialGradient"==e.node.firstChild.tagName||"linearGradient"==e.node.firstChild.tagName||"pattern"==e.node.firstChild.tagName)&&(e=e.node.firstChild,n(this).appendChild(e),e=l(e)),e instanceof c)if("radialGradient"==e.type||"linearGradient"==e.type||"pattern"==e.type){e.node.id||p(e.node,{id:e.id});var g=q(e.node.id)}else g=e.attr(d);else if(g=a.color(e),g.error){var h=a(n(this).ownerSVGElement).gradient(e);h?(h.node.id||p(h.node,{id:h.id}),g=q(h.node.id)):g=e}else g=r(g);var i={};i[d]=g,p(this.node,i),this.node.style[d]=t}}function h(a){b.stop(),a==+a&&(a+="px"),this.node.style.fontSize=a}function i(a){for(var b=[],c=a.childNodes,d=0,e=c.length;e>d;d++){var f=c[d];3==f.nodeType&&b.push(f.nodeValue),"tspan"==f.tagName&&(1==f.childNodes.length&&3==f.firstChild.nodeType?b.push(f.firstChild.nodeValue):b.push(i(f)))}return b}function j(){return b.stop(),this.node.style.fontSize}var k=a._.make,l=a._.wrap,m=a.is,n=a._.getSomeDefs,o=/^url\((['"]?)([^)]+)\1\)$/,p=a._.$,q=a.url,r=String,s=a._.separator,t="";a.deurl=function(a){var b=String(a).match(o);return b?b[2]:a},b.on("snap.util.attr.mask",function(a){if(a instanceof c||a instanceof f){if(b.stop(),a instanceof f&&1==a.node.childNodes.length&&(a=a.node.firstChild,n(this).appendChild(a),a=l(a)),"mask"==a.type)var d=a;else d=k("mask",n(this)),d.node.appendChild(a.node);!d.node.id&&p(d.node,{id:d.id}),p(this.node,{mask:q(d.id)})}}),function(a){b.on("snap.util.attr.clip",a),b.on("snap.util.attr.clip-path",a),b.on("snap.util.attr.clipPath",a)}(function(a){if(a instanceof c||a instanceof f){b.stop();for(var d,e=a.node;e;){if("clipPath"===e.nodeName){d=new c(e);break}if("svg"===e.nodeName){d=void 0;break}e=e.parentNode}d||(d=k("clipPath",n(this)),d.node.appendChild(a.node),!d.node.id&&p(d.node,{id:d.id})),p(this.node,{"clip-path":q(d.node.id||d.id)})}}),b.on("snap.util.attr.fill",g("fill")),b.on("snap.util.attr.stroke",g("stroke"));var u=/^([lr])(?:\(([^)]*)\))?(.*)$/i;b.on("snap.util.grad.parse",function(a){function b(a,b){for(var c=(b-h)/(a-i),d=i;a>d;d++)f[d].offset=+(+h+c*(d-i)).toFixed(2);i=a,h=b}a=r(a);var c=a.match(u);if(!c)return null;var d=c[1],e=c[2],f=c[3];e=e.split(/\s*,\s*/).map(function(a){return+a==a?+a:a}),1==e.length&&0==e[0]&&(e=[]),f=f.split("-"),f=f.map(function(a){a=a.split(":");var b={color:a[0]};return a[1]&&(b.offset=parseFloat(a[1])),b});var g=f.length,h=0,i=0;g--;for(var j=0;g>j;j++)"offset"in f[j]&&b(j,f[j].offset);return f[g].offset=f[g].offset||100,b(g,f[g].offset),{type:d,params:e,stops:f}}),b.on("snap.util.attr.d",function(c){b.stop(),m(c,"array")&&m(c[0],"array")&&(c=a.path.toString.call(c)),c=r(c),c.match(/[ruo]/i)&&(c=a.path.toAbsolute(c)),p(this.node,{d:c})})(-1),b.on("snap.util.attr.#text",function(a){b.stop(),a=r(a);for(var c=e.doc.createTextNode(a);this.node.firstChild;)this.node.removeChild(this.node.firstChild);this.node.appendChild(c)})(-1),b.on("snap.util.attr.path",function(a){b.stop(),this.attr({d:a})})(-1),b.on("snap.util.attr.class",function(a){b.stop(),this.node.className.baseVal=a})(-1),b.on("snap.util.attr.viewBox",function(a){var c;c=m(a,"object")&&"x"in a?[a.x,a.y,a.width,a.height].join(" "):m(a,"array")?a.join(" "):a,p(this.node,{viewBox:c}),b.stop()})(-1),b.on("snap.util.attr.transform",function(a){this.transform(a),b.stop()})(-1),b.on("snap.util.attr.r",function(a){"rect"==this.type&&(b.stop(),p(this.node,{rx:a,ry:a}))})(-1),b.on("snap.util.attr.textpath",function(a){if(b.stop(),"text"==this.type){var d,e,f;if(!a&&this.textPath){for(e=this.textPath;e.node.firstChild;)this.node.appendChild(e.node.firstChild);return e.remove(),void delete this.textPath}if(m(a,"string")){var g=n(this),h=l(g.parentNode).path(a);g.appendChild(h.node),d=h.id,h.attr({id:d})}else a=l(a),a instanceof c&&(d=a.attr("id"),d||(d=a.id,a.attr({id:d})));if(d)if(e=this.textPath,f=this.node,e)e.attr({"xlink:href":"#"+d});else{for(e=p("textPath",{"xlink:href":"#"+d});f.firstChild;)e.appendChild(f.firstChild);f.appendChild(e),this.textPath=l(e)}}})(-1),b.on("snap.util.attr.text",function(a){if("text"==this.type){for(var c=this.node,d=function(a){var b=p("tspan");if(m(a,"array"))for(var c=0;c1&&(a=Array.prototype.slice.call(arguments,0));var b={};return i(a,"object")&&!i(a,"array")?b=a:null!=a&&(b={points:a}),this.el("polyline",b)},h.polygon=function(a){arguments.length>1&&(a=Array.prototype.slice.call(arguments,0));var b={};return i(a,"object")&&!i(a,"array")?b=a:null!=a&&(b={points:a}),this.el("polygon",b)},function(){function d(){return this.selectAll("stop")}function e(a,b){var d=l("stop"),e={offset:+b+"%"};a=c.color(a),e["stop-color"]=a.hex,a.opacity<1&&(e["stop-opacity"]=a.opacity),l(d,e);for(var f,g=this.stops(),h=0;hb){this.node.insertBefore(d,g[h].node),f=!0;break}}return f||this.node.appendChild(d),this}function f(){if("linearGradient"==this.type){var a=l(this.node,"x1")||0,b=l(this.node,"x2")||1,d=l(this.node,"y1")||0,e=l(this.node,"y2")||0;return c._.box(a,d,math.abs(b-a),math.abs(e-d))}var f=this.node.cx||.5,g=this.node.cy||.5,h=this.node.r||0;return c._.box(f-h,g-h,2*h,2*h)}function g(a){var d=a,e=this.stops();if("string"==typeof a&&(d=b("snap.util.grad.parse",null,"l(0,0,0,1)"+a).firstDefined().stops),c.is(d,"array")){for(var f=0;fh;h++){var i=f[h];d.addStop(i.color,i.offset)}return d}function j(a,b,h,i,j){var k=c._.make("linearGradient",a);return k.stops=d,k.addStop=e,k.getBBox=f,k.setStops=g,null!=b&&l(k.node,{x1:b,y1:h,x2:i,y2:j}),k}function k(a,b,g,h,i,j){var k=c._.make("radialGradient",a);return k.stops=d,k.addStop=e,k.getBBox=f,null!=b&&l(k.node,{cx:b,cy:g,r:h}),null!=i&&null!=j&&l(k.node,{fx:i,fy:j}),k}var l=c._.$;h.gradient=function(a){return i(this.defs,a)},h.gradientLinear=function(a,b,c,d){return j(this.defs,a,b,c,d)},h.gradientRadial=function(a,b,c,d,e){return k(this.defs,a,b,c,d,e)},h.toString=function(){var a,b=this.node.ownerDocument,d=b.createDocumentFragment(),e=b.createElement("div"),f=this.node.cloneNode(!0);return d.appendChild(e),e.appendChild(f),c._.$(f,{xmlns:"http://www.w3.org/2000/svg"}),a=e.innerHTML,d.removeChild(d.firstChild),a},h.toDataURL=function(){return a&&a.btoa?"data:image/svg+xml;base64,"+btoa(unescape(encodeURIComponent(this))):void 0},h.clear=function(){for(var a,b=this.node.firstChild;b;)a=b.nextSibling,"defs"!=b.tagName?b.parentNode.removeChild(b):h.clear.call({node:b}),b=a}}()}),d.plugin(function(a,b,c,d){function e(a){var b=e.ps=e.ps||{};return b[a]?b[a].sleep=100:b[a]={sleep:100},setTimeout(function(){for(var c in b)b[M](c)&&c!=a&&(b[c].sleep--,!b[c].sleep&&delete b[c])}),b[a]}function f(a,b,c,d){return null==a&&(a=b=c=d=0),null==b&&(b=a.y,c=a.width,d=a.height,a=a.x),{x:a,y:b,width:c,w:c,height:d,h:d,x2:a+c,y2:b+d,cx:a+c/2,cy:b+d/2,r1:P.min(c,d)/2,r2:P.max(c,d)/2,r0:P.sqrt(c*c+d*d)/2,path:y(a,b,c,d),vb:[a,b,c,d].join(" ")}}function g(){return this.join(",").replace(N,"$1")}function h(a){var b=L(a);return b.toString=g,b}function i(a,b,c,d,e,f,g,h,i){return null==i?p(a,b,c,d,e,f,g,h):k(a,b,c,d,e,f,g,h,q(a,b,c,d,e,f,g,h,i))}function j(c,d){function e(a){return+(+a).toFixed(3)}return a._.cacher(function(a,f,g){a instanceof b&&(a=a.attr("d")),a=G(a);for(var h,j,l,m,n,o="",p={},q=0,r=0,s=a.length;s>r;r++){if(l=a[r],"M"==l[0])h=+l[1],j=+l[2];else{if(m=i(h,j,l[1],l[2],l[3],l[4],l[5],l[6]),q+m>f){if(d&&!p.start){if(n=i(h,j,l[1],l[2],l[3],l[4],l[5],l[6],f-q),o+=["C"+e(n.start.x),e(n.start.y),e(n.m.x),e(n.m.y),e(n.x),e(n.y)],g)return o;p.start=o,o=["M"+e(n.x),e(n.y)+"C"+e(n.n.x),e(n.n.y),e(n.end.x),e(n.end.y),e(l[5]),e(l[6])].join(),q+=m,h=+l[5],j=+l[6];continue}if(!c&&!d)return n=i(h,j,l[1],l[2],l[3],l[4],l[5],l[6],f-q)}q+=m,h=+l[5],j=+l[6]}o+=l.shift()+l}return p.end=o,n=c?q:d?p:k(h,j,l[0],l[1],l[2],l[3],l[4],l[5],1)},null,a._.clone)}function k(a,b,c,d,e,f,g,h,i){var j=1-i,k=T(j,3),l=T(j,2),m=i*i,n=m*i,o=k*a+3*l*i*c+3*j*i*i*e+n*g,p=k*b+3*l*i*d+3*j*i*i*f+n*h,q=a+2*i*(c-a)+m*(e-2*c+a),r=b+2*i*(d-b)+m*(f-2*d+b),s=c+2*i*(e-c)+m*(g-2*e+c),t=d+2*i*(f-d)+m*(h-2*f+d),u=j*a+i*c,v=j*b+i*d,w=j*e+i*g,x=j*f+i*h,y=90-180*P.atan2(q-s,r-t)/Q;return{x:o,y:p,m:{x:q,y:r},n:{x:s,y:t},start:{x:u,y:v},end:{x:w,y:x},alpha:y}}function l(b,c,d,e,g,h,i,j){a.is(b,"array")||(b=[b,c,d,e,g,h,i,j]);var k=F.apply(null,b);return f(k.min.x,k.min.y,k.max.x-k.min.x,k.max.y-k.min.y)}function m(a,b,c){return b>=a.x&&b<=a.x+a.width&&c>=a.y&&c<=a.y+a.height}function n(a,b){return a=f(a),b=f(b),m(b,a.x,a.y)||m(b,a.x2,a.y)||m(b,a.x,a.y2)||m(b,a.x2,a.y2)||m(a,b.x,b.y)||m(a,b.x2,b.y)||m(a,b.x,b.y2)||m(a,b.x2,b.y2)||(a.xb.x||b.xa.x)&&(a.yb.y||b.ya.y)}function o(a,b,c,d,e){var f=-3*b+9*c-9*d+3*e,g=a*f+6*b-12*c+6*d;return a*g-3*b+3*c}function p(a,b,c,d,e,f,g,h,i){null==i&&(i=1),i=i>1?1:0>i?0:i;for(var j=i/2,k=12,l=[-.1252,.1252,-.3678,.3678,-.5873,.5873,-.7699,.7699,-.9041,.9041,-.9816,.9816],m=[.2491,.2491,.2335,.2335,.2032,.2032,.1601,.1601,.1069,.1069,.0472,.0472],n=0,p=0;k>p;p++){var q=j*l[p]+j,r=o(q,a,c,e,g),s=o(q,b,d,f,h),t=r*r+s*s;n+=m[p]*P.sqrt(t)}return j*n}function q(a,b,c,d,e,f,g,h,i){if(!(0>i||p(a,b,c,d,e,f,g,h)n;)l/=2,m+=(i>j?1:-1)*l,j=p(a,b,c,d,e,f,g,h,m);return m}}function r(a,b,c,d,e,f,g,h){if(!(S(a,c)S(e,g)||S(b,d)S(f,h))){var i=(a*d-b*c)*(e-g)-(a-c)*(e*h-f*g),j=(a*d-b*c)*(f-h)-(b-d)*(e*h-f*g),k=(a-c)*(f-h)-(b-d)*(e-g);if(k){var l=i/k,m=j/k,n=+l.toFixed(2),o=+m.toFixed(2);if(!(n<+R(a,c).toFixed(2)||n>+S(a,c).toFixed(2)||n<+R(e,g).toFixed(2)||n>+S(e,g).toFixed(2)||o<+R(b,d).toFixed(2)||o>+S(b,d).toFixed(2)||o<+R(f,h).toFixed(2)||o>+S(f,h).toFixed(2)))return{x:l,y:m}}}}function s(a,b,c){var d=l(a),e=l(b);if(!n(d,e))return c?0:[];for(var f=p.apply(0,a),g=p.apply(0,b),h=~~(f/8),i=~~(g/8),j=[],m=[],o={},q=c?0:[],s=0;h+1>s;s++){var t=k.apply(0,a.concat(s/h));j.push({x:t.x,y:t.y,t:s/h})}for(s=0;i+1>s;s++)t=k.apply(0,b.concat(s/i)),m.push({x:t.x,y:t.y,t:s/i});for(s=0;h>s;s++)for(var u=0;i>u;u++){var v=j[s],w=j[s+1],x=m[u],y=m[u+1],z=U(w.x-v.x)<.001?"y":"x",A=U(y.x-x.x)<.001?"y":"x",B=r(v.x,v.y,w.x,w.y,x.x,x.y,y.x,y.y);if(B){if(o[B.x.toFixed(4)]==B.y.toFixed(4))continue;o[B.x.toFixed(4)]=B.y.toFixed(4);var C=v.t+U((B[z]-v[z])/(w[z]-v[z]))*(w.t-v.t),D=x.t+U((B[A]-x[A])/(y[A]-x[A]))*(y.t-x.t);C>=0&&1>=C&&D>=0&&1>=D&&(c?q++:q.push({x:B.x,y:B.y,t1:C,t2:D}))}}return q}function t(a,b){return v(a,b)}function u(a,b){return v(a,b,1)}function v(a,b,c){a=G(a),b=G(b);for(var d,e,f,g,h,i,j,k,l,m,n=c?0:[],o=0,p=a.length;p>o;o++){var q=a[o];if("M"==q[0])d=h=q[1],e=i=q[2];else{"C"==q[0]?(l=[d,e].concat(q.slice(1)),d=l[6],e=l[7]):(l=[d,e,d,e,h,i,h,i],d=h,e=i);for(var r=0,t=b.length;t>r;r++){var u=b[r];if("M"==u[0])f=j=u[1],g=k=u[2];else{"C"==u[0]?(m=[f,g].concat(u.slice(1)),f=m[6],g=m[7]):(m=[f,g,f,g,j,k,j,k],f=j,g=k);var v=s(l,m,c);if(c)n+=v;else{for(var w=0,x=v.length;x>w;w++)v[w].segment1=o,v[w].segment2=r,v[w].bez1=l,v[w].bez2=m;n=n.concat(v)}}}}}return n}function w(a,b,c){var d=x(a);return m(d,b,c)&&v(a,[["M",b,c],["H",d.x2+10]],1)%2==1}function x(a){var b=e(a);if(b.bbox)return L(b.bbox);if(!a)return f();a=G(a);for(var c,d=0,g=0,h=[],i=[],j=0,k=a.length;k>j;j++)if(c=a[j],"M"==c[0])d=c[1],g=c[2],h.push(d),i.push(g);else{var l=F(d,g,c[1],c[2],c[3],c[4],c[5],c[6]);h=h.concat(l.min.x,l.max.x),i=i.concat(l.min.y,l.max.y),d=c[5],g=c[6]}var m=R.apply(0,h),n=R.apply(0,i),o=S.apply(0,h),p=S.apply(0,i),q=f(m,n,o-m,p-n);return b.bbox=L(q),q}function y(a,b,c,d,e){if(e)return[["M",+a+ +e,b],["l",c-2*e,0],["a",e,e,0,0,1,e,e],["l",0,d-2*e],["a",e,e,0,0,1,-e,e],["l",2*e-c,0],["a",e,e,0,0,1,-e,-e],["l",0,2*e-d],["a",e,e,0,0,1,e,-e],["z"]];var f=[["M",a,b],["l",c,0],["l",0,d],["l",-c,0],["z"]];return f.toString=g,f}function z(a,b,c,d,e){if(null==e&&null==d&&(d=c),a=+a,b=+b,c=+c,d=+d,null!=e)var f=Math.PI/180,h=a+c*Math.cos(-d*f),i=a+c*Math.cos(-e*f),j=b+c*Math.sin(-d*f),k=b+c*Math.sin(-e*f),l=[["M",h,j],["A",c,c,0,+(e-d>180),0,i,k]];else l=[["M",a,b],["m",0,-d],["a",c,d,0,1,1,0,2*d],["a",c,d,0,1,1,0,-2*d],["z"]];return l.toString=g,l}function A(b){var c=e(b),d=String.prototype.toLowerCase;if(c.rel)return h(c.rel);a.is(b,"array")&&a.is(b&&b[0],"array")||(b=a.parsePathString(b));var f=[],i=0,j=0,k=0,l=0,m=0;"M"==b[0][0]&&(i=b[0][1],j=b[0][2],k=i,l=j,m++,f.push(["M",i,j]));for(var n=m,o=b.length;o>n;n++){var p=f[n]=[],q=b[n];if(q[0]!=d.call(q[0]))switch(p[0]=d.call(q[0]),p[0]){case"a":p[1]=q[1],p[2]=q[2],p[3]=q[3],p[4]=q[4],p[5]=q[5],p[6]=+(q[6]-i).toFixed(3),p[7]=+(q[7]-j).toFixed(3);break;case"v":p[1]=+(q[1]-j).toFixed(3);break;case"m":k=q[1],l=q[2];default:for(var r=1,s=q.length;s>r;r++)p[r]=+(q[r]-(r%2?i:j)).toFixed(3)}else{p=f[n]=[],"m"==q[0]&&(k=q[1]+i,l=q[2]+j);for(var t=0,u=q.length;u>t;t++)f[n][t]=q[t]}var v=f[n].length;switch(f[n][0]){case"z":i=k,j=l;break;case"h":i+=+f[n][v-1];break;case"v":j+=+f[n][v-1];break;default:i+=+f[n][v-2],j+=+f[n][v-1]}}return f.toString=g,c.rel=h(f),f}function B(b){var c=e(b);if(c.abs)return h(c.abs);if(K(b,"array")&&K(b&&b[0],"array")||(b=a.parsePathString(b)),!b||!b.length)return[["M",0,0]];var d,f=[],i=0,j=0,k=0,l=0,m=0;"M"==b[0][0]&&(i=+b[0][1],j=+b[0][2],k=i,l=j,m++,f[0]=["M",i,j]);for(var n,o,p=3==b.length&&"M"==b[0][0]&&"R"==b[1][0].toUpperCase()&&"Z"==b[2][0].toUpperCase(),q=m,r=b.length;r>q;q++){if(f.push(n=[]),o=b[q],d=o[0],d!=d.toUpperCase())switch(n[0]=d.toUpperCase(),n[0]){case"A":n[1]=o[1],n[2]=o[2],n[3]=o[3],n[4]=o[4],n[5]=o[5],n[6]=+o[6]+i,n[7]=+o[7]+j;break;case"V":n[1]=+o[1]+j;break;case"H":n[1]=+o[1]+i;break;case"R":for(var s=[i,j].concat(o.slice(1)),t=2,u=s.length;u>t;t++)s[t]=+s[t]+i,s[++t]=+s[t]+j;f.pop(),f=f.concat(I(s,p));break;case"O":f.pop(),s=z(i,j,o[1],o[2]),s.push(s[0]),f=f.concat(s);break;case"U":f.pop(),f=f.concat(z(i,j,o[1],o[2],o[3])),n=["U"].concat(f[f.length-1].slice(-2));break;case"M":k=+o[1]+i,l=+o[2]+j;default:for(t=1,u=o.length;u>t;t++)n[t]=+o[t]+(t%2?i:j)}else if("R"==d)s=[i,j].concat(o.slice(1)),f.pop(),f=f.concat(I(s,p)),n=["R"].concat(o.slice(-2));else if("O"==d)f.pop(),s=z(i,j,o[1],o[2]),s.push(s[0]),f=f.concat(s);else if("U"==d)f.pop(),f=f.concat(z(i,j,o[1],o[2],o[3])),n=["U"].concat(f[f.length-1].slice(-2));else for(var v=0,w=o.length;w>v;v++)n[v]=o[v];if(d=d.toUpperCase(),"O"!=d)switch(n[0]){case"Z":i=+k,j=+l;break;case"H":i=n[1];break;case"V":j=n[1];break;case"M":k=n[n.length-2],l=n[n.length-1];default:i=n[n.length-2],j=n[n.length-1]}}return f.toString=g,c.abs=h(f),f}function C(a,b,c,d){return[a,b,c,d,c,d]}function D(a,b,c,d,e,f){var g=1/3,h=2/3;return[g*a+h*c,g*b+h*d,g*e+h*c,g*f+h*d,e,f]}function E(b,c,d,e,f,g,h,i,j,k){var l,m=120*Q/180,n=Q/180*(+f||0),o=[],p=a._.cacher(function(a,b,c){var d=a*P.cos(c)-b*P.sin(c),e=a*P.sin(c)+b*P.cos(c);return{x:d,y:e}});if(!d||!e)return[b,c,i,j,i,j];if(k)y=k[0],z=k[1],w=k[2],x=k[3];else{l=p(b,c,-n),b=l.x,c=l.y,l=p(i,j,-n),i=l.x,j=l.y;var q=(P.cos(Q/180*f),P.sin(Q/180*f),(b-i)/2),r=(c-j)/2,s=q*q/(d*d)+r*r/(e*e);s>1&&(s=P.sqrt(s),d=s*d,e=s*e);var t=d*d,u=e*e,v=(g==h?-1:1)*P.sqrt(U((t*u-t*r*r-u*q*q)/(t*r*r+u*q*q))),w=v*d*r/e+(b+i)/2,x=v*-e*q/d+(c+j)/2,y=P.asin(((c-x)/e).toFixed(9)),z=P.asin(((j-x)/e).toFixed(9));y=w>b?Q-y:y,z=w>i?Q-z:z,0>y&&(y=2*Q+y),0>z&&(z=2*Q+z),h&&y>z&&(y-=2*Q),!h&&z>y&&(z-=2*Q)}var A=z-y;if(U(A)>m){var B=z,C=i,D=j;z=y+m*(h&&z>y?1:-1),i=w+d*P.cos(z),j=x+e*P.sin(z),o=E(i,j,d,e,f,0,h,C,D,[z,B,w,x])}A=z-y;var F=P.cos(y),G=P.sin(y),H=P.cos(z),I=P.sin(z),J=P.tan(A/4),K=4/3*d*J,L=4/3*e*J,M=[b,c],N=[b+K*G,c-L*F],O=[i+K*I,j-L*H],R=[i,j];if(N[0]=2*M[0]-N[0],N[1]=2*M[1]-N[1],k)return[N,O,R].concat(o);o=[N,O,R].concat(o).join().split(",");for(var S=[],T=0,V=o.length;V>T;T++)S[T]=T%2?p(o[T-1],o[T],n).y:p(o[T],o[T+1],n).x;return S}function F(a,b,c,d,e,f,g,h){for(var i,j,k,l,m,n,o,p,q=[],r=[[],[]],s=0;2>s;++s)if(0==s?(j=6*a-12*c+6*e,i=-3*a+9*c-9*e+3*g,k=3*c-3*a):(j=6*b-12*d+6*f,i=-3*b+9*d-9*f+3*h,k=3*d-3*b),U(i)<1e-12){if(U(j)<1e-12)continue;l=-k/j,l>0&&1>l&&q.push(l)}else o=j*j-4*k*i,p=P.sqrt(o),0>o||(m=(-j+p)/(2*i),m>0&&1>m&&q.push(m),n=(-j-p)/(2*i),n>0&&1>n&&q.push(n));for(var t,u=q.length,v=u;u--;)l=q[u],t=1-l,r[0][u]=t*t*t*a+3*t*t*l*c+3*t*l*l*e+l*l*l*g,r[1][u]=t*t*t*b+3*t*t*l*d+3*t*l*l*f+l*l*l*h;return r[0][v]=a,r[1][v]=b,r[0][v+1]=g,r[1][v+1]=h,r[0].length=r[1].length=v+2,{min:{x:R.apply(0,r[0]),y:R.apply(0,r[1])},max:{x:S.apply(0,r[0]),y:S.apply(0,r[1])}}}function G(a,b){var c=!b&&e(a);if(!b&&c.curve)return h(c.curve);for(var d=B(a),f=b&&B(b),g={x:0,y:0,bx:0,by:0,X:0,Y:0,qx:null,qy:null},i={x:0,y:0,bx:0,by:0,X:0,Y:0,qx:null,qy:null},j=(function(a,b,c){var d,e;if(!a)return["C",b.x,b.y,b.x,b.y,b.x,b.y];switch(!(a[0]in{T:1,Q:1})&&(b.qx=b.qy=null),a[0]){case"M":b.X=a[1],b.Y=a[2];break;case"A":a=["C"].concat(E.apply(0,[b.x,b.y].concat(a.slice(1))));break;case"S":"C"==c||"S"==c?(d=2*b.x-b.bx,e=2*b.y-b.by):(d=b.x,e=b.y),a=["C",d,e].concat(a.slice(1));break;case"T":"Q"==c||"T"==c?(b.qx=2*b.x-b.qx,b.qy=2*b.y-b.qy):(b.qx=b.x,b.qy=b.y),a=["C"].concat(D(b.x,b.y,b.qx,b.qy,a[1],a[2]));break;case"Q":b.qx=a[1],b.qy=a[2],a=["C"].concat(D(b.x,b.y,a[1],a[2],a[3],a[4]));break;case"L":a=["C"].concat(C(b.x,b.y,a[1],a[2]));break;case"H":a=["C"].concat(C(b.x,b.y,a[1],b.y));break;case"V":a=["C"].concat(C(b.x,b.y,b.x,a[1]));break;case"Z":a=["C"].concat(C(b.x,b.y,b.X,b.Y))}return a}),k=function(a,b){if(a[b].length>7){a[b].shift();for(var c=a[b];c.length;)m[b]="A",f&&(n[b]="A"),a.splice(b++,0,["C"].concat(c.splice(0,6)));a.splice(b,1),r=S(d.length,f&&f.length||0)}},l=function(a,b,c,e,g){a&&b&&"M"==a[g][0]&&"M"!=b[g][0]&&(b.splice(g,0,["M",e.x,e.y]),c.bx=0,c.by=0,c.x=a[g][1],c.y=a[g][2],r=S(d.length,f&&f.length||0))},m=[],n=[],o="",p="",q=0,r=S(d.length,f&&f.length||0);r>q;q++){d[q]&&(o=d[q][0]),"C"!=o&&(m[q]=o,q&&(p=m[q-1])),d[q]=j(d[q],g,p),"A"!=m[q]&&"C"==o&&(m[q]="C"),k(d,q),f&&(f[q]&&(o=f[q][0]),"C"!=o&&(n[q]=o,q&&(p=n[q-1])),f[q]=j(f[q],i,p),"A"!=n[q]&&"C"==o&&(n[q]="C"),k(f,q)),l(d,f,g,i,q),l(f,d,i,g,q);var s=d[q],t=f&&f[q],u=s.length,v=f&&t.length;g.x=s[u-2],g.y=s[u-1],g.bx=O(s[u-4])||g.x,g.by=O(s[u-3])||g.y,i.bx=f&&(O(t[v-4])||i.x),i.by=f&&(O(t[v-3])||i.y),i.x=f&&t[v-2],i.y=f&&t[v-1]}return f||(c.curve=h(d)),f?[d,f]:d}function H(a,b){if(!b)return a;var c,d,e,f,g,h,i;for(a=G(a),e=0,g=a.length;g>e;e++)for(i=a[e],f=1,h=i.length;h>f;f+=2)c=b.x(i[f],i[f+1]),d=b.y(i[f],i[f+1]),i[f]=c,i[f+1]=d;return a}function I(a,b){for(var c=[],d=0,e=a.length;e-2*!b>d;d+=2){var f=[{x:+a[d-2],y:+a[d-1]},{x:+a[d],y:+a[d+1]},{x:+a[d+2],y:+a[d+3]},{x:+a[d+4],y:+a[d+5]}];b?d?e-4==d?f[3]={x:+a[0],y:+a[1]}:e-2==d&&(f[2]={x:+a[0],y:+a[1]},f[3]={x:+a[2],y:+a[3]}):f[0]={x:+a[e-2],y:+a[e-1]}:e-4==d?f[3]=f[2]:d||(f[0]={x:+a[d],y:+a[d+1]}),c.push(["C",(-f[0].x+6*f[1].x+f[2].x)/6,(-f[0].y+6*f[1].y+f[2].y)/6,(f[1].x+6*f[2].x-f[3].x)/6,(f[1].y+6*f[2].y-f[3].y)/6,f[2].x,f[2].y])}return c}var J=b.prototype,K=a.is,L=a._.clone,M="hasOwnProperty",N=/,?([a-z]),?/gi,O=parseFloat,P=Math,Q=P.PI,R=P.min,S=P.max,T=P.pow,U=P.abs,V=j(1),W=j(),X=j(0,1),Y=a._unit2px,Z={path:function(a){return a.attr("path")},circle:function(a){var b=Y(a);return z(b.cx,b.cy,b.r)},ellipse:function(a){var b=Y(a); +return z(b.cx||0,b.cy||0,b.rx,b.ry)},rect:function(a){var b=Y(a);return y(b.x||0,b.y||0,b.width,b.height,b.rx,b.ry)},image:function(a){var b=Y(a);return y(b.x||0,b.y||0,b.width,b.height)},line:function(a){return"M"+[a.attr("x1")||0,a.attr("y1")||0,a.attr("x2"),a.attr("y2")]},polyline:function(a){return"M"+a.attr("points")},polygon:function(a){return"M"+a.attr("points")+"z"},deflt:function(a){var b=a.node.getBBox();return y(b.x,b.y,b.width,b.height)}};a.path=e,a.path.getTotalLength=V,a.path.getPointAtLength=W,a.path.getSubpath=function(a,b,c){if(this.getTotalLength(a)-c<1e-6)return X(a,b).end;var d=X(a,c,1);return b?X(d,b).end:d},J.getTotalLength=function(){return this.node.getTotalLength?this.node.getTotalLength():void 0},J.getPointAtLength=function(a){return W(this.attr("d"),a)},J.getSubpath=function(b,c){return a.path.getSubpath(this.attr("d"),b,c)},a._.box=f,a.path.findDotsAtSegment=k,a.path.bezierBBox=l,a.path.isPointInsideBBox=m,a.closest=function(b,c,d,e){for(var g=100,h=f(b-g/2,c-g/2,g,g),i=[],j=d[0].hasOwnProperty("x")?function(a){return{x:d[a].x,y:d[a].y}}:function(a){return{x:d[a],y:e[a]}},k=0;1e6>=g&&!k;){for(var l=0,n=d.length;n>l;l++){var o=j(l);if(m(h,o.x,o.y)){k++,i.push(o);break}}k||(g*=2,h=f(b-g/2,c-g/2,g,g))}if(1e6!=g){var p,q=1/0;for(l=0,n=i.length;n>l;l++){var r=a.len(b,c,i[l].x,i[l].y);q>r&&(q=r,i[l].len=r,p=i[l])}return p}},a.path.isBBoxIntersect=n,a.path.intersection=t,a.path.intersectionNumber=u,a.path.isPointInside=w,a.path.getBBox=x,a.path.get=Z,a.path.toRelative=A,a.path.toAbsolute=B,a.path.toCubic=G,a.path.map=H,a.path.toString=g,a.path.clone=h}),d.plugin(function(a,d,e,f){var g=Math.max,h=Math.min,i=function(a){if(this.items=[],this.bindings={},this.length=0,this.type="set",a)for(var b=0,c=a.length;c>b;b++)a[b]&&(this[this.items.length]=this.items[this.items.length]=a[b],this.length++)},j=i.prototype;j.push=function(){for(var a,b,c=0,d=arguments.length;d>c;c++)a=arguments[c],a&&(b=this.items.length,this[b]=this.items[b]=a,this.length++);return this},j.pop=function(){return this.length&&delete this[this.length--],this.items.pop()},j.forEach=function(a,b){for(var c=0,d=this.items.length;d>c;c++)if(a.call(b,this.items[c],c)===!1)return this;return this},j.animate=function(d,e,f,g){"function"!=typeof f||f.length||(g=f,f=c.linear),d instanceof a._.Animation&&(g=d.callback,f=d.easing,e=f.dur,d=d.attr);var h=arguments;if(a.is(d,"array")&&a.is(h[h.length-1],"array"))var i=!0;var j,k=function(){j?this.b=j:j=this.b},l=0,m=this,n=g&&function(){++l==m.length&&g.call(this)};return this.forEach(function(a,c){b.once("snap.animcreated."+a.id,k),i?h[c]&&a.animate.apply(a,h[c]):a.animate(d,e,f,n)})},j.remove=function(){for(;this.length;)this.pop().remove();return this},j.bind=function(a,b,c){var d={};if("function"==typeof b)this.bindings[a]=b;else{var e=c||a;this.bindings[a]=function(a){d[e]=a,b.attr(d)}}return this},j.attr=function(a){var b={};for(var c in a)this.bindings[c]?this.bindings[c](a[c]):b[c]=a[c];for(var d=0,e=this.items.length;e>d;d++)this.items[d].attr(b);return this},j.clear=function(){for(;this.length;)this.pop()},j.splice=function(a,b,c){a=0>a?g(this.length+a,0):a,b=g(0,h(this.length-a,b));var d,e=[],f=[],j=[];for(d=2;dd;d++)f.push(this[a+d]);for(;dd?j[d]:e[d-k];for(d=this.items.length=this.length-=b-k;this[d];)delete this[d++];return new i(f)},j.exclude=function(a){for(var b=0,c=this.length;c>b;b++)if(this[b]==a)return this.splice(b,1),!0;return!1},j.insertAfter=function(a){for(var b=this.items.length;b--;)this.items[b].insertAfter(a);return this},j.getBBox=function(){for(var a=[],b=[],c=[],d=[],e=this.items.length;e--;)if(!this.items[e].removed){var f=this.items[e].getBBox();a.push(f.x),b.push(f.y),c.push(f.x+f.width),d.push(f.y+f.height)}return a=h.apply(0,a),b=h.apply(0,b),c=g.apply(0,c),d=g.apply(0,d),{x:a,y:b,x2:c,y2:d,width:c-a,height:d-b,cx:a+(c-a)/2,cy:b+(d-b)/2}},j.clone=function(a){a=new i;for(var b=0,c=this.items.length;c>b;b++)a.push(this.items[b].clone());return a},j.toString=function(){return"Snap‘s set"},j.type="set",a.Set=i,a.set=function(){var a=new i;return arguments.length&&a.push.apply(a,Array.prototype.slice.call(arguments,0)),a}}),d.plugin(function(a,c,d,e){function f(a){var b=a[0];switch(b.toLowerCase()){case"t":return[b,0,0];case"m":return[b,1,0,0,1,0,0];case"r":return 4==a.length?[b,0,a[2],a[3]]:[b,0];case"s":return 5==a.length?[b,1,1,a[3],a[4]]:3==a.length?[b,1,1]:[b,1]}}function g(b,c,d){b=b||new a.Matrix,c=c||new a.Matrix,b=a.parseTransformString(b.toTransformString())||[],c=a.parseTransformString(c.toTransformString())||[];for(var e,g,h,i,j=Math.max(b.length,c.length),k=[],n=[],o=0;j>o;o++){if(h=b[o]||f(c[o]),i=c[o]||f(h),h[0]!=i[0]||"r"==h[0].toLowerCase()&&(h[2]!=i[2]||h[3]!=i[3])||"s"==h[0].toLowerCase()&&(h[3]!=i[3]||h[4]!=i[4])){b=a._.transform2matrix(b,d()),c=a._.transform2matrix(c,d()),k=[["m",b.a,b.b,b.c,b.d,b.e,b.f]],n=[["m",c.a,c.b,c.c,c.d,c.e,c.f]];break}for(k[o]=[],n[o]=[],e=0,g=Math.max(h.length,i.length);g>e;e++)e in h&&(k[o][e]=h[e]),e in i&&(n[o][e]=i[e])}return{from:m(k),to:m(n),f:l(k)}}function h(a){return a}function i(a){return function(b){return+b.toFixed(3)+a}}function j(a){return a.join(" ")}function k(b){return a.rgb(b[0],b[1],b[2],b[3])}function l(a){var b,c,d,e,f,g,h=0,i=[];for(b=0,c=a.length;c>b;b++){for(f="[",g=['"'+a[b][0]+'"'],d=1,e=a[b].length;e>d;d++)g[d]="val["+h++ +"]";f+=g+"]",i[b]=f}return Function("val","return Snap.path.toString.call(["+i+"])")}function m(a){for(var b=[],c=0,d=a.length;d>c;c++)for(var e=1,f=a[c].length;f>e;e++)b.push(a[c][e]);return b}function n(a){return isFinite(a)}function o(b,c){return a.is(b,"array")&&a.is(c,"array")?b.toString()==c.toString():!1}var p={},q=/[%a-z]+$/i,r=String;p.stroke=p.fill="colour",c.prototype.equal=function(a,c){return b("snap.util.equal",this,a,c).firstDefined()},b.on("snap.util.equal",function(b,c){var d,e,f=r(this.attr(b)||""),s=this;if("colour"==p[b])return d=a.color(f),e=a.color(c),{from:[d.r,d.g,d.b,d.opacity],to:[e.r,e.g,e.b,e.opacity],f:k};if("viewBox"==b)return d=this.attr(b).vb.split(" ").map(Number),e=c.split(" ").map(Number),{from:d,to:e,f:j};if("transform"==b||"gradientTransform"==b||"patternTransform"==b)return"string"==typeof c&&(c=r(c).replace(/\.{3}|\u2026/g,f)),f=this.matrix,c=a._.rgTransform.test(c)?a._.transform2matrix(c,this.getBBox()):a._.transform2matrix(a._.svgTransform2string(c),this.getBBox()),g(f,c,function(){return s.getBBox(1)});if("d"==b||"path"==b)return d=a.path.toCubic(f,c),{from:m(d[0]),to:m(d[1]),f:l(d[0])};if("points"==b)return d=r(f).split(a._.separator),e=r(c).split(a._.separator),{from:d,to:e,f:function(a){return a}};if(n(f)&&n(c))return{from:parseFloat(f),to:parseFloat(c),f:h};var t=f.match(q),u=r(c).match(q);return t&&o(t,u)?{from:parseFloat(f),to:parseFloat(c),f:i(t)}:{from:this.asPX(b),to:this.asPX(b,c),f:h}})}),d.plugin(function(a,c,d,e){for(var f=c.prototype,g="hasOwnProperty",h=("createTouch"in e.doc),i=["click","dblclick","mousedown","mousemove","mouseout","mouseover","mouseup","touchstart","touchmove","touchend","touchcancel"],j={mousedown:"touchstart",mousemove:"touchmove",mouseup:"touchend"},k=(function(a,b){var c="y"==a?"scrollTop":"scrollLeft",d=b&&b.node?b.node.ownerDocument:e.doc;return d[c in d.documentElement?"documentElement":"body"][c]}),l=function(){return this.originalEvent.preventDefault()},m=function(){return this.originalEvent.stopPropagation()},n=function(a,b,c,d){var e=h&&j[b]?j[b]:b,f=function(e){var f=k("y",d),i=k("x",d);if(h&&j[g](b))for(var n=0,o=e.targetTouches&&e.targetTouches.length;o>n;n++)if(e.targetTouches[n].target==a||a.contains(e.targetTouches[n].target)){var p=e;e=e.targetTouches[n],e.originalEvent=p,e.preventDefault=l,e.stopPropagation=m;break}var q=e.clientX+i,r=e.clientY+f;return c.call(d,e,q,r)};return b!==e&&a.addEventListener(b,f,!1),a.addEventListener(e,f,!1),function(){return b!==e&&a.removeEventListener(b,f,!1),a.removeEventListener(e,f,!1),!0}},o=[],p=function(a){for(var c,d=a.clientX,e=a.clientY,f=k("y"),g=k("x"),i=o.length;i--;){if(c=o[i],h){for(var j,l=a.touches&&a.touches.length;l--;)if(j=a.touches[l],j.identifier==c.el._drag.id||c.el.node.contains(j.target)){d=j.clientX,e=j.clientY,(a.originalEvent?a.originalEvent:a).preventDefault();break}}else a.preventDefault();var m=c.el.node;m.nextSibling,m.parentNode,m.style.display;d+=g,e+=f,b("snap.drag.move."+c.el.id,c.move_scope||c.el,d-c.el._drag.x,e-c.el._drag.y,d,e,a)}},q=function(c){a.unmousemove(p).unmouseup(q);for(var d,e=o.length;e--;)d=o[e],d.el._drag={},b("snap.drag.end."+d.el.id,d.end_scope||d.start_scope||d.move_scope||d.el,c),b.off("snap.drag.*."+d.el.id);o=[]},r=i.length;r--;)!function(b){a[b]=f[b]=function(c,d){if(a.is(c,"function"))this.events=this.events||[],this.events.push({name:b,f:c,unbind:n(this.node||document,b,c,d||this)});else for(var e=0,f=this.events.length;f>e;e++)if(this.events[e].name==b)try{this.events[e].f.call(this)}catch(g){}return this},a["un"+b]=f["un"+b]=function(a){for(var c=this.events||[],d=c.length;d--;)if(c[d].name==b&&(c[d].f==a||!a))return c[d].unbind(),c.splice(d,1),!c.length&&delete this.events,this;return this}}(i[r]);f.hover=function(a,b,c,d){return this.mouseover(a,c).mouseout(b,d||c)},f.unhover=function(a,b){return this.unmouseover(a).unmouseout(b)};var s=[];f.drag=function(c,d,e,f,g,h){function i(i,j,l){(i.originalEvent||i).preventDefault(),k._drag.x=j,k._drag.y=l,k._drag.id=i.identifier,!o.length&&a.mousemove(p).mouseup(q),o.push({el:k,move_scope:f,start_scope:g,end_scope:h}),d&&b.on("snap.drag.start."+k.id,d),c&&b.on("snap.drag.move."+k.id,c),e&&b.on("snap.drag.end."+k.id,e),b("snap.drag.start."+k.id,g||f||k,j,l,i)}function j(a,c,d){b("snap.draginit."+k.id,k,a,c,d)}var k=this;if(!arguments.length){var l;return k.drag(function(a,b){this.attr({transform:l+(l?"T":"t")+[a,b]})},function(){l=this.transform().local})}return b.on("snap.draginit."+k.id,i),k._drag={},s.push({el:k,start:i,init:j}),k.mousedown(j),k},f.undrag=function(){for(var c=s.length;c--;)s[c].el==this&&(this.unmousedown(s[c].init),s.splice(c,1),b.unbind("snap.drag.*."+this.id),b.unbind("snap.draginit."+this.id));return!s.length&&a.unmousemove(p).unmouseup(q),this}}),d.plugin(function(a,c,d,e){var f=(c.prototype,d.prototype),g=/^\s*url\((.+)\)/,h=String,i=a._.$;a.filter={},f.filter=function(b){var d=this;"svg"!=d.type&&(d=d.paper);var e=a.parse(h(b)),f=a._.id(),g=(d.node.offsetWidth,d.node.offsetHeight,i("filter"));return i(g,{id:f,filterUnits:"userSpaceOnUse"}),g.appendChild(e.node),d.defs.appendChild(g),new c(g)},b.on("snap.util.getattr.filter",function(){b.stop();var c=i(this.node,"filter");if(c){var d=h(c).match(g);return d&&a.select(d[1])}}),b.on("snap.util.attr.filter",function(d){if(d instanceof c&&"filter"==d.type){b.stop();var e=d.node.id;e||(i(d.node,{id:d.id}),e=d.id),i(this.node,{filter:a.url(e)})}d&&"none"!=d||(b.stop(),this.node.removeAttribute("filter"))}),a.filter.blur=function(b,c){null==b&&(b=2);var d=null==c?b:[b,c];return a.format('',{def:d})},a.filter.blur.toString=function(){return this()},a.filter.shadow=function(b,c,d,e,f){return null==f&&(null==e?(f=d,d=4,e="#000"):(f=e,e=d,d=4)),null==d&&(d=4),null==f&&(f=1),null==b&&(b=0,c=2),null==c&&(c=b),e=a.color(e),a.format('',{color:e,dx:b,dy:c,blur:d,opacity:f})},a.filter.shadow.toString=function(){return this()},a.filter.grayscale=function(b){return null==b&&(b=1),a.format('',{a:.2126+.7874*(1-b),b:.7152-.7152*(1-b),c:.0722-.0722*(1-b),d:.2126-.2126*(1-b),e:.7152+.2848*(1-b),f:.0722-.0722*(1-b),g:.2126-.2126*(1-b),h:.0722+.9278*(1-b)})},a.filter.grayscale.toString=function(){return this()},a.filter.sepia=function(b){return null==b&&(b=1),a.format('',{a:.393+.607*(1-b),b:.769-.769*(1-b),c:.189-.189*(1-b),d:.349-.349*(1-b),e:.686+.314*(1-b),f:.168-.168*(1-b),g:.272-.272*(1-b),h:.534-.534*(1-b),i:.131+.869*(1-b)})},a.filter.sepia.toString=function(){return this()},a.filter.saturate=function(b){return null==b&&(b=1),a.format('',{amount:1-b})},a.filter.saturate.toString=function(){return this()},a.filter.hueRotate=function(b){return b=b||0,a.format('',{angle:b})},a.filter.hueRotate.toString=function(){return this()},a.filter.invert=function(b){return null==b&&(b=1),a.format('',{amount:b,amount2:1-b})},a.filter.invert.toString=function(){return this()},a.filter.brightness=function(b){return null==b&&(b=1),a.format('',{amount:b})},a.filter.brightness.toString=function(){return this()},a.filter.contrast=function(b){return null==b&&(b=1),a.format('',{amount:b,amount2:.5-b/2})},a.filter.contrast.toString=function(){return this()}}),d.plugin(function(a,b,c,d,e){var f=a._.box,g=a.is,h=/^[^a-z]*([tbmlrc])/i,i=function(){return"T"+this.dx+","+this.dy};b.prototype.getAlign=function(a,b){null==b&&g(a,"string")&&(b=a,a=null),a=a||this.paper;var c=a.getBBox?a.getBBox():f(a),d=this.getBBox(),e={};switch(b=b&&b.match(h),b=b?b[1].toLowerCase():"c"){case"t":e.dx=0,e.dy=c.y-d.y;break;case"b":e.dx=0,e.dy=c.y2-d.y2;break;case"m":e.dx=0,e.dy=c.cy-d.cy;break;case"l":e.dx=c.x-d.x,e.dy=0;break;case"r":e.dx=c.x2-d.x2,e.dy=0;break;default:e.dx=c.cx-d.cx,e.dy=0}return e.toString=i,e},b.prototype.align=function(a,b){return this.transform("..."+this.getAlign(a,b))}}),d.plugin(function(b,c,d,e){function f(a){a=a.split(/(?=#)/);var b=new String(a[5]);return b[50]=a[0],b[100]=a[1],b[200]=a[2],b[300]=a[3],b[400]=a[4],b[500]=a[5],b[600]=a[6],b[700]=a[7],b[800]=a[8],b[900]=a[9],a[10]&&(b.A100=a[10],b.A200=a[11],b.A400=a[12],b.A700=a[13]),b}var g="#ffebee#ffcdd2#ef9a9a#e57373#ef5350#f44336#e53935#d32f2f#c62828#b71c1c#ff8a80#ff5252#ff1744#d50000",h="#FCE4EC#F8BBD0#F48FB1#F06292#EC407A#E91E63#D81B60#C2185B#AD1457#880E4F#FF80AB#FF4081#F50057#C51162",i="#F3E5F5#E1BEE7#CE93D8#BA68C8#AB47BC#9C27B0#8E24AA#7B1FA2#6A1B9A#4A148C#EA80FC#E040FB#D500F9#AA00FF",j="#EDE7F6#D1C4E9#B39DDB#9575CD#7E57C2#673AB7#5E35B1#512DA8#4527A0#311B92#B388FF#7C4DFF#651FFF#6200EA",k="#E8EAF6#C5CAE9#9FA8DA#7986CB#5C6BC0#3F51B5#3949AB#303F9F#283593#1A237E#8C9EFF#536DFE#3D5AFE#304FFE",l="#E3F2FD#BBDEFB#90CAF9#64B5F6#64B5F6#2196F3#1E88E5#1976D2#1565C0#0D47A1#82B1FF#448AFF#2979FF#2962FF",m="#E1F5FE#B3E5FC#81D4FA#4FC3F7#29B6F6#03A9F4#039BE5#0288D1#0277BD#01579B#80D8FF#40C4FF#00B0FF#0091EA",n="#E0F7FA#B2EBF2#80DEEA#4DD0E1#26C6DA#00BCD4#00ACC1#0097A7#00838F#006064#84FFFF#18FFFF#00E5FF#00B8D4",o="#E0F2F1#B2DFDB#80CBC4#4DB6AC#26A69A#009688#00897B#00796B#00695C#004D40#A7FFEB#64FFDA#1DE9B6#00BFA5",p="#E8F5E9#C8E6C9#A5D6A7#81C784#66BB6A#4CAF50#43A047#388E3C#2E7D32#1B5E20#B9F6CA#69F0AE#00E676#00C853",q="#F1F8E9#DCEDC8#C5E1A5#AED581#9CCC65#8BC34A#7CB342#689F38#558B2F#33691E#CCFF90#B2FF59#76FF03#64DD17",r="#F9FBE7#F0F4C3#E6EE9C#DCE775#D4E157#CDDC39#C0CA33#AFB42B#9E9D24#827717#F4FF81#EEFF41#C6FF00#AEEA00",s="#FFFDE7#FFF9C4#FFF59D#FFF176#FFEE58#FFEB3B#FDD835#FBC02D#F9A825#F57F17#FFFF8D#FFFF00#FFEA00#FFD600",t="#FFF8E1#FFECB3#FFE082#FFD54F#FFCA28#FFC107#FFB300#FFA000#FF8F00#FF6F00#FFE57F#FFD740#FFC400#FFAB00",u="#FFF3E0#FFE0B2#FFCC80#FFB74D#FFA726#FF9800#FB8C00#F57C00#EF6C00#E65100#FFD180#FFAB40#FF9100#FF6D00",v="#FBE9E7#FFCCBC#FFAB91#FF8A65#FF7043#FF5722#F4511E#E64A19#D84315#BF360C#FF9E80#FF6E40#FF3D00#DD2C00",w="#EFEBE9#D7CCC8#BCAAA4#A1887F#8D6E63#795548#6D4C41#5D4037#4E342E#3E2723",x="#FAFAFA#F5F5F5#EEEEEE#E0E0E0#BDBDBD#9E9E9E#757575#616161#424242#212121",y="#ECEFF1#CFD8DC#B0BEC5#90A4AE#78909C#607D8B#546E7A#455A64#37474F#263238";b.mui={},b.flat={},b.mui.red=f(g),b.mui.pink=f(h),b.mui.purple=f(i),b.mui.deeppurple=f(j),b.mui.indigo=f(k),b.mui.blue=f(l),b.mui.lightblue=f(m),b.mui.cyan=f(n),b.mui.teal=f(o),b.mui.green=f(p),b.mui.lightgreen=f(q),b.mui.lime=f(r),b.mui.yellow=f(s),b.mui.amber=f(t),b.mui.orange=f(u),b.mui.deeporange=f(v),b.mui.brown=f(w),b.mui.grey=f(x),b.mui.bluegrey=f(y),b.flat.turquoise="#1abc9c",b.flat.greensea="#16a085",b.flat.sunflower="#f1c40f",b.flat.orange="#f39c12",b.flat.emerland="#2ecc71",b.flat.nephritis="#27ae60",b.flat.carrot="#e67e22",b.flat.pumpkin="#d35400",b.flat.peterriver="#3498db",b.flat.belizehole="#2980b9",b.flat.alizarin="#e74c3c",b.flat.pomegranate="#c0392b",b.flat.amethyst="#9b59b6",b.flat.wisteria="#8e44ad",b.flat.clouds="#ecf0f1",b.flat.silver="#bdc3c7",b.flat.wetasphalt="#34495e",b.flat.midnightblue="#2c3e50",b.flat.concrete="#95a5a6",b.flat.asbestos="#7f8c8d",b.importMUIColors=function(){for(var c in b.mui)b.mui.hasOwnProperty(c)&&(a[c]=b.mui[c])}}),d}); \ No newline at end of file diff --git a/scraper/reports/stats/empty_papers.csv b/scraper/reports/stats/empty_papers.csv new file mode 100644 index 00000000..19507314 --- /dev/null +++ b/scraper/reports/stats/empty_papers.csv @@ -0,0 +1,579 @@ +61084a25ebe736e8f6d7a6e53b2c20d9723c4608,Face recognition for web-scale datasets,Computer Vision and Image Understanding,2014 +0d467adaf936b112f570970c5210bdb3c626a717,"""FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks""",,2016 +0db8e6eb861ed9a70305c1839eaef34f2c85bbaf,Towards Large-Pose Face Frontalization in the Wild,2017 IEEE International Conference on Computer Vision (ICCV),2017 +0dbf4232fcbd52eb4599dc0760b18fcc1e9546e9,Early facial expression recognition using early RankBoost,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +0d087aaa6e2753099789cd9943495fbbd08437c0,Folded Recurrent Neural Networks for Future Video Prediction,CoRR,2017 +0d8415a56660d3969449e77095be46ef0254a448,Nonlinear Discriminant Analysis on Embedded Manifold,IEEE Transactions on Circuits and Systems for Video Technology,2007 +0d735e7552af0d1dcd856a8740401916e54b7eee,EMPATH: a neural network that categorizes facial expressions.,Journal of cognitive neuroscience,2002 +0d06b3a4132d8a2effed115a89617e0a702c957a,Achieving stable subspace clustering by post-processing generic clustering results,2016 International Joint Conference on Neural Networks (IJCNN),2016 +0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e,Large Age-Gap face verification by feature injection in deep networks,Pattern Recognition Letters,2017 +590628a9584e500f3e7f349ba7e2046c8c273fcf,Generating Natural Questions About an Image,CoRR,2016 +92fada7564d572b72fd3be09ea3c39373df3e27c,Feature selection in the independent component subspace for face recognition,Pattern Recognition Letters,2004 +0cccf576050f493c8b8fec9ee0238277c0cfd69a,Incremental Tube Construction for Human Action Detection,CoRR,2017 +0c54e9ac43d2d3bab1543c43ee137fc47b77276e,Spontaneous subtle expression detection and recognition based on facial strain,Sig. Proc.: Image Comm.,2016 +0c60eebe10b56dbffe66bb3812793dd514865935,Exploiting Feature and Class Relationships in Video Categorization with Regularized Deep Neural Networks,IEEE Transactions on Pattern Analysis and Machine Intelligence,2018 +66886997988358847615375ba7d6e9eb0f1bb27f,Prototype-Based Discriminative Feature Learning for Kinship Verification,IEEE Transactions on Cybernetics,2015 +66837add89caffd9c91430820f49adb5d3f40930,"A New Face Recognition Method using PCA , LDA and Neural Network",Unknown,2012 +3ee7a8107a805370b296a53e355d111118e96b7c,Bayesian Learning of Sparse Gaussian Graphical Models,,2011 +500b92578e4deff98ce20e6017124e6d2053b451,Incremental Face Alignment in the Wild,2014 IEEE Conference on Computer Vision and Pattern Recognition,2014 +68a3f12382003bc714c51c85fb6d0557dcb15467,Learning the Visual Interpretation of Sentences,2013 IEEE International Conference on Computer Vision,2013 +68cf263a17862e4dd3547f7ecc863b2dc53320d8,A comparative study on illumination preprocessing in face recognition,Pattern Recognition,2013 +68bf34e383092eb827dd6a61e9b362fcba36a83a,"Multi-view, High-resolution Face Image Analysis",,2014 +574751dbb53777101502419127ba8209562c4758,Gender classification from unaligned facial images using support subspaces,Inf. Sci.,2013 +57b8b28f8748d998951b5a863ff1bfd7ca4ae6a5,Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches (Supplementary Material),,2016 +57101b29680208cfedf041d13198299e2d396314,Oxytocin differentially modulates eye gaze to naturalistic social signals of happiness and anger.,Psychoneuroendocrinology,2013 +57893403f543db75d1f4e7355283bdca11f3ab1b,A Dynamic Texture-Based Approach to Recognition of Facial Actions and Their Temporal Models,IEEE Transactions on Pattern Analysis and Machine Intelligence,2010 +5721216f2163d026e90d7cd9942aeb4bebc92334,Objective Micro-Facial Movement Detection Using FACS-Based Regions and Baseline Evaluation,CoRR,2016 +5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725,Merging Pose Estimates Across Space and Time,,2013 +3b1260d78885e872cf2223f2c6f3d6f6ea254204,Face Tracking and Recognition at a Distance: A Coaxial & Concentric PTZ Camera System,,2011 +3b80bf5a69a1b0089192d73fa3ace2fbb52a4ad5,"""Magic Mirror in my Hand, what is the Sentiment in the Lens?"": an Action Unit based Approach for Mining Sentiments from Multimedia Contents",,2014 +3be7b7eb11714e6191dd301a696c734e8d07435f,Capturing the Visual Language of Social Media Exploiting Web Image Search for User Interest Profiling,,2015 +6f2dc51d607f491dbe6338711c073620c85351ac,Capturing correlations of local features for image representation,Neurocomputing,2016 +6f75697a86d23d12a14be5466a41e5a7ffb79fad,Recognition and intensity estimation of facial expression using ensemble classifiers,2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS),2016 +03d9ccce3e1b4d42d234dba1856a9e1b28977640,"Facial Affect ""In-the-Wild"": A Survey and a New Database",,2016 +03104f9e0586e43611f648af1132064cadc5cc07,Subspace clustering using a symmetric low-rank representation,Knowl.-Based Syst.,2017 +0334cc0374d9ead3dc69db4816d08c917316c6c4,Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition,CoRR,2017 +03e88bf3c5ddd44ebf0e580d4bd63072566613ad,How intelligent are convolutional neural networks?,CoRR,2017 +9b000ccc04a2605f6aab867097ebf7001a52b459,PCANet: An energy perspective,CoRR,2016 +9bc01fa9400c231e41e6a72ec509d76ca797207c,Emotion Classification using Adaptive SVMs,Unknown,2012 +9e5c2d85a1caed701b68ddf6f239f3ff941bb707,Facial Expression Recognition Based on Significant Face Components Using Steerable Pyramid Transform,,2013 +04bb3fa0824d255b01e9db4946ead9f856cc0b59,Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition,CoRR,2017 +04470861408d14cc860f24e73d93b3bb476492d0,Face Recognition using Features Combination and a New Non-linear Kernel,,2011 +04250e037dce3a438d8f49a4400566457190f4e2,A direct LDA algorithm for high-dimensional data - with application to face recognition,Pattern Recognition,2001 +6ad107c08ac018bfc6ab31ec92c8a4b234f67d49,Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors,CoRR,2018 +6a184f111d26787703f05ce1507eef5705fdda83,Mu desynchronization during observation and execution of facial expressions in 30-month-old children,,2016 +6aa43f673cc42ed2fa351cbc188408b724cb8d50,Field Studies with Multimedia Big Data: Opportunities and Challenges (Extended Ver,CoRR,2017 +6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2,Cardiac vagal tone predicts inhibited attention to fearful faces.,Emotion,2012 +32b8c9fd4e3f44c371960eb0074b42515f318ee7,Learning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition,CoRR,2017 +357963a46dfc150670061dbc23da6ba7d6da786e,Online Regression with Model Selection,,2018 +35f1bcff4552632419742bbb6e1927ef5e998eb4,Unsupervised Visual-Linguistic Reference Resolution in Instructional Videos,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017 +35c973dba6e1225196566200cfafa150dd231fa8,A graphical model based solution to the facial feature point tracking problem,Image Vision Comput.,2011 +697b0b9630213ca08a1ae1d459fabc13325bdcbb,Learning to Invert Local Binary Patterns,,2016 +69de532d93ad8099f4d4902c4cad28db958adfea,Face Attention Network: An Effective Face Detector for the Occluded Faces,CoRR,2017 +69a9da55bd20ce4b83e1680fbc6be2c976067631,"""Here's looking at you, kid"". Detecting people looking at each other in videos",,2011 +6974449ce544dc208b8cc88b606b03d95c8fd368,Local Evidence Aggregation for Regression-Based Facial Point Detection,IEEE Transactions on Pattern Analysis and Machine Intelligence,2013 +3c03d95084ccbe7bf44b6d54151625c68f6e74d0,Contextual constraints based linear discriminant analysis,Pattern Recognition Letters,2011 +3ce2ecf3d6ace8d80303daf67345be6ec33b3a93,Facial expression classification: An approach based on the fusion of facial deformations using the transferable belief model,Int. J. Approx. Reasoning,2007 +3cb64217ca2127445270000141cfa2959c84d9e7,Can body expressions contribute to automatic depression analysis?,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +3cd5da596060819e2b156e8b3a28331ef633036b,Dynamic composite faces are processed holistically,Vision Research,2015 +51528cdce7a92835657c0a616c0806594de7513b,Visual Comparison of Images Using Multiple Kernel Learning for Ranking,,2015 +51dc127f29d1bb076d97f515dca4cc42dda3d25b,3D Corpus of Spontaneous Complex Mental States,,2011 +3db75962857a602cae65f60f202d311eb4627b41,Deep Embedding Network for Clustering,2014 22nd International Conference on Pattern Recognition,2014 +3dc522a6576c3475e4a166377cbbf4ba389c041f,The iNaturalist Challenge 2017 Dataset,CoRR,2017 +3dda181be266950ba1280b61eb63ac11777029f9,When Celebrities Endorse Politicians: Analyzing the Behavior of Celebrity Followers in the 2016 U.S. Presidential Election,CoRR,2017 +3d6ee995bc2f3e0f217c053368df659a5d14d5b5,Learning a Two-Dimensional Fuzzy Discriminant Locality Preserving Subspace for Visual Recognition,IEICE Transactions,2014 +3dd906bc0947e56d2b7bf9530b11351bbdff2358,"The THUMOS challenge on action recognition for videos ""in the wild""",Computer Vision and Image Understanding,2017 +3d6943f1573f992d6897489b73ec46df983d776c,Unifying Low-Rank Models for Visual Learning,,2015 +5859774103306113707db02fe2dd3ac9f91f1b9e,"Generalization to Novel Views: Universal, Class-based, and Model-based Processing",International Journal of Computer Vision,1998 +5850aab97e1709b45ac26bb7d205e2accc798a87,Multimodal learning for facial expression recognition,Pattern Recognition,2015 +58cb1414095f5eb6a8c6843326a6653403a0ee17,Face recognition using multiple facial features,Pattern Recognition Letters,2007 +677477e6d2ba5b99633aee3d60e77026fb0b9306,Multi-View Dynamic Facial Action Unit Detection,CoRR,2017 +679b72d23a9cfca8a7fe14f1d488363f2139265f,A New Approach to Face Recognition Using Dual Dimension Reduction,Unknown,2006 +67a50752358d5d287c2b55e7a45cc39be47bf7d0,Correction: Low-Rank and Eigenface Based Sparse Representation for Face Recognition,,2015 +0ba64f4157d80720883a96a73e8d6a5f5b9f1d9b,Convolutional Point-set Representation: A Convolutional Bridge Between a Densely Annotated Image and 3D Face Alignment,,2018 +0b5bd3ce90bf732801642b9f55a781e7de7fdde0,Face recognition using Histograms of Oriented Gradients,Pattern Recognition Letters,2011 +0ba449e312894bca0d16348f3aef41ca01872383,A Unified Framework for Stochastic Matrix Factorization via Variance Reduction,CoRR,2017 +0ba99a709cd34654ac296418a4f41a9543928149,Image Clustering Using Local Discriminant Models and Global Integration,IEEE Transactions on Image Processing,2010 +0b3f354e6796ef7416bf6dde9e0779b2fcfabed2,Color Face Recognition using Quaternionic Gabor Filters,,2005 +94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81,Real-time generic face tracking in the wild with CUDA,,2014 +94325522c9be8224970f810554611d6a73877c13,Comparator Networks,CoRR,2018 +94ac3008bf6be6be6b0f5140a0bea738d4c75579,Accelerating Convolutional Neural Networks for Continuous Mobile Vision via Cache Reuse,CoRR,2017 +0e8760fc198a7e7c9f4193478c0e0700950a86cd,"Brute-Force Facial Landmark Analysis With A 140, 000-Way Classifier",CoRR,2018 +0e3840ea3227851aaf4633133dd3cbf9bbe89e5b,ChaLearn Looking at People: Events and Resources,CoRR,2017 +0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a,LATCH: Learned arrangements of three patch codes,2016 IEEE Winter Conference on Applications of Computer Vision (WACV),2016 +6080f26675e44f692dd722b61905af71c5260af8,Descriptor transition tables for object retrieval using unconstrained cluttered video acquired using a consumer level handheld mobile device,2016 International Joint Conference on Neural Networks (IJCNN),2016 +60d765f2c0a1a674b68bee845f6c02741a49b44e,An efficient illumination normalization method for face recognition,Pattern Recognition Letters,2006 +6097ea6fd21a5f86a10a52e6e4dd5b78a436d5bf,Multi-Region bilinear convolutional neural networks for person re-identification,2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),2017 +60643bdab1c6261576e6610ea64ea0c0b200a28d,Multi-manifold metric learning for face recognition based on image sets,J. Visual Communication and Image Representation,2014 +34a41ec648d082270697b9ee264f0baf4ffb5c8d,Integration of multi-feature fusion and dictionary learning for face recognition,Image Vision Comput.,2013 +34b7e826db49a16773e8747bc8dfa48e344e425d,Learning sign language by watching TV (using weakly aligned subtitles),2009 IEEE Conference on Computer Vision and Pattern Recognition,2009 +5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372,Autoencoder Feature Selector,CoRR,2017 +5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9,Scalable Object Detection for Stylized Objects,CoRR,2017 +5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a,On applying linear discriminant analysis for multi-labeled problems,Pattern Recognition Letters,2008 +5fa932be4d30cad13ea3f3e863572372b915bec8,Orthogonal vs. uncorrelated least squares discriminant analysis for feature extraction,Pattern Recognition Letters,2012 +33aa980544a9d627f305540059828597354b076c,Face Recognition Using Eigen face Coefficients and Principal Component Analysis,Unknown,2010 +33403e9b4bbd913ae9adafc6751b52debbd45b0e,Pose Invariant Affect Analysis using Thin - Plate Splines,, +0562fc7eca23d47096472a1d42f5d4d086e21871,On the Integration of Optical Flow and Action Recognition,CoRR,2017 +056294ff40584cdce81702b948f88cebd731a93e,Unsupervised Semantic Parsing of Video Collections,2015 IEEE International Conference on Computer Vision (ICCV),2015 +05f4d907ee2102d4c63a3dc337db7244c570d067,Face recognition from a single image per person: A survey,Pattern Recognition,2006 +05e96d76ed4a044d8e54ef44dac004f796572f1a,Three-Dimensional Face Recognition,International Journal of Computer Vision,2005 +9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1,Semi-supervised learning in Spectral Dimensionality Reduction,,2016 +029b53f32079063047097fa59cfc788b2b550c4b,Continuous Conditional Neural Fields for Structured Regression,,2014 +02bd665196bd50c4ecf05d6852a4b9ba027cd9d0,Feature Selection with Annealing for Computer Vision and Big Data Learning,IEEE Transactions on Pattern Analysis and Machine Intelligence,2016 +02c993d361dddba9737d79e7251feca026288c9c,Automatic player detection and recognition in images using AdaBoost,Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST),2012 +a46283e90bcdc0ee35c680411942c90df130f448,Moment-based local binary patterns: A novel descriptor for invariant pattern recognition applications,Neurocomputing,2013 +a4cc626da29ac48f9b4ed6ceb63081f6a4b304a2,KCRC-LCD: Discriminative kernel collaborative representation with locality constrained dictionary for visual categorization,Pattern Recognition,2015 +a33f20773b46283ea72412f9b4473a8f8ad751ae,ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE ROBUST FACE RECOGNITION ON NONLINEAR MANIFOLDS Ph.D. THESIS,,2012 +b562def2624f59f7d3824e43ecffc990ad780898,Autoencoder Inspired Unsupervised Feature Selection,"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",2018 +b59f441234d2d8f1765a20715e227376c7251cd7,Deep Continuous Clustering,CoRR,2018 +d9739d1b4478b0bf379fe755b3ce5abd8c668f89,Unsupervised approach for the accurate localization of the pupils in near-frontal facial images,J. Electronic Imaging,2013 +d9a1dd762383213741de4c1c1fd9fccf44e6480d,Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction,Pattern Recognition,2004 +aca273a9350b10b6e2ef84f0e3a327255207d0f5,On soft biometrics,Pattern Recognition Letters,2015 +ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e,ViCom: Benchmark and Methods for Video Comprehension,CoRR,2016 +ac820d67b313c38b9add05abef8891426edd5afb,Fuzzy human motion analysis: A review,Pattern Recognition,2015 +ad6745dd793073f81abd1f3246ba4102046da022,A Coupled Hidden Markov Random Field model for simultaneous face clustering and tracking in videos,Pattern Recognition,2017 +bb557f4af797cae9205d5c159f1e2fdfe2d8b096,A distributed framework for trimmed Kernel k-Means clustering,Pattern Recognition,2015 +bbe1332b4d83986542f5db359aee1fd9b9ba9967,Convolutional neural network on three orthogonal planes for dynamic texture classification,Pattern Recognition,2018 +bbf01aa347982592b3e4c9e4f433e05d30e71305,Markov network-based multiple classifier for face image retrieval,2013 IEEE International Conference on Image Processing,2013 +bbf1396eb826b3826c5a800975047beabde2f0de,Illumination insensitive recognition using eigenspaces,Computer Vision and Image Understanding,2004 +d78077a7aa8a302d4a6a09fb9737ab489ae169a6,Robust face recognition with structural binary gradient patterns,Pattern Recognition,2017 +d7312149a6b773d1d97c0c2b847609c07b5255ec,An Experimentation Engine for Data-Driven Fashion Systems,,2017 +d78373de773c2271a10b89466fe1858c3cab677f,Pain intensity estimation by a self-taught selection of histograms of topographical features,Image Vision Comput.,2016 +d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0,Minimalistic CNN-based ensemble model for gender prediction from face images,Pattern Recognition Letters,2016 +d03baf17dff5177d07d94f05f5791779adf3cd5f,Real time face and mouth recognition using radial basis function neural networks,Expert Syst. Appl.,2009 +bef503cdfe38e7940141f70524ee8df4afd4f954,Improving class separability using extended pixel planes: a comparative study,Machine Vision and Applications,2011 +b3afa234996f44852317af382b98f5f557cab25a,A Closer Look at Spatiotemporal Convolutions for Action Recognition,CoRR,2017 +dfabe7ef245ca68185f4fcc96a08602ee1afb3f7,Group-aware deep feature learning for facial age estimation,Pattern Recognition,2017 +da15344a4c10b91d6ee2e9356a48cb3a0eac6a97,Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition,Computer Communications,2016 +da5bfddcfe703ca60c930e79d6df302920ab9465,An analysis of facial expression recognition under partial facial image occlusion,Image Vision Comput.,2008 +daba8f0717f3f47c272f018d0a466a205eba6395,Neither Global Nor Local: Regularized Patch-Based Representation for Single Sample Per Person Face Recognition,International Journal of Computer Vision,2014 +b4d7ca26deb83cec1922a6964c1193e8dd7270e7,Learning to score and summarize figure skating sport videos,CoRR,2018 +a2d9c9ed29bbc2619d5e03320e48b45c15155195,Facial expression recognition based on anatomy,Computer Vision and Image Understanding,2014 +a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d,Computer Recognition of Facial Actions: A study of co-articulation effects,,2001 +a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be,Combined Support Vector Machines and Hidden Markov Models for Modeling Facial Action Temporal Dynamics,,2007 +a503eb91c0bce3a83bf6f524545888524b29b166,A Generative Approach to Zero-Shot and Few-Shot Action Recognition,CoRR,2018 +bd9eb65d9f0df3379ef96e5491533326e9dde315,Graph Distillation for Action Detection with Privileged Information,CoRR,2017 +bd8e2d27987be9e13af2aef378754f89ab20ce10,Facial feature points detecting based on Gaussian Mixture Models,Pattern Recognition Letters,2015 +d6fb606e538763282e3942a5fb45c696ba38aee6,Affective Body Expression Perception and Recognition: A Survey,IEEE Transactions on Affective Computing,2013 +bcc346f4a287d96d124e1163e4447bfc47073cd8,Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition,Unknown,2016 +bcfeac1e5c31d83f1ed92a0783501244dde5a471,Achieving robust face recognition from video by combining a weak photometric model and a learnt generic face invariant,Pattern Recognition,2013 +bc2852fa0a002e683aad3fb0db5523d1190d0ca5,Learning from Ambiguously Labeled Face Images,IEEE transactions on pattern analysis and machine intelligence,2017 +bcb99d5150d792001a7d33031a3bd1b77bea706b,Facial descriptors for human interaction recognition in still images,Pattern Recognition Letters,2016 +aed321909bb87c81121c841b21d31509d6c78f69,"Unfamiliar Sides , Video , Image Enhancement in Face Recognition",,2016 +ae936628e78db4edb8e66853f59433b8cc83594f,Person Re-identification via Structured Prediction,CoRR,2014 +ae4e2c81c8a8354c93c4b21442c26773352935dd,On the kernel Extreme Learning Machine classifier,Pattern Recognition Letters,2015 +ab1dfcd96654af0bf6e805ffa2de0f55a73c025d,Higher order orthogonal moments for invariant facial expression recognition,Digital Signal Processing,2010 +ab1900b5d7cf3317d17193e9327d57b97e24d2fc,Expression transfer for facial sketch animation,Signal Processing,2011 +e5737ffc4e74374b0c799b65afdbf0304ff344cb,A literature survey on robust and efficient eye localization in real-life scenarios,Pattern Recognition,2013 +e5dfd17dbfc9647ccc7323a5d62f65721b318ba9,Using Correlated Regression Models to Calculate Cumulative Attributes for Age Estimation,IEICE Transactions,2015 +e27c92255d7ccd1860b5fb71c5b1277c1648ed1e,Multilinear class-specific discriminant analysis,Pattern Recognition Letters,2017 +e200c3f2849d56e08056484f3b6183aa43c0f13a,The C-loss function for pattern classification,Pattern Recognition,2014 +f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0,Pose-invariant face recognition by matching on multi-resolution MRFs linked by supercoupling transform,Computer Vision and Image Understanding,2011 +f3fcaae2ea3e998395a1443c87544f203890ae15,Robust part-based face matching with multiple templates,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +f355e54ca94a2d8bbc598e06e414a876eb62ef99,"A survey on heterogeneous face recognition: Sketch, infra-red, 3D and low-resolution",Image Vision Comput.,2016 +ebedc841a2c1b3a9ab7357de833101648281ff0e,Facial landmarking for in-the-wild images with local inference based on global appearance,Image Vision Comput.,2015 +ebb9d53668205c5797045ba130df18842e3eadef,Fully Context-Aware Video Prediction,CoRR,2017 +c0d5c3aab87d6e8dd3241db1d931470c15b9e39d,Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice,Computer Vision and Image Understanding,2016 +ee461d060da58d6053d2f4988b54eff8655ecede,Modelling facial colour and identity with Gaussian mixtures,Pattern Recognition,1998 +c903af0d69edacf8d1bff3bfd85b9470f6c4c243,Nyström-based approximate kernel subspace learning,Pattern Recognition,2016 +fc516a492cf09aaf1d319c8ff112c77cfb55a0e5,"XBadges. Identifying and training soft skills with commercial video games. Improving persistence, risk taking & spatial reasoning with commercial video games and facial and emotional recognition system",,2017 +f2c568fe945e5743635c13fe5535af157b1903d1,Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods,,2018 +f26097a1a479fb6f32b27a93f8f32609cfe30fdc,What is the best way for extracting meaningful attributes from pictures?,Pattern Recognition,2017 +f214bcc6ecc3309e2efefdc21062441328ff6081,Speaker verification in score-ageing-quality classification space,Computer Speech & Language,2013 +e3657ab4129a7570230ff25ae7fbaccb4ba9950c,Recovering Joint and Individual Components in Facial Data,,2018 +cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2,Toward Use of Facial Thermal Features in Dynamic Assessment of Affect and Arousal Level,IEEE Transactions on Affective Computing,2017 +cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce,Git Loss for Deep Face Recognition,Unknown,2018 +cf54a133c89f730adc5ea12c3ac646971120781c,A comparative study for feature integration strategies in dynamic saliency estimation,Sig. Proc.: Image Comm.,2017 +cac8bb0e393474b9fb3b810c61efdbc2e2c25c29,Visual Segmentation of Simple Objects for Robots,,2011 +e465f596d73f3d2523dbf8334d29eb93a35f6da0,"On Face Segmentation, Face Swapping, and Face Perception",CoRR,2017 +e4aeaf1af68a40907fda752559e45dc7afc2de67,Exponential Discriminative Metric Embedding in Deep Learning,,2018 +e4c3d5d43cb62ac5b57d74d55925bdf76205e306,Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval,,2018 +e476cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf,Robust Kernel Representation With Statistical Local Features for Face Recognition,IEEE Transactions on Neural Networks and Learning Systems,2013 +fe7c0bafbd9a28087e0169259816fca46db1a837,Seeing Voices and Hearing Faces: Cross-modal biometric matching,CoRR,2018 +fe48f0e43dbdeeaf4a03b3837e27f6705783e576,Supervised Transformer Network for Efficient Face Detection,Unknown,2016 +fe108803ee97badfa2a4abb80f27fa86afd9aad9,Kernel discriminant transformation for image set-based face recognition,Pattern Recognition,2011 +c82c147c4f13e79ad49ef7456473d86881428b89,Facial Expression Recognition and Analysis: A Comparison Study of Feature Descriptors,IPSJ Trans. Computer Vision and Applications,2015 +fb5280b80edcf088f9dd1da769463d48e7b08390,The impact of weak ground truth and facial expressiveness on affect detection accuracy from time-continuous videos of facial expressions,Inf. Sci.,2013 +c178a86f4c120eca3850a4915134fff44cbccb48,Normalization Discriminant Independent Component Analysis,,2013 +c1fc70e0952f6a7587b84bf3366d2e57fc572fd7,Efficient clustering on Riemannian manifolds: A kernelised random projection approach,Pattern Recognition,2016 +c1482491f553726a8349337351692627a04d5dbe,When Follow is Just One Click Away: Understanding Twitter Follow Behavior in the 2016 U.S. Presidential Election,,2017 +c1e76c6b643b287f621135ee0c27a9c481a99054,Multi-point Regression Voting for Shape Model Matching,,2016 +ec22eaa00f41a7f8e45ed833812d1ac44ee1174e,A novel phase congruency based descriptor for dynamic facial expression analysis,Pattern Recognition Letters,2014 +4e444db884b5272f3a41e4b68dc0d453d4ec1f4c,Learning without Prejudice: Avoiding Bias in Webly-Supervised Action Recognition,CoRR,2017 +4e7ebf3c4c0c4ecc48348a769dd6ae1ebac3bf1b,"Towards the automatic detection of spontaneous agreement and disagreement based on nonverbal behaviour: A survey of related cues, databases, and tools",Image Vision Comput.,2013 +4e4e8fc9bbee816e5c751d13f0d9218380d74b8f,Tone-aware sparse representation for face recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +20a88cc454a03d62c3368aa1f5bdffa73523827b,Face recognition using a kernel fractional-step discriminant analysis algorithm,Pattern Recognition,2007 +20767ca3b932cbc7b8112db21980d7b9b3ea43a3,Dynamic Concept Composition for Zero-Example Event Detection,,2016 +20c2a5166206e7ffbb11a23387b9c5edf42b5230,Examining visible articulatory features in clear and plain speech,Speech Communication,2015 +2098983dd521e78746b3b3fa35a22eb2fa630299,Second-order Temporal Pooling for Action Recognition,CoRR,2017 +206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8,Unsupervised learning of object frames by dense equivariant image labelling,Unknown,2017 +18206e1b988389eaab86ef8c852662accf3c3663,Compressed Video Action Recognition,CoRR,2017 +184750382fe9b722e78d22a543e852a6290b3f70,Projection functions for eye detection,Pattern Recognition,2004 +18dfc2434a95f149a6cbb583cca69a98c9de9887,Hough Networks for Head Pose Estimation and Facial Feature Localization,,2014 +27d709f7b67204e1e5e05fe2cfac629afa21699d,"Learning the Latent ""Look"": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images",,2017 +27da432cf2b9129dce256e5bf7f2f18953eef5a5,Face Recognition in Low Quality Images: A Survey,CoRR,2018 +274f87ad659cd90382ef38f7c6fafc4fc7f0d74d,Latent Tensor Transfer Learning for RGB-D Action Recognition,,2014 +4bbbee93519a4254736167b31be69ee1e537f942,Learning to Score Olympic Events,2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2017 +4b6be933057d939ddfa665501568ec4704fabb39,Graph Transduction as a Non-cooperative Game,,2011 +11367581c308f4ba6a32aac1b4a7cdb32cd63137,3D face shape approximation from intensities using Partial Least Squares,2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,2008 +112780a7fe259dc7aff2170d5beda50b2bfa7bda,Learnable PINs: Cross-Modal Embeddings for Person Identity,CoRR,2018 +29c1f733a80c1e07acfdd228b7bcfb136c1dff98,Discriminatively Trained Latent Ordinal Model for Video Classification,IEEE transactions on pattern analysis and machine intelligence,2017 +29f27448e8dd843e1c4d2a78e01caeaea3f46a2d,Similar gait action recognition using an inertial sensor,Pattern Recognition,2015 +29156e4fe317b61cdcc87b0226e6f09e416909e0,Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach,IEEE transactions on pattern analysis and machine intelligence,2017 +293ade202109c7f23637589a637bdaed06dc37c9,Material for : Adaptive Cascaded Regression,,2016 +7ce03597b703a3b6754d1adac5fbc98536994e8f,On the Intrinsic Dimensionality of Face Representation,,2018 +16de1324459fe8fdcdca80bba04c3c30bb789bdf,Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs,CoRR,2017 +16892074764386b74b6040fe8d6946b67a246a0b,Virtual Faces Expressing Emotions: An Initial Concomitant and Construct Validity Study,,2014 +1679943d22d60639b4670eba86665371295f52c3,Facial feature extraction using complex dual-tree wavelet transform,Computer Vision and Image Understanding,2008 +169076ffe5e7a2310e98087ef7da25aceb12b62d,Emotional restraint is good for men only: The influence of emotional restraint on perceptions of competence.,Emotion,2016 +429c3588ce54468090cc2cf56c9b328b549a86dc,Thermal and reflectance based personal identification methodology under variable illumination,Pattern Recognition,2010 +424259e9e917c037208125ccc1a02f8276afb667,Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016 +42e0127a3fd6a96048e0bc7aab6d0ae88ba00fb0,AU-aware Deep Networks for facial expression recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +89de30a75d3258816c2d4d5a733d2bef894b66b9,Relative Hidden Markov Models for Video-Based Evaluation of Motion Skills in Surgical Training,IEEE Transactions on Pattern Analysis and Machine Intelligence,2015 +45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8,Fully automatic facial feature point detection using Gabor feature based boosted classifiers,"2005 IEEE International Conference on Systems, Man and Cybernetics",2005 +45fbeed124a8956477dbfc862c758a2ee2681278,Pose Invariant Approach for Face Recognition at Distance,,2012 +4511e09ee26044cb46073a8c2f6e1e0fbabe33e8,A Graph Based Approach for Finding People in News,,2007 +1fd2ed45fb3ba77f10c83f0eef3b66955645dfe0,Generalized Unsupervised Manifold Alignment,,2014 +1f2d12531a1421bafafe71b3ad53cb080917b1a7,Joint optimization of manifold learning and sparse representations for face and gesture analysis,,2015 +80193dd633513c2d756c3f568ffa0ebc1bb5213e,Wavelet Subspace Method for Real-Time Face Tracking,,2001 +747d5fe667519acea1bee3df5cf94d9d6f874f20,Transferring Common-Sense Knowledge for Object Detection,,2018 +745b42050a68a294e9300228e09b5748d2d20b81,Temporal Human Action Segmentation via Dynamic Clustering,,2018 +1a9337d70a87d0e30966ecd1d7a9b0bbc7be161f,"A novel binary adaptive weight GSA based feature selection for face recognition using local gradient patterns, modified census transform, and local binary patterns",Eng. Appl. of AI,2014 +1a1118cd4339553ad0544a0a131512aee50cf7de,Semantic Image Retrieval via Active Grounding of Visual Situations,CoRR,2017 +28e0ed749ebe7eb778cb13853c1456cb6817a166,C-Mantec: A novel constructive neural network algorithm incorporating competition between neurons,Neural networks : the official journal of the International Neural Network Society,2012 +28b9d92baea72ec665c54d9d32743cf7bc0912a7,Parametric temporal alignment for the detection of facial action temporal segments,,2014 +282a3ee79a08486f0619caf0ada210f5c3572367,Accelerated Training for Massive Classification via Dynamic Class Selection,CoRR,2018 +288dbc40c027af002298b38954d648fddd4e2fd3,Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis,,2012 +28312c3a47c1be3a67365700744d3d6665b86f22,Face Recognition: A Literature Survey1,,2000 +287900f41dd880802aa57f602e4094a8a9e5ae56,Expressive deformation profiles for cross expression face recognition,Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012),2012 +28d4e027c7e90b51b7d8908fce68128d1964668a,Level Playing Field for Million Scale Face Recognition,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017 +17035089959a14fe644ab1d3b160586c67327db2,VLAD: Encoding Dynamics of Deep Features for Action Recognition,, +17aa78bd4331ef490f24bdd4d4cd21d22a18c09c,Appendix: Building high-level features using large scale unsupervised learning,,2012 +17c0d99171efc957b88c31a465c59485ab033234,"To learn image super-resolution, use a GAN to learn how to do image degradation first",CoRR,2018 +1791f790b99471fc48b7e9ec361dc505955ea8b1,"A motion capture library for the study of identity, gender, and emotion perception from biological motion.",Behavior research methods,2006 +17fad2cc826d2223e882c9fda0715fcd5475acf3,Human facial expressions as adaptations: Evolutionary questions in facial expression research.,American journal of physical anthropology,2001 +7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889,ViCom: Benchmark and Methods for Video Comprehension,CoRR,2016 +7bfe085c10761f5b0cc7f907bdafe1ff577223e0,Adaptive Semi-Supervised Learning with Discriminative Least Squares Regression,,2017 +8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483,Human Face Identification via,, +8f9f599c05a844206b1bd4947d0524234940803d,Efficient 3D reconstruction for face recognition,,2004 +8a40b6c75dd6392ee0d3af73cdfc46f59337efa9,Feature-Based Facial Expression Recognition: Sensitivity Analysis and Experiments with A Multilayer Perceptron,IJPRAI,1999 +7e600faee0ba11467d3f7aed57258b0db0448a72,Robust Face Recognition using AAM and Gabor Features,Unknown,2007 +1056347fc5e8cd86c875a2747b5f84fd570ba232,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,2017 IEEE Winter Conference on Applications of Computer Vision (WACV),2017 +10ab1b48b2a55ec9e2920a5397febd84906a7769,I-Pic: A Platform for Privacy-Compliant Image Capture,,2016 +10195a163ab6348eef37213a46f60a3d87f289c5,Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks,International Journal of Computer Vision,2016 +10e704c82616fb5d9c48e0e68ee86d4f83789d96,INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK Gabor Wavelet Networks for Object Representation,,2000 +10e70a34d56258d10f468f8252a7762950830d2b,New Parallel Models for Face Recognition,2007 International Conference on Computational Intelligence and Security (CIS 2007),2007 +190b3caa2e1a229aa68fd6b1a360afba6f50fde4,"VideoLSTM convolves, attends and flows for action recognition",Computer Vision and Image Understanding,2018 +19808134b780b342e21f54b60095b181dfc7a600,SIFTing Through Scales,IEEE Transactions on Pattern Analysis and Machine Intelligence,2016 +19eb486dcfa1963c6404a9f146c378fc7ae3a1df,A probabilistic model of face mapping with local transformations and its application to person recognition,IEEE Transactions on Pattern Analysis and Machine Intelligence,2005 +4c6daffd092d02574efbf746d086e6dc0d3b1e91,Informedia@trecvid 201 4 Med and Mer Med System,,2015 +4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc,Multicolumn Networks for Face Recognition,Unknown,2018 +267c6e8af71bab68547d17966adfaab3b4711e6b,Two-stream Collaborative Learning with Spatial-Temporal Attention for Video Classification,CoRR,2017 +26a89701f4d41806ce8dbc8ca00d901b68442d45,Eigenspace updating for non-stationary process and its application to face recognition,Pattern Recognition,2003 +21e828071249d25e2edaca0596e27dcd63237346,Scalable Face Image Retrieval with Identity-Based Quantization and Multireference Reranking,IEEE Transactions on Pattern Analysis and Machine Intelligence,2010 +4df889b10a13021928007ef32dc3f38548e5ee56,Multi-Stage Optimal Component Analysis,2007 International Joint Conference on Neural Networks,2007 +4d423acc78273b75134e2afd1777ba6d3a398973,"International Conference on Automatic Face and Gesture Recognition The CMU Pose , Illumination , and Expression ( PIE ) Database",,2002 +4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41,Automatic Pixel Boosting for Face Enhancement in Dim Light,,2008 +4d90bab42806d082e3d8729067122a35bbc15e8d,Towards a dynamic expression recognition system under facial occlusion,Pattern Recognition Letters,2012 +75e9a141b85d902224f849ea61ab135ae98e7bfb,Quantifying human sensitivity to spatio-temporal information in dynamic faces,Vision Research,2014 +75cd81d2513b7e41ac971be08bbb25c63c37029a,Human action recognition using Pose-based discriminant embedding,Sig. Proc.: Image Comm.,2012 +75e5ba7621935b57b2be7bf4a10cad66a9c445b9,Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning,Pattern Recognition,2014 +81831ed8e5b304e9d28d2d8524d952b12b4cbf55,Discriminative histograms of local dominant orientation (D-HLDO) for biometric image feature extraction,Pattern Recognition,2013 +86b985b285c0982046650e8d9cf09565a939e4f9,Facial Micro-Expression Detection in Hi-Speed Video Based on Facial Action Coding System (FACS),IEICE Transactions,2013 +86b51bd0c80eecd6acce9fc538f284b2ded5bcdd,Learning with Privileged Information for Multi-Label Classification,CoRR,2017 +8699268ee81a7472a0807c1d3b1db0d0ab05f40d,Channel-Recurrent Autoencoding for Image Modeling,,2017 +869583b700ecf33a9987447aee9444abfe23f343,Intrinsic Grassmann Averages for Online Linear and Robust Subspace Learning,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017 +726b8aba2095eef076922351e9d3a724bb71cb51,3DFaceNet: Real-time Dense Face Reconstruction via Synthesizing Photo-realistic Face Images,,2017 +721b109970bf5f1862767a1bec3f9a79e815f79a,A Fast Implementation of PCA-L1 Using Gram-Schmidt Orthogonalization,IEICE Transactions,2013 +729dbe38538fbf2664bc79847601f00593474b05,Complementary effects of gaze direction and early saliency in guiding fixations during free-viewing,,2014 +442f09ddb5bb7ba4e824c0795e37cad754967208,Learning from Partial Labels,Journal of Machine Learning Research,2011 +449b1b91029e84dab14b80852e35387a9275870e,Dimensional emotion driven facial expression synthesis based on the multi-stream DBN model,Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference,2012 +44078d0daed8b13114cffb15b368acc467f96351,Triplet probabilistic embedding for face verification and clustering,"2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS)",2016 +44eb4d128b60485377e74ffb5facc0bf4ddeb022,Database independent human emotion recognition with Meta-Cognitive Neuro-Fuzzy Inference System,"2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)",2014 +448ed201f6fceaa6533d88b0b29da3f36235e131,A generative restricted Boltzmann machine based method for high-dimensional motion data modeling,Computer Vision and Image Understanding,2015 +2aaa6969c03f435b3ea8431574a91a0843bd320b,Face Recognition using Radial Basis Function Network based on LDA,, +2ad7cef781f98fd66101fa4a78e012369d064830,Neural Aggregation Network for Video Face Recognition,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017 +2ad29b2921aba7738c51d9025b342a0ec770c6ea,Where is my puppy? Retrieving lost dogs by facial features,Multimedia Tools and Applications,2016 +2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924,Compare and Contrast: Learning Prominent Differences in Relative Attributes,,2017 +2a02355c1155f2d2e0cf7a8e197e0d0075437b19,On Face Recognition using Gabor Filters,,2009 +2aea27352406a2066ddae5fad6f3f13afdc90be9,Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016 +2fdce3228d384456ea9faff108b9c6d0cf39e7c7,The motion in emotion - A CERT based approach to the FERA emotion challenge,,2011 +2f16459e2e24dc91b3b4cac7c6294387d4a0eacf,Fast Deep Convolutional Face Detection in the Wild Exploiting Hard Sample Mining,Big Data Research,2018 +2fa057a20a2b4a4f344988fee0a49fce85b0dc33,eHeritage of shadow puppetry: creation and manipulation,,2013 +2f9c173ccd8c1e6b88d7fb95d6679838bc9ca51d,Gaussian Process Domain Experts for Model Adaptation in Facial Behavior Analysis,2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2016 +2f8183b549ec51b67f7dad717f0db6bf342c9d02,3D Face Reconstruction from a Single Image Using a Single Reference Face Shape,IEEE Transactions on Pattern Analysis and Machine Intelligence,2011 +2fea258320c50f36408032c05c54ba455d575809,Recurrent Mixture Density Network for Spatiotemporal Visual Attention,CoRR,2016 +4300fa1221beb9dc81a496cd2f645c990a7ede53,A comparison of generalized linear discriminant analysis algorithms,Pattern Recognition,2008 +43aa40eaa59244c233f83d81f86e12eba8d74b59,Fast pose invariant face recognition using super coupled multiresolution Markov Random Fields on a GPU,Pattern Recognition Letters,2014 +43e268c118ac25f1f0e984b57bc54f0119ded520,Generalized Conditional Gradient for Sparse Estimation,Journal of Machine Learning Research,2017 +437a720c6f6fc1959ba95e48e487eb3767b4e508,Full interpretation of minimal images.,Cognition,2018 +436d80cc1b52365ed7b2477c0b385b6fbbb51d3b,Probabilistic Knowledge Transfer for Deep Representation Learning,,2018 +430c4d7ad76e51d83bbd7ec9d3f856043f054915,Two decades of local binary patterns: A survey,CoRR,2016 +6b333b2c6311e36c2bde920ab5813f8cfcf2b67b,Pain Level Detection From Facial Image Captured by Smartphone,JIP,2016 +6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9,BNU-LSVED 2.0: Spontaneous multimodal student affect database with multi-dimensional labels,Sig. Proc.: Image Comm.,2017 +6b1b43d58faed7b457b1d4e8c16f5f7e7d819239,A multi-task model for simultaneous face identification and facial expression recognition,Neurocomputing,2016 +6b35b15ceba2f26cf949f23347ec95bbbf7bed64,"RSILC: Rotation- and Scale-Invariant, Line-based Color-aware descriptor",Image Vision Comput.,2015 +6bb630dfa797168e6627d972560c3d438f71ea99,Sequential Deep Trajectory Descriptor for Action Recognition With Three-Stream CNN,IEEE Transactions on Multimedia,2017 +071af21377cc76d5c05100a745fb13cb2e40500f,Structured Prediction for Event Detection,,2016 +073eaa49ccde15b62425cda1d9feab0fea03a842,Delft University of Technology On detecting the playing/non-playing activity of musicians in symphonic music videos,,2017 +380dd0ddd5d69adc52defc095570d1c22952f5cc,Improving Smiling Detection with Race and Gender Diversity,CoRR,2017 +385750bcf95036c808d63db0e0b14768463ff4c6,Autoencoding beyond pixels using a learned similarity metric,,2016 +38861d0d3a0292c1f54153b303b0d791cbba1d50,Making risk minimization tolerant to label noise,Neurocomputing,2015 +38192a0f9261d9727b119e294a65f2e25f72d7e6,Facial feature point detection: A comprehensive survey,Neurocomputing,2018 +0004f72a00096fa410b179ad12aa3a0d10fc853c,Visual Interpretation of Human Body Language for Interactive Scenarios,Unknown,2012 +0059b3dfc7056f26de1eabaafd1ad542e34c2c2e,Can Help You Change! An Empathic Virtual Agent Delivers Behavior Change Health Interventions,,2014 +6eaf446dec00536858548fe7cc66025b70ce20eb,GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks,CoRR,2017 +6eaeac9ae2a1697fa0aa8e394edc64f32762f578,Constraint Score: A new filter method for feature selection with pairwise constraints,Pattern Recognition,2008 +6ee2ea416382d659a0dddc7a88fc093accc2f8ee,Graph-Preserving Sparse Nonnegative Matrix Factorization With Application to Facial Expression Recognition,"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)",2011 +6e12ba518816cbc2d987200c461dc907fd19f533,A computational approach to body mass index prediction from face images,Image Vision Comput.,2013 +36b40c75a3e53c633c4afb5a9309d10e12c292c7,Facial Expression Recognition Based on Fusion of Multiple Gabor Features,18th International Conference on Pattern Recognition (ICPR'06),2006 +365f67fe670bf55dc9ccdcd6888115264b2a2c56,Improving facial analysis and performance driven animation through disentangling identity and expression,Image Vision Comput.,2016 +366d20f8fd25b4fe4f7dc95068abc6c6cabe1194,Are facial attributes adversarially robust?,2016 23rd International Conference on Pattern Recognition (ICPR),2016 +362ba8317aba71c78dafca023be60fb71320381d,Nighttime face recognition at large standoff: Cross-distance and cross-spectral matching,Pattern Recognition,2014 +5c4ce36063dd3496a5926afd301e562899ff53ea,A Survey on Content-Aware Video Analysis for Sports,CoRR,2017 +5c2a7518fb26a37139cebff76753d83e4da25159,De-identification for privacy protection in multimedia content: A survey,Sig. Proc.: Image Comm.,2016 +5c473cfda1d7c384724fbb139dfe8cb39f79f626,Facial expression recognition based on meta probability codes,Pattern Analysis and Applications,2012 +0952ac6ce94c98049d518d29c18d136b1f04b0c0,Incremental Kernel PCA for Efficient Non-linear Feature Extraction,,2006 +097104fc731a15fad07479f4f2c4be2e071054a2,Texture and shape information fusion for facial expression and facial action unit recognition,Pattern Recognition,2008 +09111da0aedb231c8484601444296c50ca0b5388,"Joint estimation of age, gender and ethnicity: CCA vs. PLS",2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +5d485501f9c2030ab33f97972aa7585d3a0d59a7,Learning Bayesian network parameters under incomplete data with domain knowledge,Pattern Recognition,2009 +5dc056fe911a3e34a932513abe637076250d96da,Real-time facial feature detection using conditional regression forests,2012 IEEE Conference on Computer Vision and Pattern Recognition,2012 +5dcf78de4d3d867d0fd4a3105f0defae2234b9cb,A method for improving consistency in photometric databases,,2012 +5d01283474b73a46d80745ad0cc0c4da14aae194,Classification schemes based on Partial Least Squares for face identification,J. Visual Communication and Image Representation,2015 +31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a,Patch-based Face Recognition using a Hierarchical Multi-label Matcher,,2018 +31b05f65405534a696a847dd19c621b7b8588263,UMDFaces: An annotated face dataset for training deep networks,2017 IEEE International Joint Conference on Biometrics (IJCB),2017 +31e57fa83ac60c03d884774d2b515813493977b9,Face alignment with cascaded semi-parametric deep greedy neural forests,Pattern Recognition Letters,2018 +31b58ced31f22eab10bd3ee2d9174e7c14c27c01,Nonparametric Object and Scene Recognition,,2008 +312afff739d1e0fcd3410adf78be1c66b3480396,Facial Attributes: Accuracy and Adversarial Robustness,CoRR,2018 +31bb49ba7df94b88add9e3c2db72a4a98927bb05,Static and dynamic 3D facial expression recognition: A comprehensive survey,Image Vision Comput.,2012 +91883dabc11245e393786d85941fb99a6248c1fb,Face alignment in-the-wild: A Survey,Computer Vision and Image Understanding,2017 +919d0e681c4ef687bf0b89fe7c0615221e9a1d30,Fractal Techniques for Face Recognition,,2009 +912a6a97af390d009773452814a401e258b77640,An on-line variational Bayesian model for multi-person tracking from cluttered scenes,Computer Vision and Image Understanding,2016 +918b72a47b7f378bde0ba29c908babf6dab6f833,Uncorrelated trace ratio linear discriminant analysis for undersampled problems,Pattern Recognition Letters,2011 +91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0,Tensor reduction error analysis - Applications to video compression and classification,,2008 +620339aef06aed07a78f9ed1a057a25433faa58b,Human Action Recognition and Prediction: A Survey,CoRR,2018 +62b3598b401c807288a113796f424612cc5833ca,"X2Face: A network for controlling face generation by using images, audio, and pose codes",CoRR,2018 +6257a622ed6bd1b8759ae837b50580657e676192,Unsupervised Learning aids Prediction: Using Future Representation Learning Variantial Autoencoder for Human Action Prediction,CoRR,2017 +620e1dbf88069408b008347cd563e16aeeebeb83,FaceDCAPTCHA: Face detection based color image CAPTCHA,Future Generation Comp. Syst.,2014 +964a3196d44f0fefa7de3403849d22bbafa73886,Uncorrelated slow feature discriminant analysis using globality preserving projections for feature extraction,Neurocomputing,2015 +9636c7d3643fc598dacb83d71f199f1d2cc34415,Automatic facial attribute analysis via adaptive sparse representation of random patches,Pattern Recognition Letters,2015 +98b2f21db344b8b9f7747feaf86f92558595990c,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,CoRR,2017 +982fed5c11e76dfef766ad9ff081bfa25e62415a,Undersampled Face Recognition via Robust Auxiliary Dictionary Learning,IEEE Transactions on Image Processing,2015 +5334ac0a6438483890d5eef64f6db93f44aacdf4,Minh Hoai: Regularizedmax Pooling for Image Categorization,,2014 +53dd25350d3b3aaf19beb2104f1e389e3442df61,Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition,Unknown,2009 +530243b61fa5aea19b454b7dbcac9f463ed0460e,ReenactGAN: Learning to Reenact Faces via Boundary Transfer,CoRR,2018 +539ca9db570b5e43be0576bb250e1ba7a727d640,A Large-Scale Database of Images and Captions for Automatic Face Naming,,2011 +53c8cbc4a3a3752a74f79b74370ed8aeed97db85,Learning person-specific models for facial expression and action unit recognition,Pattern Recognition Letters,2013 +530ce1097d0681a0f9d3ce877c5ba31617b1d709,A component based approach for classifying the seven universal facial expressions of emotion,2013 IEEE Symposium on Computational Intelligence for Creativity and Affective Computing (CICAC),2013 +3f5cf3771446da44d48f1d5ca2121c52975bb3d3,All the Images of an Outdoor Scene,,2002 +303065c44cf847849d04da16b8b1d9a120cef73a,"3D Face Morphable Models ""In-the-Wild""",,2017 +304a306d2a55ea41c2355bd9310e332fa76b3cb0,Variable-state Latent Conditional Random Field models for facial expression analysis,Image Vision Comput.,2017 +5e821cb036010bef259046a96fe26e681f20266e,The Local Binary Pattern Approach and its Applications to Face Analysis,"2008 First Workshops on Image Processing Theory, Tools and Applications",2008 +5b2cfee6e81ef36507ebf3c305e84e9e0473575a,GoDP: Globally Optimized Dual Pathway deep network architecture for facial landmark localization in-the-wild,Image Vision Comput.,2018 +5b0ebb8430a04d9259b321fc3c1cc1090b8e600e,The One-Shot similarity kernel,2009 IEEE 12th International Conference on Computer Vision,2009 +3765c26362ad1095dfe6744c6d52494ea106a42c,I know what you did last summer: object-level auto-annotation of holiday snaps,2009 IEEE 12th International Conference on Computer Vision,2009 +3727ac3d50e31a394b200029b2c350073c1b69e3,Facial Expression Recognition from World Wild Web,2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2016 +377c6563f97e76a4dc836a0bd23d7673492b1aae,Motion deblurring of faces,,2018 +081a431107eb38812b74a8cd036ca5e97235b499,Nonnegative Matrix Factorization in Polynomial Feature Space,IEEE Transactions on Neural Networks,2008 +0831a511435fd7d21e0cceddb4a532c35700a622,Structured occlusion coding for robust face recognition,Neurocomputing,2016 +08c1f8f0e69c0e2692a2d51040ef6364fb263a40,Beyond Eigenfaces: Probabilistic Matching for Face Recognition,,1998 +0830c9b9f207007d5e07f5269ffba003235e4eff,Jointly Learning Multiple Measures of Similarities from Triplet Comparisons,,2015 +081fb4e97d6bb357506d1b125153111b673cc128,Island Loss for Learning Discriminative Features in Facial Expression Recognition,CoRR,2017 +082ad50ac59fc694ba4369d0f9b87430553b11db,Discriminative dictionary learning with low-rank regularization for face recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +6de18708218988b0558f6c2f27050bb4659155e4,Learning Long-Term Dependencies for Action Recognition with a Biologically-Inspired Deep Network,2017 IEEE International Conference on Computer Vision (ICCV),2017 +6d91da37627c05150cb40cac323ca12a91965759,Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach,,2017 +016cbf0878db5c40566c1fbc237686fbad666a33,Efficient illumination independent appearance-based face tracking,Image Vision Comput.,2009 +01e12be4097fa8c94cabeef0ad61498c8e7762f2,Simultaneous Active Learning of Classifiers & Attributes via Relative Feedback,,2013 +01beab8f8293a30cf48f52caea6ca0fb721c8489,Face alignment using local hough voting,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +0178929595f505ef7655272cc2c339d7ed0b9507,Label distribution based facial attractiveness computation by deep residual learning,CoRR,2016 +01b4b32c5ef945426b0396d32d2a12c69c282e29,Blockwise Linear Regression for Face Alignment,,2013 +06526c52a999fdb0a9fd76e84f9795a69480cecf,IMOTION - A Content-Based Video Retrieval Engine,,2015 +0653dcdff992ad980cd5ea5bc557efb6e2a53ba1,Regularized Robust Coding and Dictionary Learning for Face Recognition,,2012 +39ce143238ea1066edf0389d284208431b53b802,Facial expression transfer method based on frequency analysis,Pattern Recognition,2016 +39ce2232452c0cd459e32a19c1abe2a2648d0c3f,Neural computation as a tool to differentiate perceptual from emotional processes: the case of anger superiority effect.,Cognition,2009 +397aeaea61ecdaa005b09198942381a7a11cd129,Multi-Scale Video Frame-Synthesis Network with Transitive Consistency Loss,CoRR,2017 +39b22bcbd452d5fea02a9ee63a56c16400af2b83,Multi-task Learning of Facial Landmarks and Expression,2014 Canadian Conference on Computer and Robot Vision,2014 +399a2c23bd2592ebe20aa35a8ea37d07c14199da,Inferring facial expressions from videos: Tool and application,Sig. Proc.: Image Comm.,2007 +392425be1c9d9c2ee6da45de9df7bef0d278e85f,Vision for Intelligent Vehicles & Applications (VIVA): Face Detection and Head Pose Challenge,,2016 +3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1,Action Recognition with Dynamic Image Networks,IEEE transactions on pattern analysis and machine intelligence,2017 +3965d61c4f3b72044f43609c808f8760af8781a2,Diverse Conditional Image Generation by Stochastic Regression with Latent Drop-Out Codes,CoRR,2018 +395bf182983e0917f33b9701e385290b64e22f9a,Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model,Unknown,2004 +39b452453bea9ce398613d8dd627984fd3a0d53c,Spatiotemporal Residual Networks for Video Action Recognition,Unknown,2016 +39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df,An evaluation of bi-modal facial appearance+facial expression face biometrics,2008 19th International Conference on Pattern Recognition,2008 +9931c6b050e723f5b2a189dd38c81322ac0511de,From pose to activity: Surveying datasets and introducing CONVERSE,Computer Vision and Image Understanding,2016 +521482c2089c62a59996425603d8264832998403,Landmark localization on 3D/4D range data using a shape index-based statistical shape model with global and local constraints,Computer Vision and Image Understanding,2015 +521b625eebea73b5deb171a350e3709a4910eebf,Improving Human Action Recognition by Non-action Classification,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016 +527dda77a3864d88b35e017d542cb612f275a4ec,Facial 3D model registration under occlusions with sensiblepoints-based reinforced hypothesis refinement,2017 IEEE International Joint Conference on Biometrics (IJCB),2017 +52f23e1a386c87b0dab8bfdf9694c781cd0a3984,DropELM: Fast neural network regularization with Dropout and DropConnect,Neurocomputing,2015 +550858b7f5efaca2ebed8f3969cb89017bdb739f,"""Wii Using Only 'We'"": Using background subtraction and human pose recognition to eliminate game controllers",,2011 +5506a1a1e1255353fde05d9188cb2adc20553af5,Dictionary Integration using 3D Morphable Face Models for Pose-invariant Collaborative-representation-based Classification,CoRR,2016 +55c81f15c89dc8f6eedab124ba4ccab18cf38327,Discriminative Training of Hyper-feature Models for Object Identification,,2006 +97540905e4a9fdf425989a794f024776f28a3fa9,NDDR-CNN: Layer-wise Feature Fusing in Multi-Task CNN by Neural Discriminative Dimensionality Reduction,CoRR,2018 +635158d2da146e9de559d2742a2fa234e06b52db,Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns,,2015 +63d8d69e90e79806a062cb8654ad78327c8957bb,A efficient and practical 3D face scanner using near infrared and visible photometric stereo,,2010 +63eefc775bcd8ccad343433fc7a1dd8e1e5ee796,Correlation Metric for Generalized Feature Extraction,IEEE Transactions on Pattern Analysis and Machine Intelligence,2008 +0f9bf5d8f9087fcba419379600b86ae9e9940013,Hybrid human detection and recognition in surveillance,Neurocomputing,2016 +0a511058edae582e8327e8b9d469588c25152dc6,Memory Constrained Face Recognition Ashish Kapoor,, +0a4f3a423a37588fde9a2db71f114b293fc09c50,Computer analysis of face beauty: A survey,Computer Vision and Image Understanding,2014 +0ad90118b4c91637ee165f53d557da7141c3fde0,Face recognition with radial basis function (RBF) neural networks,IEEE transactions on neural networks,2002 +0ad4a814b30e096ad0e027e458981f812c835aa0,Leveraging mid-level deep representations for predicting face attributes in the wild,2016 IEEE International Conference on Image Processing (ICIP),2016 +6448d23f317babb8d5a327f92e199aaa45f0efdc,Classifying Facial Attributes using a 2-D Gabor Wavelet Representation and Discriminant Analysis,,1999 +642c66df8d0085d97dc5179f735eed82abf110d0,Coupled kernel-based subspace learning,2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),2005 +641f34deb3bdd123c6b6e7b917519c3e56010cb7,Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary,IEEE Transactions on Pattern Analysis and Machine Intelligence,2012 +6462ef39ca88f538405616239471a8ea17d76259,Long range iris recognition: A survey,Pattern Recognition,2017 +90ac0f32c0c29aa4545ed3d5070af17f195d015f,An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition,Unknown,2012 +90b11e095c807a23f517d94523a4da6ae6b12c76,Blind Facial Image Quality Enhancement Using Non-Rigid Semantic Patches,IEEE Transactions on Image Processing,2017 +d4c7d1a7a03adb2338704d2be7467495f2eb6c7b,Towards a Neural,,2017 +d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d,A Fusion of Appearance based CNNs and Temporal evolution of Skeleton with LSTM for Daily Living Action Recognition,CoRR,2018 +d44a93027208816b9e871101693b05adab576d89,On the Capacity of Face Representation,CoRR,2017 +ba788365d70fa6c907b71a01d846532ba3110e31,Robust Conditional Generative Adversarial Networks,CoRR,2018 +ba29ba8ec180690fca702ad5d516c3e43a7f0bb8,Do less and achieve more: Training CNNs for action recognition utilizing action images from the Web,Pattern Recognition,2017 +bab88235a30e179a6804f506004468aa8c28ce4f,Joint discriminative dimensionality reduction and dictionary learning for face recognition,Pattern Recognition,2013 +a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670,On the initialization of the DNMF algorithm,2006 IEEE International Symposium on Circuits and Systems,2006 +a74251efa970b92925b89eeef50a5e37d9281ad0,"Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization",2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops),2011 +b8378ab83bc165bc0e3692f2ce593dcc713df34a,"A 3D Approach to Facial Landmarks: Detection, Refinement, and Tracking",2014 22nd International Conference on Pattern Recognition,2014 +b171f9e4245b52ff96790cf4f8d23e822c260780,ROBOTICS INSTITUTE Summer Scholars ( RISS ) Working Papers JOURNAL VOLUME 2 FALL 2014,,2014 +b1301c722886b6028d11e4c2084ee96466218be4,Facial Aging and Rejuvenation by Conditional Multi-Adversarial Autoencoder with Ordinal Regression,,2018 +b1c5581f631dba78927aae4f86a839f43646220c,A scalable metric learning-based voting method for expression recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +dd0760bda44d4e222c0a54d41681f97b3270122b,Recognition of facial expressions using Gabor wavelets and learning vector quantization,Eng. Appl. of AI,2008 +dd2f6a1ba3650075245a422319d86002e1e87808,"PD2T: Person-specific Detection, Deformable Tracking",,2018 +dd600e7d6e4443ebe87ab864d62e2f4316431293,Improving facial expression analysis using histograms of Log-Transformed Nonnegative Sparse Representation with a Spatial Pyramid Structure,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +b6c047ab10dd86b1443b088029ffe05d79bbe257,Using robust dispersion estimation in support vector machines,Pattern Recognition,2013 +b6c53891dff24caa1f2e690552a1a5921554f994,Deeply Learning Deformable Facial Action Parts Model for Dynamic Expression Analysis,,2014 +b656abc4d1e9c8dc699906b70d6fcd609fae8182,Integrating monolithic and free-parts representations for improved face verification in the presence of pose mismatch,Pattern Recognition Letters,2007 +a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f,ConvNet Architecture Search for Spatiotemporal Feature Learning,CoRR,2017 +d50751da2997e7ebc89244c88a4d0d18405e8507,Real time 3D face alignment with Random Forests-based Active Appearance Models,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +d511e903a882658c9f6f930d6dd183007f508eda,Privileged information-based conditional regression forest for facial feature detection,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +d5e1173dcb2a51b483f86694889b015d55094634,PCA and LDA in DCT domain,Pattern Recognition Letters,2005 +aafb271684a52a0b23debb3a5793eb618940c5dd,Supplementary Material: Hierarchical Semantic Indexing for Large Scale Image Retrieval,,2011 +aa331fe378056b6d6031bb8fe6676e035ed60d6d,Object detection using boosted local binaries,Pattern Recognition,2016 +af8fe1b602452cf7fc9ecea0fd4508ed4149834e,A pose-wise linear illumination manifold model for face recognition using video,Computer Vision and Image Understanding,2009 +af6cae71f24ea8f457e581bfe1240d5fa63faaf7,Multi-Task Zipping via Layer-wise Neuron Sharing,CoRR,2018 +af54dd5da722e104740f9b6f261df9d4688a9712,Portability: A New Challenge on Designing Family Image Database,,2010 +b75cee96293c11fe77ab733fc1147950abbe16f9,A Single Classifier for View-Invariant Multiple Object Class Recognition,,2006 +b747fcad32484dfbe29530a15776d0df5688a7db,Background suppressing Gabor energy filtering,Pattern Recognition Letters,2015 +dbab6ac1a9516c360cdbfd5f3239a351a64adde7,Cascaded regression with sparsified feature covariance matrix for facial landmark detection,Pattern Recognition Letters,2016 +ded41c9b027c8a7f4800e61b7cfb793edaeb2817,DYAN: A Dynamical Atoms Network for Video Prediction,,2018 +b0c512fcfb7bd6c500429cbda963e28850f2e948,A Fast and Accurate Unconstrained Face Detector,IEEE Transactions on Pattern Analysis and Machine Intelligence,2016 +b03d6e268cde7380e090ddaea889c75f64560891,Automatic Acquisition of High-fidelity Facial Performances Using Monocular Videos: Supplementary Material,,2014 +a6583c8daa7927eedb3e892a60fc88bdfe89a486,Toward semantic attributes in dictionary learning and non-negative matrix factorization,Pattern Recognition Letters,2016 +a6db73f10084ce6a4186363ea9d7475a9a658a11,ActionFlowNet: Learning Motion Representation for Action Recognition,CoRR,2016 +a6634ff2f9c480e94ed8c01d64c9eb70e0d98487,PalmHashing: a novel approach for cancelable biometrics,Inf. Process. Lett.,2005 +c3418f866a86dfd947c2b548cbdeac8ca5783c15,Disentangling the Modes of Variation in Unlabelled Data,,2018 +c3a3f7758bccbead7c9713cb8517889ea6d04687,Funnel-structured cascade for multi-view face detection with alignment-awareness,Neurocomputing,2017 +c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af,Shape Matching and Object Recognition,,2005 +ea96bc017fb56593a59149e10d5f14011a3744a0,Local coordinate based graph-regularized NMF for image representation,Signal Processing,2016 +e10a257f1daf279e55f17f273a1b557141953ce2,A survey of approaches and trends in person re-identification,Image Vision Comput.,2014 +e171fba00d88710e78e181c3e807c2fdffc6798a,Pose-invariant face recognition using a 3D deformable model,Pattern Recognition,2003 +e16efd2ae73a325b7571a456618bfa682b51aef8,Semi-Supervised Adaptive Label Distribution Learning for Facial Age Estimation,,2017 +e13360cda1ebd6fa5c3f3386c0862f292e4dbee4,Range Loss for Deep Face Recognition with Long-tail,CoRR,2016 +cd4c047f4d4df7937aff8fc76f4bae7718004f40,Background modeling for generative image models,Computer Vision and Image Understanding,2015 +ccbfc004e29b3aceea091056b0ec536e8ea7c47e,Tensor-based factor decomposition for relighting,IEEE International Conference on Image Processing 2005,2005 +cc8bf03b3f5800ac23e1a833447c421440d92197,Improving mixture of experts for view-independent face recognition using teacher-directed learning,Machine Vision and Applications,2009 +e6540d70e5ffeed9f447602ea3455c7f0b38113e,Video pornography detection through deep learning techniques and motion information,Neurocomputing,2017 +e6ee36444038de5885473693fb206f49c1369138,SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction,CoRR,2018 +f913bb65b62b0a6391ffa8f59b1d5527b7eba948,On improving robustness of LDA and SRDA by using tangent vectors,Pattern Recognition Letters,2013 +f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1,Comparison of human and computer performance across face recognition experiments,Image Vision Comput.,2014 +f06b015bb19bd3c39ac5b1e4320566f8d83a0c84,Classification and weakly supervised pain localization using multiple segment representation,Image and vision computing,2014 +f7dea4454c2de0b96ab5cf95008ce7144292e52a,Facial Landmark Detection: A Literature Survey,International Journal of Computer Vision,2018 +f7452a12f9bd927398e036ea6ede02da79097e6e,Attributes as Operators,,2018 +f78863f4e7c4c57744715abe524ae4256be884a9,Differential optical flow applied to automatic facial expression recognition,Neurocomputing,2011 +e8410c4cd1689829c15bd1f34995eb3bd4321069,Decoding mixed emotions from expression map of face images,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013 +faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b,Combining Data-driven and Model-driven Methods for Robust Facial Landmark Detection,CoRR,2016 +faf5583063682e70dedc4466ac0f74eeb63169e7,Holistic person processing: faces with bodies tell the whole story.,Journal of personality and social psychology,2012 +ff60d4601adabe04214c67e12253ea3359f4e082,Video-based emotion recognition in the wild using deep transfer learning and score fusion,Image Vision Comput.,2017 +c54f9f33382f9f656ec0e97d3004df614ec56434,Automatic edge-based localization of facial features from images with complex facial expressions,Pattern Recognition Letters,2010 +c5fe40875358a286594b77fa23285fcfb7bda68e,Face identification using reference-based features with message passing model,Neurocomputing,2013 +c29e33fbd078d9a8ab7adbc74b03d4f830714cd0,3D shape constraint for facial feature localization using probabilistic-like output,"Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings.",2004 +f68ed499e9d41f9c3d16d843db75dc12833d988d,Multi-view Common Component Discriminant Analysis for Cross-view Classification,CoRR,2018 +f6abecc1f48f6ec6eede4143af33cc936f14d0d0,Adaptive Detrending to Accelerate Convolutional Gated Recurrent Unit Training for Contextual Video Recognition,CoRR,2017 +f1748303cc02424704b3a35595610890229567f9,Learning-based encoding with soft assignment for age estimation under unconstrained imaging conditions,Image Vision Comput.,2012 +e726acda15d41b992b5a41feabd43617fab6dc23,Evolutionary feature synthesis for facial expression recognition,Pattern Recognition Letters,2006 +cb9092fe74ea6a5b2bb56e9226f1c88f96094388,A distributed perception infrastructure for robot assisted living,Robotics and Autonomous Systems,2014 +f869601ae682e6116daebefb77d92e7c5dd2cb15,Regularized Diffusion Process for Visual Retrieval,,2017 +cef841f27535c0865278ee9a4bc8ee113b4fb9f3,Fusion of feature sets and classifiers for facial expression recognition,Expert Syst. Appl.,2013 +ce691a37060944c136d2795e10ed7ba751cd8394,"Unsupervised Depth Estimation, 3D Face Rotation and Replacement",,2018 +ce3f3088d0c0bf236638014a299a28e492069753,Online Action Recognition Using Covariance of Shape and Motion,,2014 +e0c081a007435e0c64e208e9918ca727e2c1c44e,Universidad De Las Palmas,,2005 +e0765de5cabe7e287582532456d7f4815acd74c1,Representing images of a rotating object with cyclic permutation for view-based pose estimation,Computer Vision and Image Understanding,2009 +46e86cdb674440f61b6658ef3e84fea95ea51fb4,Robust Face Recognition Using Eigen Faces and Karhunen-Loeve Algorithm,,2010 +464de30d3310123644ab81a1f0adc51598586fd2,Covariance descriptor based on bio-inspired features for person re-identification and face verification,Image Vision Comput.,2014 +46196735a201185db3a6d8f6e473baf05ba7b68f,Principal Component Analysis by $L_{p}$ -Norm Maximization,IEEE transactions on cybernetics,2014 +2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58,Age and gender classification using convolutional neural networks,2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2015 +2c61a9e26557dd0fe824909adeadf22a6a0d86b0,Convolutional Channel Features: Tailoring CNN to Diverse Tasks,,2015 +2c7c3a74da960cc76c00965bd3e343958464da45,Interactive Facial-Geometric-Feature Animation for Generating Expressions of Novel Faces,IEICE Transactions,2011 +79581c364cefe53bff6bdd224acd4f4bbc43d6d4,Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild,Image Vision Comput.,2017 +795ea140df2c3d29753f40ccc4952ef24f46576c,Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection,CoRR,2017 +79dc84a3bf76f1cb983902e2591d913cee5bdb0e,Grounded Compositional Semantics for Finding and Describing Images with Sentences,TACL,2014 +79c3a7131c6c176b02b97d368cd0cd0bc713ff7e,A New Weighted LDA Method in Comparison to Some Versions of LDA,Unknown,2006 +793e7f1ba18848908da30cbad14323b0389fd2a8,End-to-end Face Detection and Cast Grouping in Movies Using Erdős-Rényi Clustering: Supplementary Material,,2017 +2dd6c988b279d89ab5fb5155baba65ce4ce53c1e,Learning deformable shape manifolds,Pattern recognition,2012 +2d1f86e2c7ba81392c8914edbc079ac64d29b666,Deep Heterogeneous Feature Fusion for Template-Based Face Recognition,2017 IEEE Winter Conference on Applications of Computer Vision (WACV),2017 +41b997f6cec7a6a773cd09f174cb6d2f036b36cd,Local binary patterns for multi-view facial expression recognition,Computer Vision and Image Understanding,2011 +830e5b1043227fe189b3f93619ef4c58868758a7,"A survey on face detection in the wild: Past, present and future",Computer Vision and Image Understanding,2015 +83ac942d71ba908c8d76fc68de6173151f012b38,Class dependent factor analysis and its application to face recognition,Pattern Recognition,2012 +1bd50926079e68a6e32dc4412e9d5abe331daefb,Fisher Discrimination Dictionary Learning for sparse representation,2011 International Conference on Computer Vision,2011 +1bc214c39536c940b12c3a2a6b78cafcbfddb59a,Leveraging Gabor Phase for Face Identification in Controlled Scenarios,,2016 +1b79628af96eb3ad64dbb859dae64f31a09027d5,Modeling Recognition Memory Using the Similarity Structure of Natural Input,,2006 +1b589016fbabe607a1fb7ce0c265442be9caf3a9,Development of perceptual expertise in emotion recognition.,Cognition,2009 +1b27ca161d2e1d4dd7d22b1247acee5c53db5104,Facial soft biometric features for forensic face recognition.,Forensic science international,2015 +776835eb176ed4655d6e6c308ab203126194c41e,Audio-Visual Affective Expression Recognition Through Multistream Fused HMM,IEEE Trans. Multimedia,2008 +4866a5d6d7a40a26f038fc743e16345c064e9842,Stratified sampling for feature subspace selection in random forests for high dimensional data,Pattern Recognition,2013 +48f211a9764f2bf6d6dda4a467008eda5680837a,Predicting occupation via human clothing and contexts,2011 International Conference on Computer Vision,2011 +4858d014bb5119a199448fcd36746c413e60f295,Deformable Part Models with Individual Part Scaling,,2013 +703890b7a50d6535900a5883e8d2a6813ead3a03,A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences,Pattern Recognition,2015 +1ea8085fe1c79d12adffb02bd157b54d799568e4,Eigenfaces vs. Fisherfaces: Recognition Using Class Speciic Linear Projection,,1996 +1ebdfceebad642299e573a8995bc5ed1fad173e3,Fisher Kernel Temporal Variation-based Relevance Feedback for video retrieval,Computer Vision and Image Understanding,2016 +1ef4aac0ebc34e76123f848c256840d89ff728d0,Rapid Synthesis of Massive Face Sets for Improved Face Recognition,2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017),2017 +84fe5b4ac805af63206012d29523a1e033bc827e,Ear recognition: More than a survey,Neurocomputing,2017 +84dcf04802743d9907b5b3ae28b19cbbacd97981,Face Detection using Deep Learning: An Improved Faster RCNN Approach,CoRR,2017 +24aac045f1e1a4c13a58eab4c7618dccd4c0e671,Video Imagination from a Single Image with Transformation Generation,,2017 +240d5390af19bb43761f112b0209771f19bfb696,Towards an intelligent framework for multimodal affective data analysis,Neural networks : the official journal of the International Neural Network Society,2015 +24d376e4d580fb28fd66bc5e7681f1a8db3b6b78,Multi-Branch Fully Convolutional Network for Face Detection,CoRR,2017 +24bf94f8090daf9bda56d54e42009067839b20df,"Automatic Analysis of Facial Affect: A Survey of Registration, Representation, and Recognition",IEEE Transactions on Pattern Analysis and Machine Intelligence,2015 +23fdbef123bcda0f07d940c72f3b15704fd49a98,Matrix Completion for Multi-label Image Classification,,2011 +23ebbbba11c6ca785b0589543bf5675883283a57,Spatio-Temporal Tube data representation and Kernel design for SVM-based video object retrieval system,Multimedia Tools and Applications,2010 +4fd29e5f4b7186e349ba34ea30738af7860cf21f,Circulant Temporal Encoding for Video Retrieval and Temporal Alignment,International Journal of Computer Vision,2015 +4fbef7ce1809d102215453c34bf22b5f9f9aab26,Robust Face Recognition for Data Mining,,2009 +4fa0d73b8ba114578744c2ebaf610d2ca9694f45,Rethinking Spatiotemporal Feature Learning For Video Understanding,CoRR,2017 +4f0bf2508ae801aee082b37f684085adf0d06d23,Max-margin Non-negative Matrix Factorization,Image Vision Comput.,2012 +8d71872d5877c575a52f71ad445c7e5124a4b174,Shadow compensation in 2D images for face recognition,Pattern Recognition,2007 +8dbe79830713925affc48d0afa04ed567c54724b,Automatic facial age estimation,,2015 +8d712cef3a5a8a7b1619fb841a191bebc2a17f15,Non-verbal communication analysis in Victim-Offender Mediations,Pattern Recognition Letters,2015 +1513949773e3a47e11ab87d9a429864716aba42d,Demographic classification from face videos using manifold learning,Neurocomputing,2013 +1287bfe73e381cc8042ac0cc27868ae086e1ce3b,Computational Mid-Level Vision: From Border Ownership to Categorical Object Recognition,Unknown,2015 +12c713166c46ac87f452e0ae383d04fb44fe4eb2,Fusion Classifier for Open-Set Face Recognition with Pose Variations,,2009 +8cb3f421b55c78e56c8a1c1d96f23335ebd4a5bf,Facial expression recognition and synthesis based on an appearance model,Sig. Proc.: Image Comm.,2004 +855bfc17e90ec1b240efba9100fb760c068a8efa,Facial expression recognition using tracked facial actions: Classifier performance analysis,Eng. Appl. of AI,2013 +1dbbec4ad8429788e16e9f3a79a80549a0d7ac7b,Global Sensitivity Analysis for MAP Inference in Graphical Models,,2014 +1d846934503e2bd7b8ea63b2eafe00e29507f06a,Manifold Based Analysis of Facial Expression,2004 Conference on Computer Vision and Pattern Recognition Workshop,2004 +1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb,Face Alignment by Explicit Shape Regression,2012 IEEE Conference on Computer Vision and Pattern Recognition,2012 +1d6068631a379adbcff5860ca2311b790df3a70f,Efficient smile detection by Extreme Learning Machine,Neurocomputing,2015 +760a712f570f7a618d9385c0cee7e4d0d6a78ed2,Sparse Representation with Kernels,,2012 +76b9fe32d763e9abd75b427df413706c4170b95c,Gabor feature based robust representation and classification for face recognition with Gabor occlusion dictionary,Pattern Recognition,2013 +7644d90efef157e61fe4d773d8a3b0bad5feccec,Linear local tangent space alignment and application to face recognition,Neurocomputing,2007 +1c6be6874e150898d9db984dd546e9e85c85724e,Generalized quotient image,"Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.",2004 +1c65f3b3c70e1ea89114f955624d7adab620a013,Local Polynomial Approximation-Local Binary Pattern (LPA-LBP) based Face Classification,,2011 +82bef8481207de9970c4dc8b1d0e17dced706352,Motion History for Facial Action Detection,,2004 +49dd4b359f8014e85ed7c106e7848049f852a304,Feature extraction by learning Lorentzian metric tensor and its extensions,Pattern Recognition,2010 +49659fb64b1d47fdd569e41a8a6da6aa76612903,Dogs Can Discriminate Emotional Expressions of Human Faces,Current Biology,2015 +40cd062438c280c76110e7a3a0b2cf5ef675052c,Distance Maps: a Robust Illumination Preprocessing for Active Appearance Models,,2006 +40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a,Generating a Diverse Set of High-Quality Clusterings,,2011 +4042bbb4e74e0934f4afbedbe92dd3e37336b2f4,WND-CHARM: Multi-purpose image classification using compound image transforms,Pattern recognition letters,2008 +2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9,DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification,,2008 +2e0e056ed5927a4dc6e5c633715beb762628aeb0,Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor,,2012 +2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd,Graph embedding: a general framework for dimensionality reduction,2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),2005 +2e19371a2d797ab9929b99c80d80f01a1fbf9479,"L2, 1-based regression and prediction accumulation across views for robust facial landmark detection",Image Vision Comput.,2016 +2e3d081c8f0e10f138314c4d2c11064a981c1327,A Comprehensive Performance Evaluation of Deformable Face Tracking “In-the-Wild”,International Journal of Computer Vision,2017 +2e86402b354516d0a8392f75430156d629ca6281,Joint Unsupervised Learning of Deep Representations and Image Clusters,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016 +2e1b1969ded4d63b69a5ec854350c0f74dc4de36,Comparative evaluation of 3D vs. 2D modality for automatic detection of facial action units,Pattern Recognition,2012 +2b3ceb40dced78a824cf67054959e250aeaa573b,Differentially private subspace clustering,,2015 +2baec98c19804bf19b480a9a0aa814078e28bb3d,Multi-conditional Latent Variable Model for Joint Facial Action Unit Detection,2015 IEEE International Conference on Computer Vision (ICCV),2015 +47f8b3b3f249830b6e17888df4810f3d189daac1,Translational photometric alignment of single-view image sequences,Computer Vision and Image Understanding,2012 +47aeb3b82f54b5ae8142b4bdda7b614433e69b9a,"Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected ""In-the-Wild""",,2013 +477811ff147f99b21e3c28309abff1304106dbbe,Learning by expansion: Exploiting social media for image classification with few training examples,Neurocomputing,2012 +47e14fdc6685f0b3800f709c32e005068dfc8d47,Secure Face Matching Using Fully Homomorphic Encryption,CoRR,2018 +78a4cabf0afc94da123e299df5b32550cd638939,Multi-view face recognition from single RGBD models of the faces,Computer Vision and Image Understanding,2017 +7897c8a9361b427f7b07249d21eb9315db189496,Feature selection via simultaneous sparse approximation for person specific face verification,2011 18th IEEE International Conference on Image Processing,2011 +78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c,Improved Deep Metric Learning with Multi-class N-pair Loss Objective,,2016 +788a7b59ea72e23ef4f86dc9abb4450efefeca41,Robust Statistical Face Frontalization,2015 IEEE International Conference on Computer Vision (ICCV),2015 +8b8728edc536020bc4871dc66b26a191f6658f7c,Robust gender recognition by exploiting facial attributes dependencies,Pattern Recognition Letters,2014 +131e395c94999c55c53afead65d81be61cd349a4,A Functional Regression approach to Facial Landmark Tracking,IEEE transactions on pattern analysis and machine intelligence,2017 +1384a83e557b96883a6bffdb8433517ec52d0bea,CSVideoNet: A Recurrent Convolutional Neural Network for Compressive Sensing Video Reconstruction,CoRR,2016 +13fd0a4d06f30a665fc0f6938cea6572f3b496f7,Regularized Extreme Learning Machine for Large-scale Media Content Analysis,,2015 +7a9ef21a7f59a47ce53b1dff2dd49a8289bb5098,"Principles of Appearance Acquisition and Representation By Tim Weyrich , Jason Lawrence , Hendrik",,2009 +7a85b3ab0efb6b6fcb034ce13145156ee9d10598,Inter-image outliers and their application to image classification,Pattern Recognition,2010 +7ab930146f4b5946ec59459f8473c700bcc89233,Feature ranking for multi-label classification using Markov networks,Neurocomputing,2016 +14fa27234fa2112014eda23da16af606db7f3637,Unified formulation of linear discriminant analysis methods and optimal parameter selection,Pattern Recognition,2011 +14e949f5754f9e5160e8bfa3f1364dd92c2bb8d6,Multi-subregion based correlation filter bank for robust face recognition,Pattern Recognition,2014 +14fdce01c958043140e3af0a7f274517b235adf3,Discriminant analysis via support vectors,Neurocomputing,2010 +141eab5f7e164e4ef40dd7bc19df9c31bd200c5e,Local Linear Regression (LLR) for Pose Invariant Face Recognition,7th International Conference on Automatic Face and Gesture Recognition (FGR06),2006 +1473a233465ea664031d985e10e21de927314c94,Exploiting Spatio-Temporal Structure with Recurrent Winner-Take-All Networks,IEEE transactions on neural networks and learning systems,2016 +8ed32c8fad924736ebc6d99c5c319312ba1fa80b,Centralized Gradient Pattern for Face Recognition,IEICE Transactions,2013 +225fb9181545f8750061c7693661b62d715dc542,Multi-Level ResNets with Stacked SRUs for Action Recognition,CoRR,2017 +22dada4a7ba85625824489375184ba1c3f7f0c8f,EventNet: A Large Scale Structured Concept Library for Complex Event Detection in Video,,2015 +22f656d0f8426c84a33a267977f511f127bfd7f3,From Facial Expression Recognition to Interpersonal Relation Prediction,International Journal of Computer Vision,2017 +22ec256400e53cee35f999244fb9ba6ba11c1d06,Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems,CoRR,2017 +22a7f1aebdb57eecd64be2a1f03aef25f9b0e9a7,Attribute-restricted latent topic model for person re-identification,Pattern Recognition,2012 +2574860616d7ffa653eb002bbaca53686bc71cdd,Culture shapes 7-month-olds’ perceptual strategies in discriminating facial expressions of emotion,Current Biology,2016 +25728e08b0ee482ee6ced79c74d4735bb5478e29,Thermal spatio-temporal data for stress recognition,EURASIP J. Image and Video Processing,2014 diff --git a/scraper/reports/stats/geocoded_papers.csv b/scraper/reports/stats/geocoded_papers.csv new file mode 100644 index 00000000..67316468 --- /dev/null +++ b/scraper/reports/stats/geocoded_papers.csv @@ -0,0 +1,4537 @@ +611961abc4dfc02b67edd8124abb08c449f5280a,Exploiting Image-trained CNN Architectures for Unconstrained Video Classification,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +611961abc4dfc02b67edd8124abb08c449f5280a,Exploiting Image-trained CNN Architectures for Unconstrained Video Classification,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2,Complex Bingham Distribution for Facial Feature Detection,University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.21675650,-85.75725023,edu, +6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2,Complex Bingham Distribution for Facial Feature Detection,Alexandria University,Alexandria University,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.91314562,edu, +61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,Greedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering,Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.40478113,edu, +61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,Greedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,Greedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering,Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.40478113,edu, +61542874efb0b4c125389793d8131f9f99995671,Fair comparison of skin detection approaches on publicly available datasets,University of Bologna,Università di Bologna,"Via Zamboni, 33, 40126 Bologna BO, Italy",44.49623180,11.35415700,edu, +61f93ed515b3bfac822deed348d9e21d5dffe373,Deep Image Set Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +61f93ed515b3bfac822deed348d9e21d5dffe373,Deep Image Set Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +612075999e82596f3b42a80e6996712cc52880a3,CNNs with cross-correlation matching for face recognition in video surveillance using a single training sample per person,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa,Merging datasets through deep learning,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa,Merging datasets through deep learning,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +61e9e180d3d1d8b09f1cc59bdd9f98c497707eff,Semi-supervised Learning of Facial Attributes in Video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +6193c833ad25ac27abbde1a31c1cabe56ce1515b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +614079f1a0d0938f9c30a1585f617fa278816d53,Automatic Detection of ADHD and ASD from Expressive Behaviour in RGBD Data,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +614079f1a0d0938f9c30a1585f617fa278816d53,Automatic Detection of ADHD and ASD from Expressive Behaviour in RGBD Data,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +0d746111135c2e7f91443869003d05cde3044beb,Partial face detection for continuous authentication,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +0d746111135c2e7f91443869003d05cde3044beb,Partial face detection for continuous authentication,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +0da75b0d341c8f945fae1da6c77b6ec345f47f2a,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People With Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +0da75b0d341c8f945fae1da6c77b6ec345f47f2a,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People With Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +0db43ed25d63d801ce745fe04ca3e8b363bf3147,Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,Unsupervised discovery of facial events,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,Unsupervised discovery of facial events,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +0de91641f37b0a81a892e4c914b46d05d33fd36e,RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +0de91641f37b0a81a892e4c914b46d05d33fd36e,RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +0df0d1adea39a5bef318b74faa37de7f3e00b452,Appearance-based gaze estimation in the wild,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0d3bb75852098b25d90f31d2f48fd0cb4944702b,A data-driven approach to cleaning large face datasets,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +0d0b880e2b531c45ee8227166a489bf35a528cb9,Structure Preserving Object Tracking,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +0d3068b352c3733c9e1cc75e449bf7df1f7b10a4,Context Based Facial Expression Analysis in the Wild,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +0dfa460a35f7cab4705726b6367557b9f7842c65,Modeling Spatial-Temporal Clues in a Hybrid Deep Learning Framework for Video Classification,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +0d14261e69a4ad4140ce17c1d1cea76af6546056,Adding Facial Actions into 3D Model Search to Analyse Behaviour in an Unconstrained Environment,University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300881,edu, +0dbacb4fd069462841ebb26e1454b4d147cd8e98,Recent advances in discriminant non-negative Matrix Factorization,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +0db36bf08140d53807595b6313201a7339470cfe,Moving vistas: Exploiting motion for describing scenes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.81747230,-96.70444680,edu, +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +951368a1a8b3c5cd286726050b8bdf75a80f7c37,A family of online boosting algorithms,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +951368a1a8b3c5cd286726050b8bdf75a80f7c37,A family of online boosting algorithms,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +951368a1a8b3c5cd286726050b8bdf75a80f7c37,A family of online boosting algorithms,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +956e9b69b3366ed3e1670609b53ba4a7088b8b7e,Semi-supervised dimensionality reduction for image retrieval,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +95f26d1c80217706c00b6b4b605a448032b93b75,New Robust Face Recognition Methods Based on Linear Regression,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +95f12d27c3b4914e0668a268360948bce92f7db3,Interactive Facial Feature Localization,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +955e2a39f51c0b6f967199942d77625009e580f9,Naming Faces on the Web,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87204890,32.75395155,edu, +950171acb24bb24a871ba0d02d580c09829de372,Speeding up 2 D-Warping for Pose-Invariant Face Recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb,A deep-learning approach to facial expression recognition with candid images,CUNY City College,CUNY City College,"CUNY City College, 205 East 42nd Street, New York, NY 10017",45.55466080,5.40652550,edu, +591a737c158be7b131121d87d9d81b471c400dba,Affect valence inference from facial action unit spectrograms,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +593234ba1d2e16a887207bf65d6b55bbc7ea2247,Combining Language Sources and Robust Semantic Relatedness for Attribute-Based Knowledge Transfer,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +59e2037f5079794cb9128c7f0900a568ced14c2a,Clothing and People - A Social Signal Processing Perspective,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +59dac8b460a89e03fa616749a08e6149708dcc3a,A Convergent Solution to Matrix Bidirectional Projection Based Feature Extraction with Application to Face Recognition,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +59e9934720baf3c5df3a0e1e988202856e1f83ce,UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking,Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.55572710,127.04366420,edu, +59bece468ed98397d54865715f40af30221aa08c,Deformable part-based robust face detection under occlusion by using face decomposition into face components,University of Zagreb,"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia","Unska ul. 3, 10000, Zagreb, Croatia",45.80112100,15.97084090,edu, +59420fd595ae745ad62c26ae55a754b97170b01f,Objects as Attributes for Scene Classification,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0a,How Robust is 3D Human Pose Estimation to Occlusion?,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +5922e26c9eaaee92d1d70eae36275bb226ecdb2e,Boosting Classification Based Similarity Learning by using Standard Distances,Universitat de València,Universitat de València,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.47787665,-0.34257711,edu, +59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,The Menpo Facial Landmark Localisation Challenge: A Step Towards the Solution,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +59e75aad529b8001afc7e194e21668425119b864,Membrane Nonrigid Image Registration,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.95740000,-75.19026706,edu, +59d45281707b85a33d6f50c6ac6b148eedd71a25,Rank Minimization across Appearance and Shape for AAM Ensemble Fitting,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +59319c128c8ac3c88b4ab81088efe8ae9c458e07,Effective Computer Model For Recognizing Nationality From Frontal Image,University of the Humanities,The University of the Humanities,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс",47.92189370,106.91955240,edu, +59a6c9333c941faf2540979dcfcb5d503a49b91e,Sampling Clustering,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.36934730,120.67381800,edu, +9264b390aa00521f9bd01095ba0ba4b42bf84d7e,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,University of Northern British Columbia,University of Northern British Columbia,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.89256620,-122.81471592,edu, +9264b390aa00521f9bd01095ba0ba4b42bf84d7e,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,Aberystwyth University,Aberystwyth University,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.41073580,-4.05295501,edu, +92be73dffd3320fe7734258961fe5a5f2a43390e,Transferring Face Verification Nets To Pain and Expression Regression,Johns Hopkins University,"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA","3400 N Charles St, Baltimore, MD 21218, USA",39.32905300,-76.61942500,edu, +92be73dffd3320fe7734258961fe5a5f2a43390e,Transferring Face Verification Nets To Pain and Expression Regression,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +924b14a9e36d0523a267293c6d149bca83e73f3b,Development and Evaluation of a Method Employed to Identify Internal State Utilizing Eye Movement Data,Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.54169690,139.63471840,edu, +924b14a9e36d0523a267293c6d149bca83e73f3b,Development and Evaluation of a Method Employed to Identify Internal State Utilizing Eye Movement Data,Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.54169690,139.63471840,edu, +928b8eb47288a05611c140d02441660277a7ed54,Exploiting Images for Video Recognition with Hierarchical Generative Adversarial Networks,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0,Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural Networks,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +92e464a5a67582d5209fa75e3b29de05d82c7c86,Reconstruction for Feature Disentanglement in Pose-invariant Face Recognition,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +922838dd98d599d1d229cc73896d55e7a769aa7c,Learning hierarchical representations for face verification with convolutional deep belief networks,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +922838dd98d599d1d229cc73896d55e7a769aa7c,Learning hierarchical representations for face verification with convolutional deep belief networks,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +922838dd98d599d1d229cc73896d55e7a769aa7c,Learning hierarchical representations for face verification with convolutional deep belief networks,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +9294739e24e1929794330067b84f7eafd286e1c8,Expression Recognition Using Elastic Graph Matching,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +9294739e24e1929794330067b84f7eafd286e1c8,Expression Recognition Using Elastic Graph Matching,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +923ec0da8327847910e8dd71e9d801abcbc93b08,Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-Supervised Object and Action Localization,"University of California, Davis","University of California, Davis","University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.53363490,-121.79077264,edu, +0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,Facial Age Estimation by Learning from Label Distributions,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.95867433,edu, +0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,Facial Age Estimation by Learning from Label Distributions,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,Facial Age Estimation by Learning from Label Distributions,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +0c435e7f49f3e1534af0829b7461deb891cf540a,Capturing Global Semantic Relationships for Facial Action Unit Recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +0c435e7f49f3e1534af0829b7461deb891cf540a,Capturing Global Semantic Relationships for Facial Action Unit Recognition,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +0c435e7f49f3e1534af0829b7461deb891cf540a,Capturing Global Semantic Relationships for Facial Action Unit Recognition,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +0ccc535d12ad2142a8310d957cc468bbe4c63647,Better Exploiting OS-CNNs for Better Event Recognition in Images,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1,Face Recognition in Videos by Label Propagation,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.44549570,78.34854698,edu, +0cdb49142f742f5edb293eb9261f8243aee36e12,Combined Learning of Salient Local Descriptors and Distance Metrics for Image Set Face Verification,"CSIRO, Australia","NICTA, PO Box 6020, St Lucia, QLD 4067, Australia","Research Way, Clayton VIC 3168, Australia",-37.90627370,145.13194490,edu,f.k.a. NICTA +0cdb49142f742f5edb293eb9261f8243aee36e12,Combined Learning of Salient Local Descriptors and Distance Metrics for Image Set Face Verification,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +0cf2eecf20cfbcb7f153713479e3206670ea0e9c,Privacy-Protective-GAN for Face De-identification,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +0c1d85a197a1f5b7376652a485523e616a406273,Joint Registration and Representation Learning for Unconstrained Face Identification,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +0c1d85a197a1f5b7376652a485523e616a406273,Joint Registration and Representation Learning for Unconstrained Face Identification,Khalifa University,Khalifa University,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.44690250,54.39425630,edu, +0ca66283f4fb7dbc682f789fcf6d6732006befd5,Active Dictionary Learning for Image Representation,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +0c7f27d23a162d4f3896325d147f412c40160b52,Models and Algorithms for Vision through the Atmosphere,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +0c20fd90d867fe1be2459223a3cb1a69fa3d44bf,A Monte Carlo Strategy to Integrate Detection and Model-Based Face Analysis,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +0c2875bb47db3698dbbb3304aca47066978897a4,Recurrent Models for Situation Recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +0cbc4dcf2aa76191bbf641358d6cecf38f644325,Visage: A Face Interpretation Engine for Smartphone Applications,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +0ce8a45a77e797e9d52604c29f4c1e227f604080,Zernike Moment-based Feature Extraction for Facial Recognition of Identical Twins,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +0ce3a786aed896d128f5efdf78733cc675970854,Learning the Face Prior for Bayesian Face Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +0c59071ddd33849bd431165bc2d21bbe165a81e0,Person Recognition in Personal Photo Collections,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,Memory-Augmented Attribute Manipulation Networks for Interactive Fashion Search,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.69784700,104.05208110,edu, +0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,Memory-Augmented Attribute Manipulation Networks for Interactive Fashion Search,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dc,Learning Bayesian Network Classifiers for Facial Expression Recognition using both Labeled and Unlabeled Data,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +0c05f60998628884a9ac60116453f1a91bcd9dda,Optimizing Open-Ended Crowdsourcing: The Next Frontier in Crowdsourced Data Management,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +66aad5b42b7dda077a492e5b2c7837a2a808c2fa,A Novel PCA-Based Bayes Classifier and Face Analysis,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +66b9d954dd8204c3a970d86d91dd4ea0eb12db47,Evaluation of Gabor-Wavelet-Based Facial Action Unit Recognition in Image Sequences of Increasing Complexity,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +66b9d954dd8204c3a970d86d91dd4ea0eb12db47,Evaluation of Gabor-Wavelet-Based Facial Action Unit Recognition in Image Sequences of Increasing Complexity,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +66b9d954dd8204c3a970d86d91dd4ea0eb12db47,Evaluation of Gabor-Wavelet-Based Facial Action Unit Recognition in Image Sequences of Increasing Complexity,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +66dcd855a6772d2731b45cfdd75f084327b055c2,Quality Classified Image Analysis with Application to Face Detection and Recognition,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +666939690c564641b864eed0d60a410b31e49f80,What Visual Attributes Characterize an Object Class?,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +66330846a03dcc10f36b6db9adf3b4d32e7a3127,Polylingual Multimodal Learning,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +666300af8ffb8c903223f32f1fcc5c4674e2430b,Changing Fashion Cultures,Tokyo Denki University,Tokyo Denki University,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +66029f1be1a5cee9a4e3e24ed8fcb65d5d293720,HWANG AND GRAUMAN: ACCOUNTING FOR IMPORTANCE IN IMAGE RETRIEVAL 1 Accounting for the Relative Importance of Objects in Image Retrieval,University of Texas,The University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.31630780,-95.25369944,edu, +6691dfa1a83a04fdc0177d8d70e3df79f606b10f,Illumination Modeling and Normalization for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,"Using Co-Captured Face, Gaze and Verbal Reactions to Images of Using Co-Captured Face, Gaze and Verbal Reactions to Images of",Muhlenberg College,Muhlenberg College,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA",40.59676370,-75.51240620,edu, +66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,"Using Co-Captured Face, Gaze and Verbal Reactions to Images of Using Co-Captured Face, Gaze and Verbal Reactions to Images of",Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,"Using Co-Captured Face, Gaze and Verbal Reactions to Images of Using Co-Captured Face, Gaze and Verbal Reactions to Images of",Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +66e9fb4c2860eb4a15f713096020962553696e12,A New Urban Objects Detection Framework Using Weakly Annotated Sets,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.99625394,edu, +3e69ed088f588f6ecb30969bc6e4dbfacb35133e,Improving Performance of Texture Based Face Recognition Systems by Segmenting Face Region,Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100445,edu, +3e0a1884448bfd7f416c6a45dfcdfc9f2e617268,Understanding and Controlling User Linkability in Decentralized Learning,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +3ebce6710135d1f9b652815e59323858a7c60025,Component-based Face Detection,University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.41338620,114.21005800,edu, +3e51d634faacf58e7903750f17111d0d172a0bf1,A compressible template protection scheme for face recognition based on sparse representation,Tokyo Metropolitan University,Tokyo Metropolitan University,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本",35.62009250,139.38296706,edu, +3e40991ab1daa2a4906eb85a5d6a01a958b6e674,LipNet: End-to-End Sentence-level Lipreading,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +3e3a87eb24628ab075a3d2bde3abfd185591aa4c,Effects of sparseness and randomness of pairwise distance matrix on t-SNE results,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.82427330,edu, +3e207c05f438a8cef7dd30b62d9e2c997ddc0d3f,Objects as context for detecting their semantic parts,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +5040f7f261872a30eec88788f98326395a44db03,Generalised Scalable Robust Principal Component Analysis,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.19453410,edu, +500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Venezia,University of Venezia,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia",45.43127420,12.32653770,edu, +506c2fbfa9d16037d50d650547ad3366bb1e1cde,Convolutional Channel Features : Tailoring CNN to Diverse Tasks,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +504028218290d68859f45ec686f435f473aa326c,Multi-Fiber Networks for Video Recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +5050807e90a925120cbc3a9cd13431b98965f4b9,Unsupervised Learning of Discriminative Relative Visual Attributes,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +5050807e90a925120cbc3a9cd13431b98965f4b9,Unsupervised Learning of Discriminative Relative Visual Attributes,Hacettepe University,Hacettepe University,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.86742125,32.73519072,edu, +508702ed2bf7d1b0655ea7857dd8e52d6537e765,Saliency-Informed Spatio-Temporal Vector of Locally Aggregated Descriptors and Fisher Vectors for Visual Action Recognition,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +5003754070f3a87ab94a2abb077c899fcaf936a6,Evaluation of LC - KSVD on UCF 101 Action Dataset,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +503db524b9a99220d430e741c44cd9c91ce1ddf8,"Who's Better, Who's Best: Skill Determination in Video using Deep Ranking",University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +50c0de2cccf7084a81debad5fdb34a9139496da0,"The Influence of Annotation, Corpus Design, and Evaluation on the Outcome of Automatic Classification of Human Emotions",Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.01010115,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +68c5238994e3f654adea0ccd8bca29f2a24087fc,pLSA-based zero-shot learning,University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103,edu, +68e9c837431f2ba59741b55004df60235e50994d,Detecting Faces Using Region-based Fully Convolutional Networks,Tencent,"Tencent AI Lab, China","Ke Ji Zhong Yi Lu, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518057",22.54471540,113.93571640,company,"Keji Middle 1st Rd, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518057" +687e17db5043661f8921fb86f215e9ca2264d4d2,A robust elastic and partial matching metric for face recognition,Microsoft,"Microsoft Corporation, Redmond, WA, USA","One Microsoft Way, Redmond, WA 98052, USA",47.64233180,-122.13693020,company, +68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,AgeNet: Deeply Learned Regressor and Classifier for Robust Apparent Age Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +68f69e6c6c66cfde3d02237a6918c9d1ee678e1b,Enhancing Concept Detection by Pruning Data with MCA-Based Transaction Weights,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.71733390,-80.27866887,edu, +68f69e6c6c66cfde3d02237a6918c9d1ee678e1b,Enhancing Concept Detection by Pruning Data with MCA-Based Transaction Weights,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +682760f2f767fb47e1e2ca35db3becbb6153756f,The Effect of Pets on Happiness: A Large-Scale Multi-Factor Analysis Using Social Multimedia,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +682760f2f767fb47e1e2ca35db3becbb6153756f,The Effect of Pets on Happiness: A Large-Scale Multi-Factor Analysis Using Social Multimedia,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +682760f2f767fb47e1e2ca35db3becbb6153756f,The Effect of Pets on Happiness: A Large-Scale Multi-Factor Analysis Using Social Multimedia,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +683ec608442617d11200cfbcd816e86ce9ec0899,Dual Linear Regression Based Classification for Face Cluster Recognition,University of Northern British Columbia,University of Northern British Columbia,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.89256620,-122.81471592,edu, +6821113166b030d2123c3cd793dd63d2c909a110,Acquisition and Indexing of Rgb-d Recordings for Facial Expressions and Emotion Recognition1,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.61716016,edu, +68a04a3ae2086986877fee2c82ae68e3631d0356,Thermal & Reflectance Based Identification in Challenging Variable Illuminations,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +57f5711ca7ee5c7110b7d6d12c611d27af37875f,Illumination invariance for face verification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +57f5711ca7ee5c7110b7d6d12c611d27af37875f,Illumination invariance for face verification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +570308801ff9614191cfbfd7da88d41fb441b423,Unsupervised Synchrony Discovery in Human Interaction,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +570308801ff9614191cfbfd7da88d41fb441b423,Unsupervised Synchrony Discovery in Human Interaction,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +570308801ff9614191cfbfd7da88d41fb441b423,Unsupervised Synchrony Discovery in Human Interaction,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.71733390,-80.27866887,edu, +57bf9888f0dfcc41c5ed5d4b1c2787afab72145a,Robust Facial Expression Recognition Based on Local Directional Pattern,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +57ebeff9273dea933e2a75c306849baf43081a8c,Deep Convolutional Network Cascade for Facial Point Detection,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +57ebeff9273dea933e2a75c306849baf43081a8c,Deep Convolutional Network Cascade for Facial Point Detection,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +57ebeff9273dea933e2a75c306849baf43081a8c,Deep Convolutional Network Cascade for Facial Point Detection,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +5778d49c8d8d127351eee35047b8d0dc90defe85,Probabilistic Subpixel Temporal Registration for Facial Expression Analysis,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,Modeling the joint density of two images under a variety of transformations,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,Modeling the joint density of two images under a variety of transformations,University of Frankfurt,University of Frankfurt,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland",50.13053055,8.69234224,edu, +57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,Modeling the joint density of two images under a variety of transformations,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +571f493c0ade12bbe960cfefc04b0e4607d8d4b2,Review on Content Based Image Retrieval: From Its Origin to the New Age,Mahatma Gandhi Institute of Technology,Mahatma Gandhi Institute of Technology,"Gandipet Main Rd, Kokapet, Hyderabad, Telangana 500075, India",17.39084720,78.32176670,edu, +574b62c845809fd54cc168492424c5fac145bc83,Learning Warped Guidance for Blind Face Restoration,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +574b62c845809fd54cc168492424c5fac145bc83,Learning Warped Guidance for Blind Face Restoration,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +574b62c845809fd54cc168492424c5fac145bc83,Learning Warped Guidance for Blind Face Restoration,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +575141e42740564f64d9be8ab88d495192f5b3bc,Age Estimation Based on Multi-Region Convolutional Neural Network,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +575141e42740564f64d9be8ab88d495192f5b3bc,Age Estimation Based on Multi-Region Convolutional Neural Network,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +5789f8420d8f15e7772580ec373112f864627c4b,Efficient Global Illumination for Morphable Models,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +574ad7ef015995efb7338829a021776bf9daaa08,AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks for Human Action Recognition in Videos,SRI International,SRI International,"SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA",37.45857960,-122.17560525,edu, +57b052cf826b24739cd7749b632f85f4b7bcf90b,Fast Fashion Guided Clothing Image Retrieval: Delving Deeper into What Feature Makes Fashion,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +57f7d8c6ec690bd436e70d7761bc5f46e993be4c,Facial expression recognition using histogram variances faces,University of Aizu,University of Aizu,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.52367280,139.93807246,edu, +3b092733f428b12f1f920638f868ed1e8663fe57,On the size of Convolutional Neural Networks and generalization performance,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +3b73f8a2b39751efb7d7b396bf825af2aaadee24,Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +3b2d5585af59480531616fe970cb265bbdf63f5b,Robust Face Recognition under Varying Light Based on 3D Recovery,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +3b64efa817fd609d525c7244a0e00f98feacc8b4,A Comprehensive Survey on Pose-Invariant Face Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +3b7f6035a113b560760c5e8000540fc46f91fed5,Coupling Alignments with Recognition for Still-to-Video Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +3b2a2357b12cf0a5c99c8bc06ef7b46e40dd888e,Learning Person Trajectory Representations for Team Activity Analysis,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +3bd1d41a656c8159305ba2aa395f68f41ab84f31,Entity-Based Opinion Mining from Text and Multimedia,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +3bcd72be6fbc1a11492df3d36f6d51696fd6bdad,Multi-Task Zero-Shot Action Recognition with Prioritised Data Augmentation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +3b9c08381282e65649cd87dfae6a01fe6abea79b,CUHK & ETHZ & SIAT Submission to ActivityNet Challenge 2016,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +3b9c08381282e65649cd87dfae6a01fe6abea79b,CUHK & ETHZ & SIAT Submission to ActivityNet Challenge 2016,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +3b84d074b8622fac125f85ab55b63e876fed4628,End-to-End Localization and Ranking for Relative Attributes,"University of California, Davis","University of California, Davis","University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.53363490,-121.79077264,edu, +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,"Demo: Glimpse - Continuous, Real-Time Object Recognition on Mobile Devices",MIT CSAIL,MIT CSAIL,"32 Vassar St, Cambridge, MA 02139, USA",42.36194070,-71.09043780,edu, +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,"Demo: Glimpse - Continuous, Real-Time Object Recognition on Mobile Devices",Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,"Demo: Glimpse - Continuous, Real-Time Object Recognition on Mobile Devices",MIT CSAIL,MIT CSAIL,"32 Vassar St, Cambridge, MA 02139, USA",42.36194070,-71.09043780,edu, +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,"Demo: Glimpse - Continuous, Real-Time Object Recognition on Mobile Devices",Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,"Demo: Glimpse - Continuous, Real-Time Object Recognition on Mobile Devices",MIT CSAIL,MIT CSAIL,"32 Vassar St, Cambridge, MA 02139, USA",42.36194070,-71.09043780,edu, +3be8f1f7501978287af8d7ebfac5963216698249,Deep Cascaded Regression for Face Alignment,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +3be8f1f7501978287af8d7ebfac5963216698249,Deep Cascaded Regression for Face Alignment,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +3bc376f29bc169279105d33f59642568de36f17f,Active shape models with SIFT descriptors and MARS,University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.45997349,edu, +3b38c06caf54f301847db0dd622a6622c3843957,Gender differences in emotion perception and self-reported emotional intelligence: A test of the emotion sensitivity hypothesis,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +3b9b200e76a35178da940279d566bbb7dfebb787,Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +3b408a3ca6fb39b0fda4d77e6a9679003b2dc9ab,Improving Classification by Improving Labelling: Introducing Probabilistic Multi-Label Object Interaction Recognition,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,"Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study",Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,"Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study",Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,"Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study",Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,"Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study",University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.99282980,-81.02685168,edu, +3bb6570d81685b769dc9e74b6e4958894087f3f1,Hu-Fu: Hardware and Software Collaborative Attack Framework Against Neural Networks,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +3b3482e735698819a6a28dcac84912ec01a9eb8a,Individual recognition using gait energy image,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +3b37d95d2855c8db64bd6b1ee5659f87fce36881,Adversarially Optimizing Intersection over Union for Object Localization Tasks,University of Illinois at Chicago,University of Illinois at Chicago,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.64856256,edu, +3b37d95d2855c8db64bd6b1ee5659f87fce36881,Adversarially Optimizing Intersection over Union for Object Localization Tasks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3b37d95d2855c8db64bd6b1ee5659f87fce36881,Adversarially Optimizing Intersection over Union for Object Localization Tasks,University of Illinois at Chicago,University of Illinois at Chicago,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.64856256,edu, +3be027448ad49a79816cd21dcfcce5f4e1cec8a8,Actively selecting annotations among objects and attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +3bd56f4cf8a36dd2d754704bcb71415dcbc0a165,Robust Regression,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +3b470b76045745c0ef5321e0f1e0e6a4b1821339,Consensus of Regression for Occlusion-Robust Facial Feature Localization,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +6fa0c206873dcc5812f7ea74a48bb4bf4b273494,Real-Time Mobile Facial Expression Recognition System -- A Case Study,University of Texas at Dallas,University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.98207990,-96.75662780,edu, +6f9824c5cb5ac08760b08e374031cbdabc953bae,Unconstrained human identification using comparative facial soft biometrics,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +6fed504da4e192fe4c2d452754d23d3db4a4e5e3,Learning Deep Features via Congenerous Cosine Loss for Person Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +6f26ab7edd971148723d9b4dc8ddf71b36be9bf7,Differences in Abundances of Cell-Signalling Proteins in Blood Reveal Novel Biomarkers for Early Detection Of Clinical Alzheimer's Disease,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.35788990,151.37834708,edu, +6f7a8b3e8f212d80f0fb18860b2495be4c363eac,Creating Capsule Wardrobes from Fashion Images,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +6f7a8b3e8f212d80f0fb18860b2495be4c363eac,Creating Capsule Wardrobes from Fashion Images,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +6f0900a7fe8a774a1977c5f0a500b2898bcbe149,Quotient Based Multiresolution Image Fusion of Thermal and Visual Images Using Daubechies Wavelet Transform for Human Face Recognition,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.56115370,88.41310194,edu, +6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +6fbb179a4ad39790f4558dd32316b9f2818cd106,Input Aggregated Network for Face Video Representation,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +6f84e61f33564e5188136474f9570b1652a0606f,Dual Motion GAN for Future-Flow Embedded Video Prediction,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6fda12c43b53c679629473806c2510d84358478f,A Training Model for Fuzzy Classification System,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +6fef65bd7287b57f0c3b36bf8e6bc987fd161b7d,Deep Discriminative Model for Video Classification,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +036c41d67b49e5b0a578a401eb31e5f46b3624e0,The Tower Game Dataset: A multimodal dataset for analyzing social interaction predicates,SRI International,SRI International,"SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA",37.45857960,-122.17560525,edu, +036c41d67b49e5b0a578a401eb31e5f46b3624e0,The Tower Game Dataset: A multimodal dataset for analyzing social interaction predicates,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +03b03f5a301b2ff88ab3bb4969f54fd9a35c7271,Pillar Networks for action recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +03ce2ff688f9b588b6f264ca79c6857f0d80ceae,Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +03b99f5abe0e977ff4c902412c5cb832977cf18e,Of Gods and Goats: Weakly Supervised Learning of Figurative Art,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +03167776e17bde31b50f294403f97ee068515578,Chapter 11. Facial Expression Analysis,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +03167776e17bde31b50f294403f97ee068515578,Chapter 11. Facial Expression Analysis,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +03167776e17bde31b50f294403f97ee068515578,Chapter 11. Facial Expression Analysis,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +0334a8862634988cc684dacd4279c5c0d03704da,FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +03f98c175b4230960ac347b1100fbfc10c100d0c,Supervised Descent Method and Its Applications to Face Alignment,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +03264e2e2709d06059dd79582a5cc791cbef94b1,Convolutional Neural Networks for Facial Attribute-based Active Authentication on Mobile Devices,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +03264e2e2709d06059dd79582a5cc791cbef94b1,Convolutional Neural Networks for Facial Attribute-based Active Authentication on Mobile Devices,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20,A real time system for model-based interpretation of the dynamics of facial expressions,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +03c48d8376990cff9f541d542ef834728a2fcda2,Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +0319332ded894bf1afe43f174f5aa405b49305f0,Shearlet Network-based Sparse Coding Augmented by Facial Texture Features for Face Recognition,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +0319332ded894bf1afe43f174f5aa405b49305f0,Shearlet Network-based Sparse Coding Augmented by Facial Texture Features for Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +03baf00a3d00887dd7c828c333d4a29f3aacd5f5,Entropy Based Feature Selection for 3D Facial Expression Recognition,Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318,edu, +0359f7357ea8191206b9da45298902de9f054c92,Going deeper in facial expression recognition using deep neural networks,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +03bd58a96f635059d4bf1a3c0755213a51478f12,Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +03bd58a96f635059d4bf1a3c0755213a51478f12,Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +9be94fa0330dd493f127d51e4ef7f9fd64613cfc,Effects of pose and image resolution on automatic face recognition,North Dakota State University,North Dakota State University,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.89715500,-96.81827603,edu, +9be94fa0330dd493f127d51e4ef7f9fd64613cfc,Effects of pose and image resolution on automatic face recognition,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +9bd35145c48ce172b80da80130ba310811a44051,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +9bd35145c48ce172b80da80130ba310811a44051,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,North Carolina State University,North Carolina State University,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.67408695,edu, +9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,Visual Data Augmentation through Learning,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,Visual Data Augmentation through Learning,Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.22963221,edu, +9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493,Close the loop: Joint blind image restoration and recognition with sparse representation prior,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493,Close the loop: Joint blind image restoration and recognition with sparse representation prior,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +9b2c359c36c38c289c5bacaeb5b1dd06b464f301,Dense Face Alignment,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca,Position-Squeeze and Excitation Block for Facial Attribute Analysis,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +9b07084c074ba3710fee59ed749c001ae70aa408,Computational Models of Face Perception.,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +9be653e1bc15ef487d7f93aad02f3c9552f3ee4a,Computer Vision for Head Pose Estimation: Review of a Competition,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +9b246c88a0435fd9f6d10dc88f47a1944dd8f89e,PiCoDes: Learning a Compact Code for Novel-Category Recognition,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +9b246c88a0435fd9f6d10dc88f47a1944dd8f89e,PiCoDes: Learning a Compact Code for Novel-Category Recognition,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +9b93406f3678cf0f16451140ea18be04784faeee,A Bayesian Approach to Alignment-Based Image Hallucination,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +9b684e2e2bb43862f69b12c6be94db0e7a756187,Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +9b684e2e2bb43862f69b12c6be94db0e7a756187,Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +9b684e2e2bb43862f69b12c6be94db0e7a756187,Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32,Exploring Temporal Preservation Networks for Precise Temporal Action Localization,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +9e42d44c07fbd800f830b4e83d81bdb9d106ed6b,Learning Discriminative Aggregation Network for Video-Based Face Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0,Max-Margin Invariant Features from Transformed Unlabelled Data,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +9ed943f143d2deaac2efc9cf414b3092ed482610,Independent Subspace of Dynamic Gabor Features for Facial Expression Classification,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.44429490,136.59285870,edu, +9e1c3b8b1653337094c1b9dba389e8533bc885b0,Demographic Classification with Local Binary Patterns,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +9ed4ad41cbad645e7109e146ef6df73f774cd75d,RPM: Random Points Matching for Pair wise Face-Similarity,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +9ed4ad41cbad645e7109e146ef6df73f774cd75d,RPM: Random Points Matching for Pair wise Face-Similarity,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +9e182e0cd9d70f876f1be7652c69373bcdf37fb4,Talking Face Generation by Adversarially Disentangled Audio-Visual Representation,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +9e8d87dc5d8a6dd832716a3f358c1cdbfa97074c,What makes an image popular?,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +044d9a8c61383312cdafbcc44b9d00d650b21c70,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +044d9a8c61383312cdafbcc44b9d00d650b21c70,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.54873472,edu, +044d9a8c61383312cdafbcc44b9d00d650b21c70,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +04f0292d9a062634623516edd01d92595f03bd3f,Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +04f0292d9a062634623516edd01d92595f03bd3f,Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +04f0292d9a062634623516edd01d92595f03bd3f,Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +04522dc16114c88dfb0ebd3b95050fdbd4193b90,Minimum Bayes error features for visual recognition by sequential feature selection and extraction,University of British Columbia,University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.24658161,edu, +04522dc16114c88dfb0ebd3b95050fdbd4193b90,Minimum Bayes error features for visual recognition by sequential feature selection and extraction,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +0486214fb58ee9a04edfe7d6a74c6d0f661a7668,Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +043efe5f465704ced8d71a067d2b9d5aa5b59c29,Occlusion-aware 3D Morphable Face Models,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +04661729f0ff6afe4b4d6223f18d0da1d479accf,From Facial Parts Responses to Face Detection: A Deep Learning Approach,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +04661729f0ff6afe4b4d6223f18d0da1d479accf,From Facial Parts Responses to Face Detection: A Deep Learning Approach,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +04c2cda00e5536f4b1508cbd80041e9552880e67,Hipster Wars: Discovering Elements of Fashion Styles,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +04c2cda00e5536f4b1508cbd80041e9552880e67,Hipster Wars: Discovering Elements of Fashion Styles,Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.25309450,140.87365930,edu, +04ff69aa20da4eeccdabbe127e3641b8e6502ec0,Sequential Face Alignment via Person-Specific Modeling in the Wild,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +04ff69aa20da4eeccdabbe127e3641b8e6502ec0,Sequential Face Alignment via Person-Specific Modeling in the Wild,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +04ff69aa20da4eeccdabbe127e3641b8e6502ec0,Sequential Face Alignment via Person-Specific Modeling in the Wild,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +046a694bbb3669f2ff705c6c706ca3af95db798c,Conditional Convolutional Neural Network for Modality-Aware Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +046a694bbb3669f2ff705c6c706ca3af95db798c,Conditional Convolutional Neural Network for Modality-Aware Face Recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +046865a5f822346c77e2865668ec014ec3282033,Discovering informative social subgraphs and predicting pairwise relationships from group photos,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff,Unsupervised Training for 3D Morphable Model Regression,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff,Unsupervised Training for 3D Morphable Model Regression,MIT CSAIL,MIT CSAIL,"32 Vassar St, Cambridge, MA 02139, USA",42.36194070,-71.09043780,edu, +6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d,Cooperative Learning with Visual Attributes,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,Top Rank Supervised Binary Coding for Visual Search,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,Top Rank Supervised Binary Coding for Visual Search,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +6a5fe819d2b72b6ca6565a0de117c2b3be448b02,Supervised and Projected Sparse Coding for Image Classification,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +6afeb764ee97fbdedfa8f66810dfc22feae3fa1f,Robust Principal Component Analysis with Complex Noise,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +6afeb764ee97fbdedfa8f66810dfc22feae3fa1f,Robust Principal Component Analysis with Complex Noise,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +6aa61d28750629febe257d1cb69379e14c66c67f,Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis,Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.53691250,9.05922533,edu, +6ae96f68187f1cdb9472104b5431ec66f4b2470f,Improving Task Performance in an Affect-mediated Computing System,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6ae96f68187f1cdb9472104b5431ec66f4b2470f,Improving Task Performance in an Affect-mediated Computing System,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6a4419ce2338ea30a570cf45624741b754fa52cb,Statistical transformer networks: learning shape and appearance models via self supervision,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8,A New Weighted Sparse Representation Based on MSLBP and Its Application to Face Recognition,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +6a657995b02bc9dee130701138ea45183c18f4ae,The Timing of Facial Motion in posed and Spontaneous Smiles,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +6a0368b4e132f4aa3bbdeada8d894396f201358a,One-Class Multiple Instance Learning via Robust PCA for Common Object Discovery,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +6a0368b4e132f4aa3bbdeada8d894396f201358a,One-Class Multiple Instance Learning via Robust PCA for Common Object Discovery,"University of California, Los Angeles","University of California, Los Angeles","200 UCLA, Medical Plaza Driveway Suite 540, Los Angeles, CA 90095, USA",34.06877880,-118.44500940,edu, +6ab33fa51467595f18a7a22f1d356323876f8262,Ordinal hyperplanes ranker with cost sensitivities for age estimation,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +6ab33fa51467595f18a7a22f1d356323876f8262,Ordinal hyperplanes ranker with cost sensitivities for age estimation,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +6ab33fa51467595f18a7a22f1d356323876f8262,Ordinal hyperplanes ranker with cost sensitivities for age estimation,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a,Excitation Dropout: Encouraging Plasticity in Deep Neural Networks,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +6a4ebd91c4d380e21da0efb2dee276897f56467a,HOG active appearance models,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.54873472,edu, +32d8e555441c47fc27249940991f80502cb70bd5,Machine Learning Models that Remember Too Much,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +3294e27356c3b1063595885a6d731d625b15505a,Illumination Face Spaces Are Idiosyncratic,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +3240c9359061edf7a06bfeb7cc20c103a65904c2,PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +32c20afb5c91ed7cdbafb76408c3a62b38dd9160,Viewing Real-World Faces in 3D,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b,Lighting Aware Preprocessing for Face Recognition across Varying Illumination,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b,Lighting Aware Preprocessing for Face Recognition across Varying Illumination,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +329394480fc5e9e96de4250cc1a2b060c3677c94,Improved Dense Trajectory with Cross Streams,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +329394480fc5e9e96de4250cc1a2b060c3677c94,Improved Dense Trajectory with Cross Streams,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +329394480fc5e9e96de4250cc1a2b060c3677c94,Improved Dense Trajectory with Cross Streams,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +32c9ebd2685f522821eddfc19c7c91fd6b3caf22,Finding Correspondence from Multiple Images via Sparse and Low-Rank Decomposition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +32c9ebd2685f522821eddfc19c7c91fd6b3caf22,Finding Correspondence from Multiple Images via Sparse and Low-Rank Decomposition,"Advanced Digital Sciences Center, Singapore","Advanced Digital Sciences Center, Singapore","1 Create Way, 14-02 Create Tower, Singapore 138602",1.30372570,103.77377630,edu, +3270b2672077cc345f188500902eaf7809799466,Multibiometric Systems: Fusion Strategies and Template Security,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +321c8ba38db118d8b02c0ba209be709e6792a2c7,Learn to Combine Multiple Hypotheses for Accurate Face Alignment,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +353b6c1f431feac6edde12b2dde7e6e702455abd,Multi-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +353b6c1f431feac6edde12b2dde7e6e702455abd,Multi-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +350da18d8f7455b0e2920bc4ac228764f8fac292,Automatic Detecting Neutral Face for Face Authentication and Facial Expression Analysis,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +35f03f5cbcc21a9c36c84e858eeb15c5d6722309,Placing Broadcast News Videos in their Social Media Context Using Hashtags,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +356b431d4f7a2a0a38cf971c84568207dcdbf189,Recognize complex events from static images by fusing deep channels,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +356b431d4f7a2a0a38cf971c84568207dcdbf189,Recognize complex events from static images by fusing deep channels,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +35f921def890210dda4b72247849ad7ba7d35250,Exemplar-Based Graph Matching for Robust Facial Landmark Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +35ec9b8811f2d755c7ad377bdc29741b55b09356,"Efficient, Robust and Accurate Fitting of a 3D Morphable Model",University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +3505c9b0a9631539e34663310aefe9b05ac02727,A Joint Discriminative Generative Model for Deformable Model Construction and Classification,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +3505c9b0a9631539e34663310aefe9b05ac02727,A Joint Discriminative Generative Model for Deformable Model Construction and Classification,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +3506518d616343d3083f4fe257a5ee36b376b9e1,Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +3506518d616343d3083f4fe257a5ee36b376b9e1,Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition,University of Perugia,University of Perugia,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.26224210,-123.24500520,edu, +3506518d616343d3083f4fe257a5ee36b376b9e1,Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +6964af90cf8ac336a2a55800d9c510eccc7ba8e1,Temporal Relational Reasoning in Videos,MIT CSAIL,MIT CSAIL,"32 Vassar St, Cambridge, MA 02139, USA",42.36194070,-71.09043780,edu, +69adbfa7b0b886caac15ebe53b89adce390598a3,Face hallucination using cascaded super-resolution and identity priors,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +69adbfa7b0b886caac15ebe53b89adce390598a3,Face hallucination using cascaded super-resolution and identity priors,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +69d29012d17cdf0a2e59546ccbbe46fa49afcd68,Subspace clustering of dimensionality-reduced data,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +69a68f9cf874c69e2232f47808016c2736b90c35,Learning Deep Representation for Imbalanced Classification,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +69a68f9cf874c69e2232f47808016c2736b90c35,Learning Deep Representation for Imbalanced Classification,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +69a68f9cf874c69e2232f47808016c2736b90c35,Learning Deep Representation for Imbalanced Classification,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +69b18d62330711bfd7f01a45f97aaec71e9ea6a5,M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice,SUNY Polytechnic Institute,State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.13800205,-75.22943591,edu, +6993bca2b3471f26f2c8a47adfe444bfc7852484,The Do’s and Don’ts for CNN-Based Face Verification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +69eb6c91788e7c359ddd3500d01fb73433ce2e65,CAMGRAPH: Distributed Graph Processing for Camera Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +691964c43bfd282f6f4d00b8b0310c554b613e3b,Temporal Hallucinating for Action Recognition with Few Still Images,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +69c2ac04693d53251500557316c854a625af84ee,"50 years of biometric research: Accomplishments, challenges, and opportunities",Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +69fb98e11df56b5d7ec7d45442af274889e4be52,Harnessing the Deep Net Object Models for Enhancing Human Action Recognition,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +69fb98e11df56b5d7ec7d45442af274889e4be52,Harnessing the Deep Net Object Models for Enhancing Human Action Recognition,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +3c78b642289d6a15b0fb8a7010a1fb829beceee2,Analysis of Facial Dynamics Using a Tensor Framework,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +3c78b642289d6a15b0fb8a7010a1fb829beceee2,Analysis of Facial Dynamics Using a Tensor Framework,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +3cb488a3b71f221a8616716a1fc2b951dd0de549,Facial Age Estimation by Adaptive Label Distribution Learning,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +3c563542db664321aa77a9567c1601f425500f94,TV-GAN: Generative Adversarial Network Based Thermal to Visible Face Recognition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,Robust facial landmark detection in the wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,Robust facial landmark detection in the wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0,Defeating Image Obfuscation with Deep Learning,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,Distance Metric Learning with Eigenvalue Optimization,University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.73693020,-3.53647672,edu, +3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,Distance Metric Learning with Eigenvalue Optimization,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +3c97c32ff575989ef2869f86d89c63005fc11ba9,Face Detection with the Faster R-CNN,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +3c97c32ff575989ef2869f86d89c63005fc11ba9,Face Detection with the Faster R-CNN,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bd,Simulating Pareidolia of Faces for Architectural Image Analysis,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.35788990,151.37834708,edu, +3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bd,Simulating Pareidolia of Faces for Architectural Image Analysis,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.35788990,151.37834708,edu, +3cd8ab6bb4b038454861a36d5396f4787a21cc68,Video-Based Facial Expression Recognition Using Hough Forest,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +3ca5d3b8f5f071148cb50f22955fd8c1c1992719,Evaluating race and sex diversity in the world's largest companies using deep neural networks,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +3cc46bf79fb9225cf308815c7d41c8dd5625cc29,Age interval and gender prediction using PARAFAC2 applied to speech utterances,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +3cc46bf79fb9225cf308815c7d41c8dd5625cc29,Age interval and gender prediction using PARAFAC2 applied to speech utterances,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.04577648,edu, +56c700693b63e3da3b985777da6d9256e2e0dc21,Global refinement of random forest,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +56c700693b63e3da3b985777da6d9256e2e0dc21,Global refinement of random forest,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,Chinese Academy of Science,"Key Lab of Intelligent Information Processing, Institute of Computer Technology, Chinese Academy of Science (CAS), Beijing, 100190, China","Beijing, China",39.90419990,116.40739630,edu, +56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +56e6f472090030a6f172a3e2f46ef9daf6cad757,Asian Face Image Database PF 01 Intelligent Multimedia Lab,Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.32107509,edu, +56f86bef26209c85f2ef66ec23b6803d12ca6cd6,Pyramidal RoR for image classification,North China Electric Power University,North China Electric Power University,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.87604460,115.49738730,edu, +566a39d753c494f57b4464d6bde61bf3593f7ceb,A Critical Review of Action Recognition Benchmarks,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673040,edu, +56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673040,edu, +56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673040,edu, +56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673040,edu, +56f231fc40424ed9a7c93cbc9f5a99d022e1d242,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +56f231fc40424ed9a7c93cbc9f5a99d022e1d242,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +56f231fc40424ed9a7c93cbc9f5a99d022e1d242,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,Macau University of Science and Technology,Macau University of Science and Technology,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.56803206,edu, +561ae67de137e75e9642ab3512d3749b34484310,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +561ae67de137e75e9642ab3512d3749b34484310,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,Rheinische-Friedrich-Wilhelms University,Rheinische-Friedrich-Wilhelms University,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.73381240,7.10224650,edu, +568cff415e7e1bebd4769c4a628b90db293c1717,Concepts Not Alone: Exploring Pairwise Relationships for Zero-Shot Video Activity Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +568cff415e7e1bebd4769c4a628b90db293c1717,Concepts Not Alone: Exploring Pairwise Relationships for Zero-Shot Video Activity Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +568cff415e7e1bebd4769c4a628b90db293c1717,Concepts Not Alone: Exploring Pairwise Relationships for Zero-Shot Video Activity Recognition,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +560e0e58d0059259ddf86fcec1fa7975dee6a868,Face recognition in unconstrained videos with matched background similarity,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +560e0e58d0059259ddf86fcec1fa7975dee6a868,Face recognition in unconstrained videos with matched background similarity,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +56a677c889e0e2c9f68ab8ca42a7e63acf986229,Mining Spatial and Spatio-Temporal ROIs for Action Recognition,"University of California, Los Angeles","University of California, Los Angeles","200 UCLA, Medical Plaza Driveway Suite 540, Los Angeles, CA 90095, USA",34.06877880,-118.44500940,edu, +56ae6d94fc6097ec4ca861f0daa87941d1c10b70,Distance Estimation of an Unknown Person from a Portrait,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.03332810,135.72491540,edu, +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Kogakuin University,Kogakuin University,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.69027840,139.69540096,edu, +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.25309450,140.87365930,edu, +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +516d0d9eb08825809e4618ca73a0697137ebabd5,Regularizing Long Short Term Memory with 3D Human-Skeleton Sequences for Action Recognition,Oregon State University,Oregon State University,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA",45.51982890,-122.67797964,edu, +519a724426b5d9ad384d38aaf2a4632d3824f243,Learning Models for Object Recognition from Natural Language Descriptions,University of Leeds,University of Leeds,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK",53.80387185,-1.55245712,edu, +5180df9d5eb26283fb737f491623395304d57497,Scalable Angular Discriminative Deep Metric Learning for Face Recognition,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +518edcd112991a1717856841c1a03dd94a250090,Rice University Endogenous Sparse Recovery by Eva L . Dyer,Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.40478113,edu, +518edcd112991a1717856841c1a03dd94a250090,Rice University Endogenous Sparse Recovery by Eva L . Dyer,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +51683eac8bbcd2944f811d9074a74d09d395c7f3,"Automatic Analysis of Facial Actions: Learning from Transductive, Supervised and Unsupervised Frameworks",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +51683eac8bbcd2944f811d9074a74d09d395c7f3,"Automatic Analysis of Facial Actions: Learning from Transductive, Supervised and Unsupervised Frameworks",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +51683eac8bbcd2944f811d9074a74d09d395c7f3,"Automatic Analysis of Facial Actions: Learning from Transductive, Supervised and Unsupervised Frameworks",Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +51cb09ee04831b95ae02e1bee9b451f8ac4526e3,Beyond short snippets: Deep networks for video classification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +51cb09ee04831b95ae02e1bee9b451f8ac4526e3,Beyond short snippets: Deep networks for video classification,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +51cb09ee04831b95ae02e1bee9b451f8ac4526e3,Beyond short snippets: Deep networks for video classification,Google,"Google, Inc.","1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA",37.42199990,-122.08405750,company,"Google, Mountain View, CA" +514a74aefb0b6a71933013155bcde7308cad2b46,Carnegie Mellon University Optimal Classifier Ensembles for Improved Biometric Verification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +514a74aefb0b6a71933013155bcde7308cad2b46,Carnegie Mellon University Optimal Classifier Ensembles for Improved Biometric Verification,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +51a8dabe4dae157aeffa5e1790702d31368b9161,Face recognition under generic illumination based on harmonic relighting,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +512b4c8f0f3fb23445c0c2dab768bcd848fa8392,Analysis and Synthesis of Facial Expressions by Feature- Points Tracking and Deformable Model,University of Tabriz,University of Tabriz,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎",38.06125530,46.32984840,edu, +51eba481dac6b229a7490f650dff7b17ce05df73,Situation Recognition: Visual Semantic Role Labeling for Image Understanding,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +5173a20304ea7baa6bfe97944a5c7a69ea72530f,Best Basis Selection Method Using Learning Weights for Face Recognition,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6,"A Survey of Face Detection, Extraction and Recognition",Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +5141cf2e59fb2ec9bb489b9c1832447d3cd93110,Learning Person Trajectory Representations for Team Activity Analysis,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,A Community Detection Approach to Cleaning Extremely Large Face Database,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +51d048b92f6680aca4a8adf07deb380c0916c808,"State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications",Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +51d048b92f6680aca4a8adf07deb380c0916c808,"State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +5134353bd01c4ea36bd007c460e8972b1541d0ad,Face Recognition with Multi-Resolution Spectral Feature Images,Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091,edu, +5134353bd01c4ea36bd007c460e8972b1541d0ad,Face Recognition with Multi-Resolution Spectral Feature Images,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.35788990,151.37834708,edu, +5134353bd01c4ea36bd007c460e8972b1541d0ad,Face Recognition with Multi-Resolution Spectral Feature Images,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +5160569ca88171d5fa257582d161e9063c8f898d,Local binary patterns as an image preprocessing for face authentication,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,Face Alignment in Full Pose Range: A 3D Total Solution,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,Face Alignment in Full Pose Range: A 3D Total Solution,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +3d143cfab13ecd9c485f19d988242e7240660c86,Discriminative Collaborative Representation for Classification,Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.02749960,135.78154513,edu, +3d143cfab13ecd9c485f19d988242e7240660c86,Discriminative Collaborative Representation for Classification,Osaka University,Osaka University,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218,edu, +3dabf7d853769cfc4986aec443cc8b6699136ed0,Data Mining Spontaneous Facial Behavior with Automatic Expression Coding,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +3dabf7d853769cfc4986aec443cc8b6699136ed0,Data Mining Spontaneous Facial Behavior with Automatic Expression Coding,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.89271590,29.37863323,edu, +3d1a6a5fd5915e0efb953ede5af0b23debd1fc7f,Bimodal Human Emotion Classification in the Speaker-Dependent Scenario,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.00920040,71.48774947,edu, +3d1a6a5fd5915e0efb953ede5af0b23debd1fc7f,Bimodal Human Emotion Classification in the Speaker-Dependent Scenario,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.00920040,71.48774947,edu, +3d0379688518cc0e8f896e30815d0b5e8452d4cd,Autotagging Facebook: Social network context improves photo annotation,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +3d0379688518cc0e8f896e30815d0b5e8452d4cd,Autotagging Facebook: Social network context improves photo annotation,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +3d24b386d003bee176a942c26336dbe8f427aadd,Sequential Person Recognition in Photo Albums with a Recurrent Network,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +3d0f9a3031bee4b89fab703ff1f1d6170493dc01,SVDD-Based Illumination Compensation for Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3d0f9a3031bee4b89fab703ff1f1d6170493dc01,SVDD-Based Illumination Compensation for Face Recognition,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.59014110,127.03623180,edu, +3d0c21d4780489bd624a74b07e28c16175df6355,Deep or Shallow Facial Descriptors? A Case for Facial Attribute Classification and Face Retrieval,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +3d0c21d4780489bd624a74b07e28c16175df6355,Deep or Shallow Facial Descriptors? A Case for Facial Attribute Classification and Face Retrieval,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +3df8cc0384814c3fb05c44e494ced947a7d43f36,The Pose Knows: Video Forecasting by Generating Pose Futures,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,University of Malta,University of Malta,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.90232260,14.48341890,edu, +3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,University of Copenhagen,University of Copenhagen,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark",55.68015020,12.57232700,edu, +3dbfd2fdbd28e4518e2ae05de8374057307e97b3,Improving Face Detection,University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.20759510,-8.42566148,edu, +3d68cedd80babfbb04ab197a0b69054e3c196cd9,Bimodal information analysis for emotion recognition,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +3dfb822e16328e0f98a47209d7ecd242e4211f82,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +3d948e4813a6856e5b8b54c20e50cc5050e66abe,A Smart Phone Image Database for Single Image Recapture Detection,"A*STAR, Singapore","Institute for Infocomm Research, A*STAR, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +3d948e4813a6856e5b8b54c20e50cc5050e66abe,A Smart Phone Image Database for Single Image Recapture Detection,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +3d948e4813a6856e5b8b54c20e50cc5050e66abe,A Smart Phone Image Database for Single Image Recapture Detection,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.74230250,-74.17928172,edu, +3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.76846919,edu, +580f86f1ace1feed16b592d05c2b07f26c429b4b,Dense-Captioning Events in Videos,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +58d47c187b38b8a2bad319c789a09781073d052d,Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +58d47c187b38b8a2bad319c789a09781073d052d,Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +58d47c187b38b8a2bad319c789a09781073d052d,Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation,MIT CSAIL,MIT CSAIL,"32 Vassar St, Cambridge, MA 02139, USA",42.36194070,-71.09043780,edu, +582edc19f2b1ab2ac6883426f147196c8306685a,Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +584909d2220b52c0d037e8761d80cb22f516773f,OCR-Free Transcript Alignment,Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.70927481,edu, +584909d2220b52c0d037e8761d80cb22f516773f,OCR-Free Transcript Alignment,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +584909d2220b52c0d037e8761d80cb22f516773f,OCR-Free Transcript Alignment,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +580e48d3e7fe1ae0ceed2137976139852b1755df,THE EFFECTS OF MOTION AND ORIENTATION ON PERCEPTION OF FACIAL EXPRESSIONS AND FACE RECOGNITION by,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +585260468d023ffc95f0e539c3fa87254c28510b,Cardea: Context-Aware Visual Privacy Protection from Pervasive Cameras,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +58628e64e61bd2776a2a7258012eabe3c79ca90c,Active Grounding of Visual Situations,Portland State University,Portland State University,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.68492999,edu, +58628e64e61bd2776a2a7258012eabe3c79ca90c,Active Grounding of Visual Situations,Santa Fe Institute,Santa Fe Institute,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA",35.70028780,-105.90864847,edu, +676a136f5978783f75b5edbb38e8bb588e8efbbe,Matrix completion for resolving label ambiguity,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +676f9eabf4cfc1fd625228c83ff72f6499c67926,Face Identification and Clustering,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +679b7fa9e74b2aa7892eaea580def6ed4332a228,Communication and automatic interpretation of affect from facial expressions,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +679b7fa9e74b2aa7892eaea580def6ed4332a228,Communication and automatic interpretation of affect from facial expressions,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +679b7fa9e74b2aa7892eaea580def6ed4332a228,Communication and automatic interpretation of affect from facial expressions,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +67c3c1194ee72c54bc011b5768e153a035068c43,Street Scenes: towards scene understanding in still images,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +673d4885370b27c863e11a4ece9189a6a45931cc,Recurrent Residual Module for Fast Inference in Videos,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +6754c98ba73651f69525c770fb0705a1fae78eb5,Joint Cascade Face Detection and Alignment,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +6754c98ba73651f69525c770fb0705a1fae78eb5,Joint Cascade Face Detection and Alignment,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +672fae3da801b2a0d2bad65afdbbbf1b2320623e,Pose-Selective Max Pooling for Measuring Similarity,Johns Hopkins University,"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA","3400 N Charles St, Baltimore, MD 21218, USA",39.32905300,-76.61942500,edu, +677ebde61ba3936b805357e27fce06c44513a455,Facial Expression Recognition Based on Facial Components Detection and HOG Features,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,Loglet SIFT for Part Description in Deformable Part Models: Application to Face Alignment,University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.37931310,-1.56042520,edu, +0b8b8776684009e537b9e2c0d87dbd56708ddcb4,Adversarial Discriminative Heterogeneous Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +0b78fd881d0f402fd9b773249af65819e48ad36d,Analysis and Modeling of Affective Audio Visual Speech Based on PAD Emotion Space,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +0b835284b8f1f45f87b0ce004a4ad2aca1d9e153,Cartooning for Enhanced Privacy in Lifelogging and Streaming Videos,Indiana University Bloomington,Indiana University Bloomington,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA",39.17720475,-86.51540030,edu, +0b51197109813d921835cb9c4153b9d1e12a9b34,The University of Chicago Jointly Learning Multiple Similarity Metrics from Triplet Constraints a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Master of Science Department of Computer Science By,University of Chicago,THE UNIVERSITY OF CHICAGO,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.78468745,-87.60074933,edu, +0bf3513d18ec37efb1d2c7934a837dabafe9d091,Robust Subspace Clustering via Thresholding Ridge Regression,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +0be2245b2b016de1dcce75ffb3371a5e4b1e731b,On the Variants of the Self-Organizing Map That Are Based on Order Statistics,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +0b85b50b6ff03a7886c702ceabad9ab8c8748fdc,Is there a dynamic advantage for facial expressions?,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +0b84f07af44f964817675ad961def8a51406dd2e,Person Re-identification in the Wild,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +0b242d5123f79defd5f775d49d8a7047ad3153bc,How Important Is Weight Symmetry in Backpropagation?,McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.36262950,-71.09144810,edu, +0ba1d855cd38b6a2c52860ae4d1a85198b304be4,Variable-state latent conditional random fields for facial expression recognition and action unit detection,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +0ba1d855cd38b6a2c52860ae4d1a85198b304be4,Variable-state latent conditional random fields for facial expression recognition and action unit detection,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +0b50e223ad4d9465bb92dbf17a7b79eccdb997fb,Implicit elastic matching with random projections for pose-variant face recognition,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +0b50e223ad4d9465bb92dbf17a7b79eccdb997fb,Implicit elastic matching with random projections for pose-variant face recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +0badf61e8d3b26a0d8b60fe94ba5c606718daf0b,Facial Expression Recognition Using Deep Belief Network,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +0badf61e8d3b26a0d8b60fe94ba5c606718daf0b,Facial Expression Recognition Using Deep Belief Network,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +0b2966101fa617b90510e145ed52226e79351072,Beyond verbs: Understanding actions in videos with text,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.80915360,-97.13304179,edu, +0b2966101fa617b90510e145ed52226e79351072,Beyond verbs: Understanding actions in videos with text,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.80915360,-97.13304179,edu, +0ba0f000baf877bc00a9e144b88fa6d373db2708,Facial Expression Recognition Based on Local Directional Pattern Using SVM Decision-level Fusion,Normal University,Normal University,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.05805090,102.69552410,edu, +0be80da851a17dd33f1e6ffdd7d90a1dc7475b96,Weighted Feature Gaussian Kernel SVM for Emotion Recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +0b183f5260667c16ef6f640e5da50272c36d599b,Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsity,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +0b183f5260667c16ef6f640e5da50272c36d599b,Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsity,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +0b183f5260667c16ef6f640e5da50272c36d599b,Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsity,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +0be764800507d2e683b3fb6576086e37e56059d1,Learning from Geometry,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +0b642f6d48a51df64502462372a38c50df2051b1,A domain adaptation approach to improve speaker turn embedding using face representation,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +0b7d1386df0cf957690f0fe330160723633d2305,Learning American English Accents Using Ensemble Learning with GMMs,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +0b7d1386df0cf957690f0fe330160723633d2305,Learning American English Accents Using Ensemble Learning with GMMs,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +0b6616f3ebff461e4b6c68205fcef1dae43e2a1a,Rectifying Self Organizing Maps for Automatic Concept Learning from Web Images,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87204890,32.75395155,edu, +0b6616f3ebff461e4b6c68205fcef1dae43e2a1a,Rectifying Self Organizing Maps for Automatic Concept Learning from Web Images,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87204890,32.75395155,edu, +0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +0bf0029c9bdb0ac61fda35c075deb1086c116956,Modelling of Orthogonal Craniofacial Profiles,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +935a7793cbb8f102924fa34fce1049727de865c2,Age estimation under changes in image quality: An experimental study,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +9326d1390e8601e2efc3c4032152844483038f3f,Landmark Based Facial Component Reconstruction for Recognition across Pose,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +93721023dd6423ab06ff7a491d01bdfe83db7754,Robust Face Alignment Using Convolutional Neural Networks,Orange,Orange Labs,"78 Rue Olivier de Serres, 75015 Paris, France",48.83321220,2.29421550,company,"78 Rue Olivier de Serres, Paris, 75015" +93971a49ef6cc88a139420349a1dfd85fb5d3f5c,Scalable Probabilistic Models: Applied to Face Identification in the Wild,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +93420d9212dd15b3ef37f566e4d57e76bb2fab2f,An All-In-One Convolutional Neural Network for Face Analysis,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +93af36da08bf99e68c9b0d36e141ed8154455ac2,A Dditive M Argin S Oftmax for F Ace V Erification,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +93af36da08bf99e68c9b0d36e141ed8154455ac2,A Dditive M Argin S Oftmax for F Ace V Erification,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +93af36da08bf99e68c9b0d36e141ed8154455ac2,A Dditive M Argin S Oftmax for F Ace V Erification,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +937ffb1c303e0595317873eda5ce85b1a17f9943,Eyes do not lie: spontaneous versus posed smiles,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +93f37c69dd92c4e038710cdeef302c261d3a4f92,Compressed Video Action Recognition,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +93f37c69dd92c4e038710cdeef302c261d3a4f92,Compressed Video Action Recognition,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +936227f7483938097cc1cdd3032016df54dbd5b6,Learning to generalize to new compositions in image understanding,Bar-Ilan University,Bar-Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.84334339,edu, +936227f7483938097cc1cdd3032016df54dbd5b6,Learning to generalize to new compositions in image understanding,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +939123cf21dc9189a03671484c734091b240183e,Within- and cross- database evaluations for face gender classification via befit protocols,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +938ae9597f71a21f2e47287cca318d4a2113feb2,Classifier Learning with Prior Probabilities for Facial Action Unit Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +938ae9597f71a21f2e47287cca318d4a2113feb2,Classifier Learning with Prior Probabilities for Facial Action Unit Recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +946017d5f11aa582854ac4c0e0f1b18b06127ef1,Tracking Persons-of-Interest via Adaptive Discriminative Features,Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.55572710,127.04366420,edu, +946017d5f11aa582854ac4c0e0f1b18b06127ef1,Tracking Persons-of-Interest via Adaptive Discriminative Features,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +946017d5f11aa582854ac4c0e0f1b18b06127ef1,Tracking Persons-of-Interest via Adaptive Discriminative Features,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +9487cea80f23afe9bccc94deebaa3eefa6affa99,"Fast, Dense Feature SDM on an iPhone",Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +9487cea80f23afe9bccc94deebaa3eefa6affa99,"Fast, Dense Feature SDM on an iPhone",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +949699d0b865ef35b36f11564f9a4396f5c9cddb,"Processing of facial identity and expression: a psychophysical, physiological, and computational perspective.",Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.53691250,9.05922533,edu, +949699d0b865ef35b36f11564f9a4396f5c9cddb,"Processing of facial identity and expression: a psychophysical, physiological, and computational perspective.",University of Zurich,University of Zurich,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.49684760,8.72981767,edu, +94e259345e82fa3015a381d6e91ec6cded3971b4,Classification of Photometric Factors Based on Photometric Linearization,Osaka University,Osaka University,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218,edu, +94e259345e82fa3015a381d6e91ec6cded3971b4,Classification of Photometric Factors Based on Photometric Linearization,Okayama University,Okayama University,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.68933930,133.92222720,edu, +0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,Pareto Models for Multiclass Discriminative Linear Dimensionality Reduction,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.52385720,-113.52282665,edu, +0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,Pareto Models for Multiclass Discriminative Linear Dimensionality Reduction,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,Pareto Models for Multiclass Discriminative Linear Dimensionality Reduction,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +0e73d2b0f943cf8559da7f5002414ccc26bc77cd,Similarity Comparisons for Interactive Fine-Grained Categorization,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +0e73d2b0f943cf8559da7f5002414ccc26bc77cd,Similarity Comparisons for Interactive Fine-Grained Categorization,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +0ed0e48b245f2d459baa3d2779bfc18fee04145b,Semi-Supervised Dimensionality Reduction,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +0ed0e48b245f2d459baa3d2779bfc18fee04145b,Semi-Supervised Dimensionality Reduction,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +0ef96d97365899af797628e80f8d1020c4c7e431,Improving the Speed of Kernel PCA on Large Scale Datasets,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.95867433,edu, +0e7f277538142fb50ce2dd9179cffdc36b794054,Combining image captions and visual analysis for image concept classification,Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.05702220,21.92270900,edu, +0e7f277538142fb50ce2dd9179cffdc36b794054,Combining image captions and visual analysis for image concept classification,Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.05702220,21.92270900,edu, +0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Tech Carilion Research Institute,Virginia Tech Carilion Research Institute,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA",37.25795480,-79.94233291,edu, +0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +0e652a99761d2664f28f8931fee5b1d6b78c2a82,Making a Science of Model Search,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +0ea7b7fff090c707684fd4dc13e0a8f39b300a97,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +0ea7b7fff090c707684fd4dc13e0a8f39b300a97,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +0ea7b7fff090c707684fd4dc13e0a8f39b300a97,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.95866520,116.30971281,edu, +0e36ada8cb9c91f07c9dcaf196d036564e117536,Much Ado About Time: Exhaustive Annotation of Temporal Data,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +0ebc50b6e4b01eb5eba5279ce547c838890b1418,Similarity-Preserving Binary Signature for Linear Subspaces,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +0ebc50b6e4b01eb5eba5279ce547c838890b1418,Similarity-Preserving Binary Signature for Linear Subspaces,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +0ebc50b6e4b01eb5eba5279ce547c838890b1418,Similarity-Preserving Binary Signature for Linear Subspaces,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +0ec1673609256b1e457f41ede5f21f05de0c054f,Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +0ea38a5ba0c8739d1196da5d20efb13406bb6550,Relative attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +0e21c9e5755c3dab6d8079d738d1188b03128a31,Constrained Clustering and Its Application to Face Clustering in Videos,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +0e93a5a7f6dbdb3802173dca05717d27d72bfec0,Attribute Recognition by Joint Recurrent Learning of Context and Correlation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5,Max-Margin Early Event Detectors,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,Fast Subspace Search via Grassmannian Based Hashing,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.23708813,edu, +0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,Fast Subspace Search via Grassmannian Based Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,Fast Subspace Search via Grassmannian Based Hashing,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.23708813,edu, +0ec67c69e0975cfcbd8ba787cc0889aec4cc5399,Locating Salient Object Features,Manchester University,Manchester University,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.47020165,-2.23932183,edu, +0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64,Estimating illumination parameters in real space with application to image relighting,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +0ee5c4112208995bf2bb0fb8a87efba933a94579,Fashion is Taking Shape: Understanding Clothing Preference Based on Body Shape From Online Sources,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0e1a18576a7d3b40fe961ef42885101f4e2630f8,Automated Detection and Identification of Persons in Video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +60a006bdfe5b8bf3243404fae8a5f4a9d58fa892,A reference-based framework for pose invariant face recognition,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +60c24e44fce158c217d25c1bae9f880a8bd19fc3,Controllable Image-to-Video Translation: A Case Study on Facial Expression Generation,MIT CSAIL,MIT CSAIL,"32 Vassar St, Cambridge, MA 02139, USA",42.36194070,-71.09043780,edu, +60542b1a857024c79db8b5b03db6e79f74ec8f9f,Learning to Detect Human-Object Interactions,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +60d4cef56efd2f5452362d4d9ac1ae05afa970d1,Learning End-to-end Video Classification with Rank-Pooling,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +60d4cef56efd2f5452362d4d9ac1ae05afa970d1,Learning End-to-end Video Classification with Rank-Pooling,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +60c699b9ec71f7dcbc06fa4fd98eeb08e915eb09,Long-term video interpolation with bidirectional predictive network,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +60970e124aa5fb964c9a2a5d48cd6eee769c73ef,Subspace Clustering for Sequential Data,Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.06360710,147.35522340,edu, +60a20d5023f2bcc241eb9e187b4ddece695c2b9b,Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +60737db62fb5fab742371709485e4b2ddf64b7b2,Crowdsourced Selection on Multi-Attribute Data,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +60496b400e70acfbbf5f2f35b4a49de2a90701b5,Avoiding Boosting Overfitting by Removing Confusing Samples,Moscow State University,Moscow State University,"ul. Leninskiye Gory, 1, Moskva, Russia, 119991",55.70393490,37.52866960,edu, +34bb11bad04c13efd575224a5b4e58b9249370f3,Towards Good Practices for Action Video Encoding,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +34bb11bad04c13efd575224a5b4e58b9249370f3,Towards Good Practices for Action Video Encoding,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +34bb11bad04c13efd575224a5b4e58b9249370f3,Towards Good Practices for Action Video Encoding,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +345cc31c85e19cea9f8b8521be6a37937efd41c2,Deep Manifold Traversal: Changing Labels with Convolutional Features,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +34ce703b7e79e3072eed7f92239a4c08517b0c55,What impacts skin color in digital photos?,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +345bea5f7d42926f857f395c371118a00382447f,Transfiguring portraits,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +3463f12ad434d256cd5f94c1c1bfd2dd6df36947,Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.36934730,120.67381800,edu, +346c9100b2fab35b162d7779002c974da5f069ee,Photo search by face positions and facial attributes on touch devices,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +34863ecc50722f0972e23ec117f80afcfe1411a9,An efficient face recognition algorithm based on robust principal component analysis,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +34863ecc50722f0972e23ec117f80afcfe1411a9,An efficient face recognition algorithm based on robust principal component analysis,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +34108098e1a378bc15a5824812bdf2229b938678,Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +348a16b10d140861ece327886b85d96cce95711e,Finding Good Features for Object Recognition,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +3419af6331e4099504255a38de6f6b7b3b1e5c14,Modified Eigenimage Algorithm for Painting Image Retrieval,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +34c8de02a5064e27760d33b861b7e47161592e65,Video Action Recognition Based on Deeper Convolution Networks with Pair-Wise Frame Motion Concatenation,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +34c8de02a5064e27760d33b861b7e47161592e65,Video Action Recognition Based on Deeper Convolution Networks with Pair-Wise Frame Motion Concatenation,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +34ccdec6c3f1edeeecae6a8f92e8bdb290ce40fd,A Virtual Assistant to Help Dysphagia Patients Eat Safely at Home,SRI International,SRI International,"SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA",37.45857960,-122.17560525,edu, +34b42bcf84d79e30e26413f1589a9cf4b37076f9,Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +5a87bc1eae2ec715a67db4603be3d1bb8e53ace2,A Novel Convergence Scheme for Active Appearance Models,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +5aad56cfa2bac5d6635df4184047e809f8fecca2,A visual dictionary attack on Picture Passwords,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0,Automatic Frontal Face Reconstruction Approach for Pose Invariant Face Recognition,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.01058380,80.23537360,edu, +5ac80e0b94200ee3ecd58a618fe6afd077be0a00,Unifying Geometric Features and Facial Action Units for Improved Performance of Facial Expression Analysis,Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.14435250,-81.33982833,edu, +5aadd85e2a77e482d44ac2a215c1f21e4a30d91b,Face Recognition using Principle Components and Linear Discriminant Analysis,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +5a5f9e0ed220ce51b80cd7b7ede22e473a62062c,Videos as Space-Time Region Graphs,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +5ac946fc6543a445dd1ee6d5d35afd3783a31353,Featureless: Bypassing feature extraction in action categorization,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +5ae970294aaba5e0225122552c019eb56f20af74,Establishing Dense Correspondence of High Resolution 3D Faces via Möbius Transformations,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0,Face recognition using adaptive margin fisher's criterion and linear discriminant analysis (AMFC-LDA),"COMSATS Institute of Information Technology, Lahore",COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.40063320,74.21372960,edu, +5a07945293c6b032e465d64f2ec076b82e113fa6,Pulling Actions out of Context: Explicit Separation for Effective Combination,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +5f771fed91c8e4b666489ba2384d0705bcf75030,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +5f771fed91c8e4b666489ba2384d0705bcf75030,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +5fa04523ff13a82b8b6612250a39e1edb5066521,Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +5f6ab4543cc38f23d0339e3037a952df7bcf696b,Video2vec: Learning semantic spatio-temporal embeddings for video representation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +5f6ab4543cc38f23d0339e3037a952df7bcf696b,Video2vec: Learning semantic spatio-temporal embeddings for video representation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +5f6ab4543cc38f23d0339e3037a952df7bcf696b,Video2vec: Learning semantic spatio-temporal embeddings for video representation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +5f7c4c20ae2731bfb650a96b69fd065bf0bb950e,A new fuzzy membership assignment and model selection approach based on dynamic class centers for fuzzy SVM family using the firefly algorithm,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +5f94969b9491db552ffebc5911a45def99026afe,Multimodal Learning and Reasoning for Visual Question Answering,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +5f94969b9491db552ffebc5911a45def99026afe,Multimodal Learning and Reasoning for Visual Question Answering,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +5f94969b9491db552ffebc5911a45def99026afe,Multimodal Learning and Reasoning for Visual Question Answering,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +5f758a29dae102511576c0a5c6beda264060a401,Fine-grained Video Attractiveness Prediction Using Multimodal Deep Learning on a Large Real-world Dataset,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +5feb1341a49dd7a597f4195004fe9b59f67e6707,A Deep Ranking Model for Spatio-Temporal Highlight Detection from a 360 Video,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,Memo No . 85 06 / 2018 Deep Regression Forests for Age Estimation,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +5f57a1a3a1e5364792b35e8f5f259f92ad561c1f,Implicit Sparse Code Hashing,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +5f27ed82c52339124aa368507d66b71d96862cb7,"Semi-supervised Learning of Classifiers : Theory , Algorithms and Their Application to Human-Computer Interaction",University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +5f27ed82c52339124aa368507d66b71d96862cb7,"Semi-supervised Learning of Classifiers : Theory , Algorithms and Their Application to Human-Computer Interaction","University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +5fea26746f3140b12317fcf3bc1680f2746e172e,Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +5fea26746f3140b12317fcf3bc1680f2746e172e,Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +5f676d6eca4c72d1a3f3acf5a4081c29140650fb,To skip or not to skip? A dataset of spontaneous affective response of online advertising (SARA) for audience behavior analysis,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +5f676d6eca4c72d1a3f3acf5a4081c29140650fb,To skip or not to skip? A dataset of spontaneous affective response of online advertising (SARA) for audience behavior analysis,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +5f453a35d312debfc993d687fd0b7c36c1704b16,A Training Assistant Tool for the Automated Visual Inspection System,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.83743476,edu, +5f453a35d312debfc993d687fd0b7c36c1704b16,A Training Assistant Tool for the Automated Visual Inspection System,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.83743476,edu, +5fac62a3de11125fc363877ba347122529b5aa50,AMTnet: Action-Micro-Tube Regression by End-to-end Trainable Deep Architecture,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.75552050,-1.22615970,edu, +5fba1b179ac80fee80548a0795d3f72b1b6e49cd,Virtual U: Defeating Face Liveness Detection by Building Virtual Models from Your Public Photos,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +33f7e78950455c37236b31a6318194cfb2c302a4,Parameterizing Object Detectors in the Continuous Pose Space,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,Facial Expression Recognition in Video using Adaboost and SVM,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,Facial Expression Recognition in Video using Adaboost and SVM,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,Facial Expression Recognition in Video using Adaboost and SVM,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +33ac7fd3a622da23308f21b0c4986ae8a86ecd2b,Building an On-Demand Avatar-Based Health Intervention for Behavior Change,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +33ac7fd3a622da23308f21b0c4986ae8a86ecd2b,Building an On-Demand Avatar-Based Health Intervention for Behavior Change,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.71733390,-80.27866887,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Aberdeen,University of Aberdeen,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK",57.16461430,-2.10186013,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +33ba256d59aefe27735a30b51caf0554e5e3a1df,Early Active Learning via Robust Representation and Structured Sparsity,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13,Machine learning techniques for automated analysis of facial expressions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +33aff42530c2fd134553d397bf572c048db12c28,From Emotions to Action Units with Hidden and Semi-Hidden-Task Learning,Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949,edu, +33aff42530c2fd134553d397bf572c048db12c28,From Emotions to Action Units with Hidden and Semi-Hidden-Task Learning,Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949,edu, +334e65b31ad51b1c1f84ce12ef235096395f1ca7,2 Emotion in Human - Computer Interaction Acknowledgements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +3328413ee9944de1cc7c9c1d1bf2fece79718ba1,Co-Training of Audio and Video Representations from Self-Supervised Temporal Synchronization,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +3328413ee9944de1cc7c9c1d1bf2fece79718ba1,Co-Training of Audio and Video Representations from Self-Supervised Temporal Synchronization,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +3399f8f0dff8fcf001b711174d29c9d4fde89379,Face R-CNN,Tencent,"Tencent AI Lab, China","Ke Ji Zhong Yi Lu, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518057",22.54471540,113.93571640,company,"Keji Middle 1st Rd, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518057" +3312eb79e025b885afe986be8189446ba356a507,MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes,University of Colorado at Colorado Springs,University of Colorado at Colorado Springs,"1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA",38.89646790,-104.80505940,edu, +33402ee078a61c7d019b1543bb11cc127c2462d2,Self-Supervised Video Representation Learning with Odd-One-Out Networks,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +33f2b44742cc828347ccc5ec488200c25838b664,Pooling the Convolutional Layers in Deep ConvNets for Action Recognition,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +33f2b44742cc828347ccc5ec488200c25838b664,Pooling the Convolutional Layers in Deep ConvNets for Action Recognition,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.84691800,117.29053367,edu, +334ac2a459190b41923be57744aa6989f9a54a51,Apples to Oranges: Evaluating Image Annotations from Natural Language Processing Systems,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +33ef419dffef85443ec9fe89a93f928bafdc922e,SelfKin: Self Adjusted Deep Model For Kinship Verification,Bar-Ilan University,Bar-Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.84334339,edu, +33ad23377eaead8955ed1c2b087a5e536fecf44e,Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +33ad23377eaead8955ed1c2b087a5e536fecf44e,Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +053b263b4a4ccc6f9097ad28ebf39c2957254dfb,Cost-Effective HITs for Relative Similarity Comparisons,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +053b263b4a4ccc6f9097ad28ebf39c2957254dfb,Cost-Effective HITs for Relative Similarity Comparisons,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +053b263b4a4ccc6f9097ad28ebf39c2957254dfb,Cost-Effective HITs for Relative Similarity Comparisons,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +056d5d942084428e97c374bb188efc386791e36d,Temporally Robust Global Motion Compensation by Keypoint-Based Congealing,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +0595d18e8d8c9fb7689f636341d8a55cc15b3e6a,Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +0595d18e8d8c9fb7689f636341d8a55cc15b3e6a,Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +05a0d04693b2a51a8131d195c68ad9f5818b2ce1,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,University of East Anglia,University of East Anglia,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.62215710,1.24091360,edu, +05a0d04693b2a51a8131d195c68ad9f5818b2ce1,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +05a312478618418a2efb0a014b45acf3663562d7,Accelerated sampling for the Indian Buffet Process,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.79440260,-1.09717480,edu, +055de0519da7fdf27add848e691087e0af166637,Joint Unsupervised Face Alignment and Behaviour Analysis,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +0515e43c92e4e52254a14660718a9e498bd61cf5,Machine Learning Systems for Detecting Driver Drowsiness,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.89271590,29.37863323,edu, +0515e43c92e4e52254a14660718a9e498bd61cf5,Machine Learning Systems for Detecting Driver Drowsiness,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +05891725f5b27332836cf058f04f18d74053803f,One-shot Action Localization by Learning Sequence Matching Network,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +05891725f5b27332836cf058f04f18d74053803f,One-shot Action Localization by Learning Sequence Matching Network,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +0568fc777081cbe6de95b653644fec7b766537b2,Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +0568fc777081cbe6de95b653644fec7b766537b2,Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +0568fc777081cbe6de95b653644fec7b766537b2,Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +05d80c59c6fcc4652cfc38ed63d4c13e2211d944,On sampling-based approximate spectral decomposition,Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72864840,-73.99568630,edu, +055530f7f771bb1d5f352e2758d1242408d34e4d,A Facial Expression Recognition System from Depth Video,SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.30031270,126.97212300,edu, +050eda213ce29da7212db4e85f948b812a215660,Combining Models and Exemplars for Face Recognition: An Illuminating Example,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +050eda213ce29da7212db4e85f948b812a215660,Combining Models and Exemplars for Face Recognition: An Illuminating Example,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +05e3acc8afabc86109d8da4594f3c059cf5d561f,Actor-Action Semantic Segmentation with Grouping Process Models,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +052f994898c79529955917f3dfc5181586282cf8,Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +05318a267226f6d855d83e9338eaa9e718b2a8dd,Age estimation from face images: challenging problem for audience measurement systems,Yaroslavl State University,Yaroslavl State University,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ",57.62521030,39.88456560,edu, +057d5f66a873ec80f8ae2603f937b671030035e6,Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +050a3346e44ca720a54afbf57d56b1ee45ffbe49,Multi-cue Zero-Shot Learning with Strong Supervision,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0517d08da7550241fb2afb283fc05d37fce5d7b7,Combination of Local Multiple Patterns and Exponential Discriminant Analysis for Facial Recognition,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.50841740,106.57858552,edu, +053931267af79a89791479b18d1b9cde3edcb415,Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +05f3d1e9fb254b275354ca69018e9ed321dd8755,Face Recognition using Optimal Representation Ensemble,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +051f03bc25ec633592aa2ff5db1d416b705eac6c,Partial face recognition: An alignment free approach,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6,Improved Pseudoinverse Linear Discriminant Analysis Method for Dimensionality Reduction,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +9d55ec73cab779403cd933e6eb557fb04892b634,Kernel principal component analysis network for image classification,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +9d66de2a59ec20ca00a618481498a5320ad38481,POP: Privacy-Preserving Outsourced Photo Sharing and Searching for Mobile Devices,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +9d66de2a59ec20ca00a618481498a5320ad38481,POP: Privacy-Preserving Outsourced Photo Sharing and Searching for Mobile Devices,Illinois Institute of Technology,Illinois Institute of Technology,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.83619630,-87.62655913,edu, +9dcc6dde8d9f132577290d92a1e76b5decc6d755,Facial Expression Analysis Based on Optimized Gabor Features,Istanbul University,Istanbul University,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.01324240,28.96376090,edu, +9dcc6dde8d9f132577290d92a1e76b5decc6d755,Facial Expression Analysis Based on Optimized Gabor Features,Bahçeşehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.97697953,edu, +9d57c4036a0e5f1349cd11bc342ac515307b6720,Landmark Weighting for 3DMM Shape Fitting,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +9d57c4036a0e5f1349cd11bc342ac515307b6720,Landmark Weighting for 3DMM Shape Fitting,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +9d896605fbf93315b68d4ee03be0770077f84e40,Baby Talk: Understanding and Generating Image Descriptions,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +9d896605fbf93315b68d4ee03be0770077f84e40,Baby Talk: Understanding and Generating Image Descriptions,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +9d61b0beb3c5903fc3032655dc0fd834ec0b2af3,Learning a Locality Preserving Subspace for Visual Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +9d3aa3b7d392fad596b067b13b9e42443bbc377c,Facial Biometric Templates and Aging: Problems and Challenges for Artificial Intelligence,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.04577648,edu, +9db4b25df549555f9ffd05962b5adf2fd9c86543,Nonlinear 3D Face Morphable Model,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +9d06d43e883930ddb3aa6fe57c6a865425f28d44,Clustering Appearances of Objects Under Varying Illumination Conditions,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +9c9ef6a46fb6395702fad622f03ceeffbada06e5,Exchanging Faces in Images,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +9c1cdb795fd771003da4378f9a0585730d1c3784,Stacked Deformable Part Model with Shape Regression for Object Part Localization,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +9c25e89c80b10919865b9c8c80aed98d223ca0c6,Gender Prediction by Gait Analysis Based on Time Series Variation of Joint Positions,Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.69750290,139.76139175,edu, +9c25e89c80b10919865b9c8c80aed98d223ca0c6,Gender Prediction by Gait Analysis Based on Time Series Variation of Joint Positions,Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.69750290,139.76139175,edu, +9c7444c6949427994b430787a153d5cceff46d5c,Boosting Kernel Discriminative Common Vectors for Face Recognition,Bharathidasan University,Bharathidasan University,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.77788450,78.69663190,edu, +9c373438285101d47ab9332cdb0df6534e3b93d1,Occupancy Detection in Vehicles Using Fisher Vector Image Representation,Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.51291090,-79.66640762,edu, +9c373438285101d47ab9332cdb0df6534e3b93d1,Occupancy Detection in Vehicles Using Fisher Vector Image Representation,Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.51291090,-79.66640762,edu, +9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d,Expression Recognition with Ri-HOG Cascade,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d,Expression Recognition with Ri-HOG Cascade,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +9c4cc11d0df2de42d6593f5284cfdf3f05da402a,Enhanced Fisher linear discriminant models for face recognition,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +9cd6a81a519545bf8aa9023f6e879521f85d4cd1,Domain-invariant Face Recognition using Learned Low-rank Transformation,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +9cd6a81a519545bf8aa9023f6e879521f85d4cd1,Domain-invariant Face Recognition using Learned Low-rank Transformation,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +9cd6a81a519545bf8aa9023f6e879521f85d4cd1,Domain-invariant Face Recognition using Learned Low-rank Transformation,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +9cadd166893f1b8aaecb27280a0915e6694441f5,Multi-Modal Emotion Recognition Fusing Video and Audio,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +9cadd166893f1b8aaecb27280a0915e6694441f5,Multi-Modal Emotion Recognition Fusing Video and Audio,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +02cc96ad997102b7c55e177ac876db3b91b4e72c,"MuseumVisitors: A dataset for pedestrian and group detection, gaze estimation and behavior understanding",University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +02cc96ad997102b7c55e177ac876db3b91b4e72c,"MuseumVisitors: A dataset for pedestrian and group detection, gaze estimation and behavior understanding",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +023ed32ac3ea6029f09b8c582efbe3866de7d00a,Discriminative learning from partially annotated examples,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.07642960,14.41802312,edu, +023ed32ac3ea6029f09b8c582efbe3866de7d00a,Discriminative learning from partially annotated examples,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.07642960,14.41802312,edu, +0290523cabea481e3e147b84dcaab1ef7a914612,Generated Motion Maps,Tokyo Denki University,Tokyo Denki University,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +0229829e9a1eed5769a2b5eccddcaa7cd9460b92,Pooled motion features for first-person videos,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +025720574ef67672c44ba9e7065a83a5d6075c36,Unsupervised Learning of Video Representations using LSTMs,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +026e4ee480475e63ae68570d73388f8dfd4b4cde,Evaluating gender portrayal in Bangladeshi TV,Eastern University,Eastern University,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA",40.05056720,-75.37109326,edu, +026e4ee480475e63ae68570d73388f8dfd4b4cde,Evaluating gender portrayal in Bangladeshi TV,Dhaka University,Dhaka University,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ",23.73179150,90.38056250,edu, +026e4ee480475e63ae68570d73388f8dfd4b4cde,Evaluating gender portrayal in Bangladeshi TV,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +02e628e99f9a1b295458cb453c09863ea1641b67,Two-Stage Convolutional Part Heatmap Regression for the 1st 3D Face Alignment in the Wild (3DFAW) Challenge,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +02f4b900deabbe7efa474f2815dc122a4ddb5b76,Local and Global Optimization Techniques in Graph-based Clustering,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +026b5b8062e5a8d86c541cfa976f8eee97b30ab8,MDLFace: Memorability augmented deep learning for video face recognition,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +0235b2d2ae306b7755483ac4f564044f46387648,Recognition of Facial Attributes Using Adaptive Sparse Representations of Random Patches,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +02467703b6e087799e04e321bea3a4c354c5487d,Grouper: Optimizing Crowdsourced Face Annotations,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +02e39f23e08c2cb24d188bf0ca34141f3cc72d47,Removing illumination artifacts from face images using the nuisance attribute projection,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +023be757b1769ecb0db810c95c010310d7daf00b,Face Alignment Assisted by Head Pose Estimation,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +023be757b1769ecb0db810c95c010310d7daf00b,Face Alignment Assisted by Head Pose Estimation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +023be757b1769ecb0db810c95c010310d7daf00b,Face Alignment Assisted by Head Pose Estimation,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +0209389b8369aaa2a08830ac3b2036d4901ba1f1,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +0209389b8369aaa2a08830ac3b2036d4901ba1f1,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +02239ae5e922075a354169f75f684cad8fdfd5ab,Commonly Uncommon: Semantic Sparsity in Situation Recognition,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +02239ae5e922075a354169f75f684cad8fdfd5ab,Commonly Uncommon: Semantic Sparsity in Situation Recognition,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.03536820,-78.50353220,edu, +02d650d8a3a9daaba523433fbe93705df0a7f4b1,How Does Aging Affect Facial Components?,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +0294f992f8dfd8748703f953925f9aee14e1b2a2,Blur-Robust Face Recognition via Transformation Learning,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +02820c1491b10a1ff486fed32c269e4077c36551,Active user authentication for smartphones: A challenge data set and benchmark results,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +02820c1491b10a1ff486fed32c269e4077c36551,Active user authentication for smartphones: A challenge data set and benchmark results,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +a40edf6eb979d1ddfe5894fac7f2cf199519669f,Improving Facial Attribute Prediction Using Semantic Segmentation,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +a4876b7493d8110d4be720942a0f98c2d116d2a0,Multi-velocity neural networks for gesture recognition in videos,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +a46086e210c98dcb6cb9a211286ef906c580f4e8,Fusing Multi-Stream Deep Networks for Video Classification,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +a481e394f58f2d6e998aa320dad35c0d0e15d43c,Selectively guiding visual concept discovery,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a301ddc419cbd900b301a95b1d9e4bb770afc6a3,DECK: Discovering Event Composition Knowledge from Web Images for Zero-Shot Event Detection and Recounting in Videos,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +a3f684930c5c45fcb56a2b407d26b63879120cbf,LPM for Fast Action Recognition with Large Number of Classes,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +a32d4195f7752a715469ad99cb1e6ebc1a099de6,The Potential of Using Brain Images for Authentication,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,Recognizing Violence in Movies,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,Recognizing Violence in Movies,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,Recognizing Violence in Movies,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,Recognizing Violence in Movies,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +a308077e98a611a977e1e85b5a6073f1a9bae6f0,Intelligent Screening Systems for Cervical Cancer,University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103,edu, +a35dd69d63bac6f3296e0f1d148708cfa4ba80f6,Audio Visual Emotion Recognition with Temporal Alignment and Perception Attention,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a36c8a4213251d3fd634e8893ad1b932205ad1ca,Videos from the 2013 Boston Marathon : An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +a3a2f3803bf403262b56ce88d130af15e984fff0,Building a Compact Relevant Sample Coverage for Relevance Feedback in Content-Based Image Retrieval,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae,Harvesting Motion Patterns in Still Images from the Internet,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +b5968e7bb23f5f03213178c22fd2e47af3afa04c,Multiple-Human Parsing in the Wild,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +b5968e7bb23f5f03213178c22fd2e47af3afa04c,Multiple-Human Parsing in the Wild,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +b5cd9e5d81d14868f1a86ca4f3fab079f63a366d,Tag-based video retrieval by embedding semantic content in a continuous word space,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +b5cd9e5d81d14868f1a86ca4f3fab079f63a366d,Tag-based video retrieval by embedding semantic content in a continuous word space,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +b5f2846a506fc417e7da43f6a7679146d99c5e96,UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +b5da4943c348a6b4c934c2ea7330afaf1d655e79,Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +b5da4943c348a6b4c934c2ea7330afaf1d655e79,Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +b5402c03a02b059b76be829330d38db8e921e4b5,Hybridized KNN and SVM for gene expression data classification,Zhengzhou University,Zhengzhou University,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.80881680,113.53526640,edu, +b52c0faba5e1dc578a3c32a7f5cfb6fb87be06ad,Robust Face Recognition Technique under Varying Illumination,National Autonomous University of Mexico,Centro de Ciencias Aplicadas y Desarrollo Tecnológico,"University City, Mexico City, CDMX, Mexico",19.31888950,-99.18436760,edu,National Autonomous University of Mexico +b56530be665b0e65933adec4cc5ed05840c37fc4,Reducing correspondence ambiguity in loosely labeled training data,University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.23517260,-110.95095832,edu, +b5f4e617ac3fc4700ec8129fcd0dcf5f71722923,Hierarchical Wavelet Networks for Facial Feature Localization,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +b5f4e617ac3fc4700ec8129fcd0dcf5f71722923,Hierarchical Wavelet Networks for Facial Feature Localization,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +b51b4ef97238940aaa4f43b20a861eaf66f67253,Unsupervised Modeling of Objects and Their Hierarchical Contextual Interactions,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +b5d7c5aba7b1ededdf61700ca9d8591c65e84e88,Data pruning for template-based automatic speech recognition,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.88306860,4.70195030,edu, +b5c749f98710c19b6c41062c60fb605e1ef4312a,Evaluating Two-Stream CNN for Video Classification,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,Shandong University of Science and Technology,Shandong University of Science and Technology,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国",36.00146435,120.11624057,edu, +b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88,An Enhanced Intelligent Agent with Image Description Generation,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +b59cee1f647737ec3296ccb3daa25c890359c307,Continuously Reproducing Toolchains in Pattern Recognition and Machine Learning Experiments,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +b249f10a30907a80f2a73582f696bc35ba4db9e2,Improved graph-based SFA: Information preservation complements the slowness principle,Ruhr-University Bochum,Ruhr-University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541,edu, +b2a0e5873c1a8f9a53a199eecae4bdf505816ecb,Hybrid VAE: Improving Deep Generative Models using Partial Observations,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +b234cd7788a7f7fa410653ad2bafef5de7d5ad29,Unsupervised Temporal Ensemble Alignment for Rapid Annotation,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +b234cd7788a7f7fa410653ad2bafef5de7d5ad29,Unsupervised Temporal Ensemble Alignment for Rapid Annotation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +b2c60061ad32e28eb1e20aff42e062c9160786be,Diverse and Controllable Image Captioning with Part-of-Speech Guidance,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +b29b42f7ab8d25d244bfc1413a8d608cbdc51855,Effective face landmark localization via single deep network,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +b2e5df82c55295912194ec73f0dca346f7c113f6,CUHK&SIAT Submission for THUMOS15 Action Recognition Challenge,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +b2e5df82c55295912194ec73f0dca346f7c113f6,CUHK&SIAT Submission for THUMOS15 Action Recognition Challenge,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +b2e6944bebab8e018f71f802607e6e9164ad3537,Mixed Error Coding for Face Recognition with Mixed Occlusions,Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.29315340,120.16204580,edu, +b239a756f22201c2780e46754d06a82f108c1d03,Robust multimodal recognition via multitask multivariate low-rank representations,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +b20cfbb2348984b4e25b6b9174f3c7b65b6aed9e,Learning with Ambiguous Label Distribution for Apparent Age Estimation,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +d949fadc9b6c5c8b067fa42265ad30945f9caa99,Rethinking Feature Discrimination and Polymerization for Large-scale Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +d961617db4e95382ba869a7603006edc4d66ac3b,Experimenting Motion Relativity for Action Recognition with a Large Number of Classes,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +d9c4586269a142faee309973e2ce8cde27bda718,Contextual Visual Similarity,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d9c4586269a142faee309973e2ce8cde27bda718,Contextual Visual Similarity,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d912b8d88d63a2f0cb5d58164e7414bfa6b41dfa,Facial identification problem: A tracking based approach,University of Milan,University of Milan,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA",38.67966620,-90.32628160,edu, +d963e640d0bf74120f147329228c3c272764932b,Image Processing for Face Recognition Rate Enhancement,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.84691800,117.29053367,edu, +d915e634aec40d7ee00cbea96d735d3e69602f1a,Two-Stream convolutional nets for action recognition in untrimmed video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +d915e634aec40d7ee00cbea96d735d3e69602f1a,Two-Stream convolutional nets for action recognition in untrimmed video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +ac1d97a465b7cc56204af5f2df0d54f819eef8a6,A Look at Eye Detection for Unconstrained Environments,University of Colorado at Colorado Springs,University of Colorado at Colorado Springs,"1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA",38.89646790,-104.80505940,edu, +ac2e44622efbbab525d4301c83cb4d5d7f6f0e55,"A 3D Morphable Model Learnt from 10,000 Faces",University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,Deep Cascaded Bi-Network for Face Hallucination,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,Deep Cascaded Bi-Network for Face Hallucination,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,Deep Cascaded Bi-Network for Face Hallucination,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +ac855f0de9086e9e170072cb37400637f0c9b735,Fast Geometrically-Perturbed Adversarial Faces,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +ac21c8aceea6b9495574f8f9d916e571e2fc497f,Pose-Independent Identity-based Facial Image Retrieval using Contextual Similarity,"King Abdullah University of Science and Technology, Saudi Arabia",King Abdullah University of Science and Technology 4700,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.31055485,39.10515486,edu, +aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9,Co-Regularized Ensemble for Feature Selection,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9,Co-Regularized Ensemble for Feature Selection,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +ac51d9ddbd462d023ec60818bac6cdae83b66992,An Efficient Robust Eye Localization by Learning the Convolution Distribution Using Eye Template,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +ac51d9ddbd462d023ec60818bac6cdae83b66992,An Efficient Robust Eye Localization by Learning the Convolution Distribution Using Eye Template,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.84110070,4.32377555,edu, +acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.84110070,4.32377555,edu, +acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.84110070,4.32377555,edu, +acee2201f8a15990551804dd382b86973eb7c0a8,To boost or not to boost? On the limits of boosted trees for object detection,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +ac9a331327cceda4e23f9873f387c9fd161fad76,Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model,University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.16648580,-73.19205640,edu, +ac9a331327cceda4e23f9873f387c9fd161fad76,Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model,University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.16648580,-73.19205640,edu, +ac86ccc16d555484a91741e4cb578b75599147b2,Morphable Face Models - An Open Framework,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +ac75c662568cbb7308400cc002469a14ff25edfd,Regularization studies on LDA for face recognition,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea,From Gabor Magnitude to Gabor Phase Features: Tackling the Problem of Face Recognition under Severe Illumination Changes,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +ad8540379884ec03327076b562b63bc47e64a2c7,Bee royalty offspring algorithm for improvement of facial expressions classification model,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,"Two Birds, One Stone: Jointly Learning Binary Code for Large-Scale Face Image Retrieval and Attributes Prediction",Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,"Two Birds, One Stone: Jointly Learning Binary Code for Large-Scale Face Image Retrieval and Attributes Prediction",University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +add50a7d882eb38e35fe70d11cb40b1f0059c96f,High-fidelity Pose and Expression Normalization for face recognition in the wild,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +ad784332cc37720f03df1c576e442c9c828a587a,Face recognition based on face-specific subspace,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +ad784332cc37720f03df1c576e442c9c828a587a,Face recognition based on face-specific subspace,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +ada42b99f882ba69d70fff68c9ccbaff642d5189,Semantic Image Segmentation and Web-Supervised Visual Learning,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff,Weakly Supervised Action Localization by Sparse Temporal Pooling Network,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +ad9cb522cc257e3c5d7f896fe6a526f6583ce46f,Real-Time Recognition of Facial Expressions for Affective Computing Applications,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447512,edu, +ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447512,edu, +ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447512,edu, +ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447512,edu, +ad2339c48ad4ffdd6100310dcbb1fb78e72fac98,Video Fill In the Blank Using LR/RL LSTMs with Spatial-Temporal Attentions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +ad247138e751cefa3bb891c2fe69805da9c293d7,A Novel Hybrid Method for Face Recognition Based on 2d Wavelet and Singular Value Decomposition,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +bbc4b376ebd296fb9848b857527a72c82828fc52,Attributes for Improved Attributes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +bbc4b376ebd296fb9848b857527a72c82828fc52,Attributes for Improved Attributes,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +bb06ef67a49849c169781657be0bb717587990e0,Impact of temporal subsampling on accuracy and performance in practical video classification,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +bb06ef67a49849c169781657be0bb717587990e0,Impact of temporal subsampling on accuracy and performance in practical video classification,University of Bologna,Università di Bologna,"Via Zamboni, 33, 40126 Bologna BO, Italy",44.49623180,11.35415700,edu, +bbf28f39e5038813afd74cf1bc78d55fcbe630f1,Style Aggregated Network for Facial Landmark Detection,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +bbe949c06dc4872c7976950b655788555fe513b8,Automatic Frequency Band Selection for Illumination Robust Face Recognition,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +bbcb4920b312da201bf4d2359383fb4ee3b17ed9,Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +bb6bf94bffc37ef2970410e74a6b6dc44a7f4feb,Situation Recognition with Graph Neural Networks Supplementary Material,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +bbc5f4052674278c96abe7ff9dc2d75071b6e3f3,Nonlinear Hierarchical Part-Based Regression for Unconstrained Face Alignment,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +bbfe0527e277e0213aafe068113d719b2e62b09c,Dog Breed Classification Using Part Localization,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +bbfe0527e277e0213aafe068113d719b2e62b09c,Dog Breed Classification Using Part Localization,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +d73d2c9a6cef79052f9236e825058d5d9cdc1321,Cutting the visual world into bigger slices for improved video concept detection. (Amélioration de la détection des concepts dans les vidéos en coupant de plus grandes tranches du monde visuel),EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +d794ffece3533567d838f1bd7f442afee13148fd,Hand Detection and Tracking in Videos for Fine-Grained Action Recognition,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +d7593148e4319df7a288180d920f2822eeecea0b,A Differential Approach for Gaze Estimation with Calibration,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +d7cbedbee06293e78661335c7dd9059c70143a28,MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f,Automating Image Analysis by Annotating Landmarks with Deep Neural Networks,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f,Automating Image Analysis by Annotating Landmarks with Deep Neural Networks,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +d78734c54f29e4474b4d47334278cfde6efe963a,Exploring Disentangled Feature Representation Beyond Face Identification,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +d78734c54f29e4474b4d47334278cfde6efe963a,Exploring Disentangled Feature Representation Beyond Face Identification,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +d785fcf71cb22f9c33473cba35f075c1f0f06ffc,Learning active facial patches for expression analysis,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +d785fcf71cb22f9c33473cba35f075c1f0f06ffc,Learning active facial patches for expression analysis,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +d785fcf71cb22f9c33473cba35f075c1f0f06ffc,Learning active facial patches for expression analysis,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +d79365336115661b0e8dbbcd4b2aa1f504b91af6,Variational methods for conditional multimodal deep learning,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +d78fbd11f12cbc194e8ede761d292dc2c02d38a2,Enhancing Gray Scale Images for Face Detection under Unstable Lighting Condition,University of Dschang,University of Dschang,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.44094480,10.07120561,edu, +d78fbd11f12cbc194e8ede761d292dc2c02d38a2,Enhancing Gray Scale Images for Face Detection under Unstable Lighting Condition,University of Dschang,University of Dschang,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.44094480,10.07120561,edu, +d72973a72b5d891a4c2d873daeb1bc274b48cddf,A New Supervised Dimensionality Reduction Algorithm Using Linear Discriminant Analysis and Locality Preserving Projection,Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.12944890,113.34376110,edu, +d72973a72b5d891a4c2d873daeb1bc274b48cddf,A New Supervised Dimensionality Reduction Algorithm Using Linear Discriminant Analysis and Locality Preserving Projection,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +d700aedcb22a4be374c40d8bee50aef9f85d98ef,Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +d0e895a272d684a91c1b1b1af29747f92919d823,Classification of Mouth Action Units using Local Binary Patterns,American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.23664139,edu, +d0e895a272d684a91c1b1b1af29747f92919d823,Classification of Mouth Action Units using Local Binary Patterns,American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.23664139,edu, +d082f35534932dfa1b034499fc603f299645862d,"TAMING WILD FACES: WEB-SCALE, OPEN-UNIVERSE FACE IDENTIFICATION IN STILL AND VIDEO IMAGERY by ENRIQUE",University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +d0ac9913a3b1784f94446db2f1fb4cf3afda151f,Exploiting Multi-modal Curriculum in Noisy Web Data for Large-scale Concept Learning,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d0471d5907d6557cf081edf4c7c2296c3c221a38,A Constrained Deep Neural Network for Ordinal Regression,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +d06c8e3c266fbae4026d122ec9bd6c911fcdf51d,Role for 2D image generated 3D face models in the rehabilitation of facial palsy,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +d074b33afd95074d90360095b6ecd8bc4e5bb6a2,Human-Robot Collaboration: a Survey,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +d04d5692461d208dd5f079b98082eda887b62323,Subspace learning with frequency regularizer: Its application to face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d05513c754966801f26e446db174b7f2595805ba,Everything is in the Face? Represent Faces with Object Bank,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d05513c754966801f26e446db174b7f2595805ba,Everything is in the Face? Represent Faces with Object Bank,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d05513c754966801f26e446db174b7f2595805ba,Everything is in the Face? Represent Faces with Object Bank,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +d0509afe9c2c26fe021889f8efae1d85b519452a,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +d0509afe9c2c26fe021889f8efae1d85b519452a,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +d02e27e724f9b9592901ac1f45830341d37140fe,DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks (with Supplementary Materials),Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +d02e27e724f9b9592901ac1f45830341d37140fe,DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks (with Supplementary Materials),Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +d02b32b012ffba2baeb80dca78e7857aaeececb0,Human Pose Estimation: Extension and Application,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.44549570,78.34854698,edu, +d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +d01303062b21cd9ff46d5e3ff78897b8499480de,Multi-task Learning by Maximizing Statistical Dependence,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +d01303062b21cd9ff46d5e3ff78897b8499480de,Multi-task Learning by Maximizing Statistical Dependence,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +d01303062b21cd9ff46d5e3ff78897b8499480de,Multi-task Learning by Maximizing Statistical Dependence,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5,Towards Universal Representation for Unseen Action Recognition,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5,Towards Universal Representation for Unseen Action Recognition,Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627,edu, +be86d88ecb4192eaf512f29c461e684eb6c35257,Automatic Attribute Discovery and Characterization from Noisy Web Data,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +be86d88ecb4192eaf512f29c461e684eb6c35257,Automatic Attribute Discovery and Characterization from Noisy Web Data,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +beb49072f5ba79ed24750108c593e8982715498e,GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +beb49072f5ba79ed24750108c593e8982715498e,GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +beb49072f5ba79ed24750108c593e8982715498e,GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +becd5fd62f6301226b8e150e1a5ec3180f748ff8,Robust and Practical Face Recognition via Structured Sparsity,"Advanced Digital Sciences Center, Singapore","Advanced Digital Sciences Center, Singapore","1 Create Way, 14-02 Create Tower, Singapore 138602",1.30372570,103.77377630,edu, +becd5fd62f6301226b8e150e1a5ec3180f748ff8,Robust and Practical Face Recognition via Structured Sparsity,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +becd5fd62f6301226b8e150e1a5ec3180f748ff8,Robust and Practical Face Recognition via Structured Sparsity,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +bebb8a97b2940a4e5f6e9d3caf6d71af21585eda,Mapping Emotional Status to Facial Expressions,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +be4f7679797777f2bc1fd6aad8af67cce5e5ce87,Interestingness Prediction by Robust Learning to Rank,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +be4f7679797777f2bc1fd6aad8af67cce5e5ce87,Interestingness Prediction by Robust Learning to Rank,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +be28ed1be084385f5d389db25fd7f56cd2d7f7bf,Exploring computation-communication tradeoffs in camera systems,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +be28ed1be084385f5d389db25fd7f56cd2d7f7bf,Exploring computation-communication tradeoffs in camera systems,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +bec31269632c17206deb90cd74367d1e6586f75f,Large-scale Datasets: Faces with Partial Occlusions and Pose Variations in the Wild,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.35775700,-83.06286711,edu, +be5276e9744c4445fe5b12b785650e8f173f56ff,Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +be5276e9744c4445fe5b12b785650e8f173f56ff,Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.05044565,edu, +be5276e9744c4445fe5b12b785650e8f173f56ff,Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +be57d2aaab615ec8bc1dd2dba8bee41a4d038b85,Automatic Analysis of Naturalistic Hand-Over-Face Gestures,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +be4f18e25b06f430e2de0cc8fddcac8585b00beb,A New Face Recognition Algorithm based on Dictionary Learning for a Single Training Sample per Person,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +b3b532e8ea6304446b1623e83b0b9a96968f926c,Joint Network based Attention for Action Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +b3b532e8ea6304446b1623e83b0b9a96968f926c,Joint Network based Attention for Action Recognition,Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.95866520,116.30971281,edu, +b3154d981eca98416074538e091778cbc031ca29,Pedestrian Attribute Analysis Using a Top-View Camera in a Public Space,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +b3154d981eca98416074538e091778cbc031ca29,Pedestrian Attribute Analysis Using a Top-View Camera in a Public Space,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +b3200539538eca54a85223bf0ec4f3ed132d0493,Action Anticipation with RBF Kernelized Feature Mapping RNN,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +b3b467961ba66264bb73ffe00b1830d7874ae8ce,Finding Tiny Faces,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +b3b467961ba66264bb73ffe00b1830d7874ae8ce,Finding Tiny Faces,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +b3ba7ab6de023a0d58c741d6abfa3eae67227caf,Zero-Shot Activity Recognition with Verb Attribute Induction,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +b3330adb131fb4b6ebbfacce56f1aec2a61e0869,Emotion recognition using facial images,SASTRA University,SASTRA University,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",10.96286550,79.38530651,edu, +b3f3d6be11ace907c804c2d916830c85643e468d,A Logical Framework for Trust - Related Emotions : Formal and Behavioral Results by Manh Hung NGUYEN Co - supervisors,University of Toulouse,University of Toulouse,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA",30.17818160,-93.23605810,edu, +b3658514a0729694d86a8b89c875a66cde20480c,Improving the Robustness of Subspace Learning Techniques for Facial Expression Recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +b3b4a7e29b9186e00d2948a1d706ee1605fe5811,Image Preprocessing for Illumination Invariant Face Verification,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.00735776,edu, +b33e8db8ccabdfc49211e46d78d09b14557d4cba,Face Expression Recognition and Analysis: The State of the Art,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,University of Plymouth,University of Plymouth,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.37525010,-4.13927692,edu, +dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433739,edu, +dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.37552690,-4.13937687,edu, +df0e280cae018cebd5b16ad701ad101265c369fa,Deep Attributes from Context-Aware Regional Neural Codes,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +df0e280cae018cebd5b16ad701ad101265c369fa,Deep Attributes from Context-Aware Regional Neural Codes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb,SREFI: Synthesis of realistic example face images,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +dfd8602820c0e94b624d02f2e10ce6c798193a25,Structured Analysis Dictionary Learning for Image Classification,North Carolina State University,North Carolina State University,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.67408695,edu, +dff838ba0567ef0a6c8fbfff9837ea484314efc6,"Progress Report, MSc. Dissertation: On-line Random Forest for Face Detection",University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300881,edu, +df71a00071d5a949f9c31371c2e5ee8b478e7dc8,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +df71a00071d5a949f9c31371c2e5ee8b478e7dc8,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +df71a00071d5a949f9c31371c2e5ee8b478e7dc8,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +df9269657505fcdc1e10cf45bbb8e325678a40f5,Open-Domain Audio-Visual Speech Recognition: A Deep Learning Approach,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +dfb6aa168177d4685420fcb184def0aa7db7cddb,The Effect of Lighting Direction/Condition on the Performance of Face Recognition Algorithms,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +dfb6aa168177d4685420fcb184def0aa7db7cddb,The Effect of Lighting Direction/Condition on the Performance of Face Recognition Algorithms,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.71733390,-80.27866887,edu, +df2841a1d2a21a0fc6f14fe53b6124519f3812f9,Learning Image Attributes using the Indian Buffet Process,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +df2841a1d2a21a0fc6f14fe53b6124519f3812f9,Learning Image Attributes using the Indian Buffet Process,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +daf05febbe8406a480306683e46eb5676843c424,Robust Subspace Segmentation with Block-Diagonal Prior,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +daf05febbe8406a480306683e46eb5676843c424,Robust Subspace Segmentation with Block-Diagonal Prior,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +daf05febbe8406a480306683e46eb5676843c424,Robust Subspace Segmentation with Block-Diagonal Prior,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +daa52dd09b61ee94945655f0dde216cce0ebd505,Recognizing Micro-Actions and Reactions from Paired Egocentric Videos,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +daa52dd09b61ee94945655f0dde216cce0ebd505,Recognizing Micro-Actions and Reactions from Paired Egocentric Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +daa52dd09b61ee94945655f0dde216cce0ebd505,Recognizing Micro-Actions and Reactions from Paired Egocentric Videos,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3,Rapid face recognition using hashing,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3,Rapid face recognition using hashing,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,A short review and primer on electromyography in human computer interaction applications,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.82427330,edu, +b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,A short review and primer on electromyography in human computer interaction applications,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.82427330,edu, +b446bcd7fb78adfe346cf7a01a38e4f43760f363,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +b446bcd7fb78adfe346cf7a01a38e4f43760f363,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172,Face Aging with Contextual Generative Adversarial Nets,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172,Face Aging with Contextual Generative Adversarial Nets,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +b42a97fb47bcd6bfa72e130c08960a77ee96f9ab,Based on Graph-preserving Sparse Non-negative Matrix Factorization,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +b42a97fb47bcd6bfa72e130c08960a77ee96f9ab,Based on Graph-preserving Sparse Non-negative Matrix Factorization,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +b4d209845e1c67870ef50a7c37abaf3770563f3e,"Video Time: Properties, Encoders and Evaluation",University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +b4362cd87ad219790800127ddd366cc465606a78,A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +b4362cd87ad219790800127ddd366cc465606a78,A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +b4362cd87ad219790800127ddd366cc465606a78,A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +b4f4b0d39fd10baec34d3412d53515f1a4605222,Every Picture Tells a Story: Generating Sentences from Images,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +b43b6551ecc556557b63edb8b0dc39901ed0343b,ICA and Gabor representation for facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +a255a54b8758050ea1632bf5a88a201cd72656e1,Nonparametric Facial Feature Localization,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +a2b9cee7a3866eb2db53a7d81afda72051fe9732,Reconstructing a Fragmented Face from an Attacked Secure Identification Protocol,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +a2bd81be79edfa8dcfde79173b0a895682d62329,Multi-Objective Vehicle Routing Problem Applied to Large Scale Post Office Deliveries,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.59539950,-48.61542180,edu, +a2eb90e334575d9b435c01de4f4bf42d2464effc,A new sparse image representation algorithm applied to facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +a25106a76af723ba9b09308a7dcf4f76d9283589,Local Octal Pattern: A Proficient Feature Extraction for Face Recognition,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.01058380,80.23537360,edu, +a29a22878e1881d6cbf6acff2d0b209c8d3f778b,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a29a22878e1881d6cbf6acff2d0b209c8d3f778b,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a29a22878e1881d6cbf6acff2d0b209c8d3f778b,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +a2bcfba155c990f64ffb44c0a1bb53f994b68a15,The Photoface database,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +a2bcfba155c990f64ffb44c0a1bb53f994b68a15,The Photoface database,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +a59cdc49185689f3f9efdf7ee261c78f9c180789,A New Approach for Learning Discriminative Dictionary for Pattern Classification,Hanoi University of Science and Technology,Hanoi University of Science and Technology,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam",21.00395200,105.84360183,edu, +a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +a5ade88747fa5769c9c92ffde9b7196ff085a9eb,Why is facial expression analysis in the wild challenging?,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +a5ade88747fa5769c9c92ffde9b7196ff085a9eb,Why is facial expression analysis in the wild challenging?,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +a5ade88747fa5769c9c92ffde9b7196ff085a9eb,Why is facial expression analysis in the wild challenging?,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +a5f11c132eaab258a7cea2d681875af09cddba65,A spatiotemporal model with visual attention for video classification,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +a538b05ebb01a40323997629e171c91aa28b8e2f,Rectified Linear Units Improve Restricted Boltzmann Machines,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +a57ee5a8fb7618004dd1def8e14ef97aadaaeef5,Fringe Projection Techniques: Whither we are?,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +a51882cfd0706512bf50e12c0a7dd0775285030d,Cross-Modal Face Matching: Beyond Viewed Sketches,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +a52581a7b48138d7124afc7ccfcf8ec3b48359d0,Pose and Illumination Invariant Face Recognition Based on 3D Face Reconstruction,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +bd0265ba7f391dc3df9059da3f487f7ef17144df,Data-Driven Sparse Sensor Placement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +bd0265ba7f391dc3df9059da3f487f7ef17144df,Data-Driven Sparse Sensor Placement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +bd0265ba7f391dc3df9059da3f487f7ef17144df,Data-Driven Sparse Sensor Placement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4,Deep Learning for Computer Vision: A Brief Review,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.73179733,edu, +bd6099429bb7bf248b1fd6a1739e744512660d55,"Regularized Discriminant Analysis, Ridge Regression and Beyond",Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +bd8f3fef958ebed5576792078f84c43999b1b207,BUAA-iCC at ImageCLEF 2015 Scalable Concept Image Annotation Challenge,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +bd0201b32e7eca7818468f2b5cb1fb4374de75b9,Facial Emotion Expressions Recognition with Brain Activites Using Kinect Sensor V2,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.05044565,edu, +bd0201b32e7eca7818468f2b5cb1fb4374de75b9,Facial Emotion Expressions Recognition with Brain Activites Using Kinect Sensor V2,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.05044565,edu, +bd236913cfe07896e171ece9bda62c18b8c8197e,Deep Learning with Energy-efficient Binary Gradient Cameras,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +bd379f8e08f88729a9214260e05967f4ca66cd65,Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +bd379f8e08f88729a9214260e05967f4ca66cd65,Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +bd8b7599acf53e3053aa27cfd522764e28474e57,Learning long term face aging patterns from partially dense aging databases,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +bd8b7599acf53e3053aa27cfd522764e28474e57,Learning long term face aging patterns from partially dense aging databases,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,SphereFace: Deep Hypersphere Embedding for Face Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,SphereFace: Deep Hypersphere Embedding for Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,SphereFace: Deep Hypersphere Embedding for Face Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +bd26dabab576adb6af30484183c9c9c8379bf2e0,SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +bd9c9729475ba7e3b255e24e7478a5acb393c8e9,Interpretable Partitioned Embedding for Customized Fashion Outfit Composition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +bd9c9729475ba7e3b255e24e7478a5acb393c8e9,Interpretable Partitioned Embedding for Customized Fashion Outfit Composition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +bd9157331104a0708aa4f8ae79b7651a5be797c6,SLAC: A Sparsely Labeled Dataset for Action Classification and Localization,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +bd70f832e133fb87bae82dfaa0ae9d1599e52e4b,Combining Classifier for Face Identification at Unknown Views with a Single Model Image,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +d185f4f05c587e23c0119f2cdfac8ea335197ac0,"Facial Expression Analysis, Modeling and Synthesis: Overcoming the Limitations of Artificial Intelligence with the Art of the Soluble",Eindhoven University of Technology,Eindhoven University of Technology,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.44866020,5.49039957,edu, +d185f4f05c587e23c0119f2cdfac8ea335197ac0,"Facial Expression Analysis, Modeling and Synthesis: Overcoming the Limitations of Artificial Intelligence with the Art of the Soluble",Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.03332810,135.72491540,edu, +d140c5add2cddd4a572f07358d666fe00e8f4fe1,Statistically Learned Deformable Eye Models,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +d115c4a66d765fef596b0b171febca334cea15b5,Combining Stacked Denoising Autoencoders and Random Forests for Face Detection,Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.60915780,-3.97934429,edu, +d1959ba4637739dcc6cc6995e10fd41fd6604713,Deep Learning for Semantic Video Understanding,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +d1881993c446ea693bbf7f7d6e750798bf958900,Large-Scale YouTube-8M Video Understanding with Deep Neural Networks,"Institute for System Programming, Moscow",Institute for System Programming,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ",55.74498810,37.66450421,edu, +d1881993c446ea693bbf7f7d6e750798bf958900,Large-Scale YouTube-8M Video Understanding with Deep Neural Networks,"Institute for System Programming, Moscow",Institute for System Programming,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ",55.74498810,37.66450421,edu, +d69719b42ee53b666e56ed476629a883c59ddf66,Learning Facial Action Units from Web Images with Scalable Weakly Supervised Clustering,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +d69719b42ee53b666e56ed476629a883c59ddf66,Learning Facial Action Units from Web Images with Scalable Weakly Supervised Clustering,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +d647099e571f9af3a1762f895fd8c99760a3916e,Exploring facial expressions with compositional features,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +d69271c7b77bc3a06882884c21aa1b609b3f76cc,FaceBoxes: A CPU real-time face detector with high accuracy,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d69271c7b77bc3a06882884c21aa1b609b3f76cc,FaceBoxes: A CPU real-time face detector with high accuracy,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +d61e794ec22a4d4882181da17316438b5b24890f,Detecting Sensor Level Spoof Attacks Using Joint Encoding of Temporal and Spatial Features,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +d67dcaf6e44afd30c5602172c4eec1e484fc7fb7,Illumination Normalization for Robust Face Recognition Using Discrete Wavelet Transform,Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.85620818,edu, +d68dbb71b34dfe98dee0680198a23d3b53056394,VIVA Face-off Challenge: Dataset Creation and Balancing Privacy,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +d666ce9d783a2d31550a8aa47da45128a67304a7,On Relating Visual Elements to City Statistics,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +d666ce9d783a2d31550a8aa47da45128a67304a7,On Relating Visual Elements to City Statistics,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +d666ce9d783a2d31550a8aa47da45128a67304a7,On Relating Visual Elements to City Statistics,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +bc9003ad368cb79d8a8ac2ad025718da5ea36bc4,Facial expression recognition with a three-dimensional face model,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,Using deep autoencoders for facial expression recognition,"COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, ‏پاکستان‎",33.65010145,73.15514949,edu, +bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,Using deep autoencoders for facial expression recognition,Information Technology University,Information Technology University (ITU),"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, ‏پاکستان‎",31.47602990,74.34275260,edu, +bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,Using deep autoencoders for facial expression recognition,National University of Sciences and Technology,National University of Sciences and Technology,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.64434700,72.98850790,edu, +bc27434e376db89fe0e6ef2d2fabc100d2575ec6,Faceless Person Recognition; Privacy Implications in Social Media,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +bc910ca355277359130da841a589a36446616262,Conditional High-Order Boltzmann Machine: A Supervised Learning Model for Relation Learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +bc866c2ced533252f29cf2111dd71a6d1724bd49,A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17,Deep Learning for Fixed Model Reuse,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +ae0765ebdffffd6e6cc33c7705df33b7e8478627,Self-Reinforced Cascaded Regression for Face Alignment,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +ae0765ebdffffd6e6cc33c7705df33b7e8478627,Self-Reinforced Cascaded Regression for Face Alignment,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +aefc7c708269b874182a5c877fb6dae06da210d4,Deep Learning of Invariant Features via Simulated Fixations in Video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +aefc7c708269b874182a5c877fb6dae06da210d4,Deep Learning of Invariant Features via Simulated Fixations in Video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +aeaf5dbb3608922246c7cd8a619541ea9e4a7028,Weakly Supervised Facial Action Unit Recognition through Adversarial Training,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +ae836e2be4bb784760e43de88a68c97f4f9e44a1,Semi-SupervisedDimensionalityReduction ∗,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +ae836e2be4bb784760e43de88a68c97f4f9e44a1,Semi-SupervisedDimensionalityReduction ∗,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +ae5bb02599244d6d88c4fe466a7fdd80aeb91af4,"Analysis of Recognition Algorithms using Linear, Generalized Linear, and Generalized Linear Mixed Models",Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +ae5bb02599244d6d88c4fe466a7fdd80aeb91af4,"Analysis of Recognition Algorithms using Linear, Generalized Linear, and Generalized Linear Mixed Models",Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9,Sensing Highly Non-Rigid Objects with RGBD Sensors for Robotic Systems,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.83743476,edu, +ae1de0359f4ed53918824271c888b7b36b8a5d41,Low-cost Automatic Inpainting for Artifact Suppression in Facial Images,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +ae4390873485c9432899977499c3bf17886fa149,Facial Expression Recognition Using Digitalised Facial Features Based on Active Shape Model,Glyndwr University,Glyndwr University,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK",53.05373795,-3.00482075,edu, +aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,South China Normal University,South China Normal University,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.14319700,113.34009651,edu, +ae2c71080b0e17dee4e5a019d87585f2987f0508,Emotional Face Recognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +ae2c71080b0e17dee4e5a019d87585f2987f0508,Emotional Face Recognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +ae5f32e489c4d52e7311b66060c7381d932f4193,Appearance-and-Relation Networks for Video Classification,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf,That personal profile image might jeopardize your rental opportunity! On the relative impact of the seller's facial expressions upon buying behavior on Airbnb™,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.48799610,-3.17969747,edu, +d893f75206b122973cdbf2532f506912ccd6fbe0,Facial Expressions with Some Mixed Expressions Recognition Using Neural Networks,Pondicherry Engineering College,Pondicherry Engineering College,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India",12.01486930,79.84809104,edu, +d84a48f7d242d73b32a9286f9b148f5575acf227,Global and Local Consistent Age Generative Adversarial Networks,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +d8722ffbca906a685abe57f3b7b9c1b542adfa0c,Facial Expression Analysis for Human Computer Interaction,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +d8896861126b7fd5d2ceb6fed8505a6dff83414f,In-plane Rotational Alignment of Faces by Eye and Eye-pair Detection,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +d8bf148899f09a0aad18a196ce729384a4464e2b,Facial Expression Recognition and Expression Intensity Estimation,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +d80a3d1f3a438e02a6685e66ee908446766fefa9,Quantifying Facial Age by Posterior of Age Comparisons,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +d80a3d1f3a438e02a6685e66ee908446766fefa9,Quantifying Facial Age by Posterior of Age Comparisons,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +ab734bac3994b00bf97ce22b9abc881ee8c12918,Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold with Application to Image Set Classification,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +ab734bac3994b00bf97ce22b9abc881ee8c12918,Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold with Application to Image Set Classification,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +abb396490ba8b112f10fbb20a0a8ce69737cd492,Robust Face Recognition Using Color Information,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.74230250,-74.17928172,edu, +abac0fa75281c9a0690bf67586280ed145682422,Describable Visual Attributes for Face Images,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +abdd17e411a7bfe043f280abd4e560a04ab6e992,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +ab427f0c7d4b0eb22c045392107509451165b2ba,Learning scale ranges for the extraction of regions of interest,Western Kentucky University,Western Kentucky University,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA",36.98453170,-86.45764430,edu, +e5e5f31b81ed6526c26d277056b6ab4909a56c6c,Revisit Multinomial Logistic Regression in Deep Learning: Data Dependent Model Initialization for Image Recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +e506cdb250eba5e70c5147eb477fbd069714765b,Heterogeneous Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +e5b301ee349ba8e96ea6c71782295c4f06be6c31,The Case for Onloading Continuous High-Datarate Perception to the Phone,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +e5b301ee349ba8e96ea6c71782295c4f06be6c31,The Case for Onloading Continuous High-Datarate Perception to the Phone,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +e569f4bd41895028c4c009e5b46b935056188e91,"FISHER VECTOR FACES IN THE WILD 3 Facial landmark detection Aligned and cropped face Dense SIFT , GMM , and FV Discriminative dim",University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +e5fbffd3449a2bfe0acb4ec339a19f5b88fff783,Self-supervised learning of a facial attribute embedding from video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +e5d53a335515107452a30b330352cad216f88fc3,Generalized Loss-Sensitive Adversarial Learning with Manifold Margins,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +e293a31260cf20996d12d14b8f29a9d4d99c4642,LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +e20e2db743e8db1ff61279f4fda32bf8cf381f8e,Deep Cross Polarimetric Thermal-to-Visible Face Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +f437b3884a9e5fab66740ca2a6f1f3a5724385ea,Human identification technical challenges,DARPA,DARPA,"3701 Fairfax Dr, Arlington, VA 22203, USA",38.88334130,-77.10459770,mil,"3701 N. Fairfax Dr., Arlington, VA 22203" +f43eeb578e0ca48abfd43397bbd15825f94302e4,Optical computer recognition of facial expressions associated with stress induced by performance demands.,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +f4f9697f2519f1fe725ee7e3788119ed217dca34,Selfie-Presentation in Everyday Life: A Large-Scale Characterization of Selfie Contexts on Instagram,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +f4210309f29d4bbfea9642ecadfb6cf9581ccec7,An Agreement and Sparseness-based Learning Instance Selection and its Application to Subjective Speech Phenomena,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +f4210309f29d4bbfea9642ecadfb6cf9581ccec7,An Agreement and Sparseness-based Learning Instance Selection and its Application to Subjective Speech Phenomena,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +f4d30896c5f808a622824a2d740b3130be50258e,"DS++: A flexible, scalable and provably tight relaxation for matching problems",Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +f4aed1314b2d38fd8f1b9d2bc154295bbd45f523,Subspace Clustering using Ensembles of $K$-Subspaces,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +f3015be0f9dbc1a55b6f3dc388d97bb566ff94fe,A Study on the Effective Approach to Illumination-Invariant Face Recognition Based on a Single Image,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +f3a59d85b7458394e3c043d8277aa1ffe3cdac91,Query-Free Attacks on Industry-Grade Face Recognition Systems under Resource Constraints,Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.87956905,edu, +f3f77b803b375f0c63971b59d0906cb700ea24ed,Feature Extraction for Facial Expression Recognition based on Hybrid Face Regions,RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.80874650,144.96388750,edu, +f3df296de36b7c114451865778e211350d153727,Spatio-Temporal Facial Expression Recognition Using Convolutional Neural Networks and Conditional Random Fields,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +f3fed71cc4fc49b02067b71c2df80e83084b2a82,Learning Sparse Latent Representations with the Deep Copula Information Bottleneck,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +f35a493afa78a671b9d2392c69642dcc3dd2cdc2,Automatic Attribute Discovery with Neural Activations,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +f35a493afa78a671b9d2392c69642dcc3dd2cdc2,Automatic Attribute Discovery with Neural Activations,Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.25309450,140.87365930,edu, +eb100638ed73b82e1cce8475bb8e180cb22a09a2,Temporal Action Detection with Structured Segment Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +eb6ee56e085ebf473da990d032a4249437a3e462,Age/gender classification with whole-component convolutional neural networks (WC-CNN),University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +eb8519cec0d7a781923f68fdca0891713cb81163,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +eb8519cec0d7a781923f68fdca0891713cb81163,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +ebb1c29145d31c4afa3c9be7f023155832776cd3,CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +ebb1c29145d31c4afa3c9be7f023155832776cd3,CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +ebb1c29145d31c4afa3c9be7f023155832776cd3,CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.26628870,82.99279690,edu, +eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +eb027969f9310e0ae941e2adee2d42cdf07d938c,VGGFace2: A Dataset for Recognising Faces across Pose and Age,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5a,Facial Expression Recognition using Neural Network,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +c71f36c9376d444075de15b1102b4974481be84d,"3D morphable models : data pre-processing, statistical analysis and fitting",University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +c7c53d75f6e963b403057d8ba5952e4974a779ad,Aging effects in automated face recognition,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +c7c53d75f6e963b403057d8ba5952e4974a779ad,Aging effects in automated face recognition,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +c79cf7f61441195404472102114bcf079a72138a,Pose-Invariant 2 D Face Recognition by Matching Using Graphical Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +c79cf7f61441195404472102114bcf079a72138a,Pose-Invariant 2 D Face Recognition by Matching Using Graphical Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +c73dd452c20460f40becb1fd8146239c88347d87,Manifold Constrained Low-Rank Decomposition,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +c72e6992f44ce75a40f44be4365dc4f264735cfb,Story Understanding in Video Advertisements,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +c74aba9a096379b3dbe1ff95e7af5db45c0fd680,Neuro-Fuzzy Analysis of Facial Action Units and Expressions,Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.70362270,51.35125097,edu, +c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,The Impact of Product Photo on Online Consumer Purchase Intention: an Image-Processing Enabled Empirical Study,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,The Impact of Product Photo on Online Consumer Purchase Intention: an Image-Processing Enabled Empirical Study,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,The Impact of Product Photo on Online Consumer Purchase Intention: an Image-Processing Enabled Empirical Study,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +c71217b2b111a51a31cf1107c71d250348d1ff68,One Network to Solve Them All — Solving Linear Inverse Problems Using Deep Projection Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c76f64e87f88475069f7707616ad9df1719a6099,T-RECS: Training for Rate-Invariant Embeddings by Controlling Speed for Action Recognition,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +c7f0c0636d27a1d45b8fcef37e545b902195d937,Towards Around-Device Interaction using Corneal Imaging,Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.95196483,edu, +c7f0c0636d27a1d45b8fcef37e545b902195d937,Towards Around-Device Interaction using Corneal Imaging,Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.95196483,edu, +c74b1643a108939c6ba42ae4de55cb05b2191be5,Non-negative Matrix Factorization for Face Illumination Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +c74b1643a108939c6ba42ae4de55cb05b2191be5,Non-negative Matrix Factorization for Face Illumination Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +c74b1643a108939c6ba42ae4de55cb05b2191be5,Non-negative Matrix Factorization for Face Illumination Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +c75e6ce54caf17b2780b4b53f8d29086b391e839,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +c0723e0e154a33faa6ff959d084aebf07770ffaf,Interpolation Between Eigenspaces Using Rotation in Multiple Dimensions,Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225,edu, +c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,Locality-Constrained Active Appearance Model,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,Locality-Constrained Active Appearance Model,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +c035c193eed5d72c7f187f0bc880a17d217dada0,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +c035c193eed5d72c7f187f0bc880a17d217dada0,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +c0cdaeccff78f49f4604a6d263dc6eb1bb8707d5,MLP Neural Network Based Approach for Facial Expression Analysis,Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.14435250,-81.33982833,edu, +c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,Learning deep representation from coarse to fine for face alignment,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +c089c7d8d1413b54f59fc410d88e215902e51638,TVParser: An automatic TV video parsing method,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +c0ee89dc2dad76147780f96294de9e421348c1f4,Efficiently detecting outlying behavior in video-game players,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.59014110,127.03623180,edu, +c0ee89dc2dad76147780f96294de9e421348c1f4,Efficiently detecting outlying behavior in video-game players,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.59014110,127.03623180,edu, +c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774,A Two-Layer Representation For Large-Scale Action Recognition,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +c00df53bd46f78ae925c5768d46080159d4ef87d,Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +c05441dd1bc418fb912a6fafa84c0659a6850bf0,Face recognition under varying illumination based on adaptive homomorphic eight local directional patterns,Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.74115040,-111.81223090,edu, +ee6b503ab512a293e3088fdd7a1c893a77902acb,Automatic Name-Face Alignment to Enable Cross-Media News Retrieval,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +ee6b503ab512a293e3088fdd7a1c893a77902acb,Automatic Name-Face Alignment to Enable Cross-Media News Retrieval,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +eeb6d084f9906c53ec8da8c34583105ab5ab8284,Generation of Facial Expression Map using Supervised and Unsupervised Learning,Akita Prefectural University,Akita Prefectural University,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本",39.80114990,140.04591160,edu, +eeb6d084f9906c53ec8da8c34583105ab5ab8284,Generation of Facial Expression Map using Supervised and Unsupervised Learning,Akita University,Akita University,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本",39.72781420,140.13322566,edu, +ee815f60dc4a090fa9fcfba0135f4707af21420d,EAC-Net: A Region-Based Deep Enhancing and Cropping Approach for Facial Action Unit Detection,CUNY City College,CUNY City College,"CUNY City College, 205 East 42nd Street, New York, NY 10017",45.55466080,5.40652550,edu, +eed7920682789a9afd0de4efd726cd9a706940c8,Computers to Help with Conversations : Affective Framework to Enhance Human Nonverbal Skills,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +ee7093e91466b81d13f4d6933bcee48e4ee63a16,Discovering Person Identity via Large-Scale Observations,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +ee7093e91466b81d13f4d6933bcee48e4ee63a16,Discovering Person Identity via Large-Scale Observations,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +ee418372b0038bd3b8ae82bd1518d5c01a33a7ec,CSE 255 Winter 2015 Assignment 1: Eye Detection using Histogram of Oriented Gradients and Adaboost Classifier,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +eee06d68497be8bf3a8aba4fde42a13aa090b301,CR-GAN: Learning Complete Representations for Multi-view Generation,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +eee06d68497be8bf3a8aba4fde42a13aa090b301,CR-GAN: Learning Complete Representations for Multi-view Generation,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +eee2d2ac461f46734c8e674ae14ed87bbc8d45c6,Generalized Rank Pooling for Activity Recognition,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +eed93d2e16b55142b3260d268c9e72099c53d5bc,ICFVR 2017: 3rd international competition on finger vein recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +c94b3a05f6f41d015d524169972ae8fd52871b67,The Fastest Deformable Part Model for Object Detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +c9424d64b12a4abe0af201e7b641409e182babab,"Which, When, and How: Hierarchical Clustering with Human-Machine Cooperation",Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +c97a5f2241cc6cd99ef0c4527ea507a50841f60b,Person Search in Videos with One Portrait Through Visual and Temporal Links,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +c97a5f2241cc6cd99ef0c4527ea507a50841f60b,Person Search in Videos with One Portrait Through Visual and Temporal Links,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +c95cd36779fcbe45e3831ffcd3314e19c85defc5,Face recognition using multi-modal low-rank dictionary learning,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.52385720,-113.52282665,edu, +c9e955cb9709f16faeb0c840f4dae92eb875450a,Proposal of Novel Histogram Features for Face Detection,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +c92bb26238f6e30196b0c4a737d8847e61cfb7d4,Beyond Context: Exploring Semantic Similarity for Tiny Face Detection,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +c92bb26238f6e30196b0c4a737d8847e61cfb7d4,Beyond Context: Exploring Semantic Similarity for Tiny Face Detection,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +c92bb26238f6e30196b0c4a737d8847e61cfb7d4,Beyond Context: Exploring Semantic Similarity for Tiny Face Detection,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +c9bbd7828437e70cc3e6863b278aa56a7d545150,Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +c9bbd7828437e70cc3e6863b278aa56a7d545150,Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +c9f588d295437009994ddaabb64fd4e4c499b294,Predicting Professions through Probabilistic Model under Social Context,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +c92da368a6a886211dc759fe7b1b777a64d8b682,Face Recognition System based on Face Pose Estimation and Frontal Face Pose Synthesis,National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.99724412,edu, +c92da368a6a886211dc759fe7b1b777a64d8b682,Face Recognition System based on Face Pose Estimation and Frontal Face Pose Synthesis,National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.99724412,edu, +c98983592777952d1751103b4d397d3ace00852d,Face Synthesis from Facial Identity Features,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +c9367ed83156d4d682cefc59301b67f5460013e0,Geometry-Contrastive Generative Adversarial Network for Facial Expression Synthesis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192,Initialization Strategies of Spatio-Temporal Convolutional Neural Networks,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +fc20149dfdff5fdf020647b57e8a09c06e11434b,Local Discriminant Wavelet Packet Coordinates for Face Recognition,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +fc0f5859a111fb17e6dcf6ba63dd7b751721ca61,Design of an Automatic Facial Expression Detector,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +fcbec158e6a4ace3d4311b26195482b8388f0ee9,Face Recognition from Still Images and Videos,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +fcf91995dc4d9b0cee84bda5b5b0ce5b757740ac,Asymmetric Discrete Graph Hashing,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +fc798314994bf94d1cde8d615ba4d5e61b6268b6,"Face Recognition : face in video , age invariance , and facial marks",Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +fc23a386c2189f221b25dbd0bb34fcd26ccf60fa,A Discriminative Latent Model of Object Classes and Attributes,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f,Evaluation Criteria for Affect-Annotated Databases,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.61716016,edu, +fc2bad3544c7c8dc7cd182f54888baf99ed75e53,Efficient Retrieval for Large Scale Metric Learning,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,Continuous Supervised Descent Method for Facial Landmark Localisation,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.19453410,edu, +fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,Continuous Supervised Descent Method for Facial Landmark Localisation,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,Continuous Supervised Descent Method for Facial Landmark Localisation,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +fdfd57d4721174eba288e501c0c120ad076cdca8,An Analysis of Action Recognition Datasets for Language and Vision Tasks,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +fd33df02f970055d74fbe69b05d1a7a1b9b2219b,Single Shot Temporal Action Detection,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +fd33df02f970055d74fbe69b05d1a7a1b9b2219b,Single Shot Temporal Action Detection,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +fd15e397629e0241642329fc8ee0b8cd6c6ac807,Semi-Supervised Clustering with Neural Networks,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f,Deep Verification Learning,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,Apparent Age Estimation Using Ensemble of Deep Learning Models,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81,Action Detection from a Robot-Car Perspective,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.75552050,-1.22615970,edu, +fd10b0c771a2620c0db294cfb82b80d65f73900d,Identifying The Most Informative Features Using A Structurally Interacting Elastic Net,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +fd10b0c771a2620c0db294cfb82b80d65f73900d,Identifying The Most Informative Features Using A Structurally Interacting Elastic Net,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +fd7b6c77b46420c27725757553fcd1fb24ea29a8,MEXSVMs: Mid-level Features for Scalable Action Recognition,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e,Recognizing Frustration of Drivers From Face Video Recordings and Brain Activation Measurements With Functional Near-Infrared Spectroscopy,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +fd892e912149e3f5ddd82499e16f9ea0f0063fa3,Isyn Initialization Minimizing E ( Φ ) Analysis Synthesis Fitted model Redirection optical ow Warp eyelids Overlay eyeballs Stage 1 : Eye region tracking Stage 2 : Eye gaze redirection Input image Iobs New gaze target g ’ Iobs,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +fd892e912149e3f5ddd82499e16f9ea0f0063fa3,Isyn Initialization Minimizing E ( Φ ) Analysis Synthesis Fitted model Redirection optical ow Warp eyelids Overlay eyeballs Stage 1 : Eye region tracking Stage 2 : Eye gaze redirection Input image Iobs New gaze target g ’ Iobs,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +fdf8e293a7618f560e76bd83e3c40a0788104547,Interspecies Knowledge Transfer for Facial Keypoint Detection,"University of California, Davis","University of California, Davis","University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.53363490,-121.79077264,edu, +fdf8e293a7618f560e76bd83e3c40a0788104547,Interspecies Knowledge Transfer for Facial Keypoint Detection,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +fdf8e293a7618f560e76bd83e3c40a0788104547,Interspecies Knowledge Transfer for Facial Keypoint Detection,"University of California, Davis","University of California, Davis","University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.53363490,-121.79077264,edu, +f22d6d59e413ee255e5e0f2104f1e03be1a6722e,Lattice Long Short-Term Memory for Human Action Recognition,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +f22d6d59e413ee255e5e0f2104f1e03be1a6722e,Lattice Long Short-Term Memory for Human Action Recognition,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +f22d6d59e413ee255e5e0f2104f1e03be1a6722e,Lattice Long Short-Term Memory for Human Action Recognition,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +f2b13946d42a50fa36a2c6d20d28de2234aba3b4,Adaptive facial expression recognition using inter-modal top-down context,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +f2b13946d42a50fa36a2c6d20d28de2234aba3b4,Adaptive facial expression recognition using inter-modal top-down context,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +f2c30594d917ea915028668bc2a481371a72a14d,Scene Understanding Using Internet Photo Collections,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces,North Dakota State University,North Dakota State University,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.89715500,-96.81827603,edu, +f257300b2b4141aab73f93c146bf94846aef5fa1,Eigen Evolution Pooling for Human Action Recognition,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,Bar-Ilan University,Bar-Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.84334339,edu, +f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +f5149fb6b455a73734f1252a96a9ce5caa95ae02,Low-Rank-Sparse Subspace Representation for Robust Regression,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +f5149fb6b455a73734f1252a96a9ce5caa95ae02,Low-Rank-Sparse Subspace Representation for Robust Regression,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +f5149fb6b455a73734f1252a96a9ce5caa95ae02,Low-Rank-Sparse Subspace Representation for Robust Regression,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e,Feature Selection Guided Auto-Encoder,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +f5eb0cf9c57716618fab8e24e841f9536057a28a,Rethinking Feature Distribution for Loss Functions in Image Classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +f571fe3f753765cf695b75b1bd8bed37524a52d2,Submodular Attribute Selection for Action Recognition in Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +f571fe3f753765cf695b75b1bd8bed37524a52d2,Submodular Attribute Selection for Action Recognition in Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +f571fe3f753765cf695b75b1bd8bed37524a52d2,Submodular Attribute Selection for Action Recognition in Video,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.12549380,-77.22293475,edu, +f5fae7810a33ed67852ad6a3e0144cb278b24b41,Multilingual Gender Classification with Multi-view Deep Learning: Notebook for PAN at CLEF 2018,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +f5af4e9086b0c3aee942cb93ece5820bdc9c9748,Enhancing Person Annotation,Dublin City University,DUBLIN CITY UNIVERSITY,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland",53.38522185,-6.25740874,edu, +f5aee1529b98136194ef80961ba1a6de646645fe,Large-scale learning of discriminative image representations,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +f52efc206432a0cb860155c6d92c7bab962757de,Mugshot Database Acquisition in Video Surveillance Networks Using Incremental Auto-Clustering Quality Measures,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +f519723238701849f1160d5a9cedebd31017da89,Impact of multi-focused images on recognition of soft biometric traits,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +f5eb411217f729ad7ae84bfd4aeb3dedb850206a,Tackling Low Resolution for Better Scene Understanding,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.44549570,78.34854698,edu, +e35b09879a7df814b2be14d9102c4508e4db458b,Optimal Sensor Placement and Enhanced Sparsity for Classification,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +e35b09879a7df814b2be14d9102c4508e4db458b,Optimal Sensor Placement and Enhanced Sparsity for Classification,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +e3b324101157daede3b4d16bdc9c2388e849c7d4,"Robust Real-Time 3 D Face Tracking from RGBD Videos under Extreme Pose , Depth , and Expression Variations",Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +e3c011d08d04c934197b2a4804c90be55e21d572,How to Train Triplet Networks with 100K Identities?,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +e3c011d08d04c934197b2a4804c90be55e21d572,How to Train Triplet Networks with 100K Identities?,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +e3c011d08d04c934197b2a4804c90be55e21d572,How to Train Triplet Networks with 100K Identities?,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +e3bb83684817c7815f5005561a85c23942b1f46b,Face Verification using Correlation Filters,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e3bb83684817c7815f5005561a85c23942b1f46b,Face Verification using Correlation Filters,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e3bb83684817c7815f5005561a85c23942b1f46b,Face Verification using Correlation Filters,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e3e2c106ccbd668fb9fca851498c662add257036,"Appearance, context and co-occurrence ensembles for identity recognition in personal photo collections",University of Colorado at Colorado Springs,University of Colorado at Colorado Springs,"1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA",38.89646790,-104.80505940,edu, +e379e73e11868abb1728c3acdc77e2c51673eb0d,Face Databases,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,Weakly Supervised Learning for Unconstrained Face Processing,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,Weakly Supervised Learning for Unconstrained Face Processing,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +e3c8e49ffa7beceffca3f7f276c27ae6d29b35db,Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +e3c8e49ffa7beceffca3f7f276c27ae6d29b35db,Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +e38371b69be4f341baa95bc854584e99b67c6d3a,DYAN: A Dynamical Atoms-Based Network for Video Prediction,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +e328d19027297ac796aae2470e438fe0bd334449,Automatic Micro-expression Recognition from Long Video Using a Single Spotted Apex,University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103,edu, +e328d19027297ac796aae2470e438fe0bd334449,Automatic Micro-expression Recognition from Long Video Using a Single Spotted Apex,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +e328d19027297ac796aae2470e438fe0bd334449,Automatic Micro-expression Recognition from Long Video Using a Single Spotted Apex,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +e3a6e5a573619a97bd6662b652ea7d088ec0b352,Compare and Contrast: Learning Prominent Visual Differences,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +cfeb26245b57dd10de8f187506d4ed5ce1e2b7dd,CapsNet comparative performance evaluation for image classification,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +cffebdf88e406c27b892857d1520cb2d7ccda573,Learning from Large-scale Visual Data for Robots,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,Towards Arbitrary-View Face Alignment by Recommendation Trees,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,Towards Arbitrary-View Face Alignment by Recommendation Trees,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +cfa931e6728a825caada65624ea22b840077f023,Deformable Generator Network: Unsupervised Disentanglement of Appearance and Geometry,Harbin Engineering University,Harbin Engineering University,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.77445695,126.67684917,edu, +cff911786b5ac884bb71788c5bc6acf6bf569eff,Multi-task Learning of Cascaded CNN for Facial Attribute Classification,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +cf09e2cb82961128302b99a34bff91ec7d198c7c,Office Entrance Control with Face Recognition,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +cf09e2cb82961128302b99a34bff91ec7d198c7c,Office Entrance Control with Face Recognition,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,"University of Amsterdam and Renmin University at TRECVID 2016: Searching Video, Detecting Events and Describing Video",University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,"University of Amsterdam and Renmin University at TRECVID 2016: Searching Video, Detecting Events and Describing Video",Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,"University of Amsterdam and Renmin University at TRECVID 2016: Searching Video, Detecting Events and Describing Video","Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,Quaero at TRECVID 2010: Semantic Indexing,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +ca54d0a128b96b150baef392bf7e498793a6371f,Improve Pedestrian Attribute Classification by Weighted Interactions from Other Attributes,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6,Illumination invariant face recognition and impostor rejection using different MINACE filter algorithms,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e4bc529ced68fae154e125c72af5381b1185f34e,Perceptual Goal Specifications for Reinforcement Learning,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,Generic Active Appearance Models Revisited,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,Generic Active Appearance Models Revisited,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.54873472,edu, +e4df83b7424842ff5864c10fa55d38eae1c45fac,Locally Linear Discriminate Embedding for Face Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +e4e3faa47bb567491eaeaebb2213bf0e1db989e1,Empirical Risk Minimization for Metric Learning Using Privileged Information,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.84691800,117.29053367,edu, +e4e3faa47bb567491eaeaebb2213bf0e1db989e1,Empirical Risk Minimization for Metric Learning Using Privileged Information,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +e43045a061421bd79713020bc36d2cf4653c044d,A New Representation of Skeleton Sequences for 3D Action Recognition,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +e475deadd1e284428b5e6efd8fe0e6a5b83b9dcd,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,"IIIT Delhi, India","IIIT Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +fe5df5fe0e4745d224636a9ae196649176028990,Using Context to Enhance the Understanding of Face Images,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +fe5df5fe0e4745d224636a9ae196649176028990,Using Context to Enhance the Understanding of Face Images,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +fe961cbe4be0a35becd2d722f9f364ec3c26bd34,"Computer-based Tracking, Analysis, and Visualization of Linguistically Significant Nonmanual Events in American Sign Language (ASL)",Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +fe961cbe4be0a35becd2d722f9f364ec3c26bd34,"Computer-based Tracking, Analysis, and Visualization of Linguistically Significant Nonmanual Events in American Sign Language (ASL)",Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,University of Nevada,University of Nevada,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.54694490,-119.81346566,edu, +feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +feeb0fd0e254f38b38fe5c1022e84aa43d63f7cc,Search Pruning with Soft Biometric Systems: Efficiency-Reliability Tradeoff,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +c87f7ee391d6000aef2eadb49f03fc237f4d1170,A real-time and unsupervised face Re-Identification system for Human-Robot Interaction,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,Track Facial Points in Unconstrained Videos,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +c8292aa152a962763185e12fd7391a1d6df60d07,Camera Distance from Face Images,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +c829be73584966e3162f7ccae72d9284a2ebf358,shuttleNet: A biologically-inspired RNN with loop connection and parameter sharing,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +c829be73584966e3162f7ccae72d9284a2ebf358,shuttleNet: A biologically-inspired RNN with loop connection and parameter sharing,Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.95866520,116.30971281,edu, +c87d5036d3a374c66ec4f5870df47df7176ce8b9,Temporal Dynamics of Natural Static Emotional Facial Expressions Decoding: A Study Using Event- and Eye Fixation-Related Potentials,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +c8e84cdff569dd09f8d31e9f9ba3218dee65e961,Dictionaries for image and video-based face recognition [Invited].,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +c8e84cdff569dd09f8d31e9f9ba3218dee65e961,Dictionaries for image and video-based face recognition [Invited].,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.12549380,-77.22293475,edu, +c8829013bbfb19ccb731bd54c1a885c245b6c7d7,Flexible Template and Model Matching Using Image Intensity,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +c88ce5ef33d5e544224ab50162d9883ff6429aa3,Face Match for Family Reunification: Real-World Face Image Retrieval,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673040,edu, +c822bd0a005efe4ec1fea74de534900a9aa6fb93,Face recognition committee machines: dynamic vs. static structures,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +c88c21eb9a8e08b66c981db35f6556f4974d27a8,Attribute Learning using Joint Human and Machine Computation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c88c21eb9a8e08b66c981db35f6556f4974d27a8,Attribute Learning using Joint Human and Machine Computation,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1,Learning Discriminative Features via Label Consistent Neural Network,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +fbb6ee4f736519f7231830a8e337b263e91f06fe,Illumination Robust Facial Feature Detection via Decoupled Illumination and Texture Features,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +fb87045600da73b07f0757f345a937b1c8097463,Reflective Regression of 2D-3D Face Shape Across Large Pose,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +fb85867c989b9ee6b7899134136f81d6372526a9,Learning to Align Images using Weak Geometric Supervision,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +fb85867c989b9ee6b7899134136f81d6372526a9,Learning to Align Images using Weak Geometric Supervision,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a,Beauty and the Burst: Remote Identification of Encrypted Video Streams,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a,Beauty and the Burst: Remote Identification of Encrypted Video Streams,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +fb084b1fe52017b3898c871514cffcc2bdb40b73,Illumination Normalization of Face Image Based on Illuminant Direction Estimation and Improved Retinex,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +fb084b1fe52017b3898c871514cffcc2bdb40b73,Illumination Normalization of Face Image Based on Illuminant Direction Estimation and Improved Retinex,University Politehnica Timisoara,University POLITEHNICA Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.74618900,21.22755075,edu, +ed0cf5f577f5030ac68ab62fee1cf065349484cc,Revisiting data normalization for appearance-based gaze estimation,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +ed0cf5f577f5030ac68ab62fee1cf065349484cc,Revisiting data normalization for appearance-based gaze estimation,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +edde81b2bdd61bd757b71a7b3839b6fef81f4be4,Part Localization using Multi-Proposal Consensus for Fine-Grained Categorization,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +edf98a925bb24e39a6e6094b0db839e780a77b08,Simplex Representation for Subspace Clustering,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +ed9d11e995baeec17c5d2847ec1a8d5449254525,Efficient Gender Classification Using a Deep LDA-Pruned Net,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +ed07856461da6c7afa4f1782b5b607b45eebe9f6,D Morphable Models as Spatial Transformer Networks,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +ed07856461da6c7afa4f1782b5b607b45eebe9f6,D Morphable Models as Spatial Transformer Networks,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +ed1886e233c8ecef7f414811a61a83e44c8bbf50,Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.00735776,edu, +edd7504be47ebc28b0d608502ca78c0aea6a65a2,Recurrent Residual Learning for Action Recognition,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.73381240,7.10224650,edu, +ed388878151a3b841f95a62c42382e634d4ab82e,DenseImage Network: Video Spatial-Temporal Evolution Encoding and Understanding,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +ed388878151a3b841f95a62c42382e634d4ab82e,DenseImage Network: Video Spatial-Temporal Evolution Encoding and Understanding,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +edbb8cce0b813d3291cae4088914ad3199736aa0,Efficient Subspace Segmentation via Quadratic Programming,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +edbb8cce0b813d3291cae4088914ad3199736aa0,Efficient Subspace Segmentation via Quadratic Programming,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +edbb8cce0b813d3291cae4088914ad3199736aa0,Efficient Subspace Segmentation via Quadratic Programming,Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.84909214,edu, +edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +ed96f2eb1771f384df2349879970065a87975ca7,Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +ed96f2eb1771f384df2349879970065a87975ca7,Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +c180f22a9af4a2f47a917fd8f15121412f2d0901,Facial Expression Recognition by ICA with Selective Prior,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.44429490,136.59285870,edu, +c146aa6d56233ce700032f1cb179700778557601,3D Morphable Models as Spatial Transformer Networks,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +c146aa6d56233ce700032f1cb179700778557601,3D Morphable Models as Spatial Transformer Networks,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +c1f07ec629be1c6fe562af0e34b04c54e238dcd1,A Novel Facial Feature Localization Method Using Probabilistic-like Output,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.71733390,-80.27866887,edu, +c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +c17a332e59f03b77921942d487b4b102b1ee73b6,Learning an appearance-based gaze estimator from one million synthesised images,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +c17a332e59f03b77921942d487b4b102b1ee73b6,Learning an appearance-based gaze estimator from one million synthesised images,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c17a332e59f03b77921942d487b4b102b1ee73b6,Learning an appearance-based gaze estimator from one million synthesised images,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +c10b0a6ba98aa95d740a0d60e150ffd77c7895ad,Deep Fisher Faces,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +c1298120e9ab0d3764512cbd38b47cd3ff69327b,Disguised Faces in the Wild,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +c1298120e9ab0d3764512cbd38b47cd3ff69327b,Disguised Faces in the Wild,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,Recurrent Neural Networks for Facial Action Unit Recognition from Image Sequences,University of Witwatersrand,University of Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.18888130,28.02479073,edu, +c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,Recurrent Neural Networks for Facial Action Unit Recognition from Image Sequences,University of the Western Cape,University of the Western Cape,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa",-33.93277620,18.62915407,edu, +c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,Recurrent Neural Networks for Facial Action Unit Recognition from Image Sequences,Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.78553506,edu, +c6096986b4d6c374ab2d20031e026b581e7bf7e9,A Framework for Using Context to Understand Images of People,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c6608fdd919f2bc4f8d7412bab287527dcbcf505,Unsupervised Alignment of Natural Language with Video,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +c62c910264658709e9bf0e769e011e7944c45c90,Recent Progress of Face Image Synthesis,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +c678920facffd35853c9d185904f4aebcd2d8b49,Learning to Anonymize Faces for Privacy Preserving Action Detection,"University of California, Davis","University of California, Davis","University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.53363490,-121.79077264,edu, +c660500b49f097e3af67bb14667de30d67db88e3,Facial Asymmetry Quantification for Expression Invariant Human Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c660500b49f097e3af67bb14667de30d67db88e3,Facial Asymmetry Quantification for Expression Invariant Human Identification,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +c660500b49f097e3af67bb14667de30d67db88e3,Facial Asymmetry Quantification for Expression Invariant Human Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c6241e6fc94192df2380d178c4c96cf071e7a3ac,Action recognition with trajectory-pooled deep-convolutional descriptors,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +c6241e6fc94192df2380d178c4c96cf071e7a3ac,Action recognition with trajectory-pooled deep-convolutional descriptors,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +c65a394118d34beda5dd01ae0df163c3db88fceb,Finding the Best Picture: Cross-Media Retrieval of Content,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.88306860,4.70195030,edu, +ec8ec2dfd73cf3667f33595fef84c95c42125945,Pose-Invariant Face Alignment with a Single CNN,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +4e7ed13e541b8ed868480375785005d33530e06d,Face recognition using deep multi-pose representations,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +4e7ed13e541b8ed868480375785005d33530e06d,Face recognition using deep multi-pose representations,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +4e7ed13e541b8ed868480375785005d33530e06d,Face recognition using deep multi-pose representations,Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.70927481,edu, +4e30107ee6a2e087f14a7725e7fc5535ec2f5a5f,Представление новостных сюжетов с помощью событийных фотографий (News Stories Representation Using Event Photos),Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.53179777,edu, +4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +4e6c17966efae956133bf8f22edeffc24a0470c1,Face Classification: A Specialized Benchmark Study,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +4e6c17966efae956133bf8f22edeffc24a0470c1,Face Classification: A Specialized Benchmark Study,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4e6c17966efae956133bf8f22edeffc24a0470c1,Face Classification: A Specialized Benchmark Study,Macau University of Science and Technology,Macau University of Science and Technology,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.56803206,edu, +4e1836914bbcf94dc00e604b24b1b0d6d7b61e66,Dynamic Facial Expression Recognition Using Boosted Component-Based Spatiotemporal Features and Multi-classifier Fusion,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +4e1836914bbcf94dc00e604b24b1b0d6d7b61e66,Dynamic Facial Expression Recognition Using Boosted Component-Based Spatiotemporal Features and Multi-classifier Fusion,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +4e4fa167d772f34dfffc374e021ab3044566afc3,Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4e4fa167d772f34dfffc374e021ab3044566afc3,Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +4e4fa167d772f34dfffc374e021ab3044566afc3,Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4ed54d5093d240cc3644e4212f162a11ae7d1e3b,Learning Visual Compound Models from Parallel Image-Text Datasets,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.02804210,8.51148270,edu, +4ed54d5093d240cc3644e4212f162a11ae7d1e3b,Learning Visual Compound Models from Parallel Image-Text Datasets,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,How Related Exemplars Help Complex Event Detection in Web Videos?,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,How Related Exemplars Help Complex Event Detection in Web Videos?,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,How Related Exemplars Help Complex Event Detection in Web Videos?,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4ed2d7ecb34a13e12474f75d803547ad2ad811b2,Common Action Discovery and Localization in Unconstrained Videos,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +4e8168fbaa615009d1618a9d6552bfad809309e9,Deep Convolutional Neural Network Features and the Original Image,University of Texas at Dallas,University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.98207990,-96.75662780,edu, +4e8168fbaa615009d1618a9d6552bfad809309e9,Deep Convolutional Neural Network Features and the Original Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4e0636a1b92503469b44e2807f0bb35cc0d97652,Adversarial Localization Network,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +4e0636a1b92503469b44e2807f0bb35cc0d97652,Adversarial Localization Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +4e0636a1b92503469b44e2807f0bb35cc0d97652,Adversarial Localization Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +4ea4116f57c5d5033569690871ba294dc3649ea5,Multi-View Face Alignment Using 3D Shape Model for View Estimation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +4e4d034caa72dce6fca115e77c74ace826884c66,Sex differences in facial emotion recognition across varying expression intensity levels from videos,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +20b994a78cd1db6ba86ea5aab7211574df5940b3,Enriched Long-Term Recurrent Convolutional Network for Facial Micro-Expression Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +20b994a78cd1db6ba86ea5aab7211574df5940b3,Enriched Long-Term Recurrent Convolutional Network for Facial Micro-Expression Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +20b994a78cd1db6ba86ea5aab7211574df5940b3,Enriched Long-Term Recurrent Convolutional Network for Facial Micro-Expression Recognition,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +2050847bc7a1a0453891f03aeeb4643e360fde7d,Accio: A Data Set for Face Track Retrieval in Movies Across Age,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +2050847bc7a1a0453891f03aeeb4643e360fde7d,Accio: A Data Set for Face Track Retrieval in Movies Across Age,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +20a16efb03c366fa4180659c2b2a0c5024c679da,Screening Rules for Overlapping Group Lasso,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +20e505cef6d40f896e9508e623bfc01aa1ec3120,Fast Online Incremental Attribute-based Object Classification using Stochastic Gradient Descent and Self- Organizing Incremental Neural Network,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.51675380,139.48342251,edu, +205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa,A model-based facial expression recognition algorithm using Principal Components Analysis,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +20b437dc4fc44c17f131713ffcbb4a8bd672ef00,Head Pose Tracking from RGBD Sensor Based on Direct Motion Estimation,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.00735776,edu, +206e24f7d4b3943b35b069ae2d028143fcbd0704,Learning Structure and Strength of CNN Filters for Small Sample Size Training,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +208a2c50edb5271a050fa9f29d3870f891daa4dc,The resolution of facial expressions of emotion.,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +208a2c50edb5271a050fa9f29d3870f891daa4dc,The resolution of facial expressions of emotion.,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +207798603e3089a1c807c93e5f36f7767055ec06,Modeling the correlation between modality semantics and facial expressions,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +207798603e3089a1c807c93e5f36f7767055ec06,Modeling the correlation between modality semantics and facial expressions,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +207798603e3089a1c807c93e5f36f7767055ec06,Modeling the correlation between modality semantics and facial expressions,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +20be15dac7d8a5ba4688bf206ad24cab57d532d6,Face Shape Recovery and Recognition Using a Surface Gradient Based Statistical Model,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +2042aed660796b14925db17c0a8b9fbdd7f3ebac,Saliency in Crowd,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +202dc3c6fda654aeb39aee3e26a89340fb06802a,Spatio-Temporal Instance Learning: Action Tubes from Class Supervision,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6,Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +20cfb4136c1a984a330a2a9664fcdadc2228b0bc,Sparse Coding Trees with application to emotion classification,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +20c02e98602f6adf1cebaba075d45cef50de089f,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +20c02e98602f6adf1cebaba075d45cef50de089f,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +20c02e98602f6adf1cebaba075d45cef50de089f,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +2020e8c0be8fa00d773fd99b6da55029a6a83e3d,An Evaluation of the Invariance Properties of a Biologically-Inspired System for Unconstrained Face Recognition,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +189b1859f77ddc08027e1e0f92275341e5c0fdc6,Sparse Representations and Distance Learning for Attribute Based Category Recognition,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +18a9f3d855bd7728ed4f988675fa9405b5478845,An Illumination Invariant Texture Based Face Recognition,Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100445,edu, +18166432309000d9a5873f989b39c72a682932f5,Learning a Warped Subspace Model of Faces with Images of Unknown Pose and Illumination,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,Learning invariant representations and applications to face verification,McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.36262950,-71.09144810,edu, +18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,Learning invariant representations and applications to face verification,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +185263189a30986e31566394680d6d16b0089772,Efficient Annotation of Objects for Video Analysis,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.44549570,78.34854698,edu, +18b9dc55e5221e704f90eea85a81b41dab51f7da,Attention-based Temporal Weighted Convolutional Neural Network for Action Recognition,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +182470fd0c18d0c5979dff75d089f1da176ceeeb,A Multimodal Annotation Schema for Non-Verbal Affective Analysis in the Health-Care Domain,Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.01010115,edu, +182470fd0c18d0c5979dff75d089f1da176ceeeb,A Multimodal Annotation Schema for Non-Verbal Affective Analysis in the Health-Care Domain,Information Technologies Institute,Information Technologies Institute,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本",33.59345390,130.35578370,edu, +1862cb5728990f189fa91c67028f6d77b5ac94f6,Speeding Up Tracking by Ignoring Features,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +1862bfca2f105fddfc79941c90baea7db45b8b16,Annotator rationales for visual recognition,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +187d4d9ba8e10245a34f72be96dd9d0fb393b1aa,Mining Visual Actions from Movies,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +182f3aa4b02248ff9c0f9816432a56d3c8880706,Sparse Coding for Classification via Discrimination Ensemble,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +18941b52527e6f15abfdf5b86a0086935706e83b,DeepGUM: Learning Deep Robust Regression with a Gaussian-Uniform Mixture Model,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +27a00f2490284bc0705349352d36e9749dde19ab,VoxCeleb2: Deep Speaker Recognition,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +271e2856e332634eccc5e80ba6fa9bbccf61f1be,3D Spatio-Temporal face recognition using dynamic range model sequences,SUNY Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.97066066,edu, +27846b464369095f4909f093d11ed481277c8bba,Real-Time Face Detection and Recognition in Complex Background,Illinois Institute of Technology,Illinois Institute of Technology,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.83619630,-87.62655913,edu, +27eb7a6e1fb6b42516041def6fe64bd028b7614d,Joint Unsupervised Deformable Spatio-Temporal Alignment of Sequences,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +27eb7a6e1fb6b42516041def6fe64bd028b7614d,Joint Unsupervised Deformable Spatio-Temporal Alignment of Sequences,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +2717998d89d34f45a1cca8b663b26d8bf10608a9,Real-Time Action Recognition with Enhanced Motion Vector CNNs,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +2717998d89d34f45a1cca8b663b26d8bf10608a9,Real-Time Action Recognition with Enhanced Motion Vector CNNs,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +27c66b87e0fbb39f68ddb783d11b5b7e807c76e8,Fast Simplex-HMM for One-Shot Learning Activity Recognition,Zaragoza University,Zaragoza University,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España",41.64062180,-0.90079399,edu, +27c66b87e0fbb39f68ddb783d11b5b7e807c76e8,Fast Simplex-HMM for One-Shot Learning Activity Recognition,Kingston University,Kingston University,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.42930860,-0.26840440,edu, +271df16f789bd2122f0268c3e2fa46bc0cb5f195,Mining discriminative co-occurrence patterns for visual recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +271df16f789bd2122f0268c3e2fa46bc0cb5f195,Mining discriminative co-occurrence patterns for visual recognition,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +275b5091c50509cc8861e792e084ce07aa906549,Leveraging the User's Face as a Known Object in Handheld Augmented Reality,University of Munich,Universität München,"Geschwister-Scholl-Platz 1, 80539 München, Germany",48.15080600,11.58043000,edu, +27218ff58c3f0e7d7779fba3bb465d746749ed7c,Active Learning for Image Ranking Over Relative Visual Attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +27c6cd568d0623d549439edc98f6b92528d39bfe,Regressive Tree Structured Model for Facial Landmark Localization,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,Recognition of facial expressions based on salient geometric features and support vector machines,Korea Electronics Technology Institute,Korea Electronics Technology Institute,"South Korea, Gyeonggi-do, Seongnam-si, Bundang-gu, 새나리로 25 (야탑동) KETI 전자부품연구원",37.40391700,127.15978600,edu, +273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,Recognition of facial expressions based on salient geometric features and support vector machines,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.13501330,edu, +273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,Recognition of facial expressions based on salient geometric features and support vector machines,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +27961bc8173ac84fdbecacd01e5ed6f7ed92d4bd,Automatic multi-view face recognition via 3D model based pose regularization,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +2784d9212dee2f8a660814f4b85ba564ec333720,Learning class-specific image transformations with higher-order Boltzmann machines,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +2717b044ae9933f9ab87f16d6c611352f66b2033,GNAS: A Greedy Neural Architecture Search Method for Multi-Attribute Learning,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +27883967d3dac734c207074eed966e83afccb8c3,Two-Dimensional Maximum Local Variation Based on Image Euclidean Distance for Face Recognition,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +27883967d3dac734c207074eed966e83afccb8c3,Two-Dimensional Maximum Local Variation Based on Image Euclidean Distance for Face Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +270e5266a1f6e76954dedbc2caf6ff61a5fbf8d0,EmotioNet Challenge: Recognition of facial expressions of emotion in the wild,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +2742a61d32053761bcc14bd6c32365bfcdbefe35,Learning transformations for clustering and classification,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +2742a61d32053761bcc14bd6c32365bfcdbefe35,Learning transformations for clustering and classification,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +27dafedccd7b049e87efed72cabaa32ec00fdd45,Unsupervised visual alignment with similarity graphs,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +27a299b834a18e45d73e0bf784bbb5b304c197b3,Social Role Discovery in Human Events,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +27a299b834a18e45d73e0bf784bbb5b304c197b3,Social Role Discovery in Human Events,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +4bb03b27bc625e53d8d444c0ba3ee235d2f17e86,Reading between the Lines: Object Localization Using Implicit Cues from Image Tags,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +4bc9a767d7e63c5b94614ebdc24a8775603b15c9,Understanding Visual Information: from Unsupervised Discovery to Minimal Effort Domain Adaptation,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +4b519e2e88ccd45718b0fc65bfd82ebe103902f7,A Discriminative Model for Age Invariant Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +4b519e2e88ccd45718b0fc65bfd82ebe103902f7,A Discriminative Model for Age Invariant Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +4b519e2e88ccd45718b0fc65bfd82ebe103902f7,A Discriminative Model for Age Invariant Face Recognition,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.59014110,127.03623180,edu, +4b3f425274b0c2297d136f8833a31866db2f2aec,Toward Open-Set Face Recognition,"University of Colorado, Colorado Springs",University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.89207560,-104.79716389,edu, +4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.08939224,edu, +4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,University of Nevada,University of Nevada,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.54694490,-119.81346566,edu, +4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.08939224,edu, +4bd088ba3f42aa1e43ae33b1988264465a643a1f,"IDE 0852 , May 2008 Multiview Face Detection Using Gabor Filters and Support Vector Machine",Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.87929727,edu, +4bfce41cc72be315770861a15e467aa027d91641,Active Annotation Translation,University of Iceland,University of Iceland,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland",64.13727400,-21.94561454,edu, +4b61d8490bf034a2ee8aa26601d13c83ad7f843a,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +4b61d8490bf034a2ee8aa26601d13c83ad7f843a,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4bd3de97b256b96556d19a5db71dda519934fd53,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +4bd3de97b256b96556d19a5db71dda519934fd53,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.59539950,-48.61542180,edu, +4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,Rowland Institute,Rowland Institute,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA",42.36398620,-71.07782930,edu, +4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.36262950,-71.09144810,edu, +4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +4ba38262fe20fab3e4c80215147b498f83843b93,Obtaining the Shape of a Moving Object with a Specular Surface,Cambridge Research Laboratory,Cambridge Research Laboratory,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK",52.17333465,0.14989946,edu, +4ba38262fe20fab3e4c80215147b498f83843b93,Obtaining the Shape of a Moving Object with a Specular Surface,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +4bbe460ab1b279a55e3c9d9f488ff79884d01608,GAGAN: Geometry-Aware Generative Adversarial Networks,Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.22963221,edu, +4bbe460ab1b279a55e3c9d9f488ff79884d01608,GAGAN: Geometry-Aware Generative Adversarial Networks,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +4b3eaedac75ac419c2609e131ea9377ba8c3d4b8,Fast Newton active appearance models,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.54873472,edu, +4b3eaedac75ac419c2609e131ea9377ba8c3d4b8,Fast Newton active appearance models,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +4b507a161af8a7dd41e909798b9230f4ac779315,A Theory of Multiplexed Illumination,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +4b02387c2db968a70b69d98da3c443f139099e91,Detecting facial landmarks in the video based on a hybrid framework,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.13538360,113.29470496,edu, +4b02387c2db968a70b69d98da3c443f139099e91,Detecting facial landmarks in the video based on a hybrid framework,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.13538360,113.29470496,edu, +4b71d1ff7e589b94e0f97271c052699157e6dc4a,Pose-Encoded Spherical Harmonics for Face Recognition and Synthesis Using a Single Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4b0a2937f64df66cadee459a32ad7ae6e9fd7ed2,"Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset",University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +4b4ecc1cb7f048235605975ab37bb694d69f63e5,Nonlinear Embedding Transform for Unsupervised Domain Adaptation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +4be774af78f5bf55f7b7f654f9042b6e288b64bd,Variational methods for Conditional Multimodal Learning: Generating Human Faces from Attributes,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +4b321065f6a45e55cb7f9d7b1055e8ac04713b41,Affective Computing Models for Character Animation,Liverpool John Moores University,Liverpool John Moores University,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK",53.40507470,-2.97030029,edu, +4b605e6a9362485bfe69950432fa1f896e7d19bf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +4b3dd18882ff2738aa867b60febd2b35ab34dffc,Facial Feature Analysis of Spontaneous Facial Expression,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +4b3dd18882ff2738aa867b60febd2b35ab34dffc,Facial Feature Analysis of Spontaneous Facial Expression,American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.23664139,edu, +11a2ef92b6238055cf3f6dcac0ff49b7b803aee3,Towards reduction of the training and search running time complexities for non-rigid object segmentation,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +11dc744736a30a189f88fa81be589be0b865c9fa,A Unified Multiplicative Framework for Attribute Learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +11dc744736a30a189f88fa81be589be0b865c9fa,A Unified Multiplicative Framework for Attribute Learning,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +11a210835b87ccb4989e9ba31e7559bb7a9fd292,A fuzzy approximator with Gaussian membership functions to estimate a human's head pose,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +11a210835b87ccb4989e9ba31e7559bb7a9fd292,A fuzzy approximator with Gaussian membership functions to estimate a human's head pose,Ferdowsi University of Mashhad,Ferdowsi University of Mashhad,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ‏ایران‎",36.30766160,59.52690511,edu, +118ca3b2e7c08094e2a50137b1548ada7935e505,A Dataset To Evaluate The Representations Learned By Video Prediction Models,Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.40253645,-122.11655107,edu, +11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +113c22eed8383c74fe6b218743395532e2897e71,MODEC: Multimodal Decomposable Models for Human Pose Estimation,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +11408af8861fb0a977412e58c1a23d61b8df458c,A robust learning algorithm based on SURF and PSM for facial expression recognition,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +11408af8861fb0a977412e58c1a23d61b8df458c,A robust learning algorithm based on SURF and PSM for facial expression recognition,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +11cc0774365b0cc0d3fa1313bef3d32c345507b1,Face Recognition Using Active Near-IR Illumination,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +11269e98f072095ff94676d3dad34658f4876e0e,Facial expression recognition with multithreaded cascade of rotation-invariant HOG,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +11269e98f072095ff94676d3dad34658f4876e0e,Facial expression recognition with multithreaded cascade of rotation-invariant HOG,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +11269e98f072095ff94676d3dad34658f4876e0e,Facial expression recognition with multithreaded cascade of rotation-invariant HOG,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +113e5678ed8c0af2b100245057976baf82fcb907,Facing Imbalanced Data--Recommendations for the Use of Performance Metrics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +113e5678ed8c0af2b100245057976baf82fcb907,Facing Imbalanced Data--Recommendations for the Use of Performance Metrics,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +11c04c4f0c234a72f94222efede9b38ba6b2306c,Real-time human action recognition by luminance field trajectory analysis,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +11c04c4f0c234a72f94222efede9b38ba6b2306c,Real-time human action recognition by luminance field trajectory analysis,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,Action Recognition by Learning Deep Multi-Granular Spatio-Temporal Video Representation,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,Action Recognition by Learning Deep Multi-Granular Spatio-Temporal Video Representation,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,Action Recognition by Learning Deep Multi-Granular Spatio-Temporal Video Representation,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +11a47a91471f40af5cf00449954474fd6e9f7694,NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification,Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.42050016,edu, +11b3877df0213271676fa8aa347046fd4b1a99ad,Unsupervised Identification of Multiple Objects of Interest from Multiple Images: dISCOVER,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1130c38e88108cf68b92ecc61a9fc5aeee8557c9,Dynamically encoded actions based on spacetime saliency,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.77439110,-79.50481085,edu, +11b89011298e193d9e6a1d99302221c1d8645bda,Structured Feature Selection,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,"Advanced Digital Sciences Center, Singapore","Advanced Digital Sciences Center, Singapore","1 Create Way, 14-02 Create Tower, Singapore 138602",1.30372570,103.77377630,edu, +1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,Squared Earth Mover ’ s Distance Loss for Training Deep Neural Networks on Ordered-Classes,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0,Hybrid Cascade Model for Face Detection in the Wild Based on Normalized Pixel Difference and a Deep Convolutional Neural Network,University of Zagreb,"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia","Unska ul. 3, 10000, Zagreb, Croatia",45.80112100,15.97084090,edu, +117f164f416ea68e8b88a3005e55a39dbdf32ce4,Neuroaesthetics in fashion: Modeling the perception of fashionability,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4,Face Recognition and Representation by Tensor-based MPCA Approach,Chosun University,Chosun University,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국",35.14410310,126.92578580,edu, +7d2556d674ad119cf39df1f65aedbe7493970256,Now You Shake Me : Towards Automatic 4 D Cinema,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +7d94fd5b0ca25dd23b2e36a2efee93244648a27b,Convolutional Network for Attribute-driven and Identity-preserving Human Face Generation,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +7d94fd5b0ca25dd23b2e36a2efee93244648a27b,Convolutional Network for Attribute-driven and Identity-preserving Human Face Generation,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +7d8c2d29deb80ceed3c8568100376195ce0914cb,Identity-Aware Textual-Visual Matching with Latent Co-attention,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +7d306512b545df98243f87cb8173df83b4672b18,Flag Manifolds for the Characterization of Geometric Structure in Large Data Sets,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +7d41b67a641426cb8c0f659f0ba74cdb60e7159a,Soft biometric retrieval to describe and identify surveillance images,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +7d1688ce0b48096e05a66ead80e9270260cb8082,Real vs. Fake Emotion Challenge: Learning to Rank Authenticity from Facial Activity Descriptors,Otto von Guericke University,Otto von Guericke University,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.64471248,edu, +7d53678ef6009a68009d62cd07c020706a2deac3,Facial Feature Point Extraction Using the Adaptive Mean Shape in Active Shape Model,Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.55572710,127.04366420,edu, +7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04900470,113.39715710,edu, +7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04900470,113.39715710,edu, +7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,Education University of Hong Kong,The Education University of Hong Kong,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国",22.46935655,114.19474194,edu, +7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04900470,113.39715710,edu, +7df4f96138a4e23492ea96cf921794fc5287ba72,A Jointly Learned Deep Architecture for Facial Attribute Analysis and Face Detection in the Wild,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +7dd578878e84337d6d0f5eb593f22cabeacbb94c,Classifiers for Driver Activity Monitoring,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.23708813,edu, +7df268a3f4da7d747b792882dfb0cbdb7cc431bc,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +7df268a3f4da7d747b792882dfb0cbdb7cc431bc,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +7de386bf2a1b2436c836c0cc1f1f23fccb24aad6,Finding What the Driver Does Final Report Prepared by : Harini Veeraraghavan,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.23708813,edu, +2914e8c62f0432f598251fae060447f98141e935,Activity Analysis of Spectator Performer Videos Using Motion Trajectories,University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.81747230,-96.70444680,edu, +2902f62457fdf7e8e8ee77a9155474107a2f423e,Non-rigid 3D Shape Registration using an Adaptive Template,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea,Parametric Dictionaries and Feature Augmentation for Continuous Domain Adaptation,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea,Parametric Dictionaries and Feature Augmentation for Continuous Domain Adaptation,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +29fc4de6b680733e9447240b42db13d5832e408f,Recognition of Facial Expressions Based on Tracking and Selection of Discriminative Geometric Features,Korea Electronics Technology Institute,Korea Electronics Technology Institute,"South Korea, Gyeonggi-do, Seongnam-si, Bundang-gu, 새나리로 25 (야탑동) KETI 전자부품연구원",37.40391700,127.15978600,edu, +29fc4de6b680733e9447240b42db13d5832e408f,Recognition of Facial Expressions Based on Tracking and Selection of Discriminative Geometric Features,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.13501330,edu, +29fc4de6b680733e9447240b42db13d5832e408f,Recognition of Facial Expressions Based on Tracking and Selection of Discriminative Geometric Features,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +2912c3ea67678a1052d7d5cbe734a6ad90fc360e,Facial Feature Detection using a Virtual Structuring Element,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +29f4ac49fbd6ddc82b1bb697820100f50fa98ab6,The benefits and challenges of collecting richer object annotations,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +2910fcd11fafee3f9339387929221f4fc1160973,Evaluating Open-Universe Face Identification on the Web,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +2910fcd11fafee3f9339387929221f4fc1160973,Evaluating Open-Universe Face Identification on the Web,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +29479bb4fe8c04695e6f5ae59901d15f8da6124b,Multiple instance learning for labeling faces in broadcasting news video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +29479bb4fe8c04695e6f5ae59901d15f8da6124b,Multiple instance learning for labeling faces in broadcasting news video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +29479bb4fe8c04695e6f5ae59901d15f8da6124b,Multiple instance learning for labeling faces in broadcasting news video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +291f527598c589fb0519f890f1beb2749082ddfd,Seeing People in Social Context: Recognizing People and Social Relationships,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +291265db88023e92bb8c8e6390438e5da148e8f5,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +29c340c83b3bbef9c43b0c50b4d571d5ed037cbd,Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +297d3df0cf84d24f7efea44f87c090c7d9be4bed,Appearance-Based 3-D Face Recognition from Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +297d3df0cf84d24f7efea44f87c090c7d9be4bed,Appearance-Based 3-D Face Recognition from Video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +29b86534d4b334b670914038c801987e18eb5532,Total Cluster: A person agnostic clustering method for broadcast videos,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +29b86534d4b334b670914038c801987e18eb5532,Total Cluster: A person agnostic clustering method for broadcast videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +29b86534d4b334b670914038c801987e18eb5532,Total Cluster: A person agnostic clustering method for broadcast videos,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +29631ca6cff21c9199c70bcdbbcd5f812d331a96,Error Rates in Users of Automatic Face Recognition Software,University of New South Wales,University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.23124025,edu, +29631ca6cff21c9199c70bcdbbcd5f812d331a96,Error Rates in Users of Automatic Face Recognition Software,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +2983efadb1f2980ab5ef20175f488f77b6f059d7,Emotion in Human–computer Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +2911e7f0fb6803851b0eddf8067a6fc06e8eadd6,Joint Fine-Tuning in Deep Neural Networks for Facial Expression Recognition,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +29921072d8628544114f68bdf84deaf20a8c8f91,Multi-task Curriculum Transfer Deep Learning of Clothing Attributes,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +2969f822b118637af29d8a3a0811ede2751897b5,Cascaded Shape Space Pruning for Robust Facial Landmark Detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +29f0414c5d566716a229ab4c5794eaf9304d78b6,Biometric Template Security,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +7c61d21446679776f7bdc7afd13aedc96f9acac1,Hierarchical Label Inference for Video Classification,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +7c61d21446679776f7bdc7afd13aedc96f9acac1,Hierarchical Label Inference for Video Classification,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +7c61d21446679776f7bdc7afd13aedc96f9acac1,Hierarchical Label Inference for Video Classification,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +7c7ab59a82b766929defd7146fd039b89d67e984,Improving multiview face detection with multi-task deep convolutional neural networks,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +7ca337735ec4c99284e7c98f8d61fb901dbc9015,Driver activity monitoring through supervised and unsupervised learning,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.23708813,edu, +7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +7c17280c9193da3e347416226b8713b99e7825b8,VideoCapsuleNet: A Simplified Network for Action Detection,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,"University of Colorado, Colorado Springs",University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.89207560,-104.79716389,edu, +7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +7c4c442e9c04c6b98cd2aa221e9d7be15efd8663,Classifier learning with hidden information,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719d,Dissimilarity-Based Classifications in Eigenspaces,Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.23810230,127.19034310,edu, +7cf8a841aad5b7bdbea46a7bb820790e9ce12d0b,Supervised Heat Kernel Lpp Method for Face Recognition,Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.74115040,-111.81223090,edu, +7c9622ad1d8971cd74cc9e838753911fe27ccac4,Representation Learning with Smooth Autoencoder,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +7c2c9b083817f7a779d819afee383599d2e97ed8,"Disentangling Motion, Foreground and Background Features in Videos",Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +7c2c9b083817f7a779d819afee383599d2e97ed8,"Disentangling Motion, Foreground and Background Features in Videos","Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +7c2c9b083817f7a779d819afee383599d2e97ed8,"Disentangling Motion, Foreground and Background Features in Videos",Facebook,Facebook,"250 Bryant St, Mountain View, CA 94041, USA",37.39367170,-122.08072620,company,"Facebook, Mountain View, CA" +7c45339253841b6f0efb28c75f2c898c79dfd038,Unsupervised Joint Alignment of Complex Images,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +7c825562b3ff4683ed049a372cb6807abb09af2a,Finding Tiny Faces Supplementary Materials,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +7c825562b3ff4683ed049a372cb6807abb09af2a,Finding Tiny Faces Supplementary Materials,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7c36afc9828379de97f226e131390af719dbc18d,Unsupervised face-name association via commute distance,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +7c36afc9828379de97f226e131390af719dbc18d,Unsupervised face-name association via commute distance,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d,Stereo Matching for Unconstrained Face Recognition Ph . D . Proposal,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +7c42371bae54050dbbf7ded1e7a9b4109a23a482,Optimized features selection using hybrid PSO-GA for multi-view gender classification,Foundation University Rawalpindi Campus,Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, ‏پاکستان‎",33.56095040,73.07125966,edu, +7c42371bae54050dbbf7ded1e7a9b4109a23a482,Optimized features selection using hybrid PSO-GA for multi-view gender classification,University of Central Punjab,University of Central Punjab,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54000, ‏پاکستان‎",31.44661490,74.26797620,edu, +7c42371bae54050dbbf7ded1e7a9b4109a23a482,Optimized features selection using hybrid PSO-GA for multi-view gender classification,University of Dammam,University of Dammam,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.39793625,50.19807924,edu, +7c953868cd51f596300c8231192d57c9c514ae17,Detecting and Aligning Faces by Image Retrieval,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +7c6dbaebfe14878f3aee400d1378d90d61373921,A Novel Biometric Feature Extraction Algorithm using Two Dimensional Fisherface in 2DPCA subspace for Face Recognition,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.35788990,151.37834708,edu, +7c80d91db5977649487388588c0c823080c9f4b4,DocFace: Matching ID Document Photos to Selfies,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +7c30ea47f5ae1c5abd6981d409740544ed16ed16,Informed Democracy: Voting-based Novelty Detection for Action Recognition,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +1648cf24c042122af2f429641ba9599a2187d605,Boosting cross-age face verification via generative age normalization,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +16fdd6d842475e6fbe58fc809beabbed95f0642e,Learning Temporal Embeddings for Complex Video Analysis,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +1677d29a108a1c0f27a6a630e74856e7bddcb70d,Efficient Misalignment-Robust Representation for Real-Time Face Recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +16b9d258547f1eccdb32111c9f45e2e4bbee79af,NormFace: L2 Hypersphere Embedding for Face Verification,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +16b9d258547f1eccdb32111c9f45e2e4bbee79af,NormFace: L2 Hypersphere Embedding for Face Verification,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +162dfd0d2c9f3621d600e8a3790745395ab25ebc,Head Pose Estimation Based on Multivariate Label Distribution,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.71733390,-80.27866887,edu, +16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.71733390,-80.27866887,edu, +16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +16572c545384174f8136d761d2b0866e968120a8,Sequential Max-Margin Event Detectors,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +16820ccfb626dcdc893cc7735784aed9f63cbb70,Real-time embedded age and gender classification in unconstrained video,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +164b0e2a03a5a402f66c497e6c327edf20f8827b,Sparse Deep Transfer Learning for Convolutional Neural Network,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +164b0e2a03a5a402f66c497e6c327edf20f8827b,Sparse Deep Transfer Learning for Convolutional Neural Network,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +1667a77db764e03a87a3fd167d88b060ef47bb56,Alternative Semantic Representations for Zero-Shot Human Action Recognition,University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300881,edu, +169618b8dc9b348694a31c6e9e17b989735b4d39,Unsupervised Representation Learning by Sorting Sequences,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,Beijing Union University,Beijing Union University,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.98900680,116.42067718,edu, +16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,Beijing Union University,Beijing Union University,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.98900680,116.42067718,edu, +16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,Capital Normal University,Capital Normal University,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.92864575,116.30104052,edu, +16d6737b50f969247339a6860da2109a8664198a,Convolutional Neural Networks for Age and Gender Classification,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +1610d2d4947c03a89c0fda506a74ba1ae2bc54c2,"Robust Real-Time 3D Face Tracking from RGBD Videos under Extreme Pose, Depth, and Expression Variation",Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,Recent developments in social signal processing,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,Recent developments in social signal processing,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,Recent developments in social signal processing,University of Glasgow,University of Glasgow,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK",55.87231535,-4.28921784,edu, +167736556bea7fd57cfabc692ec4ae40c445f144,Improved Motion Description for Action Classification,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +167ea1631476e8f9332cef98cf470cb3d4847bc6,Visual Search at Pinterest,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +420782499f38c1d114aabde7b8a8104c9e40a974,Fashion Style in 128 Floats: Joint Ranking and Classification Using Weak Data for Feature Extraction,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +4217473596b978f13a211cdf47b7d3f6588c785f,An efficient approach for clustering face images,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +4223666d1b0b1a60c74b14c2980069905088edc6,A Convergent Incoherent Dictionary Learning Algorithm for Sparse Coding,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +42afe6d016e52c99e2c0d876052ade9c192d91e7,Spontaneous vs. posed facial behavior: automatic analysis of brow actions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +42afe6d016e52c99e2c0d876052ade9c192d91e7,Spontaneous vs. posed facial behavior: automatic analysis of brow actions,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +42afe6d016e52c99e2c0d876052ade9c192d91e7,Spontaneous vs. posed facial behavior: automatic analysis of brow actions,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +42765c170c14bd58e7200b09b2e1e17911eed42b,Feature Extraction Based on Wavelet Moments and Moment Invariants in Machine Vision Systems,Democritus University of Thrace,Democritus University of Thrace,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα",40.84941785,25.83444939,edu, +4223917177405eaa6bdedca061eb28f7b440ed8e,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +4223917177405eaa6bdedca061eb28f7b440ed8e,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +4223917177405eaa6bdedca061eb28f7b440ed8e,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +42eda7c20db9dc0f42f72bb997dd191ed8499b10,Gaze Embeddings for Zero-Shot Image Classification,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +42eda7c20db9dc0f42f72bb997dd191ed8499b10,Gaze Embeddings for Zero-Shot Image Classification,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +42c9394ca1caaa36f535721fa9a64b2c8d4e0dee,Label Efficient Learning of Transferable Representations across Domains and Tasks,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +42c9394ca1caaa36f535721fa9a64b2c8d4e0dee,Label Efficient Learning of Transferable Representations across Domains and Tasks,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +4205cb47ba4d3c0f21840633bcd49349d1dc02c1,Action recognition with gradient boundary convolutional network,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +4205cb47ba4d3c0f21840633bcd49349d1dc02c1,Action recognition with gradient boundary convolutional network,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +4205cb47ba4d3c0f21840633bcd49349d1dc02c1,Action recognition with gradient boundary convolutional network,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +42ded74d4858bea1070dadb08b037115d9d15db5,Exigent: An Automatic Avatar Generation System,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +42ea8a96eea023361721f0ea34264d3d0fc49ebd,Parameterized Principal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +42f6f5454dda99d8989f9814989efd50fe807ee8,Conditional generative adversarial nets for convolutional face generation,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,Face Recognition From Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +89002a64e96a82486220b1d5c3f060654b24ef2a,PIEFA: Personalized Incremental and Ensemble Face Alignment,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +89e7d23e0c6a1d636f2da68aaef58efee36b718b,Lucas-Kanade Scale Invariant Feature Transform for Uncontrolled Viewpoint Face Recognition,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.13501330,edu, +89f4bcbfeb29966ab969682eae235066a89fc151,A comparison of photometric normalisation algorithms for face verification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +892c911ca68f5b4bad59cde7eeb6c738ec6c4586,"The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English",Ryerson University,Ryerson University,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.37908010,edu, +8986585975c0090e9ad97bec2ba6c4b437419dae,Unsupervised Hard Example Mining from Videos for Improved Object Detection,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +89cabb60aa369486a1ebe586dbe09e3557615ef8,Bayesian Networks as Generative Models for Face Recognition,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +8983485996d5d9d162e70d66399047c5d01ac451,Deep feature-based face detection on mobile devices,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +8983485996d5d9d162e70d66399047c5d01ac451,Deep feature-based face detection on mobile devices,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +8981be3a69cd522b4e57e9914bf19f034d4b530c,Fast Automatic Video Retrieval using Web Images,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +896f4d87257abd0f628c1ffbbfdac38c86a56f50,Action and Gesture Temporal Spotting with Super Vector Representation,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.69784700,104.05208110,edu, +896f4d87257abd0f628c1ffbbfdac38c86a56f50,Action and Gesture Temporal Spotting with Super Vector Representation,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +896f4d87257abd0f628c1ffbbfdac38c86a56f50,Action and Gesture Temporal Spotting with Super Vector Representation,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +451b6409565a5ad18ea49b063561a2645fa4281b,Action Sets: Weakly Supervised Action Segmentation without Ordering Constraints,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.73381240,7.10224650,edu, +455204fa201e9936b42756d362f62700597874c4,A Region Based Methodology for Facial Expression Recognition,University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.61623060,20.83963011,edu, +455204fa201e9936b42756d362f62700597874c4,A Region Based Methodology for Facial Expression Recognition,University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.61623060,20.83963011,edu, +4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec,Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec,Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +459960be65dd04317dd325af5b7cbb883d822ee4,The Meme Quiz: A Facial Expression Game Combining Human Agency and Machine Involvement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +45f858f9e8d7713f60f52618e54089ba68dfcd6d,What Actions are Needed for Understanding Human Actions in Videos?,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +45215e330a4251801877070c85c81f42c2da60fb,Domain Adaptive Dictionary Learning,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +45215e330a4251801877070c85c81f42c2da60fb,Domain Adaptive Dictionary Learning,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +457cf73263d80a1a1338dc750ce9a50313745d1d,Decomposing Motion and Content for Natural Video Sequence Prediction,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +457cf73263d80a1a1338dc750ce9a50313745d1d,Decomposing Motion and Content for Natural Video Sequence Prediction,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +45e616093a92e5f1e61a7c6037d5f637aa8964af,Fine-grained evaluation on face detection in the wild,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +45c31cde87258414f33412b3b12fc5bec7cb3ba9,Coding Facial Expressions with Gabor Wavelets,Kyushu University,Kyushu University,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本",33.59914655,130.22359848,edu, +4542273a157bfd4740645a6129d1784d1df775d2,FaceRipper Automatic Face Indexer and Tagger for Personal Albums and Videos,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +45513d0f2f5c0dac5b61f9ff76c7e46cce62f402,Face Discovery with Social Context,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,Towards Interpretable Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +1f9b2f70c24a567207752989c5bd4907442a9d0f,Deep Representations to Model User 'Likes',Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +1f9b2f70c24a567207752989c5bd4907442a9d0f,Deep Representations to Model User 'Likes',"Institute for Infocomm Research, Singapore","Institute for Infocomm Research, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +1fe1bd6b760e3059fff73d53a57ce3a6079adea1,Fast-BoW: Scaling Bag-of-Visual-Words Generation,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +1f05473c587e2a3b587f51eb808695a1c10bc153,Towards Good Practices for Very Deep Two-Stream ConvNets,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1f05473c587e2a3b587f51eb808695a1c10bc153,Towards Good Practices for Very Deep Two-Stream ConvNets,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +1fa3948af1c338f9ae200038c45adadd2b39a3e4,Computational Explorations of Split Architecture in Modeling Face and Object Recognition,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +1fa3948af1c338f9ae200038c45adadd2b39a3e4,Computational Explorations of Split Architecture in Modeling Face and Object Recognition,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1fd6004345245daf101c98935387e6ef651cbb55,Learning Symmetry Features for Face Detection Based on Sparse Group Lasso,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +1fe59275142844ce3ade9e2aed900378dd025880,Facial Landmark Detection via Progressive Initialization,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +1fe121925668743762ce9f6e157081e087171f4c,Unsupervised learning of overcomplete face descriptors,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58d,vExplorer: A Search Method to Find Relevant YouTube Videos for Health Researchers,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +1fdeba9c4064b449231eac95e610f3288801fd3e,Fine-Grained Head Pose Estimation Without Keypoints,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +1f745215cda3a9f00a65166bd744e4ec35644b02,Facial cosmetics database and impact analysis on automatic face recognition,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,Age interval and gender prediction using PARAFAC2 on speech recordings and face images,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +1f24cef78d1de5aa1eefaf344244dcd1972797e8,Outlier-Robust Tensor PCA,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +1fe990ca6df273de10583860933d106298655ec8,A Wavelet-Based Image Preprocessing Method or Illumination Insensitive Face Recognition,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.62850666,edu, +1feeab271621128fe864e4c64bab9b2e2d0ed1f1,Perception-Link Behavior Model: Supporting a Novel Operator Interface for a Customizable Anthropomorphic Telepresence Robot,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +73b90573d272887a6d835ace89bfaf717747c59b,Feature Disentangling Machine - A Novel Approach of Feature Selection and Disentangling in Facial Expression Analysis,University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.99282980,-81.02685168,edu, +739d400cb6fb730b894182b29171faaae79e3f01,A New Regularized Orthogonal Local Fisher Discriminant Analysis for Image Feature Extraction,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.19453410,edu, +732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +738a985fba44f9f5acd516e07d0d9578f2ffaa4e,Machine Learning Techniques for Face Analysis,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +73fd7e74457e0606704c5c3d3462549f1b2de1ad,Learning Predictable and Discriminative Attributes for Visual Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +73c5bab5c664afa96b1c147ff21439135c7d968b,Whitened LDA for face recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +73c5bab5c664afa96b1c147ff21439135c7d968b,Whitened LDA for face recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +73c5bab5c664afa96b1c147ff21439135c7d968b,Whitened LDA for face recognition,SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.30031270,126.97212300,edu, +877100f430b72c5d60de199603ab5c65f611ce17,Within-person variability in men’s facial width-to-height ratio,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +870433ba89d8cab1656e57ac78f1c26f4998edfb,Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,L2-constrained Softmax Loss for Discriminative Face Verification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f,Ordered Pooling of Optical Flow Sequences for Action Recognition,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +87309bdb2b9d1fb8916303e3866eca6e3452c27d,Kernel Coding: General Formulation and Special Cases,"Australian National University, Canberra","Australian National University, Canberra","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331,edu, +87147418f863e3d8ff8c97db0b42695a1c28195b,Attributes for Improved Attributes: A Multi-Task Network for Attribute Classification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +808b685d09912cbef4a009e74e10476304b4cccf,From Understanding to Controlling Privacy against Automatic Person Recognition in Social Media,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +80277fb3a8a981933533cf478245f262652a33b5,Synergy-Based Learning of Facial Identity,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +80840df0802399838fe5725cce829e1b417d7a2e,Fast Approximate L_infty Minimization: Speeding Up Robust Regression,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +80840df0802399838fe5725cce829e1b417d7a2e,Fast Approximate L_infty Minimization: Speeding Up Robust Regression,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +809ea255d144cff780300440d0f22c96e98abd53,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +809ea255d144cff780300440d0f22c96e98abd53,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +80be8624771104ff4838dcba9629bacfe6b3ea09,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,"Advanced Digital Sciences Center, Singapore","Advanced Digital Sciences Center, Singapore","1 Create Way, 14-02 Create Tower, Singapore 138602",1.30372570,103.77377630,edu, +80be8624771104ff4838dcba9629bacfe6b3ea09,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +80be8624771104ff4838dcba9629bacfe6b3ea09,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +80be8624771104ff4838dcba9629bacfe6b3ea09,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +8000c4f278e9af4d087c0d0895fff7012c5e3d78,Multi-task warped Gaussian process for personalized age estimation,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +80bd795930837330e3ced199f5b9b75398336b87,Relative Forest for Attribute Prediction,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +74de03923a069ffc0fb79e492ee447299401001f,On Film Character Retrieval in Feature-Length Films,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +74de03923a069ffc0fb79e492ee447299401001f,On Film Character Retrieval in Feature-Length Films,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +74f643579949ccd566f2638b85374e7a6857a9fc,Monogenic Binary Pattern (MBP): A Novel Feature Extraction and Representation Model for Face Recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +74ce7e5e677a4925489897665c152a352c49d0a2,SPG-Net: Segmentation Prediction and Guidance Network for Image Inpainting,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +740e095a65524d569244947f6eea3aefa3cca526,Towards Human-like Performance Face Detection: A Convolutional Neural Network Approach,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,Context and Subcategories for SlidingWindowObject Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,Context and Subcategories for SlidingWindowObject Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +741485741734a99e933dd0302f457158c6842adf,A Novel Automatic Facial Expression Recognition Method Based on AAM,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +748e72af01ba4ee742df65e9c030cacec88ce506,Discriminative Regions Selection for Facial Expression Recognition,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +748e72af01ba4ee742df65e9c030cacec88ce506,Discriminative Regions Selection for Facial Expression Recognition,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +74875368649f52f74bfc4355689b85a724c3db47,Object detection by labeling superpixels,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +7492c611b1df6bce895bee6ba33737e7fc7f60a6,The 3D Menpo Facial Landmark Tracking Challenge,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +7492c611b1df6bce895bee6ba33737e7fc7f60a6,The 3D Menpo Facial Landmark Tracking Challenge,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +7492c611b1df6bce895bee6ba33737e7fc7f60a6,The 3D Menpo Facial Landmark Tracking Challenge,University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.73693020,-3.53647672,edu, +1a41e5d93f1ef5b23b95b7163f5f9aedbe661394,Alignment-Free and High-Frequency Compensation in Face Hallucination,Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.03332810,135.72491540,edu, +1a65cc5b2abde1754b8c9b1d932a68519bcb1ada,Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +1a65cc5b2abde1754b8c9b1d932a68519bcb1ada,Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency,"University of California, Los Angeles","University of California, Los Angeles","200 UCLA, Medical Plaza Driveway Suite 540, Los Angeles, CA 90095, USA",34.06877880,-118.44500940,edu, +1aa766bbd49bac8484e2545c20788d0f86e73ec2,"Baseline face detection, head pose estimation, and coarse direction detection for facial data in the SHRP2 naturalistic driving study",Oak Ridge National Laboratory,Oak Ridge National Laboratory,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.31240032,edu, +1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,Online robust image alignment via iterative convex optimization,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,Online robust image alignment via iterative convex optimization,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +1ac2882559a4ff552a1a9956ebeadb035cb6df5b,How much training data for facial action unit detection?,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +1ac2882559a4ff552a1a9956ebeadb035cb6df5b,How much training data for facial action unit detection?,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +1a7a17c4f97c68d68fbeefee1751d349b83eb14a,Iterative Hessian Sketch: Fast and Accurate Solution Approximation for Constrained Least-Squares,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +1aef6f7d2e3565f29125a4871cd60c4d86c48361,Subhashini VenugopalanProposal,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.05044565,edu, +1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +1a140d9265df8cf50a3cd69074db7e20dc060d14,Face Parts Localization Using Structured-Output Regression Forests,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +1a85956154c170daf7f15f32f29281269028ff69,Active Pictorial Structures,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6,Deep Learning for Video Classification and Captioning,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9,Face Recognition Under Illumination Variation Using Shadow Compensation and Pixel Selection,Dankook University,Dankook University,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.32195750,127.12507230,edu, +1a40092b493c6b8840257ab7f96051d1a4dbfeb2,Sports Videos in the Wild (SVW): A video dataset for sports analysis,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +1a6c9ef99bf0ab9835a91fe5f1760d98a0606243,ConceptMap: Mining Noisy Web Data for Concept Learning,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87204890,32.75395155,edu, +1afdedba774f6689eb07e048056f7844c9083be9,Markov Random Field Structures for Facial Action Unit Intensity Estimation,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +1afdedba774f6689eb07e048056f7844c9083be9,Markov Random Field Structures for Facial Action Unit Intensity Estimation,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43,Max-margin Latent Dirichlet Allocation for Image Classification and Annotation,Fraser University,Fraser University,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA",44.96898360,-93.20941629,edu, +2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,Two-Stage Optimal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,Two-Stage Optimal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,Two-Stage Optimal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +28a900a07c7cbce6b6297e4030be3229e094a950,Local directional pattern variance (ldpv): a robust feature descriptor for facial expression recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +282503fa0285240ef42b5b4c74ae0590fe169211,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +282503fa0285240ef42b5b4c74ae0590fe169211,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43,Bayesian Data Association for Temporal Scene Understanding,University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.23517260,-110.95095832,edu, +28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +28e1668d7b61ce21bf306009a62b06593f1819e3,"Correction: Validation of the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions",University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +286adff6eff2f53e84fe5b4d4eb25837b46cae23,Single-Image Depth Perception in the Wild,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +286812ade95e6f1543193918e14ba84e5f8e852e,Robust 3D Face Shape Reconstruction from Single Images via Two-Fold Coupled Structure Learning,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +28f311b16e4fe4cc0ff6560aae3bbd0cb6782966,Learning Language from Perceptual Context,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +28d06fd508d6f14cd15f251518b36da17909b79e,What's in a Name? First Names as Facial Attributes,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +28d06fd508d6f14cd15f251518b36da17909b79e,What's in a Name? First Names as Facial Attributes,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +28d06fd508d6f14cd15f251518b36da17909b79e,What's in a Name? First Names as Facial Attributes,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +281486d172cf0c78d348ce7d977a82ff763efccd,A Cost-Sensitive Visual Question-Answer Framework for Mining a Deep And-OR Object Semantics from Web Images,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +288964068cd87d97a98b8bc927d6e0d2349458a2,Mean-Variance Loss for Deep Age Estimation from a Face,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +288964068cd87d97a98b8bc927d6e0d2349458a2,Mean-Variance Loss for Deep Age Estimation from a Face,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +28c0cb56e7f97046d6f3463378d084e9ea90a89a,Automatic face recognition for film character retrieval in feature-length films,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +28be652db01273289499bc6e56379ca0237506c0,FaLRR: A fast low rank representation solver,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +2836d68c86f29bb87537ea6066d508fde838ad71,Personalized Age Progression with Aging Dictionary,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +2836d68c86f29bb87537ea6066d508fde838ad71,Personalized Age Progression with Aging Dictionary,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +28de411a5b3eb8411e7bcb0003c426aa91f33e97,Emotion Detection Using Facial Expressions -A Review,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.81563045,edu, +28de411a5b3eb8411e7bcb0003c426aa91f33e97,Emotion Detection Using Facial Expressions -A Review,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.81563045,edu, +28b26597a7237f9ea6a9255cde4e17ee18122904,Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +28d99dc2d673d62118658f8375b414e5192eac6f,Using Ranking-CNN for Age Estimation,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.35775700,-83.06286711,edu, +28d99dc2d673d62118658f8375b414e5192eac6f,Using Ranking-CNN for Age Estimation,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.35775700,-83.06286711,edu, +280bc9751593897091015aaf2cab39805768b463,Gender Perception From Faces Using Boosted LBPH (Local Binary Patten Histograms),"COMSATS Institute of Information Technology, Lahore",COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.40063320,74.21372960,edu, +288d2704205d9ca68660b9f3a8fda17e18329c13,Studying Very Low Resolution Recognition Using Deep Networks,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +17b46e2dad927836c689d6787ddb3387c6159ece,GeoFaceExplorer: exploring the geo-dependence of facial attributes,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +17b46e2dad927836c689d6787ddb3387c6159ece,GeoFaceExplorer: exploring the geo-dependence of facial attributes,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +1768909f779869c0e83d53f6c91764f41c338ab5,A large-scale car dataset for fine-grained categorization and verification,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1768909f779869c0e83d53f6c91764f41c338ab5,A large-scale car dataset for fine-grained categorization and verification,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +1768909f779869c0e83d53f6c91764f41c338ab5,A large-scale car dataset for fine-grained categorization and verification,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +171ca25bc2cdfc79cad63933bcdd420d35a541ab,Calibration-Free Gaze Estimation Using Human Gaze Patterns,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +176bd61cc843d0ed6aa5af83c22e3feb13b89fe1,Investigating Spontaneous Facial Action Recognition through AAM Representations of the Face,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +17d01f34dfe2136b404e8d7f59cebfb467b72b26,Riemannian Similarity Learning,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +176f26a6a8e04567ea71677b99e9818f8a8819d0,MEG: Multi-Expert Gender Classification from Face Images in a Demographics-Balanced Dataset,Sapienza University of Rome,Sapienza University of Rome,"Piazzale Aldo Moro, 5, 00185 Roma RM, Italy",41.90376260,12.51443840,edu, +176f26a6a8e04567ea71677b99e9818f8a8819d0,MEG: Multi-Expert Gender Classification from Face Images in a Demographics-Balanced Dataset,University of Naples Federico II,University of Naples Federico II,"Corso Umberto I, 40, 80138 Napoli NA, Italy",40.84549200,14.25780580,edu, +17370f848801871deeed22af152489e39b6e1454,Undersampled face recognition with one-pass dictionary learning,"Academia Sinica, Taiwan","Research Center for Institute of Information Science, Academia Sinica, Taiwan","115, Taiwan, Taipei City, Nangang District, 研究院路二段128號",25.04117270,121.61465180,edu, +17479e015a2dcf15d40190e06419a135b66da4e0,Predicting First Impressions With Deep Learning,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +17fa1c2a24ba8f731c8b21f1244463bc4b465681,Deep multi-scale video prediction beyond mean square error,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.99625394,edu, +17579791ead67262fcfb62ed8765e115fb5eca6f,Real-Time Fashion-guided Clothing Semantic Parsing: a Lightweight Multi-Scale Inception Neural Network and Benchmark,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +17579791ead67262fcfb62ed8765e115fb5eca6f,Real-Time Fashion-guided Clothing Semantic Parsing: a Lightweight Multi-Scale Inception Neural Network and Benchmark,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +177d1e7bbea4318d379f46d8d17720ecef3086ac,Learning Multi-channel Deep Feature Representations for Face Recognition,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.35775700,-83.06286711,edu, +177d1e7bbea4318d379f46d8d17720ecef3086ac,Learning Multi-channel Deep Feature Representations for Face Recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +170a5f5da9ac9187f1c88f21a88d35db38b4111a,Online Real-Time Multiple Spatiotemporal Action Localisation and Prediction,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.75552050,-1.22615970,edu, +170a5f5da9ac9187f1c88f21a88d35db38b4111a,Online Real-Time Multiple Spatiotemporal Action Localisation and Prediction,Oxford University,Oxford University,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK",51.75208490,-1.25166460,edu, +17a8d1b1b4c23a630b051f35e47663fc04dcf043,Differential Angular Imaging for Material Recognition,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +17a8d1b1b4c23a630b051f35e47663fc04dcf043,Differential Angular Imaging for Material Recognition,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.95740000,-75.19026706,edu, +171d8a39b9e3d21231004f7008397d5056ff23af,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +171d8a39b9e3d21231004f7008397d5056ff23af,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +171d8a39b9e3d21231004f7008397d5056ff23af,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.69784700,104.05208110,edu, +17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,Hengyang Normal University,Hengyang Normal University,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.86611360,112.62092122,edu, +17e563af203d469c456bb975f3f88a741e43fb71,Naming TV characters by watching and analyzing dialogs,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +171389529df11cc5a8b1fbbe659813f8c3be024d,Manifold Estimation in View-Based Feature Space for Face Synthesis across Poses,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +17d5e5c9a9ee4cf85dfbb9d9322968a6329c3735,Study on Parameter Selection Using SampleBoost,University of North Texas,University of North Texas,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.20988790,-97.15147488,edu, +17cf6195fd2dfa42670dc7ada476e67b381b8f69,Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882000,126.96190000,edu, +17cf6195fd2dfa42670dc7ada476e67b381b8f69,Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,University of Tennessee,University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.95424930,-83.93073950,edu, +174f46eccb5852c1f979d8c386e3805f7942bace,The Shape-Time Random Field for Semantic Video Labeling,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +17670b60dcfb5cbf8fdae0b266e18cf995f6014c,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +17670b60dcfb5cbf8fdae0b266e18cf995f6014c,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +17027a05c1414c9a06a1c5046899abf382a1142d,Articulated motion discovery using pairs of trajectories,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +17ded725602b4329b1c494bfa41527482bf83a6f,Compact Convolutional Neural Network Cascade for Face Detection,Tomsk Polytechnic University,Tomsk Polytechnic University,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ",56.46255985,84.95565495,edu, +17ded725602b4329b1c494bfa41527482bf83a6f,Compact Convolutional Neural Network Cascade for Face Detection,Tomsk Polytechnic University,Tomsk Polytechnic University,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ",56.46255985,84.95565495,edu, +177bc509dd0c7b8d388bb47403f28d6228c14b5c,"Deep Learning Face Representation from Predicting 10,000 Classes",Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +177bc509dd0c7b8d388bb47403f28d6228c14b5c,"Deep Learning Face Representation from Predicting 10,000 Classes",Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +177bc509dd0c7b8d388bb47403f28d6228c14b5c,"Deep Learning Face Representation from Predicting 10,000 Classes",Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +7b63ed54345d8c06523f6b03c41a09b5c8f227e2,Facial expression recognition based on combination of spatio-temporal and spectral features in local facial regions,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +7bf0a1aa1d0228a51d24c0c3a83eceb937a6ae25,"Video-based Car Surveillance: License Plate, Make, and Model Recognition","University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +7b43326477795a772c08aee750d3e433f00f20be,Computational Methods for Behavior Analysis,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +7be60f8c34a16f30735518d240a01972f3530e00,Facial expression recognition with temporal modeling of shapes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +8fe38962c24300129391f6d7ac24d7783e0fddd0,Visual Text Correction,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +8f3e120b030e6c1d035cb7bd9c22f6cc75782025,Bayesian Networks and the Imprecise Dirichlet Model Applied to Recognition Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +8fed5ea3b69ea441a8b02f61473eafee25fb2374,Two-Dimensional PCA with F-Norm Minimization,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +8fed5ea3b69ea441a8b02f61473eafee25fb2374,Two-Dimensional PCA with F-Norm Minimization,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +8f3da45ff0c3e1777c3a7830f79c10f5896bcc21,Riding Role Agent Vehicle Place Role Agent Vehicle Place Value Man Horse outside Value Dog Skateboard,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,Age Estimation Using Expectation of Label Distribution Learning,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,Age Estimation Using Expectation of Label Distribution Learning,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +8f08b2101d43b1c0829678d6a824f0f045d57da5,Supplementary Material for: Active Pictorial Structures,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +8fbec9105d346cd23d48536eb20c80b7c2bbbe30,The effectiveness of face detection algorithms in unconstrained crowd scenes,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +8f8a5be9dc16d73664285a29993af7dc6a598c83,Neural Network based Face Recognition with Gabor Filters,Jahangirnagar University,Jahangirnagar University,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.88331200,90.26939210,edu, +8f5ce25e6e1047e1bf5b782d045e1dac29ca747e,A Novel Discriminant Non-Negative Matrix Factorization Algorithm With Applications to Facial Image Characterization Problems,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +8f92cccacf2c84f5d69db3597a7c2670d93be781,Facial expression synthesis through facial expressions statistical analysis,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +8f6263e4d3775757e804796e104631c7a2bb8679,Characterizing Visual Representations within Convolutional Neural Networks: Toward a Quantitative Approach,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +8f6263e4d3775757e804796e104631c7a2bb8679,Characterizing Visual Representations within Convolutional Neural Networks: Toward a Quantitative Approach,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +8f60c343f76913c509ce623467bf086935bcadac,Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +8f5facdc0a2a79283864aad03edc702e2a400346,Estimation Framework using Bio - Inspired Features for Facial Image,Bangalore Institute of Technology,Bangalore Institute of Technology,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India",12.95512590,77.57419850,edu, +8a3c5507237957d013a0fe0f082cab7f757af6ee,Facial Landmark Detection by Deep Multi-task Learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +8af411697e73f6cfe691fe502d4bfb42510b4835,Dynamic Local Ternary Pattern for Face Recognition and Verification,Institute of Information Technology,Institute of Information Technology,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.72898990,90.39826820,edu, +8af411697e73f6cfe691fe502d4bfb42510b4835,Dynamic Local Ternary Pattern for Face Recognition and Verification,University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.73169570,90.39652750,edu, +8af411697e73f6cfe691fe502d4bfb42510b4835,Dynamic Local Ternary Pattern for Face Recognition and Verification,Hankuk University of Foreign Studies,Hankuk University of Foreign Studies,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.59539790,127.06304990,edu, +8a1ed5e23231e86216c9bdd62419c3b05f1e0b4d,Facial Keypoint Detection,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +8a8861ad6caedc3993e31d46e7de6c251a8cda22,StreetStyle: Exploring world-wide clothing styles from millions of photos,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +8a3bb63925ac2cdf7f9ecf43f71d65e210416e17,ShearFace: Efficient Extraction of Anisotropic Features for Face Recognition,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +8a0159919ee4e1a9f4cbfb652a1be212bf0554fd,"Application of power laws to biometrics, forensics and network traffic analysis",University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b,Predicting the Future with Transformational States,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +8a0d10a7909b252d0e11bf32a7f9edd0c9a8030b,Animals on the Web,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +8a0d10a7909b252d0e11bf32a7f9edd0c9a8030b,Animals on the Web,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +7ed3b79248d92b255450c7becd32b9e5c834a31e,L 1-regularized Logistic Regression Stacking and Transductive CRF Smoothing for Action Recognition in Video,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +7ed3b79248d92b255450c7becd32b9e5c834a31e,L 1-regularized Logistic Regression Stacking and Transductive CRF Smoothing for Action Recognition in Video,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +7ed3b79248d92b255450c7becd32b9e5c834a31e,L 1-regularized Logistic Regression Stacking and Transductive CRF Smoothing for Action Recognition in Video,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +7ed3b79248d92b255450c7becd32b9e5c834a31e,L 1-regularized Logistic Regression Stacking and Transductive CRF Smoothing for Action Recognition in Video,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +7e8016bef2c180238f00eecc6a50eac473f3f138,Immersive Interactive Data Mining and Machine Learning Algorithms for Big Data Visualization,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +7ed2c84fdfc7d658968221d78e745dfd1def6332,Evaluation of linear combination of views for object recognition on real and synthetic datasets,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +7eaa97be59019f0d36aa7dac27407b004cad5e93,Sampling Generative Networks,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.76846919,edu, +7eb895e7de883d113b75eda54389460c61d63f67,Can You Tell a Face from a HEVC Bitstream?,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +7e467e686f9468b826133275484e0a1ec0f5bde6,Efficient On-the-fly Category Retrieval using ConvNets and GPUs,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +7e00fb79576fe213853aeea39a6bc51df9fdca16,Online multi-face detection and tracking using detector confidence and structured SVMs,Eindhoven University of Technology,Eindhoven University of Technology,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.44866020,5.49039957,edu, +7e2cfbfd43045fbd6aabd9a45090a5716fc4e179,Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False Positive Rate,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.42050016,edu, +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,Beijing Normal University,Beijing Normal University,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.35970438,edu, +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +7eb85bcb372261bad707c05e496a09609e27fdb3,A Compute-Efficient Algorithm for Robust Eyebrow Detection,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +7ebb153704706e457ab57b432793d2b6e5d12592,Faces in Places: compound query retrieval,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922,Skiing and Thinking About It: Moment-to-Moment and Retrospective Analysis of Emotions in an Extreme Sport,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +7e0c75ce731131e613544e1a85ae0f2c28ee4c1f,Regression-based Estimation of Pain and Facial Expression Intensity,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +7ef44b7c2b5533d00001ae81f9293bdb592f1146,Détection des émotions à partir de vidéos dans un environnement non contrôlé Detection of emotions from video in non-controlled environment,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532827,edu, +7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,Extensions of Hierarchical Slow Feature Analysis for Efficient Classification and Regression on High-Dimensional Data,Ruhr-University Bochum,Ruhr-University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541,edu, +10550ee13855bd7403946032354b0cd92a10d0aa,Accelerating neuromorphic vision algorithms for recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +10e12d11cb98ffa5ae82343f8904cfe321ae8004,A New Simplex Sparse Learning Model to Measure Data Similarity for Clustering,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +100105d6c97b23059f7aa70589ead2f61969fbc3,Frontal to profile face verification in the wild,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +100105d6c97b23059f7aa70589ead2f61969fbc3,Frontal to profile face verification in the wild,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +100da509d4fa74afc6e86a49352751d365fceee5,Multiclass recognition and part localization with humans in the loop,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +100da509d4fa74afc6e86a49352751d365fceee5,Multiclass recognition and part localization with humans in the loop,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +10af69f11301679b6fbb23855bf10f6af1f3d2e6,Beyond Gaussian Pyramid: Multi-skip Feature Stacking for action recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +100428708e4884300e4c1ac1f84cbb16e7644ccf,Regularized Shearlet Network for face recognition using single sample per person,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +100428708e4884300e4c1ac1f84cbb16e7644ccf,Regularized Shearlet Network for face recognition using single sample per person,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +10f17534dba06af1ddab96c4188a9c98a020a459,People-LDA: Anchoring Topics to People using Face Recognition,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +10e0e6f1ec00b20bc78a5453a00c792f1334b016,Temporal Selective Max Pooling Towards Practical Face Recognition,Johns Hopkins University,"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA","3400 N Charles St, Baltimore, MD 21218, USA",39.32905300,-76.61942500,edu, +102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +101d4cfbd6f8a7a10bd33505e2b183183f1d8770,The 2013 SESAME Multimedia Event Detection and Recounting System,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +106092fafb53e36077eba88f06feecd07b9e78e7,Attend and Interact: Higher-Order Object Interactions for Video Understanding,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +103c8eaca2a2176babab2cc6e9b25d48870d6928,Panning for gold: finding relevant semantic content for grounded language learning,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +10f66f6550d74b817a3fdcef7fdeba13ccdba51c,Benchmarking Face Alignment,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53,Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53,Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +10ca2e03ff995023a701e6d8d128455c6e8db030,Modeling Stylized Character Expressions via Deep Learning,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +1921e0a97904bdf61e17a165ab159443414308ed,Informatics Bachelor Thesis Retrieval of Web Images for Computer Vision Research,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.02804210,8.51148270,edu, +1922ad4978ab92ce0d23acc4c7441a8812f157e5,Face alignment by coarse-to-fine shape searching,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1922ad4978ab92ce0d23acc4c7441a8812f157e5,Face alignment by coarse-to-fine shape searching,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +19e62a56b6772bbd37dfc6b8f948e260dbb474f5,Cross-Domain Metric Learning Based on Information Theory,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +19e62a56b6772bbd37dfc6b8f948e260dbb474f5,Cross-Domain Metric Learning Based on Information Theory,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2,Robust online face tracking-by-detection,Eindhoven University of Technology,Eindhoven University of Technology,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.44866020,5.49039957,edu, +193debca0be1c38dabc42dc772513e6653fd91d8,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +193debca0be1c38dabc42dc772513e6653fd91d8,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +193debca0be1c38dabc42dc772513e6653fd91d8,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +1921795408345751791b44b379f51b7dd54ebfa2,From Face Recognition to Models of Identity: A Bayesian Approach to Learning about Unknown Identities from Unsupervised Data,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +1921795408345751791b44b379f51b7dd54ebfa2,From Face Recognition to Models of Identity: A Bayesian Approach to Learning about Unknown Identities from Unsupervised Data,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +19e0cc41b9f89492b6b8c2a8a58d01b8242ce00b,Improving Heterogeneous Face Recognition with Conditional Adversarial Networks,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54,Facial Action Coding Using Multiple Visual Cues and a Hierarchy of Particle Filters,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +1938d85feafdaa8a65cb9c379c9a81a0b0dcd3c4,Monogenic Binary Coding: An Efficient Local Feature Extraction Approach to Face Recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +199c2df5f2847f685796c2523221c6436f022464,Self quotient image for face recognition,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433739,edu, +19c0069f075b5b2d8ac48ad28a7409179bd08b86,Modifying the Memorability of Face Photographs,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +19a9f658ea14701502d169dc086651b1d9b2a8ea,Structural models for face detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +19d3b02185ad36fb0b792f2a15a027c58ac91e8e,Im2Text: Describing Images Using 1 Million Captioned Photographs,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +19da9f3532c2e525bf92668198b8afec14f9efea,Challenge: Face verification across age progression using real-world data,University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.68103280,-75.75401840,edu, +19868a469dc25ee0db00947e06c804b88ea94fd0,SP-SVM: Large Margin Classifier for Data on Multiple Manifolds,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +19868a469dc25ee0db00947e06c804b88ea94fd0,SP-SVM: Large Margin Classifier for Data on Multiple Manifolds,Santa Clara University,Santa Clara University,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.34820285,-121.93563541,edu, +19868a469dc25ee0db00947e06c804b88ea94fd0,SP-SVM: Large Margin Classifier for Data on Multiple Manifolds,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +192235f5a9e4c9d6a28ec0d333e36f294b32f764,Reconfiguring the Imaging Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +192235f5a9e4c9d6a28ec0d333e36f294b32f764,Reconfiguring the Imaging Pipeline for Computer Vision,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +192235f5a9e4c9d6a28ec0d333e36f294b32f764,Reconfiguring the Imaging Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +19878141fbb3117d411599b1a74a44fc3daf296d,Eye-State Action Unit Detection by Gabor Wavelets,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +19878141fbb3117d411599b1a74a44fc3daf296d,Eye-State Action Unit Detection by Gabor Wavelets,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +19f076998ba757602c8fec04ce6a4ca674de0e25,Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +4cb8a691a15e050756640c0a35880cdd418e2b87,Class-Based Matching of Object Parts,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +4cc681239c8fda3fb04ba7ac6a1b9d85b68af31d,Mining Spatial and Spatio-Temporal ROIs for Action Recognition,"University of California, Los Angeles","University of California, Los Angeles","200 UCLA, Medical Plaza Driveway Suite 540, Los Angeles, CA 90095, USA",34.06877880,-118.44500940,edu, +4c87aafa779747828054cffee3125fcea332364d,View-Constrained Latent Variable Model for Multi-view Facial Expression Classification,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +4c87aafa779747828054cffee3125fcea332364d,View-Constrained Latent Variable Model for Multi-view Facial Expression Classification,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56,Photorealistic Facial Texture Inference Using Deep Neural Networks,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +4c8e5fc0877d066516bb63e6c31eb1b8b5f967eb,"MODI, KOVASHKA: CONFIDENCE AND DIVERSITY FOR ACTIVE SELECTION 1 Confidence and Diversity for Active Selection of Feedback in Image Retrieval",University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +4c8ef4f98c6c8d340b011cfa0bb65a9377107970,Sentiment Recognition in Egocentric Photostreams,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +4c8ef4f98c6c8d340b011cfa0bb65a9377107970,Sentiment Recognition in Egocentric Photostreams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +4c822785c29ceaf67a0de9c699716c94fefbd37d,A Key Volume Mining Deep Framework for Action Recognition,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +4c822785c29ceaf67a0de9c699716c94fefbd37d,A Key Volume Mining Deep Framework for Action Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +4c822785c29ceaf67a0de9c699716c94fefbd37d,A Key Volume Mining Deep Framework for Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +4ccf64fc1c9ca71d6aefdf912caf8fea048fb211,Light-weight Head Pose Invariant Gaze Tracking,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4cdb6144d56098b819076a8572a664a2c2d27f72,Face Synthesis for Eyeglass-Robust Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4cdb6144d56098b819076a8572a664a2c2d27f72,Face Synthesis for Eyeglass-Robust Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +4c6233765b5f83333f6c675d3389bbbf503805e3,Real-time high performance deformable model for face detection in the wild,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4c078c2919c7bdc26ca2238fa1a79e0331898b56,Unconstrained Facial Landmark Localization with Backbone-Branches Fully-Convolutional Networks,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,Efficient likelihood Bayesian constrained local model,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +4cac9eda716a0addb73bd7ffea2a5fb0e6ec2367,Representing Videos based on Scene Layouts for Recognizing Agent-in-Place Actions,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4c4236b62302957052f1bbfbd34dbf71ac1650ec,Semi-supervised face recognition with LDA self-training,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +4cd0da974af9356027a31b8485a34a24b57b8b90,Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +4c170a0dcc8de75587dae21ca508dab2f9343974,FaceTracer: A Search Engine for Large Collections of Images with Faces,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +4c5b38ac5d60ab0272145a5a4d50872c7b89fe1b,Facial expression recognition with emotion-based feature fusion,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +4c523db33c56759255b2c58c024eb6112542014e,Patch-based within-object classification,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +4c523db33c56759255b2c58c024eb6112542014e,Patch-based within-object classification,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +261c3e30bae8b8bdc83541ffa9331b52fcf015e6,Shape-from-shading Driven 3D Morphable Models for Illumination Insensitive Face Recognition,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +26f03693c50eb50a42c9117f107af488865f3dc1,Eigenhill vs. Eigenface and Eigenedge,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +2609079d682998da2bc4315b55a29bafe4df414e,On rank aggregation for face recognition from videos,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +26d407b911d1234e8e3601e586b49316f0818c95,[POSTER] Feasibility of Corneal Imaging for Handheld Augmented Reality,Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.95196483,edu, +26a44feb7a64db7986473ca801c251aa88748477,Unsupervised Learning of Mixture Models with a Uniform Background Component,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +26a44feb7a64db7986473ca801c251aa88748477,Unsupervised Learning of Mixture Models with a Uniform Background Component,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +264f7ab36ff2e23a1514577a6404229d7fe1242b,Facial Expression Recognition by De-expression Residue Learning,SUNY Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.97066066,edu, +266ed43dcea2e7db9f968b164ca08897539ca8dd,Beyond Principal Components: Deep Boltzmann Machines for face modeling,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +266ed43dcea2e7db9f968b164ca08897539ca8dd,Beyond Principal Components: Deep Boltzmann Machines for face modeling,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +2642810e6c74d900f653f9a800c0e6a14ca2e1c7,Projection Bank: From High-Dimensional Data to Medium-Length Binary Codes,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +2654ef92491cebeef0997fd4b599ac903e48d07a,Facial expression recognition from near-infrared video sequences,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2679e4f84c5e773cae31cef158eb358af475e22f,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +2679e4f84c5e773cae31cef158eb358af475e22f,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +2679e4f84c5e773cae31cef158eb358af475e22f,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +217a21d60bb777d15cd9328970cab563d70b5d23,Hidden Factor Analysis for Age Invariant Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +217a21d60bb777d15cd9328970cab563d70b5d23,Hidden Factor Analysis for Age Invariant Face Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +21a2f67b21905ff6e0afa762937427e92dc5aa0b,Extra Facial Landmark Localization via Global Shape Reconstruction,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +21258aa3c48437a2831191b71cd069c05fb84cf7,A Robust and Efficient Doubly Regularized Metric Learning Approach,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +21bd9374c211749104232db33f0f71eab4df35d5,Integrating facial makeup detection into multimodal biometric user verification system,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +21104bcf07ef0269ab133471a3200b9bf94b2948,Beyond Comparing Image Pairs: Setwise Active Learning for Relative Attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +217de4ff802d4904d3f90d2e24a29371307942fe,"POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +217de4ff802d4904d3f90d2e24a29371307942fe,"POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44,Lessons from collecting a million biometric samples,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44,Lessons from collecting a million biometric samples,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.12549380,-77.22293475,edu, +210b98394c3be96e7fd75d3eb11a391da1b3a6ca,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,Tafresh University,Tafresh University,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎",34.68092465,50.05341352,edu, +210b98394c3be96e7fd75d3eb11a391da1b3a6ca,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +210b98394c3be96e7fd75d3eb11a391da1b3a6ca,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +21765df4c0224afcc25eb780bef654cbe6f0bc3a,Multi-channel Correlation Filters,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +21765df4c0224afcc25eb780bef654cbe6f0bc3a,Multi-channel Correlation Filters,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +212608e00fc1e8912ff845ee7a4a67f88ba938fc,Coupled Deep Learning for Heterogeneous Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.11852361,edu, +4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.11852361,edu, +4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +4d15254f6f31356963cc70319ce416d28d8924a3,Quo vadis Face Recognition?,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +4d15254f6f31356963cc70319ce416d28d8924a3,Quo vadis Face Recognition?,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4d15254f6f31356963cc70319ce416d28d8924a3,Quo vadis Face Recognition?,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +4d6462fb78db88afff44561d06dd52227190689c,Face-to-Face Social Activity Detection Using Data Collected with a Wearable Device,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +4dd71a097e6b3cd379d8c802460667ee0cbc8463,Real-time multi-view facial landmark detector learned by the structured output SVM,"National Institute of Informatics, Japan","National Institute of Informatics, Japan","2 Chome-1-2 Hitotsubashi, Chiyoda, Tokyo 100-0003, Japan",35.69248530,139.75825330,edu, +4db0968270f4e7b3fa73e41c50d13d48e20687be,Fashion Forward: Forecasting Visual Style in Fashion,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +4db0968270f4e7b3fa73e41c50d13d48e20687be,Fashion Forward: Forecasting Visual Style in Fashion,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +4d9c02567e7b9e065108eb83ea3f03fcff880462,Towards Facial Expression Recognition in the Wild: A New Database and Deep Recognition System,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +4d3c4c3fe8742821242368e87cd72da0bd7d3783,Hybrid Deep Learning for Face Verification,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +4d3c4c3fe8742821242368e87cd72da0bd7d3783,Hybrid Deep Learning for Face Verification,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +4d3c4c3fe8742821242368e87cd72da0bd7d3783,Hybrid Deep Learning for Face Verification,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +4d01d78544ae0de3075304ff0efa51a077c903b7,ART Network based Face Recognition with Gabor Filters,Jahangirnagar University,Jahangirnagar University,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.88331200,90.26939210,edu, +4dd2be07b4f0393995b57196f8fc79d666b3aec5,Sparse localized facial motion dictionary learning for facial expression recognition,Yeungnam University,Yeungnam University,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국",35.83654030,128.75343090,edu, +4d8ce7669d0346f63b20393ffaa438493e7adfec,Similarity Features for Facial Event Analysis,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +4d8ce7669d0346f63b20393ffaa438493e7adfec,Similarity Features for Facial Event Analysis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4d0b3921345ae373a4e04f068867181647d57d7d,Learning Attributes from Human Gaze,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +75fcbb01bc7e53e9de89cb1857a527f97ea532ce,"Detection of Facial Landmarks from Neutral, Happy, and Disgust Facial Images",University of Tampere,University of Tampere,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.77920678,edu, +757e4cb981e807d83539d9982ad325331cb59b16,Demographics versus Biometric Automatic Interoperability,Sapienza University of Rome,Sapienza University of Rome,"Piazzale Aldo Moro, 5, 00185 Roma RM, Italy",41.90376260,12.51443840,edu, +757e4cb981e807d83539d9982ad325331cb59b16,Demographics versus Biometric Automatic Interoperability,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +75fd9acf5e5b7ed17c658cc84090c4659e5de01d,Project-Out Cascaded Regression with an application to face alignment,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +75bf3b6109d7a685236c8589f8ead7d769ea863f,Model Selection with Nonlinear Embedding for Unsupervised Domain Adaptation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +759cf57215fcfdd8f59c97d14e7f3f62fafa2b30,Real-time Distracted Driver Posture Classification,American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.23664139,edu, +751970d4fb6f61d1b94ca82682984fd03c74f127,Array-based Electromyographic Silent Speech Interface,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +75ebe1e0ae9d42732e31948e2e9c03d680235c39,Hello! My name is... Buffy'' -- Automatic Naming of Characters in TV Video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +751b26e7791b29e4e53ab915bfd263f96f531f56,Mood meter: counting smiles in the wild,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +75da1df4ed319926c544eefe17ec8d720feef8c0,FDDB: A Benchmark for Face Detection in Unconstrained Settings,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +75da1df4ed319926c544eefe17ec8d720feef8c0,FDDB: A Benchmark for Face Detection in Unconstrained Settings,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +75259a613285bdb339556ae30897cb7e628209fa,Unsupervised Domain Adaptation for Zero-Shot Learning,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +754f7f3e9a44506b814bf9dc06e44fecde599878,Quantized Densely Connected U-Nets for Efficient Landmark Localization,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +754f7f3e9a44506b814bf9dc06e44fecde599878,Quantized Densely Connected U-Nets for Efficient Landmark Localization,Binghamton University,Binghamton University,"Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.09580770,-75.91455689,edu, +754f7f3e9a44506b814bf9dc06e44fecde599878,Quantized Densely Connected U-Nets for Efficient Landmark Localization,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +75d2ecbbcc934563dff6b39821605dc6f2d5ffcc,Capturing Subtle Facial Motions in 3D Face Tracking,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +75d2ecbbcc934563dff6b39821605dc6f2d5ffcc,Capturing Subtle Facial Motions in 3D Face Tracking,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +816bd8a7f91824097f098e4f3e0f4b69f481689d,Latent semantic analysis of facial action codes for automatic facial expression recognition,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +816bd8a7f91824097f098e4f3e0f4b69f481689d,Latent semantic analysis of facial action codes for automatic facial expression recognition,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +81e11e33fc5785090e2d459da3ac3d3db5e43f65,A Novel Face Recognition Approach Using a Multimodal Feature Vector,"National Institute of Technology, Durgapur","National Institute of Technology, Durgapur, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.54869625,87.29105712,edu, +81e366ed1834a8d01c4457eccae4d57d169cb932,Pose-Configurable Generic Tracking of Elongated Objects,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.61716016,edu, +8164ebc07f51c9e0db4902980b5ac3f5a8d8d48c,Shuffle-Then-Assemble: Learning Object-Agnostic Visual Relationship Features,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +81fc86e86980a32c47410f0ba7b17665048141ec,Segment-based Methods for Facial Attribute Detection from Partial Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +81da427270c100241c07143885ba3051ec4a2ecb,Learning the Synthesizability of Dynamic Texture Samples,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +861c650f403834163a2c27467a50713ceca37a3e,Probabilistic Elastic Part Model for Unsupervised Face Detector Adaptation,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.74225200,-74.02709490,edu, +86f191616423efab8c0d352d986126a964983219,Visual to Sound: Generating Natural Sound for Videos in the Wild,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +86c5478f21c4a9f9de71b5ffa90f2a483ba5c497,"Kernel Selection using Multiple Kernel Learning and Domain Adaptation in Reproducing Kernel Hilbert Space, for Face Recognition under Surveillance Scenario",Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +86ed5b9121c02bcf26900913f2b5ea58ba23508f,Actions ~ Transformations,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +86ed5b9121c02bcf26900913f2b5ea58ba23508f,Actions ~ Transformations,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,Attentional Alignment Networks,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,Attentional Alignment Networks,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,Attentional Alignment Networks,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +862d17895fe822f7111e737cbcdd042ba04377e8,Semi-Latent GAN: Learning to generate and modify facial images from attributes,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +86d0127e1fd04c3d8ea78401c838af621647dc95,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.62850666,edu, +86d0127e1fd04c3d8ea78401c838af621647dc95,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +86d0127e1fd04c3d8ea78401c838af621647dc95,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +86f3552b822f6af56cb5079cc31616b4035ccc4e,Towards Miss Universe automatic prediction: The evening gown competition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +86a8b3d0f753cb49ac3250fa14d277983e30a4b7,Exploiting Unlabeled Ages for Aging Pattern Analysis on a Large Database,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +860588fafcc80c823e66429fadd7e816721da42a,Unsupervised Discovery of Object Landmarks as Structural Representations,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +86374bb8d309ad4dbde65c21c6fda6586ae4147a,Detect-and-Track: Efficient Pose Estimation in Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +86374bb8d309ad4dbde65c21c6fda6586ae4147a,Detect-and-Track: Efficient Pose Estimation in Videos,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +86374bb8d309ad4dbde65c21c6fda6586ae4147a,Detect-and-Track: Efficient Pose Estimation in Videos,Facebook,Facebook,"250 Bryant St, Mountain View, CA 94041, USA",37.39367170,-122.08072620,company,"Facebook, Mountain View, CA" +72282287f25c5419dc6fd9e89ec9d86d660dc0b5,A Rotation Invariant Latent Factor Model for Moveme Discovery from Static Poses,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +72a5e181ee8f71b0b153369963ff9bfec1c6b5b0,Expression Recognition in Videos Using a Weighted Component-Based Feature Descriptor,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +72a5e181ee8f71b0b153369963ff9bfec1c6b5b0,Expression Recognition in Videos Using a Weighted Component-Based Feature Descriptor,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,Face alignment using cascade Gaussian process regression trees,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +72160aae43cd9b2c3aae5574acc0d00ea0993b9e,Boosting Facial Expression Recognition in a Noisy Environment Using LDSP-Local Distinctive Star Pattern,Stamford University Bangladesh,Stamford University Bangladesh,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.74481660,90.40843514,edu, +72160aae43cd9b2c3aae5574acc0d00ea0993b9e,Boosting Facial Expression Recognition in a Noisy Environment Using LDSP-Local Distinctive Star Pattern,Stamford University Bangladesh,Stamford University Bangladesh,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.74481660,90.40843514,edu, +72160aae43cd9b2c3aae5574acc0d00ea0993b9e,Boosting Facial Expression Recognition in a Noisy Environment Using LDSP-Local Distinctive Star Pattern,Stamford University Bangladesh,Stamford University Bangladesh,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.74481660,90.40843514,edu, +72cbbdee4f6eeee8b7dd22cea6092c532271009f,Masquer Hunter: Adversarial Occlusion-aware Face Detection,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,"BULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE 1 Convolutional aggregation of local evidence for large pose face alignment",University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +72450d7e5cbe79b05839c30a4f0284af5aa80053,Natural Facial Expression Recognition Using Dynamic and Static Schemes,University of the Basque Country,University of the Basque Country,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.30927695,-2.01066785,edu, +725c3605c2d26d113637097358cd4c08c19ff9e1,Deep Reasoning with Knowledge Graph for Social Relationship Understanding,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +445461a34adc4bcdccac2e3c374f5921c93750f8,Emotional Expression Classification Using Time-Series Kernels,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +445461a34adc4bcdccac2e3c374f5921c93750f8,Emotional Expression Classification Using Time-Series Kernels,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +443acd268126c777bc7194e185bec0984c3d1ae7,Retrieving relative soft biometrics for semantic identification,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +44f23600671473c3ddb65a308ca97657bc92e527,Convolutional Two-Stream Network Fusion for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +44f23600671473c3ddb65a308ca97657bc92e527,Convolutional Two-Stream Network Fusion for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +44f23600671473c3ddb65a308ca97657bc92e527,Convolutional Two-Stream Network Fusion for Video Action Recognition,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,Learning features from Improved Dense Trajectories using deep convolutional networks for Human Activity Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,Learning features from Improved Dense Trajectories using deep convolutional networks for Human Activity Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,Automatically Building Face Datasets of New Domains from Weakly Labeled Data with Pretrained Models,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +44aeda8493ad0d44ca1304756cc0126a2720f07b,Face Alive Icons,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +44d23df380af207f5ac5b41459c722c87283e1eb,Human Attribute Recognition by Deep Hierarchical Contexts,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +44c9b5c55ca27a4313daf3760a3f24a440ce17ad,Revisiting hand-crafted feature for action recognition: a set of improved dense trajectories,Hiroshima University,Hiroshima University,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.40197660,132.71231950,edu, +44c9b5c55ca27a4313daf3760a3f24a440ce17ad,Revisiting hand-crafted feature for action recognition: a set of improved dense trajectories,Hiroshima University,Hiroshima University,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.40197660,132.71231950,edu, +44fbbaea6271e47ace47c27701ed05e15da8f7cf,Pupil Mimicry Correlates With Trust in In-Group Partners With Dilating Pupils.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,Head pose estimation in the wild using approximate view manifolds,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,Head pose estimation in the wild using approximate view manifolds,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +449808b7aa9ee6b13ad1a21d9f058efaa400639a,Recovering 3D facial shape via coupled 2D/3D space learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +449808b7aa9ee6b13ad1a21d9f058efaa400639a,Recovering 3D facial shape via coupled 2D/3D space learning,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +2a65d7d5336b377b7f5a98855767dd48fa516c0f,Fast Supervised LDA for Discovering Micro-Events in Large-Scale Video Datasets,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +2af620e17d0ed67d9ccbca624250989ce372e255,Meta-class features for large-scale object categorization on a budget,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +2a35d20b2c0a045ea84723f328321c18be6f555c,Boost Picking: A Universal Method on Converting Supervised Classification to Semi-supervised Classification,Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.95866520,116.30971281,edu, +2a35d20b2c0a045ea84723f328321c18be6f555c,Boost Picking: A Universal Method on Converting Supervised Classification to Semi-supervised Classification,Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.95866520,116.30971281,edu, +2a35d20b2c0a045ea84723f328321c18be6f555c,Boost Picking: A Universal Method on Converting Supervised Classification to Semi-supervised Classification,Beijing Institute of Technology,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.95866520,116.30971281,edu, +2a9b398d358cf04dc608a298d36d305659e8f607,Facial action unit recognition with sparse representation,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +2a9b398d358cf04dc608a298d36d305659e8f607,Facial action unit recognition with sparse representation,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +2ac21d663c25d11cda48381fb204a37a47d2a574,Interpreting Hand-Over-Face Gestures,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +2a4153655ad1169d482e22c468d67f3bc2c49f12,Face Alignment Across Large Poses: A 3D Solution,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2a4153655ad1169d482e22c468d67f3bc2c49f12,Face Alignment Across Large Poses: A 3D Solution,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40,Estimating Sheep Pain Level Using Facial Action Unit Detection,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +2a3e19d7c54cba3805115497c69069dd5a91da65,Looking at Hands in Autonomous Vehicles: A ConvNet Approach using Part Affinity Fields,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference,"CSIRO, Australia","NICTA, PO Box 6020, St Lucia, QLD 4067, Australia","Research Way, Clayton VIC 3168, Australia",-37.90627370,145.13194490,edu,f.k.a. NICTA +2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +2a14b6d9f688714dc60876816c4b7cf763c029a9,Combining multiple sources of knowledge in deep CNNs for action recognition,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +2a88541448be2eb1b953ac2c0c54da240b47dd8a,Discrete Graph Hashing,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +2a88541448be2eb1b953ac2c0c54da240b47dd8a,Discrete Graph Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +2a171f8d14b6b8735001a11c217af9587d095848,Learning Social Relation Traits from Face Images,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +2a0623ae989f2236f5e1fe3db25ab708f5d02955,3D Face Modelling for 2D+3D Face Recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +2a0623ae989f2236f5e1fe3db25ab708f5d02955,3D Face Modelling for 2D+3D Face Recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +2afdda6fb85732d830cea242c1ff84497cd5f3cb,Face image retrieval by using Haar features,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +2afdda6fb85732d830cea242c1ff84497cd5f3cb,Face image retrieval by using Haar features,Tamkang University,Tamkang University,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.17500615,121.45076751,edu, +2ab034e1f54c37bfc8ae93f7320160748310dc73,Siamese Capsule Networks,University of Liverpool,University of Liverpool,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.40617900,-2.96670819,edu, +2ff9ffedfc59422a8c7dac418a02d1415eec92f1,Face Verification Using Boosted Cross-Image Features,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +2ff9ffedfc59422a8c7dac418a02d1415eec92f1,Face Verification Using Boosted Cross-Image Features,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +2ff9ffedfc59422a8c7dac418a02d1415eec92f1,Face Verification Using Boosted Cross-Image Features,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +2f53b97f0de2194d588bc7fb920b89cd7bcf7663,Facial Expression Recognition Using Sparse Gaussian Conditional Random Field,Shiraz University,Shiraz University,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎",29.63854740,52.52457060,edu, +2f53b97f0de2194d588bc7fb920b89cd7bcf7663,Facial Expression Recognition Using Sparse Gaussian Conditional Random Field,Shiraz University,Shiraz University,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ‏ایران‎",29.63854740,52.52457060,edu, +2f16baddac6af536451b3216b02d3480fc361ef4,Web-scale training for face identification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +2f2aa67c5d6dbfaf218c104184a8c807e8b29286,Video analytics for surveillance camera networks,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +2f2406551c693d616a840719ae1e6ea448e2f5d3,Age estimation from face images: Human vs. machine performance,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +2f7fc778e3dec2300b4081ba2a1e52f669094fcd,Action Representation Using Classifier Decision Boundaries,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1,Facial Expression Recognition Using a Hybrid CNN-SIFT Aggregator,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +2f5e057e35a97278a9d824545d7196c301072ebf,Capturing Long-Tail Distributions of Object Subcategories,"University of California, Irvine","University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.64319010,-117.84016494,edu, +2f5e057e35a97278a9d824545d7196c301072ebf,Capturing Long-Tail Distributions of Object Subcategories,"University of California, Irvine","University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.64319010,-117.84016494,edu, +2f04ba0f74df046b0080ca78e56898bd4847898b,Aggregate channel features for multi-view face detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +43010792bf5cdb536a95fba16b8841c534ded316,Towards general motion-based face recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +438c4b320b9a94a939af21061b4502f4a86960e3,Reconstruction-Based Disentanglement for Pose-Invariant Face Recognition,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +43e99b76ca8e31765d4571d609679a689afdc99e,Learning Dense Facial Correspondences in Unconstrained Images,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +4377b03bbee1f2cf99950019a8d4111f8de9c34a,Selective Encoding for Recognizing Unreliably Localized Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +43a03cbe8b704f31046a5aba05153eb3d6de4142,Towards Robust Face Recognition from Video,Oak Ridge National Laboratory,Oak Ridge National Laboratory,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.31240032,edu, +4307e8f33f9e6c07c8fc2aeafc30b22836649d8c,Supervised Earth Mover's Distance Learning and Its Computer Vision Applications,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +435642641312364e45f4989fac0901b205c49d53,Face Model Compression by Distilling Knowledge from Neurons,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +435642641312364e45f4989fac0901b205c49d53,Face Model Compression by Distilling Knowledge from Neurons,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +435642641312364e45f4989fac0901b205c49d53,Face Model Compression by Distilling Knowledge from Neurons,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +434d6726229c0f556841fad20391c18316806f73,Detecting Visual Relationships with Deep Relational Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +435dc062d565ce87c6c20a5f49430eb9a4b573c4,Lighting Condition Adaptation for Perceived Age Estimation,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.51675380,139.48342251,edu, +433a6d6d2a3ed8a6502982dccc992f91d665b9b3,Transferring Landmark Annotations for Cross-Dataset Face Alignment,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +433a6d6d2a3ed8a6502982dccc992f91d665b9b3,Transferring Landmark Annotations for Cross-Dataset Face Alignment,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +438e7999c937b94f0f6384dbeaa3febff6d283b6,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +438e7999c937b94f0f6384dbeaa3febff6d283b6,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +43776d1bfa531e66d5e9826ff5529345b792def7,Automatic Critical Event Extraction and Semantic Interpretation by Looking-Inside,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +432d8cba544bf7b09b0455561fea098177a85db1,Towards a Neural Statistician,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +432d8cba544bf7b09b0455561fea098177a85db1,Towards a Neural Statistician,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +439647914236431c858535a2354988dde042ef4d,Face illumination normalization on large and small scale features,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +439647914236431c858535a2354988dde042ef4d,Face illumination normalization on large and small scale features,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +439647914236431c858535a2354988dde042ef4d,Face illumination normalization on large and small scale features,Hong Kong Baptist University,Hong Kong Baptist University,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.38742010,114.20822220,edu, +439ca6ded75dffa5ddea203dde5e621dc4a88c3e,Robust real-time performance-driven 3D face tracking,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +439ca6ded75dffa5ddea203dde5e621dc4a88c3e,Robust real-time performance-driven 3D face tracking,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +88e090ffc1f75eed720b5afb167523eb2e316f7f,Attribute-Based Transfer Learning for Object Categorization with Zero/One Training Example,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4,Automatic facial expression recognition for affective computing based on bag of distances,National Chung Cheng University,National Chung Cheng University,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.56306355,120.47510531,edu, +8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4,Automatic facial expression recognition for affective computing based on bag of distances,National Taichung University of Science and Technology,National Taichung University of science and Technology,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.15031065,120.68325501,edu, +88f7a3d6f0521803ca59fde45601e94c3a34a403,Semantic Aware Video Transcription Using Random Forest Classifiers,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +8812aef6bdac056b00525f0642702ecf8d57790b,A Unified Features Approach to Human Face Image Analysis and Interpretation,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +88e2574af83db7281c2064e5194c7d5dfa649846,A Robust Shape Reconstruction Method for Facial Feature Point Detection,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +88bef50410cea3c749c61ed68808fcff84840c37,Sparse representations of image gradient orientations for visual recognition and tracking,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +88bef50410cea3c749c61ed68808fcff84840c37,Sparse representations of image gradient orientations for visual recognition and tracking,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +8820d1d3fa73cde623662d92ecf2e3faf1e3f328,Continuous Video to Simple Signals for Swimming Stroke Detection with Convolutional Neural Networks,La Trobe University,La Trobe University,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.77847540,144.29804700,edu, +8820d1d3fa73cde623662d92ecf2e3faf1e3f328,Continuous Video to Simple Signals for Swimming Stroke Detection with Convolutional Neural Networks,Australian Institute of Sport,Australian Institute of Sport,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.24737535,149.10445427,edu, +8818b12aa0ff3bf0b20f9caa250395cbea0e8769,Fashion Conversation Data on Instagram_ICWSM 2017,"University of California, Los Angeles","University of California, Los Angeles","200 UCLA, Medical Plaza Driveway Suite 540, Los Angeles, CA 90095, USA",34.06877880,-118.44500940,edu, +8862a573a42bbaedd392e9e634c1ccbfd177a01d,Real-Time 3D Face Fitting and Texture Fusion on In-the-Wild Videos,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +8862a573a42bbaedd392e9e634c1ccbfd177a01d,Real-Time 3D Face Fitting and Texture Fusion on In-the-Wild Videos,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682404,edu, +8895d6ae9f095a8413f663cc83f5b7634b3dc805,BEHL ET AL: INCREMENTAL TUBE CONSTRUCTION FOR HUMAN ACTION DETECTION 1 Incremental Tube Construction for Human Action Detection,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +8895d6ae9f095a8413f663cc83f5b7634b3dc805,BEHL ET AL: INCREMENTAL TUBE CONSTRUCTION FOR HUMAN ACTION DETECTION 1 Incremental Tube Construction for Human Action Detection,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.75552050,-1.22615970,edu, +887745c282edf9af40d38425d5fdc9b3fe139c08,FAME: Face Association through Model Evolution,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87204890,32.75395155,edu, +887745c282edf9af40d38425d5fdc9b3fe139c08,FAME: Face Association through Model Evolution,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87204890,32.75395155,edu, +9f6d04ce617d24c8001a9a31f11a594bd6fe3510,Attentional bias towards angry faces in trait-reappraisal,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.52385720,-113.52282665,edu, +9f499948121abb47b31ca904030243e924585d5f,Hierarchical Attention Network for Action Recognition in Videos,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +9f499948121abb47b31ca904030243e924585d5f,Hierarchical Attention Network for Action Recognition in Videos,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +9f499948121abb47b31ca904030243e924585d5f,Hierarchical Attention Network for Action Recognition in Videos,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +9fc04a13eef99851136eadff52e98eb9caac919d,Rethinking the Camera Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +9fc04a13eef99851136eadff52e98eb9caac919d,Rethinking the Camera Pipeline for Computer Vision,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +9fc04a13eef99851136eadff52e98eb9caac919d,Rethinking the Camera Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +9f4078773c8ea3f37951bf617dbce1d4b3795839,Leveraging Inexpensive Supervision Signals for Visual Learning,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +9f4078773c8ea3f37951bf617dbce1d4b3795839,Leveraging Inexpensive Supervision Signals for Visual Learning,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +9f65319b8a33c8ec11da2f034731d928bf92e29d,Taking Roll: a Pipeline for Face Recognition,Louisiana State University,Louisiana State University,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA",30.40550035,-91.18620474,edu, +9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,Active Tracking and Cloning of Facial Expressions Using Spatio-Temporal Information,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,Active Tracking and Cloning of Facial Expressions Using Spatio-Temporal Information,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +6b3e360b80268fda4e37ff39b7f303e3684e8719,Face Recognition from Sketches Using Advanced Correlation Filters Using Hybrid Eigenanalysis for Face Synthesis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6bca0d1f46b0f7546ad4846e89b6b842d538ee4e,Face Recognition from Surveillance - Quality Video,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +6b8d0569fffce5cc221560d459d6aa10c4db2f03,Interlinked Convolutional Neural Networks for Face Parsing,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +6bcee7dba5ed67b3f9926d2ae49f9a54dee64643,Assessment of Time Dependency in Face Recognition: An Initial Study,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6,Feature Extraction through Cross-Phase Congruency for Facial Expression Analysis,University of Oradea,University of Oradea,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.05702220,21.92270900,edu, +6bb0425baac448297fbd29a00e9c9b9926ce8870,Facial Expression Recognition Using Log-Gabor Filters and Local Binary Pattern Operators,RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.80874650,144.96388750,edu, +6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +07377c375ac76a34331c660fe87ebd7f9b3d74c4,Detailed Human Avatars from Monocular Video,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0729628db4bb99f1f70dd6cb2353d7b76a9fce47,Separating pose and expression in face images: a manifold learning approach,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +07c90e85ac0f74b977babe245dea0f0abcf177e3,An Image Preprocessing Algorithm for Illumination Invariant Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1,Large scale unconstrained open set face database,University of Colorado at Colorado Springs,University of Colorado at Colorado Springs,"1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA",38.89646790,-104.80505940,edu, +076d3fc800d882445c11b9af466c3af7d2afc64f,Face attribute classification using attribute-aware correlation map and gated convolutional neural networks,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +0773c320713dae62848fceac5a0ac346ba224eca,Digital facial augmentation for interactive entertainment,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling,Jacobs University,Jacobs University,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK",53.41291480,-2.96897915,edu, +070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +07a472ea4b5a28b93678a2dcf89028b086e481a2,Head Dynamic Analysis: A Multi-view Framework,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +07fa153b8e6196ee6ef6efd8b743de8485a07453,Action Prediction From Videos via Memorizing Hard-to-Predict Samples,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +07fa153b8e6196ee6ef6efd8b743de8485a07453,Action Prediction From Videos via Memorizing Hard-to-Predict Samples,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +07fa153b8e6196ee6ef6efd8b743de8485a07453,Action Prediction From Videos via Memorizing Hard-to-Predict Samples,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +0708059e3bedbea1cbfae1c8cd6b7259d4b56b5b,Graph-regularized multi-class support vector machines for face and action recognition,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +074af31bd9caa61fea3c4216731420bd7c08b96a,Face verification using sparse representations,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +074af31bd9caa61fea3c4216731420bd7c08b96a,Face verification using sparse representations,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +07f31bef7a7035792e3791473b3c58d03928abbf,Lessons from collecting a million biometric samples,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +07f31bef7a7035792e3791473b3c58d03928abbf,Lessons from collecting a million biometric samples,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.12549380,-77.22293475,edu, +07de8371ad4901356145722aa29abaeafd0986b9,Towards Usable Multimedia Event Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +07e639abf1621ceff27c9e3f548fadfa2052c912,5-HTTLPR Expression Outside the Skin: An Experimental Test of the Emotional Reactivity Hypothesis in Children,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +07e639abf1621ceff27c9e3f548fadfa2052c912,5-HTTLPR Expression Outside the Skin: An Experimental Test of the Emotional Reactivity Hypothesis in Children,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +07da958db2e561cc7c24e334b543d49084dd1809,Dictionary learning based dimensionality reduction for classification,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +07d986b1005593eda1aeb3b1d24078db864f8f6a,Facial Expression Recognition Using Local Facial Features,National University of Kaohsiung,National University of Kaohsiung,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.28349755,edu, +07d986b1005593eda1aeb3b1d24078db864f8f6a,Facial Expression Recognition Using Local Facial Features,National University of Kaohsiung,National University of Kaohsiung,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.28349755,edu, +3802c97f925cb03bac91d9db13d8b777dfd29dcc,Non-parametric Bayesian Constrained Local Models,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.83383710,10.70359390,edu, +38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,Randomized Intraclass-Distance Minimizing Binary Codes for face recognition,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,Randomized Intraclass-Distance Minimizing Binary Codes for face recognition,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.12549380,-77.22293475,edu, +38787338ba659f0bfbeba11ec5b7748ffdbb1c3d,Evaluation of the discrimination power of features extracted from 2-D and 3-D facial images for facial expression analysis,University of Piraeus,University of Piraeus,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα",37.94173275,23.65303262,edu, +3803b91e784922a2dacd6a18f61b3100629df932,Temporal Multimodal Fusion for Video Emotion Classification in the Wild,Orange,Orange Labs,"78 Rue Olivier de Serres, 75015 Paris, France",48.83321220,2.29421550,company,"78 Rue Olivier de Serres, Paris, 75015" +3803b91e784922a2dacd6a18f61b3100629df932,Temporal Multimodal Fusion for Video Emotion Classification in the Wild,Orange,Orange Labs,"78 Rue Olivier de Serres, 75015 Paris, France",48.83321220,2.29421550,company,"78 Rue Olivier de Serres, Paris, 75015" +38c901a58244be9a2644d486f9a1284dc0edbf8a,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +38c901a58244be9a2644d486f9a1284dc0edbf8a,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +38c901a58244be9a2644d486f9a1284dc0edbf8a,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +3852968082a16db8be19b4cb04fb44820ae823d4,Unsupervised Learning of Long-Term Motion Dynamics for Videos,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +38cc2f1c13420170c7adac30f9dfac69b297fb76,Recognition of human activities and expressions in video sequences using shape context descriptor,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +38cbb500823057613494bacd0078aa0e57b30af8,Deep Face Deblurring,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +38cbb500823057613494bacd0078aa0e57b30af8,Deep Face Deblurring,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,Shrinkage Expansion Adaptive Metric Learning,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,Shrinkage Expansion Adaptive Metric Learning,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,Shrinkage Expansion Adaptive Metric Learning,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +384945abd53f6a6af51faf254ba8ef0f0fb3f338,Visual Recognition with Humans in the Loop,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +384945abd53f6a6af51faf254ba8ef0f0fb3f338,Visual Recognition with Humans in the Loop,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +38d8ff137ff753f04689e6b76119a44588e143f3,When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +3896c62af5b65d7ba9e52f87505841341bb3e8df,Face Recognition from Still Images and Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +38bbca5f94d4494494860c5fe8ca8862dcf9676e,"Probabilistic , Features - based Object Recognition",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +38183fe28add21693729ddeaf3c8a90a2d5caea3,Scale-Aware Face Detection,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +38a9ca2c49a77b540be52377784b9f734e0417e4,Face verification using large feature sets and one shot similarity,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +38a9ca2c49a77b540be52377784b9f734e0417e4,Face verification using large feature sets and one shot similarity,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +38a9ca2c49a77b540be52377784b9f734e0417e4,Face verification using large feature sets and one shot similarity,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.59539950,-48.61542180,edu, +00f7f7b72a92939c36e2ef9be97397d8796ee07c,3D ConvNets with Optical Flow Based Regularization,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0021f46bda27ea105d722d19690f5564f2b8869e,Deep Region and Multi-label Learning for Facial Action Unit Detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +0081e2188c8f34fcea3e23c49fb3e17883b33551,Training Deep Face Recognition Systems with Synthetic Data,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +00dc942f23f2d52ab8c8b76b6016d9deed8c468d,Advanced Correlation-Based Character Recognition Applied to the Archimedes Palimpsest,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +0055c7f32fa6d4b1ad586d5211a7afb030ca08cc,Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.75552050,-1.22615970,edu, +0055c7f32fa6d4b1ad586d5211a7afb030ca08cc,Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +009cd18ff06ff91c8c9a08a91d2516b264eee48e,Face and Automatic Target Recognition Based on Super-Resolved Discriminant Subspace,Chulalongkorn University,Chulalongkorn University,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.53287901,edu, +00b08d22abc85361e1c781d969a1b09b97bc7010,Who is the hero? semi-supervised person re-identification in videos,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +007250c2dce81dd839a55f9108677b4f13f2640a,Advances in Component Based Face Detection,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +00e3957212517a252258baef833833921dd308d4,Adaptively Weighted Multi-task Deep Network for Person Attribute Classification,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +00e3957212517a252258baef833833921dd308d4,Adaptively Weighted Multi-task Deep Network for Person Attribute Classification,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +009a18d04a5e3ec23f8ffcfc940402fd8ec9488f,Action Recognition by Weakly-Supervised Discriminative Region Localization,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +0066caed1238de95a431d836d8e6e551b3cde391,Filtered Component Analysis to Increase Robustness to Local Minima in Appearance Models,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +00075519a794ea546b2ca3ca105e2f65e2f5f471,"Generating a Large, Freely-Available Dataset for Face-Related Algorithms",Amherst College,Amherst College,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA",42.37289000,-72.51881400,edu, +0019925779bff96448f0c75492717e4473f88377,Deep Heterogeneous Face Recognition Networks Based on Cross-Modal Distillation and an Equitable Distance Metric,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +00e9011f58a561500a2910a4013e6334627dee60,Facial expression recognition using angle-related information from facial meshes,University of Thessaloniki,University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +00a967cb2d18e1394226ad37930524a31351f6cf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +00a967cb2d18e1394226ad37930524a31351f6cf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +00a967cb2d18e1394226ad37930524a31351f6cf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +00f1e5e954f9eb7ffde3ca74009a8c3c27358b58,Unsupervised clustering for google searches of celebrity images,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +0058cbe110933f73c21fa6cc9ae0cd23e974a9c7,"Biswas, Jacobs: an Efficient Algorithm for Learning Distances",University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +0058cbe110933f73c21fa6cc9ae0cd23e974a9c7,"Biswas, Jacobs: an Efficient Algorithm for Learning Distances",University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +00ebc3fa871933265711558fa9486057937c416e,Collaborative Representation based Classification for Face Recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +00ebc3fa871933265711558fa9486057937c416e,Collaborative Representation based Classification for Face Recognition,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +00b29e319ff8b3a521b1320cb8ab5e39d7f42281,Towards Transparent Systems: Semantic Characterization of Failure Modes,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +00b29e319ff8b3a521b1320cb8ab5e39d7f42281,Towards Transparent Systems: Semantic Characterization of Failure Modes,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +6e60536c847ac25dba4c1c071e0355e5537fe061,Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +6e60536c847ac25dba4c1c071e0355e5537fe061,Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +6e60536c847ac25dba4c1c071e0355e5537fe061,Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +6e173ad91b288418c290aa8891193873933423b3,Are you from North or South India? A hard race classification task reveals systematic representational differences between humans and machines,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +6e91be2ad74cf7c5969314b2327b513532b1be09,Dimensionality Reduction with Subspace Structure Preservation,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.93362780,-78.88394479,edu, +6eddea1d991e81c1c3024a6cea422bc59b10a1dc,Towards automatic analysis of gestures and body expressions in depression,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +6eddea1d991e81c1c3024a6cea422bc59b10a1dc,Towards automatic analysis of gestures and body expressions in depression,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +6e97a99b2879634ecae962ddb8af7c1a0a653a82,Towards Context-aware Interaction Recognition,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +6e9a8a34ab5b7cdc12ea52d94e3462225af2c32c,Fusing Aligned and Non-aligned Face Information for Automatic Affect Recognition in the Wild: A Deep Learning Approach,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +6e00a406edb508312108f683effe6d3c1db020fb,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +6e00a406edb508312108f683effe6d3c1db020fb,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +6e00a406edb508312108f683effe6d3c1db020fb,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +6e94c579097922f4bc659dd5d6c6238a428c4d22,Graph Based Multi-class Semi-supervised Learning Using Gaussian Process,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +6eb1e006b7758b636a569ca9e15aafd038d2c1b1,Human Capabilities on Video-based Facial Expression Recognition,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +6eb1e006b7758b636a569ca9e15aafd038d2c1b1,Human Capabilities on Video-based Facial Expression Recognition,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,LEGO Pictorial Scales for Assessing Affective Responses,University of Canterbury,University of Canterbury,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.52405280,172.58030625,edu, +6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,LEGO Pictorial Scales for Assessing Affective Responses,Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.61083650,-96.35212800,edu, +6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,LEGO Pictorial Scales for Assessing Affective Responses,University of Canterbury,University of Canterbury,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.52405280,172.58030625,edu, +6e782073a013ce3dbc5b9b56087fd0300c510f67,Real Time Facial Emotion Recognition using Kinect V2 Sensor,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.05044565,edu, +9a0c7a4652c49a177460b5d2fbbe1b2e6535e50a,Automatic and quantitative evaluation of attribute discovery methods,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +9ac43a98fe6fde668afb4fcc115e4ee353a6732d,Survey of Face Detection on Low-Quality Images,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +9a4c45e5c6e4f616771a7325629d167a38508691,A facial features detector integrating holistic facial information and part-based model,University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.21675650,-85.75725023,edu, +9a4c45e5c6e4f616771a7325629d167a38508691,A facial features detector integrating holistic facial information and part-based model,Alexandria University,Alexandria University,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.91314562,edu, +9a4c45e5c6e4f616771a7325629d167a38508691,A facial features detector integrating holistic facial information and part-based model,Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.17009498,edu, +9af9a88c60d9e4b53e759823c439fc590a4b5bc5,Learning Deep Convolutional Embeddings for Face Representation Using Joint Sample- and Set-Based Supervision,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +9abd35b37a49ee1295e8197aac59bde802a934f3,Depth2Action: Exploring Embedded Depth for Large-Scale Action Recognition,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +36a3a96ef54000a0cd63de867a5eb7e84396de09,Automatic Photo Orientation Detection with Convolutional Neural Networks,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +360d66e210f7011423364327b7eccdf758b5fdd2,Local feature extraction methods for facial expression recognition,RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.80874650,144.96388750,edu, +361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,Deep Reinforcement Learning of Video Games,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,Deep Reinforcement Learning of Video Games,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +368e99f669ea5fd395b3193cd75b301a76150f9d,One-to-many face recognition with bilinear CNNs,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +36df81e82ea5c1e5edac40b60b374979a43668a5,On-the-fly specific person retrieval,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +3619a9b46ad4779d0a63b20f7a6a8d3d49530339,Fisher Vector Faces in the Wild,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +36e8ef2e5d52a78dddf0002e03918b101dcdb326,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.45997349,edu, +36e8ef2e5d52a78dddf0002e03918b101dcdb326,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.45997349,edu, +367f2668b215e32aff9d5122ce1f1207c20336c8,Speaker-Dependent Human Emotion Recognition in Unimodal and Bimodal Scenarios,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.00920040,71.48774947,edu, +367f2668b215e32aff9d5122ce1f1207c20336c8,Speaker-Dependent Human Emotion Recognition in Unimodal and Bimodal Scenarios,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور‎, Peshāwar District, خیبر پختونخوا, 2500, ‏پاکستان‎",34.00920040,71.48774947,edu, +36c2db5ff76864d289781f93cbb3e6351f11984c,One colored image based 2.5D human face reconstruction,Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627,edu, +3661a34f302883c759b9fa2ce03de0c7173d2bb2,Peak-Piloted Deep Network for Facial Expression Recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +3661a34f302883c759b9fa2ce03de0c7173d2bb2,Peak-Piloted Deep Network for Facial Expression Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +36c473fc0bf3cee5fdd49a13cf122de8be736977,Temporal Segment Networks: Towards Good Practices for Deep Action Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +36c473fc0bf3cee5fdd49a13cf122de8be736977,Temporal Segment Networks: Towards Good Practices for Deep Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +368d59cf1733af511ed8abbcbeb4fb47afd4da1c,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +368d59cf1733af511ed8abbcbeb4fb47afd4da1c,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +361d6345919c2edc5c3ce49bb4915ed2b4ee49be,Models for supervised learning in sequence data,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +3634b4dd263c0f330245c086ce646c9bb748cd6b,Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images,Google,"Google, Inc.","1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA",37.42199990,-122.08405750,company,"Google, Mountain View, CA" +367a786cfe930455cd3f6bd2492c304d38f6f488,A Training Assistant Tool for the Automated Visual Inspection System,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.83743476,edu, +5cbe1445d683d605b31377881ac8540e1d17adf0,On 3D face reconstruction via cascaded regression in shape space,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +5c493c42bfd93e4d08517438983e3af65e023a87,Multimodal Keyless Attention Fusion for Video Classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +5cb83eba8d265afd4eac49eb6b91cdae47def26d,Face Recognition with Local Line Binary Pattern,Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.85620818,edu, +5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,Robust Face Detection by Simple Means,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +5c3dce55c61ee86073575ac75cc882a215cb49e6,Neural Codes for Image Retrieval,"Moscow Institute of Physics and Technology, Russia","Moscow Institute of Physics and Technology, Russia","МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ",55.92903500,37.51866808,edu, +5c820e47981d21c9dddde8d2f8020146e600368f,Extended Supervised Descent Method for Robust Face Alignment,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +5c7adde982efb24c3786fa2d1f65f40a64e2afbf,Ranking Domain-Specific Highlights by Analyzing Edited Videos,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934,GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +5cfbeae360398de9e20e4165485837bd42b93217,Comparison Of Hog (Histogram of Oriented Gradients) and Haar Cascade Algorithms with a Convolutional Neural Network Based Face Detection Approaches,Firat University,Firat University,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye",39.72750370,39.47127034,edu, +5cfbeae360398de9e20e4165485837bd42b93217,Comparison Of Hog (Histogram of Oriented Gradients) and Haar Cascade Algorithms with a Convolutional Neural Network Based Face Detection Approaches,Firat University,Firat University,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye",39.72750370,39.47127034,edu, +5ca14fa73da37855bfa880b549483ee2aba26669,Face Recognition under Varying Illuminations Using Local Binary Pattern And Local Ternary Pattern Fusion,Punjabi University Patiala,Punjabi University Patiala,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India",30.35689810,76.45512720,edu, +5ca14fa73da37855bfa880b549483ee2aba26669,Face Recognition under Varying Illuminations Using Local Binary Pattern And Local Ternary Pattern Fusion,Punjabi University Patiala,Punjabi University Patiala,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India",30.35689810,76.45512720,edu, +5c8ae37d532c7bb8d7f00dfde84df4ba63f46297,DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative Adversarial Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +5c8ae37d532c7bb8d7f00dfde84df4ba63f46297,DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative Adversarial Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49,Facial Expression Intensity Estimation Using Ordinal Information,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49,Facial Expression Intensity Estimation Using Ordinal Information,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +5c4d4fd37e8c80ae95c00973531f34a6d810ea3a,The Open World of Micro-Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +09b80d8eea809529b08a8b0ff3417950c048d474,Adding Unlabeled Samples to Categories by Learned Attributes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +09b80d8eea809529b08a8b0ff3417950c048d474,Adding Unlabeled Samples to Categories by Learned Attributes,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +09f58353e48780c707cf24a0074e4d353da18934,Unconstrained face recognition: Establishing baseline human performance via crowdsourcing,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +09f58353e48780c707cf24a0074e4d353da18934,Unconstrained face recognition: Establishing baseline human performance via crowdsourcing,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +09f58353e48780c707cf24a0074e4d353da18934,Unconstrained face recognition: Establishing baseline human performance via crowdsourcing,"Noblis, Falls Church, VA, U.S.A.","Noblis, Falls Church, VA, U.S.A.","2002 Edmund Halley Dr, Reston, VA 20191, USA",38.95187000,-77.36325900,company, +0969e0dc05fca21ff572ada75cb4b703c8212e80,Semi-Supervised Classification Based on Low Rank Representation,Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.42050016,edu, +09dd01e19b247a33162d71f07491781bdf4bfd00,Efficiently Scaling Up Video Annotation with Crowdsourced Marketplaces,"University of California, Irvine","University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.64319010,-117.84016494,edu, +09cf3f1764ab1029f3a7d57b70ae5d5954486d69,Comparison of ICA approaches for facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081,Where to Buy It: Matching Street Clothing Photos in Online Shops,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081,Where to Buy It: Matching Street Clothing Photos in Online Shops,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +09628e9116e7890bc65ebeabaaa5f607c9847bae,Semantically Consistent Regularization for Zero-Shot Recognition,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +09733129161ca7d65cf56a7ad63c17f493386027,Face Recognition under Varying Illumination,Vienna University of Technology,Vienna University of Technology,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich",48.19853965,16.36986168,edu, +09733129161ca7d65cf56a7ad63c17f493386027,Face Recognition under Varying Illumination,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +09733129161ca7d65cf56a7ad63c17f493386027,Face Recognition under Varying Illumination,Vienna University of Technology,Vienna University of Technology,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich",48.19853965,16.36986168,edu, +097340d3ac939ce181c829afb6b6faff946cdce0,Adding New Tasks to a Single Network with Weight Trasformations using Binary Masks,Sapienza University of Rome,Sapienza University of Rome,"Piazzale Aldo Moro, 5, 00185 Roma RM, Italy",41.90376260,12.51443840,edu, +09507f1f1253101d04a975fc5600952eac868602,Motion Feature Network: Fixed Motion Filter for Action Recognition,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +098a1ccc13b8d6409aa333c8a1079b2c9824705b,Attribute Pivots for Guiding Relevance Feedback in Image Search,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +090ff8f992dc71a1125636c1adffc0634155b450,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +090ff8f992dc71a1125636c1adffc0634155b450,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +090ff8f992dc71a1125636c1adffc0634155b450,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +09b43b59879d59493df2a93c216746f2cf50f4ac,Deep Transfer Metric Learning,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +09b0ef3248ff8f1a05b8704a1b4cf64951575be9,Recognizing Activities of Daily Living with a Wrist-Mounted Camera,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +094357c1a2ba3fda22aa6dd9e496530d784e1721,A Unified Probabilistic Approach Modeling Relationships between Attributes and Objects,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +09ce14b84af2dc2f76ae1cf227356fa0ba337d07,Face reconstruction in the wild,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +090e4713bcccff52dcd0c01169591affd2af7e76,What Do You Do? Occupation Recognition in a Photo via Social Context,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +090e4713bcccff52dcd0c01169591affd2af7e76,What Do You Do? Occupation Recognition in a Photo via Social Context,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +5de5848dc3fc35e40420ffec70a407e4770e3a8d,WebVision Database: Visual Learning and Understanding from Web Data,ETH Zurich,"Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland","Sternwartstrasse 7, 8092 Zürich, Switzerland",47.37723980,8.55216180,edu, +5dd496e58cfedfc11b4b43c4ffe44ac72493bf55,Discriminative convolutional Fisher vector network for action recognition,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +5d88702cdc879396b8b2cc674e233895de99666b,Exploiting Feature Hierarchies with Convolutional Neural Networks for Cultural Event Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +5d88702cdc879396b8b2cc674e233895de99666b,Exploiting Feature Hierarchies with Convolutional Neural Networks for Cultural Event Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +5d479f77ecccfac9f47d91544fd67df642dfab3c,"Linking People in Videos with ""Their"" Names Using Coreference Resolution",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +5d479f77ecccfac9f47d91544fd67df642dfab3c,"Linking People in Videos with ""Their"" Names Using Coreference Resolution",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +5df376748fe5ccd87a724ef31d4fdb579dab693f,A Dashboard for Affective E-learning: Data Visualization for Monitoring Online Learner Emotions,Carleton University,Carleton University,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada",45.38608430,-75.69539267,edu, +3167f415a861f19747ab5e749e78000179d685bc,RankBoost with l1 regularization for facial expression recognition and intensity estimation,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +3107316f243233d45e3c7e5972517d1ed4991f91,CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +313d5eba97fe064bdc1f00b7587a4b3543ef712a,Compact Deep Aggregation for Set Retrieval,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +3137a3fedf23717c411483c7b4bd2ed646258401,Joint Learning of Discriminative Prototypes and Large Margin Nearest Neighbor Classifiers,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +31c34a5b42a640b824fa4e3d6187e3675226143e,Shape and texture based facial action and emotion recognition,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +31ea88f29e7f01a9801648d808f90862e066f9ea,Deep Multi-task Representation Learning: A Tensor Factorisation Approach,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +31835472821c7e3090abb42e57c38f7043dc3636,Flow Counting Using Realboosted Multi-sized Window Detectors,Lund University,Lund University,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.70395710,13.19020110,edu, +312b2566e315dd6e65bd42cfcbe4d919159de8a1,An Accurate Algorithm for Generating a Music Playlist based on Facial Expressions,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,Exploring Stereotypes and Biased Data with the Crowd,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,Exploring Stereotypes and Biased Data with the Crowd,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +316d51aaa37891d730ffded7b9d42946abea837f,Unsupervised learning of clutter-resistant visual representations from natural videos,McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.36262950,-71.09144810,edu, +31d60b2af2c0e172c1a6a124718e99075818c408,Robust Facial Expression Recognition Using Near Infrared Cameras,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +31f1e711fcf82c855f27396f181bf5e565a2f58d,Unconstrained Age Estimation with Deep Convolutional Neural Networks,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +31f1e711fcf82c855f27396f181bf5e565a2f58d,Unconstrained Age Estimation with Deep Convolutional Neural Networks,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +3107085973617bbfc434c6cb82c87f2a952021b7,Spatio-temporal human action localisation and instance segmentation in temporally untrimmed videos,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.75552050,-1.22615970,edu, +3107085973617bbfc434c6cb82c87f2a952021b7,Spatio-temporal human action localisation and instance segmentation in temporally untrimmed videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +31182c5ffc8c5d8772b6db01ec98144cd6e4e897,3D Face Reconstruction with Region Based Best Fit Blending Using Mobile Phone for Virtual Reality Based Social Media,University of Tartu,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.38131405,26.72078081,edu, +3146fabd5631a7d1387327918b184103d06c2211,Person-Independent 3D Gaze Estimation Using Face Frontalization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3146fabd5631a7d1387327918b184103d06c2211,Person-Independent 3D Gaze Estimation Using Face Frontalization,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +91495c689e6e614247495c3f322d400d8098de43,A Deep-Learning Approach to Facial Expression Recognition with Candid Images,CUNY City College,CUNY City College,"CUNY City College, 205 East 42nd Street, New York, NY 10017",45.55466080,5.40652550,edu, +910524c0d0fe062bf806bb545627bf2c9a236a03,Master Thesis Improvement of Facial Expression Recognition through the Evaluation of Dynamic and Static Features in Video Sequences,Otto von Guericke University,Otto von Guericke University,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.64471248,edu, +910524c0d0fe062bf806bb545627bf2c9a236a03,Master Thesis Improvement of Facial Expression Recognition through the Evaluation of Dynamic and Static Features in Video Sequences,Otto von Guericke University,Otto von Guericke University,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.64471248,edu, +91df860368cbcebebd83d59ae1670c0f47de171d,"COCO Attributes: Attributes for People, Animals, and Objects",Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +91df860368cbcebebd83d59ae1670c0f47de171d,"COCO Attributes: Attributes for People, Animals, and Objects",Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +9110c589c6e78daf4affd8e318d843dc750fb71a,Facial Expression Synthesis Based on Emotion Dimensions for Affective Talking Avatar,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +9110c589c6e78daf4affd8e318d843dc750fb71a,Facial Expression Synthesis Based on Emotion Dimensions for Affective Talking Avatar,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +9110c589c6e78daf4affd8e318d843dc750fb71a,Facial Expression Synthesis Based on Emotion Dimensions for Affective Talking Avatar,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +91e507d2d8375bf474f6ffa87788aa3e742333ce,Robust Face Recognition Using Probabilistic Facial Trait Code,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +9103148dd87e6ff9fba28509f3b265e1873166c9,Face Analysis using 3D Morphable Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +9103148dd87e6ff9fba28509f3b265e1873166c9,Face Analysis using 3D Morphable Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +65b1760d9b1541241c6c0222cc4ee9df078b593a,Enhanced Pictorial Structures for Precise Eye Localization Under Uncontrolled Conditions,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220,Face Recognition for the Visually Impaired,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +65bba9fba03e420c96ec432a2a82521ddd848c09,Connectionist Temporal Modeling for Weakly Supervised Action Labeling,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +656531036cee6b2c2c71954bb6540ef6b2e016d0,Jointly Learning Non-negative Projection and Dictionary with Discriminative Graph Constraints for Classification,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +656531036cee6b2c2c71954bb6540ef6b2e016d0,Jointly Learning Non-negative Projection and Dictionary with Discriminative Graph Constraints for Classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +656531036cee6b2c2c71954bb6540ef6b2e016d0,Jointly Learning Non-negative Projection and Dictionary with Discriminative Graph Constraints for Classification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +652aac54a3caf6570b1c10c993a5af7fa2ef31ff,"Carnegie Mellon University Statistical Modeling for Networked Video : Coding Optimization , Error Concealment and Traffic Analysis",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +652aac54a3caf6570b1c10c993a5af7fa2ef31ff,"Carnegie Mellon University Statistical Modeling for Networked Video : Coding Optimization , Error Concealment and Traffic Analysis",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +656ef752b363a24f84cc1aeba91e4fa3d5dd66ba,Robust Open-Set Face Recognition for Small-Scale Convenience Applications,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +6577c76395896dd4d352f7b1ee8b705b1a45fa90,Towards computational models of kinship verification,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +6577c76395896dd4d352f7b1ee8b705b1a45fa90,Towards computational models of kinship verification,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772,A Deep Learning Approach for Subject Independent Emotion Recognition from Facial Expressions,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,"Face , Age and Gender Recognition using Local Descriptors",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,"Face , Age and Gender Recognition using Local Descriptors",University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +6515fe829d0b31a5e1f4dc2970a78684237f6edb,Constrained Maximum Likelihood Learning of Bayesian Networks for Facial Action Recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +6515fe829d0b31a5e1f4dc2970a78684237f6edb,Constrained Maximum Likelihood Learning of Bayesian Networks for Facial Action Recognition,GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.82982480,-73.87719385,edu, +6261eb75066f779e75b02209fbd3d0f02d3e1e45,Fudan-Huawei at MediaEval 2015: Detecting Violent Scenes and Affective Impact in Movies with Deep Learning,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +622daa25b5e6af69f0dac3a3eaf4050aa0860396,Greedy feature selection for subspace clustering,Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.40478113,edu, +622daa25b5e6af69f0dac3a3eaf4050aa0860396,Greedy feature selection for subspace clustering,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +622daa25b5e6af69f0dac3a3eaf4050aa0860396,Greedy feature selection for subspace clustering,Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.40478113,edu, +628a3f027b7646f398c68a680add48c7969ab1d9,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,Facebook,Facebook,"250 Bryant St, Mountain View, CA 94041, USA",37.39367170,-122.08072620,company,"Facebook, Mountain View, CA" +626913b8fcbbaee8932997d6c4a78fe1ce646127,Learning from Millions of 3D Scans for Large-scale 3D Face Recognition,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.02749960,135.78154513,edu, +62e913431bcef5983955e9ca160b91bb19d9de42,Facial Landmark Detection with Tweaked Convolutional Neural Networks,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +624e9d9d3d941bab6aaccdd93432fc45cac28d4b,Object-Scene Convolutional Neural Networks for event recognition in images,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +624e9d9d3d941bab6aaccdd93432fc45cac28d4b,Object-Scene Convolutional Neural Networks for event recognition in images,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +624496296af19243d5f05e7505fd927db02fd0ce,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.54873472,edu, +624496296af19243d5f05e7505fd927db02fd0ce,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +62fd622b3ca97eb5577fd423fb9efde9a849cbef,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +62fd622b3ca97eb5577fd423fb9efde9a849cbef,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +62fd622b3ca97eb5577fd423fb9efde9a849cbef,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +621ff353960d5d9320242f39f85921f72be69dc8,Explicit occlusion detection based deformable fitting for facial landmark localization,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +621e8882c41cdaf03a2c4a986a6404f0272ba511,On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +621f656fedda378ceaa9c0096ebb1556a42e5e0f,Single Sample Face Recognition from Video via Stacked Supervised Auto-Encoder,Rio de Janeiro State University,Rio de Janeiro State University,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.91117105,-43.23577971,edu, +965f8bb9a467ce9538dec6bef57438964976d6d9,Recognizing human faces under disguise and makeup,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +961a5d5750f18e91e28a767b3cb234a77aac8305,Face Detection without Bells and Whistles,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +96f0e7416994035c91f4e0dfa40fd45090debfc5,Unsupervised Learning of Face Representations,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +963d0d40de8780161b70d28d2b125b5222e75596,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +963d0d40de8780161b70d28d2b125b5222e75596,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +963d0d40de8780161b70d28d2b125b5222e75596,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +968b983fa9967ff82e0798a5967920188a3590a8,Children's recognition of disgust in others.,Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.33544810,-71.16813864,edu, +968b983fa9967ff82e0798a5967920188a3590a8,Children's recognition of disgust in others.,Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.33544810,-71.16813864,edu, +969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,End-To-End Face Detection and Recognition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,End-To-End Face Detection and Recognition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +96a9ca7a8366ae0efe6b58a515d15b44776faf6e,Grid Loss: Detecting Occluded Faces,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +96e1ccfe96566e3c96d7b86e134fa698c01f2289,Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +96e1ccfe96566e3c96d7b86e134fa698c01f2289,Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.44549570,78.34854698,edu, +9627f28ea5f4c389350572b15968386d7ce3fe49,Load Balanced GANs for Multi-view Face Image Synthesis,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +966e36f15b05ef8436afecf57a97b73d6dcada94,Dimensionality Reduction using Relative Attributes,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +96578785836d7416bf2e9c154f687eed8f93b1e4,Automated video-based facial expression analysis of neuropsychiatric disorders.,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +96e731e82b817c95d4ce48b9e6b08d2394937cf8,Unconstrained face verification using deep CNN features,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +3a27d164e931c422d16481916a2fa6401b74bcef,Anti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant Face Verification,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +3af8d38469fb21368ee947d53746ea68cd64eeae,Multimodal Intelligent Affect Detection with Kinect (Doctoral Consortium),Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +3af8d38469fb21368ee947d53746ea68cd64eeae,Multimodal Intelligent Affect Detection with Kinect (Doctoral Consortium),Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +3af8d38469fb21368ee947d53746ea68cd64eeae,Multimodal Intelligent Affect Detection with Kinect (Doctoral Consortium),Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +3a3f75e0ffdc0eef07c42b470593827fcd4020b4,Normal Similarity Network for Generative Modelling,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +3a76e9fc2e89bdd10a9818f7249fbf61d216efc4,Face Sketch Matching via Coupled Deep Transform Learning,"IIIT Delhi, India","IIIT Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2,End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies,American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.23664139,edu, +3a0ea368d7606030a94eb5527a12e6789f727994,Categorization by Learning and Combining Object Parts,University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.41338620,114.21005800,edu, +3a04eb72aa64760dccd73e68a3b2301822e4cdc3,Scalable Sparse Subspace Clustering,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +3af130e2fd41143d5fc49503830bbd7bafd01f8b,How Do We Evaluate the Quality of Computational Editing Systems?,University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.43066425,edu, +3a2cf589f5e11ca886417b72c2592975ff1d8472,Spontaneously Emerging Object Part Segmentation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3a2cf589f5e11ca886417b72c2592975ff1d8472,Spontaneously Emerging Object Part Segmentation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3ada7640b1c525056e6fcd37eea26cd638815cd6,Abnormal Object Recognition: A Comprehensive Study,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +3ada7640b1c525056e6fcd37eea26cd638815cd6,Abnormal Object Recognition: A Comprehensive Study,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +3af1a375c7c1decbcf5c3a29774e165cafce390c,Quantifying Facial Expression Abnormality in Schizophrenia by Combining 2D and 3D Features,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +3af1a375c7c1decbcf5c3a29774e165cafce390c,Quantifying Facial Expression Abnormality in Schizophrenia by Combining 2D and 3D Features,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +3a2a37ca2bdc82bba4c8e80b45d9f038fe697c7d,Handling Uncertain Tags in Visual Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +54948ee407b5d32da4b2eee377cc44f20c3a7e0c,Right for the Right Reason: Training Agnostic Networks,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.22963221,edu, +54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +54bae57ed37ce50e859cbc4d94d70cc3a84189d5,Face recognition committee machine,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +54f442c7fa4603f1814ebd8eba912a00dceb5cb2,The Indian Buffet Process: Scalable Inference and Extensions,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +54a9ed950458f4b7e348fa78a718657c8d3d0e05,Learning Neural Models for End-to-End Clustering,Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.01010115,edu, +541f1436c8ffef1118a0121088584ddbfd3a0a8a,A Spatio-temporal Feature Based on Triangulation of Dense SURF,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7,Local Centroids Structured Non-Negative Matrix Factorization,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7,Local Centroids Structured Non-Negative Matrix Factorization,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +5495e224ac7b45b9edc5cfeabbb754d8a40a879b,Feature Reconstruction Disentangling for Pose-invariant Face Recognition Supplementary Material,State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.44099801,edu, +54204e28af73c7aca073835a14afcc5d8f52a515,Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.99625394,edu, +98142103c311b67eeca12127aad9229d56b4a9ff,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +98142103c311b67eeca12127aad9229d56b4a9ff,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +9820920d4544173e97228cb4ab8b71ecf4548475,Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +9820920d4544173e97228cb4ab8b71ecf4548475,Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +989332c5f1b22604d6bb1f78e606cb6b1f694e1a,Recurrent Face Aging,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +989332c5f1b22604d6bb1f78e606cb6b1f694e1a,Recurrent Face Aging,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +989332c5f1b22604d6bb1f78e606cb6b1f694e1a,Recurrent Face Aging,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +982f5c625d6ad0dac25d7acbce4dabfb35dd7f23,Facial Expression Recognition by SVM-based Two-stage Classifier on Gabor Features,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.44429490,136.59285870,edu, +98af221afd64a23e82c40fd28d25210c352e41b7,Exploring visual features through Gabor representations for facial expression detection,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +98af221afd64a23e82c40fd28d25210c352e41b7,Exploring visual features through Gabor representations for facial expression detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +98af221afd64a23e82c40fd28d25210c352e41b7,Exploring visual features through Gabor representations for facial expression detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5,Illumination Normalization Using Logarithm Transforms for Face Authentication,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +9887ab220254859ffc7354d5189083a87c9bca6e,Generic Image Classification Approaches Excel on Face Recognition,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +9887ab220254859ffc7354d5189083a87c9bca6e,Generic Image Classification Approaches Excel on Face Recognition,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +985cd420c00d2f53965faf63358e8c13d1951fa8,Pixel-Level Hand Detection with Shape-Aware Structured Forests,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +9821669a989a3df9d598c1b4332d17ae8e35e294,Minimal Correlation Classification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +9865fe20df8fe11717d92b5ea63469f59cf1635a,Wildest Faces: Face Detection and Recognition in Violent Settings,Hacettepe University,Hacettepe University,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.86742125,32.73519072,edu, +9865fe20df8fe11717d92b5ea63469f59cf1635a,Wildest Faces: Face Detection and Recognition in Violent Settings,Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.78553506,edu, +98c2053e0c31fab5bcb9ce5386335b647160cc09,A Distributed Framework for Spatio-Temporal Analysis on Large-Scale Camera Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +98c2053e0c31fab5bcb9ce5386335b647160cc09,A Distributed Framework for Spatio-Temporal Analysis on Large-Scale Camera Networks,University of Stuttgart,University of Stuttgart,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland",48.90953380,9.18318920,edu, +98c2053e0c31fab5bcb9ce5386335b647160cc09,A Distributed Framework for Spatio-Temporal Analysis on Large-Scale Camera Networks,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.93362780,-78.88394479,edu, +98fb3890c565f1d32049a524ec425ceda1da5c24,A Robust Learning Framework Using PSM and Ameliorated SVMs for Emotional Recognition,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +9825c4dddeb2ed7eaab668b55403aa2c38bc3320,Aerial Imagery for Roof Segmentation: A Large-Scale Dataset towards Automatic Mapping of Buildings,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +9825c4dddeb2ed7eaab668b55403aa2c38bc3320,Aerial Imagery for Roof Segmentation: A Large-Scale Dataset towards Automatic Mapping of Buildings,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +980266ad6807531fea94252e8f2b771c20e173b3,Continuous Regression for Non-rigid Image Alignment,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9,"Discriminative vs . Generative Object Recognition : Objects , Faces , and the Web",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +533d14e539ae5cdca0ece392487a2b19106d468a,Bidirectional Multirate Reconstruction for Temporal Modeling in Videos,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +53698b91709112e5bb71eeeae94607db2aefc57c,Two-Stream Convolutional Networks for Action Recognition in Videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +5394d42fd27b7e14bd875ec71f31fdd2fcc8f923,Visual Recognition Using Directional Distribution Distance,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +5397c34a5e396658fa57e3ca0065a2878c3cced7,Lighting normalization with generic intrinsic illumination subspace for face recognition,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +539287d8967cdeb3ef60d60157ee93e8724efcac,Learning Deep $\ell_0$ Encoders,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +539287d8967cdeb3ef60d60157ee93e8724efcac,Learning Deep $\ell_0$ Encoders,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +532f7ec8e0c8f7331417dd4a45dc2e8930874066,Semi-supervised dimensionality reduction on data with multiple representations for label propagation on facial images,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +53bfe2ab770e74d064303f3bd2867e5bf7b86379,Learning to Synthesize and Manipulate Natural Images,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +537d8c4c53604fd419918ec90d6ef28d045311d0,Active collaborative ensemble tracking,Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.02749960,135.78154513,edu, +53ce84598052308b86ba79d873082853022aa7e9,Optimized Method for Real-Time Face Recognition System Based on PCA and Multiclass Support Vector Machine,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +3fe4109ded039ac9d58eb9f5baa5327af30ad8b6,Spatio-Temporal GrabCut human segmentation for face and pose recovery,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +3fefc856a47726d19a9f1441168480cee6e9f5bb,Perceptually Valid Dynamics for Smiles and Blinks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3fefc856a47726d19a9f1441168480cee6e9f5bb,Perceptually Valid Dynamics for Smiles and Blinks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96,Person Identity Label Propagation in Stereo Videos,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9,Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-Spectral Hallucination and Low-Rank Embedding,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +3fb26f3abcf0d287243646426cd5ddeee33624d4,Joint Training of Cascaded CNN for Face Detection,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +3f9ca2526013e358cd8caeb66a3d7161f5507cbc,Improving Sparse Representation-Based Classification Using Local Principal Component Analysis,"University of California, Davis","University of California, Davis","University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.53363490,-121.79077264,edu, +3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5,Face Recognition across Poses Using a Single 3D Reference Model,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +3feb69531653e83d0986a0643e4a6210a088e3e5,Using Group Prior to Identify People in Consumer Images,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3feb69531653e83d0986a0643e4a6210a088e3e5,Using Group Prior to Identify People in Consumer Images,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +3f12701449a82a5e01845001afab3580b92da858,Joint Object Class Sequencing and Trajectory Triangulation (JOST),University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.04775327,edu, +3fde656343d3fd4223e08e0bc835552bff4bda40,Character Identification Using Graph Matching Algorithm,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.01058380,80.23537360,edu, +3f957142ef66f2921e7c8c7eadc8e548dccc1327,Merging SVMs with Linear Discriminant Analysis: A Combined Model,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +3f957142ef66f2921e7c8c7eadc8e548dccc1327,Merging SVMs with Linear Discriminant Analysis: A Combined Model,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,Intensity-Depth Face Alignment Using Cascade Shape Regression,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,Intensity-Depth Face Alignment Using Cascade Shape Regression,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +3f540faf85e1f8de6ce04fb37e556700b67e4ad3,Face Verification with Multi-Task and Multi-Scale Feature Fusion,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,"Dr. B. C. Roy Engineering College, India",Dr. B. C. Roy Engineering College,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India",23.54409755,87.34269707,edu, +3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,"National Institute of Technology, Rourkela",National Institute of Technology Rourkela,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.25015890,84.90668557,edu, +3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,Indian Institute of Technology Kanpur,Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.51318800,80.23651945,edu, +3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.56115370,88.41310194,edu, +3fb4bf38d34f7f7e5b3df36de2413d34da3e174a,Persuasive Faces: Generating Faces in Advertisements,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +3f623bb0c9c766a5ac612df248f4a59288e4d29f,"Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in Image Data",Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.76846919,edu, +3f4798c7701da044bdb7feb61ebdbd1d53df5cfe,Vector quantization with constrained likelihood for face recognition,University of Geneva,University of Geneva,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA",42.57054745,-88.55578627,edu, +3f4c262d836b2867a53eefb959057350bf7219c9,Recognizing Faces under Facial Expression Variations and Partial Occlusions,Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318,edu, +3f5e8f884e71310d7d5571bd98e5a049b8175075,Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +3f5693584d7dab13ffc12122d6ddbf862783028b,Ranking CGANs: Subjective Control over Semantic Image Attributes,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +3039627fa612c184228b0bed0a8c03c7f754748c,Robust regression on image manifolds for ordered label denoising,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +303a7099c01530fa0beb197eb1305b574168b653,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +303a7099c01530fa0beb197eb1305b574168b653,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,Deep Cascaded Regression for Face Alignment,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,Deep Cascaded Regression for Face Alignment,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +303517dfc327c3004ae866a6a340f16bab2ee3e3,Using Locality Preserving Projections in Face Recognition,DIT University,DIT UNIVERSITY,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.39833960,78.07534550,edu, +30fd1363fa14965e3ab48a7d6235e4b3516c1da1,A Deep Semi-NMF Model for Learning Hidden Representations,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +3026722b4cbe9223eda6ff2822140172e44ed4b1,Jointly estimating demographics and height with a calibrated camera,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +304b1f14ca6a37552dbfac443f3d5b36dbe1a451,Collaborative Low-Rank Subspace Clustering,Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.06360710,147.35522340,edu, +304b1f14ca6a37552dbfac443f3d5b36dbe1a451,Collaborative Low-Rank Subspace Clustering,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +304b1f14ca6a37552dbfac443f3d5b36dbe1a451,Collaborative Low-Rank Subspace Clustering,Western Sydney University,Western Sydney University,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.81608480,151.00560034,edu, +306127c3197eb5544ab1e1bf8279a01e0df26120,Sparse Coding and Dictionary Learning with Linear Dynamical Systems,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,Template Adaptation for Face Verification and Identification,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +3083d2c6d4f456e01cbb72930dc2207af98a6244,Perceived Age Estimation from Face Images,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.51675380,139.48342251,edu, +30cbd41e997445745b6edd31f2ebcc7533453b61,What Makes a Video a Video : Analyzing Temporal Information in Video Understanding Models and Datasets,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +5e59193a0fc22a0c37301fb05b198dd96df94266,Example-Based Modeling of Facial Texture from Deficient Data,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +5e7e055ef9ba6e8566a400a8b1c6d8f827099553,On the role of cortex-basal ganglia interactions for category learning: A neuro-computational approach.,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +5e16f10f2d667d17c029622b9278b6b0a206d394,Learning to Rank Binary Codes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +5e16f10f2d667d17c029622b9278b6b0a206d394,Learning to Rank Binary Codes,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +5e16f10f2d667d17c029622b9278b6b0a206d394,Learning to Rank Binary Codes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7,Rendering or normalization? An analysis of the 3D-aided pose-invariant face recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +5ea165d2bbd305dc125415487ef061bce75dac7d,Efficient human action recognition by luminance field trajectory and geometry information,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +5ea9cba00f74d2e113a10c484ebe4b5780493964,Automated Drowsiness Detection For Improved Driving Safety,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.89271590,29.37863323,edu, +5ea9cba00f74d2e113a10c484ebe4b5780493964,Automated Drowsiness Detection For Improved Driving Safety,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43,Naming every individual in news video monologues,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +5e0e516226413ea1e973f1a24e2fdedde98e7ec0,The Invariance Hypothesis and the Ventral Stream,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +5e7cb894307f36651bdd055a85fdf1e182b7db30,A Comparison of Multi-class Support Vector Machine Methods for Face Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +5b693cb3bedaa2f1e84161a4261df9b3f8e77353,"Robust Face Localisation Using Motion, Colour and Fusion",Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +5b73b7b335f33cda2d0662a8e9520f357b65f3ac,Intensity Rank Estimation of Facial Expressions Based on a Single Image,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +5b73b7b335f33cda2d0662a8e9520f357b65f3ac,Intensity Rank Estimation of Facial Expressions Based on a Single Image,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +5b6d05ce368e69485cb08dd97903075e7f517aed,Robust Active Shape Model for Landmarking Frontal Faces,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +5b0bf1063b694e4b1575bb428edb4f3451d9bf04,Facial Shape Tracking via Spatio-Temporal Cascade Shape Regression,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +5b59e6b980d2447b2f3042bd811906694e4b0843,Two-stage cascade model for unconstrained face detection,University of Zagreb,"University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia","Unska ul. 3, 10000, Zagreb, Croatia",45.80112100,15.97084090,edu, +5bb53fb36a47b355e9a6962257dd465cd7ad6827,Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +5bb53fb36a47b355e9a6962257dd465cd7ad6827,Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays,North Carolina Central University,North Carolina Central University,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA",35.97320905,-78.89755054,edu, +5b89744d2ac9021f468b3ffd32edf9c00ed7fed7,Beyond Mahalanobis metric: Cayley-Klein metric learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +5b7cb9b97c425b52b2e6f41ba8028836029c4432,Smooth Representation Clustering,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +5b7cb9b97c425b52b2e6f41ba8028836029c4432,Smooth Representation Clustering,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +5b9d41e2985fa815c0f38a2563cca4311ce82954,Exploitation of 3D images for face authentication under pose and illumination variations,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +5b6593a6497868a0d19312952d2b753232414c23,Face Recognition by 3D Registration for the Visually Impaired Using a RGB-D Sensor,City College of New York,"The City College of New York, New York, NY 10031, USA","CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA",40.81819805,-73.95100898,edu, +5b6593a6497868a0d19312952d2b753232414c23,Face Recognition by 3D Registration for the Visually Impaired Using a RGB-D Sensor,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +5b719410e7829c98c074bc2947697fac3b505b64,Active Appearance Models for Affect Recognition Using Facial Expressions,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +5b0008ba87667085912ea474025d2323a14bfc90,SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace Clustering Algorithms,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +5b0008ba87667085912ea474025d2323a14bfc90,SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace Clustering Algorithms,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +5b97e997b9b654373bd129b3baf5b82c2def13d1,3D Face Tracking and Texture Fusion in the Wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +5b97e997b9b654373bd129b3baf5b82c2def13d1,3D Face Tracking and Texture Fusion in the Wild,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682404,edu, +5bd3d08335bb4e444a86200c5e9f57fd9d719e14,3 D Face Morphable Models “ Inthe-Wild ”,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +5bd3d08335bb4e444a86200c5e9f57fd9d719e14,3 D Face Morphable Models “ Inthe-Wild ”,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +5bf70c1afdf4c16fd88687b4cf15580fd2f26102,Residual Codean Autoencoder for Facial Attribute Analysis,"IIIT Delhi, India","IIIT Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +5b4b84ce3518c8a14f57f5f95a1d07fb60e58223,Diagnosing Error in Object Detectors,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79,Improving 3D Face Details Based on Normal Map of Hetero-source Images,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +5b86c36e3eb59c347b81125d5dd57dd2a2c377a9,Name Identification of People in News Video by Face Matching,Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225,edu, +5bc0a89f4f73523967050374ed34d7bc89e4d9e1,The role of emotion transition for the perception of social dominance and affiliation.,University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.01986304,edu, +5bc0a89f4f73523967050374ed34d7bc89e4d9e1,The role of emotion transition for the perception of social dominance and affiliation.,Humboldt University,Humboldt University,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.51875685,13.39356049,edu, +5bde1718253ec28a753a892b0ba82d8e553b6bf3,Variational Relevance Vector Machine for Tabular Data,Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.53179777,edu, +5bde1718253ec28a753a892b0ba82d8e553b6bf3,Variational Relevance Vector Machine for Tabular Data,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +5bde1718253ec28a753a892b0ba82d8e553b6bf3,Variational Relevance Vector Machine for Tabular Data,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +37c8514df89337f34421dc27b86d0eb45b660a5e,Facial Landmark Tracking by Tree-Based Deformable Part Model Based Detector,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.07642960,14.41802312,edu, +371f40f6d32ece05cc879b6954db408b3d4edaf3,Mining semantic affordances of visual object categories,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +37007af698b990a3ea8592b11d264b14d39c843f,DCMSVM: Distributed parallel training for single-machine multiclass classifiers,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +374a0df2aa63b26737ee89b6c7df01e59b4d8531,Temporal Action Localization with Pyramid of Score Distribution Features,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +378ae5ca649f023003021f5a63e393da3a4e47f0,Multi-class object localization by combining local contextual interactions,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +37619564574856c6184005830deda4310d3ca580,A deep pyramid Deformable Part Model for face detection,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +37ce1d3a6415d6fc1760964e2a04174c24208173,Pose-Invariant 3D Face Alignment,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +37ba12271d09d219dd1a8283bc0b4659faf3a6c6,Domain transfer for person re-identification,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +377f2b65e6a9300448bdccf678cde59449ecd337,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,Johns Hopkins University,"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA","3400 N Charles St, Baltimore, MD 21218, USA",39.32905300,-76.61942500,edu, +377f2b65e6a9300448bdccf678cde59449ecd337,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433739,edu, +370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433739,edu, +370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433739,edu, +370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433739,edu, +37ef18d71c1ca71c0a33fc625ef439391926bfbb,Extraction of Subject-Specific Facial Expression Categories and Generation of Facial Expression Feature Space using Self-Mapping,Akita Prefectural University,Akita Prefectural University,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本",39.80114990,140.04591160,edu, +37ef18d71c1ca71c0a33fc625ef439391926bfbb,Extraction of Subject-Specific Facial Expression Categories and Generation of Facial Expression Feature Space using Self-Mapping,Akita University,Akita University,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本",39.72781420,140.13322566,edu, +081189493ca339ca49b1913a12122af8bb431984,Supplemental Material for Photorealistic Facial Texture Inference Using Deep Neural Networks,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +08f6ad0a3e75b715852f825d12b6f28883f5ca05,Face recognition: Some challenges in forensics,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +084bd02d171e36458f108f07265386f22b34a1ae,Face Alignment at 3000 FPS via Regressing Local Binary Features,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +084bd02d171e36458f108f07265386f22b34a1ae,Face Alignment at 3000 FPS via Regressing Local Binary Features,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +081cb09791e7ff33c5d86fd39db00b2f29653fa8,Square Loss based regularized LDA for face recognition using image sets,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +081cb09791e7ff33c5d86fd39db00b2f29653fa8,Square Loss based regularized LDA for face recognition using image sets,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +086131159999d79adf6b31c1e604b18809e70ba8,Deep Action Unit classification using a binned intensity loss and semantic context model,Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.03677740,-75.34202332,edu, +086131159999d79adf6b31c1e604b18809e70ba8,Deep Action Unit classification using a binned intensity loss and semantic context model,Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.03677740,-75.34202332,edu, +089513ca240c6d672c79a46fa94a92cde28bd567,RNN Fisher Vectors for Action Recognition and Image Annotation,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +089513ca240c6d672c79a46fa94a92cde28bd567,RNN Fisher Vectors for Action Recognition and Image Annotation,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +089b5e8eb549723020b908e8eb19479ba39812f5,A Cross Benchmark Assessment of a Deep Convolutional Neural Network for Face Recognition,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.12549380,-77.22293475,edu, +08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d,Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +087002ab569e35432cdeb8e63b2c94f1abc53ea9,Spatiotemporal analysis of RGB-D-T facial images for multimodal pain level recognition,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532827,edu, +087002ab569e35432cdeb8e63b2c94f1abc53ea9,Spatiotemporal analysis of RGB-D-T facial images for multimodal pain level recognition,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532827,edu, +08cb294a08365e36dd7ed4167b1fd04f847651a9,Examining visible articulatory features in clear and conversational speech,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +08cb294a08365e36dd7ed4167b1fd04f847651a9,Examining visible articulatory features in clear and conversational speech,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +081286ede247c5789081502a700b378b6223f94b,Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions,University of Bologna,Università di Bologna,"Via Zamboni, 33, 40126 Bologna BO, Italy",44.49623180,11.35415700,edu, +081286ede247c5789081502a700b378b6223f94b,Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions,University of Vienna,University of Vienna,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.21313020,16.36068653,edu, +081286ede247c5789081502a700b378b6223f94b,Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions,Ryerson University,Ryerson University,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.37908010,edu, +08e995c080a566fe59884a527b72e13844b6f176,A New KSVM + KFD Model for Improved Classification and Face Recognition,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.07176915,edu, +085ceda1c65caf11762b3452f87660703f914782,Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +08d55271589f989d90a7edce3345f78f2468a7e0,Quality Aware Network for Set to Set Recognition,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +08d55271589f989d90a7edce3345f78f2468a7e0,Quality Aware Network for Set to Set Recognition,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +08d55271589f989d90a7edce3345f78f2468a7e0,Quality Aware Network for Set to Set Recognition,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +08a98822739bb8e6b1388c266938e10eaa01d903,SensorSift: balancing sensor data privacy and utility in automated face understanding,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +084bebc5c98872e9307cd8e7f571d39ef9c1b81e,A Discriminative Feature Learning Approach for Deep Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +084bebc5c98872e9307cd8e7f571d39ef9c1b81e,A Discriminative Feature Learning Approach for Deep Face Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +08f1e9e14775757298afd9039f46ec56e80677f9,Attentional Push: Augmenting Salience with Shared Attention Modeling,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +08d41d2f68a2bf0091dc373573ca379de9b16385,Recursive Chaining of Reversible Image-to-image Translators For Face Aging,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.82427330,edu, +6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,Robust Deep Appearance Models,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,Robust Deep Appearance Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6dbdb07ce2991db0f64c785ad31196dfd4dae721,Seeing Small Faces from Robust Anchor's Perspective,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6d7a32f594d46f4087b71e2a2bb66a4b25da5e30,Towards Person Authentication by Fusing Visual and Thermal Face Biometrics,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +6d2ca1ddacccc8c865112bd1fbf8b931c2ee8e75,ROC speak: semi-automated personalized feedback on nonverbal behavior from recorded videos,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1,Semi-supervised learning for facial expression recognition,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1,Semi-supervised learning for facial expression recognition,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +6d07e176c754ac42773690d4b4919a39df85d7ec,Face Attribute Prediction Using Off-The-Shelf Deep Learning Networks,"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.07063213,edu, +6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf,Webly-Supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf,Webly-Supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +6dc1f94b852538d572e4919238ddb10e2ee449a4,Objects as context for detecting their semantic parts,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +6d4e3616d0b27957c4107ae877dc0dd4504b69ab,Unsupervised Learning using Sequential Verification for Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +6d5125c9407c7762620eeea7570af1a8ee7d76f3,Video Frame Interpolation by Plug-and-Play Deep Locally Linear Embedding,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.56004060,126.93692480,edu, +6d8e3f3a83514381f890ab7cd2a1f1c5be597b69,Improving Text Recognition in Images of Natural Scenes,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +6d8e3f3a83514381f890ab7cd2a1f1c5be597b69,Improving Text Recognition in Images of Natural Scenes,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19,Understanding Representations and Reducing their Redundancy in Deep Networks,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +016800413ebd1a87730a5cf828e197f43a08f4b3,Learning Attributes Equals Multi-Source Domain Generalization,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +016800413ebd1a87730a5cf828e197f43a08f4b3,Learning Attributes Equals Multi-Source Domain Generalization,University of Iowa,University of Iowa,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA",41.66590000,-91.57310307,edu, +01c9dc5c677aaa980f92c4680229db482d5860db,Temporal Action Detection Using a Statistical Language Model,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.73381240,7.10224650,edu, +013909077ad843eb6df7a3e8e290cfd5575999d2,A Semi-automatic Methodology for Facial Landmark Annotation,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +013909077ad843eb6df7a3e8e290cfd5575999d2,A Semi-automatic Methodology for Facial Landmark Annotation,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.54873472,edu, +013909077ad843eb6df7a3e8e290cfd5575999d2,A Semi-automatic Methodology for Facial Landmark Annotation,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +01c7a778cde86ad1b89909ea809d55230e569390,A Supervised Low-Rank Method for Learning Invariant Subspaces,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +0115f260069e2e501850a14845feb400142e2443,"An On-Line Handwriting Recognizer with Fisher Matching, Hypotheses Propagation Network and Context Constraint Models",New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.99625394,edu, +01cc8a712e67384f9ef9f30580b7415bfd71e980,Failing to ignore: paradoxical neural effects of perceptual load on early attentional selection in normal aging.,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +01cc8a712e67384f9ef9f30580b7415bfd71e980,Failing to ignore: paradoxical neural effects of perceptual load on early attentional selection in normal aging.,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +01dc1e03f39901e212bdf291209b7686266aeb13,Actionness Estimation Using Hybrid Fully Convolutional Networks,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +01dc1e03f39901e212bdf291209b7686266aeb13,Actionness Estimation Using Hybrid Fully Convolutional Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +016f49a54b79ec787e701cc8c7d0280273f9b1ef,Self Organizing Maps for Reducing the Number of Clusters by One on Simplex Subspaces,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,Kingston University,Kingston University,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.42930860,-0.26840440,edu, +01c09acf0c046296643de4c8b55a9330e9c8a419,Manifold Learning Using Euclidean -nearest Neighbor Graphs,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +01d23cbac762b0e46251f5dbde08f49f2d13b9f8,Combining Face Verification Experts,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +014143aa16604ec3f334c1407ceaa496d2ed726e,Large-scale manifold learning,Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72864840,-73.99568630,edu, +0182d090478be67241392df90212d6cd0fb659e6,Discovering localized attributes for fine-grained recognition,Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.87956905,edu, +0182d090478be67241392df90212d6cd0fb659e6,Discovering localized attributes for fine-grained recognition,Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.87956905,edu, +016a8ed8f6ba49bc669dbd44de4ff31a79963078,Face relighting for face recognition under generic illumination,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +019e471667c72b5b3728b4a9ba9fe301a7426fb2,Cross-age face verification by coordinating with cross-face age verification,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +067126ce1f1a205f98e33db7a3b77b7aec7fb45a,On Improving Dissimilarity-Based Classifications Using a Statistical Similarity Measure,Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.23810230,127.19034310,edu, +067126ce1f1a205f98e33db7a3b77b7aec7fb45a,On Improving Dissimilarity-Based Classifications Using a Statistical Similarity Measure,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +06466276c4955257b15eff78ebc576662100f740,Where is who: large-scale photo retrieval by facial attributes and canvas layout,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +06f585a3a05dd3371cd600a40dc35500e2f82f9b,Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +06f8aa1f436a33014e9883153b93581eea8c5c70,Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +061c84a4143e859a7caf6e6d283dfb30c23ee56e,DEEP-CARVING: Discovering visual attributes by carving deep neural nets,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.79440260,-1.09717480,edu, +061e29eae705f318eee703b9e17dc0989547ba0c,Enhancing Expression Recognition in the Wild with Unlabeled Reference Data,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +06850b60e33baa4ea9473811d58c0d5015da079e,A Survey of the Trends in Facial and Expression Recognition Databases and Methods,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +06850b60e33baa4ea9473811d58c0d5015da079e,A Survey of the Trends in Facial and Expression Recognition Databases and Methods,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +06a6347ac14fd0c6bb3ad8190cbe9cdfa5d59efc,Active image clustering: Seeking constraints from humans to complement algorithms,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +06bad0cdda63e3fd054e7b334a5d8a46d8542817,Sharing features between objects and their attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +06bad0cdda63e3fd054e7b334a5d8a46d8542817,Sharing features between objects and their attributes,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +0641dbee7202d07b6c78a39eecd312c17607412e,Null space clustering with applications to motion segmentation and face clustering,"Australian National University, Canberra","Australian National University, Canberra","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331,edu, +06400a24526dd9d131dfc1459fce5e5189b7baec,Event Recognition in Photo Collections with a Stopwatch HMM,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +062d67af7677db086ef35186dc936b4511f155d7,They are Not Equally Reliable: Semantic Event Search Using Differentiated Concept Classifiers,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +062d67af7677db086ef35186dc936b4511f155d7,They are Not Equally Reliable: Semantic Event Search Using Differentiated Concept Classifiers,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +06c2086f7f72536bf970ca629151b16927104df3,Recurrent CNN for 3D Gaze Estimation using Appearance and Shape Cues,University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.07840380,-114.12870770,edu, +060034b59275c13746413ca9c67d6304cba50da6,Ordered Trajectories for Large Scale Human Action Recognition,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +060034b59275c13746413ca9c67d6304cba50da6,Ordered Trajectories for Large Scale Human Action Recognition,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +064cd41d323441209ce1484a9bba02a22b625088,Selective Transfer Machine for Personalized Facial Action Unit Detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +064cd41d323441209ce1484a9bba02a22b625088,Selective Transfer Machine for Personalized Facial Action Unit Detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +06c2dfe1568266ad99368fc75edf79585e29095f,Bayesian Active Appearance Models,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +06f39834e870278243dda826658319be2d5d8ded,Recognizing unseen actions in a domain-adapted embedding space,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +06d7ef72fae1be206070b9119fb6b61ce4699587,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +06d7ef72fae1be206070b9119fb6b61ce4699587,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,University of Patras,University of Patras,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.28994820,21.78864690,edu, +06d7ef72fae1be206070b9119fb6b61ce4699587,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.22963221,edu, +062d0813815c2b9864cd9bb4f5a1dc2c580e0d90,Encouraging LSTMs to Anticipate Actions Very Early,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +06a9ed612c8da85cb0ebb17fbe87f5a137541603,Deep Learning of Player Trajectory Representations for Team Activity Analysis,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +6c66ae815e7e508e852ecb122fb796abbcda16a8,Expression Recognition Databases and Methods,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +6ca2c5ff41e91c34696f84291a458d1312d15bf2,LipNet: Sentence-level Lipreading,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +6c690af9701f35cd3c2f6c8d160b8891ad85822a,Multi-Task Learning with Low Rank Attribute Embedding for Person Re-Identification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +6c690af9701f35cd3c2f6c8d160b8891ad85822a,Multi-Task Learning with Low Rank Attribute Embedding for Person Re-Identification,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +6c690af9701f35cd3c2f6c8d160b8891ad85822a,Multi-Task Learning with Low Rank Attribute Embedding for Person Re-Identification,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +6c5fbf156ef9fc782be0089309074cc52617b868,Controllable Video Generation with Sparse Trajectories,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +6ce23cf4f440021b7b05aa3c1c2700cc7560b557,Learning Local Convolutional Features for Face Recognition with 2D-Warping,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +6c80c834d426f0bc4acd6355b1946b71b50cbc0b,Pose-Based Two-Stream Relational Networks for Action Recognition in Videos,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +6c6bb85a08b0bdc50cf8f98408d790ccdb418798,Recognition of facial expressions in presence of partial occlusion,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +6c705285c554985ecfe1117e854e1fe1323f8c21,DIY Human Action Data Set Generation,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +3991223b1dc3b87883cec7af97cf56534178f74a,A unified framework for context assisted face clustering,"University of California, Irvine","University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.64319010,-117.84016494,edu, +396a19e29853f31736ca171a3f40c506ef418a9f,Real World Real-time Automatic Recognition of Facial Expressions,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +392d35bb359a3b61cca1360272a65690a97a2b3f,Multi-Task Transfer Methods to Improve One-Shot Learning for Multimedia Event Detection,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +39c48309b930396a5a8903fdfe781d3e40d415d0,Learning Spatial and Temporal Cues for Multi-Label Facial Action Unit Detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +39c48309b930396a5a8903fdfe781d3e40d415d0,Learning Spatial and Temporal Cues for Multi-Label Facial Action Unit Detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +3946b8f862ecae64582ef0912ca2aa6d3f6f84dc,Who and Where: People and Location Co-Clustering,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +3933416f88c36023a0cba63940eb92f5cef8001a,Learning Robust Subspace Clustering,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +39150acac6ce7fba56d54248f9c0badbfaeef0ea,"Digital Signal Processing for in - Vehicle and mobile systems , Istanbul , Turkey , June 2007 . MACHINE LEARNING SYSTEMS FOR DETECTING DRIVER DROWSINESS",Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.89271590,29.37863323,edu, +39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,Simultaneous Local Binary Feature Learning and Encoding for Face Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,Simultaneous Local Binary Feature Learning and Encoding for Face Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +3983637022992a329f1d721bed246ae76bc934f7,Wide-baseline stereo for face recognition with large pose variation,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +39ecdbad173e45964ffe589b9ced9f1ebfe2d44e,Automatic recognition of lower facial action units,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.84110070,4.32377555,edu, +999289b0ef76c4c6daa16a4f42df056bf3d68377,The Role of Color and Contrast in Facial Age Estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +999289b0ef76c4c6daa16a4f42df056bf3d68377,The Role of Color and Contrast in Facial Age Estimation,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +995d55fdf5b6fe7fb630c93a424700d4bc566104,The One Triangle Three Parallelograms Sampling Strategy and Its Application in Shape Regression,Lund University,Lund University,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.70395710,13.19020110,edu, +993d189548e8702b1cb0b02603ef02656802c92b,Highly-Economized Multi-View Binary Compression for Scalable Image Clustering,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +993d189548e8702b1cb0b02603ef02656802c92b,Highly-Economized Multi-View Binary Compression for Scalable Image Clustering,University of Electronic Science and Technology of China,University of Electronic Science and Technology of China,"Columbus, OH 43210, USA",40.01419050,-83.03091430,edu, +994b52bf884c71a28b4f5be4eda6baaacad1beee,Categorizing Big Video Data on the Web: Challenges and Opportunities,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +99001ac9fdaf7649c0d0bd8d2078719bafd216d9,General Tensor Discriminant Analysis and Gabor Features for Gait Recognition,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +99001ac9fdaf7649c0d0bd8d2078719bafd216d9,General Tensor Discriminant Analysis and Gabor Features for Gait Recognition,University of Vermont,University of Vermont,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.48116865,-73.20021790,edu, +9901f473aeea177a55e58bac8fd4f1b086e575a4,Human and sheep facial landmarks localisation by triplet interpolated features,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +99facca6fc50cc30f13b7b6dd49ace24bc94f702,VIPLFaceNet: an open source deep face recognition SDK,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +99facca6fc50cc30f13b7b6dd49ace24bc94f702,VIPLFaceNet: an open source deep face recognition SDK,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +523854a7d8755e944bd50217c14481fe1329a969,A Differentially Private Kernel Two-Sample Test,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +523854a7d8755e944bd50217c14481fe1329a969,A Differentially Private Kernel Two-Sample Test,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +521cfbc1949289a7ffc3ff90af7c55adeb43db2a,Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +521cfbc1949289a7ffc3ff90af7c55adeb43db2a,Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +521cfbc1949289a7ffc3ff90af7c55adeb43db2a,Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +5253c94f955146ba7d3566196e49fe2edea1c8f4,Internet Based Morphable Model,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +529b1f33aed49dbe025a99ac1d211c777ad881ec,Fast and exact bi-directional fitting of active appearance models,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +529b1f33aed49dbe025a99ac1d211c777ad881ec,Fast and exact bi-directional fitting of active appearance models,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +523b2cbc48decfabffb66ecaeced4fe6a6f2ac78,Photorealistic facial expression synthesis by the conditional difference adversarial autoencoder,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +52472ec859131844f38fc7d57944778f01d109ac,Improving Speaker Turn Embedding by Crossmodal Transfer Learning from Face Embedding,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +5287d8fef49b80b8d500583c07e935c7f9798933,Generative Adversarial Text to Image Synthesis,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +5287d8fef49b80b8d500583c07e935c7f9798933,Generative Adversarial Text to Image Synthesis,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,Structural similarity and distance in learning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,Structural similarity and distance in learning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,Structural similarity and distance in learning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +52c91fcf996af72d191520d659af44e310f86ef9,Interactive Image Search with Attribute-based Guidance and Personalization,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +52885fa403efbab5ef21274282edd98b9ca70cbf,Discriminant Graph Structures for Facial Expression Recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +52885fa403efbab5ef21274282edd98b9ca70cbf,Discriminant Graph Structures for Facial Expression Recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +52d7eb0fbc3522434c13cc247549f74bb9609c5d,WIDER FACE: A Face Detection Benchmark,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +528069963f0bd0861f380f53270c96c269a3ea1c,4D (3D Dynamic) statistical models of conversational expressions and the synthesis of highly-realistic 4D facial expression sequences,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.48799610,-3.17969747,edu, +556b9aaf1bc15c928718bc46322d70c691111158,Exploiting qualitative domain knowledge for learning Bayesian network parameters with incomplete data,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f,Efficient and Effective Solutions for Video Classification,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f,Efficient and Effective Solutions for Video Classification,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.05044565,edu, +55138c2b127ebdcc508503112bf1d1eeb5395604,Ensemble Nystrom Method,Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72864840,-73.99568630,edu, +55e18e0dde592258882134d2dceeb86122b366ab,Training a Multilingual Sportscaster: Using Perceptual Context to Learn Language,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +55966926e7c28b1eee1c7eb7a0b11b10605a1af0,Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +552c55c71bccfc6de7ce1343a1cd12208e9a63b3,Accurate eye center location and tracking using isophote curvature,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +5517b28795d7a68777c9f3b2b46845dcdb425b2c,Deep video gesture recognition using illumination invariants,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +55e87050b998eb0a8f0b16163ef5a28f984b01fa,Can you Find a Face in a HEVC Bitstream?,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +55bc7abcef8266d76667896bbc652d081d00f797,Impact of facial cosmetics on automatic gender and age estimation algorithms,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +55bc7abcef8266d76667896bbc652d081d00f797,Impact of facial cosmetics on automatic gender and age estimation algorithms,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +55b4b1168c734eeb42882082bd131206dbfedd5b,Learning to Align from Scratch,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +55b4b1168c734eeb42882082bd131206dbfedd5b,Learning to Align from Scratch,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +55804f85613b8584d5002a5b0ddfe86b0d0e3325,Data Complexity in Machine Learning,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +55b9b1c1c5487f5f62b44340104a9c4cc2ed7c96,The Color of the Cat is Gray: 1 Million Full-Sentences Visual Question Answering (FSVQA),University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +9788b491ddc188941dadf441fc143a4075bff764,LOGAN: Membership Inference Attacks Against Generative Models∗,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3,Discriminative Log-Euclidean Feature Learning for Sparse Representation-Based Recognition of Faces from Videos,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +97137d5154a9f22a5d9ecc32e8e2b95d07a5a571,Facial expression recognition based on local region specific features and support vector machines,Korea Electronics Technology Institute,Korea Electronics Technology Institute,"South Korea, Gyeonggi-do, Seongnam-si, Bundang-gu, 새나리로 25 (야탑동) KETI 전자부품연구원",37.40391700,127.15978600,edu, +9730b9cd998c0a549601c554221a596deda8af5b,Spatio-Temporal Person Retrieval via Natural Language Queries,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +978a219e07daa046244821b341631c41f91daccd,Emotional Intelligence: Giving Computers Effective Emotional Skills to Aid Interaction,University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134,edu, +976e0264bb57786952a987d4456850e274714fb8,Improving Semantic Concept Detection through the Dictionary of Visually-Distinct Elements,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +9758f3fd94239a8d974217fe12599f88fb413f3d,UC-HCC Submission to Thumos 2014,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +97e569159d5658760eb00ca9cb662e6882d2ab0e,Correlation Filters for Object Alignment,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +97e569159d5658760eb00ca9cb662e6882d2ab0e,Correlation Filters for Object Alignment,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +97e569159d5658760eb00ca9cb662e6882d2ab0e,Correlation Filters for Object Alignment,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.80915360,-97.13304179,edu, +975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.80915360,-97.13304179,edu, +975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.80915360,-97.13304179,edu, +975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +63d8110ac76f57b3ba8a5947bc6bdbb86f25a342,On Modeling Variations for Face Authentication,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c,Real-Time Facial Segmentation and Performance Capture from RGB Input,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +6324fada2fb00bd55e7ff594cf1c41c918813030,Uncertainty Reduction for Active Image Clustering via a Hybrid Global-Local Uncertainty Model,University at Buffalo,State University of New York at Buffalo,"Buffalo, NY 14260, USA",43.00080930,-78.78896970,edu, +6308e9c991125ee6734baa3ec93c697211237df8,Learning the sparse representation for classification,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +6342a4c54835c1e14159495373ab18b4233d2d9b,Towards Pose-robust Face Recognition on Video,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +63b29886577a37032c7e32d8899a6f69b11a90de,Image-Set Based Face Recognition Using Boosted Global and Local Principal Angles,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.11120580,140.10551760,edu, +63a6c256ec2cf2e0e0c9a43a085f5bc94af84265,Complexity of multiverse networks and their multilayer generalization,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +63213d080a43660ac59ea12e3c35e6953f6d7ce8,ActionVLAD: Learning Spatio-Temporal Aggregation for Action Classification,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +630d1728435a529d0b0bfecb0e7e335f8ea2596d,Facial Action Unit Detection by Cascade of Tasks,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +630d1728435a529d0b0bfecb0e7e335f8ea2596d,Facial Action Unit Detection by Cascade of Tasks,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +630d1728435a529d0b0bfecb0e7e335f8ea2596d,Facial Action Unit Detection by Cascade of Tasks,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +633101e794d7b80f55f466fd2941ea24595e10e6,Face Attribute Prediction with classification CNN,"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.07063213,edu, +63a2e2155193dc2da9764ae7380cdbd044ff2b94,A Dense SURF and Triangulation Based Spatio-temporal Feature for Action Recognition,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +63d865c66faaba68018defee0daf201db8ca79ed,Deep Regression for Face Alignment,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +63cff99eff0c38b633c8a3a2fec8269869f81850,Feature Correlation Filter for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +6341274aca0c2977c3e1575378f4f2126aa9b050,A multi-scale cascade fully convolutional network face detector,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +632441c9324cd29489cee3da773a9064a46ae26b,Video-based Cardiac Physiological Measurements Using Joint Blind Source Separation Approaches,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +632441c9324cd29489cee3da773a9064a46ae26b,Video-based Cardiac Physiological Measurements Using Joint Blind Source Separation Approaches,University of British Columbia,University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.24658161,edu, +0fc254272db096a9305c760164520ad9914f4c9e,Unsupervised convolutional neural networks for motion estimation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +0fae5d9d2764a8d6ea691b9835d497dd680bbccd,Face Recognition using Canonical Correlation Analysis,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +0fae5d9d2764a8d6ea691b9835d497dd680bbccd,Face Recognition using Canonical Correlation Analysis,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +0f32df6ae76402b98b0823339bd115d33d3ec0a0,Emotion recognition from embedded bodily expressions and speech during dyadic interactions,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0f32df6ae76402b98b0823339bd115d33d3ec0a0,Emotion recognition from embedded bodily expressions and speech during dyadic interactions,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0f829fee12e86f980a581480a9e0cefccb59e2c5,Bird Part Localization Using Exemplar-Based Models with Enforced Pose and Subcategory Consistency,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +0faee699eccb2da6cf4307ded67ba8434368257b,TAIGMAN: MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION 1 Multiple One-Shots for Utilizing Class Label Information,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +0faee699eccb2da6cf4307ded67ba8434368257b,TAIGMAN: MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION 1 Multiple One-Shots for Utilizing Class Label Information,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +0fabb4a40f2e3a2502cd935e54e090a304006c1c,Regularized Robust Coding for Face Recognition,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +0f0366070b46972fcb2976775b45681e62a94a26,Reliable Posterior Probability Estimation for Streaming Face Recognition,University of Colorado at Colorado Springs,University of Colorado at Colorado Springs,"1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA",38.89646790,-104.80505940,edu, +0f0366070b46972fcb2976775b45681e62a94a26,Reliable Posterior Probability Estimation for Streaming Face Recognition,University of Colorado at Colorado Springs,University of Colorado at Colorado Springs,"1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA",38.89646790,-104.80505940,edu, +0fd3a7ee228bbc3dd4a111dae04952a1ee58a8cd,Hair style retrieval by semantic mapping on informative patches,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +0f533bc9fdfb75a3680d71c84f906bbd59ee48f1,Illumination invariant feature extraction based on natural images statistics — Taking face images as an example,"Academia Sinica, Taiwan","Research Center for Institute of Information Science, Academia Sinica, Taiwan","115, Taiwan, Taipei City, Nangang District, 研究院路二段128號",25.04117270,121.61465180,edu, +0f533bc9fdfb75a3680d71c84f906bbd59ee48f1,Illumination invariant feature extraction based on natural images statistics — Taking face images as an example,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +0f4eb63402a4f3bae8f396e12133684fb760def1,"LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 Attribute Embedding with Visual-Semantic Ambiguity Removal for Zero-shot Learning",Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +0fba39bf12486c7684fd3d51322e3f0577d3e4e8,Task Specific Local Region Matching,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277,Detecting Hands in Egocentric Videos: Towards Action Recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0f940d2cdfefc78c92ec6e533a6098985f47a377,A hierarchical framework for simultaneous facial activity tracking,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,Evaluation of optimization components of a 3D to 2D landmark fitting algorithm for head pose estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,Evaluation of optimization components of a 3D to 2D landmark fitting algorithm for head pose estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.93362780,-78.88394479,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,National University of Ireland Maynooth,National University of Ireland Maynooth,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.38469750,-6.60039458,edu, +0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,"Mirror, mirror on the wall, tell me, is the error small?",Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,"Mirror, mirror on the wall, tell me, is the error small?",Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +0f0241124d6092a0bb56259ac091467c2c6938ca,Associating Faces and Names in Japanese Photo News Articles on the Web,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +0a64f4fec592662316764283575d05913eb2135b,Joint Pixel and Feature-level Domain Adaptation in the Wild,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457,Learning Invariant Deep Representation for NIR-VIS Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,Patch-based models for visual object classes,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,Patch-based models for visual object classes,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +0aeb5020003e0c89219031b51bd30ff1bceea363,Sparsifying Neural Network Connections for Face Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +0aeb5020003e0c89219031b51bd30ff1bceea363,Sparsifying Neural Network Connections for Face Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +0aeb5020003e0c89219031b51bd30ff1bceea363,Sparsifying Neural Network Connections for Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.79440260,-1.09717480,edu, +0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.79440260,-1.09717480,edu, +0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +0abf67e7bd470d9eb656ea2508beae13ca173198,Going Deeper into First-Person Activity Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +0af33f6b5fcbc5e718f24591b030250c6eec027a,Text Analysis for Automatic Image Annotation,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.88306860,4.70195030,edu, +0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,FacePoseNet: Making a Case for Landmark-Free Face Alignment,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +0ad8149318912b5449085187eb3521786a37bc78,CP-mtML: Coupled Projection Multi-Task Metric Learning for Large Scale Face Retrieval,University of Caen,University of Caen,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.02749960,135.78154513,edu, +0a9d204db13d395f024067cf70ac19c2eeb5f942,Viewpoint-aware Video Summarization,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +0aae88cf63090ea5b2c80cd014ef4837bcbaadd8,3D Face Structure Extraction from Images at Arbitrary Poses and under Arbitrary Illumination Conditions,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.95740000,-75.19026706,edu, +0a82860d11fcbf12628724333f1e7ada8f3cd255,Action Temporal Localization in Untrimmed Videos via Multi-stage CNNs,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +0a4fc9016aacae9cdf40663a75045b71e64a70c9,Illumination Normalization Based on Homomorphic Wavelet Filtering for Face Recognition,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +0ac442bb570b086d04c4d51a8410fcbfd0b1779d,WarpNet: Weakly Supervised Matching for Single-View Reconstruction,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +0ac664519b2b8abfb8966dafe60d093037275573,Facial action unit detection using kernel partial least squares,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +0a9345ea6e488fb936e26a9ba70b0640d3730ba7,Deep Bi-directional Cross-triplet Embedding for Cross-Domain Clothing Retrieval,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +0a9345ea6e488fb936e26a9ba70b0640d3730ba7,Deep Bi-directional Cross-triplet Embedding for Cross-Domain Clothing Retrieval,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +0a79d0ba1a4876086e64fc0041ece5f0de90fbea,Face Illumination Normalization with Shadow Consideration,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +0a11b82aa207d43d1b4c0452007e9388a786be12,Feature Level Multiple Model Fusion Using Multilinear Subspace Analysis with Incomplete Training Set and Its Application to Face Image Analysis,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +0a11b82aa207d43d1b4c0452007e9388a786be12,Feature Level Multiple Model Fusion Using Multilinear Subspace Analysis with Incomplete Training Set and Its Application to Face Image Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +6409b8879c7e61acf3ca17bcc62f49edca627d4c,Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +6409b8879c7e61acf3ca17bcc62f49edca627d4c,Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +6409b8879c7e61acf3ca17bcc62f49edca627d4c,Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +64ec0c53dd1aa51eb15e8c2a577701e165b8517b,Online Regression with Feature Selection in Stochastic Data Streams,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +64ec0c53dd1aa51eb15e8c2a577701e165b8517b,Online Regression with Feature Selection in Stochastic Data Streams,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +6459f1e67e1ea701b8f96177214583b0349ed964,Generalized subspace based high dimensional density estimation,"University of California, Santa Barbara","University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.41459370,-119.84581950,edu, +6459f1e67e1ea701b8f96177214583b0349ed964,Generalized subspace based high dimensional density estimation,"University of California, Santa Barbara","University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.41459370,-119.84581950,edu, +64cf86ba3b23d3074961b485c16ecb99584401de,Single Image 3D Interpreter Network,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +64cf86ba3b23d3074961b485c16ecb99584401de,Single Image 3D Interpreter Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,Deep Learning Face Attributes in the Wild,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,Deep Learning Face Attributes in the Wild,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +6479b61ea89e9d474ffdefa71f068fbcde22cc44,Some topics on similarity metric learning,University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.73693020,-3.53647672,edu, +64e75f53ff3991099c3fb72ceca55b76544374e5,Simultaneous Feature Selection and Classifier Training via Linear Programming: A Case Study for Face Expression Recognition,University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.43066425,edu, +64f9519f20acdf703984f02e05fd23f5e2451977,Learning Temporal Alignment Uncertainty for Efficient Event Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +64782a2bc5da11b1b18ca20cecf7bdc26a538d68,Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +64782a2bc5da11b1b18ca20cecf7bdc26a538d68,Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +64d5772f44efe32eb24c9968a3085bc0786bfca7,Morphable Displacement Field Based Image Matching for Face Recognition across Pose,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +64d7e62f46813b5ad08289aed5dc4825d7ec5cff,Mix and Match: Joint Model for Clothing and Attribute Recognition,Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.25309450,140.87365930,edu, +90298f9f80ebe03cb8b158fd724551ad711d4e71,A Pursuit of Temporal Accuracy in General Activity Detection,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +900207b3bc3a4e5244cae9838643a9685a84fee0,Reconstructing Geometry from Its Latent Structures,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.95740000,-75.19026706,edu, +90498b95fe8b299ce65d5cafaef942aa58bd68b7,Face Recognition: Primates in the Wild,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +90cc2f08a6c2f0c41a9dd1786bae097f9292105e,Top-down Attention Recurrent VLAD Encoding for Action Recognition in Videos,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +90c4f15f1203a3a8a5bf307f8641ba54172ead30,A 2D Morphable Model of Craniofacial Profile and Its Application to Craniosynostosis,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +90ad0daa279c3e30b360f9fe9371293d68f4cebf,Spatio-temporal Framework and Algorithms for Video-based Face Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.61623060,20.83963011,edu, +90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +90d9209d5dd679b159051a8315423a7f796d704d,Temporal Sequence Distillation: Towards Few-Frame Action Recognition in Videos,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +90d9209d5dd679b159051a8315423a7f796d704d,Temporal Sequence Distillation: Towards Few-Frame Action Recognition in Videos,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +90dd2a53236b058c79763459b9d8a7ba5e58c4f1,Capturing Correlations Among Facial Parts for Facial Expression Analysis,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +90c2d4d9569866a0b930e91713ad1da01c2a6846,Dimensionality Reduction Based on Low Rank Representation,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +bf03f0fe8f3ba5b118bdcbb935bacb62989ecb11,Effect of Facial Expressions on Feature-Based Landmark Localization in Static Grey Scale Images,University of Tampere,University of Tampere,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.77920678,edu, +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +bf54b5586cdb0b32f6eed35798ff91592b03fbc4,Methodical Analysis of Western-Caucasian and East-Asian Basic Facial Expressions of Emotions Based on Specific Facial Regions,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103,Emotion Regulation in Adolescent Males with Attention-Deficit Hyperactivity Disorder: Testing the Effects of Comorbid Conduct Disorder,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.48799610,-3.17969747,edu, +bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103,Emotion Regulation in Adolescent Males with Attention-Deficit Hyperactivity Disorder: Testing the Effects of Comorbid Conduct Disorder,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.48799610,-3.17969747,edu, +bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5,Visual face scanning and emotion perception analysis between autistic and typically developing children,University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.73169570,90.39652750,edu, +bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5,Visual face scanning and emotion perception analysis between autistic and typically developing children,University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.73169570,90.39652750,edu, +bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +bff567c58db554858c7f39870cff7c306523dfee,Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +bffbd04ee5c837cd919b946fecf01897b2d2d432,Facial Feature Tracking and Occlusion Recovery in American Sign Language,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +d3edbfe18610ce63f83db83f7fbc7634dde1eb40,Large Graph Hashing with Spectral Rotation,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.24691520,108.91061982,edu, +d3424761e06a8f5f3c1f042f1f1163a469872129,"Pose - invariant , model - based object recognition , using linear combination of views and Bayesian statistics . Vasileios",University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +d33b26794ea6d744bba7110d2d4365b752d7246f,Transfer Feature Representation via Multiple Kernel Learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d3d5d86afec84c0713ec868cf5ed41661fc96edc,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.89271590,29.37863323,edu, +d3d5d86afec84c0713ec868cf5ed41661fc96edc,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +d3e04963ff42284c721f2bc6a90b7a9e20f0242f,On Forensic Use of Biometrics,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +d35c82588645b94ce3f629a0b98f6a531e4022a3,Scalable Online Annotation & Object Localisation For Broadcast Media Production,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +d35c82588645b94ce3f629a0b98f6a531e4022a3,Scalable Online Annotation & Object Localisation For Broadcast Media Production,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +d394bd9fbaad1f421df8a49347d4b3fca307db83,Recognizing facial expressions at low resolution,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +d3b550e587379c481392fb07f2cbbe11728cf7a6,Small Sample Size Face Recognition using Random Quad-Tree based Ensemble Algorithm,Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.02749960,135.78154513,edu, +d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.62850666,edu, +d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +d31af74425719a3840b496b7932e0887b35e9e0d,A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +d3b0839324d0091e70ce34f44c979b9366547327,Precise Box Score: Extract More Information from Datasets to Improve the Performance of Face Detection,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +d30050cfd16b29e43ed2024ae74787ac0bbcf2f7,Facial Expression Classification Using Convolutional Neural Network and Support Vector Machine,Marquette University,Marquette University,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA",43.03889625,-87.93155450,edu, +d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.36934730,120.67381800,edu, +d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.36934730,120.67381800,edu, +d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +d4a5eaf2e9f2fd3e264940039e2cbbf08880a090,An Occluded Stacked Hourglass Approach to Facial Landmark Localization and Occlusion Estimation,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +d444e010049944c1b3438c9a25ae09b292b17371,Structure Preserving Video Prediction,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +d46fda4b49bbc219e37ef6191053d4327e66c74b,Facial Expression Recognition Based on Complexity Perception Classification Algorithm,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +d448d67c6371f9abf533ea0f894ef2f022b12503,Weakly supervised collective feature learning from curated media,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +d46b4e6871fc9974542215f001e92e3035aa08d9,A Gabor Quotient Image for Face Recognition under Varying Illumination,Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.85620818,edu, +d454ad60b061c1a1450810a0f335fafbfeceeccc,Deep Regression Forests for Age Estimation,Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.38400941,edu, +d40cd10f0f3e64fd9b0c2728089e10e72bea9616,Enhancing Face Identification Using Local Binary Patterns and K-Nearest Neighbors,Hangzhou Dianzi University,Hangzhou Dianzi University,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.31255250,120.34309460,edu, +d46e793b945c4f391031656357625e902c4405e8,Face-off: automatic alteration of facial features,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +d4c2d26523f577e2d72fc80109e2540c887255c8,Face-space Action Recognition by Face-Object Interactions,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +baaaf73ec28226d60d923bc639f3c7d507345635,Emotion Classification on face images,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +ba2bbef34f05551291410103e3de9e82fdf9dddd,A Study on Cross-Population Age Estimation,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +ba2bbef34f05551291410103e3de9e82fdf9dddd,A Study on Cross-Population Age Estimation,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +baa0fe4d0ac0c7b664d4c4dd00b318b6d4e09143,Facial Expression Analysis using Active Shape Model,University of Portsmouth,University of Portsmouth,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911,edu, +badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,The Application of Extended Geodesic Distance in Head Poses Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,The Application of Extended Geodesic Distance in Head Poses Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,The Application of Extended Geodesic Distance in Head Poses Estimation,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +bac11ce0fb3e12c466f7ebfb6d036a9fe62628ea,Weakly Supervised Learning of Heterogeneous Concepts in Videos,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb,Natural and Effective Obfuscation by Head Inpainting,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +a065080353d18809b2597246bb0b48316234c29a,FHEDN: A based on context modeling Feature Hierarchy Encoder-Decoder Network for face detection,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.50841740,106.57858552,edu, +a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4,A New Classification Approach using Discriminant Functions,Sakarya University,Sakarya University,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye",40.76433515,30.39407875,edu, +a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,Fusing with context: A Bayesian approach to combining descriptive attributes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,Fusing with context: A Bayesian approach to combining descriptive attributes,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +a0021e3bbf942a88e13b67d83db7cf52e013abfd,Human concerned object detecting in video,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.36934730,120.67381800,edu, +a0d6390dd28d802152f207940c7716fe5fae8760,Bayesian Face Revisited: A Joint Formulation,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +a0d6390dd28d802152f207940c7716fe5fae8760,Bayesian Face Revisited: A Joint Formulation,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +a0d6390dd28d802152f207940c7716fe5fae8760,Bayesian Face Revisited: A Joint Formulation,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b,Cascaded Regressor based 3D Face Reconstruction from a Single Arbitrary View Image,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +a06b6d30e2b31dc600f622ab15afe5e2929581a7,Robust Joint and Individual Variance Explained,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +a06b6d30e2b31dc600f622ab15afe5e2929581a7,Robust Joint and Individual Variance Explained,Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.22963221,edu, +a0b1990dd2b4cd87e4fd60912cc1552c34792770,Deep Constrained Local Models for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +a0b1990dd2b4cd87e4fd60912cc1552c34792770,Deep Constrained Local Models for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +a0b1990dd2b4cd87e4fd60912cc1552c34792770,Deep Constrained Local Models for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +a0e7f8771c7d83e502d52c276748a33bae3d5f81,Ensemble Nyström,Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72864840,-73.99568630,edu, +a0061dae94d916f60a5a5373088f665a1b54f673,Lensless computational imaging through deep learning,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +a0061dae94d916f60a5a5373088f665a1b54f673,Lensless computational imaging through deep learning,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +a0848d7b1bb43f4b4f1b4016e58c830f40944817,Face Matching for Post-Disaster Family Reunification,National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.10327775,edu, +a70e36daf934092f40a338d61e0fe27be633f577,Enhanced facial feature tracking of spontaneous and continuous expressions,American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.23664139,edu, +a7191958e806fce2505a057196ccb01ea763b6ea,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +a7191958e806fce2505a057196ccb01ea763b6ea,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +a7e1327bd76945a315f2869bfae1ce55bb94d165,Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition,Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.12944890,113.34376110,edu, +a7e1327bd76945a315f2869bfae1ce55bb94d165,Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition,Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.12944890,113.34376110,edu, +a7c39a4e9977a85673892b714fc9441c959bf078,Automated Individualization of Deformable Eye Region Model and Its Application to Eye Motion Analysis,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +a7c39a4e9977a85673892b714fc9441c959bf078,Automated Individualization of Deformable Eye Region Model and Its Application to Eye Motion Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +a75edf8124f5b52690c08ff35b0c7eb8355fe950,Authentic Emotion Detection in Real-Time Video,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +a75edf8124f5b52690c08ff35b0c7eb8355fe950,Authentic Emotion Detection in Real-Time Video,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +a75dfb5a839f0eb4b613d150f54a418b7812aa90,Multibiometric secure system based on deep learning,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +b88ceded6467e9b286f048bb1b17be5998a077bd,Sparse Subspace Clustering via Diffusion Process,Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775,edu, +b8375ff50b8a6f1a10dd809129a18df96888ac8b,Natural Video Sequence Prediction,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +b8375ff50b8a6f1a10dd809129a18df96888ac8b,Natural Video Sequence Prediction,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +b88d5e12089f6f598b8c72ebeffefc102cad1fc0,Robust 2DPCA and Its Application,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +b88d5e12089f6f598b8c72ebeffefc102cad1fc0,Robust 2DPCA and Its Application,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +b84b7b035c574727e4c30889e973423fe15560d7,Human Age Estimation Using Ranking SVM,HoHai University,HoHai University,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国",32.05765485,118.75500040,edu, +b84b7b035c574727e4c30889e973423fe15560d7,Human Age Estimation Using Ranking SVM,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +b8caf1b1bc3d7a26a91574b493c502d2128791f6,As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.48799610,-3.17969747,edu, +b8caf1b1bc3d7a26a91574b493c502d2128791f6,As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli,Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.60915780,-3.97934429,edu, +b8084d5e193633462e56f897f3d81b2832b72dff,DeepID3: Face Recognition with Very Deep Neural Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +b8084d5e193633462e56f897f3d81b2832b72dff,DeepID3: Face Recognition with Very Deep Neural Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +b8084d5e193633462e56f897f3d81b2832b72dff,DeepID3: Face Recognition with Very Deep Neural Networks,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +b8ebda42e272d3617375118542d4675a0c0e501d,Deep Hashing Network for Unsupervised Domain Adaptation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +b87b0fa1ac0aad0ca563844daecaeecb2df8debf,Non-photorealistic rendering of portraits,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.48799610,-3.17969747,edu, +b87db5ac17312db60e26394f9e3e1a51647cca66,Semi-definite Manifold Alignment,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +b87db5ac17312db60e26394f9e3e1a51647cca66,Semi-definite Manifold Alignment,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +b81cae2927598253da37954fb36a2549c5405cdb,Experiments on Visual Information Extraction with the Faces of Wikipedia,Polytechnique Montreal,Polytechnique Montr´eal,"2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada",45.50438400,-73.61288290,edu,"Polytechnique Montreal, Montreal, Quebec, Canada" +b191aa2c5b8ece06c221c3a4a0914e8157a16129,Deep Spatio-temporal Manifold Network for Action Recognition,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +b191aa2c5b8ece06c221c3a4a0914e8157a16129,Deep Spatio-temporal Manifold Network for Action Recognition,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +b191aa2c5b8ece06c221c3a4a0914e8157a16129,Deep Spatio-temporal Manifold Network for Action Recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +b13a882e6168afc4058fe14cc075c7e41434f43e,Recognition of Humans and Their Activities Using Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,Emotion Recognition Using Facial Expressions with Active Appearance Models,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,Emotion Recognition Using Facial Expressions with Active Appearance Models,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +b16580d27bbf4e17053f2f91bc1d0be12045e00b,Pose-Invariant Face Recognition with a Two-Level Dynamic Programming Algorithm,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000,Deep Variation-Structured Reinforcement Learning for Visual Relationship and Attribute Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +b11bb6bd63ee6f246d278dd4edccfbe470263803,Joint Voxel and Coordinate Regression for Accurate 3D Facial Landmark Localization,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +b13e2e43672e66ba45d1b852a34737e4ce04226b,Face Painting: querying art with photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c,Conveying facial expressions to blind and visually impaired persons through a wearable vibrotactile device,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c,Conveying facial expressions to blind and visually impaired persons through a wearable vibrotactile device,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +b133b2d7df9b848253b9d75e2ca5c68e21eba008,"Kobe University, NICT and University of Siegen at TRECVID 2017 AVS Task",Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +b133b2d7df9b848253b9d75e2ca5c68e21eba008,"Kobe University, NICT and University of Siegen at TRECVID 2017 AVS Task",Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.72757140,135.23710000,edu, +b1df214e0f1c5065f53054195cd15012e660490a,Supplementary Material to Sparse Coding and Dictionary Learning with Linear Dynamical Systems,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +b185f0a39384ceb3c4923196aeed6d68830a069f,Describing Clothing by Semantic Attributes,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +b185f0a39384ceb3c4923196aeed6d68830a069f,Describing Clothing by Semantic Attributes,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +b1429e4d3dd3412e92a37d2f9e0721ea719a9b9e,Person re-identification using multiple first-person-views on wearable devices,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +b1fdd4ae17d82612cefd4e78b690847b071379d3,Supervised Descent Method,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +b1fdd4ae17d82612cefd4e78b690847b071379d3,Supervised Descent Method,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335,Unsupervised Learning and Segmentation of Complex Activities from Video,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.73381240,7.10224650,edu, +dda35768681f74dafd02a667dac2e6101926a279,Multi-layer temporal graphical model for head pose estimation in real-world videos,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +dd033d4886f2e687b82d893a2c14dae02962ea70,Facial Expression Recognition Using New Feature Extraction Algorithm,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +ddaa8add8528857712424fd57179e5db6885df7c,Localizing Actions from Video Labels and Pseudo-Annotations,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +ddaa8add8528857712424fd57179e5db6885df7c,Localizing Actions from Video Labels and Pseudo-Annotations,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +dcf71245addaf66a868221041aabe23c0a074312,S^3FD: Single Shot Scale-Invariant Face Detector,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +dcf71245addaf66a868221041aabe23c0a074312,S^3FD: Single Shot Scale-Invariant Face Detector,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +dcc38db6c885444694f515d683bbb50521ff3990,Learning to Hallucinate Face Images via Component Generation and Enhancement,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +dcc38db6c885444694f515d683bbb50521ff3990,Learning to Hallucinate Face Images via Component Generation and Enhancement,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +dcc38db6c885444694f515d683bbb50521ff3990,Learning to Hallucinate Face Images via Component Generation and Enhancement,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +dc5cde7e4554db012d39fc41ac8580f4f6774045,Video Segmentation by Non-Local Consensus voting,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +dc7df544d7c186723d754e2e7b7217d38a12fcf7,Facial expression recognition using salient facial patches,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +dc7df544d7c186723d754e2e7b7217d38a12fcf7,Facial expression recognition using salient facial patches,"University of Sfax, Tunisia","REGIM-Labo: REsearch Groups in Intelligent Machines, University of Sfax, ENIS, BP 1173, Sfax, 3038, Tunisia","Université de Route de l'Aéroport Km 0.5 BP 1169 .3029 Sfax, Sfax, Tunisia",34.73610660,10.74272750,edu,"University of Sfax, Tunisia" +dc77287bb1fcf64358767dc5b5a8a79ed9abaa53,Fashion Conversation Data on Instagram,"University of California, Los Angeles","University of California, Los Angeles","200 UCLA, Medical Plaza Driveway Suite 540, Los Angeles, CA 90095, USA",34.06877880,-118.44500940,edu, +dced05d28f353be971ea2c14517e85bc457405f3,Multimodal Priority Verification of Face and Speech Using Momentum Back-Propagation Neural Network,Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882000,126.96190000,edu, +dce5e0a1f2cdc3d4e0e7ca0507592860599b0454,Facelet-Bank for Fast Portrait Manipulation,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +dc9d62087ff93a821e6bb8a15a8ae2da3e39dcdd,Learning with Confident Examples: Rank Pruning for Robust Classification with Noisy Labels,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +dcce3d7e8d59041e84fcdf4418702fb0f8e35043,Probabilistic identity characterization for face recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +dce3dff9216d63c4a77a2fcb0ec1adf6d2489394,Manifold Learning for Gender Classification from Face Sequences,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +b6f758be954d34817d4ebaa22b30c63a4b8ddb35,A Proximity-Aware Hierarchical Clustering of Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +b62571691a23836b35719fc457e093b0db187956,A Novel approach for securing biometric template,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.81563045,edu, +b62571691a23836b35719fc457e093b0db187956,A Novel approach for securing biometric template,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.81563045,edu, +b69b239217d4e9a20fe4fe1417bf26c94ded9af9,A Temporally-Aware Interpolation Network for Video Frame Inpainting,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +b6052dc718c72f2506cfd9d29422642ecf3992ef,A Survey on Human Motion Analysis from Depth Data,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +b6052dc718c72f2506cfd9d29422642ecf3992ef,A Survey on Human Motion Analysis from Depth Data,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.73381240,7.10224650,edu, +b6145d3268032da70edc9cfececa1f9ffa4e3f11,Face Recognition Using the Discrete Cosine Transform,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +b6ef158d95042f39765df04373c01546524c9ccd,Im 2 vid : Future Video Prediction for Static Image Action Recognition,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +b68150bfdec373ed8e025f448b7a3485c16e3201,Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +b64cfb39840969b1c769e336a05a30e7f9efcd61,CRF-Based Context Modeling for Person Identification in Broadcast Videos,"National Institute of Informatics, Japan","National Institute of Informatics, Japan","2 Chome-1-2 Hitotsubashi, Chiyoda, Tokyo 100-0003, Japan",35.69248530,139.75825330,edu, +b64cfb39840969b1c769e336a05a30e7f9efcd61,CRF-Based Context Modeling for Person Identification in Broadcast Videos,Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225,edu, +b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3,Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3,Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +b6d0e461535116a675a0354e7da65b2c1d2958d4,Deep Directional Statistics: Pose Estimation with Uncertainty Quantification,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +b6a01cd4572b5f2f3a82732ef07d7296ab0161d3,Kernel-Based Supervised Discrete Hashing for Image Retrieval,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +a9fc23d612e848250d5b675e064dba98f05ad0d9,Face Age Estimation Approach based on Deep Learning and Principle Component Analysis,Benha University,Benha University,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.08187270,31.24454841,edu, +a9fc23d612e848250d5b675e064dba98f05ad0d9,Face Age Estimation Approach based on Deep Learning and Principle Component Analysis,Benha University,Benha University,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.08187270,31.24454841,edu, +a967426ec9b761a989997d6a213d890fc34c5fe3,Relative ranking of facial attractiveness,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +a9be20954e9177d8b2bc39747acdea4f5496f394,Event-Specific Image Importance,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +d5afd7b76f1391321a1340a19ba63eec9e0f9833,Statistical Analysis of Human Facial Expressions,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +d5afd7b76f1391321a1340a19ba63eec9e0f9833,Statistical Analysis of Human Facial Expressions,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12,Manifold Ranking-Based Locality Preserving Projections,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +d5d7e89e6210fcbaa52dc277c1e307632cd91dab,DOTA: A Large-scale Dataset for Object Detection in Aerial Images,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +d5d7e89e6210fcbaa52dc277c1e307632cd91dab,DOTA: A Large-scale Dataset for Object Detection in Aerial Images,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +d5fa9d98c8da54a57abf353767a927d662b7f026,Age Estimation based on Neural Networks using Face Features,"Islamic University of Gaza, Palestine",Islamic University of Gaza - Palestine,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, ‏قطاع غزة‎, PO BOX 108, الأراضي الفلسطينية",31.51368535,34.44019341,edu, +d5b0e73b584be507198b6665bcddeba92b62e1e5,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,Macau University of Science and Technology,Macau University of Science and Technology,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.56803206,edu, +d5b0e73b584be507198b6665bcddeba92b62e1e5,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d5b0e73b584be507198b6665bcddeba92b62e1e5,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,University of Dundee,University of Dundee,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK",56.45796755,-2.98214831,edu, +d28d32af7ef9889ef9cb877345a90ea85e70f7f1,Local-Global Landmark Confidences for Face Recognition,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +d28d32af7ef9889ef9cb877345a90ea85e70f7f1,Local-Global Landmark Confidences for Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +d28d697b578867500632b35b1b19d3d76698f4a9,Face Recognition Using Shape and Texture,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +d29eec5e047560627c16803029d2eb8a4e61da75,Feature Transfer Learning for Deep Face Recognition with Long-Tail Data,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +d280bcbb387b1d548173917ae82cb6944e3ceca6,Facial grid transformation: A novel face registration approach for improving facial action unit recognition,University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.99282980,-81.02685168,edu, +d26b443f87df76034ff0fa9c5de9779152753f0c,A GPU-Oriented Algorithm Design for Secant-Based Dimensionality Reduction,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,Separability Oriented Preprocessing for Illumination-Insensitive Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,Separability Oriented Preprocessing for Illumination-Insensitive Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,Separability Oriented Preprocessing for Illumination-Insensitive Face Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +d22b378fb4ef241d8d210202893518d08e0bb213,Random Faces Guided Sparse Many-to-One Encoder for Pose-Invariant Face Recognition,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +d22b378fb4ef241d8d210202893518d08e0bb213,Random Faces Guided Sparse Many-to-One Encoder for Pose-Invariant Face Recognition,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +aac39ca161dfc52aade063901f02f56d01a1693c,The Analysis of Parameters t and k of LPP on Several Famous Face Databases,Jilin University,Jilin University,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.05356500,113.39913285,edu, +aadf4b077880ae5eee5dd298ab9e79a1b0114555,Using Hankel matrices for dynamics-based facial emotion recognition and pain detection,University of Palermo,DICGIM - University of Palermo,"Edificio 8, Viale delle Scienze, 90128 Palermo PA, Italy",38.10427160,13.34723540,edu, +aa127e6b2dc0aaccfb85e93e8b557f83ebee816b,Advancing human pose and gesture recognition,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +aa127e6b2dc0aaccfb85e93e8b557f83ebee816b,Advancing human pose and gesture recognition,Wolfson College,Wolfson College,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK",51.77110760,-1.25361700,edu, +aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52,Improved face tracking thanks to local features correspondence,University of Brescia,University of Brescia,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA",37.76893740,-87.11138590,edu, +aab3561acbd19f7397cbae39dd34b3be33220309,Quantization Mimic: Towards Very Tiny CNN for Object Detection,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +aab3561acbd19f7397cbae39dd34b3be33220309,Quantization Mimic: Towards Very Tiny CNN for Object Detection,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +aab3561acbd19f7397cbae39dd34b3be33220309,Quantization Mimic: Towards Very Tiny CNN for Object Detection,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +aab3561acbd19f7397cbae39dd34b3be33220309,Quantization Mimic: Towards Very Tiny CNN for Object Detection,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.18943366,edu, +aa912375eaf50439bec23de615aa8a31a3395ad3,Implementation of a New Methodology to Reduce the Effects of Changes of Illumination in Face Recognition-based Authentication,Howard University,Howard University,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.92152500,-77.01953566,edu, +aa912375eaf50439bec23de615aa8a31a3395ad3,Implementation of a New Methodology to Reduce the Effects of Changes of Illumination in Face Recognition-based Authentication,Howard University,Howard University,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.92152500,-77.01953566,edu, +aaeb8b634bb96a372b972f63ec1dc4db62e7b62a,Facial Expression Recognition System: A Digital Printing Application,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.56115370,88.41310194,edu, +aaeb8b634bb96a372b972f63ec1dc4db62e7b62a,Facial Expression Recognition System: A Digital Printing Application,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.56115370,88.41310194,edu, +aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.22963221,edu, +aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +aac934f2eed758d4a27562dae4e9c5415ff4cdb7,TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +aa3c9de34ef140ec812be85bb8844922c35eba47,Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +aff92784567095ee526a705e21be4f42226bbaab,Face recognition in uncontrolled environments,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +aff8705fb2f2ae460cb3980b47f2e85c2e6dd41a,Attributes in Multiple Facial Images,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +af13c355a2a14bb74847aedeafe990db3fc9cbd4,Happy and agreeable?: multi-label classification of impressions in social video,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +af13c355a2a14bb74847aedeafe990db3fc9cbd4,Happy and agreeable?: multi-label classification of impressions in social video,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +afdf9a3464c3b015f040982750f6b41c048706f5,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +afdf9a3464c3b015f040982750f6b41c048706f5,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +afe9cfba90d4b1dbd7db1cf60faf91f24d12b286,Principal Directions of Synthetic Exact Filters for Robust Real-Time Eye Localization,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3,Two-Stream Flow-Guided Convolutional Attention Networks for Action Recognition,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +af278274e4bda66f38fd296cfa5c07804fbc26ee,A Novel Maximum Entropy Markov Model for Human Facial Expression Recognition,SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.30031270,126.97212300,edu, +af278274e4bda66f38fd296cfa5c07804fbc26ee,A Novel Maximum Entropy Markov Model for Human Facial Expression Recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +af654a7ec15168b16382bd604889ea07a967dac6,Face recognition committee machine,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +b7426836ca364603ccab0e533891d8ac54cf2429,A Review on Human Activity Recognition Using Vision-Based Method,Ocean University of China,Ocean University of China,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.16161795,120.49355276,edu, +b7426836ca364603ccab0e533891d8ac54cf2429,A Review on Human Activity Recognition Using Vision-Based Method,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +b73795963dc623a634d218d29e4a5b74dfbc79f1,Identity Preserving Face Completion for Large Ocular Region Occlusion,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +b73795963dc623a634d218d29e4a5b74dfbc79f1,Identity Preserving Face Completion for Large Ocular Region Occlusion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +b73795963dc623a634d218d29e4a5b74dfbc79f1,Identity Preserving Face Completion for Large Ocular Region Occlusion,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24,Unified Solution to Nonnegative Data Factorization Problems,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24,Unified Solution to Nonnegative Data Factorization Problems,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89,Visual Data Synthesis via GAN for Zero-Shot Video Classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +b7c5f885114186284c51e863b58292583047a8b4,GAdaBoost: Accelerating Adaboost Feature Selection with Genetic Algorithms,American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.23664139,edu, +b73d9e1af36aabb81353f29c40ecdcbdf731dbed,Head Pose Estimation on Top of Haar-Like Face Detection: A Study Using the Kinect Sensor,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +db848c3c32464d12da33b2f4c3a29fe293fc35d1,Pose Guided Human Video Generation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +db1f48a7e11174d4a724a4edb3a0f1571d649670,Joint Constrained Clustering and Feature Learning based on Deep Neural Networks,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +db1f48a7e11174d4a724a4edb3a0f1571d649670,Joint Constrained Clustering and Feature Learning based on Deep Neural Networks,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +dbb16032dd8f19bdfd045a1fc0fc51f29c70f70a,Deep Face Recognition,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +db5a00984fa54b9d2a1caad0067a9ff0d0489517,Supplementary Material for Multi-Task Adversarial Network for Disentangled Feature Learning,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +dbd958ffedc3eae8032be67599ec281310c05630,Automated Restyling of Human Portrait Based on Facial Expression Recognition and 3 D Reconstruction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +dbed26cc6d818b3679e46677abc9fa8e04e8c6a6,A Hierarchical Generative Model for Eye Image Synthesis and Eye Gaze Estimation,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +db3545a983ffd24c97c18bf7f068783102548ad7,Enriching the Student Model in an Intelligent Tutoring System,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +db3545a983ffd24c97c18bf7f068783102548ad7,Enriching the Student Model in an Intelligent Tutoring System,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.95867433,edu, +dba493caf6647214c8c58967a8251641c2bda4c2,Automatic 3D Facial Expression Editing in Videos,"University of California, Santa Barbara","University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.41459370,-119.84581950,edu, +db36e682501582d1c7b903422993cf8d70bb0b42,Deep Trans-layer Unsupervised Networks for Representation Learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +db36e682501582d1c7b903422993cf8d70bb0b42,Deep Trans-layer Unsupervised Networks for Representation Learning,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +dbe0e533d715f8543bcf197f3b8e5cffa969dfc0,"A Comprehensive Comparative Performance Analysis of Eigenfaces, Laplacianfaces and Orthogonal Laplacianfaces for Face Recognition",Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +dbe0e533d715f8543bcf197f3b8e5cffa969dfc0,"A Comprehensive Comparative Performance Analysis of Eigenfaces, Laplacianfaces and Orthogonal Laplacianfaces for Face Recognition",Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +db82f9101f64d396a86fc2bd05b352e433d88d02,A Spatio-Temporal Probabilistic Framework for Dividing and Predicting Facial Action Units,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +db428d03e3dfd98624c23e0462817ad17ef14493,Oxford Trecvid 2006 – Notebook Paper 1 High-level Feature Extraction 1.1 Bag of Visual Word Representation,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +a896ddeb0d253739c9aaef7fc1f170a2ba8407d3,SSH: Single Stage Headless Face Detector,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +a820941eaf03077d68536732a4d5f28d94b5864a,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +a820941eaf03077d68536732a4d5f28d94b5864a,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +a8035ca71af8cc68b3e0ac9190a89fed50c92332,IIIT-CFW: A Benchmark Database of Cartoon Faces in the Wild,Indian Institute of Technology Sri City,"IIIT Chittoor, Sri City, India","630 Gnan Marg, Sri City, Andhra Pradesh 517646, India",13.55681710,80.02612830,edu, +a803453edd2b4a85b29da74dcc551b3c53ff17f9,Pose Invariant Face Recognition Under Arbitrary Illumination Based on 3D Face Reconstruction,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.74139210,126.62552755,edu, +a8d52265649c16f95af71d6f548c15afc85ac905,Situation Recognition with Graph Neural Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +a8583e80a455507a0f146143abeb35e769d25e4e,A Distance-accuracy Hybrid Weighted Voting Scheme for Partial Face Recognition,Feng Chia University,Feng Chia University,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.18005755,120.64836072,edu, +a8583e80a455507a0f146143abeb35e769d25e4e,A Distance-accuracy Hybrid Weighted Voting Scheme for Partial Face Recognition,National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.99724412,edu, +a87e37d43d4c47bef8992ace408de0f872739efc,A Comprehensive Review on Handcrafted and Learning-Based Action Representation Approaches for Human Activity Recognition,Lancaster University,Lancaster University,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.00975365,-2.78757491,edu, +a87e37d43d4c47bef8992ace408de0f872739efc,A Comprehensive Review on Handcrafted and Learning-Based Action Representation Approaches for Human Activity Recognition,"COMSATS Institute of Information Technology, Lahore",COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن‬‎, Lahore District, پنجاب, 54700, ‏پاکستان‎",31.40063320,74.21372960,edu, +a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,3D Human Action Recognition using Hu Moment Invariants and Euclidean Distance Classifier,University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.33830255,edu, +a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,3D Human Action Recognition using Hu Moment Invariants and Euclidean Distance Classifier,University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.33830255,edu, +a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,3D Human Action Recognition using Hu Moment Invariants and Euclidean Distance Classifier,University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.33830255,edu, +a8748a79e8d37e395354ba7a8b3038468cb37e1f,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +a8748a79e8d37e395354ba7a8b3038468cb37e1f,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +a8a61badec9b8bc01f002a06e1426a623456d121,Joint Spatio-Temporal Action Localization in Untrimmed Videos with Per-Frame Segmentation,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +a8154d043f187c6640cb6aedeaa8385a323e46cf,Image Retrieval with Mixed Initiative and Multimodal Feedback,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +a812368fe1d4a186322bf72a6d07e1cf60067234,Gaussian processes for modeling of facial expressions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,Merge or Not? Learning to Group Faces via Imitation Learning,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,Merge or Not? Learning to Group Faces via Imitation Learning,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,Merge or Not? Learning to Group Faces via Imitation Learning,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,Merge or Not? Learning to Group Faces via Imitation Learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +de8381903c579a4fed609dff3e52a1dc51154951,Shape and Appearance Based Analysis of Facial Images for Assessing ICAO Compliance,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +de15af84b1257211a11889b6c2adf0a2bcf59b42,Anomaly detection in non-stationary and distributed environments,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +de15af84b1257211a11889b6c2adf0a2bcf59b42,Anomaly detection in non-stationary and distributed environments,Institute for Communication Systems,Institute for Communication Systems,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK",51.24336920,-0.59322090,edu, +de15af84b1257211a11889b6c2adf0a2bcf59b42,Anomaly detection in non-stationary and distributed environments,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +de3285da34df0262a4548574c2383c51387a24bf,Two-Stream Convolutional Networks for Dynamic Texture Synthesis,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.77439110,-79.50481085,edu, +dec0c26855da90876c405e9fd42830c3051c2f5f,Supplementary Material: Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +dec0c26855da90876c405e9fd42830c3051c2f5f,Supplementary Material: Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89,Deep Alternative Neural Network: Exploring Contexts as Early as Possible for Action Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89,Deep Alternative Neural Network: Exploring Contexts as Early as Possible for Action Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +b013cce42dd769db754a57351d49b7410b8e82ad,Automatic point-based facial trait judgments evaluation,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.19453410,edu, +b013cce42dd769db754a57351d49b7410b8e82ad,Automatic point-based facial trait judgments evaluation,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +b017963d83b3edf71e1673d7ffdec13a6d350a87,View Independent Face Detection Based on Combination of Local and Global Kernels,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +b084683e5bab9b2bc327788e7b9a8e049d5fff8f,Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +b03446a2de01126e6a06eb5d526df277fa36099f,A Torch Library for Action Recognition and Detection Using CNNs and LSTMs,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +b018fa5cb9793e260b8844ae155bd06380988584,Project STAR IST - 2000 - 28764 Deliverable D 6 . 3 Enhanced face and arm / hand detector,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.88306860,4.70195030,edu, +a6f81619158d9caeaa0863738ab400b9ba2d77c2,Face Recognition using Convolutional Neural Network and Simple Logistic Classifier,K.N. Toosi University of Technology,K.N. Toosi University of Technology,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ‏ایران‎",35.76427925,51.40970276,edu, +a6d7cf29f333ea3d2aeac67cde39a73898e270b7,Gender Classification from Facial Images Using Texture Descriptors,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +a6d7cf29f333ea3d2aeac67cde39a73898e270b7,Gender Classification from Facial Images Using Texture Descriptors,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +a6d7cf29f333ea3d2aeac67cde39a73898e270b7,Gender Classification from Facial Images Using Texture Descriptors,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.72464030,46.62335012,edu, +a611c978e05d7feab01fb8a37737996ad6e88bd9,Benchmarking 3D Pose Estimation for Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +a6e8a8bb99e30a9e80dbf80c46495cf798066105,Ranking Generative Adversarial Networks: Subjective Control over Semantic Image Attributes,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +a6ffe238eaf8632b4a8a6f718c8917e7f3261546,Dynamic facial prosthetics for sufferers of facial paralysis.,Nottingham Trent University,Nottingham Trent University,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.95773220,-1.15617099,edu, +a6ffe238eaf8632b4a8a6f718c8917e7f3261546,Dynamic facial prosthetics for sufferers of facial paralysis.,Nottingham University Hospital,Nottingham University Hospital,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.94349670,-1.18631123,edu, +a6ffe238eaf8632b4a8a6f718c8917e7f3261546,Dynamic facial prosthetics for sufferers of facial paralysis.,Nottingham Trent University,Nottingham Trent University,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.95773220,-1.15617099,edu, +a660390654498dff2470667b64ea656668c98ecc,Facial expression recognition based on graph-preserving sparse non-negative matrix factorization,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +a660390654498dff2470667b64ea656668c98ecc,Facial expression recognition based on graph-preserving sparse non-negative matrix factorization,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +a60907b7ee346b567972074e3e03c82f64d7ea30,Head Motion Signatures from Egocentric Videos,Hebrew University of Jerusalem,The Hebrew University of Jerusalem,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.79185550,35.24472300,edu, +a60907b7ee346b567972074e3e03c82f64d7ea30,Head Motion Signatures from Egocentric Videos,"IIIT Delhi, India","IIIT Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +a6e43b73f9f87588783988333997a81b4487e2d5,Facial Age Estimation by Total Ordering Preserving Projection,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +a6496553fb9ab9ca5d69eb45af1bdf0b60ed86dc,Semi-supervised Neighborhood Preserving Discriminant Embedding: A Semi-supervised Subspace Learning Algorithm,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,One Shot Similarity Metric Learning for Action Recognition,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,One Shot Similarity Metric Learning for Action Recognition,Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.70927481,edu, +a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,One Shot Similarity Metric Learning for Action Recognition,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +a6e25cab2251a8ded43c44b28a87f4c62e3a548a,Let's Dance: Learning From Online Dance Videos,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +a6270914cf5f60627a1332bcc3f5951c9eea3be0,Joint Attention in Driver-Pedestrian Interaction: from Theory to Practice,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.77439110,-79.50481085,edu, +a6b1d79bc334c74cde199e26a7ef4c189e9acd46,Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +a6b1d79bc334c74cde199e26a7ef4c189e9acd46,Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +a6e21438695dbc3a184d33b6cf5064ddf655a9ba,PKU-MMD: A Large Scale Benchmark for Continuous Multi-Modal Human Action Understanding,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +b9081856963ceb78dcb44ac410c6fca0533676a3,UntrimmedNets for Weakly Supervised Action Recognition and Detection,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +b93bf0a7e449cfd0db91a83284d9eba25a6094d8,Supplementary Material for : Active Pictorial Structures,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +b9c9c7ef82f31614c4b9226e92ab45de4394c5f6,Face Recognition under Varying Illumination,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +a1af7ec84472afba0451b431dfdb59be323e35b7,LikeNet: A Siamese Motion Estimation Network Trained in an Unsupervised Way,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +a1dd806b8f4f418d01960e22fb950fe7a56c18f1,Interactively building a discriminative vocabulary of nameable attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1,Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1,Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +a14ed872503a2f03d2b59e049fd6b4d61ab4d6ca,Attentional Pooling for Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +a125bc55bdf4bec7484111eea9ae537be314ec62,Real-time Facial Expression Recognition in Image Sequences Using an AdaBoost-based Multi-classifier,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +a125bc55bdf4bec7484111eea9ae537be314ec62,Real-time Facial Expression Recognition in Image Sequences Using an AdaBoost-based Multi-classifier,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,Affective recommender systems: the role of emotions in recommender systems,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,Affective recommender systems: the role of emotions in recommender systems,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,Affective recommender systems: the role of emotions in recommender systems,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +a1dd9038b1e1e59c9d564e252d3e14705872fdec,Attributes as Operators: Factorizing Unseen Attribute-Object Compositions,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +a16fb74ea66025d1f346045fda00bd287c20af0e,A Coupled Evolutionary Network for Age Estimation,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +efd28eabebb9815e34031316624e7f095c7dfcfe,Combining Face with Face-Part Detectors under Gaussian Assumption,University of Salzburg,University of Salzburg,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.79475945,13.05417525,edu, +eff87ecafed67cc6fc4f661cb077fed5440994bb,Evaluation of Expression Recognition Techniques,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +eff87ecafed67cc6fc4f661cb077fed5440994bb,Evaluation of Expression Recognition Techniques,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +ef458499c3856a6e9cd4738b3e97bef010786adb,Learning Type-Aware Embeddings for Fashion Compatibility,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +ef2a5a26448636570986d5cda8376da83d96ef87,Recurrent Neural Networks and Transfer Learning for Action Recognition,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +ef2a5a26448636570986d5cda8376da83d96ef87,Recurrent Neural Networks and Transfer Learning for Action Recognition,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98,Fine-grained Activity Recognition with Holistic and Pose based Features,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98,Fine-grained Activity Recognition with Holistic and Pose based Features,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,A 3D Morphable Eye Region Model for Gaze Estimation,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,A 3D Morphable Eye Region Model for Gaze Estimation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,A 3D Morphable Eye Region Model for Gaze Estimation,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0,Person Reidentification and Recognition in Video,University of South Florida,University of South Florida,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.05999990,-82.41383619,edu, +c30982d6d9bbe470a760c168002ed9d66e1718a2,Multi-camera head pose estimation using an ensemble of exemplars,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.31034410,-80.73261617,edu, +c39ffc56a41d436748b9b57bdabd8248b2d28a32,Residual Attention Network for Image Classification,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +c39ffc56a41d436748b9b57bdabd8248b2d28a32,Residual Attention Network for Image Classification,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +c32cd207855e301e6d1d9ddd3633c949630c793a,On the Effect of Illumination and Face Recognition,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +c32c8bfadda8f44d40c6cd9058a4016ab1c27499,Unconstrained Face Recognition From a Single Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +c418a3441f992fea523926f837f4bfb742548c16,A Computer Approach for Face Aging Problems,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +c4fb2de4a5dc28710d9880aece321acf68338fde,Interactive Generative Adversarial Networks for Facial Expression Generation in Dyadic Interactions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +c44c84540db1c38ace232ef34b03bda1c81ba039,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +c44c84540db1c38ace232ef34b03bda1c81ba039,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +c46a4db7247d26aceafed3e4f38ce52d54361817,A CNN Cascade for Landmark Guided Semantic Part Segmentation,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +c41de506423e301ef2a10ea6f984e9e19ba091b4,Modeling Attributes from Category-Attribute Proportions,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +c41de506423e301ef2a10ea6f984e9e19ba091b4,Modeling Attributes from Category-Attribute Proportions,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +c4934d9f9c41dbc46f4173aad2775432fe02e0e6,Generalization to New Compositions of Known Entities in Image Understanding,Bar-Ilan University,Bar-Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.84334339,edu, +c4934d9f9c41dbc46f4173aad2775432fe02e0e6,Generalization to New Compositions of Known Entities in Image Understanding,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +c40c23e4afc81c8b119ea361e5582aa3adecb157,Coupled Marginal Fisher Analysis for Low-Resolution Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +c49aed65fcf9ded15c44f9cbb4b161f851c6fa88,Multiscale Facial Expression Recognition Using Convolutional Neural Networks,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +c466ad258d6262c8ce7796681f564fec9c2b143d,Pose-Invariant Face Recognition Using A Single 3D Reference Model,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.54173736,edu, +ea46951b070f37ad95ea4ed08c7c2a71be2daedc,Using phase instead of optical flow for action recognition,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +ea46951b070f37ad95ea4ed08c7c2a71be2daedc,Using phase instead of optical flow for action recognition,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +ea80a050d20c0e24e0625a92e5c03e5c8db3e786,Face Verification and Face Image Synthesis under Illumination Changes using Neural Networks,Hebrew University of Jerusalem,The Hebrew University of Jerusalem,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.79185550,35.24472300,edu, +eacba5e8fbafb1302866c0860fc260a2bdfff232,VOS-GAN: Adversarial Learning of Visual-Temporal Dynamics for Unsupervised Dense Prediction in Videos,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +eaaed082762337e7c3f8a1b1dfea9c0d3ca281bf,Algebraic Simplification of Genetic Programs during Evolution,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.76846919,edu, +ea218cebea2228b360680cb85ca133e8c2972e56,Recover Canonical-View Faces in the Wild with Deep Neural Networks,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +e1630014a5ae3d2fb7ff6618f1470a567f4d90f5,"Look, Listen and Learn - A Multimodal LSTM for Speaker Identification",SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +e1630014a5ae3d2fb7ff6618f1470a567f4d90f5,"Look, Listen and Learn - A Multimodal LSTM for Speaker Identification",University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.20814690,114.25964115,edu, +e19fb22b35c352f57f520f593d748096b41a4a7b,"Modeling Context for Image Understanding : When , For What , and How ?",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e1c59e00458b4dee3f0e683ed265735f33187f77,Spectral Rotation versus K-Means in Spectral Clustering,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +e1ab3b9dee2da20078464f4ad8deb523b5b1792e,Pre-Training CNNs Using Convolutional Autoencoders,TU Berlin,TU Berlin,"Franklinstraße 28-29, 10587 Berlin, Germany",52.51806410,13.32504250,edu,"Franklinstr. 28/29, 10587, Germany" +e1ab3b9dee2da20078464f4ad8deb523b5b1792e,Pre-Training CNNs Using Convolutional Autoencoders,TU Berlin,TU Berlin,"Franklinstraße 28-29, 10587 Berlin, Germany",52.51806410,13.32504250,edu,"Franklinstr. 28/29, 10587, Germany" +e1ab3b9dee2da20078464f4ad8deb523b5b1792e,Pre-Training CNNs Using Convolutional Autoencoders,TU Berlin,TU Berlin,"Franklinstraße 28-29, 10587 Berlin, Germany",52.51806410,13.32504250,edu,"Franklinstr. 28/29, 10587, Germany" +e1ab3b9dee2da20078464f4ad8deb523b5b1792e,Pre-Training CNNs Using Convolutional Autoencoders,TU Berlin,TU Berlin,"Franklinstraße 28-29, 10587 Berlin, Germany",52.51806410,13.32504250,edu,"Franklinstr. 28/29, 10587, Germany" +e1f6e2651b7294951b5eab5d2322336af1f676dc,Emotional Avatars: Appearance Augmentation and Animation based on Facial Expression Analysis,Sejong University,"Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University, Seoul, South Korea","209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, South Korea",37.55025960,127.07313900,edu, +e1256ff535bf4c024dd62faeb2418d48674ddfa2,Towards Open-Set Identity Preserving Face Synthesis,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +e1256ff535bf4c024dd62faeb2418d48674ddfa2,Towards Open-Set Identity Preserving Face Synthesis,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66,l 1 l 2 l 3 l 4 l 5 ( a ) Class-Agnostic Temporal,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +cd4941cbef1e27d7afdc41b48c1aff5338aacf06,MovieGraphs: Towards Understanding Human-Centric Situations from Videos,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +cdef0eaff4a3c168290d238999fc066ebc3a93e8,Contrastive-center loss for deep neural networks,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +cd23dc3227ee2a3ab0f4de1817d03ca771267aeb,Face Recognition via Deep Sparse Graph Neural Networks,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +cdb1d32bc5c1a9bb0d9a5b9c9222401eab3e9ca0,Functional Faces: Groupwise Dense Correspondence Using Functional Maps,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +cd436f05fb4aeeda5d1085f2fe0384526571a46e,Information Bottleneck Domain Adaptation with Privileged Information for Visual Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +cd2c54705c455a4379f45eefdf32d8d10087e521,A Hybrid Model for Identity Obfuscation by Face Replacement,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +cd023d2d067365c83d8e27431e83e7e66082f718,Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +cd023d2d067365c83d8e27431e83e7e66082f718,Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +cca9ae621e8228cfa787ec7954bb375536160e0d,Learning to Collaborate for User-Controlled Privacy,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +cca9ae621e8228cfa787ec7954bb375536160e0d,Learning to Collaborate for User-Controlled Privacy,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +cc589c499dcf323fe4a143bbef0074c3e31f9b60,A 3D facial expression database for facial behavior research,SUNY Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.97066066,edu, +cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +ccdea57234d38c7831f1e9231efcb6352c801c55,Illumination Processing in Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +cc38942825d3a2c9ee8583c153d2c56c607e61a7,Database Cross Matching: A Novel Source of Fictitious Forensic Cases,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +cc7e66f2ba9ac0c639c80c65534ce6031997acd7,Facial Descriptors for Identity-Preserving Multiple People Tracking,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +cc9057d2762e077c53e381f90884595677eceafa,On the Exploration of Joint Attribute Learning for Person Re-identification,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +ccf16bcf458e4d7a37643b8364594656287f5bfc,Cascade for Landmark Guided Semantic Part Segmentation,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef,Addressing the illumination challenge in two-dimensional face recognition: a survey,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +e6f20e7431172c68f7fce0d4595100445a06c117,Searching Action Proposals via Spatial Actionness Estimation and Temporal Path Inference and Tracking,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +f963967e52a5fd97fa3ebd679fd098c3cb70340e,"Analysis, Interpretation, and Recognition of Facial Action Units and Expressions Using Neuro-Fuzzy Modeling",Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.70362270,51.35125097,edu, +f9e0209dc9e72d64b290d0622c1c1662aa2cc771,Contributions to Biometric Recognition: Matching Identical Twins and Latent Fingerprints,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +f92ade569cbe54344ffd3bb25efd366dcd8ad659,Effect of Super Resolution on High Dimensional Features for Unsupervised Face Recognition in the Wild,University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.16648580,-73.19205640,edu, +f94f366ce14555cf0d5d34248f9467c18241c3ee,Deep Convolutional Neural Network in Deformable Part Models for Face Detection,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.44429490,136.59285870,edu, +f909d04c809013b930bafca12c0f9a8192df9d92,Single Image Subspace for Face Recognition,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +f909d04c809013b930bafca12c0f9a8192df9d92,Single Image Subspace for Face Recognition,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +f9ccfe000092121a2016639732cdb368378256d5,Cognitive behaviour analysis based on facial information using depth sensors,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +f08e425c2fce277aedb51d93757839900d591008,Neural Motifs: Scene Graph Parsing with Global Context,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +f08e425c2fce277aedb51d93757839900d591008,Neural Motifs: Scene Graph Parsing with Global Context,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +f02f0f6fcd56a9b1407045de6634df15c60a85cd,Learning Low-shot facial representations via 2D warping,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +f0ca31fd5cad07e84b47d50dc07db9fc53482a46,Feature Patch Illumination Spaces and Karcher Compression for Face Recognition via Grassmannians,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +f074e86e003d5b7a3b6e1780d9c323598d93f3bc,Characteristic Number: Theory and Its Application to Shape Analysis,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +f074e86e003d5b7a3b6e1780d9c323598d93f3bc,Characteristic Number: Theory and Its Application to Shape Analysis,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +f0a4a3fb6997334511d7b8fc090f9ce894679faf,Generative Face Completion,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +f0681fc08f4d7198dcde803d69ca62f09f3db6c5,Spatiotemporal Features for Effective Facial Expression Recognition,Bogazici University,Bogazici University,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.08688410,29.04413167,edu, +f0f501e1e8726148d18e70c8e9f6feea9360d119,Jukka Komulainen SOFTWARE - BASED COUNTERMEASURES TO 2 D FACIAL,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +f0398ee5291b153b716411c146a17d4af9cb0edc,Learning Optical Flow via Dilated Networks and Occlusion Reasoning,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +f0f0e94d333b4923ae42ee195df17c0df62ea0b1,Scaling Manifold Ranking Based Image Retrieval,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +f0a3f12469fa55ad0d40c21212d18c02be0d1264,Sparsity Sharing Embedding for Face Verification,Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.36971910,127.36253700,edu, +f05ad40246656a977cf321c8299158435e3f3b61,Face Recognition Using Face Patch Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +f02a6bccdaee14ab55ad94263539f4f33f1b15bb,Segment-Tube: Spatio-Temporal Action Localization in Untrimmed Videos with Per-Frame Segmentation,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +f781e50caa43be13c5ceb13f4ccc2abc7d1507c5,Towards Flexible and Intelligent Vision Systems -- From Thresholding to CHLAC --,National Institute of Advanced Industrial Science and Technology,National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.11852361,edu, +f7b4bc4ef14349a6e66829a0101d5b21129dcf55,Towards Light-weight Annotations: Fuzzy Interpolative Reasoning for Zero-shot Image Classificaiton,Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627,edu, +f7b422df567ce9813926461251517761e3e6cda0,Face aging with conditional generative adversarial networks,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +f7824758800a7b1a386db5bd35f84c81454d017a,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +f74917fc0e55f4f5682909dcf6929abd19d33e2e,Gan Quality Index (gqi) by Gan-induced Classifier,City University of New York,The City University of New York,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA",40.87228250,-73.89489171,edu, +f74917fc0e55f4f5682909dcf6929abd19d33e2e,Gan Quality Index (gqi) by Gan-induced Classifier,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +f74917fc0e55f4f5682909dcf6929abd19d33e2e,Gan Quality Index (gqi) by Gan-induced Classifier,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +f78fe101b21be36e98cd3da010051bb9b9829a1e,Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +f78fe101b21be36e98cd3da010051bb9b9829a1e,Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +f7a271acccf9ec66c9b114d36eec284fbb89c7ef,Does attractiveness influence condom use intentions in heterosexual men? An experimental study,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +f7a271acccf9ec66c9b114d36eec284fbb89c7ef,Does attractiveness influence condom use intentions in heterosexual men? An experimental study,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +f7a271acccf9ec66c9b114d36eec284fbb89c7ef,Does attractiveness influence condom use intentions in heterosexual men? An experimental study,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +f7093b138fd31956e30d411a7043741dcb8ca4aa,Hierarchical Clustering in Face Similarity Score Space,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3,Large Margin Multi-metric Learning for Face and Kinship Verification in the Wild,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3,Large Margin Multi-metric Learning for Face and Kinship Verification in the Wild,"Advanced Digital Sciences Center, Singapore","Advanced Digital Sciences Center, Singapore","1 Create Way, 14-02 Create Tower, Singapore 138602",1.30372570,103.77377630,edu, +e82360682c4da11f136f3fccb73a31d7fd195694,Online Face Recognition with Application to Proactive Augmented Reality,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.82427330,edu, +e8f0f9b74db6794830baa2cab48d99d8724e8cb6,Active Image Labeling and Its Application to Facial Action Labeling,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +e8f0f9b74db6794830baa2cab48d99d8724e8cb6,Active Image Labeling and Its Application to Facial Action Labeling,GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.82982480,-73.87719385,edu, +e87d6c284cdd6828dfe7c092087fbd9ff5091ee4,Unsupervised Creation of Parameterized Avatars,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7,Toward End-to-End Face Recognition Through Alignment Learning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +e85a255a970ee4c1eecc3e3d110e157f3e0a4629,Fusing Hierarchical Convolutional Features for Human Body Segmentation and Clothing Fashion Classification,Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.35142840,edu, +e8c9dcbf56714db53063b9c367e3e44300141ff6,Get the FACS fast: Automated FACS face analysis benefits from the addition of velocity,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.03536820,-78.50353220,edu, +e8c9dcbf56714db53063b9c367e3e44300141ff6,Get the FACS fast: Automated FACS face analysis benefits from the addition of velocity,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.03536820,-78.50353220,edu, +e8c9dcbf56714db53063b9c367e3e44300141ff6,Get the FACS fast: Automated FACS face analysis benefits from the addition of velocity,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +e8b3a257a0a44d2859862cdec91c8841dc69144d,Liquid Pouring Monitoring via Rich Sensory Inputs,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.79254840,120.99511830,edu, +e8b3a257a0a44d2859862cdec91c8841dc69144d,Liquid Pouring Monitoring via Rich Sensory Inputs,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +fa90b825346a51562d42f6b59a343b98ea2e501a,Modeling Naive Psychology of Characters in Simple Commonsense Stories,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +fa90b825346a51562d42f6b59a343b98ea2e501a,Modeling Naive Psychology of Characters in Simple Commonsense Stories,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +faeefc5da67421ecd71d400f1505cfacb990119c,PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips,Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.87929727,edu, +faeefc5da67421ecd71d400f1505cfacb990119c,PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +fa4f59397f964a23e3c10335c67d9a24ef532d5c,"DAP3D-Net: Where, what and how actions occur in videos?",Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.00306320,-1.57463231,edu, +fab2fc6882872746498b362825184c0fb7d810e4,Right wing authoritarianism is associated with race bias in face detection,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +faa29975169ba3bbb954e518bc9814a5819876f6,Evolution-Preserving Dense Trajectory Descriptors,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +fae83b145e5eeda8327de9f19df286edfaf5e60c,Towards an Interactive E-learning System Based on Emotions and Affective Cognition,Ionian University,Ionian University,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.28994820,21.78864690,edu, +ffea8775fc9c32f573d1251e177cd283b4fe09c9,Transformation on Computer-Generated Facial Image to Avoid Detection by Spoofing Detector,"National Institute of Informatics, Japan","National Institute of Informatics, Japan","2 Chome-1-2 Hitotsubashi, Chiyoda, Tokyo 100-0003, Japan",35.69248530,139.75825330,edu, +ffea8775fc9c32f573d1251e177cd283b4fe09c9,Transformation on Computer-Generated Facial Image to Avoid Detection by Spoofing Detector,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +ffc5a9610df0341369aa75c0331ef021de0a02a9,Transferred Dimensionality Reduction,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +ff061f7e46a6213d15ac2eb2c49d9d3003612e49,Morphable Human Face Modelling,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.95867433,edu, +ff1f45bdad41d8b35435098041e009627e60d208,"NAGRANI, ZISSERMAN: FROM BENEDICT CUMBERBATCH TO SHERLOCK HOLMES 1 From Benedict Cumberbatch to Sherlock Holmes: Character Identification in TV series without a Script",University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.77439110,-79.50481085,edu, +ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.17009498,edu, +ffaad0204f4af763e3390a2f6053c0e9875376be,Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining,Donghua University,Donghua University,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.20619390,121.41047101,edu, +ffaad0204f4af763e3390a2f6053c0e9875376be,Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.16970291,edu, +fffa2943808509fdbd2fc817cc5366752e57664a,Combined Ordered and Improved Trajectories for Large Scale Human Action Recognition,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +fffa2943808509fdbd2fc817cc5366752e57664a,Combined Ordered and Improved Trajectories for Large Scale Human Action Recognition,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +c5468665d98ce7349d38afb620adbf51757ab86f,Pose-Encoded Spherical Harmonics for Robust Face Recognition Using a Single Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +c5d13e42071813a0a9dd809d54268712eba7883f,Face recognition robust to head pose changes based on the RGB-D sensor,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +c50d73557be96907f88b59cfbd1ab1b2fd696d41,Semiconductor sidewall shape estimation,Oak Ridge National Laboratory,Oak Ridge National Laboratory,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.31240032,edu, +c5935b92bd23fd25cae20222c7c2abc9f4caa770,Spatiotemporal Multiplier Networks for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +c5935b92bd23fd25cae20222c7c2abc9f4caa770,Spatiotemporal Multiplier Networks for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +c5935b92bd23fd25cae20222c7c2abc9f4caa770,Spatiotemporal Multiplier Networks for Video Action Recognition,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.77439110,-79.50481085,edu, +c5421a18583f629b49ca20577022f201692c4f5d,Facial Age Classification using Subpattern-based Approaches,Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318,edu, +c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1,Ultra-Resolving Face Images by Discriminative Generative Networks,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +c5f1ae9f46dc44624591db3d5e9f90a6a8391111,Application of non-negative and local non negative matrix factorization to facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +c53352a4239568cc915ad968aff51c49924a3072,Transfer Representation-Learning for Anomaly Detection,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +c53352a4239568cc915ad968aff51c49924a3072,Transfer Representation-Learning for Anomaly Detection,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4,Affective Computing: A Review,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +c2fa83e8a428c03c74148d91f60468089b80c328,Optimal Mean Robust Principal Component Analysis,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +c23153aade9be0c941390909c5d1aad8924821db,Efficient and Accurate Tracking for Face Diarization via Periodical Detection,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +c207fd762728f3da4cddcfcf8bf19669809ab284,Face Alignment Using Boosting and Evolutionary Search,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +c207fd762728f3da4cddcfcf8bf19669809ab284,Face Alignment Using Boosting and Evolutionary Search,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +c207fd762728f3da4cddcfcf8bf19669809ab284,Face Alignment Using Boosting and Evolutionary Search,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +c2e03efd8c5217188ab685e73cc2e52c54835d1a,Deep tree-structured face: A unified representation for multi-task facial biometrics,University of Tennessee,University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.95424930,-83.93073950,edu, +c28461e266fe0f03c0f9a9525a266aa3050229f0,Automatic Detection of Facial Feature Points via HOGs and Geometric Prior Models,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.19453410,edu, +f60a85bd35fa85739d712f4c93ea80d31aa7de07,VisDA: The Visual Domain Adaptation Challenge,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +f60a85bd35fa85739d712f4c93ea80d31aa7de07,VisDA: The Visual Domain Adaptation Challenge,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +f69de2b6770f0a8de6d3ec1a65cb7996b3c99317,Face Recognition System Based on Sparse Codeword Analysis,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.01058380,80.23537360,edu, +f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a,Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adaptation,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +f66f3d1e6e33cb9e9b3315d3374cd5f121144213,Top-down control of visual responses to fear by the amygdala.,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +f61d5f2a082c65d5330f21b6f36312cc4fab8a3b,Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +f6e00d6430cbbaa64789d826d093f7f3e323b082,Visual Object Recognition,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +f6e00d6430cbbaa64789d826d093f7f3e323b082,Visual Object Recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,A Bayesian Scene-Prior-Based Deep Network Model for Face Verification,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,A Bayesian Scene-Prior-Based Deep Network Model for Face Verification,Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775,edu, +e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +e9c008d31da38d9eef67a28d2c77cb7daec941fb,Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +e9c008d31da38d9eef67a28d2c77cb7daec941fb,Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +e9e40e588f8e6510fa5537e0c9e083ceed5d07ad,Fast Face Detection Using Graphics Processor,"National Institute of Technology, Karnataka",National Institute of Technology Karnataka,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India",13.01119095,74.79498825,edu, +e9bb045e702ee38e566ce46cc1312ed25cb59ea7,Integrating Geometric and Textural Features for Facial Emotion Classification Using SVM Frameworks,Indian Institute of Technology Roorkee,"Indian Institute of Technology, Roorkee","Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India",29.86624610,77.89587081,edu, +e9bb045e702ee38e566ce46cc1312ed25cb59ea7,Integrating Geometric and Textural Features for Facial Emotion Classification Using SVM Frameworks,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +e9f1cdd9ea95810efed306a338de9e0de25990a0,FEPS: An Easy-to-Learn Sensory Substitution System to Perceive Facial Expressions,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +e9f1cdd9ea95810efed306a338de9e0de25990a0,FEPS: An Easy-to-Learn Sensory Substitution System to Perceive Facial Expressions,University of Memphis,University of Memphis,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA",35.11893870,-89.93721960,edu, +f1250900074689061196d876f551ba590fc0a064,Learning to Recognize Actions From Limited Training Examples Using a Recurrent Spiking Neural Model,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.43197220,-86.92389368,edu, +f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e793f8644c94b81b7a0f89395937a7f8ad428a89,LPM for Action Recognition in Temporally Untrimmed Videos,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +e726174d516605f80ff359e71f68b6e8e6ec6d5d,3D Face Recognition Using Patched Locality Preserving Projections,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +e726174d516605f80ff359e71f68b6e8e6ec6d5d,3D Face Recognition Using Patched Locality Preserving Projections,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629046,edu, +e7b2b0538731adaacb2255235e0a07d5ccf09189,Learning Deep Representations with Probabilistic Knowledge Transfer,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +e74816bc0803460e20edbd30a44ab857b06e288e,Semi-Automated Annotation of Discrete States in Large Video Datasets,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +e74816bc0803460e20edbd30a44ab857b06e288e,Semi-Automated Annotation of Discrete States in Large Video Datasets,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +e73b9b16adcf4339ff4d6723e61502489c50c2d9,Anefficient Featureextractionmethodwith Localregionzernikemoment for Facial Recognition of Identicaltwins,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +e73b9b16adcf4339ff4d6723e61502489c50c2d9,Anefficient Featureextractionmethodwith Localregionzernikemoment for Facial Recognition of Identicaltwins,Azad University,Azad University,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎",36.31734320,50.03672860,edu, +cbbd13c29d042743f0139f1e044b6bca731886d0,Not-So-CLEVR: learning same-different relations strains feedforward neural networks.,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7a,"Emotion AI, Real-Time Emotion Detection using CNN",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7a,"Emotion AI, Real-Time Emotion Detection using CNN",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +cb2917413c9b36c3bb9739bce6c03a1a6eb619b3,MiCT: Mixed 3D/2D Convolutional Tube for Human Action Recognition,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.64185301,edu, +cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Monash University Malaysia,Monash University Malaysia,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.06405715,101.60059740,edu, +cb1b5e8b35609e470ce519303915236b907b13b6,On the vulnerability of ECG verification to online presentation attacks,University of Connecticut,University of Connecticut,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA",41.80937790,-72.25364140,edu, +cb1b5e8b35609e470ce519303915236b907b13b6,On the vulnerability of ECG verification to online presentation attacks,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.63287840,-82.34901330,edu, +cbb27980eb04f68d9f10067d3d3c114efa9d0054,An Attention Model for group-level emotion recognition,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +cbb27980eb04f68d9f10067d3d3c114efa9d0054,An Attention Model for group-level emotion recognition,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +cbb27980eb04f68d9f10067d3d3c114efa9d0054,An Attention Model for group-level emotion recognition,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +f86ddd6561f522d115614c93520faad122eb3b56,Visual Imagination from Texts,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +f8015e31d1421f6aee5e17fc3907070b8e0a5e59,Towards Usable Multimedia Event Detection from Web Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +f83dd9ff002a40228bbe3427419b272ab9d5c9e4,Facial Features Matching using a Virtual Structuring Element,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +f8f2d2910ce8b81cb4bbf84239f9229888158b34,A Generative Model for Recognizing Mixed Group Activities in Still Images,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +f8ddb2cac276812c25021b5b79bf720e97063b1e,A Comprehensive Empirical Study on Linear Subspace Methods for Facial Expression Analysis,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.61083650,-96.35212800,edu, +f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,University of Missouri,University of Missouri,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.92676100,-92.29193783,edu, +f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +ce6d60b69eb95477596535227958109e07c61e1e,Unconstrained face verification using fisher vectors computed from frontalized faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +ceb763d6657a07b47e48e8a2956bcfdf2cf10818,An Efficient Feature Extraction Method with Pseudo-zernike Moment for Facial Recognition of Identical Twins,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +ceb763d6657a07b47e48e8a2956bcfdf2cf10818,An Efficient Feature Extraction Method with Pseudo-zernike Moment for Facial Recognition of Identical Twins,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +ce5eac297174c17311ee28bda534faaa1d559bae,Automatic analysis of malaria infected red blood cell digitized microscope images,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +ce5eac297174c17311ee28bda534faaa1d559bae,Automatic analysis of malaria infected red blood cell digitized microscope images,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +ce450e4849490924488664b44769b4ca57f1bc1a,Procedural Generation of Videos to Train Deep Action Recognition Networks,Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.40253645,-122.11655107,edu, +ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +ce032dae834f383125cdd852e7c1bc793d4c3ba3,Motion Interchange Patterns for Action Recognition in Unconstrained Videos,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.90784990,34.81334092,edu, +ce032dae834f383125cdd852e7c1bc793d4c3ba3,Motion Interchange Patterns for Action Recognition in Unconstrained Videos,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +ce032dae834f383125cdd852e7c1bc793d4c3ba3,Motion Interchange Patterns for Action Recognition in Unconstrained Videos,Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.70927481,edu, +ce9e1dfa7705623bb67df3a91052062a0a0ca456,Deep Feature Interpolation for Image Content Changes,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +ce56be1acffda599dec6cc2af2b35600488846c9,Inferring Sentiment from Web Images with Joint Inference on Visual and Social Cues: A Regulated Matrix Factorization Approach,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +ce56be1acffda599dec6cc2af2b35600488846c9,Inferring Sentiment from Web Images with Joint Inference on Visual and Social Cues: A Regulated Matrix Factorization Approach,IBM Almaden Research Center,IBM Almaden Research Center,"IBM Almaden Research Center, San José, Santa Clara County, California, USA",37.21095605,-121.80748668,company, +e03bda45248b4169e2a20cb9124ae60440cad2de,"Learning a Dictionary of Shape-Components in Visual Cortex : Comparison with Neurons , Humans and Machines by Thomas Serre",MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +e03e86ac61cfac9148b371d75ce81a55e8b332ca,Unsupervised Learning using Sequential Verification for Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +e0638e0628021712ac76e3472663ccc17bd8838c,Sign Language Recognition: State of the Art,Sharda University,Sharda University,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.47375120,77.48361480,edu, +e0d878cc095eaae220ad1f681b33d7d61eb5e425,Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database,Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.54169690,139.63471840,edu, +e0d878cc095eaae220ad1f681b33d7d61eb5e425,Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database,Tokyo Metropolitan University,Tokyo Metropolitan University,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本",35.62009250,139.38296706,edu, +e00d4e4ba25fff3583b180db078ef962bf7d6824,Face Verification with Multi-Task and Multi-Scale Features Fusion,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +e01bb53b611c679141494f3ffe6f0b91953af658,FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +e01bb53b611c679141494f3ffe6f0b91953af658,FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +e01bb53b611c679141494f3ffe6f0b91953af658,FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.61944505,edu, +e00d391d7943561f5c7b772ab68e2bb6a85e64c4,Robust continuous clustering.,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +e00d391d7943561f5c7b772ab68e2bb6a85e64c4,Robust continuous clustering.,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +e00241f00fb31c660df6c6f129ca38370e6eadb3,What have we learned from deep representations for action recognition?,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.77439110,-79.50481085,edu, +e00241f00fb31c660df6c6f129ca38370e6eadb3,What have we learned from deep representations for action recognition?,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.01986304,edu, +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.08939224,edu, +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +e0dc6f1b740479098c1d397a7bc0962991b5e294,Face Detection: a Survey,Beijing University of Technology,Beijing University of Technology,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.47722285,edu, +e0dc6f1b740479098c1d397a7bc0962991b5e294,Face Detection: a Survey,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +468c8f09d2ad8b558b65d11ec5ad49208c4da2f2,MSR-CNN: Applying motion salient region based descriptors for action recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +468c8f09d2ad8b558b65d11ec5ad49208c4da2f2,MSR-CNN: Applying motion salient region based descriptors for action recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +466184b10fb7ce9857e6b5bd6b4e5003e09a0b16,Extended Grassmann Kernels for Subspace-Based Learning,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +466184b10fb7ce9857e6b5bd6b4e5003e09a0b16,Extended Grassmann Kernels for Subspace-Based Learning,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.94923440,-75.19198985,edu, +46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4,3D facial geometric features for constrained local model,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +46ae4d593d89b72e1a479a91806c39095cd96615,A conditional random field approach for face identification in broadcast news using overlaid text,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +467b602a67cfd7c347fe7ce74c02b38c4bb1f332,Large Margin Local Metric Learning,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +466f80b066215e85da63e6f30e276f1a9d7c843b,Joint Head Pose Estimation and Face Alignment Framework Using Global and Local CNN Features,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +465d5bb11912005f0a4f0569c6524981df18a7de,IMOTION - Searching for Video Sequences Using Multi-Shot Sketch Queries,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +46c87fded035c97f35bb991fdec45634d15f9df2,Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +46e72046a9bb2d4982d60bcf5c63dbc622717f0f,Learning Discriminative Features with Class Encoder,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +46f32991ebb6235509a6d297928947a8c483f29e,Recognizing Expression Variant Faces from a Single Sample Image per Class,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +4641986af5fc8836b2c883ea1a65278d58fe4577,Scene Graph Generation by Iterative Message Passing,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +4641986af5fc8836b2c883ea1a65278d58fe4577,Scene Graph Generation by Iterative Message Passing,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a,Deep Adaptive Temporal Pooling for Activity Recognition,Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.34021600,103.96508900,edu, +464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a,Deep Adaptive Temporal Pooling for Activity Recognition,Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.34021600,103.96508900,edu, +4657d87aebd652a5920ed255dca993353575f441,Image Normalization for Illumination Compensation in Facial Images,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +4622b82a8aff4ac1e87b01d2708a333380b5913b,Multi-label CNN based pedestrian attribute learning for soft biometrics,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +46e866f58419ff4259c65e8256c1d4f14927b2c6,On the Generalization Power of Face and Gait Gender Recognition Methods,University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.37931310,-1.56042520,edu, +46072f872eee3413f9d05482be6446f6b96b6c09,Trace Quotient Problems Revisited,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +46072f872eee3413f9d05482be6446f6b96b6c09,Trace Quotient Problems Revisited,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +4698a599425c3a6bae1c698456029519f8f2befe,Transferring Rich Deep Features for Facial Beauty Prediction,University of North Texas,University of North Texas,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.20988790,-97.15147488,edu, +2c424f21607ff6c92e640bfe3da9ff105c08fac4,Learning Structured Output Representation using Deep Conditional Generative Models,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +2c258eec8e4da9e65018f116b237f7e2e0b2ad17,Deep Quantization: Encoding Convolutional Activations with Deep Generative Model,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +2c258eec8e4da9e65018f116b237f7e2e0b2ad17,Deep Quantization: Encoding Convolutional Activations with Deep Generative Model,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +2c203050a6cca0a0bff80e574bda16a8c46fe9c2,Discriminative Deep Hashing for Scalable Face Image Retrieval,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +2c3430e0cbe6c8d7be3316a88a5c13a50e90021d,Multi-feature Spectral Clustering with Minimax Optimization,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +2cde051e04569496fb525d7f1b1e5ce6364c8b21,Sparse 3D convolutional neural networks,University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.37931310,-1.56042520,edu, +2c1ffb0feea5f707c890347d2c2882be0494a67a,The Variational Homoencoder: Learning to learn high capacity generative models from few examples,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +2cdc40f20b70ca44d9fd8e7716080ee05ca7924a,Real-time Convolutional Neural Networks for Emotion and Gender Classification,Heriot-Watt University,Heriot-Watt University,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK",55.91029135,-3.32345777,edu, +2cac70f9c8140a12b6a55cef834a3d7504200b62,Reconstructing High Quality Face-Surfaces using Model Based Stereo,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.56126510,7.57529610,edu, +2cac70f9c8140a12b6a55cef834a3d7504200b62,Reconstructing High Quality Face-Surfaces using Model Based Stereo,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +2c1f8ddbfbb224271253a27fed0c2425599dfe47,Understanding and Comparing Deep Neural Networks for Age and Gender Classification,Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.34021600,103.96508900,edu, +2ca43325a5dbde91af90bf850b83b0984587b3cc,For Your Eyes Only – Biometric Protection of PDF Documents,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.61716016,edu, +2cfc28a96b57e0817cc9624a5d553b3aafba56f3,P2F2: Privacy-preserving face finder,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.74230250,-74.17928172,edu, +2cae619d0209c338dc94593892a787ee712d9db0,Selective hidden random fields: Exploiting domain-specific saliency for event classification,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +2c0acaec54ab2585ff807e18b6b9550c44651eab,Face Quality Assessment for Face Verification in Video,Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.53179777,edu, +2c62b9e64aeddf12f9d399b43baaefbca8e11148,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +2c62b9e64aeddf12f9d399b43baaefbca8e11148,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +2c62b9e64aeddf12f9d399b43baaefbca8e11148,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +2c62b9e64aeddf12f9d399b43baaefbca8e11148,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682404,edu, +2c19d3d35ef7062061b9e16d040cebd7e45f281d,End-to-end Video-level Representation Learning for Action Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +2c17d36bab56083293456fe14ceff5497cc97d75,Unconstrained Face Alignment via Cascaded Compositional Learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +2c17d36bab56083293456fe14ceff5497cc97d75,Unconstrained Face Alignment via Cascaded Compositional Learning,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +2c17d36bab56083293456fe14ceff5497cc97d75,Unconstrained Face Alignment via Cascaded Compositional Learning,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +2cd7821fcf5fae53a185624f7eeda007434ae037,Exploring the geo-dependence of human face appearance,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +2cd7821fcf5fae53a185624f7eeda007434ae037,Exploring the geo-dependence of human face appearance,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.03337420,-84.50177580,edu, +794ddb1f3b7598985d4d289b5b0664be736a50c4,Exploiting Competition Relationship for Robust Visual Recognition,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.15346905,edu, +79744fc71bea58d2e1918c9e254b10047472bd76,Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +794c0dc199f0bf778e2d40ce8e1969d4069ffa7b,Odd Leaf Out: Improving Visual Recognition with Games,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +794c0dc199f0bf778e2d40ce8e1969d4069ffa7b,Odd Leaf Out: Improving Visual Recognition with Games,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +799c02a3cde2c0805ea728eb778161499017396b,PersonRank: Detecting Important People in Images,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +799c02a3cde2c0805ea728eb778161499017396b,PersonRank: Detecting Important People in Images,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +7966146d72f9953330556baa04be746d18702047,Harnessing Human Manipulation,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +79db191ca1268dc88271abef3179c4fe4ee92aed,Facial Expression Based Automatic Album Creation,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +79db191ca1268dc88271abef3179c4fe4ee92aed,Facial Expression Based Automatic Album Creation,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +79db191ca1268dc88271abef3179c4fe4ee92aed,Facial Expression Based Automatic Album Creation,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.08446994,edu, +2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359,Discriminative Dictionary Learning with Pairwise Constraints,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +2d25045ec63f9132371841c0beccd801d3733908,Multi-Layer Sparse Representation for Weighted LBP-Patches Based Facial Expression Recognition,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +2d080662a1653f523321974a57518e7cb67ecb41,On Constrained Local Model Feature Normalization for Facial Expression Recognition,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +2d4b9fe3854ccce24040074c461d0c516c46baf4,Temporal Action Localization by Structured Maximal Sums,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +2d4b9fe3854ccce24040074c461d0c516c46baf4,Temporal Action Localization by Structured Maximal Sums,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +2d9e58ea582e054e9d690afca8b6a554c3687ce6,Learning local feature aggregation functions with backpropagation,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +2d164f88a579ba53e06b601d39959aaaae9016b7,Dynamic Facial Expression Recognition Using A Bayesian Temporal Manifold Model,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +2d8001ffee6584b3f4d951d230dc00a06e8219f8,Feature Agglomeration Networks for Single Stage Face Detection,Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.84909214,edu, +2d8001ffee6584b3f4d951d230dc00a06e8219f8,Feature Agglomeration Networks for Single Stage Face Detection,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +2d23fa205acca9c21e3e1a04674f1e5a9528550e,The Fast and the Flexible: Extended Pseudo Two-Dimensional Warping for Face Recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +2d244d70ed1a2ba03d152189f1f90ff2b4f16a79,An Analytical Mapping for LLE and Its Application in Multi-Pose Face Synthesis,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +2d31ab536b3c8a05de0d24e0257ca4433d5a7c75,Materials discovery: Fine-grained classification of X-ray scattering images,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +2dbde64ca75e7986a0fa6181b6940263bcd70684,Pose Independent Face Recognition by Localizing Local Binary Patterns via Deformation Components,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +2dbde64ca75e7986a0fa6181b6940263bcd70684,Pose Independent Face Recognition by Localizing Local Binary Patterns via Deformation Components,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +2d0363a3ebda56d91d704d5ff5458a527775b609,Attribute2Image: Conditional Image Generation from Visual Attributes,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8,Perceptual Reward Functions,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8,Perceptual Reward Functions,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +2dd2c7602d7f4a0b78494ac23ee1e28ff489be88,Large scale metric learning from equivalence constraints,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +2d84e30c61281d3d7cdd11676683d6e66a68aea6,Automatic Construction of Action Datasets Using Web Videos with Density-Based Cluster Analysis and Outlier Detection,University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.65729570,139.54255868,edu, +2d98a1cb0d1a37c79a7ebcb727066f9ccc781703,Coupled Support Vector Machines for Supervised Domain Adaptation,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.72012990,10.40789760,edu, +2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.72012990,10.40789760,edu, +2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,Qatar University,Qatar University,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, ‏قطر‎",25.37461295,51.48980354,edu, +2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.72012990,10.40789760,edu, +2dfe0e7e81f65716b09c590652a4dd8452c10294,Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +2dfe0e7e81f65716b09c590652a4dd8452c10294,Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,Machine Analysis of Facial Expressions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +2d38fd1df95f5025e2cee5bc439ba92b369a93df,Scalable Object-Class Search via Sparse Retrieval Models and Approximate Ranking,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +2d83ba2d43306e3c0587ef16f327d59bf4888dc3,Large-Scale Video Classification with Convolutional Neural Networks,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +2d79d338c114ece1d97cde1aa06ab4cf17d38254,iLab-20M: A Large-Scale Controlled Object Dataset to Investigate Deep Learning,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +2d79d338c114ece1d97cde1aa06ab4cf17d38254,iLab-20M: A Large-Scale Controlled Object Dataset to Investigate Deep Learning,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +2d3482dcff69c7417c7b933f22de606a0e8e42d4,Labeled Faces in the Wild : Updates and New Reporting Procedures,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +2d4a3e9361505616fa4851674eb5c8dd18e0c3cf,Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study,Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.61083650,-96.35212800,edu, +2d748f8ee023a5b1fbd50294d176981ded4ad4ee,Triplet Similarity Embedding for Face Verification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +2d3c17ced03e4b6c4b014490fe3d40c62d02e914,Video-driven state-aware facial animation,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +41f26101fed63a8d149744264dd5aa79f1928265,Spot On: Action Localization from Pointly-Supervised Proposals,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +41f26101fed63a8d149744264dd5aa79f1928265,Spot On: Action Localization from Pointly-Supervised Proposals,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +416b559402d0f3e2b785074fcee989d44d82b8e5,Multi-view Super Vector for Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +416b559402d0f3e2b785074fcee989d44d82b8e5,Multi-view Super Vector for Action Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +416364cfdbc131d6544582e552daf25f585c557d,Synthesis and recognition of facial expressions in virtual 3D views,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8,An Empirical Evaluation of the Local Texture Description Framework-Based Modified Local Directional Number Pattern with Various Classifiers for Face Recognition,Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100445,edu, +411318684bd2d42e4b663a37dcf0532a48f0146d,Improved Face Verification with Simple Weighted Feature Combination,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +4140498e96a5ff3ba816d13daf148fffb9a2be3f,Constrained Ensemble Initialization for Facial Landmark Tracking in Video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +41f8477a6be9cd992a674d84062108c68b7a9520,An Automated System for Visual Biometrics,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +41aa8c1c90d74f2653ef4b3a2e02ac473af61e47,Compositional Structure Learning for Action Understanding,"University of California, Los Angeles","University of California, Los Angeles","200 UCLA, Medical Plaza Driveway Suite 540, Los Angeles, CA 90095, USA",34.06877880,-118.44500940,edu, +41aa8c1c90d74f2653ef4b3a2e02ac473af61e47,Compositional Structure Learning for Action Understanding,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +41971dfbf404abeb8cf73fea29dc37b9aae12439,Detection of Facial Feature Points Using Anthropometric Face Model,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.63709346,edu, +4157e45f616233a0874f54a59c3df001b9646cd7,Diagnostically relevant facial gestalt information from ordinary photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +4157e45f616233a0874f54a59c3df001b9646cd7,Diagnostically relevant facial gestalt information from ordinary photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +4157e45f616233a0874f54a59c3df001b9646cd7,Diagnostically relevant facial gestalt information from ordinary photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2c,Multi-Modal Person-Profiles from Broadcast News Video,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +41aa209e9d294d370357434f310d49b2b0baebeb,Beyond caption to narrative: Video captioning with multiple sentences,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.90204480,139.93622009,edu, +839a2155995acc0a053a326e283be12068b35cb8,Handcrafted Local Features are Convolutional Neural Networks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm.,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm.,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +835e510fcf22b4b9097ef51b8d0bb4e7b806bdfd,Unsupervised Learning of Sequence Representations by Autoencoders,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +831d661d657d97a07894da8639a048c430c5536d,Weakly Supervised Facial Analysis with Dense Hyper-Column Features,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +83295bce2340cb87901499cff492ae6ff3365475,Deep Multi-Center Learning for Face Alignment,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +83295bce2340cb87901499cff492ae6ff3365475,Deep Multi-Center Learning for Face Alignment,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.22849230,121.40211389,edu, +83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05,Recognition from Appearance Subspaces across Image Sets of Variable Scale,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +831226405bb255527e9127b84e8eaedd7eb8e9f9,A Motion-Based Feature for Event-Based Pattern Recognition,ETH Zürich,ETH Zürich,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.37645340,8.54770931,edu, +831226405bb255527e9127b84e8eaedd7eb8e9f9,A Motion-Based Feature for Event-Based Pattern Recognition,Portland State University,Portland State University,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.68492999,edu, +8384e104796488fa2667c355dd15b65d6d5ff957,A Discriminative Latent Model of Image Region and Object Tag Correspondence,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +8384e104796488fa2667c355dd15b65d6d5ff957,A Discriminative Latent Model of Image Region and Object Tag Correspondence,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +8323529cf37f955fb3fc6674af6e708374006a28,Evaluation of Face Resolution for Expression Analysis,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +8334da483f1986aea87b62028672836cb3dc6205,Fully Associative Patch-Based 1-to-N Matcher for Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.72079020,-95.34406271,edu, +831b4d8b0c0173b0bac0e328e844a0fbafae6639,Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +831b4d8b0c0173b0bac0e328e844a0fbafae6639,Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +831b4d8b0c0173b0bac0e328e844a0fbafae6639,Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +1b635f494eff2e5501607ebe55eda7bdfa8263b8,USC at THUMOS 2014,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +1b5875dbebc76fec87e72cee7a5263d325a77376,Learnt Quasi-Transitive Similarity for Retrieval from Large Collections of Faces,University of St Andrews,University of St Andrews,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.34119840,-2.79309380,edu, +1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9,Groupwise Constrained Reconstruction for Subspace Clustering,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +1b794b944fd462a2742b6c2f8021fecc663004c9,A Hierarchical Probabilistic Model for Facial Feature Detection,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,From Few to Many: Generative Models for Recognition Under Variable Pose and Illumination,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.22750772,edu, +1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,From Few to Many: Generative Models for Recognition Under Variable Pose and Illumination,Yale University,Yale University,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA",41.25713055,-72.98966960,edu, +1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,From Few to Many: Generative Models for Recognition Under Variable Pose and Illumination,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.02841004,edu, +1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +1b60b8e70859d5c85ac90510b370b501c5728620,Using Detailed Independent 3D Sub-models to Improve Facial Feature Localisation and Pose Estimation,University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300881,edu, +1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113,k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113,k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61,Recognizing facial expression: machine learning and application to spontaneous behavior,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +1bad8a9640cdbc4fe7de12685651f44c4cff35ce,THETIS: Three Dimensional Tennis Shots a Human Action Dataset,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.73179733,edu, +1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8,EXMOVES: Classifier-based Features for Scalable Action Recognition,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.70479270,-72.29259090,edu, +1badfeece64d1bf43aa55c141afe61c74d0bd25e,"OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning",Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +7735f63e5790006cb3d989c8c19910e40200abfc,Multispectral Imaging For Face Recognition Over Varying Illumination,University of Tennessee,University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.95424930,-83.93073950,edu, +77b1db2281292372c38926cc4aca32ef056011dc,Children’s Interpretation of Facial Expressions: The Long Path from Valence-Based to Specific Discrete Categories,Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.33544810,-71.16813864,edu, +77c53ec6ea448db4dad586e002a395c4a47ecf66,Face Recognition Based on Facial Features,National University of Sciences and Technology,National University of Sciences and Technology,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, ‏پاکستان‎",33.64434700,72.98850790,edu, +774cbb45968607a027ae4729077734db000a1ec5,From Bikers to Surfers: Visual Recognition of Urban Tribes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +7792fbc59f3eafc709323cdb63852c5d3a4b23e9,Pose from Action: Unsupervised Learning of Pose Features based on Motion,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +7792fbc59f3eafc709323cdb63852c5d3a4b23e9,Pose from Action: Unsupervised Learning of Pose Features based on Motion,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +77fbbf0c5729f97fcdbfdc507deee3d388cd4889,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.43066425,edu, +776362314f1479f5319aaf989624ac604ba42c65,Attribute Learning in Large-Scale Datasets,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +77fb9e36196d7bb2b505340b6b94ba552a58b01b,Detecting the Moment of Completion: Temporal Models for Localising Action Completion,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +486840f4f524e97f692a7f6b42cd19019ee71533,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,École Centrale de Lyon,Laboratoire LIRIS,"40 Avenue Guy de Collongue, 69130 Écully, France",45.78359660,4.76789480,edu, +486840f4f524e97f692a7f6b42cd19019ee71533,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,Safran Identity and Security,Safran Identity & Security,"11 Boulevard Gallieni, 92130 Issy-les-Moulineaux, France",48.83249300,2.26747400,company, +48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.26628870,82.99279690,edu, +48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.26628870,82.99279690,edu, +48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.26628870,82.99279690,edu, +488d3e32d046232680cc0ba80ce3879f92f35cac,Facial Expression Recognition Using Texture Description of Displacement Image,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +488d3e32d046232680cc0ba80ce3879f92f35cac,Facial Expression Recognition Using Texture Description of Displacement Image,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +488d3e32d046232680cc0ba80ce3879f92f35cac,Facial Expression Recognition Using Texture Description of Displacement Image,Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.70362270,51.35125097,edu, +48fea82b247641c79e1994f4ac24cad6b6275972,Mining discriminative components with low-rank and sparsity constraints for face recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +48734cb558b271d5809286447ff105fd2e9a6850,Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural Networks,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.67665410,-104.96220300,edu, +48a417cfeba06feb4c7ab30f06c57ffbc288d0b5,Robust Dictionary Learning by Error Source Decomposition,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.05511640,-87.67581113,edu, +48c41ffab7ff19d24e8df3092f0b5812c1d3fb6e,Multi-modal Embedding for Main Product Detection in Fashion,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.88987280,130.70856205,edu, +488a61e0a1c3768affdcd3c694706e5bb17ae548,Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +48910f9b6ccc40226cd4f105ed5291571271b39e,Learning Discriminative Fisher Kernels,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +48a9241edda07252c1aadca09875fabcfee32871,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +48a9241edda07252c1aadca09875fabcfee32871,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +48a9241edda07252c1aadca09875fabcfee32871,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +48f0055295be7b175a06df5bc6fa5c6b69725785,Facial Action Unit Recognition from Video Streams with Recurrent Neural Networks,University of the Witwatersrand,University of the Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.18888130,28.02479073,edu, +48729e4de8aa478ee5eeeb08a72a446b0f5367d5,Compressed face hallucination,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +48e6c6d981efe2c2fb0ae9287376fcae59da9878,Sidekick Policy Learning for Active Visual Exploration,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +48174c414cfce7f1d71c4401d2b3d49ba91c5338,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +48174c414cfce7f1d71c4401d2b3d49ba91c5338,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +48174c414cfce7f1d71c4401d2b3d49ba91c5338,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +488375ae857a424febed7c0347cc9590989f01f7,Convolutional neural networks for the analysis of broadcasted tennis games,University of Crete,University of Crete,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.37130240,24.47544080,edu, +4836b084a583d2e794eb6a94982ea30d7990f663,Cascaded Face Alignment via Intimacy Definition Feature,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.30457200,114.17976285,edu, +4896909796f9bd2f70a2cb24bf18daacd6a12128,Spatial Bag of Features Learning for Large Scale Face Image Retrieval,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +481fb0a74528fa7706669a5cce6a212ac46eaea3,Recognizing RGB Images by Learning from RGB-D Data,"Institute for Infocomm Research, Singapore","Institute for Infocomm Research, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +481fb0a74528fa7706669a5cce6a212ac46eaea3,Recognizing RGB Images by Learning from RGB-D Data,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +70580ed8bc482cad66e059e838e4a779081d1648,Gender Classification using Multi-Level Wavelets on Real World Face Images,Shaheed Zulfikar Ali Bhutto Institute of Science and Technology,Shaheed Zulfikar Ali Bhutto Institute of,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, ‏پاکستان‎",24.81865870,67.03165850,edu, +703dc33736939f88625227e38367cfb2a65319fe,Trespassing the Boundaries: Labeling Temporal Bounds for Object Interactions in Egocentric Video,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +70db3a0d2ca8a797153cc68506b8650908cb0ada,An Overview of Research Activities in Facial Age Estimation Using the FG-NET Aging Database,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.04577648,edu, +701f56f0eac9f88387de1f556acef78016b05d52,Direct Shape Regression Networks for End-to-End Face Alignment,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +701f56f0eac9f88387de1f556acef78016b05d52,Direct Shape Regression Networks for End-to-End Face Alignment,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +7002d6fc3e0453320da5c863a70dbb598415e7aa,Understanding Discrete Facial Expressions in Video Using an Emotion Avatar Image,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +7071cd1ee46db4bc1824c4fd62d36f6d13cad08a,Face Detection through Scale-Friendly Deep Convolutional Networks,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +707a542c580bcbf3a5a75cce2df80d75990853cc,Disentangled Variational Representation for Heterogeneous Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +707a542c580bcbf3a5a75cce2df80d75990853cc,Disentangled Variational Representation for Heterogeneous Face Recognition,Johns Hopkins University,"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA","3400 N Charles St, Baltimore, MD 21218, USA",39.32905300,-76.61942500,edu, +70569810e46f476515fce80a602a210f8d9a2b95,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +704d88168bdfabe31b6ff484507f4a2244b8c52b,MLtuner: System Support for Automatic Machine Learning Tuning,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +703c9c8f20860a1b1be63e6df1622b2021b003ca,Flip-Invariant Motion Representation,National Institute of Advanced Industrial Science and Technology,National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.11852361,edu, +70a69569ba61f3585cd90c70ca5832e838fa1584,Friendly Faces: Weakly Supervised Character Identification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +70c9d11cad12dc1692a4507a97f50311f1689dbf,Video Frame Synthesis Using Deep Voxel Flow,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +70c9d11cad12dc1692a4507a97f50311f1689dbf,Video Frame Synthesis Using Deep Voxel Flow,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +1e5ca4183929929a4e6f09b1e1d54823b8217b8e,Classification in the Presence of Heavy Label Noise: A Markov Chain Sampling Framework,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +1ef4815f41fa3a9217a8a8af12cc385f6ed137e1,Rendering of Eyes for Eye-Shape Registration and Gaze Estimation,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +1ef4815f41fa3a9217a8a8af12cc385f6ed137e1,Rendering of Eyes for Eye-Shape Registration and Gaze Estimation,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +1ea74780d529a458123a08250d8fa6ef1da47a25,Videos from the 2013 Boston Marathon,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1e07500b00fcd0f65cf30a11f9023f74fe8ce65c,Whole space subclass discriminant analysis for face recognition,"A*STAR, Singapore","Institute for Infocomm Research, A*STAR, Singapore","1 Fusionopolis Way, #21-01 Connexis, Singapore 138632",1.29889260,103.78731070,edu, +1e19ea6e7f1c04a18c952ce29386252485e4031e,MATLAB Based Face Recognition System Using PCA and Neural Network,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.81563045,edu, +1ec98785ac91808455b753d4bc00441d8572c416,Curriculum Learning for Facial Expression Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,Face Detection with a 3D Model,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,Face Detection with a 3D Model,National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.10327775,edu, +1efacaa0eaa7e16146c34cd20814d1411b35538e,Action Completion: A Temporal Model for Moment Detection,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +1eba6fc35a027134aa8997413647b49685f6fbd1,Superpower glass: delivering unobtrusive real-time social cues in wearable systems,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,A Multi-level Contextual Model for Person Recognition in Photo Albums,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.74225200,-74.02709490,edu, +1ef5ce743a44d8a454dbfc2657e1e2e2d025e366,Accurate Corner Detection Methods using Two Step Approach,Thapar University,Thapar University,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India",30.35566105,76.36581641,edu, +1e58d7e5277288176456c66f6b1433c41ca77415,Bootstrapping Fine-Grained Classifiers: Active Learning with a Crowd in the Loop,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +1e5a1619fe5586e5ded2c7a845e73f22960bbf5a,Group Membership Prediction,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +1e9f1bbb751fe538dde9f612f60eb946747defaa,Identity-aware convolutional neural networks for facial expression recognition,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +1e917fe7462445996837934a7e46eeec14ebc65f,Expression Classification using Wavelet Packet Method on Asymmetry Faces,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +1e917fe7462445996837934a7e46eeec14ebc65f,Expression Classification using Wavelet Packet Method on Asymmetry Faces,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1e94cc91c5293c8fc89204d4b881552e5b2ce672,Unsupervised Alignment of Actions in Video with Text Descriptions,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.15769690,-77.58829158,edu, +1e94cc91c5293c8fc89204d4b881552e5b2ce672,Unsupervised Alignment of Actions in Video with Text Descriptions,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +1e8eec6fc0e4538e21909ab6037c228547a678ba,enVisage : Face Recognition in Videos,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,Pooling Faces: Template Based Face Recognition with Pooled Face Images,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +841855205818d3a6d6f85ec17a22515f4f062882,Low Resolution Face Recognition in the Wild,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +84c0f814951b80c3b2e39caf3925b56a9b2e1733,16 Computation and Palaeography : Potentials and Limits,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +841bf196ee0086c805bd5d1d0bddfadc87e424ec,Locally Kernel-based Nonlinear Regression for Face Recognition,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +841bf196ee0086c805bd5d1d0bddfadc87e424ec,Locally Kernel-based Nonlinear Regression for Face Recognition,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ‏ایران‎",35.70451400,51.40972058,edu, +842d82081f4b27ca2d4bc05c6c7e389378f0c7b8,Usage of affective computing in recommender systems,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +84e6669b47670f9f4f49c0085311dce0e178b685,Face frontalization for Alignment and Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +84e6669b47670f9f4f49c0085311dce0e178b685,Face frontalization for Alignment and Recognition,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +847e07387142c1bcc65035109ccce681ef88362c,Feature Synthesis Using Genetic Programming for Face Expression Recognition,"University of California, Riverside","University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.33261035,edu, +843e6f1e226480e8a6872d8fd7b7b2cd74b637a4,Palmprint Recognition Using Directional Representation and Compresses Sensing,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.69784700,104.05208110,edu, +84f904a71bee129a1cf00dc97f6cdbe1011657e6,Fashioning with Networks: Neural Style Transfer to Design Clothes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +84f904a71bee129a1cf00dc97f6cdbe1011657e6,Fashioning with Networks: Neural Style Transfer to Design Clothes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +84f904a71bee129a1cf00dc97f6cdbe1011657e6,Fashioning with Networks: Neural Style Transfer to Design Clothes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b,ResNet Backbone Proposals Classification Loss Regression Loss Classification Loss Regression Loss RPN Classification Branch Box Regression Branch Conv Conv,Tencent,"Tencent AI Lab, China","Ke Ji Zhong Yi Lu, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518057",22.54471540,113.93571640,company,"Keji Middle 1st Rd, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518057" +846c028643e60fefc86bae13bebd27341b87c4d1,Face Recognition Under Varying Illumination Based on MAP Estimation Incorporating Correlation Between Surface Points,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.11852361,edu, +4a14a321a9b5101b14ed5ad6aa7636e757909a7c,Learning Semi-Supervised Representation Towards a Unified Optimization Framework for Semi-Supervised Learning,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +4a14a321a9b5101b14ed5ad6aa7636e757909a7c,Learning Semi-Supervised Representation Towards a Unified Optimization Framework for Semi-Supervised Learning,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +4aa286914f17cd8cefa0320e41800a99c142a1cd,Leveraging Context to Support Automated Food Recognition in Restaurants,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +4a9d906935c9de019c61aedc10b77ee10e3aec63,Cross Modal Distillation for Supervision Transfer,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +4ae59d2a28abd76e6d9fb53c9e7ece833dce7733,A Survey on Mobile Affective Computing,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8,Efficient Metric Learning for Real-World Face Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821000,15.46019568,edu, +4a484d97e402ed0365d6cf162f5a60a4d8000ea0,A Crowdsourcing Approach for Finding Misidentifications of Bibliographic Records,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.11120580,140.10551760,edu, +4aa093d1986b4ad9b073ac9edfb903f62c00e0b0,Facial Recognition with Encoded Local Projections,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +4aa093d1986b4ad9b073ac9edfb903f62c00e0b0,Facial Recognition with Encoded Local Projections,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.54724732,edu, +4aabd6db4594212019c9af89b3e66f39f3108aac,The Mere Exposure Effect and Classical Conditioning,"University of Colorado, Boulder","University of Colorado, Boulder","Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.26695944,edu, +4adb97b096b700af9a58d00e45a2f980136fcbb5,Exploring Temporal Preservation Networks for Precise Temporal Action Localization,"National University of Defense Technology, China","National University of Defence Technology, Changsha 410000, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.22902090,112.99483204,edu, +4ae291b070ad7940b3c9d3cb10e8c05955c9e269,Automatic Detection of Naturalistic Hand-over-Face Gesture Descriptors,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +4aa8db1a3379f00db2403bba7dade5d6e258b9e9,Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network,Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ‏ایران‎",35.70362270,51.35125097,edu, +4ac4e8d17132f2d9812a0088594d262a9a0d339b,Rank Constrained Recognition under Unknown Illuminations,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4acd683b5f91589002e6f50885df51f48bc985f4,Bridging computer vision and social science: A multi-camera vision system for social interaction training analysis,GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.82982480,-73.87719385,edu, +4a1d640f5e25bb60bb2347d36009718249ce9230,Towards Multi-view and Partially-Occluded Face Alignment,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +24b37016fee57057cf403fe2fc3dda78476a8262,Automatic Recognition of Eye Blinking in Spontaneously Occurring Behavior,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +24b37016fee57057cf403fe2fc3dda78476a8262,Automatic Recognition of Eye Blinking in Spontaneously Occurring Behavior,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +247cab87b133bd0f4f9e8ce5e7fc682be6340eac,Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +247cab87b133bd0f4f9e8ce5e7fc682be6340eac,Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns,Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.28788994,edu, +247cab87b133bd0f4f9e8ce5e7fc682be6340eac,Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns,"Joint Research Institute, Foshan, China","Joint Research Institute, Foshan, China","广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国",22.83388935,113.28541825,edu, +24cb375a998f4af278998f8dee1d33603057e525,Projection Metric Learning on Grassmann Manifold with Application to Video based Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +24cb375a998f4af278998f8dee1d33603057e525,Projection Metric Learning on Grassmann Manifold with Application to Video based Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +24f9248f01df3020351347c2a3f632e01de72090,Reconstructing a fragmented face from a cryptographic identification protocol,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +24959d1a9c9faf29238163b6bcaf523e2b05a053,High Accuracy Head Pose Tracking Survey,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.00735776,edu, +24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +24f022d807352abf071880877c38e53a98254dcd,Are screening methods useful in feature selection? An empirical study,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +241d2c517dbc0e22d7b8698e06ace67de5f26fdf,"Online, Real-Time Tracking Using a Category-to-Individual Detector",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +24e6a28c133b7539a57896393a79d43dba46e0f6,Robust Bayesian method for simultaneous block sparse signal recovery with applications to face recognition,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +248db911e3a6a63ecd5ff6b7397a5d48ac15e77a,Enriching Texture Analysis with Semantic Data,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +24f1e2b7a48c2c88c9e44de27dc3eefd563f6d39,Recognition of Action Units in the Wild with Deep Nets and a New Global-Local Loss,Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.02859368,edu, +243e9d490fe98d139003bb8dc95683b366866c57,Distinctive Parts for Relative attributes,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.44549570,78.34854698,edu, +240eb0b34872c431ecf9df504671281f59e7da37,Cutout-search: Putting a name to the picture,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +240eb0b34872c431ecf9df504671281f59e7da37,Cutout-search: Putting a name to the picture,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +23aef683f60cb8af239b0906c45d11dac352fb4e,Incorporating Context Information into Deep Neural Network Acoustic Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +235d5620d05bb7710f5c4fa6fceead0eb670dec5,Who's Doing What: Joint Modeling of Names and Verbs for Simultaneous Face and Pose Annotation,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +23ce6f404c504592767b8bec7d844d87b462de71,A Deep Face Identification Network Enhanced by Facial Attributes Prediction,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +23fd653b094c7e4591a95506416a72aeb50a32b5,Emotion Recognition using Fuzzy Rule- based System,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +23fd653b094c7e4591a95506416a72aeb50a32b5,Emotion Recognition using Fuzzy Rule- based System,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.04950965,edu, +231a6d2ee1cc76f7e0c5912a530912f766e0b459,Shape Primitive Histogram: A Novel Low-Level Face Representation for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +232b6e2391c064d483546b9ee3aafe0ba48ca519,Optimization Problems for Fast AAM Fitting in-the-Wild,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.54873472,edu, +232b6e2391c064d483546b9ee3aafe0ba48ca519,Optimization Problems for Fast AAM Fitting in-the-Wild,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +237eba4822744a9eabb121fe7b50fd2057bf744c,Facial Expression Synthesis Using PAD Emotional Parameters for a Chinese Expressive Avatar,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +237eba4822744a9eabb121fe7b50fd2057bf744c,Facial Expression Synthesis Using PAD Emotional Parameters for a Chinese Expressive Avatar,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +23e75f5ce7e73714b63f036d6247fa0172d97cb6,Facial expression (mood) recognition from facial images using committee neural networks,University of Akron,University of Akron,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.07890350,-81.51971272,edu, +23e75f5ce7e73714b63f036d6247fa0172d97cb6,Facial expression (mood) recognition from facial images using committee neural networks,University of Akron,University of Akron,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.07890350,-81.51971272,edu, +23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f,A Domain Based Approach to Social Relation Recognition,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +23aba7b878544004b5dfa64f649697d9f082b0cf,Locality-constrained discriminative learning and coding,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +2303d07d839e8b20f33d6e2ec78d1353cac256cf,Squeeze-and-Excitation on Spatial and Temporal Deep Feature Space for Action Recognition,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +23c3eb6ad8e5f18f672f187a6e9e9b0d94042970,Deep domain adaptation for describing people based on fine-grained clothing attributes,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,Deep Density Clustering of Unconstrained Faces (Supplementary Material),University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4f9e00aaf2736b79e415f5e7c8dfebda3043a97d,"Machine Audition : Principles , Algorithms and Systems",University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +4f0d9200647042e41dea71c35eb59e598e6018a7,Experiments of Image Retrieval Using Weak Attributes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +4f7967158b257e86d66bdabfdc556c697d917d24,Guaranteed Parameter Estimation of Discrete Energy Minimization for 3D Scene Parsing,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,Human Action Recognition Using Factorized Spatio-Temporal Convolutional Networks,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,Human Action Recognition Using Factorized Spatio-Temporal Convolutional Networks,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,Human Action Recognition Using Factorized Spatio-Temporal Convolutional Networks,University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.12401870,113.54510901,edu, +4f9958946ad9fc71c2299847e9ff16741401c591,Facial Expression Recognition with Recurrent Neural Networks,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +4f773c8e7ca98ece9894ba3a22823127a70c6e6c,A Real-Time System for Head Tracking and Pose Estimation,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +4ff11512e4fde3d1a109546d9c61a963d4391add,Selecting Vantage Points for an Autonomous Quadcopter Videographer,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +4f028efe6708fc252851eee4a14292b7ce79d378,An integrated shape and intensity coding scheme for face recognition,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7,Fashion Landmark Detection in the Wild,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +4f0b8f730273e9f11b2bfad2415485414b96299f,BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.77603300,-84.39884086,edu, +4f0b8f730273e9f11b2bfad2415485414b96299f,BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,Deep Density Clustering of Unconstrained Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3,Cascaded pose regression,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +8de6deefb90fb9b3f7d451b9d8a1a3264b768482,Multibiometric Systems : Fusion Strategies and Template Security,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +8d2c0c9155a1ed49ba576ac0446ec67725468d87,A Study of Two Image Representations for Head Pose Estimation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152,Development of Optical Computer Recognition (OCR) for Monitoring Stress and Emotions in Space,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +8d6c4af9d4c01ff47fe0be48155174158a9a5e08,"Labeling, discovering, and detecting objects in images",MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +8dcc95debd07ebab1721c53fa50d846fef265022,MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Frontal Face Images,Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.78553506,edu, +8d91f06af4ef65193f3943005922f25dbb483ee4,Facial Expression Classification Using Rotation Slepian-based Moment Invariants,University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.12401870,113.54510901,edu, +8dc9de0c7324d098b537639c8214543f55392a6b,Pose-Invariant 3D Object Recognition Using Linear Combination of 2D Views and Evolutionary Optimisation,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +155199d7f10218e29ddaee36ebe611c95cae68c4,Towards Scalable Visual Navigation of Micro Aerial Vehicles,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +155199d7f10218e29ddaee36ebe611c95cae68c4,Towards Scalable Visual Navigation of Micro Aerial Vehicles,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,Semi-Supervised Classification Using Linear Neighborhood Propagation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,Semi-Supervised Classification Using Linear Neighborhood Propagation,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.33863040,114.26203370,edu, +15d653972d176963ef0ad2cc582d3b35ca542673,CSVideoNet: A Real-Time End-to-End Learning Framework for High-Frame-Rate Video Compressive Sensing,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +159e792096756b1ec02ec7a980d5ef26b434ff78,Signed Laplacian Embedding for Supervised Dimension Reduction,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +159e792096756b1ec02ec7a980d5ef26b434ff78,Signed Laplacian Embedding for Supervised Dimension Reduction,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +1586871a1ddfe031b885b94efdbff647cf03eff1,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +1586871a1ddfe031b885b94efdbff647cf03eff1,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +1586871a1ddfe031b885b94efdbff647cf03eff1,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +15cf7bdc36ec901596c56d04c934596cf7b43115,Face Extraction from Image based on K-Means Clustering Algorithms,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ‏ایران‎",34.84529990,48.55962120,edu, +1576ed0f3926c6ce65e0ca770475bca6adcfdbb4,Keep it accurate and diverse: Enhancing action recognition performance by ensemble learning,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +156cd2a0e2c378e4c3649a1d046cd080d3338bca,Exemplar based approaches on Face Fiducial Detection and Frontalization,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.44549570,78.34854698,edu, +151481703aa8352dc78e2577f0601782b8c41b34,Appearance Manifold of Facial Expression,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +1565721ebdbd2518224f54388ed4f6b21ebd26f3,Face and landmark detection by using cascade of classifiers,Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.74875160,30.47653071,edu, +1565721ebdbd2518224f54388ed4f6b21ebd26f3,Face and landmark detection by using cascade of classifiers,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.07642960,14.41802312,edu, +15252b7af081761bb00535aac6bd1987391f9b79,Estimation of eye gaze direction angles based on active appearance models,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.73179733,edu, +15ee80e86e75bf1413dc38f521b9142b28fe02d1,Towards a deep learning framework for unconstrained face detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +15e27f968458bf99dd34e402b900ac7b34b1d575,Ranking 2DLDA features based on fisher discriminance,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +15f70a0ad8903017250927595ae2096d8b263090,Learning Robust Deep Face Representation,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +1564bf0a268662df752b68bee5addc4b08868739,With whom do I interact? Detecting social interactions in egocentric photo-streams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +1564bf0a268662df752b68bee5addc4b08868739,With whom do I interact? Detecting social interactions in egocentric photo-streams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +1564bf0a268662df752b68bee5addc4b08868739,With whom do I interact? Detecting social interactions in egocentric photo-streams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.38689130,2.16352385,edu, +158e32579e38c29b26dfd33bf93e772e6211e188,Automated Real Time Emotion Recognition using Facial Expression Analysis,Carleton University,Carleton University,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada",45.38608430,-75.69539267,edu, +122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +121503705689f46546cade78ff62963574b4750b,We Don’t Need No Bounding-Boxes: Training Object Class Detectors Using Only Human Verification,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +125d82fee1b9fbcc616622b0977f3d06771fc152,Hierarchical face parsing via deep learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +125d82fee1b9fbcc616622b0977f3d06771fc152,Hierarchical face parsing via deep learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +125d82fee1b9fbcc616622b0977f3d06771fc152,Hierarchical face parsing via deep learning,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +1255afbf86423c171349e874b3ac297de19f00cd,Robust Face Recognition by Computing Distances From Multiple Histograms of Oriented Gradients,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +1275d6a800f8cf93c092603175fdad362b69c191,Deep Face Recognition: A Survey,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +126535430845361cd7a3a6f317797fe6e53f5a3b,Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +126535430845361cd7a3a6f317797fe6e53f5a3b,Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +121fe33daf55758219e53249cf8bcb0eb2b4db4b,An Empirical Camera Model for Internet Color Vision,Middlebury College,Middlebury College,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA",44.00907770,-73.17679460,edu, +12408baf69419409d228d96c6f88b6bcde303505,Temporal Tessellation: A Unified Approach for Video Analysis,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +12408baf69419409d228d96c6f88b6bcde303505,Temporal Tessellation: A Unified Approach for Video Analysis,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.57093580,-105.08655256,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.74225200,-74.02709490,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.12549380,-77.22293475,edu, +12095f9b35ee88272dd5abc2d942a4f55804b31e,DenseReg : Fully Convolutional Dense Shape Regression Inthe-Wild Rıza,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +12095f9b35ee88272dd5abc2d942a4f55804b31e,DenseReg : Fully Convolutional Dense Shape Regression Inthe-Wild Rıza,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.52316070,-0.12820370,edu, +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.81747230,-96.70444680,edu, +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +126214ef0dcef2b456cb413905fa13160c73ec8e,Modelling human perception of static facial expressions,University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.41338620,114.21005800,edu, +12692fbe915e6bb1c80733519371bbb90ae07539,Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +12692fbe915e6bb1c80733519371bbb90ae07539,Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1251deae1b4a722a2155d932bdfb6fe4ae28dd22,A Large-scale Attribute Dataset for Zero-shot Learning,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +1251deae1b4a722a2155d932bdfb6fe4ae28dd22,A Large-scale Attribute Dataset for Zero-shot Learning,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.50045497,edu, +12ccfc188de0b40c84d6a427999239c6a379cd66,Sparse Adversarial Perturbations for Videos,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +1270044a3fa1a469ec2f4f3bd364754f58a1cb56,Video-Based Face Recognition Using Probabilistic Appearance Manifolds,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +12003a7d65c4f98fb57587fd0e764b44d0d10125,Face recognition in the wild with the Probabilistic Gabor-Fisher Classifier,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.05015580,14.46907327,edu, +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.82686820,-71.40123146,edu, +8c8525e626c8857a4c6c385de34ffea31e7e41d1,Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +8c8525e626c8857a4c6c385de34ffea31e7e41d1,Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +8c66378df977606d332fc3b0047989e890a6ac76,Hierarchical-PEP model for real-world face recognition,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.74225200,-74.02709490,edu, +8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.83383710,10.70359390,edu, +8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.20759510,-8.42566148,edu, +8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.83383710,10.70359390,edu, +8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.20759510,-8.42566148,edu, +8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.83383710,10.70359390,edu, +8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.20759510,-8.42566148,edu, +8c81705e5e4a1e2068a5bd518adc6955d49ae434,3D Object Recognition with Enhanced Grassmann Discriminant Analysis,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.11120580,140.10551760,edu, +8cb403c733a5f23aefa6f583a17cf9b972e35c90,Learning the semantic structure of objects from Web supervision,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +8ccde9d80706a59e606f6e6d48d4260b60ccc736,RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +8ccde9d80706a59e606f6e6d48d4260b60ccc736,RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.99905220,-78.92906290,edu, +8c6b9c9c26ead75ce549a57c4fd0a12b46142848,Facial expression recognition using shape and texture information,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82,Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82,Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +8cb55413f1c5b6bda943697bba1dc0f8fc880d28,Video-based Face Recognition on Real-World Data,University of Karlsruhe,University of Karlsruhe,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.00664235,8.39405152,edu, +85041e48b51a2c498f22850ce7228df4e2263372,Subspace Regression: Predicting a Subspace from One Sample,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +857ad04fca2740b016f0066b152bd1fa1171483f,Sample Images can be Independently Restored from Face Recognition Templates,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +856317f27248cdb20226eaae599e46de628fb696,A Method Based on Convex Cone Model for Image-Set Classification with CNN Features,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.11120580,140.10551760,edu, +855184c789bca7a56bb223089516d1358823db0b,Automatic Procedure to Fix Closed-Eyes Image,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +85639cefb8f8deab7017ce92717674d6178d43cc,Automatic Analysis of Spontaneous Facial Behavior: A Final Project Report,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +85674b1b6007634f362cbe9b921912b697c0a32c,Optimizing Facial Landmark Detection by Facial Attribute Learning,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1d21e5beef23eecff6fff7d4edc16247f0fd984a,Face Recognition from Video Using the Generic Shape-Illumination Manifold,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +1d19c6857e798943cd0ecd110a7a0d514c671fec,Do Deep Neural Networks Learn Facial Action Units When Doing Expression Recognition?,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +1d1a7ef193b958f9074f4f236060a5f5e7642fc1,Ensemble of Patterns of Oriented Edge Magnitudes Descriptors For Face Recognition,University of Bologna,Università di Bologna,"Via Zamboni, 33, 40126 Bologna BO, Italy",44.49623180,11.35415700,edu, +1d696a1beb42515ab16f3a9f6f72584a41492a03,"Deeply learned face representations are sparse, selective, and robust",Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1d696a1beb42515ab16f3a9f6f72584a41492a03,"Deeply learned face representations are sparse, selective, and robust",Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1d696a1beb42515ab16f3a9f6f72584a41492a03,"Deeply learned face representations are sparse, selective, and robust",Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +1d1caaa2312390260f7d20ad5f1736099818d358,Resource-Allocating Codebook for patch-based face recognition,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +1dc241ee162db246882f366644171c11f7aed96d,Deep Action- and Context-Aware Sequence Learning for Activity Recognition and Anticipation,Australian National University,Australian National University,"Canberra ACT 0200, Australia",-35.27769990,149.11852700,edu, +1d0128b9f96f4c11c034d41581f23eb4b4dd7780,Automatic construction Of robust spherical harmonic subspaces,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +1d3dd9aba79a53390317ec1e0b7cd742cba43132,A maximum entropy feature descriptor for age invariant face recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +1d3dd9aba79a53390317ec1e0b7cd742cba43132,A maximum entropy feature descriptor for age invariant face recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1d3dd9aba79a53390317ec1e0b7cd742cba43132,A maximum entropy feature descriptor for age invariant face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +1d5aad4f7fae6d414ffb212cec1f7ac876de48bf,Face retriever: Pre-filtering the gallery via deep neural net,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +1db23a0547700ca233aef9cfae2081cd8c5a04d7,Comparative study and evaluation of various data classification techniques in data mining,Raipur Institute of Technology,Raipur Institute of Technology,"Raipur Institute of Technology, NH53, Raipur, Chhattisgarh, 492101, India",21.22622430,81.80136640,edu, +1db23a0547700ca233aef9cfae2081cd8c5a04d7,Comparative study and evaluation of various data classification techniques in data mining,Raipur Institute of Technology,Raipur Institute of Technology,"Raipur Institute of Technology, NH53, Raipur, Chhattisgarh, 492101, India",21.22622430,81.80136640,edu, +1d97735bb0f0434dde552a96e1844b064af08f62,Weber binary pattern and Weber ternary pattern for illumination-robust face recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +1dacc2f4890431d867a038fd81c111d639cf4d7e,Using social outcomes to inform decision-making in schizophrenia: Relationships with symptoms and functioning.,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +1de690714f143a8eb0d6be35d98390257a3f4a47,Face detection using spectral histograms and SVMs,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.29747867,edu, +1d7df3df839a6aa8f5392310d46b2a89080a3c25,Large-Margin Softmax Loss for Convolutional Neural Networks,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.05020420,113.39880323,edu, +1d7df3df839a6aa8f5392310d46b2a89080a3c25,Large-Margin Softmax Loss for Convolutional Neural Networks,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +7142ac9e4d5498037aeb0f459f278fd28dae8048,Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +71f36c8e17a5c080fab31fce1ffea9551fc49e47,Predicting Failures of Vision Systems,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7117ed0be436c0291bc6fb6ea6db18de74e2464a,Spatial Transformations,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +71e6a46b32a8163c9eda69e1badcee6348f1f56a,Visually Interpreting Names as Demographic Attributes by Exploiting Click-Through Data,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +713594c18978b965be87651bb553c28f8501df0a,Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +713594c18978b965be87651bb553c28f8501df0a,Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +718824256b4461d62d192ab9399cfc477d3660b4,Selecting Training Data for Cross-Corpus Speech Emotion Recognition: Prototypicality vs. Generalization,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +718d3137adba9e3078fa1f698020b666449f3336,Accuracy Based Feature Ranking Metric for Multi-Label Text Classification,University of Gujrat,University of Gujrat,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎",32.63744845,74.16174558,edu, +718d3137adba9e3078fa1f698020b666449f3336,Accuracy Based Feature Ranking Metric for Multi-Label Text Classification,University of Gujrat,University of Gujrat,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, ‏پاکستان‎",32.63744845,74.16174558,edu, +716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.43066425,edu, +7143518f847b0ec57a0ff80e0304c89d7e924d9a,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.84691800,117.29053367,edu, +7143518f847b0ec57a0ff80e0304c89d7e924d9a,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +713db3874b77212492d75fb100a345949f3d3235,Deep Semantic Face Deblurring,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools),Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools),Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +71e56f2aebeb3c4bb3687b104815e09bb4364102,Video Co-segmentation for Meaningful Action Extraction,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +7643861bb492bf303b25d0306462f8fb7dc29878,Speeding up 2D-warping for pose-invariant face recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +76ce3d35d9370f0e2e27cfd29ea0941f1462895f,Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.05842113,edu, +768c332650a44dee02f3d1d2be1debfa90a3946c,Bayesian face recognition using support vector machine and face clustering,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +769461ff717d987482b28b32b1e2a6e46570e3ff,MIC-TJU in MediaEval 2017 Emotional Impact of Movies Task,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +764882e6779fbee29c3d87e00302befc52d2ea8d,Deep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.13538360,113.29470496,edu, +764882e6779fbee29c3d87e00302befc52d2ea8d,Deep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.13538360,113.29470496,edu, +764882e6779fbee29c3d87e00302befc52d2ea8d,Deep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.13538360,113.29470496,edu, +76d939f73a327bf1087d91daa6a7824681d76ea1,A Thermal Facial Emotion Database and Its Analysis,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.44429490,136.59285870,edu, +1c9efb6c895917174ac6ccc3bae191152f90c625,Unifying Identification and Context Learning for Person Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1c2724243b27a18a2302f12dea79d9a1d4460e35,Fisher+Kernel criterion for discriminant analysis,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +1c2724243b27a18a2302f12dea79d9a1d4460e35,Fisher+Kernel criterion for discriminant analysis,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1c2724243b27a18a2302f12dea79d9a1d4460e35,Fisher+Kernel criterion for discriminant analysis,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +1ca8c09abb73a02519d8db77e4fe107acfc589b6,Automatic Understanding of Image and Video Advertisements,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +1c4ceae745fe812d8251fda7aad03210448ae25e,Optimization of Color Conversion for Face Recognition,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +1c4ceae745fe812d8251fda7aad03210448ae25e,Optimization of Color Conversion for Face Recognition,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.42542519,edu, +1cee993dc42626caf5dbc26c0a7790ca6571d01a,Optimal illumination for image and video relighting,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +1c147261f5ab1b8ee0a54021a3168fa191096df8,Face Recognition across Time Lapse Using Convolutional Neural Networks,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.30798839,edu, +1c17450c4d616e1e1eece248c42eba4f87de9e0d,Automatic Age Estimation from Face Images via Deep Ranking,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.04107280,121.61475620,edu, +1c41965c5e1f97b1504c1bdde8037b5e0417da5e,Interaction-aware Spatio-temporal Pyramid Attention Networks for Action Classification,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16,Fusion of Audio-visual Features using Hierarchical Classifier Systems for the Recognition of Affective States and the State of Depression,Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.01010115,edu, +1cad5d682393ffbb00fd26231532d36132582bb4,"ZHENHENG YANG, JIYANG GAO, RAM NEVATIA: SPATIO-TEMPORAL ACTION DETECTION WITH CASCADE PROPOSAL AND LOCATION ANTICIPATION1 Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation",University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.02241490,-118.28634407,edu, +1c1a98df3d0d5e2034ea723994bdc85af45934db,Guided Unsupervised Learning of Mode Specific Models for Facial Point Detection in the Wild,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +1ca815327e62c70f4ee619a836e05183ef629567,Global supervised descent method,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1c530de1a94ac70bf9086e39af1712ea8d2d2781,Sparsity Conditional Energy Label Distribution Learning for Age Estimation,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.05752790,118.78682252,edu, +82f8652c2059187b944ce65e87bacb6b765521f6,Discriminative Object Categorization with External Semantic Knowledge,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.28415100,-97.73195598,edu, +824d1db06e1c25f7681e46199fd02cb5fc343784,Representing Relative Visual Attributes with a Reference-Point-Based Decision Model,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +824d1db06e1c25f7681e46199fd02cb5fc343784,Representing Relative Visual Attributes with a Reference-Point-Based Decision Model,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +82ccd62f70e669ec770daf11d9611cab0a13047e,Sparse Variation Pattern for Texture Classification,Tafresh University,Tafresh University,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ‏ایران‎",34.68092465,50.05341352,edu, +82ccd62f70e669ec770daf11d9611cab0a13047e,Sparse Variation Pattern for Texture Classification,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.79790037,edu, +82ccd62f70e669ec770daf11d9611cab0a13047e,Sparse Variation Pattern for Texture Classification,Azad University,Azad University,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ‏ایران‎",36.31734320,50.03672860,edu, +82b43bc9213230af9db17322301cbdf81e2ce8cc,Attention-Set based Metric Learning for Video Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +82e66c4832386cafcec16b92ac88088ffd1a1bc9,OpenFace: A general-purpose face recognition library with mobile applications,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +82e66c4832386cafcec16b92ac88088ffd1a1bc9,OpenFace: A general-purpose face recognition library with mobile applications,Poznan University of Technology,Poznan University of Technology,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP",52.40048370,16.95158083,edu, +82eb267b8e86be0b444e841b4b4ed4814b6f1942,Single Image 3D Interpreter Network,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +82eb267b8e86be0b444e841b4b4ed4814b6f1942,Single Image 3D Interpreter Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +499f1d647d938235e9186d968b7bb2ab20f2726d,Face Recognition via Archetype Hull Ranking,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +499f1d647d938235e9186d968b7bb2ab20f2726d,Face Recognition via Archetype Hull Ranking,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.80407056,company, +49f70f707c2e030fe16059635df85c7625b5dc7e,Face recognition under illumination variations based on eight local directional patterns,Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.74115040,-111.81223090,edu, +49820ae612b3c0590a8a78a725f4f378cb605cd1,Evaluation of Smile Detection Methods with Images in Real-World Scenarios,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +49e975a4c60d99bcc42c921d73f8d89ec7130916,Human and computer recognition of facial expressions of emotion.,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +499f2b005e960a145619305814a4e9aa6a1bba6a,Robust human face recognition based on locality preserving sparse over complete block approximation,University of Geneva,University of Geneva,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA",42.57054745,-88.55578627,edu, +497bf2df484906e5430aa3045cf04a40c9225f94,Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.85363330,-117.20352860,edu, +497bf2df484906e5430aa3045cf04a40c9225f94,Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems,Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.28300030,127.04548469,edu, +492f41e800c52614c5519f830e72561db205e86c,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +492f41e800c52614c5519f830e72561db205e86c,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +492f41e800c52614c5519f830e72561db205e86c,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +493ec9e567c5587c4cbeb5f08ca47408ca2d6571,Combining graph embedding and sparse regression with structure low-rank representation for semi-supervised learning,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +49570b41bd9574bd9c600e24b269d945c645b7bd,A Framework for Performance Evaluation of Face Recognition Algorithms,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.67653157,edu, +40a74eea514b389b480d6fe8b359cb6ad31b644a,Discrete Deep Feature Extraction: A Theory and New Architectures,University of Vienna,University of Vienna,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.21313020,16.36068653,edu, +403a108dec92363fd1f465340bd54dbfe65af870,Local Higher-Order Statistics (LHS) describing images with statistics of local non-binarized pixel patterns,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.25795660,7.04577417,edu, +40ee38d7ff2871761663d8634c3a4970ed1dc058,Three-Dimensional Face Recognition: A Fishersurface Approach,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.03138878,edu, +404042a1dcfde338cf24bc2742c57c0fb1f48359,A Survey on Facial Features Localization,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +4015e8195db6edb0ef8520709ca9cb2c46f29be7,Smile Detector Based on the Motion of Face Reference Points,University of Tartu,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.38131405,26.72078081,edu, +407bb798ab153bf6156ba2956f8cf93256b6910a,Fisher Pruning of Deep Nets for Facial Trait Classification,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +407de9da58871cae7a6ded2f3a6162b9dc371f38,TraMNet - Transition Matrix Network for Efficient Action Tube Proposals,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.75552050,-1.22615970,edu, +405526dfc79de98f5bf3c97bf4aa9a287700f15d,MegaFace: A Million Faces for Recognition at Scale,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b,Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +40a5b32e261dc5ccc1b5df5d5338b7d3fe10370d,Feedback-Controlled Sequential Lasso Screening,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325,edu, +40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,Automatic Lip Tracking and Action Units Classification using Two-Step Active Contours and Probabilistic Neural Networks,University of Tabriz,University of Tabriz,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎",38.06125530,46.32984840,edu, +40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,Automatic Lip Tracking and Action Units Classification using Two-Step Active Contours and Probabilistic Neural Networks,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.68740118,edu, +40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,Automatic Lip Tracking and Action Units Classification using Two-Step Active Contours and Probabilistic Neural Networks,University of Tabriz,University of Tabriz,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ‏ایران‎",38.06125530,46.32984840,edu, +40e1743332523b2ab5614bae5e10f7a7799161f4,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +40e1743332523b2ab5614bae5e10f7a7799161f4,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.48542550,120.27395810,edu, +40c8cffd5aac68f59324733416b6b2959cb668fd,Pooling Facial Segments to Face: The Shallow and Deep Ends,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +40273657e6919455373455bd9a5355bb46a7d614,Anonymizing k Facial Attributes via Adversarial Perturbations,"IIIT Delhi, India","IIIT Delhi, India","Okhla Industrial Estate, Phase III, Near Govind Puri Metro Station, New Delhi, Delhi 110020, India",28.54562820,77.27315050,edu, +40bb090a4e303f11168dce33ed992f51afe02ff7,Marginal Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +40bb090a4e303f11168dce33ed992f51afe02ff7,Marginal Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +40bb090a4e303f11168dce33ed992f51afe02ff7,Marginal Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +406431d2286a50205a71f04e0b311ba858fc7b6c,3D facial expression classification using a statistical model of surface normals and a modular approach,University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134,edu, +406431d2286a50205a71f04e0b311ba858fc7b6c,3D facial expression classification using a statistical model of surface normals and a modular approach,University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134,edu, +40217a8c60e0a7d1735d4f631171aa6ed146e719,Part-Pair Representation for Part Localization,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +2e0addeffba4be98a6ad0460453fbab52616b139,Face View Synthesis Using A Single Image,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +2e0addeffba4be98a6ad0460453fbab52616b139,Face View Synthesis Using A Single Image,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +2e8a0cc071017845ee6f67bd0633b8167a47abed,Spatio-temporal covariance descriptors for action and gesture recognition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.01316956,edu, +2e231f1e7e641dd3619bec59e14d02e91360ac01,Fusion Network for Face-Based Age Estimation,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.37914420,-2.32523320,edu, +2e231f1e7e641dd3619bec59e14d02e91360ac01,Fusion Network for Face-Based Age Estimation,Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.06360710,147.35522340,edu, +2e6cfeba49d327de21ae3186532e56cadeb57c02,Real Time Eye Gaze Tracking with 3D Deformable Eye-Face Model,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.72984590,-73.67950216,edu, +2ee817981e02c4709d65870c140665ed25b005cc,Sparse representations and Random Projections for robust and cancelable biometrics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +2ee817981e02c4709d65870c140665ed25b005cc,Sparse representations and Random Projections for robust and cancelable biometrics,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +2e98329fdec27d4b3b9b894687e7d1352d828b1d,Using Affect Awareness to Modulate Task Experience: A Study Amongst Pre-elementary School Kids,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +2e8eb9dc07deb5142a99bc861e0b6295574d1fbd,Analysis by Synthesis: 3D Object Recognition by Object Reconstruction,"University of California, Irvine","University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.64319010,-117.84016494,edu, +2e8eb9dc07deb5142a99bc861e0b6295574d1fbd,Analysis by Synthesis: 3D Object Recognition by Object Reconstruction,"University of California, Irvine","University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.64319010,-117.84016494,edu, +2e3c893ac11e1a566971f64ae30ac4a1f36f5bb5,Simultaneous Object Detection and Ranking with Weak Supervision,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +2ed3ce5cf9e262bcc48a6bd998e7fb70cf8a971c,Active AU Based Patch Weighting for Facial Expression Recognition,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +2e1fd8d57425b727fd850d7710d38194fa6e2654,Learning Structured Appearance Models from Captioned Images of Cluttered Scenes,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +2e1fd8d57425b727fd850d7710d38194fa6e2654,Learning Structured Appearance Models from Captioned Images of Cluttered Scenes,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.02804210,8.51148270,edu, +2be0ab87dc8f4005c37c523f712dd033c0685827,Relaxed local ternary pattern for face recognition,Institute of Media Innovation,Institute of Media Innovation,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore",1.34339370,103.67933030,edu, +2be0ab87dc8f4005c37c523f712dd033c0685827,Relaxed local ternary pattern for face recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +2be0ab87dc8f4005c37c523f712dd033c0685827,Relaxed local ternary pattern for face recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +2bb2ba7c96d40e269fc6a2d5384c739ff9fa16eb,Image-Based Recommendations on Styles and Substitutes,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +2bb2ba7c96d40e269fc6a2d5384c739ff9fa16eb,Image-Based Recommendations on Styles and Substitutes,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +2b339ece73e3787f445c5b92078e8f82c9b1c522,"Human Re-identification in Crowd Videos Using Personal, Social and Environmental Constraints",University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +2bb53e66aa9417b6560e588b6235e7b8ebbc294c,Semantic embedding space for zero-shot action recognition,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.52472720,-0.03931035,edu, +2be8e06bc3a4662d0e4f5bcfea45631b8beca4d0,Watch and learn: Semi-supervised learning of object detectors from videos,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +2bcec23ac1486f4106a3aa588b6589e9299aba70,An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +2b773fe8f0246536c9c40671dfa307e98bf365ad,Fast Discriminative Stochastic Neighbor Embedding Analysis,Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.29315340,120.16204580,edu, +2bab44d3a4c5ca79fb8f87abfef4456d326a0445,Player identification in soccer videos,University of Florence,University of Florence,"Piazza di San Marco, 4, 50121 Firenze FI, Italy",43.77764260,11.25976500,edu, +2b0102d77d3d3f9bc55420d862075934f5c85bec,Slicing Convolutional Neural Network for Crowd Video Understanding,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +2b0102d77d3d3f9bc55420d862075934f5c85bec,Slicing Convolutional Neural Network for Crowd Video Understanding,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +2b435ee691718d0b55d057d9be4c3dbb8a81526e,SURF-Face: Face Recognition Under Viewpoint Consistency Constraints,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,A comparative study of active appearance model annotation schemes for the face,"UNCW, USA","UNCW, USA","601 S College Rd, Wilmington, NC 28403, USA",34.22398690,-77.87013250,edu, +2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,A comparative study of active appearance model annotation schemes for the face,"UNCW, USA","UNCW, USA","601 S College Rd, Wilmington, NC 28403, USA",34.22398690,-77.87013250,edu, +2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,A comparative study of active appearance model annotation schemes for the face,"UNCW, USA","UNCW, USA","601 S College Rd, Wilmington, NC 28403, USA",34.22398690,-77.87013250,edu, +2b64a8c1f584389b611198d47a750f5d74234426,Deblurring Face Images with Exemplars,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +2b64a8c1f584389b611198d47a750f5d74234426,Deblurring Face Images with Exemplars,"University of California, Merced","University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.42158888,edu, +2b10a07c35c453144f22e8c539bf9a23695e85fc,Standardization of Face Image Sample Quality,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.26420748,edu, +2b10a07c35c453144f22e8c539bf9a23695e85fc,Standardization of Face Image Sample Quality,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +2b84630680e2c906f8d7ac528e2eb32c99ef203a,We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +2b84630680e2c906f8d7ac528e2eb32c99ef203a,We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer,University of Perugia,University of Perugia,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.26224210,-123.24500520,edu, +2b7ef95822a4d577021df16607bf7b4a4514eb4b,Emergence of Object-Selective Features in Unsupervised Feature Learning,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,Ring loss: Convex Feature Normalization for Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +2b42f83a720bd4156113ba5350add2df2673daf0,Action Recognition and Detection by Combining Motion and Appearance Features,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +2b42f83a720bd4156113ba5350add2df2673daf0,Action Recognition and Detection by Combining Motion and Appearance Features,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +2b42f83a720bd4156113ba5350add2df2673daf0,Action Recognition and Detection by Combining Motion and Appearance Features,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +47fdbd64edd7d348713253cf362a9c21f98e4296,Facial point detection based on a convolutional neural network with optimal mini-batch procedure,Chubu University,Chubu University,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本",35.27426550,137.01327841,edu, +47382cb7f501188a81bb2e10cfd7aed20285f376,Articulated Pose Estimation Using Hierarchical Exemplar-Based Models,Columbia University ,Columbia University in the City of New York,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.80717720,-73.96252798,edu, +473366f025c4a6e0783e6174ca914f9cb328fe70,Review of Action Recognition and Detection Methods,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.77439110,-79.50481085,edu, +4793f11fbca4a7dba898b9fff68f70d868e2497c,Kinship Verification through Transfer Learning,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.93362780,-78.88394479,edu, +473031328c58b7461753e81251379331467f7a69,Exploring Fisher vector and deep networks for action spotting,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +473031328c58b7461753e81251379331467f7a69,Exploring Fisher vector and deep networks for action spotting,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +47638197d83a8f8174cdddc44a2c7101fa8301b7,Object-Centric Anomaly Detection by Attribute-Based Reasoning,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +47638197d83a8f8174cdddc44a2c7101fa8301b7,Object-Centric Anomaly Detection by Attribute-Based Reasoning,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +47638197d83a8f8174cdddc44a2c7101fa8301b7,Object-Centric Anomaly Detection by Attribute-Based Reasoning,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.43168868,edu, +476f177b026830f7b31e94bdb23b7a415578f9a4,Intra-class multi-output regression based subspace analysis,"University of California, Santa Barbara","University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.41459370,-119.84581950,edu, +476f177b026830f7b31e94bdb23b7a415578f9a4,Intra-class multi-output regression based subspace analysis,"University of California, Santa Barbara","University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.41459370,-119.84581950,edu, +472ba8dd4ec72b34e85e733bccebb115811fd726,Cosine Similarity Metric Learning for Face Verification,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +47eba2f95679e106e463e8296c1f61f6ddfe815b,Deep Co-occurrence Feature Learning for Visual Object Recognition,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +47eba2f95679e106e463e8296c1f61f6ddfe815b,Deep Co-occurrence Feature Learning for Visual Object Recognition,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +47190d213caef85e8b9dd0d271dbadc29ed0a953,The Devil of Face Recognition is in the Noise,"University of California, San Diego","University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.23110049,edu, +47190d213caef85e8b9dd0d271dbadc29ed0a953,The Devil of Face Recognition is in the Noise,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +47dabb566f2bdd6b3e4fa7efc941824d8b923a13,Probabilistic Temporal Head Pose Estimation Using a Hierarchical Graphical Model,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +473cbc5ec2609175041e1410bc6602b187d03b23,Semantic Audio-Visual Data Fusion for Automatic Emotion Recognition,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396037,edu, +78f08cc9f845dc112f892a67e279a8366663e26d,Semi-Autonomous Data Enrichment and Optimisation for Intelligent Speech Analysis,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +78d645d5b426247e9c8f359694080186681f57db,Gender Classification by LUT Based Boosting of Overlapping Block Patterns,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +78d645d5b426247e9c8f359694080186681f57db,Gender Classification by LUT Based Boosting of Overlapping Block Patterns,IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.10923700,7.08453549,edu, +7862d40da0d4e33cd6f5c71bbdb47377e4c6b95a,Demography-based facial retouching detection using subclass supervised sparse autoencoder,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.23822026,edu, +7859667ed6c05a467dfc8a322ecd0f5e2337db56,Web-Scale Transfer Learning for Unconstrained 1:N Face Identification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +78c1ad33772237bf138084220d1ffab800e1200d,Decorrelated Batch Normalization,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.98083330,116.34101249,edu, +78c1ad33772237bf138084220d1ffab800e1200d,Decorrelated Batch Normalization,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +78436256ff8f2e448b28e854ebec5e8d8306cf21,Measuring and Understanding Sensory Representations within Deep Networks Using a Numerical Optimization Framework,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +78436256ff8f2e448b28e854ebec5e8d8306cf21,Measuring and Understanding Sensory Representations within Deep Networks Using a Numerical Optimization Framework,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +78436256ff8f2e448b28e854ebec5e8d8306cf21,Measuring and Understanding Sensory Representations within Deep Networks Using a Numerical Optimization Framework,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, +78f79c83b50ff94d3e922bed392737b47f93aa06,The computer expression recognition toolbox (CERT),University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.23517260,-110.95095832,edu, +78f79c83b50ff94d3e922bed392737b47f93aa06,The computer expression recognition toolbox (CERT),University of Buffalo,University of Buffalo,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA",40.70217660,-99.09850612,edu, +78fede85d6595e7a0939095821121f8bfae05da6,Discriminant Metric Learning Approach for Face Verification,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7862f646d640cbf9f88e5ba94a7d642e2a552ec9,Being John Malkovich,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.65432380,-122.30800894,edu, +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.16936535,edu, +78174c2be084e67f48f3e8ea5cb6c9968615a42c,Periocular Recognition Using CNN Features Off-the-Shelf,Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.87929727,edu, +780557daaa39a445b24c41f637d5fc9b216a0621,"Large Video Event Ontology Browsing, Search and Tagging (EventNet Demo)",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +8ba67f45fbb1ce47a90df38f21834db37c840079,People search and activity mining in large-scale community-contributed photos,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +8bed7ff2f75d956652320270eaf331e1f73efb35,Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers,University of Calabria,"Modeling, Electronics, and Systems, University of Calabria, Rende, Italy","Via Pietro Bucci, 87036 Arcavacata, Rende CS, Italy",39.36502160,16.22571770,edu, +8bed7ff2f75d956652320270eaf331e1f73efb35,Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers,Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.37552690,-4.13937687,edu, +8bed7ff2f75d956652320270eaf331e1f73efb35,Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers,University of Calabria,"Modeling, Electronics, and Systems, University of Calabria, Rende, Italy","Via Pietro Bucci, 87036 Arcavacata, Rende CS, Italy",39.36502160,16.22571770,edu, +8bed7ff2f75d956652320270eaf331e1f73efb35,Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers,Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.37552690,-4.13937687,edu, +8b7191a2b8ab3ba97423b979da6ffc39cb53f46b,Search pruning in video surveillance systems: Efficiency-reliability tradeoff,EURECOM,EURECOM,"Campus SophiaTech, 450 Route des Chappes, 06410 Biot, France",43.61438600,7.07112500,edu, +8bf243817112ac0aa1348b40a065bb0b735cdb9c,Learning a Repression Network for Precise Vehicle Search,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +8bfada57140aa1aa22a575e960c2a71140083293,Can we match Ultraviolet Face Images against their Visible Counterparts?,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +8befcd91c24038e5c26df0238d26e2311b21719a,A Joint Sequence Fusion Model for Video Question Answering and Retrieval,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728000,126.98411510,edu, +8bbbdff11e88327816cad3c565f4ab1bb3ee20db,Automatic Semantic Face Recognition,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464295,edu, +8bdf6f03bde08c424c214188b35be8b2dec7cdea,Inference Attacks Against Collaborative Learning,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.45055070,-76.47835130,edu, +8b10383ef569ea0029a2c4a60cc2d8c87391b4db,Age classification using Radon transform and entropy based scaling SVM,University of Dundee,University of Dundee,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK",56.45796755,-2.98214831,edu, +8b30259a8ab07394d4dac971f3d3bd633beac811,Representing Sets of Instances for Visual Recognition,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.05659570,118.77408833,edu, +8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8,Temporal Perceptive Network for Skeleton-Based Action Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8,Temporal Perceptive Network for Skeleton-Based Action Recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +8b19efa16a9e73125ab973429eb769d0ad5a8208,SCAR: Dynamic Adaptation for Person Detection and Persistence Analysis in Unconstrained Videos,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.74225200,-74.02709490,edu, +8b6fded4d08bf0b7c56966b60562ee096af1f0c4,A Neural Network based Facial Expression Recognition using Fisherface,Semarang State University,Semarang State University,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia",-7.00349485,110.41774949,edu, +8b2704a5218a6ef70e553eaf0a463bd55129b69d,Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.13501330,edu, +8b2e3805b37c18618b74b243e7a6098018556559,Ariational a Utoencoder with D Eep F Eature C Onsistent and G Enerative a Dversar - Ial T Raining,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.93874280,-1.20029569,edu, +8b2e3805b37c18618b74b243e7a6098018556559,Ariational a Utoencoder with D Eep F Eature C Onsistent and G Enerative a Dversar - Ial T Raining,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.93159110,edu, +8b74252625c91375f55cbdd2e6415e752a281d10,Using Convolutional 3D Neural Networks for User-independent continuous gesture recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +8b74252625c91375f55cbdd2e6415e752a281d10,Using Convolutional 3D Neural Networks for User-independent continuous gesture recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.77917030,6.06728733,edu, +8b74252625c91375f55cbdd2e6415e752a281d10,Using Convolutional 3D Neural Networks for User-independent continuous gesture recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259,Real-time 3 D Face Fitting and Texture Fusion on Inthe-wild Videos,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259,Real-time 3 D Face Fitting and Texture Fusion on Inthe-wild Videos,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682404,edu, +134f1cee8408cca648d8b4ca44b38b0a7023af71,Partially Shared Multi-Task Convolutional Neural Network with Local Constraint for Face Attribute Learning,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.11930822,edu, +13719bbb4bb8bbe0cbcdad009243a926d93be433,Deep LDA-Pruned Nets for Efficient Facial Gender Classification,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.50397610,-73.57496870,edu, +1329206dbdb0a2b9e23102e1340c17bd2b2adcf5,Part-Based R-CNNs for Fine-Grained Category Detection,"University of California, Berkeley","University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.86871260,-122.25586815,edu, +13bda03fc8984d5943ed8d02e49a779d27c84114,Efficient object detection using cascades of nearest convex model classifiers,Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.74875160,30.47653071,edu, +13a994d489c15d440c1238fc1ac37dad06dd928c,Learning Discriminant Face Descriptor for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +131178dad3c056458e0400bed7ee1a36de1b2918,Visual Reranking through Weakly Supervised Multi-graph Learning,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.12358250,108.83546000,edu, +131178dad3c056458e0400bed7ee1a36de1b2918,Visual Reranking through Weakly Supervised Multi-graph Learning,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +131178dad3c056458e0400bed7ee1a36de1b2918,Visual Reranking through Weakly Supervised Multi-graph Learning,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +132527383890565d18f1b7ad50d76dfad2f14972,Facial Expression Classification Using PCA and Hierarchical Radial Basis Function Network,National Taipei University,National Taipei University,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣",24.94314825,121.36862979,edu, +13604bbdb6f04a71dea4bd093794e46730b0a488,Robust Loss Functions under Label Noise for Deep Neural Networks,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +13604bbdb6f04a71dea4bd093794e46730b0a488,Robust Loss Functions under Label Noise for Deep Neural Networks,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.02223470,77.56718325,edu, +137aa2f891d474fce1e7a1d1e9b3aefe21e22b34,Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +13b1b18b9cfa6c8c44addb9a81fe10b0e89db32a,A Hierarchical Deep Temporal Model for Group Activity Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.27674540,-122.91777375,edu, +1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,"University of Illinois, Urbana-Champaign","University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.22587665,edu, +1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,Oxford University,Oxford University,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK",51.75208490,-1.25166460,edu, +1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +13c250fb740cb5616aeb474869db6ab11560e2a6,A thesis submitted in conformity with the requirements,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +13940d0cc90dbf854a58f92d533ce7053aac024a,Local learning by partitioning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +13940d0cc90dbf854a58f92d533ce7053aac024a,Local learning by partitioning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.35042530,-71.10056114,edu, +131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1,Elastic Graph Matching versus Linear Subspace Methods for Frontal Face Verification,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.95889350,edu, +1389ba6c3ff34cdf452ede130c738f37dca7e8cb,A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.94610290,edu, +13aef395f426ca8bd93640c9c3f848398b189874,1 Image Preprocessing and Complete 2 DPCA with Feature Extraction for Gender Recognition NSF REU 2017 : Statistical Learning and Data Mining,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.23755810,-77.92701290,edu, +13be4f13dac6c9a93f969f823c4b8c88f607a8c4,Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.33836680,-71.08793524,edu, +1316296fae6485c1510f00b1b57fb171b9320ac2,FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +1316296fae6485c1510f00b1b57fb171b9320ac2,FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.04775327,edu, +7fc5b6130e9d474dfb49d9612b6aa0297d481c8e,Dimensionality Reduction on Grassmannian via Riemannian Optimization: A Generalized Perspective,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +7fc5b6130e9d474dfb49d9612b6aa0297d481c8e,Dimensionality Reduction on Grassmannian via Riemannian Optimization: A Generalized Perspective,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +7f21a7441c6ded38008c1fd0b91bdd54425d3f80,Real Time System for Facial Analysis,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.85877462,edu, +7fce5769a7d9c69248178989a99d1231daa4fce9,Towards Face Recognition Using Eigenface,King Faisal University,King Faisal University,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.39777800,50.18305600,edu, +7fa2605676c589a7d1a90d759f8d7832940118b5,A new approach to clothing classification using mid-level layers,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.83743476,edu, +7fb5006b6522436ece5bedf509e79bdb7b79c9a7,Multi-Task Convolutional Neural Network for Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,Efficient Online Spatio-Temporal Filtering for Video Event Detection,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,Efficient Online Spatio-Temporal Filtering for Video Event Detection,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,Efficient Online Spatio-Temporal Filtering for Video Event Detection,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.29421420,-83.71003894,edu, +7f445191fa0475ff0113577d95502a96dc702ef9,Towards an Unequivocal Representation of Actions,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +7f445191fa0475ff0113577d95502a96dc702ef9,Towards an Unequivocal Representation of Actions,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +7f445191fa0475ff0113577d95502a96dc702ef9,Towards an Unequivocal Representation of Actions,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.45848370,-2.60977520,edu, +7f82f8a416170e259b217186c9e38a9b05cb3eb4,Multi-Attribute Robust Component Analysis for Facial UV Maps,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +7f82f8a416170e259b217186c9e38a9b05cb3eb4,Multi-Attribute Robust Component Analysis for Facial UV Maps,Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.22963221,edu, +7f82f8a416170e259b217186c9e38a9b05cb3eb4,Multi-Attribute Robust Component Analysis for Facial UV Maps,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.52176680,-0.13019072,edu, +7fab17ef7e25626643f1d55257a3e13348e435bd,Age Progression/Regression by Conditional Adversarial Autoencoder,University of Tennessee,University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.95424930,-83.93073950,edu, +7f6599e674a33ed64549cd512ad75bdbd28c7f6c,Kernel Alignment Inspired Linear Discriminant Analysis,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.72836830,-97.11201835,edu, +7f9260c00a86a0d53df14469f1fa10e318ee2a3c,How iris recognition works,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.14308882,edu, +7f2a4cd506fe84dee26c0fb41848cb219305173f,Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.50975370,114.40628810,edu, +7fd700f4a010d765c506841de9884df394c1de1c,Correlational spectral clustering,Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.53691250,9.05922533,edu, +7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.87834655,edu, +7f23a4bb0c777dd72cca7665a5f370ac7980217e,Improving Person Re-identification by Attribute and Identity Learning,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.88096510,151.20107299,edu, +7fc3442c8b4c96300ad3e860ee0310edb086de94,Similarity Scores Based on Background Samples,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +7fc3442c8b4c96300ad3e860ee0310edb086de94,Similarity Scores Based on Background Samples,Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.99565673,edu, +7f8d44e7fd2605d580683e47bb185de7f9ea9e28,Predicting Personal Traits from Facial Images Using Convolutional Neural Networks Augmented with Facial Landmark Information,Hebrew University of Jerusalem,The Hebrew University of Jerusalem,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.79185550,35.24472300,edu, +7f8d44e7fd2605d580683e47bb185de7f9ea9e28,Predicting Personal Traits from Facial Images Using Convolutional Neural Networks Augmented with Facial Landmark Information,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +7f8d44e7fd2605d580683e47bb185de7f9ea9e28,Predicting Personal Traits from Facial Images Using Convolutional Neural Networks Augmented with Facial Landmark Information,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.79440260,-1.09717480,edu, +7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3a,Multi-subregion based probabilistic approach toward pose-invariant face recognition,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.59001382,edu, +7fc76446d2b11fc0479df6e285723ceb4244d4ef,Laplacian MinMax Discriminant Projection and its Applications,Zhejiang Normal University,Zhejiang Normal University,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.13646725,119.63768652,edu, +7fc76446d2b11fc0479df6e285723ceb4244d4ef,Laplacian MinMax Discriminant Projection and its Applications,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +7a9c317734acaf4b9bd8e07dd99221c457b94171,Lorentzian Discriminant Projection and Its Applications,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.52281098,edu, +7a3d46f32f680144fd2ba261681b43b86b702b85,Multi-label Learning Based Deep Transfer Neural Network for Facial Attribute Classification,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.43994190,118.09301781,edu, +7a3d46f32f680144fd2ba261681b43b86b702b85,Multi-label Learning Based Deep Transfer Neural Network for Facial Attribute Classification,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.91892260,138.60423668,edu, +7a7f2403e3cc7207e76475e8f27a501c21320a44,Emotion recognition from multi-modal information,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.99919160,120.21625134,edu, +7aafeb9aab48fb2c34bed4b86755ac71e3f00338,Real Time 3D Facial Movement Tracking Using a Monocular Camera,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.49694909,edu, +7aafeb9aab48fb2c34bed4b86755ac71e3f00338,Real Time 3D Facial Movement Tracking Using a Monocular Camera,Kumamoto University,Kumamoto University,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.81641780,130.72703969,edu, +7a84368ebb1a20cc0882237a4947efc81c56c0c0,Robust and efficient parametric face alignment,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +7a84368ebb1a20cc0882237a4947efc81c56c0c0,Robust and efficient parametric face alignment,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +7a65fc9e78eff3ab6062707deaadde024d2fad40,A Study on Apparent Age Estimation,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355,edu, +7ac9aaafe4d74542832c273acf9d631cb8ea6193,Deep Micro-Dictionary Learning and Coding Network,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.06588360,11.11598940,edu, +7ac9aaafe4d74542832c273acf9d631cb8ea6193,Deep Micro-Dictionary Learning and Coding Network,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +7a1ce696e260899688cb705f243adf73c679f0d9,Predicting Missing Demographic Information in Biometric Records Using Label Propagation Techniques,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +7a1ce696e260899688cb705f243adf73c679f0d9,Predicting Missing Demographic Information in Biometric Records Using Label Propagation Techniques,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +7a131fafa7058fb75fdca32d0529bc7cb50429bd,Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +14b87359f6874ff9b8ee234b18b418e57e75b762,Face Alignment Using a Ranking Model based on Regression Trees,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +14b87359f6874ff9b8ee234b18b418e57e75b762,Face Alignment Using a Ranking Model based on Regression Trees,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.02231159,edu, +142e5b4492bc83b36191be4445ef0b8b770bf4b0,Discriminative Analysis of Brain Function at Resting-State for Attention-Deficit/Hyperactivity Disorder,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +142e5b4492bc83b36191be4445ef0b8b770bf4b0,Discriminative Analysis of Brain Function at Resting-State for Attention-Deficit/Hyperactivity Disorder,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +14b016c7a87d142f4b9a0e6dc470dcfc073af517,Modest proposals for improving biometric recognition papers,San Jose State University,San Jose State University,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.33519080,-121.88126008,edu, +14b66748d7c8f3752dca23991254fca81b6ee86c,A BoW-equivalent Recurrent Neural Network for Action Recognition,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.73381240,7.10224650,edu, +14e8dbc0db89ef722c3c198ae19bde58138e88bf,HapFACS: An Open Source API/Software to Generate FACS-Based Expressions for ECAs Animation and for Corpus Generation,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +14e8dbc0db89ef722c3c198ae19bde58138e88bf,HapFACS: An Open Source API/Software to Generate FACS-Based Expressions for ECAs Animation and for Corpus Generation,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.37628897,edu, +146bbf00298ee1caecde3d74e59a2b8773d2c0fc,University of Groningen 4 D Unconstrained Real - time Face Recognition Using a Commodity Depthh Camera,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +14e9158daf17985ccbb15c9cd31cf457e5551990,ConvNets with Smooth Adaptive Activation Functions for Regression,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +14e9158daf17985ccbb15c9cd31cf457e5551990,ConvNets with Smooth Adaptive Activation Functions for Regression,Oak Ridge National Laboratory,Oak Ridge National Laboratory,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.31240032,edu, +14e9158daf17985ccbb15c9cd31cf457e5551990,ConvNets with Smooth Adaptive Activation Functions for Regression,Stony Brook University Hospital,Stony Brook University Hospital,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.90826665,-73.11520891,edu, +14ce7635ff18318e7094417d0f92acbec6669f1c,DeepFace: Closing the Gap to Human-Level Performance in Face Verification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.11198890,34.80459702,edu, +140438a77a771a8fb656b39a78ff488066eb6b50,Localizing Parts of Faces Using a Consensus of Exemplars,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +140438a77a771a8fb656b39a78ff488066eb6b50,Localizing Parts of Faces Using a Consensus of Exemplars,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +143bee9120bcd7df29a0f2ad6f0f0abfb23977b8,Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +143bee9120bcd7df29a0f2ad6f0f0abfb23977b8,Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.23801390,6.85667610,edu, +14d72dc9f78d65534c68c3ed57305f14bd4b5753,Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.99223790,116.30393816,edu, +14b162c2581aea1c0ffe84e7e9273ab075820f52,Training Object Class Detectors from Eye Tracking Data,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534913,edu, +14ff9c89f00dacc8e0c13c94f9fadcd90e4e604d,Correlation filter cascade for facial landmark localization,National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.29620180,103.77689944,edu, +14b69626b64106bff20e17cf8681790254d1e81c,Hybrid Super Vector with Improved Dense Trajectories for Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.98533784,edu, +14b69626b64106bff20e17cf8681790254d1e81c,Hybrid Super Vector with Improved Dense Trajectories for Action Recognition,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.69784700,104.05208110,edu, +14b69626b64106bff20e17cf8681790254d1e81c,Hybrid Super Vector with Improved Dense Trajectories for Action Recognition,Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.20788644,edu, +14070478b8f0d84e5597c3e67c30af91b5c3a917,Detecting Social Actions of Fruit Flies,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.12527487,edu, +14fb3283d4e37760b7dc044a1e2906e3cbf4d23a,Weak attributes for large-scale image retrieval,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.84198360,-73.94368971,edu, +14811696e75ce09fd84b75fdd0569c241ae02f12,Margin-based discriminant dimensionality reduction for visual recognition,Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.74875160,30.47653071,edu, +14811696e75ce09fd84b75fdd0569c241ae02f12,Margin-based discriminant dimensionality reduction for visual recognition,University of Caen,University of Caen,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.02749960,135.78154513,edu, +14811696e75ce09fd84b75fdd0569c241ae02f12,Margin-based discriminant dimensionality reduction for visual recognition,Rowan University,Rowan University,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA",39.71035260,-75.11932666,edu, +14e759cb019aaf812d6ac049fde54f40c4ed1468,Subspace Methods,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.11120580,140.10551760,edu, +146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,AFFACT: Alignment-free facial attribute classification technique,"University of Colorado, Colorado Springs",University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.89207560,-104.79716389,edu, +148eb413bede35487198ce7851997bf8721ea2d6,People Search in Surveillance Videos,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +148eb413bede35487198ce7851997bf8721ea2d6,People Search in Surveillance Videos,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +148eb413bede35487198ce7851997bf8721ea2d6,People Search in Surveillance Videos,"IBM Research, North Carolina",IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.90422720,-78.85565763,company, +14014a1bdeb5d63563b68b52593e3ac1e3ce7312,Expression-Invariant Age Estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.35536550,4.95016440,edu, +14418ae9a6a8de2b428acb2c00064da129632f3e,Discovering the Spatial Extent of Relative Attributes,"University of California, Davis","University of California, Davis","University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.53363490,-121.79077264,edu, +14ba910c46d659871843b31d5be6cba59843a8b8,Face Recognition in Movie Trailers via Mean Sequence Sparse Representation-Based Classification,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.19712501,edu, +14318d2b5f2cf731134a6964d8193ad761d86942,FaceDNA: Intelligent Face Recognition System with Intel RealSense 3D Camera,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.53846924,edu, +14c0f9dc9373bea1e27b11fa0594c86c9e632c8d,Adaptive Exponential Smoothing for Online Filtering of Pixel Prediction Maps,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +1439bf9ba7ff97df9a2da6dae4784e68794da184,LGE-KSVD: Flexible Dictionary Learning for Optimized Sparse Representation Classification,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.67121663,edu, +141768ab49a5a9f5adcf0cf7e43a23471a7e5d82,Relative facial action unit detection,McMaster University,McMaster University,"McMaster University, Westdale, Hamilton, Ontario, Canada",43.26336945,-79.91809684,edu, +14bca107bb25c4dce89210049bf39ecd55f18568,Emotion recognition from facial images with arbitrary views,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +8ec82da82416bb8da8cdf2140c740e1574eaf84f,Lip Reading in Profile,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.75345380,-1.25400997,edu, +8e0ede53dc94a4bfcf1238869bf1113f2a37b667,Joint patch and multi-label learning for facial action unit detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.49423171,edu, +8e0ede53dc94a4bfcf1238869bf1113f2a37b667,Joint patch and multi-label learning for facial action unit detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.96243993,edu, +8e3c97e420e0112c043929087d6456d8ab61e95c,Robust Global Motion Compensation in Presence of Predominant Foreground,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +8e0ab1b08964393e4f9f42ca037220fe98aad7ac,UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +8e4808e71c9b9f852dc9558d7ef41566639137f3,Adversarial Generative Nets: Neural Network Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +8e4808e71c9b9f852dc9558d7ef41566639137f3,Adversarial Generative Nets: Neural Network Attacks on State-of-the-Art Face Recognition,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.91139710,-79.05045290,edu, +8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,Segment-based SVMs for Time Series Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,Segment-based SVMs for Time Series Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.41021930,-122.05965487,edu, +8ed33184fccde677ec8413ae06f28ea9f2ca70f3,Multimodal Visual Concept Learning with Weakly Supervised Techniques,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.73179733,edu, +8ee5b1c9fb0bded3578113c738060290403ed472,Extending explicit shape regression with mixed feature channels and pose priors,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312560,edu, +8efda5708bbcf658d4f567e3866e3549fe045bbb,Pre-trained Deep Convolutional Neural Networks for Face Recognition,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +8efda5708bbcf658d4f567e3866e3549fe045bbb,Pre-trained Deep Convolutional Neural Networks for Face Recognition,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482,edu, +2227f978f084ebb18cb594c0cfaf124b0df6bf95,Pillar Networks for action recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.17560797,edu, +22e2066acfb795ac4db3f97d2ac176d6ca41836c,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.00447950,116.37023800,edu, +22e2066acfb795ac4db3f97d2ac176d6ca41836c,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.90828040,116.24585270,edu, +22717ad3ad1dfcbb0fd2f866da63abbde9af0b09,A Learning-based Control Architecture for Socially Assistive Robots Providing Cognitive Interventions,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.39769975,edu, +2288696b6558b7397bdebe3aed77bedec7b9c0a9,Action Recognition with Joint Attention on Multi-Level Deep Features,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +2288696b6558b7397bdebe3aed77bedec7b9c0a9,Action Recognition with Joint Attention on Multi-Level Deep Features,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.90621700,116.39127570,edu, +221252be5d5be3b3e53b3bbbe7a9930d9d8cad69,Do We Need More Training Data or Better Models for Object Detection?,MIT,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.35839610,-71.09567788,edu, +22df6b6c87d26f51c0ccf3d4dddad07ce839deb0,Fast action proposals for human action detection and search,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.34841040,103.68297965,edu, +22e678d3e915218a7c09af0d1602e73080658bb7,Adventures in archiving and using three years of webcam images,Washington University,Washington University,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.64804450,-90.30996670,edu, +2201f187a7483982c2e8e2585ad9907c5e66671d,Joint Face Alignment and 3D Face Reconstruction,"Sichuan University, Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.64276900,104.06751175,edu, +2201f187a7483982c2e8e2585ad9907c5e66671d,Joint Face Alignment and 3D Face Reconstruction,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.71856800,-84.47791571,edu, +2241eda10b76efd84f3c05bdd836619b4a3df97e,One-to-many face recognition with bilinear CNNs,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.38897850,-72.52869870,edu, +22646cf884cc7093b0db2c1731bd52f43682eaa8,Human Action Adverb Recognition: ADHA Dataset and A Three-Stream Hybrid Model,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.42840681,edu, +22f94c43dd8b203f073f782d91e701108909690b,MovieScope: Movie trailer classification using Deep Neural Networks,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.03536820,-78.50353220,edu, +22143664860c6356d3de3556ddebe3652f9c912a,Facial Expression Recognition for Human-Robot Interaction - A Prototype,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.58667840,-101.87539204,edu, +2271d554787fdad561fafc6e9f742eea94d35518,Multimodale Mensch-Roboter-Interaktion für Ambient Assisted Living,Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.56775314,edu, +25ff865460c2b5481fa4161749d5da8501010aa0,Seeing What is Not There: Learning Context to Determine Where Objects are Missing,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.28996850,-76.62196103,edu, +25d514d26ecbc147becf4117512523412e1f060b,Annotated crowd video face database,Indian Institute of Technology Delhi,"IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.27325504,edu, +25c3cdbde7054fbc647d8be0d746373e7b64d150,ForgetMeNot: Memory-Aware Forensic Facial Sketch Matching,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.96014880,116.35193921,edu, +25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,Neural Networks with Smooth Adaptive Activation Functions for Regression,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,Neural Networks with Smooth Adaptive Activation Functions for Regression,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.91531960,-73.12706260,edu, +25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,Neural Networks with Smooth Adaptive Activation Functions for Regression,Oak Ridge National Laboratory,Oak Ridge National Laboratory,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.31240032,edu, +2588acc7a730d864f84d4e1a050070ff873b03d5,Action Recognition by an Attention-Aware Temporal Weighted Convolutional Neural Network,Microsoft Research Asia,"Microsoft Live Labs Research, China",Microsoft Research Asia,35.86166000,104.19539700,company, +25c108a56e4cb757b62911639a40e9caf07f1b4f,Recurrent Scale Approximation for Object Detection in CNN,SenseTime,SenseTime,"China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1号-7",39.99300800,116.32988200,company,"1 Zhongguancun E Rd, Haidian Qu, China" +2594a77a3f0dd5073f79ba620e2f287804cec630,Regularizing face verification nets for pain intensity regression,Johns Hopkins University,"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA","3400 N Charles St, Baltimore, MD 21218, USA",39.32905300,-76.61942500,edu, +2594a77a3f0dd5073f79ba620e2f287804cec630,Regularizing face verification nets for pain intensity regression,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.32098908,edu, +25e2d3122d4926edaab56a576925ae7a88d68a77,Communicative-Pragmatic Treatment in Schizophrenia: A Pilot Study,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.05921570,25.46632601,edu, +25e2d3122d4926edaab56a576925ae7a88d68a77,Communicative-Pragmatic Treatment in Schizophrenia: A Pilot Study,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.12666653,edu, diff --git a/scraper/reports/stats/no_separator_papers.csv b/scraper/reports/stats/no_separator_papers.csv new file mode 100644 index 00000000..ee3cef0d --- /dev/null +++ b/scraper/reports/stats/no_separator_papers.csv @@ -0,0 +1,344 @@ +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,,2016 +0da4c3d898ca2fff9e549d18f513f4898e960aca,The Headscarf Effect Revisited: Further Evidence for a Culture-Based Internal Face Processing Advantage.,Perception,2015 +92c2dd6b3ac9227fce0a960093ca30678bceb364,On Color Texture Normalization for Active Appearance Models,IEEE Transactions on Image Processing,2009 +927ba64123bd4a8a31163956b3d1765eb61e4426,Customer satisfaction measuring based on the most significant facial emotion,Unknown,2018 +927ad0dceacce2bb482b96f42f2fe2ad1873f37a,Interest-Point based Face Recognition System,,2012 +0c3f7272a68c8e0aa6b92d132d1bf8541c062141,Kruskal-Wallis-Based Computationally Efficient Feature Selection for Face Recognition,,2014 +66533107f9abdc7d1cb8f8795025fc7e78eb1122,Visual Servoing for a User's Mouth with Effective Intention Reading in a Wheelchair-based Robotic Arm,,2001 +661da40b838806a7effcb42d63a9624fcd684976,An Illumination Invariant Accurate Face Recognition with Down Scaling of DCT Coefficients,CIT,2010 +3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,Facial Expression Recognition with Local Binary Patterns and Linear Programming,,2004 +3e04feb0b6392f94554f6d18e24fadba1a28b65f,Subspace Image Representation for Facial Expression Analysis and Face Recognition and its Relation to the Human Visual System,,2007 +50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,Emotion recognition based on texture analysis of facial expression,2011 International Conference on Image Information Processing,2011 +50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,,2015 +50c0de2cccf7084a81debad5fdb34a9139496da0,"The Influence of Annotation, Corpus Design, and Evaluation on the Outcome of Automatic Classification of Human Emotions",Front. ICT,2016 +688754568623f62032820546ae3b9ca458ed0870,Resting high frequency heart rate variability is not associated with the recognition of emotional facial expressions in healthy human adults,,2016 +68c17aa1ecbff0787709be74d1d98d9efd78f410,Gender Classification from Face Images Using Mutual Information and Feature Fusion,,2012 +68f61154a0080c4aae9322110c8827978f01ac2e,"Recognizing blurred , non-frontal , illumination and expression variant partially occluded faces",Unknown,2016 +6821113166b030d2123c3cd793dd63d2c909a110,Acquisition and Indexing of Rgb-d Recordings for Facial Expressions and Emotion Recognition1,,2015 +57bf9888f0dfcc41c5ed5d4b1c2787afab72145a,Robust Facial Expression Recognition Based on Local Directional Pattern,, +57f8e1f461ab25614f5fe51a83601710142f8e88,Region Selection for Robust Face Verification using UMACE Filters,,2007 +57a1466c5985fe7594a91d46588d969007210581,A taxonomy of face-models for system evaluation,2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops,2010 +57a14a65e8ae15176c9afae874854e8b0f23dca7,Seeing Mixed Emotions: The Specificity of Emotion Perception From Static and Dynamic Facial Expressions Across Cultures,,2018 +3b7f6035a113b560760c5e8000540fc46f91fed5,Coupling Alignments with Recognition for Still-to-Video Face Recognition,2013 IEEE International Conference on Computer Vision,2013 +3bd1d41a656c8159305ba2aa395f68f41ab84f31,Entity-Based Opinion Mining from Text and Multimedia,,2015 +6f957df9a7d3fc4eeba53086d3d154fc61ae88df,Modélisation et suivi des déformations faciales : applications à la description des expressions du visage dans le contexte de la langue des signes,,2007 +6f5151c7446552fd6a611bf6263f14e729805ec7,Facial Action Unit Recognition using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classi ers,,2010 +03167776e17bde31b50f294403f97ee068515578,Chapter 11. Facial Expression Analysis,,2004 +030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2015 +03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20,A real time system for model-based interpretation of the dynamics of facial expressions,2008 8th IEEE International Conference on Automatic Face & Gesture Recognition,2008 +03f14159718cb495ca50786f278f8518c0d8c8c9,Performance evaluation of HOG and Gabor features for vision-based vehicle detection,"2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)",2015 +03ac1c694bc84a27621da6bfe73ea9f7210c6d45,Chapter 1 Introduction to information security foundations and applications,Unknown,2018 +03bd58a96f635059d4bf1a3c0755213a51478f12,Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization,IEEE Transactions on Image Processing,2015 +03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Unknown,2017 +9b474d6e81e3b94e0c7881210e249689139b3e04,VG-RAM Weightless Neural Networks for Face Recognition,,2009 +047d7cf4301cae3d318468fe03a1c4ce43b086ed,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"IEEE/ACM Transactions on Audio, Speech, and Language Processing",2015 +04317e63c08e7888cef480fe79f12d3c255c5b00,Face Recognition Using a Unified 3D Morphable Model,Unknown,2016 +0470b0ab569fac5bbe385fa5565036739d4c37f8,Automatic face naming with caption-based supervision,2008 IEEE Conference on Computer Vision and Pattern Recognition,2008 +6a657995b02bc9dee130701138ea45183c18f4ae,The Timing of Facial Motion in posed and Spontaneous Smiles,IJWMIP,2004 +324f39fb5673ec2296d90142cf9a909e595d82cf,Relationship Matrix Nonnegative Decomposition for Clustering,,2014 +32575ffa69d85bbc6aef5b21d73e809b37bf376d,Measuring Biometric Sample Quality in Terms of Biometric Information,2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference,2006 +35f084ddee49072fdb6e0e2e6344ce50c02457ef,A bilinear illumination model for robust face recognition,Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1,2005 +69c2ac04693d53251500557316c854a625af84ee,"50 years of biometric research: Accomplishments, challenges, and opportunities",Pattern Recognition Letters,2016 +3cb2841302af1fb9656f144abc79d4f3d0b27380,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,Unknown,2017 +3cc3cf57326eceb5f20a02aefae17108e8c8ab57,Benchmark for Evaluating Biological Image Analysis Tools,,2007 +3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,Measuring Gaze Orientation for Human-Robot Interaction,,2009 +3c8da376576938160cbed956ece838682fa50e9f,Aiding face recognition with social context association rule based re-ranking,IEEE International Joint Conference on Biometrics,2014 +512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Emotion,2010 +51a8dabe4dae157aeffa5e1790702d31368b9161,Face recognition under generic illumination based on harmonic relighting,IJPRAI,2005 +511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,A Community Detection Approach to Cleaning Extremely Large Face Database,,2018 +3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,Front. ICT,2016 +587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,,2015 +67c3c1194ee72c54bc011b5768e153a035068c43,Street Scenes: towards scene understanding in still images,,2006 +0b85b50b6ff03a7886c702ceabad9ab8c8748fdc,Is there a dynamic advantage for facial expressions?,Journal of vision,2011 +0be80da851a17dd33f1e6ffdd7d90a1dc7475b96,Weighted Feature Gaussian Kernel SVM for Emotion Recognition,,2016 +93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,Cognition & emotion,2016 +0e73d2b0f943cf8559da7f5002414ccc26bc77cd,Similarity Comparisons for Interactive Fine-Grained Categorization,2014 IEEE Conference on Computer Vision and Pattern Recognition,2014 +0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64,Estimating illumination parameters in real space with application to image relighting,,2005 +60040e4eae81ab6974ce12f1c789e0c05be00303,Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation,,2012 +60bffecd79193d05742e5ab8550a5f89accd8488,Proposal Classification using sparse representation and applications to skin lesion diagnosis,, +346dbc7484a1d930e7cc44276c29d134ad76dc3f,Artists portray human faces with the Fourier statistics of complex natural scenes.,Network,2007 +34d484b47af705e303fc6987413dc0180f5f04a9,RI:Medium: Unsupervised and Weakly-Supervised Discovery of Facial Events,,2010 +5fea26746f3140b12317fcf3bc1680f2746e172e,Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images,2017 IEEE International Conference on Computer Vision (ICCV),2017 +050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,Spatio-Temporal Scale Selection in Video Data,Journal of Mathematical Imaging and Vision,2017 +05e3acc8afabc86109d8da4594f3c059cf5d561f,Actor-Action Semantic Segmentation with Grouping Process Models,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016 +0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,Facial Expression Recognition,,2011 +9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6,Improved Pseudoinverse Linear Discriminant Analysis Method for Dimensionality Reduction,IJPRAI,2012 +9ce0d64125fbaf625c466d86221505ad2aced7b1,Recognizing expressions of children in real life scenarios View project PhD ( Doctor of Philosophy ) View project,Unknown,2017 +023ed32ac3ea6029f09b8c582efbe3866de7d00a,Discriminative learning from partially annotated examples,,2016 +a4c430b7d849a8f23713dc283794d8c1782198b2,Video Concept Embedding,,2016 +a3f684930c5c45fcb56a2b407d26b63879120cbf,LPM for Fast Action Recognition with Large Number of Classes,,2013 +a32d4195f7752a715469ad99cb1e6ebc1a099de6,The Potential of Using Brain Images for Authentication,,2014 +a308077e98a611a977e1e85b5a6073f1a9bae6f0,Intelligent Screening Systems for Cervical Cancer,,2014 +a35d3ba191137224576f312353e1e0267e6699a1,Increasing security in DRM systems through biometric authentication,,2001 +b55d0c9a022874fb78653a0004998a66f8242cad,Hybrid Facial Representations for Emotion Recognition Woo,,2013 +b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,J. Inf. Sci. Eng.,2010 +b216040f110d2549f61e3f5a7261cab128cab361,Weighted Voting of Discriminative Regions for Face Recognition,IEICE Transactions,2017 +ac1d97a465b7cc56204af5f2df0d54f819eef8a6,A Look at Eye Detection for Unconstrained Environments,,2010 +accbd6cd5dd649137a7c57ad6ef99232759f7544,Facial Expression Recognition with Local Binary Patterns and Linear Programming,Unknown,2004 +ac51d9ddbd462d023ec60818bac6cdae83b66992,An Efficient Robust Eye Localization by Learning the Convolution Distribution Using Eye Template,,2015 +acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,,2014 +ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea,From Gabor Magnitude to Gabor Phase Features: Tackling the Problem of Face Recognition under Severe Illumination Changes,,2009 +ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,,2012 +adf62dfa00748381ac21634ae97710bb80fc2922,ViFaI : A trained video face indexing scheme Harsh,Unknown,2011 +bb22104d2128e323051fb58a6fe1b3d24a9e9a46,Analyzing Facial Expression by Fusing Manifolds,,2007 +d73d2c9a6cef79052f9236e825058d5d9cdc1321,Cutting the visual world into bigger slices for improved video concept detection. (Amélioration de la détection des concepts dans les vidéos en coupant de plus grandes tranches du monde visuel),,2014 +d708ce7103a992634b1b4e87612815f03ba3ab24,FCVID: Fudan-Columbia Video Dataset,,2016 +d79f9ada35e4410cd255db39d7cc557017f8111a,Evaluation of accurate eye corner detection methods for gaze estimation,,2014 +d06c8e3c266fbae4026d122ec9bd6c911fcdf51d,Role for 2D image generated 3D face models in the rehabilitation of facial palsy,,2017 +d074b33afd95074d90360095b6ecd8bc4e5bb6a2,Human-Robot Collaboration: a Survey,I. J. Humanoid Robotics,2008 +be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Unknown,2017 +b37f57edab685dba5c23de00e4fa032a3a6e8841,Towards social interaction detection in egocentric photo-streams,,2015 +b32cf547a764a4efa475e9c99a72a5db36eeced6,Mimicry of ingroup and outgroup emotional expressions,Unknown,2018 +dff838ba0567ef0a6c8fbfff9837ea484314efc6,"Progress Report, MSc. Dissertation: On-line Random Forest for Face Detection",,2014 +a59cdc49185689f3f9efdf7ee261c78f9c180789,A New Approach for Learning Discriminative Dictionary for Pattern Classification,J. Inf. Sci. Eng.,2016 +a57ee5a8fb7618004dd1def8e14ef97aadaaeef5,Fringe Projection Techniques: Whither we are?,,2009 +bdbba95e5abc543981fb557f21e3e6551a563b45,Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks,CoRR,2018 +d68dbb71b34dfe98dee0680198a23d3b53056394,VIVA Face-off Challenge: Dataset Creation and Balancing Privacy,,2015 +bcf19b964e7d1134d00332cf1acf1ee6184aff00,Trajectory-Set Feature for Action Recognition,IEICE Transactions,2017 +ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,On evaluating face tracks in movies,2013 IEEE International Conference on Image Processing,2013 +ae2c71080b0e17dee4e5a019d87585f2987f0508,Emotional Face Recognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation,,2017 +ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf,That personal profile image might jeopardize your rental opportunity! On the relative impact of the seller's facial expressions upon buying behavior on Airbnb™,Computers in Human Behavior,2017 +aba770a7c45e82b2f9de6ea2a12738722566a149,Face Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels,IEEE Transactions on Information Forensics and Security,2016 +ab2b09b65fdc91a711e424524e666fc75aae7a51,Multi-modal Biomarkers to Discriminate Cognitive State *,Unknown,2015 +f412d9d7bc7534e7daafa43f8f5eab811e7e4148,Running Head : Anxiety and Emotional Faces in WS 2,Unknown,2014 +f43eeb578e0ca48abfd43397bbd15825f94302e4,Optical computer recognition of facial expressions associated with stress induced by performance demands.,"Aviation, space, and environmental medicine",2005 +f3cf10c84c4665a0b28734f5233d423a65ef1f23,Title Temporal Exemplar-based Bayesian Networks for facialexpression recognition,Unknown,2008 +c02847a04a99a5a6e784ab580907278ee3c12653,Fine Grained Video Classification for Endangered Bird Species Protection,,2017 +eee8a37a12506ff5df72c402ccc3d59216321346,Volume C,,2008 +eeb6d084f9906c53ec8da8c34583105ab5ab8284,Generation of Facial Expression Map using Supervised and Unsupervised Learning,,2012 +eed7920682789a9afd0de4efd726cd9a706940c8,Computers to Help with Conversations : Affective Framework to Enhance Human Nonverbal Skills,Unknown,2013 +fcbec158e6a4ace3d4311b26195482b8388f0ee9,Face Recognition from Still Images and Videos,,2004 +fdb33141005ca1b208a725796732ab10a9c37d75,A connectionist computational method for face recognition,Applied Mathematics and Computer Science,2016 +fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e,Recognizing Frustration of Drivers From Face Video Recordings and Brain Activation Measurements With Functional Near-Infrared Spectroscopy,,2018 +f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,,2011 +f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,Perceived Age Estimation from Face Images,Unknown,2018 +f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,CoRR,2018 +e379e73e11868abb1728c3acdc77e2c51673eb0d,Face Databases,,2005 +cf875336d5a196ce0981e2e2ae9602580f3f6243,"7 What 1 S It Mean for a Computer to ""have"" Emotions?",, +cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,Detection of emotions from video in non-controlled environment. (Détection des émotions à partir de vidéos dans un environnement non contrôlé),Unknown,2013 +e4df83b7424842ff5864c10fa55d38eae1c45fac,Locally Linear Discriminate Embedding for Face Recognition,,2010 +e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,Design of an Efficient Real-Time Algorithm Using Reduced Feature Dimension for Recognition of Speed Limit Signs,,2013 +fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,Unknown,2010 +feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,International Journal on Artificial Intelligence Tools,2013 +c87f7ee391d6000aef2eadb49f03fc237f4d1170,A real-time and unsupervised face Re-Identification system for Human-Robot Interaction,CoRR,2017 +c87d5036d3a374c66ec4f5870df47df7176ce8b9,Temporal Dynamics of Natural Static Emotional Facial Expressions Decoding: A Study Using Event- and Eye Fixation-Related Potentials,,2018 +c8e84cdff569dd09f8d31e9f9ba3218dee65e961,Dictionaries for image and video-based face recognition [Invited].,"Journal of the Optical Society of America. A, Optics, image science, and vision",2014 +edf98a925bb24e39a6e6094b0db839e780a77b08,Simplex Representation for Subspace Clustering,CoRR,2018 +c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,Unconstrained face identification with multi-scale block-based correlation,Unknown,2017 +c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.,Scientific reports,2016 +4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,,2014 +2004afb2276a169cdb1f33b2610c5218a1e47332,Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition,,2018 +20a16efb03c366fa4180659c2b2a0c5024c679da,Screening Rules for Overlapping Group Lasso,CoRR,2014 +208a2c50edb5271a050fa9f29d3870f891daa4dc,The resolution of facial expressions of emotion.,Journal of vision,2011 +27a0a7837f9114143717fc63294a6500565294c2,Face Recognition in Unconstrained Environments: A Comparative Study,,2015 +270733d986a1eb72efda847b4b55bc6ba9686df4,Recognizing Facial Expressions Using Model-Based Image Interpretation,Unknown,2008 +27169761aeab311a428a9dd964c7e34950a62a6b,Face Recognition Using 3D Head Scan Data Based on Procrustes Distance,2008 International Conference on Intelligent Engineering Systems,2008 +27a299b834a18e45d73e0bf784bbb5b304c197b3,Social Role Discovery in Human Events,2013 IEEE Conference on Computer Vision and Pattern Recognition,2013 +4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,,2014 +4b71d1ff7e589b94e0f97271c052699157e6dc4a,Pose-Encoded Spherical Harmonics for Face Recognition and Synthesis Using a Single Image,EURASIP J. Adv. Sig. Proc.,2008 +11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",Proceedings of the National Academy of Sciences of the United States of America,2015 +29ce6b54a87432dc8371f3761a9568eb3c5593b0,Age Sensitivity of Face Recognition Algorithms,2013 Fourth International Conference on Emerging Security Technologies,2013 +29c7dfbbba7a74e9aafb6a6919629b0a7f576530,Automatic Facial Expression Analysis and Emotional Classification,,2004 +2983efadb1f2980ab5ef20175f488f77b6f059d7,Emotion in Human–computer Interaction,,2011 +29f0414c5d566716a229ab4c5794eaf9304d78b6,Biometric Template Security,EURASIP J. Adv. Sig. Proc.,2008 +7c825562b3ff4683ed049a372cb6807abb09af2a,Finding Tiny Faces Supplementary Materials,Unknown,2017 +16c884be18016cc07aec0ef7e914622a1a9fb59d,Exploiting Multimodal Data for Image Understanding,,2010 +16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,J. Inf. Sci. Eng.,2017 +167736556bea7fd57cfabc692ec4ae40c445f144,Improved Motion Description for Action Classification,Front. ICT,2016 +42765c170c14bd58e7200b09b2e1e17911eed42b,Feature Extraction Based on Wavelet Moments and Moment Invariants in Machine Vision Systems,,2012 +42dc36550912bc40f7faa195c60ff6ffc04e7cd6,Visible and Infrared Face Identification via Sparse Representation,,2013 +4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,Face Recognition From Video,,2008 +89c84628b6f63554eec13830851a5d03d740261a,Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery,,2010 +893239f17dc2d17183410d8a98b0440d98fa2679,UvA-DARE ( Digital Academic Repository ) Expression-Invariant Age Estimation,Unknown,2017 +4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,Laterality,2006 +1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,,2015 +1fe990ca6df273de10583860933d106298655ec8,A Wavelet-Based Image Preprocessing Method or Illumination Insensitive Face Recognition,J. Inf. Sci. Eng.,2015 +7373c4a23684e2613f441f2236ed02e3f9942dd4,Feature extraction through Binary Pattern of Phase Congruency for facial expression recognition,2012 12th International Conference on Control Automation Robotics & Vision (ICARCV),2012 +74de03923a069ffc0fb79e492ee447299401001f,On Film Character Retrieval in Feature-Length Films,,2005 +744fa8062d0ae1a11b79592f0cd3fef133807a03,Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.,IEEE transactions on cybernetics,2017 +1a41e5d93f1ef5b23b95b7163f5f9aedbe661394,Alignment-Free and High-Frequency Compensation in Face Hallucination,,2014 +1afd481036d57320bf52d784a22dcb07b1ca95e2,Automated Content Metadata Extraction Services Based on MPEG Standards,Comput. J.,2013 +1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6,Deep Learning for Video Classification and Captioning,CoRR,2016 +28b26597a7237f9ea6a9255cde4e17ee18122904,Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus,,2015 +28c9198d30447ffe9c96176805c1cd81615d98c8,No evidence that a range of artificial monitoring cues influence online donations to charity in an MTurk sample,,2016 +17a85799c59c13f07d4b4d7cf9d7c7986475d01c,Extending Procrustes Analysis: Building Multi-view 2-D Models from 3-D Human Shape Samples,,2015 +176bd61cc843d0ed6aa5af83c22e3feb13b89fe1,Investigating Spontaneous Facial Action Recognition through AAM Representations of the Face,,2007 +8f6d05b8f9860c33c7b1a5d704694ed628db66c7,Non-linear dimensionality reduction and sparse representation models for facial analysis. (Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l'analyse du visage),Unknown,2014 +8f08b2101d43b1c0829678d6a824f0f045d57da5,Supplementary Material for: Active Pictorial Structures,,2015 +8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,What do you think of my picture? Investigating factors of influence in profile images context perception,,2015 +7ed2c84fdfc7d658968221d78e745dfd1def6332,Evaluation of linear combination of views for object recognition on real and synthetic datasets,,2007 +7ef0cc4f3f7566f96f168123bac1e07053a939b2,Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarité triangulaire en utilisant des réseaux siamois),Unknown,2016 +7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,,2017 +7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922,Skiing and Thinking About It: Moment-to-Moment and Retrospective Analysis of Emotions in an Extreme Sport,,2018 +7ef44b7c2b5533d00001ae81f9293bdb592f1146,Détection des émotions à partir de vidéos dans un environnement non contrôlé Detection of emotions from video in non-controlled environment,Unknown,2003 +10ce3a4724557d47df8f768670bfdd5cd5738f95,Fisher Light-Fields for Face Recognition across Pose and Illumination,,2002 +190d8bd39c50b37b27b17ac1213e6dde105b21b8,Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation,IEEE Transactions on Knowledge and Data Engineering,2011 +19da9f3532c2e525bf92668198b8afec14f9efea,Challenge: Face verification across age progression using real-world data,,2011 +26c884829897b3035702800937d4d15fef7010e4,Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation,IEICE Transactions,2008 +21a2f67b21905ff6e0afa762937427e92dc5aa0b,Extra Facial Landmark Localization via Global Shape Reconstruction,,2017 +7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,Unknown,2017 +816eff5e92a6326a8ab50c4c50450a6d02047b5e,fLRR: Fast Low-Rank Representation Using Frobenius Norm,,2014 +86c5478f21c4a9f9de71b5ffa90f2a483ba5c497,"Kernel Selection using Multiple Kernel Learning and Domain Adaptation in Reproducing Kernel Hilbert Space, for Face Recognition under Surveillance Scenario",CoRR,2016 +72a87f509817b3369f2accd7024b2e4b30a1f588,Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints,Pattern Analysis and Applications,2011 +2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments,PACMHCI,2017 +88e2574af83db7281c2064e5194c7d5dfa649846,A Robust Shape Reconstruction Method for Facial Feature Point Detection,,2017 +9f6d04ce617d24c8001a9a31f11a594bd6fe3510,Attentional bias towards angry faces in trait-reappraisal,,2011 +9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,Active Tracking and Cloning of Facial Expressions Using Spatio-Temporal Information,Unknown,2002 +6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6,Feature Extraction through Cross-Phase Congruency for Facial Expression Analysis,IJPRAI,2009 +6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,,2017 +3896c62af5b65d7ba9e52f87505841341bb3e8df,Face Recognition from Still Images and Video,,2011 +009cd18ff06ff91c8c9a08a91d2516b264eee48e,Face and Automatic Target Recognition Based on Super-Resolved Discriminant Subspace,,2012 +6ed738ff03fd9042965abdfaa3ed8322de15c116,K-MEAP: Generating Specified K Clusters with Multiple Exemplars by Efficient Affinity Propagation,2014 IEEE International Conference on Data Mining,2014 +6ee64c19efa89f955011531cde03822c2d1787b8,Table S1: Review of Existing Facial Expression Databases That Are Often Used in Social Psycholgy,, +6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,,2004 +6e93fd7400585f5df57b5343699cb7cda20cfcc2,Comparing a novel model based on the transferable belief model with humans during the recognition of partially occluded facial expressions.,Journal of vision,2009 +9ac82909d76b4c902e5dde5838130de6ce838c16,Recognizing Facial Expressions Automatically from Video,,2010 +9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,EURASIP J. Image and Video Processing,2015 +36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,Tracking von Gesichtsmimik mit Hilfe von Gitterstrukturen zur Klassifikation von schmerzrelevanten Action Units,,2010 +3674f3597bbca3ce05e4423611d871d09882043b,Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions,Journal of Multimedia,2012 +361d6345919c2edc5c3ce49bb4915ed2b4ee49be,Models for supervised learning in sequence data,Unknown,2018 +5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,Robust Face Detection by Simple Means,,2012 +5d09d5257139b563bd3149cfd5e6f9eae3c34776,Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization,,2014 +3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,Exploring Stereotypes and Biased Data with the Crowd,CoRR,2018 +65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,,2017 +628a3f027b7646f398c68a680add48c7969ab1d9,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,Unknown,2017 +6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Front. Robotics and AI,2015 +968b983fa9967ff82e0798a5967920188a3590a8,Children's recognition of disgust in others.,Psychological bulletin,2013 +966e36f15b05ef8436afecf57a97b73d6dcada94,Dimensionality Reduction using Relative Attributes,,2014 +3acb6b3e3f09f528c88d5dd765fee6131de931ea,Novel representation for driver emotion recognition in motor vehicle videos,2017 IEEE International Conference on Image Processing (ICIP),2017 +5495e224ac7b45b9edc5cfeabbb754d8a40a879b,Feature Reconstruction Disentangling for Pose-invariant Face Recognition Supplementary Material,,2017 +54756f824befa3f0c2af404db0122f5b5bbf16e0,Computer Vision — Visual Recognition,,2009 +9820920d4544173e97228cb4ab8b71ecf4548475,Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets,,2015 +307a810d1bf6f747b1bd697a8a642afbd649613d,An affordable contactless security system access for restricted area,,2016 +3083d2c6d4f456e01cbb72930dc2207af98a6244,Perceived Age Estimation from Face Images,,2011 +5e0e516226413ea1e973f1a24e2fdedde98e7ec0,The Invariance Hypothesis and the Ventral Stream,,2013 +5bc0a89f4f73523967050374ed34d7bc89e4d9e1,The role of emotion transition for the perception of social dominance and affiliation.,Cognition & emotion,2016 +081189493ca339ca49b1913a12122af8bb431984,Supplemental Material for Photorealistic Facial Texture Inference Using Deep Neural Networks,,2017 +081286ede247c5789081502a700b378b6223f94b,Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions,,2018 +01cc8a712e67384f9ef9f30580b7415bfd71e980,Failing to ignore: paradoxical neural effects of perceptual load on early attentional selection in normal aging.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2010 +06f8aa1f436a33014e9883153b93581eea8c5c70,Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video,,2016 +066d71fcd997033dce4ca58df924397dfe0b5fd1,Iranian Face Database and Evaluation with a New Detection Algorithm,,2007 +6cfc337069868568148f65732c52cbcef963f79d,Audio-Visual Speaker Localization via Weighted Clustering Israel -,Unknown,2018 +992ebd81eb448d1eef846bfc416fc929beb7d28b,Exemplar-Based Face Parsing Supplementary Material,,2013 +978a219e07daa046244821b341631c41f91daccd,Emotional Intelligence: Giving Computers Effective Emotional Skills to Aid Interaction,,2008 +0f829fee12e86f980a581480a9e0cefccb59e2c5,Bird Part Localization Using Exemplar-Based Models with Enforced Pose and Subcategory Consistency,2013 IEEE International Conference on Computer Vision,2013 +0f395a49ff6cbc7e796656040dbf446a40e300aa,The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect,,2015 +0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,Evaluation of optimization components of a 3D to 2D landmark fitting algorithm for head pose estimation,Unknown,2018 +0a4fc9016aacae9cdf40663a75045b71e64a70c9,Illumination Normalization Based on Homomorphic Wavelet Filtering for Face Recognition,J. Inf. Sci. Eng.,2013 +0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,CoRR,2018 +0ac664519b2b8abfb8966dafe60d093037275573,Facial action unit detection using kernel partial least squares,2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops),2011 +0acf23485ded5cb9cd249d1e4972119239227ddb,Dual coordinate solvers for large-scale structural SVMs,CoRR,2013 +641f0989b87bf7db67a64900dcc9568767b7b50f,Reconstructing faces from their signatures using RBF regression,Unknown,2013 +64782a2bc5da11b1b18ca20cecf7bdc26a538d68,Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis,J. Inf. Sci. Eng.,2013 +90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,Front. Robotics and AI,2015 +bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,EURASIP J. Adv. Sig. Proc.,2004 +bffbd04ee5c837cd919b946fecf01897b2d2d432,Facial Feature Tracking and Occlusion Recovery in American Sign Language,,2006 +d3e04963ff42284c721f2bc6a90b7a9e20f0242f,On Forensic Use of Biometrics,,2014 +d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,ACM Trans. Graph.,2018 +d41c11ebcb06c82b7055e2964914b9af417abfb2,CDI-Type I: Unsupervised and Weakly-Supervised Discovery of Facial Events,,2011 +d4001826cc6171c821281e2771af3a36dd01ffc0,Modélisation de contextes pour l'annotation sémantique de vidéos. (Context based modeling for video semantic annotation),,2013 +ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,Uporaba emotivno pogojenega računalništva v priporočilnih sistemih,,2011 +a022eff5470c3446aca683eae9c18319fd2406d5,Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description sémantique des traits visuels humains),Unknown,2017 +a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4,A New Classification Approach using Discriminant Functions,J. Inf. Sci. Eng.,2005 +a0e7f8771c7d83e502d52c276748a33bae3d5f81,Ensemble Nyström,,2012 +a0061dae94d916f60a5a5373088f665a1b54f673,Lensless computational imaging through deep learning,CoRR,2017 +a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,"Study on Human Face Recognition under Invariant Pose, Illumination and Expression using LBP, LoG and SVM",Unknown,2017 +b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,,2017 +b1df214e0f1c5065f53054195cd15012e660490a,Supplementary Material to Sparse Coding and Dictionary Learning with Linear Dynamical Systems,,2016 +b64cfb39840969b1c769e336a05a30e7f9efcd61,CRF-Based Context Modeling for Person Identification in Broadcast Videos,Front. ICT,2016 +b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Emotion,2009 +aa94f214bb3e14842e4056fdef834a51aecef39c,Reconhecimento de padrões faciais: Um estudo,,2015 +afa57e50570a6599508ee2d50a7b8ca6be04834a,Motion in action : optical flow estimation and action localization in videos. (Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos),Unknown,2016 +b7426836ca364603ccab0e533891d8ac54cf2429,A Review on Human Activity Recognition Using Vision-Based Method,,2017 +b7774c096dc18bb0be2acef07ff5887a22c2a848,Distance metric learning for image and webpage comparison. (Apprentissage de distance pour la comparaison d'images et de pages Web),Unknown,2015 +a8638a07465fe388ae5da0e8a68e62a4ee322d68,How to predict the global instantaneous feeling induced by a facial picture?,,2017 +dec0c26855da90876c405e9fd42830c3051c2f5f,Supplementary Material: Learning Compositional Visual Concepts with Mutual Consistency,Unknown,2018 +b018fa5cb9793e260b8844ae155bd06380988584,Project STAR IST - 2000 - 28764 Deliverable D 6 . 3 Enhanced face and arm / hand detector,, +a6b1d79bc334c74cde199e26a7ef4c189e9acd46,Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.,Human brain mapping,2018 +b93bf0a7e449cfd0db91a83284d9eba25a6094d8,Supplementary Material for : Active Pictorial Structures,Unknown,2015 +b9c9c7ef82f31614c4b9226e92ab45de4394c5f6,Face Recognition under Varying Illumination,, +a15c728d008801f5ffc7898568097bbeac8270a4,ForgetIT Deliverable Template,,2016 +a1132e2638a8abd08bdf7fc4884804dd6654fa63,Real-Time Video Face Recognition for Embedded Devices,Unknown,2012 +ef940b76e40e18f329c43a3f545dc41080f68748,A Face Recognition and Spoofing Detection Adapted to Visually- Impaired People,Unknown,2017 +c317181fa1de2260e956f05cd655642607520a4f,Objective Classes for Micro-Facial Expression Recognition,CoRR,2017 +c32c8bfadda8f44d40c6cd9058a4016ab1c27499,Unconstrained Face Recognition From a Single Image,,2008 +c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,Towards Unconstrained Face Recognition Using 3D Face Model,,2012 +eafda8a94e410f1ad53b3e193ec124e80d57d095,Observer-Based Measurement of Facial Expression With the Facial Action Coding System,Unknown,2006 +ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,,2014 +cd596a2682d74bdfa7b7160dd070b598975e89d9,Mood Detection: Implementing a facial expression recognition system,,2009 +ccdea57234d38c7831f1e9231efcb6352c801c55,Illumination Processing in Face Recognition,IJPRAI,2014 +f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.,NeuroImage,2006 +f93606d362fcbe62550d0bf1b3edeb7be684b000,Nearest Neighbor Classifier Based on Nearest Feature Decisions,Comput. J.,2012 +f0f501e1e8726148d18e70c8e9f6feea9360d119,Jukka Komulainen SOFTWARE - BASED COUNTERMEASURES TO 2 D FACIAL,,2015 +f78fe101b21be36e98cd3da010051bb9b9829a1e,Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks,,2018 +f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,Title On color texture normalization for active appearance models,Unknown,2017 +e8fdacbd708feb60fd6e7843b048bf3c4387c6db,Deep Learning,Unknown,2014 +e8c6c3fc9b52dffb15fe115702c6f159d955d308,Linear Subspace Learning for Facial Expression Analysis,Unknown,2012 +fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,Draft: Evaluation Guidelines for Gender Classification and Age Estimation,,2011 +faeefc5da67421ecd71d400f1505cfacb990119c,PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips,Front. Robotics and AI,2017 +fa08a4da5f2fa39632d90ce3a2e1688d147ece61,Supplementary material for “ Unsupervised Creation of Parameterized Avatars ” 1 Summary of Notations,, +fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Unknown,2005 +ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,,2016 +f66f3d1e6e33cb9e9b3315d3374cd5f121144213,Top-down control of visual responses to fear by the amygdala.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2013 +f68f20868a6c46c2150ca70f412dc4b53e6a03c2,Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition,CIT,2015 +e726174d516605f80ff359e71f68b6e8e6ec6d5d,3D Face Recognition Using Patched Locality Preserving Projections,J. Inf. Sci. Eng.,2010 +e78394213ae07b682ce40dc600352f674aa4cb05,Expression-invariant three-dimensional face recognition,,2005 +f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,"KDEF-PT: Valence, Emotional Intensity, Familiarity and Attractiveness Ratings of Angry, Neutral, and Happy Faces",,2017 +cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2010 +e03bda45248b4169e2a20cb9124ae60440cad2de,"Learning a Dictionary of Shape-Components in Visual Cortex : Comparison with Neurons , Humans and Machines by Thomas Serre",Unknown,2006 +e0dedb6fc4d370f4399bf7d67e234dc44deb4333,Supplementary Material: Multi-Task Video Captioning with Video and Entailment Generation,,2017 +e00d391d7943561f5c7b772ab68e2bb6a85e64c4,Robust continuous clustering.,Proceedings of the National Academy of Sciences of the United States of America,2017 +e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,Journal of experimental psychology. General,2017 +2cc4ae2e864321cdab13c90144d4810464b24275,Face Recognition Using Optimized 3D Information from Stereo Images,,2005 +2c883977e4292806739041cf8409b2f6df171aee,Are Haar-Like Rectangular Features for Biometric Recognition Reducible?,,2013 +2cdd9e445e7259117b995516025fcfc02fa7eebb,Temporal Exemplar-Based Bayesian Networks for Facial Expression Recognition,2008 Seventh International Conference on Machine Learning and Applications,2008 +2cac70f9c8140a12b6a55cef834a3d7504200b62,Reconstructing High Quality Face-Surfaces using Model Based Stereo,2007 IEEE 11th International Conference on Computer Vision,2007 +2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,,2015 +2dfe0e7e81f65716b09c590652a4dd8452c10294,Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli,,2018 +2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,Machine Analysis of Facial Expressions,,2007 +83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm.,"American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics",2015 +831226405bb255527e9127b84e8eaedd7eb8e9f9,A Motion-Based Feature for Event-Based Pattern Recognition,,2016 +1b02b9413b730b96b91d16dcd61b2420aef97414,Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction avec un robot. (Audio-visual detection of emotional (laugh and smile) and attentional markers for elderly people in social interaction with a robot),Unknown,2015 +1b6394178dbc31d0867f0b44686d224a19d61cf4,EPML: Expanded Parts Based Metric Learning for Occlusion Robust Face Verification,,2014 +1bbec7190ac3ba34ca91d28f145e356a11418b67,Explorer Action Recognition with Dynamic Image Networks,Unknown,2017 +77d31d2ec25df44781d999d6ff980183093fb3de,The Multiverse Loss for Robust Transfer Learning,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016 +48a5b6ee60475b18411a910c6084b3a32147b8cd,Pedestrian Attribute Recognition with Part-based CNN and Combined Feature Representations,Unknown,2018 +48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,Non Binary Local Gradient Contours for Face Recognition,CoRR,2014 +1ecb56e7c06a380b3ce582af3a629f6ef0104457,"A New Way of Discovery of Belief, Desire and Intention in the BDI Agent-Based Software Modeling",JACIII,2004 +1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,9 Entropy Regularization,, +23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,Determining Mood from Facial Expressions,,2014 +23120f9b39e59bbac4438bf4a8a7889431ae8adb,Improved RGB-D-T based face recognition,IET Biometrics,2016 +23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,Deep Density Clustering of Unconstrained Faces (Supplementary Material),Unknown,2018 +8de2dbe2b03be8a99628ffa000ac78f8b66a1028,Action Recognition in Videos,,2008 +8d3fbdb9783716c1832a0b7ab1da6390c2869c14,Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition,,2008 +8d6c4af9d4c01ff47fe0be48155174158a9a5e08,"Labeling, discovering, and detecting objects in images",,2008 +8dffbb6d75877d7d9b4dcde7665888b5675deee1,Emotion Recognition with Deep-Belief Networks,,2010 +15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,Semi-Supervised Classification Using Linear Neighborhood Propagation,2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06),2006 +1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,Unknown,2017 +124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",,2013 +8c6b9c9c26ead75ce549a57c4fd0a12b46142848,Facial expression recognition using shape and texture information,,2006 +1dff919e51c262c22630955972968f38ba385d8a,Toward an Affect-Sensitive Multimodal Human–Computer Interaction,,2001 +1dacc2f4890431d867a038fd81c111d639cf4d7e,Using social outcomes to inform decision-making in schizophrenia: Relationships with symptoms and functioning.,Journal of abnormal psychology,2016 +1d729693a888a460ee855040f62bdde39ae273af,Photorealistic Face De-Identification by Aggregating Donors' Face Components,Unknown,2014 +71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,Image Vision Comput.,2016 +76ce3d35d9370f0e2e27cfd29ea0941f1462895f,Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU,,2014 +760ba44792a383acd9ca8bef45765d11c55b48d4,Class-specific classifier: avoiding the curse of dimensionality,IEEE Aerospace and Electronic Systems Magazine,2004 +1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,Deep fusion of visual signatures for client-server facial analysis,,2016 +1c4ceae745fe812d8251fda7aad03210448ae25e,Optimization of Color Conversion for Face Recognition,EURASIP J. Adv. Sig. Proc.,2004 +1cee993dc42626caf5dbc26c0a7790ca6571d01a,Optimal illumination for image and video relighting,,2005 +82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,Robust Facial Expression Recognition Using a State-based Model of Spatially-localized Facial,, +40389b941a6901c190fb74e95dc170166fd7639d,Automatic Facial Expression Recognition,,2014 +2eb37a3f362cffdcf5882a94a20a1212dfed25d9,Local Feature Based Face Recognition,,2012 +2b4d092d70efc13790d0c737c916b89952d4d8c7,Robust Facial Expression Recognition using Local Haar Mean Binary Pattern,,2017 +2b773fe8f0246536c9c40671dfa307e98bf365ad,Fast Discriminative Stochastic Neighbor Embedding Analysis,,2013 +783f3fccde99931bb900dce91357a6268afecc52,Adapted Active Appearance Models,EURASIP J. Image and Video Processing,2009 +8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,Multimodal Interaction on a Social Robotic Platform,,2013 +132527383890565d18f1b7ad50d76dfad2f14972,Facial Expression Classification Using PCA and Hierarchical Radial Basis Function Network,J. Inf. Sci. Eng.,2006 +1394ca71fc52db972366602a6643dc3e65ee8726,EmoReact: a multimodal approach and dataset for recognizing emotional responses in children,,2016 +7f21a7441c6ded38008c1fd0b91bdd54425d3f80,Real Time System for Facial Analysis,CoRR,2018 +7fc76446d2b11fc0479df6e285723ceb4244d4ef,Laplacian MinMax Discriminant Projection and its Applications,Journal of Research and Practice in Information Technology,2010 +146bbf00298ee1caecde3d74e59a2b8773d2c0fc,University of Groningen 4 D Unconstrained Real - time Face Recognition Using a Commodity Depthh Camera,,2017 +14e759cb019aaf812d6ac049fde54f40c4ed1468,Subspace Methods,,2014 +14418ae9a6a8de2b428acb2c00064da129632f3e,Discovering the Spatial Extent of Relative Attributes,2015 IEEE International Conference on Computer Vision (ICCV),2015 +8e33183a0ed7141aa4fa9d87ef3be334727c76c0,Robustness of Face Recognition to Image Manipulations,,2018 +25e2d3122d4926edaab56a576925ae7a88d68a77,Communicative-Pragmatic Treatment in Schizophrenia: A Pilot Study,,2016 diff --git a/scraper/reports/stats/unknown_papers.csv b/scraper/reports/stats/unknown_papers.csv new file mode 100644 index 00000000..92a64dac --- /dev/null +++ b/scraper/reports/stats/unknown_papers.csv @@ -0,0 +1,17632 @@ +610a4451423ad7f82916c736cd8adb86a5a64c59,A Survey on Search Based Face Annotation Using Weakly Labelled Facial Images,"Volume 4, Issue 11, November 2014 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +A Survey on Search Based Face Annotation Using Weakly +Labelled Facial Images +Shital A. Shinde*, Prof. Archana Chaugule +Department of Computer Engg, DYPIET Pimpri, +Savitri Bai Phule Pune University, Maharashtra India" +6180bc0816b1776ca4b32ced8ea45c3c9ce56b47,Fast Randomized Algorithms for Convex Optimization and Statistical Estimation,"Fast Randomized Algorithms for Convex Optimization and +Statistical Estimation +Mert Pilanci +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-147 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-147.html +August 14, 2016" +61f04606528ecf4a42b49e8ac2add2e9f92c0def,Deep Deformation Network for Object Landmark Localization,"Deep Deformation Network for Object Landmark +Localization +Xiang Yu, Feng Zhou and Manmohan Chandraker +NEC Laboratories America, Department of Media Analytics" +614a7c42aae8946c7ad4c36b53290860f6256441,Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,"Joint Face Detection and Alignment using +Multi-task Cascaded Convolutional Networks +Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Senior Member, IEEE, and Yu Qiao, Senior Member, IEEE" +0d88ab0250748410a1bc990b67ab2efb370ade5d,Error handling in multimodal biometric systems using reliability measures,"Author(s) : +ERROR HANDLING IN MULTIMODAL BIOMETRIC SYSTEMS USING +RELIABILITY MEASURES (ThuPmOR6) +(EPFL, Switzerland) +(EPFL, Switzerland) +(EPFL, Switzerland) +(EPFL, Switzerland) +Krzysztof Kryszczuk +Jonas Richiardi +Plamen Prodanov +Andrzej Drygajlo" +0d538084f664b4b7c0e11899d08da31aead87c32,Deformable Part Descriptors for Fine-Grained Recognition and Attribute Prediction,"Deformable Part Descriptors for +Fine-grained Recognition and Attribute Prediction +Ning Zhang1 +Ryan Farrell1,2 +Forrest Iandola1 +ICSI / UC Berkeley 2Brigham Young University +Trevor Darrell1" +0dccc881cb9b474186a01fd60eb3a3e061fa6546,Effective face frontalization in unconstrained images,"Effective Face Frontalization in Unconstrained Images +Tal Hassner1, Shai Harel1 †, Eran Paz1 † and Roee Enbar2 +The open University of Israel. 2Adience. +Figure 1: Frontalized faces. Top: Input photos; bottom: our frontalizations, +obtained without estimating 3D facial shapes. +“Frontalization” is the process of synthesizing frontal facing views of faces +ppearing in single unconstrained photos. Recent reports have suggested +that this process may substantially boost the performance of face recogni- +tion systems. This, by transforming the challenging problem of recognizing +faces viewed from unconstrained viewpoints to the easier problem of rec- +ognizing faces in constrained, forward facing poses. Previous frontalization +methods did this by attempting to approximate 3D facial shapes for each +query image. We observe that 3D face shape estimation from unconstrained +photos may be a harder problem than frontalization and can potentially in- +troduce facial misalignments. Instead, we explore the simpler approach of +using a single, unmodified, 3D surface as an approximation to the shape of +ll input faces. We show that this leads to a straightforward, efficient and +easy to implement method for frontalization. More importantly, it produces +esthetic new frontal views and is surprisingly effective when used for face +recognition and gender estimation." +0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306,Review of Perceptual Resemblance of Local Plastic Surgery Facial Images using Near Sets,"Review of Perceptual Resemblance of Local +Plastic Surgery Facial Images using Near Sets +Prachi V. Wagde1, Roshni Khedgaonkar2 +,2 Department of Computer Technology, +YCCE Nagpur, India" +0d3882b22da23497e5de8b7750b71f3a4b0aac6b,Context is routinely encoded during emotion perception.,"Research Article +Context Is Routinely Encoded +During Emotion Perception +1(4) 595 –599 +© The Author(s) 2010 +Reprints and permission: +sagepub.com/journalsPermissions.nav +DOI: 10.1177/0956797610363547 +http://pss.sagepub.com +Lisa Feldman Barrett1,2,3 and Elizabeth A. Kensinger1,3 +Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos +Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School" +0d760e7d762fa449737ad51431f3ff938d6803fe,LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems,"LCDet: Low-Complexity Fully-Convolutional Neural Networks for +Object Detection in Embedded Systems +Subarna Tripathi +UC San Diego ∗ +Gokce Dane +Qualcomm Inc. +Byeongkeun Kang +UC San Diego +Vasudev Bhaskaran +Qualcomm Inc. +Truong Nguyen +UC San Diego" +0dd72887465046b0f8fc655793c6eaaac9c03a3d,Real-Time Head Orientation from a Monocular Camera Using Deep Neural Network,"Real-time Head Orientation from a Monocular +Camera using Deep Neural Network +Byungtae Ahn, Jaesik Park, and In So Kweon +KAIST, Republic of Korea" +0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a,Detection and Tracking of Faces in Videos: A Review of Related Work,"Detection and Tracking of Faces in Videos: A Review +© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939 +of Related Work +Seema Saini, 2 Parminder Sandal +Student, 2Assistant Professor +, 2Dept. of Electronics & Comm., S S I E T, Punjab, India +________________________________________________________________________________________________________" +0da4c3d898ca2fff9e549d18f513f4898e960aca,The Headscarf Effect Revisited: Further Evidence for a Culture-Based Internal Face Processing Advantage.,"Wang, Y., Thomas, J., Weissgerber, S. C., Kazemini, S., Ul-Haq, I., & +Quadflieg, S. (2015). The Headscarf Effect Revisited: Further Evidence for a +36. 10.1068/p7940 +Peer reviewed version +Link to published version (if available): +0.1068/p7940 +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms.html +Take down policy +Explore Bristol Research is a digital archive and the intention is that deposited content should not be +removed. However, if you believe that this version of the work breaches copyright law please contact +nd include the following information in your message: +• Your contact details +• Bibliographic details for the item, including a URL +• An outline of the nature of the complaint" +956317de62bd3024d4ea5a62effe8d6623a64e53,Lighting Analysis and Texture Modification of 3D Human Face Scans,"Lighting Analysis and Texture Modification of 3D Human +Face Scans +Author +Zhang, Paul, Zhao, Sanqiang, Gao, Yongsheng +Published +Conference Title +Digital Image Computing Techniques and Applications +https://doi.org/10.1109/DICTA.2007.4426825 +Copyright Statement +© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/ +republish this material for advertising or promotional purposes or for creating new collective +works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +this work in other works must be obtained from the IEEE. +Downloaded from +http://hdl.handle.net/10072/17889 +Link to published version +http://www.ieee.org/ +Griffith Research Online +https://research-repository.griffith.edu.au" +959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c,Temporal Coherency based Criteria for Predicting Video Frames using Deep Multi-stage Generative Adversarial Networks,"Temporal Coherency based Criteria for Predicting +Video Frames using Deep Multi-stage Generative +Adversarial Networks +Prateep Bhattacharjee1, Sukhendu Das2 +Visualization and Perception Laboratory +Department of Computer Science and Engineering +Indian Institute of Technology Madras, Chennai, India" +951f21a5671a4cd14b1ef1728dfe305bda72366f,Use of l2/3-norm Sparse Representation for Facial Expression Recognition,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Impact Factor (2012): 3.358 +Use of ℓ2/3-norm Sparse Representation for Facial +Expression Recognition +Sandeep Rangari1, Sandeep Gonnade2 +MATS University, MATS School of Engineering and Technology, Arang, Raipur, India +MATS University, MATS School of Engineering and Technology, Arang, Raipur, India +three +to discriminate +represents emotion," +9547a7bce2b85ef159b2d7c1b73dea82827a449f,Facial expression recognition using Gabor motion energy filters,"Facial Expression Recognition Using Gabor Motion Energy Filters +Tingfan Wu +Dept. Computer Science Engineering +UC San Diego +Marian S. Bartlett +Javier R. Movellan +Institute for Neural Computation +UC San Diego" +9513503867b29b10223f17c86e47034371b6eb4f,Comparison of Optimisation Algorithms for Deformable Template Matching,"Comparison of optimisation algorithms for +deformable template matching +Vasileios Zografos +Link¨oping University, Computer Vision Laboratory +ISY, SE-581 83 Link¨oping, SWEDEN" +956c634343e49319a5e3cba4f2bd2360bdcbc075,A novel incremental principal component analysis and its application for face recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +A Novel Incremental Principal Component Analysis +nd Its Application for Face Recognition +Haitao Zhao, Pong Chi Yuen, Member, IEEE, and James T. Kwok, Member, IEEE" +95ea564bd983129ddb5535a6741e72bb1162c779,Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection,"Multi-Task Learning by Deep Collaboration and +Application in Facial Landmark Detection +Ludovic Trottier +Philippe Giguère +Brahim Chaib-draa +Laval University, Québec, Canada" +958c599a6f01678513849637bec5dc5dba592394,Generalized Zero-Shot Learning for Action Recognition with Web-Scale Video Data,"Noname manuscript No. +(will be inserted by the editor) +Generalized Zero-Shot Learning for Action +Recognition with Web-Scale Video Data +Kun Liu · Wu Liu · Huadong Ma · +Wenbing Huang · Xiongxiong Dong +Received: date / Accepted: date" +59fc69b3bc4759eef1347161e1248e886702f8f7,Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Final Report of Final Year Project +HKU-Face: A Large Scale Dataset for +Deep Face Recognition +Haoyu Li +035141841 +COMP4801 Final Year Project +Project Code: 17007" +59bfeac0635d3f1f4891106ae0262b81841b06e4,Face Verification Using the LARK Face Representation,"Face Verification Using the LARK Face +Representation +Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE," +59efb1ac77c59abc8613830787d767100387c680,DIF : Dataset of Intoxicated Faces for Drunk Person Identification,"DIF : Dataset of Intoxicated Faces for Drunk Person +Identification +Devendra Pratap Yadav +Indian Institute of Technology Ropar +Abhinav Dhall +Indian Institute of Technology Ropar" +59eefa01c067a33a0b9bad31c882e2710748ea24,Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +Fast Landmark Localization +with 3D Component Reconstruction and CNN for +Cross-Pose Recognition +Gee-Sern (Jison) Hsu, Hung-Cheng Shie, Cheng-Hua Hsieh" +59d225486161b43b7bf6919b4a4b4113eb50f039,Complex Event Recognition from Images with Few Training Examples,"Complex Event Recognition from Images with Few Training Examples +Unaiza Ahsan∗ +Chen Sun∗∗ +James Hays∗ +Irfan Essa∗ +*Georgia Institute of Technology +**University of Southern California1" +5945464d47549e8dcaec37ad41471aa70001907f,Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos,"Noname manuscript No. +(will be inserted by the editor) +Every Moment Counts: Dense Detailed Labeling of Actions in Complex +Videos +Serena Yeung · Olga Russakovsky · Ning Jin · Mykhaylo Andriluka · Greg Mori · +Li Fei-Fei +Received: date / Accepted: date" +59c9d416f7b3d33141cc94567925a447d0662d80,Matrix factorization over max-times algebra for data mining,"Universität des Saarlandes +Max-Planck-Institut für Informatik +Matrix factorization over max-times +lgebra for data mining +Masterarbeit im Fach Informatik +Master’s Thesis in Computer Science +von / by +Sanjar Karaev +ngefertigt unter der Leitung von / supervised by +Dr. Pauli Miettinen +egutachtet von / reviewers +Dr. Pauli Miettinen +Prof. Gerhard Weikum +November 2013 +UNIVERSITASSARAVIENSIS" +59a35b63cf845ebf0ba31c290423e24eb822d245,The FaceSketchID System: Matching Facial Composites to Mugshots,"The FaceSketchID System: Matching Facial +Composites to Mugshots +Scott J. Klum, Student Member, IEEE, Hu Han, Member, IEEE, Brendan F. Klare, Member, IEEE, +nd Anil K. Jain, Fellow, IEEE +tedious, and may not" +59f325e63f21b95d2b4e2700c461f0136aecc171,Kernel sparse representation with local patterns for face recognition,"978-1-4577-1302-6/11/$26.00 ©2011 IEEE +FOR FACE RECOGNITION +. INTRODUCTION" +59031a35b0727925f8c47c3b2194224323489d68,Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample per Person,"Sparse Variation Dictionary Learning for Face Recognition with A Single +Training Sample Per Person +Meng Yang, Luc Van Gool +ETH Zurich +Switzerland" +926c67a611824bc5ba67db11db9c05626e79de96,Enhancing Bilinear Subspace Learning by Element Rearrangement,"Enhancing Bilinear Subspace Learning +y Element Rearrangement +Dong Xu, Shuicheng Yan, Stephen Lin, +Thomas S. Huang, and +Shih-Fu Chang" +923ede53b0842619831e94c7150e0fc4104e62f7,Masked correlation filters for partially occluded face recognition,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016" +92b61b09d2eed4937058d0f9494d9efeddc39002,BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance,"Under review in IJCV manuscript No. +(will be inserted by the editor) +BoxCars: Improving Vehicle Fine-Grained Recognition using +D Bounding Boxes in Traf‌f‌ic Surveillance +Jakub Sochor · Jakub ˇSpaˇnhel · Adam Herout +Received: date / Accepted: date" +920a92900fbff22fdaaef4b128ca3ca8e8d54c3e,Learning Pattern Transformation Manifolds with Parametric Atom Selection,"LEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM +SELECTION +Elif Vural and Pascal Frossard +Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +Signal Processing Laboratory (LTS4) +Switzerland-1015 Lausanne" +9207671d9e2b668c065e06d9f58f597601039e5e,Face Detection Using a 3D Model on Face Keypoints,"Face Detection Using a 3D Model on +Face Keypoints +Adrian Barbu, Gary Gramajo" +9282239846d79a29392aa71fc24880651826af72,Classification of extreme facial events in sign language videos,"Antonakos et al. EURASIP Journal on Image and Video Processing 2014, 2014:14 +http://jivp.eurasipjournals.com/content/2014/1/14 +RESEARCH +Open Access +Classification of extreme facial events in sign +language videos +Epameinondas Antonakos1,2*, Vassilis Pitsikalis1 and Petros Maragos1" +92115b620c7f653c847f43b6c4ff0470c8e55dab,Training Deformable Object Models for Human Detection Based on Alignment and Clustering,"Training Deformable Object Models for Human +Detection Based on Alignment and Clustering +Benjamin Drayer and Thomas Brox +Department of Computer Science, +Centre of Biological Signalling Studies (BIOSS), +University of Freiburg, Germany" +92c2dd6b3ac9227fce0a960093ca30678bceb364,On Color Texture Normalization for Active Appearance Models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +version when available. +Title +On color texture normalization for active appearance models +Author(s) +Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +Publication +009-05-12 +Publication +Information +Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +Texture Normalization for Active Appearance Models. Image +Processing, IEEE Transactions on, 18(6), 1372-1378. +Publisher +Link to +publisher's +version +http://dx.doi.org/10.1109/TIP.2009.2017163 +Item record +http://hdl.handle.net/10379/1350" +927ba64123bd4a8a31163956b3d1765eb61e4426,Customer satisfaction measuring based on the most significant facial emotion,"Customer satisfaction measuring based on the most +significant facial emotion +Mariem Slim, Rostom Kachouri, Ahmed Atitallah +To cite this version: +Mariem Slim, Rostom Kachouri, Ahmed Atitallah. Customer satisfaction measuring based on the +most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals +Devices (SSD 2018), Mar 2018, Hammamet, Tunisia. +HAL Id: hal-01790317 +https://hal-upec-upem.archives-ouvertes.fr/hal-01790317 +Submitted on 11 May 2018 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de" +927ad0dceacce2bb482b96f42f2fe2ad1873f37a,Interest-Point based Face Recognition System,"Interest-Point based Face Recognition System +Interest-Point based Face Recognition System +Cesar Fernandez and Maria Asuncion Vicente +Miguel Hernandez University +Spain +. Introduction +Among all applications of face recognition systems, surveillance is one of the most +hallenging ones. In such an application, the goal is to detect known criminals in crowded +environments, like airports or train stations. Some attempts have been made, like those of +Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success. +The first task to be carried out in an automatic surveillance system involves the detection of +ll the faces in the images taken by the video cameras. Current face detection algorithms are +highly reliable and thus, they will not be the focus of our work. Some of the best performing +examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade +lgorithm (Schneiderman & Kanade, 2000). +The second task to be carried out involves the comparison of all detected faces among the +database of known criminals. The ideal behaviour of an automatic system performing this +task would be to get a 100% correct identification rate, but this behaviour is far from the +apabilities of current face recognition algorithms. Assuming that there will be false +identifications, supervised surveillance systems seem to be the most realistic option: the" +929bd1d11d4f9cbc638779fbaf958f0efb82e603,"Improving the Performance of Facial Expression Recognition Using Dynamic, Subtle and Regional Features","This is the author’s version of a work that was submitted/accepted for pub- +lication in the following source: +Zhang, Ligang & Tjondronegoro, Dian W. (2010) Improving the perfor- +mance of facial expression recognition using dynamic, subtle and regional +features. +In Kok, WaiWong, B. Sumudu, U. Mendis, & Abdesselam , +Bouzerdoum (Eds.) Neural Information Processing. Models and Applica- +tions, Lecture Notes in Computer Science, Sydney, N.S.W, pp. 582-589. +This file was downloaded from: http://eprints.qut.edu.au/43788/ +(cid:13) Copyright 2010 Springer-Verlag +Conference proceedings published, by Springer Verlag, will be available +via Lecture Notes in Computer Science http://www.springer.de/comp/lncs/ +Notice: Changes introduced as a result of publishing processes such as +opy-editing and formatting may not be reflected in this document. For a +definitive version of this work, please refer to the published source: +http://dx.doi.org/10.1007/978-3-642-17534-3_72" +0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf,F Acial E Xpression R Ecognition Based on Wapa and Oepa F Ast Ica,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 3, May 2014 +FACIAL EXPRESSION RECOGNITION BASED ON +WAPA AND OEPA FASTICA +Humayra Binte Ali1 and David M W Powers2 +Computer Science, Engineering and Mathematics School, Flinders University, Australia +Computer Science, Engineering and Mathematics School, Flinders University, Australia" +0c8a0a81481ceb304bd7796e12f5d5fa869ee448,A Spatial Regularization of LDA for Face Recognition,"International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, June 2010, pp. 95-100 +A Spatial Regularization of LDA for Face Recognition +Lae-Jeong Park +Department of Electronics Engineering, Gangnung-Wonju National University +23 Chibyun-Dong, Kangnung, 210-702, Korea +Tel : +82-33-640-2389, Fax : +82-33-646-0740, E-mail :" +0c36c988acc9ec239953ff1b3931799af388ef70,Face Detection Using Improved Faster RCNN,"Face Detection Using Improved Faster RCNN +Changzheng Zhang, Xiang Xu, Dandan Tu* +Huawei Cloud BU, China +{zhangzhangzheng, xuxiang12, +Figure1.Face detection results of FDNet1.0" +0c5ddfa02982dcad47704888b271997c4de0674b,Model-driven and Data-driven Approaches for some Object Recognition Problems, +0c069a870367b54dd06d0da63b1e3a900a257298,Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,"Author manuscript, published in ""ICANN 2011 - International Conference on Artificial Neural Networks (2011)""" +0c75c7c54eec85e962b1720755381cdca3f57dfb,Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model,"Face Landmark Fitting via Optimized Part +Mixtures and Cascaded Deformable Model +Xiang Yu, Member, IEEE, Junzhou Huang, Member, IEEE, +Shaoting Zhang, Senior Member, IEEE, and Dimitris N. Metaxas, Fellow, IEEE" +0ca36ecaf4015ca4095e07f0302d28a5d9424254,Improving Bag-of-Visual-Words Towards Effective Facial Expressive Image Classification,"Improving Bag-of-Visual-Words Towards Effective Facial Expressive +Image Classification +Dawood Al Chanti1 and Alice Caplier1 +Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France +Keywords: +BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF." +0cfca73806f443188632266513bac6aaf6923fa8,Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo,"Predictive Uncertainty in Large Scale Classification +using Dropout - Stochastic Gradient Hamiltonian +Monte Carlo. +Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4. +Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile. +German Research Centre for Artificial Intelligence, Bremen, Germany. +Email:" +0c3f7272a68c8e0aa6b92d132d1bf8541c062141,Kruskal-Wallis-Based Computationally Efficient Feature Selection for Face Recognition,"Hindawi Publishing Corporation +e Scientific World Journal +Volume 2014, Article ID 672630, 6 pages +http://dx.doi.org/10.1155/2014/672630 +Research Article +Kruskal-Wallis-Based Computationally Efficient Feature +Selection for Face Recognition +Sajid Ali Khan,1,2 Ayyaz Hussain,3 Abdul Basit,1 and Sheeraz Akram1 +Department of Software Engineering, Foundation University, Rawalpindi 46000, Pakistan +Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad, +Islamabad 44000, Pakistan +Department of Computer Science and Software Engineering, International Islamic University, Islamabad 44000, Pakistan +Correspondence should be addressed to Sajid Ali Khan; +Received 5 December 2013; Accepted 10 February 2014; Published 21 May 2014 +Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang +Copyright © 2014 Sajid Ali Khan et al. This is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +Face recognition in today’s technological world, and face recognition applications attain much more importance. Most of the +existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. +The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute" +0c5afb209b647456e99ce42a6d9d177764f9a0dd,Recognizing Action Units for Facial Expression Analysis,"Recognizing Action Units for +Facial Expression Analysis +Ying-li Tian, Member, IEEE, Takeo Kanade, Fellow, IEEE, and Jeffrey F. Cohn, Member, IEEE" +0c377fcbc3bbd35386b6ed4768beda7b5111eec6,A Unified Probabilistic Framework for Spontaneous Facial Action Modeling and Understanding,"A Unified Probabilistic Framework +for Spontaneous Facial Action Modeling +nd Understanding +Yan Tong, Member, IEEE, Jixu Chen, Student Member, IEEE, and Qiang Ji, Senior Member, IEEE" +0cb2dd5f178e3a297a0c33068961018659d0f443,IARPA Janus Benchmark-B Face Dataset,"© 2017 Noblis, Inc. IARPA Janus Benchmark-B Face Dataset Cameron Whitelam, Emma Taborsky*, Austin Blanton, Brianna Maze*, Jocelyn Adams*, Tim Miller*, Nathan Kalka*, Anil K. Jain**, James A. Duncan*, Kristen Allen, Jordan Cheney*, Patrick Grother*** Noblis* Michigan State University** NIST*** 21 July 2017" +0cd8895b4a8f16618686f622522726991ca2a324,Discrete Choice Models for Static Facial Expression Recognition,"Discrete Choice Models for Static Facial Expression +Recognition +Gianluca Antonini1, Matteo Sorci1, Michel Bierlaire2, and Jean-Philippe Thiran1 +Ecole Polytechnique Federale de Lausanne, Signal Processing Institute +Ecole Polytechnique Federale de Lausanne, Operation Research Group +Ecublens, 1015 Lausanne, Switzerland +Ecublens, 1015 Lausanne, Switzerland" +0cf7da0df64557a4774100f6fde898bc4a3c4840,Shape matching and object recognition using low distortion correspondences,"Shape Matching and Object Recognition using Low Distortion Correspondences +Alexander C. Berg Tamara L. Berg +Jitendra Malik +Department of Electrical Engineering and Computer Science +U.C. Berkeley" +0cbe059c181278a373292a6af1667c54911e7925,'Owl' and 'Lizard': patterns of head pose and eye pose in driver gaze classification,"Owl and Lizard: Patterns of Head Pose and Eye +Pose in Driver Gaze Classification +Lex Fridman1, Joonbum Lee1, Bryan Reimer1, and Trent Victor2 +Massachusetts Institute of Technology (MIT) +Chalmers University of Technology, SAFER" +0c4659b35ec2518914da924e692deb37e96d6206,Registering a MultiSensor Ensemble of Images,"Registering a MultiSensor Ensemble of Images +Jeff Orchard, Member, IEEE, and Richard Mann" +0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae,Central Local Directional Pattern Value Flooding Co-occurrence Matrix based Features for Face Recognition,"Dr. P Chandra Sekhar Reddy, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.1, January- 2017, pg. 221-227 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IMPACT FACTOR: 6.017 +IJCSMC, Vol. 6, Issue. 1, January 2017, pg.221 – 227 +Central Local Directional Pattern Value +Flooding Co-occurrence Matrix based +Features for Face Recognition +Dr. P Chandra Sekhar Reddy +Professor, CSE Department, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad" +0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d,Weakly Supervised PatchNets: Describing and Aggregating Local Patches for Scene Recognition,"SUBMITTED TO JOURNAL +Weakly Supervised PatchNets: Describing and +Aggregating Local Patches for Scene Recognition +Zhe Wang, Limin Wang, Yali Wang, Bowen Zhang, and Yu Qiao, Senior Member, IEEE" +6601a0906e503a6221d2e0f2ca8c3f544a4adab7,Detection of Ancient Settlement Mounds : Archaeological Survey Based on the SRTM Terrain Model,"SRTM-2 2/9/06 3:27 PM Page 321 +Detection of Ancient Settlement Mounds: +Archaeological Survey Based on the +SRTM Terrain Model +B.H. Menze, J.A. Ur, and A.G. Sherratt" +660b73b0f39d4e644bf13a1745d6ee74424d4a16,Constructing Kernel Machines in the Empirical Kernel Feature Space,",250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Reviews, Refinements and New Ideas in Face RecognitionDownloaded from: http://www.intechopen.com/books/reviews-refinements-and-new-ideas-in-face-recognitionPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at" +66d512342355fb77a4450decc89977efe7e55fa2,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018 +LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +INATIVE AND MINIMUM INFORMATION LOSS PRIORS +Anonymous authors +Paper under double-blind review" +6643a7feebd0479916d94fb9186e403a4e5f7cbf,Chapter 8 3 D Face Recognition,"Chapter 8 +D Face Recognition +Ajmal Mian and Nick Pears" +661ca4bbb49bb496f56311e9d4263dfac8eb96e9,Datasheets for Datasets,"Datasheets for Datasets +Timnit Gebru 1 Jamie Morgenstern 2 Briana Vecchione 3 Jennifer Wortman Vaughan 1 Hanna Wallach 1 +Hal Daumé III 1 4 Kate Crawford 1 5" +66d087f3dd2e19ffe340c26ef17efe0062a59290,Dog Breed Identification,"Dog Breed Identification +Whitney LaRow +Brian Mittl +Vijay Singh" +6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c,Ordinal Regression with Multiple Output CNN for Age Estimation,"Ordinal Regression with Multiple Output CNN for Age Estimation +Zhenxing Niu1 +Gang Hua3 +Xidian University 2Xi’an Jiaotong University 3Microsoft Research Asia +Xinbo Gao1 +Mo Zhou1 +Le Wang2" +66a2c229ac82e38f1b7c77a786d8cf0d7e369598,A Probabilistic Adaptive Search System for Exploring the Face Space,"Proceedings of the 2016 Industrial and Systems Engineering Research Conference +H. Yang, Z. Kong, and MD Sarder, eds. +A Probabilistic Adaptive Search System +for Exploring the Face Space +Andres G. Abad and Luis I. Reyes Castro +Escuela Superior Politecnica del Litoral (ESPOL) +Guayaquil-Ecuador" +66a9935e958a779a3a2267c85ecb69fbbb75b8dc,Fast and Robust Fixed-Rank Matrix Recovery,"FAST AND ROBUST FIXED-RANK MATRIX RECOVERY +Fast and Robust Fixed-Rank Matrix +Recovery +German Ros*, Julio Guerrero, Angel Sappa, Daniel Ponsa and +Antonio Lopez" +66533107f9abdc7d1cb8f8795025fc7e78eb1122,Visual Servoing for a User's Mouth with Effective Intention Reading in a Wheelchair-based Robotic Arm,"Vi a Sevig f a Ue  h wih E(cid:11)ecive ei Readig +i a Wheechai baed Rbic A +W y g Sgy Dae i iy g S g iz ad Ze ga Biey +y EECS AST 373 1  g Dg Y g G  Taej 305 701 REA +z VR Cee ETR 161 ajg Dg Y g G  Taej 305 350 REA +Abac +Thee exi he c eaive aciviy bewee a h +a beig ad ehabiiai b beca e he h +a eae ehabiiai b i he ae evi +e ad ha he bee(cid:12) f ehabiiai b + ch a ai ay  bie f ci. ei +eadig i e f he eeia f ci f h a +fiedy ehabiiai b i de  ie he +f ad afey f a wh eed he. Fi f + he vea  c e f a ew wheechai baed +bic a ye ARES  ad i h a b +ieaci echgie ae eeed. Ag he +echgie we cceae  vi a evig ha +w hi bic a  eae a  y via +vi a feedback. E(cid:11)ecive iei eadig  ch a" +66810438bfb52367e3f6f62c24f5bc127cf92e56,Face Recognition of Illumination Tolerance in 2D Subspace Based on the Optimum Correlation Filter,"Face Recognition of Illumination Tolerance in 2D +Subspace Based on the Optimum Correlation +Filter +Xu Yi +Department of Information Engineering, Hunan Industry Polytechnic, Changsha, China +images will be tested to project" +66af2afd4c598c2841dbfd1053bf0c386579234e,Context-assisted face clustering framework with human-in-the-loop,"Noname manuscript No. +(will be inserted by the editor) +Context Assisted Face Clustering Framework with +Human-in-the-Loop +Liyan Zhang · Dmitri V. Kalashnikov · +Sharad Mehrotra +Received: date / Accepted: date" +66e6f08873325d37e0ec20a4769ce881e04e964e,The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding,"Int J Comput Vis (2014) 108:59–81 +DOI 10.1007/s11263-013-0695-z +The SUN Attribute Database: Beyond Categories for Deeper Scene +Understanding +Genevieve Patterson · Chen Xu · Hang Su · +James Hays +Received: 27 February 2013 / Accepted: 28 December 2013 / Published online: 18 January 2014 +© Springer Science+Business Media New York 2014" +661da40b838806a7effcb42d63a9624fcd684976,An Illumination Invariant Accurate Face Recognition with Down Scaling of DCT Coefficients,"An Illumination Invariant Accurate +Face Recognition with Down Scaling +of DCT Coefficients +Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta +Department of Computer Science and Engineering, Amity School of Engineering and Technology, New Delhi, India +In this paper, a novel approach for illumination normal- +ization under varying lighting conditions is presented. +Our approach utilizes the fact that discrete cosine trans- +form (DCT) low-frequency coefficients correspond to +illumination variations in a digital image. Under varying +illuminations, the images captured may have low con- +trast; initially we apply histogram equalization on these +for contrast stretching. Then the low-frequency DCT +oefficients are scaled down to compensate the illumi- +nation variations. The value of scaling down factor and +the number of low-frequency DCT coefficients, which +re to be rescaled, are obtained experimentally. The +lassification is done using k−nearest neighbor classi- +fication and nearest mean classification on the images +obtained by inverse DCT on the processed coefficients." +66886f5af67b22d14177119520bd9c9f39cdd2e6,Learning Additive Kernel For Feature Transformation and Its Application to CNN Features,"T. KOBAYASHI: LEARNING ADDITIVE KERNEL +Learning Additive Kernel For Feature +Transformation and Its Application to CNN +Features +Takumi Kobayashi +National Institute of Advanced Industrial +Science and Technology +Tsukuba, Japan" +3edb0fa2d6b0f1984e8e2c523c558cb026b2a983,Automatic Age Estimation Based on Facial Aging Patterns,"Automatic Age Estimation Based on +Facial Aging Patterns +Xin Geng, Zhi-Hua Zhou, Senior Member, IEEE, +Kate Smith-Miles, Senior Member, IEEE" +3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS +AND LINEAR PROGRAMMING +Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1 +Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering +P. O. Box 4500 Fin-90014 University of Oulu, Finland +2 College of Electronics and Information, Northwestern Polytechnic University +710072 Xi’an, China +In this work, we propose a novel approach to recognize facial expressions from static +images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial +images and then the Linear Programming (LP) technique is adopted to classify the seven +facial expressions anger, disgust, fear, happiness, sadness, surprise and neutral. +Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE +database, which outperforms the rates of all other reported methods on the same database. +Introduction +Facial expression recognition from static +images is a more challenging problem +than from image sequences because less +information for expression actions +vailable. However, information in a +single image is sometimes enough for" +3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b,Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs,"Deep Value Networks Learn to +Evaluate and Iteratively Refine Structured Outputs +Michael Gygli 1 * Mohammad Norouzi 2 Anelia Angelova 2" +3e3f305dac4fbb813e60ac778d6929012b4b745a,Feature sampling and partitioning for visual vocabulary generation on large action classification datasets,"Feature sampling and partitioning for visual vocabulary +generation on large action classification datasets. +Michael Sapienza1, Fabio Cuzzolin1, and Philip H.S. Torr2 +Department of Computing and Communications Technology, Oxford Brookes University. +Department of Engineering Science, University of Oxford." +3ea8a6dc79d79319f7ad90d663558c664cf298d4,Automatic Facial Expression Recognition from Video Sequences,"(cid:13) Copyright by Ira Cohen, 2000" +3e4f84ce00027723bdfdb21156c9003168bc1c80,A co-training approach to automatic face recognition,"© EURASIP, 2011 - ISSN 2076-1465 +9th European Signal Processing Conference (EUSIPCO 2011) +INTRODUCTION" +3e04feb0b6392f94554f6d18e24fadba1a28b65f,Subspace Image Representation for Facial Expression Analysis and Face Recognition and its Relation to the Human Visual System,"Subspace Image Representation for Facial +Expression Analysis and Face Recognition +nd its Relation to the Human Visual System +Ioan Buciu1,2 and Ioannis Pitas1 +Department of Informatics, Aristotle University of Thessaloniki GR-541 24, +Thessaloniki, Box 451, Greece. +Electronics Department, Faculty of Electrical Engineering and Information +Technology, University of Oradea 410087, Universitatii 1, Romania. +Summary. Two main theories exist with respect to face encoding and representa- +tion in the human visual system (HVS). The first one refers to the dense (holistic) +representation of the face, where faces have “holon”-like appearance. The second one +laims that a more appropriate face representation is given by a sparse code, where +only a small fraction of the neural cells corresponding to face encoding is activated. +Theoretical and experimental evidence suggest that the HVS performs face analysis +(encoding, storing, face recognition, facial expression recognition) in a structured +nd hierarchical way, where both representations have their own contribution and +goal. According to neuropsychological experiments, it seems that encoding for face +recognition, relies on holistic image representation, while a sparse image represen- +tation is used for facial expression analysis and classification. From the computer +vision perspective, the techniques developed for automatic face and facial expres-" +3e685704b140180d48142d1727080d2fb9e52163,Single Image Action Recognition by Predicting Space-Time Saliency,"Single Image Action Recognition by Predicting +Space-Time Saliency +Marjaneh Safaei and Hassan Foroosh" +3e687d5ace90c407186602de1a7727167461194a,Photo Tagging by Collection-Aware People Recognition,"Photo Tagging by Collection-Aware People Recognition +Cristina Nader Vasconcelos +Vinicius Jardim +Asla S´a +Paulo Cezar Carvalho" +50f0c495a214b8d57892d43110728e54e413d47d,Pairwise support vector machines and their application to large scale problems,"Submitted 8/11; Revised 3/12; Published 8/12 +Pairwise Support Vector Machines and their Application to Large +Scale Problems +Carl Brunner +Andreas Fischer +Institute for Numerical Mathematics +Technische Universit¨at Dresden +01062 Dresden, Germany +Klaus Luig +Thorsten Thies +Cognitec Systems GmbH +Grossenhainer Str. 101 +01127 Dresden, Germany +Editor: Corinna Cortes" +501096cca4d0b3d1ef407844642e39cd2ff86b37,Illumination Invariant Face Image Representation Using Quaternions,"Illumination Invariant Face Image +Representation using Quaternions +Dayron Rizo-Rodr´ıguez, Heydi M´endez-V´azquez, and Edel Garc´ıa-Reyes +Advanced Technologies Application Center. 7a # 21812 b/ 218 and 222, +Rpto. Siboney, Playa, P.C. 12200, La Habana, Cuba." +501eda2d04b1db717b7834800d74dacb7df58f91,Discriminative Sparse Representation for Expression Recognition,"Pedro Miguel Neves Marques Discriminative Sparse Representation for Expression Recognition Master Thesis in Electrical and Computer Engineering September, 2014" +5083c6be0f8c85815ead5368882b584e4dfab4d1,Automated Face Analysis for Affective Computing Jeffrey,"Please do not quote. In press, Handbook of affective computing. New York, NY: Oxford +Automated Face Analysis for Affective Computing +Jeffrey F. Cohn & Fernando De la Torre" +5058a7ec68c32984c33f357ebaee96c59e269425,A Comparative Evaluation of Regression Learning Algorithms for Facial Age Estimation,"A Comparative Evaluation of Regression Learning +Algorithms for Facial Age Estimation +Carles Fern´andez1, Ivan Huerta2, and Andrea Prati2 +Herta Security +Pau Claris 165 4-B, 08037 Barcelona, Spain +DPDCE, University IUAV +Santa Croce 1957, 30135 Venice, Italy" +50ff21e595e0ebe51ae808a2da3b7940549f4035,Age Group and Gender Estimation in the Wild With Deep RoR Architecture,"IEEE TRANSACTIONS ON LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2017 +Age Group and Gender Estimation in the Wild with +Deep RoR Architecture +Ke Zhang, Member, IEEE, Ce Gao, Liru Guo, Miao Sun, Student Member, IEEE, Xingfang Yuan, Student +Member, IEEE, Tony X. Han, Member, IEEE, Zhenbing Zhao, Member, IEEE and Baogang Li" +5042b358705e8d8e8b0655d07f751be6a1565482,Review on Emotion Detection in Image,"International Journal of +Emerging Research in Management &Technology +ISSN: 2278-9359 (Volume-4, Issue-8) +Research Article +August +Review on Emotion Detection in Image +Aswinder Kaur* Kapil Dewan +CSE & PCET, PTU HOD, CSE & PCET, PTU +Punjab, India Punj ab, India" +50e47857b11bfd3d420f6eafb155199f4b41f6d7,3D Human Face Reconstruction Using a Hybrid of Photometric Stereo and Independent Component Analysis,"International Journal of Computer, Consumer and Control (IJ3C), Vol. 2, No.1 (2013) +D Human Face Reconstruction Using a Hybrid of Photometric +Stereo and Independent Component Analysis +*Cheng-Jian Lin, 2Shyi-Shiun Kuo, 1Hsueh-Yi Lin, 2Shye-Chorng Kuo and 1Cheng-Yi Yu" +50eb75dfece76ed9119ec543e04386dfc95dfd13,Learning Visual Entities and Their Visual Attributes from Text Corpora,"Learning Visual Entities and their Visual Attributes from Text Corpora +Erik Boiy +Dept. of Computer Science +K.U.Leuven, Belgium +Koen Deschacht +Dept. of Computer Science +K.U.Leuven, Belgium +Marie-Francine Moens +Dept. of Computer Science +K.U.Leuven, Belgium" +50a0930cb8cc353e15a5cb4d2f41b365675b5ebf,Robust Facial Landmark Detection and Face Tracking in Thermal Infrared Images using Active Appearance Models, +50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,Emotion recognition based on texture analysis of facial expression,"Australian Journal of Basic and Applied Sciences, 11(5) April 2017, Pages: 1-11 +AUSTRALIAN JOURNAL OF BASIC AND +APPLIED SCIENCES +ISSN:1991-8178 EISSN: 2309-8414 +Journal home page: www.ajbasweb.com +Emotion Recognition Based on Texture Analysis of Facial Expressions +Using Wavelets Transform +Suhaila N. Mohammed and 2Loay E. George +Assistant Lecturer, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq, +Assistant Professor, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq, +Address For Correspondence: +Suhaila N. Mohammed, Baghdad University, Computer Science Department, College of Science, Baghdad, Iraq. +A R T I C L E I N F O +Article history: +Received 18 January 2017 +Accepted 28 March 2017 +Available online 15 April 2017 +Keywords: +Facial Emotion, Face Detection, +Template Based Methods, Texture" +50d15cb17144344bb1879c0a5de7207471b9ff74,"Divide, Share, and Conquer: Multi-task Attribute Learning with Selective Sharing","Divide, Share, and Conquer: Multi-task +Attribute Learning with Selective Sharing +Chao-Yeh Chen*, Dinesh Jayaraman*, Fei Sha, and Kristen Grauman" +50d961508ec192197f78b898ff5d44dc004ef26d,A Low Indexed Content Based Neural Network Approach for Natural Objects Recognition,"International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009 +A LOW INDEXED CONTENT BASED +NEURAL NETWORK APPROACH FOR +NATURAL OBJECTS RECOGNITION +G.Shyama Chandra Prasad1 and Dr. A.Govardhan 2 Dr. T.V.Rao 3 +Research Scholar, JNTUH, Hyderabad, AP. India +Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India +Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India" +50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,Towards robust cascaded regression for face alignment in the wild,"Towards Robust Cascaded Regression for Face Alignment in the Wild +Chengchao Qu1,2 Hua Gao3 +Eduardo Monari2 +J¨urgen Beyerer2,1 +Jean-Philippe Thiran3 +Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT) +Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB) +Signal Processing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL)" +5028c0decfc8dd623c50b102424b93a8e9f2e390,Revisiting Classifier Two-sample Tests,"Published as a conference paper at ICLR 2017 +REVISITING CLASSIFIER TWO-SAMPLE TESTS +David Lopez-Paz1, Maxime Oquab1,2 +Facebook AI Research, 2WILLOW project team, Inria / ENS / CNRS" +505e55d0be8e48b30067fb132f05a91650666c41,A Model of Illumination Variation for Robust Face Recognition,"A Model of Illumination Variation for Robust Face Recognition +Florent Perronnin and Jean-Luc Dugelay +Institut Eur´ecom +Multimedia Communications Department +BP 193, 06904 Sophia Antipolis Cedex, France +fflorent.perronnin," +507c9672e3673ed419075848b4b85899623ea4b0,Multi-View Facial Expression Classification,"Faculty of Informatics +Institute for Anthropomatics +Chair Prof. Dr.-Ing. R. Stiefelhagen +Facial Image Processing and Analysis Group +Multi-View Facial Expression +Classification +DIPLOMA THESIS OF +Nikolas Hesse +ADVISORS +Dr.-Ing. Hazım Kemal Ekenel +Dipl.-Inform. Hua Gao +Dipl.-Inform. Tobias Gehrig +MARCH 2011 +KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association +www.kit.edu" +680d662c30739521f5c4b76845cb341dce010735,Part and Attribute Discovery from Relative Annotations,"Int J Comput Vis (2014) 108:82–96 +DOI 10.1007/s11263-014-0716-6 +Part and Attribute Discovery from Relative Annotations +Subhransu Maji · Gregory Shakhnarovich +Received: 25 February 2013 / Accepted: 14 March 2014 / Published online: 26 April 2014 +© Springer Science+Business Media New York 2014" +68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5,Age Classification Based on Simple Lbp Transitions,"AGE CLASSIFICATION BASED ON +SIMPLE LBP TRANSITIONS +Research Scholar & Assoc Professor, Aditya institute of Technology and Management, Tekkalli-532 201, A.P., +Gorti Satyanarayana Murty +India, +Dr. V.Vijaya Kumar +A. Obulesu +Dean-Computer Sciences (CSE & IT), Anurag Group of Institutions, Hyderabad – 500088, A.P., India., +3Asst. Professor, Dept. Of CSE, Anurag Group of Institutions, Hyderabad – 500088, A.P., India." +68d2afd8c5c1c3a9bbda3dd209184e368e4376b9,Representation Learning by Rotating Your Faces,"Representation Learning by Rotating Your Faces +Luan Tran, Xi Yin, and Xiaoming Liu, Member, IEEE" +6859b891a079a30ef16f01ba8b85dc45bd22c352,"2D Face Recognition Based on PCA & Comparison of Manhattan Distance, Euclidean Distance & Chebychev Distance","International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 10, October 2014) +D Face Recognition Based on PCA & Comparison of +Manhattan Distance, Euclidean Distance & Chebychev +Distance +Rajib Saha1, Sayan Barman2 +RCC Institute of Information Technology, Kolkata, India" +68d08ed9470d973a54ef7806318d8894d87ba610,Drive Video Analysis for the Detection of Traffic Near-Miss Incidents,"Drive Video Analysis for the Detection of Traffic Near-Miss Incidents +Hirokatsu Kataoka1, Teppei Suzuki1 +, Shoko Oikawa3, Yasuhiro Matsui4 and Yutaka Satoh1" +68caf5d8ef325d7ea669f3fb76eac58e0170fff0,Long-term face tracking in the wild using deep learning, +68003e92a41d12647806d477dd7d20e4dcde1354,Fuzzy Based Image Dimensionality Reduction Using Shape Primitives for Efficient Face Recognition,"ISSN: 0976-9102 (ONLINE) +DOI: 10.21917/ijivp.2013.0101 +ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2013, VOLUME: 04, ISSUE: 02 +FUZZY BASED IMAGE DIMENSIONALITY REDUCTION USING SHAPE +PRIMITIVES FOR EFFICIENT FACE RECOGNITION +P. Chandra Sekhar Reddy1, B. Eswara Reddy2 and V. Vijaya Kumar3 +Deprtment of Computer Science and Engineering, Nalla Narasimha Reddy Education Society’s Group of Institutions, India +E-Mail: +Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India +Deprtment of Computer Science and Engineering, Anurag Group of Institutions, India +E-mail: +E-mail:" +68d4056765c27fbcac233794857b7f5b8a6a82bf,Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal,"Example-Based Face Shape Recovery Using the +Zenith Angle of the Surface Normal +Mario Castel´an1, Ana J. Almaz´an-Delf´ın2, Marco I. Ram´ırez-Sosa-Mor´an3, +nd Luz A. Torres-M´endez1 +CINVESTAV Campus Saltillo, Ramos Arizpe 25900, Coahuila, M´exico +Universidad Veracruzana, Facultad de F´ısica e Inteligencia Artificial, Xalapa 91000, +ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico +Veracruz, M´exico" +684f5166d8147b59d9e0938d627beff8c9d208dd,Discriminative Block-Diagonal Representation Learning for Image Recognition,"IEEE TRANS. NNLS, JUNE 2017 +Discriminative Block-Diagonal Representation +Learning for Image Recognition +Zheng Zhang, Yong Xu, Senior Member, IEEE, Ling Shao, Senior Member, IEEE, Jian Yang, Member, IEEE" +685f8df14776457c1c324b0619c39b3872df617b,Face Recognition with Preprocessing and Neural Networks,"Master of Science Thesis in Electrical Engineering +Department of Electrical Engineering, Linköping University, 2016 +Face Recognition with +Preprocessing and Neural +Networks +David Habrman" +68484ae8a042904a95a8d284a7f85a4e28e37513,Spoofing Deep Face Recognition with Custom Silicone Masks,"Spoofing Deep Face Recognition with Custom Silicone Masks +Sushil Bhattacharjee Amir Mohammadi +S´ebastien Marcel +Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland +{sushil.bhattacharjee; amir.mohammadi;" +688754568623f62032820546ae3b9ca458ed0870,Resting high frequency heart rate variability is not associated with the recognition of emotional facial expressions in healthy human adults,"ioRxiv preprint first posted online Sep. 27, 2016; +http://dx.doi.org/10.1101/077784 +The copyright holder for this preprint (which was not +peer-reviewed) is the author/funder. It is made available under a +CC-BY-NC-ND 4.0 International license +Resting high frequency heart rate variability is not associated with the +recognition of emotional facial expressions in healthy human adults. +Brice Beffara1,2,3, Nicolas Vermeulen3,4, Martial Mermillod1,2 +Univ. Grenoble Alpes, LPNC, F-38040, Grenoble, France +CNRS, LPNC UMR 5105, F-38040, Grenoble, France +IPSY, Université Catholique de Louvain, Louvain-la-Neuve, Belgium +Fund for Scientific Research (FRS-FNRS), Brussels, Belgium +Correspondence concerning this article should be addressed to Brice Beffara, Of‌f‌ice E250, Institut +de Recherches en Sciences Psychologiques, IPSY - Place du Cardinal Mercier, 10 bte L3.05.01 B-1348 +Louvain-la-Neuve, Belgium. E-mail: +Author note +This study explores whether the myelinated vagal connection between the heart and the brain +is involved in emotion recognition. The Polyvagal theory postulates that the activity of the +myelinated vagus nerve underlies socio-emotional skills. It has been proposed that the perception +of emotions could be one of this skills dependent on heart-brain interactions. However, this" +68f9cb5ee129e2b9477faf01181cd7e3099d1824,ALDA Algorithms for Online Feature Extraction,"ALDA Algorithms for Online Feature Extraction +Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam" +68d40176e878ebffbc01ffb0556e8cb2756dd9e9,Locality Repulsion Projection and Minutia Extraction Based Similarity Measure for Face Recognition,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +International Conference on Humming Bird ( 01st March 2014) +RESEARCH ARTICLE +OPEN ACCESS +Locality Repulsion Projection and Minutia Extraction Based +Similarity Measure for Face Recognition +Agnel AnushyaP.1,RamyaP.2 +AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of +Ramya P. is currently working as an Asst. Professor in the dept. of Information Technology at Vins Christian +Engineering. +ollege of Engineering." +6889d649c6bbd9c0042fadec6c813f8e894ac6cc,Analysis of Robust Soft Learning Vector Quantization and an application to Facial Expression Recognition,"Analysis of Robust Soft Learning Vector +Quantization and an application to Facial +Expression Recognition" +68c17aa1ecbff0787709be74d1d98d9efd78f410,Gender Classification from Face Images Using Mutual Information and Feature Fusion,"International Journal of Optomechatronics, 6: 92–119, 2012 +Copyright # Taylor & Francis Group, LLC +ISSN: 1559-9612 print=1559-9620 online +DOI: 10.1080/15599612.2012.663463 +GENDER CLASSIFICATION FROM FACE IMAGES +USING MUTUAL INFORMATION AND FEATURE +FUSION +Claudio Perez, Juan Tapia, Pablo Este´vez, and Claudio Held +Department of Electrical Engineering and Advanced Mining Technology +Center, Universidad de Chile, Santiago, Chile +In this article we report a new method for gender classification from frontal face images +using feature selection based on mutual information and fusion of features extracted from +intensity, shape, texture, and from three different spatial scales. We compare the results of +three different mutual information measures: minimum redundancy and maximal relevance +(mRMR), normalized mutual information feature selection (NMIFS), and conditional +mutual information feature selection (CMIFS). We also show that by fusing features +extracted from six different methods we significantly improve the gender classification +results relative to those previously published, yielding 99.13% of the gender classification +rate on the FERET database. +Keywords: Feature fusion, feature selection, gender classification, mutual information, real-time gender" +68f61154a0080c4aae9322110c8827978f01ac2e,"Recognizing blurred , non-frontal , illumination and expression variant partially occluded faces","Research Article +Journal of the Optical Society of America A +Recognizing blurred, non-frontal, illumination and +expression variant partially occluded faces +ABHIJITH PUNNAPPURATH1* AND AMBASAMUDRAM NARAYANAN RAJAGOPALAN1 +Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India. +*Corresponding author: +Compiled June 26, 2016 +The focus of this paper is on the problem of recognizing faces across space-varying motion blur, changes +in pose, illumination, and expression, as well as partial occlusion, when only a single image per subject +is available in the gallery. We show how the blur incurred due to relative motion between the camera and +the subject during exposure can be estimated from the alpha matte of pixels that straddle the boundary +etween the face and the background. We also devise a strategy to automatically generate the trimap re- +quired for matte estimation. Having computed the motion via the matte of the probe, we account for pose +variations by synthesizing from the intensity image of the frontal gallery, a face image that matches the +pose of the probe. To handle illumination and expression variations, and partial occlusion, we model the +probe as a linear combination of nine blurred illumination basis images in the synthesized non-frontal +pose, plus a sparse occlusion. We also advocate a recognition metric that capitalizes on the sparsity of the +occluded pixels. The performance of our method is extensively validated on synthetic as well as real face +data. © 2016 Optical Society of America" +6888f3402039a36028d0a7e2c3df6db94f5cb9bb,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018 +CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +Anonymous authors +Paper under double-blind review" +57fd229097e4822292d19329a17ceb013b2cb648,Fast Structural Binary Coding,"Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +Fast Structural Binary Coding +⇤Department of Electrical and Computer Engineering,University of California, San Diego +Dongjin Song⇤, Wei Liu], and David A. Meyer† +La Jolla, USA, 92093-0409. Email: +] Didi Research, Didi Kuaidi, Beijing, China. Email: +Department of Mathematics,University of California, San Diego +La Jolla, USA, 92093-0112. Email:" +57c59011614c43f51a509e10717e47505c776389,Unsupervised Human Action Detection by Action Matching,"Unsupervised Human Action Detection by Action Matching +Basura Fernando∗ Sareh Shirazi† Stephen Gould∗ +The Australian National University †Queensland University of Technology" +57f8e1f461ab25614f5fe51a83601710142f8e88,Region Selection for Robust Face Verification using UMACE Filters,"Region Selection for Robust Face Verification using UMACE Filters +Salina Abdul Samad*, Dzati Athiar Ramli, Aini Hussain +Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering, +Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. +In this paper, we investigate the verification performances of four subdivided face images with varying expressions. The +objective of this study is to evaluate which part of the face image is more tolerant to facial expression and still retains its personal +haracteristics due to the variations of the image. The Unconstrained Minimum Average Correlation Energy (UMACE) filter is +implemented to perform the verification process because of its advantages such as shift–invariance, ability to trade-off between +discrimination and distortion tolerance, e.g. variations in pose, illumination and facial expression. The database obtained from the +facial expression database of Advanced Multimedia Processing (AMP) Lab at CMU is used in this study. Four equal +sizes of face regions i.e. bottom, top, left and right halves are used for the purpose of this study. The results show that the bottom +half of the face region gives the best performance in terms of the PSR values with zero false accepted rate (FAR) and zero false +rejection rate (FRR) compared to the other three regions. +. Introduction +Face recognition is a well established field of research, +nd a large number of algorithms have been proposed in the +literature. Various classifiers have been explored to improve +the accuracy of face classification. The basic approach is to +use distance-base methods which measure Euclidean distance +etween any two vectors and then compare it with the preset" +57a1466c5985fe7594a91d46588d969007210581,A taxonomy of face-models for system evaluation,"A Taxonomy of Face-models for System Evaluation +Vijay N. Iyer, Shane. R. Kirkbride, Brian C. Parks, Walter J. Scheirer and Terrance. E. Boult +Motivation and Data Types +Synthetic Data Types +Unverified – Have no underlying physical or +statistical basis +Physics -Based – Based on structure and +materials combined with the properties +formally modeled in physics. +Statistical – Use statistics from real +data/experiments to estimate/learn model +parameters. Generally have measurements +of accuracy +Guided Synthetic – Individual models based +on individual people. No attempt to capture +properties of large groups, a unique model +per person. For faces, guided models are +omposed of 3D structure models and skin +textures, capturing many artifacts not +easily parameterized. Can be combined with" +57246142814d7010d3592e3a39a1ed819dd01f3b,Verification of Very Low-Resolution Faces Using An Identity-Preserving Deep Face Super-resolution Network,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Verification of Very Low-Resolution Faces Using An +Identity-Preserving Deep Face Super-resolution Network +Ataer-Cansizoglu, E.; Jones, M.J.; Zhang, Z.; Sullivan, A. +TR2018-116 August 24, 2018" +574705812f7c0e776ad5006ae5e61d9b071eebdb,A Novel Approach for Face Recognition Using PCA and Artificial Neural Network,"Karthik G et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.5, May- 2014, pg. 780-787 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 3, Issue. 5, May 2014, pg.780 – 787 +RESEARCH ARTICLE +A Novel Approach for Face Recognition +Using PCA and Artificial Neural Network +Karthik G1, Sateesh Kumar H C2 +¹Deptartment of Telecommunication Engg., Dayananda Sagar College of Engg., India +²Department of Telecommunication Engg., Dayananda Sagar College of Engg., India +email : 2 email :" +571b83f7fc01163383e6ca6a9791aea79cafa7dd,SeqFace: Make full use of sequence information for face recognition,"SeqFace: Make full use of sequence information for face recognition +Wei Hu1 ∗ +Yangyu Huang2 +Guodong Yuan2 +Fan Zhang1 +Ruirui Li1 +Wei Li1 +College of Information Science and Technology, +Beijing University of Chemical Technology, China +YUNSHITU Corp., China" +57a14a65e8ae15176c9afae874854e8b0f23dca7,Seeing Mixed Emotions: The Specificity of Emotion Perception From Static and Dynamic Facial Expressions Across Cultures,"UvA-DARE (Digital Academic Repository) +Seeing mixed emotions: The specificity of emotion perception from static and dynamic +facial expressions across cultures +Fang, X.; Sauter, D.A.; van Kleef, G.A. +Published in: +Journal of Cross-Cultural Psychology +0.1177/0022022117736270 +Link to publication +Citation for published version (APA): +Fang, X., Sauter, D. A., & van Kleef, G. A. (2018). Seeing mixed emotions: The specificity of emotion perception +from static and dynamic facial expressions across cultures. Journal of Cross-Cultural Psychology, 49(1), 130- +48. DOI: 10.1177/0022022117736270 +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible." +57d37ad025b5796457eee7392d2038910988655a,Aeaeêêìáîî Áåèääååaeììáçae Çç Àááêêêàáááä Aeçîîäìì Ììììçê,"GEERATVEEETATF +ERARCCAVETYDETECTR +DagaEha +UdeheS eviif +f.DahaWeiha +ATheiS biediaiaF (cid:28)efhe +Re ieefheDegeef +aefSciece +TheSchfC eScieceadEgieeig +ebewUiveiyfe aeae91904 +Decebe2009" +3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5,Sparse Representation-Based Open Set Recognition,"Sparse Representation-based Open Set Recognition +He Zhang, Student Member, IEEE and Vishal M. Patel, Senior Member, IEEE" +3bc776eb1f4e2776f98189e17f0d5a78bb755ef4,View Synthesis from Image and Video for Object Recognition Applications, +3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0,On knowledge transfer in object class recognition,"On Knowledge Transfer in +Object Class Recognition +A dissertation approved by +TECHNISCHE UNIVERSITÄT DARMSTADT +Fachbereich Informatik +for the degree of +Doktor-Ingenieur (Dr.-Ing.) +presented by +MICHAEL STARK +Dipl.-Inform. +orn in Mainz, Germany +Prof. Dr.-Ing. Michael Goesele, examiner +Prof. Martial Hebert, Ph.D., co-examiner +Prof. Dr. Bernt Schiele, co-examiner +Date of Submission: 12th of August, 2010 +Date of Defense: 23rd of September, 2010 +Darmstadt, 2010" +3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f,Enhancing Convolutional Neural Networks for Face Recognition with Occlusion Maps and Batch Triplet Loss,"Enhancing Convolutional Neural Networks for Face Recognition with +Occlusion Maps and Batch Triplet Loss +Daniel S´aez Triguerosa,b, Li Menga,∗, Margaret Hartnettb +School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK +IDscan Biometrics (a GBG company), London E14 9QD, UK" +3ba8f8b6bfb36465018430ffaef10d2caf3cfa7e,Local Directional Number Pattern for Face Analysis: Face and Expression Recognition,"Local Directional Number Pattern for Face +Analysis: Face and Expression Recognition +Adin Ramirez Rivera, Student Member, IEEE, Jorge Rojas Castillo, Student Member, IEEE, +nd Oksam Chae, Member, IEEE" +3b9d94752f8488106b2c007e11c193f35d941e92,"Appearance, Visual and Social Ensembles for Face Recognition in Personal Photo Collections","#2052 +CVPR 2013 Submission #2052. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#2052 +Appearance, Visual and Social Ensembles for +Face Recognition in Personal Photo Collections +Anonymous CVPR submission +Paper ID 2052" +3b557c4fd6775afc80c2cf7c8b16edde125b270e,Face recognition: Perspectives from the real world,"Face Recognition: Perspectives from the +Real-World +Bappaditya Mandal +Institute for Infocomm Research, A*STAR, +Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632. +Phone: +65 6408 2071; Fax: +65 6776 1378; +E-mail:" +3b410ae97e4564bc19d6c37bc44ada2dcd608552,Scalability Analysis of Audio-Visual Person Identity Verification,"Scalability Analysis of Audio-Visual Person +Identity Verification +Jacek Czyz1, Samy Bengio2, Christine Marcel2, and Luc Vandendorpe1 +Communications Laboratory, +Universit´e catholique de Louvain, B-1348 Belgium, +IDIAP, CH-1920 Martigny, +Switzerland" +6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture,"Low Resolution Face Recognition Using a +Two-Branch Deep Convolutional Neural Network +Architecture +Erfan Zangeneh, Mohammad Rahmati, and Yalda Mohsenzadeh" +6f288a12033fa895fb0e9ec3219f3115904f24de,Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition,"Learning Expressionlets via Universal Manifold +Model for Dynamic Facial Expression Recognition +Mengyi Liu, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE, Ruiping Wang, Member, IEEE, +Xilin Chen, Senior Member, IEEE" +6f957df9a7d3fc4eeba53086d3d154fc61ae88df,Modélisation et suivi des déformations faciales : applications à la description des expressions du visage dans le contexte de la langue des signes,"Mod´elisation et suivi des d´eformations faciales : +pplications `a la description des expressions du visage +dans le contexte de la langue des signes +Hugo Mercier +To cite this version: +Hugo Mercier. Mod´elisation et suivi des d´eformations faciales : applications `a la description +des expressions du visage dans le contexte de la langue des signes. Interface homme-machine +[cs.HC]. Universit´e Paul Sabatier - Toulouse III, 2007. Fran¸cais. +HAL Id: tel-00185084 +https://tel.archives-ouvertes.fr/tel-00185084 +Submitted on 5 Nov 2007 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non," +6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd,Multi-Scale Fully Convolutional Network for Fast Face Detection,"Pages 51.1-51.12 +DOI: https://dx.doi.org/10.5244/C.30.51" +6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81,"Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features","Structured Output SVM Prediction of Apparent Age, +Gender and Smile From Deep Features +Michal Uˇriˇc´aˇr +CMP, Dept. of Cybernetics +FEE, CTU in Prague +Radu Timofte +Computer Vision Lab +D-ITET, ETH Zurich +Rasmus Rothe +Computer Vision Lab +D-ITET, ETH Zurich +Luc Van Gool +PSI, ESAT, KU Leuven +CVL, D-ITET, ETH Zurich +Jiˇr´ı Matas +CMP, Dept. of Cybernetics +FEE, CTU in Prague" +6f08885b980049be95a991f6213ee49bbf05c48d,Author's Personal Copy Multi-kernel Appearance Model ☆,"This article appeared in a journal published by Elsevier. The attached +opy is furnished to the author for internal non-commercial research +nd education use, including for instruction at the authors institution +nd sharing with colleagues. +Other uses, including reproduction and distribution, or selling or +licensing copies, or posting to personal, institutional or third party +websites are prohibited. +In most cases authors are permitted to post their version of the +rticle (e.g. in Word or Tex form) to their personal website or +institutional repository. Authors requiring further information +regarding Elsevier’s archiving and manuscript policies are +encouraged to visit: +http://www.elsevier.com/authorsrights" +6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3,Learning probabilistic classifiers for human–computer interaction applications,"DOI 10.1007/s00530-005-0177-4 +R E G U L A R PA P E R +Nicu Sebe · Ira Cohen · Fabio G. Cozman · +Theo Gevers · Thomas S. Huang +Learning probabilistic classifiers for human–computer +interaction applications +Published online: 10 May 2005 +(cid:1) Springer-Verlag 2005 +intelligent +interaction," +6f3054f182c34ace890a32fdf1656b583fbc7445,Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN,"Article +Age Estimation Robust to Optical and Motion +Blurring by Deep Residual CNN +Jeon Seong Kang, Chan Sik Kim, Young Won Lee, Se Woon Cho and Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, +Seoul 100-715, Korea; (J.S.K.); (C.S.K.); +(Y.W.L.); (S.W.C.) +* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +Received: 9 March 2018; Accepted: 10 April 2018; Published: 13 April 2018" +6fa3857faba887ed048a9e355b3b8642c6aab1d8,Face Recognition in Challenging Environments: An Experimental and Reproducible Research Survey,"Face Recognition in Challenging Environments: +An Experimental and Reproducible Research +Survey +Manuel G¨unther and Laurent El Shafey and S´ebastien Marcel" +6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe,A novel rank order LoG filter for interest point detection,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012" +6fe2efbcb860767f6bb271edbb48640adbd806c3,Soft Biometrics; Human Identification Using Comparative Descriptions,"SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS +Soft Biometrics; Human Identification using +Comparative Descriptions +Daniel A. Reid, Mark S. Nixon, Sarah V. Stevenage" +6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae,DAISEE: Dataset for Affective States in E-Learning Environments,"DAISEE: Dataset for Affective States in +E-Learning Environments +Abhay Gupta1, Richik Jaiswal2, Sagar Adhikari2, Vineeth Balasubramanian2 +Microsoft India R&D Pvt. Ltd. +Department of Computer Science, IIT Hyderabad +{cs12b1032, cs12b1034," +6f5151c7446552fd6a611bf6263f14e729805ec7,Facial Action Unit Recognition using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classi ers,".=?E= )?JE 7EJ 4A?CEJE KIEC +?= *E=HO 2=JJAH .A=JKHAI MEJD +-++ +=IIEAHI +55EJD ++AJHA BH 8EIE 5FAA?D 5EC= 2H?AIIEC 7ELAHIEJO B 5KHHAO +5KHHAO /7 %:0 7 +)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA +B=?E= =?JE IOIJA .)+5 MA JDA FH>A B +EC B=?E= =?JE KEJI )7I 6DA EI J JH=E = IECA +AHHH?HHA?JEC KJFKJ -++ KJE?=II ?=IIEAH J AIJE=JA JDA +FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI +FHAIAJ E JDA FH>A E=CA 2=JJ I?=EC EI J ?=E>H=JA JDA -++ +KJFKJI J FH>=>EEJEAI =FFHFHE=JA IKI B JDAIA FH>=>EEJEAI =HA +J=A J >J=E = IAF=H=JA FH>=>EEJO BH A=?D )7 .A=JKHA +ANJH=?JE EI >O CAAH=JEC = =HCA K>AH B ?= >E=HO F=J +JAH *2 BA=JKHAI JDA IAA?JEC BH JDAIA KIEC B=IJ ?HHA=JE +JAHEC .+*. 6DA >E=I L=HE=?A FHFAHJEAI B JDA ?=IIEAH +=HA MA IDM JD=J >JD JDAIA IKH?AI B AHHH ?= >A HA +>O AD=?EC -++ JDHKCD JDA =FFE?=JE B >JIJH=FFEC +?=IIIAF=H=>EEJO MAECDJEC" +03c56c176ec6377dddb6a96c7b2e95408db65a7a,A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding,"A Novel Geometric Framework on Gram Matrix +Trajectories for Human Behavior Understanding +Anis Kacem, Mohamed Daoudi, Boulbaba Ben Amor, Stefano Berretti, and Juan Carlos Alvarez-Paiva" +0322e69172f54b95ae6a90eb3af91d3daa5e36ea,Face Classification using Adjusted Histogram in Grayscale,"Face Classification using Adjusted Histogram in +Grayscale +Weenakorn Ieosanurak, and Watcharin Klongdee" +03f7041515d8a6dcb9170763d4f6debd50202c2b,Clustering Millions of Faces by Identity,"Clustering Millions of Faces by Identity +Charles Otto, Student Member, IEEE, Dayong Wang, Member, IEEE, and Anil K. Jain, Fellow, IEEE" +038ce930a02d38fb30d15aac654ec95640fe5cb0,Approximate structured output learning for Constrained Local Models with application to real-time facial feature detection and tracking on low-power devices,"Approximate Structured Output Learning for Constrained Local +Models with Application to Real-time Facial Feature Detection and +Tracking on Low-power Devices +Shuai Zheng, Paul Sturgess and Philip H. S. Torr" +03c1fc9c3339813ed81ad0de540132f9f695a0f8,Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification,"Proceedings of Machine Learning Research 81:1–15, 2018 +Conference on Fairness, Accountability, and Transparency +Gender Shades: Intersectional Accuracy Disparities in +Commercial Gender Classification∗ +Joy Buolamwini +MIT Media Lab 75 Amherst St. Cambridge, MA 02139 +Timnit Gebru +Microsoft Research 641 Avenue of the Americas, New York, NY 10011 +Editors: Sorelle A. Friedler and Christo Wilson" +0339459a5b5439d38acd9c40a0c5fea178ba52fb,Multimodal recognition of emotions in car environments,"D|C|I&I 2009 Prague +Multimodal recognition of emotions in car +environments +Dragoş DatcuA and Léon J.M. RothkrantzB" +032825000c03b8ab4c207e1af4daeb1f225eb025,A Novel Approach for Human Face Detection in Color Images Using Skin Color and Golden Ratio,"J. Appl. Environ. Biol. Sci., 7(10)159-164, 2017 +ISSN: 2090-4274 +© 2017, TextRoad Publication +Journal of Applied Environmental +nd Biological Sciences +www.textroad.com +A Novel Approach for Human Face Detection in Color Images Using Skin +Color and Golden Ratio +Faizan Ullah*1, Dilawar Shah1, Sabir Shah1, Abdus Salam2, Shujaat Ali1 +Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan1 +Department of Computer Science, Abdul WaliKhan University, Mardan, KPK, Pakistan2 +Received: May 9, 2017 +Accepted: August 2, 2017" +03a8f53058127798bc2bc0245d21e78354f6c93b,Max-margin additive classifiers for detection,"Max-Margin Additive Classifiers for Detection +Subhransu Maji and Alexander C. Berg +Sam Hare +VGG Reading Group +October 30, 2009" +03b98b4a2c0b7cc7dae7724b5fe623a43eaf877b,Acume: A Novel Visualization Tool for Understanding Facial Expression and Gesture Data,"Acume: A Novel Visualization Tool for Understanding Facial +Expression and Gesture Data" +03adcf58d947a412f3904a79f2ab51cfdf0e838a,Video-based face recognition: a survey,"World Journal of Science and Technology 2012, 2(4):136-139 +ISSN: 2231 – 2587 +Available Online: www.worldjournalofscience.com +_________________________________________________________________ +Proceedings of ""Conference on Advances in Communication and Computing (NCACC'12)” +Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule,Maharastra,India. +April 21, 2012 +Video-based face recognition: a survey +Shailaja A Patil1 and Pramod J Deore2 +Department of Electronics and Telecommunication, R.C.Patel Institute of Technology,Shirpur,Dist.Dhule.Maharashtra,India." +03f14159718cb495ca50786f278f8518c0d8c8c9,Performance evaluation of HOG and Gabor features for vision-based vehicle detection,"015 IEEE International Conference on Control System, Computing and Engineering, Nov 27 – Nov 29, 2015 Penang, Malaysia +015 IEEE International Conference on Control System, +Computing and Engineering (ICCSCE2015) +Technical Session 1A – DAY 1 – 27th Nov 2015 +Time: 3.00 pm – 4.30 pm +Venue: Jintan +Topic: Signal and Image Processing +.00 pm – 3.15pm +.15 pm – 3.30pm +.30 pm – 3.45pm +.45 pm – 4.00pm +.00 pm – 4.15pm +.15 pm – 4.30pm +.30 pm – 4.45pm +A 01 ID3 +Can Subspace Based Learning Approach Perform on Makeup Face +Recognition? +Khor Ean Yee, Pang Ying Han, Ooi Shih Yin and Wee Kuok Kwee +A 02 ID35 +Performance Evaluation of HOG and Gabor Features for Vision-based" +0394040749195937e535af4dda134206aa830258,Geodesic entropic graphs for dimension and entropy estimation in manifold learning,"Geodesic Entropic Graphs for Dimension and +Entropy Estimation in Manifold Learning +Jose A. Costa and Alfred O. Hero III +December 16, 2003" +03ac1c694bc84a27621da6bfe73ea9f7210c6d45,Chapter 1 Introduction to information security foundations and applications,"Chapter 1 +Introduction to information security +foundations and applications +Ali Ismail Awad1,2 +.1 Background +Information security has extended to include several research directions like user +uthentication and authorization, network security, hardware security, software secu- +rity, and data cryptography. Information security has become a crucial need for +protecting almost all information transaction applications. Security is considered as +n important science discipline whose many multifaceted complexities deserve the +synergy of the computer science and engineering communities. +Recently, due to the proliferation of Information and Communication Tech- +nologies, information security has started to cover emerging topics such as cloud +omputing security, smart cities’ security and privacy, healthcare and telemedicine, +the Internet-of-Things (IoT) security [1], the Internet-of-Vehicles security, and sev- +eral types of wireless sensor networks security [2,3]. In addition, information security +has extended further to cover not only technical security problems but also social and +organizational security challenges [4,5]. +Traditional systems’ development approaches were focusing on the system’s +usability where security was left to the last stage with less priority. However, the" +0394e684bd0a94fc2ff09d2baef8059c2652ffb0,Median Robust Extended Local Binary Pattern for Texture Classification,"Median Robust Extended Local Binary Pattern +for Texture Classification +Li Liu, Songyang Lao, Paul W. Fieguth, Member, IEEE, Yulan Guo, +Xiaogang Wang, and Matti Pietikäinen, Fellow, IEEE +Index Terms— Texture descriptors, rotation invariance, local +inary pattern (LBP), feature extraction, texture analysis. +how the texture recognition process works in humans as +well as in the important role it plays in the wide variety of +pplications of computer vision and image analysis [1], [2]. +The many applications of texture classification include medical +image analysis and understanding, object recognition, biomet- +rics, content-based image retrieval, remote sensing, industrial +inspection, and document classification. +As a classical pattern recognition problem, texture classifi- +ation primarily consists of two critical subproblems: feature +extraction and classifier designation [1], [2]. It is generally +greed that the extraction of powerful texture features plays a +relatively more important role, since if poor features are used +even the best classifier will fail to achieve good recognition +results. Consequently, most research in texture classification" +03f4c0fe190e5e451d51310bca61c704b39dcac8,CHEAVD: a Chinese natural emotional audio-visual database,"J Ambient Intell Human Comput +DOI 10.1007/s12652-016-0406-z +O R I G I N A L R E S E A R C H +CHEAVD: a Chinese natural emotional audio–visual database +Ya Li1 +• Jianhua Tao1,2,3 +• Linlin Chao1 +• Wei Bao1,4 +• Yazhu Liu1,4 +Received: 30 March 2016 / Accepted: 22 August 2016 +Ó Springer-Verlag Berlin Heidelberg 2016" +031055c241b92d66b6984643eb9e05fd605f24e2,Multi-fold MIL Training for Weakly Supervised Object Localization,"Multi-fold MIL Training for Weakly Supervised Object Localization +Ramazan Gokberk Cinbis +Jakob Verbeek Cordelia Schmid +Inria∗" +0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136,Large Scale 3D Morphable Models,"Int J Comput Vis +DOI 10.1007/s11263-017-1009-7 +Large Scale 3D Morphable Models +James Booth1 +Stefanos Zafeiriou1 +· Anastasios Roussos1,3 · Allan Ponniah2 · David Dunaway2 · +Received: 15 March 2016 / Accepted: 24 March 2017 +© The Author(s) 2017. This article is an open access publication" +034addac4637121e953511301ef3a3226a9e75fd,Implied Feedback: Learning Nuances of User Behavior in Image Search,"Implied Feedback: Learning Nuances of User Behavior in Image Search +Devi Parikh +Virginia Tech" +03701e66eda54d5ab1dc36a3a6d165389be0ce79,Improved Principal Component Regression for Face Recognition Under Illumination Variations,"Improved Principal Component Regression for Face +Recognition Under Illumination Variations +Shih-Ming Huang and Jar-Ferr Yang, Fellow, IEEE" +9b318098f3660b453fbdb7a579778ab5e9118c4c,Joint Patch and Multi-label Learning for Facial Action Unit and Holistic Expression Recognition,"Joint Patch and Multi-label Learning for Facial +Action Unit and Holistic Expression Recognition +Kaili Zhao, Wen-Sheng Chu, Student Member, IEEE, Fernando De la Torre, +Jeffrey F. Cohn, and Honggang Zhang, Senior Member, IEEE +lassifiers without" +9b474d6e81e3b94e0c7881210e249689139b3e04,VG-RAM Weightless Neural Networks for Face Recognition,"VG-RAM Weightless Neural Networks for +Face Recognition +Alberto F. De Souza, Claudine Badue, Felipe Pedroni, Stiven Schwanz Dias, +Hallysson Oliveira and Soterio Ferreira de Souza +Departamento de Inform´atica +Universidade Federal do Esp´ırito Santo +Av. Fernando Ferrari, 514, 29075-910 - Vit´oria-ES +Brazil +. Introduction +Computerized human face recognition has many practical applications, such as access control, +security monitoring, and surveillance systems, and has been one of the most challenging and +ctive research areas in computer vision for many decades (Zhao et al.; 2003). Even though +urrent machine recognition systems have reached a certain level of maturity, the recognition +of faces with different facial expressions, occlusions, and changes in illumination and/or pose +is still a hard problem. +A general statement of the problem of machine recognition of faces can be formulated as fol- +lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene +using a database of faces. In identification problems, given a face as input, the system reports +ack the identity of an individual based on a database of known individuals; whereas in veri- +fication problems, the system confirms or rejects the claimed identity of the input face. In both" +9bcfadd22b2c84a717c56a2725971b6d49d3a804,How to Detect a Loss of Attention in a Tutoring System using Facial Expressions and Gaze Direction,"How to Detect a Loss of Attention in a Tutoring System +using Facial Expressions and Gaze Direction +Mark ter Maat" +9b164cef4b4ad93e89f7c1aada81ae7af802f3a4,A Fully Automatic and Haar like Feature Extraction-Based Method for Lip Contour Detection,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +Vol. 2(1), 17-20, January (2013) +Res.J.Recent Sci. +A Fully Automatic and Haar like Feature Extraction-Based Method for Lip +Contour Detection +Zahedi Morteza and Mohamadian Zahra +School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN +Received 26th September 2012, revised 27th October 2012, accepted 6th November 2012 +Available online at: www.isca.in" +9bac481dc4171aa2d847feac546c9f7299cc5aa0,Matrix Product State for Higher-Order Tensor Compression and Classification,"Matrix Product State for Higher-Order Tensor +Compression and Classification +Johann A. Bengua1, Ho N. Phien1, Hoang D. Tuan1 and Minh N. Do2" +9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7,Faical Expression Recognition by Combining Texture and Geometrical Features,"Faical Expression Recognition by Combining +Texture and Geometrical Features +Renjie Liu, Ruofei Du, Bao-Liang Lu*" +9b6d0b3fbf7d07a7bb0d86290f97058aa6153179,"NII , Japan at the first THUMOS Workshop 2013","NII, Japan at the first THUMOS Workshop 2013 +Sang Phan, Duy-Dinh Le, Shin’ichi Satoh +National Institute of Informatics +-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430" +9e8637a5419fec97f162153569ec4fc53579c21e,Segmentation and Normalization of Human Ears Using Cascaded Pose Regression,"Segmentation and Normalization of Human Ears +using Cascaded Pose Regression +Anika Pflug and Christoph Busch +University of Applied Sciences Darmstadt - CASED, +Haardtring 100, +64295 Darmstadt, Germany +http://www.h-da.de" +9e4b052844d154c3431120ec27e78813b637b4fc,Local gradient pattern - A novel feature representation for facial expression recognition,"Journal of AI and Data Mining +Vol. 2, No .1, 2014, 33-38. +Local gradient pattern - A novel feature representation for facial +expression recognition +M. Shahidul Islam +Department of Computer Science, School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand. +Received 23 April 2013; accepted 16 June 2013 +*Corresponding author: (M.Shahidul Islam)" +9ea73660fccc4da51c7bc6eb6eedabcce7b5cead,Talking head detection by likelihood-ratio test,"Talking Head Detection by Likelihood-Ratio Test† +Carl Quillen, Kara Greenfield, and William Campbell +MIT Lincoln Laboratory, +Lexington MA 02420, USA" +9e9052256442f4e254663ea55c87303c85310df9,Review On Attribute - assisted Reranking for Image Search,"International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) +Volume 4 Issue 10, October 2015 +Review On Attribute-assisted Reranking for +Image Search +Waghmare Supriya, Wavhal Archana, Patil Nital, Tapkir Yogita, Prof. Yogesh Thorat" +9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7,A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA,"Hong-Bo Deng, Lian-Wen Jin, Li-Xin Zhen, Jian-Cheng Huang +A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA +A New Facial Expression Recognition Method Based on +Local Gabor Filter Bank and PCA plus LDA +Hong-Bo Deng1, Lian-Wen Jin1, Li-Xin Zhen2, Jian-Cheng Huang2 +School of Electronic and Information Engineering, South China +University of Technology, Guangzhou, 510640, P.R.China +Motorola China Research Center, Shanghai, 210000, P.R.China +{hbdeng, +{Li-Xin.Zhen," +9ef2b2db11ed117521424c275c3ce1b5c696b9b3,Robust Face Alignment Using a Mixture of Invariant Experts,"Robust Face Alignment Using a Mixture of Invariant Experts +Oncel Tuzel† +Salil Tambe‡∗ +Tim K. Marks† +Intel Corporation +Mitsubishi Electric Research Labs (MERL) +{oncel," +9e5acdda54481104aaf19974dca6382ed5ff21ed,Automatic localization of facial landmarks from expressive images of high complexity,"Yulia Gizatdinova and Veikko Surakka +Automatic localization of facial +landmarks from expressive images +of high complexity +DEPARTMENT OF COMPUTER SCIENCES +UNIVERSITY OF TAMPERE +D‐2008‐9 +TAMPERE 2008" +9e0285debd4b0ba7769b389181bd3e0fd7a02af6,From Face Images and Attributes to Attributes,"From face images and attributes to attributes +Robert Torfason, Eirikur Agustsson, Rasmus Rothe, Radu Timofte +Computer Vision Laboratory, ETH Zurich, Switzerland" +040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d,Large-scale Bisample Learning on ID vs. Spot Face Recognition,"Noname manuscript No. +(will be inserted by the editor) +Large-scale Bisample Learning on ID vs. Spot Face Recognition +Xiangyu Zhu∗ · Hao Liu∗ · Zhen Lei · Hailin Shi · Fan Yang · Dong +Yi · Stan Z. Li +Received: date / Accepted: date" +047f6afa87f48de7e32e14229844d1587185ce45,An Improvement of Energy-Transfer Features Using DCT for Face Detection,"An Improvement of Energy-Transfer Features +Using DCT for Face Detection +Radovan Fusek, Eduard Sojka, Karel Mozdˇreˇn, and Milan ˇSurkala +Technical University of Ostrava, FEECS, Department of Computer Science, +7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic" +04b851f25d6d49e61a528606953e11cfac7df2b2,Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition,"Optical Flow Guided Feature: A Fast and Robust Motion Representation for +Video Action Recognition +Shuyang Sun1,2, Zhanghui Kuang2, Lu Sheng3, Wanli Ouyang1, Wei Zhang2 +The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong +{shuyang.sun +{wayne.zhang" +0447bdb71490c24dd9c865e187824dee5813a676,Manifold Estimation in View-based Feature Space for Face Synthesis Across Pose,"Manifold Estimation in View-based Feature +Space for Face Synthesis Across Pose +Paper 27" +0435a34e93b8dda459de49b499dd71dbb478dc18,"VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks","VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification +Using Convolutional Neural Networks +Ayesha Gurnani£1, Vandit Gajjar£1, Viraj Mavani£1, Yash Khandhediya£1 +Department of Electronics and Communication Engineering and +Computer Vision Group, L. D. College of Engineering, Ahmedabad, India +{gurnani.ayesha.52, gajjar.vandit.381, mavani.viraj.604, +the need for handcrafted facial descriptors and data +preprocessing. D-CNN models have been not only +successfully applied to human face analysis, but also for +the visual saliency detection [21, 22, 23]. Visual Saliency +is fundamentally an intensity map where higher intensity +signifies regions, where a general human being would +look, and lower intensities mean decreasing level of visual +ttention. It’s a measure of visual attention of humans +ased on the content of the image. It has numerous +pplications in computer vision and image processing +tasks. It is still an open problem when considering the MIT +Saliency Benchmark [24]. +In previous five years, considering age estimation, +gender classification and facial expression classification" +044ba70e6744e80c6a09fa63ed6822ae241386f2,Early Prediction for Physical Human Robot Collaboration in the Operating Room,"TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION +Early Prediction for Physical Human Robot +Collaboration in the Operating Room +Tian Zhou, Student Member, IEEE, and Juan Wachs, Member, IEEE" +04dcdb7cb0d3c462bdefdd05508edfcff5a6d315,Assisting the training of deep neural networks with applications to computer vision,"Assisting the training of deep neural networks +with applications to computer vision +Adriana Romero +tesi doctoral està subjecta a +Aquesta +CompartirIgual 4.0. Espanya de Creative Commons. +Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual +.0. España de Creative Commons. +This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- +ShareAlike 4.0. Spain License. +llicència Reconeixement- NoComercial –" +044fdb693a8d96a61a9b2622dd1737ce8e5ff4fa,Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,"Dynamic Texture Recognition Using Local Binary +Patterns with an Application to Facial Expressions +Guoying Zhao and Matti Pietik¨ainen, Senior Member, IEEE" +04f55f81bbd879773e2b8df9c6b7c1d324bc72d8,Multi-view Face Analysis Based on Gabor Features,"Multi-view Face Analysis Based on Gabor Features +Hongli Liu, Weifeng Liu, Yanjiang Wang +College of Information and Control Engineering in China University of Petroleum, +Qingdao 266580, China" +0431e8a01bae556c0d8b2b431e334f7395dd803a,Learning Localized Perceptual Similarity Metrics for Interactive Categorization,"Learning Localized Perceptual Similarity Metrics for Interactive Categorization +Catherine Wah ∗ +Google Inc. +google.com" +04b4c779b43b830220bf938223f685d1057368e9,Video retrieval based on deep convolutional neural network,"Video retrieval based on deep convolutional +neural network +Yajiao Dong +School of Information and Electronics, +Beijing Institution of Technology, Beijing, China +Jianguo Li +School of Information and Electronics, +Beijing Institution of Technology, Beijing, China" +04616814f1aabe3799f8ab67101fbaf9fd115ae4,UNIVERSITÉ DE CAEN BASSE NORMANDIE U . F . R . de Sciences,"UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese" +047d7cf4301cae3d318468fe03a1c4ce43b086ed,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"Co-Localization of Audio Sources in Images Using +Binaural Features and Locally-Linear Regression +Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin +To cite this version: +Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin. Co-Localization of Audio +Sources in Images Using Binaural Features and Locally-Linear Regression. IEEE Transactions +on Audio Speech and Language Processing, 2015, 15p. +HAL Id: hal-01112834 +https://hal.inria.fr/hal-01112834 +Submitted on 3 Feb 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +04317e63c08e7888cef480fe79f12d3c255c5b00,Face Recognition Using a Unified 3D Morphable Model,"Face Recognition Using a Unified 3D Morphable Model +Hu, G., Yan, F., Chan, C-H., Deng, W., Christmas, W., Kittler, J., & Robertson, N. M. (2016). Face Recognition +Using a Unified 3D Morphable Model. In Computer Vision – ECCV 2016: 14th European Conference, +Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII (pp. 73-89). (Lecture Notes in +Computer Science; Vol. 9912). Springer Verlag. DOI: 10.1007/978-3-319-46484-8_5 +Published in: +Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, +016, Proceedings, Part VIII +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +Publisher rights +The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46484-8_5 +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy +The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to" +0470b0ab569fac5bbe385fa5565036739d4c37f8,Automatic face naming with caption-based supervision,"Automatic Face Naming with Caption-based Supervision +Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid +To cite this version: +Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid. Automatic Face Naming +with Caption-based Supervision. CVPR 2008 - IEEE Conference on Computer Vision +Pattern Recognition, +iety, +<10.1109/CVPR.2008.4587603>. +008, +pp.1-8, +008, Anchorage, United +. +IEEE Computer +States. +HAL Id: inria-00321048 +https://hal.inria.fr/inria-00321048v2 +Submitted on 11 Apr 2011 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub-" +6a3a07deadcaaab42a0689fbe5879b5dfc3ede52,Learning to Estimate Pose by Watching Videos,"Learning to Estimate Pose by Watching Videos +Prabuddha Chakraborty and Vinay P. Namboodiri +Department of Computer Science and Engineering +IIT Kanpur +{prabudc, vinaypn}" +6afed8dc29bc568b58778f066dc44146cad5366c,Kernel Hebbian Algorithm for Single-Frame Super-Resolution,"Kernel Hebbian Algorithm for Single-Frame +Super-Resolution +Kwang In Kim1, Matthias O. Franz1, and Bernhard Sch¨olkopf1 +Max Planck Institute f¨ur biologische Kybernetik +Spemannstr. 38, D-72076 T¨ubingen, Germany +{kimki, mof, +http://www.kyb.tuebingen.mpg.de/" +6a16b91b2db0a3164f62bfd956530a4206b23fea,A Method for Real-Time Eye Blink Detection and Its Application,"A Method for Real-Time Eye Blink Detection and Its Application +Chinnawat Devahasdin Na Ayudhya +Mahidol Wittayanusorn School +Puttamonton, Nakornpatom 73170, Thailand" +6a806978ca5cd593d0ccd8b3711b6ef2a163d810,Facial Feature Tracking for Emotional Dynamic Analysis,"Facial feature tracking for Emotional Dynamic +Analysis +Thibaud Senechal1, Vincent Rapp1, and Lionel Prevost2 +ISIR, CNRS UMR 7222 +Univ. Pierre et Marie Curie, Paris +{rapp, +LAMIA, EA 4540 +Univ. of Fr. West Indies & Guyana" +6a8a3c604591e7dd4346611c14dbef0c8ce9ba54,An Affect-Responsive Interactive Photo Frame,"ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS. +An Affect-Responsive Interactive Photo Frame +Hamdi Dibeklio˘glu, Ilkka Kosunen, Marcos Ortega Hortas, Albert Ali Salah, Petr Zuz´anek" +6a52e6fce541126ff429f3c6d573bc774f5b8d89,Role of Facial Emotion in Social Correlation,"Role of Facial Emotion in Social Correlation +Pankaj Mishra, Rafik Hadfi, and Takayuki Ito +Department of Computer Science and Engineering +Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan +{pankaj.mishra," +6aefe7460e1540438ffa63f7757c4750c844764d,Non-rigid Segmentation Using Sparse Low Dimensional Manifolds and Deep Belief Networks,"Non-rigid Segmentation using Sparse Low Dimensional Manifolds and +Deep Belief Networks ∗ +Jacinto C. Nascimento +Instituto de Sistemas e Rob´otica +Instituto Superior T´ecnico, Portugal" +6a7e464464f70afea78552c8386f4d2763ea1d9c,Facial Landmark Localization – A Literature Survey,"Review Article +International Journal of Current Engineering and Technology +E-ISSN 2277 – 4106, P-ISSN 2347 - 5161 +©2014 INPRESSCO +, All Rights Reserved +Available at http://inpressco.com/category/ijcet +Facial Landmark Localization – A Literature Survey +Dhananjay RathodȦ*, Vinay A, Shylaja SSȦ and S NatarajanȦ +ȦDepartment of Information Science and Engineering, PES Institute of Technology, Bangalore, Karnataka, India +Accepted 25 May 2014, Available online 01 June2014, Vol.4, No.3 (June 2014)" +32925200665a1bbb4fc8131cd192cb34c2d7d9e3,An Active Appearance Model with a Derivative-Free Optimization,"MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN +An Active Appearance Model with a Derivative-Free +Optimization +Jixia ZHANG‡, Franck DAVOINE†, Chunhong PAN‡ +CNRS†, Institute of Automation of the Chinese Academy of Sciences‡ +95, Zhongguancun Dong Lu, PO Box 2728 − Beijing 100190 − PR China +LIAMA Sino-French IT Lab." +322c063e97cd26f75191ae908f09a41c534eba90,Improving Image Classification Using Semantic Attributes,"Noname manuscript No. +(will be inserted by the editor) +Improving Image Classification using Semantic Attributes +Yu Su · Fr´ed´eric Jurie +Received: date / Accepted: date" +325b048ecd5b4d14dce32f92bff093cd744aa7f8,Multi-Image Graph Cut Clothing Segmentation for Recognizing People,"#2670 +CVPR 2008 Submission #2670. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#2670 +Multi-Image Graph Cut Clothing Segmentation for Recognizing People +Anonymous CVPR submission +Paper ID 2670" +32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347,Hierarchical Sparse and Collaborative Low-Rank representation for emotion recognition,"HIERARCHICAL SPARSE AND COLLABORATIVE LOW-RANK REPRESENTATION FOR +EMOTION RECOGNITION +Xiang Xiang, Minh Dao, Gregory D. Hager, Trac D. Tran +Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA +{xxiang, minh.dao, ghager1," +324f39fb5673ec2296d90142cf9a909e595d82cf,Relationship Matrix Nonnegative Decomposition for Clustering,"Hindawi Publishing Corporation +Mathematical Problems in Engineering +Volume 2011, Article ID 864540, 15 pages +doi:10.1155/2011/864540 +Research Article +Relationship Matrix Nonnegative +Decomposition for Clustering +Ji-Yuan Pan and Jiang-She Zhang +Faculty of Science and State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong +University, Xi’an Shaanxi Province, Xi’an 710049, China +Correspondence should be addressed to Ji-Yuan Pan, +Received 18 January 2011; Revised 28 February 2011; Accepted 9 March 2011 +Academic Editor: Angelo Luongo +Copyright q 2011 J.-Y. Pan and J.-S. Zhang. This is an open access article distributed under +the Creative Commons Attribution License, which permits unrestricted use, distribution, and +reproduction in any medium, provided the original work is properly cited. +Nonnegative matrix factorization (cid:2)NMF(cid:3) is a popular tool for analyzing the latent structure of non- +negative data. For a positive pairwise similarity matrix, symmetric NMF (cid:2)SNMF(cid:3) and weighted +NMF (cid:2)WNMF(cid:3) can be used to cluster the data. However, both of them are not very ef‌f‌icient +for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship" +321bd4d5d80abb1bae675a48583f872af3919172,Entropy-weighted feature-fusion method for head-pose estimation,"Wang et al. EURASIP Journal on Image and Video Processing (2016) 2016:44 +DOI 10.1186/s13640-016-0152-3 +EURASIP Journal on Image +nd Video Processing +R EV I E W +Entropy-weighted feature-fusion method +for head-pose estimation +Xiao-Meng Wang*, Kang Liu and Xu Qian +Open Access" +32575ffa69d85bbc6aef5b21d73e809b37bf376d,Measuring Biometric Sample Quality in Terms of Biometric Information,"-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61 +;K=H= +5?D B 1BH=JE 6A?DCO -CEAAHEC +7ELAHIEJO B JJ=M= +J=HE +)*564)+6 +6DEI F=FAH = AM =FFH=?D J A= +IKHA L=HE=JEI E >EAJHE? I=FA GK=EJO 9A >ACE MEJD +JDA EJKEJE JD=J J = >EAJHE? I=FA ME HA +JDA =KJ B EBH=JE =L=E=>A 1 H +J A=IKHA JDA =KJ B EBH=JE MA +>EAJHE? EBH=JE =I JDA E K?AHJ=EJO +=>KJ JDA B = FAHI J = IAJ B >EAJHE? A= +IKHAAJI 9A JDA IDM JD=J JDA >EAJHE? EBH=JE BH += FAHI =O >A >O JDA HA=JELA AJHFO D(p(cid:107)q) +>AJMAA JDA FFK=JE BA=JKHA q JDA FAHII +BA=JKHA p 6DA >EAJHE? EBH=JE BH = IOI +JA EI JDA A= D(p(cid:107)q) BH = FAHII E JDA FFK=JE 1 +J FH=?JE?=O A=IKHA D(p(cid:107)q) MEJD I= +FAI MA = =CHEJD MDE?D HACK=HEAI = /=KIIE=" +32728e1eb1da13686b69cc0bd7cce55a5c963cdd,Automatic Facial Emotion Recognition Method Based on Eye Region Changes,"Automatic Facial Emotion Recognition Method Based on Eye +Region Changes +Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran +Mina Navraan +Nasrollah Moghadam Charkari* +Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran +Muharram Mansoorizadeh +Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran +Received: 19/Apr/2015 Revised: 19/Mar/2016 Accepted: 19/Apr/2016" +324b9369a1457213ec7a5a12fe77c0ee9aef1ad4,Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network,"Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network +Jinwei Gu Xiaodong Yang Shalini De Mello Jan Kautz +NVIDIA" +32df63d395b5462a8a4a3c3574ae7916b0cd4d1d,Facial expression recognition using ensemble of classifiers,"978-1-4577-0539-7/11/$26.00 ©2011 IEEE +ICASSP 2011" +35308a3fd49d4f33bdbd35fefee39e39fe6b30b7,Efficient and effective human action recognition in video through motion boundary description with a compact set of trajectories,"biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for allUGent research publications. Ghent University has implemented a mandate stipulating that allacademic publications of UGent researchers should be deposited and archived in this repository.Except for items where current copyright restrictions apply, these papers are available in OpenAccess. This item is the archived peer-reviewed author-version of: Efficient and effective human action recognition in video through motion boundary description witha compact set of trajectories Jeong-Jik Seo, Jisoo Son, Hyung-Il Kim, Wesley De Neve, and Yong Man Ro In: 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition,1, 1-6, 2015. To refer to or to cite this work, please use the citation to the published version: Seo, J., Son, J., Kim, H., De Neve, W., and Ro, Y. M. (2015). Efficient and effective human actionrecognition in video through motion boundary description with a compact set of trajectories. 11thIEEE International Conference and Workshops on Automatic Face and Gesture Recognition 1 1-6.http://dx.doi.org/10.1109/FG.2015.7163123" +352d61eb66b053ae5689bd194840fd5d33f0e9c0,Analysis Dictionary Learning based Classification: Structure for Robustness,"Analysis Dictionary Learning based +Classification: Structure for Robustness +Wen Tang, Ashkan Panahi, Hamid Krim, and Liyi Dai" +3538d2b5f7ab393387ce138611ffa325b6400774,A DSP-based approach for the implementation of face recognition algorithms,"A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION +ALGORITHMS +A. U. Batur +B. E. Flinchbaugh +M. H. Hayes IIl +Center for Signal and Image Proc. +Georgia Inst. Of Technology +Atlanta, GA +Imaging and Audio Lab. +Texas Instruments +Dallas, TX +Center for Signal and Image Proc. +Georgia Inst. Of Technology +Atlanta, CA" +3504907a2e3c81d78e9dfe71c93ac145b1318f9c,Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks,"Noname manuscript No. +(will be inserted by the editor) +Unconstrained Still/Video-Based Face Verification with Deep +Convolutional Neural Networks +Jun-Cheng Chen∗ +Kumar∗ · Ching-Hui Chen∗ · Vishal M. Patel · Carlos D. Castillo · +Rama Chellappa +· Rajeev Ranjan∗ · Swami Sankaranarayanan∗ · Amit +Received: date / Accepted: date" +35b1c1f2851e9ac4381ef41b4d980f398f1aad68,Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning,"Geometry Guided Convolutional Neural Networks for +Self-Supervised Video Representation Learning +Chuang Gan1, Boqing Gong2, Kun Liu3, Hao Su 4, Leonidas J. Guibas 5 +MIT-IBM Watson AI Lab , 2 Tencent AI Lab, 3 BUPT, 4 UCSD, 5 Stanford University" +351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd,ActionSnapping: Motion-Based Video Synchronization,"ActionSnapping: Motion-based Video +Synchronization +Jean-Charles Bazin and Alexander Sorkine-Hornung +Disney Research" +35e4b6c20756cd6388a3c0012b58acee14ffa604,Gender Classification in Large Databases,"Gender Classification in Large Databases +E. Ram´on-Balmaseda, J. Lorenzo-Navarro, and M. Castrill´on-Santana (cid:63) +Universidad de Las Palmas de Gran Canaria +SIANI +Spain" +35f084ddee49072fdb6e0e2e6344ce50c02457ef,A bilinear illumination model for robust face recognition,"A Bilinear Illumination Model +for Robust Face Recognition +The Harvard community has made this +rticle openly available. Please share how +this access benefits you. Your story matters +Citation +Lee, Jinho, Baback Moghaddam, Hanspeter Pfister, and Raghu +Machiraju. 2005. A bilinear illumination model for robust face +recognition. Proceedings of the Tenth IEEE International Conference +on Computer Vision: October 17-21, 2005, Beijing, China. 1177-1184. +Los Almamitos, C.A.: IEEE Computer Society. +Published Version +doi:10.1109/ICCV.2005.5 +Citable link +http://nrs.harvard.edu/urn-3:HUL.InstRepos:4238979 +Terms of Use +This article was downloaded from Harvard University’s DASH +repository, and is made available under the terms and conditions +pplicable to Other Posted Material, as set forth at http:// +nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-" +353a89c277cca3e3e4e8c6a199ae3442cdad59b5,Learning from Multiple Views of Data, +35e0256b33212ddad2db548484c595334f15b4da,Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification,"Attentive Fashion Grammar Network for +Fashion Landmark Detection and Clothing Category Classification +Wenguan Wang∗1,2, Yuanlu Xu∗2, Jianbing Shen†1, and Song-Chun Zhu2 +Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China +Department of Computer Science and Statistics, University of California, Los Angeles, USA" +35e6f6e5f4f780508e5f58e87f9efe2b07d8a864,Summarization of User-Generated Sports Video by Using Deep Action Recognition Features,"This paper is a preprint (IEEE accepted status). IEEE copyright notice. 2018 IEEE. +Personal use of this material is permitted. Permission from IEEE must be obtained for all +other uses, in any current or future media, including reprinting/republishing this material for +dvertising or promotional purposes, creating new collective works, for resale or redistribu- +tion to servers or lists, or reuse of any copyrighted. +A. Tejero-de-Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna and E. Rahtu, ”Sum- +marization of User-Generated Sports Video by Using Deep Action Recognition Features,” in +doi: 10.1109/TMM.2018.2794265 +keywords: Cameras; Feature extraction; Games; Hidden Markov models; Semantics; +Three-dimensional displays; 3D convolutional neural networks; Sports video summarization; +ction recognition; deep learning; long short-term memory; user-generated video, +URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8259321&isnumber=4456689" +35e87e06cf19908855a16ede8c79a0d3d7687b5c,Strategies for Multi-View Face Recognition for Identification of Human Faces: A Review,"Strategies for Multi-View Face Recognition for +Identification of Human Faces: A Review +Pritesh G. Shah +Department of Computer Science +Mahatma Gandhi Shikshan Mandal’s, +Arts, Science and Commerce College, Chopda +Dist: Jalgaon (M.S) +Dr. R.R.Manza +Department of Computer Science and IT +Dr. Babasaheb Ambedkar Marathwada University +Aurangabad." +352110778d2cc2e7110f0bf773398812fd905eb1,Matrix Completion for Weakly-Supervised Multi-Label Image Classification,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014 +Matrix Completion for Weakly-supervised +Multi-label Image Classification +Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino" +69ff40fd5ce7c3e6db95a2b63d763edd8db3a102,Human Age Estimation via Geometric and Textural Features,"HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL +FEATURES +Merve KILINC1 and Yusuf Sinan AKGUL2 +TUBITAK BILGEM UEKAE, Anibal Street, 41470, Gebze, Kocaeli, Turkey +GIT Vision Lab, http://vision.gyte.edu.tr/, Department of Computer Engineering, Gebze Institute of Technology, 41400, +Kocaeli, Turkey +Keywords: +Age estimation:age classification:geometric features:LBP:Gabor:LGBP:cross ratio:FGNET:MORPH" +69a55c30c085ad1b72dd2789b3f699b2f4d3169f,Automatic Happiness Strength Analysis of a Group of People using Facial Expressions,"International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016 +Automatic Happiness Strength Analysis of a +Group of People using Facial Expressions +Sagiri Prasanthi#1, Maddali M.V.M. Kumar*2, +#1PG Student, #2Assistant Professor +#1, #2Department of MCA, St. Ann’s College of Engineering & Technology, Andhra Pradesh, India +is a collective concern" +69526cdf6abbfc4bcd39616acde544568326d856,Face Verification Using Template Matching,"[17] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recogni- +tion,” Pattern Recognit., vol. 33, no. 11, pp. 1771–1782, Nov. 2000. +[18] A. Nefian, “A hidden Markov model-based approach for face detection +nd recognition,” Ph.D. dissertation, Dept. Elect. Comput. Eng. Elect. +Eng., Georgia Inst. Technol., Atlanta, 1999. +[19] P. J. Phillips et al., “Overview of the face recognition grand challenge,” +presented at the IEEE CVPR, San Diego, CA, Jun. 2005. +[20] H. T. Tanaka, M. Ikeda, and H. Chiaki, “Curvature-based face surface +recognition using spherical correlation-principal direction for curved +object recognition,” in Proc. Int. Conf. Automatic Face and Gesture +Recognition, 1998, pp. 372–377. +[21] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit. Sci., +pp. 71–86, 1991. +[22] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998. +[23] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips, “Face recogni- +tion: A literature survey,” ACM Comput. Surveys, vol. 35, no. 44, pp. +99–458, 2003. +[24] W. Zhao, R. Chellappa, and P. J. Phillips, “Subspace linear discrimi- +nant analysis for face recognition,” UMD TR4009, 1999. +Face Verification Using Template Matching" +690d669115ad6fabd53e0562de95e35f1078dfbb,"Progressive versus Random Projections for Compressive Capture of Images, Lightfields and Higher Dimensional Visual Signals","Progressive versus Random Projections for Compressive Capture of Images, +Lightfields and Higher Dimensional Visual Signals +Rohit Pandharkar +MIT Media Lab +75 Amherst St, Cambridge, MA +Ashok Veeraraghavan +01 Broadway, Cambridge MA +Ramesh Raskar +MIT Media Lab +75 Amherst St, Cambridge, MA" +69063f7e0a60ad6ce16a877bc8f11b59e5f7348e,Class-Specific Image Deblurring,"Class-Specific Image Deblurring +Saeed Anwar1, Cong Phuoc Huynh1 +, Fatih Porikli1 +The Australian National University∗ Canberra ACT 2601, Australia +NICTA, Locked Bag 8001, Canberra ACT 2601, Australia" +3cb2841302af1fb9656f144abc79d4f3d0b27380,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,"See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319928941 +When 3D-Aided 2D Face Recognition Meets Deep +Learning: An extended UR2D for Pose-Invariant +Face Recognition +Article · September 2017 +CITATIONS +authors: +READS +Xiang Xu +University of Houston +Pengfei Dou +University of Houston +8 PUBLICATIONS 10 CITATIONS +9 PUBLICATIONS 29 CITATIONS +SEE PROFILE +SEE PROFILE +Ha Le +University of Houston +7 PUBLICATIONS 2 CITATIONS +Ioannis A Kakadiaris" +3cc3cf57326eceb5f20a02aefae17108e8c8ab57,Benchmark for Evaluating Biological Image Analysis Tools,"BENCHMARK FOR EVALUATING BIOLOGICAL IMAGE ANALYSIS TOOLS +Elisa Drelie Gelasca, Jiyun Byun, Boguslaw Obara, B.S. Manjunath +Center for Bio-Image Informatics, Electrical and Computer Engineering Department, +University of California, Santa Barbara 93106-9560, +http://www.bioimage.ucsb.edu +Biological images are critical components for a detailed understanding of the structure and functioning of cells and proteins. +Image processing and analysis tools increasingly play a significant role in better harvesting this vast amount of data, most of +which is currently analyzed manually and qualitatively. A number of image analysis tools have been proposed to automatically +extract the image information. As the studies relying on image analysis tools have become widespread, the validation of +these methods, in particular, segmentation methods, has become more critical. There have been very few efforts at creating +enchmark datasets in the context of cell and tissue imaging, while, there have been successful benchmarks in other fields, such +s the Berkeley segmentation dataset [1], the handwritten digit recognition dataset MNIST [2] and face recognition dataset [3, 4]. +In the field of biomedical image processing, most of standardized benchmark data sets concentrates on macrobiological images +such as mammograms and magnet resonance imaging (MRI) images [5], however, there is still a lack of a standardized dataset +for microbiological structures (e.g. cells and tissues) and it is well known in biomedical imaging [5]. +We propose a benchmark for biological images to: 1) provide image collections with well defined ground truth; 2) provide +image analysis tools and evaluation methods to compare and validate analysis tools. We include a representative dataset of +microbiological structures whose scales range from a subcellular level (nm) to a tissue level (µm), inheriting intrinsic challenges +in the domain of biomedical image analysis (Fig. 1). The dataset is acquired through two of the main microscopic imaging +techniques: transmitted light microscopy and confocal laser scanning microscopy. The analysis tools1in the benchmark are" +3cfbe1f100619a932ba7e2f068cd4c41505c9f58,A Realistic Simulation Tool for Testing Face Recognition Systems under Real-World Conditions,"A Realistic Simulation Tool for Testing Face Recognition +Systems under Real-World Conditions∗ +M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae +Department of Electrical Engineering, Universidad de Chile +Advanced Mining Technology Center, Universidad de Chile" +3cd7b15f5647e650db66fbe2ce1852e00c05b2e4,"ACTIVE, an Extensible Cataloging Platform for Automatic Indexing of Audiovisual Content", +3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,Measuring Gaze Orientation for Human-Robot Interaction,"Measuring Gaze Orientation for Human-Robot +Interaction +R. Brochard∗, B. Burger∗, A. Herbulot∗†, F. Lerasle∗† +CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France +Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France +Introduction +In the context of Human-Robot interaction estimating gaze orientation brings +useful information about human focus of attention. This is a contextual infor- +mation : when you point something you usually look at it. Estimating gaze +orientation requires head pose estimation. There are several techniques to esti- +mate head pose from images, they are mainly based on training [3, 4] or on local +face features tracking [6]. The approach described here is based on local face +features tracking in image space using online learning, it is a mixed approach +since we track face features using some learning at feature level. It uses SURF +features [2] to guide detection and tracking. Such key features can be matched +etween images, used for object detection or object tracking [10]. Several ap- +proaches work on fixed size images like training techniques which mainly work +on low resolution images because of computation costs whereas approaches based +on local features tracking work on high resolution images. Tracking face features +such as eyes, nose and mouth is a common problem in many applications such as" +3c0bbfe664fb083644301c67c04a7f1331d9515f,The Role of Color and Contrast in Facial Age Estimation,"The Role of Color and Contrast in Facial Age Estimation +Paper ID: 7 +No Institute Given" +3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics,"A Hybrid Deep Learning Architecture for +Privacy-Preserving Mobile Analytics +Seyed Ali Ossia(cid:63), Ali Shahin Shamsabadi(cid:63), Ali Taheri(cid:63), Hamid R. Rabiee(cid:63), +Nic Lane‡, Hamed Haddadi† +(cid:63)Sharif University of Technology, ‡University College London, †Queen Mary University of London" +3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f,Absolute Head Pose Estimation From Overhead Wide-Angle Cameras,"Absolute Head Pose Estimation From Overhead Wide-Angle Cameras +Ying-Li Tian, Lisa Brown, Jonathan Connell, +Sharat Pankanti, Arun Hampapur, Andrew Senior, Ruud Bolle +IBM T.J. Watson Research Center +9 Skyline Drive, Hawthorne, NY 10532 USA +{ yltian,lisabr,jconnell,sharat,arunh,aws,bolle" +3c56acaa819f4e2263638b67cea1ec37a226691d,Body Joint Guided 3-D Deep Convolutional Descriptors for Action Recognition,"Body Joint guided 3D Deep Convolutional +Descriptors for Action Recognition +Congqi Cao, Yifan Zhang, Member, IEEE, Chunjie Zhang, Member, IEEE, and Hanqing Lu, Senior Member, IEEE" +3c8da376576938160cbed956ece838682fa50e9f,Aiding face recognition with social context association rule based re-ranking,"Chapter 4 +Aiding Face Recognition with +Social Context Association Rule +ased Re-Ranking +Humans are very ef‌f‌icient at recognizing familiar face images even in challenging condi- +tions. One reason for such capabilities is the ability to understand social context between +individuals. Sometimes the identity of the person in a photo can be inferred based on the +identity of other persons in the same photo, when some social context between them is +known. This chapter presents an algorithm to utilize the co-occurrence of individuals as +the social context to improve face recognition. Association rule mining is utilized to infer +multi-level social context among subjects from a large repository of social transactions. +The results are demonstrated on the G-album and on the SN-collection pertaining to 4675 +identities prepared by the authors from a social networking website. The results show that +ssociation rules extracted from social context can be used to augment face recognition and +improve the identification performance. +Introduction +Face recognition capabilities of humans have inspired several researchers to understand +the science behind it and use it in developing automated algorithms. Recently, it is also +rgued that encoding social context among individuals can be leveraged for improved +utomatic face recognition [175]. As shown in Figure 4.1, often times a person’s identity" +56e4dead93a63490e6c8402a3c7adc493c230da5,Face Recognition Techniques: A Survey,"World Journal of Computer Application and Technology 1(2): 41-50, 2013 +DOI: 10.13189/wjcat.2013.010204 +http://www.hrpub.org +Face Recognition Techniques: A Survey +V.Vijayakumari +Department of Electronics and Communication, Sri krishna College of Technology, Coimbatore, India +*Corresponding Author: +Copyright © 2013 Horizon Research Publishing All rights reserved." +56e885b9094391f7d55023a71a09822b38b26447,Face Retrieval using Frequency Decoded Local Descriptor,"FREQUENCY DECODED LOCAL BINARY PATTERN +Face Retrieval using Frequency Decoded Local +Descriptor +Shiv Ram Dubey, Member, IEEE" +56a653fea5c2a7e45246613049fb16b1d204fc96,Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition,"Quaternion Collaborative and Sparse Representation +With Application to Color Face Recognition +Cuiming Zou, Kit Ian Kou, Member, IEEE, and Yulong Wang, Student Member, IEEE +representation-based" +5666ed763698295e41564efda627767ee55cc943,Relatively-Paired Space Analysis: Learning a Latent Common Space From Relatively-Paired Observations,"Manuscript +Click here to download Manuscript: template.tex +Click here to view linked References +Noname manuscript No. +(will be inserted by the editor) +Relatively-Paired Space Analysis: Learning a Latent Common +Space from Relatively-Paired Observations +Zhanghui Kuang · Kwan-Yee K. Wong +Received: date / Accepted: date" +5615d6045301ecbc5be35e46cab711f676aadf3a,Discriminatively Learned Hierarchical Rank Pooling Networks,"Discriminatively Learned Hierarchical Rank Pooling Networks +Basura Fernando · Stephen Gould +Received: date / Accepted: date" +566038a3c2867894a08125efe41ef0a40824a090,Face recognition and gender classification in personal memories,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE +ICASSP 2009" +56dca23481de9119aa21f9044efd7db09f618704,Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices,"Riemannian Dictionary Learning and Sparse +Coding for Positive Definite Matrices +Anoop Cherian +Suvrit Sra" +516a27d5dd06622f872f5ef334313350745eadc3,Fine-Grained Facial Expression Analysis Using Dimensional Emotion Model,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +Fine-Grained Facial Expression Analysis Us- +ing Dimensional Emotion Model +ǂFeng Zhou, ǂShu Kong, Charless C. Fowlkes, Tao Chen, *Baiying Lei, Member, IEEE" +51c3050fb509ca685de3d9ac2e965f0de1fb21cc,Fantope Regularization in Metric Learning,"Fantope Regularization in Metric Learning +Marc T. Law +Nicolas Thome +Matthieu Cord +Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France" +51c7c5dfda47647aef2797ac3103cf0e108fdfb4,Cs 395t: Celebrity Look-alikes *,"CS 395T: Celebrity Look-Alikes ∗ +Adrian Quark" +519f4eb5fe15a25a46f1a49e2632b12a3b18c94d,Non-Lambertian Reflectance Modeling and Shape Recovery of Faces Using Tensor Splines,"Non-Lambertian Reflectance Modeling and +Shape Recovery of Faces using Tensor Splines +Ritwik Kumar, Student Member, IEEE, Angelos Barmpoutis, Member, IEEE, +Arunava Banerjee, Member, IEEE, and Baba C. Vemuri, Fellow, IEEE" +51cc78bc719d7ff2956b645e2fb61bab59843d2b,Face and Facial Expression Recognition with an Embedded System for Human-Robot Interaction,"Face and Facial Expression Recognition with an +Embedded System for Human-Robot Interaction +Yang-Bok Lee1, Seung-Bin Moon1, and Yong-Guk Kim 1* +School of Computer Engineering, Sejong University, Seoul, Korea" +511b06c26b0628175c66ab70dd4c1a4c0c19aee9,Face Recognition using Laplace Beltrami Operator by Optimal Linear Approximations,"International Journal of Engineering Research and General ScienceVolume 2, Issue 5, August – September 2014 +ISSN 2091-2730 +Face Recognition using Laplace Beltrami Operator by Optimal Linear +Approximations +Tapasya Sinsinwar1, P.K.Dwivedi2 +Professor and Director Academics, Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj.) +Research Scholar (M.Tech, IT), Institute of Engineering and Technology" +5161e38e4ea716dcfb554ccb88901b3d97778f64,SSPP-DAN: Deep domain adaptation network for face recognition with single sample per person,"SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR +FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON +Sungeun Hong, Woobin Im, Jongbin Ryu, Hyun S. Yang +School of Computing, KAIST, Republic of Korea" +5121f42de7cb9e41f93646e087df82b573b23311,Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings,"CLASSIFYING ONLINE DATING PROFILES ON TINDER USING FACENET FACIAL +EMBEDDINGS +Charles F. Jekel and Raphael T. Haftka +Department of Mechanical & Aerospace Engineering - University of Florida - Gainesville, FL 32611" +51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee,"A Fast and Accurate System for Face Detection, Identification, and Verification","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +A Fast and Accurate System for Face Detection, +Identification, and Verification +Rajeev Ranjan, Ankan Bansal, Jingxiao Zheng, Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nanduri, +Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa" +5157dde17a69f12c51186ffc20a0a6c6847f1a29,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning +Machine +Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE" +3daafe6389d877fe15d8823cdf5ac15fd919676f,Human Action Localization with Sparse Spatial Supervision,"Human Action Localization +with Sparse Spatial Supervision +Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE" +3daf1191d43e21a8302d98567630b0e2025913b0,Can Autism be Catered with Artificial Intelligence-Assisted Intervention Technology? A Literature Review,"Can Autism be Catered with Artificial Intelligence-Assisted Intervention +Technology? A Literature Review +Muhammad Shoaib Jaliawala∗, Rizwan Ahmed Khan∗† +Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan +Universit´e Claude Bernard Lyon 1, France" +3d36f941d8ec613bb25e80fb8f4c160c1a2848df,Out-of-Sample Generalizations for Supervised Manifold Learning for Classification,"Out-of-sample generalizations for supervised +manifold learning for classification +Elif Vural and Christine Guillemot" +3d5a1be4c1595b4805a35414dfb55716e3bf80d8,Hidden Two-Stream Convolutional Networks for Action Recognition,"Hidden Two-Stream Convolutional Networks for +Action Recognition +Yi Zhu, Zhenzhong Lan, Shawn Newsam, Alexander G. Hauptmann" +3d62b2f9cef997fc37099305dabff356d39ed477,Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition,"Joint Face Alignment and 3D Face +Reconstruction with Application to Face +Recognition +Feng Liu, Qijun Zhao, Member, IEEE, Xiaoming Liu, Member, IEEE and Dan Zeng" +3dd4d719b2185f7c7f92cc97f3b5a65990fcd5dd,Ensemble of Hankel Matrices for Face Emotion Recognition,"Ensemble of Hankel Matrices for +Face Emotion Recognition +Liliana Lo Presti and Marco La Cascia +DICGIM, Universit´a degli Studi di Palermo, +V.le delle Scienze, Ed. 6, 90128 Palermo, Italy, +DRAFT +To appear in ICIAP 2015" +3dcebd4a1d66313dcd043f71162d677761b07a0d,Local binary pattern domain local appearance face recognition,"Yerel Đkili Örüntü Ortamında Yerel Görünüme Dayalı Yüz Tanıma +Local Binary Pattern Domain Local Appearance Face Recognition +Hazım K. Ekenel1, Mika Fischer1, Erkin Tekeli2, Rainer Stiefelhagen1, Aytül Erçil2 +Institut für Theorestische Informatik, Universität Karlsruhe (TH), Karlsruhe, Germany +Faculty of Engineering and Natural Sciences, Sabancı University, Đstanbul, Turkey +Özetçe +Bu bildiride, ayrık kosinüs dönüşümü tabanlı yerel görünüme +dayalı yüz tanıma algoritması ile yüz imgelerinin yerel ikili +örüntüye (YĐÖ) dayalı betimlemesini birleştiren hızlı bir yüz +tanıma algoritması sunulmuştur. Bu tümleştirmedeki amaç, +yerel ikili örüntünün dayanıklı imge betimleme yeteneği ile +yrık kosinüs dönüşümünün derli-toplu veri betimleme +yeteneğinden yararlanmaktır. Önerilen yaklaşımda, yerel +görünümün modellenmesinden önce girdi yüz imgesi yerel +ikili örüntü ile betimlenmiştir. Elde edilen YĐÖ betimlemesi, +irbirleri ile örtüşmeyen bloklara ayrılmış ve her blok +üzerinde yerel özniteliklerin çıkartımı için ayrık kosinüs +dönüşümü uygulanmıştır. Çıkartımı yapılan yerel öznitelikler +daha sonra arka arkaya eklenerek global öznitelik vektörü +oluşturulmuştur. Önerilen algoritma, CMU PIE ve FRGC" +3d42e17266475e5d34a32103d879b13de2366561,The Global Dimensionality of Face Space,"Proc.4thIEEEInt’lConf.AutomaticFace&GestureRecognition,Grenoble,France,pp264–270 +The Global Dimensionality of Face Space +(cid:3) +http://venezia.rockefeller.edu/ +The Rockefeller University +Penio S. Penev +Laboratory of Computational Neuroscience +Lawrence Sirovich +Laboratory for Applied Mathematics +Mount Sinai School of Medicine +(cid:13) IEEE2000 +230 York Avenue, New York, NY 10021 +One Gustave L. Levy Place, New York, NY 10029" +3df7401906ae315e6aef3b4f13126de64b894a54,Robust learning of discriminative projection for multicategory classification on the Stiefel manifold,"Robust Learning of Discriminative Projection for Multicategory Classification on +the Stiefel Manifold +Duc-Son Pham and Svetha Venkatesh +Dept. of Computing, Curtin University of Technology +GPO Box U1987, Perth, WA 6845, Australia" +3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a,Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs,"Random Multispace Quantization as +n Analytic Mechanism for BioHashing +of Biometric and Random Identity Inputs +Andrew B.J. Teoh, Member, IEEE, Alwyn Goh, and David C.L. Ngo, Member, IEEE" +3d94f81cf4c3a7307e1a976dc6cb7bf38068a381,Data-Dependent Label Distribution Learning for Age Estimation,"Data-Dependent Label Distribution Learning +for Age Estimation +Zhouzhou He, Xi Li, Zhongfei Zhang, Fei Wu, Xin Geng, Yaqing Zhang, Ming-Hsuan Yang, and Yueting Zhuang" +5892f8367639e9c1e3cf27fdf6c09bb3247651ed,Estimating Missing Features to Improve Multimedia Information Retrieval,"Estimating Missing Features to Improve Multimedia Information Retrieval +Abraham Bagherjeiran +Nicole S. Love +Chandrika Kamath (cid:3)" +587f81ae87b42c18c565694c694439c65557d6d5,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning +Hardie Cate +Fahim Dalvi +Zeshan Hussain" +580054294ca761500ada71f7d5a78acb0e622f19,A Subspace Model-Based Approach to Face Relighting Under Unknown Lighting and Poses,"A Subspace Model-Based Approach to Face +Relighting Under Unknown Lighting and Poses +Hyunjung Shim, Student Member, IEEE, Jiebo Luo, Senior Member, IEEE, and Tsuhan Chen, Fellow, IEEE" +587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,"Journal of Vision (2016) 16(15):28, 1–8 +Serial dependence in the perception of attractiveness +Ye Xia +Department of Psychology, University of California, +Berkeley, CA, USA +Allison Yamanashi Leib +Department of Psychology, University of California, +Berkeley, CA, USA +David Whitney +Department of Psychology, University of California, +Berkeley, CA, USA +Helen Wills Neuroscience Institute, University of +California, Berkeley, CA, USA +Vision Science Group, University of California, +Berkeley, CA, USA +The perception of attractiveness is essential for choices +of food, object, and mate preference. Like perception of +other visual features, perception of attractiveness is +stable despite constant changes of image properties due +to factors like occlusion, visual noise, and eye" +58081cb20d397ce80f638d38ed80b3384af76869,Embedded Real-Time Fall Detection Using Deep Learning For Elderly Care,"Embedded Real-Time Fall Detection Using Deep +Learning For Elderly Care +Hyunwoo Lee∗ +Jooyoung Kim +Dojun Yang +Joon-Ho Kim +Samsung Research, Samsung Electronics +{hyun0772.lee, joody.kim, dojun.yang," +581e920ddb6ecfc2a313a3aa6fed3d933b917ab0,Automatic Mapping of Remote Crowd Gaze to Stimuli in the Classroom,"Automatic Mapping of Remote Crowd Gaze to +Stimuli in the Classroom +Thiago Santini1, Thomas K¨ubler1, Lucas Draghetti1, Peter Gerjets2, Wolfgang +Wagner3, Ulrich Trautwein3, and Enkelejda Kasneci1 +University of T¨ubingen, T¨ubingen, Germany +Leibniz-Institut f¨ur Wissensmedien, T¨ubingen, Germany +Hector Research Institute of Education Sciences and Psychology, T¨ubingen, +Germany" +58fa85ed57e661df93ca4cdb27d210afe5d2cdcd,Facial expression recognition by re-ranking with global and local generic features,"Cancún Center, Cancún, México, December 4-8, 2016 +978-1-5090-4847-2/16/$31.00 ©2016 IEEE" +5860cf0f24f2ec3f8cbc39292976eed52ba2eafd,COMPUTATION EvaBio: A TOOL FOR PERFORMANCE EVALUATION IN BIOMETRICS,"International Journal of Automated Identification Technology, 3(2), July-December 2011, pp. 51-60 +COMPUTATION EvaBio: A TOOL FOR PERFORMANCE +EVALUATION IN BIOMETRICS +Julien Mahier, Baptiste Hemery, Mohamad El-Abed*, Mohamed T. El-Allam, Mohamed Y. +Bouhaddaoui and Christophe Rosenberger +GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS, +6 Boulevard Maréchal Juin, 14000 Caen Cedex - France" +58bf72750a8f5100e0c01e55fd1b959b31e7dbce,PyramidBox: A Context-assisted Single Shot Face Detector,"PyramidBox: A Context-assisted Single Shot +Face Detector. +Xu Tang∗, Daniel K. Du∗, Zeqiang He, and Jingtuo Liu† +Baidu Inc." +58542eeef9317ffab9b155579256d11efb4610f2,"Face Recognition Revisited On Pose , Alignment , Color , Illumination And Expression-Pyten","International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +Face Recognition Revisited on Pose, Alignment, +Color, Illumination and Expression-PyTen +Mugdha Tripathi +Computer Science, BIT Noida, India" +58823377757e7dc92f3b70a973be697651089756,Automatic facial expression analysis,"Technical Report +UCAM-CL-TR-861 +ISSN 1476-2986 +Number 861 +Computer Laboratory +Automatic facial expression analysis +Tadas Baltrusaitis +October 2014 +5 JJ Thomson Avenue +Cambridge CB3 0FD +United Kingdom +phone +44 1223 763500 +http://www.cl.cam.ac.uk/" +5865e824e3d8560e07840dd5f75cfe9bf68f9d96,Embodied conversational agents for multimodal automated social skills training in people with autism spectrum disorders,"RESEARCH ARTICLE +Embodied conversational agents for +multimodal automated social skills training in +people with autism spectrum disorders +Hiroki Tanaka1*, Hideki Negoro2, Hidemi Iwasaka3, Satoshi Nakamura1 +Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara, 630- +0101, Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara, 630-8538, +Japan, 3 Developmental Center for Child and Adult, Shigisan Hospital, Ikoma-gun, Nara, 636-0815, Japan" +58bb77dff5f6ee0fb5ab7f5079a5e788276184cc,Facial expression recognition with PCA and LBP features extracting from active facial patches,"Facial Expression Recognition with PCA and LBP +Features Extracting from Active Facial Patches +Yanpeng Liua, Yuwen Caoa, Yibin Lia, Ming Liu, Rui Songa +Yafang Wang, Zhigang Xu , Xin Maa†" +58db008b204d0c3c6744f280e8367b4057173259,Facial Expression Recognition,"International Journal of Current Engineering and Technology +ISSN 2277 - 4106 +© 2012 INPRESSCO. All Rights Reserved. +Available at http://inpressco.com/category/ijcet +Research Article +Facial Expression Recognition +Riti Kushwahaa and Neeta Naina* +Department of Computer Engineering Malaviya National Institute of Technology, Jaipur, Rajasthan, India +Accepted 3June 2012, Available online 8 June 2012" +677585ccf8619ec2330b7f2d2b589a37146ffad7,A flexible model for training action localization with varying levels of supervision,"A flexible model for training action localization +with varying levels of supervision +Guilhem Chéron∗ 1 2 +Jean-Baptiste Alayrac∗ 1 +Ivan Laptev1 +Cordelia Schmid2" +6789bddbabf234f31df992a3356b36a47451efc7,Unsupervised Generation of Free-Form and Parameterized Avatars.,"Unsupervised Generation of Free-Form and +Parameterized Avatars +Adam Polyak, Yaniv Taigman, and Lior Wolf, Member, IEEE" +675b2caee111cb6aa7404b4d6aa371314bf0e647,AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions,"AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions +Chunhui Gu∗ +Yeqing Li∗ +Chen Sun∗ +David A. Ross∗ +Sudheendra Vijayanarasimhan∗ +Carl Vondrick∗ +George Toderici∗ +Caroline Pantofaru∗ +Susanna Ricco∗ +Rahul Sukthankar∗ +Cordelia Schmid† ∗ +Jitendra Malik‡ ∗" +67484723e0c2cbeb936b2e863710385bdc7d5368,Anchor Cascade for Efficient Face Detection,"Anchor Cascade for Efficient Face Detection +Baosheng Yu and Dacheng Tao, Fellow, IEEE" +670637d0303a863c1548d5b19f705860a23e285c,Face swapping: automatically replacing faces in photographs,"Face Swapping: Automatically Replacing Faces in Photographs +Dmitri Bitouk +Neeraj Kumar +Samreen Dhillon∗ +Columbia University† +Peter Belhumeur +Shree K. Nayar +Figure 1: We have developed a system that automatically replaces faces in an input image with ones selected from a large collection of +face images, obtained by applying face detection to publicly available photographs on the internet. In this example, the faces of (a) two +people are shown after (b) automatic replacement with the top three ranked candidates. Our system for face replacement can be used for face +de-identification, personalized face replacement, and creating an appealing group photograph from a set of “burst” mode images. Original +images in (a) used with permission from Retna Ltd. (top) and Getty Images Inc. (bottom). +Rendering, Computational Photography +Introduction +Advances in digital photography have made it possible to cap- +ture large collections of high-resolution images and share them +on the internet. While the size and availability of these col- +lections is leading to many exciting new applications, +lso creating new problems. One of the most +important of" +6742c0a26315d7354ab6b1fa62a5fffaea06da14,What does 2D geometric information really tell us about 3D face shape?,"BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE? +What does 2D geometric information +really tell us about 3D face shape? +Anil Bas and William A. P. Smith, Member, IEEE" +67c703a864aab47eba80b94d1935e6d244e00bcb,Face Retrieval Based On Local Binary Pattern and Its Variants: A Comprehensive Study,"(IJACSA) International Journal of Advanced Computer Science and Applications +Vol. 7, No. 6, 2016 +Face Retrieval Based On Local Binary Pattern and Its +Variants: A Comprehensive Study +Department of Computer Vision and Robotics, University of Science, VNU-HCM, Viet Nam +Phan Khoi, Lam Huu Thien, Vo Hoai Viet +face searching," +67ba3524e135c1375c74fe53ebb03684754aae56,A compact pairwise trajectory representation for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017" +6769cfbd85329e4815bb1332b118b01119975a95,Tied factor analysis for face recognition across large pose changes,"Tied factor analysis for face recognition across +large pose changes" +0be43cf4299ce2067a0435798ef4ca2fbd255901,Title A temporal latent topic model for facial expression recognition,"Title +A temporal latent topic model for facial expression recognition +Author(s) +Shang, L; Chan, KP +Citation +The 10th Asian Conference on Computer Vision (ACCV 2010), +Queenstown, New Zealand, 8-12 November 2010. In Lecture +Notes in Computer Science, 2010, v. 6495, p. 51-63 +Issued Date +http://hdl.handle.net/10722/142604 +Rights +Creative Commons: Attribution 3.0 Hong Kong License" +0b2277a0609565c30a8ee3e7e193ce7f79ab48b0,Cost-Sensitive Semi-Supervised Discriminant Analysis for Face Recognition,"Cost-Sensitive Semi-Supervised Discriminant +Analysis for Face Recognition +Jiwen Lu, Member, IEEE, Xiuzhuang Zhou, Member, IEEE, Yap-Peng Tan, Senior Member, IEEE, +Yuanyuan Shang, Member, IEEE, and Jie Zhou, Senior Member, IEEE" +0b9ce839b3c77762fff947e60a0eb7ebbf261e84,Logarithmic Fourier Pca: a New Approach to Face Recognition,"Proceedings of the IASTED International Conference +Computer Vision (CV 2011) +June 1 - 3, 2011 Vancouver, BC, Canada +LOGARITHMIC FOURIER PCA: A NEW APPROACH TO FACE +RECOGNITION +Lakshmiprabha Nattamai Sekar, +Jhilik Bhattacharya, +omjyoti +Majumder +Surface Robotics Lab +Central Mechanical Engineering Research Institute +Mahatma Gandhi Avenue, +Durgapur - 713209, West Bengal, India. +email: 1 n prabha 2 3" +0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7,"The use of deep learning in image segmentation, classification and detection","The Use of Deep Learning in Image +Segmentation, Classification and Detection +Mihai-Sorin Badea, Iulian-Ionuț Felea, Laura Maria Florea, Constantin Vertan +The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania" +0b605b40d4fef23baa5d21ead11f522d7af1df06,Label-Embedding for Attribute-Based Classification,"Label-Embedding for Attribute-Based Classification +Zeynep Akataa,b, Florent Perronnina, Zaid Harchaouib and Cordelia Schmidb +Computer Vision Group∗, XRCE, France +LEAR†, INRIA, France" +0b0eb562d7341231c3f82a65cf51943194add0bb,Line with Your Paper Identification Number ( Double - Click Here to Edit,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +Facial Image Analysis Based on Local Binary +Patterns: A Survey +Di Huang, Caifeng Shan, Mohsen Ardebilian, Liming Chen" +0b3a146c474166bba71e645452b3a8276ac05998,Whos In the Picture,"Who’s in the Picture? +Tamara L. Berg, Alexander C. Berg, Jaety Edwards and D.A. Forsyth +Berkeley, CA 94720 +Computer Science Division +U.C. Berkeley" +0b0958493e43ca9c131315bcfb9a171d52ecbb8a,A Unified Neural Based Model for Structured Output Problems,"A Unified Neural Based Model for Structured Output Problems +Soufiane Belharbi∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien Adam∗2 +LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +April 13, 2015" +0b20f75dbb0823766d8c7b04030670ef7147ccdd,Feature selection using nearest attributes,"Feature selection using nearest attributes +Alex Pappachen James, Member, IEEE, and Sima Dimitrijev, Senior Member, IEEE" +0b5a82f8c0ee3640503ba24ef73e672d93aeebbf,On Learning 3D Face Morphable Model from In-the-wild Images,"On Learning 3D Face Morphable Model +from In-the-wild Images +Luan Tran, and Xiaoming Liu, Member, IEEE" +0b174d4a67805b8796bfe86cd69a967d357ba9b6,A Survey on Face Detection and Recognition Approaches,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +Vol. 3(4), 56-62, April (2014) +Res.J.Recent Sci." +0b87d91fbda61cdea79a4b4dcdcb6d579f063884,Research on Theory and Method for Facial Expression Recognition Sys- tem Based on Dynamic Image Sequence,"The Open Automation and Control Systems Journal, 2015, 7, 569-579 +Open Access +Research on Theory and Method for Facial Expression Recognition Sys- +tem Based on Dynamic Image Sequence +Send Orders for Reprints to +Yang Xinfeng1,* and Jiang Shan2 +School of Computer & Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R. +China +Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China" +0b79356e58a0df1d0efcf428d0c7c4651afa140d,Bayesian Modeling of Facial Similarity,"Appears In: Advances in Neural Information Processing Systems , MIT Press,  . +Bayesian Modeling of Facial Similarity +Baback Moghaddam +Mitsubishi Electric Research Laboratory + Broadway +Cambridge, MA  , USA +Tony Jebara and Alex Pentland +Massachusettes Institute of Technology + Ames St. +Cambridge, MA  , USA" +0b572a2b7052b15c8599dbb17d59ff4f02838ff7,Automatic Subspace Learning via Principal Coefficients Embedding,"Automatic Subspace Learning via Principal +Coefficients Embedding +Xi Peng, Jiwen Lu, Senior Member, IEEE, Zhang Yi, Fellow, IEEE and Rui Yan, Member, IEEE," +0b02bfa5f3a238716a83aebceb0e75d22c549975,Learning Probabilistic Models for Recognizing Faces under Pose Variations,"Learning Probabilistic Models for Recognizing Faces +under Pose Variations +M. Saquib Sarfraz and Olaf Hellwich +Computer vision and Remote Sensing, Berlin university of Technology +Sekr. FR-3-1, Franklinstr. 28/29, Berlin, Germany" +0bce54bfbd8119c73eb431559fc6ffbba741e6aa,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018 +SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +RECURRENT NEURAL NETWORKS +V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ +Barcelona Supercomputing Center, ‡Google Inc, +§Universitat Polit`ecnica de Catalunya, ΓColumbia University +{victor.campos," +0b4c4ea4a133b9eab46b217e22bda4d9d13559e6,MORF: Multi-Objective Random Forests for face characteristic estimation,"MORF: Multi-Objective Random Forests for Face Characteristic Estimation +Dario Di Fina1 +MICC - University of Florence +Svebor Karaman1,3 +Andrew D. Bagdanov2 +{dario.difina, +CVC - Universitat Autonoma de Barcelona +Alberto Del Bimbo1 +DVMM Lab - Columbia University" +0b8c92463f8f5087696681fb62dad003c308ebe2,On matching sketches with digital face images,"On Matching Sketches with Digital Face Images +Himanshu S. Bhatt, Samarth Bharadwaj, Richa Singh, and Mayank Vatsa +in local" +0bc0f9178999e5c2f23a45325fa50300961e0226,Recognizing facial expressions from videos using Deep Belief Networks,"Recognizing facial expressions from videos using Deep +Belief Networks +CS 229 Project +Advisor: Prof. Andrew Ng +Adithya Rao Narendran Thiagarajan" +9391618c09a51f72a1c30b2e890f4fac1f595ebd,Globally Tuned Cascade Pose Regression via Back Propagation with Application in 2D Face Pose Estimation and Heart Segmentation in 3D CT Images,"Globally Tuned Cascade Pose Regression via +Back Propagation with Application in 2D Face +Pose Estimation and Heart Segmentation in 3D +CT Images +Peng Sun +James K Min +Guanglei Xiong +Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College +April 1, 2015 +This work was submitted to ICML 2015 but got rejected. We put the initial +submission ”as is” in Page 2 - 11 and add updated contents at the tail. The +ode of this work is available at https://github.com/pengsun/bpcpr5." +93675f86d03256f9a010033d3c4c842a732bf661,Localized Growth and Characterization of Silicon Nanowires,Universit´edesSciencesetTechnologiesdeLilleEcoleDoctoraleSciencesPourl’ing´enieurUniversit´eLilleNord-de-FranceTHESEPr´esent´ee`al’Universit´edesSciencesetTechnologiesdeLillePourobtenirletitredeDOCTEURDEL’UNIVERSIT´ESp´ecialit´e:MicroetNanotechnologieParTaoXULocalizedgrowthandcharacterizationofsiliconnanowiresSoutenuele25Septembre2009Compositiondujury:Pr´esident:TuamiLASRIRapporteurs:ThierryBARONHenriMARIETTEExaminateurs:EricBAKKERSXavierWALLARTDirecteurdeth`ese:BrunoGRANDIDIER +936c7406de1dfdd22493785fc5d1e5614c6c2882,Detecting Visual Text,"012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 762–772, +Montr´eal, Canada, June 3-8, 2012. c(cid:13)2012 Association for Computational Linguistics" +93cbb3b3e40321c4990c36f89a63534b506b6daf,Learning from examples in the small sample case: face expression recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +Learning From Examples in the Small Sample Case: +Face Expression Recognition +Guodong Guo and Charles R. Dyer, Fellow, IEEE" +94b9c0a6515913bad345f0940ee233cdf82fffe1,Face Recognition using Local Ternary Pattern for Low Resolution Image,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Impact Factor (2012): 3.358 +Face Recognition using Local Ternary Pattern for +Low Resolution Image +Vikas1, Amanpreet Kaur2 +Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India +Assistant Professor, Department of Computer Science Engineering, Chandigarh University, Gharuan, Punjab, India" +94eeae23786e128c0635f305ba7eebbb89af0023,On the Emergence of Invariance and Disentangling in Deep Representations,"Journal of Machine Learning Research 18 (2018) 1-34 +Submitted 01/17; Revised 4/18; Published 6/18 +Emergence of Invariance and Disentanglement +in Deep Representations∗ +Alessandro Achille +Department of Computer Science +University of California +Los Angeles, CA 90095, USA +Stefano Soatto +Department of Computer Science +University of California +Los Angeles, CA 90095, USA +Editor: Yoshua Bengio" +944faf7f14f1bead911aeec30cc80c861442b610,Action Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization +Vicky Kalogeiton1,2 +Philippe Weinzaepfel3 +Vittorio Ferrari2 +Cordelia Schmid1" +9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73,A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database,"A Benchmark and Comparative Study of +Video-Based Face Recognition +on COX Face Database +Zhiwu Huang, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE, +Ruiping Wang, Member, IEEE, Haihong Zhang, Member, IEEE, +Shihong Lao, Member, IEEE, Alifu Kuerban, +nd Xilin Chen, Senior Member, IEEE" +948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494,Face Recognition From Single Sample Per Person by Learning of Generic Discriminant Vectors,"Available online at www.sciencedirect.com +Procedia Engineering 41 ( 2012 ) 465 – 472 +International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) +Face Recognition From Single Sample Per Person by Learning of +Generic Discriminant Vectors +Fadhlan Hafiza*, Amir A. Shafieb, Yasir Mohd Mustafahb +Faculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia +Faculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia" +9441253b638373a0027a5b4324b4ee5f0dffd670,A Novel Scheme for Generating Secure Face Templates Using BDA,"A Novel Scheme for Generating Secure Face +Templates Using BDA +Shraddha S. Shinde +Prof. Anagha P. Khedkar +P.G. Student, Department of Computer Engineering, +Associate Professor, Department of Computer +MCERC, +Nashik (M.S.), India +e-mail:" +94a11b601af77f0ad46338afd0fa4ccbab909e82,"Title of dissertation : EFFICIENT SENSING , SUMMARIZATION AND CLASSIFICATION OF VIDEOS", +0efdd82a4753a8309ff0a3c22106c570d8a84c20,Lda with Subgroup Pca Method for Facial Image Retrieval,"LDA WITH SUBGROUP PCA METHOD FOR FACIAL IMAGE RETRIEVAL +Wonjun Hwang, Tae-Kyun Kim, Seokcheol Kee +Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea." +0eac652139f7ab44ff1051584b59f2dc1757f53b,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,"Efficient Branching Cascaded Regression +for Face Alignment under Significant Head Rotation +Brandon M. Smith +Charles R. Dyer +University of Wisconsin–Madison" +0e50fe28229fea45527000b876eb4068abd6ed8c,Angle Principal Component Analysis,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +0eff410cd6a93d0e37048e236f62e209bc4383d1,Learning discriminative MspLBP features based on Ada-LDA for multi-class pattern classification,"Anchorage Convention District +May 3-8, 2010, Anchorage, Alaska, USA +978-1-4244-5040-4/10/$26.00 ©2010 IEEE" +0ee737085af468f264f57f052ea9b9b1f58d7222,SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination,"SiGAN: Siamese Generative Adversarial Network +for Identity-Preserving Face Hallucination +Chih-Chung Hsu, Member, IEEE, Chia-Wen Lin, Fellow, IEEE, Weng-Tai Su, Student Member, IEEE, +nd Gene Cheung, Senior Member, IEEE," +0ee661a1b6bbfadb5a482ec643573de53a9adf5e,On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR +On the Use of Discriminative Cohort Score +Normalization for Unconstrained Face Recognition +Massimo Tistarelli, Senior Member, IEEE, Yunlian Sun, and Norman Poh, Member, IEEE" +0e986f51fe45b00633de9fd0c94d082d2be51406,"Face detection, pose estimation, and landmark localization in the wild","Face Detection, Pose Estimation, and Landmark Localization in the Wild +Xiangxin Zhu Deva Ramanan +Dept. of Computer Science, University of California, Irvine" +0e49a23fafa4b2e2ac097292acf00298458932b4,Unsupervised Detection of Outlier Images Using Multi-Order Image Transforms,"Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 13–31 +Unsupervised Detection of Outlier Images Using Multi-Order +Image Transforms +Lior Shamira,∗ +Lawrence Technological University, 21000 W Ten Mile Rd., Southfield, MI 48075, United States." +0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698,Spontaneous Subtle Expression Recognition: Imbalanced Databases & Solutions,"Spontaneous Subtle Expression Recognition: +Imbalanced Databases & Solutions (cid:63) +Anh Cat Le Ngo1, Raphael Chung-Wei Phan1, John See2 +Faculty of Engineering, +Multimedia University (MMU), Cyberjaya, Malaysia +Faculty of Computing & Informatics, +Multimedia University (MMU), Cyberjaya, Malaysia" +0e2ea7af369dbcaeb5e334b02dd9ba5271b10265,Multi-Level Feature Abstraction from Convolutional Neural Networks for Multimodal Biometric Identification, +0e7c70321462694757511a1776f53d629a1b38f3,2012 Proceedings of the Performance Metrics for Intelligent Systems (PerMI'12) Workshop,"NIST Special Publication 1136 +012 Proceedings of the +Performance Metrics for Intelligent +Systems (PerMI ‘12) Workshop +Rajmohan Madhavan +Elena R. Messina +Brian A. Weiss +http://dx.doi.org/10.6028/NIST.SP.1136" +600025c9a13ff09c6d8b606a286a79c823d89db8,A Review on Linear and Non-linear Dimensionality Reduction Techniques,"Machine Learning and Applications: An International Journal (MLAIJ) Vol.1, No.1, September 2014 +A REVIEW ON LINEAR AND NON-LINEAR +DIMENSIONALITY REDUCTION +TECHNIQUES +Arunasakthi. K, 2KamatchiPriya. L +Assistant Professor +Department of Computer Science and Engineering +Ultra College of Engineering and Technology for Women,India. +Assistant Professor +Department of Computer Science and Engineering +Vickram College of Engineering, Enathi, Tamil Nadu, India." +60e2b9b2e0db3089237d0208f57b22a3aac932c1,Frankenstein: Learning Deep Face Representations Using Small Data,"Frankenstein: Learning Deep Face Representations +using Small Data +Guosheng Hu, Member, IEEE, Xiaojiang Peng, Yongxin Yang, Timothy M. Hospedales, and Jakob Verbeek" +60ce4a9602c27ad17a1366165033fe5e0cf68078,Combination of Face Regions in Forensic Scenarios.,"TECHNICAL NOTE +DIGITAL & MULTIMEDIA SCIENCES +J Forensic Sci, 2015 +doi: 10.1111/1556-4029.12800 +Available online at: onlinelibrary.wiley.com +Pedro Tome,1 Ph.D.; Julian Fierrez,1 Ph.D.; Ruben Vera-Rodriguez,1 Ph.D.; and Javier Ortega-Garcia,1 +Ph.D. +Combination of Face Regions in Forensic +Scenarios*" +60efdb2e204b2be6701a8e168983fa666feac1be,Transferring Deep Object and Scene Representations for Event Recognition in Still Images,"Int J Comput Vis +DOI 10.1007/s11263-017-1043-5 +Transferring Deep Object and Scene Representations for Event +Recognition in Still Images +Limin Wang1 +· Zhe Wang2 · Yu Qiao3 · Luc Van Gool1 +Received: 31 March 2016 / Accepted: 1 September 2017 +© Springer Science+Business Media, LLC 2017" +60824ee635777b4ee30fcc2485ef1e103b8e7af9,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,"Cascaded Collaborative Regression for Robust Facial +Landmark Detection Trained using a Mixture of Synthetic and +Real Images with Dynamic Weighting +Zhen-Hua Feng, Student Member, IEEE, Guosheng Hu, Student Member, IEEE, Josef Kittler, +Life Member, IEEE, William Christmas, and Xiao-Jun Wu" +60cdcf75e97e88638ec973f468598ae7f75c59b4,Face Annotation Using Transductive Kernel Fisher Discriminant,"Face Annotation Using Transductive +Kernel Fisher Discriminant +Jianke Zhu, Steven C.H. Hoi, and Michael R. Lyu" +60040e4eae81ab6974ce12f1c789e0c05be00303,Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation,"Yonas Tadesse1,2 +e-mail: +Shashank Priya +e-mail: +Center for Energy Harvesting +Materials and Systems (CEHMS), +Bio-Inspired Materials and +Devices Laboratory (BMDL), +Center for Intelligent Material +Systems and Structure (CIMSS), +Department of Mechanical Engineering, +Virginia Tech, +Blacksburg, VA 24061 +Graphical Facial Expression +Analysis and Design Method: +An Approach to Determine +Humanoid Skin Deformation +The architecture of human face is complex consisting of 268 voluntary muscles that perform +oordinated action to create real-time facial expression. In order to replicate facial expres- +sion on humanoid face by utilizing discrete actuators, the first and foremost step is the identi-" +60b3601d70f5cdcfef9934b24bcb3cc4dde663e7,Binary Gradient Correlation Patterns for Robust Face Recognition,"SUBMITTED TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Binary Gradient Correlation Patterns +for Robust Face Recognition +Weilin Huang, Student Member, IEEE, and Hujun Yin, Senior Member, IEEE" +60bffecd79193d05742e5ab8550a5f89accd8488,Proposal Classification using sparse representation and applications to skin lesion diagnosis,"PhD Thesis Proposal +Classification using sparse representation and applications to skin +lesion diagnosis +I. Description +In only a few decades, sparse representation modeling has undergone a tremendous expansion with +successful applications in many fields including signal and image processing, computer science, +machine learning, statistics. Mathematically, it can be considered as the problem of finding the +sparsest solution (the one with the fewest non-zeros entries) to an underdetermined linear system +of equations [1]. Based on the observation for natural images (or images rich in textures) that small +scale structures tend to repeat themselves in an image or in a group of similar images, a signal +source can be sparsely represented over some well-chosen redundant basis (a dictionary). In other +words, it can be approximately representable by a linear combination of a few elements (also called +toms or basis vectors) of a redundant/over-complete dictionary. +Such models have been proven successful in many tasks including denoising [2]-[5], compression +[6],[7], super-resolution [8],[9], classification and pattern recognition [10]-[16]. In the context of +lassification, the objective is to find the class to which a test signal belongs, given training data +from multiple classes. Sparse representation has become a powerful technique in classification and +pplications, including texture classification [16], face recognition [12], object detection [10], and +segmentation of medical images [17], [18]. In conventional Sparse Representation Classification +(SRC) schemes, learned dictionaries and sparse representation are involved to classify image pixels" +601834a4150e9af028df90535ab61d812c45082c,A short review and primer on using video for psychophysiological observations in human-computer interaction applications,"A short review and primer on using video for +psychophysiological observations in +human-computer interaction applications +Teppo Valtonen1 +Quantified Employee unit, Finnish Institute of Occupational Health, +teppo. valtonen fi, +POBox 40, 00250, Helsinki, Finland" +346dbc7484a1d930e7cc44276c29d134ad76dc3f,Artists portray human faces with the Fourier statistics of complex natural scenes.,"This article was downloaded by:[University of Toronto] +On: 21 November 2007 +Access Details: [subscription number 785020433] +Publisher: Informa Healthcare +Informa Ltd Registered in England and Wales Registered Number: 1072954 +Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK +Systems +Publication details, including instructions for authors and subscription information: +http://www.informaworld.com/smpp/title~content=t713663148 +Artists portray human faces with the Fourier statistics of +omplex natural scenes +Christoph Redies a; Jan Hänisch b; Marko Blickhan a; Joachim Denzler b +Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany +Department of Computer Science, Friedrich Schiller University, D-07740 Jena, +Germany +First Published on: 28 August 2007 +To cite this Article: Redies, Christoph, Hänisch, Jan, Blickhan, Marko and Denzler, +Joachim (2007) 'Artists portray human faces with the Fourier statistics of complex +To link to this article: DOI: 10.1080/09548980701574496 +URL: http://dx.doi.org/10.1080/09548980701574496" +34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4c,The AXES submissions at TrecVid 2013,"The AXES submissions at TrecVid 2013 +Robin Aly1, Relja Arandjelovi´c3, Ken Chatfield3, Matthijs Douze6, Basura Fernando4, Zaid Harchaoui6, +Kevin McGuinness2, Noel E. O’Conner2, Dan Oneata6, Omkar M. Parkhi3, Danila Potapov6, Jérôme Revaud6, +Cordelia Schmid6, Jochen Schwenninger5, David Scott2, Tinne Tuytelaars4, Jakob Verbeek6, Heng Wang6, +Andrew Zisserman3 +University of Twente 2Dublin City University 3Oxford University +KU Leuven 5Fraunhofer Sankt Augustin 6INRIA Grenoble" +34d484b47af705e303fc6987413dc0180f5f04a9,RI:Medium: Unsupervised and Weakly-Supervised Discovery of Facial Events,"RI:Medium: Unsupervised and Weakly-Supervised +Discovery of Facial Events +Introduction +The face is one of the most powerful channels of nonverbal communication. Facial expression has been a +focus of emotion research for over a hundred years [11]. It is central to several leading theories of emotion +[16, 28, 44] and has been the focus of at times heated debate about issues in emotion science [17, 23, 40]. +Facial expression figures prominently in research on almost every aspect of emotion, including psychophys- +iology [30], neural correlates [18], development [31], perception [4], addiction [24], social processes [26], +depression [39] and other emotion disorders [46], to name a few. In general, facial expression provides cues +bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology. +While people have believed for centuries that facial expressions can reveal what people are thinking and +feeling, it is relatively recently that the face has been studied scientifically for what it can tell us about +internal states, social behavior, and psychopathology. +Faces possess their own language. Beginning with Darwin and his contemporaries, extensive efforts +have been made to manually describe this language. A leading approach, the Facial Action Coding System +(FACS) [19] , segments the visible effects of facial muscle activation into ”action units.” Because of its +descriptive power, FACS has become the state of the art in manual measurement of facial expression and is +widely used in studies of spontaneous facial behavior. The FACS taxonomy was develop by manually ob- +serving graylevel variation between expressions in images and to a lesser extent by recording the electrical +ctivity of underlying facial muscles [9]. Because of its importance to human social dynamics, person per-" +341002fac5ae6c193b78018a164d3c7295a495e4,von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification,"von Mises-Fisher Mixture Model-based Deep +learning: Application to Face Verification +Md. Abul Hasnat, Julien Bohn´e, Jonathan Milgram, St´ephane Gentric and Liming Chen" +34ec83c8ff214128e7a4a4763059eebac59268a6,Action Anticipation By Predicting Future Dynamic Images,"Action Anticipation By Predicting Future +Dynamic Images +Cristian Rodriguez, Basura Fernando and Hongdong Li +Australian Centre for Robotic Vision, ANU, Canberra, Australia +{cristian.rodriguez, basura.fernando," +34c594abba9bb7e5813cfae830e2c4db78cf138c,Transport-based single frame super resolution of very low resolution face images,"Transport-Based Single Frame Super Resolution of Very Low Resolution Face Images +Soheil Kolouri1, Gustavo K. Rohde1,2 +Department of Biomedical Engineering, Carnegie Mellon University. 2Department of Electrical and Computer Engineering, Carnegie Mellon University. +We describe a single-frame super-resolution method for reconstructing high- +resolution (abbr. high-res) faces from very low-resolution (abbr. low-res) +face images (e.g. smaller than 16× 16 pixels) by learning a nonlinear La- +grangian model for the high-res face images. Our technique is based on the +mathematics of optimal transport, and hence we denote it as transport-based +SFSR (TB-SFSR). In the training phase, a nonlinear model of high-res fa- +ial images is constructed based on transport maps that morph a reference +image into the training face images. In the testing phase, the resolution of +degraded image is enhanced by finding the model parameters that best fit +the given low resolution data. +Generally speaking, most SFSR methods [2, 3, 4, 5] are based on a +linear model for the high-res images. Hence, ultimately, the majority of +SFSR models in the literature can be written as, Ih(x) = ∑i wiψi(x), where +Ih is a high-res image or a high-res image patch, w’s are weight coefficients, +nd ψ’s are high-res images (or image patches), which are learned from the +training images using a specific model. Here we propose a fundamentally +different approach toward modeling high-res images. In our approach the" +341ed69a6e5d7a89ff897c72c1456f50cfb23c96,"DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network","DAGER: Deep Age, Gender and Emotion +Recognition Using Convolutional Neural +Networks +Afshin Dehghan +Enrique G. Ortiz +Guang Shu +Syed Zain Masood +{afshindehghan, egortiz, guangshu, +Computer Vision Lab, Sighthound Inc., Winter Park, FL" +340d1a9852747b03061e5358a8d12055136599b0,Audio-Visual Recognition System Insusceptible to Illumination Variation over Internet Protocol _ICIE_28_,"Audio-Visual Recognition System Insusceptible +to Illumination Variation over Internet Protocol +Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang" +5a3da29970d0c3c75ef4cb372b336fc8b10381d7,CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images.,"CNN-based Real-time Dense Face Reconstruction +with Inverse-rendered Photo-realistic Face Images +Yudong Guo, Juyong Zhang†, Jianfei Cai, Boyi Jiang and Jianmin Zheng" +5a93f9084e59cb9730a498ff602a8c8703e5d8a5,Face Recognition using Local Quantized Patterns,"HUSSAIN ET. AL: FACE RECOGNITION USING LOCAL QUANTIZED PATTERNS +Face Recognition using Local Quantized +Patterns +Sibt ul Hussain +Thibault Napoléon +Fréderic Jurie +GREYC — CNRS UMR 6072, +University of Caen Basse-Normandie, +Caen, France" +5a34a9bb264a2594c02b5f46b038aa1ec3389072,Label-Embedding for Image Classification,"Label-Embedding for Image Classification +Zeynep Akata, Member, IEEE, Florent Perronnin, Member, IEEE, Zaid Harchaoui, Member, IEEE, +nd Cordelia Schmid, Fellow, IEEE" +5a4c6246758c522f68e75491eb65eafda375b701,Contourlet structural similarity for facial expression recognition,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE +ICASSP 2010" +5aad5e7390211267f3511ffa75c69febe3b84cc7,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Estimation +Without Using Eye Movement +Lex Fridman, Philipp Langhans, Joonbum Lee, Bryan Reimer +MIT AgeLab" +5a86842ab586de9d62d5badb2ad8f4f01eada885,Facial Emotion Recognition and Classification Using Hybridization Method,"International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015 +ISSN 2091-2730 +Facial Emotion Recognition and Classification Using Hybridization +Method +Anchal Garg , Dr. Rohit Bajaj +Deptt. of CSE, Chandigarh Engg. College, Mohali, Punjab, India. +07696449500" +5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c,Automatic age and gender classification using supervised appearance model,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605." +5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6,Human Expression Recognition using Facial Features,"International Journal of Computer Applications® (IJCA) (0975 – 8887) +International Conference on Knowledge Collaboration in Engineering, ICKCE-2014 +Human Expression Recognition using Facial Features +G.Saranya +Post graduate student, Dept. of ECE +Parisutham Institute of Technology & Science +Thanjavur. +Affiliated to Anna university, Chennai +recognition can be used" +5a7520380d9960ff3b4f5f0fe526a00f63791e99,The Indian Spontaneous Expression Database for Emotion Recognition,"The Indian Spontaneous Expression +Database for Emotion Recognition +S L Happy, Student Member, IEEE, Priyadarshi Patnaik, Aurobinda Routray, Member, IEEE, +nd Rajlakshmi Guha" +5fff61302adc65d554d5db3722b8a604e62a8377,Additive Margin Softmax for Face Verification,"Additive Margin Softmax for Face Verification +Feng Wang +UESTC +Weiyang Liu +Georgia Tech +Haijun Liu +UESTC +Jian Cheng +UESTC +haijun" +5fa6e4a23da0b39e4b35ac73a15d55cee8608736,RED-Net: A Recurrent Encoder–Decoder Network for Video-Based Face Alignment,"IJCV special issue (Best papers of ECCV 2016) manuscript No. +(will be inserted by the editor) +RED-Net: +A Recurrent Encoder-Decoder Network for Video-based Face Alignment +Xi Peng · Rogerio S. Feris · Xiaoyu Wang · Dimitris N. Metaxas +Submitted: April 19 2017 / Revised: December 12 2017" +5f871838710a6b408cf647aacb3b198983719c31,Locally Linear Regression for Pose-Invariant Face Recognition,"Locally Linear Regression for Pose-Invariant +Face Recognition +Xiujuan Chai, Shiguang Shan, Member, IEEE, Xilin Chen, Member, IEEE, and Wen Gao, Senior Member, IEEE" +5f344a4ef7edfd87c5c4bc531833774c3ed23542,Semisupervised Learning of Classifiers with Application to Human-computer Interaction," Copyright by Ira Cohen, 2003" +5f5906168235613c81ad2129e2431a0e5ef2b6e4,A Unified Framework for Compositional Fitting of Active Appearance Models,"Noname manuscript No. +(will be inserted by the editor) +A Unified Framework for Compositional Fitting of +Active Appearance Models +Joan Alabort-i-Medina · Stefanos Zafeiriou +Received: date / Accepted: date" +5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning,"Multiple Facial Attributes Estimation based on +Weighted Heterogeneous Learning +H.Fukui* T.Yamashita* Y.Kato* R.Matsui* +T. Ogata** Y.Yamauchi* H.Fujiyoshi* +*Chubu University +**Abeja Inc. +200, Matuoto-cho, Kasugai, +-1-20, Toranomon, Minato-ku, +Aichi, Japan +Tokyo, Japan" +5fc664202208aaf01c9b62da5dfdcd71fdadab29,Automatic Face Recognition from Video,rXiv:1504.05308v1 [cs.CV] 21 Apr 2015 +5fa1724a79a9f7090c54925f6ac52f1697d6b570,The Development of Multimodal Lexical Resources,"Proceedings of the Workshop on Grammar and Lexicon: Interactions and Interfaces, +pages 41–47, Osaka, Japan, December 11 2016." +33a1a049d15e22befc7ddefdd3ae719ced8394bf,An Efficient Approach to Facial Feature Detection for Expression Recognition,"FULL PAPER +International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009 +An Efficient Approach to Facial Feature Detection +for Expression Recognition +S.P. Khandait1, P.D. Khandait2 and Dr.R.C.Thool2 +Deptt. of Info.Tech., K.D.K.C.E., Nagpur, India +2Deptt.of Electronics Engg., K.D.K.C.E., Nagpur, India, 2Deptt. of Info.Tech., SGGSIET, Nanded" +333aa36e80f1a7fa29cf069d81d4d2e12679bc67,Suggesting Sounds for Images from Video Collections,"Suggesting Sounds for Images +from Video Collections +Matthias Sol`er1, Jean-Charles Bazin2, Oliver Wang2, Andreas Krause1 and +Alexander Sorkine-Hornung2 +Computer Science Department, ETH Z¨urich, Switzerland +Disney Research, Switzerland" +33792bb27ef392973e951ca5a5a3be4a22a0d0c6,Two-Dimensional Whitening Reconstruction for Enhancing Robustness of Principal Component Analysis,"Two-dimensional Whitening Reconstruction for +Enhancing Robustness of Principal Component +Analysis +Xiaoshuang Shi, Zhenhua Guo, Feiping Nie, Lin Yang, Jane You, and Dacheng Tao" +3328674d71a18ed649e828963a0edb54348ee598,A face and palmprint recognition approach based on discriminant DCT feature extraction,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004 +A Face and Palmprint Recognition Approach Based +on Discriminant DCT Feature Extraction +Xiao-Yuan Jing and David Zhang" +339937141ffb547af8e746718fbf2365cc1570c8,Facial Emotion Recognition in Real Time,"Facial Emotion Recognition in Real Time +Dan Duncan +Gautam Shine +Chris English" +33ae696546eed070717192d393f75a1583cd8e2c,Subspace selection to suppress confounding source domain information in AAM transfer learning, +3393459600368be2c4c9878a3f65a57dcc0c2cfa,Eigen-PEP for Video Face Recognition,"Eigen-PEP for Video Face Recognition +Haoxiang Li†, Gang Hua†, Xiaohui Shen‡, Zhe Lin‡, Jonathan Brandt‡ +Stevens Institute of Technology ‡Adobe Systems Inc." +3352426a67eabe3516812cb66a77aeb8b4df4d1b,Joint Multi-view Face Alignment in the Wild,"JOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015 +Joint Multi-view Face Alignment in the Wild +Jiankang Deng, Student Member, IEEE, George Trigeorgis, Yuxiang Zhou, and Stefanos Zafeiriou, Member, IEEE" +334d6c71b6bce8dfbd376c4203004bd4464c2099,Biconvex Relaxation for Semidefinite Programming in Computer Vision,"BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN +COMPUTER VISION +SOHIL SHAH*, ABHAY KUMAR*, DAVID JACOBS, +CHRISTOPH STUDER, AND TOM GOLDSTEIN" +33695e0779e67c7722449e9a3e2e55fde64cfd99,Riemannian coding and dictionary learning: Kernels to the rescue,"Riemannian Coding and Dictionary Learning: Kernels to the Rescue +Mehrtash Harandi, Mathieu Salzmann +Australian National University & NICTA +While sparse coding on non-flat Riemannian manifolds has recently become +increasingly popular, existing solutions either are dedicated to specific man- +ifolds, or rely on optimization problems that are difficult to solve, especially +when it comes to dictionary learning. In this paper, we propose to make use +of kernels to perform coding and dictionary learning on Riemannian man- +ifolds. To this end, we introduce a general Riemannian coding framework +with its kernel-based counterpart. This lets us (i) generalize beyond the spe- +ial case of sparse coding; (ii) introduce efficient solutions to two coding +schemes; (iii) learn the kernel parameters; (iv) perform unsupervised and +supervised dictionary learning in a much simpler manner than previous Rie- +mannian coding approaches. +i=1, di ∈ M, be a dictionary on a Rie- +mannian manifold M, and x ∈ M be a query point on the manifold. We +(cid:17) +define a general Riemannian coding formulation as +More specifically, let D = {di}N +(cid:93)N" +33e20449aa40488c6d4b430a48edf5c4b43afdab,The Faces of Engagement: Automatic Recognition of Student Engagementfrom Facial Expressions,"TRANSACTIONS ON AFFECTIVE COMPUTING +The Faces of Engagement: Automatic +Recognition of Student Engagement from Facial +Expressions +Jacob Whitehill, Zewelanji Serpell, Yi-Ching Lin, Aysha Foster, and Javier R. Movellan" +333e7ad7f915d8ee3bb43a93ea167d6026aa3c22,3D Assisted Face Recognition: Dealing With Expression Variations,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +The final version of record is available at http://dx.doi.org/10.1109/TIFS.2014.2309851 +DRAFT +D Assisted Face Recognition: Dealing With +Expression Variations +Nesli Erdogmus, Member, IEEE, Jean-Luc Dugelay, Fellow Member, IEEE" +334166a942acb15ccc4517cefde751a381512605,Facial Expression Analysis using Deep Learning,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 +Facial Expression Analysis using Deep Learning +Hemanth Singh1, Raman Patel2 +,2 M.Tech Student, SSG Engineering College, Odisha, India +---------------------------------------------------------------------***--------------------------------------------------------------------- +examination structures need to analyse the facial exercises" +05b8673d810fadf888c62b7e6c7185355ffa4121,A Comprehensive Survey to Face Hallucination,"(will be inserted by the editor) +A Comprehensive Survey to Face Hallucination +Nannan Wang · Dacheng Tao · Xinbo Gao · Xuelong Li · Jie Li +Received: date / Accepted: date" +05e658fed4a1ce877199a4ce1a8f8cf6f449a890,Domain Transfer Learning for Object and Action Recognition, +05ad478ca69b935c1bba755ac1a2a90be6679129,Attribute Dominance: What Pops Out?,"Attribute Dominance: What Pops Out? +Naman Turakhia +Georgia Tech" +054738ce39920975b8dcc97e01b3b6cc0d0bdf32,Towards the design of an end-to-end automated system for image and video-based recognition,"Towards the Design of an End-to-End Automated +System for Image and Video-based Recognition +Rama Chellappa1, Jun-Cheng Chen3, Rajeev Ranjan1, Swami Sankaranarayanan1, Amit Kumar1, +Vishal M. Patel2 and Carlos D. Castillo4" +05e03c48f32bd89c8a15ba82891f40f1cfdc7562,Scalable Robust Principal Component Analysis Using Grassmann Averages,"Scalable Robust Principal Component +Analysis using Grassmann Averages +Søren Hauberg, Aasa Feragen, Raffi Enficiaud, and Michael J. Black" +056ba488898a1a1b32daec7a45e0d550e0c51ae4,Cascaded Continuous Regression for Real-Time Incremental Face Tracking,"Cascaded Continuous Regression for Real-time +Incremental Face Tracking +Enrique S´anchez-Lozano, Brais Martinez, +Georgios Tzimiropoulos, and Michel Valstar +Computer Vision Laboratory. University of Nottingham" +050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,Spatio-Temporal Scale Selection in Video Data,"Contents +Scale Space and PDE Methods +Spatio-Temporal Scale Selection in Video Data . . . . . . . . . . . . . . . . . . . . . +Tony Lindeberg +Dynamic Texture Recognition Using Time-Causal Spatio-Temporal +Scale-Space Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Ylva Jansson and Tony Lindeberg +Corner Detection Using the Affine Morphological Scale Space . . . . . . . . . . . +Luis Alvarez +Nonlinear Spectral Image Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger, +Daniel Cremers, Guy Gilboa, and Carola-Bibiane Schönlieb +Tubular Structure Segmentation Based on Heat Diffusion. . . . . . . . . . . . . . . +Fang Yang and Laurent D. Cohen +Analytic Existence and Uniqueness Results for PDE-Based Image +Reconstruction with the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Laurent Hoeltgen, Isaac Harris, Michael Breuß, and Andreas Kleefeld +Combining Contrast Invariant L1 Data Fidelities with Nonlinear +Spectral Image Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Leonie Zeune, Stephan A. van Gils, Leon W.M.M. Terstappen," +052880031be0a760a5b606b2ad3d22f237e8af70,Datasets on object manipulation and interaction: a survey,"Datasets on object manipulation and interaction: a survey +Yongqiang Huang and Yu Sun" +053c2f592a7f153e5f3746aa5ab58b62f2cf1d21,Performance Evaluation of Illumination Normalization Techniques for Face Recognition,"International Journal of Research in +Engineering & Technology (IJRET) +ISSN 2321-8843 +Vol. 1, Issue 2, July 2013, 11-20 +© Impact Journals +PERFORMANCE EVALUATION OF ILLUMINATION NORMALIZATION TECHNIQUES +FOR FACE RECOGNITION +A. P. C. SARATHA DEVI & V. MAHESH +Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu, India" +05ea7930ae26165e7e51ff11b91c7aa8d7722002,Learning And-Or Model to Represent Context and Occlusion for Car Detection and Viewpoint Estimation,"Learning And-Or Model to Represent Context and +Occlusion for Car Detection and Viewpoint Estimation +Tianfu Wu∗, Bo Li∗ and Song-Chun Zhu" +051a84f0e39126c1ebeeb379a405816d5d06604d,Biometric Recognition Performing in a Bioinspired System,"Cogn Comput (2009) 1:257–267 +DOI 10.1007/s12559-009-9018-7 +Biometric Recognition Performing in a Bioinspired System +Joan Fa`bregas Æ Marcos Faundez-Zanuy +Published online: 20 May 2009 +Ó Springer Science+Business Media, LLC 2009" +0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,Facial Expression Recognition,"Facial Expression Recognition +Bogdan J. Matuszewski, Wei Quan and Lik-Kwan Shark +ADSIP Research Centre, University of Central Lancashire +. Introduction +Facial expressions are visible signs of a person’s affective state, cognitive activity and +personality. Humans can perform expression recognition with a remarkable robustness +without conscious effort even under a variety of adverse conditions such as partially +occluded faces, different appearances and poor illumination. Over the last two decades, the +dvances in imaging technology and ever increasing computing power have opened up a +possibility of automatic facial expression recognition and this has led to significant research +efforts from the computer vision and pattern recognition communities. One reason for this +growing interest is due to a wide spectrum of possible applications in diverse areas, such as +more engaging human-computer interaction (HCI) systems, video conferencing, augmented +reality. Additionally from the biometric perspective, automatic recognition of facial +expressions has been investigated in the context of monitoring patients in the intensive care +nd neonatal units for signs of pain and anxiety, behavioural research, identifying level of +oncentration, and improving face recognition. +Automatic facial expression recognition is a difficult task due to its inherent subjective +nature, which is additionally hampered by usual difficulties encountered in pattern +recognition and computer vision research. The vast majority of the current state-of-the-art" +05a7be10fa9af8fb33ae2b5b72d108415519a698,Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification,"Multilayer and Multimodal Fusion of Deep Neural Networks +for Video Classification +Xiaodong Yang Pavlo Molchanov Jan Kautz +{xiaodongy, pmolchanov, +NVIDIA" +050a149051a5d268fcc5539e8b654c2240070c82,Magisterské a doktorské studijnı́ programy,MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE +0580edbd7865414c62a36da9504d1169dea78d6f,Baseline CNN structure analysis for facial expression recognition,"Baseline CNN structure analysis for facial expression recognition +Minchul Shin1, Munsang Kim2 and Dong-Soo Kwon1" +9d58e8ab656772d2c8a99a9fb876d5611fe2fe20,Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video,"Beyond Temporal Pooling: Recurrence and Temporal +Convolutions for Gesture Recognition in Video +Lionel Pigou, A¨aron van den Oord∗ , Sander Dieleman∗ , +{lionel.pigou,aaron.vandenoord,sander.dieleman, +Mieke Van Herreweghe & Joni Dambre +mieke.vanherreweghe, +Ghent University +February 11, 2016" +9d42df42132c3d76e3447ea61e900d3a6271f5fe,AutoCAP: An Automatic Caption Generation System based on the Text Knowledge Power Series Representation Model,"International Journal of Computer Applications (0975 – 8887) +Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014) +AutoCAP: An Automatic Caption Generation System +ased on the Text Knowledge Power Series +Representation Model +Krishnapriya P S +M.Tech Dept of CSE +NSS College of Engineering +Palakkad, Kerala" +9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2,L Earning to C Luster,"Workshop track - ICLR 2018 +LEARNING TO CLUSTER +Benjamin B. Meier, Thilo Stadelmann & Oliver D¨urr +ZHAW Datalab, Zurich University of Applied Sciences +Winterthur, Switzerland" +9d357bbf014289fb5f64183c32aa64dc0bd9f454,Face Identification by Fitting a 3D Morphable Model Using Linear Shape and Texture Error Functions,"Face Identification by Fitting a 3D Morphable Model +using Linear Shape and Texture Error Functions +Sami Romdhani, Volker Blanz, and Thomas Vetter +University of Freiburg, Instit¨ut f¨ur Informatik, +Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany, +fromdhani, volker," +9d839dfc9b6a274e7c193039dfa7166d3c07040b,Augmented faces,"Augmented Faces +Matthias Dantone1 +Lukas Bossard1 +Till Quack1,2 +Luc van Gool1,3 +ETH Z¨urich +Kooaba AG +K.U. Leuven" +9d36c81b27e67c515df661913a54a797cd1260bb,3d Face Recognition Techniques - a Review,"Preeti.B.Sharma, Mahesh M. Goyani / International Journal of Engineering Research and +Applications (IJERA) ISSN: 2248-9622 www.ijera.com +Vol. 2, Issue 1,Jan-Feb 2012, pp.787-793 +3D FACE RECOGNITION TECHNIQUES - A REVIEW +Preeti B. Sharma*, Mahesh M. Goyani** +*(Department of Information Technology, Gujarat Technological University, India) +**( Department of Computer Engineering, Gujarat Technological University, India) +security at many places" +9d757c0fede931b1c6ac344f67767533043cba14,Search Based Face Annotation Using PCA and Unsupervised Label Refinement Algorithms,"Search Based Face Annotation Using PCA and +Unsupervised Label Refinement Algorithms +Shital Shinde1, Archana Chaugule2 +Computer Department, Savitribai Phule Pune University +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18 +Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18 +Computer Department, D.Y.PIET, Pimpri, Pune-18, MH, India +presents" +9d60ad72bde7b62be3be0c30c09b7d03f9710c5f,A Survey: Face Recognition Techniques,"A Survey: Face Recognition Techniques +Arun Agrawal +Assistant Professor, ITM GOI +Ranjana Sikarwar +M Tech, ITM GOI +video +(Eigen +passport-verification," +9d24179aa33a94c8c61f314203bf9e906d6b64de,Searching for People through Textual and Visual Attributes,"Searching for People through +Textual and Visual Attributes +Junior Fabian, Ramon Pires, Anderson Rocha +Institute of Computing +University of Campinas (Unicamp) +Campinas-SP, Brazil +Fig. 1. The proposed approach aims at searching for people using textual and visual attributes. Given an image database of faces, we extract the points of +interest (PoIs) to construct a visual dictionary that allow us to obtain the feature vectors by a quantization process (top). Then we train attribute classifiers to +generate a score for each image (middle). Finally, given a textual query (e.g., male), we fusion obtained scores to return a unique final rank (bottom)." +9c1305383ce2c108421e9f5e75f092eaa4a5aa3c,Speaker Retrieval for Tv Show Videos by Associating Audio Speaker Recognition Result to Visual Faces∗,"SPEAKER RETRIEVAL FOR TV SHOW VIDEOS BY ASSOCIATING AUDIO SPEAKER +RECOGNITION RESULT TO VISUAL FACES∗ +Yina Han*’, Joseph Razik’, Gerard Chollet’, and Guizhong Liu* +*School of Electrical and Information Engineering, Xi’an Jiaotong University, Xi’an, China +’CNRS-LTCI, TELECOM-ParisTech, Paris, France" +9c1860de6d6e991a45325c997bf9651c8a9d716f,3D reconstruction and face recognition using kernel-based ICA and neural networks,"D Reconstruction and Face Recognition Using Kernel-Based +ICA and Neural Networks +Cheng-Jian Lin Ya-Tzu Huang +Chi-Yung Lee +Dept. of Electrical Dept. of CSIE Dept. of CSIE +Engineering Chaoyang University Nankai Institute of +National University of Technology Technology +of Kaohsiung" +9ca7899338129f4ba6744f801e722d53a44e4622,Deep neural networks regularization for structured output prediction,"Deep Neural Networks Regularization for Structured +Output Prediction +Soufiane Belharbi∗ +INSA Rouen, LITIS +76000 Rouen, France +Clément Chatelain +INSA Rouen, LITIS +76000 Rouen, France +Romain Hérault +INSA Rouen, LITIS +76000 Rouen, France +Sébastien Adam +INSA Rouen, LITIS +76000 Rouen, France +Normandie Univ, UNIROUEN, UNIHAVRE, +Normandie Univ, UNIROUEN, UNIHAVRE, +Normandie Univ, UNIROUEN, UNIHAVRE, +Normandie Univ, UNIROUEN, UNIHAVRE," +9c1664f69d0d832e05759e8f2f001774fad354d6,Action Representations in Robotics: A Taxonomy and Systematic Classification,"Action representations in robotics: A +taxonomy and systematic classification +Journal Title +XX(X):1–32 +(cid:13)The Author(s) 2016 +Reprints and permission: +sagepub.co.uk/journalsPermissions.nav +DOI: 10.1177/ToBeAssigned +www.sagepub.com/ +Philipp Zech, Erwan Renaudo, Simon Haller, Xiang Zhang and Justus Piater" +9c065dfb26ce280610a492c887b7f6beccf27319,Learning from Video and Text via Large-Scale Discriminative Clustering,"Learning from Video and Text via Large-Scale Discriminative Clustering +Antoine Miech1,2 +Jean-Baptiste Alayrac1,2 +Piotr Bojanowski2 +Ivan Laptev 1,2 +Josef Sivic1,2,3 +´Ecole Normale Sup´erieure +Inria +CIIRC" +9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6,Attribute Based Face Classification Using Support Vector Machine,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072 +Attribute Based Face Classification Using Support Vector Machine +Brindha.M1, Amsaveni.R2 +Research Scholar, Dept. of Computer Science, PSGR Krishnammal College for Women, Coimbatore +Assistant Professor, Dept. of Information Technology, PSGR Krishnammal College for Women, Coimbatore." +9ce0d64125fbaf625c466d86221505ad2aced7b1,Recognizing expressions of children in real life scenarios View project PhD ( Doctor of Philosophy ) View project,"Saliency Based Framework for Facial Expression +Recognition +Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz +To cite this version: +Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz. Saliency Based Framework for +Facial Expression Recognition. Frontiers of Computer Science, 2017, <10.1007/s11704-017-6114-9>. + +HAL Id: hal-01546192 +https://hal.archives-ouvertes.fr/hal-01546192 +Submitted on 23 Jun 2017 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de" +02601d184d79742c7cd0c0ed80e846d95def052e,Graphical Representation for Heterogeneous Face Recognition,"Graphical Representation for Heterogeneous +Face Recognition +Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li" +02e43d9ca736802d72824892c864e8cfde13718e,Transferring a semantic representation for person re-identification and search,"Transferring a Semantic Representation for Person Re-Identification and +Search +Shi, Z; Yang, Y; Hospedales, T; XIANG, T; IEEE Conference on Computer Vision and +Pattern Recognition +© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained for all other uses, in any current or future media, including reprinting/republishing +this material for advertising or promotional purposes, creating new collective works, for resale +or redistribution to servers or lists, or reuse of any copyrighted component of this work in +other works. +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/10075 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact" +02fda07735bdf84554c193811ba4267c24fe2e4a,Illumination Invariant Face Recognition Using Near-Infrared Images,"Illumination Invariant Face Recognition +Using Near-Infrared Images +Stan Z. Li, Senior Member, IEEE, RuFeng Chu, ShengCai Liao, and Lun Zhang" +0241513eeb4320d7848364e9a7ef134a69cbfd55,Supervised translation-invariant sparse coding,"Supervised Translation-Invariant Sparse +Coding +¹Jianchao Yang, ²Kai Yu, and ¹Thomas Huang +¹University of Illinois at Urbana Champaign +²NEC Laboratories America at Cupertino" +02dd0af998c3473d85bdd1f77254ebd71e6158c6,PPP: Joint Pointwise and Pairwise Image Label Prediction,"PPP: Joint Pointwise and Pairwise Image Label Prediction +Yilin Wang1 Suhang Wang1 +Jiliang Tang2 Huan Liu1 Baoxin Li1 +Department of Computer Science, Arizona State Univerity +Yahoo Research" +029317f260b3303c20dd58e8404a665c7c5e7339,Character Identification in Feature-Length Films Using Global Face-Name Matching,"Character Identification in Feature-Length Films +Using Global Face-Name Matching +Yi-Fan Zhang, Student Member, IEEE, Changsheng Xu, Senior Member, IEEE, Hanqing Lu, Senior Member, IEEE, +nd Yeh-Min Huang, Member, IEEE" +0273414ba7d56ab9ff894959b9d46e4b2fef7fd0,Photographic home styles in Congress: a computer vision approach,"Photographic home styles in Congress: a +omputer vision approach∗ +L. Jason Anastasopoulos†. +Dhruvil Badani‡ +Crystal Lee§ +Shiry Ginosar¶ +Jake Williams(cid:107) +December 1, 2016" +02e133aacde6d0977bca01ffe971c79097097b7f,Convolutional Neural Fabrics, +02567fd428a675ca91a0c6786f47f3e35881bcbd,Deep Label Distribution Learning With Label Ambiguity,"ACCEPTED BY IEEE TIP +Deep Label Distribution Learning +With Label Ambiguity +Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, Member, IEEE, and Xin Geng, Member, IEEE" +0278acdc8632f463232e961563e177aa8c6d6833,Selective Transfer Machine for Personalized Facial Expression Analysis,"Selective Transfer Machine for Personalized +Facial Expression Analysis +Wen-Sheng Chu, Fernando De la Torre, and Jeffrey F. Cohn +INTRODUCTION +Index Terms—Facial expression analysis, personalization, domain adaptation, transfer learning, support vector machine (SVM) +A UTOMATIC facial AU detection confronts a number of" +a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2,Gated spatio and temporal convolutional neural network for activity recognition: towards gated multimodal deep learning,"Yudistira and Kurita EURASIP Journal on Image and Video +Processing (2017) 2017:85 +DOI 10.1186/s13640-017-0235-9 +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +Gated spatio and temporal convolutional +neural network for activity recognition: +towards gated multimodal deep learning +Novanto Yudistira1* and Takio Kurita2" +a40f8881a36bc01f3ae356b3e57eac84e989eef0,"End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks","End-to-end semantic face segmentation with conditional +random fields as convolutional, recurrent and adversarial +networks +Umut Güçlü*, 1, Yağmur Güçlütürk*, 1, +Meysam Madadi2, Sergio Escalera3, Xavier Baró4, Jordi González2, +Rob van Lier1, Marcel van Gerven1" +a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3,Efficient Recurrent Residual Networks Improved by Feature Transfer,"Ecient Recurrent Residual Networks Improved by +Feature Transfer +MSc Thesis +written by +Yue Liu +under the supervision of Dr. Silvia-Laura Pintea, Dr. Jan van Gemert, +nd Dr. Ildiko Suveg and submitted to the Board of Examiners for the +degree of +Master of Science +t the Delft University of Technology. +Date of the public defense: Members of the Thesis Committee: +August 31, 2017 +Prof. Marcel Reinders +Dr. Jan van Gemert +Dr. Julian Urbano Merino +Dr. Silvia-Laura Pintea +Dr. Ildiko Suveg (Bosch) +Dr. Gonzalez Adrlana (Bosch)" +a44590528b18059b00d24ece4670668e86378a79,Learning the Hierarchical Parts of Objects by Deep Non-Smooth Nonnegative Matrix Factorization,"Learning the Hierarchical Parts of Objects by Deep +Non-Smooth Nonnegative Matrix Factorization +Jinshi Yu, Guoxu Zhou, Andrzej Cichocki +IEEE Fellow, and Shengli Xie IEEE Senior Member" +a472d59cff9d822f15f326a874e666be09b70cfd,Visual Learning with Weakly Labeled Video a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"VISUAL LEARNING WITH WEAKLY LABELED VIDEO +A DISSERTATION +SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +AND THE COMMITTEE ON GRADUATE STUDIES +OF STANFORD UNIVERSITY +IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +FOR THE DEGREE OF +DOCTOR OF PHILOSOPHY +Kevin Tang +May 2015" +a4c430b7d849a8f23713dc283794d8c1782198b2,Video Concept Embedding,"Video Concept Embedding +Anirudh Vemula +Rahul Nallamothu +Syed Zahir Bokhari +. Introduction +In the area of natural language processing, there has been +much success in learning distributed representations for +words as vectors. Doing so has an advantage over using +simple labels, or a one-hot coding scheme for representing +individual words. In learning distributed vector representa- +tions for words, we manage to capture semantic relatedness +of words in vector distance. For example, the word vector +for ”car” and ”road” should end up being closer together in +the vector space representation than ”car” and ”penguin”. +This has been very useful in NLP areas of machine transla- +tion and semantic understanding. +In the computer vision domain, video understanding is a +very important topic. +It is made hard due to the large +mount of high dimensional data in videos. One strategy" +a4f37cfdde3af723336205b361aefc9eca688f5c,Recent Advances in Face Recognition,"Recent Advances +in Face Recognition" +a30869c5d4052ed1da8675128651e17f97b87918,Fine-Grained Comparisons with Attributes,"Fine-Grained Comparisons with Attributes +Aron Yu and Kristen Grauman" +a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7b,"First International Workshop on Adaptive Shot Learning for Gesture Understanding and Production ASL4GUP 2017 Held in conjunction with IEEE FG 2017, in May 30, 2017, Washington DC, USA","First International Workshop on Adaptive Shot Learning +for Gesture Understanding and Production +ASL4GUP 2017 +Held in conjunction with IEEE FG 2017, in May 30, 2017, +Washington DC, USA" +a3d8b5622c4b9af1f753aade57e4774730787a00,Pose-Aware Person Recognition,"Pose-Aware Person Recognition +Vijay Kumar (cid:63) +Anoop Namboodiri (cid:63) +(cid:63) CVIT, IIIT Hyderabad, India +Manohar Paluri † +Facebook AI Research +C. V. Jawahar (cid:63)" +a3017bb14a507abcf8446b56243cfddd6cdb542b,Face Localization and Recognition in Varied Expressions and Illumination,"Face Localization and Recognition in Varied +Expressions and Illumination +Hui-Yu Huang, Shih-Hang Hsu" +a3c8c7da177cd08978b2ad613c1d5cb89e0de741,A Spatio-temporal Approach for Multiple Object Detection in Videos Using Graphs and Probability Maps,"A Spatio-temporal Approach for Multiple +Object Detection in Videos Using Graphs +nd Probability Maps +Henrique Morimitsu1(B), Roberto M. Cesar Jr.1, and Isabelle Bloch2 +University of S˜ao Paulo, S˜ao Paulo, Brazil +Institut Mines T´el´ecom, T´el´ecom ParisTech, CNRS LTCI, Paris, France" +a378fc39128107815a9a68b0b07cffaa1ed32d1f,Determining a Suitable Metric when Using Non-Negative Matrix Factorization,"Determining a Suitable Metric When using Non-negative Matrix Factorization∗ +David Guillamet and Jordi Vitri`a +Computer Vision Center, Dept. Inform`atica +Universitat Aut`onoma de Barcelona +08193 Bellaterra, Barcelona, Spain" +a34d75da87525d1192bda240b7675349ee85c123,Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?,"Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? +Erjin Zhou +Face++, Megvii Inc. +Zhimin Cao +Face++, Megvii Inc. +Qi Yin +Face++, Megvii Inc." +a3dc109b1dff3846f5a2cc1fe2448230a76ad83f,Active Appearance Model and Pca Based Face Recognition System,"J.Savitha et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 722-731 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 4, Issue. 4, April 2015, pg.722 – 731 +RESEARCH ARTICLE +ACTIVE APPEARANCE MODEL AND PCA +BASED FACE RECOGNITION SYSTEM +Mrs. J.Savitha M.Sc., M.Phil. +Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India +Email: +Dr. A.V.Senthil Kumar +Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India +Email:" +a3f69a073dcfb6da8038607a9f14eb28b5dab2db,3D-Aided Deep Pose-Invariant Face Recognition,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +a38045ed82d6800cbc7a4feb498e694740568258,African American and Caucasian males ' evaluation of racialized female facial averages,"UNLV Theses, Dissertations, Professional Papers, and Capstones +5-2010 +African American and Caucasian males' evaluation +of racialized female facial averages +Rhea M. Watson +University of Nevada Las Vegas +Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations +Part of the Cognition and Perception Commons, Race and Ethnicity Commons, and the Social +Psychology Commons +Repository Citation +Watson, Rhea M., ""African American and Caucasian males' evaluation of racialized female facial averages"" (2010). UNLV Theses, +Dissertations, Professional Papers, and Capstones. 366. +http://digitalscholarship.unlv.edu/thesesdissertations/366 +This Thesis is brought to you for free and open access by Digital It has been accepted for inclusion in UNLV Theses, Dissertations, +Professional Papers, and Capstones by an authorized administrator of Digital For more information, please contact" +a3f78cc944ac189632f25925ba807a0e0678c4d5,Action Recognition in Realistic Sports Videos,"Action Recognition in Realistic Sports Videos +Khurram Soomro and Amir Roshan Zamir" +a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7,Multiple Local Curvature Gabor Binary Patterns for Facial Action Recognition,"Multiple Local Curvature Gabor Binary +Patterns for Facial Action Recognition +Anıl Y¨uce, Nuri Murat Arar and Jean-Philippe Thiran +Signal Processing Laboratory (LTS5), +´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland" +a32c5138c6a0b3d3aff69bcab1015d8b043c91fb,Video redaction: a survey and comparison of enabling technologies,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018 +Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406." +a3eab933e1b3db1a7377a119573ff38e780ea6a3,Sparse Representation for accurate classification of corrupted and occluded facial expressions,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE +ICASSP 2010" +a3a34c1b876002e0393038fcf2bcb00821737105,Face Identification across Different Poses and Illuminations with a 3D Morphable Model,"Face Identification across Different Poses and Illuminations +with a 3D Morphable Model +V. Blanz, S. Romdhani, and T. Vetter +University of Freiburg +Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany +fvolker, romdhani," +a3f1db123ce1818971a57330d82901683d7c2b67,Poselets and Their Applications in High-Level Computer Vision,"Poselets and Their Applications in High-Level +Computer Vision +Lubomir Bourdev +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2012-52 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-52.html +May 1, 2012" +a3a97bb5131e7e67316b649bbc2432aaa1a6556e,Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory.,"Cogn Affect Behav Neurosci +DOI 10.3758/s13415-013-0170-x +Role of the hippocampus and orbitofrontal cortex +during the disambiguation of social cues in working memory +Robert S. Ross & Matthew L. LoPresti & Karin Schon & +Chantal E. Stern +# Psychonomic Society, Inc. 2013" +a35d3ba191137224576f312353e1e0267e6699a1,Increasing security in DRM systems through biometric authentication,"Javier Ortega-Garcia, Josef Bigun, Douglas Reynolds, +nd Joaquin Gonzalez-Rodriguez +Increasing security in DRM systems +through biometric authentication. +ecuring the exchange +of intellectual property +nd providing protection +to multimedia contents in +distribution systems have enabled the +dvent of digital rights management +(DRM) systems [5], [14], [21], [47], +[51], [53]. Rights holders should be able to +license, monitor, and track the usage of rights +in a dynamic digital trading environment, espe- +ially in the near future when universal multimedia +ccess (UMA) becomes a reality, and any multimedia +ontent will be available anytime, anywhere. In such +DRM systems, encryption algorithms, access control, +key management strategies, identification and tracing +of contents, or copy control will play a prominent role" +b558be7e182809f5404ea0fcf8a1d1d9498dc01a,Bottom-up and top-down reasoning with convolutional latent-variable models,"Bottom-up and top-down reasoning with convolutional latent-variable models +Peiyun Hu +UC Irvine +Deva Ramanan +UC Irvine" +b5cd8151f9354ee38b73be1d1457d28e39d3c2c6,Finding Celebrities in Video,"Finding Celebrities in Video +Nazli Ikizler +Jai Vasanth +Linus Wong +David Forsyth +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2006-77 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-77.html +May 23, 2006" +b5fc4f9ad751c3784eaf740880a1db14843a85ba,Significance of image representation for face verification,"SIViP (2007) 1:225–237 +DOI 10.1007/s11760-007-0016-5 +ORIGINAL PAPER +Significance of image representation for face verification +Anil Kumar Sao · B. Yegnanarayana · +B. V. K. Vijaya Kumar +Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007 +© Springer-Verlag London Limited 2007" +b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57,Modeling Social and Temporal Context for Video Analysis,"UNIVERSITY OF CALIFORNIA +RIVERSIDE +Modeling Social and Temporal Context for Video Analysis +A Dissertation submitted in partial satisfaction +of the requirements for the degree of +Doctor of Philosophy +Computer Science +Zhen Qin +June 2015 +Dissertation Committee: +Dr. Christian R. Shelton, Chairperson +Dr. Tao Jiang +Dr. Stefano Lonardi +Dr. Amit Roy-Chowdhury" +b599f323ee17f12bf251aba928b19a09bfbb13bb,Autonomous Quadcopter Videographer,"AUTONOMOUS QUADCOPTER VIDEOGRAPHER +REY R. COAGUILA +B.S. Universidad Peruana de Ciencias Aplicadas, 2009 +A thesis submitted in partial fulfillment of the requirements +for the degree of Master of Science in Computer Science +in the Department of Electrical Engineering and Computer Science +in the College of Engineering and Computer Science +t the University of Central Florida +Orlando, Florida +Spring Term +Major Professor: Gita R. Sukthankar" +b5160e95192340c848370f5092602cad8a4050cd,Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR +Video Classification With CNNs: Using The Codec +As A Spatio-Temporal Activity Sensor +Aaron Chadha, Alhabib Abbas and Yiannis Andreopoulos, Senior Member, IEEE" +b52886610eda6265a2c1aaf04ce209c047432b6d,Microexpression Identification and Categorization Using a Facial Dynamics Map,"Microexpression Identification and Categorization +using a Facial Dynamics Map +Feng Xu, Junping Zhang, James Z. Wang" +b5857b5bd6cb72508a166304f909ddc94afe53e3,SSIG and IRISA at Multimodal Person Discovery,"SSIG and IRISA at Multimodal Person Discovery +Cassio E. dos Santos Jr1, Guillaume Gravier2, William Robson Schwartz1 +Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +IRISA & Inria Rennes , CNRS, Rennes, France" +b51e3d59d1bcbc023f39cec233f38510819a2cf9,"Can a biologically-plausible hierarchy effectively replace face detection, alignment, and recognition pipelines?","CBMM Memo No. 003 +March 27, 2014 +Can a biologically-plausible hierarchy effectively +replace face detection, alignment, and +recognition pipelines? +Qianli Liao1, Joel Z Leibo1, Youssef Mroueh1, Tomaso Poggio1" +b54c477885d53a27039c81f028e710ca54c83f11,Semi-Supervised Kernel Mean Shift Clustering,"Semi-Supervised Kernel Mean Shift Clustering +Saket Anand, Member, IEEE, Sushil Mittal, Member, IEEE, Oncel Tuzel, Member, IEEE, +nd Peter Meer, Fellow, IEEE" +b503f481120e69b62e076dcccf334ee50559451e,Recognition of Facial Action Units with Action Unit Classifiers and an Association Network,"Recognition of Facial Action Units with Action +Unit Classifiers and An Association Network +Junkai Chen1, Zenghai Chen1, Zheru Chi1 and Hong Fu1,2 +Department of Electronic and Information Engineering, The Hong Kong Polytechnic +University, Hong Kong +Department of Computer Science, Chu Hai College of Higher Education, Hong Kong" +b55d0c9a022874fb78653a0004998a66f8242cad,Hybrid Facial Representations for Emotion Recognition Woo,"Hybrid Facial Representations +for Emotion Recognition +Woo-han Yun, DoHyung Kim, Chankyu Park, and Jaehong Kim +Automatic facial expression recognition is a widely +studied problem in computer vision and human-robot +interaction. There has been a range of studies for +representing facial descriptors for facial expression +recognition. Some prominent descriptors were presented +in the first facial expression recognition and analysis +hallenge (FERA2011). In that competition, the Local +Gabor Binary Pattern Histogram Sequence descriptor +showed the most powerful description capability. In this +paper, we introduce hybrid facial representations for facial +expression recognition, which have more powerful +description capability with lower dimensionality. Our +descriptors consist of a block-based descriptor and a pixel- +ased descriptor. The block-based descriptor represents +the micro-orientation and micro-geometric structure +information. The pixel-based descriptor represents texture +information. We validate our descriptors on two public" +b216040f110d2549f61e3f5a7261cab128cab361,Weighted Voting of Discriminative Regions for Face Recognition,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017 +LETTER +Weighted Voting of Discriminative Regions for Face Recognition∗ +Wenming YANG†, Member, Riqiang GAO†a), and Qingmin LIAO†, Nonmembers +SUMMARY +This paper presents a strategy, Weighted Voting of Dis- +riminative Regions (WVDR), to improve the face recognition perfor- +mance, especially in Small Sample Size (SSS) and occlusion situations. +In WVDR, we extract the discriminative regions according to facial key +points and abandon the rest parts. Considering different regions of face +make different contributions to recognition, we assign weights to regions +for weighted voting. We construct a decision dictionary according to the +recognition results of selected regions in the training phase, and this dic- +tionary is used in a self-defined loss function to obtain weights. The final +identity of test sample is the weighted voting of selected regions. In this +paper, we combine the WVDR strategy with CRC and SRC separately, and +extensive experiments show that our method outperforms the baseline and +some representative algorithms. +key words: discriminative regions, small sample size, occlusion, weighted +strategy, face recognition" +b261439b5cde39ec52d932a222450df085eb5a91,Facial Expression Recognition using Analytical Hierarchy Process,"International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 2 – June 2015 +Facial Expression Recognition using Analytical Hierarchy +Process +MTech Student 1 , Assistant Professor 2 , Department of Computer Science and Engineeringt1, 2, Disha Institute of +Management and Technology, Raipur Chhattisgarh, India1, 2 +Vinita Phatnani1, Akash Wanjari2, +its significant contribution" +b2b535118c5c4dfcc96f547274cdc05dde629976,Automatic Recognition of Facial Displays of Unfelt Emotions,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +Automatic Recognition of Facial Displays of +Unfelt Emotions +Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio +Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +nd Gholamreza Anbarjafari, Senior Member, IEEE" +b235b4ccd01a204b95f7408bed7a10e080623d2e,Regularizing Flat Latent Variables with Hierarchical Structures,"Regularizing Flat Latent Variables with Hierarchical Structures +Rongcheng Lin(cid:117) , Huayu Li(cid:117) , Xiaojun Quan† , Richang Hong(cid:63) , Zhiang Wu∓ , Yong Ge(cid:117) +(cid:117)UNC Charlotte. Email: {rlin4, hli38, +(cid:63) Hefei University of Technology. Email: +Institute for Infocomm Research. Email: +∓ Nanjing University of Finance and Economics. Email:" +b2c25af8a8e191c000f6a55d5f85cf60794c2709,A novel dimensionality reduction technique based on kernel optimization through graph embedding,"Noname manuscript No. +(will be inserted by the editor) +A Novel Dimensionality Reduction Technique based on +Kernel Optimization Through Graph Embedding +N. Vretos, A. Tefas and I. Pitas +the date of receipt and acceptance should be inserted later" +d904f945c1506e7b51b19c99c632ef13f340ef4c,0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 °,"A scalable 3D HOG model for fast object detection and viewpoint estimation +Marco Pedersoli +Tinne Tuytelaars +KU Leuven, ESAT/PSI - iMinds +Kasteelpark Arenberg 10 B-3001 Leuven, Belgium" +d9810786fccee5f5affaef59bc58d2282718af9b,Adaptive Frame Selection for Enhanced Face Recognition in Low-Resolution Videos,"Adaptive Frame Selection for +Enhanced Face Recognition in +Low-Resolution Videos +Raghavender Reddy Jillela +Thesis submitted to the +College of Engineering and Mineral Resources +t West Virginia University +in partial fulfillment of the requirements +for the degree of +Master of Science +Electrical Engineering +Arun Ross, PhD., Chair +Xin Li, PhD. +Donald Adjeroh, PhD. +Lane Department of Computer Science and Electrical Engineering +Morgantown, West Virginia +Keywords: Face Biometrics, Super-Resolution, Optical Flow, Super-Resolution using +Optical Flow, Adaptive Frame Selection, Inter-Frame Motion Parameter, Image Quality, +Image-Level Fusion, Score-Level Fusion +Copyright 2008 Raghavender Reddy Jillela" +d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c,Face Album: Towards automatic photo management based on person identity on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017" +d930ec59b87004fd172721f6684963e00137745f,Face Pose Estimation using a Tree of Boosted Classifiers,"Face Pose Estimation using a +Tree of Boosted Classifiers +Javier Cruz Mota +Project Assistant: Julien Meynet +Professor: Jean-Philippe Thiran +Signal Processing Institute, +´Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +September 11, 2006" +d9318c7259e394b3060b424eb6feca0f71219179,Face Matching and Retrieval Using Soft Biometrics,"Face Matching and Retrieval Using Soft Biometrics +Unsang Park, Member, IEEE, and Anil K. Jain, Fellow, IEEE" +d9ef1a80738bbdd35655c320761f95ee609b8f49,A Research - Face Recognition by Using Near Set Theory,"Volume 5, Issue 4, 2015 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +A Research - Face Recognition by Using Near Set Theory +Manisha V. Borkar, Bhakti Kurhade +Department of Computer Science and Engineering +Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India" +d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c,Learning Inference Models for Computer Vision,Learning Inference Models for Computer Vision +d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f,"It All Matters: Reporting Accuracy, Inference Time and Power Consumption for Face Emotion Recognition on Embedded Systems","It All Matters: +Reporting Accuracy, Inference Time and Power Consumption +for Face Emotion Recognition on Embedded Systems +Jelena Milosevic +Institute of Telecommunications, TU Wien +Andrew Forembsky +Movidius an Intel Company +Dexmont Pe˜na +Movidius an Intel Company +David Moloney +Movidius an Intel Company +Miroslaw Malek +ALaRI, Faculty of Informatics, USI" +d9327b9621a97244d351b5b93e057f159f24a21e,Laplacian smoothing transform for face recognition,"SCIENCE CHINA +Information Sciences +. RESEARCH PAPERS . +December 2010 Vol. 53 No. 12: 2415–2428 +doi: 10.1007/s11432-010-4099-1 +Laplacian smoothing transform for face recognition +GU SuiCheng, TAN Ying +& HE XinGui +Key Laboratory of Machine Perception (MOE); Department of Machine Intelligence, +School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China +Received March 16, 2009; accepted April 1, 2010" +aca232de87c4c61537c730ee59a8f7ebf5ecb14f,Ebgm Vs Subspace Projection for Face Recognition,"EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION +Andreas Stergiou, Aristodemos Pnevmatikakis, Lazaros Polymenakos +9.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece +Athens Information Technology +Keywords: +Human-Machine Interfaces, Computer Vision, Face Recognition." +ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6,Privacy-Protected Facial Biometric Verification Using Fuzzy Forest Learning,"Privacy-Protected Facial Biometric Verification +Using Fuzzy Forest Learning +Richard Jiang, Ahmed Bouridane, Senior Member, IEEE, Danny Crookes, Senior Member, IEEE, +M. Emre Celebi, Senior Member, IEEE, and Hua-Liang Wei" +accbd6cd5dd649137a7c57ad6ef99232759f7544,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS +AND LINEAR PROGRAMMING +Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1 +Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering +P. O. Box 4500 Fin-90014 University of Oulu, Finland +2 College of Electronics and Information, Northwestern Polytechnic University +710072 Xi’an, China +In this work, we propose a novel approach to recognize facial expressions from static +images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial +images and then the Linear Programming (LP) technique is adopted to classify the seven +facial expressions anger, disgust, fear, happiness, sadness, surprise and neutral. +Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE +database, which outperforms the rates of all other reported methods on the same database. +Introduction +Facial expression recognition from static +images is a more challenging problem +than from image sequences because less +information for expression actions +vailable. However, information in a +single image is sometimes enough for" +ac26166857e55fd5c64ae7194a169ff4e473eb8b,Personalized Age Progression with Bi-Level Aging Dictionary Learning,"Personalized Age Progression with Bi-level +Aging Dictionary Learning +Xiangbo Shu, Jinhui Tang, Senior Member, IEEE, Zechao Li, Hanjiang Lai, Liyan Zhang +nd Shuicheng Yan, Fellow, IEEE" +ac559873b288f3ac28ee8a38c0f3710ea3f986d9,Team DEEP-HRI Moments in Time Challenge 2018 Technical Report,"Team DEEP-HRI Moments in Time Challenge 2018 Technical Report +Chao Li, Zhi Hou, Jiaxu Chen, Yingjia Bu, Jiqiang Zhou, Qiaoyong Zhong, Di Xie and Shiliang Pu +Hikvision Research Institute" +ac8e09128e1e48a2eae5fa90f252ada689f6eae7,Leolani: A Reference Machine with a Theory of Mind for Social Communication,"Leolani: a reference machine with a theory of +mind for social communication +Piek Vossen, Selene Baez, Lenka Baj˘ceti´c, and Bram Kraaijeveld +VU University Amsterdam, Computational Lexicology and Terminology Lab, De +Boelelaan 1105, 1081HV Amsterdam, The Netherlands +www.cltl.nl" +ac8441e30833a8e2a96a57c5e6fede5df81794af,Hierarchical Representation Learning for Kinship Verification,"IEEE TRANSACTIONS ON IMAGE PROCESSING +Hierarchical Representation Learning for Kinship +Verification +Naman Kohli, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Richa Singh, Senior Member, IEEE, +Afzel Noore, Senior Member, IEEE, and Angshul Majumdar, Senior Member, IEEE" +ac12ba5bf81de83991210b4cd95b4ad048317681,Combining Deep Facial and Ambient Features for First Impression Estimation,"Combining Deep Facial and Ambient Features +for First Impression Estimation +Furkan G¨urpınar1, Heysem Kaya2, Albert Ali Salah3 +Program of Computational Science and Engineering, Bo˘gazi¸ci University, +Bebek, Istanbul, Turkey +Department of Computer Engineering, Namık Kemal University, +C¸ orlu, Tekirda˘g, Turkey +Department of Computer Engineering, Bo˘gazi¸ci University, +Bebek, Istanbul, Turkey" +acb83d68345fe9a6eb9840c6e1ff0e41fa373229,"Kernel methods in computer vision: object localization, clustering, and taxonomy discovery","Kernel Methods in Computer Vision: +Object Localization, Clustering, +nd Taxonomy Discovery +vorgelegt von +Matthew Brian Blaschko, M.S. +us La Jolla +Von der Fakult¨at IV - Elektrotechnik und Informatik +der Technischen Universit¨at Berlin +zur Erlangung des akademischen Grades +Doktor der Naturwissenschaften +Dr. rer. nat. +genehmigte Dissertation +Promotionsausschuß: +Vorsitzender: Prof. Dr. O. Hellwich +Berichter: Prof. Dr. T. Hofmann +Berichter: Prof. Dr. K.-R. M¨uller +Berichter: Prof. Dr. B. Sch¨olkopf +Tag der wissenschaftlichen Aussprache: 23.03.2009 +Berlin 2009" +ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7,Multimodal Caricatural Mirror,"Multimodal Caricatural Mirror +Martin O.(1), Adell J.(2), Huerta A.(3), Kotsia I.(4), Savran A.(5), Sebbe R.(6) +(1) : Université catholique de Louvain, Belgium +(2) Universitat Polytecnica de Barcelona, Spain +(3) Universidad Polytècnica de Madrid, Spain +(4) Aristotle University of Thessaloniki, Greece +(5) Bogazici University, Turkey +(6) Faculté Polytechnique de Mons, Belgium" +adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9be,Apprentissage de métrique appliqué à la détection de changement de page Web et aux attributs relatifs,"Apprentissage de métrique appliqué à la +détection de changement de page Web et +ux attributs relatifs +Marc T. Law* — Nicolas Thome* — Stéphane Gançarski* — Mat- +thieu Cord* +* Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, +France +RÉSUMÉ. Nous proposons dans cet article un nouveau schéma d’apprentissage de métrique. +Basé sur l’exploitation de contraintes qui impliquent des quadruplets d’images, notre approche +vise à modéliser des relations sémantiques de similarités riches ou complexes. Nous étudions +omment ce schéma peut être utilisé dans des contextes tels que la détection de régions impor- +tantes dans des pages Web ou la reconnaissance à partir d’attributs relatifs." +ada73060c0813d957576be471756fa7190d1e72d,VRPBench: A Vehicle Routing Benchmark Tool,"VRPBench: A Vehicle Routing Benchmark Tool +October 19, 2016 +Guilherme A. Zeni1 , Mauro Menzori1, P. S. Martins1, Luis A. A. Meira1" +adfaf01773c8af859faa5a9f40fb3aa9770a8aa7,Large Scale Visual Recognition,"LARGE SCALE VISUAL RECOGNITION +JIA DENG +A DISSERTATION +PRESENTED TO THE FACULTY +OF PRINCETON UNIVERSITY +IN CANDIDACY FOR THE DEGREE +OF DOCTOR OF PHILOSOPHY +RECOMMENDED FOR ACCEPTANCE +BY THE DEPARTMENT OF +COMPUTER SCIENCE +ADVISER: FEI-FEI LI +JUNE 2012" +adf5caca605e07ee40a3b3408f7c7c92a09b0f70,Line-Based PCA and LDA Approaches for Face Recognition,"Line-based PCA and LDA approaches for Face Recognition +Vo Dinh Minh Nhat, and Sungyoung Lee +Kyung Hee University – South of Korea +{vdmnhat," +adaf2b138094981edd615dbfc4b7787693dbc396,Statistical methods for facial shape-from-shading and recognition,"Statistical Methods For Facial +Shape-from-shading and Recognition +William A. P. Smith +Submitted for the degree of Doctor of Philosophy +Department of Computer Science +0th February 2007" +adf62dfa00748381ac21634ae97710bb80fc2922,ViFaI : A trained video face indexing scheme Harsh,"ViFaI: A trained video face indexing scheme +Harsh Nayyar +Audrey Wei +. Introduction +With the increasing prominence of inexpensive +video recording devices (e.g., digital camcorders and +video recording smartphones), +the average user’s +video collection today is increasing rapidly. With this +development, there arises a natural desire to rapidly +ccess a subset of one’s collection of videos. The solu- +tion to this problem requires an effective video index- +ing scheme. In particular, we must be able to easily +process a video to extract such indexes. +Today, there also exist large sets of labeled (tagged) +face images. One important example is an individual’s +Facebook profile. Such a set of of tagged images of +one’s self, family, friends, and colleagues represents +n extremely valuable potential training set. +In this work, we explore how to leverage the afore-" +bb489e4de6f9b835d70ab46217f11e32887931a2,Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask,"Everything you wanted to know about Deep Learning for Computer Vision but were +fraid to ask +Moacir A. Ponti, Leonardo S. F. Ribeiro, Tiago S. Nazare +ICMC – University of S˜ao Paulo +S˜ao Carlos/SP, 13566-590, Brazil +Tu Bui, John Collomosse +CVSSP – University of Surrey +Guildford, GU2 7XH, UK +Email: [ponti, leonardo.sampaio.ribeiro, +Email: [t.bui, +tools," +bba281fe9c309afe4e5cc7d61d7cff1413b29558,An unpleasant emotional state reduces working memory capacity: electrophysiological evidence,"Social Cognitive and Affective Neuroscience, 2017, 984–992 +doi: 10.1093/scan/nsx030 +Advance Access Publication Date: 11 April 2017 +Original article +An unpleasant emotional state reduces working +memory capacity: electrophysiological evidence +Jessica S. B. Figueira,1 Leticia Oliveira,1 Mirtes G. Pereira,1 Luiza B. Pacheco,1 +Isabela Lobo,1,2 Gabriel C. Motta-Ribeiro,3 and Isabel A. David1 +Laboratorio de Neurofisiologia do Comportamento, Departamento de Fisiologia e Farmacologia, Instituto +Biome´dico, Universidade Federal Fluminense, Niteroi, Brazil, 2MograbiLab, Departamento de Psicologia, +Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, and 3Laboratorio de Engenharia +Pulmonar, Programa de Engenharia Biome´dica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil +Correspondence should be addressed to Isabel A. David, Departamento de Fisiologia e Farmacologia, Instituto Biome´dico, Universidade Federal +Fluminense, Rua Hernani Pires de Mello, 101, Niteroi, RJ 24210-130, Brazil. E-mail:" +bb22104d2128e323051fb58a6fe1b3d24a9e9a46,Analyzing Facial Expression by Fusing Manifolds,")=OEC .=?E= -NFHAIIE >O .KIEC +9A;= +D=C1,2 +DK5C +DA1,3 ;E2EC 0KC1,2,3 +1IJEJKJA B 1BH=JE 5?EA?A 5EE?= 6=EM= +,AFJ B +FKJAH 5?EA?A 1BH=JE -CEAAHEC =JE= 6=EM= 7ELAHIEJO +IJEJKJA B AJMHEC =JE= 6=EM= 7ELAHIEJO +{wychang, +)>IJH=?J .A=JKHA HAFHAIAJ=JE ?=IIE?=JE =HA JM =H EIIKAI E B=?E= +ANFHAIIE ==OIEI 1 JDA F=IJ IJ AEJDAH DEIJE? H ?= HAFHA +IAJ=JE BH ==OIEI 1 AIIA?A ?= EBH=JE =EO B?KIAI  JDA IK>JA +L=HE=JEI B ANFHAIIEI DEIJE? HAFHAIAJ=JE IJHAIIAI  C>= +JEAI 6 J=A JDA B >JD = HAFHAIAJ=JE EI E JDEI +F=FAH A=HEC EI J ?D=H=?JAHEA C>= ?= EBH= +JE 7EA IA KIEC A=H +EC =FFH=?DAI B JDA HAFHAIAJ=JE =HA >O += A=HEC JA?DEGKA 6 EJACH=JA JDAIA +ABBA?JELAO = BKIE ?=IIEAH EI MDE?D ?= DAF J AFO IKEJ=>A +?>E=JE MAECDJI B B=?E= ?FAJI J = ANFHAIIE +FHADA +IELA ?F=HEII  B=?E= ANFHAIIE HA?CEJE =HA J JDA +ABBA?JELAAII B KH =CHEJD +A=EEC DK= AJEI F=OI = EFHJ=J HA E DK= ?KE?=JE 6" +bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197,From Images to 3D Shape Attributes.,"TO APPEAR IN TPAMI +From Images to 3D Shape Attributes +David F. Fouhey, Abhinav Gupta, Andrew Zisserman" +bb451dc2420e1a090c4796c19716f93a9ef867c9,A Review on: Automatic Movie Character Annotation by Robust Face-Name Graph Matching,"International Journal of Computer Applications (0975 – 8887) +Volume 104 – No.5, October 2014 +A Review on: Automatic Movie Character Annotation +y Robust Face-Name Graph Matching +Bhandare P.S. +Research Scholar +Sinhgad College of +Engineering, korti, Pandharpur, +Solapur University, INDIA +Gadekar P.R. +Assistant Professor +Sinhgad College of +Engineering, korti, Pandharpur, +Solapur University, INDIA +Bandgar Vishal V. +Assistant Professor +College of Engineering (Poly), +Pandharpur, Solapur, INDIA +Bhise Avdhut S. +HOD, Department of" +bbd1eb87c0686fddb838421050007e934b2d74ab,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,"(68 points) COFW (29 points) AFLW (19 points) Figure1:Thefirstcolumnshowsthefaceimagesfromdifferentdatasetswithdifferentnumberoflandmarks.Thesecondcolumnillustratestheuniversallydefinedfacialboundariesestimatedbyourmethods.Withthehelpofboundaryinformation,ourapproachachieveshighaccuracylocalisationresultsacrossmultipledatasetsandannotationprotocols,asshowninthethirdcolumn.Differenttofacedetection[45]andrecognition[75],facealignmentidentifiesgeometrystructureofhumanfacewhichcanbeviewedasmodelinghighlystructuredout-put.Eachfaciallandmarkisstronglyassociatedwithawell-definedfacialboundary,e.g.,eyelidandnosebridge.However,comparedtoboundaries,faciallandmarksarenotsowell-defined.Faciallandmarksotherthancornerscanhardlyremainthesamesemanticallocationswithlargeposevariationandocclusion.Besides,differentannotationschemesofexistingdatasetsleadtoadifferentnumberoflandmarks[28,5,66,30](19/29/68/194points)andanno-tationschemeoffuturefacealignmentdatasetscanhardlybedetermined.Webelievethereasoningofauniquefacial" +d7fe2a52d0ad915b78330340a8111e0b5a66513a,Photo-to-Caricature Translation on Faces in the Wild,"Unpaired Photo-to-Caricature Translation on Faces in +the Wild +Ziqiang Zhenga, Chao Wanga, Zhibin Yua, Nan Wanga, Haiyong Zhenga,∗, +Bing Zhenga +No. 238 Songling Road, Department of Electronic Engineering, Ocean University of +China, Qingdao, China" +d708ce7103a992634b1b4e87612815f03ba3ab24,FCVID: Fudan-Columbia Video Dataset,"FCVID: Fudan-Columbia Video Dataset +Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, Shih-Fu Chang +Available at: http://bigvid.fudan.edu.cn/FCVID/ +OVERVIEW +Recognizing visual contents in unconstrained videos +has become a very important problem for many ap- +plications, such as Web video search and recommen- +dation, smart content-aware advertising, robotics, etc. +Existing datasets for video content recognition are +either small or do not have reliable manual labels. +In this work, we construct and release a new Inter- +net video dataset called Fudan-Columbia Video Dataset +(FCVID), containing 91,223 Web videos (total duration +,232 hours) annotated manually according to 239 +ategories. We believe that the release of FCVID can +stimulate innovative research on this challenging and +important problem. +COLLECTION AND ANNOTATION +The categories in FCVID cover a wide range of topics +like social events (e.g., “tailgate party”), procedural" +d7b6bbb94ac20f5e75893f140ef7e207db7cd483,griffith . edu . au Face Recognition across Pose : A Review,"Griffith Research Online +https://research-repository.griffith.edu.au +Face Recognition across Pose: A +Review +Author +Zhang, Paul, Gao, Yongsheng +Published +Journal Title +Pattern Recognition +https://doi.org/10.1016/j.patcog.2009.04.017 +Copyright Statement +Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance +with the copyright policy of the publisher. Please refer to the journal's website for access to the +definitive, published version. +Downloaded from +http://hdl.handle.net/10072/30193" +d7d166aee5369b79ea2d71a6edd73b7599597aaa,Fast Subspace Clustering Based on the Kronecker Product,"Fast Subspace Clustering Based on the +Kronecker Product +Lei Zhou1, Xiao Bai1, Xianglong Liu1, Jun Zhou2, and Hancock Edwin3 +Beihang University 2Grif‌f‌ith University 3University of York, UK" +d79f9ada35e4410cd255db39d7cc557017f8111a,Evaluation of accurate eye corner detection methods for gaze estimation,"Journal of Eye Movement Research +7(3):3, 1-8 +Evaluation of accurate eye corner detection methods for gaze +estimation +Jose Javier Bengoechea +Public University of Navarra, Spain +Juan J. Cerrolaza +Childrens National Medical Center, USA +Arantxa Villanueva +Public University of Navarra, Spain +Rafael Cabeza +Public University of Navarra, Spain +Accurate detection of iris center and eye corners appears to be a promising +pproach for low cost gaze estimation. +In this paper we propose novel eye +inner corner detection methods. Appearance and feature based segmentation +pproaches are suggested. All these methods are exhaustively tested on a realistic +dataset containing images of subjects gazing at different points on a screen. +We have demonstrated that a method based on a neural network presents the +est performance even in light changing scenarios." +d03265ea9200a993af857b473c6bf12a095ca178,Multiple deep convolutional neural networks averaging for face alignment,"Multiple deep convolutional neural +networks averaging for face +lignment +Shaohua Zhang +Hua Yang +Zhouping Yin +Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms" +d00c335fbb542bc628642c1db36791eae24e02b7,Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor,"Article +Deep Learning-Based Gaze Detection System for +Automobile Drivers Using a NIR Camera Sensor +Rizwan Ali Naqvi, Muhammad Arsalan, Ganbayar Batchuluun, Hyo Sik Yoon and +Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, +Seoul 100-715, Korea; (R.A.N.); (M.A.); +(G.B.); (H.S.Y.) +* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +Received: 5 January 2018; Accepted: 1 February 2018; Published: 3 February 2018" +d0144d76b8b926d22411d388e7a26506519372eb,Improving Regression Performance with Distributional Losses,"Improving Regression Performance with Distributional Losses +Ehsan Imani 1 Martha White 1" +d0a21f94de312a0ff31657fd103d6b29db823caa,Facial Expression Analysis,"Facial Expression Analysis +Fernando De la Torre and Jeffrey F. Cohn" +d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea,Face Recognition with Patterns of Oriented Edge Magnitudes,"Face Recognition with Patterns of Oriented +Edge Magnitudes +Ngoc-Son Vu1,2 and Alice Caplier2 +Vesalis Sarl, Clermont Ferrand, France +Gipsa-lab, Grenoble INP, France" +d02c54192dbd0798b43231efe1159d6b4375ad36,3 D Reconstruction and Face Recognition Using Kernel-Based ICA and Neural Networks,"D Reconstruction and Face Recognition Using Kernel-Based +ICA and Neural Networks +Cheng-Jian Lin Ya-Tzu Huang +Chi-Yung Lee +Dept. of Electrical Dept. of CSIE Dept. of CSIE +Engineering Chaoyang University Nankai Institute of +National University of Technology Technology +of Kaohsiung" +d00787e215bd74d32d80a6c115c4789214da5edb,Faster and Lighter Online Sparse Dictionary Learning,"Faster and Lighter Online +Sparse Dictionary Learning +Project report +By: Shay Ben-Assayag, Omer Dahary +Supervisor: Jeremias Sulam" +be8c517406528edc47c4ec0222e2a603950c2762,Measuring Facial Action,"Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7 +7.6.2005 +5:45pm +B A S I C R E S E A RC H +M E T H O D S A N D +P RO C E D U R E S" +beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2,Adaptive Histogram Equalization and Logarithm Transform with Rescaled Low Frequency DCT Coefficients for Illumination Normalization,"RESEARCH PAPER +International Journal of Recent Trends in Engineering Vol 1, No. 1, May 2009, +Adaptive Histogram Equalization and Logarithm +Transform with Rescaled Low Frequency DCT +Coefficients for Illumination Normalization +Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta +Department of Computer Science and Engineering +Amity School of Engineering Technology, 580, Bijwasan, New Delhi-110061, India +(Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India) +Email: +illumination normalization. The +lighting conditions. Most of the" +be48b5dcd10ab834cd68d5b2a24187180e2b408f,Constrained Low-Rank Learning Using Least Squares-Based Regularization,"FOR PERSONAL USE ONLY +Constrained Low-rank Learning Using Least +Squares Based Regularization +Ping Li, Member, IEEE, Jun Yu, Member, IEEE, Meng Wang, Member, IEEE, +Luming Zhang, Member, IEEE, Deng Cai, Member, IEEE, and Xuelong Li, Fellow, IEEE," +be437b53a376085b01ebd0f4c7c6c9e40a4b1a75,Face Recognition and Retrieval Using Cross Age Reference Coding,"ISSN (Online) 2321 – 2004 +ISSN (Print) 2321 – 5526 +INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +Vol. 4, Issue 5, May 2016 +IJIREEICE +Face Recognition and Retrieval Using Cross +Age Reference Coding +Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 +BE, DSCE, Bangalore1 +Assistant Professor, DSCE, Bangalore2" +be07f2950771d318a78d2b64de340394f7d6b717,3D HMM-based Facial Expression Recognition using Histogram of Oriented Optical Flow,"See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290192867 +D HMM-based Facial Expression Recognition +using Histogram of Oriented Optical Flow +ARTICLE in SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING · DECEMBER 2015 +DOI: 10.14738/tmlai.36.1661 +READS +AUTHORS, INCLUDING: +Sheng Kung +Oakland University +Djamel Bouchaffra +Institute of Electrical and Electronics Engineers +PUBLICATION 0 CITATIONS +57 PUBLICATIONS 402 CITATIONS +SEE PROFILE +SEE PROFILE +All in-text references underlined in blue are linked to publications on ResearchGate, +letting you access and read them immediately. +Available from: Djamel Bouchaffra +Retrieved on: 11 February 2016" +beb4546ae95f79235c5f3c0e9cc301b5d6fc9374,A Modular Approach to Facial Expression Recognition,"A Modular Approach to Facial Expression Recognition +Michal Sindlar +Cognitive Artificial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht +Marco Wiering +Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht" +bebea83479a8e1988a7da32584e37bfc463d32d4,Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning,"Discovery of Latent 3D Keypoints via +End-to-end Geometric Reasoning +Supasorn Suwajanakorn∗ Noah Snavely +Jonathan Tompson Mohammad Norouzi +{supasorn, snavely, tompson, +Google AI" +bed06e7ff0b510b4a1762283640b4233de4c18e0,Face Interpretation Problems on Low Quality Images,"Bachelor Project +Czech +Technical +University +in Prague +Faculty of Electrical Engineering +Department of Cybernetics +Face Interpretation Problems on Low +Quality Images +Adéla Šubrtová +Supervisor: Ing. Jan Čech, Ph.D +May 2018" +beab10d1bdb0c95b2f880a81a747f6dd17caa9c2,DeepDeblur: Fast one-step blurry face images restoration,"DeepDeblur: Fast one-step blurry face images restoration +Lingxiao Wang, Yali Li, Shengjin Wang +Tsinghua Unversity" +b331ca23aed90394c05f06701f90afd550131fe3,Double regularized matrix factorization for image classification and clustering,"Zhou et al. EURASIP Journal on Image and Video Processing (2018) 2018:49 +https://doi.org/10.1186/s13640-018-0287-5 +EURASIP Journal on Image +nd Video Processing +R ES EAR CH +Double regularized matrix factorization for +image classification and clustering +Wei Zhou1* +, Chengdong Wu2, Jianzhong Wang3,4, Xiaosheng Yu2 and Yugen Yi5 +Open Access" +b37f57edab685dba5c23de00e4fa032a3a6e8841,Towards social interaction detection in egocentric photo-streams,"Towards Social Interaction Detection in Egocentric Photo-streams +Maedeh Aghaei, Mariella Dimiccoli, Petia Radeva +University of Barcelona and Computer Vision Centre, Barcelona, Spain +Recent advances in wearable camera technology have +led to novel applications in the field of Preventive Medicine. +For some of them, such as cognitive training of elderly peo- +ple by digital memories and detection of unhealthy social +trends associated to neuropsychological disorders, social in- +teraction are of special interest. Our purpose is to address +this problem in the domain of egocentric photo-streams cap- +tured by a low temporal resolution wearable camera (2fpm). +These cameras are suited for collecting visual information +for long period of time, as required by the aforementioned +pplications. The major difficulties to be handled in this +ontext are the sparsity of observations as well as the unpre- +dictability of camera motion and attention orientation due +to the fact that the camera is worn as part of clothing (see +Fig. 1). Inspired by the theory of F-formation which is a +pattern that people tend to follow when interacting [5], our +proposed approach consists of three steps: multi-faces as-" +b3cb91a08be4117d6efe57251061b62417867de9,Label propagation approach for predicting missing biographic labels in face-based biometric records,"T. Swearingen and A. Ross. ""A label propagation approach for predicting missing biographic labels in +A Label Propagation Approach for +Predicting Missing Biographic Labels +in Face-Based Biometric Records +Thomas Swearingen and Arun Ross" +b340f275518aa5dd2c3663eed951045a5b8b0ab1,Visual inference of human emotion and behaviour,"Visual Inference of Human Emotion and Behaviour +Shaogang Gong +Caifeng Shan +Tao Xiang +Dept of Computer Science +Queen Mary College, London +Dept of Computer Science +Queen Mary College, London +Dept of Computer Science +Queen Mary College, London +England, UK +England, UK +England, UK" +b375db63742f8a67c2a7d663f23774aedccc84e5,Brain-Inspired Classroom Occupancy Monitoring on a Low-Power Mobile Platform,"Brain-inspired Classroom Occupancy +Monitoring on a Low-Power Mobile Platform +Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy +Francesco Conti∗, Antonio Pullini† and Luca Benini∗† +Integrated Systems Laboratory, ETH Zurich, Switzerland" +b3c60b642a1c64699ed069e3740a0edeabf1922c,Max-Margin Object Detection,"Max-Margin Object Detection +Davis E. King" +b3f7c772acc8bc42291e09f7a2b081024a172564,"A novel approach for performance parameter estimation of face recognition based on clustering , shape and corner detection","www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3225-3230 ISSN: 2249-6645 +International Journal of Modern Engineering Research (IJMER) +A novel approach for performance parameter estimation of face +recognition based on clustering, shape and corner detection +.Smt.Minj Salen Kujur , 2.Prof. Prashant Jain, +Department of Electronics & Communication Engineering college Jabalpur" +b3c398da38d529b907b0bac7ec586c81b851708f,Face recognition under varying lighting conditions using self quotient image,"Face Recognition under Varying Lighting Conditions Using Self Quotient +Haitao Wang, 2Stan Z Li, 1Yangsheng Wang +Image +Institute of Automation, Chinese Academy of +Sciences, Beijing, 100080, China, +Email:" +b32cf547a764a4efa475e9c99a72a5db36eeced6,Mimicry of ingroup and outgroup emotional expressions,"UvA-DARE (Digital Academic Repository) +Mimicry of ingroup and outgroup emotional expressions +Sachisthal, M.S.M.; Sauter, D.A.; Fischer, A.H. +Published in: +Comprehensive Results in Social Psychology +0.1080/23743603.2017.1298355 +Link to publication +Citation for published version (APA): +Sachisthal, M. S. M., Sauter, D. A., & Fischer, A. H. (2016). Mimicry of ingroup and outgroup emotional +expressions. Comprehensive Results in Social Psychology, 1(1-3), 86-105. DOI: +0.1080/23743603.2017.1298355 +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible. +Download date: 08 Aug 2018" +b32631f456397462b3530757f3a73a2ccc362342,Discriminant Tensor Dictionary Learning with Neighbor Uncorrelation for Image Set Based Classification,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +df90850f1c153bfab691b985bfe536a5544e438b,"Face Tracking Algorithm Robust to Pose , Illumination and Face Expression Changes : a 3 D Parametric Model Approach","FACE TRACKING ALGORITHM ROBUST TO POSE, +ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D +PARAMETRIC MODEL APPROACH +Marco Anisetti, Valerio Bellandi +University of Milan - Department of Information Technology +via Bramante 65 - 26013, Crema (CR), Italy +Luigi Arnone, Fabrizio Beverina +STMicroelectronics - Advanced System Technology Group +via Olivetti 5 - 20041, Agrate Brianza, Italy +Keywords: +Face tracking, expression changes, FACS, illumination changes." +df8da144a695269e159fb0120bf5355a558f4b02,Face Recognition using PCA and Eigen Face Approach,"International Journal of Computer Applications (0975 – 8887) +International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013) +Face Recognition using PCA and Eigen Face +Approach +Anagha A. Shinde +ME EXTC [VLSI & Embedded System] +Sinhgad Academy of Engineering +EXTC Department +Pune, India" +df577a89830be69c1bfb196e925df3055cafc0ed,"Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions","Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions +Bichen Wu, Alvin Wan∗, Xiangyu Yue∗, Peter Jin, Sicheng Zhao, +Noah Golmant, Amir Gholaminejad, Joseph Gonzalez, Kurt Keutzer +UC Berkeley" +df51dfe55912d30fc2f792561e9e0c2b43179089,Face Hallucination Using Linear Models of Coupled Sparse Support,"Face Hallucination using Linear Models of Coupled +Sparse Support +Reuben A. Farrugia, Member, IEEE, and Christine Guillemot, Fellow, IEEE +grid and fuse them to suppress the aliasing caused by under- +sampling [5], [6]. On the other hand, learning based meth- +ods use coupled dictionaries to learn the mapping relations +etween low- and high- resolution image pairs to synthesize +high-resolution images from low-resolution images [4], [7]. +The research community has lately focused on the latter +ategory of super-resolution methods, since they can provide +higher quality images and larger magnification factors." +df054fa8ee6bb7d2a50909939d90ef417c73604c,Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild,"Image Quality-Aware Deep Networks Ensemble for Efficient +Gender Recognition in the Wild +Mohamed Selim1, Suraj Sundararajan1, Alain Pagani2 and Didier Stricker1,2 +Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany +German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany +{mohamed.selim, alain.pagani, s +Keywords: +Gender, Face, Deep Neural Networks, Quality, In the Wild" +df80fed59ffdf751a20af317f265848fe6bfb9c9,Learning Deep Sharable and Structural Detectors for Face Alignment,"Learning Deep Sharable and Structural +Detectors for Face Alignment +Hao Liu, Jiwen Lu, Senior Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE" +dfa80e52b0489bc2585339ad3351626dee1a8395,Human Action Forecasting by Learning Task Grammars,"Human Action Forecasting by Learning Task Grammars +Tengda Han +Jue Wang +Anoop Cherian +Stephen Gould" +dfecaedeaf618041a5498cd3f0942c15302e75c3,A recursive framework for expression recognition: from web images to deep models to game dataset,"Noname manuscript No. +(will be inserted by the editor) +A Recursive Framework for Expression Recognition: From +Web Images to Deep Models to Game Dataset +Wei Li · Christina Tsangouri · Farnaz Abtahi · Zhigang Zhu +Received: date / Accepted: date" +df5fe0c195eea34ddc8d80efedb25f1b9034d07d,Robust modified Active Shape Model for automatic facial landmark annotation of frontal faces,"Robust Modified Active Shape Model for Automatic Facial Landmark +Annotation of Frontal Faces +Keshav Seshadri and Marios Savvides" +df2494da8efa44d70c27abf23f73387318cf1ca8,Supervised Filter Learning for Representation Based Face Recognition,"RESEARCH ARTICLE +Supervised Filter Learning for Representation +Based Face Recognition +Chao Bi1, Lei Zhang2, Miao Qi1, Caixia Zheng1, Yugen Yi3, Jianzhong Wang1*, +Baoxue Zhang4* +College of Computer Science and Information Technology, Northeast Normal University, Changchun, +China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of +Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of +Economics and Business, Beijing, China +11111 +* (JW); (BZ)" +df674dc0fc813c2a6d539e892bfc74f9a761fbc8,An Image Mining System for Gender Classification & Age Prediction Based on Facial Features,"IOSR Journal of Computer Engineering (IOSR-JCE) +e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 6 (May. - Jun. 2013), PP 21-29 +www.iosrjournals.org +An Image Mining System for Gender Classification & Age +Prediction Based on Facial Features +1.Ms.Dhanashri Shirkey , 2Prof.Dr.S.R.Gupta, +M.E(Scholar),Department Computer Science & Engineering, PRMIT & R, Badnera +Asstt.Prof. Department Computer Science & Engineering, PRMIT & R, Badnera" +dad7b8be074d7ea6c3f970bd18884d496cbb0f91,Super-Sparse Regression for Fast Age Estimation from Faces at Test Time,"Super-Sparse Regression for Fast Age +Estimation From Faces at Test Time +Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio Roli +Dept. of Electrical and Electronic Engineering, University of Cagliari +Piazza d’Armi, 09123 Cagliari, Italy +WWW home page: http://prag.diee.unica.it" +da4170c862d8ae39861aa193667bfdbdf0ecb363,Multi-Task CNN Model for Attribute Prediction,"Multi-task CNN Model for Attribute Prediction +Abrar H. Abdulnabi, Student Member, IEEE, Gang Wang, Member, IEEE, , Jiwen Lu, Member, IEEE +nd Kui Jia, Member, IEEE" +dac2103843adc40191e48ee7f35b6d86a02ef019,Unsupervised Celebrity Face Naming in Web Videos,"Unsupervised Celebrity Face Naming in Web Videos +Lei Pang and Chong-Wah Ngo" +dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e,Recognizing Emotions in Spontaneous Facial Expressions,"RECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS +Michael Grimm, Dhrubabrata Ghosh Dastidar, and Kristian Kroschel +Institut f¨ur Nachrichtentechnik +Universit¨at Karlsruhe (TH), Germany" +daa02cf195818cbf651ef81941a233727f71591f,Face recognition system on Raspberry Pi,"Face recognition system on Raspberry Pi +Olegs Nikisins, Rihards Fuksis, Arturs Kadikis, Modris Greitans +Institute of Electronics and Computer Science, +4 Dzerbenes Street, Riga, LV 1006, Latvia" +daefac0610fdeff415c2a3f49b47968d84692e87,Multimodal Frame Identification with Multilingual Evaluation,"New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +Proceedings of NAACL-HLT 2018, pages 1481–1491" +b49affdff167f5d170da18de3efa6fd6a50262a2,Linking Names and Faces : Seeing the Problem in Different Ways,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +(2008)""" +b41374f4f31906cf1a73c7adda6c50a78b4eb498,Iterative Gaussianization: From ICA to Random Rotations,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Iterative Gaussianization: From ICA to +Random Rotations +Valero Laparra, Gustavo Camps-Valls, Senior Member, IEEE, and Jesús Malo" +b4ee64022cc3ccd14c7f9d4935c59b16456067d3,Unsupervised Cross-Domain Image Generation,"Unsupervised Cross-Domain Image Generation +Xinru Hua, Davis Rempe, and Haotian Zhang" +b40290a694075868e0daef77303f2c4ca1c43269,Combining Local and Global Information for Hair Shape Modeling,"第 40 卷 第 4 期 +014 年 4 月 +自 动 化 学 报 +ACTA AUTOMATICA SINICA +Vol. 40, No. 4 +April, 2014 +融合局部与全局信息的头发形状模型 +王 楠 1 艾海舟 1 +摘 要 头发在人体表观中具有重要作用, 然而, 因为缺少有效的形状模型, 头发分割仍然是一个非常具有挑战性的问题. 本 +文提出了一种基于部件的模型, 它对头发形状以及环境变化更加鲁棒. 该模型将局部与全局信息相结合以描述头发的形状. 局 +部模型通过一系列算法构建, 包括全局形状词表生成, 词表分类器学习以及参数优化; 而全局模型刻画不同的发型, 采用支持 +向量机 (Support vector machine, SVM) 来学习, 它为所有潜在的发型配置部件并确定势函数. 在消费者图片上的实验证明 +了本文算法在头发形状多变和复杂环境等条件下的准确性与有效性. +关键词 头发形状建模, 部件模型, 部件配置算法, 支持向量机 +引用格式 王楠, 艾海舟. 融合局部与全局信息的头发形状模型. 自动化学报, 2014, 40(4): 615−623 +DOI 10.3724/SP.J.1004.2014.00615 +Combining Local and Global Information for Hair Shape Modeling +WANG Nan1 +AI Hai-Zhou1" +b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4,Autonomous Learning Framework Based on Online Hybrid Classifier for Multi-view Object Detection in Video,"Autonomous Learning Framework Based on Online Hybrid +Classifier for Multi-view Object Detection in Video +Dapeng Luoa*Zhipeng Zenga Longsheng Weib Yongwen Liua Chen Luoc Jun Chenb Nong Sangd +School of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China +School of Automation, China University of Geosciences, Wuhan, Hubei 430074, China +Huizhou School Affiliated to Beijing Normal University, Huizhou 516002, China +dNational Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong +University of Science and Technology, Wuhan, 430074, China" +a285b6edd47f9b8966935878ad4539d270b406d1,Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap,"Sensors 2011, 11, 9573-9588; doi:10.3390/s111009573 +OPEN ACCESS +sensors +ISSN 1424-8220 +www.mdpi.com/journal/sensors +Article +Facial Expression Recognition Based on Local Binary Patterns +nd Kernel Discriminant Isomap +Xiaoming Zhao 1,* and Shiqing Zhang 2 +Department of Computer Science, Taizhou University, Taizhou 317000, China +School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China; +E-Mail: +* Author to whom correspondence should be addressed; E-Mail: +Tel.: +86-576-8513-7178; Fax: ++86-576-8513-7178. +Received: 31 August 2011; in revised form: 27 September 2011 / Accepted: 9 October 2011 / +Published: 11 October 2011" +a2359c0f81a7eb032cff1fe45e3b80007facaa2a,Towards Structured Analysis of Broadcast Badminton Videos,"Towards Structured Analysis of Broadcast Badminton Videos +Anurag Ghosh +Suriya Singh +C.V.Jawahar +{anurag.ghosh, +CVIT, KCIS, IIIT Hyderabad" +a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa,Intention from Motion,"Intention from Motion +Andrea Zunino, Jacopo Cavazza, Atesh Koul, Andrea Cavallo, Cristina Becchio and Vittorio Murino" +a2fbaa0b849ecc74f34ebb36d1442d63212b29d2,An Efficient Approach to Face Recognition of Surgically Altered Images,"Volume 5, Issue 6, June 2015 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +An Efficient Approach to Face Recognition of Surgically +Altered Images +Er. Supriya, Er. Sukhpreet Kaur +Department of computer science and engineering +SUS college of Engineering and Technology, +Tangori, District, Mohali, Punjab, India" +a50b4d404576695be7cd4194a064f0602806f3c4,Efficiently Estimating Facial Expression and Illumination in Appearance-based Tracking,"In Proceedings of BMVC, Edimburgh, UK, September 2006 +Efficiently estimating facial expression and +illumination in appearance-based tracking +Jos´e M. Buenaposada†, Enrique Mu˜noz‡, Luis Baumela‡ +ESCET, U. Rey Juan Carlos +C/ Tulip´an, s/n +8933 M´ostoles, Spain +Facultad Inform´atica, UPM +Campus de Montegancedo s/n +8660 Boadilla del Monte, Spain +http://www.dia.fi.upm.es/~pcr" +a5e5094a1e052fa44f539b0d62b54ef03c78bf6a,Detection without Recognition for Redaction,"Detection without Recognition for Redaction +Shagan Sah1, Ram Longman1, Ameya Shringi1, Robert Loce2, Majid Rabbani1, and Raymond Ptucha1 +Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA, 14623 +Conduent, Conduent Labs - US, 800 Phillips Rd, MS128, Webster, NY USA, 14580 +Email:" +a56c1331750bf3ac33ee07004e083310a1e63ddc,Efficient Point-to-Subspace Query in ℓ1 with Application to Robust Object Instance Recognition,"Vol. xx, pp. x +(cid:13) xxxx Society for Industrial and Applied Mathematics +Ef‌f‌icient Point-to-Subspace Query in (cid:96)1 with Application to Robust Object +Instance Recognition +Ju Sun∗, Yuqian Zhang†, and John Wright‡" +a54e0f2983e0b5af6eaafd4d3467b655a3de52f4,Face Recognition Using Convolution Filters and Neural Networks,"Face Recognition Using Convolution Filters and +Neural Networks +V. Rihani +Head, Dept. of E&E,PEC +Sec-12, Chandigarh – 160012 +Amit Bhandari +Department of CSE & IT, PEC +Sec-12, Chandigarh – 160012 +C.P. Singh +Physics Department, CFSL, +Sec-36, Chandigarh - 160036 +to: (a) +potential method" +a5625cfe16d72bd00e987857d68eb4d8fc3ce4fb,VFSC: A Very Fast Sparse Clustering to Cluster Faces from Videos,"VFSC: A Very Fast Sparse Clustering to Cluster Faces +from Videos +Dinh-Luan Nguyen, Minh-Triet Tran +University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam" +a546fd229f99d7fe3cf634234e04bae920a2ec33,Fast Fight Detection,"RESEARCH ARTICLE +Fast Fight Detection +Ismael Serrano Gracia1*, Oscar Deniz Suarez1*, Gloria Bueno Garcia1*, Tae-Kyun Kim2 +Department of Systems Engineering and Automation, E.T.S.I. Industriales, Ciudad Real, Castilla-La +Mancha, Spain, 2 Department of Electrical and Electronic Engineering, Imperial College, London, UK +* (ISG); (ODS); (GBG)" +a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529,Exemplar Hidden Markov Models for classification of facial expressions in videos,"Exemplar Hidden Markov Models for Classification of Facial Expressions in +Videos +Univ. of California San Diego +Univ. of Canberra, Australian +Univ. of California San Diego +Abhinav Dhall +Marian Bartlett +Karan Sikka +California, USA +National University +Australia +California, USA" +a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a,"Continuous Head Movement Estimator for Driver Assistance: Issues, Algorithms, and On-Road Evaluations","Continuous Head Movement Estimator for +Driver Assistance: Issues, Algorithms, +nd On-Road Evaluations +Ashish Tawari, Student Member, IEEE, Sujitha Martin, Student Member, IEEE, and +Mohan Manubhai Trivedi, Fellow, IEEE" +a51d5c2f8db48a42446cc4f1718c75ac9303cb7a,Cross-validating Image Description Datasets and Evaluation Metrics,"Cross-validating Image Description Datasets and Evaluation Metrics +Josiah Wang and Robert Gaizauskas +Department of Computer Science +University of Sheffield, UK +{j.k.wang," +a52d9e9daf2cb26b31bf2902f78774bd31c0dd88,Understanding and Designing Convolutional Networks for Local Recognition Problems,"Understanding and Designing Convolutional Networks +for Local Recognition Problems +Jonathan Long +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-97 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-97.html +May 13, 2016" +a5a44a32a91474f00a3cda671a802e87c899fbb4,Moments in Time Dataset: one million videos for event understanding,"Moments in Time Dataset: one million +videos for event understanding +Mathew Monfort, Bolei Zhou, Sarah Adel Bargal, +Alex Andonian, Tom Yan, Kandan Ramakrishnan, Lisa Brown, +Quanfu Fan, Dan Gutfruend, Carl Vondrick, Aude Oliva" +bd0e100a91ff179ee5c1d3383c75c85eddc81723,Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action Detection,"Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action +Detection∗ +Mohammadamin Barekatain1, Miquel Mart´ı2,3, Hsueh-Fu Shih4, Samuel Murray2, Kotaro Nakayama5, +Yutaka Matsuo5, Helmut Prendinger6 +Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm, +Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of +Tokyo, Tokyo, 6National Institute of Informatics, Tokyo" +bd07d1f68486052b7e4429dccecdb8deab1924db,Face representation under different illumination conditions, +bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,Occlusion Coherence: Detecting and Localizing Occluded Faces,"Occlusion Coherence: Detecting and Localizing Occluded Faces +Golnaz Ghiasi, Charless C. Fowlkes +University of California at Irvine, Irvine, CA 92697" +bd78a853df61d03b7133aea58e45cd27d464c3cf,A Sparse Representation Approach to Facial Expression Recognition Based on LBP plus LFDA,"A Sparse Representation Approach to Facial +Expression Recognition Based on LBP plus LFDA +Ritesh Bora, V.A.Chakkarvar +Computer science and Engineering Department, +Government College of Engineering, Aurangabad [Autonomous] +Station Road, Aurangabad, Maharashtra, India." +bd2d7c7f0145028e85c102fe52655c2b6c26aeb5,Attribute-based People Search: Lessons Learnt from a Practical Surveillance System,"Attribute-based People Search: Lessons Learnt from a +Practical Surveillance System +Rogerio Feris +IBM Watson +http://rogerioferis.com +Russel Bobbitt +IBM Watson +Lisa Brown +IBM Watson +Sharath Pankanti +IBM Watson" +bdbba95e5abc543981fb557f21e3e6551a563b45,Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks,"International Journal of Computational Intelligence and Applications +Vol. 17, No. 2 (2018) 1850008 (15 pages) +#.c The Author(s) +DOI: 10.1142/S1469026818500086 +Speeding up the Hyperparameter Optimization of Deep +Convolutional Neural Networks +Tobias Hinz*, Nicolas Navarro-Guerrero†, Sven Magg‡ +nd Stefan Wermter§ +Knowledge Technology, Department of Informatics +Universit€at Hamburg +Vogt-K€olln-Str. 30, Hamburg 22527, Germany +Received 15 August 2017 +Accepted 23 March 2018 +Published 18 June 2018 +Most learning algorithms require the practitioner to manually set the values of many hyper- +parameters before the learning process can begin. However, with modern algorithms, the +evaluation of a given hyperparameter setting can take a considerable amount of time and the +search space is often very high-dimensional. We suggest using a lower-dimensional represen- +tation of the original data to quickly identify promising areas in the hyperparameter space. This +information can then be used to initialize the optimization algorithm for the original, higher-" +d1dfdc107fa5f2c4820570e369cda10ab1661b87,Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,"Super SloMo: High Quality Estimation of Multiple Intermediate Frames +for Video Interpolation +Huaizu Jiang1 +Deqing Sun2 +Varun Jampani2 +Ming-Hsuan Yang3,2 +Erik Learned-Miller1 +Jan Kautz2 +UMass Amherst +NVIDIA 3UC Merced" +d1dae2993bdbb2667d1439ff538ac928c0a593dc,Gamma Correction Technique Based Feature Extraction for Face Recognition System,"International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013 +Gamma Correction Technique Based Feature Extraction +for Face Recognition System +B Vinothkumar +P Kumar +Electronics and Communication Engineering +K S Rangasamy College of Technology +Electronics and Communication Engineering +K S Rangasamy College of Technology +Tamilnadu, India +Tamilnadu, India" +d1f58798db460996501f224fff6cceada08f59f9,Transferrable Representations for Visual Recognition,"Transferrable Representations for Visual Recognition +Jeffrey Donahue +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2017-106 +http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-106.html +May 14, 2017" +d1a43737ca8be02d65684cf64ab2331f66947207,IJB–S: IARPA Janus Surveillance Video Benchmark,"IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3) +Nathan D. Kalka y +Stephen Elliott z +Brianna Maze y +Kaleb Hebert y +James A. Duncan y +Julia Bryan z +Kevin O’Connor z +Anil K. Jain x" +d122d66c51606a8157a461b9d7eb8b6af3d819b0,Automated Recognition of Facial Expressions,"Vol-3 Issue-4 2017 +IJARIIE-ISSN(O)-2395-4396 +AUTOMATED RECOGNITION OF FACIAL +EXPRESSIONS +Pavan S. Ahire, PG Student, Dept. of Computer Engineering, METs Institute of Engineering, +Prof. R. P. Dahake, Dept. of Computer Engineering, METs Institute of Engineering, +Adgoan,Nashik,Maharashtra. +Adgoan, Nashik, Maharashtra." +d142e74c6a7457e77237cf2a3ded4e20f8894e1a,Human Emotion Estimation from Eeg and Face Using Statistical Features and Svm,"HUMAN EMOTION ESTIMATION FROM +EEG AND FACE USING STATISTICAL +FEATURES AND SVM +Strahil Sokolov1, Yuliyan Velchev2, Svetla Radeva3 and Dimitar Radev4 +,3Department of Information Technologies, +University of telecommunications and post, Sofia, Bulgaria +2,4Department of Telecommunications, +University of telecommunications and post, Sofia, Bulgaria" +d1082eff91e8009bf2ce933ac87649c686205195,Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off,"(will be inserted by the editor) +Pruning of Error Correcting Output Codes by +Optimization of Accuracy-Diversity Trade off +S¨ureyya ¨Oz¨o˘g¨ur Aky¨uz · Terry +Windeatt · Raymond Smith +Received: date / Accepted: date" +d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576,Neural Face Editing with Intrinsic Image Disentangling,"Neural Face Editing with Intrinsic Image Disentangling +Zhixin Shu1 Ersin Yumer2 Sunil Hadap2 Kalyan Sunkavalli2 Eli Shechtman 2 Dimitris Samaras1,3 +Stony Brook University 2Adobe Research 3 CentraleSup´elec, Universit´e Paris-Saclay" +d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0,Robust Remote Heart Rate Determination for E-Rehabilitation - A Method that Overcomes Motion and Intensity Artefacts, +d61578468d267c2d50672077918c1cda9b91429b,Face Image Retrieval Using Pose Specific Set Sparse Feature Representation,"Abdul Afeef N et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.9, September- 2014, pg. 314-323 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 3, Issue. 9, September 2014, pg.314 – 323 +RESEARCH ARTICLE +Face Image Retrieval Using Pose Specific +Set Sparse Feature Representation +Department of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India +Assistant Professor of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India +Abdul Afeef N1, Sebastian George2" +d687fa99586a9ad229284229f20a157ba2d41aea,Face Recognition Based on Wavelet Packet Coefficients and Radial Basis Function Neural Networks,"Journal of Intelligent Learning Systems and Applications, 2013, 5, 115-122 +http://dx.doi.org/10.4236/jilsa.2013.52013 Published Online May 2013 (http://www.scirp.org/journal/jilsa) +Face Recognition Based on Wavelet Packet Coefficients +nd Radial Basis Function Neural Networks +Thangairulappan Kathirvalavakumar1*, Jeyasingh Jebakumari Beulah Vasanthi2 +Department of Computer Science, Virudhunagar Hindu Nadars’ Senthikumara Nadar College, Virudhunagar, India; 2Department of +Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India. +Email: +Received December 12th, 2012; revised April 19th, 2013; accepted April 26th, 2013 +Copyright © 2013 Thangairulappan Kathirvalavakumar, Jeyasingh Jebakumari Beulah Vasanthi. This is an open access article dis- +tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any me- +dium, provided the original work is properly cited." +d6a9ea9b40a7377c91c705f4c7f206a669a9eea2,Visual Representations for Fine-grained Categorization,"Visual Representations for Fine-grained +Categorization +Ning Zhang +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2015-244 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-244.html +December 17, 2015" +d671a210990f67eba9b2d3dda8c2cb91575b4a7a,Social Environment Description from Data Collected with a Wearable Device,"Journal of Machine Learning Research () +Submitted ; Published +Social Environment Description from Data Collected with a +Wearable Device +Pierluigi Casale +Computer Vision Center +Autonomous University of Barcelona +Barcelona, Spain +Editor: Radeva Petia, Pujol Oriol" +d65b82b862cf1dbba3dee6541358f69849004f30,2.5D Elastic graph matching,"Contents lists available at ScienceDirect +j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c v i u +.5D Elastic graph matching +Stefanos Zafeiriou +, Maria Petrou +Imperial College, Department of Electrical and Electronic Engineering, London, UK +r t i c l e +i n f o +b s t r a c t +Article history: +Received 29 November 2009 +Accepted 1 December 2010 +Available online 17 March 2011 +Keywords: +Elastic graph matching +D face recognition +Multiscale mathematical morphology +Geodesic distances +In this paper, we propose novel elastic graph matching (EGM) algorithms for face recognition assisted by +the availability of 3D facial geometry. More specifically, we conceptually extend the EGM algorithm in" +d6102a7ddb19a185019fd2112d2f29d9258f6dec,Fashion Style Generator,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +GeneratorPatch……Global+…lstyle(2)lstyle(1)lcontent(1)lcontent(2)φθϕsϕcDiscriminatorDGXX(1)X(2)(a) Framework of the training stage(b) Examples of fashion style generationFigure1:Fashionstylegeneratorframeworkoverview.TheinputXconsistsofasetofclothingpatchesX(1)andfullclothingimagesX(2).Thesystemconsistsoftwocomponents:animagetransfor-mationnetworkGservedasfashionstylegenerator,andadiscrimi-natornetworkDcalculatesbothglobalandpatchbasedcontentandstylelosses.Gisaconvolutionalencoderdecodernetworkparam-eterizedbyweights(cid:18).Sixgeneratedshirtswithdifferentstylesbyourmethodareshownasexamples.(Wehighlyrecommendtozoominallthefigureswithcolorversionformoredetails.)recentneuralstyletransferworks[Gatysetal.,2015].Tak-ingVanGogh’s“StarryNight”astheexamplestyleimage,styleisbetweenthelow-levelcolor/texture(e.g.,blueandyellowcolor,roughorsmoothertexture)andthehigh-levelobjects(e.g.,houseandmountain).“Style”isarelativelyab-stractconcept.Fashionstylegenerationhasatleasttwoprac-ticalusages.Designerscouldquicklyseehowtheclothinglookslikeinagivenstyletofacilitatethedesignprocessing.Shopperscouldsynthesizetheclothingimagewiththeidealstyleandapplyclothingretrievaltools[Jiangetal.,2016b]tosearchthesimilaritems.Fashionstylegenerationisrelatedtoexistingneuralstyletransferworks[Gatysetal.,2015;LiandWand,2016a;EfrosandFreeman,2001],buthasitsownchallenges.Infashionstylegeneration,thesyntheticclothingimageshould" +d6bfa9026a563ca109d088bdb0252ccf33b76bc6,Unsupervised Temporal Segmentation of Facial Behaviour,"Unsupervised Temporal Segmentation of Facial Behaviour +Abhishek Kar +Advisors: Dr. Amitabha Mukerjee & Dr. Prithwijit Guha +Department of Computer Science and Engineering, IIT Kanpur" +d6c7092111a8619ed7a6b01b00c5f75949f137bf,A Novel Feature Extraction Technique for Facial Expression Recognition,"A Novel Feature Extraction Technique for Facial Expression +Recognition +*Mohammad Shahidul Islam1, Surapong Auwatanamongkol2 +1 Department of Computer Science, School of Applied Statistics, +National Institute of Development Administration, +Bangkok, 10240, Thailand +Department of Computer Science, School of Applied Statistics, +National Institute of Development Administration, +Bangkok, 10240, Thailand" +bcee40c25e8819955263b89a433c735f82755a03,Biologically Inspired Vision for Human-Robot Interaction,"Biologically inspired vision for human-robot +interaction +M. Saleiro, M. Farrajota, K. Terzi´c, S. Krishna, J.M.F. Rodrigues, and J.M.H. +du Buf +Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal, +{masaleiro, mafarrajota, kterzic, jrodrig," +bc6de183cd8b2baeebafeefcf40be88468b04b74,Age Group Recognition using Human Facial Images,"Age Group Recognition using Human Facial Images +International Journal of Computer Applications (0975 – 8887) +Volume 126 – No.13, September 2015 +Shailesh S. Kulkarni +Dept. of Electronics and Telecommunication +Government College of Engineering, +Aurangabad, Maharashtra, India" +bcf19b964e7d1134d00332cf1acf1ee6184aff00,Trajectory-Set Feature for Action Recognition,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017 +LETTER +Trajectory-Set Feature for Action Recognition +Kenji MATSUI†, Nonmember, Toru TAMAKI†a), Member, Bisser RAYTCHEV†, Nonmember, +nd Kazufumi KANEDA†, Member +SUMMARY We propose a feature for action recognition called +Trajectory-Set (TS), on top of the improved Dense Trajectory (iDT). +The TS feature encodes only trajectories around densely sampled inter- +est points, without any appearance features. Experimental results on the +UCF50 action dataset demonstrates that TS is comparable to state-of-the- +rts, and outperforms iDT; the accuracy of 95.0%, compared to 91.7% by +key words: action recognition, trajectory, improved Dense Trajectory +the two-stream CNN [2] that uses a single frame and a opti- +al flow stack. In their paper stacking trajectories was also +reported but did not perform well, probably the sparseness +of trajectories does not fit to CNN architectures. In contrast, +we take a hand-crafted approach that can be fused later with +CNN outputs. +Introduction +Action recognition has been well studied in the computer" +bcc172a1051be261afacdd5313619881cbe0f676,A fast face clustering method for indexing applications on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017" +bc811a66855aae130ca78cd0016fd820db1603ec,Towards three-dimensional face recognition in the real Huibin,"Towards three-dimensional face recognition in the real +Huibin Li +To cite this version: +Huibin Li. Towards three-dimensional face recognition in the real. Other. Ecole Centrale de +Lyon, 2013. English. . +HAL Id: tel-00998798 +https://tel.archives-ouvertes.fr/tel-00998798 +Submitted on 2 Jun 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de +recherche fran¸cais ou ´etrangers, des laboratoires +publics ou priv´es." +bc98027b331c090448492eb9e0b9721e812fac84,"Face Representation Using Combined Method of Gabor Filters, Wavelet Transformation and DCV and Recognition Using RBF","Journal of Intelligent Learning Systems and Applications, 2012, 4, 266-273 +http://dx.doi.org/10.4236/jilsa.2012.44027 Published Online November 2012 (http://www.SciRP.org/journal/jilsa) +Face Representation Using Combined Method of Gabor +Filters, Wavelet Transformation and DCV and Recognition +Using RBF +Kathirvalavakumar Thangairulappan1*, Jebakumari Beulah Vasanthi Jeyasingh2 +Department of Computer Science, VHNSN College, Virudhunagar, India; 2Department of Computer Applications, ANJA College, +Sivakasi, India. +Email: +Received April 27th, 2012; revised July 19th, 2012; accepted July 26th, 2012" +bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab,MoCoGAN: Decomposing Motion and Content for Video Generation,"MoCoGAN: Decomposing Motion and Content for Video Generation +Sergey Tulyakov, +Snap Research +Ming-Yu Liu, Xiaodong Yang, +NVIDIA +Jan Kautz" +bcac3a870501c5510df80c2a5631f371f2f6f74a,Structured Face Hallucination,"#1387 +CVPR 2013 Submission #1387. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#1387 +Structured Face Hallucination +Anonymous CVPR submission +Paper ID 1387" +ae8d5be3caea59a21221f02ef04d49a86cb80191,Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks,"Published as a conference paper at ICLR 2018 +SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +RECURRENT NEURAL NETWORKS +V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ +Barcelona Supercomputing Center, ‡Google Inc, +§Universitat Polit`ecnica de Catalunya, ΓColumbia University +{victor.campos," +ae2cf545565c157813798910401e1da5dc8a6199,Cascade of Boolean detector combinations,"Mahkonen et al. EURASIP Journal on Image and Video +Processing (2018) 2018:61 +https://doi.org/10.1186/s13640-018-0303-9 +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +Cascade of Boolean detector +ombinations +Katariina Mahkonen* +, Tuomas Virtanen and Joni Kämäräinen" +aebb9649bc38e878baef082b518fa68f5cda23a5,A Multi - scale TVQI - based Illumination Normalization Model, +aeeea6eec2f063c006c13be865cec0c350244e5b,"Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial Expression Database","Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial +Expression Database +Michel F. Valstar, Maja Pantic +Imperial College London / Twente University +Department of Computing / EEMCS +80 Queen’s Gate / Drienerlolaan 5 +London / Twente" +ae9257f3be9f815db8d72819332372ac59c1316b,Deciphering the enigmatic face: the importance of facial dynamics in interpreting subtle facial expressions.,"P SY CH O L O GIC AL SC I E NC E +Research Article +Deciphering the Enigmatic Face +The Importance of Facial Dynamics in Interpreting Subtle +Facial Expressions +Zara Ambadar,1 Jonathan W. Schooler,2 and Jeffrey F. Cohn1 +University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada" +ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,On evaluating face tracks in movies,"On evaluating face tracks in movies +Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez +To cite this version: +Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez. On evaluating face tracks +in movies. IEEE International Conference on Image Processing (ICIP 2013), Sep 2013, Melbourne, +Australia. 2013. +HAL Id: hal-00870059 +https://hal.inria.fr/hal-00870059 +Submitted on 4 Oct 2013 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de +recherche français ou étrangers, des laboratoires" +aeff403079022683b233decda556a6aee3225065,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning +Hardie Cate +Fahim Dalvi +Zeshan Hussain" +ae753fd46a744725424690d22d0d00fb05e53350,Describing Clothing by Semantic Attributes,"Describing Clothing by Semantic Attributes +Anonymous ECCV submission +Paper ID 727" +ae85c822c6aec8b0f67762c625a73a5d08f5060d,Retrieving Similar Styles to Parse Clothing,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2353624 +IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. M, NO. N, MONTH YEAR +Retrieving Similar Styles to Parse Clothing +Kota Yamaguchi, Member, IEEE, M. Hadi Kiapour, Student Member, IEEE, +Luis E. Ortiz, and Tamara L. Berg, Member, IEEE" +d861c658db2fd03558f44c265c328b53e492383a,Automated face extraction and normalization of 3D Mesh Data,"Automated Face Extraction and Normalization of 3D Mesh Data +Jia Wu1, Raymond Tse2, Linda G. Shapiro1" +d8f0bda19a345fac81a1d560d7db73f2b4868836,Online Activity Understanding and Labeling in Natural Videos,"UNIVERSITY OF CALIFORNIA +RIVERSIDE +Online Activity Understanding and Labeling in Natural Videos +A Dissertation submitted in partial satisfaction +of the requirements for the degree of +Doctor of Philosophy +Computer Science +Md Mahmudul Hasan +August 2016 +Dissertation Committee: +Dr. Amit K. Roy-Chowdhury, Chairperson +Dr. Eamonn Keogh +Dr. Evangelos Christidis +Dr. Christian Shelton" +d82b93f848d5442f82154a6011d26df8a9cd00e7,Neural Network Based Age Classification Using Linear Wavelet Transforms,"NEURAL NETWORK BASED AGE CLASSIFICATION USING +LINEAR WAVELET TRANSFORMS +NITHYASHRI JAYARAMAN1 & G.KULANTHAIVEL2 +Department of Computer Science & Engineering, +Sathyabama University Old Mamallapuram Road, Chennai, India +Electronics Engineering, National Institute of Technical Teachers +Training & Research, Taramani, Chennai, India +E-mail :" +d83d2fb5403c823287f5889b44c1971f049a1c93,Introducing the sick face,"Motiv Emot +DOI 10.1007/s11031-013-9353-6 +O R I G I N A L P A P E R +Introducing the sick face +Sherri C. Widen • Joseph T. Pochedly • +Kerrie Pieloch • James A. Russell +Ó Springer Science+Business Media New York 2013" +d8b568392970b68794a55c090c4dd2d7f90909d2,PDA Face Recognition System Using Advanced Correlation Filters,"PDA Face Recognition System +Using Advanced Correlation +Filters +Chee Kiat Ng +Advisor: Prof. Khosla/Reviere" +d83ae5926b05894fcda0bc89bdc621e4f21272da,Frugal Forests: Learning a Dynamic and Cost Sensitive Feature Extraction Policy for Anytime Activity Classification,"The Thesis committee for Joshua Allen Kelle certifies that this is the approved +version of the following thesis: +Frugal Forests: Learning a Dynamic and Cost Sensitive +Feature Extraction Policy for Anytime Activity Classification +APPROVED BY +SUPERVISING COMMITTEE: +Kristen Grauman, Supervisor +Peter Stone" +d86fabd4498c8feaed80ec342d254fb877fb92f5,Region-Object Relevance-Guided Visual Relationship Detection,"Y. GOUTSU: REGION-OBJECT RELEVANCE-GUIDED VRD +Region-Object Relevance-Guided +Visual Relationship Detection +Yusuke Goutsu +National Institute of Informatics +Tokyo, Japan" +d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e,Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter,"UNIVERSITY OF CALIFORNIA, +IRVINE +Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter +DISSERTATION +submitted in partial satisfaction of the requirements +for the degree of +DOCTOR OF PHILOSOPHY +in Computer Science +Golnaz Ghiasi +Dissertation Committee: +Professor Charless Fowlkes, Chair +Professor Deva Ramanan +Professor Alexander Ihler" +d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d,Robust Face Recognition via Multimodal Deep Face Representation,"Robust Face Recognition via Multimodal Deep +Face Representation +Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE" +ab8f9a6bd8f582501c6b41c0e7179546e21c5e91,Nonparametric Face Verification Using a Novel Face Representation,"Nonparametric Face Verification Using a Novel +Face Representation +Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE," +ab58a7db32683aea9281c188c756ddf969b4cdbd,Efficient Solvers for Sparse Subspace Clustering,"Efficient Solvers for Sparse Subspace Clustering +Farhad Pourkamali-Anaraki and Stephen Becker" +aba770a7c45e82b2f9de6ea2a12738722566a149,Face Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels,"Face Recognition in the Scrambled Domain via Salience-Aware +Ensembles of Many Kernels +Jiang, R., Al-Maadeed, S., Bouridane, A., Crookes, D., & Celebi, M. E. (2016). Face Recognition in the +Scrambled Domain via Salience-Aware Ensembles of Many Kernels. IEEE Transactions on Information +Forensics and Security, 11(8), 1807-1817. DOI: 10.1109/TIFS.2016.2555792 +Published in: +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +Publisher rights +(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ +republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, +or reuse of any copyrighted components of this work in other works. +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy +The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to" +ab0f9bc35b777eaefff735cb0dd0663f0c34ad31,Semi-supervised Learning of Geospatial Objects through Multi-modal Data Integration,"Semi-Supervised Learning of Geospatial Objects +Through Multi-Modal Data Integration +Yi Yang and Shawn Newsam +Electrical Engineering and Computer Science +University of California, Merced, CA, 95343 +Email:" +ab989225a55a2ddcd3b60a99672e78e4373c0df1,"Sample, computation vs storage tradeoffs for classification using tensor subspace models","Sample, Computation vs Storage Tradeoffs for +Classification Using Tensor Subspace Models +Mohammadhossein Chaghazardi and Shuchin Aeron, Senior Member, IEEE" +ab6776f500ed1ab23b7789599f3a6153cdac84f7,A Survey on Various Facial Expression Techniques,"International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1212 +ISSN 2229-5518 +A Survey on Various Facial Expression +Techniques +Md. Sarfaraz Jalil, Joy Bhattacharya" +ab1719f573a6c121d7d7da5053fe5f12de0182e7,Combining visual recognition and computational linguistics : linguistic knowledge for visual recognition and natural language descriptions of visual content,"Combining Visual Recognition +nd Computational Linguistics +Linguistic Knowledge for Visual Recognition +nd Natural Language Descriptions +of Visual Content +Thesis for obtaining the title of +Doctor of Engineering Science +(Dr.-Ing.) +of the Faculty of Natural Science and Technology I +of Saarland University +Marcus Rohrbach, M.Sc. +Saarbrücken +March 2014" +ab2b09b65fdc91a711e424524e666fc75aae7a51,Multi-modal Biomarkers to Discriminate Cognitive State *,"Multi-modal Biomarkers to Discriminate Cognitive State* +Thomas F. Quatieri 1, James R. Williamson1, Christopher J. Smalt1, +Joey Perricone, Tejash Patel, Laura Brattain, Brian S. Helfer, Daryush D. Mehta, Jeffrey Palmer +Kristin Heaton2, Marianna Eddy3, Joseph Moran3 +MIT Lincoln Laboratory, Lexington, Massachusetts, USA +USARIEM, 3NSRDEC +. Introduction +Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have +recently obtained increasing popularity in the detection of cognitive stress- and neurological-based +disorders. Such conditions are significantly and adversely affecting human performance and quality +of life for a large fraction of the world’s population. Example modalities used in detection of these +onditions include voice, facial expression, physiology, eye tracking, gait, and EEG analysis. +Toward the goal of finding simple, noninvasive means to detect, predict and monitor cognitive +stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy +three criteria. First, we seek biomarkers that reflect core components of cognitive status such as +working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we +seek biomarkers that reflect timing and coordination relations both within components of each +modality and across different modalities. This is based on the hypothesis that neural coordination +cross different parts of the brain is essential in cognition (Figure 1). An example of timing and +oordination within a modality is the set of finely timed and synchronized physiological" +ab87dfccb1818bdf0b41d732da1f9335b43b74ae,Structured Dictionary Learning for Classification,"SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING +Structured Dictionary Learning for Classification +Yuanming Suo, Student Member, IEEE, Minh Dao, Student Member, IEEE, Umamahesh Srinivas, Student +Member, IEEE, Vishal Monga, Senior Member, IEEE, and Trac D. Tran, Fellow, IEEE" +abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72,Raisonnement abductif en logique de description exploitant les domaines concrets spatiaux pour l'interprétation d'images,"Raisonnement abductif en logique de +description exploitant les domaines concrets +spatiaux pour l’interprétation d’images +Yifan Yang 1, Jamal Atif 2, Isabelle Bloch 1 +. LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France +. Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, +LAMSADE, 75016 Paris, France +RÉSUMÉ. L’interprétation d’images a pour objectif non seulement de détecter et reconnaître des +objets dans une scène mais aussi de fournir une description sémantique tenant compte des in- +formations contextuelles dans toute la scène. Le problème de l’interprétation d’images peut être +formalisé comme un problème de raisonnement abductif, c’est-à-dire comme la recherche de la +meilleure explication en utilisant une base de connaissances. Dans ce travail, nous présentons +une nouvelle approche utilisant une méthode par tableau pour la génération et la sélection +d’explications possibles d’une image donnée lorsque les connaissances, exprimées dans une +logique de description, comportent des concepts décrivant les objets mais aussi les relations +spatiales entre ces objets. La meilleure explication est sélectionnée en exploitant les domaines +oncrets pour évaluer le degré de satisfaction des relations spatiales entre les objets." +abeda55a7be0bbe25a25139fb9a3d823215d7536,Understanding Human-Centric Images: From Geometry to Fashion,"UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015" +ab8fb278db4405f7db08fa59404d9dd22d38bc83,Implicit and Automated Emotional Tagging of Videos,"UNIVERSITÉ DE GENÈVE +Département d'Informatique +FACULTÉ DES SCIENCES +Professeur Thierry Pun +Implicit and Automated Emotional +Tagging of Videos +THÈSE +présenté à la Faculté des sciences de l'Université de Genève +pour obtenir le grade de Docteur ès sciences, mention informatique +Mohammad SOLEYMANI +Téhéran (IRAN) +Thèse No 4368 +GENÈVE +Repro-Mail - Université de Genève" +e5823a9d3e5e33e119576a34cb8aed497af20eea,DocFace+: ID Document to Selfie Matching,"DocFace+: ID Document to Selfie* Matching +Yichun Shi, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE" +e510f2412999399149d8635a83eca89c338a99a1,Face Recognition using Block-Based DCT Feature Extraction,"Journal of Advanced Computer Science and Technology, 1 (4) (2012) 266-283 +(cid:13)Science Publishing Corporation +www.sciencepubco.com/index.php/JACST +Face Recognition using Block-Based +DCT Feature Extraction +K Manikantan1, Vaishnavi Govindarajan1, +V V S Sasi Kiran1, S Ramachandran2 +Department of Electronics and Communication Engineering, +M S Ramaiah Institute of Technology, Bangalore, Karnataka, India 560054 +E-mail: +E-mail: +E-mail: +Department of Electronics and Communication Engineering, +S J B Institute of Technology, Bangalore, Karnataka, India 560060 +E-mail:" +e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69,Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art,"Human Activity Recognition Based on Wearable +Sensor Data: A Standardization of the +State-of-the-Art +Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz +Smart Surveillance Interest Group, Computer Science Department +Universidade Federal de Minas Gerais, Brazil +Email: {arturjordao, antonio.nazare, jessicasena," +e5342233141a1d3858ed99ccd8ca0fead519f58b,Finger print and Palm print based Multibiometric Authentication System with GUI Interface,"ISSN: 2277 – 9043 +International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE) +Volume 2, Issue 2, February 2013 +Finger print and Palm print based Multibiometric +Authentication System with GUI Interface +KALAIGNANASELVI.A#1, NARASIMMALOU.T*2 +#PG Scholar, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India. +*Assistant Professor, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India." +e52be9a083e621d9ed29c8e9914451a6a327ff59,UvA - DARE ( Digital Academic Repository ) Communication and Automatic Interpretation of Affect from Facial Expressions,"UvA-DARE (Digital Academic Repository) +Communication and Automatic Interpretation of Affect from Facial Expressions +Salah, A.A.; Sebe, N.; Gevers, T. +Published in: +Affective computing and interaction: psychological, cognitive, and neuroscientific perspectives +Link to publication +Citation for published version (APA): +Salah, A. A., Sebe, N., & Gevers, T. (2010). Communication and Automatic Interpretation of Affect from Facial +Expressions. In D. Gökçay, & G. Yildirim (Eds.), Affective computing and interaction: psychological, cognitive, +nd neuroscientific perspectives (pp. 157-183). Hershey, PA: Information Science Reference. +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible. +Download date: 12 Sep 2017 +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)" +e5799fd239531644ad9270f49a3961d7540ce358,Kinship classification by modeling facial feature heredity,"KINSHIP CLASSIFICATION BY MODELING FACIAL FEATURE HEREDITY +Ruogu Fang1, Andrew C. Gallagher1, Tsuhan Chen1, Alexander Loui2 +Dept. of Elec. and Computer Eng., Cornell University 2Eastman Kodak Company" +e5eb7fa8c9a812d402facfe8e4672670541ed108,Performance of PCA Based Semi-supervised Learning in Face Recognition Using MPEG-7 Edge Histogram Descriptor,"Performance of PCA Based Semi-supervised +Learning in Face Recognition Using MPEG-7 +Edge Histogram Descriptor +Shafin Rahman, Sheikh Motahar Naim, Abdullah Al Farooq and Md. Monirul Islam +Department of Computer Science and Engineering +Bangladesh University of Engineering and Technology(BUET) +Dhaka-1000, Bangladesh +Email: {shafin buet, naim sbh2007," +e2d265f606cd25f1fd72e5ee8b8f4c5127b764df,Real-Time End-to-End Action Detection with Two-Stream Networks,"Real-Time End-to-End Action Detection +with Two-Stream Networks +Alaaeldin El-Nouby∗†, Graham W. Taylor∗†‡ +School of Engineering, University of Guelph +Vector Institute for Artificial Intelligence +Canadian Institute for Advanced Research" +f412d9d7bc7534e7daafa43f8f5eab811e7e4148,Running Head : Anxiety and Emotional Faces in WS 2,"Durham Research Online +Deposited in DRO: +6 December 2014 +Version of attached le: +Accepted Version +Peer-review status of attached le: +Peer-reviewed +Citation for published item: +Kirk, H. E. and Hocking, D. R. and Riby, D. M. and Cornish, K. M. (2013) 'Linking social behaviour and +nxiety to attention to emotional faces in Williams syndrome.', Research in developmental disabilities., 34 +(12). pp. 4608-4616. +Further information on publisher's website: +http://dx.doi.org/10.1016/j.ridd.2013.09.042 +Publisher's copyright statement: +NOTICE: this is the author's version of a work that was accepted for publication in Research in Developmental +Disabilities. Changes resulting from the publishing process, such as peer review, editing, corrections, structural +formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made +to this work since it was submitted for publication. A denitive version was subsequently published in Research in +Developmental Disabilities, 34, 12, December 2013, 10.1016/j.ridd.2013.09.042. +Additional information:" +f442a2f2749f921849e22f37e0480ac04a3c3fec,Critical Features for Face Recognition in Humans and Machines,"Critical Features for Face Recognition in Humans and Machines Naphtali Abudarham1, Lior Shkiller1, Galit Yovel1,2 1School of Psychological Sciences, 2Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel Correspondence regarding this manuscript should be addressed to: Galit Yovel School of Psychological Sciences & Sagol School of Neuroscience Tel Aviv University Tel Aviv, 69978, Israel Email:" +f4f6fc473effb063b7a29aa221c65f64a791d7f4,Facial expression recognition in the wild based on multimodal texture features,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407." +f4373f5631329f77d85182ec2df6730cbd4686a9,Recognizing Gender from Human Facial Regions using Genetic Algorithm,"Soft Computing manuscript No. +(will be inserted by the editor) +Recognizing Gender from Human Facial Regions using +Genetic Algorithm +Avirup Bhattacharyya · Rajkumar Saini · +Partha Pratim Roy · Debi Prosad Dogra · +Samarjit Kar +Received: date / Accepted: date" +f47404424270f6a20ba1ba8c2211adfba032f405,Identification of Face Age range Group using Neural Network,"International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +Identification of Face Age range Group using Neural +Network +Sneha Thakur1, Ligendra Verma2 +1M.Tech scholar, CSE, RITEE Raipur +2 Reader, MCA dept, RITEE Raipur" +f4ebbeb77249d1136c355f5bae30f02961b9a359,Human Computation for Attribute and Attribute Value Acquisition,"Human Computation for Attribute and Attribute Value Acquisition +Edith Law, Burr Settles, Aaron Snook, Harshit Surana, Luis von Ahn, Tom Mitchell +School of Computer Science +Carnegie Melon University" +f42dca4a4426e5873a981712102aa961be34539a,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost +Optical-Flow Estimation in the Wild +Nima Sedaghat +University of Freiburg +Germany" +f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7,"NosePose: a competitive, landmark-free methodology for head pose estimation in the wild","NosePose: a competitive, landmark-free +methodology for head pose estimation in the wild +Fl´avio H. B. Zavan, Antonio C. P. Nascimento, Olga R. P. Bellon and Luciano Silva +IMAGO Research Group - Universidade Federal do Paran´a" +f3ea181507db292b762aa798da30bc307be95344,Covariance Pooling For Facial Expression Recognition,"Covariance Pooling for Facial Expression Recognition +Computer Vision Lab, ETH Zurich, Switzerland +VISICS, KU Leuven, Belgium +Dinesh Acharya†, Zhiwu Huang†, Danda Pani Paudel†, Luc Van Gool†‡ +{acharyad, zhiwu.huang, paudel," +f3cf10c84c4665a0b28734f5233d423a65ef1f23,Title Temporal Exemplar-based Bayesian Networks for facialexpression recognition,"Title +Temporal Exemplar-based Bayesian Networks for facial +expression recognition +Author(s) +Shang, L; Chan, KP +Citation +Proceedings - 7Th International Conference On Machine +Learning And Applications, Icmla 2008, 2008, p. 16-22 +Issued Date +http://hdl.handle.net/10722/61208 +Rights +This work is licensed under a Creative Commons Attribution- +NonCommercial-NoDerivatives 4.0 International License.; +International Conference on Machine Learning and Applications +Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +this material is permitted. However, permission to +reprint/republish this material for advertising or promotional +purposes or for creating new collective works for resale or +redistribution to servers or lists, or to reuse any copyrighted +omponent of this work in other works must be obtained from" +f3b7938de5f178e25a3cf477107c76286c0ad691,Object Detection with Deep Learning: A Review,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017 +Object Detection with Deep Learning: A Review +Zhong-Qiu Zhao, Member, IEEE, Peng Zheng, +Shou-tao Xu, and Xindong Wu, Fellow, IEEE" +eb526174fa071345ff7b1fad1fad240cd943a6d7,Deeply vulnerable: a study of the robustness of face recognition to presentation attacks,"Deeply Vulnerable – A Study of the Robustness of Face Recognition to +Presentation Attacks +Amir Mohammadi, Sushil Bhattacharjee, and S´ebastien Marcel ∗†" +eb566490cd1aa9338831de8161c6659984e923fd,From Lifestyle Vlogs to Everyday Interactions,"From Lifestyle Vlogs to Everyday Interactions +David F. Fouhey, Wei-cheng Kuo, Alexei A. Efros, Jitendra Malik +EECS Department, UC Berkeley" +eb9312458f84a366e98bd0a2265747aaed40b1a6,Facial Expression Sequence Synthesis Based on Shape and Texture Fusion Model,"-4244-1437-7/07/$20.00 ©2007 IEEE +IV - 473 +ICIP 2007" +eb716dd3dbd0f04e6d89f1703b9975cad62ffb09, Visual Object Category Discovery in Images and Videos,"Copyright +Yong Jae Lee" +eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6,A new soft biometric approach for keystroke dynamics based on gender recognition,"Int. J. Information Technology and Management, Vol. 11, Nos. 1/2, 2012 +A new soft biometric approach for keystroke +dynamics based on gender recognition +Romain Giot* and Christophe Rosenberger +GREYC Research Lab, +ENSICAEN – Université de Caen Basse Normandie – CNRS, +4000 Caen, France +Fax: +33-231538110 +E-mail: +E-mail: +*Corresponding author" +ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9,Fast algorithms for Higher-order Singular Value Decomposition from incomplete data,"Journal of Computational Mathematics +Vol.xx, No.x, 200x, 1–25. +http://www.global-sci.org/jcm +doi:?? +Fast algorithms for Higher-order Singular Value Decomposition +from incomplete data* +Department of Mathematics, University of Alabama, Tuscaloosa, AL +Yangyang Xu +Email:" +ebabd1f7bc0274fec88a3dabaf115d3e226f198f,Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks,"Driver drowsiness detection system based on feature +representation learning using various deep networks +Sanghyuk Park, Fei Pan, Sunghun Kang and Chang D. Yoo +School of Electrical Engineering, KAIST, +Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea +{shine0624, feipan, sunghun.kang, cd" +eb48a58b873295d719827e746d51b110f5716d6c,Face Alignment Using K-Cluster Regression Forests With Weighted Splitting,"Face Alignment Using K-cluster Regression Forests +With Weighted Splitting +Marek Kowalski and Jacek Naruniec" +ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,Fast Localization of Facial Landmark Points,"Fast Localization of Facial Landmark Points +Nenad Markuˇs*, Miroslav Frljak*, Igor S. Pandˇzi´c*, J¨orgen Ahlberg†, and Robert Forchheimer† +* University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia +Link¨oping University, Department of Electrical Engineering, SE-581 83 Link¨oping, Sweden +March 28, 2014" +ebf204e0a3e137b6c24e271b0d55fa49a6c52b41,Visual Tracking Using Deep Motion Features,"Master of Science Thesis in Electrical Engineering +Department of Electrical Engineering, Linköping University, 2016 +Visual Tracking Using +Deep Motion Features +Susanna Gladh" +c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e,Dynemo: a Video Database of Natural Facial Expressions of Emotions,"The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 +DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL +EXPRESSIONS OF EMOTIONS +Anna Tcherkassof1, Damien Dupré1, Brigitte Meillon2, Nadine Mandran2, +Michel Dubois1 and Jean-Michel Adam2 +LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France +LIG, Univ. Grenoble Alpes, BP 53 - 38041 Grenoble Cedex 9, France" +c7de0c85432ad17a284b5b97c4f36c23f506d9d1,RANSAC-Based Training Data Selection for Speaker State Recognition,"INTERSPEECH 2011 +RANSAC-based Training Data Selection for Speaker State Recognition +Elif Bozkurt1, Engin Erzin1, C¸ i˘gdem Ero˘glu Erdem2, A.Tanju Erdem3 +Multimedia, Vision and Graphics Laboratory, Koc¸ University, Istanbul, Turkey +Department of Electrical and Electronics Engineering, Bahc¸es¸ehir University, Istanbul, Turkey +Department of Electrical and Computer Engineering, ¨Ozye˘gin University, Istanbul, Turkey +ebozkurt," +c7f752eea91bf5495a4f6e6a67f14800ec246d08,Exploring the Transfer Learning Aspect of Deep Neural Networks in Facial Information Processing,"EXPLORING THE TRANSFER +LEARNING ASPECT OF DEEP +NEURAL NETWORKS IN FACIAL +INFORMATION PROCESSING +A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER +FOR THE DEGREE OF MASTER OF SCIENCE +IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES +Crefeda Faviola Rodrigues +School of Computer Science" +c758b9c82b603904ba8806e6193c5fefa57e9613,Heterogeneous Face Recognition with CNNs,"Heterogeneous Face Recognition with CNNs +Shreyas Saxena +Jakob Verbeek +INRIA Grenoble, Laboratoire Jean Kuntzmann" +c7c03324833ba262eeaada0349afa1b5990c1ea7,A Wearable Face Recognition System on Google Glass for Assisting Social Interactions,"A Wearable Face Recognition System on Google +Glass for Assisting Social Interactions +Bappaditya Mandal∗, Chia Shue Ching, Liyuan Li, Vijay Ramaseshan +Chandrasekhar, Cheston Tan Yin Chet and Lim Joo Hwee +Visual Computing Department, Institute for Infocomm Research, Singapore +Email address: (∗Contact author: Bappaditya Mandal); +{scchia, lyli, vijay, cheston-tan," +c7c8d150ece08b12e3abdb6224000c07a6ce7d47,DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification,"DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification +National Laboratory of Pattern Recognition, CASIA +Center for Research on Intelligent Perception and Computing, CASIA +Shu Zhang Ran He Tieniu Tan" +c78fdd080df01fff400a32fb4cc932621926021f,Robust Automatic Facial Expression Detection Method,"Robust Automatic Facial Expression Detection +Method +Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan, +Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan, +Yan Ouyang +China +Nong Sang +China +Email:" +c03f48e211ac81c3867c0e787bea3192fcfe323e,Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in I-Vector Speaker Recognition System,"INTERSPEECH 2016 +September 8–12, 2016, San Francisco, USA +Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in +I-vector Speaker Recognition System +Zhenchun Lei1, Yanhong Wan1, Jian Luo1, Yingen Yang1 +School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China" +c038beaa228aeec174e5bd52460f0de75e9cccbe,Temporal Segment Networks for Action Recognition in Videos,"Temporal Segment Networks for Action +Recognition in Videos +Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool" +c043f8924717a3023a869777d4c9bee33e607fb5,Emotion Separation Is Completed Early and It Depends on Visual Field Presentation,"Emotion Separation Is Completed Early and It Depends +on Visual Field Presentation +Lichan Liu1,2*, Andreas A. Ioannides1,2 +Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, +Cyprus" +c05a7c72e679745deab9c9d7d481f7b5b9b36bdd,"Naval Postgraduate School Monterey, California Approved for Public Release; Distribution Is Unlimited Biometric Challenges for Future Deployments: a Study of the Impact of Geography, Climate, Culture, and Social Conditions on the Effective Collection of Biometrics","NPS-CS-11-005 +NAVAL +POSTGRADUATE +SCHOOL +MONTEREY, CALIFORNIA +BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS: +A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE, +AND SOCIAL CONDITIONS ON THE EFFECTIVE +COLLECTION OF BIOMETRICS +Paul C. Clark, Heather S. Gregg, with preface by Cynthia E. Irvine +April 2011 +Approved for public release; distribution is unlimited" +c0ff7dc0d575658bf402719c12b676a34271dfcd,A New Incremental Optimal Feature Extraction Method for On-Line Applications,"A New Incremental Optimal Feature Extraction +Method for On-line Applications +Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam +Electrical Engineering Department, K. N. Toosi University of +Technology, Tehran, Iran" +c02847a04a99a5a6e784ab580907278ee3c12653,Fine Grained Video Classification for Endangered Bird Species Protection,"Fine Grained Video Classification for +Endangered Bird Species Protection +Non-Thesis MS Final Report +Chenyu Wang +. Introduction +.1 Background +This project is about detecting eagles in videos. Eagles are endangered species at the brim of +extinction since 1980s. With the bans of harmful pesticides, the number of eagles keep increasing. +However, recent studies on golden eagles’ activities in the vicinity of wind turbines have shown +significant number of turbine blade collisions with eagles as the major cause of eagles’ mortality. [1] +This project is a part of a larger research project to build an eagle detection and deterrent system +on wind turbine toward reducing eagles’ mortality. [2] The critical component of this study is a +omputer vision system for eagle detection in videos. The key requirement are that the system should +work in real time and detect eagles at a far distance from the camera (i.e. in low resolution). +There are three different bird species in my dataset - falcon, eagle and seagull. The reason for +involving only these three species is based on the real world situation. Wind turbines are always +installed near coast and mountain hill where falcons and seagulls will be the majority. So my model +will classify the minority eagles out of other bird species during the immigration season and protecting +them by using the deterrent system. +.2 Brief Approach" +c0c8d720658374cc1ffd6116554a615e846c74b5,Modeling Multimodal Clues in a Hybrid Deep Learning Framework for Video Classification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Modeling Multimodal Clues in a Hybrid Deep +Learning Framework for Video Classification +Yu-Gang Jiang, Zuxuan Wu, Jinhui Tang, Zechao Li, Xiangyang Xue, Shih-Fu Chang" +eee8a37a12506ff5df72c402ccc3d59216321346,Volume C,"Uredniki: +dr. Tomaž Erjavec +Odsek za tehnologije znanja +Institut »Jožef Stefan«, Ljubljana +dr. Jerneja Žganec Gros +Alpineon d.o.o, Ljubljana +Založnik: Institut »Jožef Stefan«, Ljubljana +Tisk: Birografika BORI d.o.o. +Priprava zbornika: Mitja Lasič +Oblikovanje naslovnice: dr. Damjan Demšar +Tiskano iz predloga avtorjev +Naklada: 50 +Ljubljana, oktober 2008 +Konferenco IS 2008 sofinancirata +Ministrstvo za visoko šolstvo, znanost in tehnologijo +Institut »Jožef Stefan« +Informacijska družba +ISSN 1581-9973 +CIP - Kataložni zapis o publikaciji +Narodna in univerzitetna knjižnica, Ljubljana" +ee18e29a2b998eddb7f6663bb07891bfc7262248,Local Linear Discriminant Analysis Framework Using Sample Neighbors,"Local Linear Discriminant Analysis Framework +Using Sample Neighbors +Zizhu Fan, Yong Xu, Member, IEEE, and David Zhang, Fellow, IEEE" +eefb8768f60c17d76fe156b55b8a00555eb40f4d,Subspace Scores for Feature Selection in Computer Vision,"Subspace Scores for Feature Selection in Computer Vision +Cameron Musco +Christopher Musco" +ee463f1f72a7e007bae274d2d42cd2e5d817e751,Automatically Extracting Qualia Relations for the Rich Event Ontology,"Automatically Extracting Qualia Relations for the Rich Event Ontology +Ghazaleh Kazeminejad1, Claire Bonial2, Susan Windisch Brown1 and Martha Palmer1 +{ghazaleh.kazeminejad, susan.brown, +University of Colorado Boulder, 2U.S. Army Research Lab" +eed1dd2a5959647896e73d129272cb7c3a2e145c,The Elements of Fashion Style,"INPUTSTYLE DOCUMENTTOP ITEMS“ ”I need an outfit for a beach wedding that I'm going to early this summer. I'm so excited -- it's going to be warm and exotic and tropical... I want my outfit to look effortless, breezy, flowy, like I’m floating over the sand! Oh, and obviously no white! For a tropical spot, I think my outfit should be bright and" +ee92d36d72075048a7c8b2af5cc1720c7bace6dd,Face recognition using mixtures of principal components,"FACE RECOGNITION USING MIXTURES OF PRINCIPAL COMPONENTS +Deepak S. Turaga and Tsuhan Chen +Video and Display Processing +Philips Research USA +Briarcliff Manor, NY 10510" +eedfb384a5e42511013b33104f4cd3149432bd9e,Multimodal probabilistic person tracking and identification in smart spaces,"Multimodal Probabilistic Person +Tracking and Identification +in Smart Spaces +zur Erlangung des akademischen Grades eines +Doktors der Ingenieurwissenschaften +der Fakultät für Informatik +der Universität Fridericiana zu Karlsruhe (TH) +genehmigte +Dissertation +Keni Bernardin +us Karlsruhe +Tag der mündlichen Prüfung: 20.11.2009 +Erster Gutachter: +Zweiter Gutachter: +Prof. Dr. A. Waibel +Prof. Dr. R. Stiefelhagen" +c91103e6612fa7e664ccbc3ed1b0b5deac865b02,Automatic Facial Expression Recognition Using Statistical-Like Moments,"Automatic facial expression recognition using +statistical-like moments +Roberto D’Ambrosio, Giulio Iannello, and Paolo Soda +{r.dambrosio, g.iannello, +Integrated Research Center, Universit`a Campus Bio-Medico di Roma, +Via Alvaro del Portillo, 00128 Roma, Italy" +fc1e37fb16006b62848def92a51434fc74a2431a,A Comprehensive Analysis of Deep Regression,"DRAFT +A Comprehensive Analysis of Deep Regression +St´ephane Lathuili`ere, Pablo Mesejo, Xavier Alameda-Pineda, Member IEEE, and Radu Horaud" +fcd3d69b418d56ae6800a421c8b89ef363418665,Effects of Aging over Facial Feature Analysis and Face Recognition,"Effects of Aging over Facial Feature Analysis and Face +Recognition +Bilgin Esme & Bulent Sankur +Bogaziçi Un. Electronics Eng. Dept. March 2010" +fcd77f3ca6b40aad6edbd1dab9681d201f85f365,Machine Learning Based Attacks and Defenses in Computer Security: Towards Privacy and Utility Balance in Sensor Environments,"(cid:13)Copyright 2014 +Miro Enev" +fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46,Feature Selection via Sparse Approximation for Face Recognition,"MANUSCRIPT SUBMITTED TO IEEE TRANS. PATTERN ANAL. MACH. INTELL., JULY 2010 +Feature Selection via Sparse Approximation for +Face Recognition +Yixiong Liang, Lei Wang, Yao Xiang, and Beiji Zou" +fcbf808bdf140442cddf0710defb2766c2d25c30,Unsupervised Semantic Action Discovery from Video Collections,"IJCV manuscript No. +(will be inserted by the editor) +Unsupervised Semantic Action Discovery from Video +Collections +Ozan Sener · Amir Roshan Zamir · Chenxia Wu · Silvio Savarese · +Ashutosh Saxena +Received: date / Accepted: date" +fd4ac1da699885f71970588f84316589b7d8317b,Supervised Descent Method for Solving Nonlinear Least Squares Problems in Computer Vision,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +Supervised Descent Method +for Solving Nonlinear Least Squares +Problems in Computer Vision +Xuehan Xiong, and Fernando De la Torre" +fdf533eeb1306ba418b09210387833bdf27bb756,Exploiting Unrelated Tasks in Multi-Task Learning, +fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3,Im2Flow: Motion Hallucination from Static Images for Action Recognition,"Im2Flow: Motion Hallucination from Static Images for Action Recognition +Ruohan Gao +UT Austin +Bo Xiong +UT Austin +Kristen Grauman +UT Austin" +fdfaf46910012c7cdf72bba12e802a318b5bef5a,Computerized Face Recognition in Renaissance Portrait Art,"Computerized Face Recognition in Renaissance +Portrait Art +Ramya Srinivasan, Conrad Rudolph and Amit Roy-Chowdhury" +fdca08416bdadda91ae977db7d503e8610dd744f,ICT - 2009 . 7 . 1 KSERA Project 2010 - 248085,"ICT-2009.7.1 +KSERA Project +010-248085 +Deliverable D3.1 +Deliverable D3.1 +Human Robot Interaction +Human Robot Interaction +8 October 2010 +Public Document +The KSERA project (http://www.ksera +KSERA project (http://www.ksera-project.eu) has received funding from the European Commission +project.eu) has received funding from the European Commission +under the 7th Framework Programme (FP7) for Research and Technological Development under grant +under the 7th Framework Programme (FP7) for Research and Technological Development under grant +under the 7th Framework Programme (FP7) for Research and Technological Development under grant +greement n°2010-248085." +fd96432675911a702b8a4ce857b7c8619498bf9f,Improved Face Detection and Alignment using Cascade Deep Convolutional Network,"Improved Face Detection and Alignment using Cascade +Deep Convolutional Network +Weilin Cong†, Sanyuan Zhao†, Hui Tian‡, and Jianbing Shen† +Beijing Key Laboratory of Intelligent Information Technology, School of +Computer Science,Beijing Institute of Technology, Beijing 100081, P.R.China +China Mobile Research Institute, Xuanwu Men West Street, Beijing" +fdb33141005ca1b208a725796732ab10a9c37d75,A connectionist computational method for face recognition,"Int.J.Appl. Math. Comput.Sci.,2016,Vol. 26,No. 2,451–465 +DOI: 10.1515/amcs-2016-0032 +A CONNECTIONIST COMPUTATIONAL METHOD FOR FACE RECOGNITION +FRANCISCO A. PUJOL a, HIGINIO MORA a,∗ +, JOS ´E A. GIRONA-SELVA a +Department of Computer Technology +University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain +e-mail: +In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. +First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial +graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of +the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining +each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and +the recognition process are performed by using a similarity function that takes into account both the geometric and texture +information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our +proposal when compared with other state-of the-art methods. +Keywords: pattern recognition, face recognition, neural networks, self-organizing maps. +Introduction +libraries, +In recent years, there has been intensive research carried" +fde0180735699ea31f6c001c71eae507848b190f,Face Detection and Sex Identification from Color Images using AdaBoost with SVM based Component Classifier,"International Journal of Computer Applications (0975 – 8887) +Volume 76– No.3, August 2013 +Face Detection and Sex Identification from Color Images +using AdaBoost with SVM based Component Classifier +Tonmoy Das +Lecturer, Department of EEE +University of Information +Technology and Sciences +(UITS) +Dhaka, Bangladesh +Manamatha Sarnaker +B.Sc. in EEE +International University of +Business Agriculture and +Technology (IUBAT) +Dhaka-1230, Bangladesh +Md. Hafizur Rahman +Lecturer, Department of EEE +International University of +Business Agriculture and" +fd615118fb290a8e3883e1f75390de8a6c68bfde,Joint Face Alignment with Non-parametric Shape Models,"Joint Face Alignment with Non-Parametric +Shape Models +Brandon M. Smith and Li Zhang +University of Wisconsin – Madison +http://www.cs.wisc.edu/~lizhang/projects/joint-align/" +fdaf65b314faee97220162980e76dbc8f32db9d6,Face recognition using both visible light image and near-infrared image and a deep network,"Accepted Manuscript +Face recognition using both visible light image and near-infrared image and a deep +network +Kai Guo, Shuai Wu, Yong Xu +Reference: +S2468-2322(17)30014-8 +0.1016/j.trit.2017.03.001 +TRIT 41 +To appear in: +CAAI Transactions on Intelligence Technology +Received Date: 30 January 2017 +Accepted Date: 28 March 2017 +Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and +near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi: +0.1016/j.trit.2017.03.001. +This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to +our customers we are providing this early version of the manuscript. The manuscript will undergo +opyediting, typesetting, and review of the resulting proof before it is published in its final form. Please +note that during the production process errors may be discovered which could affect the content, and all +legal disclaimers that apply to the journal pertain." +f2e9494d0dca9fb6b274107032781d435a508de6,Title of Dissertation : UNCONSTRAINED FACE RECOGNITION, +f2a7f9bd040aa8ea87672d38606a84c31163e171,Human Action Recognition without Human,"Human Action Recognition without Human +Yun He, Soma Shirakabe, Yutaka Satoh, Hirokatsu Kataoka +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{yun.he, shirakabe-s, yu.satou," +f20e0eefd007bc310d2a753ba526d33a8aba812c,Accurate and robust face recognition from RGB-D images with a deep learning approach,"Lee et al.: RGB-D FACE RECOGNITION WITH A DEEP LEARNING APPROACH +Accurate and robust face recognition from +RGB-D images with a deep learning +pproach +Yuancheng Lee +http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=150 +Jiancong Chen +http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=153 +Ching-Wei Tseng +http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=156 +Computer Vision Lab, +Department of +Computer Science, +National Tsing Hua +University, +Hsinchu, Taiwan +Shang-Hong Lai +http://www.cs.nthu.edu.tw/~lai/" +f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,Perceived Age Estimation from Face Images,"We are IntechOpen, +the first native scientific +publisher of Open Access books +,350 +08,000 +.7 M +Open access books available +International authors and editors +Downloads +Our authors are among the +Countries delivered to +TOP 1% +2.2% +most cited scientists +Contributors from top 500 universities +Selection of our books indexed in the Book Citation Index +in Web of Science™ Core Collection (BKCI) +Interested in publishing with us? +Contact +Numbers displayed above are based on latest data collected." +f5770dd225501ff3764f9023f19a76fad28127d4,Real Time Online Facial Expression Transfer with Single Video Camera,"Real Time Online Facial Expression Transfer +with Single Video Camera" +f558af209dd4c48e4b2f551b01065a6435c3ef33,An Enhanced Attribute Reranking Design for Web Image Search,"International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) +ISSN: 0976-1353 Volume 23 Issue 1 –JUNE 2016. +AN ENHANCED ATTRIBUTE +RERANKING DESIGN FOR WEB IMAGE +SEARCH +Sai Tejaswi Dasari#1 and G K Kishore Babu*2 +#Student,Cse, CIET, Lam,Guntur, India +* Assistant Professort,Cse, CIET, Lam,Guntur , India" +e378ce25579f3676ca50c8f6454e92a886b9e4d7,Robust Video Super-Resolution with Learned Temporal Dynamics,"Robust Video Super-Resolution with Learned Temporal Dynamics +Ding Liu1 Zhaowen Wang2 Yuchen Fan1 Xianming Liu3 +Zhangyang Wang4 Shiyu Chang5 Thomas Huang1 +University of Illinois at Urbana-Champaign 2Adobe Research +Facebook 4Texas A&M University 5IBM Research" +e393a038d520a073b9835df7a3ff104ad610c552,Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks,"Automatic temporal segment +detection via bilateral long short- +term memory recurrent neural +networks +Bo Sun +Siming Cao +Jun He +Lejun Yu +Liandong Li +Bo Sun, Siming Cao, Jun He, Lejun Yu, Liandong Li, “Automatic temporal segment +detection via bilateral long short-term memory recurrent neural networks,” J. +Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501. +Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx" +e315959d6e806c8fbfc91f072c322fb26ce0862b,An Efficient Face Recognition System Based on Sub-Window Extraction Algorithm,"An Efficient Face Recognition System Based on Sub-Window +International Journal of Soft Computing and Engineering (IJSCE) +ISSN: 2231-2307, Volume-1, Issue-6, January 2012 +Extraction Algorithm +Manish Gupta, Govind sharma" +e39a0834122e08ba28e7b411db896d0fdbbad9ba,Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo,"Maximum Likelihood Estimation of Depth Maps +Using Photometric Stereo +Adam P. Harrison, Student Member, IEEE, and Dileepan Joseph, Member, IEEE" +e30dc2abac4ecc48aa51863858f6f60c7afdf82a,Facial Signs and Psycho-physical Status Estimation for Well-being Assessment,"Facial Signs and Psycho-physical Status Estimation for Well-being +Assessment +F. Chiarugi, G. Iatraki, E. Christinaki, D. Manousos, G. Giannakakis, M. Pediaditis, +A. Pampouchidou, K. Marias and M. Tsiknakis +Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, +{chiarugi, giatraki, echrist, mandim, ggian, mped, pampouch, kmarias, +70013 Vasilika Vouton, Heraklion, Crete, Greece +Keywords: +Facial Expression, Stress, Anxiety, Feature Selection, Well-being Evaluation, FACS, FAPS, Classification." +e3917d6935586b90baae18d938295e5b089b5c62,Face localization and authentication using color and depth images,"Face Localization and Authentication +Using Color and Depth Images +Filareti Tsalakanidou, Sotiris Malassiotis, and Michael G. Strintzis, Fellow, IEEE" +e3144f39f473e238374dd4005c8b83e19764ae9e,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost +Optical-Flow Estimation in the Wild +Nima Sedaghat +University of Freiburg +Germany" +cfffae38fe34e29d47e6deccfd259788176dc213,Training bookcowgrass flower ? ? water sky doggrass water boat water chair road ? cow grass chair grass dog building ?,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012 +Matrix Completion for Weakly-supervised +Multi-label Image Classification +Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino" +cfd4004054399f3a5f536df71f9b9987f060f434,Person Recognition in Social Media Photos,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20?? +Person Recognition in Personal Photo Collections +Seong Joon Oh,Rodrigo Benenson, Mario Fritz, and Bernt Schiele, Fellow, IEEE" +cfd933f71f4a69625390819b7645598867900eab,Person Authentication Using Face And Palm Vein: A Survey Of Recognition And Fusion Techniques,"INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 03 55 +ISSN 2347-4289 +Person Authentication Using Face And Palm Vein: +A Survey Of Recognition And Fusion Techniques +Preethi M, Dhanashree Vaidya, Dr. S. Kar, Dr. A. M. Sapkal, Dr. Madhuri A. Joshi +Dept. of Electronics and Telecommunication, College of Engineering, Pune, India, +Image Processing & Machine Vision Section, Electronics & Instrumentation Services Division, BARC +Email:" +cf875336d5a196ce0981e2e2ae9602580f3f6243,"7 What 1 S It Mean for a Computer to ""have"" Emotions?","7 What 1 +Rosalind W. Picard +It Mean for a Computer to ""Have"" Emotions? +There is a lot of talk about giving machines emotions, some of +it fluff. Recently at a large technical meeting, a researcher stood up +nd talked of how a Bamey stuffed animal [the purple dinosaur for +kids) ""has emotions."" He did not define what he meant by this, but +fter repeating it several times, it became apparent that children +ttributed emotions to Barney, and that Barney had deliberately +expressive behaviors that would encourage the kids to think. Bar- +ney had emotions. But kids have attributed emotions to dolls and +stuffed animals for as long a s we know; and most of my technical +olleagues would agree that such toys have never had and still do +not have emotions. What is different now that prompts a researcher +to make such a claim? Is the computational plush an example of a +omputer that really does have emotions? +If not Barney, then what would be an example of a computa- +tional system that has emotions? I am not a philosopher, and this +paper will not be a discussion of the meaning of this question in +ny philosophical sense. However, as an engineer I am interested" +cfd8c66e71e98410f564babeb1c5fd6f77182c55,Comparative Study of Coarse Head Pose Estimation,"Comparative Study of Coarse Head Pose Estimation +Lisa M. Brown and Ying-Li Tian +IBM T.J. Watson Research Center +Hawthorne, NY 10532" +cfbb2d32586b58f5681e459afd236380acd86e28,Improving alignment of faces for recognition,"Improving Alignment of Faces for Recognition +Md. Kamrul Hasan +Christopher J. Pal +D´epartement de g´enie informatique et g´enie logiciel +´Ecole Polytechnique de Montr´eal, +D´epartement de g´enie informatique et g´enie logiciel +´Ecole Polytechnique de Montr´eal, +Qu´ebec, Canada +Qu´ebec, Canada" +cfa92e17809e8d20ebc73b4e531a1b106d02b38c,Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression,"Advances in Data Analysis and Classification manuscript No. +(will be inserted by the editor) +Parametric Classification with Soft Labels using the +Evidential EM Algorithm +Linear Discriminant Analysis vs. Logistic Regression +Benjamin Quost · Thierry Denœux · +Shoumei Li +Received: date / Accepted: date" +cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,Detection of emotions from video in non-controlled environment. (Détection des émotions à partir de vidéos dans un environnement non contrôlé),"Detection of emotions from video in non-controlled +environment +Rizwan Ahmed Khan +To cite this version: +Rizwan Ahmed Khan. Detection of emotions from video in non-controlled environment. Image +Processing. Universit´e Claude Bernard - Lyon I, 2013. English. . + +HAL Id: tel-01166539 +https://tel.archives-ouvertes.fr/tel-01166539v2 +Submitted on 23 Jun 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +cfdc632adcb799dba14af6a8339ca761725abf0a,Probabilistic Formulations of Regression with Mixed Guidance,"Probabilistic Formulations of Regression with Mixed +Guidance +Aubrey Gress, Ian Davidson University of California, Davis" +cfc30ce53bfc204b8764ebb764a029a8d0ad01f4,Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization,"Regularizing Deep Neural Networks by Noise: +Its Interpretation and Optimization +Hyeonwoo Noh +Tackgeun You +Dept. of Computer Science and Engineering, POSTECH, Korea +Jonghwan Mun +Bohyung Han" +cf805d478aeb53520c0ab4fcdc9307d093c21e52,Finding Tiny Faces in the Wild with Generative Adversarial Network,"Finding Tiny Faces in the Wild with Generative Adversarial Network +Yancheng Bai1 +Yongqiang Zhang1 +Mingli Ding2 +Bernard Ghanem1 +Visual Computing Center, King Abdullah University of Science and Technology (KAUST) +School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT) +Institute of Software, Chinese Academy of Sciences (CAS) +{zhangyongqiang, +Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of +re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned +y the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in." +cf86616b5a35d5ee777585196736dfafbb9853b5,Learning Multiscale Active Facial Patches for Expression Analysis,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Learning Multiscale Active Facial Patches for +Expression Analysis +Lin Zhong, Qingshan Liu, Peng Yang, Junzhou Huang, and Dimitris N. Metaxas, Senior Member, IEEE" +cacd51221c592012bf2d9e4894178c1c1fa307ca,Face and Expression Recognition Techniques: A Review,"ISSN: 2277-3754 +ISO 9001:2008 Certified +International Journal of Engineering and Innovative Technology (IJEIT) +Volume 4, Issue 11, May 2015 +Face and Expression Recognition Techniques: A +Review +Advanced Communication & Signal Processing Laboratory, Department of Electronics & Communication +engineering, Government College of Engineering Kannur, Kerala, India. +Rishin C. K, Aswani Pookkudi, A. Ranjith Ram" +ca0363d29e790f80f924cedaf93cb42308365b3d,Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines,"Facial Expression Recognition in Image Sequences +using Geometric Deformation Features and Support +Vector Machines +Irene Kotsiay and Ioannis Pitasy,Senior Member IEEE +yAristotle University of Thessaloniki +Department of Informatics +Box 451 +54124 Thessaloniki, Greece +email:" +cad52d74c1a21043f851ae14c924ac689e197d1f,From Ego to Nos-Vision: Detecting Social Relationships in First-Person Views,"From Ego to Nos-vision: +Detecting Social Relationships in First-Person Views +Stefano Alletto, Giuseppe Serra, Simone Calderara, Francesco Solera and Rita Cucchiara +Universit`a degli Studi di Modena e Reggio Emilia +Via Vignolese 905, 41125 Modena - Italy" +cad24ba99c7b6834faf6f5be820dd65f1a755b29,"Understanding hand-object manipulation by modeling the contextual relationship between actions, grasp types and object attributes","Understanding hand-object +manipulation by modeling the +ontextual relationship between actions, +grasp types and object attributes +Minjie Cai1, Kris M. Kitani2 and Yoichi Sato1 +Journal Title +XX(X):1–14 +(cid:13)The Author(s) 2016 +Reprints and permission: +sagepub.co.uk/journalsPermissions.nav +DOI: 10.1177/ToBeAssigned +www.sagepub.com/" +cadba72aa3e95d6dcf0acac828401ddda7ed8924,Algorithms and VLSI Architectures for Low-Power Mobile Face Verification,"THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES +POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +Algorithms and VLSI Architectures +for Low-Power Mobile Face Verification +Jean-Luc Nagel +Acceptée sur proposition du jury: +Prof. F. Pellandini, directeur de thèse +PD Dr. M. Ansorge, co-directeur de thèse +Prof. P.-A. Farine, rapporteur +Dr. C. Piguet, rapporteur +Soutenue le 2 juin 2005 +INSTITUT DE MICROTECHNIQUE +UNIVERSITÉ DE NEUCHÂTEL" +ca37eda56b9ee53610c66951ee7ca66a35d0a846,Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection,"Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection +Xiaojun Chang1,2, Yi Yang1, Alexander G. Hauptmann2, Eric P. Xing3 and Yao-Liang Yu3∗ +Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney. +Language Technologies Institute, Carnegie Mellon University. +Machine Learning Department, Carnegie Mellon University. +{cxj273, {alex, epxing," +ca606186715e84d270fc9052af8500fe23befbda,"Using subclass discriminant analysis, fuzzy integral and symlet decomposition for face recognition","Using Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for +Face Recognition +Seyed Mohammad Seyedzade +Department of Electrical Engineering, +Iran Univ. of Science and Technology, +Narmak, Tehran, Iran +Email: +Sattar Mirzakuchaki +Amir Tahmasbi +Department of Electrical Engineering, +Iran Univ. of Science and Technology, +Department of Electrical Engineering, +Iran Univ. of Science and Technology, +Narmak, Tehran, Iran +Email: +Narmak, Tehran, Iran +Email:" +e4bf70e818e507b54f7d94856fecc42cc9e0f73d,Face Recognition under Varying Blur in an Unconstrained Environment,"IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 +FACE RECOGNITION UNDER VARYING BLUR IN AN +UNCONSTRAINED ENVIRONMENT +Anubha Pearline.S1, Hemalatha.M2 +M.Tech, Information Technology,Madras Institute of Technology, TamilNadu,India, +Assistant Professor, Information Technology,Madras Institute of Technology, TamilNadu,India, email:," +e4a1b46b5c639d433d21b34b788df8d81b518729,Side Information for Face Completion: a Robust PCA Approach,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Side Information for Face Completion: a Robust +PCA Approach +Niannan Xue, Student Member, IEEE, Jiankang Deng, Student Member,IEEE, +Shiyang Cheng, Student Member,IEEE, Yannis Panagakis, Member,IEEE, +nd Stefanos Zafeiriou, Member, IEEE" +e4c81c56966a763e021938be392718686ba9135e,Bio-Inspired Architecture for Clustering into Natural and Non-Natural Facial Expressions,",100+OPEN ACCESS BOOKS103,000+INTERNATIONALAUTHORS AND EDITORS106+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Visual Cortex - Current Status and PerspectivesDownloaded from: http://www.intechopen.com/books/visual-cortex-current-status-and-perspectivesPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at" +e4e95b8bca585a15f13ef1ab4f48a884cd6ecfcc,Face Recognition with Independent Component Based Super-resolution,"Face Recognition with Independent Component Based +Super-resolution +Osman Gokhan Sezer†,a, Yucel Altunbasakb, Aytul Ercila +Faculty of Engineering and Natural Sciences, Sabanci Univ., Istanbul, Turkiye, 34956 +School of Elec. and Comp. Eng. , Georgia Inst. of Tech., Atlanta, GA, USA, 30332-0250" +e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5,Facial Expression Recognition Based on Constrained Local Models and Support Vector Machines,"Facial Expression Recognition Based on Constrained +Local Models and Support Vector Machines +Nikolay Neshov1, Ivo Draganov2, Agata Manolova3" +e4c2f8e4aace8cb851cb74478a63d9111ca550ae,Distributed One-class Learning,"DISTRIBUTED ONE-CLASS LEARNING +Ali Shahin Shamsabadi(cid:63), Hamed Haddadi†, Andrea Cavallaro(cid:63) +(cid:63)Queen Mary University of London,†Imperial College London" +e475e857b2f5574eb626e7e01be47b416deff268,Facial Emotion Recognition Using Nonparametric Weighted Feature Extraction and Fuzzy Classifier,"Facial Emotion Recognition Using Nonparametric +Weighted Feature Extraction and Fuzzy Classifier +Maryam Imani and Gholam Ali Montazer" +e4391993f5270bdbc621b8d01702f626fba36fc2,Head Pose Estimation Using Multi-scale Gaussian Derivatives,"Author manuscript, published in ""18th Scandinavian Conference on Image Analysis (2013)"" +DOI : 10.1007/978-3-642-38886-6_31" +e4d8ba577cabcb67b4e9e1260573aea708574886,Um Sistema De Recomendaç˜ao Inteligente Baseado Em V ´ Idio Aulas Para Educaç˜ao a Distˆancia an Intelligent Recommendation System Based on Video Lectures for Distance Education (revelation),"UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO +AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA +Gaspare Giuliano Elias Bruno +Tese de Doutorado apresentada ao Programa +de P´os-gradua¸c˜ao em Engenharia de Sistemas e +Computa¸c˜ao, COPPE, da Universidade Federal +do Rio de Janeiro, como parte dos requisitos +necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em +Engenharia de Sistemas e Computa¸c˜ao. +Orientadores: Edmundo Albuquerque de +Souza e Silva +Rosa Maria Meri Le˜ao +Rio de Janeiro +Janeiro de 2016" +e4abc40f79f86dbc06f5af1df314c67681dedc51,Head Detection with Depth Images in the Wild,"Head Detection with Depth Images in the Wild +Diego Ballotta, Guido Borghi, Roberto Vezzani and Rita Cucchiara +Department of Engineering ”Enzo Ferrari” +University of Modena and Reggio Emilia, Italy +Keywords: +Head Detection, Head Localization, Depth Maps, Convolutional Neural Network" +e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b,Implicit video multi-emotion tagging by exploiting multi-expression relations,"Implicit Video Multi-Emotion Tagging by Exploiting Multi-Expression +Relations +Zhilei Liu, Shangfei Wang*, Zhaoyu Wang and Qiang Ji" +e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,Design of an Efficient Real-Time Algorithm Using Reduced Feature Dimension for Recognition of Speed Limit Signs,"Hindawi Publishing Corporation +The Scientific World Journal +Volume 2013, Article ID 135614, 6 pages +http://dx.doi.org/10.1155/2013/135614 +Research Article +Design of an Efficient Real-Time Algorithm Using Reduced +Feature Dimension for Recognition of Speed Limit Signs +Hanmin Cho,1 Seungwha Han,2 and Sun-Young Hwang1 +Department of Electronic Engineering, Sogang University, Seoul 121-742, Republic of Korea +Samsung Techwin R&D Center, Security Solution Division, 701 Sampyeong-dong, Bundang-gu, Seongnam-si, +Gyeonggi 463-400, Republic of Korea +Correspondence should be addressed to Sun-Young Hwang; +Received 28 August 2013; Accepted 1 October 2013 +Academic Editors: P. Daponte, M. Nappi, and N. Nishchal +Copyright © 2013 Hanmin Cho et al. This is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +We propose a real-time algorithm for recognition of speed limit signs from a moving vehicle. Linear Discriminant Analysis (LDA) +required for classification is performed by using Discrete Cosine Transform (DCT) coefficients. To reduce feature dimension in +LDA, DCT coefficients are selected by a devised discriminant function derived from information obtained by training. Binarization +nd thinning are performed on a Region of Interest (ROI) obtained by preprocessing a detected ROI prior to DCT for further" +e496d6be415038de1636bbe8202cac9c1cea9dbe,Facial Expression Recognition in Older Adults using Deep Machine Learning,"Facial Expression Recognition in Older Adults using +Deep Machine Learning +Andrea Caroppo, Alessandro Leone and Pietro Siciliano +National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, +Italy" +e43cc682453cf3874785584fca813665878adaa7,Face Recognition using Local Derivative Pattern Face Descriptor,"www.ijecs.in +International Journal Of Engineering And Computer Science ISSN:2319-7242 +Volume 3 Issue 10 October, 2014 Page No.8830-8834 +Face Recognition using Local Derivative Pattern Face +Descriptor +Pranita R. Chavan1, Dr. Dnyandeo J. Pete2 +Department of Electronics and Telecommunication +Datta Meghe College of Engineering +Airoli, Navi Mumbai, India 1,2 +Mob: 99206746061 +Mob: 99870353142" +fec6648b4154fc7e0892c74f98898f0b51036dfe,"A Generic Face Processing Framework: Technologies, Analyses and Applications","A Generic Face Processing +Framework: Technologies, +Analyses and Applications +JANG Kim-fung +A Thesis Submitted in Partial Ful(cid:12)lment +of the Requirements for the Degree of +Master of Philosophy +Computer Science and Engineering +Supervised by +Prof. Michael R. Lyu +(cid:13)The Chinese University of Hong Kong +July 2003 +The Chinese University of Hong Kong holds the copyright of this thesis. Any +person(s) intending to use a part or whole of the materials in the thesis in +proposed publication must seek copyright release from the Dean of the +Graduate School." +fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9,Enhancing Recommender Systems for TV by Face Recognition,"Enhancing Recommender Systems for TV by Face Recognition +Toon De Pessemier, Damien Verlee and Luc Martens +iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium +{toon.depessemier, +Keywords: +Recommender System, Face Recognition, Face Detection, TV, Emotion Detection." +fe9c460d5ca625402aa4d6dd308d15a40e1010fa,Neural Architecture for Temporal Emotion Classification,"Neural Architecture for Temporal Emotion +Classification +Roland Schweiger, Pierre Bayerl, and Heiko Neumann +Universit¨at Ulm, Neuroinformatik, Germany" +fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5,Performance Evaluation of Gabor Wavelet Features for Face Representation and Recognition,"IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) +Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 47-53 +e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197 +www.iosrjournals.org +Performance Evaluation of Gabor Wavelet Features for Face +Representation and Recognition +M. E. Ashalatha1, Mallikarjun S. Holi2 +Dept. of Biomedical Engineering, Bapuji Institute of Engineering & Technology Davanagere, Karnataka,India +Dept. of Electronics and Instrumentation Engineering, University B.D.T.College of Engineering, Visvesvaraya +Technological University, Davanagere, Karnataka, India" +fea83550a21f4b41057b031ac338170bacda8805,Learning a Metric Embedding for Face Recognition using the Multibatch Method,"Learning a Metric Embedding +for Face Recognition +using the Multibatch Method +Oren Tadmor +Yonatan Wexler +Tal Rosenwein +Shai Shalev-Shwartz +Amnon Shashua +Orcam Ltd., Jerusalem, Israel" +fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139,Bayesian face recognition using 2D Gaussian-Hermite moments,"Rahman et al. EURASIP Journal on Image and Video Processing (2015) 2015:35 +DOI 10.1186/s13640-015-0090-5 +RESEARCH +Open Access +Bayesian face recognition using 2D +Gaussian-Hermite moments +S. M. Mahbubur Rahman1*, Shahana Parvin Lata2 and Tamanna Howlader2" +c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d,Modeling for part-based visual object detection based on local features,"Modeling for part-based visual object +detection based on local features +Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +der Rheinisch-Westf¨alischen Technischen Hochschule Aachen +zur Erlangung des akademischen Grades eines Doktors +der Ingenieurwissenschaften genehmigte Dissertation +vorgelegt von +Diplom-Ingenieur +Mark Asbach +us Neuss +Berichter: +Univ.-Prof. Dr.-Ing. Jens-Rainer Ohm +Univ.-Prof. Dr.-Ing. Til Aach +Tag der m¨undlichen Pr¨ufung: 28. September 2011 +Diese Dissertation ist auf den Internetseiten der +Hochschulbibliothek online verf¨ugbar." +c86e6ed734d3aa967deae00df003557b6e937d3d,Generative Adversarial Networks with Decoder-Encoder Output Noise,"Generative Adversarial Networks with +Decoder-Encoder Output Noise +Guoqiang Zhong, Member, IEEE, Wei Gao, Yongbin Liu, Youzhao Yang +onditional distribution of their neighbors. In [32], Portilla and +Simoncelli proposed a parametric texture model based on joint +statistics, which uses a decomposition method that is called +steerable pyramid decomposition to decompose the texture +of images. An example-based super-resolution algorithm [11] +was proposed in 2002, which uses a Markov network to model +the spatial relationship between the pixels of an image. A +scene completion algorithm [16] was proposed in 2007, which +pplied a semantic scene match technique. These traditional +lgorithms can be applied to particular image generation tasks, +such as texture synthesis and super-resolution. Their common +haracteristic is that they predict the images pixel by pixel +rather than generate an image as a whole, and the basic idea +of them is to make an interpolation according to the existing +part of the images. Here, the problem is, given a set of images, +an we generate totally new images with the same distribution +of the given ones?" +c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3,Locating facial landmarks with binary map cross-correlations,"LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS +J´er´emie Nicolle +K´evin Bailly +Vincent Rapp +Mohamed Chetouani +Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France +{nicolle, bailly, rapp," +c866a2afc871910e3282fd9498dce4ab20f6a332,Surveillance Face Recognition Challenge,"Noname manuscript No. +(will be inserted by the editor) +Surveillance Face Recognition Challenge +Zhiyi Cheng · Xiatian Zhu · Shaogang Gong +Received: date / Accepted: date" +c84233f854bbed17c22ba0df6048cbb1dd4d3248,Exploring Locally Rigid Discriminative Patches for Learning Relative Attributes,"Y. VERMA, C. V. JAWAHAR: EXPLORING PATCHES FOR RELATIVE ATTRIBUTES +Exploring Locally Rigid Discriminative +Patches for Learning Relative Attributes +Yashaswi Verma +http://researchweb.iiit.ac.in/~yashaswi.verma/ +C. V. Jawahar +http://www.iiit.ac.in/~jawahar/ +IIIT-Hyderabad, India +http://cvit.iiit.ac.in" +c81ee278d27423fd16c1a114dcae486687ee27ff,Search Based Face Annotation Using Weakly Labeled Facial Images,"Search Based Face Annotation Using Weakly +Labeled Facial Images +Shital Shinde1, Archana Chaugule2 +Computer Department, Savitribai Phule Pune University +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18 +Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University +DYPIET, Pimpri, Pune-18, MH, India" +c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f,A Deep Learning Perspective on the Origin of Facial Expressions,"BREUER, KIMMEL: A DEEP LEARNING PERSPECTIVE ON FACIAL EXPRESSIONS +A Deep Learning Perspective on the Origin +of Facial Expressions +Ran Breuer +Ron Kimmel +Department of Computer Science +Technion - Israel Institute of Technology +Technion City, Haifa, Israel +Figure 1: Demonstration of the filter visualization process." +c8adbe00b5661ab9b3726d01c6842c0d72c8d997,Deep Architectures for Face Attributes,"Deep Architectures for Face Attributes +Tobi Baumgartner, Jack Culpepper +Computer Vision and Machine Learning Group, Flickr, Yahoo, +{tobi," +fb4545782d9df65d484009558e1824538030bbb1,"Learning Visual Patterns: Imposing Order on Objects, Trajectories and Networks", +fbf196d83a41d57dfe577b3a54b1b7fa06666e3b,Extreme Learning Machine for Large-Scale Action Recognition,"Extreme Learning Machine for Large-Scale +Action Recognition +G¨ul Varol and Albert Ali Salah +Department of Computer Engineering, Bo˘gazi¸ci University, Turkey" +fba464cb8e3eff455fe80e8fb6d3547768efba2f,Survey Paper on Emotion Recognition,"International Journal of Engineering and Applied Sciences (IJEAS) +ISSN: 2394-3661, Volume-3, Issue-2, February 2016 +Survey Paper on Emotion Recognition +Prachi Shukla, Sandeep Patil" +fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59,Reading Hidden Emotions: Spontaneous Micro-expression Spotting and Recognition,"Reading Hidden Emotions: Spontaneous +Micro-expression Spotting and Recognition +Xiaobai Li, Student Member, IEEE, Xiaopeng Hong, Member, IEEE, Antti Moilanen, Xiaohua Huang, Student +Member, IEEE, Tomas Pfister, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE" +fb9ad920809669c1b1455cc26dbd900d8e719e61,3 D Gaze Estimation from Remote RGB-D Sensors THÈSE,"D Gaze Estimation from Remote RGB-D Sensors +THÈSE NO 6680 (2015) +PRÉSENTÉE LE 9 OCTOBRE 2015 +À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR +LABORATOIRE DE L'IDIAP +PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE +ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE +POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +Kenneth Alberto FUNES MORA +cceptée sur proposition du jury: +Prof. K. Aminian, président du jury +Dr J.-M. Odobez, directeur de thèse +Prof. L.-Ph. Morency, rapporteur +Prof. D. Witzner Hansen, rapporteur +Dr R. Boulic, rapporteur +Suisse" +ed28e8367fcb7df7e51963add9e2d85b46e2d5d6,A Novel Approach of Face Recognition Using Convolutional Neural Networks with Auto Encoder,"International J. of Engg. Research & Indu. Appls. (IJERIA). +ISSN 0974-1518, Vol.9, No. III (December 2016), pp.23-42 +A NOVEL APPROACH OF FACE RECOGNITION USING +CONVOLUTIONAL NEURAL NETWORKS WITH AUTO +ENCODER +T. SYED AKHEEL1 AND DR. S. A. K JILANI2 +Research Scholar, Dept. of Electronics & Communication Engineering, +Rayalaseema University Kurnool, Andhra Pradesh. +2 Research Supervisor, Professor, Dept. of Electronics & Communication Engineering, +Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh." +ed08ac6da6f8ead590b390b1d14e8a9b97370794,An Efficient Approach for 3D Face Recognition Using ANN Based Classifiers,"ISSN(Online): 2320-9801 +ISSN (Print): 2320-9798 +International Journal of Innovative Research in Computer +nd Communication Engineering +(An ISO 3297: 2007 Certified Organization) +Vol. 3, Issue 9, September 2015 +An Efficient Approach for 3D Face +Recognition Using ANN Based Classifiers +Vaibhav M. Pathak1, Suhas S.Satonkar2, Dr.Prakash B.Khanale3 +Assistant Professor, Dept. of C.S., Shri Shivaji College, Parbhani, M.S, India1 +Assistant Professor, Dept. of C.S., Arts, Commerce and Science College, Gangakhed, M.S, India2 +Associate Professor, Dept. of C.S., Dnyanopasak College Parbhani, M.S, India3" +edef98d2b021464576d8d28690d29f5431fd5828,Pixel-Level Alignment of Facial Images for High Accuracy Recognition Using Ensemble of Patches,"Pixel-Level Alignment of Facial Images +for High Accuracy Recognition +Using Ensemble of Patches +Hoda Mohammadzade, Amirhossein Sayyafan, Benyamin Ghojogh" +ed04e161c953d345bcf5b910991d7566f7c486f7,Mirror my emotions! Combining facial expression analysis and synthesis on a robot,"Combining facial expression analysis and synthesis on a +Mirror my emotions! +robot +Stefan Sosnowski1 and Christoph Mayer2 and Kolja K¨uhnlenz3 and Bernd Radig4" +c1d2d12ade031d57f8d6a0333cbe8a772d752e01,Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix,"Journal of Math-for-Industry, Vol.2(2010B-5), pp.147–156 +Convex optimization techniques for the ef‌f‌icient recovery of a sparsely +orrupted low-rank matrix +Silvia Gandy and Isao Yamada +Received on August 10, 2010 / Revised on August 31, 2010" +c10a15e52c85654db9c9343ae1dd892a2ac4a279,Learning the Relative Importance of Objects from Tagged Images for Retrieval and Cross-Modal Search,"Int J Comput Vis (2012) 100:134–153 +DOI 10.1007/s11263-011-0494-3 +Learning the Relative Importance of Objects from Tagged Images +for Retrieval and Cross-Modal Search +Sung Ju Hwang · Kristen Grauman +Received: 16 December 2010 / Accepted: 23 August 2011 / Published online: 18 October 2011 +© Springer Science+Business Media, LLC 2011" +c1dfabe36a4db26bf378417985a6aacb0f769735,Describing Visual Scene through EigenMaps,"Journal of Computer Vision and Image Processing, NWPJ-201109-50 +Describing Visual Scene through EigenMaps +Shizhi Chen, Student Member, IEEE, and YingLi Tian, Senior Member, IEEE" +c1ff88493721af1940df0d00bcfeefaa14f1711f,Subspace Regression: Predicting a Subspace from one Sample,"#1369 +CVPR 2010 Submission #1369. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#1369 +Subspace Regression: Predicting a Subspace from one Sample +Anonymous CVPR submission +Paper ID 1369" +c11eb653746afa8148dc9153780a4584ea529d28,Global and Local Consistent Wavelet-domain Age Synthesis,"Global and Local Consistent Wavelet-domain Age +Synthesis +Peipei Li†, Yibo Hu†, Ran He Member, IEEE and Zhenan Sun Member, IEEE" +c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee,Robust Facial Landmark Localization Based on Texture and Pose Correlated Initialization,"Robust Facial Landmark Localization Based on +Yiyun Pan, Junwei Zhou, Member, IEEE, Yongsheng Gao, Senior Member, IEEE, Shengwu Xiong" +c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,Unconstrained face identification with multi-scale block-based correlation,"Unconstrained face identification with multi-scale block-based +orrelation +Gaston, J., MIng, J., & Crookes, D. (2016). Unconstrained face identification with multi-scale block-based +orrelation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal +Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE). +Published in: +Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +Publisher rights +© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future +media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or +redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy" +c68ec931585847b37cde9f910f40b2091a662e83,A Comparative Evaluation of Dotted Raster-Stereography and Feature-Based Techniques for Automated Face Recognition,"(IJACSA) International Journal of Advanced Computer Science and Applications, +Vol. 9, No. 6, 2018 +A Comparative Evaluation of Dotted Raster- +Stereography and Feature-Based Techniques for +Automated Face Recognition +Muhammad Wasim +S. Talha Ahsan +Department of Computer Science +Department of Electrical Engineering +Usman Institute of Technology +Usman Institute of Technology +Karachi, Pakistan +Karachi, Pakistan +Lubaid Ahmed, Syed Faisal Ali, +Fauzan Saeed +Department of Computer Science +Usman Institute of Technology +Karachi, Pakistan +feature-based +system. The" +c696c9bbe27434cb6279223a79b17535cd6e88c8,Facial Expression Recognition with Pyramid Gabor Features and Complete Kernel Fisher Linear Discriminant Analysis,"International Journal of Information Technology Vol.11 No.9 2005 +Discriminant Analysis +Facial Expression Recognition with Pyramid Gabor +Features and Complete Kernel Fisher Linear +Duan-Duan Yang1, Lian-Wen Jin1, Jun-Xun Yin1, Li-Xin Zhen2, Jian-Cheng Huang2 +School of Electronic and Information Engineering, South China +University of Technology, Guangzhou, 510640, P.R.China +{ddyang, +Motorola China Research Center, Shanghai, 210000, P.R.China +{Li-Xin.Zhen," +c614450c9b1d89d5fda23a54dbf6a27a4b821ac0,Face Image Retrieval of Efficient Sparse Code words and Multiple Attribute in Binning Image,"Vol.60: e17160480, January-December 2017 +http://dx.doi.org/10.1590/1678-4324-2017160480 +ISSN 1678-4324 Online Edition +Engineering,Technology and Techniques +BRAZILIAN ARCHIVES OF +BIOLOGY AND TECHNOLOGY +A N I N T E R N A T I O N A L J O U R N A L +Face Image Retrieval of Efficient Sparse Code words and +Multiple Attribute in Binning Image +Suchitra S1*. +Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India." +c6f3399edb73cfba1248aec964630c8d54a9c534,A comparison of CNN-based face and head detectors for real-time video surveillance applications,"A Comparison of CNN-based Face and Head Detectors for +Real-Time Video Surveillance Applications +Le Thanh Nguyen-Meidine1, Eric Granger 1, Madhu Kiran1 and Louis-Antoine Blais-Morin2 +´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada +Genetec Inc., Montreal, Canada" +c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6,Feature extraction using constrained maximum variance mapping,"This article appeared in a journal published by Elsevier. The attached +opy is furnished to the author for internal non-commercial research +nd education use, including for instruction at the authors institution +nd sharing with colleagues. +Other uses, including reproduction and distribution, or selling or +licensing copies, or posting to personal, institutional or third party +websites are prohibited. +In most cases authors are permitted to post their version of the +rticle (e.g. in Word or Tex form) to their personal website or +institutional repository. Authors requiring further information +regarding Elsevier’s archiving and manuscript policies are +encouraged to visit: +http://www.elsevier.com/copyright" +c62c07de196e95eaaf614fb150a4fa4ce49588b4,SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +ec90d333588421764dff55658a73bbd3ea3016d2,Protocol for Systematic Literature Review of Face Recognition in Uncontrolled Environment,"Research Article +Protocol for Systematic Literature Review of Face +Recognition in Uncontrolled Environment +Faizan Ullah, Sabir Shah, Dilawar Shah, Abdusalam, Shujaat Ali +Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan" +ec1e03ec72186224b93b2611ff873656ed4d2f74,D Reconstruction of “ Inthe-Wild ” Faces in Images and Videos,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +D Reconstruction of “In-the-Wild” Faces in +Images and Videos +James Booth, Anastasios Roussos, Evangelos Ververas, Epameinondas Anton- +kos, Stylianos Ploumpis, Yannis Panagakis, and Stefanos Zafeiriou" +ec12f805a48004a90e0057c7b844d8119cb21b4a,Distance-Based Descriptors and Their Application in the Task of Object Detection,"Distance-Based Descriptors and Their +Application in the Task of Object Detection +Radovan Fusek(B) and Eduard Sojka +Department of Computer Science, Technical University of Ostrava, FEECS, +7. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic" +ec54000c6c0e660dd99051bdbd7aed2988e27ab8,Two in One: Joint Pose Estimation and Face Recognition with Pca,"TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1 +Francesc Tarres*, Antonio Rama* +{tarres, +Davide Onofrio+, Stefano Tubaro+ +{d.onofrio, +*Dept. Teoria del Senyal i Comunicacions - Universitat Politècnica de Catalunya, Barcelona, Spain ++Dipartimento di Elettronica e Informazione - Politecnico di Milano, Meiland, Italy" +ec0104286c96707f57df26b4f0a4f49b774c486b,An Ensemble CNN2ELM for Age Estimation,"An Ensemble CNN2ELM for Age Estimation +Mingxing Duan , Kenli Li, Senior Member, IEEE, and Keqin Li, Fellow, IEEE" +4e32fbb58154e878dd2fd4b06398f85636fd0cf4,A Hierarchical Matcher using Local Classifier Chains,"A Hierarchical Matcher using Local Classifier Chains +L. Zhang and I.A. Kakadiaris +Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204" +4ea53e76246afae94758c1528002808374b75cfa,A Review of Scholastic Examination and Models for Face Recognition and Retrieval in Video,"Lasbela, U. J.Sci. Techl., vol.IV , pp. 57-70, 2015 +Review ARTICLE +A Review of Scholastic Examination and Models for Face Recognition +ISSN 2306-8256 +nd Retrieval in Video +Varsha Sachdeva1, Junaid Baber2, Maheen Bakhtyar2, Muzamil Bokhari3, Imran Ali4 +Department of Computer Science, SBK Women’s University, Quetta, Balochistan +Department of CS and IT, University of Balochistan, Quetta +Department of Physics, University of Balochistan, Quetta +Institute of Biochemistry, University of Balochistan, Quetta" +4e97b53926d997f451139f74ec1601bbef125599,Discriminative Regularization for Generative Models,"Discriminative Regularization for Generative Models +Alex Lamb, Vincent Dumoulin and Aaron Courville +Montreal Institute for Learning Algorithms, Universit´e de Montr´eal" +4e27fec1703408d524d6b7ed805cdb6cba6ca132,SSD-Sface: Single shot multibox detector for small faces,"SSD-Sface: Single shot multibox detector for small faces +C. Thuis" +4e6c9be0b646d60390fe3f72ce5aeb0136222a10,Long-Term Temporal Convolutions for Action Recognition,"Long-term Temporal Convolutions +for Action Recognition +G¨ul Varol, Ivan Laptev, and Cordelia Schmid, Fellow, IEEE" +4ef0a6817a7736c5641dc52cbc62737e2e063420,Study of Face Recognition Techniques,"International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970) +Volume-4 Number-4 Issue-17 December-2014 +Study of Face Recognition Techniques +Sangeeta Kaushik1*, R. B. Dubey2 and Abhimanyu Madan3 +Received: 10-November-2014; Revised: 18-December-2014; Accepted: 23-December-2014 +©2014 ACCENTS" +4e0e49c280acbff8ae394b2443fcff1afb9bdce6,Automatic Learning of Gait Signatures for People Identification,"Automatic learning of gait signatures for people identification +F.M. Castro +Univ. of Malaga +fcastrouma.es +M.J. Mar´ın-Jim´enez +Univ. of Cordoba +mjmarinuco.es +N. Guil +Univ. of Malaga +nguiluma.es +N. P´erez de la Blanca +Univ. of Granada +nicolasugr.es" +20a432a065a06f088d96965f43d0055675f0a6c1,The Effects of Regularization on Learning Facial Expressions with Convolutional Neural Networks,"In: Proc. of the 25th Int. Conference on Artificial Neural Networks (ICANN) +Part II, LNCS 9887, pp. 80-87, Barcelona, Spain, September 2016 +The final publication is available at Springer via +http://dx.doi.org//10.1007/978-3-319-44781-0_10 +The Effects of Regularization on Learning Facial +Expressions with Convolutional Neural Networks +Tobias Hinz, Pablo Barros, and Stefan Wermter +University of Hamburg Department of Computer Science, +Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany +http://www.informatik.uni-hamburg.de/WTM" +20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba,Sparse-MVRVMs Tree for Fast and Accurate Head Pose Estimation in the Wild,"Sparse-MVRVMs Tree for Fast and Accurate +Head Pose Estimation in the Wild +Mohamed Selim, Alain Pagani, and Didier Stricker +Augmented Vision Research Group, +German Research Center for Artificial Intelligence (DFKI), +Tripstaddterstr. 122, 67663 Kaiserslautern, Germany +Technical University of Kaiserslautern +http://www.av.dfki.de" +2004afb2276a169cdb1f33b2610c5218a1e47332,Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition,"Hindawi +Computational Intelligence and Neuroscience +Volume 2018, Article ID 3803627, 11 pages +https://doi.org/10.1155/2018/3803627 +Research Article +Deep Convolutional Neural Network Used in Single Sample per +Person Face Recognition +Junying Zeng , Xiaoxiao Zhao , Junying Gan , Chaoyun Mai +nd Fan Wang +, Yikui Zhai, +School of Information Engineering, Wuyi University, Jiangmen 529020, China +Correspondence should be addressed to Xiaoxiao Zhao; +Received 27 November 2017; Revised 23 May 2018; Accepted 26 July 2018; Published 23 August 2018 +Academic Editor: Jos´e Alfredo Hern´andez-P´erez +Copyright © 2018 Junying Zeng et al. 0is is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be +trained, it makes facial variation such as pose, illumination, and disguise dif‌f‌icult to be predicted. To overcome this problem, this paper +proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample +method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and" +20e504782951e0c2979d9aec88c76334f7505393,Robust LSTM-Autoencoders for Face De-Occlusion in the Wild,"Robust LSTM-Autoencoders for Face De-Occlusion +in the Wild +Fang Zhao, Jiashi Feng, Jian Zhao, Wenhan Yang, Shuicheng Yan" +209324c152fa8fab9f3553ccb62b693b5b10fb4d,Visual Genome Crowdsourced Visual Knowledge Representations a Thesis Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Masters of Science,"CROWDSOURCED VISUAL KNOWLEDGE REPRESENTATIONS +VISUAL GENOME +A THESIS +SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +AND THE COMMITTEE ON GRADUATE STUDIES +OF STANFORD UNIVERSITY +IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +FOR THE DEGREE OF +MASTERS OF SCIENCE +Ranjay Krishna +March 2016" +20ade100a320cc761c23971d2734388bfe79f7c5,Subspace Clustering via Good Neighbors,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Subspace Clustering via Good Neighbors +Jufeng Yang, Jie Liang, Kai Wang, Ming-Hsuan Yang" +202d8d93b7b747cdbd6e24e5a919640f8d16298a,Face Classification via Sparse Approximation,"Face Classification via Sparse Approximation +Elena Battini S˝onmez1, Bulent Sankur2 and Songul Albayrak3 +Computer Science Department, Bilgi University, Dolapdere, Istanbul, TR +Electric and Electronic Engineering Department, Bo¯gazici University, Istanbul, TR +Computer Engineering Department, Yıldız Teknik University, Istanbul, TR" +205b34b6035aa7b23d89f1aed2850b1d3780de35,Log-domain polynomial filters for illumination-robust face recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +Shenzhen Key Lab. of Information Sci&Tech, +♯Nagaoka University of Technology, Japan +RECOGNITION +. INTRODUCTION" +2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015 +Co-Localization of Audio Sources in Images Using +Binaural Features and Locally-Linear Regression +Antoine Deleforge∗ Radu Horaud∗ Yoav Y. Schechner‡ Laurent Girin∗† +INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +Univ. Grenoble Alpes, GIPSA-Lab, France +Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel" +20111924fbf616a13d37823cd8712a9c6b458cd6,Linear Regression Line based Partial Face Recognition,"International Journal of Computer Applications (0975 – 8887) +Volume 130 – No.11, November2015 +Linear Regression Line based Partial Face Recognition +Naveena M. +Department of Studies in +Computer Science, +Manasagagothri, +Mysore. +G. Hemantha Kumar +Department of Studies in +Computer Science, +Manasagagothri, +Mysore. +P. Nagabhushan +Department of Studies in +Computer Science, +Manasagagothri, +Mysore. +images. In" +20532b1f80b509f2332b6cfc0126c0f80f438f10,A Deep Matrix Factorization Method for Learning Attribute Representations,"A deep matrix factorization method for learning +ttribute representations +George Trigeorgis, Konstantinos Bousmalis, Student Member, IEEE, Stefanos Zafeiriou, Member, IEEE +Bj¨orn W. Schuller, Senior member, IEEE" +205af28b4fcd6b569d0241bb6b255edb325965a4,Facial expression recognition and tracking for intelligent human-robot interaction,"Intel Serv Robotics (2008) 1:143–157 +DOI 10.1007/s11370-007-0014-z +SPECIAL ISSUE +Facial expression recognition and tracking for intelligent human-robot +interaction +Y. Yang · S. S. Ge · T. H. Lee · C. Wang +Received: 27 June 2007 / Accepted: 6 December 2007 / Published online: 23 January 2008 +© Springer-Verlag 2008" +20a0b23741824a17c577376fdd0cf40101af5880,Learning to Track for Spatio-Temporal Action Localization,"Learning to track for spatio-temporal action localization +Philippe Weinzaepfela +Zaid Harchaouia,b +NYU +Inria∗ +Cordelia Schmida" +18c72175ddbb7d5956d180b65a96005c100f6014,From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, +JUNE 2001 +From Few to Many: Illumination Cone +Models for Face Recognition under +Variable Lighting and Pose +Athinodoros S. Georghiades, Student Member, IEEE, Peter N. Belhumeur, Member, IEEE, and +David J. Kriegman, Senior Member, IEEE" +18636347b8741d321980e8f91a44ee054b051574,Facial marks: Soft biometric for face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE +ICIP 2009" +181045164df86c72923906aed93d7f2f987bce6c,Rheinisch-westfälische Technische Hochschule Aachen,"RHEINISCH-WESTFÄLISCHE TECHNISCHE +HOCHSCHULE AACHEN +KNOWLEDGE-BASED SYSTEMS GROUP +PROF. GERHARD LAKEMEYER, PH. D. +Detection and Recognition of Human +Faces using Random Forests for a +Mobile Robot +MASTER OF SCIENCE THESIS +VAISHAK BELLE +MATRICULATION NUMBER: 26 86 51 +SUPERVISOR: +SECOND SUPERVISOR: +PROF. GERHARD LAKEMEYER, PH. D. +PROF. ENRICO BLANZIERI, PH. D. +ADVISERS: +STEFAN SCHIFFER, THOMAS DESELAERS" +18d5b0d421332c9321920b07e0e8ac4a240e5f1f,Collaborative Representation Classification Ensemble for Face Recognition,"Collaborative Representation Classification +Ensemble for Face Recognition +Xiao Chao Qu, Suah Kim, Run Cui and Hyoung Joong Kim" +18d51a366ce2b2068e061721f43cb798177b4bb7,Looking into your eyes: observed pupil size influences approach-avoidance responses.,"Cognition and Emotion +ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20 +Looking into your eyes: observed pupil size +influences approach-avoidance responses +Marco Brambilla, Marco Biella & Mariska E. Kret +To cite this article: Marco Brambilla, Marco Biella & Mariska E. Kret (2018): Looking into your +eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI: +0.1080/02699931.2018.1472554 +To link to this article: https://doi.org/10.1080/02699931.2018.1472554 +View supplementary material +Published online: 11 May 2018. +Submit your article to this journal +View related articles +View Crossmark data +Full Terms & Conditions of access and use can be found at +http://www.tandfonline.com/action/journalInformation?journalCode=pcem20" +1885acea0d24e7b953485f78ec57b2f04e946eaf,Combining Local and Global Features for 3D Face Tracking,"Combining Local and Global Features for 3D Face Tracking +Pengfei Xiong, Guoqing Li, Yuhang Sun +Megvii (face++) Research +{xiongpengfei, liguoqing," +18a849b1f336e3c3b7c0ee311c9ccde582d7214f,"Efficiently Scaling up Crowdsourced Video Annotation A Set of Best Practices for High Quality, Economical Video Labeling","Int J Comput Vis +DOI 10.1007/s11263-012-0564-1 +Efficiently Scaling up Crowdsourced Video Annotation +A Set of Best Practices for High Quality, Economical Video Labeling +Carl Vondrick · Donald Patterson · Deva Ramanan +Received: 31 October 2011 / Accepted: 20 August 2012 +© Springer Science+Business Media, LLC 2012" +18cd79f3c93b74d856bff6da92bfc87be1109f80,A N a Pplication to H Uman F Ace P Hoto - S Ketch S Ynthesis and R Ecognition,"International Journal of Advances in Engineering & Technology, May 2012. +©IJAET ISSN: 2231-1963 +AN APPLICATION TO HUMAN FACE PHOTO-SKETCH +SYNTHESIS AND RECOGNITION +Amit R. Sharma and 2Prakash. R. Devale +Student and 2Professor & Head, +Department of Information Tech., Bharti Vidyapeeth Deemed University, Pune, India" +1886b6d9c303135c5fbdc33e5f401e7fc4da6da4,Knowledge Guided Disambiguation for Large-Scale Scene Classification With Multi-Resolution CNNs,"Knowledge Guided Disambiguation for Large-Scale +Scene Classification with Multi-Resolution CNNs +Limin Wang, Sheng Guo, Weilin Huang, Member, IEEE, Yuanjun Xiong, and Yu Qiao, Senior Member, IEEE" +1888bf50fd140767352158c0ad5748b501563833,A Guided Tour of Face Processing,"PA R T 1 +THE BASICS" +185360fe1d024a3313042805ee201a75eac50131,Person De-Identification in Videos,"Person De-Identification in Videos +Prachi Agrawal and P. J. Narayanan" +1824b1ccace464ba275ccc86619feaa89018c0ad,One millisecond face alignment with an ensemble of regression trees,"One Millisecond Face Alignment with an Ensemble of Regression Trees +Vahid Kazemi and Josephine Sullivan +KTH, Royal Institute of Technology +Computer Vision and Active Perception Lab +Teknikringen 14, Stockholm, Sweden" +27a0a7837f9114143717fc63294a6500565294c2,Face Recognition in Unconstrained Environments: A Comparative Study,"Face Recognition in Unconstrained Environments: A +Comparative Study +Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa +To cite this version: +Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa. Face Recognition in Unconstrained +Environments: A Comparative Study: . Workshop on Faces in ’Real-Life’ Images: Detection, +Alignment, and Recognition, Oct 2008, Marseille, France. 2008. +HAL Id: inria-00326730 +https://hal.inria.fr/inria-00326730 +Submitted on 5 Oct 2008 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +276dbb667a66c23545534caa80be483222db7769,An Introduction to Image-based 3D Surface Reconstruction and a Survey of Photometric Stereo Methods,"D Res. 2, 03(2011)4 +0.1007/3DRes.03(2011)4 +DR REVIEW w +An Introduction to Image-based 3D Surface Reconstruction and a +Survey of Photometric Stereo Methods +Steffen Herbort • Christian Wöhler +introduction +image-based 3D +techniques. Then we describe +Received: 21Feburary 2011 / Revised: 20 March 2011 / Accepted: 11 May 2011 +© 3D Research Center, Kwangwoon University and Springer 2011" +270733d986a1eb72efda847b4b55bc6ba9686df4,Recognizing Facial Expressions Using Model-Based Image Interpretation,"We are IntechOpen, +the first native scientific +publisher of Open Access books +,350 +08,000 +.7 M +Open access books available +International authors and editors +Downloads +Our authors are among the +Countries delivered to +TOP 1% +2.2% +most cited scientists +Contributors from top 500 universities +Selection of our books indexed in the Book Citation Index +in Web of Science™ Core Collection (BKCI) +Interested in publishing with us? +Contact +Numbers displayed above are based on latest data collected." +27169761aeab311a428a9dd964c7e34950a62a6b,Face Recognition Using 3D Head Scan Data Based on Procrustes Distance,"International Journal of the Physical Sciences Vol. 5(13), pp. 2020 -2029, 18 October, 2010 +Available online at http://www.academicjournals.org/IJPS +ISSN 1992 - 1950 ©2010 Academic Journals +Full Length Research Paper +Face recognition using 3D head scan data based on +Ahmed Mostayed1, Sikyung Kim1, Mohammad Mynuddin Gani Mazumder1* and Se Jin Park2 +Procrustes distance +Department of Electrical Engineering, Kongju National University, South Korea. +Korean Research Institute of Standards and Science (KRISS), Korea. +Accepted 6 July, 2010 +Recently, face recognition has attracted significant attention from the researchers and scientists in +various fields of research, such as biomedical informatics, pattern recognition, vision, etc due its +pplications in commercially available systems, defense and security purpose. In this paper a practical +method for face reorganization utilizing head cross section data based on Procrustes analysis is +proposed. This proposed method relies on shape signatures of the contours extracted from face data. +The shape signatures are created by calculating the centroid distance of the boundary points, which is +translation and rotation invariant signature. The shape signatures for a selected region of interest +(ROI) are used as feature vectors and authentication is done using them. After extracting feature +vectors a comparison analysis is performed utilizing Procrustes distance to differentiate their face +pattern from each other. The proposed scheme attains an equal error rate (EER) of 4.563% for the 400" +27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5,Effect of Different Occlusion on Facial Expressions Recognition,"Ankita Vyas Int. Journal of Engineering Research and Applications www.ijera.com +ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.40-44 +RESEARCH ARTICLE +OPEN ACCESS +Effect of Different Occlusion on Facial Expressions Recognition +Ankita Vyas*, Ramchand Hablani** +*(Department of Computer Science, RGPV University, Indore) +** (Department of Computer Science, RGPV University, Indore)" +2770b095613d4395045942dc60e6c560e882f887,GridFace: Face Rectification via Learning Local Homography Transformations,"GridFace: Face Rectification via Learning Local +Homography Transformations +Erjin Zhou, Zhimin Cao, and Jian Sun +Face++, Megvii Inc." +27cccf992f54966feb2ab4831fab628334c742d8,"Facial Expression Recognition by Statistical, Spatial Features and using Decision Tree","International Journal of Computer Applications (0975 – 8887) +Volume 64– No.18, February 2013 +Facial Expression Recognition by Statistical, Spatial +Features and using Decision Tree +Nazil Perveen +Assistant Professor +CSIT Department +GGV BIlaspur, Chhattisgarh +India +Darshan Kumar +Assistant Professor +Electronics (ECE) Department +JECRC Jaipur, Rajasthan India +IshanBhardwaj +Student of Ph.D. +Electrical Department +NIT Raipur, Chhattisgarh India" +27f8b01e628f20ebfcb58d14ea40573d351bbaad,Events based Multimedia Indexing and Retrieval,"DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE +ICT International Doctoral School +Events based Multimedia Indexing +nd Retrieval +Kashif Ahmad +SUBMITTED TO THE DEPARTMENT OF +INFORMATION ENGINEERING AND COMPUTER SCIENCE (DISI) +IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE +DOCTOR OF PHILOSOPHY +Advisor: +Examiners: Prof. Marco Carli, Universit`a degli Studi di Roma Tre, Italy +Prof. Nicola Conci, Universit`a degli Studi di Trento, Italy +Prof. Pietro Zanuttigh, Universit`a degli Studi di Padova, Italy +Prof. Giulia Boato, Universit`a degli Studi di Trento, Italy +December 2017" +27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba,Comparison between k-nn and svm method for speech emotion recognition,"Comparison between k-nn and svm method +for speech emotion recognition +Muzaffar Khan, Tirupati Goskula, Mohmmed Nasiruddin ,Ruhina Quazi +Anjuman College of Engineering & Technology ,Sadar, Nagpur, India" +27ee8482c376ef282d5eb2e673ab042f5ded99d7,Scale Normalization for the Distance Maps AAM,"Scale Normalization for the Distance Maps AAM. +Denis GIRI, Maxime ROSENWALD, Benjamin VILLENEUVE, Sylvain LE GALLOU and Renaud S ´EGUIER +Email: {denis.giri, maxime.rosenwald, benjamin.villeneuve, sylvain.legallou, +Avenue de la boulaie, BP 81127, +5 511 Cesson-S´evign´e, France +Sup´elec, IETR-SCEE Team" +4b4106614c1d553365bad75d7866bff0de6056ed,Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions,"Unconstrained Facial Images: Database for Face +Recognition under Real-world Conditions⋆ +Ladislav Lenc1,2 and Pavel Kr´al1,2 +Dept. of Computer Science & Engineering +University of West Bohemia +Plzeˇn, Czech Republic +NTIS - New Technologies for the Information Society +University of West Bohemia +Plzeˇn, Czech Republic" +4b89cf7197922ee9418ae93896586c990e0d2867,Unsupervised Discovery of Action Classes,"LATEX Author Guidelines for CVPR Proceedings +First Author +Institution1 +Institution1 address" +4b04247c7f22410681b6aab053d9655cf7f3f888,Robust Face Recognition by Constrained Part-based Alignment,"Robust Face Recognition by Constrained Part-based +Alignment +Yuting Zhang, Kui Jia, Yueming Wang, Gang Pan, Tsung-Han Chan, Yi Ma" +4b60e45b6803e2e155f25a2270a28be9f8bec130,Attribute based object identification,"Attribute Based Object Identification +Yuyin Sun, Liefeng Bo and Dieter Fox" +4b48e912a17c79ac95d6a60afed8238c9ab9e553,Minimum Margin Loss for Deep Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Minimum Margin Loss for Deep Face Recognition +Xin Wei, Student Member, IEEE, Hui Wang, Member, IEEE, Bryan Scotney, and Huan Wan" +4b5eeea5dd8bd69331bd4bd4c66098b125888dea,Human Activity Recognition Using Conditional Random Fields and Privileged Information,"Human Activity Recognition Using Conditional +Random Fields and Privileged Information +DOCTORAL THESIS +submitted to +the designated by the General Assembly Composition of the +Department of Computer Science & Engineering Inquiry +Committee +Michalis Vrigkas +in partial fulfillment of the Requirements for the Degree of +DOCTOR OF PHILOSOPHY +February 2016" +4be03fd3a76b07125cd39777a6875ee59d9889bd,Content-based analysis for accessing audiovisual archives: Alternatives for concept-based indexing and search,"CONTENT-BASED ANALYSIS FOR ACCESSING AUDIOVISUAL ARCHIVES: +ALTERNATIVES FOR CONCEPT-BASED INDEXING AND SEARCH +Tinne Tuytelaars +ESAT/PSI - IBBT +KU Leuven, Belgium" +11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5,Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem,"Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem +Rui Caseiro1, Pedro Martins1, João F. Henriques1, Fátima Silva Leite1,2, and Jorge Batista1 +Institute of Systems and Robotics - University of Coimbra, Portugal +Department of Mathematics - University of Coimbra, Portugal , +{ruicaseiro, pedromartins, henriques," +11691f1e7c9dbcbd6dfd256ba7ac710581552baa,SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos,"SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos +Silvio Giancola, Mohieddine Amine, Tarek Dghaily, Bernard Ghanem +King Abdullah University of Science and Technology (KAUST), Saudi Arabia" +1149c6ac37ae2310fe6be1feb6e7e18336552d95,"Classification of Face Images for Gender, Age, Facial Expression, and Identity","Proc. Int. Conf. on Artificial Neural Networks (ICANN’05), Warsaw, LNCS 3696, vol. I, pp. 569-574, Springer Verlag 2005 +Classification of Face Images for Gender, Age, +Facial Expression, and Identity1 +Torsten Wilhelm, Hans-Joachim B¨ohme, and Horst-Michael Gross +Department of Neuroinformatics and Cognitive Robotics +Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany" +11f17191bf74c80ad0b16b9f404df6d03f7c8814,Recognition of Visually Perceived Compositional Human Actions by Multiple Spatio-Temporal Scales Recurrent Neural Networks,"Recognition of Visually Perceived Compositional +Human Actions by Multiple Spatio-Temporal Scales +Recurrent Neural Networks +Haanvid Lee, Minju Jung, and Jun Tani" +1198572784788a6d2c44c149886d4e42858d49e4,Learning Discriminative Features using Encoder-Decoder type Deep Neural Nets,"Learning Discriminative Features using Encoder/Decoder type Deep +Neural Nets +Vishwajeet Singh1, Killamsetti Ravi Kumar2, K Eswaran3 +ALPES, Bolarum, Hyderabad 500010, +ALPES, Bolarum, Hyderabad 500010, +SNIST, Ghatkesar, Hyderabad 501301," +11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8,Tied Factor Analysis for Face Recognition across Large Pose Differences,"JUNE 2008 +Tied Factor Analysis for Face Recognition +cross Large Pose Differences +Simon J.D. Prince, Member, IEEE, James H. Elder, Member, IEEE, +Jonathan Warrell, Member, IEEE, and Fatima M. Felisberti" +1134a6be0f469ff2c8caab266bbdacf482f32179,Facial Expression Identification Using Four-bit Co- Occurrence Matrixfeatures and K-nn Classifier,"IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 +FACIAL EXPRESSION IDENTIFICATION USING FOUR-BIT CO- +OCCURRENCE MATRIXFEATURES AND K-NN CLASSIFIER +Bonagiri C S K Sunil Kumar1, V Bala Shankar2, Pullela S V V S R Kumar3 +,2,3 Department of Computer Science & Engineering, Aditya College of Engineering, Surampalem, East Godavari +District, Andhra Pradesh, India" +111a9645ad0108ad472b2f3b243ed3d942e7ff16,Facial Expression Classification Using Combined Neural Networks,"Facial Expression Classification Using +Combined Neural Networks +Rafael V. Santos, Marley M.B.R. Vellasco, Raul Q. Feitosa, Ricardo Tanscheit +DEE/PUC-Rio, Marquês de São Vicente 225, Rio de Janeiro – RJ - Brazil" +111d0b588f3abbbea85d50a28c0506f74161e091,Facial Expression Recognition from Visual Information using Curvelet Transform,"International Journal of Computer Applications (0975 – 8887) +Volume 134 – No.10, January 2016 +Facial Expression Recognition from Visual Information +using Curvelet Transform +Pratiksha Singh +Surabhi Group of Institution Bhopal +systems. Further applications" +7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b,Face Appearance Factorization for Expression Analysis and Synthesis,"FACE APPEARANCE FACTORIZATION FOR EXPRESSION ANALYSIS AND SYNTHESIS +Bouchra Abboud, Franck Davoine +Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne. +BP 20529, 60205 COMPIEGNE Cedex, FRANCE. +E-mail:" +7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,Labeled Faces in the Wild: A Survey,"Labeled Faces in the Wild: A Survey +Erik Learned-Miller, Gary Huang, Aruni RoyChowdhury, Haoxiang Li, Gang Hua" +7d73adcee255469aadc5e926066f71c93f51a1a5,Face alignment by deep convolutional network with adaptive learning rate,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016" +7d9fe410f24142d2057695ee1d6015fb1d347d4a,Facial Expression Feature Extraction Based on FastLBP,"Facial Expression Feature Extraction Based on +FastLBP +Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China +Ya Zheng +Email: +Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China +Email: +Xiuxin Chen, Chongchong Yu and Cheng Gao +facial expression" +7dffe7498c67e9451db2d04bb8408f376ae86992,LEAR-INRIA submission for the THUMOS workshop,"LEAR-INRIA submission for the THUMOS workshop +Heng Wang and Cordelia Schmid +LEAR, INRIA, France" +7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2,Linear Regression for Face Recognition,"Linear Regression for Face Recognition +Imran Naseem, +Roberto Togneri, Senior Member, IEEE, and +Mohammed Bennamoun" +29ce6b54a87432dc8371f3761a9568eb3c5593b0,Age Sensitivity of Face Recognition Algorithms,"Kent Academic Repository +Full text document (pdf) +Citation for published version +Yassin, DK H. PHM and Hoque, Sanaul and Deravi, Farzin (2013) Age Sensitivity of Face Recognition +pp. 12-15. +https://doi.org/10.1109/EST.2013.8 +Link to record in KAR +http://kar.kent.ac.uk/43222/ +Document Version +Author's Accepted Manuscript +Copyright & reuse +Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all +ontent is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions +for further reuse of content should be sought from the publisher, author or other copyright holder. +Versions of research +The version in the Kent Academic Repository may differ from the final published version. +Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the +published version of record. +Enquiries +For any further enquiries regarding the licence status of this document, please contact:" +292eba47ef77495d2613373642b8372d03f7062b,Deep Secure Encoding: An Application to Face Recognition,"Deep Secure Encoding: An Application to Face Recognition +Rohit Pandey +Yingbo Zhou +Venu Govindaraju" +29e96ec163cb12cd5bd33bdf3d32181c136abaf9,Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing,"Report No. UIUCDCS-R-2006-2748 +UILU-ENG-2006-1788 +Regularized Locality Preserving Projections with Two-Dimensional +Discretized Laplacian Smoothing +Deng Cai, Xiaofei He, and Jiawei Han +July 2006" +29e793271370c1f9f5ac03d7b1e70d1efa10577c,Face Recognition Based on Multi-classifierWeighted Optimization and Sparse Representation,"International Journal of Signal Processing, Image Processing and Pattern Recognition +Vol.6, No.5 (2013), pp.423-436 +http://dx.doi.org/10.14257/ijsip.2013.6.5.37 +Face Recognition Based on Multi-classifierWeighted Optimization +nd Sparse Representation +Deng Nan1, Zhengguang Xu2 and ShengQin Bian3 +,2,3Institute of control science and engineering, +University of Science and Technology Beijing +,2,330 Xueyuan Road, Haidian District, Beijing 100083 P. R.China" +29c7dfbbba7a74e9aafb6a6919629b0a7f576530,Automatic Facial Expression Analysis and Emotional Classification,"Automatic Facial Expression Analysis and Emotional +Classification +Robert Fischer +Submitted to the Department of Math and Natural Sciences +in partial fulfillment of the requirements for the degree of a +Diplomingenieur der Optotechnik und Bildverarbeitung (FH) +(Diplom Engineer of Photonics and Image Processing) +t the +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD) +Accomplished and written at the +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) +October 2004 +Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Department of Math and Natural Sciences +October 30, 2004 +Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Dr. Harald Scharfenberg +Professor at FHD +Thesis Supervisor +Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ." +292c6b743ff50757b8230395c4a001f210283a34,Fast violence detection in video,"Fast Violence Detection in Video +O. Deniz1, I. Serrano1, G. Bueno1 and T-K. Kim2 +VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain +Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London SW7 2AZ, UK. +{oscar.deniz, ismael.serrano, +Keywords: +ction recognition, violence detection, fight detection" +294d1fa4e1315e1cf7cc50be2370d24cc6363a41,A modular non-negative matrix factorization for parts-based object recognition using subspace representation,"008 SPIE Digital Library -- Subscriber Archive Copy +Processing: Machine Vision Applications, edited by Kurt S. Niel, David Fofi, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6813, 68130C, © 2008 SPIE-IS&T · 0277-786X/08/$18SPIE-IS&T/ Vol. 6813 68130C-1" +29d414bfde0dfb1478b2bdf67617597dd2d57fc6,Perfect histogram matching PCA for face recognition,"Multidim Syst Sign Process (2010) 21:213–229 +DOI 10.1007/s11045-009-0099-y +Perfect histogram matching PCA for face recognition +Ana-Maria Sevcenco · Wu-Sheng Lu +Received: 10 August 2009 / Revised: 21 November 2009 / Accepted: 29 December 2009 / +Published online: 14 January 2010 +© Springer Science+Business Media, LLC 2010" +290136947fd44879d914085ee51d8a4f433765fa,On a taxonomy of facial features,"On a Taxonomy of Facial Features +Brendan Klare and Anil K. Jain" +2957715e96a18dbb5ed5c36b92050ec375214aa6,InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity,"Improving Face Attribute Detection with Race and Gender Diversity +InclusiveFaceNet: +Hee Jung Ryu 1 Hartwig Adam * 1 Margaret Mitchell * 1" +2965d092ed72822432c547830fa557794ae7e27b,Improving Representation and Classification of Image and Video Data for Surveillance Applications,"Improving Representation and Classification of Image and +Video Data for Surveillance Applications +Andres Sanin +BSc(Biol), MSc(Biol), MSc(CompSc) +A thesis submitted for the degree of Doctor of Philosophy at +The University of Queensland in 2012 +School of Information Technology and Electrical Engineering" +2921719b57544cfe5d0a1614d5ae81710ba804fa,Face Recognition Enhancement Based on Image File Formats and Wavelet De - noising,"Face Recognition Enhancement Based on Image +File Formats and Wavelet De-noising +Isra’a Abdul-Ameer Abdul-Jabbar, Jieqing Tan, and Zhengfeng Hou" +29a013b2faace976f2c532533bd6ab4178ccd348,Hierarchical Manifold Learning With Applications to Supervised Classification for High-Resolution Remotely Sensed Images,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Hierarchical Manifold Learning With Applications +to Supervised Classification for High-Resolution +Remotely Sensed Images +Hong-Bing Huang, Hong Huo, and Tao Fang" +29756b6b16d7b06ea211f21cdaeacad94533e8b4,Thresholding Approach based on GPU for Facial Expression Recognition,"Thresholding Approach based on GPU for Facial +Expression Recognition +Jesús García-Ramírez1, J. Arturo Olvera-López1, Ivan Olmos-Pineda1, Georgina +Flores-Becerra2, Adolfo Aguilar-Rico2 +Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México +Instituto Tecnológico de Puebla, Puebla, México" +293193d24d5c4d2975e836034bbb2329b71c4fe7,Building a Corpus of Facial Expressions for Learning-Centered Emotions,"Building a Corpus of Facial Expressions +for Learning-Centered Emotions +María Lucía Barrón-Estrada, Ramón Zatarain-Cabada, +Bianca Giovanna Aispuro-Medina, Elvia Minerva Valencia-Rodríguez, +Ana Cecilia Lara-Barrera +Instituto Tecnológico de Culiacán, Culiacán, Sinaloa, +Mexico +{lbarron, rzatarain, m06170904, m95170906, m15171452}" +294bd7eb5dc24052237669cdd7b4675144e22306,Automatic Face Annotation,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 +Automatic Face Annotation +Ashna Shajahan +M.Tech Student, Dept. of Computer Science & Engineering, Mount Zion College of Engineering, Pathanamthitta, Kerala, India" +2988f24908e912259d7a34c84b0edaf7ea50e2b3,A Model of Brightness Variations Due to Illumination Changes and Non-rigid Motion Using Spherical Harmonics,"A Model of Brightness Variations Due to +Illumination Changes and Non-rigid Motion +Using Spherical Harmonics +Jos´e M. Buenaposada +Alessio Del Bue +Dep. Ciencias de la Computaci´on, +U. Rey Juan Carlos, Spain +http://www.dia.fi.upm.es/~pcr +Inst. for Systems and Robotics +Inst. Superior T´ecnico, Portugal +http://www.isr.ist.utl.pt/~adb +Enrique Mu˜noz +Facultad de Inform´atica, +U. Complutense de Madrid, Spain +Luis Baumela +Dep. de Inteligencia Artificial, +U. Polit´ecnica de Madrid, Spain +http://www.dia.fi.upm.es/~pcr +http://www.dia.fi.upm.es/~pcr" +7cee802e083c5e1731ee50e731f23c9b12da7d36,2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks,"B3C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional +Networks +Vandit Gajjar +Department of Electronics and Communication Engineering and +Computer Vision Group, L. D. College of Engineering, Ahmedabad, India" +7c47da191f935811f269f9ba3c59556c48282e80,Robust eye centers localization with zero-crossing encoded image projections,"Robust Eye Centers Localization +with Zero–Crossing Encoded Image Projections +Laura Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Corneliu Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Constantin Vertan +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313" +7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f,News Image Annotation on a Large Parallel Text-image Corpus,"News image annotation on a large parallel text-image corpus +Pierre Tirilly, Vincent Claveau, Patrick Gros +Universit´e de Rennes 1/IRISA, CNRS/IRISA, INRIA Rennes-Bretagne Atlantique +Campus de Beaulieu +5042 Rennes Cedex, France" +7c0a6824b556696ad7bdc6623d742687655852db,MPCA+MDA: A novel approach for face recognition based on tensor objects,"8th Telecommunications forum TELFOR 2010 +Serbia, Belgrade, November 23-25, 2010. +MPCA+DATER: A Novel Approach for Face +Recognition Based on Tensor Objects +Ali. A. Shams Baboli, Member, IEEE, G. Rezai-rad, Member, IEEE, Aref. Shams Baboli" +7c95449a5712aac7e8c9a66d131f83a038bb7caa,This is an author produced version of Facial first impressions from another angle: How social judgements are influenced by changeable and invariant facial properties. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102935/,"This is an author produced version of Facial first impressions from another angle: How +social judgements are influenced by changeable and invariant facial properties. +White Rose Research Online URL for this paper: +http://eprints.whiterose.ac.uk/102935/ +Article: +Sutherland, Clare, Young, Andrew William orcid.org/0000-0002-1202-6297 and Gillian, +Rhodes (2017) Facial first impressions from another angle: How social judgements are +influenced by changeable and invariant facial properties. British journal of psychology. pp. +97-415. ISSN 0007-1269 +https://doi.org/10.1111/bjop.12206 +promoting access to +White Rose research papers +http://eprints.whiterose.ac.uk/" +7c3e09e0bd992d3f4670ffacb4ec3a911141c51f,Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images,"Noname manuscript No. +(will be inserted by the editor) +Transferring Object-Scene Convolutional Neural Networks for +Event Recognition in Still Images +Limin Wang · Zhe Wang · Yu Qiao · Luc Van Gool +Received: date / Accepted: date" +7c7b0550ec41e97fcfc635feffe2e53624471c59,"Head, Eye, and Hand Patterns for Driver Activity Recognition","051-4651/14 $31.00 © 2014 IEEE +DOI 10.1109/ICPR.2014.124" +7c119e6bdada2882baca232da76c35ae9b5277f8,Facial expression recognition using embedded Hidden Markov Model,"Facial Expression Recognition Using Embedded +Hidden Markov Model +Languang He, Xuan Wang, Member, IEEE, Chenglong Yu, Member, IEEE, Kun Wu +Intelligence Computing Research Center +HIT Shenzhen Graduate School +Shenzhen, China +{telent, wangxuan, ycl, wukun}" +7c9a65f18f7feb473e993077d087d4806578214e,SpringerLink - Zeitschriftenbeitrag,"SpringerLink - Zeitschriftenbeitrag +http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352... +Deutsch +Deutsch +Vorherige Beitrag Nächste Beitrag +Beitrag markieren +In den Warenkorb legen +Zu gespeicherten Artikeln +hinzufügen +Permissions & Reprints +Diesen Artikel empfehlen +Ergebnisse +finden +Erweiterte Suche +im gesamten Inhalt +in dieser Zeitschrift +in diesem Heft +Diesen Beitrag exportieren +Diesen Beitrag exportieren als RIS +| Text" +7c1e1c767f7911a390d49bed4f73952df8445936,Non-Rigid Object Detection with LocalInterleaved Sequential Alignment (LISA),"NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) +Non-Rigid Object Detection with Local +Interleaved Sequential Alignment (LISA) +Karel Zimmermann, Member, IEEE,, David Hurych, Member, IEEE, +nd Tom´aˇs Svoboda, Member, IEEE" +7cf579088e0456d04b531da385002825ca6314e2,Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks,"Emotion Detection on TV Show Transcripts with +Sequence-based Convolutional Neural Networks +Sayyed M. Zahiri +Jinho D. Choi +Mathematics and Computer Science +Mathematics and Computer Science +Emory University +Atlanta, GA 30322, USA +Emory University +Atlanta, GA 30322, USA" +7c349932a3d083466da58ab1674129600b12b81c,Leveraging Multiple Features for Image Retrieval and Matching, +162403e189d1b8463952fa4f18a291241275c354,Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences,"Action Recognition with Spatio-Temporal +Visual Attention on Skeleton Image Sequences +Zhengyuan Yang, Student Member, IEEE, Yuncheng Li, Jianchao Yang, Member, IEEE, +nd Jiebo Luo, Fellow, IEEE +With a strong ability of modeling sequential data, Recur- +rent Neural Networks (RNN) with Long Short-Term Memory +(LSTM) neurons outperform the previous hand-crafted feature +ased methods [9], [10]. Each skeleton frame is converted into +feature vector and the whole sequence is fed into the RNN. +Despite the strong ability in modeling temporal sequences, +RNN structures lack the ability to efficiently learn the spatial +relations between the joints. To better use spatial information, +hierarchical structure is proposed in [11], [12] that feeds +the joints into the network as several pre-defined body part +groups. However, +limit +the effectiveness of representing spatial relations. A spatio- +temporal 2D LSTM (ST-LSTM) network [13] is proposed +to learn the spatial and temporal relations simultaneously. +Furthermore, a two-stream RNN structure [14] is proposed to" +160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b,Discriminant multi-label manifold embedding for facial Action Unit detection,"Discriminant Multi-Label Manifold Embedding for Facial Action Unit +Detection +Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +Anıl Y¨uce, Hua Gao and Jean-Philippe Thiran" +16671b2dc89367ce4ed2a9c241246a0cec9ec10e,Detecting the Number of Clusters in n-Way Probabilistic Clustering,"Detecting the Number of Clusters +in n-Way Probabilistic Clustering +Zhaoshui He, Andrzej Cichocki, Senior Member, IEEE, +Shengli Xie, Senior Member, IEEE, and Kyuwan Choi" +16395b40e19cbc6d5b82543039ffff2a06363845,Action Recognition in Video Using Sparse Coding and Relative Features,"Action Recognition in Video Using Sparse Coding and Relative Features +Anal´ı Alfaro +Domingo Mery +Alvaro Soto +P. Universidad Catolica de Chile +P. Universidad Catolica de Chile +P. Universidad Catolica de Chile +Santiago, Chile +Santiago, Chile +Santiago, Chile" +16c884be18016cc07aec0ef7e914622a1a9fb59d,Exploiting Multimodal Data for Image Understanding,"UNIVERSITÉ DE GRENOBLE +No attribué par la bibliothèque +THÈSE +pour obtenir le grade de +DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE +Spécialité : Mathématiques et Informatique +préparée au Laboratoire Jean Kuntzmann +dans le cadre de l’École Doctorale Mathématiques, +Sciences et Technologies de l’Information, Informatique +présentée et soutenue publiquement +Matthieu Guillaumin +le 27 septembre 2010 +Exploiting Multimodal Data for Image Understanding +Données multimodales pour l’analyse d’image +Directeurs de thèse : Cordelia Schmid et Jakob Verbeek +M. Éric Gaussier +M. Antonio Torralba +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +M. Mark Everingham University of Leeds +Mme Cordelia Schmid" +1630e839bc23811e340bdadad3c55b6723db361d,Exploiting relationship between attributes for improved face verification,"SONG, TAN, CHEN: EXPLOITING RELATIONSHIP BETWEEN ATTRIBUTES +Exploiting Relationship between Attributes for +Improved Face Verification +Fengyi Song +Xiaoyang Tan +Songcan Chen +Department of Computer Science and +Technology, Nanjing University of Aero- +nautics and Astronautics, Nanjing 210016, +P.R. China" +16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb,"All Smiles are Not Created Equal: Morphology and Timing of Smiles Perceived as Amused, Polite, and Embarrassed/Nervous.","J Nonverbal Behav +DOI 10.1007/s10919-008-0059-5 +O R I G I N A L P A P E R +All Smiles are Not Created Equal: Morphology +nd Timing of Smiles Perceived as Amused, Polite, +nd Embarrassed/Nervous +Zara Ambadar Æ Jeffrey F. Cohn Æ Lawrence Ian Reed +Ó Springer Science+Business Media, LLC 2008" +166186e551b75c9b5adcc9218f0727b73f5de899,Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System,"Volume 4, Issue 2, February 2016 +International Journal of Advance Research in +Computer Science and Management Studies +Research Article / Survey Paper / Case Study +Available online at: www.ijarcsms.com +ISSN: 2321-7782 (Online) +Automatic Age and Gender Recognition in Human Face Image +Dataset using Convolutional Neural Network System +Subhani Shaik1 +Assoc. Prof & Head of the Department +Department of CSE, +Anto A. Micheal2 +Associate Professor +Department of CSE, +St.Mary’s Group of Institutions Guntur +St.Mary’s Group of Institutions Guntur +Chebrolu(V&M),Guntur(Dt), +Andhra Pradesh - India +Chebrolu(V&M),Guntur(Dt), +Andhra Pradesh - India" +16d9b983796ffcd151bdb8e75fc7eb2e31230809,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,"EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer +(Guest Editors) +Volume 37 (2018), Number 2 +GazeDirector: Fully Articulated Eye Gaze Redirection in Video +ID: paper1004" +162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e,Large-Scale Classification by an Approximate Least Squares One-Class Support Vector Machine Ensemble,"Mygdalis, V., Iosifidis, A., Tefas, A., & Pitas, I. (2016). Large-Scale +Classification by an Approximate Least Squares One-Class Support Vector +of a meeting held 20-22 August 2015, Helsinki, Finland (Vol. 2, pp. 6-10). +Institute of Electrical and Electronics Engineers (IEEE). DOI: +0.1109/Trustcom.2015.555 +Peer reviewed version +Link to published version (if available): +0.1109/Trustcom.2015.555 +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms" +161eb88031f382e6a1d630cd9a1b9c4bc6b47652,Automatic facial expression recognition using features of salient facial patches,"Automatic Facial Expression Recognition +Using Features of Salient Facial Patches +S L Happy and Aurobinda Routray" +4209783b0cab1f22341f0600eed4512155b1dee6,Accurate and Efficient Similarity Search for Large Scale Face Recognition,"Accurate and Efficient Similarity Search for Large Scale Face Recognition +Ce Qi +Zhizhong Liu +Fei Su" +42e3dac0df30d754c7c7dab9e1bb94990034a90d,PANDA: Pose Aligned Networks for Deep Attribute Modeling,"PANDA: Pose Aligned Networks for Deep Attribute Modeling +Ning Zhang1,2, Manohar Paluri1, Marc’Aurelio Ranzato1, Trevor Darrell2, Lubomir Bourdev1 +EECS, UC Berkeley +{mano, ranzato, +Facebook AI Research +{nzhang," +42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830,Coordinated Local Metric Learning,"Coordinated Local Metric Learning +Shreyas Saxena +Jakob Verbeek +Inria∗" +42350e28d11e33641775bef4c7b41a2c3437e4fd,Multilinear Discriminant Analysis for Face Recognition,"Multilinear Discriminant Analysis +for Face Recognition +Shuicheng Yan, Member, IEEE, Dong Xu, Qiang Yang, Senior Member, IEEE, Lei Zhang, Member, IEEE, +Xiaoou Tang, Senior Member, IEEE, and Hong-Jiang Zhang, Fellow, IEEE" +42e155ea109eae773dadf74d713485be83fca105,Sparse reconstruction of facial expressions with localized gabor moments, +4270460b8bc5299bd6eaf821d5685c6442ea179a,"Partial Similarity of Objects, or How to Compare a Centaur to a Horse","Int J Comput Vis (2009) 84: 163–183 +DOI 10.1007/s11263-008-0147-3 +Partial Similarity of Objects, or How to Compare a Centaur +to a Horse +Alexander M. Bronstein · Michael M. Bronstein · Alfred +M. Bruckstein · Ron Kimmel +Received: 30 September 2007 / Accepted: 3 June 2008 / Published online: 26 July 2008 +© Springer Science+Business Media, LLC 2008" +429d4848d03d2243cc6a1b03695406a6de1a7abd,"Face Recognition based on Logarithmic Fusion of SVD and KT Ramachandra A C , Raja K B , Venugopal K R , L M Patnaik","Face Recognition based on Logarithmic Fusion +International Journal of Soft Computing and Engineering (IJSCE) +ISSN: 2231-2307, Volume-2, Issue-3, July 2012 +of SVD and KT +Ramachandra A C, Raja K B, Venugopal K R, L M Patnaik" +42dc36550912bc40f7faa195c60ff6ffc04e7cd6,Visible and Infrared Face Identification via Sparse Representation,"Hindawi Publishing Corporation +ISRN Machine Vision +Volume 2013, Article ID 579126, 10 pages +http://dx.doi.org/10.1155/2013/579126 +Research Article +Visible and Infrared Face Identification via +Sparse Representation +Pierre Buyssens1 and Marinette Revenu2 +LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France +GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar´echal Juin, +4050 Caen, France +Correspondence should be addressed to Pierre Buyssens; +Received 4 April 2013; Accepted 27 April 2013 +Academic Editors: O. Ghita, D. Hernandez, Z. Hou, M. La Cascia, and J. M. Tavares +Copyright © 2013 P. Buyssens and M. Revenu. This is an open access article distributed under the Creative Commons Attribution +License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +ited. +We present a facial recognition technique based on facial sparse representation. A dictionary is learned from data, and patches +extracted from a face are decomposed in a sparse manner onto this dictionary. We particularly focus on the design of dictionaries +that play a crucial role in the final identification rates. Applied to various databases and modalities, we show that this approach" +42ecfc3221c2e1377e6ff849afb705ecd056b6ff,Pose Invariant Face Recognition Under Arbitrary Unknown Lighting Using Spherical Harmonics,"Pose Invariant Face Recognition under Arbitrary +Unknown Lighting using Spherical Harmonics +Lei Zhang and Dimitris Samaras +Department of Computer Science, +SUNY at Stony Brook, NY, 11790 +{lzhang," +421955c6d2f7a5ffafaf154a329a525e21bbd6d3,Evolutionary Pursuit and Its Application to Face Recognition,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 6, +JUNE 2000 +Evolutionary Pursuit and Its +Application to Face Recognition +Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE" +42df75080e14d32332b39ee5d91e83da8a914e34,Illumination Compensation Using Oriented Local Histogram Equalization and its Application to Face Recognition,"Illumination Compensation Using Oriented +Local Histogram Equalization and +Its Application to Face Recognition +Ping-Han Lee, Szu-Wei Wu, and Yi-Ping Hung" +89945b7cd614310ebae05b8deed0533a9998d212,Divide-and-Conquer Method for L1 Norm Matrix Factorization in the Presence of Outliers and Missing Data,"Divide-and-Conquer Method for L1 Norm Matrix +Factorization in the Presence of Outliers and +Missing Data +Deyu Meng and Zongben Xu" +89c84628b6f63554eec13830851a5d03d740261a,Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery,"Image Enhancement and Automated Target Recognition +Techniques for Underwater Electro-Optic Imagery +Thomas Giddings (PI), Cetin Savkli and Joseph Shirron +Metron, Inc. +1911 Freedom Dr., Suite 800 +Reston, VA 20190 +phone: (703) 437-2428 fax: (703) 787-3518 email: +Contract Number N00014-07-C-0351 +http:www.metsci.com +LONG TERM GOALS +The long-term goal of this project is to provide a flexible, accurate and extensible automated target +recognition (ATR) system for use with a variety of imaging and non-imaging sensors. Such an ATR +system, once it achieves a high level of performance, can relieve human operators from the tedious +usiness of pouring over vast quantities of mostly mundane data, calling the operator in only when the +omputer assessment involves an unacceptable level of ambiguity. The ATR system will provide most +leading edge algorithms for detection, segmentation, and classification while incorporating many novel +lgorithms that we are developing at Metron. To address one of the most critical challenges in ATR +technology, the system will also provide powerful feature extraction routines designed for specific +pplications of current interest. +OBJECTIVES" +89c51f73ec5ebd1c2a9000123deaf628acf3cdd8,Face Recognition Based on Nonlinear Feature Approach Eimad,"American Journal of Applied Sciences 5 (5): 574-580, 2008 +ISSN 1546-9239 +© 2008 Science Publications +Face Recognition Based on Nonlinear Feature Approach +Eimad E.A. Abusham, 1Andrew T.B. Jin, 1Wong E. Kiong and 2G. Debashis +Faculty of Information Science and Technology, +Faculty of Engineering and Technology, Multimedia University (Melaka Campus), +Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia" +89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199,Application of an Improved Mean Shift Algorithm in Real-time Facial Expression Recognition,"Application of an Improved Mean Shift Algorithm +in Real-time Facial Expression Recognition +School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +Zhao-yi PENG +Yu ZHOU +Yan-hui ZHU +Email: +Zhi-qiang WEN +Email: +School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +facial +real-time +expression" +893239f17dc2d17183410d8a98b0440d98fa2679,UvA-DARE ( Digital Academic Repository ) Expression-Invariant Age Estimation,"UvA-DARE (Digital Academic Repository) +Expression-Invariant Age Estimation +Alnajar, F.; Lou, Z.; Alvarez Lopez, J.M.; Gevers, T. +Published in: +Proceedings of the British Machine Vision Conference 2014 +0.5244/C.28.14 +Link to publication +Citation for published version (APA): +Alnajar, F., Lou, Z., Alvarez, J., & Gevers, T. (2014). Expression-Invariant Age Estimation. In M. Valstar, A. +French, & T. Pridmore (Eds.), Proceedings of the British Machine Vision Conference 2014 (pp. 14.1-14.11). +BMVA Press. DOI: 10.5244/C.28.14 +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible. +Download date: 04 Aug 2017" +8913a5b7ed91c5f6dec95349fbc6919deee4fc75,BigBIRD: A large-scale 3D database of object instances,"BigBIRD: A Large-Scale 3D Database of Object Instances +Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, Pieter Abbeel" +89d3a57f663976a9ac5e9cdad01267c1fc1a7e06,Neural Class-Specific Regression for face verification,"Neural Class-Specific Regression for face +verification +Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj" +89bc311df99ad0127383a9149d1684dfd8a5aa34,Towards ontology driven learning of visual concept detectors,"Towards ontology driven learning of +visual concept detectors +Sanchit ARORA, Chuck CHO, Paul FITZPATRICK, Franc¸ois SCHARFFE 1 +Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA" +898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c,Dynamic vs. Static Recognition of Facial Expressions,"Dynamic vs. Static Recognition of Facial +Expressions +No Author Given +No Institute Given" +89d7cc9bbcd2fdc4f4434d153ecb83764242227b,Face-Name Graph Matching For The Personalities In Movie Screen,"Einstein.J, DivyaBaskaran / International Journal of Engineering Research and Applications +(IJERA) ISSN: 2248-9622 www.ijera.com +Vol. 3, Issue 2, March -April 2013, pp.351-355 +Face-Name Graph Matching For The Personalities In Movie +Screen +*(Asst. Professor, Dept. of IT, VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College, +Einstein.J*, DivyaBaskaran** +** (Final Year Student, M.Tech IT, Vel Tech Dr. RR &Dr. SR Technical University, Chennai.) +Chennai.)" +891b10c4b3b92ca30c9b93170ec9abd71f6099c4,2 New Statement for Structured Output Regression Problems,"Facial landmark detection using structured output deep +neural networks +Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +Adam∗2 +LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +September 24, 2015" +45c340c8e79077a5340387cfff8ed7615efa20fd,Assessment of the Emotional States of Students during e-Learning, +45e7ddd5248977ba8ec61be111db912a4387d62f,Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization,"CHEN ET AL.: ADVERSARIAL POSENET +Adversarial Learning of Structure-Aware Fully +Convolutional Networks for Landmark +Localization +Yu Chen1, Chunhua Shen2, Hao Chen2, Xiu-Shen Wei3, Lingqiao Liu2 and Jian Yang1" +4526992d4de4da2c5fae7a5ceaad6b65441adf9d,System for Medical Mask Detection in the Operating Room Through Facial Attributes,"System for Medical Mask Detection +in the Operating Room Through +Facial Attributes +A. Nieto-Rodr´ıguez, M. Mucientes(B), and V.M. Brea +Center for Research in Information Technologies (CiTIUS), +University of Santiago de Compostela, Santiago de Compostela, Spain" +45efd6c2dd4ca19eed38ceeb7c2c5568231451e1,Comparative Analysis of Statistical Approach for Face Recognition,"Comparative Analysis of Statistical Approach +for Face Recognition +S.Pradnya1, M.Riyajoddin2, M.Janga Reddy3 +CMR Institute of Technology, Hyderabad, (India)" +4560491820e0ee49736aea9b81d57c3939a69e12,Investigating the Impact of Data Volume and Domain Similarity on Transfer Learning Applications,"Investigating the Impact of Data Volume and +Domain Similarity on Transfer Learning +Applications +Michael Bernico, Yuntao Li, and Dingchao Zhang +State Farm Insurance, Bloomington IL 61710, USA," +4571626d4d71c0d11928eb99a3c8b10955a74afe,Geometry Guided Adversarial Facial Expression Synthesis,"Geometry Guided Adversarial Facial Expression Synthesis +Lingxiao Song1,2 +Zhihe Lu1,3 Ran He1,2,3 +Zhenan Sun1,2 +Tieniu Tan1,2,3 +National Laboratory of Pattern Recognition, CASIA +Center for Research on Intelligent Perception and Computing, CASIA +Center for Excellence in Brain Science and Intelligence Technology, CAS" +4534d78f8beb8aad409f7bfcd857ec7f19247715,Transformation-Based Models of Video Sequences,"Under review as a conference paper at ICLR 2017 +TRANSFORMATION-BASED MODELS OF VIDEO +SEQUENCES +Joost van Amersfoort ∗, Anitha Kannan, Marc’Aurelio Ranzato, +Arthur Szlam, Du Tran & Soumith Chintala +Facebook AI Research +{akannan, ranzato, aszlam, trandu," +459e840ec58ef5ffcee60f49a94424eb503e8982,One-shot Face Recognition by Promoting Underrepresented Classes,"One-shot Face Recognition by Promoting Underrepresented Classes +Yandong Guo, Lei Zhang +Microsoft +One Microsoft Way, Redmond, Washington, United States +{yandong.guo," +451c42da244edcb1088e3c09d0f14c064ed9077e,Using subclasses in discriminant non-negative subspace learning for facial expression recognition,"© EURASIP, 2011 - ISSN 2076-1465 +9th European Signal Processing Conference (EUSIPCO 2011) +INTRODUCTION" +4568063b7efb66801e67856b3f572069e774ad33,Correspondence driven adaptation for human profile recognition,"Correspondence Driven Adaptation for Human Profile Recognition +Ming Yang1, Shenghuo Zhu1, Fengjun Lv2, Kai Yu1 +NEC Laboratories America, Inc. +Huawei Technologies (USA) +Cupertino, CA 95014 +Santa Clara, CA 95050" +45e459462a80af03e1bb51a178648c10c4250925,LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning,"LCrowdV: Generating Labeled Videos for +Simulation-based Crowd Behavior Learning +Ernest Cheung1, Tsan Kwong Wong1, Aniket Bera1, Xiaogang Wang2, and +Dinesh Manocha1 +The University of North Carolina at Chapel Hill" +458677de7910a5455283a2be99f776a834449f61,Face Image Retrieval Using Facial Attributes By K-Means,"Face Image Retrieval Using Facial Attributes By +K-Means +[1]I.Sudha, [2]V.Saradha, [3]M.Tamilselvi, [4]D.Vennila +[1]AP, Department of CSE ,[2][3][4] B.Tech(CSE) +Achariya college of Engineering Technology- +Puducherry" +45a6333fc701d14aab19f9e2efd59fe7b0e89fec,Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE +RECOGNITION +Luis Anton-Canalis +Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +Campus Universitario de Tafira, 35017 Gran Canaria, Spain +Elena Sanchez-Nielsen +Departamento de E.I.O. y Computacion +8271 Universidad de La Laguna, Spain +Keywords: +Image understanding, Gesture recognition, Hand dataset." +1ffe20eb32dbc4fa85ac7844178937bba97f4bf0,Face Clustering: Representation and Pairwise Constraints,"Face Clustering: Representation and Pairwise +Constraints +Yichun Shi, Student Member, IEEE, Charles Otto, Member, IEEE, and Anil K. Jain, Fellow, IEEE" +1f8304f4b51033d2671147b33bb4e51b9a1e16fe,Beyond Trees: MAP Inference in MRFs via Outer-Planar Decomposition,"Noname manuscript No. +(will be inserted by the editor) +Beyond Trees: +MAP Inference in MRFs via Outer-Planar Decomposition +Dhruv Batra · Andrew C. Gallagher · Devi Parikh · Tsuhan Chen +Received: date / Accepted: date" +1f9ae272bb4151817866511bd970bffb22981a49,An Iterative Regression Approach for Face Pose Estimation from RGB Images,"An Iterative Regression Approach for Face Pose Estima- +tion from RGB Images +Wenye He +This paper presents a iterative optimization method, explicit shape regression, for face pose +detection and localization. The regression function is learnt to find out the entire facial shape +nd minimize the alignment errors. A cascaded learning framework is employed to enhance +shape constraint during detection. A combination of a two-level boosted regression, shape +performance. In this paper, we have explain the advantage of ESR for deformable object like +face pose estimation and reveal its generic applications of the method. In the experiment, +we compare the results with different work and demonstrate the accuracy and robustness in +different scenarios. +Introduction +Pose estimation is an important problem in computer vision, and has enabled many practical ap- +plication from face expression 1 to activity tracking 2. Researchers design a new algorithm called +explicit shape regression (ESR) to find out face alignment from a picture 3. Figure 1 shows how +the system uses ESR to learn a shape of a human face image. A simple way to identify a face is to +find out facial landmarks like eyes, nose, mouth and chin. The researchers define a face shape S +nd S is composed of Nf p facial landmarks. Therefore, they get S = [x1, y1, ..., xNf p, yNf p]T . The +objective of the researchers is to estimate a shape S of a face image. The way to know the accuracy" +1fc249ec69b3e23856b42a4e591c59ac60d77118,Evaluation of a 3D-aided pose invariant 2D face recognition system,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris +{xxu18, hale4, pdou, ywu35, +Computational Biomedicine Lab +800 Calhoun Rd. Houston, TX, USA" +1fbde67e87890e5d45864e66edb86136fbdbe20e,The Action Similarity Labeling Challenge,"The Action Similarity Labeling Challenge +Orit Kliper-Gross, Tal Hassner, and +Lior Wolf, Member, IEEE" +1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6,Demographic Estimation from Face Images: Human vs. Machine Performance,"Demographic Estimation from Face Images: +Human vs. Machine Performance +Hu Han, Member, IEEE, Charles Otto, Student Member, IEEE, Xiaoming Liu, Member, IEEE +nd Anil K. Jain, Fellow, IEEE" +1f8e44593eb335c2253d0f22f7f9dc1025af8c0d,Fine-Tuning Regression Forests Votes for Object Alignment in the Wild,"Fine-tuning regression forests votes for object alignment in the wild. +Yang, H; Patras, I +© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained for all other uses, in any current or future media, including reprinting/republishing +this material for advertising or promotional purposes, creating new collective works, for resale +or redistribution to servers or lists, or reuse of any copyrighted component of this work in +other works. +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/22607 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact" +1f94734847c15fa1da68d4222973950d6b683c9e,Embedding Label Structures for Fine-Grained Feature Representation,"Embedding Label Structures for Fine-Grained Feature Representation +Xiaofan Zhang +UNC Charlotte +Charlotte, NC 28223 +Feng Zhou +NEC Lab America +Cupertino, CA 95014 +Yuanqing Lin +NEC Lab America +Cupertino, CA 95014 +Shaoting Zhang +UNC Charlotte +Charlotte, NC 28223" +1fff309330f85146134e49e0022ac61ac60506a9,Data-Driven Sparse Sensor Placement for Reconstruction,"Data-Driven Sparse Sensor Placement for Reconstruction +Krithika Manohar∗, Bingni W. Brunton, J. Nathan Kutz, and Steven L. Brunton +Corresponding author:" +73f467b4358ac1cafb57f58e902c1cab5b15c590,Combination of Dimensionality Reduction Techniques for Face Image Retrieval: A Review,"ISSN 0976 3724 47 +Combination of Dimensionality Reduction Techniques for Face +Image Retrieval: A Review +Fousiya K.K 1, Jahfar Ali P 2 +M.Tech Scholar, MES College of Engineering, Kuttippuram, +Kerala +Asst. Professor, MES College of Engineering, Kuttippuram, +Kerala" +7323b594d3a8508f809e276aa2d224c4e7ec5a80,An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +An Experimental Evaluation of Covariates +Effects on Unconstrained Face Verification +Boyu Lu, Student Member, IEEE, Jun-Cheng Chen, Member, IEEE, Carlos D Castillo, Member, IEEE +nd Rama Chellappa, Fellow, IEEE" +732e8d8f5717f8802426e1b9debc18a8361c1782,Unimodal Probability Distributions for Deep Ordinal Classification,"Unimodal Probability Distributions for Deep Ordinal Classification +Christopher Beckham 1 Christopher Pal 1" +73ed64803d6f2c49f01cffef8e6be8fc9b5273b8,Cooking in the kitchen: Recognizing and Segmenting Human Activities in Videos,"Noname manuscript No. +(will be inserted by the editor) +Cooking in the kitchen: Recognizing and Segmenting Human +Activities in Videos +Hilde Kuehne · Juergen Gall · Thomas Serre +Received: date / Accepted: date" +7306d42ca158d40436cc5167e651d7ebfa6b89c1,Transductive Zero-Shot Action Recognition by Word-Vector Embedding,"Noname manuscript No. +(will be inserted by the editor) +Transductive Zero-Shot Action Recognition by +Word-Vector Embedding +Xun Xu · Timothy Hospedales · Shaogang Gong +Received: date / Accepted: date" +734cdda4a4de2a635404e4c6b61f1b2edb3f501d,Automatic landmark point detection and tracking for human facial expressions,"Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 +http://jivp.eurasipjournals.com/content/2013/1/8 +R ES EAR CH +Open Access +Automatic landmark point detection and tracking +for human facial expressions +Yun Tie* and Ling Guan" +7373c4a23684e2613f441f2236ed02e3f9942dd4,Feature extraction through Binary Pattern of Phase Congruency for facial expression recognition,"This document is downloaded from DR-NTU, Nanyang Technological +University Library, Singapore. +Title +Feature extraction through binary pattern of phase +ongruency for facial expression recognition +Author(s) +Shojaeilangari, Seyedehsamaneh; Yau, Wei-Yun; Li, Jun; +Teoh, Eam Khwang +Citation +Shojaeilangari, S., Yau, W. Y., Li, J., & Teoh, E. K. +(2012). Feature extraction through binary pattern of +phase congruency for facial expression recognition. 12th +International Conference on Control Automation Robotics +& Vision (ICARCV), 166-170. +http://hdl.handle.net/10220/18012 +Rights +© 2012 IEEE. Personal use of this material is permitted. +Permission from IEEE must be obtained for all other +uses, in any current or future media, including +reprinting/republishing this material for advertising or" +732686d799d760ccca8ad47b49a8308b1ab381fb,Teachers’ differing classroom behaviors: The role of emotional sensitivity and cultural tolerance,"Running head: TEACHERS’ DIFFERING BEHAVIORS +Graduate School of Psychology +RESEARCH MASTER’S PSYCHOLOGY THESıS REPORT +Teachers’ differing classroom behaviors: +The role of emotional sensitivity and cultural tolerance +Ceren Su Abacıoğlu +Supervisor: prof. dr. Agneta Fischer +Second supervisor: dr. Disa Sauter +External Supervisor: prof. dr. Monique Volman +Research Master’s, Social Psychology +Ethics Committee Reference Code: 2016-SP-7084" +73fbdd57270b9f91f2e24989178e264f2d2eb7ae,Kernel linear regression for low resolution face recognition under variable illumination,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012" +73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c,Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings,"imagesViewpoint factorizationLearned landmarksFigure1.Wepresentanovelmethodthatcanlearnviewpointin-variantlandmarkswithoutanysupervision.Themethodusesaprocessofviewpointfactorizationwhichlearnsadeeplandmarkdetectorcompatiblewithimagedeformations.Itcanbeappliedtorigidanddeformableobjectsandobjectcategories.terns.Achievingadeeperunderstandingofobjectsrequiresmodelingtheirintrinsicviewpoint-independentstructure.Oftenthisstructureisdefinedmanuallybyspecifyingen-titiessuchaslandmarks,parts,andskeletons.Givensuffi-cientmanualannotations,itispossibletoteachdeepneuralnetworksandothermodelstorecognizesuchstructuresinimages.However,theproblemoflearningsuchstructureswithoutmanualsupervisionremainslargelyopen.Inthispaper,wecontributeanewapproachtolearnviewpoint-independentrepresentationsofobjectsfromim-ageswithoutmanualsupervision(fig.1).Weformulatethistaskasafactorizationproblem,wheretheeffectsofimagedeformations,forexamplearisingfromaviewpointchange,areexplainedbythemotionofareferenceframeattachedtotheobjectandindependentoftheviewpoint.Afterdescribingthegeneralprinciple(sec.3.1),wein-1" +8796f2d54afb0e5c924101f54d469a1d54d5775d,Illumination Invariant Face Recognition Using Fuzzy LDA and FFNN,"Journal of Signal and Information Processing, 2012, 3, 45-50 +http://dx.doi.org/10.4236/jsip.2012.31007 Published Online February 2012 (http://www.SciRP.org/journal/jsip) +Illumination Invariant Face Recognition Using Fuzzy LDA +nd FFNN +Behzad Bozorgtabar, Hamed Azami, Farzad Noorian +School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran. +Email: +Received October 20th, 2011; revised November 24th, 2011; accepted December 10th, 2011" +87f285782d755eb85d8922840e67ed9602cfd6b9,Incorporating Boltzmann Machine Priors for Semantic Labeling in Images and Videos,"INCORPORATING BOLTZMANN MACHINE PRIORS +FOR SEMANTIC LABELING IN IMAGES AND VIDEOS +A Dissertation Presented +ANDREW KAE +Submitted to the Graduate School of the +University of Massachusetts Amherst in partial fulfillment +of the requirements for the degree of +DOCTOR OF PHILOSOPHY +May 2014 +Computer Science" +871f5f1114949e3ddb1bca0982086cc806ce84a8,Discriminative learning of apparel features,"Discriminative Learning of Apparel Features +Rasmus Rothe1, Marko Ristin1, Matthias Dantone1, and Luc Van Gool1,2 +Computer Vision Laboratory, D-ITET, ETH Z¨urich, Switzerland +ESAT - PSI / IBBT, K.U. Leuven, Belgium" +87bee0e68dfc86b714f0107860d600fffdaf7996,Automated 3D Face Reconstruction from Multiple Images Using Quality Measures,"Automated 3D Face Reconstruction from Multiple Images +using Quality Measures +Marcel Piotraschke and Volker Blanz +Institute for Vision and Graphics, University of Siegen, Germany" +878169be6e2c87df2d8a1266e9e37de63b524ae7,Image interpretation above and below the object level.,"CBMM Memo No. 089 +May 10, 2018 +Image interpretation above and below the object level +Guy Ben-Yosef, Shimon Ullman" +878301453e3d5cb1a1f7828002ea00f59cbeab06,Faceness-Net: Face Detection through Deep Facial Part Responses,"Faceness-Net: Face Detection through +Deep Facial Part Responses +Shuo Yang, Ping Luo, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE" +87e592ee1a7e2d34e6b115da08700a1ae02e9355,Deep Pictorial Gaze Estimation,"Deep Pictorial Gaze Estimation +Seonwook Park, Adrian Spurr, and Otmar Hilliges +AIT Lab, Department of Computer Science, ETH Zurich" +87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5,Spatio-temporal Maximum Average Correlation Height Templates in Action Recognition and Video Summarization,"SPATIO-TEMPORAL MAXIMUM AVERAGE CORRELATION +HEIGHT TEMPLATES IN ACTION RECOGNITION AND VIDEO +SUMMARIZATION +MIKEL RODRIGUEZ +B.A. Earlham College, Richmond Indiana +M.S. University of Central Florida +A dissertation submitted in partial fulfillment of the requirements +for the degree of Doctor of Philosophy +in the School of Electrical Engineering and Computer Science +in the College of Engineering and Computer Science +t the University of Central Florida +Orlando, Florida +Summer Term +Major Professor: Mubarak Shah" +87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd,Craniofacial Image Analysis,"Craniofacial Image Analysis +Ezgi Mercan, Indriyati Atmosukarto, Jia Wu, Shu Liang and Linda G. Shapiro" +8006219efb6ab76754616b0e8b7778dcfb46603d,Contributions to large-scale learning for image classification. (Contributions à l'apprentissage grande échelle pour la classification d'images),"CONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble" +804b4c1b553d9d7bae70d55bf8767c603c1a09e3,Subspace clustering with a learned dimensionality reduction projection,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016" +800cbbe16be0f7cb921842d54967c9a94eaa2a65,Multimodal Recognition of Emotions Multimodal Recognition of Emotions,"MULTIMODAL RECOGNITION OF +EMOTIONS" +80135ed7e34ac1dcc7f858f880edc699a920bf53,Efficient Action and Event Recognition in Videos Using Extreme Learning Machines,"EFFICIENT ACTION AND EVENT RECOGNITION IN VIDEOS USING +EXTREME LEARNING MACHINES +G¨ul Varol +B.S., Computer Engineering, Bo˘gazi¸ci University, 2013 +Submitted to the Institute for Graduate Studies in +Science and Engineering in partial fulfillment of +the requirements for the degree of +Master of Science +Graduate Program in Computer Engineering +Bo˘gazi¸ci University" +803c92a3f0815dbf97e30c4ee9450fd005586e1a,Max-Mahalanobis Linear Discriminant Analysis Networks,"Max-Mahalanobis Linear Discriminant Analysis Networks +Tianyu Pang 1 Chao Du 1 Jun Zhu 1" +80c8d143e7f61761f39baec5b6dfb8faeb814be9,Local Directional Pattern based Fuzzy Co- occurrence Matrix Features for Face recognition,"Local Directional Pattern based Fuzzy Co- +occurrence Matrix Features for Face recognition +Dr. P Chandra Sekhar Reddy +Professor, CSE Dept. +Gokaraju Rangaraju Institute of Engineering and Technology, Hyd." +80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923,Soft Biometrics for a Socially Assistive Robotic Platform,"Research Article +Pierluigi Carcagnì*, Dario Cazzato, Marco Del Coco, Pier Luigi Mazzeo, Marco Leo, and +Cosimo Distante +Soft Biometrics for a Socially Assistive Robotic +Platform +Open Access" +80a6bb337b8fdc17bffb8038f3b1467d01204375,Subspace LDA Methods for Solving the Small Sample Size Problem in Face Recognition,"Proceedings of the International Conference on Computer and Information Science and Technology +Ottawa, Ontario, Canada, May 11 – 12, 2015 +Paper No. 126 +Subspace LDA Methods for Solving the Small Sample Size +Problem in Face Recognition +Ching-Ting Huang, Chaur-Chin Chen +Department of Computer Science/National Tsing Hua University +01 KwanFu Rd., Sec. 2, Hsinchu, Taiwan" +80097a879fceff2a9a955bf7613b0d3bfa68dc23,Active Self-Paced Learning for Cost-Effective and Progressive Face Identification,"Active Self-Paced Learning for Cost-Effective and +Progressive Face Identification +Liang Lin, Keze Wang, Deyu Meng, Wangmeng Zuo, and Lei Zhang" +74408cfd748ad5553cba8ab64e5f83da14875ae8,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation +nd Evaluation" +74dbe6e0486e417a108923295c80551b6d759dbe,An HMM based Model for Prediction of Emotional Composition of a Facial Expression using both Significant and Insignificant Action Units and Associated Gender Differences,"International Journal of Computer Applications (0975 – 8887) +Volume 45– No.11, May 2012 +An HMM based Model for Prediction of Emotional +Composition of a Facial Expression using both +Significant and Insignificant Action Units and +Associated Gender Differences +Suvashis Das +Koichi Yamada +Department of Management and Information +Department of Management and Information +Systems Science +603-1 Kamitomioka, Nagaoka +Niigata, Japan +Systems Science +603-1 Kamitomioka, Nagaoka +Niigata, Japan" +747c25bff37b96def96dc039cc13f8a7f42dbbc7,EmoNets: Multimodal deep learning approaches for emotion recognition in video,"EmoNets: Multimodal deep learning approaches for emotion +recognition in video +Samira Ebrahimi Kahou · Xavier Bouthillier · Pascal Lamblin · Caglar Gulcehre · +Vincent Michalski · Kishore Konda · S´ebastien Jean · Pierre Froumenty · Yann +Dauphin · Nicolas Boulanger-Lewandowski · Raul Chandias Ferrari · Mehdi Mirza · +David Warde-Farley · Aaron Courville · Pascal Vincent · Roland Memisevic · +Christopher Pal · Yoshua Bengio" +744fa8062d0ae1a11b79592f0cd3fef133807a03,Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.,"Aalborg Universitet +Deep Pain +Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi; M. Gonfaus, Josep ; Nasrollahi, Kamal; +Moeslund, Thomas B.; Xavier Roca, F. +Published in: +I E E E Transactions on Cybernetics +DOI (link to publication from Publisher): +0.1109/TCYB.2017.2662199 +Publication date: +Document Version +Accepted author manuscript, peer reviewed version +Link to publication from Aalborg University +Citation for published version (APA): +Rodriguez, P., Cucurull, G., Gonzàlez, J., M. Gonfaus, J., Nasrollahi, K., Moeslund, T. B., & Xavier Roca, F. +(2017). Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. I E E E +Transactions on Cybernetics, 1-11. DOI: 10.1109/TCYB.2017.2662199 +General rights +Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +? Users may download and print one copy of any publication from the public portal for the purpose of private study or research." +743e582c3e70c6ec07094887ce8dae7248b970ad,Face Recognition based on Deep Neural Network,"International Journal of Signal Processing, Image Processing and Pattern Recognition +Vol.8, No.10 (2015), pp.29-38 +http://dx.doi.org/10.14257/ijsip.2015.8.10.04 +Face Recognition based on Deep Neural Network +Li Xinhua,Yu Qian +Shandong Women’s University" +74b0095944c6e29837c208307a67116ebe1231c8,Manifold learning using Euclidean k-nearest neighbor graphs [image processing examples]," beindependentandidenticallydis-tributed(i.i.d.)randomvectorswithvaluesinacompactsubsetof.The(-)nearestneighborof inisgivenby!""$%&(*,.%135 7 5where5 7 5istheusualEuclidean(<=)distanceinbe-tweenvector and .Forgeneralinteger?,the-nearestneighborofapointisdefinedinasimilarway.The-NNgraphputsanedgebetweeneachpointinandits-nearestneighbors.LetBCDBCDFHbethesetof-nearestneighborsof in.Thetotaledgelengthofthe-NNgraphisdefinedas:. +HAL Id: tel-01127217 +https://tel.archives-ouvertes.fr/tel-01127217 +Submitted on 7 Mar 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de +recherche français ou étrangers, des laboratoires" +8f772d9ce324b2ef5857d6e0b2a420bc93961196,Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network,"MAHPOD et al.: CFDRNN +Facial Landmark Point Localization using +Coarse-to-Fine Deep Recurrent Neural Network +Shahar Mahpod, Rig Das, Emanuele Maiorana, Yosi Keller, and Patrizio Campisi," +8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a,Feature Selection with Annealing for Big Data Learning,"Feature Selection with Annealing for Big Data +Learning +Adrian Barbu, Yiyuan She, Liangjing Ding, Gary Gramajo" +8fa3478aaf8e1f94e849d7ffbd12146946badaba,Attributes for Classifier Feedback,"Attributes for Classifier Feedback +Amar Parkash1 and Devi Parikh2 +Indraprastha Institute of Information Technology (Delhi, India) +Toyota Technological Institute (Chicago, US)" +8f9c37f351a91ed416baa8b6cdb4022b231b9085,Generative Adversarial Style Transfer Networks for Face Aging,"Generative Adversarial Style Transfer Networks for Face Aging +Sveinn Palsson +D-ITET, ETH Zurich +Eirikur Agustsson +D-ITET, ETH Zurich" +8f8c0243816f16a21dea1c20b5c81bc223088594,Local Directional Number Based Classification and Recognition of Expressions Using Subspace Methods, +8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09,"A Survey on Human Emotion Recognition Approaches, Databases and Applications","Electronic Letters on Computer Vision and Image Analysis 14(2):24-44; 2015 +A Survey on Human Emotion Recognition Approaches, +Databases and Applications +C.Vinola*, K.Vimaladevi† +* Department of Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli,Tamilnadu,India +Department of Computer Science and Engineering, P.S.R Engineering College, Sivakasi, Tamilnadu,India +Received 7th Aug 2015; accepted 30th Nov 2015" +8f89aed13cb3555b56fccd715753f9ea72f27f05,Attended End-to-end Architecture for Age Estimation from Facial Expression Videos,"Attended End-to-end Architecture for Age +Estimation from Facial Expression Videos +Wenjie Pei, Hamdi Dibeklio˘glu, Member, IEEE, Tadas Baltruˇsaitis and David M.J. Tax" +8fd9c22b00bd8c0bcdbd182e17694046f245335f,Recognizing Facial Expressions in Videos,"Recognizing Facial Expressions in Videos +Lin Su, Matthew Balazsi" +8acdc4be8274e5d189fb67b841c25debf5223840,Improving clustering performance using independent component analysis and unsupervised feature learning,"Gultepe and Makrehchi +Hum. Cent. Comput. Inf. Sci. (2018) 8:25 +https://doi.org/10.1186/s13673-018-0148-3 +RESEARCH +Improving clustering performance +using independent component analysis +nd unsupervised feature learning +Open Access +Eren Gultepe* and Masoud Makrehchi +*Correspondence: +Department of Electrical +nd Computer Engineering, +University of Ontario Institute +of Technology, 2000 Simcoe +St N, Oshawa, ON L1H 7K4, +Canada" +8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,What do you think of my picture? Investigating factors of influence in profile images context perception,"What do you think of my picture? Investigating factors +of influence in profile images context perception +Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid +Heynderickx +To cite this version: +Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid Heynderickx. What do you +think of my picture? Investigating factors of influence in profile images context perception. Human +Vision and Electronic Imaging XX, Mar 2015, San Francisco, United States. Proc. SPIE 9394, Hu- +man Vision and Electronic Imaging XX, 9394, . <10.1117/12.2082817>. +HAL Id: hal-01149535 +https://hal.archives-ouvertes.fr/hal-01149535 +Submitted on 7 May 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est" +8aae23847e1beb4a6d51881750ce36822ca7ed0b,Comparison Between Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron,"Comparison Between Geometry-Based and Gabor-Wavelets-Based +Facial Expression Recognition Using Multi-Layer Perceptron +Zhengyou Zhang +Shigeru Akamatsu + Michael Lyons Michael Schuster + ATR Human Information Processing Research Laboratories + ATR Interpreting Telecommunications Research Laboratories +-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan +INRIA, 2004 route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France +e-mail:" +8a866bc0d925dfd8bb10769b8b87d7d0ff01774d,WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art,"WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art +Saif M. Mohammad and Svetlana Kiritchenko +National Research Council Canada" +8adb2fcab20dab5232099becbd640e9c4b6a905a,Beyond Euclidean Eigenspaces: Bayesian Matching for Visual Recognition,"Beyond Euclidean Eigenspaces: +Bayesian Matching for Visual Recognition +Baback Moghaddam +Alex Pentland +Mitsubishi Electric Research Laboratory +MIT Media Laboratory + Broadway + Ames St. +Cambridge, MA  , USA +Cambridge, MA  , USA" +8a91ad8c46ca8f4310a442d99b98c80fb8f7625f,2D Segmentation Using a Robust Active Shape Model With the EM Algorithm,"D Segmentation Using a Robust Active +Shape Model With the EM Algorithm +Carlos Santiago, Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques" +8aed6ec62cfccb4dba0c19ee000e6334ec585d70,Localizing and Visualizing Relative Attributes,"Localizing and Visualizing Relative Attributes +Fanyi Xiao and Yong Jae Lee" +8a336e9a4c42384d4c505c53fb8628a040f2468e,Detecting Visually Observable Disease Symptoms from Faces,"Wang and Luo EURASIP Journal on Bioinformatics +nd Systems Biology (2016) 2016:13 +DOI 10.1186/s13637-016-0048-7 +R ES EAR CH +Detecting Visually Observable Disease +Symptoms from Faces +Kuan Wang* and Jiebo Luo +Open Access" +7e3367b9b97f291835cfd0385f45c75ff84f4dc5,Improved local binary pattern based action unit detection using morphological and bilateral filters,"Improved Local Binary Pattern Based Action Unit Detection Using +Morphological and Bilateral Filters +Anıl Y¨uce1, Matteo Sorci2 and Jean-Philippe Thiran1 +Signal Processing Laboratory (LTS5) +´Ecole Polytechnique F´ed´erale de Lausanne, +Switzerland +nViso SA +Lausanne, Switzerland" +7ef0cc4f3f7566f96f168123bac1e07053a939b2,Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarité triangulaire en utilisant des réseaux siamois),"Triangular Similarity Metric Learning: a Siamese +Architecture Approach +Lilei Zheng +To cite this version: +Lilei Zheng. Triangular Similarity Metric Learning: a Siamese Architecture Approach. Com- +puter Science [cs]. UNIVERSITE DE LYON, 2016. English. . +HAL Id: tel-01314392 +https://hal.archives-ouvertes.fr/tel-01314392 +Submitted on 11 May 2016 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +7ee53d931668fbed1021839db4210a06e4f33190,What If We Do Not have Multiple Videos of the Same Action? — Video Action Localization Using Web Images,"What if we do not have multiple videos of the same action? — +Video Action Localization Using Web Images +Center for Research in Computer Vision (CRCV), University of Central Florida (UCF) +Waqas Sultani, Mubarak Shah" +7e9df45ece7843fe050033c81014cc30b3a8903a,Audio-visual intent-to-speak detection for human-computer interaction,"AUDIO-VISUAL INTENT-TO-SPEAK DETECTION FOR HUMAN-COMPUTER +INTERACTION +Philippe de Cuetos +Institut Eurecom + , route des Cr^etes, BP   +  Sophia-Antipolis Cedex, FRANCE +Chalapathy Neti, Andrew W. Senior +IBM T.J. Watson Research Center +Yorktown Heights, NY  , USA +cneti,aws" +7ebd323ddfe3b6de8368c4682db6d0db7b70df62,Location-based Face Recognition Using Smart Mobile Device Sensors,"Proceedings of the International Conference on Computer and Information Science and Technology +Ottawa, Ontario, Canada, May 11 – 12, 2015 +Paper No. 111 +Location-based Face Recognition Using Smart Mobile Device +Sensors +Nina Taherimakhsousi, Hausi A. Müller +Department of Computer Science +University of Victoria, Victoria, Canada" +7ed6ff077422f156932fde320e6b3bd66f8ffbcb,State of 3D Face Biometrics for Homeland Security Applications,"State of 3D Face Biometrics for Homeland Security Applications +Anshuman Razdan1, Gerald Farin2, Myung Soo-Bae3 and Mahesh +Chaudhari4" +7e507370124a2ac66fb7a228d75be032ddd083cc,Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2708106, IEEE +Transactions on Affective Computing +Dynamic Pose-Robust Facial Expression +Recognition by Multi-View Pairwise Conditional +Random Forests +Arnaud Dapogny1 and Kevin Bailly1 and S´everine Dubuisson1 +Sorbonne Universit´es, UPMC Univ Paris 06 +CNRS, UMR 7222, F-75005, Paris, France" +10e7dd3bbbfbc25661213155e0de1a9f043461a2,Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video,"Cross Euclidean-to-Riemannian Metric Learning +with Application to Face Recognition from Video +Zhiwu Huang, Member, IEEE, Ruiping Wang, Member, IEEE, Shiguang Shan, Senior Member, IEEE, +Luc Van Gool, Member, IEEE and Xilin Chen, Fellow, IEEE" +10ce3a4724557d47df8f768670bfdd5cd5738f95,Fisher Light-Fields for Face Recognition across Pose and Illumination,"Fihe igh Fied f Face Recgii +Ac e ad  iai +Rah G ai ahew ad Si Bake +The Rbic i e Caegie e Uiveiy +5000 Fbe Ave e ib gh A 15213 +Abac.  ay face ecgii ak he e ad i iai +dii f he be ad gaey iage ae di(cid:11)ee.  he cae + ie gaey  be iage ay be avaiabe each ca ed f +di(cid:11)ee e ad de a di(cid:11)ee i iai. We e a face +ecgii agih which ca e ay  be f gaey iage e + bjec ca ed a abiay e ad de abiay i iai +d ay  be f be iage agai ca ed a abiay e ad +de abiay i iai. The agih eae by eiaig he +Fihe igh (cid:12)ed f he  bjec head f he i  gaey  be +iage. achig bewee he be ad gaey i he efed ig +he Fihe igh (cid:12)ed. +d ci + ay face ecgii ceai he e f he be ad gaey iage ae +di(cid:11)ee. The gaey cai he iage ed d ig aiig f he agih. +The agih ae eed wih he iage i he be e. F exae he" +102e374347698fe5404e1d83f441630b1abf62d9,Facial Image Analysis for Fully Automatic Prediction of Difficult Endotracheal Intubation,"Facial Image Analysis for Fully-Automatic +Prediction of Difficult Endotracheal Intubation +Gabriel L. Cuendet, Student Member, IEEE, Patrick Schoettker, Anıl Y¨uce Student Member, IEEE, Matteo Sorci, +Hua Gao, Christophe Perruchoud, Jean-Philippe Thiran, Senior Member, IEEE" +100641ed8a5472536dde53c1f50fa2dd2d4e9be9,Visual attributes for enhanced human-machine communication,"Visual Attributes for Enhanced Human-Machine Communication* +Devi Parikh1" +101569eeef2cecc576578bd6500f1c2dcc0274e2,Multiaccuracy: Black-Box Post-Processing for Fairness in Classification,"Multiaccuracy: Black-Box Post-Processing for Fairness in +Michael P. Kim∗† +Classification +Amirata Ghorbani∗ +James Zou" +106732a010b1baf13c61d0994552aee8336f8c85,Expanded Parts Model for Semantic Description of Humans in Still Images,"Expanded Parts Model for Semantic Description +of Humans in Still Images +Gaurav Sharma, Member, IEEE, Fr´ed´eric Jurie, and Cordelia Schmid, Fellow, IEEE" +102b27922e9bd56667303f986404f0e1243b68ab,Multiscale recurrent regression networks for face alignment,"Wang et al. Appl Inform (2017) 4:13 +DOI 10.1186/s40535-017-0042-5 +RESEARCH +Multiscale recurrent regression networks +for face alignment +Open Access +Caixun Wang1,2,3, Haomiao Sun1,2,3, Jiwen Lu1,2,3*, Jianjiang Feng1,2,3 and Jie Zhou1,2,3 +*Correspondence: +State Key Lab of Intelligent +Technologies and Systems, +Beijing 100084, People’s +Republic of China +Full list of author information +is available at the end of the +rticle" +10fcbf30723033a5046db791fec2d3d286e34daa,On-Line Cursive Handwriting Recognition: A Survey of Methods and Performances,"On-Line Cursive Handwriting Recognition: A Survey of Methods +nd Performances +Dzulkifli Mohamad* , 2Muhammad Faisal Zafar*, and 3Razib M. Othman* +*Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM) , 81310 +Skudai, Johor, Malaysia." +108b2581e07c6b7ca235717c749d45a1fa15bb24,Using Stereo Matching with General Epipolar Geometry for 2D Face Recognition across Pose,"Using Stereo Matching with General Epipolar +Geometry for 2D Face Recognition +cross Pose +Carlos D. Castillo, Student Member, IEEE, and +David W. Jacobs, Member, IEEE" +10d334a98c1e2a9e96c6c3713aadd42a557abb8b,Scene Text Recognition Using Part-Based Tree-Structured Character Detection,"Scene Text Recognition using Part-based Tree-structured Character Detection +Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang Zhang, Song Gao and Zhong Zhang +State Key Laboratory of Management and Control for Complex Systems, CASIA, Beijing, China" +1048c753e9488daa2441c50577fe5fdba5aa5d7c,Recognising faces in unseen modes: A tensor based approach,"Recognising faces in unseen modes: a tensor based approach +Santu Rana, Wanquan Liu, Mihai Lazarescu and Svetha Venkatesh +{santu.rana, wanquan, m.lazarescu, +Dept. of Computing, Curtin University of Technology +GPO Box U1987, Perth, WA 6845, Australia." +19841b721bfe31899e238982a22257287b9be66a,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018 +SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +RECURRENT NEURAL NETWORKS +V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ +Barcelona Supercomputing Center, ‡Google Inc, +§Universitat Polit`ecnica de Catalunya, ΓColumbia University +{victor.campos," +192723085945c1d44bdd47e516c716169c06b7c0,Vision and Attention Theory Based Sampling for Continuous Facial Emotion Recognition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation +Vision and Attention Theory Based Sampling +for Continuous Facial Emotion Recognition +Albert C. Cruz, Student Member, IEEE, Bir Bhanu, Fellow, IEEE, and +Ninad S. Thakoor, Member, IEEE" +19fb5e5207b4a964e5ab50d421e2549ce472baa8,Online emotional facial expression dictionary,"International Conference on Computer Systems and Technologies - CompSysTech’14 +Online Emotional Facial Expression Dictionary +Léon Rothkrantz" +1962e4c9f60864b96c49d85eb897141486e9f6d1,Locality preserving embedding for face and handwriting digital recognition,"Neural Comput & Applic (2011) 20:565–573 +DOI 10.1007/s00521-011-0577-7 +O R I G I N A L A R T I C L E +Locality preserving embedding for face and handwriting digital +recognition +Zhihui Lai • MingHua Wan • Zhong Jin +Received: 3 December 2008 / Accepted: 11 March 2011 / Published online: 1 April 2011 +Ó Springer-Verlag London Limited 2011 +supervised manifold +the local sub-manifolds." +191674c64f89c1b5cba19732869aa48c38698c84,Face Image Retrieval Using Attribute - Enhanced Sparse Codewords,"International Journal of Advanced Technology in Engineering and Science www.ijates.com +Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550 +FACE IMAGE RETRIEVAL USING ATTRIBUTE - +ENHANCED SPARSE CODEWORDS +E.Sakthivel1 , M.Ashok kumar2 +PG scholar, Communication Systems, Adhiyamaan College of Engineeing,Hosur,(India) +Asst. Prof., Electronics And Communication Engg., Adhiyamaan College of Engg.,Hosur,(India)" +190d8bd39c50b37b27b17ac1213e6dde105b21b8,Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation,"This document is downloaded from DR-NTU, Nanyang Technological +University Library, Singapore. +Title +Mining weakly labeled web facial images for search- +ased face annotation +Author(s) Wang, Dayong; Hoi, Steven C. H.; He, Ying; Zhu, Jianke +Citation +Wang, D., Hoi, S. C. H., He, Y., & Zhu, J. (2014). Mining +weakly labeled web facial images for search-based face +nnotation. IEEE Transactions on Knowledge and Data +Engineering, 26(1), 166-179. +http://hdl.handle.net/10220/18955 +Rights +© 2014 IEEE. Personal use of this material is permitted. +Permission from IEEE must be obtained for all other +uses, in any current or future media, including +reprinting/republishing this material for advertising or +promotional purposes, creating new collective works, for +resale or redistribution to servers or lists, or reuse of any +opyrighted component of this work in other works." +19af008599fb17bbd9b12288c44f310881df951c,Discriminative Local Sparse Representations for Robust Face Recognition,"Discriminative Local Sparse Representations for +Robust Face Recognition +Yi Chen, Umamahesh Srinivas, Thong T. Do, Vishal Monga, and Trac D. Tran" +19296e129c70b332a8c0a67af8990f2f4d4f44d1,Is that you? Metric learning approaches for face identification,"Metric Learning Approaches for Face Identification +Is that you? +M. Guillaumin, J. Verbeek and C. Schmid +LEAR team, INRIA Rhˆone-Alpes, France +Supplementary Material" +19666b9eefcbf764df7c1f5b6938031bcf777191,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data: +Common and Individual Feature Extraction +Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE" +198b6beb53e0e61357825d57938719f614685f75,Vaulted Verification: A Scheme for Revocable Face Recognition,"Vaulted Verification: A Scheme for Revocable Face +Recognition +Michael Wilber +University of Colorado, Colorado Springs" +195d331c958f2da3431f37a344559f9bce09c0f7,Parsing occluded people by flexible compositions,"Parsing Occluded People by Flexible Compositions +Xianjie Chen, Alan Yuille +University of California, Los Angeles. +Figure 1: An illustration of the flexible compositions. Each connected sub- +tree of the full graph (include the full graph itself) is a flexible composition. +The flexible compositions that do not have certain parts are suitable for the +people with those parts occluded. +Figure 2: The absence of body parts evidence can help to predict occlusion. +However, absence of evidence is not evidence of absence. +It can fail in +some challenging scenes. The local image measurements near the occlusion +oundary (i.e., around the right elbow and left shoulder) can reliably provide +evidence of occlusion. +This paper presents an approach to parsing humans when there is signifi- +ant occlusion. We model humans using a graphical model which has a tree +structure building on recent work [1, 6] and exploit the connectivity prior +that, even in presence of occlusion, the visible nodes form a connected sub- +tree of the graphical model. We call each connected subtree a flexible com- +position of object parts. This involves a novel method for learning occlusion +ues. During inference we need to search over a mixture of different flexible" +19c0c7835dba1a319b59359adaa738f0410263e8,Natural Image Statistics and Low-Complexity Feature Selection,"Natural Image Statistics and +Low-Complexity Feature Selection +Manuela Vasconcelos and Nuno Vasconcelos, Senior Member, IEEE" +19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9,FaceNet: A unified embedding for face recognition and clustering,"FaceNet: A Unified Embedding for Face Recognition and Clustering +Florian Schroff +Dmitry Kalenichenko +James Philbin +Google Inc. +Google Inc. +Google Inc." +1910f5f7ac81d4fcc30284e88dee3537887acdf3,Semantic Based Hypergraph Reranking Model for Web Image Search,"Volume 6, Issue 5, May 2016 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +Semantic Based Hypergraph Reranking Model for Web +Image Search +Amol Darkunde, 2Manoj Jalan, 3Yelmar Mahesh, 4Shivadatta Shinde, 5Dnyanda Patil +, 2, 3, 4 B. E. Dept of CSE, 5 Asst. Prof. Dept of CSE +, 2, 3, 4, 5 Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India" +197c64c36e8a9d624a05ee98b740d87f94b4040c,Regularized Greedy Column Subset Selection,"Regularized Greedy Column Subset Selection +Bruno Ordozgoiti*a, Alberto Mozoa, Jes´us Garc´ıa L´opez de Lacalleb +Department of Computer Systems, Universidad Polit´ecnica de Madrid +Department of Applied Mathematics, Universidad Polit´ecnica de Madrid" +19d4855f064f0d53cb851e9342025bd8503922e2,Learning SURF Cascade for Fast and Accurate Object Detection,"Learning SURF Cascade for Fast and Accurate Object Detection +Jianguo Li, Yimin Zhang +Intel Labs China" +193ec7bb21321fcf43bbe42233aed06dbdecbc5c,Automatic 3D Facial Expression Analysis in Videos,"UC Santa Barbara +UC Santa Barbara Previously Published Works +Title +Automatic 3D facial expression analysis in videos +Permalink +https://escholarship.org/uc/item/3g44f7k8 +Authors +Chang, Y +Vieira, M +Turk, M +et al. +Publication Date +005-01-01 +Peer reviewed +eScholarship.org +Powered by the California Digital Library +University of California" +4c6e1840451e1f86af3ef1cb551259cb259493ba,Hand Posture Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE +RECOGNITION +Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +Luis Anton-Canalis +Campus Universitario de Tafira, 35017 Gran Canaria, Spain +Elena Sanchez-Nielsen +Departamento de E.I.O. y Computacion +8271 Universidad de La Laguna, Spain +Keywords: +Image understanding, Gesture recognition, Hand dataset." +4c815f367213cc0fb8c61773cd04a5ca8be2c959,Facial expression recognition using curvelet based local binary patterns,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE +ICASSP 2010" +4c4e49033737467e28aa2bb32f6c21000deda2ef,Improving Landmark Localization with Semi-Supervised Learning,"Improving Landmark Localization with Semi-Supervised Learning +Sina Honari1∗, Pavlo Molchanov2, Stephen Tyree2, Pascal Vincent1,4,5, Christopher Pal1,3, Jan Kautz2 +MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research. +{honaris, +{pmolchanov, styree," +4c81c76f799c48c33bb63b9369d013f51eaf5ada,Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs,"Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job +Candidate Screening from Video CVs +Heysem Kaya1, Furkan G¨urpınar2, and Albert Ali Salah2 +Department of Computer Engineering, Namık Kemal University, Tekirda˘g, Turkey +Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey" +4c1ce6bced30f5114f135cacf1a37b69bb709ea1,Gaze direction estimation by component separation for recognition of Eye Accessing Cues,"Gaze Direction Estimation by Component Separation for +Recognition of Eye Accessing Cues +Ruxandra Vrˆanceanu +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Corneliu Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Laura Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Constantin Vertan +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313" +2661f38aaa0ceb424c70a6258f7695c28b97238a,Multilayer Architectures for Facial Action Unit Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012 +Multilayer Architectures for Facial +Action Unit Recognition +Tingfan Wu, Nicholas J. Butko, Paul Ruvolo, Jacob Whitehill, Marian S. Bartlett, and Javier R. Movellan" +264a84f4d27cd4bca94270620907cffcb889075c,Deep motion features for visual tracking,"Deep Motion Features for Visual Tracking +Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg +Computer Vision Laboratory, Department of Electrical Engineering, Link¨oping University, Sweden" +26a72e9dd444d2861298d9df9df9f7d147186bcd,Collecting and annotating the large continuous action dataset,"DOI 10.1007/s00138-016-0768-4 +ORIGINAL PAPER +Collecting and annotating the large continuous action dataset +Daniel Paul Barrett1 · Ran Xu2 · Haonan Yu1 · Jeffrey Mark Siskind1 +Received: 18 June 2015 / Revised: 18 April 2016 / Accepted: 22 April 2016 / Published online: 21 May 2016 +© The Author(s) 2016. This article is published with open access at Springerlink.com" +266766818dbc5a4ca1161ae2bc14c9e269ddc490,Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules,"Article +Boosting a Low-Cost Smart Home Environment with +Usage and Access Control Rules +Paolo Barsocchi * ID , Antonello Calabrò, Erina Ferro, Claudio Gennaro ID and Eda Marchetti and +Claudio Vairo +Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy; +(A.C.); (E.F.); (C.G.); +(E.M.); (C.V.) +* Correspondence: Tel.: +39-050-315-2965 +Received: 27 April 2018; Accepted: 31 May 2018; Published: 8 June 2018" +265af79627a3d7ccf64e9fe51c10e5268fee2aae,A Mixture of Transformed Hidden Markov Models for Elastic Motion Estimation,"A Mixture of Transformed Hidden Markov +Models for Elastic Motion Estimation +Huijun Di, Linmi Tao, and Guangyou Xu, Senior Member, IEEE" +26af867977f90342c9648ccf7e30f94470d40a73,Joint Gender and Face Recognition System for RGB-D Images with Texture and DCT Features,"IJIRST –International Journal for Innovative Research in Science & Technology| Volume 3 | Issue 04 | September 2016 +ISSN (online): 2349-6010 +Joint Gender and Face Recognition System for +RGB-D Images with Texture and DCT Features +Jesny Antony +PG Student +Department of Computer Science & Information Systems +Federal Institute of Science and Technology, Mookkannoor +PO, Angamaly, Ernakulam, Kerala 683577, India +Prasad J. C. +Associate Professor +Department of Computer Science & Engineering +Federal Institute of Science and Technology, Mookkannoor +PO, Angamaly, Ernakulam, Kerala 683577, India" +26c884829897b3035702800937d4d15fef7010e4,Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation,"IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x +PAPER +Facial Expression Recognition by Supervised Independent +Component Analysis using MAP Estimation +Fan CHEN +, Nonmember and Kazunori KOTANI +, Member +SUMMARY Permutation ambiguity of the classical Inde- +pendent Component Analysis (ICA) may cause problems in fea- +ture extraction for pattern classification. Especially when only a +small subset of components is derived from data, these compo- +nents may not be most distinctive for classification, because ICA +is an unsupervised method. We include a selective prior for de- +mixing coef‌f‌icients into the classical ICA to alleviate the problem. +Since the prior is constructed upon the classification information +from the training data, we refer to the proposed ICA model with +selective prior as a supervised ICA (sICA). We formulated the +learning rule for sICA by taking a Maximum a Posteriori (MAP) +scheme and further derived a fixed point algorithm for learning +the de-mixing matrix. We investigate the performance of sICA" +26ad6ceb07a1dc265d405e47a36570cb69b2ace6,Neural Correlates of Cross-Cultural Adaptation,"RESEARCH AND EXPLOR ATORY +DEVELOPMENT DEPARTMENT +REDD-2015-384 +Neural Correlates of Cross-Cultural +How to Improve the Training and Selection for +Military Personnel Involved in Cross-Cultural +Operating Under Grant #N00014-12-1-0629/113056 +Adaptation +September, 2015 +Interactions +Jonathon Kopecky +Jason Spitaletta +Mike Wolmetz +Alice Jackson +Prepared for: +Office of Naval Research" +26437fb289cd7caeb3834361f0cc933a02267766,Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and Game-Based Development of Thinking Skills in Classroom Settings,"012 International Conference on Management and Education Innovation +IPEDR vol.37 (2012) © (2012) IACSIT Press, Singapore +Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and +Game-Based Development of Thinking Skills in Classroom Settings +Gyöngyvér Molnár 1 + and András Lőrincz 2 +University of Szeged, 2 Eötvös Loránd University" +26e570049aaedcfa420fc8c7b761bc70a195657c,Hybrid Facial Regions Extraction for Micro-expression Recognition System,"J Sign Process Syst +DOI 10.1007/s11265-017-1276-0 +Hybrid Facial Regions Extraction for Micro-expression +Recognition System +Sze-Teng Liong1,2,3 · John See4 · Raphael C.-W. Phan2 · KokSheik Wong5 · +Su-Wei Tan2 +Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017 +© Springer Science+Business Media, LLC 2017" +21ef129c063bad970b309a24a6a18cbcdfb3aff5,Individual and Inter-related Action Unit Detection in Videos for Affect Recognition,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Dr J.-M. Vesin, président du juryProf. J.-Ph. Thiran, Prof. D. Sander, directeurs de thèseProf. M. F. Valstar, rapporteurProf. H. K. Ekenel, rapporteurDr S. Marcel, rapporteurIndividual and Inter-related Action Unit Detection in Videos for Affect RecognitionTHÈSE NO 6837 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 19 FÉVRIER 2016À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 5PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAnıl YÜCE" +218b2c5c9d011eb4432be4728b54e39f366354c1,Enhancing Training Collections for Image Annotation: An Instance-Weighted Mixture Modeling Approach,"Enhancing Training Collections for Image +Annotation: An Instance-Weighted Mixture +Modeling Approach +Neela Sawant, Student Member, IEEE, James Z. Wang, Senior Member, IEEE, Jia Li, Senior Member, IEEE." +2162654cb02bcd10794ae7e7d610c011ce0fb51b,Joint gaze-correction and beautification of DIBR-synthesized human face via dual sparse coding,"978-1-4799-5751-4/14/$31.00 ©2014 IEEE +http://www.skype.com/ +http://www.google.com/hangouts/ +tification, sparse coding" +21f3c5b173503185c1e02a3eb4e76e13d7e9c5bc,Rotation Invariant Real-time Face Detection and Recognition System,"m a s s a c h u s e t t s i n s t i t u t e o f +t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y +Rotation Invariant Real-time +Face Detection and +Recognition System +Purdy Ho +AI Memo 2001-010 +CBCL Memo 197 +May 31, 2001 +© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f +t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u" +214db8a5872f7be48cdb8876e0233efecdcb6061,Semantic-Aware Co-Indexing for Image Retrieval,"Semantic-aware Co-indexing for Image Retrieval +Shiliang Zhang2, Ming Yang1, Xiaoyu Wang1, Yuanqing Lin1, Qi Tian2 +NEC Laboratories America, Inc. +Dept. of CS, Univ. of Texas at San Antonio +Cupertino, CA 95014 +San Antonio, TX 78249" +214ac8196d8061981bef271b37a279526aab5024,Face Recognition Using Smoothed High-Dimensional Representation,"Face Recognition Using Smoothed High-Dimensional +Representation +Juha Ylioinas, Juho Kannala, Abdenour Hadid, and Matti Pietik¨ainen +Center for Machine Vision Research, PO Box 4500, +FI-90014 University of Oulu, Finland" +213a579af9e4f57f071b884aa872651372b661fd,Automatic and Efficient Human Pose Estimation for Sign Language Videos,"Int J Comput Vis +DOI 10.1007/s11263-013-0672-6 +Automatic and Efficient Human Pose Estimation for Sign +Language Videos +James Charles · Tomas Pfister · Mark Everingham · +Andrew Zisserman +Received: 4 February 2013 / Accepted: 29 October 2013 +© Springer Science+Business Media New York 2013" +21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1,Transductive VIS-NIR face matching,"978-1-4673-2533-2/12/$26.00 ©2012 IEEE +ICIP 2012" +21b16df93f0fab4864816f35ccb3207778a51952,Recognition of Static Gestures Applied to Brazilian Sign Language (Libras),"Recognition of Static Gestures applied to Brazilian Sign Language (Libras) +Igor L. O. Bastos +Math Institute +Michele F. Angelo, Angelo C. Loula +Department of Technology, Department of Exact Sciences +Federal University of Bahia (UFBA), +State University of Feira de Santana (UEFS) +Salvador, Brazil +Feira de Santana, Brazil" +4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27,Topological principal component analysis for face encoding and recognition,"Topological Principal Component Analysis for +face encoding and recognition +Albert Pujol , Jordi Vitri(cid:18)a, Felipe Lumbreras, +Juan J. Villanueva +Computer Vision Center and Departament d’Inform(cid:18)atica, Edi(cid:12)ci O, Universitat +Aut(cid:18)onoma de Barcelona  , Cerdanyola, Spain" +4da735d2ed0deeb0cae4a9d4394449275e316df2,"The rhythms of head, eyes and hands at intersections","Gothenburg, Sweden, June 19-22, 2016 +978-1-5090-1820-8/16/$31.00 ©2016 IEEE" +4d530a4629671939d9ded1f294b0183b56a513ef,Facial Expression Classification Method Based on Pseudo Zernike Moment and Radial Basis Function Network,"International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012 +Facial Expression Classification Method Based on Pseudo +Zernike Moment and Radial Basis Function Network +Tran Binh Long, Le Hoang Thai, and Tran Hanh" +4d2975445007405f8cdcd74b7fd1dd547066f9b8,Image and Video Processing for Affective Applications,"Image and Video Processing +for Affective Applications +Maja Pantic and George Caridakis" +4db9e5f19366fe5d6a98ca43c1d113dac823a14d,"Are 1, 000 Features Worth A Picture? Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers","Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers +Are 1,000 Features Worth A Picture? +Vikram Mohanty, David Thames, Kurt Luther +Department of Computer Science and Center for Human-Computer Interaction +Virginia Tech, Arlington, VA, USA" +4de757faa69c1632066391158648f8611889d862,Review of Face Recognition Technology Using Feature Fusion Vector,"International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-3 , March- 2016] +ISSN: 2349-6495 +Review of Face Recognition Technology Using +Feature Fusion Vector +Shrutika Shukla, Prof. Anuj Bhargav, Prof. Prashant Badal +Department of Electronics and Communication, S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India" +4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11,Largest center-specific margin for dimension reduction,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017" +4d6ad0c7b3cf74adb0507dc886993e603c863e8c,Human Activity Recognition Based on Wearable Sensor Data : A Standardization of the State-ofthe-Art,"Human Activity Recognition Based on Wearable +Sensor Data: A Standardization of the +State-of-the-Art +Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz +Smart Surveillance Interest Group, Computer Science Department +Universidade Federal de Minas Gerais, Brazil +Email: {arturjordao, antonio.nazare, jessicasena," +4dca3d6341e1d991c902492952e726dc2a443d1c,Learning towards Minimum Hyperspherical Energy,"Learning towards Minimum Hyperspherical Energy +Weiyang Liu1,*, Rongmei Lin2,*, Zhen Liu1,*, Lixin Liu3,*, Zhiding Yu4, Bo Dai1,5, Le Song1,6 +Georgia Institute of Technology 2Emory University +South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial" +4d0ef449de476631a8d107c8ec225628a67c87f9,Face system evaluation toolkit: Recognition is harder than it seems,"© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE +must be obtained for all other uses, in any current or future media, including +reprinting/republishing this material for advertising or promotional purposes, +reating new collective works, for resale or redistribution to servers or lists, or +reuse of any copyrighted component of this work in other works. +Pre-print of article that appeared at BTAS 2010. +The published article can be accessed from: +http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517" +4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f,Deep multi-frame face super-resolution,"Deep multi-frame face super-resolution +Evgeniya Ustinova, Victor Lempitsky +October 17, 2017" +4df3143922bcdf7db78eb91e6b5359d6ada004d2,The Chicago face database: A free stimulus set of faces and norming data.,"Behav Res (2015) 47:1122–1135 +DOI 10.3758/s13428-014-0532-5 +The Chicago face database: A free stimulus set of faces +nd norming data +Debbie S. Ma & Joshua Correll & Bernd Wittenbrink +Published online: 13 January 2015 +# Psychonomic Society, Inc. 2015" +75879ab7a77318bbe506cb9df309d99205862f6c,Analysis of emotion recognition from facial expressions using spatial and transform domain methods,"Analysis Of Emotion Recognition From Facial +Expressions Using Spatial And Transform Domain +Methods +Ms. P. Suja* and Dr. Shikha Tripathi" +75503aff70a61ff4810e85838a214be484a674ba,Improved facial expression recognition via uni-hyperplane classification,"Improved Facial Expression Recognition via Uni-Hyperplane Classification +S.W. Chew∗, S. Lucey†, P. Lucey‡, S. Sridharan∗, and J.F. Cohn‡" +75308067ddd3c53721430d7984295838c81d4106,Rapid Facial Reactions in Response to Facial Expressions of Emotion Displayed by Real Versus Virtual Faces,"Article +Rapid Facial Reactions +in Response to Facial +Expressions of Emotion +Displayed by Real Versus +Virtual Faces +i-Perception +018 Vol. 9(4), 1–18 +! The Author(s) 2018 +DOI: 10.1177/2041669518786527 +journals.sagepub.com/home/ipe +Leonor Philip, Jean-Claude Martin and Ce´ line Clavel +LIMSI, CNRS, University of Paris-Sud, Orsay, France" +759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,Attribute and simile classifiers for face verification,"Attribute and Simile Classifiers for Face Verification +Neeraj Kumar +Alexander C. Berg +Peter N. Belhumeur +Columbia University∗ +Shree K. Nayar" +75859ac30f5444f0d9acfeff618444ae280d661d,Multibiometric Cryptosystems Based on Feature-Level Fusion,"Multibiometric Cryptosystems based on Feature +Level Fusion +Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE" +758d7e1be64cc668c59ef33ba8882c8597406e53,"AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild","IEEE TRANSACTIONS ON AFFECTIVE COMPUTING +AffectNet: A Database for Facial Expression, +Valence, and Arousal Computing in the Wild +Ali Mollahosseini, Student Member, IEEE, Behzad Hasani, Student Member, IEEE, +nd Mohammad H. Mahoor, Senior Member, IEEE" +7553fba5c7f73098524fbb58ca534a65f08e91e7,A Practical Approach for Determination of Human Gender & Age,"Harpreet Kaur Bhatia et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.6, June- 2014, pg. 816-824 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 3, Issue. 6, June 2014, pg.816 – 824 +RESEARCH ARTICLE +A Practical Approach for Determination +of Human Gender & Age +Harpreet Kaur Bhatia1, Ahsan Hussain2 +CSE Dept. & CSVTU University, India +CSE Dept. & CSVTU University, India" +75249ebb85b74e8932496272f38af274fbcfd696,Face Identification in Large Galleries,"Face Identification in Large Galleries +Rafael H. Vareto, Filipe Costa, William Robson Schwartz +Smart Surveillance Interest Group, Department of Computer Science +Universidade Federal de Minas Gerais, Belo Horizonte, Brazil" +81a142c751bf0b23315fb6717bc467aa4fdfbc92,Pairwise Trajectory Representation for Action Recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017" +81bfe562e42f2eab3ae117c46c2e07b3d142dade,A Hajj And Umrah Location Classification System For Video Crowded Scenes,"A Hajj And Umrah Location Classification System For Video +Crowded Scenes +Hossam M. Zawbaa† +Salah A. Aly†‡ +Adnan A. Gutub† +Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA +College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA" +81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,Comparison of Face Recognition Neural Networks,"UNIVERSITY OF TARTU +FACULTY OF SCIENCE AND TECHNOLOGY +Institute of Computer Science +Computer Science +Zepp Uibo +Comparison of Face Recognition +Neural Networks +Bachelor's thesis (6 ECST) +Supervisor: Tambet Matiisen +Tartu 2016" +8147ee02ec5ff3a585dddcd000974896cb2edc53,Angular Embedding: A Robust Quadratic Criterion,"Angular Embedding: +A Robust Quadratic Criterion +Stella X. Yu, Member," +8199803f476c12c7f6c0124d55d156b5d91314b6,The iNaturalist Species Classification and Detection Dataset,"The iNaturalist Species Classification and Detection Dataset +Grant Van Horn1 Oisin Mac Aodha1 Yang Song2 Yin Cui3 Chen Sun2 +Alex Shepard4 Hartwig Adam2 +Pietro Perona1 +Serge Belongie3 +Caltech +Google +Cornell Tech +iNaturalist" +81706277ed180a92d2eeb94ac0560f7dc591ee13,Emotion based Contextual Semantic Relevance Feedback in Multimedia Information Retrieval,"International Journal of Computer Applications (0975 – 8887) +Volume 55– No.15, October 2012 +Emotion based Contextual Semantic Relevance +Feedback in Multimedia Information Retrieval +Karm Veer Singh +Department of Computer Engineering, Indian +Institute of Technology, Banaras Hindu +University,Varanasi, 221005, India +Anil K. Tripathi +Department of Computer Engineering, Indian +Institute of Technology, Banaras Hindu +University,Varanasi, 221005, India +find some +issued by a user" +81b2a541d6c42679e946a5281b4b9dc603bc171c,Semi-supervised learning with committees: exploiting unlabeled data using ensemble learning algorithms,"Universit¨at Ulm | 89069 Ulm | Deutschland +Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +Institut f¨ur Neuroinformatik +Direktor: Prof. Dr. G¨unther Palm +Semi-Supervised Learning with Committees: +Exploiting Unlabeled Data Using Ensemble +Learning Algorithms +Dissertation zur Erlangung des Doktorgrades +Doktor der Naturwissenschaften (Dr. rer. nat.) +der Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +der Universit¨at Ulm +vorgelegt von +Mohamed Farouk Abdel Hady +us Kairo, ¨Agypten +Ulm, Deutschland" +8160b3b5f07deaa104769a2abb7017e9c031f1c1,Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification,"Exploiting Discriminant Information in Nonnegative +Matrix Factorization With Application +to Frontal Face Verification +Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, Ioan Buciu, and Ioannis Pitas, Senior Member, IEEE" +814d091c973ff6033a83d4e44ab3b6a88cc1cb66,The EU-Emotion Stimulus Set: A validation study.,"Behav Res (2016) 48:567–576 +DOI 10.3758/s13428-015-0601-4 +The EU-Emotion Stimulus Set: A validation study +Helen O’Reilly 1,2 & Delia Pigat 1 & Shimrit Fridenson 5 & Steve Berggren 3,4 & Shahar Tal 5 & +Ofer Golan 5 & Sven Bölte 3,4 & Simon Baron-Cohen 1,6 & Daniel Lundqvist 3 +Published online: 30 September 2015 +# Psychonomic Society, Inc. 2015" +816eff5e92a6326a8ab50c4c50450a6d02047b5e,fLRR: Fast Low-Rank Representation Using Frobenius Norm,"fLRR: Fast Low-Rank Representation Using +Frobenius Norm +Haixian Zhang, Zhang Yi, and Xi Peng +Low Rank Representation (LRR) intends to find the representation +with lowest-rank of a given data set, which can be formulated as a +rank minimization problem. Since the rank operator is non-convex and +discontinuous, most of the recent works use the nuclear norm as a convex +relaxation. This letter theoretically shows that under some conditions, +Frobenius-norm-based optimization problem has an unique solution that +is also a solution of the original LRR optimization problem. In other +words, it is feasible to apply Frobenius-norm as a surrogate of the +nonconvex matrix rank function. This replacement will largely reduce the +time-costs for obtaining the lowest-rank solution. Experimental results +show that our method (i.e., fast Low Rank Representation, fLRR), +performs well in terms of accuracy and computation speed in image +lustering and motion segmentation compared with nuclear-norm-based +LRR algorithm. +Introduction: Given a data set X ∈ Rm×n(m < n) composed of column +vectors, let A be a data set composed of vectors with the same dimension +s those in X. Both X and A can be considered as matrices. A linear" +8149c30a86e1a7db4b11965fe209fe0b75446a8c,Semi-supervised multiple instance learning based domain adaptation for object detection,"Semi-Supervised Multiple Instance Learning based +Domain Adaptation for Object Detection +Siemens Corporate Research +Siemens Corporate Research +Siemens Corporate Research +Amit Kale +Bangalore +Chhaya Methani +Bangalore +{chhaya.methani, +Rahul Thota +Bangalore +rahul.thota," +86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663,Benchmarks for Cloud Robotics,"Benchmarks for Cloud Robotics +Arjun Singh +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-142 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-142.html +August 12, 2016" +86b69b3718b9350c9d2008880ce88cd035828432,Improving Face Image Extraction by Using Deep Learning Technique,"Improving Face Image Extraction by Using Deep Learning Technique +Zhiyun Xue, Sameer Antani, L. Rodney Long, Dina Demner-Fushman, George R. Thoma +National Library of Medicine, NIH, Bethesda, MD" +86904aee566716d9bef508aa9f0255dc18be3960,Learning Anonymized Representations with Adversarial Neural Networks,"Learning Anonymized Representations with +Adversarial Neural Networks +Cl´ement Feutry, Pablo Piantanida, Yoshua Bengio, and Pierre Duhamel" +867e709a298024a3c9777145e037e239385c0129,Analytical Representation of Undersampled Face Recognition Approach Based on Dictionary Learning and Sparse Representation,"INTERNATIONAL JOURNAL +OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 2 / FEB 2017 +ANALYTICAL REPRESENTATION OF UNDERSAMPLED FACE +RECOGNITION APPROACH BASED ON DICTIONARY LEARNING +AND SPARSE REPRESENTATION +Murala Sandeep1 A.Mallikarjuna Reddy2 P.Rajashaker Reddy3 Dr. G. Vishnu murthy4 +(M.Tech)1, Assistant Professor2, Assistant Professor3, HOD of CSE Department4 +Anurag group of institutions Ghatkesar, Ranga Reddy, Hyderabad, India" +869a2fbe42d3fdf40ed8b768edbf54137be7ac71,Relative Attributes for Enhanced Human-Machine Communication,"Relative Attributes for Enhanced Human-Machine Communication +Devi Parikh1, Adriana Kovashka3, Amar Parkash2, and Kristen Grauman3 +Toyota Technological Institute, Chicago +Indraprastha Institute of Information Technology, Delhi +University of Texas, Austin" +86c053c162c08bc3fe093cc10398b9e64367a100,Cascade of forests for face alignment,"Cascade of Forests for Face Alignment +Heng Yang, Changqing Zou, Ioannis Patras" +861802ac19653a7831b314cd751fd8e89494ab12,"Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications","Marcin Grzegorzek, Christian Theobalt, Reinhard Koch, +Andreas Kolb +Time-of-Flight and Depth Imaging. Sensors, Algorithms +nd Applications: Dagstuhl Seminar 2012 and GCPR +Workshop on Imaging New Modalities (Lecture ... Vision, +Pattern Recognition, and Graphics) +Publisher: Springer; 2013 edition +(November 8, 2013) +Language: English +Pages: 320 +ISBN: 978-3642449635 +Size: 20.46 MB +Format: PDF / ePub / Kindle +Cameras for 3D depth imaging, using +either time-of-flight (ToF) or +structured light sensors, have received +lot of attention recently and have +een improved considerably over the +last few years. The present +techniques..." +861b12f405c464b3ffa2af7408bff0698c6c9bf0,An Effective Technique for Removal of Facial Dupilcation by SBFA,"International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 +Volume: 3 Issue: 5 +3337 - 3342 +_______________________________________________________________________________________________ +An Effective Technique for Removal of Facial Dupilcation by SBFA +Miss. Deepika B. Patil +Computer Department, +GHRCEM, +Pune, India +Dr. Ayesha Butalia +Computer Department, +GHRCEM, +Pune, India" +86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6,The Kinetics Human Action Video Dataset,"The Kinetics Human Action Video Dataset +Will Kay +Jo˜ao Carreira +Karen Simonyan +Brian Zhang +Chloe Hillier +Sudheendra Vijayanarasimhan +Fabio Viola +Tim Green +Trevor Back +Paul Natsev +Mustafa Suleyman +Andrew Zisserman" +86b6de59f17187f6c238853810e01596d37f63cd,Competitive Representation Based Classification Using Facial Noise Detection,"(IJACSA) International Journal of Advanced Computer Science and Applications, +Vol. 7, No. 3, 2016 +Competitive Representation Based Classification +Using Facial Noise Detection +Tao Liu +Ying Liu +Chongqing Key Laboratory of Computational Intelligence +College of Computer Science and Technology, Chongqing +Chongqing Key Laboratory of Computational Intelligence +College of Computer Science and Technology, Chongqing +University of Posts and Telecommunications +University of Posts and Telecommunications +Chongqing, China +Chongqing, China +Cong Li +Chao Li +Chongqing Key Laboratory of Computational Intelligence +College of Computer Science and Technology, Chongqing +Chongqing Key Laboratory of Computational Intelligence +College of Computer Science and Technology, Chongqing" +86b105c3619a433b6f9632adcf9b253ff98aee87,A Mutual Information based Face Clustering Algorithm for Movies,"­4244­0367­7/06/$20.00 ©2006 IEEE +ICME 2006" +72a87f509817b3369f2accd7024b2e4b30a1f588,Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints,"Fault diagnosis of a railway device using semi-supervised +independent factor analysis with mixing constraints +Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin +To cite this version: +Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin. Fault diagnosis of a railway device +using semi-supervised independent factor analysis with mixing constraints. Pattern Analysis and +Applications, Springer Verlag, 2012, 15 (3), pp.313-326. +HAL Id: hal-00750589 +https://hal.archives-ouvertes.fr/hal-00750589 +Submitted on 11 Nov 2012 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de" +72a00953f3f60a792de019a948174bf680cd6c9f,Understanding the role of facial asymmetry in human face identification,"Stat Comput (2007) 17:57–70 +DOI 10.1007/s11222-006-9004-9 +Understanding the role of facial asymmetry in human face +identification +Sinjini Mitra · Nicole A. Lazar · Yanxi Liu +Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007 +C(cid:1) Springer Science + Business Media, LLC 2007" +727ecf8c839c9b5f7b6c7afffe219e8b270e7e15,Leveraging Geo-referenced Digital Photographs a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"LEVERAGING GEO-REFERENCED DIGITAL PHOTOGRAPHS +A DISSERTATION +SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +AND THE COMMITTEE ON GRADUATE STUDIES +OF STANFORD UNIVERSITY +IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +FOR THE DEGREE OF +DOCTOR OF PHILOSOPHY +Mor Naaman +July 2005" +72ecaff8b57023f9fbf8b5b2588f3c7019010ca7,Facial Keypoints Detection,"Facial Keypoints Detection +Shenghao Shi" +72591a75469321074b072daff80477d8911c3af3,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data: +Common and Individual Feature Extraction +Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE" +729a9d35bc291cc7117b924219bef89a864ce62c,Recognizing Material Properties from Images,"Recognizing Material Properties from Images +Gabriel Schwartz and Ko Nishino, Senior Member, IEEE" +721d9c387ed382988fce6fa864446fed5fb23173,Assessing Facial Expressions in Virtual Reality Environments, +72c0c8deb9ea6f59fde4f5043bff67366b86bd66,Age progression in Human Faces : A Survey,"Age progression in Human Faces : A Survey +Narayanan Ramanathan, Rama Chellappa and Soma Biswas" +72f4aaf7e2e3f215cd8762ce283988220f182a5b,Active illumination and appearance model for face alignment,"Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010, c(cid:2) T ¨UB˙ITAK +doi:10.3906/elk-0906-48 +Active illumination and appearance model for face +lignment +Fatih KAHRAMAN1, Muhittin G ¨OKMEN 2, Sune DARKNER3, Rasmus LARSEN3 +Institute of Informatics, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY +Department of Computer Engineering, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY +DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK +e-mail: +e-mail: +e-mail: {sda," +72a55554b816b66a865a1ec1b4a5b17b5d3ba784,Real-Time Face Identification via CNN and Boosted Hashing Forest,"Real-Time Face Identification +via CNN +nd Boosted Hashing Forest +Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita Kostromov +State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia +IEEE Computer Society Workshop on Biometrics +In conjunction with CVPR 2016, June 26, 2016" +72bf9c5787d7ff56a1697a3389f11d14654b4fcf,Robust Face Recognition Using Symmetric Shape-from-Shading,"RobustFaceRecognitionUsing +SymmetricShape-from-Shading +W.Zhao +RamaChellappa +CenterforAutomationResearchand +ElectricalandComputerEngineeringDepartment +UniversityofMaryland +CollegePark,MD- +ThesupportoftheO(cid:14)ceofNavalResearchunderGrantN- --isgratefullyacknowledged.DRAFT" +4414a328466db1e8ab9651bf4e0f9f1fe1a163e4,Weighted voting of sparse representation classifiers for facial expression recognition,"© EURASIP, 2010 ISSN 2076-1465 +8th European Signal Processing Conference (EUSIPCO-2010) +INTRODUCTION" +4439746eeb7c7328beba3f3ef47dc67fbb52bcb3,YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST,"YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST . . . +An Efficient Face Detection Method Using Adaboost and Facial Parts +Yasaman Heydarzadeh, Abolfazl Toroghi Haghighat +Computer, IT and Electronic department +Azad University of Qazvin +Tehran, Iran +qiau.ac.ir ," +446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03,A Pose-Adaptive Constrained Local Model for Accurate Head Pose Tracking,"A Pose-Adaptive Constrained Local Model For +Accurate Head Pose Tracking +Lucas Zamuner +Eikeo +1 rue Leon Jouhaux, +F-75010, Paris, France +Kevin Bailly +Sorbonne Universit´es +UPMC Univ Paris 06 +CNRS UMR 7222, ISIR +F-75005, Paris, France +Erwan Bigorgne +Eikeo +1 rue Leon Jouhaux, +F-75010, Paris, France" +44b1399e8569a29eed0d22d88767b1891dbcf987,Learning Multi-modal Latent Attributes,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Learning Multi-modal Latent Attributes +Yanwei Fu, Timothy M. Hospedales, Tao Xiang and Shaogang Gong" +446dc1413e1cfaee0030dc74a3cee49a47386355,Recent Advances in Zero-shot Recognition,"Recent Advances in Zero-shot Recognition +Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang Xue, Leonid Sigal, and Shaogang Gong" +44a3ec27f92c344a15deb8e5dc3a5b3797505c06,A Taxonomy of Part and Attribute Discovery Techniques,"A Taxonomy of Part and Attribute Discovery +Techniques +Subhransu Maji" +44dd150b9020b2253107b4a4af3644f0a51718a3,An Analysis of the Sensitivity of Active Shape Models to Initialization When Applied to Automatic Facial Landmarking,"An Analysis of the Sensitivity of Active Shape +Models to Initialization when Applied to Automatic +Facial Landmarking +Keshav Seshadri, Student Member, IEEE and Marios Savvides, Member, IEEE" +447d8893a4bdc29fa1214e53499ffe67b28a6db5,Electronic Transport in Quantum Confined Systems,"THÈSEPour obtenir le titre deDOCTEUR DE L’UNIVERSITÉSpécialitéSCIENCES DES MATÉRIAUXParMaxime BERTHEElectronic transport in quantum confined systemsSoutenue le 11 décembre 2007 devant la commission d’examen composée de:B. DJAFARI-ROUHANIS. ROUSSETD. RODITCHEVF. CHARRAD. STIÉVENARDH. SHIGEKAWAB. GRANDIDIERPrésidentRapporteurRapporteurExaminateurDirecteur de thèseCo-directeur de thèseCo-directeur de thèsel’Université des Sciences et Technologies de LilleEcole Doctorale Sciences de la Matière, du Rayonnement et de l’EnvironnementPrésentée à" +44f65e3304bdde4be04823fd7ca770c1c05c2cef,On the use of phase of the Fourier transform for face recognition under variations in illumination,"SIViP +DOI 10.1007/s11760-009-0125-4 +ORIGINAL PAPER +On the use of phase of the Fourier transform for face recognition +under variations in illumination +Anil Kumar Sao · B. Yegnanarayana +Received: 17 November 2008 / Revised: 20 February 2009 / Accepted: 7 July 2009 +© Springer-Verlag London Limited 2009" +447a5e1caf847952d2bb526ab2fb75898466d1bc,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018 +LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +INATIVE AND MINIMUM INFORMATION LOSS PRIORS +Anonymous authors +Paper under double-blind review" +2a7bca56e2539c8cf1ae4e9da521879b7951872d,Exploiting Unrelated Tasks in Multi-Task Learning,"Exploiting Unrelated Tasks in Multi-Task Learning +Anonymous Author 1 +Unknown Institution 1 +Anonymous Author 2 +Unknown Institution 2 +Anonymous Author 3 +Unknown Institution 3" +2a0efb1c17fbe78470acf01e4601a75735a805cc,Illumination-Insensitive Face Recognition Using Symmetric Shape-from-Shading,"Illumination-InsensitiveFaceRecognitionUsing +SymmetricShape-from-Shading +WenYiZhao +RamaChellappa +CenterforAutomationResearch +UniversityofMaryland,CollegePark,MD-" +2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c,Robust Registration and Geometry Estimation from Unstructured Facial Scans,"Robust Registration and Geometry Estimation from Unstructured +Facial Scans +Maxim Bazik1 and Daniel Crispell2" +2ae139b247057c02cda352f6661f46f7feb38e45,Combining modality specific deep neural networks for emotion recognition in video,"Combining Modality Specific Deep Neural Networks for +Emotion Recognition in Video +Samira Ebrahimi Kahou1, Christopher Pal1, Xavier Bouthillier2, Pierre Froumenty1, +Ça˘glar Gülçehre2,∗ , Roland Memisevic2, Pascal Vincent2, Aaron Courville2, & Yoshua Bengio2 +École Polytechique de Montréal, Université de Montréal, Montréal, Canada +Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada +{samira.ebrahimi-kahou, christopher.pal, +{bouthilx, gulcehrc, memisevr, vincentp, courvila," +2ad0ee93d029e790ebb50574f403a09854b65b7e,Acquiring linear subspaces for face recognition under variable lighting,"Acquiring Linear Subspaces for Face +Recognition under Variable Lighting +Kuang-Chih Lee, Student Member, IEEE, Jeffrey Ho, Member, IEEE, and +David Kriegman, Senior Member, IEEE" +2ff9618ea521df3c916abc88e7c85220d9f0ff06,Facial Tic Detection Using Computer Vision,"Facial Tic Detection Using Computer Vision +Christopher D. Leveille +Advisor: Prof. Aaron Cass +March 20, 2014" +2fda461869f84a9298a0e93ef280f79b9fb76f94,OpenFace: An open source facial behavior analysis toolkit,"OpenFace: an open source facial behavior analysis toolkit +Tadas Baltruˇsaitis +Peter Robinson +Louis-Philippe Morency" +2ffcd35d9b8867a42be23978079f5f24be8d3e35,Satellite based Image Processing using Data mining,"ISSN XXXX XXXX © 2018 IJESC +Research Article Volume 8 Issue No.6 +Satellite based Image Processing using Data mining +E.Malleshwari1, S.Nirmal Kumar2, J.Dhinesh3 +Professor1, Assistant Professor2, PG Scholar3 +Department of Information Technology1, 2, Master of Computer Applications3 +Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India" +2f7e9b45255c9029d2ae97bbb004d6072e70fa79,cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey,"Noname manuscript No. +(will be inserted by the editor) +vpaper.challenge in 2015 +A review of CVPR2015 and DeepSurvey +Hirokatsu Kataoka · Yudai Miyashita · Tomoaki Yamabe · Soma +Shirakabe · Shin’ichi Sato · Hironori Hoshino · Ryo Kato · Kaori Abe · +Takaaki Imanari · Naomichi Kobayashi · Shinichiro Morita · Akio +Nakamura +Received: date / Accepted: date" +2f489bd9bfb61a7d7165a2f05c03377a00072477,Structured Semi-supervised Forest for Facial Landmarks Localization with Face Mask Reasoning,"JIA, YANG: STRUCTURED SEMI-SUPERVISED FOREST +Structured Semi-supervised Forest for +Facial Landmarks Localization with Face +Mask Reasoning +Department of Computer Science +The Univ. of Hong Kong, HK +School of EECS +Queen Mary Univ. of London, UK +Xuhui Jia1 +Heng Yang2 +Angran Lin1 +Kwok-Ping Chan1 +Ioannis Patras2" +2f59f28a1ca3130d413e8e8b59fb30d50ac020e2,Children Gender Recognition Under Unconstrained Conditions Based on Contextual Information,"Children Gender Recognition Under Unconstrained +Conditions Based on Contextual Information +Riccardo Satta, Javier Galbally and Laurent Beslay +Joint Research Centre, European Commission, Ispra, Italy +Email:" +2f78e471d2ec66057b7b718fab8bfd8e5183d8f4,An Investigation of a New Social Networks Contact Suggestion Based on Face Recognition Algorithm,"SOFTWARE ENGINEERING +VOLUME: 14 | NUMBER: 5 | 2016 | DECEMBER +An Investigation of a New Social Networks +Contact Suggestion Based on Face Recognition +Algorithm +Ivan ZELINKA1,2, Petr SALOUN 2, Jakub STONAWSKI 2, Adam ONDREJKA2 +Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics +Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman +Department of Computer Science, Faculty of Electrical Engineering and Computer Science, +VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic +DOI: 10.15598/aeee.v14i5.1116" +2f88d3189723669f957d83ad542ac5c2341c37a5,Attribute-correlated local regions for deep relative attributes learning,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018 +Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021." +2fda164863a06a92d3a910b96eef927269aeb730,Names and faces in the news,"Names and Faces in the News +Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire, +Ryan White, Yee-Whye Teh, Erik Learned-Miller and D.A. Forsyth +Computer Science Division +U.C. Berkeley +Berkeley, CA 94720" +2f8ef26bfecaaa102a55b752860dbb92f1a11dc6,A Graph Based Approach to Speaker Retrieval in Talk Show Videos with Transcript-Based Supervision,"A Graph Based Approach to Speaker Retrieval in Talk +Show Videos with Transcript-Based Supervision +Yina Han 1, Guizhong Liu, Hichem Sahbi, Gérard Chollet" +2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd,Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-Level Fusion,"Article +Robust Face Recognition Using the Deep C2D-CNN +Model Based on Decision-Level Fusion +Jing Li 1,2,†, Tao Qiu 3,†, Chang Wen 3,*, Kai Xie 1,2 and Fang-Qing Wen 1,2 +School of Electronic and Information, Yangtze University, Jingzhou 434023, China; +(J.L.); (K.X.); (F-Q.W.) +National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University, +Jingzhou 434023, China +School of Computer Science, Yangtze University, Jingzhou 434023, China; +* Correspondence: Tel.: +86-136-9731-5482 +These authors contributed equally to this work. +Received: 20 May 2018; Accepted: 25 June 2018; Published: 28 June 2018" +2f184c6e2c31d23ef083c881de36b9b9b6997ce9,Polichotomies on Imbalanced Domains by One-per-Class Compensated Reconstruction Rule,"Polichotomies on Imbalanced Domains +y One-per-Class Compensated Reconstruction Rule +Roberto D’Ambrosio and Paolo Soda +Integrated Research Centre, Universit´a Campus Bio-Medico of Rome, Rome, Italy" +2f13dd8c82f8efb25057de1517746373e05b04c4,Evaluation of state-of-the-art algorithms for remote face recognition,"EVALUATION OF STATE-OF-THE-ART ALGORITHMS FOR REMOTE FACE +RECOGNITION +Jie Ni and Rama Chellappa +Department of Electrical and Computer Engineering and Center for Automation Research, University +of Maryland, College Park, MD 20742, USA" +2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475,A novel approach to personal photo album representation and management,"A novel approach to personal photo album representation +nd management +Edoardo Ardizzone, Marco La Cascia, and Filippo Vella +Universit`a di Palermo - Dipartimento di Ingegneria Informatica +Viale delle Scienze, 90128, Palermo, Italy" +2f882ceaaf110046e63123b495212d7d4e99f33d,High Frequency Component Compensation based Super-Resolution Algorithm for Face Video Enhancement,"High Frequency Component Compensation based Super-resolution +Algorithm for Face Video Enhancement +Junwen Wu, Mohan Trivedi, Bhaskar Rao +CVRR Lab, UC San Diego, La Jolla, CA 92093, USA" +2f95340b01cfa48b867f336185e89acfedfa4d92,Face expression recognition with a 2-channel Convolutional Neural Network,"Face Expression Recognition with a 2-Channel +Convolutional Neural Network +Dennis Hamester, Pablo Barros, Stefan Wermter +University of Hamburg — Department of Informatics +Vogt-K¨olln-Straße 30, 22527 Hamburg, Germany +http://www.informatik.uni-hamburg.de/WTM/" +2faa09413162b0a7629db93fbb27eda5aeac54ca,Quantifying how lighting and focus affect face recognition performance,"NISTIR 7674 +Quantifying How Lighting and Focus +Affect Face Recognition Performance +Phillips, P. J. +Beveridge, J. R. +Draper, B. +Bolme, D. +Givens, G. H. +Lui, Y. M." +433bb1eaa3751519c2e5f17f47f8532322abbe6d,Face Recognition, +43bb20ccfda7b111850743a80a5929792cb031f0,Discrimination of Computer Generated versus Natural Human Faces,"PhD Dissertation +International Doctorate School in Information and +Communication Technologies +DISI - University of Trento +Discrimination of Computer Generated +versus Natural Human Faces +Duc-Tien Dang-Nguyen +Advisor: +Prof. Giulia Boato +Universit`a degli Studi di Trento +Co-Advisor: +Prof. Francesco G. B. De Natale +Universit`a degli Studi di Trento +February 2014" +439ac8edfa1e7cbc65474cab544a5b8c4c65d5db,Face authentication with undercontrolled pose and illumination,"SIViP (2011) 5:401–413 +DOI 10.1007/s11760-011-0244-6 +ORIGINAL PAPER +Face authentication with undercontrolled pose and illumination +Maria De Marsico · Michele Nappi · Daniel Riccio +Received: 15 September 2010 / Revised: 14 December 2010 / Accepted: 17 February 2011 / Published online: 7 August 2011 +© Springer-Verlag London Limited 2011" +43f6953804964037ff91a4f45d5b5d2f8edfe4d5,Multi-feature fusion in advanced robotics applications,"Multi-Feature Fusion in Advanced Robotics Applications +Zahid Riaz, Christoph Mayer, Michael Beetz, +Bernd Radig +Institut für Informatik +Technische Universität München +D-85748 Garching, Germany" +439ec47725ae4a3660e509d32828599a495559bf,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation +nd Evaluation" +434bf475addfb580707208618f99c8be0c55cf95,DeXpression: Deep Convolutional Neural Network for Expression Recognition,"UNDER CONSIDERATION FOR PUBLICATION IN PATTERN RECOGNITION LETTERS +DeXpression: Deep Convolutional Neural +Network for Expression Recognition +Peter Burkert∗‡, Felix Trier∗‡, Muhammad Zeshan Afzal†‡, +Andreas Dengel†‡ and Marcus Liwicki‡ +German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany +University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany" +43836d69f00275ba2f3d135f0ca9cf88d1209a87,Effective hyperparameter optimization using Nelder-Mead method in deep learning,"Ozaki et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:20 +DOI 10.1186/s41074-017-0030-7 +IPSJ Transactions on Computer +Vision and Applications +RESEARCH PAPER +Open Access +Effective hyperparameter optimization +using Nelder-Mead method in deep learning +Yoshihiko Ozaki1,2, Masaki Yano1,2 and Masaki Onishi1,2*" +4362368dae29cc66a47114d5ffeaf0534bf0159c,"Performance Analysis of FDA Based Face Recognition Using Correlation, ANN and SVM","UACEE International Journal of Artificial Intelligence and Neural Networks ISSN:- 2250-3749 (online) +Performance Analysis of FDA Based Face +Recognition Using Correlation, ANN and SVM +Mahesh Goyani +Akash Dhorajiya +Ronak Paun +Department of Computer Engineering +Department of Computer Engineering +Department of Computer Engineering +GCET, Sardar Patel University +GCET, Sardar Patel University +GCET, Sardar Patel University +Anand, INDIA +Anand, INDIA +Anand, INDIA +e- mail : +e- mail : +e- mail :" +4350bb360797a4ade4faf616ed2ac8e27315968e,Edge Suppression by Gradient Field Transformation Using Cross-Projection Tensors,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Edge Suppression by Gradient Field +Transformation using Cross-Projection +Tensors +Amit Agrawal, Ramesh Raskar, Rama Chellappa +TR2006-058 +June 2006" +43476cbf2a109f8381b398e7a1ddd794b29a9a16,A Practical Transfer Learning Algorithm for Face Verification,"A Practical Transfer Learning Algorithm for Face Verification +Xudong Cao +David Wipf +Fang Wen +Genquan Duan +Jian Sun" +4353d0dcaf450743e9eddd2aeedee4d01a1be78b,Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition,"Learning Discriminative LBP-Histogram Bins +for Facial Expression Recognition +Caifeng Shan and Tommaso Gritti +Philips Research, High Tech Campus 36, Eindhoven 5656 AE, The Netherlands +{caifeng.shan," +43b8b5eeb4869372ef896ca2d1e6010552cdc4d4,Large-scale Supervised Hierarchical Feature Learning for Face Recognition,"Large-scale Supervised Hierarchical Feature Learning for Face Recognition +Jianguo Li, Yurong Chen +Intel Labs China" +43ae4867d058453e9abce760ff0f9427789bab3a,Graph Embedded Nonparametric Mutual Information for Supervised Dimensionality Reduction,"Graph Embedded Nonparametric Mutual +Information For Supervised +Dimensionality Reduction +Dimitrios Bouzas, Nikolaos Arvanitopoulos, Student Member, IEEE, and Anastasios Tefas, Member, IEEE" +438b88fe40a6f9b5dcf08e64e27b2719940995e0,Building a classification cascade for visual identification from one example,"Building a Classi(cid:2)cation Cascade for Visual Identi(cid:2)cation from One Example +Andras Ferencz +Erik G. Learned-Miller +Computer Science, U.C. Berkeley +Computer Science, UMass Amherst +Jitendra Malik +Computer Science, U.C. Berkeley" +43fb9efa79178cb6f481387b7c6e9b0ca3761da8,Mixture of parts revisited: Expressive part interactions for Pose Estimation,"Mixture of Parts Revisited: Expressive Part Interactions for Pose Estimation +Anoop R Katti +IIT Madras +Chennai, India +Anurag Mittal +IIT Madras +Chennai, India" +43ed518e466ff13118385f4e5d039ae4d1c000fb,Classification of Occluded Objects Using Fast Recurrent Processing,"Classification of Occluded Objects using Fast Recurrent +Processing +Ozgur Yilmaza,∗ +Turgut Ozal University, Department of Computer Engineering, Ankara Turkey" +43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a,Playlist Generation using Facial Expression Analysis and Task Extraction,"Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl +Data: 04/05/2018 16:53:32 +U M CS" +88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320,Image patch modeling in a light field,"Image patch modeling in a light field +Zeyu Li +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2014-81 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-81.html +May 15, 2014" +889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7,Using Support Vector Machines to Enhance the Performance of Bayesian Face Recognition,"Using Support Vector Machines to Enhance the +Performance of Bayesian Face Recognition +Zhifeng Li, Member, IEEE, and Xiaoou Tang, Senior Member, IEEE" +88a898592b4c1dfd707f04f09ca58ec769a257de,MobileFace: 3D Face Reconstruction with Efficient CNN Regression,"MobileFace: 3D Face Reconstruction +with Ef‌f‌icient CNN Regression +Nikolai Chinaev1, Alexander Chigorin1, and Ivan Laptev1,2 +VisionLabs, Amsterdam, The Netherlands +{n.chinaev, +Inria, WILLOW, Departement d’Informatique de l’Ecole Normale Superieure, PSL +Research University, ENS/INRIA/CNRS UMR 8548, Paris, France" +881066ec43bcf7476479a4146568414e419da804,From Traditional to Modern: Domain Adaptation for Action Classification in Short Social Video Clips,"From Traditional to Modern : Domain Adaptation for +Action Classification in Short Social Video Clips +Aditya Singh, Saurabh Saini, Rajvi Shah, and P J Narayanan +Center for Visual Information Technology, IIIT Hyderabad, India" +8813368c6c14552539137aba2b6f8c55f561b75f,Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition,"Trunk-Branch Ensemble Convolutional Neural +Networks for Video-based Face Recognition +Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE" +883006c0f76cf348a5f8339bfcb649a3e46e2690,Weakly supervised pain localization using multiple instance learning,"Weakly Supervised Pain Localization using Multiple Instance Learning +Karan Sikka, Abhinav Dhall and Marian Bartlett" +88850b73449973a34fefe491f8836293fc208580,XBeats-An Emotion Based Music Player,"www.ijaret.org Vol. 2, Issue I, Jan. 2014 +ISSN 2320-6802 +INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN +ENGINEERING AND TECHNOLOGY +WINGS TO YOUR THOUGHTS….. +XBeats-An Emotion Based Music Player +Sayali Chavan1, Ekta Malkan2, Dipali Bhatt3, Prakash H. Paranjape4 +U.G. Student, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056. +U.G. Student, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056. +U.G. Student, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056. +Assistant Professor, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056." +88f2952535df5859c8f60026f08b71976f8e19ec,A neural network framework for face recognition by elastic bunch graph matching,"A neural network framework for face +recognition by elastic bunch graph matching +Francisco A. Pujol López, Higinio Mora Mora*, José A. Girona Selva" +887b7676a4efde616d13f38fcbfe322a791d1413,Deep Temporal Appearance-Geometry Network for Facial Expression Recognition,"Deep Temporal Appearance-Geometry Network +for Facial Expression Recognition +Injae Lee‡ Chunghyun Ahn‡ +Junmo Kim† +Heechul Jung† Sihaeng Lee† Sunjeong Park† +Korea Advanced Institute of Science and Technology† +Electronics and Telecommunications Research Institute‡ +{heechul, haeng, sunny0414, {ninja," +8878871ec2763f912102eeaff4b5a2febfc22fbe,Human Action Recognition in Unconstrained Videos by Explicit Motion Modeling,"Human Action Recognition in Unconstrained +Videos by Explicit Motion Modeling +Yu-Gang Jiang, Qi Dai, Wei Liu, Xiangyang Xue, and Chong-Wah Ngo" +8855d6161d7e5b35f6c59e15b94db9fa5bbf2912,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD COGNITIVE REORGANIZATION AND PROTECTIVE MECHANISMS IN PREGNANCY AND THE POSTPARTUM PERIOD By,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD +88bee9733e96958444dc9e6bef191baba4fa6efa,Extending Face Identification to Open-Set Face Recognition,"Extending Face Identification to +Open-Set Face Recognition +Cassio E. dos Santos Jr., William Robson Schwartz +Department of Computer Science +Universidade Federal de Minas Gerais +Belo Horizonte, Brazil" +88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79,Joint action recognition and summarization by sub-modular inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016" +9fa1be81d31fba07a1bde0275b9d35c528f4d0b8,Identifying Persons by Pictorial and Contextual Cues,"Identifying Persons by Pictorial and +Contextual Cues +Nicholas Leonard Pi¨el +Thesis submitted for the degree of Master of Science +Supervisor: +Prof. dr. Theo Gevers +April 2009" +9f094341bea610a10346f072bf865cb550a1f1c1,Recognition and volume estimation of food intake using a mobile device,"Recognition and Volume Estimation of Food Intake using a Mobile Device +Manika Puri Zhiwei Zhu Qian Yu Ajay Divakaran Harpreet Sawhney +Sarnoff Corporation +01 Washington Rd, +Princeton, NJ, 08540 +{mpuri, zzhu, qyu, adivakaran," +6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0,Facial Expression Recognition in the Wild Using Improved Dense Trajectories and Fisher Vector Encoding,"Facial expression recognition in the wild using improved dense trajectories and +Fisher vector encoding +Sadaf Afshar1 +Albert Ali Salah2 +Computational Science and Engineering Program, Bo˘gazic¸i University, Istanbul, Turkey +Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey +{sadaf.afshar," +6b089627a4ea24bff193611e68390d1a4c3b3644,Cross-Pollination of Normalization Techniques From Speaker to Face Authentication Using Gaussian Mixture Models,"CROSS-POLLINATION OF NORMALISATION +TECHNIQUES FROM SPEAKER TO FACE +AUTHENTICATION USING GAUSSIAN +MIXTURE MODELS +Roy Wallace Mitchell McLaren Chris McCool +Sébastien Marcel +Idiap-RR-03-2012 +JANUARY 2012 +Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny +T +41 27 721 77 11 F +41 27 721 77 12 www.idiap.ch" +6be0ab66c31023762e26d309a4a9d0096f72a7f0,Enhance Visual Recognition under Adverse Conditions via Deep Networks,"Enhance Visual Recognition under Adverse +Conditions via Deep Networks +Ding Liu, Student Member, IEEE, Bowen Cheng, Zhangyang Wang, Member, IEEE, +Haichao Zhang, Member, IEEE, and Thomas S. Huang, Life Fellow, IEEE" +6b18628cc8829c3bf851ea3ee3bcff8543391819,Face recognition based on subset selection via metric learning on manifold,"Hong Shao, Shuang Chen, Jie-yi Zhao, Wen-cheng Cui, Tian-shu Yu, 2015. +Face recognition based on subset selection via metric learning on manifold. +058. [doi:10.1631/FITEE.1500085] +Face recognition based on subset +selection via metric learning on manifold +Key words: Face recognition, Sparse representation, Manifold structure, +Metric learning, Subset selection +Contact: Shuang Chen +E-mail: +ORCID: http://orcid.org/0000-0001-7441-4749 +Front Inform Technol & Electron Eng" +6b6493551017819a3d1f12bbf922a8a8c8cc2a03,Pose Normalization for Local Appearance-Based Face Recognition,"Pose Normalization for Local Appearance-Based +Face Recognition +Hua Gao, Hazım Kemal Ekenel, and Rainer Stiefelhagen +Computer Science Department, Universit¨at Karlsruhe (TH) +Am Fasanengarten 5, Karlsruhe 76131, Germany +http://isl.ira.uka.de/cvhci" +6b6ff9d55e1df06f8b3e6f257e23557a73b2df96,Survey of Threats to the Biometric Authentication Systems and Solutions,"International Journal of Computer Applications (0975 – 8887) +Volume 61– No.17, January 2013 +Survey of Threats to the Biometric Authentication +Systems and Solutions +Sarika Khandelwal +Research Scholor,Mewar +University,Chitorgarh. (INDIA) +P.C.Gupta +Kota University,Kota(INDIA) +Khushboo Mantri +M.tech.student, Arya College of +engineering ,Jaipur(INDIA)" +0728f788107122d76dfafa4fb0c45c20dcf523ca,The Best of BothWorlds: Combining Data-Independent and Data-Driven Approaches for Action Recognition,"The Best of Both Worlds: Combining Data-independent and Data-driven +Approaches for Action Recognition +Zhenzhong Lan, Dezhong Yao, Ming Lin, Shoou-I Yu, Alexander Hauptmann +{lanzhzh, minglin, iyu," +07ea3dd22d1ecc013b6649c9846d67f2bf697008,Human-centric Video Understanding with Weak Supervision a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"HUMAN-CENTRIC VIDEO UNDERSTANDING WITH WEAK +SUPERVISION +A DISSERTATION +SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE +AND THE COMMITTEE ON GRADUATE STUDIES +OF STANFORD UNIVERSITY +IN PARTIAL FULFILLMENT OF THE REQUIREMENTS +FOR THE DEGREE OF +DOCTOR OF PHILOSOPHY +Vignesh Ramanathan +June 2016" +071099a4c3eed464388c8d1bff7b0538c7322422,Facial expression recognition in the wild using rich deep features,"FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES +Abubakrelsedik Karali, Ahmad Bassiouny and Motaz El-Saban +Microsoft Advanced Technology labs, Microsoft Technology and Research, Cairo, Egypt" +070ab604c3ced2c23cce2259043446c5ee342fd6,An Active Illumination and Appearance (AIA) Model for Face Alignment,"AnActiveIlluminationandAppearance(AIA)ModelforFaceAlignment +FatihKahraman,MuhittinGokmen +IstanbulTechnicalUniversity, +ComputerScienceDept.,Turkey +{fkahraman, +InformaticsandMathematicalModelling,Denmark +SuneDarkner,RasmusLarsen +TechnicalUniversityofDenmark" +071135dfb342bff884ddb9a4d8af0e70055c22a1,Temporal 3D ConvNets: New Architecture and Transfer Learning for Video Classification,"New Architecture and Transfer Learning for Video Classification +Temporal 3D ConvNets: +Ali Diba1,4,(cid:63), Mohsen Fayyaz2,(cid:63), Vivek Sharma3, Amir Hossein Karami4, Mohammad Mahdi Arzani4, +Rahman Yousefzadeh4, Luc Van Gool1,4 +ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai" +0754e769eb613fd3968b6e267a301728f52358be,Towards a Watson that sees: Language-guided action recognition for robots,"Towards a Watson That Sees: Language-Guided Action Recognition for +Robots +Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller and Yiannis Aloimonos" +07c83f544d0604e6bab5d741b0bf9a3621d133da,Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition,"Learning Spatio-Temporal Features with 3D Residual Networks +for Action Recognition +Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{kensho.hara, hirokatsu.kataoka," +0717b47ab84b848de37dbefd81cf8bf512b544ac,Robust Face Recognition and Tagging in Visual Surveillance System,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +International Conference on Humming Bird ( 01st March 2014) +RESEARCH ARTICLE +OPEN ACCESS +Robust Face Recognition and Tagging in Visual Surveillance +Kavitha MS 1, Siva Pradeepa S2 +System +Kavitha MS Author is currently pursuing M.E(CSE)in VINS Christian college of Engineering,Nagercoil. +Siva pradeepa,Assistant Lecturer in VINS Christian college of Engineering" +0750a816858b601c0dbf4cfb68066ae7e788f05d,CosFace: Large Margin Cosine Loss for Deep Face Recognition,"CosFace: Large Margin Cosine Loss for Deep Face Recognition +Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, +Zhifeng Li∗, and Wei Liu∗ +Tencent AI Lab" +078d507703fc0ac4bf8ca758be101e75ea286c80,Large - Scale Content Based Face Image Retrieval using Attribute Enhanced,"ISSN: 2321-8169 +International Journal on Recent and Innovation Trends in Computing and Communication +Volume: 3 Issue: 8 +5287 - 5296 +________________________________________________________________________________________________________________________________ +Large- Scale Content Based Face Image Retrieval using Attribute Enhanced +Sparse Codewords. +Chaitra R, +Mtech Digital Coomunication Engineering +Acharya Institute Of Technology +Bangalore" +0716e1ad868f5f446b1c367721418ffadfcf0519,Interactively Guiding Semi-Supervised Clustering via Attribute-Based Explanations,"Interactively Guiding Semi-Supervised +Clustering via Attribute-Based Explanations +Shrenik Lad and Devi Parikh +Virginia Tech, Blacksburg, VA, USA" +0726a45eb129eed88915aa5a86df2af16a09bcc1,Introspective perception: Learning to predict failures in vision systems,"Introspective Perception: Learning to Predict Failures in Vision Systems +Shreyansh Daftry, Sam Zeng, J. Andrew Bagnell and Martial Hebert" +0742d051caebf8a5d452c03c5d55dfb02f84baab,Real-time geometric motion blur for a deforming polygonal mesh,"Real-Time Geometric Motion Blur for a Deforming Polygonal Mesh +Nathan Jones +Formerly: Texas A&M University +Currently: The Software Group" +38d56ddcea01ce99902dd75ad162213cbe4eaab7,Sense Beauty by Label Distribution Learning,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26,Facial parameter extraction system based on active contours,"FACIAL PARAMETER EXTRACTION SYSTEM BASED ON ACTIVE CONTOURS +Montse Pardàs, Marcos Losada +Universitat Politècnica de Catalunya, Barcelona, Spain" +38f7f3c72e582e116f6f079ec9ae738894785b96,A New Technique for Face Matching after Plastic Surgery in Forensics,"IJARCCE +ISSN (Online) 2278-1021 +ISSN (Print) 2319 5940 +International Journal of Advanced Research in Computer and Communication Engineering +Vol. 4, Issue 11, November 2015 +A New Technique for Face Matching after +Plastic Surgery in Forensics +Anju Joseph1, Nilu Tressa Thomas2, Neethu C. Sekhar3 +Student, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 1,2 +Asst. Professor, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 3 +I. INTRODUCTION +Facial recognition is one of the most important task that +forensic examiners execute +their +investigation. This work focuses on analysing the effect of +plastic surgery in face recognition algorithms. It is +imperative for the subsequent facial recognition systems to +e capable of addressing this significant issue and +ccordingly there is a need for more research in this +important area." +38679355d4cfea3a791005f211aa16e76b2eaa8d,Evolutionary Cross-Domain Discriminative Hessian Eigenmaps,"Title +Evolutionary cross-domain discriminative Hessian Eigenmaps +Author(s) +Si, S; Tao, D; Chan, KP +Citation +Issued Date +http://hdl.handle.net/10722/127357 +Rights +This work is licensed under a Creative Commons Attribution- +NonCommercial-NoDerivatives 4.0 International License.; ©2010 +IEEE. Personal use of this material is permitted. However, +permission to reprint/republish this material for advertising or +promotional purposes or for creating new collective works for +resale or redistribution to servers or lists, or to reuse any +opyrighted component of this work in other works must be +obtained from the IEEE." +38682c7b19831e5d4f58e9bce9716f9c2c29c4e7,Movie Character Identification Using Graph Matching Algorithm,"International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 5 – Dec 2014 +Movie Character Identification Using Graph Matching +Algorithm +Shaik. Kartheek.*1, A.Srinivasa Reddy*2 +M.Tech Scholar, Dept of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India. +Associate Professor, Department of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India" +38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7,Multi-distance Support Matrix Machines,"Noname manuscript No. +(will be inserted by the editor) +Multi-distance Support Matrix Machine +Yunfei Ye1 +· Dong Han1 +Received: date / Accepted: date" +384f972c81c52fe36849600728865ea50a0c4670,"Multi-Fold Gabor, PCA and ICA Filter Convolution Descriptor for Face Recognition","Multi-Fold Gabor, PCA and ICA Filter +Convolution Descriptor for Face Recognition +Cheng Yaw Low, Andrew Beng Jin Teoh, Senior Member, IEEE, Cong Jie Ng" +38f1fac3ed0fd054e009515e7bbc72cdd4cf801a,Finding Person Relations in Image Data of the Internet Archive,"Finding Person Relations in Image Data of the +Internet Archive +Eric M¨uller-Budack1,2[0000−0002−6802−1241], +Kader Pustu-Iren1[0000−0003−2891−9783], Sebastian Diering1, and +Ralph Ewerth1,2[0000−0003−0918−6297] +Leibniz Information Centre for Science and Technology (TIB), Hannover, Germany +L3S Research Center, Leibniz Universit¨at Hannover, Germany" +380d5138cadccc9b5b91c707ba0a9220b0f39271,Deep Imbalanced Learning for Face Recognition and Attribute Prediction,"Deep Imbalanced Learning for Face Recognition +nd Attribute Prediction +Chen Huang, Yining Li, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE" +38215c283ce4bf2c8edd597ab21410f99dc9b094,The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent,"The SEMAINE Database: Annotated Multimodal Records of +Emotionally Colored Conversations between a Person and a Limited +Agent +McKeown, G., Valstar, M., Cowie, R., Pantic, M., & Schröder, M. (2012). The SEMAINE Database: Annotated +Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent. IEEE +Transactions on Affective Computing, 3(1), 5-17. DOI: 10.1109/T-AFFC.2011.20 +Published in: +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy +The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +Research Portal that you believe breaches copyright or violates any law, please contact +Download date:05. Nov. 2018" +3802da31c6d33d71b839e260f4022ec4fbd88e2d,Deep Attributes for One-Shot Face Recognition,"Deep Attributes for One-Shot Face Recognition +Aishwarya Jadhav1,3, Vinay P. Namboodiri2, and K. S. Venkatesh 3 +Xerox Research Center India, 2Department of Computer Science, +Department of Electrical Engineering, IIT Kanpur" +00fb2836068042c19b5197d0999e8e93b920eb9c,Genetic Algorithm for Weight Optimization in Descriptor based Face Recognition Methods, +0077cd8f97cafd2b389783858a6e4ab7887b0b6b,Face Image Reconstruction from Deep Templates,"MAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES +On the Reconstruction of Deep Face Templates +Guangcan Mai, Kai Cao, Pong C. Yuen, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE" +00214fe1319113e6649435cae386019235474789,Face Recognition using Distortion Models,"Bachelorarbeit im Fach Informatik +Face Recognition using +Distortion Models +Mathematik, Informatik und Naturwissenschaften der +RHEINISCH-WESTFÄLISCHEN TECHNISCHEN HOCHSCHULE AACHEN +Der Fakultät für +Lehrstuhl für Informatik VI +Prof. Dr.-Ing. H. Ney +vorgelegt von: +Harald Hanselmann +Matrikelnummer 252400 +Gutachter: +Prof. Dr.-Ing. H. Ney +Prof. Dr. B. Leibe +Betreuer: +Dipl.-Inform. Philippe Dreuw +September 2009" +004e3292885463f97a70e1f511dc476289451ed5,Quadruplet-Wise Image Similarity Learning,"Quadruplet-wise Image Similarity Learning +Marc T. Law +Nicolas Thome +Matthieu Cord +LIP6, UPMC - Sorbonne University, Paris, France +{Marc.Law, Nicolas.Thome," +00f0ed04defec19b4843b5b16557d8d0ccc5bb42,Modeling Spatial and Temporal Cues for Multi-label Facial Action Unit Detection, +0037bff7be6d463785d4e5b2671da664cd7ef746,Multiple Instance Metric Learning from Automatically Labeled Bags of Faces,"Author manuscript, published in ""European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647"" +DOI : 10.1007/978-3-642-15549-9_46" +00d9d88bb1bdca35663946a76d807fff3dc1c15f,Subjects and Their Objects: Localizing Interactees for a Person-Centric View of Importance,"Subjects and Their Objects: Localizing Interactees for a +Person-Centric View of Importance +Chao-Yeh Chen · Kristen Grauman" +00a3cfe3ce35a7ffb8214f6db15366f4e79761e3,Using Kinect for real-time emotion recognition via facial expressions,"Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen, 2015. Using +Kinect for real-time emotion recognition via facial expressions. Frontiers of +Information Technology & Electronic Engineering, 16(4):272-282. +[doi:10.1631/FITEE.1400209] +Using Kinect for real-time emotion +recognition via facial expressions +Key words: Kinect, Emotion recognition, Facial expression, Real-time +lassification, Fusion algorithm, Support vector machine (SVM) +Contact: Qi-rong Mao +E-mail: +ORCID: http://orcid.org/0000-0002-5021-9057 +Front Inform Technol & Electron Eng" +004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4,Balanced k-Means and Min-Cut Clustering,"Balanced k-Means and Min-Cut Clustering +Xiaojun Chang, Feiping Nie, Zhigang Ma, and Yi Yang" +00d94b35ffd6cabfb70b9a1d220b6823ae9154ee,Discriminative Bayesian Dictionary Learning for Classification,"Discriminative Bayesian Dictionary Learning +for Classification +Naveed Akhtar, Faisal Shafait, and Ajmal Mian" +006f283a50d325840433f4cf6d15876d475bba77,Preserving Structure in Model-Free Tracking,"Preserving Structure in Model-Free Tracking +Lu Zhang and Laurens van der Maaten" +00d931eccab929be33caea207547989ae7c1ef39,The Natural Input Memory Model,"The Natural Input Memory Model +Joyca P.W. Lacroix +Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands +Department of Psychology, Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands +Jaap M.J. Murre +Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands +Eric O. Postma +H. Jaap van den Herik" +0052de4885916cf6949a6904d02336e59d98544c,Generalized Low Rank Approximations of Matrices,"005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. +DOI: 10.1007/s10994-005-3561-6 +Generalized Low Rank Approximations of Matrices +JIEPING YE +Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, +MN 55455, USA +Editor: +Peter Flach +Published online: 12 August 2005" +6e198f6cc4199e1c4173944e3df6f39a302cf787,MORPH-II: Inconsistencies and Cleaning Whitepaper,"MORPH-II: Inconsistencies and Cleaning Whitepaper +Participants: G. Bingham, B. Yip, M. Ferguson, and C. Nansalo +Mentors: C. Chen, Y. Wang, and T. Kling +NSF-REU Site at UNC Wilmington, Summer 2017" +6eba25166fe461dc388805cc2452d49f5d1cdadd,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV 1 Learning Grimaces by Watching TV","Pages 122.1-122.12 +DOI: https://dx.doi.org/10.5244/C.30.122" +6e8a81d452a91f5231443ac83e4c0a0db4579974,Illumination robust face representation based on intrinsic geometrical information,"Illumination robust face representation based on intrinsic geometrical +information +Soyel, H; Ozmen, B; McOwan, PW +This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET +Conference on Image Processing (IPR 2012). The version of record is available +http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1 +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact" +6ed738ff03fd9042965abdfaa3ed8322de15c116,K-MEAP: Generating Specified K Clusters with Multiple Exemplars by Efficient Affinity Propagation,"This document is downloaded from DR-NTU, Nanyang Technological +University Library, Singapore. +Title +K-MEAP: Generating Specified K Clusters with Multiple +Exemplars by Efficient Affinity Propagation +Author(s) Wang, Yangtao; Chen, Lihui +Citation +Wang, Y & Chen, L. (2014). K-MEAP: Generating +Specified K Clusters with Multiple Exemplars by Efficient +Affinity Propagation. 2014 IEEE International Conference +on Data Mining (ICDM), 1091-1096. +http://hdl.handle.net/10220/39690 +Rights +© 2014 IEEE. Personal use of this material is permitted. +Permission from IEEE must be obtained for all other +uses, in any current or future media, including +reprinting/republishing this material for advertising or +promotional purposes, creating new collective works, for +resale or redistribution to servers or lists, or reuse of any +opyrighted component of this work in other works. The" +6ecd4025b7b5f4894c990614a9a65e3a1ac347b2,Automatic Naming of Character using Video Streaming for Face Recognition with Graph Matching,"International Journal on Recent and Innovation Trends in Computing and Communication +ISSN: 2321-8169 +Volume: 2 Issue: 5 +1275– 1281 +_______________________________________________________________________________________________ +Automatic Naming of Character using Video Streaming for Face +Recognition with Graph Matching +Nivedita.R.Pandey +Ranjan.P.Dahake +PG Student at MET’s IOE Bhujbal Knowledge City, +PG Student at MET’s IOE Bhujbal Knowledge City, +Nasik, Maharashtra, India, +Nasik, Maharashtra, India," +6e3a181bf388dd503c83dc324561701b19d37df1,Finding a low-rank basis in a matrix subspace,"Finding a low-rank basis in a matrix subspace +Yuji Nakatsukasa · Tasuku Soma · +Andr´e Uschmajew" +6ef1996563835b4dfb7fda1d14abe01c8bd24a05,Nonparametric Part Transfer for Fine-Grained Recognition,"Nonparametric Part Transfer for Fine-grained Recognition +Christoph G¨oring, Erik Rodner, Alexander Freytag, and Joachim Denzler∗ +Computer Vision Group, Friedrich Schiller University Jena +www.inf-cv.uni-jena.de" +6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f,"Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution","Deep Episodic Memory: Encoding, Recalling, and Predicting +Episodic Experiences for Robot Action Execution +Jonas Rothfuss∗†, Fabio Ferreira∗†, Eren Erdal Aksoy ‡, You Zhou† and Tamim Asfour†" +6e911227e893d0eecb363015754824bf4366bdb7,Wasserstein Divergence for GANs,"Wasserstein Divergence for GANs +Jiqing Wu1, Zhiwu Huang1, Janine Thoma1, Dinesh Acharya1, and +Luc Van Gool1,2 +Computer Vision Lab, ETH Zurich, Switzerland +VISICS, KU Leuven, Belgium" +6ee8a94ccba10062172e5b31ee097c846821a822,How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis,"Submitted 3/13; Revised 10/13; Published 12/13 +How to Solve Classification and Regression Problems on +High-Dimensional Data with a Supervised +Extension of Slow Feature Analysis +Alberto N. Escalante-B. +Laurenz Wiskott +Institut f¨ur Neuroinformatik +Ruhr-Universit¨at Bochum +Bochum D-44801, Germany +Editor: David Dunson" +6ee64c19efa89f955011531cde03822c2d1787b8,Table S1: Review of Existing Facial Expression Databases That Are Often Used in Social Psycholgy,"Table S1: Review of existing facial expression databases that are often used in social +psycholgy. +Author +database +Expressions1 +Format +Short summary +GEMEP Corpus +Mind Reading: the +interactive +guide +to emotions +udio +video +record- +Videos +nger, +muse- +dmiration, +ment," +6e379f2d34e14efd85ae51875a4fa7d7ae63a662,A New Multi-modal Biometric System Based on Fingerprint and Finger Vein Recognition,"A NEW MULTI-MODAL BIOMETRIC SYSTEM +BASED ON FINGERPRINT AND FINGER +VEIN RECOGNITION +Naveed AHMED +Master's Thesis +Department of Software Engineering +Advisor: Prof. Dr. Asaf VAROL +JULY-2014" +6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94,Random Graphs for Structure Discovery in High-dimensional Data,"RANDOM GRAPHS FOR STRUCTURE +DISCOVERY IN HIGH-DIMENSIONAL DATA +Jos¶e Ant¶onio O. Costa +A dissertation submitted in partial fulflllment +of the requirements for the degree of +Doctor of Philosophy +(Electrical Engineering: Systems) +in The University of Michigan +Doctoral Committee: +Professor Alfred O. Hero III, Chair +Professor Jefirey A. Fessler +Professor Susan A. Murphy +Professor David L. Neuhofi" +6e1802874ead801a7e1072aa870681aa2f555f35,Exploring Feature Descritors for Face Recognition,"­4244­0728­1/07/$20.00 ©2007 IEEE +I ­ 629 +ICASSP 2007 +*22+),)164,7+616DAIK??AIIB=B=?AHA?CEJE=CHEJDCHA=JOHAEAI.EIDAHB=?A -*/ 4A?AJO?=*E=HO2=JJAH*22+),)" +6ed22b934e382c6f72402747d51aa50994cfd97b,Customized expression recognition for performance-driven cutout character animation,"Customized Expression Recognition for Performance-Driven +Cutout Character Animation +Xiang Yu† +NEC Laboratories America +Jianchao Yang‡ Wilmot Li§ +Snapchat" +6e93fd7400585f5df57b5343699cb7cda20cfcc2,Comparing a novel model based on the transferable belief model with humans during the recognition of partially occluded facial expressions.,"http://journalofvision.org/9/2/22/ +Comparing a novel model based on the transferable +elief model with humans during the recognition of +partially occluded facial expressions +Zakia Hammal +Martin Arguin +Frédéric Gosselin +Département de Psychologie, Université de Montréal, +Canada +Département de Psychologie, Université de Montréal, +Canada +Département de Psychologie, Université de Montréal, +Canada +Humans recognize basic facial expressions effortlessly. Yet, despite a considerable amount of research, this task remains +elusive for computer vision systems. Here, we compared the behavior of one of the best computer models of facial +expression recognition (Z. Hammal, L. Couvreur, A. Caplier, & M. Rombaut, 2007) with the behavior of human observers +during the M. Smith, G. Cottrell, F. Gosselin, and P. G. Schyns (2005) facial expression recognition task performed on +stimuli randomly sampled using Gaussian apertures. The modelVwhich we had to significantly modify in order to give the +bility to deal with partially occluded stimuliVclassifies the six basic facial expressions (Happiness, Fear, Sadness, +Surprise, Anger, and Disgust) plus Neutral from static images based on the permanent facial feature deformations and the" +9ab463d117219ed51f602ff0ddbd3414217e3166,Weighted Transmedia Relevance Feedback for Image Retrieval and Auto-annotation,"Weighted Transmedia +Relevance Feedback for +Image Retrieval and +Auto-annotation +Thomas Mensink, Jakob Verbeek, Gabriela Csurka +TECHNICAL +REPORT +N° 0415 +December 2011 +Project-Teams LEAR - INRIA +nd TVPA - XRCE" +9ac82909d76b4c902e5dde5838130de6ce838c16,Recognizing Facial Expressions Automatically from Video,"Recognizing Facial Expressions Automatically +from Video +Caifeng Shan and Ralph Braspenning +Introduction +Facial expressions, resulting from movements of the facial muscles, are the face +hanges in response to a person’s internal emotional states, intentions, or social +ommunications. There is a considerable history associated with the study on fa- +ial expressions. Darwin (1872) was the first to describe in details the specific fa- +ial expressions associated with emotions in animals and humans, who argued that +ll mammals show emotions reliably in their faces. Since that, facial expression +nalysis has been a area of great research interest for behavioral scientists (Ekman, +Friesen, and Hager, 2002). Psychological studies (Mehrabian, 1968; Ambady and +Rosenthal, 1992) suggest that facial expressions, as the main mode for non-verbal +ommunication, play a vital role in human face-to-face communication. For illus- +tration, we show some examples of facial expressions in Fig. 1. +Computer recognition of facial expressions has many important applications in +intelligent human-computer interaction, computer animation, surveillance and se- +urity, medical diagnosis, law enforcement, and awareness systems (Shan, 2007). +Therefore, it has been an active research topic in multiple disciplines such as psy- +hology, cognitive science, human-computer interaction, and pattern recognition." +9ac15845defcd0d6b611ecd609c740d41f0c341d,Robust Color-based Vision for Mobile Robots,"Copyright +Juhyun Lee" +9af1cf562377b307580ca214ecd2c556e20df000,International Journal of Advanced Studies in Computer Science and Engineering,"Feb. 28 +International Journal of Advanced Studies in Computer Science and Engineering +IJASCSE, Volume 4, Issue 2, 2015 +Video-Based Facial Expression Recognition +Using Local Directional Binary Pattern +Sahar Hooshmand, Ali Jamali Avilaq, Amir Hossein Rezaie +Electrical Engineering Dept., AmirKabir Univarsity of Technology +Tehran, Iran" +9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb,High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs,"High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs +Ting-Chun Wang1 Ming-Yu Liu1 +Jun-Yan Zhu2 Andrew Tao1 +Jan Kautz1 Bryan Catanzaro1 +NVIDIA Corporation +UC Berkeley +Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps +(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can +hange labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also +llows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road. +Please visit our website for more side-by-side comparisons as well as interactive editing demos." +9a7858eda9b40b16002c6003b6db19828f94a6c6,Mooney face classification and prediction by learning across tone,"MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE +Tsung-Wei Ke(cid:63)† +Stella X. Yu(cid:63)† +David Whitney(cid:63) +(cid:63) UC Berkeley / †ICSI" +9a276c72acdb83660557489114a494b86a39f6ff,Emotion Classification through Lower Facial Expressions using Adaptive Support Vector Machines,"Emotion Classification through Lower Facial Expressions using Adaptive +Support Vector Machines +Porawat Visutsak +Department of Information Technology, Faculty of Industrial Technology and Management, +King Mongkut’s University of Technology North Bangkok," +9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e,Automatic Recognition of Spontaneous Facial Actions,"Automatic Recognition of Spontaneous Facial +Actions +Marian Stewart Bartlett1, Gwen C. Littlewort1, Mark G. Frank2, Claudia Lainscsek1, +Ian R. Fasel1, Javier R. Movellan1 +Institute for Neural Computation, University of California, San Diego. +Department of Communication, University at Buffalo, State University of New York." +9a42c519f0aaa68debbe9df00b090ca446d25bc4,Face Recognition via Centralized Coordinate Learning,"Face Recognition via Centralized Coordinate +Learning +Xianbiao Qi, Lei Zhang" +9aad8e52aff12bd822f0011e6ef85dfc22fe8466,Temporal-Spatial Mapping for Action Recognition,"Temporal-Spatial Mapping for Action Recognition +Xiaolin Song, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jingyu Yang, and Xiaoyan Sun" +363ca0a3f908859b1b55c2ff77cc900957653748,Local Binary Patterns and Linear Programming using Facial Expression,"International Journal of Computer Trends and Technology (IJCTT) – volume 1 Issue 3 Number 4 – Aug 2011 +Local Binary Patterns and Linear Programming using +Facial Expression +Ms.P.Jennifer +#MCA Department, Bharath Institute of Science and Technology ++B.Tech (C.S.E), Bharath University , Chennai – 73. +Dr. A. Muthu kumaravel +#MCA Department, Bharath Institute of Science and Technology ++B.Tech (C.S.E), Bharath University , Chennai – 73." +36939e6a365e9db904d81325212177c9e9e76c54,"Assessing the Accuracy of Four Popular Face Recognition Tools for Inferring Gender, Age, and Race","Assessing the Accuracy of Four Popular Face Recognition Tools for +Inferring Gender, Age, and Race +Soon-Gyo Jung, Jisun An, Haewoon Kwak, Joni Salminen, Bernard J. Jansen +Qatar Computing Research Institute, HBKU +HBKU Research Complex, Doha, P.O. Box 34110, Qatar" +3646b42511a6a0df5470408bc9a7a69bb3c5d742,Detection of Facial Parts based on ABLATA,"International Journal of Computer Applications (0975 – 8887) +Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015 +Detection of Facial Parts based on ABLATA +Siddhartha Choubey +Shri Shankaracharya +Technical Campus, Bhilai +Vikas Singh +Shri Shankaracharya +Technical Campus, Bhilai +Abha Choubey +Shri Shankaracharya +Technical Campus, Bhilai" +36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,Tracking von Gesichtsmimik mit Hilfe von Gitterstrukturen zur Klassifikation von schmerzrelevanten Action Units,"Tracking von Gesichtsmimik +mit Hilfe von Gitterstrukturen +zur Klassifikation von schmerzrelevanten Action +Units +Christine Barthold1, Anton Papst1, Thomas Wittenberg1 +Christian K¨ublbeck1, Stefan Lautenbacher2, Ute Schmid2, Sven Friedl1,3 +Fraunhofer-Institut f¨ur Integrierte Schaltungen IIS, Erlangen, +Otto-Friedrich-Universit¨at Bamberg, 3Universit¨atsklinkum Erlangen +Kurzfassung. In der Schmerzforschung werden schmerzrelevante Mi- +mikbewegungen von Probanden mittels des Facial Action Coding System +klassifiziert. Die manuelle Klassifikation hierbei ist aufw¨andig und eine +utomatische (Vor-)klassifikation k¨onnte den diagnostischen Wert dieser +Analysen erh¨ohen sowie den klinischen Workflow unterst¨utzen. Der hier +vorgestellte regelbasierte Ansatz erm¨oglicht eine automatische Klassifika- +tion ohne große Trainingsmengen vorklassifizierter Daten. Das Verfahren +erkennt und verfolgt Mimikbewegungen, unterst¨utzt durch ein Gitter, +und ordnet diese Bewegungen bestimmten Gesichtsarealen zu. Mit die- +sem Wissen kann aus den Bewegungen auf die zugeh¨origen Action Units +geschlossen werden. +Einleitung" +36fc4120fc0638b97c23f97b53e2184107c52233,Introducing Celebrities in an Images using HAAR Cascade algorithm,"National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013) +Proceedings published by International Journal of Computer Applications® (IJCA) +Introducing Celebrities in an Images using HAAR +Cascade algorithm +Jaya M. Jadhav +Deipali V. Gore +Asst. Professor +Rashmi R. Tundalwar +PES Modern College of Engg. +PES Modern College of Engg. +PES Modern College of Engg. +Shivaji Nagar, Pune +Shivaji Nagar, Pune +Shivaji Nagar, Pune" +36ce0b68a01b4c96af6ad8c26e55e5a30446f360,Facial expression recognition based on a mlp neural network using constructive training algorithm,"Multimed Tools Appl +DOI 10.1007/s11042-014-2322-6 +Facial expression recognition based on a mlp neural +network using constructive training algorithm +Hayet Boughrara · Mohamed Chtourou · +Chokri Ben Amar · Liming Chen +Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014 +© Springer Science+Business Media New York 2014" +3674f3597bbca3ce05e4423611d871d09882043b,Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions,"ISSN 1796-2048 +Volume 7, Number 4, August 2012 +Contents +Special Issue: Multimedia Contents Security in Social Networks Applications +Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran +Guest Editorial +Zhiyong Zhang and Muthucumaru Maheswaran +SPECIAL ISSUE PAPERS +DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding +Gang Wang and Xiao-lin Gui +Block-Based Parallel Intra Prediction Scheme for HEVC +Jie Jiang, Baolong, Wei Mo, and Kefeng Fan +Optimized LSB Matching Steganography Based on Fisher Information +Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao +A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform +Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo +Stego Key Estimation in LSB Steganography +Jing Liu and Guangming Tang +REGULAR PAPERS +Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions" +362bfeb28adac5f45b6ef46c07c59744b4ed6a52,Incorporating Scalability in Unsupervised Spatio- Temporal Feature Learning,"INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE +LEARNING +Sujoy Paul, Sourya Roy and Amit K. Roy-Chowdhury +Dept. of Electrical and Computer Engineering, University of California, Riverside, CA 92521" +365866dc937529c3079a962408bffaa9b87c1f06,Facial Feature Expression Based Approach for Human Face Recognition: A Review,"IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May 2014. +www.ijiset.com +ISSN 2348 – 7968 +Facial Feature Expression Based Approach for Human Face +Recognition: A Review +Jageshvar K. Keche1, Mahendra P. Dhore2 +Department of Computer Science, SSESA, Science College, Congress Nagar, Nagpur, (MS)-India, +Department of Electronics & Computer Science, RTM Nagpur University, Campus Nagpur, (MS)-India. +required +extraction of" +362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c,A partial least squares based ranker for fast and accurate age estimation,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016" +3630324c2af04fd90f8668f9ee9709604fe980fd,Image Classification With Tailored Fine-Grained Dictionaries,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2607345, IEEE +Transactions on Circuits and Systems for Video Technology +Image Classification with Tailored Fine-Grained +Dictionaries +Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Zechao Li, Yu-Gang Jiang and Shuicheng Yan" +36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958,RGB-D Face Recognition With Texture and Attribute Features,"RGB-D Face Recognition with Texture and +Attribute Features +Gaurav Goswami, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, and Richa Singh, Senior +Member, IEEE" +36018404263b9bb44d1fddaddd9ee9af9d46e560,Occluded Face Recognition by Using Gabor Features,"OCCLUDED FACE RECOGNITION BY USING GABOR +FEATURES +Burcu Kepenekci 1,2, F. Boray Tek 1,2, Gozde Bozdagi Akar 1 +Department of Electrical And Electronics Engineering, METU, Ankara, Turkey +7h%ł7$.(cid:3)%ł/7(1(cid:15)(cid:3)$QNDUD(cid:15)(cid:3)7XUNH\" +366595171c9f4696ec5eef7c3686114fd3f116ad,Algorithms and Representations for Visual Recognition,"Algorithms and Representations for Visual +Recognition +Subhransu Maji +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2012-53 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-53.html +May 1, 2012" +5c6de2d9f93b90034f07860ae485a2accf529285,Compensating for pose and illumination in unconstrained periocular biometrics,"Int. J. Biometrics, Vol. X, No. Y, xxxx +Compensating for pose and illumination in +unconstrained periocular biometrics +Chandrashekhar N. Padole and +Hugo Proença* +Department of Computer Science, +IT – Instituto de Telecomunicações, +University of Beira Interior, +6200-Covilhã, Portugal +Fax: +351-275-319899 +E-mail: +E-mail: +*Corresponding author" +5c2e264d6ac253693469bd190f323622c457ca05,Improving large-scale face image retrieval using multi-level features,"978-1-4799-2341-0/13/$31.00 ©2013 IEEE +ICIP 2013" +5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0,Reference Face Graph for Face Recognition,"Reference Face Graph for Face Recognition +Mehran Kafai, Member, IEEE, Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE" +5c35ac04260e281141b3aaa7bbb147032c887f0c,Face Detection and Tracking Control with Omni Car,"Face Detection and Tracking Control with Omni Car +Jheng-Hao Chen, Tung-Yu Wu +CS 231A Final Report +June 31, 2016" +5c435c4bc9c9667f968f891e207d241c3e45757a,"""How old are you?"" : Age Estimation with Tensors of Binary Gaussian Receptive Maps","RUIZ-HERNANDEZ, CROWLEY, LUX: HOW OLD ARE YOU? +""How old are you?"" : Age Estimation with +Tensors of Binary Gaussian Receptive Maps +John A. Ruiz-Hernandez +James L. Crowley +Augustin Lux +INRIA Grenoble Rhones-Alpes +Research Center and Laboratoire +d’Informatique de Grenoble (LIG) +655 avenue de l’Europe +8 334 Saint Ismier Cedex, France" +5c02bd53c0a6eb361972e8a4df60cdb30c6e3930,Multimedia stimuli databases usage patterns: a survey report,"Multimedia stimuli databases usage patterns: a +survey report +M. Horvat1, S. Popović1 and K. Ćosić1 +University of Zagreb, Faculty of Electrical Engineering and Computing +Department of Electric Machines, Drives and Automation +Zagreb, Croatia" +5c717afc5a9a8ccb1767d87b79851de8d3016294,A novel eye region based privacy protection scheme,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012" +096eb8b4b977aaf274c271058feff14c99d46af3,Multi-observation visual recognition via joint dynamic sparse representation,"REPORT DOCUMENTATION PAGE +Form Approved OMB NO. 0704-0188 +including +for reviewing +information, +this collection of +information +is estimated +to average 1 hour per response, +the data needed, and completing and reviewing +this collection of +instructions, +The public reporting burden +Send comments +searching existing data sources, gathering and maintaining +to Washington +regarding +this burden estimate or any other aspect of +Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. +Headquarters Services, Directorate" +09137e3c267a3414314d1e7e4b0e3a4cae801f45,Two Birds with One Stone: Transforming and Generating Facial Images with Iterative GAN,"Noname manuscript No. +(will be inserted by the editor) +Two Birds with One Stone: Transforming and Generating +Facial Images with Iterative GAN +Dan Ma · Bin Liu · Zhao Kang · Jiayu Zhou · Jianke Zhu · Zenglin Xu +Received: date / Accepted: date" +09926ed62511c340f4540b5bc53cf2480e8063f8,Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization +Vicky Kalogeiton1,2 +Philippe Weinzaepfel3 +Vittorio Ferrari2 +Cordelia Schmid1" +09718bf335b926907ded5cb4c94784fd20e5ccd8,"Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble","Recognizing Partially Occluded, Expression Variant +Faces From Single Training Image per Person +With SOM and Soft k-NN Ensemble +Xiaoyang Tan, Songcan Chen, Zhi-Hua Zhou, Member, IEEE, and Fuyan Zhang" +0903bb001c263e3c9a40f430116d1e629eaa616f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +An Empirical Study of Context in Object Detection +Anonymous CVPR submission +Paper ID 987" +09df62fd17d3d833ea6b5a52a232fc052d4da3f5,Mejora de Contraste y Compensación en Cambios de la Iluminación,"ISSN: 1405-5546 +Instituto Politécnico Nacional +México +Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez, +Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J. +Mejora de Contraste y Compensación en Cambios de la Iluminación +Instituto Politécnico Nacional +Distrito Federal, México +Disponible en: http://www.redalyc.org/articulo.oa?id=61509703 +Cómo citar el artículo +Número completo +Más información del artículo +Página de la revista en redalyc.org +Sistema de Información Científica +Red de Revistas Científicas de América Latina, el Caribe, España y Portugal +Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto" +09f853ce12f7361c4b50c494df7ce3b9fad1d221,Random Forests for Real Time 3D Face Analysis,"myjournal manuscript No. +(will be inserted by the editor) +Random forests for real time 3D face analysis +Gabriele Fanelli · Matthias Dantone · Juergen Gall · Andrea Fossati · +Luc Van Gool +Received: date / Accepted: date" +09750c9bbb074bbc4eb66586b20822d1812cdb20,Estimation of the neutral face shape using Gaussian Mixture Models,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012" +097f674aa9e91135151c480734dda54af5bc4240,Face Recognition Based on Multiple Region Features,"Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney +Face Recognition Based on Multiple Region Features +Jiaming Li, Geoff Poulton, Ying Guo, Rong-Yu Qiao +CSIRO Telecommunications & Industrial Physics +Australia +Tel: 612 9372 4104, Fax: 612 9372 4411, Email:" +5da740682f080a70a30dc46b0fc66616884463ec,Real-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild,"Real-Time Head Pose Estimation Using +Multi-Variate RVM on Faces in the Wild +Mohamed Selim, Alain Pagani, Didier Stricker +Augmented Vision Research Group, +German Research Center for Artificial Intelligence (DFKI), +Tripstaddterstr. 122, 67663 Kaiserslautern, Germany +Technical University of Kaiserslautern +http://www.av.dfki.de" +5da139fc43216c86d779938d1c219b950dd82a4c,A Generalized Multiple Instance Learning Algorithm for Iterative Distillation and Cross-Granular Propagation of Video Annotations,"-4244-1437-7/07/$20.00 ©2007 IEEE +II - 205 +ICIP 2007" +5d185d82832acd430981ffed3de055db34e3c653,A Fuzzy Reasoning Model for Recognition of Facial Expressions,"A Fuzzy Reasoning Model for Recognition +of Facial Expressions +Oleg Starostenko1, Renan Contreras1, Vicente Alarcón Aquino1, Leticia Flores Pulido1, +Jorge Rodríguez Asomoza1, Oleg Sergiyenko2, and Vira Tyrsa3 +Research Center CENTIA, Department of Computing, Electronics and Mechatronics, +Universidad de las Américas, 72820, Puebla, Mexico +{oleg.starostenko; renan.contrerasgz; vicente.alarcon; leticia.florespo; +Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juárez, +Insurgentes Este, 21280, Mexicali, Baja California, Mexico +Universidad Politécnica de Baja California, Mexicali, Baja California, Mexico" +5d233e6f23b1c306cf62af49ce66faac2078f967,Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions,"RESEARCH ARTICLE +Optimal Geometrical Set for Automated +Marker Placement to Virtualized Real-Time +Facial Emotions +Vasanthan Maruthapillai, Murugappan Murugappan* +School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Ulu Pauh, Arau, Perlis, West Malaysia" +5db075a308350c083c3fa6722af4c9765c4b8fef,The Novel Method of Moving Target Tracking Eyes Location based on SIFT Feature Matching and Gabor Wavelet Algorithm,"The Novel Method of Moving Target Tracking Eyes +Location based on SIFT Feature Matching and Gabor +Wavelet Algorithm +* Jing Zhang, Caixia Yang, Kecheng Liu +College of Computer and Information Engineering, Nanyang Institute of Technology, +Henan Nanyang, 473004, China +* Tel.: 0086+13838972861 +* E-mail: +Sensors & Transducers, Vol. 154, Issue 7, July 2013, pp. 129-137 +SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss +© 2013 by IFSA +http://www.sensorsportal.com +Received: 28 April 2013 /Accepted: 19 July 2013 /Published: 31 July 2013" +5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf,Robust Registration of Dynamic Facial Sequences,"Robust Registration of Dynamic Facial Sequences +Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro" +5db4fe0ce9e9227042144758cf6c4c2de2042435,Recognition of Facial Expression Using Haar Wavelet Transform,"INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010 +Recognition of Facial Expression Using Haar +Wavelet Transform +M. Satiyan, M.Hariharan, R.Nagarajan +paper +features +investigates" +5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e,Face Recognition Algorithms,"Face Recognition Algorithms +Proyecto Fin de Carrera +June 16, 2010 +Ion Marqu´es +Supervisor: +Manuel Gra˜na" +5d09d5257139b563bd3149cfd5e6f9eae3c34776,Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization,"Optics Communications 338 (2015) 77–89 +Contents lists available at ScienceDirect +Optics Communications +journal homepage: www.elsevier.com/locate/optcom +Pattern recognition with composite correlation filters designed with +multi-objective combinatorial optimization +Victor H. Diaz-Ramirez a,n, Andres Cuevas a, Vitaly Kober b, Leonardo Trujillo c, +Abdul Awwal d +Instituto Politécnico Nacional – CITEDI, Ave. del Parque 1310, Mesade Otay, Tijuana B.C. 22510, México +Department of Computer Science, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada B.C. 22860, México +Instituto Tecnológico de Tijuana, Blvd. Industrial y Ave. ITR TijuanaS/N, Mesa de Otay, Tijuana B.C. 22500, México +d National Ignition Facility, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA +r t i c l e i n f o +b s t r a c t +Article history: +Received 12 July 2014 +Accepted 16 November 2014 +Available online 23 October 2014 +Keywords: +Object recognition" +5d197c8cd34473eb6cde6b65ced1be82a3a1ed14,A Face Image Database for Evaluating Out-of-Focus Blur,"0AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The""CAS-PEAL"",""FERET"",""CMUPIE"",and""YaleB""databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The""HarvardRL"",""CMUPIE""and""YaleB""databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe""BANCA"",and""NDHID""databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com" +5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e,"When facial expressions do and do not signal minds: The role of face inversion, expression dynamism, and emotion type.","This is an Open Access document downloaded from ORCA, Cardiff University's institutional +repository: http://orca.cf.ac.uk/111659/ +This is the author’s version of a work that was submitted to / accepted for publication. +Citation for final published version: +Krumhuber, Eva G, Lai, Yukun, Rosin, Paul and Hugenberg, Kurt 2018. When facial expressions +Publishers page: +Please note: +Changes made as a result of publishing processes such as copy-editing, formatting and page +numbers may not be reflected in this version. For the definitive version of this publication, please +refer to the published source. You are advised to consult the publisher’s version if you wish to cite +this paper. +This version is being made available in accordance with publisher policies. See +http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications +made available in ORCA are retained by the copyright holders." +31625522950e82ad4dffef7ed0df00fdd2401436,Motion Representation with Acceleration Images,"Motion Representation with Acceleration Images +Hirokatsu Kataoka, Yun He, Soma Shirakabe, Yutaka Satoh +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{hirokatsu.kataoka, yun.he, shirakabe-s," +318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a,Sparsity in Dynamics of Spontaneous Subtle Emotions: Analysis and Application,"Sparsity in Dynamics of Spontaneous +Subtle Emotions: Analysis & Application +Anh Cat Le Ngo, Member, IEEE, John See, Member, IEEE, Raphael C.-W. Phan, Member, IEEE" +31c0968fb5f587918f1c49bf7fa51453b3e89cf7,Deep Transfer Learning for Person Re-identification,"Deep Transfer Learning for Person Re-identification +Mengyue Geng +Yaowei Wang +Tao Xiang +Yonghong Tian" +316e67550fbf0ba54f103b5924e6537712f06bee,Multimodal semi-supervised learning for image classification,"Multimodal semi-supervised learning +for image classification +Matthieu Guillaumin, Jakob Verbeek, Cordelia Schmid +LEAR team, INRIA Grenoble, France" +31ef5419e026ef57ff20de537d82fe3cfa9ee741,Facial Expression Analysis Based on High Dimensional Binary Features,"Facial Expression Analysis Based on +High Dimensional Binary Features +Samira Ebrahimi Kahou, Pierre Froumenty, and Christopher Pal +´Ecole Polytechique de Montr´eal, Universit´e de Montr´eal, Montr´eal, Canada +{samira.ebrahimi-kahou, pierre.froumenty," +3176ee88d1bb137d0b561ee63edf10876f805cf0,Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation,"Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation +Sina Honari1, Jason Yosinski2, Pascal Vincent1,4, Christopher Pal3 +University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR +{honaris," +31ace8c9d0e4550a233b904a0e2aabefcc90b0e3,Learning Deep Face Representation,"Learning Deep Face Representation +Haoqiang Fan +Megvii Inc. +Zhimin Cao +Megvii Inc. +Yuning Jiang +Megvii Inc. +Qi Yin +Megvii Inc. +Chinchilla Doudou +Megvii Inc." +31afdb6fa95ded37e5871587df38976fdb8c0d67,Quantized fuzzy LBP for face recognition,"QUANTIZED FUZZY LBP FOR FACE RECOGNITION +Jianfeng +Xudong Jiang, +Junsong +BeingThere +Centre +Institute +of Media Innovation +Nanyang +50 Nanyang +Technological +Singapore +Drive, +637553. +University +School of Electrical +& Electronics +Engineering +Nanyang +50 Nanyang" +91811203c2511e919b047ebc86edad87d985a4fa,Expression Subspace Projection for Face Recognition from Single Sample per Person,"Expression Subspace Projection for Face +Recognition from Single Sample per Person +Hoda Mohammadzade, Student Member, IEEE, and Dimitrios Hatzinakos, Senior Member, IEEE" +9117fd5695582961a456bd72b157d4386ca6a174,Recognition Using Dee Networks,"Facial Expression +n Recognition Using Dee +ep Neural +Networks +Junnan Li and Edmund Y. Lam +Departm +ment of Electrical and Electronic Engineering +he University of Hong Kong, Pokfulam, +Hong Kong" +91067f298e1ece33c47df65236853704f6700a0b,Local Binary Pattern and Local Linear Regression for Pose Invariant Face Recognition,"IJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 11 | May 2016 +ISSN (online): 2349-784X +Local Binary Pattern and Local Linear +Regression for Pose Invariant Face Recognition +Raju Dadasab Patil +M. Tech Student +Shreekumar T +Associate Professor +Department of Computer Science & Engineering +Department of Computer Science & Engineering +Mangalore Institute of Engineering & Technology, Badaga +Mangalore Institute of Engineering & Technology, Badaga +Mijar, Moodbidri, Mangalore +Mijar, Moodbidri, Mangalore +Karunakara K +Professor & Head of Dept. +Department of Information Science & Engineering +Sri SidarthaInstitute of Technology, Tumkur" +919d3067bce76009ce07b070a13728f549ebba49,Time Based Re-ranking for Web Image Search,"International Journal of Scientific and Research Publications, Volume 4, Issue 6, June 2014 +ISSN 2250-3153 +Time Based Re-ranking for Web Image Search +Ms. A.Udhayabharadhi *, Mr. R.Ramachandran ** +* MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry-605106 +** Assistant Professor dept of MCA, Sri Manakula Vinayagar Engineering College, Pondicherry-605106" +91e57667b6fad7a996b24367119f4b22b6892eca,Probabilistic Corner Detection for Facial Feature,"Probabilistic Corner Detection for Facial Feature +Extraction +Article +Accepted version +E. Ardizzone, M. La Cascia, M. Morana +In Lecture Notes in Computer Science Volume 5716, 2009 +It is advisable to refer to the publisher's version if you intend to cite +from the work. +Publisher: Springer +http://link.springer.com/content/pdf/10.1007%2F978-3- +642-04146-4_50.pdf" +917bea27af1846b649e2bced624e8df1d9b79d6f,Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications,"Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for +Mobile and Embedded Applications +Baohua Sun, +Lin Yang, +Patrick Dong, Wenhan Zhang, +Gyrfalcon Technology Inc. +Jason Dong, Charles Young +900 McCarthy Blvd. Milpitas, CA 95035" +91b1a59b9e0e7f4db0828bf36654b84ba53b0557,Simultaneous Hallucination and Recognition of Low-Resolution Faces Based on Singular Value Decomposition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +Simultaneous Hallucination and Recognition of +Low-Resolution Faces Based on Singular Value +Decomposition +Muwei Jian, Kin-Man Lam*, Senior Member, IEEE +(SVD) +for performing both" +911bef7465665d8b194b6b0370b2b2389dfda1a1,Learning Human Optical Flow,"RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW +Learning Human Optical Flow +MPI for Intelligent Systems +Tübingen, Germany +Amazon Inc. +Anurag Ranjan1 +Javier Romero∗,2 +Michael J. Black1" +91ead35d1d2ff2ea7cf35d15b14996471404f68d,Combining and Steganography of 3D Face Textures,"Combining and Steganography of 3D Face Textures +Mohsen Moradi and Mohammad-Reza Rafsanjani-Sadeghi" +91d513af1f667f64c9afc55ea1f45b0be7ba08d4,Automatic Face Image Quality Prediction,"Automatic Face Image Quality Prediction +Lacey Best-Rowden, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE" +91e58c39608c6eb97b314b0c581ddaf7daac075e,Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks,"Pixel-wise Ear Detection with Convolutional +Encoder-Decoder Networks +ˇZiga Emerˇsiˇc 1, Luka Lan Gabriel 2, Vitomir ˇStruc 3 and Peter Peer 1" +9131c990fad219726eb38384976868b968ee9d9c,Deep Facial Expression Recognition: A Survey,"Deep Facial Expression Recognition: A Survey +Shan Li and Weihong Deng∗, Member, IEEE" +911505a4242da555c6828509d1b47ba7854abb7a,Improved Active Shape Model for Facial Feature Localization,"IMPROVED ACTIVE SHAPE MODEL FOR FACIAL FEATURE LOCALIZATION +Hui-Yu Huang and Shih-Hang Hsu +National Formosa University, Taiwan +Email:" +915d4a0fb523249ecbc88eb62cb150a60cf60fa0,Comparison of Feature Extraction Techniques in Automatic Face Recognition Systems for Security Applications,"Comparison of Feature Extraction Techniques in Automatic +Face Recognition Systems for Security Applications +S . Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez +Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain +{cruzll, jortega, etorrico, +http://www.atvs.diac.upm.es" +65126e0b1161fc8212643b8ff39c1d71d262fbc1,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,"Occlusion Coherence: Localizing Occluded Faces with a +Hierarchical Deformable Part Model +Golnaz Ghiasi Charless C. Fowlkes +Dept. of Computer Science, University of California, Irvine" +6582f4ec2815d2106957215ca2fa298396dde274,Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations,"JUNE 2007 +Discriminative Learning and Recognition +of Image Set Classes Using +Canonical Correlations +Tae-Kyun Kim, Josef Kittler, Member, IEEE, and Roberto Cipolla, Member, IEEE" +65b1209d38c259fe9ca17b537f3fb4d1857580ae,Information Constraints on Auto-Encoding Variational Bayes,"Information Constraints on Auto-Encoding Variational Bayes +Romain Lopez1, Jeffrey Regier1, Michael I. Jordan1,2, and Nir Yosef1,3,4 +{romain_lopez, regier, +Department of Electrical Engineering and Computer Sciences, University of California, Berkeley +Department of Statistics, University of California, Berkeley +Ragon Institute of MGH, MIT and Harvard +Chan-Zuckerberg Biohub" +655d9ba828eeff47c600240e0327c3102b9aba7c,Kernel pooled local subspaces for classification,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +Kernel Pooled Local Subspaces for Classification +Peng Zhang, Student Member, IEEE, Jing Peng, Member, IEEE, and Carlotta Domeniconi" +656a59954de3c9fcf82ffcef926af6ade2f3fdb5,Convolutional Network Representation for Visual Recognition,"Convolutional Network Representation +for Visual Recognition +ALI SHARIF RAZAVIAN +Doctoral Thesis +Stockholm, Sweden, 2017" +656aeb92e4f0e280576cbac57d4abbfe6f9439ea,Use of Image Enhancement Techniques for Improving Real Time Face Recognition Efficiency on Wearable Gadgets,"Journal of Engineering Science and Technology +Vol. 12, No. 1 (2017) 155 - 167 +© School of Engineering, Taylor’s University +USE OF IMAGE ENHANCEMENT TECHNIQUES +FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY +ON WEARABLE GADGETS +MUHAMMAD EHSAN RANA1,*, AHMAD AFZAL ZADEH2, +AHMAD MOHAMMAD MAHMOOD ALQURNEH3 +, 3Asia Pacific University of Technology & Innovation, Kuala Lumpur 57000, Malaysia +Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom +*Corresponding Author:" +656f05741c402ba43bb1b9a58bcc5f7ce2403d9a,Supervised Learning Approaches for Automatic Structuring of Videos. (Méthodes d'apprentissage supervisé pour la structuration automatique de vidéos),"THÈSEPour obtenir le grade deDOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPESSpécialité : Mathématiques et InformatiqueArrêté ministériel : 7 août 2006Présentée parDanila POTAPOVThèse dirigée par Cordelia SCHMID et codirigée par Zaid HARCHAOUIpréparée au sein de Inria Grenoble Rhône-Alpesdans l'École Doctorale Mathématiques, Sciences et technologies de l'information, InformatiqueSupervised Learning Approaches for Automatic Structuring of VideosThèse soutenue publiquement le « 22 Juillet 2015 »,devant le jury composé de : Prof. Cordelia SCHMID Inria Grenoble Rhône-Alpes, France, Directeur de thèseDr. Zaid HARCHAOUIInria Grenoble Rhône-Alpes, France, Co-encadrant de thèse Prof. Patrick PEREZTechnicolor Rennes, France, RapporteurProf. Ivan LAPTEVInria Paris Rocquencourt, France, Rapporteur, PrésidentDr. Florent PERRONNINFacebook AI Research, Paris, France, ExaminateurDr. Matthijs DOUZEInria Grenoble Rhône-Alpes, France, Examinateur" +65817963194702f059bae07eadbf6486f18f4a0a,WhittleSearch: Interactive Image Search with Relative Attribute Feedback,"http://dx.doi.org/10.1007/s11263-015-0814-0 +WhittleSearch: Interactive Image Search with Relative Attribute +Feedback +Adriana Kovashka · Devi Parikh · Kristen Grauman +Received: date / Accepted: date" +6581c5b17db7006f4cc3575d04bfc6546854a785,Contextual Person Identification in Multimedia Data,"Contextual Person Identification +in Multimedia Data +zur Erlangung des akademischen Grades eines +Doktors der Ingenieurwissenschaften +der Fakultät für Informatik +des Karlsruher Instituts für Technologie (KIT) +genehmigte +Dissertation +Dipl.-Inform. Martin Bäuml +us Erlangen +Tag der mündlichen Prüfung: +8. November 2014 +Hauptreferent: +Korreferent: +Prof. Dr. Rainer Stiefelhagen +Karlsruher Institut für Technologie +Prof. Dr. Gerhard Rigoll +Technische Universität München +KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft +www.kit.edu" +653d19e64bd75648cdb149f755d59e583b8367e3,"Decoupling ""when to update"" from ""how to update""","Decoupling “when to update” from “how to +update” +Eran Malach and Shai Shalev-Shwartz +School of Computer Science, The Hebrew University, Israel" +65babb10e727382b31ca5479b452ee725917c739,Label Distribution Learning,"Label Distribution Learning +Xin Geng*, Member, IEEE" +62dccab9ab715f33761a5315746ed02e48eed2a0,A Short Note about Kinetics-600,"A Short Note about Kinetics-600 +Jo˜ao Carreira +Eric Noland +Andras Banki-Horvath +Chloe Hillier +Andrew Zisserman" +62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4,Noise-resistant network: a deep-learning method for face recognition under noise,"Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43 +DOI 10.1186/s13640-017-0188-z +EURASIP Journal on Image +nd Video Processing +R ES EAR CH +Noise-resistant network: a deep-learning +method for face recognition under noise +Yuanyuan Ding1,2, Yongbo Cheng1,2, Xiaoliu Cheng1, Baoqing Li1*, Xing You1 and Xiaobing Yuan1 +Open Access" +62694828c716af44c300f9ec0c3236e98770d7cf,Identification of Action Units Related to Affective States in a Tutoring System for Mathematics,"Padrón-Rivera, G., Rebolledo-Mendez, G., Parra, P. P., & Huerta-Pacheco, N. S. (2016). Identification of Action Units Related to +Identification of Action Units Related to Affective States in a Tutoring System +Gustavo Padrón-Rivera1, Genaro Rebolledo-Mendez1*, Pilar Pozos Parra2 and N. Sofia +Facultad de Estadística e Informática, Universidad Veracruzana, Mexico // 2Universidad Juárez Autónoma de +Tabasco, Mexico // // // // +for Mathematics +Huerta-Pacheco1 +*Corresponding author" +62f0d8446adee6a5e8102053a63a61af07ac4098,Facial point detection using convolutional neural network transferred from a heterogeneous task,"FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK +TRANSFERRED FROM A HETEROGENEOUS TASK +Takayoshi Yamashita* Taro Watasue** Yuji Yamauchi* Hironobu Fujiyoshi* +**Tome R&D +*Chubu University, +200, Matsumoto-cho, Kasugai, AICHI" +62374b9e0e814e672db75c2c00f0023f58ef442c,Frontal face authentication using discriminating,"Frontalfaceauthenticationusingdiscriminatinggridswith +morphologicalfeaturevectors +A.Tefas +C.Kotropoulos +I.Pitas +DepartmentofInformatics,AristotleUniversityofThessaloniki +Box,Thessaloniki,GREECE +EDICSnumbers:-KNOWContentRecognitionandUnderstanding +-MODAMultimodalandMultimediaEnvironments +Anovelelasticgraphmatchingprocedurebasedonmultiscalemorphologicaloperations,thesocalled +morphologicaldynamiclinkarchitecture,isdevelopedforfrontalfaceauthentication.Fastalgorithms +forimplementingmathematicalmorphologyoperationsarepresented.Featureselectionbyemploying +linearprojectionalgorithmsisproposed.Discriminatorypowercoe(cid:14)cientsthatweighthematching +errorateachgridnodearederived.Theperformanceofmorphologicaldynamiclinkarchitecturein +frontalfaceauthenticationisevaluatedintermsofthereceiveroperatingcharacteristicontheMVTS +faceimagedatabase.Preliminaryresultsforfacerecognitionusingtheproposedtechniquearealso +presented. +Correspondingauthor:I.Pitas +DRAFT +September," +626859fe8cafd25da13b19d44d8d9eb6f0918647,Activity Recognition Based on a Magnitude-Orientation Stream Network,"Activity Recognition based on a +Magnitude-Orientation Stream Network +Carlos Caetano, Victor H. C. de Melo, Jefersson A. dos Santos, William Robson Schwartz +Smart Surveillance Interest Group, Department of Computer Science +Universidade Federal de Minas Gerais, Belo Horizonte, Brazil" +62007c30f148334fb4d8975f80afe76e5aef8c7f,Eye In-Painting with Exemplar Generative Adversarial Networks,"Eye In-Painting with Exemplar Generative Adversarial Networks +Brian Dolhansky, Cristian Canton Ferrer +Facebook Inc. +Hacker Way, Menlo Park (CA), USA +{bdol," +62a30f1b149843860938de6dd6d1874954de24b7,Fast Algorithm for Updating the Discriminant Vectors of Dual-Space LDA,"Fast Algorithm for Updating the Discriminant Vectors +of Dual-Space LDA +Wenming Zheng, Member, IEEE, and Xiaoou Tang, Fellow, IEEE" +62e0380a86e92709fe2c64e6a71ed94d152c6643,Facial emotion recognition with expression energy,"Facial Emotion Recognition With Expression Energy +Albert Cruz +Center for Research in +Intelligent Systems +16 Winston Chung Hall +Bir Bhanu +Center for Research in +Intelligent Systems +16 Winston Chung Hall +Ninad Thakoor +Center for Research in +Intelligent Systems +16 Winston Chung Hall +Riverside, CA, 92521-0425, +Riverside, CA, 92521-0425, +Riverside, CA, 92521-0425," +9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c,A deep learning approach for action classification in American football video sequences,"UPTEC STS 17033 +Examensarbete 30 hp +November 2017 +A deep learning approach for +ction classification in American +football video sequences +Jacob Westerberg" +9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4,Region-Based Facial Expression Recognition in Still Images,"J Inf Process Syst, Vol.9, No.1, March 2013 +pISSN 1976-913X +eISSN 2092-805X +Region-Based Facial Expression Recognition in +Still Images +Gawed M. Nagi*, Rahmita Rahmat*, Fatimah Khalid* and Muhamad Taufik*" +96f4a1dd1146064d1586ebe86293d02e8480d181,Comparative Analysis of Reranking Techniques for Web Image Search,"COMPARATIVE ANALYSIS OF RERANKING +TECHNIQUES FOR WEB IMAGE SEARCH +Suvarna V. Jadhav1, A.M.Bagade2 +,2Department of Information Technology, Pune Institute of Computer Technology, Pune,( India)" +9606b1c88b891d433927b1f841dce44b8d3af066,Principal Component Analysis with Tensor Train Subspace,"Principal Component Analysis with Tensor Train +Subspace +Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron" +96b1000031c53cd4c1c154013bb722ffd87fa7da,ContextVP: Fully Context-Aware Video Prediction,"ContextVP: Fully Context-Aware Video +Prediction +Wonmin Byeon1,2,3,4, Qin Wang2, +Rupesh Kumar Srivastava4, and Petros Koumoutsakos2 +NVIDIA, Santa Clara, CA, USA +ETH Zurich, Zurich, Switzerland +The Swiss AI Lab IDSIA, Manno, Switzerland +NNAISENSE, Lugano, Switzerland" +968f472477a8afbadb5d92ff1b9c7fdc89f0c009,Firefly-based Facial Expression Recognition,Firefly-based Facial Expression Recognition +9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc,Emotion Based Music Player,"International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015 +ISSN 2091-2730 +Emotion Based Music Player +Hafeez Kabani1, Sharik Khan2, Omar Khan3, Shabana Tadvi4 +Department of Computer Science and Engineering +Department of Computer Science and Engineering +Department of Computer Science and Engineering +Asst. Professor, Department of Computer Science and Engineering +M.H Saboo Siddik College of Engineering, University of Mumbai, India" +3a2fc58222870d8bed62442c00341e8c0a39ec87,Probabilistic Local Variation Segmentation,"Probabilistic Local Variation +Segmentation +Michael Baltaxe +Technion - Computer Science Department - M.Sc. Thesis MSC-2014-02 - 2014" +3a804cbf004f6d4e0b041873290ac8e07082b61f,A Corpus-Guided Framework for Robotic Visual Perception,"Language-Action Tools for Cognitive Artificial Agents: Papers from the 2011 AAAI Workshop (WS-11-14) +A Corpus-Guided Framework for Robotic Visual Perception +Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller, Yiannis Aloimonos +University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742-3275 +{cteo, yzyang, hal, fer," +3abc833f4d689f37cc8a28f47fb42e32deaa4b17,Large Scale Retrieval and Generation of Image Descriptions,"Noname manuscript No. +(will be inserted by the editor) +Large Scale Retrieval and Generation of Image Descriptions +Vicente Ordonez · Xufeng Han · Polina Kuznetsova · Girish Kulkarni · +Margaret Mitchell · Kota Yamaguchi · Karl Stratos · Amit Goyal · +Jesse Dodge · Alyssa Mensch · Hal Daum´e III · Alexander C. Berg · +Yejin Choi · Tamara L. Berg +Received: date / Accepted: date" +3acb6b3e3f09f528c88d5dd765fee6131de931ea,Novel representation for driver emotion recognition in motor vehicle videos,"(cid:49)(cid:50)(cid:57)(cid:40)(cid:47)(cid:3)(cid:53)(cid:40)(cid:51)(cid:53)(cid:40)(cid:54)(cid:40)(cid:49)(cid:55)(cid:36)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:41)(cid:50)(cid:53)(cid:3)(cid:39)(cid:53)(cid:44)(cid:57)(cid:40)(cid:53)(cid:3)(cid:40)(cid:48)(cid:50)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:53)(cid:40)(cid:38)(cid:50)(cid:42)(cid:49)(cid:44)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:3) +(cid:44)(cid:49)(cid:3)(cid:48)(cid:50)(cid:55)(cid:50)(cid:53)(cid:3)(cid:57)(cid:40)(cid:43)(cid:44)(cid:38)(cid:47)(cid:40)(cid:3)(cid:57)(cid:44)(cid:39)(cid:40)(cid:50)(cid:54)(cid:3) +(cid:53)(cid:68)(cid:77)(cid:78)(cid:88)(cid:80)(cid:68)(cid:85)(cid:3)(cid:55)(cid:75)(cid:72)(cid:68)(cid:74)(cid:68)(cid:85)(cid:68)(cid:77)(cid:68)(cid:81)(cid:13)(cid:15)(cid:3)(cid:37)(cid:76)(cid:85)(cid:3)(cid:37)(cid:75)(cid:68)(cid:81)(cid:88)(cid:13)(cid:15)(cid:3)(cid:36)(cid:79)(cid:69)(cid:72)(cid:85)(cid:87)(cid:3)(cid:38)(cid:85)(cid:88)(cid:93)(cid:130)(cid:15)(cid:3)(cid:37)(cid:72)(cid:79)(cid:76)(cid:81)(cid:71)(cid:68)(cid:3)(cid:47)(cid:72)(cid:13)(cid:15)(cid:3)(cid:36)(cid:86)(cid:82)(cid:81)(cid:74)(cid:88)(cid:3)(cid:55)(cid:68)(cid:80)(cid:69)(cid:82)(cid:13)(cid:3) +(cid:3) +*Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA +(cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA +(cid:36)(cid:37)(cid:54)(cid:55)(cid:53)(cid:36)(cid:38)(cid:55)(cid:3) +the background +(cid:3) +A novel feature representation of human facial expressions +for emotion recognition is developed. The representation +leveraged +texture removal ability of +Anisotropic Inhibited Gabor Filtering (AIGF) with the +ompact representation of spatiotemporal +local binary +patterns. The emotion recognition system incorporated face +detection and registration followed by the proposed feature +representation: Local Anisotropic Inhibited Binary Patterns +in Three Orthogonal" +3a60678ad2b862fa7c27b11f04c93c010cc6c430,A Multimodal Database for Affect Recognition and Implicit Tagging,"JANUARY-MARCH 2012 +A Multimodal Database for +Affect Recognition and Implicit Tagging +Mohammad Soleymani, Member, IEEE, Jeroen Lichtenauer, +Thierry Pun, Member, IEEE, and Maja Pantic, Fellow, IEEE" +3a591a9b5c6d4c62963d7374d58c1ae79e3a4039,Driver Cell Phone Usage Detection from HOV/HOT NIR Images,"Driver Cell Phone Usage Detection From HOV/HOT NIR Images +Yusuf Artan, Orhan Bulan, Robert P. Loce, and Peter Paul +Xerox Research Center Webster +800 Phillips Rd. Webster NY 14580" +3aa9c8c65ce63eb41580ba27d47babb1100df8a3,Differentiating Duchenne from non-Duchenne smiles using active appearance models,"Annals of the +University of North Carolina Wilmington +Master of Science in +Computer Science and Information Systems" +3a0a839012575ba455f2b84c2d043a35133285f9,Corpus-Guided Sentence Generation of Natural Images,"Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 444–454, +Edinburgh, Scotland, UK, July 27–31, 2011. c(cid:13)2011 Association for Computational Linguistics" +3a9681e2e07be7b40b59c32a49a6ff4c40c962a2,"Comparing treatment means : overlapping standard errors , overlapping confidence intervals , and tests of hypothesis","Biometrics & Biostatistics International Journal +Comparing treatment means: overlapping standard +errors, overlapping confidence intervals, and tests of +hypothesis" +3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e,FACE-GRAB: Face recognition with General Region Assigned to Binary operator,"in any current or +future media, +for all other uses, +© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained +including +reprinting/republishing this material for advertising or promotional purposes, creating +new collective works, for resale or redistribution to servers or lists, or reuse of any +opyrighted component of this work in other works. +Pre-print of article that appeared at the IEEE Computer Society Workshop on Biometrics +010. +The published article can be accessed from: +http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5544597" +3a95eea0543cf05670e9ae28092a114e3dc3ab5c,Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering,"Constructing the L2-Graph for Robust Subspace +Learning and Subspace Clustering +Xi Peng, Zhiding Yu, Huajin Tang, Member, IEEE, and Zhang Yi, Senior Member, IEEE" +3a4f522fa9d2c37aeaed232b39fcbe1b64495134,Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset,"ISSN (Online) 2321 – 2004 +ISSN (Print) 2321 – 5526 +INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +Vol. 4, Issue 5, May 2016 +IJIREEICE +Face Recognition and Retrieval Using Cross +Age Reference Coding +Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 +BE, DSCE, Bangalore1 +Assistant Professor, DSCE, Bangalore2" +540b39ba1b8ef06293ed793f130e0483e777e278,Biologically Inspired Emotional Expressions for Artificial Agents,"ORIGINAL RESEARCH +published: 13 July 2018 +doi: 10.3389/fpsyg.2018.01191 +Biologically Inspired Emotional +Expressions for Artificial Agents +Beáta Korcsok 1*, Veronika Konok 2, György Persa 3, Tamás Faragó 2, Mihoko Niitsuma 4, +Ádám Miklósi 2,5, Péter Korondi 1, Péter Baranyi 6 and Márta Gácsi 2,5 +Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics, +Budapest, Hungary, 2 Department of Ethology, Eötvös Loránd University, Budapest, Hungary, 3 Institute for Computer Science +nd Control, Hungarian Academy of Sciences, Budapest, Hungary, 4 Department of Precision Mechanics, Chuo University, +Tokyo, Japan, 5 MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary, 6 Department of Telecommunications +nd Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary +A special area of human-machine interaction, +the expression of emotions gains +importance with the continuous development of artificial agents such as social robots or" +543f21d81bbea89f901dfcc01f4e332a9af6682d,Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks,"Published as a conference paper at ICLR 2016 +UNSUPERVISED AND SEMI-SUPERVISED LEARNING +WITH CATEGORICAL GENERATIVE ADVERSARIAL +NETWORKS +Jost Tobias Springenberg +University of Freiburg +79110 Freiburg, Germany" +54969bcd728b0f2d3285866c86ef0b4797c2a74d,Learning for Video Compression,"IEEE TRANSACTION SUBMISSION +Learning for Video Compression +Zhibo Chen, Senior Member, IEEE, Tianyu He, Xin Jin, Feng Wu, Fellow, IEEE" +5456166e3bfe78a353df988897ec0bd66cee937f,Improved Boosting Performance by Exclusion of Ambiguous Positive Examples,"Improved Boosting Performance by Exclusion +of Ambiguous Positive Examples +Miroslav Kobetski, Josephine Sullivan +Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden +{kobetski, +Keywords: +Boosting, Image Classification, Algorithm Evaluation, Dataset Pruning, VOC2007." +54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3,A joint learning framework for attribute models and object descriptions,"A Joint Learning Framework for Attribute Models and Object Descriptions +Dhruv Mahajan +Yahoo! Labs, Bangalore, India +Sundararajan Sellamanickam +Vinod Nair" +541bccf19086755f8b5f57fd15177dc49e77d675,A few days of a robot's life in the human's world: toward incremental individual recognition,"Computer Science and ArtificialIntelligence LaboratoryTechnical Reportmassachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.eduMIT-CSAIL-TR-2007-022April 3, 2007A Few Days of A Robot’s Life in the Human’s World: Toward Incremental Individual RecognitionLijin Aryananda" +54756f824befa3f0c2af404db0122f5b5bbf16e0,Computer Vision — Visual Recognition,"Research Statement +Computer Vision — Visual Recognition +Alexander C. Berg +Computational visual recognition concerns identifying what is in an image, video, or other visual data, enabling +pplications such as measuring location, pose, size, activity, and identity as well as indexing for search by content. +Recent progress in making economical sensors and improvements in network, storage, and computational power +make visual recognition practical and relevant in almost all experimental sciences and commercial applications +such as image search. My work in visual recognition brings together machine learning, insights from psychology +nd physiology, computer graphics, algorithms, and a great deal of computation. +While I am best known for my work on general object category detection – creating techniques and building +systems for some of the best performing approaches to categorizing and localizing objects in images, recognizing +ction in video, and searching large collections of video and images – my research extends widely across visual +recognition including: +• Creating low-level image descriptors – procedures for converting pixel values to features that can be used +to model appearance for recognition. These include widely used descriptors for category recognition in +images [4, 2], object detection in images and video [11, 10, 2], and optical flow based descriptors for action +recognition in video [8]. +• Developing models for recognition – ranging from what is becoming seminal work in recognizing human +ctions in video [8], to formulating object localization as approximate subgraph isomorphism [2], to models +for parsing architectural images [3], to a novel approach for face recognition based on high level describable" +549c719c4429812dff4d02753d2db11dd490b2ae,YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video,"YouTube-BoundingBoxes: A Large High-Precision +Human-Annotated Data Set for Object Detection in Video +Esteban Real +Google Brain +Jonathon Shlens +Google Brain +Stefano Mazzocchi +Google Research +Xin Pan +Google Brain +Vincent Vanhoucke +Google Brain" +9853136dbd7d5f6a9c57dc66060cab44a86cd662,"Improving the Neural Network Training for Face Recognition using Adaptive Learning Rate , Resilient Back Propagation and Conjugate Gradient Algorithm","International Journal of Computer Applications (0975 – 8887) +Volume 34– No.2, November 2011 +Improving the Neural Network Training for Face +Recognition using Adaptive Learning Rate, Resilient +Back Propagation and Conjugate Gradient Algorithm +Hamed Azami +M.Sc. Student +Department of Electrical +Engineering, Iran University +of Science and Technology, +Tehran, Iran +Saeid Sanei +Associate Professor +Department of Computing, +Faculty of Engineering and +Physical Sciences, University +of Surrey, UK +Karim Mohammadi +Professor +Department of Electrical" +988d1295ec32ce41d06e7cf928f14a3ee079a11e,Semantic Deep Learning,"Semantic Deep Learning +Hao Wang +September 29, 2015" +98c548a4be0d3b62971e75259d7514feab14f884,Deep generative-contrastive networks for facial expression recognition,"Deep generative-contrastive networks for facial expression recognition +Youngsung Kim†, ByungIn Yoo‡,†, Youngjun Kwak†, Changkyu Choi†, and Junmo Kim‡ +Samsung Advanced Institute of Technology (SAIT), ‡KAIST +hangkyu" +981449cdd5b820268c0876477419cba50d5d1316,Learning Deep Features for One-Class Classification,"Learning Deep Features for One-Class +Classification +Pramuditha Perera, Student Member, IEEE, and Vishal M. Patel, Senior Member , IEEE" +9854145f2f64d52aac23c0301f4bb6657e32e562,An Improved Face Verification Approach Based on Speedup Robust Features and Pairwise Matching,"An Improved Face Verification Approach based on +Speedup Robust Features and Pairwise Matching +Eduardo Santiago Moura, Herman Martins Gomes and Jo˜ao Marques de Carvalho +Center for Electrical Engineering and Informatics (CEEI) +Federal University of Campina Grande (UFCG) +Campina Grande, Para´ıba, Brazil +Email:" +98127346920bdce9773aba6a2ffc8590b9558a4a,Efficient human action recognition using histograms of motion gradients and VLAD with descriptor shape information,"Noname manuscript No. +(will be inserted by the editor) +Ef‌f‌icient Human Action Recognition using +Histograms of Motion Gradients and +VLAD with Descriptor Shape Information +Ionut C. Duta · Jasper R.R. Uijlings · +Bogdan Ionescu · Kiyoharu Aizawa · +Alexander G. Hauptmann · Nicu Sebe +Received: date / Accepted: date" +98a660c15c821ea6d49a61c5061cd88e26c18c65,Face Databases for 2D and 3D Facial Recognition: A Survey,"IOSR Journal of Engineering (IOSRJEN) +e-ISSN: 2250-3021, p-ISSN: 2278-8719 +Vol. 3, Issue 4 (April. 2013), ||V1 || PP 43-48 +Face Databases for 2D and 3D Facial Recognition: A Survey +R.Senthilkumar1, Dr.R.K.Gnanamurthy2 +Assistant Professor, Department of Electronics and Communication Engineering, Institute of Road and +Professor and Dean , Department of Electronics and Communication Engineering, Odaiyappa College of +Transport Technology,Erode-638 316. +Engineering and Technology,Theni-625 531." +98519f3f615e7900578bc064a8fb4e5f429f3689,Dictionary-Based Domain Adaptation Methods for the Re-identification of Faces,"Dictionary-based Domain Adaptation Methods +for the Re-identification of Faces +Qiang Qiu, Jie Ni, and Rama Chellappa" +9825aa96f204c335ec23c2b872855ce0c98f9046,Face and Facial Expression Recognition in 3-d Using Masked Projection under Occlusion,"International Journal of Ethics in Engineering & Management Education +Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014) +FACE AND FACIAL EXPRESSION +RECOGNITION IN 3-D USING MASKED +PROJECTION UNDER OCCLUSION +Jyoti patil * +M.Tech (CSE) +GNDEC Bidar-585401 +BIDAR, INDIA +Gouri Patil +M.Tech (CSE) +GNDEC Bidar- 585401 +BIDAR, INDIA +Snehalata Patil +M.Tech (CSE) +VKIT, Bangalore- 560040 +BANGALORE, INDIA" +53e081f5af505374c3b8491e9c4470fe77fe7934,Unconstrained realtime facial performance capture,"Unconstrained Realtime Facial Performance Capture +Pei-Lun Hsieh⇤ +⇤ University of Southern California +Chongyang Ma⇤ +Jihun Yu† +Hao Li⇤ +Industrial Light & Magic +Figure 1: Calibration-free realtime facial performance capture on highly occluded subjects using an RGB-D sensor." +53c36186bf0ffbe2f39165a1824c965c6394fe0d,I Know How You Feel: Emotion Recognition with Facial Landmarks,"I Know How You Feel: Emotion Recognition with Facial Landmarks +Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology +Ivona Tautkute1,2, Tomasz Trzcinski1,3 and Adam Bielski1" +5366573e96a1dadfcd4fd592f83017e378a0e185,"Server, server in the cloud. Who is the fairest in the crowd?","Böhlen, Chandola and Salunkhe +Server, server in the cloud. +Who is the fairest in the crowd?" +53a41c711b40e7fe3dc2b12e0790933d9c99a6e0,Recurrent Memory Addressing for Describing Videos,"Recurrent Memory Addressing for describing videos +Arnav Kumar Jain∗ Abhinav Agarwalla∗ +Kumar Krishna Agrawal∗ +Pabitra Mitra +{arnavkj95, abhinavagarawalla, kumarkrishna, +Indian Institute of Technology Kharagpur" +533bfb82c54f261e6a2b7ed7d31a2fd679c56d18,Unconstrained Face Recognition: Identifying a Person of Interest From a Media Collection,"Technical Report MSU-CSE-14-1 +Unconstrained Face Recognition: Identifying a +Person of Interest from a Media Collection +Lacey Best-Rowden, Hu Han, Member, IEEE, Charles Otto, Brendan Klare, Member, IEEE, and +Anil K. Jain, Fellow, IEEE" +3fbd68d1268922ee50c92b28bd23ca6669ff87e5,A shape- and texture-based enhanced Fisher classifier for face recognition,"IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 +A Shape- and Texture-Based Enhanced Fisher +Classifier for Face Recognition +Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE" +3f22a4383c55ceaafe7d3cfed1b9ef910559d639,Robust Kronecker Component Analysis,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Robust Kronecker Component Analysis +Mehdi Bahri, Student Member, IEEE, Yannis Panagakis, and Stefanos Zafeiriou, Member, IEEE" +3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001,A Top-Down Approach for a Synthetic Autobiographical Memory System,"A top-down approach for a synthetic +utobiographical memory system +Andreas Damianou1,2, Carl Henrik Ek3, Luke Boorman1, Neil D. Lawrence2, +nd Tony J. Prescott1 +Shef‌f‌ield Centre for Robotics (SCentRo), Univ. of Shef‌f‌ield, Shef‌f‌ield, S10 2TN, UK +Dept. of Computer Science, Univ. of Shef‌f‌ield, Shef‌f‌ield, S1 4DP, UK +CVAP Lab, KTH, Stockholm, Sweden" +3f848d6424f3d666a1b6dd405a48a35a797dd147,Is 2D Information Enough For Viewpoint Estimation?,"GHODRATI et al.: IS 2D INFORMATION ENOUGH FOR VIEWPOINT ESTIMATION? +Is 2D Information Enough For Viewpoint +Estimation? +Amir Ghodrati +Marco Pedersoli +Tinne Tuytelaars +KU Leuven, ESAT - PSI, iMinds +Leuven, Belgium" +3fa738ab3c79eacdbfafa4c9950ef74f115a3d84,DaMN - Discriminative and Mutually Nearest: Exploiting Pairwise Category Proximity for Video Action Recognition,"DaMN – Discriminative and Mutually Nearest: +Exploiting Pairwise Category Proximity +for Video Action Recognition +Rui Hou1, Amir Roshan Zamir1, Rahul Sukthankar2, and Mubarak Shah1 +Center for Research in Computer Vision at UCF, Orlando, USA +Google Research, Mountain View, USA +http://crcv.ucf.edu/projects/DaMN/" +3fb98e76ffd8ba79e1c22eda4d640da0c037e98a,Convolutional Neural Networks for Crop Yield Prediction using Satellite Images,"Convolutional Neural Networks for Crop Yield Prediction using Satellite Images +H. Russello" +3f14b504c2b37a0e8119fbda0eff52efb2eb2461,Joint Facial Action Unit Detection and Feature Fusion: A Multi-Conditional Learning Approach,"Joint Facial Action Unit Detection and Feature +Fusion: A Multi-Conditional Learning Approach +Stefanos Eleftheriadis, Ognjen Rudovic, Member, IEEE, and Maja Pantic, Fellow, IEEE" +3fac7c60136a67b320fc1c132fde45205cd2ac66,Remarks on Computational Facial Expression Recognition from HOG Features Using Quaternion Multi-layer Neural Network,"Remarks on Computational Facial Expression +Recognition from HOG Features Using +Quaternion Multi-layer Neural Network +Kazuhiko Takahashi1, Sae Takahashi1, Yunduan Cui2, +nd Masafumi Hashimoto3 +Information Systems Design, Doshisha University, Kyoto, Japan +Graduate School of Doshisha University, Kyoto, Japan +Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan" +3f9a7d690db82cf5c3940fbb06b827ced59ec01e,VIP: Finding important people in images,"VIP: Finding Important People in Images +Clint Solomon Mathialagan +Virginia Tech +Andrew C. Gallagher +Google Inc. +Dhruv Batra +Virginia Tech +Project: https://computing.ece.vt.edu/~mclint/vip/ +Demo: http://cloudcv.org/vip/" +3fd90098551bf88c7509521adf1c0ba9b5dfeb57,Attribute-Based Classification for Zero-Shot Visual Object Categorization,"Page 1 of 21 +*****For Peer Review Only***** +Attribute-Based Classification for Zero-Shot +Visual Object Categorization +Christoph H. Lampert, Hannes Nickisch and Stefan Harmeling" +3f7723ab51417b85aa909e739fc4c43c64bf3e84,Improved Performance in Facial Expression Recognition Using 32 Geometric Features,"Improved Performance in Facial Expression +Recognition Using 32 Geometric Features +Giuseppe Palestra1(B), Adriana Pettinicchio2, Marco Del Coco2, +Pierluigi Carcagn`ı2, Marco Leo2, and Cosimo Distante2 +Department of Computer Science, University of Bari, Bari, Italy +National Institute of Optics, National Research Council, Arnesano, LE, Italy" +3f63f9aaec8ba1fa801d131e3680900680f14139,Facial Expression recognition using Local Binary Patterns and Kullback Leibler divergence,"Facial Expression Recognition using Local Binary +Patterns and Kullback Leibler Divergence +AnushaVupputuri, SukadevMeher +divergence." +3f0e0739677eb53a9d16feafc2d9a881b9677b63,Efficient Two-Stream Motion and Appearance 3D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for +Video Classification +Ali Diba +ESAT-KU Leuven +Ali Pazandeh +Sharif UTech +Luc Van Gool +ESAT-KU Leuven, ETH Zurich" +30b15cdb72760f20f80e04157b57be9029d8a1ab,Face Aging with Identity-Preserved Conditional Generative Adversarial Networks,"Face Aging with Identity-Preserved +Conditional Generative Adversarial Networks +Zongwei Wang +Shanghaitech University +Xu Tang +Baidu +Weixin Luo, Shenghua Gao∗ +Shanghaitech University +{luowx," +30870ef75aa57e41f54310283c0057451c8c822b,Overcoming catastrophic forgetting with hard attention to the task,"Overcoming Catastrophic Forgetting with Hard Attention to the Task +Joan Serr`a 1 D´ıdac Sur´ıs 1 2 Marius Miron 1 3 Alexandros Karatzoglou 1" +305346d01298edeb5c6dc8b55679e8f60ba97efb,Fine-Grained Face Annotation Using Deep Multi-Task CNN,"Article +Fine-Grained Face Annotation Using Deep +Multi-Task CNN +Luigi Celona * +, Simone Bianco +nd Raimondo Schettini +Department of Informatics, Systems and Communication, University of Milano-Bicocca, +viale Sarca, 336 Milano, Italy; (S.B.); (R.S.) +* Correspondence: +Received: 3 July 2018; Accepted: 13 August 2018; Published: 14 August 2018" +309e17e6223e13b1f76b5b0eaa123b96ef22f51b,Face recognition based on a 3D morphable model,"Face Recognition based on a 3D Morphable Model +Volker Blanz +University of Siegen +H¤olderlinstr. 3 +57068 Siegen, Germany" +3046baea53360a8c5653f09f0a31581da384202e,Deformable Face Alignment via Local Measurements and Global Constraints,"Deformable Face Alignment via Local +Measurements and Global Constraints +Jason M. Saragih" +3028690d00bd95f20842d4aec84dc96de1db6e59,Leveraging Union of Subspace Structure to Improve Constrained Clustering,"Leveraging Union of Subspace Structure to Improve Constrained Clustering +John Lipor 1 Laura Balzano 1" +30c96cc041bafa4f480b7b1eb5c45999701fe066,Discrete Cosine Transform Locality-Sensitive Hashes for Face Retrieval,"Discrete Cosine Transform Locality-Sensitive +Hashes for Face Retrieval +Mehran Kafai, Member, IEEE, Kave Eshghi, and Bir Bhanu, Fellow, IEEE" +306957285fea4ce11a14641c3497d01b46095989,Face Recognition Under Varying Lighting Based on Derivates of Log Image,"FACE RECOGNITION UNDER VARYING LIGHTING BASED ON +DERIVATES OF LOG IMAGE +Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2 +ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing 100080, China +Graduate School, CAS, Beijing, 100039, China" +307a810d1bf6f747b1bd697a8a642afbd649613d,An affordable contactless security system access for restricted area,"An affordable contactless security system access +for restricted area +Pierre Bonazza1, Johel Mitéran1, Barthélémy Heyrman1, Dominique Ginhac1, +Vincent Thivent2, Julien Dubois1 +Laboratory Le2i +University Bourgogne Franche-Comté, France +Odalid compagny, France +Contact +Keywords – Smart Camera, Real-time Image Processing, Biometrics, Face Detection, Face Verifica- +tion, EigenFaces, Support Vector Machine, +We present in this paper a security system based on +identity verification process and a low-cost smart cam- +era, intended to avoid unauthorized access to restricted +rea. The Le2i laboratory has a longstanding experi- +ence in smart cameras implementation and design [1], +for example in the case of real-time classical face de- +tection [2] or human fall detection [3]. +The principle of the system, fully thought and designed +in our laboratory, is as follows: the allowed user pre- +sents a RFID card to the reader based on Odalid system" +302c9c105d49c1348b8f1d8cc47bead70e2acf08,Unconstrained Face Recognition Using A Set-to-Set Distance Measure,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE +Transactions on Circuits and Systems for Video Technology +IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +Unconstrained Face Recognition Using A Set-to-Set +Distance Measure +Jiaojiao Zhao, Jungong Han, and Ling Shao, Senior Member IEEE" +301b0da87027d6472b98361729faecf6e1d5e5f6,Head Pose Estimation in Face Recognition Across Pose Scenarios,"HEAD POSE ESTIMATION IN FACE RECOGNITION ACROSS +POSE SCENARIOS +M. Saquib Sarfraz and Olaf Hellwich +Computer vision and Remote Sensing, Berlin university of Technology +Sekr. FR-3-1, Franklinstr. 28/29, D-10587, Berlin, Germany. +Keywords: +Pose estimation, facial pose, face recognition, local energy models, shape description, local features, head +pose classification." +30b103d59f8460d80bb9eac0aa09aaa56c98494f,Enhancing Human Action Recognition with Region Proposals,"Enhancing Human Action Recognition with Region Proposals +Fahimeh Rezazadegan, Sareh Shirazi, Niko Sünderhauf, Michael Milford, Ben Upcroft +Australian Centre for Robotic Vision(ACRV), School of Electrical Engineering and Computer Science +Queensland University of Technology(QUT)" +5e6f546a50ed97658be9310d5e0a67891fe8a102,Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?,"Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? +Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{kensho.hara, hirokatsu.kataoka," +5e0eb34aeb2b58000726540336771053ecd335fc,Low-Quality Video Face Recognition with Deep Networks and Polygonal Chain Distance,"Low-Quality Video Face Recognition with Deep +Networks and Polygonal Chain Distance +Christian Herrmann∗†, Dieter Willersinn†, J¨urgen Beyerer†∗ +Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany +Fraunhofer IOSB, Karlsruhe, Germany" +5e28673a930131b1ee50d11f69573c17db8fff3e,Descriptor Based Methods in the Wild,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +(2008)""" +5ea9063b44b56d9c1942b8484572790dff82731e,Multiclass Support Vector Machines and Metric Multidimensional Scaling for Facial Expression Recognition,"MULTICLASS SUPPORT VECTOR MACHINES AND METRIC MULTIDIMENSIONAL +SCALING FOR FACIAL EXPRESSION RECOGNITION +Irene Kotsiay, Stefanos Zafeiriouy, Nikolaos Nikolaidisy and Ioannis Pitasy +yAristotle University of Thessaloniki, Department of Informatics +Thessaloniki, Greece +email: fekotsia, dralbert, nikolaid," +5e6ba16cddd1797853d8898de52c1f1f44a73279,Face Identification with Second-Order Pooling,"Face Identification with Second-Order Pooling +Fumin Shen, Chunhua Shen and Heng Tao Shen" +5ec94adc9e0f282597f943ea9f4502a2a34ecfc2,Leveraging the Power of Gabor Phase for Face Identification: A Block Matching Approach,"Leveraging the Power of Gabor Phase for Face +Identification: A Block Matching Approach +Yang Zhong, Haibo Li +KTH, Royal Institute of Technology" +5bfc32d9457f43d2488583167af4f3175fdcdc03,Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expression Recognition,"International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 +Local Gray Code Pattern (LGCP): A Robust +Feature Descriptor for Facial Expression +Recognition +Mohammad Shahidul Islam +Atish Dipankar University of Science & Technology, School, Department of Computer Science and Engineering, Dhaka, Bangladesh." +5ba7882700718e996d576b58528f1838e5559225,Predicting Personalized Image Emotion Perceptions in Social Networks,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE +Transactions on Affective Computing +IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016 +Predicting Personalized Image Emotion +Perceptions in Social Networks +Sicheng Zhao, Hongxun Yao, Yue Gao, Senior Member, IEEE, Guiguang Ding and Tat-Seng Chua" +5b6f0a508c1f4097dd8dced751df46230450b01a,Finding lost children,"Finding Lost Children +Ashley Michelle Eden +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2010-174 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.html +December 20, 2010" +5bb684dfe64171b77df06ba68997fd1e8daffbe1,One-Sided Unsupervised Domain Mapping, +5bae9822d703c585a61575dced83fa2f4dea1c6d,MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking,"MOTChallenge 2015: +Towards a Benchmark for Multi-Target Tracking +Laura Leal-Taix´e∗, Anton Milan∗, Ian Reid, Stefan Roth, and Konrad Schindler" +5babbad3daac5c26503088782fd5b62067b94fa5,Are You Sure You Want To Do That? Classification with Verification,"Are You Sure You Want To Do That? +Classification with Verification +Harris Chan∗ +Atef Chaudhury∗ +Kevin Shen∗" +5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f,Targeting Ultimate Accuracy: Face Recognition via Deep Embedding,"Targeting Ultimate Accuracy: Face Recognition via Deep Embedding +Jingtuo Liu Yafeng Deng Tao Bai Zhengping Wei Chang Huang +Baidu Research – Institute of Deep Learning" +5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65,An evolving spatio-temporal approach for gender and age group classification with Spiking Neural Networks,"Evolving Systems. manuscript No. +(will be inserted by the editor) +An evolving spatio-temporal approach for gender and age +group classification with Spiking Neural Networks +Fahad Bashir Alvi, Russel Pears, Nikola Kasabov +Received: date / Accepted: date" +5b01d4338734aefb16ee82c4c59763d3abc008e6,A Robust Face Recognition Algorithm Based on Kernel Regularized Relevance-Weighted Discriminant Analysis,"DI WU: A ROBUST FACE RECOGNITION ALGORITHM BASED ON KERNEL REGULARIZED RELEVANCE … +A Robust Face Recognition Algorithm Based on Kernel Regularized +Relevance-Weighted Discriminant Analysis +Di WU 1, 2 +2 Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China. +College of Electrical and Information Engineering, +[e-mail: +I. INTRODUCTION +interface and security +recognition +their +this paper, we propose an effective" +5b721f86f4a394f05350641e639a9d6cb2046c45,Detection under Privileged Information,"A short version of this paper is accepted to ACM Asia Conference on Computer and Communications Security (ASIACCS) 2018 +Detection under Privileged Information (Full Paper)∗ +Z. Berkay Celik +Pennsylvania State University +Patrick McDaniel +Pennsylvania State University +Rauf Izmailov +Vencore Labs +Nicolas Papernot, +Ryan Sheatsley, Raquel Alvarez +Pennsylvania State University +Ananthram Swami +Army Research Laboratory" +5be3cc1650c918da1c38690812f74573e66b1d32,Relative Parts: Distinctive Parts for Learning Relative Attributes,"Relative Parts: Distinctive Parts for Learning Relative Attributes +Ramachandruni N. Sandeep +Yashaswi Verma +C. V. Jawahar +Center for Visual Information Technology, IIIT Hyderabad, India - 500032" +5b6bed112e722c0629bcce778770d1b28e42fc96,Can Your Eyes Tell Me How You Think? A Gaze Directed Estimation of the Mental Activity,"FLOREA ET AL.:CANYOUREYESTELLMEHOWYOUTHINK? +Can Your Eyes Tell Me How You Think? A +Gaze Directed Estimation of the Mental +Activity +Laura Florea +http://alpha.imag.pub.ro/common/staff/lflorea +Corneliu Florea +http://alpha.imag.pub.ro/common/staff/cflorea +Ruxandra Vrânceanu +Constantin Vertan +http://alpha.imag.pub.ro/common/staff/vertan +Image Processing and Analysis +Laboratory, LAPI +University “Politehnica” of Bucharest +Bucharest, Romania" +374c7a2898180723f3f3980cbcb31c8e8eb5d7af,Facial Expression Recognition in Videos using a Novel Multi-Class Support Vector Machines Variant,"FACIAL EXPRESSION RECOGNITION IN VIDEOS USING A NOVEL MULTI-CLASS +SUPPORT VECTOR MACHINES VARIANT +Irene Kotsiay, Nikolaos Nikolaidisy and Ioannis Pitasy +yAristotle University of Thessaloniki +Department of Informatics +Box 451, 54124 Thessaloniki, Greece" +372fb32569ced35eaf3740a29890bec2be1869fa,Mu rhythm suppression is associated with the classification of emotion in faces.,"Running head: MU RHYTHM MODULATION BY CLASSIFICATION OF EMOTION 1 +Mu rhythm suppression is associated with the classification of emotion in faces +Matthew R. Moore1, Elizabeth A. Franz1 +Department of Psychology, University of Otago, Dunedin, New Zealand +Corresponding authors: +Matthew Moore & Liz Franz +Phone: +64 (3) 479 5269; Fax: +64 (3) 479 8335 +Department of Psychology +University of Otago +PO Box 56 +Dunedin, New Zealand" +37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e,Co-operative Pedestrians Group Tracking in Crowded Scenes Using an MST Approach,"WACV 2015 Submission #394. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +Co-operative Pedestrians Group Tracking in Crowded Scenes using an MST +Approach +Anonymous WACV submission +Paper ID 394" +3795974e24296185d9b64454cde6f796ca235387,Finding your Lookalike: Measuring Face Similarity Rather than Face Identity,"Finding your Lookalike: +Measuring Face Similarity Rather than Face Identity +Amir Sadovnik, Wassim Gharbi, Thanh Vu +Lafayette College +Easton, PA +Andrew Gallagher +Google Research +Mountain View, CA" +37278ffce3a0fe2c2bbf6232e805dd3f5267eba3,Can we still avoid automatic face detection?,"Can we still avoid automatic face detection? +Michael J. Wilber1,2 +Vitaly Shmatikov1,2 +Serge Belongie1,2 +Department of Computer Science, Cornell University 2 Cornell Tech" +377a1be5113f38297716c4bb951ebef7a93f949a,Facial emotion recognition with anisotropic inhibited Gabor energy histograms,"Dear Faculty, IGERT Fellows, IGERT Associates and Students, +You are cordially invited to attend a Seminar presented by Albert Cruz. Please +plan to attend. +Albert Cruz +IGERT Fellow +Electrical Engineering +Date: Friday, October 11, 2013 +Location: Bourns A265 +Time: 11:00am +Facial emotion recognition with anisotropic +inhibited gabor energy histograms" +370e0d9b89518a6b317a9f54f18d5398895a7046,Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, XXXXXXX 20XX +Cross-pollination of normalisation techniques +from speaker to face authentication +using Gaussian mixture models +Roy Wallace, Member, IEEE, Mitchell McLaren, Member, IEEE, Christopher McCool, Member, IEEE, +nd S´ebastien Marcel, Member, IEEE" +3773e5d195f796b0b7df1fca6e0d1466ad84b5e7,UNIVERSITY OF CALIFORNIA RIVERSIDE Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised Approaches,"UNIVERSITY OF CALIFORNIA +RIVERSIDE +Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised +Approaches +A Dissertation submitted in partial satisfaction +of the requirements for the degree of +Doctor of Philosophy +Computer Science +Dragomir Dimitrov Yankov +March 2008 +Dissertation Committee: +Dr. Eamonn Keogh, Chairperson +Dr. Stefano Lonardi +Dr. Vassilis Tsotras" +37eb666b7eb225ffdafc6f318639bea7f0ba9a24,"Age, Gender and Race Estimation from Unconstrained Face Images","MSU Technical Report (2014): MSU-CSE-14-5 +Age, Gender and Race Estimation from +Unconstrained Face Images +Hu Han, Member, IEEE and Anil K. Jain, Fellow, IEEE" +375435fb0da220a65ac9e82275a880e1b9f0a557,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +From Pixels to Response Maps: Discriminative Image +Filtering for Face Alignment in the Wild +Akshay Asthana, Stefanos Zafeiriou, Georgios Tzimiropou- +los, Shiyang Cheng and Maja Pantic" +37b6d6577541ed991435eaf899a2f82fdd72c790,Vision-based Human Gender Recognition: A Survey,"Vision-based Human Gender Recognition: A Survey +Choon Boon Ng, Yong Haur Tay, Bok Min Goi +Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia." +372a8bf0ef757c08551d41e40cb7a485527b6cd7,Unsupervised Video Hashing by Exploiting Spatio-Temporal Feature,"Unsupervised Video Hashing by Exploiting +Spatio-Temporal Feature +Chao Ma, Yun Gu, Wei Liu, and Jie Yang(cid:63) +Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong +University, Shanghai, China." +370b5757a5379b15e30d619e4d3fb9e8e13f3256,Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,"Labeled Faces in the Wild: A Database for Studying +Face Recognition in Unconstrained Environments +Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller" +08d2f655361335bdd6c1c901642981e650dff5ec,Automatic Cast Listing in Feature-Length Films with Anisotropic Manifold Space,"This is the published version: +Arandjelovic, Ognjen and Cipolla, R. 2006, Automatic cast listing in feature‐length films with +Anisotropic Manifold Space, in CVPR 2006 : Proceedings of the Computer Vision and Pattern +Recognition Conference 2006, IEEE, Piscataway, New Jersey, pp. 1513‐1520. +http://hdl.handle.net/10536/DRO/DU:30058435 +Reproduced with the kind permission of the copyright owner. +Copyright : 2006, IEEE +Available from Deakin Research Online:" +08fbe3187f31b828a38811cc8dc7ca17933b91e9,Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Statistical Computations on Grassmann and +Stiefel Manifolds for Image and Video-Based +Recognition +Turaga, P.; Veeraraghavan, A.; Srivastava, A.; Chellappa, R. +TR2011-084 April 2011" +08ae100805d7406bf56226e9c3c218d3f9774d19,Predicting the Sixteen Personality Factors (16PF) of an individual by analyzing facial features,"Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing (2017) 2017:59 +DOI 10.1186/s13640-017-0211-4 +EURASIP Journal on Image +nd Video Processing +R ES EAR CH +Predicting the Sixteen Personality Factors +(16PF) of an individual by analyzing facial +features +Mihai Gavrilescu* and Nicolae Vizireanu +Open Access" +08c18b2f57c8e6a3bfe462e599a6e1ce03005876,A Least-Squares Framework for Component Analysis,"A Least-Squares Framework +for Component Analysis +Fernando De la Torre Member, IEEE," +08ff81f3f00f8f68b8abd910248b25a126a4dfa4,Symmetric Subspace Learning for Image Analysis,"Papachristou, K., Tefas, A., & Pitas, I. (2014). Symmetric Subspace Learning +5697. DOI: 10.1109/TIP.2014.2367321 +Peer reviewed version +Link to published version (if available): +0.1109/TIP.2014.2367321 +Link to publication record in Explore Bristol Research +PDF-document +This is the author accepted manuscript (AAM). The final published version (version of record) is available online +via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to +ny applicable terms of use of the publisher. +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms" +0861f86fb65aa915fbfbe918b28aabf31ffba364,An Efficient Facial Annotation with Machine Learning Approach,"International Journal of Computer Trends and Technology (IJCTT) – volume 22 Number 3–April 2015 +An Efficient Facial Annotation with Machine Learning Approach +A.Anusha,2R.Srinivas +Final M.Tech Student, 2Associate Professor +,2Dept of CSE ,Aditya Institute of Technology And Management, Tekkali, Srikakulam , Andhra Pradesh" +080c204edff49bf85b335d3d416c5e734a861151,CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations,"CLAD: A Complex and Long Activities +Dataset with Rich Crowdsourced +Annotations +Jawad Tayyub1, Majd Hawasly2∗, David C. Hogg1 and Anthony G. Cohn1 +Journal Title +XX(X):1–6 +(cid:13)The Author(s) 2016 +Reprints and permission: +sagepub.co.uk/journalsPermissions.nav +DOI: 10.1177/ToBeAssigned +www.sagepub.com/" +08f4832507259ded9700de81f5fd462caf0d5be8,Geometric Approach for Human Emotion Recognition using Facial Expression,"International Journal of Computer Applications (0975 – 8887) +Volume 118 – No.14, May 2015 +Geometric Approach for Human Emotion +Recognition using Facial Expression +S. S. Bavkar +Assistant Professor +VPCOE Baramati +J. S. Rangole +Assistant Professor +VPCOE Baramati +V. U. Deshmukh +Assistant Professor +VPCOE Baramati" +08d40ee6e1c0060d3b706b6b627e03d4b123377a,Towards Weakly-Supervised Action Localization,"Human Action Localization +with Sparse Spatial Supervision +Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE" +088aabe3da627432fdccf5077969e3f6402f0a80,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018 +CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +Anonymous authors +Paper under double-blind review" +08903bf161a1e8dec29250a752ce9e2a508a711c,Joint Dimensionality Reduction and Metric Learning: A Geometric Take,"Joint Dimensionality Reduction and Metric Learning: A Geometric Take +Mehrtash Harandi 1 2 Mathieu Salzmann 3 Richard Hartley 2 1" +08e24f9df3d55364290d626b23f3d42b4772efb6,Enhancing facial expression classification by information fusion,"ENHANCING FACIAL EXPRESSION CLASSIFICATION BY INFORMATION +FUSION +I. Buciu1, Z. Hammal 2, A. Caplier2, N. Nikolaidis 1, and I. Pitas 1 +AUTH/Department of Informatics/ Aristotle University of Thessaloniki +phone: + 30(2310)99.6361, fax: + 30(2310)99.8453, email: +GR-54124, Thessaloniki, Box 451, Greece +Laboratoire des Images et des Signaux / Institut National Polytechnique de Grenoble +phone: + 33(0476)574363, fax: + 33(0476)57 47 90, email: +web: http://www.aiia.csd.auth.gr +8031 Grenoble, France +web: http://www.lis.inpg.fr" +0857281a3b6a5faba1405e2c11f4e17191d3824d,Face recognition via edge-based Gabor feature representation for plastic surgery-altered images,"Chude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102 +http://asp.eurasipjournals.com/content/2014/1/102 +R ES EAR CH +Face recognition via edge-based Gabor feature +representation for plastic surgery-altered images +Chollette C Chude-Olisah1*, Ghazali Sulong1, Uche A K Chude-Okonkwo2 and Siti Z M Hashim1 +Open Access" +08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7,Understanding Kin Relationships in a Photo,"Understanding Kin Relationships in a Photo +Siyu Xia, Ming Shao, Student Member, IEEE, Jiebo Luo, Fellow, IEEE, and Yun Fu, Senior Member, IEEE" +6dd052df6b0e89d394192f7f2af4a3e3b8f89875,A literature survey on Facial Expression Recognition using Global Features,"International Journal of Engineering and Advanced Technology (IJEAT) +ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +A literature survey on Facial Expression +Recognition using Global Features +Vaibhavkumar J. Mistry, Mahesh M. Goyani" +6dd5dbb6735846b214be72983e323726ef77c7a9,A Survey on Newer Prospective Biometric Authentication Modalities,"Josai Mathematical Monographs +vol. 7 (2014), pp. 25-40 +A Survey on Newer Prospective +Biometric Authentication Modalities +Narishige Abe, Takashi Shinzaki" +6d10beb027fd7213dd4bccf2427e223662e20b7d,User Adaptive and Context-Aware Smart Home Using Pervasive and Semantic Technologies,"Publishing CorporationJournal of Electrical and Computer EngineeringVolume 2016, Article ID 4789803, 20 pageshttp://dx.doi.org/10.1155/2016/4789803" +6dddf1440617bf7acda40d4d75c7fb4bf9517dbb,"Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking","JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY +Beyond Counting: Comparisons of Density Maps for Crowd +Analysis Tasks - Counting, Detection, and Tracking +Di Kang, Zheng Ma, Member, IEEE, Antoni B. Chan Senior Member, IEEE," +6d4b5444c45880517213a2fdcdb6f17064b3fa91,Harvesting Image Databases from The Web,"Journal of Information Engineering and Applications +ISSN 2224-5782 (print) ISSN 2225-0506 (online) +Vol 2, No.3, 2012 +www.iiste.org +Harvesting Image Databases from The Web +Snehal M. Gaikwad +G.H.Raisoni College of Engg. & Mgmt.,Pune,India +Snehal S. Pathare +G.H.Raisoni College of Engg. & Mgmt.,Pune,India +Trupti A. Jachak +G.H.Raisoni College of Engg. & Mgmt.,Pune,India" +6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,"Face Alignment Robust to Pose, Expressions and Occlusions","Face Alignment Robust to Pose, Expressions and +Occlusions +Vishnu Naresh Boddeti†, Myung-Cheol Roh†, Jongju Shin, Takaharu Oguri, Takeo Kanade" +6d618657fa5a584d805b562302fe1090957194ba,Human Facial Expression Recognition based on Principal Component Analysis and Artificial Neural Network,"Full Paper +NNGT Int. J. of Artificial Intelligence , Vol. 1, July 2014 +Human Facial Expression Recognition based +on Principal Component Analysis and +Artificial Neural Network +Laboratory of Automatic and Signals Annaba (LASA) , Department of electronics, Faculty of Engineering, +Zermi.Narima, Ramdani.M, Saaidia.M +Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria. +E-Mail :" +6d66c98009018ac1512047e6bdfb525c35683b16,Face Recognition Based on Fitting a 3D Morphable Model,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003 +Face Recognition Based on +Fitting a 3D Morphable Model +Volker Blanz and Thomas Vetter, Member, IEEE" +0172867f4c712b33168d9da79c6d3859b198ed4c,Expression and illumination invariant preprocessing technique for Face Recognition,"Technique for Face Recognition +Computer and System Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt +A. Abbas, M. I. Khalil, S. Abdel-Hay, H. M. Fahmy +Expression and Illumination Invariant Preprocessing" +0145dc4505041bf39efa70ea6d95cf392cfe7f19,Human action segmentation with hierarchical supervoxel consistency,"Human Action Segmentation with Hierarchical Supervoxel Consistency +Jiasen Lu1, Ran Xu1 Jason J. Corso2 +Department of Computer Science and Engineering, SUNY at Buffalo. 2Department of EECS, University of Michigan. +Detailed analysis of human action, such as classification, detection and lo- +alization has received increasing attention from the community; datasets +like J-HMDB [1] have made it plausible to conduct studies analyzing the +impact that such deeper information has on the greater action understanding +problem. However, detailed automatic segmentation of human action has +omparatively been unexplored. In this paper, we introduce a hierarchical +MRF model to automatically segment human action boundaries in videos +“in-the-wild” (see Fig. 1). +We first propose a human motion saliency representation which incor- +porates two parts: foreground motion and human appearance information. +For foreground motion estimation, we propose a new motion saliency fea- +ture by using long-term trajectories to build a camera motion model, and +then measure the motion saliency via the deviation from the camera model. +For human appearance information, we use a DPM person detector trained +on PASCAL VOC 2007 and construct a saliency map by averaging the nor- +malized detection score of all the scale and all components. +Then, to segment the human action, we start by applying hierarchical" +01bef320b83ac4405b3fc5b1cff788c124109fb9,Translating Head Motion into Attention - Towards Processing of Student's Body-Language,"de Lausanne +RLC D1 740, CH-1015 +Lausanne +de Lausanne +RLC D1 740, CH-1015 +Lausanne +de Lausanne +RLC D1 740, CH-1015 +Lausanne +Translating Head Motion into Attention - Towards +Processing of Student’s Body-Language +Mirko Raca +CHILI Laboratory +Łukasz Kidzi´nski +CHILI Laboratory +Pierre Dillenbourg +CHILI Laboratory +École polytechnique fédérale +École polytechnique fédérale +École polytechnique fédérale" +01c8d7a3460422412fba04e7ee14c4f6cdff9ad7,Rule Based System for Recognizing Emotions Using Multimodal Approach,"(IJACSA) International Journal of Advanced Computer Science and Applications, +Vol. 4, No. 7, 2013 +Rule Based System for Recognizing Emotions Using +Multimodal Approach +Preeti Khanna +Information System +SBM, SVKM’s NMIMS +Mumbai, India" +0163d847307fae508d8f40ad193ee542c1e051b4,Classemes and Other Classifier-Based Features for Efficient Object Categorization,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +Classemes and Other Classifier-based +Features for Efficient Object Categorization +- Supplementary material - +Alessandro Bergamo, and Lorenzo Torresani, Member, IEEE +LOW-LEVEL FEATURES +We extract the SIFT [1] features for our descriptor +ccording to the following pipeline. We first convert +each image to gray-scale, then we normalize the con- +trast by forcing the 0.01% of lightest and darkest pixels +to be mapped to white and black respectively, and +linearly rescaling the values in between. All images +exceeding 786,432 pixels of resolution are downsized +to this maximum value while keeping the aspect ratio. +The 128-dimensional SIFT descriptors are computed +from the interest points returned by a DoG detec- +tor [2]. We finally compute a Bag-Of-Word histogram +of these descriptors, using a K-means vocabulary of +500 words. +CLASSEMES" +01c4cf9c7c08f0ad3f386d88725da564f3c54679,Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV),"Interpretability Beyond Feature Attribution: +Quantitative Testing with Concept Activation Vectors (TCAV) +Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler +Fernanda Viegas Rory Sayres" +017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637,Face Recognition with Harmonic De-lighting,"FACE RECOGNITION WITH HARMONIC DE-LIGHTING +Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2 +ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +Graduate School, CAS, Beijing, China, 100080 +Emails: {lyqing, sgshan, wgao}jdl.ac.cn" +014e3d0fa5248e6f4634dc237e2398160294edce,What does 2D geometric information really tell us about 3D face shape?,"Int J Comput Vis manuscript No. +(will be inserted by the editor) +What does 2D geometric information really tell us about +D face shape? +Anil Bas1 · William A. P. Smith1 +Received: date / Accepted: date" +011e6146995d5d63c852bd776f782cc6f6e11b7b,Fast Training of Triplet-Based Deep Binary Embedding Networks,"Fast Training of Triplet-based Deep Binary Embedding Networks +Bohan Zhuang, Guosheng Lin, Chunhua Shen∗, Ian Reid +The University of Adelaide; and Australian Centre for Robotic Vision" +0181fec8e42d82bfb03dc8b82381bb329de00631,Discriminative Subspace Clustering,"Discriminative Subspace Clustering +Vasileios Zografos∗1, Liam Ellis†1, and Rudolf Mester‡1 2 +CVL, Dept. of Electrical Engineering, Link¨oping University, Link¨oping, Sweden +VSI Lab, Computer Science Department, Goethe University, Frankfurt, Germany" +0113b302a49de15a1d41ca4750191979ad756d2f,Matching Faces with Textual Cues in Soccer Videos,"­4244­0367­7/06/$20.00 ©2006 IEEE +ICME 2006" +0601416ade6707c689b44a5bb67dab58d5c27814,Feature Selection in Face Recognition: A Sparse Representation Perspective,"Feature Selection in Face Recognition: A Sparse +Representation Perspective +Allan Y. Yang +John Wright +Yi Ma +S. Shankar Sastry +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2007-99 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-99.html +August 14, 2007" +064b797aa1da2000640e437cacb97256444dee82,Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression,"Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression +Zhiao Huang +Megvii Inc. +Erjin Zhou +Megvii Inc. +Zhimin Cao +Megvii Inc." +06f146dfcde10915d6284981b6b84b85da75acd4,Scalable Face Image Retrieval Using Attribute-Enhanced Sparse Codewords,"Scalable Face Image Retrieval using +Attribute-Enhanced Sparse Codewords +Bor-Chun Chen, Yan-Ying Chen, Yin-Hsi Kuo, Winston H. Hsu" +0697bd81844d54064d992d3229162fe8afcd82cb,User-driven mobile robot storyboarding: Learning image interest and saliency from pairwise image comparisons,"User-driven mobile robot storyboarding: Learning image interest and +saliency from pairwise image comparisons +Michael Burke1" +06262d6beeccf2784e4e36a995d5ee2ff73c8d11,Recognize Actions by Disentangling Components of Dynamics,"Recognize Actions by Disentangling Components of Dynamics +Yue Zhao1, Yuanjun Xiong1,2, and Dahua Lin1 +CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition" +06d93a40365da90f30a624f15bf22a90d9cfe6bb,Learning from Candidate Labeling Sets,"Learning from Candidate Labeling Sets +Idiap Research Institute and EPF Lausanne +Luo Jie +Francesco Orabona +DSI, Universit`a degli Studi di Milano" +06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32,WhittleSearch: Image search with relative attribute feedback,"WhittleSearch: Image Search with Relative Attribute Feedback +Adriana Kovashka, Devi Parikh and Kristen Grauman +(Supplementary Material) +Comparative Qualitative Search Results +We present three qualitative search results for human-generated feedback, in addition to those +shown in the paper. Each example shows one search iteration, where the 20 reference images are +randomly selected (rather than ones that match a keyword search, as the image examples in the +main paper illustrate). For each result, the first figure shows our method and the second figure +shows the binary feedback result for the corresponding target image. Note that for our method, +“more/less X” (where X is an attribute) means that the target image is more/less X than the +reference image which is shown. +Figures 1 and 2 show results for human-generated relative attribute and binary feedback, re- +spectively, when both methods are used to target the same “mental image” of a shoe shown in the +top left bubble. The top right grid of 20 images are the reference images displayed to the user, and +those outlined and annotated with constraints are the ones chosen by the user to give feedback. +The bottom row of images in either figure shows the top-ranked images after integrating the user’s +feedback into the scoring function, revealing the two methods’ respective performance. We see that +while both methods retrieve high-heeled shoes, only our method retrieves images that are as “open” +s the target image. This is because using the proposed approach, the user was able to comment +explicitly on the desired openness property." +066d71fcd997033dce4ca58df924397dfe0b5fd1,Iranian Face Database and Evaluation with a New Detection Algorithm,"(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +(cid:3)(cid:4)(cid:14)(cid:6)(cid:15)(cid:16)(cid:3)(cid:17)(cid:18)(cid:3)(cid:11)(cid:5)(cid:19)(cid:4) (cid:20)(cid:5)(cid:11)(cid:21)(cid:6)(cid:3)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:9)(cid:11)(cid:9)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)(cid:6)(cid:23)(cid:17)(cid:24)(cid:19)(cid:2)(cid:5)(cid:11)(cid:21)(cid:25) +(cid:26)(cid:11)(cid:5)(cid:8)(cid:17)(cid:6)(cid:27)(cid:1)(cid:9)(cid:22)(cid:8)(cid:18)(cid:1)(cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)!(cid:8) (cid:8)(cid:6)(cid:4)(cid:1)""(cid:16)(cid:8)(cid:16)(cid:20)(cid:14)(cid:1)(cid:3)(cid:15)(cid:8)(cid:22)(cid:4)(cid:12)(cid:1)(cid:23)(cid:5)(cid:29)(cid:18)(cid:14)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)(cid:26)!(cid:9)(cid:13)(cid:14)(cid:1)#(cid:17)(cid:8)(cid:6)(cid:5)$(cid:1)(cid:17)(cid:4)(cid:5)%(cid:8)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)&(cid:30)(cid:8)(cid:16)(cid:15)(cid:15)(cid:21)(cid:27)(cid:15)(cid:17) +(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)(cid:1)(cid:13)(cid:6)(cid:7)(cid:14) (cid:3)(cid:15)(cid:16)(cid:8)(cid:17)(cid:17)(cid:8)(cid:18)(cid:1)(cid:3)(cid:8)(cid:16)(cid:18)(cid:6)(cid:1)(cid:19)(cid:4)(cid:16)(cid:11)(cid:16)(cid:6)(cid:10)(cid:6)(cid:14)(cid:1)(cid:19)(cid:20)(cid:21)(cid:1)(cid:9)(cid:22)(cid:8)(cid:17)(cid:1)(cid:23)(cid:8)(cid:11)(cid:24)(cid:8)(cid:12)(cid:25)(cid:8)(cid:20)(cid:18) +(cid:23)(cid:12)(cid:13)(cid:11)(cid:2)(cid:3)(cid:8)(cid:11)$(cid:1)’(cid:16)(cid:6)(cid:11) ((cid:8)((cid:4)(cid:20)(cid:1)(cid:6)(cid:12)(cid:24)(cid:20)(cid:15)(cid:18))(cid:27)(cid:4)(cid:11)(cid:1)(cid:8)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:15)(cid:25)(cid:1)(cid:15)(cid:29)(cid:4)(cid:20)(cid:1)*(cid:14)+,,(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)+(cid:2)+(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:16))(cid:17)(cid:8)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:11) (cid:6)(cid:12)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/ +(cid:8)(cid:12)(cid:18) 01(cid:21)(cid:1)2(cid:4)(cid:1)(cid:12)(cid:8)(cid:17)(cid:4)(cid:18)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:21)(cid:1)’(cid:15)(cid:1)(cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:4)6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)(cid:20)(cid:4)(cid:11))(cid:5)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:12)(cid:4).(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:1)(cid:6)(cid:11)(cid:1)(cid:20)(cid:4)((cid:15)(cid:20)(cid:24)(cid:4)(cid:18)(cid:21) +(cid:26)(cid:9)(cid:27) (cid:28)(cid:19)(cid:2)(cid:14)(cid:13)$(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1)3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)3(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:19)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:9)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:9)-(cid:4)(cid:1)7(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21) +(cid:29) (cid:1)(cid:4)(cid:11)(cid:2)(cid:19)(cid:14)(cid:18)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4) +8)(cid:17)(cid:8)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:17)(cid:15)(cid:11)(cid:24)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) )(cid:11)(cid:4)(cid:25))(cid:5)(cid:1) (cid:7)(cid:4)(cid:30)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:1) +((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)9(cid:11)(cid:1) (cid:6)(cid:18)(cid:4)(cid:12)(cid:24)(cid:6)(cid:24)(cid:30)(cid:21)(cid:1) (cid:9)(cid:11)(cid:1) (cid:16))(cid:17)(cid:8)(cid:12)(cid:11)(cid:14)(cid:1) .(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:24)(cid:15)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:22)(cid:4)(cid:1) (cid:8)(cid:1) +((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:8)-(cid:4)(cid:1)-(cid:20)(cid:15))((cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:8)(cid:1)((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:15)(cid:25)(cid:24)(cid:4)(cid:12)(cid:1) +(cid:8)(cid:10)(cid:5)(cid:4)(cid:1)(cid:24)(cid:15)(cid:1)(cid:10)(cid:4)(cid:1);)(cid:6)(cid:24)(cid:4)(cid:1)((cid:20)(cid:4)(cid:27)(cid:6)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:4)(cid:11)(cid:24)(cid:6)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)<(cid:2)=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)(cid:20)(cid:4)(cid:27)(cid:4)(cid:12)(cid:24)(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:14)(cid:1) +(cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) .(cid:15)(cid:20)(cid:7)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:4)(cid:6)(cid:29)(cid:4)(cid:18)(cid:1) (cid:11))(cid:10)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:6)(cid:8)(cid:5)(cid:1) +(cid:8)(cid:24)(cid:24)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) (cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) (cid:6)(cid:12)(cid:1) (cid:10)(cid:6)(cid:15)(cid:17)(cid:4)(cid:24)(cid:20)(cid:6)(cid:27)(cid:11)(cid:14)(cid:1) ((cid:8)(cid:24)(cid:24)(cid:4)(cid:20)(cid:12)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) +(cid:8)(cid:12)(cid:18)(cid:1) (cid:27)(cid:15)(cid:17)()(cid:24)(cid:4)(cid:20) (cid:29)(cid:6)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17))(cid:12)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) (cid:8)(cid:12)(cid:18) 1=(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:11)(cid:4)(cid:1) +(cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:20)(cid:4)(cid:11)(cid:24)(cid:11)(cid:1)(cid:8)(cid:17)(cid:15)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1)(cid:17)(cid:15)(cid:24)(cid:6)(cid:29)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1))(cid:11)(cid:1)(cid:24)(cid:15)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:1)(cid:8)(cid:1) +(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21) ’(cid:16)(cid:4)(cid:1) +(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:12)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)(cid:11)(cid:24)(cid:20)(cid:6)(cid:10))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:24)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:21) +’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:17)(cid:8)(cid:12)(cid:30)(cid:1) ()(cid:10)(cid:5)(cid:6)(cid:27)(cid:8)(cid:5)(cid:5)(cid:30)(cid:1) (cid:8)(cid:29)(cid:8)(cid:6)(cid:5)(cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1)" +06560d5721ecc487a4d70905a485e22c9542a522,Deep Facial Attribute Detection in the Wild: From General to Specific,"SUN, YU: DEEP FACIAL ATTRIBUTE DETECTION IN THE WILD +Deep Facial Attribute Detection in the Wild: +From General to Specific +Yuechuan Sun +Jun Yu +Department of Automation +University of Science and Technology +of China +Hefei, China" +06fe63b34fcc8ff68b72b5835c4245d3f9b8a016,Learning semantic representations of objects and their parts,"Mach Learn +DOI 10.1007/s10994-013-5336-9 +Learning semantic representations of objects +nd their parts +Grégoire Mesnil · Antoine Bordes · Jason Weston · +Gal Chechik · Yoshua Bengio +Received: 24 May 2012 / Accepted: 26 February 2013 +© The Author(s) 2013" +06aab105d55c88bd2baa058dc51fa54580746424,Image Set-Based Collaborative Representation for Face Recognition,"Image Set based Collaborative Representation for +Face Recognition +Pengfei Zhu, Student Member, IEEE, Wangmeng Zuo, Member, IEEE, Lei Zhang, Member, IEEE, Simon C.K. Shiu, +Member, IEEE, David Zhang, Fellow, IEEE" +06262d14323f9e499b7c6e2a3dec76ad9877ba04,Real-Time Pose Estimation Piggybacked on Object Detection,"Real-Time Pose Estimation Piggybacked on Object Detection +Roman Jur´anek, Adam Herout, Mark´eta Dubsk´a, Pavel Zemˇc´ık +Brno University of Technology +Brno, Czech Republic" +062c41dad67bb68fefd9ff0c5c4d296e796004dc,Temporal Generative Adversarial Nets with Singular Value Clipping,"Temporal Generative Adversarial Nets with Singular Value Clipping +Masaki Saito∗ +Eiichi Matsumoto∗ +Preferred Networks inc., Japan +{msaito, matsumoto, +Shunta Saito" +0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0,Exploiting Local Class Information in Extreme Learning Machine,"Iosifidis, A., Tefas, A., & Pitas, I. (2014). Exploiting Local Class Information +in Extreme Learning Machine. Paper presented at International Joint +Conference on Computational Intelligence (IJCCI), Rome, Italy. +Peer reviewed version +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms" +060820f110a72cbf02c14a6d1085bd6e1d994f6a,Fine-grained classification of pedestrians in video: Benchmark and state of the art,"Fine-Grained Classification of Pedestrians in Video: Benchmark and State of the Art +David Hall and Pietro Perona +California Institute of Technology. +The dataset was labelled with bounding boxes, tracks, pose and fine- +grained labels. To achieve this, crowdsourcing, using workers from Ama- +zon’s Mechanical Turk (MTURK) was used. A summary of the dataset’s +statistics can be found in Table 1. +Number of Frames Sent to MTURK +Number of Frames with at least 1 Pedestrian +Number of Bounding Box Labels +Number of Pose Labels +Number of Tracks +8,708 +0,994 +2,457 +7,454 +,222 +Table 1: Dataset Statistics +A state-of-the-art algorithm for fine-grained classification was tested us- +ing the dataset. The results are reported as a useful performance baseline." +063a3be18cc27ba825bdfb821772f9f59038c207,The development of spontaneous facial responses to others’ emotions in infancy: An EMG study,"This is a repository copy of The development of spontaneous facial responses to others’ +emotions in infancy. An EMG study. +White Rose Research Online URL for this paper: +http://eprints.whiterose.ac.uk/125231/ +Version: Published Version +Article: +Kaiser, Jakob, Crespo-Llado, Maria Magdalena, Turati, Chiara et al. (1 more author) +(2017) The development of spontaneous facial responses to others’ emotions in infancy. +An EMG study. Scientific Reports. ISSN 2045-2322 +https://doi.org/10.1038/s41598-017-17556-y +Reuse +This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +uthors for the original work. More information and the full terms of the licence here: +https://creativecommons.org/licenses/ +Takedown +If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +emailing including the URL of the record and the reason for the withdrawal request. +https://eprints.whiterose.ac.uk/" +06ad99f19cf9cb4a40741a789e4acbf4433c19ae,SenTion: A framework for Sensing Facial Expressions,"SenTion: A framework for Sensing Facial +Expressions +Rahul Islam∗, Karan Ahuja∗, Sandip Karmakar∗, Ferdous Barbhuiya∗ ∗IIIT Guwahati +{rahul.islam, karan.ahuja, sandip," +6c27eccf8c4b22510395baf9f0d0acc3ee547862,Using CMU PIE Human Face Database to a Convolutional Neural Network - Neocognitron,"Using CMU PIE Human Face Database to a +Convolutional Neural Network - Neocognitron +José Hiroki Saito1, Tiago Vieira de Carvalho1, Marcelo Hirakuri1, André Saunite1, +Alessandro Noriaki Ide2 and Sandra Abib1 +- Federal University of São Carlos - Computer Science Department - GAPIS +Rodovia Washington Luis, Km 235, São Carlos – SP - Brazil +- University of Genoa - Department of Informatics, Systems and Telematics - Neurolab +Via Opera Pia, 13 – I-16145 – Genoa - Italy" +6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,"Privacy-Preserving Deep Inference for Rich User +Data on The Cloud +Seyed Ali Osia ♯, Ali Shahin Shamsabadi ♯, Ali Taheri ♯, Kleomenis Katevas ⋆, +Hamid R. Rabiee ♯, Nicholas D. Lane †, Hamed Haddadi ⋆ +♯ Sharif University of Technology +⋆ Queen Mary University of London +Nokia Bell Labs & University of Oxford" +6c304f3b9c3a711a0cca5c62ce221fb098dccff0,Attentive Semantic Video Generation Using Captions,"Attentive Semantic Video Generation using Captions +Tanya Marwah∗ +IIT Hyderabad +Gaurav Mittal∗ +Vineeth N. Balasubramanian +IIT Hyderabad" +6cb7648465ba7757ecc9c222ac1ab6402933d983,Visual Forecasting by Imitating Dynamics in Natural Sequences,"Visual Forecasting by Imitating Dynamics in Natural Sequences +Kuo-Hao Zeng†‡ William B. Shen† De-An Huang† Min Sun‡ Juan Carlos Niebles† +{khzeng, bshen88, dahuang, +Stanford University ‡National Tsing Hua University" +6c2b392b32b2fd0fe364b20c496fcf869eac0a98,Fully automatic face recognition framework based on local and global features,"DOI 10.1007/s00138-012-0423-7 +ORIGINAL PAPER +Fully automatic face recognition framework based +on local and global features +Cong Geng · Xudong Jiang +Received: 30 May 2011 / Revised: 21 February 2012 / Accepted: 29 February 2012 / Published online: 22 March 2012 +© Springer-Verlag 2012" +6cddc7e24c0581c50adef92d01bb3c73d8b80b41,Face Verification Using the LARK Representation,"Face Verification Using the LARK +Representation +Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE," +6cfc337069868568148f65732c52cbcef963f79d,Audio-Visual Speaker Localization via Weighted Clustering Israel -,"Audio-Visual Speaker Localization via Weighted +Clustering +Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes +To cite this version: +Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes. Audio-Visual Speaker +Localization via Weighted Clustering. IEEE Workshop on Machine Learning for Signal Processing, +Sep 2014, Reims, France. pp.1-6, 2014, <10.1109/MLSP.2014.6958874>. +HAL Id: hal-01053732 +https://hal.archives-ouvertes.fr/hal-01053732 +Submitted on 11 Aug 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de" +6cd96f2b63c6b6f33f15c0ea366e6003f512a951,A New Approach in Solving Illumination and Facial Expression Problems for Face Recognition,"A New Approach in Solving Illumination and Facial Expression Problems +for Face Recognition +Yee Wan Wong, Kah Phooi Seng, Li-Minn Ang +The University of Nottingham Malaysia Campus +Tel : 03-89248358, Fax : 03-89248017 +E-mail : +Jalan Broga +3500 Semenyih, Selangor" +6c8c7065d1041146a3604cbe15c6207f486021ba,Attention Modeling for Face Recognition via Deep Learning,"Attention Modeling for Face Recognition via Deep Learning +Sheng-hua Zhong +Department of Computing, Hung Hom, Kowloon +Hong Kong, 999077 CHINA +Yan Liu +Department of Computing, Hung Hom, Kowloon +Hong Kong, 99907 CHINA +Yao Zhang +Department of Computing, Hung Hom, Kowloon +Hong Kong, 99907 CHINA +Fu-lai Chung +Department of Computing, Hung Hom, Kowloon +Hong Kong, 99907 CHINA" +390f3d7cdf1ce127ecca65afa2e24c563e9db93b,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face +Alignment with Auxiliary Attributes +Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE" +39ed31ced75e6151dde41944a47b4bdf324f922b,Pose-Guided Photorealistic Face Rotation,"Pose-Guided Photorealistic Face Rotation +Yibo Hu1,2, Xiang Wu1, Bing Yu3, Ran He1,2 ∗, Zhenan Sun1,2 +CRIPAC & NLPR & CEBSIT, CASIA 2University of Chinese Academy of Sciences +Noah’s Ark Laboratory, Huawei Technologies Co., Ltd. +{yibo.hu, {rhe," +3918b425bb9259ddff9eca33e5d47bde46bd40aa,Learning Language from Ambiguous Perceptual Context,"Copyright +David Lieh-Chiang Chen" +3998c5aa6be58cce8cb65a64cb168864093a9a3e,Understanding head and hand activities and coordination in naturalistic driving videos,Intelligent Vehicles Symposium 2014 +39dc2ce4cce737e78010642048b6ed1b71e8ac2f,Recognition of six basic facial expressions by feature-points tracking using RBF neural network and fuzzy inference system,"Recognition of Six Basic Facial Expressions by Feature-Points Tracking using +RBF Neural Network and Fuzzy Inference System +Hadi Seyedarabi*, Ali Aghagolzadeh **, Sohrab Khanmohammadi ** +*Islamic Azad University of AHAR +**Elect. Eng. Faculty, Tabriz University, Tabriz, Iran" +397085122a5cade71ef6c19f657c609f0a4f7473,Using Segmentation to Predict the Absence of Occluded Parts,"GHIASI, FOWLKES: USING SEGMENTATION TO DETECT OCCLUSION +Using Segmentation to Predict the Absence +of Occluded Parts +Golnaz Ghiasi +Charless C. Fowlkes +Dept. of Computer Science +University of California +Irvine, CA" +39c8b34c1b678235b60b648d0b11d241a34c8e32,Learning to Deblur Images with Exemplars,"Learning to Deblur Images with Exemplars +Jinshan Pan∗, Wenqi Ren∗, Zhe Hu∗, and Ming-Hsuan Yang" +3986161c20c08fb4b9b791b57198b012519ea58b,An Efficient Method for Face Recognition based on Fusion of Global and Local Feature Extraction,"International Journal of Soft Computing and Engineering (IJSCE) +ISSN: 2231-2307, Volume-4 Issue-4, September 2014 +An Efficient Method for Face Recognition based on +Fusion of Global and Local Feature Extraction +E. Gomathi, K. Baskaran" +392c3cabe516c0108b478152902a9eee94f4c81e,Tiny images,"Computer Science and Artificial Intelligence Laboratory +Technical Report +MIT-CSAIL-TR-2007-024 +April 23, 2007 +Tiny images +Antonio Torralba, Rob Fergus, and William T. Freeman +m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u" +3933e323653ff27e68c3458d245b47e3e37f52fd,Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris +{xxu18, hale4, pdou, ywu35, +Computational Biomedicine Lab +800 Calhoun Rd. Houston, TX, USA" +3958db5769c927cfc2a9e4d1ee33ecfba86fe054,Describable Visual Attributes for Face Verification and Image Search,"Describable Visual Attributes for +Face Verification and Image Search +Neeraj Kumar, Student Member, IEEE, Alexander C. Berg, Member, IEEE, +Peter N. Belhumeur, and Shree K. Nayar, Member, IEEE" +99ced8f36d66dce20d121f3a29f52d8b27a1da6c,Organizing Multimedia Data in Video Surveillance Systems Based on Face Verification with Convolutional Neural Networks,"Organizing Multimedia Data in Video +Surveillance Systems Based on Face Verification +with Convolutional Neural Networks +Anastasiia D. Sokolova, Angelina S. Kharchevnikova, Andrey V. Savchenko +National Research University Higher School of Economics, Nizhny Novgorod, Russian +Federation" +994f7c469219ccce59c89badf93c0661aae34264,Model Based Face Recognition Across Facial Expressions,"Model Based Face Recognition Across Facial +Expressions +Zahid Riaz, Christoph Mayer, Matthias Wimmer, and Bernd Radig, Senior Member, IEEE +screens, embedded into mobiles and installed into everyday +living and working environments they become valuable tools +for human system interaction. A particular important aspect of +this interaction is detection and recognition of faces and +interpretation of facial expressions. These capabilities are +deeply rooted in the human visual system and a crucial +uilding block for social interaction. Consequently, these +apabilities are an important step towards the acceptance of +many technical systems. +trees as a classifier +lies not only" +9949ac42f39aeb7534b3478a21a31bc37fe2ffe3,Parametric Stereo for Multi-pose Face Recognition and 3D-Face Modeling,"Parametric Stereo for Multi-Pose Face Recognition and +D-Face Modeling +Rik Fransens, Christoph Strecha, Luc Van Gool +PSI ESAT-KUL +Leuven, Belgium" +9958942a0b7832e0774708a832d8b7d1a5d287ae,The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals,"The Sparse Matrix Transform for Covariance +Estimation and Analysis of High Dimensional +Signals +Guangzhi Cao*, Member, IEEE, Leonardo R. Bachega, and Charles A. Bouman, Fellow, IEEE" +99726ad232cef837f37914b63de70d8c5101f4e2,Facial Expression Recognition Using PCA & Distance Classifier,"International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 570 +ISSN 2229-5518 +Facial Expression Recognition Using PCA & Distance Classifier +AlpeshKumar Dauda* +Dept. of Electronics & Telecomm. Engg. +Ph.D Scholar,VSSUT +BURLA, ODISHA, INDIA +Nilamani Bhoi +Reader in Dept. of Electronics & Telecomm. Engg. +VEER SURENDRA SAI UNIVERSITY OF +TECHNOLOGY +BURLA, ODISHA, INDIA" +9993f1a7cfb5b0078f339b9a6bfa341da76a3168,"A Simple, Fast and Highly-Accurate Algorithm to Recover 3D Shape from 2D Landmarks on a Single Image","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +A Simple, Fast and Highly-Accurate Algorithm to +Recover 3D Shape from 2D Landmarks on a Single +Image +Ruiqi Zhao, Yan Wang, Aleix M. Martinez" +992ebd81eb448d1eef846bfc416fc929beb7d28b,Exemplar-Based Face Parsing Supplementary Material,"Exemplar-Based Face Parsing +Supplementary Material +Brandon M. Smith Li Zhang +Jonathan Brandt Zhe Lin Jianchao Yang +University of Wisconsin–Madison +Adobe Research +http://www.cs.wisc.edu/~lizhang/projects/face-parsing/ +. Additional Selected Results +Figures 1 and 2 supplement Figure 4 in our paper. In all cases, the input images come from our Helen [1] test set. We note +that our algorithm generally produces accurate results, as shown in Figures 1. However, our algorithm is not perfect and makes +mistakes on especially challenging input images, as shown in Figure 2. +In our view, the mouth is the most challenging region of the face to segment: the shape and appearance of the lips vary +widely from subject to subject, mouths deform significantly, and the overall appearance of the mouth region changes depending +on whether the inside of the mouth is visible or not. Unusual mouth expressions, like those shown in Figure 2, are not repre- +sented well in the exemplar images, which results in poor label transfer from the top exemplars to the test image. Despite these +hallenges, our algorithm generally performs well on the mouth, with large segmentation errors occurring infrequently. +. Comparisons with Liu et al. [2] +The scene parsing approach by Liu et al. [2] shares sevaral similarities with our work. Like our approach, they propose a +nonparametric system that transfers labels from exemplars in a database to annotate a test image. This begs the question, Why +not simply apply the approach from Liu et al. to face images?" +99c20eb5433ed27e70881d026d1dbe378a12b342,Semi-Supervised and Unsupervised Data Extraction Targeting Speakers: From Speaker Roles to Fame?,"ISCA Archive +http://www.isca-speech.org/archive +First Workshop on Speech, Language +nd Audio in Multimedia +Marseille, France +August 22-23, 2013 +Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013." +9990e0b05f34b586ffccdc89de2f8b0e5d427067,Auto - Optimized Multimodal Expression Recognition Framework Using 3 D Kinect Data for ASD Therapeutic Aid,"International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013 +Auto-Optimized Multimodal Expression Recognition +Framework Using 3D Kinect Data for ASD Therapeutic +Amira E. Youssef, Sherin F. Aly, Ahmed S. Ibrahim, and A. Lynn Abbott +regarding +emotion +recognize" +99d7678039ad96ee29ab520ff114bb8021222a91,Political image analysis with deep neural networks,"Political image analysis with deep neural +networks +L. Jason Anastasopoulos∗ +Shiry Ginosar§. +Dhruvil Badani† +Jake Ryland Williams¶ +Crystal Lee‡ +November 28, 2017" +52012b4ecb78f6b4b9ea496be98bcfe0944353cd,Using Support Vector Machine and Local Binary Pattern for Facial Expression Recognition,"JOURNAL OF COMPUTATION IN BIOSCIENCES AND ENGINEERING +Journal homepage: http://scienceq.org/Journals/JCLS.php +Research Article +Using Support Vector Machine and Local Binary Pattern for Facial Expression +Recognition +Open Access +Ayeni Olaniyi Abiodun 1, Alese Boniface Kayode1, Dada Olabisi Matemilayo2 +1. Department of Computer Science, Federal University Technology Akure, PMB 704, Akure, Nigeria. +. Department of computer science, Kwara state polytechnic Ilorin, Kwara-State, Nigeria. +. *Corresponding author: Ayeni Olaniyi Abiodun Mail Id: +Received: September 22, 2015, Accepted: December 14, 2015, Published: December 14, 2015." +529e2ce6fb362bfce02d6d9a9e5de635bde81191,Normalization of Face Illumination Based on Large-and Small-Scale Features,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +> TIP-05732-2009< +Normalization of Face Illumination Based +on Large- and Small- Scale Features +Xiaohua Xie, Wei-Shi Zheng, Member, IEEE, Jianhuang Lai*, Member, IEEE +Pong C. Yuen, Member, IEEE, Ching Y. Suen, IEEE Fellow" +52887969107956d59e1218abb84a1f834a314578,Travel Recommendation by Mining People Attributes and Travel Group Types From Community-Contributed Photos,"Travel Recommendation by Mining People +Attributes and Travel Group Types From +Community-Contributed Photos +Yan-Ying Chen, An-Jung Cheng, and Winston H. Hsu, Senior Member, IEEE" +52258ec5ec73ce30ca8bc215539c017d279517cf,Recognizing Faces with Expressions: Within-class Space and Between-class Space,"Recognizing Faces with Expressions: Within-class Space and Between-class Space +Department of Computer Science and Engineering, Zhejang University, Hangzhou 310027,P.R.China +Email: +Yu Bing Chen Ping Jin Lianfu" +529baf1a79cca813f8c9966ceaa9b3e42748c058,Triangle wise Mapping Technique to Transform one Face Image into Another Face Image,"Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image +{tag} {/tag} +International Journal of Computer Applications +© 2014 by IJCA Journal +Volume 87 - Number 6 +Year of Publication: 2014 +Authors: +Rustam Ali Ahmed +Bhogeswar Borah +10.5120/15209-3714 +{bibtex}pxc3893714.bib{/bibtex}" +5239001571bc64de3e61be0be8985860f08d7e7e,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,"SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 +Deep Appearance Models: A Deep Boltzmann +Machine Approach for Face Modeling +Chi Nhan Duong, Student, IEEE, Khoa Luu, Member, IEEE, +Kha Gia Quach, Student, IEEE, Tien D. Bui, Senior Member, IEEE" +55ea0c775b25d9d04b5886e322db852e86a556cd,DOCK: Detecting Objects by transferring Common-sense Knowledge,"DOCK: Detecting Objects +y transferring Common-sense Knowledge +Santosh Divvala2,3[0000−0003−4042−5874], Ali Farhadi2,3[0000−0001−7249−2380], and +Krishna Kumar Singh1,3[0000−0002−8066−6835], +Yong Jae Lee1[0000−0001−9863−1270] +University of California, Davis 2University of Washington 3Allen Institute for AI +https://dock-project.github.io" +554b9478fd285f2317214396e0ccd81309963efd,Spatio-Temporal Action Localization For Human Action Recognition in Large Dataset,"Spatio-Temporal Action Localization For Human Action +Recognition in Large Dataset +Sameh MEGRHI1, Marwa JMAL 2, Azeddine BEGHDADI1 and Wided Mseddi1,2 +L2TI, Institut Galil´ee, Universit´e Paris 13, France; +SERCOM, Ecole Polytechnique de Tunisie" +55c68c1237166679d2cb65f266f496d1ecd4bec6,Learning to score the figure skating sports videos,"Learning to Score Figure Skating Sport Videos +Chengming Xu, Yanwei Fu, Zitian Chen,Bing Zhang, Yu-Gang Jiang, Xiangyang Xue" +5502dfe47ac26e60e0fb25fc0f810cae6f5173c0,Affordance Prediction via Learned Object Attributes,"Affordance Prediction via Learned Object Attributes +Tucker Hermans +James M. Rehg +Aaron Bobick" +55a158f4e7c38fe281d06ae45eb456e05516af50,Simile Classifiers for Face Classification,"The 22nd International Conference on Computer Graphics and Vision +GraphiCon’2012" +5550a6df1b118a80c00a2459bae216a7e8e3966c,A perusal on Facial Emotion Recognition System ( FERS ),"ISSN: 0974-2115 +www.jchps.com Journal of Chemical and Pharmaceutical Sciences +A perusal on Facial Emotion Recognition System (FERS) +School of Information Technology and Engineering, VIT University, Vellore, 632014, India +Krithika L.B +*Corresponding author: E-Mail:" +55079a93b7d1eb789193d7fcdcf614e6829fad0f,Efficient and Robust Inverse Lighting of a Single Face Image Using Compressive Sensing,"Efficient and Robust Inverse Lighting of a Single Face Image using Compressive +Sensing +Miguel Heredia Conde†, Davoud Shahlaei#, Volker Blanz# and Otmar Loffeld† +Center for Sensor Systems† (ZESS) and Institute for Vision and Graphics#, University of Siegen +57076 Siegen, Germany" +551fa37e8d6d03b89d195a5c00c74cc52ff1c67a,GeThR-Net: A Generalized Temporally Hybrid Recurrent Neural Network for Multimodal Information Fusion,"GeThR-Net: A Generalized Temporally Hybrid +Recurrent Neural Network for Multimodal +Information Fusion +Ankit Gandhi1 ∗, Arjun Sharma1 ∗ , Arijit Biswas2, and Om Deshmukh1 +Xerox Research Centre India; 2 Amazon Development Center India +(*-equal contribution)" +55c40cbcf49a0225e72d911d762c27bb1c2d14aa,Indian Face Age Database : A Database for Face Recognition with Age Variation,"Indian Face Age Database: A Database for Face Recognition with Age Variation +{tag} {/tag} +International Journal of Computer Applications +Foundation of Computer Science (FCS), NY, USA +Volume 126 +Number 5 +Year of Publication: 2015 +Authors: +Reecha Sharma, M.S. Patterh +10.5120/ijca2015906055 +{bibtex}2015906055.bib{/bibtex}" +973e3d9bc0879210c9fad145a902afca07370b86,From Emotion Recognition to Website Customizations,"(IJACSA) International Journal of Advanced Computer Science and Applications, +Vol. 7, No. 7, 2016 +From Emotion Recognition to Website +Customizations +O.B. Efremides +School of Web Media +Bahrain Polytechnic +Isa Town, Kingdom of Bahrain" +97b8249914e6b4f8757d22da51e8347995a40637,"Large-Scale Vehicle Detection, Indexing, and Search in Urban Surveillance Videos","Large-Scale Vehicle Detection, Indexing, +nd Search in Urban Surveillance Videos +Rogerio Schmidt Feris, Associate Member, IEEE, Behjat Siddiquie, James Petterson, +Yun Zhai, Associate Member, IEEE, Ankur Datta, Lisa M. Brown, Senior Member, IEEE, and +Sharath Pankanti, Fellow, IEEE" +972ef9ddd9059079bdec17abc8b33039ed25c99c,A Novel on understanding How IRIS Recognition works,"International Journal of Innovations in Engineering and Technology (IJIET) +A Novel on understanding How IRIS +Recognition works +Vijay Shinde +Dept. of Comp. Science +M.P.M. College, Bhopal, India +Prof. Prakash Tanwar +Asst. Professor CSE +M.P.M. College, Bhopal, India" +97032b13f1371c8a813802ade7558e816d25c73f,Total Recall Final Report,"Total Recall Final Report +Peter Collingbourne, Nakul Durve, Khilan Gudka, Steve Lovegrove, Jiefei Ma, Sadegh Shahrbaf +Supervisor: Professor Duncan Gillies +January 11, 2006" +97f9c3bdb4668f3e140ded2da33fe704fc81f3ea,An Experimental Comparison of Appearance and Geometric Model Based Recognition,"AnExperimentalComparisonofAppearance +ndGeometricModelBasedRecognition +J.Mundy,A.Liu,N.Pillow,A.Zisserman,S.Abdallah,S.Utcke, +S.NayarandC.Rothwell +GeneralElectricCorporateResearchandDevelopment,Schenectady,NY,USA +RoboticsResearchGroup,UniversityofOxford,Oxford,UK +Dept.ofComputerScience,ColumbiaUniversity,NY,USA +INRIA,SophiaAntipolis,France" +97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5,"Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond","manuscript No. +(will be inserted by the editor) +Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, +Deep Architectures, and Beyond +Dimitrios Kollias (cid:63) · Panagiotis Tzirakis † · Mihalis A. Nicolaou ∗ · Athanasios +Papaioannou(cid:107) · Guoying Zhao1 · Bj¨orn Schuller2 · Irene Kotsia3 · Stefanos +Zafeiriou4" +97d1d561362a8b6beb0fdbee28f3862fb48f1380,Age Synthesis and Estimation via Faces: A Survey,"Age Synthesis and Estimation via Faces: +A Survey +Yun Fu, Member, IEEE, Guodong Guo, Senior Member, IEEE, and +Thomas S. Huang, Fellow, IEEE" +97865d31b5e771cf4162bc9eae7de6991ceb8bbf,Face and Gender Classification in Crowd Video,"Face and Gender Classification in Crowd Video +Priyanka Verma +IIIT-D-MTech-CS-GEN-13-100 +July 16, 2015 +Indraprastha Institute of Information Technology +New Delhi +Thesis Advisors +Dr. Richa Singh +Dr. Mayank Vatsa +Submitted in partial fulfillment of the requirements +for the Degree of M.Tech. in Computer Science +(cid:13) Verma, 2015 +Keywords : Face Recognition, Gender Classification, Crowd database" +9755554b13103df634f9b1ef50a147dd02eab02f,How Transferable Are CNN-Based Features for Age and Gender Classification?,"How Transferable are CNN-based Features for +Age and Gender Classification? +Gökhan Özbulak1, Yusuf Aytar2 and Hazım Kemal Ekenel1" +63cf5fc2ee05eb9c6613043f585dba48c5561192,Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces,"Prototype Selection for +Classification in Standard +nd Generalized +Dissimilarity Spaces" +63c109946ffd401ee1195ed28f2fb87c2159e63d,Robust Facial Feature Localization Using Improved Active Shape Model and Gabor Filter,"MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN +Robust Facial Feature Localization using Improved Active Shape +Model and Gabor Filter +Hui-Yu Huang +Engineering, National Formosa University, +Taiwan +E-mail:" +631483c15641c3652377f66c8380ff684f3e365c,Sync-DRAW: Automatic GIF Generation using Deep Recurrent Attentive Architectures,"Sync-DRAW: Automatic Video Generation using Deep Recurrent +A(cid:130)entive Architectures +Gaurav Mi(cid:138)al∗ +Tanya Marwah∗ +IIT Hyderabad +Vineeth N Balasubramanian +IIT Hyderabad" +632fa986bed53862d83918c2b71ab953fd70d6cc,What Face and Body Shapes Can Tell About Height,"GÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT +What Face and Body Shapes Can Tell +About Height +Semih Günel +Helge Rhodin +Pascal Fua +CVLab +EPFL, +Lausanne, Switzerland" +63340c00896d76f4b728dbef85674d7ea8d5ab26,Discriminant Subspace Analysis: A Fukunaga-Koontz Approach,"Discriminant Subspace Analysis: +A Fukunaga-Koontz Approach +Sheng Zhang, Member, IEEE, and Terence Sim, Member, IEEE" +634541661d976c4b82d590ef6d1f3457d2857b19,Advanced Techniques for Face Recognition under Challenging Environments,"AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa +in cotutela con Università di Sassari +DOTTORATO DI RICERCA IN +INGEGNERIA ELETTRONICA, INFORMATICA E DELLE +TELECOMUNICAZIONI +Ciclo XXVI +Settore Concorsuale di afferenza: 09/H1 +Settore Scientifico disciplinare: ING-INF/05 +ADVANCED TECHNIQUES FOR FACE RECOGNITION +UNDER CHALLENGING ENVIRONMENTS +TITOLO TESI +YUNLIAN SUN +Presentata da: +Coordinatore Dottorato +ALESSANDRO VANELLI-CORALLI +Relatore +DAVIDE MALTONI +Relatore +MASSIMO TISTARELLI +Esame finale anno 2014" +6332a99e1680db72ae1145d65fa0cccb37256828,MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE REPORT OF THE RESEARCH PROJECT OPTION: COMPUTER VISION Pose and Face Recovery via Spatio-temporal GrabCut Human Segmentation,"MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE +REPORT OF THE RESEARCH PROJECT +OPTION: COMPUTER VISION +Pose and Face Recovery via +Spatio-temporal GrabCut Human +Segmentation +Author: Antonio Hernández Vela +Date: 13/07/2010 +Advisor: Sergio Escalera Guerrero" +63488398f397b55552f484409b86d812dacde99a,Learning Universal Multi-view Age Estimator by Video Contexts,"Learning Universal Multi-view Age Estimator by Video Contexts +Zheng Song1, Bingbing Ni3, Dong Guo4, Terence Sim2, Shuicheng Yan1 +Department of Electrical and Computer Engineering, 2 School of Computing, National University of Singapore; +{zheng.s, +Advanced Digital Sciences Center, Singapore; 4 Facebook" +63c022198cf9f084fe4a94aa6b240687f21d8b41,Consensus Message Passing for Layered Graphical Models, +0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab,Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition,"Multi-Directional Multi-Level Dual-Cross +Patterns for Robust Face Recognition +Changxing Ding, Jonghyun Choi, Dacheng Tao, Senior Member, IEEE, and Larry S. Davis, Fellow, IEEE" +0f112e49240f67a2bd5aaf46f74a924129f03912,Age-Invariant Face Recognition,"Age-Invariant Face Recognition +Unsang Park, Member, IEEE, +Yiying Tong, Member, IEEE, and +Anil K. Jain, Fellow, IEEE" +0f4cfcaca8d61b1f895aa8c508d34ad89456948e,Local appearance based face recognition using discrete cosine transform,"LOCAL APPEARANCE BASED FACE RECOGNITION USING +DISCRETE COSINE TRANSFORM (WedPmPO4) +Author(s) :" +0fdcfb4197136ced766d538b9f505729a15f0daf,Multiple pattern classification by sparse subspace decomposition,"Multiple Pattern Classification by Sparse Subspace Decomposition +Institute of Media and Information Technology, Chiba University +Tomoya Sakai +-33 Yayoi, Inage, Chiba, Japan" +0fad544edfc2cd2a127436a2126bab7ad31ec333,Decorrelating Semantic Visual Attributes by Resisting the Urge to Share,"Decorrelating Semantic Visual Attributes by Resisting the Urge to Share +Dinesh Jayaraman +UT Austin +Fei Sha +Kristen Grauman +UT Austin" +0fd1715da386d454b3d6571cf6d06477479f54fc,A Survey of Autonomous Human Affect Detection Methods for Social Robots Engaged in Natural HRI,"J Intell Robot Syst (2016) 82:101–133 +DOI 10.1007/s10846-015-0259-2 +A Survey of Autonomous Human Affect Detection Methods +for Social Robots Engaged in Natural HRI +Derek McColl · Alexander Hong · +Naoaki Hatakeyama · Goldie Nejat · +Beno Benhabib +Received: 10 December 2014 / Accepted: 11 August 2015 / Published online: 23 August 2015 +© Springer Science+Business Media Dordrecht 2015" +0f92e9121e9c0addc35eedbbd25d0a1faf3ab529,MORPH-II: A Proposed Subsetting Scheme,"MORPH-II: A Proposed Subsetting Scheme +Participants: K. Kempfert, J. Fabish, K. Park, and R. Towner +Mentors: Y. Wang, C. Chen, and T. Kling +NSF-REU Site at UNC Wilmington, Summer 2017" +0ff23392e1cb62a600d10bb462d7a1f171f579d0,Toward Sparse Coding on Cosine Distance,"Toward Sparse Coding on Cosine +Distance +Jonghyun Choi, Hyunjong Cho, Jungsuk Kwak#, +Larry S. Davis +UMIACS | University of Maryland, College Park +#Stanford University" +0f395a49ff6cbc7e796656040dbf446a40e300aa,The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect,"ORIGINAL RESEARCH +published: 22 December 2015 +doi: 10.3389/fpsyg.2015.01937 +The Change of Expression +Configuration Affects +Identity-Dependent Expression +Aftereffect but Not +Identity-Independent Expression +Aftereffect +Miao Song 1, 2*, Keizo Shinomori 2, Qian Qian 3, Jun Yin 1 and Weiming Zeng 1 +College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University +of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science +nd Technology, Kunming, China +The present study examined the influence of expression configuration on cross-identity +expression aftereffect. The expression configuration refers to the spatial arrangement +of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs. +closed-mouth smile. In the first of two experiments, the expression aftereffect is +measured using a cross-identity/cross-expression configuration factorial design. The +facial +identities of test faces were the same or different from the adaptor, while" +0fd1bffb171699a968c700f206665b2f8837d953,Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning,"Weakly Supervised Object Localization with +Multi-fold Multiple Instance Learning +Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, Fellow, IEEE" +0a6d344112b5af7d1abbd712f83c0d70105211d0,Constrained Local Neural Fields for Robust Facial Landmark Detection in the Wild,"Constrained Local Neural Fields for robust facial landmark detection in the wild +Tadas Baltruˇsaitis +Peter Robinson +University of Cambridge Computer Laboratory +USC Institute for Creative Technologies +5 JJ Thomson Avenue +Louis-Philippe Morency +2015 Waterfront Drive" +0a3863a0915256082aee613ba6dab6ede962cdcd,Early and Reliable Event Detection Using Proximity Space Representation,"Early and Reliable Event Detection Using Proximity Space Representation +Maxime Sangnier +LTCI, CNRS, T´el´ecom ParisTech, Universit´e Paris-Saclay, 75013, Paris, France +J´erˆome Gauthier +LADIS, CEA, LIST, 91191, Gif-sur-Yvette, France +Alain Rakotomamonjy +Normandie Universit´e, UR, LITIS EA 4108, Avenue de l’universit´e, 76801, Saint-Etienne-du-Rouvray, France" +0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f,Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates,"Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. GCPR 2016 +(cid:13) Copyright by Springer. The final publication will be available at link.springer.com +A. Freytag, E. Rodner, M. Simon, A. Loos, H. K¨uhl and J. Denzler +Chimpanzee Faces in the Wild: +Log-Euclidean CNNs for Predicting Identities +nd Attributes of Primates +Alexander Freytag1,2, Erik Rodner1,2, Marcel Simon1, Alexander Loos3, +Hjalmar S. K¨uhl4,5, and Joachim Denzler1,2,5 +Computer Vision Group, Friedrich Schiller University Jena, Germany +Michael Stifel Center Jena, Germany +Fraunhofer Institute for Digital Media Technology, Germany +Max Planck Institute for Evolutionary Anthropology, Germany +5German Centre for Integrative Biodiversity Research (iDiv), Germany" +0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7,Timing is everything : a spatio-temporal approach to the analysis of facial actions,"Imperial College of Science, Technology and Medicine +Department of Computing +Timing is everything +A spatio-temporal approach to the analysis of facial +ctions +Michel Fran¸cois Valstar +Submitted in part fulfilment of the requirements for the degree of +Doctor of Philosophy in Computing of Imperial College, February 2008" +0a87d781fe2ae2e700237ddd00314dbc10b1429c,Multi-scale HOG Prescreening Algorithm for Detection of Buried Explosive Hazards in FL-IR and FL-GPR Data,"Distribution Statement A: Approved for public release; distribution unlimited. +Multi-scale HOG Prescreening Algorithm for Detection of Buried +Explosive Hazards in FL-IR and FL-GPR Data +*University of Missouri, Electrical and Computer Engineering Department, Columbia, MO +K. Stone*, J. M. Keller*, D. Shaw*" +0af48a45e723f99b712a8ce97d7826002fe4d5a5,Toward Wide-Angle Microvision Sensors,"Toward Wide-Angle Microvision Sensors +Sanjeev J. Koppal, Member, IEEE, Ioannis Gkioulekas, Student Member, IEEE, +Travis Young, Member, IEEE, Hyunsung Park, Student Member, IEEE, +Kenneth B. Crozier, Member, IEEE, Geoffrey L. Barrows, Member, IEEE, and +Todd Zickler, Member, IEEE" +0aa8a0203e5f406feb1815f9b3dd49907f5fd05b,Mixture Subclass Discriminant Analysis,"Mixture subclass discriminant analysis +Nikolaos Gkalelis, Vasileios Mezaris, Ioannis Kompatsiaris" +0a7309147d777c2f20f780a696efe743520aa2db,Stories for Images-in-Sequence by using Visual and Narrative Components,"Stories for Images-in-Sequence by using Visual +nd Narrative Components (cid:63) +Marko Smilevski1,2, Ilija Lalkovski2, and Gjorgji Madjarov1,3 +Ss. Cyril and Methodius University, Skopje, Macedonia +Pendulibrium, Skopje, Macedonia +Elevate Global, Skopje, Macedonia" +0a1138276c52c734b67b30de0bf3f76b0351f097,Discriminant Incoherent Component Analysis,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +The final version of record is available at +http://dx.doi.org/10.1109/TIP.2016.2539502 +Discriminant Incoherent Component Analysis +Christos Georgakis, Student Member, IEEE, Yannis Panagakis, Member, IEEE, and Maja Pantic, Fellow, IEEE" +0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,Neural Networks Regularization Through Representation Learning,"THÈSEPour obtenir le diplôme de doctorat Spécialité Informatique Préparée au sein de « l'INSA Rouen Normandie » Présentée et soutenue parSoufiane BELHARBIThèse dirigée par Sébastien ADAM, laboratoire LITIS Neural Networks Regularization Through Representation LearningThèse soutenue publiquement le 06 Juillet 2018 devant le jury composé deSébastien ADAMProfesseur à l'Université de Rouen NormandieDirecteur de thèseClément CHATELAINMaître de conférence à l'INSA Rouen NormandieEncadrant de thèseRomain HÉRAULTMaître de conférence à l'INSA Rouen NormandieEncadrant de thèseElisa FROMONTProfesseur à l'Université de Rennes 1Rapporteur de thèseThierry ARTIÈRESProfesseur à l'École Centrale MarseilleRapporteur de thèseJohn LEEProfesseur à l'Université Catholique de LouvainExaminateur de thèseDavid PICARDMaître de conférences à l'École Nationale Supérieure de l'Électronique et de ses ApplicationsExaminateur de thèseFrédéric JURIEProfesseur à l' Université de Caen NormandieInvité" +0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7,"Multi-task, multi-label and multi-domain learning with residual convolutional networks for emotion recognition","Noname manuscript No. +(will be inserted by the editor) +Multi-task, multi-label and multi-domain learning with +residual convolutional networks for emotion recognition +Gerard Pons · David Masip +Received: date / Accepted: date" +0acf23485ded5cb9cd249d1e4972119239227ddb,Dual coordinate solvers for large-scale structural SVMs,"Dual coordinate solvers for large-scale structural SVMs +Deva Ramanan +UC Irvine +This manuscript describes a method for training linear SVMs (including binary SVMs, SVM regression, +nd structural SVMs) from large, out-of-core training datasets. Current strategies for large-scale learning fall +into one of two camps; batch algorithms which solve the learning problem given a finite datasets, and online +lgorithms which can process out-of-core datasets. The former typically requires datasets small enough to fit +in memory. The latter is often phrased as a stochastic optimization problem [4, 15]; such algorithms enjoy +strong theoretical properties but often require manual tuned annealing schedules, and may converge slowly +for problems with large output spaces (e.g., structural SVMs). We discuss an algorithm for an “intermediate” +regime in which the data is too large to fit in memory, but the active constraints (support vectors) are small +enough to remain in memory. +In this case, one can design rather ef‌f‌icient learning algorithms that are +s stable as batch algorithms, but capable of processing out-of-core datasets. We have developed such a +MATLAB-based solver and used it to train a series of recognition systems [19, 7, 21, 12] for articulated pose +estimation, facial analysis, 3D object recognition, and action classification, all with publicly-available code. +This writeup describes the solver in detail. +Approach: Our approach is closely based on data-subsampling algorithms for collecting hard exam- +ples [9, 10, 6], combined with the dual coordinate quadratic programming (QP) solver described in liblinear +[8]. The latter appears to be current fastest method for learning linear SVMs. We make two extensions (1)" +6412d8bbcc01f595a2982d6141e4b93e7e982d0f,"Deep Convolutional Neural Network Using Triplets of Faces, Deep Ensemble, and Score-Level Fusion for Face Recognition","Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and +Score-level Fusion for Face Recognition +Bong-Nam Kang, Student Member, IEEE1, Yonghyun Kim, Student Member, IEEE2, and +Daijin Kim, Member, IEEE2 +Department of Creative IT Engineering, POSTECH, Korea +Department of Computer Science and Engineering, POSTECH, Korea +{bnkang, gkyh0805," +641f0989b87bf7db67a64900dcc9568767b7b50f,Reconstructing faces from their signatures using RBF regression,"Reconstructing Faces from their Signatures using RBF +Regression +Alexis Mignon, Fr´ed´eric Jurie +To cite this version: +Alexis Mignon, Fr´ed´eric Jurie. Reconstructing Faces from their Signatures using RBF Regres- +sion. British Machine Vision Conference 2013, Sep 2013, Bristol, United Kingdom. pp.103.1– +03.12, 2013, <10.5244/C.27.103>. +HAL Id: hal-00943426 +https://hal.archives-ouvertes.fr/hal-00943426 +Submitted on 13 Feb 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +64153df77fe137b7c6f820a58f0bdb4b3b1a879b,Shape Invariant Recognition of Segmented Human Faces using Eigenfaces,"Shape Invariant Recognition of Segmented Human +Faces using Eigenfaces +Zahid Riaz, Michael Beetz, Bernd Radig +Department of Informatics +Technical University of Munich, Germany" +649eb674fc963ce25e4e8ce53ac7ee20500fb0e3,Toward correlating and solving abstract tasks using convolutional neural networks, +645de797f936cb19c1b8dba3b862543645510544,Deep Temporal Linear Encoding Networks,"Deep Temporal Linear Encoding Networks +Ali Diba1,(cid:63), Vivek Sharma1,(cid:63), and Luc Van Gool1,2 +ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich" +90d735cffd84e8f2ae4d0c9493590f3a7d99daf1,Recognition of Faces using Efficient Multiscale Local Binary Pattern and Kernel Discriminant Analysis in Varying Environment,"Original Research Paper +American Journal of Engineering and Applied Sciences +Recognition of Faces using Efficient Multiscale Local Binary +Pattern and Kernel Discriminant Analysis in Varying +Environment +Sujata G. Bhele and +V.H. Mankar +Department of Electronics Engg, Priyadarshini College of Engg, Nagpur, India +Department of Electronics Engg, Government Polytechnic, Nagpur, India +Article history +Received: 20-06-2017 +Revised: 18-07-2017 +Accepted: 21-08-2017 +Corresponding Author: +Sujata G. Bhele +Department of Electronics +Engg, Priyadarshini College of +Engg, Nagpur, India +Email:" +90fb58eeb32f15f795030c112f5a9b1655ba3624,Face and Iris Recognition in a Video Sequence Using Dbpnn and Adaptive Hamming Distance,"INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS +www.ijrcar.com +Vol.4 Issue 6, Pg.: 12-27 +June 2016 +INTERNATIONAL JOURNAL OF +RESEARCH IN COMPUTER +APPLICATIONS AND ROBOTICS +ISSN 2320-7345 +FACE AND IRIS RECOGNITION IN A +VIDEO SEQUENCE USING DBPNN AND +ADAPTIVE HAMMING DISTANCE +S. Revathy, 2Mr. L. Ramasethu +PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India. +Assistant Professor, Hindusthan College of Engineering and Technology, Coimbatore, India. +Email id:" +902114feaf33deac209225c210bbdecbd9ef33b1,Side-Information based Linear Discriminant Analysis for Face Recognition,"KAN et al.: SIDE-INFORMATION BASED LDA FOR FACE RECOGNITION +Side-Information based Linear +Discriminant Analysis for Face +Recognition +Meina Kan1,2,3 +Shiguang Shan1,2 +Dong Xu3 +Xilin Chen1,2 +Digital Media Research Center, +Institute of Computing +Technology, CAS, Beijing, China +Key Laboratory of Intelligent +Information Processing, Chinese +Academy of Sciences, Beijing, +China +School of Computer Engineering, +Nanyang Technological +University, Singapore" +90cb074a19c5e7d92a1c0d328a1ade1295f4f311,Fully Automatic Upper Facial Action Recognition,"MIT. Media Laboratory Affective Computing Technical Report #571 +Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003 +Fully Automatic Upper Facial Action Recognition +Ashish Kapoor Yuan Qi Rosalind W. Picard +MIT Media Laboratory +Cambridge, MA 02139" +907475a4febf3f1d4089a3e775ea018fbec895fe,Statistical modeling for facial expression analysis and synthesis,"STATISTICAL MODELING FOR FACIAL EXPRESSION ANALYSIS AND SYNTHESIS +Bouchra Abboud, Franck Davoine, Mˆo Dang +Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne. +BP 20529, 60205 COMPIEGNE Cedex, FRANCE. +E-mail:" +9028fbbd1727215010a5e09bc5758492211dec19,Solving the Uncalibrated Photometric Stereo Problem Using Total Variation,"Solving the Uncalibrated Photometric Stereo +Problem using Total Variation +Yvain Qu´eau1, Fran¸cois Lauze2, and Jean-Denis Durou1 +IRIT, UMR CNRS 5505, Toulouse, France +Dept. of Computer Science, Univ. of Copenhagen, Denmark" +bff77a3b80f40cefe79550bf9e220fb82a74c084,Facial Expression Recognition Based on Local Binary Patterns and Local Fisher Discriminant Analysis,"Facial Expression Recognition Based on Local Binary Patterns and +Local Fisher Discriminant Analysis +SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1 +School of Physics and Electronic Engineering +Taizhou University +Taizhou 318000 +CHINA +2Department of Computer Science +Taizhou University +Taizhou 318000 +CHINA" +bf1e0279a13903e1d43f8562aaf41444afca4fdc,Different Viewpoints of Recognizing Fleeting Facial Expressions with DWT,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 +Different Viewpoints of Recognizing Fleeting Facial Expressions with +VAIBHAV SHUBHAM1, MR. SANJEEV SHRIVASTAVA2, DR. MOHIT GANGWAR3 +information +to get desired +information +Introduction +---------------------------------------------------------------------***---------------------------------------------------------------------" +bf4825474673246ae855979034c8ffdb12c80a98,"UNIVERSITY OF CALIFORNIA RIVERSIDE Active Learning in Multi-Camera Networks, With Applications in Person Re-Identification A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering","UNIVERSITY OF CALIFORNIA +RIVERSIDE +Active Learning in Multi-Camera Networks, With Applications in Person +Re-Identification +A Dissertation submitted in partial satisfaction +of the requirements for the degree of +Doctor of Philosophy +Electrical Engineering +Abir Das +December 2015 +Dissertation Committee: +Professor Amit K. Roy-Chowdhury, Chairperson +Professor Anastasios Mourikis +Professor Walid Najjar" +bf5940d57f97ed20c50278a81e901ae4656f0f2c,Query-Free Clothing Retrieval via Implicit Relevance Feedback,"Query-free Clothing Retrieval via Implicit +Relevance Feedback +Zhuoxiang Chen, Zhe Xu, Ya Zhang, Member, IEEE, and Xiao Gu" +bfb98423941e51e3cd067cb085ebfa3087f3bfbe,Sparseness helps: Sparsity Augmented Collaborative Representation for Classification,"Sparseness helps: Sparsity Augmented +Collaborative Representation for Classification +Naveed Akhtar, Faisal Shafait, and Ajmal Mian" +d3b73e06d19da6b457924269bb208878160059da,Implementation of an Automated Smart Home Control for Detecting Human Emotions via Facial Detection,"Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015 +1-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my ) +Paper No. +IMPLEMENTATION OF AN AUTOMATED SMART HOME +CONTROL FOR DETECTING HUMAN EMOTIONS VIA FACIAL +DETECTION +Lim Teck Boon1, Mohd Heikal Husin2, Zarul Fitri Zaaba3 and Mohd Azam +Osman4 +Universiti Sains Malaysia, Malaysia, +Universiti Sains Malaysia, Malaysia, +Universiti Sains Malaysia, Malaysia, +Universiti Sains Malaysia, Malaysia," +d3d71a110f26872c69cf25df70043f7615edcf92,Learning Compact Feature Descriptor and Adaptive Matching Framework for Face Recognition,"Learning Compact Feature Descriptor and Adaptive +Matching Framework for Face Recognition +Zhifeng Li, Senior Member, IEEE, Dihong Gong, Xuelong Li, Fellow, IEEE, and Dacheng Tao, Fellow, IEEE +improvements" +d3b18ba0d9b247bfa2fb95543d172ef888dfff95,Learning and Using the Arrow of Time,"Learning and Using the Arrow of Time +Donglai Wei1, Joseph Lim2, Andrew Zisserman3 and William T. Freeman4,5 +Harvard University 2University of Southern California +University of Oxford 4Massachusetts Institute of Technology 5Google Research +Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer +elow1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level +reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn +nd exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on +large-scale video datasets." +d309e414f0d6e56e7ba45736d28ee58ae2bad478,Efficient Two-Stream Motion and Appearance 3 D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for +Video Classification +Ali Diba +ESAT-KU Leuven +Ali Pazandeh +Sharif UTech +Luc Van Gool +ESAT-KU Leuven, ETH Zurich" +d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9,STAIR Actions: A Video Dataset of Everyday Home Actions, +d3c004125c71942846a9b32ae565c5216c068d1e,Recognizing Age-Separated Face Images: Humans and Machines,"RESEARCH ARTICLE +Recognizing Age-Separated Face Images: +Humans and Machines +Daksha Yadav1, Richa Singh2, Mayank Vatsa2*, Afzel Noore1 +. West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi, +Delhi, India" +d350a9390f0818703f886138da27bf8967fe8f51,Lighting design for portraits with a virtual light stage,"LIGHTING DESIGN FOR PORTRAITS WITH A VIRTUAL LIGHT STAGE +Davoud Shahlaei, Marcel Piotraschke, Volker Blanz +Institute for Vision and Graphics, University of Siegen, Germany" +d33fcdaf2c0bd0100ec94b2c437dccdacec66476,Neurons With Paraboloid Decision Boundaries for Improved Neural Network Classification Performance.,"Neurons with Paraboloid Decision Boundaries for +Improved Neural Network Classification +Performance +Nikolaos Tsapanos, Anastasios Tefas, Member, IEEE, Nikolaos Nikolaidis, Member, IEEE, and +Ioannis Pitas, Fellow, IEEE" +d46b790d22cb59df87f9486da28386b0f99339d3,Learning Face Deblurring Fast and Wide,"Learning Face Deblurring Fast and Wide +Meiguang Jin +University of Bern +Switzerland +Michael Hirsch† +Amazon Research +Germany +Paolo Favaro +University of Bern +Switzerland" +d41c11ebcb06c82b7055e2964914b9af417abfb2,CDI-Type I: Unsupervised and Weakly-Supervised Discovery of Facial Events,"CDI-Type I: Unsupervised and Weakly-Supervised +Introduction +Discovery of Facial Events +The face is one of the most powerful channels of nonverbal communication. Facial expression has been a +focus of emotion research for over a hundred years [12]. It is central to several leading theories of emotion +[18, 31, 54] and has been the focus of at times heated debate about issues in emotion science [19, 24, 50]. +Facial expression figures prominently in research on almost every aspect of emotion, including psychophys- +iology [40], neural correlates [20], development [11], perception [4], addiction [26], social processes [30], +depression [49] and other emotion disorders [55], to name a few. In general, facial expression provides cues +bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology. +Because of its importance to behavioral science and the emerging fields of computational behavior +science, perceptual computing, and human-robot interaction, significant efforts have been applied toward +developing algorithms that automatically detect facial expression. With few exceptions, previous work on +facial expression relies on supervised approaches to learning (i.e. event categories are defined in advance +in labeled training data). While supervised learning has important advantages, two critical limitations may +e noted. One, because labeling facial expression is highly labor intensive, progress in automated facial +expression recognition and analysis is slowed. For the most detailed and comprehensive labeling or coding +systems, such as Facial Action Coding System (FACS), three to four months is typically required to train +coder (’coding’ refers to the labeling of video using behavioral descriptors). Once trained, each minute +of video may require 1 hour or more to code [9]. No wonder relatively few databases are yet available," +d444368421f456baf8c3cb089244e017f8d32c41,CNN for IMU assisted odometry estimation using velodyne LiDAR,"CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR +Martin Velas, Michal Spanel, Michal Hradis, and Adam Herout" +d4885ca24189b4414031ca048a8b7eb2c9ac646c,"Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN","Ef‌f‌icient Facial Representations for Age, Gender +nd Identity Recognition in Organizing Photo +Albums using Multi-output CNN +Andrey V. Savchenko +Samsung-PDMI Joint AI Center, St. Petersburg Department of Steklov Institute of +Mathematics +National Research University Higher School of Economics +Nizhny Novgorod, Russia" +d4001826cc6171c821281e2771af3a36dd01ffc0,Modélisation de contextes pour l'annotation sémantique de vidéos. (Context based modeling for video semantic annotation),"Modélisation de contextes pour l’annotation sémantique +de vidéos +Nicolas Ballas +To cite this version: +Nicolas Ballas. Modélisation de contextes pour l’annotation sémantique de vidéos. Autre [cs.OH]. +Ecole Nationale Supérieure des Mines de Paris, 2013. Français. . +HAL Id: pastel-00958135 +https://pastel.archives-ouvertes.fr/pastel-00958135 +Submitted on 11 Mar 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de" +d458c49a5e34263c95b3393386b5d76ba770e497,A Comparative Analysis of Gender Classification Techniques,"Middle-East Journal of Scientific Research 20 (1): 01-13, 2014 +ISSN 1990-9233 +© IDOSI Publications, 2014 +DOI: 10.5829/idosi.mejsr.2014.20.01.11434 +A Comparative Analysis of Gender Classification Techniques +Sajid Ali Khan, Maqsood Ahmad, Muhammad Nazir and Naveed Riaz +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan" +d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e,A Lightened CNN for Deep Face Representation,"A Lightened CNN for Deep Face Representation +Xiang Wu +School of Computer and Communication Engineering +University of Science and Technology Beijing, Beijing, China +Ran He, Zhenan Sun +National Laboratory of Pattern Recognition +Institute of Automation Chinese Academy of Sciences, Beijing, China +{rhe," +d4b88be6ce77164f5eea1ed2b16b985c0670463a,A Survey of Different 3D Face Reconstruction Methods,"TECHNICAL REPORT JAN.15.2016 +A Survey of Different 3D Face Reconstruction +Methods +Amin Jourabloo +Department of Computer Science and Engineering" +d44ca9e7690b88e813021e67b855d871cdb5022f,"Selecting, Optimizing and Fusing 'Salient' Gabor Features for Facial Expression Recognition","QUT Digital Repository: +http://eprints.qut.edu.au/ +Zhang, Ligang and Tjondronegoro, Dian W. (2009) Selecting, optimizing and +fusing ‘salient’ Gabor features for facial expression recognition. In: Neural +Information Processing (Lecture Notes in Computer Science), 1-5 December +009, Hotel Windsor Suites Bangkok, Bangkok. +© Copyright 2009 Springer-Verlag GmbH Berlin Heidelberg" +bafb8812817db7445fe0e1362410a372578ec1fc,Image-Quality-Based Adaptive Face Recognition,"Image-Quality-Based Adaptive Face Recognition +Harin Sellahewa and Sabah A. Jassim" +ba99c37a9220e08e1186f21cab11956d3f4fccc2,A Fast Factorization-Based Approach to Robust PCA,"A Fast Factorization-based Approach to Robust PCA +Department of Computer Science, Southern Illinois University,Carbondale, IL 62901 USA +Chong Peng, Zhao Kang, and Qiang Cheng +Email:" +ba816806adad2030e1939450226c8647105e101c,MindLAB at the THUMOS Challenge,"MindLAB at the THUMOS Challenge +Fabi´an P´aez +Jorge A. Vanegas +Fabio A. Gonz´alez +MindLAB Research Group +MindLAB Research Group +MindLAB Research Group +Bogot´a, Colombia +Bogot´a, Colombia +Bogot´a, Colombia" +badcd992266c6813063c153c41b87babc0ba36a3,Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks,"Recent Advances in Object Detection in the Age +of Deep Convolutional Neural Networks +Shivang Agarwal(∗ +,1), Jean Ogier du Terrail(∗ +,1,2), Fr´ed´eric Jurie(1) +(∗) equal contribution +(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS +(2)Safran Electronics and Defense +September 11, 2018" +ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,Uporaba emotivno pogojenega računalništva v priporočilnih sistemih,"ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011 +EXISTING SEPARATE ENGLISH EDITION +Uporaba emotivno pogojenega raˇcunalniˇstva v +priporoˇcilnih sistemih +Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc +Univerza v Ljubljani, Fakulteta za elektrotehniko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +Univerza v Ljubljani, Fakulteta za raˇcunalniˇstvo in informatiko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +E-poˇsta: +Povzetek. V ˇclanku predstavljamo rezultate treh raziskav, vezanih na izboljˇsanje delovanja multimedijskih +priporoˇcilnih sistemov s pomoˇcjo metod emotivno pogojenega raˇcunalniˇstva (ang. affective computing). +Vsebinski priporoˇcilni sistem smo izboljˇsali s pomoˇcjo metapodatkov, ki opisujejo emotivne odzive uporabnikov. +Pri skupinskem priporoˇcilnem sistemu smo dosegli znaˇcilno izboljˇsanje v obmoˇcju hladnega zagona z uvedbo +nove mere podobnosti, ki temelji na osebnostnem modelu velikih pet (ang. five factor model). Razvili smo tudi +sistem za neinvazivno oznaˇcevanje vsebin z emotivnimi parametri, ki pa ˇse ni zrel za uporabo v priporoˇcilnih +sistemih. +Kljuˇcne besede: priporoˇcilni sistemi, emotivno pogojeno raˇcunalniˇstvo, strojno uˇcenje, uporabniˇski profil, +emocije +Uporaba emotivnega raˇcunalniˇstva v priporoˇcilnih +sistemih +In this paper we present the results of three investigations of" +badd371a49d2c4126df95120902a34f4bee01b00,Parallel Separable 3D Convolution for Video and Volumetric Data Understanding,"GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION +Parallel Separable 3D Convolution for Video +nd Volumetric Data Understanding +Harvard John A. Paulson School of +Engineering and Applied Sciences +Camabridge MA, USA +Felix Gonda +Donglai Wei +Toufiq Parag +Hanspeter Pfister" +a0f94e9400938cbd05c4b60b06d9ed58c3458303,Value-Directed Human Behavior Analysis from Video Using Partially Observable Markov Decision Processes,"Value-Directed Human Behavior Analysis +from Video Using Partially Observable +Markov Decision Processes +Jesse Hoey and James J. Little, Member, IEEE" +a022eff5470c3446aca683eae9c18319fd2406d5,Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description sémantique des traits visuels humains),"017-ENST-0071 +EDITE - ED 130 +Doctorat ParisTech +T H È S E +pour obtenir le grade de docteur délivré par +TÉLÉCOM ParisTech +Spécialité « SIGNAL et IMAGES » +présentée et soutenue publiquement par +Grigory ANTIPOV +le 15 décembre 2017 +Apprentissage Profond pour la Description Sémantique des Traits +Visuels Humains +Directeur de thèse : Jean-Luc DUGELAY +Co-encadrement de la thèse : Moez BACCOUCHE +Mme Bernadette DORIZZI, PRU, Télécom SudParis +Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux +M. Christian WOLF, MC/HDR, INSA de Lyon +M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes +M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes +M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis" +a0c37f07710184597befaa7e6cf2f0893ff440e9,Fast Retinomorphic Event Stream for Video Recognition and Reinforcement Learning, +a0fd85b3400c7b3e11122f44dc5870ae2de9009a,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face +Alignment with Auxiliary Attributes +Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE" +a0dfb8aae58bd757b801e2dcb717a094013bc178,Reconocimiento de expresiones faciales con base en la dinámica de puntos de referencia faciales,"Reconocimiento de expresiones faciales con base +en la din´amica de puntos de referencia faciales +E. Morales-Vargas, C.A. Reyes-Garcia, Hayde Peregrina-Barreto +Instituto Nacional de Astrof´ısica ´Optica y Electr´onica, +Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla, +M´exico +Resumen. Las expresiones faciales permiten a las personas comunicar +emociones, y es pr´acticamente lo primero que observamos al interactuar +on alguien. En el ´area de computaci´on, el reconocimiento de expresiones +faciales es importante debido a que su an´alisis tiene aplicaci´on directa en +´areas como psicolog´ıa, medicina, educaci´on, entre otras. En este articulo +se presenta el proceso de dise˜no de un sistema para el reconocimiento de +expresiones faciales utilizando la din´amica de puntos de referencia ubi- +ados en el rostro, su implementaci´on, experimentos realizados y algunos +de los resultados obtenidos hasta el momento. +Palabras clave: Expresiones faciales, clasificaci´on, m´aquinas de soporte +vectorial,modelos activos de apariencia. +Facial Expressions Recognition Based on Facial +Landmarks Dynamics" +a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60,Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Learning,"Simultaneous Learning and Alignment: +Multi-Instance and Multi-Pose Learning? +Boris Babenko1 Piotr Doll´ar1,2 +Zhuowen Tu3 +Serge Belongie1,2 +Comp. Science & Eng. +Univ. of CA, San Diego +Electrical Engineering +California Inst. of Tech. +Lab of Neuro Imaging +Univ. of CA, Los Angeles" +a090d61bfb2c3f380c01c0774ea17929998e0c96,On the dimensionality of video bricks under varying illumination,"On the Dimensionality of Video Bricks under Varying Illumination +Beijing Lab of Intelligent Information Technology, School of Computer Science, +Youdong Zhao, Xi Song, Yunde Jia +Beijing Institute of Technology, Beijing 100081, PR China +{zyd458, songxi," +a000149e83b09d17e18ed9184155be140ae1266e,Action Recognition in Realistic Sports Videos,"Chapter 9 +Action Recognition in Realistic +Sports Videos +Khurram Soomro and Amir R. Zamir" +a01f9461bc8cf8fe40c26d223ab1abea5d8e2812,Facial Age Estimation Through the Fusion of Texture and Local Appearance Descriptors,"Facial Age Estimation Through the Fusion of Texture +nd local appearance Descriptors +Ivan Huerta1, Carles Fern´andez2, and Andrea Prati1 +DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy +Herta Security, Pau Claris 165 4-B, 08037 Barcelona, Spain" +a702fc36f0644a958c08de169b763b9927c175eb,Facial expression recognition using Hough forest,"FACIAL EXPRESSION RECOGNITION USING HOUGH FOREST +Chi-Ting Hsu1, Shih-Chung Hsu1, and Chung-Lin Huang1,2 +. Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan +Email: +. Department of Applied Informatics and Multimedia, Asia University, Taichung, Taiwan" +a7267bc781a4e3e79213bb9c4925dd551ea1f5c4,Proceedings of eNTERFACE 2015 Workshop on Intelligent Interfaces,"Proceedings of eNTERFACE’15 +The 11th Summer Workshop +on Multimodal Interfaces +August 10th - September 4th, 2015 +Numediart Institute, University of Mons +Mons, Belgium" +a784a0d1cea26f18626682ab108ce2c9221d1e53,Anchored Regression Networks Applied to Age Estimation and Super Resolution,"Anchored Regression Networks applied to Age Estimation and Super Resolution +Eirikur Agustsson +D-ITET, ETH Zurich +Switzerland +Radu Timofte +D-ITET, ETH Zurich +Merantix GmbH +Luc Van Gool +D-ITET, ETH Zurich +ESAT, KU Leuven" +a77e9f0bd205a7733431a6d1028f09f57f9f73b0,Multimodal feature fusion for CNN-based gait recognition: an empirical comparison,"Multimodal feature fusion for CNN-based gait recognition: an +empirical comparison +F.M. Castroa,, M.J. Mar´ın-Jim´enezb, N. Guila, N. P´erez de la Blancac +Department of Computer Architecture, University of Malaga, Spain, 29071 +Department of Computing and Numerical Analysis, University of Cordoba, Spain, 14071 +Department of Computer Science and Artificial Intelligence, University of Granada, Spain, 18071" +a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51,A Summary of literature review : Face Recognition,"Postgraduate Annual Research Seminar 2007 (3-4 July 2007) +A Summary of literature review : Face Recognition +Kittikhun Meethongjan & Dzulkifli Mohamad +Faculty of Computer Science & Information System, +University Technology of Malaysia, 81310 Skudai, Johor, Malaysia." +a7664247a37a89c74d0e1a1606a99119cffc41d4,Modal Consistency based Pre-Trained Multi-Model Reuse,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9,Face Recognition Using Multi-viewpoint Patterns for Robot Vision,"1th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003 +Face Recognition Using Multi-viewpoint Patterns for +Robot Vision +Kazuhiro Fukui and Osamu Yamaguchi +Corporate Research and Development Center, TOSHIBA Corporation +, KomukaiToshiba-cho, Saiwai-ku, Kawasaki 212-8582 Japan" +a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,"Study on Human Face Recognition under Invariant Pose, Illumination and Expression using LBP, LoG and SVM","ISSN XXXX XXXX © 2017 IJESC +Research Article Volume 7 Issue No.4 +Study on Human Face Recognition under Invariant Pose, Illumination +nd Expression using LBP, LoG and SVM +Amrutha +Depart ment of Co mputer Science & Engineering +Mangalore Institute of Technology & Engineering , Moodabidri, Mangalore, India +INTRODUCTION +RELATED WORK +Abstrac t: +Face recognition system uses human face for the identification of the user. Face recognition is a difficu lt task there is no unique +method that provide accurate an accurate and effic ient solution in all the situations like the face image with differen t pose , +illu mination and exp ression. Local Binary Pattern (LBP) and Laplac ian of Gaussian (Lo G) operators. Support Vector Machine +lassifier is used to recognize the human face. The Lo G algorith m is used to preprocess the image to detect the edges of the face +image to get the image information. The LBP operator divides the face image into several blocks to generate the features informat ion +on pixe l level by creating LBP labels for all the blocks of image is obtained by concatenating all the individual local histo grams. +Support Vector Machine classifier (SVM ) is used to classify t he image. The a lgorith m performances is verified under the constraints +like illu mination, e xp ression and pose variation +Ke ywor ds: Face Recognition, Local Binary Pattern, Laplac ian of Gaussian, histogram, illu mination, pose angle, exp ression +variations, SVM ." +a75ee7f4c4130ef36d21582d5758f953dba03a01,Human face attributes prediction with Deep Learning,"DD2427 Final Project Report +Mohamed Abdulaziz Ali Haseeb +DD2427 Final Project Report +Human face attributes prediction with Deep +Learning +Mohamed Abdulaziz Ali Haseeb" +a775da3e6e6ea64bffab7f9baf665528644c7ed3,Human Face Pose Estimation based on Feature Extraction Points,"International Journal of Computer Applications (0975 – 8887) +Volume 142 – No.9, May 2016 +Human Face Pose Estimation based on Feature +Extraction Points +Guneet Bhullar +Research scholar, +Department of ECE +SBSSTC, Moga Road, +Ferozepur, Punjab, India" +a703d51c200724517f099ee10885286ddbd8b587,Fuzzy neural networks(FNN)-based approach for personalized facial expression recognition with novel feature selection method,"Fuzzy Neural Networks(FNN)-based Approach for +Personalized Facial Expression Recognition with +Novel Feature Selection Method +Dae-Jin Kim and Zeungnam Bien +Div. of EE, Dept. of EECS, KAIST +73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea +Kwang-Hyun Park +Human-friendly Welfare Robotic System Engineering Research Center, KAIST +73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea" +b871d1b8495025ff8a6255514ed39f7765415935,Application of Completed Local Binary Pattern for Facial Expression Recognition on Gabor Filtered Facial Images,"Application of Completed Local Binary Pattern for Facial Expression +Recognition on Gabor Filtered Facial Images +Tanveer Ahsan, 2Rifat Shahriar, *3Uipil Chong +Dept. of Electrical and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea" +b8dba0504d6b4b557d51a6cf4de5507141db60cf,Comparing Performances of Big Data Stream Processing Platforms with RAM3S,"Comparing Performances of Big Data Stream +Processing Platforms with RAM3S" +b89862f38fff416d2fcda389f5c59daba56241db,A Web Survey for Facial Expressions Evaluation,"A Web Survey for Facial Expressions Evaluation +Matteo Sorci +Gianluca Antonini +Jean-Philippe Thiran +Ecole Polytechnique Federale de Lausanne +Signal Processing Institute +Ecublens, 1015 Lausanne, Switzerland +Ecole Polytechnique Federale de Lausanne, Operation Research Group +Michel Bierlaire +Ecublens, 1015 Lausanne, Switzerland +June 9, 2008" +b8f3f6d8f188f65ca8ea2725b248397c7d1e662d,Selfie Detection by Synergy-Constraint Based Convolutional Neural Network,"Selfie Detection by Synergy-Constriant Based +Convolutional Neural Network +Yashas Annadani, Vijaykrishna Naganoor, Akshay Kumar Jagadish and Krishnan Chemmangat +Electrical and Electronics Engineering, NITK-Surathkal, India." +b85580ff2d8d8be0a2c40863f04269df4cd766d9,HCMUS team at the Multimodal Person Discovery in Broadcast TV Task of MediaEval 2016,"HCMUS team at the Multimodal Person Discovery in +Broadcast TV Task of MediaEval 2016 +Vinh-Tiep Nguyen, Manh-Tien H. Nguyen, Quoc-Huu Che, Van-Tu Ninh, +Tu-Khiem Le, Thanh-An Nguyen, Minh-Triet Tran +Faculty of Information Technology +University of Science, Vietnam National University-Ho Chi Minh city +{nhmtien, cqhuu, nvtu," +b8a829b30381106b806066d40dd372045d49178d,A Probabilistic Framework for Joint Pedestrian Head and Body Orientation Estimation,"A Probabilistic Framework for Joint Pedestrian Head +nd Body Orientation Estimation +Fabian Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, and Dariu M. Gavrila" +b1d89015f9b16515735d4140c84b0bacbbef19ac,Too Far to See? Not Really!—Pedestrian Detection With Scale-Aware Localization Policy,"Too Far to See? Not Really! +— Pedestrian Detection with Scale-aware +Localization Policy +Xiaowei Zhang, Li Cheng, Bo Li, and Hai-Miao Hu" +b14b672e09b5b2d984295dfafb05604492bfaec5,Apprentissage de Modèles pour la Classification et la Recherche d ’ Images Learning Image Classification and Retrieval Models,LearningImageClassificationandRetrievalModelsThomasMensink +b1a3b19700b8738b4510eecf78a35ff38406df22,Automatic Analysis of Facial Actions: A Survey,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE +Transactions on Affective Computing +JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +Automatic Analysis of Facial Actions: A Survey +Brais Martinez, Member, IEEE, Michel F. Valstar, Senior Member, IEEE, Bihan Jiang, +nd Maja Pantic, Fellow, IEEE" +b166ce267ddb705e6ed855c6b679ec699d62e9cb,Sample group and misplaced atom dictionary learning for face recognition,"Turk J Elec Eng & Comp Sci +(2017) 25: 4421 { 4430 +⃝ T (cid:127)UB_ITAK +doi:10.3906/elk-1702-49 +Sample group and misplaced atom dictionary learning for face recognition +Meng WANG1;2, Zhengping HU1;(cid:3) +, Zhe Sun1, Mei ZHU2, Mei SUN2 +Department of Information Science & Engineering, Faculty of Electronics & Communication, Yanshan University, +Department of Physics & Electronics Engineering, Faculty of Electronics & Communication, Taishan University, +Qinhuangdao, P.R. China +Tai’an, P.R. China +Received: 04.02.2017 +(cid:15) +Accepted/Published Online: 01.06.2017 +(cid:15) +Final Version: 05.10.2017" +b15a06d701f0a7f508e3355a09d0016de3d92a6d,Facial contrast is a cue for perceiving health from the face.,"Running head: FACIAL CONTRAST LOOKS HEALTHY +Facial contrast is a cue for perceiving health from the face +Richard Russell1, Aurélie Porcheron2,3, Jennifer R. Sweda1, Alex L. Jones1, Emmanuelle +Mauger2, Frederique Morizot2 +Gettysburg College, Gettysburg, PA, USA +CHANEL Recherche et Technologie, Chanel PB +Université Grenoble Alpes +Author Note +Richard Russell, Jennifer R. Sweda, and Alex L. Jones, Department of Psychology, +Gettysburg College. Aurélie Porcheron, Emmanuelle Mauger, and Frederique Morizot, +CHANEL Recherche et Technologie, Chanel PB. Aurélie Porcheron, Laboratoire de +Psychologie et NeuroCognition, Université Grenoble Alpes. +Corresponding author: Richard Russell, Department of Psychology, Box 407, Gettysburg +College, Gettysburg, PA 17325, USA. Email: +This is a prepublication copy. This article may not exactly replicate the authoritative document +published in the APA journal. It is not the copy of record. The authoritative document can be +found through this DOI: http://psycnet.apa.org/doi/10.1037/xhp0000219" +b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1,Local Directional Relation Pattern for Unconstrained and Robust Face Retrieval,"LOCAL DIRECTIONAL RELATION PATTERN +Local Directional Relation Pattern for +Unconstrained and Robust Face Retrieval +Shiv Ram Dubey, Member, IEEE" +b1451721864e836069fa299a64595d1655793757,Criteria Sliders: Learning Continuous Database Criteria via Interactive Ranking,"Criteria Sliders: Learning Continuous +Database Criteria via Interactive Ranking +James Tompkin,1∗ Kwang In Kim,2∗ Hanspeter Pfister,3 and Christian Theobalt4 +Brown University 2University of Bath +Harvard University 4Max Planck Institute for Informatics" +b19e83eda4a602abc5a8ef57467c5f47f493848d,Heat Kernel Based Local Binary Pattern for Face Representation,"JOURNAL OF LATEX CLASS FILES +Heat Kernel Based Local Binary Pattern for +Face Representation +Xi Li†, Weiming Hu†, Zhongfei Zhang‡, Hanzi Wang§" +dde5125baefa1141f1ed50479a3fd67c528a965f,Synthesizing Normalized Faces from Facial Identity Features,"Synthesizing Normalized Faces from Facial Identity Features +Forrester Cole1 David Belanger1,2 Dilip Krishnan1 Aaron Sarna1 Inbar Mosseri1 William T. Freeman1,3 +Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL +{fcole, dbelanger, dilipkay, sarna, inbarm," +dd8084b2878ca95d8f14bae73e1072922f0cc5da,"Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification","Model Distillation with Knowledge Transfer from +Face Classification to Alignment and Verification +Chong Wang∗, Xipeng Lan and Yangang Zhang +Beijing Orion Star Technology Co., Ltd. Beijing, China +{chongwang.nlpr, xipeng.lan," +ddf55fc9cf57dabf4eccbf9daab52108df5b69aa,Methodology and Performance Analysis of 3-D Facial Expression Recognition Using Statistical Shape Representation,"International Journal of Grid and Distributed Computing +Vol. 4, No. 3, September, 2011 +Methodology and Performance Analysis of 3-D Facial Expression +Recognition Using Statistical Shape Representation +Wei Quan, Bogdan J. Matuszewski, Lik-Kwan Shark +ADSIP Research Centre, University of Central Lancashire +{WQuan, BMatuszewski1, +Charlie Frowd +School of Psychology, University of Central Lancashire" +ddea3c352f5041fb34433b635399711a90fde0e8,Facial Expression Classification using Visual Cues and Language,"Facial Expression Classification using Visual Cues and Language +Abhishek Kar +Advisor: Dr. Amitabha Mukerjee +Department of Computer Science and Engineering, IIT Kanpur" +ddbd24a73ba3d74028596f393bb07a6b87a469c0,Multi-region Two-Stream R-CNN for Action Detection,"Multi-region two-stream R-CNN +for action detection +Xiaojiang Peng, Cordelia Schmid +Inria(cid:63)" +ddf099f0e0631da4a6396a17829160301796151c,Learning Face Image Quality from Human Assessments,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY +Learning Face Image Quality from +Human Assessments +Lacey Best-Rowden, Member, IEEE, and Anil K. Jain, Life Fellow, IEEE" +dd0a334b767e0065c730873a95312a89ef7d1c03,Eigenexpressions: Emotion Recognition Using Multiple Eigenspaces,"Eigenexpressions: Emotion Recognition using Multiple +Eigenspaces +Luis Marco-Gim´enez1, Miguel Arevalillo-Herr´aez1, and Cristina Cuhna-P´erez2 +University of Valencia. Computing Department, +Burjassot. Valencia 46100, Spain, +Universidad Cat´olica San Vicente M´artir de Valencia (UCV), +Burjassot. Valencia. Spain" +dd8d53e67668067fd290eb500d7dfab5b6f730dd,A Parameter-Free Framework for General Supervised Subspace Learning,"A Parameter-Free Framework for General +Supervised Subspace Learning +Shuicheng Yan, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE, Xiaoou Tang, Senior Member, IEEE, +nd Thomas S. Huang, Life Fellow, IEEE" +ddbb6e0913ac127004be73e2d4097513a8f02d37,Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis,"IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999 +Face Detection Using Quantized Skin Color +Regions Merging and Wavelet Packet Analysis +Christophe Garcia and Georgios Tziritas, Member, IEEE" +dc550f361ae82ec6e1a0cf67edf6a0138163382e,Emotion Based Music Player,"ISSN XXXX XXXX © 2018 IJESC +Research Article Volume 8 Issue No.3 +Vijay Chakole1, Aniket Choudhary2, Kalyani Trivedi3, Kshitija Bhoyar4, Ruchita Bodele5, Sayali Karmore6 +Emotion Based Music Player +Professor1, UG Student2, 3, 4, 5, 6 +Department of Electronics Engineering +K.D.K. College of Engineering Nagpur, India" +dcb44fc19c1949b1eda9abe998935d567498467d,Ordinal Zero-Shot Learning,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +labelunseen labelFigure1:Supervisionintensityfordifferentlabels.Greenrepre-sentsseenlabelsandredrepresentsunseenlabels.Thegroundtruthlabelofthisinstanceis“Good”,soithasthestrongestsupervisionintensity.Although“Common”isanunseenlabel,itstillhascertainsupervisioninformationbecauseitiscloselyrelatedto“Good”.classifier;[ZhangandSaligrama,2016]learnsajointlatentspaceusingstructuredlearning.Thedifficultyinobtainingthesideinformationorusingothertechniquestoprocessthesideinformationarethemostseriousissuesformanyexistingzero-shotlearningmethods.Fortheattribute-basedmethods,humanexpertsareneededtolabelattributesandthisisverytime-consumingandnoteasytoobtainthediscriminativecategory-levelattributes.Somemethodsdiscoverattributesinteractively[ParikhandGrau-man,2011][Bransonetal.,2010],butthisalsorequiresla-borioushumanparticipation.Althoughmanyalgorithmscandiscoverattribute-relatedconceptsontheWeb[Rohrbachetal.,2010][Bergetal.,2010],theycanalsobebiasedorlackinformationthatiscriticaltoaparticulartask[ParikhandGrauman,2011].Forthetextcorpora-basedmethods,theyfirstrequirealargelanguagecorpora,suchasWikipedia,andthenneedtolearnwordrepresentation[Socheretal.,2013]orusestandardNaturalLanguageProcessing(NLP)techniquestoproduceclassdescriptions[Elhoseinyetal.,2013].Itishardtoguaranteethecorrectnessofsuchclassdescriptionsforzero-shotlearning.Conclusively,althoughsideinforma-tionishelpfulforzero-shotlearning,ithasmanydisadvan-tages.Generatingthesesideinformationisverytediousandsometimeswecannotknowwhichsideinformationistrulywanted.IfwedependonhumanlabororNLPtechniques,noisysideinformationwillbecomealmostinevitableandin-fluencethefinalperformance.Toavoidtheseproblems,itisimportanttosolvezero-shotlearninginwhateverpossiblecasesthathavesomepropertieswecanutilizetoavoidusingsideinformation." +dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb,Face Recognition and Facial Attribute Analysis from Unconstrained Visual Data, +dc974c31201b6da32f48ef81ae5a9042512705fe,Am I Done? Predicting Action Progress in Videos,"Am I done? Predicting Action Progress in Video +Federico Becattini1, Tiberio Uricchio1, Lorenzo Seidenari1, +Alberto Del Bimbo1, and Lamberto Ballan2 +Media Integration and Communication Center, Univ. of Florence, Italy +Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy" +b613b30a7cbe76700855479a8d25164fa7b6b9f1,Identifying User-Specific Facial Affects from Spontaneous Expressions with Minimal Annotation,"Identifying User-Specific Facial Affects from +Spontaneous Expressions with Minimal Annotation +Michael Xuelin Huang, Grace Ngai, Kien A. Hua, Fellow, IEEE, Stephen C.F. Chan, Member, IEEE +nd Hong Va Leong, Member, IEEE Computer Society" +b6f682648418422e992e3ef78a6965773550d36b,"CBMM Memo No . 061 February 8 , 2017 Full interpretation of minimal images","February 8, 2017" +a9791544baa14520379d47afd02e2e7353df87e5,The Need for Careful Data Collection for Pattern Recognition in Digital Pathology,"Technical Note +The Need for Careful Data Collection for Pattern Recognition in +Digital Pathology +Raphaël Marée1 +Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liège, 4000 Liège, Belgium +Received: 08 December 2016 +Accepted: 15 March 2017 +Published: 10 April 2017" +a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd,A Model for Facial Emotion Inference Based on Planar Dynamic Emotional Surfaces,"(IJARAI) International Journal of Advanced Research in Artificial Intelligence, +Vol. 5, No.6, 2016 +A Model for Facial Emotion Inference Based on +Planar Dynamic Emotional Surfaces +Ruivo, J. P. P. +Escola Polit´ecnica +Negreiros, T. +Escola Polit´ecnica +Barretto, M. R. P. +Escola Polit´ecnica +Tinen, B. +Escola Polit´ecnica +Universidade de S˜ao Paulo +Universidade de S˜ao Paulo +Universidade de S˜ao Paulo +Universidade de S˜ao Paulo +S˜ao Paulo, Brazil +S˜ao Paulo, Brazil +S˜ao Paulo, Brazil +S˜ao Paulo, Brazil" +a955033ca6716bf9957b362b77092592461664b4,Video Based Face Recognition Using Artificial Neural Network,"ISSN(Online): 2320-9801 +ISSN (Print): 2320-9798 +International Journal of Innovative Research in Computer +nd Communication Engineering +(An ISO 3297: 2007 Certified Organization) +Video Based Face Recognition Using Artificial +Vol. 3, Issue 6, June 2015 +Neural Network +Santhy Mol T, Neethu Susan Jacob +Pursuing M.Tech, Dept. of CSE, Caarmel Engineering College, MG University, Kerala, India +Assistant Professor, Dept of CSE, Caarmel Engineering College, MG University, Kerala, India" +a956ff50ca958a3619b476d16525c6c3d17ca264,A novel bidirectional neural network for face recognition,"A Novel Bidirectional Neural Network for Face Recognition +JalilMazloum, Ali Jalali and Javad Amiryan +Electrical and Computer Engineering Department +ShahidBeheshti University +Tehran, Iran" +a98316980b126f90514f33214dde51813693fe0d,Collaborations on YouTube: From Unsupervised Detection to the Impact on Video and Channel Popularity,"Collaborations on YouTube: From Unsupervised Detection to the +Impact on Video and Channel Popularity +Christian Koch, Moritz Lode, Denny Stohr, Amr Rizk, Ralf Steinmetz +Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany +E-Mail: {Christian.Koch | Denny.Stohr | Amr.Rizk |" +a93781e6db8c03668f277676d901905ef44ae49f,Recent Data Sets on Object Manipulation: A Survey.,"Recent Datasets on Object Manipulation: A Survey +Yongqiang Huang, Matteo Bianchi, Minas Liarokapis and Yu Sun" +a9adb6dcccab2d45828e11a6f152530ba8066de6,Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma Illumination Subspaces based Robust Face Recognition,"Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma +Illumination Subspaces based Robust Face Recognition +D. Kern, H.K. Ekenel, R. Stiefelhagen +Interactive Systems Labs, Universität Karlsruhe (TH) +76131 Karlsruhe, Almanya +web: http://isl.ira.uka.de/face_recognition +Özetçe +yönlerine +ydınlanma +kaynaklanan +sonra, yüz uzayı +Bu çalışmada aydınlanma alt-uzaylarına dayalı bir yüz tanıma +sistemi sunulmuştur. Bu sistemde, +ilk olarak, baskın +ydınlanma yönleri, bir topaklandırma algoritması kullanılarak +öğrenilmiştir. Topaklandırma algoritması sonucu önden, sağ +ve sol yanlardan olmak üzere üç baskın aydınlanma yönü +gözlemlenmiştir. Baskın +karar +-yüzün görünümündeki" +a95dc0c4a9d882a903ce8c70e80399f38d2dcc89,Review and Implementation of High-Dimensional Local Binary Patterns and Its Application to Face Recognition,"TR-IIS-14-003 +Review and Implementation of +High-Dimensional Local Binary +Patterns and Its Application to +Face Recognition +Bor-Chun Chen, Chu-Song Chen, Winston Hsu +July. 24, 2014 || Technical Report No. TR-IIS-14-003 +http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html" +a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6,Learning to Succeed while Teaching to Fail: Privacy in Closed Machine Learning Systems,"Learning to Succeed while Teaching to Fail: +Privacy in Closed Machine Learning Systems +Jure Sokoli´c, Qiang Qiu, Miguel R. D. Rodrigues, and Guillermo Sapiro" +a949b8700ca6ba96ee40f75dfee1410c5bbdb3db,Instance-Weighted Transfer Learning of Active Appearance Models,"Instance-weighted Transfer Learning of Active Appearance Models +Daniel Haase, Erik Rodner, and Joachim Denzler +Computer Vision Group, Friedrich Schiller University of Jena, Germany +Ernst-Abbe-Platz 2-4, 07743 Jena, Germany" +a92b5234b8b73e06709dd48ec5f0ec357c1aabed,Disjoint Multi-task Learning Between Heterogeneous Human-Centric Tasks, +d50c6d22449cc9170ab868b42f8c72f8d31f9b6c,Dynamic Multi-Task Learning with Convolutional Neural Network,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +d522c162bd03e935b1417f2e564d1357e98826d2,Weakly supervised object extraction with iterative contour prior for remote sensing images,"He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19 +http://asp.eurasipjournals.com/content/2013/1/19 +RESEARCH +Open Access +Weakly supervised object extraction with +iterative contour prior for remote sensing +images +Chu He1,2*, Yu Zhang1, Bo Shi1, Xin Su3, Xin Xu1 and Mingsheng Liao2" +d59f18fcb07648381aa5232842eabba1db52383e,Robust Facial Expression Recognition Using Spatially Localized Geometric Model,"International Conference on Systemics, Cybernetics and Informatics, February 12–15, 2004 +ROBUST FACIAL EXPRESSION RECOGNITION USING SPATIALLY +LOCALIZED GEOMETRIC MODEL +Department of Electrical Engineering +Dept. of Computer Sc. and Engg. +Ashutosh Saxena +IIT Kanpur +Kanpur 208016, India +Kanpur 208016, India +Ankit Anand +IIT Kanpur +Prof. Amitabha Mukerjee +Dept. of Computer Sc. and Engg. +IIT Kanpur +Kanpur 208016, India +While approaches based on 3D deformable facial model have +chieved expression recognition rates of as high as 98% [2], they +re computationally inefficient and require considerable apriori +training based on 3D information, which is often unavailable. +Recognition from 2D images remains a difficult yet important" +d588dd4f305cdea37add2e9bb3d769df98efe880,Audio - Visual Authentication System over the Internet Protocol,"Audio-Visual Authentication System over the +Internet Protocol +Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang +bandoned. +illumination based +is developed with the objective to" +d5444f9475253bbcfef85c351ea9dab56793b9ea,BoxCars: Improving Fine-Grained Recognition of Vehicles using 3-D Bounding Boxes in Traffic Surveillance,"IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS +BoxCars: Improving Fine-Grained Recognition +of Vehicles using 3D Bounding Boxes +in Traffic Surveillance +Jakub Sochor, Jakub ˇSpaˇnhel, Adam Herout +in contrast" +d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e,Optimized Structure for Facial Action Unit Relationship Using Bayesian Network,"World Journal of Computer Application and Technology 2(7): 133-138, 2014 +DOI: 10.13189/wjcat.2014.020701 +http://www.hrpub.org +Optimized Structure for Facial Action Unit Relationship +Using Bayesian Network +Yee Koon Loh*, Shahrel A. Suandi +Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau +*Corresponding Author: +Pinang, Malaysia +Copyright © 2014 Horizon Research Publishing All rights reserved." +d56fe69cbfd08525f20679ffc50707b738b88031,Training of multiple classifier systems utilizing partially labeled sequential data sets,"Training of multiple classifier systems utilizing +partially labelled sequences +Martin Schels, Patrick Schillinger, and Friedhelm Schwenker +Ulm University - Department of Neural Information Processing +89069 Ulm - Germany" +d5de42d37ee84c86b8f9a054f90ddb4566990ec0,Asynchronous Temporal Fields for Action Recognition,"Asynchronous Temporal Fields for Action Recognition +Gunnar A. Sigurdsson1∗ Santosh Divvala2,3 Ali Farhadi2,3 Abhinav Gupta1,3 +Carnegie Mellon University 2University of Washington 3Allen Institute for Artificial Intelligence +github.com/gsig/temporal-fields/" +d50a40f2d24363809a9ac57cf7fbb630644af0e5,End-to-end Trained CNN Encode-Decoder Networks for Image Steganography,"END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE +STEGANOGRAPHY +Atique ur Rehman, Rafia Rahim, Shahroz Nadeem, Sibt ul Hussain +National University of Computer & Emerging Sciences (NUCES-FAST), Islamabad, Pakistan. +Reveal.ai (Recognition, Vision & Learning) Lab" +d5b5c63c5611d7b911bc1f7e161a0863a34d44ea,Extracting Scene-Dependent Discriminant Features for Enhancing Face Recognition under Severe Conditions,"Extracting Scene-dependent Discriminant +Features for Enhancing Face Recognition +under Severe Conditions +Rui Ishiyama and Nobuyuki Yasukawa +Information and Media Processing Research Laboratories, NEC Corporation +753, Shimonumabe, Nakahara-Ku, Kawasaki 211-8666 Japan" +d59404354f84ad98fa809fd1295608bf3d658bdc,Face Synthesis from Visual Attributes via Sketch using Conditional VAEs and GANs,"International Journal of Computer Vision manuscript No. +(will be inserted by the editor) +Face Synthesis from Visual Attributes via Sketch using +Conditional VAEs and GANs +Xing Di · Vishal M. Patel +Received: date / Accepted: date" +d231a81b38fde73bdbf13cfec57d6652f8546c3c,SUPERRESOLUTION TECHNIQUES FOR FACE RECOGNITION FROM VIDEO by Osman,"SUPERRESOLUTION TECHNIQUES +FOR FACE RECOGNITION FROM VIDEO +Osman Gökhan Sezer +B.S., E.E., Boğaziçi University, 2003 +Submitted to the Graduate School of Engineering +and Natural Sciences in partially fulfillment of +the requirement for the degree of +Master of Science +Graduate Program in Electronics Engineering and Computer Science +Sabancı University +Spring 2005" +d22785eae6b7503cb16402514fd5bd9571511654,Evaluating Facial Expressions with Different Occlusion around Image Sequence,"Evaluating Facial Expressions with Different +Occlusion around Image Sequence +Ankita Vyas, Ramchand Hablani +Department of Computer Science +Sanghvi Institute of Management & Science +Indore (MP), India +local +INTRODUCTION" +d2eb1079552fb736e3ba5e494543e67620832c52,DeSTNet: Densely Fused Spatial Transformer Networks,"ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1 +DeSTNet: Densely Fused Spatial +Transformer Networks1 +Roberto Annunziata +Christos Sagonas +Jacques Calì +Onfido Research +Finsbury Avenue +London, UK" +d24dafe10ec43ac8fb98715b0e0bd8e479985260,"Effects of Social Anxiety on Emotional Mimicry and Contagion: Feeling Negative, but Smiling Politely","J Nonverbal Behav (2018) 42:81–99 +https://doi.org/10.1007/s10919-017-0266-z +O R I G I N A L P A P E R +Effects of Social Anxiety on Emotional Mimicry +nd Contagion: Feeling Negative, but Smiling Politely +Corine Dijk1 +Charlotte van Eeuwijk4 +• Gerben A. van Kleef2 +• Agneta H. Fischer2 +• Nexhmedin Morina3 +Published online: 25 September 2017 +Ó The Author(s) 2017. This article is an open access publication" +d278e020be85a1ccd90aa366b70c43884dd3f798,Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks,"Learning From Less Data: Diversified Subset Selection and +Active Learning in Image Classification Tasks +Vishal Kaushal +IIT Bombay +Mumbai, Maharashtra, India +Khoshrav Doctor +AITOE Labs +Mumbai, Maharashtra, India +Suyash Shetty +AITOE Labs +Mumbai, Maharashtra, India +Rishabh Iyer +AITOE Labs +Seattle, Washington, USA +Anurag Sahoo +AITOE Labs +Seattle, Washington, USA +Narsimha Raju +IIT Bombay +Mumbai, Maharashtra, India" +aae742779e8b754da7973949992d258d6ca26216,Robust facial expression classification using shape and appearance features,"Robust Facial Expression Classification Using Shape +nd Appearance Features +S L Happy and Aurobinda Routray +Department of Electrical Engineering, +Indian Institute of Technology Kharagpur, India" +aa52910c8f95e91e9fc96a1aefd406ffa66d797d,Face Recognition System Based on 2dfld and Pca,"FACE RECOGNITION SYSTEM BASED +ON 2DFLD AND PCA +Dr. Sachin D. Ruikar +E&TC Department +Sinhgad Academy of Engineering +Pune, India +Mr. Hulle Rohit Rajiv +ME E&TC [Digital System] +Sinhgad Academy of Engineering +Pune, India" +aafb8dc8fda3b13a64ec3f1ca7911df01707c453,Excitation Backprop for RNNs,"Excitation Backprop for RNNs +Sarah Adel Bargal∗1, Andrea Zunino∗ 2, Donghyun Kim1, Jianming Zhang3, +Vittorio Murino2,4, Stan Sclaroff1 +Department of Computer Science, Boston University 2Pattern Analysis & Computer Vision (PAVIS), +Istituto Italiano di Tecnologia 3Adobe Research 4Computer Science Department, Universit`a di Verona +Figure 1: Our proposed framework spatiotemporally highlights/grounds the evidence that an RNN model used in producing a class label +or caption for a given input video. In this example, by using our proposed back-propagation method, the evidence for the activity class +CliffDiving is highlighted in a video that contains CliffDiving and HorseRiding. Our model employs a single backward pass to produce +saliency maps that highlight the evidence that a given RNN used in generating its outputs." +aadfcaf601630bdc2af11c00eb34220da59b7559,Multi-view Hybrid Embedding: A Divide-and-Conquer Approach,"Multi-view Hybrid Embedding: +A Divide-and-Conquer Approach +Jiamiao Xu∗, Shujian Yu∗, Xinge You†, Senior Member, IEEE, Mengjun Leng, +Xiao-Yuan Jing, and C. L. Philip Chen, Fellow, IEEE" +aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5,Biometrics in ambient intelligence,"Biometrics in Ambient Intelligence +Massimo Tistarelli§ and Ben Schouten§§" +aae0e417bbfba701a1183d3d92cc7ad550ee59c3,A Statistical Method for 2-D Facial Landmarking,"A Statistical Method for 2-D Facial Landmarking +Hamdi Dibeklio˘glu, Student Member, IEEE, Albert Ali Salah, Member, IEEE, and Theo Gevers, Member, IEEE" +aa577652ce4dad3ca3dde44f881972ae6e1acce7,Deep Attribute Networks,"Deep Attribute Networks +Junyoung Chung +Department of EE, KAIST +Daejeon, South Korea +Donghoon Lee +Department of EE, KAIST +Daejeon, South Korea +Youngjoo Seo +Department of EE, KAIST +Daejeon, South Korea +Chang D. Yoo +Department of EE, KAIST +Daejeon, South Korea" +aa94f214bb3e14842e4056fdef834a51aecef39c,Reconhecimento de padrões faciais: Um estudo,"Reconhecimento de padrões faciais: Um estudo +Alex Lima Silva, Marcos Evandro Cintra +Universidade Federal +Rural do Semi-Árido +Departamento de Ciências Naturais +Mossoró, RN - 59625-900 +Email: +Resumo—O reconhecimento facial tem sido utilizado em di- +versas áreas para identificação e autenticação de usuários. Um +dos principais mercados está relacionado a segurança, porém há +uma grande variedade de aplicações relacionadas ao uso pessoal, +onveniência, aumento de produtividade, etc. O rosto humano +possui um conjunto de padrões complexos e mutáveis. Para +reconhecer esses padrões, são necessárias técnicas avançadas de +reconhecimento de padrões capazes, não apenas de reconhecer, +mas de se adaptar às mudanças constantes das faces das pessoas. +Este documento apresenta um método de reconhecimento facial +proposto a partir da análise comparativa de trabalhos encontra- +dos na literatura. +iométrica é o uso da biometria para reconhecimento, identi-" +aac101dd321e6d2199d8c0b48c543b541c181b66,Using Context to Enhance the Understanding of Face Images,"USING CONTEXT TO ENHANCE THE +UNDERSTANDING OF FACE IMAGES +A Dissertation Presented +VIDIT JAIN +Submitted to the Graduate School of the +University of Massachusetts Amherst in partial fulfillment +of the requirements for the degree of +DOCTOR OF PHILOSOPHY +September 2010 +Department of Computer Science" +af6e351d58dba0962d6eb1baf4c9a776eb73533f,How to Train Your Deep Neural Network with Dictionary Learning,"How to Train Your Deep Neural Network with +Dictionary Learning +Vanika Singhal*, Shikha Singh+ and Angshul Majumdar# +*IIIT Delhi +Okhla Phase 3 +Delhi, 110020, India ++IIIT Delhi +Okhla Phase 3 +#IIIT Delhi +Okhla Phase 3 +Delhi, 110020, India +Delhi, 110020, India" +af62621816fbbe7582a7d237ebae1a4d68fcf97d,Active Shape Model Based Recognition Of Facial Expression,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +International Conference on Humming Bird ( 01st March 2014) +RESEARCH ARTICLE +OPEN ACCESS +Active Shape Model Based Recognition Of Facial Expression +AncyRija V , Gayathri. S2 +AncyRijaV,Author is currently pursuing M.E (Software Engineering) in Vins Christian College of +Engineering, +e-mail: +Gayathri.S, M.E., Asst.Prof.,Department of Information Technology , Vins Christian college of Engineering." +afa57e50570a6599508ee2d50a7b8ca6be04834a,Motion in action : optical flow estimation and action localization in videos. (Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos),"Motion in action : optical flow estimation and action +localization in videos +Philippe Weinzaepfel +To cite this version: +Philippe Weinzaepfel. Motion in action : optical flow estimation and action localization in videos. +Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. . +HAL Id: tel-01407258 +https://tel.archives-ouvertes.fr/tel-01407258 +Submitted on 1 Dec 2016 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de" +afc7092987f0d05f5685e9332d83c4b27612f964,Person-independent facial expression detection using Constrained Local Models,"Person-Independent Facial Expression Detection using Constrained +Local Models +Sien. W. Chew, Patrick Lucey, Simon Lucey, Jason Saragih, Jeffrey F. Cohn and Sridha Sridharan" +b730908bc1f80b711c031f3ea459e4de09a3d324,Active Orientation Models for Face Alignment In-the-Wild,"Active Orientation Models for Face +Alignment In-the-Wild +Georgios Tzimiropoulos, Joan Alabort-i-Medina, Student Member, IEEE, +Stefanos P. Zafeiriou, Member, IEEE, and Maja Pantic, Fellow, IEEE" +b7cf7bb574b2369f4d7ebc3866b461634147041a,From NLDA to LDA/GSVD: a modified NLDA algorithm,"Neural Comput & Applic (2012) 21:1575–1583 +DOI 10.1007/s00521-011-0728-x +O R I G I N A L A R T I C L E +From NLDA to LDA/GSVD: a modified NLDA algorithm +Jun Yin • Zhong Jin +Received: 2 August 2010 / Accepted: 3 August 2011 / Published online: 19 August 2011 +Ó Springer-Verlag London Limited 2011" +b7894c1f805ffd90ab4ab06002c70de68d6982ab,A comprehensive age estimation on face images using hybrid filter based feature extraction,"Biomedical Research 2017; Special Issue: S610-S618 +ISSN 0970-938X +www.biomedres.info +A comprehensive age estimation on face images using hybrid filter based +feature extraction. +Karthikeyan D1*, Balakrishnan G2 +Department of ECE, Srinivasan Engineering College, Perambalur, India +Department of Computer Science and Engineering, Indra Ganesan College of Engineering, Trichy, India" +b7eead8586ffe069edd190956bd338d82c69f880,A Video Database for Facial Behavior Understanding,"A VIDEO DATABASE FOR FACIAL +BEHAVIOR UNDERSTANDING +D. Freire-Obreg´on and M. Castrill´on-Santana. +SIANI, Universidad de Las Palmas de Gran Canaria, Spain" +b7774c096dc18bb0be2acef07ff5887a22c2a848,Distance metric learning for image and webpage comparison. (Apprentissage de distance pour la comparaison d'images et de pages Web),"Distance metric learning for image and webpage +omparison +Marc Teva Law +To cite this version: +Marc Teva Law. Distance metric learning for image and webpage comparison. Image Processing. Uni- +versité Pierre et Marie Curie - Paris VI, 2015. English. . +HAL Id: tel-01135698 +https://tel.archives-ouvertes.fr/tel-01135698v2 +Submitted on 18 Mar 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de +recherche français ou étrangers, des laboratoires" +b7f05d0771da64192f73bdb2535925b0e238d233,Robust Active Shape Model using AdaBoosted Histogram Classifiers,"MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +Robust Active Shape Model using AdaBoosted Histogram Classifiers +Yuanzhong Li +W ataru Ito +Imaging Software Technology Center +Imaging Software Technology Center +FUJI PHOTO FILM CO., LTD. +fujifilm.co.jp +FUJI PHOTO FILM CO., LTD. +fujifilm.co.jp" +b755505bdd5af078e06427d34b6ac2530ba69b12,NFRAD: Near-Infrared Face Recognition at a Distance,"To appear in the International Joint Conf. Biometrics, Washington D.C., October, 2011 +NFRAD: Near-Infrared Face Recognition at a Distance +Hyunju Maenga, Hyun-Cheol Choia, Unsang Parkb, Seong-Whan Leea and Anil K. Jaina,b +Dept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea +Dept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824 +{hjmaeng, ," +b7b461f82c911f2596b310e2b18dd0da1d5d4491,K-mappings and Regression trees,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +K-MAPPINGS AND REGRESSION TREES +SAMSI and Duke University +. INTRODUCTION +rgminM1,...,MK +P1,...PK +Arthur Szlam† +.1. Partitioning Y +K(cid:2) +(cid:2) +(cid:3) +(cid:4)" +b73fdae232270404f96754329a1a18768974d3f6,Local Relation Map : A Novel Illumination Invariant Face Recognition Approach Regular Paper, +b76af8fcf9a3ebc421b075b689defb6dc4282670,Face Mask Extraction in Video Sequence,"Face Mask Extraction in Video Sequence +Yujiang Wang 1 · Bingnan Luo 1 · Jie Shen 1 · Maja Pantic 1" +b7f7a4df251ff26aca83d66d6b479f1dc6cd1085,Handling missing weak classifiers in boosted cascade: application to multiview and occluded face detection,"Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55 +http://jivp.eurasipjournals.com/content/2013/1/55 +RESEARCH +Open Access +Handling missing weak classifiers in boosted +ascade: application to multiview and +occluded face detection +Pierre Bouges1*, Thierry Chateau1*, Christophe Blanc1 and Gaëlle Loosli2" +db227f72bb13a5acca549fab0dc76bce1fb3b948,Characteristic Based Image Search Using Re-Ranking Method,"International Refereed Journal of Engineering and Science (IRJES) +ISSN (Online) 2319-183X, (Print) 2319-1821 +Volume 4, Issue 6 (June 2015), PP.169-169-174 +Characteristic Based Image Search using Re-Ranking method +Chitti Babu, 2Yasmeen Jaweed, 3G.Vijay Kumar +,2,3Computer Science Engineering Dept, Sree Dattha Institute of Engineering & Science" +dbaf89ca98dda2c99157c46abd136ace5bdc33b3,Nonlinear Cross-View Sample Enrichment for Action Recognition,"Nonlinear Cross-View Sample Enrichment for +Action Recognition +Ling Wang, Hichem Sahbi +Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI" +dbe255d3d2a5d960daaaba71cb0da292e0af36a7,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning +Machine +Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE" +dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8,Machine Learning Techniques for Face Analysis,"Chapter 7 +Machine Learning Techniques +for Face Analysis +Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen" +dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57,Face image analysis with convolutional neural networks,"Face Image Analysis With +Convolutional Neural Networks +Dissertation +Zur Erlangung des Doktorgrades +der Fakult¨at f¨ur Angewandte Wissenschaften +n der Albert-Ludwigs-Universit¨at Freiburg im Breisgau +Stefan Duffner" +dbd5e9691cab2c515b50dda3d0832bea6eef79f2,Image - based Face Recognition : Issues and Methods 1,"Image-basedFaceRecognition:IssuesandMethods +WenYiZhao +RamaChellappa +Sarno(cid:11)Corporation +CenterforAutomationResearch +WashingtonRoad +UniversityofMaryland +Princeton,NJ +CollegePark,MD-" +db67edbaeb78e1dd734784cfaaa720ba86ceb6d2,SPECFACE — A dataset of human faces wearing spectacles,"SPECFACE - A Dataset of Human Faces Wearing Spectacles +Anirban Dasgupta, Shubhobrata Bhattacharya and Aurobinda Routray +Indian Institute of Technology Kharagpur +India" +a83fc450c124b7e640adc762e95e3bb6b423b310,Deep Face Feature for Face Alignment and Reconstruction,"Deep Face Feature for Face Alignment +Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu" +a85e9e11db5665c89b057a124547377d3e1c27ef,Dynamics of Driver's Gaze: Explorations in Behavior Modeling and Maneuver Prediction,"Dynamics of Driver’s Gaze: Explorations in +Behavior Modeling & Maneuver Prediction +Sujitha Martin, Member, IEEE, Sourabh Vora, Kevan Yuen, and Mohan M. Trivedi, Fellow, IEEE" +a8117a4733cce9148c35fb6888962f665ae65b1e,A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion,"IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X +A Good Practice Towards Top Performance of Face +Recognition: Transferred Deep Feature Fusion +Lin Xiong1∗†, Jayashree Karlekar1∗, Jian Zhao2∗†, Jiashi Feng2, Member, IEEE, Sugiri Pranata1, and +Shengmei Shen1" +a87ab836771164adb95d6744027e62e05f47fd96,Understanding human-human interactions: a survey,"Understanding human-human interactions: a survey +Alexandros Stergiou +Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands +Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands +Ronald Poppe1" +a88640045d13fc0207ac816b0bb532e42bcccf36,Simultaneously Learning Neighborship and Projection Matrix for Supervised Dimensionality Reduction,"ARXIV VERSION +Simultaneously Learning Neighborship and +Projection Matrix for Supervised +Dimensionality Reduction +Yanwei Pang, Senior Member, IEEE, Bo Zhou, and Feiping Nie, Senior Member, IEEE" +a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8,This is a repository copy of Modelling of Orthogonal Craniofacial Profiles,"This is a repository copy of Modelling of Orthogonal Craniofacial Profiles. +White Rose Research Online URL for this paper: +http://eprints.whiterose.ac.uk/131767/ +Version: Published Version +Article: +Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian +(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X +https://doi.org/10.3390/jimaging3040055 +Reuse +This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +uthors for the original work. More information and the full terms of the licence here: +https://creativecommons.org/licenses/ +Takedown +If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +emailing including the URL of the record and the reason for the withdrawal request. +https://eprints.whiterose.ac.uk/" +a8638a07465fe388ae5da0e8a68e62a4ee322d68,How to predict the global instantaneous feeling induced by a facial picture?,"How to predict the global instantaneous feeling induced +y a facial picture? +Arnaud Lienhard, Patricia Ladret, Alice Caplier +To cite this version: +Arnaud Lienhard, Patricia Ladret, Alice Caplier. How to predict the global instantaneous +feeling induced by a facial picture?. Signal Processing: Image Communication, Elsevier, 2015, +pp.1-30. . +HAL Id: hal-01198718 +https://hal.archives-ouvertes.fr/hal-01198718 +Submitted on 14 Sep 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +a8e75978a5335fd3deb04572bb6ca43dbfad4738,Sparse Graphical Representation based Discriminant Analysis for Heterogeneous Face Recognition,"Sparse Graphical Representation based Discriminant +Analysis for Heterogeneous Face Recognition +Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li" +ded968b97bd59465d5ccda4f1e441f24bac7ede5,Large scale 3 D Morphable Models,"Noname manuscript No. +(will be inserted by the editor) +Large scale 3D Morphable Models +James Booth · Anastasios Roussos · Allan Ponniah · David Dunaway · Stefanos +Zafeiriou +Received: date / Accepted: date" +de0eb358b890d92e8f67592c6e23f0e3b2ba3f66,Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification,"ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL. +Inference-Based Similarity Search in +Randomized Montgomery Domains for +Privacy-Preserving Biometric Identification +Yi Wang, Jianwu Wan, Jun Guo, Yiu-Ming Cheung, and Pong C Yuen" +dee406a7aaa0f4c9d64b7550e633d81bc66ff451,Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning,"Content-Adaptive Sketch Portrait Generation by +Decompositional Representation Learning +Dongyu Zhang, Liang Lin, Tianshui Chen, Xian Wu, Wenwei Tan, and Ebroul Izquierdo" +dedabf9afe2ae4a1ace1279150e5f1d495e565da,Robust Face Recognition With Structurally Incoherent Low-Rank Matrix Decomposition,"Robust Face Recognition With Structurally +Incoherent Low-Rank Matrix Decomposition +Chia-Po Wei, Chih-Fan Chen, and Yu-Chiang Frank Wang" +de398bd8b7b57a3362c0c677ba8bf9f1d8ade583,Hierarchical Bayesian Theme Models for Multipose Facial Expression Recognition,"Hierarchical Bayesian Theme Models for +Multi-pose Facial Expression Recognition +Qirong Mao, Member, IEEE, Qiyu Rao, Yongbin Yu, and Ming Dong*, Member, IEEE" +defa8774d3c6ad46d4db4959d8510b44751361d8,FEBEI - Face Expression Based Emoticon Identification CS - B657 Computer Vision,"FEBEI - Face Expression Based Emoticon Identification +CS - B657 Computer Vision +Nethra Chandrasekaran Sashikar - necsashi +Prashanth Kumar Murali - prmurali +Robert J Henderson - rojahend" +b08203fca1af7b95fda8aa3d29dcacd182375385,Object and Text-guided Semantics for CNN-based Activity Recognition,"OBJECT AND TEXT-GUIDED SEMANTICS FOR CNN-BASED ACTIVITY RECOGNITION +(cid:63)Sungmin Eum †§, (cid:63)Christopher Reale †, Heesung Kwon†, Claire Bonial †, Clare Voss† +U.S. Army Research Laboratory, Adelphi, MD, USA +§Booz Allen Hamilton Inc., McLean, VA, USA" +b09b693708f412823053508578df289b8403100a,Two-Stream SR-CNNs for Action Recognition in Videos,"WANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS +Two-Stream SR-CNNs for Action +Recognition in Videos +Yifan Wang1 +Jie Song1 +Limin Wang2 +Luc Van Gool2 +Otmar Hilliges1 +Advanced Interactive Technologies Lab +ETH Zurich +Zurich, Switzerland +Computer Vision Lab +ETH Zurich +Zurich, Switzerland" +b07582d1a59a9c6f029d0d8328414c7bef64dca0,Employing Fusion of Learned and Handcrafted Features for Unconstrained Ear Recognition,"Employing Fusion of Learned and Handcrafted +Features for Unconstrained Ear Recognition +Maur´ıcio Pamplona Segundo∗† +Earnest E. Hansley∗ +Sudeep Sarkar∗‡ +October 24, 2017" +b0c1615ebcad516b5a26d45be58068673e2ff217,How Image Degradations Affect Deep CNN-Based Face Recognition?,"How Image Degradations Affect Deep CNN-based Face +Recognition? +S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1 +G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2" +b0de0892d2092c8c70aa22500fed31aa7eb4dd3f,A Robust and Efficient Video Representation for Action Recognition,"(will be inserted by the editor) +A robust and efficient video representation for action recognition +Heng Wang · Dan Oneata · Jakob Verbeek · Cordelia Schmid +Received: date / Accepted: date" +b073313325b6482e22032e259d7311fb9615356c,Robust and accurate cancer classification with gene expression profiling,"Robust and Accurate Cancer Classification with Gene Expression Profiling +Haifeng Li +Keshu Zhang +Tao Jiang +Dept. of Computer Science +Human Interaction Research Lab +Dept. of Computer Science +University of California +Riverside, CA 92521 +Motorola, Inc. +Tempe, AZ 85282 +University of California +Riverside, CA 92521" +a66d89357ada66d98d242c124e1e8d96ac9b37a0,Failure Detection for Facial Landmark Detectors,"Failure Detection for Facial Landmark Detectors +Andreas Steger, Radu Timofte, and Luc Van Gool +Computer Vision Lab, D-ITET, ETH Zurich, Switzerland +{radu.timofte," +a608c5f8fd42af6e9bd332ab516c8c2af7063c61,Age Estimation via Grouping and Decision Fusion,"Age Estimation via Grouping and Decision Fusion +Kuan-Hsien Liu, Member, IEEE, Shuicheng Yan, Senior Member, IEEE, +nd C.-C. Jay Kuo, Fellow, IEEE" +a6eb6ad9142130406fb4ffd4d60e8348c2442c29,"Video Description: A Survey of Methods, Datasets and Evaluation Metrics","Video Description: A Survey of Methods, +Datasets and Evaluation Metrics +Nayyer Aafaq, Syed Zulqarnain Gilani, Wei Liu, and Ajmal Mian" +a6590c49e44aa4975b2b0152ee21ac8af3097d80,3D Interpreter Networks for Viewer-Centered Wireframe Modeling,"https://doi.org/10.1007/s11263-018-1074-6 +D Interpreter Networks for Viewer-Centered Wireframe Modeling +Jiajun Wu1 · Tianfan Xue2 · Joseph J. Lim3 · Yuandong Tian4 · +Joshua B. Tenenbaum1 · Antonio Torralba1 · William T. Freeman1,5 +Received: date / Accepted: date" +a694180a683f7f4361042c61648aa97d222602db,Face recognition using scattering wavelet under Illicit Drug Abuse variations,"Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations +Prateekshit Pandey, Richa Singh, Mayank Vatsa +fprateekshit12078, rsingh, +IIIT-Delhi India" +a6ce2f0795839d9c2543d64a08e043695887e0eb,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Region Estimation +Without Using Eye Movement +Lex Fridman, Philipp Langhans, Joonbum Lee, and Bryan Reimer +Massachusetts Institute of Technology (MIT)" +a6ebe013b639f0f79def4c219f585b8a012be04f,Facial Expression Recognition Based on Hybrid Approach,"Facial Expression Recognition Based on Hybrid +Approach +Md. Abdul Mannan, Antony Lam, Yoshinori Kobayashi, and Yoshinori Kuno +Graduate School of Science and Engineering, Saitama University, +55 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan +E-mail" +b97f694c2a111b5b1724eefd63c8d64c8e19f6c9,Group Affect Prediction Using Multimodal Distributions,"Group Affect Prediction Using Multimodal Distributions +Saqib Nizam Shamsi +Aspiring Minds +Bhanu Pratap Singh +Univeristy of Massachusetts, Amherst +Manya Wadhwa +Johns Hopkins University" +b9d0774b0321a5cfc75471b62c8c5ef6c15527f5,Fishy Faces: Crafting Adversarial Images to Poison Face Authentication,"Fishy Faces: Crafting Adversarial Images to Poison Face Authentication +Giuseppe Garofalo +Vera Rimmer +Tim Van hamme +imec-DistriNet, KU Leuven +imec-DistriNet, KU Leuven +imec-DistriNet, KU Leuven +Davy Preuveneers +Wouter Joosen +imec-DistriNet, KU Leuven +imec-DistriNet, KU Leuven" +b9cad920a00fc0e997fc24396872e03f13c0bb9c,Face liveness detection under bad illumination conditions,"FACE LIVENESS DETECTION UNDER BAD ILLUMINATION CONDITIONS +Bruno Peixoto, Carolina Michelassi, and Anderson Rocha +University of Campinas (Unicamp) +Campinas, SP, Brazil" +b908edadad58c604a1e4b431f69ac8ded350589a,Deep Face Feature for Face Alignment,"Deep Face Feature for Face Alignment +Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu" +b9f2a755940353549e55690437eb7e13ea226bbf,Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions,"Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions +Carolina Redondo-Cabrera +Roberto J. López-Sastre" +b9cedd1960d5c025be55ade0a0aa81b75a6efa61,Inexact Krylov Subspace Algorithms for Large Matrix Exponential Eigenproblem from Dimensionality Reduction,"INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE +MATRIX EXPONENTIAL EIGENPROBLEM FROM +DIMENSIONALITY REDUCTION +GANG WU∗, TING-TING FENG† , LI-JIA ZHANG‡ , AND MENG YANG§" +b971266b29fcecf1d5efe1c4dcdc2355cb188ab0,On the Reconstruction of Face Images from Deep Face Templates.,"MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES +On the Reconstruction of Face Images from +Deep Face Templates +Guangcan Mai, Kai Cao, Pong C. Yuen∗, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE" +a158c1e2993ac90a90326881dd5cb0996c20d4f3,Symmetry as an Intrinsically Dynamic Feature,"OPEN ACCESS +ISSN 2073-8994 +Article +Vito Di Gesu 1,2,†, Marco E. Tabacchi 1,3,* and Bertrand Zavidovique 4 +DMA, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy +CITC, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Itlay +Istituto Nazionale di Ricerche Demopolis, via Col. Romey 7, 91100 Trapani, Italy +IEF, Université Paris IX–Orsay, Paris, France; E-Mail: (B.Z.) +Deceased on 15 March 2009. +* Author to whom correspondence should be addressed; E-Mail: +Received: 4 March 2010; in revised form: 23 March 2010 / Accepted: 29 March 2010 / +Published: 1 April 2010" +a15d9d2ed035f21e13b688a78412cb7b5a04c469,Object Detection Using Strongly-Supervised Deformable Part Models,"Object Detection Using +Strongly-Supervised Deformable Part Models +Hossein Azizpour1 and Ivan Laptev2 +Computer Vision and Active Perception Laboratory (CVAP), KTH, Sweden +INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Superieure" +a1b1442198f29072e907ed8cb02a064493737158,Crowdsourcing Facial Responses to Online Videos,"Crowdsourcing Facial Responses +to Online Videos +Daniel McDuff, Student Member, IEEE, Rana El Kaliouby, Member, IEEE, and +Rosalind W. Picard, Fellow, IEEE" +a15c728d008801f5ffc7898568097bbeac8270a4,ForgetIT Deliverable Template,"www.forgetit-project.eu +ForgetIT +Concise Preservation by Combining Managed Forgetting +nd Contextualized Remembering +Grant Agreement No. 600826 +Deliverable D4.4 +Work-package +Deliverable +Deliverable Leader +Quality Assessor +Dissemination level +Delivery date in Annex I +Actual delivery date +Revisions +Status +Keywords +Information Consolidation and Con- +entration +D4.4: +Information analysis, consolidation" +a1132e2638a8abd08bdf7fc4884804dd6654fa63,Real-Time Video Face Recognition for Embedded Devices,"Real-Time Video Face Recognition +for Embedded Devices +Gabriel Costache, Sathish Mangapuram, Alexandru +Drimbarean, Petronel Bigioi and Peter Corcoran +Tessera, Galway, +Ireland +. Introduction +This chapter will address the challenges of real-time video face recognition systems +implemented in embedded devices. Topics to be covered include: the importance and +hallenges of video face recognition in real life scenarios, describing a general architecture of +generic video face recognition system and a working solution suitable for recognizing +faces in real-time using low complexity devices. Each component of the system will be +described together with the system’s performance on a database of video samples that +resembles real life conditions. +. Video face recognition +Face recognition remains a very active topic in computer vision and receives attention from +large community of researchers in that discipline. Many reasons feed this interest; the +main being the wide range of commercial, law enforcement and security applications that +require authentication. The progress made in recent years on the methods and algorithms +for data processing as well as the availability of new technologies makes it easier to study" +a14ae81609d09fed217aa12a4df9466553db4859,Face Identification Using Large Feature Sets,"REVISED VERSION, JUNE 2011 +Face Identification Using Large Feature Sets +William Robson Schwartz, Huimin Guo, Jonghyun Choi, and Larry S. Davis, Fellow, IEEE" +a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892,Latent Embeddings for Zero-Shot Classification,"Latent Embeddings for Zero-shot Classification +Yongqin Xian1, Zeynep Akata1, Gaurav Sharma1,2,∗, Quynh Nguyen3, Matthias Hein3 and Bernt Schiele1 +MPI for Informatics +IIT Kanpur +Saarland University" +a1e97c4043d5cc9896dc60ae7ca135782d89e5fc,"Re-identification of Humans in Crowds using Personal, Social and Environmental Constraints","IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Re-identification of Humans in Crowds using +Personal, Social and Environmental Constraints +Shayan Modiri Assari, Member, IEEE, Haroon Idrees, Member, IEEE, and Mubarak Shah, Fellow, IEEE" +ef940b76e40e18f329c43a3f545dc41080f68748,A Face Recognition and Spoofing Detection Adapted to Visually- Impaired People,"Research Article Volume 7 Issue No.3 +ISSN XXXX XXXX © 2017 IJESC +A Face Recognition and Spoofing Detection Adapted to Visually- +Impaired People +Rutuja R. Dengale1, Bhagyashri S. Deshmukh 2, Anuja R. Mahangade3, Shivani V. Ujja inkar4 +K.K Wagh Institute of Engineering and Education Research, Nashik, India +Depart ment of Co mputer Engineering +Abstrac t: +According to estimates by the world Health organization, about 285 million people suffer fro m so me kind of v isual disabilit ies of +which 39 million are blind, resulting in 0.7 of the word population. As many v isual impaired peoples in the word they are unable +to recognize the people who is standing in front of them and some peoples who have problem to re me mbe r na me of the person. +They can easily recognize the person using this system. A co mputer vision technique and image ana lysis can help v isually +the home using face identification and spoofing detection system. This system also provide feature to add newly known people +nd keep records of all peoples visiting their ho me. +Ke ywor ds: face-recognition, spoofing detection, visually-impaired, system architecture. +INTRODUCTION +The facia l ana lysis can be used to e xtract very useful and +relevant information in order to help people with visual +impairment in several of its tasks daily providing them with a +greater degree of autonomy and security. Facia l recognition" +efd308393b573e5410455960fe551160e1525f49,Tracking Persons-of-Interest via Unsupervised Representation Adaptation,"Tracking Persons-of-Interest via +Unsupervised Representation Adaptation +Shun Zhang, Jia-Bin Huang, Jongwoo Lim, Yihong Gong, Jinjun Wang, +Narendra Ahuja, and Ming-Hsuan Yang" +ef230e3df720abf2983ba6b347c9d46283e4b690,QUIS-CAMPI: an annotated multi-biometrics data feed from surveillance scenarios,"Page 1 of 20 +QUIS-CAMPI: An Annotated Multi-biometrics Data Feed From +Surveillance Scenarios +João Neves1,*, Juan Moreno2, Hugo Proença3 +IT - Instituto de Telecomunicações, University of Beira Interior +Department of Computer Science, University of Beira Interior +IT - Instituto de Telecomunicações, University of Beira Interior" +ef4ecb76413a05c96eac4c743d2c2a3886f2ae07,Modeling the importance of faces in natural images,"Modeling the Importance of Faces in Natural Images +Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a +EPFL, Lausanne, Switzerland; +Oc´e, Paris, France" +ef032afa4bdb18b328ffcc60e2dc5229cc1939bc,Attribute-enhanced metric learning for face retrieval,"Fang and Yuan EURASIP Journal on Image and Video +Processing (2018) 2018:44 +https://doi.org/10.1186/s13640-018-0282-x +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +Attribute-enhanced metric learning for +face retrieval +Yuchun Fang* +nd Qiulong Yuan" +ef5531711a69ed687637c48930261769465457f0,Studio2Shop: from studio photo shoots to fashion articles,"Studio2Shop: from studio photo shoots to fashion articles +Julia Lasserre1, Katharina Rasch1 and Roland Vollgraf +Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany +Keywords: +omputer vision, deep learning, fashion, item recognition, street-to-shop" +ef559d5f02e43534168fbec86707915a70cd73a0,DeepInsight: Multi-Task Multi-Scale Deep Learning for Mental Disorder Diagnosis,"DING, HUO, HU, LU: DEEPINSIGHT +DeepInsight: Multi-Task Multi-Scale Deep +Learning for Mental Disorder Diagnosis +Mingyu Ding1 +Yuqi Huo2 +Jun Hu2 +Zhiwu Lu1 +School of Information +Renmin University of China +Beijing, 100872, China +Beijing Key Laboratory +of Big Data Management +nd Analysis Methods +Beijing, 100872, China" +efa08283656714911acff2d5022f26904e451113,Active Object Localization in Visual Situations,"Active Object Localization in Visual Situations +Max H. Quinn, Anthony D. Rhodes, and Melanie Mitchell" +ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d,Improving face verification in photo albums by combining facial recognition and metadata with cross-matching,"Calhoun: The NPS Institutional Archive +DSpace Repository +Theses and Dissertations +. Thesis and Dissertation Collection, all items +017-12 +Improving face verification in photo albums by +ombining facial recognition and metadata +with cross-matching +Bouthour, Khoubeib +Monterey, California: Naval Postgraduate School +http://hdl.handle.net/10945/56868 +Downloaded from NPS Archive: Calhoun" +c32fb755856c21a238857b77d7548f18e05f482d,Multimodal Emotion Recognition for Human-Computer Interaction: A Survey,"Multimodal Emotion Recognition for Human- +Computer Interaction: A Survey +School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China. +Michele Mukeshimana, Xiaojuan Ban, Nelson Karani, Ruoyi Liu" +c3beae515f38daf4bd8053a7d72f6d2ed3b05d88,ACL 2014 52nd Annual Meeting of the Association for Computational Linguistics TACL Papers,"ACL201452ndAnnualMeetingoftheAssociationforComputationalLinguisticsTACLPapersJune23-25,2014Baltimore,Maryland,USA" +c3dc4f414f5233df96a9661609557e341b71670d,Utterance independent bimodal emotion recognition in spontaneous communication,"Tao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4 +http://asp.eurasipjournals.com/content/2011/1/4 +RESEARCH +Utterance independent bimodal emotion +recognition in spontaneous communication +Jianhua Tao*, Shifeng Pan, Minghao Yang, Ya Li, Kaihui Mu and Jianfeng Che +Open Access" +c3b3636080b9931ac802e2dd28b7b684d6cf4f8b,Face Recognition via Local Directional Pattern,"International Journal of Security and Its Applications +Vol. 7, No. 2, March, 2013 +Face Recognition via Local Directional Pattern +Dong-Ju Kim*, Sang-Heon Lee and Myoung-Kyu Sohn +Division of IT Convergence, Daegu Gyeongbuk Institute of Science & Technology +50-1, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu, Korea." +c398684270543e97e3194674d9cce20acaef3db3,Comparative Face Soft Biometrics for Human Identification,"Chapter 2 +Comparative Face Soft Biometrics for +Human Identification +Nawaf Yousef Almudhahka, Mark S. Nixon and Jonathon S. Hare" +c3285a1d6ec6972156fea9e6dc9a8d88cd001617,Extreme 3D Face Reconstruction: Seeing Through Occlusions, +c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0,A New Scheme for Image Recognition Using Higher-Order Local Autocorrelation and Factor Analysis,"MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +A New Scheme for Image Recognition Using Higher-Order Local +Autocorrelation and Factor Analysis +Naoyuki Nomotoy, Yusuke Shinoharay, Takayoshi Shirakiy, Takumi Kobayashiy, Nobuyuki Otsuy yyy +yThe University of Tokyo +Tokyo, Japan +yyyAIST +Tukuba, Japan +f shiraki, takumi, otsug" +c32383330df27625592134edd72d69bb6b5cff5c,Intrinsic Illumination Subspace for Lighting Insensitive Face Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012 +Intrinsic Illumination Subspace for Lighting +Insensitive Face Recognition +Chia-Ping Chen and Chu-Song Chen, Member, IEEE" +c32f04ccde4f11f8717189f056209eb091075254,Analysis and Synthesis of Behavioural Specific Facial Motion,"Analysis and Synthesis of Behavioural Specific +Facial Motion +Lisa Nanette Gralewski +A dissertation submitted to the University of Bristol in accordance with the requirements +for the degree of Doctor of Philosophy in the Faculty of Engineering, Department of +Computer Science. +February 2007 +71657 words" +c317181fa1de2260e956f05cd655642607520a4f,Objective Classes for Micro-Facial Expression Recognition,"Research Article +Research +Article for submission to journal +Subject Areas: +omputer vision, pattern recognition, +feature descriptor +Keywords: +micro-facial expression, expression +recognition, action unit +Moi Hoon Yap +e-mail: +Objective Classes for +Micro-Facial Expression +Recognition +Adrian K. Davison1, Walied Merghani2 and +Moi Hoon Yap3 +Centre for Imaging Sciences, University of +Manchester, Manchester, United Kingdom +Sudan University of Science and Technology, +Khartoum, Sudan" +c30e4e4994b76605dcb2071954eaaea471307d80,Feature Selection for Emotion Recognition based on Random Forest, +c37a971f7a57f7345fdc479fa329d9b425ee02be,A Novice Guide towards Human Motion Analysis and Understanding,"A Novice Guide towards Human Motion Analysis and Understanding +Dr. Ahmed Nabil Mohamed" +c3fb2399eb4bcec22723715556e31c44d086e054,Face recognition based on SIGMA sets of image features,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +. INTRODUCTION" +c37de914c6e9b743d90e2566723d0062bedc9e6a,Joint and Discriminative Dictionary Learning for Facial Expression Recognition,"©2016 Society for Imaging Science and Technology +DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455 +Joint and Discriminative Dictionary Learning +Expression Recognition +for Facial +Sriram Kumar, Behnaz Ghoraani, Andreas Savakis" +c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4,The Ignorant Led by the Blind: A Hybrid Human–Machine Vision System for Fine-Grained Categorization,"Int J Comput Vis (2014) 108:3–29 +DOI 10.1007/s11263-014-0698-4 +The Ignorant Led by the Blind: A Hybrid Human–Machine Vision +System for Fine-Grained Categorization +Steve Branson · Grant Van Horn · Catherine Wah · +Pietro Perona · Serge Belongie +Received: 7 March 2013 / Accepted: 8 January 2014 / Published online: 20 February 2014 +© Springer Science+Business Media New York 2014" +c43862db5eb7e43e3ef45b5eac4ab30e318f2002,Provable Self-Representation Based Outlier Detection in a Union of Subspaces,"Provable Self-Representation Based Outlier Detection in a Union of Subspaces +Chong You, Daniel P. Robinson, Ren´e Vidal +Johns Hopkins University, Baltimore, MD, 21218, USA" +c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad,Understanding Activity: Learning the Language of Action,"Understanding Activity: Learning the Language of Action +Randal Nelson and Yiannis Aloimonos +Univ. of Rochester and Maryland +.1 Overview +Understanding observed activity is an important +problem, both from the standpoint of practical applications, +nd as a central issue in attempting to describe the +phenomenon of intelligence. On the practical side, there are a +large number of applications that would benefit from +improved machine ability to analyze activity. The most +prominent are various surveillance scenarios. The current +emphasis on homeland security has brought this issue to the +forefront, and resulted in considerable work on mostly low- +level detection schemes. There are also applications in +medical diagnosis and household assistants that, in the long +run, may be even more important. In addition, there are +numerous scientific projects, ranging from monitoring of +weather conditions to observation of animal behavior that +would be facilitated by automatic understanding of activity. +From a scientific standpoint, understanding activity" +c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,Towards Unconstrained Face Recognition Using 3D Face Model,"Towards Unconstrained Face Recognition +Using 3D Face Model +Zahid Riaz1, M. Saquib Sarfraz2 and Michael Beetz1 +Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching +Computer Vision Research Group, COMSATS Institute of Information +Technology, Lahore +Germany +Pakistan +. Introduction +Over the last couple of decades, many commercial systems are available to identify human +faces. However, face recognition is still an outstanding challenge against different kinds of +real world variations especially facial poses, non-uniform lightings and facial expressions. +Meanwhile the face recognition technology has extended its role from biometrics and security +pplications to human robot interaction (HRI). Person identity is one of the key tasks while +interacting with intelligent machines/robots, exploiting the non intrusive system security +nd authentication of the human interacting with the system. This capability further helps +machines to learn person dependent traits and interaction behavior to utilize this knowledge +for tasks manipulation. In such scenarios acquired face images contain large variations which +demands an unconstrained face recognition system. +Fig. 1. Biometric analysis of past few years has been shown in figure showing the" +eac6aee477446a67d491ef7c95abb21867cf71fc,A Survey of Sparse Representation: Algorithms and Applications,"JOURNAL +A survey of sparse representation: algorithms and +pplications +Zheng Zhang, Student Member, IEEE, Yong Xu, Senior Member, IEEE, +Jian Yang, Member, IEEE, Xuelong Li, Fellow, IEEE, and David Zhang, Fellow, IEEE" +ea079334121a0ba89452036e5d7f8e18f6851519,Unsupervised incremental learning of deep descriptors from video streams,"UNSUPERVISED INCREMENTAL LEARNING OF DEEP DESCRIPTORS +FROM VIDEO STREAMS +Federico Pernici and Alberto Del Bimbo +MICC – University of Florence" +eac1b644492c10546a50f3e125a1f790ec46365f,"Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection","Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for +Action Classification and Detection +Mohammadreza Zolfaghari , Gabriel L. Oliveira, Nima Sedaghat, and Thomas Brox +University of Freiburg +Freiburg im Breisgau, Germany" +ea482bf1e2b5b44c520fc77eab288caf8b3f367a,Flexible Orthogonal Neighborhood Preserving Embedding,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +ea6f5c8e12513dbaca6bbdff495ef2975b8001bd,Applying a Set of Gabor Filter to 2D-Retinal Fundus Image to Detect the Optic Nerve Head (ONH),"Applying a Set of Gabor Filter to 2D-Retinal Fundus Image +to Detect the Optic Nerve Head (ONH) +Rached Belgacem1,2*, Hédi Trabelsi2, Ines Malek3, Imed Jabri1 +Higher National School of engineering of Tunis, ENSIT, Laboratory LATICE (Information Technology and Communication and +Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab +Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master +ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis +ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouheïr Safi – 1006; 3Faculty of Medicine of Tunis; Address: 15 +Rue Djebel Lakhdhar. La Rabta. 1007, Tunis - Tunisia +Corresponding author: +Rached Belgacem, +High Institute of Medical Technologies +of Tunis, ISTMT, and High National +School Engineering of Tunis, +Information Technology and +Communication Technology and +Electrical Engineering, University of +Tunis El-Manar, ENSIT 5, Avenue Taha +Hussein, B. P.: 56, Bab Menara, 1008 +Tunis, Tunisia," +eafda8a94e410f1ad53b3e193ec124e80d57d095,Observer-Based Measurement of Facial Expression With the Facial Action Coding System,"Jeffrey F. Cohn +Zara Ambadar +Paul Ekman +Observer-Based Measurement of Facial Expression +With the Facial Action Coding System +Facial expression has been a focus of emotion research for over +hundred years (Darwin, 1872/1998). It is central to several +leading theories of emotion (Ekman, 1992; Izard, 1977; +Tomkins, 1962) and has been the focus of at times heated +debate about issues in emotion science (Ekman, 1973, 1993; +Fridlund, 1992; Russell, 1994). Facial expression figures +prominently in research on almost every aspect of emotion, +including psychophysiology (Levenson, Ekman, & Friesen, +990), neural bases (Calder et al., 1996; Davidson, Ekman, +Saron, Senulis, & Friesen, 1990), development (Malatesta, +Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993), +perception (Ambadar, Schooler, & Cohn, 2005), social pro- +esses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac, +000), and emotion disorder (Kaiser, 2002; Sloan, Straussa, +Quirka, & Sajatovic, 1997), to name a few." +ea85378a6549bb9eb9bcc13e31aa6a61b655a9af,Template Protection for PCA - LDA - based 3 D Face Recognition System,"Diplomarbeit +Template Protection for PCA-LDA-based 3D +Face Recognition System +Daniel Hartung +Technische Universität Darmstadt +Fachbereich Informatik +Fachgebiet Graphisch-Interaktive Systeme +Fraunhoferstraße 5 +64283 Darmstadt +Betreuer: Dipl.-Ing. Xuebing Zhou +Prüfer: Prof. Dr. techn. Dieter W. Fellner" +ea2ee5c53747878f30f6d9c576fd09d388ab0e2b,Viola-Jones Based Detectors: How Much Affects the Training Set?,"Viola-Jones based Detectors: How much affects +the Training Set? +Modesto Castrill´on-Santana, Daniel Hern´andez-Sosa, Javier Lorenzo-Navarro +SIANI +Edif. Central del Parque Cient´ıfico Tecnol´ogico +Universidad de Las Palmas de Gran Canaria +5017 - Spain" +e1f790bbedcba3134277f545e56946bc6ffce48d,Image Retrieval Using Attribute Enhanced Sparse Code Words,"International Journal of Innovative Research in Science, +Engineering and Technology +(An ISO 3297: 2007 Certified Organization) +Vol. 3, Issue 5, May 2014 +Sparse Code Words +ISSN: 2319-8753 +Image Retrieval Using Attribute Enhanced +M.Balaganesh1, N.Arthi2 +Associate Professor, Department of Computer Science and Engineering, SRV Engineering College, sembodai, india1 +P.G. Student, Department of Computer Science and Engineering, SRV Engineering College, sembodai, India 2" +e19ebad4739d59f999d192bac7d596b20b887f78,Learning Gating ConvNet for Two-Stream based Methods in Action Recognition,"Learning Gating ConvNet for Two-Stream based Methods in Action +Recognition +Jiagang Zhu1,2, Wei Zou1, Zheng Zhu1,2" +e1d726d812554f2b2b92cac3a4d2bec678969368,Human Action Recognition Bases on Local Action Attributes,"J Electr Eng Technol.2015; 10(?): 30-40 +http://dx.doi.org/10.5370/JEET.2015.10.2.030 +ISSN(Print) +975-0102 +ISSN(Online) 2093-7423 +Human Action Recognition Bases on Local Action Attributes +Jing Zhang*, Hong Liu*, Weizhi Nie† Lekha Chaisorn**, Yongkang Wong** +nd Mohan S Kankanhalli**" +e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2,Ranking with Adaptive Neighbors,"TSINGHUA SCIENCE AND TECHNOLOGY +ISSNll1007-0214 +0?/?? pp???–??? +DOI: 10.26599/TST.2018.9010000 +Volume 1, Number 1, Septembelr 2018 +Ranking with Adaptive Neighbors +Muge Li, Liangyue Li, and Feiping Nie∗" +cd9666858f6c211e13aa80589d75373fd06f6246,A Novel Time Series Kernel for Sequences Generated by LTI Systems,"A Novel Time Series Kernel for +Sequences Generated by LTI Systems +Liliana Lo Presti, Marco La Cascia +V.le delle Scienze Ed.6, DIID, Universit´a degli studi di Palermo, Italy" +cd444ee7f165032b97ee76b21b9ff58c10750570,Table of Contents.,"UNIVERSITY OF CALIFORNIA, +IRVINE +Relational Models for Human-Object Interactions and Object Affordances +DISSERTATION +submitted in partial satisfaction of the requirements +for the degree of +DOCTOR OF PHILOSOPHY +in Computer Science +Chaitanya Desai +Dissertation Committee: +Professor Deva Ramanan, Chair +Professor Charless Fowlkes +Professor Padhraic Smyth +Professor Serge Belongie" +cd596a2682d74bdfa7b7160dd070b598975e89d9,Mood Detection: Implementing a facial expression recognition system,"Mood Detection: Implementing a facial +expression recognition system +Neeraj Agrawal, Rob Cosgriff and Ritvik Mudur +. Introduction +Facial expressions play a significant role in human dialogue. As a result, there has been +onsiderable work done on the recognition of emotional expressions and the application of this +research will be beneficial in improving human-machine dialogue. One can imagine the +improvements to computer interfaces, automated clinical (psychological) research or even +interactions between humans and autonomous robots. +Unfortunately, a lot of the literature does not focus on trying to achieve high recognition rates +cross multiple databases. In this project we develop our own mood detection system that +ddresses this challenge. The system involves pre-processing image data by normalizing and +pplying a simple mask, extracting certain (facial) features using PCA and Gabor filters and then +using SVMs for classification and recognition of expressions. Eigenfaces for each class are used +to determine class-specific masks which are then applied to the image data and used to train +multiple, one against the rest, SVMs. We find that simply using normalized pixel intensities +works well with such an approach. +Figure 1 – Overview of our system design +. Image pre-processing +We performed pre-processing on the images used to train and test our algorithms as follows:" +cda4fb9df653b5721ad4fe8b4a88468a410e55ec,Gabor wavelet transform and its application,"Gabor wavelet transform and its application +Wei-lun Chao R98942073" +cd3005753012409361aba17f3f766e33e3a7320d,Multilinear Biased Discriminant Analysis: A Novel Method for Facial Action Unit Representation,"Multilinear Biased Discriminant Analysis: A Novel Method for Facial +Action Unit Representation +Mahmoud Khademi†, Mehran Safayani†and Mohammad T. Manzuri-Shalmani† +: Sharif University of Tech., DSP Lab," +cd687ddbd89a832f51d5510c478942800a3e6854,A game to crowdsource data for affective computing,"A Game to Crowdsource Data for Affective Computing +Chek Tien Tan +Hemanta Sapkota +Daniel Rosser +Yusuf Pisan +Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +cd7a7be3804fd217e9f10682e0c0bfd9583a08db,Women also Snowboard: Overcoming Bias in Captioning Models,"Women also Snowboard: +Overcoming Bias in Captioning Models +Lisa Anne Hendricks * 1 Kaylee Burns * 1 Kate Saenko 2 Trevor Darrell 1 Anna Rohrbach 1" +ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18,A Dynamic Appearance Descriptor Approach to Facial Actions Temporal Modeling,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011 +A Dynamic Appearance Descriptor Approach to +Facial Actions Temporal Modelling +Bihan Jiang, Student Member, IEEE, Michel Valstar, Member, IEEE, Brais Martinez, Member, IEEE, and +Maja Pantic, Fellow, IEEE" +cc3c273bb213240515147e8be68c50f7ea22777c,Gaining Insight Into Films Via Topic Modeling & Visualization,"Gaining Insight Into Films +Via Topic Modeling & Visualization +MISHA RABINOVICH, MFA +YOGESH GIRDHAR, PHD +KEYWORDS Collaboration, computer vision, cultural +nalytics, economy of abundance, interactive data +visualization +We moved beyond misuse when the software actually +ecame useful for film analysis with the addition of audio +nalysis, subtitle analysis, facial recognition, and topic +modeling. Using multiple types of visualizations and +back-and-fourth workflow between people and AI +we arrived at an approach for cultural analytics that +an be used to review and develop film criticism. Finally, +we present ways to apply these techniques to Database +Cinema and other aspects of film and video creation. +PROJECT DATE 2014 +URL http://misharabinovich.com/soyummy.html" +cc8e378fd05152a81c2810f682a78c5057c8a735,Expression Invariant Face Recognition System based on Topographic Independent Component Analysis and Inner Product Classifier,"International Journal of Computer Sciences and Engineering Open Access +Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693 +Expression Invariant Face Recognition System based on Topographic +Independent Component Analysis and Inner Product Classifier +Aruna Bhat +Department of Electrical Engineering, IIT Delhi, New Delhi, India +*Corresponding Author: +Available online at: www.ijcseonline.org +Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017" +ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b,Nutraceuticals and Cosmeceuticals for Human Beings–An Overview,"American Journal of Food Science and Health +Vol. 2, No. 2, 2016, pp. 7-17 +http://www.aiscience.org/journal/ajfsh +ISSN: 2381-7216 (Print); ISSN: 2381-7224 (Online) +Nutraceuticals and Cosmeceuticals for Human +Beings–An Overview +R. Ramasubramania Raja* +Department of Pharmacognosy, Narayana Pharmacy College, Nellore, India" +cc31db984282bb70946f6881bab741aa841d3a7c,Learning Grimaces by Watching TV,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV +Learning Grimaces by Watching TV +Samuel Albanie +http://www.robots.ox.ac.uk/~albanie +Andrea Vedaldi +http://www.robots.ox.ac.uk/~vedaldi +Engineering Science Department +Univeristy of Oxford +Oxford, UK" +cc91001f9d299ad70deb6453d55b2c0b967f8c0d,Performance Enhancement of Face Recognition in Smart TV Using Symmetrical Fuzzy-Based Quality Assessment,"OPEN ACCESS +ISSN 2073-8994 +Article +Performance Enhancement of Face Recognition in Smart TV +Using Symmetrical Fuzzy-Based Quality Assessment +Yeong Gon Kim, Won Oh Lee, Ki Wan Kim, Hyung Gil Hong and Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, +Seoul 100-715, Korea; E-Mails: (Y.G.K.); (W.O.L.); +(K.W.K.); (H.G.H.) +* Author to whom correspondence should be addressed; E-Mail: +Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735. +Academic Editor: Christopher Tyler +Received: 31 March 2015 / Accepted: 21 August 2015 / Published: 25 August 2015" +cc96eab1e55e771e417b758119ce5d7ef1722b43,An Empirical Study of Recent Face Alignment Methods,"An Empirical Study of Recent +Face Alignment Methods +Heng Yang, Xuhui Jia, Chen Change Loy and Peter Robinson" +e64b683e32525643a9ddb6b6af8b0472ef5b6a37,Face Recognition and Retrieval in Video,"Face Recognition and Retrieval in Video +Caifeng Shan" +e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227,Pairwise Relational Networks for Face Recognition,"Pairwise Relational Networks for Face +Recognition +Bong-Nam Kang1[0000−0002−6818−7532], Yonghyun Kim2[0000−0003−0038−7850], +nd Daijin Kim1,2[0000−0002−8046−8521] +Department of Creative IT Engineering, POSTECH, Korea +Department of Computer Science and Engineering, POSTECH, Korea" +e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec,"Tobias Siebenlist , Kathrin Knautz Chapter 15 . The critical role of the cold - start problem and incentive systems in emotional Web 2 . 0 services","Tobias Siebenlist, Kathrin Knautz +Chapter 15. The critical role of the +old-start problem and incentive systems +in emotional Web 2.0 services" +e6d689054e87ad3b8fbbb70714d48712ad84dc1c,Robust Facial Feature Tracking,"Robust Facial Feature Tracking +Fabrice Bourel, Claude C. Chibelushi, Adrian A. Low +School of Computing, Staffordshire University +Stafford ST18 0DG" +e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd,Flexible Manifold Embedding: A Framework for Semi-Supervised and Unsupervised Dimension Reduction,"Flexible Manifold Embedding: A Framework +for Semi-Supervised and Unsupervised +Dimension Reduction +Feiping Nie, Dong Xu, Member, IEEE, Ivor Wai-Hung Tsang, and Changshui Zhang, Member, IEEE +, the linear regression function (" +e6e5a6090016810fb902b51d5baa2469ae28b8a1,Energy-Efficient Deep In-memory Architecture for NAND Flash Memories,"Title +Energy-Efficient Deep In-memory Architecture for NAND +Flash Memories +Archived version +Accepted manuscript: the content is same as the published +paper but without the final typesetting by the publisher +Published version +Published paper +Authors (contact) +0.1109/ISCAS.2018.8351458" +e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,Improving Facial Landmark Detection via a Super-Resolution Inception Network,"Improving Facial Landmark Detection via a +Super-Resolution Inception Network +Martin Knoche, Daniel Merget, Gerhard Rigoll +Institute for Human-Machine Communication +Technical University of Munich, Germany" +f9784db8ff805439f0a6b6e15aeaf892dba47ca0,"Comparing the performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs","Comparing the performance of Emotion-Recognition Implementations +in OpenCV, Cognitive Services, and Google Vision APIs +LUIS ANTONIO BELTRÁN PRIETO, ZUZANA KOMÍNKOVÁ OPLATKOVÁ +Department of Informatics and Artificial Intelligence +Tomas Bata University in Zlín +Nad Stráněmi 4511, 76005, Zlín +CZECH REPUBLIC" +f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.,"www.elsevier.com/locate/ynimg +Spatiotemporal dynamics and connectivity pattern differences +etween centrally and peripherally presented faces +Lichan Liu and Andreas A. Ioannides* +Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan +Received 4 May 2005; revised 26 January 2006; accepted 6 February 2006 +Available online 24 March 2006 +Most neuroimaging studies on face processing used centrally presented +images with a relatively large visual field. Images presented in this way +ctivate widespread striate and extrastriate areas and make it difficult +to study spatiotemporal dynamics and connectivity pattern differences +from various parts of the visual field. Here we studied magneto- +encephalographic responses in humans to centrally and peripherally +presented faces for testing the hypothesis that processing of visual +stimuli with facial expressions of emotions depends on where the +stimuli are presented in the visual field. Using our tomographic and +statistical parametric mapping analyses, we identified occipitotemporal +reas activated by face stimuli more than by control conditions. V1/V2 +ctivity was significantly stronger for lower than central and upper +visual field presentation. Fusiform activity, however, was significantly" +f93606d362fcbe62550d0bf1b3edeb7be684b000,Nearest Neighbor Classifier Based on Nearest Feature Decisions,"The Computer Journal Advance Access published February 1, 2012 +© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. +For Permissions, please email: +doi:10.1093/comjnl/bxs001 +Nearest Neighbor Classifier Based +on Nearest Feature Decisions +Alex Pappachen James1,∗ and Sima Dimitrijev2 +Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and +Queensland Micro- and Nanotechnology Centre and Griffith School of Engineering, Griffith University, +Management, Kerala, India +Nathan, Australia +Corresponding author: +High feature dimensionality of realistic datasets adversely affects the recognition accuracy of nearest +neighbor (NN) classifiers. To address this issue, we introduce a nearest feature classifier that shifts +the NN concept from the global-decision level to the level of individual features. Performance +omparisons with 12 instance-based classifiers on 13 benchmark University of California Irvine +lassification datasets show average improvements of 6 and 3.5% in recognition accuracy and +rea under curve performance measures, respectively. The statistical significance of the observed +performance improvements is verified by the Friedman test and by the post hoc Bonferroni–Dunn +test. In addition, the application of the classifier is demonstrated on face recognition databases, a" +f997a71f1e54d044184240b38d9dc680b3bbbbc0,Deep Cross Modal Learning for Caricature Verification and Identification(CaVINet),"Deep Cross Modal Learning for Caricature Verification and +Identification(CaVINet) +https://lsaiml.github.io/CaVINet/ +Jatin Garg∗ +Indian Institute of Technology Ropar +Himanshu Tolani∗ +Indian Institute of Technology Ropar +Skand Vishwanath Peri∗ +Indian Institute of Technology Ropar +Narayanan C Krishnan +Indian Institute of Technology Ropar" +f9d1f12070e5267afc60828002137af949ff1544,Maximum Entropy Binary Encoding for Face Template Protection,"Maximum Entropy Binary Encoding for Face Template Protection +Rohit Kumar Pandey +Yingbo Zhou +Bhargava Urala Kota +Venu Govindaraju +University at Buffalo, SUNY +{rpandey, yingbozh, buralako," +f0cee87e9ecedeb927664b8da44b8649050e1c86,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,"label:(1, 0, 1, 0, 1, 1, 1, 1, 1)Masking label:(0, 1, 1, 1, 0, 1, 1, 1, 1)Entire imageInput imageNeuron dropout’s gradCAMGrid dropout’s gradCAMFig.1.Above:imageordinalclassificationwithrandomlyblackoutpatches.Itiseasyforhumantorecognizetheageregardlessofthemissingpatches.Themaskinglabelisalsousefultoimageclassification.Bottom:griddropout’sgrad-CAMisbetterthanthatofneurondropout.Thatistosay,griddropoutcanhelplearningfeaturerepresentation.problem[1].Withtheproliferationofconvolutionalneuralnetwork(CNN),workshavebeencarriedoutonordinalclas-sificationwithCNN[1][2][3].Thoughgoodperformanceshavebeenloggedwithmoderndeeplearningapproaches,therearetwoproblemsinimageordinalclassification.Ononehand,theamountofordinaltrainingdataisverylim-itedwhichprohibitstrainingcomplexmodelsproperly,andtomakemattersworse,collectinglargetrainingdatasetwithordinallabelisdifficult,evenharderthanlabellinggenericdataset.Therefore,insufficienttrainingdataincreasestheriskofoverfitting.Ontheotherhand,lessstudiesareconductedtounderstandwhatdeepmodelshavelearnedonordinaldata978-1-5386-1737-3/18/$31.00c(cid:13)2018IEEE" +f0f4f16d5b5f9efe304369120651fa688a03d495,Temporal Generative Adversarial Nets,"Temporal Generative Adversarial Nets +Masaki Saito∗ +Eiichi Matsumoto∗ +Preferred Networks inc., Japan +{msaito," +f0ae807627f81acb63eb5837c75a1e895a92c376,Facial Landmark Detection using Ensemble of Cascaded Regressions,"International Journal of Emerging Engineering Research and Technology +Volume 3, Issue 12, December 2015, PP 128-133 +ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) +Facial Landmark Detection using Ensemble of Cascaded +Regressions +Martin Penev1*, Ognian Boumbarov2 +Faculty of Telecommunications, Technical University, Sofia, Bulgaria +Faculty of Telecommunications, Technical University, Sofia, Bulgaria" +f740bac1484f2f2c70777db6d2a11cf4280081d6,Soft Locality Preserving Map (SLPM) for Facial Expression Recognition,"Soft Locality Preserving Map (SLPM) for Facial Expression +Recognition +Cigdem Turana,*, Kin-Man Lama, Xiangjian Heb +Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong +Kong Polytechnic University, Kowloon, Hong Kong +Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney, +Australia +E-mail addresses: (C. Turan), (K.-M. Lam), +(X. He)" +f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,Title On color texture normalization for active appearance models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +version when available. +Title +On color texture normalization for active appearance models +Author(s) +Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +Publication +009-05-12 +Publication +Information +Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +Texture Normalization for Active Appearance Models. Image +Processing, IEEE Transactions on, 18(6), 1372-1378. +Publisher +Link to +publisher's +version +http://dx.doi.org/10.1109/TIP.2009.2017163 +Item record +http://hdl.handle.net/10379/1350" +f7dcadc5288653ec6764600c7c1e2b49c305dfaa,Interactive Image Search with Attributes by,"Copyright +Adriana Ivanova Kovashka" +f7de943aa75406fe5568fdbb08133ce0f9a765d4,Biometric Identification and Surveillance1,"Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross +Project 1.5 +Biometric Identification and Surveillance1 +Don Adjeroh, Bojan Cukic, Arun Ross – West Virginia University +Year 5 Deliverable +Technical Report: +Research Challenges in Biometrics +Indexed biography of relevant biometric research literature +Donald Adjeroh, Bojan Cukic, Arun Ross +April, 2014 +""This research was supported by the United States Department of Homeland Security through the National Center for Border Security +nd Immigration (BORDERS) under grant number 2008-ST-061-BS0002. However, any opinions, findings, and conclusions or +recommendations in this document are those of the authors and do not necessarily reflect views of the United States Department of +Homeland Security.""" +f75852386e563ca580a48b18420e446be45fcf8d,Illumination Invariant Face Recognition,"ILLUMINATION INVARIANT FACE RECOGNITION +Raghuraman Gopalan +ENEE 631: Digital Image and Video Processing +Instructor: Dr. K. J. Ray Liu +Term Project - Spring 2006 +INTRODUCTION +The performance of the Face Recognition algorithms is severely affected by two +important factors: the change in Pose and Illumination conditions of the subjects. The +hanges in Illumination conditions of the subjects can be so drastic that, the variation in +lighting will be of the similar order as that of the variation due to the change in subjects +[1] and this can result in misclassification. +For example, in the acquisition of the face of a person from a real time video, the +mbient conditions will cause different lighting variations on the tracked face. Some +examples of images with different illumination conditions are shown in Fig. 1. In this +project, we study some algorithms that are capable of performing Illumination Invariant +Face Recognition. The performances of these algorithms were compared on the CMU- +Illumination dataset [13], by using the entire face as the input to the algorithms. Then, a +model of dividing the face into four regions is proposed and the performance of the +lgorithms on these new features is analyzed." +f77c9bf5beec7c975584e8087aae8d679664a1eb,Local Deep Neural Networks for Age and Gender Classification,"Local Deep Neural Networks for Age and Gender Classification +Zukang Liao, Stavros Petridis, Maja Pantic +March 27, 2017" +f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a,LOTS about attacking deep features,"This is a pre-print of the original paper accepted at the International Joint Conference on Biometrics (IJCB) 2017. +LOTS about Attacking Deep Features +Andras Rozsa, Manuel G¨unther, and Terrance E. Boult +Vision and Security Technology (VAST) Lab +University of Colorado, Colorado Springs, USA" +e8686663aec64f4414eba6a0f821ab9eb9f93e38,Improving shape-based face recognition by means of a supervised discriminant Hausdorff distance,"IMPROVING SHAPE-BASED FACE RECOGNITION BY MEANS OF A SUPERVISED +DISCRIMINANT HAUSDORFF DISTANCE +J.L. Alba +, A. Pujol +, A. L´opez +nd J.J. Villanueva +Signal Theory and Communications Department, University of Vigo, Spain +Centre de Visio per Computador, Universitat Autonoma de Barcelona, Spain +Digital Pointer MVT" +e8fdacbd708feb60fd6e7843b048bf3c4387c6db,Deep Learning,"Deep Learning +Andreas Eilschou +Hinnerup Net A/S +www.hinnerup.net +July 4, 2014 +Introduction +Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively +new research area although based on the popular artificial neural networks (supposedly +mirroring brain function). With the development of the perceptron in the 1950s and +960s by Frank RosenBlatt, research began on artificial neural networks. To further +mimic the architectural depth of the brain, researchers wanted to train a deep multi- +layer neural network – this, however, did not happen until Geoffrey Hinton in 2006 +introduced Deep Belief Networks [1]. +Recently, the topic of deep learning has gained public interest. Large web companies such +s Google and Facebook have a focused research on AI and an ever increasing amount +of compute power, which has led to researchers finally being able to produce results +that are of interest to the general public. In July 2012 Google trained a deep learning +network on YouTube videos with the remarkable result that the network learned to +recognize humans as well as cats [6], and in January this year Google successfully used +deep learning on Street View images to automatically recognize house numbers with" +e8b2a98f87b7b2593b4a046464c1ec63bfd13b51,CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection,"CMS-RCNN: Contextual Multi-Scale +Region-based CNN for Unconstrained Face +Detection +Chenchen Zhu*, Student, IEEE, Yutong Zheng*, Student, IEEE, +Khoa Luu, Member, IEEE, Marios Savvides, Senior Member, IEEE" +e8d1b134d48eb0928bc999923a4e092537e106f6,Weighted Multi-region Convolutional Neural Network for Action Recognition with Low-latency Online Prediction,"WEIGHTED MULTI-REGION CONVOLUTIONAL NEURAL NETWORK FOR ACTION +RECOGNITION WITH LOW-LATENCY ONLINE PREDICTION +Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63) +(cid:63)University of Science and Technology of China, Hefei, Anhui, China +HERE Technologies, Chicago, Illinois, USA" +e8c6c3fc9b52dffb15fe115702c6f159d955d308,Linear Subspace Learning for Facial Expression Analysis,"Linear Subspace Learning for +Facial Expression Analysis +Caifeng Shan +Philips Research +The Netherlands +. Introduction +Facial expression, resulting from movements of the facial muscles, is one of the most +powerful, natural, and immediate means for human beings to communicate their emotions +nd intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was +the first to describe in detail the specific facial expressions associated with emotions in +nimals and humans; he argued that all mammals show emotions reliably in their faces. +Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial +expressions, with other non-verbal cues, play a major and fundamental role in face-to-face +ommunication. +Fig. 1. Facial expressions of George W. Bush. +Machine analysis of facial expressions, enabling computers to analyze and interpret facial +expressions as humans do, has many important applications including intelligent human- +omputer interaction, computer animation, surveillance and security, medical diagnosis, +law enforcement, and awareness system (Shan, 2007). Driven by its potential applications +nd theoretical interests of cognitive and psychological scientists, automatic facial" +fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,Draft: Evaluation Guidelines for Gender Classification and Age Estimation,"Draft: Evaluation Guidelines for Gender +Classification and Age Estimation +Tobias Gehrig, Matthias Steiner, Hazım Kemal Ekenel +{tobias.gehrig, +July 1, 2011 +Introduction +In previous research on gender classification and age estimation did not use a +standardised evaluation procedure. This makes comparison the different ap- +proaches dif‌f‌icult. +Thus we propose here a benchmarking and evaluation protocol for gender +lassification as well as age estimation to set a common ground for future re- +search in these two areas. +The evaluations are designed such that there is one scenario under controlled +labratory conditions and one under uncontrolled real life conditions. +The datasets were selected with the criteria of being publicly available for +research purposes. +File lists for the folds corresponding to the individual benchmarking proto- +ols will be provided over our website at http://face.cs.kit.edu/befit. We +will provide two kinds of folds for each of the tasks and conditions: one set of +folds using the whole dataset and one set of folds using a reduced dataset, which" +fa08a4da5f2fa39632d90ce3a2e1688d147ece61,Supplementary material for “ Unsupervised Creation of Parameterized Avatars ” 1 Summary of Notations,"Supplementary material for +“Unsupervised Creation of Parameterized Avatars” +Summary of Notations +Tab. 1 itemizes the symbols used in the submission. Fig. 2,3,4 of the main text illustrate many of these +symbols. +DANN results +Fig. 1 shows side by side samples of the original image and the emoji generated by the method of [1]. +As can be seen, these results do not preserve the identity very well, despite considerable effort invested in +finding suitable architectures. +Multiple Images Per Person +Following [4], we evaluate the visual quality that is obtained per person and not just per image, by testing +TOS on the Facescrub dataset [3]. For each person p, we considered the set of their images Xp, and selected +the emoji that was most similar to their source image, i.e., the one for which: +||f (x) − f (e(c(G(x))))||. +rgmin +Fig. 2 depicts the results obtained by this selection method on sample images form the Facescrub dataset +(it is an extension of Fig. 7 of the main text). The figure also shows, for comparison, the DTN [4] result for +the same image. +Detailed Architecture of the Various Networks +In this section we describe the architectures of the networks used in for the emoji and avatar experiments." +fa24bf887d3b3f6f58f8305dcd076f0ccc30272a,Interval Insensitive Loss for Ordinal Classification,"JMLR: Workshop and Conference Proceedings 39:189–204, 2014 +ACML 2014 +Interval Insensitive Loss for Ordinal Classification +Kostiantyn Antoniuk +Vojtˇech Franc +V´aclav Hlav´aˇc +Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech +Technical University in Prague, Technick´a 2, 166 27 Prague 6 Czech Republic +Editor: Dinh Phung and Hang Li" +fafe69a00565895c7d57ad09ef44ce9ddd5a6caa,Gaussian Mixture Models for Human Face Recognition under Illumination Variations,"Applied Mathematics, 2012, 3, 2071-2079 +http://dx.doi.org/10.4236/am.2012.312A286 Published Online December 2012 (http://www.SciRP.org/journal/am) +Gaussian Mixture Models for Human Face Recognition +under Illumination Variations +Information Systems and Decision Sciences Department, Mihaylo College of Business and Economics, +California State University, Fullerton, USA +Email: +Sinjini Mitra +Received August 18, 2012; revised September 18, 2012; accepted September 25, 2012" +faca1c97ac2df9d972c0766a296efcf101aaf969,Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition,"Sympathy for the Details: Dense Trajectories and Hybrid +Classification Architectures for Action Recognition +C´esar Roberto de Souza1,2, Adrien Gaidon1, Eleonora Vig3, Antonio Manuel L´opez2 +Computer Vision Group, Xerox Research Center Europe, Meylan, France +Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain +German Aerospace Center, Wessling, Germany +{cesar.desouza," +fab60b3db164327be8588bce6ce5e45d5b882db6,Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition,"Maximum A Posteriori Estimation of Distances +Between Deep Features in Still-to-Video Face +Recognition +Andrey V. Savchenko +National Research University Higher School of Economics +Laboratory of Algorithms and Technologies for Network Analysis, +6 Rodionova St., Nizhny Novgorod, Russia +Natalya S. Belova +National Research University Higher School of Economics +0 Myasnitskaya St., Moscow, Russia +September 2, 2018" +fad895771260048f58d12158a4d4d6d0623f4158,Audio-visual emotion recognition for natural human-robot interaction,"Audio-Visual Emotion +Recognition For Natural +Human-Robot Interaction +Dissertation zur Erlangung des akademischen Grades +Doktor der Ingenieurwissenschaften (Dr.-Ing.) +vorgelegt von +Ahmad Rabie +n der Technischen Fakultät der Universität Bielefeld +5. März 2010" +ff8315c1a0587563510195356c9153729b533c5b,Zapping Index:Using Smile to Measure Advertisement Zapping Likelihood,"Zapping Index:Using Smile to Measure +Advertisement Zapping Likelihood +Songfan Yang, Member, IEEE, Mehran Kafai, Member, IEEE, +Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE" +ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a,Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach,"Towards Video Captioning with Naming: a +Novel Dataset and a Multi-Modal Approach +Stefano Pini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara +Dipartimento di Ingegneria “Enzo Ferrari” +Universit`a degli Studi di Modena e Reggio Emilia" +fffefc1fb840da63e17428fd5de6e79feb726894,Fine-Grained Age Estimation in the wild with Attention LSTM Networks,"Fine-Grained Age Estimation in the wild with +Attention LSTM Networks +Ke Zhang, Member, IEEE, Na Liu, Xingfang Yuan, Student Member, IEEE, Xinyao Guo, Ce Gao, +nd Zhenbing Zhao Member, IEEE," +ff398e7b6584d9a692e70c2170b4eecaddd78357,Title of dissertation : FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS, +ffd81d784549ee51a9b0b7b8aaf20d5581031b74,Performance Analysis of Retina and DoG Filtering Applied to Face Images for Training Correlation Filters,"Performance Analysis of Retina and DoG +Filtering Applied to Face Images for Training +Correlation Filters +Everardo Santiago Ram(cid:19)(cid:16)rez1, Jos(cid:19)e (cid:19)Angel Gonz(cid:19)alez Fraga1, Omar (cid:19)Alvarez +Xochihua1, Everardo Gutierrez L(cid:19)opez1, and Sergio Omar Infante Prieto2 +Facultad de Ciencias, Universidad Aut(cid:19)onoma de Baja California, +Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia Playitas, +Ensenada, Baja California, C.P. 22860 +{everardo.santiagoramirez,angel_fraga, +Facultad de Ingenier(cid:19)(cid:16)a, Arquitectura y Dise~no, Universidad Aut(cid:19)onoma de Baja +California, Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia +Playitas, Ensenada, Baja California, C.P. 22860" +ff01bc3f49130d436fca24b987b7e3beedfa404d,Fuzzy System-Based Face Detection Robust to In-Plane Rotation Based on Symmetrical Characteristics of a Face,"Article +Fuzzy System-Based Face Detection Robust to +In-Plane Rotation Based on Symmetrical +Characteristics of a Face +Hyung Gil Hong, Won Oh Lee, Yeong Gon Kim, Ki Wan Kim, Dat Tien Nguyen and +Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, +Seoul 100-715, Korea; (H.G.H.); (W.O.L.); (Y.G.K.); +(K.W.K.); (D.T.N.) +* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +Academic Editor: Angel Garrido +Received: 15 June 2016; Accepted: 29 July 2016; Published: 3 August 2016" +ffc9d6a5f353e5aec3116a10cf685294979c63d9,Eigenphase-based face recognition: a comparison of phase- information extraction methods,"Eigenphase-based face recognition: a comparison of phase- +information extraction methods +Slobodan Ribarić, Marijo Maračić +Faculty of Electrical Engineering and Computing, +University of Zagreb, Unska 3, 10 000 Zagreb +E-mail:" +ff8ef43168b9c8dd467208a0b1b02e223b731254,BreakingNews: Article Annotation by Image and Text Processing,"BreakingNews: Article Annotation by +Image and Text Processing +Arnau Ramisa*, Fei Yan*, Francesc Moreno-Noguer, +nd Krystian Mikolajczyk" +ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,"Journal of Vision (2016) 16(15):28, 1–8 +Serial dependence in the perception of attractiveness +Ye Xia +Department of Psychology, University of California, +Berkeley, CA, USA +Allison Yamanashi Leib +Department of Psychology, University of California, +Berkeley, CA, USA +David Whitney +Department of Psychology, University of California, +Berkeley, CA, USA +Helen Wills Neuroscience Institute, University of +California, Berkeley, CA, USA +Vision Science Group, University of California, +Berkeley, CA, USA +The perception of attractiveness is essential for choices +of food, object, and mate preference. Like perception of +other visual features, perception of attractiveness is +stable despite constant changes of image properties due +to factors like occlusion, visual noise, and eye" +ffcbedb92e76fbab083bb2c57d846a2a96b5ae30,Sparse Dictionary Learning and Domain Adaptation for Face and Action Recognition, +ff7bc7a6d493e01ec8fa2b889bcaf6349101676e,Facial expression recognition with spatiotemporal local descriptors_v3.rtf,"Facial expression recognition with spatiotemporal local +descriptors +Guoying Zhao, Matti Pietikäinen +Machine Vision Group, Infotech Oulu and Department of Electrical and +Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland +{gyzhao," +ff46c41e9ea139d499dd349e78d7cc8be19f936c,A Novel Method for Movie Character Identification and its Facial Expression Recognition,"International Journal of Modern Engineering Research (IJMER) +www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1339-1342 ISSN: 2249-6645 +A Novel Method for Movie Character Identification and its +Facial Expression Recognition +M. Dharmateja Purna, 1 N. Praveen2 +M.Tech, Sri Sunflower College of Engineering & Technology, Lankapalli +Asst. Professor, Dept. of ECE, Sri Sunflower College of Engineering & Technology, Lankapalli" +ff5dd6f96e108d8233220cc262bc282229c1a582,Robust Facial Marks Detection Method Using AAM And SURF,"Ziaul Haque Choudhury, K.M. Mehata / International Journal of Engineering Research and +Applications (IJERA) ISSN: 2248-9622 www.ijera.com +Vol. 2, Issue 6, November- December 2012, pp.708-715 +Robust Facial Marks Detection Method Using AAM And SURF +Ziaul Haque Choudhury, K.M. Mehata +Dept. of Information Technology, B.S. Abdur Rahman University, Chennai-48, India +Dept. of Computer Science & Engineering, B.S. Abdur Rahman University, Chennai-48, India" +c588c89a72f89eed29d42f34bfa5d4cffa530732,Attributes2Classname: A Discriminative Model for Attribute-Based Unsupervised Zero-Shot Learning,"Attributes2Classname: A discriminative model for attribute-based +unsupervised zero-shot learning +Berkan Demirel1,3, Ramazan Gokberk Cinbis2, Nazli Ikizler-Cinbis3 +HAVELSAN Inc., 2Bilkent University, 3Hacettepe University" +c574c72b5ef1759b7fd41cf19a9dcd67e5473739,"COGNIMUSE: a multimodal video database annotated with saliency, events, semantics and emotion with application to summarization","Zlatintsi et al. EURASIP Journal on Image and Video Processing (2017) 2017:54 +DOI 10.1186/s13640-017-0194-1 +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +COGNIMUSE: a multimodal video +database annotated with saliency, events, +semantics and emotion with application to +summarization +Athanasia Zlatintsi1* +Niki Efthymiou1, Katerina Pastra4, Alexandros Potamianos1 and Petros Maragos1 +, Petros Koutras1, Georgios Evangelopoulos2, Nikolaos Malandrakis3," +c5a561c662fc2b195ff80d2655cc5a13a44ffd2d,Using Language to Learn Structured Appearance Models for Image Annotation,"Using Language to Learn Structured Appearance +Models for Image Annotation +Michael Jamieson, Student Member, IEEE, Afsaneh Fazly, Suzanne Stevenson, Sven Dickinson, Member, IEEE, +Sven Wachsmuth, Member, IEEE" +c5c379a807e02cab2e57de45699ababe8d13fb6d,Facial Expression Recognition Using Sparse Representation,"Facial Expression Recognition Using Sparse Representation +SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1 +School of Physics and Electronic Engineering +Taizhou University +Taizhou 318000 +CHINA +2Department of Computer Science +Taizhou University +Taizhou 318000 +CHINA" +c5ea084531212284ce3f1ca86a6209f0001de9d1,Audio-visual speech processing for multimedia localisation,"Audio-Visual Speech Processing for +Multimedia Localisation +Matthew Aaron Benatan +Submitted in accordance with the requirements +for the degree of Doctor of Philosophy +The University of Leeds +School of Computing +September 2016" +c5844de3fdf5e0069d08e235514863c8ef900eb7,A Study on Similarity Computations in Template Matching Technique for Identity Verification,"Lam S K et al. / (IJCSE) International Journal on Computer Science and Engineering +Vol. 02, No. 08, 2010, 2659-2665 +A Study on Similarity Computations in Template +Matching Technique for Identity Verification +Lam, S. K., Yeong, C. Y., Yew, C. T., Chai, W. S., Suandi, S. A. +Intelligent Biometric Group, School of Electrical and Electronic Engineering +Engineering Campus, Universiti Sains Malaysia +4300 Nibong Tebal, Pulau Pinang, MALAYSIA +Email:" +c590c6c171392e9f66aab1bce337470c43b48f39,Emotion Recognition by Machine Learning Algorithms using Psychophysiological Signals,"Emotion Recognition by Machine Learning Algorithms using +Psychophysiological Signals +Eun-Hye Jang, 2Byoung-Jun Park, 3Sang-Hyeob Kim, 4Jin-Hun Sohn +, 2, 3 BT Convergence Technology Research Department, Electronics and Telecommunications +Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea, +*4Department of Psychology/Brain Research Institute, Chungnam National University 220, +Gung-dong, Yuseong-gu, Daejeon, 305-765, Republic of Korea," +c2c3ff1778ed9c33c6e613417832505d33513c55,"Multimodal Biometric Person Authentication Using Fingerprint, Face Features","Multimodal Biometric Person Authentication +Using Fingerprint, Face Features +Tran Binh Long1, Le Hoang Thai2, and Tran Hanh1 +Department of Computer Science, University of Lac Hong 10 Huynh Van Nghe, +DongNai 71000, Viet Nam +Department of Computer Science, Ho Chi Minh City University of Science +27 Nguyen Van Cu, HoChiMinh 70000, Viet Nam" +c27f64eaf48e88758f650e38fa4e043c16580d26,Title of the proposed research project: Subspace analysis using Locality Preserving Projection and its applications for image recognition,"Title of the proposed research project: Subspace analysis using Locality Preserving +Projection and its applications for image recognition +Research area: Data manifold learning for pattern recognition +Contact Details: +Name: Gitam C Shikkenawis +Email Address: +University: Dhirubhai Ambani Institute of Information and Communication Technology +(DA-IICT), Gandhinagar." +c220f457ad0b28886f8b3ef41f012dd0236cd91a,Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Crystal Loss and Quality Pooling for +Unconstrained Face Verification and Recognition +Rajeev Ranjan, Member, IEEE, Ankan Bansal, Hongyu Xu, Member, IEEE, +Swami Sankaranarayanan, Member, IEEE, Jun-Cheng Chen, Member, IEEE, +Carlos D Castillo, Member, IEEE, and Rama Chellappa, Fellow, IEEE" +c254b4c0f6d5a5a45680eb3742907ec93c3a222b,A Fusion-based Gender Recognition Method Using Facial Images,"A Fusion-based Gender Recognition Method +Using Facial Images +Benyamin Ghojogh, Saeed Bagheri Shouraki, Hoda Mohammadzade*, Ensieh Iranmehr" +c2e6daebb95c9dfc741af67464c98f1039127627,Efficient Measuring of Facial Action Unit Activation Intensities using Active Appearance Models,"MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN +Ef‌f‌icient Measuring of Facial Action Unit Activation Intensities +using Active Appearance Models +Daniel Haase1, Michael Kemmler1, Orlando Guntinas-Lichius2, Joachim Denzler1 +Computer Vision Group, Friedrich Schiller University of Jena, Germany +Department of Otolaryngology, University Hospital Jena, Germany" +f6f06be05981689b94809130e251f9e4bf932660,An Approach to Illumination and Expression Invariant Multiple Classifier Face Recognition,"An Approach to Illumination and Expression Invariant +International Journal of Computer Applications (0975 – 8887) +Volume 91 – No.15, April 2014 +Multiple Classifier Face Recognition +Dalton Meitei Thounaojam +National Institute of Technology +Silchar +Assam: 788010 +India +Hidangmayum Saxena Devi +National Institute of Technology +Silchar +Assam: 788010 +India +Romesh Laishram +Manipur Institute of Technology +Imphal West: 795001 +India" +f6742010372210d06e531e7df7df9c01a185e241,Dimensional Affect and Expression in Natural and Mediated Interaction,"Dimensional Affect and Expression in +Natural and Mediated Interaction +Michael J. Lyons +Ritsumeikan, University +Kyoto, Japan +October, 2007" +f6ca29516cce3fa346673a2aec550d8e671929a6,Algorithm for Face Matching Using Normalized Cross - Correlation,"International Journal of Engineering and Advanced Technology (IJEAT) +ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +Algorithm for Face Matching Using Normalized +Cross-Correlation +C. Saravanan, M. Surender" +f67a73c9dd1e05bfc51219e70536dbb49158f7bc,A Gaussian Mixture Model for Classifying the Human Age using DWT and Sammon Map,"Journal of Computer Science 10 (11): 2292-2298, 2014 +ISSN: 1549-3636 +© 2014 Nithyashri and Kulanthaivel, This open access article is distributed under a Creative Commons Attribution +(CC-BY) 3.0 license +A GAUSSIAN MIXTURE MODEL FOR CLASSIFYING THE +HUMAN AGE USING DWT AND SAMMON MAP +J. Nithyashri and 2G. Kulanthaivel +Department of Computer Science and Engineering, Sathyabama University, Chennai, India +Department of Electronics Engineering, NITTTR, Chennai, India +Received 2014-05-08; Revised 2014-05-23; Accepted 2014-11-28" +f6c70635241968a6d5fd5e03cde6907022091d64,Measuring Deformations and Illumination Changes in Images with Applications to Face Recognition, +f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca,Cross-Label Suppression: A Discriminative and Fast Dictionary Learning With Group Regularization,"Cross-label Suppression: A Discriminative and Fast +Dictionary Learning with Group Regularization +Xiudong Wang and Yuantao Gu∗ +April 24, 2017" +f6fa97fbfa07691bc9ff28caf93d0998a767a5c1,K2-means for Fast and Accurate Large Scale Clustering,"k2-means for fast and accurate large scale clustering +Eirikur Agustsson +Computer Vision Lab +D-ITET +ETH Zurich +Radu Timofte +Computer Vision Lab +D-ITET +ETH Zurich +Luc Van Gool +ESAT, KU Leuven +D-ITET, ETH Zurich" +f6cf2108ec9d0f59124454d88045173aa328bd2e,Robust User Identification Based on Facial Action Units Unaffected by Users' Emotions,"Robust user identification based on facial action units +unaffected by users’ emotions +Ricardo Buettner +Aalen University, Germany" +f68f20868a6c46c2150ca70f412dc4b53e6a03c2,Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition,"Differential Evolution to Optimize +Hidden Markov Models Training: +Application to Facial Expression +Recognition +Khadoudja Ghanem, Amer Draa, Elvis Vyumvuhore and +Ars`ene Simbabawe +MISC Laboratory, Constantine 2 University, Constantine, Algeria +The base system in this paper uses Hidden Markov +Models (HMMs) to model dynamic relationships among +facial features in facial behavior interpretation and un- +derstanding field. The input of HMMs is a new set +of derived features from geometrical distances obtained +from detected and automatically tracked facial points. +Numerical data representation which is in the form of +multi-time series is transformed to a symbolic repre- +sentation in order to reduce dimensionality, extract the +most pertinent information and give a meaningful repre- +sentation to humans. The main problem of the use of +HMMs is that the training is generally trapped in local +minima, so we used the Differential Evolution (DE)" +e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66,Cognitive Learning for Social Robot through Facial Expression from Video Input,"International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 +Vol. 3 Issue 1, January-2014, pp: (362-365), Impact Factor: 1.252, Available online at: www.erpublications.com +Cognitive Learning for Social Robot through +Facial Expression from Video Input +Neeraj Rai1, Deepak Rai2 +Department of Automation & Robotics, 2Department of Computer Science & Engg. +,2Ajay Kumar Garg Engineering College, Ghaziabad, UP, India" +e988be047b28ba3b2f1e4cdba3e8c94026139fcf,Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition,"Multi-Task Convolutional Neural Network for +Pose-Invariant Face Recognition +Xi Yin and Xiaoming Liu Member, IEEE," +e9d43231a403b4409633594fa6ccc518f035a135,Deformable Part Models with CNN Features,"Deformable Part Models with CNN Features +Pierre-Andr´e Savalle1, Stavros Tsogkas1,2, George Papandreou3, Iasonas +Kokkinos1,2 +Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63)" +e9fcd15bcb0f65565138dda292e0c71ef25ea8bb,Analysing Facial Regions for Face Recognition Using Forensic Protocols,"Repositorio Institucional de la Universidad Autónoma de Madrid +https://repositorio.uam.es +Esta es la versión de autor de la comunicación de congreso publicada en: +This is an author produced version of a paper published in: +Highlights on Practical Applications of Agents and Multi-Agent Systems: +International Workshops of PAAMS. Communications in Computer and +Information Science, Volumen 365. Springer, 2013. 223-230 +DOI: http://dx.doi.org/10.1007/978-3-642-38061-7_22 +Copyright: © 2013 Springer-Verlag +El acceso a la versión del editor puede requerir la suscripción del recurso +Access to the published version may require subscription" +e9363f4368b04aeaa6d6617db0a574844fc59338,BenchIP: Benchmarking Intelligence Processors,"BENCHIP: Benchmarking Intelligence +Processors +Jinhua Tao1, Zidong Du1,2, Qi Guo1,2, Huiying Lan1, Lei Zhang1 +Shengyuan Zhou1, Lingjie Xu3, Cong Liu4, Haifeng Liu5, Shan Tang6 +Allen Rush7,Willian Chen7, Shaoli Liu1,2, Yunji Chen1, Tianshi Chen1,2 +ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group +IFLYTEK,5JD,6RDA Microelectronics,7AMD" +f16a605abb5857c39a10709bd9f9d14cdaa7918f,Fast greyscale road sign model matching and recognition,"Fast greyscale road sign model matching +nd recognition +Sergio Escalera and Petia Radeva +Centre de Visió per Computador +Edifici O – Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain" +f1aa120fb720f6cfaab13aea4b8379275e6d40a2,InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image,"InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image +Hyeongwoo Kim1 +Justus Thies2 +Max-Planck-Institute for Informatics +Michael Zollhöfer1 +Christian Richardt3 +University of Erlangen-Nuremberg 3 University of Bath +Christian Theobalt1 +Ayush Tewari1 +Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate +from just a single input image. We jointly recover the face pose, shape, expression, reflectance and incident scene illumination. From left to +right: input photo, our estimated face model, its geometry, and the pointwise Euclidean error compared to Garrido et al. [14]." +f1ba2fe3491c715ded9677862fea966b32ca81f0,Face Tracking and Recognition in Videos : HMM Vs KNN,"ISSN: 2321-7782 (Online) +Volume 1, Issue 7, December 2013 +International Journal of Advance Research in +Computer Science and Management Studies +Research Paper +Available online at: www.ijarcsms.com +Face Tracking and Recognition in Videos: +HMM Vs KNN +Madhumita R. Baviskar +Assistant Professor +Department of Computer Engineering +MIT College of Engineering (Pune University) +Pune - India" +f1d090fcea63d9f9e835c49352a3cd576ec899c1,Single-hidden Layer Feedforward Neual network training using class geometric information,"Iosifidis, A., Tefas, A., & Pitas, I. (2015). Single-Hidden Layer Feedforward +Neual Network Training Using Class Geometric Information. In . J. J. +Merelo, A. Rosa, J. M. Cadenas, A. Dourado, K. Madani, & J. Filipe (Eds.), +Computational Intelligence: International Joint Conference, IJCCI 2014 +Rome, Italy, October 22-24, 2014 Revised Selected Papers. (Vol. III, pp. +51-364). (Studies in Computational Intelligence; Vol. 620). Springer. DOI: +0.1007/978-3-319-26393-9_21 +Peer reviewed version +Link to published version (if available): +0.1007/978-3-319-26393-9_21 +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms.html" +f113aed343bcac1021dc3e57ba6cc0647a8f5ce1,A Survey on Mining of Weakly Labeled Web Facial Images and Annotation,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +A Survey on Mining of Weakly Labeled Web Facial +Images and Annotation +Tarang Boharupi1, Pranjali Joshi2 +Pune Institute of Computer Technology, Pune, India +Professor, Pune Institute of Computer Technology, Pune, India +the proposed system which" +f19777e37321f79e34462fc4c416bd56772031bf,Literature Review of Image Compression Algorithm,"International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 +ISSN 2229-5518 +Literature Review of Image Compression Algorithm +Dr. B. Chandrasekhar +Padmaja.V.K +email: email:: +Jawaharlal Technological University, Anantapur" +f19ab817dd1ef64ee94e94689b0daae0f686e849,Blickrichtungsunabhängige Erkennung von Personen in Bild- und Tiefendaten,"TECHNISCHE UNIVERSIT¨AT M ¨UNCHEN +Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +Blickrichtungsunabh¨angige Erkennung von +Personen in Bild- und Tiefendaten +Andre St¨ormer +Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +Doktor-Ingenieurs (Dr.-Ing.) +genehmigten Dissertation. +Vorsitzender: +Univ.-Prof. Dr.-Ing. Thomas Eibert +Pr¨ufer der Dissertation: +. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +. Univ.-Prof. Dr.-Ing. Horst-Michael Groß, +Technische Universit¨at Ilmenau +Die Dissertation wurde am 16.06.2009 bei der Technischen Universit¨at M¨unchen einge- +reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009 +ngenommen." +e76798bddd0f12ae03de26b7c7743c008d505215,Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes, +e7cac91da51b78eb4a28e194d3f599f95742e2a2,"Positive Feeling, Negative Meaning: Visualizing the Mental Representations of In-Group and Out-Group Smiles","RESEARCH ARTICLE +Positive Feeling, Negative Meaning: +Visualizing the Mental Representations of In- +Group and Out-Group Smiles +Andrea Paulus1☯*, Michaela Rohr1☯, Ron Dotsch2,3, Dirk Wentura1 +Saarland University, Saarbrücken, Germany, 2 Utrecht University, Utrecht, the Netherlands, +Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands +☯ These authors contributed equally to this work." +e78394213ae07b682ce40dc600352f674aa4cb05,Expression-invariant three-dimensional face recognition,"Expression-invariant three-dimensional face recognition +Alexander M. Bronstein +Email: +Michael M. Bronstein +Ron Kimmel +Computer Science Department, +Technion – Israel Institute of Technology, +Haifa 32000, Israel +One of the hardest problems in face recognition is dealing with facial expressions. Finding an +expression-invariant representation of the face could be a remedy for this problem. We suggest +treating faces as deformable surfaces in the context of Riemannian geometry, and propose to ap- +proximate facial expressions as isometries of the facial surface. This way, we can define geometric +invariants of a given face under different expressions. One such invariant is constructed by iso- +metrically embedding the facial surface structure into a low-dimensional flat space. Based on this +pproach, we built an accurate three-dimensional face recognition system that is able to distinguish +etween identical twins under various facial expressions. In this chapter we show how under the +near-isometric model assumption, the dif‌f‌icult problem of face recognition in the presence of facial +expressions can be solved in a relatively simple way. +0.1 Introduction +It is well-known that some characteristics or behavior patterns of the human body are strictly" +e7b6887cd06d0c1aa4902335f7893d7640aef823,Modelling of Facial Aging and Kinship: A Survey,"Modelling of Facial Aging and Kinship: A Survey +Markos Georgopoulos, Yannis Panagakis, and Maja Pantic," +cbca355c5467f501d37b919d8b2a17dcb39d3ef9,Super-resolution of Very Low Resolution Faces from Videos,"CANSIZOGLU, JONES: SUPER-RESOLUTION OF VERY LR FACES FROM VIDEOS +Super-resolution of Very Low-Resolution +Faces from Videos +Esra Ataer-Cansizoglu +Michael Jones +Mitsubishi Electric Research Labs +(MERL) +Cambridge, MA, USA" +cbcf5da9f09b12f53d656446fd43bc6df4b2fa48,Face Recognition using Gray level Co-occurrence Matrix and Snap Shot Method of the Eigen Face,"ISSN: 2277-3754 +ISO 9001:2008 Certified +International Journal of Engineering and Innovative Technology (IJEIT) +Volume 2, Issue 6, December 2012 +Face Recognition using Gray level Co-occurrence +Matrix and Snap Shot Method of the Eigen Face +Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India +M. Madhu, R. Amutha +SSN College of Engineering, Chennai, India" +cb004e9706f12d1de83b88c209ac948b137caae0,Face Aging Effect Simulation Using Hidden Factor Analysis Joint Sparse Representation,"Face Aging Effect Simulation using Hidden Factor +Analysis Joint Sparse Representation +Hongyu Yang, Student Member, IEEE, Di Huang, Member, IEEE, Yunhong Wang, Member, IEEE, Heng Wang, +nd Yuanyan Tang, Fellow, IEEE" +cb08f679f2cb29c7aa972d66fe9e9996c8dfae00,Action Understanding with Multiple Classes of Actors,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +Action Understanding +with Multiple Classes of Actors +Chenliang Xu, Member, IEEE, Caiming Xiong, and Jason J. Corso, Senior Member, IEEE" +cb84229e005645e8623a866d3d7956c197f85e11,Disambiguating Visual Verbs,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 201X +Disambiguating Visual Verbs +Spandana Gella, Frank Keller, and Mirella Lapata" +cbe859d151466315a050a6925d54a8d3dbad591f,Gaze shifts as dynamical random sampling,"GAZE SHIFTS AS DYNAMICAL RANDOM SAMPLING +Giuseppe Boccignone +Mario Ferraro +Dipartimento di Scienze dell’Informazione +Universit´a di Milano +Via Comelico 39/41 +0135 Milano, Italy" +f842b13bd494be1bbc1161dc6df244340b28a47f,An Improved Face Recognition Technique Based on Modular Multi-directional Two-dimensional Principle Component Analysis Approach,"An Improved Face Recognition Technique Based +on Modular Multi-directional Two-dimensional +Principle Component Analysis Approach +Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China +Xiaoqing Dong +Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China +Email: +Hongcai Chen +Email:" +f8c94afd478821681a1565d463fc305337b02779,Design and Implementation of Robust Face Recognition System for Uncontrolled Pose and Illumination Changes,"www.semargroup.org, +www.ijsetr.com +ISSN 2319-8885 +Vol.03,Issue.25 +September-2014, +Pages:5079-5085 +Design and Implementation of Robust Face Recognition System for +Uncontrolled Pose and Illumination Changes +VIJAYA BHASKAR TALARI +, VENKATESWARLU PRATTI +PG Scholar, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email: +Assistant Professor, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email:" +f8ec92f6d009b588ddfbb47a518dd5e73855547d,Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition,"J Inf Process Syst, Vol.10, No.3, pp.443~458, September 2014 +ISSN 1976-913X (Print) +ISSN 2092-805X (Electronic) +Extreme Learning Machine Ensemble Using +Bagging for Facial Expression Recognition +Deepak Ghimire* and Joonwhoan Lee*" +f8ed5f2c71e1a647a82677df24e70cc46d2f12a8,Artificial Neural Network Design and Parameter Optimization for Facial Expressions Recognition,"International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 1 +ISSN 2229-5518 +Artificial Neural Network Design and Parameter +Optimization for Facial Expressions Recognition +Ammar A. Alzaydi" +f8f872044be2918de442ba26a30336d80d200c42,Facial Emotion Recognition Techniques : A Survey,"IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613 +Facial Emotion Recognition Techniques: A Survey +Namita Rathore1 Rohit Miri2 +,2Department of Computer Science and Engineering +,2Dr C V Raman Institute of Science and Technology +defense +systems, +surveillance" +f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,"KDEF-PT: Valence, Emotional Intensity, Familiarity and Attractiveness Ratings of Angry, Neutral, and Happy Faces","ORIGINAL RESEARCH +published: 19 December 2017 +doi: 10.3389/fpsyg.2017.02181 +KDEF-PT: Valence, Emotional +Intensity, Familiarity and +Attractiveness Ratings of Angry, +Neutral, and Happy Faces +Margarida V. Garrido* and Marília Prada +Instituto Universitário de Lisboa (ISCTE-IUL), CIS – IUL, Lisboa, Portugal +The Karolinska Directed Emotional Faces (KDEF) +is one of the most widely used +human facial expressions database. Almost a decade after the original validation study +(Goeleven et al., 2008), we present subjective rating norms for a sub-set of 210 pictures +which depict 70 models (half female) each displaying an angry, happy and neutral facial +expressions. Our main goals were to provide an additional and updated validation +to this database, using a sample from a different nationality (N = 155 Portuguese +students, M = 23.73 years old, SD = 7.24) and to extend the number of subjective +dimensions used to evaluate each image. Specifically, participants reported emotional +labeling (forced-choice task) and evaluated the emotional intensity and valence of the +expression, as well as the attractiveness and familiarity of the model (7-points rating" +ce85d953086294d989c09ae5c41af795d098d5b2,Bilinear Analysis for Kernel Selection and Nonlinear Feature Extraction,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Bilinear Analysis for Kernel Selection and +Nonlinear Feature Extraction +Shu Yang, Shuicheng Yan, Member, IEEE, Chao Zhang, and Xiaoou Tang, Senior Member, IEEE" +ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6,UC San Diego UC San Diego Electronic Theses and Dissertations Title Interactive learning and prediction algorithms for computer vision applications,"UC San Diego +UC San Diego Electronic Theses and Dissertations +Title +Inhibitions of ascorbate fatty acid derivatives on three rabbit muscle glycolytic enzymes +Permalink +https://escholarship.org/uc/item/8x33n1gj +Author +Pham, Duyen-Anh +Publication Date +011-01-01 +Peer reviewed|Thesis/dissertation +eScholarship.org +Powered by the California Digital Library +University of California" +ce9a61bcba6decba72f91497085807bface02daf,Eigen-harmonics faces: face recognition under generic lighting,"Eigen-Harmonics Faces: Face Recognition under Generic Lighting +Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2 +Graduate School, CAS, Beijing, China, 100080 +ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +Emails: {lyqing, sgshan, wgao}jdl.ac.cn" +cef6cffd7ad15e7fa5632269ef154d32eaf057af,Emotion Detection Through Facial Feature Recognition,"Emotion Detection Through Facial Feature +Recognition +James Pao +through consistent" +cebfafea92ed51b74a8d27c730efdacd65572c40,Matching 2.5D face scans to 3D models,"JANUARY 2006 +Matching 2.5D Face Scans to 3D Models +Xiaoguang Lu, Student Member, IEEE, Anil K. Jain, Fellow, IEEE, and +Dirk Colbry, Student Member, IEEE" +ce54e891e956d5b502a834ad131616786897dc91,Face Recognition Using LTP Algorithm,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +Face Recognition Using LTP Algorithm +Richa Sharma1, Rohit Arora2 +ECE & KUK +Assistant Professor (ECE) +Volume 4 Issue 12, December 2015 +Licensed Under Creative Commons Attribution CC BY +www.ijsr.net + Variation in luminance: Third main challenge that +ppears in face recognition process is the luminance. Due +to variation in the luminance the representation get varied +from the original image. The person with same poses +expression and seen from same viewpoint can be appear +very different due to variation in lightening." +ce6f459462ea9419ca5adcc549d1d10e616c0213,A Survey on Face Identification Methodologies in Videos,"A Survey on Face Identification Methodologies in +Videos +Student, M.Tech CSE ,Department of Computer Science +& Engineering ,G.H.Raisoni College of Engineering & +Technology for Women, Nagpur, Maharashtra, India. +Deepti Yadav" +ce933821661a0139a329e6c8243e335bfa1022b1,Temporal Modeling Approaches for Large-scale Youtube-8M Video Understanding,"Temporal Modeling Approaches for Large-scale +Youtube-8M Video Understanding +Fu Li, Chuang Gan, Xiao Liu, Yunlong Bian, Xiang Long, Yandong Li, Zhichao Li, Jie Zhou, Shilei Wen +Baidu IDL & Tsinghua University" +e0dedb6fc4d370f4399bf7d67e234dc44deb4333,Supplementary Material: Multi-Task Video Captioning with Video and Entailment Generation,"Supplementary Material: Multi-Task Video Captioning with Video and +Entailment Generation +Ramakanth Pasunuru and Mohit Bansal +UNC Chapel Hill +{ram, +Experimental Setup +.1 Datasets +.1.1 Video Captioning Datasets +YouTube2Text or MSVD The Microsoft Re- +search Video Description Corpus (MSVD) or +YouTube2Text (Chen and Dolan, 2011) is used +for our primary video captioning experiments. It +has 1970 YouTube videos in the wild with many +diverse captions in multiple languages for each +video. Caption annotations to these videos are +ollected using Amazon Mechanical Turk (AMT). +All our experiments use only English captions. On +verage, each video has 40 captions, and the over- +ll dataset has about 80, 000 unique video-caption +pairs. The average clip duration is roughly 10 sec-" +e096b11b3988441c0995c13742ad188a80f2b461,DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers,"Noname manuscript No. +(will be inserted by the editor) +DeepProposals: Hunting Objects and Actions by Cascading +Deep Convolutional Layers +Amir Ghodrati · Ali Diba · Marco Pedersoli · Tinne Tuytelaars · Luc +Van Gool +Received: date / Accepted: date" +e0939b4518a5ad649ba04194f74f3413c793f28e,Mind-reading machines : automated inference of complex mental states Rana,"Technical Report +UCAM-CL-TR-636 +ISSN 1476-2986 +Number 636 +Computer Laboratory +Mind-reading machines: +utomated inference +of complex mental states +Rana Ayman el Kaliouby +July 2005 +5 JJ Thomson Avenue +Cambridge CB3 0FD +United Kingdom +phone +44 1223 763500 +http://www.cl.cam.ac.uk/" +e0ed0e2d189ff73701ec72e167d44df4eb6e864d,Recognition of static and dynamic facial expressions: a study review,"Recognition of static and dynamic facial expressions: a study review +Estudos de Psicologia, 18(1), janeiro-março/2013, 125-130 +Nelson Torro Alves +Federal University of Paraíba" +e065a2cb4534492ccf46d0afc81b9ad8b420c5ec,SFace: An Efficient Network for Face Detection in Large Scale Variations,"SFace: An Ef‌f‌icient Network for Face Detection +in Large Scale Variations +Jianfeng Wang12∗, Ye Yuan 1†, Boxun Li†, Gang Yu† and Sun Jian† +College of Software, Beihang University∗ +Megvii Inc. (Face++)†" +e013c650c7c6b480a1b692bedb663947cd9d260f,Robust Image Analysis With Sparse Representation on Quantized Visual Features,"Robust Image Analysis With Sparse Representation +on Quantized Visual Features +Bing-Kun Bao, Guangyu Zhu, Jialie Shen, and Shuicheng Yan, Senior Member, IEEE" +46a4551a6d53a3cd10474ef3945f546f45ef76ee,Robust and continuous estimation of driver gaze zone by dynamic analysis of multiple face videos,"014 IEEE Intelligent Vehicles Symposium (IV) +June 8-11, 2014. Dearborn, Michigan, USA +978-1-4799-3637-3/14/$31.00 ©2014 IEEE" +4686bdcee01520ed6a769943f112b2471e436208,Fast search based on generalized similarity measure,"Utsumi et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:11 +DOI 10.1186/s41074-017-0024-5 +IPSJ Transactions on Computer +Vision and Applications +EXPRESS PAPER +Open Access +Fast search based on generalized +similarity measure +Yuzuko Utsumi*†, Tomoya Mizuno†, Masakazu Iwamura and Koichi Kise" +4688787d064e59023a304f7c9af950d192ddd33e,Investigating the Discriminative Power of Keystroke Sound,"Investigating the Discriminative Power of Keystroke +Sound +Joseph Roth Student Member, IEEE,, Xiaoming Liu, Member, IEEE, Arun Ross, Senior Member, IEEE, +nd Dimitris Metaxas, Member, IEEE" +46f2611dc4a9302e0ac00a79456fa162461a8c80,Spatio-Temporal Channel Correlation Networks for Action Classification,"for Action Classification +Ali Diba1,4,(cid:63), Mohsen Fayyaz3,(cid:63), Vivek Sharma2, M.Mahdi Arzani4, Rahman +Yousefzadeh4, Juergen Gall3, Luc Van Gool1,4 +ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai" +466a5add15bb5f91e0cfd29a55f5fb159a7980e5,Video Repeat Recognition and Mining by Visual Features,"Video Repeat Recognition and Mining by Visual +Features +Xianfeng Yang1and Qi Tian" +46f3b113838e4680caa5fc8bda6e9ae0d35a038c,Automated Dermoscopy Image Analysis of Pigmented Skin Lesions,"Cancers 2010, 2, 262-273; doi:10.3390/cancers2020262 +OPEN ACCESS +ancers +ISSN 2072-6694 +www.mdpi.com/journal/cancers +Review +Automated Dermoscopy Image Analysis of Pigmented Skin +Lesions +Alfonso Baldi 1,2,*, Marco Quartulli 3, Raffaele Murace 2, Emanuele Dragonetti 2, +Mario Manganaro 3, Oscar Guerra 3 and Stefano Bizzi 3 +Department of Biochemistry, Section of Pathology, Second University of Naples, Via L. Armanni +5, 80138 Naples, Italy +Futura-onlus, Via Pordenone 2, 00182 Rome, Italy; E-Mail: +ACS, Advanced Computer Systems, Via della Bufalotta 378, 00139 Rome, Italy +* Author to whom correspondence should be addressed; E-Mail: +Fax: +390815569693. +Received: 23 February 2010; in revised form: 15 March 2010 / Accepted: 25 March 2010 / +Published: 26 March 2010" +46538b0d841654a0934e4c75ccd659f6c5309b72,A Novel Approach to Generate Face Biometric Template Using Binary Discriminating Analysis,"Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.1, February 2014 +A NOVEL APPROACH TO GENERATE FACE +BIOMETRIC TEMPLATE USING BINARY +DISCRIMINATING ANALYSIS +Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2 +P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +Associate Professor, Department of Computer Engineering, +MCERC, Nashik (M.S.), India" +469ee1b00f7bbfe17c698ccded6f48be398f2a44,SURVEy: Techniques for Aging Problems in Face Recognition,"MIT International Journal of Computer Science and Information Technology, Vol. 4, No. 2, August 2014, pp. 82-88 +ISSN 2230-7621©MIT Publications +SURVEy: Techniques for +Aging Problems in Face Recognition +Aashmi +Sakshi Sahni +Sakshi Saxena +Scholar, Computer Science Engg. Dept. +Moradabad Institute of Technology +Scholar, Computer Science Engg. Dept. +Moradabad Institute of Technology +Scholar, Computer Science Engg. Dept. +Moradabad Institute of Technology +Moradabad, U.P., INDIA +Moradabad, U.P., INDIA +Moradabad, U.P., INDIA +E-mail: +E-mail: +E-mail:" +4682fee7dc045aea7177d7f3bfe344aabf153bd5,Tabula rasa: Model transfer for object category detection,"Tabula Rasa: Model Transfer for +Object Category Detection +Yusuf Aytar & Andrew Zisserman, +Department of Engineering Science +Oxford +(Presented by Elad Liebman)" +2c8743089d9c7df04883405a31b5fbe494f175b4,Real-time full-body human gender recognition in (RGB)-D data,"Washington State Convention Center +Seattle, Washington, May 26-30, 2015 +978-1-4799-6922-7/15/$31.00 ©2015 IEEE" +2c93c8da5dfe5c50119949881f90ac5a0a4f39fe,Advanced local motion patterns for macro and micro facial expression recognition,"Advanced local motion patterns for macro and micro facial +expression recognition +B. Allaerta,∗, IM. Bilascoa, C. Djerabaa +Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - +Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France" +2c34bf897bad780e124d5539099405c28f3279ac,Robust Face Recognition via Block Sparse Bayesian Learning,"Robust Face Recognition via Block Sparse Bayesian Learning +Taiyong Li1,2, Zhilin Zhang3,4,∗ +School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu 610074, +China +Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China +Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407, +Samsung R&D Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA" +2cc4ae2e864321cdab13c90144d4810464b24275,Face Recognition Using Optimized 3D Information from Stereo Images,"Face Recognition Using Optimized 3D +Information from Stereo Images +Changhan Park1 and Joonki Paik2 +Advanced Technology R&D Center, Samsung Thales Co., Ltd., 2Graduate School of +Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul +Korea +. Introduction +Human biometric characteristics are unique, so it can not be easily duplicated [1]. Such +information +includes; facial, hands, torso, fingerprints, etc. Potential applications, +economical efficiency, and user convenience make the face detection and recognition +technique an important commodity compared to other biometric features [2], [3]. It can also +use a low-cost personal computer (PC) camera instead of expensive equipments, and require +minimal user interface. Recently, extensive research using 3D face data has been carried out +in order to overcome the limits of 2D face detection and feature extraction [2], which +includes PCA [3], neural networks (NN) [4], support vector machines (SVM) [5], hidden +markov models (HMM) [6], and linear discriminant analysis (LDA) [7]. Among them, PCA +nd LDA methods with self-learning method are most widely used [3]. The frontal face +image database provides fairly high recognition rate. However, if the view data of facial +rotation, illumination and pose change is not acquired, the correct recognition rate" +2cac8ab4088e2bdd32dcb276b86459427355085c,A Face-to-Face Neural Conversation Model,"A Face-to-Face Neural Conversation Model +Hang Chu1 +Daiqing Li1 Sanja Fidler1 +University of Toronto 2Vector Institute +{chuhang1122, daiqing," +2c2786ea6386f2d611fc9dbf209362699b104f83,1)local Feature Representations for Facial Expression Recognition Based on Differences of Gray Color Values of Neighboring Pixels,1)LOCAL FEATURE REPRESENTATIONS FOR FACIAL EXPRESSION RECOGNITION BASED ON DIFFERENCES OF GRAY COLOR VALUES OF NEIGHBORING PIXELS Mohammad Shahidul Islam A Dissertation Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy (Computer Science and Information Systems) School of Applied Statistics National Institute of Development Administration 2013 +2c92839418a64728438c351a42f6dc5ad0c6e686,Pose-Aware Face Recognition in the Wild,"Pose-Aware Face Recognition in the Wild +Iacopo Masi1 +Prem Natarajan2 +USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA +G´erard Medioni1 +Stephen Rawls2 +USC Information Sciences Institute (ISI), Marina Del Rey, CA" +2c848cc514293414d916c0e5931baf1e8583eabc,An automatic facial expression recognition system evaluated by different classifiers,"An automatic facial expression recognition system +evaluated by different classifiers +Caroline Silva∗, Andrews Sobral∗ and Raissa Tavares Vieira† +Programa de P´os-Graduac¸˜ao em Mecatrˆonica +Universidade Federal da Bahia, +Email: +Email: +Department of Electrical Engineering - EESC/USP +Email:" +2c883977e4292806739041cf8409b2f6df171aee,Are Haar-Like Rectangular Features for Biometric Recognition Reducible?,"Aalborg Universitet +Are Haar-like Rectangular Features for Biometric Recognition Reducible? +Nasrollahi, Kamal; Moeslund, Thomas B. +Published in: +Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications +DOI (link to publication from Publisher): +0.1007/978-3-642-41827-3_42 +Publication date: +Document Version +Early version, also known as pre-print +Link to publication from Aalborg University +Citation for published version (APA): +Nasrollahi, K., & Moeslund, T. B. (2013). Are Haar-like Rectangular Features for Biometric Recognition +Reducible? In J. Ruiz-Shulcloper, & G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis, +Computer Vision, and Applications (Vol. 8259, pp. 334-341). Springer Berlin Heidelberg: Springer Publishing +Company. Lecture Notes in Computer Science, DOI: 10.1007/978-3-642-41827-3_42 +General rights +Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +? Users may download and print one copy of any publication from the public portal for the purpose of private study or research." +2cdd9e445e7259117b995516025fcfc02fa7eebb,Temporal Exemplar-Based Bayesian Networks for Facial Expression Recognition,"Title +Temporal Exemplar-based Bayesian Networks for facial +expression recognition +Author(s) +Shang, L; Chan, KP +Citation +Proceedings - 7Th International Conference On Machine +Learning And Applications, Icmla 2008, 2008, p. 16-22 +Issued Date +http://hdl.handle.net/10722/61208 +Rights +This work is licensed under a Creative Commons Attribution- +NonCommercial-NoDerivatives 4.0 International License.; +International Conference on Machine Learning and Applications +Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +this material is permitted. However, permission to +reprint/republish this material for advertising or promotional +purposes or for creating new collective works for resale or +redistribution to servers or lists, or to reuse any copyrighted +omponent of this work in other works must be obtained from" +2c5d1e0719f3ad7f66e1763685ae536806f0c23b,AENet: Learning Deep Audio Features for Video Analysis,"AENet: Learning Deep Audio Features for Video +Analysis +Naoya Takahashi, Member, IEEE, Michael Gygli, Member, IEEE, and Luc Van Gool, Member, IEEE" +2c8f24f859bbbc4193d4d83645ef467bcf25adc2,Classification in the Presence of Label Noise: A Survey,"Classification in the Presence of +Label Noise: a Survey +Benoît Frénay and Michel Verleysen, Member, IEEE" +2cdd5b50a67e4615cb0892beaac12664ec53b81f,Mirror mirror: crowdsourcing better portraits,"To appear in ACM TOG 33(6). +Mirror Mirror: Crowdsourcing Better Portraits +Jun-Yan Zhu1 +Aseem Agarwala2 +Alexei A. Efros1 +Eli Shechtman2 +Jue Wang2 +University of California, Berkeley1 Adobe2 +Figure 1: We collect thousands of portraits by capturing video of a subject while they watch movie clips designed to elicit a range of positive +emotions. We use crowdsourcing and machine learning to train models that can predict attractiveness scores of different expressions. These +models can be used to select a subject’s best expressions across a range of emotions, from more serious professional portraits to big smiles." +2cdde47c27a8ecd391cbb6b2dea64b73282c7491,Order-aware Convolutional Pooling for Video Based Action Recognition,"ORDER-AWARE CONVOLUTIONAL POOLING FOR VIDEO BASED ACTION RECOGNITION +Order-aware Convolutional Pooling for Video Based +Action Recognition +Peng Wang, Lingqiao Liu, Chunhua Shen, and Heng Tao Shen" +2cf5f2091f9c2d9ab97086756c47cd11522a6ef3,MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation,"MPIIGaze: Real-World Dataset and Deep +Appearance-Based Gaze Estimation +Xucong Zhang, Yusuke Sugano∗, Mario Fritz, Andreas Bulling" +2c4b96f6c1a520e75eb37c6ee8b844332bc0435c,Automatic Emotion Recognition in Robot-Children Interaction for ASD Treatment,"Automatic Emotion Recognition in Robot-Children Interaction for ASD +Treatment +Marco Leo, Marco Del Coco, Pierluigi Carcagn`ı, Cosimo Distante +ISASI UOS Lecce +Campus Universitario via Monteroni sn, 73100 Lecce Italy +Massimo Bernava, Giovanni Pioggia +ISASI UOS Messina +Giuseppe Palestra +Univerisita’ di Bari +Marine Institute, via Torre Bianca, 98164 Messina Italy +Via Orabona 4, 70126 Bari, Italy" +790aa543151312aef3f7102d64ea699a1d15cb29,Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection,"Confidence-Weighted Local Expression Predictions for +Occlusion Handling in Expression Recognition and Action +Unit detection +Arnaud Dapogny1 +Kevin Bailly1 +Séverine Dubuisson1 +Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIR UMR 7222 +place Jussieu 75005 Paris" +79f6a8f777a11fd626185ab549079236629431ac,Pradeep RavikumarDiscriminative Object Categorization with External Semantic Knowledge,"Copyright +Sung Ju Hwang" +79b669abf65c2ca323098cf3f19fa7bdd837ff31,Efficient tensor based face recognition,"Deakin Research Online +This is the published version: +Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor +ased face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on +Pattern Recognition, IEEE, Washington, D. C., pp. 1-4. +Available from Deakin Research Online: +http://hdl.handle.net/10536/DRO/DU:30044585 +Reproduced with the kind permissions of the copyright owner. +Personal use of this material is permitted. However, permission to reprint/republish this +material for advertising or promotional purposes or for creating new collective works for +resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +in other works must be obtained from the IEEE. +Copyright : 2008, IEEE" +79dd787b2877cf9ce08762d702589543bda373be,Face detection using SURF cascade,"Face Detection Using SURF Cascade +Jianguo Li, Tao Wang, Yimin Zhang +Intel Labs China" +2d294c58b2afb529b26c49d3c92293431f5f98d0,Maximum Margin Projection Subspace Learning for Visual Data Analysis,"Maximum Margin Projection Subspace Learning +for Visual Data Analysis +Symeon Nikitidis, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE" +2d88e7922d9f046ace0234f9f96f570ee848a5b5,Detection under Privileged Information,"Building Better Detection with Privileged Information +Z. Berkay Celik +Department of CSE +The Pennsylvania State +University +Patrick McDaniel +Department of CSE +The Pennsylvania State +University +Rauf Izmailov +Applied Communication +Sciences +Basking Ridge, NJ, US +Nicolas Papernot +Department of CSE +The Pennsylvania State +University +Ananthram Swami +Army Research +Laboratory" +2d05e768c64628c034db858b7154c6cbd580b2d5,FACIAL EXPRESSION RECOGNITION : Machine Learning using C #,"Neda Firoz et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.8, August- 2015, pg. 431-446 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +IJCSMC, Vol. 4, Issue. 8, August 2015, pg.431 – 446 +RESEARCH ARTICLE +ISSN 2320–088X +FACIAL EXPRESSION RECOGNITION: +Machine Learning using C# +Author: Neda Firoz +Advisor: Dr. Prashant Ankur Jain" +2d072cd43de8d17ce3198fae4469c498f97c6277,Random Cascaded-Regression Copse for Robust Facial Landmark Detection,"Random Cascaded-Regression Copse for Robust +Facial Landmark Detection +Zhen-Hua Feng, Student Member, IEEE, Patrik Huber, Josef Kittler, Life Member, IEEE, William Christmas, +nd Xiao-Jun Wu" +2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3,A Survey on:Image Process using Two-Stage Crawler,"International Journal of Computer Applications (0975 – 8887) +National Conference on Advancements in Computer & Information Technology (NCACIT-2016) +A Survey on: Image Process using Two- Stage Crawler +Nilesh Wani +Assistant Professor +SPPU, Pune +Department of Computer Engg +Department of Computer Engg +Department of Computer Engg +Dipak Bodade +BE Student +SPPU, Pune +Savita Gunjal +BE Student +SPPU, Pune +Varsha Mahadik +BE Student +Department of Computer Engg +SPPU, Pune +dditional" +2d84c0d96332bb4fbd8acced98e726aabbf15591,UNIVERSITY OF CALIFORNIA RIVERSIDE Investigating the Role of Saliency for Face Recognition A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering,"UNIVERSITY OF CALIFORNIA +RIVERSIDE +Investigating the Role of Saliency for Face Recognition +A Dissertation submitted in partial satisfaction +of the requirements for the degree of +Doctor of Philosophy +Electrical Engineering +Ramya Malur Srinivasan +March 2015 +Dissertation Committee: +Professor Amit K Roy-Chowdhury, Chairperson +Professor Ertem Tuncel +Professor Conrad Rudolph +Professor Tamar Shinar" +2d8d089d368f2982748fde93a959cf5944873673,Visually Guided Spatial Relation Extraction from Text,"Proceedings of NAACL-HLT 2018, pages 788–794 +New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics" +2df4d05119fe3fbf1f8112b3ad901c33728b498a,Multi-task Learning for Structured Output Prediction,"Facial landmark detection using structured output deep +neural networks +Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +Adam∗2 +LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +September 24, 2015" +4188bd3ef976ea0dec24a2512b44d7673fd4ad26,Nonlinear Non-Negative Component Analysis Algorithms,"Nonlinear Non-Negative Component +Analysis Algorithms +Stefanos Zafeiriou, Member, IEEE, and Maria Petrou, Senior Member, IEEE" +41000c3a3344676513ef4bfcd392d14c7a9a7599,A Novel Approach For Generating Face Template Using Bda,"A NOVEL APPROACH FOR GENERATING FACE +TEMPLATE USING BDA +Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2 +P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +Associate Professor, Department of Computer Engineering, MCERC, Nashik (M.S.), +India" +414715421e01e8c8b5743c5330e6d2553a08c16d,PoTion : Pose MoTion Representation for Action Recognition,"PoTion: Pose MoTion Representation for Action Recognition +Philippe Weinzaepfel2 +Inria∗ +NAVER LABS Europe +J´erˆome Revaud2 Cordelia Schmid1 +Vasileios Choutas1,2" +41ab4939db641fa4d327071ae9bb0df4a612dc89,Interpreting Face Images by Fitting a Fast Illumination-Based 3D Active Appearance Model,"Interpreting Face Images by Fitting a Fast +Illumination-Based 3D Active Appearance +Model +Salvador E. Ayala-Raggi, Leopoldo Altamirano-Robles, Janeth Cruz-Enriquez +Instituto Nacional de Astrof´ısica, ´Optica y Electr´onica, +Luis Enrique Erro #1, 72840 Sta Ma. Tonantzintla. Pue., M´exico +Coordinaci´on de Ciencias Computacionales +{saraggi, robles," +41a6196f88beced105d8bc48dd54d5494cc156fb,Using facial images for the diagnosis of genetic syndromes: A survey,"015 International Conference on +Communications, Signal +Processing, and their Applications +(ICCSPA 2015) +Sharjah, United Arab Emirates +7-19 February 2015 +IEEE Catalog Number: +ISBN: +CFP1574T-POD +978-1-4799-6533-5" +41de109bca9343691f1d5720df864cdbeeecd9d0,Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality,"Article +Facial Emotion Recognition: A Survey and +Real-World User Experiences in Mixed Reality +Dhwani Mehta, Mohammad Faridul Haque Siddiqui and Ahmad Y. Javaid * ID +EECS Department, The University of Toledo, Toledo, OH 43606, USA; (D.M.); +(M.F.H.S.) +* Correspondence: Tel.: +1-419-530-8260 +Received: 10 December 2017; Accepted: 26 January 2018; Published: 1 Febuary 2018" +41d9a240b711ff76c5448d4bf4df840cc5dad5fc,Image Similarity Using Sparse Representation and Compression Distance,"JOURNAL DRAFT, VOL. X, NO. X, APR 2013 +Image Similarity Using Sparse Representation +nd Compression Distance +Tanaya Guha, Student Member, IEEE, and Rabab K Ward, Fellow, IEEE" +419a6fca4c8d73a1e43003edc3f6b610174c41d2,A component based approach improves classification of discrete facial expressions over a holistic approach,"A Component Based Approach Improves Classification of Discrete +Facial Expressions Over a Holistic Approach +Kenny Hong, and Stephan K. Chalup, Senior Member, IEEE and Robert A.R. King" +4180978dbcd09162d166f7449136cb0b320adf1f,Real-time head pose classification in uncontrolled environments with Spatio-Temporal Active Appearance Models,"Real-time head pose classification in uncontrolled environments +with Spatio-Temporal Active Appearance Models +Miguel Reyes∗ and Sergio Escalera+ and Petia Radeva + +Matematica Aplicada i Analisi ,Universitat de Barcelona, Barcelona, Spain ++ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain ++ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain" +413a184b584dc2b669fbe731ace1e48b22945443,Human Pose Co-Estimation and Applications,"Human Pose Co-Estimation and Applications +Marcin Eichner and Vittorio Ferrari" +83b7578e2d9fa60d33d9336be334f6f2cc4f218f,The S-HOCK dataset: Analyzing crowds at the stadium,"The S-HOCK Dataset: Analyzing Crowds at the Stadium +Davide Conigliaro1,3, Paolo Rota2, Francesco Setti3, Chiara Bassetti3, Nicola Conci4, Nicu Sebe4, Marco Cristani1, +University of Verona. 2Vienna Institute of Technology. 3ISTC–CNR (Trento). 4University of Trento. +The topic of crowd modeling in computer vision usually assumes a sin- +gle generic typology of crowd, which is very simplistic. In this paper we +dopt a taxonomy that is widely accepted in sociology, focusing on a partic- +ular category, the spectator crowd, which is formed by people “interested in +watching something specific that they came to see” [1]. This can be found +t the stadiums, amphitheaters, cinema, etc. +In particular, we propose a +novel dataset, the Spectators Hockey (S-HOCK), which deals with 4 hockey +matches during an international tournament. +The dataset is unique in the crowd literature, and in general in the +surveillance realm. The dataset analyzes the crowd at different levels of +detail. At the highest level, it models the network of social connections +mong the public (who knows whom in the neighborhood), what is the sup- +ported team and what has been the best action in the match; all of this has +een obtained by interviews at the stadium. At a medium level, spectators +re localized, and information regarding the pose of their heads and body is +given. Finally, at a lowest level, a fine grained specification of all the actions" +83ca4cca9b28ae58f461b5a192e08dffdc1c76f3,Detecting emotional stress from facial expressions for driving safety,"DETECTING EMOTIONAL STRESS FROM FACIAL EXPRESSIONS FOR DRIVING SAFETY +Hua Gao, Anil Y¨uce, Jean-Philippe Thiran +Signal Processing Laboratory (LTS5), +´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland" +831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9,Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning, +832e1d128059dd5ed5fa5a0b0f021a025903f9d5,Pairwise Conditional Random Forests for Facial Expression Recognition,"Pairwise Conditional Random Forests for Facial Expression Recognition +Arnaud Dapogny1 +Kevin Bailly1 +S´everine Dubuisson1 +Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, ISIR UMR 7222, 4 place Jussieu 75005 Paris" +83e093a07efcf795db5e3aa3576531d61557dd0d,Facial Landmark Localization Using Robust Relationship Priors and Approximative Gibbs Sampling,"Facial Landmark Localization using Robust +Relationship Priors and Approximative Gibbs +Sampling +Karsten Vogt, Oliver M¨uller and J¨orn Ostermann +Institut f¨ur Informationsverarbeitung (tnt) +Leibniz Universit¨at Hannover, Germany +{vogt, omueller," +83b4899d2899dd6a8d956eda3c4b89f27f1cd308,A Robust Approach for Eye Localization Under Variable Illuminations,"-4244-1437-7/07/$20.00 ©2007 IEEE +I - 377 +ICIP 2007" +8323af714efe9a3cadb31b309fcc2c36c8acba8f,Automatic Real-Time Facial Expression Recognition for Signed Language Translation,"Automatic Real-Time +Facial Expression Recognition +for Signed Language Translation +Jacob Richard Whitehill +A thesis submitted in partial fulfillment of the requirements for the de- +gree of Magister Scientiae in the Department of Computer Science, +University of the Western Cape. +May 2006" +83fd5c23204147844a0528c21e645b757edd7af9,USDOT number localization and recognition from vehicle side-view NIR images,"USDOT Number Localization and Recognition From Vehicle Side-View NIR +Images +Orhan Bulan, Safwan Wshah, Ramesh Palghat, Vladimir Kozitsky and Aaron Burry +Palo Alto Research Center (PARC) +800 Phillips Rd. Webster NY 14580" +8395cf3535a6628c3bdc9b8d0171568d551f5ff0,Entropy Non-increasing Games for the Improvement of Dataflow Programming,"Entropy Non-increasing Games for the +Improvement of Dataflow Programming +Norbert B´atfai, Ren´at´o Besenczi, Gerg˝o Bogacsovics, +Fanny Monori∗ +February 16, 2017" +834f5ab0cb374b13a6e19198d550e7a32901a4b2,Face Translation between Images and Videos using Identity-aware CycleGAN,"Face Translation between Images and Videos using Identity-aware CycleGAN +Zhiwu Huang†, Bernhard Kratzwald†, Danda Pani Paudel†, Jiqing Wu†, Luc Van Gool†‡ +Computer Vision Lab, ETH Zurich, Switzerland +VISICS, KU Leuven, Belgium +{zhiwu.huang, paudel, jwu," +8320dbdd3e4712cca813451cd94a909527652d63,Ear Biometrics,"EAR BIOMETRICS +Mark Burge +nd Wilhelm Burger +Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) Linz(cid:1) Austria(cid:1) +urge(cid:1)cast(cid:2)uni(cid:3)linz(cid:2)ac(cid:2)at" +837e99301e00c2244023a8a48ff98d7b521c93ac,Local Feature Evaluation for a Constrained Local Model Framework,"Local Feature Evaluation for a Constrained +Local Model Framework +Maiya Hori(B), Shogo Kawai, Hiroki Yoshimura, and Yoshio Iwai +Graduate School of Engineering, Tottori University, +01 Minami 4-chome, Koyama-cho, Tottori 680-8550, Japan" +834b15762f97b4da11a2d851840123dbeee51d33,Landmark-free smile intensity estimation,"Landmark-free smile intensity estimation +J´ulio C´esar Batista, Olga R. P. Bellon and Luciano Silva +IMAGO Research Group - Universidade Federal do Paran´a +Fig. 1. Overview of our method for smile intensity estimation" +833f6ab858f26b848f0d747de502127406f06417,Learning weighted similarity measurements for unconstrained face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE +ICIP 2009" +8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff,Generic versus Salient Region-Based Partitioning for Local Appearance Face Recognition,"Generic versus Salient Region-based Partitioning +for Local Appearance Face Recognition +Hazım Kemal Ekenel and Rainer Stiefelhagen +Computer Science Depatment, Universit¨at Karlsruhe (TH) +Am Fasanengarten 5, Karlsruhe 76131, Germany +http://isl.ira.uka.de/cvhci" +1b02b9413b730b96b91d16dcd61b2420aef97414,Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction avec un robot. (Audio-visual detection of emotional (laugh and smile) and attentional markers for elderly people in social interaction with a robot),"Détection de marqueurs affectifs et attentionnels de +personnes âgées en interaction avec un robot +Fan Yang +To cite this version: +Fan Yang. Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction +vec un robot. +Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2015. Français. . +HAL Id: tel-01280505 +https://tel.archives-ouvertes.fr/tel-01280505 +Submitted on 29 Feb 2016 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non," +1b55c4e804d1298cbbb9c507497177014a923d22,Incremental Class Representation Learning for Face Recognition,"Incremental Class Representation +Learning for Face Recognition +Degree’s Thesis +Audiovisual Systems Engineering +Author: +Advisors: Elisa Sayrol, Josep Ramon Morros +Eric Presas Valga +Universitat Politècnica de Catalunya (UPC) +016 - 2017" +1b6394178dbc31d0867f0b44686d224a19d61cf4,EPML: Expanded Parts Based Metric Learning for Occlusion Robust Face Verification,"EPML: Expanded Parts based Metric Learning for +Occlusion Robust Face Verification +Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez +To cite this version: +Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez. EPML: Expanded Parts based Metric Learning +for Occlusion Robust Face Verification. Asian Conference on Computer Vision, Nov 2014, -, +Singapore. pp.1-15, 2014. +HAL Id: hal-01070657 +https://hal.archives-ouvertes.fr/hal-01070657 +Submitted on 2 Oct 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +1bdef21f093c41df2682a07f05f3548717c7a3d1,Towards Automated Classification of Emotional Facial Expressions,"Towards Automated Classification of Emotional Facial Expressions +Lewis J. Baker Vanessa LoBue +Elizabeth Bonawitz & Patrick Shafto +Department of Mathematics and Computer Science, 2Department of Psychology +Rutgers University – Newark, 101 Warren St., Newark, NJ, 07102 USA" +1b150248d856f95da8316da868532a4286b9d58e,Analyzing 3D Objects in Cluttered Images,"Analyzing 3D Objects in Cluttered Images +Mohsen Hejrati +UC Irvine +Deva Ramanan +UC Irvine" +1be498d4bbc30c3bfd0029114c784bc2114d67c0,Age and Gender Estimation of Unfiltered Faces,"Age and Gender Estimation of Unfiltered Faces +Eran Eidinger, Roee Enbar, Tal Hassner*" +1bbec7190ac3ba34ca91d28f145e356a11418b67,Explorer Action Recognition with Dynamic Image Networks,"Action Recognition with Dynamic Image Networks +Citation for published version: +Bilen, H, Fernando, B, Gravves, E & Vedaldi, A 2017, 'Action Recognition with Dynamic Image Networks' +IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2017.2769085 +Digital Object Identifier (DOI): +0.1109/TPAMI.2017.2769085 +Link: +Link to publication record in Edinburgh Research Explorer +Document Version: +Peer reviewed version +Published In: +IEEE Transactions on Pattern Analysis and Machine Intelligence +General rights +Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) +nd / or other copyright owners and it is a condition of accessing these publications that users recognise and +bide by the legal requirements associated with these rights. +Take down policy +The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer +ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please +ontact providing details, and we will remove access to the work immediately and" +1b3587363d37dd197b6adbcfa79d49b5486f27d8,Multimodal Grounding for Language Processing,"Multimodal Grounding for Language Processing +Lisa Beinborn◦∗3 +Teresa Botschen∗(cid:52) +Iryna Gurevych (cid:52) +Language Technology Lab, University of Duisburg-Essen +(cid:52) Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES +Department of Computer Science, Technische Universit¨at Darmstadt +www.ukp.tu-darmstadt.de" +1b300a7858ab7870d36622a51b0549b1936572d4,Dynamic Facial Expression Recognition With Atlas Construction and Sparse Representation,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2537215, IEEE +Transactions on Image Processing +Dynamic Facial Expression Recognition with Atlas +Construction and Sparse Representation +Yimo Guo, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE" +1b90507f02967ff143fce993a5abbfba173b1ed0,Gradient-DCT (G-DCT) descriptors,"Image Processing Theory, Tools and Applications +Gradient-DCT (G-DCT) Descriptors +Radovan Fusek, Eduard Sojka +Technical University of Ostrava, FEECS, Department of Computer Science, +7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic +e-mail:" +1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913d,Registration Invariant Representations for Expression Detection,"DICTA +DICTA 2010 Submission #147. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +Registration Invariant Representations for Expression Detection +Anonymous DICTA submission +Paper ID 147" +1b0a071450c419138432c033f722027ec88846ea,Looking at faces in a vehicle: A deep CNN based approach and evaluation,"Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016 +978-1-5090-1889-5/16/$31.00 ©2016 IEEE" +1b3b01513f99d13973e631c87ffa43904cd8a821,HMM recognition of expressions in unrestrained video intervals,"HMM RECOGNITION OF EXPRESSIONS IN UNRESTRAINED VIDEO INTERVALS +José Luis Landabaso, Montse Pardàs, Antonio Bonafonte +Universitat Politècnica de Catalunya, Barcelona, Spain" +1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3,Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees,"ENHANCEMENT OF FAST FACE DETECTION ALGORITHM BASED ON A CASCADE OF +DECISION TREES +V. V. Khryashchev a, *, A. A. Lebedev a, A. L. Priorov a +YSU, Yaroslavl, Russia - (vhr, +Commission II, WG II/5 +KEY WORDS: Face Detection, Cascade Algorithm, Decision Trees." +1b70bbf7cdfc692873ce98dd3c0e191580a1b041,Enhancing Performance of Face Recognition System Using Independent Component Analysis,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072 +Enhancing Performance of Face Recognition +System Using Independent Component Analysis +Dipti Rane1, Prof. Uday Bhave2, and Asst Prof. Manimala Mahato3 +Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 1 +Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 2 +Co-Guide, Assistant Prof., Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 3 +---------------------------------------------------------------------***--------------------------------------------------------------------- +ards, tokens and keys. Biometric based methods examine" +1b71d3f30238cb6621021a95543cce3aab96a21b,Fine-grained Video Classification and Captioning,"Fine-grained Video Classification and Captioning +Farzaneh Mahdisoltani1,2, Guillaume Berger2, Waseem Gharbieh2 +David Fleet1, Roland Memisevic2 +{farzaneh, +University of Toronto1, Twenty Billion Neurons2" +1b4f6f73c70353869026e5eec1dd903f9e26d43f,Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels,"Robust Subjective Visual Property Prediction +from Crowdsourced Pairwise Labels +Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Jiechao Xiong, +Shaogang Gong, Yizhou Wang, and Yuan Yao" +1bc23c771688109bed9fd295ce82d7e702726327,Sparse Modeling of High - Dimensional Data for Learning and Vision,(cid:13) 2011 Jianchao Yang +1b4bc7447f500af2601c5233879afc057a5876d8,Facial Action Unit Classification with Hidden Knowledge under Incomplete Annotation,"Facial Action Unit Classification with Hidden Knowledge +under Incomplete Annotation +Jun Wang +University of Science and +Technology of China +Hefei, Anhui +Shangfei Wang +University of Science and +Technology of China +Hefei, Anhui +Rensselaer Polytechnic +Qiang Ji +Institute +Troy, NY +P.R.China, 230027 +P.R.China, 230027 +USA, 12180" +7711a7404f1f1ac3a0107203936e6332f50ac30c,Action Classification and Highlighting in Videos,"Action Classification and Highlighting in Videos +Atousa Torabi +Disney Research Pittsburgh +Leonid Sigal +Disney Research Pittsburgh" +778c9f88839eb26129427e1b8633caa4bd4d275e,Pose pooling kernels for sub-category recognition,"Pose Pooling Kernels for Sub-category Recognition +Ning Zhang +ICSI & UC Berkeley +Ryan Farrell +ICSI & UC Berkeley +Trever Darrell +ICSI & UC Berkeley" +7789a5d87884f8bafec8a82085292e87d4e2866f,A Unified Tensor-based Active Appearance Face Model,"A Unified Tensor-based Active Appearance Face +Model +Zhen-Hua Feng, Member, IEEE, Josef Kittler, Life Member, IEEE, William Christmas, and Xiao-Jun Wu, +Member, IEEE" +778bff335ae1b77fd7ec67404f71a1446624331b,Hough Forest-Based Facial Expression Recognition from Video Sequences,"Hough Forest-based Facial Expression Recognition from +Video Sequences +Gabriele Fanelli, Angela Yao, Pierre-Luc Noel, Juergen Gall, and Luc Van Gool +BIWI, ETH Zurich http://www.vision.ee.ethz.ch +VISICS, K.U. Leuven http://www.esat.kuleuven.be/psi/visics" +7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0d,Content-aware compression using saliency-driven image retargeting,"CONTENT-AWARE COMPRESSION USING SALIENCY-DRIVEN IMAGE RETARGETING +Fabio Z¨und*†, Yael Pritch*, Alexander Sorkine-Hornung*, Stefan Mangold*, Thomas Gross† +*Disney Research Zurich +ETH Zurich" +7754b708d6258fb8279aa5667ce805e9f925dfd0,Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships,"Facial Action Unit Recognition by Exploiting +Their Dynamic and Semantic Relationships +Yan Tong, Student Member, IEEE, Wenhui Liao, Member, IEEE, and Qiang Ji, Senior Member, IEEE" +77db171a523fc3d08c91cea94c9562f3edce56e1,Gauss-Laguerre wavelet textural feature fusion with geometrical information for facial expression identification,"Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17 +http://jivp.eurasipjournals.com/content/2012/1/17 +R ES EAR CH +Open Access +Gauss–Laguerre wavelet textural feature fusion +with geometrical information for facial expression +identification +Ahmad Poursaberi1*, Hossein Ahmadi Noubari2, Marina Gavrilova1 and Svetlana N Yanushkevich1" +77037a22c9b8169930d74d2ce6f50f1a999c1221,Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation,"Robust Face Recognition With Kernelized +Locality-Sensitive Group Sparsity Representation +Shoubiao Tan, Xi Sun, Wentao Chan, Lei Qu, and Ling Shao" +779ad364cae60ca57af593c83851360c0f52c7bf,Steerable Pyramids Feature Based Classification Using Fisher Linear Discriminant for Face Recognition,"Steerable Pyramids Feature Based Classification Using Fisher +Linear Discriminant for Face Recognition +EL AROUSSI MOHAMED1 +EL HASSOUNI MOHAMMED12 +GHOUZALI SANAA1 +RZIZA MOHAMMED1 +ABOUTAJDINE DRISS1 +GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco +DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco +PO.Box 1014, Rabat, Morocco" +77d31d2ec25df44781d999d6ff980183093fb3de,The Multiverse Loss for Robust Transfer Learning,"The Multiverse Loss for Robust Transfer Learning +Supplementary +. Omitted proofs +for which the joint loss: +m(cid:88) +L(F r, br, D, y) +J(F 1, b1...F m, bm, D, y) = +is bounded by: +mL∗(D, y) ≤ J(F 1, b1...F m, bm, D, y) +m−1(cid:88) +≤ mL∗(D, y) + +Alλd−j+1 +where [A1 . . . Am−1] are bounded parameters. +We provide proofs that were omitted from the paper for +lack of space. We follow the same theorem numbering as in +the paper. +Lemma 1. The minimizers F ∗, b∗ of L are not unique, and +it holds that for any vector v ∈ Rc and scalar s, the solu- +tions F ∗ + v1(cid:62) +Proof. denoting V = v1(cid:62)" +48186494fc7c0cc664edec16ce582b3fcb5249c0,P-CNN: Pose-Based CNN Features for Action Recognition,"P-CNN: Pose-based CNN Features for Action Recognition +Guilhem Ch´eron∗ † +Ivan Laptev∗ +INRIA +Cordelia Schmid†" +48499deeaa1e31ac22c901d115b8b9867f89f952,Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Interim Report of Final Year Project +HKU-Face: A Large Scale Dataset for +Deep Face Recognition +Haicheng Wang +035140108 +Haoyu Li +035141841 +COMP4801 Final Year Project +Project Code: 17007" +486a82f50835ea888fbc5c6babf3cf8e8b9807bc,Face Search at Scale: 80 Million Gallery,"MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 +Face Search at Scale: 80 Million Gallery +Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE" +4850af6b54391fc33c8028a0b7fafe05855a96ff,Discovering useful parts for pose estimation in sparsely annotated datasets,"Discovering Useful Parts for Pose Estimation in Sparsely Annotated Datasets +Mikhail Breslav1, Tyson L. Hedrick2, Stan Sclaroff1, and Margrit Betke1 +Department of Computer Science and 2Department of Biology +Boston University and 2University of North Carolina" +48a5b6ee60475b18411a910c6084b3a32147b8cd,Pedestrian Attribute Recognition with Part-based CNN and Combined Feature Representations,"Pedestrian attribute recognition with part-based CNN +nd combined feature representations +Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla +Baskurt +To cite this version: +Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Pedestrian attribute +recognition with part-based CNN and combined feature representations. VISAPP2018, Jan 2018, +Funchal, Portugal. +HAL Id: hal-01625470 +https://hal.archives-ouvertes.fr/hal-01625470 +Submitted on 21 Jun 2018 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non," +488e475eeb3bb39a145f23ede197cd3620f1d98a,Pedestrian Attribute Classification in Surveillance: Database and Evaluation,"Pedestrian Attribute Classification in Surveillance: Database and Evaluation +Jianqing Zhu, Shengcai Liao, Zhen Lei, Dong Yi, Stan Z. Li∗ +Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +Institute of Automation, Chinese Academy of Sciences (CASIA) +95 Zhongguancun East Road, 100190, Beijing, China +{jqzhu, scliao, zlei, dyi," +487df616e981557c8e1201829a1d0ec1ecb7d275,Acoustic Echo Cancellation Using a Vector-Space-Based Adaptive Filtering Algorithm,"Acoustic Echo Cancellation Using a Vector-Space-Based +Adaptive Filtering Algorithm +Yu Tsao, Member IEEE, Shih-Hau Fang*, Senior Member IEEE, and Yao Shiao" +48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,Non Binary Local Gradient Contours for Face Recognition,"Non Binary Local Gradient Contours for Face Recognition +Abdullah Gubbia, Mohammad Fazle Azeemb, M Sharmila Kumaric +Department of Electronics and Communication, P.A. College of Engnineering, Mangalore, +Nadupadavu, Mangalore, India, Contact: +Senior IEEE Member, Department of Electrical and Electronics Engineering, Aligarh Muslim +University, India, Contact: +Department of Computer Science and Engineering, P A College of Engineering, Nadupadavu, +Mangalore, India. Contact: +As the features from the traditional Local Binary patterns (LBP) and Local Directional Patterns (LDP) are +found to be ineffective for face recognition, we have proposed a new approach derived on the basis of Information +sets whereby the loss of information that occurs during the binarization is eliminated. The information sets +s a product. Since face is having smooth texture in a limited area, the extracted features must be highly +discernible. To limit the number of features, we consider only the non overlapping windows. By the application +of the information set theory we can reduce the number of feature of an image. The derived features are shown +to work fairly well over eigenface, fisherface and LBP methods. +Keywords: Local Binary Pattern, Local Directional Pattern, Information Sets, Gradient Contour, Support +Vector Machine, KNN, Face Recognition. +. INTRODUCTION +In face recognition, the major issue to be ad- +dressed is the extraction of features which are" +48cfc5789c246c6ad88ff841701204fc9d6577ed,Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis,"J Inf Process Syst, Vol.12, No.3, pp.392~409, September 2016 +ISSN 1976-913X (Print) +ISSN 2092-805X (Electronic) +Age Invariant Face Recognition Based on DCT +Feature Extraction and Kernel Fisher Analysis +Leila Boussaad*, Mohamed Benmohammed**, and Redha Benzid***" +70f189798c8b9f2b31c8b5566a5cf3107050b349,The challenge of face recognition from digital point-and-shoot cameras,"The Challenge of Face Recognition from Digital Point-and-Shoot Cameras +J. Ross Beveridge∗ +Geof H. Givens§ +W. Todd Scruggs¶ +P. Jonathon Phillips† +Yui Man Lui∗ +Kevin W. Bowyer(cid:107) +David Bolme‡ +Mohammad Nayeem Teli∗ +Patrick J. Flynn(cid:107) +Bruce A. Draper∗, +Hao Zhang∗ +Su Cheng†" +70109c670471db2e0ede3842cbb58ba6be804561,Zero-Shot Visual Recognition via Bidirectional Latent Embedding,"Noname manuscript No. +(will be inserted by the editor) +Zero-Shot Visual Recognition via Bidirectional Latent Embedding +Qian Wang · Ke Chen +Received: date / Accepted: date" +706236308e1c8d8b8ba7749869c6b9c25fa9f957,Crowdsourced data collection of facial responses,"Crowdsourced Data Collection of Facial Responses +Daniel McDuff +MIT Media Lab +Cambridge +02139, USA +Rosalind Picard +MIT Media Lab +Cambridge +02139, USA +Rana el Kaliouby +MIT Media Lab +Cambridge +02139, USA" +706b9767a444de4fe153b2f3bff29df7674c3161,Fast Metric Learning For Deep Neural Networks,"Fast Metric Learning For Deep Neural Networks +Henry Gouk1, Bernhard Pfahringer1, and Michael Cree2 +Department of Computer Science, University of Waikato, Hamilton, New Zealand +School of Engineering, University of Waikato, Hamilton, New Zealand" +70c58700eb89368e66a8f0d3fc54f32f69d423e1,In Unsupervised Spatio-temporal Feature Learning,"INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE +LEARNING +Sujoy Paul, Sourya Roy and Amit K. Roy-Chowdhury +Dept. of Electrical and Computer Engineering, University of California, Riverside, CA 92521" +70e79d7b64f5540d309465620b0dab19d9520df1,Facial Expression Recognition System Using Extreme Learning Machine,"International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 +ISSN 2229-5518 +Facial Expression Recognition System +Using Extreme Learning Machine +Firoz Mahmud, Dr. Md. Al Mamun" +7003d903d5e88351d649b90d378f3fc5f211282b,Facial Expression Recognition using Gabor Wavelet,"International Journal of Computer Applications (0975 – 8887) +Volume 68– No.23, April 2013 +Facial Expression Recognition using Gabor Wavelet +Mahesh Kumbhar +ENTC SVERI’S COE (Poly), +Pandharpur, +Solapur, India +Manasi Patil +ENTC SVERI’S COE, +Pandharpur, +Solapur, India +Ashish Jadhav +ENTC SVERI’S COE (Poly), +Pandharpur, +Solapur, India" +70bf1769d2d5737fc82de72c24adbb7882d2effd,Face Detection in Intelligent Ambiences with Colored Illumination,"Face detection in intelligent ambiences with colored illumination +Christina Katsimerou, Judith A. Redi, Ingrid Heynderickx +Department of Intelligent Systems +TU Delft +Delft, The Netherlands" +1e058b3af90d475bf53b3f977bab6f4d9269e6e8,Manifold Relevance Determination,"Manifold Relevance Determination +Andreas C. Damianou +Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK +Carl Henrik Ek +KTH – Royal Institute of Technology, CVAP Lab, Stockholm, Sweden +Michalis K. Titsias +Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK +Neil D. Lawrence +Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK" +1e799047e294267087ec1e2c385fac67074ee5c8,Automatic Classification of Single Facial Images,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999 +Short Papers___________________________________________________________________________________________________ +Automatic Classification of +Single Facial Images +Michael J. Lyons, Julien Budynek, and +Shigeru Akamatsu" +1eb4ea011a3122dc7ef3447e10c1dad5b69b0642,Contextual Visual Recognition from Images and Videos,"Contextual Visual Recognition from Images and Videos +Georgia Gkioxari +Jitendra Malik +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-132 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-132.html +July 19, 2016" +1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3,A Brief Review of Facial Emotion Recognition Based on Visual Information,"Article +A Brief Review of Facial Emotion Recognition Based +on Visual Information +Byoung Chul Ko ID +Department of Computer Engineering, Keimyung University, Daegu 42601, Korea; +Tel.: +82-10-3559-4564 +Received: 6 December 2017; Accepted: 25 January 2018; Published: 30 January 2018" +1e8eee51fd3bf7a9570d6ee6aa9a09454254689d,Face Search at Scale,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE +Transactions on Pattern Analysis and Machine Intelligence +Face Search at Scale +Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE" +1eec03527703114d15e98ef9e55bee5d6eeba736,Automatic identification of persons in TV series,"UNIVERSITÄT KARLSRUHE (TH) +FAKULTÄT FÜR INFORMATIK +INTERACTIVE SYSTEMS LABS +Prof. Dr. A. Waibel +DIPLOMA THESIS +Automatic identification +of persons in TV series +SUBMITTED BY +Mika Fischer +MAY 2008 +ADVISORS +M.Sc. Hazım Kemal Ekenel +Dr.-Ing. Rainer Stiefelhagen" +1ef1f33c48bc159881c5c8536cbbd533d31b0e9a,Identity-based Adversarial Training of Deep CNNs for Facial Action Unit Recognition,"Z. ZHANG ET AL.: ADVERSARIAL TRAINING FOR ACTION UNIT RECOGNITION +Identity-based Adversarial Training of Deep +CNNs for Facial Action Unit Recognition +Zheng Zhang +Shuangfei Zhai +Lijun Yin +Department of Computer Science +State University of New York at +Binghamton +NY, USA." +1e8394cc9fe7c2392aa36fb4878faf7e78bbf2de,Zero-Shot Object Recognition System Based on Topic Model,"TO APPEAR IN IEEE THMS +Zero-Shot Object Recognition System +ased on Topic Model +Wai Lam Hoo and Chee Seng Chan" +1ecb56e7c06a380b3ce582af3a629f6ef0104457,"A New Way of Discovery of Belief, Desire and Intention in the BDI Agent-Based Software Modeling","List of Contents Vol.8 +Contents of +Journal of Advanced Computational +Intelligence and Intelligent Informatics +Volume 8 +Vol.8 No.1, January 2004 +Editorial: +o Special Issue on Selected Papers from Humanoid, +Papers: +o Dynamic Color Object Recognition Using Fuzzy +Nano-technology, Information Technology, +Communication and Control, Environment, and +Management (HNICEM’03). +Elmer P. Dadios +Papers: +o A New Way of Discovery of Belief, Desire and +Intention in the BDI Agent-Based Software +Modeling . +Chang-Hyun Jo +o Integration of Distributed Robotic Systems" +1e64b2d2f0a8a608d0d9d913c4baee6973995952,Dominant and Complementary Multi-Emotional Facial Expression Recognition Using C-Support Vector Classification,"DOMINANT AND +COMPLEMENTARY MULTI- +EMOTIONAL FACIAL +EXPRESSION RECOGNITION +USING C-SUPPORT VECTOR +CLASSIFICATION +Christer Loob, Pejman Rasti, Iiris Lusi, Julio C. S. Jacques +Junior, Xavier Baro, Sergio Escalera, Tomasz Sapinski, +Dorota Kaminska and Gholamreza Anbarjafari" +1e21b925b65303ef0299af65e018ec1e1b9b8d60,Unsupervised Cross-Domain Image Generation,"Under review as a conference paper at ICLR 2017 +UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION +Yaniv Taigman, Adam Polyak & Lior Wolf +Facebook AI Research +Tel-Aviv, Israel" +1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,9 Entropy Regularization,"Entropy Regularization +Yves Grandvalet +Yoshua Bengio +The problem of semi-supervised induction consists in learning a decision rule from +labeled and unlabeled data. This task can be undertaken by discriminative methods, +provided that learning criteria are adapted consequently. In this chapter, we moti- +vate the use of entropy regularization as a means to bene(cid:12)t from unlabeled data in +the framework of maximum a posteriori estimation. The learning criterion is derived +from clearly stated assumptions and can be applied to any smoothly parametrized +model of posterior probabilities. The regularization scheme favors low density sep- +ration, without any modeling of the density of input features. The contribution +of unlabeled data to the learning criterion induces local optima, but this problem +an be alleviated by deterministic annealing. For well-behaved models of posterior +probabilities, deterministic annealing EM provides a decomposition of the learning +problem in a series of concave subproblems. Other approaches to the semi-supervised +problem are shown to be close relatives or limiting cases of entropy regularization. +A series of experiments illustrates the good behavior of the algorithm in terms of +performance and robustness with respect to the violation of the postulated low den- +sity separation assumption. The minimum entropy solution bene(cid:12)ts from unlabeled +data and is able to challenge mixture models and manifold learning in a number of" +1ee3b4ba04e54bfbacba94d54bf8d05fd202931d,Celebrity Face Recognition using Deep Learning,"Indonesian Journal of Electrical Engineering and Computer Science +Vol. 12, No. 2, November 2018, pp. 476~481 +ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481 + 476 +Celebrity Face Recognition using Deep Learning +Nur Ateqah Binti Mat Kasim1, Nur Hidayah Binti Abd Rahman2, Zaidah Ibrahim3, +Nur Nabilah Abu Mangshor4 +,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +Shah Alam, Selangor, Malaysia +Campus Jasin, Melaka, Malaysia +Article Info +Article history: +Received May 29, 2018 +Revised Jul 30, 2018 +Accepted Aug 3, 2018 +Keywords: +AlexNet +Convolutional neural network +Deep learning" +1e41a3fdaac9f306c0ef0a978ae050d884d77d2a,Robust Object Recognition with Cortex-Like Mechanisms,"Robust Object Recognition with +Cortex-Like Mechanisms +Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and +Tomaso Poggio, Member, IEEE" +1e1e66783f51a206509b0a427e68b3f6e40a27c8,Semi-supervised Estimation of Perceived Age from Face Images,"SEMI-SUPERVISED ESTIMATION OF PERCEIVED AGE +FROM FACE IMAGES +VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan +Kazuya Ueki +Masashi Sugiyama +Keywords:" +1efaa128378f988965841eb3f49d1319a102dc36,Hierarchical binary CNNs for landmark localization with limited resources,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Hierarchical binary CNNs for landmark +localization with limited resources +Adrian Bulat and Georgios Tzimiropoulos" +8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2,Consensual and Privacy-Preserving Sharing of Multi-Subject and Interdependent Data,"Consensual and Privacy-Preserving Sharing of +Multi-Subject and Interdependent Data +Alexandra-Mihaela Olteanu +EPFL, UNIL–HEC Lausanne +K´evin Huguenin +UNIL–HEC Lausanne +Italo Dacosta +Jean-Pierre Hubaux" +84e4b7469f9c4b6c9e73733fa28788730fd30379,Projective complex matrix factorization for facial expression recognition,"Duong et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:10 +DOI 10.1186/s13634-017-0521-9 +EURASIP Journal on Advances +in Signal Processing +R ES EAR CH +Projective complex matrix factorization for +facial expression recognition +Viet-Hang Duong1, Yuan-Shan Lee1, Jian-Jiun Ding2, Bach-Tung Pham1, Manh-Quan Bui1, Pham The Bao2 +nd Jia-Ching Wang1,3* +Open Access" +84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1,Improved Boosting Performance by Explicit Handling of Ambiguous Positive Examples,"Improved Boosting Performance by Explicit +Handling of Ambiguous Positive Examples +Miroslav Kobetski and Josephine Sullivan" +84508e846af3ac509f7e1d74b37709107ba48bde,Use of the Septum as a Reference Point in a Neurophysiologic Approach to Facial Expression Recognition,"Use of the Septum as a Reference Point in a Neurophysiologic Approach to +Facial Expression Recognition +Igor Stankovic and Montri Karnjanadecha +Department of Computer Engineering, Faculty of Engineering, +Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand +Telephone: (66)080-7045015, (66)074-287-357 +E-mail:" +841a5de1d71a0b51957d9be9d9bebed33fb5d9fa,PCANet: A Simple Deep Learning Baseline for Image Classification?,"PCANet: A Simple Deep Learning Baseline for +Image Classification? +Tsung-Han Chan, Member, IEEE, Kui Jia, Shenghua Gao, Jiwen Lu, Senior Member, IEEE, +Zinan Zeng, and Yi Ma, Fellow, IEEE" +8411fe1142935a86b819f065cd1f879f16e77401,Facial Recognition using Modified Local Binary Pattern and Random Forest,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 6, November 2013 +Facial Recognition using Modified Local Binary +Pattern and Random Forest +Brian O’Connor and Kaushik Roy +Department of Computer Science, +North Carolina A&T State University, +Greensboro, NC 27411" +4adca62f888226d3a16654ca499bf2a7d3d11b71,Models of Semantic Representation with Visual Attributes,"Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 572–582, +Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics" +4a2d54ea1da851151d43b38652b7ea30cdb6dfb2,Direct recognition of motion-blurred faces,"Direct Recognition of Motion Blurred Faces +Kaushik Mitra, Priyanka Vageeswaran and Rama Chellappa" +4ab84f203b0e752be83f7f213d7495b04b1c4c79,Concave Losses for Robust Dictionary Learning,"CONCAVE LOSSES FOR ROBUST DICTIONARY LEARNING +Rafael Will M. de Araujo, R. Hirata Jr ∗ +Alain Rakotomamonjy † +University of S˜ao Paulo +Institute of Mathematics and Statistics +Rua do Mat˜ao, 1010 – 05508-090 – S˜ao Paulo-SP, Brazil +Universit´e de Rouen Normandie +LITIS EA 4108 +76800 Saint- ´Etienne-du-Rouvray, France" +4a3758f283b7c484d3f164528d73bc8667eb1591,Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial Networks,"Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial +Networks +Yunfan Liu, Qi Li, and Zhenan Sun∗ +Center for Research on Intelligent Perception and Computing, CASIA +National Laboratory of Pattern Recognition, CASIA +{qli," +4a4da3d1bbf10f15b448577e75112bac4861620a,"Face , Expression , and Iris Recognition","FACE, EXPRESSION, AND IRIS RECOGNITION +USING LEARNING-BASED APPROACHES +Guodong Guo +A dissertation submitted in partial fulfillment of +the requirements for the degree of +Doctor of Philosophy +(Computer Sciences) +t the +UNIVERSITY OF WISCONSIN–MADISON" +4abd49538d04ea5c7e6d31701b57ea17bc349412,Recognizing Fine-Grained and Composite Activities Using Hand-Centric Features and Script Data,"Recognizing Fine-Grained and Composite Activities +using Hand-Centric Features and Script Data +Marcus Rohrbach · Anna Rohrbach · Michaela Regneri · +Sikandar Amin · Mykhaylo Andriluka · Manfred Pinkal · Bernt Schiele" +4a0f98d7dbc31497106d4f652968c708f7da6692,Real-time eye gaze direction classification using convolutional neural network,"Real-time Eye Gaze Direction Classification Using +Convolutional Neural Network +Anjith George, Member, IEEE, and Aurobinda Routray, Member, IEEE" +4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,Multi-modal social signal analysis for predicting agreement in conversation settings,"Multi-modal Social Signal Analysis for Predicting +Agreement in Conversation Settings +Víctor Ponce-López +IN3, Open University of +Catalonia, Roc Boronat, 117, +08018 Barcelona, Spain. +Dept. MAiA, University of +Barcelona, Gran Via, 585, +08007 Barcelona, Spain. +Computer Vision Center, UAB, +08193 Barcelona, Spain. +Sergio Escalera +Dept. MAiA, University of +Barcelona, Gran Via, 585, +08007 Barcelona, Spain. +Computer Vision Center, UAB, +08193 Barcelona, Spain. +Xavier Baró +EIMT, Open University of +Catalonia, Rbla. Poblenou," +4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c,Face Recognition using Local Features based on Two-layer Block Model,"MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +Face Recognition using Local Features based on Two-layer Block M odel +W onjun Hwang1 Ji-Yeun Kim Seokcheol Kee +Computing Lab., +Samsung Advanced Institute of Technology +ombined by Yang and etc [7]. The sparsification of LFA +helps the reduction of dimension of image in LDA scheme +nd local topological property is more useful than holistic +property of PCA in recognition, but there is still structural +problem because the method to select the features is +designed for minimization of reconstruction error, not for +increasing discriminability in face model. +In this paper, we proposed the novel recognition +lgorithm to merge LFA and LDA method. We do not use +the existing sparsification method for selecting features but +dopt the two-layer block model to make several groups +with topographic local features in similar position. Each +local block, flocked local features, can represent its own +local property and at +time holistic face" +4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9,Fusing Deep Convolutional Networks for Large Scale Visual Concept Classification,"Fusing Deep Convolutional Networks for Large +Scale Visual Concept Classification +Hilal Ergun and Mustafa SertB +Department of Computer Engineering +Bas¸kent University +06810 Ankara, TURKEY" +4ac3cd8b6c50f7a26f27eefc64855134932b39be,Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network,"Robust Facial Landmark Detection +via a Fully-Convolutional Local-Global Context Network +Daniel Merget +Matthias Rock +Gerhard Rigoll +Technical University of Munich" +4abaebe5137d40c9fcb72711cdefdf13d9fc3e62,Dimension Reduction for Regression with Bottleneck Neural Networks,"Dimension Reduction for Regression +with Bottleneck Neural Networks +Elina Parviainen +BECS, Aalto University School of Science and Technology, Finland" +4aeb87c11fb3a8ad603311c4650040fd3c088832,Self-paced Mixture of Regressions,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +SamplesSelected SamplesOutliersMoRSPMoR (ours)6361242024Figure1:Inter-componentimbalanceandintra-componentoutliersinMixtureofRegression(MoR)approaches.StandardMoRcannotlearnaccurateregressors(denotedbythedashedlines).Byintroduc-inganovelself-pacedscheme,ourSPMoRapproach(denotedbythesolidlines)selectsbalancedandconfidenttrainingsamplesfromeachcomponent,whilepreventlearningfromtheoutliersthroughoutthetrainingprocedure.theywillbeinevitablybiasedbydatadistribution:lowre-gressionerrorindenselysampledspacewhilehigherrorineverywhereelse.Foraddressingtheissuesofthedatadiscontinuityandheterogeneity,thedivide-and-conquerapproacheswerepro-posedlately.Thecoreideaistolearntocombinemultiplelocalregressors.Forinstance,thehierarchical-based[Hanetal.,2015]andtree-basedregression[HaraandChellappa,2014]makehardpartitionsrecursively,andthesubsetsofsam-plesmaynotbehomogeneousforlearninglocalregressors.WhileMixtureofRegressions(MoR)[Jacobsetal.,1991;JordanandXu,1995]distributesregressionerroramonglocalregressorsbymaximizinglikelihoodinthejointinput-outputspace.Theseapproachesreduceoverallerrorbyfittingre-gressionlocallyandreliefsthebiasbydiscontinuousdatadistribution.Unfortunately,theaforementionedapproachesstillcannotachievesatisfactoryperformancewhenapplyinginsomereal-worldapplications.Themainreasonisthattheseapproachestendtobesensitivetotheintra-componentoutliers(i.e.,thenoisytrainingdataresidingincertaincomponents)andtheinter-componentimbalance(i.e.,thedifferentamountsoftrain-" +4a3d96b2a53114da4be3880f652a6eef3f3cc035,A Dictionary Learning-Based 3D Morphable Shape Model,"A Dictionary Learning-Based +D Morphable Shape Model +Claudio Ferrari +, Giuseppe Lisanti, Stefano Berretti +, Senior Member, IEEE, and Alberto Del Bimbo" +4a6fcf714f663618657effc341ae5961784504c7,Scaling Up Class-Specific Kernel Discriminant Analysis for Large-Scale Face Verification,"Scaling up Class-Specific Kernel Discriminant +Analysis for large-scale Face Verification +Alexandros Iosifidis, Senior Member, IEEE, and Moncef Gabbouj, Fellow, IEEE" +24115d209e0733e319e39badc5411bbfd82c5133,Long-Term Recurrent Convolutional Networks for Visual Recognition and Description,"Long-term Recurrent Convolutional Networks for +Visual Recognition and Description +Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama, +Kate Saenko, Trevor Darrell" +24c442ac3f6802296d71b1a1914b5d44e48b4f29,Pose and Expression-Coherent Face Recovery in the Wild,"Pose and expression-coherent face recovery in the wild +Xavier P. Burgos-Artizzu +Joaquin Zepeda +Technicolor, Cesson-S´evign´e, France +Franc¸ois Le Clerc +Patrick P´erez" +245f8ec4373e0a6c1cae36cd6fed5a2babed1386,Lucas Kanade Optical Flow Computation from Superpixel based Intensity Region for Facial Expression Feature Extraction,"J. Appl. Environ. Biol. Sci., 7(3S)1-10, 2017 +© 2017, TextRoad Publication +ISSN: 2090-4274 +Journal of Applied Environmental +nd Biological Sciences +www.textroad.com +Lucas Kanade Optical Flow Computation from Superpixel based Intensity +Region for Facial Expression Feature Extraction +Halina Hassan1,2, Abduljalil Radman1, Shahrel Azmin Suandi1, Sazali Yaacob2 +Intelligent Biometric Group, School of Electrical and Electronics Engineering, Universiti Sains Malaysia, +Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute, 09000 +Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia +Kulim Hi-Tech Park, Kedah, Malaysia +Received: February 21, 2017 +Accepted: May 14, 2017" +24e099e77ae7bae3df2bebdc0ee4e00acca71250,Robust Face Alignment Under Occlusion via Regional Predictive Power Estimation,"Robust face alignment under occlusion via regional predictive power +estimation. +Heng Yang; Xuming He; Xuhui Jia; Patras, I +© 2015 IEEE +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/22467 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact" +2450c618cca4cbd9b8cdbdb05bb57d67e63069b1,A connexionist approach for robust and precise facial feature detection in complex scenes,"A Connexionist Approach for Robust and Precise Facial Feature Detection in +Complex Scenes +Stefan Duffner and Christophe Garcia +France Telecom Research & Development +, rue du Clos Courtel +5512 Cesson-S´evign´e, France +fstefan.duffner," +244b57cc4a00076efd5f913cc2833138087e1258,Warped Convolutions: Efficient Invariance to Spatial Transformations,"Warped Convolutions: Efficient Invariance to Spatial Transformations +Jo˜ao F. Henriques 1 Andrea Vedaldi 1" +24869258fef8f47623b5ef43bd978a525f0af60e,Données multimodales pour l ’ analyse d ’ image,"UNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur" +2465fc22e03faf030e5a319479a95ef1dfc46e14,Influence of different feature selection approaches on the performance of emotion recognition methods based on SVM,"______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION +Influence of Different Feature Selection Approaches +on the Performance of Emotion Recognition +Methods Based on SVM +Daniil Belkov, Konstantin Purtov, Vladimir Kublanov +Ural Federal University (UrFU) +Yekaterinburg, Russia +d.d.belkov," +24ff832171cb774087a614152c21f54589bf7523,Beat-Event Detection in Action Movie Franchises,"Beat-Event Detection in Action Movie Franchises +Danila Potapov +Matthijs Douze +Jerome Revaud +Zaid Harchaoui +Cordelia Schmid" +247a6b0e97b9447850780fe8dbc4f94252251133,Facial action unit detection: 3D versus 2D modality,"Facial Action Unit Detection: 3D versus 2D Modality +Arman Savran +Electrical and Electronics Engineering +Bo˘gazic¸i University, Istanbul, Turkey +B¨ulent Sankur +Electrical and Electronics Engineering +Bo˘gazic¸i University, Istanbul, Turkey +M. Taha Bilge +Department of Psychology +Bo˘gazic¸i University, Istanbul, Turkey" +230527d37421c28b7387c54e203deda64564e1b7,Person Re-identification: System Design and Evaluation Overview,"Person Re-identification: System Design and +Evaluation Overview +Xiaogang Wang and Rui Zhao" +23172f9a397f13ae1ecb5793efd81b6aba9b4537,Defining Visually Descriptive Language,"Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 10–17, +Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics." +236a4f38f79a4dcc2183e99b568f472cf45d27f4,Randomized Clustering Forests for Image Classification,"Randomized Clustering Forests +for Image Classification +Frank Moosmann, Student Member, IEEE, Eric Nowak, Student Member, IEEE, and +Frederic Jurie, Member, IEEE Computer Society" +230c4a30f439700355b268e5f57d15851bcbf41f,EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis,"EM Algorithms for Weighted-Data Clustering +with Application to Audio-Visual Scene Analysis +Israel D. Gebru, Xavier Alameda-Pineda, Florence Forbes and Radu Horaud" +237fa91c8e8098a0d44f32ce259ff0487aec02cf,Bidirectional PCA with assembled matrix distance metric for image recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +Bidirectional PCA With Assembled Matrix +Distance Metric for Image Recognition +Wangmeng Zuo, David Zhang, Senior Member, IEEE, and Kuanquan Wang, Member, IEEE" +2331df8ca9f29320dd3a33ce68a539953fa87ff5,Extended Isomap for Pattern Classification,"Extended Isomap for Pattern Classification +Ming-Hsuan Yang +Honda Fundamental Research Labs +Mountain View, CA 94041" +23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,Determining Mood from Facial Expressions,"CS 229 Project, Fall 2014 +Matthew Wang +Spencer Yee +Determining Mood from Facial Expressions +Introduction +Facial expressions play an extremely important role in human communication. As +society continues to make greater use of human-machine interactions, it is important for +machines to be able to interpret facial expressions in order to improve their +uthenticity. If machines can be trained to determine mood to a better extent than +humans can, especially for more subtle moods, then this could be useful in fields such as +ounseling. This could also be useful for gauging reactions of large audiences in various +ontexts, such as political talks. +The results of this project could also be applied to recognizing other features of facial +expressions, such as determining when people are purposefully suppressing emotions or +lying. The ability to recognize different facial expressions could also improve technology +that recognizes to whom specific faces belong. This could in turn be used to search a +large number of pictures for a specific photo, which is becoming increasingly difficult, as +storing photos digitally has been extremely common in the past decade. The possibilities +re endless. +II Data and Features" +238fc68b2e0ef9f5ec043d081451902573992a03,Enhanced Local Gradient Order Features and Discriminant Analysis for Face Recognition,"Enhanced Local Gradient Order Features and +Discriminant Analysis for Face Recognition +Chuan-Xian Ren, Zhen Lei, Member, IEEE, Dao-Qing Dai, Member, IEEE, and Stan Z. Li, Fellow, IEEE +role in robust face recognition [5]. Many algorithms have +een proposed to deal with the effectiveness of feature design +nd extraction [6], [7]; however, the performance of many +existing methods is still highly sensitive to variations of +imaging conditions, such as outdoor illumination, exaggerated +expression, and continuous occlusion. These complex varia- +tions are significantly affecting the recognition accuracy in +recent years [8]–[10]. +Appearance-based subspace learning is one of the sim- +plest approach for feature extraction, and many methods +re usually based on linear correlation of pixel intensities. +For example, Eigenface [11] uses eigen system of pixel +intensities to estimate the lower rank linear subspace of +set of training face images by minimizing the (cid:2)2 dis- +tance metric. The solution enjoys optimality properties when +noise is independent +identically distributed Gaussian only." +2322ec2f3571e0ddc593c4e2237a6a794c61251d,Four not six: Revealing culturally common facial expressions of emotion.,"Jack, R. E. , Sun, W., Delis, I., Garrod, O. G. B. and Schyns, P. G. (2016) +Four not six: revealing culturally common facial expressions of +emotion.Journal of Experimental Psychology: General, 145(6), pp. 708- +730. (doi:10.1037/xge0000162) +This is the author’s final accepted version. +There may be differences between this version and the published version. +You are advised to consult the publisher’s version if you wish to cite from +http://eprints.gla.ac.uk/116592/ +Deposited on: 20 April 2016 +Enlighten – Research publications by members of the University of Glasgow +http://eprints.gla.ac.uk" +23120f9b39e59bbac4438bf4a8a7889431ae8adb,Improved RGB-D-T based face recognition,"Aalborg Universitet +Improved RGB-D-T based Face Recognition +Oliu Simon, Marc; Corneanu, Ciprian; Nasrollahi, Kamal; Guerrero, Sergio Escalera; +Nikisins, Olegs; Sun, Yunlian; Li, Haiqing; Sun, Zhenan; Moeslund, Thomas B.; Greitans, +Modris +Published in: +DOI (link to publication from Publisher): +0.1049/iet-bmt.2015.0057 +Publication date: +Document Version +Accepted manuscript, peer reviewed version +Link to publication from Aalborg University +Citation for published version (APA): +Oliu Simon, M., Corneanu, C., Nasrollahi, K., Guerrero, S. E., Nikisins, O., Sun, Y., ... Greitans, M. (2016). +General rights +Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. +? You may not further distribute the material or use it for any profit-making activity or commercial gain +? You may freely distribute the URL identifying the publication in the public portal ?" +23d55061f7baf2ffa1c847d356d8f76d78ebc8c1,Generic and attribute-specific deep representations for maritime vessels,"Solmaz et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:22 +DOI 10.1186/s41074-017-0033-4 +IPSJ Transactions on Computer +Vision and Applications +RESEARCH PAPER +Open Access +Generic and attribute-specific deep +representations for maritime vessels +Berkan Solmaz*† +, Erhan Gundogdu†, Veysel Yucesoy and Aykut Koc" +23a8d02389805854cf41c9e5fa56c66ee4160ce3,Influence of low resolution of images on reliability of face detection and recognition,"Multimed Tools Appl +DOI 10.1007/s11042-013-1568-8 +Influence of low resolution of images on reliability +of face detection and recognition +Tomasz Marciniak· Agata Chmielewska· +Radoslaw Weychan· Marianna Parzych· +Adam Dabrowski +© The Author(s) 2013. This article is published with open access at SpringerLink.com" +23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e,Modified Approaches on Face Recognition By using Multisensory Image,"Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 2, Issue. 4, April 2013, pg.646 – 649 +RESEARCH ARTICLE +Modified Approaches on Face Recognition +By using Multisensory Image +S. Dhanarajan1, G. Michael2 +Computer Science Department, Bharath University, India +Computer Science Department, Bharath University, India" +4f051022de100241e5a4ba8a7514db9167eabf6e,Face Parsing via a Fully-Convolutional Continuous CRF Neural Network,"Face Parsing via a Fully-Convolutional Continuous +CRF Neural Network +Lei Zhou, Zhi Liu, Senior Member, IEEE, Xiangjian He, Senior Member, IEEE" +4faded442b506ad0f200a608a69c039e92eaff11,İstanbul Technical University Institute of Science and Technology Face Recognition under Varying Illumination,"İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY +FACE RECOGNITION UNDER VARYING +ILLUMINATION +Master Thesis by +Erald VUÇINI, B.Sc. +Department : Computer Engineering +Programme: Computer Engineering +Supervisor: Prof. Dr. Muhittin GÖKMEN +JUNE 2006" +4fc936102e2b5247473ea2dd94c514e320375abb,Guess Where? Actor-Supervision for Spatiotemporal Action Localization,"Guess Where? Actor-Supervision for Spatiotemporal Action Localization +Victor Escorcia1∗ +Cuong D. Dao1 +Mihir Jain3 +KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc.3 +Bernard Ghanem1 +Cees Snoek2∗" +4f6adc53798d9da26369bea5a0d91ed5e1314df2,Online Nonnegative Matrix Factorization with General Divergences,"IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016 +Online Nonnegative Matrix Factorization with +General Divergences +Renbo Zhao, Member, IEEE, Vincent Y. F. Tan, Senior Member, IEEE, Huan Xu" +4f591e243a8f38ee3152300bbf42899ac5aae0a5,Understanding Higher-Order Shape via 3D Shape Attributes,"SUBMITTED TO TPAMI +Understanding Higher-Order Shape +via 3D Shape Attributes +David F. Fouhey, Abhinav Gupta, Andrew Zisserman" +4f4f920eb43399d8d05b42808e45b56bdd36a929,A Novel Method for 3 D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887) +Volume 123 – No.4, August 2015 +A Novel Method for 3D Image Segmentation with Fusion +of Two Images using Color K-means Algorithm +Neelam Kushwah +Dept. of CSE +ITM Universe +Gwalior +Priusha Narwariya +Dept. of CSE +ITM Universe +Gwalior" +4f77a37753c03886ca9c9349723ec3bbfe4ee967,"Localizing Facial Keypoints with Global Descriptor Search, Neighbour Alignment and Locally Linear Models","Localizing Facial Keypoints with Global Descriptor Search, +Neighbour Alignment and Locally Linear Models +Md. Kamrul Hasan1, Christopher Pal1 and Sharon Moalem2 +´Ecole Polytechnique de Montr´eal, Universit´e de Montr´eal +University of Toronto and Recognyz Systems Technologies +lso focused on emotion recognition in the wild [9]." +8de06a584955f04f399c10f09f2eed77722f6b1c,Facial Landmarks Localization Estimation by Cascaded Boosted Regression,"Author manuscript, published in ""International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)""" +8d4f0517eae232913bf27f516101a75da3249d15,Event-based Dynamic Face Detection and Tracking Based on Activity,"ARXIV SUBMISSION, MARCH 2018 +Event-based Dynamic Face Detection and +Tracking Based on Activity +Gregor Lenz, Sio-Hoi Ieng and Ryad Benosman" +8de2dbe2b03be8a99628ffa000ac78f8b66a1028,Action Recognition in Videos,"´Ecole Nationale Sup´erieure dInformatique et de Math´ematiques Appliqu´ees de Grenoble +INP Grenoble – ENSIMAG +UFR Informatique et Math´ematiques Appliqu´ees de Grenoble +Rapport de stage de Master 2 et de projet de fin d’´etudes +Effectu´e au sein de l’´equipe LEAR, I.N.R.I.A., Grenoble +Action Recognition in Videos +Gaidon Adrien +e ann´ee ENSIMAG – Option I.I.I. +M2R Informatique – sp´ecialit´e I.A. +04 f´evrier 2008 – 04 juillet 2008 +LEAR, +I.N.R.I.A., Grenoble +655 avenue de l’Europe +8 334 Montbonnot +France +Responsable de stage +Mme. Cordelia Schmid +Tuteur ´ecole +M. Augustin Lux +M. Roger Mohr" +8d3fbdb9783716c1832a0b7ab1da6390c2869c14,Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition,"Discriminant Subspace Analysis for Uncertain +Situation in Facial Recognition +Pohsiang Tsai, Tich Phuoc Tran, Tom Hintz and Tony Jan +School of Computing and Communications – University of Technology, Sydney +Australia +. Introduction +Facial analysis and recognition have received substential attention from researchers in +iometrics, pattern recognition, and computer vision communities. They have a large +number of applications, such as security, communication, and entertainment. Although a +great deal of efforts has been devoted to automated face recognition systems, it still remains +challenging uncertainty problem. This is because human facial appearance has potentially +of very large intra-subject variations of head pose, illumination, facial expression, occlusion +due to other objects or accessories, facial hair and aging. These misleading variations may +ause classifiers to degrade generalization performance. +It is important for face recognition systems to employ an effective feature extraction scheme +to enhance separability between pattern classes which should maintain and enhance +features of the input data that make distinct pattern classes separable (Jan, 2004). In general, +there exist a number of different feature extraction methods. The most common feature +extraction methods are subspace analysis methods such as principle component analysis +(PCA) (Kirby & Sirovich, 1990) (Jolliffe, 1986) (Turk & Pentland, 1991b), kernel principle" +8d42a24d570ad8f1e869a665da855628fcb1378f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +An Empirical Study of Context in Object Detection +Anonymous CVPR submission +Paper ID 987" +8d8461ed57b81e05cc46be8e83260cd68a2ebb4d,Age identification of Facial Images using Neural Network,"Age identification of Facial Images using Neural +Network +Sneha Thakur, Ligendra Verma +CSE Department,CSVTU +RIT, Raipur, Chhattisgarh , INDIA" +8d384e8c45a429f5c5f6628e8ba0d73c60a51a89,Temporal Dynamic Graph LSTM for Action-Driven Video Object Detection,"Temporal Dynamic Graph LSTM for Action-driven Video Object Detection +Yuan Yuan1 Xiaodan Liang2 Xiaolong Wang2 Dit-Yan Yeung1 Abhinav Gupta2 +The Hong Kong University of Science and Technology 2 Carneige Mellon University" +8d1adf0ac74e901a94f05eca2f684528129a630a,Facial Expression Recognition Using Facial Movement Features,"Facial Expression Recognition Using Facial +Movement Features" +8d646ac6e5473398d668c1e35e3daa964d9eb0f6,Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment,"MEMORY-EFFICIENT GLOBAL REFINEMENT OF DECISION-TREE ENSEMBLES AND +ITS APPLICATION TO FACE ALIGNMENT +Nenad Markuˇs† +Ivan Gogi´c† +Igor S. Pandˇzi´c† +J¨orgen Ahlberg‡ +University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia +Computer Vision Laboratory, Dept. of Electrical Engineering, Link¨oping University, SE-581 83 Link¨oping, Sweden" +8dffbb6d75877d7d9b4dcde7665888b5675deee1,Emotion Recognition with Deep-Belief Networks,"Emotion Recognition with Deep-Belief +Networks +Tom McLaughlin, Mai Le, Naran Bayanbat +Introduction +For our CS229 project, we studied the problem of +reliable computerized emotion recognition in images of +human +faces. First, we performed a preliminary +exploration using SVM classifiers, and then developed an +pproach based on Deep Belief Nets. Deep Belief Nets, or +DBNs, are probabilistic generative models composed of +multiple layers of stochastic latent variables, where each +“building block” layer is a Restricted Boltzmann Machine +(RBM). DBNs have a greedy layer-wise unsupervised +learning algorithm as well as a discriminative fine-tuning +procedure for optimizing performance on classification +tasks. [1]. +We trained our classifier on three databases: the +Cohn-Kanade Extended Database (CK+) [2], the Japanese +Female Facial Expression Database (JAFFE) [3], and the" +8d5998cd984e7cce307da7d46f155f9db99c6590,ChaLearn looking at people: A review of events and resources,"ChaLearn Looking at People: +A Review of Events and Resources +Sergio Escalera1,2, Xavier Bar´o2,3, Hugo Jair Escalante4,5, Isabelle Guyon4,6, +Dept. Mathematics and Computer Science, UB, Spain, +Computer Vision Center, UAB, Barcelona, Spain, +EIMT, Open University of Catalonia, Barcelona, Spain, +ChaLearn, California, USA, 5 INAOE, Puebla, Mexico, +6 Universit´e Paris-Saclay, Paris, France, +http://chalearnlap.cvc.uab.es" +8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff,Towards large scale multimedia indexing: A case study on person discovery in broadcast news,"Towards large scale multimedia indexing: +A case study on person discovery in broadcast news +Nam Le1, Hervé Bredin2, Gabriel Sargent3, Miquel India5, Paula Lopez-Otero6, +Claude Barras2, Camille Guinaudeau2, Guillaume Gravier3, Gabriel Barbosa da Fonseca4, +Izabela Lyon Freire4, Zenilton Patrocínio Jr4, Silvio Jamil F. Guimarães4, Gerard Martí5, +Josep Ramon Morros5, Javier Hernando5, Laura Docio-Fernandez6, Carmen Garcia-Mateo6, +Sylvain Meignier7, Jean-Marc Odobez1 +Idiap Research Institute & EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, +CNRS, Irisa & Inria Rennes, 4 PUC de Minas Gerais, Belo Horizonte, +5 Universitat Politècnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine" +153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4,Overview of algorithms for face detection and tracking,"Overview of algorithms for face detection and +tracking +Nenad Markuˇs" +15cd05baa849ab058b99a966c54d2f0bf82e7885,Structured Sparse Subspace Clustering: A unified optimization framework,"Structured Sparse Subspace Clustering: A Unified Optimization Framework +Chun-Guang Li1, René Vidal2 +SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University. +In many real-world applications, we need to deal with high-dimensional +datasets, such as images, videos, text, and more. In practice, such high- +dimensional datasets can be well approximated by multiple low-dimensional +subspaces corresponding to multiple classes or categories. For example, the +feature point trajectories associated with a rigidly moving object in a video +lie in an affine subspace (of dimension up to 4), and face images of a subject +under varying illumination lie in a linear subspace (of dimension up to 9). +Therefore, the task, known in the literature as subspace clustering [6], is +to segment the data into the corresponding subspaces and finds multiple +pplications in computer vision. +State of the art approaches [1, 2, 3, 4, 5, 7] for solving this problem fol- +low a two-stage approach: a) Construct an affinity matrix between points by +exploiting the ‘self-expressiveness’ property of the data, which allows any +data point to be represented as a linear (or affine) combination of the other +data points; b) Apply spectral clustering on the affinity matrix to recover +the data segmentation. Dividing the problem in two steps is, on the one +hand, appealing because the first step can be solved using convex optimiza-" +15136c2f94fd29fc1cb6bedc8c1831b7002930a6,Deep Learning Architectures for Face Recognition in Video Surveillance,"Deep Learning Architectures for Face +Recognition in Video Surveillance +Saman Bashbaghi, Eric Granger, Robert Sabourin and Mostafa Parchami" +153e5cddb79ac31154737b3e025b4fb639b3c9e7,Active Dictionary Learning in Sparse Representation Based Classification,"PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS +Active Dictionary Learning in Sparse +Representation Based Classification +Jin Xu, Haibo He, Senior Member, IEEE, and Hong Man, Senior Member, IEEE" +157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6,Connecting the dots in multi-class classification: From nearest subspace to collaborative representation,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Connecting the Dots in Multi-Class Classification: From +Nearest Subspace to Collaborative Representation +Chi, Y.; Porikli, F. +TR2012-043 +June 2012" +15e0b9ba3389a7394c6a1d267b6e06f8758ab82b,The OU-ISIR Gait Database comprising the Large Population Dataset with Age and performance evaluation of age estimation,"Xu et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:24 +DOI 10.1186/s41074-017-0035-2 +IPSJ Transactions on Computer +Vision and Applications +TECHNICAL NOTE +Open Access +The OU-ISIR Gait Database comprising the +Large Population Dataset with Age and +performance evaluation of age estimation +Chi Xu1,2, Yasushi Makihara2*, Gakuto Ogi2, Xiang Li1,2, Yasushi Yagi2 and Jianfeng Lu1" +15aa6c457678e25f6bc0e818e5fc39e42dd8e533,Conditional Image Generation for Learning the Structure of Visual Objects, +15cf1f17aeba62cd834116b770f173b0aa614bf4,Facial Expression Recognition using Neural Network with Regularized Backpropagation Algorithm,"International Journal of Computer Applications (0975 – 8887) +Volume 77 – No.5, September 2013 +Facial Expression Recognition using Neural Network with +Regularized Back-propagation Algorithm +Ashish Kumar Dogra +Research Scholar +Department of ECE, +Lovely Professional University, +Phagwara, India +Nikesh Bajaj +Assistant Professor +Department of ECE, +Lovely Professional University, +Phagwara, India +Harish Kumar Dogra +Research Scholar +Department of ECE, +Gyan Ganga Institute of +Technology & Sciences, +Jabalpur, India" +15f3d47b48a7bcbe877f596cb2cfa76e798c6452,Automatic face analysis tools for interactive digital games,"Automatic face analysis tools for interactive digital games +Anonymised for blind review +Anonymous +Anonymous +Anonymous" +15728d6fd5c9fc20b40364b733228caf63558c31,Expanding the Breadth and Detail of Object Recognition By,(cid:13) 2013 Ian N. Endres +153c8715f491272b06dc93add038fae62846f498,On Clustering Images of Objects,"(cid:13) Copyright by Jongwoo Lim, 2005" +122ee00cc25c0137cab2c510494cee98bd504e9f,The Application of Active Appearance Models to Comprehensive Face Analysis Technical Report,"The Application of +Active Appearance Models to +Comprehensive Face Analysis +Technical Report +Simon Kriegel +TU M¨unchen +April 5, 2007" +12cb3bf6abf63d190f849880b1703ccc183692fe,Guess Who?: A game to crowdsource the labeling of affective facial expressions is comparable to expert ratings,"Guess Who?: A game to crowdsource the labeling of affective facial +expressions is comparable to expert ratings. +Barry Borsboom +Graduation research project, june 2012 +Supervised by: Dr. Joost Broekens +Leiden University Media Technology Department," +12cd96a419b1bd14cc40942b94d9c4dffe5094d2,Leveraging Captions in the Wild to Improve Object Detection,"Proceedings of the 5th Workshop on Vision and Language, pages 29–38, +Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics" +1275852f2e78ed9afd189e8b845fdb5393413614,A Transfer Learning based Feature-Weak-Relevant Method for Image Clustering,"A Transfer Learning based Feature-Weak-Relevant Method for +Image Clustering +Bo Dong, Xinnian Wang +Dalian Maritime University +Dalian, China" +12055b8f82d5411f9ad196b60698d76fbd07ac1e,Multiview Facial Landmark Localization in RGB-D Images via Hierarchical Regression With Binary Patterns,"Multiview Facial Landmark Localization in RGB-D +Images via Hierarchical Regression +With Binary Patterns +Zhanpeng Zhang, Student Member, IEEE, Wei Zhang, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE, +nd Xiaoou Tang, Fellow, IEEE" +120785f9b4952734818245cc305148676563a99b,Diagnostic automatique de l'état dépressif(Classification of depressive moods),"Diagnostic automatique de l’état dépressif +S. Cholet +H. Paugam-Moisy +Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540) +Université des Antilles, Campus de Fouillole - Guadeloupe +Résumé +Les troubles psychosociaux sont un problème de santé pu- +lique majeur, pouvant avoir des conséquences graves sur +le court ou le long terme, tant sur le plan professionnel que +personnel ou familial. Le diagnostic de ces troubles doit +être établi par un professionnel. Toutefois, l’IA (l’Intelli- +gence Artificielle) peut apporter une contribution en four- +nissant au praticien une aide au diagnostic, et au patient +un suivi permanent rapide et peu coûteux. Nous proposons +une approche vers une méthode de diagnostic automatique +de l’état dépressif à partir d’observations du visage en +temps réel, au moyen d’une simple webcam. A partir de +vidéos du challenge AVEC’2014, nous avons entraîné un +lassifieur neuronal à extraire des prototypes de visages +selon différentes valeurs du score de dépression de Beck" +12ebeb2176a5043ad57bc5f3218e48a96254e3e9,Traffic Road Sign Detection and Recognition for Automotive Vehicles,"International Journal of Computer Applications (0975 – 8887) +Volume 120 – No.24, June 2015 +Traffic Road Sign Detection and Recognition for +Automotive Vehicles +Md. Safaet Hossain +Zakir Hyder +Department of Electrical Engineering and +Department of Electrical Engineering and +Computer Science North South University, Dhaka +Computer Science North South University, Dhaka +Bangladesh +Bangladesh" +12150d8b51a2158e574e006d4fbdd3f3d01edc93,Deep End2End Voxel2Voxel Prediction,"Deep End2End Voxel2Voxel Prediction +Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo +Torresani, Manohar Paluri +Presented by: Ahmed Osman +Ahmed Osman" +12d8730da5aab242795bdff17b30b6e0bac82998,Persistent Evidence of Local Image Properties in Generic ConvNets,"Persistent Evidence of Local Image Properties in Generic ConvNets +Ali Sharif Razavian, Hossein Azizpour, +Atsuto Maki, Josephine Sullivan, Carl Henrik Ek, and Stefan Carlsson +CVAP, KTH (Royal Institute of Technology), Stockholm, SE-10044" +8c13f2900264b5cf65591e65f11e3f4a35408b48,A Generic Face Representation Approach for Local Appearance Based Face Verification,"A GENERIC FACE REPRESENTATION APPROACH FOR +LOCAL APPEARANCE BASED FACE VERIFICATION +Hazim Kemal Ekenel, Rainer Stiefelhagen +Interactive Systems Labs, Universität Karlsruhe (TH) +76131 Karlsruhe, Germany +{ekenel, +web: http://isl.ira.uka.de/face_recognition/" +8c955f3827a27e92b6858497284a9559d2d0623a,Facial Expression Recognition under Noisy Environment Using Gabor Filters,"Buletinul Ştiinţific al Universităţii ""Politehnica"" din Timişoara +Seria ELECTRONICĂ şi TELECOMUNICAŢII +TRANSACTIONS on ELECTRONICS and COMMUNICATIONS +Tom 53(67), Fascicola 1-2, 2008 +Facial Expression Recognition under Noisy Environment +Using Gabor Filters +Ioan Buciu1, I. Nafornita2, I. Pitas3" +8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa,Dataset Augmentation for Pose and Lighting Invariant Face Recognition,"Dataset Augmentation for Pose and Lighting +Invariant Face Recognition +Daniel Crispell∗, Octavian Biris∗, Nate Crosswhite†, Jeffrey Byrne†, Joseph L. Mundy∗ +Vision Systems, Inc. +Systems and Technology Research" +8ce9b7b52d05701d5ef4a573095db66ce60a7e1c,Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework,"Structured Sparse Subspace Clustering: A Joint +Affinity Learning and Subspace Clustering +Framework +Chun-Guang Li, Chong You, and Ren´e Vidal" +8cb6daba2cb1e208e809633133adfee0183b8dd2,Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models,"Know Before You Do: Anticipating Maneuvers +via Learning Temporal Driving Models +Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, Ashutosh Saxena +Cornell University and Stanford University" +8c6c0783d90e4591a407a239bf6684960b72f34e,SESSION KNOWLEDGE ENGINEERING AND MANAGEMENT + KNOWLEDGE ACQUISITION Chair(s),"SESSION +KNOWLEDGE ENGINEERING AND +MANAGEMENT + KNOWLEDGE ACQUISITION +Chair(s) +Int'l Conf. Information and Knowledge Engineering | IKE'13 |1" +8cc07ae9510854ec6e79190cc150f9f1fe98a238,Using Deep Learning to Challenge Safety Standard for Highly Autonomous Machines in Agriculture,"Article +Using Deep Learning to Challenge Safety Standard +for Highly Autonomous Machines in Agriculture +Kim Arild Steen *,†, Peter Christiansen †, Henrik Karstoft and Rasmus Nyholm Jørgensen +Department of Engineering, Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark; +(P.C.); (H.K.); (R.N.J.) +* Correspondence: Tel.: +45-3116-8628 +These authors contributed equally to this work. +Academic Editors: Francisco Rovira-Más and Gonzalo Pajares Martinsanz +Received: 18 December 2015; Accepted: 2 February 2016; Published: 15 February 2016" +8509abbde2f4b42dc26a45cafddcccb2d370712f,A way to improve precision of face recognition in SIPP without retrain of the deep neural network model,"Improving precision and recall of face recognition in SIPP with combination of +modified mean search and LSH +Xihua.Li" +858ddff549ae0a3094c747fb1f26aa72821374ec,"Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications","Survey on RGB, 3D, Thermal, and Multimodal +Approaches for Facial Expression Recognition: +History, Trends, and Affect-related Applications +Ciprian A. Corneanu, Marc Oliu, Jeffrey F. Cohn, and Sergio Escalera" +85fd2bda5eb3afe68a5a78c30297064aec1361f6,"Are You Smiling, or Have I Seen You Before? Familiarity Makes Faces Look Happier.","702003 PSSXXX10.1177/0956797617702003Carr et al.Are You Smiling, or Have I Seen You Before? +research-article2017 +Research Article +Are You Smiling, or Have I Seen You +Before? Familiarity Makes Faces Look +Happier +017, Vol. 28(8) 1087 –1102 +© The Author(s) 2017 +Reprints and permissions: +sagepub.com/journalsPermissions.nav +DOI: 10.1177/0956797617702003 +https://doi.org/10.1177/0956797617702003 +www.psychologicalscience.org/PS +Evan W. Carr1, Timothy F. Brady2, and Piotr Winkielman2,3,4 +Columbia Business School, Columbia University; 2Psychology Department, University of California, San Diego; +Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology, +SWPS University of Social Sciences and Humanities" +858901405086056361f8f1839c2f3d65fc86a748,On Tensor Tucker Decomposition: the Case for an Adjustable Core Size,"ON TENSOR TUCKER DECOMPOSITION: THE CASE FOR AN +ADJUSTABLE CORE SIZE +BILIAN CHEN ∗, ZHENING LI † , AND SHUZHONG ZHANG ‡" +85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9,"Combined model for detecting, localizing, interpreting and recognizing faces","Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : +France (2008)""" +858b51a8a8aa082732e9c7fbbd1ea9df9c76b013,Can Computer Vision Problems Benefit from Structured Hierarchical Classification?,"Can Computer Vision Problems Benefit from +Structured Hierarchical Classification? +Thomas Hoyoux1, Antonio J. Rodr´ıguez-S´anchez2, Justus H. Piater2, and +Sandor Szedmak2 +INTELSIG, Montefiore Institute, University of Li`ege, Belgium +Intelligent and Interactive Systems, Institute of Computer Science, University of +Innsbruck, Austria" +8518b501425f2975ea6dcbf1e693d41e73d0b0af,Relative Hidden Markov Models for Evaluating Motion Skill,"Relative Hidden Markov Models for Evaluating Motion Skills +Qiang Zhang and Baoxin Li +Computer Science and Engineering +Arizona State Univerisity, Tempe, AZ 85281" +853bd61bc48a431b9b1c7cab10c603830c488e39,Learning Face Representation from Scratch,"Learning Face Representation from Scratch +Dong Yi, Zhen Lei, Shengcai Liao and Stan Z. Li +Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +Institute of Automation, Chinese Academy of Sciences (CASIA) +dong.yi, zlei, scliao," +854dbb4a0048007a49df84e3f56124d387588d99,Spatial-Temporal Recurrent Neural Network for Emotion Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +Spatial-Temporal Recurrent Neural Network for +Emotion Recognition +Tong Zhang, Wenming Zheng*, Member, IEEE, Zhen Cui*, Yuan Zong and Yang Li" +1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de9,The Hidden Sides of Names—Face Modeling with First Name Attributes,"The Hidden Sides of Names—Face Modeling +with First Name Attributes +Huizhong Chen, Student Member, IEEE, Andrew C. Gallagher, Senior Member, IEEE, and +Bernd Girod, Fellow, IEEE" +1d0dd20b9220d5c2e697888e23a8d9163c7c814b,Boosted Metric Learning for Efficient Identity-Based Face Retrieval,"NEGREL ET AL.: BOOSTED METRIC LEARNING FOR FACE RETRIEVAL +Boosted Metric Learning for Efficient +Identity-Based Face Retrieval +Romain Negrel +Alexis Lechervy +Frederic Jurie +GREYC, CNRS UMR 6072, ENSICAEN +Université de Caen Basse-Normandie +France" +1d776bfe627f1a051099997114ba04678c45f0f5,Deployment of Customized Deep Learning based Video Analytics On Surveillance Cameras,"Deployment of Customized Deep Learning based +Video Analytics On Surveillance Cameras +Pratik Dubal(cid:63), Rohan Mahadev(cid:63), Suraj Kothawade(cid:63), +Kunal Dargan, and Rishabh Iyer +AitoeLabs (www.aitoelabs.com)" +1dff919e51c262c22630955972968f38ba385d8a,Toward an Affect-Sensitive Multimodal Human–Computer Interaction,"Toward an Affect-Sensitive Multimodal +Human–Computer Interaction +MAJA PANTIC, MEMBER, IEEE, AND LEON J. M. ROTHKRANTZ +Invited Paper +The ability to recognize affective states of a person we are com- +municating with is the core of emotional intelligence. Emotional +intelligenceisa facet of human intelligence thathas been argued to be +indispensable and perhaps the most important for successful inter- +personal social interaction. This paper argues that next-generation +human–computer interaction (HCI) designs need to include the +essence of emotional intelligence—the ability to recognize a user’s +ffective states—in order to become more human-like, more effec- +tive, and more efficient. Affective arousal modulates all nonverbal +ommunicative cues (facial expressions, body movements, and vocal +nd physiological reactions). In a face-to-face interaction, humans +detect and interpret those interactive signals of their communicator +with little or no effort. Yet design and development of an automated +system that accomplishes these tasks is rather difficult. This paper +surveys the past work in solving these problems by a computer +nd provides a set of recommendations for developing the first" +1de8f38c35f14a27831130060810cf9471a62b45,A Branch-and-Bound Framework for Unsupervised Common Event Discovery,"Int J Comput Vis +DOI 10.1007/s11263-017-0989-7 +A Branch-and-Bound Framework for Unsupervised Common +Event Discovery +Wen-Sheng Chu1 +Jeffrey F. Cohn1,2 · Daniel S. Messinger3 +· Fernando De la Torre1 · +Received: 3 June 2016 / Accepted: 12 January 2017 +© Springer Science+Business Media New York 2017" +1da83903c8d476c64c14d6851c85060411830129,Iterated Support Vector Machines for Distance Metric Learning,"Iterated Support Vector Machines for Distance +Metric Learning +Wangmeng Zuo, Member, IEEE, Faqiang Wang, David Zhang, Fellow, IEEE, Liang Lin, Member, IEEE, +Yuchi Huang, Member, IEEE, Deyu Meng, and Lei Zhang, Senior Member, IEEE" +1d58d83ee4f57351b6f3624ac7e727c944c0eb8d,Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions,"Enhanced Local Texture +Feature Sets for Face +Recognition under Difficult +Lighting Conditions +Xiaoyang Tan and Bill Triggs +INRIA & Laboratoire Jean +Kuntzmann, +655 avenue de l'Europe, Montbonnot 38330, France" +1d729693a888a460ee855040f62bdde39ae273af,Photorealistic Face De-Identification by Aggregating Donors' Face Components,"Photorealistic Face de-Identification by Aggregating +Donors’ Face Components +Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie +To cite this version: +Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie. Photorealistic Face de-Identification by Aggre- +gating Donors’ Face Components. Asian Conference on Computer Vision, Nov 2014, Singapore. +pp.1-16, 2014. +HAL Id: hal-01070658 +https://hal.archives-ouvertes.fr/hal-01070658 +Submitted on 2 Oct 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de" +1d4c25f9f8f08f5a756d6f472778ab54a7e6129d,An Innovative Mean Approach for Plastic Surgery Face Recognition,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2014): 6.14 | Impact Factor (2014): 4.438 +An Innovative Mean Approach for Plastic Surgery +Face Recognition +Mahendra P. Randive1, Umesh W. Hore2 +Student of M.E., Department of Electronics & Telecommunication Engineering, +P. R. Patil College of Engineering, Amravati Maharashtra – India +Assistant Professor, Department of Electronics & Telecommunication Engineering, +P. R. Patil College of Engineering, Amravati Maharashtra – India" +71b376dbfa43a62d19ae614c87dd0b5f1312c966,The temporal connection between smiles and blinks,"The Temporal Connection Between Smiles and Blinks +Laura C. Trutoiu, Jessica K. Hodgins, and Jeffrey F. Cohn" +71fd29c2ae9cc9e4f959268674b6b563c06d9480,End-to-end 3D shape inverse rendering of different classes of objects from a single input image,"End-to-end 3D shape inverse rendering of different classes +of objects from a single input image +Shima Kamyab1 and S. Zohreh Azimifar1 +Computer Science and Engineering and Information Technology, Shiraz +university, Shiraz, Iran +November 17, 2017" +714d487571ca0d676bad75c8fa622d6f50df953b,eBear: An expressive Bear-Like robot,"eBear: An Expressive Bear-Like Robot +Xiao Zhang, Ali Mollahosseini, Amir H. Kargar B., Evan Boucher, +Richard M. Voyles, Rodney Nielsen and Mohammd H. Mahoor" +710011644006c18291ad512456b7580095d628a2,Learning Residual Images for Face Attribute Manipulation,"Learning Residual Images for Face Attribute Manipulation +Wei Shen +Rujie Liu +Fujitsu Research & Development Center, Beijing, China. +{shenwei," +711bb5f63139ee7a9b9aef21533f959671a7d80e,Objects extraction and recognition for camera-based interaction : heuristic and statistical approaches,"Helsinki University of Technology Laboratory of Computational Engineering Publications +Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja +Espoo 2007 +REPORT B68 +OBJECTS EXTRACTION AND RECOGNITION FOR +CAMERA-BASED INTERACTION: HEURISTIC AND +STATISTICAL APPROACHES +Hao Wang +TEKNILLINEN KORKEAKOULU +TEKNILLINEN KORKEAKOULU +TEKNISKA HÖGSKOLAN +TEKNISKA HÖGSKOLAN +HELSINKI UNIVERSITY OF TECHNOLOGY +HELSINKI UNIVERSITY OF TECHNOLOGY +TECHNISCHE UNIVERSITÄT HELSINKI +TECHNISCHE UNIVERSITÄT HELSINKI +UNIVERSITE DE TECHNOLOGIE D'HELSINKI +UNIVERSITE DE TECHNOLOGIE D'HELSINKI" +76fd801981fd69ff1b18319c450cb80c4bc78959,Alignment of Eye Movements and Spoken Language for Semantic Image Understanding,"Proceedings of the 11th International Conference on Computational Semantics, pages 76–81, +London, UK, April 15-17 2015. c(cid:13)2015 Association for Computational Linguistics" +76dc11b2f141314343d1601635f721fdeef86fdb,Weighted Decoding ECOC for Facial Action Unit Classification,"Weighted Decoding ECOC for Facial +Action Unit Classification +Terry Windeatt" +76673de6d81bedd6b6be68953858c5f1aa467e61,Discovering a Lexicon of Parts and Attributes,"Discovering a Lexicon of Parts and Attributes +Subhransu Maji +Toyota Technological Institute at Chicago, +Chicago, IL 60637, USA" +76cd5e43df44e389483f23cb578a9015d1483d70,Face Verification from Depth using Privileged Information,"BORGHI ET AL.: FACE VERIFICATION FROM DEPTH +Face Verification from Depth using +Privileged Information +Department of Engineering +""Enzo Ferrari"" +University of Modena and Reggio +Emilia +Modena, Italy +Guido Borghi +Stefano Pini +Filippo Grazioli +Roberto Vezzani +Rita Cucchiara" +76b11c281ac47fe6d95e124673a408ee9eb568e3,Real-time Multi View Face Detection and Pose Estimation Aishwarya,"International Journal of Latest Engineering and Management Research (IJLEMR) +ISSN: 2455-4847 +www.ijlemr.com || Volume 02 - Issue 03 || March 2017 || PP. 59-71 +REAL-TIME MULTI VIEW FACE DETECTION AND POSE +ESTIMATION +AISHWARYA.S1 , RATHNAPRIYA.K1, SUKANYA SARGUNAR.V2 +U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI, +ASST PROF.DEPARTMENT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI" +76d9f5623d3a478677d3f519c6e061813e58e833,Fast Algorithms for the Generalized Foley-Sammon Discriminant Analysis,"FAST ALGORITHMS FOR THE GENERALIZED FOLEY-SAMMON +DISCRIMINANT ANALYSIS +LEI-HONG ZHANG∗, LI-ZHI LIAO† , AND MICHAEL K. NG‡" +76e2d7621019bd45a5851740bd2742afdcf62837,Real-Time Detection and Measurement of Eye Features from Color Images,"Article +Real-Time Detection and Measurement of Eye +Features from Color Images +Diana Borza 1, Adrian Sergiu Darabant 2 and Radu Danescu 1,* +Computer Science Department, Technical University of Cluj Napoca, 28 Memorandumului Street, +Cluj Napoca 400114, Romania; +Computer Science Department, Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca 400591, +Romania; +* Correspondence: Tel.: +40-740-502-223 +Academic Editors: Changzhi Li, Roberto Gómez-García and José-María Muñoz-Ferreras +Received: 28 April 2016; Accepted: 14 July 2016; Published: 16 July 2016" +765b2cb322646c52e20417c3b44b81f89860ff71,PoseShop: Human Image Database Construction and Personalized Content Synthesis,"PoseShop: Human Image Database +Construction and Personalized +Content Synthesis +Tao Chen, Ping Tan, Member, IEEE, Li-Qian Ma, Ming-Ming Cheng, Member, IEEE, +Ariel Shamir, and Shi-Min Hu, Member, IEEE" +763158cef9d1e4041f24fce4cf9d6a3b7a7f08ff,Hierarchical Modeling and Applications to Recognition Tasks,"Hierarchical Modeling and +Applications to Recognition Tasks +Thesis submitted for the degree of +”Doctor of Philosophy” +Alon Zweig +Submitted to the Senate of the Hebrew University +August / 2013" +760ba44792a383acd9ca8bef45765d11c55b48d4,Class-specific classifier: avoiding the curse of dimensionality,"INTRODUCTION AND BACKGROUND +The purpose of this article is to introduce the +reader to the basic principles of classification with +lass-specific features. It is written both for readers +interested in only the basic concepts as well as those +interested in getting started in applying the method. +For in-depth coverage, the reader is referred to a more +detailed article [l]. +Class-Specific Classifier: +Avoiding the Curse of +Dimensionality +PAUL M. BAGGENSTOSS, Member. lEEE +US. Naval Undersea Warfare Center +This article describes a new probabilistic method called the +“class-specific method” (CSM). CSM has the potential to avoid +the “curse of dimensionality” which plagues most clmiiiers +which attempt to determine the decision boundaries in a +highdimensional featue space. In contrast, in CSM, it is possible +to build classifiers without a ” n o n feature space. Separate +Law-dimensional features seta may be de6ned for each class, while" +766728bac030b169fcbc2fbafe24c6e22a58ef3c,A survey of deep facial landmark detection,"A survey of deep facial landmark detection +Yongzhe Yan1,2 +Xavier Naturel2 +Christophe Garcia3 +Thierry Chateau1 +Christophe Blanc1 +Stefan Duffner3 +Université Clermont Auvergne, France +Wisimage, France +Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France +Résumé +La détection de landmarks joue un rôle crucial dans de +nombreuses applications d’analyse du visage comme la +reconnaissance de l’identité, des expressions, l’animation +d’avatar, la reconstruction 3D du visage, ainsi que pour +les applications de réalité augmentée comme la pose de +masque ou de maquillage virtuel. L’avènement de l’ap- +prentissage profond a permis des progrès très importants +dans ce domaine, y compris sur les corpus non contraints +(in-the-wild). Nous présentons ici un état de l’art cen-" +7697295ee6fc817296bed816ac5cae97644c2d5b,Detecting and Recognizing Human-Object Interactions,"Detecting and Recognizing Human-Object Interactions +Georgia Gkioxari Ross Girshick +Piotr Doll´ar Kaiming He +Facebook AI Research (FAIR)" +7636f94ddce79f3dea375c56fbdaaa0f4d9854aa,Robust Facial Expression Recognition Using a Smartphone Working against Illumination Variation,"Appl. Math. Inf. Sci. 6 No. 2S pp. 403S-408S (2012) +An International Journal +© 2012 NSP +Applied Mathematics & Information Sciences +Robust Facial Expression Recognition Using +Smartphone Working against Illumination Variation +2012 NSP +Natural Sciences Publishing Cor. +Kyoung-Sic Cho1, In-Ho Choi1 and Yong-Guk Kim1 +Department of Computer Engineering, Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea +Corresponding author: Email: +Received June 22, 2010; Revised March 21, 2011; Accepted 11 June 2011 +Published online: 1 January 2012" +1c80bc91c74d4984e6422e7b0856cf3cf28df1fb,Hierarchical Adaptive Structural SVM for Domain Adaptation,"Noname manuscript No. +(will be inserted by the editor) +Hierarchical Adaptive Structural SVM for Domain Adaptation +Jiaolong Xu · Sebastian Ramos · David V´azquez · Antonio M. L´opez +Received: date / Accepted: date" +1ce3a91214c94ed05f15343490981ec7cc810016,Exploring photobios,"Exploring Photobios +Ira Kemelmacher-Shlizerman1 +Eli Shechtman2 +Rahul Garg1,3 +Steven M. Seitz1,3 +University of Washington∗ +Adobe Systems† +Google Inc." +1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc,Recognition of Facial Gestures Based on Support Vector Machines,"Recognition of Facial Gestures based on Support +Vector Machines +Attila Fazekas and Istv(cid:19)an S(cid:19)anta +Faculty of Informatics, University of Debrecen, Hungary +H-4010 Debrecen P.O.Box 12." +1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,Deep fusion of visual signatures for client-server facial analysis,"Deep fusion of visual signatures +for client-server facial analysis +Binod Bhattarai +Normandie Univ, UNICAEN, +ENSICAEN, CNRS, GREYC +Gaurav Sharma +Computer Sc. & Engg. +IIT Kanpur, India +Frederic Jurie +Normandie Univ, UNICAEN, +ENSICAEN, CNRS, GREYC +Facial analysis is a key technology for enabling human- +machine interaction. +In this context, we present a client- +server framework, where a client transmits the signature of +face to be analyzed to the server, and, in return, the server +sends back various information describing the face e.g. is the +person male or female, is she/he bald, does he have a mus- +tache, etc. We assume that a client can compute one (or a +ombination) of visual features; from very simple and ef‌f‌i-" +1c30bb689a40a895bd089e55e0cad746e343d1e2,Learning Spatiotemporal Features with 3D Convolutional Networks,"Learning Spatiotemporal Features with 3D Convolutional Networks +Du Tran1 +, Lubomir Bourdev1, Rob Fergus1, Lorenzo Torresani2, Manohar Paluri1 +Facebook AI Research, 2Dartmouth College" +1c3073b57000f9b6dbf1c5681c52d17c55d60fd7,Direction de thèse:,"THÈSEprésentéepourl’obtentiondutitredeDOCTEURDEL’ÉCOLENATIONALEDESPONTSETCHAUSSÉESSpécialité:InformatiqueparCharlotteGHYSAnalyse,Reconstruction3D,&AnimationduVisageAnalysis,3DReconstruction,&AnimationofFacesSoutenancele19mai2010devantlejurycomposéde:Rapporteurs:MajaPANTICDimitrisSAMARASExaminateurs:MichelBARLAUDRenaudKERIVENDirectiondethèse:NikosPARAGIOSBénédicteBASCLE" +1c93b48abdd3ef1021599095a1a5ab5e0e020dd5,A Compositional and Dynamic Model for Face Aging,"JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009 +A Compositional and Dynamic Model for Face Aging +Jinli Suo , Song-Chun Zhu , Shiguang Shan and Xilin Chen" +1c6e22516ceb5c97c3caf07a9bd5df357988ceda,Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data,"NetworkCNNimageslabelsFakeDatasetimages24132labelsTarget NetworkCNNimageslabelsOriginalDatasetFakeDatasetFig.1:Ontheleft,thetargetnetworkistrainedwithanoriginal(confidential)datasetandisservedpubliclyasanAPI,receivingimagesasinputandprovidingclasslabelsasoutput.Ontheright,itispresentedtheprocesstogetstolenlabelsandtocreateafakedataset:randomnaturalimagesaresenttotheAPIandthelabelsareobtained.Afterthat,thecopycatnetworkistrainedusingthisfakedataset.cloud-basedservicestocustomersallowingthemtooffertheirownmodelsasanAPI.Becauseoftheresourcesandmoneyinvestedincreatingthesemodels,itisinthebestinterestofthesecompaniestoprotectthem,i.e.,toavoidthatsomeoneelsecopythem.Someworkshavealreadyinvestigatedthepossibilityofcopyingmodelsbyqueryingthemasablack-box.In[1],forexample,theauthorsshowedhowtoperformmodelextractionattackstocopyanequivalentornear-equivalentmachinelearningmodel(decisiontree,logisticregression,SVM,andmultilayerperceptron),i.e.,onethatachievescloseto100%agreementonaninputspaceofinterest.In[2],theauthorsevaluatedtheprocessofcopyingaNaiveBayesandSVMclassifierinthecontextoftextclassification.Bothworksfocusedongeneralclassifiersandnotondeepneuralnetworksthatrequirelargeamountsofdatatobetrainedleavingthequestionofwhetherdeepmodelscanbeeasilycopied.Althoughthesecondusesdeeplearningtostealtheclassifiers,itdoesnottrytouseDNNstostealfromdeepmodels.Additionally,theseworksfocusoncopyingbyqueryingwithproblemdomaindata.Inrecentyears,researchershavebeenexploringsomeintriguingpropertiesofdeepneuralnetworks[3],[4].More©2018IEEE.Personaluseofthismaterialispermitted.PermissionfromIEEEmustbeobtainedforallotheruses,inanycurrentorfuturemedia,includingreprinting/republishingthismaterialforadvertisingorpromotionalpurposes,creatingnewcollectiveworks,forresaleorredistributiontoserversorlists,orreuseofanycopyrightedcomponentofthisworkinotherworks." +825f56ff489cdd3bcc41e76426d0070754eab1a8,Making Convolutional Networks Recurrent for Visual Sequence Learning,"Making Convolutional Networks Recurrent for Visual Sequence Learning +Xiaodong Yang Pavlo Molchanov Jan Kautz +NVIDIA" +82d2af2ffa106160a183371946e466021876870d,A Novel Space-Time Representation on the Positive Semidefinite Con for Facial Expression Recognition,"A Novel Space-Time Representation on the Positive Semidefinite Cone +for Facial Expression Recognition +Anis Kacem1, Mohamed Daoudi1, Boulbaba Ben Amor1, and Juan Carlos Alvarez-Paiva2 +IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL – +Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +Univ. Lille, CNRS, UMR 8524, Laboratoire Paul Painlev´e, F-59000 Lille, France." +82eff71af91df2ca18aebb7f1153a7aed16ae7cc,MSU-AVIS dataset : Fusing Face and Voice Modalities for Biometric Recognition in Indoor Surveillance Videos,"MSU-AVIS dataset: +Fusing Face and Voice Modalities for Biometric +Recognition in Indoor Surveillance Videos +Anurag Chowdhury*, Yousef Atoum+, Luan Tran*, Xiaoming Liu*, Arun Ross* +*Michigan State University, USA ++Yarmouk University, Jordan" +82c303cf4852ad18116a2eea31e2291325bc19c3,Fusion Based FastICA Method: Facial Expression Recognition,"Journal of Image and Graphics, Volume 2, No.1, June, 2014 +Fusion Based FastICA Method: Facial Expression +Recognition +Humayra B. Ali and David M W Powers +Computer Science, Engineering and Mathematics School, Flinders University, Australia +Email: {ali0041," +8210fd10ef1de44265632589f8fc28bc439a57e6,Single Sample Face Recognition via Learning Deep Supervised Autoencoders,"Single Sample Face Recognition via Learning Deep +Supervised Auto-Encoders +Shenghua Gao, Yuting Zhang, Kui Jia, Jiwen Lu, Yingying Zhang" +82a4a35b2bae3e5c51f4d24ea5908c52973bd5be,Real-time emotion recognition for gaming using deep convolutional network features,"Real-time emotion recognition for gaming using +deep convolutional network features +S´ebastien Ouellet" +82a610a59c210ff77cfdde7fd10c98067bd142da,Human attention and intent analysis using robust visual cues in a Bayesian framework,"UC San Diego +UC San Diego Electronic Theses and Dissertations +Title +Human attention and intent analysis using robust visual cues in a Bayesian framework +Permalink +https://escholarship.org/uc/item/1cb8d7vw +Author +McCall, Joel Curtis +Publication Date +006-01-01 +Peer reviewed|Thesis/dissertation +eScholarship.org +Powered by the California Digital Library +University of California" +829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a,A Robust Rotation Invariant Multiview Face Detection in Erratic Illumination Condition,"International Journal of Computer Applications (0975 – 8887) +Volume 57– No.20, November 2012 +A Robust Rotation Invariant Multiview Face Detection in +Erratic Illumination Condition +G.Nirmala Priya +Associate Professor, Department of ECE +Sona College of Technology +Salem" +82f4e8f053d20be64d9318529af9fadd2e3547ef,Technical Report: Multibiometric Cryptosystems,"Technical Report: +Multibiometric Cryptosystems +Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE" +82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,Robust Facial Expression Recognition Using a State-based Model of Spatially-localized Facial,"REFERENCES +Adler A., Youmaran R. and Loyka S., “Towards a Measure of +Biometric Information”, Canadian Conference on Electrical and +Computer Engineering, pp. 210-213, 2006. +Ahmed A.A.E. and Traore I., “Anomaly Intrusion Detection Based on +Biometrics”, IEEE Workshop on Information Assurance, United States +Military Academy, West Point, New York, pp. 452-458, 2005. +Ahmed A.A.E. and Traore I., “Detecting Computer Intrusions using +Behavioural Biometrics”, Third Annual Conference on Privacy, +Security and Trust, St. Andrews, New Brunswick, Canada, pp. 1-8, +005. +Al-Zubi S., Bromme A. and Tonnies K., “Using an Active Shape +Structural Model for Biometric Sketch Recognition”, Proceedings of +DAGM, Magdeburg, Germany, Vol. 2781, pp. 187-195, 2003. +Angle S., Bhagtani R. and Chheda H., “Biometrics: a Further Echelon +of Security”, The First UAE International Conference on Biological +nd Medical Physics, pp. 1-4, 2005. +Avraam Kasapis., “MLPs and Pose, Expression Classification”, +Proceedings of UNiS Report, pp. 1-87, 2003. +Banikazemi M., Poff D. and Abali B., “Storage-based Intrusion" +82417d8ec8ac6406f2d55774a35af2a1b3f4b66e,Some Faces are More Equal than Others: Hierarchical Organization for Accurate and Efficient Large-Scale Identity-Based Face Retrieval,"Some faces are more equal than others: +Hierarchical organization for accurate and +ef‌f‌icient large-scale identity-based face retrieval +Binod Bhattarai1, Gaurav Sharma2, Fr´ed´eric Jurie1, Patrick P´erez2 +GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1 +Technicolor, Rennes, France2" +826c66bd182b54fea3617192a242de1e4f16d020,Action-vectors: Unsupervised movement modeling for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017" +4919663c62174a9bc0cc7f60da8f96974b397ad2,Human age estimation using enhanced bio-inspired features (EBIF),"HUMAN AGE ESTIMATION USING ENHANCED BIO-INSPIRED FEATURES (EBIF) +Mohamed Y.El Dib and Motaz El-Saban +Faculty of Computers and Information, Cairo University, Cairo, Egypt" +4967b0acc50995aa4b28e576c404dc85fefb0601,An Automatic Face Detection and Gender Classification from Color Images using Support Vector Machine,"Vol. 4, No. 1 Jan 2013 ISSN 2079-8407 +Journal of Emerging Trends in Computing and Information Sciences +©2009-2013 CIS Journal. All rights reserved. +An Automatic Face Detection and Gender Classification from +http://www.cisjournal.org +Color Images using Support Vector Machine +Md. Hafizur Rahman, 2 Suman Chowdhury, 3 Md. Abul Bashar +, 2, 3 Department of Electrical & Electronic Engineering, International +University of Business Agriculture and Technology, Dhaka-1230, Bangladesh" +4972aadcce369a8c0029e6dc2f288dfd0241e144,Multi-target Unsupervised Domain Adaptation without Exactly Shared Categories,"Multi-target Unsupervised Domain Adaptation +without Exactly Shared Categories +Huanhuan Yu, Menglei Hu and Songcan Chen" +49e85869fa2cbb31e2fd761951d0cdfa741d95f3,Adaptive Manifold Learning,"Adaptive Manifold Learning +Zhenyue Zhang, Jing Wang, and Hongyuan Zha" +490a217a4e9a30563f3a4442a7d04f0ea34442c8,An SOM-based Automatic Facial Expression Recognition System,"International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.4, August 2013 +An SOM-based Automatic Facial Expression +Recognition System +Mu-Chun Su1, Chun-Kai Yang1, Shih-Chieh Lin1,De-Yuan Huang1, Yi-Zeng +Hsieh1, andPa-Chun Wang2 +Department of Computer Science &InformationEngineering,National Central +University,Taiwan, R.O.C. +Cathay General Hospital, Taiwan, R.O.C. +E-mail:" +49a7949fabcdf01bbae1c2eb38946ee99f491857,A concatenating framework of shortcut convolutional neural networks,"A CONCATENATING FRAMEWORK OF SHORTCUT +CONVOLUTIONAL NEURAL NETWORKS +Yujian Li Ting Zhang, Zhaoying Liu, Haihe Hu" +499343a2fd9421dca608d206e25e53be84489f44,Face Recognition with Name Using Local Weber‟s Law Descriptor,"Anil Kumar.C, et.al, International Journal of Technology and Engineering Science [IJTES]TM +Volume 1[9], pp: 1371-1375, December 2013 +Face Recognition with Name Using Local Weber‟s +Law Descriptor +C.Anil kumar,2A.Rajani,3I.Suneetha +M.Tech Student,2Assistant Professor,3Associate Professor +Department of ECE, Annamacharya Institute of Technology and Sciences, Tirupati, India-517520 +on FERET" +498fd231d7983433dac37f3c97fb1eafcf065268,Linear Disentangled Representation Learning for Facial Actions,"LINEAR DISENTANGLED REPRESENTATION LEARNING FOR FACIAL ACTIONS +Xiang Xiang1 and Trac D. Tran2 +Dept. of Computer Science +Dept. of Electrical & Computer Engineering +Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA +Fig. 1. The separability of the neutral face yn and expression +omponent ye. We find yn is better for identity recognition +than y and ye is better for expression recognition than y." +49e1aa3ecda55465641b2c2acc6583b32f3f1fc6,Support Vector Machine for age classification,"International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +Support Vector Machine for age classification +Sangeeta Agrawal1, Rohit Raja2, Sonu Agrawal3 +Assistant Professor, CSE, RSR RCET, Kohka Bhilai +,3 Sr. Assistant Professor, CSE, SSCET, Junwani Bhilai" +49df381ea2a1e7f4059346311f1f9f45dd997164,Client-Specific Anomaly Detection for Face Presentation Attack Detection,"On the Use of Client-Specific Information for Face +Presentation Attack Detection Based on Anomaly +Detection +Shervin Rahimzadeh Arashloo and Josef Kittler," +496074fcbeefd88664b7bd945012ca22615d812e,Driver Distraction Using Visual-Based Sensors and Algorithms,"Review +Driver Distraction Using Visual-Based Sensors +nd Algorithms +Alberto Fernández 1,*, Rubén Usamentiaga 2, Juan Luis Carús 1 and Rubén Casado 2 +Grupo TSK, Technological Scientific Park of Gijón, 33203 Gijón, Asturias, Spain; +Department of Computer Science and Engineering, University of Oviedo, Campus de Viesques, 33204 Gijón, +Asturias, Spain; (R.U.); (R.C.) +* Corrospondence: Tel.: +34-984-29-12-12; Fax: +34-984-39-06-12 +Academic Editor: Gonzalo Pajares Martinsanz +Received: 14 July 2016; Accepted: 24 October 2016; Published: 28 October 2016" +40205181ed1406a6f101c5e38c5b4b9b583d06bc,Using Context to Recognize People in Consumer Images,"Using Context to Recognize People in Consumer Images +Andrew C. Gallagher and Tsuhan Chen" +40dab43abef32deaf875c2652133ea1e2c089223,Facial Communicative Signals: valence recognition in task-oriented human-robot Interaction,"Noname manuscript No. +(will be inserted by the editor) +Facial Communicative Signals +Valence Recognition in Task-Oriented Human-Robot Interaction +Christian Lang · Sven Wachsmuth · Marc Hanheide · Heiko Wersing +Received: date / Accepted: date" +40b0fced8bc45f548ca7f79922e62478d2043220,Do Convnets Learn Correspondence?,"Do Convnets Learn Correspondence? +Trevor Darrell +Jonathan Long +{jonlong, nzhang, +University of California – Berkeley +Ning Zhang" +405b43f4a52f70336ac1db36d5fa654600e9e643,What can we learn about CNNs from a large scale controlled object dataset?,"What can we learn about CNNs from a large scale controlled object dataset? +Ali Borji +Saeed Izadi +Laurent Itti" +40b86ce698be51e36884edcc8937998979cd02ec,Finding Faces in News Photos Using Both Face and Name Information,"Yüz ve İsim İlişkisi kullanarak Haberlerdeki Kişilerin Bulunması +Finding Faces in News Photos Using Both Face and Name Information +Derya Ozkan, Pınar Duygulu +Bilgisayar Mühendisliği Bölümü, Bilkent Üniversitesi, 06800, Ankara +Özetçe +Bu çalışmada, haber fotoğraflarından oluşan geniş veri +kümelerinde kişilerin sorgulanmasını sağlayan bir yöntem +sunulmuştur. Yöntem isim ve yüzlerin ilişkilendirilmesine +dayanmaktadır. Haber başlığında kişinin ismi geçiyor ise +fotoğrafta da o kişinin yüzünün bulunacağı varsayımıyla, ilk +olarak sorgulanan isim ile ilişkilendirilmiş, fotoğraflardaki +tüm yüzler seçilir. Bu yüzler arasında sorgu kişisine ait farklı +koşul, poz ve zamanlarda çekilmiş pek çok resmin yanında, +haberde ismi geçen başka kişilere ait yüzler ya da kullanılan +yüz bulma yönteminin hatasından kaynaklanan yüz olmayan +resimler de bulunabilir. Yine de, çoğu zaman, sorgu kişisine +it resimler daha çok olup, bu resimler birbirine diğerlerine +olduğundan daha çok benzeyeceklerdir. Bu nedenle, yüzler +rasındaki benzerlikler çizgesel olarak betimlendiğinde , +irbirine en çok benzeyen yüzler bu çizgede en yoğun bileşen" +402f6db00251a15d1d92507887b17e1c50feebca,3D Facial Action Units Recognition for Emotional Expression,"D Facial Action Units Recognition for Emotional +Expression +Norhaida Hussain1, Hamimah Ujir, Irwandi Hipiny and Jacey-Lynn Minoi2 +Department of Information Technology and Communication, Politeknik Kuching, Sarawak, Malaysia +Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia +The muscular activities caused the activation of certain AUs for every facial expression at the certain duration of time +throughout the facial expression. This paper presents the methods to recognise facial Action Unit (AU) using facial distance +of the facial features which activates the muscles. The seven facial action units involved are AU1, AU4, AU6, AU12, AU15, +AU17 and AU25 that characterises happy and sad expression. The recognition is performed on each AU according to rules +defined based on the distance of each facial points. The facial distances chosen are extracted from twelve facial features. +Then the facial distances are trained using Support Vector Machine (SVM) and Neural Network (NN). Classification result +using SVM is presented with several different SVM kernels while result using NN is presented for each training, validation +nd testing phase. +Keywords: Facial action units recognition, 3D AU recognition, facial expression" +40fb4e8932fb6a8fef0dddfdda57a3e142c3e823,A mixed generative-discriminative framework for pedestrian classification,"A Mixed Generative-Discriminative Framework for Pedestrian Classification +Markus Enzweiler1 +Dariu M. Gavrila2,3 +Image & Pattern Analysis Group, Dept. of Math. and Comp. Sc., Univ. of Heidelberg, Germany +Environment Perception, Group Research, Daimler AG, Ulm, Germany +Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands" +40dd2b9aace337467c6e1e269d0cb813442313d7,Localizing spatially and temporally objects and actions in videos. (Localiser spatio-temporallement des objets et des actions dans des vidéos),"This thesis has been submitted in fulfilment of the requirements for a postgraduate degree +(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following +terms and conditions of use: +This work is protected by copyright and other intellectual property rights, which are +retained by the thesis author, unless otherwise stated. +A copy can be downloaded for personal non-commercial research or study, without +prior permission or charge. +This thesis cannot be reproduced or quoted extensively from without first obtaining +permission in writing from the author. +The content must not be changed in any way or sold commercially in any format or +medium without the formal permission of the author. +When referring to this work, full bibliographic details including the author, title, +warding institution and date of the thesis must be given." +40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd,Bridging Heterogeneous Domains With Parallel Transport For Vision and Multimedia Applications,"Bridging Heterogeneous Domains With Parallel Transport For Vision and +Multimedia Applications +Raghuraman Gopalan +Dept. of Video and Multimedia Technologies Research +AT&T Labs-Research +San Francisco, CA 94108" +40389b941a6901c190fb74e95dc170166fd7639d,Automatic Facial Expression Recognition,"Automatic Facial Expression Recognition +Jacob Whitehill, Marian Stewart Bartlett, and Javier R. Movellan +Emotient +http://emotient.com +February 12, 2014 +Imago animi vultus est, indices oculi. (Cicero) +Introduction +The face is innervated by two different brain systems that compete for control of its muscles: +cortical brain system related to voluntary and controllable behavior, and a sub-cortical +system responsible for involuntary expressions. The interplay between these two systems +generates a wealth of information that humans constantly use to read the emotions, inten- +tions, and interests [25] of others. +Given the critical role that facial expressions play in our daily life, technologies that can +interpret and respond to facial expressions automatically are likely to find a wide range of +pplications. For example, in pharmacology, the effect of new anti-depression drugs could +e assessed more accurately based on daily records of the patients’ facial expressions than +sking the patients to fill out a questionnaire, as it is currently done [7]. Facial expression +recognition may enable a new generation of teaching systems to adapt to the expression +of their students in the way good teachers do [61]. Expression recognition could be used +to assess the fatigue of drivers and air-pilots [58, 59]. Daily-life robots with automatic" +40b10e330a5511a6a45f42c8b86da222504c717f,Implementing the Viola-Jones Face Detection Algorithm,"Implementing the Viola-Jones +Face Detection Algorithm +Ole Helvig Jensen +Kongens Lyngby 2008 +IMM-M.Sc.-2008-93" +40ca925befa1f7e039f0cd40d57dbef6007b4416,Sampling Matters in Deep Embedding Learning,"Sampling Matters in Deep Embedding Learning +Chao-Yuan Wu∗ +UT Austin +R. Manmatha +A9/Amazon +Alexander J. Smola +Amazon +Philipp Kr¨ahenb¨uhl +UT Austin" +4026dc62475d2ff2876557fc2b0445be898cd380,An Affective User Interface Based on Facial Expression Recognition and Eye-Gaze Tracking,"An Affective User Interface Based on Facial Expression +Recognition and Eye-Gaze Tracking +Soo-Mi Choi and Yong-Guk Kim +School of Computer Engineering, Sejong University, Seoul, Korea" +40f127fa4459a69a9a21884ee93d286e99b54c5f,Optimizing Apparent Display Resolution Enhancement for Arbitrary Videos,"Optimizing Apparent Display Resolution +Enhancement for Arbitrary Videos +Michael Stengel*, Member, IEEE, Martin Eisemann, Stephan Wenger, +Benjamin Hell, Marcus Magnor, Member, IEEE" +401e6b9ada571603b67377b336786801f5b54eee,Active Image Clustering: Seeking Constraints from Humans to Complement Algorithms,"Active Image Clustering: Seeking Constraints from +Humans to Complement Algorithms +November 22, 2011" +2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87,Pointly-Supervised Action Localization,"International Journal of Computer Vision manuscript No. +(will be inserted by the editor) +Pointly-Supervised Action Localization +Pascal Mettes · Cees G. M. Snoek +Received: date / Accepted: date" +2eb37a3f362cffdcf5882a94a20a1212dfed25d9,Local Feature Based Face Recognition,"Local Feature Based Face Recognition +Sanjay A. Pardeshi and Sanjay N. Talbar +R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded +India +. Introduction +A reliable automatic face recognition (AFR) system is a need of time because in today's +networked world, maintaining the security of private information or physical property is +ecoming increasingly important and difficult as well. Most of the time criminals have been +taking the advantage of fundamental flaws in the conventional access control systems i.e. +the systems operating on credit card, ATM etc. do not grant access by ""who we are"", but by +""what we have”. The biometric based access control systems have a potential to overcome +most of the deficiencies of conventional access control systems and has been gaining the +importance in recent years. These systems can be designed with biometric traits such as +fingerprint, face, iris, signature, hand geometry etc. But comparison of different biometric +traits shows that face is very attractive biometric because of its non-intrusiveness and social +cceptability. It provides automated methods of verifying or recognizing the identity of a +living person based on its facial characteristics. +In last decade, major advances occurred in face recognition, with many systems capable of +chieving recognition rates greater than 90%. However real-world scenarios remain a +hallenge, because face acquisition process can undergo to a wide range of variations. Hence" +2e5cfa97f3ecc10ae8f54c1862433285281e6a7c,Generative Adversarial Networks for Improving Face Classification,"Generative Adversarial Networks for Improving Face Classification JONAS NATTEN SUPERVISOR Morten Goodwin, PhD University of Agder, 2017 Faculty of Engineering and Science Department of ICT" +2e091b311ac48c18aaedbb5117e94213f1dbb529,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,"Collaborative Facial Landmark Localization +for Transferring Annotations Across Datasets +Brandon M. Smith and Li Zhang +University of Wisconsin – Madison +http://www.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/" +2e1415a814ae9abace5550e4893e13bd988c7ba1,Dictionary Based Face Recognition in Video Using Fuzzy Clustering and Fusion,"International Journal of Engineering Trends and Technology (IJETT) – Volume 21 Number 3 – March 2015 +Dictionary Based Face Recognition in Video Using +Fuzzy Clustering and Fusion +Neeraja K.C.#1, RameshMarivendan E.#2, +#1IInd year M.E. Student, #2Assistant Professor +#1#2ECE Department, Dhanalakshmi Srinivasan College of Engineering, +Coimbatore,Tamilnadu,India. +Anna University." +2e68190ebda2db8fb690e378fa213319ca915cf8,Generating Videos with Scene Dynamics,"Generating Videos with Scene Dynamics +Carl Vondrick +Hamed Pirsiavash +Antonio Torralba" +2e0d56794379c436b2d1be63e71a215dd67eb2ca,Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH,"Improving precision and recall of face recognition in SIPP with combination of +modified mean search and LSH +Xihua.Li" +2e475f1d496456831599ce86d8bbbdada8ee57ed,Groupsourcing: Team Competition Designs for Crowdsourcing,"Groupsourcing: Team Competition Designs for +Crowdsourcing +Markus Rokicki, Sergej Zerr, Stefan Siersdorfer +L3S Research Center, Hannover, Germany" +2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522,Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition,"Leveraging Billions of Faces to Overcome +Performance Barriers in Unconstrained Face +Recognition +Yaniv Taigman and Lior Wolf +face.com +{yaniv," +2ed4973984b254be5cba3129371506275fe8a8eb,Victoria Ovsyannikova THE EFFECTS OF MOOD ON EMOTION RECOGNITION AND ITS RELATIONSHIP WITH THE GLOBAL VS LOCAL INFORMATION PROCESSING,"Victoria Ovsyannikova +THE EFFECTS OF MOOD ON +EMOTION RECOGNITION AND +ITS RELATIONSHIP WITH THE +GLOBAL VS LOCAL +INFORMATION PROCESSING +STYLES +BASIC RESEARCH PROGRAM +WORKING PAPERS +SERIES: PSYCHOLOGY +WP BRP 60/PSY/2016 +This Working Paper is an output of a research project implemented at the National Research +University Higher School of Economics (HSE). Any opinions or claims contained in this +Working Paper do not necessarily reflect the views of HSE" +2e9c780ee8145f29bd1a000585dd99b14d1f5894,Simultaneous Adversarial Training - Learn from Others Mistakes,"Simultaneous Adversarial Training - Learn from +Others’ Mistakes +Zukang Liao +Lite-On Singapore Pte. Ltd, 2Imperial College London" +2ebc35d196cd975e1ccbc8e98694f20d7f52faf3,Towards Wide-angle Micro Vision Sensors,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Towards Wide-angle Micro Vision Sensors +Sanjeev J. Koppal* +Ioannis Gkioulekas* Travis Young+ Hyunsung Park* +Kenneth B. Crozier* Geoffrey L. Barrows+ Todd Zickler*" +2ea78e128bec30fb1a623c55ad5d55bb99190bd2,Residual vs. Inception vs. Classical Networks for Low-Resolution Face Recognition,"Residual vs. Inception vs. Classical Networks for +Low-Resolution Face Recognition +Christian Herrmann1,2, Dieter Willersinn2, and J¨urgen Beyerer1,2 +Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany +Fraunhofer IOSB, Karlsruhe, Germany +{christian.herrmann,dieter.willersinn," +2e0f5e72ad893b049f971bc99b67ebf254e194f7,Apparel Classification with Style,"Apparel Classification with Style +Lukas Bossard1, Matthias Dantone1, Christian Leistner1,2, +Christian Wengert1,3, Till Quack3, Luc Van Gool1,4 +ETH Z¨urich, Switzerland 2Microsoft, Austria 3Kooaba AG, Switzerland +KU Leuven, Belgium" +2ec7d6a04c8c72cc194d7eab7456f73dfa501c8c,A R Eview on T Exture B Ased E Motion R Ecognition from F Acial E Xpression,"International Journal of Scientific Research and Management Studies (IJSRMS) +ISSN: 2349-3771 +Volume 3 Issue 4, pg: 164-169 +A REVIEW ON TEXTURE BASED EMOTION RECOGNITION +FROM FACIAL EXPRESSION +Rishabh Bhardwaj, 2Amit Kumar Chanchal, 3 Shubham Kashyap, +3 Pankaj Pandey, 3Prashant Kumar +U.G. Scholars, 2Assistant Professor, +Dept. of E & C Engg., MIT Moradabad, Ram Ganga Vihar, Phase II, Moradabad, India." +2eb9f1dbea71bdc57821dedbb587ff04f3a25f07,Face for Ambient Interface,"Face for Ambient Interface +Maja Pantic +Imperial College, Computing Department, 180 Queens Gate, +London SW7 2AZ, U.K." +2e832d5657bf9e5678fd45b118fc74db07dac9da,"Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative Evaluation","Running head: RECOGNITION OF FACIAL EXPRESSIONS OF EMOTION +Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative +Evaluation +Rachel Merchak +Wittenberg University +Rachel Merchak, Psychology Department, Wittenberg University. +Author Note +This research was conducted in collaboration with Dr. Stephanie Little, Psychology Department, +Wittenberg University, and Dr. Michael Anes, Psychology Department, Wittenberg University. +Correspondence concerning this article should be addressed to Rachel Merchak, 10063 Fox +Chase Drive, Loveland, OH 45140. +E‐mail:" +2b4d092d70efc13790d0c737c916b89952d4d8c7,Robust Facial Expression Recognition using Local Haar Mean Binary Pattern,"JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2016) +Robust Facial Expression Recognition using Local Haar +Mean Binary Pattern +MAHESH GOYANI1, NARENDRA PATEL2 +,2 Department of Computer Engineering +Charotar University of Science and Technology, Changa, India +Gujarat Technological University, V.V.Nagar, India +E-mail: +In this paper, we propose a hybrid statistical feature extractor, Local Haar Mean Bina- +ry Pattern (LHMBP). It extracts level-1 haar approximation coefficients and computes Local +Mean Binary Pattern (LMBP) of it. LMBP code of pixel is obtained by weighting the +thresholded neighbor value of 3  3 patch on its mean. LHMBP produces highly discrimina- +tive code compared to other state of the art methods. To localize appearance features, ap- +proximation subband is divided into M  N regions. LHMBP feature descriptor is derived +y concatenating LMBP distribution of each region. We also propose a novel template +matching strategy called Histogram Normalized Absolute Difference (HNAD) for histogram +ased feature comparison. Experiments prove the superiority of HNAD over well-known +template matching techniques such as L2 norm and Chi-Square. We also investigated +LHMBP for expression recognition in low resolution. The performance of the proposed ap- +proach is tested on well-known CK, JAFFE, and SFEW facial expression datasets in diverse" +2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f,An Effective Approach for Facial Expression Recognition with Local Binary Pattern and Support Vector Machine,"An Effective Approach for Facial Expression Recognition with Local Binary +Pattern and Support Vector Machine +Cao Thi Nhan, 2Ton That Hoa An, 3Hyung Il Choi +*1School of Media, Soongsil University, +School of Media, Soongsil University, +School of Media, Soongsil University," +2b1327a51412646fcf96aa16329f6f74b42aba89,Improving performance of recurrent neural network with relu nonlinearity,"Under review as a conference paper at ICLR 2016 +IMPROVING PERFORMANCE OF RECURRENT NEURAL +NETWORK WITH RELU NONLINEARITY +Sachin S. Talathi & Aniket Vartak +Qualcomm Research +San Diego, CA 92121, USA" +2b632f090c09435d089ff76220fd31fd314838ae,Early Adaptation of Deep Priors in Age Prediction from Face Images,"Early Adaptation of Deep Priors in Age Prediction from Face Images +Mahdi Hajibabaei +Computer Vision Lab +D-ITET, ETH Zurich +Anna Volokitin +Computer Vision Lab +D-ITET, ETH Zurich +Radu Timofte +CVL, D-ITET, ETH Zurich +Merantix GmbH" +2b507f659b341ed0f23106446de8e4322f4a3f7e,Deep Identity-aware Transfer of Facial Attributes,"Deep Identity-aware Transfer of Facial Attributes +Mu Li1, Wangmeng Zuo2, David Zhang1 +The Hong Kong Polytechnic University 2Harbin Institute of Technology" +2b8dfbd7cae8f412c6c943ab48c795514d53c4a7,Polynomial based texture representation for facial expression recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +e-mail: +e-mail: +RECOGNITION +. INTRODUCTION +(d1,d2)∈[0;d]2 +d1+d2≤d" +2bae810500388dd595f4ebe992c36e1443b048d2,Analysis of Facial Expression Recognition by Event-related Potentials,"International Journal of Bioelectromagnetism +Vol. 18, No. 1, pp. 13 - 18, 2016 +www.ijbem.org +Analysis of Facial Expression Recognition +y Event-related Potentials +Taichi Hayasaka and Ayumi Miyachi +Department of Information and Computer Engineering, +National Institute of Technology, Toyota College, Japan +Correspondence: Taichi Hayasaka, Department of Information and Computer Engineering, National Institute of Technology, +Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan, +E-mail: phone +81 565 36 5861, fax +81 565 36 5926" +2bbbbe1873ad2800954058c749a00f30fe61ab17,Face Verification across Ages Using Self Organizing Map,"ISSN(Online): 2320-9801 +ISSN (Print): 2320-9798 +International Journal of Innovative Research in Computer and Communication Engineering +(An ISO 3297: 2007 Certified Organization) +Vol.2, Special Issue 1, March 2014 +Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14) +Organized by +Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014 +Face Verification across Ages Using Self +Organizing Map +B.Mahalakshmi1, K.Duraiswamy2, P.Gnanasuganya3, P.Aruldhevi4, R.Sundarapandiyan5 +Associate Professor, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India1 +Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India2 +B.E, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India3, 4, 5" +477236563c6a6c6db922045453b74d3f9535bfa1,Attribute Based Image Search Re-Ranking Snehal,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +Attribute Based Image Search Re-Ranking +Snehal S Patil1, Ajay Dani2 +Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune +2Professor, Computer and Science Dept, Savitribai Phule Pune University, G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune +integrating +images by" +470dbd3238b857f349ebf0efab0d2d6e9779073a,Unsupervised Simultaneous Orthogonal basis Clustering Feature Selection,"Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection +Dongyoon Han and Junmo Kim +School of Electrical Engineering, KAIST, South Korea +In this paper, we propose a novel unsupervised feature selection method: Si- +multaneous Orthogonal basis Clustering Feature Selection (SOCFS). To per- +form feature selection on unlabeled data effectively, a regularized regression- +ased formulation with a new type of target matrix is designed. The target +matrix captures latent cluster centers of the projected data points by per- +forming the orthogonal basis clustering, and then guides the projection ma- +trix to select discriminative features. Unlike the recent unsupervised feature +selection methods, SOCFS does not explicitly use the pre-computed local +structure information for data points represented as additional terms of their +objective functions, but directly computes latent cluster information by the +target matrix conducting orthogonal basis clustering in a single unified term +of the proposed objective function. +Since the target matrix is put in a single unified term for regression of +the proposed objective function, feature selection and clustering are simul- +taneously performed. In this way, the projection matrix for feature selection +is more properly computed by the estimated latent cluster centers of the +projected data points. To the best of our knowledge, this is the first valid" +47541d04ec24662c0be438531527323d983e958e,British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008xxxxxx,Affective Information Processing +474b461cd12c6d1a2fbd67184362631681defa9e,Multi-resolution fusion of DTCWT and DCT for shift invariant face recognition,"014 IEEE International +Conference on Systems, Man +nd Cybernetics +(SMC 2014) +San Diego, California, USA +5-8 October 2014 +Pages 1-789 +IEEE Catalog Number: +ISBN: +CFP14SMC-POD +978-1-4799-3841-4" +47ca2df3d657d7938d7253bed673505a6a819661,"Fields of Study Major Field: Computer Vision Minor Field: Pattern Recognition, Image Procession, Statistical Learning Ix Abstract Facial Expression Analysis on Manifolds","UNIVERSITY OF CALIFORNIA +Santa Barbara +Facial Expression Analysis on Manifolds +A Dissertation submitted in partial satisfaction of the +requirements for the degree Doctor of Philosophy +in Computer Science +Ya Chang +Committee in charge: +Professor Matthew Turk, Chair +Professor Yuan-Fang Wang +Professor B.S. Manjunath +Professor Andy Beall +September 2006" +47d4838087a7ac2b995f3c5eba02ecdd2c28ba14,Automatic Recognition of Deceptive Facial Expressions of Emotion,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +Automatic Recognition of Facial Displays of +Unfelt Emotions +Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio +Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +nd Gholamreza Anbarjafari, Senior Member, IEEE" +47a2727bd60e43f3253247b6d6f63faf2b67c54b,Semi-supervised Vocabulary-Informed Learning,"Semi-supervised Vocabulary-informed Learning +Yanwei Fu and Leonid Sigal +Disney Research" +47d3b923730746bfaabaab29a35634c5f72c3f04,Real-Time Facial Expression Recognition App Development on Smart Phones,"Humaid Alshamsi.et.al. Int. Journal of Engineering Research and Application www.ijera.com +ISSN : 2248-9622, Vol. 7, Issue 7, ( Part -3) July 2017, pp.30-38 +RESEARCH ARTICLE +OPEN ACCESS +Real-Time Facial Expression Recognition App Development on +Smart Phones +Humaid Alshamsi, Veton Kupuska +Electrical And Computer Engineering Department, Florida Institute Of Technology, Melbourne Fl," +47e3029a3d4cf0a9b0e96252c3dc1f646e750b14,Facial expression recognition in still pictures and videos using active appearance models: a comparison approach,"International Conference on Computer Systems and Technologies - CompSysTech’07 +Facial Expression Recognition in still pictures and videos using Active +Appearance Models. A comparison approach. +Drago(cid:1) Datcu +Léon Rothkrantz" +475e16577be1bfc0dd1f74f67bb651abd6d63524,DAiSEE: Towards User Engagement Recognition in the Wild,"DAiSEE: Towards User Engagement Recognition in the Wild +Abhay Gupta +Microsoft +Vineeth N Balasubramanian +Indian Institution of Technology Hyderabad" +471befc1b5167fcfbf5280aa7f908eff0489c72b,Class-Specific Kernel-Discriminant Analysis for Face Verification,"Class-Specific Kernel-Discriminant +Analysis for Face Verification +Georgios Goudelis, Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE +lass problems (" +47e8db3d9adb79a87c8c02b88f432f911eb45dc5,MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization,"MAGMA: Multi-level accelerated gradient mirror descent algorithm for +large-scale convex composite minimization +Vahan Hovhannisyan +Panos Parpas +Stefanos Zafeiriou +July 15, 2016" +47f5f740e225281c02c8a2ae809be201458a854f,Simultaneous Unsupervised Learning of Disparate Clusterings,"Simultaneous Unsupervised Learning of Disparate Clusterings +Prateek Jain*, Raghu Meka and Inderjit S. Dhillon +Department of Computer Sciences, University of Texas, Austin, TX 78712-1188, USA +Received 14 April 2008; accepted 05 May 2008 +DOI:10.1002/sam.10007 +Published online 3 November 2008 in Wiley InterScience (www.interscience.wiley.com)." +47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa,Automatic Face Recognition System using Pattern Recognition Techniques: A Survey,"International Journal of Computer Applications (0975 – 8887) +Volume 83 – No 5, December 2013 +Automatic Face Recognition System using Pattern +Recognition Techniques: A Survey +Ningthoujam Sunita Devi Prof.K.Hemachandran +Department of Computer Science Department of Computer Science +Assam University, Silchar-788011 Assam University, Silchar-788011" +47b508abdaa5661fe14c13e8eb21935b8940126b,An Efficient Method for Feature Extraction of Face Recognition Using PCA,"Volume 4, Issue 12, December 2014 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +An Efficient Method for Feature Extraction of Face +Recognition Using PCA +Tara Prasad Singh +(M.Tech. Student) +Computer Science & Engineering +Iftm University,Moradabad-244001 U.P." +782188821963304fb78791e01665590f0cd869e8,Automatic Spatially-Aware Fashion Concept Discovery,"sleevelengthincreasing dress length+ mini =(b) Structured product browsing(c) Attribute-feedback product retrieval(a) Concept discoveryminimidimaxisleevelessshort-sleevelong-sleeveblueblackredyellowFigure1.(a)Weproposeaconceptdiscoveryapproachtoauto-maticallyclusterspatially-awareattributesintomeaningfulcon-cepts.Thediscoveredspatially-awareconceptsarefurtherutilizedfor(b)structuredproductbrowsing(visualizingimagesaccordingtoselectedconcepts)and(c)attribute-feedbackproductretrieval(refiningsearchresultsbyprovidingadesiredattribute).variousfeedback,includingtherelevanceofdisplayedim-ages[20,4],ortuningparameterslikecolorandtexture,andthenresultsareupdatedcorrespondingly.However,rel-evancefeedbackislimitedduetoitsslowconvergencetomeetthecustomerrequirements.Inadditiontocolorandtexture,customersoftenwishtoexploithigher-levelfea-tures,suchasneckline,sleevelength,dresslength,etc.Semanticattributes[13],whichhavebeenappliedef-fectivelytoobjectcategorization[15,27]andfine-grainedrecognition[12]couldpotentiallyaddresssuchchallenges.Theyaremid-levelrepresentationsthatdescribesemanticproperties.Recently,researchershaveannotatedclotheswithsemanticattributes[9,2,8,16,11](e.g.,material,pat-tern)asintermediaterepresentationsorsupervisorysignalstobridgethesemanticgap.However,annotatingsemanticattributesiscostly.Further,attributesconditionedonob-jectpartshaveachievedgoodperformanceinfine-grainedrecognition[3,33],confirmingthatspatialinformationiscriticalforattributes.Thisalsoholdsforclothingimages.Forexample,thenecklineattributeusuallycorrespondstothetoppartinimageswhilethesleeveattributeordinarily1" +783f3fccde99931bb900dce91357a6268afecc52,Adapted Active Appearance Models,"Hindawi Publishing Corporation +EURASIP Journal on Image and Video Processing +Volume 2009, Article ID 945717, 14 pages +doi:10.1155/2009/945717 +Research Article +Adapted Active Appearance Models +Renaud S´eguier,1 Sylvain Le Gallou,2 Gaspard Breton,2 and Christophe Garcia2 +SUP ´ELEC/IETR, Avenue de la Boulaie, 35511 Cesson-S´evign´e, France +Orange Labs—TECH/IRIS, 4 rue du clos courtel, 35 512 Cesson S´evign´e, France +Correspondence should be addressed to Renaud S´eguier, +Received 5 January 2009; Revised 2 September 2009; Accepted 20 October 2009 +Recommended by Kenneth M. Lam +Active Appearance Models (AAMs) are able to align ef‌f‌iciently known faces under duress, when face pose and illumination are +ontrolled. We propose Adapted Active Appearance Models to align unknown faces in unknown poses and illuminations. Our +proposal is based on the one hand on a specific transformation of the active model texture in an oriented map, which changes the +AAM normalization process; on the other hand on the research made in a set of different precomputed models related to the most +dapted AAM for an unknown face. Tests on public and private databases show the interest of our approach. It becomes possible +to align unknown faces in real-time situations, in which light and pose are not controlled. +Copyright © 2009 Renaud S´eguier et al. This is an open access article distributed under the Creative Commons Attribution +License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly" +78f438ed17f08bfe71dfb205ac447ce0561250c6,Bridging the Semantic Gap : Image and video Understanding by Exploiting Attributes, +781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7ed,Tubelets: Unsupervised Action Proposals from Spatiotemporal Super-Voxels,"Int J Comput Vis +DOI 10.1007/s11263-017-1023-9 +Tubelets: Unsupervised Action Proposals from Spatiotemporal +Super-Voxels +Mihir Jain1 +Cees G. M. Snoek1 +· Jan van Gemert2 · Hervé Jégou3 · Patrick Bouthemy3 · +Received: 25 June 2016 / Accepted: 18 May 2017 +© The Author(s) 2017. This article is an open access publication" +78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e,Temporal Pyramid Pooling-Based Convolutional Neural Network for Action Recognition,"TEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION +Temporal Pyramid Pooling Based Convolutional +Neural Network for Action Recognition +Peng Wang, Yuanzhouhan Cao, Chunhua Shen, Lingqiao Liu, and Heng Tao Shen" +78fdf2b98cf6380623b0e20b0005a452e736181e,Dense Wide-Baseline Stereo with Varying Illumination and its Application to Face Recognition, +787c1bb6d1f2341c5909a0d6d7314bced96f4681,"Face Detection and Verification in Unconstrained Videos: Challenges, Detection, and Benchmark Evaluation","Face Detection and Verification in Unconstrained +Videos: Challenges, Detection, and Benchmark +Evaluation +Mahek Shah +IIIT-D-MTech-CS-GEN-13-106 +July 16, 2015 +Indraprastha Institute of Information Technology, Delhi +Thesis Advisors +Dr. Mayank Vatsa +Dr. Richa Singh +Submitted in partial fulfillment of the requirements +for the Degree of M.Tech. in Computer Science +(cid:13) Shah, 2015 +Keywords: face recognition, face detection, face verification" +7808937b46acad36e43c30ae4e9f3fd57462853d,Describing people: A poselet-based approach to attribute classification,"Describing People: A Poselet-Based Approach to Attribute Classification ∗ +Lubomir Bourdev1,2, Subhransu Maji1 and Jitendra Malik1 +EECS, U.C. Berkeley, Berkeley, CA 94720 +Adobe Systems, Inc., 345 Park Ave, San Jose, CA 95110" +8b2c090d9007e147b8c660f9282f357336358061,Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks,"Lake Forest College +Lake Forest College Publications +Senior Theses +-23-2018 +Student Publications +Emotion Classification based on Expressions and +Body Language using Convolutional Neural +Networks +Aasimah S. Tanveer +Lake Forest College, +Follow this and additional works at: https://publications.lakeforest.edu/seniortheses +Part of the Neuroscience and Neurobiology Commons +Recommended Citation +Tanveer, Aasimah S., ""Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks"" +(2018). Senior Theses. +This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for +inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact" +8b547b87fd95c8ff6a74f89a2b072b60ec0a3351,Initial perceptions of a casual game to crowdsource facial expressions in the wild,"Initial Perceptions of a Casual Game to Crowdsource +Facial Expressions in the Wild +Chek Tien Tan +Hemanta Sapkota +Daniel Rosser +Yusuf Pisan +Games Studio, Faculty of Engineering and IT, University of Technology, Sydney" +8bf57dc0dd45ed969ad9690033d44af24fd18e05,Subject-Independent Emotion Recognition from Facial Expressions using a Gabor Feature RBF Neural Classifier Trained with Virtual Samples Generated by Concurrent Self-Organizing Maps,"Subject-Independent Emotion Recognition from Facial Expressions +using a Gabor Feature RBF Neural Classifier Trained with Virtual +Samples Generated by Concurrent Self-Organizing Maps +VICTOR-EMIL NEAGOE, ADRIAN-DUMITRU CIOTEC +Depart. Electronics, Telecommunications & Information Technology +Polytechnic University of Bucharest +Splaiul Independentei No. 313, Sector 6, Bucharest, +ROMANIA" +8b744786137cf6be766778344d9f13abf4ec0683,And Summarization by Sub-modular Inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016" +8bf647fed40bdc9e35560021636dfb892a46720e,Learning to hash-tag videos with Tag2Vec,"Learning to Hash-tag Videos with Tag2Vec +Aditya Singh +Saurabh Saini +Rajvi Shah +CVIT, KCIS, IIIT Hyderabad, India +P J Narayanan +http://cvit.iiit.ac.in/research/projects/tag2vec +Figure 1. Learning a direct mapping from videos to hash-tags : sample frames from short video clips with user-given hash-tags +(left); a sample frame from a query video and hash-tags suggested by our system for this query (right)." +8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,Multimodal Interaction on a Social Robotic Platform,"Methoden +t 11/2013 +(cid:2)(cid:2)(cid:2) +Multimodale Interaktion +uf einer sozialen Roboterplattform +Multimodal Interaction on a Social Robotic Platform +Jürgen Blume +Korrespondenzautor: +, Tobias Rehrl, Gerhard Rigoll, Technische Universität München +Zusammenfassung Dieser Beitrag beschreibt die multimo- +dalen Interaktionsmöglichkeiten mit der Forschungsroboter- +plattform ELIAS. Zunächst wird ein Überblick über die Ro- +oterplattform sowie die entwickelten Verarbeitungskompo- +nenten gegeben, die Einteilung dieser Komponenten erfolgt +nach dem Konzept von wahrnehmenden und agierenden Mo- +dalitäten. Anschließend wird das Zusammenspiel der Kom- +ponenten in einem multimodalen Spieleszenario näher be- +trachtet. (cid:2)(cid:2)(cid:2) Summary +This paper presents the mul- +timodal" +8b1db0894a23c4d6535b5adf28692f795559be90,How Reliable are Your Visual Attributes?,"Biometric and Surveillance Technology for Human and Activity Identification X, edited by Ioannis Kakadiaris, +Walter J. Scheirer, Laurence G. Hassebrook, Proc. of SPIE Vol. 8712, 87120Q · © 2013 SPIE +CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2018974 +Proc. of SPIE Vol. 8712 87120Q-1 +From: http://proceedings.spiedigitallibrary.org/ on 06/07/2013 Terms of Use: http://spiedl.org/terms" +134db6ca13f808a848321d3998e4fe4cdc52fbc2,Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006 +Dynamics of Facial Expression: Recognition of +Facial Actions and Their Temporal Segments +From Face Profile Image Sequences +Maja Pantic, Member, IEEE, and Ioannis Patras, Member, IEEE" +133dd0f23e52c4e7bf254e8849ac6f8b17fcd22d,Active Clustering with Model-Based Uncertainty Reduction,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +Active Clustering with Model-Based +Uncertainty Reduction +Caiming Xiong, David M. Johnson, and Jason J. Corso Senior Member, IEEE" +1369e9f174760ea592a94177dbcab9ed29be1649,Geometrical facial modeling for emotion recognition,"Geometrical Facial Modeling for Emotion Recognition +Giampaolo L. Libralon and Roseli A. F. Romero" +133900a0e7450979c9491951a5f1c2a403a180f0,Social Grouping for Multi-Target Tracking and Head Pose Estimation in Video,"JOURNAL OF LATEX CLASS FILES +Social Grouping for Multi-target Tracking and +Head Pose Estimation in Video +Zhen Qin and Christian R. Shelton" +13db9466d2ddf3c30b0fd66db8bfe6289e880802,Transfer Subspace Learning Model for Face Recognition at a Distance,"I.J. Image, Graphics and Signal Processing, 2017, 1, 27-32 +Published Online January 2017 in MECS (http://www.mecs-press.org/) +DOI: 10.5815/ijigsp.2017.01.04 +Transfer Subspace Learning Model for Face +Recognition at a Distance +Alwin Anuse +MIT, Pune ,India +Email: +Nilima Deshmukh +AISSM’S IOT,India +Email: +Vibha Vyas +College of Engineering Pune,India +Email: +learning algorithms work" +13141284f1a7e1fe255f5c2b22c09e32f0a4d465,Object Tracking by Oversampling Local Features,"Object Tracking by +Oversampling Local Features +Federico Pernici and Alberto Del Bimbo" +1394ca71fc52db972366602a6643dc3e65ee8726,EmoReact: a multimodal approach and dataset for recognizing emotional responses in children,"See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308407783 +EmoReact: A Multimodal Approach and Dataset +for Recognizing Emotional Responses in Children +Conference Paper · November 2016 +DOI: 10.1145/2993148.2993168 +CITATIONS +READS +authors, including: +Behnaz Nojavanasghari +University of Central Florida +PUBLICATIONS 20 CITATIONS +Tadas Baltrusaitis +Carnegie Mellon University +0 PUBLICATIONS 247 CITATIONS +SEE PROFILE +SEE PROFILE +Charles E. Hughes +University of Central Florida +85 PUBLICATIONS 1,248 CITATIONS +SEE PROFILE" +133da0d8c7719a219537f4a11c915bf74c320da7,A Novel Method for 3D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887) +Volume 123 – No.4, August 2015 +A Novel Method for 3D Image Segmentation with Fusion +of Two Images using Color K-means Algorithm +Neelam Kushwah +Dept. of CSE +ITM Universe +Gwalior +Priusha Narwariya +Dept. of CSE +ITM Universe +Gwalior" +133f01aec1534604d184d56de866a4bd531dac87,Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics,"Effective Unconstrained Face Recognition by +Combining Multiple Descriptors and Learned +Background Statistics +Lior Wolf, Member, IEEE, Tal Hassner, and Yaniv Taigman" +13841d54c55bd74964d877b4b517fa94650d9b65,Generalised ambient reflection models for Lambertian and Phong surfaces,"Generalised Ambient Reflection Models for Lambertian and +Phong Surfaces +Author +Zhang, Paul, Gao, Yongsheng +Published +Conference Title +Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009) +https://doi.org/10.1109/ICIP.2009.5413812 +Copyright Statement +© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/ +republish this material for advertising or promotional purposes or for creating new collective +works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +this work in other works must be obtained from the IEEE. +Downloaded from +http://hdl.handle.net/10072/30001 +Griffith Research Online +https://research-repository.griffith.edu.au" +132f88626f6760d769c95984212ed0915790b625,Exploring Entity Resolution for Multimedia Person Identification,"UC Irvine +UC Irvine Electronic Theses and Dissertations +Title +Exploring Entity Resolution for Multimedia Person Identification +Permalink +https://escholarship.org/uc/item/9t59f756 +Author +Zhang, Liyan +Publication Date +014-01-01 +Peer reviewed|Thesis/dissertation +eScholarship.org +Powered by the California Digital Library +University of California" +13f6ab2f245b4a871720b95045c41a4204626814,Cortex commands the performance of skilled movement,"RESEARCH ARTICLE +Cortex commands the performance of +skilled movement +Jian-Zhong Guo, Austin R Graves, Wendy W Guo, Jihong Zheng, Allen Lee, +Juan Rodrı´guez-Gonza´ lez, Nuo Li, John J Macklin, James W Phillips, +Brett D Mensh, Kristin Branson, Adam W Hantman* +Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United +States" +13afc4f8d08f766479577db2083f9632544c7ea6,Multiple kernel learning for emotion recognition in the wild,"Multiple Kernel Learning for +Emotion Recognition in the Wild +Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, +Gwen Littlewort and Marian S. Bartlett +Machine Perception Laboratory +EmotiW Challenge, ICMI, 2013" +13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd,Image Normalization Robust using Histogram Equalization and Logarithm Transform Frequency DCT Coefficients for Illumination in Facial Images,"Dr. V. S. Manjula +HOD, Department of Computer Science, St. Joseph College of Information Technology, Songea, Tanzania" +13d9da779138af990d761ef84556e3e5c1e0eb94,Learning to Locate Informative Features for Visual Identification,"Int J Comput Vis (2008) 77: 3–24 +DOI 10.1007/s11263-007-0093-5 +Learning to Locate Informative Features for Visual Identification +Andras Ferencz · Erik G. Learned-Miller · +Jitendra Malik +Received: 18 August 2005 / Accepted: 11 September 2007 / Published online: 9 November 2007 +© Springer Science+Business Media, LLC 2007" +7f511a6a2b38a26f077a5aec4baf5dffc981d881,Low-Latency Human Action Recognition with Weighted Multi-Region Convolutional Neural Network,"LOW-LATENCY HUMAN ACTION RECOGNITION WITH WEIGHTED MULTI-REGION +CONVOLUTIONAL NEURAL NETWORK +Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63) +(cid:63)University of Science and Technology of China, Hefei, Anhui, China +HERE Technologies, Chicago, Illinois, USA" +7ff42ee09c9b1a508080837a3dc2ea780a1a839b,Data Fusion for Real-time Multimodal Emotion Recognition through Webcams and Microphones in E-Learning,"Data Fusion for Real-time Multimodal Emotion Recognition through Webcams +nd Microphones in E-Learning +Kiavash Bahreini*, Rob Nadolski*, Wim Westera* +*Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of +Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg +77, 6419 AT Heerlen, The Netherlands +{kiavash.bahreini, rob.nadolski," +7f533bd8f32525e2934a66a5b57d9143d7a89ee1,Audio-Visual Identity Grounding for Enabling Cross Media Search,"Audio-Visual Identity Grounding for Enabling Cross Media Search +Kevin Brady, MIT Lincoln Laboratory +Paper ID 22" +7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5,Sparse Output Coding for Scalable Visual Recognition,"Int J Comput Vis (2016) 119:60–75 +DOI 10.1007/s11263-015-0839-4 +Sparse Output Coding for Scalable Visual Recognition +Bin Zhao1 · Eric P. Xing1 +Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015 +© Springer Science+Business Media New York 2015" +7f4bc8883c3b9872408cc391bcd294017848d0cf,The Multimodal Focused Attribute Model : A Nonparametric Bayesian Approach to Simultaneous Object Classification and Attribute Discovery,"Computer +Sciences +Department +The Multimodal Focused Attribute Model: A Nonparametric +Bayesian Approach to Simultaneous Object Classification and +Attribute Discovery +Jake Rosin +Charles R. Dyer +Xiaojin Zhu +Technical Report #1697 +January 2012" +7f6061c83dc36633911e4d726a497cdc1f31e58a,YouTube-8M: A Large-Scale Video Classification Benchmark,"YouTube-8M: A Large-Scale Video Classification +Benchmark +Sami Abu-El-Haija +George Toderici +Nisarg Kothari +Joonseok Lee +Paul Natsev +Balakrishnan Varadarajan +Sudheendra Vijayanarasimhan +Google Research" +7f36dd9ead29649ed389306790faf3b390dc0aa2,Movement Differences between Deliberate and Spontaneous Facial Expressions: Zygomaticus Major Action in Smiling.,"MOVEMENT DIFFERENCES BETWEEN DELIBERATE +AND SPONTANEOUS FACIAL EXPRESSIONS: +ZYGOMATICUS MAJOR ACTION IN SMILING +Karen L. Schmidt, Zara Ambadar, Jeffrey F. Cohn, and L. Ian Reed" +7f6cd03e3b7b63fca7170e317b3bb072ec9889e0,A Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes,"A Face Recognition Signature Combining Patch-based +Features with Soft Facial Attributes +L. Zhang, P. Dou, I.A. Kakadiaris +Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204" +7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae,Incremental Classifier Learning with Generative Adversarial Networks,"Incremental Classifier Learning with Generative Adversarial Networks +Yue Wu1 Yinpeng Chen2 Lijuan Wang2 Yuancheng Ye3 +Zicheng Liu2 Yandong Guo2 Zhengyou Zhang2 Yun Fu1 +Northeastern University 2Microsoft Research 3City University of New York" +7f268f29d2c8f58cea4946536f5e2325777fa8fa,Facial Emotion Recognition in Curvelet Domain,"Facial Emotion Recognition in Curvelet Domain +Gyanendra K Verma and Bhupesh Kumar Singh +Indian Institute of Informaiton Technology, Allahabad, India +Allahabad, India - 211012" +7f3a73babe733520112c0199ff8d26ddfc7038a0,Robust Face Identification with Small Sample Sizes using Bag of Words and Histogram of Oriented Gradients, +7af38f6dcfbe1cd89f2307776bcaa09c54c30a8b,Learning in Computer Vision and Beyond: Development,"eaig i C e Vii ad Beyd: +Devee +h . Weg +Deae f C e Sciece +ichiga Sae Uiveiy +Ea aig  48824 +Abac +Thi chae id ce wha i caed he deveea aach  c e vii i +aic a ad ai(cid:12)cia ieigece i geea.  dic e he c e baic aadig f de +veig a ye ad i f daea iiai. The deveea aach i ivaed +y h a cgiive devee f ifacy  ad hd. A deveea eaig ag +ih i deeied befe he \bih"" f he ye. Afe he \bih"" i eabe he ye + ea ew ak wih  a eed f egaig. The aj ga f he deveea +ach i  eaize a ai f geea  e eaig ha eabe achie  ef +deveea eaig ve a g eid. S ch eaig i cd ced i a de iia  he +way aia ad h a ea. The achie   ea diecy f ci   ey i +  ea whie ieacig wih he evie ic dig h a eache.  hi eaig +de deveig ieige ga f vai  ak i eaized h gh ea ie ieac" +7a81967598c2c0b3b3771c1af943efb1defd4482,Do We Need More Training Data?,"Do We Need More Training Data? +Xiangxin Zhu · Carl Vondrick · Charless C. Fowlkes · Deva Ramanan" +7ae0212d6bf8a067b468f2a78054c64ea6a577ce,Human Face Processing Techniques With Application To Large Scale Video Indexing,"Human Face Processing Techniques +With Application To +Large Scale Video Indexing +LE DINH DUY +DOCTOR OF +PHILOSOPHY +Department of Informatics, +School of Multidisciplinary Sciences, +The Graduate University for Advanced Studies (SOKENDAI) +006 (School Year) +September 2006" +7a0fb972e524cb9115cae655e24f2ae0cfe448e0,Facial Expression Classification Using RBF AND Back-Propagation Neural Networks,"Facial Expression Classification Using RBF AND Back-Propagation Neural Networks +R.Q.Feitosa1,2, +M.M.B.Vellasco1,2, +D.T.Oliveira1, +D.V.Andrade1, +S.A.R.S.Maffra1 +– Catholic University of Rio de Janeiro, Brazil +Department of Electric Engineering +– State University of Rio de Janeiro, Brazil +Department of Computer Engineering +e-mail: [raul, -rio.br, [diogo," +7ad77b6e727795a12fdacd1f328f4f904471233f,Supervised Local Descriptor Learning for Human Action Recognition,"Supervised Local Descriptor Learning +for Human Action Recognition +Xiantong Zhen, Feng Zheng, Ling Shao, Senior Member, IEEE, Xianbin Cao, Senior Member, IEEE, and Dan Xu" +7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b,Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection,"nd Face shape relationship2)AU relationship3)Face shape patternUpdate facial landmark locationsUpdate AU activation probabilitiesAU activation probabilitiesCurrent landmark locationsFigure1.Constrainedjointcascaderegressionframeworkforsi-multaneousfacialactionunitrecognitionandlandmarkdetection.wouldenablethemachineunderstandingofhumanfacialbehavior,intent,emotionetc.Facialactionunitrecognitionandfaciallandmarkdetec-tionarerelatedtasks,buttheyareseldomlyexploitedjointlyintheliteratures.Forexample,thefaceshapedefinedbythelandmarklocationsareconsideredaseffectivefeaturesforAUrecognition.But,thelandmarklocationinforma-tionisusuallyextractedbeforehandwithfaciallandmarkdetectionalgorithms.Ontheotherhand,theActionUnitinformationisrarelyutilizedintheliteraturetohelpfaciallandmarkdetection,eventhoughthefacialmusclemove-mentsandtheactivationofspecificfacialactionunitcancausetheappearanceandshapechangesofthefacewhichsignificantlyaffectfaciallandmarkdetection.Themutualinformationandintertwinedrelationshipamongfacialac-tionunitrecognitionandfaciallandmarkdetectionshouldbeutilizedtoboosttheperformancesofbothtasks.Cascaderegressionframeworkhasbeenshowntobeaneffectivemethodforfacealignmentrecently[19][13].Itstartsfromaninitialfaceshape(e.g.meanface)anditit-erativelyupdatesthefaciallandmarklocationsbasedonthelocalappearancefeaturesuntilconvergence.Severalregres-sionmodelshavebeenappliedtolearnthemappingfromthelocalappearancefeaturestothefaceshapeupdate.Toleveragethesuccessofthecascaderegressionframe-workandtoachievethegoalofjointfacialactionunit13400" +7aa4c16a8e1481629f16167dea313fe9256abb42,Multi-task learning for face identification and attribute estimation,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017" +7ad7897740e701eae455457ea74ac10f8b307bed,Random Subspace Two-dimensional LDA for Face Recognition,"Random Subspace Two-dimensional LDA for Face Recognition* +Garrett Bingham1" +7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697,Attend and Rectify: a Gated Attention Mechanism for Fine-Grained Recovery,"Attend and Rectify: a Gated Attention +Mechanism for Fine-Grained Recovery +Pau Rodr´ıguez†, Josep M. Gonfaus‡, Guillem Cucurull†, +F. Xavier Roca†, Jordi Gonz`alez† +Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB), +Campus UAB, 08193 Bellaterra, Catalonia Spain +Visual Tagging Services, Parc de Recerca, Campus UAB" +7aa062c6c90dba866273f5edd413075b90077b51,Minimizing Separability : A Comparative Analysis of Illumination Compensation Techniques in Face Recognition,"I.J. Information Technology and Computer Science, 2017, 5, 40-51 +Published Online May 2017 in MECS (http://www.mecs-press.org/) +DOI: 10.5815/ijitcs.2017.05.06 +Minimizing Separability: A Comparative Analysis +of Illumination Compensation Techniques in Face +Recognition +Chollette C. Olisah +Department of Computer Science and IT, Baze University, Abuja, Nigeria +E-mail:" +1451e7b11e66c86104f9391b80d9fb422fb11c01,Image privacy protection with secure JPEG transmorphing,"IET Signal Processing +Research Article +Image privacy protection with secure JPEG +transmorphing +ISSN 1751-9675 +Received on 30th December 2016 +Revised 13th July 2017 +Accepted on 11th August 2017 +doi: 10.1049/iet-spr.2016.0756 +www.ietdl.org +Lin Yuan1 , Touradj Ebrahimi1 +Multimedia Signal Processing Group, Electrical Engineering Department, EPFL, Station 11, Lausanne, Switzerland +E-mail:" +14761b89152aa1fc280a33ea4d77b723df4e3864,Zero-Shot Learning via Visual Abstraction, +14fdec563788af3202ce71c021dd8b300ae33051,Social Influence Analysis based on Facial Emotions,"Social Influence Analysis based on Facial Emotions +Pankaj Mishra, Rafik Hadfi, and Takayuki Ito +Department of Computer Science and Engineering +Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan +{pankaj.mishra," +1459d4d16088379c3748322ab0835f50300d9a38,Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning,"Cross-Domain Visual Matching via Generalized +Similarity Measure and Feature Learning +Liang Lin, Guangrun Wang, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang" +1450296fb936d666f2f11454cc8f0108e2306741,Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,"Learning to Discover Cross-Domain Relations +with Generative Adversarial Networks +Taeksoo Kim 1 Moonsu Cha 1 Hyunsoo Kim 1 Jung Kwon Lee 1 Jiwon Kim 1" +1442319de86d171ce9595b20866ec865003e66fc,Vision-Based Fall Detection with Convolutional Neural Networks,"Vision-Based Fall Detection with Convolutional +Neural Networks +Adri´an Nu˜nez-Marcos1, Gorka Azkune1, Ignacio Arganda-Carreras234 +DeustoTech - University of Deusto +Avenida de las Universidades, 24 - 48007, Bilbao, Spain +Dept. of Computer Science and Artificial Intelligence, Basque +Country University, San Sebastian, Spain +P. Manuel Lardizabal, 1 - 20018, San Sebastian, Spain +Ikerbasque, Basque Foundation for Science, Bilbao, Spain +Maria Diaz de Haro, 3 - 48013 Bilbao, Spain +Donostia International Physics Center (DIPC), San Sebastian, Spain +P. Manuel Lardizabal, 4 - 20018, San Sebastian, Spain" +1462bc73834e070201acd6e3eaddd23ce3c1a114,Face Authentication /recognition System for Forensic Application Using Sketch Based on the Sift Features Approach,"International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 4, April 2014 +FACE AUTHENTICATION /RECOGNITION +SYSTEM FOR FORENSIC APPLICATION +USING SKETCH BASED ON THE SIFT +FEATURES APPROACH +Poonam A. Katre +Department of Electronics Engineering KITS, +RTMNU Nagpur University, India" +140c95e53c619eac594d70f6369f518adfea12ef,Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,"Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A +Brendan F. Klare, Emma Taborsky , Austin Blanton , Jordan Cheney , Kristen Allen , Patrick Grother , Alan Mah , Anil K. Jain +The development of accurate and scalable unconstrained face recogni- +tion algorithms is a long term goal of the biometrics and computer vision +ommunities. The term “unconstrained” implies a system can perform suc- +essful identifications regardless of face image capture presentation (illumi- +nation, sensor, compression) or subject conditions (facial pose, expression, +occlusion). While automatic, as well as human, face identification in certain +scenarios may forever be elusive, such as when a face is heavily occluded or +aptured at very low resolutions, there still remains a large gap between au- +tomated systems and human performance on familiar faces. In order to close +this gap, large annotated sets of imagery are needed that are representative +of the end goals of unconstrained face recognition. This will help continue +to push the frontiers of unconstrained face detection and recognition, which +re the primary goals of the IARPA Janus program. +The current state of the art in unconstrained face recognition is high +ccuracy (roughly 99% true accept rate at a false accept rate of 1.0%) on +faces that can be detected with a commodity face detectors, but unknown +ccuracy on other faces. Despite the fact that face detection and recognition +research generally has advanced somewhat independently, the frontal face" +1467c4ab821c3b340abe05a1b13a19318ebbce98,Multitask and transfer learning for multi-aspect data,"Multitask and Transfer Learning for +Multi-Aspect Data +Bernardino Romera Paredes +A dissertation submitted in partial fulfillment +of the requirements for the degree of +Doctor of Philosophy of University College London." +142dcfc3c62b1f30a13f1f49c608be3e62033042,Adaptive region pooling for object detection,"Adaptive Region Pooling for Object Detection +Yi-Hsuan Tsai +UC Merced +Onur C. Hamsici +Qualcomm Research, San Diego +Ming-Hsuan Yang +UC Merced" +14e428f2ff3dc5cf96e5742eedb156c1ea12ece1,Facial Expression Recognition Using Neural Network Trained with Zernike Moments,"Facial Expression Recognition Using Neural Network Trained with Zernike +Moments +Mohammed Saaidia +Dept. Génie-Electrique +Université M.C.M Souk-Ahras +Souk-Ahras, Algeria" +14a5feadd4209d21fa308e7a942967ea7c13b7b6,Content-based vehicle retrieval using 3D model and part information,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012" +14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b,Modeling Spatio-Temporal Human Track Structure for Action Localization,"Modeling Spatio-Temporal Human Track Structure for Action +Localization +Guilhem Ch´eron · Anton Osokin · Ivan Laptev · Cordelia Schmid" +14ee4948be56caeb30aa3b94968ce663e7496ce4,SmileNet: Registration-Free Smiling Face Detection,"SmileNet: Registration-Free Smiling Face Detection In The Wild. +Jang, Y; Gunes, H; Patras, I +© Copyright 2018 IEEE +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact" +8ee62f7d59aa949b4a943453824e03f4ce19e500,Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions,"Robust Head-Pose Estimation Based on +Partially-Latent Mixture of Linear Regression +Vincent Drouard∗, Radu Horaud∗, Antoine Deleforge†, Sil`eye Ba∗ and Georgios Evangelidis∗ +INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +INRIA Rennes Bretagne Atlantique, Rennes, France" +8e33183a0ed7141aa4fa9d87ef3be334727c76c0,Robustness of Face Recognition to Image Manipulations,"– COS429 Written Report, Fall 2017 – +Robustness of Face Recognition to Image Manipulations +Cathy Chen (cc27), Zachary Liu (zsliu), and Lindy Zeng (lindy) +. Motivation +We can often recognize pictures of people we know even if the image has low resolution or obscures +part of the face, if the camera angle resulted in a distorted image of the subject’s face, or if the +subject has aged or put on makeup since we last saw them. Although this is a simple recognition task +for a human, when we think about how we accomplish this task, it seems non-trivial for computer +lgorithms to recognize faces despite visual changes. +Computer facial recognition is relied upon for many application where accuracy is important. +Facial recognition systems have applications ranging from airport security and suspect identification +to personal device authentication and face tagging [7]. In these real-world applications, the system +must continue to recognize images of a person who looks slightly different due to the passage of +time, a change in environment, or a difference in clothing. +Therefore, we are interested in investigating face recognition algorithms and their robustness to +image changes resulting from realistically plausible manipulations. Furthermore, we are curious +bout whether the impact of image manipulations on computer algorithms’ face recognition ability +mirrors related insights from neuroscience about humans’ face recognition abilities. +. Goal +In this project, we implement both face recognition algorithms and image manipulations. We then" +8e3d0b401dec8818cd0245c540c6bc032f169a1d,McGan: Mean and Covariance Feature Matching GAN,"McGan: Mean and Covariance Feature Matching GAN +Youssef Mroueh * 1 2 Tom Sercu * 1 2 Vaibhava Goel 2" +8e94ed0d7606408a0833e69c3185d6dcbe22bbbe,For your eyes only,"© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE +must be obtained for all other uses, in any current or future media, including +reprinting/republishing this material for advertising or promotional purposes, +reating new collective works, for resale or redistribution to servers or lists, or +reuse of any copyrighted component of this work in other works. +Pre-print of article that will appear at WACV 2012." +8e461978359b056d1b4770508e7a567dbed49776,LOMo: Latent Ordinal Model for Facial Analysis in Videos,"LOMo: Latent Ordinal Model for Facial Analysis in Videos +Karan Sikka1,∗ +Gaurav Sharma2,3,† +Marian Bartlett1,∗,‡ +UCSD, USA +MPI for Informatics, Germany +IIT Kanpur, India" +8ea30ade85880b94b74b56a9bac013585cb4c34b,From turbo hidden Markov models to turbo state-space models [face recognition applications],"FROM TURBO HIDDEN MARKOV MODELS TO TURBO STATE-SPACE MODELS +Florent Perronnin and Jean-Luc Dugelay +Institut Eur´ecom +Multimedia Communications Department +BP 193, 06904 Sophia Antipolis Cedex, France +fflorent.perronnin," +8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125,"Detecting and classifying scars, marks, and tattoos found in the wild","in any current or +future media, +for all other uses, + 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained +including +reprinting/republishing this material for advertising or promotional purposes, creating +new collective works, for resale or redistribution to servers or lists, or reuse of any +opyrighted component of this work in other works. +Pre-print of article that will appear at BTAS 2012.!!" +8e378ef01171b33c59c17ff5798f30293fe30686,A system for automatic face analysis based on statistical shape and texture models,"Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +der Technischen Universit¨at M¨unchen +A System for Automatic Face Analysis +Based on +Statistical Shape and Texture Models +Ronald M¨uller +Vollst¨andiger Abdruck der von der Fakult¨at +f¨ur Elektrotechnik und Informationstechnik +der Technischen Universit¨at M¨unchen +zur Erlangung des akademischen Grades eines +Doktor-Ingenieurs +genehmigten Dissertation +Vorsitzender: Prof. Dr. rer. nat. Bernhard Wolf +Pr¨ufer der Dissertation: +. Prof. Dr.-Ing. habil. Gerhard Rigoll +. Prof. Dr.-Ing. habil. Alexander W. Koch +Die Dissertation wurde am 28.02.2008 bei der Technischen Universit¨at M¨unchen +eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik +m 18.09.2008 angenommen." +8ed051be31309a71b75e584bc812b71a0344a019,Class-Based Feature Matching Across Unrestricted Transformations,"Class-based feature matching across unrestricted +transformations +Evgeniy Bart and Shimon Ullman" +8e36100cb144685c26e46ad034c524b830b8b2f2,Modeling Facial Geometry using Compositional VAEs,"Modeling Facial Geometry using Compositional VAEs +Timur Bagautdinov∗1, Chenglei Wu2, Jason Saragih2, Pascal Fua1, Yaser Sheikh2 +´Ecole Polytechnique F´ed´erale de Lausanne +Facebook Reality Labs, Pittsburgh" +8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b,Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse Reinforcement Learning,"International Journal of Computer Vision manuscript No. +(will be inserted by the editor) +Learning from Longitudinal Face Demonstration - +Where Tractable Deep Modeling Meets Inverse Reinforcement Learning +Chi Nhan Duong · Kha Gia Quach · Khoa Luu · T. Hoang Ngan Le · Marios +Savvides · Tien D. Bui +Received: date / Accepted: date" +22043cbd2b70cb8195d8d0500460ddc00ddb1a62,Separability-Oriented Subclass Discriminant Analysis,"Separability-Oriented Subclass Discriminant +Analysis +Huan Wan, Hui Wang, Gongde Guo, Xin Wei" +22137ce9c01a8fdebf92ef35407a5a5d18730dde,Recognition of Faces from single and Multi-View Videos, +22264e60f1dfbc7d0b52549d1de560993dd96e46,UnitBox: An Advanced Object Detection Network,"UnitBox: An Advanced Object Detection Network +Jiahui Yu1,2 +Yuning Jiang2 +Zhangyang Wang1 +Zhimin Cao2 +Thomas Huang1 +University of Illinois at Urbana−Champaign +Megvii Inc +{jyu79, zwang119, {jyn," +223ec77652c268b98c298327d42aacea8f3ce23f,Acted Facial Expressions In The Wild Database,"TR-CS-11-02 +Acted Facial Expressions In The Wild +Database +Abhinav Dhall, Roland Goecke, Simon +Lucey, Tom Gedeon +September 2011 +ANU Computer Science Technical Report Series" +228558a2a38a6937e3c7b1775144fea290d65d6c,Nonparametric Context Modeling of Local Appearance for Pose- and Expression-Robust Facial Landmark Localization,"Nonparametric Context Modeling of Local Appearance +for Pose- and Expression-Robust Facial Landmark Localization +Brandon M. Smith1 +Jonathan Brandt2 +University of Wisconsin–Madison +Zhe Lin2 +Adobe Research +Li Zhang1 +http://www.cs.wisc.edu/~lizhang/projects/face-landmark-localization/" +22fdd8d65463f520f054bf4f6d2d216b54fc5677,Efficient Small and Capital Handwritten Character Recognition with Noise Reduction,"International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013) +Efficient Small and Capital Handwritten Character +Recognition with Noise Reduction +Beerendra Kumar Pal, Prof. Shailendra Tiwari, Prof. Sandeep Kumar +Department of Computer Science Engg., IES College of Technology, Bhopal" +2251a88fbccb0228d6d846b60ac3eeabe468e0f1,Matrix-Based Kernel Subspace Methods,"Matrix-Based Kernel Subspace Methods +S. Kevin Zhou +Integrated Data Systems Department +Siemens Corporate Research +755 College Road East, Princeton, NJ 08540 +Email:" +227b18fab568472bf14f9665cedfb95ed33e5fce,Compositional Dictionaries for Domain Adaptive Face Recognition,"Compositional Dictionaries for Domain Adaptive +Face Recognition +Qiang Qiu, and Rama Chellappa, Fellow, IEEE." +227b1a09b942eaf130d1d84cdcabf98921780a22,Multi-feature shape regression for face alignment,"Yang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:51 +https://doi.org/10.1186/s13634-018-0572-6 +EURASIP Journal on Advances +in Signal Processing +R ES EAR CH +Multi-feature shape regression for face +lignment +Wei-Jong Yang, Yi-Chen Chen, Pau-Choo Chung and Jar-Ferr Yang* +Open Access" +22dabd4f092e7f3bdaf352edd925ecc59821e168,Exploiting side information in locality preserving projection,"Deakin Research Online +This is the published version: +An, Senjian, Liu, Wanquan and Venkatesh, Svetha 2008, Exploiting side information in +locality preserving projection, in CVPR 2008 : Proceedings of the 26th IEEE Conference on +Computer Vision and Pattern Recognition, IEEE, Washington, D. C., pp. 1-8. +Available from Deakin Research Online: +http://hdl.handle.net/10536/DRO/DU:30044576 +Reproduced with the kind permissions of the copyright owner. +Personal use of this material is permitted. However, permission to reprint/republish this +material for advertising or promotional purposes or for creating new collective works for +resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +in other works must be obtained from the IEEE. +Copyright : 2008, IEEE" +22e189a813529a8f43ad76b318207d9a4b6de71a,What will Happen Next? Forecasting Player Moves in Sports Videos,"What will Happen Next? +Forecasting Player Moves in Sports Videos +Panna Felsen +UC Berkeley, STATS +Pulkit Agrawal +UC Berkeley +Jitendra Malik +UC Berkeley" +25c19d8c85462b3b0926820ee5a92fc55b81c35a,Pose-Invariant Facial Expression Recognition Using Variable-Intensity Templates,"Noname manuscript No. +(will be inserted by the editor) +Pose-Invariant Facial Expression Recognition +Using Variable-Intensity Templates +Shiro Kumano · Kazuhiro Otsuka · Junji Yamato · +Eisaku Maeda · Yoichi Sato +Received: date / Accepted: date" +258a8c6710a9b0c2dc3818333ec035730062b1a5,Benelearn 2005 Annual Machine Learning Conference of Belgium and the Netherlands CTIT P ROCEEDINGS OF THE FOURTEENTH,"Benelearn 2005 +Annual Machine Learning Conference of +Belgium and the Netherlands +CTIT PROCEEDINGS OF THE FOURTEENTH +ANNUAL MACHINE LEARNING CONFERENCE +OF BELGIUM AND THE NETHERLANDS +Martijn van Otterlo, Mannes Poel and Anton Nijholt (eds.)" +25695abfe51209798f3b68fb42cfad7a96356f1f,An Investigation into Combining Both Facial Detection and Landmark Localisation into a Unified Procedure Using Gpu Computing,"AN INVESTIGATION INTO COMBINING +BOTH FACIAL DETECTION AND +LANDMARK LOCALISATION INTO A +UNIFIED PROCEDURE USING GPU +COMPUTING +J M McDonagh +MSc by Research" +250ebcd1a8da31f0071d07954eea4426bb80644c,DenseBox: Unifying Landmark Localization with End to End Object Detection,"DenseBox: Unifying Landmark Localization with +End to End Object Detection +Lichao Huang1 +Yi Yang2 +Yafeng Deng2 +Institute of Deep Learning +Baidu Research +Yinan Yu3" +25337690fed69033ef1ce6944e5b78c4f06ffb81,Strategic Engagement Regulation: an Integration of Self-enhancement and Engagement,"STRATEGIC ENGAGEMENT REGULATION: +AN INTEGRATION OF SELF-ENHANCEMENT AND ENGAGEMENT +Jordan B. Leitner +A dissertation submitted to the Faculty of the University of Delaware in partial +fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology +Spring 2014 +© 2014 Jordan B. Leitner +All Rights Reserved" +25d3e122fec578a14226dc7c007fb1f05ddf97f7,The first facial expression recognition and analysis challenge,"The First Facial Expression Recognition and Analysis Challenge +Michel F. Valstar, Bihan Jiang, Marc Mehu, Maja Pantic, and Klaus Scherer" +2597b0dccdf3d89eaffd32e202570b1fbbedd1d6,Towards Predicting the Likeability of Fashion Images,"Towards predicting the likeability of fashion images +Jinghua Wang, Abrar Abdul Nabi, Gang Wang, Member, IEEE, Chengde Wan, Tian-Tsong Ng, Member, IEEE," +25982e2bef817ebde7be5bb80b22a9864b979fb0,Facial Feature Tracking Under Varying Facial Expressions and Face Poses Based on Restricted Boltzmann Machines,"(a)26facialfeaturepointsthatwetrack(b)oneexamplesequenceFigure1.Facialfeaturepointtrackingunderexpressionvariationandocclusion.Inrecentyears,thesemodelshavebeenusedexplicitlytohandletheshapevariations[17][5].Thenonlinearityem-beddedinRBManditsvariantsmakesthemmoreeffectiveandefficienttorepresentthenonrigiddeformationsofob-jectscomparedtothelinearmethods.Theirlargenumberofhiddennodesanddeeparchitecturesalsocanimposesuffi-cientconstraintsaswellasenoughdegreesoffreedomsintotherepresentationsofthetargetobjects.Inthispaper,wepresentaworkthatcaneffectivelytrackfacialfeaturepointsusingfaceshapepriormodelsthatareconstructedbasedonRBM.Thefacialfeaturetrackercantrack26facialfeaturepoints(Fig.1(a))eveniffaceshavedifferentfacialexpressions,varyingposes,orocclu-sion(Fig.1(b)).Unlikethepreviousworksthattrackfacialfeaturepointsindependentlyorbuildashapemodeltocap-turethevariationsoffaceshapeorappearanceregardlessofthefacialexpressionsandfaceposes,theproposedmodelcouldcapturethedistinctionsaswellasthevariationsoffaceshapesduetofacialexpressionandposechangeinaunifiedframework.Specifically,wefirstconstructamodel1" +25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8,Label Distribution Learning,"Label Distribution Learning +Xin Geng*, Member, IEEE" +2559b15f8d4a57694a0a33bdc4ac95c479a3c79a,Contextual Object Localization With Multiple Kernel Nearest Neighbor,"Contextual Object Localization With Multiple +Kernel Nearest Neighbor +Brian McFee, Student Member, IEEE, Carolina Galleguillos, Student Member, IEEE, and +Gert Lanckriet, Member, IEEE" +25f1f195c0efd84c221b62d1256a8625cb4b450c,Experiments with Facial Expression Recognition using Spatiotemporal Local Binary Patterns,"-4244-1017-7/07/$25.00 ©2007 IEEE +ICME 2007" +25885e9292957feb89dcb4a30e77218ffe7b9868,Analyzing the Affect of a Group of People Using Multi-modal Framework,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2016 +Analyzing the Affect of a Group of People Using +Multi-modal Framework +Xiaohua Huang, Abhinav Dhall, Xin Liu, Guoying Zhao, Jingang Shi, Roland Goecke and Matti Pietik¨ainen" +259706f1fd85e2e900e757d2656ca289363e74aa,Improving People Search Using Query Expansions: How Friends Help To Find People,"Improving People Search Using Query Expansions +How Friends Help To Find People +Thomas Mensink and Jakob Verbeek +LEAR - INRIA Rhˆone Alpes - Grenoble, France" +258a2dad71cb47c71f408fa0611a4864532f5eba,Discriminative Optimization of Local Features for Face Recognition,"Discriminative Optimization +of Local Features for Face Recognition +H O S S E I N A Z I Z P O U R +Master of Science Thesis +Stockholm, Sweden 2011" +25127c2d9f14d36f03d200a65de8446f6a0e3bd6,Evaluating the Performance of Deep Supervised Auto Encoder in Single Sample Face Recognition Problem Using Kullback-leibler Divergence Sparsity Regularizer,"Journal of Theoretical and Applied Information Technology +20th May 2016. Vol.87. No.2 +© 2005 - 2016 JATIT & LLS. All rights reserved. +ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 +EVALUATING THE PERFORMANCE OF DEEP SUPERVISED +AUTO ENCODER IN SINGLE SAMPLE FACE RECOGNITION +PROBLEM USING KULLBACK-LEIBLER DIVERGENCE +SPARSITY REGULARIZER +OTNIEL Y. VIKTORISA, 2ITO WASITO, 2ARIDA F. SYAFIANDINI +Faculty of Computer of Computer Science, Universitas Indonesia, Kampus UI Depok, Indonesia +E-mail: ," -- cgit v1.2.3-70-g09d2